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Preface to ”Electrification of Smart Cities”

Electrification plays a key role in decarbonizing energy consumption for various sectors,

including transportation, heating, and cooling. There are several essential infrastructures for a smart

city, including smart grids and transportation networks. These infrastructures are the complementary

solutions to successfully developing novel services, with enhanced energy efficiency and energy

security. Five papers are published in this Special Issue that cover various key areas expanding

the state-of-the-art in smart cities’electrification, including transportation, healthcare, and advanced

closed-circuit televisions for smart city surveillance.
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1. Introduction

Electrification plays a key role in decarbonizing energy consumption for various
sectors, including transportation, heating, and cooling. There are several essential in-
frastructures for a smart city, including smart grids and transportation networks. These
infrastructures are the complementary solutions to successfully developing novel services,
with enhanced energy efficiency and energy security.

Five papers are published in this Special Issue that cover various key areas expanding
the state-of-the-art in smart cities’ electrification, including transportation, healthcare, and
advanced closed-circuit televisions for smart city surveillance.

2. Publications in the Special Issue

With regard to transport electrification in smart cities, Gao et al. [1] proposed an
improved multi-exposure image fusion method for intelligent transportation systems. In
addition, a novel multi-exposure image dataset for traffic signs, TrafficSign, is presented
to verify the proposed method. In the intelligent transportation system, as a type of
important road information, traffic signs are fused by this method to obtain a fused image
with moderate brightness and intact information. By estimating the degree of retention
of different features in the source image, the fusion results have adaptive characteristics
similar to that of the source image. Considering the factors of weather and environmental
noise, the source image is preprocessed by bilateral filtering and a dehazing algorithm.
In addition, the authors used adaptive optimization to improve the quality of the fusion
model’s output image. The qualitative and quantitative experiments on the new dataset
show that the multi-exposure image fusion algorithm proposed in this paper is effective
and practical in the intelligent transportation systems.

In another work of this Special Issue, Mansfield et al. [2] claimed that achieving carbon-
neutral transportation is the ultimate goal of the ongoing joint efforts of governments, policy
makers, and the transportation research community. The electrification of smart cities is a
very important step towards the above objective; therefore, accelerating the adoption and
widening the use of electric vehicles are required. However, to achieve the full potential
of electric vehicles, ground-breaking detour computation and charging station selection
schemes are needed. Hence, Mansfield et al. [2] developed a new scheme that finds the
most suitable detour/route for electric vehicles whenever an unexpected event occurs on
the road. This scheme is based on A* and uses an original, Simple Additive Weighting
(SAW)-based charging station selection method. The performance evaluation carried out
using the open-source traffic simulation platform SUMO under a grid map, as well as a
real road network map, highlighted that our scheme ensured that more than 99% of electric
vehicles will reach their destination within a reasonable time, even if a battery recharge
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is needed. This is a significant improvement compared to the baseline scheme that uses
A* only.

Huang et al. [3] presented a novel blockchain-based energy-trading mechanism for
electric vehicles consisting of day-ahead and real-time markets. In the day-ahead market,
electric vehicle users submit their bidding price to participate in the double auction mecha-
nism. Subsequently, the smart match mechanism will be conducted by the charging system
operator to meet both personal interests and social benefits. After clearing the trading
result, the charging system operator uploads the trading contract made in the day-ahead
market to the blockchain. In the real-time market, the charging system operator checks the
trading status and submits the updated trading results to the blockchain. This mechanism
encourages participants in the double auction to pursue higher interests, in addition to
rationally utilize the energy unmatched in the auction and to achieve improvements in
social welfare. Case studies are used to demonstrate the effectiveness of the proposed
model. For buyers and sellers who successfully participate in the day-ahead market, the
total profit increase is 22.79% and 53.54%, respectively, as compared to profits without
energy trading. With the consideration of social welfare in the smart match mechanism, the
peak load reduces from 182 kW to 146.5 kW, which is a 19.5% improvement.

Examining the topic of smart healthcare with regard to electrification, Taha et al. [4]
presented a new methodology to identify potential energy waste and negative energy usage
behavior in an NHS hospital. The work presents an analysis of electricity consumption vs.
occupancy during minimal consumption periods (i.e., bank holidays and weekends), and
it presents a log of any equipment left switched on outside of working hours in order to
highlight the level of energy-conscious behavior. The results revealed that the proposed
technique is not only able to identify negative energy usage behavior amongst the hospital
staff but helps identify areas where immediate energy savings can be made, with potential
savings of more than GBP 30,000 if action is taken.

The final article to be presented is with regard to advanced closed-circuit televisions for
smart city surveillance. Wang, Teng, and An [5] claimed that with the help of deep neural
networks, video super-resolution has made a huge breakthrough. However, these deep-
learning-based methods are rarely used in specific situations. In addition, training sets may
not be suitable because many methods only assume that under ideal circumstances, low-
resolution datasets are downgraded from high-resolution datasets in a fixed manner. Hence,
Wang, Teng, and An [5] proposed a model based on Generative Adversarial Network and
edge enhancement to perform super-resolution reconstruction for low-resolution and blurry
videos, such as closed-circuit television footage. The adversarial loss allows discriminators
to be trained to distinguish between super-resolution frames and ground truth frames,
which is helpful to produce realistic and highly detailed results. The edge enhancement
function uses the Laplacian edge module to perform edge enhancement on the intermediate
result, which helps to further improve the final results. In addition, we add the perceptual
loss to the loss function to obtain a higher visual experience. At the same time, we also
tried training the network on different datasets. A large number of experiments show that
our method has advantages in the Vid4 dataset and other low-resolution videos.

Funding: This research received no external funding.

Acknowledgments: The guest editors would like to express their deepest gratitude to researchers

who contributed articles to this Special Issue. The guest editors are also grateful to the reviewers

who supported with the rigorous review process and providing constructive comments to enhance

the articles. Last but not least, the guest editors are indebted to the Electronics editorial board for

the invitation to establish this Special Issue, as well as, the Editorial Office team, who have worked

relentlessly to make this Special Issue a success.

Conflicts of Interest: The authors declare no conflict of interest.

2



Electronics 2022, 11, 1235

References

1. Gao, M.; Wang, J.; Chen, Y.; Du, C.; Chen, C.; Zeng, Y. An Improved Multi-Exposure Image Fusion Method for Intelligent

Transportation System. Electronics 2021, 10, 383. [CrossRef]

2. Mansfield, C.; Hodgkiss, J.; Djahel, S.; Nag, A. An Efficient Detour Computation Scheme for Electric Vehicles to Support Smart

Cities’ Electrification. Electronics 2022, 11, 803. [CrossRef]

3. Huang, Z.; Li, Z.; Lai, C.S.; Zhao, Z.; Wu, X.; Li, X.; Tong, N.; Lai, L.L. A Novel Power Market Mechanism Based on Blockchain for

Electric Vehicle Charging Stations. Electronics 2021, 10, 307. [CrossRef]

4. Taha, A.; Hopthrow, T.; Wu, R.; Adams, N.; Brown, J.; Zoha, A.; Abbasi, Q.H.; Imran, M.A.; Krabicka, J. Identifying the Lack of

Energy-Conscious Behaviour in Clinical and Non-Clinical Settings: An NHS Case Study. Electronics 2021, 10, 2468. [CrossRef]

5. Wang, J.; Teng, G.; An, P. Video Super-Resolution Based on Generative Adversarial Network and Edge Enhancement. Electronics

2021, 10, 459. [CrossRef]

3





electronics

Article

An Improved Multi-Exposure Image Fusion Method for
Intelligent Transportation System

Mingyu Gao 1,2, Junfan Wang 1, Yi Chen 1, Chenjie Du 1,2, Chao Chen 1 and Yu Zeng 1,2,*

Citation: Gao, M.; Wang, J.; Chen, Y.;

Du, C.; Chen, C.; Zeng, Y. An

Improved Multi-Exposure Image

Fusion Method for Intelligent

Transportation System. Electronics

2021, 10, 383. https://doi.org/

10.3390/electronics10040383

Academic Editor: Tomasz Trzcinski

Received: 31 December 2020

Accepted: 27 January 2021

Published: 4 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China;

mackgao@hdu.edu.cn (M.G.); wangjunfan@hdu.edu.cn (J.W.); cheny2060@hdu.edu.cn (Y.C.);

ducj@hdu.edu.cn (C.D.); hhfay6288@hdu.edu.cn (C.C.)
2 Zhejiang Provincial Key Lab of Equipment Electronics, Hangzhou 310018, China

* Correspondence: zyu20@hdu.edu.cn

Abstract: In this paper, an improved multi-exposure image fusion method for intelligent trans-

portation systems (ITS) is proposed. Further, a new multi-exposure image dataset for traffic signs,

TrafficSign, is presented to verify the method. In the intelligent transportation system, as a type of

important road information, traffic signs are fused by this method to obtain a fused image with

moderate brightness and intact information. By estimating the degree of retention of different features

in the source image, the fusion results have adaptive characteristics similar to that of the source

image. Considering the weather factor and environmental noise, the source image is preprocessed by

bilateral filtering and dehazing algorithm. Further, this paper uses adaptive optimization to improve

the quality of the output image of the fusion model. The qualitative and quantitative experiments

on the new dataset show that the multi-exposure image fusion algorithm proposed in this paper is

effective and practical in the ITS.

Keywords: multi-exposure image fusion; intelligent transportation system; adaptive optimization

1. Introduction

With the rapid development of digital image technology, more and more digital image
technologies will be applied to intelligent transportation systems [1]. As an important
part of a smart city, intelligent transportation systems (ITS) are the effective comprehen-
sive application of advanced science and technology in the field of transportation. It can
strengthen the connection between vehicles, roads, and users, thereby forming a compre-
hensive transportation system that guarantees safety, improves efficiency, and saves energy.
In the field of intelligent transportation, one of the very important pieces of information is
the road signs taken by the camera. For different exposure environments, multi-exposure
fusion technology [2] is very important to obtain high-quality road sign images.

Traditional fusion methods include three main steps: image transformation, activity
level measurement, and fusion rule design [3]. However, it is time-consuming, expensive,
and difficult to design the feature extraction and fusion rules. Gu et al. [4] proposed a
new iterative correction method for gradient field by using quadratic average filtering and
nonlinear compression. Mertens et al. [5] proposed a multi-resolution fusion method based
on the Laplacian pyramid.

The trained network can automatically extract features from images and merge fea-
tures without manual participation in transformation and activity level measurement.
However, the ground-truth of supervised learning is also difficult to obtain in practical
application. Therefore, this paper uses a unified unsupervised image fusion network,
which does not need the ground-truth to generate fusion results and can fuse the source
image adaptively [6].

At present, in the field of intelligent transportation, the light and the ambient noise will
produce certain interference to the image. Considering the influence of extreme weather,
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the irrelevant information in the image is eliminated by preprocessing, the detectability of
important information is enhanced, and the reliability of subsequent feature extraction is
improved. The fusion results are adaptively optimized to ensure that the output image can
reflect the retained important information to the greatest extent. The main contributions of
our work are summarized as follows:

(1) By calculating the retention degree of different features in the source image, the
fusion result is adaptively similar to the source image. The end-to-end unsupervised
image fusion network is used to overcome the problems that the ground-truth cannot
achieve and the reference metric is not available in most image fusion problems;

(2) Multi-exposure image fusion is applied to the transportation field. The source images
are preprocessed according to weather conditions and environmental noise, and the
fusion result is adaptively optimized. The final generated image can reflect the source
image information and has great practicability and effectiveness;

(3) We have released a new multi-exposure image dataset, TrafficSign [7], which is aimed
at the fusion of traffic signs in the intelligent transportation field, and provides a new
option for image fusion benchmark evaluation.

The rest of the paper is arranged as follows: The current methods and applications
of multi-exposure image fusion are described in Section 2. The proposed method for
multi-exposure image fusion is introduced in Section 3. Additionally, the effectiveness of
this method is verified through computer simulation in Section 4. Finally, the conclusion is
described in Section 5.

2. Related Works

At present in intelligent transportation systems, intelligent vehicles make decisions
by sensing the surrounding environment. The image taken by the camera is an important
source of information. In recent years, the research on image fusion has developed rapidly
and has received widespread attention. Li et al. [8] decomposed the source image into a
basic part and a detailed part, and used the deep learning network to extract the features
of the detailed part for fusion. Paul et al. [9] proposed to mix the gradient of the brightness
component of the input image, utilized the maximum gradient amplitude at each pixel
position, and obtained the fused brightness by using image reconstruction technique based
on Haar wavelet. The above algorithms are mainly aimed at the fusion between infrared
and visible images and multi-focus images [10–12]. In the camera shooting process, the
phenomenon of over-exposure or under-exposure will occur due to the influence of light
and environmental factors. Therefore, the road sign information cannot be extracted, which
is not conducive to subsequent decision-making.

This paper proposes an improved multi-exposure image fusion algorithm and ap-
plies it to the processing of traffic sign images in the field of intelligent transportation [6].
Prabhakar et al. [13] proposed a deep unsupervised approach for exposure fusion (Deep-
fuse), which uses a novel CNN (Convolutional Neural Networks) architecture that is
trained to learn the fusion operation without reference ground-truth image. This fusion
process will lose other key information, such as contrast and texture information. A new
multi-exposure fusion method based on dense scale-invariant feature transform (DSIFT)
is presented by Liu et al. [14]. The fusion effect of this method is largely based on the
selection of reference images and the selection of specific scenes, and cannot be applied
to the multi-change scenes under intelligent transportation. Yang et al. [15] proposed a
strategy by producing virtual images. The downside of this approach is that it only deals
with images that have equal exposure degrees. Paul et al. [9] presented multi-exposure
and multi-focus image fusion in the gradient domain (GBM). This method is not suitable
for multi-exposure images with too large of a gradient difference, and the fusion speed
is slower than other methods, so it is not suitable for the intelligent transportation field
that needs to process a large amount of information. Fu et al. proposed the fusions of
visual and infrared images on the feature level and decision level. On the feature level, the
feature fusion was realized by wavelet transformation. On the decision level, the fusion

6
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method based on Dempster-Shafer evidence theory was proposed [16]. However, the
wavelet transform for feature fusion will cause image distortion to a certain extent, and
affect subsequent decision-making. Goshtasby et al. took non-overlapping blocks with the
highest information from each image to obtain the fused result. This is prone to suffer from
block artifacts [17].

All of the above works rely on hand-crafted features for image fusion. These methods
are not robust in the sense that the parameters need to be varied for different input
conditions say, linear and non-linear exposures, filter size depends on image sizes. At the
same time, among the above-mentioned fusion methods, artificially designed extraction
methods will make the fusion method more and more complex, thereby increasing the
difficulty of fusion rule design. For different fusion tasks, the extraction method needs to
be improved accordingly. In addition, attention needs to be paid to the appropriateness of
the extraction method to ensure the integrity of the features.

This paper uses a unified unsupervised end-to-end image fusion network which
is proposed by Xu et al. [6]. Through feature extraction and information measurement,
an adaptive information preservation degree is given. Feature extraction is performed
through the pre-trained VGGNet-16, and information is measured on the feature map
to obtain the degree of information retention in the feature map, which is sent to the
loss function. The method trains DenseNet to fuse the source images and minimizes the
loss function to optimize the DenseNet network to achieve a better fusion effect. It has a
high requirement for the quality of the input multi-exposure image. If noise or distortion
occurs in the acquisition of the input image, the multi-exposure fusion model will amplify
these problems. Based on this method, this paper utilizes the dehazing algorithm [18]
and bilateral filtering to denoise the source image and reduce the influence of the weather
environment. Further, Laplace operator and histogram equalization are applied to the
proposed fusion network, which are utilized to keep the important information of the
source image. Meanwhile, the Laplace operator is helpful to enhance the contrast and the
entire brightness of the final image [19,20].

3. Proposed Method

In general, the photos taken by the camera are usually three-channel (RGB) images.
We first convert them from RGB to YCbCr color space due to a large amount of calculation
in processing RGB images. In the YCbCr space, Y is the luminance channel, and Cb and Cr
are the density offset components of blue and red, respectively. When directly processing
an RGB image, the brightness will also change when the color is adjusted, which is prone
to color cast and is not beneficial to direct fusion. Focusing on the fusion of the Y channel,
the detailed texture of the image is mainly represented by this channel [21]. The values of
the Cb channel and Cr channel (chroma channel) adopt the traditional fusion method.

The fusion framework proposed in this paper is shown in Figure 1. Taking into account
the camera shakes during shooting and the internal noise interference of the instrument,
the input original image may have partial blur or more noise, which will have a greater
impact on the subsequent multi-exposure fusion and may lead to express the information
in the fusion image inaccurately. Therefore, we first preprocessed the image by using
bilateral filtering and dehazing algorithm. After that, we merged the images that have been
preprocessed. We used pre-trained VGGNet-16 to extract the shallow features and deep
features of the multi-exposure image to estimate the amount of information. Subsequently,
Laplace operator and histogram equalization were used to optimize the over-bright or
over-dark images. The procedure is summarized in Algorithm 1.

7
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Algorithm 1: The description of the training procedure

* Training Procedure of the Proposed Method

Parameter: φn
k means the feature map of the k-th input image I∗k before the n-th max-pooling layer. gI means the information

measurement of image I. θ denotes the parameters in DenseNet. D is the training dataset. α is set as 20. c is set as 3e3, 3.5e3, and 1e2.

Input: RGB images In
1 and In

2 , n denotes the n-th pair images.

Output: the parameters in DenseNet θ.

1: I∗1 ← bilateral filtering and dehazing on In
1 .

2: I∗2 ← bilateral filtering and dehazing on In
2 .

3: Set the number of training iterations;

4: for the number of training images do

5: Feed the input images into VGGNet-16, and extract the feature maps:
{

φ1
C1

, . . . φ1
C5

}
and

{
φ2

C1
, . . . φ2

C5

}
;

6: Compute the gradients gI1
, gI2

using gI =
1
5

5
∑

j=1

1
HjWj Dj

Dj

∑
k=1
‖∇φCk

j
(I)‖2

F to measure the information of input images;

7: Define two weights ω1 and ω2 as the information preservation degrees, which can compute using

[ω1, ω2]= softmax
([

gI1
c ,

gI2
c

])
, the weights is to preserve the information in source images;

8: SSIM and MSE is used to obtain the Lsim(θ, D), Lsim(θ, D) can compute by

Lsim(θ, D) = E
[
ω1 ·

(
1− SI f ,I1

)
+ ω2 ·

(
1− SI f ,I2

)]
+ E

[
ω1 ·MSEI f ,I1

+ ω2 ·MSEI f ,I2

]
;

9: Update θ;

10: The number of training iterations minus 1;

11: if the number of training iterations is 0

12: break;

13: endif

14: end

15: return θ;

ϕₙ 𝐼∗
θ

α𝐼ଵ 𝐼ଶ
θ

 𝐼ଵ∗ ← 𝐼ଵ.
 𝐼ଶ∗ ← 𝐼ଶ
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Figure 1. Multi-exposure image fusion framework.

3.1. Image Preprocessing

Bilateral filtering is an edge protection filtering method using a weighted-average
strategy based on Gaussian distribution [22,23]. Bilateral filtering consists of two parts:
spatial matrix and range matrix. The spatial matrix is analogous to Gaussian filtering,
which is used for fuzzy denoising; the range matrix is obtained according to the gray-scale
similarity, and is used to protect edges. The specific formulas of the spatial matrix and
range matrix are as follows:

d(i, j, k, l) = e

−(i−k)2+(j−l)
2

2σ2
d (1)

r(i, j, k, l) = e
−‖ f (k,l)− f (i,j)‖2

2σ2
r (2)

where (i, j) is the coordinate of the center point of the filter window, and (k, l) is any point
in the field of the center point.

For Gaussian filtering, only the weight coefficient kernel of the spatial distance is used
to convolve the image to determine the gray value of the center point, the closer the point to
the center point, the larger the weight coefficient. The weight of gray information is added

8
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to the bilateral filtering. In the field, the closer the gray value is to the center point, the
greater the point weight [22]. This weight is determined by Equation (2). By multiplying
Equations (1) and (2), the final convolution template is obtained.

Multiplying Equations (1) and (2) is the calculation formula of the bilateral filter
weight matrix, the final weight matrix by multiplying the two weight matrices:

w(i, j, k, l) = e

−(i−k)2+(j−l)
2

2σ2
d

+
−‖ f (k,l)− f (i,j)‖2

2σ2
r (3)

Finally, calculate the weighted average as the pixel value of the center point
after filtering:

g(i, j) =
∑(k,l)∈S f (i, j)w(i, j, k, l)

∑(k,l)∈S w(i, j, k, l)
(4)

In the dehazing algorithm [18], firstly, the dark channel prior theory believes that in
most non-sky local areas, certain pixels will always have at least one color channel with a
very low value.

Given a mathematical definition of the dark channel, for any input image J, the dark
channel expression is as follows:

Jdark(x) = min
y∈Ω(x)

(
min

c∈{r,g,b}
Jc(y)

)
(5)

where Jc represents each channel of the color image, x and y represent the pixel. Ω(x)
represents a window centered on pixel x. Jdark(x) is the dark primary color of the image in
the Ω(x) neighborhood. For clear and fog-free images, its value tends to 0.

In computer vision and computer graphics, the fog map formation model described
by the following equation is widely used:

I(x) = J(x)t(x) + A(1− t(x)) (6)

where I(x) is the original image, J(x) is the image after defogging, A is the atmospheric light
value, and t(x) is the transmittance.

The current known condition is I(x), and the target value J(x) is required. This is an
equation with countless solutions. Therefore, some priors were needed.

The formula of the fog map formation model is processed and can be written by
Equation (7).

Ic(x)

Ac
= t(x)

Jc(x)

Ac
+ 1− t(x) (7)

where c represents the R/G/B three channels.
He et al. [24] assumed that the transmittance was constant in each window, which

was defined as t̃(x). From the dark channel map, take the first 0.1% of pixels according
to the brightness. In these positions, find the corresponding value of the point with the
highest brightness in the original foggy image I as the value of A. Therefore, Equation (7)
can be transformed into:

min
y∈Ω(x)

(
min

c

Ic(y)

Ac

)
= t̃(x) min

y∈Ω(x)

(
min

c

Jc(y)

Ac

)
+ 1− t̃(x) (8)

According to the previous prior theory, the method to further deduce the estimated
value of transmittance is as follows:

t̃(x) = 1−ω min
y∈Ω(x)

(
min

c
Ic(x)/Ac

)
(9)

where ω is the artificially introduced correction constant (generally 0.95), which is used
to retain the fog at part of the perspective and maintain the variation of the depth of field.
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We set the lower limit t0 to limit t(x) in order to prevent the contrast from getting too large.
When t is less than t0, t will be set to t0. Therefore, the final recovery Equation (10) is
as follows:

J(x) =
I(x)− A

max(t(x), t0)
+ A (10)

where t0 is set to 0.1.
In order to improve the speed of the dehazing algorithm and achieve real-time ef-

fects, when optimizing the image, the original image is first down-sampled. First, the
image is reduced to one-quarter of the original image, the transmittance of the reduced
image is calculated, and then the approximate transmittance of the original image is ob-
tained by interpolation, which greatly improves the execution speed, while the effect is
basically unchanged.

3.2. Fusion Module

The multi-exposure images fusion model mainly includes three aspects: fusion network,
feature retention, and loss function. The specific structure is shown in Figure 2.
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Figure 2. Fusion model.

The input multi-exposure images are represented as I∗1 , I∗2 and the fusion image is
generated through DenseNet training in the fusion network. In the feature retention
module, the outputs of feature extraction parts are feature maps φC1

(I1), . . . , φC5
(I1) and

φC1
(I2), . . . , φC5

(I2). In information measurement, the amount of information extracted
from the special graph is expressed as gI1

and gI2
. Through subsequent processing, the

degree of information retention in the final obtained source images is represented by ω1

and ω2. I∗1 , I∗2 , I∗f , ω1, ω2 are sent into the loss function without the need for ground-

truth. During the training, the DenseNet was continuously optimized to minimize the loss
function [25]. It was not necessary to measure ω1 and ω2 again in the process of testing,
and the fusion speed was faster in practical application.

The DenseNet architecture in the fusion network consisted of 10 layers, each of
which had a convolutional layer and an activation function [26]. Dense connections were
applied inside each Dense Block, and a convolutional layer plus a pooling layer were
utilized between adjacent Dense Block. The advantage of DenseNet is that the network is
narrower, has fewer parameters, and reduces the phenomenon of gradient disappearance.
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The activation function of the first nine layers is LeakReLu with a slope of 0.2 and the last
layer is the tanh. The kernel size of all convolutional layers is set to 3 × 3, and the stride is
set to 1 [6].

We extracted the features through the pre-trained VGGNet-16, which is shown in
Figure 3. The convolutional layer output before the maximum pooling layer is the feature
graph, which was used for subsequent information measurement [27]. In the source image,
the underexposed image has lower brightness. Therefore, the overexposed image contains
more texture details or greater gradients than the underexposed image. The shallow
features such as texture and details were extracted from φC1

(I) and φC2
(I), and the deep

features such as structural content were extracted from the feature maps of the later layers.

           …

[ , 224, 224, 64]B [ ,112,112,128]B [ , 56, 56, 256]B [ , 28, 28 512]B ， [ ,14,14 512]B ，

Convolution ReLU Maxpooling Feature maps  

25

1 1
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5 F
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Figure 3. VGGNet-16.

After the image gradient was estimated, the feature map information could be mea-
sured. Information measurement is defined as follows:

gI =
1

5∑
5

j=1

1

HjWjDj
∑

Dj

k=1 ‖∇φCk
j
(I)‖2

F
(11)

where φCj
(I) is the feature map and k denotes the feature map in the k-th channel of Dj

channels. ‖·‖F represents Frobenius norm and ∇ represents a Laplace operator.
In this method, ω1 and ω2 were obtained through gI1

and gI2
. As the difference

between gI1
and gI2

is an absolute value and is too small compared with itself, therefore, we
scaled them with a predefined positive number c to better distribute the weight. Through
the function, the expressions of ω1 and ω2 are as follows:

[ω1, ω2] = so f tmax
([ gI1

c
,

gI2

c

])
(12)

The loss function consists of two parts defined as follows:

L(θ, D) = Lssim(θ, D) + αLmse(θ, D) (13)

where θ represents the parameter in DenseNet and D represents the training dataset.
Lssim(θ, D) is the similarity loss between the fused image and the source multi-exposure
image, and Lmse(θ, D) is the mean square error loss between the images. α is used to control
the trade-off.

Structural similarity index measure (SSIM) [28,29] is widely used in modeling distor-
tion based on the similarity of light, contrast, and structural information. In this paper,
SSIM was used to constrain the structural similarity between I∗1 , I∗2 and I∗f . The loss function

under the SSIM framework is as follows:

Lssim(θ, D) = E
[
ω1

(
1− SI f ,I1

)
+ ω2

(
1− SI f ,I2

)]
(14)

where Sx,y denotes the value of SSIM between x and y.
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Considering that SSIM only focuses on contrast and structure changes and it shows
weaker constraints on the difference of the intensity distribution, we supplemented it
by mean square error (MSE) between two images, and the loss function of this part was
as follows:

Lmse(θ, D) = E
[
ω1MSEI f ,I1

+ ω2MSEI f ,I2

]
(15)

3.3. Image Optimization

The fusion result should be a normal exposure under ideal conditions, which can
reflect the road sign information. However, due to the limited training set and the small
number of individual road signs, the exposure of the fusion result will still not reach the
normal level. Therefore, we utilized histogram equalization and Laplacian to optimize the
image with a poor fusion effect.

In actual applications, the fusion image was not what we expected due to the defects
of our fusion algorithm. Although it retained the general characteristics of the under-
exposure image and the over-exposure image, the overall brightness presented made ours
feel inappropriate. Therefore, we introduced optimization algorithms next to adjust the
brightness of the image without affecting the image quality.

When the brightness of the fusion image is lower than the pre-set value, the Laplace
algorithm [30] is used to sharpen the image. When the value is higher than the pre-set
value, Histogram equalization [31] is adopted to enhance the over-bright part of the image.
The procedure is summarized in Algorithm 2.

Algorithm 2: The description of the optimization

* Process of Optimization

Parameter: B∗f denotes the brightness of I∗f , Mgray means the gray average of an image.

Input: Fused image I∗f from DenseNet, the high threshold Th, and the low threshold Tl.

Output: Final image I f after optimization.

1: Compute the Brightness B∗f of I f using Mgray/255.0;

2: if 1 > B∗f > Th then

3: I f ← Brightness reduction on I∗f ;

4: return I f ;

5: else if 0 < B∗f < Tl then

6: I f ← Brightness enhancement on I∗f ;

7: return I f ;

8: else if Tl ≤ B∗f ≤ Th then

9: return I f ;

10: else

11: return false;

12: end if

The function of image sharpening is to enhance the gray-scale contrast, so that the
sharpness of the image is improved. The essence of image blur is that the image is
subjected to averaging operation or integration operation. The Laplacian operation is a
kind of differential operator; through the inverse operation of the image, it enhances the
region of the gray mutation in the image, highlights the details of the image, and obtains a
clear image.

An image that describes the gray level mutation is generated through the Laplacian
operator to process the original images, then the Laplacian image is superimposed
with the original image to produce a sharpened image. This principle is actually a
convolution operation.
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Laplacian operator is the simplest isotropic differential operator with rotation invari-
ance. The Laplace transform of two-dimensional image function is the isotropic second
derivative, which is defined as:

∇2 f =
∂2 f

∂x2
+

∂2 f

∂y2
(16)

In a two-dimensional function f (x,y), the second-order difference in x and y directions
is as follows:

∂2 f

∂x2
= fx+1,y + fx−1,y − 2 fx,y (17)

∂2 f

∂y2
= fx,y+1 + fx,y−1 − 2 fx,y (18)

where fx,y represents f (x,y).
In order to be more suitable for digital image processing, the equation is converted

into a discrete form, which is as follows:

∇2 f =
[

fx+1,y + fx−1,y + fx,y+1 + fx,y−1

]
− 4 fx,y (19)

The basic method of Laplace operator enhanced image can be expressed as follows:

g(x, y) = f (x, y) + c
[
∇2 f (x, y)

]
(20)

where f(x, y) and g(x, y) are the input image and the sharpened image, respectively. c is the
coefficient, indicating how much detail is added.

This simple sharpening method can produce the effect of Laplacian sharpening while
retaining the background information. The original image is superimposed on the process-
ing result of the Laplace transform, so that the gray value in the image can be retained,
and the contrast at the gray level mutation can be enhanced. The end result is to highlight
small details in the image while preserving the background of the image.

The fusion result will have the phenomenon of partial exposure. In the case, histogram
equalization was utilized to optimize the fusion image.

Histogram equalization is a simple and effective image enhancement technology that
changes the grayscale of each pixel in the image by changing the histogram in the image.
The gray levels of overexposed pictures are concentrated in the high brightness range.
Through the histogram equalization, the gray value of the large number of pixels in the
image is expanded, and the gray value of the small number of pixels is merged, and the
histogram of the original image can be transformed into a uniform distribution (balanced)
form. This increases the dynamic range of the gray value difference between pixels, thereby
achieving the effect of enhancing the overall contrast of the image [31,32].

The gray histogram of the image is a one-dimensional discrete function, which can be
written as:

h(rk) = nk, k = 0, 1, . . . , L− 1 (21)

where nk is the number of pixels whose gray level is rk in the source image.
Based on the histogram, the relative frequency Pr(rk) of gray level appearing in the

normalized histogram is further defined, and the expression is as follows:

Pr(rk) = nk/N (22)

where N represents the total number of pixels in the source image I.
Histogram equalization is to transform the gray value of pixels according to the

histogram. r and s represent the normalized original image grayscale and the histogram
equalized grayscale, respectively, and the values of them are between 0 and 1. For any r in
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the interval of [0, 1], a corresponding s can be generated by the transformation function
T(r), the expression is as follows:

s = T(r) (23)

T(r) is a monotonically increasing function to ensure that the gray level of the image
after equalization does not change from black to white. At the same time, the range of T(r)
is also between 0 and 1, ensuring that the pixel gray of the equalized image is within the
allowable range.

The inverse transformation of the above formula is as follows:

r = T−1(s) (24)

It is known that the probability density function of r is pr(r) and s is the function of r.
Therefore, the probability density ps(s) of s can be obtained from pr(r). Further, because the
probability density function is the derivative of the distribution function, the probability
density function of s is further obtained through the distribution function Fs(s). The specific
derivation process is as follows:

Fs(s) =
∫ s

−∞
ps(s)ds =

∫ r

−∞
pr(r)dr (25)

ps(s) =
dFs(s)

ds
=

d
[∫ r
−∞

pr(r)dr
]

ds
= pr(r)

dr

ds
= pr(r)

dr

d[T(r)]
(26)

Equation (26) shows that the probability density function ps(s) of the image gray level
can be controlled by the transformation function T(r), thereby improving the image gray
level. Therefore, in the histogram equalization, ps(s) should be a uniformly distributed
probability density function. As we have normalized the r, the value of the ps(s) is 1.
Therefore, ds = pr(r)dr, the integral on both sides of the formula can be obtained as follows:

s = T(r) =
∫ r

0
pr(r)dr (27)

Equation (24) is the expression of the transformation function T(r). It shows that when
the transformation function T(r) is the cumulative distribution probability of the original
image histogram, the histogram can be equalized. For digital images with discrete gray
levels, using frequency instead of probability, the discrete mindset of the transformation
function T(rk) can be expressed as:

sk = T(rk) =
k

∑
i=0

pr(ri) =
k

∑
i=0

ni

N
, k = 0, 1, . . . , L− 1 (28)

rk is between 0 and 1, which represents the gray value after normalization, which is
calculated by the quotient of k and L − 1. k represents the gray value before normalization.
Equation (28) shows that the gray value sk of each pixel after equalization can be directly
calculated from the histogram of the source image.

4. Experimental Result and Analysis

Since there are few multi-exposure datasets available, which can hinder our training
for exposure fusion tasks. So we selected some images from the existing road-related
datasets to make the multi-exposure dataset. We selected 1400 images of various traffic
scenarios from the CCTSDB (CSUST Chinese Traffic Sign Detection Benchmark) as the
dataset to be processed later and use ACDsee [33] to produce the multi-exposure images.
We compared our approach with the other four representative methods, including DSIFT,
FLER, GBM, and DeepFuse. Experiments were performed on an NVIDIA Geforce 920M
and 2.4 GHz Intel(R) Core i7-5500U CPU. All of our training procedure is on NVIDIA GTX
1080Ti and 32 GB memory.
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4.1. Qualitative Comparisons

We chose typical images as comparison pictures for qualitative analysis. The fusion
results of this paper are compared with the other four fusion methods, which are shown in
Figure 4a.

 

(a) The separate from left to right in Figure 4a are source image, multi-exposure image pairs, DSIFT, FLER, GBM, Deep-

Fuse, our method. 

 

(b) The separate from left to right in Figure 4b are source image, DSIFT, FLER, GBM, DeepFuse, our method. 

Figure 4. Qualitative comparison of our method with four methods on three typical multi-exposure image pairs in

our dataset.

It can be seen from the figure that the fusion result of DSIFT and FLER will reduce the
sharpness of the image, the degree of preservation of the details of the image is not high,
and there will be obvious black areas in local areas. FLER also has the defect of poor fusion
effect of large-scale exposure. The final fusion of GBM and DeepFuse has a natural visual
effect but suffers from a lack of detail and texture. The fusion result of GBM also has the
problem of low contrast, which makes it impossible to display the road sign information.
The method proposed in this paper shows that the fusion result looks the best overall,
as it has the highest definition, the edge contour is closer to the source image, and the
information retention is more complete than other methods.

We further analyzed the experiment results. The overall image visual effects of the
FLER and DeepFuse results are more consistent with human visual perception, but at
traffic signs, their results also lose some detailed texture information. In contrast, the
landmark in our result has rich texture information, and its contour information is closer to
the real information.
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We also placed an enlarged view of the road signs in one of the experimental results
in Figure 4b. It can be seen that our method can retain the road sign information as much
as possible. It can be seen from the results of GBM and DSIFT that their information is
a bit vague, and it is not suitable for intelligent transportation systems and smart cities
that require precise identification of road signs. The signpost information in our method is
clearest, and the exposure level seems to be the most appropriate.

In the optimization process, the images with poor fusion effects are processed. The
brightness of the image ranges from 0 to 1. Laplace algorithm and histogram equalization
are applied to images with brightness values less than 0.3 and brightness values greater
than 0.7, respectively, to ensure that the image brightness is within the normal range.

The effects of the two optimization methods are shown in Figure 5.

If2 Io2

Io1If1

 

Figure 5. The results of optimizing the fusion images, If1 denotes the fusion image with a brightness value lower than 0.3

and Io1 is a result image after processing by Laplace algorithm; If2 denotes the fusion image with a brightness value higher

than 0.7, and Io2 is a result image after processing by histogram equalization.

4.2. Quantitative Comparisons

We made a quantitative comparison of 16 pairs of multi-exposure images in the dataset,
and the results are shown in Figures 6 and 7. In the figure, we also indicate the average
value of each method’s corresponding indicator. In the test dataset, the method proposed
in this paper achieves the optimal value in all the other five indexes except MI. Figure 6
compares spatial frequency (SF) [34], standard deviation (STD) [35] and entropy (EN) [36].
The larger these parameters, the better the retention of information. Table 1 shows the
comparison results of five methods in six indicators. The average value of these indicators
in our method is 12.990, 70.907, and 7.328. The results show that the method in this paper
retains more information and has higher image quality. Figure 7 shows the comparison
results of mutual information (MI) [37], SSIM and peak signal to noise ratio (PSNR) [38].
The larger these parameters, the better the retention of information. In addition, the average
value of these indicators in the proposed method is 4.409, 0.923, and 24.720. It seems that
MI is a suboptimal index. It can be seen that the fusion results of our method have a higher
similarity with the source images.
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Figure 6. Quantitative comparisons of the SF, STD, and EN on 16 image pairs from our dataset.

 

Figure 7. Quantitative comparisons of the SSIM, MI, and PSNR on 16 image pairs from our dataset.

Table 1. Quantitative comparisons of the six metrics.

Metrics SF STD EN SSIM MI PSNR

DSIFT 8.415 32.449 6.597 0.833 1.644 11.583
FLER 10.750 54.242 7.103 0.861 3.152 14.283
GBM 8.877 35.244 6.420 0.888 2.407 15.364

DeepFuse 9.295 67.090 6.884 0.907 5.716 14.742
Ours 12.990 70.907 7.328 0.923 4.409 21.720

Note: There are six metrics in the table. SF is the spatial frequency, STD is the standard deviation, EN
is the entropy, SSIM is the structural similarity index measure, MI is the mutual information, PSNR is
the peak signal to noise ratio.

From the result, we see that our method can achieve comparable efficiency compared
with the other four methods.

4.3. Expended Experiment

In order to better illustrate the application of multi-exposure image fusion in the field
of intelligent transportation, we carried out experiments on the recognition and classifica-
tion of traffic signs. We applied the multi-exposure image fusion method proposed in this
paper to the identification of traffic signs, and the recognition accuracy of traffic signs has
been improved. According to the traffic sign recognition method in [39], the fusion method
proposed in this paper is compared with the other four fusion methods. The multiscale
recognition method for traffic signs based on the Gaussian Mixture Model (GMM) and
Category Quality Focal Loss (CQFL) to enhance recognition speed and recognition accuracy.
Specifically, GMM is utilized to cluster the prior anchors, which are in favor of reducing the
clustering error. Meanwhile, considering the most common issue in supervised learning
(i.e., the imbalance of data set categories), the category proportion factor is introduced into
Quality Focal Loss, which is referred to as CQFL. Furthermore, a five-scale recognition
network with a prior anchor allocation strategy is designed for small target objects i.e.,
traffic sign recognition. We chose this algorithm due to its superior recognition accuracy
and recognition speed. The classifier used can distinguish specific road signs in 30, which
is shown in Table 2.
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Table 2. Categories of traffic signs.

Traffic Signs

Red Light for Go Straight Go Straight Slot No Entry Bus-only lane Speed Limit 120
Green Light for Go Straight Left Turn Slot No Trucks One-way Road Weight Limit 15 Tons

Red Light for Left Turn Right Turn Slot No U-Turn Motor Vehicles Only Weight Limit 40 Tons
Green Light for Left Turn Strictly No Parking Yield Ahead Speed Limit 30 Weight Limit 60 Tons
Red Light for Right Turn No left or Right Turn Keep Right Speed Limit 60 School Crossing Ahead

Green Light for Right Turn No Motor Vehicles Stop Speed Limit 80 Pedestrian Crossing Ahead

We selected 1400 pairs of multi-exposure images from our dataset (TrafficSign) [7] for
the traffic sign classification experiment. The classification results of fusion images from
our method, and the over-exposure and under-exposure images are shown in Table 3. It
can be seen from Table 3 that the fusion result has a certain influence on the recognition
of traffic signs in the case of over-exposure and under-exposure. The last row of Table 3
shows the recognition accuracy of all classes of traffic signs.

Table 3. Classification accuracy of over-exposure, under-exposure and fusion images.

Traffic Sign Over-Exposure Under-Exposure Fusion

Green Light for Go Straight 0.4622 0.4618 0.4629
Red Light for Left Turn 0.5259 0.5333 0.5418

Green Light for Left Turn 0.3867 0.3867 0.3991
Green Light for Right Turn 0.4072 0.4627 0.4649

Go Straight Slot 0.8468 0.8509 0.8573
Left Turn Slot 0.8494 0.8559 0.8588

Strictly No Parking 0.9149 0.9153 0.9178
No left or Right Turn 0.8669 0.8537 0.8726

School Crossing Ahead 0.8340 0.8335 0.8439
Stop 0.7017 0.7017 0.7037

All Classes of Signs 0.7977 0.7797 0.8117

Since the dataset we use is a wide range of road images, the classification accuracy of
many traffic signs is not high, but this will not affect our comparison of the final results. It
can be proved in Table 3 that the accuracy of our fusion results in the classification of traffic
signs is generally higher than that of over-exposure images and under-exposure images,
which shows that our method can effectively avoid over-exposure and under-exposure
situations that the traffic sign information is not accurate enough.

We not only compare the accuracy of traffic sign classification among the over-
exposure image, the under-exposure image, and the fusion image, but also compare
our method with the other four methods in the field of traffic sign recognition. Using the
result image of these five methods for traffic sign recognition or traffic sign classification
can be very effective and clear to know whether the fusion results of various methods
are good.

We selected 1000 pairs of multi-exposure images from our multi-exposure dataset
(TrafficSign) and obtained the fusion result images of each method. We conducted experi-
ments on the classification of traffic signs on these fusion results and compared them. The
results obtained through the experiment are shown in Table 4, which shows the accuracy of
various methods for the classification of some traffic signs. Further, the last row of Table 4
shows the recognition accuracy of all classes of traffic signs.

From Table 4, compared with the other four methods, we can see that the classification
accuracy obtained by our method is mostly the best. For example, for the traffic sign
“Strictly No Parking”, our accuracy can reach 0.9178. Although the images obtained by our
method are used for traffic sign recognition, the recognition effect of some traffic signs is
not good, such as “Go Straight Slot”, but it will be too far that compared with the result
with the highest accuracy and the result obtained by our method.
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Table 4. Comparison of classification accuracy of other four methods and ours.

Traffic Sign DeepFuse DSIFT FLER GBM Ours

Green Light for Go Straight 0.4118 0.4459 0.4514 0.4566 0.4629
Red Light for Left Turn 0.5363 0.5326 0.5274 0.5303 0.5418

Green Light for Right Turn 0.4496 0.4209 0.4072 0.4072 0.4649
Go Straight Slot 0.8550 0.8580 0.8567 0.8544 0.8573

Strictly No Parking 0.9137 0.9071 0.9076 0.9070 0.9178
No Trucks 0.8557 0.8574 0.8573 0.8596 0.8605

No left or Right Turn 0.8221 0.8706 0.8702 0.8674 0.8726
Weight Limit 40 Tons 0.8193 0.8191 0.8028 0.8140 0.8221

School Crossing Ahead 0.8434 0.8436 0.8457 0.8391 0.8439
Pedestrian Crossing Ahead 0.8503 0.8578 0.8569 0.8563 0.8574

All Classes of Signs 0.8101 0.8115 0.8095 0.8059 0.8117

It is worth mentioning that because our dataset contains many traffic signs, and there
are few specific traffic signs, such as traffic lights, the accuracy results of the classification
test are generally low. However, this result will not affect our comparison of over-exposure
images and under-exposure images and the images obtained by the other four methods.

5. Conclusions

In this paper, multi-exposure image fusion was applied to the identification of traffic
signs. Fusion images were generated using a unified unsupervised end-to-end fusion
network, U2Fusion. By obtaining the degree of information retention in the source image,
the adaptive similarity between the fusion result and the source image was maintained.
Considering the influence of weather and environmental noise, image preprocessing should
be carried out before image fusion. At the same time, image optimization was carried out
for fusion results. Through brightness judgment, the fusion results are adaptive adjusted,
so that the final result diagram could reflect the information and facilitate subsequent
analysis and decision. The qualitative and quantitative results show that the method was
effective and practical in traffic signs. In addition, we have released a new multi-exposure
image data set, which provides a new evaluation option for image fusion.
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Abstract: Achieving carbon-neutral transportation is the ultimate goal of the ongoing joint efforts of

governments, policy-makers, and the transportation research community. Electrification of smart

cities is a very important step towards the above objective; therefore, accelerating the adoption and

widening the use of Electric Vehicles (EVs) are required. However, to achieve the full potential of EVs,

ground-breaking detour computation and charging station selection schemes are needed. To this end,

this paper developed a new scheme that finds the most suitable detour/route for an EV whenever

an unexpected event occurs on the road. This scheme is based on A* and uses an original, Simple-

Additive-Weighting (SAW)-based, charging station selection method. The performance evaluation

carried out using the open-source traffic simulation platform SUMO under a grid map, as well as

a real road network map highlighted that our scheme ensured more than 99% of EVs will reach

their destination within a reasonable time even if a battery recharge is needed. This is a significant

improvement compared to the baseline scheme that uses the A* only.

Keywords: electric vehicles; detour; route computation; smart cities

1. Introduction

Electric Vehicles (EVs) are on the rise, and electricity is slowly becoming the primary
fuel type for automotive vehicles. Governments around the globe are increasingly pri-
oritising the climate in their agendas, and more movements are being developed that
call for an urgent change in the crisis that falls in front of us. The main concern that is
exacerbating the situation is the amount of fossil fuel we are burning. This leads to more
carbon in the atmosphere and an increase in global greenhouse gas emissions. Due to the
reliance of modern society on vehicles, transportation has become one of the main causes
of the increase in greenhouse gas, representing around a quarter of Europe’s emissions [1].
Consequently, this has driven up the demand for EVs and led governments to restrict other
types of vehicles that cause a more severe impact on the environment. Over their lifetime,
EVs are considerably less impactful, especially when paired with cleaner energy sources [2].

The shift towards EVs leads to new problems, one of these being routing and finding
an optimal journey for the EVs. Optimal vehicle routing is a widely researched problem
due to the reductions it can have on traffic congestion, which in turn can have significant
effects on the economy and human health. When routing is applied to EVs, new challenges
arise as compared to routing in traditional transportation vehicles, due to the specific
constraints of EVs such as their limited battery capacity, the availability of charging stations,
the lengthy charging and waiting time compared to traditional fuelling, in addition to the
range anxiety experienced by drivers. Aiming to alleviate such issues, we focused on a
specific scenario of re-routing or detour, which is needed whenever an unexpected event
happens on the road, and developed a new computation scheme to find the most suitable
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detour/route for an electric vehicle to avoid the excessive delay that it might experience
due to this event.

The remainder of this paper is organised as follows. In Section 2, we give an overview
of EVs, the traffic congestion problem, and the vehicle routing problem and explain how
the latter is more challenging in the context of EVs. A selection of related works is then
discussed and compared in Section 3. Section 4 describes the essentials of our proposed
EV detour computation scheme including our original EV charging station selection mech-
anism. The details of the performance evaluation configuration, the scenarios, and the
analysis of the obtained results are reported in Section 5. Finally, we conclude the paper in
Section 6.

2. Overview of the Electric Vehicle Routing Problem

2.1. The Rise of Electric Vehicles

The production and purchase of EVs in recent years have been growing rapidly. Pas-
senger EV sales increased from USD 450,000 in 2015 to USD 2.1 million in 2019 [3]. EVs use
a rechargeable battery and electric motors for propulsion. They have many advantages that
are directly contributing to their rising popularity. Companies such as Tesla and Volkswagen
are progressing EV technology, innovating private transport so that EVs can become more
accessible to the general population and aid in the fight against climate change.

Despite the reduction in car sales due to the COVID-19 pandemic, the future is positive
for EVs; with government policy changes and environmental concerns, they look to be on an
increasing trajectory. The sustainable development scenario estimates that in 2030, EVs will
constitute 13% of the global car fleet, representing a substantial increase compared to the 1%
share achieved in 2020 [4]. Policies set in place around the world by various governments
will be a contributing factor in the continuing rise. Seventeen countries have announced
100% zero-emission targets, as well as phasing out internal combustion engines till 2050,
with France being the first to put the intention into law [5]. Additionally, the EV credit
system implemented in China and India’s faster adoption and manufacturing of EVs [3]
show the progression and push from governments to shift towards EVs, contributing to
their rise in the coming years.

Studies have found that even though in the production of EVs, more carbon is pro-
duced than Internal Combustion Engine Vehicles (ICEVs) [2], over their life-cycle, the
carbon emitted from an EV is up to 70% less in countries with decarbonised power genera-
tion. In 2015, EVs contributed to 31% lower emissions per vehicle-kilometre compared to
petrol cars [6]. EVs also present benefits to humans’ health by reducing harmful emissions
and noise pollution. In terms of fuel cost efficiency, also EVs are advantageous. A study
conducted in 2016 found that when driving a Nissan Leaf (EV) instead of a Honda Civic
(ICEV) over the 10-year life of the vehicle, the estimated fuel savings would be $4130 at a
time when fuel prices were at a 10-year low [7].

2.2. Traffic Congestion

Traffic congestion refers to the travel delay caused by the interaction of vehicles on
roads, particularly as the volume of the vehicle traffic approaches the road’s capacity [8].
It is a global issue affecting the majority of the population of the Earth, mostly in urban areas.
There are two main types of traffic congestion, recurring and non-recurring. Recurring
congestion is “the congestion present on a normal day if nothing bad has happened on
the roadway” [9], such as typical rush hour traffic. Non-recurrent congestion is defined as
“unexpected or unusual congestion caused by an event that was unexpected and transient
relative to other similar days” [9], such as accidents on the road or weather changes.

In the U.K., new vehicle registrations are forecast in 2022 to increase by 30% from
2020 [10]. Traffic congestion is expected to increase with the growing vehicle population.
Besides the vehicle population, the growth in the general population will increase traffic
congestion. The U.K. population is projected to grow by three million by 2028 [11], resulting
in an increase of trips needed to be taken, resulting more congestion. Traffic from 2014 to
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2019 escalated by 7.2% [12], and through the rise in the vehicle and general population, it is
forecast to rise further to between 17% and 51% by 2050 [13].

Both types of congestion affect people daily, adding significant delays to their lives.
This has substantial economic and social impacts on society. A 2019 traffic report scorecard
found that the average British driver lost 115 h annually due to traffic congestion, and
overall, EUR 5.2 billion was lost [14]. These can have negative effects on businesses and
the economy, as it is a non-productive activity and could be a direct cause for employee
tardiness. Traffic congestion can also affect people’s health. Stress and aggressiveness
brought on by traffic congestion can be detrimental to others’ safety on the roads and cause
more delays. The 2019 RAC Report on Motoring found that increasing traffic levels is
the most common cause of stress at 40%, which represents 10 million motorists [15]. The
congestion issue is of significance and, if not managed, will continue to disrupt different
parts of society.

2.3. Vehicle Routing

Vehicle routing is one of the main ways of combating traffic congestion. Finding
the optimal shortest path between two vertices in a network of vertices is a challenging
task studied in graph theory. When applying this concept for vehicle routing, we would
represent the vertices and edges as systems of junctions and roads, as illustrated in Figure 1.
When adding vehicles to the problem, it becomes challenging due to factors such as weather
conditions, traffic congestion, and the state of the road. Choosing the correct algorithm
is an issue for many current transportation navigation systems as there are numerous
approaches developed to tackle this issue, each with its pros and cons.

Figure 1. Representation of a road network as a graph of vertices and edges.

Shortest path algorithms guarantee finding the optimal routing through exploring the
whole set of available solutions [16]. One example of a shortest path algorithm is Dijkstra’s
algorithm, which finds the shortest path between two nodes in a graph [17]. The route is
found by initially creating a set of nodes not visited, then beginning at the starting node
and calculating the cost of movement to each node connected to the starting node [18].
After all neighbouring nodes have been considered, the starting node is then deleted from
the nodes not visited set, and the next node is chosen as the one with the lowest cost of
movement from the starting node [18]. These steps are then iterated until the destination
node is deleted from the nodes not visited set or all nodes have been considered [18].

Heuristic-based shortest path algorithms explore available solutions and find an
approximate optimal solution that is close to or the same as the optimal one [16]. The main
heuristic-based approach developed is the A* algorithm [19]. The difference between the
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Dijkstra and A* algorithm is that the latter introduces a heuristic. A heuristic is a function
that is used to solve problems faster and when traditional problems fail to find a solution.
In the case of A*, the most popular method used for the heuristic calculates the distance
from the node currently being evaluated to the end node, then using that cost, it decides
which node to go to next.

In addition to A*, another example of a heuristic-based approach is the genetic algo-
rithm [20]. It is a meta-heuristic used to solve optimisation problems and is based on the
principles of genetics and natural selection [16,21]. The genetic algorithm has been used
in the shortest path problem and can be an approach to solving harder problems such as
when vehicles have to visit all nodes in a large network [22].

The different algorithms for the shortest path problem have advantages that better
suit them for specific scenarios. Heuristic-based approaches reduce computation time,
but can be more resource dependent due to more memory usage for storing the heuristic.
Dijkstra and A* will always give the best route solution as long as A* does not overestimate
the heuristic [23]. Meta-heuristic optimisation approaches such as the genetic algorithm
and tabu search are better suited for multi-location vehicle routing where the dataset is
much larger.

2.4. Electric Vehicle Routing

When it comes to routing electric vehicles, the problem becomes even more difficult.
Extra constraints when routing EVs make calculating a route more challenging than normal
ICEVs. Firstly, the EV charging station infrastructure is still not there, with demand for
chargers rising rapidly. The U.K. would need to install Charging Stations (CSs) five-times
faster if it was to reach between 300,000 and 500,000 stations, which is required for 2030
with current EV projections [24]. Refuelling times of EVs are also a problem that needs
to be factored in when routing. An EV can take between 26 h for the slowest chargers
(alternating current chargers) and 6 min for the fastest chargers (direct current fast chargers)
to add 100 mi to its range [25]. In addition, with the CS infrastructure not being there and
the added issue of timely charging, their availability is also affected. With EV demand and
consumption continually grow and government policy changes around the globe, the issue
will only worsen without major changes.

Range anxiety, the fear of battery capacity depleting mid-trip, is a concern of EV
drivers [26]. This is something that could be reduced with electric vehicle routing and
progression in CS infrastructure. Additionally, conditions in the EV environment can affect
the battery capacity such as the weather. A 2019 study found that an EV at 20 °F resulted in
a 12% decrease in driving range, and when the Heating, Ventilation and Air Conditioning
(HVAC) system was used, there was a 41% decrease. This could result in a need for more
charges and will put a strain on CS availability at colder temperatures [27]. With these
added constraints, a new comprehensive solution for electric vehicle routing needs to be
developed.

3. Related Works

Several research works have been conducted on the EV routing problem in recent
years. The authors in [28] investigated how to calculate a route for EVs based on stops at
CSs if the current battery capacity was not enough to reach the destination, providing a
route with the minimum travelling cost. Their method takes the EV range and CS locations
and, using these, calculates a new route. When the current range of the EV is sufficient
enough to reach the destination without the need for a refuelling stop, a route is calculated
conventionally with the remaining capacity upon arrival. Meanwhile, when the starting
range is insufficient, CSs based on the EVs range are selected as potential stops. Then, with
the distance between CSs, estimated travel time, and charging time, the most cost-effective
route is selected. Routes were created based on Dijkstra’s algorithm and the appropriate
CSs. The algorithm was then evaluated on a Japanese map with hypothetical CSs on
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the route, assessing execution time for selecting potential CSs and for conventional route
searching with some of the selected CSs.

The obtained results showed that the point of interest search time, which is the
execution time for selecting CSs and the route search time, was evidently higher for users
needing to stop at CSs. However, the computation time can be seen as much faster and
more accurate than manually planning CS visits on the route. Furthermore, their solution
computes routes with accessible charging over a large network efficiently. A drawback
of the solution is its failure to evaluate CSs further. Checking the availability and current
capacity of CSs are things that could affect the journey times and distances that need to
be travelled. Additionally, it does not take into account time delays such as traffic when
evaluating routes.

In [29], the authors presented a routing solution for EVs focusing on energy efficiency.
They modelled an EV with accurate energy consumption and then found the optimal
route using a Bellman–Ford approach. They aimed to tackle the energy-efficient routing
problem in its simplest form. They first modelled the energy consumption of an EV
using parameters such as vehicle mass, gravitational acceleration, tyre rolling resistance
coefficient, mass density, and the drag coefficient. Using this model, they computed the
route from the start to the destination through the graph using the Bellman–Ford algorithm,
finding the energy consumption between each node and making decisions on which
path to take based on the least energy consumption from node to node. Their proposal
was then simulated on various map sizes represented as graphs. From this, they found
in large-scale maps that their approach was not scalable, taking 203 h on a graph with
270,780 edges, although on smaller-scale maps, it was effective, taking 0.128 s on a graph
with 63 edges. Their solution was adequate and found routes based on energy efficiency for
EVs in small networks with the Bellman–Ford algorithm working well for energy-weighted
graphs. Furthermore, the EV energy model was an accurate representation of EV energy
consumption. A downside of the model was its failure to highlight environmental issues
such as the impact of weather conditions on the battery consumption speed. Another
limitation to the routing proposal was that it did not take into account charging and CS
selection when routing. As an extension to this solution, traffic conditions and vehicle
remaining range could be considered when computing routing decisions.

Reference [30] developed a routing solution for Mobility on Demand (MoD) EV sys-
tems. MoD is a one-way vehicle sharing system, a promising way to reduce greenhouse
gas emissions, and a sustainable solution for private mobility over the current reliance on a
personal vehicles. They aimed to reduce the inconvenience surrounding MoD systems with
the occasional customer needing to perform in-route charging and retrieve the optimal
average trip time. The authors proposed a system of routing between multiple passenger
stations while considering in-route charging and allocating passengers with fewer delay
constraints to EVs needing to be charged. Using a multi-server, cloud-based infrastructure
for connectivity through all components in the system, they calculated the routing proba-
bilities of EVs to CSs and then made routing decisions based on these. Their model only
considers EVs that need to be charged on the way to their destination. It was then simu-
lated extensively using battery swapping to reduce excess charging delays and different
system parameters. It was then evaluated against conventional shortest time decisions. The
results from the simulations carried out showed a reduction in CS delays and trip times
compared to other shortest time and random routing schemes. MoD systems could be
a great implementation for private mobility using electric vehicles and may be a future
system of transport to tackle population growth and climate change. The presented solution
for routing and scheduling of vehicles in the system finds optimal solutions and would
significantly reduce the frustration levels of customers that are forced to charge in-route.

A nearest-neighbour approach to EV routing, finding the most energy-efficient route,
was proposed in [31]. This work aimed to develop a new routing solution for EVs taking
into account vehicle battery capacity and CSs after the recent surge in the EV market
share and the environmental benefits they bring with them. Their solution concentrates on
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multi-node traversal where each node only can be visited once. Using Dijkstra’s algorithm
from each current node, they found the next nearest node in the graph. They iteratively
performed this until each node had been visited once. For routing an EV, their solution
checks whether the vehicle can make it to the next node or next CS without losing all charge,
charging fully at each CS it visits, and again iteratively checking at each node whether the
vehicle will make the journey to the nearest neighbour. This was then simulated using the
coordinates of cities (nodes), finding the accurate optimal solution based on the shortest
route between each city. The simulation results revealed accuracy when calculating an
optimum routing path for EVs with charging taken into account. It also highlighted a
good basic solution to multi-stop vehicle routing, with checks on vehicle current range
and routing the vehicle via CS when the current battery capacity could not reach the next
city (node). As an extension, the algorithm could have a better estimation of EV range to
take in more vehicle parameters such as vehicle weight, front surface area, and propulsion
efficiency. Furthermore, route constraints such as traffic and weather conditions could
be incorporated into the algorithm to test its effectiveness against real-world scenarios.
Furthermore, accessing the algorithm next time against more conventional routing solutions
would give a better insight into how well it performs.

A routing and charging algorithm for an Internet of Electric Vehicles (IoEV) was pro-
posed in [32]. Their solution allows routing to be calculated in a distributed manner by
users and a system operator. They aimed to protect the anonymity of users and reduce the
computational complexity of the system operator. Their algorithm selects an approximate
path for each EV, then optimises the charging scheduling of the EVs based on the approxi-
mate path. This was then simulated extensively, comparing the solution with two other
benchmark algorithms on a dataset that maps real-world data to nodes and edges from
Washington DC, USA. Overall, the simulation results showed that the proposed routing
solution outperformed the two conventional methods used in the simulation and always
produced a near-optimal performance with low computational complexity. Using an IoEV
is a promising way of tackling the NP-hardness and computational complexity of EV
routing for larger systems with multiple destinations, such as delivery couriering. Having
a centralised location for distributing EVs and scheduling them at CSs would also reduce
queuing times at CSs and allow for improved selection. A downside of their proposal
is the infrastructure needed to be put into place to get the system up and running, as it
needs a centralised system to manage multi-car rerouting. To extend their implementation,
we propose to incorporate CS availability into the decision-making, which could further
decrease travel and wait times.

The authors of [33] proposed a shortest time path planning algorithm with an energy
consumption warning method for EVs with insufficient battery capacity for their journey.
They also used the Java Spark Parallelization framework [34] to reduce the computation
time. It was designed to help EV drivers with the charging problem of slow charging times,
small CS availability, and best CS to which to route. They first presented an energy warning
model that monitors the energy consumption of the vehicle and, using its average speed
and regression coefficients, issues a warning when the current battery capacity of the EV
will not reach its destination. Then, a path planning algorithm was developed. They used
Dijkstra’s algorithm to find the shortest path from the current node to CSs and then to the
destination, choosing the optimal CS to stop at, factoring in queuing and charging times.
When calculating the shortest path, they also implemented Spark to compute the shortest
path in parallel. This improved the efficiency of the algorithm. Their solution was then
run through a real-world traffic network to test its effectiveness. The simulation results
demonstrated how with the addition of Spark Parallelization, significant reductions were
seen in the time taken to find the optimal route. Notably, when the number of nodes in the
graph grew larger, the runtime of the algorithm dropped compared to small graphs, for
example on a road network with 300 nodes, the computation time decreased from 1.2 s
to 0.1 s. The implementation of synchronous computing in the routing algorithm is an
encouraging feature for large pathfinding in road networks.
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The authors of [35] presented a pathfinding solution to the Electric Vehicle Routing
Problem (EVRP). They used the tabu search approach to multi-objective route planning
for EVs and aimed to combat the issues of limited battery capacity and charging demands
when routing these vehicles. They aimed to optimize routing for logistics services when
using EVs as the issue becomes more prominent with major U.S. companies implementing
fleets of these vehicles. The authors proposed a routing solution using tabu search, where
the vehicle has multiple destinations to visit on its journey. Tabu search is an optimization
technique that uses a meta-heuristic and a tabu list, which mimics the human memory
function, blocking all areas that have been searched in a route to avoid detours. It begins by
creating a random initial route, then from that searches for possible routes, compares each
route until it finds the optimal one, taking into account the electrical charging demands
of the EVs. Their proposal was then evaluated using the coordinates of locations, CSs,
and the locations that need to be visited. The tabu search solution was then evaluated
against another commercial routing algorithm. The obtained results, based on a routing
for two different distances, highlight that the time taken for tabu search was significantly
reduced, with no time increasing with distance increase, unlike the method used by the
mathematic program software CPLEX. Overall, the proposed algorithm is a good solution
to the routing problem using EVs with multiple stops. It has significant time reductions
compared to other existing solutions and always finds the optimal route considering EV
battery limitations. A potential improvement to this algorithm would be to develop a
more sophisticated mechanism for CS selection, taking into account the availability and
the efficiency.

Comparative Study

Each of the above-discussed works aimed to design an efficient routing solution for
EVs. It is clear that all CS constraints need to be considered when deciding on which CS
to route the EV through. The path planning method proposed by researchers at the Xi’an
University of Technology [33] considers more CS constraints, such as vehicles’ waiting
and charging times, when making a decision, making the path calculated more optimal
for an EV. Compared to earlier works, such as [28,29], where these constraints were not
considered, this work allowed for better judgement on the true optimal route. Moreover,
the mobile on-demand proposal includes a promising idea with the CS schedule, although
this would, in turn, affect the privacy of drivers and their vehicles [30]. To further improve
the above works, the inclusion of more constraints for CSs such as CS charging efficiency,
price, and vehicles’ waiting will ensure a greater accuracy in the computing of the optimal
route. Table 1 compares the above works in terms of their complexity, achieved scalability
level, overall effectiveness, in addition to whether they took into account CS attributes
or not.

Table 1. Comparative study.

Study Complexity
CS Attributes
Considered

Scalability
Overall
Effectiveness

[28] Medium False High Medium
[29] Low False Medium Low
[30] High True Medium High
[31] Low False Medium Low
[32] High True High High
[33] Medium True Very High High
[35] Very High False High High
Our proposal Medium True High High

4. Proposed Solution

In this section, we present the key principle and detailed operation of our EV detour
computation algorithm.
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4.1. Routing Process Design

We propose a detour routing algorithm that attempts to find the optimal route for
an EV taking into account the current vehicle range, route length (i.e., the remaining
distance to the destination), and traffic conditions. Figure 2 shows a high-level overview of
our algorithm.

Figure 2. Flowchart illustrating the main steps of our detour computation algorithm.
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The process of finding a detour is initialized when the current location of the EV and
the destination are input. A route is then calculated based on these two locations using the
path searching technique described in Section 4.2. When evaluating each node, the stopping
criterion is put in place to check whether the current EV range is sufficient enough for the
current route length. This ensures that the range does not fall much below the minimum
State of Charge (SoC), which was set by default to 10%, but it can be configured by the user
to a different value. Having a minimum SoC threshold is essential to ensure that battery
capacity never becomes too low, as low and high SoCs can have a direct effect on battery
health and ageing [36]. In addition, this stopping criterion will reduce the computation time
as calculating the full route would be unnecessary if the current battery capacity does not
allow reaching the final destination. The EV range was computed by multiplying the SoC
by a factor called metres per Watt-hour (mWh). mWh represents the energy consumed by
the EV per metre. We computed this factor by running several simulations and computing
the average value of mWh, as shown in Equation (1), for the category of the EV.

mWh =
d

e
(1)

where d is the distance driven by the EV and e is the total energy consumed. If a route
reaches the end node without dropping below the minimum SoC, then this route is output
back to the user. When it falls below the minimum SoC, then re-routing via a CS is
initialized. A CS is selected following the technique described in Section 4.3. A route is
then found from the start to the CS, again using the path search technique described in
Section 4.2. Once the route is found, a new start point will be set after the CS location,
and the algorithm iterates again from the beginning with the new start point until the
destination is reached.

4.2. Vehicle Routing Algorithm

In our detour computation scheme, a graph-traversal algorithm is needed to calculate
optimal routes for EVs. There are numerous methods developed in the literature for
computing how a vehicle will traverse a road network, starting at one designated point
and ending at another. As discussed in Section 3, several algorithms have been developed
in graph theory to search for a path in a graph, typically the shortest one, such as Dijkstra,
A*, tabu search, genetic algorithm, and breadth-first traversal. The main aim of these
algorithms is to find the optimal route, achieve faster computing, and provide the ability to
incorporate other constraints than the distance, such as travel time, road safety level, and
easiness of driving level, when routing.

4.2.1. Chosen Path Search Algorithm

Upon evaluation of the algorithms used for graph traversal and vehicle routing, the
A* algorithm is the one being most used to traverse road networks and find an optimal
route. A* is a heuristic-based path finding algorithm that is considered an extension of the
Dijkstra algorithm. A* was our chosen algorithm due to various factors. Firstly, the use of
a heuristic function benefits the solution, with the main benefit being faster computation
times due to searching fewer nodes. This is beneficial when the number of nodes in a
graph increases. In addition, when the heuristic is admissible (can never overestimate
the cost to reach the goal), A* is guaranteed to output the optimal path that has the least
cost [37]. Moreover, the complexity of A* compared to the meta-heuristic techniques such
as tabu search and genetic algorithms is much lower, making it easier to implement and
add custom constraints. Likewise, these techniques are better suited for multi-objective
routing problems such as the vehicle routing problem and the travelling salesman problem,
where the routing criteria and graph size are much larger.
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4.2.2. Network Costs and Heuristic

Equation (2) shows the A* path cost formula, which uses the minimum value for
path selection.

f (n) = g(n) + h(n) (2)

The term denoted as g(n) traditionally is the cost of movement from the start node
to the current node (n) in the graph (the weight from node to node in the network). The
term h(n) is traditionally the heuristic function, which estimates the cost of movement from
the current node to the destination node. h(n) is usually calculated through the Euclidean
distance, which is denoted in Equation (3), with p and q being the coordinates of the nodes
in the graph [18].

d(p, q) =

√
n

∑
i=1

(qi − pi)2 (3)

When finding a path for vehicle routing, using the traditional methods for A* will not
suffice. This is due to more real-world constraints such as traffic affecting routing choices
and finding the shortest path will only find the optimal shortest solution. Instead, our goal
was to minimize the travel time of the vehicle routing, changing the traditional cost values
for g(n) and the heuristic function h(n) from Equation (2) to fit these criteria.

g(n) =
l(n)

s(n)
(4)

h(n) =
d(n)

m(n)
(5)

Equation (4) denotes the new value of g(n), which is the travel time from the start node
to the current node (n) in the graph. This is calculated by dividing the length from the start
node to the current node, which is shown as l(n), by the mean edge speed in the last time
step for the same nodes, which is denoted as s(n). Equation (5) denotes the new heuristic
function formula for the value h(n). d(n) represents the Euclidean distance calculation used
in the traditional A* heuristic function. This is then divided by m(n), which is the max
speed of any edge in the network. Using the max speed of any edge in the network allowed
us to never overestimate the cost to reach the goal for the heuristic, making it admissible
and giving us the optimal route.

4.3. Charging Station Selection

The selection of the optimal CS is an important step in our proposed detour computa-
tion scheme. Figure 3 depicts a visual representation of our CS selection. Various parameters
were considered when deciding at which CS the vehicle should refuel. Therefore, this makes
it a Multiple-Attribute Decision-Making (MADM) problem. There are numerous methods
developed to help make optimal decisions, and the technique we used was Simple Additive
Weighting (SAW). Selection begins by obtaining all the CSs in range of EV current battery
capacity and then deciding on the optimal one with the SAW method. The centre point of
the range is first defined as the node from which the initial route calculation dropped below
the minimum SoC. If no CSs are found from there, the node changes to the starting point if
the search node is not initially that. A goal capacity at the end can also be defined, which
outlines the preferred capacity when routing is complete, which will be accounted for when
calculating the duration to charge for at the CS.
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Figure 3. Illustration of our proposed charging station selection mechanism.

4.3.1. Simple Additive Weighting

SAW is one of the most popular and best-known MADM techniques used [38]. It
uses a weighted sum of all attributes for each instance of objects and compares the total
of each, with the higher overall weighted sum being the better choice [39]. To begin, each
attribute value needs to be normalized for each CS, making each value within a common
scale so values with more extreme ranges do not influence the end summation. There are
many different techniques for data normalization such as linear, min–max, vector, and
logarithmic normalization. A 2007 comparative study on normalization procedures in
MADM found that vector normalization is the most suitable for SAW [38].

rij =
xij√

∑
m
i=1 x2

ij

(6)

rij = 1−
xij√

∑
m
i=1 x2

ij

(7)

Equation (6) shows the formula used to normalize the data using beneficial vector
normalization, and Equation (7) shows non-beneficial vector normalization. The beneficial
formula is used when the attribute’s value aims to be higher, and the non-beneficial formula
is used when the value desired is lower. Once the data have been normalized, each value
can then be multiplied by its weighting value.

vi =
n

∑
j=1

wj ∗ rij (8)

Weightings are determined by how much the given parameter matters when making a
decision, and they all have to add up to 100%. Equation (8) depicts how the score for each
CS, based on SAW, is computed, where i represents the index of the CS, v is the overall
score, and j refers to the index of the CS parameter. r holds the added score of the CS
parameters, and w is the weighting value for the given parameter. Parameters for each CS
are multiplied by its weighting, then each are summed together for its overall score.
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4.3.2. Charging Station Decision Attributes

Deciding on which CS to route the EV to requires the decision attributes used in the
SAW to be defined. Table 2 shows the parameters used in SAW. The distance from the search
attribute is the straight line distance from the current CS search node to the CS, computed
using the Euclidean distance. The distance from the divider attribute is the straight line
distance from a line that connects the current node and the end node, which highlights
whether the CS is in the right direction. Figure 3 shows a visual representation of how the
distances work in context with the CSs in the vicinity of the EV’s current range. Refuelling
price, the number of vehicles charging, and the charging efficiency are CS properties used
as attributes in SAW as well. Charging efficiency refers to the kilowatts gained by the EV
battery per time step from the CS.

Table 2. Charging station attributes for SAW MADM.

Attribute Name Normalization

Distance From Search Non-beneficial
Distance From Divider Non-beneficial
Price Non-beneficial
Vehicles Charging Non-beneficial
Charge Per Step Beneficial

5. Performance Evaluation

In this section, we evaluate the performance of our proposed solution, using Simula-
tion of Urban MObility (SUMO) [40], which is an open-source, highly portable, microscopic,
and continuous multi-modal traffic simulation package, and analyse the obtained results.
The detour computation scheme was assessed on a number of simulated test scenarios
using different weighting metrics and a baseline routing algorithm.

5.1. Evaluation Configuration

5.1.1. Creating Test Data

The real-time interaction, including simulation initialization, with SUMO can be
achieved through TraCi and Python [41]. To collect meaningful and reproducible results,
SUMO needs to be run multiple times. To this end, we ran our simulations 10 times for
each of the parameters listed below in Section 5.1.3.

SUMO uses seed values to ensure randomness in the simulation, which can be re-
produced when the same seed value is run again. This will ensure that results from the
different parameter variations and the baseline algorithm can be compared correctly. Fifty
EVs were introduced into each simulation scenario with randomly assigned start and end
nodes in the network to allow a variety of results for comparison. The random start and
end nodes were controlled again by the SUMO seed. The maximum battery capacity of the
vehicles was set to 10,000 Wh.

Once the iterations of the simulations are finished, a CSV file is output for analysis.
SUMO has default output XMLs that show vehicle and simulation information from each
time step and an overview of each. A Python function was built that output the data
needed at the end of the simulation to a CSV file. This file consisted of the parameters
used, the EV distance travelled, the EV routing travel time, the number of CS stops, the
duration spent at each CS stop, the algorithm runtime, the EV battery capacity at the end of
the simulation, the start and end nodes used by an EV, whether the algorithm was used,
and whether the vehicle had reached its destination before its battery capacity ran out.

5.1.2. Evaluation Metrics

Once all the data were found for each iteration of the simulation, the data were collated
for comparison. For the evaluation against the baseline routing algorithm, two metrics
were needed.
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ABE =
∑

n
i=1 bi

n
(9)

Equation (9) above highlights how the average battery capacity at the end (ABE) of the
simulation for the EVs was calculated. n is the total number of EVs in the simulation, and b
is the battery capacity at the end of its journey. This was used to compare the end capacities
for vehicles routed by our proposed detour computation scheme and the baseline algorithm.
Having an ABE around the defined value of the goal capacity at the end of the journey
highlights that the proposed routing algorithm is efficient in battery health monitoring.

%VCJ =
∑

n
i=1 ci

n
∗ 100 (10)

Equation (10) depicts the formula to obtain the percentage of vehicles that have
completed the journey before the battery is empty (%VCJ). n again is the total number
of EVs in the simulation, and c represents whether the EV completed the journey before
its battery is empty. This was used again when comparing the baseline algorithm with
our proposed detour computation algorithm and showed the success of the algorithm in
routing the EV.

5.1.3. Evaluation Parameters

Firstly, an evaluation was carried out on different values for the SAWs, which aligned
with what users would define when using the algorithm in real-world scenarios. Table 3
highlights the different SAWs used in the evaluation. The first four weightings give
importance to the type of attribute they represent. Weighting A splits the two distance
parameters’ importance between them. B, C, and D each give the importance to the price,
the number of vehicles charging, and the overall charging efficiency of the CS, respectively.
The last gives equal weighting values to each parameter.

Table 3. SAWs’ evaluation.

Weighting Distance from Search Distance from Divider Price Waiting Time at CS Charging Efficiency

A 35% 35% 10% 10% 10%
B 10% 10% 60% 10% 10%
C 10% 10% 10% 60% 10%
D 10% 10% 10% 10% 60%
E 20% 20% 20% 20% 20%

Next, we evaluated our algorithm against a SUMO baseline routing algorithm. Using
the “—noalg” option when running the Python script allowed the routed vehicle to be run
without our proposed scheme and use the default SUMO routing algorithm (i.e., standard
Dijkstra) [42]. The baseline routing algorithm has no options for EV charging, and so it will
run until the battery is empty. Comparing the two algorithms highlighted the effectiveness
of our proposed scheme in reducing the range anxiety (i.e., ensuring that the chosen detour
will enable the EV to reach its destination without the need for recharging or its chosen
route includes a CS where the EV can recharge its battery) of EV drivers.

Each of the different SAW weightings and the baseline routing algorithm were run
using three different starting values for the EV’s actual battery capacity, 500 Wh, 1250 Wh,
and 2250 Wh. This gives a value under the default SoC threshold at 5%, just above it at
12.5%, and a value higher at 22.5%. Using these different capacity values gave us an idea
of how each would affect routing and CS selection because both would be initialized at
different stages due to the CS search node.
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5.2. Evaluation Scenarios

5.2.1. Grid Road Network Scenario

The first simulation scenario was the grid road network, which was created to show
how the detour computation scheme works within a simple road network layout. In
addition, this scenario highlights how an EV can benefit from using our proposed algorithm
and the positive results it outputs even on a smaller scale.

Figure 4 illustrates the 3 × 3 grid road network within the SUMO GUI. The grid was
built using the netedit tool and was a small-scale replica of a grid road network that is used
in big cities around the world such as New York and Barcelona. It had four CSs, highlighted
in light blue, added in different parts of the grid for EVs to consider when routing using
our proposed scheme. The simulation took advantage of the ”randomTrips” SUMO tool
and generated random vehicles with a defined route to simulate a realistic traffic scenario.
EVs were generated in increments of ten time steps to route from two random nodes until
fifty EVs were introduced in the simulation.

Figure 4. Example of the 3 × 3 grid road network within SUMO.

Figure 5 highlights the achieved travel time under different SAWs as defined in Table 3.
The results showed a greater travel time for a starting battery capacity of 500 Wh compared
to the other two. This was due to having a battery capacity lower than the default SoC
threshold at 10% and needing to stop at a CS to recharge the battery to increase its capacity
above this threshold. Upon comparison of the different weightings used, a starting battery
capacity of 500 Wh was the only one we could make a good comparison of due to the
grid road network being small, which simulated shorter trips for EVs where the need for
recharging the battery is low. Weighting A, which weights towards CS distance, performed
best out of the five weightings due to having a lower median and smaller spread for its
Inter-Quartile Range (IQR), making it more consistent in achieving a lower travel time for
EVs. The next best was the weightings for E due to the slightly lower spread for its IQR and
median, then B was slightly behind, but it had less outliers and extreme values. Lastly, C
and D were found to be the least effective in reducing the travel time of an EV. Overall, this
showed that on a smaller road network, giving importance to distance when selecting a CS
yields the best outcome and that waiting times at the CS increase the travel times the most.
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Figure 5. The achieved travel time under varying the weightings: the case of the grid road network.

The 3D scatter graph shown in Figure 6 depicts the CS stop durations needed for
different starting battery capacities in the grid road network scenario. It shows how these
two metrics affect the remaining battery capacity when the EV reaches its destination and
the overall vehicle travel time. Furthermore, it highlights how charging is needed when
the starting battery capacity is below the threshold at 500 Wh, which in turn increases
the CS charging duration and thus the overall travel time. Moreover, at 500 Wh, it kept
the remaining battery capacity above the default goal capacity at the end, which was
10%, although there were a few outliers with the remaining capacity being over 20%. The
occurrence of outliers here was due to the overestimation of the range value and increases
in the braking of vehicles in route, enabling regenerative braking of the EV and battery
capacity gains. Under a starting battery capacity of 1250 Wh, the plotted results show that
a few CS stops only were needed because the network was smaller and only dipped below
the capacity threshold a few times. In the case of a starting capacity of 2250 Wh, no CS stop
was needed due to the fact that the battery capacity never fell below the end goal, keeping
the travel time low.

According to these results, we can conclude that our scheme performed well and
as expected in the grid road network scenario. In addition, the overall goal end battery
capacity was met with the exception of a few outliers, maintaining the battery health.

Lastly, the performance of our detour computation scheme was compared against
the SUMO baseline routing algorithm. The comparison results in terms of the achieved
%VCJ and ABE are shown in Table 4. This table exhibits the results obtained from running
the simulation ten times with the three starting battery capacities for the baseline routing
algorithm and our proposed scheme, calculating the metrics defined in Section 5.1.2 for
each of them. In every instance, every vehicle completed its journey without draining its
battery. This was because the EV grid was a smaller network and the routes were shorter in
length. The differences in the data here were the ABE values; starting capacities of 500 Wh
and 1250 Wh had ABE SoC values of 11.4% and 11.5% when the detour computation
scheme was used, and only 3.3% and 8.7% when it was not. This highlights how our
EV detour scheme was successful in achieving its goal of maintaining battery health and
keeping the SoC above the end goal. Again, due to the size of the used grid, a starting
capacity of 2250 Wh did not show much difference change in the results because the need
for CS selection and stops was not there. However, the slightly higher ABE indicated that
travel-time-based routing performed better than the distance-based routing used in the
baseline in retaining the battery capacity.
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Figure 6. The achieved travel time under varying starting battery capacities and CS stop durations:

the case of the grid road network.

Table 4. Our detour computation scheme vs. the SUMO baseline routing algorithm: the case of the

grid road network.

Starting Battery Capacity (Wh) Proposed Solution Used %VCJ ABE (Wh)

500 Yes 100 1142.2
500 No 100 331.9

1250 Yes 100 1151.9
1250 No 100 872.4
2250 Yes 100 2144.2
2250 No 100 2082.0

5.2.2. Manchester Road Network Scenario

Once the EV grid was created and evaluated, a larger-scale road network representing
Manchester’s city centre was produced for evaluation. Figure 7 shows an illustration of
such a road network using the SUMO GUI.

The Manchester scenario was generated using OSMWebWizard and mimicked the road
network of the city centre of Manchester in the U.K. Within OSMWebWizard, there is the
demand generation feature, which allows the random generation of different modes of
transport on the network. The Manchester SUMO simulation includes cars, trucks, buses,
motorcycles, cyclists, and pedestrians.
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Figure 7. Illustration of Manchester’s city centre road network within SUMO.

The box plots in Figure 8 illustrate the travel times achieved for the different weight-
ings discussed in Section 5.1.3, under three different starting battery capacities, using the
Manchester road network. For the highest starting battery capacity, 2250 Wh, there was no
need for CS stops due to the battery capacity not dropping below the threshold. The travel
times were similar due to this, with the median and IQR spread being around the same
values. Following the previous EV grid simulation, when the starting battery capacity was
set to 1250 Wh, Weighting A (giving importance to distance) performed better with C and D
just behind. With weighting importance towards distance, the overall spread, median, and
IQR were better than the others at 1250 Wh and achieved more consistent results. When
the starting battery capacity was set to 500 Wh, Weightings A and E came out with similar
results. The only difference between the two was Weighting A having a slightly smaller IQR
and spread, making the results more consistent. Overall, the results from comparing the
travel times and different weightings for the two simulations were comparable. Weighting
importance on distance had the best-performing results in the reduction of travel time
when making a CS selection decision with equal weightings coming just behind that.

Figure 9 shows a 3D scatter graph comparing the remaining battery capacity at the
end of the simulation, with the CS re-charging duration and overall travel time of the
EVs’ journey. When the vehicles starting battery capacity was set to 500 Wh, similar to
the EV grid scenario, the CS stop duration and travel time increased due to the SoC being
below the default threshold at 5%. A starting capacity of 1250 Wh had similar results
in that the CS stop duration rose due to the network being larger and routes needing
higher battery capacity to complete. However, the duration was less for a 1250 Wh starting
capacity compared to the 500 Wh values because of the higher capacity at the start and less
re-charge time required. The travel time outliers for 1250 Wh may correlate with the traffic
congestion being high at the different times when CS re-charging ends at 500 Wh. Most
of the simulation points had CS stop durations and travel times just below the values for
500 Wh. Finally, the remaining capacities at the end mostly equated to or were just above
the default goal capacity at the end, reflecting successful management of battery health.
The outliers here with remaining capacity were due to the same reasons as the EV grid with
the overestimation of the range or capacity gains from regenerative braking.

39



Electronics 2022, 11, 803

Figure 8. The achieved travel time under varying weightings: the case of the Manchester road network.

Figure 9. The achieved travel time under varying starting battery capacities and CS stop durations:

the case of the Manchester road network.

Table 5 highlights how the baseline routing algorithm performed for the EVs in
the simulation compared to the detour computation scheme under the Manchester road
network. For starting capacities of 500 Wh and 1250 Wh, only 55% and 91% of vehicles
completed the journey without running out of charge, compared to 99.4% and 100% when
the algorithm was used. When the algorithm was used for 500 Wh, three out of five-
hundred vehicles evaluated with these criteria did not make the journey, making the %VCJ
99.4%. Upon evaluation, this was down to the range estimation not estimating the range
correctly when vehicles were travelling on faster roads and the battery capacity starting
as a low value. Further work can be performed for range estimation of the proposed
solution, predicting the range for each individual EV through its runtime instead of using a
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previous simulation. In addition, the average battery capacity at the end was greater for
both capacities when the proposed algorithm was used, supporting battery health. These
results highlight the benefits of using our detour computation scheme, specifically aiding
in the reduction of the range anxiety of EV users and overcoming the limitations of current
EVs such as the finite amount of CSs and restricted battery capacities.

Table 5. Our detour computation scheme vs. the SUMO baseline routing algorithm: the case of the

Manchester road network.

Starting Battery Capacity (Wh) Proposed Solution Used %VCJ ABE (Wh)

500 Yes 99.4 1017.9
500 No 55.0 120.7

1250 Yes 100 1180.6
1250 No 90.6 705.2
2250 Yes 100 1715.8
2250 No 100 1667.3

6. Conclusions

This paper proposed a new detour computation scheme for EVs with the aim to
alleviate the range anxiety issue of EV drivers, reduce traffic congestion, and make EVs
more appealing to drivers to increase their market share. Towards that end, we designed
an adapted version of A* algorithm, which uses travel-time-based path finding instead
of the distance, and used the simple additive weighting method for charging stations
selection. The performance evaluation results and their analysis, using two representative
road network scenarios, proved the effectiveness and feasibility of the proposed scheme.
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Abstract: This work presents a novel blockchain-based energy trading mechanism for electric vehicles

consisting of day-ahead and real-time markets. In the day-ahead market, electric vehicle users submit

their bidding price to participate in the double auction mechanism. Subsequently, the smart match

mechanism will be conducted by the charging system operator, to meet both personal interests

and social benefits. After clearing the trading result, the charging system operator uploads the

trading contract made in the day-ahead market to the blockchain. In the real-time market, the

charging system operator checks the trading status and submits the updated trading results to the

blockchain. This mechanism encourages participants in the double auction to pursue higher interests,

in addition to rationally utilize the energy unmatched in the auction and to achieve the improvement

of social welfare. Case studies are used to demonstrate the effectiveness of the proposed model. For

buyers and sellers who successfully participate in the day-ahead market, the total profit increase for

buyer and seller are 22.79% and 53.54%, respectively, as compared to without energy trading. With

consideration of social welfare in the smart match mechanism, the peak load reduces from 182 to

146.5 kW, which is a 19.5% improvement.

Keywords: blockchain; double auction; electricity trading; smart match mechanism

1. Introduction

Several countries have maintained an optimistic attitude towards electric vehicles
(EVs) in recent years to reduce air pollution and to make traveling affordable [1]. In China,
the government has planned for the development of EV industry, aiming for 5 million
EVs by 2020, with more than 4.8 million decentralized charging stations added [2]. In the
USA, it is foreseen that the power load curve will rise significantly (about 18%) under the
large-scale access of EV [3]. However, there are still some deficiencies in the development
of EV technology in, such as charging facilities, battery capacity, charging time, and other
technical problems [4,5].

At present, with the development of charging and discharging technology, the elec-
tricity exchange problem between EVs and the power grid, or among EVs, has attracted
public attention. The charging and discharging behavior of EVs has a great impact on
the power system stability and power market operation. For example, during the peak
period of charging, the load curve shows a sharp peak, which aggravates power imbalance,
and further affects the market electricity price. The development of charging technology
and energy storage technology lays a foundation for the achievement of vehicle to grid
(V2G) [6–9] and vehicle to vehicle (V2V) [10,11]. Reference [11] shows that the electrical
energy storage will generate a higher profit if it is cycled more frequently (hence, a higher
lifetime electricity output) although the lifetime is reduced due to degradation. Many topics
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are also carried out on the V2G and V2V, some of which have improved the transaction
rules [12], discussed behavior planning from the perspective of EV owners [13,14], and
considered the economic planning from the perspective of aggregators [15–17]. However,
these methods cannot change the traditional centralized management pattern and do not
give EV owners sufficient autonomy. Usually in these methods, EV owners only have the
right to decide whether to participate in the charging process, but they do not reflect their
specific needs, such as price sensitivity, charging urgency, and so on. In the transaction
model proposed in this paper, the profit of EV owners will be fully considered and reflected
in their bidding price.

Therefore, the effective management of EV owners’ charging behavior not only can
avoid the sharp load curve, but also improve transaction benefits and social welfare. This
can reduce load peak. As an important topic to guide consumers’ behavior, the mini-
mization of price is discussed considering different aspects, such as the randomness of
consumers’ behavior [18,19], the form of cooperation or non-cooperation game [20–22],
the load dispatch in smart building, including EVs, photovoltaic and controllable air
conditioner loads [23,24], and so on. By relating all the cost and benefits with common
parameters such as the number of charging piles, [25,26] offer a practical solution for the
planning of the station size, and the solution balances the requirements between the cus-
tomers and economic efficiency. In addition, the policy which encourages the discharging
behavior can also reduce negative impact on the power system. Appropriate encourage-
ment strategies for sellers can improve the situation that demand exceeds supply and can
stimulate the competitiveness of the market. Proof of work about energy contribution,
proposed in [27], is an important index of subsidy distribution for sellers. According to
the above references, the charging and discharging behavior of EVs is characterized by
greater uncertainty, and proper guidance and planning may bring positive impact to the
grid. In a Delaware EV project reviewed in [28], an EV aggregator acts as an intermediary
firm between PJM and flexibility service for EVs. This aggregator sells a certain amount of
capacity to the grid operator and bids this in the hourly auction for frequency regulation
and for the available power capacity. Such a distributed structure is comprehensive and
worth considering. In addition, the establishment of a reliable communication network can
also facilitate transactions between EVs [29,30].

With the reform of the power system [31], the energy transaction of the distribution
network has become a new direction of development. In addition to the EV energy
transaction, other forms of energy transaction are also considered in [32,33]. However,
privacy and anonymity are a difficult problem in distributed transactions. This paper
takes this into account and uses blockchain technology to encrypt information of users.
The development of smart meters [34], low power wide area network [35], dynamic
wireless charging [36], and other technologies of Internet of Things have made distributed
transaction technologies such as blockchain possible. After the boom of bitcoin in recent
years, the concept of blockchain has gradually penetrated into different fields. In the power
system, blockchain generally appears together with the P2P transaction. Reference [37]
also explains the importance of blockchain in P2P transaction. Getting rid of shackles from
the traditional mode, the power system with blockchain can manage distributed energy
more effectively. For example, credit bank [27], EV [38,39], demurrage mechanism [40], or
demand side management [41] are added to the framework of blockchain, all of which
have a positive impact on the distributed management of the power system. Blockchain
also enriches the transaction forms of the power market, such as double auction [42],
peer-to-peer (P2P) [43], energy transaction for multi-microgrids and internal microgrid [44],
etc. Meanwhile, smart contracts have been applied in the power system, because of its
fairness, low-cost, and efficiency. To ensure the safety of the transaction, smart contracts
were introduced into the energy exchange of EV in [45]. These studies show that blockchain
changes the original centralized management of systems and avoids the risk of attack on
central institutions. In the studies reviewed in [46], P2P trading is an important example of
blockchain in the energy exchange. According to research proposed there, some home-level
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objects, including EV and other smart facilities, will participate in a distributed transaction.
However, distributed transactions generally take place in small communities or microgrids,
but how to integrate with the grid is also a key point. This paper will discuss the interaction
between EV and grid.

Because the system does not require an authoritative third party after using blockchain,
there is a potential danger in the security. For an information leakage problem, [47]
improved the confidentiality mechanism in the blockchain. For collusion behavior, [48]
proposed a blockchain-based coordination platform via Ethereum, to alleviate the harm
caused by this behavior to some extent.

The simple double auction model and smart match model were proposed in [49].
Compared with the previous work, this paper proposes a more comprehensive double
auction model, and adds the transfer strategy of charge and discharge behavior to the smart
match. Moreover, this paper will also introduce the combination of blockchain and trading
mechanism in detail. Due to blockchain technology, transaction data is in public. Therefore,
participants can receive more current or historical information from the blockchain, which
is helpful for participants to make decisions for more revenue. In the framework proposed
in this paper, EV owners will evaluate their own interests to make a quotation and decide
to take part in the double auction or not. EV owners will select to sign smart contracts and
schedule their charging strategies based on considering operation cost, satisfaction of EV
users, and social welfare. Blockchain is used to combine with the auction mechanism in
this paper. On one hand, the inclusion of blockchain guarantees the security of transactions
after the removal of third-party notarization. On the other hand, the auction mechanism
increases the competition in the electricity market and avoids the vicious bidding. At the
same time, the proposed mechanism allows EVs owners to choose an optimal price to
enter the market based on their own characteristics (such as price sensitivity and charging
urgency), to have a greater variety of choices.

The contributions of this paper are summarized as follows:

(1) This paper proposes a novel double auction mechanism in the day-ahead market
(DAM), where EV owners fully consider both the bidding price and quantity of energy
involved. This mechanism greatly promotes the energy exchange between buyers
and sellers.

(2) The charging system operator (CSO) satisfies the EVs’ demand in DAM and the
real-time market (RTM). In DAM, CSO will sign a smart contract with those who
unsuccessfully match in the double auction, optimizing revenue, social benefits, and
participant satisfaction. In RTM, CSO will check the trading status and record cheated
behavior in blockchain.

(3) Blockchain-based energy trading is proposed to ensure fairness and validity in trading
and prevent swindling act.

The rest of this paper is organized as follows. Section 2 introduces the framework
of trading mechanism. Double auction mechanism and smart match mechanism are
introduced in Sections 3 and 4, respectively. In Section 5, the case study is conducted to
illustrate the effectiveness of the proposed model. Conclusion and future work are drawn
in Section 6. The derivation of optimal bidding strategy function and proof of bidding
price are presented in the Appendices A and B, respectively.

2. Framework of Trading Mechanism

2.1. Charging Token Based on Blockchain

For the proposed energy trading, an exclusive token named Charging Token will be
circulated to ensure trading security by using blockchain technology. Charging Token is
applied in EVs’ trading and obtained in two ways, namely, selling energy and cashing
with CSO.

The mechanism of Charging Token is partly similar to Bitcoin, which is embodied in
the token storage and transmission technology, the construction and encryption method of
electronic wallets. The system will create hash value for the username and wallet address
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to ensure security of trading when a participant enters into the market successfully. After
every trading is completed in RTM, the value of Charging Token of all participants will be
updated and recorded in blockchain.

2.2. Charging Token Based on Blockchain

In RTM, contract violation is taken into consideration. EVs affected by violation are
those that have been matched successfully in the DAM but are affected by the defaulters
in RTM. These people have successfully matched with other participants in the DAM
and uploaded the transaction content to the blockchain. However, other participants may
violate in RTM, which will affect their trading behavior. For those affected by violation, the
mechanism necessarily ensures that their economical loss is reduced to a relatively low level
or even zero. For those violating the contract, the punishment will be conducted, which
effectively prevents some participants from profiting by deliberately violating the contract.

With the above considerations, EV users who are willing to trade, need to hand in
an entrance fee when they enter the day-ahead part. The entrance fee, which is a form of
deposit, is fixed for the duration of an EV’s whole trading process, unless this EV owner
breaks the contract.

When contract violation occurs, the compensation money will be obtained directly
from the defaulter’s entrance fee and will be transferred to the electronic wallet of affected
EV or CSO. EVs affected by violation will trade with CSO in RTM.

2.3. Trading Process

The trading process includes DAM and RTM. DAM is cleared by the double auction
mechanism among EVs and smart match mechanism between CSO and EVs. The EVs that
fail to match in DAM needed to enter RTM and trade with CSO at the RTM clearing price
(RTM-CP). For buyers, RTM-CP is generally higher than DAM’s clearing price. For sellers,
RTM-CP is generally below the DAM’s clearing price. The framework of the whole trading
process is depicted in Figure 1.

(a) In the double auction mechanism, EVs that are willing to take part in energy trading
hand in an entrance fee and submit their bidding information, including trading role
(buyer or seller), bidding quantity and price, and their trading time. It is worth noting
that, when multiple participants offer the same bidding price, the credit degree is
used as a secondary indicator to analyze the ranking sequence of participants in the
auction. After clearing results, the EVs that fail to match, will go to the next step.

(b) In the smart match mechanism between CSO and EVs, CSO dispatches the EVs that
are willing to trade but fail to match. In this step, the objective is to minimize the
operation cost of CSO and maximize the satisfaction of EVs and social welfare. The
EVs that fail to match will go to RTM. CSO will submit all the trading contract made
in DAM to blockchain before 6 h in the beginning of RTM.

(c) In RTM, in every hour, CSO will check the status of trading based on the contract
made in DAM and record the trading result in blockchain. CSO is responsible for
satisfying the demand of EVs in the charging station. If there is a contract violation,
the compensation and punishment mechanism will be conducted automatically. It
should be pointed out that violators not only need to submit the penalty, but also
their credit degree will be reduced and uploaded to the blockchain, which is very
unfavorable in the subsequent transactions. If EV users trade successfully in RTM,
the entrance fee will be returned to them. After trading in RTM, the trading record
will be updated in blockchain. EV users can get information and cash with CSO.
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Figure 1. Framework of the proposed model.

When the blockchain technology is combined with the power system, the system will
present a decentralized structure, avoiding the security risk brought by the centralized
structure. Some security vulnerabilities are unavoidable in blockchain, so the system
needs to face attacks against these vulnerabilities. Fortunately, blockchain has a decentral-
ized structure. When a node is attacked, the system is not severely affected. In addition,
blockchain can be used to protect the information of users. In addition, blockchain uses
cryptography and other security tools to design different data information storage and
processing methods. Blockchain also has traceability and non-tampering, so the informa-
tion uploaded to blockchain is almost impossible to modify. These security features can
guarantee the private data will not be disclosed.

3. Optimal Bidding Strategy in Double Auction Mechanism

When EV owners are willing to participate in electricity trading at a certain time,
they must choose the role to play in the trading, i.e., buyer or seller. Auctions, including
double auction, are generally an incomplete information game for participants. In other
words, the participants do not have all the characteristics, and payment functions, etc.,
about other participants, and the uncertainty can be represented by probability distribution
mathematically. Figure 2 is the schematic diagram of double auction in this mechanism. As
shown in Figure 2, when buyer r and buyer s make the same bidding price, their ranking
sequence will take into account their credit degree. The credit degree takes into account
the number of violations in previous transactions. When an EV violates the transaction
content in blockchain, CSO has the right to upload the content that records EV’s reduction
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of credit degree to blockchain. Bidding strategy is vital in the double auction. The optimal
bidding strategy is as follows.

Figure 2. Double auction mechanism.

3.1. Optimal Bidding Strategy for Buyer

Firstly, buyer i has an evaluation price of electricity λval
i , which is used to estimate his

rank expectation (denoted as mi and ni) in the double auction mechanism. From Figure 2,
it can be found that mi and ni ultimately determine the buyer’s matching results, which
include three situations, that is, full trading, partial trading, and unsuccessful trading. In
other words, the higher rank expectation is, the more advantage the buyer i has in double
auction. mi and ni can be solved by the following equations:

mi = m(λb,val
i ) =

NB

∑
k=1,k 6=i

P(λb,bid
k > λb,bid

i ) ·Qb,bid
k , (1)

ni = n(λb,val
i ) =

NB

∑
k=1,k 6=i

P(λb,bid
k > λb,bid

i ) ·Qb,bid
k + Qb,bid

i . (2)

After determining mi and ni, the buyer i will determine the probability of its matching
state. Set a as the auction breakpoint and o as the value of the breakpoint a on the x axis.
It can be seen in Figure 2, when ni is less than o, the buyer i will match successfully in
the double auction mechanism, and when mi is greater than o, the buyer i will fail to
match. In other cases, buyers can only get less electricity than what they bid for. Therefore,
the probability of the above three cases can be expressed as P(ni < o), P(mi > o), and
P(mi < o < ni), respectively:

λb,bid
i

∗ = argmax{ [E( |o−mi|
ni −mi

∣∣∣∣mi < o < ni) · P(mi < o < ni) + P(ni < o)] ·Qb,bid
i · (λb,val

i − λb,bid
i )}, (3)

where E( |o−mi |
ni−mi

∣∣∣mi < o < ni) represents the expected ratio of buyer i’s successfully-

matched quantity to their whole demand, when mi is less than o and ni is greater than
o.

According to the above planning problem for buyers, set the bidding strategy function

λb,bid
i = φ(λb,val

i ) and Pb(λ
b,bid
i ), and the latter transforms the original function into the

following expression:

λb,bid
i

∗ = argmax(Pb(φ
−1(λb,bid

i )) ·Qb,bid
i · (φ−1(λb,bid

i )− λb,bid
i )). (4)
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The simplified planning problem is similar to the form in Reference [50]. Through
the derivation reported in Reference [50], the expression of the optimal bidding strategy
function can be obtained and is given as below:

φ(λb,val
i ) = λb,val

i −
∫ λb,val

i
0 Pb(x)dx

Pb(λ
b,val
i )

. (5)

Appendices A and B shows the derivation of optimal bidding strategy function and
provides the proof that the optimal bidding strategy function above to maximize earnings
of buyer i, i.e., the optimal solution to the planning problem.

3.2. Optimal Bidding Strategy for Seller

The optimal bidding strategy from the seller’s perspective is similar to that of the
buyer.

The rank expectation of seller j (denoted as pj and qj) is expressed as follows:

pj = p(λs,val
j ) =

NS

∑
k=1,k 6=j

P(λs,val
k < λs,val

j ) ·Qs,bid
k , (6)

qj = q(λs,val
j ) =

NS

∑
k=1,k 6=j

P(λs,val
k < λs,val

j ) ·Qs,bid
k + Qs,bid

j . (7)

The planning problem that seller j should offer his bidding is mathematically described
as follows:

λs,bid∗
j = argmax{ [E(

∣∣o− pj

∣∣
qj − pj

∣∣∣∣∣pj < o < qj) · P(pj < o < qj) + P(qj < o)] ·Qs,bid
j · (λs,val

j − λs,bid
j )} (8)

Similarly, for sellers, set the bidding strategy function λs,bid
i = φ(λs,val

i ) and Ps(λ
s,bid
i ),

and the latter transforms the original function into the following expression:

λs,bid
i

∗ = argmax(Ps(φ
−1(λs,bid

i )) ·Qs,bid
i · (φ−1(λs,bid

i )− λs,bid
i )). (9)

It should be noted that the boundary condition is φ(λs,bid
max ) = 0, which is different

from the situation for buyers as shown in Appendices A and B. Hence, the optimal bidding
strategy function for seller j is:

φ(λs,val
j ) = λs,val

j − λs,val
max · Ps(λ

s,val
max ) +

∫ λs,val
max

λs,val
j

Ps(x)dx

Ps(λ
s,val
j )

. (10)

After buyers and sellers submit their bidding information, the trading price is cleared
and set as the mean value of the bidding price of the seller and buyer to have a successful
match [51].

4. Smart Match Mechanism

After double auction among EVs, some participants achieved their purpose (buying or
selling electricity) and left DAM. The remaining participants are at a deadlock because their
bidding prices cannot be matched. The transaction cannot proceed unless the remaining
participants compromise their bidding price or other trading policies are provided. It was
pointed out that a detailed correlation between blockchain, power market mechanism, EV
charging stations, sustainability, social responsibility, corporate governance, and business
performance is essential for smart cities development to enhance quality of life [52–54].
Therefore, in the smart match mechanism, CSO has the right to manage the charge and
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discharge strategy, conduct the shift strategy among these unmatched EVs in the double
auction mechanism, and aim to pursue higher personal gains as well as social welfare.

In the shift strategy, CSO offers a price that may be higher than RTM-CP in the double
auction mechanism to the unmatched seller and a price that may be lower than RTM-CP
in the double auction mechanism to the unmatched buyer. However, participants in the
smart match will not be able to control their charge and discharge time. Through buying
energy from unmatched sellers and selling energy to unmatched buyers, CSO dispatches
unmatched EVs’ charge and discharge strategy. In other words, CSO changes buyers’
charge and sellers’ discharge behavior to meet their demand according to their parking
time in the charging station. Figure 3 shows the shift strategy. Considering the behavior of
EV users, as an example, the EV parking time is set as 8 h, and charging and discharging
behavior will be managed in 8 h.

Figure 3. Shift strategy of CSO in smart match mechanism.

4.1. Objective Function

min C = Cop + w1 · δsat + w2 · δsw (11)

The optimization problem of CSO consists of three components, i.e., operational cost,
satisfaction of EV, and social welfare. Operational cost includes the net cost of buying
energy from unmatched sellers and selling energy to unmatched buyers:

Cop =
NT

∑
t=1

(
NS

∑
j=1

Qs,ori
j,t · λs

CSO,j −
NB

∑
i=1

Qb,ori
i,t · λb

CSO,i). (12)

CSO also considers the satisfaction of EV users, including the cost of trading with
CSO in RTM and the difference of contract price and original bidding price of unmatched
EVs. Mean and variance are considered to evaluate the price difference:

δsat =
NB

∑
i=1

δb
sat,i +

NS

∑
j=1

δs
sat,j, (13)

δb
sat,i= (λb

CSO,i −

NT

∑
t=1

Qb,ori
i,t · Ib,ori

i,t · λb,bid
i,t

NT

∑
t=1

Qb,ori
i,t · Ib,ori

i,t

)2 +
NT

∑
t=1

(1− αi) ·Qb,ori
i,t · λb

RTM,i, (14)

δs
sat,j= (λs

CSO,j −

NT

∑
t=1

Qs,ori
j,t · I

s,ori
j,t · λ

s,bid
j,t

NT

∑
t=1

Qs,ori
j,t · I

s,ori
j,t

)2 −
NT

∑
t=1

(1− β j) ·Qs,ori
j,t · λs

RTM,j. (15)
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In addition to satisfying the EVs’ demand, CSO also has social welfare to minimize the
power unbalance of the system. CSO should consider the forecasted demand of suburban
system in DAM. γ denotes the market shares of charging station:

δsw =
NT

∑
t=1

∣∣∣γ · Dfore
t − Pnet

CSO,t

∣∣∣. (16)

Net power in charging station is denoted as follows:

Pnet
CSO,t = (

NS

∑
j=1

Qs,sh
j,t −

NB

∑
i=1

Qb,sh
i,t ) + (

NS

∑
j=1

(1− β j) · Is,ori
j,t ·Q

s,ori
i,t −

NB

∑
i=1

(1− αi) · Ib,ori
i,t ·Qb,ori

i,t ). (17)

4.2. Constraints

(a) Physical constraints:

NT

∑
t=1

Ib
i,t ≤

NT

∑
t=1

Ib,ori
i,t ,

NT

∑
t=1

Is
j,t ≤

NT

∑
t=1

Is.ori
j,t . (18)

In the shift strategy, the shift time is limited, to avoid the charge and discharge strategy
too scattered:





8

∑
t=1

Qb,sh
i,t = αi ·

8

∑
t=1

Qb,ori
i,t · Ib,ori

i,t ,
8

∑
t=1

Qs,sh
j,t = β j ·

8

∑
t=1

Qs,ori
j,t · I

s,ori
j,t

16

∑
t=9

Qb,sh
i,t = αi ·

16

∑
t=9

Qb,ori
i,t · Ib,ori

i,t ,
16

∑
t=9

Qs,sh
j,t = β j ·

16

∑
t=9

Qs,ori
j,t · I

s,ori
j,t

24

∑
t=17

Qb,sh
i,t = αi ·

24

∑
t=17

Qb,ori
i,t · Ib,ori

i,t ,
24

∑
t=17

Qs,sh
j,t = β j ·

24

∑
t=17

Qs,ori
j,t · I

s,ori
j,t

. (19)

Constraint (19) is utilized to ensure the same energy charged or discharged as the
original plan in the parking time after the shift strategy. Considering the behavior of
EV users, the EV parking time is set as 8 h, hence the dispatch time is decomposed into
three parts.

(b) Trading constraints:

1

M
· Ib

i,t ≤ Qb,sh
i,t ≤ M · Ib

i,t,
1

M
· Is

j,t ≤ Qs,sh
j,t ≤ M · Is

j,t. (20)

Constraint (20) shows the relationship between the transferred power and the trans-
ferred state and the shift energy is limited to zero when the shift status is zero at time slot t.
M is a big positive number.

Ib
i,t ≤ αi, Is

j,t ≤ β j, (21)

λb
CSO,i ≤ αi ·M, λs

CSO,j ≤ β j ·M. (22)

Constraints (21) and (22) show that when CSO does not sign contract with EVs, the
price offered by CSO and shift status will be set as zero.

0 ≤ Qb,sh
i,t ≤ Qsh

max, 0 ≤ Qs,sh
j,t ≤ Qsh

max. (23)

Constraint (23) sets the charge and discharge rate per hour below the maximum.

αi ≤
NT

∑
t

Ib,ori
i,t , β j ≤

NT

∑
t

Is,ori
j,t . (24)
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Constraint (24) gives the relationship between contract formation status and initial
charge (or discharge) state.

Ib
i,t ≤ 1− Ib,auc

i,t , Is
j,t ≤ 1− Is,auc

j,t . (25)

Constraint (25) indicates that the shift strategy cannot transfer the service within the
time, in which trading happened between EVs.

To reduce computational complexity, the absolute value in Equation (16) is replaced
by auxiliary variables βt

1 and βt
2:

γ · Dfore
t − Pnet

CSO,t + βt
1 − βt

2 = 0, (26)

βt
1 ≥ 0, βt

2 ≥ 0, ∀t. (27)

The social welfare function is transformed into Equation (28) as shown below:

δsw =
NT

∑
t=1

(βt
1 + βt

2). (28)

5. Results and Discussion

The effectiveness and validity of the proposed model are proved by utilizing the
EV data obtained from [55]. 140 EV buyers and 100 EV sellers are chosen to take part
in the double auction mechanism. The data of 240 participants will be shown partly in
Appendix C. After the double auction mechanism, the EVs that do not match successfully
will participate in the smart match process automatically. The trading result is cleared by
CSO. The constant parameters used in the experiment are shown in Table 1.

Table 1. Constant parameters used in the experiment.

λb
RTM,i ($/kWh) λs

RTM,j ($/kWh) w1 w2 Qsh
max (kWh) γ M

0.25 0.15 1000 100 50 0.05 1000

Three cases will be considered. Case 1 is to demonstrate the effectiveness of the double
auction mechanism. Case 2 focuses on the significance of the smart match conducted by
CSO. Case 3 is utilized to show the blockchain interface. Case 1 and Case 2 are conducted
on a Windows 10 64-bit personal computer with Intel Core i5-6500 3.2 GHz CPU and 8 GB
of RAM using MATLAB 2016b with YALMIP and Gurobi. Case 3 is conducted by Python
3.8 and Postman.

5.1. Double Auction Mechanism

In Case 1, it is assumed that the price of electricity has a standard normal distribution
and the mean value is set as 0.2 $/kWh. The charging price and discharging price in RTM
are set as 0.25 and 0.15 $/kWh, respectively. After EV users submit their bidding price,
the double auction mechanism is cleared by CSO. In Figure 4, the bidding price of all
participants at hour 5 is ranked by price and the left part of intersection is regarded as a
successful match. For the rest, buyer and seller fail to close the deal.
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Figure 4. Bidding information at hour 5.

According to price ranking in Figure 4, Buyer 13 will buy 4.2 kWh electricity from
Seller 16 and 2.2 kWh electricity from Seller 54 in hour 5. The trading price is set as mean
value of bidding price of buyer and seller. Buyer 30 and Seller 69 cannot match and will
take part in the smart match automatically. The evaluation and the quantity are important
indicators of participants’ bidding price. From the buyer’s point of view, the evaluation
price of Buyers 13, 22, and 30 are 0.1972, 0.1967, and 0.1603 $/kWh, respectively, and the
electricity quantity are 6.6, 4.4 and 1.1 kWh, respectively. Buyer 13 has the highest electricity
quantity (equal to 6.6 kWh) and the highest evaluation price (equal to 0.1972 $/kWh) in
the 5th hour, so this is the highest bidding price (equal to 0.2034 $/kWh) to maximize
the successful trading probability. From the seller’s point of view, the evaluation price
of Sellers 16, 54, 29 and 69 are 0.1842, 0.1861, 0.1866 and 0.2094 $/kWh, respectively,
and the electricity quantity are 4.4, 5.5, 1.1, and 6.6 kWh, respectively. Seller 16 has the
lowest evaluation (equal to 0.1842 $/kWh), so this is the lowest bidding price (equal to
0.1834 $/kWh) to maximize the successful trading probability.

5.2. Smart Match Mechanism

In Case 2, CSO optimizes the shift strategy, considering the satisfaction of EV users
and social welfare, which are both introduced detailly in Section 4. For the satisfaction
of EV users, CSO will select some of the unsuccessful matching EVs to sign the contract
and minimize the deviation between the bidding price and contract price. For the social
welfare, CSO will manage the charging and discharging time of EVs, adjust the net power
of the charging station, and make the integrated load smooth, considering forecasted load
of the distribution system and market shares of the charging station. As an organization
that pursues profits, the CSO has an appropriate incentive to pursue higher benefits out of
the consideration of benefits, such as benefits obtained by improving the balance of the
load curve.

The suburban load curve is shown in Figure 5 [56]. Figure 6 shows the effectiveness of
the shift strategy from the perspective of a CSO. In this case, the market share of selected
CSO is set to 5%, which is reflected in the order of magnitude of Figures 5 and 6. In
Figure 6, it can be easily found that the total power consumption (including urban power
consumption and EV power consumption) is effectively adjusted to a flatter level after
the implementation of the transfer strategy. Especially in the 16th–24th hours, the effect
is obvious. In the 20th and 21st hours, the peak power consumption of the whole day
will be greatly weakened, and this part of the power consumption will be transferred to
23rd and 24th hours. The shift strategy can alleviate the load peak effectively by reducing
the quantity from 182 to 146.5 kW, which is a 19.5% improvement. It will help reduce the
pressure on the power distribution operation.
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Figure 5. Load curve.

Figure 6. Comparison of load curve.

5.3. Analysis of Global Indicators in Cases 1 and 2

The day-ahead market consists of Cases 1 and 2. Firstly, the global situation of the
double auction in Case 1 is analyzed. Tables 2 and 3 show the result of the buyer and
seller in the double auction with a different bidding price strategy. The former is under
the optimized bidding method proposed in this paper, and the latter is under the original
bidding method in [50]. For buyers who successfully participate in DAM, the profit is
defined as cost reduction obtained by cost with trading minus cost without trading. For
sellers who successfully participate in DAM, the profit is defined as a revenue enhancement
obtained by revenue with trading minus revenue without trading:

Pb
i = Cb

i,nt − Cb
i,t, Ps

j = Rs
j,t − Rs

j,nt. (29)

Table 2. Result of the double auction mechanism with optimal bidding price.

Number of
Transactions

Total Profit ($)
Total Profit Increase

(%)
Mean of
Profit ($)

Buyer 68 18.45 22.74 0.271
Seller 51 13.99 28.75 0.274
Total 119 32.44 - 0.273

Table 3. Result of the double auction mechanism with original bidding price.

Number of
Transactions

Total Profit ($)
Total Profit Increase

(%)
Mean of
Profit ($)

Buyer 13 3.15 19.42 0.242
Seller 11 3.33 34.28 0.303
Total 24 6.48 - 0.270
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Through the comparison of Tables 2 and 3, it can be found that the optimal bidding
method proposed in this paper will greatly promote the matching between buyers and
sellers, in which the number of transactions increases from 24 to 119, and the total profit
increases from $ 6.48 to $ 32.44. This is because the optimal bidding price proposed in
this paper considers rank expectation, including value price and bidding quantity. On the
contrary, the original bidding price only considers the value price, so the bidding price
with original method cannot match precisely. Therefore, participants with the optimal
strategy are more likely to match successfully in the double auction than those with the
original strategy.

Table 4 shows the result of the buyer and seller in the smart match mechanism. After
the double auction mechanism and smart match mechanism, both buyer and seller will
obtain profit, which is detailed in Table 5.

Table 4. Result of the smart match.

Number of
Transactions

Total Profit ($)
Total Profit

Increase (%)
Mean of
Profit ($)

Buyer 134 54.70 29.55 0.408
Seller 90 56.42 68.12 0.627
Total 224 111.12 - 0.496

Table 5. Result of the day-ahead trading process (including double auction and smart match).

Number of
Transactions

Total Profit ($)
Total Profit

Increase (%)
Mean of
Profit ($)

Buyer 139 73.15 22.79 0.526
Seller 100 70.42 53.54 0.704
Total 239 143.57 - 0.601

Table 4 shows the global information in the smart match. It can be seen that partici-
pants will get more profits in the smart match than in the double auction. The mean of profit
in the smart match is $ 0.496, which is significantly higher than $ 0.273 in the double auc-
tion. However, according to the smart match mechanism, their charging and discharging
behavior will be managed and their bidding time will be shifted to another time.

Table 5 shows the trading information of the whole process in the day-ahead market,
which includes the double auction and smart match. Some EVs cannot complete the
transaction in the day-ahead market due to over valuation or malicious bidding, so they
need to enter the real-time market and accept the real-time price. Therefore, the trading
mechanism can also avoid the malicious bidding to a certain extent. In the 5th hour, for
example, Buyer 30 enters DAM with a very low bidding price, which can be seen as a
malicious bidding. Obviously, this bidding will not be accepted in the double auction,
because no seller is willing to accept such a low price as shown in Figure 4. Similarly, it
will not be accepted by the CSO in the smart match, because CSO can select participants
with better bidding from the 5th hour and nearby hours.

5.4. Sensitivity Analysis

Figure 7 describes the mean value of profit of buyers and sellers in the double auction
mechanism and the whole trading process. In Figure 7a, the number of buyers is 140
and the number of sellers changes from 100 to 170. In Figure 7b, the number of sellers is
140 and the number of buyers changes from 100 to 170. For each situation, the number
of participants changes. Because the evaluation of electricity is in random normal form,
when the number of buyers or sellers changes, the evaluation of electricity changes. The
bidding strategy will change based on the evaluation, leading to different trading results.
From Figure 7, it can be seen that mean value of profit in the double auction is changed
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from $ 0.25 to $ 0.4, and mean value of profit in trading is changed from $ 0.47 to $ 0.7.
Participants can always gain profits from the trading mechanism.

Figure 7. (a). Profit with the change of the number of sellers. (b). Profit with the change of the number of buyers.

5.5. Application of Blockchain

Python is used to build a blockchain and interact information by software Postman to
simulate the process of trading.

First, buyers and sellers participating in the day-ahead market need to upload and pub-
lish their own information, including electricity quantity, price, and entry time. Their user
names are kept confidential with hash values, and other information is always open. The
username of Buyer 125 is converted to hash value “81ef01a9fed5a1f0cc89ea14730f061570cb79
5474163307725f07f6a5e5b20e”, which prevents personal information from being leaked.
In addition, the hash value of the previous block, proof of work, and timestamp is also
included in the block. These indicators ensure the normal continuation of the blockchain.

After receiving the personal information uploaded by participants, miners will use a
cryptographic hash algorithm to solve the hash value. The first miner who figures out the
correct hash will get the right to validate the transaction into blocks and records it on the
blockchain. The miner will then receive some tokens as a reward.

The double auction and smart match will generate some matching information, such
as buyer i matches seller j, buyer k matches CSO, and so on. After the matching result
is uploaded to the blockchain, as the final clear result and requirements for participants
to trade according to the block. Punishment is necessary for those who violate the block.
Blockchain is open and transparent. Therefore, even without third-party supervision, the
security of the trading process is guaranteed. This mechanism can improve the security of
transactions between EVs. Various business models needed to be considered [57].

6. Conclusions

This paper presents a novel electricity trading mechanism for EV charging stations,
mainly including double auction, smart match, and blockchain mechanism. A total of
140 EVs are selected as buyers and 100 EVs as sellers, to simulate a charging station model
and consider the interaction with the power grid utilizing suburban load in the distribution
system. From the perspective of personal interest, the number of successful transactions
increases from 24 to 119 and the total return increases from $ 6.48 to $ 32.44 after the
rank expectation proposed is considered. Due to the introduction of rank expectation,
participants can understand more clearly about other participants in the auction and make
more accurate judgments, resulting in a significant increase in the number of successful
transactions. Smart match mechanism reduces the impact on the power grid by scheduling
the charging and discharging behavior of EVs with consideration of satisfaction of EV users.
Simulations demonstrate the effectiveness of the proposed model. EV users can benefit
from the double auction mechanism and smart match mechanism. From the perspective of
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social welfare, the peak load reduces from 182 to 146.5 kW, which is a 19.5% improvement
after executing the smart match. This is because social welfare, referred to in this paper as
the fluctuating level of load, is taken fully into account. To sum up, the trading mechanism
can not only absorb nearby energy, but also has a positive impact on the grid stability.
A number of issues in the electric vehicle industry have to be considered, such as policy
implementation, technology innovation, and the whole supply chain. This work will be
considered in the near future.
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Abbreviations

Variables and Functions:

mi, ni Rank expectation of buyer i

pj, qj Rank expectation of seller j

λb,val
i , λs,val

j Evaluation price of buyer i and seller j

λb,bid
i , λs,bid

j Bidding price of buyer i and seller j

Qb,bid
i , Qs,bid

j Bidding quantity of buyer i and seller j

P Probability function

Pb, Ps Probability function for bidding of buyer and seller

λb,bid
i

∗, λs,bid
j

∗ Optimal bidding price of buyer i and seller j

E Mathematical expectation

φ Bidding strategy function

Ib,ori
i,t , Is,ori

j,t Original trading status of buyer i and seller j

Qb,ori
i,t , Qs,ori

j,t Original trading quantity of buyer i and seller j

λb,bid
i,t , λs,bid

j,t Bidding price of buyer i and seller j in double auction

Ib,auc
i,t , Is,auc

j,t Trading status of buyer i and seller j in double auction

obj Objective function of charging system operator

Cop Operational cost

δsat Satisfaction of EV users

δsw Social welfare

λb
CSO,i, λs

CSO,j Price that charging system operator provides to buyer i and seller j

δb
sat,i, δs

sat,j Satisfaction of buyer i and seller j

αi, β j Trading status of charging system operator with buyer i /seller j

Pnet
CSO,t Net power of charging station

Ib
i,t, Is

j,t Trading status of buyer i and seller j in smart match mechanism

Qb,sh
i,t , Qs,sh

j,t Quantity shifted of buyer i and seller j in smart match mechanism

βt
1, βt

2 Auxiliary variable

F Bidding strategy function

59



Electronics 2021, 10, 307

Pb
i , Ps

j Profit of buyer i and seller j

Cb
i,nt, Cb

i,t Cost of buyer i without trading and with trading

Rs
j,nt, Rs

j,t Revenue of seller j without trading and with trading

Constants and Sets:

a Breakpoint in double auction mechanism

o The value of the breakpoint a on the x axis

λs,bid
max , λs,val

max Maximum bidding price and evaluation price of seller

NB, NS Number of buyer and seller

NT Number of time slot

λb
RTM,i, λs

RTM,j Price offered to buyer i and seller j in real-time market

w1, w2 Weight value in objective function

Qsh
max Maximum quantity shifted in smart match mechanism

γ Market shares of charging station

Dfore
t Forecasted demand in distribution system

M Big positive constant

Appendix A.

Define F(λb,bid
i ) = Qb.bid

i · (φ−1(λb,bid
i ) − λb,bid

i ) · Pb(φ
−1(λb,bid

i )), and the bidding
function is expressed as:

λb,bid
i

∗ = argmax(F(λb,bid
i )) = argmax(Qb.bid

i · (φ−1(λb,bid
i )− λb,bid

i ) · Pb(φ
−1(λb,bid

i ))). (A1)

Then according to the first order optimal condition, the derivative of the objective
function with respect to bi is equal to 0 at the maximum. Hence:

0 = Qb,bid
i · [−Pb(φ

−1(λb,bid
i )) + pb(φ

−1(λb,bid
i ))(φ−1(λb,bid

i ))′(φ−1(λb,bid
i )− λb,bid

i )]. (A2)

Considering (φ−1(bi))
′ = 1

φ′(φ−1(bi))
, the following equation can be obtained:

pb(λ
b,val
i )(λb,val

i − λb,bid
i )− Pb(λ

b,val
i )φ′(λb,val

i ) = 0. (A3)

Equation (A3) simplifies to:

d

dvi
(Pb(λ

b,val
i )φ(λb,val

i )) = λb,val
i pb(λ

b,val
i ). (A4)

The boundary condition is φ(0) = 0. By integrating both sides of Equation (A4) from
0 to vi:

Pb(λ
b,val
i )φ(λb,val

i ) =
∫ λb,val

i

0
xpb(x)dx. (A5)

After simplification, the optimal bidding strategy function is expressed as: φ(λb,val
i ) =

λb,val
i −

∫ λb,val
i

0 Pb(x)dx

Pb(λ
b,val
i )

.

Appendix B.

In Appendix A, the derivative of the objective function is proved to be 0 when bidding

price is φ(λb,val
i ). However, the second-order sufficient condition has not yet been proved,

so it is not known whether λb,bid
i = φ(λb,val

i ) is a maximum, a minimum, or even not an
extremum. Hence, the following is proved for its second order sufficient condition.

The derivative of optimal bidding strategy function is:

φ′(λb,val
i ) =

pb(λ
b,val
i ) ·

∫ λb,val
i

0 Pb(x)dx

Pb(λ
b,val
i )

2
. (A6)
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From Equation (A6), it can be seen that φ′(λb,val
i ) ≥ 0, because Pb(λ

b,val
i ) and its

derivative are not negative for any λb,val
i .

According to Equation (A2), the derivative of the objective function can be expressed as:

F′(λb,bid
i )

= Qb,bid
i · [pb(φ

−1(λb,bid
i ))(φ−1(λb,bid

i ))′(φ−1(λb,bid
i )− λb,bid

i )

−Pb(φ
−1(λb,bid

i ))]

= Qb,bid
i · [ pb(φ

−1(λb,bid
i ))(φ−1(λb,bid

i )−λb,bid
i )

φ′(φ−1(λb,bid
i ))

− Pb(φ
−1(λb,bid

i ))]

(A7)

So, the second derivative of the objective function can be expressed as:

F′′ (λb,bid
i )/Qb,bid

i

= d
dvi

(
pb(λ

b,val
i )

φ′(λb,val
i )

) · [φ−1(λb,bid
i ))′ · (λb,val

i − λb,bid
i )− 2pb(vi)(φ

−1(λb,bid
i )]′

= d
dvi

(
pb(λ

b,val
i )

]φ′(λb,val
i )

) · 1

φ′(λb,val
i )
·
∫ λb,val

i
0 Pb(x)dx

Pb(λ
b,val
i )

− 2
pb(λ

b,val
i )

φ′(λb,val
i )

(A8)

Considering φ′(λb,val
i ) ≥ 0 and Pb(λ

b,val
i ) ≥ 0, multiply both sides of Equation (A8)

by φ′(λb,val
i ) · Pb(λ

b,val
i ), the following equation is obtained:

F′′ (λb,bid
i ) · φ′(λb,val

i ) · Pb(λ
b,val
i )/Qb,bid

i

= d

dλb,val
i

(
pb(λ

b,val
i )

φ′(λb,val
i )

) ·
∫ λb,val

i
0 Pb(x)dx− 2pb(λ

b,val
i ) · Pb(λ

b,val
i )

(A9)

Substituting φ′(λb,val
i ) =

pb(λ
b,val
i )·

∫ λb,val
i

0 Pb(x)dx

Pb(λ
b,val
i )

2 in Equation (A9), the following equa-

tion could be obtained:

F′′ (bi) · φ′(λb,val
i ) · Pb(λ

b,val
i )/Qb,bid

i

= d

dλb,val
i

(
Pb(λ

b,val
i )

2

∫ λb,val
i

0 Pb(x)dx

) ·
∫ λb,val

i
0 Pb(x)dx− 2pb(λ

b,val
i ) · Pb(λ

b,val
i )

= 2pb(λ
b,val
i ) · Pb(λ

b,val
i )− Pb(λ

b,val
i )

3

∫ λb,val
i

0 Pb(x)dx

− 2pb(λ
b,val
i ) · Pb(λ

b,val
i )

= − Pb(λ
b,val
i )

3

∫ λb,val
i

0 Pb(x)dx

< 0

(A10)

It is identified that F′′ (λb,bid
i ) < 0. The highest earnings could be obtained when buyer

i adopts the bidding strategy λb,bid
i = φ(λb,val

i ).

Appendix C.

Table A1 shows the charging behavior of buyers numbered 1 to 10 out of 140 buyers
and buyers numbered 1 to 10 out of 100 buyers in 24 h. Each row represents a time period,
each column represents a buyer’s/seller’s number, and the data in the table represent the
charging/discharging quantity in kWh.
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Table A1. Partial data of buyers’ charging/sellers’ discharging behavior.

Buyers Sellers

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 6.6 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 4.4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 1.1 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 1.1 0 0 0 0 0 0 0 1.1 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 2.2 0 0 1.1 0 0 0 0 0
11 0 0 0 0 1.1 0 1.1 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 3.3 1.1 1.1 0 0 1.1 1.1 0 0 0 0 0 0 0 0 0 2.2 0 0
13 0 0 0 6.6 0 0 0 0 0 0 0 0 0 0 0 3.3 0 0 0 0
14 0 2.2 0 5.5 0 0 0 0 0 0 0 0 0 0 1.1 0 0 0 0 0
15 3.3 2.2 0 0 0 0 0 1.1 0 0 0 0 0 0 1.1 0 0 0 0 1.1
16 0 0 0 0 0 0 0 0 0 1.1 3.3 2.2 0 0 0 1.1 0 0 0 1.1
17 0 0 0 0 0 0 0 2.2 0 1.1 0 6.6 0 2.2 0 0 3.3 0 0 0
18 0 1.1 0 0 0 2.2 0 0 0 0 0 1.1 0 1.1 2.2 0 0 0 0 2.2
19 1.1 0 0 0 0 0 0 0 0 0 0 0 0 6.6 4.4 1.1 4.4 0 0 0
20 0 0 0 0 0 0 0 1.1 6.6 0 0 0 3.3 2.2 0 0 6.6 0 2.2 1.1
21 0 0 0 0 0 0 0 0 4.4 0 0 0 2.2 0 0 0 2.2 0 0 6.6
22 0 0 0 0 0 1.1 0 0 0 0 0 0 0 0 0 0 0 0 0 6.6
23 0 0 0 0 0 0 2.2 0 0 0 0 0 0 0 0 0 0 0 0 4.4
24 0 0 0 0 0 5.5 1.1 0 0 0 0 0 0 0 0 0 0 0 0 0
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Abstract: The race against climate change has been a great challenge for years, and the UK govern-

ment has taken serious steps towards achieving the net-zero carbon target by 2050. Technology is

leading the way and innovation is believed to be a key solution. Nevertheless, tackling the issue,

by attempting to limit the waste in energy, due to negative energy usage behaviour, has proven to

be a successful approach that is capable of complementing other technology-based initiatives. The

first step towards this is to promote energy-conscious behaviour and pinpoint where savings can be

made. Thereby, this paper contributes to the existing literature, by presenting a new methodology to

identify potential energy waste and negative energy usage behaviour in an NHS hospital. The paper

presents an analysis of electricity consumption vs occupancy during minimal consumption periods

(i.e, bank holidays and weekends) and it presents a log of equipment left switched on outside of

working hours, in order to highlight the level of energy-conscious behaviour. The results revealed

that the proposed technique is not only able to identify negative energy usage behaviour amongst the

hospital staff but helps identify areas where immediate energy savings can be made, with potential

savings of more than 30,000 pounds, if action is taken.

Keywords: energy usage behaviour; occupancy monitoring; energy conservation; out-of-hours

consumption; energy consumption monitoring

1. Introduction

Management of energy consumption and carbon emissions has been an ongoing
challenge for years and has lead to high energy costs and negative impacts on the en-
vironment [1,2]. Presently, excessive energy consumption and carbon emissions pose
environmental threats on a domestic and non-domestic level in the United Kingdom (UK);
with energy contributing to both economic and social development [3], controlling it
is crucial.

The building sector is an active energy consumer [4], accounting for 40% of the energy
consumed in the European Union [5] and 34% of the world’s total energy consumption [3],
with 9% for commercial ones, as per the International Energy Agency (IEA). This trans-
lates into 12% of global CO2 emissions [6]. Efforts have been made, and several studies
conducted, to address energy conservation in the building sector. Some research studies
rely on achieving energy efficiency, by targeting heating ventilation and air conditioning
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(HVAC) systems, lighting, and office equipment [5,7,8]; other studies focus on energy
usage behaviour [9–14]. However, and to the best of the authors’ knowledge, relatively
little attention has been given, in the literature, to the analysis of energy consumption
for identifying where (and how) energy is wasted, i.e., is it due to negative energy usage
behaviour?

The attitudes and conduct of individuals towards energy usage, here and after re-
ferred to as ‘energy usage behaviour’, can have a significant impact on overall energy
consumption [15]. An often-repeated phrase in this paper is “negative behaviour” or
“negative energy usage behaviour”, and it refers to actions taken by individuals, resulting
in unnecessary consumption of energy. An example of negative energy usage behaviour is
leaving equipment/appliances powered on when not in use, resulting in unnecessary high
consumption of electricity. Steps toward improving energy usage behaviour can be made,
without the need to spend substantial amounts of money on energy-saving measures, if the
focus is turned towards behavioural change [16]. One key step in enabling behavioural
change is monitoring consumption over prolonged periods of time to establish a strong
baseline, which is a crucial stage in building successful energy management plans [17–19].
Baseline data can be further used for waste analysis, identifying behavioural patterns,
and comparison with the post interventions’ consumption, in order to highlight the impact
of the introduced energy-saving measures.

This paper presents an analysis of the data collected during a field study, conducted
in Medway NHS Foundation Trust (MWNFT), a hospital in the south-east of England,
in order to promote energy-conscious behaviour amongst the members of staff, using
persuasive technology [20]. The data collected during the study and analysed in this paper
includes half-hourly electricity consumption, occupancy numbers by members of staff
and patients, responses to relevant questions from a “Views and Ideas on Energy Usage
and Behaviour” questionnaire, and the results of an equipment audit performed outside
of working hours. The paper builds on the work in [2], which presented a framework
designed to address the energy usage behaviour issue in MWNFT. Moreover, the work
in [2] highlighted the main building blocks of the system and the techniques implemented
to collect the data during the study period. Nevertheless, the focus in the current paper is
on analysing the electricity and occupancy data, collected during the baseline period of the
field study, in order to identify the possible presence of negative energy usage behaviour.
The idea is to show that by performing basic analysis of electricity consumption patterns
outside of working hours, waste can be identified and linked to potential negative energy
usage behaviour. Studies in the literature have shown that behavioural interventions can
record immediate savings of up to 21.9%, without the need for introducing invasive and
expensive energy measures [21].

Research Contribution and Impact

This section is intended to summarise the contributions made by the work presented
in this paper, that is, why they are deemed significant contributions, and the potential
impact they can have on the field and particularly, in assisting other research studies that
are focused on the behavioural change side of energy management.

1. A novel methodology is proposed, in order to identify where energy is wasted by
analysing the electricity consumption of two independent clinical and non-clinical
areas in MWNFT. This involves the analysis of electricity consumption patterns,
in light of occupancy and the consideration of the member’s of staff mindset and
behaviour towards energy usage, through a questionnaire and an equipment audit to
pinpoint which equipment is left switched on unnecessarily.
Significance and Impact: This contribution is believed to be a game changer, when it
comes to energy management. Studies, such as [5,22–24], that focus on the high energy
consumption problem tend to overlook the “Why?” question and focus on bringing
down the numbers by introducing energy-saving measures. However, there are far
simpler and cheaper methods to bring down energy, carbon emissions, and costs.
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The Department for Energy and Climate Change (DECC) have published several
energy efficiency guidelines for the community to follow. In [25], the DEEC were
providing guidelines to small and medium-sized enterprises (SMEs), in relation to
energy efficiency. The main focus of the report was to point out basic and cheap
measures to reduce wasted energy, in order to cut down energy costs. Several case
studies were reported, including that of the Chinese Contemporary Arts Centre in
Manchester, which managed to save 4363 pounds and 17.6 tonnes of CO2e a year
by installing a 100 pounds timer, after discovering heaters were left switched when
the occupancy of the rooms was zero. Thereby, successfully pinpointing where and
how energy is wasted would enable energy management personnel to focus their
efforts in one place and ensure the maximum effectiveness of the implemented energy
conservation techniques.

2. To the best of the authors’ knowledge, this study is the first of its kind to address the
issue of energy usage behaviour in a hospital environment.
Significance and Impact: Although the analysis and methodology presented are ap-
plicable to data collected in any environment, this research study invites the question
“Why hospitals and not any other type of building?”. The answer to this question lies
in the fact that hospitals are high consumers of energy when compared to other types
of buildings [26]. A study reported that the healthcare sector spends 400 pounds
million per year on energy [27], while another reported 750 million pounds [28]. The
24-h operation of hospitals throughout the year makes it the biggest consumer but
also creates the high potential to save energy in a society [29]. Thereby, it is hoped
that by following the footsteps of this paper, other studies will emerge that tackle the
same issue in other hospitals with the sole purpose of making a collective positive
impact on the environment.

2. Background

In recent years, several research studies have been conducted on the impact of occu-
pants’ behaviour on energy consumption in the building sector [30–33]. The purpose of the
studies was to conduct experiments to show the effectiveness of feedback technology on
occupants’ behaviour towards energy usage.

In line with the feedback theory, providing an individual with feedback is a perfor-
mance indicator of a habit that will drive the individual towards associating their behaviour
and its consequence [34]. In the context of this study, energy consumption feedback is the
provision of visual usage information to the energy users to increase their awareness of
their consumption [35].

The problem tackled by the provision of feedback is the invisibility of energy usage
information to the end-user [36], especially in non-domestic buildings. The invisibility of
usage leads to the lack of consideration of the high energy usage consequences. This turns
the individual to a state of ignorance of the impacts of their actions, that is, negative energy
usage behaviour. A considerable amount of data and information is required to redirect
the individual towards the causes of their actions and make them think about them [35].
Providing feedback to individuals can result in self-awareness of their energy usage, which
leads to energy-conscious behaviour and reduced carbon footprint [37].

A sustained energy-conscious behaviour and reduction in energy consumption cannot
be promoted by merely providing numerical information, but feedback must be combined
with other interventions [35,36], such as goal setting [9,34,38], incentives [11], and en-
ergy delegates [10]. However, the interventions did not account for or measure negative
behavioural patterns amongst the energy users that participated in the studies [33].

Why Was Medway Hospital Selected for This Study?

The particular choice of Medway hospital has two main scientific folds, the first is
the hospital’s status in carbon emissions, compared to other NHS hospitals across the UK
(Figure 1). The second is the fact that MWNFT is considered one of the biggest employers
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in Medway towns and one of the top five NHS hospitals across Kent, Surrey, and Sussex,
with almost 4000 members of staff employed, which made it an ideal location for an energy-
conscious behaviour study. Moreover, working in close proximity of the hospital premises,
during the data collection phase, was an added advantage.

Figure 1. Medway hospital’s carbon emissions compared to NHS Hospitals across the UK (2009

to 2018).

The data plotted in Figure 1 were obtained from publicly available Estates Return
Information Collection (ERIC) reports, and the corresponding carbon emissions were
computed using a 0.3516 kgCO2 per kWh of electricity, conversion factor, as per the
hospital’s energy team. The carbon emission figures in Figure 1 are shown for electricity
only, which was the focus of the pilot study conducted in Medway hospital. The increase
in carbon emissions from 2009 to 2018 shows an average of 4%, compared to other trusts
that showed a 1.5% drop in the five years preceding 2018 as few energy-saving measures
were introduced at Medway hospital during the period.

Previous literature reports on the use of feedback as a performance indicator with a
focus on the types [36] and characteristics of feedback. Discussions and studies emerged
showing the impact of different types of feedback (direct [39–41], indirect, inadvertent [42],
utility-controlled and energy audits [43]), frequency of information provided [35,44,45],
presentation medium [46–48], data units [49,50] and location of feedback [43,45,51].

Negative behaviour towards energy usage is directly tied to waste in energy. Studies
in the literature, such as [1,9,44,51], go on to tackle the increased energy consumption by
targeting behavioural change without identifying that there is, in fact, a behavioural issue.
Although the studies yielded positive results, and the findings do show the effectiveness of
the approaches taken, they focus on implementing a method to influence positive energy
usage behaviour without looking at how and where energy is wasted. The success in such
cases is reliant on the presence of the influencer, which, in busy environments and changes
in members of staff, can result in losing the positive impact.

With current studies of building energy performance, resulting in errors of up to 300%
according to [52,53]. Thereby, the consideration of occupants and their negative behaviour
could have potentially shaped the experiments and resulted in more significant savings and
sustained pro-environmental behaviour. Furthermore, enabling the creation of informed
policies to encourage waste-free energy usage behaviour.

Here, the focus is on the analysis of baseline data to identify potential negative energy
usage behaviour and areas where energy is wasted prior to any interventions, which,
to the best of the authors’ knowledge, is an area that was not previously addressed in the
literature. This study presents a methodology to identify negative energy usage behaviour
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by correlating the electricity consumption with the occupancy, by members of staff and
patients. High consumption periods, with low occupancy, can be flagged as anomalies and
could be further investigated to confirm energy waste. Performing this outside of working
hours, for example during bank holidays, can be an indication of unused equipment being
left switched on, and this is the main focus and contribution in this study.

3. Methodology

This section intends to outline the methods adopted in the study, including the
ward/department selection process, as well as data collection and analyses techniques.
Section 3.1 outlines the selected wards/departments and details of the selection process,
while Section 3.2 provides information on the data collected and presented in this paper as
well as the adopted analysis techniques.

3.1. Selection of the Clinical and Non-Clinical Ward/Department

The selection process of the areas chosen for this study aimed at reflecting the capabil-
ity of the system and framework to be applied to clinical and non-clinical domains. Thus,
enabling other sectors of the community across the UK to adopt the methodology and
tackle energy usage behaviour issues in their buildings. Accordingly, two independent
wards/departments, from Medway hospital, participated in this study. One of the selected
areas is a clinical ward and the other is a non-clinical department; however, both have
fixed operating hours to enable analysing the energy consumption during and outside of
working hours. Details of the selected areas are below:

• The Clinical Engineering (CE) department, which has a typical office setting with
members of staff working from 8 a.m. to 5 p.m. during weekdays. The department
looks after servicing medical equipment across the hospital and is responsible for
buying new equipment along with testing, maintaining, and distributing them across
the hospital’s wards/departments.

• The Cardiac Catheter Suite (CCS) has a mixture of offices and ward areas for patient
scans and treatments. The ward diagnoses and manages patients with acute and
chronic heart-related health conditions, and patients spend short amounts of time
there, as they come only for examination.

3.2. Data Collection and Analyses Techniques

Four quantitative data types were collected and are discussed in this subsection.
The first is the electricity consumption data, the second is the number of occupants in each
ward/department, the third is a log of equipment left switched on outside of working
hours, and the fourth is the members of staff’s views on energy consumption and saving
regimes, through a semi-structured questionnaire.

3.2.1. Electricity Consumption and Occupancy Data

Data on electricity consumption was collected over a period of 15 months, between De-
cember 2017 and February 2019, using the wireless electricity data logger (WEDL) pre-
sented, in [54] which recorded electricity data from the hospital electricity meters, at a
half-hourly rate. It was crucial to collect high resolution electricity data, from individual
hospital wards, to enable fine-grain monitoring and analysis of consumption trends and
energy-conscious behaviour. The permanently deployed system, previously presented
in [2], meets this particular criteria, which is necessary for this type of studies. Other
techniques include more invasive approaches, such as installing temporary energy-sensing
nodes using smart plugs inside the wards or clamp sensors [1] in the electrical distribution
boards, located inside the wards; both can cause a disruption to the wards’ operation.

Occupancy data were also collected during this period and was obtained directly from
hospital records. The advantage of this was the easy and rapid access to anonymous occu-
pancy figures crucial for the timely progression of the study. Other techniques of people
counting involve using technologies such as radio frequency identification (RFID) [55],
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Wi-Fi [56], and thermal imaging [57]. Although, deploying such technologies in a hos-
pital environment can face several challenges, due to privacy (such as with RFID) and
compliance with the health code; those approaches can be considered for future research.

The collected data were analysed to calculate:

• Consumption per occupant;
• Statistical correlation between weekly occupancy and electricity consumption;
• Hourly electricity consumption profiles of weekends and bank holidays.

Consumption per occupant is a critical metric to establish a baseline number that
takes into consideration the occupancy of the target place. For instance, a day with con-
sumption recorded above average can be due to an intense operation in the workplace,
rather than being an anomaly, and one with low recorded consumption can be the oppo-
site. Thereby, knowledge of occupancy is a step closer to evaluating and explaining the
recorded consumption.

The second point to be analysed, that is statistical correlation between energy consump-
tion and occupancy, is to highlight the impact of occupancy on the area’s energy consumption.

Lastly, the hourly profiles of weekends and bank holidays are presented to shed
some light on a higher resolution of data. The increased consumption, with reference to
the average weekly consumption of the ward/department, will flag anomalies that can
enable the identification of negative energy usage behaviour. Given the data collected
for this study was for a period of 15 months, which, in an hourly resolution, equates to
a large number of data points. The hourly profiles presented are of a limited number of
weekends and bank holidays to showcase what is believed to be a pattern of behaviour
and electricity usage.

3.2.2. Out-of-Hours Log of Switched on Unused Equipment

As part of the long-term aims of the study, to measure the improvement in energy
usage behaviour, a log of equipment left switched on, outside of working hours, in each
ward/department, was created. The information collected about the equipment was used
as a measure of energy-conscious behaviour in the workplace. Although this is not the aim
of this paper, this metric would enable quantifying human behaviour in the workplace,
hence enabling accurate evaluation of energy usage behaviour.

The data were collected through out-of-hours walkarounds in both of the wards/
departments reported in this paper. The information collected includes:

• Description of the equipment/device, for example, a PC or a monitor, and so on.
• Count of the equipment if more than one was left switched on

It was crucial to only consider the impact of the electricity consuming loads that are
connected to the WEDL. For instance, the lights were disregarded as they were not fed from
the same distribution board feeding the rest of the equipment in the wards/departments.

The equipment involved in the analysis were only those that the working members
of staff can access and control. Prior to the study, it was ensured that the selected equip-
ment will encounter no problems or malfunction if switched on and back off every day.
This was confirmed with the IT department, medical equipment department, and the
wards’/departments’ managers, each for the equipment they oversee. A piece of equip-
ment was recorded as “unnecessarily left switched on” based on whether they were left
performing an overnight task and were only recorded if they were not. This was to accu-
rately model the behaviour of the members of staff working in the wards. The equipment
can be categorised as follows:

• Office, for example, PCs, monitors, and so on.
• Kitchen, for example, water boiler, water cooler, coffee machine, and so on.

– Both areas, analysed in this paper, were fitted with a wall mount Hydroboil
instant water boiler, energy rated 2.4 KW @230 V.

• Medical, for example, blood pressure monitors.
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Whilst the individual impact of every piece of equipment varies, depending on power
rating and usage, the purpose of this analysis was to assess the behaviour of the members
of staff regardless of how big or small the impact on energy usage is. This is because doing
so with low power usage equipment will develop a behaviour that will urge the user to
perform the same action with everything else as evidenced by the psychology of habit [58].

3.2.3. Views on Energy Consumption Regimes

A semi-structured questionnaire, entitled “Views and Ideas on Energy Usage and
Behaviour” was designed to gather information on the views and ideas of individuals
working in the hospital. The questionnaire was designed based on recommendations from
Carbon Trust [59] and the energy team at MWNFT.

Two categories of participants took part in this survey, the first were 12 individuals
from the two pilot wards/departments to reflect the behaviour within each and the second
were 89 individuals from across the hospital to enable modelling the overall behaviour of
members of staff across the hospital. Qualtrics [60], an experience management company,
online survey software was used to develop and send the questionnaires to the partic-
ipants, after providing informed consent. The following questions were selected from
the questionnaire:

1. How many actions are you aware of that can save energy?
The responses to this question can help indicate the level of awareness of the members
of staff in each ward/department and can be correlated to the recorded consumption
and unused equipment left switched on, in order to identify negative energy usage
behaviour.

2. Do you think your use of energy is efficient?
This question provides some information on individuals’ perspectives of their energy
usage behaviour.

3. Do you feel that you, as an employee, have a role to play in improving the way energy
is used within the Trust?
This question complements the previous ones in painting the big picture of individuals’
role in the hospital towards energy conservation.

4. Results and Discussion

This section presents, for each ward/department, three levels of analysis. Firstly,
the analysis of the electricity usage and occupancy in the wards/departments selected for
this study, where the aim is to enable the identification of negative energy usage behaviour
by comparing electricity consumption in weeks with and without bank holidays. Secondly,
the hourly profiles for weekends and bank holidays are presented, in order to further
support the findings from the weekly data. Lastly, a behavioural measure is presented in
Section 4.3, for both wards/departments combined, based on the data collected from the
semi-structured questionnaire and the out-of-hours audit of equipment.

4.1. The Clinical Engineering Department

4.1.1. Weekly Electricity Consumption and Occupancy

Figure 2 shows a plot of the weekly electricity consumption and the number of
members of staff in the CE department during the baseline stage. The solid line shows
the electricity consumption throughout the baseline period. Moreover, the consumption
during the nine bank holiday weeks is represented on the graph of Figure 2 using a dashed
line, highlighted in red.

The data recorded during the bank holiday weeks show great variations from one
to the other. For example, the recorded consumption in the first two bank holiday weeks
(weeks 4 and 5) are 423 and 422 kWh, with 38 and 66 members of staff, respectively.
Although the second bank holiday week (week 5) had 74% more members of staff working,
the consumption remained nearly the same. Moreover, week 4 had two bank holidays,
while week 5 had only one. A similar scenario applies to weeks 23 and 26. Accordingly,
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a potential lack of awareness and a negative energy usage behaviour amongst members of
staff in the department can be reported.

Figure 2. Relationship between electricity consumption and occupancy in the clinical engineering

department.

A measure of energy usage behaviour is the recorded consumption per occupant,
and the target is to record the lowest possible value for it by reducing unnecessary con-
sumption. Figure 3 was plotted to show the consumption per member of staff across the
same period, to enable drawing a more reliable conclusion on the energy usage behaviour
within the department.

Figure 3. Electricity consumption per member of staff in the clinical engineering department.

The dashed red lines in Figure 3 represent the highest recorded weekly electricity
consumption per member of staff (all above the average of 7.2 kWh/staff), in the weeks with
bank holidays in them, that is, where it is expected to record lower overall consumption.
What is alarming about them all is the very low occupancy recorded during these periods,
which is a clear indication of the presence of negative behaviour. It is valid that there can
be other reasons, such as the use of high consuming equipment to counter a high or low
temperature, and so on. However, it is to be noted that heating is not electricity based in
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Medway hospital, and no equipment, foreign to the department, were reported during the
data collection stage.

To further highlight the relationship between electricity consumption and occupancy
in the CE department, a statistical correlation analysis was performed to highlight the
significance of the correlation between both data sets. The reported results indicated a
positive but weak correlation (p-value < 0.1; r = 0.431) between the weekly electricity
consumption recorded by the department and the occupancy during the same period. This
shows the reality of the situation in the hospital where the consumption can be high with
low occupancy. This shows the importance of analysing the consumption patterns, in the
context of occupancy, to identify negative energy usage behaviour.

4.1.2. Hourly Profiles of Weekends and Bank Holidays

The analyses presented in Section 4.1.1 showed the potential presence of negative
energy usage behaviour in the CE department. To further support this, the hourly profiles
of the department on the weekend commencing 7 April 2018 and the bank holiday, on the
7 May 2018, are presented in Figures 4 and 5, respectively. The graphs in Figures 4 and 5
are plots of the hourly electricity consumption in the department, on the designated days,
against the average usage of the whole week (MON-SUN).

With the department having zero occupancy over weekends and bank holidays,
the profiles seen in the figures raise concerns on the member of staffs’ behaviour towards
equipment outside of working hours. The data shows electricity consumption being above
average for 9 h on Saturday and 7 h on Sunday (see Figure 4) and for another 7 h on
bank holiday Monday (see Figure 5). This increased consumption can potentially reflect
equipment being left switched on outside of working hours, leading to an unnecessary
increase in electricity consumption.

Figure 4. Hourly electricity consumption in the weekend 7 April 2018 to 8 April 2018 of week 19 in

the clinical engineering department.
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Figure 5. Hourly electricity consumption on the bank holiday 7 May 2018 of week 23 in the clinical

engineering department.

4.2. The Cardiac Catheter Suite

4.2.1. Weekly Electricity Consumption and Occupancy

A similar approach to the analysis was taken with the clinical ward in the study. How-
ever, unlike the department in Section 4.1, only eleven months’ worth of data were analysed
from December 2017 up to and including October 2018. The four months November 2018
to February 2019 were disregarded, as there was work that involved the installation of
a replacement chiller, which caused a large drop in the meter readings recorded by the
EFS for the CCS. This was based on information from the operational estates team in
Medway hospital.

As a clinical ward, the occupancy can be either by members of staff or patients.
However, this analysis excluded the members of staff counts based on their Coefficient
of Variation (CV), an evaluating measure of the standard deviation [61]. The CV of the
members of staff counts during the eleven months baseline period was found to be 11.17%
for an SD = 2.80 and M = 25, indicating that the variability in members of staff counts were
not significant throughout the baseline period. Hence, the members of staff counts were
assumed to be a fixed factor.

The patient counts over the same period had a CV of 14.58%, which is close to that
of the members of staff, with an SD = 74.94 and M = 514. However, the identities of the
staff members working in the clinical ward do not change significantly over a period,
but with patients they do because of new cases, illnesses, treatments, and others. Therefore,
the non-significant variation in the number of patients has a more significant impact on
energy consumption than that of the members of staff. Hence, the analysis was performed
to identify the impacts of patient numbers on the ward’s electricity consumption.

Figure 6 shows a plot of the weekly electricity consumption and the number of patients
in the CCS during the baseline stage. The top solid blue line graph shows the electricity
consumption, with the consumption during the seven bank holiday weeks dashed and
highlighted in red.
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Figure 6. Relationship between electricity consumption and occupancy in the cardiac catheter suite.

Electricity consumption in the bank holiday weeks varies, with some of them, for ex-
ample week 26, recording consumption above average (Figure 6). This variation in the data
across weeks with at least one bank holiday is an indication of a potential waste in energy
that can be attributed to negative energy usage behaviour.

Considering the first bank holiday week (see Figure 6, week 4), the recorded consump-
tion is 1775 kWh with 234 patients admitted to the ward. Comparing this with another
bank holiday week 18, which recorded 1947 kWh and 201 more patients, plus the fact that
week 4 had two bank holidays, can indicate energy waste outside of working hours.

Similarly, weeks 23 and 26 were compared; week 23 recorded approximately 480 kWh
less, with 75 more patients admitted. This shows the importance of considering and
analysing high-resolution energy data against occupancy and the information that such
analysis can reveal.

A key metric, especially in a clinical ward, is the consumption per patient to evaluate
energy usage behaviour and also as a measure of the efficiency of operation and resource
utilisation within the ward; although, the introduction of any energy measure must not
negatively impact the day to day operation of the ward and the quality of patient treatment.
Figure 7 shows the consumption per patient across the same time period to evaluate the
ward’s energy usage behaviour.

Figure 7. Electricity consumption per patient in the cardiac catheter suite.

The dashed red lines in Figure 7 represent the highest recorded weekly electricity
consumption per patient, in the weeks with bank holidays in them, most of which are
above average (4.44 kWh/Patient).
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Bank holiday Weeks 4 and 26 alongside week 13 reported the highest consumption
per patient and the lowest number of patients admitted (see Figure 6), compared to the
final week in the data set. The fact that fewer patients were admitted means less equipment
used, less activity, and potentially, very high waste and the presence of negative behaviour.

To further highlight the relationship between electricity consumption and occupancy
in the CCS, a statistical correlation analysis was conducted. The reported results indicated
a significant positive correlation (p-value < 0.1; r = 0.484) between the weekly electricity
consumption recorded by the ward and the occupancy, by patients, during the same period.
As with the non-clinical ward (Section 4.1), the correlation factor is below 0.5. This further
supports the result from the non-clinical area but also adds new insights to the analysis
by showing that having fewer patients can still mean high consumption, indicating the
potential lack of awareness towards energy usage in the ward.

4.2.2. Hourly Profiles of Weekends and Bank Holidays

The hourly profiles of the CCS during the bank holiday weekend commencing on
the 30 March 2018 and the weekend commencing on the 2 June 2018, are presented in
Figures 8 and 9, respectively.

The graphs in Figures 8 and 9 are plots of the hourly electricity consumption in
the department, on the designated days, against the average usage of the whole week
(MON-SUN).

The CCS has a significantly higher hourly consumption profile, compared to the CE
department, which makes it a much more impactful area to consider. Looking at the plots
of both Figures 8 and 9, the consumption is above average for more than 50% of the time,
with zero occupancy by staff and patients. Similar to the CE department, this increased
consumption can potentially reflect equipment being left switched on outside of working
hours, leading to an unnecessary increase in electricity consumption.

Figure 8. Hourly electricity consumption in the bank holiday weekend 30 March 2018 to 2 April 2018

of weeks 17 and 18 in the cardiac catheter suite.
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Figure 9. Hourly electricity consumption in the weekend 2 June 2018 to 3 June 2018 of week 26 in the

cardiac catheter suite.

4.3. Energy Usage Behaviour Measure

Having presented and analysed the weekly and hourly profiles of the wards’ electricity
consumption. This section presents the results of the selected questions from the “Views
and Ideas on Energy Usage and Behaviour” questionnaire and the out-of-hours equipment
audit. The purpose of this section is to accurately evaluate the energy usage behaviour
of the members of staff working in the selected wards/departments. The responses to
the questionnaire and the results of the out-of-hours equipment audits and the potential
savings from switching off unused equipment are reported and discussed in Sections 4.3.1
and 4.3.2, respectively.

4.3.1. Members of Staff Views on Energy Usage and Energy Saving Measures Adopted in
the Trust

As mentioned earlier, participation was invited from the two pilot wards/departments
and from across the hospital, in order to establish a relationship between both views and
identify whether any behavioural issues that might arise would persist across the hospital.

The selected questions aimed at an evaluation of individuals’ awareness and behaviour
to save energy through efficient usage of equipment. The results showed that participants
from the two/pilot wards/departments and the majority (approximately 95%) of the
participants from across the hospital are aware of actions that can save energy, as seen in
Figure 10a. The second question, which asked about the efficiency of energy usage, showed
some positive outcomes as well, with more than 50% of the participants believing they use
energy efficiently, see Figure 10b. However, some participants from the CE department and
from across the hospital responded that they some times forget to switch off equipment
or they do not pay attention and this falls in line with the figures analysed previously
in Sections 4.1 and 4.2, indicating a potential negative energy usage behaviour. Lastly,
and as per Figure 10c, more than 70% of the participants believe that they have a role to
play in improving energy usage in MWNFT. Nevertheless, some participants from the CE
department answered “No” (10%) and “I’m not sure” (20%), indicating a lack of awareness.

The following subsection quantifies the normal behaviour of members of staff working
in the pilot wards/departments by presenting the quantity of equipment left switched on,
unnecessarily, out-of-hours and further discusses the results of the questionnaire.
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(a) (b)

(c)

Figure 10. Participants’ responses to the selected questions from the “Views and Ideas on Energy

Usage and Behaviour” questionnaire; (a) Q: “How Many Actions are You Aware of that Can Save

Energy?”, (b) Q: “Do you Think your Use of Energy is Efficient?”, (c) Q: “Do you Feel that you have

a Role to Play in Improving the Way Energy is Used Within the Trust?”.

4.3.2. Members of Staff Behaviour towards Equipment Outside of Working Hours

The results of the out-of-hours equipment audit were crucial to paint a picture of
the level of energy-conscious behaviour in the selected pilot wards/departments. Table 1
shows a log of the equipment recorded during the out-of-hours walkarounds, how many
were left switched on unnecessarily, their power rating, and the resulting waste in electricity
consumption per week. The figures in the table represent an average of all the logs recorded
over the course of the study; the power rating was found by using a portable power
meter, where the equipment can plug into to measure parameters such as power, current,
and others.

By looking at each individual type of equipment, there is always more than 50% of
them left switched on. By following the reported figures in Table 1 a total of 128.5 kWh
can be saved per week from the two wards/departments in this study, which equates
to about 551 kWh per month and 6609 kWh per year. So, if the hospital is billed at
0.114 pounds/kWh (the average tariff during 2018, as per the hospital’s energy team)
then savings of approximately 750 pounds can result from switching-off/unplugging PCs,
monitors, screens, and other simple equipment, before leaving the workplace, in two out
of at least 50 other wards/departments that operate with limited hours in the hospital.
This means the adoption of such behaviour across the hospital can have 30,000 pounds +
annual savings.

The recorded figures in Table 1 show a clear lack of energy-conscious behaviour.
However, it can also be quite natural, given the individual perception that switching-
off one device will not save the world and the numbers do support this. For instance,
an individual PC with one monitor will cost the hospital 12 pounds per year. This is
believed to be where the problem lies and it shows the importance of raising awareness
that a collective effort from everyone on very simple energy measures can, indeed, make a
massive positive impact on the hospital’s savings and, consequently, on the environment.
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Table 1. Electricity waste due to equipment left switched on outside of working hours.

Equipment Dept.
Total

Number in
Each Area

% of Equipment
Left on

Out-of-Hours

Power Rat-
ing/Equipment

(W)

Number of
Hours

Unused\Week

Out-of-Hours Con-
sumption/Week

(kWh)

Total Consump-
tion/Week

(kWh)

PC
CE 20 60 18.8 103 23.24 38.73

CCS 12 90 20.91 23.24

Monitor
CE 31 70 0.6 103 1.34 1.92

CCS 21 90 1.17 1.30

Laptop
CE 4 80 45 103 14.83 18.54

CCS 0 0 0.00 0.00

Printer
CE 0 0 8 103 0.00 0.00

CCS 2 100 1.65 1.65

Wall Mount
Boiler

CE 1 100
1.3 kWh/24 h

103 17.00 17.00

CCS 1 100 17.00 17.00

Screen
CE 1 100 80 103 8.24 8.24

CCS 1 100 8.24 8.24

Medical
Equipment

CE 0 0 10 103 0.00 0.00

CCS 17 85 14.88 17.51

Total 128.5 153.36

4.4. Limitations of the Study

The study presented in this paper aimed at identifying the potential presence of
negative energy usage behaviour in the workplace. The study relied on the analysis of
occupancy, by members of staff and patients, to flag anomalies in the recorded electricity
consumption patterns, as well as members of staff’s views on energy saving measures,
and finally, a log of equipment outside of normal working hours. Although the reported
results are sufficient, from a scientific point of view (and with respect to the literature),
a few points limited the focus of the study. For instance, the occupancy figures of patients
were treated as numbers only, without accounting for what equipment was used per patient
and for how long. Similarly, members of staff were assumed to have equal impact on the
ward’s electricity consumption, regardless of their role and the equipment used. The reason
for not considering the above points goes back to the absence of this data for anonymity, as
well as the potential disruption to the ward/department’s daily operation. Future close
collaboration with ward/department managers can be performed, in order to factor in
individual equipment used.

5. Conclusions

This field study presented a framework to enable energy personnel to identify potential
negative energy usage behaviour and areas of immediate savings through an analysis of
historical energy consumption data. The study was designed to tackle energy usage
behaviour, as a solution to energy waste, and is in line with the governmental focus on
climate change and the net-zero carbon emission target in the UK.

Based on electricity per staff/patient occupancy, presented earlier in the paper, elec-
tricity consumption during bank holiday periods were higher than expected. The CE
department consumed 26% more energy than was expected, with a 30% reduction in the
number of staff working during the bank holiday weeks. Similarly, the CCS recorded 32%
more energy, with a 37% reduction in the number of patients admitted during the bank
holiday weeks. The expectation was to see a significant drop in electricity consumption
per staff/patient during bank holidays, but on the contrary, an increase was recorded,
suggesting that equipment was left switched on unnecessarily. Furthermore, the hourly
profiles have revealed the high consumption of electricity for a significant amount of time
during the weekends and bank holidays, in areas where minimal, if not zero, consumption
was expected. The log of equipment, presented in Table 1, made a strong case of support
for the lack of awareness and energy-conscious behaviour in both wards/departments,
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with nearly 80% of all equipment left switched on unnecessarily, outside of normal working
hours, resulting in a monthly waste of approximately 551 kWh.

By identifying the peak consumption periods (Figures 3 and 7), the usage data and
department operations during them can be reviewed to limit the waste and avoid it in
the future. In wards/department with limited working hours, immediate savings can be
guaranteed when actions are taken in such periods. Moreover, acting on high consumption
areas will result in higher savings. For instance, the lowest recorded hourly consumption in
Figures 8 and 9 (the CCS) were significantly higher than the highest recorded consumption
in Figures 4 and 5 (the CE department). Hence, a valid strategy would be to tackle areas of
high consumption first, in order to bring the overall consumption down and eventually
expand it across the whole hospital.

To conclude the paper, the analyses presented shows the value of the collected data
and sets a methodological baseline for other research studies to build on. By analysing
consumption, the number of occupants, and tracking down equipment during working
and non-working hours, negative behaviour amongst members of staff can be identified, in
order to locate areas where immediate savings in consumption can be made. Furthermore,
with the advancements in the field of artificial intelligence (AI) and machine learning
(ML), the data collected for this study (and similar ones) can be used to develop forecasting
models that can predict future consumption and behaviour, based on the recorded patterns
and, hence, take early action to avoid unnecessary consumption in the future. Moreover,
the data can be useful in analysing the impact of individual high-consuming equipment
and evaluate their operating energy efficiency, whilst factoring in the human behaviour
element.
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Abbreviations

The following abbreviations are used in this manuscript:

NHS National Health Service

MWNFT Medway NHS Foundation Trust

CE Clinical Engineering

CCS Cardiac Catheter Suite

EFS Electricity Feedback System

CV Coefficient of Variation
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Abstract: With the help of deep neural networks, video super-resolution (VSR) has made a huge

breakthrough. However, these deep learning-based methods are rarely used in specific situations.

In addition, training sets may not be suitable because many methods only assume that under ideal

circumstances, low-resolution (LR) datasets are downgraded from high-resolution (HR) datasets in a

fixed manner. In this paper, we proposed a model based on Generative Adversarial Network (GAN)

and edge enhancement to perform super-resolution (SR) reconstruction for LR and blur videos,

such as closed-circuit television (CCTV). The adversarial loss allows discriminators to be trained to

distinguish between SR frames and ground truth (GT) frames, which is helpful to produce realistic

and highly detailed results. The edge enhancement function uses the Laplacian edge module to

perform edge enhancement on the intermediate result, which helps further improve the final results.

In addition, we add the perceptual loss to the loss function to obtain a higher visual experience. At

the same time, we also tried training network on different datasets. A large number of experiments

show that our method has advantages in the Vid4 dataset and other LR videos.

Keywords: video super-resolution; generative adversarial networks; edge enhancement

1. Introduction

Super-resolution (SR) aims to reconstructing high-resolution (HR) images or videos
from their low-resolution (LR) versions, which is a classic problem in computer vision. It
not only pursues the enlargement of the physical size but also recovers high-frequency
details to ensure clarity. Classical algorithms have existed for decades and can be divided
into the following categories, methods based on patch [1], edge [2], sparse coding [3],
prediction [4], and statistics [5]. These methods have lower computational cost than deep
learning methods, but their recovery performance is also very limited. With the popularity
of deep learning, convolutional neural networks have been widely applied and led to a
dramatic leap in SR.

This field can be divided into two parts, single image super-resolution (SISR) and
video super-resolution (VSR). The former exploits the spatial correlation in a single frame,
while the latter additionally uses inter-frame temporal correlation. Digital video processing
technology includes many fields, such as passive video forgery detection techniques [6–8].
In this article, we will focus on videos with lower resolution and blurry quality. To obtain
HR data, the most direct way is to use HR cameras. However, due to the production process
and engineering cost considerations, high-resolution cameras will not use for shooting in
many cases, such as CCTV. Urban CCTV is helpful to security. However, in order to ensure
the long-term stable operation of recording equipment and the appropriate frame rate
of dynamic scenes, this product often sacrifices resolution to some extent. 1G of a 1080p
video file can only record for less than half an hour at most. If it can only record for a short
time, it loses the meaning of monitoring. However, we can improve the quality of CCTV
through SR to obtain more information that is useful. In addition, video SR is also used
in the HR reconstruction of old movies and TV shows, such as Farewell My Concubine.
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Similar applications exist in the field of remote sensing and medical imaging. Moreover,
SR also helps to improve the performance of other computer vision tasks, such as semantic
segmentation [9]. Therefore, obtaining HR data through super-resolution (SR) technology
has many practical applications and demands.

On the one hand, choosing the proper VSR algorithm is crucial. VSR was once divided
into a large number of single multi-frame SR subtasks [10,11], which resulted in inevitable
flicker artifacts and expensive calculations. In our work, as with mainstream algorithms,
we use the previously reconstructed high-resolution results to SR the subsequent frames.
Since the above methods ignore people’s perception, some SR reconstruction results are still
unsatisfactory. Therefore, Generative Adversarial Network (GAN) was introduced into the
field of SR. GAN, which contains a generator (G) and a discriminator (D), is a popular deep
learning-based model. G and D compete with each other during the training process so that
the generated data obtained from the generator are as similar to the real data as possible.
Goodfellow et al. [12] proposed GAN in 2014. After that, GAN has been applied to various
computer vision problems, including SR. For example, a GAN for image SR (SRGAN) [13]
uses adversarial loss and perceptual loss to recover photo-realistic textures from LR images.
This type of network has excellent performance in reconstructing high-frequency details
and can restore textures that are more realistic. However, it also has limitations. GAN
will introduce noise and cause some details of the dislocation. Later, the comprehensive
consideration of SR combined with other image enhancement methods [14,15] attracted
people’s attention. SR belongs to the big field of image enhancement. Both of their purpose
is to improve people’s perception. When SR increases the physical size, it will inevitably
cause some discomfort such as blur, which can be improved by combining with other
image enhancement methods. After the initial SR, the edge enhancement module is added,
which will greatly help the image quality improvement.

On the other hand, methods based on deep learning are data-driven. Specifically,
training requires a large amount of paired LR–HR data, which determines the reconstruc-
tion ability of the network to a certain extent. Generally, LR frames are degraded from a
continuous set of HR frames by linear down-sampling (for example, bi-cubic degradation)
or adding other noise on this basis, and formalized as (1) or (2):

y = (x⊗ k) ↓ s + n, (1)

y = ((x ↓ s)⊗ k) + n, (2)

where ⊗ represents the convolution operation, k represents the blur kernel, ↓ s represents
down-sampled operation, and n represents additive noise [16,17]. Then, the network is
used to learn the mapping between low-resolution image y and high-resolution image x.
However, the degradation process is more complicated or even unknown in the real world.
Recently, many studies have been conducted on this issue [18–22]. In addition, the dataset
may not match the actual LR scene. For example, the dataset is about landscapes, and the
characters need to be reconstructed. In this article, we try to train the network on different
datasets and test on different testing datasets.

Our main contributions in this paper can be summarized as follows:

1. We proposed an end-to-end GAN-based network for VSR, which focuses on videos
with lower resolution and blurry quality.

2. The Laplacian edge module, which can enhance edges while suppressing noise, is
added in the generator after SR to meet the needs of people’s perception.

3. We trained and tested our method on different datasets.

Extensive experiments demonstrate the superiority of our method.

2. Related Works

While SR is a classical task, our review in this section focuses on deep learning-based
methods for SISR and VSR.
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2.1. Single Image Super-Resolution (SISR)

Given that Y is the low-resolution image, F(Y) is the reconstructed image, and X is
the corresponding ground truth HR image, the goal of SISR is to ensure that F(Y) and X
are as similar as possible.

Dong et al. [23] proposed a deep convolutional network for image SR (SRCNN),
which introduced the convolutional neural network into the SR field for the first time.
Subsequently, to accelerate the speed, the same team proposed the fast SR convolutional
neural network (FSRCNN) [24], which is a compact hourglass-shape structure. Shi et al. [25]
proposed a novel sub-pixel convolutional layer to replace the deconvolutional layer. By
doing so, the training complexity is significantly reduced. The above approaches are
based on linear networks, and the structure is relatively simple. However, as the depth
of networks increased, over-parameterization appeared. To address these difficulties,
recursive networks [26,27] behaved well by using weights repeatedly. On the one hand,
the network is deeper; thus, the performance is better. On the other hand, deeper networks
are also more likely to cause an exploding gradient. To deal with this contradiction, Kim
et al. [28] proposed learning residuals only, since the low-frequency information carried by
the LR image is similar to the HR images. A very deep residual channel attention network
(RCAN) [29] is proposed for high-precision image SR. As a result of the sparsity of residual
images, the convergence speed is accelerated. Afterwards, based on residual learning,
many frameworks were proposed [30,31].

With the development of deep neural network, excellent networks are constantly
being introduced into this field. [32,33] are based on the densely connected convolutional
network (DenseNet) [34]. They make full use of low-level features by introducing dense
skip connections. GANs are also adapted for SISR in SRGAN [13]. These kinds of methods
propose a perceptual loss function in order to recover photo-realistic textures from LR
images. Perceptually satisfying in the sense is their main target.

Recently, more categories of SR appeared, such as blind SR [20–22] and unsupervised
SR [35]. Moreover, it has been found that the development of SISR tends to be practical.
Google announced the Super Res Zoom technology [36], which focused on solving the
problem that the images taken by handheld devices are not clear enough. Dong et al.
proposed [37,38], which combine the SR with mersisters. Qian et al. proposed the Trinity
Enhancement Network (TENet) [15], which can solve multiple problems at the same time.
Deng proposed an algorithm, named SR by Neural Texture Transfer (SRNTT) [39], which
implemented SR in a referential way. This year, a large number of SR methods for specific
objects have emerged, such as hyperspectral SISR [40], face SR [41], and so on.

2.2. Video Super-Resolution (VSR)

In addition to information in a single frame, VSR has inter-frame temporal correlation.
Therefore, both accuracy and consistency need to be considered at the same time. For this
purpose, VSR usually has two unavoidable steps: motion compensation and SR restoration.

At the very beginning, VSR was divided into a large number of independent multi-
frame SR subtasks [10,11]. They focused on obtaining high-quality reconstruction results for
each single frame, while the individually generated high-resolution frames lack coherency
temporally, resulting in unpleasant flickering artifacts. The above methods did not make
full use of time domain information.

Afterwards, adding optical flow networks to the VSR for motion estimation became
popular. Taking efficient sub-pixel convolutional neural network (ESPCN) [25] as a refer-
ence, Caballero et al. [42] proposed video ESPCN (VESPCN), which consisted of spatio-
temporal sub-pixel convolution networks and optical flow networks. Specifically, VESPCN
learned the motion compensation by the former and improved the accuracy in real time
by the latter. Sajjadi et al. [43] proposed frame-recurrent video super-resolution (FRVSR),
which repeatedly using previously estimated SR frames to recover subsequent frames.
In addition to reusing the reconstructed HR frames, frame and feature-context video
super-resolution (FFCVSR) [44] was proposed to exploit the features of the previous frame
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repeatedly. Likewise, Wang et al. [45] proposed learning for video super-resolution through
HR optical flow estimation (SOF-VSR), which innovatively reconstructed high-resolution
optical flow instead of estimating the optical flow among low-resolution frames to improve
the accuracy of motion compensation. Chu et al. proposed Temporally Coherent GAN
(TecoGAN) [46], of which the architecture is based on GAN. It not only used optical flow
networks, but also suggested novel loss functions to improve time consistency. Further-
more, due to its feature space losses, the proposed approach improved perceptual quality
in VSR.

The addition of the optical flow network does improve the experimental results, but
it also increases the computational and memory cost as well. Moreover, the final perfor-
mance heavily depends on the accuracy of the optical flow prediction. Inaccurate optical
flow will cause artifacts, which will also propagate to the reconstructed HR video frame.
Therefore, several studies have been done to remove explicit motion compensation. Unlike
the previous works, video super-resolution via residual learning (EVSR) [47] estimated
motion compensation between frames automatically without explicit motion compensa-
tion modules. Ganet [48] integrated motion estimation and the frame recovery into one
step by utilizing the self-attention network to merge local features into global features.
Younghyun et al. [49] introduce a novel framework dynamic upsampling filters (DUF).
Instead of explicitly estimating the motion compensation between LR frames, DUF im-
plicitly utilized the motion information to generate suitable up-sampled filters. In [50], a
new method to ensure temporal consistency is proposed. Instead of using optical flow, it
uses deformable convolution to track the traceable points by a pyramid, cascading and
deformable (PCD) module. Tian et al. [51] proposed a time deformable alignment network
(TDAN), which aligned adaptively at the feature level.

3. Methods

In this paper, we aimed at learning non-linear mapping between the input LR frames
and the final HR frames. Our main framework is based on GAN, and the main work is
to improve the generator. As illustrated in Figure 1, the generator mainly consists of two
parts: one for intermediate SR results [46] and the other for edge enhancement [14], which
makes the final results clearer. LR videos are usually blurry and accompanied by noise.
In addition, GAN will inevitably introduce noise. Therefore, edge enhancement while
suppressing noise will greatly improve people’s perception. Instead of discriminating
the realism of spatial detail only, the generator discriminating temporal changes as well.
Moreover, in order to obtain good objective indicators while ensuring people’s perception,
we added a trained Visual Geometry Group (VGG) to compare the difference between the
final results and the GT on several specific feature layers.
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Figure 1. Outline of the generator part in our proposed network.
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3.1. TecoGAN

The network is based on the GAN. The generator G is divided into two parts. The
first part is the optical flow network F, which obtains the motion compensation vt from
two adjacent low-resolution input frames xLR

t−1 and xLR
t . Then, vt is linearly up-sampled

four times to obtain Vt. Afterwards, the previous SR frame XSR
t−1 warps with the inferred

motion Vt to obtain W(Vt, XSR
t−1). The second part is the SR reconstruction network. xLR

t−1

and W(Vt, XSR
t−1) are put into this part together for SR reconstruction. The result obtained

at this stage is XSR0
t . The network only learns the residual part to stabilize the network

training; therefore, we add XSR0
t to the linear up-sampled result XLR

t from xLR
t to obtain

the final result XSR
t .

The following formula can be used to summarize the above steps:

Vt = UpSample(F(xLR
t−1, xLR

t )), (3)

XSR
t = G(xLR

t , W(Vt, XSR
t−1)) + UpSample(xLR

t ), (4)

The design of the adversarial network and loss function is the main innovation. The
adversarial network, which called a spatio-temporal discriminator, not only discriminates
spatial details but also includes information in the temporal. It receives two sets of inputs,
which consists of the generated results and the GT. In each set of inputs, in addition to
spatial details, it also includes temporal information. In this way, the discriminator can
automatically balance space and time information to avoid inconsistent clarity or excessive
smooth result. TecoGAN has a novel loss function named ping-pong loss as well. The input
of the optical flow network is two low-resolution groups. The first group has n continuous
frames, and the second group is the reverse sequence of the first group. Therefore, it is
possible to get the motion compensation vt between xLR

t−1 and xLR
t as well as the motion

compensation v′t between xLR
t and xLR

t−1, which are used to generate the forward result XSR
t

and the reversed XSR′
t . Theoretically, the two are the same. Therefore, the ping-pong loss is

as follows:

Lpp =
n−1

∑
i=1

‖XSR
t − XSR

t
′‖

2

, (5)

3.2. EEGAN

The network is based on the GAN for SISR. The main innovation of this method is in
its generator, which divides the results into intermediate result Ibase and final result I∗edge.

Intermediate result Ibase is generated by a topologically shaped network. This dense block
D in the topological structure is regarded as the basic module of feature extraction and
fusion. Unlike traditional dense blocks, they can share and fuse feature maps extracted
from multiple previous convolutional layers in both horizontal and vertical directions.
Therefore, the number of link nodes is approximately twice that of the original dense block,
thereby achieving a variety of fine feature expressions.

The final result is the edge enhancement of the intermediate result. Taking into account
that edge enhancement will also amplify noise, the mask branch is performed to learn the
image mask to detect and remove isolated noise, which are false edges generated in edge
extraction. Subsequently, the enhanced edge map is projected onto the HR space through
a sub-pixel convolution operation. According to [14], the mathematical expression of the
edge enhancement can be written as follows:

I∗edge = PS(F(D(Iedge))⊗M(D(Iedge))). (6)

Among them:

1. Iedge means the extracted edge from intermediate super-resolution result Ibase by the
Laplacian operator.
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2. D(·) is the down-sampled operation by the strided convolution, which transforms
Iedge into LR space.

3. F(·) denotes the dense block above using feature extraction and fusion.
4. M(·) represents the mask branch, which is used for removing false edges caused

by noise.
5. PS(·) denotes sub-pixel convolutional, which up-samples the edge maps into HR space.

3.3. Our Method

Referring to the generator of TecoGAN, we constructed the intermediate SR result
XSR

t,base, which is the final result of the generator in TecoGAN. As we all know, the picture
quality of videos with lower resolution is always blurry. In view of the characteristic above,
we perform edge enhancement after XSR

t,base, which will significantly improve the edge of
the subtitles and the outline of the things, thereby improving the overall picture quality. In
the subsequent edge enhancement part, we refer to edge-enhanced GAN (EEGAN) [14].
First, the edge of XSR

t,base is extracted with Laplacian operator. The Laplacian operation of the

image XSR
t,base can be defined as its second derivative. In this article, we used ([−1,−1,−1],

[−1,8,−1], [−1,−1,−1]) as the discrete convolution mask to extract the image edge XSR
t,egde,

and its formula is as follows:
XSR

t,edge = L⊗ XSR
t,base, (7)

where ⊗ is the convolution operation, and XSR
t,egde represents the extracted edge from XSR

t,base.

However, videos with lower resolution, such as CCTV, are accompanied by inevitable
noise due to the limitations of shooting and production technology. Therefore, the edge
obtained at this stage contains a part of false edges caused by noise. GAN will inevitably
introduce noise. In order to extract more pure and effective edges, we learn from EEGAN
to refine and strengthen XSR

t,edge. The specific structure is shown in Figure 2. XSR
t,edge is firstly

converted to low-resolution space in order to reduce the computational cost. After a few
convolutional layers, the dense block in EEGAN [14] is used for feature extraction to obtain
edges that are more refined. Meanwhile, we learn the noise mask through a mask branch
to achieve the purpose of eliminating noise and artifacts and obtain refined and enhanced
edge XSR

t,edge
∗. We choose leaky rectified linear unit (LeakyReLU) for the activation function

of this part. As a variant of rectified linear unit (ReLU), the response of LeakyReLU to the
input less than zero is linearly varying, which reduces the sparsity of ReLU. The final result
of our SR is XSR

t, f inal . It can be expressed as:

XSR
t, f inal = XSR

t,base + XSR
t,edge

∗ − XSR
t,edge. (8)

In order to ensure the continuity of the reconstructed video in the temporal, we add
ping-pong loss from TecoGAN [46] in our framework. We input two groups of consecutive
video frames, each of n frames. The second group is the reverse sequence of the first group.
In this way, we obtain the forward result XSR

t, f inal and the reversed result XSR
t, f inal

′, and the

ping-pong loss is:

Lpp =
n−1

∑
i=1

‖XSR
t, f inal − XSR

t, f inal
′‖

2
. (9)

During network training, the generator returns two results XSR
t,base and XSR

t, f inal , which

are the intermediate result and the final result. To make the generator robust, we assign
different loss weights to these two results when designing the content loss function Lcontent.

Lcontent =
n−1

∑
i−1

(‖XSR
base − XHR

t ‖
2

+ α‖XSR
t, f inal−XHR

t ‖2), (10)
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where XHR
t is the GT, and α is the weight. Specifically, α changes according to a certain

rule during the training. As the training step increased, the model becomes more and
more accurate. Simultaneously, the difference between the intermediate result and the final
result is getting bigger and bigger. Based on this, the α is set to 10 at the beginning and
is increased with the training step. See the experimental part for specific parameters. In
addition to the above loss functions, we retain the other loss functions in TecoGAN.
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Figure 2. This is our edge enhancement module and partial results. (a) This is our edge enhancement module. We take an

image as an example to show its process. The Dense Block and Noise Mask inside refer to the design in edge-enhanced

GAN (EEGAN) [14]; (b) On the left is ground truth, and on the right is a partial enlarged view of XSR
t,base, XSR

t,edge, XSR
t,edge

∗, and

XSR
t, f inal of the city clip for 4× video super-resolution, where XSR

t,base is the intermediate result, XSR
t,edge is the edge extraction of

XSR
t,base, XSR

t,edge
∗ is the enhancement and noise purification of XSR

t,edge, and XSR
t, f inal is the final result.

In addition, we train the model in two steps. In a word, we firstly train the simplified
network and then train the complete network on the basis of the simplified network. In the
intermediate model, we only train the generator. In addition, the loss function is simplified.
In this step, only the content loss is retained, and the weight remains unchanged. This
step is equivalent to an initialization parameter training of the subsequent mode. Since
the framework and loss functions here are more complicated, if we train the complete
network directly, it is difficult to find accurate network parameters or it takes a long time.
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A simplified network that is pre-trained helps find the approximate range of the final
parameters of the network. Then, we initialize the complete network with the parameters
of the simplified network. Next, we fine-tune the framework. In this step, α increases with
the training steps as well as the learning rate decays with the training steps.

4. Experiments

In this chapter, we first give training details. Secondly, we perform a comparative
experiment study. Then, the evaluation metrics will be illustrated. Finally, we will provide
qualitative analysis and quantitative evaluation of the experimental results.

4.1. Train Details

We perform the experiment using Python3.6 and Tensorflow-gpu1.10.0 on PyCharm
2019.1.3 (Community Edition). The computer used for the experiment is of 3.6 GHz CPU
and NVIDIA GeForce GTX 1080Ti GPU. See Table 1 for more details.

Table 1. Components and information of the system used for implementation.

Components Information

Operating System Ubuntu 16.04 Long Term Support
Memory 32 G

Graphic Processing Unit (GPU) NVIDIA GeForce GTX 1080Ti
Central Processing Unit (CPU) Inter®Xeon(R) W-2123 CPU @ 3.60 GHz

Integrated Development Environment (IDE) PyCharm2019.1.3 (Community Edition)
Language Python 3

The dataset used for training was downloaded from Vimeo. We got the video down-
load link from TecoGAN [46]. Vimeo Terms of Service are followed, and all used videos
are available on Vimeo with the download option. Specifically, we download 25 high-
resolution videos. In order to learn fine motion compensation, we selected 276 scenes, each
of which contains 120 frames without lens switching. The resolution size of each scene is
not uniformly specified, but the length or height must be larger than 400. Imitating the
characteristics of videos with lower resolution, fuzziness, and noise, we use Gaussian blur
kernel for four times down-sampled. See Table 2 for more details.

Table 2. Specific parameters of the training dataset.

Items Parameters

Video Source Vimeo
Number of Scenes 276

Number of Frames per Scene 120 frames

Training the model is divided into two steps. When training the intermediate model,
the batch size is 4, the input LR patch size is 32× 32, the learning rate is fixed at 5× 10−5,
and the α is fixed at 10. When training the final model, the batch size is 1, the size of the
input LR patch is 32× 32, the initial learning rate is 5× 10−5, and the initial α is fixed at 10.
Moreover, we use the decay function provided in the Tensorflow to dynamically decay the
learning rate and α. The formula is as follows:

decayed = initial × decay_rate∧(
global_step

decay_step
), (11)

For learning rate, the decay_rate is 0.9 and the decay_step is 28 K. For α, the decay_rate
is 1.1 and the decay_step is 50 K. The intermediate model performs 600 K iterations, while
the intermediate model performs 1200 K. We use Adam with a momentum of 0.9 and
a weight decay of the same as the learning rate for optimization. We also recorded the
performance of the model on peak signal-to-noise ratio (PSNR) and structural similarity
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(SSIM) as the interaction changes when training the final model. See Table 3, Figure 3 for
more details.

Table 3. Training parameters.

Items of Step1 Parameters Items of Step2 Parameters

Batch Size 4 Batch Size 1
Patch Size 32 × 32 Patch Size 32 × 32

Learning Rate 5 × 10−5 Learning Rate 5 × 10−5

Decay Rate Decay Rate 0.9
Decay Step Decay step 28 K

α 10 α 10
Decay Rate Decay Rate 1.1
Decay Step Decay Step 50 K

Iteration 600 K Iteration 1200 K
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Figure 3. (a) Peak Signal to Noise Ratio (PSNR) changes with iterations; (b) Structural SIMilarity SSIM changes with iterations.

Table 4 shows the details of the Vid4. During the test, we removed the first and last
two frames. Specifically, the final data are the average of 155 frames of images, including
37 frames of calendar, 30 frames of city, 45 frames of foliage, and 43 frames of walk.

Table 4. The details of the Vid4.

Scenes Low-Resolution High-Resolution Frames

calendar 180×144 720×576 41
city 176×144 704×576 34

foliage 180×120 720×480 49
walk 180×120 720×480 47

4.2. Comparative Study

We tried different decay methods, different loss functions, and different datasets to
compare the final results and different edge enhancement modules.

For different α decay methods, we compared two patents. Both of them start from 10;
one is exponentially decreasing at a rate of 0.9, while the other is exponentially increasing
at a rate of 1.1. Other factors remain the same. The experimental results in Figures 4 and 5
show that the incremental approach is better. The testing samples are the same as above,
including 155 frames. As the number of iterations increased, the model becomes more
and more accurate, and the gap between XSR

t,base and XSR
t, f inal becomes larger and larger.

Therefore, the larger and larger α conforms to this trend.
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Figure 4. The experimental results of different decay mode: (a) Peak Signal to Noise Ratio (PSNR) changes with iterations;

(b) Structural SIMilarity (SSIM) changes with iterations.
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Figure 5. Results of different α decay methods, where ‘Down’ means exponentially decreasing at a

rate of 0.9, ‘Up’ means exponentially increasing at a rate of 1.1: (a) Qualitative comparison on the

calendar clip for 4× video super-resolution; (b) Qualitative comparison on the city clip for 4× video

super-resolution.

For the loss function, we tried to calculate the loss in proportion to the two outputs
XSR

t,base and XSR
t, f inal of the generator for all loss functions or to calculate the loss in proportion

to the content loss only. The former is loss function A, the latter is loss function B. The
latter performs better. In Figure 6, we can find that loss function A will cause a more
obvious mosaic phenomenon. Using the two layers of the generator on the content loss
and assigning different loss weights helps lock in the final result in a more accurate range
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at the beginning and keep a relatively reasonable range later. Other loss functions only
need to use the final result XSR

t, f inal .
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Figure 6. Results of different loss functions: (a) Qualitative comparison on the calendar clip for 4×
video super-resolution; (b) Qualitative comparison on the walk clip for 4× video super-resolution.

For the datasets, we tried down-sampling from high-resolution videos downloaded
randomly on vimeo or down-sampling from high-resolution repaired versions of film and
television dramas around 2000. Models train on different datasets perform differently in
different scenes. The former performed better on Vid4, while the latter performed better on
the film and television scene, which you can see in Figure 7. The experiment shows that
the models trained on different training datasets adapt to different scenarios.
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Figure 7. Qualitative comparison on the Secret History of Xiaozhuang clip for 4× video super-resolution results of models

trained on different training datasets.
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For edge enhancement modules, we tried simple edge enhancement and complex
edge enhancement. The final result of the former is only the sum of the intermediate result
XSR

t,base and the Laplacian edge enhancement XSR
t,edge of the intermediate result. It can be

expressed as:
(XSR

t, f inal)simple
= XSR

t,base + XSR
t,edge, (12)

The latter is as described in Section 3.3, where experiments proved our theory. As
you can see in Figure 8, when performing edge enhancement, if both denoising and
strengthening are considered, the result is better. The simple edge enhancement will lead
to some noise and blurred edges.
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Figure 8. Results of different edge enhancement modules: (a) Qualitative comparison on the calendar clip for 4× video

super-resolution; (b) Qualitative comparison on the walk clip for 4× video super-resolution.

4.3. Evaluation

According to the mainstream of the SR field, we calculate Peak Signal to Noise Ratio
(PSNR) and Structural SIMilarity (SSIM) on the Y channel of YCbCr space, where Y refers
to the luminance component, Cb refers to the blue chrominance component and Cr refers
to the red chrominance component.

Peak signal-to-noise ratio (PSNR) is an objective standard for evaluating images. The
mathematical formula is as follows:

PSNR = 10× log10(
MAX2

MSE
) = 20× log10(

MAX√
MSE

), (13)
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where MSE is the mean square error between the original image and the SR frame, and
MAX indicates the maximum value of the image color. For example, the 8-bit sampling
point is expressed as 255.

Structural similarity (SSIM) is an index to measure the similarity of two images. The
mathematical formula is as follows:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µx
2 + µy

2 + c1)(σ2
x + σ2

y + c2)
, (14)

where x is the SR frame, y is the GT, µx and µy are the mean values; σx and σy are the
standard deviations, and σxy is the covariance of x and y. We use the built-in compare_ssim
function of the skimage module to calculate. SSIM is a number between 0 and 1. The larger
it is, the smaller the gap between the result frame and the GT; that is, the image quality is
better. When the two images are exactly the same, SSIM is 1.

We compare the proposed method on the Vid4 dataset with some other SR algorithms:
video super-resolution with convolutional neural network (VSRNet) [52], VESPCN [42],
SOF-VSR [45], FRVSR [43], and TecoGAN [46]. Table 4 shows the details of the Vid4.
During the test, we removed the first and last two frames. Table 5 shows that our network
has the best average results on PSNR and SSIM on the Vid4 dataset. Figures 9 and 10 also
show the superiority of our method in qualitative results. Compared with TecoGAN [46],
the results of our method are closer to GT. The results of TecoGAN contain more noise.
Meanwhile, distortion is more obvious in some details.

Table 5. Peak Signal to Noise Ratio (PSNR) and Structural SIMilarity (SSIM) of different methods on

the Vid4 dataset.

Scale Evaluation Bicubic VSRNet VESPCN SOF-VSR FRVSR TecoGAN Our

4

PSNR

calendar 20.34 22.89 23.22 23.79
city 24.88 26.88 26.79 27.63

foliage 23.36 25.58 24.30 26.03
walk 25.52 28.93 28.12 29.45

average 23.53 24.84 25.35 26.12 26.69 25.58 26.75

SSIM

calendar 0.55 0.78 0.79 0.81
city 0.50 0.76 0.77 0.80

foliage 0.56 0.76 0.71 0.78
walk 0.79 0.89 0.88 0.90

average 0.61 0.70 0.76 0.80 0.82 0.79 0.82

VESPCN means video efficient sub-pixel convolutional neural network [42], VSRNet means video super-resolution
with convolutional neural network [52], SOF-VSR means learning for video super-resolution through HR optical
flow estimation [45], FRVSR means frame-recurrent video super-resolution [43] and TecoGAN means temporally
coherent generative adversarial network [46]. The data of VSRNet, VESPCN, and FRVSR are quoted from their
paper directly.
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                      ‐    Figure 9. Qualitative comparison on the city clip for 4× video super-resolution results.
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Figure 10. Qualitative comparison on the walk clip for 4× super-resolution results.

We also tested our method in other low-resolution scenes in our lives. Table 6 shows
the details of the data. During the test, we removed the first and last two frames. Table 7
shows that our network has the best average results on PSNR and SSIM on film and
television scenes. Figure 11 also shows the superiority of our method in qualitative results.
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Figure 11. Qualitative comparison on Create State clip for 4× video super-resolution results.

Table 6. The details of film and television scenes.

Scenes Low-Resolution High-Resolution Frames

Create State 320×180 1280×720 149
Secret History of Xiaozhuang 320×242 1280×968 250

98



Electronics 2021, 10, 459

Table 7. Peak Signal to Noise Ratio (PSNR) and Structural SIMilarity (SSIM) of different methods on

film and television scenes.

Scale Evaluation Bicubic TecoGAN Our

4

PSNR

Create State 28.00 31.74 32.72
Secret

History of
Xiaozhuang

34.31 37.13 39.05

average 31.96 35.12 36.69

SSIM

Create State 0.94 0.97 0.98
Secret

History of
Xiaozhuang

0.95 0.98 0.98

average 0.95 0.98 0.98

TecoGAN means temporally coherent generative adversarial network [46].

5. Conclusions

In this article, we proposed an end-to-end SR method for LR video, which can be used
to improve the image quality of urban CCTV. A large number of experiments have shown
that our method can improve the resolution of the video and meet people’s perception.
These LR videos are usually blurry and inevitably accompanied by noise. The edge
enhancement module we added can successfully enhance the edge but does not amplify
the noise. At the same time, we have also done many comparative experiments. These
experiments show that models trained on different training datasets perform significantly
differently in different scenarios. We have proved that this method is superior to other
methods on different test datasets.

In the future, we will consider optimization based on the training dataset. In this
article, we down-sample HR frames to obtain the dataset. The down-sampling process
simulates the degradation process of LR data as much as possible, but the same effect
cannot be guaranteed. Therefore, the trained model is only most suitable for LR scenarios
that meet specific degradation conditions. Based on this, we will try to eliminate the process
of manually down-sampling HR frames to obtain LR frames. Specifically, we will directly
use continuous frames of the original video as inputs and the corresponding continuous
frames of the HR repair version as targets.
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