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The invitation to contribute to this anthology of articles on the fractional calculus
(FC) encouraged submissions in which the authors look behind the mathematics and
examine what must be true about the phenomenon to justify the replacement of an integer-
order derivative with a non-integer-order (fractional) derivative (FD) before discussing
ways to solve the new equations. The desired articles are intended to provide the reader
with a window into the future of specific science disciplines by peering through the lens
of the fractional calculus (FC) and suggesting how what is seen entails a difference in
thinking about that area of science. Thus, a perfect submission would be more about the
implications and utility of the FC than about its formal structure in chemistry, epidemiology,
sociology, psychology, physics, or any of the other scientific disciplines. Imaginative articles
that implement FC in new and interesting ways that reveal its transformational nature,
including, but not limited to, such things as: how a fractional derivative in time incorporates
memory into the solution of the dynamic description of an earthquake, a brain quake, or
a crash in the stock market; how the fractional derivative in space incorporates spatial
non-locality into the solution of the complex dynamical descriptions of a riot, the collective
intelligence of social groups, or the neuronal activity of the brain. Finally, we are interested
in how the combined fractional derivatives in time and space of functional measures of
uncertainty incorporate both memory and nonlocality into the phase space solution to
capture the limited uncertainty of an ensemble of fractal trajectories, or the scaling behavior
of complex dynamical networks.

As West points out [1], Sir Isaac Newton transformed Natural Philosophy into today’s
Science by focusing on the fundamental nature of motion, and he did so by using geometry
in a way that resonated with the scientific community of his day. What Newton accom-
plished was to reveal what was entailed by fluxions (the differential calculus) without
explicitly referencing them and in so doing he convinced generations of scientists of the
value of their analyzing how physical phenomena change in space and over time. Whether
by conscious plan or by serendipity, Newton cleared a path for less talented investigators
to follow and contribute to the nascent discipline of mechanics and thereby determined the
direction of quantitative reasoning in physics for the next three centuries.

This was the starting point for a discussion of how science, through its intermittent
turning of its investigative tools on itself, has reached another epoch of transition. However,
unlike the paradigm shifts within a scientific discipline introduced by Thomas Kuhn in
1962 the present shift addresses the whole of science. West argues that the dominance of
Newton’s world view is drawing to a close and he weaves the threads of chaos theory,
fractals, non-ergodic behavior of dynamic systems and fractional kinetic theory into a
fractal tapestry of the physical, social, and life sciences. It is the complexity of this tapestry
that is shown to be fundamentally incompatible with Newton’s notions of space and time.

Angstmann and Henry (AH) [2] address the discipline of chemistry, specifically the
equations governing the time evolution of population densities of chemical species taking
into account the spatial movement and their interactions using reaction–diffusion equations.
They discuss the failure of classical techniques to properly describe diffusion and review
fractional subdiffusion resulting from particles being trapped for arbitrarily long times,
which are modeled using the continuous time random walk (CTRW) model. This fractional
subdiffusion is characterized by the mean square displacement of a chemical population
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spreading as a sublinear power law in time and is described using a Caputo fractional
derivative in time in a reactive–subdiffusion equation.

AH emphasize that the main lessons learned from their analysis: (i) The governing
equations are different depending on whether newborn particles inherit the waiting times
of their parents. (ii) Birth and death terms must be treated differently. (iii) In the case
where particles are removed, but not instantaneously at the start of the waiting times
between jumps, the reaction and subdiffusive terms are not additive. They go on to explore
the analytic solution to several exemplars, including a mass-conserving tempered time
fractional diffusion equation that is subdiffusive for short times but manifests standard
diffusion at long times.

Machado [3] chose to explore the fractal nature of financial time series using the Dow
Jones industrial average (DJIA) but avoided using standard time series analysis. Instead,
he uses multidimensional scaling (MDS) together with the concepts of distance, entropy,
fractal dimension, and the FC. Introducing ten distinct definitions of distance, most of
which I had not previously encountered, he was able to generalize MDS as an extension
of the traditional metric formulation to construct a smooth non-Euclidean space. In this
space, the fractal dimension and entropy measures for analyzing the three-dimensional
portraits produced by the generalized MDS are interpreted.

Several known relations between the fractal dimension, using the box counting defini-
tion, and the idea that a random variable’s entropy is its average level of “information” of
the corresponding PDF, are used to define the information as an entropy of non-integer
order α. This parameter α gives an extra degree of freedom to adapt the sensitivity of
the entropy calculation to each specific dataset. Machado points out that time is viewed
as a continuous and linear flow so that any perturbation is automatically assigned to the
variable under analysis. Stated differently, since people are entities immersed in the time
flow, apparently, we are incapable of distinguishing between perturbations in the time or
the measured variable. Machado’s analysis explores an alternative strategy to that of time
series analysis for reading the relationship between the variables.

In the reaction–diffusion equation discussed by AH the chemical reaction term was
modeled using the Verhulst equation for population growth. In 1798, Malthus argued
that the integer-order rate equation produced an exponential population growth and
40 years later Verhulst replaced the constant growth rate of Malthus with one which
decreased linearly with the growing population to mitigate the dire predictions of Malthus.
The Verhulst (logistic) equation has the advantage of being one of the few nonlinear
equations that has an analytic solution depicting a sigmoidal growth to a finite maximum
population. Izadi and Srivastava (IS) [4] recount this bit of history and note that the
integer-order derivative has been replaced by a fractional derivative in applications in
numerous disciplines of science and engineering. They go on to point out that for most
fractional differential equations (FDEs) there is to date no possibility of finding an exact
analytic solution.

IS provide a brief review of the analytic and numerical methods that have been
developed and applied for the FDEs which are based upon various loosely related models
of real-world problems. Given the popularity of the fractional logistic equation (FLE) in the
modeling of such phenomena as the growth of tumors in medicine, IS use it as a prototype
on which to utilize the local discontinuous Galerkin (LDG) discretization approach for
numerically solving the FLE. Given that the FLE has a second-order non-linearity IS rewrite
it as two linear first order FDEs to apply the LDG scheme. Consequently, LDG is employed
to discretize the resulting system, as well as the fractional operator. The mathematical
details of the technique are presented along with comparison with alternative numerical
and approximation approaches.

The transport of particles through continuous media is described by transport equa-
tions often based on general principles, such as conservation of energy and momentum.
As pointed out by Masoliver [5], in general these transport equations are unsolvable non-
linear integrodifferential equations. He elected to discuss transport processes using the
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telegrapher’s equation (TE) and its generalization to the fractional case, emphasizing that
random walk (RW) models are fundamental in describing TEs because they try to repro-
duce the microscopic mechanisms of transport. In this way he accounts for “diffusion with
finite velocity”.

The integer-order TE (IOTE) at early times behaves like a wave front and at late times
like ordinary diffusion, it is generalized to a fractional-order TE (FOTE) in transport through
highly disordered media, for instance, random media or fractal structures. Masoliver
shows how this is done using fractional RWs resulting in a three-dimensional FOTE that
is fractional is both space and time. The two different dynamics governing transport are
fractional wave behavior at early times and fractional diffusion behavior as late times.
Masoliver also shows analytic solutions for various combinations of IO-time, FO-space,
FO-time and IO-space derivatives in one, two and three dimensions.

There are some investigators whose papers I always anticipate reading because I know
that in addition to my gaining technical knowledge the author will put their work into a
context that I would have missed left to my own resources. Professor Mainardi [6] falls
into that category and his review paper falls into another category as well, that being:
“Everything you wanted to know about _?_ but were afraid to ask.”, here the blank is filled
in with the Mittag–Leffler function (MLF). Just as the exponential function is the workhorse
of linear IO differential equations, the MLF is the workhorse of linear FO differential
equations, and the latter reduces to the former when the FO index goes to unity. His paper
is written with the skill and insight that only one who has worked with the leaders in the
field and has himself made lasting contributions to our understanding could manage.

His survey interleaves and draws connections among stochastic processes, such as the
fractional Poisson process, the thinning of renewal processes, using the MLF. The CTRW is
used to generalize the classical Kolmogorov–Feller equation (KFE) to the fractional KFE
(FKFE) where the MLF is the waiting-time PDF. The fractional diffusion-wave equation
has solutions to boundary value problems in terms of Wright functions that are inverse
Laplace transforms of two parameter MLFs and are Greens functions in the solutions to
specific boundary value problems.

Big Data (BD) and Machine Learning (ML) are two of the more visible areas of research
in which investigators are working to span the gap separating the understanding based
on modeling in social and life sciences from the more quantitative models of physics
and engineering. Niu et al. (NCW) [7] maintain that the future success of these research
activities is tied to the successful application of the FC and fractional order thinking (FOT)
to the understanding of complex systems, to improving the processing and control of those
systems and even to extending the enabling of creativity itself. The heart of the matter
is that BD and ML seek to characterize complexity and of the ten characteristics used to
describe BD variability is selected by NCW as the most important.

The complexity observed in most BD is almost invariably manifest through inverse
power law (IPL) resulting from the processed data. The heavy-tailed nature of multiple
PDFs is discussed along with its connection to the FC through fractional diffusion equations
that are fractional in space, in time, or both. A variety of fractional discrete data processing
techniques are sketched out to model the variability of BD along with a discussion of the
CTRW. The key for the learning process is the optimization method and NCW inquire into
how to use the FC to improve on existing methods of optimization in ML.

A Skellam distribution is generated by taking the difference between two independent
Poisson random variables, which results in an integer valued Lévy process. Gupta et al.
(GKL) [8] discuss a time fractional Skellam process that describes the inter-arrival times
between positive and negative jumps as a MLF distribution rather than an exponential
distribution and this formulation has been applied to financial and competitive games
datasets. GKL show how the formalism is extended to a Skellam process of order k. A
Skellam process is used to model the difference between the number of goals between two
teams in a soccer match. Similarly, a Skellam process of order k can be used to model the
difference in the number of points scored by two competing teams in a basketball match
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where k = 3, meaning there are three distinct ways to score points. Elsewhere, the authors
show that a fractional Skellam process is better at modeling a tick-by-tick financial dataset
than the Skellam process, or equivalently that the MLF is superior to the exponential in
describing the inter-arrival times between successive ticks.

The FC has the potential to improve the performance of control systems as demon-
strated by Zheng et al. (ZLCW) [9]. They argue that the improvement is due to the
greater flexibility in modeling of systems and in the controller design methodology using
fractional-order proportional-integral-derivative (FOPID) which is a generalization of the
classical PID controller. ZLCW point out that although the FOPID controller provides better
performance it is also more difficult to implement. Consequently, rather than presenting a
general theory they present a case study to demonstrate the advantages of the proposed
method. The classical frequency-domain method is the analytic design method for the
FOPID controller used in the case study.

Digital watermarking is a form of embedding a signal (a watermark) within another
signal known as the cover, which might be a digital media, such as an image, audio, video,
or other digital media, and has become popular as a copyright enforcement tool in the
last few decades. Gonzalez-Lee et al. (GVMNPL) [10] explore the advantages of a FC
watermarking system for detecting Gaussian watermarks. They briefly critique multiple
FC strategies that have been adopted to replace the linear additive rule more commonly
used to watermark a signal. Watermarking includes using fractional derivatives, since
there is a relationship between the order of the derivative and the resulting function;
fractional Fourier transforms (random, continuous, and discrete), since there is a strong
dependency between the orders and the resulting coefficient set; as well as, fractional
Wavelet transforms.

CVMNPL emphasize that all the techniques discussed that use the FC have the
same starting point and the overall difference among them is the use of some transform
coefficients set for watermarking. In a previous work, the authors investigated the case of
Gaussian watermarks and their results suggested that the FC reduces the false positives
percentages (FPP). In that earlier work, however, they had limited testing and a deeper
study of the fractional scheme for detecting Gaussian watermarks was called for. The
present work accomplishes this task and confirms that the fractional scheme is reliable for
the unambiguous (error-free) detection of Gaussian watermarks.

Song and Karniadakis (SK) [11] open their contribution to the anthology with the
assertion that the modeling of wall-bounded turbulent flows is presently an unsolved
problem in classical physics. They propose a fundamentally new approach for modeling
the entire average velocity profile from the wall to the centerline of the pipe based on the
FC. They were surprised to find that representing the Reynolds stresses with a non-local
variable-order fractional derivative that decays with distance from the wall results in a
universal form for all Reynolds numbers for channel flow, pipe flow, and Couette flow.

A remarkable feature of this paper is the exhaustive numerical testing of the new
theoretical results against existing datasets from direct numerical simulation of the equa-
tions, as well as from experimental measurements. Taken together these results support
the hypothesis that the rate of turbulent diffusion changes continuously with distance from
the wall and the strong non-locality of turbulent interactions intensify away from the wall.

The final paper in this anthology presents an overview of the rapidly expanding
area of Distributed-Order Fractional Calculus (DOFC) by Ding et al. (DPSS) [12]. DOFC
generalizes the intrinsic multiscale nature of constant-order and variable-order fractional
operators, which provides new ways to think about and model systems whose behavior
emerges from the complex interplay and superposition of non-local and memory effects
across a multitude of scales. They discuss the various ways the fractional order in space
and/or time can be distributed and review the multiple ways these equations can be
numerically integrated. The areas of application on which they focus are engineering and
the physical sciences, with applications to viscoelasticity, transport processes and control
theory taking center stage.
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Mechanisms, such as multiple relaxation time in viscoelasticity, multiple temporal
and spatial effects in transport processes, and mixtures of time delays in control theory,
have all illustrated the significance of DOFC over more traditional integer-order methods.
This review provides a glimpse into the various ways the DOFC has established its utility
in the modeling of previously unsolved or partially solved complex problems. Hopefully,
the attentive reader will see a way in which the DOFC may provide insight into a problem
they have put on the backburner because they could not see a way forward.

Conflicts of Interest: The author declare no conflict of interest.
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Abstract: The theme of this essay is that the time of dominance of Newton’s world view in science is
drawing to a close. The harbinger of its demise was the work of Poincaré on the three-body problem
and its culmination into what is now called chaos theory. The signature of chaos is the sensitive
dependence on initial conditions resulting in the unpredictability of single particle trajectories.
Classical determinism has become increasingly rare with the advent of chaos, being replaced by erratic
stochastic processes. However, even the probability calculus could not withstand the non-Newtonian
assault from the social and life sciences. The ordinary partial differential equations that traditionally
determined the evolution of probability density functions (PDFs) in phase space are replaced with
their fractional counterparts. Allometry relation is proven to result from a system’s complexity using
exact solutions for the PDF of the Fractional Kinetic Theory (FKT). Complexity theory is shown to be
incompatible with Newton’s unquestioning reliance on an absolute space and time upon which he
built his discrete calculus.

Keywords: complexity; chaos; fractional calculus; subordination

1. Introduction

Three centuries ago, Newton transformed Natural Philosophy into today’s Science by focusing
on change and mathematical quantification and he did so in a way that resonated with the scientific
community of his day. His arguments appeared to be geometric in character, and nowhere in the
Principia do you find explicit reference to fluxions, or to differentials. What Newton did was reveal the
entailments of the calculus and convince generations of scientists of the value of their focusing on how
physical objects change their location in time. Some contemporary mathematicians of his generation
recognized what he had done, but their number can be counted on one hand, and their comments are
primarily of historical interest.

Fast forward to today, where modern science, from Anatomy to Zoology, is seen to have absorbed
the transformational effect of Newton’s contribution to how we quantitatively and qualitatively
understand the world, the fundamental importance of motion. However, it has occurred to a number
of the more philosophically attuned contemporary scientists that we are now at another point of
transition, where the implications of complexity, memory, and uncertainty have revealed themselves
to be barriers to our future understanding of our technological society. The fractional calculus (FC) has
emerged from the shadows as a way of taming these three disrupters with a methodology capable of
analytically smoothing their singular natures.

If Sir Isaac Newton were reincarnated into the modern world would he again achieve scientific
greatness using his prodigious intellect? Of course we cannot know the answer to this counterfactual,
but what we can determine is whether his fundamental assumptions upon which the physical laws
of analytic mechanics are based remain valid in the today’s world of complexity science. Whether or
not Newton would remain a stranger in this strange land of today’s science is the question we seek
to answer in this essay. Not literally, of course, but more to the point whether the fundamental
assumptions on which his mechanics is based can be sufficiently modified to be compatible with the
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mathematics found necessary to describe today’s complex phenomena, without being distorted to the
point of being abandoned. Can Newton’s view of the world be made compatible with the FC?

The FC moldered in the mathematical backwaters for over 300 years. Since the time of Newton
it was mostly ignored by the social, physical, and life scientists, intermittently emerging from the
shadows of formalism with an application. Historically, the community of international physical
scientists saw no need for a new calculus, or if occasionally seeing the need thought it not worthy
of acknowledgment. The community agreed that the ordinary differential calculus of Newton and
Leibniz, along with the analytic functions entailed by solving the equations resulting from Newton’s
force law, are all that is required to provide a scientific description of the macroscopic physical world.

In his Mathematical Principles of Natural Philosophy [1], Newton introduced mathematics into the
study of Natural Philosophy. He argued the need for quantification of scientific knowledge through
the introduction of mathematics in the form of fluxions and thereby changed the historical goal of
natural philosophy from that of wisdom to that of knowledge. This new term fluxion does not appear
anywhere in the Principles, but scholars have found numerous geometric arguments, which, in fact,
were in all probability based on limits in which Newton, no doubt, had differentials in the back of his
mind. The Marquis de l’Hôpital commented that Newton’s magnum opus was “a book dense with the
theory and application of the infinitesimal calculus”; an observation also made in modern times by
Whiteside [2].

Along with mathematics, Newton also introduced a number of definitions that determined how
scientists were to understand his vision of the physical world for the next few hundred years. We do
not quote his definitions of such well-known things as inertia and force here, but instead we record
the notions of space and time that he believed were the accepted understanding of their meanings as
explained in his first scholium (A scholium is a marginal note or explanatory comment made by a
scholar), which are [1] as follows.

I Absolute, time, and mathematical time, of itself, and from its own nature, flows equably without
relation to anything external, and by another name is called duration: relative, apparent,
and common time, is some sensible and external (whether accurate or unequable) measure
of duration by the means of motion, which is commonly used instead of true time; such as an
hour, a day, a month, a year.

II Absolute space, in its own nature, without relation to anything external, remains always similar
and immovable. Relative space is some movable dimension or measure of the absolute space;
which our senses determine by its position to bodies; and which is commonly taken for immovable
space; such is the dimension of subterraneous, an aerial, or celestial space, determined by its
position in respect of the earth. Absolute and relative space are the same in figure and magnitude;
but they do not remain always numerically the same. For if the earth, for instance, moves, a space
of our air, which relatively and in respect of the earth remains always the same, will at one time
be one part of the absolute space into which the air passes; at another time it will be another part
of the same, and so, absolutely understood, it will be continually changed.

Newton’s understanding of these two notions of the absolute are what enabled him to invent
fluxions and introduce motion as the basis for his new physics. Of course, the mathematically awkward
discrete notation of fluxions was subsequently elbowed out of history by the user-friendly notation of
Leibniz, which became known as the differential calculus. The differential calculus enabled subsequent
generations of scientists to describe the motion of particles in terms of continuous single particle
trajectories in space and time. The differential calculus fills literally thousands of mathematics/physics
text books; all assuming that I and II codify the real world and are taught to eager students and
novitiate scientists throughout the world. Herein, we argue for a mathematics that provides a logical
framework for understanding the more complex world of the Information Age, in which I and II must
be applied with extreme caution, if at all.
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The increase in sensitivity of diagnostic tools, advances in data processing techniques,
and expanding computational capabilities have all contributed to the broadening of science in ways
that have brought many phenomena from borderline interest to center stage. These curious complex
processes are now cataloged under the heading of non-integer scaling phenomena. An understanding
of the fundamental dynamics underlying such scaling requires a new mathematical perspective,
such as that obtained using the dynamics described by non-integer (fractional) operators and such
descriptions ushered in the sunset for much of what remains of Newton’s world view.

Much of what is written in this Introduction will be familiar to those with a background in
physics, even if the organization of the material is not. However the reasons why classical physics fails
to explain a given complex phenomena remains a mystery to those without such a background as well
as to many who do. Therefore, we express the purpose of this paper in the form of a hypothesis and
present arguments in support of the Complexity Hypothesis (CH):

Complex phenomena entailing description by chaos theory, fractional Kinetic Theory, or the
fractional calculus in general, are incompatible with the ordinary calculus and consequently
are incompatible with Newtonian Physics.

1.1. The Demise of Newton’s World View?

The evidence is all around us that the domain of application of Newton’s view of the physical
world is contracting dramatically. His view was reluctantly contracted with the introduction of
quantum mechanics along with relativity over a century ago. However, physicists took consolation in
the fact that the dynamic predictions of the very fast, the very large, and the very small, all reduce to
those of Newton in the appropriate limits. For special relativity, the dramatic changes in time occur
as the speed of light is approached [3]; for general relativity, space curves in the neighborhood of a
large mass [4]; and for quantum phenomena, the correspondence principle associated with the size of
Planck’s constant insures the quantized nature of energy is lost at large quantum numbers and energy
is continuous on the scale we live our lives [5]. However, the more recent constrictions produced by
chaotic dynamics is different; so much so that once made, there is no limit in which the view of Newton
can reemerge. This requires more explanation, as the inappropriate application of the differential
calculus to describe the dynamics of strongly nonlinear phenomena often yields misleading results.
In the author’s view, one such misinterpretation arose in support of the political interpretation of
climate change.

It should be evident that the rubric climate change provides an example of such a misapplication
of the nonlinear hydrodynamic partial differential equations that purport to describe the internal
motion of the earth’s atmosphere involving the multiple interactions with the earth’s temperature field,
solar radiation, cloud cover, and all the rest. Climate change is not just a problem in Newtonian physics,
because if it were we would have the answer to the problem in hand, which some few scientists believe
we do. I say this with full appreciation for the criticism such a statement will draw, from both the
believers in climate change and the sceptics who do not. Let me be absolutely clear in stating that
I believe in climate change, but belief is the wrong word. Climate change is a scientific fact not a
matter of faith or belief. What I am skeptical about concerns the quasi-scientific arguments used in the
political arena that assign causality of that change to human activity followed by the assertion that
climate change can be significantly influenced by political action.

I came to this conclusion, not through a “eureka” moment, or flash of insight, but more through
the weight of evidence drawn from my own scientific research. I even coauthored a book about it [6]
with a colleague who was then a post-doctoral researcher of mine. Our book addressed climate change
as a problem in physics and was greeted with a yawn from the scientific community. It was the last
scientific contribution I made to that debate and the science has not moved significantly since its
publication. My epiphany was that those who successfully communicate technically difficult ideas
tell a story. Thus, I have decided to populate this essay with a sequence of technically-based stories.
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Each one lending additional support to the CH. The first story concerns chaos theory and some of
what that entails.

1.2. Chaos Theory

The chaos story begins in the middle nineteenth century with Oscar II, the King of Sweden and
Norway, and his concern over how long the Earth will survive. More pointedly, he wondered whether
the solar system was stable. Could one expect the moon to spiral out of its orbit and crash into the
Earth? Would the Earth break from its timeless trajectory and collide with the Sun? Let me stop here
and say this is the beginning of the somewhat romanticized historical account of how chaos came
into being that I learned when I was first introduced to the “three-body problem” as a freshly mined
minted physics PhD in 1970. The actual historical account is a bit more banal, but not much.

Oscar II had done well in mathematics while a university student and had grown into an active
patron of the subject [7], so his sponsorship of a prize in mathematics, unrelated to any particular
institution was not surprising. Mittag-Leffler, who was then the editor of the Swedish journal Acta,
made the original announcement of the King’s mathematics competition, in the science magazine
Nature. In that announcement Mittag-Leffler listed four categories to which international scientists
could submit contributions. The category concerning the stability of the solar system was written in
the following arcane way [7].

(1) A system being given of a number whatever of particles attracting one another mutually
according to Newton’s law, it is proposed, on the assumption that there never takes place
an impact of two particles to expand the coordinates of each particle in a series proceeding
according to some known functions of time and converging uniformly for any space of time.

The committee that evaluated the submissions to the competition consisted of, along with
Mittag-Leffler, two other giants of nineteenth century mathematics, Hermite and Weierstrass. To avoid
any possibility of bias the entrants and their submissions remained anonymous until the winner
was selected, at which time the name was to be published in Acta. Out of a field of 12 entrants,
the committee selected Henri Poincaré, who had responded to question (1). He extended the analysis
of the solvable two-body problem to the addition of one additional body, which was much less massive
than the other two. Poincaré proved that the solution to Newton’s dynamic equations for his restricted
three-body problem could not have a simple analytic form. His published proof entailed the invention
of new mathematics, the implications of which have kept the best mathematician in the world actively
engaged for over a century.

In reviewing the prize-winning memoire for publication in Acta, a referee pointed out an error in
the manuscript. Part of the drama associated with publishing the final version of the paper concerned
the secrecy surrounding that error. Correcting this error entailed a major rewrite, which took Poincaré
nearly a year to complete. In composing the revision, he conceived of and implemented in the
manuscript the idea of a homoclinic point [7], which is the basis of our understanding of what today
goes by the popular name of chaos theory. In short, he introduced the Three-Body Problem to the
scientific community as being of fundamental importance and proved that the elliptic orbits of the
two-body problem were replaced by orbits in the restricted three-body problem that resembled nothing
so much as a plate of spaghetti. A single strand of entangled spaghetti was the convoluted trajectory
of the third body and the asymptotic position of the body along that trajectory at any time was
unpredictable. Today we call such trajectories fractals [8].

Sir James Lighthill, on the three-hundred-year anniversary of the communication of Newton’s
Principia to the Royal Society, and while he was president of the International Union of Theoretical
and Applied Mechanics, published the paper The recently recognized failure of predictability in Newtonian
dynamics [9]. In this paper, Lighthill traces the history of mechanics from Tycho Brahe collecting
astronomical data as a court astronomer, through Poincaré’s proof of the limited predictability horizon
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of Newton’s law of the dynamics of mechanical systems. To put this in a proper perspective let us use
Lighthill’s words:

We are all deeply conscious today that the enthusiasm of our forebears for the marvelous
achievements of Newtonian mechanics led them to make generalizations in this area of
predictability which, indeed, we may have generally tended to believe before 1960, but which
we now recognize were false. We collectively wish to apologize for having misled the general
educated public by spreading ideas about determinism of systems satisfying Newton’s laws
of motion that, after 1960, were to be proved incorrect. . .

This reluctant indictment of the Newtonian system of nonlinear partial differential equations
that describe how the radiation from the sun is absorbed by the earth’s atmosphere and redistributed
around the globe has to the best of my knowledge never been explicitly refuted. This is not unexpected
as Sir James was the scientific leader in the area of applied mathematics involving those same equations
for over thirty years. If the unpredictability of coupled systems of nonlinear differential equation
were expressed as a theorem, then one can draw a corollary regarding the nature of the computer
simulations based on those same equations. The reader is free to infer from these remarks if Newton’s
view is truly dead or whether it is just confined to an ever decreasing domain of analytic application.

What we can conclude with certainty is that Newton’s force law typically breaks down when
the system being analyzed is not linear and the equations of motion are nonlinear. Such equations
typically do not have analytic solutions, their solutions are generically chaotic [10,11]. As scientists,
this loss of predictability, which is the foundation of the physical sciences, ought to be our greatest
concern, or at least the mathematical foundation of all our physical models, the differential calculus,
ought to be the focus of our concern.

It is worth mentioning that in his philosophical writings Poincaré recognized that his mathematical
analysis entailed the loss of predictability and the existence of a new kind of chance [12]:

A very slight cause, which escapes us, determines a considerable effect which we can not
help seeing, and then we say this effect is due to chance. If we could know exactly the
laws of nature and the situation of the universe at the initial instant, we should be able to
predict exactly the situation of this same universe at a subsequent instant. But even when
the natural laws should have no further secret for us, we could know the initial situation
only approximately. If that permits us to foresee the subsequent situation with the same degree
of approximation, this is all we require, we say the phenomenon has been predicted, that it is
ruled by laws. But this is not always the case: it may happen that slight differences in the
initial conditions produce very great differences in the final phenomena: a slight error in the
former would make an enormous error in the latter. Predication become impossible and we
have the fortuitous phenomenon.

For over a century, some of the world’s leading mathematicians have been working on what might
be a proper replacement for, or extension of, Newton’s physics. They typically begin with the notion
that a conservative nonlinear dynamical system with three or more degrees-of-freedom is chaotic [13],
which means that its dependence on initial conditions is so sensitive that an infinitesimal change in the
initial state will produce a trajectory that exponentially diverges from the trajectory predicted by the
original state. Such an exponential separation of trajectories means that the perturbed state is unstable
in the sense that its asymptotic location cannot be predicted from the initial state.

The work that Lighthill was alluding to in his remarks quoted earlier were those of the
meteorologist Ed Lorenz, whose ground breaking paper opened the world of fluid dynamics to
the importance of chaos [14], and ended dreams of long-term weather forecasting. Those that have
considered chaos as a possible obstacle to climate forecasting as well, treat it in much the same way
that the nineteen century physicists Maxwell and Boltzmann treated many-body effects to produce
Kinetic Theory. Only now the modern climate physicist examines large-scale computer simulations of
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the earth’s atmosphere as having random fluctuations around the average dynamical behavior of the
atmosphere’s velocity field and temperature. The established procedure is to carry out a large number
of computer simulations, all starting from the “same state”, and from them construct an ensemble of
atmospheres with which to calculate the average dynamics of the interesting physical quantities.

The general impression in the meteorology community is that such ensemble averages ought to be
sufficient to smooth out the influence of chaotic trajectories and thereby provide the appropriate phase
space probability density function in the kinetic theory sense. The problem with the approach is when
one actually attempts to average over an ensemble of chaotic trajectories the integer moments diverge
leaving the coefficients ill-defined in the kinetic theory of Maxwell and Boltzmann. Here again we
find a need for a new kind of mathematics and the fractional calculus comes to the rescue, providing a
fractional Kinetic Theory (FKT).

In Section 2, we generalize the traditional phase space partial differential equations for the
probability density function (PDF) to the fractional calculus. This is done by averaging over an
ensemble of chaotic trajectories, and following the mathematical arguments of Zaslavsky [15] create a
FKT. The solution to a simple fractional diffusion equation is shown to have a generic analytic form.

1.3. Allometry Relations

Scientists believed that phenomena whose dynamic description is the result of using non-integer
operators, such as fractional derivatives, were interesting curiosities, but lay outside the mainstream
of science. Even such empirical laws as allometry relations (ARs), in which the functionality of a
system is related to a non-integer power of the system’s size, were thought to have causal relations,
with traditional differential dynamic descriptions [16–18]. Perhaps the most famous allometry relation
is that between the average metabolic rates of mammals and their average total body masses (TBMs)
as depicted by the “mouse-to-elephant” curve in Figure 1. In this figure, the solid curve is a fit to data
by a power-law relation of the form

〈Y〉 = a 〈X〉b , (1)

which is a straight line on log-log graph paper with slope b :

log 〈Y〉 = log a + b log 〈X〉 . (2)

The functionality of the system Y, here the average metabolic rate is denoted by 〈Y〉 and the size of the
system X, here the average TBM is denoted by 〈X〉. Note that the brackets here denote the empirical
averaging process.

Historically such ARs were explained using biophysical arguments, for example, Sarrus and
Rameaux [17,18] used simple geometrical arguments for heat transfer. They assumed the heat
generated by a body is proportional to its volume and the heat is lost at the body’s surface and
is proportional to surface area. The balance between the two suggested that the allometry parameter
is given by the ratio of dimensions to be 2/3, which does not fit the data very well. The empirical
value of the allometry parameter is b ≈ 0.74, which was subsequently accounted for by using fractal
scaling arguments [19]. A statistical technique based on the fractional calculus was developed in [20]
to explain the averaging brackets in Equation (1), which in due course we use herein as an exemplar of
complexity in the fractal statistics of physiological phenomena.

In Section 3, selected applications of the FC are presented with the intent of persuading
the reader that as systems become more complex the value of the ordinary differential calculus
to describe their behavior increasingly diminishes, until it is eventually nearly lost altogether.
The analytic PDF that solves the simple FKT problem is shown to explain the empirical AR using a
complexity-based arguments.
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Figure 1. The mouse-to-elephant curve. The average metabolic rates of mammals and birds are plotted
versus the average body weight (TBM) on log-log graph paper covering five orders of magnitude
in size. The solid line segment is the best linear regression to the data from Schmidt-Neilson [18]
with permission.

1.4. Another Time

The willingness of his contemporaries to accept Newton’s view of time flowing as an
uninterrupted featureless stream is understandable. However, the reluctance of physicists to directly
challenge Newton’s view of time outside extreme conditions in the physical sciences is unclear.
This reluctance is not evident in psychology where everything we see, smell, taste and otherwise
experience is in a continuous state of change. Consequently, the changes in the physical world are not
experienced uniformly, which is another way of saying that there is an objective time associated with
the physical and a subjective time associated with the psychological world. The physical scientists
dismissed subjective time out of hand, prior to Einstein, but even after relatively the experiential time
they accepted was considered to be a local physical time.

Here, we follow the discussion of Turalska and West [21]. The idea of different clocks telling
different times arises naturally in physics; the linear transformation of Lorentz in relativistic physics
being a familiar example. However, we are interested in the notion of multiple clocks in the biological
and social sciences wherein they have begun distinguishing between cell-specific and organ-specific
clocks in biology and person-specific and group-specific clocks in sociology [22]. Of course, the distinction
between subjective and objective time dates back to the empirical Weber–Fechner Law [23] in the latter
half of the nineteenth century.

While the global behavior of an organ, say the heart, might be characterized by apparently periodic
cycles, the activity of single neurons demonstrate burstiness and noise. In a similar way people in a
social group operate according to their individual schedules, not always performing particular actions
in the same global time frame. Consequently, because of the stochastic behavior of one or both clocks,
a probabilistic transformation between times is often necessary. An example of such a transformation
is given by the subordination procedure.

Insight into the subordination procedure is provided if we begin by defining two clocks that
operationalize time in two distinct ways. The ticking of the first clock records a subjective or operational
discrete time n, which measures an individual’s time T(n). The ticking of the second clock records
the objective or chronological time t, which measures the social time T(t) upon which a society of
individuals agree. If each tick of the discrete clock n is considered to be an event, the relation between
operational and chronological time is given by the waiting time PDF of those events in chronological
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time ψ(t). Assuming a renewal property for events, as given by a chain condition (convolution) from
renewal theory in Section 2.1, one can relate operational to chronological time [21]:

〈T(t)〉 =
∞

∑
n=0

t∫
0

Ψ
(
t− t′

)
ψn

(
t′
)

T(n)dt′ (3)

Every tick of the operational clock is an event, which in the chronological time occurs at time intervals
drawn from the renewal waiting-time PDF. This randomness entails the sum over all events and the
result is an average over many realizations of the transformation. The last of the n events occurs at
time t′ and the survival probability Ψ (t− t′) insures that no further event occurs before the time t.

For example, consider the behavior of a two-state operational clock, whose evolution is depicted
in Figure 2, where the clock switches back and forth (tick tock) between its two states at equal time
intervals. However, in chronological time this regular behavior is significantly distorted as seen in the
figure. The time transformation was taken to be an inverse power law (IPL) waiting time PDF ψ (t).
Thus, a single time step in the operational time corresponds to a random time interval being drawn
from ψ(t) in chronological time. The tail of the IPL PDF leads to especially strong distortions of the
operational time trajectory, as there exist a non-zero probability of drawing very large time intervals
between events. However, as the transformation between the operational and chronological time scales
involves a random process, one needs to consider infinitely many trajectories in the chronological time,
which leads to the average behavior of the clock in the chronological time denoted in Equation (3)
by brackets.

Figure 2. The upper curve is the regular transition between the two states of the individual in
operational time. The lower curve is the subordination of the transition times to an IPL PDF to obtain
chronological time.

Newton’s view of homogeneous isotropic time is shown to be incompatible with multiple
phenomena in the social and life sciences in Section 3.2 using subordination theory. In that section
the disciplines of biophysics, psychophysics, and sociophysics, to the degree they have adopted the
Newtonian viewpoint, are shown to be misleading. The complexity of these disciplines require a new
calculus to describe their dynamics.

In Section 3.2, we establish a direct link between subordination theory and the FC. This has been
done in the literature in a number of different ways. In Section 2, we show how the probability calculus
can be generalized to the FC in order to include temporal memory and spatial heterogeneity with
probability theory.

What is entailed by the results presented herein is discussed in Section 5 and some conclusions
are drawn.
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2. Fractional Kinetic Theory

Zaslavsky [24] considered chaotic dynamics, as a physical phenomenon, to be a bridge spanning
the gap between deterministic and stochastic dynamic systems. The dynamic states in the first case
are described by regular functions and in the second by kinetic or other probabilistic equations.
He developed the mathematics for the fractional kinetics corresponding to chaotic dynamics that is
intermediate between completely regular (integrable) and completely random cases. The kinetics
become “strange” because some moments of the PDF are infinite and the Onsager Principle is violated
in that it takes infinitely long for fluctuations to relax back to the equilibrium state. An alternative to
the derivation of the fractional kinetic equation (FKE) given by Zaslavsky [24] is presented by West
and Grigolini [25]. In this section we present the overlapping highlights of these two derivations in
schematic form, emphasizing the physical interpretation.

2.1. Generalizing Kinetic Theory

We sketch Zaslavsky’s arguments leading to the FKT resulting from the underlying dynamics
being chaotic and consequently the dynamic trajectories being fractal. We begin with the chain
condition of Bachelier, Smoluchowsky, Chapman, and Kolmogorov (BSCK) [26]:

P(x, t |x0, t0 ) =
∫

P(x, t
∣∣x′, t′ )P(x′, t′ |x0, t0 )dy, (4)

where P(x, t |x′, t′ ) is the probability density of having a particle at position x at time t if at time t′ ≤ t
the particle was at the point x′. We make the assumption that the PDF is stationary such that

P(x, t |x0, t0 ) = P(x, x0; t− t0), (5)

corresponding to the regular scheme for the kinetic derivation [26] and with Δt ≡ t− t0 we have for
the initial condition

lim
Δt→0

P(x, x0; Δt) = δ (x− x0) . (6)

The first generalization of the historical kinetic theory argument is made by taking into account
the fractal nature of the set generated by the ensemble of chaotic trajectories initiated by an underlying
non-integrable Hamiltonian. Inserting the time limit for a fractional time differential into the BSCK
chain condition enables us to write

∂α
t [P(x, t)] = lim

Δt→0

1
Δtα

∫
dy[P(x, y; Δt)− δ (x− y)]P (y; t) . (7)

This expression can be simplified using a second generalization, that being introducing the generalized
Taylor expansion

P(x, y; Δt) = δ (x− y) + A1(y; Δt)δ(β) (x− y) + A2(y; Δt)δ(β+1) (x− y) , (8)

for a set characterized by the fractal dimension 0 < β ≤ 1. Inserting this expansion into Equation (7)
simplifies the generalized BSCK chain condition by introducing the quantities

A(x) ≡ lim
Δt→0

A1(x; Δt)
Δtα

= lim
Δt→0

∫
dy
|x− y|β

Δtα
P(x, y; Δt), (9)

B(x) ≡ lim
Δt→0

A2(x; Δt)
Δtα

= lim
Δt→0

∫
dy
|x− y|β+1

Δtα
P(x, y; Δt). (10)

Zaslavsky [15] explained that the limit in these two expressions are the result of the fractal
dimensionality of the space-time set along which the state of the system is meandering in the
Δt → 0 limit.
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We do not reproduce the mathematical details from the open literature and instead jump to
the result for the one-dimensional Fractional Kinetic equation (FKE) [15,25] and write the fractional
Fokker–Planck equation (FFPE):

∂α
t [P(x, t)] = ∂

β

|x| [A(x)P(x, t)] + ∂
β+1
|x| [B(x)P(x, t)] . (11)

The FFPE has fractional indices in the domain 0 < α, β ≤ 1, the fractional time derivative is of the
Caputo form, and the fractional spatial derivative is of the symmetric Reisz–Feller form.

So how different are the solutions to the above FFPE from those of the ordinary FPE even when
β = 1?

2.2. Solution to a Simple FKE

One of the simplest dynamical processes described by the FFPE having far-reaching implications
has a constant fractional diffusion coefficient and a vanishing fractional velocity:

A(x) = 0 and B(x) = Kβ, (12)

thereby reducing Equation (11) to

∂α
t [P(x, t)] = Kβ∂

β+1
|x| [P(x, t)] . (13)

This is one of the simplest form of anomalous diffusion, first discussed in terms of the continuous time
random walk (CTRW) by Montroll and Scher [27].

The solution to this fractional diffusion equation is readily obtained by taking its combined
Fourier–Laplace transform and introducing the notation

F
{

∂
β+1
|x| [ f (x)] ; k

}
= − |k|β+1 f̃ (k), (14)

where f̃ (k) is the Fourier transform of f (x) and correspondingly

L {∂α
t [g(t)] ; u} = uα ĝ (u)− uα−1g(0) (15)

where ĝ (u) is the Laplace transform of g(t). Note that in Equation (14) we used the Fourier transform
of the Reisz–Feller derivative in space and in Equation (15) we used the Laplace transform of the
Caputo derivative in time. Consequently we obtain from the Fourier–Laplace transform of the FFPE:

uαP∗(k, u)− uα−1P̃(k, t = 0) = −Kβ |k|β+1 P∗(k, u), (16)

where the asterisk denotes the double transform of the PDF and the indices lie in the interval 0 <

α, β ≤ 1. This equation is simplified for the initial value problem:

P(x, t = 0) = δ (x) =⇒ P̃(k, t = 0) = 1, (17)

to the form

P∗(k, u) =
uα−1

uα + Kβ |k|β+1 . (18)

The inverse Fourier–Laplace transform of this expression yields the solution to the initial value problem
for the PDF.

Metzler and Klafter [28] derived the FFPE using the CTRW formalism of Montroll and Weiss [29]
and reviewed the potential functions for various combinations of indices. It has also been derived
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using subordination theory by West [30]. The inverse Laplace transform of P∗(k, u) yields the
characteristic function

P̃(k, t) = Eα

(
−Kβ |k|β+1 tα

)
(19)

expressed in terms of the Mittag–Leffler function (MLF):

Eα (z) =
∞

∑
n=0

znα

Γ (nα + 1)
. (20)

The inverse Fourier transform of the characteristic function yields the PDF solution

P(x, t) = F−1
[

Eα

(
−Kβ |k|β+1 tα

)
; x

]
. (21)

The simple substitution k′ = ktδ into Equation (21), with δ = α
β+1 , after some algebra reduces the

formal solution to
P(x, t) =

1
tδ
F−1

[
Eα

(
−Kβ

∣∣k′∣∣β+1
)

;
x
tδ

]
, (22)

or in a more familiar scaling form:

P(x, t) =
1
tδ

F
( x

tδ

)
, (23)

where the new function is defined:
F
( x

tδ

)
≡ P

( x
tδ

, 1
)

. (24)

The function F(·) is analytic in the scaled variable x/tδ, is properly normalized and can therefore
be treated as a PDF. For a standard diffusion process, α = 1, in which case the MLF becomes an
exponential so that for β = 1 the Fourier transform can be carried out and this function becomes a
Gaussian with δ = 1/2. When α = 1 �= β the result is a stable Lévy process [26,31] with the Lévy index
given by 0 < 1/δ ≤ 2. However, for general chaotic systems there is a broad class of distributions for
which the functional form is neither Gaussian nor Lévy.

Mainardi et al. [32] obtained a variety of other solutions to the FKE in terms of the properties of the
MLF for 0 < α < 1. The inverse Fourier transform of the scaled PDF solution for β = 1 asymptotically
relaxes as the IPL t−α/2.

2.3. Self-Similar Random Walks

Zaslavsky et al. [33] worked to visualize the underlying landscape produced by averaging over
chaotic trajectories and to describe the formal structure uncovered by extensive numerical calculations.
They discuss the notion of a “stochastic web” to characterize the chaotic dynamics generated by
Hamiltionian systems in which “weak” chaotic orbits are concentrated on small measure domains of
phase space thereby constituting a “web”. They note that transport through stochastic webs could
produce non-Gaussian, i.e., intrinsically anomalous, diffusion.

The nexus points of the web constitute traps were homoclinic points have dissolved into a spray
of local points that locally entrap trajectories for IPL lengths of time. Exiting a trap the orbit undergoes
a long–range flight having self-similar properties. The process can be realized as passing through
the turnstiles of “cantori” [34]. This argument is realized by replacing the complete simulation of
the Hamiltonian dynamics with a random walk (RW) containing the appropriate qualitative features.
They do this by way of example whereby they construct a RW determined by a Weierstrass (W)
function [35]. Consider the discrete probability described by the stepping PDF for the Weierstrass
random walk (WRW) on a one-dimensional lattice with sites indexed by x [35]:

p(x) =
a− 1

2a

∞

∑
n=0

1
an [δx,bn + δx,−bn ] , (25)
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where a and b are dimensionless constants greater than one. and δij is the Kronecker delta function:
δij = 1 for i = j and δij = 0 for i �= j. We follow the analysis of this discrete process given by West and
Grigolini [6]. The first notable property of the PDF generated by the WRW is that the second moment
of this RW process diverges: 〈

x2
〉
=

a− 1
a

∞

∑
n=0

(
b2

a

)n

, (26)

for b2 > a as the series is infinite. The discrete Fourier transform of the PDF given by Equation (25)
yields the discrete characteristic function

p̂ (k) =
a− 1

a

∞

∑
n=0

1
an cos [bnk] . (27)

This series was introduced by Weierstrass in 1872 in response to Cantor, a former student and
subsequent colleague, who challenged him to construct an analytic function that is continuous
everywhere but is nowhere differentiable. Thanks to Mandelbrot [8] we now know that this was the
first consciously constructed fractal function and the divergence of the second moment is a consequence
of its non-analytic properties.

As the WRW process unfolds the set of sites visited mimics the influence of localized chaotic
islands, interspersed by gaps, nested within clusters of clumps over ever-larger spatial scales. The WRW
generates a hierarchy of traps that are statistically self-similar, as suggested by Figure 3. The parameter
a determines the number of subclusters within a cluster and the parameter b determines the scale size
between clusters.

Figure 3. The landing sites for the WRW are depicted and the islands of clusters discussed in the text
are readily seen.

The Weierstrass form of the characteristic function allows for a renormalization group (RG)
solution [36] from which we can determine the scaling properties of the WRW. Scaling the argument of
the characteristic function by b and reordering terms in the series allows us to write [33,36]

p̂ (bk) = ap̂ (k)− a− 1
a

cos k. (28)

The RG solution to Equation (28) can be separated into a homogeneous part and a singular part:

p̂ (k) = p̂s (k) + p̂h (k) , (29)
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where p̂h (k) is analytic in the neighborhood k = 0 and p̂s (k) is singular in this neighborhood.
The singular part p̂s (k) is obtained by solving the scaling equation:

p̂s (bk) = ap̂s (k) , (30)

where we assume the formal solution:

p̂s (k) = A(k)kδ. (31)

Inserting this form of the singular solution into Equation (30) yields

A(bk)bδkδ = aA(k)kδ, (32)

providing the distinct equalities

bδ = a, (33)

A(bk) = A(k). (34)

The first equality yields for the power index in terms of the series parameters δ = ln a/ ln b. The second
equality implies that A(k) is periodic in the logarithm of k with period ln b. Consequently, the singular
part of the RG solution is written

p̂s (k) =
∞

∑
n=−∞

An |k|Hn , (35)

with the complex power–law index:

Hn = δ + in
2π

ln b
=

ln a
ln b

+ in
2π

ln b
. (36)

The analytic forms of the Fourier coefficients in Equation (35) are given in [35].
Hughes et al. [35] prove that the dominant behavior of the WRW is determined by the lowest-order

term in the singular part of the solution for the discrete characteristic function, but we do not show
that here. Instead we assume that the dominant behavior is given by the n = 0 term in the series:

p̂s (k) ≈ A0 |k|δ , (37)

whose inverse Fourier transform is determined by a Tauberian theorem to be the IPL:

p(x) =
K(δ)

|x|δ+1 , (38)

and K(δ) is a known function of δ. Thus, the singular part of the WRW has an IPL stepping PDF and
this dominant behavior intuitively justifies ignoring all the other terms in the series.

We now write for the asymptotic time-dependent form of the discrete PDF resulting from
the WRW:

P(x, n + 1) = ∑
x′

p(x− x′)P(x′, n)

= ∑
x′

K (δ)

|x− x′|δ+1 P(x′, n), (39)

where we assume that each step n in WRW process occurs at equal time intervals. Equation (39)
was analyzed in 1970 by Gillis and Weiss [37], who determined that its solution is a Lévy PDF,
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thereby connecting the RG solution of the WRW to our discussion of the fractional diffusion equation
given earlier.

Stable Lévy processes can therefore arise from the “weak” chaotic nature of the phase space
trajectories. This is, in part, a consequence of the asymptotic behavior k → 0 corresponding to the
asymptotic x → ∞ , which is of significance in determining the transport behavior of the anomalous
diffusion process.

3. Patterns and Complexity

In the Introduction we identified one of those patterns that is not restricted to a particular
discipline, but pops up in every discipline from anatomy to zoology, and that pattern is an allometry
relation (AR). However, what distinguishes such patterns from, for example, simple periodic
motion? Of course, the existence of such regularity, the pattern of reproducibility in space and
time, is what motivated the first investigators to seek common causes to associate with those patterns.
Periodic motions, such as vibrations, motivated Hook to introduce his law using Newton’s mechanical
force for its explanation. The amazing success of such laws reinforced the idea that other phenomena
including the beating of the heart, walking, and the propagation of light could all be described by
adopting a similar modeling strategy. However, the luminiferous aether is now a quaint historical myth
concerning the assumed need for a medium with remarkable properties to support the propagation of
electromagnetic waves. In addition, the normal sinus rhythm of the heart is a medical myth as heartbeats
are not sinusoidal. The more complex the phenomenon being considered the less well the patterns are
reproduced using Newton’s view of science.

Much of the present discussion stems from the need to replace Newton’s atavistic characterization
of space and time, because they fail to capture the rich structure of the complexity of the modern
world. The failure to systematically reexamine these fundamental assumptions have restricted the
utility of the modeling techniques of modern physics in the study of the psychology, sociology and
the life sciences. The experience of space and time differs between those of the claustrophobic or
agoraphobic, from the performer on the stage or the surgeon operating on the brain, from the warrior
on the battlefield to the physician on the critical care ward. We require a mathematics that can capture
all of this and so much more. The conclusions drawn herein were anticipated a couple of years ago [38]:

What is becoming increasingly clear ... is that the technical intensity of the world has become
so dense that the mathematical language initiated by Newton is no longer adequate for
its understanding. In fact we now find that we have been looking at the world through a
lens that often suppresses the most important aspects of phenomena, most of which are
not “simple”. These are characteristics of the phenomena that cannot be described using
differential equations and we refer to them as complex.

3.1. Allometry through Complexity

We have argued elsewhere [20,39] that the empirical AR given by Equation (1) is a consequence
of the imbalance between the complexity associated with the system functionality and the complexity
associated with the system size, both being measured by Shannon information. We refer to this as the
allometry/information hypothesis (A/I–H) [40] and postulate that in a complex network, composed of
two or more interacting subnetworks, the flow of information is driven by the complexity gradient
between the subnetworks, transported from that with the greater to that with the lesser complexity.

Implicit in the A/I–H is the assumed existence of dependencies of both system size and system
functionality on complexity. Such dependencies have been observed in the positive feedback between
social complexity and the size of human social groups [41,42], as well as in ant colony size [43], and the
increase in biological complexity with ecosystem size [44]. Other relations have been observed in
multiple disciplines, including the increase of prey refuge from predators with habitat complexity [45],
computational complexity increasing with program size [46], and gene functionality depending on
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system complexity [47]. We abstract from these observations that the complexity of a phenomenon
increases with system size and that the system functionality increases with system complexity.

The argument presented in this section follows that given recently by West et al. [48] in their
discussion of the evolution of military technology over the past millennium. It is intuitively understood,
but not often explicitly stated, that size and complexity grow together and are inextricably intertwined
through criticality. Moreover, although tied together, their changes are not in direct proportion
to one another. A similar connection exists between complexity and system functionality [38].
These interconnections are represented through homogeneous scaling relations, as shown below.
West argued that as a system increases in size it provides increasing opportunity for variability,
which is necessary in order to maintain stability. Scaling provides a measure of complexity in dynamic
systems, indicating that the system’s observables can simultaneously fluctuate over many time and/or
space scales. An observable Z(t) scales if for a constant λ it satisfies the homogeneous relation

Z(λt) = λμz Z(t) (40)

with the scaling index given by μz. Note that if we consider the AR given by Equation (1), but without
the averaging brackets, the size and functionality depend on a parameter t, and scale in the manner
indicated by Equation (40), each with a distinct power law index, then b = μY/μX in order for the AR
to be satisfied.

The hallmarks of fractal statistics are spatial (z) inhomogeneity and temporal (t) intermittency
and the phase space trajectory (z; t) replaces the dynamic variable Z(t). In phase space, the scaling of
the dynamic variable is replaced by a scaling of the PDF P(z; t):

P(z; t) =
1

tμz
Fz

( z
tμz

)
(41)

as given by Equation (23) for general complex phenomena. There is a broad class of PDFs for which
the functional form of Fz(·) is left unspecified.

It is straightforward to calculate the average value of Z(t) using the PDF given by Equation (41):

〈Z(t)〉 =
∫

zP(z, t)dz = qztμz , (42)

and the overall constant is determined by the scaling variable q = z/tμz averaged over the PDF F(q):

qz ≡
∫

qFz (q) dq. (43)

Interpreting Z(t) as the system’s TBM X(t) Equation (42) describes the growth in the overall average
size of a complex system with the time t, due to the intrinsic dynamics generating increasing complexity.
A similar observation can be made interpreting the dynamic variable with a functionality of the system
Y(t). Consequently, the same functional form results for both Y(t) and X(t), each with its own index.
This is not entirely unexpected since both the functionality and size of the system grow with complexity,
but at different rates.

Notice that using the scaling PDF that the average of the dynamic variable now has the
scaling property:

〈Z(λt)〉 = λμz 〈Z(t)〉 . (44)

If both the size and functionality of the system can be characterized in terms of the system’s complexity
by the same form of scaling PDF we obtain two equations in t for the averages. Setting the scaling
parameter to λ = 1/t, after some algebra we obtain the equalities

t =
( 〈Y(t)〉
〈Y(1)〉

) 1
μY

=

( 〈X(t)〉
〈X(1)〉

) 1
μX

, (45)
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which can rewritten in the form of the empirical AR given by Equation (1):

〈Y〉 = a 〈X〉b , (46)

with the allometry parameters:

a =
〈Y(1)〉
〈X(1)〉b

=
qY

qb
X

and b =
μY
μX

. (47)

Here, we have used Equation (42) to obtain the second equality for the allometry coefficient. Thus,
demonstrating that the empirical AR is the result of the self-similar behavior of the PDF.

Note that the allometry index b is expressed as the ratio of b = α/ (β + 1) for the system
functionality to that for the system size. In general, this ratio is less than one for both the system size
and functionality. It is also the case that for physiological systems b < 1. The more the index for the
fractional time derivative deviates downward from one, the greater influence the complexity history
has on the present behavior of the independent variable, whether functionality or size. The more the
index of the fractional variate derivative deviates downward from two, the greater is the nonlocal
coupling of the independent variables (functionality or size) across scales. However, these two
mechanisms do not independently determine the scaled PDF. It is their ratio that determines the
balancing of effects in the functionality and size separately, and then through their ratio to obtain b.

It is this coupling across scales in size as well as in physiologic time that entails the temporal AR
with b < 1, as well as, the positive growth of entropy in approaching the steady state asymptotically.
The results of these brief arguments are encapsulated in the Principle of Complexity Management
(PCM), which establishes that in the interaction between two complex networks, information flows
from the more complex to the less complex network. Information transfer is maximally efficient when
the complexities of the two networks are matched [38]. In the time-size application of this section,
the PCM takes the form The origin of natural patterns manifest by temporal ARs is the imbalance between the
complexity associated with a system’s measure of time and the complexity associated with a system’s size. In
both networks the complexity is measured by the Wiener/Shannon entropy.

3.2. Its about Time

The fundamental question addressed in this section is whether time outside the physical sciences,
say the time for a scurrying mouse at the lower left of Figure 1 is the same as that of the lumbering
elephant at the upper right of the metabolic AR curve. Newton would assert that they are identical
and we would agree that the time shared by the two animals is the same when referenced to an
external mechanical clock. However, are the two times the same when referenced to their individual
physiological clocks? This question arises because the lifespans of the two creatures are essentially
the same when their lifetimes are measured using the product of the number of heartbeats times the
average time interval between beats. This is very different from the comparison of their separate
lifespans when referenced to an external clock in which case the two differ by years. This change
of reference of time measures, from the ticking of a clock to the beating of a heart, suggests that
physiological time may be a monotonically decreasing function of physical time [49].

This difference in the meaning of time has lead to such concepts as biological time [50],
physiologic time [51], and metabolic time [52], all in an effort to highlight the distinction between time
in living and in inanimate systems. The intrinsic time in a living process was first called biological time
by Hill [53], who reasoned that since so many properties of an organism change with size that time
itself ought to scale with TBM. Natural scientists have subsequently hypothesized that physiologic
time differs from the time measured by the ticking of a mechanical clock, or Newtonian time, in that
the former changes with the size of the animal [17,18], whereas the latter does not [54].
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Lindstedt and Calder [55] developed the concept of biological time further and determined
experimentally that biological time, such as species longevity, satisfies a temporal AR with the
functionality of the system being the physiologic time Y = τ and X the TBM M [56]:

〈τ〉 = a 〈M〉b (48)

which describes the average duration of biological events. In Figure 4, we record the average heart
rate R = 1/ 〈τ〉 for sixteen animals [57] covering six orders of magnitude in average TBM. The solid
line segment is the fit to the data with empirical values to the allometry parameters given by a = 205
and b = 0.248, with a quality of fit measured by r2 = 0.96. Other, more exhaustive, fits to larger data
sets, made by other investigators, support the notion that physiologic time is extensive and may be
found in many other places [17,18], but the results are equivalent.

Figure 4. The average heart rate in beats per minute for 16 animals from the fastest, hamsters, to the
slowest, large whales, with humans being in the middle of a fitting curve. The data were obtained
from [57] and the solid line segment is fitted to the temporal AR. From the work in [49] with permission.

In an allometry context, one version of the FKE, would be given by Equation (13) where the phase
space variables (z, t) are here given by (m, τ) [30] and P(m, τ)dm is the probability that the dynamic
mass variable M(τ) lies in the interval (m, m + dm) at time τ. M(τ) represents the TBM of a mature
individual species member, within an ensemble of realizations, at the physiological time τ. The exact
solution to the FKE has been obtained as the inverse Fourier transform of the characteristic function,
expressed in terms of the Mittag–Leffler function given by Equation (21) with the variables properly
defined. The allometry coefficient in this temporal AR has a theoretical value expressed in terms of the
average of the scaled variable q = m/τδ. Consequently, the complexity of the underlying physiology
of an animal entails the physiologic time through the scaling statistics.

The dependence of the empirical AR on the overall state of the system is captured by the entropy.
The Wiener/Shannon information entropy associated with the system manifesting temporal allometry
has the value

S(τ) = −
∫

P(m, τ) log2 P(m, τ)dm (49)

which when the scaled PDF given by Equation (41) is inserted into the integral yields

S(τ) = S0 + δ log2 τ (50)

where S0 is the entropy referenced to the PDF F(·).
Consequently, as we mentioned earlier, given a monotonic function relating physical and

physiologic time t = g(τ), such that
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dg(τ)
dτ

≡ ·
g ≥ 0 (51)

we have for the physical time derivative of the entropy Equation (50):

dS(τ)
dt

=
δ

τ

1
·
g
≥ 0 (52)

Consequently, the entropy generation in physical time for the physiologic process entailing the
temporal AR is positive semidefinite. Thus, the rate of entropy generation in Newtonian time is
consistent with the dynamics of living systems having their own physiological time.

It is worth pointing out that empirical ARs are not necessarily restricted to living systems, but also
arise in social systems as well. This is not entirely unexpected, as the average mass in an empirical AR
is actually a surrogate for the living system’s complexity. Proceeding by analogy, one might anticipate
that such an AR should appear in a social context, where the average TBM is replaced with the average
population or population density. This does, in fact, occur in the form of ARs where the functionality is
expressed in terms of the rate at which an event occurs. An exemplar is Farr’s Law, which dates back to
the nineteenth century, and quantifies the “evil effects of crowding”, relating a population’s mortality
rate to an institution’s patient population density in the form of a rate AR [38,58]. Other examples
of social ARs include an increasing urban crime rates, the more rapid spread of infectious diseases,
and a speedup in pedestrian walking, all with increasing city size, as quantitatively confirmed by
Bettencourt et al. [59]. Unlike the biological case, in the social rate ARs the allometry index has a value
greater than one, b > 1, confirming that cities have, at all times and in all places, throughout history,
entailed increased rates in human activity, for good or ill.

4. Subordination

The Montroll–Weiss (MW) perspective of CTRW [29] has been used to support the assumption
that there are at least two distinct, but related, interpretations of time associated with a system’s
dynamics. As noted in the Introduction, the first is the external time associated with an objective
observer who records the behavior of the system. This is Newton’s assumption of what constitutes
time: it is experimental or clock time. The second kind of time is the local time associated with the
internal dynamics of the system, called subjective or operational time. In a psychological experiment
the latter time is what is experienced by the participant. The experimental observation, carried out
in the clock time t, is subordinated to a process occurring in the operational time n. For simplicity,
we assume the operational time n to be an integer number so large as to become indistinguishable
from a continuous variable. In the operational time n the evolution of the PDF describing the process
is described by the ordinary diffusion equation

∂P(x, n)
∂n

= D
∂2P(x, n)

∂x2 = LP(x, n), (53)

where L ≡ D ∂2

∂x2 is the diffusion operator.
The dynamics generating the diffusion process is the simple Langevin equation

dX(n)
dn

= η (n) , (54)

where X(n) is the space coordinate at time n and η (n) is the fluctuating velocity. If the velocity is
a stochastic process with delta correlated fluctuations, this equation yields a diffusion process with
scaling index δ = 1/2. If δ �= 1/2 the diffusion is anomalous and is the result of memory influencing
the fluctuations. In the present representation η(n) of Equation (54) is totally random, i.e., it has no
memory. However, in the clock time, the event η(n) occurs at time t(n) and the independent event
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η(n + 1) at time t(n + 1) with the time distance τ(n) = t(n + 1)− t(n) derived from a waiting time
PDF ψ(τ). We are interested in the case where the waiting time PDF has the hyperbolic form:

ψ (τ) = (μ− 1)
Tμ−1

(T + τ)μ (55)

We use this hyperbolic form to define the concept of crucial event.
Crucial events are defined by the time interval separating the occurrence of consecutive events.

The time intervals between crucial events are determined by a waiting time PDF given by Equation (55),
with the condition 1 < μ < 3. In clock time we use the theoretical MW prescription [29] to obtain

P(x, t) =
∞

∑
n=0

t∫
0

dt′ψn
(
t′
)

Ψ
(
t− t′

)
enLP(x, 0). (56)

Note that ψn (t′) is the PDF that n events have occurred and that the last event took place at time t′.
For the formula given by Equation (56) to hold with n going to ∞, we must assume that for the

random walker to travel the distance x in a time t a virtual infinitely large number of events may occur,
thereby implying the diffusion coefficient D is extremely small. In the case μ < 2, the mean waiting
time 〈τ〉 diverges, thereby providing an additional reason for the experimental observation time t to
be large.

It is possible to prove, using the arguments developed by Allegrini et al. [60] with a minor
notational change, that Equation (56) is equivalent to the integro-differential phase space equation:

∂P(x, t)
∂t

=

t∫
0

dt′Φ
(
t− t′

)LP(x, t′), (57)

where Φ(t) is the MW memory kernel related to the waiting–time PDF and ψ(t) = ψn=1(t). In the
Laplace transform representation where f̂ (u) denotes the Laplace transform of f (t), this latter
relation is

Φ̂ (u) =
uψ̂ (u)

1− ψ̂ (u)
. (58)

In the case where the index for the hyperbolic PDF, which asymptotically is the IPL index, is in the
interval 1 < μ < 2, using Equation (58) it is shown [61] that asymptotically u → 0:

Φ̂ (u) ≈ u1−α. (59)

Inserting this asymptotic expression into the Laplace transform of Equation (57) and taking the inverse
Laplace transform yields the fractional diffusion equation (FDE):

∂αP(x, t)
∂tα

= LP(x, t) (60)

Here, the fractional time derivative is of the Caputo form with α = μ− 1 < 1. We note here that the
analytic solution to Equation (60) is given by the scaling PDF Equation (23) when β = 1 and δ = α/2.

Culbreth et al. [62] stress certain subtleties of these formal results to provide a context with
which to appreciate their contribution to the field of cognition and to the fractional calculus. First,
they notice that we can use psychological arguments to interpret the connection between operational
time and clock time, as done in [63]. The operational time is subjective in this psychological context
with a logarithmic connection with the clock time t, which changes an exponential waiting time
PDF into the hyperbolic structure of Equation (55). This property provides the rationale for why
they [62] consider the CTRW formalism to be closely connected to the issue of cognition. As they point
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out, earlier work [60] analyzed a series of events using the hyperbolic waiting time PDF using the
Kolmogorov–Sinai definition of complexity and determined that the signal becomes computationally
compressible for 2 < μ < 3. This is equivalent to assessing that the time series hosts messages that can
be decoded.

On the other hand, the Kolmogorov–Sinai entropy vanishes for μ < 2 and has been recently
generalized to take into account the rare crucial events [64] of this region. These crucial events are
conjectured to be the signal of swarm intelligence [65], while the observation of the dynamics of the
brain leads to the conclusion that μ = 2 is a proper signature of the brain of an awake subject [66].
In summary, the events characterized by the inter-event or hyperbolic waiting time PDF are considered
to be a signature of cognition and are known to be responsible for the transport of information from one
intelligent system to another [67,68]. The term crucial events is a proper nomenclature to acknowledge
the importance of these rare events.

5. Discussion and Conclusions

We began this essay with the stated intent of supporting the Complexity Hypothesis by
demonstrating to the reader why Newton’s dynamic view of physical objects is not just inappropriate
for living and social systems but its domain of application within the physical sciences is shrinking
dramatically as well. The unexamined assumptions regarding the nature of space and time, with which
Newton opened his Principles, make his force law invalid for the study of complex phenomena. Yet,
these are the phenomena of interest to scientists in the 21st century, whether such phenomena reside in
the physical, social, or life sciences.

As mentioned, Newton’s equations have been shown to require changes when particles are
moving very fast (approaching the speed of light), when the spatial scales are very large (cosmological)
and when they are very small (quantum mechanical). In each of these domains the dynamic laws
follow a correspondence principle in that they converge on Newton’s laws by changing a parameter
value to replicate the world of our five senses. Herein we have shown that in this world of experience
we continually encounter deviations from Newton’s laws at normal speeds and spatial scales, due to
chaos. Chaotic dynamics led to replacement of the probability calculus of Kinetic Theory with that
of FKT, as well as to operational time. One way to measure the degree of complexity generated by
chaotic attractors is by using the entropy of the behavior.

Crutchfield et al. [69] interpreted the entropy of a dynamic process as the average rate of
information generation by a chaotic process in that the more precisely an initial state of a system
is specified, the more information one has available. The amount of information contained in
the initial state is inversely proportional to the state space volume Vi localized by measurement.
Trajectories initiated in a local volume of a regular attractor remain close to one another as the system
evolves, and therefore no new information is generated, while the initial information is preserved in
time. Consequently, the initial information can be used to predict the system’s final state.

On the other hand, on a chaotic attractor the initial volume gets smeared out, consequently, as the
system evolves the initial information is destroyed and replaced by newly created information. Thus,
the volume in the specification of the initial system is eventually spread over the entire attractor and all
predictive power is lost since the probability of being anywhere on the attractor is the same. All causal
connection between the present state of the system and its future or final state is lost. This is referred
to as the sensitive dependence on initial conditions.

Let us denote the final region of phase space the system occupies by Vf so that the change in the
observable information ΔI is determined by the volume change from the initial to final state [70,71]:

ΔI = log2

(Vf

Vi

)
. (61)
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The time rate of information change (creation or dissipation) is therefore

dI
dt

=
1
V

dV
dt

, (62)

where the time-dependent volume V over which the initial conditions are spread determines the
ultimate fate of the initial information. In regular, which is to say non-chaotic, systems the sensitivity of
the flow in the initial conditions grows with time no more rapidly than a polynomial. Let Ω(t) be the
number of states at time t that can be distinguished such that if the greatest polynomial index is n such
that Ω (t) ∝ tn. The ratio of the final to initial volume in such a system is equal to the relative number

of states independently of the time
Vf
Vi

=
Ω f
Ωi

, so that for the rate at which information changes [71]:

dI
dt
∼ n

t
. (63)

Thus, the rate of generation of new information decreases with time and converges to zero as t → ∞.
As in Poincaré’s quote in the Introduction, the final state is approximately predictable from the
approximate initial information.

On the other hand, in chaotic systems two trajectories separate exponentially and therefore the
number of distinguishable states grows exponentially with time Ω (t) ∝ exp (λt), where λ is the
Liapunov coefficient. In this case, the rate at which information is generated is constant:

dI
dt
∼ λ. (64)

In this latter system, information is continuously generated by the attractor independently of the
initial state. Nicolis and Tsuda [70] used this property of chaotic dynamic systems in the early
modeling of cognitive systems using nonlinear dynamics and subsequently for information processing
in neurophysiology, cognitive psychology, and perception [72].

Thus, Newton’s statements about the absolute nature of space is contradicted by the chaotic
trajectories entailed by his own force law when applied to complex systems. Subsequently, even Kinetic
Theory and the introduction of stochastic differential equations, which were early attempts to make
the differential calculus and complex phenomena compatible, could only be salvaged by means of the
FC. In a similar way, Newton’s statements regarding the absolute nature of time have been shown to
have little place, if any, outside restricted domains of the physical sciences.
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Abstract: A standard reaction–diffusion equation consists of two additive terms, a diffusion term
and a reaction rate term. The latter term is obtained directly from a reaction rate equation which
is itself derived from known reaction kinetics, together with modelling assumptions such as the
law of mass action for well-mixed systems. In formulating a reaction–subdiffusion equation, it is
not sufficient to know the reaction rate equation. It is also necessary to know details of the
reaction kinetics, even in well-mixed systems where reactions are not diffusion limited. This is
because, at a fundamental level, birth and death processes need to be dealt with differently in
subdiffusive environments. While there has been some discussion of this in the published literature,
few examples have been provided, and there are still very many papers being published with
Caputo fractional time derivatives simply replacing first order time derivatives in reaction–diffusion
equations. In this paper, we formulate clear examples of reaction–subdiffusion systems, based on;
equal birth and death rate dynamics, Fisher–Kolmogorov, Petrovsky and Piskunov (Fisher–KPP)
equation dynamics, and Fitzhugh–Nagumo equation dynamics. These examples illustrate how to
incorporate considerations of reaction kinetics into fractional reaction–diffusion equations. We also
show how the dynamics of a system with birth rates and death rates cancelling, in an otherwise
subdiffusive environment, are governed by a mass-conserving tempered time fractional diffusion
equation that is subdiffusive for short times but standard diffusion for long times.

Keywords: fractional diffusion; continuous time random walks; reaction–diffusion equations;
reaction kinetics

1. Introduction

Reaction–diffusion partial differential equations are among the most widely used equations
in applied mathematics modelling. These equations govern the time evolution of concentrations,
or population densities, of species, at different spatial locations, that are diffusing and reacting.
Applications include the spatio-temporal spread of epidemics, the spatial spread of invasive species and
the development of animal coat patterns [1–3]. In these modelling equations, diffusion is represented
by a spatial Laplacian operating on the population densities, and reactions are included as additive
terms representing changes per unit time in population densities through reaction rates. In well-mixed
systems the reaction rate equations can often be derived from the law of mass-action [4]. A famous
example of a reaction–diffusion equation is the Fisher–KPP equation named after Fisher [5] and
Kolmogorov, Petrovsky and Piskunov [6]. The standard reaction–diffusion representation of this
equation is

∂u(x, t)
∂t

= D
∂2u(x, t)

∂x2 + ru(x, t)(1− u(x, t)), D > 0, r > 0. (1)

Entropy 2020, 22, 1035; doi:10.3390/e22091035 www.mdpi.com/journal/entropy31
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Here, u(x, t) represents the population density of a species, D ∂2u(x,t)
∂x2 represents the diffusion of

the species and ru(x, t)(1− u(x, t)) represents the reactions of the species. In the absence of diffusion,
the time rate of change in the population density is the same at all points in space and is given by

∂u(x, t)
∂t

= ru(x, t)(1− u(x, t)). (2)

In this example and in the following, for simplicity, we have considered systems in one spatial
dimension. Extensions to higher spatial dimensions are possible.

Over the past two decades, there has been a growing awareness of fractional diffusion,
where diffusion cannot be modelled using a standard Laplacian and the mean square displacement of
diffusing species does not grow linearly in time, as anticipated by Einstein’s famous modelling
of Brownian motion [7]. In particular, following widespread observations in biological systems,
there has been a great deal of attention focussed on fractional subdiffusion, characterized by the
mean square displacement of a population spreading as a sublinear power law in time. It is now
generally accepted that if subdiffusion arises from particles being trapped for arbitrarily long periods
of time, the appropriate equation to model subdiffusion is the time fractional diffusion equation [8]

∂u(x, t)
∂t

= 0D1−γ
t

∂2u(x, t)
∂x2 , 0 < γ < 1, (3)

which can be derived [9,10] from a continuous time random walk (CTRW) [11] with a power law
waiting time density. In this equation,

0D1−γ
t y(x, t) =

1
Γ(γ)

∂

∂t

∫ t

0

y(x, t′)
(t− t′)1−γ

dt′ (4)

is the Riemann–Liouville fractional derivative of order 1− γ, see, for example, reference [12]. It might
be anticipated that the appropriate evolution equation to model subdiffusion, with reactions governed
by the reaction rate equation,

∂u(x, t)
∂t

= f (u(x, t)), (5)

would be
∂u(x, t)

∂t
= 0D1−γ

t
∂2u(x, t)

∂x2 + f (u(x, t)). (6)

Indeed, such an equation had been derived from an underyling CTRW model, under certain
assumptions, [13], however it is not valid in general. For example, the simple model equation

∂u(x, t)
∂t

= 0D1−γ
t

∂2u(x, t)
∂x2 − u(x, t), (7)

can have unphysical negative solutions [14].
The time fractional subdiffusion equation is also often written as [15]

∂γu(x, t)
∂tγ

=
∂2u(x, t)

∂x2 , 0 < γ < 1, (8)

where
∂γ

∂tγ
y(x, t) =

1
Γ(1− γ)

∫ t

0

∂
∂t′ y(x, t′)
(t− t′)γ

dt′ (9)

denotes a Caputo fractional derivative, see, for example, reference [12]. There has been quite a bit
written in the published literature on the greater physical practicality of the Caputo derivative over
the Riemann–Liouville derivative, but this is largely unfounded [12]. Note, however, that if one takes
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Equation (8) as the starting evolution equation for subdiffusion then this is suggestive of the following
reaction–subdiffusion equation,

∂γu(x, t)
∂tγ

=
∂2u(x, t)

∂x2 + f (u(x, t)). (10)

Equations along the lines of Equation (10) are particularly widespread in the literature with the
motivation that fractional derivatives incorporate a history dependence, and solutions of Equation (10)
remain positive. Equation (10) can be derived from a CTRW where particles are being removed or
added instantaneously at the start of the waiting times between jumps, but only under the contrived

constraint that ∂1−γ f (u(x,t))
∂t1−γ represents the cumulative total of additions and removals to the arrival

density of particles at position x and time t [14].
The derivation of reaction–subdiffusion equations from physically consistent CTRWs has been

carried out in a series of papers [14,16–26]. The main lessons from this body of work are: (i) The
governing equations are different depending on whether or not new born particles inherit the waiting
times of their parents. (ii) Birth terms and death terms must be treated differently. (iii) In the case
where particles are removed, but not instantaneously at the start of the waiting time between jumps,
the reaction and subdiffusion terms are not additive. The following equation [21,24],

∂u(x, t)
∂t

= Dγ
∂2

∂x2

[
e−

∫ t
0 a(u(x,t′),x,t′) dt′

0D1−γ
t

(
e
∫ t

0 a(u(x,t′),x,t′) dt′u(x, t)
)]

+c(u(x, t), x, t)− a(u(x, t), x, t)u(x, t), (11)

which was derived from a continuous time random walk model, provides the evolution equation for
particles undergoing subdiffusion with particles annihilated at a per capita rate, a(u(x, t), x, t) and
created at a rate c(u(x, t), x, t). In the derivation of this equation it was assumed that newborn particles
do not inherit the waiting times of their parents.

In the remainder of this paper we explore examples related to Equation (11). These examples
have been selected to emphasize the importance of considering the details of the reaction kinetics
when dealing with reaction–subdiffusion problems. Whilst there have been many papers published
on various methods of solution for variants of Equation (10) (see, for example, [27–31]), there have
been very few papers published considering algebraic or numerical solution methods for variants of
Equation (11). We hope that the examples below will stimulate further activity in this area, where the
physical motivation for the modelling equation is stronger.

2. Examples

2.1. Birth and Death Balance

As a first example, we consider a population density of u(x, t) particles per unit volume that are
diffusing with a per capita death rate α and a birth rate αu(x, t). The reaction rate equation reflecting
this balance between births and deaths, in a well-mixed population, at a location x is

∂u(x, t)
dt

= 0, (12)

and thus the standard reaction–diffusion equation describing this system is

∂u(x, t)
dt

= D
∂2u(x, t)

∂x2 . (13)

The simple generalization of this equation for subdiffusive transport is

∂u(x, t)
dt

= Dγ 0D1−γ
t

∂2u(x, t)
∂x2
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= Dγ
∂2

∂x2

[
0D1−γ

t u(x, t)
]

. (14)

Indeed, if there were no births or deaths then the reaction rate equation would still be given by
Equation (12); and Equation (14) is the appropriate equation to describe subdiffusion without births or
deaths. However, the reaction–subdiffusion equation, following Equation (11), and using the reaction
rate kinetics a(u(x, t), x, t) = α and c(u(x, t), x, t) = αu(x, t), which are also consistent with the rate
equation, Equation (12), is remarkably different;

∂u(x, t)
∂t

= Dγ
∂2

∂x2

[
e−αt

0D1−γ
t

(
eαtu(x, t)

)]
, α > 0. (15)

The fundamental difference between Equations (14) and (15) is that in the former equation
the Laplacian operates on a time fractional derivative and in the latter the Laplacian operates on a
tempered time fractional derivative [32,33]. In the more general time fractional reaction–diffusion
equation, Equation (11), the term in brackets following the Laplacian defines a generalized tempered
time fractional derivative. The physical interpretation of the tempering is that if particles are being
annihilated at a given rate while they wait then they cannot wait an arbitrarily long time at a given
location. Note that both Equations (14) and (15) are mass conserving and thus Equation (15) then
defines a mass conserving, tempered, time fractional diffusion equation.

The mean square displacement of the diffusing particles, 〈x2(t)〉, provides a clear measurable
difference between particles following Equation (14) or Equation (15). In the former case, identified as
〈x2

I (t)〉, we have [8],

〈x2
I (t)〉 =

2Dγ

Γ(1 + γ)
tγ, (16)

and in the latter case, identified as 〈x2
I I(t)〉, we have (Appendix A)

〈x2
I I(t)〉 = 2Dγe−αttγE(1)

1,γ(αt), (17)

where

E(1)
1,γ(z) =

d
dz

∞

∑
k=0

zk

Γ(γ + k)
(18)

is the derivative of a generalized Mittag–Leffler function [34]. Note that at short times,

〈x2
I I(t)〉 ∼

2Dγ

Γ(1 + γ)
tγ, (19)

but at large times, using the asymptotic expansion of the generalized Mittag–Leffler function
(Equation (6) in [35]),

〈x2
I I(t)〉 ∼ 2Dγα1−γt. (20)

Thus, mass conserving tempered time fractional diffusion is not anomalous at long times.
We can also write down explicit expressions for solutions to Equations (14) and (15), labelled as

uI(x, t) and uII(x, t), respectively. For simplicity we consider the infinite domain Greens function
solutions with initial condition u(x, 0) = δ(x).

The Greens function solution of the fractional diffusion equation Equation (14) can be written
as [8]

uI(x, t) =
1√

4πDγtγ
H2,0

1,2

[
x2

4Dγtγ

∣∣∣∣∣ (1− γ
2 , γ)

(0, 1) ( 1
2 , 1)

]
, (21)

where H denotes a Fox H-function [36], see Equation (A11).
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To find the Greens function solution uII(x, t) we first note that Equation (15) can be re-written as

∂v(x, t)
∂t

= Dγ
∂2

∂x2 0D1−γ
t v(x, t) + αv(x, t), (22)

where
v(x, t) = eαtuI I(x, t). (23)

The Greens function solution of Equation (22) can be obtained as a special case of the more general
results in Appendix B of [14], yielding

v(x, t) =
1√

4πDγtγ

∞

∑
j=0

(αt)j

j!
H2,0

1,2

[
x2

4Dγtγ

∣∣∣∣∣ (1− γ
2 + j, γ)

(0, 1) ( 1
2 + j, 1)

]
, (24)

and then using Equation (23) we have

uII(x, t) = e−αt 1√
4πDγtγ

∞

∑
j=0

(αt)j

j!
H2,0

1,2

[
x2

4Dγtγ

∣∣∣∣∣ (1− γ
2 + j, γ)

(0, 1) ( 1
2 + j, 1)

]
. (25)

In Appendix B, we show that the Fox functions in Equations (21) and (25) can be simplified for
γ = 1

2 in terms of Miejer G-Functions [37], see Equation (A12), which have the advantage that they
can readily be evaluated using computer algebra packages such as MATHEMATICA and MAPLE.
Using the result of Equation (A19) from the Appendix B, we can write (see also [8] in the case of uI(x, t))

uI(x, t) =
1√

8π3Dt
1
2

G3,0
0,3

[(
x2

16Dt
1
2

)2
∣∣∣∣∣ −0, 1

4 , 1
2

]
, (26)

and

uII(x, t) = e−αt 1√
8π3Dt

1
2

∞

∑
j=0

(2αt)j

j!
G4,0

1,4

[(
x2

16Dt
1
2

)2
∣∣∣∣∣ 3

4 + j
0, 1

2 , 1
4 + j

2 , 3
4 + j

2

]
. (27)

Note that the expression for uII(x, t) simplifies to the expression for uI(x, t) if α = 0. If |x| � 4
√

Dt
1
2

then we can use asymptotic expansions for G3,0
0,3(z) and G4,0

1,4(z) with z � 1 (see Appendix B) to write

uI(x, t) ∼ 1√
8π3Dt

1
2

exp(−3(
x2

16Dt
1
2
)

2
3 )(

x2

16Dt
1
2
)

1
2

M0

( x2

16Dt
1
2
)

2
3 − 1

, (28)

and
uII(x, t) ∼ MeαtuI(x, t), (29)

where M0 and M are constant terms. The solutions uI(t), Equation (26), and uII(t), Equation (27) are
plotted in Figure 1, with α = 1 and D = 1, at times t = 0.1, t = 1.0 and t = 10.0. The solutions are very
similar at early times but the corner at the origin, which is characteristic of subdiffusion, is less sharp
at longer times in the solution of Equation (27).
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Figure 1. Plots of Equation (26), the algebraic solution to Equation (14), (left), and Equation (27),
the algebraic solution to Equation (15), (right), at times t = 0.1 (solid line), t = 1.0 (dashed line) and
t = 10.0 (bold solid line). The reaction parameter α = 1, and the fractional order derivative is taken to
be γ = 0.5 in each of these plots.

The lesson from this simple example is that reaction dynamics equations do not contain sufficient
information on their own to provide model equations for reaction–subdiffusion systems even in
well-mixed systems. In the case of standard diffusion, the evolution of the population density is only
affected by the overall reaction rates, in a well-mixed system, but not the details of the reaction kinetics.
In a standard reaction–diffusion system, the dynamics with no births and no deaths is the same as if
there were births and deaths but the rates cancelled out. The reaction–diffusion equation with these
reaction kinetics has no memory of the birth and death processes. This is very different in the case of
subdiffusion where the details of the reaction kinetics are important to the overall dynamics of the
system. The subdiffusive system retains a memory that there were particles that were created and
annihilated. Moreover, the particle deaths temper the fractional diffusion. The example in the next
section further highlights the significance of the reaction kinetics in reaction–subdiffusion systems.

2.2. Fractional Fisher–KPP Equation

The reaction rate equation for the Fisher–KPP Equation (1) is given in Equation (2). There are many
different reaction kinetics that could be considered that are consistent with Equation (2). For example,
the term (1− u(x, t)) in its entirety could represent a per capita birth rate if is is strictly positive, or a
per capita death rate if it is strictly negative. This term could also be regarded as being composed of
two terms, a constant per capita birth term and a linear per capita death term. These three possibilities
are highlighted for illustrative purposes below to show how different subdiffusion–reaction equations
apply depending on the reaction kinetics.

(i) Constant per capita birth rate, c(u(x, t), x, t) = ru(x, t), linear per capita death rate,
a(u(x, t), x, t) = ru(x, t),

∂u(x, t)
∂t

= Dγ
∂2

∂x2

[
e−

∫ t
0 ru(x,t′) dt′

0D1−γ
t

(
e
∫ t

0 ru(x,t′) dt′u(x, t)
)]

+ru(x, t)(1− u(x, t)), u(x, t) ≥ 0 (30)
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(ii) No births, c(u(x, t), x, t) = 0, linear per capita death rate, a(u(x, t), x, t) = r(1− u(x, t)),

∂u(x, t)
∂t

= Dγ
∂2

∂x2

[
e−

∫ t
0 r(1−u(x,t′)) dt′

0D1−γ
t

(
e
∫ t

0 r(1−u(x,t′)) dt′u(x, t)
)]

+r(1− u(x, t))u(x, t), u(x, t) ≥ 1. (31)

(iii) Linear per capita birth rate, c(u(x, t), x, t) = ru(x, t)(1− u(x, t)), no deaths, a(u(x, t), x, t) = 0,

∂u(x, t)
∂t

= Dγ
∂2

∂x2

[
0D1−γ

t u(x, t)
]
+ ru(x, t)(1− u(x, t)), 0 ≤ u(x, t) <≤ 1. (32)

Note that none of the factional Fisher–KPP reaction–diffusion equations can be expressed in the form

∂γu(x, t)
∂tγ

= Dγ
∂2u(x, t)

∂x2 + ru(x, t)(1− u(x, t)), (33)

which results from simply replacing the integer order time derivative with a fractional order Caputo
derivative. As noted above, an equation of this form could only be obtained from a CTRW if
∂1−γ

∂t1−γ (ru(x, t)(1− u(x, t)) is contrived as the cumulative instantaneous creation and annihilation
of particles at the start of the waiting time between particle jumps at position x and time t [14].

The Greens function solutions for the nonlinear fractional reaction–diffusion equations,
Equations (30)–(32), cannot be obtained simply using Fourier–Laplace transform methods. However,
it is possible to find numerical solutions using the discrete time random walk methods described
in [38].

The Fisher–KPP reaction rate equation, Equation (2) can be motivated by different chemical
reactions consistent with the law of mass action [4]. One possibility is that of a single species A which
undergoes coalescence reactions A + A r→ A, and degradation reactions A r→ A + A; also referrred
to as reversible coagulation dynamics [39]. In this scenario the creation term, ru(x, t), arises from
degradation and the annihilation term, −r(u2(x, t)), arises from coalescence. Another possibility is
a branching–coalescence scheme [17], B + X � X + X, with the concentration of B maintained at a
constant level. Equation (30) is a fractional Fisher–KPP reaction–diffusion equation consistent with
each of the reaction schemes described here and it was obtained earlier for the branching–coalescence
reaction scheme in [17].

2.3. Fractional Fitzhugh–Nagumo Equation

A widely studied reaction–diffusion system used to model wave propagation and pattern
formation in excitable media is the Fitzhugh–Nagumo system of equations [40,41]

∂v(x, t)
∂t

= Dv
∂2v(x, t)

∂x2 + v(x, t)(v(x, t)− a)(1− v(x, t))− w(x, t), Dv ≥ 0, a ≥ 0 (34)

∂w(x, t)
∂t

= Dw
∂2w(x, t)

∂x2 + ε (v(x, t)− bw(x, t)) Dw ≥ 0, ε ≥ 0, b ≥ 0, (35)

named after Fizthugh [42] and Nagumo [43]. In recent years, the single component fractional equation

∂αu(x, t)
∂tα

= Du
∂2u(x, t)

∂x2 + u(x, t)(u(x, t)− a)(1− u(x, t)) (36)

has been studied as a test equation for various methods of solution of time fractional reaction–diffusion
equations (see, for example, [27,30] and references there-in).
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A time fractional Fitzhugh–Nagumo system of equations consistent with Equation (11), derived
from a CTRW formalism, can be obtained by identifying per capita annihilation rates, av and aw,
and creation rates, cv and cw, as follows:

av(v(x, t), w(x, t)) = a + v2(x, t) +
w(x, t)
v(x, t)

, (37)

cv(v(x, t), w(x, t)) = (1 + a)v2(x, t), (38)

aw(v(x, t), w(x, t)) = εb, (39)

cw(v(x, t), w(x, t)) = εv(x, t). (40)

The corresponding time fractional Fitzhugh–Nagumo system is given by

∂v(x, t)
∂t

= Dv,γ
∂2

∂x2

[
e−

∫ t
0 (v

2(x,t′)+a+w(x,t′)) dt′
0D1−γ

t

(
e
∫ t

0 (v
2(x,t′)+a+w(x,t′)) dt′v(x, t)

)]
+v(x, t)(v(x, t)− a)(1− v(x, t)− w(x, t), (41)

∂w(x, t)
∂t

= Dw,γ
∂2

∂x2

[
e−εbt

0D1−γ
t

(
eεbtw(x, t)

)]
+ εv(x, t)− εbw(x, t). (42)

If w(x, t) = 0 this identifies a single component time fractional equation

∂u(x, t)
∂t

= Dγ
∂2

∂x2

[
e−

∫ t
0 (u

2(x,t′)+a) dt′
0D1−γ

t

(
e
∫ t

0 (u
2(x,t′)+a) dt′u(x, t)

)]
+u(x, t)(u(x, t)− a)(1− u(x, t), (43)

which could be called a time fractional Fitzhugh–Nagumo equation, although the nomenclature could
be misleading because a single component equation, without external sources or sinks, could not
display Fitzhugh–Nagumo dynamics. Equation (43) is, however, well posed as a nonlinear time
fractional reaction–diffusion equation that can be derived from a physically consistent CTRW, and thus
it should be preferred for testing numerical methods of solution over the single component model
equation, Equation (36), obtained by replacing an integer order time derivative with a Caputo fractional
order derivative.

3. Discussion

Over the past two decades there have been large numbers of papers published on numerical
methods for nonlinear fractional reaction–diffusion equations. The original motivation for including
time fractional derivatives in reaction–diffusion equations was based on a CTRW description of
diffusion with traps and reactions [13]. This description was refined and improved in a series of
papers [14,16–24], leading to the formulation of time fractional reaction–diffusion equations along the
lines of Equation (11). However, many investigations of time fractional reaction–diffusion equations
have been carried out on systems obtained by simply replacing integer order time derivatives with
Caputo fractional order derivatives. These studies may be interesting from a mathematical analysis
point of view but they may not be directly relevant to mathematical modelling applications.

In this paper we have illustrated, through examples, how different time fractional reaction–diffusion
equations can be formulated, consistent with an underlying CTRW formalism, taking into account the
reaction kinetics. There are three points worth noting in this context: (i) The fractional reaction–diffusion
systems considered in this approach are relevant to well-mixed reactions that are not diffusion
limited. The reaction dynamics can often be formulated using the law of mass action in these systems.
(ii) Different time fractional reaction–diffusion systems can be formulated that are consistent with
the same equation for the reaction dynamics. It is important to know the reaction kinetics. (iii)
Reaction–subdiffusion equations typically involve a spatial Laplacian operating on a generalized
tempered time fractional derivative. The solution of these types of equations would typically require
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very different numerical approaches than those proposed for reaction–diffusion systems with a
fractional order Caputo time derivative replacing the integer order time derivative.

It is hoped that the physically motivated time fractional reaction–diffusion equations, such as
Equations (30) and (43), will become more widely used, replacing the simpler ad-hoc equations,
such as Equations (33) and (36), as a test for different methods of solution of nonlinear fractional
reaction–diffusion systems. Beyond this, there is a real need for physical experiments to be devised
and carried out to validate and calibrate time fractional reaction–diffusion models.
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Appendix A. Mean Square Displacements

The mean square displacement of particles evolving according to the fractional diffusion equation

∂u(x, t)
∂t

= Dγ
∂2

∂x2

[
e−αt

0D1−γ
t

(
eαtu(x, t)

)]
, α > 0. (A1)

can simply be obtained from the infinite domain Greens function solution G(x, t) with initial condition
G(x, 0) = δ(x), via

〈x2(t)〉 = lim
q→0
− d2

dq2 Ĝ(q, t) (A2)

where Ĝ(q, t) denotes the Fourier transform w.r.t. x. We begin by taking the Fourier transform of
Equation (A2) and re-arranging terms to write

∂

∂t
(
eαtĜ(q, t)

)
= −q2Dγ 0D1−γ

t
(
eαtĜ(q, t)

)
+ αeαtĜ(q, t). (A3)

We now introduce
F̂(q, t) = eαtĜ(q, t), (A4)

noting that F̂(q, 0) = Ĝ(q, 0) = 1, and then

〈x2(t)〉 = e−αt lim
q→0
− d2

dq2 F̂(q, t). (A5)

Starting with the differential equation for F̂(q, t),

∂

∂t
(

F̂(q, t)
)
= −q2Dγ 0D1−γ

t
(

F̂(q, t)
)
+ αF̂(q, t), (A6)

we take the Laplace transform w.r.t. time and rearrange terms to write

ˆ̂F(q, s) =
1

(s + Dγq2s1−γ − α)
(A7)

From this we have

lim
q→0
− d2

dq2
ˆ̂F(q, s) =

2Dγ

sγ−1α2 − 2sγα + sγ+1 ,

= 2Dγ
s1−γ

(s− α)2 . (A8)
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We now take the inverse Laplace transform using Equation (2.3.26) of [34] to write

lim
q→0
− d2

dq2
ˆ̂F(q, t) = 2DγtγE(1)

1,γ(αt), (A9)

and then
〈x2(t)〉 = 2Dγe−αttγE(1)

1,γ(αt). (A10)

Appendix B. Fox H-Function and Meijer G-Function Solutions

The Fox H-function and the Meijer G-function are defined as path integrals [36]

Hm,n
p,q

[
z

∣∣∣∣∣ (a1, A1)(a2, A2) . . . (ap, Ap)

(b1, B1)(b2, B2) . . . (bq, Bq)

]
= 1

2πi
∫

L
∏m

j=1 Γ(bj+Bjs)∏n
j=1 Γ(1−aj−Ajs)

∏
q
j=m+1 Γ(1−bj−Bjs)∏

p
j=n+1 Γ(aj+Ajs)

z−s ds, (A11)

and

Gm,n
p,q

[
z

∣∣∣∣∣ a1, a2, . . . ap

b1, b2, . . . bq

]
=

1
2πi

∫
L

∏m
j=1 Γ(bj − s)∏n

j=1 Γ(1− aj + s)

∏
q
j=m+1 Γ(1− bj + s)∏

p
j=n+1 Γ(aj − s)

zs ds, (A12)

respectively, where 0 ≤ n ≤ p, 1 ≤ m ≤ q, {aj, bj} ∈ C, {αj, β j} ∈ R+, and L is a suitably chosen
contour. With a simple change of variables it follows that if Aj = C, j = 1..p and Bj = C, j = 1..q then

Hm,n
p,q

[
z

∣∣∣∣∣ (a1, C)(a2, C) . . . (ap, C)
(b1, C)(b2, C) . . . (bq, C)

]
=

1
C

Gm,n
p,q

[
z

1
C

∣∣∣∣∣ a1, a2, . . . ap

b1, b2, . . . bq

]
(A13)

The Legendre duplication formula

Γ(2z) =
22z−1
√

π
Γ(z)Γ(z +

1
2
) (A14)

is useful for reducing Fox H-functions to Meijer G-functions in the expressions below.
The Fox-H function

H2,0
1,2

[
z

∣∣∣∣∣ (1− γ
2 + j, γ)

(0, 1)( 1
2 + j + 1)

]
=

1
2πi

∫
L

Γ(s)Γ( 1
2 + j + s)

Γ(1− γ
2 + j + γs)

z−s ds (A15)

appears in the solutions, Equations (21) and (25). Here we show how, in the case γ = 1
2 , this can be

represented as a Meijer G-function leading to the solutions in Equations (26) and (27). With γ = 1
2 in

Equation (A15) we have

H2,0
1,2

[
z

∣∣∣∣∣ ( 3
4 + j, 1

2 )

(0, 1)( 1
2 + j + 1)

]
=

1
2πi

∫
L

Γ(s)Γ( 1
2 + j + s)

Γ( 3
4 + j + s

2 )
z−s ds. (A16)

We now use the duplication formula, Equation (A14), to replace

Γ(s) =
2s−1
√

π
Γ(

s
2
)Γ(

s
2
+

1
2
), (A17)

and

Γ(
1
2
+ j + s) =

2
1
2+j+s−1
√

π
Γ(

1
4
+

j
2
+

s
2
)Γ(

3
4
+

j
2
+

s
2
), (A18)

so that
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H2,0
1,2

[
z

∣∣∣∣∣ ( 3
4 + j, 1

2 )

(0, 1)( 1
2 + j + 1)

]
=

1
2πi

∫
L

2
1
2 +j+2s−2

π

Γ( s
2 )Γ(

1
2 + s

2 )Γ(
1
4 + j

2 + s
2 )Γ(

3
4 + j

2 + s
2 )

Γ( 3
4 + j + s

2 )
z−s ds,

=
2

1
2 +j−2

π
H4,0

1,4

[
z
4

∣∣∣∣∣ ( 3
4 + j, 1

2 )

(0, 1
2 )(

1
2 , 1

2 )(
1
4 + j

2 , 1
2 )(

3
4 + j

2 , 1
2 )

]

=
2j
√

2π
G4,0

1,4

[
(

z
4
)2

∣∣∣∣∣ 3
4 + j
0, 1

2 , 1
4 + j

2 , 3
4 + j

2

]
. (A19)

Note that if j = 0 this simplifies further to

1√
2π

G4,0
1,4

[
(

z
4
)2

∣∣∣∣∣ 3
4
0, 1

2 , 1
4 , 3

4

]
=

1√
2π

G3,0
0,3

[
(

z
4
)2

∣∣∣∣∣ −0, 1
2 , 1

4

]
. (A20)

The Meijer G-functions above are of the general form Gq,0
p,q(z) where asymptotic expansions are

known for z � 1 [37]. In particular, using Equation (22) in [37], we have

G4,0
1,4

[
z

∣∣∣∣∣ 3
4 + j
0, 1

2 , 1
4 + j

2 , 3
4 + j

2

]
∼ exp(−3z

1
3 )z−

1
12

∞

∑
k=0

Mk(j)

z
k
3

(A21)

for all j ∈ N and z � 1, where the Mk(j) are functions of the parameters, including j, but not the
variable z. If we let M denote the largest Mk(j) then we can evaluate the sum as a geometric series
to write

G4,0
1,4

[
z

∣∣∣∣∣ 3
4 + j
0, 1

2 , 1
4 + j

2 , 3
4 + j

2

]
∼ M

exp(−3z
1
3 )z

1
4

z
1
3 − 1

(A22)

and similarly for G3,0
0,3.

References

1. Okubo, A. Diffusion and ecological problems: Mathematical models. Biomathematics 1980, 10, 114.
2. Britton, N.F. Reaction-Diffusion Equations and Their Applications to Biology; Academic Press: London, UK, 1986.
3. Murray, J.D. Mathematical Biology. II Spatial Models and Biomedical Applications; Springer: New York, NY,

USA, 2003.
4. Chellaboina, V.; Bhat, S.P.; Haddad, W.M.; Bernstein, D.S. Modeling and analysis of mass-action kinetics.

IEEE Control Syst. 2009, 29, 60–78.
5. Fisher, R.A. The Wave of Advance of Advantageous Genes. Ann. Eugen. 1937, 7, 353–369. [CrossRef]
6. Kolmogorov, A.; Petrovskii, I.; Piskunov, N. A study of the diffusion equation with increase in the amount of

substance, and its application to a biological problem. Bull. Mosc. Univ. Math. Mech. 1937, 1, 1–25.
7. Einstein, A. On the motion of small particles suspended in liquids at rest required by the molecular-kinetic

theory of heat. Ann. Der Phys. 1905, 17, 549–560. [CrossRef]
8. Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach.

Phys. Rep. 2000, 339, 1–77. [CrossRef]
9. Hilfer, R.; Anton, L. Fractional master equations and fractal time random walks. Phys. Rev. E 1995, 51, R848.

[CrossRef]
10. Compte, A. Stochastic foundations of fractional dynamics. Phys. Rev. E 1996, 53, 4191–4193. [CrossRef]
11. Montroll, E.; Weiss, G. Random walks on lattices II. J. Math. Phys. 1965, 6, 167 . [CrossRef]
12. Li, C.; Qiang, D.; Chen, Y.Q. On Riemann-Liouville and Caputo Derivatives. Discret. Dyn. Nat. Soc. 2011,

2011, 562494. [CrossRef]
13. Henry, B.I.; Wearne, S.L. Fractional reaction-diffusion. Phys. A 2000, 276, 448–455. [CrossRef]
14. Henry, B.I.; Langlands, T.A.M.; Wearne, S.L. Anomalous diffusion with linear reaction dynamics:

From continuous time random walks to fractional reaction-diffusion equations. Phys. Rev. E 2006, 74, 031116.
[CrossRef]

41



Entropy 2020, 22, 1035

15. Gorenflo, R.; Luchko, Y.; Mainardi, F. Wright functions as scale-invariant solutions of the diffusion wave
equation. J. Comput. Appl. Math. 2000, 118, 175–191. [CrossRef]

16. Sokolov, I.M.; Schmidt, M.G.W.; Sagués, F. Reaction-subdiffusion equations. Phys. Rev. E 2006, 73, 031102.
[CrossRef]

17. Yadav, A.; Fedotov, S.; Méndez, V.; Horsthemke, W. Progagating fronts in reaction-transport systems with
memory. Phys. Letts. A 2007, 371, 374–378. [CrossRef]

18. Langlands, T.A.M.; Henry, B.I.; Wearne, S.L. Anomalous subdiffusion with multispecies linear reaction
dynamics. Phys. Rev. E 2008, 77, 021111. [CrossRef]

19. Campos, D.; Fedotov, S.; Mendez, V. Anomalous reaction-transport processes: The dynamics beyond the law
of mass action. Phys. Rev. E 2008, 77, 061130. [CrossRef]

20. Froemberg, D.; Schmidt-Martens, H.; Sokolov, I.M.; Sagués, F. Front propagation in A + B → 2A reaction
under subdiffusion. Phys. Rev. E 2008, 78, 011128. [CrossRef]

21. Fedotov, S. Non-Markovian random walks and nonlinear reactions: Subdiffusion and propagating fronts.
Phys. Rev. E 2010, 81, 011117. [CrossRef]

22. Abad, E.; Yuste, S.B.; Lindenberg, K. Reaction-subdiffusion and reaction-superdiffusion equations for
evanescent particles performing continuous-time random walks. Phys. Rev. E 2010, 81, 031115. [CrossRef]

23. Yuste, S.B.; Abad, E.; Lindenberg, K. Reaction-subdiffusion model of morphogen gradient formation.
Phys. Rev. E 2010 82, 061123. [CrossRef]

24. Angstmann, C.N.; Donnelly, I.C.; Henry, B.I. Continuous time random walks with reactions forcing and
trapping. Math. Model. Nat. Phenom. 2013, 8, 17–27. [CrossRef]

25. Nepomnyashchy, A.A. Mathematical modelling of sub-diffusion reaction systems. Math. Model. Nat. Phenom.
2016, 11, 26–36. [CrossRef]

26. Abad, E.; Angstmann, C.N.; Henry, B.I.; McGann, A.V.; Vot, F.L.; Yuste, S.B. Reaction-diffusion and
reaction-subdiffusion equations on arbitrarily evolving domains. Phys. Rev. E 2020, 102, 032111. [CrossRef]

27. Rida, S.Z.; El-Sayed, A.M.A.; Arafa, A.A.M. On the solutions of time-fractional reaction-diffusion equations.
Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 3847–3854. [CrossRef]

28. Zhang, J.; Yang, X. A class of efficient difference method for time fractional reaction-dffusion equation.
Comput. Appl. Math. 2018, 37, 4376–4396. [CrossRef]

29. Li, C.; Wang, Z. The local discontinuous Galerkin finite element methods for Caputo-type partial differential
equations: Numerical analysis. Appl. Numer. Math. 2019, 140, 1–22. [CrossRef]

30. Prakash, A.; Kaur, H. A reliable numerical algorithm for a fractional model of Fitzhugh-Nagumo equation
arising in the transmission of nerve impulses. Nonlinear Eng. 2019, 8, 719–727. [CrossRef]

31. Kanth, A.S.V.R.; Garg, N. A numerical approach for a class of time-fractional reaction-diffusion equation
through exponential B-spline method. Comput. Appl. Math. 2020, 39, 1–24. [CrossRef]

32. Meerschaert, M.M.; Zhang, Y.; Baeumer, B. Tempered anomalous diffusion in heterogeneous systems.
Geophys. Res. Letts. 2008, 35, L17403. [CrossRef]

33. Sabzikar, F.; Meerschaert, M.M.; Chen, J. Tempered fractional calculus. J. Comput. Phys. 2015, 293, 14–28.
[CrossRef] [PubMed]

34. Mathai, A.M.; Haubold, H.J. Mittag-Leffler Functions and Fractional Calculus. In Special Functions for Applied
Scientists; Springer: New York, NY, USA, 2008; pp. 79–134.

35. Gorenflo, R.; Loutchko, J.; Luchko, Y. Computation of the Mittag-Leffler function Eα,β(z) and its derivative.
Fract. Calc. Appl. Anal. 2002, 5, 1–26.

36. Fox, C. The G and H functions as symmetrical Fourier kernels. Trans. Am. Math. Soc. 1961, 98, 395–429.
37. Meijer, C.S. On the G-function. Mathematics 1946, 26, 227–237.
38. Angstmann, C.N.; Donnelly, I.C.; Henry, B.I.; Jacobs, B.A.; Langlands, T.A.M.; Nichols, J.A. From stochastic

processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential
equations. J. Comput. Phys. 2016, 307, 508–534. [CrossRef]

39. ben-Avraham, D.; Burschka, M.A.; Doering, C.R. Statics and dynamics of a diffusion-limited reaction:
Anomalous kinetics, non-equilibrium self-ordering, and a dynamic transition. J. Stat. Phys. 1990, 60, 695–728.
[CrossRef]

40. Jones, C.K.R.T. Stability of the travelling wave solution of the Fitzhugh-Nagumo system. Trans. Am.
Math. Soc. 1984, 286, 431–469. [CrossRef]

42



Entropy 2020, 22, 1035

41. Zheng, Q.; Shen, J. Pattern formation in the FitzHugh-Nagumo model. Comput. Math. Appl. 2015,
70, 1082–1097. [CrossRef]

42. Fitzhugh, R. Impulse and physiological states in theoretical models of nerve membrane. Biophys. J. 1961,
1, 445–466. [CrossRef]

43. Nagumo, J.S.; Arimoto, S.; Yoshizawa, S. An active pulse transmission line stimulating nerve axon. Proc. IRE
1962, 50, 2061–2070. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

43





entropy

Article

Fractal and Entropy Analysis of the Dow Jones Index
Using Multidimensional Scaling

José A. Tenreiro Machado

Department of Electrical Engineering, Institute of Engineering, Polytechnic Institute of Porto,
4249-015 Porto, Portugal; jtm@isep.ipp.pt; Tel.: +351-228340500

Received: 4 September 2020; Accepted: 30 September 2020; Published: 8 October 2020

Abstract: Financial time series have a fractal nature that poses challenges for their dynamical
characterization. The Dow Jones Industrial Average (DJIA) is one of the most influential financial
indices, and due to its importance, it is adopted as a test bed for this study. The paper explores an
alternative strategy to the standard time analysis, by joining the multidimensional scaling (MDS)
computational tool and the concepts of distance, entropy, fractal dimension, and fractional calculus.
First, several distances are considered to measure the similarities between objects under study and to
yield proper input information to the MDS. Then, the MDS constructs a representation based on the
similarity of the objects, where time can be viewed as a parametric variable. The resulting plots show
a complex structure that is further analyzed with the Shannon entropy and fractal dimension. In a
final step, a deeper and more detailed assessment is achieved by associating the concepts of fractional
calculus and entropy. Indeed, the fractional-order entropy highlights the results obtained by the other
tools, namely that the DJIA fractal nature is visible at different time scales with a fractional order
memory that permeates the time series.

Keywords: multidimensional scaling; fractals; fractional calculus; financial indices; entropy;
Dow Jones; complex systems

1. Introduction

The Dow Jones Industrial Average (DJIA), or Dow Jones, is a stock market index that reflects
the stock performance of 30 relevant companies included in the U.S. stock exchanges. The DJIA
is the second-oldest among the U.S. market indices and started on 26 May 1896. The DJIA is the
best-known index in finance and is considered a key benchmark for assessing the global business trend
in the world.

The financial time series reflect intricate effects between a variety of agents coming from economic
and social processes, geophysical phenomena, health crisis, and political strategies [1–4]. At present,
we find all sorts of financial indices for capturing the dynamics of markets and stock exchange
institutions. In general, all have a fractal nature with variations that are difficult to predict [5–13].
A number of techniques have been proposed to investigate the financial indices and to unravel the
embedded complex dynamics [14–18]. Such studies adopt the underlying concept of linear time flow
and consider that the fractal nature of the index is intrinsic to its own artificial nature.

This paper studies the interplay between the DJIA values and the time flow. The present day
standard assumption is that time is a continuous linear succession of events often called the “arrow of
time”. We must clarify that (i) the nature of the time variable, either continuous or discrete, either with
a constant rhythm of variation or not, is simply under the light of the financial index, so that we are
independent of the classical laws of physics, (ii) merely the DJIA is adopted since other financial indices
reveal the same type of behavior, but are limited to much shorter time series, and (iii) no financial
foreseeing is intended. Therefore, the Gedankenexperiment in the follow-up addresses the controversy
about the texture of time [19–22], but just in the limited scope of financial indices.
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Entropy 2020, 22, 1138

For this purpose, the concepts of multidimensional scaling (MDS), fractional dimension, entropy,
and fractional calculus are brought up as useful tools to tackle complex systems. MDS is a
computational tool for visualizing the level of similarity between items of a dataset. The MDS translates
information regarding the pairwise distances among a set of items into a configuration of representative
points of an abstract Cartesian space [23–29]. Mandelbrot coined the word “fractal” [30,31] for complex
objects that are self-similar across different scales. Fractals can be characterized by the so-called
fractal dimension, which may be seen as quantifying complexity [32–34]. Information theory was
introduced by Claude Shannon [35] and has as the primary concept the information content of a given
event, which is a decreasing function of its probability [36–39]. The entropy of a random variable is
the average value of information and has been proven to be a valuable tool for assessing complex
phenomena [40–42]. Fractional calculus (FC) is the branch of mathematical analysis that generalizes
differentiation and integration to real or complex orders [43–48]. The topic was raised by Gottfried
Leibniz in 1695 and remained an exotic field until the Twentieth Century. In the last few decades,
FC became a popular tool for analyzing phenomena with long-range memory and non-locality [49–57].

The association of these mathematical and computational tools yields relevant viewpoints when
analyzing financial indices [7–9,11,58–61].

Bearing these ideas in mind, this paper is organized as follows. Section 2 introduces the dataset
and methods and develops some initial experiments using MDS. Section 3 explores the use of fractal
and entropy analysis of the MDS loci. Finally, Section 4 draws the main conclusions.

2. Dataset and Methods

2.1. The DJIA Dataset

The dataset consists of the daily close values of the DJIA from 28 December 1959, up to
1 September 2020, corresponding to a time series of T = 15,832 days, covering approximately half a
century. Each week consists of 5 working days, and some missing data due to special events were
estimated by means of linear interpolation between adjacent values.

We assess the dynamics of the DJIA by comparing its values x(t) for a given time window of tw

days. Therefore, the ith vector of DJIA values consists of ξi = [x(1), . . . , x (tw)], where days “1” and
“tw” denote the start and end time instants in the time window. Hereafter, for simplicity, we consider
consecutive disjoint time windows, and a number of experiments with tw having values multiples of
5 days. Therefore, the total number of time windows (and vectors) is Nw =

⌊
T
tw

⌋
, where �·� denotes

the floor function, which gives as the output the greatest integer less than or equal to the input value.
The evolution of the DJIA in time reveals a fractal nature as represented in Figure 1. If we

calculate the histogram of the logarithm of the returns, that is of lr = ln
(

x(t+1)
x(t)

)
, we verify a sustained

noisy behavior and fat tails in the statistical distribution as depicted in Figure 2 for time windows of
tw = 60 days.
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Figure 1. Daily close values of the DJIA from 28 December 1959, up to 1 September 2020.

Figure 2. Histogram of the logarithm of the returns of the DJIA from 28 December 1959, up to
1 September 2020, for time windows of tw = 60 days.

2.2. Distances

The DJIA dynamics is studied indirectly through the MDS by comparing the vectors
(ξi (1) , . . . , ξi (tw)), i = 1, . . . , Nw, t = 1, . . . , tw, and analyzing the properties of the resulting plot in the
perspective of entropy and fractal dimension. This approach requires the definition of an appropriate
distance [62]. A function d : A×A → R on a set A is a “distance” when, for the items ξi, ξ j, ξk ∈ A,
it satisfies the conditions (i) d(ξi, ξ j) ≥ 0 (non-negativity), (ii) d(ξi, ξ j) = 0 (identity of indiscernibles)
if and only if ξi = ξ j, (iii) d(ξi, ξ j) = d(ξ j, ξi) (symmetry), and (iv) d(ξi, ξk) ≤ d(ξi, ξ j) + d(ξ j, ξk)

(triangle inequality). If the three conditions are followed, then the function is a “metric” and together
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with A yields a “metric space”. Obviously, these conditions still allow a considerable freedom, and we
find in the literature a plethora of possible metrics each with its own pros and cons. In practice,
users adopt one or more distances if they capture adequately the characteristics of the items under
assessment. Therefore, we start by considering a test bench of 10 distinct indices, namely the Manhattan,
Euclidean, Tchebychev, Lorentzian, Sørensen, Canberra, Clark, divergence, angular, and Jaccard
distances (denoted as {Ma, Eu, Tc, Lo, So, Ca, Cl, Dv, Ac, Ja}), given by [63]:

dMa
i,j =

tw

∑
t=1

∣∣ξi(t)− ξ j(t)
∣∣, (1a)

dEu
i,j =

√√√√ tw

∑
t=1

(
ξi(t)− ξ j(t)

)2, (1b)

dTc
i,j = max

t

(
ξi(t)− ξ j(t)

)
, (1c)

dLo
i,j =

tw

∑
t=1

log
(
1 +

∣∣ξi (t)− ξ j (t)
∣∣), (1d)

dSo
i,j =

tw

∑
t=1

∣∣ξi (t)− ξ j (t)
∣∣

tw

∑
t=1

(|ξi (t)|+
∣∣ξ j (t)

∣∣) , (1e)

dCa
i,j =

tw

∑
t=1

∣∣ξi (t)− ξ j (t)
∣∣

|ξi (t)|+
∣∣ξ j (t)

∣∣ , (1f)

dCl
i,j =

√√√√ tw

∑
t=1

( ∣∣ξi (t)− ξ j (t)
∣∣

|ξi (t)|+
∣∣ξ j (t)

∣∣
)2

, (1g)

dDv
i,j =

tw

∑
t=1

(
ξi(t)− ξ j(t)

)2(|ξi(t)|+
∣∣ξ j(t)

∣∣)2 , (1h)

dAc
i,j = arccos

(
rij

)
, rij =

tw

∑
t=1

ξi(t)ξ j(t)√
tw

∑
t=1

ξ2
i (t)

tw

∑
t=1

ξ2
j (t)

, (1i)

dJa
i,j =

tw

∑
t=1

(
ξi(t)− ξ j(t)

)2

tw

∑
t=1

ξ2
i (t) +

tw

∑
t=1

ξ2
j (t)−

tw

∑
t=1

ξi(t)ξ j(t)

, (1j)

where ξi and ξ j, i, j = 1, . . . , Nw, are the ith and jth vectors of the DJIA time series, each of dimension tw.
The Manhattan, Euclidean, and Tchebychev distances are particular cases of the Minkowski distance

dMi
i,j =

(
∑tw

t=1

∣∣ξi(t)− ξ j(t)
∣∣q
) 1

q , namely for q = 1, q = 2 and q → ∞, respectively. The Lorentzian
distance applies the natural logarithm to the absolute difference with 1 added to guarantee the
non-negativity property and to eschew the log of zero. We find in the literature several distinct
versions of the Sørensen distance, eventually with other names, and representing a statistic used
for comparing the similarity between two samples. The Canberra and Clark distances are weighted
versions of the Manhattan and Euclidean distances. These expressions replace

∣∣ξi(t)− ξ j(t)
∣∣ by

|ξ(t)−ξ j(t)|/(|ξi(t)|+|ξ j(t)|) and are sensitive to small changes near zero. The angular cosine distance
follows the cosine similarity rij that comes from the inner product of two vectors, ξi · ξ j. The angular
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cosine distance dAc
i,j gives the angle between the vectors ξi and ξ j. The Jaccard distance is the ratio of

the size of the symmetric difference to the union of two sets.

2.3. The MDS Loci

Once having defined the metric for comparing the vectors, the MDS requires the construction
of a matrix D =

[
di,j

]
of item-to-item distances. In our case, “item” corresponds to a tw-dim

vectors. Therefore, the square matrix D is symmetric, with the main diagonal of zeros and dimension
Nw × Nw equal to the number of items. The MDS computational algorithm tries to plot the items in
a low-dimensional space so that users can easily analyze possible relationships that are difficult to
unravel in a high number of dimensions. In other words, the MDS performs a dimension reduction
and plots items in a p < Nw dimensional space, by estimating a matrix D̂ =

[
d̂i,j

]
, corresponding to

the p-dim items x̂i, so that the distances, d̂i,j, mimic the original ones, di,j.
The classical MDS can perform the optimization procedure based on a variety of loss functions,

often called “strain”, that are a form of minimizing the residual sum of squares. The metric MDS
generalizes the optimization procedure called “stress”, SD, such as:

SD (ξ1, . . . , ξ) =

[
∑
i,j

(
d̂i,j − di,j

)2
] 1

2

, (2)

or:

SD (ξ1, . . . , ξ) =

⎡⎢⎣∑i,j

(
d̂i,j − di,j

)2

∑i,j d2
i,j

⎤⎥⎦
1
2

, (3)

where di,j =
∣∣ξi − ξ j

∣∣, i, j = 1, . . . , Nw.
The generalized MDS is an extension of metric formulation, so that the target space is an arbitrary

smooth non-Euclidean space.
Once having obtained the MDS estimate coordinates of the objects x̂i, the user can decide the

dimension p for visualization. Usually, the values p = 2 and p = 3 are selected since they allow a
direct representation. Moreover, the quality of the MDS approximation can be assessed by means
of the Sheppard and stress charts. The Sheppard diagram plots d̂i,j vs. di,j. If the points follow
a straight/curved line, this means a linear/non-linear relationship, but in both cases, the smaller
the scatter, the better the approximation is. A second assessment tool consists of the plot of SD
vs. p. Usually, the curve is monotonic decreasing with a large diminishing at first and a slow
variation afterwards.

Since the MDS locus results from relative information (i.e., the distances), the coordinates usually
do not have some physical meaning, and the user can rotate, shift, or magnify the representation
to have a better view. Moreover, distinct distances lead to different plots that are correct from the
mathematical and computational viewpoints, but that reflect distinct characteristics of the dataset.
Therefore, it is up to the user to choose one or more distances that better highlight the aspects of the
dataset under study.

Often, it is recommended to pre-process the data before calculating the distances in order to reduce
the sensitivity to some details such as different units or a high variation of numerical values. In the case
of the DJIA, two data pre-processing schemes (also called normalizing, or data transformation), P1 and
P2, are considered: (i) subtracting the arithmetic average and dividing by the standard variation, that is

by calculating
{
P1 : x(t)← x(t)−μ

σ

}
, where μ = 1

T ∑T
t=1 x(t) and σ =

√
1

T−1 ∑T
t=1 (x(t)− μ)2, and (ii)

by applying a logarithm so that {P2 : x(t)← lg (x (t))}. The linear transformation P1 is often adopted
in statistics and signal processing [64–68], while the non-linear transformation P2 can be adopted with
signals revealing an exponential-like evolution [69–73]. Of course, other data transformations could be
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envisaged, but these two are commonly adopted. Therefore, the main question concerning this issue is
to understand to what extend the pre-processing influences the final results.

2.3.1. Data Pre-Processing Using P1

Figure 3 shows the MDS locus for p = 3 and tw = 60 days, with pre-processing P1 and using
the Lorentzian and Canberra distances, dLo

i,j and dCa
i,j . The larger circle represents the first vector,

and the lines connect two consecutive dots (representing the vectors from two consecutive time
windows). The lines are included simply for auxiliary purposes and for highlighting the discontinuities.
The MATLAB nonclassical multidimensional scaling algorithm mdscale and the Sammon’s nonlinear
mapping criterion sammon were used. Figure 4 illustrates the corresponding Sheppard and stress
diagrams for the Canberra distance (1f). For the sake of parsimony, the other charts are not represented.

Figure 3. The multidimensional scaling (MDS) locus, x̂i, of the DJIA dataset for p = 3 and tw = 60
days (Nw = 263), with pre-processing P1 and using the Lorentzian (1d) and Canberra (1f) distances.
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Figure 4. The Sheppard diagram, d̂i,j vs. di,j, for p = 3, and stress plot, SD vs. p, of the DJIA dataset
with tw = 60 days, with pre-processing P1 and using the Canberra distance (1f).

We verify that the MDS loci exhibit segments where we have an almost continuous evolution
and others with strong discontinuities. The first segments portray relatively smooth dynamics,
while the second ones represent dramatic variations, in the perspective of the adopted distance
and visualization technique. These dynamical effects are not read in the same way as with the standard
time representations. Moreover, their visualization varies according to the type of distance adopted to
construct the matrix D. This should be expected, since it is well known that each distance highlights
a specific set of properties embedded in the original time series and that the selection of one of
more distances has to be performed on a case-by-case basis, before deciding those more adapted to
the dataset.

Another relevant topic is the effect of the time window tw on the results. In other words, we can
ask how the dimension of the vector ξi, i = 1, . . . , Nw, capturing the DJIA time dynamics, influences the
MDS representation. For example, Figure 5 shows the MDS locus for p = 3, tw = 10 days (Nw = 1583),
and the Canberra distance (1e).

Figure 5. The MDS locus, x̂i, of the DJIA dataset for p = 3 and tw = 10 days (Nw = 1583),
with pre-processing P1 and using the Canberra distance (1e).
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2.3.2. Data Pre-Processing Using P2

Figure 6 shows the MDS locus for p = 3 and tw = 60 days, with pre-processing P2 and using the
Lorentzian and Canberra distances, dLo

i,j and dCa
i,j . Figure 7 depicts the Sheppard and stress diagrams

for the Canberra distance (1f).
We can also check the effect of the time window tw. Figure 8 shows the MDS locus for p = 3,

tw = 10 days (Nw = 1583), and the Canberra distance (1e) revealing, again, a slight diminishing of the
volatility.

Figure 6. The MDS locus, x̂i, of the DJIA dataset for p = 3 and tw = 60 days (Nw = 263),
with pre-processing P2 and using the Lorentzian (1d) and Canberra (1f) distances.
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Figure 7. The Sheppard diagram, d̂i,j vs. di,j, for p = 3, and the stress plot, SD vs. p, of the DJIA dataset
with tw = 60 days, with pre-processing P2 and using the Canberra distance (1f).

Figure 8. The MDS locus, x̂i, of the DJIA dataset for p = 3 and tw = 10 days (Nw = 1583),
with pre-processing P2 and using the Canberra distance (1e).

As in the previous sub-section, we observe that the MDS plots reveal some segments almost with a
continuous evolution and some with discontinuities. Furthermore, as before, increasing tw reduces the
volatility in the MDS representations. These results, with regions of smooth variation, interspersed with
abrupt changes, were already noticed since they reflect relativistic time effects [74,75]. Such dynamics
was interpreted as a portrait of the fundamental non-smooth nature of the flow of the time variable
underlying the DJIA evolution. Nonetheless, we are still far from a comprehensive understanding of
the MDS loci, and we need to design additional tools to extract additional conclusions.

3. Fractal, Entropy, and Fractional Analysis

We consider the fractal dimension and entropy measures for analyzing the 3-dim portraits
produced by the MDS.

The fractal dimension, fd, characterizes the fractal pattern of a given object by quantifying the
ratio of the change in detail to the change in scale. Several types of fractal dimension can be found in
the literature. In our case, fd is calculated by means of the box counting method as the exponent of
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a power law N (ε) = aε− fd , where a is a parameter that depends on the shape and size of the object,
and N and ε stand for the number of boxes required to capture the object and the size (or scale) of the
box, respectively. Therefore, fd can be estimated as:

fd = −lim
ε→0

ln (N (ε))

ln (ε)
. (4)

The entropy of a random variable is the average level of “information” of the corresponding
probability distribution. The key cornerstone of the Shannon theory consists of the information content,
which for an event having probability of occurrence pi, is given by:

I (pi) = − ln pi. (5)

For a 3-dim random variable (X, Y, Z) with probability distribution pXYZ, the Shannon entropy,
HXYZ, is given by:

HXYZ = −∑
X

∑
Y

∑
Z

pXYZ ln (pXYZ) , (6)

where − ln (pXYZ) is the information for the event with probability pXYZ.
The concept of entropy can be generalized in the scope of fractional calculus [76–86].

This approach gives more freedom to adapt the entropy measure to the phenomenon under study by
adjusting the fractional order. The information and entropy of order α ∈ R are given by [77,87]:

Iα (pi) = Dα I (pi) = −
p−α

i
Γ (α + 1)

[ln pi + ψ (1)− ψ (1− α)] (7)

Hα
XYZ = ∑

i

{
− p−α

i
Γ (α + 1)

[ln pi + ψ (1)− ψ (1− α)]

}
pi (8)

where Γ (·) and ψ (·) represent the gamma and digamma functions.
The parameter α gives an extra degree of freedom to adapt the sensitivity of the entropy calculation

of each specific data series.
In an algorithmic perspective, these measures require the adoption of some grid (or box) for

capturing and counting the objects, the main difference being that the fractal dimension just considers
a Boolean perspective of “1” and “0”, that is the box is either full or empty, while the entropy considers
the number of counts in each box.

In the follow-up, a 3-dim grid defined between the minimum and maximum values obtained for
each axis of the MDS locus is considered. For the fractal dimension, we obtain fd by the slope of N (ε)

versus ε for 10 decreasing values of the box sizes. In the case of the entropy, we calculate HXYZ when
adopting 20 bins for each MDS axis. The auxiliary lines connecting the object (i.e., the points) are not
considered for the calculations.

Figures 9 and 10 show the variation of fd and HXYZ with tw, with pre-processing P1 and P2,
respectively, when using the distances (1a)–(1j). For tw ∈ {5, . . . , 240}, we have correspondingly MDS
with Nw (tw ∈ {3166, . . . , 65}) points.
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Figure 9. Plot of fractal dimension, fd, and Shannon entropy, HXYZ, versus Nw (tw ∈ {5, . . . , 240}),
with pre-processing P1 and using the distances (1a)–(1j).

55



Entropy 2020, 22, 1138

Figure 10. Plot of fractal dimension, fd, and Shannon entropy, HXYZ, versus Nw (tw ∈ {5, . . . , 240}),
with pre-processing P2 and using the distances (1a)–(1j). The Manhattan, Euclidean, Tchebychev,
Lorentzian, Sørensen, Canberra, Clark, divergence, angular, and Jaccard distances (denoted as {Ma, Eu,
Tc, Lo, So, Ca, Cl, Dv, Ac, Ja}).

We note some “noise”, but that should be expected due to the numerical nature of the experiments.
In general, the two indices decrease with tw, revealing, again, the “low pass filtering” effect of the
dimension of the time window. We note a considerable difference of the values of fd and HXYZ for
small values of tw, but a stabilization and some convergence to closer values when tw increases.

In the case of the fractional entropy, Hα
XYZ, we can tune the value of α to achieve a maximum

sensitivity. In other words, we can select the value αmax(H) to obtain max
(

Hα
XYZ

)
. Figures 11 and 12
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depict max
(

Hα
XYZ

)
vs. αmax(H) with tw ∈ {5, 10, . . . , 240}, with pre-processing P1 and P2, respectively,

and using the distances (1a)–(1j).

Figure 11. Plot of αmax(H) versus max
(

Hα
XYZ

)
, with tw ∈ {5, 10, . . . , 240}, with pre-processing P1 and

using the distances (1a)–(1j).

Figure 12. Plot of αmax(H) versus max
(

Hα
XYZ

)
, with tw ∈ {5, 10, . . . , 240}, with pre-processing P2 and

using the distances (1a)–(1j).
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We verify a strong correlation between the entropy and the value of the fractional order.
Furthermore, we note that 0.55 ≤ αmax(H) ≤ 0.75 and 0.57 ≤ αmax(H) ≤ 0.77 for P1 and P2, respectively,
far from integer values and clearly representative of fractional dynamics. For small time windows,
each distance has a distinct behavior, but when the time window increases, all distances converge to
almost similar points of αmax(H), both for P1 and P2. Obviously, with larger time windows, we have a
smaller number of points in the MDS locus, and that influences the result. The convergence towards
a common behavior for all distances is observed after the first values of tw. This means that we are
unraveling the fractional dynamics, that is a characteristic of long-range memory effects embedded in
the time series.

For the pre-processing P1, the divergence distance produces a slightly separated plot to the left,
while for P2, we see that position is occupied the divergence and Jaccard distances, but with a fuzzier
behavior. As before, we note that the type of pre-processing does not yield any significant modification
of the global conclusions.

4. Conclusions

Commonly, time is viewed as a continuous and linear flow so that any perturbation, such as noise
and volatility, is automatically assigned to the variable under analysis. In other words, since we
are entities immersed in the time flow, apparently, we are incapable of distinguishing between
perturbations in the time and the measured variable. This paper explored an alternative strategy
of reading the relationship between the variables. For that purpose, the DJIA, from 28 December
1959, up to 1 September 2020, was adopted as the vehicle for the numerical experiments. This dataset
corresponds to a human-made phenomenon, and therefore, any conjecture about the nature of time
is independent of the presently accepted conceptions about its flux. In the proposed approach,
the time series was organized into vectors corresponding to specified time windows. Those vectors
were then compared by means of a panoply of distances and the resulting information plotted in
a three-dimensional space by means of MDS. Indeed, the MDS representation corresponds to a
“customized projection” of high-dimensional data into a low-dimensional space. Loosely speaking,
we can say “customized projection” since we do not pose any a priori requirements, the algorithm
merely being based on the idea of minimizing the difference between the original measurements and
the replicated (approximated) value. Therefore, the MDS does not automatically guarantee the success
of such a “projection”, but the quality results were assessed by the stress and Shepard diagrams. In the
case of the DJIA and the adopted distances, the good quality of the MDS technique was confirmed.

The MDS loci have distinct shapes, according to the type of distance adopted to compare vectors.
Therefore, additional tools were necessary to highlight the main characteristics of these representations
where time is no longer the explicit variable. For that purpose, several mathematical tools were
considered, namely the Shannon entropy and fractal dimension. In all cases, we observed some
variability with the time window, which occurs naturally due to the numerical treatment of this type
of data. The Shannon entropy and fractal dimension exhibited the same type of behavior, with a
progressive variation with the time window and a stabilization toward a common value for large tw.
While these results can be read merely as the effect of a low pass filtering provided by the large time
window, we can also foresee that another property inherent to the DJIA is their origin.

The fractional entropy was brought up to further analyze the MDS locus. This tool allows a better
sensitivity to the dataset than the Shannon entropy, since users can tune the calculations by means
of the fractional order. In the case of the DJIA, the tuning of α for achieving the maximum entropy
revealed not only that such values are independent of the distance, but also that we clearly have orders
far from integer values, characteristic of fractional dynamics with non-local effects.

Some concepts are debatable and do not follow the standard orthodoxy, but the set of experiments
with an artificial time series allows thinking outside the box and provides a strategy for exploring the
texture of time in the perspective of entropy and fractional calculus.
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Abstract: The present study aimed to develop and investigate the local discontinuous Galerkin
method for the numerical solution of the fractional logistic differential equation, occurring in many
biological and social science phenomena. The fractional derivative is described in the sense of
Liouville-Caputo. Using the upwind numerical fluxes, the numerical stability of the method is
proved in the L8 norm. With the aid of the shifted Legendre polynomials, the weak form is reduced
into a system of the algebraic equations to be solved in each subinterval. Furthermore, to handle
the nonlinear term, the technique of product approximation is utilized. The utility of the present
discretization technique and some well-known standard schemes is checked through numerical
calculations on a range of linear and nonlinear problems with analytical solutions.

Keywords: logistic differential equation; liouville-caputo fractional derivative; local discontinuous
Galerkin methods; stability estimate

1. Introduction

In studies of elementary population dynamics the simplest model for the growth of a population
is known as rate equation and structured by Malthus in (1798) [1]$&%

dMptq
dt

“ r Mptq, t ą 0,

Mp0q “ M0,
(1)

where Mptq denotes the population at time t, the non-zero parameter r equals to r “ β ´ α, where β

and α are the per capita birth and death rates respectively. Here, M0 is the population at time t “ 0.
The exact analytical solution of Malthus population model (1) is explained the constant population
growth rate Mptq “ M0ert. The Maithusian grow model is unrealistic over long times due to the fact
that the solution of the rate equation is not included two main factors such as spread of diseases and
the limitation on food supply. To model the effects of these factors in a population model, the logistic
equation was considered by P. R. Verhulst in 1838 [2]

dNptq
dt

“ rNptq
ˆ

1 ´ Nptq
K

˙
,
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where the variable Nptq “ Mptq{Mmax is the whole population and normalized to its maximum
attainable value Mmax, r denotes the intrinsic growth rate while the constant K ą 0 known as the
carrying capacity of the environment. By defining Xptq :“ Nptq{K and σ :“ rK, the standard logistic
equation can be rewritten as $&%

dXptq
dt

“ σ Xptq
´

1 ´ Xptq
¯

, t ą 0,

Xp0q “ X0.
(2)

where X0 “ Mp0q{Mmax. The exact solution of this equation can be easily obtained as

Xptq “ X0

X0 ` p1 ´ X0qe´σt .

In the last decades, many efforts have been devoted to extend the integer-order models to the
corresponding fractional-order models, which are more descriptive and can provide a powerful and
valuable instrument for the explanation of hereditary and memory properties of several materials
and process [3,4]. Replacing the classical derivative operator in (2) by a fractional one, the fractional
logistic equation will be obtained. This model of population growth has been found applications in
numerous disciplines of science and engineering. For instance, the growth of tumors in medicine [5]
can be modelled as the fractional logistic equation (FLE). In addition, the milstone of various important
mathematical models is based on the fractional logistic equation such as two models in Radar signals [6]
and electroanalytical chemistry [7]. Several variations of the population growth model have been
studied in the literature [8]. In the present study, we are going to investigate the following logistic
population model of fractional order in the form$&% LC

a Dν
t Xptq “ σ Xptq

´
1 ´ Xptq

¯
“: σ Xptq gpXptqq, t ą 0,

Xp0q “ X0,
(3)

where the symbol LC
a Dν

t denotes the fractional derivative operator of Liouville-Caputo type and
ν P p0, 1s. It should be emphasized that in (3) we have used the function gpsq ” 1 ´ s, which
corresponds to the nonlinear logistic equation. However, to address the linear counterpart of this
equation we also consider gpsq ” 1. The issue of existence and the uniqueness of the solution of (3) is
discussed in detail in Reference [9].

It is known that for most fractional differential equations there is no possibility to find the exact
solutions analytically. Consequently, exploring an approximate or numerical technique is of primary
interest for such fractional equations. Many efforts have been made toward the exact analytical
solution of the problem (3). The first one is proposed by West [10], which is based on the Carleman
embedding technique. Later, it is shown that in Reference [11] the this analytical function is only
very close to the numerical solutions of the FLE. The other analytical methods for the FLE include the
fractional Taylor expansion method [12], a method based on Euler’s numbers [13], and the varational
iterative method [14]. Besides the analytical investigations, numerous computational approaches
have been proposed for the nonlinear FLE. Let us mention the predictor-corrector approaches [9,15],
the finite difference schemes [14,16], the spectral methods [17,18], the Bessel collocation method [19],
the Chebyshev wavelet method [20], the Laguerre collocation method [21], and the fractional spline
collocation method [22].

Many other numerical and approximation methods as well as computational approaches have
been developed and applied for the FDEs which are based upon various closely-related models of
real-world problems. For example, Baleanu et al. [23] made use of a Chebyshev spectral method based
on operational matrices, a remarkable survey of numerical methods can be found in [24], a study of
the fractional-order Bessel, Chelyshkov, and Legendre collocation schemes for the fractional Riccati
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equation was presented in [25], an operational matrix of fractional-order derivatives of Fibonacci
polynomials was developed in [26], an introductory overview and recent developments involving
FDEs was presented in [27], efficiency of the spectral collocation method in the dynamic simulation
of the fractional-order epidemiological model of the Ebola virus was investigated in [28], the Jacobi
collocation method and a spectral tau method based on shifted second-kind Chebyshev polynomilas
for the approximate solution of some families of the fractional-order Riccati differential equations
were discussed in [29,30], computational approaches to FDEs for the biological population model were
discussed in [31], the generalized Chebyshev and Bessel colllocation approaches for fractional BVPs
and multi-order FDEs were considered in [32,33], and a general wavelet quasi-linearization method
for solving fractional-order population growth model was developed and applied in [34].

In this work, we take a further step towards proposing a numerical method for solving the
FLE. We utilize a discontinuous finite element approach, i.e, the local discontinuous Galerkin (LDG)
discretization approach for the FLE (3). To apply the LDG scheme, we must rewrite a given FDEs
as a system of first-order ordinary differential equations (ODEs) with together a fractional integral.
Hence, the discontinuous Galerkin (DG) method is employed to discretize the resulting system as
well as the fractional integral. The first DG method was introduced by Reed and Hill [35] in 1973
for numerically solving neutron transport, that is, a time-independent linear hyperbolic equation.
Since then the DG schemes have been well implemented for the classical ODEs was started by the
work [36]. DG schemes as a subclass of finite element methods (FEMs) allow us to exploit discontinuous
discrete basis functions. These local basis functions are usually selected as piecewise polynomials.
Exploiting completely discontinuous basis functions offers great opportunities compared to traditional
FEMs when used to discretize differential equations. In summary, the main gains of the DG methods
are in terms of flexibility, accuracy as well as parallelizability, see cf. Reference [37].

To the best of our knowledge, the LDG approaches for the ODEs of fractional-order including
one-term and multi-terms were first discussed in Reference [38] and then have been applied to many
model problems [39–41]. It is worth mentioning that the success of LDG methods is based on the
designing of appropriate numerical fluxes at the interface elements. In this work, we utilize the upwind
numerical flux as natural choice for the FLE. By choosing the upwind fluxes we are able to prove the
numerical stability of the LDG scheme.

The rest of this paper is organized as follows. In the next Section, we review some fractional
calculus preliminaries and state some of their properties that will be used later on. The formulation of
the LDG scheme for the logistic equation is established in Section 3. Hence, the algebraic form of the
LDG scheme is obtained with the aid of shifted Legendre basis functions. The technique of product
approximation is also applied to deal with the nonlinear term in the weak formulation. In Section 4
we establish the numerical stability of the scheme in the linear case and a discussion about the error
estimation is made. In Section 5, the applicability and utility of the present numerical schemes are
verified by performing several simulations on two linear and nonlinear population growth and logistic
model problems. Finally, a conclusion is drawn in Section 6.

2. Fractional Calculus

Now, we present some fundamental and mathematical preliminaries of the fractional calculus
theory to be utilized in our subsequent sections, see References [3,4,27].

Definition 1. Let ν ě 0 is given. The (left) Riemann-Liouville fractional integral operator of order ν is given by

Iν f ptq ” aIν
t f ptq “

$’&’%
1

Γpνq
ż t

a
f ppq pt ´ pqν´1 dp, ν ą 0, t ą 0,

f ptq, ν “ 0.

The integral operator Iν has many properties. Among others, we make use of the following

65



Entropy 2020, 22, 1328

(1) IνIβ f ptq “ Iν`β f ptq,
(2) Iν pc1 f ptq ` c2gptqq “ c1Iν f ptq ` c2Iνgptq, c1, c2 P R,

(3) Iνtγ “ Γpγ`1q
Γpγ`ν`1q tν`γ, γ ą ´1.

The corresponding definition of the right Riemann-Liouville fractional integral on the interval
rt, bs instead of ra, ts is given by

tIν
b f ptq “ 1

Γpνq
ż b

t
f ppq pp ´ tqν´1 dp, ν ą 0, t ą 0.

Definition 2. The fractional derivative Dν of f ptq in the Liouville-Caputo’s sense is defined as

Dν f ptq ” LC
a Dν

t f ptq “
$’&’%

1
Γpm ´ νq

ż t

a

f pmqppq
pt ´ pqν´m`1 dp, m ´ 1 ă ν ă m, t ą 0,

f pmqptq, ν “ m, m P N.

We make use of the following [4]:

DνpCq “ 0 pC is a constantq, (4)

Dν tγ “
$&%

Γpγ ` 1q
Γpγ ` 1 ´ νq tγ´ν, for γ P N0 and γ ě rνs, or γ R N0 and γ ą tνu,

0, for γ P N0 and γ ă rνs.
(5)

Here, we have used the ceiling and floor functions rνs, tνu respectively. It should be noted that,
two operators Iν and Dν are related through the following expression

Dν f ptq “ Im´νDm f ptq, D “ d
dt

. (6)

3. Discretized LDG Formulation

In order to formulate the LDG method for the logistic equation in (3), some basic notations will
first be introduced.

Let us consider (3) on L “ p0, Tq for some given T ą 0. To rewrite (3) as a first-order system,
we introduce two new variables z0ptq “ Xptq and z1ptq “ dXptq

dt and use the relation (6) to get$’’’’&’’’’%
z1ptq ´ dz0ptq

dt
“ 0,

0Ip1´νq
t z1ptq ´ σ z0ptq

´
1 ´ z0ptq

¯
“ 0,

z0p0q ´ X0 “ 0,

(7)

with ν P p0, 1s and t P L. By Δ we denote a partitioning of the interval L into J subintervals Ll “ ptl´1, tlq
for l “ 1, . . . , J. The grid points of Δ will be denoted as

0 “: t0 ă t1 ă . . . ă tJ´1 ă tJ :“ T.

By hl we mean the length of each Ll , that is, hl “ tl ´ tl´1 for l “ 1, 2, . . . , N. The maximum length
of these element is taken as h :“ maxJ

l“1 hl . We associate the mesh Δ with the broken Sobolev spaces

H1
Δ “ tw : L Ñ R

ˇ̌
w|Ll P H1pLlq, l “ 1, 2, . . . , Ju.

and
SΔ “ tw : L Ñ R

ˇ̌
w|Ll P L2pLlq, l “ 1, 2, . . . , Ju,
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By using these function spaces, let assume that the solutions of system (7) belong to
corresponding spaces ´

z0ptq, z1ptq
¯

P H1
Δ ˆ SΔ.

It should be noted that the elements of space H1
Δ may be discontinuous in t at discrete time level

t1. In this respect, at the mesh grid points, defining the left-sided as well as the right-sided limits of a
function w is necessary, where w : L Ñ R is a piecewise continuous function. By wń and wǹ , we let
the left- and right-sided limits of w at tl

w`
l “ w`ptlq “ wpt`

l q :“ lim
sÑ0` wptn ` sq, w´

l “ w´ptlq “ wpt´
l q :“ lim

tÑ0´ wptn ` sq.

For any positive integer number r, we denote by PrpLlq the space of polynomials of degree less
or equal than r on the element Ll P Δ. We then let the approximate solutions z0ptq, z1ptq belong to a
subspace Vprq Ă H1

Δ, which is a finite dimensional space. This subspace is defined as the space of
discontinuous and piecewise polynomial functions

Vprq “ tw : L Ñ R
ˇ̌

w|Ll P PrpLlq, l “ 1, 2, . . . , Ju.

We further define Z0ptq and Z1ptq as the DG approximations to the exact solutions z0ptq and z1ptq
of the system (7) respectively on the element Ll . Below, we make use of the following notations

pw, vql :“
ż

Ll

w v dt, xw, vyl :“
ż tl

0
w v dt, }w}l :“

b
xw, wyl .

For obtaining the weak DG formulation, we first multiply the first equation in (7) by a test function
w0 P Vprq and integrate over Ll . By applying the integrating by parts we get´

Z1ptq, w0

¯
l
`

´
Z0ptq,

dw0

dt

¯
l
´Z0pt´

l q w0pt´
l q `Z0pt`

l´1q w0pt`
l´1q “ 0. (8)

Hence, the second integral equation in (7) is multiplied by a test function w1 P Vprq and integrate
over Ll . To advance the solution in time, we replace Z0pt`

l´1q by the upwind flux Z0pt´
l´1q in (8).

Thus, the discrete formulation for finding Z0,Z1 P Vprq takes the following form for all w0, w1 P Vprq,
and l “ 1, 2, . . . , J$’’’&’’’%

´
Z1ptq, w0ptq

¯
l
`

´
Z0ptq, w1

0ptq
¯

l
´Z0pt´

l q w0pt´
l q `Z0pt´

l´1q w0pt`
l´1q “ 0,´

0Ip1´νq
t Z1ptq, w1ptq

¯
l
´ σ

´
Z0ptq, w1ptq

¯
l
` σ

´
Z2

0 ptq, w1ptq
¯

l
“ 0,

Z0pt0́ “ 0q ´ X0 “ 0.

(9)

It should be noted that, to start computations on the first element L1 “ pt0, t1q we use the given
initial condition Z0pt0́ q “ X0. Hence, by utilizing the upwind flux as the natural choice, we are able
to solve the resultant equations element by element on each subinterval Ll for l “ 1, 2, . . . , J. In each
element, we just need to invert a local matrix of size pr ` 1q ˆ pr ` 1q in place of a global matrix of size
Jpr ` 1q ˆ Jpr ` 1q.

Algebraic Formulation

Since the functions in Vprq may be discontinuous across interfaces of the element, various local
bases can be selected for finite element approximation in (9). Let us choose a basis in the space PrpLlq
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formed by functions φl
0, φl

1, . . . , φl
r. Thus the numerical approximations Z0 of z0 and Z1 of z1 in every

element Ll can be expressed as

Z0ptq “
qÿ

i“0

αl
i φl

i ptq, Z1ptq “
qÿ

i“0

βl
i φl

i ptq, t P Ll . (10)

Here, the coefficients αl
i ,β

l
i , i “ 0, . . . , r denote the degrees of freedom to be sought in each Ll ,l “

1, . . . , J. To proceed, we take the test functions in each element Ll in the form wj “ φl
jptq for j “ 0, 1, . . . , r

and l “ 0, 1, . . . , J. Now, by specifying the basis functions as we done below, the discrete LDG
formulation (9) is reduced to a algebraic system of equations.

For practical implementation of the LDG scheme (9) for the FLE (3), we use the set of orthogonal
Legendre polynomials for the space Vprq. Let us recall that, the i’th degree Legendre polynomials Pipsq
can be generated by the well-known Rodriguez formula

Pipsq “ 1
2ii!

di

dsi ps2 ´ 1qi.

The Legendre polynomials satisfy the following relations [17]ż 1

´1
Pipsq Pjpsqds “ 2δij

2i ` 1
, Pip1q “ 1, Pipsq “ p´1qiPip´sq, i, j ě 0, (11a)

p2i ` 1qPipsq “ dPi`1psq
ds

´ dPi´1psq
ds

, (11b)

where δij denotes the Kronecker delta. The first property shows that these set of orthogonal polynomials
are orthogonal with respect to weighting function wptq ” 1 on p´1, 1q. The Legendre polynomial Pipsq
of degree i can be explicitly expressed as follows

Pipsq “
Miÿ

k“0

cik si´2k, cik :“ 1
2i p´1qk

ˆ
i
k

˙ˆ
2i ´ 2k

i

˙
,

where Mi “ i{2 or pi ´ 1q{2, whichever is an integer. Due to the fact that these polynomials are
orthogonal on r´1, 1s, we map them onto the element Ll by using the following change of variable

s :“ 2t ´ tl´1 ´ tl
hl

, t P Ll .

Let the resultant shifted Legendre polynomials denoted by Liptq. Thus, the explicit form of Liptq
of degree i takes the form

Liptq “
Miÿ

k“0

cik

´2t ´ tl´1 ´ tl
hl

¯i´2k
.

By means of the binomial formula, one can further simplify the last expression as follows

Liptq “
Miÿ

k“0

i´2kÿ
m“0

Cikm tm, (12)

where the coefficients Cikm are defined as

Cikm :“ p´1qi`k`m p2i ´ 2kq!
2i pi ´ kq! k! l! pi ´ 2k ´ mq!

´ tl ` tl´1
tl ´ tl´1

¯i´2k´ 2
tl ` tl´1

¯m
.
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Now, we choose φl
i ptq “ Liptq in (10) for l “ 1, 2, . . . , J, where Li is the shifted Legendre polynomial

of degree i in t defined in (12). With this transformation, the unknown values αl
i ,β

l
i in (10) can be

interpreted as the Legendre coefficients of the expansion ofZ0,Z1. Hence, by the virtue of the Legendre
properties (11) and inserting (10) into the discrete formulation (9) we have for l “ 1, . . . , J as

rÿ
i“0

βl
i

´
Liptq, Ljptq

¯
l
`

rÿ
i“0

αl
i

´
Liptq, L1

jptq
¯

l
´

rÿ
i“0

αl
i `

rÿ
i“0

αl´1
i p´1qj “ 0,

rÿ
i“0

βl
i

´
0Ip1´νq

t Liptq, Ljptq
¯

l
´ σ

rÿ
i“0

αl
i

´
Liptq, Ljptq

¯
l
` σ

´” rÿ
i“0

αl
i Liptq

ı2
, Ljptq

¯
l

“ 0,

(13)

for j “ 0, . . . , r. To proceed, we need to deal with two main difficulties involving the integral and
nonlinear terms that appear in (13). To tackle the integral term, the properties (1)–(3) of fractional
integration in Section 2 is used to obtain

0Ip1´νq
t Liptq “

Miÿ
k“0

i´2kÿ
m“0

Cikm 0Ip1´νq
t tm “

Miÿ
k“0

i´2kÿ
m“0

C1
ikm tm`1´ν, C1

ikm :“ Cikm
Γpm ` 1q

Γpm ` 2 ´ νq .

Next, the explicit form (12) is utilized for Ljptq and then 0Ip1´νq
t Liptq will be inserted into the

inner product. Now, by integration over Ll we obtain

di,j :“
´

0Ip1´νq
t Liptq, Ljptq

¯
l

“
Miÿ

k“0

i´2kÿ
m“0

Mjÿ
k1“0

j´2k1ÿ
m1“0

C2
ikmjk1m1

´
tm`m1`2´ν
l ´ tm`m1`2´ν

l´1

¯
, (14)

with the coefficients
C2

ikmjk1m1 :“ C1
ikm Cjk1m1 {pm ` m1 ` 2 ´ νq.

The nonlinear term in (13) can be computed using the Legendre polynomials. For instance, if r “ 1
we may write it as a product of two vectors

nDC
j :“

´
Z2

0 ptq, Ljptq
¯

l
“

”
rαl

0s2, 2αl
0α

l
1, rαl

1s2
ı

¨
ż

Ll

”
L

2
0ptq,L0ptqL1ptq,L2

1ptq
ıT
Ljptqdt,

for j “ 0, 1. Therefore, it is not a difficult task to calculate nDC
j by direct computation (D.C.) using the

shifted Legendre polynomials on each Ll for different j. Of course one may exploit the symbolic toolbox
in Matlab to facilitate the process of integration of these polynomials. Alternatively, to handle the
nonlinear term in (13), the product approximation (P.A.) technique [42] is used in the following manner

Z2
0 ptq “

” rÿ
i“0

αl
i Liptq

ı2 «
rÿ

i“0

rαl
is2

Liptq.

This technique enables us to write the nonlinear part as

nPA
i,j :“

´
Z2

0 ptq, Ljptq
¯

l
“

rÿ
i“0

rαl
is2

´
Liptq, Ljptq

¯
l
. (15)

Now, it suffices to calculate the two first terms in (13). To this end, we compute the elements of the
mass matrix as

mi,j :“
´
Liptq, Ljptq

¯
l

“
ż

Ll

LiptqLjptqdt “
#

hl
2i`1 , i “ j,
0, i ‰ j.

(16)
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Finally, the entries of the stiffness matrix

si,j “
´
Liptq, L1

jptq
¯

l
“

ż
Ll

LiptqL1
jptqdt,

need to be calculated. In the new coordinate, we recursively employ the Legendre property (11b)
to derive

hl
2
L

1
i`1ptq “ p2i ` 1qLiptq ` p2pi ´ 1q ` 1qLi´2ptq ` p2pi ´ 4q ` 1qLi´4ptq ` ¨ ¨ ¨ .

By applying the orthogonality relation (11a) to the preceding equation and then simplifying the
involved integral in si,j, we finally get

si,j “
#

2, if i ą j and pi ` jq is even,
0, otherwise.

(17)

Using (14)–(17), one may write (13) in the matrix-vector multiplication form for l “ 1, . . . , J as follows#
MMMβββl ` pSSS ´ EEEqαααl “ bbbl ,

DDDβββl ´ σMMMpαααl ´ααα2,lq “ 0,
(18)

where the unknown vectors αααl ,βββl , and ααα2,l are defined

αααl “
´
αl

0, . . . ,αl
r

¯T
, βββl “

´
βl

0, . . . ,βl
r

¯T
, ααα2,l “

´
rαl

0s2, . . . , rαl
rs2

¯T
.

Note in (18) that the components of matrix EEE are ei,j :“ 1 while that of MMM, SSS, NNN and DDD are
mi,j, si,j, ni,j, and di,j respectively for i, j “ 0, . . . , r as defined above. Moreover, the components of the
known vector bbbl are

bi :“ p´1qi`1Z0pt´
l´1q, i “ 0, 1, . . . , r.

Clearly, the value of Z0pt´
l´1q is already known from the preceding time interval Ll´1. Obviously

this value at the first time interval is computed as X0, the initial condition. Also, the obtained
system (18) is a nonlinear algebraic system of equations have to be solved in each Ll for l “ 1, . . . , J.
This system can be solved for example, via Newton type schemes. It is known that this method
converges quadratically whenever the approximation is close to the actual solution of the given
nonlinear system. Using the D.C. approach, we also arrive at a nonlinear system of equation in the
general form FFFpαααl ,βββlq “ 000 to be solved in each interval Ll . As we show in the numerical experiments,
this approach is more accurate than the corresponding P.A. approach.

4. Numerical Stability and Error Estimates

Now, we are going to establish the stability of proposed LDG scheme when applied to the logistic
equation in the linear case by considering gptq ” 1 in (3). In this case we have#

LC
a Dν

t Xptq “ σ Xptq, ν P p0, 1q.

Xp0q “ X0.
(19)

Without loss of generality, let us assume that σ ă 0. The numerical scheme of (19) is to find
Z0,Z1 P Vprq such that
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$’’’&’’’%
Z0pt´

l q w0pt´
l q ´Z0pt´

l´1q w0pt`
l´1q ´

´
Z1ptq, w0ptq

¯
l
´

´
Z0ptq, w1

0ptq
¯

l
“ 0,´

0Ip1´νq
t Z1ptq, w1ptq

¯
l

“ σ
´
Z0ptq, w1ptq

¯
l
,

Z0pt0́ q ´ X0 “ 0,

(20)

for all w0, w1 P Vprq, and l “ 1, 2, . . . , J. Let us state the next lemma, which based on the semigroup
properties of fractional integral operators and will be used below, a proof of which can be found
in Reference [38].

Lemma 1. Suppose that ν P p0, 1q, then we haveA
0I1´ν

t u, u
E

l
“

A
0I

1´ν
2

t u, tI
1´ν

2
tl

u
E

l
“ cos

´ p1 ´ νqπ

2

¯
}u}2

H
1´ν

2 pr0,tlsq
.

Let us assume that rZ0, rZ1 P Vprq be the approximate solutions of Z0,Z1 respectively. Now,
the numerical errors are defined as EXi :“ rZi ´Zi for i “ 0, 1. It can be seen that rZ0 and rZ1 both
satisfy (20). If we subtract Equation (20) from the same equations with rZ0 and rZ1, the following error
equations will be obtained$’&’%

EX0pt´
l q w0pt´

l q ´ EX0pt´
l´1q w0pt`

l´1q ´
´

EX1ptq, w0ptq
¯

l
´

´
EX0 ptq, w1

0ptq
¯

l
“ 0,

´ 1
σ

´
0Ip1´νq

t EX1ptq, w1ptq
¯

l
“ ´

´
EX0ptq, w1ptq

¯
l
,

(21)

which holds for all w0, w1 P Vprq. Taking w0 “ EX0 and w1 “ EX1 in (21) followed by collecting these
two equations, we conclude that

E2
X0

pt´
l q ´ EX0pt´

l´1q EX0 pt`
l´1q ´

´
EX0ptq, E1

X0
ptq

¯
l
´ 1

σ

´
0Ip1´νq

t EX1ptq, EX1 ptq
¯

l
“ 0.

To deal with the third term, we utilize the identity
´

u, du
dt

¯
l

“ pu2pt´
l q ´ u2pt`

l´1qq{2 with u “ EX0 .

Hence, we multiply the preceding equation by two. Adding and subtracting E2
X0

pt´
l´1q to the modified

equation and rearranging the terms to obtain´
EX0pt`

l´1q ´ EX0 pt´
l´1q

¯2 `
´

E2
X0

pt´
l q ´ E2

X0
pt´

l´1q
¯

´ 2
σ

´
0Ip1´νq

t EX1ptq, EX1 ptq
¯

l
“ 0.

By summing over elements for l “ 1, . . . , J, we get

E2
X0

pt´
J q ´ E2

X0
pt0́ q `

Jÿ
l“1

´
EX0pt`

l´1q ´ EX0pt´
l´1q

¯2 ´ 2
σ

A
0Ip1´νq

t EX1 ptq, EX1ptq
E

J
“ 0.

By using Lemma 1, we have established the following stability of the LDG in the L8 norm for (20)
(see also References [38,40]:

Lemma 2. We have the following L8 stability of the LDG scheme (20) and for the numerical errors hold

E2
X0

pt´
J q “ E2

X0
pt0́ q ´

Jÿ
l“1

´
EX0pt`

l´1q ´ EX0 pt´
l´1q

¯2 ` 2
σ

cos
´ p1 ´ νqπ

2

¯
}EX1}2

H
1´ν

2 pr0,tJsq
(22)

We close this section by pointing out some facts about the order of convergence of the proposed
LDG scheme. In Reference [38] it is shown that the solution can be calculated with optimal order
of convergence pr ` 1q in the L2 norm. In this work the mechanism of superconvergence is also
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discussed. The authors observed the superconvergence of order pr ` 1q ` mintr, νu at downwind point
of each element.

5. Numerical Results and Discussions

In this section, we present some results of computations using the proposed LDG scheme
described in the preceding sections to test their accuracy and efficiency when applied to the logistic
equation. To assess the accuracy of the present numerical algorithms, we calculate the difference
between the true exact and numerical solutions whenever the exact solution is available. For this
purpose, we also consider a linear fractional population model and then we solve the fractional logistic
equation numerically.

In order to asses the numerical scheme more qualitatively, by EOC we denote the estimated order
of convergence calculated through defining

EOC :“ log2

´ Eaphq
Eaph{2q

¯
,

where Eaphq is the absolute error corresponding to the step-size h. Moreover, to test the validity
and accuracy of proposed LDG method and to make a comparison between our numerical model
results with the results of other existing methods, we employ the predictor-corrector PECE method of
Adams-Bashforth-Moulton type considered in Reference [43] as well as the implicit product integration
of trapezoidal type described in Reference [24]. All experimental computations have been done by
using MATLAB R2017a.

5.1. Linear Model

In this section, we consider a linear test problem to show the effectiveness of the proposed LDG
approach. For this purpose, we consider the fractional population growth#

LC
a Dν

t Xptq “ σν Xptq, t ą 0,

Xp0q “ X0,
(23)

where 0 ă ν ď 1 and σ ą 0. This model problem is previously studied in Reference [22] and can be
considered as a generalization of the Malthusian model (1) to the fractional-order derivative. By the
aid of the Laplace transform, the exact analytical solution of the initial-value problem can be obtained
in terms of well-known Mittag-Leffler function [10]

Xptq “ X0 Eνpσν tνq, Eνpzq “
8ÿ

k“0

zk

Γpk ν ` 1q .

Note that by taking ν “ 1 the exact solution becomes Xptq “ X0 eσ t.
To start computation, we take σ “ 1 for simplicity and set X0 “ 3{4. By considering ν “ 1 and

J “ 1, the approximate solutions for r “ 3, 6, and r “ 9 on the interval 0 ď t ď 2 are obtained as follows

Z0,3ptq “ 0.4233870968 t3 ´ 0.1814516129 t2 ` 1.0887096774 t ` 0.7016129032,

Z0,6ptq “ 0.003185535427 t6 ´ 0.00147024712 t5 ` 0.04410741361 t4 ` 0.1140555342 t3 ` 0.3795910747 t2

` 0.7492022902 t ` 0.7500339451,

Z0,9ptq “ 0.00000608710804 t9 ´ 0.00000288336716 t8 ` 0.0002076022472 t7 ` 0.0009466489455 t6

` 0.006344760802 t5 ` 0.0311919123 t4 ` 0.1250209298 t3 ` 0.3749959904 t2 ` 0.7500003306 t

` 0.7499999933.
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These approximations together with the corresponding absolute errors are depicted in Figure 1.
Clearly, as r increased, more accurate results will be obtained. Note, in all cases, the step size is taken
as h “ 2. Moreover, we emphasize that numerical solutions for this model problem based on the
fractional spline collocation scheme have been proposed in Reference [22] with achieved absolute
errors larger than 1 ˆ 10´4, see Figure 2 in this paper. The parameters used in this approach related
to ν “ 1 were M1 “ 26, 27, 28, N1 “ 37, 69, 133, which obviously are much more greater than our
used parameters.
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Figure 1. The approximated LDG with exact solutions (left) and the corresponding absolute errors
(right) for J “ 1, ν “ 1, σ “ 1, X0 “ 0.75, and different r “ 3, 6, 9.

Additionally, to justify our numerical model results, a comparison in Table 1 has been performed
between the previous work on PECE [15,43] in terms of the number of (sub)intervals J is used in the
computation. In this comparison, we compute the numerical solutions corresponding to Xp2q as well as
absolute errors |Xp2q ´Z0p2q| in these methods via different values of J “ 2i for i “ 0, 1, . . . 7. For our
LDG method we take r “ 2 and ν “ 1. The last column in each method reports the corresponding
EOC. The exact value of Xp2q up to 30 digits is

Xp2q “ 5.54179207419798736111715697916.

Table 1. Comparison of absolute errors in LDG with r “ 2 and PECE for different number of interval J
and ν “ 1. Numbers in bold show that the correct digits are obtained by the LDG.

LDG PECE

J Z0p2q |Xp2q ´ Z0p2q| EOC Numerical Error EOC

1 5.625000000000 8.3208´2 ´ 3.750000000000 1.7918`0 ´
2 5.543701171875 1.9091´3 5.45 4.687500000000 0.8543`0 1.07
4 5.541845071676 5.2998´5 5.17 5.229675292969 0.3121`0 1.45
8 5.541793647744 1.5735´6 5.07 5.446685392454 9.5107´2 1.71

16 5.541792122228 4.8030´8 5.03 5.515562177333 2.6230´2 1.86
32 5.541792075682 1.4842´9 5.02 5.534910274764 6.8817´3 1.93
64 5.541792074244 4.6126´11 5.01 5.540030137766 1.7619´3 1.97
128 5.541792074199 1.4380´12 5.00 5.541346351966 4.4572´4 1.98

The observed EOC seen for PECE in Table 1 is approximately 2 as was proved in Reference [43].
However, the superconvergence EOC about 5 («2r + 1) is clearly achieved for our results.
This comparison indicates the thoroughness of the proposed method.
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The numerical solutions for various values of ν “ 0.65, 0.75, 0.85, 0.95 using r “ 5 and J “ 1 are
depicted in Figure 2, left plot. In all plots, the exact solutions are indicated by a solid line while the
numerical counterpart are visualized by (coloured) dotted, dashed, and dash-dotted curves. Note that
the computational domain is r0, 1s, which implies that the time step is h “ 1. It can be seen from
Figure 2 that the numerical solution obtained by the present LDG scheme has a good accuracy even
using a relatively large time step and a low degree of the approximating polynomials. Furthermore,
an appropriate choice of these computational parameters can improve the approximation accuracy.
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Figure 2. The approximated LDG with exact solutions (left) and the corresponding absolute errors
(right) for J “ 1, r “ 5, σ “ 1, X0 “ 0.75, and various values of ν “ 0.65, 0.75, 0.85, 0.95.

Finally, for the linear model problem (23), we investigate the standard L1 approximation
method [44] and its variant known as the fast L1 method [45]. To implement these approaches,
we use a uniform mesh with the step size h “ 1{1000 on the interval r0, 1s. In the LDG scheme, we
utilize J “ 1 or h “ 1 and r “ 5 as the results shown in Figure 2. The numerical model results are
presented in Table 2 for ν “ 0.75 and ν “ 0.5. For each ν, the corresponding exact solutions are also
reported in the last column.

Table 2. Comparison of numerical solutions in LDG with r “ 5, h “ 1 and L1/fast L1 schemes with
h “ 10´3 for some t P r0, 1s and ν “ 0.75, 0.5.

ν “ 0.75 ν “ 0.5

t LDG L1 Fast L1 Exact LDG L1 Fast L1 Exact

0.2 1.0536 1.0524 1.0524 1.053507 1.3420 1.3459 1.3345 1.349263
0.4 1.3512 1.3486 1.3486 1.350342 1.8370 1.8176 1.8176 1.822532
0.6 1.6963 1.6945 1.6945 1.697186 2.3489 2.3525 2.3525 2.359660
0.8 2.1128 2.1087 2.1087 2.112499 2.9957 2.9845 2.9845 2.994627
1.0 2.6134 2.6091 2.6091 2.614400 3.7385 3.7427 3.7427 3.756735

5.2. Nonlinear Model

We now consider the FLE (3) on r0, 1s with the initial condition given by X0 “ 1{2 and the
parameter σ “ 1{2. Using ν “ 1, the analytical exact solution of the logistic equation is given by

Xptq “ 1
1 ` e´t{2

.

The simulation results for this example can be found in Figures 3 and 4 for the number of elements
equals to J “ 5 and the polynomial degree r “ 2. In Figure 3, we take ν “ 1 to compare the numerical
results to the exact solution. Furthermore, we also use different approaches to treat the nonlinear term
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in the weak formulation, that is, the D.C. and P.A., which are utilized to compute nDC
j and nPA

i,j in (15).
As one can see that from Figure 3 that a slightly more accurate result is obtained by means of direct
computation rather than product approximation, however, as mentioned it is more time-consuming.
In order to observe the behaviour of numerical solutions more closely, a magnification of these solutions
at t “ 0.4 is done in Figure 3. The exact solution is depicted by a solid line.
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Figure 3. Numerical solutions of LDG scheme using P.A. and D.C. approaches with h “ 0.2, σ “ 0.5,
X0 “ 0.5, and ν “ 1.0. The magnification of solutions at time t “ 0.4 is plotted in the box. The exact
solution is displayed by a solid line.

In the next experiment, we plot the absolute errors when utilizing two approaches D.C. and P.A.,
as one observes in Figure 4. The computational parameters are the same as those applied for Figure 3.
In Figure 4, the left plot corresponds to the D.C. and the right plot is when we use P.A. technique.
Note that in all plots we have divided further each interval Ll into ten subinterval uniformly to see the
behaviour of the corresponding curves more precisely.
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Figure 4. Absolute errors of LDG versus time using D.C. (left) and P.A. (right) approaches with h “ 0.2,
σ “ 0.5, X0 “ 0.5, ν “ 1.0, and r “ 2. In the left and right plots, the upwind and downwind points are
highlighted by black pentagon.
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Let us interpret the numerical errors depicted in Figure 4. On the left picture in which the P.A.
technique is used, the smallest errors are obtained at upwind points. Almost the same magnitude
of errors is achieved at downwind points. On the contrary, on the right picture without using the
P.A. this process is reversed. This implies that the minimum values of absolute errors are achieved at
downwind points and there exist considerable difference between them and the errors obtained at
upwind points in each Ll . In the next experiments, we compare the numerical errors achieved at the
final point T “ 1.0, which is clearly a downwind point in the first approach.

In Tables 3 and 4, we summarize the numerical results related to Xp1q and its numerical
approximation Z0p1q are obtained by the LDG procedure (9). Here, we use r “ 1, 2 and a different
choice of the number of grid points J “ 1, 2, 4, 8 and 16 are utilized. In these tables, we further compare
the performance of two different D.C. and P.A. approaches. All calculations are shown with 10 decimal
places of accuracy. In the last column of each table, the estimated order of convergence (EOC) is given.
The exact value is Xp1q “ 0.622459331201855.

Table 3. Comparison of absolute errors in LDG with r “ 1 using P.A. and D.C. for different number of
interval J and ν “ 1. Numbers in bold show that the correct digits are obtained by the LDG.

P.A. D.C.

J Z0p1q |Xp1q ´ Z0p1q| EOC Z0p1q |Xp1q ´ Z0p1q| EOC

1 0.6234038976 0.9445664060´3 ´ 0.6224742460 0.1491482269´4 ´
2 0.6226973939 0.2380627190´3 1.99 0.6224610781 0.1746857403´5 3.09
4 0.6225290166 0.6968541429´4 1.77 0.6224595421 0.2108842001´6 3.05

Table 4. Comparison of absolute errors in LDG with r “ 2 using P.A. and D.C. for different number of
interval J and ν “ 1. Numbers in bold show that the correct digits are obtained by the LDG.

P.A. D.C.

J Z0p1q |Xp1q ´ Z0p1q| EOC Z0p1q |Xp1q ´ Z0p1q| EOC

1 0.6233820141 0.9226828763´3 ´ 0.6224593588 0.2759267670´7 ´
2 0.6226943815 0.2350503824´3 1.97 0.6224593321 0.9149985214´9 4.91
4 0.6225286311 0.6929984936´4 1.76 0.6224593312 0.2863453918´10 5.00

It can be seen from Tables 3 and 4 that using r “ 1 and r “ 2 in the D.C. approach, the results are
accurate respectively to 6 and 10 decimal places for only J “ 4 intervals. In other words, achieving
an order of accuracy equal to 3 and 5 is possible if one uses the LDG scheme with r “ 1, 2 degree of
polynomials and for a small number of elements. These EOC are also confirmed the superconvergence
order at downwind points previously reported in Reference [38]. Note that by utilizing the P.A.
technique, the obtained EOC is equal to 2. We emphasize also that using the scheme PECE for the
nonlinear logistic equation the EOC at most 2 will be achieved and of course a larger number of
intervals J is required. In the next plot, we examine the behaviour of the absolute errors in the log scale
for various polynomial degrees as well as with respect to the number of elements J, see Figure 5.
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Figure 5. Absolute-errors versus polynomial degrees r for J “ 1, 2, 4 (left) and against the number of
elements J for r “ 0, 1, 2, 3 (right) evaluated at T “ 1.0 and for ν “ 1.

In the next experiment we show the impact of the fractional derivative on the approximated
obtained solutions. In Figure 6 we present the approximated solutions at J “ 4, r “ 3 with different
values of the fractional derivatives ν “ 0.65, 0.75, 0.85, 0.95 as well as ν “ 1.0. In these plots, we also
compare the performance of two P.A. and D.C. approaches for these values of ν. In each case,
for ν “ 1.0 the exact solution is also shown by a solid line. To justify our computed results, the implicit
product-integration of trapezoidal (IPIT) rule with the step size h “ 1{256 is used [24].

From both depictions in Figure 6, one can observe that the numerical solutions for ν P p0, 1q are
approaching to the solutions correspond to ν “ 1 for which the exact solution is known. Of course,
more reliable results is obtained through the D.C. as previously tested for ν “ 1 in Tables 3 and 4.
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Figure 6. The approximated LDG solutions versus time using P.A. (left) and D.C. (right) approaches
with J “ 4, r “ 3, σ, X0 “ 0.5, and various values of ν “ 0.65, 0.75, 0.85, 0.95, 1.0.

6. Conclusions

In this work, an approximation algorithm based on the LDG scheme is developed for the
fractional-order logistic equation occurring in many biological and chemical phenomena. To be more
precise, our numerical scheme based on discontinuous Galerkin finite element concept with Legendre
basis functions yields to a set of nonlinear equations to be solved in each subinterval. The numerical
stability in the linear case is proved and the order of convergence is also discussed. Beside the direct
computation of the nonlinear term, the technique of product approximation is also utilized and then
their performance are compared for various J, r and ν. We have tested the performance of the LDG
scheme on the linear as well as nonlinear growth and logistic differential equations of fractional order.
Comparing our numerical results with the PECE indicates that the present approaches produce an
accurate approximation for the underlying model problems.
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1. Introduction

In many physical situations particle transport through continuous media is described
by transport equations which are typically derived from general physical principles as, for
instance, the conservation of energy and momentum [1]. Classical cases are provided by the
transport of neutron in a reactor or the photon transport in a highly scattering medium [2].
In their most general form transport equations (one of the first and most paradigmatic
example is the Boltzmann equation) are nonlinear integro-differential equations often
with an incompletely known scattering kernel [1,2]. It is therefore very difficult, not to say
impossible, to attain exact analytical solutions of the problem and even obtaining numerical
solutions is not an easy task. Moreover, numerical solutions might not reproduce, or even
detect, important qualitative characteristics of the transport process [2].

These difficulties have traditionally lead to the search of simpler and easier way to
handle approximations. One of the most universal approximation is modeling the transport
process by diffusion processes. Such approximation greatly simplifies the description of the
transport process because in the absence of any field driving the particle and the usually
complicated transport equation is reduced to the much simpler diffusion equation:

∂p
∂t

= D∇2 p, (1)

here p(r, t) is the probability density function (PDF) of the diffusing particle to be at r at
time t and D is the diffusion coefficient.

Diffusion processes have two major characteristics: (i) the mean square deviation
grows linearly with time,

〈|Δr(t)|2〉 = Dt, (2)

where Δr(t) = r(t)− 〈r(t)〉; (ii) the PDF is Gaussian. Indeed, the solution to Equation (1)
assuming the particle is initially at the origin, p(r, 0) = δ(r), is

p(r, t) =
1

(4πDt)3/2 e−r2/4Dt. (3)
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Despite its simplicity and the wide range of applications in countless areas of physical
sciences, the diffusion approximation has, however, several limitations. We will here point
out two of them. First, diffusion processes present an infinite velocity of propagation.
This can be easily seen from Equation (3) where it is shown that the solution p(r, t) > 0
never vanishes for any finite time and distances r = |r|. There is, nonetheless, a nonzero
probability (albeit small) of finding the diffusive particle, at any instant of time, arbitrarily
far away from the initial position. In consequence diffusion models allow for arbitrary
velocities, even larger than the speed of light in vacuum. This is contrary to the principles
of relativity and certainly unsatisfactory from a conceptual point of view [3].

On the other hand, diffusion processes are also unable to account for ballistic motion
and are rather useless in describing of early-time effects when ballistic motion may be
important as well as near interfaces and in thin samples. This is certainly the case when
modeling transport phenomena for which thermalization due to random collisions takes
a finite time and the flux of ballistic particles might not be negligible, all of it resulting in
anisotropic scattering along the forward direction. A particular but significant case is that
of the photon migration through turbid media in which diffusion models are unable to
account for ballistic photons and are inaccurate near boundaries [2,4–6]. A similar situation
may arise in transport across membranes [7].

Telegraphic processes are a generalized form of diffusion processes in these two
aspects. Thus (i) they allow for a finite velocity of propagation and (ii) they are nearly
deterministic (i.e., ballistic) at short times while they are diffusive at long times when
random collisions have been able to thermalize the motion. As a first approximation, the
transport equation for telegraphic processes is the telegrapher’s equation (TE):

∂2 p
∂t2 +

1
τ

∂p
∂t

= v2∇2 p, (4)

where τ > 0 is a characteristic time, and v > 0 is a characteristic speed. From a mathemati-
cal point of view, this is a hyperbolic equation which, as τ → ∞ with v fixed, becomes the
wave equation,

∂2 p
∂t2 = v2∇2 p, (5)

while as τ → 0 and v → ∞ such that v2τ → D is finite it reduces to the diffusion Equation (1).
The telegrapher’s equation thus possesses wave and diffusion features describing “diffusion
with finite propagation velocity” but also “wave motion with damping” [8]. Moreover, the
limits to diffusion and wave equations are also achieved as time progresses. We can thus
easily see by scaling time with τ that initially as t → 0 (i.e., t � τ), TE approaches to the
wave equation while asymptotically as t → ∞ (t � τ) moves toward the diffusion equation.
As a consequence [2,8]

〈|Δr(t)|2〉 ∼ t2, (t → 0) and 〈|Δr(t)|2〉 ∼ t, (t → ∞),

which heightens the duality of the TE and shows the transition from ballistic motion to
diffusive motion as time progresses.

The TE appeared in the nineteenth century in the works of Kelvin and Heaviside related
to the analysis of transmission of electromagnetic waves in telegraphic wires. In this con-
text, the three dimensional telegrapher’s equation can be derived by combining Maxwell’s
equations for homogeneous media [2,8]. TE can also be phenomenologically derived from
thermodynamics by using Cattaneo’s equation, a nonlocal generalization of Fick’s law ac-
counting for non instantaneous diffusions [9–11], and also from random walk theory where
the one-dimensional TE is the master equation of the persistent random walk [12–15].

From a mesoscopic point of view (somewhere between the microscopic view of ran-
dom walk models and the macroscopic approach of thermodynamics) telegraphic processes
are closely related to Brownian motion. As was studied some years ago in Ref. [16], the
telegrapher’s equation, like the diffusion equation, can also be derived from the Chapman-
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Kolmogorov equation, which is the master equation for Markovian processes [17]. It is
worth noticing that such a derivation is obtained by retaining quadratic terms in the time
expansion of the Chapman-Kolmogorov equation which sets a characteristic time scale
and a characteristic velocity. The Markovian character of the process is assured for times
greater than the characteristic time while a possible non-Markovian character for smaller
times is still an unsettled question [16].

In the context of transport theory, the three-dimensional TE is the so-called P1 approx-
imation to the full transport equation for which the basic assumption is that the change
in the direction of motion due to a single scattering event is small [1,2,18,19]. In a more
recent approach [20] a three-dimensional TE model is obtained by a modification of the
continuity equation for the probability current. The model is, however, limited to a discrete
number of transport directions, which restricts possible applications. Other approaches
suppose phenomenological generalizations, where a three dimensional TE is postulated
for uniform isotropic media by assuming the same form as the one-dimensional TE, but
with numerical corrections in the coefficients which guarantee correct ballistic (t → 0) and
diffusive (t → ∞) behaviors in three dimensions [4–6]. The more fundamental and less
phenomenological way of describing telegraphic processes is, however, based on random
walk models since they try to reproduce the microscopic mechanism of transport.

Random walk models for describing telegraphic processes are modifications of the
ordinary random walk because the latter, for long times and large distances (i.e., the
so-called “fluid limit” [21]) leads to the diffusion equation but not to the telegrapher’s
equation [2,8,22]. However, and contrary to one dimension where the TE is readily obtained
from the persistent random walk on the line [2,12,14], in higher dimensions obtaining the
TE from microscopic models encounters serious difficulties. The main reason lies in the
difficulty of generalizing persistence in dimensions greater than one [23–29].

We have recently solved this problem by obtaining the three-dimensional TE [30] and
the two-dimensional TE [31] from random walk models (as we had done previously for
the one dimensional case [32]). These models consist of a continuous version of two and
three dimensional random walks with a continuum of states [33]. I will here review and
enlarge these works.

For more than two decades, the so-called “anomalous transport” and “anomalous
diffusion” have been the object of intense research with countless applications in many
areas of physics, chemistry and natural and socio-economic sciences. There is an immense
literature on the subject with many complete reports. As a necessarily short sample we
may cite from early reviews in [34–39] to more recent reports [40–42] among many others.
It is also worthwhile mentioning a less technical but excellent introduction in [43]. The
concept first appeared from the theory of random processes, specifically within continuous
time random walks, a powerful technique developed by Montroll and Weiss more than
50 years ago [22,44,45] (see a recent and updated review in Ref. [46]) and it was first applied
to diffusion of charge carriers in organic semiconductors by Scher and Montroll in the
1970’s [47,48].

Anomalous transport arises in motion through extremely disordered systems such as
random media and fractal structures [49] and its most distinctive characteristic is that the
mean square deviation follows the asymptotic law [35,36,50]

〈|Δr(t)|2〉 ∼ tα, (6)

(t → ∞), where α > 0 is any positive real number. When 0 < α < 1 the transport regime is
subdiffusive, α = 1 corresponds to diffusive transport while α > 1 describes superdiffusion.
Within the diffusive approximation and in the force-free case, the anomalous transport
process is described by a fractional diffusion equation,

∂α p
∂tα

= D∇2γ p (7)
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(0 < α ≤ 1, 0 < γ ≤ 1), ∂α/∂tα is the fractional Caputo derivative and ∇2γ is the Riesz–
Feller fractional Laplacian (see Section 5.2 for a definition of these operators). In the case of
particles diffusing under the influence of an external field of force, Equation (7) is replaced
by a fractional Fokker–Plank equation [36,38].

The mathematical properties of the solutions to the fractional diffusion Equation (7)
have been thoroughly studied and very clearly exposed by Mainardi, Gorenflo and collab-
orators [51–53]. One of these properties is the scaling relation [21,35,53]

p(r, t) = t−α/2γ f
( r

tα/2γ

)
, (8)

resulting in the mean square displacement [21]:

〈r2(t)〉 = Mtα/γ. (9)

When γ = 1 but α is not an integer we have the ‘time-fractional diffusion”; the case
0 < α < 1 corresponding to subdiffusion while α > 1 to superdiffusion. When α = 1 but
γ is not integer, the fractional diffusion Equation (7) describes a Levy process, this case is
always associated with superdiffusion and it is termed “space-fractional diffusion” [21,38].

As mentioned above, the original motivation for the fractional transport was devised
from the continuous time random walk formalism [47,48]. As a result, the derivations of
the fractional diffusion equation are mostly based on this formalism, although alterna-
tive approaches exist based on master equations or (fractional) Chapman–Kolmogorov
expansions [36].

The fractional Equation (7) ignores changes in the dynamics of the diffusing particle
as time increases. These changes account for ballistic motion and anisotropic scattering
(among others) that are relevant in a number of experimental settings [54]. The TE explains
some of these characteristics of transport which imply the transition form ballistic to
diffusive motion asymptotically in time.

In a recent work [32] we have presented a derivation of the fractional telegrapher’s
equation (FTE) in one dimension based on a fractional generalization of the persistent random
walk on the line. The continuous multistate model mentioned above allows for a fractional
treatment which finally leads to fractional TEs in higher dimensions [30,31].

In this paper we review all these questions and present some new results. The paper
is organized as follows. In Section 2 we present the continuous multistate random walk
in three dimensions, which in homogeneous and isotropic cases, allows us to derive the
three-dimensional telegrapher’s equation (Section 3). In Section 4 we adapt the model
to two dimensions and derive the corresponding telegrapher’s equation. The rest of the
paper is devoted to the fractional generalization of these matters. In Section 5 we set the
general model for fractional telegraphic transport and obtain the space-time fractional
telegrapher’s equation in two and three dimensions along with the exact expression for
the characteristic function. In Section 6 we study in detail the time-fractional telegrapher’s
equation, analyze its solution for any dimensionality, and obtain asymptotic results for the
probability distribution and the moments of the distance travelled. Concluding remarks
are presented in Section 7.

2. Continuous Multistate Random Walk in Three Dimensions

We review the microscopic model introduced in Ref. [30] for the transport of particles
in continuous media. The model is based on a generalization of multistate random walks
and assumes a continuum in the number of states [33]. In the traditional formulation of
multistate random walks (see [15] for a recent review on multistate walks on the line)
the walker can be in a discrete (but not necessarily finite) number of internal states. The
transition between states is determined by a transition matrix with random Markovian
elements. In order to model particle transport we will generalize the multistate random
walk in two key features: (i) we assume that the walker (i.e., the particle) moves in three
dimensions, and (ii) the model has internal states defined on a continuous set of values.

84



Entropy 2021, 23, 364

2.1. General Setting

Suppose a particle moving in the three dimensional space along a straight line deter-
mined by the bidimensional quantity Ω = (θ, ϕ), where θ is the polar angle and ϕ is the
azimuthal angle. The particular direction along which the particle is moving constitutes
the “internal state” and since all possible direction form a continuous and denumerable set,
the motion of the particle is thus described by a continuous multistate random walk.

At random instants of time the particle shifts direction and, hence, the duration of
the motion along a given direction Ω (which is called a sojourn) is a random variable
determined by a PDF denoted by ψ(t|Ω). The cumulative distribution

Ψ(t|Ω) =
∫ ∞

t
ψ(t′|Ω)dt′, (10)

gives the probability that the duration of a given sojourn is greater than t.
Let us denote by h(r, t|Ω) the joint PDF for the displacement in a single sojourn along

direction Ω to be equal to r and the sojourn duration to equal t. Let us also define H(r, t|Ω)
as the probability density for the displacement to be r when the duration is greater than t.
Note that the duration PDF ψ(t|Ω) is the time marginal density of h(r, t|Ω),∫

R3
h(r, t|Ω)d3r = ψ(t|Ω), (11)

while Ψ(t|Ω) is the marginal probability arising from H(r, t|Ω),∫
R3

H(r, t|Ω)d3r = Ψ(t|Ω). (12)

At the end of a given sojourn, the particle moving along direction Ω′ switches to
direction Ω. We denote by β(Ω|Ω′) the PDF of this transition Ω′ → Ω (note that β(Ω|Ω′)
is the “scattering kernel” of the transport problem). In other words, the probability that
a single scattering changes the direction of the particle from Ω′ to a direction falling
somewhere inside the angular region (Ω, Ω + dΩ) is given by

Prob
{

Ω′ → (Ω, Ω + dΩ)
}
= β(Ω|Ω′)d2Ω, (13)

where dΩ = (dθ, dϕ) and
d2Ω = sin θdθdϕ (14)

is the surface element on the sphere of unit radius.
Note that in this model there is a nonvanishing probability of traveling along the same

direction and in those cases where this probability is greater than 1/2 the particle tends to
persist in moving along the same direction. In this way the model can be seen as a higher
dimensional generalization of the persistent random walk on the line [22].

Let us denote by p(r, Ω, t) the joint PDF for the walker to be at r at time t while moving
in direction Ω. Our final objective is, however, to know the density p(r, t) for the random
walker to be at r at time t regardless the direction. The latter is the marginal density of
the former,

p(r, t) =
∫

p(r, Ω, t)d2Ω. (15)

In order to evaluate p(r, Ω, t) we define the auxiliary density ρ(r, Ω, t) as

ρ(r, Ω, t)d3rdt = Prob{a sojourn in direction Ω ends

in the region (r, r + dr) at (t, t + dt)}.

This joint density describes the state of the process at the scattering points where the
direction of the particle changes. Thus, if a scattering event happens at time t, it must either
be the first one (assuming the initial one occurred at t = 0) or else an earlier change of
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direction Ω′ → Ω [governed by β(Ω|Ω′)] happened at any earlier time t′ < t with the
random walker at some position r′. It is not difficult to convince oneself that this renewal
argument leads to the following integral equation for the auxiliary density:

ρ(r, Ω, t) = β(Ω)h(r, t|Ω)

+
∫

β(Ω|Ω′)d2Ω′
∫ t

0
dt′

∫
R3

h(r− r′, t− t′|Ω)ρ(r′, Ω′, t′)d3r′, (16)

where β(Ω) is the probability that the process starts moving in direction Ω.
In terms of the auxiliary density ρ(r, Ω, t), the PDF p(r, Ω, t) for the walker to be at r

at time t while moving in direction Ω is

p(r, Ω, t) = β(Ω)H(r, Ω, t)

+
∫

β(Ω|Ω′)d2Ω′
∫ t

0
dt′

∫
R3

H(r− r′, t− t′|Ω)ρ(r′, Ω′, t′)d3r′. (17)

The reasoning behind this equation is similar to the one given for obtaining Equation (16).
Indeed, the displacement of the walker is either within the first sojourn, this given by βH, or
else an earlier change of direction occurred at time t′ < t while the walker was at position r′
and the time interval to the next scattering exceeded t− t′.

We thus see that in the most general case the solution to the problem, that is to
say, obtaining the PDF p(r, t) (cf. Equation (15)) is given by first solving the integral
Equation (16) for the auxiliary function ρ and afterwards substituting this solution into
Equation (17) and the result into Equation (15). In the most general case, for arbitrary forms
of β(Ω|Ω′), h(r, t, |Ω) and H(r, t|Ω), obtaining analytical expressions is out of reach, and
one has to resort to numerical work.

2.2. Independent Scattering

In order to proceed further we assume that after each scattering the direction is
randomized independently of the previous direction of the particle leading to the scatter-
ing kernel:

β(Ω|Ω′) = β(Ω). (18)

The scattering process is thus an independent random process in the change of direction. In
the context of fluctuations in laser fields this model corresponds to the so-called Burshtein
model [55,56].

When the scattering kernel has the form given by Equation (18), Equations (16) and (17)
reduce to

ρ(r, Ω, t) = β(Ω)

[
h(r, t|Ω) +

∫ t

0
dt′

∫
R3

h(r− r′, t− t′|Ω)d3r′
∫

ρ(r′, t′|Ω′)d2Ω′
]

, (19)

and

p(r, Ω, t) = β(Ω)

[
H(r, t|Ω) +

∫ t

0
dt′

∫
R3

H(r− r′, t− t′|Ω)d3r′
∫

ρ(r′, t′|Ω′)d2Ω′
]

. (20)

Integrating Equations (19) and (20) with respect to all possible directions Ω, defining
the direction-free densities (cf. Equation (15))

p(r, t) =
∫

p(r, Ω, t)d2Ω, ρ(r, t) =
∫

ρ(r, Ω, t)d2Ω, (21)

and the averages

h(r, t) =
∫

β(Ω)h(r, Ω, t)d2Ω, H(r, t) =
∫

β(Ω)H(r, Ω, t)d2Ω, (22)
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we get a simpler integral equation for ρ(r, t):

ρ(r, t) = h(r, t) +
∫ t

0
dt′

∫
R3

h(r− r′, t− t′)ρ(r′, t′)d2r′, (23)

and the PDF p(r, t) will be given by

p(r, t) = H(r, t) +
∫ t

0
dt′

∫
R3

H(r− r′, t− t′)ρ(r′, t′)d2r′. (24)

The problem can now be solved in Fourier–Laplace space. Thus, defining the joint
Fourier and Laplace transform,

ˆ̃ρ(ω, s) =
∫ ∞

0
e−stdt

∫
R3

eiω·rρ(r, t)d3r,

the integral Equation (23) turns into a simple algebraic equation for ˆ̃ρ whose solution can
be readily obtained and reads

ˆ̃ρ(ω, s) =
ˆ̃h(ω, s)

1− ˆ̃h(ω, s)
. (25)

On the other hand, by transforming Equation (24) we get

ˆ̃p(ω, s) = ˆ̃H(ω, s)
[
1 + ˆ̃ρ(ω, s)

]
,

which after substituting for (25) yields

ˆ̃p(ω, s) =
ˆ̃H(ω, s)

1− ˆ̃h(ω, s)
, (26)

The form of Equation (26) can be considered a generalization of the Montroll–Weiss equa-
tion [44,45] for higher dimensional continuous time random walks with independent
directions.

2.3. The Isotropic and Uniform Random Walk

Equation (26) furnishes the formal solution to the transport problem for independent
scattering in Fourier–Laplace space and it is valid for any form of the conditional densities
h(r, t|Ω) and H(r, t|Ω) which describe the displacement inside a given sojourn in direction
Ω. In other words, Equation (26) applies to any kind of motion inside a given sojourn and
to any distribution of sojourn times. In order to proceed further and solve the problem in a
specific way by obtaining the explicit expression for p(r, t) in real time and space, we first
assume that the particle moves in an isotropic medium so that the pausing time density
and its cumulative probability are independent of the direction,

ψ(t|Ω) = ψ(t), Ψ(t|Ω) = Ψ(t).

We next assume that inside any sojourn the motion is uniform with a constant speed c
so that after each sojourn the velocity of the particle takes a different direction but with
the same modulus and, hence, the kinetic energy is conserved. Despite its simplicity, the
model describes the motion of non-interacting particles—such as, for instance, photons—
undergoing elastic dispersion with fixed centers randomly distributed. The assumption
of uniform motion leads to conclude that the conditional densities for the displacement
inside a given sojourn have the form

h(r, t|Ω) = δ(r− ctu)ψ(t), H(r, t|Ω) = δ(r− ctu)Ψ(t), (27)
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where u is the unit vector pointing in direction Ω = (θ, ϕ), that is

u = (sin θ cos ϕ, sin θ sin ϕ, cos θ). (28)

The Fourier transforms of these densities read

h̃(ω, t|Ω) = ψ(t)ei(ω·u)ct, H̃(ω, t|Ω) = Ψ(t)ei(ω·u)ct. (29)

In addition to the assumption that after each collision the new direction of the particle
is randomized independently of the previous direction (cf. Equation (18)), we also suppose
complete isotropy in the sense that all outgoing directions are equally likely. For the three
dimensional motion this implies

β(Ω|Ω′) = β(Ω) =
1

4π
. (30)

The characteristic function of the displacement inside any sojourn independent of the
direction is given by the average

h̃(ω, t) =
∫

h̃(ω, t|Ω)β(Ω)d2Ω.

In the isotropic case and for uniform motion (cf. Equations (14), (29) and (30)) we have

h̃(ω, t) =
1

4π
ψ(t)

∫
ei(ω·u)ctd2Ω.

That is,

h̃(ω, t) =
1
2

ψ(t)
∫ π

0
ei|ω|ct cos θ sin θdθ,

which after integrating yields

h̃(ω, t) = ψ(t)
sin |ω|ct
|ω|ct

. (31)

Analogously

H̃(ω, t) = Ψ(t)
sin |ω|ct
|ω|ct

. (32)

In order to obtain the Fourier–Laplace transform of the PDF of the particle to be at
position r at time t by means of Equation (26), we have to specify the form of the pausing
time density ψ(t). One of the most natural and universal assumptions consists in taking the
random instants of time at which the scattering process occurs to be a Poissonian set of events
which implies that time intervals inside any sojourn are exponentially distributed [57]. Thus

ψ(t) = λe−λt ⇒ Ψ(t) = e−λt,

where λ−1 is the average time interval between two consecutive scattering events (i.e., the
mean sojourn duration). We have

h̃(ω, t) = λe−λt sin |ω|ct
|ω|ct

, H̃(ω, t) =
1
λ

h̃(ω, t).

We next take the Laplace transform of these expressions. Recalling that [58]

L
{

sin |ω|ct
t

}
= arctan

( |ω|c
s

)
,
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and the property L{e−λt f (t)} = f̂ (λ + s), we get

ˆ̃h(ω, s) =
λ

|ω|c arctan
( |ω|c

λ + s

)
(33)

and
ˆ̃H(ω, s) =

1
|ω|c arctan

( |ω|c
λ + s

)
. (34)

Substituting Equations (33) and (34) into Equation (26) we finally get

ˆ̃p(ω, s) =
arctan[|ω|c/(λ + s)]

|ω|c− λ arctan[|ω|c/(λ + s)]
, (35)

which constitutes the exact solution of the homogeneous and isotropic model and the
starting point for deriving the three dimensional telegrapher’s equation as we will see next.
It is worth mentioning that a similar expression was obtained some years ago by Claes and
Van den Broeck [59] in the context of modeling the end-to-end distance of polymer chains,
although they used a different approach.

3. Telegrapher’s Equation

The homogeneous and isotropic random walk reviewed is a microscopic model of
particle transport. We can construct the TE from this model by coarse graining the dynamics
to the fluid limit approximation.

3.1. Fluid Limit Approximation

The fluid limit approximation consists in rewriting the model for large times and
distances [21,51]. Because of Tauberian theorems [60,61], large times and distances, t → ∞
and |r| → ∞, correspond to small Laplace and Fourier variables, s → 0 and |ω| → 0. Note
that to achieve such a limit, i.e., to get an approximate expression for the transformed PDF
ˆ̃p(ω, s) for small values of s and |ω|, we have two different and equivalent ways of proceeding.
We can thus proceed either through the direct expansion of ˆ̃p given by Equation (35) or else
through the expansions of ˆ̃h and ˆ̃H (cf. Equations (33) and (34)) as s → 0 and |ω| → 0 and
their subsequent substitution in Equation (26). Obviously both procedures yield the same
result but, albeit longer, we follow the second approach since it turns to be instrumental for
the fractional generalization of the random walk.

We thus start off with Equation (33) and first perform the long-distance limit (|ω| →
0) and postpone for a moment the long-time limit (s → 0). As |ω| → 0 we have the
following expansion

arctan
( |ω|c

λ + s

)
=

|ω|c
λ + s

− 1
3

( |ω|c
λ + s

)3

+ O(|ω|5)

=
|ω|c

(λ + s)3

[
(λ + s)2 − 1

3
(|ω|c)2 + O(|ω|4)

]
. (36)

From Equations (33), (34) and (36) we write

ˆ̃h(ω, s) =
λ

(λ + s)3

[
(λ + s)2 − 1

3
|ω|2c2 + O(|ω|4)

]
, (37)

and
ˆ̃H(ω, s) =

1
(λ + s)3

[
(λ + s)2 − 1

3
|ω|2c2 + O(|ω|4)

]
. (38)
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Hence

1− ˆ̃h(ω, s) = 1− λ

(λ + s)3

[
(λ + s)2 − 1

3
|ω|2c2 + O(|ω|4)

]
=

1
(λ + s)3

[
(λ + s)3 − λ(λ + s)2 +

λ

3
|ω|2c2 + O(|ω|4)

]
=

1
(λ + s)3

[
s(λ + s)2 +

λ

3
|ω|2c2 + O(|ω|4)

]
,

and as s → 0, we may write

1− ˆ̃h(ω, s) =
1

(λ + s)3

[
s(λ2 + 2λs) +

λ

3
|ω|2c2 + O(s3, |ω|4)

]
. (39)

Substituting Equations (38) and (39) into Equation (26) yields

ˆ̃p(ω, s) =
(λ + s)2 − (c|ω|)2/3 + O(|ω|4)

s(λ2 + 2λs) + λ(c|ω|)2/3 + O(s3, |ω|4) . (40)

In order to ensure the stability of Equation (40) under Fourier-Laplace inversion [and,
hence, for the existence of a valid approximation for p(r, t)], it is necessary that the powers
of s and |ω| which appear in the numerator of Equation (40) be less than the corresponding
powers of the denominator [60]. We, therefore, write

ˆ̃p(ω, s) =
λ2 + 2λs + O(s2, |ω|2)

s(λ2 + 2λs) + λ(c|ω|)2/3 + O(s3, |ω|4) ,

that is,

ˆ̃p(ω, s) =
λ/2 + s + O(s2, |ω|2)

s(λ/2 + s) + c2|ω|2/6 + O(s3, |ω|4) ,

and take as a fluid limit approximation of the PDF the expression

ˆ̃p(ω, s) =
s + λ/2

s(s + λ/2) + c2|ω|2/6
. (41)

3.2. The Three-Dimensional Telegrapher’s Equation

Equation (41) is the starting point for deriving the two-dimensional TE. We next obtain
the associated partial differential equation for p(r, t) whose solution, in Fourier–Laplace
space and with appropriate initial conditions, is precisely given by Equation (41). To this
end we multiply both sides of Equation (41) by the denominator and rewrite the result as

s2 ˆ̃p(ω, s)− s +
λ

2
[
s ˆ̃p(ω, s)− 1

]
= − c2

6
|ω|2 ˆ̃p(ω, s).

We now proceed to Fourier inversion. Taking into account

F−1{|ω|2 ˆ̃p(ω, s)} = −∇2 p̂(r, s), F−1{1} = δ(r),

the Fourier inversion yields

s2 p̂(r, s)− sδ(r) +
λ

2
[
sp̂(r, s)− δ(r)

]
=

c2

6
∇2 p̂(r, s).

Let us next address Laplace inversion. With the standard initial conditions [62]

p(r, 0) = δ(r),
∂p(r, t)

∂t

∣∣∣∣
t=0

= 0, (42)
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and the Laplace inversion formulas [58]

L−1
{

s2 p̂(r, s)− sδ(r)
}
=

∂2 p(r, t)
∂t2 ,

L−1
{

sp̂(r, s)− δ(r)
}
=

∂p(r, t)
∂t

,

we find that p(r, t) satisfies the three-dimensional TE

∂2 p
∂t2 +

1
τ

∂p
∂t

= v2∇2 p, (43)

with
τ = 1/(2λ) and v = c/

√
6, (44)

as characteristic time and velocity respectively.
TE (43) enjoys both wave and diffusion characteristics. This duality becomes even

more apparent as time progresses. Thus, as t → 0 Equation (43) reduces to the wave
equation while as t → ∞ it goes to the diffusion equation. Indeed, scaling time with τ one
can easily see that [15,30]

∂2 p
∂t2 � v2∇2 p (t → 0),

∂p
∂t
� D∇2 p (t → ∞)

(D = v2τ) which leads to

〈|r(t)|2〉 ∼ t2 (t → 0), 〈|r(t)|2〉 ∼ t (t → ∞),

showing the transition from ballistic motion to diffusive motion as time increases.

4. The Two Dimensional Case

Up to this point we have developed the telegraphic approximation to transport in three
dimensions. We will now briefly report on how to treat the problem in lower dimensions.

In one dimension the standard derivation of the TE is based on the persistent random
walk on the line [14]. In this model there is only one possible direction and the walker has
two possible states since it can move either to the left or to the right with equal probability
which is the isotropic case for the one dimensional motion. We do not present the details
for the one-dimensional case here, but instead refer the interested reader to Ref. [15] for a
recent and rather complete report. Note that the TE obtained is

∂2 p
∂t2 +

1
τ

∂p
∂t

= v2 ∂2 p
∂x2 , (45)

where in this case v = c coincides with the velocity of the moving particle and, as in three
dimensions, τ = (2λ)−1 (recall that λ−1 is the mean sojourn time when switching times
are Poissonian).

4.1. General Model

The two-dimensional case has been recently developed in Ref. [31]. This microscopic
model for transport in planar media has many similarities (but some particular differences)
with the three dimensional model presented above. Let us note that now the direction of
the particle is not given by the solid angle Ω = (θ, ϕ) but by the planar angle ϕ. Therefore,
the equations for the continuous multistate random walk in two dimensions will be the
same as those in three dimensions (cf. Section 2) with the replacements

Ω −→ ϕ,
∫

d2Ω −→
∫ 2π

0
dϕ,

∫
R3

d3r −→
∫
R2

d2r. (46)
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Thus, in the most general case the bidimensional model will be described by Equations (16)
and (17) with these replacements in which the change of direction is governed by the
transition density

β(ϕ|ϕ′)dϕ = Prob
{

ϕ′ → ϕ + dϕ
}

,

with similar definitions as those of the three dimensional walk for the densities ψ(t|ϕ),
Ψ(t|ϕ), h(r, t|ϕ) and H(r, t|ϕ) (cf. Section 2.1).

For the case of independent scattering (Section 2.2)

β(ϕ|ϕ′) = β(ϕ).

As in three dimensions, we can now also define direction-free densities by means of
Equations (21) and (22) through replacements (46). Finally, the Fourier–Laplace transform
of the PDF,

ˆ̃p(ω, s) =
∫ ∞

0
e−stdt

∫
R2

eiω·r p(r, t)d2r,

is explicitly given by the generalization of Montroll–Weiss Equation (26),

ˆ̃p(ω, s) =
ˆ̃H(ω, s)

1− ˆ̃h(ω, s)
, (47)

where ˆ̃h(ω, s) is given by the average over all possible directions ϕ (cf. Equation (22))

ˆ̃h(ω, s) =
∫ 2π

0
β(ϕ) ˆ̃h(ω, s|ϕ)dϕ,

and a similar expression for ˆ̃H(ω, s).

4.2. The Isotropic and Uniform Case

In an isotropic medium (cf. Section 2.3) the pausing time densities are independent
of the direction taken by the particle, ψ(t|ϕ) = ψ(t) and Ψ(t|ϕ) = Ψ(t), and for uniform
motion we have [cf. Equations (27)–(29)]

h(r, t|ϕ) = δ(r− ctu)ψ(t), H(r, t|ϕ) = δ(r− ctu)Ψ(t), (48)

and the Fourier transforms are

h̃(ω, t|ϕ) = ψ(t)ei(ω·u)ct, H̃(ω, t|ϕ) = Ψ(t)ei(ω·u)ct, (49)

where u is the unit vector pointing in direction ϕ,

u = (cos ϕ, sin ϕ).

Assuming that all directions are equally likely (i.e., complete isotropy), we have

β(ϕ) =
1

2π

and

h̃(ω, t) =
∫ 2π

0
b(ϕ)h̃(ω, t|ϕ)dϕ =

ψ(t)
2π

∫ 2π

0
eict|ω|·udϕ

=
ψ(t)
2π

∫ 2π

0
eict|ω| cos ϕdϕ =

ψ(t)
π

∫ π

0
cos(ct|ω| cos ϕ)dϕ.
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From the integral representation of the Bessel function J0(z) [63],

J0(ct|ω|) = 1
π

∫ π

0
cos(ct|ω| cos ϕ)dϕ, (50)

we get
h̃(ω, t) = ψ(t)J0(ct|ω|), (51)

and analogously
h̃(ω, t) = Ψ(t)J0(ct|ω|). (52)

For exponentially distributed sojourn intervals ψ(t) = λe−λt and Ψ(t) = e−λt, we write

h̃(ω, t) = λe−λt J0(ct|ω|), H̃(ω, t) =
1
λ

h̃(ω, t).

Using the Laplace transformation formula [58]

L{J0(ct|ω|)} =
1√

s2 + c2t2|ω|2 ,

and the standard property
L{e−λt f (t)} = f̂ (λ + s),

we get
ˆ̃h(ω, s) =

λ√
(λ + s)2 + c2|ω|2

and ˆ̃h(ω, s) = ˆ̃h(ω, s)/λ. Finally, from the Montroll–Weiss Equation (47) we obtain the
exact solution to the homogeneous and isotropic random walk on the plane,

ˆ̃p(ω, s) =
1√

(λ + s)2 + c2|ω|2 − λ
. (53)

Notice the completely different form for the exact PDF of the planar model compared to
that of the three dimensional case given by Equation (35).

4.3. Fluid Limit Approximation and Telegrapher’s Equation

As we have done in the three dimensional transport, in order to get the two-dimensional
equation we first make the fluid limit approximation of the planar model, that is, the long-
distance and long-time limits of the exact PDF (53). By mimicking the steps done in
Section 3.1 to obtain the fluid limit approximation in the three dimensional case, we can
easily see that in two dimensions we obtain the same result but with the replacement

c2/6 −→ c2/4. (54)

Thus, the approximation for the PDF reads (cf. Equation (41))

ˆ̃p(ω, s) =
s + λ/2

s(s + λ/2) + c2|ω|2/4
, (55)

and similar expressions for the quantities ˆ̃h and ˆ̃H. Assuming the initial conditions given
in Equation (42), inverting Equation (55) and following the same procedure as in the three
dimensional case we finally obtain the two-dimensional TE,

∂2 p
∂t2 +

1
τ

∂p
∂t

= v2∇2 p, (56)
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where as in three dimensions τ = (2λ)−1 but now

v = c/2.

Before proceeding further and explaining the fractional generalizations of telegraphic
transport, let us point the significant issue of boundary conditions which are instrumental in
first-passage, escape and survival problems. The question is far from being simple specially
for telegraphic processes and in one and higher dimensions it has, to my knowledge, not
being settled yet. In the transport of particles the problem of survival is closely related to
the question of when the particle is absorbed (and, hence, disappears) if it reaches a certain
critical region of boundary Sc. For diffusion processes, absorption at Sc corresponds to
p(r, t|r0) = 0 when r ∈ Sc (or p(r, t|r0) = 0 when r0 ∈ Sc). That is, if the particle reaches
Sc (or starts at Sc) disappears. For telegraphic processes (and in the context of particle
transport, at least for one-dimensional processes) the situation is more complex because
of the property of persistence inherent in the telegrapher’s equation [14]. In this context
persistence, which is analogous to the physical property of momentum, makes necessary,
in deriving boundary conditions for absorption, to take into account the direction in which
the particle is traveling. For if the particle starts at Sc, or at time t reaches Sc, will disappear
(that is, it will be absorbed) only if the direction of the velocity is the appropriate one,
otherwise the particle will escape.

For one dimensional processes we studied this situation some years ago [64,65] and
refer the interested reader to these works for more information. In higher dimensions
the situation may be even more involved. There are, however, problems which are not
related to the escape out of some region (which implies absorption at the boundary of the
region) but only on the first arrival to some region Sc. It can be shown that in these cases
the boundary condition is p(r, t|r0) = 0 (if r ∈ Sc or r0 ∈ Sc), regardless the direction of the
velocity at this particular location (see [66] for a problem of this sort in one dimension).

5. Fractional Transport

Likewise the one dimensional case, the two and three dimensional telegraphic trans-
port processes described above are ordinary (i.e., non-fractional) processes in the sense that
for small time (t � τ) they behave like an ordinary wave front while for long times (t � τ)
they act like an ordinary diffusion processes,

〈|r(t)|2〉 ∼ t2 (t → 0), 〈|r(t)|2〉 ∼ t (t → ∞).

However, in transport through highly disordered systems as, for instance, random
media or fractal structures, ordinary diffusion becomes anomalous, that is

〈|r(t)|2〉 ∼ tα,

where α is any positive real number. Two questions arise: (i) How does this circumstance
affect telegraphic transport? and (ii) what is the fractional TE ruling such kind of processes?
In one dimension we addressed these questions by setting a fractional version of the
persistent random walk on the line [32]. In higher dimensions we followed this path and
generalized the continuous and isotropic walks described in previous sections [30,31]. Let
us review these findings.

5.1. The Fractional Isotropic Walk

We will first work on the three dimensional case and obtain a fractional version of the
homogenous and isotropic random walk in the fluid limit approximation. To this end we
generalize the expressions of ˆ̃h(ω, s) and ˆ̃H(ω, s)—given in Section 3.1 in the fluid limit
approximation—to include fractional behavior.
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Let us start with Equation (39) which when s → 0 yields

1− ˆ̃h(ω, s) =
1

(λ + s)3

[
λ2s + 2λs +

λ

3
|ω|2c2 + O(s3, |ω|4)

]
,

we further approximate the denominator by (λ + s)3 = λ3 + O(s), so that

1− ˆ̃h(ω, s) � s
λ
+ 2

(
λ

2

)2
+

1
3λ2 |ω|2c2 · · · .

We thus take as a fluid limit approximation for the sojourn density ˆ̃h the expression

ˆ̃h(ω, s) � 1− s
λ
− 2

( s
λ

)2 − 1
3λ2 |ω|2c2 · · · (57)

We next obtain an appropriate fluid limit approximation for the sojourn probability ˆ̃H.
Thus starting from Equation (34) and following the same approximation scheme we get

ˆ̃H(ω, s) =
1

(λ + s)3

[
(λ + s)2 − 1

3
|ω|2c2 + O(|ω|4)

]
=

1
(λ + s)3

[
λ2 + 2λs− 1

3
|ω|2c2 + O(s2, |ω|4)

]
.

� 1
λ3

(
λ2 + 2λs

)
· · · ,

That is,
ˆ̃H(ω, s) =

1
λ

(
1 +

2s
λ

)
· · · (58)

Let us incidentally note that substituting Equations (57) and (58) into Montroll–Weiss
Equation (26) yields the fluid limit solution (41) for the PDF ˆ̃p(ω, s) which has been the
starting point of the derivation of the TE.

We are now ready to construct a fractional generalization of the three-dimensional
isotropic random walk. Thus, and looking at Equation (57), we propose the following
expansion for the sojourn density in the fluid limit:

ˆ̃h(ω, s) = 1− (Ts)α − 2(Ts)2α − 1
3
(L|ω|)2γ · · · (59)

(s, |ω| → 0), where 0 < α ≤ 1, 0 < γ ≤ 1 and T > 0 and L > 0 are arbitrary parameters, T
defines a characteristic time and L a characteristic length.

In addition to the fractional approximation for ˆ̃h(ω, s) we also assume a fractional
expansion for the function ˆ̃H(ω, s) consistent with Equation (59). To this end, we return
to Section 2 and average Equations (11) and (12) over all directions Ω, with the result (in
Laplace space) ∫

R3
ĥ(r, s)d3r = ψ̂(s),

∫
R3

Ĥ(r, s)d3r = Ψ̂(s), (60)

where the sojourn PDF’s independent of direction are

ĥ(r, s) =
∫

ĥ(r, s|Ω)β(Ω)d2Ω, and ψ̂(s) =
∫

ψ̂(s|Ω)β(Ω)d2Ω,

and similar expressions for Ĥ(r, s) and Ψ̂(s). Note that in terms of the Fourier transform
we may write

ˆ̃h(ω = 0, s) = ψ̂(s), and ˆ̃H(ω = 0, s) = Ψ̂(s).
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However, Laplace transforming Equation (10) we see that Ψ̂(s) = [1− ψ̂(s)]/s, conse-
quently,

ˆ̃H(ω = 0, s) =
1
s
[1− ˆ̃h(ω = 0, s)].

Inserting Equation (59) into this expression yields

ˆ̃H(ω = 0, s) = Tαsα−1 + 2T2αs2α−1,

which leads us to conjecture the following fluid limit approximation:

ˆ̃H(ω, s) � Tαsα−1 + 2T2αs2α−1 · · · (61)

(s → 0, |ω| → 0). Let us stress that this is simply a conjecture because the approximation
given by Equation (61) might have depended on |ω| as well [32].

Substituting Equations (59) and (61) into Montroll–Weiss Equation (26) and reorganiz-
ing terms yields

ˆ̃p(ω, s) =
2T2αsα−1[sα + 1/2Tα]

2T2α[s2α + sα/2Tα + |ω|2γ(L2γ/6T2α)]
,

that is,

ˆ̃p(ω, s) =
sα−1(sα + 1/τ)

s2α + sα/τ + v2|ω|2γ
, (62)

where
τ = 2Tα, v =

1√
6
(Lγ/Tα), (63)

(0 < α ≤ 1, 0 < γ ≤ 1). The parameters τ and v can be considered as a fractional time and
a fractional characteristic velocity, respectively.

5.2. Fractional Telegrapher’s Equation in Three Dimensions

To derive the fractional telegrapher’s equation (FTE) in three dimensions for the frac-
tional isotropic model we first need to introduce some mathematical formalism concerning
fractional derivatives.

The Caputo fractional derivative of order β > 0 of a function φ(t) is defined by the
functional [21,52,53,67,68]

∂βφ(t)
∂tβ

=

⎧⎪⎨⎪⎩
1

Γ(n− β)

∫ t

0

φ(n)(t′)dt′

(t− t′)1+β−n , n− 1 < β < n,

φ(n)(t), β = n,
(64)

(n = 1, 2, 3, . . . ). Using this definition we can readily obtain the Laplace transform of the
Caputo derivative. Indeed, Laplace transforming Equation (64) and using the convolution
theorem we obtain

L
{

∂βφ(t)
∂tβ

}
=

1
Γ(n− β)

L
{

φ(n)(t)
}
L
{

tn−β−1
}

,

where L{·} stands for the Laplace transform. With the explicit forms [58]

L
{

φ(n)(t)
}
= snφ̂(s)−

n−1

∑
k=0

sn−1−kφ(k)(0),

and
L
{

tn−β−1
}
= Γ(n− β)sβ−n,
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the Laplace transform of the Caputo derivative is found to be

L
{

∂βφ(t)
∂tβ

}
= sβφ̂(s)− sβ−1φ(0)−

n−1

∑
k=1

sβ−1−kφ(k)(0). (65)

The second kind of fractional operator we need is the Riesz–Feller fractional Laplacian
of order β (0 < β ≤ 2) of a function g(x) vanishing at x → ±∞. There are several equivalent
ways to define it [68], although one of the simplest and most operative definitions is
obtained using Fourier analysis. We thus define [21]:

∇βg(r) = F−1
{
−|ω|β g̃(ω)

}
, (66)

(0 < β ≤ 2), where F−1{·} stands for the inverse Fourier transform, and

g̃(ω) =
∫
R3

eiω·rg(r)d3r,

is the direct transform.
We are now ready to derive the three-dimensional FTE. We begin with Equation (62)

which we rewrite as (
s2α +

1
τ

sα + v2|ω|2γ

)
ˆ̃p(ω, s) = s2α−1 +

1
τ

sα−1.

Taking into account the definition of the Riesz–Feller Laplacian, Equation (66), and recalling
that F−1{1} = δ(r), the Fourier inversion yields(

s2α +
1
τ

sα − v2∇2γ

)
p̂(r, s) =

(
s2α−1 +

1
τ

sα−1
)

δ(r),

and, after reorganizing terms, we have

s2α p̂(r, s)− s2α−1δ(r) +
1
τ

[
sα p̂(r, s)− sα−1δ(r)

]
= v2∇2γ p̂. (67)

In order to Laplace invert this equation, and thus obtaining an equation for p(r, t), we
first evaluate the Laplace transforms of the fractional derivatives ∂α p/∂αt and ∂2α p/∂2αt
using Equation (65). We must distinguish the cases β = α and β = 2α.

(i) Set β = α in Equation (65). Since 0 < α ≤ 1, we see that n = 1. Hence

L
{

∂α p(r, t)
∂tα

}
= sα p̂(r, s)− sα−1 p(r, 0).

However, p(r, 0) = δ(r) (cf. Equation (42)). Therefore

∂α p(r, t)
∂tα

= L−1
{

sα p̂(r, s)− sα−1δ(r)
}

. (68)

(ii) When β = 2α (0 < α ≤ 1) we need to distinguish the cases (a) 0 < α ≤ 1/2 and (b)
1/2 < α ≤ 1. For case (a) we have 0 < 2α ≤ 1, which reproduces the conditions leading to
Equation (68), That is,

L
{

∂2α p(r, t)
∂t2α

}
= s2α p̂(r, s)− s2α−1δ(r).

In case (b) we have 1 < 2α ≤ 2 and from Equation (65) with n = 2 we write

L
{

∂2α p(r, t)
∂t2α

}
= s2α p̂(r, s)− s2α−1δ(r)− s2(α−1) ∂p(r, t)

∂t

∣∣∣∣
t=0

.
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Since ∂p/∂t|t=0 = 0 (cf. Equation (42)) we see that this case coincides with case (a) above.
Therefore,

∂2α p
∂t2α

= L−1
{

s2α p̂(r, s)− s2α−1δ(r)
}

, (69)

(0 < α ≤ 1). Returning to Equation (67) and taking the inverse transform we find

L−1
{

s2α p̂(r, s)− s2α−1δ(r)
}
+ 2λL−1

{
sα p̂(r, s)− sα−1δ(r)

}
= v2∇2γ p.

Using Equations (68) and (69), we readily obtain

∂2α p
∂t2α

+
1
τ

∂α p
∂tα

= v2∇2γ p, (70)

which is the fractional telegrapher’s equation in three dimensions where τ is the fractional
time and v the fractional velocity (cf. Equation (63)).

As is well known, and as we have remarked in previous sections, the ordinary TE
enjoys both wave and diffusion characteristics. We now extend this duality to the fractional
TE. To this end we take the limit τ → 0 in Equation (70) and also letting v → ∞ such that
τv2 → D finite. This results in the fractional diffusion equation (cf. Equation (7))

∂α p
∂tα

= D∇2γ p. (71)

Let us see that for any values of τ and v the fractional diffusion equation is also the
asymptotic (in time) limit of the fractional TE (recall that a similar situation occurs with the
ordinary TE). Indeed, by passing to the limit s → 0 in the fluid-limit expression of the PDF
(cf. Equation (62)) the small s approximation for ˆ̃p(ω, s) is readily found to be

ˆ̃p(ω, s) � sα−1

sα + (τv2)|ω|2γ
,

which after Fourier-Laplace inversion yields Equation (71) with D = τv2. Therefore, by virtue
of Tauberian theorems the fractional diffusion Equation (71) is the long-time approximation
of the fractional TE.

The fractional TE also contains the fractional wave equation as a special case. Thus
letting τ → ∞ with v finite in Equation (70) we get

∂2α p
∂t2α

= v2∇2γ p. (72)

Note that when α = 1/2 and γ = 1 this equation reduces to the ordinary diffusion equation.
In this regard Mainardi’s terminology “fractional diffusion-wave equation” [52] is more
precise than “fractional wave equation”. Let us finally observe that the fractional diffusion-
wave equation is the small-time limit of the fractional TE. Indeed, the limit s → ∞ in
Equation (62) yields

ˆ̃p(ω, s) � s2α−1

s2α + v2|ω|2γ
,

and the Fourier–Laplace inversion results in Equation (72). Again, due to Tauberian theorems
we see that the fractional diffusion-wave equation is the short-time limit of the fractional TE.

We thus see from the preceding discussion that the fractional TE embraces two dif-
ferent dynamics. one of them, at small times, representing fractional wavelike behavior,
and another one which at long times enhances fractional diffusion-like behavior. This
constitutes the fractional generalization of the dual character between waves and diffusions
showed by the ordinary TE.
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5.3. Lower Dimensional Cases

We next address lower dimensional problems and will see that in one and two dimen-
sions the fractional TE has formally the same form than in three dimensions.

5.3.1. One Dimension

As we know the one-dimensional fractional case is based the fractional generalization
of the continuous-time persistent random walk on the line which is a discrete two-state
model and whose derivation from the continuous multistate model described above,
although similar in many aspects, it is not straightforward. We will here state just the main
result and refer the interested reader to [32] or the review [15] for details. Thus, the one-
dimensional fractional TE has formally the same appearance that the three-dimensional
Equation (70)

∂2α p
∂t2α

+
1
τ

∂α p
∂tα

= v2 ∂2γ p
∂x2γ

, (73)

where the Caputo derivatives with respect to time are equal to those of the three dimen-
sional Equation (70) and

∂2γ p
∂x2γ

= F−1
{
−|ω|2γ p̃(ω, t)

}
,

is the Riesz–Feller fractional derivative (cf. Equation (66)), where

p̃(ω, t) =
∫ ∞

−∞
eiωx p(x, t)dx,

is the Fourier transform of the one-dimensional PDF p(x, t) and F−1{·} is the inverse
transform.

As the reader can easily check, the solution of Equation (73) with the standard initial
conditions:

p(x, 0) = δ(x),
∂p(x, t)

∂t

∣∣∣∣
t=0

= 0,

in Fourier–Laplace space reads

ˆ̃p(ω, s) =
sα−1(sα + 1/τ)

s2α + sα/τ + v2|ω|2γ
. (74)

which is the one-dimensional version of Equation (62).

5.3.2. Two Dimensions

As we have discussed in Section 4.3 most expressions of the two-dimensional case are
the same than in three dimensions after the replacement c2/6→ c2/4 (cf. Equation (54)).
Thus, for instance, the sojourn densities ˆ̃h and ˆ̃H—which in three dimensions and in the
fluid limit approximations are given by Equations (57) and (58)—now read

ˆ̃h(ω, s) � 1− s
λ
− 2

( s
λ

)2 − 1
2λ2 |ω|2c2 · · · , ˆ̃H(ω, s) =

1
λ

(
1 +

2s
λ

)
· · · (75)

(s → 0, |ω| → 0) which mimicking the discussion of Section 5.1 leads to the following
fractional generalization of these functions [see Equations (59) and (61)]

ˆ̃h(ω, s) = 1− (Ts)α − 2(Ts)2α − 1
2
(L|ω|)2γ · · · , ˆ̃H(ω, s) � Tαsα−1 + 2T2αs2α−1 · · ·

(76)
Substituting Equation (76) into Montroll–Weiss Equation (26) and reorganizing terms

yields

ˆ̃p(ω, s) =
sα−1(sα + 1/τ)

s2α + sα/τ + v2|ω|2γ
, (77)
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where
τ = 2Tα, v =

1√
2
(Lγ/Tα). (78)

Equation (77) gives the transformed PDF of the fractional two-dimensional isotropic
random walk in the fluid limit approximation. Let us note that this expression has the same
form as that of the three-dimensional case (cf. Equation (62)) with the same time parameter
τ but a different velocity parameter v (cf. Equation (63)). Therefore, following exactly the
same procedure detailed in the previous section we find the two-dimensional TE

∂2α p
∂t2α

+
1
τ

∂α p
∂tα

= v2∇2γ p, (79)

which has the same form as the fractional TE (70) of the three dimensional case and with
the same limiting behavior regarding fractional diffusion and wave-like performances.

5.4. Characteristic Function

Solving the fractional telegrapher’s equation and thus obtaining the exact analytical
form of the PDF p(r, t) seems to be out of reach for any dimension. It is, however, possible
to obtain regardless dimensionality, a close and exact expression of the characteristic
function p̃(ω, t) (i.e., the Fourier transform of the PDF p(r, t)) of the space-time fractional
telegrapher’s Equation (70). To this end we will perform the Laplace inversion of the joint
Fourier–Laplace ˆ̃p(ω, s). Since this function has formally the same form in one, two and
tree dimensions (cf. Equations (74), (77) and (62) respectively) the differences between
them only arise when Fourier inverting and the characteristic function will be formally the
same in all cases. This similarity also shows that the time structure of any average will be
the same regardless the number of spatial dimension (we will see this fact explicitly in our
discussion on the moments of time-fractional processes to be discussed in the next section).

We start off with Equation (77). Let us first note that taking into account the factorization

s2α + sα/τ + v2|ω|2γ =

[
sα +

1
2τ
− η(ω)

][
sα +

1
2τ

+ η(ω)

]
,

where
η(ω) =

√
1/4τ2 − v2|ω|2γ, (80)

Equation (77) can be written as

ˆ̃p(ω, s) =
sα−1

2η(ω)

[
1/2τ + η(ω)

sα + 1/2τ − η(ω)
− 1/2τ − η(ω)

sα + 1/2τ + η(ω)

]
. (81)

Further manipulations yield

sα−1

sα + 1/2τ ± η(ω)
=

s−1

1 + [1/2τ ± η(ω)]s−α
=

∞

∑
n=0

(−1)n[1/2τ ± η(ω)
]ns−1−nα.

We next proceed to Laplace inversion. Since [58]

L−1
{

s−1−nα
}
=

tnα

Γ(1 + nα)
,

we have

L−1
{

sα−1

sα + 1/2τ ± η(ω)

}
=

∞

∑
n=0

(−1)n ([1/2τ ± η(ω)]tα)n

Γ(1 + nα)
= Eα

(−[1/2τ ± η(ω)]tα
)
,
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where Eα(·) is the Mittag–Leffler function [69]

Eα(z) =
∞

∑
n=0

zn

Γ(1 + nα)
. (82)

For α not an integer, the Mittag–Leffler function Eα(z) can be regarded as a kind
of “fractional generalization” of the exponential function. Indeed when α = 1 and since
Γ(1 + n) = n! we immediately see from Equation (82) that E1(z) = ez.

Taking the inverse Laplace transform of Equation (81) and using the above intermediate
results we finally obtain the characteristic function of the space-time fractional transport
process

p̃(ω, t) =
1

2η(ω)

{[
1/2τ + η(ω)

]
Eα

(−[1/2τ − η(ω)]tα
)

− [
1/2τ − η(ω)

]
Eα

(−[1/2τ + η(ω)]tα
)}

, (83)

which we recall is valid for any dimension of the underlying space.
In the wave-like limit when v is finite but τ → ∞ the fractional TE (70) reduces to the

fractional wave-diffusion Equation (72). In this case (cf. Equation (80))

η(ω) = iv|ω|γ,

and the characteristic function reads

p̃(ω, t) =
1
2
[
Eα

(−iv|ω|γtα
)
+ Eα

(
iv|ω|γtα

)]
, (84)

a solution already obtained by Mainardi for the wave-diffusion equation [52].
In the diffusion-like limit τ → 0 and v → ∞ such that 2τv2 = D (finite) and from

Equation (80) we see that

2τη(ω) =
√

1− 4τ2v2|ω|2γ −→ 1,

and

1
2τ
∓ η(ω) =

1
2τ

(
1∓

√
1− 2τD|ω|2γ

)
=

D|ω|2γ

1±√
1− 2τD|ω|2γ

−→ D|ω|2γ.

From Equation (83) we get
p̃(ω, t) = Eα

(−Dtα|ω|2γ
)
, (85)

a well known result which corresponds to a Levy density with fractional time [36,38].
When α = 1 this result reduces to the ordinary Levy distribution with zero mean,

p̃(ω, t) = e−Dt|ω|2γ
. (86)

6. Time-Fractional Telegraphic Transport

In the last section we have developed the fractional telegraphic transport in its most
general form assuming that both time and space are fractional. This leads, as the master
equation of the process, to the space-time fractional telegrapher’s equation which is for-
mally the same in one, two and three dimensions. We have also seen that in both cases
the general space-time fractional TE reduces to the space-time fractional wave equation
at short times and to the space-time fractional diffusion equation at long times. This dual
character is even more manifest for the time-fractional equation when the spatial exponent
γ = 1 and only time is fractional. For fractional diffusion this particular case has been
extensively studied in the literature and has many applications [35–37,39,41–43].
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In any dimension the time-fractional TE is

∂2α p
∂t2α

+
1
τ

∂α p
∂tα

= v2∇2 p (87)

(0 < α ≤ 1), where ∇2 is either the two or the three dimensional Laplacian and in one
dimension is the second spacial derivative.

For the time-fractional TE we can obtain more analytical results than for the space-time
TE. Results that turn out to be very useful because they clearly mark the similarities and
dissimilarities between telegraphic transport processes in different dimensions. For one
dimension we had already obtained in [32] some of the results presented here but not in
higher dimensions. We now fill this gap in which the analogies and differences among
different dimensions are clearly manifested.

Our starting point is again the Fourier–Laplace solution of the fractional TE (cf.
Equations (62), (74) or (77) with γ = 1)

ˆ̃p(ω, s) =
sα−1(sα + 1/τ)

s2α + sα/τ + v2|ω|2 . (88)

The basic idea is the following: since time is now the only fractional variable but not
space, it is possible to Fourier invert ˆ̃p(ω, s) and obtain a closed expression for the Laplace
transform p̂(r, s) which compels us to treat different dimensions separately. Once we get
the expression for p̂(r, s), the use of Tauberian theorems will allow us to obtain asymptotic
expressions of the PDF p(r, t) at long and short times. Even though the one dimensional
problem was fully addressed in [32], we present here all three dimensions and compare
each result.

6.1. Laplace Transform of the PDF

Let us proceed to Fourier invert the expression (88) for ˆ̃p(ω, s). To this end we need to
treat each dimension separately.

6.1.1. One Dimension

Recall that in one dimension the expression (88) of the transformed density ˆ̃p remains
valid although in this case |ω| is not the modulus of a vector but the absolute value of a
single variable. By virtue of the symmetry of ˆ̃p with respect to ω, the Fourier inversion will
be given by

p̂(x, s) =
1

2π

∫ ∞

−∞
e−iωx ˆ̃p(ω, s)dω =

1
π

∫ ∞

0
ˆ̃p(ω, s) cos ωxdω.

Substituting for Equation (88) yields

p̂(x, s) =
1

πs
(
s2α + sα/τ

) ∫ ∞

0

cos ωx
s2α + sα/τ + v2ω2 dω,

and recalling the integral [70]∫ ∞

0

cos ωx
a2 + b2ω2 dω =

1
2ab

e−a|x|/b,

we get

p̂(x, s) =
1

2vs

√
s2α + sα/τ exp

{
−|x|

v

√
s2α + sα/τ

}
. (89)

For α = 1 the fractional TE (87) reduces to the the ordinary TE and in this one-
dimensional case the Laplace transform (89) can be inverted yielding the exact PDF p(x, t)
in terms of modified Bessel functions. We refer the interested reader to [32] for more details.
For the fractional case when α �= 1, the exact analytical inversion of Equation (89) seems to
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be out of reach. However, as we will see below, we can obtain approximate solutions for
large values of time.

6.1.2. Two Dimensions

In this case the Fourier inversion formula yields for the PDF in two dimensions

p̂(r, s) =
1

(2π)2

∫
R2

e−iω·r ˆ̃p(ω, s)d2ω =
1

(2π)2

∫ ∞

0

∫ 2π

0
e−iωr cos ϕ ˆ̃p(ω, s)ωdωdϕ

=
1

(2π)2

∫ ∞

0
ω ˆ̃p(ω, s)dω

∫ 2π

0
e−iωr cos ϕdϕ,

where ω = |ω| and we have taken into account that ˆ̃p(ω, s) depends only on the modulus
|ω| = ω [see Equation (88)].

From the integral representation of the Bessel function of zero order [63],

J0(ωr) =
1

2π

∫ 2π

0
e−iωr cos ϕdϕ,

we write
p̂(r, s) =

1
2π

∫ ∞

0
ω J0(ωr) ˆ̃p(ω, s)dω.

Substituting for (88) we have

p̂(x, s) =
1

2πs
(
s2α + sα/τ

) ∫ ∞

0

ω J0(ωr)
s2α + sα/τ + v2ω2 dω,

and taking into account the integral [70]∫ ∞

0

ω J0(aω)

b2 + ω2 dω = K0(ab),

(a > 0, Re b > 0), where K0(·) is a modified Bessel function, we finally obtain

p̂(r, s) =
1

2πv2s

(
s2α + sα/τ

)
K0

( r
v

√
s2α + sα/τ

)
. (90)

6.1.3. Three Dimensions

Bearing in mind that ˆ̃p(ω, s) depends only on the modulus |ω| = ω (cf. Equation (88)),
the Fourier inversion of ˆ̃p is

p̂(r, s) =
1

(2π)3

∫
R3

e−iω·r ˆ̃p(ω, s)d3ω

=
1

(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0
e−iωr cos θ ˆ̃p(ω, s)ω2 sin θdωdθdϕ

=
1

(2π)2

∫ ∞

0
ω2 ˆ̃p(ω, s)dω

∫ π

0
e−iωr cos θ sin θdθ.

Since ∫ π

0
e−iωr cos θ sin θdθ =

2
ωr

sin ωr,

we have
p̂(r, s) =

1
2π2r

∫ ∞

0
ω sin ωr ˆ̃p(ω, s)dω.

Substituting for Equation (88) yields

p̂(x, s) =
1

2π2rs
(
s2α + sα/τ

) ∫ ∞

0

ω sin ωr
s2α + sα/τ + v2ω2 dω,
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and taking into account the integral [70]∫ ∞

0

ω sin aω

b2 + ω2 dω =
π

2
e−ab,

(a ≥ 0, Re b > 0), we obtain

p̂(r, s) =
1

4πrv2s

(
s2α + sα/τ

)
exp

{
− r

v

√
s2α + sα/τ

}
, (91)

which is the exact PDF in three dimensions. Notice the different form taken by p̂(r, s) in
one, two and three dimensions (cf. Equations (89)–(91), respectively).

Let us also observe that, like in the general space-time fractional cases, for the time-
fractional case (α �= 1, γ = 1) the expressions for p̂ given by Equations (89)–(91) are very
difficult, not to say impossible, to invert analytically. Thus, obtaining the exact analytical
form of the PDF p(r, t) in real time seems to be beyond reach. We can, however, obtain
approximate solutions, valid for large values of time, using Tauberian theorems which
relate the small s behavior of p̂(r, s) with the large t behavior of p(r, t) [61,71].

6.2. Long-Time Asymptotic Expressions

For the asymptotic analysis we rely on Tauberian theorems which allow us to infer
the behavior of p(r, t) for long times out of the expression for p̂(r, s) for small values of the
Laplace variable s [61,71]. We work again each dimension separately.

6.2.1. One Dimension

We briefly summarize only the main results in one dimension and refer the reader
to [32] for details. For long times such that t � τ1/α we have shown that [32]

p(x, t) � t−α/2

2v
√

τ
Mα/2

(
|x|t−α/2

2v
√

τ

)
, (t � τ1/α), (92)

where Mα/2(·) is the Mainardi function defined by the power series [52,72]

Mβ(z) =
∞

∑
n=0

(−1)nzn

n!Γ(−βn + 1− β)
. (93)

The function Mβ(z) is an entire function for 0 < β < 1 [52] being a special case of
the Wright function [69,72] (see below) which is, in turn, closely related to Fox function
frequently used in the anomalous diffusion literature [36]. We incidentally note that after
the replacement v

√
τ → D, the asymptotic expression (92) becomes the exact solution to

the time fractional diffusion equation (cf. Equation (71) with γ = 1), solution obtained by
Mainardi some years ago [52].

From Equation (93) we see that Mα/2(z)→ 1/Γ(1− α/2) as z → 0 and Equation (92)
yields the asymptotic power law

p(x, t) ∼ t−α/2, (t → ∞). (94)

6.2.2. Two Dimensions

Noticing that as s → 0 (specifically, if s � τ−1/α)

s2α + sα/τ = (sα/τ)(τsα + 1) � sα/τ, (95)

we write for the two dimensional density (90)

p̂(r, s) � sα−1

2πv2τ
K0

(
rsα/2

v
√

τ

)
, (s � τ−1/α). (96)
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On the other hand [63]

K0(z) = −
[
γ + ln(z/2)

]
I0(z) + 2

∞

∑
n=1

1
n

I2n(z),

(γ = 0.5772 · · · is the Euler constant and Iν(z) are modified Bessel functions), but [63]

Iν(z) =
∞

∑
n=0

(z/2)ν+2n

Γ(ν + n + 1)
= O(zν) (z → 0),

thus
K0(z) = −

[
γ + ln(z/2)

]
+ O(z2 ln z). (97)

Hence

K0

(
rsα/2

v
√

τ

)
= −

[
γ + ln

(
r

2v
√

τ

)]
− α

2
ln s + O(sα ln s),

which substituting into Equation (96) yields the approximate expressions valid for small
values of s (i.e., when s � τ−1/α)

p̂(r, s) � −1
2πv2τ

{[
γ + ln

(
r

2v
√

τ

)]
1

s1−α
+

α/2
s1−α

ln s
}

. (98)

We next proceed to Laplace inverting this small s expression for p̂(r, s) which by virtue
of Tauberian theorems will provide an approximate expression of p(r, t) suitable for long
times. Taking into account the Laplace inversion formulae [32,58]

L
{

1
sβ

}
=

tβ−1

Γ(β)
and L

{
ln s
sβ

}
=

tβ−1

Γ(β)

[
ψ(β)− ln t

]
[β > 0 and ψ(z) = Γ′(z)/Γ(z)] we have

p(r, t) � −1
2πv2τ

{[
γ + ln

(
r

2v
√

τ

)]
t−α

Γ(1− α)
+

α

2
t−α

Γ(1− α)

[
ψ(1− α)− ln t

]}
=

1
2πv2τ

t−α

Γ(1− α)

[
α

2
ln t− ln

(
r

2v
√

τ

)
− γ− ψ(1− α)

]
=

1
2πv2τ

t−α

Γ(1− α)

[
ln

(
2vtα/2√τ

r

)
− γ− ψ(1− α)

]
,

and neglecting constant terms we finally get

p(r, t) � 1
2πv2τ

t−α

Γ(1− α)
ln

(
2vtα/2√τ

r

)
, (99)

(t � τ1/α). Therefore, in two dimensions the PDF of the time fractional TE obeys the
asymptotic logarithmic power law

p(x, t) ∼ t−α ln t (t → ∞). (100)

6.2.3. Three Dimensions

In three dimensions the starting point of our asymptotic analysis is Equation (91)
which using the small s approximation given in Equation (95) yields

p̂(r, s) � sα−1

4πrv2τ
e−rsα/2/v

√
τ (s � τ−1/α), (101)
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and expanding the exponential we write

p̂(r, s) � sα−1

4πrv2τ

∞

∑
n=0

1
n!

( −r
v
√

τ

)n
s−1+(1+n/2)α (s � τ−1/α).

Recall again that because of Tauberian theorems the inversion of this expression for
p̂(r, s), valid for small values of s, will provide an asymptotic expression for p(r, t) suitable
for large values of t. Thus, taking into account the Laplace inversion formula [32,52]

L−1
{

sδ
}
=

t−1−δ

Γ(−δ)
(102)

(where δ �= 0 and not a positive integer) we obtain for t � τ1/α

p(r, t) � 1
4πrv2τ

∞

∑
n=0

1
n!

( −r
v
√

τ

)n t−(1+n/2)α

Γ[1− (1 + n/2)α]
,

that is

p(r, t) � t−α

4πrv2τ

∞

∑
n=0

1
n!

1
Γ[1− (1 + n/2)α]

(
−rt−α/2

v
√

τ

)n

, (t � τ1/α). (103)

This asymptotic expression for p(r, t) can be written in a more compact form by using
the Wright function defined by [69,72]

Wλ,μ(z) =
∞

∑
n=0

zn

n!Γ(μ + λn)
, (104)

(λ > −1 and μ and z arbitrary complex numbers). It is an entire function originally
proposed by Wright in the 1930’s for the asymptotic theory of partitions [69]. When λ = 1
the Wright function can be written in terms of the Bessel function of order μ− 1 [69,72].
Moreover, Mainardi function Mβ(z) defined in Equation (93) is a particular case of the
Wright function. Indeed,

Mβ(z) = W−β,1−β(−z).

From Equations (103) and (104) we see that the asymptotic PDF for the three dimen-
sional case can be written as

p(r, t) � t−α

4πrv2τ
Wα/2,1−α

(
−rt−α/2

v
√

τ

)
, (t � τ1/α). (105)

Finally, from Equation (104) we see that Wλ,μ(z) → 1/Γ(μ) as z → 0 and Equation (105)
yields the asymptotic power law

p(r, t) ∼ t−α, (t → ∞). (106)

6.3. Moments of the Effective Distance Travelled

One of the magnitudes of greatest interest in transport problems is the distance
covered by the particle from the starting point. The evaluation of the actual distance is very
involved due to the random turnarounds of the trajectory. We will take as an estimate of
it the effective distance travelled (taking into account that the transport processes starts
at the origin of the coordinate system) which is the quantity |x(t)| in one dimension, and
|r(t)| = r(t) in two and three dimensions. We will thus work each dimension separately,
although, as stated in Section 5.4, moments are essentially the same for each dimension.

Let us note that for space-time fractional processes, the moments of the distance
travelled may be infinite (as in the case of the Levy processes). However, for time-fractional
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processes these moments are finite and we can get analytical expressions for them using
the forms of the PDF obtained above. Moments also make explicit the dual character of the
fractional telegraphic transport between fractional wave transport and fractional diffusion
transport which generalizes the same duality presented by the ordinary TE.

6.3.1. One Dimension

Moments are defined by

〈|x(t)|n〉 =
∫ ∞

−∞
|x|n p(x, t), (n = 1, 2, . . . ),

and recalling that p(x, t) is an even function of x, the Laplace transform can be written as

L{〈|x(t)|n〉} = 2
∫ ∞

0
xn p̂(x, s)dx.

Substituting for Equation (89) yields

L{〈|x(t)|n〉} =
√

β(s)
vs

∫ ∞

0
xne−x

√
β(s)/vdx =

vn

s[β(s)]n/2

∫ ∞

0
zne−zdz =

vnn!
s[β(s)]n/2 ,

where β(s) = s2α + sα/τ. Hence

L{〈|x(t)|n〉} = n!vn

s(s2α + sα/τ)n/2 , (n = 1, 2, . . . ). (107)

Recall that when τ → ∞ we recover the fractional wave equation. In this case from
Equation (107) we have the “wave limit”

L{〈|x(t)|n〉} = n!vn

s1+nα
⇒ 〈|x(t)|n〉 = n!vn

Γ(1 + nα)
tnα. (108)

On the other hand when τ → 0 but v → ∞ such that v2τ = D (finite) we recover the
fractional diffusion equation and have the “diffusion limit”

L{〈|x(t)|n〉} = n!Dn/2

s1+nα/2 ⇒ 〈|x(t)|n〉 = n!Dn/2

Γ(1 + nα/2)
tnα/2. (109)

Let us also recall that the wave limit is the one we recover from TE as t → 0, whereas
the diffusion limit corresponds to the long time limit. Indeed, taking into account that

(s2α + sα/τ)n/2 � snα (s → ∞) and (s2α + sα/τ)n/2 � (sα/τ)n (s → 0)

and bearing in mind Tauberian theorems, we see from Equation (107)

L{〈|x(t)|n〉} � n!vn

s1+nα
(s → ∞) ⇒ 〈|x(t)|n〉 � n!vn

Γ(1 + nα)
tnα (t → 0), (110)

and

L{〈|x(t)|n〉} � n!(v
√

τ)n

s1+nα/2 (s → 0) ⇒ 〈|x(t)|n〉 = n!(v
√

τ)n

Γ(1 + nα/2)
tnα/2 (t → ∞). (111)

6.3.2. Two Dimensions

We now have

L{〈|r(t)|n〉} =
∫
R2
|r|n p̂(r, s)d2r =

∫ ∞

0

∫ 2π

0
|r|n p̂(r, s)rdrdϕ,
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that is,

L{〈rn(t)〉} = 2π
∫ ∞

0
rn+1 p̂(r, s)dr.

Substituting for Equation (90) and a simple change of variables yields

L{〈rn(t)〉} = vn

s(s2α + sα/τ)n/2

∫ ∞

0
zn+1K0(z)dz,

but [70] ∫ ∞

0
zn+1K0(z)dz = 2nΓ2(1 + n/2),

so that

L{〈rn(t)〉} = 2nΓ2(1 + n/2)vn

s(s2α + sα/τ)n/2 , (n = 1, 2, . . . ). (112)

Observe that this two-dimensional expression is equal to the one-dimensional mo-
ment (107) except for a mere numerical factor and, therefore, all two-dimensional ex-
pressions can be recovered from the one dimensional ones under the replacement n! →
2nΓ2(1 + n/2). Thus, in particular, we see from Equations (110) and (111) that

〈rn(t)〉 ∼ tnα (t → 0) and 〈rn(t)〉 ∼ tnα/2 (t → ∞). (113)

6.3.3. Three Dimensions

In the three dimensional case we have

L{〈|r(t)|n〉} =
∫
R3
|r|n p̂(r, s)d3r =

∫ ∞

0

∫ π

0

∫ 2π

0
|r|n p̂(r, s)r2 sin θdrdθdϕ,

that is,

L{〈rn(t)〉} = 4π
∫ ∞

0
rn+2 p̂(r, s)dr.

Substituting for Equation (91) and elementary integration yields

L{〈rn(t)〉} = (n + 1)!vn

s(s2α + sα/τ)n/2 , (n = 1, 2, . . . ), (114)

which has the same structure as the one and two dimensional cases (cf. Equations (107)
and (112)) and, as a consequence, the asymptotic expressions for moments will also be
given by Equation (113).

7. Concluding Remarks

We have reviewed the main aspects of telegraphic transport processes which account
for “diffusion with finite velocity” [8] and whose master equation is the telegrapher’s
equation instead of the diffusion equation. The main part of this report is a comprehensive
account of our previous works [30–32], on the derivation, out of random walks models, of
the telegrapher’s equation (ordinary as well as fractional) in one, two and three dimensions.

We have mostly focussed on two and three dimensions because, for one hand, early
attempts to derive higher dimensional TE’s from random walk models had been fruitless
and, on the other hand, higher dimensional models are usually more relevant for transport
problems than any one-dimensional model. We thus present models that are two and
three dimensional generalizations of the persistent random walk on the line. The models
are based on multistate random walks with a continuous number of states representing
the different directions the particle can take. We set the general integral equations for
the probability density function of the particle evolution on the plane or in the space.
When at every point all possible directions are independent and do not depend on the
orientation and position (isotropy and homogeneity), the general equations can be exactly
solved in Fourier-Laplace space. The isotropic and homogeneous models are suitable
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for addressing the transport of particles experiencing elastic collisions with fixed centers
randomly distributed such as photons moving in turbid media [2].

These continuous models constitute a microscopic description for transport in which
we statistically count the (elastic) collisions of the particles. If we zoom out this micro-
scopic description by implementing the fluid-limit approximation of large times and
distances—and, thus, going to a mesoscopic description of the process—we end up with
the telegrapher’s equation as the master equation of the transport processes.

We have also generalized the telegrapher’s equation to account for anomalous trans-
port in several dimensions. To this end the isotropic and homogeneous random walk has
been extended to allow for fractional behavior both in time and space variables. The dual
character of the ordinary TE between wave and diffusion behaviors is also manifest in
the space-time fractional TE where at small times this equation reduces to the fractional
diffusion-wave equation while at long times it does to the anomalous diffusion equation.

The two different dynamics governing the fractional transport—one of them, ruling
transport at small times, is given by fractional wave behavior, while at large time the
dynamics is dictated by fractional diffusion behavior—are even more apparent for the
time-fractional transport when only the time variable is fractional. In this case all moments
of the distance to the initial position (the effective distance travelled by the particle) exist
and have an analytical expression in terms of their Laplace transforms. For small and large
times these moments are approximated by

〈rn(t)〉 ∼ tnα (t → 0), 〈rn(t)〉 ∼ tnα/2 (t → ∞),

(n = 1, 2, . . . ). When 0 < α < 1/2 there is a transition from two different subdiffusive
regimes, while if 1/2 < α < 1 the transition is from superdiffusion at small times to
subdiffusion at large times. This fact generalizes the passage from ballistic motion to
normal diffusion shown by the ordinary telegrapher’s equation.

The exact solution for the characteristic function p̃(ω, t) of the fractional transport has
also been obtained regardless the dimensionality of the process, and approximate expressions
for wave and diffusion regimes are attained as well. These variety of expressions have been
explored by Mainardi and collaborators [52,53,67,72] on solutions for fractional diffusion and
fractional wave-diffusion equations (see also Mainardi’s recent and useful survey appeared
in this special issue [73]). Additionally, Orsingher and collaborators [74–78] have proposed
several kinds of solutions to the fractional TE and explored their properties.

For the time-fractional transport we have been able to go one step further and obtain the
exact form of the Laplace transform p̂(r, s) in one, two and three dimensions. From these ex-
pressions it is possible to get analytical forms of the PDF p(r, t) valid for sufficiently long times
which, in one and three dimensions are written in terms of Wright functions (cf. Equations (92)
and (103)), while in two dimensions by a logarithmic function (cf. Equation (99)). From these
expressions we have obtained, as t → ∞, the asymptotic power laws

p(x, t) ∼ t−α/2, (one dimension); p(x, t) ∼ t−α, (three dimensions);

and the logarithmic power law

p(x, t) ∼ t−α ln t, (two dimensions).

Let us finish by recalling that a substantial part of this paper is a review of previous works
but a significant part is, to my knowledge, new. This is the case of the higher dimensional
extension of the characteristic function for the space-time fractional TE (cf. Section 5.4), as
well as the whole Section 6 on higher dimensional time-fractional telegraphic processes.
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Abstract: In this survey we stress the importance of the higher transcendental Mittag-Leffler function
in the framework of the Fractional Calculus. We first start with the analytical properties of the classical
Mittag-Leffler function as derived from being the solution of the simplest fractional differential
equation governing relaxation processes. Through the sections of the text we plan to address the
reader in this pathway towards the main applications of the Mittag-Leffler function that has induced
us in the past to define it as the Queen Function of the Fractional Calculus. These applications concern
some noteworthy stochastic processes and the time fractional diffusion-wave equation We expect
that in the future this function will gain more credit in the science of complex systems. Finally, in an
appendix we sketch some historical aspects related to the author’s acquaintance with this function.

Keywords: fractional calculus; Mittag-Leffler functions; Wright functions; fractional relaxation;
diffusion-wave equation; Laplace and Fourier transform; fractional Poisson process complex systems

1. Introduction

For few decades, the special transcendental function known as the Mittag-Leffler function has
attracted increasing attention of researchers because of its key role in treating problems related to
integral and differential equations of fractional order.

His function was introduced in 1903–1905 by the Swedish mathematician Mittag-Leffler and at the
beginning of the last century up to the 1990s, this function was seldom considered by mathematicians
and applied scientists.

Before the 1990s, from a mathematical point of view, we recall the 1930 paper by Hille and
Tamarkin [1] on the solutions of the Abel integral equation of the second kind, and the books
by Davis [2], Sansone & Gerretsen [3], Dzherbashyan [4] (unfortunately in Russian), and finally
Samko et al. [5]. Particular mention would be for the 1955 Handbook of High Transcendental Functions
of the Bateman project [6], where this function was treated in Volume 3, in the chapter devoted to
miscellaneous functions. For former applications we recall an interesting note by Davis [2] reporting
previous research by Dr. Kenneth S. Cole in connection with nerve conduction, and the papers by Cole
& Cole [7], Gross [8] and Caputo & Mainardi [9,10], where the Mittag-Leffler function was adopted
to represent the responses in dielectric and viscoelastic media. More information are found in the
Appendix of this survey.

In the 1960’s the Mittag-Leffler function started to emerge from the realm of miscellaneous
functions because it was considered as a special case of the general class of Fox H functions, that can
exhibit an arbitrary number of parameters in their integral Mellin-Barnes representation. However, in
our opinion, this classification in a too general framework has, to some extent, obscured the relevance
and the applicability of this function in applied sciences. In fact, most mathematical models are based
on a small number of parameters, say 1 or 2 or 3, so that a general theory may be confusing whereas
the adoption of a generalized Mittag-Leffler function with 2 or 3 indices may be sufficient.

Entropy 2020, 22, 1359; doi:10.3390/e22121359 www.mdpi.com/journal/entropy113
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Nowadays it is well recognized that the Mittag-Leffler function plays a fundamental role in
Fractional Calculus even if with a single parameter (as originally introduced by Mittag-Leffler) just to
be worthy of being referred to as the Queen Function of Fractional Calculus, see Mainardi & Gorenflo [11].
We find some information on the Mittag-Leffler functions in any treatise on Fractional Calculus but
for more details we refer the reader to the surveys of Haubold, Mathai and Saxena [12] and by Van
Mieghem [13] and to the treatise by Gorenflo et al. [14], devoted just to Mittag-Leffler functions, related
topics and applications.

The plan of this survey is the following. We start to give in Section 2 the main definitions and
properties of the Mittag-Leffler function in one parameter with related Laplace transforms. Then in
Section 3 we describe its use in the simplest fractional relaxation equation pointing out its compete
monotonicity. The asymptotic properties are briefly discussed in Section 4. In Section 5 we briefly
discuss the so called generalized Mittag-Leffler function, that is the 2-parameter Mittag-Leffler function.
Of course further generalization to 3 and more parameter will be referred to specialized papers and
books. Then in the following sections we discuss the application of the Mittag-Leffler function in some
noteworthy stochastic processes. We start in Section 6 with the fractional Poisson process, and then in
Section 7 with its application of the thinning of renewal processes. The main application are dealt in
Section 8 where we discuss the continuous time random walks (CTRW) and then in Section 9 we point
out the asymptotic universality. In Section 10 we discuss the time fractional diffusion-wave processes
pointing out the role of the Mittag-Leffler functions in two parameters and their connection with the
basic Wright functions. In Appendix A we find it worthwhile to report the acquaintance of the author
with the Mittag-Leffler functions started in the late 1960s and continued up to nowadays.

We recall that Sections 3–10 are taken from several papers by the author, published alone and
with colleagues and former students. Furthermore we have not considered other applications of the
Mittag-Leffler functions including, for example, anomalous diffusion theory in terms of fractional
and generalized Langevin equations. On this respect we refer the readers to the articles of the
author, see References [15,16], and to the recent book by Sandev and Tomovski [17] and references
therein. For many items related to the Mittag-Leffler functions we refer again to the treatise by
Gorenflo et al. [14].

2. The Mittag-Leffler Functions: Definitions and Laplace Transforms

The Mittag-Leffler function is defined by the following power series, convergent in the whole
complex plane,

Eα(z) :=
∞

∑
n=0

zn

Γ(αn + 1)
, α > 0 , z ∈ C . (1)

We recognize that it is an entire function of order 1/α providing a simple generalization of
the exponential function exp(z) to which it reduces for α = 1. For detailed information on the
Mittag-Leffler-type functions and their Laplace transforms the reader may consult e.g., [6,18,19] and
the recent treatise by Gorenflo et al. [14].

We also note that for the convergence of the power series in (1) the parameter α may be complex
provided that �(α) > 0. The most interesting properties of the Mittag-Leffler function are associated
with its asymptotic expansions as z → ∞ in various sectors of the complex plane.

In this paper we mainly consider the Mittag-Leffler function of order α ∈ (0, 1) on the negative real
semi-axis where is known to be completely monotone (CM) due a classical result by Pollard [20],
see also Feller [21].

Let us recall that a function φ(t) with t ∈ IR+ is called a completely monotone (CM) function if it
is non-negative, of class C∞, and (−1)nφ(n)(t) ≥ 0 for all n ∈ IN. Then a function ψ(t) with t ∈ IR+ is
called a Bernstein function if it is non-negative, of class C∞, with a CM first derivative. These functions
play fundamental roles in linear hereditary mechanics to represent relaxation and creep processes, see,
for example, Mainardi [22]. For mathematical details we refer the interested reader to the survey paper
by Miller and Samko [23] and to the treatise by Schilling et al. [24].
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In particular we are interested in the function

eα(t) := Eα(−tα) =
∞

∑
n=0

(−1)n tαn

Γ(αn + 1)
, t > 0 , 0 < α ≤ 1 , (2)

whose Laplace transform pair reads

eα(t) ÷ sα−1

sα + 1
, α > 0 . (3)

Here we have used the notation÷ to denote the juxtaposition of a function of time f (t) with its Laplace
transform

f̃ (s) =
∫ ∞

0
e−st f (t) dt .

The pair (3) can be proved by transforming term by term the power series representation of eα(t)
in the R.H.S of (2). Similarly we can prove the following Laplace transform pair for its time derivative

e′α(t) =
d
dt

Eα(−tα) ÷ − 1
sα + 1

, α > 0 . (4)

For this Laplace transform pair we can simply apply the usual rule for the Laplace transform for the
first derivative of a function, that reads

d
dt

f (t) ÷ s f̃ (s)− f (0+) .

3. The Mittag-Leffler Function in Fractional Relaxation Processes

For readers’ convenience let us briefly outline the topic concerning the generalization via fractional
calculus of the first-order differential equation governing the phenomenon of (exponential) relaxation.
Recalling (in non-dimensional units) the initial value problem

du
dt

= −u(t) , t ≥ 0 , with u(0+) = 1 (5)

whose solution is
u(t) = exp(−t) , (6)

the following two alternatives with α ∈ (0, 1) are offered in the literature:

(a)
du
dt

= −D1−α
t u(t) , t ≥ 0 , with u(0+) = 1 , (7)

(b) ∗Dα
t u(t) = −u(t) , t ≥ 0 , with u(0+) = 1 , (8)

where D1−α
t and ∗Dα

t denote the fractional derivative of order 1− α in the Riemann-Liouville sense
and the fractional derivative of order α in the Caputo sense, respectively.

For a generic order μ ∈ (0, 1) and for a sufficiently well-behaved function f (t) with t ∈ IR+ the
above derivatives are defined as follows, see for example, Gorenflo and Mainardi [18], Podlubny [19],

(a) Dμ
t f (t) =

1
Γ(1− μ)

d
dt

[∫ t

0

f (τ)
(t− τ)μ dτ

]
, (9)

(b) ∗D
μ
t f (t) =

1
Γ(1− μ)

∫ t

0

f ′(τ)
(t− τ)μ dτ . (10)
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Between the two derivatives we have the relationship

∗D
μ
t f (t) = Dμ

t f (t)− f (0+)
t−μ

Γ(1− μ)
= Dμ

t
[

f (t)− f (0+)
]

. (11)

Both derivatives in the limit μ → 1− reduce to the standard first derivative but for μ → 0+ we have

Dμ
t f (t)→ f (t) , ∗D

μ
t f (t) = f (t)− f (0+) , μ → 0+ . (12)

In analogy to the standard problem (5), we solve the problems (7) and (8) with the Laplace
transform technique, using the rules pertinent to the corresponding fractional derivatives, that we
recall hereafter for a generic order μ ∈ (0, 1),

(a) Dμ
t f (t) ÷ sμ f̃ (s)− g(0+) , g(0+) =

1
Γ(1− μ)

lim
t→0+

∫ t

0
(t− τ)−μ f (τ) dτ . (13)

(b) ∗D
μ
t f (t) ÷ sμ f̃ (s)− f (0+) . (14)

We note that it is generally more cumbersome to use the Laplace transform pair for the Riemann
Liouville derivative (13) than for the Capute derivative (14). Indeed the rule (13) requires the initial
value of the fractional integral of f (t) whereas the rule (14) simply requires the initial value of f (t).
For this property the Caputo derivative is mostly used in physical problems where finite initial values
are given.

Then we recognize that the problems (a) and (b) are equivalent since the Laplace transform of the
solution in both cases comes out as

ũ(s) =
sα−1

sα + 1
, (15)

that yields, in virtue of the Laplace transform pair (3)

u(t) = eα(t) := Eα(−tα) . (16)

We thus recognize that the Mittag-Leffler function provides the solution to the fractional relaxation
equation, as outlined, for example, by Gorenflo and Mainardi [18], Mainardi and Gorenflo [11], and
Mainardi [22].

Furthermore, by anti-transforming the R.H.S of (3) by using the complex Bromwich formula, and
taking into account for 0 < α < 1 the contribution from branch cut on the negative real semi-axis
(the denominator sα + 1 does not vanish in the cut plane −π ≤ arg s ≤ π), we get, see the survey by
Gorenflo and Mainardi [18],

eα(t) =
∫ ∞

0
e−rtKα(r) dr , (17)

where

Kα(r) = ∓ 1
π

Im
{

sα−1

sα + 1

∣∣∣∣
s = r e±iπ

}
=

1
π

rα−1 sin (απ)

r2α + 2 rα cos (απ) + 1
≥ 0 . (18)

We note that this formula was obtained as a simple exercise of complex analysis without being
aware of the Titchmarsh formula for inversion of Laplace transforms [25], revised by Gross and
Levi [26] and by Gross [27]. This formula is rarely outlined in books on Laplace transforms so we
refer the reader for example to Apelblat’s book [28] for its presence. Since Kα(r) is non-negative for
all r in the integral, the above formula proves that eα(t) is a CM function in view of the Bernstein
theorem. This theorem provides a necessary and sufficient condition for a CM function as a real
Laplace transform of non-negative measure.

However, the CM property of eα(t) can also be seen as a consequence of the result by Pollard [20]
because the transformation x = tα is a Bernstein function for α ∈ (0, 1). In fact it is known that a
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CM function can be obtained by composing a CM with a Bernstein function based on the following
theorem: Let φ(t) be a CM function and let ψ(t) be a Bernstein function, then φ[ψ(t)] is a CM function.

As a matter of fact, Kα(r) provides an interesting spectral representation of eα(t) in frequencies.
With the change of variable τ = 1/r we get the corresponding spectral representation in relaxation
times, namely

eα(t) =
∫ ∞

0
e−t/τ Hα(τ) dτ , Hα(τ) = τ−2 Kα(1/τ) , (19)

that can be interpreted as a continuous distributions of elementary (i.e., exponential) relaxation
processes. As a consequence we get the identity between the two spectral distributions, that is

Kα(r) = Hα(τ) =
1
π

τα−1 sin (απ)

τ2α + 2 τα cos (απ) + 1
, (20)

a surprising fact pointed out in Linear Viscoelasticity by the author in his book [22]. This kind of
universal/scaling property seems a peculiar one for our Mittag-Leffler function eα(t).

In Figure 1, we show Kα(r) for some values of the parameter α. Of course for α = 1 the
Mittag-Leffler function reduces to the exponential function exp(−t) and the corresponding spectral
distribution is the Dirac delta generalized function centred at r = 1, namely δ(r− 1).
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α = 0.90

r

v
Figure 1. The spectral function Kα(r) for α = 0.25, 0.50, 0.75, 0.90 in the frequency range 0 ≤ r ≤ 2.

In Figure 2, we show some plots of eα(t) for some values of the parameter α. It is worthwhile
to note the different rates of decay of eα(t) for small and large times. In fact the decay is very fast as
t → 0+ and very slow as t → +∞.
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Figure 2. The Mittag-Leffler function eα(t) for α = 0.25, 0.50, 0.75, 0.90, 1. in the time range 0 ≤ t ≤ 15.

The Mittag-Leffler function turns out the basic function in relaxation processes of physical interest
occurring in viscoelastic and dielectric materials. We refer the readers for viscoelasticity, that is, to
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the contribution of the author including References [22,29,30] whereas for dielectric materials to the
survey by Garrappa et al. [31]. For the pioneers who have pointed out the role of the Mittagf-Leffler
function in mechanical and dielectric relaxation processes we refer to the recent survey by Mainardi
and Consiglio [32].

4. Asymptotic Approximations to the Mittag-Lefler Function

We now report the two common asymptotic approximations of our Mittag-Leffler function.
Indeed, it is common to point out that the function eα(t) matches for t → 0+ with a stretched
exponential with an infinite negative derivative, whereas as t → ∞ with a negative power law. The
short time approximation is derived from the convergent power series representation (2). In fact,

eα(t) = 1− tα

Γ(1 + α)
+ · · · ∼ exp

[
− tα

Γ(1 + α)

]
, t → 0 . (21)

The long time approximation is derived from the asymptotic power series representation of eα(t)
that turns out to be, see [6]

eα(t) ∼
∞

∑
n=1

(−1)n−1 t−αn

Γ(1− αn)
, t → ∞ , (22)

so that, at the first order,

eα(t) ∼ t−α

Γ(1− α)
, t → ∞ . (23)

As a consequence the function eα(t) interpolates for intermediate time t between the stretched
exponential and the negative power law. The stretched exponential models the very fast decay for
small time t, whereas the asymptotic power law is due to the very slow decay for large time t. In fact,
we have the two commonly stated asymptotic representations:

eα(t) ∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e0

α(t) := exp
[
− tα

Γ(1 + α)

]
, t → 0 ;

e∞
α (t) :=

t−α

Γ(1− α)
=

sin(απ)

π

Γ(α)
tα

, t → ∞ .

(24)

The stretched exponential replaces the rapidly decreasing expression 1− tα/Γ(1 + α) from (21). Of
course, for sufficiently small and for sufficiently large values of t we have the inequality

e0
α(t) ≤ e∞

α (t) , 0 < α < 1 . (25)

In Figures 3 and 4, we compare for α = 0.25, 0.5, 0.75, 0.90 in logarithmic scales the function eα(t)
(continuous line) and its asymptotic representations, the stretched exponential e0

α(t) valid for t → 0
(dashed line) and the power law e∞

α (t) valid for t → ∞ (dotted line). We have chosen the time range
10−5 ≤ t ≤ 10+5.

We note from Figures 3 and 4 that, whereas the plots of e0
α(t) remain always under the

corresponding ones of eα(t), the plots of e∞
α (t) start above those of eα(t) but, at a certain point, an

intersection may occur so changing the sign of the relative errors. The interested reader may consul the
plots of the relative errors in the 2014 paper by the author [33] from which, in particular, Figures 1–4
have been extracted.
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Figure 3. Approximations e0
α(t) (dashed line) and e∞

α (t) (dotted line) to eα(t) in 10−5 ≤ t ≤ 10+5 for
α = 0.25 (LEFT) and for α = 0/50 (RIGHT).

Figure 4. Approximations e0
α(t) (dashed line) and e∞

α (t) (dotted line) to eα(t) (LEFT) and the
corresponding relative errors (RIGHT) in 10−5 ≤ t ≤ 10+5 for α = 0/75 (LEFT) and for α = 0.90
(RIGHT).

5. The Generalized Mittag-Leffler Function

In this survey we will devote our attention mainly to the classical Mittag-Leffler function in one
parameter α as introduced by Mittag-Leffler in 1903 and defined by the power series in (1). We have
just learned from the instructive E-print by Van Mieghem [13] that the series (1) was discussed by
Hadamard in 1893, that is 10 years earlier than Mittag-Leffler himself.

As a matter of fact a straightforward generalization of the classical Mittag-Leffler function is
obtained by replacing the additive constant 1 in the argument of the Gamma function in (1) by
an arbitrary complex parameter β . It was formerly considered in 1905 by Reference [34] and soon
later by Mittag-leffler himself, almost incidentally in one of his notes. Later, in the 1950’s, such
generalization was investigated by Humbert and Agarwal, with respect to the Laplace transformation,
see References [35–37]. Usually, when dealing with Laplace transform pairs, the parameter β is
required to be real and positive like α.

For this function we agree to use the notation

Eα,β(z) :=
∞

∑
n=0

zn

Γ(αn + β)
, �(α) > 0 , β ∈ C , z ∈ C . (26)

Of course Eα,1(z) ≡ Eα(z). The series is still convergent for all the complex plane C so the function (26)
is still entire for �(α) > 0 for any β ∈ C with order 1/�(α) so the additional parameter play any role
on this respect. However the Laplace transform pairs concerning the Mittag-Leffler function (26) and
its derivative are known to be with α, β > 0 and �(s) > |λ|1α, see, for example, Refs. [14,19,22],

tβ−1 Eα,β (−λ tα) ÷ sα−β

sα + λ
=

s−β

1 + λs−α
. (27)
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and

tαk+β−1 E(k)
α,β(λtα) ÷ k! sα−β

(sα − λ)k+1 , k = 0, 1, 2, . . . . (28)

We also note the following relation concerning the first derivative of the classical Mittag-Leffler
function with the two-parameter Mittag-Leffler function usually overlooked by several authors but
easily proved:

φα(t) := t−(1−α) Eα,α (−tα) = − d
dt

Eα (−tα) , t ≥ 0, 0 < α < 1 . (29)

We report the plot of the function φα(t) herewith in Figure 5.

Figure 5. Plots of φα(t) with α = 1/4, 1/2, 3/4, 1 versus t; for 0 ≤ t ≤ 5.

We note that Mittag-Leffler functions with more than two parameters were also dealt with by
several authors as pointed out in [14]. In particular, for the 3-parameter Mittag-Leffler function (known
as Prabhakar function) and related operators we refer the reader to the recent survey by Giusti et al. [38]
and references therein. Kiryakova has dealt in a number of papers the multi-index Mittag-Leffler
functions, see for example [39].

6. The Fractional Poisson Process and the Mittag-Leffler Function

Hereafter we describe how the Mittag-Leffler function enters into the so-called fractional Poisson
process. We are following the original approach by Mainardi et al. in [40] where the fractional Poisson
process is referred to as the renewal process of the Mittag-Leffler type. However, an independent
approach to the fractional Poisson process was given for example, by Laskin in [41].

6.1. Essentials of Renewal Theory

The concept of renewal process has been developed as a stochastic model for describing the class
of counting processes for which the times between successive events are independent identically
distributed (iid) non-negative random variables, obeying a given probability law. These times are
referred to as waiting times or inter-arrival times. For more details see, for example, the classical
treatises by Cox [42], Feller [21].
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For a renewal process having waiting times T1, T2, . . . , let

t0 = 0 , tk =
k

∑
j=1

Tj , k ≥ 1 . (30)

That is t1 = T1 is the time of the first renewal, t2 = T1 + T2 is the time of the second renewal and so on.
In general tk denotes the kth renewal.

The process is specified if we know the probability law for the waiting times. In this respect we
introduce the probability density function (pd f ) φ(t) and the (cumulative) distribution function Φ(t) so
defined:

φ(t) :=
d
dt

Φ(t) , Φ(t) := P (T ≤ t) =
∫ t

0
φ(t′) dt′ . (31)

When the non-negative random variable represents the lifetime of technical systems, it is common
to refer to Φ(t) as to the failure probability and to

Ψ(t) := P (T > t) =
∫ ∞

t
φ(t′) dt′ = 1−Φ(t) , (32)

as to the survival probability, because Φ(t) and Ψ(t) are the respective probabilities that the system does
or does not fail in (0, T]. A relevant quantity is the counting function N(t) defined as

N(t) := max {k|tk ≤ t, k = 0, 1, 2, . . .} , (33)

that represents the effective number of events before or at instant t. In particular we have Ψ(t) =

P (N(t) = 0) . Continuing in the general theory we set F1(t) = Φ(t), f1(t) = φ(t), and in general

Fk(t) := P (tk = T1 + · · ·+ Tk ≤ t) , fk(t) =
d
dt

Fk(t) , k ≥ 1 , (34)

thus Fk(t) represents the probability that the sum of the first k waiting times is less or equal t and fk(t)
its density. Then, for any fixed k ≥ 1 the normalization condition for Fk(t) is fulfilled because

lim
t→∞

Fk(t) = P (tk = T1 + · · ·+ Tk < ∞) = 1 . (35)

In fact, the sum of k random variables each of which is finite with probability 1 is finite with
probability 1 itself. By setting for consistency F0(t) ≡ 1 and f0(t) = δ(t), where for the Dirac delta
generalized function in IR+ we assume the formal representation

δ(t) :=
t−1

Γ(0)
, t ≥ 0 ,

we also note that for k ≥ 0 we have

P (N(t) = k) := P (tk ≤ t , tk+1 > t) =
∫ t

0
fk(t′)Ψ(t− t′) dt′ . (36)

We now find it convenient to introduce the simplified ∗ notation for the Laplace convolution
between two causal well-behaved (generalized) functions f (t) and g(t)

∫ t

0
f (t′) g(t− t′) dt′ = ( f ∗ g) (t) = (g ∗ f ) (t) =

∫ t

0
f (t− t′) g(t′) dt′ .

121



Entropy 2020, 22, 1359

Being fk(t) the pd f of the sum of the k iid random variables T1, . . . , Tk with pd f φ(t) , we easily
recognize that fk(t) turns out to be the k-fold convolution of φ(t) with itself,

fk(t) =
(

φ∗k
)
(t) , (37)

so Equation (36) simply reads:
P (N(t) = k) =

(
φ∗k ∗ Ψ

)
(t) . (38)

Because of the presence of Laplace convolutions a renewal process is suited for the Laplace
transform method. Throughout this paper we will denote by f̃ (s) the Laplace transform of a sufficiently
well-behaved (generalized) function f (t) according to

L { f (t); s} = f̃ (s) =
∫ +∞

0
e−st f (t) dt , s > s0 ,

and for δ(t) consistently we will have δ̃(s) ≡ 1 . Note that for our purposes we agree to take s real. We
recognize that (38) reads in the Laplace domain

L{P (N(t) = k) ; s} = [
φ̃(s)

]k Ψ̃(s) , (39)

where, using (32),

Ψ̃(s) =
1− φ̃(s)

s
. (40)

6.2. The Classical Poisson Process as a Renewal Process

The most celebrated renewal process is the Poisson process characterized by a waiting time pd f
of exponential type,

φ(t) = λ e−λt , λ > 0 , t ≥ 0 . (41)

The process has no memory. Its moments turn out to be

〈T〉 = 1
λ

, 〈T2〉 = 1
λ2 , . . . , 〈Tn〉 = 1

λn , . . . , (42)

and the survival probability is
Ψ(t) := P (T > t) = e−λt , t ≥ 0 . (43)

We know that the probability that k events occur in the interval of length t is

P (N(t) = k) =
(λt)k

k!
e−λt , t ≥ 0 , k = 0, 1, 2, . . . . (44)

The probability distribution related to the sum of k iid exponential random variables is known to be
the so-called Erlang distribution (of order k). The corresponding density (the Erlang pd f ) is thus

fk(t) = λ
(λt)k−1

(k− 1)!
e−λt , t ≥ 0 , k = 1, 2, . . . , (45)

so that the Erlang distribution function of order k turns out to be

Fk(t) =
∫ t

0
fk(t′) dt′ = 1−

k−1

∑
n=0

(λt)n

n!
e−λt =

∞

∑
n=k

(λt)n

n!
e−λt , t ≥ 0 . (46)

In the limiting case k = 0 we recover f0(t) = δ(t), F0(t) ≡ 1, t ≥ 0.
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The results (44)–(46) can easily obtained by using the technique of the Laplace transform sketched
in the previous section noting that for the Poisson process we have:

φ̃(s) =
λ

λ + s
, Ψ̃(s) =

1
λ + s

, (47)

and for the Erlang distribution:

f̃k(s) = [φ̃(s)]k =
λk

(λ + s)k , F̃k(s) =
[φ̃(s)]k

s
=

λk

s(λ + s)k . (48)

We also recall that the survival probability for the Poisson renewal process obeys the ordinary
differential equation (of relaxation type)

d
dt

Ψ(t) = −λΨ(t) , t ≥ 0 ; Ψ(0+) = 1 . (49)

6.3. The Renewal Process of Mittag-Leffler Type

A “fractional” generalization of the Poisson renewal process is simply obtained by generalizing
the differential Equation (49) replacing there the first derivative with the integro-differential operator

∗D
β
t that is interpreted as the fractional derivative of order β in Caputo’s sense, see Section 2. We write,

taking for simplicity λ = 1,

∗D
β
t Ψ(t) = −Ψ(t) , t > 0 , 0 < β ≤ 1 ; Ψ(0+) = 1 . (50)

We also allow the limiting case β = 1 where all the results of the previous section (with λ = 1) are
expected to be recovered.

For our purpose we need to recall the Mittag-Leffler function as the natural “fractional”
generalization of the exponential function, that characterizes the Poisson process. We again recall that
the Mittag-Leffler function of parameter β is defined in the complex plane by the power series

Eβ(z) :=
∞

∑
n=0

zn

Γ(β n + 1)
, β > 0 , z ∈ C , (51)

as stated in Section 2 where the parameter was denoted by α.
The solution of Equation (50) is known to be, see Section 3

Ψ(t) = Eβ(−tβ) , t ≥ 0 , 0 < β ≤ 1 , (52)

so
φ(t) := − d

dt
Ψ(t) = − d

dt
Eβ(−tβ) , t ≥ 0 , 0 < β ≤ 1 . (53)

Then, the corresponding Laplace transforms read

Ψ̃(s) =
sβ−1

1 + sβ
, φ̃(s) =

1
1 + sβ

, 0 < β ≤ 1 . (54)

Hereafter, we find it convenient to summarize the most relevant features of the functions Ψ(t)
and φ(t) when 0 < β < 1 . We begin to quote their series expansions convergent in all of IR suitable for
t → 0+ and their asymptotic representations for t → ∞,

Ψ(t) =
∞

∑
n=0

(−1)n tβn

Γ(β n + 1)
∼ sin (βπ)

π

Γ(β)

tβ
, (55)
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and

φ(t) =
1

t1−β

∞

∑
n=0

(−1)n tβn

Γ(β n + β)
∼ sin (βπ)

π

Γ(β + 1)
tβ+1 . (56)

In contrast to the Poissonian case β = 1, in the case 0 < β < 1 for large t the functions Ψ(t) and φ(t)
no longer decay exponentially but algebraically. As a consequence of the power-law asymptotics the
process turns out to be no longer Markovian but of long-memory type. However, we recognize that
for 0 < β < 1 both functions Ψ(t), φ(t) keep the “completely monotonic” character of the Poissonian
case. as can be simply derived from Section 2. We recall that complete monotonicity of our functions
Ψ(t) and φ(t) means

(−1)n dn

dtn Ψ(t) ≥ 0 , (−1)n dn

dtn φ(t) ≥ 0 , n = 0, 1, 2, . . . , t ≥ 0 , (57)

or equivalently, their representability as real Laplace transforms of non-negative generalized functions
(or measures).

For the generalizations of Equations (44)–(46), characteristic of the Poisson and Erlang
distributions respectively, we must point out the Laplace transform pair

tβ k E(k)
β (−tβ) ÷ k! sβ−1

(1 + sβ)k+1 , β > 0 , k = 0, 1, 2, . . . , (58)

with E(k)
β (z) :=

dk

dzk Eβ(z) , that can be deduced from the book by Podlubny, see Equation (1.80) in

Reference [19]. Then, by using the Laplace transform pairs (25) and Equations (52), (53), (58) in
Equations (37) and (38), we have the generalized Poisson distribution,

P (N(t) = k) =
tk β

k!
E(k)

β (−tβ) , k = 0, 1, 2, . . . (59)

and the generalized Erlang pd f ’s (of order k ≥ 1),

fk(t) = β
tkβ−1

(k− 1)!
E(k)

β (−tβ) . (60)

The generalized Erlang distribution functions turn out to be

Fk(t) =
∫ t

0
fk(t′) dt′ = 1−

k−1

∑
n=0

tnβ

n!
E(n)

β (−tβ) =
∞

∑
n=k

tnβ

n!
E(n)

β (−tβ) . (61)

7. The Gnedenko-Kovalenko Theory of Thinning and the Mittag-Leffler Function

The thinning theory for a renewal process has been considered in detail by Gnedenko and
Kovalenko [43] in the first edition of their book on Queue theory of 1968. However, the connection with
the Laplace transform of the Mittag-Leffler function outlined at the end of this section in Equations (71)
and (72), see also [44] and [45], is surprisingly not present in the second edition of the book by
Gnedenko & Kovalenko in 1989.

We must note that other authors, like Szántai [46,47] speak of rarefaction in place of thinning.
Let us sketch here the essentials of this theory: in the interest of transparency and readability we

avoid the possible decoration of the relevant power law by multiplying it with a slowly varying function.
Denoting by tn, n = 1, 2, 3, . . . the time instants of events of a renewal process, assuming

0 = t0 < t1 < t2 < t3 < . . . , with i.i.d. waiting times T1 = t1 , Tk = tk − tk−1 for k ≥ 2, (generically
denoted by T), thinning (or rarefaction) means that for each positive index k a decision is made: the
event happening in the instant tk is deleted with probability p or it is maintained with probability
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q = 1− p, 0 < q < 1. This procedure produces a thinned or rarefied renewal process with fewer events
(very few events if q is near zero, the case of particular interest) in a moderate span of time.

To compensate for this loss we change the unit of time so that we still have not very few but
still a moderate number of events in a moderate span of time. Such change of the unit of time is
equivalent to rescaling the waiting time, multiplying it with a positive factor τ so that we have waiting
times τT1, τT2, τT3, . . . , and instants τt1, τt2, τt3, . . . , in the rescaled process. Our intention is, vaguely
speaking, to dispose on τ in relation to the rarefaction parameter q in such a way that for q near zero in
some sense the “average” number of events per unit of time remains unchanged. In an asymptotic
sense we will make these considerations precise.

Denoting by F(t) = P(T ≤ t) the probability distribution function of the (original) waiting
time T, by f (t) its density ( f (t) is a generalized function generating a probability measure) so that
F(t) =

∫ t
0 f (t′) dt′, and analogously by Fk(t) and fk(t) the distribution and density, respectively, of the

sum of k waiting times, we have recursively

fk(t) =
∫ t

0
fk−1(t− t′) dF(t′) , for k ≥ 2 . (62)

Observing that after a maintained event the next one of the original process is kept with probability
q but dropped in favour of the second-next with probability p q and, generally, n− 1 events are dropped
in favour of the n-th-next with probability pn−1 q, we get for the waiting time density of the thinned
process the formula

gq(t) =
∞

∑
n=1

q pn−1 fn(t) . (63)

With the modified waiting time τ T we have

P(τT ≤ t) = P(T ≤ t/τ) = F(t/τ) ,

hence the density f (t/τ)/τ, and analogously for the density of the sum of n waiting times fn(t/τ)/τ.
The density of the waiting time of the rescaled (and thinned) process now turns out as

gq,τ(t) =
∞

∑
n=1

q pn−1 fn(t/τ)/τ . (64)

In the Laplace domain we have f̃n(s) =
(

f̃ (s)
)n

, hence (using p = 1− q)

g̃q(s) =
∞

∑
n=1

q pn−1
(

f̃ (s)
)n

=
q f̃ (s)

1− (1− q) f̃ (s)
, (65)

from which by Laplace inversion we can, in principle, construct the waiting time density of the thinned
process. By rescaling we get

g̃q,τ(s) =
∞

∑
n=1

q pn−1
(

f̃ (τs)
)n

=
q f̃ (τs)

1− (1− q) f̃ (τs)
. (66)

Being interested in stronger and stronger thinning (infinite thinning) let us now consider a scale of
processes with the parameters τ (of rescaling) and q (of thinning), with q tending to zero under a scaling
relation q = q(τ) yet to be specified.

We have essentially two cases for the waiting time distribution: its expectation value is finite or
infinite. In the first case we put

λ =
∫ ∞

0
t′ f (t′) dt′ < ∞ . (67)
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In the second case we assume a queue of power law type (dispensing with a possible decoration by a
function slowly varying at infinity)

Ψ(t) :=
∫ ∞

t
f (t′) dt′ ∼ c

β
t−β , t → ∞ if 0 < β < 1 . (68)

Then, by the Karamata theory (see References [21,48]) the above conditions mean in the Laplace
domain

f̃ (s) = 1− λ sβ + o
(

sβ
)

, for s → 0+ , (69)

with a positive coefficient λ and 0 < β ≤ 1. The case β = 1 obviously corresponds to the situation
with finite first moment (2.6a), whereas the case 0 < β < 1 is related to a power law queue with
c = λ Γ(β + 1) sin(βπ)/π .

Now, passing to the limit of q → 0 of infinite thinning under the scaling relation

q = λ τβ , 0 < β ≤ 1 , (70)

between the positive parameters q and τ, the Laplace transform of the rescaled density g̃q,τ(s) in (66)
of the thinned process tends for fixed s to

g̃(s) =
1

1 + sβ
, (71)

which corresponds to the Mittag-Leffler density

g(t) = − d
dt

Eβ(−tβ) = φML(t) . (72)

Let us remark that Gnedenko and Kovalenko obtained (71) as the Laplace transform of the limiting
density but did not identify it as the Laplace transform of a Mittag-Leffler type function. Observe that
in the special case λ < ∞ we have β = 1, hence as the limiting process the Poisson process, as formerly
shown in 1956 by Rényi [49].

8. The Continuous Time Random Walk (CTRW) and the Mittag-Leffler Function

The name continuous time random walk (CTRW) became popular in physics after Montroll and
Weiss (just to cite the pioneers) published a celebrated series of papers on random walks for modelling
diffusion processes on lattices, see, for example, Reference [50], and the book by Weiss [51] with
references therein. CTRWs are rather good and general phenomenological models for diffusion,
including processes of anomalous transport, that can be understood in the framework of the classical
renewal theory. In fact a CTRW can be considered as a compound renewal process (a simple renewal
process with reward) or a random walk subordinated to a simple renewal process. Hereafter we will
mainly follow the approach by Gorenflo & Mainardi, see, for example, Reference [52].

A spatially one-dimensional CTRW is generated by a sequence of independent identically
distributed (iid) positive random waiting times T1, T2, T3, . . . , each having the same probability density
function φ(t) , t > 0 , and a sequence of iid random jumps X1, X2, X3, . . . , in IR , each having the same
probability density w(x) , x ∈ IR .

Let us remark that, for ease of language, we use the word density also for generalized functions
in the sense of Gel’fand & Shilov [53], that can be interpreted as probability measures. Usually the
probability density functions are abbreviated by pd f . We recall that φ(t) ≥ 0 with

∫ ∞
0 φ(t) dt = 1 and

w(x) ≥ 0 with
∫ +∞
−∞ w(x) dx = 1.

Setting t0 = 0 , tn = T1 + T2 + . . . Tn for n ∈ IN , the wandering particle makes a jump of length
Xn in instant tn, so that its position is x0 = 0 for 0 ≤ t < T1 = t1 , and xn = X1 + X2 + . . . Xn , for
tn ≤ t < tn+1 . We require the distribution of the waiting times and that of the jumps to be independent
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of each other. So, we have a compound renewal process (a renewal process with reward), compare
Reference [42].

By natural probabilistic arguments we arrive at the integral equation for the probability density
p(x, t) (a density with respect to the variable x) of the particle being in point x at instant t ,

p(x, t) = δ(x)Ψ(t) +
∫ t

0
φ(t− t′)

[∫ +∞

−∞
w(x− x′) p(x′, t′) dx′

]
dt′ , (73)

in which δ(x) denotes the Dirac generalized function, and the survival function

Ψ(t) =
∫ ∞

t
φ(t′) dt′ (74)

denotes the probability that at instant t the particle is still sitting in its starting position x = 0 . Clearly,
Equation (73) satisfies the initial condition p(x, 0+) = δ(x).

Note that the special choice
w(x) = δ(x− 1) (75)

gives the pure renewal process, with position x(t) = N(t), denoting the counting function, and with
jumps all of length 1 in positive direction happening at the renewal instants.

For many purposes the integral Equation (73) of CTRW can be easily treated by using the Laplace
and Fourier transforms. Writing these as

L { f (t); s} = f̃ (s) :=
∫ ∞

0
e−st f (t) dt , F {g(x); κ} = ĝ(κ) :=

∫ +∞

−∞
e+iκx g(x) dx ,

then in the Laplace-Fourier domain Equation (73) reads

̂̃p(κ, s) =
1− φ̃(s)

s
+ φ̃(s) ŵ(κ) ̂̃p(κ, s) . (76)

Introducing formally in the Laplace domain the auxiliary function

H̃(s) =
1− φ̃(s)

s φ̃(s)
=

Ψ̃(s)
φ̃(s)

, hence φ̃(s) =
1

1 + sH̃(s)
, (77)

and assuming that its Laplace inverse H(t) exists, we get, following Mainardi et al. [54], in the
Laplace-Fourier domain the equation

H̃(s)
[
ŝ̃p(κ, s)− 1

]
= [ŵ(κ)− 1] ̂̃p(κ, s) , (78)

and in the space-time domain the generalized Kolmogorov-Feller equation

∫ t

0
H(t− t′) ∂

∂t′ p(x, t′) dt′ = −p(x, t) +
∫ +∞

−∞
w(x− x′) p(x′, t) dx′, (79)

with p(x, 0) = δ(x), where H(t) acts as a memory function.
If the Laplace inverse H(t) of the formally introduced function H̃(s) does not exist, we can

formally set K̃(s) = 1/H̃(s) and multiply (78) with K̃(s). Then, if K(t) exists, we get in place of (79)
the alternative form of the generalized Kolmogorov-Feller equation

∂

∂t
p(x, t) =

∫ t

0
K(t− t′)

[
−p(x, t′) +

∫ +∞

−∞
w(x− x′) p(x′, t′) dx′

]
dt′ , (80)

with p(x, 0) = δ(x) and K(t) acts as a memory function
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Special choices of the memory function H(t) are (i) and (ii), see Equations (81) and (85):

(i) H(t) = δ(t) corresponding to H̃(s) = 1 , (81)

giving the exponential waiting time with

φ̃(s) =
1

1 + s
, φ(t) = Ψ(t) = e−t . (82)

In this case we obtain in the Fourier-Laplace domain

ŝ̃p(κ, s)− 1 = [ŵ(κ)− 1] ̂̃p(κ, s) , (83)

and in the space-time domain the classical Kolmogorov-Feller equation

∂

∂t
p(x, t) = −p(x, t) +

∫ +∞

−∞
w(x− x′) p(x′, t) dx′ , p(x, 0) = δ(x) . (84)

(ii) H(t) =
t−β

Γ(1− β)
, 0 < β < 1 , corresponding to H̃(s) = sβ−1 , (85)

giving the Mittag-Leffler waiting time with

φ̃(s) =
1

1 + sβ
, φ(t) = − d

dt
Eβ(−tβ) = φML(t), Ψ(t) = Eβ(−tβ) . (86)

In this case we obtain in the Fourier-Laplace domain

sβ−1
[
ŝ̃p(κ, s)− 1

]
= [ŵ(κ)− 1] ̂̃p(κ, s) , (87)

and in the space-time domain the time fractional Kolmogorov-Feller equation

∗D
β
t p(x, t) = −p(x, t) +

∫ +∞

−∞
w(x− x′) p(x′, t) dx′ , p(x, 0+) = δ(x) , (88)

where ∗D
β
t denotes the fractional derivative of of order β in the Caputo sense, see Section 3.

The time fractional Kolmogorov-Feller equation can be also expressed via the Riemann-Liouville
fractional derivative D1−β

t , see again Section 3, that is

∂

∂t
p(x, t) = D1−β

t

[
−p(x, t) +

∫ +∞

−∞
w(x− x′) p(x′, t) dx′

]
, (89)

with p(x, 0+) = δ(x). The equivalence of the two forms (88) and (89) is easily proved in the
Fourier-Laplace domain by multiplying both sides of Equation (87) with the factor s1−β.

We note that the choice (i) may be considered as a limit of the choice (ii) as β = 1. In fact, in this
limit we find H̃(s) ≡ 1 so H(t) = t−1/Γ(0) ≡ δ(t) so that Equations (78)–(79) reduce to Equations
(83)–(84), respectively. In this case the order of the Caputo derivative reduces to 1 and that of the R-L
derivative to 0, whereas the Mittag-Leffler waiting time law reduces to the exponential.

In the sequel we will formally unite the choices (i) and (ii) by defining what we call the
Mittag-Leffler memory function

HML(t) =

⎧⎨⎩
t−β

Γ(1− β)
, if 0 < β < 1 ,

δ(t) , if β = 1 ,
(90)
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whose Laplace transform is
H̃ML(s) = sβ−1 , 0 < β ≤ 1 . (91)

Thus we will consider the whole range 0 < β ≤ 1 by extending the Mittag-Leffler waiting time
law in (86) to include the exponential law (82).

Remark 1. Equation (79) clearly may be supplemented by an arbitrary initial probability density p(x, 0) =
f (x). The corresponding replacement of δ(x) by f (x) in (73) then requires in (76) multiplication of the term
(1− φ̃(s))/s by f̂ (κ) and in (78) replacement of the LHS by H̃(s)

[
ŝ̃p(κ, s)− f̂ (κ)

]
. With p(x, 0) = δ(x)

we obtain p(x, t) the fundamental solution of Equation (79).

Note: The probability density function for the waiting time distribution in terms of the Mittag-Leffler
function was formerly given since 1995 by Hilfer [55–57]. In these papers the waiting time density
was given with the Mittag-Leffler function in two parameters without noting the relation with the
first derivative of the classical Mittag-Leffler function as stated in Equation (29). We also note that 10
years earlier Balakrishnan [58] had derived a similar expression without recognizing the Mittag-Leffler
function. Like in the case of the thinning process dealt by Gnedenko-Kowalenko (see Section 7) once
again the Mitag-Leffler function was unknown to the authors.

Manipulations: Rescaling and Respeeding

We now consider two types of manipulations on the CTRW by acting on its governing
Equation (79) in its Laplace-Fourier representation (78).
(A): rescaling the waiting time, hence the whole time axis;
(B): respeeding the process.

(A) means change of the unit of time (measurement). We replace the random waiting time T by a
waiting time τT, with the positive rescaling factor τ. Our idea is to take 0 < τ � 1 in order to bring into
near sight the distant future so that in a moderate span of time we will have a large number of jump
events. For τ > 0 we get the rescaled waiting time density

φ̃τ(s) = φ̃(τs) . (92)

By decorating also the density p with an index τ we obtain the rescaled integral equation of the CTRW
in the Laplace-Fourier domain as

H̃τ(s)
[
ŝ̃pτ(κ, s)− 1

]
= [ŵ(κ)− 1] ̂̃pτ(κ, s) , (93)

where, in analogy to (77),

H̃τ(s) =
1− φ̃(τs)

s φ̃(τs)
. (94)

(B) means multiplying the quantity representing
∂

∂t
p(x, t) by a factor 1/a, where a > 0 is the respeeding

factor: a > 1 means acceleration, 0 < a < 1 means deceleration. In the Laplace-Fourier representation
this means multiplying the RHS of Equation (78) by the factor a since the expression

[
ŝ̃p(κ, s)− 1

]
corresponds to

∂

∂t
p(x, t).

We now chose to consider the procedures of rescaling and respeeding in their combination so that
the equation in the transformed domain of the rescaled and respeeded process has the form

H̃τ(s)
[
ŝ̃pτ,a(κ, s)− 1

]
= a [ŵ(κ)− 1] ̂̃pτ,a(κ, s) , (95)
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Clearly, the two manipulations can be discussed separately: the choice {τ > 0, a = 1} means pure
rescaling, the choice {τ = 1, a > 0} means pure respeeding of the original process. In the special case
τ = 1 we only respeed the original system; if 0 < τ � 1 we can counteract the compression effected
by rescaling to again obtain a moderate number of events in a moderate span of time by respeeding
(decelerating) with 0 < a � 1. These vague notions will become clear as soon as we consider power
law waiting times.

Defining

H̃τ,a(s) :=
H̃τ(s)

a
=

1− φ̃(τs)
as φ̃(τs)

. (96)

we finally get, in analogy to (78), the equation

H̃τ,a(s)
[
ŝ̃pτ,a(κ, s)− 1

]
= [ŵ(κ)− 1] ̂̃pτ,a(κ, s) . (97)

What is the combined effect of rescaling and respeeding on the waiting time density?
In analogy to (77) and taking account of (96) we find

φ̃τ,a(s) =
1

1 + sH̃τ,a(s)
=

1

1 + s
1− φ̃(τs)
as φ̃(τs)

, (98)

and so, for the deformation of the waiting time density, the essential formula

a φ̃(τs)
1− (1− a)φ̃(τs)

. (99)

Remark 2. The formula (99) has the same structure as the thinning formula (66) in Section 5 (just devoted to
the thinning theory) by identification of a with q. In both problems we have a rescaled process defined by a time
scale τ, and we send the relevant factors τ, a and q to zero under a proper relationship. However in the thinning
theory the relevant independent parameter going to 0 is that of thinning (actually respeeding) whereas in the
present problem it is the rescaling parameter τ.

9. Power Laws and Asymptotic Universality of the Mittag-Leffler Waiting Time Density

We have essentially two different situations for the waiting time distribution according to its first
moment (the expectation value) being finite or infinite. In other words we assume for the waiting time
pd f φ(t) either

ρ :=
∫ ∞

0
t′ φ(t′) dt′ < ∞ , labelled as β = 1 , (100)

or
φ(t) ∼ c t−(β+1) for t → ∞ hence Ψ(t) ∼ c

β
t−β , 0 < β < 1 , c > 0 . (101)

For convenience we have dispensed in (101) with decorating by a slowly varying function at
infinity with an asymptotic power law. Then, by the standard Tauberian theory (see References [21,48])
the above conditions (100)–(101) mean in the Laplace domain the (comprehensive) asymptotic form

φ̃(s) = 1− λsβ + o(sβ) for s → 0+ , 0 < β ≤ 1 , (102)

where we have

λ = ρ , if β = 1 ; λ = cΓ(−β) =
c

Γ(β + 1)
π

sin(βπ)
, if 0 < β < 1 . (103)
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Then, fixing s as required by the continuity theorem of probability theory for Laplace transforms, taking

a = λτβ , (104)

and sending τ to zero, we obtain in the limit the Mittag-Leffler waiting time law. In fact, Equations (99)
and (102) imply as τ → 0 with 0 < β ≤ 1,

φ̃τ,λτβ(s) =
λτβ

[
1− λτβsβ + o(τβsβ)

]
1− (1− λτβ)

[
1− λτβsβ + o(τβsβ)

] → 1
1 + sβ

, (105)

the Laplace transform of φML(t). This formula expresses the asymptotic universality of the

Mittag-Leffler waiting time law that includes the exponential law for β = 1. It can easily be
generalized to the case of power laws decorated with slowly varying functions, thereby using the
Tauberian theory by Karamata (see again References [21,48]).

Comment: The formula (105) says that our general power law waiting time density is gradually
deformed into the Mittag-Leffler waiting time density as τ tends to zero.

Remark 3. Let us stress here the distinguished character of the Mittag-Leffler waiting time density

φML(t) = − d
dt

Eβ(−tβ). Considering its Laplace transform

φ̃ML(s) =
1

1 + sβ
, φML(t) = − d

dt
Eβ(−tβ) , 0 < β ≤ 1 , (106)

we can easily prove the identity

φ̃ML
τ,a (s) = φ̃ML(τs/a1/β) for all τ > 0, a > 0 . (107)

Note that Equation (107) states the self-similarity of the combined operation rescaling-respeeding for
the Mittag-Leffler waiting time density. In fact, (107) implies φML

τ,a (t) = φML(t/c)/c with c = τ/a1/β ,
which means replacing the random waiting time TML by c TML. As a consequences, choosing a = τβ

we have
φ̃ML

τ,τβ(s) = φ̃ML(s) for all τ > 0 . (108)

Hence the Mittag-Leffler waiting time density is invariant against combined rescaling with τ and respeeding
with a = τβ.

Observing (105) we can say that φML(t) is a τ → 0 attractor for any power law waiting time (101)
under simultaneous rescaling with τ and respeeding with a = λτβ. In other words, this attraction
property of the Mittag-Leffler probability distribution with respect to power law waiting times (with
0 < β ≤ 1) is a kind of analogy to the attraction of sums of power law jump distributions by
stable distributions.

10. The Mittag-Leffler Functions W.R.T the Time Fractional Diffusion-Wave Equations and the
Wright Functions

In this section we show the relations of the Mittag-Leffler function with the Wright function via
Laplace and Fourier transformations, in order to provide other arguments to outline the role of the
Mittag-Leffler in the Fractional Calculus. For this purpose, because of the necessity to work with two
independent parameters we first recall the proper definitions of the Mittag-Leffler and the Wright
function. Then we will consider the time fractional diffusion-wave equation with its fundamental
solutions to the basic boundary value problem that turn out to be expressed in terms of special cases of
the Wright functions, the so called F and M functions. Finally we pay attention to some noteworthy
formulas for the M-Wright function, including its connections with the Mittag-Leffler function.
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10.1. Definitions and Main Properties of the Wright Functions

The classical Wright function, that we denote by Wλ,μ(z), is defined by the series representation
convergent in the whole complex plane,

Wλ,μ(z) :=
∞

∑
n=0

zn

n!Γ(λn + μ)
, λ > −1, μ ∈ C, (109)

As a consequence Wλ,μ(z) is an entire function for all λ ∈ (−1,+∞). Originally Wright assumed λ ≥ 0
in connection with his investigations on the asymptotic theory of partition [59,60] and only in 1940 he
considered −1 < λ < 0, [61]. We note that in the Vol 3, Chapter 18 of the handbook of the Bateman
Project [6], presumably for a misprint, the parameter λ is restricted to be non-negative, whereas the
Wright functions remained practically ignored in other handbooks. In 1993 the present author, being
aware only of the Bateman handbook, proved that the Wright function is entire also for −1 < λ < 0 in
his approaches to the time fractional diffusion equation, as outlined in his papers published from 1994
to 1997, [62–66]. For other earlier treatments of this function we refer to the 1999 paper by Gorenflo,
Luchko and Mainardi [67]).

In view of the asymptotic representation in the complex domain and of the Laplace transform the
Wright functions were distinguished by the author in first kind (λ ≥ 0) and second kind (−1 < λ < 0) as
outlined e.g., in the Appendix F of his book [22].

We note that the Wright functions are entire of order 1/(1 + λ) hence only the first kind functions
(λ ≥ 0) are of exponential order whereas the second kind functions (−1 < λ < 0) are not of exponential
order. The case λ = 0 is trivial since W0,μ(z) = ez/Γ(μ).

Following the proofs in Appendix F in Reference [22] we get the following Laplace transform
pairs of the Wright functions in terms of the Mittag-Leffler functions in two parameters, where r can
be the time variable t > 0 or the space variable x > 0)
for the first kind (λ ≥ 0)

Wλ,μ(±r) ÷ 1
s

Eλ,μ

(
±1

s

)
, λ > 0 , (110)

for the second kind (λ = −ν, 0 < ν < 1)

W−ν,μ(−r) ÷ Eν,μ+ν(−s) , 0 < ν < 1 . (111)

The Wright functions of the first kind are useful to find the solutions of some (linear and non-linear)
differential equations of fractional order as recently shown by Garra and Mainardi, [68].

Since the pioneering works in 1990’s by the author, noteworthy cases of Wright functions of the
second kind, known as auxiliary functions F and M play fundamental roles in solving the Signalling
problem and the Cauchy value problem, respectively for the time fractional diffusion-wave equation.

We first recall hereafter these auxiliary functions in terms of the Wright functions of the second
kind, following their power series representations. They read

Fν(z) := W−ν,0(−z) , 0 < ν < 1 , (112)

and
Mν(z) := W−ν,1−ν(−z) , 0 < ν < 1 , (113)

interrelated through
Fν(z) = ν z Mν(z) . (114)
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The series representations of our auxiliary functions are derived from those of Wλ,μ(z) in (109).
We have:

Fν(z) =
∞

∑
n=1

(−z)n

n! Γ(−νn)
= − 1

π

∞

∑
n=1

(−z)n

n!
Γ(νn + 1) sin(πνn) , (115)

and

Mν(z) =
∞

∑
n=0

(−z)n

n! Γ[−νn + (1− ν)]
=

1
π

∞

∑
n=1

(−z)n−1

(n− 1)!
Γ(νn) sin(πνn) , (116)

where we have used the well-known reflection formula for the Gamma function,

Γ(ζ) Γ(1− ζ) = π/ sin πζ .

10.2. The Time-Fractional Diffusion-Wave Equation and the Related Green Functions

For the reader’s convenience let us recall the main formulas for the time fractional diffusion
equations and their fundamental solutions (also referred to as the Green functions) for the Cauchy and
Signalling problems. For more details we refer to References [69,70].

Denoting as usual x, t the space and time variables, and r = r(x, t) the response variable, the
family of these evolution equations reads

∂βr
∂tβ

= a
∂2r
∂x2 , 0 < β ≤ 2 , (117)

where the time derivative of order β is intended in the Caputo sense, namely is the operator ∗D
β
t , introduced

in Section 3, but for order less than 1, see Equation (10), and a is a positive constant of dimension
L2 T−β. Thus we must distinguish the cases 0 < β ≤ 1 and 1 < β ≤ 2. We have

∂βr
∂tβ

:=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

Γ(1− β)

∫ t

0

[
∂

∂τ
r(x, τ)

]
dτ

(t− τ)β
, 0 < β < 1 ,

∂r
∂t

, β = 1 ;

(118)

∂βr
∂tβ

:=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

Γ(2− β)

∫ t

0

[
∂2

∂τ2 r(x, τ)

]
dτ

(t− τ)β−1 , 1 < β < 2,

∂2r
∂t2 , β = 2 .

(119)

It should be noted that in both cases 0 < β ≤ 1, 1 < β ≤ 2, the time fractional derivative in the
L.H.S. of Equation (117) can be removed by a suitable fractional integration, leading to alternative
forms where the necessary initial conditions at t = 0+ explicitly appear.

For this purpose we apply to Equation (117) the fractional integral operator of order β, namely

Jβ
t f (t) :=

1
Γ(β)

∫ t

0
(t− τ)β−1 f (τ) dτ.

For β ∈ (0, 1] we have:

Jβ
t ◦ ∗Dβ

t r(x, t) = Jβ
t ◦ J1−β

t D1
t r(x, t) = J1

t D1
t r(x, t) = r(x, t)− r(x, 0+) .

For β ∈ (1, 2] we have:

Jβ
t ◦ ∗Dβ

t r(x, t)= Jβ
t ◦ I2−β

t D2
t r(x, t)= J2

t D2
t r(x, t)= r(x, t)− r(x, 0+)− t rt(x, 0+).
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Then, as a matter fact, we get the integro-differential equations:

if 0 < β ≤ 1 :

r(x, t) = r(x, 0+) +
a

Γ(β)

∫ t

0

(
∂2r
∂x2

)
(t− τ)β−1 dτ ; (120)

if 1 < β ≤ 2 :

r(x, 0+) + t
∂

∂t
r(x, t)|t=0+ +

a
Γ(β)

∫ t

0

(
∂2r
∂x2

)
(t− τ)β−1 dτ. (121)

Denoting by f (x) , x ∈ IR and h(t) , t ∈ IR+ sufficiently well-behaved functions, the basic
boundary-value problems are thus formulated as following, assuming 0 < β ≤ 1,

(a) Cauchy problem
r(x, 0+) = f (x) , −∞ < x < +∞ ; r(∓∞, t) = 0 , t > 0 ; (122)

(b) Signalling problem

r(x, 0+) = 0 , x > 0 ; r(0+, t) = h(t) , r(+∞, t) = 0 , t > 0 . (123)

If 1 < β < 2 , we must add into (122) and (123) the initial values of the first time derivative of the
field variable, rt(x, 0+) , since in this case the corresponding fractional derivative is expressed in terms
of the second order time derivative. To ensure the continuous dependence of our solution with respect
to the parameter β also in the transition from β = 1− to β = 1+ , we agree to assume

∂

∂t
r(x, t)|t=0+ = 0 , for 1 < β ≤ 2 , (124)

as it turns out from the integral forms (120)–(121).

In view of our subsequent analysis we find it convenient to set

ν := β/2 , so

{
0 < ν ≤ 1/2 , ⇐⇒ 0 < β ≤ 1 ,

1/2 < ν ≤ 1 , ⇐⇒ 1 < β ≤ 2 ,
(125)

and from now on to add the parameter ν to the independent space-time variables x , t in the solutions,
writing r = r(x, t; ν).

For the Cauchy and Signalling problems we introduce the so-called Green functions Gc(x, t; ν) and
Gs(x, t; ν), which represent the respective fundamental solutions, obtained when f (x) = δ(x) and
h(t) = δ(t) . As a consequence, the solutions of the two basic problems are obtained by a space or time
convolution according to

r(x, t; ν) =
∫ +∞

−∞
Gc(x− ξ, t; ν) f (ξ) dξ , (126)

r(x, t; ν) =
∫ t+

0−
Gs(x, t− τ; ν) h(τ) dτ . (127)

It should be noted that in (126) Gc(x, t; ν) = Gc(|x|, t; ν) because the Green function of the Cauchy
problem turns out to be an even function of x. According to a usual convention, in (127) the limits
of integration are extended to take into account the possibility of impulse functions centred at
the extremes.

Now we recall the results obtained in 1990’s by the author that allow us to express the two Green
functions in terms of the auxiliary functions Fν(ξ) and Mν(ξ) where, for x > 0, t > 0

ξ := x/(
√

a tν) > 0 (128)
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acts as similarity variable. Then we obtain the Green functions in the space-time domain in the form

Gc(x, t; ν) =
1

2 ν x
Fν(ξ) =

1
2
√

a tν
Mν(ξ) , (129)

Gs(x, t; ν) =
1
t

Fν(ξ) =
ν x√
a t1+ν

Mν(ξ) . (130)

We also recognize the following reciprocity relation for the original Green functions,

2ν x Gc(x, t; ν) = t Gs(x, t; ν) = Fν(ξ) = νξ Mν(ξ) . (131)

Now Fν(ξ), Mν(ξ) are the auxiliary functions for the general case 0 < ν ≤ 1, which generalize
those well known for the standard (Fourier) diffusion equation and for the standard (D’alembert) wave
equation derived for ν = 1/2 and for ν = 1, respectively.

10.3. Some Noteworthy Results for the Mν Wright Function

In this survey we find worthwhile to concentrate our attention on a single auxiliary function,
the M-Wright function, sometimes referred to as the Mainardi function. Indeed this function is indeed
referred with this name in the 1999 book by Podlubny [19], that is one of the most cited treatises on
fractional calculus. Then this name is found in several successive papers and books related to fractional
diffusion and wave processes, see for example, the relevant 2015 paper by Sandev et al. [71].

Let us now recall some interesting analytic results related to the so-called Mainardi function. One
reason for the major attention is due to its straightforward generalization of the Gaussian probability
density obtained for ν = 1/2, that is the fundamental solution of the Cauchy problem for the standard
diffusion equation. Furthermore it allows an impressive visualization of the evolution with the order
ν ∈ (0, 1) of the Green function of the Cauchy problem of the fractional diffusion wave Equation (129)
as shown in the next figures with a = 1 and taking t = 1.

The readers are invited to look at the YouTube video by my former student Armando Consiglio
whose title is “Simulation of the M−Wright function”, in which the author has shown the evolution
of this function as the parameter ν changes between 0 and 0.85 in the interval (−5 < x < +5) of IR
centered in x = 0 represented herewith in Figures 6 and 7 at fixed time t = 1.

Figure 6. Plot of the symmetric M−Wright function Mν(|x|) for 0 ≤ ν ≤ 1/2. Note that the M-Wright
function becomes a Gaussian density for ν = 1/2.
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Figure 7. Plot of the symmetric M−Wright type function Mν(|x|) for 1/2 ≤ ν ≤ 1. Note that the
MWright function becomes a a sum of two delta functions centered in x = ±1 for ν = 1.

The readers interested to have more details on the classical Wright functions should consult the
recent survey by Luchko [72] and references therein.

In view of time-fractional diffusion processes related to time-fractional diffusion equations it is
worthwhile to introduce the function in two variables

Mν(x, t) := t−ν Mν(xt−ν) , 0 < ν < 1 , x, t ∈ IR+ , (132)

which defines a spatial probability density in x evolving in time t with self-similarity exponent H = ν.
Of course for x ∈ IR we have to consider the symmetric version of the M-Wright function. obtained
from (132) multiplying by 1/2 and replacing x by |x|.

Hereafter we provide a list of the main properties of this function, which can be derived from the
Laplace and Fourier transforms for the corresponding Wright M-function in one variable presented in
papers by Mainardi and recalled in the Appendix F of Reference [22].

For the Laplace transform of Mν(x, t) with respect to t > 0 and x > 0 we get respectively:

L {Mν(x, t); t → s} :=
∫ ∞

0
e−st t−ν Mν(x t−ν) dt = sν−1 e−xsν

; (133)

L {Mν(x, t); x → s} :=
∫ ∞

0
e−sx t−ν Mν(x t−ν) dx = Eν,1 (−stν) . (134)

For the Fourier transforms with respect to the spatial variable x we have for Mν(x, t) with x ∈ IR+,

FC {Mν(x, t); x → κ} :=
∫ ∞

0 cos(κx) t−ν Mν(x t−ν) dx = E2ν,1(−κ2t2ν) ,

FS {Mν(x, t); x → κ} :=
∫ ∞

0 sin(κx) t−ν Mν(x t−ν) dx = κν E2ν,ν+1(−κ2t2ν) ,
(135)

so that for the symmetric function Mν(|x|, t) we get

F {Mν(|x|, t); x → κ} = 2
∫ ∞

0
cos(κx) t−ν Mν(x t−ν) dx = 2E2ν,1

(
−κ2t2ν

)
. (136)

Restricting our attention at the known analytic expressions of the Mν functions versus x at fixed
time t = 1 we recall the following results for some special rational values of the parameter ν:
ν = 1/3 (see Reference [22])

M1/3(x) = 32/3Ai(x/31/3) , (137)
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ν = 1/2 (see Reference [22])

M1/2(x) =
1√
π

e−x2/4 , (138)

ν = 2/3 (see Reference [73])

M2/3(x) = 3−2/3
[
31/3 x Ai

(
x2/34/3

)
− 3Ai′

(
x2/34/3

)]
e−2x3/27 . (139)

In the above equations Ai and Ai′ denote the Airy function and its first derivative.
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Appendix A. My Acquaintance with the Mittag-Leffler Function Since the Late 1960’s

I was formerly acquainted with the Mittag-Leffler function from the pioneering 1947 paper by
Gross on creep and relaxation in linear viscoelasticity. It was during my PhD studies at the University
of Bologna under the supervision of Prof Caputo in the year 1969. Indeed I was asked to apply in
the framework of anelastic materials the derivative of non-integer order introduced by Prof Caputo
in [74,75]. More recently this fractional derivative was named after him thanks the suggestions of
Gotrenflo and Mainardi [18] and Podlubny [19]. I understood that the Mittag-Leffler function proposed
by Gross both in creep and relaxation processes could be used in the corresponding processes in the
fractional Zener model. Because Gross had computed and plotted only the spectra, see Figure 1 in
this article, I was interested to plot the Mittag-Leffler function on which I was addressed in the Third
volume of the Handbook of the Bateman Project published in 1955 [6]. Carrying out the plot of the
Mittag-Leffler function Eα(−tα) using a Fortran program was not easy for me using its power series
representation, so I limited the time interval to [0.5] with ordinate in logarithmic scale. As far as I know
this was the former plot of this function, see References [9,10] where the results of my PhD thesis were
published in 1971 jointly with my supervisor. Later I was acquainted with the viscoelastic model by
Rabotnov in 1948 [76] and with the Russian school of Meskov and Rossikhin who used the so-called
Rabotnov function, indeed related to the Mittag-Leffler function, and consequently with results similar
to some extent to those in References [9,10]. However, our work was totally independent from the
Russian school (incidentally published in Russian), as outlined in the Notes to the chapter 3 of my 2010
book, see pp. 74–76 in [22]. More later, in the 1980 I was acquainted with the results by Bagley-Torvik
and by Koeller that confirmed the relevant role of the Mittag-Leffler functions in linear viscoelastic
models governed by constitutive laws of fractional order. Once again their results crossed with those
in References [9,10]. However, I have to confess that, when in conferences of those years I dealt with
fractional derivatives in rheology, the audience remained indifferent if not hostile and laughable so
I left this topic preferring to transfer my research interests to wave phenomena, in particular on the
effects of dissipation on linear dispersive waves.

Incidentally, in 1980’s, I was also aware of the nice treatise by Harold T. Davis on the Theory of
Linear operators published in 1936 [2], where the author gave information about the fractional calculus
and the Mittag-Leffler function. It was my honor to publish a recent survey on the contributions
by Davis and Gross (already recalled in Introduction), whom I consider the pioneers of fractional
relaxation processes in viscoelastic and dielectric materials [32]. In the firsts years of 1990s under the
push of fractals, the relevance of fractional derivatives (used not always in a correct way) was outlined
in several papers. For this I was induced to come back to fractional calculus. It was just this occasion
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for me to devote my research interests to the application of fractional calculus in relaxation, oscillation
phenomena governed by fractional ODEs and diffusion, wave phenomena governed by fractional
PDEs. Once again I understood the relevance of the Mittag-Leffler functions but also that of the Wright
functions, both of them classified as miscellaneous functions in the handbook of Bateman project. I
must note that, as far as I known, the Bateman handbook was the only one published in English to
deal with these special function, and therefore accessible to me.

The year 1994 was the golden year for me as far as my acquaintance with fractional calculus
and related special functions is concerned. Indeed I took profit by the acquaintance in three different
conferences with the late Prof Gorenflo and Prof. Nigmatullin (in Bordeaux, France), with Prof.
Podlubny and Prof. Caputo (in Atlanta, USA), and with Prof Virginia Kiryakova and the late Prof.
Stankovic (in Sofia, Bulgaria), among other authorities of the fractional calculus. But it was with Prof
Gorenflo that I started a collaboration for more than 20 years (1995–2015) motivated by our common
interest towards the potential of the Mittag-Leffler functions in the applications of the fractional
calculus.

Then, since 1997, I was interested in the emerging science of Econophysics thanks mainly to my
younger colleague Enrico Scalas. With Gorenflo, Scalas and his student Raberto we published some
papers on the advent of fractional Calculus in Econophysics, see e.g., [54] and my historical survey
in Mathematics [77]. In 2007, on the occasion of the 80-birthday of Prof. Caputo, I published with
Gorenflo a survey in Fractional Calculus and Applied Analysis [11] where I took the liberty to propose
for the Mittag-Leffler function the (successful) title of the Queen Function of the Fractional Calculus. Some
years earlier, Gorenflo had contacted the American Mathematical Society to give a specific number to
the Mittag-Leffler function, that is 33E12, in the MSC classification.

Gorenflo and I promoted the Mittag-Lffler functions in several Conferences and Workshops in all
the world. In particular, I would like to recall my lectures in India (under invitation of Prof Mathai,
director of the Center of Mathematical Sciences, in Brazil (under invitation of Prof Edmundo Capelas
de Oliveira, Campinas University) and in US (under invitation of Prof. Karniadakis, Brown University,
see Reference [78]).

I like to outline my gratitude to Professor Michele Caputo (1927) and Rudolf Gorenflo (1930–2017)
for having provided me with useful advice in earlier and later times, respectively. It is my pleasure to
enclose a photo showing the author between them, taken in Bologna, April 2002.

Figure A1. F. Mainardi between R. Gorenflo (left) and M. Caputo (right).

Unfortunately, I lost Gorenflo’s guidance and collaboration in 2015 when he suffered strong
health troubles that led him to his death on 20 October 2017 at 87 years. He was Emeritus Professor of
Mathematics at the Free University of Berlin since his retirement in 1998.
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Nowadays I am quite interested to promote the special functions of the Mittag-Leffler and Wright
type with the second edition of the treatise by Gorenflo et al. [14] and my surveys [79,80], including
the present review.
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Abstract: Fractional-order calculus is about the differentiation and integration of non-integer orders.
Fractional calculus (FC) is based on fractional-order thinking (FOT) and has been shown to help us to
understand complex systems better, improve the processing of complex signals, enhance the control
of complex systems, increase the performance of optimization, and even extend the enabling of the
potential for creativity. In this article, the authors discuss the fractional dynamics, FOT and rich
fractional stochastic models. First, the use of fractional dynamics in big data analytics for quantifying
big data variability stemming from the generation of complex systems is justified. Second, we show
why fractional dynamics is needed in machine learning and optimal randomness when asking: “is
there a more optimal way to optimize?”. Third, an optimal randomness case study for a stochastic
configuration network (SCN) machine-learning method with heavy-tailed distributions is discussed.
Finally, views on big data and (physics-informed) machine learning with fractional dynamics for
future research are presented with concluding remarks.

Keywords: fractional calculus; fractional dynamics; fractional-order thinking; heavytailedness; big
data; machine learning; variability; diversity

1. Fractional Calculus (FC) and Fractional-Order Thinking (FOT)

Fractional calculus (FC) is the quantitative analysis of functions using non-integer-
order integration and differentiation, where the order can be a real number, a complex
number or even the function of a variable. The first recorded query regarding the meaning
of a non-integer order differentiation appeared in a letter written in 1695 by Guillaume de
l’Hôpital to Gottfried Wilhelm Leibniz, who at the same time as Isaac Newton, but inde-
pendently of him, co-invented the infinitesimal calculus [1]. Numerous contributors have
provided definitions for fractional derivatives and integrals [2] since then, and the theory
along with the applications of FC have been expanded greatly over the centuries [3–5].
In more recent decades, the concept of fractional dynamics has merged and gained follow-
ers in the statistical and chemical physics communities [6–8]. For example, optimal image
processing has improved through the use of fractional-order differentiation and fractional-
order partial differential equations as summarized in Chen et al. [9–11]. Anomalous
diffusion was described using fractional-diffusion equations in [12,13], and Metzler et al.
used fractional Langevin equations to model viscoelastic materials [14].

Today, big data and machine learning (ML) are two of the hottest topics of applied
scientific research, and they are closely related to one another. To better understand them,
we also need fractional dynamics, as well as fractional-order thinking (FOT). Section 2 is
devoted to the discussion of the relationships between big data, variability, and fractional
dynamics, as well as to fractional-order data analytics (FODA) [15]. The topics touched
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on in this section include the Hurst parameter [16,17], fractional Gaussian noise (fGn),
fractional Brownian motion (fBm), the fractional autoregressive integrated moving average
(FARIMA) [18], the formalism of continuous time random walk (CTRW) [19], unmanned
aerial vehicles (UAVs) and precision agriculture (PA) [20]. In Section 3, how to learn
efficiently (optimally) for ML algorithms is investigated. The key to developing an efficient
learning process is the method of optimization. Thus, it is important to design an efficient
or perhaps optimal optimization method. The derivative-free methods, and the gradient-
based methods, such as the Nesterov accelerated gradient descent (NAGD) [21], are both
discussed. Furthermore, the authors propose designing and analyzing the ML algorithms
in an S or Z transform domain in Section 3.3. FC is used in optimal randomness in the
methods of stochastic gradient descent (SGD) [22] and random search, and in implementing
the internal model principle (IMP) [23].

FOT is a way of thinking using FC. For example, there are non-integers between
the integers; between logic 0 and logic 1, there is the fuzzy logic [24]; compared with
integer-order splines, there are fractional-order splines [25]; between the high-order integer
moments, there are non-integer-order moments, etc. FOT has been entailed by many
research areas, for example, self-similar [26,27], scale-free or scale-invariant, power-law,
long-range-dependence (LRD) [28,29], and 1/ f α noise [30,31]. The terms porous media,
particulate, granular, lossy, anomaly, disorder, soil, tissue, electrodes, biology [32], nano,
network, transport, diffusion, and soft matters are also intimately related to FOT. However,
in the present section, we mainly discuss complexity and inverse power laws (IPL).

1.1. Complexity and Inverse Power Laws

When studying complexity, it is fair to ask, what does it mean to be complex? When
do investigators begin identifying a system, network or phenomenon as complex [33,34]?
There is an agreement among a significant fraction of the scientific community that when
the distribution of the data associated with the process of interest obeys an IPL, the phe-
nomenon is complex; see Figure 1. On the left side of the figure, the complexity “bow
tie” [35–38] is the phenomenon of interest, thought to be a complex system. On the right
side of the figure is the spectrum of system properties associated with IPL probability
density functions (PDFs): the system has one or more of the properties of being scale-free,
having a heavy tail, having a long-range dependence, and/or having a long memory [39,40].
In the book by West and Grigolini [41], there is a table listing a sample of the empirical
power laws and IPLs uncovered in the past two centuries. For example, in scale-free net-
works, the degree distributions follow an IPL in connectivity [42,43]; in the processing of
signals containing pink noise, the power spectrum follows an IPL [29]. For other examples,
such as the probability density function (PDF), the autocorrelation function (ACF) [44],
allometry (Y = aXb) [45], anomalous relaxation (evolving over time) [46], anomalous diffu-
sion (mean squared dissipation versus time) [13], and self-similarity can all be described
by the IPL “bow tie” depicted in Figure 1.

The power law is usually described as:

f (x) = axk, (1)

when k is negative, f (x) is an IPL. One important characteristic of this power law is scale
invariance [47] determined by:

f (cx) = a(cx)k = ck f (x) ∝ f (x). (2)

Note that when x is the time, the scaling depicts a property of the system dynamics.
However, when the system is stochastic, the scaling is a property of the PDF (or correlation
structure) and is a constraint on the collective properties of the system.
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Figure 1. Inverse power law (complexity “bow tie”): On the left are the systems of interest that are
thought to be complex. In the center panel, an aspect of the empirical data is characterized by an
inverse power law (IPL). The right panel lists the potential properties associated with systems with
data that have been processed and yield an IPL property. See text for more details.

FC is entailed by complexity, since an observable phenomenon represented by a fractal
function has integer-order derivatives that diverge. Consequently, for the complexity
characterization and regulation, we ought to use the fractional dynamics point of view
because the fractional derivative of a fractal function is finite. Thus, complex phenomena,
no matter whether they are natural or carefully engineered, ought to be described by
fractional dynamics. Phenomena in complex systems in many cases should be analyzed
using FC-based models, where mathematically, the IPL is actually the “Mittag–Leffler law”
(MLL), which asymptotically becomes an IPL (Figure 2), known to have heavy-tail behavior.

α

Figure 2. Complex signals (IPL): Here, the signal generated by a complex system is depicted. Exem-
plars of the systems are given as are the potential properties arising from the systems’ complexity.

When an IPL results from processing data, one should think about how the phenomena
can be connected to the FC. In [48], Gorenflo et al. explained the role of the FC in generating
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stable PDFs by generalizing the diffusion equation to one of fractional order. For the
Cauchy problem, they considered the space-fractional diffusion equation:

∂u
∂t

= D(α)
∂αu

∂|x|α , (3)

where −∞ < x < ∞, t ≥ 0 with u(x, 0) = δ(x), 0 < α ≤ 2, and D(α) is a suitable diffusion
coefficient. The fractional derivative in the diffusion variable is of the Riesz–Feller form,
defined by its Fourier transform to be |k|a. For the signalling problem, they considered the
so-called time-fractional diffusion equation [49]:

∂2βu
∂t2β

= D(β)
∂2u
∂x2 , (4)

where x ≥ 0, t ≥ 0 with u(0, t) = δ(t), 0 < β < 1, and D(β) is a suitable diffusion
coefficient. Equation (4) has also been investigated in [50–52]. Here, the Caputo fractional
derivative in time is used.

There are rich forms in stochasticity [22], for example, heavytailedness, which corre-
sponds to fractional-order master equations [53]. In Section 1.2, heavy-tailed distributions
are discussed.

1.2. Heavy-Tailed Distributions

In probability theory, heavy-tailed distributions are PDFs whose tails do not decay
exponentially [54]. Consequently, they have more weight in their tails than does an
exponential distribution. In many applications, it is the right tail of the distribution that
is of interest, but a distribution may have a heavy left tail, or both tails may be heavy.
Heavy-tailed distributions are widely used for modeling in different disciplines, such as
finance [55], insurance [56], and medicine [57]. The distribution of a real-valued random
variable X is said to have a heavy right tail if the tail probabilities P(X > x) decay more
slowly than those of any exponential distribution:

lim
x→∞

(
P(X > x)

e−λx ) = ∞, (5)

for every λ > 0 [58]. For the heavy left tail, an analogous definition can be constructed [59].
Typically, there are three important subclasses of heavy-tailed distributions: fat-tailed,
long-tailed and subexponential distributions.

1.2.1. Lévy Distribution

A Lévy distribution, named after the French mathematician Paul Lévy, can be gener-
ated by a random walk whose steps have a probability of having a length determined by a
heavy-tailed distribution [60]. As a fractional-order stochastic process with heavy-tailed
distributions, a Lévy distribution has better computational characteristics [61]. A Lévy
distribution is stable and has a PDF that can be expressed analytically, although not always
in closed form. The PDF of Lévy flight [62] is:

p(x, μ, γ) =

⎧⎨⎩
√

γ
2π

e
γ

2(x−μ)
(x−μ)3/2 , x > μ,

0, x ≤ μ,
(6)

where μ is the location parameter and γ is the scale parameter. In practice, the Lévy
distribution is updated by

Lévy(β) =
u

|ν|1/β
, (7)

where u and ν are random numbers generated from a normal distribution with a mean of 0
and standard deviation of 1 [63]. The stability index β ranges from 0 to 2. Moreover, it is

146



Entropy 2021, 23, 297

interesting to point out that the well-known Gaussian and Cauchy distributions are special
cases of the Lévy PDF when the stability index is set to 2 and 1, respectively.

1.2.2. Mittag–Leffler PDF

The Mittag–Leffler PDF [64] for the time interval between events can be written as a
mixture of exponentials with a known PDF for the exponential rates:

Eθ(−tθ) =
∫ ∞

0
exp(−μt)g(μ)dμ, (8)

with a weight for the rates given by:

g(μ) =
1
π

sin(θπ)

μ1+θ + 2 cos(θπ)μ + μ1−θ
. (9)

The most convenient expression for the random time interval was proposed by [65]:

τθ = −γt(ln u
sin(θπ)

tan(θπv)
− cos(θπ))1/θ , (10)

where u, v ∈ (0,1) are independent uniform random numbers, γt is the scale parameter, and τθ

is the Mittag–Leffler random number. In [66], Wei et al. used the Mittag–Leffer distribution
for improving the Cuckoo Search algorithm, which did show an improved performance.

1.2.3. Weibull Distribution

A random variable is described by a Weibull distribution function F:

F(x) = e−(x/k)λw
, (11)

where k > 0 is the scale parameter, and λw > 0 is the shape parameter [67]. If the shape
parameter is λw < 1, the Weibull distribution is determined to be heavy tailed.

1.2.4. Cauchy Distribution

A random variable is described by a Cauchy PDF if its cumulative distribution is [68,69]:

F(x) =
1
π

arctan(
2(x− μc)

σ
) +

1
2

, (12)

where μc is the location parameter and σ is the scale parameter. Cauchy distributions are
examples of fat-tailed distributions, which have been empirically encountered in a variety
of areas including physics, earth sciences, economics and political science [70]. Fat-tailed
distributions include those whose tails decay like an IPL, which is a common point of
reference in their use in the scientific literature [71].

1.2.5. Pareto Distribution

A random variable is said to be described by a Pareto PDF if its cumulative distribution
function is

F(x) =

{
1− ( b

x )
a, x ≥ b,

0, x < b,
(13)

where b > 0 is the scale parameter and a > 0 is the shape parameter (Pareto’s index of
inequality) [72] (Figure 3).
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Figure 3. Cauchy distributions are examples of fat-tailed distributions. The parameter a is the
location parameter; the parameter b is the scale parameter.

1.2.6. The α-Stable Distribution

A PDF is said to be stable if a linear combination of two independent random variables,
each with the same distribution, has the same distribution for the conjoined variable. This
PDF is also called the Lévy α-stable distribution [73,74]. Since the normal distribution,
Cauchy distribution and Lévy distribution all have the above property, one can consider
them to be special cases of stable distributions. Stable distributions have 0 < α ≤ 2,
with the upper bound corresponding to the normal distribution, and α = 1, to the Cauchy
distribution (Figure 4). The PDFs have undefined variances for α < 2, and undefined means
for α ≤ 1. Although their PDFs do not admit a closed-form formula in general, except in
special cases, they decay with an IPL tail and the IPL index determines the behavior of the
PDF. As the IPL index gets smaller, the PDF acquires a heavier tail. An example of an IPL
index analysis is given in Section 1.4.

Figure 4. Symmetric α-stable distributions with unit scale factor. The most narrow PDF shown has
the smallest IPL index and, consequently, the most weight in the tail regions.

1.3. Mixture Distributions

A mixture distribution is derived from a collection of other random variables. First,
a random variable is selected by chance from the collection according to given probabilities
of selection. Then, the value of the selected random variable is realized. The mixture PDFs
are complicated in terms of simpler PDFs, which provide a good model for certain datasets.
The different subsets of the data can exhibit different characteristics. Therefore, the mixed
PDFs can effectively characterize the complex PDFs of certain real-world datasets. In [75],
a robust stochastic configuration network (SCN) based on a mixture of Gaussian and
Laplace PDFs was proposed. Thus, Gaussian and Laplace distributions are mentioned in
this section for comparison purposes.
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1.3.1. Gaussian Distribution

A random variable X has a Gaussian distribution with the mean μG and variance
σ2

G (−∞ < μG < ∞ and σG > 0) if X has a continuous distribution for which the PDF is as
follows [76]:

f (x|μG, σ2
G) =

1
(2π)1/2σG

e−
1
2 (

x−μG
σG

)2
, f or −∞ < x < ∞. (14)

1.3.2. Laplace Distribution

The PDF of the Laplace distribution can be written as follows [75]:

F(x|μl , η) =
1

(2η2)1/2 e(−
√

2|x−μl |
η ), (15)

where μl and η represent the location and scale parameters, respectively.

1.4. IPL Tail-Index Analysis

There are two approaches to the problem of the IPL tail-index estimation: the para-
metric [77] and the nonparametric [78]. To estimate the tail index using the parametric
approach, some researchers employ a generalized extreme value (GEV) distribution [79] or
Pareto distribution, and they may apply the maximum-likelihood estimator (MLE).

The stochastic gradient descent (SGD) has been widely used in deep learning with
great success because of the computational efficiency [80,81]. The gradient noise (GN) in
the SGD algorithm is often considered to be Gaussian in the large data regime by assuming
that the classical central limit theorem (CLT) kicks in. The machine-learning tasks are
usually considered as solving the following optimization problem:

w∗ = argmin{ f (w) � 1
n

n

∑
i=1

f (i)(w)}, (16)

where w denotes the weights of the neural network, f denotes the loss function, and n
denotes the total number of instances. Then, the SGD is calculated based on the following
iterative scheme:

wk+1 = wk − η∇ fk(wk), (17)

where k means the iteration number, and ∇ fk(wk) denotes the stochastic gradient at
iteration k.

Since the gradient noise might not be Gaussian, the use of Brownian motion would
not be appropriate to represent its behavior. Therefore, Şimşekli et al. replaced the gradient
noise with the α-stable Lévy motion [82], whose increments have an α-stable distribu-
tion [83]. Because of the heavy-tailed nature of the α-stable distribution, the Lévy motion
might incur large, discontinuous jumps [84], and therefore, it would exhibit a fundamen-
tally different behavior than would Brownian motion (Figure 5):

Figure 6 shows that there are two distinct phases of SGD (in this configuration,
before and after iteration 1000). At first, the loss decreases very slowly, the accuracy slightly
increases, and more interestingly, α rapidly decreases. When α reaches its lowest level,
which means a longer tail distribution, there is a significant jump, which causes a sudden
decrease in accuracy. Beyond this point, the process recovers again, and we see stationary
behavior in α and an increasing behavior in the accuracy.
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(a) (b)
Figure 5. (a) Brownian motion; (b) Lévy motion. Note that both figures are at the same size scale.

(a) (b)
Figure 6. (a) The behavior of tail-index α during the iterations; (b) The training and testing accuracy. At first, the α decreases
very slowly; when α reaches its lowest level, which means longer tail distribution, there is a significant jump, which causes
a sudden decrease in accuracy. Beyond this point, the process recovers again, and we see stationary behavior in α and an
increasing behavior in the accuracy.

2. Big Data, Variability and FC

The term “big data” started showing up in the early 1990s. The world’s technological
per capita capacity to store information has roughly doubled every 40 months since the
1980s [85]. Since 2012, there have been 2.5 exabytes (2.5 × 260 bytes) of data generated
every day [86]. According to data report predictions, there will be 163 zettabytes of
data by 2025 [87]. Firican proposed, in [88], ten characteristics (properties) of big data to
prepare for both the challenges and advantages of big data initiatives (Table 1). In this
article, variability is the most important characteristic being discussed. Variability refers
to several properties of big data. First, it refers to the number of inconsistencies in the data,
which need to be understood by using anomaly- and outlier-detection methods for any
meaningful analytics to be performed. Second, variability can also refer to diversity [89,90],
resulting from disparate data types and sources, for example, healthy or unhealthy [91,92].
Finally, variability can refer to multiple research topics (Table 2).

Considering variability, Xunzi (312 BC–230 BC), who was a Confucian philosopher,
made a useful observation: “Throughout a thousand acts and ten thousand changes, his
way remains one and the same” [93]. Therefore, we ask: what is the “one and the same”
for big data? This is the variability, which refers to the behavior of the dynamic system.
The ancient Greek philosopher Heraclitus (535 BC–475 BC) also realized the importance
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of variability, prompting him to say: “The only thing that is constant is change”; “It is in
changing that we find purpose”; “Nothing endures but change”; “No man ever steps in
the same river twice, for it is not the same river and he is not the same man”.

Heraclitus actually recognized the (fractional-order) dynamics of the river without
modern scientific knowledge (in nature). After two thousand years, the integer-order
calculus was invented by Sir Issac Newton and Gottfried Wilhelm Leibniz, whose main
purpose was to quantify that change [94,95]. From then, scientists started using integer-
order calculus to depict dynamic systems, differential equations, modelling, etc. In the
1950s, Scott Blair, who first introduced the FC into rheology, pointed out that the integer-
order dynamic view of change is only for our own “convenience” (a little bit selfish).
In other words, denying fractional calculus is equivalent to denying the existence of non-
integers between the integers!

Table 1. The 10 Vs of big data.

Characteristics Description

1. Volume Best known characteristic of big data; more than 90 percent of the whole
data were created in the past couple of years.

2. Velocity The speed at which data are being generated.

3. Variety Processing structured, unstructured and semistructured data.

4. Variability
Inconsistent speed of data loading, multitude of data dimensions,
and number of inconsistencies.

5. Veracity Confidence or trust in the data.

6. Validity Refers to how accurate and correct the data are.

7. Vulnerability Security concerns, data breaches.

8. Volatility Design policy for data currency, availability, and rapid retrieval of
information when required.

9. Visualization Develop new tools considering the complex relationships between the
above properties.

10. Value The most important of the 10 Vs; substantial value must be found.

Table 2. Variability in multiple research topics.

Topics Description

1. Climate variability Changes in the components of the climate system and
their interactions.

2. Genetic variability Measurements of the tendencies of individual genotypes
between regions.

3. Heart rate variability Physiological phenomenon where the time interval between heart
beats varies.

4. Human variability Measurements of the characteristics, physical or mental,
of human beings.

5. Spatial variability Measurements at different spatial points exhibit different values.

6. Statistical variability A measure of dispersion in statistics.

Blair said [96]: “We may express our concepts in Newtonian terms if we find this
convenient but, if we do so, we must realize that we have made a translation into a language
which is foreign to the system which we are studying (1950)”.

Therefore, variability exists in big data. However, how do we realize the modeling,
analysis and design (MAD) for the variability in big data within complex systems? We
need fractional calculus! In other words, big data are at the nexus of complexity and FC.
Thus, we first proposed fractional-order data analytics (FODA) in 2015. Metrics based on
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using the fractional-order signal processing techniques should be used for quantifying the
generating dynamics of observed or perceived variability [15].

2.1. Hurst Parameter, fGn, and fBm

The Hurst parameter or Hurst exponent (H) was proposed for the analysis of the
long-term memory of time series. It was originally developed to quantify the long-term
storage capacity of reservoirs for the Nile river’s volatile rain and drought conditions
more than a half century ago [16,17]. To date, the Hurst parameter has also been used to
measure the intensity of long range dependence (LRD) in time series [97], which requires
accurate modeling and forecasting. The self-similarity and the estimation of the statistical
parameters of LRD have commonly been investigated recently [98]. The Hurst parameter
has also been used for characterizing the LRD process [97,99]. A LRD time series is defined
as a stationary process that has long-range correlations if its covariance function C(n)
decays slowly as:

lim
n→∞

C(n)
n−α

= c, (18)

where 0 < α < 1, which relates to the Hurst parameter according to α = 2− 2H [100,101].
The parameter c is a finite, positive constant. When the value of n is large, C(n) behaves
as the IPL c/nα [102]. Another definition for an LRD process is that the weakly stationary
time-series X(t) is said to be LRD if its power spectral density (PSD) follows:

f (λ) ∼ Cf |λ|−β, (19)

as λ → 0, for a given Cf > 0 and a given real parameter β ∈ (0,1), which corresponds to
H = (1 + β)/2 [103]. When 0 < H < 0.5, it indicates that the time intervals constitute a
negatively correlated process. When 0.5 < H < 1, it indicates that time intervals constitute a
positively correlated process. When H = 0.5, it indicates that the process is uncorrelated.

Two of the most common LRD processes are fBm [104] and fGn [105]. The fBm process
with H(0 < H < 1) is defined as:

BH(t) =
1

Γ(H + 1/2)
{
∫ 0

−∞
[(t− s)H−1/2 − (−s)H−1/2]dW(s) +

∫ t

0
(t− s)H−1/2dW(s)},

(20)
where W denotes a Wiener process defined on (−∞, ∞) [106]. The fGn process is the
increment sequences of the fBm process, defined as:

Xk = Y(k + 1)−Y(k), (21)

where Y(k) is a fBm process [107].

2.2. Fractional Lower-Order Moments (FLOMs)

The FLOM is based on α-stable PDFs. The PDFs of an α-stable distribution decay in
the tails more slowly than a Gaussian PDF does. Therefore, for sharp spikes or occasional
bursts in signals, an α-stable PDF can be used for characterizing signals more frequently
than Gauss-distributed signals [108]. Thus, the FLOM plays an important role in impulsive
processes [109], equivalent to the role played by the mean and variance in a Gaussian
processes. When 0 < α ≤ 1, the α-stable processes have no finite first- or higher-order
moments; when 1 < α < 2, the α-stable processes have a finite first-order moment and all the
FLOMs with moments of fractional order that is less than 1. The correlation between the
FC and FLOM was investigated in [110,111]. For the Fourier-transform pair p(x) and φ(μ),
the latter is the characteristic function and is the Fourier transform of the PDF; a complex
FLOM can have complex fractional lower orders [110,111]. A FLOM-based fractional
power spectrum includes a covariation spectrum and a fractional low-order covariance
spectrum [112]. FLOM-based fractional power spectrum techniques have been successfully
used in time-delay estimation [112].
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2.3. Fractional Autoregressive Integrated Moving Average (FARIMA) and Gegenbauer
Autoregressive Moving Average (GARMA)

A continuous-time linear time-invariant (LTI) system can be characterized using a
linear difference equation, which is known as an autoregression and moving average
(ARMA) model [113,114]. The process Xt of ARMA(p, q) is defined as:

Φ(B)Xt = Θ(B)εt, (22)

where εt is white Gaussian noise (wGn), and B is the backshift operator. However,
the ARMA model can only describe a short-range dependence (SRD) property. Therefore,
based on the Hurst parameter analysis, more suitable models, such as FARIMA [115,116]
and fractional integral generalized autoregressive conditional heteroscedasticity
(FIGARCH) [117], were designed to more accurately analyze the LRD processes. The most
important feature of these models is the long memory characteristic. The FARIMA and
FIGARCH can capture both the short- and the long-memory nature of time series. For ex-
ample, the FARIMA process Xt is usually defined as [118]:

Φ(B)(1− B)dXt = Θ(B)εt, (23)

where d ∈ (−0.5, 0.5), and (1− B)d is a fractional-order difference operator. The locally
stationary long-memory FARIMA model has the same equation as that of Equation (23),
except that d becomes dt, which is a time-varying parameter [119]. The locally stationary
long-memory FARIMA model captures the local self-similarity of the system.

The generalized locally stationary long-memory process FARIMA model was investi-
gated in [119]. For example, a generalized FARIMA model, which is called the Gegenbauer
autoregressive moving average (GARMA), was introduced in [120]. The GARMA model is
defined as:

Φ(B)(1− 2uB + B2)dXt = Θ(B)εt, (24)

where u ∈ [−1, 1], which is a parameter that can control the frequency at which the long
memory occurs. The parameter d controls the rate of decay of the autocovariance function.
The GARMA model can also be extended to the so-called “k-factor GARMA model”, which
allows for long-memory behaviors to be associated with each of k frequencies (Gegenbauer
frequencies) in the interval [0, 0.5] [121].

2.4. Continuous Time Random Walk (CTRW)

The CTRW model was proposed by Montroll and Weiss as a generalization of diffusion
processes to describe the phenomenon of anomalous diffusion [19]. The basic idea is to
calculate the PDF for the diffusion process by replacing the discrete steps with continuous
time, along with a PDF for step lengths and a waiting-time PDF for the time intervals
between steps. Montroll and Weiss applied random intervals between the successive
steps in the walking process to account for local structure in the environment, such as
traps [122]. The CTRW has been used for modeling multiple complex phenomena, such as
chaotic dynamic networks [123]. The correlation between CTRW and diffusion equations
with fractional time derivatives has also been established [124]. Meanwhile, time-space
fractional diffusion equations can be treated as CTRWs with continuously distributed
jumps or continuum approximations of CTRWs on lattices [125].

2.5. Unmanned Aerial Vehicles (UAVs) and Precision Agriculture

As a new remote-sensing platform, researchers are more and more interested in the
potential of small UAVs for precision agriculture [126–136], especially for heterogeneous
crops, such as vineyards and orchards [137,138]. Mounted on UAVs, lightweight sensors,
such as RGB cameras, multispectral cameras and thermal infrared cameras, can be used
to collect high-resolution images. The higher temporal and spatial resolutions of the
images, relatively low operational costs, and nearly real-time image acquisition make
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the UAVs an ideal platform for mapping and monitoring the variability of crops and
trees. UAVs can create big data and demand the FODA due to the “complexity” and,
thus, variability inherent in the life process. For example, Figure 7 shows the normalized
difference vegetation index (NDVI) mapping of a pomegranate orchard at a USDA ARS
experimental field. Under different irrigation levels, the individual trees can show strong
variability during the analysis of water stress. Life is complex! Thus, it entails variability,
which as discussed above, in turn, entails fractional calculus. UAVs can then become
“Tractor 2.0” for farmers in precision agriculture.

Figure 7. Normalized difference vegetation index (NDVI) mapping of pomegranate trees.

3. Optimal Machine Learning and Optimal Randomness

Machine learning (ML) is the science (and art) of programming computers so they
can learn from data [139]. A more engineering-oriented definition was given by Tom
Mitchell in 1997 [140], “A computer program is said to learn from experience E with respect
to some task T and some performance measure P, if its performance on T, as measured by P,
improves with experience E”.

Most ML algorithms perform training by solving optimization problems that rely on
first-order derivatives (Jacobians), which decide whether to increase or decrease weights.
For huge speed boosts, faster optimizers are being used instead of the regular gradient de-
scent optimizer. For example, the most popular boosters are momentum optimization [141],
Nesterov acelerated gradient [21], AdaGrad [142], RMSProp [143] and Adam optimiza-
tion [144]. The second-order (Hessian) optimization methods usually find the solutions
with faster rates of convergence but with higher computational costs. Therefore, the answer
to the following question is important: what is a more optimal ML algorithm? What if
the derivative is fractional order instead of integer order? In this section, we discuss some
applications of fractional-order gradients to optimization methods in machine-learning
algorithms and investigate the accuracy and convergence rates.

As mentioned in the big data section, there is a huge amount of data in human society
and nature. During the learning process of ML, we care not only about the speed, but also
the accuracy of the data the machine is learning (Figure 8). The learning algorithm is
important; otherwise, the data labeling and other labor costs will exhaust people beyond
their abilities. When applying the accoladed artificial intelligence (AI) to an algorithm,
a strong emphasis is on artificial, only followed weakly by intelligence. Therefore, the key
to ML is what optimization methods are being applied. The convergence rate and global
searching are two important parts of the optimization method.

154



Entropy 2021, 23, 297

Figure 8. Data analysis in nature.

Reflection: ML is, today, a hot research topic and will probably remain so into the near
future. How a machine can learn efficiently (optimally) is always important. The key for the
learning process is the optimization method. Thus, in designing an efficient optimization
method, it is necessary to answer the following three questions:

• What is the optimal way to optimize?
• What is the more optimal way to optimize?
• Can we demand “more optimal machine learning”, for example, deep learning with

the minimum/smallest labeled data)?

Optimal randomness: In the section on the Lévy PDF, the Lévy flight is the search
strategy for food the albatross has developed over millions of years of evolution. Admit-
tedly, this is a slow optimization procedure [84]. From this perspective, we should call
“Lévy distribution” an optimized or learned randomness used by albatrosses for searching
for food. Therefore, we pose the question: “can the search strategy be more optimal than
Lévy flight?” The answer is yes if one adopts the FC [145]! Optimization is a very com-
plex area of study. However, a few studies have investigated using FC to obtain a better
optimization strategy.

Theoretically, there are two broad optimization categories; these are derivative-free
and gradient-based. For the derivative-free methods, there are the direct-search methods,
consisting of particle swarm optimization (PSO) [146,147], etc. For the gradient-based
methods, there are gradient descent and its variants. Both of the two categories have
shown better performance when using the FC as demonstrated below.

3.1. Derivative-Free Methods

For derivative-free methods, there are single agent search and swarm-based search
methods (Figure 9). Exploration is often achieved by randomness or random numbers
in terms of some predefined PDFs. Exploitation uses local information such as gradients
to search local regions more intensively, and such intensification can enhance the rate of
convergence. Thus, a question was posed: what is the optimal randomness? Wei et al. [148]
investigated the optimal randomness in a swarm-based search. Four heavy-tailed PDFs
have been used for sample path analysis (Figure 10). Based on the experimental results,
the randomness-enhanced cuckoo search (CS) algorithms [66,149,150] can identify the
unknown specific parameters of a fractional-order system with better effectiveness and
robustness. The randomness-enhanced CS algorithms can be considered as a promising
tool for solving real-world complex optimization problems. The reason is that optimal
randomness is applied with fractional-order noise during the exploration, which is more
optimal than the “optimized PSO”, CS. The fractional-order noise refers to the stable
PDFs [48]. In other words, when we are discussing optimal randomness, we are discussing
fractional calculus!
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(a) (b)
Figure 9. The 2-D Alpine function for derivative-free methods; there are (a) single agent search and (b) swarm-based
search methods.

(a) (b)

(c) (d)
Figure 10. Sample paths. Wei et al. [148] investigated the optimal randomness in a swarm-based search. Four heavy-tailed
PDFs were used for sample path analysis; there are (a) Mittag-Leffler distribution, (b) Weibull distribution, (c) Pareto
distribution, and (d) Cauchy distribution. The Long steps, referring to the jump length, frequently happened for all
distributions, which showed strong heavy-tailed performance. For more details, please refer to [148].
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3.2. The Gradient-Based Methods

The gradient descent (GD) is a very common optimization algorithm, which can find
the optimal solutions by iteratively tweaking parameters to minimize the cost function.
The stochastic gradient descent (SGD) randomly selects times during the training process.
Therefore, the cost function bounces up and down, decreasing on average, which is good
for escape from local optima. Sometimes, noise is added into the GD method, and usually,
such noise follows a Gaussian PDF in the literature. We ask, “why not heavy-tailed PDFs”?
The answer to this question could lead to interesting future research.

Nesterov Accelerated Gradient Descent (NAGD)

There are many variants of GD analysis as suggested in Figure 11. One of the most
popular methods is the NAGD [21]:{

yk+1 = ayk − μ∇ f (xk),
xk+1 = xk + yk+1 + byk,

(25)

where by setting b = −a/(1 + a), one can derive the NAGD. When b = 0, one can derive
the momentum GD. The NAGD can also be formulated as:{

xk = yk−1 − μ∇ f (yk−1),
yk = xk +

k−1
k+2 (xk − xk−1).

(26)

Set t = k
√

μ, and one can, in the continuous limit, derive the corresponding differen-
tial equation:

Ẍ +
3
t

Ẋ +∇ f (X) = 0. (27)

The main idea of Jordan’s work [151] is to analyze the iteration algorithm in the continuous-
time domain. For differential equations, one can use the Laypunov or variational method
to analyze the properties; for example, the convergence rate is O( 1

t2 ). One can also use
the variational method to derive the master differential equation for an optimization
method, such as the least action principle [152], Hamilton’s variational principle [153]
and the quantum-mechanical path integral approach [154]. Wilson et al. [151] built a
Euler–Lagrange function to derive the following equation:

Ẍt + 2γẊt +
γ2

μ
∇ f (Xt) = 0. (28)

which is in the same form as the master differential equation of NAGD.

Figure 11. Gradient descent and its variants.
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Jordan’s work revealed that one can transform an iterative (optimization) algorithm
to its continuous-time limit case, which can simplify the analysis (Laypunov methods).
One can directly design a differential equation of motion (EOM) and then discretize it to
derive an iterative algorithm (variational method). The key is to find a suitable Laypunov
functional to analyze the stability and convergent rate. The new exciting fact established by
Jordan is that optimization algorithms can be systematically synthesized using Lagrangian
mechanics (Euler–Lagrange) through EOMs.

Thus, is there an optimal way to optimize using optimization algorithms stemming
from Equation (28)? Obviously, why not an equation such as Equation (28) of fractional
order? Considering the Ẋt as X(α)

t , it will provide us with more research possibilities, such
as the fractional-order calculus of variation (FOCV) and fractional-order Euler–Lagrange
(FOEL) equation. For the SGD, optimal randomness using the fractional-order noises can
also offer better than the best performance, similarly shown by Wei et al. [148].

3.3. What Can the Control Community Offer to ML?

In the IFAC 2020 World Congress Pre-conference Workshop, Eric Kerrigan proposed
“The Three Musketeers” that the control community can contribute to ML [155]. These
three are the IMP [23], the Nu-Gap metric [156] and model discrimination [157]. Herein, we
focused on the IMP. Kashima et al. [158] transferred the convergence problem of numerical
algorithms into a stability problem of a discrete-time system. An et al. [159] explained that
the commonly used SGD-momentum algorithm in ML is a PI controller and designed a
PID algorithm. Motivated by [159] but differently from M. Jordan’s work, we proposed
designing and analyzing the algorithms in the S or Z domain. Remember that GD is a
first-order algorithm:

xk+1 = xk − μ∇ f (xk), (29)

where μ > 0 is the step size (or learning rate). Using the Z transform, one can achieve:

X(z) =
μ

z− 1
[−∇ f (xk)]z. (30)

Approximate the gradient around the extreme point x∗, and one can obtain:

∇ f (xk) ≈ A(xk − x∗), with A = ∇2 f (x∗). (31)

Figure 12. The integrator model (embedded in G(z)). The integrator in the forward loop eliminates
the tracking steady-state error for a constant reference signal (internal model principle (IMP)).

For the plain GD in Figure 12, we have G(z) = 1/(z − 1), which is an integrator.
For fractional-order GD (FOGD), the updating term of xk in Equation (29) can be treated as
a filtered gradient signal. In [160], Fan et al. shared similar thoughts: “Accelerating the con-
vergence of the moment method for the Boltzmann equation using filters”. The integrator
in the forward loop eliminates the tracking error for a constant reference signal according
to the internal model principle (IMP). Similarly, the GD momentum (GDM) designed to
accelerate the conventional GD, which is popularly used in ML, can be analyzed using
Figure 12 by: {

yk+1 = αyk − μ∇ f (xk),
xk+1 = xk + yk+1,

(32)
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where yk is the accumulation of the history gradient and α ∈ (0, 1) is the rate of the moving
average decay. Using the Z transform for the update rule, one can derive:{

zY(z) = αY(z)− μ[∇ f (xk)]z,
zX(z) = X(z) + zY(z).

(33)

Then, after some algebra, one obtains the following equation:

X(z) =
μz

(z− 1)(z− α)
[−∇ f (xk)]z. (34)

For the GD momentum, we have G(z) = z
(z−1)(z−α)

in Figure 12, with an integrator in the
forward loop. The GD momentum is a second-order (G(z)) algorithm with an additional
pole at z = α and one zero at z = 0. The “second-order” refers to the order of G(z), which
makes it different from the algorithm using the Hessian matrix information. Moreover,
NAGD can be simplified as: {

yk+1 = xk − μ∇ f (xk),
xk+1 = (1− λ)yk+1 + λyk,

(35)

where μ is the step size and λ is a weighting coefficient. Using the Z transform for the
update rule, one can derive:{

zY(z) = X(z)− μ[∇ f (xk)]z,
zX(z) = (1− λ)zY(z) + λY(z).

(36)

Different from the GD momentum, and after some algebra, one obtains:

X(z) =
−(1− λ)z− λ

(z− 1)(z + λ)
μ[∇ f (xk)]z =

z + λ
1−λ

(z− 1)(z + λ)
μ(1− λ)[−∇ f (xk)]z. (37)

For NAGD, we have G(z) =
z+ λ

1−λ

(z−1)(z+λ)
, again, with an integrator in the forward loop

(Figure 12). NAGD is a second-order algorithm with an additional pole at z = −λ and a
zero at z = −λ

1−λ .
“Can G(z) be of higher order or fractional order”? Of course it can! As shown in

Figure 12, a necessary condition for the stability of an algorithm is that all the poles of the
closed-loop system are within the unit disc. If the Lipschitz continuous gradient constant L
is given, one can replace A with L, and then, the condition is sufficient. For each G(z), there
is a corresponding iterative optimization algorithm. G(z) can be a third- or higher-order
system. Apparently, G(z) can also be a fractional-order system. Considering a general
second-order discrete system:

G(z) =
z + b

(z− 1)(z− a)
, (38)

the corresponding iterative algorithm is Equation (25). As mentioned earlier, when setting
b = −a/(1 + a), one can derive the NAGD. When b = 0, one can derive the momentum
GD. The iterative algorithm can be viewed as a state-space realization of the corresponding
system. Thus, it may have many different realizations (all are equivalent). Since two
parameters a and b are introduced for a general second-order algorithm design, we used
the integral squared error (ISE) as the criterion to optimize the parameters. This is because
for different target functions f (x), the Lipschitz continuous gradient constant is different.
Thus, the loop forward gain is defined as ρ := μA.
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Table 3. General second-order algorithm design. The parameter ρ is the loop forward gain; see text
for more details.

ρ 0.4 0.8 1.2 1.6 2.0 2.4

a −0.6 −0.2 0.2 0.6 1 1.4

b 1.5 0.25 −0.1667 −0.3750 −0.5 −0.5833

According to the experimental results (Table 3), interestingly, it is found that the
optimal a and b satisfy b = −a/(1 + a), which is the same design as NAGD. Other criteria
such as the IAE and ITAE were used to find other optimal parameters, but the results are
the same as for the ISE. Differently from for NAGD, the parameters were determined by
search optimization rather than by mathematical design, which can be extended to more
general cases. The algorithms were then tested using the MNIST dataset (Figure 13). It is
obvious that for different zeros and poles, the performance of the algorithms is different.
One finds that both the b = −0.25 and b = −0.5 cases perform better than does the SGD
momentum. Additionally, both b = 0.25 and b = 0.5 perform worse. It is also shown that
an additional zero can improve the performance, if adjusted properly. It is interesting to
observe that both the method and the Nesterov method give an optimal choice of the zero,
which is closely related to the pole (b = −a/(1 + a)).

Figure 13. Training loss (left); test accuracy (right). It is obvious that for different zeros and poles,
the performance of the algorithms is different. One finds that both the b = −0.25 and b = −0.5
cases perform better than does the stochastic gradient descent (SGD) momentum. Additionally,
both b = 0.25 and b = 0.5 perform worse. It is also shown that an additional zero can improve the
performance, if adjusted carefully.

Now, let us consider a general third-order discrete system:

G(z) =
z2 + cz + d

(z− 1)(z2 + az + b)
. (39)

Set b = d = 0; it will reduce to the second-order algorithm discussed above. Compared
with the second-order case, the poles can now be complex numbers. More generally,
a higher-order system can contain more internal models. If all the poles are real, then:

G(z) =
1

(z− 1)
(z− c)
(z− a)

(z− d)
(z− b)

, (40)
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whose corresponding iterative optimization algorithm is⎧⎪⎨⎪⎩
yk+1 = yk − μ∇ f (xk),
zk+1 = azk + yk+1 − cyk,
xk+1 = bxk + zk+1 − dzk.

(41)

Table 4. General third-order algorithm design, with parameters defined by Equation (41).

ρ 0.4 0.8 1.2 1.6 2.0 2.4

a 0.6439 0.5247 −0.4097 −0.5955 −1.0364 −1.4629

b 0.0263 0.0649 0.0419 −0.0398 0.0364 0.0880

c 1.5439 0.5747 −0.3763 −0.3705 −0.5364 −0.6462

d 0.0658 0.0812 0.0350 −0.0408 0.0182 0.0367

After some experiments (Table 4), it was found that since the ISE was used for tracking
a step signal (it is quite simple), the optimal poles and zeros are the same as for the
second-order case with a pole-zero cancellation. This is an interesting discovery. In this
optimization result, all the poles and zeros are real, and the resulting performance is not
very good, as expected. Compare this with the second-order case; the only difference is
that in the latter, complex poles can possibly appear. Thus, the question arises: “how do
complex poles play a role in the design?” The answer is obvious: by fractional calculus!

Inspired by M. Jordan’s idea in the frequency domain, a continuous time fractional-
order system was designed:

G(s) =
1

s(sα + β)
, (42)

where α ∈ (0, 2), β ∈ (0, 20] at first. It was then found that the optimal parameters were
obtained by searching using the ISE criterion (Table 5).

Table 5. The continuous time fractional-order system.

ρ 0.3 0.5 0.7 0.9

α 1.8494 1.6899 1.5319 1.2284

β 20 20 20 20

Equation (42) encapsulates the continuous-time design, and one can use the numerical
inverse Laplace transform (NILP) [161] and Matlab command stmcb( ) [162] to derive its
discrete form. After the complex poles are included, one can have:

G(z) =
(z + c)
(z− 1)

(
1

z− a + jb
+

1
z− a− jb

) (43)

whose corresponding iterative algorithm is:⎧⎪⎨⎪⎩
yk+1 = ayk − bzk − μ∇ f (xk),
zk+1 = azk + byk,
xk+1 = xk + yk+1 + cyk.

(44)

Then, the algorithms were tested again using the MNIST dataset, and the results were
compared with the SGD’s. For the fractional order, ρ = 0.9 was used, a = 0.6786, b = 0.1354,
and different values for zero c were used. When c = 0, the result was similar to that for
the second-order SGD. When c was not equal to 0, the result was similar to that for the
second-order NAGD. For the SGD, α was set to be 0.9, and the learning rate was 0.1
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(Figure 14). Both c = 0 and c = 0.283 perform better than the SGD momentum; generally,
with appropriate values of c, better performance can be achieved than in the second-order
cases. The simulation results demonstrate that fractional calculus (complex poles) can
potentially improve the performance, which is closely related to the learning rate.

Figure 14. Training loss (left); test accuracy (right).

In general, M. Jordan asked the question: “is there an optimal way to optimize?”. Our
answer is a resounding yes, by limiting dynamics analysis and discretization and SGD with
other randomness, such as Langevin motion. Herein, the question posed was: “is there a
more optimal way to optimize?”. Again, the answer is yes, but it requires the fractional
calculus to be used to optimize the randomness in SGD, random search and the IMP. There
is more potential for further investigations along this line of ideas.

4. A Case Study of Machine Learning with Fractional Calculus: A Stochastic
Configuration Network with Heavytailedness

4.1. Stochastic Configuration Network (SCN)

The SCN model is generated incrementally by using stochastic configuration (SC)
algorithms [163]. Compared with the existing randomized learning algorithms for single-
layer feed-forward neural networks (SLFNNs) [164], the SCN can randomly assign the
input weights (w) and biases (b) of the hidden nodes in a supervisory mechanism, which
is selecting random parameters with an inequality constraint and assigning the scope
of the random parameters adaptively. It can ensure that the built randomized learner
models have a universal approximation property. Then, the output weights are analytically
evaluated in either a constructive or selective manner [163]. In contrast with the known
randomized learning algorithms, such as the randomized radial basis function (RRBF)
networks [165] and the random vector functional link (RVFL) [166], the SCN can provide
good generalization performance at a faster speed. Concretely, there are three types of SCN
algorithms, which are labeled for convenience as SC-I, SC-II and SC-III.

The SC-I algorithm uses a constructive scheme to evaluate the output weights only for
the newly added hidden node [167]. All of the previously obtained output weights are kept
the same. The SC-II algorithm recalculates part of the current output weights by analyzing a
local-least-squares problem with a user-defined shifting window size. The SC-III algorithm
finds all the output weights together by solving a global-least-squares problem. The SCN
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has better performance than other randomized neural networks in terms of fast learning,
the scope of the random parameters, and the required human intervention. Therefore, it
has already been used in many data-processing projects, such as [134,168,169].

4.2. SCN with Heavy-Tailed PDFs

For the original SCN algorithms, weights and biases are randomly generated using a
uniform PDF. Randomness plays a significant role in both exploration and exploitation.
A good neural network architecture with randomly assigned weights can easily outperform
a more deficient architecture with finely tuned weights [170]. Therefore, it is critical to
discuss the optimal randomness for the weights and biases in SCN algorithms. Heavy-
tailed PDFs have shown optimal randomness for finding targets [171,172], which plays a
significant role in exploration and exploitation [148]. Therefore, herein, heavy-tailed PDFs
were used to randomly update the weights and biases in the hidden layers to determine if
the SCN models display improved performance. Some of the key parameters of the SCN
models are listed in Table 6. For example, the maximum times of random configuration
Tmax are set as 200. The scale factor lambda in the activation function, which directly
determines the range for the random parameters, was examined by using different settings
(0.5–200). The tolerance was set as 0.05. Most of the parameters for the SCN with heavy-
tailed PDFs were kept the same with the original SCN algorithms for comparison purposes.
For more details, please refer to [163] and Appendix A.

Table 6. Stochastic configuration networks (SCNs) with key parameters.

Properties Values

Name: “Stochastic Configuration Networks”
Version: “1.0 beta”
L: hidden node number
W: input weight matrix
b: hidden layer bias vector
Beta: output weight vector
r: regularization parameter
tol: tolerance
Lambda: random weight range
Lmax: maximum number of hidden neurons
Tmax: maximum times of random configurations
nB: number of node being added in one loop

4.3. A Regression Model and Parameter Tuning

The dataset of the regression model was generated by a real-valued function [173]:

f (x) = 0.2e−(10x−4)2
+ 0.5e−(80x−40)2

+ 0.3e−(80x−20)2
, (45)

where x ∈ [0, 1]. There were 1000 points randomly generated from the uniform distribution
on the unit interval [0, 1] in the training dataset. The test set had 300 points generated from
a regularly spaced grid on [0, 1]. The input and output attributes were normalized into
[0, 1], and all the results reported in this research represent averages over 1000 independent
trials. The settings of the parameters were similar to for the SCN in [163].

Heavy-tailed PDF algorithms have user-defined parameters, for example, the power-
law index for SCN-Lévy, and location and scale parameters for SCN-Cauchy and SCN-
Weibull, respectively. Thus, to illustrate the effect of parameters on the optimization results
and to offer reference values for the proposed SCN algorithms, parameter analysis was
conducted, and corresponding experiments were performed. Based on the experimental
results, for the SCN-Lévy algorithm, the most optimal power-law index is 1.1 for achieving
the minimum number of hidden nodes. For the SCN-Weibull algorithm, the optimal loca-
tion parameter α and scale parameter β for the minimum number of hidden nodes are 1.9
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and 0.2, respectively. For the SCN-Cauchy algorithm, the optimal location parameter α and
scale parameter β for the minimum number of hidden nodes are 0.9 and 0.1, respectively.

Performance Comparison among SCNs with Heavy-Tailed PDFs

In Table 7, the performance of SCN, SCN-Lévy, SCN-Cauchy, SCN-Weibull and SCN-
Mixture are shown, in which mean values are reported based on 1000 independent trials.
Wang et al. [163] used time cost to evaluate the SCN algorithms’ performance. In the present
study, the authors used the mean hidden node numbers to evaluate the performance.
The number of hidden nodes is associated with modeling accuracy. Therefore, herein,
the analysis determined if an SCN with heavy-tailed PDFs used fewer hidden nodes to
generate high performance, which would make the NNs less complex. According to the
numerical results, the SCN-Cauchy used the lowest number of mean hidden nodes, 59,
with an root mean squared error (RMSE) of 0.0057. The SCN-Weibull had a mean number
of 63 hidden nodes, with an RMSE of 0.0037. The SCN-Mixture had a mean number of
70 hidden nodes, with an RMSE of 0.0020. The mean number of hidden nodes for SCN-
Lévy was also 70. The original SCN model had a mean number of 75 hidden nodes. A more
detailed training process is shown in Figure 15. With fewer hidden node numbers, the SCN
models with heavy-tailed PDFs can be faster than the original SCN model. The neural
network structure is also less complicated than the SCN. Our numerical results for the
regression task demonstrate remarkable improvements in modeling performance compared
with the current SCN model results.

Table 7. Performance comparison of SCN models for regression problem.

Models Mean Hidden Node Number RMSE

SCN 75 ± 5 0.0025
SCN-Lévy 70 ± 6 0.0010

SCN-Cauchy 59 ± 3 0.0057
SCN-Weibull 63 ± 4 0.0037
SCN-Mixture 70 ± 5 0.0020

4.4. MNIST Handwritten Digit Classification

The handwritten digit dataset contains 4000 training examples and 1000 testing ex-
amples, a subset of the MNIST handwritten digit dataset. Each image is a 20-by-20-pixel
grayscale image of the digit (Figure 16). Each pixel is represented by a number indicating
the grayscale intensity at that location. The 20-by-20 grid of pixels is “unrolled” into a
400-dimensional vector.
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Figure 15. Performance of SCN, SCN-Lévy, SCN-Weibull, SCN-Cauchy and SCN-Mixture. The pa-
rameter L is the hidden node number.
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Figure 16. The handwritten digit dataset example.

Similar to the parameter tuning for the regression model, parameter analysis was
conducted to illustrate the impact of parameters on the optimization results and to offer
reference values for the MNIST handwritten digit classification SCN algorithms. Corre-
sponding experiments were performed. According to the experimental results, for the
SCN-Lévy algorithm, the most optimal power law index is 1.6 for achieving the best RMSE
performance. For the SCN-Cauchy algorithm, the optimal location parameter α and scale
parameter β for the lowest RMSE are 0.2 and 0.3, respectively.

Performance Comparison among SCNs on MNIST

The performance of the SCN, SCN-Lévy, SCN-Cauchy and SCN-Mixture are shown in
Table 8. Based on the experimental results, the SCN-Cauchy, SCN-Lévy and SCN-Mixture
have better performance in training and test accuracy, compared with the original SCN
model. A detailed training process is shown in Figure 17. Within around 100 hidden
nodes, the SCN models with heavy-tailed PDFs perform similarly to the original SCN
model. When the number of the hidden nodes is greater than 100, the SCN models with
heavy-tailed PDFs have lower RMSEs. Since more parameters for weights and biases
are initialized in heavy-tailed PDFs, this may cause an SCN with heavy-tailed PDFs to
converge to the optimal values at a faster speed. The experimental results for the MNIST
handwritten classification problem demonstrate improvements in modeling performance.
They also show that SCN models with heavy-tailed PDFs have a better search ability for
achieving lower RMSEs.

Table 8. Performance comparison of SCNs.

Models Training Accuracy Test Accuracy

SCN 94.0 ± 1.9% 91.2 ± 6.2%
SCN-Lévy 94.9 ± 0.8% 91.7 ± 4.5%

SCN-Cauchy 95.4 ± 1.3% 92.4 ± 5.5%
SCN-Mixture 94.7 ± 1.1% 91.5 ± 5.3%
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Figure 17. Classification performance of SCNs.

5. Take-Home Messages and Looking into the Future: Fractional Calculus Is
Physics Informed

Big data and machine learning (ML) are two of the hottest topics of applied scientific
research, and they are closely related to one another. To better understand them, in this
article, we advocate fractional calculus (FC), as well as fractional-order thinking (FOT),
for big data and ML analysis and applications. In Section 2, we discussed the relationships
between big data, variability and FC, as well as why fractional-order data analytics (FODA)
should be used and what it is. The topics included the Hurst parameter, fractional Gaussian
noise (fGn), fractional Brownian motion (fBm), the fractional autoregressive integrated
moving average (FARIMA), the formalism of continuous time random walk (CTRW),
unmanned aerial vehicles (UAVs) and precision agriculture (PA).

In Section 3, how to learn efficiently (optimally) for ML algorithms is discussed.
The key to developing an efficient learning process is the method of optimization. Thus,
it is important to design an efficient optimization method. The derivative-free methods,
as well as the gradient-based methods, such as the Nesterov accelerated gradient descent
(NAGD), are discussed. Furthermore, it is shown to be possible, following the internal
model principle (IMP), to design and analyze the ML algorithms in the S or Z transform
domain in Section 3.3. FC is used in optimal randomness in the methods of stochastic
gradient descent (SGD) and random search. Nonlocal models have commonly been used
to describe physical systems and/or processes that cannot be accurately described by
classical approaches [174]. For example, fractional nonlocal Maxwell’s equations and
the corresponding fractional wave equations were applied in [175] for fractional vector
calculus [176]. The nonlocal differential operators [177], including nonlocal analogs of
the gradient/Hessian, are the key of these nonlocal models, which could lead to very
interesting research with FC in the near future.

Fractional dynamics is a response to the need for a more advanced characterization
of our complex world to capture structure at very small or very large scales that had
previously been smoothed over. If one wishes to obtain results that are better than the
best possible using integer-order calculus-based methods, or are “more optimal”, we
advocate applying FOT and going fractional! In this era of big data, decision and control
need FC, such as fractional-order signals, systems and controls. The future of ML should
be physics-informed, scientific (cause–effect embedded or cause–effect discovery) and
involving the use of FC, where the modeling is closer to nature. Laozi (unknown, around
the 6th century to 4th century BC), the ancient Chinese philosopher, is said to have written
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a short book Dao De Jing(Tao Te Ching), in which he observed: “The Tao that can be
told is not the eternal Tao” [178]. People over thousands of years have shared different
understandings of the meaning of the Tao. Our best understanding of the Tao is nature,
whose rules of complexity can be explained in a non-normal way. Fractional dynamics,
FC and heavytailedness may well be that non-normal way (Figure 18), at least for the
not-too-distant future.

Figure 18. Timeline of FC (courtesy of Professor Igor Podlubny).
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ACF Auto-Correlation Function
AI Artificial Intelligence
ARMA Autoregression and Moving Average
CLT Classical Central Limit Theorem
CS Cuckoo Search
CTRW Continuous Time Random Work
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EOM Equation of Motion
fBm Fractional Brownian Motion
fGn Fractional Gaussian Noise
FARIMA Fractional Autoregressive Integrated Moving Average
FC Fractional Calculus
FIGARCH Fractional Integral Generalized Autoregressive Conditional Heteroscedasticity
FLOM Fractional Lower-Order Moments
FOCV Fractional-Order Calculus of Variation
FODA Fractional-Order Data Analytics
FOEL Fractional-Order Euler–Lagrange
FOT Fractional-Order Thinking
GARMA Gegenbauer Autoregressive Moving Average
GD Gradient Descent
GDM Gradient Descent Momentum
GEV Generalized Extreme Value
IMP Internal Model Principle
IPL Inverse Power Law
ISE Integral Squared Error
LGD Long Range Dependence
LTI Linear Time Invariant
MAD Modeling, Analysis and Design
ML Machine Learning
MLL Mittag–Leffler Law
MNIST Modified National Institute of Standards and Technology Database
NAGD Nesterov Accelerated Gradient Descent
NDVI Normalized Difference Vegetation Index
NILT Numerical Inverse Laplace Transform
NN Neural Networks
PA Precision Agriculture
PDF Probability Density Function
PID Proportional, Integral, Derivative
PSO Particle Swarm Optimization
RBF Randomized Radial Basis Function (RBF) Networks
RGB Red, Green, Blue
RMSE Root Mean Squared Error
RVFL Random Vector Functional Link
RW-FNN Feed-Forward Networks with Random Weights
SCN Stochastic Configuration Network
SGD Stochastic Gradient Descent
SLFNNs Single-Layer Feed-Forward Neural Networks
UAVs Unmanned Aerial Vehicles
USDA United States Department of Agriculture
wGn White Gaussian Noise

Appendix A. SCN Codes

The Matlab and Python codes can be found at https://github.com/niuhaoyu16/
StochasticConfigurationNetwork (accessed on 2 February 2021).
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Abstract: In this article, we introduce the Skellam process of order k and its running average. We also
discuss the time-changed Skellam process of order k. In particular, we discuss the space-fractional
Skellam process and tempered space-fractional Skellam process via time changes in Skellam process
by independent stable subordinator and tempered stable subordinator, respectively. We derive the
marginal probabilities, Lévy measures, governing difference-differential equations of the introduced
processes. Our results generalize the Skellam process and running average of Poisson process in
several directions.

Keywords: Skellam process; subordination; Lévy measure; Poisson process of order k; running average

1. Introduction

The Skellam distribution is obtained by taking the difference between two independent Poisson
distributed random variables, which was introduced for the case of different intensities λ1, λ2 by
(see [1]) and for equal means in [2]. For large values of λ1 + λ2, the distribution can be approximated
by the normal distribution and if λ2 is very close to 0, then the distribution tends to a Poisson
distribution with intensity λ1. Similarly, if λ1 tends to 0, the distribution tends to a Poisson distribution
with non-positive integer values. The Skellam random variable is infinitely divisible, since it is the
difference of two infinitely divisible random variables (see Proposition 2.1 in [3]). Therefore, one can
define a continuous time Lévy process for Skellam distribution, which is called Skellam process.

The Skellam process is an integer valued Lévy process and it can also be obtained by taking
the difference of two independent Poisson processes. Its marginal probability mass function (pmf)
involves the modified Bessel function of the first kind. The Skellam process has various applications in
different areas, such as to model the intensity difference of pixels in cameras (see [4]) and for modeling
the difference of the number of goals of two competing teams in a football game [5]. The model based
on the difference of two point processes is proposed in (see [6–9]).

Recently, the time-fractional Skellam process has been studied in [10], which is obtained by
time-changing the Skellam process with an inverse stable subordinator. Further, they provided the
application of time-fractional Skellam process in modeling of arrivals of jumps in high frequency
trading data. It is shown that the inter-arrival times between the positive and negative jumps follow a
Mittag–Leffler distribution rather then the exponential distribution. Similar observations are observed
in the case of Danish fire insurance data (see [11]). Buchak and Sakhno, in [12], have also proposed the
governing equations for time-fractional Skellam processes. Recently, [13] introduced time-changed
Poisson process of order k, which is obtained by time changing the Poisson process of order k (see [14])
by general subordinators.

In this paper, we introduce Skellam process of order k and its running average. We also discuss
the time-changed Skellam process of order k. In particular, we discuss space-fractional Skellam process
and tempered space-fractional Skellam process via time changes in Skellam process by independent
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stable subordinator and tempered stable subordinator, respectively. We obtain closed form expressions
for the marginal distributions of the considered processes and other important properties. Skellam
process is used to model the difference between the number of goals between two teams in a football
match. At the beginning, both teams have scores 0 each and at time t the team 1 score is N1(t),
which is the cumulative sum of arrivals (goals) of size 1 until time t with exponential inter-arrival
times. Similarly for team 2, the score is N2(t) at time t. The difference between the number of goals
can be modeled using N1(t)− N2(t) at time t. Similarly, the Skellam process of order k can be used to
model the difference between the number of points scored by two competing teams in a basketball
match where k = 3. Note that, in a basketball game, a free throw is count as one point, any basket
from a shot taken from inside the three-point line counts for two points and any basket from a shot
taken from outside the three-point line is considered as three points. Thus, a jump in the score of any
team may be of size one, two, or three. Hence, a Skellam process of order 3 can be used to model the
difference between the points scored.

In [10], it is shown that the fractional Skellam process is a better model then the Skellam process
for modeling the arrivals of the up and down jumps for the tick-by-tick financial data. Equivalently,
it is shown that the Mittag–Leffler distribution is a better model than the exponential distribution for
the inter-arrival times between the up and down jumps. However, it is evident from Figure 3 of [10]
that the fractional Skellam process is also not perfectly fitting the arrivals of positive and negative
jumps. We hope that a more flexible class of processes like time-changed Skellam process of order k
(see Section 6) and the introduced tempered space-fractional Skellam process (see Section 7) would
be better model for arrivals of jumps. Additionally, see [8] for applications of integer-valued Lévy
processes in financial econometrics. Moreover, distributions of order k are interesting for reliability
theory [15]. The Fisher dispersion index is a widely used measure for quantifying the departure of
any univariate count distribution from the equi-dispersed Poisson model [16–18]. The introduced
processes in this article can be useful in modeling of over-dispersed and under-dispersed data. Further,
in (49), we present probabilistic solutions of some fractional equations.

The remainder of this paper proceeds, as follows: in Section 2, we introduce all the relevant
definitions and results. We also derive the Lévy density for space- and tempered space-fractional
Poisson processes. In Section 3, we introduce and study running average of Poisson process of order k.
Section 4 is dedicated to Skellam process of order k. Section 5 deals with running average of Skellam
process of order k. In Section 6, we discuss the time-changed Skellam process of order k. In Section 7,
we determine the marginal pmf, governing equations for marginal pmf, Lévy densities, and moment
generating functions for space-fractional Skellam process and tempered space-fractional Skellam
process.

2. Preliminaries

In this section, we collect relevant definitions and some results on Skellam process, subordinators,
space-fractional Poisson process, and tempered space-fractional Poisson process. These results will be
used to define the space-fractional Skellam processes and tempered space-fractional Skellam processes.

2.1. Skellam Process

In this section, we revisit the Skellam process and also provide a characterization of it. Let S(t) be
a Skellam process, such that

S(t) = N1(t)− N2(t), t ≥ 0,

where N1(t) and N2(t) are two independent homogeneous Poisson processes with intensity λ1 > 0 and
λ2 > 0, respectively. The Skellam process is defined in [8] and the distribution has been introduced and
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studied in [1], see also [2]. This process is only symmetric when λ1 = λ2. The pmf sk(t) = P(S(t) = k)
of S(t) is given by (see e.g., [1,10])

sk(t) = e−t(λ1+λ2)

(
λ1

λ2

)k/2
I|k|(2t

√
λ1λ2), k ∈ Z, (1)

where Ik is modified Bessel function of first kind (see [19], p. 375),

Ik(z) =
∞

∑
n=0

(z/2)2n+k

n!(n + k)!
. (2)

The pmf sk(t) satisfies the following differential difference equation (see [10])

d
dt

sk(t) = λ1(sk−1(t)− sk(t))− λ2(sk(t)− sk+1(t)), k ∈ Z, (3)

with initial conditions s0(0) = 1 and sk(0) = 0, k �= 0. For a real-valued Lévy process Z(t) the
characteristic function admits the form

E(eiuZ(t)) = etψZ(u), (4)

where the function ψZ is called characteristic exponent and it admits the following Lévy-Khintchine
representation (see [20])

ψZ(u) = iau− bu2 +
∫
R\{0}

(eiux − 1− iux1{|x|≤1})πZ(dx). (5)

Here, a ∈ R, b ≥ 0 and πZ is a Lévy measure. If πZ(dx) = νZ(x)dx for some function νZ, then νZ is
called the Lévy density of the process Z. The Skellam process is a Lévy process, its Lévy density νS is a
linear combination of two Dirac delta functions, νS(y) = λ1δ1(y) + λ2δ−1(y) and the corresponding
characteristic exponent is given by

ψS(1)(u) =
∫ ∞

−∞
(1− e−uy)νS(y)dy.

The moment generating function (mgf) of Skellam process is

E[eθS(t)] = e−t(λ1+λ2−λ1eθ−λ2e−θ), θ ∈ R. (6)

With the help of mgf, one can easily find the moments of Skellam process. In the next result, we give a
characterization of Skellam process, which is not available in literature as per our knowledge. For a
function h, we write h(δ) = o(δ) if limδ→0 h(δ)/δ = 0.

Theorem 1. Suppose that an arrival process has the independent and stationary increments and it also satisfies
the following incremental condition, then the process is Skellam.

P(S(t + δ) = m|S(t) = n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
λ1δ + o(δ), m > n, m = n + 1;

λ2δ + o(δ), m < n, m = n− 1;

1− λ1δ− λ2δ + o(δ), m = n;

o(δ) otherwise.
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Proof. Consider the interval [0,t], which is discretized with n sub-intervals of size δ each, such that
nδ = t. For k ≥ 0, we have

P(S(t) = k) =
[ n−k

2 ]

∑
m=0

n!
m!(m + k)!(n− 2m− k)!

(λ1δ)m+k(λ2δ)m(1− λ1δ− λ2δ)n−2m−k + o(δ)

=
[ n−k

2 ]

∑
m=0

n!
m!(m + k)!(n− 2m− k)!

(
λ1t
n

)m+k (
λ2t
n

)m (
1− λ1t

n
− λ2t

n

)n−2m−k
+ o(δ)

=
[ n−k

2 ]

∑
m=0

(λ1t)m+k(λ2t)m

m!(m + k)!
n!

(n− 2m− k)!n2m+k

(
1− λ1t

n
− λ2t

n

)n−2m−k
+ o(δ)

= e−(λ1+λ2)t
∞

∑
m=0

(λ1t)m+k(λ2t)m

m!(m + k)!
,

by taking n → ∞. The result follows now by using the definition of modified Bessel function of first
kind Ik. Similarly, it can be proved for k < 0.

2.2. Poisson Process of Order k

In this section, we recall the definition and some important properties of Poisson process of order
k (PPoK). Kostadinova and Minkova (see [14]) introduced and studied the PPoK. Let x1, x2, · · · , xk be
non-negative integers and ζk = x1 + x2 + · · ·+ xk, Πk! = x1!x2! . . . xk! and

Ω(k, n) = {X = (x1, x2, . . . , xk)|x1 + 2x2 + · · ·+ kxk = n}. (7)

Additionally, let {Nk(t)}t≥0, represent the PPoK with rate parameter λt, then probability mass function
(pmf) is given by

pNk

n (t) = P(Nk(t) = n) = ∑
X=Ω(k,n)

e−kλt (λt)ζk

Πk!
. (8)

The pmf of Nk(t) satisfies the following differential-difference equations (see [14])

d
dt

pNk

n (t) = −kλpNk

n (t) + λ
n∧k

∑
j=1

pNk

n−j(t), n = 1, 2, . . .

d
dt

pNk

0 (t) = −kλpNk

0 (t), (9)

with initial condition pNk

0 (0) = 1 and pNk
n (0) = 0 and n ∧ k = min{k, n}. The characteristic function of

PPoK Nk(t)

φNk(t)(u) = E[eiuNk(t)] = e−λt(k−∑k
j=1 eiuj), (10)

where i =
√−1. The process PPoK is Lévy, so it is infinite divisible i.e. φNk(t)(u) = (φNk(1)(u))

t.
The Lévy density for PPoK is easy to derive and it is given by

νNk (x) = λ
k

∑
j=1

δj(x),
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where δj is the Dirac delta function concentrated at j. The transition probability of the PPoK {Nk(t)}t≥0

is also given by Kostadinova and Minkova [14],

P(Nk(t + δ) = m|Nk(t) = n) =

⎧⎪⎪⎨⎪⎪⎩
1− kλδ, m = n;

λδ m = n + i, i = 1, 2, . . . , k;

0 otherwise.

(11)

The probability generating function (pgf) GNk
(s, t) is given by (see [14])

GNk
(s, t) = e−λt(k−∑k

j=1 sj). (12)

The mean, variance and covariance function of the PPoK are given by

E[Nk(t)] =
k(k + 1)

2
λt;

Var[Nk(t)] =
k(k + 1)(2k + 1)

6
λt;

Cov[Nk(t), Nk(s)] =
k(k + 1)(2k + 1)

6
λ(t ∧ s). (13)

2.3. Subordinators

Let Df (t) be a real valued Lévy process with non-decreasing sample paths and its Laplace
transform has the form

E[e−sDf (t)] = e−t f (s),

where
f (s) = bs +

∫ ∞

0
(1− exs)π(dx), s > 0, b ≥ 0,

is the integral representation of Bernstein functions (see [21]). The Bernstein functions are C∞,
non-negative and such that (−1)m dm

dxm f (x) ≤ 0 for m ≥ 1 [21]. Here, π denote the non-negative
Lévy measure on the positive half line, such that∫ ∞

0
(x ∧ 1)π(dx) < ∞, π([0, ∞)) = ∞,

and b is the drift coefficient. The right continuous inverse Ef (t) = inf{u ≥ 0 : Df (u) > t} is the
inverse and first exist time of Df (t), which is non-Markovian with non-stationary and non-independent
increments. Next, we analyze some special cases of Lévy subordinators with drift coefficient b = 0,

f (s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p log(1 + s

α ), p > 0, α > 0, (gamma subordinator);

(s + μ)α − μα, μ > 0, 0 < α < 1, (tempered α-stable subordinator);

δ(
√

2s + γ2 − γ), γ > 0, δ > 0, (inverse Gaussian subordinator);

sα, 0 < α < 1, (α-stable subordinator).

(14)

It is worth noting that, among the subordinators given in (14), all of the integer order moments of
α-stable subordinators are infinite and others subordinators have all finite moments.
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2.4. The Space-Fractional Poisson Process

In this section, we discuss the main properties of a space-fractional Poisson process (SFPP). We
also provide the Lévy density for SFPP, which is not discussed in the literature. The SFPP Nα(t) was
introduced by (see [22]), as follows

Nα(t) =

{
N(Dα(t)), t ≥ 0, 0 < α < 1,

N(t), t ≥ 0, α = 1,
(15)

where Dα(t) is an α-stable subordinator, which is independent of the homogeneous Poisson process
N(t).
The probability generating function (pgf) of this process is

GNα(s, t) = E[sNα(t)] = e−λα(1−s)αt, |s| ≤ 1, α ∈ (0, 1). (16)

The pmf of SFPP is

Pα(k, t) = P{Nα(t) = k} = (−1)k

k!

∞

∑
r=0

(−λα)rtr

r!
Γ(rα + 1)

Γ(rα− k + 1)

=
(−1)k

k! 1ψ1

[
(1, α);

(1− k, α);
(−λαt)

]
, (17)

where hψi(z) is the Fox Wright function (see formula (1.11.14) in [23]). It was shown in [22] that the
pmf of the SFPP satisfies the following fractional differential-difference equations

d
dt

Pα(k, t) = −λα(1− B)αPα(k, t), α ∈ (0, 1], k = 1, 2, . . . (18)

d
dt

Pα(0, t) = −λαPα(0, t), (19)

with initial conditions
Pα(k, 0) = δk,0, (20)

where δk,0 is the Kronecker delta function, given by

δk,0 =

{
0, k ≥ 1,

1, k = 0.
(21)

The fractional difference operator

(1− B)α =
∞

∑
j=0

(
α

j

)
(−1)jBj (22)

is defined in [24], where B is the backward shift operator. The characteristic function of SFPP is

E[eiuNα(t)] = e−λα(1−eiu)αt. (23)

Proposition 1. The Lévy density νNα(x) of SFPP is given by

νNα(x) = λα
∞

∑
n=1

(−1)n+1
(

α

n

)
δn(x). (24)
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Proof. We use Lévy-Khintchine formula (see [20]),

∫
R\{0}

(eiux − 1)λα
∞

∑
n=1

(−1)n+1
(

α

n

)
δn(x)dx

= λα

[
∞

∑
n=1

(−1)n+1
(

α

n

)
eiun +

∞

∑
n=0

(−1)n
(

α

n

)
− 1

]

= λα
∞

∑
n=0

(−1)n+1
(

α

n

)
eiun = −λα(1− eiu)α,

which is the characteristic exponent of SFPP from Equation (23).

2.5. Tempered Space-Fractional Poisson Process

The tempered space-fractional Poisson process (TSFPP) can be obtained by subordinating the
homogeneous Poisson process N(t) with the independent tempered stable subordinator Dα,μ(t)
(see [25])

Nα,μ(t) = N(Dα,μ(t)), α ∈ (0, 1), μ > 0. (25)

This process has finite integer order moments due to the tempered α-stable subordinator. The pmf of
TSFPP is given by (see [25])

Pα,μ(k, t) = (−1)ketμα
∞

∑
m=0

μm
∞

∑
r=0

(−t)r

r!
λαr−m

(
αr
m

)(
αr−m

k

)

= etμα (−1)k

k!

∞

∑
m=0

μmλ−m

m! 1ψ1

[
(1, α);

(1− k−m, α);
(−λαt)

]
, k = 0, 1, . . . . (26)

The governing difference-differential equation is given by

d
dt

Pα,μ(k, t) = −((μ + λ(1− B))α − μα)Pα,μ(k, t), k > 0. (27)

The characteristic function of TSFPP,

E[eiuNα,μ(t)] = e−t((μ+λ(1−eiu))α−μα). (28)

While using a standard conditioning argument, the mean and variance of TSFPP are given by

E[Nα,μ(t)] = λαμα−1t, Var[Nα,μ(t))] = λαμα−1t + λ2α(1− α)μα−2t. (29)

Proposition 2. The Lévy density νNα,μ(x) of TSFPP is

νNα,μ(x) =
∞

∑
n=1

μα−n
(

α

n

)
λn

n

∑
l=1

(
n
l

)
(−1)l+1δl(x), μ > 0. (30)
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Proof. Using (28), the characteristic exponent of TSFPP is given by ψNα,μ(u) = −((μ + λ(1− eiu))α −
μα). We find the Lévy density with the help of Lévy-Khintchine formula (see [20]),

∫
R\{0}

(eiux − 1)
∞

∑
n=1

μα−n
(

α

n

)
λn

n

∑
l=1

(
n
l

)
(−1)l+1δl(x)dx

=
∞

∑
n=1

μα−n
(

α

n

)
λn

(
n

∑
l=1

(
n
l

)
(−1)l+1eiux −

n

∑
l=1

(
n
l

)
(−1)l+1

)

=
∞

∑
n=0

μα−n
(

α

n

)
λn

n

∑
l=0

(
n
l

)
(−1)l+1δl(x)− μα

= −((μ + λ(1− eiu))α − μα),

hence proved.

Definition 1. A stochastic process X(t) is over-dispersed, equi-dispersed or under-dispersed [18], if the Fisher
index of dispersion, given by (see e.g., [17])

FI[X(t)] =
Var[X(t)]
E[X(t)]

is more than 1, equal to 1, or smaller than 1, respectively, for all t > 0.

Remark 1. Using (29), we have FI[Nα,μ(t)] = 1 + λ(1−α)
μ > 1, i.e. TSFPP Nα,μ(t) is over-dispersed.

3. Running Average of PPoK

In this section, we first introduced the running average of PPoK and their main properties.
These results will be used further to discuss the running average of SPoK.

Definition 2 (Running average of PPoK). We define the running average process Nk
A(t), t ≥ 0 by taking

time-scaled integral of the path of the PPoK (see [26]),

Nk
A(t) =

1
t

∫ t

0
Nk(s)ds. (31)

We can write the differential equation with initial condition Nk
A(0) = 0,

d
dt
(Nk

A(t)) =
1
t

Nk(t)− 1
t2

∫ t

0
Nk(s)ds.

Which shows that it has continuous sample paths of bounded total variation. We explored
the compound Poisson representation and distribution properties of running average of PPoK.
The characteristic of Nk

A(t) is obtained using the Lemma 1 of [26]. We recall Lemma 1 from [26]
for ease of reference.

Lemma 1. If Xt is a Lévy process and Yt its Riemann integral is defined by

Yt =
∫ t

0
Xsds,

then the characteristic functions of Y satisfies

φY(t)(u) = E[eiuY(t)] = et
(∫ 1

0 log φX(1)(tuz)dz
)

, u ∈ R. (32)
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Proposition 3. The characteristic function of Nk
A(t) is given by

φNk
A(t)

(u) = e
−tλ

(
k−∑k

j=1
(eiuj−1)

iuj

)
. (33)

Proof. Using the Equation (10), we have

∫ 1

0
log φNk(1)(tuz)dz = −λ

(
k−

k

∑
j=1

(eituzj − 1)
ituj

)
.

Using (32) and (31), we have

φNk
A(t)

(u) = et
(∫ 1

0 log φNk(1)(uz)dz
)
= e

−tλ
(

k−∑k
j=1

(eiuj−1)
iuj

)
.

Proposition 4. The running average process has a compound Poisson representation, such that

Y(t) =
N(t)

∑
i=1

Xi, (34)

where Xi = 1, 2, . . . are independent, identically distributed (iid) copies of X random variables, independent of
N(t) and N(t) is a Poisson process with intensity kλ. Subsequently,

Y(t) law
= Nk

A(t).

Further, the random variable X has the following pdf

fX(x) =
k

∑
i=1

pVi (x) fUi (x) =
1
k

k

∑
i=1

fUi (x), (35)

where Vi follows discrete uniform distribution over (0, k) and Ui follows continuous uniform distribution over
(0, i), i = 1, 2, . . . , k.

Proof. The pdf of Ui is fUi (x) = 1
i , 0 ≤ x ≤ i. Using (45), the characteristic function of X is given by

φX(u) =
1
k

k

∑
j=1

(eiuj − 1)
iuj

.

For fixed t, the characteristic function of Y(t) is

φY(t)(u) = e−kλt(1−φX(u)) = e
−tλ

(
k−∑k

j=1
(eiuj−1)

iuj

)
, (36)

which is equal to the characteristic function of PPoK that is given in (33). Hence, by the uniqueness of
characteristic function, the result follows.

Using the definition

mr = E[Xr] = (−i)r drφX(u)
dur , (37)
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the first two moments for random variable X given in Proposition (4) are m1 = (k+1)
4 and m2 =

1
18 [(k + 1)(2k + 1)]. Further, using the mean, variance, and covariance of compound Poisson process,
we have

E[Nk
A(t)] = E[N(t)]E[X] =

k(k + 1)
4

λt;

Var[Nk
A(t)] = E[N(t)]E[X2] =

1
18

[k(k + 1)(2k + 1)]λt;

Cov[Nk
A(t), Nk

A(s)] = E[Nk
A(t), Nk

A(s)]−E[Nk
A(t)]E[N

k
A(s)]

= E[Nk
A(s)]E[N

k
A(t− s)]−E[Nk

A(s)
2]−E[Nk

A(t)]E[N
k
A(s)]

=
1

18
[k(k + 1)(2k + 1)]λs− k2(k + 1)2

16
λ2s2, s < t.

Corollary 1. Putting k = 1, the running average of PPoK Nk
A(t) reduces to the running average of standard

Poisson process NA(t) (see Appendix in [26]).

Corollary 2. The mean and variance of PPoK and running average of PPoK satisfy, E[Nk
A(t)]/E[N

k(t)] = 1
2

and Var[Nk
A(t)]/Var[Nk(t)] = 1

3 .

Remark 2. The Fisher index of dispersion for running average of PPoK Nk
A(t) is given by FI[Nk

A(t)] =
2
9 (2k + 1). If k = 1 the process is under-dispersed and for k > 1 it is over-dispersed.

Next we discuss the long-range dependence (LRD) property of running average of PPoK. We
recall the definition of LRD for a non-stationary process.

Definition 3 (Long range dependence (LRD)). Let X(t) be a stochastic process that has a correlation function
for s ≥ t for fixed s, that satisfies,

c1(s)t−d ≤ Cor(X(t), X(s)) ≤ c2(s)t−d,

for large t, d > 0, c1(s) > 0 and c2(s) > 0. For the particular case when c1(s) = c2(s) = c(s), the above
equation reduced to

lim
t→∞

Cor(X(t), X(s))
t−d = c(s).

We say that, if d ∈ (0, 1), then X(t) has the LRD property and if d ∈ (1, 2) it has short-range dependence
(SRD) property [27].

Proposition 5. The running average of PPoK has LRD property.

Proof. Let 0 ≤ s < t < ∞, then the correlation function for running average of PPoK Nk
A(t) is

Cor[Nk
A(t), Nk

A(s)] =
(8(2k + 1)− 9(k + 1)kλs) s1/2t−1/2

8(2k + 1)
.

Subsequently, for d = 1/2, it follows

lim
t→∞

Cor[Nk
A(t), Nk

A(s)]
t−d =

(8(2k + 1)− 9(k + 1)kλs) s1/2

8(2k + 1)
= c(s).
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4. Skellam Process of Order k (SPoK)

In this section, we introduce and study the Skellam process of order k (SPoK).

Definition 4 (SPoK). Let Nk
1 (t) and Nk

2 (t) be two independent PPoK with intensities λ1 > 0 and λ2 > 0.
The stochastic process

Sk(t) = Nk
1 (t)− Nk

2 (t)

is called a Skellam process of order k (SPoK).

Proposition 6. The marginal distribution Rm(t) = P(Sk(t) = m) of SPoK Sk(t) is given by

Rm(t) = e−kt(λ1+λ2)

(
λ1

λ2

)m/2
I|m|(2tk

√
λ1λ2), m ∈ Z. (38)

Proof. For m ≥ 0, using the pmf of PPoK that is given in (8), it follows

Rm(t) =
∞

∑
n=0

P(Nk
1 (t) = n + m)P(Nk

2 (t) = n)Im≥0

=
∞

∑
n=0

⎛⎝ ∑
X=Ω(k,n+m)

e−kλ1t (λ1t)ζk

Πk!

⎞⎠⎛⎝ ∑
X=Ω(k,n)

e−kλ2t (λ2t)ζk

Πk!

⎞⎠ .

Setting xi = ni and n = x + ∑k
i=1(i− 1)ni, we have

Rm(t) = e−kt(λ1+λ2)
∞

∑
x=0

(λ2t)x

x!
(λ1t)m+x

(m + x)!

(
∑

n1+n2+...+nk=m+x

(
m + x

n1!n2! . . . nk !

))(
∑

n1+n2+...+nk=x

(
x

n1!n2! . . . nk !

))

= e−kt(λ1+λ2)
∞

∑
x=0

(λ2t)x

x!
(λ1t)m+x

(m + x)!
km+xkx ,

using the multinomial theorem and modified Bessel function given in (2). Similarly, it follows for
m < 0.

Proposition 7. The Lévy density for SPoK is

νSk (x) = λ1

k

∑
j=1

δj(x) + λ2

k

∑
j=1

δ−j(x).

Proof. The proof follows by using the independence of two PPoK used in the definition of SPoK.

Remark 3. Using (12), the pgf of SPoK is given by

GSk
(s, t) =

∞

∑
m=−∞

smRm(t) = e−t
(

k(λ1+λ2)−λ1 ∑k
j=1 sj−λ2 ∑k

j=1 s−j
)

. (39)

Further, the characteristic function of SPoK is given by

φSk(t)(u) = e−t[k(λ1+λ2)−λ1 ∑k
j=1 eiju−λ2 ∑k

j=1 e−iju ]. (40)

SPoK as a Pure Birth and Death Process

In this section, we provide the transition probabilities of SPoK at time t + δ, given that we started
at time t. Over such a short interval of length δ → 0, it is nearly impossible to observe more than k
event; in fact, the probability to see more than k event is o(δ).
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Proposition 8. The transition probabilities of SPoK are given by

P(Sk(t + δ) = m|Sk(t) = n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
λ1δ + o(δ), m > n, m = n + i, i = 1, 2, . . . , k;

λ2δ + o(δ), m < n, m = n− i, i = 1, 2, . . . , k;

1− kλ1δ− kλ2δ + o(δ), m = n;

o(δ) otherwise.

(41)

Basically, at most k events can occur in a very small interval of time δ. Additionally, even though the probability
for more than k event is non-zero, it is negligible.

Proof. Note that Sk(t) = Nk
1 (t)− Nk

2 (t). We call Nk
1 (t) as the first process and Nk

2 (t) as the second
process. For i = 1, 2, · · · , k, we have

P(Sk(t + δ) = n + i|Sk(t) = n) =
k−i

∑
j=1

P(the first process has i+j arrivals and the second process has j arrivals)

+ P(the first process has i arrivals and the second process has 0 arrivals) + o(δ)

=
k−i

∑
j=0

(λ1δ + o(δ))× (λ2δ + o(δ)) + (λ1δ + o(δ))× (1− kλ2δ + o(δ)) + o(δ)

= λ1δ + o(δ).

Similarly, for i = 1, 2, · · · , k, we have

P(Sk(t + δ) = n− i|Sk(t) = n) =
k−i

∑
j=1

P(the first process has j arrivals and the second process has i+j arrivals)

+ P(the first process has 0 arrivals and the second process has i arrivals) + o(δ)

=
k−i

∑
j=0

(λ1δ + o(δ))× (λ2δ + o(δ)) + (1− kλ1δ + o(δ))× (λ2δ + o(δ)) + o(δ)

= λ2δ + o(δ).

Further,

P(Sk(t + δ) = n|Sk(t) = n) =
k

∑
j=1

P(the first process has j arrivals and the second process has j arrivals)

+ P(the first process has 0 arrivals and the second process has 0 arrivals) + o(δ)

=
k

∑
j=0

(λ1δ + o(δ))× (λ2δ + o(δ)) + (1− kλ1δ + o(δ))× (1− kλ2δ + o(δ)) + o(δ)

= 1− kλ1δ− kλ2δ + o(δ).

Remark 4. The pmf Rm(t) of SPoK satisfies the following difference differential equation

d
dt

Rm(t) = −k(λ1 + λ2)Rm(t) + λ1

k

∑
j=1

Rm−j(t) + λ2

k

∑
j=1

Rm+j(t)

= −λ1

k

∑
j=1

(1− Bj)Rm − λ2

k

∑
j=1

(1− Fj)Rm(t), m ∈ Z,

with initial condition R0(0) = 1 and Rm(0) = 0 for m �= 0. Let B be the backward shift operator defined
in (22) and F be the forward shift operator defined by FjX(t) = X(t + j), such that (1− F)α = ∑∞

j=0 (
α
j)Fj.

Multiplying by sm and summing for all m in (42), we obtain the following differential equation for the pgf
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d
dt

GSk
(s, t) =

(
−k(λ1 + λ2) + λ1

k

∑
j=1

sj + λ2

k

∑
j=1

s−j

)
GSk

(s, t).

The mean, variance and covariance of SPoK can be easily calculated by using the pgf,

E[Sk(t)] =
k(k + 1)

2
(λ1 − λ2)t;

Var[Sk(t)] =
1
6
[k(k + 1)(2k + 1)] (λ1 + λ2)t;

Cov[Sk(t), Sk(s)] =
1
6
[k(k + 1)(2k + 1)] (λ1 + λ2)s, s < t.

Remark 5. For the SPoK, when λ1 > λ2, Var[Sk(t)]−E[Sk(t)] = k(k+1)
3 [(k− 1)λ1 + (k+ 2)λ2 > 0, which

implies that FI[Sk(t)] > 1 and hence Sk(t) exhibits over-dispersion. For λ1 < λ2, the process is under-dispersed.

Next, we show the LRD property for SPoK.

Proposition 9. The SPoK has LRD property defined in Definition 3.

Proof. The correlation function of SPoK satisfies

lim
t→∞

Cor(Sk(t), Sk(s))
t−d =

s1/2t−1/2

t−1/2 = c(s).

Hence, SPoK exhibits the LRD property.

5. Running Average of SPoK

In this section, we introduce and study the new stochastic Lévy process, which is the running
average of SPoK.

Definition 5. The following stochastic process defined by taking the time-scaled integral of the path of the SPoK,

Sk
A(t) =

1
t

∫ t

0
Sk(s)ds, (42)

is called the running average of SPoK.

Next, we provide the compound Poisson representation of running average of SPoK.

Proposition 10. The characteristic function φSk
A(t)

(u) = E[eiuSk
A(t)] of Sk

A(t) is given by

φSk
A(t)

(u) = e
−kt

{
λ1

(
1− 1

k ∑k
j=1

(eiuj−1)
iuj

)
+λ2

(
1− 1

k ∑k
j=1

(1−e−iuj)
iuj

)}
, u ∈ R. (43)

Proof. By using the Lemma 3.1 to Equation (40) after scaling by 1/t.

Remark 6. It is easily observable that Equation (43) has removable singularity at u = 0. To remove that
singularity, we can define φSk

A(t)
(0) = 1.
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Proposition 11. Let Y(t) be a compound Poisson process

Y(t) =
N(t)

∑
n=1

Jn, (44)

where N(t) is a Poisson process with rate parameter k(λ1 + λ2) > 0 and {Jn}n≥1 are iid random variables
with mixed double uniform distribution function pj, which are independent of N(t). Subsequently,

Y(t) law
= Sk

A(t).

Proof. Rearranging the φSk
A(t)

(u),

φSk
A(t)

(u) = e
(λ1+λ2)kt

(
λ1

λ1+λ2
1
k ∑k

j=1
(eiuj−1)

iuj +
λ2

λ1+λ2
1
k ∑k

j=1
(1−e−iuj)

iuj −1
)

The random variable J1 being a mixed double uniformly distributed has density

pJ1(x) =
k

∑
i=1

pVi (x) fUi (x) =
1
k

k

∑
i=1

fUi (x), (45)

where Vj follows discrete uniform distribution over (0, k) with pmf pVj(x) = P(Vj = x) = 1
k , j =

1, 2, . . . k, and Ui be doubly uniform distributed random variables with density

fUi (x) = (1− w)1[−i,0](x) + w1[0,i](x), −i ≤ x ≤ i.

Further, 0 < w < 1 is a weight parameter and 1(·) is the indicator function. Here, we obtained
the characteristic of J1 using the Fourier transform of (45),

φJ1(u) =
λ1

λ1 + λ2

1
k

k

∑
j=1

(eiuj − 1)
iuj

+
λ2

λ1 + λ2

1
k

k

∑
j=1

(1− e−iuj)

iuj
.

The characteristic function of Y(t) is

φY(t)(u) = e−kt(λ1+λ2)t(1−φJ1 (u)), (46)

putting the characteristic function φJ1(u) in the above expression yields the characteristic function of
Sk

A(t), which completes the proof.

Remark 7. The q-th order moments of J1 can be calculated using (37) and also using Taylor series expansion of
the characteristic φJ1(u), around 0, such that

(eiuj − 1)
iuj

= 1 +
∞

∑
r=1

(iuj)r

(r + 1)!
&

(1− e−iuj)

iuj
= 1 +

∞

∑
r=1

(−iuj)r

(r + 1)!
.
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We have m1 = (k+1)(λ1−λ2)
4(λ1+λ2)

and m2 = 1
18 [(k + 1)(2k + 1)]. Further, the mean, variance, and covariance

of running average of SPoK are

E[Sk
A(t)] = E[N(t)]E[J1] =

k(k + 1)
4

(λ1 − λ2)t

Var[Sk
A(t)] = E[N(t)]E[J2

1 ] =
1
18

[k(k + 1)(2k + 1)](λ1 + λ2)t

Cov[Sk
A(t), Sk

A(s)] =
1
18

[k(k + 1)(2k + 1)](λ1 − λ2)s− k2(k + 1)2

16
(λ1 − λ2)

2s2.

Corollary 3. For λ2 = 0 the running average of SPoK is same as the running average of PPoK, i.e.,

φSk
A(t)

(u) = φNk
A(t)

(u).

Corollary 4. For k = 1 this process behave like the running average of Skellam process.

Corollary 5. The ratio of mean and variance of SPoK and running average of SPoK are 1/2 and 1/3,
respectively.

Remark 8. For running average of SPoK, when λ1 > λ2 and k > 1, the process is over-dispersed. Otherwise,
it exhibits under-dispersion.

6. Time-Changed Skellam Process of Order k

We consider time-changed SPoK, which can be obtained by subordinating SPoK Sk(t) with the
independent Lévy subordinator Df (t) satisfying E[Df (t)]c < ∞ for all c > 0. The time-changed SPoK
is defined by

Zf (t) = Sk(Df (t)), t ≥ 0.

Note that the stable subordinator does not satisfy the condition E[Df (t)]c < ∞. The mgf of
time-changed SPoK Zf (t) is given by

E[eθZf (t)] = e−t f (k(λ1+λ2)−λ1 ∑k
j=1 eθ j−λ2 ∑k

j=1 e−θ j).

Theorem 2. The pmf Hf (t) = P(Zf (t) = m) of time-changed SPoK is given by

Hf (t) =
∞

∑
x=max(0,−m)

(kλ1)
m+x(kλ2)

x

(m + x)!x!
E[e−k(λ1+λ2)Df (t)D2m+x

f (t)], m ∈ Z. (47)

Proof. Let h f (x, t) be the probability density function of Lévy subordinator. Using conditional argument

Hf (t) =
∫ ∞

0
Rm(y)h f (y, t)dy

=
∫ ∞

0
e−ky(λ1+λ2)

(
λ1

λ2

)m/2
I|m|(2yk

√
λ1λ2)h f (y, t)dy

=
∞

∑
x=max(0,−m)

(kλ1)
m+x(kλ2)

x

(m + x)!x!

∫ ∞

0
e−k(λ1+λ2)yy2m+xh f (y, t)dy

=
∞

∑
x=max(0,−m)

(kλ1)
m+x(kλ2)

x

(m + x)!x!
E[e−k(λ1+λ2)Df (t)D2m+x

f (t)].
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The mean and covariance of time changed SPoK are given by,

E[Zf (t)] =
k(k + 1)

2
(λ1 − λ2)E[Df (t)].

Cov[Zf (t), Zf (s)] =
1
6
[k(k + 1)(2k + 1)](λ1 + λ2))E[Df (s)] +

k2(k + 1)2

4
(λ1 − λ2)

2Var[Df (s)].

7. Space Fractional Skellam Process and Tempered Space Fractional Skellam Process

In this section, we introduce time-changed Skellam processes where time-change are stable
subordinator and tempered stable subordinator. These processes give the space-fractional version of
the Skellam process similar to the time-fractional version of the Skellam process introduced in [10].

7.1. The Space-Fractional Skellam Process

In this section, we introduce space-fractional Skellam processes (SFSP). Further, for introduced
processes, we study main results, such as state probabilities and governing difference-differential
equations of marginal pmf.

Definition 6 (SFSP). Let N1(t) and N2(t) be two independent homogeneous Poison processes with intensities
λ1 > 0 and λ2 > 0,, respectively. Let Dα1(t) and Dα2(t) be two independent stable subordinators with indices
α1 ∈ (0, 1) and α2 ∈ (0, 1), respectively. These subordinators are independent of the Poisson processes N1(t)
and N2(t). The subordinated stochastic process

Sα1,α2(t) = N1(Dα1(t))− N2(Dα2(t))

is called a SFSP.

Next, we derive the mgf of SFSP. We use the expression for marginal (pmf) of SFPP that is given
in (17) to obtain the marginal pmf of SFSP.

Mθ(t) = E[eθSα1,α2 (t)] = E[eθ(N1(Dα1 (t))−N2(Dα2 (t)))] = e−t[λ
α1
1 (1−eθ)α1+λ

α2
2 (1−e−θ)α2 ], θ ∈ R.

In the next result, we obtain the state probabilities of the SFSP.

Theorem 3. The pmf Hk(t) = P(Sα1,α2(t) = k) of SFSP is given by

Hk(t) =
∞

∑
n=0

(−1)k

n!(n + k)!

(
1ψ1

[
(1, α1);

(1− n− k, α1);
(−λ1

α1 t)

])(
1ψ1

[
(1, α2);

(1− n, α2);
(−λ2

α2 t)

])
Ik≥0

+
∞

∑
n=0

(−1)|k|

n!(n + |k|)!

(
1ψ1

[
(1, α1);

(1− n, α1);
(−λ1

α1 t)

])(
1ψ1

[
(1, α2);

(1− n− |k|, α2);
(−λ2

α2 t)

])
Ik<0 (48)

for k ∈ Z.

Proof. Note that N1(Dα1(t)) and N2(Dα2(t)) are independent, hence

P(Sα1,α2(t) = k) =
∞

∑
n=0

P(N1(Dα1(t)) = n + k)P(N2(Dα2(t)) = n)Ik≥0

+
∞

∑
n=0

P(N1(Dα1(t)) = n)P(N2(Dα2(t)) = n + |k|)Ik<0.

Using (17), the result follows.
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In the next theorem, we discuss the governing differential-difference equation of the marginal
pmf of SFSP.

Theorem 4. The marginal distribution Hk(t) = P(Sα1,α2(t) = k) of SFSP satisfies the following differential
difference equations

d
dt

Hk(t) = −λ
α1
1 (1− B)α1 Hk(t)− λα2

2 (1− F)α2 Hk(t), k ∈ Z (49)

d
dt

H0(t) = −λα1
1 H0(t)− λα2

2 H1(t), (50)

with initial conditions H0(0) = 1 and Hk(0) = 0 for k �= 0.

Proof. The proof follows by using pgf.

Remark 9. The mgf of the SFSP solves the differential equation

dMθ(t)
dt

= −Mθ(t)(λ
α1
1 (1− eθ)α1 + λα2

2 (1− e−θ)α2). (51)

Proposition 12. The Lévy density νSα1,α2
(x) of SFSP is given by

νSα1,α2
(x) = λ1

α1
∞

∑
n1=1

(−1)n1+1
(

α1

n1

)
δn1(x) + λα2

2

∞

∑
n2=1

(−1)n2+1
(

α2

n2

)
δ−n2(x).

Proof. Substituting the Lévy density νNα1
(x) and νNα2

(x) of N1(Dα1(t)) and N2(Dα2(t)), respectively,
from the Equation (24), we obtain

νSα1,α2
(x) = νNα1

(x) + νNα2
(x),

which gives the desired result.

7.2. Tempered Space-Fractional Skellam Process (TSFSP)

In this section, we present the tempered space-fractional Skellam process (TSFSP). We discuss the
corresponding fractional difference-differential equations, marginal pmfs, and moments of this process.

Definition 7 (TSFSP). The TSFSP is obtained by taking the difference of two independent tempered space
fractional Poisson processes. Let Dα1,μ1(t), Dα2,μ2(t) be two independent TSS (see [28]) and N1(t), N2(t) be
two independent Poisson processes that are independent of TSS. Subsequently, the stochastic process

Sμ1,μ2
α1,α2 (t) = N1(Dα1,μ1(t)− N2(Dα2,μ2(t))

is called the TSFSP.

Theorem 5. The PMF Hμ1,μ2
k (t) = P(Sμ1,μ2

α1,α2 (t) = k) is given by

Hμ1,μ2
k (t) =

∞

∑
n=0

(−1)k

n!(n + k)!
et(μ

α1
1 +μ1α1 )

(
∞

∑
m=0

μm
1 λ−m

1
m! 1ψ1

[
(1, α1);

(1− n− k−m, α1);
(−λ1

α1 t)

])
×(

∞

∑
l=0

μ2
lλ2
−l

l! 1ψ1

[
(1, α2);

(1− l − k, α2);
(−λ2

α2 t)

])
(52)
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when k ≥ 0 and similarly for k < 0,

Hμ1,μ2
k (t) =

∞

∑
n=0

(−1)|k|

n!(n + |k|)! et(μ
α1
1 +μ1α1 )

(
∞

∑
m=0

μm
1 λ−m

1
m! 1ψ1

[
(1, α1);

(1− n−m, α1);
(−λ1

α1 t)

])
×(

∞

∑
l=0

μ2
lλ2
−l

l! 1ψ1

[
(1, α2);

(1− l − n− |k|, α2);
(−λ2

α2 t)

])
. (53)

Proof. Because N1(Dα1,μ1(t)) and N2(Dα2,μ2(t)) are independent,

P

(
Sμ1,μ2

α1,α2 (t) = k
)
=

∞

∑
n=0

P(N1(Dα1,μ1(t)) = n + k)P(N2(Dα2,μ2(t)) = n)Ik≥0

+
∞

∑
n=0

P(N1(Dα1,μ1(t)) = n)P(N2(Dα2,μ2(t)) = n + |k|)Ik<0,

which gives the marginal pmf of TSFPP using (26).

Remark 10. We use this expression to calculate the marginal distribution of TSFSP. The mgf is obtained using
the conditioning argument. Let fα,μ(x, t) be the density function of Dα,μ(t). Subsequently,

E[eθN(Dα,μ(t))] =
∫ ∞

0
E[eθN(u)] fα,μ(u, t)du = e−t{(λ(1−eθ)+μ)α−μα}. (54)

Using (54), the mgf of TSFSP is

E[eθS
μ1,μ2
α1,α2 (t)] = E

[
eθN1(Dα1,μ1 (t))

]
E

[
e−θN2(Dα2,μ2 (t))

]
= e−t[{(λ1(1−eθ)+μ1)

α1−μ
α1
1 }+{(λ2(1−e−θ)+μ2)

α2−μ
α2
2 }].

Remark 11. We have E[Sμ1,μ2
α1,α2 (t)] = t(λ1α1μα1−1

1 − λ2α2μα2−1
2 ). Further, the covariance of TSFSP can be

obtained by using (29) and

Cov
[
Sμ1,μ2

α1,α2 (t), Sμ1,μ2
α1,α2 (s)

]
= Cov[N1(Dα1,μ1(t)), N1(Dα1,μ1(s))] + Cov[N2(Dα2,μ2(t)), N2(Dα2,μ2(s))]

= Var(N1(Dα1,μ1(min(t, s))) + Var(N2(Dα2,μ2(min(t, s))).

Proposition 13. The Lévy density νS
μ1,μ2
α1,α2

(x) of TSFSP is given by

ν
Sμ1,μ2

α1,α2
(x) =

∞

∑
n1=1

μα1−n1
1

(
α1

n1

)
λ1

n1
n1

∑
l=1

(
n1

l1

)
(−1)l1+1δl1(x)

+
∞

∑
n2=1

μ2
α2−n2

(
α2

n2

)
λ2

n2
n2

∑
l2=1

(
n2

l2

)
(−1)l2+1δl2(x), μ1, μ2 > 0.

Proof. By adding Lévy density νNα1,μ1
(x) and νNα2,μ2

(x) of N1(Dα1,μ1(t)) and N2(Dα2,μ2(t)),
respectively, from Equation (30), which leads to

ν
Sμ1,μ2

α1,α2
(x) = νNα1,μ1

(x) + νNα2,μ2
(x).

7.3. Simulation of SFSP and TSFSP

We present the algorithm to simulate the sample trajectories for SFSP and TSFSP. We use Python 3.7
and its libraries Numpy and Matplotlib for the simulation purpose. It is worth mentioning that Python
is an open source and freely available software.
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Simulation of SFSP: fix the values of the parameters α1, α2, λ1 and λ2;

Step-1: generate independent and uniformly distributed random vectors U, V of size 1000 each
in the interval [0, 1];
Step-2: generate the increments of the α1-stable subordinator Dα1(t) (see [29]) with pdf fα1(x, t),

while using the relationship Dα1(t + dt)− Dα1(t)
d
= Dα1(dt) d

= (dt)
1

α1 Dα1(1), where

Dα1(1) =
sin(α1πU)[sin((1− α1)πU)]1/α1−1

[sin(πU)]1/α1 | log V|1/α1−1 ;

Step-3: generate the increments of Poisson distributed rvs N1(Dα1(dt)) with parameter
λ1(dt)1/α1 Dα1(1);
Step-4: cumulative sum of increments gives the space fractional Poisson process N1(Dα1(t))
sample trajectories; and,
Step-5: similarly generate N2(Dα2(t)) and subtract these to obtain the SFSP Sα1,α2(t).

We next present the algorithm for generating the sample trajectories of TSFSP.
Simulation of TSFSP: fix the values of the parameters α1, α2, λ1, λ2, μ1 and μ2.

Use the first two steps of previous algorithm for generating the increments of α-stable subordinator
Dα1(t).

Step-3: for generating the increments of TSS Dα1,μ1(t) with pdf fα1,μ1(x, t), we use the following
steps, called “acceptance-rejection method”;

(a) generate the stable random variable Dα1(dt);
(b) generate uniform (0, 1) rv W (independent from Dα1 );
(c) if W ≤ e−μ1Dα1 (dt), then Dα1,μ1(dt) = Dα1(dt) (“accept"); otherwise, go back to (a) (“reject").

Note that, here we used that fα1,μ1(x, t) = e−μ1x+μ
α1
1 t fα1(x, t), which implies

fα1,μ1 (x,t)(x,dt)
c fα1 (x,dt) =

e−μ1x for c = eμ1
α1 dt and the ratio is bounded between 0 and 1;

Step-4: generate Poisson distributed rv N(Dα1,μ1(dt)) with parameter λ1Dα1,μ1(dt)

Step-5: cumulative sum of increments gives the tempered space fractional Poisson process
N1(Dα1,μ1(t)) sample trajectories; and,
Step-6: similarly generate N2(Dα2,μ2(t)), then take difference of these to get the sample paths of
the TSFSPSμ1,μ2

α1,α2 (t).

The tail probability of α-stable subordinator behaves asymptotically as (see e.g., [30])

P(Dα(t) > x) ∼ t
Γ(1− α)

x−α, as x → ∞.

For α1 = 0.6 and α2 = 0.9 and fixed t, it is more probable that the value of the rv Dα1(t) is higher
than the rv Dα2(t). Thus, for same intensity parameter λ for Poisson process the process N(Dα1(t))
will have generally more arrivals than the process N(Dα2(t)) until time t. This is evident from the
trajectories of the SFSP in Figure 1, because the trajectories are biased towards positive side. The TSFPP
is a finite mean process, however SFPP is an infinite mean process and hence SFSP paths are expected
to have large jumps, since there could be a large number of arrivals in any interval.
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Figure 1. The left hand figure shows the sample trajectories of SFSP with parameters α1 = 0.6, α2 = 0.9,
λ1 = 6 and λ2 = 10. The sample trajectories of TSFSP are shown in the right figure with parameters
α1 = 0.6, α2 = 0.9, λ1 = 6, λ2 = 10, μ1 = 0.2 and μ2 = 0.5.
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Abstract: A simplified fractional order PID (FOPID) controller is proposed by the suitable definition
of the parameter relation with the optimized changeable coefficient. The number of the pending
controller parameters is reduced, but all the proportional, integral, and derivative components are
kept. The estimation model of the optimal relation coefficient between the controller parameters is es-
tablished, according to which the optimal FOPID controller parameters can be calculated analytically.
A case study is provided, focusing on the practical application of the simplified FOPID controller
to a permanent magnet synchronous motor (PMSM) speed servo. The dynamic performance of
the simplified FOPID control system is tested by motor speed control simulation and experiments.
Comparisons are performed between the control systems using the proposed method and those using
some other existing methods. According to the simulation and experimental results, the simplified
FOPID control system achieves the optimal dynamic performance. Therefore, the validity of the
proposed controller structure and tuning method is demonstrated.

Keywords: fractional order PID control; PMSM; frequency-domain control design; optimal tuning

1. Introduction

Recently, fractional calculus has attracted increasing interest in various fields of science
and engineering [1–4]. Fractional calculus is a generalization of the traditional integral and
differential operators from integer order to real number order [5–8]. Thus, it has a larger
feasible scope and greater flexibility in the system modeling and controller design methodology
than the classical integer order one [9–11]. Fractional control has aroused theoretical and
practical interest in the control community. Different kinds of fractional order controllers and
tuning methods have been introduced and studied [12–14].

The fractional order proportional-integral-derivative (FOPID) controller has the tunable
integral and differential orders, creating the possibility to provide better control perfor-
mance [15]. However, the design of the FOPID controller is also more difficult. Generally,
the tuning methods of the FOPID controller can mainly be divided into the analytic design
methods and the optimization methods. The classic frequency-domain method is a typical
analytic design method for the FOPI/D controller. Applying this method, three equations can
be derived from three frequency-domain specifications [16], according to which the controller
parameters can be calculated. However, with only three specifications, this method may
not be directly used to design the FOPID controller with five degrees of freedom. On the
other hand, the optimization design methods are based on iterative optimization [17,18].
Applying the optimization methods, the FOPID controller parameters are obtained by opti-
mizing an objective function characterizing the performance of the control system, under the

Entropy 2021, 23, 130. https://doi.org/10.3390/e23020130 https://www.mdpi.com/journal/entropy
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constraints corresponding to specific design requirements, such as the system stability and
sensitivity [19]. Thus, an optimal FOPID controller can be obtained using the optimization
method, but the optimization process requires sufficient time and computing capability.

In our previous work, an analytic design method was proposed for the FOPID controller,
according to the linear relation between the controller parameters [20]. On this basis, an im-
proved FOPID controller is proposed in this paper, building the nonlinear relation between
the integral gain Ki and derivative gain Kd, with a changeable coefficient. The optimal
coefficient is modeled using the numerical fitting method, based on its optimal distribution
with regard to the plant model characteristics and design specifications. With the estimated
model, the parameters of the optimal FOPID controller can be calculated analytically ac-
cording to the design specifications. Compared with our previous work, the improved
FOPID controller proposed in this paper can be applied to a larger scope of plant models
and design specifications because a more sophisticated relation between the controller
parameters is adopted.

A case study of the proposed controller on the PMSM speed control is provided.
The robustness to the gain variations, step response performance, and anti-load disturbance
performance of the FOPID control system are tested by simulations and experiments.
Comparisons are performed between the control systems using the proposed controller
and those using some existing FOPID controllers. The advantages of the proposed method
are demonstrated by simulation and experimental results.

The contributions of this paper mainly include: (1) The relations among the FOPID
controller parameters being reasonably defined with a changeable coefficient, obtaining a
simplified FOPID controller structure, but a complete P&I&D tunability. (2) The estimation
model of the optimal relation coefficient between the controller parameters is built, realizing
the optimal estimation of the fractional orders and the subsequent analytical calculation of
the remaining parameters of the controller.

The paper is organized as follows: The simplified FOPID controller and the corre-
sponding tuning method are proposed in Section 2. The estimation model of the optimal
relation coefficient is discussed and established in Section 3. In Sections 4 and 5, the appli-
cation of the improved FOPID controller to the PMSM speed control is studied. The robust-
ness and dynamic performance of the control system using the simplified FOPID controller
are verified by simulations and experiments. The conclusion is presented in Section 6.

2. Simplified FOPID Controller

The FOPID controller can be represented as (1),

C(s) = Kp

(
1 +

Ki

sλ
+ Kdsμ

)
, (1)

where Kp, Ki, and Kd represent the gains of the proportional, integral, and derivative compo-
nents, respectively; λ and μ are the real number orders with 0 < λ < 2 and 0 < μ < 2.

The typical unit negative feedback control system can be represented as Figure 1,
where G(s) and C(s) are the plant and controller, respectively, and nr and n are the reference
and output signals, respectively. The classic frequency-domain method depends on three
specifications, i.e., the gain crossover frequency ωc, the phase margin ϕm, and the slope of
the phase at ωc [21], yielding,

|C(jωc)G(jωc)| = 1, (2)

Arg[C(jωc)] + Arg[G(jωc)] = −π + ϕm, (3)

d[Arg[C(jω)G(jω)]]

dω

⏐⏐⏐⏐
ω=ωc

= 0, (4)

Therefore, the parameters of the FOPI or FOPD controllers can be calculated according to
these specifications. However, five pending parameters of the FOPID controller cannot be
solved according to only three equations.
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To solve this problem, a relation between Ki and Kd is proposed as (5),

Kd =
1

aKi
, (5)

where a is a changeable coefficient. The dynamic characteristics of the FOPID controller,
e.g., the overshoot and oscillation of the step response, are affected by the fractional orders
λ and μ. Taking advantage of a simple assumption [22], a relation between λ and μ is
proposed as (6),

λ = μ. (6)

Thus, the FOPID controller is converted into a simplified form,

C(s) = Kp

(
1 +

Ki

sλ
+

1
aKi

sλ

)
. (7)

The amplitude and phase of the simplified FOPID controller can be obtained,

|C(jω)| = Kp

√
P(ω)2 + Q(ω)2, (8)

Arg[C(jω)] = arctan
(

Q(ω)

P(ω)

)
, (9)

where:
P(ω) = 1 + Kiω

−λcos
(π

2
λ
)
+

1
aKi

ωλcos
(π

2
λ
)

, (10)

Q(ω) =
1

aKi
ωλsin

(π

2
λ
)
− Kiω

−λsin
(π

2
λ
)

. (11)

Figure 1. The closed-loop control system.

If ωc and ϕm are given as the design specifications, substituting (9) into (3) yields,

arctan
(

Q(ωc)

P(ωc)

)
+ Arg[G(jωc)] = −π + ϕm. (12)

Assuming that the coefficient a has been determined, denoting T as tan(−π + ϕm −
Arg[G(jωc)]), an equation relating Ki and λ can be obtained,

s1Ki
2 + s0Ki − 1

a
= 0, (13)

where:

s1 =
Tωc

−λcos
(

π
2 λ

)
+ ωc

−λsin
(

π
2 λ

)
ωcλsin

(
π
2 λ

)− Tωcλcos
(

π
2 λ

) , (14)

s0 =
T

ωcλsin
(

π
2 λ

)− Tωcλcos
(

π
2 λ

) . (15)

Substituting (9) into (4), another equation about Ki and λ is obtained,

λωc
λ−1

aKi
sin

(
π
2 λ

)
+ 2λ

aωc
sin(λπ) + M

ωc2λ Ki
2 + Mωc

2λ

aKi
2 + 2M

a cos(λπ)

+ 2Mωc
λ

aKi
cos

(
π
2 λ

)
+ λωc

λ−1Kisin
(

π
2 λ

)
+ 2M

ωcλ cos
(

π
2 λ

)
+ M = 0. (16)
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where:

M =
d[Arg[G(jω)]]

dω

⏐⏐⏐⏐
ω=ωc

. (17)

The integral gain Ki and order λ can be calculated by solving (13) and (16), and then,
the proportional gain Kp can also be calculated by solving (2). Thus, if a is determined,
all the parameters of the simplified FOPID controller can be calculated according to the
design specifications.

3. Estimation Model Establishment

According to the proposed tuning method, the coefficient a should be determined
before the calculation of the FOPID controller parameters. Thus, in order to improve the
control performance, the distribution of the optimal a should be studied. In this paper, we
concentrate on the third-order plant model described by (18),

G(s) =
K

s3 + τ1s2 + τ2s
, (18)

where K, τ1, and τ2 are the parameters of the plant. The estimation model of a is established
in the hyperspace defined by the ranges of the plant model parameters (τ1, τ2) and the
design specifications (ωc, ϕm). The ranges of τ1 and τ2 are determined according to the
parameters of the plant models in actual applications, while those of ωc and ϕm are
determined according to the design requirements. In this paper, the range of τ1 is set from
90 to 180 and that of τ2 is set from 6000 to 11,000. The range of the gain crossover frequency
ωc is set from 35 rad/s to 70 rad/s, and that of the phase margin ϕm is set from 30◦ to 60◦,
covering the design requirements of a class of motion control systems [23].

3.1. Optimal Samples’ Collection

Several values of τ1 and τ2 are uniformly selected from their ranges, respectively,
obtaining (τ1,1, τ1,2, ..., τ1,m) and (τ2,1, τ2,2, ..., τ2,n). Since the plant model gain K has no
influence on the estimation of a, it is given a fixed value. Thus, several test models can be
established by combining the values of τ1 and τ2,

Gi,j(s) =
K

s3 + τ1,is2 + τ2,js
, (19)

where i = 1, 2, ..., m, j = 1, 2, ..., n. Similarly, several values of ωc (ωc,1, ωc,2, ..., ωc,p) and ϕm
(ϕm,1, ϕm,2, ..., ϕm,q) are selected from their ranges to be the given design specifications.

The integral of time and absolute error (ITAE) is adopted as the loss function to
evaluate the dynamic performance of the control system,

J =
∫ ∞

0
t|e(t)|dt, (20)

where e(t) represents the error between the reference and output signals.
The optimal sample of a for each test model (τ1, τ2) and design index (ωc, ϕm) is collected

following the steps shown in Figure 2. An accuracy threshold σ is set for the search of the
optimal a. If the value resolution of the obtained a is smaller than σ, this value is considered
to be the optimum; otherwise, another loop of search needs to be performed in a smaller
range of a. For example, as shown in Figure 3, if the kth value of a, ak, is the current optimal
value, but its resolution is larger than σ, namely ak+1 − ak > σ, then a new range of a will be
created as (ak−1, ak+1), in which a new optimum will be obtained.
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Figure 2. The determining process of the optimal a.

Figure 3. The construction of the new range of a.

According to the model parameter ranges, several values of τ1: 90, 100, ..., 180,
and τ2: 6000, 6200, ..., 11,000, are selected to generate the test models. Similarly, several
values of ωc: 34 rad/s, 36 rad/s, ..., 70 rad/s and ϕm: 30◦, 32◦, ..., 60◦ are selected to be the
design specifications. The initial range of a is from 0.001 to 500. The accuracy threshold σ is
0.001. Thus, following the steps shown in Figure 2, the optimal values of a corresponding
to all the test models and design specifications are collected.
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3.2. Estimation Model Establishment

Given the design specifications (ωc, ϕm), an optimal FOPID controller can be designed
for a plant model G(s), according to an optimal value of a, which depends on the plant
model characteristics (τ1, τ2) and design specifications (ωc, ϕm). The estimation model is
established to approximate the distribution law of the optimal a.

Firstly, the distribution of the optimal a for a single plant model with regard to ωc
and ϕm is studied. Taking the test model G2,5(s) (τ1 = 100, τ2 = 6800) as an example,
the optimal values of a corresponding to different given crossover frequencies ωc and a
fixed phase margin ϕm (ϕm = 30◦) are selected and plotted as the ωc–a relation curve in
Figure 4. According to Figure 4, the distribution of the optimal a can be approximated as
a curve.
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Figure 4. The ωc–a relation curve with ϕm fixed to be 30◦.

The ωc–a relation curves of different ϕm for test model G2,5(s) are plotted in Figure 5.
It can be seen that the ωc–a relation curves corresponding to different ϕm are close to each
other. Thus, an assumption is adopted to simplify the analysis, i.e., the difference between
the ωc–a relation curves corresponding to different ϕm can be ignored. Therefore, for the
same plant model, the optimal value of a is assumed to be only determined by ωc.

Adopting the simplifying assumption, an estimation model needs to be built for the
mean values of the optimal a. The ωc–mean a relation corresponding to G2,5(s) is plotted
as data spots in Figure 6.

It can be seen that the mean a values with regard to ωc obey an obvious distribution
law, which can be described by an exponential function,

a = A(τ1, τ2)eB(τ1,τ2)ωc , (21)

where A and B are the coefficients determined by the model parameters τ1 and τ2. The val-
ues of A and B can be obtained using the numerical fitting methods. The fitting function is
plotted as the red curve in Figure 6. Fitting the ωc–mean a relations of all the plant models,
the values of A and B corresponding to different plant models: Ai,j and Bi,j, are obtained,
where the subscript i corresponds to that of τ1,i and the subscript j corresponds to that of
τ2,j, i = 1, 2, ..., m, j = 1, 2, ..., n.
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Figure 5. The ωc–a relation curves correspond to different ϕm.
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Figure 6. The ωc–mean a relation and fitting curve of the test model G2,5(s).

Secondly, the relation between the coefficient A and the model parameters (τ1, τ2)
is studied. Taking τ2/τ1 as the abscissa and the corresponding coefficient A as the ordi-
nate, the distribution of A with regard to τ2/τ1 is plotted in Figure 7. As can be seen,
the distribution of A with regard to τ2/τ1 can be approximated as a curve.
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Figure 7. The distribution of A with regard to τ2/τ1.

The τ2/τ1–A relation is plotted again in Figure 8, without distinguishing the data
spots corresponding to different plant models. According to the distribution of the data
spots, the τ2/τ1–A relation can be fitted by a model with two exponential functions,

A(τ1, τ2) = MeP τ2
τ1 + NeQ τ2

τ1 , (22)

where M, N, P, and Q are the model coefficients, which can be obtained using numerical
fitting methods. The fitting function is plotted as the red curve in Figure 8.
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Figure 8. The τ2/τ1–A relation and the fitting curve.
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Thirdly, the three-dimensional distribution of coefficient B with regard to τ1 and τ2 is
plotted in Figure 9.

6000

7000

8000

9000

10 000

11 000

100
120

140
160

180

−0.2

−0.15

−0.1

−0.05

0

 

τ
1τ

2

 

B

Figure 9. The distribution of B with regard to τ1 and τ2.

Taking τ1 and τ2 as the independent variables, the (τ1, τ2)–B relation can be fitted by a
cubic polynomial function,

B(τ1, τ2)= p00+p10τ2+p01τ1+p20τ2
2+p11τ2τ1+p02τ1

2+p30τ2
3+p21τ2

2τ1+p12τ2τ1
2, (23)

where p00, p10, p01, p20, p11, p02, p30, p21, and p12 are the model coefficients, which can
be obtained using the numerical fitting methods. Therefore, all the coefficients of the
estimation model are obtained.

4. Simulation Study

4.1. Feasible Region Study

The design flexibility of the proposed FOPID controller can be verified by studying the
feasible regions of the design specifications. The feasible region of the design specifications
includes the (ωc, ϕm) combinations, according to which the reasonable FOPID controller
can be obtained by solving (2)–(4). To demonstrate the advantage of the proposed method,
the feasible region of the simplified FOPID controller is compared with those of the FOPI
and IOPID controllers.

Taking the test model G1,26(s) (τ1 = 90, τ2 = 11,000) as an example, the feasible regions
of the FOPI, IOPID, and FOPID controllers are plotted in Figures 10–12, respectively, where
the feasible design specifications are marked in blue. According to Figure 10, if the design
specifications are in the region where both ωc and ϕm are large, we are unable to design an
FOPI controller to satisfy (2)–(4) simultaneously. Similarly, according to Figure 11, we are
unable to design an IOPID controller if both ωc and ϕm are small. In contrast, according to
Figure 12, the feasible region of the FOPID controller covers the entire region of the design
specifications. Therefore, the proposed FOPID controller achieves more design options and
flexibility than the FOPI and IOPID controllers.
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Figure 10. The feasible region of the FOPI controller.
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Figure 11. The feasible region of the IOPID controller.
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Figure 12. The feasible region of the FOPID controller.

4.2. PMSM Speed Servo Plant

The proposed estimation model and tuning method are applied to design the FOPID
controllers for a class of PMSM speed servo systems. Applying the d− q coordinates and
the field-oriented control scheme, the dynamic characteristics of a PMSM can be described
by the following equations,

uq = Riq + Lq
diq
dt

+ Cen, (24)

GD2

375
dn
dt

= Cmiq − TL, (25)

where uq and iq are the q-axis voltage and current, respectively, R is the stator resistance, Lq
is the q-axis stator inductance, Ce is the induced voltage constant, n is the motor speed in
revolutions per minute (RPM), Cm is the torque constant, TL is the load disturbance torque,
and GD2 is the flywheel inertia.

In the PMSM servo system, the q-axis voltage is often supplied by the pulse-width
modulation (PWM) inverter, whose dynamic characteristics can be approximated by a
first-order filter with time constant Ts. Adopting a PI controller as the feedback controller
of the q-axis current,

Ci(s) = Ks(1 +
1

Tss
), (26)

the q-axis voltage can be obtained as:

uq(s) =
Ks

Tss
(iqr(s)− iq(s)), (27)

where iqr is the q-axis reference current. Thus, according to (24), (25), and (27), the transfer
function of the PMSM speed servo plant (from iqr to n) can be represented as:

G(s) =
Ks

CeTmTsTl

s3 + 1
Tl

s2 + KsK1
RTsTl

s
, (28)
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where Tl is the electromagnetic time constant, Tl = L/R, and Tm is the electromechanical
time constant, Tm = GD2R/(375CeCm). The transfer function of the PMSM speed servo
plant model used in this paper is described as:

G(s) =
47, 979.257

s3 + 127.38s2 + 9995.678s
. (29)

4.3. Gain Robustness Study

Taking the PMSM speed servo as the plant model, setting the design specifications
as ωc = 40 rad/s and ϕm = 55◦, the optimal coefficient a is estimated as 9.968. Thus,
the FOPID controller is obtained,

C1(s) = 8.032
(

1 +
13.207
s0.983 + 0.0076s0.983

)
. (30)

The open-loop Bode diagram of the PMSM servo system using the FOPID controller
is shown in Figure 13. It can be seen that the magnitude and phase characteristics of the
control system satisfy the design specifications. The phase characteristic has zero slope
at ωc. Thus, the systems with gain variations will have similar phase margins as the
nominal system.
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Figure 13. The open-loop Bode diagram of the control system.

The step response is performed to test the overshoots of the control systems with gain
variations. The nominal gain of the plant is multiplied by 120% and 80% to simulate the
gain variations. The step responses of the nominal system and those with gain variations
are shown in Figure 14.

It can be seen that the responses of the control systems with gain variations have similar
overshoots, satisfying the robustness requirement.
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Figure 14. The step responses of the simplified FOPID control systems with different loop-gains (simulation).

4.4. Comparisons with Some Existing Methods

An optimization-based tuning method was proposed in [24], with the sensitivity and
complementary sensitivity functions introduced as the constraints. Applying this method,
an optimal FOPID controller is designed for the PMSM speed control system,

C3(s) = 8.896
(

1 +
29.815
s1.299 + 0.0685s0.403

)
. (31)

The gain crossover frequency of the obtained control system is ωc = 51.6 rad/s, and the
phase margin is ϕm = 50◦. According to these design specifications, the optimal coefficient
a is estimated as 5.047, and the FOPID controller is obtained,

C4(s) = 10.451
(

1 +
21.017
s0.991 + 0.0094s0.991

)
. (32)

The step response simulation is performed, using the optimal FOPID controller C3(s)
(denoted as opt-FOPID) and the proposed FOPID controller C4(s) (denoted as a-FOPID) as
the speed controllers, respectively. To guarantee a fair comparison, the two systems are
made to have similar rising times. The response curves and the performance indexes are
shown in Figure 15 and Table 1, respectively.

The load disturbance response simulation is also performed to test the anti-load distur-
bance performance of the control systems. The response curves and performance indexes are
shown in Figure 16 and Table 2, respectively.

Table 1. The step response performance indexes of the control systems using the optimal (opt)-FOPID
and a-FOPID (simulation).

Control System Settling Time (s) Overshoot (%)

opt-FOPID 0.313 19.49
a-FOPID 0.255 21.46
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Figure 15. The step responses of the control systems using the opt-FOPID and a-FOPID (simulation).
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Figure 16. The load disturbance responses of the control systems using the opt-FOPID and a-FOPID (simulation).

Table 2. The anti-load disturbance performance indexes of the control systems using the opt-FOPID
and a-FOPID (simulation).

Control System Recovery Time (s) Dynamic Speed Drop (%)

opt-FOPID 0.080 2.19
a-FOPID 0.055 1.83

According to Figure 15 and Table 1, the responses of two systems have similar over-
shoots, but the system using the a-FOPID has a shorter settling time. Therefore, the system
using the a-FOPID achieves better step response performance. According to Figure 16 and
Table 2, the response of the system using the a-FOPID has a smaller speed drop and a
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shorter recovery time. Therefore, the system using the a-FOPID achieves better anti-load
disturbance performance.

A Bode shaping-based tuning method for the FOPID controller is proposed in [25].
Applying this method, a FOPID controller is designed for the PMSM control system,

C5(s) = 7.532
(

1 +
49.843
s1.27 + 0.0604s0.556

)
. (33)

The gain crossover frequency of the obtained control system is ωc = 41.5 rad/s,
and the phase margin is ϕm = 55.7◦. According to these design specifications, the optimal
coefficient a is estimated as 9.128, and the FOPID controller is obtained,

C6(s) = 8.362
(

1 +
13.628
s0.986 + 0.008s0.986

)
. (34)

Step response simulation is performed, using the Bode shaping-based FOPID con-
troller C5(s) (denoted as BS-FOPID) and the proposed FOPID controller C6(s) (denoted as
a-FOPID) as the speed controllers, respectively. The response curves and the performance
indexes are shown in Figure 17 and Table 3, respectively. The load disturbance response
simulation is also performed. The response curves and performance indexes are shown in
Figure 18 and Table 4, respectively.
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Figure 17. The step responses of the control systems using the Bode shaping-based (BS)-FOPID and
a-FOPID (simulation).

Table 3. The step response performance indexes of the control systems using the BS-FOPID and
a-FOPID (simulation).

Control System Settling Time (s) Overshoot (%)

BS-FOPID 0.408 24.24
a-FOPID 0.292 22.44

According to Figure 17 and Table 3, the response of the system using the a-FOPID has
a smaller oscillation and a shorter settling time. Therefore, the system using the a-FOPID
achieves better step response performance. According to Figure 18 and Table 4, the two
responses have a similar speed drop and recovery time, but the response of the system
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using the a-FOPID has a smaller oscillation. Therefore, the system using the a-FOPID
achieves better anti-load disturbance performance.
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Figure 18. The load disturbance responses of the control systems using the BS-FOPID and a-FOPID (simulation).

Table 4. The anti-load disturbance performance indexes of the control systems using the BS-FOPID
and a-FOPID (simulation).

Control System Recovery Time (s) Dynamic Speed Drop (%)

BS-FOPID 0.075 2.30
a-FOPID 0.082 2.22

5. Experimental Study

Figure 19 shows the PMSM speed control platform used in this paper. The PMSM is
the model Sanyo-P10B18200BXS PMSM. In the experiments, the fractional order operator
sr is realized by applying the impulse invariant discretization method [26].

Figure 19. The PMSM speed control platform.
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5.1. Gain Robustness Study

Step response experiments are performed to test the gain robustness of the control
system using the proposed FOPID controller. The proportional gain of the FOPID controller
is multiplied by 120% and 80% to simulate the gain variations. The step responses of the
nominal system and those with gain variations are shown in Figure 20.
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Figure 20. The step responses of the simplified FOPID control systems with different loop-gains (experiment).

According to Figure 20, similar to the simulation result, the responses of the control
systems with gain variations have similar overshoots, satisfying the robustness requirement.

5.2. Comparisons with Some Existing Methods

Step response experiments are performed, using the optimal FOPID controller C3(s)
(opt-FOPID) and the proposed FOPID controller C4(s) (a-FOPID) as the speed controllers,
respectively. The response curves and the performance indexes are shown in Figure 21 and
Table 5, respectively. The load disturbance response simulation is also performed to test
the anti-load disturbance performance of the control systems. The response curves and
performance indexes are shown in Figure 22 and Table 6, respectively.

According to Figure 21 and Table 5, similar to the simulation result, the responses
of the two systems have similar overshoots, but the response of the system using the
a-FOPID has a shorter settling time. Therefore, the system using the a-FOPID achieves
better step response performance. According to Figure 22 and Table 6, the responses of two
systems have similar speed drops, but the response of the system using the a-FOPID has a
shorter recovery time. Therefore, the system using the a-FOPID achieves better anti-load
disturbance performance.

Table 5. The step response performance indexes of the control systems using the opt-FOPID and
a-FOPID (experiment).

Control System Settling Time (s) Overshoot (%)

opt-FOPID 0.325 23.61
a-FOPID 0.273 21.91
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Figure 21. The step responses of the control systems using the opt-FOPID and a-FOPID (experiment).
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Figure 22. The load disturbance responses of the control systems using the opt-FOPID and a-FOPID
(experiment).

Table 6. The anti-load disturbance performance indexes of the control systems using the opt-FOPID
and a-FOPID (experiment).

Control System Recovery Time (s) Dynamic Speed Drop (%)

opt-FOPID 0.255 2.55
a-FOPID 0.195 2.30

Step response experiments are performed, using the Bode shaping-based FOPID con-
troller C5(s) (BS-FOPID) and the simplified FOPID controller C6(s) (a-FOPID) as the speed
controllers, respectively. The response curves and the performance indexes are shown in
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Figure 23 and Table 7, respectively. The load disturbance response simulation is also per-
formed to test the anti-load disturbance performance of the control systems. The response
curves and performance indexes are shown in Figure 24 and Table 8, respectively.
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Figure 23. The step responses of the control systems using the BS-FOPID and a-FOPID (experiment).

Table 7. The step response performance indexes of the control systems using the BS-FOPID and
a-FOPID (experiment).

Control System Settling Time (s) Overshoot (%)

BS-FOPID 0.452 18.45
a-FOPID 0.324 15.89
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Figure 24. The load disturbance responses of the control systems using the BS-FOPID and a-FOPID (experiment).
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Table 8. The anti-load disturbance performance indexes of the control systems using the BS-FOPID
and a-FOPID (experiment).

Control System Recovery Time (s) Dynamic Speed Drop (%)

BS-FOPID 0.265 2.52
a-FOPID 0.236 2.83

According to Figure 23 and Table 7, the response of the system using the a-FOPID has
a smaller overshoot and a shorter settling time. Therefore, the system using the a-FOPID
achieves better step response performance. According to Figure 24 and Table 8, the speed
drops and recovery time of two responses are close to each other, but the response of
the system using the a-FOPID has smaller oscillation. Therefore, the system using the
a-FOPID achieves better anti-load disturbance performance. From the simulation and
experimental results, the simplified FOPID controller achieves flexible tuning capability,
sufficient robustness to gain variations, and the optimal step response performance.

6. Conclusions

A simplified FOPID controller is proposed by building the relations between the
controller parameters. An estimation model for the optimal relation coefficient a is built for
a class of third-order models, according to which the optimal FOPID controller controllers
can be obtained analytically. An actual application of the proposed controller and tuning
method on the PMSM speed servo is studied by simulation and experiments, verifying
the robustness and dynamic performance of the simplified FOPID control system. The ad-
vantages of the proposed method are demonstrated by the comparisons with some other
existing methods. Some issues may be studied in the future works, such as improving
the relation between the fractional orders and applying the simplified FOPID controller to
other classes of plants.
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Abstract: In this paper, we explore the advantages of a fractional calculus based watermarking
system for detecting Gaussian watermarks. To reach this goal, we selected a typical watermarking
scheme and replaced the detection equation set by another set of equations derived from fractional
calculus principles; then, we carried out a statistical assessment of the performance of both schemes
by analyzing the Receiver Operating Characteristic (ROC) curve and the False Positive Percentage
(FPP) when they are used to detect Gaussian watermarks. The results show that the ROC of a
fractional equation based scheme has 48.3% more Area Under the Curve (AUC) and a False Positives
Percentage median of 0.2% whilst the selected typical watermarking scheme has 3%. In addition, the
experimental results suggest that the target applications of fractional schemes for detecting Gaussian
watermarks are as a semi-fragile image watermarking systems robust to Gaussian noise.

Keywords: fractional calculus; Gaussian watermarks; statistical assessment; false positive rate;
semi-fragile watermarking system

1. Introduction

Digital watermarking has gained popularity in the past few decades as a copyright
enforcement tool. It is an active research field that includes applications such as data
authentication and data indexing among other practical applications [1–3]. The scenario of
copyright enforcement is as follows: the copyright holder wants to exploit some digital
media, so he embeds a watermark under the premise that, in case of an unauthorized
person exploiting the media, the copyright holder would be able to demonstrate in court
that his watermark was embedded in the media and hence he owns all rights to the media.

A watermarking system embeds a signal, called the watermark, into another signal
known as the cover; a cover might be digital media such as an image, audio, video, or other
digital media. Most of the proposed watermarking systems generate a pseudo-random
signal (the watermark) using a user’s key and then embeds this watermark into the cover;
conversely, the watermarking system is able to detect the watermark or even retrieve it from
the watermarked cover. If watermark samples are in the set {−1,1}, then the watermark is

Entropy 2021, 23, 255. https://doi.org/10.3390/e23020255 https://www.mdpi.com/journal/entropy
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called binary; sometimes, designers let the watermark be a pseudo-random sequence with
Gaussian distribution, this kind or watermark is called a Gaussian Watermark.

A watermarking system can have two types of errors during its attempt to detect a
watermark:

Error type I: The system failed to find a watermark; this is called a False Negative (FN).
Error type II: The system found a given watermark even when either no watermark or

another watermark was embedded; this is called False Positive (FP).

A FP is considered flawed that must be avoided because this might lead to a legal
dispute on the copyrights of the digital media. For this reason, systems that exhibit a high
FPP are impractical and thus excluded from literature. Usually, a watermarking system has
a negligible FPP for detecting binary watermarks; conversely, some systems might have a
high FPP when detecting Gaussian watermarks.

To clarify this issue, consider the following example: Figure 1 (left) shows an image wa-
termarked with a Gaussian watermark. Only one watermark was embedded; however, the
system detects several watermarks as if they were actually embedded as shown in Figure 1
(right). Assuming that a court acknowledges as the copyright owner any individual who
claims the rights to some digital media granted, he can prove that the watermarking system
detects his watermark within the media. Under these conditions, an attacker would have to
search for a watermark that produces a positive detection and could then claim ownership
of the media, causing a legal dispute.

Figure 1. Faulty detection of a Gaussian watermark due to False Positives. (left) Watermarked image.
g = 5, PSNR = 34.14 dB. (right) The systems verify the presence of several watermarks; the cases
that fall in the red zone are False Positives.

To help to mitigate this issue, we proposed in a previous paper to replace the detection
equations of watermarking systems to reduce the FPP. Although results were interesting
and seem promising, our tests were not conclusive due to the low number of images in the
database used in the experiments; thus, the purpose of this paper is to fill the remaining
gaps in our previous proposal by analyzing the cases we left unexplored using a bigger
image database. In this paper, we put our early proposal on a firmer basis, we:

• Assessed statistically meaningful results by extending the data set up to 10,000 images.
• Carried out a statistical analysis to compare the FPP of the original watermarking

scheme versus the corresponding version with detection equations derived from
fractional calculus.

• Evaluated the quality of both schemes as a watermark detector by comparing their
ROC curves.
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• Examined the successful detection rate after performing a number of signal process-
ing operations on the watermarked images to define robustness of the system and
recommend target applications of fractional detector equations.

• Complemented our previous study about binary watermarks with this study about
Gaussian watermarks.

With these results as a basis, we expect designers of watermarking systems to take
advantage of Gaussian watermarks when appropriate to meet their design goals. At the
moment, it is difficult to detect watermarks using simple equations, so we look forward to
providing an alternative to reuse previously proposed schemes by using fractional calculus
based equations.

The usage scenarios for such schemes include:

• The system designer wants to enhance the discriminative power of a system already
proposed.

• The watermark is some information that closely holds the Gaussian distribution.
• The complexity of the watermarking system has to be low.

Another scenario will be discussed later.
The rest of the paper is organized as follows: in Section 2, we review the background

of the analyzed watermarking scheme. A discussion about related works is presented in
Section 3. Section 4 presents a Fractional Scheme for watermarking. In Section 5, we discuss
the materials and methods of analysis used to carry out the experiments; next, in Section 6,
we present the experimental results; then, in Section 7, we discuss the experimental results
and present the conclusions, and finally the references are in the last section.

2. The Watermarking Model

Before continuing with the background fundamentals, let us define the terminology
used in the remainder of this paper. One often refers to different watermarks, so we will
call the set of different watermarks W; wk is the k-th watermark of the set W and wk[i]
denotes the i-th sample of the k-th watermark. The set of images that serve as covers is X;
similarly, xk denotes the k-th image and xk[i] is the i-th sample of the k-th. yk[i] is the i-th
sample of the k-th watermarked image. Note that, although we are focusing on images,
we will use one index for the sake of simplicity, so consider i = (r, c) a coordinate pair of
the image.

A simple model approach to watermarking is to make analogies to the field of the
theory of communications. In this context, we assume that the watermark is transmitted
through a communications channel as pictured in Figure 2. The model has the following
variables: the cover which is a signal used as host for the watermark; a user’s key as
input for a pseudo-random number generator, and the embedding gain which is related
to the watermark’s energy. In an ideal scenario, the cover does not distort the watermark;
however, in practice, this can not be achieved, so the effects of the cover on a watermark are
modeled as the distortion caused by the channel. Attacks to the watermark are modeled as
noise. An attack is a signal processing operation performed on the watermarked with the
goal of making the watermark undetectable by the watermarking system.

Watermark
Generator

User’s Key

Watermark
Embedding

Cover

Channel

Noise

Watermark
Assesment

l

wl yl y∗l

xl

Figure 2. General model of watermarking as a communication process.
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2.1. Watermark Embedding

There are two basic rules for embedding watermarks: the additive rule and the
multiplicative rule. We will focus on the additive embedding rule since it is widely used in
most related works.

The watermarking system embeds the watermark wl into the cover xl producing the
watermarked signal yl as shown in Figure 3. This scheme uses the additive rule defined as:

yl = xl + gwl , (1)

where yl is the watermarked signal and g is the embedding gain.

Watermark
Generator

User’s Key

+

Embedding
Gain

+

Cover Image

Watermarked
Image

l

wl [i] gwl [i] yl [i]

g xl [i]

Figure 3. Watermark embedding scheme.

2.2. Watermark Detection

A typical watermark system assesses the presence of the watermark by computing
two statistics: a decision variable which is a measurement of the presence of the watermark
within the watermarked image, and a threshold that helps to decide if the watermark is
present or absent. If the decision variable is greater than or equal to the threshold, then the
watermark was detected; otherwise, the watermark is absent as shown in Figure 4.

Watermark
Generator

User’s Key

Compute
Detection

Variable (d)

Watermarked
Image

d ≥ Th

Compute
Thresh-

old (Th)

Watermark
Present

No Wa-
termark
Present

y∗l

wl

Th

d Yes

Nol

Figure 4. Block diagram of the watermark detection process.

Most watermarking systems have detected watermarks using the cross-correlation
formula since the early works on watermarking; an example is the highly influential
paper by Cox et al. [3]. The watermarking system uses the received and possible noisy
watermarked media (y∗l ) for detecting the watermark; first, it computes a decision variable
dI(wl) as follows:

dI(wl) =
1
N

N

∑
i=1

wl [i]y∗l [i]; (2)

Next, the system compares dI(wl) to a threshold (ThI(wl)) and, if dI(wl) ≥ ThI(wl), then
the detection is positive; the threshold is computed using the following equation [4]:
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ThI(wl) = 3.3

√
2

σ2

N
(3)

where σ2 is the variance of y∗l .
Many state-of-the-art algorithms use (1)–(3) for inserting and detecting the watermark

as discussed later in this paper. We will call (2) and (3), the integer equation set—hence, the
subscript I of the detection variable set. A watermarking scheme based on Equations (1)–(3)
is shown in Figure 5.

The decision of the system for the integer equation set is computed as:

DI(wl) =

{
1 dI(wl) ≥ ThI(wl)

0 Otherwise
, (4)

Watermark
Generator

User’s Key

1
N

N

∑
k=1

wl [k]y∗m [k]

Noisy
Watermarked

Image

d(wl) ≥
Th(wl)

3.3
√

2 σ2
N

Watermark
Present

No Wa-
termark
Present

y∗l

wl

Th

d Yes

No
l

Figure 5. Integer watermark detecting scheme.

Many works use (1) and (2) to embed and detect watermarks respectively as discussed
in next section.

3. Works Related to Watermarking Based on Fractional Calculus

On the other hand, Fractional Calculus (FC) has gained attention in recent years;
for example, Refs. [5–8] are good references that cover the basics on FC ranging from
introductory to advanced FC theory. Many scientists used it for modeling several physical
phenomena with applications to engineering; for example, in [9–11], the authors present
applications of FC to the analysis of control systems. In [12–14], the authors present
applications to Digital Filters design. In [15,16], the authors discuss an approach to linear
systems analysis for both continuous and discrete cases. Researchers already started to
develop FC applications to watermarking; related works exhibit a tendency to adapt (1)
and (2) for working with fractional calculus based approaches.

Some authors use a fractional derivative for watermarking since there is a relationship
between the order of the derivative and the resulting function; this relationship is difficult to
establish. For example, the authors of [17] use the Grünwald–Letnikov fractional operator
for computing a pseudo-random sine function, allowing two fractional orders α and β to
act as keys. The authors claim that this scheme is robust toward occlusion attack; however,
this is the only test they reported. The work [18] is similar to [17]. The main difference
between those works is that authors of [18] use the fractional Cauchy formula for the sine
function. Authors report that the system is robust; nevertheless, their results are supported
by the test in just one image lacking evidence for confirming the system’s reliability.

Other authors use the Fractional Fourier Transform (FrFT) for watermarking since
there is a strong dependency between the orders and the resulting coefficient set of the FrFT,
a dependency that seems random. The algorithm proposed in [19] uses the FrFT coefficients
as the embedding domain. The authors report good results; however, they present just a
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case of study. A similar approach is presented in [20]. This approach also uses the fractional
orders as the secret keys. The watermark is detected using standard cross-correlation.
The authors claim that the system is robust toward JPEG compression, noise addition,
and image manipulation operations such as median filtering, Gaussian smoothing, and
sharpening filtering. Another work that uses the FrFT is [21]; its authors affirm that their
proposal is robust to geometrical transform, filtering, and histogram stretching; however,
they carried out too few experiments. In [22], the authors present an approach based on
the FrFT with a random modification to the phase. The resulting system is more similar
to a digital signature based system than to a typical watermarking system. This system is
robust against cropping, salt and pepper noise addition, uniform noise addition, Gaussian
noise addition, noise addition in both the amplitude and the phase, JPEG compression,
and histogram equalization operations. Another idea presented in [23] is to generate a
watermark in the FrFT domain and embed it into an image also in the FrFT domain using
the additive rule. The authors used the cross-correlation for detecting the watermark. This
scheme is robust toward occlusion attack, which is the only attack reported by the authors.

The Random Fractional Fourier Transform (RFrFT) is a variation of the FrFT; it has the
same properties of FrFT but has the advantage that the spectrum is random and exhibits a
high embedding capacity and robustness for watermarking applications. An RFrFT applica-
tion to watermarking is presented in [24]. This system computes the RFrFT with a given
random phase; then, it divides the transformed image into blocks and computes their fractal
dimension; next, it selects a set of those blocks and uses the highest amplitude in each block
for watermark embedding using Amplitude Shift Keying (ASK). The watermark extraction
is accomplished by reversing previous steps. The system computes the Mean Square Error
to measure the robustness using both the extracted and the real watermark. They tested
their system by performing three attacks: noise addition, cropping, and JPEG compression.

Another fractional calculus based transform, the Discrete Fractional Random Trans-
form (DFRNT), was used in [25]. This work is similar to [24]; first, the system computes the
DFRNT; then, it divides the signal into blocks and selects a set of blocks randomly; next, it
selects the highest amplitudes for watermark embedding using Phase Shift Keying (PSK).
The authors report that their proposal is robust against Gaussian noise addition, cropping,
and low pass filtering; however, they present too few tests.

One more fractional based transform is the Fractional Dual-Tree Complex Wavelet
Transform (FrDT-WT); the FrDT-WT is used to find the wavelet transform in the Fourier
domain resulting in a mathematical description of the multiresolution properties. The work
presented in [26] and exploits that the randomness of the FrDT-WT coefficients depends
on the fractional order, also using a biometric pattern to further enhance the security. The
main idea is to build two biometric images; then, use the SURF algorithm to compute the
robust matching point vectors; next, use these vectors to compute the keys for building
a chaotic map. The watermark extraction uses both the original and the watermarked
images. The authors report that their system is robust. The attacks covered in the test
include average filtering, median filtering, Gaussian noise addition, salt and pepper noise
addition, JPEG compression, SPIHT compression, row-column deletion, resizing, cropping,
rotation, histogram equalization, contrast adjustment, and sharpen attacks; however, there
were only six images used for the test; furthermore, the reported results correspond to their
best case.

Another work is [27] that is almost the same as the system presented in [26]. The main
difference between these works is that Ref. [27] uses the Redundant Fractional Wavelet
Transform (RFrWT) due to a problem with the discrete FrDT-WT related to the use of
decimators.

The authors of [28] present an interesting idea; unlike most watermarking schemes,
their system does not embed a watermark into a host image, but they use Visual Cryptog-
raphy (VC) and a Visual Secret Sharing Scheme. The system constructs two shares that
convey a secret message in the following way: the encoder divides the host image into
blocks; then, it selects a set of blocks and computes the FrFT using orders α and β; next, it
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computes the Singular Value Decomposition (SVD) of the transformed blocks and uses the
first value of the resulting SVD for computing the master share according to the standard
rules of secret sharing schemes. The authors report that their scheme resists various signal
processing operations such as JPEG compression, average filtering, median filtering, blur-
ring filtering, sharpening filtering, Gaussian noise addition, contrast adjustment, gamma
correction, histogram equalization, resizing, rotation, and geometrical distortion.

All of these works have in common the use of (1) and (2) to embed and detect water-
marks; from this perspective, we can say that the overall difference among them is the use
of some transform coefficient set for watermarking. In other words, they use already pro-
posed equations, and the novelty of these works rely on the use of a different embedding
domain. This leads to incrementing the complexity of the watermarking system and other
problems related to the multiple definitions of fractional operators proposed until now.

On the other hand, the authors of [29] analyzed the watermarking systems proposed
in [17] through [28] and observed that they use (1) and (2), so they proposed a new
improved equation set to substitute (2) and (3). They showed that this modification
increases the system’s robustness, so the watermarking system designer might prefer to
use fractional equations as a reliable solution for copyright enforcement; however, they
limited their study to the case where the watermark is binary, and they added that they
would skip the case of Gaussian watermarks since the system based on (2) and (3) was not
reliable in this case, so a fair comparison to their proposed equation set was not possible in
the context of the experiments carried out to test their proposed scheme.

The authors of [30] explored the case of Gaussian watermarks, and their results suggest
that the scheme proposed in [29] reduces the False Positive Percentage; however, they
limited the benchmark corpus to 20 images from the standard image set.

The case of the fractional scheme proposed in [30] for the Gaussian watermarks case
needs a deeper study; for this reason, we accomplished this study where we explore
the behavior of the fractional scheme for detecting Gaussian watermarks; we looked for
confirming that the fractional scheme proposed in [29] reduces the false positive percentage
of the detector when Gaussian watermarks were embedded, and, by reaching this goal,
we confirmed that the fractional scheme is reliable for watermarking applications when
Gaussian watermarks are used; thus, the novelty of this paper is to generalize the results
presented in [29,30]. The main advantage of the proposed scheme is that it avoids the
problems related to the use of fractional transforms found in previous works, keeping the
complexity almost the same, however, for detecting Gaussian watermarks.

4. Fractional Calculus Approach to Watermark Detection

The detection variable derived from FC principles proposed in [29] is:

dF(wl) = − Im

⎡⎢⎣3
4

1
N

√√√√(
N

∑
i=1

y∗l [i]wl [i]

)2

− 2
3

σ2N[2NH − 1]− ε

⎤⎥⎦, (5)

where Im[·] is the imaginary part operator, and the threshold is:

ThF(wl) = kpσ2

√
H
ε

, (6)

where:

ε =
3
4

1
N

√
2
3

σ2N[2NH − 1], (7)

with H = ln(
√

2πσ2e); σ2 is the variance of y∗l . We call (5) and (6) the Fractional equation
set. A fractional scheme based on (5) and (6) is shown in Figure 6.

The decision of the system for the fractional equation set is:
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DF(wl) =

{
1 dF(wl) ≥ ThF(wl)

0 otherwise
. (8)
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Figure 6. Fractional watermark detecting scheme.

If we use (5) and (6) for detecting Gaussian watermarks, we get the result shown in
Figure 7, which clearly has improved detection characteristics since it has no false positives.
We are looking for confirming that the scheme in Figure 6 is more reliable than the scheme
in Figure 5. This follows the strategy stated early in this paper about reusing the algorithm
in Figure 5 by replacing detection equations with fractional calculus based equations
resulting in a possibly improved algorithm and then verifying the effectiveness of this
strategy. For this reason, there is a lack of comparison to related works as a means of control
to the experiments. In other words, a fair experiment in the purpose’s context of this paper
is to compare the original algorithm versus the same algorithm with fractional equations
and assess its improvement. Thus, the only control needed is the original algorithm and, as
a result, the outcomes of the experiments are reliable.

Figure 7. Detection of the watermark. (left) using (2) and (3); (right) using (5) and (6), and note the
lack of False Positives. The cases that fall in the red zone are False Positives.

5. Materials and Methods

To carry out experiments, we used 10,000 images of the BOWS database as the set X;
each image of this set is grayscale with size 512× 512 pixels and their luminance values
are in the range [0, 255].

We used the embedding scheme shown in Figure 3 for watermarking each image
in the set X. In addition, the embedding gain was fixed for all cases to the value g = 5;
this setting leads to a Peak Signal-to-Noise Ratio (PSNR) mean of 34.21 dB for the entire
set giving a fair balance between robustness and imperceptibility of the watermark. The
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embedded watermark wl was selected at random from the watermark set W for each image;
each watermark in the set was equally probable.

The goal of the tests was to assess the capacity of watermarking schemes shown in
Figures 5 and 6 to reduce the false positives by computing the FPP and the ROC curve.

For the first test, we computed the FP of each image. To achieve this, each image in
the set X was watermarked; then, the system tried to detect all watermarks in W within a
single image; next, all FP were identified and counted using (4) and (8). The false positives
computing process is summarized in Procedure 1, and it is described in Figure 8 (left). False
positives gave us an insight about the reliability of both the integer and the fractional schemes.

For the sake of simplicity, and without loss of generality, we indicated D(wl) instead
of DI(wl) or DF(wl) in all procedures since the same steps were followed for both schemes.

We selected the Receiver Operating Characteristic (ROC) since it is regarded as an
objective measure to evaluate performance of a decision technique. Thus, as a second
test, we computed the ROC as follows: each image in the set X was watermarked using
watermark wl ; then, we computed dI(wl), dF(wl), DI(wl), DF(wl). Those values and the
corresponding ground truth values of DI(wl), DF(wl) were recorded. The data were used
to derive a Generalized Lineal Model for estimating the ROC for both the integer and the
fractional schemes. Data collecting steps were summarized in Procedure 2 and further
explained in Figure 8 (right). The ROC curves were used to evaluate the integer and the
fractional to clarify which of them is more reliable.

With a last test, we examined the robustness of the fractional scheme. To achieve
this goal, each image in the set X was watermarked to get the set of watermarked images
Y, and then an attack was carried out on the watermarked images; next, we added up
the cases where the embedded watermark was detected to compute the percentage of
detected watermark cases. The process of computing the detection rate is summarized in
Procedure 3. The percentage of detected watermarks after the watermarked image was
attacked suggested the target applications of the fractional scheme based on its robustness.

Procedure 1 Procedure to record measures for False positives.

Require: Image set X, Watermark set W.

1: Open log file for writing.

2: for Each image xk ∈ X do

3: Select randomly a watermark wl from the watermark set W.

4: Partition set W into two subsets We and Wn that hold We ∩Wn = ∅ and We ∪Wn =

W, We = {wl}.
5: Embed the watermark wl into Image xk

6: for Each watermark wm in Wn do

7: for Each watermarking scheme do

8: Compute R(wm)

9: if R(wm)==1 then

10: FP = FP + 1

11: end if

12: end for

13: end for

14: Record FP a of a current image in log file.

15: end for

16: return Log file.
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Procedure 2 Procedure to record measures for getting the ROC curve.

Require: Image set X, Watermark set W.

1: Open log file for writing.

2: for Each image xk ∈ X do

3: Select a random watermark wl from the watermark set W.

4: Embed the watermark wl into Image xk.

5: Compute d(wl) and D(wl).

6: Record d(wl), D(wl), and ground truth values in log file.

7: Get the set of indexes of true negatives, these indexes form a set T.

8: Draw at random an index m from set T.

9: Record d(wm), R(wm), and ground truth values.

10: Get the set of indexes false positives, these indexes form a set P.

11: for Each index k in P do

12: Record the values of d(wm), R(wm), and ground truth values in log file (Record all

the False Positives).

13: end for

14: end for

15: Close log file.

16: return Log file.

Procedure 3 Procedure to record Detection Rate.
Require: Image set X, Watermark set W.

1: Open log file for writing.

2: for Each image xk ∈ X do

3: Select randomly a watermark wl from the watermark set W.

4: Embed the watermark wl into Image xk

5: Perform an attack on the watermarked image.

6: Compute D(wl) using the attacked image.

7: if D(wl)==1 then

8: D = D + 1

9: end if

10: end for

11: Compute detection rate (Dr =
D

10,000 )

12: Record Dr in log file.

13: return Log file.
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Figure 8. Collecting data. (left), all the system’s responses that cross the threshold when no water-
mark was embedded are collected since these are False Positives. These data fall in the red zone.
(right) We collected the true positive (data in the green zone), a single true negative (data in the blue
zone), and all false positives for each image in the set Y (data in the red zone).

6. Experimental Results

As a first test, we computed the false positive percentages for both the integer and the
fractional schemes and build a boxplot. Figure 9 (left) shows that the false positives for the
integer scheme span from 0.1% to 16.15%; in contrast, the fractional scheme has very low
percentages of false positives and the range of values concentrates around 0.2%.

Figure 9. Statistical assessment of discrimination characteristics. (left) value ranges of false positives
for both the Integer and Fractional watermarking schemes. No outliers are drawn for the sake of
clearness; (right) comparison of the ROC curves of the integer and fractional schemes.

In our second test, we evaluated the quality of both schemes; we used the data we
collected to draw the ROC curve shown in Figure 9 (right). As a result of this test, we
found that the ROC of the integer scheme has an Area Under the Curve (AUC) of 50.9%,
whereas the fractional scheme obtained an AUC of 99.2% for the same test.

The last test consisted of examining the successful detection rate after attacks; this was
accomplished by attacking each watermarked image in the set Y. The attacks performed
were: average filtering, median filtering, Gaussian noise addition, speckle noise addition,
salt and pepper noise addition, JPEG compression, cropping, removing random rows and
columns, substituting random rows and columns, and scaling. The corresponding figures
are in Appendix A for the sake of readability of this section.
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A bar plot of the percentage of detected watermarks after the image set Y filtered
using an average filter is shown in Figure A1. The attack was repeated for window sizes
of 3× 3, 5× 5, and 7× 7. The resulting bar plot shows that the percentage of successful
watermark detection after the attack is about 6% and became lower as the window size
increases.

We performed a similar attack; this time, a median filter was used to filter the set
Y. Results shown in Figure A2 reveal a similarity to the results reached for the average
filtering attack; this time, detection percentages are lower than 10%.

The next test is comprised of adding Gaussian noise to each watermarked image in
the set Y and then we tried to detect the watermark. We constructed a bar plot showing
the percentages of detected watermark for various noise variances. Figure A3 shows that
the scheme is robust to Gaussian noise. This figure might look suspicious because it looks
atypical; thus, to discard that the Gaussian noise triggers false positives and this causes a
high detection rate, we inspected some cases and present an example in Figure 10.

Figure 10. Detection of the watermark. (left) noisy watermarked imaged; noise variance was 0.05.
(right) the corresponding evaluation of (5).

The following test consists of adding salt and pepper noise and then detecting the
watermark. Results depicted in Figure A4 show that the fractional scheme is robust up to
noise densities of 20%, the detection rate drops for noise densities higher than 20%.

We carried out the next test by adding speckle noise before trying to detect the
watermark. Results in Figure A5 show that the fractional scheme is robust up to noise
variances of 0.2. After this limit, the detection rate drops.

A very common scenario is to compress images using the JPEG standard, so the
next test comprised watermarking the image and compressing the image with the JPEG
standard, and then detecting the watermark. Figure A6 shows that the fractional scheme is
robust to JPEG compression up to a quality factor of 90% and then the detection percentage
starts to decline.

Another common signal processing operation is the cropping attack. Figure A7 shows
results when the watermarked image is cropped. This figure shows that the fractional
scheme is robust up to 20% of cropped pixels.

The next test selects t rows and t columns at random, and then removes these rows
and columns from the watermarked image; the resulting image is smaller than the original
watermarked image, so the image is then scaled to match the size of the original water-
marked image. The watermark was then detected, and the results are shown in Figure A8.
Results show that the fractional scheme is not robust since it exhibits a detection rate
around 8% for removing 10 rows and columns.
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Another test, similar to the previous one, selects t rows and t columns at random, and
then substitutes the selected rows and columns with the adjacent row or column of the
same image. The watermark was detected, and results are shown in Figure A9. Results
show that the fractional scheme is robust up to substituting 100 rows and columns.

Finally, we carried out a scaling attack; the watermarked image was scaled to make it
smaller and then the image was restored back to its original size. The results are shown
in Figure A10; this figure shows that the fractional scheme is robust up to 90%. In other
words, we shrank the image to 90% of its original size and then restored to the original size
before we tried to detect the watermark.

7. Conclusions

In this study, we compared the FPP of the original watermarking scheme versus the
corresponding version with detection equations derived from fractional calculus; evaluated
the quality of both schemes as a watermark detector by comparing their ROC curves, and
examined the successful detection rate after attacking the watermarked images to define
robustness of the system. We performed several tests that allowed us to conclude the
following facts:

The False Positives percentage is much lower for the fractional scheme than the
corresponding percentages of the integer scheme. According to Figure 9 (left), the FPP
spans from 0.2% to 16.2% for the integer scheme whilst the FPP concentrates around 0.2%
for the fractional scheme. This means it is more likely to get a 0.2% FPP when using a
fractional scheme and also the FP rate will be lower for this fractional scheme than the
corresponding results for an integer scheme.

Results show that the fractional scheme is a reliable method for detecting Gaus-
sian watermarks according to Figure 9 (right); the fractional scheme has a significant
advantage compared to the integer scheme since the AUC is higher for the fractional case
(AUC = 99.20% versus AUC = 50.90%); this means that the fractional scheme has higher
discriminative power compared to the integer scheme.

In addition, the experimental results in Figures A1–A10 show that this system is fragile
to all attacks presented in Section 6, except for the case of the Gaussian noise addition
attack, this is because the noise is added in the same manner as the watermarks are; thus,
the systems treats Gaussian noise as a watermark. The target applications of such a scheme
include cases where the watermarks should not survive attacks; an example of practical
application of a fractional scheme is for authenticating information.

Since the target application might be authenticating information, it will be convenient
to propose another value of kp; this value should be higher than that used in this study
since this will help to reduce the detection rate after attacks. Additional usage scenarios
include: The system designer wants to enhance the discriminative power of a system
already proposed, the watermark is some information that closely holds the Gaussian
distribution, and the complexity of the watermarking system has to be low.

The results provide designers of watermarking systems with an alternative to take
advantage of Gaussian watermarks when appropriate to meet their design goals. Thus,
the proposed strategy is an alternative to reuse previously proposed schemes by using
fractional calculus based equations.

The results obtained in this study complement the study in [29] since the case of Gaus-
sian watermarks was left unexplored, so this paper provides the designer of watermark
systems with a more logical insight of the potential and practical applications of a fractional
watermark detector.

The characteristics to discriminate between patterns with Gaussian statistical distribu-
tion suggest that the fractional equations might be used in pattern recognition applications
where samples have a Gaussian distribution.
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Appendix A

This appendix has complementary experimental data that the reader might need to
check out closer.

Figure A1. Percentage of successful watermark detection after an average filter attack for various
window sizes.

Figure A2. Percentage of successful watermark detection after a median filter attack for various
window sizes.
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Figure A3. Percentage of successful watermark detection when Gaussian noise is added to the
watermarked image. The mean of the noise was zero and the horizontal axis corresponds to the
variance of the noise.

Figure A4. Percentage of successful watermark detection when salt and pepper noise is added to the
watermarked image. Horizontal axis show the noise density.

Figure A5. Percentage of successful watermark detection when speckle noise is added to the water-
marked image. Horizontal axis show the noise variance.
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Figure A6. Percentage of successful watermark detection after the watermarked image was com-
pressed using the JPEG standard. The horizontal axis corresponds to the JPEG compression qual-
ity factor.

Figure A7. Percentage of successful watermark detection after cropping. This figure spans various
cropping percentages.

Figure A8. Percentage of successful watermark detection after a number of rows and columns were
removed from the watermarked image. The horizontal axis shows the number of rows and columns
removed.
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Figure A9. Percentage of successful watermark detection after a number of rows and columns of the
watermarked image were substituted with another row or column.The horizontal axis shows the
number of rows and columns replaced.

Figure A10. Percentage of successful watermark detection when the watermarked image is scaled.
The horizontal axis shows the scaling factor.
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Abstract: Modeling of wall-bounded turbulent flows is still an open problem in classical physics,
with relatively slow progress in the last few decades beyond the log law, which only describes the
intermediate region in wall-bounded turbulence, i.e., 30–50 y+ to 0.1–0.2 R+ in a pipe of radius
R. Here, we propose a fundamentally new approach based on fractional calculus to model the
entire mean velocity profile from the wall to the centerline of the pipe. Specifically, we represent
the Reynolds stresses with a non-local fractional derivative of variable-order that decays with the
distance from the wall. Surprisingly, we find that this variable fractional order has a universal form
for all Reynolds numbers and for three different flow types, i.e., channel flow, Couette flow, and pipe
flow. We first use existing databases from direct numerical simulations (DNSs) to lean the variable-
order function and subsequently we test it against other DNS data and experimental measurements,
including the Princeton superpipe experiments. Taken together, our findings reveal the continuous
change in rate of turbulent diffusion from the wall as well as the strong nonlocality of turbulent
interactions that intensify away from the wall. Moreover, we propose alternative formulations,
including a divergence variable fractional (two-sided) model for turbulent flows. The total shear
stress is represented by a two-sided symmetric variable fractional derivative. The numerical results
show that this formulation can lead to smooth fractional-order profiles in the whole domain. This
new model improves the one-sided model, which is considered in the half domain (wall to centerline)
only. We use a finite difference method for solving the inverse problem, but we also introduce the
fractional physics-informed neural network (fPINN) for solving the inverse and forward problems
much more efficiently. In addition to the aforementioned fully-developed flows, we model turbulent
boundary layers and discuss how the streamwise variation affects the universal curve.

Keywords: fractional conservations laws; variable fractional model; turbulent flows; fractional PINN;
physics-informed learning

1. Introduction

Reynolds [1] was the first to statistically describe turbulence by decomposing the in-
stantaneous velocity vector into an average field and its fluctuation. Upon substitution into
the Navier–Stokes equations and averaging, assuming quasi-stationarity, a new modified
equation emerged for the average velocity that includes an additional term, namely, the
averaged dissipation tensor leading to the turbulence-closure problem [2]. Addressing
the closure complexity has been a century-long pursuit, starting with the seminal work
of Prandtl [3], who proposed a simplified mixing length model analogous with Fick’s law
of local diffusion. Interestingly, at about the same time, Richardson [4], in an attempt to
unify turbulent diffusion with molecular diffusion, combined geophysical measurements
with Brownian motion to produce the famous scaling law on turbulent pair diffusivity.
While ingenious, both approaches assume implicitly locality in turbulent interactions,
which limits the universality of the derived correlations—an open standing question for
over a century. As stated by Kraichnan [5], Prandtl’s approach is valid only when the
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spatial scale of inhomogeneity of the mean field is large compared to the mixing length.
This assumption is clearly violated in most turbulent flows, e.g., in Reynolds’ pipe flow,
where the turbulent eddies are of the size of the pipe radius. This has motivated research
in nonlocal constitutive equations of turbulence, and Prandltl, in subsequent work [6],
developed a turbulent shear-layer model in an attempt to introduce non-locality in his
approach. Kraichnan [5] pioneered such non-local approximations and, based on his work,
more recently generalized versions of the second Prandtl non-local model were proposed
in the literature [7].

Fractional calculus is an effective tool to solve complex problems with nonlocality
and scale-free self-similar processes as well as non-Gaussian statistics. Lévy statistics lead
to anomalous diffusion [8] and can effectively model turbulent intermittency [9]. Hence,
it is possible that turbulent eddy diffusion could be accurately modeled by fractional
Reynolds stresses [10]. Based on physical arguments, in order to represent nonlocality and
intermittency, Chen [11] proposed a fractional Laplacian as a model for representing the
Reynolds stress with a fixed fractional exponent α = 2/3. More recently, starting with
the Boltzmann equation, Epps et al. [12] rigorously derived the fractional Navier–Stokes
equations by replacing the Maxwell–Boltzmann distribution with the more general Levy α-
stable distribution; see a recent extension of this work in [13]. For α = 2, the new equations
revert to the standard Navier–Stokes equations, while for α = 1, we obtain the logarithmic
velocity profile known as the law of the wall [14]. The work of Epps et al. [12] laid a new
framework for turbulence modeling that may lead to new fundamental understanding of
turbulence, but it is only valid in an open domain and thus ignores the important issue of
nonlocal boundary conditions encountered in defining fractional Laplacians in bounded
domains [15].

The work we include here incorporates our first paper [16] published in the archives,
and is a significant extension. We also refer to the work of [17], who modeled the total
shear stress directly in wall units by formulating a one-sided variable-order model using
the Caputo fractional derivative for Couette flow [17] and in ongoing work on transitional
and turbulent boundary layers. For the case of Couette flow, universality was found. We
note that directly formulating the problem in wall units does not require modeling of any
additional coefficients, unlike the formulation in the present study.

The remainder of this paper is organized as follows: Since the small-scale components
can be described as an anomalous diffusion [11], we introduce the variable-order fractional
calculus in the next section. Then, we formulate the inverse optimization problem corre-
sponding to the governing equations. We present the fractional differential equations to
model different turbulent flows (e.g., channel flow, Couette flow, and pipe flow) in Section
2. The inverse problem is solved by a finite difference (FD) method to obtain the fractional
order. Moreover, we introduce the fractional physics-informed neural network for solving
the inverse problem to find the variable-orders. In Section 3, we present the numerical
results that show that the universal fractional-order profiles of the channel and pipe flow as
a function of the distance from the wall, a unique capability enabled by fractional calculus.
In particular, we discovered that this fractional-order function is universal for all Reynolds
numbers and for different geometries. Finally, we provide a short summary in Section 4.

2. Variable-Order Fractional Models for Turbulent Flows

The first fractional model for the Reynolds averaged Navier–Stokes equations was
developed by Chen [11], who proposed a fractional Laplacian to model the Reynolds
stresses and to account for intermittency [18,19] as follows:

∂U
∂t

+ U · ∇U = −1
ρ
∇P + ν0ΔU − γ(−Δ)1/3U, (1)

where U is the average velocity and γ is the turbulent diffusion coefficient. Hence, the ef-
fective fractional order in this model is fixed at α = 2/3. This value is consistent with the
Richardson superdiffusion scaling for homogeneous turbulence that leads to a t3 scaling
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for the mean square displacement, but it is not valid for wall-bounded turbulence where
anisotropy and the distance from the wall determine the effective rate of turbulent diffusion.
Defining a fractional Laplacian in multiple dimensions and in bounded domains is still
an open issue in fractional calculus and extending it to variable orders is challenging [15].
However, other somewhat equivalent definitions based on tempered fractional calculus [20]
may lead to satisfactory nonlocal representations as well; specifically, in a Boltzmannian
framework, Samiee et al. [13] developed a tempered fractional subgrid-scale model to cap-
ture high-order structures at the inertial and dissipative ranges. As Richardson first noted,
the velocity field in the atmosphere shares a number of properties with the Weierstrass
function, i.e., it appears to be continuous but non-differentiable, and this provides a strong
case for fractional modeling of turbulence in the atmosphere but also in wall-bounded
flows in engineering applications.

In this section, we present a variable-order fractional model for turbulent flows. We
firstly consider a one-sided model for channel and pipe flows. Furthermore, we formulate
an inverse problem for the fractional order α(y). We present a finite difference method and
design a physics-informed neural network (PINN) to obtain the fractional order. Finally,
we propose a divergence variable fractional (two-sided) model for turbulent flows.

2.1. Turbulent Channel Flow and Pipe Flow
2.1.1. One-Sided Fractional Derivative Modeling

For wall-bounded turbulence, the effective rate of diffusion varies with distance from
the wall. Hence, we exploit the power of fractional calculus that allows variable fractional
order, and we propose a variable-order fractional differential equation for modeling the
Reynolds stresses, i.e., α(y), where y is the distance from the wall. In particular, we consider
fully developed turbulent flows with one-dimensional (dimensionless) averaged velocity
U(y) = u/V (where V is the characteristic velocity), including channel flows and pipe
flows for which we apply a unified fractional modeling approach. Specifically, assuming
that the flow direction is along x and y is the wall-normal direction (distance from the wall),
we consider the variable fractional model (VFM-I) in the normalized interval [0, 1]:

(VFM-I)
∂

∂y
(ν0

∂U
∂y
− u′v′) = ν(y)Dα(y)

y U = f , ∀y ∈ Λ = (0, 1], (2)

with α(0) = 1, 0 ≤ α(y) ≤ 1, Dα
y is the (Caputo) fractional derivative, f = − 1

ρ ∂P/∂x is
a constant pressure gradient, U(y) is the mean velocity we want to model, and ν0 is the
kinematic viscosity. The Caputo derivative is defined as:

Dα
yU(y) =

1
Γ(1− α)

∫ y

0
(y− τ)−αU′(τ)dτ,

and it is identical to the Riemann–Liouville left-sided derivative because U(0) = 0. Inter-
estingly, we can obtain the scalar coefficient ν(y) (we refer to it as turbulent diffusivity,
although it does not have the correct units) explicitly in terms of the fractional order
α(y) from:

ν(y) = f Γ(2− α(y))Re−α(y)
τ V/uτ , (3)

where Reτ = uτ R/ν0 is the friction Reynolds number, R is the radius of the pipe (or the half
channel width), and uτ is the wall friction velocity uτ =

√
τw/ρ, where τw = μ∂U/∂y|y=0

is the wall shear stress with μ being the dynamic viscosity.
We discuss an alternative model, where the variable fractional order α(y) is between

one and two instead of the VFM-I we presented, where 0 < α(y) ≤ 1; this model is
analogous to VFM-I and is defined by:

(VFM-II)
∂

∂y
(ν0

∂U
∂y
− u′v′) = ν(y)Dα(y)

y U = f , ∀y ∈ Λ = (0, 1], (4)

239



Entropy 2021, 23, 782

with α(0) = 2, and the variable-order 1 ≤ α(y) ≤ 2 is an unknown function to be
determined by the data. The scalar coefficient ν(y) can also be computed from a similar
formula as before, i.e.,

ν(y) = lim
y0→ 1

Reτ

f

Dα(y)
y (U|y0)

. (5)

2.1.2. Numerical Method

We assume that we know the mean velocity U(y) (also U+(y+)) from the DNS data
or experimental results. The VFM-I can be written in the form:

ν(y)Dα(y)
y U = f , (6)

where f = − 1
ρ ∂P/∂x. Since the fractional order α(y) is unknown in Equation (6), we

need to solve a nonlinear problem to obtain α(y). Alternatively, we consider the following
optimization problem: given U and f , find the α(y) that satisfies

J(α(y)) = inf
α(y)∈S

‖ν(y)Dα(y)
y U − f ‖2, (7)

where, S(Λ) := {0 ≤ a(y) ≤ 1, a(y) ∈ C0(Λ)}. If α∗(y) satisfies Equation (6), then we
obtain J(α∗(y)) ≡ 0.

Next, we present a numerical method for solving the optimization problem (7).
The fractional derivative is discretized with the finite difference method. Then, the frac-
tional order α(y) can be solved point-by-point; for each point yn = nΔy, Δy = 1/N, n =

1, 2, · · · , N, we calculate the fractional derivative Dα(yn)
y Un with the DNS data using the

finite difference method [21]

Dα(yn)
y Un =

1
Γ(2− α(yn))

n

∑
j=0

bn
j

Un+1−j −Un−j

Δyα(yn)
, (8)

where bn
j := (j + 1)α(yn) − jα(yn) and Un = U(yn). The discrete optimization problem can

now be written as

JN(α(y)) = inf
α(y)∈S

N

∑
n=1

∣∣ν(yn)Dα(yn)
y Un − f (yn)

∣∣2Δy. (9)

Finally, we formulate the fractional physics-informed neural network (fPINN) for the
inverse problems of the proposed turbulence model; see Figure 1.

The aim of the inverse problem is to estimate the fractional order α(y) given the
mean velocity profile U in the DNS data. We approximate the variable fractional order
α(y) by a multi-layer feedforward neural network αNN(y; θ = {Wj, bj}l

j=1), where θ are a
collection of parameters of the NN. The locations y are the input of the NN, and the output
U is computed by a recursive formula Yj = σ(WjYj−1 + bj) with the initial value Y0 = y.
The weight matrix between the (j− 1)th and jth layers has the dimension Wj ∈ R

nj×nj−1 ,
and the bias vector bj in the jth layer. The column vectors Yj−1 ∈ R

nj−1×1 and Yj ∈ R
nj×1

denote the input and output of the jth layer, respectively. The input vector Yj−1 is first
subject to a linear transformation and then an element-wise nonlinear function σ(·), which
is called the activation function. The NN consists of one input layer (j = 0), l − 1 hidden
layers (j = 1, 2, · · · , l − 1), and one output layer (j = l). The depth of the NN is l, and the
width of the jth layer is nj. To determine the parameters θ, we minimize the following loss
function with respect to θ

L(θ) = 1
Nt

Nt

∑
i=1

(
DαNN(yi ;θ)

y U(yi)− 1
)2

+ (αNN(0; θ)− 1)2, yi ∈ (0, 1]. (10)
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The first term on the right-hand side is the equation residual, and the second term is the
constraint on the fractional order at the wall, i.e., α(0) = 1. We select Nt training points,
{yi}Nt

i=1, to enforce the equation residual on them to be zero. The fractional derivative is
evaluated using the finite difference method (8). We optimize the loss function with respect
to θ, employing a stochastic gradient descent, Adam, written in TensorFlow. Finally, we
estimate the variable fractional order using αNN(y; θ).

Figure 1. Basic structure of fPINN in 1D for the inverse fractional-order problem. The left uninformed
DNN processes data to predict the fractional order, which also has to satisfy the correct physics of
turbulence for the channel fully developed flow, represented by the right informed DNN induced by
the fractional governing equation.

2.2. Two-Sided Turbulent Channel Flow
2.2.1. Fractional Modeling in Divergence Form

We consider the Reynolds averaged momentum equation for incompressible fully
developed channel flow; the governing equation is as follows

∂

∂y
(ν0

∂U
∂y
− u′v′) + 1

ρ

∂P
∂x

= 0, y ∈ (0, 2), (11)

where ρ is the density; and P and U are the mean pressure and velocity, respectively.
The process of Reynolds averaging introduces the unclosed Reynolds stress, τij = −ρu′v′.
The total shear stress on the wall is τw. Integrating the above equation from wall to an
arbitrary position in wall-wise y, we obtain a new formula as follows

ν0
∂U
∂y
− u′v′ = τw/ρ− 1

ρ

∂P
∂x

y. (12)

We assume the dimensionless wall shear τw and pressure gradient ∂P
∂x = C are con-

stants. Additionally, we introduce a symmetric divergence variable fractional model for
approximating the total shear stress,

(DVFM) ν0
∂U
∂y

+ u′v′ = ν(y)Dα(y)
|y| U = 1− y, (13)

with the boundary conditions α(0) = α(2) = 1, where the fractional derivative is defined
as follows

Dα(y)
|y| U =

1
2
(Dα(y)

y U + yDα(y)U), (14)
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and Dα(y)
y and yDα(y)U are left and right Caputo derivatives, respectively. The definitions

are given as follows

Left Caputo derivative: Dα
yU(y) =

1
Γ(1− α)

∫ y

0
(y− τ)−αU′(τ)dτ,

and

Right Caputo derivative: yDαU(y) = − 1
Γ(1− α)

∫ 2

y
(τ − y)−αU′(τ)dτ,

and it is identical to the Riemann–Liouville derivatives because U(0) = 0 and U(2) = 0.
We also propose the eddy viscosity in the fractional momentum equation, and the explicit
formula is as follows

ν(y) = Γ(2− α(y))Re−α(y)
τ , (15)

where Reτ = uτ R/ν0 is the friction Reynolds number, R is the radius of the pipe (or the half
channel width), and uτ is the wall friction velocity, uτ =

√
τw/ρ, where τw = μ∂U/∂y|y=0

is the wall shear stress with μ being the dynamic viscosity.

2.2.2. Numerical Method

We assume that we know the mean velocity U(y) (also U+(y+)) from the DNS data
or experimental results. Since the fractional order α(y) is unknown in Equation (13), we
need to solve a nonlinear problem to obtain α(y). Alternatively, we consider the following
optimization problem: given U and f , find α(y) that satisfies

J(α(y)) = inf
α(y)∈S

‖ν(y)Dα(y)
|y| U − f ‖2, (16)

where f = 1− y and S(Λ) := {0 ≤ a(y) ≤ 1, a(y) ∈ C0(Λ)}. If α∗(y) satisfies Equa-
tion (13), then we obtain J(α∗(y)) ≡ 0.

Next, we present a numerical method for solving the optimization problem (16).
The fractional derivative is discretized with the finite difference (FD) method. Then,
the fractional order α(y) can be solved point-by-point; for each point yn = nΔy, Δy = 1/N,
n = 1, 2, · · · , N, we calculate the fractional derivatives Dα(yn)

|y| Un with the DNS data using
the finite difference method [21]

Left: Dα(yn)
y Un =

1
Γ(2− α(yn))

n

∑
j=0

bn
j

Un+1−j −Un−j

Δyα(yn)
, (17)

and

Right: yDα(yn)Un = − 1
Γ(2− α(yn))

N−n+1

∑
j=0

cn
j

UN−j −UN−j−1

Δyα(yn)
, (18)

where bn
j := (j + 1)α(yn) − jα(yn), cn

j = bn
j and Un = U(yn).

The discretized optimization problem can be now written as

JN(α(y)) = inf
α(y)∈S

N

∑
n=1

∣∣ν(yn)Dα(yn)
|y| Un − f (yn)

∣∣2Δy. (19)

Here, we use N ≈ Reτ points to solve the above optimization for the channel flow at a
given Reynolds number Reτ .

Alternatively, we propose the fractional fPINN for solving the inverse DVFM with the
loss function

L(θ) =
Nt

∑
n=1

∣∣ν(yn)DαNN(yn ;θ)
|y| Un − f (yn)

∣∣2
+ |αNN(0; θ)− 1|2 + |αNN(2; θ)− 1|2. (20)
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2.3. Turbulent Boundary Layer and Couette Flow

For a boundary layer and Couette flow with zero pressure gradient, the mean two-
dimensional continuity and stream-wise momentum reduce to

∂UU
∂x

+
∂VU

∂y
=

∂

∂y
(ν0

∂U
∂y
− u′v′). (21)

If we assume that the convective effects are small near the wall for the boundary layer
problem, then the above equation reduces to

∂

∂y
(ν0

∂U
∂y
− uv) = 0. (22)

Here, U is viewed as a function of y due to ∂U
∂x = 0. Since the two plates are infinitely

long for the Couette flow, the flow properties cannot change with x and all partial deriva-
tives with respect to x vanish. Flow motion only occurs in the x direction, and thus,
V = 0. After simplifying the RANS equations, the turbulent Couette flow is governed by
Equation (22) too.

Further integrating the above equation provides

ν0
∂U
∂y
− u′v′ = C, (23)

where C is a constant and uv = 0 at the wall, while ν ∂U
∂y is simply the wall shear stress

τw/ρ. Then, we have the following equation

(TCM) ν(y)Dα(y)
y U =

τw

ρ
,

with α(0) = 1, 0 < α ≤ 1, Dα
y is the (Caputo) fractional derivative, and ν(y) is the eddy

viscosity defined as
ν(y) = Γ(2− α(y))Re−α(y)

τ .

Numerical Method

We solve the fractional order α(y) for the turbulent boundary layer problem and
Couette flow using fPINN (Figure 1) with the loss function

L(θ) =
Nt

∑
k=0

(ν(yk)DαNN(yk ;θ)
y − τw

ρ
)2 + (αNN(0; θ)− 1)2

=
Nt

∑
k=1

(Re−αNN(yk ;θ)
τ

k

∑
j=0

bk
j

ΔyαNN(yk ;θ)
(Uk+1−j −Uk−j)− τw

ρ
)2 + (αNN(0; θ)− 1)2,

where U is the DNS data. It changes with Reθ for the boundary layer problem, so there is
(implicit) x dependence as well.

3. Numerical Results

In this section, we present the results for the turbulent channel, pipe, Couette, and
boundary layer flows.

3.1. Channel Flow
3.1.1. Numerical Results of the One-Sided Models

We first consider turbulent channel flow for which DNS data are available up to
Reτ = 5200 [22]. Here, we use the FD scheme with N ≈ Reτ points to solve the aforemen-
tioned inverse problem for the channel flow at a given Reynolds number Reτ . Solving for
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α(y), which uniquely determines the Reynolds stresses, Figure 2a depicts the profiles of
the fractional order α(y) for different Reτ as a function of the non-dimensional distance
from the wall y ∈ [0, 1]. We see a strong dependence of α(y) on Reτ ; however, if we re-plot
all data in terms of the viscous wall units, i.e., y+ = yuτ/ν0 we see a collapse of all results
into a single universal curve, as shown in Figure 2b. Moreover, we employ the empirical
Spalding formula [23] for U+ = u/uτ in order to extend the results up to high Reτ = 106,
and again we obtain a similar universal scaling with the exception of low Reτ for which the
Spalding formula is known to be somewhat inaccurate. We fit the fractional order using
these numerical results to obtain the fractional order α(y+) in wall units as follows

α∗(y+) = 1− φ(y+)
2

+
φ(y+) + 1

2
a(y+), (24)

where φ(y+) = tanh(ln(y+/9.5)/1.049) and a(y+) = 1/(b + κ| ln(y+)|0.9)with b = 0.855, κ = 0.301
are constants. This is a remarkable result as it goes beyond the logarithmic profile and
seamlessly connects the viscous sublayer with the buffer zone, the logarithmic profile,
and the wake region. Although at first it appears to be a perfect fitting exercise, it has
important consequences due to the nonlocal interpretation of the fractional derivative
involved, i.e., it shows that nonlocality is stronger away from the wall and at high Reynolds
numbers. Using the same data for U(y), we show that the alternative model VFM-II with
1 ≤ α(y) ≤ 2 also leads to the same type of universality (Figure 3). However, unlike the
aforementioned VFM-I, we are unable to obtain an explicit formula for ν(y), relating it to
the Reynolds number as in the first model (i.e., α(y) ∈ (0, 1]); instead, we can compute
it numerically from the DNS data of turbulent channel flow. As shown in Section 3, this
alternative fractional model also exhibits a universal scaling if plotted in terms of wall
units, with the lowest value of α(105+) ≈ 1.3.
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Figure 2. Channel flow modeled with VFM-I: Learning the fractional variable order α(y) using DNS databases at Reτ =

180 to 5200: (a) profiles of the fractional order α(y); (b) rescaled fractional order α(y+) in viscous units.
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Figure 3. Alternative fractional modeled with VFM-II with 1 ≤ α(y) ≤ 2. The numerical fractional orders are computed
based on DNS data for turbulent channel flow at Reτ = 950, 2000, 4200, 5200: (a) plots of the fractional orders α(y+) in wall
units; (b) corresponding eddy viscosity coefficients.

To evaluate the predictability of the universal scaling, we now solve the forward
Equation (2) to obtain U(y) at Reτ = [4200, 6000, 8600], which are cases not used in the
training of the model for α(y+). The results presented in Figures 4 and 5 are in good
agreement with DNS and experimental data. We also include the turbulent channel flow
results obtained by nested LES [24]. Figures 4 and 5 show that the mean velocity profiles
predicted by VFM-I exhibit the correct behavior throughout the channel for Reynolds
numbers up to Reτ = 8600, including the correct slope in the logarithmic layer, and agree
with DNS and experimental data in the wake region for all Reτ = [4200, 6000, 8600].

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01

0.02

0.03

0.04

0.05

(a)

100 102

5

10

15

20

25

VFM-I,

(b)

Figure 4. VFM-I: Model predictions for the turbulent channel flow at Reτ = 4200: (a) the solid line (−) represents the
numerical solution of the optimization problem and the triangle symbols ( ) represent Equation (24). The blue line
represents the fractional order α(y) and the red line is the eddy viscosity coefficient. This Reynolds number Reτ = 4200 is
not included in the training of the model; (b) mean velocity obtained by VFM-I corresponding to the fractional order α∗(y+)
from the left plot.
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Figure 5. VFM-I: Profiles of the mean velocity for turbulent channel flow at Reτ = 6000, 8600:
the triangle symbol ( ) represents experimental data from [25], the circle symbol (◦) represents
experimental data from [26], the solid line (−) represents the VFM-I profile, and the dashed line (−−)
represents the LES results [24].

We used fPINN to investigate the turbulent channel flows. We used different training
points for investigating the convergence using DNS data at Reτ = 2000. Figure 6 shows
the training results with uniform training points in the interval for Nt = 500, 1000, 2000.
Figure 7 shows the training results with log-uniform training points in wall units scaling for
Nt = 10, 20, 40, 80. The corresponding loss histories are listed in Table 1. Figure 7 presents
the comparison profiles between the training sets. We can observe that the results trained
by the log-uniform are smoother than the uniform training points near the wall.

Table 1. VFM-I: The history of the loss function with different training data sets for Reτ = 2000. Log represents the
log-uniform training points set.

Itr Nt = 500 Nt = 1000 Nt = 2000 Log, Nt = 10 Nt = 20 Nt = 40 Nt = 80

0 6.08× 10−1 4.70× 10−1 6.57× 10−1 6.92× 10−1 7.01× 10−1 6.74× 10−1 6.90× 10−1

5000 1.04× 10−4 8.11× 10−5 9.12× 10−5 4.72× 10−1 5.94× 10−5 5.08× 10−5 4.61× 10−5

10,000 1.79× 10−5 1.32× 10−5 1.21× 10−5 8.27× 10−6 8.93× 10−6 1.08× 10−5 9.51× 10−6

20,000 3.34× 10−6 1.75× 10−5 1.40× 10−6 9.26× 10−7 4.68× 10−7 2.84× 10−6 2.77× 10−6

30,000 2.41× 10−6 7.31× 10−7 7.12× 10−7 4.41× 10−7 2.05× 10−7 1.55× 10−6 2.08× 10−6
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Figure 6. VFM-I: The fractional order obtained from fPINN and from the universal formula derived using point-by-point
minimization (“Predict”, Equation (24) ). The training results for the uniform training sets at iteration steps Itr = 10,000,
20,000, 30,000: (a) for Nt = 500; (b) for Nt = 1000; (c) for Nt = 2000.
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Figure 7. VFM-I: Fractional order for uniform training sets at iteration steps Itr = 10,000, 20,000, 30,000 for different
Nt = 10, 20, 30, 40. “Predict” presents the profiles from Equation (1). The friction Reynolds number Reτ = 2000. TP, the
distribution of the log-uniform training points.

Next, we test the accuracy of the forward problem and the loss function error with the
training fractional order predicted by log-uniform training points Nt = 20. We solve the
fractional equation as follows:

ν(y)Dα(y)
y U = f , ∀y ∈ (0, 1], (25)

with U(0) = 0, and the fractional order is obtained by training fPINN with Nt = 20 and
Equation (24). The corresponding loss functional error is defined as follows

L(θ) =
Nt

∑
k=1

(
Re−α(yk)

τ

k

∑
j=0

bk
j

Δyα(yk)

(
Uk+1−j(θ)−Uk−j(θ)

)− fk

)2
+ (U(0; θ))2.

Figure 8 plots the pointwise error of the mean velocity and the loss function for
Reτ = 4000 and 5000.

Finally, we use the simplified one-dimensional equation

∂

∂y
(
τuv − Ruv

)
= ν(y)Dα(y)

y U =
∂P
∂x

, y ∈ (0, 1), (26)
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where the Ruv denotes the Reynolds stress Ruv = u′v′, τuv denotes the viscous shear stress
τuv = ν0∂U/∂y, and U is the mean velocity, which is the solution to the above fractional
Equation (26). Then, we obtain the Reynolds stresses by integration,

−Ruv =
∫ 1

y
ν(s)Dα(s)

s Uds− τuv. (27)

We can compare the predicted Reynolds stresses to their counterparts, RD from DNS
data for turbulent channel flow, and using the corresponding viscous shear stress de-
noted by τD = μ∂UD/∂y, where UD denotes the mean velocity from the DNS database.
In Figure 9, we plot the predicted and DNS profiles for Reynolds numbers Reτ = 4000, 5200
and the corresponding pointwise error. We can observe that they are all in very good agree-
ment. The numerical results of the mean velocities and shear stresses for all Reynolds
number Reτ match very well with the DNS data; here, we only show the high Reynolds
number cases due to space limitations.
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Figure 8. VFM-I: The mean velocity (left) for different Reynolds numbers, the pointwise errors of the mean velocity between
predictor and DNS data (middle), and the loss function (right). FD, the fractional order solved by the finite difference
method; NN, the results from the neural network.
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Figure 9. VFM-I: Accurate prediction of the shear stress at (a,b) Reτ = 4000, 5200 in outer units and wall units: (left) outer
scaling; (middle) wall units scaling; (right) pointwise error of the wall shear stress. Here, τuv denotes the wall shear stress
for the fractional order predicted by the finite difference (FD) method, τNN

uv denotes the wall shear stress predicted by the
NN, and τD is the corresponding profile from DNS data. −Ruv denotes the Reynolds shear stress predicted by Equation (24),
−Ruv denotes the wall shear stress predicted by the NN, and −RD is the corresponding profile from DNS data.

3.1.2. Numerical Results of the Two-Sided Models

In this subsection, we focus on the two-sided models. Solving for α(y), which uniquely
determines the total shear stresses, Figure 10 plots the profiles of the fractional order α(y)
for different Reτ as a function of the non-dimensional distance between the two walls
y ∈ [0, 2]. We see a strong dependence of α(y) of Reτ , which is the same conclusion as for
the previous variable fractional model. Furthermore, we re-plot all data in terms of the
viscous wall units, i.e., y+ = yReτ , and we see an approximate collapse of all results into a
single universal curve in the half-plane excluding the wake region (i.e., near the centerline),
as shown in Figure 10.
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Figure 10. Learning the fractional variable-order α(y) using DNS data bases at Reτ = 180 to 5200:
(a) profiles of the fractional order α(y); (b) rescaled fractional order α(y+) in viscous wall units.
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Next, we test the accuracy of the forward problem with the fractional order provided
by the inverse optimization problem (19). We solve the divergence variable fractional
equation as follows

− D
(
ν(y)Dα(y)

|y| U
)
= 1, ∀y ∈ (0, 2), (28)

with U(0) = U(2) = 0. Figure 11 plots the solutions (left) of the above equation and the
pointwise error (right) of the mean velocity in each subfigure for several Reτ . We can
observe that this model predicts the mean velocity well. Moreover, it can obtain a smooth
mean velocity profile in the whole domain along the wall-wise direction.

We also use fPINN (20) to solve the inverse problem to obtain the variable order α(y).
The two results from the two different methods (i.e., FD and fPINN) agree well for all
Reynolds numbers.
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Figure 11. The mean velocity (left) and the pointwise difference between the numerical solution and the DNS data (right)
in each sub-figure.

3.2. Turbulent Pipe Flow

In this subsection, we consider turbulent pipe flow and again test the universal
variable fraction order α(y+) against DNS and experimental data. First, we examine the
highest Reynolds number available from the superpipe experiment [27,28] at Reτ = 5× 105,
estimated at ReR ≈ 3.525× 107 based on the pipe radius R. As the experimental data
were only available for y+ > 10,000, we synthesized an entire profile from the pipe wall
to centerline using multifidelity Gaussian process regression (M-GPR) [29] as follows: we
considered as high fidelity data the superpipe data in the outer region together with the
highest DNS data for channel flow at Reτ = 5200. We then employed the Spalding curve to
provide the low-fidelity data and, using M-GPR, we constructed the final profile as shown
in Figure 12a. Having this profile and the VFM-I model transformed in polar coordinates,
we can then solve the inverse problem and obtain a new variable fractional order α(y+).
Figure 13a shows that the variable fractional order we obtain for this problem is identical
to the function defined by Equation (24). This finding further confirms the universality
of the variable fractional order even at very high Reynolds numbers. Having validated
the accuracy of the variable fractional order, we can now solve the forward fractional
differential problem to obtain predictions of the entire velocity profiles from Reτ = 105

to Reτ = 5× 105. Figure 12b plots the results, showing that there is excellent agreement
with all available data from the superpipe experiment. Figure 13b plots the mean velocity
profiles from the DNS data base [30] at low Reynolds numbers, the corresponding VFM
predictions, and the Spalding profile. The universal defect law for pipe flows is not valid
for the low Reynolds number range, and this is also in agreement with [27], who argued
that the lowest Reτ for universality is approximately 5000.
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Figure 12. Predictions of the mean velocity profile for the superpipe flow from Reτ = 1× 105 to 5× 105: (a) velocity
profile reconstructed from the experimental data ( , [28]), DNS data at Reτ = 5200 (�, [22]), and the Spalding profile (blue
line [23]) using multifidelity Gaussian process regression (M-GPR); (b) “- -”, fractional order with the M-GPR profile at
Reτ = 5× 105; “-”, the profile of Equation (24); and ‘-·’, the corresponding Spalding profile; (c) velocity profiles solving the
forward fractional model and the Spalding curve against the experimental data.
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Figure 13. VFM-I for turbulent pipe flow: (a) “··”, VFM-I model with the channel flow DNS data at
Reτ = 5200; “- -”, VFM-I model with the M-GPR profile at Reτ = 5× 105; “-”, the profile of Equa-
tion (24); and ‘-·’, the corresponding Spalding profile; (b) ‘-·’ and ‘··’ plot the DNS data at Reτ = 180
and Reτ = 1140; ‘-’ the VFM-I model at Reτ = 2000 and the corresponding Spalding profile.

3.3. Turbulent Couette Flow

In reference [12], the authors proposed the double-log profile to predict the mean
velocity for the Couette flow as follows

U(y) =
1
2
− 1

2
ln

(
(d + y)/(d + 1− y)

)
ln

(
d/(d + 1)

) , (29)

where d is a small number (d � 1) that represents a viscous sublayer or roughness height.
The non-dimensional boundary conditions are U(0) = 0 and U(1) = 1.

Here, we consider the predictions from the universal scaling fractional order α∗(y+),
and we also compare it against the double-log profile. The variable fractional order α∗(y+)
is between zero and one in our turbulence model. So, we work in the half-plane y ∈ [0, 0.5]
(see the dashed square in Figure 14a). We then obtain the results in the other half of the
domain with U(y) = 1−U(1− y), y ∈ (0.5, 1]. Figure 14 shows the mean velocity profiles
predicted using (29) and the mean velocity, which is predicted by the variable fractional
order α∗(y+). We can observe that the variable fractional model is in agreement with
the experiment data as well as the double-log profile. However, the double-log profile is
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unable to capture the correct mean velocity near the wall. We also tested the profiles for low
Reynolds number Reτ = 52, where the numerical data were obtained from reference [31].
For the double-log profile, we could not find a suitable parameter d to obtain a good fit for
the low Reτ = 52. Finally, we show the comparisons between the TCM predicted mean
velocities and DNS data at Reτ = 250 obtained from reference [32]. Figure 15 shows that
the fractional predictions are correct almost everywhere, especially near the wall regions
for high Reynolds numbers.
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Figure 14. Turbulent Couette flow—numerical results for Re = 16,500: “-”, TCM predictions at
Reτ = 1650; “- -”, best fit of the double-log profile in Equation (29) with d = 1.06× 10−5; “�”,
experimental data from [33].
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Figure 15. Turbulent Couette flow at Reτ = 250: (a) “-”, TCM predictions; “- -”, best fit of the
double-log profile in Equation (29) with d = 1.06× 10−5; “�”, DNS data from [32]; (b) wall units
scaling for the mean velocity profiles.

3.4. Turbulent Boundary Layer Flow

In this subsection. we focus on the boundary layer problem. We use data available
from the KTH turbulence group from the turbulent boundary layer DNS [34,35]. We first
investigate the correlations between Reθ (x-variable) and Reτ (y-variable); Figure 16 shows
the downstream variations in the friction Reynolds number Reτ , and unlike the channel
flow, here, Reτ is a function of the streamwise distance x.

Then, we test if the mean velocity of the boundary layer problem exhibits any uni-
versality as the channel and pipe flow. We solve the forward boundary layer problem
with the fractional order predicted by Equation (24) (i.e., the formula is the same as the
channel flow case) including the wake region. Figure 17 presents the mean velocity profiles
from the DNS [34] and fractional modeling near the wall for several Reθ from 670 to 4060,
with the corresponding Reτ varying from 252 to 1200. We observe that the mean velocities
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are different in the wake region for different Reτ . Figure 18 plots the wake region, which
is between δ+99 and the error E = 1%. We define this error as the difference in the mean
velocity between the DNS data and the fractional model as follows:

E =
U −Uf

U∞
, (30)

where U is the DNS data and Uf presents the numerical results from the fractional model.
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Figure 16. The relation between the friction Reynolds number Reτ and Reθ .
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Figure 17. TCM: Boundary layer mean velocity profiles from the DNS and fractional modeling near
the wall and in the wake region for several Reθ from 670 to 4060.

Since the mean velocity does not exhibit universality in the wake region, we solve the
fPINNs to investigate the variations in the fractional order in the wake region. In Figure 19,
we plot the fractional order inferred by fPINN based on the DNS data for Reθ = 670 to
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4060. We can observe that the fractional order varies for different Reθ in the wake region.
Then, we train the fractional order in the wake region selecting the data set Reθ = 670 to
4060 but excluding Reθ = 2000. In Figure 20, we present the factional order in the 2D plane
for the x-axis and y+-axis. Finally, we solve the fractional turbulent boundary layer model
with the fractional orders presented in Figure 20. The comparison between the numerical
results and the DNS data set is presented in Figure 21.
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Figure 18. Downstream variations in δ+99, and the error E = 2% and E = 1%. The lower bounds of
the wake region are denoted by the blue curve with E = 1% and the red curve with E = 2% (see
Equation (30)).
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Figure 19. TCM: The fractional order α(y) learning from a neural network (NN) near the wall and in
the wake region for several Reθ from 670 to 4060, and the corresponding Reτ from 252 to 1200. We
can observe that the fractional order is different for different Reθ in the wake region. The black line
represents the reference fractional order predicted by channel flows; the red curve represents the NN
results for different Reθ .
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(a) Spline interpolation. (b) Neural network (NN).
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Figure 20. We train the fractional order in the wake region and near the wall selecting the data set
Reθ = 670 to 4060, excluding Reθ = 2000; the training region is (Reθ , y+)∈ [670, 4060]× [0, 1200].
The training data set is represented as black dots: (a) we use spline interpolation (IP) in 2D; (b) the
fractional order is trained by a neural network with 2 hidden layers and 20 neurons in each hidden
layer. (c) The black line represents the reference fractional order predicted by channel flows; the red
curve represents the fPINN results at Reθ = 2000; the green line plots the interpolation results IP2D
along the green line in (a); the blue curve presents the NN along the blue line in (b).
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Figure 21. We solve the fractional turbulent boundary layer model with the fractional orders rep-
resented in Figure 20c at Reθ = 2000. (a) The mean velocity; (b) the viscous shear stress. The black
line represents the reference fractional order predicted by channel flows; the red curve represents
the NN1D results at Reθ = 2000; the green line plots the interpolation results IP2D for Reθ ; the blue
curve represents the NN for Reθ = 2000.

255



Entropy 2021, 23, 782

4. Summary

We proposed multiple fractional models for wall-bounded turbulent flows in bench-
mark cases where the mean flow is either one-dimensional (channel, pipe, and Couette
flows) or two-dimensional (boundary layer). The main idea is to employ a variable-order
fractional gradient that depends on the distance from the wall, starting with an integer or-
der at the wall. The computational problem we addressed is the discovery of the fractional
variable-order profile given DNS or experimental data for the mean velocity profile. To this
end, we formulated an inverse problem for the fractional order as a function of the distance
from the wall, and we solved it using a finite difference method point-by-point and through
a new fractional physics-informed neural network (fPINN) that encodes the physics of
turbulence expressed via the fractional derivative of variable order. The fractional order is
a function of the distance from the wall, a unique capability enabled by fractional calculus.
We discovered that this fractional order function is universal for all Reynolds numbers and
for different geometries.

The main contributions of this work are: (1) new fractional turbulent models with
variable order are presented to model the total shear stress of RANS; (2) two solution
methods for the non-trivial inverse problem, a FD method, and a fPINN for obtaining the
fractional order function; (3) a universal fractional order profile was discovered for the
channel and pipe flows that allowed us to accurately predict the fractional order for the
boundary layer flows.
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Abstract: Distributed-order fractional calculus (DOFC) is a rapidly emerging branch of the broader
area of fractional calculus that has important and far-reaching applications for the modeling of
complex systems. DOFC generalizes the intrinsic multiscale nature of constant and variable-order
fractional operators opening significant opportunities to model systems whose behavior stems from
the complex interplay and superposition of nonlocal and memory effects occurring over a multitude
of scales. In recent years, a significant amount of studies focusing on mathematical aspects and
real-world applications of DOFC have been produced. However, a systematic review of the available
literature and of the state-of-the-art of DOFC as it pertains, specifically, to real-world applications is
still lacking. This review article is intended to provide the reader a road map to understand the early
development of DOFC and the progressive evolution and application to the modeling of complex
real-world problems. The review starts by offering a brief introduction to the mathematics of DOFC,
including analytical and numerical methods, and it continues providing an extensive overview of
the applications of DOFC to fields like viscoelasticity, transport processes, and control theory that
have seen most of the research activity to date.
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1. Introduction

Fractional calculus (FC) was first introduced as a mathematical generalization of
integer-order integration and differentiation. Started in 1695 from a discussion between
Leibniz and de L’Hôpital about the possible interpretation of the operator dn/dxn when
n = 1/2 [1], FC has been the object of studies for more than 300 years. In the early years,
research mostly focused on mathematical aspects of the fractional-order operators; their
physical interpretations and potential applications followed much later. Likely, the first
application of FC can be traced back to Abel in 1826. Abel [2] applied FC to formulate an
integral equation describing a tautochrone problem. Following Abel’s study, the integral
representation of FC started gaining increasing attention in the mathematics community.
Early works mostly focused on the development of analytical formulations to solve se-
lected mathematical problems. The most immediate result of this rapidly growing interest
in FC was the expansion of the possible definitions of a fractional operator including,
but not limited to, the integral representation (Liouville, Riemann, and Hadamard) and
the convergent series representation (Grünwald and Letnikov). While these early studies
had pointed out the intriguing role that FC can play when modeling complex processes in
physical systems, the bulk of the early research kept focusing on the development of the
mathematical framework [3] and on the integration of these operators into ordinary and
partial differential equations [4]. It was only in the second half of the twentieth century
that the concept of FC started percolating to fields other than mathematics. An area of
application that has seen a remarkably rapid growth is that involving the modeling of com-
plex physical phenomena. Unlike integer-order operators, the intrinsic multiscale nature of
fractional operators enabled a very unique and effective approach to model historically
challenging physical processes involving, as an example, nonlocality or memory effects.
Indeed, many of the early applications of FC to physical modeling included viscoelastic
effects [5–12], nonlocal behavior [8,12–24], anomalous and hybrid transport [9–11,24–30],
fractal media [12,31–35], and even control theory [36–39]. The interested reader is referred
to the work in [40] for a detailed account of the birth and evolution of fractional calculus.

For more than a century, the study of fractional calculus focused on operators accepting
a constant and single-valued order; we will refer to these operators as constant-order
operators in order to differentiate them from the distributed (but constant) order operators
that will be introduced below. Despite constant-order operators being considerably more
general than their integer-order counterpart, the constant and single-valued nature of
the order still limits its ability to accurately capture certain complex phenomena whose
underlying physics could either evolve in time or emerge as the result of the interplay
of multiple orders. In relatively recent years, this observation led to the formulation of
two remarkable and unique forms of FC operators, namely, the distributed-order and the
variable-order operators. The latter definition accounts for operators whose order can be a
function of either dependent (e.g., state variables of the system) or independent (e.g., space
or time) variables and can change value following the evolution of the system. While this
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review does not focus on this class of operators, the interested reader is referred to the
works in [41,42] for a detailed overview of the mathematical aspects and applications of
variable-order operators.

Before proceeding further, we clarify the different acronyms that will be used in this
review in order to refer to the different types of fractional-order operators. The single
constant-order operators are denoted as “CO” operators, the distributed-order operators
(with constant order distribution) are denoted as “DO” operators, and the variable-order
operators are denoted as “VO” operators. While VO operators can certainly be single or
distributed in nature, with the acronym “VO” we specifically refer to single variable-order
operators. Distributed-variable-order operators, which will be introduced later, are denoted
as “DVO” operators.

The distributed-order definition of the operator allows considering a superposition of
orders and accounting for, as an example, physical phenomena such as memory effects in
composite materials [43] or multi-scale effects [44]. A typical example that illustrates the
capabilities of this class of operators is the mechanical behavior of viscoelastic materials
having spatially varying properties [45]. Distributed-order fractional calculus presents
a natural generalization of constant-order fractional calculus (COFC) by integrating the
fractional kernel of CO operators over an extended range of orders. Given that the funda-
mental kernel of a CO operator is retained in the DO operator, DO operators inherit the
fundamental properties of COFC, such as the ability to model nonlocality and memory
effects, and further extend them to multiple coexisting orders. This latter argument can be
interpreted as a superposition of the behavior captured by individual CO operators using
different orders within a given range.

The original concept of distributed-order fractional calculus (DOFC) can be traced
back to the seminal studies by Caputo on dissipative elastodynamics [46–48]. In these
studies, a generalization of the viscoelastic stress–strain constitutive laws, by employing
a parallel sequence of fractional-order derivatives, was undertaken. Initially, the author
dubbed this operator as the “mean fractional-order derivative”. A couple of decades later,
Caputo [49] formalized the original proposition into the concept of DO derivative and
also explored possible solutions to differential equations employing DO derivatives. Later,
detailed investigations on the properties of DO operators, and on the properties and
solution techniques of DO differential equations (DODE) were conducted in [45,50,51].
Following these pioneering studies on the mathematics of DO operators, in the 1990s and
early 2000s, the interest in this topic went beyond the mathematical community and started
percolating into several branches of engineering and physics. To date, we estimate that
a total of approximately 300 papers have been published in the general area of DOFC.
This estimate includes both journal and conference publications spanning a variety of
fields including, but not limited to, theoretical and applied mathematics, analytical and
numerical methods, viscoelasticity, transport processes, and control theory. A detailed time
history and a quantitative assessment of the scientific studies produced in the general area
of DOFC are provided in Figure 1.

Given the substantial critical mass reached by this field to date, and in view of the
drastic acceleration of the research on DOFC observed in recent years, the time is ripe to
assess the state of the field not only in terms of the mathematical formulation, but from
the perspective of practical applications. In this review, we will provide a comprehensive
discussion of the different fields of application and possible opportunities offered by DOFC
to model complex physical problems. We expect that this review would serve as a starting
point for the reader interested in approaching this fascinating field. Engineering, physics,
chemistry, biology, and finance are only some of the communities that should find several
points of interest and material for further consideration in this work.
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Figure 1. (a) Histogram chart showing the historical evolution of scientific publications per year
starting from 1995. Note that the first study on distributed-order fractional calculus (DOFC) was
published in 1966 by Caputo [46]. Approximately five studies were produced until 1995, which was
taken as the starting year for the histogram. (b) Pie chart showing the distribution of publications
per field. The data used in this figure were collected from Google Scholar.

The remainder of this paper is organized as follows. Section 2 focuses on providing
an overview of the main mathematical concepts including basic definitions and properties
of DOFC. The section also covers analytical and numerical methods for the calculation of
DO operators and for the solution of DODEs. Section 3 briefly discusses the relevance of
DO operators with respect to the modeling of complex physical processes. The remaining
sections provide a review of the applications of DOFC to real-world problems including
viscoelastic systems, transport processes, and control theory.

2. Mathematical Background

We begin this review by providing a brief summary of the basic definitions and
properties of DO operators. Further, we will discuss the properties of differential equations
with DO operators, and provide a brief overview of the corresponding analytical and
numerical simulation techniques. We highlight here that, unless otherwise mentioned,
the DO operator is defined on the basis of a general fractional-order derivative denoted
by �

c Dα
t , evaluated with respect to a generalized independent variable t. We emphasize

that the notation t used in this section must not be interpreted necessarily as time. Note
that c denotes the lower terminal of the fractional derivative. The fractional derivative �

c Dα
t

can accept different definitions, although the most common for DO operators are those
provided by Riemann–Liouville RL

c Dα
t and by Caputo C

c Dα
t [45]. Finally, also for the sake of

brevity, we shall provide only the definitions corresponding to the left-handed fractional
derivatives (the right-handed DO derivatives being an immediate extension).

2.1. Definitions and Properties

From a mathematical perspective, DO derivatives are defined as an integration of
either the constant-order or the variable-order fractional derivatives with respect to the non-
integer order of differentiation [48–51]. Two approaches to the definition of DO derivatives
have been explored [45]. First, the so-called direct approach treats the order as a variable so
that the DO derivative is defined as [45,49]

α1,α2Dα
c,t( f (t), κ(α), α) =

∫ α2

α1

κ(α)�c Dα
t f (t) dα (1)

where the integrand κ(α)�c Dα
t f (t) undergoes integration with respect to the independent

variable α, that is, the fractional order within the interval α ∈ [α1, α2]. κ(α) is denominated
as the order-weighting/strength function, or simply the strength function. The second
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approach, referred to as the indirect approach, treats the order as a function of a different
independent variable x leading to the following definition [45],

x1,x2Dα(x)
c,t ( f (t), κ(α), x) =

∫ x2

x1

κ(x)�c Dα(x)
t f (t) dx (2)

where x ∈ [x1, x2] is the interval of integration. Similar to κ(α), κ(x) is also an order
strength distribution [45]. The strength function (κ(α) or κ(x)) determines the contribution
of each individual CO derivative to the overall DO derivative. As an example, a constant
value of the strength function κ(α) = κ0 would mean the all the CO derivatives contribute
equally to the final DO derivative [49]. The specific choice of this strength function depends
on the underlying physics of the problem to be modeled and could be defined as either
a continuous or a discrete function of the order α (direct approach) or the independent
variable x (indirect approach). This latter comment is further clarified in the following
section by using practical examples.

To better illustrate the above concepts, we present a numerical demonstration of the
DO derivatives evaluated for two representative functions of the variable t: (1) a sinusoidal
function f (t) = sin πt in Figure 2 and (2) a step function f (t) = H(t− 1) in Figure 3, where
H is the Heaviside function. In Figures 2a and 3a, the strength function is chosen to be
κ(α) = 1, such that it is constant and continuous. In the Figures 2b and 3b, a discontinuous
strength function κ(α) = Σαj∈{0.5,0.7,0.9} τ0

α δ(α − αj), where τ0 is a positive constant.
In generating the above results, we employed the Caputo definition of the fractional
derivatives with terminals (−∞, t]. The CO Caputo fractional derivative of the two different
functions to an order α ∈ (0, 1) is [52]:

C−∞Dα
t (sin πt) = πα sin

(
π (2t + α)

2

)
(3a)

C−∞Dα
t (H(t− 1)) = H(t− 1)

[
(t− 1)−α

Γ(1− α)

]
(3b)

The above CO derivatives are also provided in the Figures 2 and 3 to facilitate comparison
with the DO derivatives. Note that above expressions for the different CO derivatives
identically reduce to their respective first-order (integer) derivatives for the choice of α = 1.

As evident from the Figures 2 and 3, the DO derivatives can be perceived as the
weighted sum of individual CO derivatives over the specified range of fractional-order α.
Particularly for κ(α) = 1, as evident from Figures 2a and 3a, the DO derivative is the linear
sum of the CO derivatives with fractional-order α spanning the range [α1, α2]. This concept
is further illustrated by the examples in Figures 2b and 3b. In these figures, the DO
derivatives evaluated for τ0 = 1 are the sum of the individual CO derivatives. In contrast,
for τ0 = 2 wherein the strength function is also a function of the order α, we observe a
weighted contribution of the different CO derivatives to the DO derivative. The above
discussion also explains the shift in the phase of the harmonic function in Figure 2a.
More specifically, the phase shift in the DO derivative with respect to the original signal is
caused due to the contribution of a phase difference of πα/2 (see Equation (3a)) by each
CO derivative. The effect of the strength function on the amplitude, without changes in
the phase, is illustrated in Figure 2b. Similarly, for the case of the Heaviside step function
in Figure 3, different decaying characteristics can be obtained by varying the definitions of
the strength function κ(α) and its support [α1, α2]. Interesting applications to viscoelasticity
based on this observation will be discussed in Section 4.

263



Entropy 2021, 23, 110

Figure 2. DO derivative of a harmonic function f (t) = sin πt derived following the definitions given
in Equation (1). The plot shows the behavior of the derivative for (a) continuous and (b) discrete
strength functions.

Figure 3. DO derivative of the Heaviside function f (t) = H(t− 1) derived following the definitions
given in Equation (1). The plot shows the behavior of the derivative for (a) continuous and (b) discrete
strength functions.

Lorenzo and Hartley [45] also extended the definitions of DO derivatives by allowing
for the order distribution to be a function of different variables (such as, for example, space,
time, or external loads). This extension introduced the concept of distributed-variable-
order (DVO) operator. Following this extension, the direct and indirect approaches to the
definition of DO operators can be reformulated as

α1,α2Dα(t)
c,t ( f (t), κ(α), α) =

∫ α2

α1

κ(α)�c Dα(t)
t f (t) dα (4a)

x1,x2Dα(x,t)
c,t ( f (t), κ(α), x) =

∫ x2

x1

κ(x)�c Dα(x,t)
t f (t) dx (4b)

Although providing a very general form of the operator that can capture both multifractal
(DO) and evolutionary (VO) behavior, the application of these operators has been rather
limited. To date, most applications of DVO operators have been in the area of complex
viscoelastic materials (see Section 4.3).
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2.2. Distributed-Order Differential Equations

The present section is intended to briefly introduce the concept of differential equations
based on DO operators. Clearly, the concept of DODEs is fairly extensive in itself and the
reader is referred to the works in [53,54] for a detailed discussion on the different forms of
DODEs and the corresponding solution techniques. Here, we simply introduce the general
concept of DODE in order to facilitate the understanding of the discussion on applications
presented in the remainder of the paper. Consider the following DODE [49],

0,mDα
0,t(κ(α), u(t), α) = f (t) (5)

for m ∈ N. Note that a discrete distribution function κ(α) = ∑n
j=1 bjδ(α− αj) reduces the

above equation to following multi-term fractional-order differential equation,

n

∑
j=1

bj
�
0 D

αj
t u(t) = f (t) (6)

At the same time, a continuous distribution κ(α) = C[0, m] can be perceived as a limiting
case of the multi-term definition provided above when n → ∞ [49]. While Equation (5) is
an example of linear DODE, a nonlinear DODE can be given as [55]∫ m2

m1

κ(α)F
(
�
0 Dα

t u(t)
)

dα = f (t, u(t)) (7)

where F
(�

0 Dα
t u(t)

)
is a nonlinear function in the primary variable u(t) including its frac-

tional derivatives.
For the linear DODE in Equation (5), some common assumptions are employed

to ensure that the problem is well-posed, that is, the solution is both bounded and
convergent [55,56]:

Hypothesis 1. κ is absolutely integrable on the interval [α1, α2] and satisfies the following inequality,∫ α2

α1

κ(α)sαdα �= 0, for Re(s) > 0 (8)

Hypothesis 2. f ∈ L1[0, ∞), where L1 is the Lebesgue space.

Hypothesis 3. The function u(t) is such that �
0 Dα

t u(t) < M ∀t ∈ [0, ∞) ∩ ∀α ∈ [α1, α2],
where M is a constant. In other terms the fractional-order derivative is always bounded. For the
limiting case where either of the order bounds tends to infinity (i.e., α1 or α2 → ∞), the boundedness
of the DO derivative requires the strength function κ(α) to be non-zero only over a finite range, that
is, κ(α) must have a finite support [45].

Pskhu [57,58] conducted early studies on the solvability of ordinary DODEs. Umarov
and Gorenflo [59] extended these studies to analyze the solvability of multipoint problems.
Diethelm and Ford [60,61] analyzed the existence and the uniqueness of solutions for
linear DODEs, specifically for the case where Caputo-type initial conditions are available.
Later, this proof was extended to the case where initial conditions are unknown [55]. It is
noteworthy that these studies prove the existence and uniqueness for the fractional order
α < 1, while for α > 1 the existence and uniqueness are still a conjecture. A similar
exercise was performed on nonlinear DODEs with specific application to viscoelastic
systems [62] and wave propagation [63]. The existence of solutions to hybrid DODEs was
analyzed in [64], where the hybrid differential equations are quadratic perturbations to
nonlinear DODEs [65,66]. Atanacković et al. also conducted similar studies on selected
forms of DODEs encountered in the study of viscoelastic solids [67,68]. Note that all the
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aforementioned studies adopt the assumptions Hypothesis 1–3. Very recently, Fedorov
studied linear DODEs that violate Hypothesis 2 resulting in an unbounded operator [69].
This study expanded the application of DODEs to initial and boundary value problems of
ultra-slow diffusion.

2.3. Solution of DODEs: Analytical Methods

Concerning the analytical methods for the solution of DODEs, Caputo first proposed
the use of Laplace transform to derive solutions [49]. Later, Bagley and Torvik [50,51]
analyzed this approach in a systematic manner. The results obtained by the application of
Laplace transform to DO derivatives are subject to minor modifications depending on the
strength function and its support. Caputo derived the Laplace transform of DO derivatives
with the order-distribution being an arbitrary interval [a, b]. Bagley and Torvik specialized
this result for a restricted interval: α ∈ [0, 1], given the numerous practical examples
encompassed by this choice. Diethelm and Ford extended the domain to [0, m], m ∈ N [60].
The Laplace transform of a DO derivative with order distributed in [0, m], based on the
Caputo definition, is given as [56]

L
[∫ m

0
κ(α)C

0 Dα
t u(t)dα

]
︸ ︷︷ ︸

C
0,mDα

0,tu(t)

=
∫ m

0 κ(α)
(
sαL[u](s)− u(0)sα−1)dα

− ∑m−1
j=1

∫ m
j κ(α)u(j)(0)sα−j−1dα

(9)

The Laplace transform of the DO derivative for other possible cases such as α ∈ [0, ∞] and
α ∈ [m− 1, m] can be found in [45,70], respectively.

Using the Laplace transform of the DO derivative in Equation (9), Diethelm and Ford
derived the analytical solution for the linear DODE: C

0,mDα
0,tu(t) = f (t) as [60]

u(t) = u(0) + L−1

[
1∫ m

0 κ(β)sβdβ
F(s)

]
+

m−1

∑
k=1

yk(0)L−1

[∫ m
0 κ(β)sβ−k−1dβ∫ m

0 κ(β)sβdβ

]
(10)

where L−1 is the inverse Laplace transform. Note that the inverse Laplace transform in the
above solution can be applied iff the assumptions Hypothesis 1–3, that ensure a bounded
solution, are satisfied [60]. Lorenzo and Hartley derived analytical solutions for DODEs
employing DO derivatives specifically for an order distributed overR+ [45]. Other common
approaches to derive solutions of DODEs include the Fourier method [71–73], the use of
Mittag–Leffler functions [74–76], the spectral representation of the fractional operator [77],
and series expansion methods [78,79]. The method of Laplace transforms combined with
series approximations using Laguerre polynomials was also used to solve linear and
nonlinear DODEs [80]. While the work in [80] focuses on obtaining the solution for one-
and two-term fractional-order relaxation equations, the method developed in [80] is highly
general and may be extended to DODEs with general strength functions.

Although, in the above discussion we have primarily considered DO derivatives
based on the Caputo definition, the Laplace transform of DO derivatives based on the
Riemann–Liouville definition can also be derived analogously [60]. In fact, as shown in [60],
the only difference appears in the terms consisting the initial conditions, similar to the
CO case [4]. This difference in behavior was also highlighted by Mainardi et al. [81],
who employed Laplace transforms to compare the asymptotic behaviors of fundamental
solutions to time-fractional DO diffusion equations. Interestingly, different asymptotic
behaviors are observed for DO derivatives based on the Riemann–Liouville and Caputo
definitions. The difference in the asymptotic behaviors is primarily due to the difference in
the way the initial conditions appear in the Laplace transform of the CO Riemann–Liouville
and Caputo derivatives [4,82].
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2.4. Solution of DODEs: Numerical Methods

Although analytical solutions are possible for special types of DODEs [45,60], the
rapidly growing application of DOFC to model complex physical systems often requires the
use of numerical methods. Starting from basic observations, Diethelm [83] first proposed
an approximate numerical method for the solution of multi-term DODEs. Following this
initial study, several other numerical methods have been developed. Note that DODEs (see,
for example, Equation (5)) can be either ordinary differential equations (ODE) or partial
differential equations (PDE), depending on the specific application. The numerical simula-
tion of either a distributed-order ODE or PDE requires the numerical approximation of the
DO derivative. Once the approximation of the DO derivative is obtained, the procedure
to numerically simulate the DODE follows exactly from classical procedures developed
for integer-order equations. In other terms, the main difference between the evaluation of
classical integer-order differential equations and DODEs lies in the numerical approxima-
tion of the DO derivative. In the interest of brevity, we focus this section only on this latter
aspect. In general, the procedure to numerically approximate DO derivatives can be seen
as a two-step process:

1. Step 1: Numerical integration of the integral operator. The DO derivative consists of a
continuous distribution of the fractional order α. In Step 1, a numerical integration is
used to discretize the DO derivative into a multi-term CO fractional derivative.

2. Step 2: Approximate solution of the multi-term fractional derivative. Following the
conversion of the DO derivative into a multi-term fractional derivative at step 1,
different numerical methods are used to evaluate each CO fractional derivative within
the multi-term derivative.

The above two steps can be more practically visualized by considering the following
example of DO derivative,

∫ b

a
φ(α)Dαu(t)dα

Step 1≈
k

∑
i=0

Wiφ(αi)Dαi u(t)︸ ︷︷ ︸
Approximation of the integral

Step 2≈
k

∑
i=0

Wiφ(αi)Ψ(αi, t)︸ ︷︷ ︸
Incorporate approximation of Dαi u(t)

(11)

where Wi is the weight obtained from numerical integration and Ψ(αi, t) is the numerical
approximation of the CO derivative Dαi u(t). In summary, at step 1, an approximation of
the order integral is computed (often by quadrature rules), and at step 2, the remaining
CO derivatives are approximated by employing different types of numerical methods for
CO fractional derivatives. Based on this two-step approximation strategy, this section
is divided into three parts: (1) a discussion of the most popular quadrature rules for
the implementation of step 1, (2) a discussion of the various numerical methods for the
implementation of step 2, and (3) a brief discussion on their computational aspects.

2.4.1. Numerical Integration of the Integral Operator (Step 1)

As highlighted in the previous sections, a key difference between DO derivatives and
CO derivatives is the existence of an additional integration over the order. To transform
the integral form into the multi-term form (first of the two-step process), two common
quadrature rules are often used by researchers: (1) Gauss–Legendre quadrature rule and (2)
Newton–Cotes quadrature rule. Based on the Gauss–Legendre quadrature rules [84–107],
the DO derivative can be approximated using the following multi-term form,

∫ b

a
φ(α)Dαu(t)dα =

∫ b

a
g(α, t)dα =

k

∑
i=0

WG
i gG(αG

i , t) + RG (12)
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where WG
i are the weights at the Gauss points αG

i chosen for this integration over the DO.
Although the Gauss–Legendre quadrature schemes are known to achieve highly accurate
results (particularly when dealing with integrands of specific type such as, for example,
polynomials), an analysis of the numerical convergence and of the truncation error (includ-
ing steps 1 and 2) becomes difficult when the integrand consists of fractional derivatives
(like Dαu(t), as shown in Equation (11)). To overcome these drawbacks of the Gauss–
Legendre quadrature, the Newton–Cotes scheme was considered. The Newton–Cotes
quadrature scheme can be divided into closed and open approaches, depending on whether
the function values at the end points are included. Following the closed approach, different
quadrature rules used for DO derivatives include the trapezoid rule [56,87,106,108–117],
the Simpson’s rule [87,106,111,112,116–121], and the Boole’s rule [122]. All these schemes
are also associated with different orders of convergence. Following the open Newton–Cotes
approach, the mid-point rule is widely used [107,123–143]. The truncation error at the
end of step 1, when employing the Newton–Cotes approach, simply follows the classical
results. More specifically, the truncation errors are O(h2) for trapezoid rule and mid-point
rule, O(h4) for Simpson’s rule, and O(h6) for Boole’s rule. Given the flexibility in choosing
different approximations and the ease of error analysis, Newton–Cotes method is typically
preferred over Gauss–Quadrature approach in step 1 approximation.

2.4.2. Approximation of the Multi-term Fractional Derivatives (Step 2)

As described in Equation (11), the second step involves the numerical approximation
of the CO fractional derivatives within the multi-term fractional derivative. Strictly speak-
ing, this approximation directly follows the techniques available for CO derivatives. The lit-
erature on numerical methods for the approximation of CO derivatives is extensive and
has been the object of books [144] and papers [145–147]. Therefore, for the sake of brevity,
we do not review again these methodologies.

The more interesting and challenging aspect, in the context of the DO formulation,
is the combination of the step 2 approximation with the spatial and/or temporal dis-
cretization of the domain in order to develop computational models for space- and/or
time-fractional DODEs. The different discretization techniques can be generally divided
into (1) mesh-free approaches and (2) mesh-based approaches. The majority of mesh-free
approaches are based on the spectral method, which uses basis functions to approximate
the multi-term DO expression obtained in the first step. On the other hand, the mesh-based
approaches involve most of the classical methods for differential equations including the
finite difference method (FDM) and the finite element method (FEM). Depending on the
specific implementation, that is, on the numerical technique adopted to approximate the
CO fractional derivative in step 2 and the spatial and/or temporal discretization of the
domain, the computational approaches differ in their accuracy and computational cost.
This review focuses on this latter aspect. In this regard, we report here the accuracy of each
method, wherever available. In order to unify the expressions for convergence analysis of
different methods, we will use τ, h, and σ to represent the step-sizes in time, space, and
order, respectively.

Mesh-Free Approaches

In this section, we briefly describe the different mesh-free approaches available in
the literature to numerically simulate DODEs. The majority of these techniques adopt the
common strategy of converting the DODE into a system of algebraic equations using or-
thogonal basis functions. This allows formulating operational matrices which approximate
the CO derivatives within the step 2 approximation. Depending on the strategy adopted to
develop these matrices (or, equivalently, these algebraic equations) the different mesh-free
approaches can be broadly categorized as Galerkin methods, collocation methods, and tau
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methods. A brief discussion on these methods and some other miscellaneous techniques is
provided in the following.

1. Galerkin spectral methods can be divided broadly into two categories depending on
the specific nature of the basis functions: (1) Galerkin spectral methods based on
Legendre polynomials (GLSM) and (2) Galerkin spectral methods based on Jacobi
polynomials (GJSM). GLSMs were proposed very recently in [92,118,125,143,148] to
solve time-fractional DODEs. These were accurate to O(τ2−β) (where, β ∈ (0, 1)).
A few researchers combined the GLSM scheme with an alternating direction implicit
(ADI) scheme to improve the accuracy to O(τ2 + σ2) [98,139]. Numerical studies
based on the GJSM approach can be found in [85,91,149]. Some interesting conclusions
were presented in [150], which combined a s-stage implicit Runge–Kutta method in
time and the GJSM/GLSM in space to solve time-space-fractional DODEs. They estab-
lished that a convergence of O(s + 1) in time could be obtained when employing an
algebraically stable Runge–Kutta method with order p (p ≤ s + 1). A few researchers
have compared the performance of the GLSM and GJSM techniques in [90,150,151].
The results of these studies indicate that the specific basis functions do not drastically
alter the computational performance.

2. Collocation methods require that the approximate solution satisfies the DODE at specific
locations known as the collocation points. Similar to the Galerkin spectral method,
various collocation methods have been developed starting from (1) Legendre basis
(LCM) [100,134] and (2) Jacobi basis (JCM) [105,152]. Zaky constructed a LCM to
solve both linear and nonlinear boundary value problems [100], and later extended
this method to simulate initial value DODEs [99,153]. Results indicated that the con-
vergence error decays exponentially with an increasing number of Gauss–Legendre
points. Very recently, the LCM was extended by Xu [96] to develop a higher-order
Legendre–Gauss collocation method for nonlinear DODEs. JCMs were developed
in [101,102,152] to solve DODEs concerning different physical applications (such
as, for example, transport processes and control). A majority of the above studies
achieved either first or second-order accuracy. Recently, Abdelkawy [105] proposed a
fourth-order accurate scheme for time-fractional DODEs (admitting only smooth solu-
tions) while also achieving an exponential convergence rate. Besides the popular LCM
and JCM, collocation methods based on other basis functions including, for example,
the Chebyshev polynomials [129,154], fractional Lagrange polynomials [92], and the
wavelet method [119], were also developed. Some interesting numerical techniques
were developed by combining selected aspects of the different basis functions such as,
for example, the fractional-order Chelyshkov wavelets [104]. Similar to the Galerkin
spectral methods, it appears that the different basis polynomials in the collocation
methods, do not drastically alter computational accuracy.

3. Tau methods also employ different basis functions similar to the Galerkin spectral
method and collocation method. Tau methods for DODEs were first developed
in [155,156] using shifted Chebyshev polynomials. Building on these studies, shifted
Jacobi polynomials were adopted as basis functions in [157], and shifted Legendre
polynomials were adopted in [103,158]. A detailed analysis of the results from these
studies suggests that the accuracy and computational cost of simulating a given DODE
using the tau methods are similar to the collocation and Galerkin spectral methods.

4. Other mesh-free methods based on the formulation of fractional-order operational ma-
trices have also been explored to solve DODEs. The operational matrix is based on
different functions such as the block-pulse function (BPF) [89], Chebyshev polynomi-
als [159,160], and shifted Legendre polynomials [154]. Following the same strategy,
hybrid approximation methods based on the combination of different basis functions
have also been developed. The specific combinations that have been explored in
literature are BPFs and Bernoulli polynomials [95], BPFs and Taylor polynomials [93],
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and BPFs and shifted Legendre polynomials [161]. For completeness, we mention that
other numerical methods including the Laguerre spectral method [108], Legendre
wavelets method [84], fractional pseudo-spectral method [162], reproducing kernel
method [163], radial basis function based mesh-free methods [86,114], and element-
free Galerkin method [106] have also been proposed. Further, several semi-analytical
approaches including the Homotopy perturbation method [164–167], harmonic ap-
proximations [168], and the Adomian decomposition method [169–171] have also
been proposed and applied to derive the solution of DODEs and multi-term fractional
differential equations (FDE).

Mesh-Based Approaches

Although many mesh-free approaches can be implemented relatively easily for DO
problems involving simple geometries and boundary conditions, algorithms for numer-
ical computations on complex domains (e.g., involving irregular geometry and high-
dimensional systems) still present several complexities. This also reflects from the fact
that many 2D and 3D problems have been solved using mesh-based approaches, while a
majority of mesh-free approaches focus primarily on 1D problems. FEM is particularly
useful in exploring numerical solutions over irregular domains. Among the mesh-based
approaches for DODEs, two methods have generated the most interest: finite difference
methods (FDM) and finite element methods (FEM). Before proceeding to review these
mesh-based approaches, it is important to note a specific challenge faced by this class
of methods. More specifically, due to weak singularity of the integral kernel within the
fractional derivative, numerical solutions for initial boundary-value FDEs normally have
non-smooth sharp approximations near the boundary [172–174]. As the DO derivative is
approximated via a weighted sum of CO derivatives (see Equation (11)), this phenomenon
also occurs when solving initial boundary-value DODEs [143]. To tackle this weak singular-
ity, the commonly used mesh-based methods need to be improved. One possible approach,
commonly adopted in literature, consists in the use of a graded mesh [87,143]. Remarkably,
the use of the graded mesh also helps achieving a high-order convergence [87,143].

1. Finite difference methods are one of the most widely used mesh-based approaches
for the solution of DODEs because they allow easy formulation and implementation.
Compared with other approaches, the convergence and accuracy of FDM are easier
to analyze [175–177]. A majority of the advanced FDMs are based on the Grünwald–
Letnikov method (GLM) [122,142]. Recall that GLM uses a finite number of terms
from a convergent series to approximate the fractional derivative and is a widely
used approach [4]. Hu [126] used a shifted GLM to simulate a time-fractional DODE
with accuracy up to O(τ1+σ/2 + h + σ2). Second-order accurate schemes for space-
fractional DODEs were developed in [136] by using a Crank–Nicolson scheme in
time and a shifted GLM. Similar second-order accurate algorithms can also be found
in [133,178]. The second-order accurate backward difference formula, first proposed
by Diethelm [145], also appears to be popular among several researchers [124,129,138].
To further improve the numerical accuracy, more elaborate methods were developed
using the weighted and shifted GLM (WSGLM). Li [179] developed a numerical
scheme with high spatial accuracy (O(τ2 + h4.5 + σ2)) by combining WSGLM and the
parametric quintic spline method. Another scheme capable of delivering high spatial
accuracy (O(τ2 + h4 + σ4)) was proposed by using the WSGLM for temporal approx-
imation and high-order compact difference scheme for spatial approximation [117].
Yang [180] also proposed a similar composite method based on WSGLM in time
and orthogonal spline collocation method in space. This scheme was shown to be
unconditionally stable and accurate up toO(τ2 + hr+1 + σ2) (here r is the polynomial
degree used in the spatial domain).
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FDM schemes have also been developed for high-dimensional problems, with par-
ticular attention being given to accuracy and convergence performance [141,181].
For applications requiring high accuracy, two techniques are often used: (1) compact
FDM (CFDM) and (2) extrapolation method. Based on a fully discrete difference
scheme [182], Ye [132] proposed a CFDM and demonstrated its convergence to be
O(τ1+σ/2 + h4 + σ2). Pimenov [121] constructed a linearized difference scheme for
nonlinear time delay DODE. Several researchers [110,120,183] also obtained a CFDM
with orderO(τ2 + h4 + σ4) based on higher order temporal approximation techniques.
Gao [111,116] applied two extrapolation methods in time to achieve high temporal
convergence: O(τ2) and O(τ2|lnτ|2). For high-dimensional problems, ADI schemes
become highly popular and help achieve highly accurate (second-order in time and
fourth-order in space) numerical schemes [107,184].

2. Finite element methods: Starting from the study of multi-term FDEs, Jin [185] de-
veloped a Galerkin approach, Bu [186] used a multi-grid FEM, and Zhao [187] used
a spatially nonconforming FEM to solve time fractional diffusion equations. Simi-
larly, several researchers first developed FEMs to solve multi-term FDEs and later
extended them to solve DODEs [87,123,188]. Few researchers [112,189] developed the
H1-Galerkin FEM for DO sub-diffusion equations which allowed the estimation of the
diffusive field variable as well as its spatial derivative. By using locally discontinuous
Galerkin FEM, Aboelenen [137] and Wei [190] developed highly accurate numerical
schemes with spatial convergence O(hk+1) (k is the degree of basis polynomials).
Given the FEM’s unique ability of handling complex geometry, several recent studies
have focused on its application to irregular domains. Examples include the develop-
ment of FEMs, based on unstructured meshes, to solve DO equations corresponding
to different physical applications [109,191–193].

3. Other mesh-based methods: In addition to FEM and FDM, a few other mesh-based
methods were also explored. Examples include the combined B-spline interpolation
and the Du Fort–Frankel method [130] for time-fractional DODEs. Heris [135] and
Javidi [136] introduced a fractional backward differential formulas for space DODEs
and obtained a second-order accurate numerical scheme. Diethelm et al. [60,188,194]
introduced a convolution quadrature method for the numerical approximation of DO
operators. Based on a backward difference formula, Podlubny [195,196] proposed a
matrix form to represent discrete analogs of fractional operations and extended this
method to the solution of DODEs [197]. Other mesh-based techniques developed
in literature to solve DODEs and multi-terms FDEs include the predictor-corrector
method [56,198–201] and the finite volume method [127,128,202].

Computational Aspects of DODEs

The previously discussed numerical schemes for the approximation of fractional
derivatives typically generate dense matrices; a clear consequence of the intrinsic nonlocal
character of the operator. For discretizations with N number of elements (temporal or
spatial), these dense matrices generally requireO(N3) floating point operations andO(N2)

memory, for each iteration. In order to reduce this high computational cost, several alternate
approaches were considered. Based on the idea of relabeling employed in ADI methods,
Jia [203] developed a fast FDM which stores a coefficient matrix in O(N) memory and
performs matrix-vector multiplication in O(NlogN) computations. Two numerical algo-
rithms offering comparable time and space complexity were developed by Jian [142] and
Zheng [202]. By expressing the matrix of coefficients as a sum of special diagonal-Toeplitz
matrices, Jian derived a fast solution technique based on the preconditioned Krylov sub-
space method. Zheng proposed an efficient biconjugate gradient stabilized method to solve
system of equations with a Toeplitz structured coefficient matrix. More recently, a reduced-
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order ADI method [184] was developed to reduce the computational cost involved in the
numerical solution of DODEs.

Before proceeding further, it is worth noting that the computational time for the
numerical simulation of DODEs can also be reduced via parallel computation and pre-
conditioning of the operational matrices used to approximate the fractional derivatives.
While parallel computation has not been directly applied to DODEs, parallel solvers have
been developed for CO FDEs [204–206]. Besides the parallel algorithm itself, the effect of
different hardware platforms (GPU v/s CPU) [207] and different memory architectures
(shared memory v/s distributed memory) [206] on the computational times for simula-
tion of CO FDEs, have also been studied. Further, preconditioners are often designed to
accelerate matrix computations in nonlinear CO FDEs involving iterative problem solv-
ing procedures. Many studies have proposed different types of preconditioners such as,
for example, preconditioned biconjugate gradient method [208] and generalized minimal
residual method [209], for solving nonlinear CO FDEs. Both the above described tech-
niques, that are parallel computing and preconditioning, present possible opportunities
to reduce the computational time for solving DODEs and are hence worthy of detailed
investigation in the future.

3. Relevance of Distributed-Order Operators

As evident from the definitions presented in Section 2, DO operators can be interpreted
as a parallel distribution of derivatives of either integer or fractional orders. It follows that
one of the most immediate application of these operators is to model physical systems
whose response is characterized by a superposition of different processes operating in
parallel and individually described by either fractional- or integer-order operators. As an
example, consider electro-rheological fluids that can change their properties following
the application of an electric field. This means that, in these media, the order of a small
fluid element is dependent on the local field strength. Therefore, if the applied electric
field is nonuniform, a corresponding order distribution will exist throughout the mate-
rial [45]. A similar example consists of modeling the response of an electrical circuit with
a distributed network of capacitors exhibiting the well-known fractional-order Curie’s
law. According to this law, current through a capacitor varies with time t as i(t) = V0/Ctα,
where V0 is a constant voltage and α ∈ (0, 1) [210]. These simple examples suggest that
there exists a class of physical problems that can be better described by DO operators.

Broadly speaking, the above-described class of physical problems is characterized by
the presence of multifractal or equivalently multifractional systems [211]. The response of
such systems is marked by the presence of multiple temporal and spatial scales, which can
be accurately captured via time-fractional and space-fractional DO operators, respectively.
The advantage of the DO operator in capturing the hierarchy of scales as well as anomalous
scaling effects has been analyzed in detail in [44]. The occurrence of this hierarchy of
scales could be better visualized by considering, for example, the modeling of turbulence
via the Lévy walk approach. This approach associates a time scale with jump distances,
and the multiplicity of scales is explicitly taken into account via an integral equation
which contains a coupled memory kernel similar to the DO operator [212]. Other examples
of such multifractional processes include the analysis of structures with simultaneous
nonlocal and strain-gradient (multiscale) effects [213], diffusion of particles in microporous
materials [214], analysis of financial markets where distributions of financial data usually
possess fast falling power-law tails [215], and even state functions of complex quantum-
mechanical systems [216,217].

From a different perspective, DO operators can also be used to retrofit models to
experimental data derived from systems with an unknown fractional behavior. The frac-
tionalization of differential equations commonly used in mathematical physics leads to the
analysis of the order-parameter, say α, to be determined via experimental results. As experi-
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ments can lead to several values of the fractional order, as a result of different experimental
conditions, it is convenient to introduce a DO fractional derivative. This is equivalent to
integrating the product of a fractional derivative (Dα

�(·)) of the primary response variable
(say u) and a weight function (or distribution) with respect to the order of the derivative,
that is, to evaluate

∫
supp φ φ(α)Dα

�udα. In this way, one may use several experimental
results and determine a continuous function φ rather than focusing on a single variable
that is the fractional-order α. This can be interpreted as a homogenization of the different
possible fractional processes and the resulting epistemic uncertainties. In other terms, such
an approach would enable a valid and accurate analysis of experimental data and allow the
development of fractional-order models, without having to identify the specific underlying
fractional behavior.

The above remarkable properties of DO operators have led to the development of
fractional models capable of describing numerous complex physical processes. Most of the
work to date has concentrated on the general areas of viscoelasticity, transport processes,
and control theory. We make a few concluding remarks, before proceeding to review the
most significant applications of DOFC reported to date in the different areas. Note that the
application of DOFC to viscoelasticity and control theory primarily involves the use of time-
fractional DO derivatives, while the application to transport processes involve both space-
and time-fractional DO derivatives. This separation follows from the underlying physics
being captured. In this regard, recall that, while time-fractional DO derivatives are typically
used to account for memory effects and dissipation across multiple temporal scales, space-
fractional derivatives are used to model nonlocal effects and spatial heterogeneity over
multiple spatial scales. In the applications presented below, we do not specify if the
DO model is based on a Riemann–Liouville or Caputo (or any other) definition, as it
only marginally affects the overall discussion. Finally, we use the following notation
in all the subsequent sections: t and x refer to the independent variables in time and
space, respectively.

4. Applications to Viscoelasticity

Fractional-order derivatives are well suited to capture the dissipation in viscoelas-
tic solids. The differ-integral definition of the fractional derivatives allows the effects of
deformation history to be realized within the stress–strain constitutive models, thus com-
bining the elastic response across different time scales. In this regard, Gemant [218,219],
Caputo [46], Bagley and Torvik [5,6], and Chatterjee [7] provided seminal contributions
towards the use of fractional-order models to simulate the effect of dissipation in viscoelas-
tic solids. While an approach based on CO time-fractional derivatives is intuitive and has
drawn much interest, it is not well suited for applications involving materials character-
ized by multiple relaxation times. In order to address this gap in modeling viscoelastic
systems via the CO derivatives, DO models were proposed [48,49,220]. As mentioned in
Section 3, the DO operators allow the multiple relaxation scales to be visualized as separate
viscoelastic connections operating simultaneously. Thus, a superposition of multiple CO
derivatives (or equivalently, multiple relaxation scales) is achieved via the definition of the
DO derivative for viscoelastic solids.

4.1. Constitutive Models

As mentioned in Section 2.1, the DO derivatives were originally conceptualized
to model the dissipative elastic response with several temporal relaxation scales [48].
Following this seminal work, several other models of viscoelasticity either based on DO
derivatives now exist in literature. These models can be viewed as simplified versions

273



Entropy 2021, 23, 110

of the following generalized DO stress–strain constitutive law, proposed by Atanacković,
for viscoelastic solids [221,222]:∫ 1

0
φσ(γ)0Dγ

t σ(t)dγ = E
∫ 1

0
φε(γ)0Dγ

t ε(t)dγ (13)

where φσ and φε represent the strength functions corresponding to stress and strain (these
are constitutive functions that characterize the viscoelastic response), E is the Young’s mod-
ulus, and 0Dγ

t (·) is the CO time-fractional derivative. The formulation in Equation (13) is
referred to as the most general model because all other models, already existing in literature,
can be derived from this model via suitable assumptions on the additional (fractional-
order) constitutive parameters. For instance, the choice φσ = δ(γ) and φβ = δ(γ− 1) for
the for strength functions results in the standard dashpot. Additional abstractions of the
DO constitutive model in Equation (13), describing different viscoelastic elements, are
illustrated in the Figure 4. Further, as discussed in Equation (6), a discrete choice for the
order-distribution weights in Equation (13) would result in a multi-term fractional-order
expression for the DO definition given above. Employing discrete strength functions in the
above equation, the stress and its temporal derivatives (of real order, not necessarily integer)
can be recast in terms of strain and its (real-order) temporal derivatives as follows [223],

N

∑
n=0

an
[

0Dαn
t σ

]
=

M

∑
m=0

bm

[
0Dβm

t ε
]
, t > 0 (14)

where the fractional-orders are assumed to satisfy: 0 ≤ α0 < α1... < αN < 1, 0 ≤ β0 <

β1... < βM < 1. The constants a� and b� can be interpreted to be relaxation times for
the viscoelastic solid. As demonstrated in [223], the above-presented multi-term model is
effective in modeling both stress relaxation and creep response in viscoelastic structures.
The integral constitutive relation given in Equation (13) can be interpreted as the continuum
limit of the discrete multi-term constitutive relation given in Equation (14). This is also
illustrated in Figure 4b, which depicts the DO integral model as the continuum limit of the
discrete model in Figure 4a.

Figure 4. Examples illustrating the different DO models of viscoelasticity along with their respective
constitutive relations. It appears that DO operators can model multiple viscoelastic elements within
the same general formulation. Dashpots characterized by material constants η and order α indicate
the individual viscoelastic elements. Schematic illustration of (a) the multi-term DO viscoelastic
model, (b) the generalized DO model depicted as an infinite ensemble of elements with αi ∈ (0, 1]
such that Span {αi} is (0, 1], and (c) the generalized temperature field-dependent VO definition for
the DO viscoelastic model.
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4.1.1. DO Integral Models

All existing models catering to different lossy materials can be recast into the DO
form in Equation (13) (or equivalently, Equation (14)) by considering different choices for
order-distribution functions. In other words, each of the several distinct classifications
of the viscoelastic solids proposed by Caputo and Mainardi [224] based on the creep and
relaxation moduli relations, can be described by the single DO constitutive law via suitable
choices of the fractional-order constitutive parameters. This highlights the relevance of DO
operators and their scope in modeling viscoelastic constitutive relations when compared
with other more classical integer—and fractional—(CO or VO) models available in the
literature. To better illustrate this, consider the following two cases: case I: φσ = δ(γ),
φε = τα

0 , and case II: φσ = τα
σ , φε = τα

ε , τσ < τε, τ� being a material constant. These two
choices for the integral forms of the DO constitutive relation are commonly used in mod-
eling viscoelastic solids [43,225–227]. Depending on the choice of the strength functions,
Equation (13) can successfully characterize both fluid-like and solid-like viscoelastic materi-
als. Remarkably, salient mechanical characteristics of the viscoelastic materials modeled by
these choices, such as the creep and stress relaxation functions, exhibit the experimentally
observed power-law attenuation [228].

4.1.2. Multi-Term Fractional Models

Compared to integral models, the discrete multi-term approach has been more widely
used for the modeling of viscoelastic constitutive relations. This is a direct consequence of
the simplicity with which discrete models could be modified in order to account for different
lossy behaviors observed in real materials. The discrete form also facilitates a direct
comparison between the viscoelastic behavior captured by DO models with respect to the
more traditional and established integer-order models. This enables a better understanding
of the physical relevance of DO models and it also allows a more natural approach to
material characterization. The following instances of the different viscoelastic models that
can be recovered from the multi-term DO law in Equation (14) further illustrate the strength
of the DO approach:

1. Kelvin-Voigt models: The DO analogue of the Kelvin–Voigt model is obtained for the
choice of φσ = δ(γ), and φε = τγ [229].

2. Maxwell models: The fractional-order Maxwell model of viscoelasticity can be obtained
for φσ = δ(γ) + ταδ(γ− α) and φε = E∞τβδ(γ− β) in Equation (13) [230]. Note that,
assuming α = β in the fractional Maxwell model, allows recovering the fractional
Zener model [231].

3. Zener models: If the material constants in Equation (14) are chosen as a0 = b0 = 1,
a1 = a, b1 = b, and orders α0 = β0 = 0, α1 = β1 = 1 the classical Zener model
is obtained. Similarly, α1 = β1 = α gives the generalized Zener model [232].
Wave propagation in fractional Zener-type viscoelastic media, obtained by choosing
φσ = φε = δ(γ) + ταδ(γ− α) in Equation (13), was studied in [233,234]. Similarly,
the choice of φσ = δ(γ) + (a/b)δ(γ − (α − β)) and φε = aδ(γ − α) + cδ(γ − η) +

(ac/b)δ(γ − α − η + β) in Equation (13), also results in a fractional version of the
classical Zener model with springs and dashpots [223].

4. Other models: Viscoelastic models described for the strength functions φσ = δ(γ) +

ταδ(γ− α) and φε = E0(δ(γ) + ταδ(γ− α) + τβδ(γ− β)) in Equation (13), were ana-
lyzed in [235]. Variations of this latter model (also referred to as the four-parameter
model [236]) including the use of five-parameters [237] were studied to simulate
selected types of lossy behavior in real materials. Further extensions that explored
the use of additional terms were also presented [79].

In the above discussion, {a, b, c} denote different material constants corresponding to
different relaxation times and {α, β, η} are the fractional-orders associated with different
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lossy behaviors of the DO model (see Equation (14)). In conclusion, we note that the multi-
term fractional model is highly general and offers much flexibility in modeling different
types of lossy behavior in viscoelastic solids. This is unlike CO or VO approaches that
require separate models to capture these different behaviors.

4.2. Material Characterization: Methods and Experiments

It is clear from the discussion in Section 4.1 that several possibilities for the viscoelas-
tic constitutive theories exist, considering suitable choices for the DO model parameters.
Before proceeding to review the application of these DO theories to the characterization of
viscoelastic materials, we make an important remark. Note that the application of these
DO theories to real-world viscoelastic problems requires that these models are physically
as well as mathematically consistent. To ensure consistency of the DO viscoelastic theories,
there exist restrictions on the choice of the fractional model parameters which are derived in
accordance with the principles of (1) time invariance, (2) causality, and (3) thermodynamics
(dissipation inequality given by the Clausius–Duhem inequality) [49]. The conditions over
the strength distribution functions φσ and φε, corresponding to the integral definition of the
DO law given in Equation (13), are available in [222]. For instance, the thermodynamic law
restricts the choice of DO constitutive parameters for the fluid-like viscoelastic materials,
discussed in Section 4.1.1, as follows, τ0 > 0. An analogous study conducted on the discrete
form of the DO constitutive law (see Equation (14)) identified the restrictions on relevant
constitutive parameters [223]. The investigations conducted in the aforementioned studies
were further extended in [53] which analyzed the physical as well as mathematical consis-
tency of the generalized DO model of viscoelasticity. In this regard, note that mathematical
consistency ensures the existence and uniqueness of a linear viscoelastic response corre-
sponding to the generalized DO formulation. The framework developed in [53] provides
the foundation for a rigorous and consistent application of DOFC to modeling the response
of viscoelastic solids.

The discussion in Section 4.1 highlighted the ability of DO operators to capture
multiple scales of relaxation time and thereby different lossy behaviors observed in real
materials [220]. For this purpose, the constitutive parameters of the DO constitutive model
in Equation (13) that require to be identified are the fractional-order parameters and
their numerical range. Initial investigations [82,220] laid a theoretical foundation for this
fractional-order system identification problem. Further experiments on the characteri-
zation of viscoelastic properties corresponding to the different class of DO models for
commercial polymers are reported in [238]. Such studies were carried out by matching the
experimental profiles of the loss and storage moduli for viscoelastic materials [53]. Recall
from Section 4.1.2 the relevance of DO operators in modeling multiple forms of viscoelastic
behavior. This feature of the DO constitutive models for viscoelastic elements presents an
interesting opportunity. To better illustrate this aspect, consider the multi-term DO models
depicted in Figure 4a as the sum of several independent viscoelastic connectors with their
associated relaxation timescales. This type of arrangement allows incorporating multiple
timescales within a single DO model in order to design an optimized fractional damper.
The incorporation of multiple timescales (using the DO derivative) can also be visualized
from the DO derivative of the Heaviside step function in Figure 3. The relaxation time
of the viscoelastic damper can be tuned by an appropriate choice of the constituent CO
derivatives and their associated weights within the definition of DO derivative. This ap-
proach presents an opportunity to identify the damper that can deliver a desired behavior
in terms of overshoot, peak time, and integrated tracking error [239]. This feature is unlike
the classical integer-order or CO constitutive theories that allow only a single type of lossy
behavior to be captured with a given model.
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4.3. Distributed-Variable-Order Models

The above discussion presented an overview of the applications that DO models,
based on CO derivatives, enable in the general area of viscoelastic solids. A few studies
have also explored the extension of these models to employ DO operators based on
VO derivatives; here below referred to as distributed-variable-order (DVO) operators.
Lorenzo and Hartley presented one of the first works exploring the combination of both
VO and DO operators to the formulation of the stress–strain constitutive law of viscoelastic
solids [45]. They discussed how a DVO operator defined using a spatially-dependent
VO law could be used to model the response of a thermorheologically complex material
subject to a spatially and temporally varying temperature field. By choosing a spatially-
dependent VO law, the resulting DVO model is capable of describing the spatial variation
of the viscoelastic properties. The spatial variation of viscoelastic properties can be the
result of a combination of internal as well as external conditions such as, for example,
varying microstructure, presence of thermal loads, and a distribution of thermal gradients.
We merely note that, very recently, this concept of defining a spatially-dependent VO
law was used to model nonlocal solids with spatially varying microstructure in [240].
Further, an example of the temperature-dependent DVO viscoelastic model is illustrated
in Figure 4c. In this case, the DVO model is required to introduce the effect of a spatially
varying temperature field T(x, t) on the multiple timescales present within the DO model
for viscoelasticity. This allows an accurate representation of the transient viscoelastic
response [220]. It is important to mention that, unlike the DO models employing CO
derivatives, the thermodynamic basis for the DVO models still remains to be ascertained.

4.4. Some Practical Applications

The DO constitutive models have been successfully applied in the analysis of viscoelas-
tic solids. Recall that the different DO constitutive models can be classified primarily into
two classes: (1) integral-models and (2) multi-term models, corresponding to the choice of
DO derivative. Further, within each of these classes, further subdivisions exist depending
on the specific functions chosen for (a) weights of the order-distribution functions and (b)
bounds of the fractional-order α. Here, we shall present some prominent examples studied
in literature that cater to a specific class of viscoelastic solids. These studies include finite
solids with appropriate boundary conditions, and also the infinite solids.

Some examples of the constitutive parameters within DO integral models in
Equation (13) were discussed previously in Section 4.1.1. Employing specific choices
of the constitutive parameters, successful modeling of the creep response [225] and stress-
relaxation [226] in finite solids is possible. Further, these integral models find relevance in
modeling the vibration of fractional DO oscillators [227]. Patnaik and Semperlotti [168]
demonstrated a successful application of DO viscoelastic models in the analysis of non-
linear oscillators with distributed nonlinear properties. In this study, the effect of the
order-distribution on the phase and frequency response was captured analytically using
asymptotic techniques and some important characteristics, such as simultaneous phase and
amplitude modulation (that is not seen in integer-order models) were presented. Recently,
the scope of DO constitutive models is also being explored to describe viscoelasticity within
complex materials like composites [43].

These studies can also be extended to modeling and analyzing the damping of the
structural response. DO models can be utilized to derive moment–curvature relations
of viscoelastic rods [241–243]. The DO constitutive relation between moment (M) and
curvature (κ) for the viscoelastic rod is given by

∫ 1

0
φM(γ)0Dγ

t Mdγ =
∫ 1

0
φκ(γ)0Dγ

t κdγ (15)
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In this equation, the choice of φM = δ(γ) and φκ = EIδ(γ) (EI is the bending modulus)
reduces the above expression to the classical Euler–Bernoulli beam theory. The solution
to the above DODE would reflect the influence of viscoelastic damping over the bending
response of beams. Similar exercises can be conducted over more complex shapes with the
help of advanced numerical techniques discussed in Section 2.4.

Employing the multi-term definition of the DO constitutive relations, the DO moment–
curvature relations can be revisited for different classes of viscoelastic solids. For instance,
DO bending relations analogous to the generalized Zener model were derived to study the
dynamics of a viscoelastic rod in [243,244]. Similarly, the lateral vibration of a viscoelastic
rod modeled according to the generalized Kelvin-Voigt behavior was studied in [229].
The choice of φM = δ(γ) + aδ(γ− α) and φκ = EI(δ(γ) + bδ(γ− α) + cδ(γ− β)), which
is a generalization of the standard Zener model, was proposed in [235] and used in [245] to
study the lateral vibrations of viscoelastic rod. DO models were also used to analyze the in-
fluence of viscoelastic foundations on the dynamic stability of local and nonlocal rods [246].
Similarly, Varghaei et al. [247] investigated the nonlinear vibration of viscoelastic beams
using a generalized Kelvin–Voigt model implemented via DO derivatives. Finally, Duan
and Chen [248] investigated oscillatory shear flow between two parallel plates using DO
form of the constitutive law for for viscoelastic fluids. Different effects of viscoelasticity
over the structural response can be realized thanks to the generality of the DO models of
viscoelasticity by employing specified choices for constitutive parameters. For instance,
different viscoelastic constitutive models were employed in a study over the damping
influence on the propagation of an initial Dirac delta disturbance through an infinite media.
This provides the necessary foundation for designing an optimized damper as in [239].

5. Applications to Transport Processes

Several experimental investigations have shown that transport processes in many
classes of materials are often characterized by anomalous mechanisms exhibiting either
memory effects over various temporal scales or nonlocal effects over several spatial
scales [249–251]. A direct consequence of this, as an instance, is a loss of the scaling
invariance (CO or VO) noted in classical transport processes. Consequently, such processes
cannot be modeled by using CO (integer or fractional) or even VO differential equations,
as CO and VO diffusion equations lead to self-similar probability densities with a charac-
teristic displacement exhibiting spatio-temporal scaling. The loss of the spatio-temporal
scaling is a direct result of the presence of a spectrum of temporal or spatial scales in the
transport process. The presence of several temporal scales, as an example, can be the result
of the presence of a mixture of delay sources of variable strength [252] while the presence of
distributed spatial scales can occur in transport through multifractal materials [211,215,253]
(see Figure 5). Real-world examples of such complex transport processes include appli-
cations in geophysical and atmospheric phenomena [254–257], financial markets [258],
turbulence [259], and even biology and medicine [211]. As discussed in Section 3, DODEs
are very well suited to model such non-scaling anomalous transport processes exhibiting
effects over multiple temporal and/or spatial scales.
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Figure 5. (a) Underground aquifers contain heterogenous layers of soils where each layer is charac-
terized by a different level of porosity. The diffusion of groundwater through this multifractal media
can be better described by DO operators, by replicating (mathematically) the parallel action of the
different porous media in the order-distribution (see Section 5.3). Additional examples of multifractal
systems where transport processes are better described via DO operators: (b) the diffusion of ions in
neuronal dendrites [211], (c) the diffusion of pigments to form patterns in animals (see Section 5.2),
and (d) turbulent flows. The subfigures (a–d) are taken from Wikipedia.

From a thorough review of the literature it appears that anomalous diffusion, among
other types of anomalous transport processes, has seen the maximum applications of
DOFC. Therefore, we start by reviewing the application of DO models to complex diffusive
transport processes, and then move on to other processes including reaction–diffusion,
advection–diffusion, and hybrid propagation. In an effort to keep this review contained and
focused on the main applications of DOFC to physical modeling, we present the key aspects
and mathematical characteristics of the use of DODE in the modeling of transport processes.
The interested reader can find extensive mathematical details on the implementation of
DO transport models in [54].

5.1. Anomalous Diffusion Processes

As highlighted previously, diffusion processes in several classes of media exhibit
strong anomalies wherein the mean square displacement (MSD) is not characterized by a
definite (or unique) scaling exponent, [260–263]. As an example, the MSD in several systems
grows as a power of the logarithm of time (strong anomaly) and shares the interesting
property that the probability distribution of the particle’s position at long times is a double-
sided exponential [261–264]. More specifically, the MSD varies as

〈x2(t)〉 ∝ logν t (16)

where ν is a positive constant. These diffusion processes are indicated as ultraslow diffu-
sion (or, sometimes, superslow diffusion) processes and they do not conform to self-affine
random processes. The most commonly referred example of such a strong anomalous
diffusion process is the Sinai diffusion (ν = 4) in which the particle moves in a quenched
random force field [265]. Additional examples of such ultraslow diffusion behavior in-
clude polymer physics [266], numerical experiments on an area-preserving parabolic map
on a cylinder [267], motion in aperiodic environments [268], and in a family of iterated
maps [269]. We highlight that, apart from ultraslow diffusion, there exist other strong
anomalies including retarding subdiffusion and accelerating subdiffusion, as well as retard-
ing superdiffusion and accelerating superdiffusion. The specific form of the DO governing
equation suitable to model either phenomena depends entirely on two factors: (1) the use
of time and/or space-fractional DO derivatives, and (2) support of the strength function
corresponding to the time- and/or space-fractional DO derivative. In the following, we
will review the different modeling possibilities arising from combinations of the aforemen-
tioned factors.
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In a series of seminal studies, Chechkin et al. [261,270,271] developed a DO framework
for strongly anomalous diffusion mechanisms. They considered the time-fractional DO
diffusion equation: ∫ 1

0
τβ−1φ(β)Dβ

t c(t, x) dβ = DD2
xc(t, x) (17)

where c(t, x) denotes the particle concentration, and D denotes the diffusion coefficient.
τ is a positive constant representing a characteristic time of the problem, and the strength
function was chosen as φ(β) = νβν−1. The normalization condition for φ(β) on [0, 1],
i.e.,

∫ 1
0 φ(β)dβ = 1 assumes v > 0. As established in [261], this choice of φ(β) leads

to ultraslow kinetics. More specifically, for the above mathematical setup, the MSD is
obtained as

〈x2(t)〉 ∝

{
2D
ν t log(τ/t) t/τ � 1

2D
Γ(1+ν)

τ logν (t/τ) t/τ � 1
(18)

As evident, strong diffusion anomalies are described within the above DO diffusion formal-
ism. In fact, it appears that the DODE in Equation (17) describes a subdiffusion random
process which is subordinate to the Wiener process with a diffusion exponent decreasing in
time (retarding subdiffusion). The same behavior was further highlighted by demonstrating
that the modes of the solution, obtained via separation of variables, show an ultraslow, log-
arithmic, decay pattern. The waiting times (ψ(t)) of the diffusing particles corresponding
to this setup are [271]

ψ(t) ∝
1

t[log(t/τ)]1+ν
(19)

and they do not have finite moments. Clearly, the DO diffusion equation can be interpreted
as a limit of the continuous time random walk (CTRW) model with an extremely broad
waiting-time probability density function (PDF), so that there are no finite moments [271].

We highlight that several authors have also analyzed the diffusion characteristics
obtained via discrete order distributions [272–274] as well as a uniform strength distribu-
tion [261,272–274]. For the discrete time-fractional DO with φ(β) = φ1δ(β− β1) + φ2δ(β−
β2) (0 < β1 < β2 ≤ 1, φ1 > 0, φ2 > 0, and φ1 + φ2 = 1), the characteristic displacement
grows initially as tβ2 , whereas at large times it grows as tβ1 indicating slow yet power-law
growing diffusion. For the uniform strength function, that is φ(β) = 1, the MSD is given as

〈x2(t)〉 ∝
{

2Dt log(τ/t) t/τ << 1
2Dτ log (t/τ) t/τ >> 1

(20)

It appears that the DODE with the uniform strength function leads to slightly anomalous
superdiffusion at small times, and to ultraslow diffusion at large times.

Another example of strongly anomalous diffusion processes corresponds to acceler-
ating superdiffusion wherein the MSD, similar to ultraslow diffusion, does not exhibit a
unique spatio-temporal scaling. In this class of diffusion processes, the diffusion exponent
increases with time. Such processes are characterized using the following space-fractional
diffusion equation [261],

D1
t c(x, t) =

∫ 2

0+
lα−2

D Φ(α)Dα
xc(x, t) dα (21)

where l is dimensional positive constant. In [261], the authors obtained the MSD behav-
ior by considering a two-term space-fractional diffusion equation, that is by choosing
the strength function to be Φ(α) = Φ1δ(α − α1) + Φ2δ(α − α2) with 0 < α1 < α2 ≤ 2.
For this DO diffusion equation, it was shown that at small times the characteristic dis-
placement grows as t1/α2 , whereas at large times it grows as t1/α1 ; clearly exhibiting
superdiffusion with acceleration. The fundamental solutions for this discrete order distri-
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bution can be found in [275]. Exact solutions for a triple-order discrete distribution can be
found in [276]. Random walk models corresponding to the space-fractional DO diffusion
equation are presented in [275,277].

Notably, independently of the specific nature of the DODE (space-fractional or time-
fractional) as well as of the strength function, the DO diffusion model no longer exhibits
self-similarity or scale invariance. This is a direct result of the fact that the DO derivative
modifies the constant- or even variable-order formulation, by integrating all possible orders
over a certain range. The resulting solutions exhibit memory and/or nonlocal effects over
several temporal and/or spatial scales leading to strong anomalities.

Building upon the time- and space-fractional DO diffusion models presented in
Equations (17) and (21), several authors [278–280] developed DO diffusion models that
lead to accelerating subdiffusion and retarding superdiffusion contrary to retarding subdif-
fusion and accelerating superdiffusion obtained via Equations (17) and (21), respectively.
These DO diffusion models are given as [278–280]

D1
t c(x, t) =

∫ 1

0
φ(β)DD1−β

t

[
D2

xc(x, t)
]
dβ (22a)

∫ 2

0
φ(α)l2−αD2−α

|x|
[

D1
t c(x, t)

]
dα = DD2

xc(x, t) (22b)

A direct comparison of the above equations with Equations (17) and (21) indicates an
exchange in the presence of the time- and space-fractional DO derivatives, resulting in a
class of mixed spatio-temporal DO derivatives. The detailed expressions of the MSD of the
particles described via the above equations can be found in [278–280]. The MSD obtained
via these formulations indicates that the anomalous diffusion phenomena described via
Equation (22a) and Equation (22b) exhibit accelerating subdiffusion and retarding superdif-
fusion, respectively; that is, they become less anomalous in the course of time. Additional
details on these anomalous behaviors are provided in the following. The DO time-fractional
diffusion equation (Equation (22a)) describes a subdiffusion process which becomes less
subdiffusive or, in other words, more classical in the course of time. The MSD demonstrates
the occurrence of a transition from a growth characterized by a smaller exponent to a
growth with a larger exponent. Equivalently, the probability density for a particle to remain
around the origin exhibits a transition from slow to a faster decay. We highlight here that
the fundamental solution for a discrete form of the Equation (22a), considering an infinite
domain, can be found in [281]. The DO space fractional diffusion equation (Equation (22b))
describes power-law truncated Lévy flights, that is, a random process showing a slow
convergence to a Gaussian, but exhibiting Lévy-like behavior at short times. This behavior
manifests itself in the non-Gaussian Lévy scaling of the probability density to stay at the
origin and in superdiffusive behavior. At short times, the central part of the PDF has a
Lévy-stable shape, whereas the asymptotics decay with the power-law, faster than the
decay of the Lévy-stable law. At long times, the central part of the PDF approaches the
classical Gaussian shape, however, the asymptotics decay with the same power-law.

In addition to the above studies, several researchers have demonstrated the suitability
of DOFC for modeling strongly anomalous diffusion behavior, particularly ultraslow
diffusion, via stochastic descriptions [215,282–287]. Meerschaert et al. [282,288] developed
a stochastic model based on random walks with a random waiting time between jumps.
Scaling limits of these random walks are subordinated random processes whose density
functions solve the DO ultraslow diffusion equation. Ultraslow diffusion has also been
modeled using Langevin stochastic representations in [217,253,284,289]. As shown in [284],
the solutions of DO Langevin equations have MSDs which describe retarding subdiffusion
and ultraslow diffusion with logarithmic growth. Ultraslow diffusion is also obtained via
the wait-first and jump-first Lévy walk models, which underlie the fractional dynamics
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involving DO material derivatives [289]. The approach in [289] is based on a strongly
coupled CTRW, with the distribution of waiting times displaying ultraslow (logarithmic)
decay of the tails. Similarly, the authors of [283,285] obtained the space-fractional DO
diffusion formulation as the continuum limit of a random process which is characterized by
the presence of a distribution of spatially-dependent jumping rate and the Lévy distributed
jumping size. As described in [283,285], such a system is well suited to describe diffusion
in multifractal systems which do not possess a unique Hurst exponent and, consequently,
exhibit a lack of scaling. The lack of scaling in multifractals requires a generalization of
stochastic Lévy equation by admitting a spectrum of the Lévy index. The continuum limit
of this stochastic equation is the DO diffusion equation. A detailed mathematical analysis of
the Lévy models is presented in [286] and a Lévy mixing based probabilistic interpretation
of the DO diffusion model is presented. The characteristics of the model are exemplified by
a direct application to slow diffusion, particularly the delayed Brownian motion. A similar
stochastic representation, given in the form of the Brownian motion subordinated by a Lévy
process was to model accelerating subdiffusion in [290]. Additionally, the authors of [290]
also constructed an algorithm for computer simulations of accelerating subdiffusion paths
via Monte Carlo methods.

Before proceeding further, we briefly review the contributions that several researchers
made to the different mathematical aspects of the DO diffusion equations. Exact solutions
corresponding to Dirichlet, Neumann, and Cauchy boundary conditions for the time-
fractional DO diffusion Equation (17) can be found in [291]. The fundamental solution
of the DODE corresponding to a uniform strength distribution can be found in [272–274].
Mainardi et al. [292] obtained the fundamental solution of the time-fractional DO diffusion
equation based on its Mellin–Barnes integral representation. They also presented a series
expansion of the fundamental solution that clearly highlights, within the solution, the pres-
ence of several time-scales related to the distribution of the fractional-orders in the DO
diffusion equation. Asymptotic solutions to initial and boundary value problems based
on the DO time-fractional diffusion equations can be found in [293,294]. Some additional
and important mathematical aspects, such as the existence of the solution to different
types of DO diffusion equations, the solvability of DO diffusion equations, subordination
properties, and positivity of the solution were addressed in [59,63,263,287,295–300]. In a
series of papers [71,72,301], Luchko analyzed the well-posedness of the DO formulation via
maximal principles, and obtained a priori norm estimates for solutions to both linear and
nonlinear DO diffusion equations. Luchko has also provided a survey of these maximal
principles in [302]. Further, the well-posedness of the inverse problem, that is the determi-
nation of the strength distribution of the DO and its support, has been analyzed in detail
in [303–307]. The analysis of the well-posedness of the inverse problem is highly essential
to promote applications of DOFC since it determines whether the DO framework is suited
to model a given real-world application. In other terms, given a set of experimental or
real-world data, the analysis of the inverse problem determines whether DOFC is well
suited to model the dataset and hence, it also indicates if the corresponding system exhibits
multiscale (temporal and/or spatial) characteristics.

The remarkable properties of the DO diffusion formalism provided a strong founda-
tion for the development of other DO transport formulations: DO reaction–diffusion, DO
advection–diffusion, and DO wave propagation. Before reviewing these other applica-
tions, we briefly overview some recent, yet remarkable, real-world applications of the DO
diffusion formulation (see Figure 5). Grain boundary diffusion in engineering materials
at elevated temperatures, that often determines the evolution of microstructure, phase
transformations, and certain regimes of plastic deformation and fracture, was modeled via
a DO diffusion framework in [308]. DO diffusion equations have also been used to model
the diffusion of mobile ions in different electrolytic cells [309–311]. The predictions of the
DO model closely matched experimental data which indicated the presence of different
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diffusive regimes. A similar application was presented in [312], where DO operators were
introduced into the Letokhov model of photon diffusion to model non-resonant random
lasers. Very recently, the effect of disordering of nanotubes within an electrode, on the
impedance of a supercapacitor, was modeled using the DO subdiffusion model in [313].
All these applications highlighted the ability of the DO diffusion formulation to accu-
rately capture highly anomalous diffusion behavior arising out of the presence of multiple
temporal and/or spatial scales.

5.2. Reaction–Diffusion Processes

An interesting application of DOFC involves the modeling of reaction–diffusion sys-
tems. Reaction–diffusion processes describe changes in the concentration of interacting
chemical substances both in space and time. Reaction–diffusion processes have been linked
to the formation of spots and patterns in different animals and birds [314,315], among many
other real-world applications [125,316] (see Figure 5c). Distributed-order derivatives help
to account for the heterogeneity and multifractal nature of the diffusing medium, typical
of these applications. More importantly, the DO derivatives also account for the multi-
ple sources of the reacting chemicals within the heterogeneous system. This allows for
compact yet more comprehensive theoretical formulations of the reaction–diffusion mecha-
nisms when compared to classical integer-order based approaches. Several authors have
analyzed complex reaction–diffusion systems using DO derivatives [102,129,149,316,317].
Detailed mathematical formulations along with closed form solutions for DO reaction–
diffusion equations can be found in [316,318]. The effect of different strength functions
as well as the specific nature of the DO reaction–diffusion equation was analyzed nu-
merically in [102,129,149]. Very recently, Guo et al. [148] analyzed a 3D Gordon-type
reaction–diffusion model of colliding and diffusing Gordon-type solitons. The numerical
results provided a deeper understanding of the complicated nonlinear behavior of the
3D Gordon-type solitons system while highlighting the remarkable capabilities of the DO
derivatives in capturing the collision and diffusion of the solitons.

5.3. Advection-Diffusion Processes

The VO diffusion equation formed the basis of several interesting investigations in-
volving strongly anomalous advection-diffusion processes in complex systems, particularly
those related to hydrology such as, for example, geomigration [319], transport of solutes
in heterogeneous media [257,320], the spread of contaminants in groundwater [321], as
well as groundwater flow [322]. Indeed, several theoretical and experimental studies have
shown that the transport of fluids and pollutants through geological aquifers exhibits
the presence of multiple spatio-temporal scales arising from the multifractal nature of
the aquifers. The multifractality is a direct consequence of the porous, fractured, layered,
and heterogeneous nature of the aquifers (see Figure 5a). The underlying distinctive char-
acteristics of DOFC make it a very well suited modeling approach for the aforementioned
anomalous transport phenomena experienced in hydrology.

The detailed mathematical analysis of a DO advection-diffusion equation with a
discrete distribution of orders was presented in [77]. Analytical solutions were obtained
in [77] for a time- and space-fractional formulation and some interesting derivations
including the spectral representation of the fractional Laplacian operator were presented.
Later, several researchers used DOFC to model advection–diffusion in complex problems,
particularly those related to hydrology. A DO advection–diffusion model was proposed
in [256] to model infiltration, absorption, and water exchange in mobile and immobile
zones of swelling soils. A similar formulation was adopted in [319] to model a geomigration
process in a geoporous medium saturated with a salt solution that exhibits subdiffusive
characteristics. Several researchers also used DOFC to model subdiffusive characteristics
observed in the transportation of solutes in heterogeneous porous media [257,320,323].

283



Entropy 2021, 23, 110

Very recently, an interesting application of DOFC was proposed to simulate superdiffusion
of dissolved phase contaminants in groundwater [321]. In this study, several insights
including the specific impact of different geometric properties of the contaminants on their
spatial distribution pattern, were derived using the DO advection-diffusion model.

5.4. Wave Propagation

Several authors investigated DO models for wave propagation by directly extending
the DO diffusion approaches reviewed in Section 5.1. More specifically, this process in-
volved altering the support of the strength function corresponding to the DO time-fractional
derivative from [0, 1] to an interval within [1, 2]. The most generalized versions of the one-
dimensional DO wave equation can be obtained by modifying Equations (17) and (21) as∫ 2

1
τβ−1φ(β)Dβ

t u(t, x) dβ = E0D2
xu(t, x) (23a)

D2
t u(x, t) =

∫ 2

0+
lα−2E0Φ(α)Dα

xu(x, t) dα (23b)

where u(x, t) denotes the particle displacement and E0 denotes a material constant. A differ-
ent set of DO wave equations can be obtained by modifying the support of the strength func-
tion and using mixed spatio-temporal DO derivatives, similar to Equations (22a) and (22b).
The qualitative discussions on the application of DO models for multifractal systems, pre-
sented for other types of transport processes reviewed in this Section 5, also holds for DO
wave propagation. As an example, the propagation of elastic waves through dissipative
media exhibiting multifractal viscoelastic behavior (see Section 4) is described via time-
fractional DO models [221,324]. Similarly, elastic wave propagation via attenuating media
characterized by simultaneous microstructural and nonlocal (hence, multiscale) effects can
be described via space-fractional DO models [213]. Important mathematical aspects such
as the existence and uniqueness of the solution to the DO time-fractional wave equation
have been outlined in detail in [63,325–327]. Additionally, the fundamental solutions of
the DO wave equation have been derived in [298,325,327,328] using the technique of the
Fourier and Laplace transforms. Numerical experiments highlighting the specific effects of
the DO model parameters have been used to derive interesting insights into the DO wave
equation in [298,325,328].

Another possible route to develop the DO wave propagation formulation consists
in formulating DO stress–strain constitutive relations within the classical elastodynamic
problem as proposed in [324,329]:

σ = E0

∫ 1

0
φ(β)Dβ

t εdβ (24)

This approach resembles the formulation of DO viscoelastic models (see Section 4) and
indeed leads to a hybrid propagation model that also captures dissipation. The DO wave
propagation model was then used to simulate the interaction of compressional waves
with an interface separating two dissimilar media. Further, the impact of the support and
definition of the strength function were analyzed on the wave scattering at the interface.

6. Applications to Control Theory

In this section, we analyze the applications of DOFC to control theory. The founda-
tion as well as motivation for the application of DOFC to control theory follows from a
successful application of COFC to model complex control phenomena. The use of CO
fractional controllers has enabled robust control and helped achieving highly desirable
dynamic control characteristics. A detailed review of theory and applications of COFC
in control theory can be found in [36]. In this regard, recall that a fractional derivative
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implicitly embeds within itself time-delays, or in other terms, it accounts for the memory
of past events. Consequently, the presence of a distribution of fractional-order derivatives
translates, physically, to the presence of a mixture of delay sources (similar to what is
discussed in Section 5). These DO characteristics have helped achieve high performance
controllers with several applications ranging from secure messaging [330], to control of
motors [331,332] as well accurate frameworks to model robust stability of gene regula-
tory networks [332]. Broadly speaking, the applications of DOFC to control theory can
be divided into two categories: (1) the development of DO controllers and (2) study of
the stability and control of DO systems; the majority of the studies being focused on the
latter category. In the following, we first review the DO controllers and their applications,
before considering their stability. A few other studies have numerically analyzed various
DO system identification techniques [220,333] and DO optimal control problems [100,334].
However, the basic DO control theory employed in the latter studies are derived from the
two broad categories mentioned above.

6.1. DO Controllers and Filters

Several theoretical and experimental studies have shown that fractional-order designs
can enhance both the flexibility and robustness of the controllers as a result of the additional
parameters represented by the fractional-orders themselves. Tuning of the fractional-orders
allows for superior control characteristics. As an example, consider the CO PID controller
PIλDμ. The value of the order λ in PIλDμ control affects the slope of the low frequency
range of the system as well as the peak value of the system. On the other hand, the value of
the order μ affects the accuracy of the dynamic closed-loop response, the system overshoot,
and the stability. For a more detailed discussion of the roles of λ and μ, the interested reader
is referred to the work in [36]. It is immediate that a distribution of several CO controllers
can lead to highly accurate and robust control. In fact, DOFC allows the development of a
highly generalized controller from which all other types of controllers (such as, for example,
the classical integrator and differentiator, the classical PID, and the fractional PIλDμ) can
be recovered.

In the most general form, the transfer function of a DO controller can be expressed
as [36]

G(s) =
∫ β2

β1

φ(β)
1
sβ

dβ (25)

where s is a complex variable. The interval [β1, β2] dictates the specific nature of the con-
troller. Note that a DO low-pass filter can be obtained from the DO controller via the trans-
formation s → T(β)s + 1 [335]. The above formulation is highly general in the sense that
all the classical, CO, and DO controllers can be recovered from the same by an appropriate
choice of the strength function. As an example, the classical integrator can be obtained by
choosing φ(β) = δ(β− 1), the classical differentiator can be obtained from φ(β) = δ(β+ 1),
the classical PID from φ(β) = kPδ(β)+ kIδ(β− 1)+ kDδ(β+ 1) (kP, kI and kD are constants
to be tuned), the fractional PID from φ(β) = kPδ(β) + kIδ(β− λ) + kDδ(β + μ), and so on.
It is immediate to see that a DO PID controller can be also obtained directly from the
controller in Equation (25), by insisting that the support of the weight function lies within
the interval [−1, 1]. DO PID controllers have been studied in detail in a series of papers by
Jakovljević et al. [336–338]. Note that in the case of a DO controller, the strength function
in Equation (25) can have infinite support. In fact, as established in [339], any DO controller
can be developed by appropriate composition of the DO integrator (0 ≤ β1 < β2 ≤ 1),
the classical integrator (1/s) and the classical differentiator (s). The different DO controllers
have been schematically illustrated in Figure 6.

The impulse response and asymptotic behavior of the DO controllers have been
derived in [335,340]. Additionally, a physical realization of the DO integrator using a series
of capacitors has been developed in [210,340]. The DO controllers have been applied to
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control motors [338] and robots [331] among many other applications [36]. As observed
in these studies, the DO controllers reduce the maximum overshoot while guaranteeing a
fast dynamic response and a zero steady-state error [36,336–338]. Furthermore, the phase
curves of DO PID controllers are non-constant and much wider than the corresponding
CO controllers making them more robust to system uncertainties [331]. Therefore, the DO
controllers exhibit unique frequency response characteristics, and provide highly robust
and accurate control.

Figure 6. Block diagram illustrating the feedback DO controller based on Equation (25). The fractional-
orders μk, λk ∈ (0, 1]. This is a highly general controller from which all classical, CO, and DO
controllers, as well as the DO PID controller can be recovered by an appropriate choice of the
controller constants. As an example, the DO differentiator can be obtained by setting Kλk

I = 0,
KP = 0, and Kμk

D �= 0. As evident, the DO differentiator consists of a network of CO differentiators.
Similarly, the DO PID controller would require that KP �= 0, Kμk

D �= 0 and Kλk
I �= 0.

6.2. Stability and Control of DO Systems

The development of robust and accurate DO controllers prompted several researchers
to analyze the stability of both linear and nonlinear DO dynamical systems. Most of the
studies conducted on linear systems correspond to the bounded-input bounded-output
(BIBO) stability analysis of DO linear time-invariant (LTI) systems. On the other hand,
the nonlinear studies have focused primarily on the Lyapunov stability of the equilibrium
points of the DO system. First, we briefly review the key highlights of the DO LTI systems
and their applications. Consider a DO system described via the following LTI DODE and
algebraic output equation, ∫ 1

0 φ(β)Dβ
t x(t)dβ = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(26)

where x(t) is the state vector, u(t) indicates the input, and y(t) indicates the output
of the system. A, B, C, and D are matrices of appropriate dimensions. Note that the
interval of the DO derivative in the above single-input single-output (SISO) system can be
converted to a more general interval [β1, β2] ∈ [0, 1]. Applying a set of Laplace and inverse
Laplace transform to the above DODE with the assumption that x(0) = 0 and u(t) = δ(t),
the following expression can be obtained,

x(t) = L−1

[ [(∫ 1

0
φ(β)sβdβ

)
I − A

]−1

︸ ︷︷ ︸
G(s)

B

]
(t) (27)

where I denotes the identity matrix. As established in [341–343], the DO LTI system in
Equation (26) with the transfer function H(s) = CG(s)B + D is BIBO stable iff all the
roots of the secular equation corresponding to |G(s)I − A| = 0 have negative real parts.
The contours of this stability region have been derived based on the latter principle for
different definitions of the strength function in [342,344]. The stability contours are often
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impossible to express via elementary functions, which makes the stability tests of DO
systems more complicated than their constant- and integer-order counterparts. In this
regard, the Lagrange inversion theorem was utilized in [345] to obtain explicit expressions
for the stability contours. Several interesting properties of these stability curves such as the
slope of the tangent at very high and very low frequencies, convexity, inability to cut itself,
location in the first and fourth quadrants, and shifting and enhancement of the area of
the stability via multiplication of suitable functions to the strength distribution, have been
presented in [346–348].The above mentioned properties of the stability boundaries were
used in [347] to present a remarkable framework for the robust stability analysis of DO
LTI systems with uncertain strength distributions and dynamic matrices. More specifically,
these properties were used to show that the stability boundary of DO LTI systems can be
accurately located in a certain region on the complex plane defined by the upper and lower
bounds of the strength distribution. These results are sufficient to ensure robust stability
in DO LTI systems with uncertain strength functions and uncertain dynamic matrices.
The above framework presented in [347] is highly relevant for real-world applications that
are commonly accompanied by uncertainties. Additional discussions on the stabilization,
controllability, and passification of DO LTI systems can be found in [349–352].

The DO LTI framework discussed above has been used to analyze different systems:
the solar wind-driven magnetosphere ionosphere system (a complex driven-damped
dynamical system which exhibits a variety of dynamical states) [341,348], a DO Lotka–
Volterra predator–prey system (a system with multiple time-delays) [353], the DO Chen
system [354], and gene regulatory systems [332]. All the aforementioned applications differ
primarily in the choice of the strength function which directly affects the stability and
control of the system.

In nonlinear systems, researchers have focused mainly on analyzing the Lyapunov
stability of systems, as also mentioned previously. The Lyapunov direct method, used
for analysis of stability, was first generalized for nonlinear time-varying DO systems
in [355–357] and was used to determine the stability or asymptotic stability of certain
nonlinear systems including a DO analog of the Lorenz system. The theoretical framework
proposed in the studies [355,356] was then used to analyze different nonlinear time-varying
DO systems including a DO consensus model [358], the DO Lorenz system [359], and the
DO Van der Pol oscillator [330,360]. The consensus of multi-agent systems with fixed
directed graphs and described by DODE, was analyzed in [358] and sufficient condi-
tions were obtained for robust consensus in the presence and absence of external distur-
bances. Recently, the stability and control of a DO Van der Pol were analyzed in [330],
wherein the intervals of the different model parameters at which this oscillator exhibits
periodic, chaotic, and hyperchaotic behaviors, were calculated using Lyapunov exponents.
Further, a robust scheme was presented in [330] to achieve complete synchronization
between two DO hyperchaotic unforced Van der Pol oscillators. This synchronization
allowed the development of a secure messaging system for a text which contains alphabets,
numbers, and symbols.

7. Conclusions

This paper presented an overview of the general area of Distributed-Order Fractional
Calculus (DOFC) with particular focus on its applications to scientific modeling of complex
systems. A branch of the broader field of fractional calculus, DOFC has rapidly emerged
and captured the attention of many researchers in science and engineering. This rapid
growth was mostly due to its remarkable ability to capture complex multiscale processes.
Phenomena like multiple relaxation times in viscoelasticity, multiple temporal and spatial
scale effects in transport processes, and mixture of time delays in control theory, just to
name a few, have all illustrated the significant performance of DOFC over more traditional
integer-order techniques. The main goal of this review was to provide a snapshot in time of
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the field of DOFC and to guide the interested reader into an introductory journey through
this fascinating topic. In this regard, we highlight that the content of technical papers was
only briefly addressed in order to favor a more general discussion of the evolution of the
field in its different areas of application.

Despite the recent substantial growth in DOFC research, there are still many areas
holding significant opportunities for further development. While some preliminary work
is available on distributed-variable models, a comprehensive framework for distributed-
variable-order fractional calculus (DVOFC) is still lacking. A key factor that adds to the
complexity of formulating DVOFC is the existence of different definitions for VO operators
that exhibit different memory characteristics. Thus, a unified definition of the different
variable- and distributed-order operators and an analysis of their mathematical properties
would certainly be beneficial. In these operators, the order-variation can be a function
of different dependent or independent physical variables (such as, for example, temper-
ature, space, time, and energy). The combination of the DO and VO formalisms should
allow the simulation of highly complex physical systems which are both evolutionary
(therefore, requiring VO operators) and multifractal (requiring DO operators) in nature.
Another possible extension of currently available DO operators follows from the use of
normalized self-similar strength functions within the definition of DO operators, which
can be considered analogous to random-order operators. Particularly lacking is a rigorous
mathematical analysis of the properties of such operators. Despite the above challenges,
the extension of DOFC to these areas can have important applications in modeling random
and chaotic dynamics observed, as an example, in turbulent dynamics, noise and vibration
control, or even in financial systems. These models could even form the basis for the
development of highly accurate risk analysis and control models.

It should be pointed out that, despite the rapidly growing number of related studies,
there are still several open questions that need to be addressed before DOFC could become
a mainstream modeling approach for common real-world applications. A critical step
to promote the broader use of DOFC models is to establish the connection between the
mathematical properties of DO operators (i.e., the strength function and its support) and
the physical properties and parameters of the system to be modeled. In other terms,
the identification of closed form relations linking the mathematical parameters of the DO
operators to the physical parameters of the system at hand are of paramount importance to
foster the use of DOFC tools in scientific modeling.
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