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Preface to ”Machine Learning in Sensors and

Imaging”

With the recent spread of smartphones, smartwatches, and smartbands, people are carrying

various sensors without realizing: a camera to capture an image, an infrared sensor to measure

approach or heart rate, a microphone to sense a voice signal, an optical sensor or ultrasound sensor

to sense a fingerprint, an accelerometer and a gravity sensor to measure movement or location, you

name it. In addition to this, many CCTVs in our daily life and thermal sensors, which were widely

distributed due to COVID-19, cannot be left out. A lot of data are created through this abundance of

sensors, and various studies are being conducted to efficiently utilize such big data.

At the same time, machine learning greatly contributes to processing/analyzing this overflowing

data and creating new applications. Machine learning has made remarkable progress in the name of

deep learning thanks to the development of hardware and the accumulation of data from the late

2000s to the present. This Special Issue, Machine Learning in Sensors and Imaging (https://www.

mdpi.com/journal/sensors/special issues/ML-SI), of Sensors contains a variety of studies that apply

machine learning to efficiently utilize the data obtained through sensors in various fields. We started

accepting papers in August 2020 and collected a total of 15 research results by January 2022, and

covers various fields that utilize the data obtained from sensors and machine learning technologies,

including human activity recognition, fuzzy classification, failure detection, sensor-less estimation,

automatic camera calibration, telescope control, object detection, wildfire assessment, shelf auditing,

forest monitoring, road management, denoising, and touchscreen.

I was honored to participate in this Special Issue as a guest editor, and I look forward to

contributing to the revitalization of machine learning research related to sensors, and opening up

a new future.

Hyoungsik Nam

Editor

xi
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Article

Computer Vision-Based Path Planning for Robot Arms in
Three-Dimensional Workspaces Using Q-Learning and
Neural Networks

Ali Abdi 1,2, Mohammad Hassan Ranjbar 2 and Ju Hong Park 1,*

1 Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH),
Pohang 37673, Korea; abdiali@postech.ac.kr

2 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran;
mhranjbar@ut.ac.ir

* Correspondence: juhpark@postech.ac.kr; Tel.: +82-54-279-8875

Abstract: Computer vision-based path planning can play a crucial role in numerous technologically
driven smart applications. Although various path planning methods have been proposed, limitations,
such as unreliable three-dimensional (3D) localization of objects in a workspace, time-consuming
computational processes, and limited two-dimensional workspaces, remain. Studies to address these
problems have achieved some success, but many of these problems persist. Therefore, in this study,
which is an extension of our previous paper, a novel path planning approach that combined computer
vision, Q-learning, and neural networks was developed to overcome these limitations. The proposed
computer vision-neural network algorithm was fed by two images from two views to obtain accurate
spatial coordinates of objects in real time. Next, Q-learning was used to determine a sequence of
simple actions: up, down, left, right, backward, and forward, from the start point to the target point
in a 3D workspace. Finally, a trained neural network was used to determine a sequence of joint
angles according to the identified actions. Simulation and experimental test results revealed that the
proposed combination of 3D object detection, an agent-environment interaction in the Q-learning
phase, and simple joint angle computation by trained neural networks considerably alleviated the
limitations of previous studies.

Keywords: path planning; Q-learning; neural network; YOLO algorithm; computer vision; robot
arm; target reaching; obstacle avoidance

1. Introduction

Intelligent robot arms can play a crucial role in automation. The extensive use of
industrial [1], surgical [2], and home robots [3] are examples of applications in which robot
arms have become indispensable. Many robot arms are synchronized to accomplish a
task by using a program or are remotely controlled by human operators. Intelligent robot
arms attached with numerous sensors and cameras have attracted considerable research
attention [4]. These robots have powerful onboard processors, high memory capacity, and
artificial intelligence (AI)-based algorithms. These features enable such robots to replicate
human capabilities. Intelligent robot arms gather information regarding their environment
to make decisions in real time.

Intelligent robot arms are also increasingly being used in numerous applications. For
instance, in smart cities [5], these kinds of robots are used to scan buildings and generate
automated three-dimensional (3D) reconstruction. In computer vision and computer graph-
ics, 3D reconstruction is used to detail the shape and appearance of physical objects, define
3D profiles, and determine the 3D coordinates of any point on the profile. Furthermore,
3D reconstruction has applications in many fields, such as medicine, free-viewpoint video
reconstruction, robotic mapping, city planning, gaming, virtual environments, virtual
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tourism, landslide inventory mapping, robot navigation, archaeology, augmented reality,
reverse engineering, motion capture, gesture recognition, and hand tracking [6].

In addition to 3D reconstruction, intelligent robot arms can play an essential role in
other applications. For example, in smart factories [7], intelligent robot arms can be used
in production, manufacturing, assembly, and packing in various industries. Moreover, in
smart hospitals, robot-assisted surgery allows doctors to perform many types of complex
procedures with higher precision, flexibility, and control than is possible with conventional
techniques. In smart homes, robot arms can assist people with disabilities, elderly individu-
als, and parents rearing children to considerably improve their quality of life. The accuracy,
speed, and efficiency of robot arms enable them to perform daily work effortlessly.

Although intelligent robot arms can be used in many industries, developing robotic
arm applications remains highly challenging. One crucial and difficult problem is to ensure
that robot arm path planning is accurate, safe, and efficient [8]. Path planning refers to
bringing the end-effector to the target without hitting obstacles. It depends on various
algorithms that dictate the motion of the robot arm, and determine how a robot arm
should approach, process, and orient itself for optimal productivity and collision avoidance.
Numerous computer vision-based path planning approaches were reviewed. Given that
the end-effector of robot arms is critical for achieving their goal, bringing the end-effector
to the desired location with obstacle avoidance is a key challenge for these robots.

This study aimed to overcome certain limitations of current computer vision-based
path planning of robot arms by using AI techniques to develop an intelligent robot arm
with high performance, safety, and speed.

To this end, although we tried to address those limitations in our previous paper [9],
some of them remain. This article that is, in fact, an extension of our previous study, tries to
address the limitations of prior work. In the previous study, we developed a novel hybrid
path planning method using Q-learning and neural networks. An action finding (active
approach) and angle finding (passive approach) were the two components of the hybrid
path planning system. The Q-learning algorithm was used in the active phase to determine
a series of simple movements, such as going up, down, left, and right to reach a target
cell in a two-dimensional (2D) grid workspace. In the passive phase, a neural network
is trained to determine the joint angles of the robot arm with respect to the observed
actions. According to our findings, this hybrid technique considerably improved the speed
and reduced the complexity of the operation of the system. However, this study had the
following limitations.

1. Although many applications require 3D movement, the scope of work was limited to
the 2D workspace.

2. Finding a start, an obstacle, and a target point through their colors may negatively
affect image processing accuracy depending on the ambient light. Obstacle detection
based on shapes would be preferable.

3. Because the KNN algorithm was used in this study, a start, an obstacle, and a target
cell were required to have distinct colors.

4. Only one obstacle could be located in the workspace unless distinct colors were used
for each obstacle.

Therefore, in this study, we extended the scope of our previously proposed method
from a 2D space to a 3D space and incorporated real-time object detection and localization
for real-world applications.

In this article, the proposed path planning method comprises three phases: (1) detect-
ing the spatial coordinates of a start, target, and obstacle object, (2) finding the optimal
path from a start to a target object while avoiding an obstacle object, and (3) calculating
the corresponding angles for the six joints of a robot arm. In the first stage, the spatial
coordinates of a start, target, and obstacle object were recognized in a 3D workspace using
a combined object detection technique and a neural network with two images captured
using two cameras from different views. This stage required a training process based on
the created dataset of the start, target, and obstacle shapes and their morphologies. In the

2



Sensors 2022, 22, 1697

next step, the Q-learning algorithm is used to determine the optimal actions in a gridded
3D workspace so that a robot arm could begin traveling from the start cell to the target cell
without collision with an obstacle. In a Q-learning algorithm, states are represented by cells
in a 3D workspace, and forward, backward, right, left, down, and up are defined as actions
of the robot arms. Finally, in the next step, a trained neural network is used to calculate
the angles for the six joints of a robot arm based on actions to place the end-effector in the
required location in 3D space. The use of a neural network for this stage greatly reduces
the calculation time and computing cost.

This approach exhibited high speed, low computational cost, and automated path
generation for various situations. A real-time object detection algorithm is obtained by
combining neural network and object detection. Furthermore, finding optimal actions by
Q-learning algorithm and calculating robot arm joint angles with trained neural networks
enabled us to create a precise, efficient, and fast method to address computer vision-based
path planning issues for real-life applications. The remainder of this paper is organized as
follows. In Section 2, the related works are presented. In Section 3, our novel computer
vision-based path planning technique is proposed. In Section 4, the experimental results
are presented and analyzed. In Section 5, the discussion is presented. Finally, in Section 6,
the conclusion is presented.

2. Related Works

Prior to the development of a new computer vision-based path planning approach,
numerous existing approaches were reviewed. Methods, such as probabilistic road map
(PRM), artificial potential field (APF), rapidly exploring random tree (RRT), and reinforce-
ment learning (RL)-based approaches, have been proposed. The most important of which
are as follows.

Ka et al. presented a vision-based assistive robot arm assistance algorithm for a JACO
robot in which a low-cost 3D depth-sensing camera and an improved inverse kinematic
algorithm were used to enable semiautonomous or autonomous JACO operation [10].
Rai et al. proposed an autonomous robotic framework for academic, vocational, and train-
ing purposes. They used two webcams that provided the top and side views to consider
the objects of various heights for positioning a robotic gripper at the center of the target [11].
Hsu et al. proposed a control design and implementation of an intelligent vehicle com-
bined with a robotic manipulator and computer vision [12]. Chen et al. demonstrated
the potential of combining augmented reality-based brain–computer interface and com-
puter vision to control robotic arms. They employed hue, saturation, and lightness space
(HSV) to provide the object’s position and color in the 2D workspace. The objects they
utilized were simply 2D disks with placements in a conventional gridding pattern [13].
Whang et al. used a popular object detection model, the faster R-CNN model, to detect
nails and screws in construction waste recycling robots. Their result shows that the model’s
mean average precision (AP) for nails and screws was 0.891. This precision was well in
their application [14]. Tebbe et al. demonstrated an innovative table tennis robot system
with high precision vision detection and rapid robot response. They used a multi-camera
calibration approach and iterative triangulation to reconstruct the 3D ball position with a
2.0 mm precision. They used classic image processing techniques and integrated color and
background thresholding to detect the flying ball with higher velocities in real-time [15].
Sadhu et al. proposed an improvised FA that involved the Q-learning framework within
itself for robot arms path planning. In this proposed Q-learning induced FA (QFA), the
optimal parameter values for each firefly of a population were learned by the Q-learning
strategy during the learning phase and applied thereafter during execution [16]. Wen et al.
presented a new obstacle avoidance algorithm based on deep deterministic policy gradient
(DDPG). Specifically, they proposed to use DDPG to plan the trajectory of a robot arm to
realize obstacle avoidance [17]. Zhang et al. proposed a path planning method based on
Q-learning for robot arm due to its simple and well-developed theory [18]. Huadong et al.
analyzed the characteristics of obstacle avoidance path planning to improve the efficiency
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and accuracy of obstacle avoidance path planning [19]. Das et al. proposed a novel method
of energy-efficient path planning of an industrial robot arm in a workspace with multi-
ple obstacles using differential evolution (DE) algorithm [20]. Raheem et al. analyzed
the shortest path and trajectory planning of a two-link robot arm with 2-DOF in the 2-D
static known environment [21]. Chang et al. presented an automatic path planning of
a six-axis robot for intelligent manufacturing based on network remote controlling and
simulation [22]. Sugiura et al. determined an optimal path by computing the gradient of an
equation using the APF method [23]. However, the algorithm may encounter local minima,
rather than the absolute minimum, and therefore the shortest path may not be identified,
as reported by Martínez et al. [24]. Kavraki et al. used Dijkstra’s algorithm to calculate the
shortest paths between nodes on a graph in the PRM method [25]. The path created by the
sampling-based approach may not be optimal because the resultant path mainly depends
on sample procedures, as reported by Hsu et al. [26]. Liu et al. reported that RRT can avoid
precise environmental modeling and reduce calculations [27]. However, the convergence
speed of motion planning is sluggish because of the random sampling and global uniform
sampling technique of rapidly expanding random trees in redundant spaces. Therefore,
producing the optimal path in a short period of time becomes challenging, as reported
by Karaman et al. [28]. Prianto et al. used the soft actor-critic (SAC) deep-learning-based
method for path planning. Because of the use of the entropy term in the goal function, the
SAC exhibits high exploration capabilities for path planning [29]. Panov et al. investigated
novel grid path planning with deep RL outcomes. Furthermore, they demonstrated the
robust learning ability of a neural Q-learning agent on tiny maps and achieved promising
results on new maps [30]. Low et al. suggested improved Q-learning and demonstrated
its efficacy through experimental investigations [31]. Yu et al. proposed a neural-network-
based path planning model for mobile robots based on hierarchical RL and compared this
model to other algorithms. The results revealed the smoothness of the planned path and
usable generalization in various scenarios by using an obstacle avoidance method based
on non-uniform rational B-splines (NURBS) for robot arms [32]. It was also found that the
NURBS method was highly effective for avoiding collisions [33].

These methods have distinct advantages and disadvantages. Certain methods have
irregular paths, require preplanning, determine a non-optimal path, obtain cubic graphs,
and are slow. Other methods have drawbacks, such as high complexity or are limited to
certain conditions. Because robot arm performance cannot be generalized, some robot arm
setups can become highly complex. The development of a novel path planning method that
identifies and solves these limitations is essential for improving robot arm performance
and production. The proposed approach meets this requirement with some advantages
that will be presented in the next sections.

3. Methods

The proposed procedure can be summarized as follows: (1) detecting the coordinates
of the bounding box of a start, target, and an obstacle by using an object detection algorithm.
Then, converting them to their spatial coordinates using a neural network, (2) determining
optimal actions using Q-learning, and (3) calculating the rotation angles of the joints of
a six-degree-of-freedom robot arm using a neural network. This section describes these
in detail.

3.1. Object Detection and Spatial Coordinates (Combined YOLO-Neural Networks 1)

In the first stage, the coordinates of the bounding boxes of a start, target, and obstacle
are obtained in the 3D space. These coordinates can be automatically determined for real-
time applications. In the proposed approach, an object detection algorithm and a neural
network were combined. In an object detection algorithm, both object recognition and
object localization in an image can be achieved. These algorithms can distinguish between
a start, an obstacle, and a target object, and extract their bounding box coordinates. Because
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we required 3D coordinates, we extracted XYZ coordinates using two cameras with two
planes, as displayed in Figure 1.

Figure 1. Workspace size and locations of cameras.

Many object detection algorithms, including SqueezeDet, MobileNet, R-CNN, fast
R-CNN, mask R-CNN, single-shot detector, and you only look once (YOLO), have been
proposed [34–38]. An algorithm can be evaluated from several perspectives, such as speed
of detection and accuracy of identification. Speed is particularly important because targets
may constantly change, so target detection should be performed in real time, allowing
new paths to be computed. In [39], the accuracy and speed of various object detection
algorithms were compared. The results revealed that the YOLO algorithm is accurate and
operates at a high speed. Therefore, the YOLO algorithm was chosen.

In YOLO, object detection is regarded as a regression problem involving spatially
separated bounding boxes and associated class probabilities. Full images are evaluated
once, and a single neural network predicts bounding boxes and class probabilities based
on those images alone. The use of a single network to monitor the detection process
allows the network to be tuned to obtain the best results. We mainly used one variant,
tiny-YOLOv4, and extracted the bounding boxes of a start, an obstacle, and the target to
find the approximate coordinates of the bounding boxes of all objects with perspective
correction (Figure 2). The cells within the bounding box of two perpendicular planes were
classified as objects; thus, the cells of objects in the 3D space were extracted.

.
Figure 2. YOLO object detection in two views.
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We used three objects to represent a start, an obstacle, and a target in this study. A
start, an obstacle, and a target object were represented by a sphere, a pyramid, and a cube,
respectively, as displayed in Figure 2. A dataset was created based on these three classes,
and photographs were labeled using the YOLO standard labeling method (where each
photograph is labeled with LabelImg, which is a free, open-source tool for graphically
labeling images). Table 1 presents the details of the dataset.

Table 1. Details of the dataset.

Shape Number of Data Class

Pyramid 200 0
Sphere 200 1
Cube 200 2

In this stage, the spatial coordinates of each detected object are determined. To this
end, we used a trained neural network to determine the X-, Y-, and Z-coordinates of these
three classes. The inputs of the neural network were the class of objects, the center, and the
sizes of the bounding boxes obtained by the YOLO algorithm.

A six-layer neural network topology with four hidden layers containing 16, 32, 64, and
16 neurons was used. The outputs were the spatial coordinates of the corresponding plates.
Figure 3 depicts the neural network architecture and the mean absolute error.

Figure 3. Structure of the first neural network and its mean absolute error convergence.

It is worth mentioning that we cannot use a simple mathematical problem to transform
two 2D projected coordinates into a 3D coordinate. That is because many parameters
influence the final accuracy of coordinates in real-world applications. Some of these factors
are the focal length and distortion impact of the lens, camera sensor size, perspective effect,
and positioning items behind another. When the focal length effect is paired with the
perspective effect and the object is near the borders of an image, finding coordinates with
high precision is a difficult operation using traditional mathematical approaches. Rather
than a complex procedure, we proposed a combined YOLO-neural networks method to
identify the coordinates of objects in pixel-based space with two cameras (YOLO) and
convert the pixel-based space to 3D XYZ real-world coordinates (neural network). Using
this method, we were able to extract 3D coordinates with acceptable precision in various
positions of the objects. We could also reduce the detection time to roughly 0.04 s, allowing
us to employ this approach in real-time applications.

We transformed the dimensions of the 3D workspace from 50 × 50 × 50 cm to
8 × 8 × 8 discrete cells, as displayed in Figure 4. This conversion simplified and accelerated
the overall calculation process. According to the grid workspace and the bounding boxes
of the start, obstacle, and target, the corresponding start, obstacle, and target cells can be
identified. These labeled cells are used in the Q-learning algorithm, as explained in the
following section.
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Figure 4. Gridded 3D workspace.

3.2. Action Finding (Q-Learning)

An action-finding process provides immediate action and state in the Q-learning
technique of the cells after determining a start, an obstacle, and a target. In machine
learning, Q-learning is an off-policy technique that focuses on how intelligent agents
should function in a particular environment to optimize cumulative reward. An RL agent
engages with its environment in discrete time steps. At each point t, the agent receives
the current state s{t} and the reward r{t}. As soon as action a{t} has been selected, it is
conveyed to the environment. With each iteration, the environment changes to a new state
(s{t+1}), and the reward (r{t+1}) associated with the change is computed (for each iteration).
In RL, the projected total reward for the RL agent is maximized. This research utilized the
Q-learning technique to identify a straightforward sequence of forward, backward, up,
down, left, and right actions to maximize accumulated rewards. The method is inspired by
the “windy grid world” problem. We divided the 3D workspace into several cells based
on a designated resolution. As detailed in Sutton and Barto’s original “windy grid world”
problem [40], the main purpose was to travel from one cell to its adjacent cells until the
target cell was reached. The difference between this technique and the RL-based methods
mentioned in the background section is that in this method, a direct action is determined to
move from a cell (state) to its neighboring cells instead of finding a sequence of joint angles
for the same movement. This assumption simplifies and speeds up the action-finding
process. Using this approach, state space and action space can be expressed as follows:

S = {cell1, cell2, cell3, . . . , celln × m × l}. (1)

The overall width, length, and height are represented by n, m, and l, respectively.
The higher the required resolution is, the more cells will be needed. The total number of
members in the state space is n × m × l.

A = { Up, Down, Le f t, Right, Forward, Backward} (2)

In this study, the action space has six members, namely forward, backward, up, down,
left, and right, as shown by Equation (2). The state space and the action space are small,
and an algorithmic model can be easily developed for the interaction of a robot arm within
this reduced environment. This technique can drastically reduce the execution time of an
algorithm and simultaneously decrease its complexity.

Before commencing the Q-learning process to discover the optimum path, the locations
of the start, target, and obstacle were identified. These three positions were randomly
arranged in each test in the workspace. In this technique, the 3D workspace was a portion
of the total workspace available in front of the robot arm.
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We selected forward, backward, up, down, left, and right as the total action space.
Although the number of actions can be increased, the computing cost increases. Additional
improvements in terms of resolution, defined as the magnitude of the end-effector motion in
each step, may exponentially increase the search space, which increases the computational
burden. However, reducing the actions may lead to path discovery failure. Hence, there is
a trade-off between speed and efficiency on the one hand and the probability of success
on the other. The time required to run the Q-learning code is directly proportional to the
number of cells. Therefore, establishing an appropriate resolution and speed for a specific
application considering the dimensions of the robot arm and objects is critical. We used a
3D grid workspace of 8 × 8 × 8 cells (states) for this study, considering the sizes of the three
objects and the speed of path planning. Therefore, this design implied a total of 512 cells
(states) in which the end-effector could be placed. The start, target, and obstacle points were
located within these cells. The Q-learning method was then used to determine the optimum
actions from the start to the target cell under various reward and penalty scenarios.

Seijen revealed that in a “windy grid world” problem, Q-learning outperformed other
algorithms, such as SARSA, to obtain the highest accumulated reward [41]. Therefore,
we used Q-learning as the RL algorithm in the action-finding phase in this study. In this
algorithm, if the robot arm successfully reaches the target cell, it earns a reward of 50 points.
By contrast, if it reaches an obstacle cell, the agent receives a penalty of −100 points.
Subsequently, all further acts result in a penalty of −1 point. The goal of the agent is simply
to maximize its score. In the Q-learning algorithm, first, the best sequence of actions from
the start cell to the target cell with avoidance of the obstacle cell is performed. A 3D grid
workspace was set up as follows in this study:

• In an 8 × 8 × 8 3D grid workspace, six possible actions, namely forward, backward,
up, down, left, and right, were considered.

• An agent starts from a randomly located start state and receives a reward of 50 points
for reaching a randomly located target state.

• An agent receives a penalty of −100 points for reaching a randomly located obstacle cell.
• All other actions cause a penalty of −1 point.

This action-finding section created a 3D matrix of the robot arm’s most rewarding
actions in each cell. These best actions can be followed from a start cell to a target cell
to create the best actions or optimal path sequence. In the next section, we describe the
conversion of these actions to angles that rotate the joints of a robot arm.

3.3. 6-DOF Angle Finding (Neural Networks 2)

In the final stage, we need to transform the sequence of actions into a sequence of joint
angles. One way is the use of inverse kinematics (IK). The idea behind IK is to calculate the
joint angles of the robot arm for a given position of the end-effector. The joint configurations
needed for each intermediate time step along the trajectory are calculated. However, using
IK in each step makes the method extremely slow. Another way is the use of a trained
neural network. The neural network does not need to be trained every time; instead,
it is trained only one time, and this trained neural network is used every time during
path planning.

In this study, an angle-finding process is performed by using a trained neural network
to obtain the joint angles of each specified action in a particular cell. We trained a neural
network for angle finding using RoboDK software because RoboDK can provide a 3D model
of our robot arm. Because the joint angles required to move the end-effector of a robot
arm in each direction are dependent on the present state of the end-effector, the current
cell must be considered by the neural network at each stage of the process. Therefore, the
neural network must be fed with the indices of the row, column, and height of the cell
as well as the action that has been selected as inputs. The outputs of the neural network
should be the joint angles that supply the location of the next cell corresponding to the
action. Notably, because the input must be in numerical form, actions such as up, down,
left, right, forward, and backward are labeled numerically as 1, 2, 3, 4, 5, and 6, respectively.
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Furthermore, the number of outputs is proportional to the degrees of freedom (DOF) of the
robot arm. The number of outputs in the robot arm in this research, with six joints, was
therefore six.

We used a five-layer neural network topology with three hidden layers containing 4,
10, and 6 neurons. The number of hidden layers and neurons was determined empirically
through trial and error during the training processes. Four inputs, namely the row, column,
and height indices of a current cell, as well as an action to be performed, were considered.
The robot arm used in this study, a model IRB 1600 with a 1.45 m arm length, had six DOF.
The rectified linear unit (ReLU) is the activation function for input and output neurons
because it is the most often implemented function and is not complex.

σReLU(x) = max{0, x} (3)

First, we collected datasets to train a neural network according to the designed struc-
ture by collecting precise data with an end-effector placed in various grid cells. We con-
sidered six neighboring cells of the central cell, where the end-effector was located, to be
six data points. These six cells were those orthogonal to the central cell, and reachable
by moving up, down, left, right, backward, or forward. We collected 3072 data points for
neural network training. Of these data points, 90% were used in the learning process, and
the rest were used in the testing and validation process. These data points were sufficient
to train a neural network properly with an 8 × 8 × 8 grid workspace. Because the research
used 512 cells (8 × 8 × 8 grid), 3072 moves were possible, and each operation in a cell could
be performed in six directions. Thus, we used the entire set of information. Because the
dataset was sufficiently large to include all cell movements, the dataset was considered
adequate. Six possible outcomes were possible when the robot was in cells on the edge of
the workspace. The robot ignored actions to move outside the workspace.

Initially, we trained a neural network with weights with random values. The output
value was then calculated for each training sample. The weights were then updated using a
backpropagation method and a gradient descent process. This procedure was repeated until
the weights reached their optimal levels and the error ranges were within the permitted
limits. Figure 5 depicts the neural network architecture and the mean absolute error.

Figure 5. Structure of the second neural network and its mean absolute error convergence.

A multilayer perceptron with a ReLU activation function first proposed by Paul
Werbos [42] was used in this study. In this approach, a neural network is trained only once
and then used for determining angles. A lengthy training period is thus reduced to a single
step before path planning. The trained neural network required only a few seconds for use
and could be used repeatedly.

The proposed computer vision-based path planning method can be summarized as follows:

1. Capturing a snapshot of the 3D workspace with the two cameras;
2. Detecting a start, target, and obstacle cell using the YOLO object-detection algorithm
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3. Obtaining the spatial coordinates of three objects using the first neural networks;
4. Using the Q-learning method to determine an optimal route from a starting point to a

target point while avoiding obstacle collision.
5. Finding the joint angles of the discovered actions using the trained neural network;
6. Implementation in the actual or simulated world of the acquired joint angle sequence

on the robot arm.

As displayed in Figure 6, we used a simple and fast technique in each phase of our
process to provide an efficient path planning process. The use of low-quality images for
the first stage could considerably speed up the picture analysis process because a start, an
obstacle, and a target object shape could be identified from low-resolution photographs
by using the algorithm. First, an object-detection method was used for object localization
because it is one of the most accurate and rapid algorithms. Next, a trained neural network
was used to obtain the spatial coordinates of these objects. We used the Q-learning algo-
rithm to determine basic actions and determine the route with the highest reward. Next,
the rapid conversion action of an experienced neural network was used for determining
joint angles. In the next section, we discuss our testing of the effectiveness of the proposed
method through simulation.

Figure 6. Method overview: 1. capturing pictures; 2. object detection by YOLO; 3. obtaining spatial
coordinate by the first neural network; 4. action-finding by Q-learning; 5. angle-finding by the second
neural network.
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3.4. Simulation

To ensure that any proposed method is safe and provides desired results, simulation
is essential before experimental implementation. First, we developed a 3D workspace by
randomly locating a sphere, pyramid, and cube as a start, obstacle, and target object by
using VPython, a library that allows users to create objects, such as spheres, cones, and
other forms in 3D space. Two pictures displaying two views, namely the top and side views,
were obtained. These two pictures are the inputs of the object-detection module. This
module was configured to detect three classes of objects, namely a sphere, a pyramid, and
a cube, in addition to finding the center of the bounding boxes as well as their dimensions.

For the next step, note that the outputs of the object detection (YOLO) algorithm were
the inputs of the first neural network. Therefore, it has five inputs, namely (1) the class
of an object, (2) the X- and (3) the Y- (or the Y- and the Z)-coordinates of the center of the
bounding box, (4) the width, and (5) the length of the bounding box. It has two outputs,
the X- and the Y- (or the Y and the Z) coordinates of an object in a spatial coordinate system.
The coordinates of the center of the bounding box differ from the coordinates of the object
in a spatial coordinate system because of the use of perspective pictures.

These spatial coordinates are then converted to a start, obstacle, and target cell. These
cells are the inputs of the Q-learning algorithm, which finds the optimal path from the
start cell to the target cell. In this simulation, we placed an obstacle object between the
start and target objects to evaluate the performance of the Q-learning algorithm in terms of
obstacle avoidance.

Next, the outputs of the Q-learning algorithm, including a list of actions and cell
indexes, were used as inputs for the second neural network. Thus, four inputs, including
the X-, Y-, Z-coordinates of the current cell and its corresponding actions, existed in this
neural network. The outputs were six joint angles that indicated the next cell of the optimal
path. Next, the end-effector of a robot arm in a RoboDK simulator started moving from a
start cell and followed the generated optimal path according to the obtained sequence of
joint angles. Figure 7 displays the results of the simulation.

Figure 7. Simulation results in a RoboDK software: (1–17). The end-effector of a robot arm starts
moving from a start point (Sphere) and avoid an obstacle point (Pyramid). Then reaches a target
point (Cube).
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4. Experiment Results

We tested the proposed method in a physical environment and verified its validity.
The experimental setup (Figure 8) included a 6-DOF robot arm, two cameras, a computer, a
3D workspace, and three objects that represent a start, obstacle, and target point.

Figure 8. Experimental setup: cameras, robot arm, workspace, sphere (start), pyramid (obstacle),
cube (target).

The test setup was similar to the simulated environment. The similarity was to enable
comparison between the test results and simulation results. We installed two cameras
and a robot arm, as was done in the simulation. Furthermore, a sphere (a start object), a
pyramid (an obstacle object), and a cube (a target object) were placed in locations identical
to those in the simulation. To ensure the physical test conditions were identical to those of
the simulation, the specifications of the lens used in our cameras were identical to those of
the virtual lens used in the simulation. Because of this similarity, the method presented in
this article could be validated if physical robot test results were identical to the simulation
result from the RoboDK software.

We placed a sphere (a start object) at the low-left corner, a pyramid (an obstacle object)
in the middle, and a cube (a target object) at the upper-right corner of the 3D workspace.
As displayed in Figure 9, the end-effector of the robot arm precisely followed the generated
path, which was consistent with the results of the simulation test. Thus, the results of this
physical test revealed that the proposed method exhibited satisfactory performance.

The results show that the robot follows the path well. This path was actually the best
actions (optimal polices) of each cell (state) obtained by the Q-learning algorithm. When
the Q-learning is running, it tries to find the best action that the agent can do in each state
through interaction with the environment. Therefore, in each state, there is an action that is
considered optimal action. In other words, the optimal policy is a 3D matrix (8 × 8 × 8)
whose elements are a letter such as “U”, “D”, “L”, “R”, “B”, “F” that represent Up, Down,
Left, Right, Backward, Forward respectively. Figure 10, displays the optimal policy of our
test. The letter “G” and “O” (is not found in the Figure 10) represent Goal (or Target) and
Obstacle cell.
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Figure 9. Real-world test: (1) The robot starts moving from the start point (Sphere). (2–8) The robot
track the found path while avoiding the obstacle. (9) The robot reaches the target (Cube).

Figure 10. The optimal policy of each state (cell).

What is very important is that the same optimal policy matrix can be used for each
start point if the location of the target and obstacle remains fixed. The extracted path from
the Q-learning results for our test is {F,F,F,F,R,F,F,F,D,R,R,D,D,D,D,D,D,R,R,R,R,G}. This
sequence of optimal actions begins from the start cell in which the sphere is placed. If we
change the location of the sphere, we do not require to run Q-learning again; we can use
the same optimal policy matrix to find a new sequence of actions from the new start cell.
This make the path generation more straightforward and fast.

Another important point is that in the Q-learning algorithm, there is an optimal
episode limit. When the episode limit is too high, it takes a long time for an agent to become
an experienced one. However, reducing the episode limit may lead to gaining not enough
experience by the agent, which means it cannot find the best actions for states. Hence, there
is a trade-off between speed on the one hand and gaining enough experience on the other.
In this test, the optimal episode limit is equal to 2000, which guarantees speed and enough
experience. This number was achieved through trial and error. In the next section, we
discuss our method in general and give some suggestions for its improvement.

13



Sensors 2022, 22, 1697

5. Discussion

In this section, we discuss the proposed method’s strengths and weaknesses. To this
end, first, we compare our method with other methods in terms of speed which is a crucial
feature in real-time path planning. To compare this method with other path planning
methods, we refer to our previous study [9]. In that paper, we compared the speed of
running time in our hybrid path planning method and other conventional path planning
methods such as RL-based, APF, PRM, and RRT. In order to compare them, we ran a simple
code of each method on the same computer to compute its running time. As we reported,
our hybrid method required less running time to do the path planning process under the
same conditions, which means it is faster than traditional methods due to using separate
active and passive approaches. This comparison is discussed in detail in the previous work
and can be referred to for more information.

In addition to strengths, this study has some limitations that should be taken into account
in future studies. These limitations and our suggestions are presented in the following.

1. Although we tested the method using a physical robot arm, the physical setup was
not exactly identical to the simulation because levitating multiple objects in the air and
the middle of the workspace is difficult due to the use of fixtures and wood structures.
Certain parts of a robot arm, such as the end-effector, may collide with fixtures.
Therefore, in the future, the feasibility of using augmented reality (AR) for virtual
test setup in physical robot tests should be considered. Furthermore, the efficacy
of using a virtual sphere, pyramid, and cube instead of using physical objects that
require fixtures should be evaluated. Such augmented tests can considerably reduce
expenses and facilitate the rapid implementation of complex settings. Moreover, a
more comprehensive analysis is possible than in an experimental test.

2. In future studies, trained deep Q-learning can also be incorporated into the proposed
method to learn additional possible pathfinding to increase the speed of the action
finding section. To use a deep Q-learning technique, a large dataset is required, which
is currently not possible. This approach can drastically reduce the inference time, but
concerns regarding high computing costs remain.

3. We used two cameras in two views which made our method less practical, especially
for those applications that need a portable robot arm. One suggestion is that we use a
single perspective picture taken by deep cameras then generate a path.

4. Our invention just takes shots at the beginning and a robot moves following a gen-
erated path. In order to be a realistic application, it should take many pictures
(one per sec) and re-generate a path. Therefore, the system could be an intelligent
real-time system.

5. We used a combined object detection-neural network method to calculate its spatial co-
ordinates. It is suggested using 3D reconstruction methods to calculate objects’ position.

6. To make the method more practical, further study may use actual objects such as a
cup, pen, monitor, book, etc.

In the end, in order to make the proposed method more useful and practical, a list of
useful applications is mentioned.

• It could be used for a harvesting robot to collect fruits from trees avoid obstacles.
• It could be used for a recycling robot to pick up bottles, cans, batteries, or other

particular objects in a recycling factory in real-time.
• It could be used for warehouse robots to pick selected items from shelves or totes and

place them into shipping containers to fulfill orders.
• It could be used for assembly line robots to pick components and place them at an

appropriate location.

6. Conclusions

A novel computer vision approach was proposed for effective path planning by
combining Q-learning and neural networks for robot arms. In the proposed approach,
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computer vision and neural networks were combined to obtain accurate spatial locations of
a start, an obstacle, and a target object in real time. In the 3D workspace, a sphere, a pyramid,
and a cube were used to represent the start, obstacle, and target points, respectively.
Two images from two views were inputted into a trained YOLO algorithm to detect
the aforementioned items and find bounding boxes for each detected object. A trained
neural network converted the bounding boxes into spatial coordinates. Next, a Q-learning
algorithm determined the optimal sequence of actions in a 3D workspace from a start
cell to a target cell and simultaneously avoided obstacles. Next, a trained neural network
converted the identified actions to the corresponding joint angles. Because the neural
networks were trained before the path planning process, the method was fast. We tested
this computer vision-based path planning algorithm through simulation and experimental
methods. The results revealed that this research overcame the limitations of our previous
research [9].

Future research directions are suggested as follows. First, the feasibility of using
augmented reality (AR) for virtual test setup in physical robot tests could be considered.
Second, the use of a trained deep Q-learning can also be considered to increase the speed
of the action finding section. Third, the use of a single perspective picture taken by deep
cameras could be considered to avoid using two cameras. Forth, instead of using pictures
only one time, a live video can be used to make the method more real-time. Fifth, the use
of 3D reconstruction methods to calculate objects’ positions could be considered. Sixth, the
use of actual objects such as a cup, pen, monitor, book, etc. could be considered to make
the method more practical.

Author Contributions: A.A. raised the idea of 3D grid computer vision-based path planning, de-
signed and trained the second neural network, performed the simulation on RoboDK software,
surveyed a part of the background of this research, and wrote a part of the manuscript. M.H.R.
designed and trained the object detection algorithm and first neural network, surveyed a part of the
background of this research, and wrote a part of the manuscript. J.H.P. supervised and supported
this study, prepared the experimental setup, and implemented the method on the real-world robot.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the
ICAN (ICT Challenge and Advanced Network of HRD) program (IITP-2021-2020-0-01822) supervised
by the IITP (Institute of Information & Communications Technology Planning and Evaluation), and
by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP;
Ministry of Science, ICT and Future Planning) (No. 2019R1G1A1010859).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors appreciate the help of members of the Design Intelligence Lab.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviation

The following abbreviations are used in this manuscript:
APF artificial potential field
PRM probabilistic road maps
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Abstract: Human activity recognition (HAR) using wearable sensors is an increasingly active research
topic in machine learning, aided in part by the ready availability of detailed motion capture data from
smartphones, fitness trackers, and smartwatches. The goal of HAR is to use such devices to assist
users in their daily lives in application areas such as healthcare, physical therapy, and fitness. One of
the main challenges for HAR, particularly when using supervised learning methods, is obtaining
balanced data for algorithm optimisation and testing. As people perform some activities more
than others (e.g., walk more than run), HAR datasets are typically imbalanced. The lack of dataset
representation from minority classes hinders the ability of HAR classifiers to sufficiently capture new
instances of those activities. We introduce three novel hybrid sampling strategies to generate more
diverse synthetic samples to overcome the class imbalance problem. The first strategy, which we call
the distance-based method (DBM), combines Synthetic Minority Oversampling Techniques (SMOTE)
with Random_SMOTE, both of which are built around the k-nearest neighbors (KNN). The second
technique, referred to as the noise detection-based method (NDBM), combines SMOTE Tomek links
(SMOTE_Tomeklinks) and the modified synthetic minority oversampling technique (MSMOTE). The
third approach, which we call the cluster-based method (CBM), combines Cluster-Based Synthetic
Oversampling (CBSO) and Proximity Weighted Synthetic Oversampling Technique (ProWSyn). We
compare the performance of the proposed hybrid methods to the individual constituent methods and
baseline using accelerometer data from three commonly used benchmark datasets. We show that
DBM, NDBM, and CBM reduce the impact of class imbalance and enhance F1 scores by a range of
9–20 percentage point compared to their constituent sampling methods. CBM performs significantly
better than the others under a Friedman test, however, DBM has lower computational requirements.

Keywords: activity recognition; wearable sensors; imbalanced activities; sampling methods

1. Introduction

Human activity recognition (HAR) using body-worn or wearable sensors is an active
research topic in mobile and ubiquitous computing [1]. Activity recognition is a useful
tool because it provides information on an individual’s behaviour that enables computing
systems not only to monitor but also to analyse and assist with a range of day-to-day
tasks [2,3].

Most HAR studies adopt a supervised learning approach [4]. Supervised learning
typically requires immense amounts of labelled sensor data in order to train [2]. For such
models to work well, the data are ideally recorded from a variety of real-word situations.
Additionally, a diversity of sensor modalities and placements can help improve recognition
performance [5,6].

Sensor data obtained from real-life settings is typically of poor quality (noisy) and
frequently has missing data [7]. These issues arise due to factors such as bad or faulty
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placement of sensors, or sensor malfunctioning [8]. Similarly, sensor data may often be
highly imbalanced due to significant individual variations, with limited labels for certain
activities [9]. Further barriers to obtaining sufficient quantities of real-world data include
the prohibitive cost of devices, issues related to privacy, or a desire to reduce battery
consumption [10]. Sensor data from certain activities can be difficult to obtain because
of the rare but critical nature of those activities, such as falls in the elderly [2] or heart
failure [11].

For HAR to succeed as a viable technique, there is an urgent need for new approaches
at making up for this shortfall in critical and underrepresented real-world data [2,12].
An important part of this is solving the class imbalance problem [13]. Imbalance can
occur in both the between-class distribution and as within-class imbalance [14]. Between-
class imbalance occurs, for example, when some activities are performed less often than
others [15]. As a result, the sample sizes for these activities are smaller, so a supervised
model might not have enough data to learn adequately. The related concept of within-
class imbalance occurs when the same activity is performed in different ways by the
same individual, yet there are insufficient examples from some of these for the model to
generalise adequately [12].

There are usually two methods to solve class imbalance: data level (sampling) methods
and algorithm level methods [16]. The data level approach involves changing a training
set’s class distribution by resampling. This might mean oversampling the minority classes,
undersampling the majority classes, or a combination of both [17]. The algorithm level
approach involves adjusting existing learning algorithms to focus more on the minority
classes [16]. In this work we use the data level approach, which is less complex to configure
and can be integrated with any learning algorithm.

The main contributions of the work are the following.

• We evaluate six sampling methods (SMOTE, Random_SMOTE, SMOTE_Tomeklinks,
MSMOTE, CBSO, and ProWSyn) as solutions to the class imbalance problem across
three commonly used datasets.

• We introduce three novel hybrid sampling approaches and show how these build on
and improve upon their constituent methods. These are (1) DBM, a distance-based
method that combines SMOTE and Random_SMOTE, (2) NDBM, a noise detection-
based method that combines SMOTE_Tomeklinks and MSMOTE, and (3) CBM, a
cluster-based method that combines CBSO and ProWSyn.

• We compare how useful the sampling methods are to improve the learning from
imbalanced human activity data using both shallow and deep machine learning
algorithms. Specifically, we test KNN, Logistic regression (LR), Random Forest (RF)
and Support Vector Machine (SVM), and a Multilayer perceptron (MLP) [18,19]. We
show that the sampling methods are only useful to improve the performance of the
MLP compared to the other classifiers for imbalanced human activity data.

The remainder of the paper is organised as follows. Section 2, shows some of the
existing work on class imbalance problem and techniques to deal with it in HAR. Section 3
provides background on the sampling methods used. Section 3.4 introduces the proposed
method and Section 4 describes the datasets. Section 5 describes the data analysis and
experimental setup. Section 6 introduces the experimental results, and Section 7 discusses
the findings from these.

2. Related Work

Several authors have highlighted the importance of the class imbalance problem in
HAR [2,12,20,21]. Ni et al. introduced a HAR system based on using the stacked denoising
autoencoder (SDAE) to recognise static and dynamic ambulatory activities, such as standing
and running, using accelerometers and gyroscopes [22]. The performance of their model
dropped as the class (activity) distribution of samples became unbalanced. They used
sampling techniques such as SMOTE and random undersampling to tackle the problem.
Based on their experimental result, the sampling techniques were more successful than
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random undersampling at successfully treating imbalance and improving recognition
performance. This is because the indiscriminate nature of the undersampling approach can
lead to useful data being discarded.

Despite the promising results, Ni et al’s. work is limited in that it oversamples the
entire dataset. Implementing oversampling before splitting a dataset into different train
and test partitions can result in information leakage from the original test data to the
newly produced training data and this can then lead to overly optimistic classification
performance [23]. In other words, the learning algorithm’s performance might be less about
its ability to generalise to the test data appropriately, than it is an indication of similar
patterns in both train and test data due to information leakage. In the current work we
avoid the information leakage problem by sampling exclusively on the training set.

Chen et al. [20] used data from accelerometers and gyroscopes to recognise activities
such as walking, jogging, and jumping—again using an imbalanced dataset. They reported
that the classifier always showed a good performance in recognising the majority class,
whereas its performance was inadequate for the minority classes. Again, SMOTE was
used to increase the count of underrepresented activities, leading to improved overall
performance. One limitation of this work was that it only evaluated a single oversampling
method. In contrast, our work evaluates a combination of different methods.

Inspired by the concept of data fusion, we introduce three hybrid sampling methods—
DBM, NDBM, and CBM—which combine the outputs from different sampling methods.
Fusion of diverse data sources and sensor modalities is a widely explored approach for
improving recognition performance in HAR (e.g., [5,18,24,25]). Similarly, fusion of multiple,
diverse, weak learners to produce a strong ensemble is a well-studied and effective ap-
proach in machine learning [26]. We hypothesise that by combining outputs from different
sampling strategies we diversify the synthetic data and in turn improve the generalization
ability of our learning models.

3. Sampling Methods

The underlying sampling methods used in this work can be categorised into three
types: distance-based, noise detection-based, and cluster-based.

3.1. Distance-Based

SMOTE and Random_SMOTE both use distance-based algorithms to oversample the
training data. SMOTE [27] takes an instance of the minority class x from the training set,
and then computes its K nearest neighbours, identified as the shortest Euclidean distances
between itself and other instances of the same class. To produce a synthetic sample, xnew,
SMOTE randomly selects the K nearest neighbours from the minority class, e.g., xk for the
kth nearest neighbour, and computes the difference xk − x. The new synthetic sample, xnew,
is computed by multiplying this difference by a random number between 0 and 1 using
Equation (1). The new synthetic instance xnew will lie along the line between x and xk:

xnew = x + ||x − xk|| × rand (0, 1) (1)

Unfortunately, the linear design of SMOTE can lead to overfitting. Random_SMOTE [28]
tackles this by opening up a much wider region for oversampling. For each minority
instance, x, two minority samples x1 and x2 (with x1,2 �= x) are randomly selected. A
temporary synthetic sample xtmp is then generated along the line between x1 and x2, as
shown in Equation (2):

xtmp = x1 + ||x2 − x1|| × rand (0, 1) (2)

The final synthetic sample xnew is then created along the line between xtmp and the
original sample x using Equation (3):

xnew = x + ||xtmp − x|| × rand (0, 1) (3)
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3.2. Noise Detection-Based

Real world data contain noise from a variety of sources that can lead to poor recog-
nition performance [29,30]. Frenay et al. [31] indicated that class noise (also known as
label noise) is one of the most harmful noises in machine learning. This kind of noise can
occur, for example, if a minority class sample is incorrectly labelled with a majority class
label [16]. The SMOTE-Tomek Link [32] and modified synthetic minority oversampling
technique (MSMOTE) algorithms are specifically designed to detect this kind of noise in
order to minimize the risk of creating noisy synthetic samples [33].

SMOTE-Tomek Links oversamples using SMOTE on top of a Tomek link data cleaning
step [32]. Tomek link works as follows: Consider two samples xa and xb belonging to
different classes, where d(xa, xb) is the Euclidean distance between xa and xb. A Tomek link
is identified as an (xaxb) pair if there is no sample z that meets the following conditions:
d(xa, z) < d(xa, xb) or d(xb, z) < d(xa, xb). That is, xa and xb are each other’s nearest
neighbours [34]. Tomek links are therefore likely to be comprised of either boundary
samples or noisy samples [30,35,36]. SMOTE-Tomek Links generates synthetic data in two
steps [32]. First, the original minority training data are oversampled using SMOTE. Second,
Tomek links are identified in the training data and removed to rebalance the data set.

MSMOTE is an improved version of SMOTE which first uses KNN to assign minority
samples into three types: safe, border, and noise [33]. If a minority labelled sample is the
same as the labels of its k near neighbours, then the sample is defined as ‘safe’. If the
labels are all different, then the sample is identified as ‘noise’. Finally, if the sample is
neither safe nor noise, it is classed as a ‘border’ sample. The second step of MSMOTE uses
SMOTE to generate new samples. However, the random selection of neighbours is different
depending on whether the sample is safe, border, or noise. For safe samples, MSMOTE will
randomly choose the K nearest neighbours. For border samples, the algorithm only selects
the nearest neighbour (i.e., K = 1). Noise samples are simply disregarded.

3.3. Cluster-Based

The cluster-based sampling methods include Cluster-Based Synthetic Oversampling
(CBSO) and Proximity Weighted Synthetic Oversampling Technique (ProWSyn).

CBSO integrate clustering and SMOTE-it uses agglomerative clustering to first cluster
minority samples with the aim of identifying those minority samples which are close to
the majority samples border [37]. CBSO produces samples only in the neighbourhood
of minority samples that are close to majority neighbours using SMOTE. For instance, in
order to produce a new sample, CBSO will select a sample x from the minority class and
randomly choose a minority sample xk from x’s cluster (using SMOTE Equation (1)), to
produce a new sample.

ProWSyn is another cluster-based sampling method [38]. This algorithm computes
the distance between minority class samples and majority class samples in order to assign
greater weights to the minority samples. These weights are then used to assign greater
significance to the minority samples during learning. ProWSyn operates in two steps: The
first step splits the minority data into partitions (P) according to their distance from the
class boundary. ProWSyn assigns a proximity level (L) to each partition. The level increases
with distance from the boundary. When minority class samples are assigned to lower
proximity levels, then they are considered more important for learning because they are
close to the boundary. However, in cases where they are assigned higher proximity levels
they are considered less important [38].

3.4. Proposed Hybrid Methods

All three proposed hybrid approaches, DBM, NDBM, and CBM, concatenate syn-
thesized training data obtained from the constituent sampling methods. DBM combines
SMOTE and Random_SMOTE. NDBM combines SMOTE_Tomeklinks and MSMOTE. Fi-
nally, CBM combines CBSO and ProWSyn. The three methods are evaluated as shown in
Figure 1. Taking D as the original dataset, we first split D into Dtrain and Dtest. Dtrain is
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then oversampled using the constituent methods. For more clarification, lets refer to the
Dtrain as d and, for instance, if DBM is used to oversample d, it will be:

dDBM = SMOTE(Dtrain, α) + Random_SMOTE(Dtrain, α) (4)

where α is the oversampling ratio. In case of using NDBM, it is denoted as:

dNDBM = SMOTE_TomekLinks(Dtrain, α) + MSMOTE(Dtrain, α) (5)

For the CBM, it is referred to as:

dCBM = ProWSyn(Dtrain, α) + CBSO(Dtrain, α) (6)

We then concatenate the synthesized data to increase the size of Dtrain. The oversam-
pled Dtrain is used to train a classifier, which is then evaluated on the left-aside Dtest.

Figure 1. Overview of the process used for splitting, oversampling, and evaluating the data.

4. Datasets

We use three datasets that are widely used by HAR researchers: Opportunity [39],
Physical Activity Monitoring (PAMAP2) [40], and Activities of Daily Living (ADL) [41].
Each of these comprise many individuals performing different types of human activity,
including ambulation and daily living activities [42]. The ambulation activities are typically
performed over a longer period of time, which comes in two difference forms: static
(less repetitive) such as standing, or dynamic (more repetitive), for example, running.
Shoaib et al. [43] describe these activities as ‘simple’ because they might be easily identified
using a wrist-worn accelerometer placed at an individual wrist. Daily activities might
consist of hand gestures such as waving hands or hand-to-mouth gestures (HMG), for
example, eating or drinking [44]. Daily activities are not as repetitive as ambulatory
dynamic activities, and these daily activities often are concurrent with each other due to
their similar gestures such as eating, drinking, and brushing teeth [45]. Such activities
are referred to as ‘complex’ because they are more challenging to identify using a single
accelerometer compared to simple activities [43].

4.1. Opportunity

The Opportunity dataset was collected from 72 sensors, with different types of sensors
integrated into the environment, objects and worn on participants’ bodies [39]. Four
participants performed daily living scenarios in a simulated kitchen environment. The
dataset included around 6 h of recordings and was sampled at 30 Hz. The activities were
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annotated on two different levels: locomotion and gesture. For example, cleaning up and
open door were labelled as gestures, with sitting and lying making up the locomotion subset.
Here we focus solely on gesture activities. Figure 2 shows 17 activities categorised as
gestures, including Open Door1, Open Door2, Close Door1, Close Door2, Open Fridge, Close
Fridge, Open Dishwasher, Close Dishwasher, Open Drawer1, Close Drawer1, Open Drawer2, Close
Drawer2, Open Drawer3, Close Drawer3, Clean Table, Drink from Cup, and Toggle Switch. The
dataset contains several on-body and object sensors, but in this paper we use only the
accelerometer in the lower right arm-worn inertial measurement unit (IMU).

Figure 2. Activity distribution of the Opportunity dataset.

4.2. PAMAP2

The Physical Activity Monitoring dataset (PAMAP2) was collected from 9 participants
who performed 12 activities for over 10 h and it was sampled at 100 Hz. Data were
recorded by using IMUs placed on the hand, chest, and ankle [40]. Here we use only the
accelerometer sensor of the hand-worn IMU. Figure 3 shows the activity distribution, and
it can be seen that the dataset is imbalanced. It contains both simple and sporting activities
such as walking, running, cycling, Nordic walking, and rope jumping. It also includes
posture activities such as lying, sitting, and standing. Activities of daily living (ascending
stairs, descending stairs), and households activities such as vacuum cleaning and ironing
are also included.

4.3. ADL

The Activities of Daily Living (ADL) dataset is a public dataset collected using a
single chest-worn wearable accelerometer on 15 participants [41]. The sampling rate of the
accelerometer was 52 Hz. The participants performed seven daily living activities. The
activities include Working at Computer (WAC), Standing Up, Walking and Going Up/Downstairs
(SWGUDS), Standing, Walking, Going Up/Downstairs (GUDS), Walking and Talking with Some-
one (WATWS), and Talking while Standing (TWS). Figure 4 shows the activities distribution
of the ADL dataset which indicates that the dataset is imbalanced.
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Figure 3. Activity distribution of the PAMAP2 dataset.

Figure 4. Activity distribution of the ADL dataset.

5. Data Analysis

5.1. Data Preprocessing

We explore how our proposed sampling methods might enhance a human activity
model’s performance in a real-life scenario where only a single 3-axis accelerometer is
available. Although recognition performance is typically better when multiple sensors are
used, in many scenarios access to multiple sensors is limited (e.g., in a single wrist-worn
device) [10].
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As a pre-processing step, we first calculate the Euclidean norm (
√

x2 + y2 + z2) of each
3-axis sensor to ensure the data are invariant to shifting orientation of the sensors [46]. We
then apply a non-overlapping sliding window to segment the data [24]. Table 1 provides
more details such as the number of subjects, sampling rate, the window size, and sensor
position we use.

We extract six time-domain features including mean, standard deviation, minimum,
maximum, median, and range. The selected features are highlighted further in Table 2.
These features are efficient as well as fast to compute [18].

Table 1. Datasets details.

Dataset
Number of

Subjects
Sample

Rate
Window Size (s) Sensor Position

Number of
Sensors Used

Opportunity 4 32 2 Right Arm 1 accelerometer
PAMAP2 8 100 3 Dominant Wrist 1 accelerometer

ADL 15 52 10 Chest 1 accelerometer

Table 2. Features description [18,43].

Feature Description

Mean It provides the average value of sensor data within a segment

Standard deviation It describes how much sensor data are spread around the mean

Minimum The minimum value of sensor data within a segment

Maximum The maximum value of sensor data within a segment

Median It finds the middle number of a sample within a segment

Range The difference between the maximum and the minimum of sensor data within a segment

5.2. Parameters Setting

All of the evaluations in this work were carried out using a collection of shallow
learning methods—specifically, SVM, LR, kNN, and RF—as well as a deep learning method
based on MLP. The parameters for SVM, LR, and KNN were found using grid search (see
Appendix C for details). For RF and MLP, we use the default settings provided by the
Python implementation [47]. The MLP architecture that was used in the experiments is
presented in Table 3.

Table 3. MLP architecture details.

Hidden
Layers

Activation
Function

Optimizer
Loss

Function
Learning

Rate
Regularization Epochs

100 Relu Adam Cross-entropy 0.001 L2 penalty 200

Note that for brevity we include only the full results related to the overall best-
performing classifier, MLP. The main findings using the remaining classifiers were broadly
in agreement (as will be shown in Section 6.7). The full results for the remaining four
classifiers are provided in Appendix B.

We also use the default settings on the Python implementation of our sampling
algorithms—SMOTE, Random_SMOTE, SMOTE_TomekLinks, MSMOTE, CBSO, and
ProWSyn. Number of neighbours and the number of samples to generate are common
parameters among all sampling methods. In addition, other sampling methods use specific
parameters, for example, ProWSyn utilizes number of levels. Ref. [37] provides more
details about these parameters.

The percentage of samples to be created by a sampling method was set to 100%, which
means that the number of minority samples in the training set will be equal to the number
of majority samples in the training set after sampling.
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5.3. Evaluation Method

Performance is measured using weighted F1 score, recall, and precision [12]. Precision
records the proportion of class predictions that are correct, whereas Recall records the
proportion of actual class samples that are correct [48]. The weighted F1 score used here
weighs classes based on their sample proportion and is calculated as (e.g., [1]):

F1 score = ∑
i

2 ∗ wi
×Precisioni × Recalli
Precisioni + Recalli

(7)

Here, i corresponds to the class. wi = ni/N corresponds to the proportion of class i
and ni is the number of samples of the class i. N is the total number of samples.

Pirttikangas et al. [49] suggested to combine all the data from different subject into
one dataset. They augured this was because of the individual variation in body worn
acceleration which is often dominates by strong commonalities among individuals in
activity patterns.

Consequently, we followed Pirttikangas et al.’s [49] suggestion in this work and used
3-fold cross-validation to train the parameters in our analyses. We did not use more than
3 folds as most of the activities have a very low number of samples in some datasets.
As an additional measure of reliability, our evaluations are all repeated 30 times using
different random selections of data. The final results are presented as the mean (and
standard deviation) of the F1 score over these repetitions. In the future we aim to use a
leave-one-subject-out approach.

ANOVA and Friedman statistical tests were performed to discover whether there
are significant differences in performance between the sampling methods across the five
classifiers [50,51].

6. Results

Here we present the final results of each of the sampling methods and our hybrid
methods vs the baseline (no resampling) case for each of the three datasets. We also present
an evaluation of the power considerations for each method.

6.1. Distance-Based Method (DBM)

Table 4 shows the main results for the MLP classifier using DBM versus its constituent
methods, SMOTE, and Random_SMOTE. The first thing to notice is a universal improve-
ment when sampling is used compared to the baseline.

On the ADL dataset, the DBM F1 score is 92.59%, a 5.39 percentage point (pp) im-
provement over baseline, a 0.35% improvement over SMOTE, and a 1.52 pp improvement
over Random_SMOTE. On Opportunity, DBM’s F1 score is low (48.49%), however, this is a
large 19.64 pp improvement on the baseline, and a 5 pp improvement over both constituent
sampling methods. On PAMAP2, DBM F1 score is 80.15%, which is an 8.3 pp improvement
on the baseline, and 5 pp on both constituent methods.
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Table 4. Distance-based method results. Comparing the performance of MLP on DBM, SMOTE, and
Random_SMOTE for multiple datasets. The reported mean of F1 score and (±standard deviation),
recall, and precision are obtained from 30 repetitions. The F1 score, recall, and precision are in %.
Highest scores are shown in bold.

Data Method F1 Score Recall Precision

ADL Baseline 87.2 (±0.047) 87.03 89.02
SMOTE 92.24 (±0.069) 91.44 94.21

Random_SMOTE 91.07 (±0.086) 90.31 93.22
DBM 92.59 (±0.081) 91.9 94.26

Opportunity Baseline 28.85 (±0.017) 34.1 29.57
SMOTE 42.95 (±0.043) 42.45 45.73

Random_SMOTE 42.74 (±0.04) 42.19 45.75
DBM 48.49 (±0.052) 48.18 50.63

PAMAP2 Baseline 71.85 (±0.081) 72.73 75.49
SMOTE 74.73 (±0.055) 74.93 77.69

Random_SMOTE 74.59 (±0.055) 74.64 77.83
DBM 80.15 (±0.046) 80.23 81.93

6.2. Noise Detection-Based Method (NDBM)

Table 5 demonstrates the MLP classifier performance of baseline, NDBM,
SMOTE_TomekLinks, and MSMOTE across all datasets. Again, a large improvement
is evident for all datasets when using sampling versus baseline.

On the ADL dataset, the NDBM F1 score is 93.7%, a 5.39 pp improvement over the
baseline, and between 1–2 pp improvement over the constituent sampling methods. On
the Opportunity dataset, NDBM performance is low (with F1 at 46.95%)—however, this
is a dramatic 18.1 pp improvement over the baseline case. On the PAMAP2 dataset, the
NDBM F1 score is 79.43%, a 7.58 pp improvement on the baseline, and 5 pp improvement
over both constituent methods.

Table 5. Noise detection-based results. Comparing the performance of MLP for NDBM, MSMOTE,
and SMOTE_TomekLinks on multiple datasets. The reported mean of F1 score and (±standard
deviation), recall, and precision are obtained from 30 repetitions. The F1 score, recall, and precision
are in %. Highest scores are shown in bold.

Data Method F1 Score Recall Precision

ADL Baseline 87.2 (±0.047) 87.03 89.02
SMOTE_TomekLinks 91.41 (±0.071) 90.52 93.56

MSMOTE 90.7 (±0.067) 89.65 92.66
NDBM 92.7 (±0.065) 91.69 94.77

Opportunity Baseline 28.85 (± 0.017) 34.1 29.57
SMOTE_TomekLinks 42.89 (±0.039) 43.15 45.34

MSMOTE 39.71 (±0.074) 39.58 42.07
NDBM 46.95 (±0.067) 46.97 48.86

PAMAP2 Baseline 71.85 (±0.081) 72.73 75.49
SMOTE_TomekLinks 74.24 (±0.054) 74.51 77.13

MSMOTE 73.73 (±0.059) 73.78 77.03
NDBM 79.43 (±0.054) 79.46 81.35

6.3. Cluster-Based Method (CBM)

Table 6 demonstrates the MLP classifier performance of baseline, CBM, CBSO, and
ProWSyn across all datasets. Again, a clear improvement is evident for all datasets when
using sampling versus baseline.

On the ADL dataset, the CBM F1 score is 92.96%, a 5.76 pp improvement over the
baseline, and a 1.8–1.4 pp improvement over the constituent sampling methods. On the
Opportunity dataset, CBM performance is low (with F1 at 48.87%)—however, this is a
dramatic 20.02 pp improvement over the baseline case. On the PAMAP2 dataset, the CBM
F1 score is 81.15%, a 9.13 pp improvement over the baseline, and a 5.29 pp and 6.56 pp
improvement over CBSO and ProWSync, respectively.
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Table 6. Cluster-based results. Comparing the performance of MLP using CBM, CBSO, and ProWsyn
on multiple datasets. The reported mean of F1 scores and (±standard deviation), recall, and precision
are obtained from 30 repetitions. The F1 score, recall, and precision are in %. Highest scores are
shown in bold.

Data Method F1 Score Recall Precision

ADL Baseline 87.2 (±0.047) 87.03 89.02
CBSO 91.16 (±0.09) 90.22 93.66

ProWSyn 91.56 (±0.091) 90.98 93.7
CBM 92.96 (0.087) 91.93 95.29

Opportunity Baseline 28.85 (±0.017) 34.1 29.57
CBSO 42.92 (±0.023) 42.96 45.12

ProWSyn 42.78 (±0.055) 43.47 44.99
CBM 48.87 (±0.045) 48.82 50.67

PAMAP2 Baseline 71.85 (±0.081) 72.73 75.49
CBSO 75.69 (±0.042) 75.43 78.19

ProWSyn 74.42 (±0.054) 74.4 77.5
CBM 80.98 (±0.051) 80.9 82.54

6.4. Comparing the Performance of the Proposed Sampling Approaches DBM, NDBM, and CBM

Table 7 combines the headline results from our proposed hybrid methods. On the ADL
dataset, CBM outperforms the others, with an F1 score of 92.96%. On Opportunity, CBM
(48.87% F1) narrowly outperforms DBM (48.49% F1) and NDBM (46.95% F1). Similarly, on
PAMAP2, CBM (80.98% F1) outperforms DBM (80.15% F1) and NDBM (79.43% F1). The
standard deviation across recognition scores for all evaluations is low throughout, with the
maximum deviation being no more than 0.087.

Table 7. Comparing performance of DBM, NDBM, and CBM on multiple datasets. The reported
mean of F1 scores and (±standard deviation), recall, and precision were obtained from 30 repetitions.
The F1 score, recall, and precision are in %. Highest scores are shown in bold.

Data Method F1 Score Recall Precision

ADL Baseline 87.2 (±0.047) 87.03 89.02
DBM 92.59 (±0.081) 91.9 94.26

NDBM 92.7 (±0.065) 91.69 94.77
CBM 92.96 (±0.087) 91.93 95.29

Opportunity Baseline 28.85 (±0.017) 34.1 29.57
DBM 48.49 (±0.052) 48.18 50.63

NDBM 46.95 (±0.067) 46.97 48.86
CBM 48.87 (±0.045) 48.82 50.67

PAMAP2 Baseline 71.85 (±0.081) 72.73 75.49
DBM 80.15 (±0.046) 80.23 81.93

NDBM 79.43 (±0.054) 79.46 81.35
CBM 80.98 (±0.051) 80.9 82.54

6.5. Results for Minority Activities

For the Opportunity dataset, multiple activities were underrepresented, such as
Open_Fridge, Open_Drawer3, and Close_Drawer3. Figure 5 indicates that the proposed DBM,
NDBM, and CBM improve the F1 score of the MLP in recognising the underrepresented
activities. Figure 5 also shows that without applying the sampling methods (baseline),
the MLP classifier could not identify the Open_Fridge activity. By applying the proposed
sampling methods, the MLP’s ability to recognise underrepresented activities improved.
For example, the F1 of the MLP’s ability to classify the Open_Fridge activity improved by
more than 10 pp using the DBM, NDBM, and CBM.
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Figure 5. Opportunity minority classes. Comparing the impact of DBM, NDBM, and CBM on
activity recognition performance, using MLP for the most underrepresented activities Open_Fridge,
Open_Drawer3, and Close_Drawer3. The reported means of F1 scores are obtained from 30 repetitions.
The F1 score is in %.

On the ADL dataset, Figure 6 also suggests that by applying the DBM, NDBM, and
CBM MLP classifier, F1 score was improved by more than 10 pp and gained a significant
advantage in identifying the underrepresented activities, including Going Up/Downstairs
(GUDS), Standing Up, Walking and Going Up/Downstairs (SWGUDS), and Walking and Talking
with Someone (WATWS).

Figure 6. ADL minority classes. Comparing the impact of DBM, NDBM, and CBM on activity
recognition performance, using MLP for the most underrepresented activities (Going Up/Downstairs
(GUDS), Standing Up, Walking and Going Up/Downstairs (SWGUDS), and Walking and Talking with Someone
(WATWS)). The reported means of F1 scores are obtained from 30 repetitions. The F1 score is in %.

Similarly, on the PAMAP2 dataset, Figure 7 implies that the MLP classifier was more
capable of identifying the underrepresented activities, including rope jumping, running,
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descending stairs, and ascending stairs, when the proposed DBM, NDBM, and CBM were
used. For example, the performance of the MLP improved on the F1 score by at least 4 pp
when identifying the underrepresented rope jumping activity.

Figure 7. PAMAP2 minority classes. Comparing the impact of DBM, NDBM, and CBM on activity
recognition performance, using MLP for the most underrepresented activities (ascending stairs,
descending stairs, rope jumping, and running). The reported means of F1 scores are obtained from
30 repetitions. The F1 score is in %.

6.6. Run Times for DBM, NDBM, and CBM

Figure 8 offers a comparison for each proposed sampling method in terms of run
times. The analysis was performed on a Fierce PC with 16 GB RAM, Intel Core i7-7700
processor with 3.60 GHz and using Ubuntu 16.04 LTS (64-bits). DBM demonstrated the
best performance in terms of training time compared to NDBM and CBM.

Figure 8. Comparing run times in seconds of the proposed DBM and CBM for all training datasets.
The number of samples in the training sets for the ADL, Opportunity, and PAMAP2 datasets were
11,776, 1569, and 6450, respectively.

6.7. Statistical Analysis

A statistical analysis was performed to find out whether there are significant F1 perfor-
mance differences between the nine sampling methods across five classifiers. The sampling
methods analysed are SMOTE, Random_SMOTE, MSMOTE, SMOTE_TomeKLinks, CBSO,
ProWSync, as well as the hybrid methods DBM, NDBM, and CBM. The classifiers are LR,
RF, SVM, KNN, and MLP. The normality assumption is first estimated using the Anderson–
Darling normality test on each sampling method and classifier combination [50,52]. This
determines whether parametric statistical analysis, such as ANOVA, may be used in the
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case of normality, or a non-parametric method, such as the Friedman test, in the case of
non-normality [53].

Table 8 shows the results of the Anderson–Darling normality test on sampling methods
based on the five classifiers results for each dataset [52]. The mean F1 scores shown are
obtained from 45 ’samples’, where one sample represents one sample method and classifier
combination. On the PAMAP2 dataset, the Anderson–Darling p-value is more than 0.05
(α = 0.05)—suggesting the null hypothesis of a normal distribution—and so an ANOVA
could then be used. For the ADL- and Opportunity-based results, Table 8 shows a rejection
of the null hypothesis (p < 0.05) [52]. This indicates that these dataset results are not
normally distributed and, therefore, ANOVA cannot be applied [54]. In its place, we use a
Friedman test [55].

Table 8. Anderson–Darling normality test on sampling methods based on the 5 classifiers results × 9
sampling methods (5 × 9 = 45 sample size) on each dataset. The p-value is less than 0.05 (α = 0.05)
for ADL and Opportunity which suggests that ADL and Opportunity are not normally distributed
compared to PAMPA2.

Data Mean Standard Deviation Sample Size p-Value

ADL 0.8840 0.0399 45 0.0007
Opportunity 0.3773 0.0548 45 0.0000

PAMAP2 0.7272 0.0406 45 0.0680

6.7.1. ANOVA on PAMAP2

Table 9 reveals that the ANOVA test detected no statistical evidence to reject the
null hypothesis (p > 0.05). In other words, when using PAMAP2, all sampling methods
performed the same and none was found to perform significantly differently to the others.

6.7.2. Friedman Test on ADL and Opportunity

The Friedman test in Table 10 indicates that the p-values of the data are less than
0.05 (α = 0.05) for the ADL and Opportunity datasets. Therefore, the null hypothesis
is then violated. This means that there is a statistically significant difference across the
sampling methods. In other words, one or more of the sampling methods can show different
influences on these datasets.

Table 9. ANOVA for PAMAP2 dataset.

Data
Degrees of
Freedom

Sum of Squares Mean Square F Value p-Value

PAMAP2 8 0.0067 0.0008 0.4602 0.8757

Table 10. Friedman test results indicate that the p-value is less than 0.05 (α = 0.05) for the ADL and
Opportunity datasets. This means that one or more of the sampling methods is more effective than
the others.

Data Degrees of Freedom Chi-Square p-Value

ADL 8 21.8133 0.0053
Opportunity 8 24.2133 0.0021

Tables 11 and 12 display the ranks drawn from the Friedman test in the ADL and
Opportunity datasets [55]. The test compares rankings across the five classifiers (rows)
and nine sampling methods (columns). Ranking is conducted for each classifier row, with
sampling methods ranked between 1 (lowest) and 9 (high). The tables then summarize
the total ranks obtained for each column to obtain the overall ranking for each sampling
method [55].

Both Tables 11 and 12 show that CBM has a consistently high ranking compared to the
other sampling approaches across a range of classifiers. This supports our earlier finding
that CBM is the highest performer.
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Table 11. Friedman sum-of-ranks test on ADL-based results for all methods and classifiers. CBM is
the overall highest ranking method.

Classifier CBSO NDBM CBM DBM MSMOTE Pro-WSyn Random_SMOTE SMOTE_TomekLinks SMOTE

KNN 1 7 9 4 5 8 2 6 3
LR 1 8 3 9 2 5 6 7 4

MLP 3 8 9 7 1 5 2 4 6
RF 1 6 9 4 7 8 3 5 2

SVM 1 8 7 9 2 3 6 4 5
Sum of ranks 7 37 37 33 17 29 19 26 20

Table 12. Friedman sum-of-ranks test on Opportunity-based results for all methods and classifiers.
CBM is the overall highest ranking method.

Classifier CBSO NDBM CBM DBM MSMOTE Pro-WSyn Random_SMOTE SMOTE_TomekLinks SMOTE

KNN 5 6 9 7 1 4 8 3 2
LR 5 9 7 8 1 2 6 4 3

MLP 5 7 9 8 1 3 2 4 6
RF 4 5 8 3 1 9 7 6 2

SVM 2 7 8 9 1 4 3 5 6
Sum of ranks 21 34 41 35 5 22 26 22 19

7. Discussion and Future Work

Prior studies such as [2,4] have highlighted the lack of works that address and in-
vestigate the impact of the class imbalance problem in human activity recognition. Our
present study fills this gap by proposing three approaches, DBM, NDBM, and CBM, to
reduce the class imbalance and substantially improve human activity recognition (HAR)
performance. We found that the proposed hybrid sampling methods worked better than
applying any single sampling algorithm across three different HAR datasets. The benefit of
the proposed approaches is that they generate more diverse samples, and thus improve the
generalisability of the learning algorithm.

The cluster-based method (CBM) reveals consistently better performance than distance
(DBM) or noise detection (NDBM)-based methods. A Friedman test additionally showed
the statistical superiority of CBM over the other methods for two datasets, ADL and
Opportunity, across five different classifiers.

Minority classes in particular benefit from using CBM, as shown in Figures 5–7. This
indicates that CBM would be a good choice when working with imbalanced HAR data
involving activities similar to those found in Opportunity and ADL.

DBM, which is a combination of distance-based SMOTE and Random_SMOTE, pro-
vides the next highest performing combination. The main advantage of DBM, however, is
that it uses significantly less computational resources than CBM. We suggest this method
in instances where the training data suffer from small sample size and there is limited
computational power. The main issue with DBM compared to NDBM and CBM is more
likely to introduce noisy samples. The DBM does not perform any data filtering such as
clustering processes prior to oversampling the data. One way to improve the DBM is to
use a technique to assess the similarities between the synthetic samples and the training
data samples (i.e., the original data), then to use only the most similar synthetic samples
to the original sample in order to oversample the training data. For example, one can
use the SMOTE and Random_SMOTE approaches to generate synthetic samples from the
original training samples and use an efficient similarity metric such as Euclidean distance
to compare the generated synthetic data to the original training samples and then use
only the most similar synthetic samples and disregard the least similar. Our reason for
this is that it might ensure that high-quality synthetic samples are used to oversample the
training data.

Moreover, the key problem with the NDBM is that is relies on sampling methods
that eliminate some samples during the oversampling process. This can lead to losing
some valuable information of the activities. Therefore, we suggest that CBM be used by
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researchers to ensure they can be able to oversample the imbalance human activity data
without losing any information.

To minimise complexity, we opted to use the default settings for most of the classifiers
and sampling algorithms. Despite this, we believe that the general findings of the work
regarding the influence of sampling on HAR still hold, and we have left further optimisation
for future work.

One limitation of our proposed solutions is the choice of features. We chose to adopt
time-domain features because these are efficient and fast to compute. This work might
be extended by expanding on the feature set to incorporate, say, frequency domain fea-
tures [12]. Additionally, we only considered data from a single accelerometer and a single
location per dataset. How our sampling strategies might perform using an expanded
feature set and a larger number of sensors will be the focus of future work.

A further area of future work will be to investigate more complex ensembles of
sampling methods, e.g., combing distance with cluster-based methods. One challenge here
will be to reduce the computational complexity of the clustering method, while preserving
its ability to produce diverse samples.
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Appendix A

Table A1. Parammeters settting of SVM, LR and KNN on multiple dataset. Ref. [47] provides
description about the parameters that we used.

Algorithms Parameters ADL Opportunity PAMAP2

gamma 0.1 0.1 0.1
C 20 20 20

kernel rbf rbf rbf
max_iter −1 −1 −1

SVM

decision_function_shape ovr ovr ovr
multi_class multinomial multinomial multinomial

solver newton-cg sag sag
max_iter 250 250 250

C 2 2 2

LR

penalty L2 L2 L2
n_neighbors 3 5 3KNN

algorithm auto auto auto
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Appendix B

Table A2. Comparing the performance of the baseline classifiers on multiple datasets. The reported
mean of F1 scores and (±standard deviation) were obtained from 30 repetitions. The F1 score is as %.

Data Classifier F1 Score

ADL KNN 85.63 (±0.043)
LR 84.51 (±0.026)

MLP 87.2 (±0.047)
RF 82.76 (±0.037)

SVM 90.76 (±0.037)
Opportunity KNN 31.36 (±0.052)

LR 26.03 (±0.012)
MLP 28.85 (±0.017)
RF 33.15 (±0.032)

SVM 34.04 (±0.012)
PAMAP2 KNN 69.44 (±0.033)

LR 64.81 (±0.094)
MLP 71.85 (±0.081)
RF 71.72 (±0.057)

SVM 75.18 (±0.06)

Appendix C

We exhibited the F1 score of the baseline classifiers including the SVM, RF, LR and
KNN in order to compare the influence of the sampling methods in improving their F1
score. The sampling methods were the proposed DBM, NDBM and CBM as well as the
existing methods including, SMOTE, Random_SMOTE, SMOTE_Tomeklinks, MSMOTE,
CBSO, and ProWSyn.

The below figures compared the F1 scores of the SVM, RF, LR, and KNN on the
Opportunity, PAMAP2, and ADL datasets. For more details about the dataset, see Section 4.

Figure A1. F1 score of baseline (SVM), the proposed method, and the sampling methods for the
Opportunity, PAMAP2, and ADL datasets. The reported means of F1 scores were obtained from
30 repetitions.

Figure A2. F1 score of baseline (RF), the proposed method, and the sampling methods for the
Opportunity, PAMAP2, and ADL datasets. The reported means of F1 scores were obtained from
30 repetitions.
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Figure A3. F1 score of baseline (LR), the proposed method, and the sampling methods for the
Opportunity, PAMAP2 and ADL datasets. The reported means of F1 scores were obtained from
30 repetitions.

Figure A4. F1 score of baseline (KNN), the proposed method, and the sampling methods for the
Opportunity, PAMAP2, and ADL datasets. The reported means of F1 scores were obtained from
30 repetitions.
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Abstract: Deep learning has been successfully applied to many classification problems including
underwater challenges. However, a long-standing issue with deep learning is the need for large
and consistently labeled datasets. Although current approaches in semi-supervised learning can
decrease the required amount of annotated data by a factor of 10 or even more, this line of research
still uses distinct classes. For underwater classification, and uncurated real-world datasets in general,
clean class boundaries can often not be given due to a limited information content in the images and
transitional stages of the depicted objects. This leads to different experts having different opinions
and thus producing fuzzy labels which could also be considered ambiguous or divergent. We propose
a novel framework for handling semi-supervised classifications of such fuzzy labels. It is based on
the idea of overclustering to detect substructures in these fuzzy labels. We propose a novel loss to
improve the overclustering capability of our framework and show the benefit of overclustering for
fuzzy labels. We show that our framework is superior to previous state-of-the-art semi-supervised
methods when applied to real-world plankton data with fuzzy labels. Moreover, we acquire 5 to 10%
more consistent predictions of substructures.

Keywords: semi-supervised; fuzzy; deep learning; noisy; real-world; plankton; marine

1. Introduction

Over the past years, we have seen the successful application of deep learning to many
underwater computer vision problems [1–4]. Automatic analysis of underwater data allows
us to monitor ecological changes by evaluating large amounts of for example plankton
data [5,6]. While it is relatively easy to create a lot of underwater image data, its analysis is
time-consuming and thus expensive because the annotation requires trained taxonomists.
The possible reasons for this issue include the huge amounts of data, the high imbalance
between classes and the variability of annotations [7].

In underwater classification, domain experts often differ in their annotations [7–9].
This issue arises due to the following reasons: Firstly, automatically captured underwater
images often have a lower quality than images taken manually by humans. This difference
in quality arises for example due to the underwater lighting conditions and no manual
corrections to e.g., insufficient sharpness or not centering the target inside the focus. For
example the analyis of benthic images can suffer from these issues [8,9]. Even in the best
scenario, a single image generally does not contain most of the information needed for a
clear identification (e.g., three-dimensional configuration, minute morphological details,
fluorescence). Secondly, intermediate stages actually exist between classes [10]. For exam-
ple, in Figure 1 we show two different physical appearances (puff & tuft) of trichodesmium,
while the dataset also contains intermediate stages between these two classes.
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Figure 1. Illustration of fuzzy data and overclustering—The grey dots represent unlabeled data and
the colored dots labeled data from different classes. The dashed lines represent decision boundaries.
For certain data, a clear separation of the different classes with one decision boundary is possible and
both classes contain the same amount of data (top). For fuzzy data determining a decision boundary
is difficult because of intermediate datapoints between the classes (middle). These fuzzy datapoints
can often not be easily sorted into one consistent class between annotators. If you overcluster the
data, you get smaller but more consistent substructures in the fuzzy data (bottom). The images
illustrate possible examples for certain data (cat & dog) and fuzzy plankton data (trichodesmium
puff and tuft). The center plankton image was considered to be trichodesmium puff or tuft by around
half of the annotators each. The left and right plankton image were consistently annotated.

This issue of different annotations is also known as intra- and inter-observer variabil-
ity [11] and is common in many biological and medical application fields [8,9,12–17]. Even
in a curated dataset [1], we quote Tarling et al. who state ”there will very likely be in-
accuracies, bias, and even inconsistencies in the labeling which will have affected the
training capacity of the model and lead to discrepancies between predictions and ground
truths” [18]. When aggregating multiple annotations per image, we call the resulting label
fuzzy if we have different annotations between experts (non-zero variance), and certain
if all annotations agree with each other. The mathematical formulation of a fuzzy label
would be a unknown soft probability distribution l for k classes. The distribution l ∈ (0, 1)k

can only be approximated with a high cost e.g., by averaging over multiple annotations.
Semi- and Self-Supervised Learning are promising approaches to decrease the needed

amount of annotated data by a factor of 10 or even more [19–21]. These approaches leverage
unlabeled data in addition to the normal labeled data to improve the training. A common
strategy is to define a pretext task like image rotation prediction [22] or mutual information
maximization [23] for pretraining. A broad overview of current trends, ideas and methods
in semi-, self- and unsupervised learning is available in [24]. However, this research mainly
focuses on established curated classification datasets such as STL-10 [25]. In these datasets,
a clear distinction between classes such as cats and dogs are given. The hard partitioning
of intermediate morphologies is not appropriate and does not allow the identification of
substructures. We show that state-of-the-art semi-supervised algorithms are not well suited
to handle fuzzy labels. These algorithms expect only certain labels as shown in the upper
part of Figure 1. If we apply previous semi-supervised algorithms to fuzzy data which
include fuzzy images, these algorithms arbitrarily assign undecidable images to one class
(middle part of Figure 1).
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Noisy labels are a common data quality issue and are discussed in the literature [11,26,27].
The fuzziness of labels is known as a special case of label noise that exist “due to sub-
jectiveness of the task for human experts or the lack of experience in annotator[s]” [26].
In contrast to us, most methods [28–30] and literature surveys [11,26,27] interpret fuzzy
labels as corrupted labels. We argue that fuzzy labels are valid signals derived from am-
biguous images and that it is important to discover the substructures for real-world data
handling [12–17].

Geng proposed to learn the label distribution to handle fuzzy data [31] and the idea
was extended to the application of real-world images [32]. However, these methods are
not semi-supervised and therefore depend on large labeled datasets. A variety of methods
was proposed to handle fuzzy data in a semi-supervised learning approach [33–35]. These
methods use lower-dimensional features spaces in contrast to images as input. Liu et al.
proposed to use independent predictions of multiple networks as pseudo-labels for the
estimation of the label distribution for photo shot-type classification [36]. We argue that
the true label distribution is difficult to approximate and thus difficult to evaluate. We do
not learn the label distribution but use clustering to identify substructures.

We propose Fuzzy Overclustering (FOC) which separates the fuzzy data into a larger
number of visual homogeneous clusters (lower part, Figure 1) which can then be an-
notated very efficiently [10]. We will show on a Plankton dataset that state-of-the-art
semi-supervised algorithms perform worse on fuzzy data in comparison to our method
FOC which explicitly considers fuzzy images. Moreover, we will show that this leads to 5
to 10% more self-consistent predictions of plankton data.

One main idea is to rephrase the handling of fuzzy labels as a semi-supervised
learning problem by using a small set of certain images and a large number of fuzzy
images that are treated as unlabeled data. This approach allows us to use the idea of
overclustering from semi-supervised literature [23,37] and apply it to fuzzy data. The
difference to previous work is that we use overclustering not only to improve classification
accuracy on the labeled data but improve the clustering and therefore the identification of
substructures of fuzzy data. We show that overclustering allows us to cluster the fuzzy
images in a more meaningful way by finding substructures and therefore allowing experts
to analyze fuzzy images more consistently in the future.

We show the benefits of our method mainly on a plankton dataset which highlights
the benefit for underwater classification. However, the issue of fuzzy labels is neither
limited to plankton data nor to underwater classification. On a synthetic dataset, we show
a proof-of-concept for the generalizability of our model to other datasets.

Our key contributions are:

• We identify an issue of semi-supervised algorithms that they do not work well with
fuzzy labels. However, such fuzzy labels occur regularly in underwater image clas-
sification e.g due to high natural variation of depicted objects which leads to a high
inter- and intraobserver variability.

• We propose a novel framework for handling fuzzy labels with a semi-supervised
approach. This framework uses overclustering to find substructures in fuzzy data and
outperforms common state-of-the-art semi-supervised methods like FixMatch [38] on
fuzzy plankton data.

• We propose a novel loss, Inverse Cross-entropy (CE−1), which improves the overcluster-
ing quality in semi-supervised learning.

• We achieve 5 to 10% more self-consistent predictions on fuzzy plankton data.

2. Method

Our framework Fuzzy Overclustering (FOC) aims at creating an overclustering for
fuzzy labels by using an auxiliary classification and not the other way round like previous
literature [23,37]. In this section, we describe our framework in general and explain
important parts in detail in the following subsections. We use the following notation for
the given semi-supervised classification task. Our training data consists of the two subsets
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Xl and Xu. Xl is a labeled image dataset with images x ∈ Xl and corresponding labels y.
Xu is an unlabeled image dataset, i.e., there is/exists no label for images x ∈ Xu.

We generate three inputs x1, x2, x3 based on one image x ∈ Xl ∪ Xu depending on
the availability of the corresponding label y. If y is not available, the images x1 and x2 are
augmented views of x and x3 is an augmented version of a random image x′ ∈ Xl ∪ Xu.
If y is available, x1 is an augmented view of x, x2 is a supervised augmentation (see
Section 2.3) and x3 an inverse example. For the inverse example, we choose an image
x′ ∈ Xl with a different label y′ (y! = y′). We use an augmented version of this image
as third input x3 = g3(x′) with augmentation g3. We constraint the ratio from unlabeled
to labeled data to a fixed ratio r to improve the run time of the model (see Section 2.4).
The inputs are processed by a neural network Φ which is composed of a backbone like
ResNet50 [39] and linear output prediction layers. Following [23], we call this linear
predictors heads and use them either as normal or overclustering heads. As output we use
the soft-max classifications of these normal and overclustering heads. If kGT is the number
of ground-truth classes a normal head outputs a probability for each of the kGT classes.
The overclustering head has k output nodes with k > kGT and give probabilities for more
clusters than ground-truth classes (overclustering). Both type of heads are therefore fully
connected layers with softmax activation but of different output size. We can average the
training over multiple independent heads per type as shown in [23]. We use the notation
Φni or Φoi for the i-th normal or overclustering head respectively. An overview about the
general pseudo code of FOC including the loss calculation is given in Algorithm 1.

For both heads the loss is different but can be written as the weighted sum of an
unsupervised and a supervised loss as follows:

L = λsLs + λuLu (1)

Ls is cross-entropy (LCE) for the normal head and our novel CE−1 loss (LCE−1 ) for the
overclustering head (see Section 2.1). For both heads Lu is the mutual information loss LMI
(see Section 2.2). An illustration of the complete pipeline is given in Figure 2. We initialize
our backbones with pretrained weights and can therefore directly use RGB images as input.
For further implementation details see Section 3.2.

normal
head

overcluster
head

cross-
entropy

mutual 
information

inverse
cross-entropy

augmentation backbone
mutual 

information

Figure 2. Overview of our framework FOC for semi-supervised classification—The input image
is x and the corresponding label is y. The arrows indicate the usage of image or label information.
Parallel arrows represent the independent copy of the information. The usage of the label for the
augmentations is described in Section 2.3. The red arrow stands for an inverse example image x′

with a different label than y. The output of the normal and the overclustering head have different
dimensionalities. The normal head has as many outputs as ground-truth classes exist (kGT) while the
overclustering head has k outputs with k > kGT . The dashed boxes on the right side show the used
loss functions. More information about the losses inverse cross-entropy and mutual information can
be found in Sections 2.1 and 2.2 respectively.

If we use FOC with λs = 0 and without supervised augmentations our model is
comparable to the pretext task of Invariant Information Clustering (IIC) [23]. We can
use this configuration as a warm-up to pretrain the weights. During the evaluation, we
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will refer to using the pretext task for IIC and the warm-up of FOC synonymously. Our
framework FOC can also be used to perform standard unsupervised clustering. The details
about unsupervised clustering and a comparison to previous literature is given in the
supplementary.

Algorithm 1: Pseudocode for our method Fuzzy Overclustering
Data: Batch of images of size b from labeled image data Xl and unlabeled image

data Xu
Result: calculate loss value for one given batch for a network Φ with n normal

and overclustering heads
L: matrix of size b × 2n;
/* iterate over batch */
for i ← 0 to b do

x ← i-th image in batch;
if label y for image xi available then

x1 ← g1(x) with random augmentation g1;
/* Supervised augmentation defined in Section 2.3 */
x2 ← g2(x) with supervised augmentation g2;
/* Inverse example defined in Section 2 */
x3 ← g3(x′) with random augmentation g3 and inverse example x′;

else
x1 ← g1(x) with random augmentation g1;
x2 ← g2(x) with random augmentation g2;
x3 ← g3(x′) with random augmentation g3 and random image x’;

end
/* iterate over heads */
for j ← 0 to n do

calculate forward pass for outputs Φnj and Φoj ;
/* CE loss for normal head */
L[i,j] ← LCE(Φnj(xi), li) with li;
/* CE−1 loss for overclustering head */
L[i,j+n] ← LCE−1(x1, x2, x3) with Equation (2) ;

end

end
/* calculate loss */
Ls ← average supervised loss across heads and batch from L;
Lu ← unsupervised MI loss across batch with Equations (3) and (4);
L ← λsLs + λuLu;

2.1. Inverse Cross-Entropy (CE−1)

Inverse Cross-Entropy is a novel supervised loss for an overclustering head and one
of the key contributions of this work. The loss is needed to use the label information for
an overclustering head. For normal heads, we can use cross-entropy (CE) to penalize
the divergence between our prediction and the label. We can not use CE directly for the
overclustering heads since we have more clusters than labels and no predefined mapping
between the two. However, we know that the inputs x1/x2 and x3 should not belong to
the same cluster. Therefore, our goal with CE−1 is to define a loss that pushes their output
distributions (e.g., Φ(x1) and Φ(x3)) apart from each other.

Let us assume we could define a distribution that Φ(x3) should not be. In short, an
inverse distribution Φ(x3)

−1. If we had such a distribution we could use CE to penalize
the divergence for example between Φ(x1) and Φ(x3)

−1.
One possible and easy solution for an inverse distribution is Φ(x3)

−1 = 1 − Φ(x3).
For a binary classification problem, Φ(x3)

−1 can even be interpreted as a probability
distribution again. This is not the case for a multi-class classification problem. We could use
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a function like softmax to cast Φ(x3)
−1 into a probability distribution but decided against it

for three reasons. Firstly, we would penalize correct behavior. For example in a three class
problem with Φ1(x1) = 0.5 = Φ2(x1) and Φ3(x3) = 1 we only get CE(Φ(x1), Φ(x3)

−1) = 0
if Φ(x3)

−1 is not a probability distribution. Otherwise either Φ1(x3)
−1 or Φ2(x3)

−1 have to
be real smaller than 1. Secondly, we are still minimizing the entropy of Φ(x1) which leads
to more confident predictions in semi-supervised learning [19,20,40–43]. The proof is given
in the supplementary. Thirdly, it is easier and in practice, it is not needed. For the input
i = (x1, x2, x3), we define the cross-entropy inverse loss LCE−1 as shown in Equation (2).

LCE−1(i) = 0.5 · CE−1(Φ(x1), Φ(x3))

+ 0.5 · CE−1(Φ(x2), Φ(x3)) , with

CE−1(p, q) = −
k

∑
c=1

p(c) · ln(1 − q(c)) .

(2)

2.2. Mutual Information (MI)

For the unlabeled data, we use the loss proposed by Ji et al. because it is calculated
directly on the output clusters [23]. Therefore similar images are pulled to the same clusters
while CE−1 pushes different images apart. For this purpose, we want to maximize the
mutual information between two output predictions Φ(x1), Φ(x2) with x1, x2 images which
should belong to the same cluster and Φ : X → [0, 1]k a neural network with k output
dimensions. We can interpret Φ(x) as the distribution of a discrete random variable z
given by P(z = c|x) = Φc(x) for c ∈ {1, . . . , k} with Φc(x) the c-th output of the neural
network. With z, z′ such random variables we need the joint probability distribution
for Pcc′ = P(z = c, z′ = c′) for the calculation of the mutual information I(z, z′). Ji et al.
propose to approximate the matrix P with the entry Pcc′ at row c and column c′ by averaging
over the multiplied output distributions in a batch of size n [23]. Symmetry of P is enforced
as shown in Equation (3).

P =
Q + QT

2
with Q =

1
n

n

∑
i=1

Φ(xi) · Φ(x′i)
T (3)

We can maximize our objective I(z, z′) with the marginals Pc = Pc′ = P(z = c) given
as sums over the rows or columns as shown in Equation (4).

I(z, z′) =
k

∑
c=1

k

∑
c′=1

Pcc′ · ln
Pcc′

Pc · Pc′
(4)

2.3. Supervised Augmentations

In the unsupervised pretraining, we use the same image x to create the two inputs
x1 = g1(x) and x2 = g2(x) based on the augmentations g1 and g2. Otherwise, without
supervision, it is difficult to determine similar images. However, if we have the label y
for x we can use a secondary image x′ ∈ Xl with the same label to mock an ideal image
transformation to which the network should be invariant. In this case we can create
x2 = g2(x′) based on the different image. We call this supervised augmentation.

2.4. Restricted Unsupervised Data

Unlabeled data has a small impact on the results but drastically increases the runtime
in most cases. The increased runtime is caused by the facts that we often have much more
unlabeled data than labeled data and that a neural network runtime is normally linear in
the number of samples it needs to process. However, unlabeled data is essential for our
proposed framework and we can not just leave it out. We propose to restrict the unlabeled
data to a fixed upper-bound ratio r in every batch and therefore the unlabeled data per
epoch. Detailed examples and experiments are given in the supplementary. It is important
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to notice that we restrict only the unlabeled data per batch/epoch. While for one epoch the
network will not process all unlabeled data, over time all unlabeled data will be seen by
the network. We argue that the impact on training time negatively outweighs the small
benefit gained from all unlabeled data per epoch.

3. Experiments

We conducted our experiments mainly on a real-world plankton dataset. We used
the common image classification dataset STL-10 as a comparison with only certain labels
and a synthetic dataset for a proof-of-concept for the generalizability to other datasets.
We compare ourselves to previous work and make several ablations. Additional results
like unsupervised clustering, more detailed ablations and further details are given in the
supplementary material.

3.1. Datasets

While the issue of fuzzy labels is present in multiple datasets [12–17], they are not
well suited for evaluations. If we want to quantify the performance on fuzzy labels, we
need a dataset with very good fuzzy ground-truth. This can only be achieved with a high
cost e.g., by multiple annotations and thus is often not feasible. For all used datasets, we
ensure that the labeled training data only consists of certain images and that the fuzzy
images are used as unlabeled data. If we include fuzzy labels in the labeled data which is
used as guidance during training, this will lead to worse performance as illustrated in the
ablations (Table 3).

3.1.1. Plankton

The plankton dataset contains diverse grey-level images of marine planktonic organ-
isms. The images were captured with an Underwater Vision Profiler 5 [44] and are hosted on
EcoTaxa [45]. In the citizen science project PlanktonID (https://planktonid.geomar.de/en
(accessed on 6 October 2021)), each sample was classified multiple times by citizen scien-
tists. The data for the PlanktonID project is a subset of the data available on EcoTaxa [45].
It was presorted to contain a more balanced representation of the available classes. The
dataset consists of 12,280 images in originally 26 classes. We merged minor and similar
classes so that we ended up with 10 classes. The class no-fit represents a mixture of left-over
classes. The merging was necessary because some classes had too few images for current
state-of-the-art semi-supervised approaches. After this process, a class imbalance is still
present with the smallest class containing about 4.16% and the largest class 30.37% of all
samples. We use the mean over all annotations as the fuzzy label. The citizen scientists
agree on most images completely. We call these images and their label certain. However,
about 30% of the data has as least one disagreeing annotation. We call these images and
their label fuzzy and use the most likely class as ground-truth if we need a hard label for
evaluation. The fuzzy labeled images are used only as unlabeled data. More details about
the mapping process, the number of used samples and graphical illustrations are given in
the supplementary.

3.1.2. STL-10

STL-10 is a common semi-supervised image classification dataset [25] and a subset of
ImageNet [46]. It consists of 5000 training samples and 8000 validation samples depicting
everyday objects. Additionally, 100,000 unlabeled images are provided that may belong
to the same or different classes than the training images. In contrast to the plankton and
synthetic dataset, no labels are provided for the unlabeled data and no fuzzy datapoints
exist. We use this dataset only to illustrate the difference in the performance of FOC to
previous semi-supervised methods.
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3.1.3. Synthetic Circles and Ellipses (SYN-CE)

This dataset is a mixture of circles and ellipses (bubbles) on a black background with
different colors. The 6 ground-truth classes are blue, red and green circles or ellipses. An
image is defined as certain if the hue of the color is 0 (red), 120 (green) or 240 (blue) and the
main axis ratio of the bubble is 1 (circle) or 2 (ellipse). Every other datapoint is considered
fuzzy and the ground-truth label l is calculated as the product of the interpolation of the
color pc and the geometry pg distribution. More details are in the supplementary. The
dataset consists of 1800 certain and 1000 fuzzy labeled images for train, validation and
unlabeled data split. We look at three subsets: Ideal, Real and Fuzzy. The Ideal subset uses
the maximal class of the fuzzy label l as a ground-truth class and represents the ideal case
that we certainly know the most likely label to each image. For the Real subset, the ground-
truth classes in randomly picked with the distribution of the fuzzy label l and represent the
real or common case. For example due to only one annotation, the percentage that the label
corresponds to the actual most likely class is linear to the fuzzy label. The Fuzzy subset
only uses certain labeled images as training data and represent a cleaned training dataset.
We will show that this handling of fuzzy labels leads to a higher classification performance
in comparison to the Real dataset in Section 3.5.1. The Ideal and the Real subset can be
evaluated on the unlabeled data of the Fuzzy subset with some overlap in the images.

3.2. Implementation Details

As a backbone for our framework, we used either a ResNet34 variant [23] or a standard
ResNet50v2 [39]. The heads are single fully connected layers with a softmax activation
function. Following [23], we use five randomly initialized copies for each type of head and
repeat images per batch three times for more stable training. We alternated between training
the different types of heads. The inputs are either sobel-filtered images or color images
for pretrained networks. For the ResNet34 backbone, we use CIFAR20 (20 superclasses
in CIFAR-100 [47]) weights and for the ResNet50v2 backbone ImageNet [46] weights. We
use in general λs = 1 = λu and an unlabeled data restriction of r = 0.5. We call our
Framework FOC-Light if we use λu = 0 and no warm-up. This means we do not use the
loss introduced by [23] and therefore also do not have to use their stabilization methods
like repetitions. During the pretext task or warm-up and the main training, we train the
framework with Adam and an initial learning rate of 1 × 10−4 for 500 epochs. When
switching from the pretext task to fine-tuning, we train only the heads for 100 epochs
with a learning rate of 1 × 10−3 before switching to the lower learning rate of 1 × 10−4.
The number of outputs for the overclustering head should be about 5 to 10 times the
number of classes. The exact number is not crucial because it is only an upper bound for
the framework. We use 70 for STL-10 and 60 for the plankton dataset. We selected all
hyperparameters heuristically based on the STL-10 dataset and did not change them for
the plankton dataset. We used the recommended hyperparameters by the original authors
for the previous methods. We compared with the following methods Semantic Clustering
by Adopting Nearest neighbors (SCAN) [48], Information Invariant Clustering (IIC) [23],
Mean-Teacher [49], Pi(-Model) [29], Pseudo-label [50] and FixMatch [38]. More detailed
descriptions are given in the supplementary.

3.3. Metrics

The evaluation protocols vary slightly depending on the used output and dataset. The
used data splits training, validation and unlabeled are defined above in Section 3.1.

On STL-10, we calculate accuracy of the validation data. Accuracy is the portion of
true positive and true negatives from the complete dataset.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

TP, TN, FP and FN are the true positive, true negative, false positive and false negative
respectively. We calculate these values per class and then sum the up before calculating
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the accuracy (micro averaging). For the overclustering head, we need to find a mapping
between the output clusters and the given classes. We calculate this mapping based on the
majority class in each cluster on the training data as in [23].

On the fuzzy plankton and synthetic datasets, we evaluate the macro-f1 score on the
unlabeled data. We calculate the macro F1-Score i.e., the average of the F1-scores per class
due to the skewed class distribution.

F1-Score =
2TP

2TP + FP + FN
(6)

Mind that a micro averaged F1-Score would be in our case the same as the above
defined accuracy. We use the unlabeled data as evaluation dataset because the fuzzy im-
ages, in which we are interested, are only included in the unlabeled data split by definition.
The mapping for the overclustering head is calculated based on the unlabeled data split
because we expect human experts to be involved in this process for the identification of
substructures. The best unlabeled results of the fuzzy Plankton and Synthetic dataset are
reported based on the validation metrics.

If not stated otherwise, we report the maximum score for the overclustering and the
normal head and the average and standard deviation over 3 independent repetitions.

3.4. Results
3.4.1. State-of-the-Art Comparison

We compare the state-of-the-art methods on certain and fuzzy data in Table 1.

Table 1. Comparison of state-of-the-art on certain and fuzzy data—We use STL-10 as a certain
dataset and the Plankton data as a fuzzy dataset. We report the Accuracy for STL-10 and the F1-Score
for the Plankton data due to class imbalance. It is important to notice that STL-10 is a curated dataset
while the Plankton dataset still contains the fuzzy images. For more details about the metrics see
Section 3.3. The results of previous methods are reported in the original paper or the original authors
code was used to replicate the results. The best results are marked bold. Legend: † A MLP used for
fine-tuning. ‡ Used only 1000 labels instead of 5000. � Unsupervised method.

Type of Data

Method Network Certain Fuzzy

SCAN � [48] ResNet18 76.80 ± 1.10 37.64 ± 3.56
IIC [23] ResNet34 85.76 ± 1.36 65.47 ± 1.86
IIC † [23] ResNet34 88.8 66.81 ± 1.85
Mean-Teacher [49] Wide ResNet28 78.577 ± 2.39 ‡ 72.85 ± 0.46
Pi [29] Wide ResNet28 73.77 ± 0.82 ‡ 74.34 ± 0.58
Pseudo-label [50] Wide ResNet28 72.01 ± 0.83 ‡ 75.04 ± 0.52
FixMatch [38] Wide ResNet28 94.83 ± 0.63 ‡ 76.28 ± 0.27
FOC-Light (Ours) ResNet50 – 72.79 ± 2.99
FOC (Ours) ResNet50 86.12 ± 1.22 76.79 ± 1.18

We see that FOC reaches a performance of about 86% on certain data but is not able
to reach the performance of FixMatch. FixMatch outperforms FOC by a clear margin of
nearly 8% while using a fifth of the labels. This performance is expected as FOC does
not focus like the others on classifying certain but fuzzy data. If we look at the less
curated fuzzy Plankton dataset, we see that FOC outperforms all all methods by a small
margin. All previous methods focus on certain and curated data and we see this leads
to a huge performance degeneration if they are applied to fuzzy data. FixMatch reaches
in both datasets the best performance except for our method FOC. We conclude that
the overclustering from FOC is the key for handling fuzzy data because it allows more
flexibility during training. Previous semi-supervised methods did not consider the issue of
inter- and intraobserver variability and thus are worse than FOC in classifying fuzzy data.
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If we use FOC-Light without the loss and stabilization of [23] the F1-Score drops
slightly to 75% but the used GPU hours can be decreased from 58 to 4 h. We conclude that
the overclustering head is more suitable for handling fuzzy real-world data as we assumed
at the beginning. Moreover, we see that the combination of cross-entropy and our novel
loss CE−1 can also successfully train an overclustering head.

3.4.2. Consistency

Up to this point, we analyzed classification metrics based on the 10 ground-truth
classes but the quality of substructures was not evaluated. We can judge the consistency
of each image within its cluster with the help of experts as a quality measure. An image
is consistent if an expert views it as visually similar to the majority of the cluster. The
consistency is calculated by dividing the number of consistent images by all images. The
consistency over all classes or per class for FOC and FixMatch is given in Table 2 and raw
numbers are provided in the supplementary. We provide a comparison based on all data
and without the no-fit class because this class contains a mixture of different plankton
entities. Visual similarity is therefore difficult to judge because it can only be defined
by not being similar the other nine classes. Based on the F1-Score, FixMatch and FOC
perform similarly but if we look at the consistency we see that FOC is more than 5% more
consistent than FixMatch. If we exclude the class no-fit from the analysis, FOC reaches a
consistency of around 86% in comparison to 77% from FixMatch. For both sets, our method
FOC reaches a higher average consistency per cluster and lower standard deviation. This
means the clusters produced by FOC are more relevant in practice because there are fewer
low-quality clusters which can not be used. Overall, this higher consistency can lead to
faster and more reliable annotations.

Table 2. Consistency comparison on plankton dataset—The consistency is rated by experts over the
complete data and a subset without the class no-fit. The score is given overall as as average per
cluster with standard deviation and is described in Section 3.4.2. The best results are marked bold.

All Data Ignore Class No-Fit

Method Overall Per Cluster Overall Per Cluster

FixMatch [38] 82.56 78.78 ± 28.22 77.11 69.61 ± 29.41
FOC (Ours) 87.80 79.66 ± 18.88 86.31 86.41 ± 13.68

3.4.3. Qualitative Results

We illustrate some qualitative results of FOC in Figure 3. All images in a cluster are
visually similar, even the probably wrongly assigned images (red box). For the images in
the first row, the annotators are certain that the images belong to the same class. In the
second row, annotators show a high uncertainty of assignment between the two variants of
the same biological object. This illustrates the benefit of overclustering since visual similar
items are in the same cluster even for uncertain annotations. In a consensus process for the
second row, experts could decide if the cluster should be the puff, tuft or a new borderline
class. Moreover, this clustering could be beneficial for monitoring the current imaging
process. We provide more randomly selected results in the supplementary.
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Figure 3. Qualitative results for unlabeled data—The results in each row are from the same predicted cluster. The three
most important fuzzy labels based on the citizen scientists’ annotations are given below the image. The last two items with
the red box in each row show examples not matching the majority of the cluster.

3.5. Ablation Studies
3.5.1. SYN-CE

We compare our framework with some previous methods on the three subsets of
SYN-CE in Table 3. All semi-supervised method reach almost a F1-Score of 100% on the
unlabeled fuzzy data for the subset Ideal. In real-world data, it is unlikely that we have
the real fuzzy ground-truth labels. It is more likely that we have uncertain/wrong labels
for training and validation or no labels at all for fuzzy data like in the subsets Real or
Fuzzy. In both cases, we see that our method reaches a superior performance with up to
10% higher F1-Score. While FOC-Light is only slightly better in comparison to the other
semi-supervised methods on the Real subset it is comparable to the complete framework
on the Fuzzy dataset. This is one indication that CE−1 is one of the key components for
successfully training the overclustering heads. We see the F1-Score on the Fuzzy subset is
around 10% higher than on the Real subset. We conclude that FOC can also generalize to
other datasets. We conclude that these results supports our idea of separating certain and
fuzzy data during training because we do not need to potentially falsely approximate the
real fuzzy ground-truth label like in the Real subset.

Table 3. Comparison to state-of-the-art on SYN-CE datasets—Each column represent a subset of
the dataset SYN-CE. The results are F1-Scores which were calculated on the unlabeled data which
include the fuzzy labels. All results within a one percent margin of the best result are marked bold.

Method Ideal Real Fuzzy

Mean-Teacher [49] 97.11 ± 0.78 73.23 ± 2.49 66.57 ± 16.27
Pi [29] 98.44 ± 0.28 72.74 ± 2.43 77.69 ± 5.02
Pseudo-label [50] 98.17 ± 0.30 75.70 ± 1.98 89.48 ± 1.94
FixMatch [38] 98.32 ± 0.01 71.81 ± 1.06 93.82 ± 1.83
FOC-Light (Ours) 97.46 ± 4.39 78.77 ± 7.83 94.29 ± 0.87
FOC (Ours) 97.72 ± 4.52 83.86 ± 4.21 94.15 ± 0.29

3.5.2. Loss & Network

In Table 4 multiple ablations for STL-10 and the plankton dataset are given. The scores
are averaged across the different output heads of our framework. Based on these tables,
we illustrate the impact of the warm-up, the initialization and the usage of the MI and
CE−1 loss for our framework. The normal accuracy can be improved by about 10% when
using the unsupervised warm-up on the STL-10 dataset. On the plankton dataset, the
impact is less but tends to give better results of some percent. Warm-up in combination
with the MI loss leads to a performance which is not more than 10% worse than the full
setup for all ablations except for one. For this exception, CE−1 is needed to stabilize
the overclustering performance due to the poor initialization with CIFAR-20 weights. We
attribute this worse performance to the initialization and not the different backbone because
on STL-10 the CIFAR-20 initializations of the ResNet34 backbone outperform the ImageNet

49



Sensors 2021, 21, 6661

weights of the ResNet50v2 backbone. We believe the positive effects of ImageNet weights
for its subset STL-10 and the better network are negated by the different loss.

IIC is similar to FOC with warm-up and no additional losses but we train also train
an overclustering head for handling fuzzy data. Taking this into consideration, we achieve
an 8 to 11% better F1-Score than IIC. A special case is FOC-light which does only use the
CE−1 loss and therefore no stabilization method proposed in [23]. This decreases gpu
memory usage and runtime and results in a total decrease of the GPU hours from 58 to
4 h. Overall, our novel loss CE−1 improves the overclustering performance regardless of
the dataset and the weight initialization by 10% on STL-10 and up to 7% on the plankton
dataset. We see that CE−1 is a key component for training an overclustering head and can
even be trained without the stabilization of the warm-up and the MI loss.

Table 4. Ablation study—The second to fourth column indicates if a warm-up, the MI loss or our
CE−1loss were used respectively. The fifth column indicates if CIFAR-20 (C), ImageNet (I) or no (–)
weights were used. Sobel filtered images are used as input for no weights. The Top1 and Top3 results
are marked bold respectively. * Original authors code. † A MLP used for fine-tuning.

Accuracy

Method Warm MI CE−1 Weight Overcluster Normal

FOC X – 70.92 ± 2.42 76.39 ± 0.05
IIC * [23] X – 85.76
FOC X X – 73.88 ± 0.21 82.01 ± 5.31
FOC X X X – 82.59 ± 0.06 86.49 ± 0.01
FOC X X X C 84.36 ± 0.64 78.59 ± 7.40
FOC X X X I 83.57 ± 0.10 85.21 ± 0.03

(a) STL-10

F1-Score

Method Warm MI CE−1 Weight Overcluster Normal

IIC [23] X – – 66.63
IIC † [23] X – – 69.92

FOC C 31.45 ± 6.02 39.35 ± 1.30
FOC X C 29.82 ± 2.98 60.65 ± 0.02
FOC X X C 70.11 ± 1.99 64.10 ± 0.13

FOC X C 23.95 ± 2.63 58.71 ± 2.07
FOC X X C 69.36 ± 0.05 56.59 ± 0.04
FOC X X X C 70.68 ± 0.10 58.09 ± 0.03

FOC I 29.88 ± 2.75 54.92 ± 0.03
FOC-Light X I 74.93 ± 0.22 73.64 ± 0.06
FOC X I 72.70 ± 0.36 64.78 ± 0.04
FOC X X I 73.93 ± 0.29 64.84 ± 0.03

FOC X I 73.93 ± 0.29 64.84 ± 0.03
FOC X X I 69.64 ± 1.04 66.56 ± 0.08
FOC X X X I 74.01 ± 3.17 65.17 ± 0.18

(b) plankton dataset

4. Conclusions

In this paper, we take the first steps to address real-world underwater issues with
semi-supervised learning. Our presented novel framework FOC can handle fuzzy labels
via overclustering. We showed that overclustering can achieve better results than previous
state-of-the-art semi-supervised methods on fuzzy plankton data. The additional overclus-
tering output is a key difference to previous work to achieve this superior performance.
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While on certain data FOC is not state-of-the-art by a clear margin of over 10%, it slighlty
outperforms all other methods on the fuzzy plankton data. These beneficial effects have
to be verified on other fuzzy datasets and with more semi-supervised algorithms in the
future. Due to better performance of FOC on fuzzy data, we expect a similar outcome. We
illustrated the visual similarity on qualitative results from these predictions and results
in 5 to 10% more consistent predictions. We showed that CE−1 is the key component for
training the overclustering head.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
s21196661/s1, The details about unsupervised clustering and a comparison to previous literature.
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Abstract: In this contribution, we compare basic neural networks with convolutional neural networks
for cut failure classification during fiber laser cutting. The experiments are performed by cutting
thin electrical sheets with a 500 W single-mode fiber laser while taking coaxial camera images for
the classification. The quality is grouped in the categories good cut, cuts with burr formation and
cut interruptions. Indeed, our results reveal that both cut failures can be detected with one system.
Independent of the neural network design and size, a minimum classification accuracy of 92.8% is
achieved, which could be increased with more complex networks to 95.8%. Thus, convolutional
neural networks reveal a slight performance advantage over basic neural networks, which yet is
accompanied by a higher calculation time, which nevertheless is still below 2 ms. In a separated
examination, cut interruptions can be detected with much higher accuracy as compared to burr
formation. Overall, the results reveal the possibility to detect burr formations and cut interruptions
during laser cutting simultaneously with high accuracy, as being desirable for industrial applications.

Keywords: laser cutting; quality monitoring; artificial neural network; burr formation; cut interruption;
fiber laser

1. Introduction

Laser cutting of thin metal sheets using fiber or disk lasers is now a customary process
in the metal industry. The key advantages of laser cutting are high productivity and
flexibility, good edge quality and the option for easy process automation. Especially
for highly automated unmanned machines, seamlessly combined in line with bending,
separation or welding machines, a permanent high cut quality is essential to avoid material
waste, downtime or damaging subsequent machine steps in mechanized process chains.
As a consequence, besides optimizing the cutting machine in order to reduce the influence
of disturbance variables, cut quality monitoring is also of utmost interest.

The most common and disruptive quality defects are cut interruptions and burr
formation [1]. To obtain high-quality cuts, process parameters, such as laser power, feed
rate, gas pressure, working distance of the nozzle and focus position, respectively, are to be
set appropriately. Imprecise process parameters and typical disturbance values like thermal
lenses, unclean optics, damaged gas nozzles, gas pressure fluctuations and the variations
of material properties may lead to cut poor-quality and, thus, nonconforming products.
To ensure a high quality, an online quality monitoring system, which can detect multiple
defects, would be the best choice in order to respond quickly and reduce downtime,
material waste or cost-extensive rework. Until now, most reviewed sensor systems for
monitoring laser cutting focus only on one single fault.

For detecting burr formation during laser cutting, different approaches using cameras,
phododiodes or acoustic emission were investigated. In [2,3] burr formation, roughness
and striation angle during laser cutting with a 6 kW CO2 laser are determined by using
a NIR camera sampling with 40 Hz. By using two cameras in [4], laser cutting with
a CO2 laser is monitored by observing the spark trajectories underneath the sheet and
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melt bath geometries and correlate this to the burr formation or overburning defects. A
novel approach is used in [5], employing a convolutional neural network to calculate burr
formation from camera images with a high accuracy of 92%. By evaluating the thermal
radiation of the process zone with photodiodes [6], the burr height during fiber laser cutting
can be measured from the standard deviation of a filtered photodiode signal. Results by
using photodiode-based sensors integrated in the cutting head [7] showed that the mean
photodiode’s current increases with lower cut qualities, while similar experiments revealed
increasing mean photodiode currents at lower cut surface roughness [8]. An acoustic
approach was investigated by monitoring the acoustic emission during laser cutting and
deducing burr formation by evaluating the acoustic bursts [9].

Also for cut interruption detection, most approaches are based on photodiode signals
or camera images. Photodiode-based methods for cut interruption detection are signal
threshold-based [10], done by the comparison of different photodiodes [11] or based on
cross-correlations [12]. However, all those methods have the disadvantage of requiring
thresholds that vary with the sheet thickness or laser parameters. In addition, an adap-
tation to other materials or sheet thicknesses requires a large engineering effort to define
respective threshold values by extensive investigations. To avoid this problem, [13] uses
a convolutional neural network to calculate cut interruptions from camera images dur-
ing fiber laser cutting of different sheet thicknesses with an accuracy of 99.9%. Another
approach is performed by using a regression model based on polynomial logistics [14] to
calculate the interruptions from laser machine parameters only.

This literature review reveals that for both burr formation monitoring and cut inter-
ruption, individual detection schemes have previously been reported, but a combined and
simultaneous detection for both failure patterns has not been reported so far. In addition,
many of the previous studies applied CO2 lasers, which are often replaced nowadays by
modern fiber or disk lasers, for which, in turn, fewer reports are available. To detect both
failures with the same system, we chose the evaluation of camera images with neural
networks, as they are able to achieve a high accuracy in detecting both cut failures [5,13].
The use of neural networks, especially for convolutional neural networks (CNN), has
been demonstrated for various image classification purposes, such as face recognition and
object detection [15,16], in medicine for cancer detection [17] and electroencephalogram
(EEG) evaluations [18] or in geology for earthquake detection [19]. For failure analyses in
technical processes, neural networks have also been successfully used for, e.g., concrete
crack detection [20], road crack detection [21] or detecting wafer error determinations [22].
In addition, detecting different failure types with the same system has been successfully
proven with neural networks, such as detecting various wood veneer surface defects [23]
or different welding defects [24] during laser welding.

The objective of this publication is to detect both burr formation and cut interruptions
during single-mode laser cutting of electrical sheets from camera images with neural
networks. The advantages of our system are, firstly, easy adaption to industrial cutting
heads, which often already have a camera interface. Secondly, images are taken coaxially
to the laser beam and are therefore independent of the laser cut direction. Thirdly, due
to the use of a learning system the engineering effort is low when the system has to be
adapted to other materials or sheet thicknesses. Two different neural network types are
used, namely a basic neural network and a convolutional neural network. The basic neural
network is faster and can detect bright or dark zones but is less able to extract abstractions
of 2D features and needs a lot of parameters when the networks get more complex. On
the other hand, convolutional neural networks are much better in learning and extracting
abstractions of 2D features and usually need fewer parameters. However, they require a
higher calculation effort due to many multiplications in the convolution layers [25,26].

The cutting of electrical sheets is chosen because it is an established process in the
production and prototyping of electric motors and transformers [27–30], i.e., it is a relevant
and contributing process step to foster e-mobility. In order to reduce the electrical losses
caused by eddy currents, the rotor is assembled of a stack of thin electrical sheets with
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electrical isolation layers in between the sheets. The sheet thickness varies typically between
0.35 mm to 0.5 mm, with the eddy currents being lower for thinner sheets. As a result, for
an electric motor, a large number of sheets with high quality requirements are necessary.
Especially burr formations result in gaps between sheets or the burr can pierce the electrical
isolation layer and connect the sheets electrically which both reduce the performance of
motors drastically. Therefore, quality monitoring during laser cutting is of great interest
for industrial applications.

2. Experimental

2.1. Laser System and Cutting Setup

In this study, a continuous wave 500 W single-mode fiber laser (IPG Photonics, Bur-
bach, Germany) is used to perform the experiments. The laser system is equipped with
linear stages (X, Y) for positioning the workpiece (Aerotech, Pittsburgh, PA, USA) and a
fine cutting head (Precitec, Gaggenau, Germany) is attached to a third linear drive (Z). The
assisted gas nitrogen with purity greater than 99.999% flows coaxially to the laser beam.
The gas nozzle has a diameter of 0.8 mm and its distance to the workpiece is positioned
by a capacitive closed loop control of the z-linear drive. The emitting wavelength of the
laser is specified to be 1070 nm in conjunction with a beam propagation factor of M2 < 1:1.
The raw beam diameter of 7.25 mm is focused by a lens with a focal length of 50 mm.
The according Rayleigh length is calculated to 70 μm and the focus diameter to 10 μm,
respectively.

The design of the cutting head with the high-speed camera and a photo of the laser
system are illustrated in Figure 1. The dashed lines depict the primary laser radiation
from the fiber laser, which is collimated by a collimator and reflected by a dichroic mirror
downwards to the processing zone. There the laser radiation is focused by the processing
lens through the protective glass onto the work piece, which is placed on the XY stages.
The process radiation from the sheet radiates omnidirectional (dash-doted line), thus partly
through the nozzle and protective glass and is collimated by the processing lens upwards.
The process radiation passes the dichroic mirror and is focused by a lens onto the high-
speed camera. The focus of the camera is set to the bottom side of the sheet in order to
have a sharp view of possible burr formations.

 
Figure 1. Optical setup of the cutting head (left) and image of the system (right).
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2.2. Laser Cutting

The laser cuts are performed in electrical sheets of the type M270 (according to
EN 10106 this denotes a loss of 2.7 W/kg during reversal of magnetism at 50 Hz and
1.5 T) with a sheet thickness of 0.35 mm. This sheet thickness is chosen because it fits
well to the laser focus properties e.g., Rayleigh length and it is one of the most often
used sheet thicknesses for electrical motors and transformers, because it provides a good
compromise between low eddy currents and high productivity. Stacks of thicker sheets
are faster to produce because less sheets are required per stack but with increasing sheet
thickness also unwanted eddy currents increase. Thinner sheet thicknesses require a higher
production effort per stack and are more difficult to cut because they are very flexible, and
warp under the gas pressure and thermal influence. In these experiments only one sheet
thickness is used, but please note that in previous publications with similar systems an
adaptation of the results to other sheet thicknesses was possible with only minor additional
expenses [5,13].

As ad-hoc pre-experiments reveal, the parameter combination of a good quality cut is
a laser power of 500 W, a feed rate of 400 mm/s and a laser focus position on the bottom
side of the metal sheet. The gas nozzle has a diameter of 0.8 mm and is paced 0.5 mm above
the sheet surface and the gas pressure is 7 bar. For the experimental design, the parameters
are varied to intentionally enforce cut failures. Burr formations are caused by less gas flow
into the cut kerf due to higher nozzle to sheet distance, lower gas pressure, an overvalued
power to feed rate ratio or damaged nozzles. Cut interruptions are enforced by too high
feed rates or too low laser power.

In the experimental design, 39 cuts with different laser parameters are performed
for training the neural network and 22 cuts are performed for testing, with the cuts being
evenly distributed to the three cut categories (good cut, cuts with burr formation and cut
interruptions). A table of all cuts with laser machine parameters, category and use can be
found in the Appendix A. The cuts are designed from a straight line including acceleration
and deceleration paths of the linear stages. Exemplifying images of the sheets from all three
cut categories taken by optical microscope after the cutting process are shown in Figure 2.
Firstly, for a good quality cut, both top and bottom side of the cut kerf are characterized by
clear edges without damages. Secondly, for a cut with burr, the top side is similar to the
good quality cut, however on the bottom side drops of burr formation are clearly visible.
Thirdly, the images of the cut interruption reveal a molten line on the sheet top side and
only a slightly discolored stripe on the bottom side with both sides of the sheet not being
separated.
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Figure 2. Images of the top and bottom side of laser cuts with and without cut errors taken with an optical microscope after
laser cutting.

2.3. Camera and Image Acquisition

For image acquisition during laser cutting, we used a high-speed camera (Fastcam
AX50, Photron, Tokyo, Japan) with a maximum frame rate of 170,000 frames per second.
The maximum resolution is 1024 × 1024 pixels, with a square pixel size of 20 × 20 μm2

in combination with a Bayer CFA Color Matrix. For process image acquisition, videos
of the laser cutting process are grabbed with a frame rate of 10 kilo frames per second
with an exposure time of 2 μs and a resolution of 128 × 64 pixels. Even at this high
frame rate, no oversampling occurs and consecutive images are not similar, because the
relevant underlying melt flow dynamics are characterized by high melt flow velocities in
the range of 10 m/s [31] and vary therefore at estimated frequencies between 100 kHz and
300 kHz [32]. Please note, due to the lack of external illumination in the cutting head, the
brightness in the images are caused by the thermal radiation of the process zone.

Two exemplifying images of each cut category are shown in Figure 3 with the cut
direction always upwards. The orientation of the images is always the same because
the straight lines are cut in the same direction. For complex cuts, images with the same
orientation can be transformed from various oriented images by rotation based on the
movement direction of the drives. In these images, brightness is caused by the thermal
radiation of the hot melt. Good cuts are characterized by a bright circle at the position on
the laser focus, and below this, two tapered stripes indicating the flowing melt at the side
walls of the cut kerf, because in the middle the melt bath is blown out first. The cuts with
burr are similar to the good quality cuts but tapered stripes are formed differently. The
cut interruptions are very different to the other categories and are characterized by larger
bright areas and a more elliptical shape with no tapered stripes.
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Good cut Cut with burr Cut interruption 

      

Figure 3. Examples of camera images of the three cut categories taken during laser cutting with the high speed camera.

From the 39 laser cuts, the experimental design delivers the same number of training
videos with overall 52 thousand training images, while from the 22 testing cuts 34 thousand
test images are provided. It is worth to mention, that the size of several ten thousands of
training images is typical for training neural networks [33]. For both training and testing,
the images are almost evenly distributed on the three categories with cut interruptions
being slightly underrepresented. The reason for this underrepresentation is, that cut
interruptions only occur at high feed rates, i.e., images from acceleration and deceleration
paths can be used only partially and, in turn, less images per video can be captured.

2.4. Computer Hardware and Neural Network Design

For learning and evaluating the neural network, a computer with an Intel Core 7-
8700 processor with a 3.2-GHz clock rate in combination with 16-GB DDR4 RAM was
used. All calculations are performed with the CPU rather than the GPU to show that the
machine learning steps are also possible to run on standard computers, which are usually
integrated with laser cutting machines. The used software was TensorFlow version 2.0.0
in combination with Keras version 2.2.4 (Software available from: https://tensorflow.org
(accessed on 24 March 2021)).

In most publications about image classification with neural networks, the images have
major differences. In contrast, in the images captured in our experiments, the object to
analyze always has the same size, orientation and illumination conditions which should
simplify the classification when compared to classifying common, moving items like vehi-
cles or animals [34,35]. Furthermore, our images have a rectangular shape with 128 × 64
pixels, while most classification algorithms are optimized on square images sizes having
mostly a resolution of 224 × 224 pixels like MobileNet, SqueezeNet or AlexNet [36,37].
Because an enlargement of the image size slows the system drastically, two self-designed
and completely different neural network are used with many elements being adapted
to other, often used neural networks. The first network, as shown in Figure 4 is a basic
network without convolution and only consists of image flattening followed by two fully
connected layers with N nodes and ReLU Activation. To classify the three different cut
categories, a fully connected layer with 3 nodes and softmax activation completes the
network. The second network is a convolutional neural network with four convolution
blocks followed by the same three fully connected layers as in the basic network. Each
block consists of a convolution layer with a kernel size of 3 × 3 and M filters, which
the output of the convolution is added with input of the block. Such bypasses are most
common in, e.g., MobileNet [36]. To reduce the number of parameters, a max pooling layer
with a common pool size of 2 × 2 is used [26]. In contrast to often neural networks used
in the literature, we use a constant instead of an increasing filter number for subsequent
convolution layers and we use normal convolutions rather than separable or pointwise
convolutions. Because every block halves the image size in 2 dimensions, after 4 blocks
the image size is 8 × 4 × M. The fully connected layers after the flattening have the same
number of nodes as the number of parameters delivered by the flattened layer. The used
model optimizer is Adam, which according to [38], together with SDG (Stochastic Gradient
Descent) provides superior optimization results. Furthermore, we use the loss function
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“categorical crossentropy” to enable categorical outputs (one hot encoding), and the metrics
“accuracy”.

 
Figure 4. Design of the two neural networks.

2.5. Methodology

The methodology of our experiments is shown in the workflow diagram in Figure 5.
In a first step, the laser cuts are performed and during cutting videos are taken from
the process zone with the high speed camera, some of these images have been shown
in Figure 3. After cutting, the cut kerfs are analyzed by with an optical microscope and
categorized manually whether a good cut, burr formation or a cut interruption occurred
(examples of these images shown in Figure 2). Based on this classification, the videos
taken during laser cutting are labeled with the corresponding class. In case the cut quality
changes within one cut, the video is divided, so the quality is constant within a video. Then
the videos are separated in training videos and test videos, so the images for testing are
not from videos used for training. From the training videos, the single frame is extracted
and with these images the neural network is trained. Furthermore, the single frames are
extracted from the test videos, and the resulting images are used to test the trained neural
network.

Figure 5. Workflow diagram.
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3. Results

3.1. Training Behaviour

The different neural networks are trained on the training dataset and the performance
is calculated on the test dataset. Exemplarily, the training behavior of the convolutional
neural network with 16 filters in each convolution is shown in Figure 6. Apparently, the
training accuracy rises continuously with the training epochs, reaching 99% after 10 epochs
and 99.5% after 20 epochs, respectively. On the other hand, the test accuracy reaches 94%
after three epochs and fluctuates with further training around this level, which is a typical
behavior for neural network training [39]. Even further training, above 20 epochs, results
only in a fluctuation of the accuracy rather than a continuous increase. To reduce the
deviation of the test results for comparisons between different networks, the mean of the
test results between 10 and 20 epochs is used.

 

Figure 6. Training accuracy and test accuracy of a convolutional neural network with 16 filters.

3.2. Basic Neural Network

To determine the performance of the basic neural networks, those with node numbers
N between 5 and 1000 are trained on the training dataset and tested on the test dataset.
The mean test accuracy between 10 and 20 training epochs and the required calculation
time per image are shown in Figure 7. It is obvious that the accuracy for a very small
network with only five nodes is quite high, being 92.8%, and the calculation time of 0.1 ms
per image being very fast. With an increasing number of nodes, the accuracy increases to
a maximum of 95.2% at 1000 nodes, which is accompanied by a higher calculation time
of 0.32 ms. Parallel to the calculation time, also the trainable parameters increase with
the number of nodes starting from 122 thousand parameters for five nodes and reaching
25 million parameters at 1000 nodes. A further increase of the parameters is not considered
to be useful, because the training dataset consist of 420 million of pixels (number of images
x pixels per image), so the neural network tend to over fit the training dataset rather than
developing generalized features. Generally, with the basic neural network accuracies of
94% (mean) are achievable.
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Figure 7. Accuracy of the basic neural network as a function of nodes per fully connected layer.

3.3. Convolutional Neural Network

Under the same conditions as the basic neural network, the convolutional neural
network is also trained and tested. The results of the accuracy and calculation time for
filter numbers between 4 and 64 are depicted in Figure 8. The accuracy of the neural
network is quite high for all filter numbers and fluctuates between 94.6% and 95.8% with
no clear trend. In addition, the accuracy also varies for the same network when it is
calculated several times. However, the calculation time increases clearly with the number
of filters from 0.36 ms per image to 1.77 ms. The number of trainable parameters start with
34 thousand for four filters and increases to 8.4 Million for the 64 filters (details how to
calculate the number of parameters are described in [25]). For the mean, the convolutional
neural network is able to classify about 95% of the image correctly.

 

Figure 8. Test accuracy for the convolutional neural network as a function of the number of filters.
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3.4. Comparison between Cut Failures

Since the literature is available for both burr detection and cut interruptions during
laser cutting, which vary strongly in accuracy, the performance of our neural networks
in detecting one cut failure is determined. Therefore, the accuracy in classifying good
cuts and cuts with burr as well as good cuts and cut interruptions is calculated separately.
For this investigation, the convolutional neural network with 16 filters is chosen, because
it provides high accuracy and a comparable moderate calculation time. The results of
the separated classification are shown in Figure 9. It is obvious that the detection of cut
interruptions is very reliable with the accuracy being 99.5%, as being compared to 93.1%
when detecting burr formation. The reason for this can also be seen in Figure 3, where good
cuts are much more similar to cuts with burr, while cut interruptions look very different to
both of the other failure classes. Both values individually agree with the literature values,
which are 99.9% for the cut interruptions [13] and 92% for the burr detection [5], yet for burr
detection in the literature a more complex burr definition is chosen. This shows that cut
interruptions are much easier to detect from camera images compared to burr formations.

 

Figure 9. Comparison of the test accuracy between interruptions and burr formations.

3.5. Error Analysis

For the error analysis, single misclassified images and the distribution of misclas-
sifications are analyzed. For the temporal distribution, a video of a cut with different
cut qualities is produced. The measured quality obtained by the optical microscope and
the prediction of the convolutional neural network with 16 filters is shown in Figure 10.
Misclassifications are indicated by red dots that are not placed on the blue line and it can
clearly be seen, which misclassifications occur more often than others. The most frequent
misclassifications are cuts predicted as burr. Interruptions are rarely misclassified and
other images are seldom misclassified as interruptions, which accompanies the results in
Section 3.4. The distribution of the misclassifications reveals no concentration on a specific
sector but minor accumulations of several misclassifications are observed. In addition,
some areas without any misclassification or only single misclassifications can be found.
These results reveal that misclassifications do not occur all at once or at a special event but
are widely distributed.
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Figure 10. Measured image class and prediction by the neural network.

To analyze the misclassified images, two exemplified images from a good cut classified
as cut with burr are shown in Figure 11. In contrast to the images in Figure 3, where the
bright area is followed by two tapered stripes, in Figure 11, these stripes are hardly observed.
However, these following stripes are important for the classification, because in this area
the burr is generated. Therefore, in the case of missing stripes, the classification between
cuts with and without burr is difficult and thus characterized by many misclassifications.

  

Figure 11. Two examples of cuts missclassified as burr.

4. Discussion

With the classification in three different categories during laser cutting, good cuts
can be distinguished from cuts with burr and cut interruptions. The convolutional neural
network has, depending on the number of filters, a better classification accuracy by about
1% when compared to the basic networks. The maximum accuracy for the basic neural
networks (1000 nodes) is also lower, being 95.2% as compared to a 95.8% accuracy of
the convolutional neural network with 16 filters. Nevertheless, the difference between
both neural network types is small, which can be explained by the objects in the images
always having the same size, orientation and brightness, which is not usually the case for
many other classification tasks [34,35]. As a consequence, the basic neural network can
classify the images by bright or dark zones and does not necessarily require learning and
extracting abstractions of 2D features which is the main advantage of convolutional neural
networks [25,26].

For the required accuracy, the size of the cut failure has to be considered. Because of
the accuracy being below 100%, a post algorithm is necessary which should report an error
only when a certain amount of failures occurs in a sequent number of images. To detect
geometrically long failures, which can occur, e.g., by unclean optics, our classification
system is adequate. Very short failures, like single burr drops when cutting an edge, are
probably not be detectable with our system. It is remarkable for the results with both
neural networks, however, that at least 92.8% accuracy (cf. Figure 7) can be achieved
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with any network configuration independent from network type, number of nodes or
filters. This means that about 93% of the images are easy to classify because they differ
strongly between the categories. Furthermore, about 2% of the images can be classified by
more complex neural networks (cf. Sections 3.2 and 3.3). About 5% of the images, mostly
between the categories good cuts and cuts with burr formation, are very difficult to classify
because the images are quite similar (cf. Figure 3). For an industrial application, it has to
be further considered whether the intentionally enforced cut failures are representative for
typical industrial cut failures, e.g., as a result of unclean optics, which are not reproducible
in scientific studies.

The main advantage of the basic neural network is the much lower computation time
between 0.1 ms and 0.32 ms, while the convolutional neural network requires 0.36 ms to
1.7 ms, respectively. For typical available industrial cameras having maximum frame rates
in the range of 1000 Hz, a calculation time for the classification of about 1 ms is sufficient,
which is fulfilled by all basic and most of our convolutional neural networks. A similar
frame rate was also used by [5] when detecting burr formations during laser cutting. With
maximum cutting speeds of modern laser machines in the range of 1000 mm/s still a local
resolution of 1 mm is achieved which can clearly be considered as adequate for industrial
use.

Following this fundamental and comparative analysis, future investigations have to
address field trials of the proposed sensor system and classification scheme in industrial
cutting processes. Within such industrial environments additional error sources may
appear and further reduce the cut quality, such as damaged gas nozzles or partially unclean
optics which in turn are difficult to reproduce under laboratory conditions. The images
from these error sources can be added to the training data and improve the detection rate
of the classification system. To improve the detection rate it is also possible to classify not a
single image but a series of 3 to 10 subsequent images, which reduces the influence of a
single misleading image.

5. Conclusions

Overall, with our neural network approach, two cut failures during laser cutting can
be detected simultaneously by evaluating camera images with artificial neural networks.
With different neural network designs up to 95.8% classification accuracy can be achieved.
Generally, convolutional neural networks have only minor classification advantages of
about 1% over basic neural networks, while the basic neural networks are considerably
faster in calculation. The detection of cut interruptions is remarkably higher when com-
pared to the burr formation, because the images of cut interruptions are more different
from the good cuts compared to the images with burr formation. In general, the detection
rate is high enough to advance industrial applications.
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Appendix A

Table of all performed laser cuts with machine parameters, cut category and use for
training and test.

Nr: Laser Feed Rate
Nozzle

Distance

Focus

Position
Category Use

W mm/s mm mm

1 500 600 0.5 −1.25 Cut Training

2 300 400 0.5 −1.25 Cut Training

3 500 500 0.5 −1.25 Cut Training

4 500 300 0.5 −1.25 Cut Training

5 300 600 0.5 −1.25 Interruption Test

6 200 500 1,0 −1.75 Interruption Training

7 500 500 0.8 −1.55 Burr Training

8 500 600 0.5 −1.25 Cut Test

9 250 500 0.5 −1.25 Interruption Test

10 500 400 0.5 −1.25 Cut Test

11 500 600 0.5 −1.25 Interruption Training

12 500 500 1,0 −1.75 Burr Training

13 500 500 0.5 −1.25 Cut Test

14 500 300 0.5 −1.25 Cut Training

15 500 200 0.5 −1.25 Cut Test

16 500 500 0.5 −1.25 Cut Training

17 500 500 0.5 −1.25 Interruption Test

18 400 500 0.9 −1.65 Burr Training

19 500 500 0.8 −1.55 Burr Training

20 200 500 1,0 −1.75 Interruption Training

21 500 300 0.5 −1.45 Burr Training

22 150 500 0.5 −1.25 Interruption Test

23 500 400 0.5 −1.25 Cut Training

24 500 500 0.5 −1.25 Cut Test

25 500 400 0.5 −1.25 Training

26 400 500 0.8 −1.55 Burr Training

27 500 500 0.8 −1.55 Burr Test

28 150 500 0.5 −1.25 Interruption Training

29 200 500 1,0 −1.75 Interruption Test

30 400 500 0.9 −1.65 Burr Training

31 300 600 0.5 −1.25 Interruption Training

32 500 500 1,0 −1.75 Burr Training

33 500 300 0.5 −1.25 Cut Test
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Nr: Laser Feed Rate
Nozzle

Distance

Focus

Position
Category Use

W mm/s mm mm

34 400 500 1,0 −1.75 Burr Test

35 500 500 0.5 −1.25 Interruption Training

36 500 400 0.5 −1.25 Cut Training

37 150 500 0.5 −1.25 Interruption Training

38 400 500 0.5 −1.45 Burr Training

39 500 600 0.5 −1.25 Interruption Training

40 400 400 0.5 −1.25 Cut Training

41 500 600 0.5 −1.25 Cut Training

42 500 600 0.5 −1.25 Interruption Test

43 400 500 0.8 −1.55 Burr Test

44 400 500 0.5 −1.45 Burr Test

45 400 400 0.5 −1.25 Cut Test

46 500 500 0.5 −1.25 Cut Training

47 500 200 0.5 −1.25 Cut Training

48 300 400 0.5 −1.25 Interruption Training

49 400 500 0.5 −1.45 Burr Training

50 500 400 0.5 −1.25 Cut Test

51 500 500 0.8 −1.55 Burr Training

52 400 500 0.9 −1.65 Burr Training

53 400 500 0.9 −1.65 Burr Test

54 500 300 0.5 −1.45 Burr Training

55 300 400 0.5 −1.25 Cut Training

56 500 300 0.5 −1.45 Burr Test

57 250 500 0.5 −1.25 Interruption Training

58 300 400 0.5 −1.25 Cut Training

59 300 400 0.5 −1.25 Interruption Training

60 300 600 0.5 −1.25 Interruption Training

61 300 400 0.5 −1.25 Interruption Test
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Abstract: In this article, the authors propose two models for BLDC motor winding temperature
estimation using machine learning methods. For the purposes of the research, measurements were
made for over 160 h of motor operation, and then, they were preprocessed. The algorithms of
linear regression, ElasticNet, stochastic gradient descent regressor, support vector machines, decision
trees, and AdaBoost were used for predictive modeling. The ability of the models to generalize
was achieved by hyperparameter tuning with the use of cross-validation. The conducted research
led to promising results of the winding temperature estimation accuracy. In the case of sensorless
temperature prediction (model 1), the mean absolute percentage error MAPE was below 4.5% and
the coefficient of determination R2 was above 0.909. In addition, the extension of the model with the
temperature measurement on the casing (model 2) allowed reducing the error value to about 1% and
increasing R2 to 0.990. The results obtained for the first proposed model show that the overheating
protection of the motor can be ensured without direct temperature measurement. In addition, the
introduction of a simple casing temperature measurement system allows for an estimation with
accuracy suitable for compensating the motor output torque changes related to temperature.

Keywords: temperature estimation; machine learning; BLDC; electric machine protection

1. Introduction

Permanent magnet electric motors, in particular permanent magnet synchronous
(PMSM) and brushless direct current (BLDC) motors, have gained popularity over the
past decade. It is visible both in industrial solutions such as servo drives and actuators,
but also in household appliances and traction applications. This is due, inter alia, to the
fact that the use of permanent magnets allows the miniaturization of devices (due to the
much higher power density in motors), which also increases their reliability and energy
efficiency. The elimination of one of the most susceptible to damage elements of DC electric
motors, i.e., the mechanical commutator and brushes, made it possible to use BLDC motors
in applications requiring increased durability. The authors in [1] presented the percentage
share of individual failures in induction motors, which shows that more than 40% of failures
are caused by bearing failures, while 38% are problems with the machine stator. Therefore,
it can be concluded that in DC brushless motors, damage to these elements will also have
a significant impact on the reliability of the device. Diagnostics and detection of BLDC
motor failures are devoted to many studies, including methods consisting of monitoring
the motor current waveform [2–4], as well as using built-in Hall sensors [5] or additional
vibration measurement [6]. A detailed description of faults occurring in brushless motors
and the classification of diagnostic methods can be found in [7]. The authors point out that
the detection of damage is also possible by measuring the motor temperature.
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The analysis of thermal phenomena in electric motors is important for their proper
functioning and the possibility of preventing and detecting faults. Excessive temperature
rise can destroy the insulation of the stator winding and lead to a short circuit. The
increased operating temperature of the motor causes both the aging of the bearings and the
degradation of the rotor permanent magnets, which in turn shortens the remaining useful
life of the machine. Zhang et al. in [8] also emphasize that the motor life is reduced by 50%
for every 10 ◦C above the maximum temperature limit set by the manufacturer. One of the
methods used by manufacturers of electric motors to protect against long-term operation
at the upper operating temperature limit is the oversizing of the device or the use of an
additional cooling system in the form of a fan placed on the motor shaft. Another cooling
method in the case of high-power traction motors is the forced circulation of the coolant in
a casing specially designed for this purpose.

According to [9], there are three basic types of thermal losses in permanent magnet
motors. The first of these are the losses in the copper winding, the value of which depends
on the flowing current. Another is the core iron losses, which mainly depend on the stator
voltage. The last type of losses is mechanical, which is influenced by the motor speed.
Stator winding insulation is particularly exposed to the effects of temperature and the
thermal aging process. Moreover, if the temperature of the permanent magnet motor
winding cannot be effectively controlled, the heat will be transferred to the rest of the
components through the casing and the air gap, leading to heating of both the bearings and
the permanent magnets. The authors in [10] emphasize that the increase in temperature of
permanent magnets causes their partial demagnetization, which leads to a drop in motor
output torque. If the critical temperature value characterizing a given permanent magnets
material is not reached, the process is reversible. Otherwise, the magnets are permanently
and irreversibly damaged, resulting in worse motor performance.

The above-mentioned phenomena show that there is a need to monitor the temper-
ature inside DC brushless motors. Therefore, some BLDC motor manufacturers decided
to install factory-built winding temperature sensors. This solution entails an increase in
the production costs of the device and constitute another element of the machine that may
be damaged. On the other hand, the installation of the temperature sensor by the user
requires a lot of time and effort, as well as knowledge about the design of the device itself.

In order to optimize costs and eliminate the need for sensors, scientists have made a
number of attempts to estimate the temperature of individual internal components of elec-
tric motors, such as stator winding [11], rotor [12], or bearings [13]. These efforts are mainly
aimed at protecting these components from excessive temperature rise. However, studies
show that it is also possible to compensate the torque pulsations on the machine shaft
caused by the influence of temperature on the winding resistance and demagnetization of
permanent magnets [14–17]. The authors in [18] propose using the BLDC motor thermal
model to optimize the trajectory of the industrial robot movements, taking into account
thermal constraints. Moreover, based on the research conducted by the authors in [19], it
can be concluded that thermal modeling of a traction motor with permanent magnets will
have a significant impact on the optimization of V2G (vehicle to grid) systems, because
the amount of energy consumed by an electric vehicle is dependent on thermal losses of
its motor.

One of the most popular and most effective methods of forecasting the electric motor
temperature is lumped parameter thermal networks (LPTN), which simplify the physical
model of the motor and allow for temperature estimation based on a set of parameters
assigned to network nodes. As described in [20], motor equivalent thermal circuit diagrams
can be divided into three basic types depending on the number of nodes in the thermal
model. The first is a white box model in which a multi-node network is created that
describes the motor based on the theory of heat transfer. In this type of model, there are
additional sub-nodes that are designed to even more accurately reflect the actual heat
distribution in the machine. Conducting calculations aimed at temperature prediction
with such complex network structures requires a lot of computing power and, despite
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high accuracy, cannot be used for real-time prediction. In addition, creating such accurate
models requires knowledge of many parameters and properties of the materials of which
the motor is made, as well as expertise in its construction. Therefore, it is obvious that this
is difficult to achieve, as manufacturers do not provide complete information about their
devices. Light gray box models are another type of thermal equivalent networks. They
represent the first degree of simplification compared to the previously described white-box
networks and typically have five to fifteen nodes. Thanks to the use of a simpler structure,
the complexity of calculations is much lower, although there is still a need for detailed
information on the materials and geometry of the motor. In response to the above problems,
dark gray box models were created, which have only two to five nodes corresponding
to the dominant heat transfer paths and achieve very good prediction accuracy thanks
to determining the values of the thermal model parameters based on experimental tests.
High efficiency and the possibility of real-time calculations made dark gray box networks
popular in the field of thermal modeling of electric motors. However, it is worth noting
that they require knowledge of the temperature (application of the sensor) in at least one
point in the network, as well as some expertise knowledge of the modeled object. In
the literature, a number of publications on temperature estimation based on the created
lumped parameter thermal networks of permanent magnet motors can be found [11,21,22].

Another way to predict the temperature of electric motors is to estimate the winding
resistance by injecting signals of the appropriate frequency into the stator circuit [12,23–25].
Methods of this type allow for real-time temperature estimation and are resistant to changes
in motor cooling conditions (damage to the cooling system), because it is assumed that the
relationship between winding resistance and temperature is known and does not change
with time. However, the introduction of additional signals causes current and voltage dis-
tortions, significantly affecting the electromagnetic compatibility of the device. In addition,
the injected signals cause torque pulsations that are unacceptable in some applications.

Thermal modeling of electric motors is also carried out in a purely analytical manner
using mathematical [26] and finite element (FEA) methods. It is worth mentioning that
there are also hybrid estimation methods such as those described in [27]. An interesting
issue concerning motors with permanent magnets is the estimation of the rotor temperature
on the basis of the flux measurement with the use of built-in Hall sensors, as described
in [5]. However, this method requires the knowledge of the thermal demagnetization
constant of the material of which the magnets are made. Moreover, the flux measurement is
also affected by the influence of the stator flux, which contributes to erroneous predictions
at higher loads.

The modern and very effective methods of estimating the temperature of electric
motors include machine learning and deep learning. Their unquestionable advantage is
that on the basis of the collected measurement data, a function mapping the relationship
between the values of the input features and the output is determined. This means that
predictive modeling does not require knowledge of the material properties of a given device
or having expertise knowledge about its construction. Both neural networks and other
machine learning methods have proven their effectiveness in estimating the temperature
of induction motors [28], permanent magnets synchronous motors [9,29–31], as well as
brushed DC motors [32,33]. Many of the articles on PMSM temperature prediction using
machine learning available in the literature use the motor coolant temperature as an input
variable of the algorithm [9,29–31]. Moreover, the authors in [34] emphasize that the stator
temperature is strongly correlated with the exponentially weighted moving average of
the PMSM motor coolant temperature, and removing this variable from the feature vector
results in a significant decrease in the effectiveness of the prediction algorithm.

In this article, we present a comparison of the effectiveness of selected machine learn-
ing algorithms in predicting the temperature of BLDC stator winding for a variable load
profile and various cooling conditions. An interesting result was achieved even without
the knowledge of casing temperature. In addition, the results of the estimation using
information about the temperature on the casing and in the absence of additional sensors
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were compared. The article is organized as follows: Section 2 describes measurement of the
BLDC motor winding temperature and the methods used for data preprocessing; Section 3
describes the machine learning algorithms that were used to develop the models; cross-
validation and parameter optimization are described in Section 4; Sections 5 and 6 present
the results of predictive analysis, while Section 7 presents the summary and conclusions.

2. Measurements and Data Preprocessing

One of the key aspects of predictive modeling with the use of machine learning
algorithms is the collection of a sufficiently large set of data, which will be split and then
used for training, testing, and validating the results. For this purpose, two mechanically
coupled brushless DC machines of the same type (Table 1) were installed on the test
stand (Figure 1). One of them worked as a motor during the measurements, while the
other one worked as a generator and constituted the adjustable load. The BLDC motor
was equipped with two analog LM35DZ temperature sensors supported by the Texas
Instruments (Dallas, TX, USA), one of which was mounted to the winding ends with
a thermally conductive adhesive, as shown in Figure 2, while the other was placed on
the motor casing—Figure 3. The control of the tested motor was carried out with the
use of the algorithm described in [35,36] to eliminate the possible impact of Hall sensors’
misalignment on the effectiveness of the estimation. The IHM08M1 system, dedicated
to work with STM32 series microprocessors supported by the STMicroelectronics N.V.
(Amsterdam, The Netherland), was used as the power electronic converter. This converter
is equipped with a current measurement system. In addition, the rotational speed of the
motor was measured using a preinstalled Hall sensors’ system. Data acquisition was
carried out using the STM Studio software dedicated to real-time visualization and data
acquisition, but due to the fact that thermal processes are slowly changing, it was decided
to sample the measurements at a frequency of 4 Hz.

Over 160 h of BLDC motor temperature measurements were carried out on the test
stand for a variable load profile and rotational speed, as well as for various cooling
conditions. During the first series of measurements lasting more than 80 h, the motor
was tested without any additional cooling system. In the second one, a cooling fan was
mounted on the motor shaft (Figure 3). In addition, an air duct has been provided to ensure
an adequate flow of cooling air.

Table 1. Tested BLDC motor specifications.

Name Unit Value

No. of pole - 8
No. of phase - 3
Rated voltage V 48
Rated speed rpm 3000
Rated torque Nm 1.4

Max peak torque Nm 4.2
Torque constant Nm/A 0.127

Line to line resistance Ω 0.16
Line to line inductance mH 0.50

Max peak current A 33
No-load current mA 1450

Length Mm 98
Rotor inertia g cm2 1600

Weight Kg 3.15

74



Sensors 2021, 21, 4655

 

Figure 1. Test bench.

 

Figure 2. Winding temperature sensor placement (red arrow).

 

Figure 3. Placement of the cooling fan (blue arrow) and the casing temperature sensor (green arrow).

The results of the measurements are presented in Figure 4a,b. The load was realized
by the machine of the same type coupled on the common shaft. Windings of this auxiliary
machine were connected to the variable resistance load. Changes of the rotational speed
were achieved by changing the target speed of a closed-loop speed controller. It can be
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seen that after simultaneous load and rotational speed change, the heating or cooling of the
motor is visible for a certain time interval. Therefore, it can be concluded that the important
information from the algorithm’s point of view will be the time that has elapsed since the
last load change. Accurate information about the moment of load change is not available,
and its detection is difficult. Therefore, we decided to introduce new features that will
constitute a short-term history of the device from previous Nh = 14,400 data records, which
corresponds to one hour of measurements (this time was selected on the basis of observa-
tions of the obtained waveforms). For this purpose, the mean and standard deviation of the
current and rotational speed from the last Nh measurements were calculated for each data
record, thus creating additional feature variables. Selection of the optimal length of the
short-term history of the device, also known as the so-called look-back parameter, is out of
the scope of this work and may form the basis for further research in this field. It is worth
emphasizing that for results from Figure 4b, a cooling fan was placed on the common
shaft with the motor, so it constitutes the additional load. Moreover, temperature is more
dependent on the speed than in the case without a fan. Therefore, when the speed is low,
the cooling conditions greatly worsen. If the load is high but the speed is also high, cooling
is ensured, and the temperature does not rise too much. As an additional input variable,
the winding power losses were also introduced, which were calculated from the formula:

Pwl = I2Rw (1)

where I is the winding current and Rw is the stator winding resistance.
An important issue related to the data preparation is the appropriate division into a

training set and a test set. In the case of PMSM motor temperature prediction presented by
the authors in [34], the 55 h of measurements were enough to train the algorithm properly.
Referring to these studies, the dataset was divided into training and test subsets in the
proportion of 70:30. As a result, training sets of more than 50 h were obtained for both
experiments. It is also worth adding that in the analyzed case, the division had to be carried
out with respect to the record occurrence and not in a random manner. As mentioned
before, the temperature inside the BLDC motor depends on the time that has elapsed since
the last load and/or speed change, which can be seen as the change in the supplying
current. Due to the fact that the data are in the form of a timeseries, it is unacceptable to
shuffle them.

Measurement data obtained on the test stand and constituting the basis for training
and validation of algorithms are expressed in various units and on a different scale (speed is
up to 1500 rpm, and current up to 12 A). The use of data in this form could cause a situation
where the speed, due to high values, will dominate the cost function values, making it
impossible to obtain any useful information from other features, which would significantly
worsen the effectiveness of the algorithms. Moreover, some predictive models may generate
larger errors if the individual features are not approximately normally distributed. The
exception in this case are decision trees algorithms, which are resistant to different scaling
of features. In response to the above problem, in this paper, the feature variables have
been standardized as follows. First, the mean μ and standard deviation σ of each feature
from the subset of training data were calculated. Then, all samples of a given feature were
transformed according to the formula:

xstd =
x − μ

σ
. (2)

The data transformed in this way have approximately zero mean, standard deviation
σ = 1, and are appropriately scaled.
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(a) (b) 

Figure 4. Measurement results of winding temperature (blue), casing temperature (red), speed (green), and current (orange)
of motor: (a) without cooling; (b) with cooling fan.

3. Machine Learning Algorithms

The purpose of machine learning algorithms for regression is to predict the value of
the target variable based on the set of independent variables, which are commonly known
as features. The algorithm acquires the ability to forecast in the learning process, which
consists of providing examples that allow prediction verification. Then, the algorithm mod-
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ifies its own structure in such a way as to minimize errors. Linear regression models [37]
implement the above statements in the form of an equation:

ŷ = wTx + b (3)

where ŷ is the output of the algorithm, i.e., the predicted value, x ∈ R
n is the input features

vector, and w ∈ R
n is the vector of the model parameters, which are also called weights.

This name results from the fact that they allow defining how strong a given feature should
influence the output value. At this point, it is also worth adding that it is the weight values
that are optimized in the learning process, thanks to which it is possible to improve the
effectiveness of prediction. The component b in (3) is called a bias.

An alternative way of introducing bias in the model is to add the component of value
1 to the feature vector. Then, the weight assigned to this component will act as a bias.

The purpose of modifying the parameters of the model is to find a weight vector that
will allow correct prediction of the variable. In other words, the weight update procedure
should minimize some prediction error function. One of the most frequently used objective
functions in regression is the sum of squared errors (SSE):

J(w) =
N

∑
i=1

(ŷ − y)2
i (4)

where N is the number of samples. The above formula also has its geometric equivalent as
the Euclidean distance between the prediction ŷ and the real value y of the target variable:

J(w) = ‖ŷ − y‖2
2. (5)

Since the objective function has been defined as well as the parameter that will be
modified, all that remains is to use an optimization algorithm, which can be, for example,
the gradient descent. However, note that moving along the gradient decrease may end up
reaching a local rather than a global minimum of the cost function. Of course, in many
cases, reaching the global minimum is not possible at all, and the solution obtained with
this method is sufficient. However, the objective function can have a very complex structure
with many local minima, each of which allows for different predictive accuracies. For this
reason, scientists have developed many algorithms that are more resistant to getting stuck
in small local minima of the cost function and more efficient in terms of computational
complexity. Such algorithms include the commonly used optimizer Adam [38].

The main task of machine learning algorithms is to effectively predict specific quanti-
ties based on the provided, previously unseen data. It is possible thanks to the previously
conducted process of learning the algorithm on the so-called training data. However,
from the application point of view, it is most important to generalize well, that is, use the
acquired “knowledge” to correctly analyze new data. As previously explained, learning
consists in adjusting the parameters of the algorithm based on the determined training error
in order to minimize it. The above issue can be treated as an optimization problem, but
the test error (also known as the generalization error) should also be as small as possible.
Therefore, determining how well a given algorithm will analyze new data is based on
the value of the training error and the difference between the training error and the test
error. In this way, it is possible to avoid underfitting, which occurs when the algorithm is
unable to achieve a sufficiently small value of the training error, and overfitting, the sign of
which is a large difference between the training error and the test error. As the algorithm’s
complexity (also called capacity) increases, the model’s variance increases, along with the
difference between the value of the training error and the test error, and thus the total
error of the system. In the opposite situation, the capacity of the algorithm decreases, the
bias increases, and the training error (and thus the total error) increases. This means that
a very important element in the design of a machine learning model is to establish an
appropriate compromise between bias and variance (underfitting and overfitting). This
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goal is achieved by adjusting the algorithm’s capacity to the true complexity of the problem
as well as the amount of training data available. It is a known fact that in practice, there
is always some kind of noise and outliers among the real-world data. For this reason,
reaching a satisfactory compromise is possible only with the acceptance of training errors
resulting from an incorrect classification of outliers. Thanks to this, the prediction of future
data will be insensitive to possible noises in the provided test data. In response to the
above-presented need to limit or regulate the complexity of the machine learning model,
many techniques have been developed that are generally referred to as regularization.
Some of them introduce additional constraints on the machine learning model, for example
by imposing limits on parameter values. In turn, others extend the objective function with
special expressions [39]. Additional restrictions and penalties, if carefully selected, can
lead to improved performance on test data. Many methods of regularization are based
on limiting the capacity of the model by adding a norm component Ω(w) to the objective
function J. This penalty term is used to limit the values in the parameter matrix w. The
regularized objective function J̃ can be written as a variable:

J̃(w; x, y) = J(w; x, y) + αΩ(w) (6)

where α ∈< 0, ∞) is a hyperparameter that regulates the strength of regularization with
respect to the standard cost function [40]. Expression (6) shows that the minimizing cost
function J̃ created in the learning process will result in an optimization of both the original
cost function J and some measure of parameter size Ω (or a subset of parameters). A
comparison of the regularized objective functions is presented in Table 2.

Table 2. Regularized objective functions.

Regularization Linear Regressor Objective Function

L2 Ridge min‖ŷ − y‖2
2 + α‖w‖2

2
L1 Lasso min 1

2N ‖ŷ − y‖2
2 + α‖w‖1

L1 + L2 ElasticNet min 1
2N ‖ŷ − y‖2

2 + αρ‖w‖1 +
α(1−ρ)

2 ‖w‖2
2

In this paper, we investigate the effectiveness of temperature prediction by linear
regression models as well as those based on decision trees. The following algorithms were
tested during the research:

1. Linear regression with the objective function given by Formula (4),
2. Elastic-Net regressor, in which the regularization components are introduced to the

objective function (Table 2),
3. Regressor using the stochastic gradient descent optimization algorithm (denoted

as SGD),
4. Support vector machine (SVM) with linear kernel,
5. CART (Classification and regression trees) decision trees,
6. AdaBoost—presented in [41], an algorithm that uses boosting to determine the final

prediction fitting the sequence of decision trees.

The estimation results using the above-mentioned methods can be found in
Sections 5 and 6. In the case of this study, observing the temperature curves of the stator
winding and the temperature on the motor casing (Figure 4a,b), one can see an almost
perfectly linear relationship between these variables. Therefore, the authors of this article
decided to compare the effectiveness of machine learning algorithms in predicting the
temperature of the stator winding of a BLDC motor, taking into account the temperature
on the casing as well as in the complete absence of additional sensors. It is worth adding
that by using the measurement data available from the converter system, Hall sensors, and
transformations described in the previous section, the cost of the drive does not increase.
This information is available in any drive system that uses current and speed regulators in
the control algorithm.
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4. Hyperparameters Optimization with Cross-Validation

Achieving the maximum possible predictive accuracy of each model is possible only
through hyperparameter tuning, such as the regularization strength described in the
previous section. These are parameters that influence the behavior of the algorithm and are
not optimized in the learning process—their selection is the programmer’s task. For this
purpose, it is necessary to carry out a series of tests to identify for which parameter values
the temperature prediction error will be the smallest. However, it should be remembered
that if during each of the trials, the effectiveness of the algorithms is validated on the same
test set, the selected set of hyperparameters will be the best but only for this specific set
and may turn out to be inappropriate for predicting new samples. Moreover, the test set
has a limited size and will never be able to reflect all the dependencies that occurred in
the training data. Therefore, it can be concluded that the model’s ability to generalize will
be small when its hyperparameters are optimized for a specific case of the test set. One
of the solutions to this problem may be to split it into three subsets: training, validation
(used to optimize parameters), and test. However, the application of this method requires
a significant number of samples, and in addition, the accuracy of the predictions may
still depend on some random selection of the dataset split points. In practice, the most
frequently used and extremely effective method to avoid problems with generalization
is cross-validation.

In this study, an exhaustive gird search method with cross-validation was used to
optimize the hyperparameters. For each of the algorithms, a grid consisting of different
values of individual parameters was defined. An example of a grid for two parameters
is shown in Figure 5. Of course, the dimensionality of the grid depends on the number
of unique parameters that can be optimized and is different for each algorithm. In order
to determine the effectiveness of the model for a given grid node, cross-validation with
respect to the chronology of the data was used. This method consists in dividing the data
into k groups in such a way that the algorithm is trained on a k subset and tested on k + 1.
The average of the performance metrics computed in each iteration determines the final
score for that grid node. Thanks to this, unlike the traditional k-fold cross-validation, it is
possible to prevent the algorithm from being tested on data older than training data. The
principle of data division according to the described method for the applied value k = 5 is
shown in Figure 6. Based on the results for each node of the grid, a set of hyperparameter
values is selected for which the compromise between the bias and variance of the model is
the most optimal. Then, the algorithm is tested on a set of test data that has been set aside
and which it has never actually seen before. This allows obtaining reliable results of the
temperature prediction of the BLDC motor winding.

Figure 5. Example of a searching grid for two parameters.
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Figure 6. Time-series five-fold cross-validation.

5. Results of the Sensorless Estimation Model

The evaluation of the efficiency of BLDC motor winding temperature estimation was
carried out on the basis of the following regression metrics:

• RMSE (root mean squared error) defined as:

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷ − y)2
i . (7)

• MAPE (mean absolute percentage error) calculated with the formula:

MAPE =

(
1
N

N

∑
i=1

∣∣∣∣ ŷ − y
y

∣∣∣∣
i

)
∗ 100%. (8)

• Coefficient of determination R2 (quality of fit) calculated as:

R2 = 1 − ∑N
i=1 (ŷ − y)2

i

∑N
i=1 (y − y)i

. (9)

In the above equations, N represents the number of samples, ŷ is the predicted value,
y is the actual value, and the

y =
1
N

N

∑
i=1

yi (10)

is the mean of the actual values.
Figure 7a shows the performance metrics of winding temperature regression for a

BLDC motor without additional cooling. As can be seen, all linear models are performing
better than decision trees. Only the utilization of many trees and the use of boosting in the
AdaBoost algorithm significantly improve the results, allowing for a similar effectiveness
as linear models, each of which achieves the value of the determination coefficient above
0.96, the mean absolute percentage error below 5%, and the RMSE error not exceeding
3.2 ◦C.

Results of the temperature estimation of the motor cooled by the fan placed on the
shaft are shown in Figure 7b. One can notice a decrease in the effectiveness of all predictive
algorithms, in particular those that use decision trees. The R2 coefficient of linear models
ranges from 0.84 to 0.91, while the MAPE error ranges from 4.3% to 8.5%. On the other
hand, the root mean squared errors seem very interesting because they are smaller than
in the case of temperature estimation without cooling. This means that the algorithm
makes less error on average but has a much bigger problem with fitting, which also
causes increased relative errors. The presented difference may result from the fact that the
winding temperature of the motor cooled by a fan placed on the shaft depends to a greater
extent on the rotational speed. Therefore, the relationship between the features and the
target variable, sought by the algorithms, may be of a more complex nature, reducing the
effectiveness of the estimation.
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(a) (b) 

Figure 7. Regression metrics values for the sensorless temperature estimation of the motor: (a) without cooling; (b) with a
cooling fan.

The highest accuracy of motor temperature prediction without cooling was achieved by
the ElasticNet algorithm, for which the regression metrics are respectively RMSE = 2.53 ◦C,
MAPE = 3.82%, and R2 = 0.975. Analyzing Figure 7b, it can be concluded that the accuracy
of the motor temperature prediction with a cooling fan is the highest for the SGD algorithm.
It achieved a coefficient of determination equal to 0.909, an RMSE error of 2.07 ◦C, and a
MAPE of 4.3%.

Figure 8a,b show the curves of actual and predicted winding temperatures of a BLDC
motor without cooling and with a cooling fan. It is worth noting that some errors are the
result of incorrect temperature predictions of an unpowered motor during cooling to the
ambient temperature. However, in practice, keeping track of the temperature within this
range is not necessary in most applications. On the other hand, there are many important
situations in which the motor operates at higher temperatures and should be protected
from overheating. The algorithms’ behavior in this respect is beneficial, because they more
often overestimate the predicted temperature. Thanks to this, the motor protection will be
preserved because the information about too high temperature will appear earlier.

  
(a) (b) 

Figure 8. Results of sensorless temperature estimation for the motor: (a) without cooling, obtained with ElaticNet regressor;
(b) with a cooling fan, obtained with SGD regressor.

6. Results of the Estimation Model with Auxiliary Temperature Sensor

The values of regression accuracy metrics for predicting the winding temperature of a
BLDC motor without cooling and taking into account the temperature information on the
casing are shown in Figure 9a and with cooling in Figure 9b.
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(a) (b) 

Figure 9. Regression metrics values for the temperature estimation supported with casing sensor data of the motor:
(a) without cooling; (b) with a cooling fan.

As in the case of sensorless estimation, the results obtained using algorithms based on
decision trees are much worse than linear models. In the third section, it was emphasized
that on the basis of the winding and the motor casing temperature curves, an almost linear
relationship between these variables can be noticed. The estimation results confirm these
assumptions because the efficiency of linear models is very good. The RMSE value is less
than 1.5 ◦C and the MAPE is less than 3.8%. Moreover, the coefficient of determination
R2 for each linear algorithm is greater than or equal to 0.97. The best algorithm for
estimating the motor temperature without cooling is undoubtedly the linear SVM. Its
regression metrics are RMSE = 0.68 ◦C, MAPE = 0.77%, and R2 = 0.998, respectively. The
curves of the actual and estimated winding temperatures by this algorithm are shown in
Figure 10a. Thus, an almost perfect representation of the actual temperature is visible. On
the other hand, a slight deterioration in efficiency is visible in all models estimating the
motor temperature with an additional cooling fan. The best results during this test were
obtained with the linear model optimized with the stochastic gradient descent algorithm,
for which RMSE = 0.59 ◦C, MAPE = 1.02% and R2 = 0.993. The actual temperature and
predicted temperature with the use of SGD are presented in Figure 10b. The decrease in the
estimation accuracy for the cooled test is particularly interesting. As noted in the previous
section, mounting a cooling fan on the shaft increases the effect of rotational speed on
motor temperature and therefore increases the importance of this feature in prediction.
Moreover, taking into account the temperature on the motor casing results in a significant
improvement in the prediction accuracy. However, it should be remembered that the
motor is cooled from the outside, so the rotational speed will have a greater effect on the
temperature on the casing than on the inside of the motor. Therefore, it can be inferred
that due to changes in rotational speed, the dependence of the winding temperature on the
casing temperature will be more non-linear than in the case of a system without cooling.
The above phenomenon may cause a significant estimation accuracy decrease.
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(a) (b) 

Figure 10. Results of temperature estimation supported with casing sensor data for the motor: (a) without cooling, obtained
with SVM regressor; (b) with a cooling fan, obtained with SGD regressor.

7. Conclusions

This article proposes two models for BLDC motor winding temperature estimation
using machine learning methods. The former allows the prediction of temperature without
the need for temperature sensors, while the latter involves mounting an auxiliary sensor
on the motor casing to improve prediction efficiency. In order to create an appropriate
dataset for algorithm training, over 160 h of BLDC motor temperature measurements were
carried out for a variable load and speed profile as well as various cooling conditions.
Subsequently, data preprocessing was done as follows: additional features containing infor-
mation about previous states of the device were introduced to create a short-term history
of the device, the dataset was divided into training and test data, and then standardization
was performed. Selected machine learning algorithms were used to estimate the temper-
ature of the BLDC motor winding, namely: AdaBoost, decision tree, ElasticNet, linear
regression, SGD, SVM. For each of the above-mentioned algorithms, a hyperparameter
tuning process was performed through the use of a cross-validated grid search mechanism.
As a result, it was possible to define a set of parameters that would ensure the appropriate
generalization capability.

For the sensorless temperature prediction of BLDC motor without cooling, the greatest
effectiveness was achieved by the ElasticNet algorithm reaching MAPE = 3.82%, while
the remaining linear models obtained similar, but slightly worse results. In the case of
the test with an additional fan on the motor shaft, the SVM turned out to be the best
algorithm, for which the mean absolute percentage error was 4.3%. It is worth noting that
the obtained error values are comparable with the results of other methods described in
the first section of this study. However, they allow completely avoiding the need to use
temperature sensors and do not require influencing the current and voltage waveforms of
the motor.

The authors of this study also decided to compare the effectiveness of the algorithms
taking into account the information about the temperature on the motor casing. In this case,
as suspected, the results turned out to be much better. The MAPE error of the best linear
models did not exceed 1.5% for each case, while the RMSE was below 0.7 ◦C. It is worth
noting that this good winding temperature prediction results can be used to compensate
the temperature effect on the machine output torque.

Comparing the proposed models for motor winding temperature estimation to those
described in the literature (Table 3), it can be concluded that the second model gives
better [29] or similar [31] results to recurrent and convolutional neural networks. Moreover,
this model performs a little worse than the deep neural networks used in [9] and similar
to [30] (smaller mean absolute errors, but larger maximum error). However, it is worth
mentioning that the algorithms used in model two are much less complex and need fewer
resources for training and validation. In addition, model two provides comparable results
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to those obtained by the authors in [11,20,21] using thermal models of the motor. However,
the superiority of the proposed model is that it does not require expertise knowledge of the
modeled object. Both models also provide better results than the signal injection method
presented in [23], and additionally, it does not require interference with the motor power
system. The proposed sensorless model (model 1) gives similar results to the linear models
presented in [34], but it does not require any additional temperature sensors if the ambient
temperature does not significantly affect the motor temperature. However, it is important
to note that the comparison of the results with those available in the literature is indicative,
because different engine types and models were tested among the researchers.

Table 3. Comparison of estimation results with methods reported in the literature.

Method

Metric

MSE a RMSE MAPE R2
max

i
|

^
y−y|i

MAE b MRE c

Literature
method

[9] - 0.24 ◦C - 0.944 - 0.15 ◦C -
[11] - - - - 5.2 ◦C - 1.50%
[20] - - - - ≈8.0 ◦C - -
[21] - - - - 8.0 ◦C - -
[23] - - - - - - 6.14%
[29] 2.04 K2 1.43 K - - 37.6 K - -
[30] - - - - 4.5 ◦C 0.90 ◦C -
[31] - - - - 10.8 K - -
[34] 6.06 K2 2.46 K - - 11.1 K - -

Model 1
Uncooled

(ElasticNet) 6.40 ◦C2 2.53 ◦C 3.82% 0.975 20.4 ◦C 1.64 ◦C 3.82%

Cooled (SGD) 4.28 ◦C2 2.07 ◦C 4.30% 0.909 8.3 ◦C 1.49 ◦C 4.30%

Model 2
Uncooled

(SVM) 0.46 ◦C2 0.68 ◦C 0.77% 0.998 14.0 ◦C 0.34 ◦C 0.77%

Cooled (SGD) 0.35 ◦C2 0.59 ◦C 1.02% 0.993 7.3 ◦C 0.35 ◦C 1.02%
a mean squared error, b mean absolute error, c mean relative error.

Therefore, it has been proven that overheating protection of the motor can be pro-
vided using a trained machine learning algorithm without any additional sensors, thus
avoiding the cost of installing additional hardware by the manufacturer or the user. In
addition, it has been proven that the use of information from the sensor mounted on the
BLDC motor casing allows for very good winding temperature prediction results. This
means that using the second described model, it is possible to introduce a compensation
mechanism for the temperature impact on the motor output torque. It is worth adding
that mounting the sensor on the motor casing is an uncomplicated operation that the user
who wants to know the exact temperature inside the device can do by himself and at a low
cost. In addition, most motor faults, such as interturn short circuits, bearing damage or
magnet degradation, cause the motor temperature to rise significantly. Therefore, it can be
anticipated that the described temperature estimation method can be used to detect device
components damages.

The increase in ambient temperature may be problematic for the described estima-
tion method. Under laboratory conditions, the ambient temperature was approximately
constant and had no effect on the casing temperature and inside the motor. Difficult con-
ditions at the motor site may increase the prediction errors, but a possible solution is to
introduce an additional variable informing about the ambient temperature. In addition,
future research should verify the effectiveness of temperature estimation for a fast-varying
load profile and more sophisticated methods such as neural networks.
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Abstract: In intelligent vehicles, extrinsic camera calibration is preferable to be conducted on a
regular basis to deal with unpredictable mechanical changes or variations on weight load distribution.
Specifically, high-precision extrinsic parameters between the camera coordinate and the world
coordinate are essential to implement high-level functions in intelligent vehicles such as distance
estimation and lane departure warning. However, conventional calibration methods, which solve a
Perspective-n-Point problem, require laborious work to measure the positions of 3D points in the
world coordinate. To reduce this inconvenience, this paper proposes an automatic camera calibration
method based on 3D reconstruction. The main contribution of this paper is a novel reconstruction
method to recover 3D points on planes perpendicular to the ground. The proposed method jointly
optimizes reprojection errors of image features projected from multiple planar surfaces, and finally,
it significantly reduces errors in camera extrinsic parameters. Experiments were conducted in
synthetic simulation and real calibration environments to demonstrate the effectiveness of the
proposed method.

Keywords: computer vision; intelligent vehicles; extrinsic camera calibration; structure from motion;
convex optimization

1. Introduction

Recovering the positions of 3D points from 2D-2D correspondences is a fundamental
building block in geometric computer vision. This is called triangulation, and it is an
essential procedure for many applications including structure-from-motion (SfM) [1–3],
simultaneous localization and mapping (SLAM) [4–6], and visual odometry [7,8]. Trian-
gulation is conducted based on displacements between image correspondences obtained
from stereo cameras or a moving camera. In an ideal case, back-projected rays from an
image correspondence intersect at a point in three dimensional space, and it can be simply
formulated by a direct linear transformation. However, in practice, the rays do not neces-
sarily intersect due to measurement noise involved in image features, and these features
do not in general satisfy the epipolar geometry [9]. Therefore, recovering 3D information is
not a trivial problem even in a two-view case.

A standard approach for addressing the problem of noisy measurements is to estimate
2D corrected correspondences which satisfy the epipolar geometry with the minimum geo-
metric cost [9–11]. These 2D corrected points are maximum likelihood estimates under the
assumption of zero-mean isotropic Gaussian noise on the measurements [10]. Triangulation
is conducted for the corrected correspondences, and it is equivalent to estimate 3D points
which minimize the reprojection error. This procedure is called optimal triangulation. In
case that all the 3D points are on a plane, their projected points in two views are associated
with a projective transformation which is called homography [12]. Chum et al. proposed a
method to find optimal 2D correspondences projected from 3D points on a plane, and it
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is called optimal planar reconstruction [13]. Kanatani et al. further derived an optimal
solution for planar scene triangulation in case that plane and camera parameters are un-
known [14]. Planar constraint in general reduces a significant amount of reconstruction
error by associating multiple image features for correcting individual 2D measurements.
This motivates us to associate image features projected from multiple planar surfaces to
improve the precision of 3D reconstruction.

In this paper, we propose a multiple planar reconstruction method which can be
applicable in a man-made environment: planes of interest are perpendicular to the ground.
It is worth noting that this scenario is quite reasonable in environments for end-of-line
calibration and indoor camera calibration. This assumption implies that the normal vectors
of planes are coplanar. Whereas previous methods reconstruct individual planes, we
seek to jointly optimize the structures of multiple planes simultaneously by introducing
coplanarity constraints of their normal vectors.

Another main work of this paper is a novel extrinsic camera calibration method.
Among various types of extrinsic parameters, our goal is to estimate extrinsic parameters
between the camera coordinate and the world coordinate, which are essential prerequisite
for high-level functions in intelligent vehicles such as distance estimation and lane depar-
ture warning. Extrinsic parameters consist of relative rotation and translation between
the camera and world coordinates, and the world coordinate is also called the vehicle
coordinate. In recent intelligent vehicles, due to unpredictable mechanical changes or
variations on weight distribution, it is desirable to perform extrinsic camera calibration on
a regular basis [15], e.g., at the start of every driving. However, camera calibration requires
correspondences between 2D image projections and their 3D points [16] to solve a variant
of Perspective-n-Point (PnP) problems [17–21], and the procedure for measuring accurate
3D points in the world coordinate is the biggest bottleneck in conventional methods.

Recently, deep learning methods have been utilized in automatic camera calibration for
intelligent vehicles [22–24]. However, many original equipment manufacturers (OEMs) and
Tier 1 component companies require conventional computer vision methods to guarantee
the safety and reliability of the camera calibration function. Moreover, even OEMs, which
employ deep learning techniques in recognition and planning algorithms, parallelly utilize
conventional methods to acquire a satisfactory level of functional safety for several essential
functions such as camera calibration. This paper proposes an extrinsic camera calibration
method to reduce manual work in conventional approaches. The proposed method uses
3D cues in the camera coordinate to infer 3D information in the world coordinate by
utilizing 3D points on a planar chessboard which is perpendicular to the ground. The
main advantage of the method is that it is able to estimate extrinsic parameters without
measuring 3D points in the world coordinate.

The contributions of this paper are twofold: (1) multiple planar reconstruction method
to jointly recover 3D structures of multiple planar surfaces and (2) extrinsic camera cal-
ibration method based on the reconstructed points. This paper is organized as follows.
Section 2 presents the multiple planar reconstruction method, and Section 3 explains the
extrinsic camera calibration method based on 3D reconstruction. Section 4 presents experi-
mental results in both synthetic and real environments to demonstrate the effectiveness of
the proposed methods.

2. Optimal Multiple-Planar Reconstruction

This section presents the proposed method for joint reconstruction of multiple planar
surfaces. We assume that planar chessboards are installed perpendicular to the ground,
and a vehicle with a camera moves along the ground with a planar motion. Under these
assumptions, the plane normal vectors and camera motion vector are orthogonal to the
ground normal vector, and therefore, the plane normal and camera motion vectors are
coplanar. Although these assumptions are not easy to satisfy in a road situation, it is worth
utilizing the proposed method to improve the precision and robustness of end-of-line
and indoor calibrations, which are usually conducted in a man-made environment. In
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Figure 1, a synthetic configuration containing four planar boards in three dimensional
space is projected onto an image plane by using a camera matrix and arbitrary extrinsic
parameters. The camera motion vector is indicated by m, and the tetragons filled with
a reddish color and the tetragons filled with 2D points depict the projections of the four
planar boards from the first and second views, respectively.

Figure 1. Synthetic simulation environment for multiple planar reconstruction and camera extrinsic calibration.

The outline of the proposed method is as follows. First, normal vectors of the pla-
nar chessboards are jointly optimized to minimize the algebraic error of homographies
subject to the coplanarity constraints. Then, these homographies are used to correct 2D
measurements, and 3D structures of the planar surfaces are recovered via triangulation of
the corrected 2D correspondences. Finally, extrinsic parameters are estimated by using the
method presented in Section 3.

2.1. Plane Induced Homographies

Suppose that planar surfaces are imaged by a calibrated camera in two views under
planar motion of a vehicle. In three dimensional space, the k-th plane can be represented
as its scaled normal vector nk so that n�

k XC + 1 = 0, where XC is a 3D point in the camera
coordinate. Suppose that the essential matrix between the two-view is given by E = [t]×R,
where R is rotation matrix, t is translation vector, and [·]× is a 3× 3 skew-symmetric matrix
for representing cross product as a matrix multiplication. Then, it is well-known that a
homography induced by the k-th plane can be represented as

Hk = R − tn�
k . (1)

The essential matrix, R, and t can be computed via ego-motion estimation. There are
several methods to estimate ego-motion of a vehicle, and many previous methods utilize
optical flow of background features [25,26].

Suppose that the i-th point on the k-th plane in three dimensional space is projected
onto two image planes, and xi,k and x′i,k are homogeneous representations of the 2D
projections in the first and second views, respectively. Then the 2D correspondence satisfies
x′i,k 
 Hkxi,k = (R − tn�

k )xi,k, and it can be reformulated as

x�i,knk =
(x′i,k × Rxi,k)

�(x′i,k × t)

(x′i,k × t)�(x′i,k × t)
= bi,k, (2)
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when x′i,k and t are not parallel. The operation × indicates cross-product between two
vectors, and 
 implies that two vectors are equal up to scale. The scaled normal vector nk
of the k-th plane can be obtained by solving the unconstrained optimization problem:

minimize
nk

‖Aknk − bk‖2, (3)

where bk = [b1,k, · · · , bNk ,k]
� ∈ R

Nk and Ak = [x1,k, · · · , xNk ,k]
� ∈ R

Nk×3. Homogra-
phy optimization in the previous work [14] can be reformulated as a two-step process:
optimization of a scaled normal vector by (3) and homography recovery by (1).

2.2. Multiple Planar Reconstruction

This section presents the main idea of the proposed method which introduces copla-
narity constraints of plane normal vectors and camera motion vector to jointly reconstruct
multiple planar surfaces. In three dimensional space, coplanarity of the normal vectors ni
(i = 1, · · · , K) and camera motion m = −R�t can be represented as

(n1 × nk) · m = 0, k = 2, · · · , K. (4)

To formulate the quadratic constraints in terms of optimization variables, all of the
constraints are associated with the camera motion vector m, which is constant in the opti-
mization problem. The number of equations for constraining the coplanarity of K normal
vectors and m is K(K + 1)/2. However, these equations have redundancy, because, for ex-
ample, the coplanarities of (ni, nj, m) and (ni, nk, m) ensure the coplanarity of (nj, nk, m).
Therefore, the minimum number of equality constraints for the coplanarity of K normal
vectors is K − 1.

Let w be a concatenated normal vector such that w = [n�
1 , · · · , n�

K ]
�, then the copla-

narity (4) can be reformulated as

w�Ckw = 0, k = 2, · · · , K, (5)

where Ck is a 3K × 3K symmetric block matrix, of which partitions are 3 × 3 zero matrices
except that C1k = [m]× and Ck1 = [m]�×; Cij is a 3 × 3 submatrix corresponding to
the i-th row and j-th column block. By introducing an auxiliary dimension to w so that
w̃ = [w�, 1]�, the optimization problem for minimizing the objective function of (3) subject
to the coplanarity constraints (4) can be formulated as

minimize
w̃

w̃�Qw̃

subject to w̃�C̃kw̃ = 0, k = 2, · · · , K,

w̃�C0w̃ = 1,

(6)

where Q =

[
Ã�Ã −Ã�b

−b�Ã 0

]
, C̃k =

[
Ck 0

0� 0

]
, C0 =

[
03K 0

0� 1

]
, Ã ∈ R

(∑K
k=1 Nk)×3 is the

block diagonal matrix, of which the k-th diagonal submatrix is Ak ∈ R
Nk×3 and off-

diagonal blocks are zero matrices, and 03K is a 3K × 3K zero matrix. This optimization
problem (6) is a quadratically constrained quadratic program (QCQP); the objective is a
quadratic function with a positive semidefinite matrix, and the constraints are quadratic
with symmetric matrices. Becuase (6) is an NP-hard optimization problem, we reformulate
it as a semidefinite program (SDP) by applying the parameterization of S = w̃w̃� and
relaxation of a rank constraint.
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2.3. SDP Relaxation

With the parametrization of S = w̃w̃� ∈ S+, where S+ is the set of positive semidefi-
nite matrices, the QCQP (6) can be reformulated in terms of inner products of matrices as

minimize
S∈S+

〈Q , S〉

subject to 〈C̃k , S〉 = 0, k = 2, · · · , K,

〈C0 , S〉 = 1,

rank(S) = 1.

(7)

By eliminating the rank constraint in (7), we can obtain the semidefinite relaxation:

minimize
S∈S+

〈Q , S〉

subject to 〈C̃ , S〉 = 0, k = 2, · · · , K,

〈C0 , S〉 = 1.

(8)

Becuase the SDP (8) is a convex optimization, we can find the global optimum reliably.
Zhao proved the tightness between a primal QCQP and its rank relaxation at noise-free
observations, and further showed the stability of rank relaxation at noisy observations [27].
We indeed observe that the solution of rank-relaxed problem (8) always satisfies the rank-1
in both synthetic simulation and real calibration environments.

2.4. Recovering 3D Points

Once the optimal S of the SDP (8) is obtained, w̃ can be recovered by computing the
eigenvector of S corresponding to the largest eigenvalue. By utilizing w̃ and ego-motion of
the vehicle, individual homographies are computed by (1). Based on the plane induced
homographies, optimal corrections x̂i,k and x̂′i,k can be obtained for each 2D measurements
xi,k and x′i,k, by solving a polynomial of degree 8 [13] or by using Sampson’s method [28].
The positions of 3D points can be recovered by applying triangulation to the corrected 2D
points x̂i,k and x̂′i,k. Figure 2 shows 3D points on planar surfaces reconstructed by naïve
triangulation [28], optimal planar reconstruction [13], and our method.

Figure 2. Reconstructed 3D points by using Naïve triangulation (top row), optimal planar reconstruction (middle row),
and proposed reconstruction method (bottom row) in different viewpoints.
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3. Camera Calibration Based on 3D Reconstruction

3.1. Vehicle Modeling

In this section, we propose a monocular camera calibration method based on 3D
reconstruction. Figure 3 shows our vehicle model. Our world coordinate is defined so
that its origin is the perpendicular projection of the camera centre to the ground, and the
direction of ZW axis is identical to the normal vector of the world coordinate so that it
follows ISO 8855. Under the definition of the world coordinate, fixed values of longitudinal
and lateral offsets between the world origin and the foremost point of a vehicle can be
compensated at the process of generating signals such as distances to frontal vehicles and
time to collision.

The relation between the world and camera coordinates can be formulized in terms of
Euler angles (pitch θ, yaw ψ, roll φ) and camera height (h) as

XC = R(θ, φ; ψ)XW + t(θ, φ, h; ψ), (9)

where XC = [XC, YC, ZC]
� is a 3D point in the camera coordinate, XW = [XW , YW , ZW ]� is

a 3D point in the world coordinate, and the rotation matrix R(θ, φ; ψ) is defined as (10).

R(θ, φ; ψ) =

⎡⎣cos θ sin ψ cos φ + sin θ sin φ − cos ψ cos φ − sin θ sin ψ cos φ + cos θ sin φ
cos θ sin ψ sin φ − sin θ cos φ − cos ψ sin φ − sin θ sin ψ sin φ − cos θ cos φ

cos θ cos ψ sin ψ − sin θ cos ψ

⎤⎦. (10)

Since 0 = R(θ, φ; ψ) · [0, 0, h]� + t(θ, φ, h; ψ), the translation can be represented as

t(θ, φ, h; ψ) = −r3h, (11)

where ri is the i-th column vector of R(θ, φ; ψ).
Suppose that 3D world points of interest are on rectangular planar boards, which are

perpendicular to the ground, and their ZW components (height) are measured beforehand
in the world coordinate. Image features projected from these 3D points are detected while
a vehicle with a camera moves along the ground, and yaw angle of the camera is estimated
by computing a focus of expansion as presented in [29]. The 3D positions corresponding to
these image features are recovered in the camera coordinate by using the multiple planar
reconstruction method which is explained in Section 2. The objective of the automatic
calibration algorithm is to estimate pitch (θ), roll (φ), and camera height (h) to recover
relative rotation and translation between the camera and world coordinates.

Figure 3. The definition of camera and world coordinates in our vehicle model.

94



Sensors 2021, 21, 4643

3.2. Estimation of Extrinsic Parameters

Let Xi
W and X

j
W be the 3D points on a vertical line which is perpendicular to the

ground. Since Xi
W − Xj

W = 0 and Yi
W − Yj

W = 0, component-wise differences between Xi
W

and X
j
W can be simplified as (12).

Xi
C − Xj

C = −(sin θ sin ψ cos φ − cos θ sin φ)(Zi
W − Zj

W),

Yi
C − Yj

C = −(sin θ sin ψ sin φ + cos θ cos φ)(Zi
W − Zj

W),

Zi
C − Zj

C = − sin θ cos ψ(Zi
W − Zj

W).

(12)

Based on (12), pitch angle (θ) can be estimated by

sin θ = − Zi
C − Zj

C

cos ψ(Zi
W − Zj

W)
. (13)

By solving Xi
C and Yi

C in terms of sin φ, roll angle (φ) can be estimated by

sin φ =
cos θ(Xi

C − Xj
C)− sin θ sin ψ(Yi

C − Yj
C)

(sin2 θ sin2 ψ + cos2 θ)(Zi
W − Zj

W)
. (14)

After the computation of θ and φ, camera height (h) can be obtained by solving the
following equation with respect to XW , YW , and h:

[r1, r2,−r3][XW , YW , h]� = XC − r3ZW . (15)

Finally, camera extrinsic parameters can be recovered by using (10) and (11).

4. Experimental Results

The proposed method is composed of constrained multiple planar reconstruction and
automatic extrinsic camera calibration. To demonstrate the effectiveness of each method, we
synthesized a simulation environment, and the reconstruction and calibration errors were
evaluated step by step. In both simulation and real experiments, Naïve triangulation [28]
and optimal planar reconstruction method [13] were compared with the proposed method.
To analyze the effect of the coplanarity constraint, we evaluate the proposed method with
two experimental setups: the coplanarity of two plane normal vectors (K = 2) and the
coplanarity of four plane normal vectors (K = 4). For fairness, we used all of the 3D points
on the four planar surfaces in every reconstruction method. For example, in the case of
K = 2, two SDPs were optimized to use all of the image features projected from the four
planar surfaces. The reconstruction and camera height errors were measured in millimetre
(mm), and rotation errors were measured in degree.

4.1. Synthetic Environment

To generate a simulation environment, camera extrinsic parameters were randomly
sampled under the normal distributions: θ, ψ, φ∼N (0, 12) and h∼N (1300, 502), where N
is normal distribution with a given mean and variance. This synthetic environment reflects
the variations of real extrinsic parameters in our vehicle model, and degree and mm units
are utilized for representing angles and camera height, respectively. In the simulation envi-
ronment, known 3D world points on planar surfaces were projected onto two-view images
with the size of 1920 × 1200 by using similar intrinsic parameters to the real case, and Gaus-
sian noise with zero mean and standard deviation of σ was added to the 2D projected
image points. To generate the synthetic two-view images, we utilized the vehicle motion
when the vehicle moves 1000 mm in forward direction as presented in Figure 4. From the
2D noisy correspondences, reconstruction methods were utilized to recover their 3D points
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in the camera coordinate, and the proposed calibration method was applied to estimate
extrinsic parameters. Each experiment was conducted 100 times, and averaged absolute
errors were measured for both reconstructed 3D points and estimated extrinsic parameters.

To evaluate reconstruction accuracy, root-mean-square errors between 3D estimates
and their true positions were measured in three dimensional space. Table 1 presents
reconstruction errors with respect to various amounts of noise on 2D image projections; the
standard deviation σ of the Gaussian pixel-noise was varied from 0.1 to 3.0. We present two
cases of simulation results: In one case, virtual planar boards are located at the longitudinal
distance of around 8 m from the camera at the first view, and in the other case, those
are located around 10 m. With an identical amount of pixel-noise, reconstruction error
increases as the distance to the planar boards increases. Although reconstruction error
increases as the amount of pixel-noise increases, the proposed reconstruction method
consistently shows higher accuracies compared to the other methods. Furthermore, Table 1
demonstrates that joint optimization of one SDP for the four planes is more advantageous
than separate optimization of two independent SDPs for upper two planes and lower
two planes. It is because normal vectors of planes in upper and lower groups are not
associated with a coplanarity constraint in the case of K = 2. This result implies that joint
reconstruction of entire planar surfaces is effective to reduce the reconstruction error.

Table 1. Reconstruction errors (mm) with respect to various amounts of pixel noise.

Method Distance
σ

0.1 0.2 0.3 0.5 0.7 1.0 1.5 2.0 3.0

Naïve triangulation

8 m

15.7 30.8 46.6 78.0 110.4 156.0 236.6 318.2 474.8
Optimal triangulation 15.7 30.8 46.7 78.0 110.4 156.0 236.5 317.9 473.8
Planar reconstruction 3.7 7.3 11.4 17.9 26.5 37.7 58.0 77.3 119.5
Propoased method (K = 2) 3.2 6.2 9.8 15.2 22.4 32.4 51.2 70.6 110.5
Propoased method (K = 4) 3.0 5.8 9.1 14.1 20.5 30.1 48.1 67.9 106.3

Naïve triangulation

10 m

30.1 60.7 90.3 152.4 210.6 301.0 455.4 610.2 938.5
Optimal triangulation 30.1 60.7 90.3 152.4 210.5 300.9 455.1 609.1 935.4
Planar reconstruction 6.9 13.9 21.0 34.7 49.3 70.2 108.8 151.9 252.2
Propoased method (K = 2) 6.0 11.6 18.3 30.0 43.0 62.3 99.4 140.8 240.1
Propoased method (K = 4) 5.6 10.9 17.2 28.0 40.1 60.6 95.8 138.0 237.4

Figure 4. Reconstruction and calibration errors in simulation experiments.

Figure 4 shows the reconstruction and calibration errors in the case that distances
to targets were around 8 m and the standard deviation of pixel noise was σ = 0.5. By
reducing the reconstruction error, calibration error was significantly decreased especially
for pitch angle and camera height. In the results of the proposed method, the reconstruction
and calibration errors of K = 4 case were lower than those of K = 2 case. It implies that

96



Sensors 2021, 21, 4643

increasing the number of planes was beneficial to reduce the amount of errors. However, it
was not practical to setup more than four planes in real experiments, because 2D image
features projected from planes which were located far from the vehicle caused a large
amount of pixel noise. Therefore, we utilized four planar surfaces for extrinsic calibration
in real experiments.

In the proposed reconstruction method, ego-motion was assumed as a planar motion
to formulate a coplanarity constraint with plane normal vectors. To analyze the effect of
vehicle motion noise to the performance of the proposed method, we conducted simulation
experiments with and without vehicle motion noise. The motion noise was modeled as a
Gaussian distribution, and we utilized the standard deviation of ego-motions measured in
real driving scenarios to generate Gaussian motion noise in the simulation environment.
Table 2 presents calibration accuracies with and without vehicle motion noise under various
amounts of pixel noise. Although calibration errors were increased by the ego-motion noise,
experimental results show that the proposed method was robust compared to previous
methods even under the motion noise.

Table 2. Calibration accuracy in simulation environment with respect to various amounts of pixel noise.

Method
σ = 0.3 σ = 0.5 σ = 0.7 σ = 1.0

Pitch Roll Height Pitch Roll Height Pitch Roll Height Pitch Roll Height

Without camera-motion noise
Naïve triangulation 0.9829 0.2859 141.3 1.3705 0.4759 197.3 2.4338 0.9065 349.8 3.3727 2.2364 483.3
Planar reconstruction 0.6383 0.2017 91.7 1.0972 0.3225 158.0 1.6317 0.3994 234.8 2.2217 0.7261 319.5
Propoased method (K = 2) 0.0372 0.2048 5.3 0.0751 0.3295 10.9 0.1647 0.4021 23.6 0.3394 0.6990 48.8
Propoased method (K = 4) 0.0312 0.1587 4.5 0.0557 0.2549 8.0 0.0683 0.2890 9.8 0.1330 0.5153 19.1

With camera-motion noise
Naïve triangulation 3.0058 0.3214 432.7 3.4568 0.5304 498.9 4.5159 0.9182 646.8 4.9208 1.7227 704.0
Planar reconstruction 2.8668 0.2067 412.8 2.9781 0.3346 429.9 3.8155 0.4555 547.0 4.0049 0.6995 574.8
Propoased method (K = 2) 0.0703 0.2152 10.2 0.1290 0.3486 18.3 0.2741 0.4797 39.4 0.4505 0.7181 65.2
Propoased method (K = 4) 0.0587 0.1501 9.2 0.1076 0.2538 15.1 0.2200 0.3271 31.7 0.3097 0.5023 44.2

4.2. Real Calibration Environment

This section presents experimental results in a real calibration environment to demon-
strate the effectiveness of the proposed method. In our garage, chessboards were installed
so that they are perpendicular to the ground as shown in Figure 5. While a vehicle moved
smoothly, images were collected with the size of 1920 × 1200 by utilizing an in-vehicle
frontal camera, FLIR Point Grey Grasshopper 3. Intrinsic parameters of the camera were
computed in advance by using the method presented in [30]. Background features were
extracted and tracked by grid-based feature detection and Lucas–Kanade method [31], and
the essential matrix was computed by the five-point method [32] with RANSAC [33] to
estimate camera motion. The correspondences of chessboard features were independently
detected, and yaw angle of the camera with respect to moving direction was calculated
based on focus of expansion, which was computed from the chessboard features. The
multiple planar reconstruction method was applied to recover 3D structures of chessboard
features, and finally, camera extrinsic parameters were estimated by using the proposed
calibration method. This calibration process was performed multiple times while a vehi-
cle was passing the chessboards, and these estimates were averaged to compute a final
calibration parameters. In our experiment, the vehicle moved about 5 km/h to obtain
enough number of image pairs, and the averaged values of 10 estimates were utilized as
final extrinsic parameters. The number of calibration trials could be affected by vehicle
speed, field of view of the camera, and distances between chessboards.
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(a) (b)

Figure 5. Real calibration environment: (a) optical flow of background features for estimating ego-motion of the vehicle. (b) Optical
flow of chessboard features for 3d reconstruction.

To evaluate the accuracy of the proposed method, we collected reference values of
extrinsic parameters from an identical experiment environment. In the procedure for
generating reference parameters, we manually measured 3D locations of multiple feature
points with respect to the world coordinate using a laser range finder, and corresponding
2D projections in the image domain were labelled. 2D-3D correspondences were used
to solve a Perspective-n-Point (PnP) problem to compute extrinsic parameters. All the
procedures took around 30 min, and it was repeated eight times to obtain averaged extrinsic
parameters; the reference values for camera height, pitch angle, roll angle are 1195.48 mm,
0.2413 degree, 0.3663 degree, respectively. In the real experiment, we measured absolute
errors between the reference parameters and estimated extrinsic parameters.

To demonstrate the effectiveness of the proposed method, we conducted experiments
with four different reconstruction methods: Naïve triangulation [28] and optimal planar
reconstruction method [13], and the proposed constrained multiple planar reconstructions
(K = 2 and K = 4). Calibration errors in the real calibration scenario are presented in
Figure 6, and the proposed reconstruction method gives much lower calibration errors
compared to the conventional methods. Similar to experimental results in synthetic simula-
tion, calibration accuracy was improved by utilizing a greater number of planar surfaces in
a SDP. Compared to the previous planar reconstruction method [13], height error of the
proposed method (K = 4) was reduced from 110.1 mm to 23.9 mm, and pitch angle and
roll angle errors were reduced from 0.2764 degree to 0.0470 degree and from 1.1098 degree
to 0.0859 degree, respectively; about 78% and 87% of height and angle errors were reduced
by using the coplanarity constraint. Because angle errors less than 0.1 degree and height
error less than 30 mm were not significant to perform high-level functions such as distance
estimation and lane departure warning, the proposed method was able to be utilized
in intelligent vehicle industries for computing extrinsic parameters between the camera
coordinate and the world coordinate.
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Figure 6. Calibration errors in real calibration scenario.

5. Conclusions

In this paper, we propose a method for automatic camera calibration of intelligent
vehicles. The proposed method is based on 3D reconstruction of a man-made environment,
and the key contribution of this paper is novel multiple planar reconstruction method
to reduce errors in camera extrinsic parameters. We first formulate a QCQP with the
coplanarity constraints between plane normal vectors and camera motion vector. The
QCQP is reformulated into an SDP, and the optimal solution is obtained using rank-1
relaxation. From the optimal solution of the relaxed SDP, normal vectors are computed for
3D reconstruction of planar surfaces.

We also propose a method to compute camera extrinsic parameters by utilizing planar
surfaces which are perpendicular to the ground. This man-made environment is quite
reasonable for end-of-line calibration and indoor camera calibration. Main benefit of the
proposed method is that it does not require 3D measurements of image features, and thus,
extrinsic calibration can be conducted automatically at the start of every driving. In both
synthetic simulation and real calibration environment, the proposed reconstruction method
significantly outperformed the previous 3D reconstruction methods, and thus errors in
extrinsic parameters were dramatically reduced.
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Abstract: A piston error detection method is proposed based on the broadband intensity distribution
on the image plane using a back-propagation (BP) artificial neural network. By setting a mask
with a sparse circular clear multi-subaperture configuration in the exit pupil plane of a segmented
telescope to fragment the pupil, the relation between the piston error of segments and amplitude of
the modulation transfer function (MTF) sidelobes is strictly derived according to the Fourier optics
principle. Then the BP artificial neural network is utilized to establish the mapping relation between
them, where the amplitudes of the MTF sidelobes directly calculated from theoretical relationship and
the introduced piston errors are used as inputs and outputs respectively to train the network. With
the well trained-network, the piston errors are measured to a good precision using one in-focused
broadband image without defocus division as input, and the capture range achieving the coherence
length of the broadband light is available. Adequate simulations demonstrate the effectiveness and
accuracy of the proposed method; the results show that the trained network has high measurement
accuracy, wide detection range, quite good noise immunity and generalization ability. This method
provides a feasible and easily implemented way to measure piston error and can simultaneously
detect the multiple piston errors of the entire aperture of the segmented telescope.

Keywords: piston error detection; segmented telescope; BP artificial neural network; modulation
transfer function

1. Introduction

To fulfill the demands of increasing space exploration, the aperture diameter of the
telescope is getting larger and larger [1]. However, the diameter is limited by current
technology to about 10 m for ground-based telescopes and a few meters for space-based
telescopes because of volume and mass considerations. The segmented and deployable
primary mirror was proposed to address this problem, which can effectively reduce the
mass of the main mirror and the difficulty of manufacturing and transportation [2]. Ground-
based telescopes that have adopted the segmented primary mirror include the already
existing 10 m aperture Keck telescopes [3,4] made of 36 segments, the 42 m diameter
European Extremely Large Telescope (E-ELT) [5] made of 984 segments and the Thirty Meter
Telescope (TMT) made of 492 segments with a 30 m diameter [6], which are planned in the
near future. Space segmented telescope projects aim at astronomical or earth observations,
such as the 6.5 m James Webb Space Telescope (JWST) [7] composed of 18 segments, to be
launched very soon, and the 9.2 m Advanced Technology Large Aperture Space Telescope
(ATLAST) [8] composed of 36 segments for a next-generation flagship astrophysics mission
to study the universe.

However, segmented-mirror technology introduced new problems. The optical path
difference (OPD) between segments, which can be described by the first three Zernike
polynomials (piston and tip-tilt), must be reduced to a small fraction of the wavelength
to achieve a high-resolution equivalent to that of a monolithic mirror [9]. The crucial
point is correcting the piston errors, which cannot be directly detected by traditional
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wavefront sensors like Shack–Hartmann. The research shows that, when the piston error
between segments is reduced to about λ/20, the angle resolution is 1.22λ/D, where D
is the diameter of the primary mirror and λ is the observation wavelength. If the piston
error is larger than λ, the angle resolution decreases to 1.22λ/d, where d is the diameter
of the sub-mirror. For the JWST, which is composed of 18 1.32 m sub-mirrors, the angular
resolution difference can reach five times. Thus, in order to guarantee the imaging quality
of the segmented telescope, the piston error between the segments must be accurately
measured, and the measurement accuracy should be 30~40 nm at least. To achieve this,
the detection method of co-phasing the piston error should meet the requirements of large
range and high precision.

Currently, many piston error detection methods have been successfully applied to the
segmented telescope. The modified Shack–Hartmann wavefront detection method has been
successfully used on Keck telescopes. It measures the piston error by installing a Hartmann
micro-lens array at the exit pupil. The reliable capture range of the narrow Shack–Hartmann
method [10] is ±λ/4 while the measurement accuracy is as high as 6 nm. The broadband
Shack–Hartmann algorithm [11] has a wider measurement range and generally reaches
30 μm, while the measurement accuracy is around 30 nm. The quadrilateral pyramid
detection method [12,13], which utilizes a quadrangular pyramid mirror, relay lens and
CCD camera, can achieve several tens of nanometers’ detection accuracy in the ±λ/2
detection range. The dispersed fringe sensor (DFS) [14,15] is a new piston error detection
technique proposed for the next-generation space telescope. The DFS is composed of a
prism, a micro-lens array and a CCD camera, which can quickly and accurately detect
the piston error from a few microns to tens of microns. All above methods need optical
devices which add to the detection hardware complexity. Focal-plane wavefront sensing is
an elegant solution to measure the OPD since this wavefront sensor is included in the main
imaging detector, simplifying the hardware and minimizing differential paths. The classic
focal-plane detection methods, such as phase diversity [16–18] and phase retrieval [19,20],
have high measurement accuracy but narrow detection range and are very time-consuming.
In 2015, Simar [21] found out that the modulation transfer function (MTF) amplitude part
of the optical transfer function (OTF) has a relationship with the piston error based on the
coherence measurement of a star image when using broadband input light, using Gaussian
function to fit the relationship between the MTF and the piston error. The capture range of
this method is close to the coherence length of the input light, but its accuracy decreases
sharply when approaching the extremes of capture range. Junlun Jiang et al. [22] utilized
piecewise quartic polynomial function to fit the relationship; the accuracy of this method is
higher than that of Gaussian fitting but the complexity of curve fitting is increased since
different mathematical expressions are needed in different intervals of the capture range.

This paper proposes a different method to detect the piston error based on analyzing
the broadband intensity distribution on the image plane of a star image with a back-
propagation (BP) artificial neural network. By attaching a mask with a sparse multi-
subaperture configuration in the exit pupil plane of the segmented telescope, we can get the
non-redundant MTF sidelobes distribution. Then, based on Fourier optics principle [23], the
theoretical relation between peak heights of MTF sidelobes and piston error is rigorously
derived, and we have obtained a more universally applicable and accurate theoretical
conclusion than the work presented in paper [22], which clearly indicates that the peak
height of the MTF sidelobe is only related to the number of sub-pupils, input wavelength
and the piston error between segments. Instead of fitting the relation by Gaussian function
or two piecewise quartic polynomials, we utilize the BP artificial neural network to establish
the nonlinear mapping relationship between the piston error and the amplitudes of the
MTF’s surrounding peaks. The BP artificial neural network [24,25] is simple in structure
and very convenient to train. Here, the peak heights of MTF sidelobes directly calculated
from the obtained theoretical formula served as the inputs and the introduced piston errors
served as outputs, respectively, to train the artificial neural network. Once well trained, it
can estimate the piston error to a good precision with high efficiency and robustness using
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the PSF image collected from the optics imaging system as input. The detection accuracy
is both higher than Gaussian function fitting and piecewise quartic polynomial function
fitting, and the implementation complexity is lower than piecewise quartic polynomial
function fitting since there is no need to build different computation models in different
intervals of the capture range. The capture range is close to the coherence length of the
input light; thus the piston error detection no longer needs to be divided into coarse and
fine regimes which involve separate dedicated hardware solutions. The influence of the
CCD camera noise and the existence of tip-tilt aberrations on the accuracy of piston error
detection are discussed. The results indicate that the proposed piston error detection
algorithm has very good noise immunity, but the existence of tip-tilt aberrations has a great
influence on the detection accuracy. Besides, the generalization ability of the network is
also discussed by changing the F-number (F#) of the imaging system to generate different
intensity images as testing sets to examine the trained network. The results show that
our network has quite good generalization ability, since the datasets used to train the
network are the same when the optical systems have the same number of sub-pupils and
working wavelength. Moreover, by matching up the MTF sidelobes with their associated
sub-pupils, multiple piston error measurements of the whole aperture can be implemented
simultaneously by one detection of a single broadband image.

This paper is structured as follows. In Section 2, we derive the theoretical relation
between the peak heights of MTF sidelobes and piston error, and verify the correctness
of the theoretical relation by MATLAB simulation. Section 3 describes how to use the
BP artificial neural network to establish the nonlinear mapping relationship between the
amplitudes of the MTF sidelobes and the piston error, and how to implement the established
network to detect piston errors. Adequate simulation validations and discussions on the
proposed approach are presented in Section 4. In Section 5, we conclude the paper.

2. Theoretical Relation between the Piston Error and Amplitudes of MTF Sidelobes

In this part, we mainly focus on establishing the theoretical relationship between the
amplitudes of the MTF sidelobes and the piston error based on the Fourier optics principle
at first. Then, we verify the correctness of the established theoretical relation through
MATLAB simulation.

2.1. Establishing the Theoretical Relationship Based on Fourier Optics Principle

In order to simplify the theoretical derivation process, we used a primary mirror
composed of two hexagonal segments as the optics system model shown in Figure 1. In
order to separate the sidelobes of the MTF from the main peak, a mask with two circles was
set on the exit-pupil plane of the primary mirror to fragment the pupil. If p is the piston
error between the two segments, the generalized pupil function (GPF) can be written as:

G(x, y) = A(x, y)
[

circ
(

x − b/2, y
d/2

)
· eiφ1 + circ

(
x + b/2, y

d/2

)
· eiφ2

]
, (1)

where (x, y) is the coordinate vector of the pupil plane, b is the distance between the
center of the two circle pupils on the mask, d is the diameter of the circle pupil, λ is the
observation wavelength, circ() stands for circle function, the phase difference between the
two segments is Δφ = φ1 − φ2 = 2π

λ 2p, here we set φ1 = 2π
λ p and φ2 = − 2π

λ p to facilitate
the following calculations. A(x, y) is the binary shape function of the hexagon segment
which is shown as:

A(x, y) =
{

1 inside the pupil
0 others

. (2)
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We performed Fourier transform for the GPF, and based on the properties of Fourier
transform we can derive the following equation:

�{G(x, y)} =
d
2

[
J1(πd

√
u2 + v2)√

u2 + v2

]
·
(

ei(πλ 2p−πub) + e−i(πλ 2p−πub)
)

, (3)

where (u, v) is the coordinate vector of the image plane, �{} stands for Fourier transform
operation, J1{} is first order Bessel function.

Figure 1. The schematic diagram of the telescope composed of two hexagonal segments with sparse
circles configuration.

Based on the Fourier optics, the point spread function (PSF) of the system is the
squared modulus of the Fourier transform of the GPF which is given by:

PSF(u, v) = |�{G(x, y)}|2 = (d/2)2
∣∣∣∣[ J1(πd

√
u2+v2)√

u2+v2

]
·
(

ei(πλ 2p−πub) + e−i(πλ 2p−πub)
)∣∣∣∣2

= 2 (d/2)2 J1
2(πd

√
u2+v2)

u2+v2

[
1 + cos

( 2π
λ 2p − 2πub

)]
.

(4)

From Equation (4), we can see that the PSF includes two parts: the diffraction part

and the interference part. (d/2)2 J1
2(πd

√
u2+v2)

u2+v2 is the diffraction intensity of the single circle
aperture; the coefficient 2 means the diffraction part is simple superposition formed by
the two single circle apertures’ diffraction.

[
1 + cos

( 2π
λ 2p − 2πub

)]
is the interference

part which is coherent superposition formed by the sub-waves sampled by the two single
circle apertures. As we can see, the piston error is included in the interference part.
When the observed target is a point source, the image obtained on the focal plane can be
simplified as the PSF of the system, thus the piston error between segments is included in
the CCD captured image. According to the interference principle, the interference factor
will disappear when the piston error exceeds the coherence length of the light used in the
optical imaging system, then the intensity distribution on the image plane becomes the
simple superposition of the two sub-pupils’ diffraction. Hence, the capture range of the
piston error is limited by the coherence length of the input light.

Based on Fourier optics, the OTF is the 2D Fourier transform of the PSF shown as:

OTF( fx, fy) = �{PSF(u, v)}, (5)

where ( fx, fy) is the spatial frequency in the x and y directions, respectively. According to
the OTF calculation method of the diffraction limited system, the expression for the OTF of
the segmented system can be given by:

OTF( fx, fy) = 2OTFsub( fx, fy) + OTFsub( fx +
b

λ f
, fy)e−i 2π

λ 2p + OTFsub( fx − b
λ f

, fy)ei 2π
λ 2p, (6)
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where OTFsub( fx, fy) is the OTF of a single circle aperture diffraction system, which is
given by:

OTFsub( fx, fy) =

⎧⎪⎨⎪⎩
2
π

[
arccos

(
ρ

2ρ0

)
− ρ

2ρ0

√
1 −
(

ρ
2ρ0

)2
]

, ρ ≤ 2ρ0

0 , others
(7)

where ρ =
√

f 2
x + f 2

y is the radial coordinate on the frequency plane, ρ0 = d
2λ f is the system

cut-off frequency, f is focal length of the imaging lens.
Equation (6) shows that the OTF of the segmented telescope composed of two hexag-

onal segments with mask includes three parts: the central part and two sidelobes. The
central part’s spatial frequency is (0, 0) and its value is the maximum modules of the
sidelobe without piston error multiplied by the number of sub-pupils. Since the OTF
is normalized, the value of the central part is always 1, so the maximum height of the
sidelobe part without piston error is 1/N, where N is the number of sub-pupils, and
N = 2 is the telescope composed of two segments. The spatial frequencies of the two
sidelobes are (±b/λ f , 0) respectively, and they are symmetrically distributed about the
central part. Based on the Fourier optics, we can get the MTF of the system by doing a
modulus operation for Equation (6), which is shown as:

MTF( fx, fy) =
∣∣OTF( fx, fy)

∣∣
=
∣∣2OTFsub( fx, fy)

∣∣+ ∣∣∣OTFsub( fx +
b

λ f , fy)e−i 2π
λ 2p
∣∣∣+ ∣∣∣OTFsub( fx − b

λ f , fy)ei 2π
λ 2p
∣∣∣. (8)

As we can see, only the value of the MTF sidelobe is modulated by the piston error.
We take one sidelobe out marked as MTFsidelobe, which is shown as:

MTFsidelobe( fx, fy) =

∣∣∣∣OTFsub( fx +
b

λ f
, fy)e−i 2π

λ 2p
∣∣∣∣. (9)

Then the peak height value of the sidelobe with piston error marked as MTFsidelobe−peak
is obtained by:

MTFsidelobe−peak =
1
N

∣∣∣e−i 2π
λ 2p
∣∣∣. (10)

From Equation (10), we can see that the peak height of the MTF sidelobe is only related
to the number of sub-pupils, input wavelength and piston error. The effective detection
range of the piston error is limited for a single wavelength due to the 2π ambiguity.
Therefore, we need a broadband input light value to expand the piston error detection
range.

For a broadband input light centered at λ0 with the bandwidth Δλ, the PSF of the
system is the sum of all PSFs at different monochromatic wavelengths which is given by:

PSFbroad(u, v, λ) =
∫ λ0+

Δλ
2

λ0− Δλ
2

PSF(u, v, λ)S(λ)dλ

=
∫ λ0+

Δλ
2

λ0− Δλ
2

2
(

d
2

)2 J1
2(πd

√
u2+v2)

u2+v2

[
1 + cos

( 2π
λ 2p − 2πub

)]
S(λ)dλ,

(11)

where S(λ) is PSF weight of different wavelengths, assuming S(λ) = 1.
Since the integral is difficult to calculate, a differential summation approximation is

used. The Δλ is divided into n intervals equally, then the PSF can be rewritten as:

PSFbroad(u, v, λ) =
Δλ

n

n

∑
t=1

2
(

d
2

)2 J1
2(πd

√
u2 + v2)

u2 + v2

[
1 + cos

(
2π
λt

2p − 2πub
)]

. (12)

By performing Fourier transform for the PSFbroad, the corresponding OTF of the
system in broadband light marked as OTFbroad is given by:
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OTFbroad( fx, fy, λ) =
Δλ

n

n

∑
t=1

⎡⎣ 2OTFsub( fx, fy) + OTFsub( fx +
b

λt f , fy)e
−i 2π

λt
2p

+ . . .

OTFsub( fx − b
λt f , fy)e

i 2π
λt

2p

⎤⎦. (13)

As we know, performing a modulus operation for the OTF, we can get the MTF
of the system and the piston error is only related to the MTF sidelobes, thus the MTF
sidelobe marked as MTFsidelobe−broad is extracted out from the modulus of the OTFbroad and
shown as:

MTFsidelobe−broad( fx, fy, λ) =
Δλ

n

∣∣∣∣∣ n

∑
t=1

[
OTFsub( fx +

b
λt f

, fy)e
−i 2π

λt
2p
]∣∣∣∣∣. (14)

In fact, for different wavelengths, the position coordinates of the MTF sidelobes are
different. However, the coordinate difference introduced by different wavelengths is
very small when the bandwidth is much smaller than the central wavelength [26], so
the position coordinate ( fx +

b
λt f , fy) with different wavelengths can be approximated as

( fx +
b

λ0 f , fy). The effect of different wavelengths is mainly reflected in the e-index part.
Thus Equation (14) can be rewritten as:

MTFsidelobe−broad( fx, fy, λ) =
Δλ

n

∣∣∣∣OTFsub( fx +
b

λ0 f
, fy)

∣∣∣∣
∣∣∣∣∣ n

∑
t=1

e−i 2π
λt

2p
∣∣∣∣∣. (15)

For the broadband input light value, when the OTFbroad is normalized, the value of the
central peak is 1. From Equation (13) we can see that the peak height of the MTF sidelobe
without piston error, namely

∣∣OTFsub( fx, fy)
∣∣, is equal to 1

NΔλ (N = 2 for Equation (13)),
thus the peak height value of the MTF sidelobe with piston error is

MTFsidelobe−broad−peak =
1

nN

∣∣∣∣∣ n

∑
t=1

e−i 2π
λt

2p
∣∣∣∣∣. (16)

Based on the above derivation, we obtained a more universally applicable and precise
theoretical conclusion shown in Equation (16). We can see that the peak height of the MTF
sidelobe is only related to the number of sub-pupils of the segmented telescope, input
wavelength and piston error between segments based on the coherence measurement of a
star image when using broadband input light. So the amplitudes of the MTF sidelobe can
be easily calculated when the piston error is known. However, on the other hand, due to
the complexity and high nonlinearity of Equation (16), the piston error cannot be directly
solved when the peak height of the MTF sidelobe is measured.

2.2. Verification of the Correctness of the Theoretical Relation by MATLAB Simulation

In order to verify the correctness of the mathematical derivation for Equation (16),
we set up an optical system in MATLAB and simulated the corresponding MTF using
the MATLAB program. The simulation segmented telescope system we used here is
composed of two sub-pupils with mask, as shown as Figure 1. The left sub-mirror is the
reference pupil; the piston error was introduced on the right pupil. The sampling grid of
the exit pupil plane was set as 256 × 256 pixels, the pixel size of the CCD was 3.5 μm and
the F# of the optical system was 8. Thus the circumscribed circle diameter of the single
hexagonal sub-mirror was 59 pixels, the diameter of the circle on the mask was 18 pixels
and the distance between the centers of the two circles was 52 pixels to satisfy the Nyquist
sampling criterion. The central wavelength of the input broad light was 632.8 nm and its
bandwidth was 1 nm. The effective detection range of the proposed method is half of the
coherent length:

L =
Lc

2
=

λ0
2

2Δλ
=

(632.8 nm)2

2 × 1 nm
≈ 200 μm, (17)
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where Lc is the coherent length of the input light, the factor 1/2 is due to the input
light reflection on the segmented primary mirror giving an OPD equal to twice the step
between segments.

Based on the set system model, different piston errors were introduced to the right
sub-pupil. We first obtained the system MTF using the MATLAB program, which directly
performs 2D discrete Fourier transform for the simulated CCD captured image of the
point-source object. Then by taking the corresponding piston errors to Equation (16), we
got the theoretical values of MTFsidelobe−broad−peak. By comparing the theoretical calculated
values from Equation (16) with the MATLAB simulation results, we verified the correctness
of the theoretical formula established based on the Fourier optics principle.

Figure 2 shows four sets of MTF obtained by the MTALAB program and the peak
height value of the MTF sidelobe is marked in the corresponding figure, where the intro-
duced piston errors were 0 μm, 50 μm, 100 μm and 200 μm, respectively. We took the four
sets of piston errors into Equation (16), the n was set to 100 in order to make the differential
summation closer to the integral, and N = 2. Then the calculated corresponding peak
heights of the MTF sidelobe were 0.5, 0.4503, 0.3187 and 6.0708 × 10−4, respectively. We
can see that the surrounding peaks of the MTF calculated by Equation (16) were the same
as the results directly obtained from the MATLAB program.

  
(a) (b) 

  
(c) (d) 

Figure 2. Modulation transfer function (MTF) of four different piston errors obtained by MATLAB
simulation. (a) Piston error = 0 μm, (b) piston error = 50 μm, (c) piston error = 100 μm, (d) piston
error = 200 μm.

In order to further verify the correctness of Equation (16), 201 sets of piston errors
were introduced in 1 μm steps from 0 to 200 μm. The peak heights of the MTF sidelobes
calculated from Equation (16) and the MATLAB program are shown in Figure 3a,b. Figure 3
verifies the correctness of the theoretical relationship between the peak heights of the MTF
sidelobes and the piston error shown as Equation (16). When the MTF was obtained, the
piston error should have been solved by Equation (16) theoretically. However, due to the
nonlinearity and complexity of Equation (16), it is difficult to calculate the piston error in a
realistic segmented telescope directly.
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(a) (b) 

Figure 3. Surrounding peak heights of MTF varying with the piston error (a) calculated by
Equation (16) and (b) obtained by the MATLAB program.

Note that Figure 3 only shows the positive side of the piston error. If two piston errors
have the same absolute value but opposite signs, they will have the same peak heights of
MTF sidelobes due to the fact that Equation (16) is a symmetrical function. Namely, we
need to know the relative spatial position between the sub-mirror to be measured and the
reference sub-mirror in advance in order to obtain the correct piston error. This is one of
the inconveniences when using our proposed algorithm.

3. Piston Error Detection Method Using BP Artificial Neural Network

3.1. Brief Introduction of the BP Artificial Neural Network

Equation (16) directly gives the theoretical relationship between the piston error
and the peak heights of the MTF sidelobes. However, due to the high nonlinearity
and complexity of Equation (16), it is difficult to calculate the piston error in a realistic
segmented telescope when the MTF is obtained. Thus, we turned to machine learning
and neural networks [27] to establish the mapping relationship between the MTF’s
surrounding peak heights and the piston error rather than fitting Equation (16) with
precise mathematical expressions.

Artificial neural networks [28–30], which belong to machine learning, are input–
output information processors composed of parallel layers of elements or neurons, loosely
modeled on biological neurons, which possess local memory and are capable of elementary
arithmetic. They can be used to learn and store a great deal of nonlinear mapping relations
from the input–output model. The artificial neural network, composed of many neurons,
has a parallel distribution structure. Each neuron has a single output and can be connected
to other neurons; there are multiple output connection methods, and each connection
method corresponds to a connection weight coefficient. The artificial neural network can
be regarded as a directed graph formed by connecting weighted directed chains with
processing elements as nodes. For the kth neuron, if the signal from another neuron is
xi, their interaction weight is wik and the internal threshold of the processing unit is θk,

then the input of the kth neuron is
m
∑

i=1
xiwik, where m is the number of the input neurons

connected to the kth neuron. Thus, the output of the kth neuron yk is:

yk = f

(
m

∑
i=1

xiwik − θk

)
, (18)

where f () is called the activation (or transfer) function. The purposes of the activation
function are introducing nonlinearity to neural networks and bounding the value of the
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neuron so that the neural network is not paralyzed by divergent neurons. A common
example of activation function is the sigmoid (or logistic) function, which is shown as:

φ(z) =
1

1 + exp(−z)
. (19)

When the neural network structure is designed and has inputs and outputs, the
network needs to be trained so it can learn the appropriate mapping relationships between
the inputs and the outputs. The BP algorithm is one of the most widely used algorithms for
training neural networks, and utilizes a gradient descent method to minimize the square of
the error between the network output value and the target value to adjust the weights of
each neuron. The BP algorithm can be divided into two steps: forward propagation and
back propagation. The forward propagation process is propagating the input signals from
the input layer, via the hidden layer, to the output layer to get the final output results. The
back-propagation process is propagating the error signal, which is the difference between
the real output and the expected output of the network, from the output end to the input
layer in a layer-by-layer manner to adjust the weights and thresholds. Through one forward
propagation and one back propagation, we can update the parameters of the network once.
The network training process is to constantly reciprocate the forward and back propagation
and continuously update the network parameters, and finally make the network precisely
map the real relationships between the inputs and outputs. A sketch graph of a BP artificial
neural network with two hidden layers is shown in Figure 4.

Figure 4. Sketch graph of a back-propagation (BP) artificial neural network with two hidden layers.

3.2. Piston Error Detection Approach with BP Artificial Neural Network

The piston error detection for multiple sub-mirrors of a segmented telescope with a
BP artificial neural network can be divided into three steps:

(1) Determine the system parameters and generate the datasets for training the neural
network under the specified system parameters. From Equation (16), we can see
that the peak heights of the MTF sidelobes are only related to the input broadband
light, the number of sub-pupils and the piston errors between the multiple sub-
mirrors. When the segmented telescope and its working wavelength are determined,
within the half of the coherent length of input light, a set of piston errors between
segments is randomly introduced, and by taking the corresponding piston errors into
Equation (16), the peak heights of MTF sidelobes can be obtained. The peak heights
of MTF sidelobes directly calculated from Equation (16) served as one column of
input matrix and the corresponding piston errors served as one column of the output
matrix. Thus the input dataset and output dataset of the network could be generated.
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(2) Establish the neural network and train it with the input dataset and the corresponding
output dataset. Here we utilized the neural network fitting tool in MATLAB, and
by properly setting the number of neurons in each layer, the neural network was
established. In the training process, the dataset is separated into three parts including
training set, validation set and test set, then a specific training algorithm is set to train
the network.

(3) Once the network is well trained, we can apply the trained neural network to deter-
mine the piston errors with the PSF image collected from the optical system. Note
that the image should be Fourier transformed first to get the peak heights of the
MTF sidelobes before they can be handled with the neural network. By establishing
the correspondence of the MTF sidelobes with their associated sub-pupils, multiple
piston error measurements of the whole aperture can be implemented simultaneously
by one detection of a CCD broadband image.

The application procedure of the piston error detection approach with BP artificial
neural network is summarized in Figure 5.

Figure 5. The detailed piston error detection approach with a BP artificial neural network.

4. Simulation

4.1. Piston Error Detection for the Telescope Composed of Two Segments

Here we first utilized the telescope model composed of two hexagonal segments in
Figure 1 to test the proposed method. According to Equation (16), the peak height of the
MTF sidelobe is only related to the number of sub-pupils, input wavelength and piston error.
Here the number of sub-pupils was N = 2, the light source was broadband light centered
at 632.8 nm with bandwidth 1 nm, the left sub-mirror was set as the reference pupil, and a
series of piston errors were introduced to the right pupil to generate the corresponding
peak heights of MTF sidelobes. Considering the coherence length, 100,000 sets of piston
errors were randomly generated between 0 μm and 200 μm to produce a corresponding
100,000 sets of surrounding peak heights of the MTF based on Equation (16). Thus, we
could obtain the dataset for training the network. Then the neural network could easily
be trained using the neural network fitting tool in MATLAB (the number of nodes in
the hidden layer was set as 50), the peak heights of the MTF sidelobes were fed into the
network and the corresponding piston errors constituted the output dataset. In this process,
the dataset was separated into three parts; i.e., training set, validation set and test set.
The training set was used for learning, which was to fit the weights of the network; the
validation set was used for tuning the final architecture of the network; the test set was only
used for assessing the performance of the network. The ratio between them in this work
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was 70%: 15%: 15% (i.e., 70,000 sets for training, 15,000 sets for validation and 15,000 sets
for testing).

The training results are shown in Figure 6, which provides the distribution of the error
between the targets and the actual outputs of the network in the form of a histogram. From
the results, we can see that for the vast majority of the cases the errors between the targets
and outputs were within 0.01 μm, which equals 1.5% of the input central wavelength.
More specifically, the root mean square errors (RMSE) between the targets and outputs
of the network in the training set, validation set and testing set were 2.531 × 10−5 μm,
1.914 × 10−5 μm and 2.465 × 10−5 μm, respectively. This demonstrates the high accuracy
of the neural network with the peak heights of the MTF sidelobes serving as the input to
solve the piston error.

Figure 6. Distribution of the errors between the targets and the actual outputs of the network in the
form of a histogram.

Then we apply the obtained neural network to the PSF images collected from the
established optical system composed of two hexagonal segments in MATLAB described
in Section 3.2. To approximate the practical imaging environment, a zero mean and
0.05 variance Gaussian distribution noise were introduced in the simulated PSF images.
A Fourier transform was performed for the noised PSF image to obtain the OTF, which
was composed of the MTF and phase transfer function (PTF), where the peak heights of
the MTF sidelobes served as the input. The well-trained neural network could directly
output the piston error introduced on the right sub-mirror corresponding to each PSF
image; we named the actual output of the network as the measured piston error. The
difference between the measured piston errors and the settled piston errors is shown in
Figure 7. Seventeen sets of experimental results are listed in this figure. From the error
analysis, the RMSE of all the difference was 1.3 nm. Here the RMSE was calculated from
the following formula:

RMSE =

√√√√ 1
N

N

∑
n=1

Di f f erence2
n, (20)

where N is the total number of the datasets.
From the simulation results, we can see that the piston error detection method based on

a BP artificial neural network had a quite high accuracy and large capture range. However,
when approaching the two ends of the capture range, the detection accuracy decreased
slightly. This was due to the peak heights of the MTF sidelobes approaching the edges of
the capture range not changing with piston error very obviously; namely the gradients
of the curve were small in these parts, and we can see this directly from the theoretical
relationship curve between the piston errors and peak heights of MTF sidelobes shown
in Figure 3a. This results from the insensitiveness of the network to data approaching the
ends of the capture range, so the detection accuracy decreased a little bit, but the accuracy
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at the two ends of the detection range was still high enough to meet the requirement of
co-phasing the piston error.

Figure 7. The piston error detection results in bar chart form for two segments system with a BP
artificial neural network.

We also compared our proposed method with the Gaussian fitting and two-piece
quartic polynomial function fitting methods presented in [21,22], respectively, and the
comparison results on detection accuracy are shown in Figure 8. From Figure 8a, we can
see that the detection accuracy of our proposed method is much higher than that of the
Gaussian fitting method. Figure 8b shows the detection accuracy curve of our method
compared with that of the two-piece quartic polynomial function fitting method. Our
method produced larger differences (~5 nm) for small piston errors, but with the increase
of the piston error, especially after 125 μm, the two-piece quartic polynomial function
fitting method generated much larger differences. From the error analysis, the difference
of our method was 1.3 nm RMS, which is smaller than the 1.8 nm RMS presented in [22].
This demonstrates that our method also has higher detection accuracy than the two-piece
quartic polynomial function fitting method, while the implementation complexity is lower
since there is no need to build different computation models in different intervals of the
capture range.

  
(a) (b) 

Figure 8. The comparison results on detection accuracy of a BP artificial neural network approach with (a) the Gaussian
fitting method (b) and the two-piece quartic polynomial function fitting method.
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To further evaluate the ability of the trained network, we designed some other simula-
tions to discuss the effect of image noise and the tip-tilt aberrations of the segments on the
detection accuracy of the proposed method. To approximate the practical imaging environ-
ment, different intensity Gaussian distribution noises were introduced in the simulated PSF
images. Figure 9a gives the detection accuracy under three different image noise intensities
by the trained network, and the simulation result showed that PSF image noise had little
effect on the piston error detection accuracy. This was due to the fact that the Gaussian
distribution noise contributed little to the peak heights of MTF sidelobes, so the proposed
piston error detection algorithm had a very good noise immunity. Additionally, since the
tip-tilt aberrations could not be corrected entirely before measuring the piston error, slight
tip-tilt distortions were introduced to the optics system while generating the simulated
PSF images. Here we introduced two different tip-tilt aberrations: the RMS errors were
0.01λ and 0.05λ (λ = 632.8 nm), respectively. Since the introduced tip-tilt aberrations were
quite small, we assumed that the aberration distribution for each wavelength was the same.
The effect on the piston error detection accuracy is shown in Figure 9b, which confirms
that the existence of the tip-tilt error had a great influence on the detection accuracy. This
was because that the tip-tilt error greatly changed the amplitudes of MTF sidelobes. So, in
order to guarantee the detection accuracy, the tip-tilt aberrations should be corrected well
enough (at least less than 0.01λ RMS) before piston error measurement.

  
(a) (b) 

Figure 9. The piston error detection accuracy under (a) different CCD image noise values and (b) different tip-tilt aberrations.

From Equation (16), we can conclude that the datasets used to train the network are
only related to the numbers of telescope sub-pupils and input light sources. When the
numbers of the sub-pupils and working wavelength were determined, the network could
be trained to map the relation between the peak heights of MTF sidelobes and piston error,
since learning mapping relationships is a data-driven process. Thus, even for different
imaging systems, if they have the same numbers of sub-pupils and work under the same
operating light, the trained network should have quite good generalization ability. In
order to verify this, we designed another simulation based on the previous one. In this
simulation, we changed the F# of the imaging system and generated different intensity
images from these systems as testing sets to examine the generalization ability of the
trained network (original imaging system parameters are given in Section 3.2 with F# = 8)
for the new systems. The F# of the imaging systems used for simulations were 10, 20, 30,
40, 50 respectively, while the piston error measurement results of all the new systems using
the trained network had the same accuracy as those of the original imaging system with
F# = 8. This demonstrates that our network has quite good generalization ability.
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4.2. Simultaneous Multi-Piston Measurement

In the part, we utilized the proposed method to simultaneously detect multi-piston
errors of the whole aperture. Based on the theoretical deduction in Section 3.1, we can see
that the MTF model of the N sub-pupils segmented telescope consisted of N2 sub-MTFs.
In the spatial frequency domain, the N sub-MTFs overlapped at the position where the
center spatial frequency was zero to form the central peak, while the other N (N − 1)
sub-MTFs distributed around the central peak to form the sidelobes. Every pair of sub-
pupils produced a pair of MTF sidelobes, the sidelobes symmetrically distributed on both
sides of the central peak. If all of the sidelobes did not overlap, their amplitudes could be
obtained at the same time by one CCD image, hence the piston errors of all sub-mirrors
were retrieved at the same time by inputting the peak height of sub-MTF corresponding to
each sub-mirror into the trained network.

In order to verify the feasibility of simultaneous multi-piston measurement with the
proposed method, we took a primary mirror composed of four hexagonal sub-pupils as
an example. We modeled the four-segment imaging system using MATLAB, results of
which are shown in Figure 10a. The No. 1 sub-mirror was set as reference pupil, and the
piston errors were introduced on the No. 2, No. 3 and No.4 sub-pupils, respectively. The
corresponding system MTF without piston errors is shown in Figure 10b: there was one
MTF central peak and 12 MTF sidelobes (N (N − 1) = 4 × (4 − 1) = 12). Four sub-MTFs
(N = 4) overlapped at the position where the center spatial frequency was zero to form
this central peak, and every pair of sub-pupils produced a pair of MTF sidelobes. Note
that a colored MTF was used here in order to describe which peaks were actually used
to solve the piston error of the corresponding sub-mirror. When the No. 1 sub-mirror
was set as reference pupil, No. 2 sub-mirror produced the two red sub-MTFs, No. 3
sub-mirror produced the two green sub-MTFs and No. 4 sub-mirror produced the two
yellow sub-MTFs. The six light blue sub-MTFs at the outermost periphery were produced
either by No. 2 and No. 3 sub-mirrors together, or by No. 2 and No. 4 sub-mirrors together,
or by No. 3 and No. 4 sub-mirrors together, which could not be used to measure piston
errors. Thus, we could use any one of the red sub-MTFs to measure the piston error of
No. 2 sub-mirror, any one of the green sub-MTFs to measure the piston error of No. 3
sub-mirror and any one of the yellow sub-MTFs to measure the piston error of No. 4
sub-mirror, respectively. For the detailed generation principle between the sub-MTFs and
sub-mirrors, refer to paper [31].

 

(a) (b) 

Figure 10. The 4 hexagonal segmented telescope showing (a) the position arrangement of the
4 sub-mirrors and (b) the corresponding system MTF colored without piston error.

In order to simultaneously detect piston errors of the three segments, we first had to
establish the neural network and train it with the generated dataset. Here we still used
the broadband light source centered at 632.8 nm with bandwidth 1 nm, since N = 4, and

116



Sensors 2021, 21, 3364

according to Equation (16) we could directly obtain the datasets of the peak heights of the
MTF sidelobes varying with the piston errors to train the network. The curve of the relation
between the peak heights of the sub-MTF and the piston errors is shown in Figure 11.
One hundred thousand sets of data were fed into the network to train it, and the network
settings were the same as those of the two sub-pupils’ telescope except the ratio between
the training set, validation set and test set was 65%: 20%: 15%. We added more data to the
validation set to avoid the overfitting problem. The training results are shown in Figure 12.

 
Figure 11. Peak heights of the MTF sidelobes varying with the piston errors of the optics system
composed of 4 sub-mirrors.

Figure 12. The network training result for the optics system composed of 4 sub-mirrors.

Then we used the PSF images directly collected from the established optical system
composed of 4 hexagonal segments shown in Figure 9a to simultaneously measure piston
errors for all sub-mirrors based on the trained network. We randomly introduced different
piston errors between 0 μm and 200 μm to No. 2, No. 3 and No. 4 sub-mirrors at the
same time, then performed Fourier transform for the obtained PSF image to get the system
MTF. Here we also added zero mean and 0.05 variance Gaussian distribution noise to
the simulated PSF images. According to the correspondence relation between the MTF
sidelobes and sub-mirrors (here No. 4 sub-MTF corresponded to No. 2 sub-mirror, No. 6
sub-MTF to the No. 3 sub-mirror and No. 5 sub-MTF to No. 4 sub-mirror, respectively), by
inputting the peak height of sub-MTF corresponding to each sub-mirror into the trained
network, the piston errors of all the sub-mirrors could be measured by one CCD image
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at one time. A part of the simulation results is listed in Figure 13. The piston error
measurement results of No. 2, No. 3 and No.4 sub-mirrors are given by Figure 13a–c,
respectively. Figure 13d shows the total RMSE of the three sub-mirrors’ piston error
measurement accuracy during each test.

  
(a) (b) 

  
(c) (d) 

Figure 13. Piston error measurement results for the four-segment system: (a–c) piston error measurement results of No. 2,
No. 3 and No.4 sub-mirrors, respectively, and (d) the total RMSE of the three sub-mirrors’ piston error measurement
accuracy during each test.

From the simulation results we can see that the multi-piston errors between the
segments of the entire aperture could be simultaneously detected with high accuracy:
the average value of the RMS errors over the testing samples was about 1.4 nm. Since
the peak height of sub-MTF corresponding to each sub-mirror was fed into the trained
network to measure the piston errors, the most important issue was to avoid the MTF
sidelobes respectively produced by the reference sub-pupil and all of the measured sub-
pupils overlapping. For the detailed arrangement rules, refer to paper [31] to confirm the
MTF sidelobe distribution was non-redundant.

Finally, we tried to compare our work with Ma’s work presented in paper [32], since
this also used a single broadband image to sense the piston errors between sub-pupils.
Rather than establishing the theoretical relationship between the MTF sidelobes of PSF
images and the piston errors like us, this research directly used in-focused broadband
images as the input, and established one deep convolutional neural network (DCNN) to
learn to sense pistons with a single broadband focal image. The simulation results for the
two-pupil imaging system and four-pupil imaging system are shown in Figure 14.
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(a) (b) 

Figure 14. The piston error detection accuracy comparison between our method and Ma’s method (a) for the 2-pupil
imaging system and (b) the 4-pupil imaging system.

From the simulation results, we can see that our method has higher piston error
measurement accuracy than Ma’s method presented in paper [32]. This improvement
of the detection accuracy is at the expense of extensive complex optical calculations in
advance in our work, since we used the MTF sidelobes of PSF images as inputs for the
network based on the established theoretical relationship between the MTF sidelobes and
the piston errors, while Ma directly used in-focused broadband images as the input.

5. Conclusions

In this paper, we put forward a method to simultaneously detect the multi-piston
errors between the segments based on the broadband intensity distribution on the image
plane by a BP artificial neural network. A mask with a sparse sub-pupil configuration was
set on the exit-pupil plane to sample the wave from the segments. Based on the Fourier
optics principle, the accurate theoretical relation between peak heights of MTF sidelobes
and piston errors was obtained. Instead of fitting the relation by Gaussian function or
two piecewise quartic polynomials, we utilized a BP artificial neural network to establish
the nonlinear mapping relationship between the piston errors and the amplitudes of the
MTF’s surrounding peaks. By introducing different piston errors into the segmented optics
system, the corresponding peak heights of MTF sidelobes could be directly calculated by
the established theoretical formula, while the corresponding amplitudes of MTF sidelobes
and the introduced piston errors were used as the inputs and outputs, respectively, to train
the network. Once well trained, it could estimate the piston error to a good precision with
high efficiency and robustness using the PSF images collected from the optics imaging
system as inputs. Since the MTF sidelobes of all the sub-pupils can be simultaneously
obtained by one detection of a CCD image, multiple piston errors of the entire aperture can
be retrieved at one time.

Adequate simulation experiments were implemented to demonstrate the effectiveness
and accuracy of the proposed approach. We established the models of a segmented
telescope composed of two hexagonal segments and four hexagonal segments successively
in MATLAB and implemented the PSF images collected from these simulated optical
systems to test the performance of the corresponding trained networks, respectively. The
piston sensing simulation results showed that the average values of RMS errors on the two-
segment imaging system and the four-segment imaging system could achieve 1.3 nm and
1.4 nm, respectively, and the method’s capture range was the operating light’s coherence
length. Compared to Gaussian fitting and two-piece quartic polynomial function fitting
methods, our method has higher detection accuracy and is easier to implement. The
influence of the CCD camera noise and the existence of tip-tilt aberrations on the accuracy
of piston error detection were also discussed. The results indicated that the proposed
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piston error detection algorithm has a very good noise immunity, but the tip-tilt aberration
should be corrected well enough before the piston error measurements. Besides, different
intensity images from the imaging system with different F# values were generated and fed
into the original trained network to test the network generalization ability. The piston error
detection accuracy was the same as that of the original imaging system, which demonstrates
that our network has quite good generalization ability.

The hardware cost of our method is quite small; only a mask with a sparse multi-
subaperture configuration is needed to attach in the exit pupil plane of the segmented
telescope, and this mask should ensure the MTF sidelobes’ non-redundant distribution.
Thus, with this method, multi-piston measurements of the whole aperture can be imple-
mented simultaneously, and piston detection no longer need be divided into coarse and fine
regimes, which involves separate dedicated hardware solutions. In view of the efficiency
and superiority, it is expected that the piston sensing method based on the BP artificial
neural network proposed in this paper can be adapted to any segmented and deployable
primary mirror telescope, no matter the shape of the segmented mirror and the number of
the segments.
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Abstract: When compared with the traditional manual design method, the convolutional neural
network has the advantages of strong expressive ability and it is insensitive to scale, light, and
deformation, so it has become the mainstream method in the object detection field. In order to further
improve the accuracy of existing object detection methods based on convolutional neural networks,
this paper draws on the characteristics of the attention mechanism to model color priors. Firstly, it
proposes a cognitive-driven color prior model to obtain the color prior features for the known types
of target samples and the overall scene, respectively. Subsequently, the acquired color prior features
and test image color features are adaptively weighted and competed to obtain prior-based saliency
images. Finally, the obtained saliency images are treated as features maps and they are further fused
with those extracted by the convolutional neural network to complete the subsequent object detection
task. The proposed algorithm does not need training parameters, has strong generalization ability,
and it is directly fused with convolutional neural network features at the feature extraction stage,
thus has strong versatility. Experiments on the VOC2007 and VOC2012 benchmark data sets show
that the utilization of cognitive-drive color priors can further improve the performance of existing
object detection algorithms.

Keywords: convolutional neural network; color prior model; object detection

1. Introduction

Over the past few decades, the amount of visual image information has grown at
an explosive rate. As a relatively accurate and vivid description of the objective world,
visual image information is one of the mainstream forms for humans for understanding
the world and receiving external information. Visual image information is difficult for
computers to understand. How to process these image data and use the visual image
information to improve people’s lives to the greatest extent is a very important subject,
which is also the main problem in the field of computer vision [1]. Object detection is a
very challenging research subject in the field of computer vision. Its main task is to output
the bounding box position and classification confidence score of the target of interest in the
test image [2]. Object detection algorithms can bring great convenience to our lives, such
as the use of face detection algorithms to assist the camera’s autofocus, the use of medical
image detection algorithms to assist doctors in accurately identifying disease features, and
the use of object detection and tracking algorithms to realize the following flight of the
UAV to the interested target, etc.

The main difficulties faced by the object detection algorithm are, as follows: (1) there
are factors, such as uneven illumination, different postures, large scales, mutual occlusion,
etc., which lead to problems, such as missed detection and false detection; (2) under the
interference of complex background, the accuracy of the algorithm will drop sharply. In
some environments with simple backgrounds and fixed scenes, traditional object detection
algorithms can usually achieve satisfactory results. However, with the increasing demand
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of detection accuracy and speed in the fields of target tracking and automatic driving,
traditional detection algorithms become unqualified. Therefore, how to detect targets in
complex scenes and improve the detection speed is the focus of research in the field of
object detection [3–6].

In recent years, deep learning technology has swept the field of artificial intelligence.
Deep learning technology has made significant progress in computer vision [7], natural
language processing [8], speech recognition [9], and other fields. Among them, the convo-
lutional neural network technology relies on its advantages, such as scale invariance and
translation invariance, and it has set off a storm of deep learning in the field of computer
vision. Therefore, the convolutional neural network technology has become the mainstream
algorithm in the current object detection field [10–14] .

Visual attention is the cognitive process by which people obtain the most critical area
information when observing natural scenes. Different parts of the human retina have
different information processing capabilities. Therefore, this mechanism is very important
for the efficient operation of the human visual system [15,16]. The human visual system
will not consider equally for all areas in a natural scene in order to make reasonable use of
the limited visual processing resources. Actually, the human visual system will selectively
pay attention to the target area of interest, and ignore or suppress some less important
background areas. There are two different methods of visual attention: one is bottom-up
attention; the other is top-down driven attention that is based on specific tasks.

Being inspired by the top-down visual attention mechanism, we introduced the con-
cept of color prior features [17]. Because different types of objects usually have different
color features, this can help us to improve the ability to discern objects. Therefore, we pro-
pose a cognitive-driven color prior model for object detection. Two main contributions are
included in our method. One aspect is that we propose an adaptive color prior model that
comprehensively considers the fusion and competition among category pattern distribution
(the category pattern distribution represents the probability of each pattern occurring in the
target image block in labeled dataset for the class), scene pattern distribution (scene pattern
distribution represents the probability of each pattern in all visual scene images), and test
image pattern distribution (test image pattern distribution represents the probability of
each pattern in the test image). It uses test image features to dynamically and adaptively
adjust the memory prior to obtain more robust color prior information. The other aspect is
that saliency images that are acquired by the proposed color prior model are regarded as
feature maps and they are fused with those by convolutional neural networks, regardless
of backbone network types, thus having strong versatility. The experiments show that the
utilization of cognitive-drive color priors can further improve the performance of existing
object detection algorithms.

The rest of the paper is arranged, as follows: Section 2 introduces related work, and
Section 3 details the proposed methods. Section 4 analyzes the ablation experiments of the
color prior model in Faster R-CNN and the contrast experiments in different types of object
detection algorithms. Section 5 gives the main conclusions.

2. Related Work

This section mainly introduces related work from two aspects: object detection algo-
rithm and saliency detection algorithm.

2.1. Object Detection Algorithm

According to different feature extraction methods, object detection algorithms can be
roughly divided into traditional object detection algorithms and object detection algorithms
that are based on deep neural networks.

Traditional object detection algorithms rely on carefully designed features to detect
targets [18]. This type of method usually first designs a specific algorithm to screen out
the most likely target areas, calculates the feature description of the candidate region
according to the manually designed feature extraction rules, and then finally uses the
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pattern classification model to determine whether these candidate regions are real targets.
The representative work of candidate region selection is sliding window and selective
search algorithm [19]. The candidate region selection algorithm that is based on sliding
window requires a large number of sizes and shapes of sliding windows, which will lead
to huge computational redundancy. The selective search algorithm first divides the image
into multiple small regions, and then further merges to obtain a larger candidate region,
which improves the computational efficiency. Feature extraction is mainly designed for
different tasks such as face detection and pedestrian detection. It includes the cognitive
thinking wisdom of human experts. The most influential feature description methods
include Scale-Invariant Feature Transform (SIFT) [20], Local Binary Pattern (LBP) [21],
Histogram of Oriented Gradient (HOG) [22], etc. The main goal of pattern classification is
to remove invalid candidate regions, which can be achieved by training effective classifiers.
Commonly used algorithms are Support Vector Machines (SVM) [23], AdaBoost [24],
etc. Although traditional object detection algorithms that are based on manual feature
extraction have been developed to some extent since the end of the last century, there are
still many shortcomings in practice. For example, HOG, SIFT, etc. are basically low-level
features, such as contours and textures, which are less robust and cannot cope with object
detection requirements in a diversified and complex environment.

The object detection algorithm that is based on deep neural network is a new type of
method that has emerged in recent years. It can automatically form more abstract high-level
features by combining low-level features from samples. These features have powerful
expression and generalization capabilities. This is the current mainstream method of object
detection [12,25,26]. In 2012, the AlexNet network [27] proposed by Alex Krizhevsky et al.
achieved results far surpassing traditional object detection algorithms in the large-scale
visual recognition challenge, which made deep neural network technology attract people’s
attention in the field of image recognition and object detection. After several years of
development, deep neural networks have been widely used in object detection tasks [28–33].
These algorithms are mainly divided into object detection algorithms that are based on
candidate boxes and object detection algorithms based on regression. The object detection
algorithm based on the candidate boxes is also called a two-stage type algorithm. It first
extracts the region proposal, and then performs candidate boxes recognition and boxes
regression. R-CNN series is the representative work [30,31,34]. R-CNN [34] uses a selective
search algorithm to extract candidate frames, and it starts to use deep neural networks to
extract features, and finally uses support vector machines to complete the classification
of the target. Fast R-CNN [30] performs feature pooling for each candidate frame, and
uses the softmax classifier to replace the support vector machine. It only needs to extract
the features of the image once, which improves the training and reference speed. Faster
R-CNN [31] uses neural networks to generate candidate boxes, instead of selective search
algorithms, so that the entire object detection truly realizes end-to-end calculation. At
the same time, region proposal, classification, and regression share convolution features,
greatly improving the accuracy and computational efficiency of the algorithm. The object
detection algorithm that is based on the regression idea is also called a single-stage type
algorithm, which skips candidate box extraction stage and directly regards the object
detection algorithm as a regression task, such as YOLO [32] and SSD [33]. For an input
image, the regression-based object detection model directly outputs the categories and
positions of all targets for each image block, and all of the detection steps are completed
in a neural network. The advantage is that the algorithm is efficient, but the accuracy is
usually slightly lower than that of the two-stage algorithm.

2.2. Saliency Detection Algorithm

In human cognitive science, different parts of the retina have different information
processing capabilities. In order to make rational use of limited visual information pro-
cessing resources, the human visual system usually selectively focuses on specific parts
of the visual scene. This phenomenon is called the visual attention mechanism, which is
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the theoretical basis of saliency detection. The current saliency detection methods can be
roughly divided into two types, one is a bottom-up saliency detection algorithm, which is
data-driven, and the other is a top-down saliency detection algorithm, which is task-driven.

The bottom-up saliency detection algorithm directly extracts the underlying infor-
mation of the image for detection, and it does not need to specify the type of target of
interest or provide training samples in advance, so it has a wide range of adaptations. Itti
and Koch et al. proposed a saliency detection algorithm earlier by learning from neuron
structure and animal vision [35,36]; Xie et al. [37] proposed using the Bayesian model to
construct saliency maps; and, Cheng et al. [38] proposed a saliency detection method based
on global contrast.

The top-down saliency detection method is task-driven, which is, it is guided by
human subjective consciousness or target tasks. It first learns the basic information of
the target object at the training stage with supervision, and then uses the learned infor-
mation to increase the significance of the expected region or the target of interest. Jing
et al. [39] proposed the use of supervision to obtain prior information from the data set.
Liu et al. [40] proposed using conditional random fields to generate a saliency map based
on the extracted features, such as the center surround histogram, multi-scale contrast, and
color space distribution. Zhang et al. [41] proposed not using a specific image set, but to
obtain statistical information directly from the natural image set, and then build a saliency
detection model that is based on the Bayesian method.

3. Proposed Method

3.1. Overall Structure

Figure 1 shows the overall flow of the algorithm. Figure 1a is the off-line memory stage.
Based on training images, color priors are calculated through probability statistics and
saved in the form of look-up tables for on-line mapping. Figure 1b is the on-line mapping
stage. Adaptive color prior weights are first calculated through pattern competition and
fusion. Subsequently, the acquired color prior saliency features of the test image are
obtained through indexing the lookup table. Finally, the image pyramid technique is
utilized to obtain the corresponding levels of color prior features {C4, C5, C6}, which are
fused with deep neural network features {P4, P5, P6} to perform the subsequent detection
tasks. The ideas behind the two stages are detailed below.

(1) “Off-line memory” stage: drawing on the characteristics of human memory, the
category pattern distribution of typical targets and the category-independent scene pattern
distribution are separately established based on object detection databases and stored
in a table. In order to facilitate memory and calculations, patterns are used to represent
the local characteristics of the target (the patterns are essentially limited one-dimensional
discrete numbers, such as grayscale, serialized colors, local binary patterns, etc., this article
focuses on YUV color features). For a given object detection dataset, the category pattern
distribution is established by aggregating the pattern frequencies in the target labeling
boxes of the same category, and the scene pattern distribution is calculated by aggregating
the pattern frequencies of all training images.

(2) “On-line mapping” stage: the object of interest in object detection usually only
occupies a small part of the image, and it is “significant” relative to the test image. Therefore,
only colors that are “significant” in the category pattern distribution and “rare” in both
the scene pattern distribution and the test image pattern distribution should be enhanced.
Thus, the saliency value of the color prior needs to be adaptively adjusted according
to the test image. The saliency value of the color prior is obtained through the fusion
and competition between the category pattern, the scene pattern, and the test image
pattern, thereby establishing a dynamic adaptive color prior model that is represented by
{pattern, saliency}. Borrowing the characteristics of human memory, the color saliency
features of the test image are then obtained in the form of index lookup table [17], and are
finally fused with the convolutional neural network features to work together on the object
detection task.
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Figure 1. Overall architecture of object detection method combined with color prior model.

3.2. “Off-Line Memory” Stage

This stage first introduces the representation method of the asymmetric color pattern
image, and then gives the calculation process of the category pattern distribution and the
scene pattern distribution, respectively, which can be saved offline.

3.2.1. Asymmetric Color Pattern Image

In this paper, patterns are used to represent the local features of images, so that mem-
ory and mapping can be achieved through probability statistics and indexing, respectively.
Let I ∈ Rw×h×3 be the input image, where w and h are the image width and image height,
respectively. We use the pattern operation Φ to transform the input image to a pattern
image B ∈ Zw×h (discrete integer space), which can be expressed as:

B = Φ(I) (1)

Pattern operation Φ can be the serialization of color features, or texture feature op-
erators, such as local binary pattern and ordinal features. In fact, when humans perform
color matching, they pay more attention to the difference of color components, and allow
a certain change in the brightness component to achieve illumination invariance to some
extent. In order to express this characteristic, the RGB format image is converted to the
YUV format image, and the asymmetric color pattern image is obtained. As we know, the
YUV color model is closer to the human visual mechanism than RGB color model, thus it is
more suitable for establishing the color prior model. In this paper, we quantize and splice
the values of the three channels of Y, U, and V to obtain an asymmetric color pattern image.
Quantizing the color channels can reduce the total number of patterns. In this paper, the
brightness component Y is quantized to 16 levels, and the color components U and V are
quantized to 32 levels, so as to allow certain brightness changes under the premise of better
color distinctness. Thus, each pattern occupies 14 bits, and the value range is [0,16383]. Let
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IY, IU and IV be the values of the Y, U, and V channels of the input image I, the calculation
process of the asymmetric color pattern image can be expressed as:

Bc = Con{IY � 4, IU � 3, IV � 3}
= (IY � 4) � 10 + (IU � 3) � 5 + (IV � 3)

(2)

Converting YUV images to pattern images is beneficial for memory and mapping.
Memory can be simply done by summing up the pattern occurrence frequencies in target
labeling images, from which color prior saliency for different types of targets can be learned
and stored in advance. When recognizing the world, the memorized priors can be picked
up by indexing, which is similar to human conditioned reflex.

3.2.2. Category Pattern Distribution and Scene Pattern Distribution

There are many ways to express color features. This article adopts the form of pattern
histogram. The pattern histogram expresses the probability distribution of different color
patterns in typical category targets and scene images. It discards the spatial location
information of color patterns in different images, thus it is translation and rotation invariant.
For the object detection data set, each image may contain multiple targets of different
categories, so we perform category pattern statistics that are based on the target block
image Io in the target labeling box. Denote In,k

o as the k-th target block image of the n-th
category target, then its pattern probability distribution can be obtained by statistical
histogram and normalization, which is recorded as:

Pn,k = Normalize{Hist�Φc(In,k
o )�}

= {pn,k
i , i = 0, 1, · · · , 16383}

(3)

The category pattern distribution can be obtained by continuously “memorizing” the
pattern probability distribution of all the target block images of the same category. For the
training data set without time label, we take the mean value of all target block images of
the same category as the final probability pattern distribution:

Pn =
{

pn
i =

1
Nn

Nn

∑
k=1

pn,k
i , i = 0, 1, · · · , 16383

}
(4)

where Nn is the total number of labeled samples of the n-th category.
There are always many different objects in natural scenes. The visual system usually

weights key areas via a top-down manner based on experience or interest in order to
make rational use of visual resources. This can be achieved through a visual competition
mechanism. If the occurrence frequency of pattern i of the k-th image is higher than that
of natural scenes or other types of targets, it means that the pattern i of the k-th image
is “competitive” and it should be enhanced, otherwise it will be suppressed. Denote
Pm =

{
pm

i , i = 0, 1, ..., 16383
}

as the pattern distribution of the m-th training image; we
approximate the scene pattern distribution Q0 with the mean of all training images:

Q0 =
{

q0
i =

1
M

M

∑
k=1

pk
i , i = 0, 1, · · · , 16383

}
(5)

where M is the total number of all training images.

3.3. “On-Line Mapping” Stage

This stage first establishes a dynamic adaptive color prior model through the fusion
and competition between category pattern, scene pattern, and test image pattern. Subse-
quently, indexing and pooling operations are employed to generate different levels of color
prior saliency features, which are finally combined with the convolutional neural network
features to jointly achieve the object detection task.
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3.3.1. Dynamic Adaptive Color Prior Model

In the cognitive world, the human cerebral cortex reflexively obtains the prior in-
formation of typical objects to assist object detection. In this paper, the color space is
converted into a pattern value, so that the prior saliency value of the color pattern of the
corresponding category object can be retrieved in order to assist in identifying important
objects. Specifically, the color prior model of the n-th category object can be expressed as:

Wn = {wn
i , i = 0, 1, · · · , 16383}, n ∈ [1, N] (6)

where wn
i is the prior saliency value of the i-th color pattern of the n-th object class and N

is the total number of object categories.
In the object detection scene, the object usually only occupies a small part of the image,

and it is “significant” relative to the test image. Therefore, only colors that are “significant”
in the category pattern distribution and “rare” in both the scene pattern distribution and
the test image pattern distribution should be enhanced. That is to say, the saliency value
of the color prior needs to be adaptively adjusted with the test image. For the test image
I , we calculate its asymmetric color pattern image B according to formula (1), and then
calculate the pattern distribution Qt of the test image, as below:

Qt = Normalize{Hist�B�} = {qt
i , i = 0, 1, · · · , 16383} (7)

Subsequently, the pattern weight can be obtained by fusion and competition among
the object pattern, scene pattern, and test image pattern:

Wn =
{

wn
i =

pn
i

η · q0
i + (1 − η) · qt

i
, i = 0, 1, · · · , 16383

}
, n = 1, 2, · · · , N (8)

where η is the forgetting factor of the scene pattern. The forgetting factor is introduced,
because, in addition to the scene pattern, it also needs to consider the influence of the test
image on the pattern weight.

3.3.2. Feature Map Generation

For the input image I ∈ Rw×h×3, the pattern operation Φ is used to map it to the
pattern image B ∈ Zw×h. For each pixel x ∈ R2 in the pattern image, B(x) ∈ Z is the color
pattern of the pixel. Taking B(x) as the index and reading the corresponding prior saliency
values {wn

B(x), n = 1, 2, · · · , N} from the color prior model Wn as its feature, we get N
prior features for each pixel of the input image. Finally, the prior saliency values of all the
pixels are organized in the form of multi-channel images to obtain priori saliency features
F ∈ Rw×h×N with N channels.

Subsequently, the obtained color prior saliency images are treated as features maps and
they are fused with those extracted by the convolutional neural network to complete the
subsequent object detection task. Taking Faster R-CNN as an example, the convolutional
neural network uses ResNet-101, and it employs the feature pyramid network to extract
multiple levels of features namely P2, P3, P4, P5, and P6. For the color prior model, we
utilize the image pyramid technique to pool the saliency maps into multiple corresponding
levels of saliency maps, namely C2, C3, C4, C5, and C6. We regard them as feature maps
and fuse them with multiple hierarchical features extracted by the convolutional neural
network together for the following object detection modules. In the detection task, the
fused features are firstly input to the region proposal network to obtain regions of interests
(ROIs). Subsequently, ROI pooling operation is utilized to extract regional features for
each ROI. Finally, the acquired regional features are inputs to fully connected networks to
output category probabilities and bounding box parameters.
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4. Experiments

4.1. Datasets

This paper uses the cognitive-driven color prior model to improve the performance of
the object detection algorithm. We verify the effectiveness of the proposed algorithm on
the PASCAL VOC dataset. We use the AP (Average Precision) of each category object to
measure the detection precision of the algorithm in different categories of objects, and then
use the average precision of all categories to measure the advantages and disadvantages of
the overall performance of the algorithm.

In the field of computer vision, PASCAL VOC is a set of standardized high-quality
data sets, which are mainly used for tasks, such as object recognition, image segmentation,
and object detection. PASCAL VOC marked a total of 20 categories of objects, namely:
people, birds, cats, dogs, cattle, sheep, horses, chairs, bottles, potted plants, dining tables,
TVs, sofas, bicycles, airplanes, buses, boats, cars, trains, and motorcycles. Figure 2 shows
a typical example of the PASCAL VOC2007 data set. It contains 9963 images and a total
of 24,640 labeled objects. It is composed of three parts, namely ghd train/val/test. The
PASCAL VOC2012 data set is an upgraded version of PASCAL VOC2007. Figure 3 shows
a typical example. The training set has 11,540 images and a total of 27,450 labeled objects.
This paper uses the train/val parts of VOC2007 and VOC2012 as the training set, and the
test part of VOC2007 as the test set to verify the proposed algorithm.

Figure 2. PASCAL VOC2007 datasets.

Figure 3. PASCAL VOC2012 datasets.

4.2. Implementation Details

The programming software for algorithm verification is the VsCode integrated devel-
opment environment with Ubuntu 18.04 operating system and Cuda environment. We use
an Intel i9-9920X CPU, 4 NVIDIA GeForce RTX2080TL GPUs and 96G DDR3 memories.
The deep learning framework is Pytorch.

We use Faster R-CNN+FPN [42] to undertake ablation experiments on the PASCAL
VOC data set, where the backbone network adopts ResNet-101 with pre-training weights
on the ImageNet data set. The training period is set to 12, the batch size to 1, the initial
learning rate to 0.001, and other parameters are consistent with the open source project [31].
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The color prior model involves an important parameter η. In order to make the color prior
model achieve the best results, we conduct a qualitative analysis on the parameter η, and
finally take η = 0.9 for ablation experiments and comparison experiments.

We select four classic target detection frameworks for comparison experiments, includ-
ing SSD [33], RetinaNet [43], Cascade-R-CNN [44], and Libra-R-CNN [45], in order to verify
the generality of the color prior model. The implementation of these algorithms mainly
refers to the mmdetection library. Mmdetection is an open source library that is based on
Pytorch and it currently supports many mainstream object detection models. Among them,
Libra-R-CNN [45] selects ResNet-50 [7] as the backbone network; SSD [33] sets the input
size to 300 and selects VGG16 [46] as the backbone network; Cascade-R-CNN [44] selects
ResNet-50 [7] as the backbone network; and, RetinaNet [43] selects ResNet-50 [7] as the
backbone network.

4.3. Overall Performance Verification of the Algorithm

We select Faster R-CNN+FPN as the baseline and compare the AP of the object
detection network with/without color priors on the VOC datasets in order to verify the
effectiveness of the color prior model. Faster R-CNN selects ResNet-101 to extract the
basic features of the input image, and it uses FPN to construct high-level semantic features
at various scales. FPN adopts a top-down hierarchical structure with side links. The
advantage is that it can make reasonable use of the inherent multi-scale and hierarchical
structure of deep convolutional networks, so that features at different scales have strong
semantic information. Through CNN+FPN, the test image obtains multiple feature layers,
namely {P2, P3, P4, P5, P6}, and it generates saliency maps through the color prior model.
The acquired saliency maps are then pooled into the corresponding multiple hierarchical
features namely {C2, C3, C4, C5, C6} through the image pyramid technique (the feature
maps are illustrated in Figure 4). The two sets of features are spliced and input into the
detection head RPN for the subsequent detection modules.

Figure 4. Test image and multi-level features.

Table 1 shows the performance comparison of the object detection algorithm with/
without the color prior model. On the VOC2007 data set and VOC07+12 data set, the mAP
of the object detection network combined with the color prior model surpasses the baselines
by 1.1% and 1.0%, respectively. It shows that the color prior model is effective and it can
improve the performance of the object detection algorithm on different data sets. Table 2
shows the speed comparison of whether to use the color prior model. We implement the
color prior model in Python language in order to quickly verify the experimental effect.
Because pixel-level image operations in Python are inefficient, the speed of current version
is slow. We will reimplement it in C language in future work to improve the efficiency.
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Table 1. Performance comparison of whether to use the color prior model.

Backbone Datasets ColorPriors mAP

Faster R-CNN+FPN ResNet-101 VOC2007 × 0.756

Faster R-CNN+FPN ResNet-101 VOC2007 � 0.764

Faster R-CNN+FPN ResNet-101 VOC07+12 × 0.803

Faster R-CNN+FPN ResNet-101 VOC07+12 � 0.811

Table 2. Speed comparison of whether to use the color prior model (datasets:VOC2007).

Backbone ColorPriors Train Speed/Epoch Test Speed/Epoch

Faster R-CNN+FPN ResNet-101 × 0.5 h 0.08 h

Faster R-CNN+FPN ResNet-101 � 0.66 h 0.16 h

Figure 5 shows the result images of the benchmark algorithm and the proposed
algorithm in a typical experiment of object detection. It can be seen from the figure that the
benchmark algorithm has an error detection (left column in Figure 5), class error (middle
column in Figure 5), and missed detection (right column in Figure 5). However, the object
to be detected still has certain color characteristics, and the correct detection result can be
obtained by combining the color prior model, which proves that the cognitive-driven color
prior model can enhance the performance of the target detection algorithm.

Figure 5. The typical result images of target detection, the first row is from the benchmark algorithm,
and the second row is from the proposed algorithm.
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4.4. Ablation Study

We conduct ablation experiments according to whether the following design ideas
are included:

• YUV asymmetric color pattern: Another option is to use the RGB color pattern.
• Whether to use forgetting factor η.
• Fusion methods of color features and network features: a variety of feature fusion

methods are designed and compared, and the experiments are performed to verify
that the best feature fusion method is selected.

Table 3 shows the performance comparison of object detection algorithms using YUV
asymmetric color pattern and RGB color pattern. The RGB color pattern is formed by
quantizing the R, G, and B components into 32 levels and splicing them, thus each pattern
occupies 16 bits. Meanwhile, the YUV asymmetric color pattern that is proposed in this
article only occupies 14 bits, which reduces the storage capacity of the color prior model
and increases the calculation speed. It can be seen from the table that the mAP of using
the YUV asymmetric color pattern has advantages in both the VOC2007 data set and the
VOC07+12 data set, indicating that it is more effective than the RGB color pattern.

Table 3. Performance comparison of object detection algorithms using different color spaces.

Backbone Datasets ColorPriors Color Pattern mAP

Faster R-CNN+FPN ResNet-101 VOC2007 � RGB 0.762

Faster R-CNN+FPN ResNet-101 VOC2007 � YUV 0.764

Faster R-CNN+FPN ResNet-101 VOC07+12 � RGB 0.808

Faster R-CNN+FPN ResNet-101 VOC07+12 � YUV 0.811

In order to obtain more robust color prior information, we introduce the forgetting
factor η, using test image features to dynamically and adaptively adjust the memory prior.
Table 4 shows the performance comparison of object detection algorithms with/without
the forgetting factor. From the table it can be seen that the color prior model using the
forgetting factor is better than the case where the forgetting factor is not used on the
VOC2007 data set and the VOC07+12 data set, which proves that the forgetting factor is
useful for the color prior model.

Table 4. Performance comparison of object detection algorithms with/without forgetting factor.

Backbone Datasets ColorPriors η mAP

Faster R-CNN+FPN ResNet-101 VOC2007 � × 0.760

Faster R-CNN+FPN ResNet-101 VOC2007 � � 0.764

Faster R-CNN+FPN ResNet-101 VOC07+12 � × 0.807

Faster R-CNN+FPN ResNet-101 VOC07+12 � � 0.811

In the feature fusion stage, we compared various fusion strategies, as shown in Table 5,
where C represents the color prior features, P represents the neural network features, C_P
represents splicing C and P, PH represents multiplying P by the channel mean value of C
pixel by pixel as spatial saliency weighting, PH_P represents splicing PH and P, and PH+P
represents the addition of PH and P. Through comparative experiments, it can be seen that
the feature fusion method of C_P has the best effect. The PH_P and PH+P fusion methods
can also improve the performance of the detection network, but the effect is not as good as
the C_P method. The PH method reduces the performance of the object detection network.
The reason may be that the spatial saliency weighting inhibits part of the effective feature
expression of the neural network. We will continue to pay attention to the research in this
area in future experiments.
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Table 5. Performance comparison of object detection algorithms using different feature fusion strategies.

Backbone Datasets ColorPriors Fusion Strategy mAP

Faster R-CNN+FPN ResNet-101 VOC2007 � C_P 0.764

Faster R-CNN+FPN ResNet-101 VOC2007 � PH 0.737

Faster R-CNN+FPN ResNet-101 VOC2007 � PH_P 0.759

Faster R-CNN+FPN ResNet-101 VOC2007 � PH+P 0.759

Faster R-CNN+FPN ResNet-101 VOC07+12 � C_P 0.811

Faster R-CNN+FPN ResNet-101 VOC07+12 � PH 0.779

Faster R-CNN+FPN ResNet-101 VOC07+12 � PH_P 0.805

Faster R-CNN+FPN ResNet-101 VOC07+12 � PH+P 0.804

4.5. Comparative Study

We select four classic object detection networks for grouping experiments in order to
verify the universality of the color prior model. Table 6 shows the comparative experimental
results on VOC2007 and VOC07+12 data sets. It can be seen from the table that: (1) color
prior model can be used to improve the accuracy for all the above-mentioned object
detection networks, which proves that the proposed method is universal to different object
detection networks. (2) The object detection networks utilizing the color prior model
obtained improved performances when compared with those of the original frameworks
on both the VOC2007 data set and VOC07+12 data set. This proves that the color prior
model has strong versatility under different data sets.

Table 6. Comparative experiments of different target detection networks.

Backbone ColorPriors mAP Using VOC07 mAP Using VOC07+12

Cascade R-CNN
ResNet-50 × 0.726 0.781

ResNet-50 � 0.732 0.788

SSD300
VGG16 × 0.707 0.775

VGG16 � 0.712 0.782

Libra R-CNN
ResNet-50 × 0.743 0.808

ResNet-50 � 0.748 0.813

RetinaNet
ResNet-50 × 0.712 0.793

ResNet-50 � 0.717 0.797

5. Conclusions

This paper proposes an object detection method utilizing the color prior model. Specif-
ically, we first learn from the visual attention mechanism to calculate the scene pattern
distribution and category pattern distributions from annotated datasets, and save them in
the form of tables off-line. For the on-line phase, the scene pattern distribution, category
pattern distribution, and test image pattern distribution are competed and fused to gener-
ate adaptive color pattern weights, based on which color prior features can be efficiently
obtained through indexing. Finally, the acquired color prior features are fused with CNN
features for the subsequent object detection modules. The proposed color prior model is
cognitively driven and it has no training parameters, so it has strong generalization ability.
The experiments show that color priors can effectively improve the performance of object
detection networks with different structures. In future work, we will investigate the effects
of other color patterns, explore the self adaptability method of the forgetting factor, and
study the fusion strategy between the color prior model and the object detection network
at different stages.
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Abstract: With the development of mobile communication network, especially 5G today and 6G
in the future, the security and privacy of digital images are important in network applications.
Meanwhile, high resolution images will take up a lot of bandwidth and storage space in the cloud
applications. Facing the demands, an efficient and secure plaintext-related chaotic image encryption
scheme is proposed based on compressive sensing for achieving the compression and encryption
simultaneously. In the proposed scheme, the internal keys for controlling the whole process of
compression and encryption is first generated by plain image and initial key. Subsequently, discrete
wavelets transform is used in order to convert the plain image to the coefficient matrix. After that,
the permutation processing, which is controlled by the two-dimensional Sine improved Logistic
iterative chaotic map (2D-SLIM), was done on the coefficient matrix in order to make the matrix
energy dispersive. Furthermore, a plaintext related compressive sensing has been done utilizing a
measurement matrix generated by 2D-SLIM. In order to make the cipher image lower correlation and
distribute uniform, measurement results quantified the 0∼255 and the permutation and diffusion
operation is done under the controlling by two-dimensional Logistic-Sine-coupling map (2D-LSCM).
Finally, some common compression and security performance analysis methods are used to test our
scheme. The test and comparison results shown in our proposed scheme have both excellent security
and compression performance when compared with other recent works, thus ensuring the digital
image application in the network.

Keywords: image encryption; compressive sensing; plaintext related; chaotic system

1. Introduction

Nowadays, digital images are becoming one of the most important data formats in
our daily life. The risk of information leakage is inevitable when we share photos with
others on the social network platform. Therefore, the security of digital images attracts a
great of scholars’ attention.

The image encryption is an important method in image security. Many text struc-
ture encryption schemes, such as advanced encryption standard (AES), data encryption
standard (DES), etc., have poor performance on image encryption. These schemes cannot
break the correlation among adjacent pixels that may leak some geometric distribution of
plain image. Image data are different from text data, which have some specific features, so
the image encryption scheme must be designed according to these characteristics. At the
beginning, the researchers used some special transformation matrixes, such as magic cube
transformation, Arnold cat map, etc., in order to permutate the plain image without under
security keys controlling. However, they are against Kerckhoffs’s principle, which requires
the cryptosystem to be a white box, except for security keys.

Chaos theory as a cornerstone of nonlinear dynamic that is wildly used in many fields
was first proposed by Lorenz [1]. The chaotic system has many good characteristics, such
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as randomness, ergodicity, sensitivity to initial values, and parameters [2], so it is suitable
for the design of the cryptosystem. Matthews [3] first introduced a chaotic system into
designing image cryptosystem. After that, a variety of image encryption algorithms have
been put forward in the sspatial domain. These image encryption methods can be roughly
classified as: (1) image encryption that is based on transformation matrixes [4–6]. This
kind of algorithm mainly used the transformation matrix like magic cube transformation
and Arnold cat map to permutation, and then used the chaotic system for diffusion. (2)
The image encryption scheme that is based on deoxyribonucleic acid (DNA) encoding and
chaotic system [7–9]. In this kind of scheme, the authors usually used DNA rules to encode
the plain-image and controlled permutation and diffusion process on encoded data by the
chaotic system. (3) Image encryption that is based on chaotic S-box [10–12]. Researchers
usually used chaotic systems to design an S-box and encrypted image data by the nonlinear
component. (4) Other spatial domain image encryption schemes [13–16].

Generally, the online transmission of image data requires a larger bandwidth. There-
fore, image compression is very important for network applications, which can improve
the efficiency of image transmission. In general, image compression not only utilizes the
correlation between adjacent pixels, but it also encodes the non-uniform distribution of
image pixels. However, image encryption will totally break the correlation among adjacent
pixels and make its distribution uniform. Thus, the cipher image is not suitable for image
compression. Not only that, the loss of image compression can also make the image impos-
sible to be decrypted. Therefore, the compression must be executed early or at the same
time as encryption.

Compressed sensing (CS) is a kind of effective data compression technology [17] when
the data satisfy sparsity in a certain domain. When compared with Nyquist theory, CS
can recover the entire signal from a smaller number of measurements [18]. In CS theory,
when the signal is sparse in a transformation domain, a measurement matrix can be used
to project the signal randomly, and then the original signal can be reconstructed by convex
optimization algorithm. Fortunately, the images are sparse in many transform domains
and are well suited to apply to CS theory. Therefore, based on compressed sensing, how to
perform the image encryption also is a topical issue. Chai et al. [19] proposed an image
encryption scheme that is based on magnetic-controlled memristive chaotic system and
compressive sensing. This scheme first transform image to discrete wavelet transform
(DWT) domain. Subsequently, some permutations have been done with this coefficient
matrix. Finally, the compressive sensing used a measurement matrix that was generated
by a chaotic system. In this scheme, although the generation of measurement matrix is
related to plain image information, the plain image sensitivity of the scheme is still not
good enough. In addition, the uneven energy distribution of cipher images generated by
the scheme may also cause the leakage of some plain image information. Zhu et al. [20]
proposed an image encryption scheme, which uses the random Gaussian matrix generated
by Chebyshev mapping to execute compressive sensing. Chai et al. [21] proposed a chaotic
image encryption scheme, which uses elementary cellular automata and block compressive
sensing. In this scheme, a plain image is transformed by DWT at first, then compressive
processing under the measurement matrix generated by a parameter-varying chaotic
system is done. The plain image sensitivity of this scheme is good, because all of the initial
values of chaotic system are related to the plain image. However, the randomness of cipher
image seems not good enough. Zhu et al. [22] proposed an image encryption scheme,
which is based on nonuniform sampling by block CS. In this scheme, the discrete cosine
transform (DCT) is used to generate the coefficients matrix, and then perform compressive
sensing processing by two measurement matrices that are generated by the logistic map.
Finally, undertake the diffusion and permutation under logistic map controlling. However,
the whole diffusion process is related to the result that is calculated in previous pixels;
thus, the robustness must not be as good as mentioned. Gong et al. [23] proposed an image
compression and encryption algorithm. In this scheme, the plain image is first permuted
by the Arnold transform to reduce the block effect in the compression process, and then
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the coefficient matrix is compressed and encrypted by CS, simultaneously. The keys in this
scheme are generated by a plain image without any external keys; it means that each cipher
image corresponds to a unique key, which is not conducive to key distribution management
and batch image encryption. Kayalvizhi et al. [24] proposed an image encryption scheme,
which is based on compressive sensing, fractional order hyper chaotic Chen system, and
DNA operations. In this scheme, block compressive sensing is executed to the plain image,
and then execute DNA encoding to the measurement matrix. After that, complete some
diffusion operation in DNA sequences. The whole process is not related to the plain image
and the sensitivity of plain image has weak resistance to differential attack. Moreover,
DNA encoding and decoding may consume a large amount of computing time, which
results in the low efficiency of this algorithm.

To conquer the drawback what mentioned above, a plaintext related image encryption
scheme is given using compressive sensing and two hyper chaotic systems. The detailed
contributions are as follows:

• In order to make the image cryptosystem more sensitive to the plain image, a plain
image information-related method is proposed, which makes the plaintext information
involved in the whole control process of compressive sensing and encryption, and
make the image cryptosystem have excellent performance in resisting differential
attack.

• The generation method of the measurement matrix for compression encryption is
presented, which is based on a chaotic system and the information of plain images,
and make the CS process fully related to the plain image. In other words, different
plain images correspond to different measurement matrices. Additionally, a permute
and diffuse operation is used for the measurement matrix, which makes the pixels of
the cipher image present lower correlation and uniform distribution.

• The peak signal to noise ratio and structural similarity index measurement is used to
evaluate compression performance, and many common security analyses methods
are carried out, such as key space analysis, differential attack, statistical analysis, key
sensitivity analysis, etc., in order to evaluate security performance.

This paper is organized, as follows: in Section 2, the preliminary for this paper is given,
such as compressive sensing and chaotic system. In Section 3, an efficient image encryption
scheme that is based on chaos and compressive sensing is introduced. In Section 4, some
common compression analyses and security analyses of the proposed image cryptosystem
are given. In Section 5, we conclude this paper.

2. Preliminary

2.1. Compressive Sensing

The aim of CS model [25] is to recover a sparse image signal X ∈ R
n×n from fewer

measurements Y ∈ R
m×n is given by:

Y = ΦΦΦX = ΦΦΦΨΨΨP (1)

where ΦΦΦ ∈ R
m×n is a measurement sensing matrix whose distribution satisfies Gaussian

distribution. Let A = ΦΦΦΨΨΨ, where the columns satisfy the linearly independent condition.
When A satisfies a certain condition, i.e., Restricted Isometry Constant (RIC), the restricted
isometry property(RIP), the CS theory shows that only a sufficiently sparse signal P can
be recovered with a high probability exactly from Y . The linear measurement process is
expressed as a regularized form, as

min‖vec(P)‖0 s.t. ‖AP − Y‖2 ≤ η (2)

where ‖ · ‖0 denotes the l0 norm as a sparsity constraint and η is a constant. This form aims
to find the most sparse solution that fits the observation model well. However, it is Non-
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deterministic Polynomial (NP)-hard problem to solve Equation (2). A convex relaxation
method is to apply the l1 norm of the l0 norm, as follows:

min‖vec(P)‖1 s.t. ‖AP − Y‖2 ≤ η (3)

Theoretical analysis has shown that the l1 norm can also approach the most sparse
solution under some conditions [25,26]. Equation (3) can be solved by some optimization
algorithms, such as the gradient descent method (GDM) [27] abd orthogonal matching
pursuit (OMP) [28].

2.2. Chaotic System

The chaotic systems in our proposed scheme are used to control the permutation and
diffusion process, and to generate a measure matrix of compressive sensing, which are the
key points of encryption and compression performance. Therefore, our cryptosystem is
required to choose hyper chaotic systems that have better chaotic characteristics.

The two-dimensional Sine improved Logistic iterative chaotic map (2D-SLIM) [29] is
given by {

xi+1 = sin(byi) sin(50/xi)
yi+1 = a

(
1 − 2x2

i+1
)

sin(50/yi)
(4)

where a and b are the system parameters. When a ∈ (0, 3] and b = 2π or when a = 1 and
b ∈ [4, 7], the system becomes hyper chaotic.

The two-dimensional Logistic-Sine-coupling map (2D-LSCM) [30] is given by{
xi+1 = sin(π(4θxi(1 − xi) + (1 − θ) sin(πyi)))
yi+1 = sin(π(4θyi(1 − yi) + (1 − θ) sin(πxi+1)))

(5)

where θ is the control parameter. When θ ∈ (0, 1), the system has hyper chaotic behavior.

Remark 1. In our proposed scheme, we used 2D-SLIM and 2D-LSCM, two discrete hyper chaotic
systems, to control the encryption process. In fact, other discrete hyper chaotic systems can also be
extended in our scheme, and the only difference in those selection is the size of key space. Furthermore,
the reason why we select the two different hyper chaotic systems to control the encryption and
compression process is that it can avoid, as much as possible, some unexpected situations occurring,
such as dynamical degradation of chaotic systems [31,32], weak real keys, etc.

3. Our Proposed Scheme

The image cryptosystem is proposed in this section. First, a plaintext related internal
keys generation method is introduced in Section 3.1. Afterwards, we present the encryption
scheme in Section 3.2. Finally, we propose the decryption scheme in Section 3.3.

3.1. Plaintext-Related Internal Keys Generation

In this subsection, we proposed a method for generating the internal keys that are
related to plaintext. The internal keys are used to generate the initial values and parameters
of hyper chaotic systems that are used to control all processes of encryption and decryption.
Therefore, the plaintext-related internal key generation method can make our proposed
image cryptosystem more plaintext sensitive to resisting differential attack. There are two
parts in plaintext-related internal key generation: plaintext information extraction and
internal keys generation.

Algorithm 1 shows the plain image information extraction algorithm.
The detailed description are as follows:
Step 1: input plain image matrix P and initial key K into algorithm, and begin.
Step 2: expand the plain image matrix P into a vector P(:) in rows, and then change

this vector to a string SP.
Step 3: input string SP into hash function SHA256, and denote the hash value as HP.
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Step 4: input initial key K into hash function SHA256, and denote the hash value
as HK.

Step 5: put hash values HP and HK together and input them into hash function
SHA256. The hash value is extracted plain image information EPI.

Step 6: output the extracted plain image information EPI, and finished.

Algorithm 1 Plain image information extraction

Input: Plain image matrix P and initial key K

Output: Extracted plain image information EPI.

1: String SP ← P(:)

2: HP ← SHA256(SP)

3: HK ← SHA256(K)

4: EPI ← SHA256([HP,HK])

Algorithm 2 shows the internal keys generation algorithm.

Algorithm 2 Internal keys generation

Input: Extracted plain image information EPI, initial key K

Output: Internal keys [K1,K2,K3,K4].

1: HK ← SHA256(K)

2: INKEY ← SHA256([EPI,HK])

3: I1 ← INKEY(1:64)

4: I2 ← INKEY(65:128)

5: I3 ← INKEY(129:192)

6: I4 ← INKEY(193:256)

7: CN1← mod(I1/108, 256) CN2← mod(I2/108, 256)

8: CN3← mod(I3/108, 256) CN4← mod(I4/108, 256)

9: K1 ← BitCyclicShift(INKEY, CN1)

10: K2 ← BitCyclicShift(INKEY, CN2)

11: K3 ← BitCyclicShift(INKEY, CN3)

12: K4 ← BitCyclicShift(INKEY, CN4)

The detailed description are as follows:
Step 1: input extracted plain image information EPI and initial key K, and begin.
Step 2: input initial key K into hash function SHA256, and denote the hash value

as HK.
Step 3: put extracted plain image information EPI and hash value HK together and

input them into hash function SHA256. Denote the hash value as INKEY.
Step 4: split INKEY into four parts, and everypart with 64 bits, denoted as I1, I2, I3

and I4.
Step 5: calculate the control values as CN1 = mod(I1/108, 256), CN2= mod(I2/108,

256), CN3= mod(I3/108, 256), and CN4= mod(I4/108, 256).
Step 6: bit cyclic shift INKEY CN1 bits to right direction, and generate 256 bits internal

key K1, after that, at same operation to bit cyclic shift INKEY under CN2, CN3, CN4 control,
and generate internal keys K2,K3,K4.

Step 7: output internal keys [K1,K2,K3,K4], and finished.
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3.2. Encryption Scheme

In this subsection, we will introduce our proposed encryption scheme. The encryption
scheme takes, as inputs, plain image P, initial key K, and compression ratio CR, and
put outputs, such as cipher image and some additional ciphertext information. The
compression ratio (CR) means the ratio of the number of pixels in the compressed image to
that in the original image. Figure 1 shows the block diagram of the encryption scheme, and
the detailed description are as follows:

Initial key

SH
A
25
6

Cyclic shift

SH
A
25
6

HP

HK

[HP,HK]

SH
A
25
6

EPI

Cipher 2

Cipher Image

[EPI,HK]
SH
A
25
6

INKEYI1 I2 I3 I4

K1

K2

K3

K4

DWT CM

2D-SLIM

a01,x11,y11

2D-SLIM

a02,x12,y12

2D-LSCM

q1,xx0,yy0

2D-LSCM

q2,xx1,yy1

Permutation I
F

PM CS

KM U1,U2

Quantization Diffusion Permutation II

Figure 1. The block diagram of the encryption scheme.

Step 1: input plain image P (N × N), initial key K and compression ratio CR, and the
encryption process begins.

Step 2: input plain image matrix P and initial key K into Algorithm 1 to get extracted
plain image information EPI. After that, input extracted plain image information EPI and
initial key K into Algorithm 2 to generate internal keys [K1,K2,K3,K4].

Step 3: input plain image P into discrete wavelet transform (DWT) to sparse represen-
tation, and we denote sparse coefficient matrix as CM.

Step 4: input coefficient matrix CM and internal key K1 into Algorithm 3 to make
plaintext energy evenly distributed.
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Algorithm 3 Permutation I algorithm

Input: Coefficient matrix CM and internal key K1

Output: Permutated coefficient matrix PM.

1: I1 ← K1(1:64); I2 ← K1(65:128); I3 ← K1(129:192)

2: a01 ← f ix(mod(I1/106, 3)) + mod(I1/1014, 1); b ← 2π

3: x11 ← mod(I2/1014, 1); y11 ← mod(I3/1014, 1)

4: Put a01, b, x11, y11 into Equation (4) to generate a sequence S by iterating.

5: X ← mod( f ix((S + 100)× 1010), N × N) + 1

6: Remove the repeated elements from X, put the absent numbers at the end.

7: Change CM to a vector CMA in rows.

8: len ← length(CMA)

9: for i = 1 to f ix(len/2) do

10: CMA(X(i)) ↔ CMA(X(len − i + 1))

11: end for

12: PM ← reshape(CMA, N, N)

Step 5: Calculate the threshold value TS by Algorithm 4.

Algorithm 4 Calculate threshold algorithm

Input: Coefficient matrix CM and compression ratio CR

Output: Threshold value TS.

1: Change CM to a vector CMA in rows.

2: Arrange the vector CMA from the smallest to the largest

3: len ← length(CMA)

4: TS ← CMA( f loor(len − N × N×CR/7))

Step 6: if the element in the permutated coefficient matrix PM absolute value less than
threshold TS, then set this element to 0. The new generated matrix is denoted as PM2.

Step 7: input matrix PM2, compression ratio CR, and internal key K2 into Algorithm 5
to obtain the measurements CSM.
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Algorithm 5 Compressive sensing algorithm

Input: The matrix PM2, compression ratio CR, and internal key K2

Output: The compressive sensing measurements CSM.

1: I1 ← K2(1:64)

2: I2 ← K2(65:128)

3: I3 ← K2(129:192)

4: a02 ← f ix(mod(I1/106, 3)) + mod(I1/1014, 1);

5: b ← 2π

6: x12 ← mod(I2/1014, 1)

7: y12 ← mod(I3/1014, 1)

8: M ← f ix(N × CR)

9: Put a02, b, x12, y12 into Equation (4) to generate a sequence S by iterating M × N times.

10: Φ0 ← reshape(S, M, N)

11: Φ ← √
2/M · Φ0, where

√
2/M is used for normalization [33].

12: CSM ← PM2 × Φ

Step 8: quantize the compressive sensing measurements CSM to the range of [0, 255]
and generate quantized matrix QM by

QM = round (255 × (CSM − MAX)/(MAX − MIN)) (6)

where round(x) represents the nearest integer with x, and MIN and MAX are the minimum
and maximum numbers of CSM.

Step 9: input quantized matrix QM and internal keys K3,K4 into Algorithm 6 to do
diffusion and permutation II.

Step 10: output cipher image C1 and additional cipher information
C2 = [EPI, MAX, MIN]. The encryption process is finished.
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Algorithm 6 Diffusion and permutation II algorithm

Input: Quantized matrix QM and internal keys K3,K4

Output: Cipher image C1.

1: I1 ← K3(1:64); I2 ← K3(65:128); I3 ← K3(129:192);

I4 ← K4(1:64); I5 ← K4(65:128); I6 ← K4(129:192).

2: θ1 ← mod(I1/1014, 1); xx0 ← mod(I2/1014, 1); yy0 ← mod(I3/1014, 1).

3: θ2 ← mod(I4/1014, 1); xx1 ← mod(I5/1014, 1); yy1 ← mod(I6/1014, 1).

4: if 0.33 < θ1 < 0.66 then

5: θ1 ← mod(θ1 + 0.33, 1)

6: end if

7: if 0.33 < θ2 < 0.66 then

8: θ2 ← mod(θ2 + 0.33, 1)

9: end if

10: [M, N] ← size(QM)

11: Put θ1, xx0, yy0 into Equation (5) to generate a sequence S0 by iterating M × N times.

12: KM ← f loor(mod(S0 × 1013, 256))

13: DM ← QM
⊕

KM

14: Put θ2, xx1, yy1 into Equation (5) to generate a sequence X1 and Y1 by iterating

max(M, N) times.

15: U1 ← f loor(mod(X1(1 : M)× 105, (M − 1))) + 1

16: U2 ← f loor(mod(Y1(1 : N)× 105, (N − 1))) + 1

17: for i = 1 to M do

18: DM(i, :) ← CircleShi f t(DM(i, :), U1(i))

19: end for

20: for i = 1 to N do

21: DM(:, i) ← CircleShi f t(DM(:, i), U2(i))

22: end for

23: C1 ← DM

3.3. Decryption Scheme

The decryption process is the inverse process of encryption, and it takes input as
cipher image C1, additional cipher information C2, and initial key K, and put the output as
recovering plain image. Figure 2 shows the block diagram of the decryption scheme, and
the detailed description is as follows:

Step 1: input cipher image C1(M × N), additional cipher information C2, and initial
key K and the decryption process begins.

Step 2: input EPI and initial key K into Algorithm 2 to generate internal keys
[K1,K2,K3,K4].

Step 3: input cipher image C1 and internal keys K3,K4 into Algorithm 7 to do reverse
permutation II and reverse diffusion.
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Algorithm 7 Reverse permutation II and reverse diffusion algorithm

Input: Cipher image C1 and internal keys K3,K4

Output: Reverse permutation and diffusion matrix RPDM.

1: I1 ← K3(1:64); I2 ← K3(65:128); I3 ← K3(129:192);

I4 ← K4(1:64); I5 ← K4(65:128); I6 ← K4(129:192).

2: θ1 ← mod(I1/1014, 1); xx0 ← mod(I2/1014, 1); yy0 ← mod(I3/1014, 1).

3: θ2 ← mod(I4/1014, 1); xx1 ← mod(I5/1014, 1); yy1 ← mod(I6/1014, 1).

4: if 0.33 < θ1 < 0.66 then

5: θ1 ← mod(θ1 + 0.33, 1)

6: end if

7: if 0.33 < θ2 < 0.66 then

8: θ2 ← mod(θ2 + 0.33, 1)

9: end if

10: [M, N] ← size(C1)

11: Put θ2, xx1, yy1 into Equation (5) to generate a sequence X1 and Y1 by iterating

max(M, N) times.

12: U1 ← f loor(mod(X1(1 : M)× 105, (M − 1))) + 1

13: U2 ← f loor(mod(Y1(1 : N)× 105, (N − 1))) + 1

14: for i = 1 to N do

15: C1(:, i) ← CircleShi f t(C1(:, i), -U2(i))

16: end for

17: for i = 1 to M do

18: C1(i, :) ← CircleShi f t(C1(i, :), -U1(i))

19: end for

20: Put θ1, xx0, yy0 into Equation (5) to generate a sequence S0 by iterating M × N times.

21: KM ← f loor(mod(S0 × 1013, 256))

22: RPDM ← C1
⊕

KM

Step 4: Do reverse quantization to the matrix RPDM, and generate reverse quantized
matrix RQM by

RQM =
RPDM × (MAX − MIN)

255
+ MIN (7)

Step 5: Input matrix RQM and internal keys K2 into Algorithm 8 to reconstruct
matrix RCM.

Step 6: input reconstruct matrix RCM and internal key K1 into Algorithm 9 to under-
take reverse permutation I.

Step 7: input matrix RPM into inverse discrete wavelet transform (IDWT) in order to
recover plain image P.

Step 8: output recover plain image P and the decryption process is finished.
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Algorithm 8 Matrix reconstruction algorithm

Input: Matrix RQM and internal keys K2

Output: Reconstruct matrix RCM.

1: I1 ← K2(1:64)

2: I2 ← K2(65:128)

3: I3 ← K2(129:192)

4: a02 ← f ix(mod(I1/106, 3)) + mod(I1/1014, 1); b ← 2π

5: x12 ← mod(I2/1014, 1)

6: y12 ← mod(I3/1014, 1)

7: [M, N] ← size(RQM)

8: Put a02, b, x12, y12 into Equation (4) to generate a sequence S by iterating M × N times.

9: Φ0 ← reshape(S, M, N)

10: Φ ← √
2/M · Φ0, where

√
2/M is used for normalization.

11: for i = 1 to N do

12: RCM(:, i) ← OMP(RQM, Φ, N)

13: end for

Algorithm 9 Reverse permutation I algorithm

Input: Reconstruct matrix RCM and internal key K1

Output: Reverse permutated matrix RPM.

1: I1 ← K1(1:64)

2: I2 ← K1(65:128)

3: I3 ← K1(129:192)

4: a01 ← f ix(mod(I1/106, 3)) + mod(I1/1014, 1);

5: b ← 2π

6: x11 ← mod(I2/1014, 1)

7: y11 ← mod(I3/1014, 1)

8: Put a01, b, x11, y11 into Equation (4) to generate a sequence S by iterating.

9: X ← mod( f ix((S + 100)× 1010), N × N) + 1

10: Remove the repeated elements from X, put the absent numbers at the end.

11: Change RCM to a vector RCMA in rows.

12: len ← length(RCMA)

13: for i = 1 to f ix(len/2) do

14: RCMA(X(i)) ↔ RCMA(X(len − i + 1))

15: end for

16: RPM ← reshape(RCMA, N, N)
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Figure 2. The block diagram of the decryption scheme.

4. Simulation and Analysis

In this section, we will evaluate our proposed image cryptosystem. The simulations
and performance evaluations are implemented in MATLAB R2016a. Our hardware environ-
ment for tests was a personal computer with Inter(R) Core i7-6700k CPU 4.00 GHz, 32 GB
memory, and the operation system is Windows 7 home edition. For simulation and tests,
the initial key is selected as ‘a2b235c5dd4345d2445e33e25ef255f524235ec’ in hexadecimal,
and one of the parameters of 2D-SLIM, which is given in Equation (4), is set as b = 2π.
We first select 512 × 512 8-bit level gray images ’Lena’, ’Pepper’, and ’Cameraman’ for
simulation, and encrypt them with CR = 0.1, 0.2, · · · , 0.9, respectively. Figure 3 shows
the simulation result. In the following subsections, we first discussed the performance
of compression, and then provided the common security analysis result of our proposed
image cryptosystem. Finally, we compared our work with other recent works in order to
make our proposed image cryptosystem more convincing.

4.1. Compression Analyses
4.1.1. Peak Signal to Noise Ratio (PSNR)

For measuring the difference between the decrypted image and the original image to
evaluate the recovery quality, we use the peak signal to noise ratio (PSNR) as a measurement
for evaluation. PSNR is given by

PSNR = 10 log10
255 × 255

1
N2 ∑N

i=1 ∑N
j=1(I(i, j)− I′(i, j))2 (8)

where I and I′ are the decrypted image and original image, respectively. In this test, we
first encrypt 256 × 256 and 512 × 512 plain images at different CRs, and then decrypt these
cipher images to obtain recovery images. Finally, we calculate PSNR between plain images
and recovery images. Table 1 and Figure 4 show the test result. According to the results, the
PSNR values between plain images and recovery images are increasing with the growth
of CRs, and the minimum of the PSNR is 31.7675 dB when the image is 256 × 256 and be
encrypted in CR = 0.2. Therefore, our proposed scheme has a very good compression
recovery performance.

4.1.2. Structural Similarity Index Measurement (SSIM)

The structural similarity index measurement (SSIM) is another important indictor for
evaluating the compression performance. The SSIM value can be calculated by

SSIM =
(2μIμI′ + C1)(2σI I′ + C2)(

μ2
I + μ2

I′ + C1
)(

σ2
I + σ2

I′ + C2
) (9)
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where C1 = (k1 × L)2, C2 = (k2 × L)2, k1 = 0.01, k2 = 0.03, L = 255. The μI and μI′ are the
average values of the decrypted image I′ and the original image I. The σI and σI′ are the
variance values, and σI I′ is the covariance value between I and I′. In this test, we also first
encrypt 256 × 256 and 512 × 512 plain images at different CRs, and then decrypt these cipher
images to obtain recovery images. Finally, we calculate the SSIM value between recovery
images and plain images. Table 2 and Figure 5 show the SSIM result. The SSIM values are also
increasing with CRs and the minimum value is also over 0.7, according to the results. It means
that, in this indicator, our scheme also has very good compression recovery performance.

CR=0.1 CR=0.2 CR=0.3 CR=0.4 CR=0.5 CR=0.6 CR=0.7 CR=0.8 CR=0.9Plain image

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(l)

Figure 3. Encryption simulation. Rows (a–d) are the simulation results of image ’Lena’, Rows
(e–h) are the simulation results of image ’Pepper’ and Rows (i–l) are the simulation results of
image ’Cameraman’. Column (1) are plain images. Columns (2–10) are the simulation results of
CR = 0.1, · · · , CR = 0.9, respectively.
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Table 1. The peak signal to noise ratio (PSNR) test results.

Images CR = 0.2 CR = 0.3 CR = 0.4 CR = 0.5 CR = 0.6 CR = 0.7 CR = 0.8 CR = 0.9

Lena (256 × 256) 32.8060 34.3257 35.5494 36.2231 37.0150 37.7089 38.4807 39.1588
Lena (512 × 512) 35.4609 36.6669 37.5536 38.4038 38.8188 39.3051 39.6735 40.0186

Pepper (256 × 256) 32.3384 33.9538 35.2645 36.3140 37.2489 37.9024 38.5522 39.4550
Pepper (512 × 512) 35.1376 36.1261 36.8545 37.1843 37.5528 37.9703 38.1828 38.2197

Airplane (256 × 256) 32.1119 33.1697 34.0963 34.7593 35.2559 35.6004 36.3997 36.9712
Airplane (512 × 512) 34.1957 35.0839 35.6081 36.2459 37.0352 37.2760 37.4211 37.7294

Boat (256 × 256) 31.7675 32.5097 33.3848 33.9783 34.5981 35.2112 35.7384 36.2905
Boat (512 × 512) 32.8568 33.9273 34.4103 35.1400 35.7692 36.4291 36.7441 37.3474

Cameraman (256 × 256) 31.9799 33.1808 33.8290 34.4296 35.0475 35.5772 36.1571 36.7097
Cameraman (512 × 512) 36.0659 37.7784 39.2547 39.8190 40.6606 40.7227 40.7004 41.4673

Barbara (256 × 256) 32.3834 33.3900 34.2665 35.1264 35.7329 36.4359 36.9932 37.6480
Barbara (512 × 512) 32.3296 33.3472 34.1002 34.9419 35.8160 36.5540 37.3483 37.7838

(a) (b)

Figure 4. The Peak Signal to Noise Ratio (PSNR) test result. (a) shows the results of images with the size of 256 × 256. (b)
shows the results of images with the size of 512 × 512.

4.2. Key Space Analysis

The image cryptosystem requires enough key space to resist the brute-force attack.
In our proposed image cryptosystem, the two 2D-SLIM and two 2D-LSCM hyper chaotic
systems are used for controlling the permutation and diffusion process and for generating
a measure matrix of compressive sensing. Hence, the real keys are two system parameters
a01 ∈ (0, 3], a02 ∈ (0, 3] and four initial values x11 ∈ (0, 1), y11 ∈ (0, 1), x12 ∈ (0, 1), y12 ∈
(0, 1) of two 2D-SLIM systems, and two system parameters θ1 ∈ (0, 0.33)

⋃
(0.66, 1), θ2 ∈

(0, 0.33)
⋃
(0.66, 1) and four initial values xx0 ∈ (0, 1), yy0 ∈ (0, 1), xx1 ∈ (0, 1), yy1 ∈ (0, 1)

of two 2D-LSCM systems. The change step of each initial value and parameters are 10−15,
the key space can be calculated as S = (3× 1015)2 × 0.662 × (1015)10 = 3.9204× 10180 ≈ 2600.
Usually, if the key space is more than 2100, then we can consider that the image cryptosystem
is good at resisting the brute-force attack [34].

4.3. Differential Attack

Differential attack is a method for analyzing keys from two cipher images that are
encrypted by two tiny different plain images. The plain image sensitivity is an important
feature for an image cryptosystem to resist differential attack. There are two measurements
for evaluating the plain image sensitivity: the number of pixels change rate (NPCR) and
unified average changing intensity (UACI) [12,13]. The NPCR and UACI are given by
Equations (11) and (12), respectively.
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NPCR =
∑M

i=1 ∑N
j=1 D(i, j)

M × N
× 100%, (10)

where

D(i, j) =
{

0, C1(i, j) = C2(i, j)
1, C1(i, j) �= C2(i, j)

, (11)

UACI =
1

M × N

(
M

∑
i=1

N

∑
j=1

|C1(i, j)− C2(i, j)|
255

)
× 100%, (12)

where C1(i, j) and C2(i, j) are denoted as two cipher images that are generated by encrypt-
ing one-pixel different two plain images. M and N are the height and width of images,
respectively. In order to evaluate the NPCR and UACI results, the critical values are given
by Wu et al. [35]. The critical value of NPCR is given by:

N∗
α =

Q − Φ−1(α)
√

Q/H
Q + 1

, (13)

where H represents the total pixel numbers of image, Q represents the largest value that
the pixels allowed in the image, and α is the significance level. When the test NPCR value
is larger than critical value N∗

α , we can consider that the proposed system has good plain
image sensitivity.

Table 2. The Structural Similarity Index Measurement (SSIM) test results.

Images CR = 0.2 CR = 0.3 CR = 0.4 CR = 0.5 CR = 0.6 CR = 0.7 CR = 0.8 CR = 0.9

Lena (256 × 256) 0.7740 0.8476 0.8859 0.9018 0.9150 0.9262 0.9357 0.9424
Lena (512 × 512) 0.8278 0.8549 0.8713 0.8862 0.8909 0.8983 0.9034 0.9081

Pepper (256 × 256) 0.7603 0.8338 0.8716 0.8947 0.9097 0.9165 0.9227 0.9337
Pepper (512 × 512) 0.7911 0.8141 0.8309 0.8368 0.8458 0.8568 0.8616 0.8631

Airplane (256 × 256) 0.7303 0.8018 0.8429 0.8643 0.8713 0.8705 0.8901 0.8988
Airplane (512 × 512) 0.7988 0.8190 0.8254 0.8405 0.8586 0.8587 0.8581 0.8615

Boat (256 × 256) 0.7015 0.7670 0.8184 0.8425 0.8640 0.8816 0.8946 0.9050
Boat (512 × 512) 0.7330 0.7860 0.8012 0.8247 0.8424 0.8587 0.8656 0.8793

Cameraman (256 × 256) 0.6885 0.7740 0.8086 0.8332 0.8525 0.8664 0.8780 0.8873
Cameraman (512 × 512) 0.8567 0.8850 0.9076 0.9104 0.9202 0.9184 0.9149 0.9261

Barbara (256 × 256) 0.7509 0.8061 0.8424 0.8706 0.8864 0.9034 0.9136 0.9250
Barbara (512 × 512) 0.7644 0.8214 0.8471 0.8693 0.8886 0.8992 0.9122 0.9142

(a) (b)

Figure 5. The Structural Similarity Index Measurement (SSIM) test result. (a) is shown the results of images with the size of
256 × 256. (b) is shown the results of images with the size of 512 × 512.
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The UACI critical interval (U∗−
α ,U∗+

α ) is given by:{
u∗−

α = μu − Φ−1( α
2
)
σu,

u∗+
α = μu + Φ−1( α

2
)
σu,

(14)

where
μu =

Q + 2
3Q + 3

, (15)

and

σu =

√
(Q + 2)(Q2 + 2Q + 3)

18(Q + 1)2QH
. (16)

If the UACI value falls into interval (U∗−
α ,U∗+

α ), then we can consider the two test
images have enough difference. We assume significance level α = 0.05. When the test
image is 512 × 512, the NPCR critical value is N∗

0.05 = 99.5893% and the UACI critical
interval is (U∗−

0.05, U∗+
0.05) = (33.3730%, 33.5541%). When the test image is 256 × 256, the

NPCR critical value is N∗
0.05 = 99.5693% and the UACI critical interval is (U∗−

0.05, U∗+
0.05) =

(33.2824%, 33.6447%).
In this test, we complete the test 100 times for each CRs and calculate the average

value, respectively. Table 3 and Figure 6 show the tests results. According to the data and
figures, the NPCR and UACI test values are floating with CR changes. Nonetheless, all of
the test values are basically within the critical values. The test result has shown that our
proposed scheme is plain image enough in resisting the differential attack.

4.4. Statistical Analysis
4.4.1. Histogram Analysis

A histogram can reflect the statistical feature of cipher image; the histogram is closer
to uniform the better security performance. The histogram is shown in Figure 3. In
Figure 3 rows (a, e, i), there are some cipher images that are encrypted in deferent CRs,
and the corresponding histograms are shown in Figure 3 rows (b, f, j). The corresponding
decrypted images are shown in Figure 3 rows (c, g, k). Figure 3 rows (d, h, l) shows the
histograms of recovery image. The chi-squared test is used to evaluate the uniformity of
cipher image’s histogram. Table 4 provides the chi-squared test results of cipher images,
when the significance level is α = 0.05. According to the results, our scheme has enough
good diffused property to resist the statistical attack.

Table 3. Number of pixels change rate (NPCR) and unified average changing intensity (UACI) results.

Image
CR = 0.2 CR = 0.5 CR = 0.8

NPCR(%) UACI(%) NPCR(%) UACI(%) NPCR(%) UACI(%)

Lena (256 × 256) 99.6127 33.4770 99.6112 33.3843 99.6076 33.5224
Lena (512 × 512) 99.6086 33.3894 99.6078 33.4552 99.6086 33.5457

Pepper (256 × 256) 99.6179 33.3606 99.6132 33.4766 99.6097 33.5329
Pepper (512 × 512) 99.6050 33.4691 99.6103 33.4910 99.6087 33.4590

Airplane (256 × 256) 99.6142 33.5532 99.6110 33.6366 99.6099 33.5275
Airplane (512 × 512) 99.6135 33.5396 99.6112 33.5445 99.6097 33.5375

Boat (256 × 256) 99.6058 33.2956 99.6171 33.5142 99.6073 33.5132
Boat (512 × 512) 99.6119 33.3949 99.6073 33.4537 99.6081 33.4332

Cameraman (256 × 256) 99.6164 33.6333 99.6054 33.5684 99.6058 33.3942
Cameraman (512 × 512) 99.6078 33.4550 99.6100 33.4309 99.6095 33.5411

Barbara (256 × 256) 99.6125 33.5789 99.6036 33.5636 99.6125 33.5594
Barbara (512 × 512) 99.6088 33.4506 99.6085 33.4766 99.6102 33.4737
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(a) (b)

(c) (d)

Figure 6. The number of pixels change rate (NPCR) and unified average changing intensity (UACI) test result. (a,c) show
the results of images with the size of 256 × 256. (b,d) show the results of images with the size of 512 × 512. (a,b) show the
results of NPCR tests. (c,d) show the results of UACI tests.

Table 4. Histogram uniformity evaluation by chi-squared test (p-value).

Images CR = 0.2 CR = 0.3 CR = 0.4 CR = 0.5 CR = 0.6 CR = 0.7 CR = 0.8 CR = 0.9

Lena (256 × 256) 0.7183 0.9713 0.7252 0.3415 0.4128 0.8003 0.8271 0.7778
Lena (512 × 512) 0.2174 0.1773 0.1874 0.7268 0.1592 0.8726 0.4672 0.1685

Pepper (256 × 256) 0.3111 0.2117 0.2766 0.2717 0.3582 0.9891 0.6976 0.7083
Pepper (512 × 512) 0.6795 0.8444 0.9260 0.9765 0.1287 0.4755 0.9823 0.5199

Airplane (256 × 256) 0.7867 0.1359 0.5739 0.3754 0.1576 0.9868 0.3256 0.9142
Airplane (512 × 512) 0.9632 0.5859 0.9817 0.9213 0.8393 0.8304 0.2412 0.8186

Boat (256 × 256) 0.9429 0.4776 0.4672 0.1594 0.4086 0.7931 0.9114 0.7712
Boat (512 × 512) 0.5941 0.8562 0.3941 0.8378 0.8965 0.2870 0.7980 0.9894

Cameraman (256 × 256) 0.5087 0.7340 0.7240 0.2415 0.2752 0.2131 0.3656 0.3492
Cameraman (512 × 512) 0.4639 0.5619 0.3150 0.7148 0.4347 0.3540 0.8971 0.1729

Barbara (256 × 256) 0.4548 0.5059 0.2825 0.2531 0.3462 0.2301 0.1449 0.3510
Barbara (512 × 512) 0.5269 0.2898 0.9238 0.3938 0.3166 0.2771 0.5193 0.4375

4.4.2. Correlation Coefficient

As we all know, encryption is a process breaking the correlation of adjacent pixels.
Therefore, correlation coefficient analysis is an important measurement for evaluating the
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permutation performance of image cryptosystem. The less correlation in cipher image, the
better permutation performance.

The correlation coefficient can be calculated by Equation (17).

rab =
cov(a, b)√
D(a)D(b)

, (17)

where a and b are two adjacent pixels’ gray values, and

E(a) =
1
N

N

∑
i=1

ai, (18)

D(a) =
1
N

N

∑
i=1

(ai − E(a))2, (19)

cov(a, b) =
1
N

N

∑
i=1

(ai − E(a))(bi − E(b)). (20)

In this test, we first randomly select 10,000 pairs of adjacent pixels in the test image,
and then calculate the correlation coefficient among these pixels. The test plain images
are 512 × 512 and the cipher images are encrypted on CR = 0.5. Table 5 shows the test
results. The correlation distributions are shown in Figure 7 and the rows (1–6) correspond
to images of ’Lena’, ’Pepper’, ’Airplane’, ’Boat’, ’Cameraman’, and ’Barbara’, respectively;
Column (a) shows the corresponding plain images; Columns (b–d) correspond to the plain
images’ distributions of ’horizontal direction’, ’vertical direction’, and ’diagonal direction’,
respectively; Column (e) is the corresponding cipher images by encryption; Columns (f–h)
correspond to the cipher images’ distributions of ’horizontal direction’, ’vertical direction’,
and ’diagonal direction’, respectively.

Table 5. Correlation coefficients.

Image
Horizontal Vertical Diagonal

Plain Cipher Plain Cipher Plain Cipher

Lena (512 × 512) 0.9852 0.00057 0.9714 0.0028 0.9587 −0.0014
Pepper (512 × 512) 0.9801 0.0017 0.9778 0.0013 0.9643 0.00077

Airplane (512 × 512) 0.9653 0.0046 0.9678 0.0065 0.9369 0.0026
Boat (512 × 512) 0.9723 0.0012 0.9403 −0.0091 0.9238 0.0071

Cameraman (512 × 512) 0.9898 0.0019 0.9833 0.0043 0.9711 0.0056
Barbara (512 × 512) 0.9596 −0.0039 0.8610 0.0022 0.8406 0.00067

4.5. Key Sensitivity Analysis

In this subsection, we will test the key sensitivity of our proposed image cryptosystem.
In our scheme, there are 12 real keys, which are parameters and initial values of 2D-SLIM
and 2D-LSCM systems. For this test, we select ’Barbara’ 512 × 512 as the test image.
There are two tests for key sensitivity analysis. The first test we encrypted plain image on
CR = 0.5, and then decrypted with tiny modified keys. Figure 8 shows the test results. The
second test is that we encrypt plain images with tiny modified keys and then compare the
corresponding cipher images with without modified cipher images. Figure 9 shows the
test results.

We quantitatively measure the difference between cipher images using NPCR and
UACI. Table 6 shows the result. As the results of tests, our proposed scheme is very
sensitive to the real keys.
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(a) (b) (c) (d) (e) (f) (g) (h)

(1)

(2)

(4)

(3)

(5)

(6)

Figure 7. Correlation distributions. Rows (1–6) correspond to images of ’Lena’, ’Pepper’, ’Airplane’, ’Boat’, ’Cameraman’,
and ’Barbara’, respectively; Column (a) shows the corresponding plain images; Columns (b–d) correspond to the plain
images’ distributions of ’horizontal direction’, ‘vertical direction’, and ‘diagonal direction’, respectively; Column (e) is the
corresponding cipher images by encryption; Columns (f–h) correspond to the cipher images’ distributions of ’horizontal
direction’, ’vertical direction’, and ’diagonal direction’, respectively.

(a) plain image 
(512×512)

(b) cipher image 
with CR=0.5

(c) decrpted with 
right key

(d) decrpted with  
a01=a01+10–15

(e) decrpted with  
x11=x11+10–15

(f) decrpted with 
y11=y11+10–15

(g) decrpted with 
a02=a02+10–15

(h) decrpted with 
x12=x12+10–15

(i) decrpted with 
y12=y12+10–15

(j) decrpted with 
q1=q1+10–15

(k) decrpted with 
xx0=xx0+10–15

(l) decrpted with 
yy0=yy0+10–15

(n) decrpted with 
xx1=xx1+10–15

(m) decrpted with 
q2=q2+10–15

(o) decrpted with 
yy1=yy1+10–15

Figure 8. Decryption with tiny modified keys.
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(h) |b–a|

(a) encrpted without 
modify keys

(i) |c–a| (j) |d–a| (k) |e–a| (l) |f–a| (m) |g–a|

(n) encrpted with 
q1=q1+10–15

(o) encrpted with 
xx0=xx0+10–15

(p) encrpted with 
yy0=yy0+10–15

(r) encrpted with 
xx1=xx1+10–15

(q) encrpted with 
q2=q2+10–15

(t) |n–a|

(s) encrpted with 
yy1=yy1+10–15

(u) |o–a| (v) |p–a| (w) |q–a| (x) |r–a| (y) |s–a|

(b) encrpted with  
a01=a01+10–15

(c) encrpted with  
x11=x11+10–15

(d) encrpted with 
y11=y11+10–15

(e) encrpted with 
a02=a02+10–15

(f) encrpted with 
x12=x12+10–15

(g) encrpted with 
y12=y12+10–15

Figure 9. Comparison from encrypted images through tiny modified keys.

Table 6. Quantitative analysis of key sensitivity.

Cipher Image with Modify Key NPCR (%) UACI (%)

a01 = a01 + 10−15 97.4136 30.0742
x11 = x11 + 10−15 98.8632 33.8622
y11 = y11 + 10−15 97.9836 32.8013
a02 = a02 + 10−15 96.9574 31.1781
x12 = x12 + 10−15 97.0551 31.6505
y12 = y12 + 10−15 98.6200 32.6244

θ1 = θ1 + 10−15 99.6124 33.5163
xx0 = xx0 + 10−15 99.5987 33.4155
yy0 = yy0 + 10−15 99.5819 33.5568

θ2 = θ2 + 10−15 99.5796 33.5179
xx1 = xx1 + 10−15 99.6002 33.4799
yy1 = yy1 + 10−15 99.6185 33.5206

4.6. Information Entropy

Global Shannon entropy (GSE) is used to evaluate the randomness of the whole image.
The GSE is given by

H(s) =
2K−1

∑
i=0

P(si) log2
1

P(si)
, (21)
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where K is the gray level of the test image and P(si) means the probability of si. The GSE
of 8-bit gray image is 8 bits in the ideal case. Table 7 shows the GSE results in different CRs.

Table 7. Global Information entropy.

Images CR = 0.2 CR = 0.3 CR = 0.4 CR = 0.5 CR = 0.6 CR = 0.7 CR = 0.8 CR = 0.9

Lena (512 × 512) 7.9962 7.9974 7.9980 7.9986 7.9987 7.9990 7.9991 7.9990
Pepper (512 × 512) 7.9969 7.9977 7.9985 7.9987 7.9989 7.9990 7.9990 7.9992

Airplane (512 × 512) 7.9964 7.9978 7.9982 7.9981 7.9988 7.9988 7.9990 7.9992
Boat (512 × 512) 7.9967 7.9978 7.9983 7.9987 7.9990 7.9989 7.9991 7.9992

Cameraman (512 × 512) 7.9964 7.9976 7.9981 7.9986 7.9988 7.9989 7.9992 7.9991
Barbara (512 × 512) 7.9965 7.9975 7.9984 7.9985 7.9985 7.9988 7.9991 7.9992

In order to further measure the randomness of cipher image, Wu et al. [36] intro-
duced a method of local Shannon entropy (LSE). To calculate LSE, k non-overlapping image
blocks B1, B2, · · · , Bk with TB pixels are randomly selected from image I, and then the LSE is
defined by:

Hk,TB(I) =
k

∑
i=1

H(Bi)

k
, (22)

where H(Bi) is the GSE of image block Bi. For this test, the parameters (k, TB) = (30, 1936)
are selected. In this situation, the ideal value of LSE is 7.902469317. When the significance
α = 0.05, the tests passed when the test results fell into the interval (7.901901305, 7.903037329).
Table 8 shows the LSE test results. Figure 10 shows the global and local entropy analysis.
According to this figure, the global entropies are increasing with CRs and the local entropies
are floating with CRs. Nevertheless, the minimum of global entropy of 7.9962 entails
sufficient security and the local entropies basically fall in security interval. Therefore,
the information entropy results show that the cipher images that are generated by our
proposed image cryptosystem have excellent randomness.

Table 8. The local Shannon entropy test.

Images CR = 0.2 CR = 0.3 CR = 0.4 CR = 0.5 CR = 0.6 CR = 0.7 CR = 0.8 CR = 0.9

Lena (512 × 512) 7.9022 7.9025 7.9020 7.9028 7.9025 7.9030 7.9024 7.9027
Pepper (512 × 512) 7.9023 7.9027 7.9025 7.9029 7.9025 7.9021 7.9029 7.9023

Airplane (512 × 512) 7.9027 7.9021 7.9024 7.9028 7.9032 7.9019 7.9029 7.9025
Boat (512 × 512) 7.9022 7.9029 7.9030 7.9020 7.9021 7.9028 7.9027 7.9020

Cameraman (512 × 512) 7.9018 7.9024 7.9031 7.9023 7.9031 7.9020 7.9021 7.9027
Barbara (512 × 512) 7.9028 7.9026 7.9030 7.9026 7.9025 7.9028 7.9020 7.9025

(a) (b)

Figure 10. The information entropy analysis. (a) is global entropy. (b) is local entropy.
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4.7. Robust Analysis

The robustness of the image cryptosystem means that some useful information can
still be recovered when the cipher image is disturbed by noise or part of the data is lost
during transmission. The robustness of the image cryptosystem in real communication
applications is very important. In the test, some noise and different data loss amounts are
added to Lena cipher images that are encrypted on CR = 0.5 to evaluate the robustness of
our proposed image cryptosystem. Figure 11 shows the test results. Most of the information
in the plain image can still be identified from the decrypted image, as shown in Figure 11.
Figure 11a–f are cipher images with 1 × 10−4, 2 × 10−4, 3 × 10−4, 4 × 10−4, 5 × 10−4,
1 × 10−3 salt & pepper noise, respectively. Figure 11g–l are corresponding decrypted
images. Figure 11m–o are the cipher images with 16 × 16 data lost. Figure 11s–u are
corresponding decrypted images. Figure 11p–r are the cipher images with 32 × 32 data
lost. Figure 11v–x are corresponding decrypted images. It is shown that the algorithm has
good robustness and it can be applied to practical scenarios.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

Figure 11. The robustness analysis result. (a–f) are cipher images with 1 × 10−4, 2 × 10−4, 3 × 10−4,
4× 10−4, 5× 10−4, 1× 10−3 salt & pepper noise, respectively. (g–l) are corresponding decrypted images.
(m–o) are the cipher images with 16× 16 data lost. (s–u) are corresponding decrypted images. (p–r) are
the cipher images with 32× 32 data lost. (v–x) are corresponding decrypted images.

4.8. Time Complexity Analysis

In order to evaluate the efficiency of our proposed image cryptosystem, we give the
time complexity analysis and the time consuming of the simulation in this subsection. In
this paper, we use two 2D-SLIM and two 2D-LSCM hyper chaotic systems to control the
processes of compressive sensing and encryption, and it needs a total of Θ(3MN + N)
iterations of computing floating point number. As we all know, there are many factors
that affect the results of the actual test, such as hardware and software environments,
programming languages, code optimization, parallel processing, programming skills, etc.
Therefore, we give our simulation results of the time consumption under the environments
that are mentioned at beginning of Section 4 and while using parallel computing technology.
In our test, we encrypt and decrypt the same image 100 times, taking the average time. The
encryption time of 256 × 256 Lena is 0.082 s and the decryption with CR = 0.25, 0.5, 0.75

158



Sensors 2021, 21, 758

are 0.82 s, 1.23 s and 2.32 s, respectively. The encryption time of 512 × 512 Pepper is 0.336 s
and the decryptions with CR = 0.25, 0.5, and 0.75 are 3.23 s, 7.42 s, and 13.36 s, respectively.

4.9. Comparison with Other Works

In this section, we compare our proposed image cryptosystem with other recent
works. For this comparison, we encrypt 512 × 512 8-bit gray level plain images ’Lena’ with
CR = 0.5. Table 9 shows the comparison result. The cipher image that is generated in
Ref. [21] has poor randomness, because the global entropy is too low. Moreover, it also
missing local entropy and plaintext sensitivity assessment. Ref. [22] presents the small key
space and it is missing the information entropy assessment. Ref.[23] also has a small key
space. Ref.[24] is missing the key space and a local entropy assessment. Our proposed
image cryptosystem has the advantage of more comprehensive security performance,
according to the comparison results.

Table 9. The comparison result.

Algorithms
Cipher Correlation Coefficients Global Local

Key Space
Plaintext Sensitivity

PSNR (dB)
Horizontal Vertical Diagonal Entropy Entropy NPCR (%) UACI (%)

Our work 0.00057 0.0028 −0.0014 7.9986 7.9028 2600 99.6078 33.4552 38.3438
Ref. [21] 0.0061 0.0018 −0.0024 5.0508 - 1.15 × 10105 - - -
Ref. [22] −0.0016 −0.0010 −0.0015 - - 2149 99.6061 33.4150 35.51
Ref. [23] 0.0016 0.0081 −0.0016 7.9974 7.9027 2176 99.6201 33.5247 30.8184
Ref. [24] −0.0028 −0.0096 −0.0030 7.9960 - - 99.60 34.17 39.04

5. Conclusions

In this paper, an efficient and secure plaintext-related chaotic image encryption scheme
that is based on compressive sensing was proposed, which can simultaneously achieve the
compression and encryption. In the proposed scheme, we generate the plaintext-sensitive
internal keys to control the whole process of compression and encryption, which can
make all processes have enough sensitivity to the plain image. The permutation that was
controlled by the two-dimensional Sine improved Logistic iterative chaotic map (2D-SLIM)
has been applied to the coefficient matrix in order to make the energy of matrix dispersive.
A plaintext related compressive sensing was used to reduce the data storage capacity while
the privacy of image is guaranteed. Additionally, we make sure the cipher image lower
correlation and distribute uniform by quantifying the measurement results to 0∼255 and
doing permutation and diffusion under the controlling by two-dimensional Logistic-Sine-
coupling map (2D-LSCM). Finally, some common compression and security performance
analysis methods are used for testing our scheme. The tests and comparison results have
shown that our proposed scheme has both excellent security and compression performance
in order to ensure the digital image application in the network. The image encryption
combining compressive sensing is still under constant research, and there are still many
problems that need to be further studied and solved. In the next stage, we will focus on the
multi-image aggregation encryption and parallel block compressed sensing.
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Abbreviations

The following abbreviations are used in this manuscript:

2D-SLIM two-dimensional Sine improved Logistic iterative chaotic map
2D-LSCM two-dimensional Logistic-Sine-coupling map
DES Data Encryption Standard
AES Advanced Encryption Standard
DNA deoxyribonucleic acid
CS Compressed sensing
CR(s) compression ratio(s)
RIP restricted isometry property
RIC Restricted Isometry Constant
DWT Discrete Wavelet Transform
PSNR Peak signal to noise ratio
SSIM Structural similarity index measurement
NPCR number of pixels change rate
UACI unified average changing intensity
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Abstract: Considering the complexity of the physical model of wildfire occurrence, this paper
develops a method to evaluate the wildfire risk of transmission-line corridors based on Naïve Bayes
Network (NBN). First, the data of 14 wildfire-related factors including anthropogenic, physiographic,
and meteorologic factors, were collected and analyzed. Then, the relief algorithm is used to rank the
importance of factors according to their impacts on wildfire occurrence. After eliminating the least
important factors in turn, an optimal wildfire risk assessment model for transmission-line corridors
was constructed based on the NBN. Finally, this model was carried out and visualized in Guangxi
province in southern China. Then a cost function was proposed to further verify the applicability of
the wildfire risk distribution map. The fire events monitored by satellites during the first season in
2020 shows that 81.8% of fires fall in high- and very-high-risk regions.

Keywords: wildfire; risk assessment; Naïve bayes; transmission-line corridors

1. Introduction

Due to the inhomogeneous distribution of energy resources and power loads in China,
a large number of overhead transmission lines pass through forests and mountains to
achieve an optimal allocation of power resources [1,2]. Wildfires are prone to occur in
transmission-line corridors during the high-incidence periods. If a wildfire occurs under
an overhead transmission line, the high temperature and smoke in wildfire would reduce
the insulating strength of air gap drastically and induce a trip fault of transmission line.
In addition, the reclosing usually fails under wildfire conditions with continuous high
temperature, which seriously endangers the reliable operation of power grid [3–5].

To improve the wildfire prevention capability of transmission lines, scholars carried
out much research, including distribution analysis of widfire occurrence [6,7], transmission-
line trip mechanisms caused by wildfire [8,9], fire-spot monitoring algorithms [10–13]
and wildfire risk assessment methods [14–16]. Remote sensing satellite is an economical
and effective way to monitor wildfires in transmission-line corridors continuously. Af-
ter identifying the flame strength of wildfire, the tripping risk would be evaluated by
comparing the height of fire and transmission line [17,18]. However, this method needs
numerous land-surface and environmental parameters to estimate the possible height of
wildfire. Once a wildfire occurs near the transmission lines, it may cause a trip within
tens of minutes. Furthermore, multiple wildfires usually occur simultaneously during
the period of the Spring Festival, Qingming Festival, and autumn harvest in China. It is
difficult for operation and maintenance personnel to rush the field and put out the fire
in time. Therefore, it is necessary to assess occurrence probability of wildfire to propose
differentiated wildfire prevention strategies.

Sensors 2021, 21, 634. https://doi.org/10.3390/s21020634 https://www.mdpi.com/journal/sensors
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The wildfire risk assessment was initially proposed by forest and fire departments
to supporting decisions or policies for general fire, forest management, and fire suppres-
sion. Forestry departments in the US and Canada evaluated the large-scale wildfire risk
by combining meteorological factors [19,20]. Nevertheless, these meteorology-based as-
sessment methods cannot meet the requirement of spatial accuracy for transmission-line
corridors due to the geographical differences. In 2016, State Grid Corporation of China
issued a standard of drawing guidelines (DG) for region distribution map of wildfires near
overhead transmission lines. In this standard, fire-spot densities and vegetation burning
hazard grades are introduced to construct a risk assessment matrix [21]. However, the
wildfire occurrence risk is affected by multi-dimension factors [22]. Besides meteorology
and vegetation, physiographic and human-related factors are believed to have an impor-
tant role in affecting wildfire occurrences [23]. Unfortunately, due to the complexity of
wildfire occurrence there is still no physical model that could assess wildfire risk with
specific variables.

Bayesian network is an effective approach to estimate uncertainty in risk evaluation
in terms of the likelihood of risks and hazards [24]. In this paper, we aim to propose
a wildfire risk assessment model based on Naïve Bayes Network (NBN) and remote sensing
data. The region of Guangxi province which locates in southern China, is selected as the
study area. A total of 14 sub-categories of wildfire-related factors including anthropogenic,
physiographic, and meteorologic factors are collected. Then the spatial data are divided into
grids of 1 km × 1 km to meet the spatial accuracy requirement of power grid. Considering
the historical wildfire occurrences, the grids are divided based on whether there have
been wildfires. After the importance evaluation by the relief algorithm, an NBN-based
model is built with the optimal factor subset to map the wildfire risk distribution of
Guangxi province. The wildfire risks are then divided into four levels based on the wildfire
occurrence probability. In addition, a cost function is proposed to evaluate the applicability
of wildfire risk map.

2. Study Area and Data Collection

2.1. Study Area

Guangxi province is in South China with the latitude of 20◦54′–26◦24′ and the longi-
tude of 104◦28′–112◦04′. The total area is 237,600 square kilometers. It is located on the
southeastern edge of the Yunnan–Guizhou Plateau. In addition, the terrain is high in the
northwest and low in the southeast. The region of Guangxi province is dominated by
subtropical and tropical monsoon climate, in which the precipitation is synchronous with
high temperature. With a large forest area, Guangxi is vulnerable to wildfire disasters due
to its changeable climate, complex topography, and various vegetation.

2.2. Wildfire-Related Factors
2.2.1. Anthropogenic Factors

Based on survey, more than 90% of wildfires are linked directly or indirectly to
intentional and unintentional human activities [25]. It mainly includes productive fires
such as wasteland and slash burning, and non-productive fires such as smoking in the wild
and incensing on the grave [26]. To represent the influence of human activities, five kinds
of anthropogenic sub-factors, which are Distance to Roads (DR), Distance to Settlements
(DS), Population Density, Gross Domestic Product (GDP) and Historical Fire-Spot Density,
are selected.

Human settlements and roads are the main areas of human activities, in where there
are more human-caused fires. Population density reflects the regional population aggre-
gation. A high population density generally corresponds to more human activities and
consequently high probability of wildfire occurrence [27]. However, this law may be only
suitable to explain the fire events in forests and rural areas. In large urbans, the higher
population density may cause the less fire occurrence due to lack of fuels [28]. GDP rep-
resents the economic status of regions, which affects the human’s fire habits. The data of
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roads, settlements, population density were downloaded from the website of the Resource
and Environment Science and Data Center (RESDE) with a resolution of 1 km × 1 km.
In addition, the DR and DS of grids were calculated by using ArcGIS 10.4.

Historical Fire-Spot Density represents the spatial distribution of wildfires in the past
few years. It is related to not only human activities but also other meteorological and
physiographic factors. The database of historical fire-spots was monitored by polar orbiting
meteorological satellites from 2010 to 2019, which is provided by the National Meteorologi-
cal Center. The fire-spot data during 2010–2014 is used to calculate the Historical Fire-Spot
Density of grids, whereas the remains (from 2015 to 2019) are used to train and test the NBN
model. To calculate the Historical Fire-Spot Density, the study area is divided into grids of
2.5 km × 2.5 km first. Then the fire-spots from 2010–2014 were allocate into grids based on
their longitude and latitude. In addition, the final Historical Fire-Spot Density of grids was
obtained by using Kriging interpolation method from the resolution of 2.5 km × 2.5 km
into 1 km × 1 km.

2.2.2. Physiographic Factors

The physiographic factors include the land cover and landscape parameters of grids.
The land cover factors are consisted of the Land-Usage Type, Vegetation Type, Fuel Load
and Normalized Difference Vegetation Index (NDVI), whereas the landscape parameters
are average Elevation, Slope, and Aspect of underlying surface.

The vegetations provide the fuel basis for wildfires’ development. Different types of
vegetations differ from their burning capacity in fire ignition and spread. Wildfires prone
to ignite and spread rapidly at woodlands, shrubberies and meadows [29]. Therefore,
the Land-Usage Type and Vegetation Type are taken to describe the flammability of the
underlying surface. To construct the NBN model, the Land-Usage Type and Vegetation
Type of study area are classified into four levels according to their flammability, which are
shown in Tables 1 and 2, respectively. The Fuel Loading is represented by the drying weight
of fuel per unit area, which affects the spread velocity and flame intensity of fires. The
NDVI represents the coverage of surface vegetation. It is another representative parameter
about fuel contents on the underlying surface.

Table 1. Classification of Vegetation Types.

Level Description

1 Desert, Swamp, Cultivated plants
2 Meadow, Grassland, Alpine vegetation
3 Broad-leaved forest, Shrub
4 Coniferous forest, theropencedrymion

Table 2. Classification of Land-Usage Types.

Level Description

1
Paddy field, Dry land, Water area, Unused

land, Urban-rural fringe, Industrial and mining
land, Residential land

2 Meadow, Grassland, Alpine vegetation
3 Broad-leaved forest, Shrub
4 Coniferous forest, Theropencedrymion

Complex topography influences not only the distribution of vegetations, but also the
spreading behavior of fires directly. The elevation brings differences of temperature and
humidity to affect the composition of vegetations. Moreover, human population tends to
cluster at the region with low elevation and gentle slopes, which increases the fire activities.
In addition, the slope also has a direct impact on the spreading speed of wildfires [30].
The increase of slope leads to the faster surface runoff, which is beneficial to the drying of
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vegetations. Slope aspect determines the amount of solar radiation, therefore the humidity
of atmosphere and vegetations.

The data of Fuel Loading was obtained from the National Meteorological Center.
In addition, other land cover factors and landscape parameters were downloaded from
RESDE. All the data resolution are 1 km × 1 km.

2.2.3. Meteorologic Factors

Annual Precipitation and Temperature which have great influences on vegetation
growth are selected as the meteorologic factors. In the high precipitation regions, the growth
of vegetations is flourishing, which provides fuel conditions for wildfires to burn. However,
the reduced transpiration in these areas increases the humidity of vegetation and reduces
the flammability. The water-holding capacity of soils and air humidity are also increased.
The fires’ ignition and spread are therefore restrained. The higher temperature in forests
generally benefits plant growth. In addition, the increase of temperature also accelerates
the transpiration of vegetations, which promoting the rapid drying of vegetations. The
data of Annual Precipitation and Annual Temperature were obtained from the RESDE,
with a resolution of 1 km × 1 km.

2.3. Sample Preparation and Pre-Processing

The influencing degree of wildfires in transmission-line corridors varies with the
distance. Generally, the fire that is 1 km away from the transmission-line is regarded as
the highest risk, whereas the fire that is 3 km away is assumed to be no impact on the
operation of transmission-line [31]. To meet the spatial accuracy requirement, the study
area is divided into 1 km × 1 km grids. Then all the wildfire-related factors are allocated
into grids. Specifically, the grids which have monitored fire-spots from 2015–2019 are taken
as the fire samples. Considering the ignition, spread, and extinction of wildfire last for
several hours, those monitoring fire-spots within 4 h and 3 km are regarded as a same
fire-spot. Meanwhile, a same number of the non-fire samples are sampled randomly from
the rest grids of 3 km away from the grids of the fire samples.

Compared to processing continuous factors, the Bayesian model has a higher efficiency
and better robustness for discrete factors [24]. Therefore, the equal frequency method
integrating empirical knowledge was used to discretize the factors. The standards of factor
discretization are shown in Table 3.

Table 3. Factor discretization standards.

Factors Discrete Intervals

GDP (10,000 yuan/km2) (0, 194), (194, 400), (400, 638), (638, ∞)
Fuel load(t/km2) (0, 1), (1, 1.3), (13, 23.3), (23.3, ∞)

NDVI (0, 0.8), (0.8, 0.86), (0.86, 0.90), (0.90, 1]
Population density (people/km2) (0, 91.9), (91.9, 144.7), (144.7, 303.1), (303.1, ∞)

Elevation (m) (0, 145), (145, 295), (295, 575), (575, ∞)
Fire-spot density (unit/(100 km2·year)) (0, 1), (1, 2.4), (2.4, 4.5), (4.5, ∞)

Annual precipitation (mm) (0, 173.1), (173.1, 195.1), (195.1, 209.6), (209.6,
∞)

Annual temperature (◦C) (0, 19.9), (19.9, 21.5), (21.5, 22.8), (22.8, ∞)
Slope (◦) (0, 3.3), (3.3, 10), (10, 18.3), (18.3, 90]

Aspect (◦) North (0◦, 45◦) ∪ (315◦, 360◦), East (4 5◦, 135◦),
South (135◦, 225◦), West (225◦, 315◦)

DS (m) (0, 356.5), (356.5, 635.7), (635.7, 1041.8), (1041.8,
∞)

DR (m) (0, 832.6), (832.6, 2043.7), (2043.7, 3860.3),
(3860.3, ∞)
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2.4. Spatial Distribution of Factors

The factor distributions of the study area are visualized by using the ArcGIS software,
as shown in Figure 1. It can be seen from the spatial distribution map that the historical
wildfire high-incidence areas mainly distribute in the northwest, east, and central parts of
Guangxi province. The distribution of GDP is similar to that of population density. The
population concentrates in the vicinity of large municipal districts such as Nanning City
and Liuzhou City in the central part, and Wuzhou City in the east. The elevation, slope,
and NDVI in Guangxi province are relatively similarly distributed. Guangxi province has
a wide distribution of karst landforms with mountains and hills. The west and north of
Guangxi province are adjacent to the Yunnan–Guizhou Plateau, in where the elevation
and slope values are relatively large. As the elevation increases, the climate, hydrothermal
conditions change, leading to the plant no longer flourish in these regions. In addition,
the higher elevation and steeper slope at the northern of Guangxi province make the less
human settlements and higher vegetation coverages and higher NDVI values in this region.
For the meteorological distribution, the annual temperature in the northern plateau is
slightly lower. That is caused by the increase of latitude and elevation in plateau. The
precipitation distribution shows that a circular decreasing trend from the east to the west.
In addition, the annual precipitation in the northeast of Guangxi province is the largest. In
Guangxi province, sparse forests and shrub forests are the main vegetation and land-Usage
Type. In addition, coniferous forests and theropencedrymions mainly locates in the eastern
region of Guangxi province, whereas the western region is dominated by broad-leaved
forests and shrubs.

  
(a) Fire-Spot density (b) DR 

  
(c) DS (d) GDP 

Figure 1. Cont.
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(e) Population density (f) Vegetation type 

  
(g) Land-Usage type (h) Fuel load 

 
 

(i) NDVI (j) Elevation 

  
(k) Slope (l) Aspect 
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(m) Annual precipitation (n) Annual temperature 

Figure 1. Spatial factor distribution of Guangxi province.

3. Importance of Wildfire-Related Factors

Wildfire occurrences are influenced by many feature factors. However, the relationship
among these factors and wildfire is complex and differs from the location of regions [32].
Some of wildfire-related factors may play an important role in some regions but contribute
little on the occurrence probability of wildfires in other regions. In addition, they even
introduce noisy information for risk analysis in this region. Moreover, the redundancy of
data increases the complexity of model and reduces the evaluation performance. A feature
selection method, the relief algorithm, was used to appraise the contribution importance of
wildfire-related factors on the wildfire occurrences before model building.

The relief algorithm was first proposed by Kira and Rendell [33], which is a factor
weighting algorithm for binary classification based on the correlation between factors
and the sample classification. Figure 2 gives the basic idea about how the relief algo-
rithm appraises the importance of two factors. For a random sample Si and its factor
xk,D(xk, Si, SNM

i ) represent the distance between and Si and its closest different-class sam-
ple SNM

i . In addition, D(xk, Si, SNH
i ) represent the distance between Si and its closest

same-class sample SNH
i . If the same-class distance is greater than the different-class dis-

tance, the factor is more useful to classify the sample and should be given a higher weight.
In Figure 2, if the random Si is a fire sample, then the factor x1 has a smaller distance from
its same-class samples than that of the factor x2, indicating the factor x1 is more important
than the factor x2.

Factor x1

Fa
ct

or
 x

2

Fire sample
Non-fire sample
Random sample

Figure 2. Basic idea of Relief algorithm.
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The basic steps of the relief algorithm are as follows:

(1) Take a sample Si randomly from the dataset D = (S1, S2, . . . , Sn).
(2) Go through the dataset and find the closest same-class sample SNH

i and different-class
sample SNM

i of the Si.
(3) Calculate the distance D(xj, Si, SNM

i ) between the closest samples about a certain
factor xj. If the factor xj is a discrete variable,

D(xj, Si, SNM
i ) =

{
0 xj �= xNM

j
1 xj = xNM

j
(1)

else,

D(xj, Si, SNM
i ) =

∣∣∣∣∣ xj − xNM
j

max(xj)− min(xj)

∣∣∣∣∣ (2)

In this study, the most of factors are continuous variables, except the Vegetation Type
and Land-Usage Type.

(4) Update the weight of factor xj after multiple sampling

ω∗
j = ωj + ∑ (

D(xj, Si, SNM
i )

m
− D(xj, Si, SNH

i )

m
) (3)

where ωj and ω∗
j are the initial and updated weight, respectively. m is the number of

random sampling. The calculated weights of the 14 wildfire-related factors are listed
in Table 4.

Table 4. Weights of wildfire-related factors based on the Relief.

Wildfire-Related Factor Weight

DS 0.1265
Vegetation Type 0.1227

DR 0.1182
Annual precipitation 0.1043

Fire-spot density 0.0997
Land-Usage Type 0.0922

Elevation 0.0873
NDVI 0.0789
Aspect 0.0554

Fuel load 0.0376
Population density 0.0297

Annual temperature 0.0245
Slope 0.0134
GDP 0.0096

Based on relief algorithm, the DS, Vegetation Type, and DR shows the most three
important impacts on distinguishing the fire and non-fire samples. This is mainly because
of the plentiful of fire activities near the living and transportation regions of populations.
In addition, the type of vegetation affects the ignition and spread of wildfires. Population
Density, Annual Temperature, Slope, and GDP are the least four important factors. The
population in Guangxi province is concentrated in the regions of cities, whereas the rest
large parts of region are subtropical forests. In urban area, it is hard to inflame due to the
lack of fuels and timely fire-fighting behavior. On the other hand, in sparsely populated
forests, the happen probability of wildfire is also low due to the low human activities. The
wildfire is likely to be happened at the interfacial region of forests and human settlements,
which leads the population and GDP to fade into insignificance in this study. The study
area is the provincial power grid in southern of China with a small temperature difference.
Thus, the average temperature has little influence on the wildfire occurrence.
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4. Naïve Bayes Network-Based Wildfire Risk Assessment

4.1. Bayes Theorem and Independence Assumption

Bayes’ theorem was initially proposed by Thomas Bayes in the 18th century. It ex-
presses the relationship between the conditional probabilities of two events statistically [34].
It has been widely used in uncertain fields such as disaster prediction, medical diagnosis,
speech recognition, and so on. The Bayes’ theorem is as follows:

P(Xi|Y) = P(Y|Xi) · P(Xi)

∑
j

P(Y
∣∣Xj) · P(Xj)

(4)

where P(Xi) is the priori probability which are obtained from the past experience or data
distribution. P(Y|Xi) is the probability of event Y occurring under the condition of known
event Xi. P(Xi|Y) is the probability of Xi when the result Y is known. Based on this theo-
rem, the probabilities of wildfire-related factors and then the wildfire occurrence probability
under certain conditions could be estimated statistically. However, the estimation of joint
probability P(Y|Xi) is difficult due to the limited number of samples. Therefore, the Naïve
Bayes Network (NBN), in which the factors are assumed to be independent with each other,
is used to model the risk of wildfire occurrences. Even through it sacrifices the interaction
of factors but still gets an acceptable performance of model in many applications.

4.2. Model Construction

The construction of a Bayes network includes the structure learning and the parameter
learning. Due to the independence assumption, the structure of NBN is simplified into
a directed acyclic graph with factor nodes connecting to a class node. In addition, the
parameter learning process is as follows:

(1) Sample preparation from the grids. The fire samples are the grids where fire-spots
have been monitored by satellites in the years from 2015 to 2019. A total of 20,348
fires were recorded. In addition, a same number of non-fire samples were extracted
randomly excluding buffer zones of 3 km around the fire samples. Then the samples
were graded according to the discretization standards in Table 3. The training subset
was randomly chosen from 70% of the samples, the remaining samples were used
as the testing subset to evaluate the model’s performance. In addition, the spatial
distribution of samples in the testing subset are shown in Figure 3.

(2) By using the training subset, the probabilities of factors are obtained under fire and
non-fire condition based on the maximum likelihood estimation.

P(xij|Y) =
nij

4
∑

k=1
nik

(5)

where xij is the ith wildfire-related factor fall in jth level; and nij is the number of xij.k
represented the discretization level of factors. P(xij

∣∣Y= 0) and P(xij
∣∣Y= 1) are the

probabilities of xij for the girds with non-fires and fires, separately.
(3) The conditional probability P(Y = 1|x1, x2, . . . , xn) and P(Y = 0|x1, x2, . . . , xn) of

samples in the testing subset were calculated based on the Bayes’ theorem. In addition,
the final wildfire occurrence probability P(Y) was obtained after normalization.

P(Y) =
P(Y = 1|x1, x2, . . . , xn)

P(Y = 1|x1, x2, . . . , xn) + P(Y = 0|x1, x2, . . . , xn)
(6)

(4) To test and optimize model’s performance, the value of 0.5 was selected as the
threshold to divide the samples into two classes: “Prone to fire” and “Prone to non-
fire”. The least important factors were then eliminated in turn to study the influence
of factors composition on the model’s performance.

171



Sensors 2021, 21, 634

 

Figure 3. Samples of testing subset in the Guangxi province.

4.3. Model Assessment

The confusion matrix is used to evaluate the assessment performance of NBN model.
It compares the predicted fire tendency of the testing subset with the actual wildfire events
to measure the following four indexes, as shown in Table 5.

Table 5. Definition of confusion matrix.

Samples in Testing Subset
Predicted Results

Prone to Fire Prone to Non-fire

Actual events
Fire TP FN

Non-fire FP TN

TP: True Positive, represents the number of fire events correctly predicted as “Prone
to fire”.

TN: True Negative, indicates the grids where are non-fire and that were identified as
“Prone to non-fire”, correctly.

FN: False Negative, reflects the fire events that were identified as “Prone to non-fire”,
mistakenly.

FP: False Positive, recounts the grids where are non-fire but that are predicted to be
“Prone to fire”.

It is obviously that larger shares of TP and TN indicate a better predicted performance
of model. Therefore, the indexes of Accuracy Pa, Recall Pr, Precision Pp and a more balanced
index F-score are introduced on the basis of the confusion matrix.

Pa =
TP + TN

TP + TN + FP + FN
(7)

Pr =
TP

TP + FN
(8)

Pp =
TP

TP + FP
(9)

F =
(1 + β2)PpPr

β2Pp + Pr
(10)

where β reflect the attention degree of power grids on fault tolerance. Considering the
wildfire would induce outage of transmission lines, bring huge economic losses, and even
casualties, this study takes β as 3.

As mentioned in Table 4, the weights of wildfire-related factors have been evaluated by
using relief algorithm. Then the NBN models were re-trained and re-tested by eliminating
the least important wildfire-related factor one by one. The assessment performances of
models are shown in Figure 4.
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Figure 4. Variation of assessment indexes with wildfire-related factors.

With the reduced number of wildfire-related factors, the impact of noise, which is
bring by unimportant factors, on the model is gradually reduced, which leading to the
improvement of Accuracy Pa and Precision Pp. The Accuracy Pa is only 70.14% when all 14
wildfire-related factors are used. It reaches the maximum of 75.93% when the number of
factors is reduced to six. The Recall Pr and F-score remain about 81% until the used factor
number less than six. However, the performance of NBN model deteriorates significantly
when the number of wildfire-related factors reduces from six to five, indicating that the
remaining factors have greatest impacts on the wildfire occurrence.

The F-score reaches the highest value of 81.23% when eight wildfire-related factors are
used. The results of confusion matrix are listed in Table 6. 81.92% of actual fire events in the
testing subset are predicted correctly. The eight wildfire-related factors include three an-
thropogenic factors (DS, DR, Elevation and Fire-spot density), three physiographic factors
(Vegetation Type, land-Usage Type, and NDVI) and only one meteorological factor (Annual
Precipitation). The composition of important wildfire-related factors indicates an important
role of human activities in increasing the risk of wildfires. Based on survey, more than 90%
of wildfires in Guangxi province are human-caused, deliberately and unintentionally.

Table 6. Results of confusion matrix when 8 wildfire-related factors are used

Predicted Results

Prone to Fire
Prone to
Non-fire

Total

Actual events
Fire 4839 1161 6000

Non-fire 1641 4359 6000

Total 6480 5520 —

Accuracy Pa 76.65%

Recall Pr 80.65%

Precision Pp 74.68%

F-score 81.23%

5. Visualization of Wildfire Risk and Discussion

To guide the wildfire prevention of transmission corridors, the wildfire occurrence
probability is calculated in all 1 km × 1 km grids of the study area. The wildfire risks of grids
are then divided into four levels based on the probability: Low-(0% ≤ p < 25%), Medium-
(25% ≤ p < 50%), High-(50% ≤ p < 75%) and Very-high-(p ≥ 75%) risk. The conditional
probability distribution of wildfire-related factors and an example of probability inference
for grids are shown in Figure 5. The remarkable difference of conditional probability
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distribution gives a visualized explanation of why and how these wildfire-related factors
affect wildfire occurrence.
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Figure 5. Conditional probability distribution of wildfire-related factors and an example of probability inference.

The NBN-based wildfire risk distribution of Guangxi province is mapped by using
the ArcGIS software (Figure 6a). For comparison, another wildfire risk distribution map is
drawn according to the DG of State Grid Corporation of China (Figure 6b) [21]. In addition,
a total of 527 fire events, which were monitored by remoting satellite during the first season
in 2020, allocate on the maps.
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(a) NBN-based wildfire risk distribution (b) DG-based wildfire risk distribution 

Figure 6. Wildfire risk distribution in Guangxi province.

It can be observed in the NBN-based map that the very-high-risk regions mainly locate
at the northwest, south, and east of Guangxi province, which has a high spatial consistency
with the historical fire-spot density distribution. In addition, the northwest of Guangxi
province is in the border of Yunnan–Guizhou Plateau. The higher elevation and less annual
precipitation result in low moisture in air and vegetation, which is the flammable condition
for wildfires. In the eastern and southern regions, the population density is higher, and the
settlements are widely distributed, therefore more fire-using activities. In addition, low-
risk regions distribute at the middle of Guangxi province, which are generally municipal
districts with few fuels and the deep forests without human activities.

The distribution of very-high-risk regions in DG-based map are almost the same
as that in NBN-based map, but few low-risk areas are observed in the DG-based map.
The area proportions of risk levels, as well as the location proportions of fire events, are
summarized in Table 7. Due to the huge ratio of forest in Guangxi province, more areas are
assessed as high-and very-high-risk level by both NBN-based map and DG-based map.
Compared to NBN-based map, the area proportions of risk levels in DG-based map are
more inhomogeneous. More than half of regions in Guangxi province are assessed to be
high risk.

Table 7. Comparison of NBN-based map and DG-based map

NBN-Based Map DG-Based Map

Fire Proportion Area Proportion Fire Proportion Area Proportion

Low-risk 8.92% 19.94% 0.00% 0.28%

Medium-risk 9.30% 16.93% 22.20% 26.40%

High-risk 36.43% 31.46% 45.35% 50.32%

Very-high-risk 45.35% 31.67% 32.45% 23.00%

R-score 6.15 6.62

Table 7 also gives the proportions of fire events in risk level regions. 45.35% of
fire events distribute in the very-high-risk regions of NBN-based map, whereas 32.45%
in that of DG-based map, indicating a higher prediction precision of NBN-based map.
However, it should be noticed that the higher predicted precision of NBN-based map may
be caused by the bigger proportion of very-high-risk region, which are 31.67% and 23.00%
for the NBN-based map and DG-based map, respectively. A larger area of high-risk region
indicates a greater probability of fire event happening in the region, which leads to the
better prediction of model. On the other hand, the larger area of high-risk region needs
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more costs for wildfire rescue and management. To balance the contradiction of prediction
precision and management cost, a cost index -score is proposed.

R =
4

∑
i=1

(ki × Si + fi × Ni) (11)

where ki are the maintenance cost for the region with the ith risk level; The maintenance
costs of different risk levels need further studies in power grid cases, and are simplified to 1,
2, 4, 8 for the low-risk, medium-risk, high-risk, and very-high-risk regions, respectively. Si
is the area proportion of the ith risk region. In addition, fi represents the misjudgment cost
when the wildfires are happened in the ith risk level. If a fire happened in the low-risk and
medium-risk region, it is likely to be enlarged and bring disaster cost due to negligence of
management. Thus, fi are set as 8, 8, 2, and 0 for simplicity. The R-score of NBN-based map
is 6.15, which is lower than that of DG-based map (6.62). The reduced cost also indicates
the applicability of NBN-based map.

6. Conclusions

This study develops a spatial framework to assess and map wildfire risk of transmission-
line corridors by integrating remote sensing data. The proposed NBN-based wildfire risk
assessment combines empirical knowledge and machine learning into the discretization of
input factors, construction of conditional probabilities of wildfire-related factors, and map-
ping of wildfire risk distribution. NBN as a core algorithm is used to infer the probabilities
of wildfire occurrence. The remote sensing data including a total of 14 sub-categories of
wildfire-related factors is assembled to construct NBN model. Based on the relief algorithm,
the number of key wildfire-related factors is reduced into 8, indicating human activities
and fuels at underlying surface play more important roles in wildfires occurrence. This
spatial framework was implemented in a case study of Guangxi province in the south of
China. In addition, a cost index, R-score, is proposed to reflect the maintenance costs and
misjudgment costs. The results show that the NBN-based wildfire risk map has a higher
prediction precision and lower costs for power grids than the traditional method. 45.35%
of new monitored fire events distribute at the very-high-risk regions. The visual wildfire
risk distribution can assist decision maker of power grids to optimize both supplies and
staff resources and make strategies for responding damage control in the future.
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Abstract: Providing high on-shelf availability (OSA) is a key factor to increase profits in grocery
stores. Recently, there has been growing interest in computer vision approaches to monitor OSA.
However, the largest and well-known computer vision datasets do not provide annotation for store
products, and therefore, a huge effort is needed to manually label products on images. To tackle the
annotation problem, this paper proposes a new method that combines two concepts “semi-supervised
learning” and “on-shelf availability” (SOSA) for the first time. Moreover, it is the first time that
“You Only Look Once” (YOLOv4) deep learning architecture is used to monitor OSA. Furthermore,
this paper provides the first demonstration of explainable artificial intelligence (XAI) on OSA. It
presents a new software application, called SOSA XAI, with its capabilities and advantages. In the
experimental studies, the effectiveness of the proposed SOSA method was verified on image datasets,
with different ratios of labeled samples varying from 20% to 80%. The experimental results show
that the proposed approach outperforms the existing approaches (RetinaNet and YOLOv3) in terms
of accuracy.

Keywords: on-shelf availability; semi-supervised learning; deep learning; image classification;
machine learning; explainable artificial intelligence

1. Introduction

Machine learning techniques have been applied to different areas in the retail sector.
One of them is the monitoring on-shelf availability (OSA) in grocery stores. Providing
high OSA is a key factor to increase profits. When a product that a shopper looks for
is not available on its designed shelf, also known as “out-of-stock” (OOS), this causes a
negative impact on customer behaviors in the future. According to the research reported
by Corsten and Gruen [1], when a product is not available on the designed shelf space, 31%
of consumers buy the product from a different store, 26% of them buy a different brand,
19% of them buy a different size of the same brand, 15% of them buy the same product
at a later time, and 9% of them buy nothing. Besides, another study [2] showed that the
“out of the stocks” rate is about 8% in the United States and Europe. For this reason, OSA
has a significant effect on business profit. The remaining products can be checked using
an inventory management system, but it only shows the number of products in the stock.
These products, available in stock, might not be on the shelves. Current inventory systems
cannot understand the number of products on the shelves. OSA is checked by employees
manually at most of the grocery stores. This approach is not effective and sustainable since
it continuously requires human effort.

There are several studies to automate monitoring OSA. These studies consider the
subject from different perspectives. One of them proposes radio frequency identification
(RFID) tagging to monitor product quantity on the shelves [3], but this approach is not
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cost-effective to implement the technology and integrate it into existing systems [4]. Some
of them applied traditional image processing techniques to detect the presence and absence
of the product, such as [5], and some of them used deep learning approaches for object
detection on the shelves, such as [6]. When all these previous works are examined, there
are pros and cons of these approaches. When traditional image processing methods have
been used, such as histogram of oriented gradient (HoG) for feature extraction and support
vector machine (SVM) for a classifier, they have limited performance even if on the large
datasets and their performances are hard to be increased. In addition, the visual similarity
among the different products of the same brand can lead to misclassification. On the other
hand, when deep learning (DL) approaches were used such as recurrent convolutional
neural network (RCNN) or you only look once (YOLO), high accuracies could be achieved.
The DL algorithms require annotated images to train, but the largest and well-known
computer vision datasets do not provide annotation for store products, and therefore a
huge effort is needed to manually label products on images.

A semi-supervised learning approach can produce results with satisfactory accuracy
using an amount of labeled data and a much larger amount of unlabeled data in the training
phase [7]. This paper proposes a new method that combines two concepts “semi-supervised
learning” and “on-shelf availability” (SOSA) for the first time. An important advantage of
the proposed SOSA method is that it solves the OSA problems where labeled image data
is scarce. Labeling OSA image data is an expensive, tedious, difficult, or time-consuming
process since it requires human labor. The proposed SOSA method deals with the design
of on-shelf availability monitoring models in the presence of both labeled and unlabeled
image data.

From another perspective, users have to understand and trust the constructed OSA
model as a kind of artificial intelligence (AI) application. Besides, if their requirements
change, these applications have to be managed according to their needs [8]. Our paper
proposes the first demonstration of explainable artificial intelligence (XAI) on OSA.

The main contributions and novelty of this paper can be listed as follows. (1) This
is the first study that combines two concepts “semi-supervised learning” and “on-shelf
availability” (SOSA) for the first time. (2) It is the first time that YOLOv4 deep learning
architecture is used for exploring OSA. (3) This study is also original in that it compares
three deep learning approaches for monitoring OSA in the retail sector. (4) To the best of
our knowledge, this is the first demonstration of explainable AI on OSA. This paper also
presents a new software application, called SOSA XAI, with its capabilities and advantages.

In the experimental studies, the effectiveness of the proposed SOSA method was
verified on image datasets, with different ratios of labeled samples varying from 20% to
80%. We focused on category-based detection of empty and almost empty shelves. For
this purpose, we used both labeled and unlabeled images that include 49,573 products
grouped under three categories. The experimental results show that the proposed approach
outperforms the existing approaches (RetinaNet and YOLOv3) in terms of accuracy.

The remainder of this article is structured as follows: Section 2 summarizes the
related works on OSA. In Section 3, we first briefly introduce background information of
the compared algorithms and then explain semi-supervised learning of the OSA (SOSA)
concept with its definitions. This section also describes our demonstration of XAI on OSA.
Section 4 presents the experimental results and Section 5 presents discussions about the
obtained results. Finally, concluding remarks are presented in Section 6.

2. Related Works

In the literature, researchers have approached the subject from different perspectives.
They proposed both technical and managerial solutions to minimize OOS and monitor
OSA. Different technical solutions have been proposed, such as analyzing textual data on
the relational database management systems (RDMS) and applying computer vision-based
techniques. In this paper, we focus on computer vision-based techniques, and previous
works were examined based on this scope.
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Moorthy et al. [5] applied image processing techniques to detect the presence and
absence of the product in front of the shelf using MATLAB. In addition, they worked on the
positioning of products in retail stores. The feature extraction technique was used for object
detection and a speeded up robust features (SURF) algorithm was used for this purpose.
Reference images were given to the system and target images were taken from video or
camera devices as shelf images. Some pre-process operations were applied to images before
comparison of input and target images and extracting features using the SURF algorithm.
At the end of these steps, the product was evaluated for missing or misplaced. Besides,
they [9] proposed the image processing approach to provide high OSA in retail. They
collected images from shelves to use reference images. Reference images and target images
were compared using image processing techniques. When comparison showed missing
products on the shelf, the system sent messages to the manager or responsible person in
the store. A similar template matching approach was used to develop OSA monitoring
software in another study [10]. Moreover, some researchers [11] worked on high-resolution
panoramic images and proposed a supervised learning approach. Panoramic images were
created using a wide-angle fisheye camera and an accelerated-KAZE (AKAZE) feature
detector was applied. Labels were detected from the panoramic images of shelves. A
cascade classifier approach was used for this purpose.

Kejriwal et al. [12] worked on counting products from shelf images using robot-based
equipment. Several cameras were placed on either side of the robot. The robot was moved
between shelves and video data were collected from shelves. Several methods were applied
to these collected datasets. The first method was used to recognize the product and the
second one was used to count the product. A k-d tree was created and the SURF approach
was used to recognize the product by using the nearest neighbor search. Two different
techniques were used for product count. The first one is the product counting method in
which repeating features were counted to understand the number of products on the image
by using the SURF method. Secondly, rectangular bounding boxes were drawn around the
products and these boxes were counted to understand the number of products by using
the random sample consensus (RANSAC) method. Moreover, the grid search approach
was applied in the neighborhood of each found product on the image. Some undetected
products were tried to find in this way.

Higa et al. [6] studied product changes on the shelf. They focused on taken or returned
products on the shelf. Videos, captured from a surveillance camera, were used for the
study. Low-quality videos, 480 × 270 pixels, and 1 fps were used to eliminate storage
problems but another problem occurred at this time. Moving objects was difficult to track
from low-resolution videos. They used background subtraction and the convolutional
neural network (CNN) approach to detect changes of products on the shelf. CNN was used
based on CaffeNet and four classes were determined for CNN. The extended version of the
study [13] proposed analyzing consecutive images when the customers stood in front of
the shelf. The Hungarian method was used to analyze consecutive images. Moreover, the
Canadian Institute for Advanced Research (CIFAR)-10-based network and CaffeNet-based
network were used to detect change regions. In addition, a heatmap was generated to
show the customer’s behavior using captured images. Frequently accessed shelves were
analyzed with this approach.

Some studies exist about planogram compliance checking. Planograms are created
to standardize placed products on shelves for chain supermarkets. Another aim of cre-
ating a planogram is that, providing the best customer experience for promotions. Liu
et al. [14] studied automatic planogram checking compliance using recurring patterns.
These planograms are created by headquarters and sent to store managers. Store managers
are responsible for applying planograms to store shelves. In a conventional way, they try to
check planogram compliance manually. The proposed automatic checking compliance was
done without using template images. Planogram was taken as XML format and parsed.
Some matrix operations were applied to detect recurring patterns. The extended version of
the study [15] focused on spectral graph matching and speed improvements using a divide-
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and-conquer approach. Besides, Saran et al. [16] studied visual analysis for planogram
compliance. They compared the reference template image to the target image. Their study
focused on the presence of products, placements of products, and product count. The
Hausdorff map approach was used for the presence of products. This presence of products
was a group under two classes which were complete and partial cases. The Euclidean
distance approach was used to identify completely missing cases. A binary distance map
approach was used with the self Hausdorff map. Shelf rows were identified using the
Sobel derivatives extractor and Hough line extractor. The Sobel derivatives extractor was
used for vertical changes and the Hough lines extractor was used for horizontal changes.
Finally, texture features and color features were used to count products from images. The
color feature was used to eliminate false positives.

Briefly, the summarized related works above focus on OSA monitoring and planogram
checking based on traditional image processing and deep learning techniques using differ-
ent approaches. Image processing techniques have performance issues for huge datasets.
Moreover, for template matching, reference images have to be stored in a database and
this is not suitable for real-world applications. On the other hand, labeled images are
needed using deep learning techniques for object detection on the shelves. The largest and
well-known computer vision datasets do not provide labeled images for store products.
This process is time-consuming and quite expensive since it requires human labor costs.
This paper proposes a new method that combines two concepts “semi-supervised learning”
and “on-shelf availability” (SOSA) for the first time. The main advantage of the proposed
SOSA method is that satisfactory results can be achieved using a small amount of labeled
data and a large amount of unlabeled data for OSA monitoring.

Monitoring on-shelf availability has very little coverage in the literature, only a few
numbers of detailed analyses [5,6,9–13,16] have been performed. Table 1 shows the com-
parison of our study with the previous studies aforementioned. Our approach differs
from the existing approaches in many respects and has numerous advantages over the rest
as follows:

• First, some of the previous studies [5,9–12,16] used traditional techniques such as
image processing (IP) to monitor OSA, whereas we used deep learning techniques. In
IP-based approaches, a huge amount of reference images has to be stored to match the
target image and for every product updating, reference images have to be updated
manually. In this context, an important advantage of our method is that it does not
require any reference image and therefore it does not need manual updating when
products are updated. Moreover, it automatically extracts features from an input
image thanks to deep learning.

• Second, the previous deep learning-based studies used different network struc-
tures such as the CaffeNet-based network [6,13] and CIFAR-10-based network [6,13],
whereas we designed a novel network architecture that consists of RetinaNet, YOLOv3,
and YOLOv4 detectors. Here, the advantage of our approach is that it builds three dif-
ferent models and selects the best one, and hence, satisfactory results can be achieved
by the selection of the best model.

• Third, the previous deep learning-based studies used two-stage detectors. On the
other hand, in this study, we benefit from one-stage detectors because of their speed
and achieving satisfactory accuracy results for OSA monitoring.

• Four, our study differs from the rest in that we adapted the semi-supervised learning
concept, and therefore we benefited from both labeled and unlabeled data. Here, the
main advantage is that our method reduces the need for labeling images which is
an expensive, tedious, difficult, and time-consuming process since it requires human
labor. Satisfactory results can be achieved using a small number of labeled images.
Moreover, the proposed method will expand the application field of machine learning
in grocery stores since a large amount of OSA data generated in real-life are unlabeled.
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• Finally, differently from the previous studies, we introduced an explainable AI concept
into OSA. The developed new SOSA XAI software application allows users to manage,
understand, and trust the model when monitoring OSA.

Table 1. Comparison of the proposed Semi-Supervised Learning on on-shelf availability (SOSA) approach and the
previous approaches.

Reference
No

Year

Object Detection Learning

XAI MethodsTraditional
Detection

Deep Learning Supervised
Learning

Semi-Supervised
LearningTwo-Stage One-Stage

[5] 2015 � � � SURF

[9] 2015 � � � Image Processing

[10] 2015 � � � Image Processing

[12] 2015 � � � k-d Tree, RANSAC

[16] 2015 � � �
Hausdorff Map,

Euclidean Distance,
Binary Distance Map

[11] 2016 � � �
AKAZE Feature Detector,

Cascade Classifier

[6] 2018 � � �
CaffeNet-based Network,
CIFAR-10-based Network

[13] 2019 � � �
CaffeNet-based Network,

CIFAR-10-based
Network, Hungarian

Proposed Method � � �
RetinaNet, YOLOv3,

YOLOv4

3. Materials and Methods

3.1. Deep Learning for Object Detection

One of the main tasks of computer vision is object detection. It deals with detecting
objects along with their locations and classes (such as cars, fruits, food products) in images.
Object detection methods can be grouped into two categories: traditional image process-
ing methods and deep learning-based detection methods. Recently, deep learning-based
object detection methods have become popular because of outstanding results. In addi-
tion, deep learning-based object detection methods can be divided into two categories as
two-stage detectors such as regions with convolutional neural networks (R-CNN) [17],
faster R-CNN [18], feature pyramid network (FPN) [19], and one-stage detectors such as
RetinaNet [20], YOLOv3 [21], and YOLOv4 [22]. In the general structure of two-stage
detectors, feature extraction is applied to the input image and generated proposed regions
using different methods in the first stage. From these proposed regions, the locations
(bounding boxes) and classes of the objects are determined in the second stage. In con-
trast to two-stage detectors, the region proposal stage is skipped and directly learns class
probabilities and bounding box locations from the input image like a simple regression
problem. In this study, we decided to work on one-stage detectors because of their speed
and achieving satisfactory accuracy results for OSA monitoring.

The history of one-stage detectors is shown in Figure 1. Since 2012, CNN [23] has
been used to be able to learn from features of images robustly. Before this year, traditional
detection methods such as image processing were used for object detection tasks. After this
year, computer vision techniques have improved very rapidly and novel deep learning-
based detection methods have been proposed. The existing detector methods can be
grouped under two categories: methods with one-stage detector and methods with two-
stage detectors. The first one-stage detector method was proposed in 2013, and since then,
at least one novel approach has been proposed each year. Each approach solved the object
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detection problem from a different perspective to increase accuracy, and each one achieved
higher accuracy results from previous ones. For this reason, three of the latest published
one-stage detectors (RetinaNet, YOLOv3, YOLOv4) have been selected for this study.

Figure 1. History of one-stage detectors.

Lin et al. [20] proposed the RetinaNet one-stage object detection model. It uses
a new focal loss function to handle class imbalance issues more effectively according
to alternative previous approaches. Their model has one backbone network and two
subnetworks. Feature map is computed in the backbone network and the output of this
network is used as input for two subnetworks. Bounding boxes and classifications are
found separately in each subnetwork. FPN is used as a backbone network for RetinaNet.
Their proposed architecture improved the performance of the model compared to standard
top-down CNN architecture.

YOLOv3 is a one-stage detector that combines FPN, CNN, and the non-maximum
suppression algorithm [21]. CNN is used for the feature extraction process. In addition, it
has been integrated with the Darknet-19 and residual neural network (ResNet) network
structures for feature extraction. On the other hand, a shortcut connection is added to
the model. Fifty-three convolution layers are existing with dropout and batch normal-
ization operations in the feature extraction network. The network is used as a backbone
network and named Darknet-53. YOLO works on the entire image during the train and
test processes.

YOLOv4 is an improved version of previous YOLO models. It combines the YOLOv3
head and path-aggregation network (PANet) for detection steps [22]. PANet is used
instead of FPN in the model. The novel backbone, called cross stage partial Darknet-
53 (CSPDarknet-53), is used. Some blocks are added such as spatial pyramid pooling
(SPP) to increase the receptive fields on the backbone. Besides, YOLOv4 provides data
augmentation to expand the training dataset to improve the accuracy of the network
without extra inference time. The Mosaic data augmentation method that combines four
images in the training phase was proposed.

3.2. Proposed Approach: Semi-Supervised Learning on OSA (SOSA)

This paper proposes a new approach: semi-supervised learning on OSA (SOSA).
The proposed method combines two concepts “semi-supervised learning” and “on-shelf
availability” for the first time to decrease OOS by automatically detecting and classifying
products using shelf images. For this purpose, SOSA builds a classification model that
allows the detection of “Product”, “Empty Shelf”, and “Almost Empty Shelf” classes
by using both labeled and unlabeled image data. The aim of the SOSA approach is
section-based detection of empty and almost empty shelves based on the semi-supervised
learning principle.
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3.2.1. The General Structure of the Proposed SOSA Method

Figure 2 shows the general structure of the proposed SOSA approach. SOSA consists
of the following main steps. The first step is to train three one-stage detectors on the existing
labeled image data. After that, the best-trained model is selected using the evaluation
metrics such as mean average precision (mAP), F1-score, and recall measures. In the next
step, the unlabeled image data is labeled by the constructed classifier via their predictions,
which is commonly referred to as pseudo-labeled data. Lastly, the final classifier is built
by using both originally labeled and pseudo-labeled image data. Hence, SOSA allows
unlabeled image data to be introduced to the training process in an efficient manner.

 

Figure 2. The general structure of the proposed SOSA approach.

In the preprocessing phase of the SOSA method, the images, which are taken from
different perspectives in front of the shelves, are labeled to use for the first training. Images
are labeled according to the product type(s) it includes. Besides, empty and almost empty
shelves are labeled on the images. If one or two of the related products remained on the
shelf, these products’ areas are labeled as “Almost Empty”.

3.2.2. The Formal Definition of the Proposed SOSA Method

Assume that labeled dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)} has n images with
labeled products. Each component (x, y) is composed of d-dimensional vector (x) from a
given input space X, such that x ∈ X, and the output variable (y), where y ∈ Y = {c1, c2,
. . . , cm} has m class labels. Unlabeled dataset U = {xn+1, xn+2, . . . , xn+s} has s unlabeled
images. We are especially interested in OSA images where labeling the images is difficult
and expensive since it requires human labor. The SOSA method considers both D and U
to find a decision function f : X �→Y that can correctly predict the class labels ŷ of a given
unseen input sample image SI. Z refers to one-stage detectors and Z = {z1, z2, . . . , zk} has k
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detectors. In this study, three one-stage detectors are used, where z1 refers to RetinaNet, z2
refers to YOLOv3, and z3 refers to YOLOv4, and so k is set to 3.

Definition 1. Semi-supervised learning on on-shelf availability (SOSA) refers to a machine
learning approach that builds a model to correctly detect “Product”, “Empty Shelf”, and
“Almost Empty Shelf” regions from an input image by using both labeled and unlabeled
image data, which are taken from different perspectives in front of the shelves.

Algorithm 1 gives the general framework of the proposed SOSA approach. The
algorithm consists of five steps. In the first step, labeled dataset D is split as DTrain, and
DTest based on the given percentage. In the first loop, a model zc is trained for each one-
stage detector. Trained models are added to Z. In the second step, the constructed models
are tested using labeled test dataset DTest and obtained prediction results are compared to
select the best one-stage detector that has maximum success rates. The selected-one stage
detector is assigned to SD. In the third step, a query instance xi ∈ U is submitted to the
selected detector SD, and its estimation ŷ is assigned to xi as a pseudo-label. This process is
repeated for each instance in the unlabeled dataset U to generate all pseudo labels. At the
end of this labeling operation, labeled dataset D is augmented with pseudo-labeled images.
In the next step, the classifier is re-trained by using the new dataset D which contains
both labeled and pseudo-labeled images. Finally, a sample image SI is given to the trained
model TM to be classified, and the predicted classes ŷ are obtained from the algorithm.

Algorithm 1 SOSA: Semi-Supervised Learning on OSA

Inputs: D: Labeled dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)} with n instances
U: Unlabeled dataset U = {xn+1, xn+2, . . . , xn+s} with s instances
Z: One-stage detectors Z = {z1, z2, . . . , zk} with k detectors
Y: Class labels Y = {c1, c2, . . . , cm} with m classes
SI: Sample image
Outputs: TM: Trained model
ŷ: Predicted class labels for the products included in the sample image
Begin:

DTrain = Split(D, n * percentage)
DTest = Split(D, (n − (n * percentage)))
//Step 1—Training with labeled data
for c = 1 to k do

foreach epoch
foreach (xi, yi) in DTrain
zc = Train(xi, yi)
end foreach

end foreach

Z = Z ∪ zc
end for

//Step 2—Testing one-stage detectors and selecting the best one
for c = 1 to k do

foreach (xi, yi) in DTest
Prediction = zc(xi)
PredictionResultc = PredictionResultc ∪ Prediction
end foreach

end for

SD = MAX (PredictionResultc) //SD: Selected detector
//Step 3—Labeling unlabeled image data and generating pseudo-labels
foreach xi in U
ŷ = SD(xi)
D.Add(xi, ŷ)
end foreach

//Step 4—Re-training the model with pseudo-labeled data
TM = Train(D)
//Step 5—Classifying a sample image
ŷ = TM(SI)
End Algorithm
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After the preprocessing phase, the algorithm splits the labeled data into training and
test sets according to a given ratio. For each one-stage detector, a model is built by using
the training set. At the end of the training phase, three trained models are tested using the
test set. As test results, the average precision (AP), mean average precision (mAP), F1-score,
and recall values are calculated based on intersection over union (IoU) threshold value.
IoU computes the intersection over the union of the given bounding box and the predicted
bounding box. The formulas are given in Equations (1) to (5):

Precision =
True Positive (TP)

True Positive (TP)+False Positive (FP)
, (1)

Recall =
True Positive (TP)

True Positive (TP)+False Negative (FN)
, (2)

F1Score = 2· Precision·Recall
Precision + Recall

, (3)

AP =
1
N
·

N

∑
i=0

Precisioni, (4)

mAP =
1
|T| · ∑

t∈T
APt, (5)

where |T| is total of all APs calculated for each class and N is the number of instances in
the test set.

After the testing phase, the obtained test results are compared with each other and
the detector that has the highest accuracy is selected as the final representative model. In
the following phase, semi-supervised learning is performed by labeling the unlabeled data
using the trained model of the selected detector. After the labeling operation is completed,
the pseudo-labeled data is combined with the labeled data, and then the training process is
restarted on the selected detector using the extended dataset. At the end of the re-training
operation, the newly trained model is saved for further use for the detection of empty and
almost shelves based on sections. To understand which section has empty or almost empty
shelves, the relative frequency (RF) formula is used as given in Equation (6):

RF =
Frequency of One Product Class

Total Frequencies of All Products′ Classes
. (6)

Each product is labeled at the end of the detection phase on the shelf image and these
labels denote the section of products. For each section, RF is calculated and the highest
RF value gives the final section info. For instance, if the highest RF value is obtained for
the breakfast products, the section is recognized as a breakfast product. Besides, if three
empty and two almost empty shelves are detected on the image, the SOSA algorithm
gives the following information: “3 empty and 2 almost empty shelves are existing on the
breakfast section.”

3.2.3. The Advantages of the Proposed SOSA Method

The proposed method (SOSA) has a number of advantages that can be summarized
as follows:

• The traditional OSA applications are limited to using only labeled image data to build
a model. However, labeling shelf images are a time-consuming, tedious, expensive,
and difficult job because of existing so many products on a one-shelf image, and
for this reason, so many human laborers are needed. This is especially true for
the OSA applications that include learning from a large number of class labels and
distinguishing similar classes. The main advantage of the SOSA method is that it
solves OSA problems using a small number of labeled shelf images. The existing
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labeled dataset is extended by using unlabeled data with automatically assigned labels,
and hence, high accuracy results are taken with the SOSA approach in an efficient way.

• Another advantage is that it includes three different one-stage detector models and the
model with the highest accuracy is selected at the beginning of the semi-supervised
learning. Hence, satisfactory results can be achieved by the selection of the best model.

• The SOSA approach uses three different deep learning techniques (RetinaNet, YOLOv3,
and YOLOv4) without any modification or development of the methods. Therefore,
SOSA has advantages in terms of easy implementation. It is possible to implement it in
Python by using open-source codes available in the related machine learning libraries.

• The main idea behind the SOSA method is to take advantage of a huge amount of
unlabeled image data when building a classifier. In addition to labeled data, the
SOSA method also exploits unlabeled data to improve classification performance.
Thanks to the SOSA method, the unlabeled data instances provide additional knowl-
edge, and they can be successfully used to improve the generalization ability of the
learning system.

• Another advantage is that the SOSA method can be applied to any OSA image data
without any prior information about the given dataset. It does not make any specific
assumptions for the given data.

• Since a large amount of OSA data generated in real-life is unlabeled, the SOSA method
will expand the application field of machine learning in grocery stores.

3.3. Explainable AI for SOSA

Explainable artificial intelligence (XAI) is a growing research field in recent years.
The aim of XAI is to make machine learning and AI applications more understandable
to users who are not experts in these fields. From rule-based systems to deep learning
systems, the transparency of systems is decreasing. Especially, it is hard to understand and
interpret the outputs of deep learning applications by users. Therefore, users see this kind
of AI application as a black box. They think that inputs are given to these applications;
afterward, something happens magically inside the box, and outputs are generated by AI
applications [24]. On the other hand, AI-based applications are increasingly being adopted
by different sectors, including retail. Therefore, business stakeholders and users of AI
systems should be able to understand their systems to trust outputs and manage these
applications to their needs without getting help from AI experts or engineers [25].

There are different concepts of XAI to provide transparency for AI models in the
literature. This transparency can be provided for different parts of the model based on
requirements. One of them is post-hoc explainability. The purpose of post-hoc is to explain
decisions of AI models using different approaches such as text explanation, visualization,
explanation by example [8]. The results of the model can be explained using text definitions,
graphics, and images for users in this way. Besides, the dataset can be interpreted during
the training phase and the dataset can be extended for better accuracy without the need for
AI experts.

In this study, we present the first demonstration of XAI on OSA using post-hoc
techniques, and therefore, users can understand and trust the constructed OSA AI model
in this way. Moreover, they can interpret the detection results of the model and enhance
the dataset in the training phase to adapt the application for changes. In this study, for the
OSA XAI demonstration, we used the following post-hoc techniques: text explanations,
visualizations, and explanations by example.

In this study, a new software application, called SOSA XAI, was developed to provide
understandability for the users. SOSA XAI consists of four main screens. These are “Train”,
“Test”, “Monitoring”, and “Metrics” screens. The main screen is shown in Figure 3. Our
proposed SOSA method can be managed using the application. After the first initialization,
users can re-train the model using the training screen as shown in Figure 4. In the training
screen, the creation dates of the models and the obtained results (mAP, F1-score, and Recall
values) are given in an easily understandable format. Furthermore, for each model, the
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status of the model is shown based on accuracy values using the visualization technique. If
one of these three accuracy results under 80% (our threshold value for this study), color is
changed for the related accuracy metric. Moreover, during the training process, training
progress steps are given in a more understandable way using the text explanation technique,
and at the end of the training operation, the meaning of accuracy values are interpreted
by the application. The last trained model has activated automatically. On the other hand,
users can activate one of the previous models from the list.

 

Figure 3. The main screen of SOSA XAI.

 

Figure 4. Train screen of SOSA XAI.
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Thanks to our SOSA XAI application, the active trained model can be tested using a
test screen. Test images are listed on the screen and also new test images can be uploaded.
Accuracy values and creation date of the trained model are shown in a straightforward
manner. For selected or uploaded test images, detection operation can be started and results
are shown both visually and textually. In the textual explanation section, the decision of
the model is given in an understandable way and explained how this decision is made.
Figure 5 shows a screenshot of the object detection results. Besides, when some of the
classes are detected with low accuracy, the application gives suggestions to extend the
existing dataset to increase accuracy. For instance, when empty-shelf accuracy is less than
80%, the system suggests adding more images that contain more empty shelves from
different perspectives and re-training the model. In the metrics screen of the software, the
system shows sample images containing empty shelves from different perspectives, and
users can expand the training set by adding new images among these samples. Moreover,
the monitoring screen has also similar functionalities, but here, the user can design the test
set, instead of the training set. From the monitoring screen, real-time results can be tracked
the same as the test screen.

 

Figure 5. Test screen of SOSA XAI.

Finally, from the metrics screen (Figure 6), the training accuracy graph for the active
trained model, and dataset distribution based on classes can be seen easily. In addition, the
dataset can be extended using the “Extend Dataset” part with unlabeled images. Sample
images are shown to give an idea of how to create a new dataset and suggestions are given
as text for this purpose. After the upload operation is completed, the training process can
be started from the training screen for the extended dataset. Text explanation, visualization,
and explanation by example post-hoc techniques are used in this screen.

In a real-time application, shelf images can be taken approximately every hour during
peak times and every three hours during non-peak times to be analyzed by the OSA system.
Since this period is parametric in the developed system, it can be easily modified. In
order to protect the privacy of customers, when an image is taken, an object detection
approach [26] is firstly applied to check the presence of people on the image. If people
are detected, this image is not processed by the system, and a new image is taken after a
period of time until the image does not contain a person (i.e., shopper or employee). After
this step, the trained model is used to classify the new image, and the image is stored in
the system. When empty or almost-empty shelves are detected, a notification is sent to
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the responsible store clerk to check the related area. When a notification is received, a
responsible clerk can put new products on the shelf to prevent customer and profit loss.

 

Figure 6. Metrics screen of SOSA XAI.

SOSA XAI gives an opportunity to understand, trust, and manage AI applications to
increase OSA for users who are not AI experts and engineers in grocery stores. Results
can be interpreted easily and the dataset can be extended with unlabeled images for
requirements changes. Furthermore, the results of the previous models can be compared
to the current one and the desired model can be selected and activated. It combines our
proposed SOSA approach and XAI.

4. Experimental Studies and Results

In the experiments, the proposed approach SOSA was tested on a real-world dataset.
A labeled dataset is needed for the test operation but the largest and well-known computer
vision datasets do not provide annotation for grocery store products. In the literature, few
datasets have been collected from grocery stores. On the other hand, all of these datasets
have unlabeled images for the store products, and these datasets cannot be used directly
without labeling some of them.

We used the WebMarket dataset [27] in this study. The dataset contains 3153 unlabeled
images that were taken from in front of shelves using three digital cameras that were
standing from about 1 m away from shelves. The images were taken without any special
illumination changes and without any viewpoint constraint but most of the images are
frontal views. The images in the dataset were collected from 18 shelves in a retail store,
each of length 30 m and each of which approximately has six levels. Each image generally
covers an area of about 2 m in width and 1.5 m in height on shelves, including all the items
within three or four shelf levels in range. The dataset contains images of 100 different
items. The dataset also includes fine-grained product categories having minor variations
in packages [28]. Since the model is trained on such data, it has the capability of dealing
with packages. The format of each image is Jpeg and its resolution is either 2592 × 1944 or
2272 × 1704. High resolution holds sufficient information for each object appearing in the
image, and thus, the trained model can deal with packages of multiple items and damaged
packages, at least with lower accuracy. Until now, the dataset was used for object retrieval
studies [29,30]. Namely, our study is the first study that uses the WebMarket dataset for
monitoring on-shelf availability.
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In order to label the images, LabelImg [31] open-source tool was used and 300 images
were labeled based on five classes. Three of them are for product categories that are
“Beverage Products”, “Breakfast Products”, and “Food Products”, and two of them are for
shelves’ areas that are “Empty Shelf” and “Almost Empty Shelf”. “Beverage Products” and
“Breakfast Products” were selected from fast-moving consumer goods (FMCG) which are
nondurable products, consumed at a fast pace. A total of 13,835 products were grouped
under three categories, and 818 shelves’ areas grouped under two categories. The labeled
dataset was divided into a training set (90%) and a test set (10%). The distribution of
labeled products and shelves’ areas are shown in Figure 7.
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Figure 7. (a) Distribution of labeled products; (b) Distribution of labeled shelves’ areas.

In this study, a file was created to store annotation info for each image, and Pascal
visual object classes (VOC) was used as an annotation file, which contains all information
about the images such as bounding box coordinates and class names. A sample Pascal
VOC format is shown in Figure 8. Since it is in an XML file format, its format can be easily
converted to other formats. Different object detection algorithms were used for different
file formats to store labeling information of items on the images. Since products and shelf
areas are annotated in a Pascal VOC format, we developed several conversion tools in
C-Sharp to convert its format to the required formats.

For RetinaNet, each file extension was converted from XML to TXT. Sample file
structure and conversion details are shown in Figure 9. The class labels of the products
were inserted in a CSV file. Finally, CSV files for the training and test sets were generated
from the Pascal VOC file.

For YOLOv3 and YOLOv4, each file extension was converted from XML to TXT, and
conversion was applied from Pascal VOC to YOLO format. A sample file structure and
conversion details are shown in Figure 10. The class labels of the products were inserted in
a NAMES file. Finally, TXT files for the training and test sets were generated to store the
locations of images.
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Figure 8. Structure of Pascal visual object classes (VOC) format for a sample file.

 

Figure 9. RetinaNet sample file structure and conversion details.
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Figure 10. YOLOv3 and YOLOv4 sample file structure and conversion details.

For evaluating our proposed approach, first of all, a training process was started on
the selected three one-stage detectors (RetinaNet, YOLOv3, and YOLOv4) using labeled
images. The experimental environment was created on a computer that has the following
specifications: Ubuntu 20.04 operating system, GeForce RTX 2080 TI GAMING X TRIO
11 GB graphical processing unit (GPU), AMD Ryzen 7 3700X 3.6 GHz/4.4 GHz processor,
and 32 GB 3600 MHz DDR4 memory. The training operation is processed on the GPU for
each detector.

The following open-source frameworks were used in this study: Keras-based frame-
work for RetinaNet [32], Darknet-based framework for YOLOv3 [33], and YOLOv4 [34]. For
each detector, the following parameters were determined: input image size as 512 × 512,
learning rate as 0.001, and the number of iterations as 10,000. RetinaNet was trained
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using two different convolutional neural networks (CNN)-based backbones: ResNet50
and ResNet100. Darknet53, which is a new feature extraction network, was used as the
backbone of YOLOv3. For YOLOv4, the CSPDarknet53 backbone was used. This backbone
uses cross stage partial network (CSPNet) approach for partitioning and merging feature
maps based on a cross-stage hierarchy [22]. Besides, for each backbone, pre-trained models
were used, which are “model50.h5” and “model101.h5” for RetinaNet, “yolov3.weights”
for YOLOv3, and “yolov4.conv.137” for YOLOv4.

At the end of the first training process, YOLOv4 with CSPDarknet53 had the highest
success rates; 0.9187 for mAP, 0.9100 for F1-score, and 0.9600 for recall. These results
were followed by RetinaNet with ResNet101 and ResNet50 backbones, and YOLOv3 with
Darknet53 backbone. More details of the training results are shown in Table 2. From
the results, it can be clearly seen that a significant performance improvement (>20%)
was achieved by the proposed method on average. For example; YOLOv4 (0.9616) is
significantly better than RetinaNet (0.7245) in the detection of breakfast products. YOLOv4
remarkably outperformed the rest for the “Empty Shelf” and “Almost Empty Shelf” classes
with 0.9136 and 0.8125 of average precision values respectively.

Table 2. Comparison of success rates of the methods on the labeled images for three different one-stage detectors with four
different backbones.

Classes
RetinaNet (Backbone:

ResNet50)
RetinaNet (Backbone:

ResNet101)
YOLOv3 (Backbone:

Darknet53)
YOLOv4 (Backbone:

CSPDarkNet53)

AP

Beverage Product 0.9469 0.9625 0.8636 0.9808

Breakfast Product 0.6975 0.7245 0.8003 0.9616

Food Product 0.8886 0.8697 0.6321 0.9252

Empty Shelf 0.8481 0.8387 0.8189 0.9136

Almost Empty Shelf 0.2386 0.1561 0.5884 0.8125

mAP 0.7239 0.7103 0.7406 0.9187

F1-score 0.7333 0.7430 0.6600 0.9100

Recall 0.8105 0.8228 0.6600 0.9600

In this study, we propose semi-supervised learning on OSA, named SOSA, for the first
time to take the advantage of unlabeled data because labeling products on image data is
an expensive, tedious, difficult, and time-consuming process. For this reason, products
and shelf areas were labeled on a small number of images to compare our SOSA approach
with the standard supervised OSA approach. The one-stage detector that had the highest
success rate was selected with their trained model from the first training phase to use for
the semi-supervised learning approach. The proposed SOSA method was evaluated on
image datasets, with different ratios of labeled samples varying from 20% to 80%. The
distribution of samples is shown in Table 3. For example, in the first experiment, 300
labeled images and 1200 unlabeled images were used to build a classifier. Firstly, unlabeled
images were labeled using the selected one-stage detector with its model constructed
in the previous training phase. In this way, a pseudo-labeled image dataset is obtained
from an unlabeled image dataset. A total of 49,573 products were grouped under three
categories and 2145 shelf areas were grouped under two categories for both labeled and
pseudo-labeled images.
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Table 3. Distribution of labeled samples on image datasets.

Dataset ID
Percentage of

Labeled Images
Number of

Labeled Images
Number of

Unlabeled Images
Number of

Total Images

D1 20% 300 1200 1500

D2 40% 300 450 750

D3 60% 300 200 500

D4 80% 300 75 375

Training processes were started for each dataset given in Table 3 to verify the effec-
tiveness of the proposed SOSA method. Here, this experiment is performed to test the
different ratios of labeled images, varying from 20% to 80% with an increment of 20%. The
comparison of loss values obtained during the training phases is shown in Figure 11. From
the figure, it can be seen that loss values decreased dramatically during the training phase
after two thousand iterations. Very close loss values were obtained for different ratios. The
results indicate that a small amount of labeled data is enough to receive similar loss values
since the algorithm benefits from unlabeled data. From the results, it can be concluded that
labeled data that contain shelf images taken from a grocery store can be extended with
unlabeled images to achieve high accuracy.

Figure 11. Comparison of loss value changes during the training phase.

As shown in Figure 12, satisfactory results were achieved by the proposed SOSA
approach. When the percentage of labeled images was 20%, mAP, F1-score, and recall
values were obtained as 0.7209, 0.8100, and 0.8300, respectively. When the percentage of
labeled images was 40%, mAP was calculated as 0.7257, F1-score was achieved by 0.7800,
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and recall was measured as 0.7800. When using a 60–40% labeled-unlabeled ratio, mAP
was 0.8622, F1-score was 0.8700, and recall was 0.9000. When the labeled image rate was
80%, mAP was 0.8927, F1-score was 0.9000, and recall was 0.9300. As has been observed
in Figure 12, it is possible to provide good generalization ability for the OSA problem
by applying a small number of labeled image data. It also can be seen from the results
that an improvement could be expected from our method in circumstances where the
ratio of labeled data grows. For example, after adding 20% labeled data, we found that
the accuracy of the SOSA method increased from 0.7257 to 0.8622, with approximately
14% improvement. The results indicate that an initial amount of labeled ordinal data
can be sufficient enough to learn the model, but additional labeled data can improve the
classification performance.
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Figure 12. Success rates when different ratios of labeled data are considered.

The sample object detection results related to the breakfast section are shown in
Figure 13. Each subfigure shows the results obtained by the models that were trained
using labeled samples varying from 20% to 80%. While some almost-empty areas, which
are highlighted in red color, could not be detected with a 20–80% labeled-unlabeled ratio,
these areas could be detected with higher labeled data ratios. The detection accuracy of
almost-empty areas was increased as the labeled data ratio was increased. Besides, from
the SOSA XAI perspective, the results were interpreted in a more understandable way for
users. SOSA XAI output message is as follows: “8 almost-empty and 4 empty shelves are
existing on the breakfast section. In order to determine the section, the products on the
picture are counted and the category that has the most products is selected”.

197



Sensors 2021, 21, 327

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 13. Sample object detection results of the breakfast section. It shows detection results using the model that was
trained with (a) 20% of labeled images; (b) 40% of labeled images; (c) 60% of labeled images; and (d) 80% of labeled images.

For the beverage section, the sample object detection results are shown in Figure 14.
The sample shelf image has eight empty and one almost-empty shelves. All trained models
detected empty shelves (highlighted in violet color) and almost-empty shelf (highlighted
in red color) with high probabilities. For example, the model that was trained with 20%
labeled images detected one of the empty shelves with 99% probability and the almost-
empty shelf with 100% probability. The model that was trained with 80% labeled images
detected one of the empty shelves with 100% probability and the almost empty shelf with
100% probability. Besides, all models detected beverage products with high probabilities.
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(a) 
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(d) 

Figure 14. Sample object detection results of the beverage section. It shows detection results using the model that was
trained with (a) 20% of labeled images; (b) 40% of labeled images; (c) 60% of labeled images; and (d) 80% of labeled images.

In this study, we focused on detecting empty and almost-empty areas on the breakfast
and the beverage sections. The images that do not include beverage and breakfast products
are labeled as “Food Product”. The SOSA approach was also tested using shelf images
that were taken from the food sections. Figure 15 shows the sample object detection results
for the rice and pasta section. The results showed that products were correctly labeled as
“Food Product” with high probabilities. Most of the images in the dataset are frontal views
and products in front of the shelves are fundamentally analyzed to be detected in this
study. When a product is on the backside of a shelf, the system generates an almost-empty
shelf notification. However, if the depth of a shelf is too deep, the system may detect the
products at the backside with low probability. In the cases of empty and almost-empty
shelf notifications, a responsible clerk can put new items on the shelf to prevent customer
and profit loss. It can also be noted that a package may contain multiple items but it may
look like a single object from the outside, and in this case, the package is detected as a
single object by the system, as expected. Besides, some products can be damaged. In this
case, these products can also be detected by the system, but with lower probability due to
the change in their appearance.
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Figure 15. Sample object detection results of the rice and pasta section. It shows detection results using the model that was
trained with (a) 20% of labeled images; (b) 40% of labeled images; (c) 60% of labeled images; and (d) 80% of labeled images.

The comparison of the proposed SOSA approach with the existing approaches in
terms of accuracy is shown in Table 4. The experimental results showed that the proposed
approach outperformed the existing approaches (RetinaNet and YOLOv3) in terms of
accuracy. The best performance was achieved for the breakfast products. When the per-
centage of labeled images varied between 80% and 20%, the AP values were obtained
as 0.9467, 0.9626, 0.9253, and 0.8414, respectively. At most, all the algorithms had diffi-
culty in distinguishing the “Almost Empty” class. Compared to the existing methods,
approximately 25% improvement was achieved for the almost-empty class by the proposed
method. Besides, this achievement of the SOSA method can be increased by extending the
dataset with unlabeled images that contain more almost-empty areas. From the empty-shelf
class perspective, satisfactory AP results (>0.8) were obtained by the proposed method.
In addition, when AP results were evaluated based on product classes, it was seen that
AP values increased compared to the previous methods on average. Based on the results,
it can be concluded that the proposed SOSA method has good generalization ability in
distinguishing all the classes, so it can be effectively used to recognize them well.
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Table 4. Comparison of accuracies between SOSA and existing approaches.

Classes
RetinaNet
(Backbone:
ResNet50)

RetinaNet
(Backbone:
ResNet101)

YOLOv3
(Backbone:
Darknet53)

SOSA (80%
Labeled
Images)

SOSA (60%
Labeled
Images)

SOSA (40%
Labeled
Images)

SOSA (20%
Labeled
Images)

AP

Beverage
Product 0.9469 0.9625 0.8636 0.9586 0.8797 0.7477 0.8224

Breakfast
Product 0.6975 0.7245 0.8003 0.9467 0.9626 0.9253 0.8414

Food Product 0.8886 0.8697 0.6321 0.9303 0.8680 0.7308 0.8718

Empty Shelf 0.8481 0.8387 0.8189 0.8410 0.8736 0.7601 0.7216

Almost
Empty Shelf 0.2386 0.1561 0.5884 0.7866 0.7269 0.4646 0.3471

mAP 0.7239 0.7103 0.7406 0.8927 0.8622 0.7257 0.7209

F1-score 0.7333 0.7430 0.6600 0.9000 0.8700 0.7800 0.8100

Recall 0.8105 0.8228 0.6600 0.9300 0.9000 0.7800 0.8300

5. Discussion

Providing high on-shelf availability is a key factor to increase profits in grocery stores.
For this purpose, this study is the first attempt to combine two concepts “semi-supervised
learning” and “on-shelf availability” (SOSA). The proposed SOSA method aims to decrease
out-of-stock by automatically detecting and classifying products using shelf images based
on the semi-supervised learning principle. The main purposes of the SOSA method are to
decrease the need for manual image labeling, to obtain satisfactory results using a small
amount of manually labeled images, and to provide additional knowledge present in
unlabeled image data.

SOSA builds a classification model that allows the detection of “Product”, “Empty
Shelf”, and “Almost-Empty Shelf” classes by using both labeled and unlabeled image data.
When building the model, three different deep learning techniques are used: RetinaNet,
YOLOv3, andYOLOv4. This study shows that the proposed approach improves accuracy
when monitoring OSA.

In the experimental studies, the effectiveness of the proposed SOSA method was
demonstrated on a real-world image dataset, with different ratios of labeled samples
varying from 20% to 80%. As can be seen from Table 4, the proposed SOSA approach out-
performed the previous approaches on average. For instance, according to the experimental
results, 15–18% improvement is achieved on average accuracy.

When developing an OSA system, some challenges could be encountered and over-
come. The first one is that some products can lie on the shelf or their packages can be
damaged. In these cases, these kinds of products can be detected with low probability due
to the change in their appearance. To increase detection probability, the images containing
this type of product can be included in the training set. In this way, the model can learn
from these kinds of objects, and therefore these products can be detected with higher
accuracies. Another difficulty is that some objects can stand in front of the shelf and they
can prevent detecting products on the shelf. These objects can be shoppers, employees,
grocery store trolleys, or something else. In this study, we implemented a solution to
check the presence of people on the image. If a person is detected, this image is discarded
by the system, and then a new image is taken after a period of time. This issue is also
important to protect the privacy of customers. Similar solutions can also be implemented
for other objects.

The SOSA method is powered by the SOSA XAI application. SOSA XAI was developed
to provide transparency and understandability of the OSA model for the users. Thanks to
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this tool, detection results can be interpreted more easily. Furthermore, it provides insight
into what the OSA model is paying attention to. In addition, it provides evidence for the
results, and validity of the process. Moreover, the training set can be enhanced in a proper
manner to adopt the application for changes without an expert in the AI field.

The main findings of this study can be listed as follows:

(1) It was observed that “semi-supervised learning” provides many advantages for
monitoring OSA, including improving efficiency, reducing labeling cost, providing
additional knowledge present in unlabeled data, and increasing the applicability of
machine learning in the retail sector.

(2) The combination of three deep learning techniques (RetinaNet, YOLOv3, YOLOv4)
improves accuracy when monitoring OSA.

(3) Explainable AI is a powerful tool in monitoring OSA since it provides users with an
explanation of individual decisions and enables users to manage, understand, and
trust the OSA model.

(4) The proposed SOSA method has the potential to expand the application of machine
learning in grocery stores, thanks to its advantages.

6. Conclusions and Future Work

Providing high on-shelf availability is a key factor to increase profits in grocery
stores. For this purpose, the traditional OSA applications use the labeled image data when
building a classifier. However, a large amount of data generated in real-life is unlabeled,
and manually labeling products on the images is an expensive process. To overcome this
problem, this paper proposes a new approach, called SOSA, which combines two concepts
“semi-supervised learning” and “on-shelf availability” for the first time. The proposed
SOSA method addresses the problem by automatically allowing the model to integrate the
available unlabeled image data with very little cost. Our proposed method detects empty
and almost empty shelves based on each product category using a small amount of labeled
data and a large amount of unlabeled data.

It is the first time that YOLOv4 object detection architecture is used for monitor-
ing OSA. This study is also original in that it compares three deep learning approaches
(RetinaNet, YOLOv3, YOLOv4) for monitoring OSA in the retail sector.

The experiments were conducted on image datasets with different ratios of labeled
samples varying from 20% to 80%. The experimental results show that the proposed ap-
proach outperforms the existing approaches (RetinaNet and YOLOv3) in terms of accuracy.

Moreover, this paper presents the first demonstration of explainable artificial intelli-
gence (XAI) on OSA, called SOSA XAI. Thanks to the SOSA XAI, users can understand,
trust, and manage the proposed deep learning model and modify the dataset to adapt the
deep learning model for changes.

Currently, the developed SOSA XAI software application uses rule-based interpreta-
tion to explain the outputs of the proposed approach. Instead of rule-based interpretation,
a deep learning-based interpretation can be developed in the future. Furthermore, aug-
mented reality technology can be implemented to render some virtual objects related to
the products detected on the shelves. Moreover, more than three one-stage detectors can
be integrated into the SOSA approach as future work.
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Abstract: Forest growing stem volume (GSV) reflects the richness of forest resources as well as
the quality of forest ecosystems. Remote sensing technology enables robust and efficient GSV
estimation as it greatly reduces the survey time and cost while facilitating periodic monitoring.
Given its red edge bands and a short revisit time period, Sentinel-2 images were selected for the
GSV estimation in Wangyedian forest farm, Inner Mongolia, China. The variable combination was
shown to significantly affect the accuracy of the estimation model. After extracting spectral variables,
texture features, and topographic factors, a stepwise random forest (SRF) method was proposed
to select variable combinations and establish random forest regressions (RFR) for GSV estimation.
The linear stepwise regression (LSR), Boruta, Variable Selection Using Random Forests (VSURF),
and random forest (RF) methods were then used as references for comparison with the proposed
SRF for selection of predictors and GSV estimation. Combined with the observed GSV data and the
Sentinel-2 images, the distributions of GSV were generated by the RFR models with the variable
combinations determined by the LSR, RF, Boruta, VSURF, and SRF. The results show that the texture
features of Sentinel-2’s red edge bands can significantly improve the accuracy of GSV estimation.
The SRF method can effectively select the optimal variable combination, and the SRF-based model
results in the highest estimation accuracy with the decreases of relative root mean square error by
16.4%, 14.4%, 16.3%, and 10.6% compared with those from the LSR-, RF-, Boruta-, and VSURF-based
models, respectively. The GSV distribution generated by the SRF-based model matched that of
the field observations well. The results of this study are expected to provide a reference for GSV
estimation of coniferous plantations.

Keywords: forest growing stem volume; coniferous plantations; variable selection; texture feature;
random forest; red-edge band
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1. Introduction

Forest plays a crucial role in the global carbon cycle as one of the largest carbon sinks in the
biosphere [1,2]. Estimating forest growth and productivity is, therefore, essential for informing climate
change research and forest management efforts globally [3]. Forest growing stem volume (GSV) refers
to the total volume of tree trunks in a given forested area that reflects the richness of forest resources and
the health of the forest ecosystem. Accurate estimation of the GSV, therefore, plays an important role
in both forest resource management and the monitoring of ecosystem dynamics [4–6]. Compared with
traditional field surveys, remote sensing technology allows for a more efficient approach to the
monitoring and management of forest resources in real-time [7–9]. However, the accuracy of GSV
estimation using remotely sensed data is determined together by data sources, feature variable selection
methods, and estimation models.

Extracting information on vegetation growth from remote sensing data is the basis of forest
parameter estimation. The common remote sensing data sources for GSV estimation are varied in
terms of active and passive remote sensing data. Optical data is a typical passive remote sensing data
that is derived from multi-spatial resolution and multi-spectral sensors, which provides ground feature
information as a range of different wavelength bands. For example, MODIS, SPOT-VEGETATION,
NOAA/AVHRR, FY-3/MERSI [10–13] are common optical datasets used for GSV estimation at global and
regional scales. Hyper-spectral data, such as those from Hyperion [14], AVIRIS [15] and HYDICE [16],
can effectively detect the characteristics of ground objects. Hyper-spectral data contains nearly
continuous spectral information, which greatly improves the recognition of different objects on the
land surface. Low-resolution sensor data having high temporal resolution and wide spatial coverage
enables the analysis of time-series characteristics of vegetation at large scales. However, a large number
of spectral bands and information redundancy of hyper-spectral data lead to huge computational loads.
With the enhancement of remote sensing technology, a large number of datasets with higher spatial
resolution have been recently used for GSV estimation. Medium and high-resolution data, such as
those provided by Landsat [17] and GaoFen (GF) [18] systems, can obtain more accurate vegetation
attributes. Using these data, the mixed pixels are reduced, thus significantly improving the mapping
of vegetation parameters. However, due to cloud coverage, data stripe, long satellite revisit periods,
and high data costs in acquiring data, it is often difficult to obtain sufficient satellite data covering a
given target area.

Active remote sensing refers to the transmitting of electromagnetic waves to a detected target area
and receiving the echo signal of an object [19], mainly including light detection and ranging (LiDAR) and
synthetic aperture radar (SAR). LiDAR can provide three-dimensional structural information efficiently
and has unique advantages in estimating tree height and spatial structure. Among LiDAR datasets,
airborne LiDAR is the most effective but also the most expensive. SAR can provide observations under
all weather conditions and is not affected by atmospheric propagation [20,21]. However, SAR signals
are influenced by the terrain, and the terrain effects cannot be completely corrected [22,23]. LiDAR and
SAR offer three-dimensional point cloud data to record the location and characteristics of a target
object in detail. But due to massive data processing requirements, there are limitations in using LiDAR
and SAR for acquiring vegetation information at large scales.

The Sentinel-2 carries a multi-spectral imager (MSI) for land monitoring, providing vegetation,
soil, and water cover. The red-edge bands have priority over other spectral variables in modeling.
The vegetation indices composed of reflectance of the red-edge bands are highly correlated with GSV,
which can effectively improve the estimation accuracy of the structural parameters of the planted
forests [24–26]. Currently, Sentinel-2 is the only source of freely available optical data that exceeds three
red-edge bands. Sentinel-2 data can, therefore, provide a more cost-effective potential for accurately
mapping GSV of forest plantations [27]. Compared with MODIS and Landsat, the Sentinel-2 data
has a higher spatial resolution, which can obtain more accurate vegetation information. Its four 10 m
resolution bands and six 20 m resolution bands get much more accurate vegetation growth status in
forests. In addition, Sentinel-2 data characterizes higher temporal resolution (revisit period of five days
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using 2A and 2B). The time-series data provided by the satellite system allow us to obtain high-quality
records of seasonal forest changes for forest resources monitoring [27].

Feature variable combination is extremely important for model development and prediction of
forest GSV. In the process of modeling, using a large number of independent variables or predictors
often leads to complex models and overfitting. Moreover, as the number of predictors increases,
the prediction accuracy of GSV from the models may not necessarily increase and, in turn, may decrease
due to the increased noise and errors of the input variables. Before modeling, it is thus critical to
select the predictors that significantly contribute to improving the estimation accuracy, increasing the
interpretability of models, and reducing the running time of the models [28,29]. Pearson correlation
coefficient combined with linear stepwise regression (LSR) is commonly used for selecting feature
variables, which are linearly related [30]. However, due to the complexity of forest ecosystems, the
linear relationship may limit the estimation accuracy of models [27]. The importance assessment of
random forest (RF) provides a metric for judging the contributions of feature variables to increasing
model prediction accuracy, which can offer an evaluation of non-linear relationships between feature
variables and GSV. RF can provide the importance weights of individual variables, but it lacks the
ability to directly determine the optimal combination of feature variables. The same feature variable in
different combinations of predictors may have different contributions to reducing the errors of models.
There have been a few studies on variable selection using random forest associated importance, such as
Boruta and Variable Selection Using Random Forests (VSURF), but the effect of these methods in forest
estimation is limited [31]. Moreover, different combinations of feature variables may lead to different
overall contributions to the improvement of models. The existing methods for the selection of feature
variables lack the ability to determine an optimal combination of feature variables. Furthermore,
the existing methods may take much time to complete in the large data sets available. In fact,
the primary reason why many existing methods are established is to improve accuracy, and the runtime
is often hard to balance [31]. There is a strong need to improve the existing methods or to develop a
new method that can be used to determine an optimal and stable combination of feature variables for
modeling [32].

Presently, remote sensing images or laser point clouds are usually combined with the field
measurements to establish models for regional GSV estimation by parametric or non-parametric
methods [33,34]. The parametric methods are easy to understand and fast to learn, but they cannot
quickly retrieve the correct objective function form in complex conditions [35]. Non-parametric
methods do not make strong assumptions about the form of objective functions and are more suitable
for the prediction of complex data [33–38]. As a representative of non-parametric methods, RF has
become popular for forest GSV estimation [36,37]. RF is an ensemble learning method that is insensitive
to noise data and does not require any assumptions about the distribution of input datasets. It estimates
forest GSV by swiftly constructing a large number of regression trees. During training, the regression
trees are independent of each other, and the training speed is rapid. In addition, RF can evaluate
the importance of each feature variable in the model, which can effectively judge the contribution of
individual variables to the model [38].

This study aims to establish a random forest regression (RFR) model for GSV estimation of
coniferous plantations through developing a novel feature variable selection method based on
importance evaluation and analyzing its accuracy and effectiveness. In order to verify the application of
the modified feature variable selection method, Sentinel-2 and the observed GSV data of Wangyedian
Forest Farm were combined with mapping the GSV in the study area. Moreover, four widely
used feature variable selection methods (LSR, RF, Boruta, and VSURF) were used and analyzed for
comparison. In addition, the effect of texture features in the red-edge bands on the improved GSV
mapping was also studied.
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2. Materials and Methods

2.1. General Description of the Study Area

The Wangyedian forest farm is located in Harqin (longitude 118◦09′–118◦30′ E, latitude
41◦21′–41◦39′ N), Inner Mongolia Autonomous Region, China (Figure 1). The altitude ranges
from 500 to 1890 m. The forest farm has a mid-temperate continental monsoon climate with an annual
average temperature of 4.2 ◦C, a frost-free period of 117 days, average annual sunshine of 2913.3 h,
and average annual precipitation of 400 mm. The total area of this region is 25,958 ha, with a forested
area of 23,118 ha. The total volume of living trees is 1.28 million m3. The dominant tree species are
Chinese pine (Pinus tabuliformis) and larch (Larix principis-rupprechtii and Larix ologensis).

Figure 1. (a) Location and boundary of the Wangyedian forest farm and (b) Sentinel-2 image covering
the study area.

2.2. Sampling Design and GSV Survey

According to the forest survey data of the Wangyedian forest farm in 2017, the land types were
divided into (1) coniferous forest; (2) other forest types (broadleaf forests, coniferous, and broad-leaved
mixed forests); and (3) non-forest land (farmland, buildings, water, and unused land). The species,
distribution, and coverage range of coniferous forests were analyzed and sorted. The statistical results
show that the planted coniferous forests consisted of mainly Chinese pine and Larch. The boundary
between the two tree species was determined, and random sampling was used to select 81 sample
plots of 25 m × 25 m from the coniferous forests in the study area (Figure 2).

The field survey was carried out from 20 September to 15 October 2017. Trimble Geo 7x Global
Positioning System (GPS) was used to record the central coordinates of each sample plot. The forest
compass was used to determine the boundaries of the sample plots. Tree height, diameter at breast
height (DBH), and environmental factors (air temperature and soil moisture) in each sample plot
were measured. Trees in the sample plots with DBH greater than 5 cm were selected and examined.
The GSV of each tree was determined using tree height and DBH based volume formula stated by the
National Forestry and Grassland Administration of China (http://www.forestry.gov.cn/). The plot-level
GSV value of each sample plot was obtained by summing the tree volumes within each plot and then
converted to the hectare-level. The GSV values in the study area range from 86.17 to 514.96 m3/ha.
The mean value, standard deviation, and coefficient of variation of all the sample plots are 209.01 m3/ha,
119.87 m3/ha, and 44.2%, respectively. At the significant level of 0.05, the confidence interval for GSV is
from 209.55 to 254.92 m3/ha (Table 1).
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Figure 2. Land-cover types in the Wangyedian forest farm and the spatial distribution of sampled plots.

Table 1. Summary statistics of per unit growing stem volume (GSV) values (m3/ha).

Tree Specie Plot Number Range of Values Mean Standard Deviation
Coefficient of
Variation (%)

Chinese pine 43 91.97–514.96 245.52 110.59 45.0
Larch 38 86.17–466.23 217.21 91.84 42.3
Total 81 86.17–514.96 232.24 102.59 44.2

2.3. Remote Sensing Data and Preprocessing

Two Sentinel-2 multi-spectral images were downloaded as the Level-1C product covering the
whole study area from the scientific data hub (https://scihub.copernicus.eu/). These images were
acquired during the field investigation time on 22 September, 2017 (Table 2). The official Sen2cor module
version 2.5.5 was used to transform the Level-1C product into the Level-2A product [27]. The Level-2A
product is the bottom-of-atmosphere corrected reflectance after radiometric calibration and atmospheric
correction. Sentinel-2 has 13 bands with three resolutions [26]. Four 10 m spatial resolution and
six 20 m spatial resolution bands were used in this study to extract spectral information (Table 3).
The cubic convolution interpolation method was used to resample the selected Sentinel-2 bands in
order to match the pixel size with the sample plot size and acquire accurate vegetation information.

Table 2. Information of the acquired Sentinel-2 data.

Image Identification Product Level Acquisition Date

S2A_MSIL1C_20170922T025541_N0205_R032_T50TNM_20170922T
030440 L1C 22 September, 2017

S2A_MSIL1C_20170922T025541_N0205_R032_T50TPM_20170922T
030440 L1C 22 September, 2017

L1C: Level-1C
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Table 3. Bands of the Sentinel-2 images used in the study.

Sentinel-2 Bands Central Wavelength (nm) Bandwidth (nm) Spatial Resolution (m)

Band 2-Blue 496.6 98 10
Band 3-Green 560.0 45 10
Band 4-Red 664.5 38 10
Band 5-Vegetation Red Edge 703.9 19 20
Band 6-Vegetation Red Edge 740.2 18 20
Band 7-Vegetation Red Edge 782.5 28 20
Band 8-NIR 835.1 145 10
Band 8A-Vegetation Red Edge 864.8 33 20
Band 11-SWIR 1613.7 143 20
Band 12-SWIR 2202.4 242 20

2.4. Extraction and Selection of Spectral Variables and Topographic Factors

Spectral variables are the basis of GSV modeling and mapping. An appropriate spectral variable
combination can markedly improve the accuracy and efficiency of modeling [39,40]. Each forest
parameter has different reflection characteristics in different bands. Vegetation indices (VIs) were
obtained by combining the bands, which can be used to quantitatively describe the vegetation
condition. VIs have been widely used in vegetation coverage monitoring and forest parameter
estimation. Additionally, the red-edge vegetation index can accurately reveal vegetation health,
which correlates closely with the GSV [41–43]. Topographic factors are significantly correlated with
forest cover in mountainous regions. Slope, aspect, and elevation are topographic factors commonly
used. These factors are extracted from the Digital Elevation Model (DEM) raster data in the study
area. Twenty feature variables were derived from the Sentinel-2 images and the DEM covering the
Wangyedian forest farm, including ten multi-spectral bands, seven VIs (four common VIs and three
red-edge VIs), and three topographic factors (Table 4).

Table 4. Spectral variables and topographic factors used in this study.

Feature Variable Description Reference

Band Reflectivity B2-BLUE, B3-GREEN, B4-RED, B5-Red Edge1, B6-Red Edge2,
B7-Red Edge3, B8-NIR, B8A-Red Edge4, B11-SWIR1, B12-SWIR2 [39]

Vegetation Index

Normalized Difference Vegetation index (NDVI) [39]
Enhanced Vegetation index (EVI) [39]
Red-green vegetation index (RGVI) [39]
Atmospherically resistant vegetation index (ARVI) [39]
Red Edge Normalized Difference Vegetation index (RENDVI) [44]
Red Edge Chlorophyll Index (RECI) [45]
Red Edge Simple Ratio (RESR) [45]

Topographic Factor
Elevation [46]
Slope [46]
Aspect [46]

The correlation coefficient reflects the strength of the relationship between variables.
Pearson correlation coefficient was used to measure the relationship between GSV and the 20 feature
variables (Figure 3). Eighteen feature variables significantly related to the GSV were selected for
subsequent modeling. Overall, the Pearson correlation coefficients between VIs and GSV were greater
than those of the original bands and topographic factors. The feature variables with higher correlation
coefficients mainly come from the combinations of red-edge and near-infrared bands.
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Figure 3. Correlation coefficients of the extracted feature variables with GSV.

A complex combination of feature variables leads to low modeling efficiency, resulting in exceeded
calculations and suboptimal accuracy of estimation. Therefore, the feature variables that contribute
most to reducing the error of a model are first selected to form variable combinations, which are then
used to build the model. The appropriate combination of variables can greatly shorten the running time
of the model, improve the accuracy of estimation and the interpretability of the model [38]. In order to
explore the influence of combinations of feature variables on modeling, feature variables were selected
to form the combinations by five methods, including LSR, RF, Boruta, VSURF, and stepwise random
forest (SRF) that was proposed in this study. The feature variable combinations selected by the five
methods were then used for developing GSV estimation models.

The LSR requires feature variables with a high correlation with GSV to be used in the screening
process. The feature variables were introduced into the model, and the significance test was carried
out one by one. Statistically significant variables (p-value < 0.05) in line with the range were retained
to form the final variable combination in the LSR [47]. For each variable combination, the collinearity
between the feature variables was detected to avoid the estimation distortion of the model. The variance
inflation factor (VIF) was used to measure the collinearity between feature variables, and the threshold
value of the VIF was set at 5. The feature variable combination formed by LSR consisted of B7, Elevation,
Red-green vegetation index (RGVI), and Red Edge Normalized Difference Vegetation index (RENDVI).
The statistical results of the LSR showed that all the selected variables had significant correlations with
GSV, and there was no obvious collinearity between the variables (Table 5).

Table 5. Statistical results of the linear stepwise regression (LSR) method.

Variable Coefficient Significance VIF

Constant −125.48 0.03 -
B7 −1162.73 0.00 1.10

Elevation 0.29 0.00 1.07
RGVI −111.09 0.04 1.60

RENDVI 379.13 0.00 1.65

VIF: variance inflation factor.
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The random forest is based on the importance assessment of feature variables and error balance [48,49].
The importance is determined by their error contribution to the model. The Mean Decrease in Accuracy
(MDA) is regarded as the indicator for measuring the importance of these feature variables [38,44].
The importance of all the feature variables was calculated and converted to percentages and by which
the feature variables were ranked (Figure 4a). Multiple random forest regressions were established
by gradually increasing the number of feature variables. When the relative root means square error
(rRMSE) of the model reached the lowest, the variable combination formed by the number of variables
was selected as the final result. Figure 4b shows that rRMSE reaches the minimum when the top
13 variables in the importance ranking form a variable combination.

Figure 4. (a) The importance ranking of feature variables and (b) the random forest (RF) regression
results (rRMSE) under different numbers of feature variables.

The RF method can evaluate the importance of a single feature variable but cannot directly provide
the appropriate feature variable combinations. Different combinations of feature variables bring
different rRMSE of RF regression, which can significantly affect the estimation accuracy. In order to
select the appropriate combination of feature variables that can cause the smallest rRMSE, the stepwise
random forest (SRF) was used to construct multiple random forest regression (RFR) models according
to the importance ranking. Firstly, the feature variable with the highest importance was selected as
a determining variable. Through the importance ranking, the variables were selected one by one
to form the combinations with previously determined variables, and the RFR models were then
respectively established. The corresponding variable combination with the smallest rRMSE was
regarded as the newly determined variable combination, and the rRMSE was considered as the
threshold. With the arrival of the next variable combination, if the new rRMSE was smaller than
the threshold, the variable combination and threshold were then updated simultaneously. Until the
variable combination and threshold were no longer updated, the variable combination with the
minimum rRMSE was taken as the final selection result (Figure 5). Figure 6 shows that the lowest
rRMSE of the feature variable combination consisting of EVI, B2, Elevation, B11, and B7 was 30.3%.
The final feature variable combination was then used for GSV estimation. In addition, Boruta and
VSURF are also used for variable selection. Finally, 16 and 3 variables are obtained for modeling and
GSV estimation, respectively.
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Figure 5. Feature variable selection process of the stepwise random forest (SRF) method.

Figure 6. The SRF method applied to spectral variables for GSV estimation.

2.5. Extraction of the Texture Feature of Red-Edge Bands

The texture features can reveal the homogenous phenomenon in the image and reflect the
arrangement characteristics of the surface features and structural organization of an object. Texture
features have huge potential advantages for complex forest parameter estimation [47]. Due to the
availability of multiple red-edge bands, the spectral information of Sentinel-2 images has proven to be
very sensitive to vegetation parameters, but the effect of texture features on GSV estimation would still
need to be verified. Gray-scale co-occurrence matrix (GLCM) has been widely used to extract texture
information of remote sensing images [50]. In order to reduce the effect of different texture windows
on texture feature values, eight texture features of red-edge bands were extracted through five texture
windows (3 × 3, 5 × 5, 7 × 7, 9 × 9 and 11 × 11) [51–54]. Details of the extracted texture features are
shown in Table 6.
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Table 6. Texture features extracted under different texture windows.

Texture Window Red Edge Band Texture Metric

3 × 3,
5 × 5,
7 × 7,
9 × 9,

11 × 11

Band 5-Vegetation Red Edge 1 (RE1),
Band 6-Vegetation Red Edge 2 (RE2),
Band 7-Vegetation Red Edge 3 (RE3),

Band 8A-Vegetation Red Edge 4
(RE4)

Mean (Men)
Variance (Var)

Homogeneity (Hom)
Contrast (Con)

Dissimilarity (Dis)
Entropy (Ent)

Second moment (Sec)
Correlation (Cor)

Each of the texture features was defined using the corresponding window size plus the red
edge band and the texture metric. For example, 5 × 5_RE1_Men meant the mean texture measure
from a window of 5 × 5 and band 5-Vegetation Red Edge 1. Correlation coefficients of all extracted
texture features with GSV were calculated. It was found that the correlations of some texture features
(e.g., 5 × 5_RE1_Men, 7 × 7_RE1_Men, 9 × 9_RE1_Men, and 11 × 11_RE1_Men) were higher than those
of all the spectral variables. The distribution trends of correlation coefficients of the texture features
extracted from the four red edge bands were similar. The overall correlation coefficient of the texture
features in RE1 was relatively high, and the mean derived texture features under different texture
windows provided the highest correlation coefficient (Figure 7).

Together with the spectral variables and topographic factors, the importance of the texture features
was evaluated. Figure 8 shows the partial importance ranking and the changing trend of errors under
the RF method. Finally, a combination of eight variables with the minimum rRMSE was selected as
the result. The SRF method was also used for the variable selection after adding the texture features.
As the rRMSE started to decrease with the increase of the number of predictors, it finally reached the
minimum when nine predictors were utilized and then continued to increase (Figure 9). With the
participation of the texture features, the feature variable combinations were then selected by the LSR,
RF, Boruta, VSURF, and SRF methods to establish the RFR models for estimating the GSV in the
study area.

Figure 7. Cont.
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Figure 7. Correlation coefficients of texture features extracted from (a) RE1, (b) RE2, (c) RE3 and
(d) RE4.

Figure 8. (a) The partial importance ranking of spectral variables, topographic factors, and texture
features, (b) the change trend of rRMSE under different numbers of the feature variables.
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Figure 9. The change trend of rRMSE under the stepwise random forest method.

2.6. Random Forest Regression for GSV Estimation

As a non-parametric algorithm that is less sensitive to noise data, RF has been widely used in
image classification and vegetation parameter estimation because it does not need the assumption
of data distribution. Random forest regression can randomly generate a large number of regression
trees used for estimation based on the used datasets and does not need to consider the collinearity
between feature variables. It can effectively process large datasets and does not require reducing
the dimension of high-dimensional data, which provides the potential for significantly improving its
applicability [38,55]. Substantial research has shown that as a non-parametric algorithm, RF often
performs better than the widely used parametric methods and thus has become more popular for
estimation of vegetation parameters [36,37,55]. The mtry and ntrees are two important parameters that
affect the model estimation accuracy. The mtry refers to the number of sample predictors of decision
tree nodes, of which the default does not exceed the number of feature variables. And ntrees is the
number of decision trees constructed by RF. Excessive ntrees will reduce the computing efficiency,
and the final number can be determined based on the error change during the model construction [38].
In this study, RF modeling was therefore divided into participation with and without texture features,
and then the parameter group results of the five variable combinations were determined respectively
according to the error changes. The final prediction of each pixel depends on the average of the
individual results of all the regression trees. The leave-one-out cross-validation (LOOCV) method [47]
was applied in the RF modeling to assess the accuracy of all the predicted GSV values.

When no texture features were involved, the mtry of the five feature variable combinations were
set as 2, 3, 1, 3, 2 and the ntrees were 150, 200, 200, 200 and 150, respectively. Similarly, the parameter
groups (mtry, ntrees) with texture feature participation by five methods were finally determined as (2,
200), (2, 200), (7, 200), (2, 250) and (3, 200).

2.7. Accuracy Assessment of GSV Estimation

Using the GSV plot data and the feature variable combinations selected by the LSR, RF, Boruta,
VSURF, and SRF methods, ten RFR models were developed to predict and map the GSV. These models
were denoted as LSR-RFR, RF-RFR, and SRF-RFR. A LOOCV was used to assess the ten models [47].
The absolute residuals between the estimated values and the observations for the models were tested
using the Student’s t-test. The estimation accuracy of the models was then evaluated by R2; Root Mean

216



Sensors 2020, 20, 7248

Squared Error (RMSE), rRMSE, the mean absolute error (MAE), and standard deviation of estimation
(SDe) [56] as indicated in the formulae below

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − y)2 (1)

RMSE =

√∑n
i=1 (ŷi − yi)

2

n
(2)

rRMSE =

√∑n
i=1 (ŷi−yi)

2

n

y
× 100% (3)

MAE =
1
n

N∑
i=1

∣∣∣ŷi − yi
∣∣∣ (4)

SDe =

√∑n
i=1 (ŷi − y)2

n
(5)

where yi is the observed GSV, ŷi is the estimated GSV based on RFR, y is the mean of the observed
GSV, and n is the number of sample plots. All the models and calculations were done with the
R 3.5.5 software.

3. Results

3.1. GSV Estimation and Mapping

Ten models (five RFR models with and without the texture features) were developed using the
observed GSV combined with the feature variable combinations selected by the LSR, RF Boruta, VSURF,
and SRF. The variable numbers without texture features in models were four, 13, 16, three, and five,
while the numbers of variables with texture features were five, eight, 16, nine, and nine, respectively
(Table 7). The estimated results represented in Table 7 shows that there was no significant difference
between the estimation accuracy of LSR-RFR and RF-RFR. However, the SRF-RFR always achieved the
best estimation performance whether there were texture features or not, which attained the highest
determinant coefficient (R2 = 0.53 and 0.62) and the lowest RMSE, rRMSE, and MAE. The results
implied that the SRF method achieved the best estimation effect, remaining statistically significant
(Table 8). In addition, after the texture features participated in the modeling of the optimal SRF method,
RMSE greatly decreased by 7.4%. In addition, the 95% confidence interval of SRF-RFR’ RMSE ranges
from 46.64 to 56.06 m3/ha, and the RMSEs of other models do not fall within the range.

The scatter plots in Figure 10 show the fitting between the observed GSV and the GSV predicted
by the ten models. The fitting effect of the ten models is similar, having both overestimation and
underestimation values. Among them, the SRF-RFR shows to be the best fit. While the estimated
values are basically distributed on both sides of the fitting line, there are also some overestimation
values. Compared with the one without the texture features, the model SRF-RFR with the texture
features greatly reduced the overestimations and underestimations.

217



Sensors 2020, 20, 7248

Table 7. Accuracy comparison of the GSV estimates (m3/ha) from the RFR models with various
combinations selected by the LSR, RF, Boruta, VSURF, and SRF variable selection methods.

Model Method Variables Combination R2 RMSE rRMSE (%) MAE SDe

Without texture
features

LSR B7, Elevation, RENDVI, RGVI 0.41 78.84 33.9 62.17 70.95

RF
EVI, NDVI, Elevation, RENDVI,
B12, B11, B4, B3, RECI, B2, B8A,
B7, RGVI

0.43 77.09 33.2 61.13 72.27

Boruta
EVI, NDVI, Elevation, RENDVI,
B12, B11, B4, B3, RECI, B2, B8A,
B7, RGVI, B5, B6, RESR

0.41 78.72 33.9 63.06 73.43

VSURF EVI, NDVI, B2 0.44 77.54 33.4 59.90 80.73

SRF EVI, B2, Elevation, B11, B7 0.53 70.26 30.3 56.06 71.35

With texture
features

LSR
5 × 5_RE1_Men, Elevation, 11 ×
11_RE2_Sec, 11 × 11_RE2_Ent, 9
× 9_RE2_Con, B7, 9 × 9_RE3_Cor

0.42 77.82 33.5 59.04 58.18

Boruta

NDVI, EVI, B11, B12, B2, B3, B4,
Elevation, RECI, RENDVI, 3 ×
3_RE1_Men, 5 × 5_RE1_Men, 7 ×
7_RE1_Men, 9 × 9_RE1_Men, 11
× 11_RE1_Men, 3 × 3_RE3_Hom

0.43 77.74 33.5 61.34 72.34

RF
EVI, NDVI, RENDVI, 5 ×
5_RE1_Men, 5 × 5_RE3_Con,
Elevation, 9 × 9_RE1_Men, B2

0.45 76.04 32.7 59.67 73.96

VSURF
EVI, NDVI, 5 × 5_RE1_Men, 9 ×
9_RE1_Men, B12, Elevation, B2,
B3, 9 × 9_RE1_Sec

0.49 72.73 31.3 58.26 73.59

SRF

EVI, 11 × 11_RE1_Sec, B2, 5 ×
5_RE1_Sec, Elevation, 11 ×
11_RE3_Ent, 3 × 3_RE3_Var, 3 ×
3_RE1_Hom, 9 × 9_RE4_Var

0.62 65.05 28.0 52.69 65.04

Table 8. The test results (p-values) of significant differences among the models based on the absolute
residuals between the estimated and observed GSV values using student’s t test.

Model
Variable Selection

Method
LSR RF Boruta VSURF

Without texture
features

LSR
RF −7.86 (0.00)

Boruta −0.42 (0.67) 7.84 (0.00)
VSURF 0.51 (0.61) 8.38 (0.00) 0.77 (0.44)

SRF 2.01 (0.04) 8.63 (0.00) 2.63 (0.01) 2.13 (0.00)

With texture
features

LSR
RF 0.08 (0.93)

Boruta −0.33 (0.74) −0.82 (0.41)
VSURF 0.42 (0.66) 0.65 (0.52) 1.82 (0.07)

SRF 2.01 (0.04) 2.40 (0.01) 2.66 (0.00) 2.00 (0.04)
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Figure 10. Scatter plots of the observed and predicted GSV values by (a) LSR-RFR without texture
features, (b) RF-RFR without texture features, (c) Boruta-RFR without texture features, (d) VSURF-RFR
without texture features, (e) SRF-RFR without texture features, (f) LSR-RFR with texture features,
(g) RF-RFR with texture features, (h) Boruta-RFR with texture features, (i) VSURF-RFR with texture
features, and (j) SRF-RFR with texture features.
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The ten RFR models were separately used for mapping the GSV of the Wangyedian forest farm
and led to similar spatial distributions of GSV (Figure 11). The GSV spatial distribution by the SRF-RFR
model with the texture features best agrees with the actual forest distribution. The GSV values of
300–500 m3/ha are mainly distributed in the northwest and west of the forest farm. The eastern and
central areas are mainly farmlands and built areas where the distribution of GSV is negligible.

Figure 11. Spatial distributions of GSV estimates in the Wangyedian forest farm predicted by (a) LSR-RFR
without texture features, (b) RF-RFR without texture features, (c) Boruta-RFR without texture features,
(d) VSURF-RFR without texture features, (e) SRF-RFR without texture features, (f) LSR-RFR with
texture features, (g) RF-RFR with texture features, (h) Boruta-RFR with texture features, (i) VSURF-RFR
with texture features, and (j) SRF-RFR with texture features.
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3.2. Uncertainty Analysis

In order to evaluate the adaptability of the SRF-RFR, the following two methods were used
to analyze the uncertainty of the residuals generated by the SRF-RFR: (1) the significance of the
relationship between the feature variables and the residuals; and (2) the comparison of estimates
between the separate sample plot sets by tree species and the pooled sample plot set.

Our results of the correlation analysis show that there were positive and negative correlations
found between the feature variables and residuals. The feature variable that possesses the highest
correlation with residuals is ‘Elevation’ with a Pearson correlation coefficient of −0.17 (p > 0.05).
The absolute values of all the correlations were similarly low, and not statistically significant (Table 9).
In addition, the VIF values of variables determined by SRF were very low, which further improves the
reliability of the model and SRF method.

Table 9. The Pearson correlation coefficients of the residuals with the associated feature variables.

Study Area Feature Variable Residual VIF

Wangyedian Forest Farm

EVI −0.09 3.222
11 × 11_RE1_Sec −0.04 6.270

B2 0.12 3.244
5 × 5_RE1_Sec 0.01 5.308

Elevation −0.17 1.064
11 × 11_RE3_Ent −0.04 6.115
3 × 3_RE3_Var −0.13 1.568

3 × 3_RE1_Hom −0.08 2.768
9 × 9_RE4_Var 0.04 2.430

The feature variables show dissimilar importance in different sample sizes. Ranking of the feature
variables was separately conducted under the Chinese pine and larch sample plot sets, and the SRF
method was used to determine the final feature variable combination to establish the RFR for GSV
estimation. The results show that the selected feature variables of the Chinese pine were basically the
same as those for the total or pooled sample plot set; however, the results for larch were quite different
from those for the total sample plot set. The correlation coefficients between the predicted GSV values
from the pooled sample plot and the separate sample plot sets were 0.807 (p < 0.01) for the overall,
0.879 (p < 0.01) for Chinese pine, and 0.616 (p < 0.01) for larch (Figure 12). There were significant
correlations for the three groups, which indicate that it is acceptable to estimate GSV whether or
not the separation of the sample plots by tree species is made. The estimation accuracies from the
pooled sample plot set and the separate sample plot sets by tree species were compared in Table 10.
Chinese pine provided more accurate estimations with smaller rRMSE values of 25.4% and 24.9%
compared to the corresponding values of larch, 31.3%, and 29.8% for the pooled sample plot set and
the species separate sample plot sets, respectively.

Table 10. Feature variable results based on SRF method under two tree species (m3/ha).

Sample Size Tree Specie R2 RMSE rRMSE (%) MAE

Total or pooled
sample plot set

Chinese pine 0.73 62.40 25.4 51.05
Larch 0.44 67.92 31.3 54.53
Total 0.62 65.05 28.0 56.69

Separate
sample plot

sets by species

Chinese pine 0.68 63.20 24.9 50.06
Larch 0.53 65.67 29.8 49.45
Total 0.62 64.37 27.7 49.77
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Figure 12. Scatter plots of the GSV predictions by the total or pooled sample plot set against the
GSV predictions by separate sample plot sets of tree species: (a) all the tree species, (b) Chinese pine,
and (c) Larch.

4. Discussion

4.1. Feature Variable Selection Method

Different combinations of feature variables will lead to different modeling accuracies. Choosing the
appropriate variable selection method can significantly improve the GSV estimation. Original spectral
bands, VIs, and topographic factors are commonly used feature variables for GSV estimation [39,57].
The predictors significantly correlated with GSV were extracted in our study and formed the feature
variable combinations by five selection methods. It was found that the LSR method provided the
best linear combination of feature variables, but it requires variables without collinearity. However,
the relationships between GSV and feature variables may not be linear, likely due to the complexity of
forest ecosystems, which limits the estimation accuracy of the model [46]. The RF method can evaluate
the importance of feature variables based on non-linear relationships, allowing for the selection of
feature variables with high importance for modeling [28,38]. Xie et al. [58] used an RF algorithm to
measure the importance of all candidate feature variables and then selected the predictors for regional
GSV prediction and mapping, and the obtained results were acceptable (R2 = 0.618). This implies
that RF algorithms can be used to select robust and stable predictors based on importance measures.
The Boruta and VSURF methods [31] were compared to the SRF method. And the RMSEs obtained
by the two methods were 77.74 m3/ha and 72.73 m3/ha, respectively, which were increased by 16.3%
and 10.6% compared with SRF (p < 0.001). In addition, the two methods were tested in time costing,
which spent 78s and 297s in 181 variables (with texture features), respectively. However, the SRF
method with higher accuracy takes 89s. Compared with Boruta, the time is not significantly increased,
but the accuracy of 16.3% is improved, which makes the time cost worth it.

While different from the LSR method based on linear correlation, the RF method selects variables
based on their importance rankings, thus improving the selection process. However, the importance
assessment is relative, where the importance of a single variable in different combinations of feature
variables can also vary [32,38]. In response, we proposed the SRF method for the selection of appropriate
feature variable combinations. In this method, we first used the importance ranking determined by
the whole sample as a reference and then selected the appropriate combination according to the error
change as the number of feature variables increased. Finally, we found that the RFR with the variable
combination determined by the SRF method had the highest estimation accuracy. As a result, SRF can
effectively reduce the estimation error by establishing multiple RFR models based on importance
ranking and comparing the results from different variable combinations.

4.2. Uncertainty Analysis

Through the comparison of five feature variable selection methods combined with the RF model,
a map showing the most accurate estimates of GSV for the planted coniferous forests in Wangyedian
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Forest Farm was produced. However, we found that the estimates were associated with uncertainties.
The uncertainty of GSV estimates often results from atmospheric effects, sensor effects, sample
plot GSV measurement errors, feature variable selection, and estimation model [27,59]. At present,
the atmospheric effects and sensor errors cannot be completely eliminated [57,59]. Also, there was a
substantial variation of the GSV among the training sample plots. This suggests that the sampling
design and sample size could be better improved in prospective studies.

Collecting tree-by-tree measurements requires a sampling design to represent the average level of
forest cover in a given study area. Accurate measurements and the selection of appropriate volume
equations can greatly determine the acquisition of true volume values [59]. Deforestation, forest fires,
and natural regeneration can all affect the applicability of the volume formula [27]. It is therefore
crucial for the forest survey program in Wangyedian Forest Farm to obtain updated forest resource
data annually while checking and calibrating volume equations periodically [9,27]. This would help to
substantially reduce the error of the plot level GSV estimates.

It was found that the combination of feature variables directly affects the accuracy of model
estimation [38,57]. Too many variables tend to increase model errors and program running time.
Therefore, selecting the appropriate feature variables can significantly improve the efficiency of
modeling and prediction [32,38]. The commonly used LSR method is sensitive to the linear model,
but the model itself is limited in GSV estimation given the complex forest structure [51]. The RF
can evaluate the importance of feature variables, which helps to efficiently select the appropriate
feature variables [38,49,51]. Compared with the LSR, the RF showed significant improvement to the
model given that feature variables were selected according to their importance ranking. While RF
can only provide the importance of a single feature variable, the importance of the same feature
variable may change in different combinations of the variables [32]. On the basis of primary importance
ranking, variable combinations should be considered to extract significant combinations of the variables.
The SRF provides the potential to select the combinations of feature variables and can lead to the
smallest error in GSV estimation. All the variable combinations selected by SRF can be tested for their
significance with absolute residuals produced by the models. The variable combinations that have
no significant contribution to the reduction of residual error can be eliminated. Thus, SRF provides a
powerful tool for the selection of predictors and improvement of estimation accuracy.

Linear models are easy to realize and understand. However, their estimation accuracy of forest
parameters in complex forest ecosystems is limited [51]. In contrast, non-parametric methods can model
non-linear relationships and result in more accurate results in GSV estimation [27,35,57–59]. In our
analysis, the SRF-RFR achieved the minimum rRMSE of 28.0% in the GSV estimation of Wangyedian
forests, while the LSR-RFR, RF-RFR, Boruta-RFR, and VSURF-RFR resulted in the rRMSE values of
33.5%, 32.7%, 33.5%, and 31.3%, respectively. The RMSE obtained by SRF-RFR was 16.4%, 14.4%,
16.3%, and 10.6% smaller than those by LSR-RFR, RF-RFR, Boruta-RFR, and VSURF-RFR. Compared
with the pooled sample plot set moreover, using the separate sample plot sets by species for the
development of SRF-RFR models slightly increased the estimation accuracy of the GSV. The reason
might be because separating the sample plots by tree species decreased the variation of the within
model GSV. Due to the limited space, this study only dealt with the improvement of RF. In future
studies, other non-parametric methods such as k-nearest neighbors (kNN), support vector machine
(SVM), and artificial neural network (ANN) should be considered [59,60].

5. Conclusions

Accurate estimation of GSV is crucial for regional and global forest resource assessment and
ecosystem dynamic monitoring. This study proposed the SRF, an improved RF selection method
of feature variables, and compared its results with those from four widely used methods (LSR, RF,
Boruta, and VSURF) for GSV estimation using Sentinel-2 and observed GSV data for the Wangyedian
forest farm. The following conclusions were drawn: (1) The red-edge bands of Sentinel-2 images have
more significant correlations with GSV than other used feature variables, and the red-edge bands
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derived feature variables have priority in terms of their contribution to the reduction of model errors.
Introducing the red edge features into the GSV models greatly improves the estimation accuracy
of the GSV; and (2) Compared with the LSR, RF, Boruta, and VSURF methods, the SRF performed
best in the selection of feature variables, and the SRF-RFR led to the smallest rRMSE of the GSV
predictions. Compared with the LSR-RFR, RF-RFR, Boruta-RFR and VSURF-RFR, the SRF-RFR model
reduced the RMSE by 16.4%, 14.4%, 16.3% and 10.6%, respectively. Thus, the SRF-RFR method offers
the potential for improving the estimation accuracy of the GSV and provides a reference for forest
dynamic monitoring.
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Abstract: The dynamic interaction between vehicle, roughness, and foundation is a fundamental
problem in road management and also a complex problem, with their coupled and nonlinear behavior.
Thus, in this study, the vehicle–pavement–foundation interaction model was formulated to incorporate
the mass inertia of the vehicle, stochastic roughness, and non-uniform and deformable foundation.
Herein, a quarter-car model was considered, a filtered white noise model was formulated to represent
the road roughness, and a two-layered foundation was employed to simulate the road structure.
To represent the non-uniform foundation, stiffness and damping coefficients were assumed to vary
either in a linear or in a quadratic manner. Subsequently, an augmented state-space representation was
formulated for the entire system. The time-varying equation governing the covariance of the response
was solved to examine the vehicle response, subject to various foundation properties. Finally, a linear
discriminant analysis method was employed for classifying the foundation types. The performance
of the classifier was validated by test sets, which contained 100 cases for each foundation type.
The results showed an accuracy of over 90%, indicating that the machine learning-based classification
of the foundation had the potential of using vehicle responses in road managements.

Keywords: machine learning-based classification; non-uniform foundation; stochastic analysis;
vehicle–pavement–foundation interaction

1. Introduction

Road infrastructure forms a basic component in transportation, providing connectivity between
local, regional and global value chains. Despite the impacts of road’s serviceability on the economy and
public safety, maintenance is inadequate, due to its extensive nature. For example, the Federal Highway
Administration reported that 26 percent of major urban roads in the U.S. are in a poor condition [1].
FHWA also reported that a capital of 182 billion dollars was spent in 2008 on improvements and
maintenance of federal highway, while they are still in shortage [1]. Thus, research that develops tools
and methods for assessing road conditions assume greater importance.

Typically, a pavement’s condition is assessed by measured information, such as ride comfort,
surface defects, and structural adequacy [2]. For example, the Pavement Condition Index (PCI),
developed by the U.S. Army Corps of Engineers rates the surface operational conditions including
rutting, potholes, crackings, etc. [3]. Recent advances in image processing and deep learning
technologies demonstrated that an automatic rating of PCI using a visual platform is available.
For example, the automated pavement management system equipped with visual inspecting tools were
developed to evaluate the pavement deteriorations and cracking [4,5]. Multimetric sensors including
wireless sensing modules are utilized as well to examine the surface condition [6,7], fatigue [8],
and certain anomalies on road structures [9]. However, unlike visible surface defects, structural
adequacy is associated with the load transfer capability of the subgrade layers.

Sensors 2020, 20, 6263; doi:10.3390/s20216263 www.mdpi.com/journal/sensors
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The falling weight deflectometer (FWD) is an essential non-destructive tool that is widely used for
evaluating the structural adequacy of the pavement [10]. In FWD, as the weight falls on the pavement
to be examined at some height, the response of the pavement, including deflection, is measured. Then,
the responses are related to the strain and elasticity of the pavement, to examine the adequacy of
the sublayer [11]. However, due to complexities in the testing method, which is usually performed
during post-processing of the collected data, and due to required technical expertise, significant time,
and costs, the network-level application is limited [12]. With the advancement of the wireless module’s
sensing and calculating capability, the inspection and monitoring fields are in the transition from
human-oriented inspection to machine-based inspection [13]. The following literature shows some
successful examples of monitoring foundation noise excitation [14], decentralized road networks [15],
which are known to be complicated, compared to other applications. Thus, so far, predicting the
capability of road structure with rather portable and automated devices are of interest, but a challenging
task, due to its complicated mechanisms.

Within a road structure, the main excitation source is a moving vehicle. To understand the
responses of the moving loads, various foundation types were examined, based on analytical models.
One of the simplest model was developed to examine vehicle response due to road roughness on a
non-deformable foundation. Roughness was first modeled as Gaussian random signals [13]. Then,
the models improved to contain a more realistic input, such as a stationary zero-mean process with
a certain power spectral density (PSD) [16–18]. Among various research works, Wedig derived a
closed-form expression of the covariance response of a vehicle model, by integrating the PSD of road
roughness [19]. These models examined the impact of road roughness on vehicle responses, while the
interactions due to pavement deflection were neglected.

To consider the deformable foundation, an Euler-Bernoulli beam resting on the viscoelastic
foundation was investigated. Hardy and Cebon (1993) developed a quarter-car model on a smooth
beam on a uniform Winkler foundation, to examine the vehicle–pavement–foundation interaction [20].
Similar approaches were adopted by other researchers and they used the models to understand the
impact of vehicle parameters (including speed) on foundation responses [18,21]. Kelvin foundation
under the Bernoulli beam was also adopted by authors in [22]. In their model, the interaction responses
were examined by coupling the solutions of two systems—(1) vehicle on rough road and (2) elastic
foundation subject to a single load. To eliminate the boundary condition effects, the frequency domain
analysis of the interaction problem was performed on an infinite length beam [23]. Instead of handling
infinite length, Kim et al. (2019) formulated the interaction system, based on a moving coordinate
system, and examined the second-order stationary response of the interaction problem [24]. In the
aforementioned studies, the foundation properties such as stiffness and density were assumed to be
uniform, while in reality, those quantities might vary along the length of the road.

The non-uniform foundation on a beam was investigated by several groups of researchers. Early
efforts focused on formulating a closed-form equation for varying foundation modulus, targeting
statistical analyses. The linearly varying solutions were presented by Franklin and Scott (1979) [25]
and higher-order variations were solved by the authors in [26,27]. The free vibration of the beams
on the non-uniform foundation was studied by the following authors [28–30]. The authors in [30]
compared the impact of nonlinear foundation on the deflection shapes and natural frequencies of the
beam. Then, dynamic responses of a beam on the variable Winkler foundation, subject to a moving
load, were studied by [31–33], and a moving mass was investigated by [34]. Although previous studies
captured the effect of variable foundation on the pavement system, due to computational complexities,
studies mostly neglected the inertial force effect from the moving vehicles.

In this study, the impact of the non-uniform foundation on vehicle responses was solved
by developing the vehicle–pavement–(non-uniform)-foundation interaction model. In the model,
the vehicle was represented with a moving-oscillator (a quarter-car). The pavement roughness was
described with a filtered white noise model. The rigid foundation was modeled to have a finite-length
Euler–Bernoulli beam on a deformable foundation. The top layer was modeled using the assumed
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modes method. The subgrade was modeled with a Winkler-type foundation, in which the stiffness
and damping properties varied along the length. The interaction model was then formulated in an
augmented state-space representation. To effectively examine the response of the vehicle, the covariance
of the response was then solved for the time-varying Lyapunov equation. Then, the equations were
solved for various pavement roughness and foundation cases, to construct the covariance responses.
Based on the estimated responses, six features that could distinguish the foundation types were selected
and employed on a classifier. Subsequently, noise-added responses were employed on a linear classifier
and demonstrated that the measured dynamics of a vehicle due to interaction could distinguish the
foundation types and variations with an accuracy of over 90%.

2. Model Formulation

2.1. Overview

The vehicle–pavement–foundation interaction model considered herein is shown in Figure 1.
The rigid pavement was modeled with an Euler–Bernoulli beam that had constant material properties.
Elastic modulus (E), the moment of inertia (I), thickness (tb), cross-sectional area (A), density (ρ),
and length (L). The vertical displacement of the beam due to interaction was defined as uB(x, t).
The elastic foundation was taken as a Winkler-type foundation with varying stiffness (kf(x)) and
viscous damping (cf(x)), along the length. The roughness of the pavement was modeled as a profile
ξ(x) and superimposed on top of the beam.

Figure 1. Vehicle–pavement–foundation system.

The vehicle was represented with a quarter-car model, consisting of sprung mass (ms) and
unsprung mass (mu). Their vertical movement was defined as us and uu, while spring stiffness and
damping coefficients at suspension and tire were denoted with ks, kt, cs, and ct, respectively. The vehicle
was assumed to have constant velocity (V), as it traveled along the length. In the subsequent sections,
a model formulation of the interaction system was introduced. Note that some derivations such as a
state-space representation of the roughness were briefly discussed, while more detailed formulations
could be found in the related literature [24,35,36].
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2.2. Basic Equations

Employing the assumed modes method, the vertical deflection of the Euler–Bernoulli beam uB(x, t)
could be defined in a series of sine functions, assuming a simple support boundary condition:

φ(n) = sin
(

nπ(x + L)
L

)
, n = 1, 2, 3, . . .N (1)

where N is the total number of modes in the shape function. Then, the deflection of the beam could
be rewritten as uB(x, t) = NB(x)qB(t). NB(x) is a mode shape vector containing defined mode shapes
(φ(n)) and qB(t) is a time-dependent generalized displacement of the beam. The relationships for the
first- and second-time derivative are

.
uB(x, t) = NB(x)

.
qB(t) and

..
uB(η, t) = NB(x)

..
qB(t).

Then, defining the displacement vector as xc(t) =
[

qB(t) uu zs
]T

, the equations of motion for
the vehicle–pavement–foundation interaction system could be formulated as follows:

Mc
..
xc(t) + Cc

.
xc(t) + Kcxc(t) = −Pg + Pcξ(t) (2)

where

Mc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
[∫ L

0 ρANT
BNBdx

]
N×N

[0]N×1 [0]N×1

[0]1×N ms + mu ms

[0]1×N ms ms

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

Cc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cf(Vt)

∫ L
0 NT

BNBdx + ctN
T
B(Vt)NB(Vt) −ctN

T
B(Vt) [0]N×1

−ctNB(Vt) ct 0
[0]1×N 0 cs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

Kc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∫ L

0 EIN”T
B N”

Bdx + kf(Vt)
∫ L

0 NT
BNBdx + ktN

T
B(Vt)NB(Vt) −ktN

T
B(Vt) [0]N×1

−ktNB(Vt) kt 0
[0]1×N 0 ks

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

Pg =
[
[0]N×1, −(ms + mu)g, −msg

]T
(6)

Pc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−ktN

T
B(Vt) −ctN

T
B(Vt)

kt ct

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

ξ(t) =
[
ξ̂(t)

.
ξ̂(t)

]T
(8)

Note that NB(x) is short noted as NB, except for the case when evaluated at x = Vt. Additionally,
ξ̂(t) = ξ(x)

∣∣∣
x=Vt kf(Vt) = kf(x)

∣∣∣
x=Vt, cf(Vt) = cf(x)

∣∣∣
x=Vt and g is the gravity term.

Then, defining a state vector xT =
[

xc
.
xc
]T

and organizing Equation (2) in a state-space
representation, yields:

.
xT(t) = ATxT(t) + BTξ(t)=

[
[0]NT×NT

[I]NT×NT−M−1
c Kc −M−1

c Cc

]
xT(t) +

[
[0]NT×2
M−1

c Pc

]
ξ(t) (9)

where NT is N + 2. The output vector yT(t) could be defined to contain arbitrary information about the
system. In this study, the vehicle responses including displacement and velocity of the unsprung and
sprung masses were considered as the output, i.e., yT(t) =

[
uu zs

.
uu

.
zs
]
. Then, the observation

and feedthrough matrices yield:

yT(t) = CTxT(t) + DTξ(t)=
[
[0]1×N 1 0 [0]1×N 1 0
[0]1×N 0 1 [0]1×N 0 1

]
xT(t) + [0]2NT

ξ(t) (10)
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2.3. Augmented Equations of Motion

This section further arranges the equations derived for the interaction problem in Equation (9)
to yield an augmented system in which the primary input is white noise. The white noise input
allows a much simpler calculation and the use of stochastic analyses, when compared with manually
inputting the roughness profile to the system. Authors in [35,36] constructed a state-space model for
the stochastic roughness, when it follows a specified PSD, (Sζζ(ω)). In their approach, the transfer
function (Hζw(ω)) was approximated using polynomial representation, as below:

Sζζ(ω) = H2
ζw(ω)S0 (11)

where S0 is the degree of unevenness and ω is radian per second.

Then, Hζw(ω) is realized in a state-space model as below to have output vector yf =
[
ξ̂(t)

.
ξ̂(t)

]T
,

i.e.,
.
xf = Afxf(t) + Bfw(t) (12)

yf(t) = Cfxf(t) (13)

where xf is the state vector, Af, Bf, and Cf are system, input, and observation matrices, respectively.
The output vector is defined to contain the roughness and time derivative term of the roughness, i.e.,

yf(t) =
[
ξ̃(t)

.

ξ̃(t)
]T

. An example of designing a pavement filter using a second-order low-pass

filter and polynomial approximation approaches is discussed in detail [35].
Finally, by combining Equations (9), (10), (12), and (13), the augmented state vector was defined

as xa =
[

xT
T xT

f

]T
. Then,

.
xa = Aaxa + Baw(t)=

[
AT BT1Cf1 + BT2Cf2

0 Af

][
xT

xf

]
+

[
0
Bf

]
w(t) (14)

yT = Caxa =
[

CT DT1Cf1 + DT2Cf2

][ xT

xf

]
(15)

Note that BT1 and BT2 indicate the first and the second columns of BT, respectively. Similarly,
DT1 and DT2 correspond to the first and the second columns of DT. The equations do not contain
the feedthrough terms, implying that the system was strictly proper. In addition, Aa and Ca were
time-dependent matrices, due to the variable foundation coefficients, kf(Vt) and cf(Vt).

3. Stochastic Vehicle Response

The covariance of the augmented system, Γxa , could be determined through a linear differential
equation, when the input is a white noise process [37]:

.
Γxa(t) = Aa(t)Γxa + Γxa(t)A

T
a (t) + 2πS0BaBT

a (16)

where S0 is the level of the white noise indicating the level of roughness. Solving Equation (16) is
beneficial as it does not contain the principal matrix, in which an explicit format of the matrix is
generally unknown in time-varying systems.

In the case of uniform foundation, i.e., kf(x) = kf, cf(x) = cf with an infinite length beam,
the system becomes stationary. Then, assuming that the initial conditions could be described by a
random vector, xa(0) = xa0 the initial condition of Equation (16) Γxa(0) = Γ0 becomes:

Γ0 = E[(xa0 − μxa0)(ya0 − μxa0)
T] (17)

233



Sensors 2020, 20, 6263

where μxa0 and Γ0 indicates the mean and the covariance, respectively. If the initial conditions are all
deterministic, Γ0 = 0. Then, the covariance of the structure responses, Γy, is given by:

Γy = CaΓxaCT
a (18)

Further, with a zero-mean white noise being the input to the augmented system in Equation (14),
the stationary covariance responses could be obtained by the solution of

0 = AaΓxa + Γxa AT
a + 2πBaS0BT

a (19)

which is known as the Lyapunov equation [38]. Note that the equation is linear in unknown covariances
and can only examine the moments of the responses under the stationary process.

However, the presented study consisted of a non-uniform foundation, in which the quantities
varied over the length of the beam. Thus, the basic assumptions made in Equation (20) was no longer
valid. Instead of directly integrating Equation (14), the general covariance response in Equation (16)
was solved for Γxa , for which the matrix components are described below:

Γxa =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γqq Γqu Γqz Γq
.
q Γq

.
u Γq

.
z Γqf

Γuu Γuz Γu
.
q Γu

.
u Γu

.
z Γuf

Γzz Γz
.
q Γz

.
u Γz

.
z Γzf

Γ .
q

.
q Γ .

q
.
u Γ .

q
.
z Γ .

qf

− sym − Γ .
u

.
u Γ .

u
.
z Γ .

uf

Γ .
z

.
z Γ .

zf

Γff

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(20)

where qB, uu, and zs are short noted as q, u, and z, respectively. Then, the symbolic covariance matrix,
for which the number of variables is Nvar = (Na × (Na + 1)/2) was plugged into Equation (15) to
construct Nvar distinct differential relationships.

Finally, the desired time-varying covariance responses of the vehicle, ΓyT(t) =[
Γuu(t) Γzz(t) Γ .

u
.
u(t) Γ .

z
.
z(t)

]T
, was obtained by solving Equation (16) via the time-step

integration method embedded in Matlab®(e.g., ode45).

4. Illustrative Examples

This section demonstrates the proposed approach by examining the covariance response of a
vehicle on a non-uniform foundation. To first validate the solution procedure, steady-state covariance
responses were compared by slowing the speed of the vehicle. Then, covariance responses were
compared for various pavement scenarios. Finally, covariance response features were selected to
classify and examine the foundation properties.

4.1. Vehicle and Pavement Model Properties

The properties of the quarter-car model used in the numerical examples are drawn from [39,40]
and summarized in Table 1. Note that kt is sought using a calibration index to well approximate the
empirical model in [41], on a non-deformable rigid foundation with varying roughness [35].
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Table 1. Vehicle properties.

Symbol Components Value

ms Sprung mass 1460 kg

mu Unsprung mass 80 kg

cs Suspension Damping 8760 Ns/m

ct Tire Damping 700 Ns/m

ks Suspension Stiffness 29.44 kN/m

kt Tire Stiffness 2500 kN/m

V Velocity 20 km/h
(stated otherwise)

The transfer function to approximate the PSD of road roughness, as in Equation (11), is considered
as follows:

Sξξ(ω) = S0

(
Ω
Ω0

)−ν
(21)

where Ω is the spatial circular frequency (ω/V); Ω0 = 1 rad/m, ν is the waviness that is taken as 2.45,
to match the average roads in the U.S. [42]. Note that S0 is varied to match the International Roughness
Index (IRIs), which is a measure of road roughness on ride comfort [43]. A lower IRI value indicates a
smooth pavement, while a higher IRI implies a rough pavement. In this study, IRIs are varied from 1
to 5, and the corresponding S0’s are approximated at those integers, using the golden car approach
described in [35].

The typical pavement system was adopted herein, and the uniform properties of the
Euler–Bernoulli beam (top layer in Figure 1) are summarized in Table 2. The elasticity of the
top-layer used in the study represents the medium soil [44].

Table 2. Euler–Bernoulli beam property.

Symbol Components Value

h Thickness 200 mm

b Width 1.8 m

E Elastic modulus 8760 Ns/m

ρ Density 700 Ns/m

L Length 5 m

Finally, to accommodate different Winkler type foundations, spring and damping coefficients
were varied linearly or quadratically. Thus, the following equations were adopted for each case:

kf(x) = kf0 × zf(x)cf(x) = cf0 × zf(x) (22)

Linear: zf(x) = 1− αx, 0 ≤ x ≤ L/2zf(x) = (2α− 1) − 2x(α− 1)/L, L/2 ≤ x ≤ L (23)

Quadratic : zf(x) = 1 + 4x(α− 1)/L− (α− 1)4x2/L2, 0 ≤ x ≤ L (24)

where the reference parameters for stiffness (kf0) and damping (cf0) are 30 kPa/mm and 2.4× 107 N·s/m,
respectively. The reduction factor α ≤ 1 was selected such that the soil had the most reduced value
at the mid-span of the beam (L/2). In this study, α was varied from 0.5, 0.7, and 0.9, which implied
50%, 70%, and 90% of the reference parameters. An illustration of zf(x) for each α is shown in Figure 2.
Herein, the variation profiles are described with L and Q, for a linear and quadratic shape, respectively,
followed by two digits describing α. For example, a dashed-dot plot in Figure 2a (linear with α = 0.5)
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was denoted as ‘L50’. Similarly, ‘Q90’ indicates that zf(x) varies in a quadratic manner (see a solid line
in Figure 2b).

(a) 

(b) 

Figure 2. Nonlinear variation in the Winkler foundation (a) linear variation; (b) quadratic variation.

4.2. Validation of the Solution Approach

In this section, the steady-state responses of the vehicle were compared with that of near-stationary
responses. The purpose of the presented study was to validate the time-varying covariance solutions
in Equation (16) by slowing the speed of the vehicle, and also to illustrate the difference in the response
due to various profiles of the subgrade and roughness, to be used in the following sections.

Figure 3 shows ΓyT(t) in comparison with steady-state responses. Here, the speed of the vehicle
was slowed to 0.5 m/s (1.8 km/h). The total number of modes used in the Euler–Bernoulli beam
was 10 sine modes and a roughness of IRI = 3 m/km was used. Regarding subgrade, the uniform
foundation was represented by zf(x) = 1 in Equation (19), while α = 0.5 was used for linearly and
quadratically varying foundations. Steady-state responses were calculated by fixing the location
of the vehicle at the mid-span and solving Equation (16) with

.
Γxa(t) = 0, where the responses

were as small as Γuuuu = 1.39 × 10−5 [m/s]2; Γzszs = 1.40 × 10−5 [m/s]2; Γ .
uu

.
uu

= 1.42 × 10−5 [m/s]2;

Γ .
zs

.
zs

= 0.189 × 10−5 [m/s]2. Note that the impact of foundation property change in the case of a
stationary process was negligible, as reported by [24]. However, non-stationary covariance responses
showed large humps within the first 2 s, due to the dynamic effect of boundary conditions. Peaks on
velocity covariance responses were much higher than the displacement responses, rapidly converging
to stationary responses.
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(a) (b) 

  

(c) (d) 

Figure 3. Covariance response of the vehicle over time (a) Γuuuu ; (b) Γzszs ; (c) Γ .
uu

.
uu

; and (d) Γ .
zs

.
zs

.

Furthermore, the responses were examined on various road roughness. To compare the results
efficiently, Figure 4a plots Γuuuu with linearly varying foundation, as the IRIs varied from 1 to 5 m/km.
A time-step integration method, ode45 was used as the vehicle crossed over the length with vehicle
speed (V = 20 km/h). As could be seen, the effect of surface roughness on the nonstationary covariance
responses were negligible. To better visualize the difference in the responses, the differences were
plotted in Figure 4b, in percentage. The difference was estimated for each IRI (ΓIRIi ), with respect to the
response at IRI = 1 km/m (ΓIRI1 ), as below:

ΔΓIRI =

(
ΓIRIi − ΓIRI1

ΓIRI1

)
∗ 100 [%](i = 1, 2, . . . , 5) (25)

ΔΓIRI tended to diverge as the vehicle moved along the beam, indicating that dynamic responses
were accumulated. However, within the domain, the maximum difference was less than 0.025% which
was negligible, compared to the governing dynamic responses. Although the impact of change in IRI
might increase as the beam length gets longer and the speed of the vehicle increases, the result indicated
that the responses were governed more by the non-uniform features of the foundation. This fact
emphasized the importance of conducting nonstationary response analyses because the stationary
response analyses could not capture such differences, as reported by [24].

Based on the study, non-stationary responses under various subgrades converged to steady-state
responses with time, while velocity covariance responses showed a faster rate. Additionally,
the subgrade variation types affected the vehicle responses while road roughness had a negligible
impact. Therefore, in the subsequent sections, road roughness was fixed to IRI = 3 m/km, to examine
Γuuuu(t) on various α’s.
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(a) 

(b) 

Figure 4. (a) Covariance response of vehicle under varying IRIs. (b) Difference in the response among
IRIs in percentage.

4.3. Time-Varying Covariance Responses

Figure 5 shows the time-varying covariance responses, Γuuuu(t), as the vehicle runs over the
pavement with different types of foundation properties. The simulations were carried out on the
basis of combinations of two variables—(1) foundation profile, implying how the subgrade properties
change, i.e., either in a linear or in a quadratic manner, and (2) α, which varied from 0.5, 0.7, to 0.9.
Then, the variable time-step was used for the integration and then downsampled to present 100 data
points within the duration. After the resampling procedure, one could consider that the responses on
the vehicle were measured at about 110 Hz. The chosen sampling rate was low enough to be easily
realized, yet could capture the key features of the responses. The response shown in Figure 5 are
deterministic, as the foundation variation profiles, α, and the speed of the vehicle are known. However,
deterministic identification based on Figure 5 was unrealistic, because the measured signals tended to
be contaminated with noises.
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Figure 5. Covariance response on various foundation properties (without noise).

Now, noises were randomly selected to have a signal to noise level (SNR) between 25–50 dB.
Note that the noises were added to the raw signals and then resampling was performed to represent
the signal noises. Here, only the measured noises were considered because the zero-mean noises in the
responses did not affect the covariance responses. For example, Figure 6 illustrates the covariance
response with noises added on linearly varying foundation with α = 50. SNR of Figure 6a is about
45 dB and Figure 6b is about 50 dB.

(a) (b) 

Figure 6. Covariance response with measured noise (a) SNR of 45 dB; and (b) SNR of 25 dB.

From the outcome of this subsection, the following conclusions could be made:

• Variations in profiles and α differed the maximum response and rate of convergence, while a
general shape of the responses was preserved.

• A larger maximum value was obtained in quadratically varying profiles, compared to the linear
case when the same α was used.
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• Within the same profile, a larger α tended to increase the rate of convergence. However,
the responses exhibit highly nonlinear relationships between the variables, making the prediction
of subgrade’s property change difficult.

• Although the vehicle responses were somewhat deterministic, once the foundation and vehicle
parameters were determined, the analytical approach in the prediction was not realistic, due to
the noises in the measured signal.

Thus, to resolve the issue, a machine-learning based classification of subgrades based on Γuuuu(t)
is discussed in the subsequent section.

5. Machine-Learning Based Classification

Machine-learning techniques are recognized in the civil engineering field as a promising component
for monitoring and inspecting [13]. Machine-learning tools can provide pattern recognition strategies,
when a deterministic model is difficult to be identified [45]. With their highlighted importance and
computational advances, the Matlab software incorporated the Statics and Machine Learning toolbox
containing considerable machine-learning techniques [46,47].

Among classifiers provided in the Classification Learner App in Matlab R2019b, one of the
traditional classifier, linear discriminant analysis (LDA) is implemented for identifying the changes
in the foundation properties from vehicle responses. The LDA method assumes that the data are
distributed in Gaussian and that each attribute has the same variance. Then, the Bayes’ theorem is
applied to estimate the posterior probability that the observation belongs to a certain class. Then,
the costs are evaluated from the maximal difference between the computed sample covariance and the
empirical covariance matrix. In LDA, the cost function is linear with respect to the observation [46,48].
With these assumptions, the LDA model attempts to express one dependent variable in terms of a
linear combination of other features or measurements [46]. Thus, to enhance the classification accuracy,
features in the covariance responses must be selected carefully.

Based on the previously presented results, the following six features were selected—(1) maximum
amplitude, A1; (2) time corresponding to A1, T1; (3) minimum tangent occurring between 0.2 s and
0.8 s, A2; (4) time corresponding to A2, T2; (5) slope of the linear regression between 0.2 s and 0.8 s,
A3; and (6) y-intercept of the regression found in (5), A4. Then, to incorporate the measured noise
in covariance responses, RMS noises were added in Γuuuu(t). The extracted features showed some
relationships among them. Figure 7 illustrates the distribution of features over the range of A1. As can
be seen, some features, such as A2 and A4, show a higher correlation with A1, while other features are
more scattered over the range of A1. In addition, L70, L90, and Q90 seem to overlap with each other
(as in Figure 7a–e, making it hard to differentiate with classification models that are based on decision
trees, etc.
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(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 7. The distribution features over the range of A1 (Maximum Amplitude); (a) Relationship
between A1-T1 (Maximum Time); (b) Relationship between A1–A2 (Maximum Tangent); (c) Relationship
between A1-T2 (Time at Maximum Tangent); (d) Relationship between A1–A3 (Linear regression slope);
and (e) Relationship between A1-A4 (Linear regression y-intercept).

Subsequently, the collected datasets were trained using LDA. The average success rate for using
an LDA classifier was over 94%, with at most 10% noise. Table 3 is a confusion matrix when 77 training
data were used. The table shows that the foundation was mostly classified, while 18% of the L50 case
was misclassified as Q70, and vice versa. Note that LDA showed the highest accuracy when compared
with other classification tools; the linear support vector machine showed 82% accuracy, ensemble
provided 84% accuracies, while other methods showed over 40% errors.
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Table 3. Confusion matrix for foundation property test.

Actual
Properties

Assessed Properties

L50 L70 L90 Q50 Q70 Q90

L50 0.82 0.00 0.00 0.00 0.18 0.00

L70 0.00 1.00 0.00 0.00 0.00 0.00

L90 0.00 0.00 1.00 0.00 0.00 0.00

Q50 0.00 0.00 0.00 1.00 0.00 0.00

Q70 0.18 0.00 0.00 0.00 0.82 0.00

Q90 0.00 0.00 0.00 0.00 0.00 1.00

Now validation tests were conducted to verify the performance of the developed LDA model.
For each case of the foundation, 100 test sets with 1~10% RMS noises added on the responses were
generated. The accuracy of the classifier was plotted as a bar chart shown in Figure 8. As could be
expected from the confusion matrix, Q70 showed the lowest accuracy, 83%, followed by L50. Overall
accuracy was about 94.5% This result supports that by adopting LDA model, the vehicle responses
could classify the change in the foundation properties with good accuracies.

Figure 8. The success rate for identifying foundation property.

6. Conclusions

This paper presented a machine-learning-based classification of non-uniform foundation properties
using vehicle responses. The dynamics response of the quarter-car model on the stochastic deformable
pavement with a finite length was evaluated. A filtered white noise was used to represent the stochastic
pavement roughness. The deformable subgrade was modeled by an Euler–Bernoulli beam on a
Winkler-type foundation. The non-uniform characteristics were represented with varying stiffness and
damping coefficients of the subgrade. Then, the vehicle–pavement–foundation interaction model was
combined to yield an augmented state-space representation, which had white noise as the primary
input to the system. In this study, the model could accommodate any time of foundation that was
describable with a longitudinal axis, although only the impacts of linear and quadratic variations
were discussed. A time-varying Lyapunov equation governing the covariance of the responses was
solved to effectively obtain the response of the vehicle. From the steady-state Lyapunov solution,
the solution approaches were validated. Then, various values of the subgrade’s properties, along with
surface roughness were compared. The parametric study showed that the stiffness produced some
difference in the response profile, while the roughness produced negligible change. This fact opposed
the uniform foundation case, indicating the importance of considering the non-uniform foundation.

242



Sensors 2020, 20, 6263

Then, a set of simulations for measuring noise were performed and used for feature extraction for a
classifier. Using an application embedded in Matlab®, linear discriminant analysis was employed
to show an average accuracy of 94%. Finally, a total of 600 test sets were generated to demonstrate
that the estimated foundation properties were mostly correct. Based on the outcome of this study,
the contribution of the presented work and the specific conclusions are summarized as follows:

• The introduced vehicle–pavement–foundation model and nonstationary solution approach allow
the investigation of the impact of nonuniform foundation characteristics on vehicle responses.

• Due to the non-stationary stochastic solution approach described, which examined the
second-order statistics of the process, efficient estimation was available, where the response
was determinate and unaffected by the zero-mean noises.

• The proposed approach could efficiently handle various types of vehicles, roughness,
and nonlinearity of foundations.

• Based on the theoretical evaluation, a machine-learning-based classification of non-uniform
foundation properties was demonstrated, which included irremovable measured noises.

• In addition to the physical realization of the presented results, future research must ensure to
provide high accuracy of identification when the location of the weakened foundation is unknown,
and should consider the lateral movement at the left support.

• Overall, based on the outcome of the study, the vehicle responses could be used in conjunction
with machine-learning technologies for classifying the properties and types of the subgrade.

In conclusion, the presented work demonstrated the potentials of monitoring the subgrade
anomalies from an inspecting vehicle that is only equipped with a set of accelerometers. Unlike the
current approach of a subgrade survey that is only limited to suspicious spots, the successful realization
of the presented methodology might allow a complete survey and the construction of a database for
road management.
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Abstract: Mixed Poisson–Gaussian noise exists in the star images and is difficult to be effectively
suppressed via maximum likelihood estimation (MLE) method due to its complicated likelihood
function. In this article, the MLE method is incorporated with a state-of-the-art machine learning
algorithm in order to achieve accurate restoration results. By applying the mixed Poisson–Gaussian
likelihood function as the reward function of a reinforcement learning algorithm, an agent is able
to form the restored image that achieves the maximum value of the complex likelihood function
through the Markov Decision Process (MDP). In order to provide the appropriate parameter settings
of the denoising model, the key hyperparameters of the model and their influences on denoising
results are tested through simulated experiments. The model is then compared with two existing star
image denoising methods so as to verify its performance. The experiment results indicate that this
algorithm based on reinforcement learning is able to suppress the mixed Poisson–Gaussian noise in
the star image more accurately than the traditional MLE method, as well as the method based on the
deep convolutional neural network (DCNN).

Keywords: star image; image denoising; reinforcement learning; maximum likelihood estimation;
mixed Poisson–Gaussian likelihood

1. Introduction

A star image is obtained from star sensor, which is a high-accuracy attitude determination
instrument. The three-axis attitude and spatial position of the star sensor can be calculated based on
the reference of stars recognized in the digitized star image. Being able to accurately collect and process
a star image at all times, however, is one of the challenges in the application of a star sensor due to
the brightness of the sky’s background and the complicated mixture of noise [1]. These conditions
lead to a low Signal-to-Noise Ratio (SNR) in the star image obtained in the daytime, and thus have
negative influences on the calculation of attitude and position. Similarly, it is an important basis for the
star sensor to work efficiently that noise is effectively suppressed and the star targets are accurately
recognized in the star image. Researchers have proposed various types of algorithms to suppress the
effects of salt-and-pepper noise, strip noise, speckle noise, and defective pixels [1–5]. Nevertheless,
mixed Poisson–Gaussian noise remains after these denoising methods are applied and affects the
extraction of the true value of star points [6].

The traditional method suppresses the mixed Poisson–Gaussian noise simply by taking the
arithmetic mean of multiple frames of star images. However, the restoration through such methods is
not likely to be accurate without a large number of star images that are taken in a short period or by a
stational star sensor [7]. Considering the movement in the carrier of the star sensor, such conditions
could sometimes be unrealistic. Maximum likelihood estimation (MLE) is one of widely used methods
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that can restore a star image with limited number of frames. In the MLE method, the distribution
model of the noise is constructed as a likelihood function, and the image that is most likely to produce
the given observations is termed as the restored image. However, mixed Poisson–Gaussian noise
is still difficult to be suppress through the MLE method due to its complicated likelihood function.
This will be discussed in detail in the next section.

Towards the goal of high-accuracy star image restoration, this study integrated deep reinforcement
learning techniques with the MLE method and developed an iterative denoising algorithm that can
accurately suppress mixed Poisson–Gaussian noise. Generally, an agent proposes “restored images”,
which are evaluated through a modified likelihood function. Borrowing the idea of the MLE method,
the mission of the agent is to find the image that returns the highest probability according to the
modified likelihood function. Based on the gradient descent algorithm in the deep reinforcement
learning method, the agent efficiently learns to propose a more appropriate “restored image” until it
gets close enough to the ground truth. Thus, the aim and contribution of this study is to build a fully
automated denoising algorithm that can accurately suppress the mixed Poisson–Gaussian noise in a
star image.

2. Related Works

2.1. The Application of MLE in Star Image Denoising

The MLE method regards the image denoising problem as the optimization process of the
likelihood function. Moreover, other regularization terms can be added to the likelihood function as
the constraints on the estimator and form a denoising algorithm together with the likelihood function.
Based on the MLE method and the image blur model with Gaussian noise, Katsaggelos proposed
an image restoration algorithm using blur coefficients identification and expectation-maximization
(EM) [8]. Llacer and Nunez applied the MLE method to restore the astronomic images obtained from
the Hubble Space Telescope and proposed an iterative MLE and Bayesian algorithm [9]. Similarly,
Synder discussed the convolution of astronomic image obtained from Charge Coupled Device (CCD)
camera and suggested that the restoration of such astronomic image could potentially be achieved via
EM method [10]. Benvenuto further explored the image denoising problem specifically for star images.
They gave an approximate model of the flux of photons and verified the existence of its solution [11].
Li et al. constructed the likelihood function for multi-frame Adaptive Optics (AO) image according to
the Poisson distribution model, based on which they proposed an AO image denoising method that
achieved accurate results [12]. However, this algorithm is not able to restore the image with mixed
Poisson–Gaussian noise, which has a more complicated distribution model. Zhang et al. approximated
the mixed Poisson–Gaussian noise model using generalized Anscombe transformation approximation
Fourier ptychographic (GATFP), and then solved the transformed likelihood function with the MLE
method [6]. Although the GATFP method is able to optimize the complicated distribution model of
mixed Poisson–Gaussian noise, it cannot avoid the error introduced during the approximation.

2.2. Reinforcement Learning and Its Application in Image Processing

Derived from behavioral psychology, reinforcement learning is a classical topic in the studies
of artificial intelligence (AI) [13,14]. Various algorithms have been developed for reinforcement
learning, but they share a major process in common: an agent learns through the interactions with
certain environment, and gradually finds an optimal solution or approach. The Markov Decision
Process (MDP) is a commonly used method of reinforcement learning [15]. In MDP, an agent takes
limited choices of actions to update the state of the environment, then receives encouragement or
punishment according to a reward function that evaluates the chosen action, as well as how it changed
the state [16]. As it can be inferred from the learning process, MDP is usually accomplished through an
iterative algorithm.
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Due to the development of AI technology in the last decade, the machine learning algorithm
has been applied in many subjects, including object detection [17–19], data mining [20,21], image
processing [22,23], etc. Typically, the convolutional neural network (CNN) has been successfully applied
in various image processing tasks, including deblurring [24–26], denoising [27–29], JPEG artifacts
reduction [30–32], and super-resolution [33–40], owing to its ability to efficiently handle imagery
information. Incorporated with the deep learning algorithm, traditional reinforcement learning also
rapidly developed [41,42] and showed its potential of application in image processing [43,44]. Yu et al.,
designed a toolbox for image processing, and then developed an image restoration algorithm based
on reinforcement learning using the tools within the toolbox [44]. Despite its various applications
in image processing, the machine learning method is not widely utilized in star image restoration.
This is partly because the star image restoration problem is different from the general image restoration
problem: the goal is to restore the value of a star point as close to the true value as possible, rather than
make the image visually fine. A deep convolutional neural network (DCNN) model proposed by Liu
et al. is one of the limited examples of applying deep learning method in star image denoising [45].
Liu et al. trained a supervised DCNN model with simulated star image and achieved better restoration
than traditional method.

2.3. Mixed Poisson–Gaussian Noise in Star Image

Gaussian noise in the star image can be introduced by many aspects including the noise of circuit
components, the temperature change in image sensor, etc. The intrinsic noise introduced during the
photon counting process of the photosensitive component, however, depends on the signal value,
thus follows Poisson distribution. Because the measurements from all pixels are independent, for a
star image with M × M pixels and N observations, the likelihood function that describe the possibility
of receiving the known N observations is given as Equation (1) [46]:

p(zq|bq) =
N∏

q=1

M2∏
i=1

(
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e−[bq]i [bq]
j
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where zq is the noise image, bq is the ground truth, σ is the variance of Gaussian distribution, subscript
i is an index of the number of pixels, q is an index of the number of observations, and j is an index of
the possible observation of the gray value. As discussed above, MLE method is intended to find a
restore image b

′
q that returns the highest value of the likelihood function.

Taking the negative logarithm of the likelihood function makes it easier to solve this problem.
Thus, the optimized likelihood function is given as:
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Nevertheless, it is still extremely difficult to directly solve this likelihood function. Marnissi
et al., further optimized the likelihood function using generalized Anscombe transformation (GAT)
approximation, and form the likelihood function as Equation (3) [47]:

p(zq|bq) =
M2∏
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1√
2π
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2
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3
8
+ σ2)
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As indicated in Equation (3), GAT method simplifies the mixed Poisson–Gaussian likelihood as a
Gaussian-like distribution. Although it is able to provide an approximate solution to the likelihood
function, the tails of variance stabilized coefficients distribution are still empirically longer than
normality [48] (which means the variance of the transformed noise still depends on signal intensity).
In this study, the mixed Poisson–Gaussian likelihood function is directly introduced in the reinforcement
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learning algorithm without approximation. Therefore, it is expected that the likelihood function given
by Equation (2) can be solved more accurately, and the mixed Poisson–Gaussian noise in the star image
can be suppressed more effectively.

3. Methodology

3.1. Dataset

In this study, simulated star images are produced as the dataset for training and testing the model.
Simulated star image has been successfully utilized to train machine learning model owing to its
ability of generating a variety of star images under different conditions at very low cost [45]. Xu et al.,
studied the stellar radiation model and proposed a star image simulation method based on calibration
coefficient, which relates to stellar magnitude mv and color temperature T [49]. Generally, the total
energy of photoelectrons generated by an observed star can be calculated by Planck’s black body
radiation law as:

Es(λ, T) =
2πhc2

λ5[exp(hc/λkBT) − 1]
(4)

where λ is wavelength, kB is Boltzmann constant, h is Planck constant, Es is the stellar radiation energy
per unit area, per unit time, and per incremental wavelength (W/m3).

The energy of star point is then dispersed into several pixels based on point spread function (PSF)
of the optical system. After that, the star points are integrated with the background simulated based
on MODTRAN software to generate the simulated star image. Finally, mixed Poisson–Gaussian noise
is added to the image. This simulation method is adopted in this study to produce the training dataset.
More specifically, three levels of noise images are produced in the dataset as mild noise, moderate noise,
and severe noise, in which the variances of Gaussian noise are 5, 10, and 20, respectively. The noise in
each image is randomly generated and independent from each other in order to avoid having the same
noisy instantiation among the different images in the dataset. The simulated image of ground truth
and three sets of star images with different amount of noise is shown as Figure 1.

Figure 1. Simulated star images with: (a) mild noise, (b) moderate noise, (c) severe noise,
(d) ground truth.

Two thousand different simulated star images are produced as the images of ground truth.
For each star image of the ground truth, 10 noise images are produced for each type of noise. Thus,
there are 6000 sets of noise images that contain three levels of noise and are produced based on
2000 different images of ground truth. Each set includes 10 frames of noise image, thus the training
and testing for certain image with each ground truth image that contains each type of noise is carried
out based on 10 frames of noise images. The image sets are randomly shuffled for model training.
Seventy percent of the images are used for training, 10% of the images are used for validation, and 20%
of the images are used for testing. The star images with different types of noise are distributed in the
training, validation, and testing dataset as evenly as possible. All of the tests on hyperparameters are
carried out separately with the testing images of these three types of noise.
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3.2. Reinforcement Learning Algorithm

Different from existing star image denoising methods (such as GAT) that try to approximately
solve the likelihood function given by Equation (2), we intend to solve the denoising problem through
MDP, which include an environment part (state), a decision-making part (agent), a rewarding part,
and a stopping part (Figure 2). The decision-making part receives the noise image and treats it as the
initial state, makes a sequence of actions on the image and produces a processed image. The rewarding
part mainly consists of a reward function that returns a higher value when the processed image is
closer to the ground truth. In the case of the star image denoising in this study, the reward function is
directly derived from the likelihood function that is given by Equation (2). The stopping part evaluates
the processed image and determines whether it is close enough to the ground truth. If the processed
image does not satisfy the stopping part, it will be sent back to the decision-making part as an updated
state. Otherwise, the stopping part will end the iterations and return the processed image as the final
restored image. The detail settings of these parts are discussed as follows.

Figure 2. Flowchart of the star image denoising algorithm based on reinforcement learning.

3.2.1. State and Initial State

The state is referred as a set of input information for the decision-making part. In this study,
the state consists of two sections: (1) the current input image, on which the selected actions will be
directly applied; (2) the historical action vector, which is the action selected in the previous iteration.
In the iterative image denoising model proposed by Yu et al., a past historical action vector is also
added as a reference to the action selection at current iteration [44]. They suggest that the restoration
results are improved compared with using current input image only.

The input image of the initial state is set as the arithmetic mean of the multi-frame star images.
Because the average of multi-frame star images is usually not too far away from the ground truth
(as discussed in the introduction, this is the traditional way to restore star image), using it as the initial
input image reduces the numbers of iterations (NOI), and also avoids the local optimum. The action
vector of the initial state is set as a zero vector, since there is no action taken before the initial state.
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3.2.2. Decision-Making Part

The decision-making part receives the input information and performs predefined choices of
actions on the image. There are two modules in the decision-making part corresponding to the two
sections of input state. The first module processes the input image. The star images are 8-bit or 16-bit
grayscale images, of which the gray value is determined by the number of photons counted by the
star sensor. Therefore, the decisions for any given pixels can be simply defined as: (1) increasing
gray value by w; (2) decreasing gray value by w; (3) stay the same. The parameter w is the searching
radius, which is (similar as the learning rate in deep neural network) a hyperparameter that can be
adjusted based on the property of image. For the 8-bit grayscale images with mild noise, a searching
radius can be directly set as 1, since the initial input image is usually not too far away from the ground
truth. For the 16-bit gray-scale images or images with severe noise, searching radius could be set as a
variable that is larger in the first few iterations, and then gradually decreases to 1 as the iterations go
on. Increasing the initial searching radius (ISR) can reduce NOI when the amount of noise is relatively
large, but it has to decrease to 1 in order to produce accurate restored image.

The second module analyzes the historical action vectors based on long short-term memory
(LSTM) [50]. LSTM is a special type of recurrent neural network (RNN), of which the output of
current state partly depends on the previous input. Compared with regular RNN, LSTM includes
an additional hidden state that decides whether the previous input should be “remembered” or
“forgotten” based on a gating function. By abandoning unnecessary inputs, LSTM overcomes the
gradient vanishing/explosion problem in regular RNN, and achieves better performance in processing
long sequence data [51]. LSTM is introduced in the model because the iterative actions performed
by the decision-making part form a sequence dataset, which can be effectively processed by LSTM.
By storing historical images and corresponding actions, LSTM provides additional information and
references for current action selection, and enable the model to learn from previous actions.

3.2.3. Rewarding Part

Theoretically, any functions that fulfill the requirement that returns a higher value as it is getting
closer to the ground truth could potentially be a reward function. However, the choice of reward
function significantly influences the performance of the restoration.

In the traditional reinforcement learning algorithm for image denoising, reward function is usually
derived from Peak Signal-to-Noise Ratio (PSNR) or Structural Similarity (SSIM) [44]. In this study,
the likelihood function of mixed Poisson–Gaussian noise, which was approximately solved in the
previous studies [5,47,48], is introduced as the reward function without approximation. Specifically,
the reward function is showing as follows:

max f (zq|b′q) = log(
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(p(zq|b′q)) =
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M2∑
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There are two advantages of applying this likelihood function as reward function: (1) it returns
highest value at the ground truth, which fulfills the requirement of reward function for reinforcement
learning; (2) by directly applying the likelihood function as the reward function rather than making an
approximate solution (like GAT method), it is expected to achieve more accurate restoration on the
star image.

In practice, the variance of the Gaussian noise is unknown, but is required to calculate the rewards.
This term needs to be calculated from the variance of the marginal pixels that are far away from stars.
Because the signal for the background is expected to be close to 0 and Poisson noise is related to
signal intensity, ideally the Poisson noise in the marginal pixels are ignorable, and the variance in the
marginal pixels are mostly contributed by that of the Gaussian noise.
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It should also be noted that there is an infinite term in the function. This term refers as the
probability of the showing certain gray value at a given pixel. Therefore, it usually returns high value
when the gray value is close to the ground truth, and then decreases to almost 0 when the difference
is too large (it is less likely that the observed value has too much difference from the ground truth).
Therefore, in our algorithm, this term is not taken into account when it is smaller than 10−8—the
probability less than that has little influence on the reward function and is ignorable. Moreover,
in practice, the differences between the possibilities calculated from Equation (5) could be very small
(especially when the variance of the noise is relatively large and the curve of the likelihood function
is “flat”), which means the differences between the rewards of actions are not obvious. As a result,
the decision-making part may fail to determine the appropriate action due to the vague rewarding.
In order to solve this problem, the values returned from the likelihood function may need to be
normalized to a larger scale, so as to magnify the differences between the rewards of different states
and actions.

3.2.4. Stopping Part

An automatic stopping part is designed in the algorithm in order to determine whether the
processed image is close enough to the ground truth, and if yes, automatically stop the iterations.
According to the decision-making part and reward function described in the previous sections, it can
be easily inferred that when the processed image reaches the ground truth, the decision-making part
would choose to stay at the same gray value, because either increasing or decreasing the gray value
would return negative rewards. Thus, stopping index (SI), defined as the numbers of times that the
decision-making part has continuously chosen to stay at the same gray value, is designed as the main
algorithm of the stopping part. SI is also a hyperparameter that should be adjusted based on property
of the star images. For the reason that the decision-making part could possibly choose random actions,
increasing SI in some extent can improve the accuracy of the restoration results, but at the same time,
increase number of iterations (NOI). For the same reason, the maximum number of iterations (MNI)
may also need to be defined, so as to avoid infinite loop. The detail test on SI and MNI will be discussed
in the next section.

3.3. Implementation Details

The algorithm in this study is built using Tensorflow backend [52] and in Python 3.6 environment.
Deep Q-learning [41] is adopted in this study for the training process. The ε-greedy is set relatively
high as 0.95, because the rewarding function is continuous and has only single peak, which means
taking the action with higher rewarding is a better choice than taking a random action for the most of
the cases. Adam [53] optimizer is applied in the model and the batch size is set at 32. The hyperbolic
tangent function is applied as the gating function of LSTM.

In order to find the favorable choice of hyperparameters, two sets of experiments were conducted
to test the hyperparameters introduced above. For the tests on SI, the searching radius was set as a
constant of 1, and MNI was set as a constant of 500. Six experiments were conducted for SIs, varying
from 2 to 7 with an increment of 1. For the tests on the ISR, the SI is set as a constant of 3, and the
MNI was set as a constant of 500. Four experiments were conducted for the test on ISR. In one of
the experiments, the searching radius is set as a constant of 1. While in the other three experiments,
the ISR is set at 5, 10, and 20, respectively, and then decreased at a factor of 0.5 (rounding up) every
10 iterations. The working flow and specific implementations for the algorithm proposed in this study
is summarized in Algorithm 1.
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Algorithm 1. Steps for the proposed denoising algorithm

Step 1: Create initial input image as the arithmetic mean of N frames of noise
image; define initial action vector v0 as a zero vector; initialize stopping counter cs

= 0; setup hyperparameter: SI, MNI, ISR
* Initialize operation

Step 2: Calculate the variance of Gaussian noise using the boundary pixels
Step 3: Define action table (a1 = + w, a2 = − w, a3 = no action, initialize w equal to
ISR); initialize action-value function Q with random weight θ

* Setup deep Q-learning

Step 4: for each of the M × M pixels: initialize sequence of state {bi} * Start iteration
Iterate through i = 1, 2, . . . , MNI:
Process vi-1 through LSTM and obtain v’

i-1
With probability ε select vi = argmax Q(bi-1; v’

i-1; θ)
Otherwise select a random action vi from action table
Execute action vi, update environment bi = bi-1 + vi, and observed reward ri
Update action-value function Q with the observed (bi; vi; ri)
After every 10 iterations w ← rounding up (w/2)
if a3 is chosen in this loop then: cs ← cs + 1
else: cs ← 0
end if

if cs ≥SI or I >MNI then: output the state bi as the restored result, end the iteration * Automatic stopping
end if

end for

4. Results

Hyperparameters were tested and calibrated so as to provide appropriate settings to the model. SI,
MNI and ISR were tested for simulated star images of different amount of noise. Accuracy and running
time are the two aspects tested in the experiments. The running time is evaluated by NOI—obviously,
more iterations are more time-consuming. Concerning the goal of star image restoration, the accuracy
was evaluated by mean squared error (MSE), PSNR, and SSIM, which are defined in Equations (6)–(8)
as follow:

MSE =
1

M2

M2∑
i=1

([b′q]i − [bq]i)
2 (6)

PSNR = 10 log10(
MAX2

MSE
) (7)

SSIM =
(2μbμb′+ (0.01MAX)2)(2σbb′+ (0.03MAX)2)

(μb
2 + μb′2 + (0.01MAX)2)(σb

2 + σb′2 + (0.03MAX)2)
(8)

where MAX is the possible maximum gray value (which is 255 for 8-bit and 65,535 for 16-bit grayscale
image), b represents the ground truth and b′ represents the restore image (also in subscript), μ is the
average and σ is the variance, σbb′ is the covariance of restore image and ground truth. These three
evaluation indicators are calculated for each set of noise images, and then averaged with other sets
of noise images with the same type of noise. As described in Section 3.1, there are 1200 sets of noise
images with three different levels of noise utilized as the testing data. Thus, the three evaluation
indicators are averaged among 400 tests (which is the value range of q in Equation (6)) in this study.

The results of experiments on SI and MNI are shown in Figure 3. It turns out that the three
evaluation indicators share the similar trend with the change of SI. Specifically, the accuracy of the
model improves significantly in a limited range with the increase of SI regardless of the amount of
noise in the star images. That means increasing SI in a certain range can improve the quality of
restoration results. However, as shown in the same figure, the increase of the SI also leads to more NOI
(longer running time). When the SI exceeds certain threshold, the model ends up in infinite loop and
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has to be stopped by MNI. In that vein, the appropriate SI setting should be large enough to achieve
accurate restoration, but small enough to avoid unnecessary iterations.

Figure 3. Test results of (a) mean square error (MSE); (b) peak signal-to-noise ratio (PSNR); (c) structure
similarity (SSIM); (d) number of iterations (NOI) at different settings of stopping index (SI)) for three
levels of noise.

The results of experiments on the ISR are shown in Figure 4. It turns out that ISR does not have
significant influence on the accuracy of restoration results, but affects the running time. Moreover,
its influences on running time vary for star images with different amounts of noise: for the star images
with mild noise, increasing the ISR does not reduce running time; for the star images with moderate
and severe noise, however, the NOI significantly reduced with a larger ISR.

Figure 4. Test results of (a) MSE; (b) PSNR; (c) SSIM; (d) NOI at different settings of initial searching
radius (ISR)) for three levels of noise.

The performance of the star image denoising method proposed in this study is compared with
GATFP method proposed by Zhang et al. [6] and DCNN algorithm proposed by Liu et al. [45] on
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the same testing dataset. For the GATFP method, the denoising process is conducted based on the
optimized likelihood function given in Equation (3). The implementation of the DCNN model is
a setup based on the structure described in Reference [45], which includes 17 convolutional layers
and 256 neurons in each layer. Rectified linear unit (ReLU) [54] is applied as the activation function
between the layers. The performance of these denoising methods is also evaluated with the three
evaluation indicators described above. The arithmetic means of the evaluation indicators for all the
testing images in each category of noise are compared in Table 1 for all the three denoising methods.
Typical examples of restored images are also shown in Figure 5.

Figure 5. Restoration results on the noise images produced based on the same ground truth (Figure 1):
(a) noise image with mild noise, (b) noise image with moderate noise, (c) noise image with severe
noise, (d) denoising result using reinforcement learning on mild noise, (e) denoising result using
reinforcement learning on moderate noise, (f) denoising result using reinforcement learning on severe
noise, (g) denoising result using DCNN [45] on mild noise, (h) denoising result using DCNN [45]
on moderate noise, (i) denoising result using DCNN [45] on severe noise, (j) denoising result using
GATFP [6] on mild noise, (k) denoising result using GATFP [6] on moderate noise, (l) denoising result
using GATFP [6] on severe noise.
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Table 1. Arithmetic means of evaluation indicators for all the testing images with three levels of noise
using three different denoising methods.

Mild Noise Moderate Noise Severe Noise
MSE PSNR(dB) SSIM MSE PSNR(dB) SSIM MSE PSNR(dB) SSIM

Reinforcement learning 0.1147 37.57 0.8215 0.1149 37.10 0.8150 0.1440 31.58 0.7060
DCNN [45] 0.1238 35.43 0.7776 0.1260 35.06 0.7602 0.1587 30.81 0.6816
GATFP [6] 0.1402 31.18 0.7153 0.1638 27.94 0.6384 0.1925 23.05 0.5483

5. Discussion

5.1. Hyperparameter Settings

5.1.1. SI and MNI

As indicated in the experiment results, SI influences both accuracy and running time. When the
SI is set at 2 or 3, the accuracy is relatively low because the decision-making part randomly chooses to
stay at the same value. But this possibility quickly decreases as the SI increases to 4. That means the
accuracy of the denoising model can be improved by increasing SI in a limited extent: as indicated in
Figure 3, the increase of SI does not improve the model accuracy when it is set beyond 5.

NOI also increases with SI. In fact, when SI is larger than 6, the model easily gets into infinite
loop and has to be stopped by MNI. This is because in order to stop the iterations without MNI,
the decision-making part has to avoid randomly choosing to increase or decrease the gray value
for number of times equals to SI after reaching the appropriate restored value—that possibility also
decreases with the increase of SI.

It is also notable that the SI has little relation with the amount of noise or searching radius
(with adequate iterations). Because the amount of noise decreases with the iterations, and SI does not
start to work until the decision-making part reaches to the appropriate restored value. In that vein,
4 or 5 seems to be the appropriate value for SI regardless of the amount of noise in the star image.
The MNI setting, however, depends on the amount of noise in the image, since NOI increases with the
amount of noise. A short experiment under low SI (for example, 3 or 4) may be necessary to figure out
approximately how many iterations the decision-making part needs to form the restored image before
formally running the model in order to find the appropriate setting of MNI.

5.1.2. Initial Searching Radius

As indicated in the experiment results, ISR does not affect the accuracy significantly, since it will
decrease to 1 in the end. But it affects the NOI. For the images with mild noise, an ISR larger than 1 is
unnecessary, and sometimes even causes more iterations, especially when ISR is larger than the noise.
For the images with moderate and severe noise, a larger ISR reduces NOI significantly, and therefore,
restores the images faster. In practice, however, the quality of observed star image is unknow. In that
vein, searching radius is a hyperparameter that needs to be calibrated with actual input star image.

According to discussion of the experiments above, the recommended setting of the hyperparameter
for the noise images with different amount of noise using the hyperparameter settings shown in Table 2.
This setting is also applied to the training of the reinforcement learning model when comparing its
performance with other two methods.

Table 2. Hyperparameter settings for the star images of three different amount of noise.

Mild Noise Moderate Noise Severe Noise

Stopping index (SI) 4 4 4
Initial searching radius (ISR) 1 5 10

Maximum number of iterations (MNI) 300 500 500
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5.2. Comparisons with Existing Methods

The algorithm proposed in this article is compared with GATFP [6] and DCNN [45] methods.
The performances of the two methods on the dataset used in study generally confirm with those
presented in the previous studies. As indicated in Table 1 and Figure 5, these denoising methods
are able to suppress the noise in a star image to some extent. The three denoising methods have
better performance on the suppression of mild noise than that of moderate noise restoration, which is
better than that of extreme noise. This means the images with less noise are naturally easier to be
accurately denoised. Although it can hardly be identified from the restored image (Figure 5) by human
eyes, the three methods have different performances in term of retrieving the true value of star target.
As shown in Table 1, all the three of the evaluation indicators shows that the reinforcement learning
method proposed in this study provides more accurate restoration results than that of the DCNN
method, which is more accurate than that of GATFP method. That means the algorithm proposed in
this article is able to achieve more accurate restoration than the existing star image denoising methods.

The fact that the two machine learning methods achieve better restoration results, especially when
the star images are more distorted, is possibly because they overcome the error introduced by the
approximation in GAT method. Moreover, the method proposed in this article can perform more
accurate restorations than that based on DCNN. It should be noted that the advantage in accuracy
of the restoration results is probably caused by the reward function applied in the reinforcement
learning algorithm, which is directly linked with the distribution pattern of the noise in the star image.
Although the reinforcement learning algorithm proposed in this study is designed more specifically for
star image with mixed Poisson–Gaussian noise, it certainly has the potential to be applied to suppress
other type of image noise, as long as the corresponding reward function is defined.

In comparing the two machine learning models, the DCNN model [45] includes a series of
convolutional layers for image feature extraction and a deep neural network (DNN) for denoising
calculation, while the reinforcement learning model presented in this study is an iterative MDP
model that is integrated with DNN for action-value regression. The different structures of the two
models lead to different training processes. The weights and bias of the neurons are trained in DCNN
model, while the optimal denoising process is trained through iterative trials in reinforcement learning
model. As a result, the reinforcement learning model is much simpler than the DCNN model in
terms of computational complexity. As shown in Table 3, the parameters that need to be trained in
the reinforcement learning model is less than one half of those in DCNN model, and the number of
computations in training the reinforcement learning model is only about one fourth of that in training
DCNN model. This results generally conforms with a comparison between reinforcement learning
model and DCNN model by Yu et al. [44].

Table 3. Comparison of the computational complexity between the reinforcement learning model
proposed in this study and DCNN model [45].

Reinforcement Learning DCNN [45]

Parameters (×105) 1.10 2.47
Calculations (×108) 2.26 9.02

Moreover, large numbers of noise images for different ground truth are necessary to train DCNN
model, while the reinforcement learning model requires much less training dataset: theoretically,
the agent can finally propose the restored image even with only one set of noise images with adequate
numbers of trials. Thus, the star image denoising model proposed in this study depends on less
training dataset, and may be more practical to extract the true value of star target, especially when the
observations are limited.
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6. Conclusions and Future Studies

A novel approach for star image denoising based on reinforcement learning is presented in this
study. Compared with the existing methods based on DCNN, this model learns to dynamically search
for the appropriate restored image based on reward function derived from mixed Poisson–Gaussian
likelihood function. Thus, the mechanism behind our algorithm is more intuitive, and leads to more
accurate restoration, than those that are based on DCNN. Compared with MLE methods that try to
approximately solve the likelihood function (such as GAT), the same likelihood function is applied
as the reward function without approximation. In that way, the likelihood function is solved by the
computer through the MDP more accurately.

The limitation of this algorithm is that we didn’t add any kind of convolution layer to the input
image. As a result, when the star image is rather huge, the restoration process becomes time-consuming
(the accuracy is not affected though). The reason we did not apply CNN in the algorithm is that the
reward function derived from the likelihood function only works for the gray value of the star image,
but not the image feature as captured by the CNN. An appropriate way to integrate CNN in the
algorithm, and thus further improve its efficiency, could be a topic of our study in the future.

It is also a potential topic to extend the application of the reinforcement learning model proposed
in this study into the denoising practice of broader types of images, which could have different numbers
of color depths. Processing the noise image depth by depth may not be a favorable approach, since it
disregards the correlations between the color depths. This problem may also be solved by a properly
designed CNN that can extract the features of a noise image.
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Abstract: Touchscreens have been studied and developed for a long time to provide user-friendly and
intuitive interfaces on displays. This paper describes the touchscreen technologies in four categories
of resistive, capacitive, acoustic wave, and optical methods. Then, it addresses the main studies of
SNR improvement and stylus support on the capacitive touchscreens that have been widely adopted
in most consumer electronics such as smartphones, tablet PCs, and notebook PCs. In addition, the
machine learning approaches for capacitive touchscreens are explained in four applications of user
identification/authentication, gesture detection, accuracy improvement, and input discrimination.

Keywords: touchscreen; capacitive; display; SNR; stylus; machine learning

1. Introduction

Human beings collect a lot of information through their eyes, and many displays
around us play a key role to transfer this visual information. Displays have evolved dramat-
ically from cathode-ray tube (CRT) [1–4] via plasma display panel (PDP) [5–10] and liquid
crystal display (LCD) [11–15] to cutting-edge organic light-emitting diode (OLED) [16–22]
and micro-LED technologies [23–28]. This evolution has led to larger screen-size, slim-
mer design, lower weight, higher resolution, faster frame rate, brighter luminance, wider
color gamut, longer life time, and lower power consumption in the large-size display
applications such as monitors, televisions (TVs), and digital signage [29–39]. The reso-
lutions of off-the-shelf displays have increased up to 8K (7680 × 4320) along with the
high frame rate of 120 Hz and the larger screen sizes than 55-inch have taken more than
30% of overall TV set sales [40,41]. Even rollable OLED TVs were demonstrated in the
consumer electronics show 2018 (CES2018) [42]. On the other side of the small-size display
applications, higher density of pixels, narrower bezel, flexibility, bendability, rollability, and
low power consumption have been achieved along with enhanced picture quality [43–48].
The latest smartphones contain the bezel-less screens of larger pixel densities than 450 pixel
per inch (ppi) and smartphones with foldable displays are being sold on the market [49].
Recently, as augmented reality and virtual reality (AR/VR) attract substantial interest,
the demand for high-performance near-eye displays is increasing further [50–57]. Conse-
quently, the very high resolution OLED on silicon (OLEDoS) displays up to 4410 ppi have
been reported [58–63].

On top of the role of a visual information provider, displays have supported the interac-
tion with users by means of various user interfaces. Users can adjust the visual information
on the screen by themselves. The very old but still popular representative user interfaces are
mouse and keyboard [64–66]. There have also existed pen tablets for more elaborate works
such as drawing and writing [67–70]. Because these devices work on the different planes
separated from displays, additional markers such as cursors and pointers are needed. On
the other hand, more intuitive input interfaces called touchscreens have been studied to
directly interact with displays by touching displays [71–74]. Touchscreen technologies can
be categorized into finger-touch and stylus-touch methods. While finger-touch methods
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include resistive, capacitive, acoustic wave, and optical approaches [75–101], stylus-touch
ones cover up to electromagnetic resonance (EMR) schemes including finger-touch method-
ologies [102–108]. Recently, as wearable devices such as smartwatches and smartbands
are becoming more popular, small-size displays are becoming further widespread with
touch sensing functionality. However, because this very small-area screen cannot support
multiple finger-touches and the whole area is covered even by a single finger, a variety of
separate input modalities in the outside of the screen have been studied by using infrared
(IR) line sensors, microphones, gaze trackers, IR proximity sensors, electric field sensors,
deformation sensors, magnetic field sensors, and mechanical interfaces [109–123]. In addi-
tion, some approaches have coped with the limitation of the single touch by differentiating
palm and finger or identifying pad, nail, tip, and knuckle of a finger [124,125]. Especially,
because AR/VR displays are placed near to eyes, it is impossible to touch the screen directly.
Therefore, other input tools using various sensors such as leap motion sensors, electromyo-
graph sensors, inertial measurement units, eye-trackers, IR facial gesture sensors, cameras,
and axis-tilt sensors, have been employed [126–134].

There have been also efforts to integrate machine learning (ML) approaches into
touchscreen technologies. These ML networks are employed to add extra input tools, to
improve the touch-sensing performance, to support the user identification/authentication,
to discriminate finger-touches from others, and to capture the gestures [135–164].

There have been brief reviews of touchscreen technologies [76,96]. Walker [165] pub-
lished many overview papers about a variety of touchscreen technologies from resistive
to optical and electromagnetic resonance (EMR) stylus schemes. Those papers explained
their histories, principles of operation, pros and cons, and applications. However, the
technological details have not been handled such as algorithms, driving circuits, and ML
approaches. Kwon et al. [166] reviewed capacitive touchscreen technologies including
sensors, driving circuits, sensing methods, and stylus schemes in more detail. However,
ML approaches were not introduced. Bello et al. [164] summarized ML approaches to
improve security on touchscreen devices without addressing the touchscreen technologies.
A variety of ML applications only for the security issues were addressed. This paper
provides a unified and broader view of the touchscreen technologies with the detailed
explanation and ML approaches in various scenarios.

The contributions of this paper are as follows:

• Providing the most comprehensive review about the touchscreen technologies. In
particular, this describes various studies on sensing methods and ML approaches.

• Supplementing capacitive touchscreen techniques of the previous review paper [166]
by focusing on research topics and results.

• Including various ML methods for user identification/authentication, gesture detec-
tion, accuracy improvement, and input discrimination.

• Proposing future directions for researches on touchscreen technologies integrated
with ML networks.

This paper is organized as follows. Section 2 addresses the overview of the touch-
screen technologies, and then Section 3 describes various studies on capacitive touchscreen
applications that are integrated in most smartphone and notebook displays. Section 4
shows the ML approaches working with existing capacitive touchscreen technologies.
Section 5 concludes this paper with some suggestions of the future directions.

2. Overview of Touchscreen Technologies

In this section, touchscreen technologies for finger as well as stylus have been simply
addressed in terms of principles of operation, advantages, and drawbacks. We categorize
the touchscreen technologies into four categories of resistive, capacitive, acoustic wave,
and optical, and address further various techniques in each category as shown in Figure 1.
Table 1 compares their specifications.
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Figure 1. Categories of touchscreen technologies. This figure excludes the touchscreen techniques
embedded in pixel areas in a display panel.

Table 1. Comparisons of touchscreen technologies.

Category Resistive Capacitive Acoustic Optical

# Layers 2 2 1 0 (Traditional)
1 (PSD, FTIR)

Touch High Low Average HighDiversity

Image Clarity 75–85% 85–90% 92–% 88–%(Transmittance)

Multi- No (Analog) No (Surface, Self) No No (Traditional)
Touch Yes (Digital) Yes (Mutual) Yes (PSD, FTIR)

Durability Poor Good Best Best

Computational Low Average High Low (Traditional)
Power High (PSD, FTIR)

Dimension Small Small (ITO) Large LargeLarge (Metal Mesh)

Touch/Tap Strong Light Average LightForce

Resistance to Best Poor Good GoodContaminants

Holding Yes Yes Yes (SAW) YesFunction No (APR, DST)

Mounting No No No (SAW) NoDependency Yes (APR, DST)

2.1. Resistive Touchscreen

An analog resistive scheme is the oldest touchscreen technology [165]. It extracts touch
coordinates by sampling the voltage at the touched area. The voltage is proportional to
the location of the screen due to the voltage division based on the ratio of resistances from
the current position to two opposite sides [78]. The most popular resistive touchscreen
panels are fabricated by 4-wire and 5-wire architectures [79]. Both methods estimate x-axis
and y-axis coordinates of a touch position sequentially. Normally, two separate layers are
coated by the conductive films only at one side, and one layer should be composed of a
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flexible material. When the touch force is applied, the flexible layer is pressed to contact
the other layer and to obtain the voltage at the contacted area. Four-wire structures use
both layers to generate the voltage slopes as well as to sense the voltage as illustrated in
Figure 2a. For example, after the flexible layer (Layer #1) generates the voltage slope at
an x-axis and the other (Layer #2) senses the voltage, Layer #2 generates the voltage slope
at an y-axis and Layer #1 senses the voltage. Five-wire ones apply voltages only to one
specific layer (Layer #2) and use the other layer (Layer #1) only to sense the voltage as
depicted in Figure 2b. Therefore, it is known that 5-wire schemes usually have a longer
life time.

(a) (b)

Figure 2. Two most popular resistive touchscreen architectures. (a) Four-wire. (b) Five-wire.

The advantages of the resistive touchscreen technology are to be able to work with
anything, to be fabricated at the lowest cost, to be insensitive to any contaminants, and
to consume low power. However, it has drawbacks of the only single touch support, the
poor durability due to scratches, poking, and sharp objects, the poor optical clarity, and the
relatively high touch force requirement [80,165].

On the other hand, there have been efforts to support multi-touch capability. Some
researchers were trying to add the multi-touch functionality to a conventional structure by
sensing the current consumption at voltage sources [167–169]. Whereas, other researchers
divide the conductive films into multiple lines and columns that give rise to many separate
overlapped areas [170–172], where each area can detect touches separately. This scheme is
named as the digital resistive touchscreen [165]. Since the resistive touchscreen methods
fall short of the capacitive schemes, the resistive touchscreen panels are being applied to
the limited areas such as toys, office electronics, and card payment machines.

2.2. Capacitive Touchscreen

Capacitive touchscreens sense the change of the capacitance caused by the finger
to estimate the touch position. While resistive schemes need the pressing force to make
the actual contact between two conductive layers, capacitive methods can obtain the
capacitance change just by the light touch on the screen. Consequently, it enables the
smooth and fast scrolling, high durability, and excellent optical performance. In addition,
any materials can be adopted for layers, for example, glasses and plastics, while resistive
technologies require one flexible layer at least. Because the parasitic capacitance added
by fingers is very small, large-size capacitive touchscreen panels are very difficult to
implement and contaminants such as water and dusts can be also recognized as touches.
Recently, the large size capacitive touchscreens have been reported based on the metal
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mesh structure [108,173]. It can support only capacitive input tools including fingers to
make parasitic capacitors with electrodes of the touchscreen panel.

The capacitive scheme is divided into surface-capacitive [81,83] and projected-capacitive
methods [82,84]. Surface-capacitive touchscreens consist of one conductive layer of which
four corners are connected to four perfectly synchronized alternative current (AC) voltage
signals as described in Figure 3. While any difference does not occur without touches at
these voltage sources, the finger touching the screen brings out the current difference in
four voltage sources. As the voltage source is located nearer to the touch point, the current
variation becomes larger due to the smaller resistive load. As a result, the touch locations
are extracted from the ratio of the currents over four voltage sources. Even though it cannot
deal with multiple touches at the same time, its high durability enables the integration in
automated teller machines (ATMs).

Figure 3. Surface-capacitive touchscreen. The touch location can be estimated from the current
variation at four corner AC voltage sources caused by the finger touch.

The projected-capacitive methods can be further divided into self-capacitance and
mutual capacitance architectures. Especially, the mutual capacitance has been the main-
stream technology used in most consumer electronics such as smartphones, tablet PCs, and
notebook PCs since the appearance of iPhones in 2007, because it can support multi-touch
functions along with high durability and good optical clarity.

In general, the projected-capacitive touchscreen panels use two patterned conductive
layers that are separated and crossed to each other in the shape of a matrix. Horizontal
and vertical patterns correspond to the position information of the touch event. While the
self-capacitance senses the capacitance between layers and ground as shown in Figure 4a,
the mutual capacitance measures the capacitance at the overlapped areas of horizontal and
vertical patterns as presented in Figure 4b. Consequently, the finger touch increases the self-
capacitance due to the additional parasitic capacitor in parallel and decreases the mutual
capacitance due to the electric field loss by the finger placed between two electrodes.

The self-capacitance estimates x-axis and y-axis coordinates sequentially by measur-
ing the capacitance of vertical and horizontal electrodes over the ground, respectively.
Consequently, the multiple touches may cause ghost touches. For example, when there
are two touches at locations of (x1, y1) and (x2, y2), the self-capacitance can figure out
that there are touches at x1, x2, y1, and y2, separately, and then it provides two correct
locations of (x1, y1) and (x2, y2) along with two additional ghost locations of (x1, y2) and
(x2, y1) by four possible combinations of two x-axis data and two y-axis data. Thus, the
self-capacitance has difficulty to support multi-touch functionality. To cope with this ghost
touch issue, some panel makers use separate self-capacitance cells directly connected to
the touchscreen controller that senses each capacitance variation, respectively, [174]. This
approach has been implemented in the off-the-shelf smartphones.
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(a) (b)

Figure 4. Projected-capacitive methods. (a) Self-capacitance. (b) Mutual capacitance.

On the other hand, because the mutual capacitance measures the overlap capacitance
separately between vertical and horizontal conductive patterns, it can support multi-touch
functions without any limits on the number of fingers. Therefore, it has become the widely
used touchscreen technology today. The excitation pulses are applied to horizontal patterns
and the transferred charges are measured through charge amplifiers at the ends of the
vertical patterns. Since the amount of transferred charges is proportional to the mutual
capacitance, the variation of capacitance can be detected. Section 3 will address the mutual
capacitance approaches in more details.

While additional touchscreen panels on the displays require further electronics, the
embedded touchscreen solutions that are called an in-cell touch can merge panel and
touchscreen electronics into a single driver integrated circuit. Therefore, various in-cell
approaches have been developed including self-capacitance cells and capacitive sensors
embedded in pixel areas [174–179].

2.3. Acoustic Wave Touchscreen

The acoustic wave scheme is composed of a wave guide, sound wave sources, and
receivers. The well-known technology is a surface acoustic wave (SAW) touchscreen as
depicted in Figure 5 [85–87,91]. The SAW contains two pairs of ultrasonic transmitters and
receivers to calculate x-axis and y-axis coordinates of touch locations, respectively. The
reflectors in the bezel area generate multiple horizontal and vertical acoustic wave paths
that have different arrival times at receivers. When a finger is placed in a certain path,
the signals attenuated by that touch arrive at the receiver with corresponding delays that
are converted into the position coordinates. Because the SAW needs only one wave guide
layer, it has the most excellent optical performance. In addition, large size touchscreen
and high durability are achievable. However, its sequential estimation of x-axis and y-axis
coordinates gives rise to the same ghost touches as the self-capacitance method. It can also
detect some input tools of soft materials to absorb waves and the sensing performance is
sensitive to contaminants on the screen.
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Figure 5. Surface acoustic wave (SAW) touchscreen. The ultrasonic waves move through multiple
horizontal and vertical paths. The finger touch attenuates the received signal strength in the contacted
wave paths and their delay information is converted to the touch locations.

The another one is a bending wave scheme, where the sound wave caused by tapping
on the screen is used as the sound source as well as the touch signal [88,89,89,90]. There
are two methods of acoustic pulse recognition (APR) and dispersive signal technology
(DST) [180]. The APR senses the bending waves by multiple piezoelectric transducers and
processes them with the data stored in the memory to extract the touch positions. Therefore,
the APR needs a prior process to sample and store the large amount of bending wave
data at enough number of positions over the screen. However, because the bending wave
characteristics are not deterministic, the resultant coordinates have some variance, leading
to errors on the location estimation. Furthermore, the enough bending wave strength is
required for the sensors to detect. The bending wave characteristics are dependent of
the mounting structure and material. Since too large an amount of data is necessary for
multi-touch cases, it supports only a single-touch input.

To cope with the requirement of the prior process to store the bending wave data
in the APR, the DST extracts touch locations directly only from the measured bending
wave data. Because the signal delay is affected by its frequency, the measured time and
frequency information is used to reconstruct the bending wave pattern on the screen, which
is converted to the touch coordinates. However, it also has several drawbacks such as only
single touch support, high tapping strength, measurement variance, mounting dependency,
as well as high computational power. In addition, both APR and DST cannot support the
holding function because only the tapping action generates the sound waves.

2.4. Optical Touchscreen

The optical touchscreens are developed based on the invisible infrared (IR). The
traditional IR-based touchscreen places transmitters at two sides and receivers at their
opposite sides without any additional layers. Because the touches block the light path over
the screen between a pair of transmitter and receiver, x-axis and y-axis coordinates can be
obtained by finding the receivers’ positions that do not receive IR. While large-size displays
and excellent optical clarity can be supported, the bezel needs some height over the screen
for IR transmitters and receivers and the multiple touches cause the ghost touch issue.

The other IR-based schemes such as planar scatter detection (PSD) [100,101] and
frustrated total internal reflection (FTIR) [75,95,98,99] are similar to the acoustic wave
approaches except for the use of IR instead of the sound wave. In the PSD, while the
transmitters send the IR lights through the wave guide at the total internal reflection (TIR)
condition, receivers sense them. When any touches are applied on the wave guide plate, it
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breaks the TIR condition out, therefore, the scattered and remaining TIR lights arrive at
multiple receivers as described in Figure 6a, leading to the extraction of the touch location
by the complex analysis. The PSD can support multi-touch and high image clarity, but the
larger-size touchscreens require higher computational power to extract the touch location.
The FTIR also makes use of the TIR condition, but the touch location is attained from
the lights escaped toward the opposite plane to the touched one as depicted in Figure 6b.
Those lights are captured by the external camera or vision sensors and the resultant images
provide the information of touch locations. There also exist the embedded LCD solutions,
where IR transmitters are allocated in the backlight and the vision sensors are placed in the
pixel areas.

(a)

(b)

Figure 6. TIR-based IR touchscreen technologies. (a) PSD. (b) FTIR.

3. Main Research Trends in Mutual Capacitance Capacitive Touchscreen Technologies

As explained in the previous section, there have exist various touchscreen technologies
by means of resistance, capacitance, sound wave, and IR. Among them, the capacitive touch-
screen has become a mainstream scheme, especially, the mutual capacitance touchscreen
is the most widely used technology on many consumer electronics such as smartphones,
notebook PCs, tablet PCs, and smartwatches, because of its multi-touch support, slim form
factor, high optical quality, excellent durability, smooth scrolling, and so on. Particularly,
this section addresses the mutual capacitance capacitive touchscreens in more details. Un-
like the self-capacitance method where the parasitic capacitor of a finger touch is connected
to the self-capacitor in parallel, the mutual capacitance scheme experiences the capacitance
reduced by electric field leakages into a finger. As a result, the touch location can be found
out by searching the position which mutual capacitance is reduced.

As shown in Figure 7, a conventional mutual capacitance capacitive touchscreen panel
is composed of excitation (EX) electrodes and sensing (SE) electrodes, which give rise to
the mutual capacitor array at their intersection areas [181,182]. Excitation drivers generate
EX pulses sequentially in the way of line-by-line that arrive at charge amplifiers attached
to SE lines through mutual capacitors. The non-inverting input terminals of these charge
amplifiers are connected to the reference voltage (VREF) and the charge transferred through
a mutual capacitor (Cm) is converted through a feedback capacitor (Cf ) into analog voltages
(VOUT) that are proportional to the mutual capacitance as presented in Equation (1). VEX
is the amplitude of the EX pulse. When a user touches on the screen with a finger, the
reduction on the mutual capacitance is sensed as the different output voltage of the charge
amplifier from the voltage level obtained without any touches as illustrated in Figure 8. To
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improve the precision of the touch detection, the transferred charge is accumulated at the
charge amplifiers over multiple EX pulses. In addition, a multiplexer (MUX) allows one
analog-to-digital converter (ADC) to sample the output voltages of charge amplifiers in all
SE lines sequentially. Finally, a host processor handles the digital data to determine the
touch locations and it also controls excitation drivers.

VOUT = VREF − Cm

Cf
VEX . (1)

Figure 7. Block diagram of a conventional mutual capacitance capacitive touchscreen system. NEX

and NSE are the numbers of excitation and sensing electrodes, respectively. The touch locations are
estimated from the mutual capacitor array formed at the intersection areas of EX and SE lines.

Figure 8. Charge amplifier circuit. The change of Cm causes different output voltage levels (VOUT).

The mainstream studies in mutual capacitance schemes are (a) improving signal-
to-noise ratio (SNR) to achieve higher accuracy as well as robustness over the noises
and (b) utilizing additional input tools such as styli besides fingers. In addition, it is
another research trend to integrate the pressure-sensing capability. However, the most
approaches support this pressure sensing function through additional sensors [183,184],
the separation distance changes [185,186], or the internal circuit of the stylus [108,187].
Because additional sensors and separation distance changes are out of this review’s scope,
the stylus technologies are addressed along with their pressure sensing schemes.

3.1. SNR Improvement

For the SNR improvement, various noises such as display noises, charger noises, and
hum noises need to be addressed. Usually, the most sensing circuits employ the voltage
accumulation at the output of the charge amplifier as shown in Figure 9, to suppress the
noise power over the main signal, based on the assumption that the noise is independent
and identically distributed [188]. Because the noise power and the signal power are propor-
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tional to the number of pulses and its squared value, respectively, the SNR improvement
is achieved.

Figure 9. The SNR improvement is achieved by accumulating output pulses of charge amplifiers.
CA-1 to CA-4 are the accumulated voltages for the outputs of four charge amplifiers. The outputs
accumulated over several pulses are sampled by the ADC.

Yang et al. [189] employed the differential-ended charge amplifier with two out-of-
phase excitation pulses (EX, EXb) as depicted in Figure 10. With the single-ended amplifier,
the output dynamic range (DR) is limited by the default mutual capacitance without
touches. However, the proposed differential structure reflected only the difference of
the mutual capacitance (Cm) over the adjacent line’s capacitor on the output voltages. In
addition, the differential-ended amplifier gave rise to the doubled DR by non-inverting and
inverting outputs (Voutp, Voutn). Therefore, the increased signal power led to the improved
SNR performance.

Figure 10. The dynamic range of the output voltage is enhanced by using differential-ended charge
amplifier and out-of-phase excitation pulses.

Kim et al. [190] proposed the common-mode noise cancellation by subtracting the
signals of the adjacent EX lines. Since the parasitic capacitance between neighboring EX
lines of a touchscreen panel and display panel are almost equal, the injected noises from
the display to the touchscreen would be similar, therefore, the differential sensing method
over EX pulses of two neighboring lines could eliminate the common-mode display noise.
Yang et al. [191] added a charge-interpolation filtered-delta-integration (CI-FDI) scheme to
cancel the charger noise. The large noise is detected, and then the noise is prevented by the
charge-interpolation.

As the other method to reduce the display noise components, it was proposed that
the sensing operation was conducted only during the vertical blank interval as presented
in Figure 11a. However, the sensing operation over the whole touchscreen area should
be finished within very short period of time at the end of a frame time. Since it could
not support smooth scrolling motions, the time division multiple sensing (TDMS) was
introduced to spread the touch sensing functions evenly over a frame time [174,192], where
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the divided vertical blank parts were added in the middle of the active interval by stopping
the scanning operations as illustrated in Figure 11b.

(a) (b)

Figure 11. Touch sensing methods during the vertical blank periods. (a) Sensing during one vertical
blank period. (b) TDMS sensing during divided vertical blank periods in the middle of a frame.

Miura et al. [193] adopted a two-step dual-mode scheme that performed self- as well
as mutual-capacitance measurements. After the self-capacitance measurement found the
touched areas, the mutual-capacitance measurement provided the fine touch location over
the touched areas. Therefore, it achieved the high resolution of 80 × 80 and the high scan
rate of 322 Hz.

An output accumulation sensing method can improve the SNR by applying multiple
EX pulses per one touch position estimation, but lowers the scan rate inevitably. To improve
SNR as well as scan rate simultaneously, Shin et al. [194] implemented a code-division
multiple-sensing (CDMS) method. While multiple EX pulses per one EX line are used
for sensing one touch position like the output accumulation sensing method, multiple EX
electrodes are excited with orthogonal patterns simultaneously as illustrated in Figure 12.
Then, the touch information over multiple positions was obtained at the same time through
the decoding process. As a result, the CDMS method achieves a much higher scan rate
without the SNR degradation [195,196].

Figure 12. Code division multiple sensing. CDMS enables the multiple capacitance sensing at
the same time by transmitting orthogonal codes through multiple EX lines. The charge amplifiers’
outputs are demodulated and converted into digital data that are decoded as multiple simultaneous
touch locations.

Park et al. [197] used the delta-sigma modulator in the ADC to move the low frequency
noise to the high frequency region as shown in Figure 13. By applying a low-pass filter
to remove the high frequency noise components, the noise power within the touch signal
band was substantially reduced, leading to the improved SNR performance.
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Figure 13. The sigma delta modulator shapes the noise power by moving the low frequency noises
to the high frequency region. Therefore, the SNR at the signal band is improved by means of
low-pass filtering.

An et al. [108] introduced the multiple-frequency driving scheme. A fast Fourier
transform (FFT) was applied to find the touch locations because EX pulses had different
frequencies for each EX line, that is, the number of EX frequencies is equal to the number of
EX lines. Furthermore, a spectrum of external noises was acquired, and then the frequencies
of EX signals were located in the low noise region for the high SNR. However, in order
to implement the FFT functionality, EX signals must be driven at a very high frequency
for the large number of EX lines, which leads to the increased power consumption and
hardware complexity. In addition, An et al. [198] integrated the amplitude-modulation
to the multiple-frequency driving scheme to reduce the charge-overflow. The excitation
pulses were amplitude-modulated to reduce their amplitudes with the same periodicity. It
achieved 33.9 dB charge-overflow reduction, leading to the high SNR performance.

The above SNR improving technologies are summarized in Table 2 including SNR,
scan rate, touchscreen resolution, year, and reference.

Table 2. Specification comparison of capacitive touchscreen technologies.

Approach SNR (dB) Scan Rate (Hz) Resolution Year Reference

Accumulation 24 65 20 × 16 2010 [188]

High DR 12.6 140 53 × 29 2011 [189]

Noise Cancel 35 120 30 SE 2012 [190]

CI-FDI 39 27 43 × 24 2013 [191]

CDMS 55 240 30 × 24 2013 [194]
72 32 × 10 2016 [196]

Dual-mode 41 322 80 × 80 2015 [193]

TDMS 52 120 80 × 45 2015 [174]

Noise 40 6300 8 × 12 2014 [197]Shaping 67 50

Multiple 61 3900 64 × 104 2017 [108]
Frequency 61.6 2930 2020 [198]

3.2. Stylus Support

Handwriting and drawing applications on touchscreens require more elaborate input
tools than a finger. The representative input tool is a stylus that has the shape of a pen. The
simplest stylus implementation called a passive stylus is based on the conductive tip that
imitates a finger touch as depicted in Figure 14a [103]. However, since the contact area must
be large enough to be comparable to that of a finger, it is not adequate to elaborate works.
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In addition, it cannot support smooth scrolling and high durability due to its rubber-type
tip. Additionally, the passive stylus is not distinguished from a finger. Lin et al. [199]
showed that the pressure level could be sensed in the passive stylus due to the contact area
change of the deformable head proportional to the pressing force.

Active stylus schemes have been introduced to support elaborate works even with
small-sized tips as illustrated in Figure 14b. The early active stylus [105] senses EX pulses
from the touchscreen and transmits its inverted and boosted pulses back to the touchscreen
via a tip. As these inverted pulses reduce the amount of charges transferred to the charge
amplifiers, the resultant outputs of charge amplifiers become equivalent to the voltage
levels caused by the reduced mutual capacitance. The process of amplifying the sensed EX
signal allows for the use of much smaller radius tips than the passive stylus.

(a) (b)

Figure 14. Stylus technologies for capacitive touchscreens. (a) Passive stylus. (b) Active stylus.

If larger inverted pulses are applied to the tip, the different output voltage from
finger-touch as well as no-touch will be obtained at charge amplifiers, which enables the
stylus differentiation from the finger [106]. However, this scheme needs much higher
voltage amplification at stylus circuits than EX pulses of the touchscreen to give rise to the
additional voltage level required for the stylus discrimination. It reduces both dynamic
range and SNR for the finger-touch detection when the ADC has the fixed input voltage
range. In addition, the boosted voltage levels should be separately adjusted in accordance
with touchscreens.

An et al. [108] introduced the other active stylus based on the multiple-frequency
driving scheme as presented in Figure 15. It could distinguish the stylus from the finger,
because tip pulses of the stylus had different frequencies from EX pulses of the touchscreen.
Even though it can achieve the high SNR, it required the high computational power due to
the FFT implementation. Its stylus supported pressure and tilt sensing functions by means
of additional force gauge and gyro sensor.

Lee et al. [187] proposed an electrically coupled resonance (ECR) stylus. As depicted
in Figure 16, when the excitation pulse is asserted, the pulse is transferred to an LC
resonance circuit of inductor (LST) and capacitor (CPR) in the ECR stylus and the signal of
the resonance frequency is transmitted from the tip of the stylus to the touch sensing circuits.
Since the ECR stylus consists of only passive elements, it does not need any batteries. In
addition, the finger touch can be differentiated from the stylus. Because CPR is modified by
the pressure, the pressure level can be differentiated by the resonance frequency. However,
the large excitation pulse amplitude is necessary to generate the resonance pulse signals
that can be detected at the touch sensor circuits. Besides, the frequency detection requires
the increased hardware complexity.
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Figure 15. Multiple-frequency driving touchscreen scheme based on an FFT processor. EX lines
as well as stylus can be discriminated in the frequency domain at the same time by assigning
different frequencies.

Figure 16. Electrically coupled resonance stylus. EX pulses are transmitted to the inside LC circuit
and resonance signals are transferred to the coupled SE line. Cm is the mutual capacitance, Cp is the
parasitic capacitor of EX and SE lines, CEX is the coupling capacitance between EX line and stylus,
and CSE is the coupling capacitance between SE line and stylus. LST and CPR are inductance and
capacitance of the resonance circuit in the stylus.

Seol et al. [157,163] adopted the active stylus scheme that used the higher frequency
pulses to generate different patterns from EX pulses for the finger-touch detection. It
discriminated stylus-touches from no-touches and finger-touches without the high com-
plicated FFT functionality by machine-learning-based classifiers as depicted in Figure 17.
It also showed that the proposed method allowed for the effective data communication
between touchscreens and styli. On the other hand, since the patterns of stylus-touches
were placed in between finger-touches and no-touches, the achieved SNR was relatively
low compared to the state-of-the-art high SNR touchscreen technologies.
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Figure 17. ML-based touchscreen scheme. The higher frequency pulses of a stylus generate
the different sequence from finger-touch and no-touch, and three touches are discriminated by
ML-based classifiers.

While previous passive and active ways are grounded in the capacitive touchscreen
panel, there is a stylus with a different approach that works with an electro-magnetic reso-
nance (EMR) technology [107]. Since EMR responds only to the stylus and the capacitive
touchscreen panel senses only the fingers, two separate touch sensing schemes enable the
finger to be distinguished from the stylus. However, this technique needs additional layers
that increase hardware complexity as well as manufacturing cost.

The stylus technologies that can be implemented on the capacitive touchscreen are
summarized in Table 3 in terms of tip size, stylus discrimination support, SNR degradation,
computational cost, and hardware complexity.

Table 3. Comparison of stylus technologies for capacitive touchscreens.

Reference
Passive Active FFT ML EMR ECR

[103,199] [105,106] [108] [157,163] [107] [187]

Tip Size Large Small Small Small Small Small

Stylus No No ([105]) Yes Yes Yes YesDiscrimination Yes ([106])

SNR No No ([105]) No Yes No YesDegradation Yes ([106])

Pressure Yes [199] - Yes No Yes YesSensing

Computational Low Low High Medium Low HighCost

Hardware Low Low High Low High HighComplexity
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4. Machine Learning Approaches in Mutual Capacitance Capacitive Touchscreen

Several ML algorithms have been employed to the capacitive touchscreen in a variety
of applications such as user identification/authentication, gesture detection, accuracy
improvement, and input discrimination. While many approaches used traditional ML
techniques of decision tree (DT), random forest (RF), naive Bayes (NB), radial basis function
network (RBFN), back propagation neural network (BPNN), support vector machine (SVM),
and Gaussian process regression (GPR), the latest ML networks, such as convolutional
neural network (CNN), anomaly detection (AD), and recurrent neural network (RNN), have
been also utilized in the touchscreen field. The following machine learning applications
are implemented on the off-the-shelf smartphones and tablet PCs with mutual capacitance
capacitive touchscreens.

4.1. User Identification/Authentication

The user identification and authentication is the most active field to apply the machine
learning to the touchscreen because the touch behaviors are different according to the
users. Kolly et al. [135] used DT, RF, and NB classifiers over touch gestures for the user
authentication application. Mean and maximal pressures, the point in the time at the
maximal pressure event, minimal and maximal gradients of the pressure, the hold time,
mean x-axis and y-axis positions, and the variances in x-axis and y-axis directions were
employed as input features that were crowdsourced by designing a quiz game. The
resultant identification accuracy for five users was 80% or more. It also proposed the
anomaly detection for the user authentication based on the learned distribution of features
from 5 button touch events. The equal error rate of false reject ratio (FRR) and false accept
ratio (FAR) was estimated as about 30%.

Feng et al. [138] proposed a finger-gesture authentication system using touchscreen
(FAST). FAST collected touch gesture information including gesture type, x-axis and y-axis
coordinates, directions of the finger motion, finger motion speed, pressure, and the distance
between multi-touch points. Totally 53 features for each gesture and six gestures of down to
up swipe, up to down swipe, left to right swipe, right to left swipe, zoom-in and zoom-out
were put into DT, RF, and NB classifiers. It achieved FAR of 4.66% and FRR of 0.13% for
the continuous post-login user authentication.

For the user authentication, Meng et al. [139] constructed 21 features such as average
touch movement speeds for eight directions, fractions of touch movements for eight direc-
tions, average single-touch time, average multi-touch time, number of touch movements
per session, number of single-touch events per session, and number of multi-touch events
per session. They evaluated the performance of DT, NB, Kstar, RBFN, and BPNN, leading
to the conclusion that RBFN showed the best performance with FAR and FRR of 7.08% and
8.34%. In addition, the particle swarm optimization (PSO) with a RBFN classifier reduced
FAR and FRR further to 2.5% and 3.34%, respectively.

Saravanan et al. [140] proposed the authentication scheme based on the user’s touch
interaction with common user interface elements such as buttons, checkboxes, and sliders.
Using SVM and RF, they achieved average accuracies of 97.9% and 96.79% with mobile
phone and tablet PC, respectively.

Guo et al. [143] proposed CapAuth that is a user identification and authentication
technique based on capacitive touchscreen data combined with machine learning classifiers.
It used the capacitive image of the hands-flat pose revealing the more distinguishing
features. CapAuth was built based on quadratic-kernel SVM classifiers, a binary classifier
for authentication and a multi-class one-to-one classifier for identification. The measure
FRR and FAR for authentication were 5.5% and 0.1%, respectively. The accuracy of the
identification was 94.0% for 20 users.

Rilvan et al. [148] used four fingers, thumb, as well as ear as the types of biometrics for
authentication with the machine learning classifiers such as SVM and RF. It achieved the
maximum authentication accuracy of 98.84% over four fingers with SVM and maximum
identification accuracy of 97.61% by four fingers with RF.
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Meng et al. [152] enhanced touch behavioral authentication by cost-based classifier
selection, where the best classifier with the lowest cost value was selected among a set
of classifiers including DT, NB, RBFN, and BPNN. It had nine touch features such as the
number of touch movements per session, the number of single-touch events per session, the
number of multi-touch events per session, the average time duration of touch movements
per session, the average time duration of single-touch per session, the average time duration
of multi-touch per session, average speed of touch movement, average touch size, and
average touch pressure. The average error rate of FAR and FRR was measured to be less
than 5% for 15 sessions or more.

4.2. Gesture Detection

The user identification and authentication require various touch data such as loca-
tion, speed, force, and gestures as features that are of the most importance for the better
performance. Therefore, there have been researches to extract the gesture data from the
touch data by means of machine learning algorithms. Xiao et al. [146] came up with an
approach for estimating 3D finger angles such as pitch and yaw relative to a touchscreen’s
surface. It used the capacitive image that was the capacitance measured at each point of a
touch sensor’s capacitive grid. The pitch was estimated by a Gaussian process regression
with 42 features and the yaw was computed by the major axis of the ellipsoid of the sensed
touch pixels. While mean pitch errors were 9.7 and 14.5, mean yaw errors were 26.8 and
31.7 for phone and watch, respectively. It also proposed the possible applications such as
zoom and rotate functions even with a single-touch event which would be very useful in
small-size watch displays.

Mayer et al. [151] proposed the neural network approach to estimate the finger
orientation of pitch and yaw. They evaluated the performance over separated deep neural
networks (DNN) for pitch and yaw, combined DNN with two output neurons, and CNN
along with L2 regularization [200,201] and batch normalization (BatchNorm) [202]. The
blob detection provided the 15 × 22 sized data that was fed into neural networks. It
achieved the best pitch error of 12.75 with CNN+L2+BatchNorm and the best yaw error of
17.6 with CNN.

Boceck et al. [161] extracted the pressure from capacitive images by using CNN. It
used a ReLU function as an activation function, and dropout layers. Final fully connected
layers contained LeakyReLU and L1/L2 regularization. They achieved the lower root mean
square error of 471.99 g, compared to 583.36 g and 593.51 g of RF and SVM.

Schweigert et al. [162] added knuckle related features by differentiating knuckles from
fingers and classified 17 finger and knuckle gestures by CNN and long short-term memory
(LSTM). CNN layers extracted the representation from the 15 × 27 capacitive image and
then LSTM layers generated 17 outputs over 50 consecutive images through a softmax
activation function. Seventeen gestures contained tap, two tap, swipe left, swipe right,
swipe up, swipe down, two swipe up, two swipe down, circle, arrowhead left, arrowhead
right, rotate, and five additional gestures. It achieved the accuracies of 97.9% and 86.8% on
train and test sets, respectively.

4.3. Accuracy Improvement

Weir et al. [137] adopted GPR to find a mapping between two-dimensional reported
touch locations and a corresponding intended two-dimensional touch location on the
display. It collected the touch data by randomly displaying the crosshairs that the users
had to touch. The resultant average reductions in error rates were 23.79% for 2 mm buttons,
14.79% for 3 mm buttons, and 5.11% for 4 mm buttons.

Fischer et al. [155] presented a system using capacitive sensing to accurately classify
hand touches and proximity. Touch data were collected through 50 finger touches with
different fingers, angles, locations and speeds, 25 glove touches, and 20 non-valid touches.
Then, the collected data were further processed by dimensionality reduction, data augmen-
tation, and normalization. Hidden Markov model (HMM) and RNN of gated recurrent
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units (GRUs) were evaluated as the classifier over three classes of non-touch, near, and
touch. The RNN model showed the better overall accuracy of 97.1% even with gloves
while HMM achieved the accuracy performance of 84.21%.

Kumar et al. [158] improved the accuracy of touch locations by CNN. The dataset
consisted of capacitive images at the dimension of 15 × 27 as well as the estimated touch
positions represented by the centroid of the touch blob. The proposed CNN achieved an
average error offset of 41.23 pixels based on a screen resolution of 1920 × 1080 on a 4.94 inch
display. It was the improvement of 23.0%, compared to the error offset of 50.7 pixels of the
standard touch controller.

Kim et al. [160] introduced a sensor substitution system that generates time-series
sensor data based on RNN. It estimated capacitive touch sensor signals by motion and
audio signals caused by touch. By other types of multivariate time-series signals, the
touch sensor sequences were supplemented even at dynamic and hostile environments
that degraded the touch sensor’s performance.

4.4. Input Discrimination

There have been studies on the discrimination of inputs such as fingers, palm, and
stylus. Schwarz et al. [142] employed the decision tree to distinguish between legitimate
stylus and palm based on spatiotemporal touch features and iterative classification. It
identified five properties of palms such as the large contact area, the segmentation into a
collection of touch points, the clustering, the area change, and the little movements. As a
result, min distance to other touches, number of touch events, and min/mean/max/stdev
of touch radius were used as the features. The instant classification achieved an accuracy
of 98.4% and the continuous iterative classification increased the accuracy to 99.5%.

Le et al. [154] differentiated between touches of fingers and palm to devise an addi-
tional input modality. Their PalmTouch showed possible one-handed and two-handed
palm interactions by placing flat hand or fist on the screen. It used the capacitive images
for the features and CNN for the classification, leading to the accuracy of 99.53%.

Le et al. [153] proposed the finger-aware interaction that identified fingers touching
the whole device surface to add the input modalities. In a prototype, front and back side
touchscreens were developed by two stacked smartphones and their three edges were
attached with 37 capacitive sensors. It used CNN with L2 regularization to obtain 15 out-
puts that were a three-dimensional coordinate, (x, y, z), for five fingers. The identification
accuracy was 95.78% with the position error of 0.74 cm.

Seol et al. [157,163,203] employed the machine learning based classifiers such as SVM
and autoencoder-based AD for finger and stylus discrimination. The higher frequency
pulses were transmitted from a stylus to a capacitive touchscreen and the outputs of the
charge amplifiers were sampled by ADC and classified by the classifier into no-touch,
finger-touch, and stylus-touch. While no-touch and finger-touch were the constant level
sample sequences, the stylus-touch was the random sequence between two constant levels.
Therefore, SVM and AD classifiers achieved lower bit error rates (BERs) than 10−6 with the
palm rejection. In addition, it was shown that its data communication algorithm could be
applied in data transmission and user identification.

5. Conclusions and Future Directions

In this paper, we have provided an extensive review on touchscreen technologies. We
mainly dealt with the overview of various touchscreen schemes from resistive to optical
methods, and two main research directions of SNR improvement and stylus support as
well as machine learning approaches in mutual capacitance capacitive touchscreens that
are the most widely adopted scheme at present in smartphones, tablet PCs, notebook PCs,
and smartwatches. For the aspect of the SNR improvement, accumulation, differential
sensing, TMDS, dual mode of self and mutual capacitance, CDMS, delta-sigma modulation,
and multiple-frequency driving have been introduced. High SNRs have been achieved
by reduced noises and increased dynamic ranges. For the stylus support, passive, active,
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multiple frequency driving, ECR, and ML-based schemes have been addressed along
with their pressure sensing capabilities. The machine learning applications in capacitive
touchscreens have been classified in four categories of user identification/authentication,
gesture detection, accuracy improvement, and input discrimination by means of a variety
of algorithms such as DT, RF, NB, RBFN, BPNN, SVM, GPR, CNN, AD, and RNN.

Although many advancements have been accomplished in touchscreen technologies,
challenges still exist in various fields. We will point out some of these challenges. We
hope that this review not only helps the understanding of the touchscreen technologies
but also paves the way to future researches on integrating machine learning algorithms
into touchscreens for more various applications. As the resolutions of touchscreens are
getting larger, fingerprints can be detected on any locations of the screen without addi-
tional sensors [204,205]. However, high power consumption and low scan rate should be
addressed. One of possible solutions would be the super-resolution (SR) that gives rise
to the high resolution capacitive image from the low resolution capacitive image. Many
deep-learning-based SR algorithms have been reported [206,207]. As discussed in the
previous sections, the SNR is one of the most important performance metrics and the
high SNR is required to integrate touch sensing and display driving electronics into one
integrated circuit. There exists the research field of de-noising that generates the clean one
from the noisy image. Therefore, this de-noising scheme can be applied to enhance the
SNR over the acquired capacitive images. Lastly, because latest smartphones, tablet PCs,
and notebook PCs contain many sensors such as cameras, IR sensors, microphones, ac-
celerometers, and gyroscopes besides touchscreens, there will keep being many approaches
based on multi-sensor fusion technologies in the user interface field.

Author Contributions: Conceptualization, H.N. and K.-H.S.; formal analysis, H.N. and K.-H.S.;
resources, H.N., K.-H.S., J.L., H.C., and S.W.J.; writing—original draft preparation, H.N.; writing—
review and editing, H.N. and K.-H.S.; visualization, H.N.; supervision, H.N.; project administration,
H.N.; funding acquisition, H.N. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by IDEC (EDA Tool) and the National Research Foundation
of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1A2B4009787)
and the Brain Korea 21 Four Program in 2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cundall, C.M. Cathode-ray-tube display systems. Electron. Power 1968, 14, 115–120. [CrossRef]
2. Anderson, L.K. The Cathode Ray Tube Display: Why Use Anything Else? J. Vac. Sci. Technol. 1973, 10, 761. [CrossRef]
3. Seats, P. Fundamentals of Cathode-Ray Tubes. In Digest of Technical Papers of the International Symposium of the SID; Winner:

New York, NY, USA, 1976; pp. 172–173.
4. Lehrer, N.H. Flat-Panel Displays and CRTs; Springer: Heidelberg, Germany, 1985.
5. Bitzer, D.L.; Slottow, H.G. The plasma display panel: A digitally addressable display with inherent memory. In Proceedings of

the American Federation of Information Processing Societies (Fall), San Francisco, CA, USA, 7–10 November 1966; pp. 541–547.
6. Meunier, J.; Belenguer, P.; Boeuf, J.P. Numerical model of an ac plasma display panel cell in neon-xenon mixtures. J. Appl. Phys.

1995, 78, 731–745. [CrossRef]
7. Rauf, S.; Kushner, M.J. Dynamics of a coplanar-electrode plasma display panel cell. I. Basic operation. J. Appl. Phys. 1999,

85, 3460–3469. [CrossRef]
8. Rauf, S.; Kushner, M.J. Dynamics of a coplanar-electrode plasma display panel. II. Cell optimization. J. Appl. Phys. 1999,

85, 3470–3476. [CrossRef]
9. Shinoda, T.; Wakitani, M.; Nanto, T.; Awaji, N.; Kanagu, S. Development of panel structure for a high-resolution 21-in-diagonal

full-color surface-discharge plasma display panel. IEEE Trans. Electron. Devices 2000, 47, 77–81. [CrossRef]

281



Sensors 2021, 21, 4776

10. Boeuf, J.P. Plasma display panels: Physics, recent developments and key issues. J. Phys. D Appl. Phys. 2003, 36, R53–R79.
[CrossRef]

11. White, D.L.; Taylor, G.N. New absorptive mode reflective liquid-crystal display device. J. Appl. Phys. 1974, 45, 4718–4723.
[CrossRef]

12. Snell, A.J.; Mackenzie, K.D.; Spear, W.E.; LeComber, P.G.; Hughes, A.J. Application of amorphous silicon field effect transistors in
addressable liquid crystal display panels. Appl. Phys. 1981, 24, 357–362. [CrossRef]

13. Castellano, J.A. Liquid Crystal Display Applications: Past, Present & Future. Liq. Cryst. Today 1991, 1, 4–6. [CrossRef]
14. Ishii, Y. The World of Liquid-Crystal Display TVs—Past, Present, and Future. J. Disp. Technol. 2007, 3, 351–360. [CrossRef]
15. Kim, D.H.; Lim, Y.J.; Kim, D.E.; Ren, H.; Ahn, S.H.; Lee, S.H. Past, present, and future of fringe-field switching-liquid crystal

display. J. Inf. Disp. 2014, 15, 99–106. [CrossRef]
16. Tang, C.W.; VanSlyke, S.A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913–915. [CrossRef]
17. Baldo, M.A.; O’Brien, D.F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M.E.; Forrest, S.R. Highly efficient phosphorescent

emission from organic electroluminescent devices. Nature 1998, 395, 151–154. [CrossRef]
18. Adachi, C.; Baldo, M.A.; Thompson, M.E.; Forrest, S.R. Nearly 100% internal phosphorescence efficiency in an organic light-

emitting device. J. Appl. Phys. 2001, 90, 5048–5051. [CrossRef]
19. Arnold, A.D.; Castro, P.E.; Hatwar, T.K.; Hettel, M.V.; Kane, P.J.; Ludwicki, J.E.; Miller, M.E.; Murdoch, M.J.; Spindler, J.P.; Slyke,

S.A.V.; Mameno, K.; Nishikawa, R.; Omura, T.; Matsumoto, S. Full-color AMOLED with RGBW pixel pattern. J. Soc. Inf. Disp.
2005, 13, 525–535. [CrossRef]

20. Nathan, A.; Chaji, G.; Ashtiani, S. Driving schemes for a-Si and LTPS AMOLED displays. J. Disp. Technol. 2005, 1, 267–277.
[CrossRef]

21. Geffroy, B.; le Roy, P.; Prat, C. Organic light-emitting diode (OLED) technology: Materials, devices and display technologies.
Polym. Int. 2006, 55, 572–582. [CrossRef]

22. Chen, H.W.; Lee, J.H.; Lin, B.Y.; Chen, S.; Wu, S.T. Liquid crystal display and organic light-emitting diode display: Present status
and future perspectives. Light Sci. Appl. 2018, 7, 17168. [CrossRef]

23. Lee, V.W.; Twu, N.; Kymissis, I. Micro-LED Technologies and Applications. Inf. Disp. 2016, 32, 16–23. [CrossRef]
24. Wu, T.; Sher, C.W.; Lin, Y.; Lee, C.F.; Liang, S.; Lu, Y.; Chen, S.W.H.; Guo, W.; Kuo, H.C.; Chen, Z. Mini-LED and Micro-LED:

Promising Candidates for the Next Generation Display Technology. Appl. Sci. 2018, 8, 1557. [CrossRef]
25. Paranjpe, A.; Montgomery, J.; Lee, S.M.; Morath, C. Micro-LED Displays: Key Manufacturing Challenges and Solutions. Dig.

Tech. Pap. Int. Symp. SID 2018, 49, 597–600. [CrossRef]
26. Huang, Y.; Tan, G.; Gou, F.; Li, M.; Lee, S.; Wu, S. Prospects and challenges of mini-LED and micro-LED displays. J. Soc. Inf. Disp.

2019, 27, 387–401. [CrossRef]
27. Zhoua, X.; Tiana, P.; Sher, C.W.; Wu, J.; Liu, H.; Liu, R.; Kuo, H.C. Growth, transfer printing and colour conversion techniques

towards full-colour micro-LED display. Prog. Quantum. Electron. 2020, 71, 100263. [CrossRef]
28. Huang, Y.; Hsiang, E.L.; Deng, M.Y.; Wu, S.T. Mini-LED, Micro-LED and OLED displays: Present status and future perspectives.

Light Sci. Appl. 2020, 9, 105. [CrossRef] [PubMed]
29. Schaeffler, J. Digital Signage: Software, Networks, Advertising, and Displays: A Primer for Understanding the Business; Taylor & Francis:

Oxfordshire, UK, 2008.
30. Nam, H.; Lee, S.W. Low-power liquid crystal display television panel with reduced motion blur. IEEE Trans. Consum. Electron.

2010, 56, 307–311. [CrossRef]
31. Nam, H. Low power active dimming liquid crystal display with high resolution backlight. Electron. Lett. 2011, 47, 538–540.

[CrossRef]
32. Han, S.M.; Lee, B.W.; Ji, I.H.; Sung, S.D.; Arkhipov, A.; Kim, S.S. Smart Power-Saving Driving Scheme for AMOLEDs Using

Dynamic Power Rail Control. Dig. Tech. Pap. Int. Symp. SID 2011, 42, 183–185. [CrossRef]
33. You, B.H.; Bae, J.S.; Park, D.W.; Hong, S.H.; Saito, S.; Moon, J.T. UD Resolution 240Hz LCD TV Display System with High Speed

Driving. Dig. Tech. Pap. Int. Symp. SID 2012, 43, 395–398. [CrossRef]
34. de Greef, P.; Hulzeu, H.G. Adaptive Dimming and Boosting Backlight for LCD-TV Systems. Dig. Tech. Pap. Int. Symp. SID 2012,

38, 1332–1335. [CrossRef]
35. Nam, W.; Shim, J.; Shin, H.; Kim, J.; Ha, W.; Park, K.; Kim, H.; Kim, B.; Oh, C.; Ahn, B.; et al. 55-inch OLED TV using InGaZnO

TFTs with WRGB Pixel Design. Dig. Tech. Pap. Int. Symp. SID 2013, 44, 243–246. [CrossRef]
36. Hara, Y.; Kikuchi, T.; Kitagawa, H.; Morinaga, J.; Ohgami, H.; Imai, H.; Daitoh, T.; Matsuo, T. IGZO-TFT technology for

large-screen 8K display. J. Soc. Inf. Disp. 2018, 26, 169–177. [CrossRef]
37. Shin, H.J.; Takasugi, S.; Choi, W.S.; Chang, M.K.; Choi, J.Y.; Jeon, S.K.; Yun, S.H.; Park, H.W.; Kim, J.M.; Kim, H.S.; et al. A Novel

OLED Display Panel with High-Reliability Integrated Gate Driver Circuit using IGZO TFTs for Large-Sized UHD TVs. Dig. Tech.
Pap. Int. Symp. SID 2018, 49, 358–361. [CrossRef]

38. Shin, H.J.; Choi, W.S.; Chang, M.K.; Choi, J.Y.; Choi, S.H.; Yun, S.H.; Kim, J.M.; Kim, H.S.; Oha, C.H. A High Image-Quality OLED
Display with Integrated Gate Driver using MPRT Enhancement Technology for Large Size Premium TVs. Dig. Tech. Pap. Int.
Symp. SID 2019, 50, 199–202. [CrossRef]

39. Bae, K.S.; Oh, M.; Park, B.; Cho, Y.J.; Cho, S.H.; Kim, D. Novel Pixel Structure for 8K QUHD LCD Panel with the Enhanced
Optical Performances. Dig. Tech. Pap. Int. Symp. SID 2019, 50, 703–706. [CrossRef]

282



Sensors 2021, 21, 4776

40. Consumer Reports, TV Trends to Watch in 2021. Available online: https://www.consumerreports.org/lcd-led-oled-tvs/tv-
trends-to-watch-for/ (accessed on 17 April 2021).

41. PC Magazine, The Best TVs for 2021. Available online: https://www.pcmag.com/picks/the-best-tvs (accessed on 17 April 2021).
42. CNet, CES 2018 Wrap-Up: The TVs of Tomorrow Will Turn Invisible. Available online: https://www.cnet.com/news/ces-2018

-wrap-up-the-tvs-of-tomorrow-will-turn-invisible/ (accessed on 17 April 2021).
43. Kim, S.; Kwon, H.; Lee, S.; Shim, H.; Chun, Y.; Choi, W.; Kwack, J.; Han, D.; Song, M.; Kim, S.; et al. Low-Power Flexible Organic

Light-Emitting Diode Display Device. Adv. Mater. 2011, 23, 3511–3516. [CrossRef]
44. Takubo, Y.; Hisatake, Y.; Lizuka, T.; Kawamura, T. Ultra-High Resolution Mobile Displays. Dig. Tech. Pap. Int. Symp. SID 2012, 43,

869–872. [CrossRef]
45. Sakaigawa, A.; Kabe, M.; Harada, T.; Goto, F.; Takasaki, N.; Mitsui, M.; Nakahara, T.; Ikeda, K.; Seki, K.; Nagatsuma, T.; et al. Low

Power Consumption Technology for Ultra-High Resolution Mobile Display by Using RGBW System. IEICE Trans. Electron. 2013,
E96-C, 1367–1372. [CrossRef]

46. Ohshima, H. Mobile display technologies: Past developments, present technologies, and future opportunities. Jpn. J. Appl. Phys.
2014, 53. [CrossRef]

47. Yan, J.; Ho, J.; Chen, J. Foldable AMOLED Display Development: Progress and Challenges. Inf. Disp. 2015, 31, 12–16. [CrossRef]
48. Kim, J.S.; Lee, S.W. Peripheral Dimming: A New Low-Power Technology for OLED Display Based on Gaze Tracking. IEEE Access

2020, 8, 209064–209073. [CrossRef]
49. Tom’s Guide, Best Big Phones of 2021: Top Phablets 6 Inches or Larger. Available online: https://www.tomsguide.com/best-

picks/best-big-phones (accessed on 17 April 2021).
50. Bastani, B.; Turner, E.; Vieri, C.; Jiang, H.; Funt, B.; Balram, N. Foveated Pipeline for AR/VR Head-Mounted Displays. Inf. Disp.

2017, 33, 14–35. [CrossRef]
51. Bhowmik, A.K. Advances in Virtual, Augmented, and Mixed Reality Technologies. Inf. Disp. 2018, 34, 18–21. [CrossRef]
52. Vieri, C.; Lee, G.; Balram, N.; Jung, S.H.; Yang, J.Y.; Yoon, S.Y.; Kang, I.B. An 18 megapixel 4.3′′ 1443 ppi 120 Hz OLED display for

wide field of view high acuity head mounted displays. J. Soc. Inf. Disp. 2018, 26, 314–324. [CrossRef]
53. Park, S.; Kim, Y.I.; Nam, H. Foveation-based reduced resolution driving scheme for immersive virtual reality displays. Opt.

Express 2019, 27, 29594–29605. [CrossRef]
54. Muñoz-Saavedra, L.; Miró-Amarante, L.; Domínguez-Morales, M. Augmented and Virtual Reality Evolution and Future

Tendency. Appl. Sci. 2020, 10, 322. [CrossRef]
55. Zhan, T.; Yin, K.; Xiong, J.; He, Z.; Wu, S.T. Augmented Reality and Virtual Reality Displays: Perspectives and Challenges.

iScience 2020, 23, 101397. [CrossRef]
56. Lee, B.; Yoo, C.; Jeong, J.; Lee, B.; Bang, K. Key issues and technologies for AR/VR head-mounted displays. In Proceedings of the

SPIE 11304, Advances in Display Technologies X, San Francisco, CA, USA, 1–6 February 2020; p. 1130402.
57. Jang, H.J.; Lee, J.Y.; Kim, J.; Kwak, J.; Park, J.H. Progress of display performances: AR, VR, QLED, and OLED. J. Inf. Disp. 2020,

21, 1–9. [CrossRef]
58. Kim, H.; Kwak, B.C.; Lim, H.S.; Kwon, O.K. Pixel Circuit for Organic Light-Emitting Diode-on Silicon Microdisplays Using the

Source Follower Structure. Jpn. J. Appl. Phys. 2010, 49, 03CD05. [CrossRef]
59. Kwak, B.C.; Lim, H.S.; Kwon, O.K. Organic Light-Emitting Diode-on-Silicon Pixel Circuit Using the Source Follower Structure

with Active Load for Microdisplays. Jpn. J. Appl. Phys. 2011, 50, 03CC05. [CrossRef]
60. Hong, S.W.; Kwak, B.C.; Na, J.S.; Hong, S.K.; Kwon, O.K. Simple pixel circuits for high resolution and high image quality organic

light emitting diode-on-silicon microdisplays with wide data voltage range. J. Soc. Inf. Disp. 2016, 24, 110–116. [CrossRef]
61. Liu, B.; Ding, D.; Zhou, T.; Zhang, M. A Novel Pixel Circuit Providing Expanded Input Voltage Range for OLEDoS Microdisplays.

Dig. Tech. Pap. Int. Symp. SID 2017, 48, 1438–1441. [CrossRef]
62. Huo, X.; Liao, C.; Wu, J.; Yi, S.; Wang, Y.; Jiao, H.; Zhang, M.; Zhang, S. An OLEDoS Pixel Circuit with Extended Data Voltage

Range for High Resolution Micro-Displays. Dig. Tech. Pap. Int. Symp. SID 2018, 49, 1373–1376. [CrossRef]
63. Na, J.S.; Hong, S.K.; Kwon, O.K. A 4410-ppi Resolution Pixel Circuit for High Luminance Uniformity of OLEDoS Microdisplays.

IEEE J. Electron Devices Soc. 2019, 7, 1026–1032. [CrossRef]
64. Wadlow, T.A. The Xerox Alto Computer. Byte Mag. 1981, 6, 58–68.
65. Knight, L.W.; Retter, D. Datahand: Design, Potential Performance, and Improvements in the Computer Keyboard and Mouses.

Proc. Hum. Factors Soc. Annu. Meet. 1989, 33, 450–454. [CrossRef]
66. Wolf, C.G. A comparative study of gestural, keyboard, and mouse interfaces. Behav. Inf. Technol. 1992, 11, 13–23. [CrossRef]
67. Mahach, K.R. A Comparison of Computer Input Devices: Linus Pen, Mouse, Cursor Keys and Keyboard. Proc. Hum. Factors Soc.

Annu. Meet. 1989, 33, 330–334. [CrossRef]
68. Colla, R.; Ziab, K.; Collc, J.H. A comparison of three computer cursor control devices: Pen on horizontal tablet, mouse and

keyboard. Inf. Manag. 1994, 27, 329–339. [CrossRef]
69. Sharples, M.; Beale, R. A technical review of mobile computational devices. J. Comput. Assist. Learn. 2003, 19, 392–395. [CrossRef]
70. Walker, G. Tablet Product and Market History. Available online: http://walkermobile.com/Tablet_History.pdf (accessed on

17 April 2021).
71. Lin, C.H.; Schmidt, K.J. User Preference and Performance with Three Different Input Devices: Keyboard, Mouse, or Touchscreen.

Educ. Technol. 1993, 33, 56–59.

283



Sensors 2021, 21, 4776

72. Bakhtiyari, K.; Taghavi, M.; Husain, H. Hybrid affective computing—Keyboard, mouse and touch screen: From review to
experiment. Neural Comput. Appl. 2015, 26, 1277–1296. [CrossRef]

73. Walker, G. Touch Displays. In Handbook of Digital Imaging; Kriss, M., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015.
74. Noah, B.; Li, J.; Rothrock, L. An evaluation of touchscreen versus keyboard/mouse interaction for large screen process control

displays. Appl. Ergon. 2017, 60, 1–13. [CrossRef]
75. Vaughan, N.; Steven, J. New Interfaces at the Touch of a Fingertip. Computer 2007, 40, 12–15. [CrossRef]
76. Bhalla, M.R.; Bhalla, A.V. Comparative Study of Various Touchscreen Technologies. Int. J. Comput. Appl. 2010, 6, 12–18. [CrossRef]
77. Colegrove, J. The State of the Touch-Screen Market in 2010. Inf. Disp. 2010, 26, 22–24. [CrossRef]
78. Aguilar, R.N.; Meijer, G.C.M. Fast interface electronics for a resistive touch-screen. In Proceedings of the IEEE Sensors, Orlando,

FL, USA, 12–14 June 2002.
79. Downs, R. Texas Instruments Inc., Using Resistive Touch Screens for Human/Machine Interface. Available online: https:

//www.ti.com/jp/lit/an/slyt209a/slyt209a.pdf (accessed on 23 April 2021).
80. Stetson, J.W. Analog Resistive Touch Panels and Sunlight Readability. Inf. Disp. 2006, 12, 26–30.
81. Krein, P.T.; Meadows, R.D. The electroquasistatics of the capacitive touch panel. IEEE Trans. Ind. Appl. 1990, 26, 529–534.

[CrossRef]
82. Barrett, G.; Omote, R. Projected-Capacitive Touch Technology. Inf. Disp. 2010, 26, 16–21. [CrossRef]
83. Yanase, J.; Takatori, K.; Asada, H. Algorithm for Recognizing Pinch Gestures on Surface-Capacitive Touch Screens. Dig. Tech. Pap.

Int. Symp. SID 2015, 46, 899–902. [CrossRef]
84. Walker, G. Part 1: Fundamentals of Projected-Capacitive Touch Technology. Available online: http://www.walkermobile.com/

Touch_Technologies_Tutorial_Latest_Version.pdf (accessed on 23 April 2021).
85. Dieulesaint, E.; Royer, D.; Legras, O.; Chaabi, A. Acoustic plate mode touch screen. Electron. Lett. 1991, 27, 49–51. [CrossRef]
86. Nara, T.; Takasaki, M.; Maeda, T.; Higuchi, T.; Ando, S.; Tachi, S. Surface acoustic wave tactile display. IEEE Comput. Graph. Appl.

2001, 21, 56–63. [CrossRef]
87. Takasaki, M.; Kotani, H.; Mizuno, T.; Nara, T. Transparent surface acoustic wave tactile display. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 3354–3359.
88. North, K.; D’Souza, H. Acoustic Pulse Recognition Enters Touch-Screen Market. Inf. Disp. 2006, 12, 22–25.
89. Harris, N. Applications of Bending Wave Technology in Human Interface Devices. J. Audio Eng. Soc. 2009; 7658.
90. Reis, S.; Correia, V.; Martins, M.; Barbosa, G.; Sousa, R.M.; Minas, G.; Lanceros-Mendez, S.; Rocha, J.G. Touchscreen based on

acoustic pulse recognition with piezoelectric polymer sensors. In Proceedings of the IEEE International Symposium on Industrial
Electronics, Bari, Italy, 4–7 July 2010; pp. 516–520.

91. Hao, X.; Huang, K. A Low-Power Ultra-Light Small and Medium Size Acoustic Wave Touch Screen. Appl. Mech. Mater. 2014,
513–517, 4072–4075. [CrossRef]

92. Quaegebeur, N.; Masson, P.; Beaudet, N.; Sarret, P. Touchscreen Surface Based on Interaction of Ultrasonic Guided Waves with a
Contact Impedance. IEEE Sens. J. 2016, 16, 3564–3571. [CrossRef]

93. Firouzi, K.; Nikoozadeh, A.; Carver, T.E.; Khuri-Yakub, B.T. Multitouch touchscreen using reverberant lamb waves. In
Proceedings of the IEEE International Ultrasonics Symposium, Washington, DC, USA, 6–9 September 2017; pp. 1–4.

94. Yang, Z.; Liu, X.; Wu, B.; Liu, R. Adaptability of Ultrasonic Lamb Wave Touchscreen to the Variations in Touch Force and Touch
Area. Sensors 2021, 21, 1736. [CrossRef]

95. Han, J.Y. Low-cost multi-touch sensing through frustrated total internal reflection. In Proceedings of the 18th annual ACM
symposium on User interface software and technology, Seattle, WA, USA, 23–26 October 2005; pp. 115–118.

96. Maxwell, I. An Overview of Optical-Touch Technologies. Inf. Disp. 2007, 12, 26–30.
97. Zhang, H. Optical touch screen with virtual force. In Proceedings of the IEEE International Conference on Systems, Man and

Cybernetics, San Antonio, TX, USA, 11–14 October 2009; pp. 807–811.
98. Sheikh, S.S.A.; Hanana, S.M.; Al-Hosany, Y.; Soudan, B. Design and implementation of an FTIR camera-based multi-touch display.

In Proceedings of the 5th IEEE GCC Conference & Exhibition, Kuwait, Kuwait, 17–19 March 2009, pp. 1–6.
99. Ahsanullah.; Mahmood, A.K.B.; Sulaiman, S. Design and implementation of multi-touch system using FTIR technique for

optimization of finger touch detection. In Proceedings of the International Symposium on Information Technology, Kuala
Lumpur, Malaysia, 15–17 June 2010; Volume 1, pp. 1–7.

100. Pedersen, H.C.; Jakobsen, M.L.; Hanson, S.G.; Mosgaard, M.; Iversen, T.; Korsgaard, J. Optical touch screen based on waveguide
sensing. Appl. Phys. Lett. 2011, 99, 061102. [CrossRef]

101. Han, J.; Choi, S.; Heo, S.; Lee, G. Optical touch sensing based on internal scattering in touch surface. Electron. Lett. 2012,
48, 1420–1422. [CrossRef]

102. Park, S.M.; Lee, K.; Kyung, K.U. A new stylus for touchscreen devices. In Proceedings of the IEEE International Conference on
Consumer Electronics, Las Vegas, NV, USA, 9–12 January 2011, pp. 491–492.

103. Badaye, M.; Schediwy, R.R. Passive Stylus for Capacitive Sensors. U.S. Patent 8,125,469 B2, 28 February 2012.
104. Zachut, R. Digitizer, Stylus and Method of Synchronization Therewith. U.S. Patent 9,524,044 B2, 20 December 2016.
105. Vuppu, S.; Cranfill, D.; Olley, M.; Valentine, M. Active Stylus for Use with Touch-Sensitive Interfaces and Corresponding Method.

U.S. Patent 8,766,954 B2, 1 July 2014.
106. Shahparnia, S.; Sundara-Rajan, K.; Ali, Y.; Bentov, I. Active Stylus with High Voltage. U.S. Patent 9,933,866 B2, 3 April 2018.

284



Sensors 2021, 21, 4776

107. Chen, C.H.; Huang, C.H. Method for Sensing Fast Motion, Controller and Electromagnetic Sensing Apparatus. U.S. Patent
2015/0331504 A1, 19 November 2015.

108. An, J.S.; Han, S.H.; Kim, J.E.; Yoon, D.H.; Kim, Y.H.; Hong, H.H.; Ye, J.H.; Jung, S.J.; Lee, S.H.; Jeong, J.Y.; et al. 9.6 A 3.9 kHz-
frame-rate capacitive touch system with pressure/tilt angle expressions of active stylus using multiple-frequency driving method
for 65” 104× 64 touch screen panel. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA,
USA, 5–9 February 2017, pp. 168–169.

109. Park, S.M.; Lee, K.; Kyung, K.U. Target size study for one-handed thumb use on small touchscreen devices. In Proceedings of
the Conference on Human-Computer Interaction with Mobile Devices and Services, Helsinki, Finland, 12–15 September 2006;
pp. 203–210.

110. Butler, A.; Izadi, S.; Hodges, S. SideSight: Multi-“touch” interaction around small devices. In Proceedings of the Annual ACM
Symposium on User Interface Software and Technology, Monterey, CA, USA, 19–22 October 2008; pp. 201–204.

111. Harrison, C.; Hudson, S.E. Abracadabra: Wireless, high-precision, and unpowered finger input for very small mobile devices. In
Proceedings of the Annual ACM Symposium on User Interface Software and Technology, Victoria, BC, Canada, 4–7 October 2009;
pp. 121–124.

112. Dybdal, M.L.; Agustin, J.S.; Hansen, J.P. Gaze input for mobile devices by dwell and gestures. In Proceedings of the Symposium
on Eye Tracking Research and Applications, Santa Barbara, CA, USA, 28–30 March 2012; pp. 225–228.

113. Stellmach, S.; Dachselt, R. Look & touch: Gaze-supported target acquisition. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, Austin, TX, USA, 5–10 May 2008; pp. 2981–2990.

114. Xiao, R.; Laput, G.; Harrison, C. Expanding the input expressivity of smartwatches with mechanical pan, twist, tilt and click. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON, Canada, 26 April–1 May 2014;
pp. 193–196.

115. Oakley, I.; Lee, D. Interaction on the edge: Offset sensing for small devices. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, Toronto, ON, Canada, 26 April–1 May 2014; pp. 169–178.

116. Lim, S.C.; Shin, J.; Kim, S.C.; Park, J. Expansion of Smartwatch Touch Interface from Touchscreen to Around Device Interface
Using Infrared Line Image Sensors. Sensors 2015, 15, 16642–16653. [CrossRef]

117. Zhou, J.; Zhang, Y.; Laput, G.; Harrison, C. AuraSense: Enabling Expressive Around-Smartwatch Interactions with Electric Field
Sensing. In Proceedings of the Annual Symposium on User Interface Software and Technology, Tokyo, Japan, 16–19 October 2016;
pp. 81–86.

118. Zhang, C.; Guo, A.; Zhang, D.; Li, Y.; Southern, C.; Arriaga, R.I.; Abowd, G.D. Beyond the Touchscreen: An Exploration of
Extending Interactions on Commodity Smartphones. ACM Trans. Interact. Intell. Syst. 2016, 6, 16. [CrossRef]

119. Weigel, M.; Steimle, J. DeformWear: Deformation Input on Tiny Wearable Devices. Proc. ACM Interact. Mobile Wearable Ubiquitous
Technol. 2017 , 1, 1–23. [CrossRef]

120. Lee, J.; Lee, C.; Kim, G.J. Vouch: Multimodal touch-and-voice input for smart watches under difficult operating conditions. J.
Multimodal User Interfaces 2017, 11, 289–299. [CrossRef]

121. Kwon, M.C.; Park, G.; Choi, S. Smartwatch User Interface Implementation Using CNN-Based Gesture Pattern Recognition.
Sensors 2018, 18, 2997. [CrossRef]

122. Song, S.J.; Nam, H. Sound-of-Tapping user interface technology with medium identification. Displays 2018, 53, 54–64. [CrossRef]
123. Wang, B.; Grossman, T. BlyncSync: Enabling Multimodal Smartwatch Gestures with Synchronous Touch and Blink. In

Proceedings of the CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–14.
124. Harrison, C.; Schwarz, J.; Hudson, S.E. TapSense: enhancing finger interaction on touch surfaces. In Proceedings of the Annual

ACM Symposium on User Interface Software and Technology, Barbara, CA, USA, 16–19 October 2011; pp. 627–636.
125. Ikematsu, K.; Yamanaka, S. ScraTouch: Extending Touch Interaction Technique Using Fingernail on Capacitive Touch Surfaces.

In Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA,
25–30 April 2020, pp. 1–10.

126. Ha, T.; Woo, W. Bare Hand Interface for Interaction in the Video See-Through HMD Based Wearable AR Environment. In
Proceedings of the International Conference on Entertainment Computing, Cambridge, UK, 20–22 September 2006.

127. Witt, H.; Nicolai, T.; Kenn, H. Designing a wearable user interface for hands-free interaction in maintenance applications. In
Proceedings of the Annual IEEE International Conference on Pervasive Computing and Communications Workshops, Pisa, Italy,
13–17 March 2006.

128. Lee, S.; Ha, G.; Cha, J.; Kim, J.; Lee, H.; Kim, S. CyberTouch—Touch and Cursor Interface for VR HMD. In Proceedings
of the Posters’ Extended Abstracts of International Conference on Human-Computer Interaction, Los Angeles, CA, USA,
2–7 August 2015.

129. Sidorakis, N.; Koulieris, G.A.; Mania, K. Binocular eye-tracking for the control of a 3D immersive multimedia user interface. In
Proceedings of the IEEE Workshop on Everyday Virtual Reality, Arles, France, 23 March 2015; pp. 15–18.

130. Ono, M.; Shizuki, B.; Tanaka, J. Sensing Touch Force using Active Acoustic Sensing. In Proceedings of the International
Conference on Tangible, Embedded, and Embodied Interaction, Stanford, CA, USA, 15–19 January 2015; pp. 355–358.

131. Kim, J.; Cha, J.; Lee, H.; Kim, S. Hand-free natural user interface for VR HMD with IR based facial gesture tracking sensor. In
Proceedings of the ACM Symposium on Virtual Reality Software and Technology, Gothenburg, Sweden, 8–10 November 2017;
pp. 1–2.

285



Sensors 2021, 21, 4776

132. Kim, M.; Lee, J.; Jeon, C.; Kim, J. A Study on Interaction of Gaze Pointer-Based User Interface in Mobile Virtual Reality
Environment. Symmetry 2017, 9, 189. [CrossRef]

133. Park, K.; Chin, S. Let us guide a smart interface for VR HMD and leap motion. In Proceedings of the ACM Symposium on Virtual
Reality Software and Technology, Tokyo, Japan, 28 November–1 December 2018; pp. 1–2.

134. Hansen, J.P.; Alapetite, A.; Thomsen, M.; Wang, Z.; Minakata, K.; Zhang, G. Head and gaze control of a telepresence robot with
an HMD. In Proceedings of the ACM Symposium on Eye Tracking Research & Applications, Warsaw, Poland, 14–17 June 2018;
pp. 1–3.

135. Kolly, S.M.; Wattenhofer, R.; Welten, S. A personal touch: Recognizing users based on touch screen behavior. In Proceedings of
the International Workshop on Sensing Applications on Mobile Phones, Toronto, ON, Canada, 6 November 2012; pp. 1–5.

136. Angulo, J.; Wästlund, E. Exploring Touch-Screen Biometrics for User Identification on Smart Phones. IFIP Adv. Inf. Commun.
Technol. 2012, 375, 130–143. [CrossRef]

137. Weir, D.; Rogers, S.; Murray-Smith, R.; Löchtefeld, M. A user-specific machine learning approach for improving touch accuracy
on mobile devices. In Proceedings of the Annual ACM Symposium on User Interface Software and Technology, Cambridge, MA,
USA, 7–10 October 2012; pp. 465–476.

138. Feng, T.; Liu, Z.; Kwon, K.A.; Shi, W.; Carbunar, B.; Jiang, Y.; Nguyen, N. Continuous mobile authentication using touchscreen ges-
tures. In Proceedings of the IEEE Conference on Technologies for Homeland Security, Waltham, MA, USA, 13–15 November 2012.

139. Meng, Y.; Wong, D.; Schlegel, R.; Kwok, L. Touch Gestures Based Biometric Authentication Scheme for Touchscreen Mobile
Phones. In Proceedings of the Lecture Notes in Computer Science of International Conference on Information Security and
Cryptology, Guangzhou, China, 27–30 November 2013; pp. 110–113.

140. Saravanan, P.; Clarke, S.; Chau, D.H.P.; Zha, H. LatentGesture: Active user authentication through background touch analysis. In
Proceedings of the International Symposium of Chinese CHI, Toronto, ON, Canada, 26–27 April 2014; pp. 110–113.

141. Meng, Y.; Wong, D.S.; Kwok, L.F. Design of touch dynamics based user authentication with an adaptive mechanism on
mobile phones. In Proceedings of the Annual ACM Symposium on Applied Computing, Gyeongju, Korea, 24–28 March 2014;
pp. 1680–1687.

142. Schwarz, J.; Xiao, R.; Mankoff, J.; Hudson, S.E.; Harrison, C. Probabilistic palm rejection using spatiotemporal touch features
and iterative classification. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON,
Canada, 26 April–1 May 2014.

143. Guo, A.; Xiao, R.; Harrison, C. CapAuth: Identifying and Differentiating User Handprints on Commodity Capacitive Touchscreens.
In Proceedings of the International Conference on Interactive Tabletops & Surfaces, Madeira, Portugal, 15–18 November 2015;
pp. 59–62.

144. Lin, J.W.; Wang, C.; Huang, Y.Y.; Chou, K.T.; Chen, H.Y.; Tseng, W.L.; Chen, M.Y. BackHand: Sensing Hand Gestures via Back
of the Hand. In Proceedings of the Annual ACM Symposium on User Interface Software & Technology, Charlotte, NC, USA,
11–15 November 2015; pp. 557–564.

145. Buschek, D.; Alt, F. TouchML: A Machine Learning Toolkit for Modelling Spatial Touch Targeting Behaviour. In Proceedings of
the International Conference on Intelligent User Interfaces, Atlanta, GA, USA, 29 March–1 April 2015; pp. 110–114.

146. Xiao, R.; Schwarz, J.; Harrison, C. Estimating 3d finger angle on commodity touchscreens. In Proceedings of the International
Conference on Interactive Tabletops & Surfaces, Madeira, Portugal, 15–18 November 2015.

147. Mock, P.; Gerjets, P.; Tibus, M.; Trautwein, U.; Möller, K.; Rosenstiel, W. Using touchscreen interaction data to predict cognitive
workload. In Proceedings of the ACM International Conference on Multimodal Interaction, Tokyo, Japan, 12–16 November 2016.

148. Rilvan, M.A.; Lacy, K.I.; Hossain, M.S.; Wang, B. User authentication and identification on smartphones by incorporating
capacitive touchscreen. In Proceedings of the IEEE International Performance Computing and Communications Conference,
Las Vegas, NV, USA, 9–11 December 2016.

149. Sharma, V.; Enbody, R. User authentication and identification from user interface interactions on touch-enabled devices. In
Proceedings of the ACM Conference on Security and Privacy in Wireless and Mobile Networks, Boston, MA, USA, 18–20 July 2017;
pp. 1–11.

150. Henze, N.; Mayer, S.; Le, H.V.; Schwind, V. Improving software-reduced touchscreen latency. In Proceedings of the International
Conference on Human-Computer Interaction with Mobile Devices and Services, Vienna, Austria, 4–7 September 2017; pp. 1–8.

151. Mayer, S.; Le, H.V.; Henze, N. Estimating the finger orientation on capacitive touchscreens using convolutional neural networks.
In Proceedings of the ACM International Conference on Interactive Surfaces and Spaces, Brighton, UK, 17–20 October 2017.

152. Meng, W.; Li, W.; Wong, D.S. Enhancing touch behavioral authentication via cost-based intelligent mechanism on smartphones.
Multimed. Tools Appl. 2018, 77, 30167–30185. [CrossRef]

153. Le, H.V.; Mayer, S.; Henze, N. InfiniTouch: Finger-Aware Interaction on Fully Touch Sensitive. In Proceedings of the Annual
ACM Symposium on User Interface Software and Technology, Berlin, Germany, 14 October 2018; pp. 779–792.

154. Le, H.V.; Kosch, T.; Mayer, S.; Henze, N. Demonstrating palm touch: the palm as an additional input modality on commodity
smartphones. In Proceedings of the International Conference on Human-Computer Interaction with Mobile Devices and Services
Adjunct, Barcelona, Spain, 3–6 September 2018.

155. Fischer, T.; Etchart, M.; Biempica, E. Frame-level proximity and touch recognition using capacitive sensing and semi-supervised
sequential modeling. In Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing, Aalborg,
Denmark, 17–20 September 2018.

286



Sensors 2021, 21, 4776

156. Le, H.V.; Kosch, T.; Bader, P.; Mayer, S.; Henze, N. PalmTouch: Using the Palm as an Additional Input Modality on Commodity
Smartphones. In Proceedings of the CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada,
21–26 April 2018.

157. Seol, K.H.; Park, S.; Song, S.J.; Nam, H. Finger and stylus discrimination scheme based on capacitive touch screen panel and
support vector machine classifier. Jpn. J. Appl. Phys. 2019, 58, 074501. [CrossRef]

158. Kumar, A.; Radjesh, A.; Mayer, S.; Le, H.V. Improving the Input Accuracy of Touchscreens using Deep Learning. In Proceedings of
the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, Glasgow Scotland, UK, 4–9 May 2019.

159. Le, H.V.; Mayer, S.; Henze, N. Investigating the feasibility of finger identification on capacitive touchscreens using deep learning.
In Proceedings of the International Conference on Intelligent User Interfaces, Marina del Ray, CA, USA, 17–20 March 2019.

160. Kim, S.C.; Han, B.K. Emulating touch signals from multivariate sensor data using gated RNNs. In Proceedings of the ACM/IEEE
International Conference on Human-Robot Interaction, Marina del Ray, CA, USA, 17–20 March 2019.

161. Boceck, T.; Sprott, S.; Le, H.V.; Mayer, S. Force Touch Detection on Capacitive Sensors using Deep Neural Networks. In
Proceedings of the International Conference on Human-Computer Interaction with Mobile Devices and Services, Taipei, Taiwan,
1–4 October 2019.

162. Schweigert, R.; Leusmann, J.; Hagenmayer, S.; Weiß, M.; Le, H.V.; Mayer, S.; Bulling, A. KnuckleTouch: Enabling Knuckle
Gestures on Capacitive Touchscreens using Deep Learning. In Proceedings of the Mensch und Computer, Hamburg, Germany,
8–11 September 2019; pp. 387–397.

163. Seol, K.H.; Park, S.; Lee, J.; Nam, H. Active stylus-touch discrimination scheme based on anomaly detection algorithm. J. Soc. Inf.
Disp. 2020, 28, 831–836. [CrossRef]

164. Bello, A.A.; Chiroma, H.; Gital, A.Y.; Gabralla, L.A.; Abdulhamid, S.M.; Shuib, L. Machine learning algorithms for improving
security on touch screen devices: a survey, challenges and new perspectives. Neural Comput. Appl. 2020, 32, 13651–13678.
[CrossRef]

165. Walker, G. A review of technologies for sensing contact location on the surface of a display. J. Soc. Inf. Disp. 2012, 20, 413–440.
[CrossRef]

166. Kwon, O.K.; An, J.S.; Hong, S.K. Capacitive Touch Systems With Styli for Touch Sensors: A Review. IEEE Sens. J. 2018,
18, 4832–4846. [CrossRef]

167. Hansson, P.R. Multiple input detection for resistive touch panel. WO Patent 2009/156803 A1, 30 December 2009.
168. Bogana, M.P.; Celani, A.; Pastore, N. Method for Determining Multiple Touch Inputs on a Resistive Touch Screen and a Multiple

Touch Controller. U.S. Patent 2012/0068969 A1, 22 March 2012.
169. Calpe-Maravilla, J.; Medina, I.; Martínez, M.J.; Carbajo, A. Dual touch and gesture recognition in 4-wire resistive touchscreens. In

Proceedings of the IEEE Sensors, Valencia, Spain, 2–5 November 2014.
170. Chi, H.S.; Crockett, T.W.; Makley, A.V. Resistive Scanning Grid Touch Panel. U.S. Patent 7,492,358 B2, 17 February 2009.
171. Wu, C.K.; Wu, M.T. Matrix Resistive Touch Device. U.S. Patent 2010/0164899 A1, 1 July 2010.
172. Fang, W.X. Simultaneous Multiple Location Touch Systems. U.S. Patent 8,310,464 B2, 13 November 2012.
173. An, J.S.; Han, S.H.; Park, K.B.; Kim, J.E.; Ye, J.H.; Lee, S.H.; Jeong, J.Y.; Kim, J.S.; Baek, K.H.; Chung, K.S.; et al. Multi-Way

Interactive Capacitive Touch System with Palm Rejection of Active Stylus for 86” Touch Screen Panels. In Proceedings of the
IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 11–15 February 2018; pp. 182–183.

174. Kim, C.; Lee, D.S.; Kim, J.H.; Kim, H.B.; Shin, S.R.; Jung, J.H.; Song, I.H.; Jang, C.S.; Kwon, K.S.; Kim, S.H.; et al. Advanced In-cell
Touch Technology for Large Sized Liquid Crystal Displays. Dig. Tech. Pap. Int. Symp. SID 2015, 46, 895–898. [CrossRef]

175. Takahashi, S.; Lee, B.J.; Koh, J.H.; Saito, S.; You, B.H.; Kim, N.D.; Kim, S.S. Embedded Liquid Crystal Capacitive Touch Screen
Technology for Large Size LCD Applications. Dig. Tech. Pap. Int. Symp. SID 2009, 40, 563–566. [CrossRef]

176. Park, H.S.; Kim, Y.J.; Han, M.K. Touch-Sensitive Active-Matrix Display with Liquid Crystal Capacitance Detector Arrays. Jpn. J.
Appl. Phys. 2010, 49, O3CC01. [CrossRef]

177. Walker, G.; Fihn, M. LCD In-Cell Touch. Inf. Disp. 2010, 3, 8–14. [CrossRef]
178. Lee, S.H.; An, J.S.; Hong, S.K.; Kwon, O.K. In-cell Capacitive Touch Panel Structures and Their Readout Circuits. In Proceedings

of the International Workshop on Active-Matrix Flatpanel Displays and Devices, Kyoto, Japan, 6–8 July 2016; pp. 258–261.
179. Chen, Y.; Geng, D.; Jang, J. Integrated Active-Matrix Capacitive Sensor Using a-IGZO TFTs for AMOLED. IEEE J. Electron Devices

Soc. 2018, 6, 214–218. [CrossRef]
180. 3M, Dispersive Signal Touch Technology. Available online: https://multimedia.3m.com/mws/media/443866O/3mtm-

microtouch-system-sct2270dx-technology-profile.pdf (accessed on 23 April 2021).
181. Hwang, T.H.; Cui, W.H.; Yang, I.S.; Kwon, O.K. A highly area-efficient controller for capacitive touch screen panel systems. IEEE

Trans. Consum. Electron. 2010, 56, 1115–1122. [CrossRef]
182. Luo, C.; Borkar, M.A.; Redfern, A.J.; McClellan, J.H. Compressive sensing for sparse touch detection on capacitive touch screens.

IEEE J. Emerg. Sel. Topics Circuits Syst. 2012, 2, 639–648. [CrossRef]
183. Li, H.; Wei, Y.; Li, H.; Young, S.; Convey, D.; Lewis, J.; Maniar, P. Multitouch Pixilated Force Sensing Touch Screen. Dig. Tech. Pap.

Int. Symp. SID 2009, 40, 455–458. [CrossRef]
184. Hwang, S.; Bianchi, A.; yun Wohn, K. MicPen: Pressure-Sensitive Pen Interaction Using Microphone with Standard Touchscreen.

In Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, Austin, TX, USA,
5–10 May 2012; pp. 1847–1852.

287



Sensors 2021, 21, 4776

185. Kim, H.K.; Lee, S.; Yun, K.S. Capacitive tactile sensor array for touch screen application. Sens. Actuator. A Phys. 2011, 165, 2–7.
[CrossRef]

186. Reynolds, K.; Shepelev, P.; Graf, A. Touch and Display Integration with Force. Dig. Tech. Pap. Int. Symp. SID 2016, 47, 617–620.
[CrossRef]

187. Lee, K.H.; Nam, S.P.; Lee, J.H.; Choi, M.; Ko, H.J.; Byun, S.H.; Lee, J.C.; Lee, Y.H.; Rhee, Y.C.; Choi, Y.K.; et al. A Noise-Immune
Stylus Analog Front-End Using Adjustable Frequency Modulation and Linear Interpolating Data Reconstruction for Both
Electrically Coupled Resonance and Active Styluses. In Proceedings of the IEEE International Solid-State Circuits Conference,
San Francisco, CA, USA, 11–15 February 2018, pp. 184–185.

188. Ko, S.; Shin, H.; Lee, J.; Jang, H.; So, B.C.; Yun, I.; Lee, K. Low Noise Capacitive Sensor for Multi-touch Mobile Handset’s
Applications. In Proceedings of the IEEE Asian Solid-State Circuits Conference, Beijing, China, 8–10 November 2010.

189. Yang, I.S.; Kwon, O.K. A touch controller using differential sensing method for on-cell capacitive touch screen panel systems.
IEEE Trans. Consum. Electron. 2011, 57, 1027–1032. [CrossRef]

190. Kim, K.D.; Byun, S.H.; Choi, Y.K.; Baek, J.H.; Cho, H.H.; Park, J.K.; Ahn, H.Y.; Lee, C.J.; Cho, M.S.; Lee, J.H.; et al. A Capacitive
Touch Controller Robust to Display Noise for Ultrathin Touch Screen Displays. In Proceedings of the IEEE International Solid-State
Circuits Conference, San Francisco, CA, USA, 19–23 February 2012.

191. Yang, J.H.; Park, S.H.; Choi, J.M.; Kim, H.S.; Park, C.B.; Ryu, S.T.; Cho, G.H. A highly noise-immune touch controller using
filtered-delta-integration and a charge-interpolation technique for 10.1-inch capacitive touch-screen panels. In Proceedings of the
IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 17–21 February 2013; pp. 390–391.

192. Seo, J.; Nam, H. Low power and low noise shift register for in-cell touch display applications. IEEE J. Electron Devices Soc. 2018,
6, 726–732. [CrossRef]

193. Miura, N.; Dosho, S.; Tezuka, H.; Miki, T.; Fujimoto, D.; Kiriyama, T.; Nagata, M. A 1 mm Pitch 80 × 80 Channel 322 Hz
Frame-Rate Multitouch Distribution Sensor With Two-Step Dual-Mode Capacitance Scan. IEEE J. Solid-State Circuits 2015,
50, 2741–2749. [CrossRef]

194. Shin, H.; Ko, S.; Jang, H.; Yun, I.; Lee, K. A 55 dB SNR with 240 Hz frame scan rate mutual capacitor 30 × 24 touch-screen
panel read-out IC using code-division multiple sensing technique. In Proceedings of the IEEE International Solid-State Circuits
Conference, San Francisco, CA, USA, 17–21 February 2013; pp. 388–389.

195. Hamaguchi, M.; Nagao, A.; Miyamoto, M. 12.3 A 240 Hz-reporting-rate 143 × 81 mutual-capacitance touch-sensing analog
front-end IC with 37 dB SNR for 1mm-diameter stylus. In Proceedings of the IEEE International Solid-State Circuits Conference,
San Francisco, CA, USA, 9–13 February 2014; pp. 214–215.

196. Heo, S.; Ma, H.; Song, J.; Park, K.; Choi, E.H.; Kim, J.J.; Bien, F. 72 dB SNR, 240 Hz frame rate readout IC with differential
continuous-mode parallel architecture for larger touch-screen panel applications. IEEE Trans. Circuits Syst. I Reg. Pap. 2016,
63, 960–971. [CrossRef]

197. Park, J.E.; Lim, D.H.; Jeong, D.K. A Reconfigurable 40-to-67 dB SNR, 50-to-6400 Hz Frame-Rate, Column-Parallel Readout IC for
Capacitive Touch-Screen Panels. IEEE J. Solid-State Circuits 2014, 49, 2305–2318. [CrossRef]

198. An, J.S.; Ra, J.H.; Kang, E.; Pertijs, M.A.P.; Han, S.H. 28.1 A Capacitive Touch Chipset with 33.9 dB Charge- Overflow Reduction
Using Amplitude-Modulated Multi-Frequency Excitation and Wireless Power and Data Transfer to an Active Stylus. In Proceedings
of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 16–20 February 2020; pp. 430–431.

199. Lin, C.L.; Li, C.S.; Chang, Y.M.; Lin, T.C.; Chen, J.F.; Lin, U.C. Pressure Sensitive Stylus and Algorithm for Touchscreen Panel. J.
Disp. Technol. 2013, 9, 17–23. [CrossRef]

200. Bishop, C. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2007.
201. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http:

//www.deeplearningbook.org (accessed on 23 April 202 ).
202. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In

Proceedings of the International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 448–456.
203. Seol, K.H.; Park, S.; Nam, H. A Contact-Based Data Communication Technique Using Capacitive Touch Screen Panel and Support

Vector Machine Classifier. IEEE Access 2019, 7, 178596–178604. [CrossRef]
204. Ma, H.; Liu, Z.; Heo, S.; Lee, J.; Na, K.; Jin, H.B.; Jung, S.; Park, K.; Kim, J.J.; Bien, F. On-Display Transparent Half-Diamond

Pattern Capacitive Fingerprint Sensor Compatible With AMOLED Display. IEEE Sens. J. 2016, 16, 8124–8131. [CrossRef]
205. Seo, W.; Pi, J.E.; Cho, S.H.; Kang, S.Y.; Ahn, S.D.; Hwang, C.S.; Jeon, H.S.; Kim, J.U.; Lee, M. Transparent Fingerprint Sensor

System for Large Flat Panel Display. Sensors 2018, 18, 293. [CrossRef]
206. Yang, W.; Zhang, X.; Tian, Y.; Wang, W.; Xue, J.H.; Liao, Q. Deep learning for single image super-resolution: A brief review. IEEE

Trans. Multimed. 2019, 21, 3106–3121. [CrossRef]
207. Wang, Z.; Chen, J.; Hoi, S.C. Deep learning for image super-resolution: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021,

in press. [CrossRef]

288



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Sensors Editorial Office
E-mail: sensors@mdpi.com

www.mdpi.com/journal/sensors





MDPI  

St. Alban-Anlage 66 

4052 Basel 

Switzerland

Tel: +41 61 683 77 34 

Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-3754-2 


	Machine cover.pdf
	Machine Learning in Sensors and Imaging.pdf
	Machine cover



