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Preface to ”Applications of Mathematical Models in

Engineering”

The role of applied mathematics has continued to become increasingly important with the

advancement of science and technology, ranging from the modeling and analysis of natural

phenomena to the simulation, design, control and optimization of systems. With the advancements

in computing technology, larger and more complex problems can now be tackled and analyzed in a

very timely fashion. As a sample for this, the present book comprises 19 chapters that present a series

of contributions in the field.

The manuscripts cover a wide spectrum in terms of the type of problems, methodologies

and applications discussed. Different mathematical models are discussed: models for pumps

working as turbines considering the modified affinity laws; a reassessment of the rainfall-runoff

model and model calibration with inferential statistics; a three-dimensional unsteady aerodynamic

force reduction model based on the eXterme Gradient Boosting algorithm in machine learning;

a hybrid nanofluid flow model towards a stagnation region of a vertical plate with radiation

effects; analytical formulations to calculate magnetic field distribution and stray losses in the

transformer region where bushings are mounted, considering a stainless steel insert in the

transformer tank; a mathematical model to enhance the freshwater productivity rate of a

solar-assisted humidification–dehumidification type of desalination system; statistical modeling

of the pressure field at the centerline of the apron along the USBR Type I and II basins;

solitary wave solutions of the generalized Rosenau-Korteweg-de Vries-regularized-long wave

equation. In the control engineering field, different innovative strategies are presented: an

event-based algorithm for fractional-order IMCs for first-order plus dead-time processes, including

delay- and lag-dominant ones; the integration of a fixed-structure, multiple-input-multiple-output,

fractional-order, proportional-integral-derivative controller in the μ-synthesis optimization problem

for different engineering applications; the design, implementation, validation and use of a

Computer-Aided Control System Design (CACSD) toolbox for nonlinear and hybrid systems;

uncertainty modeling, simulation, and control using μ-synthesis; robust fractional-order control using

a decoupled pitch and roll actuation strategy for the I-Support soft robot; a set of tuning rules for

Linear Active Disturbance Rejection Controller (LADRC) with three different levels of compromise

between disturbance rejection and robustness; a sliding mode control for the precise positioning of a

Stewart platform used as a mobile platform in non-destructive inspection applications. The discussed

applications range from the development of a control system for fermentation production in batch

bioreactors to the design and optimization of gridshell structures or the determination of aircraft

cruise altitudes with minimum fuel consumption and time-to-climb, or even the design of a low-cost,

performing quadrotor unmanned aerial vehicle using a quaternion-based estimator.

DWe would like to thank the MDPI publishing editorial team, the scientific peer reviewers and

all of the authors who have contributed to this volume. We hope that the manuscripts are of value to

researchers, academics and professionals involved in the resolution and optimization of real-world

engineering problems.

Eva H. Dulf and Cristina I. Muresan

Editors

xi
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Abstract: μ-synthesis is a NP-hard optimization problem based on the generalized Robust Control
framework which manages to find a controller which fulfills both robust stability and robust per-
formance. In order to solve such problems, nonsmooth optimization techniques are employed to
find nearly-optimal parameters values. However, the free parameters available for tuning must be
involved only in classical arithmetic operations, which leads to a problem for the fractional-order
operator or for its integer-order approximation, exponential operations being involved. The main
goal of the current article consists of presenting a possibility to integrate a fixed-structure multiple-
input-multiple-output (MIMO) fractional-order proportional-integral-derivative (FO-PID) controller
in the μ-synthesis optimization problem. The solution consists in a possibility to find a set of tunable
parameters isomorphic with the fractional-order such that the coefficients involved in the approxi-
mation of the fractional element, along with the formulation of a fixed-structure mixed-sensitivity
loop shaping μ-synthesis control problem. The proposed design procedure is applied to a twin rotor
aerodynamic system (TRAS) using both MATLAB numerical simulation and practical experiments on
laboratory scale equipment. Moreover, a comparison with the unstructured μ-synthesis is performed,
highlighting the advantages of the proposed solution: simpler form and guaranteed robust stability
and performance.

Keywords: robust control; mixed-sensitivity; μ-synthesis; fractional-order control; FO-PID; twin
rotor aerodynamic system

1. Introduction

One of the fundamental problems studied in Control Engineering concerns robustness,
which characterizes the sensitivity of the closed loop system to the variation of plant
parameters. One of the most used performance measures is the H∞ norm. Starting from
the approach of synthesizing a H∞ controller by solving two Algebraic Riccati Equations
(AREs) as in [1], a more numerically stable solution can be obtained using Popov triplets [2].
Alternatively, due to the limitations of this approach represented by the impossibility of
solving singular problems, the AREs were replaced with Algebraic Riccati Inequalities
(ARIs) and were solved using Linear Matrix Inequalities (LMIs) [3]. The last two approaches
have been recently implemented in open-source manners in [4,5]. However, the classical
H∞ control problem manages to ensure nominal stability and nominal performance only.
In order to consider dynamic and parametric uncertainties, the plant is formulated as an
upper linear fractional transform with such an uncertainty block and the μ-synthesis can
be used for computing a robust controller based on the classical D–K iterations [6]. The
major concern about these methods consists of the fact that the controller is usually of high
order. However, imposing a fixed structure leads to a non-convex problem which cannot
be approximated as in the case of μ-synthesis. The solutions, initially proposed for H∞
problem [7], and then for μ-synthesis [8] as well, are based on nonsmooth optimization
techniques. A CACSD toolbox that manages to offer an end-to-end solution for designing
a robust controller starting from a given plant is presented in [9].

Mathematics 2021, 9, 2504. https://doi.org/10.3390/math9192504 https://www.mdpi.com/journal/mathematics
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The most well-known controller structure, which is highly used in industry, is the
proportional-integral-derivative (PID) regulator. Its form is generally given as an example
for fixed-structure controllers and nonsmooth optimization methods were designed around
it [10]. An extension with two extra degrees of freedom is represented by fractional-order
PID (FO-PID), which improves the robustness of the closed loop system. As tuning
methods, the well-known methods used for designing integer-order controllers were
extended for fractional-order controllers as well. As such, two generalized versions of
Kessler’s magnitude methods were presented in [11,12], while a fractional-order internal
model controller with event-based implementation was developed in [13]. A fractional-
order integrator was used as a model for the servo problem in [14], while the same structure
was used as a speed controller for a DC motor in [15]. In [16] crone control methodologies
were presented, along with LMI formulation for the H∞ fractional-order control problem.
An artificial bee colony optimization for a MIMO FO-PID controller design by solving the
mixed-sensitivity μ-synthesis control problem is presented in [17].

The twin rotor aerodynamic system (TRAS) is a well-known benchmark system used
to illustrate the control methods designed in literature. A two degrees of freedom (2-DOF)
discrete-time μ-synthesis controller of order 24 was presented in [18]. A decentralized fixed-
structure PID controller designed using H∞ is presented in [19], along with a comparison
between the full-order H∞ controller. After the linearization and decoupling steps, 2-
DOF continuous and discrete-time controllers were designed using H∞ in [20]. A hybrid
architecture using both H∞ and Iterative Learning Control is described in [21]. A linear
quadratic regulator (LQR) for MIMO TRAS problem was designed using particle swarm
optimization in [22], while a frequency-based PID controller was combined with a lead
compensator designed using root locus in [23]. An approach that further details the
controller implementation with quantization aspects taken into consideration for the same
family of processes is presented in [24].

In this paper, we present a design procedure that manages to optimize the controller
parameters instead of tuning them. As such, we present a method for finding the parame-
ters of a MIMO fractional-order PID (FO-PID) robust controller by solving a fixed-structure
mixed-sensitivity loop shaping μ-synthesis control problem. Although the resulting control
problem is nonconvex in terms of the controller’s free parameters, the nonsmooth optimiza-
tion techniques implemented in MATLAB’s Robust Control Toolbox can be used. However,
the realp object used for these free parameters does not support exponential operations
necessary in the approximation of a fractional-order element. Therefore, we present in this
paper an algorithm to construct the approximation function of a fractional-order element
using integer-order elements and supported arithmetic operations applied on a free pa-
rameter isomorphic to the desired fractional order. As such, we successfully manage to
formulate the problem of optimizing the parameters of a MIMO FO-PID such that the avail-
able techniques can be used. Moreover, we illustrate our design method on the twin rotor
aerodynamic system stand, having both MATLAB simulations and physical experiments.

The remainder of this paper is organized as follows: Section 2 summarizes the main
mathematical background in terms of available results in both Robust and Fractional-Order
Control, along with the description of the proposed method in terms of the algorithm for
approximation of the fractional order element and of the optimization problem; Section 3
starts with the presentation of the simplified nonlinear mathematical model of the TRAS
system, the linearized mathematical model around an equilibrium point, and a list of
parameters with their numerical values and tolerances which manages to encompass
the nonlinearities; in Section 4, the numerical results are presented, starting from the
augmentation step, followed by the proposed structure of the controller and the obtain
results in MATLAB and on the experimental stand; Section 5 presents the discussions of
the obtained results and a comparison with another method for solving the optimization
problem, while in Section 6 there are some conclusions and possible research directions.
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2. Proposed Method

In this section, the mathematical background for the proposed controller design
method in terms of Robust Control Framework in Section 2.1 and Fractional-Order Control
Framework in Section 2.2 is firstly presented, while in Section 2.3 the method for optimizing
the controller parameters using a different approach as against the procedure presented
in [17] is described.

2.1. Robust Control

The generalized Robust Control Framework [25] has, besides the control input vector
u ∈ Rnu , two extra inputs: the exogenous input vector w ∈ Rnw and disturbance input
vector d ∈ Rnd . Additionally, besides the output vector y ∈ R

ny , the generalized plant
contains two extra outputs: the performance vector z ∈ Rnz and the disturbance output
v ∈ Rnv . The input and output disturbance vectors encompass both parametric and
unstructured uncertainties, which are generally modeled by the following set:

Δ =
{

diag
(

δ1 In1 , . . . , δs Ins , Δ1, . . . , Δ f

)
|δk ∈ R, Δj ∈ R

mj×mj , k = 1, s, j = 1, f
}

, (1)

where In denotes the identity matrix of order n.
The uncertainty block Δ is interconnected with the generalized plant PΔ via an upper

linear fractional transformation (ULFT), while the controller K is interconnected via a lower
linear fractional transformation (LLFT) with PΔ, as noticed in Figure 1.

Figure 1. Generalized plant interconnection with the controller and uncertainty blocks [17].

The state-space representation of the generalized plant PΔ is:

PΔ :

⎛⎜⎜⎝
ẋ(t)
v(t)
z(t)
y(t)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
A Bd Bw Bu
Cv Dvd Dvw Dvu
Cz Dzd Dzw Dzu
Cy Dyd Dyw Dyu

⎞⎟⎟⎠
⎛⎜⎜⎝

x(t)
d(t)
w(t)
u(t)

⎞⎟⎟⎠. (2)

For robustness analysis, the singular value notion used forH∞ synthesis was extended
to the structural singular value, defined for the LLFT interconnection between the plant PΔ
and the controller K according to the uncertainty block Δ as:

μΔ(LLFT(PΔ, K)) = sup
ω∈R+

1
min
Δ∈Δ

{σ(Δ)|det(I − LLFT(PΔ, K)(jω)Δ) = 0} . (3)

Given that the problem of explicitly computing such structural singular values is NP-hard,
an approximation must be used. The classical H∞ control problem can be extended to the
following optimization problem:

inf
K stab.

sup
ω∈R+

μΔ(LLFT(PΔ, K)(jω)), (4)

3
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which can be considered solved if there is a controller K such that μΔ(LLFT(PΔ, K)) < 1,
according to main loop theorem. As such, an upper bound is necessary for μΔ(·) [6]:

μΔ(LLFT(PΔ, K)(jω)) ≤ inf
D∈D

σ
(

D · LLFT(PΔ, K)(jω) · D−1
)

, (5)

where the set D is defined according to the uncertainty block Δ as follows [6]:

D =
{

diag
(

D1, . . . , Ds, d1 Im1 , . . . , d f Im f

)
|Dk = D�

k ∈ R
nk×nk , dj > 0, k = 1, s, j = 1, f

}
. (6)

Summarizing, robust stability and robust performance are achieved through a con-
troller K obtained as a solution of the optimization problem (4) which manages to obtain
an objective value lower than 1. But this NP-hard problem can be approximated by the
following quasi-convex problem:

inf
K stab.

sup
ω∈R+

inf
D∈D

σ
(

D(jω) · LLFT(PΔ, K)(jω) · (D(jω))−1
)

. (7)

As already known, the last optimization problem can be solved using the so-called
D–K iteration [9,17]. This iterative procedure starts with a fixed D (usually considered the
unitary system) and alternatively computes the controller K, by solving the H∞ control
problem with fixed D, and the D-scale factor, by solving the Parrot problem, as defined
in [6], for each point from a frequency set Ω = {ωl = ω1 < · · · < ωN = ωu} followed an
approximation of the obtained solutions with a minimum phase system. Therefore, after
setting the initial D-scale step as D = I, the following steps are successively applied:

1: The D-scale step is fixed and the controller can be computed as:

K = arg inf
K stab.

‖LLFT(PΔ, K)‖∞. (8)

2: The controller K is fixed and the following set of convex problems must be solved:

D(jω) = arg inf
D∈D

σ
(

D · LLFT(PΔ, K)(jω) · D−1
)

, (9)

for a given frequency range Ω and, then, a stable minimum phase transfer matrix
D(s) is fitted.

Steps 1 and 2 are executed in a loop sequence until the difference between two
consecutive H∞ norms is less than a prescribed tolerance, the maximum number of it-
erations is reached, or the improvement after a prescribed number of steps is under an
imposed tolerance.

2.2. Fractional-Order Control

The domain of Fractional-Order Control has recently gained more attention due to
their robustness. The fractional integral operator used in Control Engineering is [26]:

Iα{ f (t)} = 1
Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ, t > 0, α ∈ R+, (10)

where Γ(·) : C+ → C is the Euler Gamma function. In a similar manner with the inte-
ger order integral operator, the fractional order integral operator Iα has the following
Laplace transform:

L{Iα{ f (t)}}(s) = s−αL{ f (t)}(s). (11)

As previously stated, the fractional-order calculus can be used to extend the classical
3-DOF proportional-integral-derivative (PID) controller to a fractional-order PID (FO-PID)
having two extra DOF λ, μ ∈ R+ – the order of the integral operator and the order of the

4
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derivative operator, respectively. As such, based on the error signal ε(t), the command
signal c(t) has the following expression:

c(t) = KP · ε(t) + KI · Iλ{ε(t)}+ KD · I−μ{ε(t)}, (12)

where c(t) would be u(t) and ε(t) would be r(t) − y(t) according to the generalized
framework from Figure 1, while the differences between the transfer functions of these two
controllers are:

HPID(s) = KP +
KI
s

+ KDs ⇒ HFO−PID(s) = KP +
KI

sλ
+ KDsμ. (13)

The main drawback of the FO-PID revolves around the implementation of the frac-
tional order elements. One possible solution is the Oustaloup recursive approximation
(ORA) introduced in crone toolbox [16]. The approximation of a fractional-order element
sλ with an integer-order one is detailed for λ ∈ (0, 1), but it can be easily extended for
λ ∈ R. The ORA representation receives as inputs three parameters: the order N of the LTI
system which approximates the fractional-order element, along with the lower bound ωl
and the upper bound ωu of the frequency range where the approximation is valid. The LTI
approximation is:

sλ ≈
N

∏
k=1

1 + s/ω̊k
1 + s/ω̂k

, (14)

where the poles and zeros frequencies can be computed using two coefficients:

ε =

(
ωu

ωl

) λ
N

and η =

(
ωu

ωl

) 1−λ
N

, (15)

followed by the recursive relations:

ω̊1 = ωl
√

η, (16a)

ω̂k = ω̊k · ε, k = 1, N, (16b)

ω̊k+1 = ω̂k · η, k = 1, N − 1. (16c)

The MATLAB object realp used for fixed-structure robust synthesis does not allow
the use of operations other than classical arithmetic operations. Therefore, the recursive
fractional-order approximation (14) cannot be used as is in order to compute the fractional-
order of the integrative and derivative effects. In Section 2.3 we will give a possible
implementation in order to use the realp object for optimizing the controller parameters.

2.3. Controller Design Procedure

Although the controller which results by solving the quasi-convex problem (7) man-
ages to fulfill the robust stability and robust performance, the major drawback consists in
the fact that the controller is of high-order and cannot be easily implemented. As such,
the problem should be constrained to use a specific controller structure. After imposing a
fixed-structure family K, the problem (7) can be written as:

inf
K∈K

K stab

sup
ω∈R+

inf
D∈D

σ
(

D(jω) · LLFT(PΔ, K)(jω) · (D(jω))−1
)

. (17)

The above problem is non-convex in terms of the free tuning parameters of the
controller K ∈ K. However, the problem (17) can also be solved using the D–K iteration
approach, where the K step from (8) is replaced with the following KK step:

K = arg inf
K∈K

K stab

‖LLFT(PΔ, K)‖∞. (18)

5
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In the MATLAB environment there exists the realp object which can be used to
construct a desired family of controllers K and then the closed loop system contains
both uncertainties and free tunable parameters alike. Using nonsmooth optimization
techniques presented in [8] and implemented in [25], the fixed-structure μ-synthesis control
problem can be solved. For the purpose of this paper, we consider the fixed structure
controller family:

K =

⎧⎪⎪⎪⎨⎪⎪⎪⎩Kθ(s) =

⎛⎜⎜⎜⎝
K1,1(s) K1,2(s) . . . K1,ny(s)
K2,1(s) K2,2(s) . . . K2,ny(s)

...
...

. . .
...

Knu ,1(s) Knu ,2(s) . . . Knu ,ny(s)

⎞⎟⎟⎟⎠| θ ∈ D

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (19)

where each controller Ki,j has the form:

Ki,j(s) = K(i,j)
P +

K(i,j)
I

sλ(i,j) + K(i,j)
D sμ(i,j)

, (20)

having the free parameters:

θi,j =
(

K(i,j)
P K(i,j)

I K(i,j)
D λ(i,j) μ(i,j)

)
∈ R

5. (21)

However, the tunable parameters λ(i,j) and μ(i,j) cannot be used as realp objects, due
to exponential operations not supported. As a solution, ORA is used with the tunable
parameter being θλ ≡ √η from (15). The transfer function (14) can be implemented using
θλ as in Algorithm 1.

Algorithm 1: Construct Fractional-Order Element
Input: θλ, N, ωu, ωl
Output: Hsλ(s)

1 ε =
(

ωu
ωl

) 1
N · 1

θ2
λ

2 ω̊1 = ωl · θλ

3 Hsλ(s) = 1
4 for k = 1, N − 1 do
5 ω̂k = ω̊k · ε

6 ω̊k+1 = ω̂k · θ2
λ

7 end
8 ω̂N = ω̊N · ε

9 Hsλ(s) =
N

∏
k=1

s/ω̊k + 1
s/ω̂k + 1

Therefore, the tunable parameters for each controller Ki,j(s) are:

θ̂i,j =
(

K(i,j)
P K(i,j)

I K(i,j)
D θλ(i,j) θμ(i,j)

)
∈ R

5, (22)

with the special mention that the parameters θλ(i,j) and θμ(i,j) must be in the domain[
1,
(

ωu
ωl

) 1
N
]

. If a desired fractional order λ is out of the admissible domain, extra in-

tegrator/derivative terms can be added. Therefore, the fixed-structure μ-synthesis control
problem can be solved in MATLAB from the desired family K from (19).

Additionally, the control problem will be posed in a mixed-sensitivity loop shaping
μ-synthesis formulation. The main reason for this choice consists in the fact that the
mixed-sensitivity loop shaping allows an adequate trade-off between robustness and

6
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performance. In the optimization process, the following functions will be used for the loop
shaping procedure: the sensitivity function S, the complementary sensitivity function T,
and the control effort KS. For each performance function, a set of performance outputs are
considered, while the performance inputs are considered as the references.

On one hand, large magnitude in the open loop system implies good reference tracking,
disturbance rejection, and unstable plant stabilization. On the other hand, small magnitude
of the open loop system ensures robust stability and mitigation of measurement noise.
Moreover, a small magnitude of the control effort is necessary to relieve actuator stress.
Although all these magnitude requirements seem to lead to an impossible combination,
the target frequency ranges for each component are disjunctive. Through the loop shaping
mechanism, the engineer is supposed to find three weighting functions, one for each of the
previously-mentioned closed loop performances and the frequency performance imposed
by the weighting functions is strongly correlated to the corresponding time performance.

For the sensitivity function, the frequency performance indicators of the weighting
function are the minimum bandwidth frequency ωB, which is inversely proportional with
the rise time, the maximum magnitude AS at low frequencies, which imposes the maximum
steady-state error, the peak magnitude MS, which limits the overshoot of the system, along
with the imposed slope nS of the sensitivity function at low and medium frequencies [9]:

WS(s) =

⎛⎜⎝
1

M
1/nS
S

s + ωB

s + ωB A1/nS
S

⎞⎟⎠
nS

. (23)

Similarly, the complementary sensitivity’s weighting function can be constructed using
the peak amplitude MT , the maximum magnitude at high frequencies AT , the minimum
bandwidth ωBT and the roll-off nT :

WT(s) =

(
s + ωBT

A1/nT
T s + ωBT M1/nT

T

)nT

. (24)

The control effort is generally weighted by imposing the magnitude at low and high
frequencies, along with an intermediate point of interest. However, the main goal is to
maintain the control effort in the range given by the saturation of the physical actuator.
For MIMO systems, the weighting matrices are diagonal concatenations of the weighting
functions described above. Now the optimization problem that needs to be solved for the
proposed method is the mixed-sensitivity fixed-structure loop shaping μ-synthesis:

min
K∈K

K stab

sup
ω∈R+

inf
D∈D

σ
(

D(jω) · LLFT(P, K)(jω) · (D(jω))−1
)

s.t. ‖(WSS WTT WKSKS
)‖∞ < 1

. (25)

3. Mathematical Model of a TRAS

The TRAS model is of sixth order with four inputs and two outputs. The state variables
considered are the rotational speed of the tail rotor (ωh), the rotational speed of the main
rotor (ωv), the azimuth velocity of TRAS beam (Ωh), the pitch velocity of TRAS beam (Ωv),
the azimuth position (αh), and the pitch position (αv), the state vector being:

x =
(
ωh ωv Ωh Ωv αh αv

)� ∈ R
6. (26)

There are two control inputs, uh and uv, representing the normalized horizontal and vertical
DC-motor PWM duty cycles, while the considered outputs will be the azimuth and pitch
positions of the TRAS beam:

u =
(
uh uv

) ∈ R
2, y =

(
αh αv

) ∈ R
2. (27)

7
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The TRAS model is strongly nonlinear even under some simplifying assumptions, as
stated in [27]. One simplification is regarding to the characteristics of the two rotors: their
models are supposed to be of first order containing the moment of inertia and the velocity
gain for each rotor. Moreover, the angular velocities of the TRAS beam is influenced by the
aerodynamic force of each rotor, which is nonlinear in terms of its rotational speed, by the
aerodynamic damping torque and by the cross momentum. Moreover, the azimuth velocity
is strongly influenced by the pitch angle position, while the pitch velocity is influenced by
the pitch angle as well by the return torque. The nonlinear model after some simplifying
assumptions can be written as:

ω̇h = − 1
Ih

f1(ωh) +
1
Ih

uh (28)

Ω̇h =
lt·

k1 · cos2(αv) + k2
f2(ωh) · cos(αv)−

k f h

k1 · cos2(αv) + k2
Ωh − kvh

k1 · cos2(αv) + k2
cos(αv) · uv (29)

α̇h = Ωh (30)

ω̇v = − 1
Iv

f3(ωv) +
1
Iv

uv (31)

Ω̇v =
lm
Jv

f4(ωv)−
k f v

Jv
Ωv − k3 cos(αv) + k4 sin(αv) + k5 sin(αv) cos(αv)

Jv
+

khv
Jv

uh (32)

α̇v = Ωv (33)

All parameters of both linearized an nonlinear systems are described in Table 1. The
first step of the linearization process is to find approximations for the functions f1 and f3
such that the two systems from inputs to rotational speeds of the rotors are of first order.
In order to obtain this scenario, these functions are estimated as f1(ωh) = kHh · ωh and
f3(ωv) = kHv ·ωv, while the nonlinerity is treated using the sector bound technique, being
included in the tolerance of each velocity gain. Moreover, the forces developed by each
axis are also nonlinear in terms of rotational speeds of the rotors and can be approximated
f2(ωh) = kFh · ωh and f4(ωv) = kFv · ωv, where the trust coefficients encompass the
nonlinearities in their tolerances. All sector bound nonlinearites described above are
depicted in Figure 2.

Figure 2. The tolerances of the parameters kHh, kHv, kFh, kFv which encompass the behaviour of the nonlinear functions
f1, f2, f3 and f4 into sector bound nonlinearities.

8
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Table 1. Twin rotor aerodynamic system physical parameters, values and tolerances.

Symbols Description Nominal Value Tolerance

Ih moment of inertia of the tail rotor 1/37,000 (kg·m2) -
Iv moment of inertia of the main rotor 1/6100 (kg·m2) -
Jh moment of inertia with respect to the vertical axis 0.0268 (kg·m2) ±10[%]
Jv moment of inertia with respect to the horizontal axis 0.0268 (kg·m2) -

kHh velocity gain of the tail rotor 7.0742× 103 (rad/s) ±10[%]
kHv velocity gain of the main rotor 5.1574× 103 (rad/s) ±10[%]
kFh thrust coefficient of the tail rotor 1.3218× 10−4 (Ns/rad) ±10[%]
kFv thrust coefficient of the main rotor 2.0124× 10−4 (Ns/rad) ±10[%]
k fh friction coefficient in the vertical axis 5.889× 10−3 (Nms/rad) ±5[%]
k fv friction coefficient in the horizontal axis 1.271× 10−2 (Nms/rad) ±5[%]
khv coefficient of the cross moment from tail rotor to pitch angle 4.175× 10−3 (Nm) ±5[%]
kvh coefficient of the cross moment from main rotor to azimuth angle −1.782× 10−2 ±5[%]
Rv coefficient of the return torque 9.360078× 10−2 (Nm) ±10[%]
lt length of the tail part of the beam 0.2165 (m) -
lm length of the main part of the beam 0.202 (m) -
k1 coefficient of Jh 2.379× 10−2 (kg·m2) -
k2 coefficient of Jh 3.009× 10−3 (kg·m2) -
k3 coefficient of Rv 5.006× 10−2 (Nm) -
k4 coefficient of Rv 9.361× 10−2 (Nm) -
k5 auxiliary coefficient 0.010624 (Nm) -

After this first step, the nonlinear model can be now linearized around an equi-
librium point. The forced equilibrium point has been chosen such that the outputs
are αh = αv = 0 [rad], i.e., plant stabilization problem. In order to obtain this point, the
state vector has the rest of the components ωh = −1336 [rad/s] , ωv = 1803.45 [rad/s],
Ωh = 0 [rad/s], Ωv = 0 [rad/s] , while the input vector has the components uh = −0.1492
and uv = 0.30559. According to [27], the moment of inertia with respect to the horizontal
axis is constant, while around the vertical axis the moment of inertia is nonlinear, having the
expression Jh = k1 · cos2(αv) + k2. In practice, we will consider this parameter uncertain,
having the nominal value Jh = k1 · cos(αv) + k2, along with a tolerance of ±10[%]. The
uncertainties from the thrust coefficients of the tail and the main rotors are necessary in
order to compensate the nonlinearity of the aerodynamic forces from these rotors. The
friction coefficients in the axes and the cross moments coefficients also present uncertainties
in order to compensate the nonlinearities presented in the angular velocity parts and the
interconnections between the two rotations. The return torque coefficient is a nonlinear
function in terms of pitch position and velocity, which can be approximated by an uncertain
parameter having the nominal value Rv = k3 sin(αv)− k4 cos(αv), and a tolerance of±10%.
As such, the linearized state-space model can now be written as:

ẋ(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
Ih ·kHh

0 0 0 0 0
lt ·kFh

·cos(αv)

Jh
− k fh

Jh
0 0 0 − lt ·kFh

·sin(αv)+kvh ·sin(αv)·uv
Jh

0 1 0 0 0 0
0 0 0 − 1

kHv ·Iv
0 0

0 0 0 lm ·kFv
Jv

− k fv
Jv

− Rv+2k5 cos(2αv)
Jv

0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x(t) +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
Ih

0

0 − kvh ·cos(αv)
Jh

0 0
0 1

Iv
khv
Jv

0
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
u(t); (34a)

y(t) =
(

0 0 0 0 1 0
0 0 0 0 0 1

)
x(t) +

(
0 0
0 0

)
u(t). (34b)

The singular values of the twin rotor aerodynamic system plant having the parameters
presented in Table 1, before augmentation, are presented in Figure 3.
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Figure 3. Singular value plot of the twin rotor aerodynamic system.

4. Numerical Results

The controller design procedure proposed in this paper will be applied on a twin
rotor aerodynamic system (TRAS). The physical stand from INTECO [27] is presented in
Figure 4. The numerical values of the parameters described in Section 3 are presented in
Table 1, along with their nominal values and tolerances.

Figure 4. Twin rotor aerodynamic system used for practical experiments.

In order to illustrate the power of the proposed method, a comparison between the
numerical simulations for the linearized system using MATLAB and the experimental
results on the physical stand has been performed. For the numerical results, the block
diagram is presented in Figure 5, where the reference signals w1 ≡ r =

(
α�h α�v

)� are
considered the inputs of the linearized system, while the performance output vector is:

z =
(
zS,αh zS,αv zT,αh zT,αv zKS,αh zKS,αv

)
. (35)
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Figure 5. The block diagram of the proposed experiment containing the augmented plant which
contains as inputs the reference signals only.

For the numerical simulation part, the plant augmentation has been done with the
following weighting functions parameters: ωB,αh = 0.2 [rad/s], ωB,αv = 0.05 [rad/s],
AS,αv = AS,αh = 1× 10−2, MS,αv = MS,αh = 2, nS,αv = nS,αh = 1 (the reference is considered
to be a unity step signal), ωBT,αh = 20 [rad/s], ωB,αv = 5 [rad/s], AT,αv = AT,αh = 1× 10−2,
MT,αv = MT,αh = 2, nT,αv = nT,αh = 1, while the DC component of the control effort
weighting functions is 1, being the maximum value of the command signal, and the
maximum value at high-frequency is of magnitude 5. The weighting functions result
as follows:

WS(s) =
(

WS,αh(s) 0
0 WS,αv(s)

)
, where WS,αh(s) =

0.5s + 0.2
s + 2× 10−3 , WS,αv(s) =

0.5s + 0.05
s + 5× 10−4 , (36)

WT(s) =
(

WT,αh(s) 0
0 WT,αv(s)

)
, where WT,αh(s) =

s + 20
0.01s + 40

, WT,αv(s) =
s + 5

0.01s + 10
, (37)

WKS(s) =
(

WKS,αh(s) 0
0 WKS,αv(s)

)
, where WKS,αh(s) = WKS,αv(s) =

0.2s + 0.8532
s + 0.8532

. (38)

As noted in Figure 3, the frequency range is between ωl = 1× 10−2 [rad/s] and ωu =
1× 103 [rad/s], which will be also used for ORA, along with the order of approximation
N = 5. Using the augmented plant presented in Figure 5, the fixed-structure mixed-
sensitivity loop shaping μ-synthesis problem (25) is solved using the musyn command from
MATLAB with the following specifications: the maximum number of D–K iterations is 10,
the threshold for the upper bound of the μΔ(LLFT(Paug, K)) is 1, and the maximum number
of iterations for asserting the lack of progress is 4.

The fixed-structured μ-synthesis control problem was solved using three D–K iter-
ations, having the upper bound of the structured singular value μΔ(LLFT(Paug, K)) ≤
0.9902 < 1, which means that the resulting FO-PID controller manages to fulfill both robust
stability and robust performance. The resulting FO-PID controller is:

Kθ�

FO−PID(s) =

(
0.1149 + 0.0603 · s−1.267 + 0.0909 · s1.1442

0.1154s+1 −7.1329 + 5.0864× 103 s1.0001

712.97s+1
0.0315− 0.0832 s1.2251

27.3377s+1 −0.0297 + 0.1013 · s−1.0001 + 0.0232 · s1.2851

0.149s+1

)
, (39)

where the low-pass component needs to be added in order to implement the derivative
element of order greater than 1 having one extra degree of freedom for each such element.
The results obtained after each step are summarized in Table 2, where after x steps the
controller design problem has been successfully solved. The upper bound of the structural
singular value is presented in Figure 6.
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Table 2. The evolution of the structural singular value in the D–K iteration procedure used to solve
the mixed-sensitivity fixed structure μ-synthesis problem for the case study—FO-PID structure.

D–K Iteration Number 1 2 3 4

Peak Value of μ (FO-PID) 2.657 1.066 1.007 0.9902

Figure 6. Upper bound of the structural singular value μΔ(LLFT(Paug, K)(jω)) for the frequency
range used for solving the Parrot problems.

In order to illustrate the frequency-domain performance, the sensitivity function, com-
plementary sensitivity function and control effort are presented in Figure 7. The nominal
plant has been analyzed along with 100 Monte Carlo simulations for the given uncertainty
range. Also, in order to underline that the control problem has been successfully solved, the
weighting functions are also depicted and it can be noticed that all the simulated functions
are under the imposed thresholds. Additionally, the Bode magnitude characteristics of the
resulting controller are provided in Figure 8.

Figure 7. Sensitivity, control effort and complementary sensitivity functions for the TRAS design phase: specified
and synthesized.
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Figure 8. Bode magnitude characteristic of the resulting controller (39).

The time-domain performance of the lower linear fractional transform between the
linearized plant and the controller are presented using a step response in Figure 9. In a
similar manner, the nominal plant is illustrated along with 100 Monte Carlo simulations.
The rise time for the azimuth position varies between 0.796 [s] and 1.05 [s], having a settling
time between 14.8 [s] and 16.1 [s] and an overshoot between 16.9 [%] and 24.2 [%], with
no steady-state error. Similarly, the rise time for the pitch position is between 6.79 [s]
and 11.7 [s], having a settling time between 10.7 [s] and 19 [s], with no overshoot and no
steady-state error.

Figure 9. Closed-loop simulated step responses for azimuth and pitch positions, respectively.

Numerical results will further be compared with the experimental results. The first
set of experiments, shown in Figure 10, have been made for a square reference with an
amplitude of ±0.1 [rad] and a period of 100 [s] for both axes. The initial conditions were
varied in practice in order to illustrate the capability of the method. It can be noticed that
for the azimuth position, the practical overshoot is a bit higher than in the linear case, with
a comparable settling time and near-zero steady-state error due to the quantization effects.
The pitch position presents overshoot for the initial step, while for the second step the
behavior is similar to that of the linear system, with no overshoot, no steady-state error
and comparable settling time.
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Figure 10. Practical experimental results for reference tracking using various initial conditions.

The second set of experiments are made for the stabilization problem, where the
reference for both axes is α�h = α�v = 0.1 [rad]. It can be noticed that the azimuth position
presents an initial overshoot comparable to that obtained for the linear system, while the
second part of the oscillation is more aggressive, underling the influence of the nonlinear
components. In a similar manner, the pitch position presents an overshoot along with
several oscillations, while the settling time is comparable with the linear case’s. The experi-
mental results are shown in Figure 11. Moreover, three different disturbances have been
applied after 50 [s]: a perturbation on the vertical axis which leads the pitch position at the
maximum value (blue), a perturbation on the horizontal axis with the same characteristics
(cyan), and another small perturbation on the horizontal axis (black). It can be noticed that
all disturbances have been successfully rejected.

Figure 11. Practical experimental results for disturbance rejection, by alternatively perturbing both the azimuth and pitch
axes alike.

Finally, the third set of experiments, depicted in Figure 12, illustrates the behaviour of
the proposed method for an operating point far from the forced equilibrium point used in
the linearization procedure and controller synthesis. As such, a step of α�h = α�v = 0.7 [rad]
has been initially applied, with a different pair α�h = α�v = −0.3 [rad] applied at the moment
t1 = 50 [s]. For the horizontal axis, the overshoot is a bit higher than in the linear case, but
with similar settling time and no steady-state error. Also, for the vertical axis, the overshoot
is negligible for the first step and zero for the second step, having comparable settling times
and no steady-state error. Therefore, the controller can be used for other operating points.
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Figure 12. Practical experimental results for reference tracking using high-valued reference signals and, as such, validating
the controller for variable plant operating points.

5. Discussion

In order to compare the current iteration of FO-PID μ-synthesis with previous meth-
ods, the fixed-structure part of the μ-synthesis mixed-sensitivity loop shaping control
problem (25) is solved using the artificial bee colony (ABC) approach presented in [17]. The
hyperparameters used for this experiment are: the swarm dimension N = 50, the maxi-
mum number of ABC cycles 50, the maximum number of cycles with no improvements 10,
the limit for the abandonment counter 10, the maximum number of D–K iterations 10, the
maximum window length for assessing lack of progress 4, while the parameters for the cost
functions are α = 1 and β = 105. Using this setup, the fixed-structure mixed-sensitivity
loop shaping μ-synthesis problem (25) is solved using five D—K iterations. The resulting
controller is:

Kθ�

FO−PID,ABC(s) =

(
0.1642 + 0.0892 · s−1.1834 + 0.0913 · s1.1209

0.1173s+1 −0.0016 + 0.8355 s1.0001

104.8s+1
0.0106− 6.769× 10−4 s1.4938

100s+1 −0.0741 + 0.0981 · s−1.185 + 0.001 · s1.157

0.0735s+1

)
, (40)

Additionally, an experiment with unstructured μ-synthesis has also been performed,
leading to an upper bound of the structured singular value of 99.86 and a controller of 34th
order, which means that robust stability and robust performance are not guaranteed, with
the controller additionally of high order. The optimization algorithm has been stopped after
three iterations because the diverging stopping criteria has been reached. A summary of
the obtained results with the proposed method, the ABC method [17] and the unstructured
μ-synthesis is presented in Table 3.

Table 3. A comparison between the evolution of the structural singular values in the D–K iteration procedure used to solve
the mixed-sensitivity fixed structure μ-synthesis problem for the case study.

D–K Iteration Number 1 2 3 4 5
Peak Value of μ (FO-PID) 2.657 1.066 1.007 0.9902 -

Peak Value of μ (unstructured) 100 99.8 99.4748 - -
Peak Value of μ (ABC approach [17]) 105.7741 2.4095 1.2452 1.1255 0.9989

As such, the unstructured version of the μ-synthesis control problem could not be
solved, resulting a high-order controller which does not guarantee robust stability and
performance. On the other hand, both remaining methods managed to solve the control
problem described in (25). The new method introduced in this paper manages to solve
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the problem faster due to the advantages of the nonsmooth optimization techniques
implemented in MATLAB.

As a future iteration, we propose to find a decentralized controller having a nonlinear
component and a linear and time-invariant (LTI) robust component. The nonlinear compo-
nent needs to be designed such that the lower linear fractional transform interconnection
between the plant and such a component is asymptotically stable, as in [28], where the
passivity-based control framework has been extended for quasi-linear input-affine sys-
tems. Additionally, the LTI robust controller can be designed using the proposed method,
the decentralized controller managing to ensure robust stability and performance for the
nonlinear system. Moreover, the fractional-order element can be approximated using the
presented ORA method only for sλ, with λ ∈ (0, 1). As such, another research direction
is to find a method to integrate all positive values of λ ∈ R+. On the other hand, the
presented methods were considered in the continuous-time domain, although, for practical
implementation, the controller must be discretized and also quantized. A starting point for
this aspect could be the work presented in [24].

6. Conclusions

The current paper presents an algorithm which manages to integrate the MIMO
fractional-order PID (FO-PID) controller in the fixed-structure mixed-sensitivity loop shap-
ing μ-synthesis control problem by constructing an element isomorphic with the fractional
order. In order to expose the method capacity and potential, a twin rotor aerodynamic
system experimental stand has been utilized. After the simplified nonlinear and linearized
models were presented, the linear system has been augmented with weighting functions
which managed to impose the desired performance. The fixed-structure μ-synthesis control
problem has been successfully solved using four D–K iterations, resulting a controller
which manages to ensure both robust stability and robust performance. A comparative
analysis between the results obtained with the designed controller used for the linearized
plant and for the practical experimental stand has also been performed.

As future work, the proposed design method will be added into a next iteration of the
toolbox initially proposed in [9] in order to automatically perform the fractional-order fixed-
structure μ-synthesis. Also, the proposed method can be integrated into a control scheme
with a decentralized controller having an extra nonlinear component which ensures that
the robust stability and robust performance are also guaranteed for the nonlinear system.
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Abbreviations

The following abbreviations are used in this manuscript:

CACSD Computer-Aided Control System Design
DOF Degrees of Freedom
FO-PID Fractional-Order PID
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LLFT Lower Linear Fractional Transform
LMI Linear Matrix Inequality
LTI Linear and Time-Invariant
MIMO Multiple-Input Multiple-Output
NP Non-Deterministic Polynomial-Time
PID Proportional-Integral-Derivative
TRAS Twin Rotor Aerodynamic System
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Abstract: The basic characteristic of batch bioreactors is their inability to inflow or outflow the
substances during the fermentation process. This follows in the simple construction and maintenance,
which is the significant advantage of batch bioreactors. Unfortunately, this characteristic also results
in the inability of the current industrial and laboratory batch bioreactors to control fermentation
production during the process duration. In some recent studies, it was shown that changing the
temperature could influence the execution of the fermentation process. The presented paper shows
that this phenomenon could be used to develop the closed-loop control system for the fermentation
production control in batch bioreactors. First, based on theoretical work, experiments, and numerical
methods, the appropriate structure of the mathematical model was determined and parameters
were identified. Next, the closed-loop control system structure for batch bioreactor was proposed,
and the linear and adaptive control system based on this structure and the derived and identified
model were developed. Both modeling and adaptive control system design are new and represent
original contributions. As expected, due to the non-linearity of the controlled plant, the adaptive
control represents a more successful approach. The simulation and experimental results were used to
confirm the applicability of the proposed solution.

Keywords: biotechnology; fermentation process; batch bioreactors; modeling; control system design
and synthesis; linear control; adaptive control; model reference adaptive control; control system
realization

1. Introduction

1.1. Basic Facts about Fermentation Process and Batch Bioreactors

The fermentation process represents a planned use of microorganisms (bacteria, yeasts,
molds, or algae) or cells (animal or plant cells) to make products advantageous to humans.
In the food industry, fermentation refers to bioprocesses where microorganisms’ activity
creates a desirable change in food and beverages to improve flavor, provide health benefits,
or preserve foodstuffs.

Fermentation processes are carried out in bioreactors. With regard to the type of
fermentation process, bioreactors are divided into three groups: batch bioreactors, fed-
batch bioreactors, and continuous bioreactors. The main difference between the individual
types of bioreactors is in their ability to supply and discharge substances during the
fermentation process. Batch bioreactors are the simplest and do not allow the input and
output of substances during the fermentation process. This means that the time course
of the fermentation process quantities depends entirely on the initial concentrations of
bioreactor substances. During operation, the bioreactor is closed, and we do not have the
ability to control the fermentation process. From an operational standpoint, this type of
bioreactor is the least capable. However, due to their uncomplicated construction, these
bioreactors are the cheapest to purchase and, at the same time, very easy to maintain. Fed-
batch bioreactors allow the introduction of substances during the fermentation process but
do not allow the removal of substances. All fermentation products remain in the bioreactor
until the end of fermentation. The possibility of adding substances during operation makes
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it possible to influence the fermentation process in fed-batch bioreactors during operation.
Unlike batch bioreactors, fed-batch bioreactors enable a relatively simple and efficient
implementation of a closed-loop control system, ensuring the desired dynamics of the
fermentation process. Continuous bioreactors are the most capable in terms of adding
and removing substances. They allow the inflow and outflow of substances into/from the
bioreactor continuously throughout the operation as a flowing stream. Although fed-batch
and continuous bioreactors allow greater flexibility during operation, batch bioreactors
are still used widely in the industrial environment. Based on data from manufactures and
traders, industrial bioreactors are still made primarily for batch processing (some reports
even 90% presence in certain areas) [1].

The goal of fermentation is to produce a lot of high-quality fermentation product in
the shortest possible time. This goal is achieved when the time course of fermentation
quantity follows the prescribed reference course. Therefore, the control of the fermentation
process is extremely important.

While the control of the fermentation processes in fed-batch and continuous bioreac-
tors is relatively easy to implement, the control of the batch bioreactors is very difficult to
perform. The reason is simple: batch bioreactors do not have an input substance that could
be changed through inflow or outflow during the fermentation process and used to control
it. The fact that there are extremely rare examples in commercial offers or in academic
publications that show the control system for the production control during fermentation
processes in batch bioreactors posed a challenge for this study. This paper has focused
on developing a control system for a batch bioreactor that utilizes temperature changing

to control the growth of the fermentation product. The implementation of the adaptive
control system represents an original approach that is not found in other publications.

1.2. Literature Review

The problem of the automatic control of the fermentation processes is very important,
up to date, and attractive. The availability of non-expensive equipment for the development
and manufacture of control systems has caused great topicality in this area in the last three
decades. Therefore, in recent years, we have seen an enormous effort from academic
institutions and industrial providers to find new control systems for bioreactors.

The initial phase of any control system research represents the determination of
the mathematical model of the controlled plant. We can trace the intensive work and
new publications in mathematical modeling of the fermentation processes in bioreactors.
Still, the progress in the field of mathematical modeling does not reach the development
in the field of the control of the fermentation process. In control studies in the last two
decades, the fundamental kinetic mathematical model of the fermentation in the bioreactors
has still been used commonly for quantitative simulations or theoretical analysis [2–5].
Unfortunately, in many cases, this model is not the most suitable for the design and
synthesis of bioreactor control systems [6]. The new bioreactors enable an easy, fast and
wide range of changes in the mechanical (by mixing) and thermal (by heating and cooling)
conditions of fermentation processes, also during operation. It turns out that the course
of the fermentation process can be influenced by changes in these fermentation quantities
(stirrer speed and temperature), and it is not always necessary to control the fermentation
process by feeding substances into the bioreactor [7]. To develop the control system for the
fermentation process, which would use stirrer speed or heater temperature as an input
quantity, we need a mathematical model that describes the influence of these quantities on
the fermentation process. References [6,8] are some of the publications where the influence
of stirrer speed and heater temperature on the fermentation process is analyzed, and
appropriate mathematical models are also determined.

More publications are in the field of the control of bioreactors. The bioreactor fer-
mentation process is a very suitable and attractive process for developing and testing
conventional and advanced control theories. The presented review is focused on works
dealing with the control of the time profile of the fermentation product.
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As expected, most publications are in the field of control systems developed for
continuous bioreactors, where control is possible through changes in inflow and outflow
during the fermentation. Reference [8] shows the utilization of robust control for continuous
bioreactors. The implementation of the sliding mode theory is presented in [9], the use of
output linearization in [10], the application of output linearization taking into account the
constraints of the input signals is studied in [11], the appropriateness of model predictive
control (MPC) is shown in [12,13]. A multitude of new publications testifies to the topicality
of the problem and intensive work in this area.

The intensive development of the control systems is also seen in the field of fed-
batch bioreactors. Reference [14] shows the use of robust control for the fermentation
process in fed-batch bioreactors. The use of an iterative learning controller is presented
in [15]. The use of model-based optimization for a fed-batch bioreactor was studied
in [16]. References [17,18] discuss the applicability of MPC for fed-batch bioreactor control.
Reference [19] shows the implementation of the sliding mode control for the photobiore-
actor (which works initially in the fed-batch mode and then in continuous operation),
but the reference deals only with the fed-batch stage. All publications demonstrate the
advantage of advanced control concepts over the conventional closed-loop control of
fed-batch bioreactors.

As opposed to continuous- and fed-batch bioreactors, relatively few publications have
been observed that address the closed-loop control of the time profile of the fermenta-
tion product quantity during the fermentation process in batch bioreactors. Most batch
bioreactors still operate autonomously, without closed-loop control, which would control
the fermentation process. Publications in the field of batch bioreactor control are mainly
limited to the control of bioreactors’ subsystems. Many works show different control
theories or different realizations for temperature regulation, pH regulation, oxygen control,
and stirrer speed control. The most considered is temperature regulation. Reference [20]
comparatively shows the use of MPC and sliding mode control for temperature regulation
in a batch bioreactor. Reference [21] shows temperature control of fermentation bioreactor
for ethanol production using internal model control (IMC) based PID controller. Mod-
ified fractional-order IMC-PID for ethanol production is proposed in [22]. Non-linear
autoregressive moving average neuro controller for temperature control in bioreactors
is shown in [23]. The temperature control of an alcoholic fermentation process through
Takagi–Sugeno modeling is presented in [24]. A fuzzy–split range control system applied
to the fermentation process is shown in [25].

Because of the importance of dissolved CO2 for the fermentation process, it is also
possible to find frequent publications considering CO2 monitoring. Reference [26] discusses
the importance of real-time CO2 monitoring for the proper execution of the fermentation
process. Reference [27] describes sensors for real-time dissolved CO2 monitoring and
control. A noninvasive approach for monitoring dissolved CO2 in cell culture using a
silicon sampling loop is presented in [28].

However, very few publications deal with the control of the growth of microorganisms
in batch bioreactors. The growth is visible in the time course of the generation of the end-
product quantity during the fermentation. Only a few references in this field were found.
The gain scheduling control was used in [29]. Reference [30] shows the implementation of
the PI-controller. Reference [31] studies the application of model reference adaptive control.
The absence of publications studying the control of the yield of the fermentation product
in batch bioreactors was also an additional motivation to work even more in-depth and
intensively in this area.

1.3. Contributions and Novelties

There are two major contributions of this article.

• The first contribution of the presented study is the discovery of the solution for the
closed-loop control of the growth of microorganisms (and, thus, control the time
course of the fermentation product quantity), which will be valid for batch bioreac-
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tors. The controlled operation mode has so far been reserved only for the fed-batch
and continuous bioreactors, which are much more expensive to purchase and more
difficult to maintain than batch bioreactors. All today’s industrial or laboratory batch
bioreactors operate without a closed-loop control system in an autonomous mode.
The time course of the fermentation product quantity depends only on the initial
concentrations of substances introduced into the bioreactor before the start of the
fermentation process. The presented solution is based on the finding that changing the
bioreactor’s temperature could be used for the closed-loop control of the fermentation
product profile. This discovery was obtained from the analysis of previous studies,
from simulation calculations based on the derived mathematical model, and from the
laboratory experiments. Based on this finding, the structure of the closed-loop control
system was defined. This structure allows the use of different control approaches.

• The second contribution of the article is the finding that adaptive control is very
convenient for the control of the time course of the fermentation product in batch
bioreactors. A study of various adaptive theories was made. Model reference adaptive
control based on almost strictly positive real theory proved to be convenient for
the implementation of the founded control structure. This control approach assures
stability, easy realization, and an undemanding choice of adaptation coefficients.
The proposed adaptive control system was compared with the conventional linear
control system. The advantages of the developed adaptive control system are to
ensure the desired course of the fermentation process even when the parameters of
the mathematical model of the fermentation process are unknown. An additional and
important advantage of the presented adaptive control system is that it ensures the
same performance even in the case of significantly different fermentation processes.

In such a way, the batch bioreactors, thanks to the advanced control theory, easily and
cheaply acquire the possibility to significantly improve their performance. The implemen-
tation of the developed adaptive control system does not the require major modification of
batch bioreactors, and all basic advantages of these reactors are retained. The adaptive con-
trol system is easy to start and does not require time-consuming bioreactor identification
and the controller’s parameter setting.

The shorter fermentation time and higher quality of the obtained fermentation prod-
ucts are guaranteed, which means greater efficiency of operation. In addition to simulations,
the efficiency and stability of the proposed adaptive control system have also been proven
by experiments on a laboratory bioreactor. Although the applicability of the adaptive
control system is confirmed in the case of CO2 production during milk fermentation, the
proposed control system is universal and is suitable for controlling various fermentation
processes in batch bioreactors.

The originally presented novelties in this article are:

• A new derived non-linear mathematical model which describes the impact of temper-
ature on the fermentation process substances in batch bioreactors;

• The use of an optimization technique for mathematical model parameters estimation;
• The definition of the fundamental control structure for control of time courses of

fermentation products in batch bioreactors using temperature changes;
• Implementation of conventional linear and adaptive control theories for control of the

fermentation product response;
• Comparison of the efficiency of both control approaches and simulation-based numer-

ical evaluation of both control approaches;
• Experimental confirmation of the proposed adaptive control system.

2. Materials and Methods

2.1. Studied Fermentation Process

The presented study focused on the production of CO2 during milk fermentation with
kefir grains. Traditionally, kefir is produced by inoculating kefir grains, which are a mixture
of proteins, polysaccharides, mesophilic, homofermentative, and heterofermentative lactic
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acid streptococci, thermophilic and mesophilic lactobacilli, acetic acid bacteria, and yeast.
The fermentation of milk by the inoculum proceeds for ca. 24 h, during which time,
homofermentative lactic acid streptococci grow rapidly, initially causing a reduction in pH.
This low pH favors the growth of lactobacilli but causes the streptococci number to decline.
The presence of yeasts in the mixture, together with fermentation temperature, encourages
the growth of aroma-producing heterofermentative streptococci. As fermentation proceeds,
the growth of lactic acid bacteria is favored.

For the original fermentation, before the fermentation, kefir grains (40 g) were acti-
vated for 5 successive days so that they were washed daily with cold water and put into
500 mL of fresh pasteurized whole-fat milk at room temperature. To start the fermentation,
500 mL of fresh pasteurized whole-fat milk was preheated in the fermenter to the desired
temperature and then inoculated with 40 g of active kefir grains. For the original fermenta-
tion, the desired starting milk temperature was 22 ◦C, and fully activated (5 days activation)
kefir grains were used. Different modified fermentation processes were obtained by means
of differently activated kefir grains.

During the fermentation, carbon dioxide, acetic acid, ethyl alcohol, and several other
substances are formed, and these give the products their characteristic aroma. Milk fer-
mentation with kefir grains propagation is an inherently very complex process because of
the specific nature of the microbial metabolism, as well as the non-linearity of its kinetics.
Therefore, fermentation control is extremely important to obtain high-quality products.

2.2. Laboratory Equipment
2.2.1. Batch Bioreactor

Laboratory fermentations were performed in the reaction calorimeter RC1e from
Mettler Toledo. It is a computer-controlled benchtop batch bioreactor with a working
volume of 0.7 L. By using specific modifications in hardware and software, it was used as a
bioreactor. A more detailed description of RC1e can be found in [31].

2.2.2. Heating/Cooling System

The tested batch bioreactor was factory equipped with the combined heating/cooling
(H/C) system. The silicone oil used as a heat transfer agent is pumped through the double
jacket of the reactor in a closed circulation system. H/C system is equipped with an inte-
grated closed-loop temperature control system with a proportional-integral (PI) controller.
The H/C system enables the changing of the temperature of the bioreactor’s contents in
the range from 5 ◦C to 50 ◦C. The temperature control system enables operation without
steady-state error for a constant reference temperature. The delay in the temperature con-
trol system is very short compared to the dynamics of the fermentation process. The H/C
system was identified and modelled. The 1st-order differential equation with unit gain and
estimated time constant Tϑcs = 0.1 h represents a satisfactory description of its dynamics.

2.2.3. Dissolved CO2 Measurement

The selection of the output quantity that could be used as the feedback variable in the
control system is crucial for the implementation of the control theory and the realization
of the theoretical approach. It is necessary that the measured quantity contains as much
information on the fermentation process as possible. At the same time, it is also important
that the measurement should be accurate and could be performed on-line.

In the fermentation processes, dissolved oxygen and cell culture measurement are es-
sential for ensuring optimal conditions for cell growth. The oxygen levels in bioreactors can
have an impact on the growth rate, nutrients’ uptake, cellular morphology, and metabolite
synthesis, leading to end-product quality. Accurate oxygen control is only possible if mea-
surements from dissolved oxygen sensors installed in fermenters/bioreactors are reliable.
Biomass concentration is another critically needed measurement in fermentation studies.

In performing laboratory tests, it is not always possible to measure these two bio-
chemical quantities and, thus, conclude whether their trajectories are such as to ensure the
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desired course of the fermentation process with a high-quality end product. This is the
reason that in the proposed study, the measurement of the CO2 dissolved in the bioreactor’s
medium was introduced. CO2 is a product of the cellular metabolism of microorganisms.
Assuming the growth medium with a sufficient carbon source, the measured CO2 con-
centration profile could also be the indicator of the fermentation progress [32]. Accurate,
real-time data on the concentration of CO2 increases the understanding of the fermenta-
tion process and can get a better insight into cell metabolism, cell culture productivity,
and other changes within bioreactors [33]. The distribution of the CO2 in the bioreactor
medium is very homogeneous. The sensors for the measurement of CO2 concentration are
reliable, accurate, maintenance free, have a long lifetime, and have a known measurement
curve [33]. The duration of the measurement process is short; therefore, these sensors are
convenient for implementation in real-time control systems.

For the measurement of the dissolved CO2 in the laboratory bioreactor the ISE51B
(Mettler Toledo) ion-selective electrode was used. A measuring system can be modelled
with the 1st-order differential equation. The laboratory measuring system can be matched
with the mathematical model with a gain kCO2ms = 1 mmol/g and a time constant TCO2ms
< 0.01 h. The time constant of the measurement system is almost negligible compared to
the inherently slow dynamics of the biotechnological systems.

2.2.4. Equipment for Data Acquisition and Control

For the connection of the dissolved CO2 measurement sensor and signal adjustment,
the SevenMulti (Mettler Toledo) basic device with an expansion module was used. The
analogue 1st-order low-pass filter for the elimination of sensor noise is integrated into the
expansion module.

For the transfer of measured signals from the SevenMulti basic unit to PC, the basic
device was equipped with a digital output module (USB). For the comprehensive measure-
ment of several quantities over a long time period and for the necessary signal processing,
software LabX direct pH 2.3 was installed on the PC. This is professional equipment used
for a data logger and a data analysis. The selected sampling time was 10 min. This sam-
pling time was sufficient due to the slow dynamics of the fermentation process. During the
performing the experiments, the sampling time was changed and adjusted to the dynamics
of the measured signal. The measured data were saved into Microsoft Office 365 Excel
documents, transferred into MathWorks MATLAB, and processed using MATLAB with its
Optimization toolbox functions [7].

For the implementation of the control system, a dSpace 1103 PPC controller board was
utilized. The controller is equipped with 16-bit A/D and D/A converters as well as serial
and CAN interfaces [7]. An analogue output module of the basic device SevenMulti was
used for the transfer of the measured signal of the CO2 concentration from the bioreactor
system to the controller’s analogue input. The additional analogue 1st-order low-pass
filter was used at the dSpace analogue input to eliminate the superposed noise signal.
The analogue output signal from the controller is sent to the input of the heating/cooling
system. To enable this connection, the heating/cooling system was equipped with an
additional electronic interface.

2.2.5. Reference Profile Generation

The quantity and quality of the product in the batch bioreactor are decisively depen-
dent on the trajectories of the biological quantities in the fermentation process, affecting
the kinetics of the bioprocess. The developed control system makes the influencing of the
time responses of the biological quantities possible. With the developed control system,
we can change the time course of biological quantities in a batch bioreactor. In this way,
we can influence the fermentation process and its result. The question arose about how
to choose a reference trajectory. The reference trajectory selected should provide that the
generated product will be high quality, abundant, and that the process will end in a shorter
time, with as little energy and material resources as possible. There are many professional
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and scientific publications where the methods for determining the optimal trajectory for
different fermentation processes for fed-batch bioreactors are discussed that could also be
useful for batch bioreactors [3]. The presented article does not deal with the methods of
determining the optimal trajectory. The primary purpose of this study is the development
of a control system that will ensure that the fermentation process quantities will follow
the previous set reference trajectory. Therefore, the reference trajectory used in this paper
was determined by the empirically obtained expert knowledge of the consumers of the
bioreactor’s technology [33]. The reference trajectory of the dissolved CO2 course was
generated by means of dSpace 1103 PPC controller board.

2.3. Laboratory Set-Ups for Parameter Estimation and Control

To perform the parameter estimation and fermentation control, the laboratory batch
bioreactor was supplemented with the controlled heating/cooling system, measuring
system, PC for parameter estimation, and dSpace for control implementation. The labo-
ratory set-up for the measurement of the time response of the dissolved CO2 production
on the temperature changes and estimation of model parameters is shown in Figure 1a.
Laboratory set-up for the control of the dissolved CO2 production is shown in Figure 1b.

Figure 1. (a) Laboratory system for measurement of the time response of the dissolved CO2 production on the temperature
changes and estimation of model parameters. (b) Laboratory system for the control of dissolved CO2 production.
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2.4. Mathematical Model of the Fermentation Process

Fermentation is described as a process in which an agent causes an organic substance
to break down into simpler substances. The agents are mainly microorganisms, the source
substance is named a substrate, and the final substance is named a product [7].

Fermentation is a non-linear, time-dependent complex system with a poorly known
structure and unknown parameters. There are many mathematical models of the fermenta-
tion process of different types and degrees of complexity. Almost all models are derived
from the mass balance of microorganisms, substrate, and product [5].

The fundamental mathematical model of the fermentation process in batch bioreactor
represents a state-space non-linear model of the 3rd order [2–5]. The state-space variables
of this model are the concentrations of the microorganisms, substrate, and product. This
model is autonomous—it has no input variable. This is expected because batch bioreactors
do not have an input quantity to control the fermentation process. The transients of the
model’s variables are obtained as the response to the initial values of the substances. During
the fermentation process, the quantity of the microorganisms and product increases, and
the quantity of substrate decreases. All parameters of the fundamental kinetic model are
supposed to be constant throughout the duration of the fermentation process.

The commonly accepted fundamental kinetic mathematical model of the fermentation
process enables the simple and efficient simulation and analysis of the fermentation process
in cases of different initial concentrations. In many studies, it has been proven that the
profiles of the fermentation process substances can be influenced by changing the operating
conditions during fermentation. The profiles are most easily influenced by the bioreactor’s
heating/cooling system and the stirrer system. In [6,30], an analysis of the influence of
temperature change on the course of the fermentation process is made, and the influence
of stirrer speed change is discussed in [6,7,31]. The fundamental mathematic model does
not enable the evaluation of the impact of temperature changes on the time courses of
concentrations of individual substances of the fermentation process. The knowledge of this
dependence is essential for the design and synthesis of convenient control systems. This is
the reason that in the article, a new model that involves the phenomenon of the impact of
temperature on the fermentation process was derived and presented.

The derived model is the non-autonomous non-linear 4th-order state-space mathe-
matical model, whose input is the reference temperature of the heating system, and the
model’s state variables are the concentrations of microorganisms, substrate, fermentation
product, and bioreactor’s temperature. The impact of temperature on the fermentation
process is taken into account by assuming that temperature influences the fundamental
model parameters. The derived model is presented with (1)–(4):

.
x1(t) =

μm
(
1 + kμm(x4(t)− ϑ0)

)(
1− 1

Pi
x3(t)

)
x2(t)

Sm + x2(t) + 1
Si
(x2(t))

2 x1(t) (1)

.
x2(t) = −

μm
(
1 + kμm(x4(t)− ϑ0)

)(
1− 1

Pi
x3(t)

)
x2(t)

Sm + x2(t) + 1
Si
(x2(t))

2 x1(t) (2)

.
x3(t) =

⎛⎝α
(1 + kα(x4(t)− ϑ0))μm

(
1 + kμm (x4(t)− ϑ0)

)(
1− 1

Pi
x3(t)

)
x2(t)

Sm + x2(t) + 1
Si
(x2(t))

2 + β

⎞⎠x1(t) (3)

.
x4(t) =

1
Tϑcs

(u(t)− x4(t)) (4)

where the input of the non-autonomous state-space model is:
u(t)—the reference temperature of the bioreactor’s temperature control system (◦C).
The state-space variables of the mathematical model denote the following biological

and thermal quantities:
x1(t)—the concentration of the microorganisms (g/L);
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x2(t)—the concentration of the substrate (g/L);
x3(t)—the concentration of the product (g/L);
x4(t)—the temperature in the bioreactor (◦C).
Additionally, the parameters of the mathematical model are:
μm—the maximum microorganisms’ growth rate (h−1);
Pi—the product inhibition constant (g/L);
Sm—the substrate saturation constant (g/L);
Si—the substrate inhibition constant (g/L);
α—the parameter that describes the relation between product yield and microorganism

growth;
β—the parameter that describes the product yield that is independent of the microor-

ganism growth (h−1);
ϑ0—the temperature of the bioreactor’s contents at the beginning of the fermentation

process (◦C), normally ϑ0 is equal to the outside temperature;
kμm—the coefficient that describes the impact of the temperature changing on the

maximum microorganisms’ growth rate μm (◦C);
kα—the coefficient that describes the impact of temperature changing on the parameter

that describes the relation between product yield and microorganism growth (◦C);
Tϑcs—time constant of the simple 1st-order model of the controlled heating system (h).

2.5. Conventional Control System with a Linear Controller

In order to improve the economy of the fermentation and the quality and quantity of
the fermentation product, it is necessary to ensure that the actual time profile of the yield
of the fermentation product is as close as possible to the reference one. The fermentation
process is a non-linear process, but the deviation between the response of the non-controlled
fermentation process and the reference trajectory is relatively small. Therefore, the control
of the yield of the fermentation product is also possible with the conventional control system
with a linear controller. By selecting the performance index and using the optimization
method, we can ensure that the controller will provide optimum performance in the
broadest possible operating range. The block diagram of the fermentation process control
system with a linear controller is shown in Figure 2.

 
Figure 2. Block diagram of the conventional control system with linear controller.

The main disadvantage of this approach is the need for knowledge of the accurate
mathematical model of the batch bioreactor’s fermentation process. The structure and
parameters of the mathematical model must be known to perform the tuning of the control
system. Determining the appropriate mathematical model of a batch bioreactor is hugely
time consuming. It is necessary to execute the whole fermentation process with a constant
temperature and, after that, repeat the fermentation with the same charge but a changeable
temperature. From the responses, all the parameters of the non-linear model (μm, Pi, Sm, Si,
α, β, kμm , kα, and Tϑcs) must be estimated by means of the optimization technique. Finally,
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the control system tuning must be made by means of the estimated mathematical model.
Due to the time-consuming and challenging identification procedure for determining the
mathematical model, the use of the conventional linear control system proved to be less
appropriate for industrial applications. It makes sense to use a control approach that will
not require knowledge of the batch bioreactor’s mathematical model.

2.6. Adaptive Control System

The adaptive theory represents an ideal tool for developing a control system for
batch bioreactors. Adaptive control systems do not require accurate knowledge of the
controlled plant’s mathematical model and can adapt their parameters to the changing
dynamics of the controlled plant. An additional reason that justifies the use of adaptive
strategies for the control of batch bioreactors is that the fermentation processes are executed
very slowly, allowing the unproblematic implementation of computationally complex
adaptive algorithms.

There are two main approaches to the development of adaptive control systems. The
first approach is called indirect adaptive control or self-tuning control (STC) [34]. The
advantage of indirect control is its modularity, which allows a combination of different iden-
tification methods (least squares, maximum likelihood, instrumental variables, corrector
least squares) and different tuning procedures (deterministic and stochastic).

The second approach is termed direct adaptive control because control input is, in
general, calculated directly, without preliminary determination of the controlled plant
mathematical model. Due to the mandatory reference model, this adaptive control is also
called model reference adaptive control (MRAC). Almost all modern MRAC systems can
be classified as evolving from one of the three following adaptive approaches:

• Adaptive control systems based on the full-state access method, which requires that
all state variables of the controlled plant are measurable (MRAC-FSA) [35];

• Adaptive control systems based on the input–output description of a controlled plant,
where an adaptive observer is incorporated into the controller to overcome the inability
to access the entire state space vector (MRAC-AO) [36];

• Adaptive control systems, where the adaptive algorithm only requires that the con-
trolled plant’s outputs and the reference model states are available for measurement.
The asymptotic stability of this adaptive approach is assured in the case when the
plant is almost strictly positive real. This adaptive approach is called model reference
adaptive control for almost strictly positive real plants (MRAC-ASPR) [37].

MRAC-ASPR is not new, but is more recent than the previously mentioned adaptive
approaches. This approach is an output feedback method that requires neither full state
feedback nor adaptive observers. The essential improvement of the MRAC-ASPR concept
related to the other STC and MRAC concepts is that the MRAC-ASPR theory is also
applicable for non-linear controlled plants [38,39]. The other significant qualities of this
class of algorithms are given as follows:

• They are applicable to non-minimum phase systems;
• The order of the controlled plant need not be known to select the reference model and

the adaptation mechanism;
• The adaptation mechanism is computationally undemanding.

Because of all these advantages, the MRAC-ASPR theory was used to develop the
adaptive control system to control the fermentation process in a batch bioreactor. Due to
the simple realization of this type of adaptive control system, the name simple adaptive
control instead of MRAC-ASPR will also be used.

The proposed MRAC-ASPR was revealed primarily to control the continuous linear
systems subject to uncertainty in the parameters [37]. Such consideration coincides with the
derived and verified linearized mathematical model of the fermentation process of a batch
bioreactor obtained with the linearization of the non-linear model around the fermentation
process’s trajectory. In 2009, the extension of the MRAC-ASPR theory to minimum-phase
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nonstationary and non-linear systems was made [38]. Reference [39] shows a detailed
and complete description of this theory, with added new results considering non-linear
system stability analysis. The MRAC-ASPR concept has been used successfully in different
engineering areas to control non-linear controlled plants (electrical drives, robotics, power
systems, and chemistry). The MRAC-ASPR concept was also used to design an adaptive
system that controls the fermentation process in bioreactors by varying the rotational
speed of the mixing system [7]. However, there are no publications showing the use of
MRAC-ASPR to control the fermentation process in batch bioreactors by changing the
temperature of the heating system.

The following is a brief description of the controller’s adaptive algorithm. The MRAC-
ASPR will be presented for the control of the controlled plant, which is described by a
state-space model [38]:

.
x(t) = A(x, t)x(t) + b(x, t)u(t) (5)

y(t) = cT(x, t)x(t) (6)

where:
x(t), u(t), and y(t) are the state-space vector, input scalar, and output scalar of the

mathematical model of the controlled plant;
A(x,t), b(x,t), and cT(x,t) are the non-linear functions of the mathematical model of the

controlled plant.
The desired static and dynamic behaviour of the closed-loop controlled system are

defined with the state-space reference model [39]:

.
xm(t) = Amxm(t) + bmum(t) (7)

ym(t) = cT
mxm(t) (8)

where:
xm(t), um(t), and ym(t) are the state-space vector, input scalar, and output scalar of the

reference model, and
Am, bm, and cT

m are the system matrix, input vector, and output vector of the reference
model.

The reference model is assumed to be bounded-input/bounded-state stable. The task
of the reference model is only to represent the desired input–output behaviour. The number
of state-space variables of the reference model can be significantly less than the number of
state-space variables of the controlled plant, as described by the equation:

dim[xm(t)]� dim[x(t)] (9)

Since the order of the reference model is in general not the same as the order of the
mathematical model of the controlled plant, it is not possible to require the state-space
variables of the controlled plant to follow the state-space variables of the reference model.
Instead, a request is made that the controlled plant output y(t) follows the output of the
reference model ym(t) asymptotically. The output tracking error ey(t) is defined with:

ey(t) = ym(t)− y(t) (10)

The extension of the Lyapunov stability theory to non-linear non-autonomous systems
was applied for the derivation of the adaptive control algorithm [37–39]. The main request
by the derivation of the adaptive control algorithm was to ensure the stability of the entire
control system. The final goal was to obtain an adaptive algorithm that will generate such
controlled plant input signal u(t) which will assure that the controlled plant output y(t) will
approximate “reasonably well” the output of the reference model ym(t) without explicit
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knowledge of the controlled plant functions A(x,t), b(x,t) and cT(x,t) [32]. The determined
adaptive control algorithm is expressed with:

up(t) = Ke(t)ey(t) + Kx(t)xm(t) + Ku(t)um(t) (11)

where scalar Ke(t) is the stabilizing output feedback parameter, and matrix Kx(t) and scalar
Ku(t) are control gains. Parameters Ke(t), Kx(t) and Ku(t) can be united in a vector of
adaptive gains K(t), and the variables ey(t), xm(t) and um(t) can be linked in a vector of
control variables r(t):

K(t) =
[

Ke(t) Kx(t) Ku(t)
]

(12)

rT(t) =
[

ey(t) xm(t) um(t)
]

(13)

The adaptive gains K(t) can be represented as the sum of the two terms: of the
proportional term Kp(t) and integral term Ki(t), as written in (14) [37].

K(t) = Kp(t) + Ki(t) (14)

The proportional- and integral terms can be calculated with the following non-linear
equations [37]:

Kp(t) = ey(t) rT(t) T′ (15)
.

Ki(t) = ey(t) rT(t) T (16)

where T′ is a positive semi-definite matrix and T is a positive definite matrix.
The proportional term Kp(t) drives the system very quickly towards a small tracking

error, and the integral term Ki(t) guarantees convergence. In the MRAC-ASPR concept, we
cannot talk about the optimal gain value that the adaptive controller wants to achieve. The
gain varies during operation according to the error [7].

In order to improve the convergence of the adaptive system, the following modification
of the integral term was proposed [37]:

.
Ki(t) = ey(t) rT(t) T− σKi(t) (17)

where the task of the σ-term is to protect the integral gains from divergence if there are
disturbances.

The block diagram of the control system with simple adaptive controller is shown in
Figure 3.

 

Figure 3. Block diagram of the control system with simple adaptive controller (MRAC-ASPR).
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3. Results

3.1. Estimation of Model Parameters

The parameters μm, Pi, Sm, Si, α, β, kμm, kα, and Tϑcs depend on the quality and
quantity of the substances. They remain almost constant during the fermentation process.
They can be calculated for the real bioreactors by different optimization methods from the
measured trajectories of the bioreactors’ substances. For the studied fermentation process in
a laboratory bioreactor, the Particle Swarm algorithm was used to obtain the mathematical
model’s parameters. The integral absolute error between measured and model fermentation
product variables was used as the optimization method’s performance index.

For the estimation of the parameters, the studied fermentation process was executed
two times in the laboratory bioreactor.

First, an appropriate amount of fully activated microorganisms (kefir grains) and
substrate (milk) was introduced into the bioreactor. The dissolved CO2 was selected as
the fermentation product. The initial concentrations of microorganisms, substrate, and
fermentation product were measured. The obtained values are given in Table 1. The
fermentation process was then performed at a constant temperature. The time courses of
concentrations of all substances were measured. From the obtained measurements, the
parameter μm, Pi, Sm, Si, α, and β were estimated by means of particle swarm optimization.

Table 1. Initial values of the fermentation process in the studied bioreactor.

Variable Value

The initial value of the microorganisms’ concentration x1(0) = 0.26 mg/L

The initial value of the substrate’s concentration x2(0) = 0.89 mg/L

The initial value of the product’s concentration x3(0) = 0.02 mg/L

The initial temperature of the bioreactor’s contents x4(0) = 22 ◦C

Then, the fermentation process with the equal initial substances (fully activated kefir
grains) was performed again. This time, during the operation, the reference temperature
value of the heating system was changed from 22 ◦C to 29 ◦C. The step-change of the
reference temperature (i.e., the input signal of the controlled plant) occurs in the fermen-
tation’s growing phase, 2 h after the beginning of the fermentation. The courses of the
substances’ concentrations were measured again, and the model parameters kμm, kα, and
Tϑcs were estimated.

The parameters of the identified mathematical model of the milk fermentation process
in the laboratory batch bioreactor where fully activated kefir grains were used are presented
in Table 2.

Table 2. Parameters of the Mathematical Model for the Original Fermentation Process in the Studied
Laboratory Batch Bioreactor where fully activated kefir grains were used.

Parameter Value

The maximum microorganisms’ growth rate μm = 0.5 h−1

The product inhibition constant Pi = 7.0 g/L

The substrate saturation constant Sm = 0.42 g/L

The substrate inhibition constant Si = 62.15 g/L

The parameter of the product yield related to microorganisms’ growth α = 0.9 g/L
g/L
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Table 2. Cont.

Parameter Value

The parameter of the product yield independent of the microorganisms’
growth β = 0.001 h−1

The coefficient of the impact of the temperature changing on the maximum
microorganisms’ growth rate μm

kμm = 0.1 (◦C)−1

The coefficient of the impact of the temperature changing on the parameter α kα = 1.15 (◦C)−1

The temperature of the bioreactor’s contents at the beginning of the
fermentation process, normally this temperature is equal to the outside
temperature

ϑ0 = 22 ◦C

The time constant of the 1st-order model of the controlled heating system Tϑcs = 0.1 h

The matching of the response of the measured CO2 concentration in the laboratory
bioreactor with the response of the CO2 concentration calculated with the identified mathe-
matical model is displayed in Figure 4. It shows the results of the fermentation with the
changeable bioreactor’s temperature. Note, in the experiment and in the simulations, the
step increase in the reference temperature from 22 ◦C for 7 ◦C occurred at t = 2 h.

Figure 4. Measured and simulated time courses of dissolved CO2 concentration during the fermen-
tation process with changeable bioreactor temperature (step change of temperature from 22 ◦C to
29 ◦C occurred at time t = 2 h).

The simulation results show that the derived model can justifiably be used for bio-
process analysis and control system development. The calculation (with optimization
techniques) of the model parameters is not complicated but can take a lot of time.

For the evaluation of the efficiency of the control system for different fermentations,
the modified fermentation process was executed and identified. The difference between the
original and modified fermentation process was in the kefir grains used for the fermentation.
While kefir grains activated by washing with cold water and transferred into fresh milk for
5 successive days were used for the original fermentation, inactivated kefir grains were
used in the modified process. This resulted in a slower fermentation and a lower final value
of the fermentation product. The parameters of the mathematical model of the modified
fermentation process are shown in Table 3.
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Table 3. Parameters of the mathematical model for the modified fermentation process in the studied
laboratory batch bioreactor where inactivated kefir grains were used.

Parameter Value

The maximum microorganisms’ growth rate μm = 0.23 h−1

The product inhibition constant Pi = 7.2 g/L

The substrate saturation constant Sm = 0.67 g/L

The substrate inhibition constant Si = 74.58 g/L

The parameter of the product yield related to microorganisms’ growth α = 0.8 g/L
g/L

The parameter of the product yield independent of the microorganisms’
growth β = 0 h−1

The coefficient of the impact of the temperature on the maximum
microorganisms’ growth rate kμm = 0.12 (◦C)−1

The coefficient of the impact of the temperature on the temperature
inhibition constant Pi

kα = 0.04 (◦C)−1

3.2. Results Obtained with the Conventional Control System

The use of a linear controller makes sense since the analysis of a linearized mathe-
matical model in the vicinity of the trajectory of the non-controlled fermentation process
showed a relatively small range of variations in the model’s parameters.

A simple PI-controller with transfer function GPI(s) (18) is used to demonstrate the
efficiency of the conventional control system with linear controller for comparison with the
advanced adaptive control system,

GPI(s) = kp
sTi + 1

sTi
(18)

where kp is the gain and Ti is the time constant of the PI-controller.
The controller synthesis was done using the optimization method for the integral time

square cost function J of the output error variable and input variable. The cost function J is
presented with [30]:

J =
tf∫

0

{
Q [r(t)− y(t)]2 + R [u(t)− ϑ0]

2
}

dt (19)

where:
u(t) is the input variable of the mathematical model of the controlled plant (i.e., the

reference temperature of the bioreactor’s temperature control system (◦C));
y(t) is the output variable of the mathematical model of the controlled plant (i.e., the

output of the measurement system for the dissolved CO2 concentration (mmol/L));
r(t) is empirically determined reference trajectory for the dissolved CO2 concentration;
ϑ0 is the temperature of the bioreactor’s mixture at the beginning of the fermentation

process (◦C), normally ϑ0 is equal to the outside temperature;
Q, R—are the weighting parameters of the quadratic cost function;
tf is the final time.
For the tested fermentation process in the laboratory bioreactor, the following reference

trajectory r(t) for the dissolved CO2 was chosen:

r(t) = 0.8
(

1− e−t/1.5
)

mmol/L (20)

This reference trajectory was determined based on the dissolved CO2 trajectory of the
uncontrolled fermentation process in this bioreactor. The modification of the trajectory was
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made in such a way that the controlled fermentation process will finish in a shorter time
and that the amount of the generated product will be higher. The biological limitations
must be taken into consideration. It is necessary to ensure that the reference trajectory
does not deviate excessively from the CO2 concentration trajectory of the autonomous
fermentation process.

The trajectory of the actual dissolved CO2 of the batch bioreactor without a control
system, and the reference (desirable) trajectory of the dissolved CO2 of the batch bioreactor,
are shown in Figure 5. The task of the developed control system is to ensure that the actual
output value will follow the prescribed reference trajectory as closely as possible.

Figure 5. The trajectory of the dissolved CO2 of the original fermentation process in batch bioreactor
without a control system (solid line) and the reference trajectory of the dissolved CO2 of the batch
bioreactor (dashed line); data of the original fermentation process with fully activated kefir grains are
shown in Table 2; the reference trajectory is described with Equation (20).

The cost function (19) was calculated by means of simulations of the closed-loop
control system. Simulations were made with a non-linear model of the controlled plant
(1)–(4) with the parameters from Table 2 and the initial concentration values given in
Table 1.

In optimization calculations, the parameters kp and Ti of the PI-controller were
changed in order to obtain the minimum value of the cost function. Particle swarm
optimization (PSO) was used for the calculation of the controller’s parameters. PSO is a
metaheuristic procedure that may provide a sufficiently effective solution to an optimiza-
tion problem in cases where there are few, incomplete, imperfect or no assumptions about
the problem being optimized. Functions from MathWorks MATLAB/Optimization Toolbox
library were used for faster realization of the PSO for the calculation of the parameters
of the mathematical model. Matlab function particleswarm.m is based on the algorithm
described in [40], using the modifications suggested in [41,42]. The details of the PSO
algorithm in the particleswarm.m function are written in [43].

The simulations were calculated for the time period from t = 0 h to t = 10 h. The
weighting coefficients Q and R have been selected so that both terms of the cost function
were proportionally weighted and that with the controller calculated reference temperature
of the heating system remained within the realizable range. For the chosen cost function’s
parameters, Q, R, tf, and the constant initial temperature of the bioreactor’s filling, ϑ0,

Q = 1 R = 0.1 tf = 10 h ϑ0 = 292
◦
K ; (21)
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the following parameters of the PI-controller were calculated:

kp = 22.0 Ti = 1.5 h (22)

The obtained control results are presented in Figures 6 and 7. The time response of the
actual dissolved CO2 concentration of a batch bioreactor controlled with a conventional PI-
controller, together with the reference trajectory, is shown in Figure 6. The bioreactor’s inner
temperature x4(t), resultantly to the control of the heating/cooling system, is presented
in Figure 7. No limiters or anti-windup were used. The controller’s output stays in the
feasible range, and it does not exceed the maximum or minimum limits.

Figure 6. Time responses of the reference and actual dissolved CO2 concentration of the original
fermentation process in the batch bioreactor; the conventional control system with the linear controller
with calculated parameters was used; data of the controlled original fermentation process with fully
activated kefir grains are shown in Table 2; the controller parameters are shown in (22).

Figure 7. Time response of the temperature of the original fermentation process in the batch bioreactor
and the constant outside temperature, corresponding to Figure 6.

It is expected that the controller provides good control of the fermentation process, for
which its parameters have been optimized. Conversely, we cannot expect that the same
controller will optimally control other fermentation processes.
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The efficiency of the optimized control system was evaluated for the modified fermen-
tation process. The parameters of the modified fermentation process are written in Table 3.
Figure 8 shows the trajectory of the dissolved CO2 of the modified fermentation process
without a control system and the reference (desirable) trajectory of the dissolved CO2.

Figure 8. The trajectory of the dissolved CO2 of the modified fermentation process in batch bioreactor
without a control system (solid line) and the reference trajectory of the dissolved CO2 of the batch
bioreactor (dashed line); data of the modified fermentation process with inactivated kefir grains are
shown in Table 3, and the reference trajectory is described in Equation (20).

Figures 5 and 8 seem similar, but there is a significant difference in the dynamics of
the fermentation process. While the original fermentation process is completed in ca. 6 h,
the modified fermentation process lasts more than 10 h.

The results of the control of the modified fermentation process with parameters in
Table 3 with the PI-controller with original (non-modified) parameters (22) are shown in
Figure 9.

Figure 9. Time responses of the reference and actual dissolved CO2 concentration of the modified
fermentation process in the batch bioreactor; the conventional control system with the linear controller
with calculated parameters was used; data of the controlled modified fermentation process with
inactivated kefir grains are shown in Table 3; the controller parameters are shown in (22).
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3.3. Results Obtained with the Simple Adaptive Control System

A simple adaptive control system based on the MRAC-ASPR control theory was used
for the batch bioreactor’s control implementation.

The presented adaptive control system assures that the batch bioreactor’s output (i.e.,
the measured dissolved CO2 concentration) follows the output of the reference model
in the case of unknown and variable bioreactor’s kinetics. In such a way, the adaptive
controller enables that the bioreactor’s dynamics stay the same during repetitions of the
batch processes. The presented results were obtained for the adaptive control system with
the reference model represented with the 1st-order term with gain krm = 0.8 and the time
constant Trm = 1.5 h. This reference model produces step response equal to the reference
signal in (20). The parameters of the adaptation mechanism were obtained on the basis of
numerical simulations with the non-linear model. No optimization technique was used to
find the optimal values for the adaptation mechanism’s parameters. Numerical simulations
were used only to determine the approximate values of the parameters of the adaptation
mechanism. The obtained values are convenient for different size batch bioreactors. An
accurate setting of the parameters is not necessary. The following adaptation coefficient
matrix based on a positive definite identity matrix:

T = 4000

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ T′ = 4000

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (23)

were used to carry out the adaptive control.
In addition, the σ-term wasused to avoid the divergence of integral gains in the

presence of a disturbance.
σ = 0.95 (24)

The results of the simple adaptive control technique for the fermentation process
in the batch bioreactor are shown in Figures 10 and 11. Figure 10 shows the reference
and the actual time response of the dissolved CO2 concentration. The time response of
the generated product of the fermentation process follows the reference variable despite
the unknown parameters of the controlled plant and its structure uncertainties. The
temperature of the bioreactor’s filling, which was necessary to assure that actual dissolved
CO2 concentration follows the reference trajectory, is shown in Figure 11. The controller’s
output stays in the feasible range, and it does not exceed the maximum or minimum limits.

Figure 10. Time responses of the reference and actual dissolved CO2 concentration of the original
fermentation process in the batch bioreactor; simple adaptive control was used; data of the controlled
original fermentation process with fully activated kefir grains are shown in Table 2, the adaptation
mechanism parameters in (23) and (24).
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Figure 11. Time response of the temperature of the original fermentation process in the batch bioreac-
tor and the constant outside temperature when the simple adaptive control was used, corresponding
to Figure 10.

The results of the control of the modified fermentation process with parameters in
Table 3 with the simple adaptive control (23) and (24) are shown in Figure 12. The time
response of the dissolved CO2 concentration of a batch bioreactor controlled with the
simple adaptive controller, together with the reference trajectory, is shown.

Figure 12. Time responses of the reference and actual dissolved CO2 concentration of the modified
fermentation process in the batch bioreactor; simple adaptive control was used; data of the controlled
modified fermentation process with inactivated kefir grains are shown in Table 3, the adaptation
mechanism parameters in (23) and (24).

3.4. Experimental Results Obtained with the Simple Adaptive Control System

Developed control systems were tested on the laboratory batch bioreactor. HW and
SW equipment described in Sections 2.2.4 and 2.3 was used for the implementation of
control systems. From the simulations was seen that the differences between responses
are not significant. The results of laboratory tests were comparable. Due to additional
reasons related to the realization and equipment used, it is difficult to objectively evalu-
ate individual control concepts’ effectiveness from the test results. Figure 13 shows the
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time responses of the reference and actual dissolved CO2 concentration obtained with
the experiment where the simple adaptive control was used for control of fermentation
process of laboratory batch bioreactor with fully activated kefir grains. It can be seen from
Figure 13 that the developed adaptive control system ensures the tracking of the actual
dissolved CO2 concentration to the reference trajectory. The deviation at the beginning of
the transient is due to zero initial values in the integral elements of the adaptation mecha-
nism. The reference trajectory tracking can be further improved by selecting the adaptation
mechanism’s initial values and weighting coefficients adjusted to the fermentation process.
The response to the control of the fermentation process with inactivated kefir grains was
very similar despite the fact that the controller’s parameters stay unchanged.

Figure 13. Time responses of the reference and actual dissolved CO2 profiles obtained with the
experiment where the simple adaptive control was used for control of fermentation process of
laboratory batch bioreactor with fully activated kefir grains.

4. Discussion

At first sight, the results obtained with both presented control systems are excellent
and very similar, especially for the fermentation process with parameters in Table 2. Almost
identical dynamics of the fermentation process were obtained, as defined with the reference
trajectory. To achieve these responses, acceptable changes were requested in the bioreactor’s
inner temperature.

Figures 5–7 show clearly that the developed linear controller provides very good
tracking of the actual CO2 concentration to the reference value for the original fermentation
process for which controller’s parameters were optimized. In this way, the fermentation
process was made significantly more economical. The fermentation time was shortened.
The duration of the non-controlled fermentation is about 6 h, and the duration of the
controlled fermentation is approx. 5 h. An increase in concentration was also obtained of
approx. 0.1 mmol/L. The efficiency of the same controller is lower if it is used to control
modified fermentation processes, which is seen in Figures 8 and 9. Slight oscillations are
visible from the results. The difference between the original and the modified fermentation
process is that in the case of the original fermentation process, fully activated kefir grains
were used. In the case of the modified fermentation process, the used kefir grains were
inactivated. Original control parameters do not ensure optimal behavior in the case of
the modified fermentation process. In this case, the fermentation process should be re-
identified, and a new tuning of the controller parameters should be performed.

Figures 10 and 11 show the results obtained with the developed adaptive controller.
Results are very similar to the results of the optimized linear controller. The advantage
of the adaptive controller is visible when used to control fermentation processes that
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have different dynamics. The presented adaptive control system assures that the batch
bioreactor’s output (i.e., the measured dissolved CO2 concentration) follows the output
of the reference model in the case of unknown and variable bioreactor’s kinetics. It can
be seen from Figure 12 that the adaptive controller maintains the same time course of
the output quantity, even in the case of significantly changed (and unknown) parameters
of the fermentation process. In this case, the duration of the fermentation process was
shortened from 10 h to 5 h, while an increase in concentration was also obtained of approx.
0.2 mmol/L.

To obtain better insight into the performances of the control systems, an evaluation
was made based on the Performance Index. Since the purpose was to evaluate both control
concepts as accurately as possible, these calculations were made on the basis of simulation
results. The experimental results are affected by additional random external disturbances
that obscure the comparison of control algorithms. The integral quadratic Performance
Index, the same as the cost function shown in (19), was used for the comparative calcula-
tions. The same parameters of the Performance Index as for the PI-controller optimization
were used to estimate the control quality (21). Disturbances and noise were added to the
measured fermentation product variable to achieve the most realistic conditions, equal for
both control systems. Disturbances and noise were estimated from the measured results.
Band-limited white noise with the correlation time 0.1 h and the noise power 0.01 was used.
The disturbances were generated by a PRBS signal with the amplitude 0.05, which was
filtered through the transfer function G(s) = s

(5s2+4s+1) . Results for both controllers for
two fermentations processes are shown in Table 4.

Table 4. Performance indexes for the studied bioreactor’s control systems.

Original Fermentation Process with the Data in Table 2 (Activated Kefir Grains)

conventional control system with PI-controller J = 4.2496

simple adaptive control system J = 4.2864

Modified Fermentation Process with the Data in Table 3 (Inactivated Kefir Grains)

conventional control system with PI-controller J = 9.9223

simple adaptive control system J = 9.0363

The difference between the calculated performance indexes for the original fermenta-
tion process (fermentation process data in Table 2) was minimal. It was expected that the
conventional control system with the PI-controller would obtain good results because its
parameters were optimized with the same cost function. On the other hand, it is encourag-
ing that the simple adaptive control system led to almost the same results, even though the
initial parameters of the control algorithm were zero, and those weighting coefficients of
the adaptation mechanism were chosen very easily, without any optimization approach.
The important advantage of the simple adaptive controller is visible in the control of the
modified fermentation process (fermentation process data in Table 3). The results obtained
with a linear regulator, which was not optimized for this process, were significantly worse
(more than 10%) than the results of the adaptive controller, which itself adapted to the
changing dynamics of the modified fermentation process.

Despite the similar performance indexes, the proposed adaptive control approach
presents a much better choice for developing the control system for the batch bioreactor.
The main advantage of the adaptive control system is that the detailed knowledge of the
batch bioreactor and the substances used is not necessary. The simple adaptive controller
adapts its operation automatically to the different dynamics of the fermentation processes.
The pre-operation tuning is minimal. On the other hand, if we want to use a conventional
linear controller with constant parameters, a preliminary determination of the mathematical
model of the fermentation process is mandatory to ensure satisfactory control. Determining
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a mathematical model is time-consuming and involves determining a non-linear model
and its linearization.

5. Conclusions

The article combines the fields of Control Engineering and Bioprocess Engineering.
It shows the applicability of the conventional and advanced control approaches for the
control of the fermentation processes in the batch bioreactors.

There are some important conclusions and contributions of this paper:

• The study confirmed that by changing the temperature in the batch bioreactor, the
execution of the fermentation process could be controlled;

• The author showed that the proposed minor supplementation of the batch bioreactor
with a controlled heating/cooling system and CO2 measurement system enables the
development of the closed-loop control system, which ensures that the time profiles
of substantial biological quantities during the fermentation process will be the same
as the reference profile;

• The author derived an original non-linear mathematical model of the fermentation
process in the batch bioreactor, which describes the influence of temperature variations
in the bioreactor on the courses of the fermentation quantities; the derived model was
used for the design and synthesis of the closed-loop control systems;

• Based on the derived mathematical model, the author utilizes a conventional closed-
loop control system with optimized parameters, which ensures that the course of
trajectories of substantial biological quantities during the fermentation process will
be the same as the course of the reference trajectories when the parameters of the
mathematical model are known;

• The author reviewed various advanced control concepts and, on this basis, proposed
and developed a control system based on the use of adaptive control theory. The
proposed usage of the MRAC-ASPR theory for the development of the control of the
growth in the fermentation process in batch bioreactor represents the main original
contribution.

• It has been shown that the developed simple adaptive control system represents a
very effective control for batch bioreactor operation. The advantage of the developed
adaptive controller is significantly easier implementation while having the same or
better performance as a conventional controller, which requires complicated and time-
demanding tuning. The proposed adaptive control system was analysed theoretically
and experimentally, and its advantages were confirmed with the results.

The similarity of the results obtained with the optimized conventional linear control
system and advanced non-linear adaptive control system could lead to the opinion that both
presented control concepts’ efficiencies are very similar. However, there is a major difference
between the tuning procedure and the related usability of both concepts. While the use
of linear control with constant parameters requires knowledge of the exact mathematical
model of each fermentation process, the adaptive control ensures the desired course of the
fermentation process, even when the structure and parameters of the mathematical model
are unknown.
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Morar, D.; Stănese, M.; Dobra, P.

μ-Synthesis for Fractional-Order

Robust Controllers. Mathematics 2021,

9, 911. https://doi.org/10.3390

/math9080911

Academic Editor: António M. Lopes

Received: 28 February 2021

Accepted: 16 April 2021

Published: 20 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Automation, Technical University of Cluj-Napoca, Str. G. Bariţiu nr. 26-28,
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Abstract: The current article presents a design procedure for obtaining robust multiple-input and
multiple-output (MIMO) fractional-order controllers using a μ-synthesis design procedure with D–K
iteration. μ-synthesis uses the generalized Robust Control framework in order to find a controller
which meets the stability and performance criteria for a family of plants. Because this control problem
is NP-hard, it is usually solved using an approximation, the most common being the D–K iteration
algorithm , but, this approximation leads to high-order controllers, which are not practically feasible. If
a desired structure is imposed to the controller, the corresponding K step is a non-convex problem. The
novelty of the paper consists in an artificial bee colony swarm optimization approach to compute the
nearly optimal controller parameters. Further, a mixed-sensitivity μ-synthesis control problem is solved
with the proposed approach for a two-axis Computer Numerical Control (CNC) machine benchmark
problem. The resulting controller using the described algorithm manages to ensure, with mathematical
guarantee, both robust stability and robust performance, while the high-order controller obtained with
the classical μ-synthesis approach in MATLAB does not offer this.

Keywords: μ-synthesis; robust control; fractional-order control; swarm optimization; artificial bee
colony optimization; CNC machine; mixed sensitivity; D–K iteration; Linear Matrix Inequality

1. Introduction

One of the active problems with major impact which have been studied for years in
Control Theory refers to robustness. Robustness encompasses the sensitivity of a control
system with respect to both internal and external disturbances. Several robust methods
have been developed in order to achieve robust performance and stability in the presence
of uncertainties. Robust control problems use H2 and H∞ norms defined in frequency
domain as a performance measure. To solve H2/H∞ control problems, there are several
approaches. One possible solution is presented in [1] and is based on Algebraic Riccati
Equations (AREs). A more numerically stable approach to solve ARE was developed using
Popov triplets in [2], approach recently implemented in an open-source manner in [3], with
an iterative refinement method presented in [4] , but an ARE-based solution presents a
limitation due to the impossibility of solving singular problems. An alternative way which
manages to solve such problems was introduced in [5], where AREs were replaced by
Algebraic Riccati Inequalities (ARIs). ARIs are solved through Linear Matrix Inequalities
(LMIs), while regular assumptions are no longer needed due to LMI system versatility. An
open-source solver for Robust Control problems using LMIs is presented in [6].

The H2/H∞ approach designs a suitable controller for the nominal plant, therefore
only nominal stability and nominal performance are fulfilled. Additionally, generalized
Robust Control framework allows to impose robust stability and robust performance, which
cover the previous two aspects for an entire family of physical processes. As such, the μ-
synthesis approach extends the H∞ optimization in order to obtain a robust controller for
the uncertain plant which includes parametric and dynamic uncertainties [7,8]. μ-synthesis
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is based on using structured singular values to quantify robustness margins and also on
using linear fractional descriptions of the control problem containing the nominal plant
model and uncertainty weighting functions. In [9], the authors present the μ-synthesis
problem used with the so-called D–K iteration, which, in essence, provides two steps
iteratively repeated until the robust performance stops improving: designing a H∞ control
law and μ analysis on closed-loop system.

μ-synthesis is, however, a non-convex problem and the D–K iteration represents only
an approximation, without any convergence guarantees. Another significant concern of
D–K iteration is that the method generates high order controllers. In order to solve this
issue, various approaches based on fixed structure controller are proposed in different
papers [10–12]. The method presented in [10] uses nonsmooth techniques forH∞ synthesis.
Then, using the same technique, the μ-synthesis was solved using D–K iteration and the
result are presented in [13].

The main issue which appears when controller structure constraints are imposed
is that the optimization problem in no longer convex and also, μ-synthesis is in general,
considered nondeterministic polynomial time hard (NP-hard). A possible solution to that are
swarm optimization algorithms. There are different approaches presented in papers [14–16]
based on Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). A solution for
imposing a fixed structure controller, such as low-order or decentralized, was proposed in
paper [14], which splits the problem in two parts: the convex part, solved using the classical
ARE approach, and the non-convex part, solved using GA. The same authors proposed
in [16] a new technique based on an evolutionary D–KD0 iteration method, which combines
the classical D-step with a KD0 algorithm based on also a GA. Authors of the paper [15]
propose an evolutionary approach to solve the μ-synthesis problem without order reduction
by using an improved PSO.

Artificial Bee Colony (ABC) can also be used to solve complex optimization problems
with constraints and could possibly outperform the other approaches and return the best
solution in shorter execution time. The initial idea was presented in [17] as an extension of
another metaheuristic algorithm, namely Honey Bee Swarm (HBS). The efficiency of the
algorithm for several state-of-the-art optimization problems, along with an improvement
for the stopping criterion, were underlined in [18].

One possible fixed structure controller is fractional-order proportional-integral-derivative
(FO-PID). FO-PID is one of the most remarkable fractional order techniques with great
interest in research [19]. It is used to generalize the classical PID control by adding extra
degrees of freedom [20]. Compared to the integer PID controller, FO-PID brings the advan-
tage of improving the robustness and providing better performance. In [21], the authors
propose a FO-PID controller for a fractional-order plant model, presenting an analysis in
both frequency and time domains, proving that achieving better control performance is
one of the advantages of this approach. The FO-PID was used on a benchmark problem,
i.e., the speed control of a DC motor [22], obtaining good results in terms of performance
and robustness. Two generalized versions of Kessler’s magnitude method with fractional
order controllers were developed in [23,24]. A detailed comparison between classical mod-
elling approaches and a fractional integrator approximation as a control baseline model is
presented to the servo problem in [25]. A graphical method was developed in [26], while
in [27] a fractional order internal model controller with event-based implementation was
developed. Other applications comprise in an optimal FO-PID controller for a PMSM speed
control, presented in [28], while a robust controller for a steam turbine was developed
in [29].

In this paper, we present a new technique to design FO-PID robust controllers using
μ-synthesis. The novelty of the current approach consists in implementing an algorithm
able to find the nearly optimal values of the controller parameters using an artificial bee
colony optimization. The cost function to be minimized is the H∞ norm of the closed-loop
system, when stable, and, otherwise, a large value affinely dependent on the largest real
part of the eigenvalues of the closed-loop state matrix. Therefore, the non-convex part
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of the NP-hard μ-synthesis problem is solved using such a swarm optimization, while
the D step is solved using the classical LMI technique. More than that, the realp object
from MATLAB’s Robust Control Toolbox embodies a limitation because it cannot be used
as an exponent, necessary in approximating the fractional element with an integer-order
system. Our approach manages to deal with this limitation in order to obtain the controller
parameters, because the only information necessary in our approach is the range of the con-
troller’s parameters stored in such variables, which can be replaced with a simpler software
object. Additionally, using our approach, a numerical example illustrates that the resulting
controller manages to fulfill the robust stability and performance, while the controller
obtained using unstructured μ-synthesis does not rigorously guarantee these specifications.
Therefore, our method proposes a general framework able to synthesize arbitrary fixed
structure fractional order controllers by optimizing their parameters in terms of robustness
and performance, surpassing the well-established approach of manually tuning them for a
desired problem, harnessing the Robust Control framework’s design strongness.

We illustrate our proposed method on a benchmark problem: obtaining a controller for a
two axis computer numerical control (CNC) system by solving a mixed-sensitivity μ-synthesis
problem. Several control methods using the state space model of the machine are presented in
literature. A comparison between the classical pole-placement method and Linear Quadratic
Regulator (LQR) method is presented in [30]. For the LQR problem, an energy-based
minimization algorithm was proposed, which proves to be suitable in terms of stability and
robustness. As presented in [31], a different approach is recommended, in order to obtain a
PI controller for each axis, using the state-feedback control algorithm. In this case, the state
space model is augmented with an extra state which represents the integral of the position.
The PI regulator parameters are obtained from the state-feedback gains.

The paper is organized in four sections. Section 2 introduces several ideas relevant
to the proposed method, such as a mathematical foundation of FO-PID, continuing with
the fundamental robust control problem based on μ-synthesis, and, finally, the ABC op-
timization algorithm. After that, the last subsection focuses on solving the non-convex
problem of computing fixed structure controllers. Section 3 illustrates an application of the
proposed method for position control of a two axis CNC machine, along with numerical
results. In Section 4, the previously mentioned results are compared with those obtained
using the well-established algorithms from MATLAB. Finally, conclusions are presented in
Section 5.

2. Materials and Methods

In this section we present a controller synthesis procedure which manages to find a
fixed structure fractional-order controller using the μ-synthesis technique from the Robust
Control framework, where the non-convex subproblem involved in the classical D–K itera-
tion is replaced by a swarm optimization algorithm. First, the mathematical background
comprised in fractional-order control, robust control and artificial bee colony optimization
is underlined, while the fourth subsection presents the proposed design procedure using
all the mechanisms briefly described.

2.1. Fractional-Order Controller

The classical integer-order calculus was extended by Riemann and Liouville to
fractional-order calculus by introducing the fractional integral operator [32]:

Iα
a { f (t)} = 1

Γ(α)

∫ t

a
f (τ)(t− τ)α−1dτ, (1)

where Γ(α) : C+ → C is the Euler Gamma function and the order of the integral operator
is the complex parameter α ∈ C+. This extension develops a new area of research in the
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Control System domain. A commonly used definition of this operator was introduced
in [33] as:

J α
C { f (t)} = 1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ = Iα

0 { f (t)}, (2)

with t > 0 and α ∈ R+, having the Laplace transform [34]:

L{J α
c { f (t)}}(s) = s−αF(s), (3)

where F(s) = L{ f (t)}(s). One of the most common controller structures used in practice
is the proportional-integral-derivative (PID) controller, having three degrees of freedom.
Using fractional-order calculus, two new degrees of freedom can be added to a PID, having
the notation PIλDμ. As such, the fractional order PID (FO-PID) has, as extra degrees of
freedom, the order λ ∈ R+ of the integrator and the order μ ∈ R+ of the differentiator,
with the resulting transfer function:

Hc(s) = KP +
KI

sλ
+ KDsμ. (4)

The time domain expression of the command signal c(t) can be expressed using the error
signal ε(t) as:

c(t) = Kp · ε(t) + KI · J λ
c {ε(t)}+ KD · J −μ

c {ε(t)}. (5)

One of the major issues of such a fractional element, i.e., J λ
c or J −μ

c , is its implemen-
tation. In order to solve this problem, the Oustaloup recursive approximation (ORA) was
introduced [35], and allows the approximation of the fractional-order element with an LTI
system of pre-specified order N:

sλ =
N

∏
k=1

1 + s/ωz,k

1 + s/ωp,k
, (6)

where the frequency values of the singularities are obtained based on the desired fractional
order λ ∈ (0, 1), the integer order of the approximation N, along with the frequency range
in which the approximation is valid [ωl , ωu]. Using the following two coefficients:

ε =

(
ωu

ωl

) λ
N

and η =

(
ωu

ωl

) 1−λ
N

, (7)

the above mentioned frequencies can be computed using:

ωz,1 = ωl
√

η, (8)

ωp,n = ωz,n · ε, n = 1, N, (9)

ωz,n+1 = ωp,n · η, n = 1, N − 1. (10)

For the rest of the possible real values of λ, the approximation can be easily extended as:
for λ ∈ (−1, 0) by inverting the relation (6), while for |λ| ≥ 1, the components could be
the integer part [λ] and the fractional part {λ}, with the fractional part only approximated
using (6).

2.2. Robust Control

The Robust Control framework assumes to minimize the H2/H∞ norm of the lower
linear fractional transformation (LLFT) of a plant P and a controller K:

Po = LLFT(P, K) = P11 + P12K(I − P22K)−1P21, (11)
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where the plant P can be written, in general form, as:

P :
(

P11 P12
P21 P22

)
=

⎛⎝ A Bw Bu
Cz Dzw Dzu
Cy Dyw Dyu

⎞⎠, (12)

where the signals involved in the above relation will be further detailed in a more general
context. One approach to solving H2/H∞ problems is using AREs, which presents several
limitations that are removed by the LMI approach. However, this framework can be used
to ensure nominal stability and nominal performance only , but, the plant P must also
contain an augmented model of the real process in which uncertainties are also present.
There are two classic uncertainties types: parametric, represented by δI, where δ is the
maximum bound of the parameter for a physical variable, and unstructured, represented by
a full block Δ ∈ Rm×m. The latter illustrates neglected or unknown dynamics uncertainties.
In the mixed-scenario case, the following set is considered:

Δ =
{

Δ = diag
(

δ1 In1 , . . . , δs Ins , Δ1, . . . , Δ f

)
|δk ∈ R, Δj ∈ R

mj×mj , k = 1, s, j = 1, f
}

. (13)

In the Robust Control field, one of the main tools used for robustness analysis is the
structured singular value, defined as follows.

Definition 1. For a square matrix M ∈ CN×N the structured singular value with respect to the
set Δ is:

μΔ(M) =
1

min
Δ∈Δ

{σ(Δ)|det(I − MΔ) = 0} , (14)

if there exists Δ ∈ Δ such that the matrix I − MΔ is rank deficient, otherwise 0.

For an LTI system described by the transfer matrix M(s) and an upper linear fractional
transformation (ULFT) connection shown in Figure 1 (left), the structured singular value
μΔ(M) can be defined as:

μΔ(M(s)) = sup
ω∈R+

μΔ(M(jω)). (15)

Figure 1. (Left) The generalized M-Δ structure containing the plant and the uncertainty block Δ.
(Right) The closed-loop P-Δ-K structure containing the plant, controller and uncertainty block Δ.

Now, considering M(s) = LLFT(P, K)(s) as being the lower linear fractional transfor-
mation (LLFT) between plant P and controller K, the connection illustrated in Figure 1
(right) results. The generalized plant structure is:

PΔ(s) =

⎛⎝Pvd(s) Pvw(s) Pvu(s)
Pzd(s) Pzw(s) Pzu(s)
Pyd(s) Pyw(s) Pyu(s)

⎞⎠⇔ PΔ :

⎛⎜⎜⎝
ẋ(t)
v(t)
z(t)
y(t)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
A Bd Bw Bu
Cv Dvd Dvw Dvu
Cz Dzd Dzw Dzu
Cy Dyd Dyw Dyu

⎞⎟⎟⎠
⎛⎜⎜⎝

x(t)
d(t)
w(t)
u(t)

⎞⎟⎟⎠, (16)
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where three types of input signals are present—the command input u ∈ Rnu , the perfor-
mance input w ∈ Rnw , and the disturbance input d ∈ Rnd —and three types of outputs—the
measurements vector y ∈ R

ny , the performances vector z ∈ Rnz , and the disturbance output
v ∈ Rnv .

Besides the well-known H2/H∞ methods, a controller that meets robust stability
and robust performance alike can be computed using the μ-synthesis framework. Robust
stability implies that a specific controller manages to stabilize all the processes described
by the upper linear fractional transformation (ULFT) presented in Figure 1 (left), while
robust performance implies that the controller is able to impose the desired closed-loop
performance in the worst case scenario. In order to have a mathematical guarantee that a
controller K meets the robust stability and performance, the Main Loop theorem can be
used. It implies that closed-loop system meets robust stability and performance if and
only if the structural singular value of the LLFT of the plant and controller, with respect to
Δ, fulfills:

sup
ω∈R+

μΔ(LLFT(P, K)(jω)) < 1. (17)

Therefore, the robust control problem can be written as:

inf
K stab.

sup
ω∈R+

μΔ(LLFT(P, K)(jω)), (18)

which is not convex. More than that, the structural singular values are hard to be explicitly
computed. In practice, there are various bounds which can be used to approximate the
structural singular value. One of the most used approximations of the upper bound is
in [9]:

μΔ(M) ≤ inf
D∈D

σ(DMD−1), (19)

where σ denotes the largest singular value, and the set D is defined as:

D =
{

diag
(

D1, . . . , Ds, d1 Im1 , . . . , d f Im f

)
|Dk = D�

k ∈ R
nk×nk , dj > 0, k = 1, s, j = 1, f

}
. (20)

Based on this upper bound, a good approximation of the initial non-convex problem
can be employed by solving the following quasi-convex problem:

inf
K stab.

sup
ω∈R+

inf
D∈D

σ
(

D(jω) · LLFT(P, K)(jω) · (D(jω))−1
)

. (21)

If the scaling factor, represented by the system D, is fixed, then the problem (21) is
nothing but a H∞ optimization problem. On the other hand, fixing the controller K, the D
scaling step can now be obtained by solving a Parrot problem for a desired frequency set
Ω = {ω1, . . . , ωN} using the following generalized eigenvalue problem:

min γ,

s.t. (LLFT(P, K)(jωi))
∗·X · LLFT(P, K)(jωi) ≤ γ2X,

(22)

where from the solution X = (D(jωi))
∗ · D(jωi), the matrix D(jωi) can be extracted

using a singular value decomposition. After all Parrot problems are solved, a minimum
phase system is found in order to approximate the analytical solution D(s). In summary,
an iterative algorithm which solves the μ-synthesis problem starts by setting D = I,
with the following steps applied successively:

1: Fix D and solve the H∞ optimal problem to find a controller K:

K = arg inf
K stab.

||LLFT(P, K)||∞. (23)
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2: Fix the controller K and solve the set of convex problems:

D(jω) = arg inf
D∈D

σ
(

D · LLFT(P, K)(jω) · D−1
)

, (24)

for a given frequency range Ω and, then, fit a stable minimum phase transfer matrix
D(s).

Steps 1 and 2 are executed in a loop sequence until the difference between two
consecutive H∞ norms is less than a prescribed tolerance or the maximum number of
iterations is reached.

2.3. Artificial Bee Colony Optimization

The artificial bee colony (ABC) optimization is a nature-inspired algorithm used to
minimize a cost function:

f : D → R, where D = [lb1, ub1]× [lb2, ub2]× · · · × [lbd, ubd] ⊂ R
d. (25)

The ABC algorithm mimics the behaviour of real honeybees, where each food source
represents a possible solution of the optimization problem described above. The location
and the amount of nectar correspond to the design variables and the cost function, respec-
tively. The bees are divided in two main groups: employed and unemployed bees, while
the unemployed bees could be of two types as well: onlooker and scout bees. The employed
bees are the ones that investigate the food source and return to the hive to inform the others
by performing the waggle dance; the onlooker bees are the ones that watch the dance and
decide whether or not a food source is worthy of being searched or not; the scout bees
are former employed bees that have abandoned their previous food source, due to lack of
nectar, and which now search for a new one. The Best Solution is represented by the food
source, and the quality (or cost) of the solution is represented by the amount of nectar.

The number of employed bees coincides with number of the onlooker bees and
represents the dimension of the swarm problem, denoted by N. The employed bees start
the foraging process by randomly searching an initial position x

(0)
i in the domain D:

x
(0)
i =

⎛⎜⎜⎜⎜⎜⎝
lb1 + φ

(0)
i,1 · (ub1 − lb1)

lb2 + φ
(0)
i,2 · (ub2 − lb2)

...
lbd + φ

(0)
i,d · (ubd − lbd)

⎞⎟⎟⎟⎟⎟⎠ ∈ D, (26)

where φ
(0)
i,1,d

∈ [−1, 1] are random numbers. After this initialization step, the first Best
Solution appears.

Each employed bee searches a new food source based on the location of the current food
source x

(k)
i and another food source x

(k)
j randomly selected. The new possible position is:

x
(k)
i = sat

(
x
(k)
i + φ� (x

(k)
i − x

(k)
j )

)
, (27)

where φ ∈ [−1, 1]d is an array of random numbers, � is the element-wise multiplication,
and sat is the saturation function that does not allow the position to be outside the searching
domain D. Now, the position of the ith employed bee for the next iteration will be:

x
(k+1)
i = arg min{ f (x(k)i ), f (x(k)i )}, (28)

which means that an employed bee will never choose a source with less nectar. If the
position for the next iteration will not be changed, the abandonment counter of the ith
employed bee increments.
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The onlooker bees use the information shared by each employed bee and choose a
location around the position of the employed bees. The fitness value of a solution x

(k)
i is

given by:

log W(i) =
− f (x(k)i )

1
N ∑j f (x(k)j )

, (29)

and the probability that ith bee’s source will be selected by an onlooker bee is:

pi =
W(i)

∑j W(j)
. (30)

Now, using a roulette wheel selection method, the onlooker bee will choose a source i
and, using the same searching technique as an employed bee, a new position is computed
using (27). If the outlooker bee founds a better solution than the ith employed bee, they
change their roles, otherwise the abandonment counter for the ith source increments.
After this step, we have N employed bees and N unemployed bees. However, if the
abandonment counter for the ith source exceeds a threshold, the ith employed bee becomes
a scout and tries to find a new location using the relation (26).

After every loop corresponding to employed, outlooker and scout bees, it is checked if
there is a food source with a solution better than the last one. The algorithm is over when
the maximum number of cycles is reached or when there is no improvement of the Best
Solution after a prescribed number of cycles.

2.4. Proposed Method

The solution of the problem described in (21) using the classical D–K iteration with
H2/H∞ framework leads to a high-order controller. As a solution to this issue, a fixed
structure family of controllers K can be considered, and the problem (21) becomes:

inf
K∈K

K stab

sup
ω∈R+

inf
D∈D

σ
(

D(jω) · LLFT(P, K)(jω) · (D(jω))−1
)

. (31)

The new problem has the disadvantage of being non-convex in terms of the parameters
of the proposed controller structure. However, the problem described in (31) will also be
solved using a D–K iterative procedure, but the non-convex part of the problem has fewer
degrees of freedom and it will be managed with an ABC optimization.

Starting with the model of the process G, a plant P is obtained after the augmentation step:

P :

⎛⎝ẋ(t)
z(t)
y(t)

⎞⎠ =

⎛⎝ A Bw Bu
Cz Dzw Dzu
Cy Dyw Dyu

⎞⎠⎛⎝ x(t)
w(t)
u(t)

⎞⎠, (32)

where the meaning of the inputs and outputs remains the same as in Section 2.2. Con-
sidering the advantages of the fractional-order controllers, the proposed structure of the
controller is:

Kθ(s) =

⎛⎜⎜⎜⎜⎜⎝
C(1,1)

FO (s) C(1,2)
FO (s) . . . C

(1,ny)
FO (s)

C(2,1)
FO (s) C(2,2)

FO (s) . . . C
(2,ny)
FO (s)

...
...

. . .
...

C(nu ,1)
FO (s) C(nu ,2)

FO (s) . . . C
(nu ,ny)
FO (s)

⎞⎟⎟⎟⎟⎟⎠, (33)

where C(i,j)
FO is a fractional order controller from the ith input to the jth output and has

the form:

C(i,j)
FO (s) = K(i,j)

P +
K(i,j)

i

sλ(i,j) + K(i,j)
D sμ(i,j)

, (34)
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with the tunable parameters described by the vector:

θ(i,j) =
(

K(i,j)
P K(i,j)

i λ(i,j) K(i,j)
D μ(i,j)

)� ∈ D(i,j)
ABC ⊂ R

5. (35)

Using these considerations, the desired family of the fixed structure controllers can be
described as follows:

K =
{

Kθ(s)
∣∣∣ θ ∈ DABC ≡ D(1,1)

ABC × D(1,2)
ABC × · · · × D

(nu ,ny)
ABC

}
, (36)

where all parameters are stored in a single vector θ describing all degrees of freedom
of the tunable controller. Using the ORA mechanism, each component Kθ(s) ∈ K has a
state-space representation:

Kθ :
(

ẋK(t)
u(t)

)
=

(
AK(θ) BK(θ)
CK(θ) DK(θ)

)(
xK(t)
y(t)

)
(37)

Next, we denote by Pθ
o the closed-loop system represented by the lower linear frac-

tional transformation between the augmented plant P and controller Kθ , which can be
represented as:

Pθ
o = LLFT(P, Kθ) :

(
ẋo(t)
zo(t)

)
=

(
Ao(θ) Bo(θ)
Co(θ) Do(θ)

)(
xo(t)
wo(t)

)
, (38)

where state vector, input vector and output vector of the closed-loop system are:

xo =

(
x

xK

)
, wo ≡ w and zo ≡ z. (39)

In Algorithm 1 the main steps necessary to obtain the parameters of the controller
having the structure (33) are presented. The inputs of the algorithm are the closed-loop
plant Pθ

o , containing the tunable controller parameters θ, and the parameters α and β which
describe the cost function that needs to be minimized using an ABC optimization , but, Pθ

o
must also contain the varying parameters and unmodelled dynamics. Therefore, the plant
PΔ obtained after the augmentation step with uncertainties Δ has the form presented in (16).
Thus, the first step made in Algorithm 1 consists in transforming the closed-loop system
Pθ

o in the generalized closed-loop system Pθ
o,Δ described as follows:

Pθ
o,Δ = LLFT(PΔ, Kθ) :

(
ẋo(t)
zo(t)

)
=

(
Ao(θ) Bo(θ)

Co(θ) Do(θ)

)(
xo(t)
wo(t)

)
, (40)

where the new extended performance inputs and outputs are:

wo =

(
d

wo

)
zo =

(
v

zo

)
(41)

As mentioned in Section 2.2, the structured singular value can be bounded using
two D-scaling factors, one for the left and one for the right scaling, denoted DL and DR,
respectively. As it can be notice in Figure 2, a new closed-loop plant Pθ

o is obtained:

P(θ)
o (s) = DL(s) · Pθ

o,Δ(s) · D−1
R (s), (42)

having the state-space representation:

Pθ
o :
( ˙̂xo(t)

ẑo(t)

)
=

(
Âo(θ) B̂o(θ)

Ĉo(θ) D̂o(θ)

)(
x̂o(t)
ŵo(t)

)
. (43)
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All the above mentioned plants are presented in Figure 2. First, the generalized plant PΔ
has a LLFT connection with the controller Kθ , resulting the closed-loop plant Pθ

o,Δ, having

the input vector wo and the output vector zo. After the D-scaling step, a new plant Pθ
o is

obtained, having the input vector ŵo and the output vector ẑo.

Figure 2. The augmented plant with uncertainties PΔ in LLFT connection with controller Kθ forms
the closed-loop plant Pθ

o,Δ. After each D-scale step, the plant used to find the controller parameters

is Pθ
o .

Before starting the while loop of Algorithm 1, an initialization of the generalized closed-
loop plant with D-scale Pθ

o is performed with the initial scale factors DL = Inw and DR = Inz ,
as seen in line 2. As noticed in line 4, the K step is performed using this generalized plant
having as degrees of freedom the tunable parameters θ. In order to compute the controller
parameters θ∗, the ABC optimization will be used. The cost function to be minimized is:

f : DABC → R+, f (θ) =

{∣∣∣∣Pθ
o
∣∣∣∣

∞, if Pθ
o is stable

αλmax(Âo) + β, if Pθ
o is unstable

, (44)

where the operator λmax is defined by:

λmax : RM×M → R, λmax(A) = max{Re(λ) | λ ∈ Λ(A)}. (45)

Algorithm 1: Fixed Structure μ-Synthesis.

Input: Pθ
o , α, β

Output: Kθ�

1 get uncertain closed-loop plant Pθ
o,Δ as in (40)

2 set DL = Inw and DR = Inz and compute Pθ
o = DL · Pθ

o,Δ · D−1
R

3 while Niter ≤ MAX_ITER and exists_improvement do

4 Pθ∗
o = computeKstep(Pθ

o , α, β)
5 update the uncertain plant Pθ�

o,Δ
6 Pθ∗

o,nom = getNominalPlant(Pθ∗
o,Δ)

7 [DL, DR] = computeDstep(Pθ∗
o,nom)

8 Pθ�

o = DL · Pθ�

o,Δ · D−1
R

9 check if improvement exists and increase Niter

The procedure computeKstep used to obtain the controller parameters is briefly pre-
sented in Algorithm 2 and will be described below. The inputs of the algorithm are the
generalized closed-loop plant with D-scaling step Pθ

o , along with the parameters α and β
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which describe the cost function (44). The first step of this routine consists in computing
the domain DABC of the cost function based on the constraints of the tunable parameters.
The main limitation is represented by the fractional orders of the integral and derivative
effects of the controller which must remain in (0, 1), according to ORA.

In the second step of routine Algorithm 2, an initial population is created. Let N
be the dimension of the swarm problem. This parameter can be given as input, but as a
good practice, this can be chosen 100 times larger than the number of tunable parameters.
The initialization step consists in randomly generating the positions θ

(0)
1 , θ

(0)
2 , . . . , θ

(0)
N of

the food sources for each employed bee in the domain DABC using relation (26). After the
initialization step, the first Best Solution (BS) is computed as:

θ� = arg min
{

f (θ(k)i )
∣∣ i = 1, N

}
⇒ BS = f (θ�). (46)

Using this initial population, the main while loop starts. In line 4, the employed bees step is
performed. In this step, each employed bee searches a new position around using relation (27),

resulting N new possible positions for the next step, denoted by θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
N , and the

proposed positions of the employed bees at step k + 1 will be:

θ̂
(k+1)
i = arg min{ f (θ(k)i ), f (θ(k)i )}, i = 1, N. (47)

If, for a specific food source i, the proposed position coincides with the previous position,
the abandonment counter increments.

Using the proposed solutions of the above step, each onlooker bee selects a new possi-
ble solution based on the roulette wheel selection mechanism and relation (27), resulting a
new set of proposed solutions: θ̃

(k)
1 , θ̃

(k)
1 , . . . , θ̃

(k)
N . If the ith onlooker bee has a better solution

than ith employed bee, they exchange their roles, otherwise the abandonment counter for
the ith food source increments. After this step, the new set of proposed positions for the
employed bees are:

θ̂
(k+1)
i = arg min{ f (θ̃(k)i ), f (θ̂(k+1)

i )}, i = 1, N. (48)

Algorithm 2: Compute K Step.

Input: Pθ
o , α, β

Output: Pθ�

o
1 compute the domain D of the optimization problem
2 create an initial population of employed bees using (26) and select the first Best

Solution
3 while Ncycles < MNC and exists_improvement do

4 perform the employed bees step
5 perform the outlooker bees step
6 perform the scout bees step
7 find the new Best Solution, check if improvements exist and increase Ncycles
8 end

After performing the outlooker bees step from line 5, the abandonment counter for
each active food source will be interrogated. If the abandonment counter of the ith position
exceeds a prescribed threshold, denoted by LIMIT, the employed bee becomes a scout bee
and its new position is obtained using (26). As a good practice, this paper proposed an
improved mechanism of converting employed bees in scout bees. If the value of the cost
function at the proposed position f (θ̂(k+1)

i ) is over β, this means that, in the case of a good
calibration of parameters α and β, the solution corresponds to an unstable closed-loop

55



Mathematics 2021, 9, 911

system and can be dropped. The positions of the employed bees for the next iteration
become θ

(k+1)
1 , θ

(k+1)
2 , . . . , θ

(k+1)
N .

The last step of the main while loop, presented in line 7, consists in computing the
Best Solution after this new iteration:

θ� = arg min
{

f (θ�old), f (θ(k)1 ), f (θ(k)2 ), . . . , f (θ(k)N )
}
⇒ BS = f (θ�), (49)

and, then, checking if there exist any improvements after this step. In order to have a
good trade-off between execution time and solution accuracy, it can be useful to establish
a threshold for the number of steps when no improvement appears in Best Solution and
mark if there exists such an improvement. Being a metaheuristic optimization algorithm,
the runtime can be made deterministic and theoretically finite by imposing the variable
MNC, without convergence guarantees. In practice, such methods have been success-
fully employed in various global optimization problems and, being that it is an offline
optimization, it is not problematic for our approach.

Returning to Algorithm 1, after the K step is performed, a new parameter vector θ�

results, which leads to a new generalized closed-loop plant Pθ�

o and to a new uncertain
plant Pθ�

o,Δ. The closed-loop plant Pθ�

o,Δ is used to compute the next D-scale factors. From Pθ�

o,Δ
we extract a nominal plant Pθ�

o,nom by fixing the tunable parameters of the controller with
the values determined in step 4.

The computeDstep routine from line 7 receives as input this nominal plant and returns
the left and the right D-scale factors. Based on the poles and the transmission zeros of the
nominal plant Pθ�

o,nom, a set Ω = {ω1, ω2, . . . , ωF} of frequencies is generated. Then, we
need to get the frequency response data for each scaling factor by solving the following
generalized eigenvalue problem:

min γ,

s.t. σ
(

DL(jωi) · Pθ�
o,nom(jωi) · D−1

R (jωi)
)
< γ,

(50)

for each i = 1, F, which is nothing but a Parrot problem which can be solved point by point
using LMI techniques, as mentioned in Section 2.2. Once the frequency response data points
are obtained for each value in Ω, we need to fit two minimum phase systems, one for each
scaling factor, then perform the D-scaling step, giving a new generalized closed-loop system:

Pθ�

o (s) = DL(s) · P�
o,Δ(s) · D−1

R (s). (51)

In a similar manner with the computeKstep routine, there are possible stopping crite-
ria which can be used. First, a threshold for the maximum number of D–K iterations can be
imposed. Another important stopping condition appears if the upper bound of the struc-
tural singular value is less than 1, because this fact already guarantees that the controller
ensures robust stability and robust performance. In accordance with the allowed maximum
number of steps, a stopping criterion could be to check if there are any improvements after
a certain number of steps.

3. Numerical Results

In this section we illustrate how the proposed method can be used on a benchmark
problem. The process is represented by a Computer Numerical Control (CNC) machine
with two orthogonal axis which are operated by two servo DC motors. A Trio Motion
Coordinator family controller was used for the CNC motors. The programming language
was Trio Basic, which provides various functions such as linear, circular and helical inter-
polation, variable speed and acceleration profile functions and control functions to ensure
smooth and synchronized motions.
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A mathematical model for each axis was determined on the basis of measured data:
angular speeds ωx and ωy, and angular positions θx and θy. The state space mathematical
model of the machine is described as follows:

G :

⎛⎜⎜⎜⎜⎜⎜⎝

ω̇x
θ̇x
ω̇y
θ̇y
θx
θy

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

− 1
Tmx

0 0 0 Kmx
Tmx

Kxy

1 0 0 0 0 0
0 0 − 1

Tmy
0 Kyx

Kmy
Tmy

0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

ωx
θx
ωy
θy
ux
uy

⎞⎟⎟⎟⎟⎟⎟⎠, (52)

where the state vector is x =
(
ωx θx ωy θy

)�, the input vector is u =
(
ux uy

)� and

the output vector is y =
(
θx θy

)�. The model parameters, along with their nominal
values and uncertainty range are detailed in Table 1.

Table 1. Nominal values and uncertainty ranges of the CNC model parameters.

Parameter Nominal Value Uncertainty Range Parameter Nominal Value Uncertainty Range

Tmx 0.02448 ±10% Tmy 0.01139 ±10%
Kmx 25.8017 ±10% Kmy 25.1494 ±10%
Kxy 26.65 ±10% Kyx 24.46 ±10%

For this control problem a mixed-sensitivity loop shaping technique is used, which
provides a good trade-off between performance and robustness. In order to use this
technique, a new plant model will be obtained after the augmentation process, as in
Figure 3. The performance inputs for the resulting augmented plant P are the references
for both axis w ≡ r =

(
rx ry

)�. For the augmentation procedure, the closed-loop transfer
functions need to be weighted from the reference signals r to their corresponding error
signals e, output signals y and command signals u, which are named: sensitivity function
S = (I + GK)−1, complementary sensitivity function T = I − S and control effort KS,
respectively. The performance output vector is composed from the weighted outputs of
these three vector-valued functions:

z =

⎛⎝ zS
zT
zKS

⎞⎠, where zS =

(
zS,x
zS,y

)
, zT =

(
zT,x
zT,y

)
and zKS =

(
zKS,x
zKS,y

)
. (53)

Figure 3. Closed-loop augmented plant.
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In order to ensure good disturbance rejection, good reference tracking and stabiliza-
tion of an unstable plant, the sensitivity function must have small magnitude, which means
that the magnitude of the open loop must be large. On the other hand, in order to en-
sure mitigation of measurement noise and robust stability, the complementary sensitivity
function must have small magnitudes, which implies that the magnitude of the open loop
system must be small. More than that, the command signal must have small magnitude,
which implies that the control effort transfer function must also have small magnitude.
However, although these requirements seem to be conflicting, the frequency range where
the magnitude of the open loop must be small and high are mostly disjunctive: the magni-
tude should be high for low frequencies and should be low for high frequencies. In order
to ensure the desired shape of these three functions, three weighting functions must be
designed, respectively.

The sensitivity function is a very good indicator of the closed-loop system tracking
performance and has the advantage of being sufficient to consider only the magnitude.
Typical specifications for sensitivity weighting functions are: minimum bandwidth fre-
quency ω�

B, maximum steady-state error A and maximum peak magnitude M, imposed by
the following model [36]:

WS(s) =
1
M s + ω�

B
s + ω�

B A
. (54)

In a similar manner, the weighting function for the complementary sensitivity must be
designed using the following specifications: the maximum peak amplitude MT , the max-
imum value for high frequencies AT , the minimum bandwidth ω�

BT and the roll-off n,
formulated as:

WT(s) =
(s + ω�

BT)
n(

A1/n
T s + ω�

BT M1/n
T

)n . (55)

For the control effort weighting function, the main performance specifications are the
maximum value of the magnitude at low and high frequencies, denoted by DC and HF,
respectively, and an intermediate point of interest. Sometimes, the main goal is simply to
maintain the command signal under a prescribed value due to physical limitations of the
system or other causes.

The major advantage of this approach consists in sculpting the relevant loop functions
to impose performances implying good tracking and dynamic behaviour. Of great use
are the rise time limitation through ωB, steady-state error through A, while the roll-off
slope of the closed-loop system imposed using n is directly coupled with sensor noise
characteristics. These performances are specified for different frequency ranges, using the
adequately selected weighting functions presented above.

Being a MIMO system with two inputs and two outputs, all weighting functions must
be described by 2× 2 transfer matrices , but, following a standard decoupling procedure,
the weighting functions will be 2× 2 diagonal transfer matrices. For the sensitivity, we
consider two nearly similar weighting transfer functions, one for each axis, having the
maximum bandwidth ω�

B,x = 3 [rad/s] and ω�
B,y = 5 [rad/s], the maximum steady-state

error Ax = Ay = 10−2 and the desired maximum sensitivity peak Mx = My = 1.5,
resulting in:

WS(s) =
(

WS,x(s) 0
0 WS,y(s)

)
, where WS,x(s) =

0.6667s + 3
s + 0.03

and WS,y(s) =
0.6667s + 5

s + 0.05
. (56)

For the complementary sensitivity weighting function, the same 2× 2 diagonal struc-
ture approach will be used, imposing the same parameters for both axis: maximum com-
plementary bandwidth ω�

BT,x = 50 [rad/s], maximum peak magnitude MT,x = MT,y = 1.5,
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maximum magnitude at high frequencies AT,x = AT,y = 10−2 and roll-off nx = ny = 1,
resulting in:

WT(s) =
(

WT,x(s) 0
0 WT,y(s)

)
, where WT,x(s) = WT,y(s) =

s + 50
0.01s + 75

, (57)

while the control effort weighting function being designed to encompass only the physical
limitation of the command signal (between −1 and 1), resulting the transfer matrix:

WKS(s) =
(

WKS,x(s) 0
0 WKS,y(s)

)
, where WKS,x(s) = WKS,y(s) = 1. (58)

The proposed structure of the controller is a decentralized one with two PIλDμ controllers:

K =

{
Kθ(s) =

(
KP,x + KI,xs−λx + KD,xsμx 0

0 KP,y + KI,ys−λy + KD,ysμy

)∣∣∣θ ∈ D ⊂ R
10
}

, (59)

where the tunable parameters are:

θ =
(
KP,x KI,x λx KD,x μx KP,y KI,y λy KD,y μy

)�. (60)

The problem to be solved with the proposed method is the mixed-sensitivity fixed
structure μ-synthesis one, described as:

min
K∈K

K stab

sup
ω∈R+

inf
D∈D

σ
(

D(jω) · LLFT(P, K)(jω) · (D(jω))−1
)

,

s.t.

∣∣∣∣∣
∣∣∣∣∣

WSS
WTT

WKSKS

∣∣∣∣∣
∣∣∣∣∣
∞

< 1.
(61)

The settings for computeKstep used in the experiments are: the swarm dimension
N = 1000, the maximum number of cycles MNC = 50, the maximum number of cycles
with no improvements NOIMP = 10, the limit for the abandonment counter LIMIT = 10.
The parameters necessary to describe the cost function (44) are α = 1 and β = 105.
The maximum number of D–K iterations is MAX_ITER = 10 and the maximum window
length for assessing lack of progress is 4. Using this setup, the mixed-sensitivity fixed
structure μ-synthesis problem (61) is solved using four D–K iterations, as noticed in Table 2.
The fractional order controller has been approximated using ORA with the following
parameters: the frequency range is [ωl , ωu] = [1× 10−4, 1× 103] [rad/s] and the order of
the approximation is N = 3. Given that, the resulting controller is:

Kθ�(s) =
(

0.01 + 7.1116 · s−0.7648 + 0.1133 · s0.0909 0
0 0.1464 + 10 · s−0.9926 + 0.1344 · s0.0549

)
. (62)

Table 2. The evolution of the structural singular value in the D–K iteration procedure used to solve
the mixed-sensitivity fixed structure μ-synthesis problem for the case study—FO-PID structure.

D–K Iteration Number 1 2 3 4
Number of ABC Iterations 50 39 50 45

Peak Value of μ 1.8956 1.0185 1.0021 0.9822

The imposed shape of the sensitivity, complementary sensitivity and control effort
functions for both axis are depicted in Figure 4, along with the obtained shapes of those
functions with the resulting controller for 100 Monte Carlo simulations. It can be noticed
that all resulting Bode diagrams are under the prescribed shapes, which is guaranteed by
the fact that the upper bound of the structured singular value μΔ

(
Pθ�

o,Δ

)
is less than 1. The
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time-domain performances of the systems rx → θx and ry → θy are depicted in Figure 5,
which are correlated with the frequency-domain performances. As such, the minimum
values of the bandwidths for both x and y axis are over ω�

B,x = 3 [rad/s] and ω�
B,y = 5

[rad/s], which means that the rise time is less than 0.33 [s] and 0.2 [s], respectively. For the
system rx → θx, the rise time of the nominal system is 0.248 [s] and varies from 0.227 [s]
to 0.281 [s], while the settling time is 0.558 [s] and varies from 0.496 [s] to 0.664 [s]. On the
other hand, for the system ry → θy, the rise time of the nominal system is 0.211 [s] and
varies from 0.19 [s] to 0.235 [s], having the settling time for the nominal system 0.405 [s] and
varying from 0.363 [s] to 0.454 [s]. According to the shape of the actual obtained sensitivity
functions, there is no overshoot and no steady-state error for neither of the experiments
presented using Monte Carlo simulations. Moreover, the reciprocal axis influence is small,
as resulted from numerical simulations, where the peak amplitude from ry to θx varies from
0.01 to 0.0143, and the peak amplitude from rx to θy varies from 3.55× 10−3 to 4.97× 10−3,
respectively.

Figure 4. Imposed shapes of the sensitivity, complementary sensitivity and control effort frequency responses for both axis,
along with 100 Monte Carlo simulations with FO-PID closed-loop systems.

Figure 5. Time-domain closed-loop FO-PID performances for rx → θx and ry → θy systems.

4. Discussion

As noticed, the resulting controller contains a small fractional D term, which may be
negligible. As such, the controller may be resynthesized with an imposed diagonal PIλ structure:

K =

{
Kθ(s) =

(
KP,x + KI,xs−λx 0

0 KP,y + KI,ys−λy

)∣∣∣θ ∈ D ⊂ R
6
}

, (63)
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where the tunable parameters are:

θ =
(
KP,x KI,x λx KP,y KI,y λy

)�. (64)

The control problem remains the same as in (61), maintaining the constraints as in (56)–(58).
The settings for this experiment were kept the same as for the previous case: N = 1000,
MNC = 50, NOIMP = 10, LIMIT = 10, α = 1, β = 105, MAX_ITER = 10, [ωl , ωu] =
[1e-4, 1e3] [rad/s] and N = 3. Using this setup, the mixed-sensitivity fixed structure
μ-synthesis problem (61) is solved using four D–K iterations, as noticed in Table 3. The
resulting controller is:

Kθ�

FO−PI(s) =
(

0.2229 + 5.9392 · s−0.7792 0
0 0.3949 + 10 · s−0.9733

)
. (65)

Table 3. The evolution of the structural singular value in the D–K iteration procedure used to solve
the mixed-sensitivity fixed structure μ-synthesis problem for the case study—FO-PI structure.

D–K Iteration Number 1 2 3 4
Number of ABC Iterations 30 30 24 30

Peak Value of μ 3.0676 1.1961 1.0026 0.9959

The imposed s hape of the sensitivity, complementary sensitivity and control effort
functions for both axis are depicted in Figure 6, along with the obtained shapes of those
functions with the resulting controller for 100 Monte Carlo simulations. It can be noticed
that all resulting Bode diagrams are under the prescribed shapes, which is guaranteed by
the fact that the upper bound of the structured singular value μΔ

(
Pθ�

o,Δ

)
is less than 1.

Figure 6. Imposed shapes of the sensitivity, complementary sensitivity and control effort frequency responses for both axis,
along with 100 Monte Carlo simulations with actual FO-PI closed-loop systems.

The proposed method results are compared with those obtained using the musyn

routine from MATLAB [37]. The musyn routine manages to solve both fixed structure
and free-structure μ-synthesis control problems. The first solution of the problem (61) is
obtained using the proposed method with results already presented in Section 3. Starting
from the same control problem, the structured μ-synthesis version of the musyn routine with
the same stopping criteria was used. The resulting controller after 2 iterations achieved its
best performance μΔ(Pθ�

o,Δ) = 0.9842, which means that there is a mathematical guarantee
for robust stability and robust performance. The transfer matrix of this controller is:
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Kθ�(s) =
(

0.0101 + 7.4689 · s−0.7860 + 0.1729 · s0.0542 0
0 0.0881 + 5.4840 · s−0.9749 + 0.2031 · s0.0348

)
. (66)

In opposition with the above approaches, the controller obtained with μ-synthesis
procedure from MATLAB without imposing a fixed structure is of order 74 and, after
10 iterations, the best achieved performance is μΔ(Pθ�

o,Δ) = 1.003. The frequency-domain
data for structured singular values corresponding to these three numerical simulations are
presented in Figure 7. As mentioned, the peak value of the μ values for the unstructured
problem is over the critical value 1, while the FO-PID controller manages to fulfill all
requirements. A comparison between the frequency responses of the controllers is shown
in Figure 8.

Figure 7. Comparison between structured singular values’ frequency response obtained with the structured μ-synthesis from
MATLAB (blue), with the unstructured μ-synthesis from MATLAB (orange) and with the proposed method (red), respectively.

Figure 8. Obtained controllers’ frequency responses with the structured μ-synthesis from MATLAB
(blue), unstructured (orange) μ-synthesis from MATLAB, and with the proposed method (red).

The integer-order approximation of a fractional element using ORA contains two
exponential terms, as seen in (7), which presently cannot be treated using the realp objects
in MATLAB. The actual solution used for this paper is to approximate the exponential
function using Taylor series truncation. As stated in the Introduction, our approach
requires only the range of the controller parameters and, thus, another object could be
used instead of the entire structure of realp necessary in nonsmooth optimization-based
algorithms used in MATLAB hinfstruct and systune routines. Based on this limitation,
the toolbox presented in [38] will be extended in order to address the previously mentioned
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mathematical issues, due to the fact that only the fixed-structure H∞ synthesis algorithm
uses the realp object, which can be replaced by our approach, where the NP-hard non-
convex problem is solved using an ABC swarm optimization.

Compared to other approaches previously described in the introduction, where LQR
methods were considered for CNC machines, the advantages of the proposed method
consist in the generality of the method and the flexibility of the robustness, with the
possibility to compensate measurement noise, unmodelled dynamics and input-output
disturbances. Therefore, while LQR requires the complete state vector to be measured at
runtime, the proposed method requires only the provided measurements, modelled by
the actual outputs of the system. Although the LQR method can be augmented with a
state estimator in order to obtain output feedback, the main limitation of this approach
is that the model of the plant must be accurate, while in the Robust Control framework,
utilized in our method, an entire family of uncertain plants can be taken into consideration
at the design phase. Moreover, it is difficult to impose exact limitations on the maximum
allowed command signals, using the energy-based approach, which generally is an intrinsic
limitation of the execution element.

5. Conclusions and Future Work

The current paper presents a new design method for fixed structure fractional-order
controllers using the Robust Control framework. The proposed method manages to return
nearly optimal parameters of a MIMO FO-PID as a solution for a mixed-sensitivity fixed
structure μ-synthesis control problem. Although the μ-synthesis control problem is NP-
hard, the D–K iteration algorithm represents a good approximation which allows to convert
it into a P-hard problem. However, the returned controller is of high order, which means
that an order reduction must be performed in order to implement the control law. Therefore,
the imposed structure is an increasingly explored approach, although such a problem
presents a non-convex component for the K step. Our approach consists of an artificial bee
colony swarm optimization as a solution to this non-convex fixed structureH∞ subproblem.
This solution requires only the range of the controller parameters, as opposed to the
nonsmooth optimization-based approach from MATLAB’s Robust Control Toolbox, where
the parameters can be used only in polynomial structured expressions, which is an inherent
limitation when fractional-order controllers are desired. Further, the case study of mixed-
sensitivity μ-synthesis position control problem for both axis of a CNC machine manages
to underline the strong points of the method and of the imposed structure of the controller:
it provides a mathematical guarantee for robust stability and robust performance, while
the unstructured version of μ-synthesis from MATLAB does not manage to offer it.

As future work, we want to include our method in a toolbox, as stated in the Discussion
section, which starts from an initial process model and a set of desired performances,
and manages to automatically obtain the augmented plant, the controller decoupling
transfer matrix, the optimal values of the controller parameters, followed by closed-loop
simulations and validations. Additionally, we propose to extend this technique for certain
types of nonlinear systems.
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Abbreviations

The following abbreviations are used in this manuscript:

ABC Artificial Bee Colony
CNC Computer Numerical Control
FO-PID Fractional-Order PID
LMI Linear Matrix Inequality
LLFT Lower Linear Fractional Transform
LTI Linear Time-Invariant
MIMO Multiple-Input Multiple-Output
NP Nondeterministic Polynomial Time
PID Proportional-Integral-Derivative
ULFT Upper Linear Fractional Transform
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Abstract: The improvement in energy saving aspects in water systems is currently a topic of major
interest. The utilization of pumps working as turbines is a relevant strategy in water distribution
networks consisting of pressurized pipes, using these machines to recover energy, generate green
energy and reduce leakages in water systems. The need to develop energy studies, prior to the
installation of these facilities, requires the use of simulation tools. These tools should be able to define
the operation curves of the machine as a function of the flow rate. This research proposes a new
strategy to develop a mathematics model for pumps working as turbines (PATs), considering the
modified affinity laws. This proposed model, which can be input into hydraulic simulation tools
(e.g., Epanet, WaterGems), allows estimation of the head, efficiency, and power curves of the PATs
when operating at different rotational speeds. The research used 87 different curves for 15 different
machines to develop the new model. This model improves the results of the previously published
models, reducing the error in the estimation of the height, efficiency, and power values. The proposed
model reduced the errors by between 30 and 50% compared to the rest of the models.

Keywords: PAT model; modified affinity laws; hydraulic simulation tool

1. Introduction

Mathematical models have been a very useful tool to improve the management of
water networks [1]. These models improved both pressurized systems [2], as well as free
surface channels [3], improving their management and behavior in steady and unsteady
flows. Some of these models were focused on the integration of the management into the
new sustainability challenges of the infrastructures [4].

The improvement of the sustainability has been analyzed in water systems from
different points of view, such as leakage reduction [5], minimizing consumed energy in
pump systems [6], and quality parameters in the water supply [7], among others. One of
these strategies has been the use of pumps working as turbines (PATs). These machines
replace the pressure reduction valves, taking advantage of the excess of energy in the
pressurized water systems [8]. A PAT is a pump which works in reverse mode and it is
cheaper than classical turbines of the same small size [9]. When this machine operates in
this mode, it generates energy. The efficiency of these machines is lower than traditional
turbines and its hydraulic efficiency value is between 0.6 and 0.7 [10]. The global efficiency
is between 0.5 and 0.6 when all the electromechanical equipment (electric and electronic
devices) is considered. The traditional machines are classified as action (e.g., Pelton,
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Turgo, among others) and reaction (Francis, Kaplan, among others), as described in [11]. In
contrast, the PATs are pumps, and, therefore, their classification depends on the specific
velocity (i.e., radial, mixed, or axial machines) [12,13].

Previously, different investigations were published in which the use and analysis of
PATs focused on analyzing the theoretical energy recovery [11] as well as the duty point
of these machines, when information about the manufacturer was not known [12]. When
the curves are not known, the head, efficiency, and power curves (these curves are called
characteristic curves of the PATs) should be estimated when the pump is used in turbine
mode. These expressions are defined by the following equations:

H0 = A + BQ0 + CQ2
0 (1)

η0 = E4Q4
0 + E3Q3

0 + E2Q2
0 + E1Q0 + E0 (2)

P0 = P4Q4
0 + P3Q3

0 + P2Q2
0 + P1Q0 + P5 (3)

where H0 is the recovered head in nominal rotational speed in m w.c. (water column);
Q0 is the flow rate in m3/s; A, B, and C are the coefficients, which define the head
curve of the PAT; η0 is the efficiency of the machine for each flow (non-dimensional);
E4, E3, E2, E1, and E0 are the coefficients, which define the efficiency curve; P0 is the
generated power in kW; P4, P3, P2, P1, and P5 are the coefficients, defining the power
curve of the machine.

The head curve enables the determination of the recovered head as a function of
the flow. The efficiency curve determines the efficiency of the machine according to the
circulating flow; finally, the power curve establishes the generated power by the machine for
each flow value. Previous references demonstrated the possibility to estimate these curves
by use of non-dimensional parameters [14]. This estimation should be developed using
non-dimensional parameters and they are head number (h), flow number (q), efficiency
number (e), and torque number (b) [15]. The different non-dimensional parameters, which
are used to regulate the machines by variation of the rotational speed, are the following:

q =
Qi

QBEP
(4)

h =
Hi

HBEP
(5)

e =
ηi

ηBEP
(6)

p =
Pi

PBEP
= qhe (7)

where q, h, e, and p are the flow, head, efficiency, and power coefficients; Qi is any flow
value of the PAT in m3/s; Hi is the head for Qi according to the head curve in m w.c.; ηi is
the efficiency of the machine when the flow is Qi; Pi is the effective power for Qi; QBEP,
HBEP, PBEP, and ηBEP refer to the best efficiency point (BEP) of the machine, which define
the best efficiency head (BEH) when the rotational speed is changed.

In line with this, the reduction of the uncertainties by estimating the characteristic
curves with respect to their known behavior as pumps has been an objective of different
studies [16]. Different semiempirical methods have been published, proposing polyno-
mial expressions to estimate the PAT curves, when the machine operates with constant
rotational speed [10,12,17,18]. The development of these mathematical expressions was
crucial to improve the characterization of the PATs and the energy models to analyze the
energy recovery.

However, the flow rate changes over time in the different pipes of the water networks
due to the demands of the users. Therefore, the energy analyses are not maximized when
they consider PATs, if they work under constant rotational speed. To increase energy re-

68



Mathematics 2021, 9, 860

covery, different strategies have been published in which the energy maximization was
reached when the machine operated at different rotational speeds, called the variable
operation strategy (named VOS) [19]. The variation of the rotational speed is crucial to
reach the best efficiency values in the water systems, and it is the focus of new challenges in
hydropower systems also applied to Francis turbines [20]. Furthermore, when the rotation
speed changes, it is necessary to introduce knowledge of PAT curves into mathematical
models, which analyze energy recovery in water systems. The lack of mathematical expres-
sions makes it difficult to improve energy estimates when applying the VOS strategy in the
modeling of water systems [14].

In recent years, some researchers have published different methods which allow
water managers and companies to estimate the characteristic curves of PATs, avoiding
the experimental tests when developing preliminary energy studies. Efficiency and head
curves operating without variation of rotational speed were described in [21,22]. The
analysis of PAT curves was carried out using other methods, which proposed expressions
considering specific speed as well as the best efficiency point [23–25]. These methods did
not consider the variation in the rotational speed, which is of paramount importance to
reach the maximization of the recovered energy [26].

A step forward was taken in 2014, when some researchers analyzed the variation
in rotational speed through experimental tests to improve the maximization of energy
recovery. Research described in [12] proposed empirical expressions using four different
tested machines in 2016. These equations should only be considered when the specific
speed is between 120 and 162 (m, kW). In 2018, two PATs were tested and they were
used to define other expressions, which could estimate the characteristic curves when the
best efficiency point was known [27]. Research published in [28] studied the efficiency,
power, and head curves in one PAT, which was installed in water pressurized systems
in 2020. All studies used between one and four machines [12,14,27,28]. The low number
of machines reduces the applicability of the proposed expressions, when other machines
are used. To solve this issue, the present research goes one step further, using 87 different
tested characteristic curves (i.e., head, efficiency, and power) of the majority of hydraulic
machines, which have been published in previous references.

New empirical expressions are here proposed. These expressions could be used by
modelers, who could improve their energy analysis when they apply the VOS strategy in
water systems. Previous research has conducted similar analyses to define the characteristic
curves of the machine [12,14,27,28]. They used non-dimensional numbers (i.e., q, h, e, and
p), which are calculated at the best efficiency point. These values were used to propose
functions, which depended on the ratio of the rotational speed of the machine to modify
the affinity laws. This proposal improves the use of PATs in the simulation tools. It will
enable the reduction of the uncertainty in the previous energy analysis when the use of
PATs is considered in a real case study. The proposed expressions reduced the error indexes
when they were compared with the other published methods, as well as increasing the
validity range. Furthermore, these expressions are based on fifteen different machines,
which had 87 different curves, increasing the number of experimental curves.

2. Materials and Methods

2.1. Methodology

The methodology proposed herein is focused on obtaining some particular empiric
expressions, which allow water managers to develop tools for modeling PATs in water
systems, when they operate at variable rotational speed. The strategy is based on the
knowledge of the operation curves (head, efficiency, and power) at nominal speed [29]. The
proposed method is based on classical expressions of the hydraulic machines, proposing a
strategy to modify them by the affinity laws.

The main objective of the strategy is to propose an empirical expression that allows
water managers to introduce management tools to simulate the different scenarios under
the VOS operation. Furthermore, the method will reduce the errors when the characteristic
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curves are estimated in variable velocity conditions. To achieve this, different steps were
proposed to derive the new expressions considering the modification of the affinity laws
of hydraulic machines. [30]. Finally, the method was validated with the different tested
machines. Figure 1 shows the different proposed steps. These steps are the following:

1. Obtaining experimental characteristic curves of the PATs. The characteristic curves (i.e.,
head, efficiency, and power curve) were made available for the different machines using
experimental data which were published by other researchers. Both the nominal curve
and the curves for different rotational speeds were digitized using Equations (1)–(3).

2. Definition of the dimensionless values of the curve to apply the affinity laws. This is
developed using the previously defined equations (Equations (4)–(8)). When the affinity
laws are applied, the congruence parabola is defined by the following equation [29]:

HPC =
H0

Q2
0

Q2
j = kALQ2

j (8)

where Qj is the new flow rate in m3/s in which the machine has to operate. HPC is a
parabola, which has the same efficiency at each point. This consideration is theoretical,
since (in practice) it is only acceptable for values around +/−20% of the best efficiency
point of the machine [29]. This variation in the rotational speed of the machine is
defined by the ratio between the rotational speed (nj) of the machine to reach the
value (Qj) and the nominal rotational speed (n0). This ratio between nj and n0 is
called α.

The affinity laws are expressions which define points similar to each other under
conditions of restricted similarity, neglecting the stresses due to viscosity. These expression
are defined by the following expressions [29]:

Q1

Q0
=

n1

n0
= α (9)

H1

H0
=

(
n1

n0

)2
= α2 (10)

P1

P0
=

(
n1

n0

)3
= α3 (11)

where Q1 is the flow under the new conditions of rotational speed (n1) in m3/s; H1 is the
head under the new conditions in m w.c.; P1 is the shaft power under the new conditions
in kW.

When affinity laws are applied for different rotational speeds, the variable operation
strategy (VOS) can be defined between ratios of αmin and αmax.

When affinity laws are applied, the dimensionless parameters are:

q = α (12)

h = α2 (13)

e = 1 (14)

p = α3 (15)

Applying the affinity laws, kAL, BEH is defined by the following expression, consider-
ing that the ratio h

q2 = 1 (if the classical affinity laws is applied ideally):

kAL,BEH =
A

QBEP2 +
B

QBEP
+ C (16)
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Figure 1. Methodology proposed to derive the expressions (m is the number of experimental
machines, N is the maximum number of the tested machine).

3. Once the dimensionless parameters (q, h, e, and p) are defined, the best efficiency
curve (BEH) of the machine is determined. BEH is the curve which establishes the
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recovered head for each flow, maximizing efficiency and changing the rotation speed
of the machine. This curve is defined in [27].

4. When the BEH is known for each machine, the ratio h/q2 is defined for the different
values, using the experimental data as well as the regression of the different head and
efficiency curves. This parameter is defined for each rotational speed of the machine.
The rotational speed varies between the αmin and αmax of the VOS. The operation
area is defined by the maximum and minimum rotational speed, determined by the
tested machine.

5. In [27,31], variations of the affinity laws are proposed, where the flow ratio (Q/Q0)
is a function that depends on α; taking into account this modification of the affinity
laws, the corresponding parameter kAL for the modified affinity laws (MOAL) can be
defined when the affinity laws are modified by the following expression:

kMOAL,BEH =
h
q2

(
A

QBEP2 +
B

QBEP
+ C

)
(17)

6. The value of the kMOAL, BEH coefficient is defined for the different rotational speeds
of the machine, determining the cut-off point with the hypothetical head surface and
machine efficiency (Figure 2).

Figure 2. Congruence parabolas for the different values and rotational speeds when modified affinity
laws (MOAL) is applied.

Once the kMOAL, BEH is defined using QBEP and HBEP, kMOAL is extended for different
values of Q0, defining the kMOAL,i for each rotational speed and the intersection points with
head and efficiency areas are calculated. These points are Q0, H0, η0, Qi,αj , Hi,αj and ηi,αj
(Figure 3a,b). The values of these parameters enable definition of the new non-dimensional
values, which will define the functions of the modified affinity laws. Each of these points

72



Mathematics 2021, 9, 860

is calculated considering the intersection point for each rotational speed curve. The new
non-dimensional parameters are defined by the following expressions:

qi,j =
Qi,αj

Qi,0
(18)

hi,j =
Hi,αj

Hi,0
(19)

ηi,j =
ηi,αj

ηi,0
(20)

Figure 3. (a) Definition of head as a function of the flow for different rotational speeds; (b) Definition
of the efficiency as a function of the flow for different rotational speeds considering the VOS area.

7. Once the non-dimensional parameters for the different rotational speeds are defined,
the regression expressions are proposed. These functions depend on rotational speed
(α), which is a significant variable [31] when the non-dimensional parameters are de-
fined (i.e., h, q, and e). Moreover, different expressions are also proposed considering
the ratio Q/QBEP. This parameter is considered since it measures the gap between the
flow value and the flow for the best efficiency point. The incorporation of this param-
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eter will improve the regression coefficient of the expressions, as well as reducing the
errors. The modified affinity laws are then defined according to different expressions:

H = h(A + B
Q
q
+ C

(
Q
q

)2
) (21)

η = e (E4

(
Q
q

)4
+ E3

(
Q
q

)3
+ E2

(
Q
q

)2
+ E1

(
Q
q

)
+ E0) (22)

P = p (P4

(
Q
q

)4
+ P3

(
Q
q

)3
+ P2

(
Q
q

)2
+ P1

(
Q
q

)
+ P5) (23)

Ten different functions (Fi) were proposed, in order to be analyzed and obtain the best
one to estimate the behavior of the machine when it operates at variable rotational speed.
Table 1 shows the proposed functions in which the different coefficients (βi) are calculated
as a function on the analyzed Fi. This analysis proposes six polynomial functions and four
exponential expressions.

Table 1. Proposed functions to be analyzed.

Function Model (FM)

Polynomial Function (from F1to F6):

NP=β1(α Q
QBEP

)+β2( Q
QBEP

)
2
+β3( Q

QBEP
)+β4α2+β5α+β6

Exponential Function (from F7 to F10):

NP=( Q
QBEP

)
β3

αβ5 ·expβ6

F1 NP = β4α2 + β5α
F2 NP = β4α2 + β5α + β6

F3 NP = β2

(
Q

QBEP

)2
+ β4α2 + β5α

F4 NP = β2

(
Q

QBEP

)2
+ β4α2 + β5α + β6

F5 NP = β1

(
α Q

QBEP

)
+ β2

(
Q

QBEP

)2
+ β3

(
Q

QBEP

)
+ β4α2 + β5α

F6 NP = β1

(
α Q

QBEP

)
+ β2

(
Q

QBEP

)2
+ β3

(
Q

QBEP

)
+ β4α2 + β5α + β6

F7 NP = αβ5

F8 NP = αβ5 ·expβ6

F9 NP =
(

Q
QBEP

)β3
αβ5

F10 NP =
(

Q
QBEP

)β3
αβ5 ·expβ6

* NP is the non-dimensional parameter. It can be h, q, e, h
q2 , he

q2 .

8. This step is related to the previous step and concerns the recalculation of the coeffi-
cients βi considering the values of all the tested machines qi,j,m, hi,j,m, and ei,j,m. The
sub-index “m” refers to each tested machine.

9. Having the coefficients for the different functions (Fi) as well as the non-dimensional
parameters (i.e., h, q, e, h

q2 , he
q2 ) defined, the errors of the proposed functions by MOAL

are calculated. The error indices considered were root mean square error (RMSE),
mean absolute deviation (MAD), the mean relative deviation (MRD), and BIAS:

(a) RMSE. This error index measures the error between the empirical expression
and experimental values. When RMSE is zero, this value indicates a perfect fit.
It is defined by (24):

RMSE =

√
∑x

i=1[Oi − Pi]
2

x
(24)

where Oi are the estimated values; Pi the experimental values, and x is the
number of observations.
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(b) MAD. This index measures the average of the errors in the estimated values,
using the absolute differences between estimated and experimental values.
The perfect fit is defined when MAD is zero, and it is defined by the following
expression (25):

MAD = ∑x
1

1
x
|Oi − Pi| (25)

(c) MRD. This index considers the weight of the error to the variable value. If MRD
is zero, this value indicates a perfect fit. Formally, it is defined as follows (26):

MRD = ∑x
1
|Oi − Pi|/Pi

x
(26)

(d) BIAS. The index considers the variable tendency, analyzing whether the es-
timated values are greater (negative value) or smaller (positive value) than
experimental values. It is defined by the following expression (27):

BIAS =
∑N

i=1[Oi − Pi]

x
(27)

If the error values are acceptable and the goodness of the expressions is correct, the
best expression is chosen in order to be applied. The best expression should set low error
values, and it should consider a smaller number of variables.

2.2. Materials

The proposed methodology was applied using different experimental machines. As
indicated, 15 PATs were used in this research, as shown in Table 2. The experimental
database was developed from different consulted studies. These PATs were tested con-
sidering different rotation speeds (Table 3), which allowed interpolation of the different
experimental values among rotation speeds. The specific speed (nst) of the used machines
was between 5 and 50 rpm. nst is defined as:

nst = n0
P

1
2

0

H
5
4
0

(28)

Table 2. Characteristics of the used pumps working as turbines (PATs).

ID Ref. nst (m, kW) n0 (rpm) D (mm) QBEP (l/s)
HBEP

(m w.c.)
ηBEP RS IP AP

1 [32] 20.66 1020 139 3461 4144 0.615 4 766 2393
2

[33]
28.34 1200 200 24,460 12,437 0.596 7 621 3812

3 25.57 1100 225 22,295 11,941 0.714 7 851 5646
4 26.43 1100 250 23,731 11,910 0.766 7 766 5086
5

[34]
17.68 1200 210 16,755 18,126 0.718 6 846 4377

6 27.03 800 265 27,322 8305 0.800 5 680 2997
7 25.44 1200 255 28,392 15,859 0.715 6 580 3035
8 [35] 13.65 1200 139 4906 11,283 0.543 3 714 1937
9 [36] 5.67 1100 193 9762 51,267 0.703 6 680 3514

10
[37]

31.16 3000 127 17,985 30,288 0.695 6 802 4535
11 20.97 3000 158 17,975 51,355 0.727 6 777 4516
12 50.71 2700 127 36,909 22,207 0.705 7 609 4139
13 [38] 21.75 1000 419 95,591 34,428 0.795 4 745 2595
14 [39] 13.84 1250 175 8990 17,525 0.622 6 804 3020
15 [40] 33.1 2900 189 50,050 52,849 0.646 7 708 4848

Total 87 10,949 56,450

RS, number of experimental curves, which were tested for different rotational speeds; IP, number of interpolated parabolas using the
experimental curves for each rotational speed; AP, number of analyzed points.
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Table 2 also shows the number of experimental curves (RS) which were tested consid-
ering different rotational speeds for each machine, the number of interpolated curves used,
as well as the number of used points to develop the regression and database analysis. The
analysis of the 87 tested curves for different PATs, which operated on different rotational
speeds, enabled us to obtain 10,949 interpolated parabolas, as well as 56,450 work points,
to develop the surface (Q, H, α; Figure 2).

3. Results

3.1. Proposed Function Models

Once the experimental data from the referred 15 tested PATs were analyzed, the βi coef-
ficients were determined for the different non-dimensional parameters (i.e., q, h, e, p, h/q2,
he/q2). Table 3 shows the different values of coefficients βi for each proposed function
(Fi) to model the non-dimensional parameters (NP). Table 3 also shows the regression
coefficient (R2).

The goodness of these models was measured according to the different error indexes,
which were described previously in the Methodology section by Equations (21)–(23). The
different dimensionless parameters proposed for each machine and rotation speed were
determined, defining the error rates for the ten different functions of the model. Table 4
shows the error values for each index, as well as its ranking compared among the ten
functions. This table determines the average values of the error indexes, since these errors
were calculated for each rotational speed in each tested machine (87 curves). BIAS shows
the absolute value, in order to know the magnitude of this error in case of oversize or
undersize of a variable (i.e., H, η, and P).

Table 4 shows the average error values for each FM. These errors values enable us
to decide the best function model for each dimensionless parameter (i.e., h, q, e, and
p). When the error analysis was developed, the best function model (FM) was F6 for h
and e dimensionless parameters. Although different FMs could be used, F6 considered
both rotational speed as well as the ratio Q

QBEP
. The use of this ratio is interesting since

it measures the distance between Q and QBEP. This is an important difference, since it
allows water managers to fix the operation range of flow in order for the affinity laws to be
applied [29].

Table 4. Average error indexes for the different characteristic curves using the defined MOAL.

Expression (21) Expression (22) Expression (23)

H = h
(

A + B Q
q + C

(
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) η =
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+ E3

(
Q
q

)3
+ E2

(
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(
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q
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) P =

p
(

P4

(
Q
q

)4
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(
Q
q
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(
Q
q
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(
Q
q

)
+ P5

)
FM RMSE MAD MRD BIAS FM RMSE MAD MRD BIAS FM RMSE MAD MRD BIAS

F1
0.6869

(6)
0.5733

(6)
0.0325

(8)
0.1695

(7) F1
0.0596

(8)
0.0486

(8)
0.1161

(8)
0.0198

(9) F1
0.2666

(8)
0.221

(9)
0.1467

(9)
0.0678

(8)

F2
0.7234

(9)
0.6007

(9)
0.0296

(5)
0.1054

(6) F2
0.0656

(10)
0.0493

(10)
0.1185

(10)
0.0173

(7) F2
0.2391

(6)
0.1983

(7)
0.1313

(7)
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(4)

F3
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(3)
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0.259
(10)
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0.1775
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0.1216

(5)
0.0646

(6)

F6
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(1)
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(3)
0.0266

(1)
0.005

(3) F6
0.0397

(1)
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(1)
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(1)
0.0027

(3) F6
0.2472

(7)
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(7)
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The ranking of the Fi when the error indexes are compared from (1) to (9) as indicated.
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When non-parameter p was analyzed, the F7 function also was chosen since it only
considered one variable (α), yielding good results in the estimation of the PATs curve. F7
was used to determine the power curve directly by expression (23). However, when water
managers wish to determine the power curve by the use of Q, H, and η, they should use
the F6 function.

3.2. Error Distribution Compared to Rotational Speed

Once F6 was chosen, the error of the modified affinity laws was compared with all
tested curves. All error indexes were calculated for head, efficiency, and power.

When head was analyzed, the MRD was smaller than 0.05, with a cumulated frequency
equal to 91%. The maximum value was 0.089. In head values, RMSE was smaller than
0.6 in 57 compared curves and BIAS was smaller than 0.25 in 49 compared curves.

When efficiency was compared, RMSE was smaller than 0.035 in 58% of the compar-
isons and it was smaller than 0.07 in 88% of the comparisons. When MRD was checked, it
was smaller than 0.15, showing a BIAS value smaller than 0.069 in 92% of the cases.

When the error values for the power curve using the F6 function model were analyzed,
RMSE was smaller than 0.2 (72% cumulated frequency). When MAD was analyzed, similar
values were obtained. MAD was lower than 0.17, and the MRD was smaller than 0.2 in
90% of the samples.

However, when the errors of F7 were analyzed for the power curve, they showed the
best approach. Figure 4 shows the error values for the power curve using the F7 expression.
RMSE was analyzed (Figure 4a), and it was smaller than 0.18 (70% of cumulated frequency).
This value was smaller than 0.09 in 51 cases. Moreover, when the α value was observed,
smaller values were located between 0.8 and 1.2, reaching a minimum around 0.9.

 

Figure 4. Error values when power is determined: (a) root mean square error (RMSE) (b) mean absolute deviation (MAD);
(c) mean relative deviation (MRD), and (d) absolute value of BIAS.

When MAD was analyzed (Figure 4b), similar values were obtained. In this case, MAD
values were smaller than 0.16 (92% of cumulated frequency). When MRD was analyzed
(Figure 4c), this value was smaller than 0.2 in 94% of the samples. This value had a value of
65% of cumulated frequency for values lower than 0.07. Finally, BIAS had good accuracy,
showing values lower than 0.1 in 85% of the sample. In all cases, the minimum errors were
reached when the machine operated using α rates between 0.8 and 1.2, being the minimum
for values near 0.9.
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3.3. Proposed Functions vs. Other Published Functions

Once the relative errors of the selected function model (F6) were compared for each
rotational speed of the different tested machine in the different proposed functions of head,
efficiency, and power, the proposed expressions were compared with other expressions
which have already been published in the literature.

This research proposes the following particular functions to define the characteristic
curves of the machine according to expressions (21)–(23). The model F6 was chosen when
head and efficiency curves should be estimated. F6 showed the lowest errors compared to
the rest of the models. Moreover, this model contained the variation of the rotational speed
(α) as well as the use of the ratio Q/QBEP, enabling us to measure the closeness to BEP. To
calculate the power, F7 was chosen since it had the minimum error values, and it uses a
simpler expression. The final expressions proposed herein are:

q = −0.1525
(

α
Q

QBEP

)
+ 0.1958

(
Q

QBEP

)2
− 0.0118

(
Q

QBEP

)
− 0.6429α2 + 1.8489α− 0.2241

h = −0.31070
(

α
Q

QBEP

)
+ 0.3172

(
Q

QBEP

)2
− 0.0546

(
Q

QBEP

)
+ 0.242α2 + 1.1708α− 0.3426

e = 0.8271
(

α
Q

QBEP

)
− 0.3187

(
Q

QBEP

)2
− 0.1758

(
Q

QBEP

)
− 1.035α2 + 1.1815α + 0.5019

p = α2.4762;

q = α0.7439

The comparison concerns the model proposed in this research and four published
proposals that are shown in Table 5.

Table 5. Methods used for the comparison.

Method Reference h q p η

Carravetta et al. (2014) [14] 1.0253α1.5615 1.0323α0.7977 0.9741α2.3207 −0.4013α2 + 0.845α + 0.5606
Fecarotta et al. (2016) [12] 0.972α1.603 1.004α0.825 – −0.317α2 + 0.587α + 0.707

Pérez-Sánchez et al. (2018) [27] 1.89α2 − 1.54α + 0.74 1.08α0.7 4.59α2 − 6.33α + 2.50 −0.36α2 − 0.69α + 0.66
Tahani et al. (2020) [28] 0.9962α1.0851 0.9974α0.3651 0.9767α1.4888 −4.3506α2 + 8.8879α− 3.544

Figure 5 shows the different values for error, when head, efficiency, and power were
estimated using the proposed model (in black color, “this study”) and the rest of the published
models. In all cases, the present proposed model presented the best results.

When head curve was analyzed, the error indexes (RMSE, MAD, and MRD) were
reduced between 20 and 45% compared to the second-best model (Carravetta et al.). The
BIAS value for this characteristic curve was −0.005, compared to the second-best model
(0.048). Similar values were shown when the efficiency curve was compared. When ef-
ficiency errors were compared, RMS, MAD, and MRD were reduced by 33% compared
to the second-best model, while BIAS was ten times lower than the second-best model.
Finally, when the power errors were checked using the F7 model, the error indexes were
reduced between 36 and 63% compared to the second-best model. Only when BIAS was
checked, the second-best value was observed. Moreover, the F6 model was also compared
to the rest of the proposed models for the power curve. This model (F6) showed good
accuracy and the error indexes were 0.2209 (RMSE), 0.1884 (MAD), 0.0823 (MRD), and
−0.097 (BIAS). All values were better than the second-best model, except for BIAS, which
was the third-best value.

Finally, a visual comparison was carried out on the proposed model and the remaining
models compared to an experimental PAT curve (Figure 6). To develop this comparison,
the chosen PAT was a radial machine. The specific speed was 5.67 rpm (m, kW) and its
nominal rotational speed was 1100 rpm. The best operation point of this machine was
defined as 9.762 l/s and 51.267 m w.c., the efficiency being equal to 0.703 [24]
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Figure 5. Error values for head, efficiency, and power, when the models are compared.

 

Figure 6. (a) Head curve comparison between proposed model, experimental data, and rest of published models; (b) Ef-
ficiency curve comparison between proposed model, experimental data, and rest of published models; (c) Head curve
between proposed model and experimental curve; (d) Efficiency curve between proposed model and experimental curve.
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Figure 6a,b show the good accuracy of the proposed model compared to the rest of
the models. This accuracy can be observed for each α value. Figure 6a shows the accuracy
of the proposed study, other published models, and experimental data. All models showed
good accuracy when the head curve was compared with the experimental data. However,
this accuracy decreased in the rest of the models when α was higher than one. The accuracy
of the proposed expressions was much better when the efficiency curves were compared.
This visual accuracy, which can only be observed, is supported by analysis of errors indexes
shown in Figure 5. In this graph, the proposed expressions reduced over 20% of the error
of the other published methods. The mean reduction in the error was 60%. To improve
this perception, Figure 6c,d show the comparison between the proposed model and the
experimental data. In all cases, the accuracy was good but, when the α was between 0.8
and 1.2, the estimation of the curves showed excellent accuracy.

4. Conclusions

This research proposed a modification of the affinity laws (MOAL) of the hydraulic
machines that are used as pumps working as turbines. This modification was established
according to a new methodology, which was defined in this research. The research proposed
an analysis with ten general expressions (polynomial and exponential), considering the
most significant variables (the ratio of the rotational speed, α, and the ratio of Q and
QBEP). Finally, a polynomial model (namely F6) depending on α and Q

QBEP
was selected,

when head and efficiency were estimated, and a potential model (F7) if the power is to be
calculated directly. All proposed models exhibited good error indexes (RMSE, MAD, MRD,
and BIAS) compared to the others, reducing the errors between 30 and 50% compared to
the second-best model.

In addition, the proposed models were checked and compared to 15 different machines,
which were tested by varying their rotational speed and its specific speed between 5 and
50 rpm (m, kW). The present model is based on 87 different curves and 56,450 operation
points, using the largest database ever published.

The use of these models, which have excellent accuracy when α is between 0.8 and 1.2,
is crucial to the development of mathematical models. These are of paramount importance
to introduce the use of PATs when the manufacturer curve is not known. This is common
when PATs are used, since the manufacturers do not publish these curves in their catalogue.
Therefore, the inclusion of these equations will allow water managers to develop simulation
tools, which can be introduced in the management of the water systems, improving the
accuracy in their operation estimation. These models are expected to give a new impetus
in the inclusion of the analysis tools when PATs operate at variable speed in water systems,
and water modelers need mathematical expressions to develop simulations and operational
limitations. Consequently, future works should be developed in which different procedures
are proposed to establish the best variable operating strategy (VOS) in order to maximize
the energy recovery using these expressions.
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Abstract: Flood related disasters continue to threaten mankind despite preventative efforts in tech-
nological advancement. Since 1954, the Soil Conservation Services (SCS) Curve Number (CN0.2)
rainfall-runoff model has been widely used but reportedly produced inconsistent results in field
studies worldwide. As such, this article presents methodology to reassess the validity of the model
and perform model calibration with inferential statistics. A closed form equation was solved to
narrow previous research gap with a derived 3D runoff difference model for type II error assessment.
Under this study, the SCS runoff model is statistically insignificant (alpha = 0.01) without calibration.
Curve Number CN0.2 = 72.58 for Peninsula Malaysia with a 99% confidence interval range of 67
to 76. Within these CN0.2 areas, SCS model underpredicts runoff amounts when the rainfall depth
of a storm is < 70 mm. Its overprediction tendency worsens in cases involving larger storm events.
For areas of 1 km2, it underpredicted runoff amount the most (2.4 million liters) at CN0.2 = 67 and
the rainfall depth of 55 mm while it nearly overpredicted runoff amount by 25 million liters when
the storm depth reached 430 mm in Peninsula Malaysia. The SCS model must be validated with
rainfall-runoff datasets prior to its adoption for runoff prediction in any part of the world. SCS
practitioners are encouraged to adopt the general formulae from this article to derive assessment
models and equations for their studies.

Keywords: rainfall-runoff model; curve number; inferential statistics; 3D runoff difference model;
model calibration

1. Introduction

Nearly 8.5 million casualties attributed to flood related disasters were reported be-
tween 1990 and 2020 all over the world, which is equivalent to one death every seven
minutes. In the recent six decades, about 10,000 cases were reported with 1.3 million
deaths and at least $3.3 trillion of financial losses. This financial loss is estimated to be an
equivalent rate of almost USD$1800/s [1]. Floods are not only a nuisance to people but also
impede the financial well-being, economic development, and natural and cultural heritage
preservation efforts of a country. The impact is more profound amidst the COVID-19
pandemic. Uncertainties regarding different scenarios surrounding climate change also
require us to safeguard agricultural production and manage water resources wisely to
ensure sustainable development for the future. As such, there is an imminent need for
hydrologists and modelers to reassess the rainfall-runoff model and improve the modelling
approach for better applications in flood prediction.

In order to comply with the federal flood control program in 1954, the United States
Department of Agriculture (USDA), Soil Conservation Services (SCS) developed a Curve
Number (CN) runoff estimation procedure to implement across the nation. The hydrologic
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methods which were originally developed to address specific situations were adopted
immediately without professional review and critics [2–5]. The work became the basic CN
rainfall-runoff model:

Q =
(P− Ia)

2

P− Ia + S
(1)

Q = Amount of runoff depth (mm)
P = Depth of rainfall (mm)
S = Watershed maximum water retention potential (mm)
Ia = Rainfall initial abstraction amount (mm)

SCS also hypothesized that Ia = λS = 0.2S where λ is the initial abstraction ratio
coefficient and fixed at λ = 0.2 as a constant. This equation was tenuously justified with daily
rainfall and runoff data. The only official documentation source is the NRCS’s National
Engineering Handbook, Section 4 (NEH-4) [5]. Its substitution simplifies Equation (1) into
the existing SCS CN model as:

Q =
(P− 0.2S)2

P + 0.8S
(2)

if P < 0.2S, Q = 0.
The SCS CN methodology has been widely accepted since its inception in 1954. It has

been incorporated in various types of software, adopted by many government agencies in
design and even appears in every hydrology textbook. However, studies around the world
from recent decades reported that Equation (2) inconsistently under and over-predicted
runoff results. Curve Number (CN) selection from the SCS handbook for a watershed
runoff prediction modelling were reported as subjective and often could not represent
other watershed with similar land cover [2–4].

Despite that, many recent studies started to develop and propose extended applica-
tions with Equation (2). Some researchers even proposed a global gridded CN concept
for runoff modelling [6,7] while others incorporated land-use information in their studies
and the GIS modelling technique [8–12]. Contrarily, some reported that the usage of CN in
representing a watershed is often contradictory in describing related land cover areas [13].
Some researchers still reported difficulty to calibrate the existing model [14,15] while other
studies started to incorporate soil moisture and saturation-excess concepts in their mod-
elling approach [16–19]. US researchers [2,20] were first to conduct large scale studies on
the SCS CN model by analyzing more than half a million rainfall events across 24 states
in the USA and reported an optimum λ = 0.05 to achieve better runoff modelling results
than Equation (2) in USA. To date, SCS practitioners do not have a systematic approach to
assess the SCS CN model framework and analyze the impact on runoff prediction when
the model is not calibrated.

2. Data and Methods

The SCS CN model (Equation (2)) has been adopted in Malaysia for runoff prediction
studies and design. However, no attempt has been made to validate previous study
findings by performing hydrological characteristics calibration on the SCS CN model and
to derive the λ value with inferential statistics for the entirety of Peninsula Malaysia. The
impact of not calibrating the SCS CN model and the blind adoption of Equation (2) for
runoff predictions in Peninsula Malaysia are unknown. Therefore, this study extended
study results from US researchers [2,20] to develop assessment methods of the SCS CN
model for SCS practitioners.

Slightly larger than England (130,395 km2), the land area of Peninsula Malaysia is
132,265 km2. It shares a land border with Thailand to the north and Singapore across the
strait of Johor to its south. The formation of the Malaysian Department of Irrigation and
Drainage (DID) in 1932 assumed all works in connection with drainage and irrigation from
the Public Works Department. Flood mitigation and hydrology was made an additional
responsibility of DID from 1972 onwards after the declaration of a national disaster due to
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severe floods in 1971. From 1986, coastal engineering has become an added function of the
DID while river management became its official duty from 1990.

The Department has moved from the Ministry of Agriculture and Agro-based Industry
(MOA) to Ministry of Natural Resource and Environment (NRE) on 27 March 2004. Over the
years, DID took up new and expanded responsibilities. Today, the DID’s duties encompass:
River Basin Management and Coastal Zone, Water Resources Management and Hydrology,
Flood Management and Eco-friendly Drainage projects in Malaysia.

The rainfall-runoff dataset from the DID, Hydrological Procedure no. 27 (DID HP 27)
was used in this study. It is the latest official dataset published by this federal government
agency that consists of 227 different storm events recorded between October 1970 to
December 2000 from 41 different rural watersheds (Figure 1) across Peninsula Malaysia.
The smallest storm event had a rainfall depth of 19 mm with a measurable runoff depth
of 4.8 mm while the largest recorded storm event was 420 mm with 258 mm in runoff
depth [21].

Figure 1. Locations of 41 streamflow stations with 227 rainfall-runoff (P-Q) data pairs used for λ

derivation. Modified according to [21].

Objectives of this study are:

1. To assess the 1954 SCS assumption of: Ia = 0.2S in Q = (P−Ia)
2

P−Ia+S and determine its
validity for runoff prediction use in Peninsula Malaysia according to the DID HP
27 dataset.

2. To solve the closed form mathematical equation of the “critical rainfall amount” and
develop a statistically significant SCS CN model calibration methodology.

3. To assess the impact of not calibrating the existing SCS CN runoff predictive model
(Equation (2)) for runoff prediction in Peninsula Malaysia with the official rainfall-
runoff dataset from DID HP 27 [21].
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2.1. The Reverse Derivation of λ and S Value

In hydrology, the difference between Ia and P is the effective rainfall depth (Pe) to
initiate Q thus Pe = P − Ia. Substitute this relationship into SCS CN model (Equation (1)),
it can be re-arranged to calculate the two key parameters of S and λ values according to
the respective P-Q data pair [2,5,22]. Equation (1) can then be expressed as below after the
substitution of Pe = P − Ia:

Q =
(Pe)

2

Pe + S
(3)

rearrange Equation (3) to isolate S as:

S =
(Pe)

2

Q
− Pe (4)

Equation (4) is subjected to the constraint where S must be a positive integer. SCS also
proposed the correlation of Ia = λ S thus λ can be calculated once Ia and S are known by
rearranging the equation as:

λ =
Ia

S
(5)

Equation (5) is subjected to the constraint defined by SCS that S ≥ Ia [5], and therefore
the range of λ must be (0, 1). The upper limit for λ value is equal to 1 (where Ia = S) which
is hardly realized in the real world as it implies the condition of a thick canopy interception.
The infiltration during early parts of the storm and surface depression storage is equal to
the maximum potential retention value (S) of a watershed [5].

Past studies reported different λ values in their work for model calibration. However,
the statistical assurance of those new values was hardly mentioned [4]. Latest studies in
this area started to report that the modelling approach with multiple CN and Ia values can
reflect the heterogeneity of a watershed and the SCS CN model must be calibrated according
to local rainfall-runoff data to improve the runoff prediction accuracy. Equation (2) may no
longer be valid for runoff prediction modelling [23–25]. SCS defined Ia = λS, the existence
of multiple Ia values implied that multiple λ and S values can be found within a watershed.
These latest study results [24,25] escalate the SCS CN model calibration difficulty to another
level as SCS practitioners must identify a best collective representative Ia value to calibrate
Equation (1). Therefore, this study proposed to use non-parametric inferential statistics as
the guide to make a statistically significant selection of the two key parameters (S and λ

values) to calibrate the fundamental SCS CN runoff framework (Equation (1)).
Under the SCS CN hydrological framework, the initial abstraction (Ia) amount must

be less than the P value because Ia must first be fulfilled to initiate runoff. Therefore, a
reasonable collective representative Ia value for runoff modelling must be less than the
minimum P value from the entire P-Q dataset [5]. Given the P-Q dataset, an initial “Ia”
value which was less than the minimum P value from the dataset was chosen as the first
iterative value in order to calculate the corresponding S and λ values for each P-Q data
pair according to Equations (4) and (5). In the event where either constraint in Equation (4)
or (5) were to be violated, the “collective representative Ia” value must be reduced until
every calculated λ and S values abide to their constraints for each P-Q data pair according
to the SCS CN model framework [5].

The alpha value was set at a stringent level of 0.01 in this study to reduce the type
I error in null assessment so that the SCS CN model will not be unnecessarily calibrated
due to wrong null rejection under objective 1. It will also justify the urgent SCS CN model
calibration need to the DID for runoff prediction work in Malaysia, review any past studies
and projects that used Equation (2) when the null hypothesis is rejected. This study is only
willing to accept 1% error chance because these DID processes are too costly to initiate
by mistake.

According to the U.S. Geological Survey (USGS) Statistical methods in water resources
guide, the minimum required sample size is 100 to be considered as a large dataset for
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water resources related study at the 0.01 alpha level [26]. As such, the DID HP 27 dataset
will be sufficient for this study. Given the 227 rainfall-runoff (P-Q) data pairs from DID
HP 27, corresponding λ and S values can be calculated. These 227 λ and S values will be
bootstrapped independently with the Bias Corrected and Accelerated (BCa) procedure
by using the IBM Predictive Analytics software (PASW) version 18.0 (commonly known
as SPSS) [27]. The method neither assumes data normality nor has limitation to certain
data distribution and performs random sampling with replacement in SPSS [27,28]. In
this study, the Mersenne Twister seed number for random sampling generation was set at
2 million (by default) and 10 million to conduct 2000, 5000, and 10,000 sampling for the
calculated λ and S dataset.

Consequently, the BCa option in SPSS was used to generate a sampling distribution
and 99% confidence interval (CI) to optimize the parameter of interest such as S and λ.
Additionally, it provides standard error statistics and CI for the median value, which are
unavailable under most parametric tests in SPSS [27]. BCa procedure was chosen by this
study for its ability to correct for skewness and bias in the bootstrap distribution [29]. When
the dataset has a high positive skewness, BCa can also correct the issue that the bootstrap
CI range might be too small [26]. BCa 99% CI has wider range than the 95% CI. Therefore,
this study used BCa option in SPSS to generate 99% CI (instead of 95% CI) for both λ and S
dataset so that the assessment of the initial claim from SCS that λ = 0.2 can be inferred from
the wider BCa CI.

2.2. Supervised Numerical Optimization Analyses

Past researchers faced the dilemma of choosing between the mean and median of a
dataset [2,30]. To address this issue, this study utilized an algorithm of numerical analysis
guided by inferential statistics for decision making.

λ and S were optimized using Equation (1) with a supervised numerical analyses
approach. To prevent the optimization algorithm from focusing on residual sum of squares
(RSS) minimization only, the overall model bias (BIAS) will be minimized near to the
value of zero concurrently during the parameter optimization process. This acts as a
check with the BCa technique to ensure that the optimized λ and S value are not biased
towards the dataset during the SCS model calibration. In the event of skewed data nature,
the supervised numerical optimization would be conducted to search for an optimum
value within the BCa median’s confidence interval limits of the derived λ and S dataset,
respectively. The optimized S value and its confidence interval range will lead to the
calculation of CN value to represent the entire DID HP 27 dataset in Peninsula Malaysia
(see Section 3.2).

2.3. Null Hypotheses Assessments with Inferential Statistics

A Null hypothesis was set up to assess the 1954 SCS proposal with inferential statistics
as below:

H0: Ia = λS where λ must be 0.2 in Equation (1) (as proposed by SCS) to model runoff
conditions according to the DID HP 27 dataset in Peninsula Malaysia.

H0 assesses the validity of Equation (2) for this study as pertained to the DID HP
27 dataset. The assessment of H0 will be inferred from the BCa confidence interval of
λ [28]. The rejection of H0 indicates that the SCS CN model (Equation (2)) is invalid to
model the dataset of this study. It requires the acceptance of H0 to adopt Equation (2)
for rainfall-runoff modelling while the rejection of H0 will pave a way to derive a new λ

value for the DID HP 27 dataset. The optimized λ and S values will be used to formulate
a new calibrated runoff prediction model for Peninsula Malaysia. SCS practitioners are
encouraged to validate the existing SCS CN model (Equation (2)) prior to runoff modelling
adoption.
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2.4. The S General Formula

Equation (1) was re-arranged into a general form of Sλ = f (P, Q, λ) in a previous
study [4]. When λ = 0.2, the corresponding S0.2 value leads to the derivation of conventional
CN values in use by SCS practitioners. Any other λ values will result in Sλ leading to
the derivation of CNλ values which are different from the SCS tabulated CN values. The
general Sλ formula (see [4] for derivation steps) used by this study is:

Sλ =

[
P− (λ−1)Q

2λ

]
−
√

PQ− P2 +
[
P− (λ−1)Q

2λ

]2

λ
(6)

Sλ = Total abstraction amount of any λ value (mm).

2.5. Correlation Between Sλ and S0.2

According to previous researchers, when the optimum λ value is different from the
conventional value where λ = 0.2, a correlation between the newfound λ value and 0.2
must be used in order to calculate the curve number again [2,3,20]. US researchers termed
the batch of curve numbers derived from any λ value other than λ = 0.2 as “conjugate
curve numbers” denoted by CNλ which are different from the SCS tabulated curve num-
bers [2–4,20]. Given the P-Q dataset, Sλ and S0.2 can be calculated using Equation (6).
A correlation between the Sλ and S0.2 dataset must be established before the calculation
of conventional CN value (see Section 3.2). SCS practitioners must use the correlation
equation between the Sλ and S0.2 to calculate the conventional CN value to avoid the
mistake of using conjugate curve number in their study.

2.6. The 3D Runoff Difference Model

Using P-Q datasets from multiple watersheds or from multiple locations within a
watershed, a 3D runoff difference model can be created as a collective visual representation
of multiple rainfall depths to compare with different CN0.2 scenarios. If Equation (2) fails
the Null assessment, this 3D model can reflect the runoff difference between it and the new
calibrated runoff model for further analyses. The model will be a guide to visualize the
runoff under and over prediction zones between two models. In 1954, SCS correlated S
and CN. The SI unit version of the formula is:

S =
25, 400

CN
− 254 (7)

Equation (7) was derived from the SCS assumption where λ = 0.2, and therefore it will
be more appropriate to denote CN as CN0.2 and S with S0.2. Substituting Equation (7) into
Equation (2), the SCS model can be simplified to become: Q0.2 = f (P, CN0.2) and represented
in SI form of:

Q0.2 =

[
P− 50.8

(
100

CN0.2
− 1

)]2[
P + 203.2

(
100

CN0.2
− 1

)] (8)

Q0.2 = Runoff depth (mm) of λ = 0.2
where P > 0.2 S0.2 else Q0.2 = 0.

The general form of Equation (1) after the substitution of Ia = λS for any λ value
becomes:

Qλ =
(P− λSλ)

2

P− λSλ + Sλ
(9)

where P > λSλ, else Qλ = 0. As such, the runoff difference between SCS model (uncalibrated)
and the new calibrated runoff model (with new λ) can be quantified as the difference
between Equations (8) and (9) as:
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Qv =

[
P− 50.8

(
100

CN0.2
− 1

)]2[
P + 203.2

(
100

CN0.2
− 1

)] − (P− λSλ)
2

P− λSλ + Sλ
(10)

Qv = Runoff depth prediction difference between 2 runoff models (mm)
CN0.2 = the conventional curve number

As Equation (2) was widely adopted in many countries, it is important to assess the
runoff prediction difference with Equation (10). It is a general equation that can be used
by SCS practitioners to determine the impact of not calibrating Equation (2) for runoff
predictions under their study.

In Equation (10), Qv will be positive when the conventional SCS runoff model (Equa-
tion (2)) over-predicted runoff when compared to the calibrated new runoff equation and
vice versa. If the newly derived λ < 0.2, Equation (10) is subject to the constraint where
P > λS. When the new derived λ > 0.2, Equation (10) will abide to the constraint of P >
0.2S0.2, else Qv = 0 because there is no runoff difference as Ia of the lower λ value model
is yet to be fulfilled to initiate the runoff process [2,5] and produce a runoff difference
between two runoff models. All in all, the smaller λ runoff model will initiate runoff ahead
of the larger λ runoff model [5].

2.7. Outer Boundary Equation

Equation (2) is subject to a constraint where P > Ia or P > λSλ, else Qλ = 0. The 3D
runoff difference model captures the runoff difference of two different runoff models. When
the Ia constraint of the lower λ value model has been fulfilled, runoff will be initiated. Base
on this concept, the Ia constraint of the lower λ value model becomes the outer boundary
of the 3D runoff difference model which also represents the runoff indifference boundary
with the following general equation:

P = λSλ (11)

2.8. Inner Boundary Equation

The second boundary is the “Inner Boundary” of the 3D runoff difference model. This
boundary separates the runoff under-prediction zone from the over-prediction zone of
the SCS runoff model. The runoff difference is equal to zero at the crossover boundary,
which is also known as the runoff indifference boundary. Therefore, when Qv = 0 (runoff
indifference) in Equation (10), the form can be re-expressed as:[

P− 50.8
(

100
CN0.2

− 1
)]2[

P + 203.2
(

100
CN0.2

− 1
)] =

(P− λSλ)
2

P− λSλ + Sλ
(12)

Equations (11) and (12) are also general equations that can be used by SCS practitioners
to analyze the 3D runoff difference model (created with Equation (10)) in their study.

2.9. Models Comparison

Runoff models are compared and benchmarked for their model predictive accuracy in
this paper. Model’s residual sum of squares (RSS), predictive model BIAS prediction and
model efficiency index (E), also known as Nash–Sutcliffe index, were calculated with the
following formulae to draw further comparison between them.

RSS =
n

∑
i=1

(
Qpredicted −Qobserved

)2

(13)
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E = 1− RSS
n
∑

i=1

(
Qpredicted −Qmean

)2 (14)

BIAS =

n
∑

i=1

(
Qpredicted −Qobserved

)
n

(15)

n = Total number of data pairs.
Lower RSS implies a better model. Index E lies on a spectrum of minus 1.0 to 1.0

whereby index value = 1.0 shows an ideal conjectured model. In the instance where E < 0, it
is inferior to utilizing an average to predict the dataset. BIAS is the overall model prediction
error indicator. Zero BIAS value indicates an error free model prediction while negative
value indicates the overall predictive model’s under-prediction tendency and vice versa.

2.10. Asymptotic Curve Number Fitting

Other than numerical optimization technique, many researchers [31–35] used asymp-
totic CN fitting method (AFM) to determine the best representative CN for the watershed
of interest with P-Q dataset (λ value remains as 0.20 under this method). Therefore, AFM
will be used to benchmark against the proposed method in this article. Under AFM, CN
cannot be determined for the Complacent behavior watershed, but Standard behavior
watershed follows the following formula [33]:

CN(P) = CN∞ + (100−CN∞)e(−
P
k ) (16)

CN(P) = Fitted CN value of a specific rainfall depth
CN∞ = CN of a watershed of interest
K = Fitting parameter

Violent behavior watershed follows the following formula [33]:

CN(P) = CN∞

[
1− e−k(P−Pth)

]
(17)

Pth = Threshold Rainfall depth (mm).

2.11. Critical Rainfall Amount (Pcrit)

The concept of Pcrit was initially suggested by US researchers [2,20,22] which can only
be obtained through numerical analysis solving technique or by trial and error procedure.
In their work, optimum λ was reported as 0.05 and the Pcrit points were identified through
the intersection of conjugate CN0.05 and CN0.2 curve on the graph in their study.

The concept of Pcrit was built upon the runoff indifference between 2 runoff models.
When Qv = 0 (runoff indifference between two runoff models), Equation (10) becomes
Equation (12). As such, this study introduces runoff difference curves which was created
with numerical analysis technique as the visual presentation of Equation (12). Runoff
difference curves can be plotted for specific CN0.2 classes across multiple rainfall depth
scenarios. Unlike previous research work, it combined two curves into a single curve and
identify Pcrit at where the curve crosses the x-axis.

2.12. The Closed Form Equation of Critical Rainfall Amount (Pcrit)

Through algebraic manipulation, this study successfully rearranged Equation (10) and
solved the general closed-form equation of Pcrit in terms of CN0.2 when Qv = 0. The break-
through has also proven to be able to solve for Pcrit value precisely of any pairing runoff
models and replace the trial and error procedure used by previous researchers [2,20,22].
SCS practitioners can derive the Pcrit equation for their study with proposed method in
this article (see Section 3.10).
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2.13. Critical Curve Number (CNcrit)

With a similar concept (based upon Equation (12)) as the critical rainfall amount (Pcrit),
this study also introduces “critical curve number(s)” (CNcrit) to supplement the use of
Pcrit. Under a specific rainfall scenario, critical curve number value(s) can also be identified
from the points where Qv = 0 between 2 runoff models. Unlike the success of the Pcrit
closed-form equation derivation, the effort to realize the closed-form equation of CNcrit
in term of P is still unfruitful to date. Therefore, the numerical analysis technique was
applied to estimate CNcrit value(s) with visual aid from the runoff difference curves graph.
Runoff difference curves methodology as Section 3.9 covered can be adopted to show that
Equation (2) or Equation (8) will under-predict runoff amount in any curve number areas
below the critical curve number value and vice versa.

2.14. Soft Computing and Data Mining of the 3D Model

In general, Equation (10) represents the runoff prediction errors of Equation (2) under
multiple P and CN0.2 scenarios but it is difficult to visualize the quantified effect by looking
at Equation (10) and solve for the global maxima and minima in order to represent the
worst under and over runoff prediction amounts between two runoff models.

Based on the rainfall depth range of the dataset [21], a numerical table can be compiled
with Equation (10) through the substitution of different P, CN0.2 scenarios and the λ

value to quantify runoff depth prediction difference between two runoff models in a
table. A 3D model can also be constructed with the collective information from the table
(Section 3.7). With the visual aid of a 3D runoff difference model, it is possible to extract
all minimum and maximum runoff prediction difference amount and represent them
with statistically significant equations. The minimum under-prediction difference amount
equation represents the worst under-design case incurred by Equation (2) and vice versa.

3. Results and Discussion

3.1. The Reverse Derivation of Optimum λ and S for Peninsula Malaysia

In all, 227 λ and S values were calculated according to corresponding rainfall-runoff (P-
Q) data pairs. The calculated λ dataset was checked for normality in SPSS with Kolmogorov–
Smirnov and Shapiro–Wilk test statistics, both tests concluded the λ dataset to be non-
normal (p < 0.001). Nearly 95% (214 out of the 227) storm events calculated λ value below
0.2 while none was equal to 0.2 as proposed by SCS.

According to Section 2.1, as defined by the SCS [5], the “collective representative Ia”
was reduced to 5.9 mm to fulfil both constraints of Equations (4) and (5) for the entire
dataset of DID HP 27 [21]. 227 calculated λ and S values were independently used for 2000,
5000, and 10,000 random samplings prior to CI generations and cross checking (This study
found that the CI upper and lower limits only differ at the fourth decimal places with 2000,
5000, and 10,000 random samplings while there were no difference between the use of
2 million (by default) and 10 million Mersenne Twister seed numbers for random sampling
generation) in SPSS. The inferential statistics of the derived λ and S values are tabulated in
Tables 1 and 2.

Table 1. Inferential Statistics of the derived λ dataset from Malaysian Department of Irrigation and
Drainage (DID) Hydrological Procedure (HP) 27.

λ Statistics

Bootstrap, BCa 99%

Bias Std. Error
Confidence Interval

Lower Upper

Skewness 5.125
Kurtosis 36.456

Mean 0.071 −0.00006 0.006 0.056 0.089
Median 0.042 0.00023 0.003 0.034 0.051
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From Table 1, neither the mean nor the median BCa λ’s 99% CI include the λ value of
0.2 (In comparison, the BCa 95% mean and the median CI for λ span across smaller range
(0.036, 0.084)). Therefore, H0 can be rejected at alpha = 0.01 level. As such, Equation (2) is
statistically insignificant (not even significant at alpha = 0.05) and cannot be used to predict
runoff conditions in this study. λ dataset is skewed (skewness of 5.125 in Table 1) thus
the search of the optimum collective representative λ value via numerical optimization
technique focusses on median λ’s confidence interval [0.034, 0.051].

On the other hand, data distribution of the S dataset is somewhat skewed with a
skewness of 1.624 (Table 2). The definition of skewness is non-uniform, some guidelines
suggested skewness value less than 3.0 to be considered as normal while some set a more
stringent limit at 1.0. To avoid the ambiguity of skewness determination, the search of the
optimum S value was widened to include the lowest and the highest confidence interval
limit of both mean and median values (118.125, 196.332) on S [2,30].

Table 2. Inferential Statistics of derived S dataset from DID HP 27.

S Statistics

Bootstrap, BCa 99%

Bias Std. Error
Confidence Interval

Lower Upper

Skewness 1.624
Kurtosis 4.392

Mean 172.297 0.002 8.649 150.952 196.332
Median 141.54 −0.053 10.005 118.125 170.170

The optimum λ value was recognized as 0.051 (rounded) while 150.46 mm was the
optimum S value in formulating the best runoff predictive model (based on Equation (1))
according to the entire dataset of DID HP 27 with an overall predictive model’s BIAS near
to zero. The collective representation of the Ia for the entire dataset was found from the
product of the optimum λ and S and therefore, the best collective representative value of Ia
to model the entire dataset in Peninsula Malaysia is 8.3 mm from this study.

As mentioned in Section 2.1 and 2.2, BCa technique produced confidence intervals
(Tables 1 and 2) for the optimization of λ and S value to calibrate the SCS CN model. It also
generated a range of λ and S value to enable the calculation of multiple Ia and CN values
which is in line with the latest research development in this area [23–25]. Other than the
best collective representative Ia value, SCS practitioners who use the proposed method in
this article have an option to compare other possible Ia values with other research results
in future.

3.2. The Correlation between Sλ and S0.2 for Peninsula Malaysia

The derivation of Sλ formula (Equation (6)) proved mathematically that even with
the same P-Q dataset, as λ varies, the corresponding total abstraction amount (S) varies
as well and therefore, the corresponding CN value will change also. As such, it is more
appropriate to re-represent Equation (7) in general form as:

CNλ =
25, 400

Sλ + 254
(18)

CNλ = Curve number of any λ value (dimensionless)
Sλ = Total abstraction amount of any λ value (mm)

Given the P-Q dataset and λ value, the corresponding CNλ can be derived from Equa-
tion (18). When λ = 0.2, its corresponding S0.2 value gives rise to deriving the conventional
curve number compiled by SCS. To differentiate the conventional SCS CN, the notation of
“CN0.2” is used in the remaining of this paper. When λ �= 0.2, its corresponding Sλ value
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derives “Conjugate Curve Number” (CNλ) [2,20,22]. As the optimum λ value = 0.051, the
correlation between S0.051 and S0.2 was identified with SPSS for this study as:

S0.051 = 1.176S0.2
1.063 (19)

S0.051 = Total abstraction amount (mm) of λ = 0.051
S0.2= Total abstraction amount (mm) of λ = 0.2

Equation (19) has a R2-adj of 0.946, standard error of 0.15 and p < 0.001. Equation (19)
is also the key to convert S0.051 back to its equivalent S0.2 value for the calculation of
CN0.2 for SCS practitioners. The optimum S0.051 is 150.46 mm (alpha = 0.01) from the
range of 118.125 to 196.332 (Table 2) in Section 3.1. The equivalent S0.2 value of S0.051 =
150.46 mm is 95.97 mm (calculated from Equation (19)). By substituting S0.2 = 95.97 mm
into Equation (18), CN0.2 = 72.58; thus, new λ of 0.051 derives an equivalent CN0.2 value of
72.58 to model the entire DID HP 27 dataset. The 99% confidence interval of S0.051 ranges
from 118.125 to 196.332, those values can also be used to calculate its equivalent upper and
lower CN0.2 limits in the same manner through Equation (18) and therefore, for the DID
HP 27 dataset [21], the best collective CN0.2 = 72.58 (99% CI ranges from 67 to 76) for runoff
predictions in Peninsula Malaysia.

3.3. Conjugate Curve Numbers (CNλ) for Peninsula Malaysia

Given the P-Q data pairs from DID HP 27, conjugate curve number values (CNλ) of
each storm event can be calculated with aforementioned equations in the following steps:

Since the optimum λ value obtained was 0.051, Equation (18) becomes:

CN0.051 =
25, 400

S0.051 + 254

Substitute Equation (19) into Equation (18) will yield:

CN0.051 =
25, 400

(1.176S0.21.063) + 254
(20)

where S0.2 values can be calculated using Equation (6) (the S general formula) when P-Q
data pairs are given. CN0.051 is the conjugate curve number of CN0.2. Equation (20) proves
that conjugate curve number (CNλ) is not the same as the conventional curve number
CN0.2 which was derived using Equation (7). Thus, it is inappropriate to use any conjugate
curve number (CNλ) with Equation (2) in any rainfall-runoff modelling work.

3.4. The 3D Runoff Difference Model for Peninsula Malaysia

According to the discussions from Sections 2.4 and 2.5, the S amount is specific to its
corresponding λ value. The optimum λ value = 0.051 to model runoff conditions for the
DID HP 27 dataset thus by substituting λ with 0.051 into Equation (9) yields a calibrated
rainfall-runoff predictive model on Equation (1) in the form of:

Q0.051 =
(P− 0.051S0.051)

2

P− 0.051S0.051 + S0.051

The substitution of Equations (19) and (7) further simplifies it as:

Q0.051 =

[
P− 21.606

(
100

CN0.2
− 1

)1.063
]2

[
P + 402.547

(
100

CN0.2
− 1

)1.063
] (21)

Equation (21) re-expressed the runoff model in term of P and CN0.2 and subjects to
the constraint.
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P > 21.606
(

100
CN0.2

− 1
)1.063

else Qv = 0 on the 3D model
CN0.2 = Conventional SCS tabulated curve number
Q0.051 = Runoff depth (mm) of λ = 0.051
Equation (8) is the re-expression of Equation (2) in term of P and CN0.2.

Q0.2 =

[
P− 50.8

(
100

CN0.2
− 1

)]2[
P + 203.2

(
100

CN0.2
− 1

)] (22)

It subjects to the constraint P > 50.8
(

100
CN0.2

− 1
)

else Qv = 0.
Equation (8) or Equation (2) represents the un-calibrated SCS CN model. The runoff

depth prediction differences between Equations (8) and (21) were collectively quantified
by Equation (22) of which the 3D runoff difference model (Section 3.7 and Figure 2) was
constructed with. Equation (22) also quantifies type II errors from Equation (2) (existing
SCS model) if it is not calibrated for runoff prediction in Peninsula Malaysia.

3.5. Outer Boundary Equation

As per Section 2.7, the calibrated new λ value (0.051) is less than 0.2; thus, its model’s
constraint can be adopted to represent the runoff indifference boundary where runoff
has not been initiated. Therefore, Equation (22) is also subject to the constraint, P > 0.051

S0.051 or P > 21.606
(

100
CN0.2

− 1
)1.063

else Qv = 0. Equation (19) can be substituted into 11 to
preserve the conventional curve number (CN0.2) through following the steps.

(a) 

Figure 2. Cont.
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(b) 

Figure 2. (a) The 3D runoff difference model (between Equations (2) and (21)) of Peninsula Malaysia with DID HP 27 dataset
for Type II error assessment. (b) Top view of the 3D runoff difference model for Peninsula Malaysia with DID HP 27 dataset.

Substitute λ with 0.051, Equations (7) and (19) into Equation (11) yields:

P = 21.606
(

100
CN0.2

− 1
)1.063

(23)

Equation (23) is the runoff indifference boundary equation between two runoff models.
It is otherwise recognized as the “Outer Boundary” equation of the 3D runoff difference
model (Figure 2a,b).

3.6. Inner Boundary Equation

When Qv = 0 in Equation (22), the form can be expressed as:

[
P− 50.8

(
100

CN0.2
− 1

)]2[
P + 203.2

(
100

CN0.2
− 1

)] =

[
P− 21.606

(
100

CN0.2
− 1

)1.063
]2

[
P + 402.547

(
100

CN0.2
− 1

)1.063
] (24)

Equation (24) is also known as the “Inner Boundary” equation of the 3D runoff
difference model for Peninsula Malaysia that demarcates the runoff under-prediction and
over-prediction zones between two runoff models in this study.

3.7. The Construction of the 3D Runoff Difference Model

DID HP 27 dataset consist of 227 storm events ranging from 19 mm to 420 mm. In
order to analyze and quantify the runoff prediction depth difference between Equation (2)
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(or Equation (8)) and 21 under multiple rainfall and CN0.2 scenarios, rainfall depth (P)
ranging from 10 mm to 430 mm across different CN0.2 values (from 26 to 98) were entered
into Equation (22) to calculate the runoff depth prediction difference that can be found
in Figure 3. Those tabulated values are runoff prediction errors (or type II errors) from
Equation (2) which are in line with previous studies that reported more profound error
in forested watersheds represented by CN0.2 values < 60 [2,20,22] Similarly, for Peninsula
Malaysia, both runoff under and over prediction errors worsen when the value of CN0.2
reduces (Figure 3).

 

Figure 3. Runoff differences generated from Equation (22) for various rainfall (P) and Curve Number (CN0.2) scenarios.
Note: 1 mm = 1 million liters runoff volume in a 1 km2 area.

Red zone cells in Figure 3 are where Equation (2) under-predicted runoff amount
against Equation (21). On the other hand, the white zone cells are where Equation (2)
over-predicted runoff amount. The empty cells on the upper left corner of the figure are
where Ia has not been fulfilled yet to initiate any runoff amount. Collectively, Figure 3 can
also be presented as a 3D model as seen in Figure 2a,b. Equations (23) and (24) represent
boundary lines as indicated on the 3D model, respectively. SCS practitioners can refer to
Figure 3 to perform runoff prediction correction on Equation (2).

For areas in Peninsula Malaysia with CN0.2 value from 67 to 76 (marked by the
dash line), the existing SCS model underpredicts runoff amount as indicated in red zone
when rainfall depth of a storm is < 70 or 85 mm. SCS model tends to overpredict runoff
amount after 85 mm and its overprediction tendency worsens toward larger storm events
as indicated in white zone. Without model calibration, the SCS model worst runoff un-
derprediction within these areas happens at CN0.2 = 67 area at rainfall depth of 55 mm,
the model underpredicted runoff amount by 2.4 million liters in 1 km2 area while it nearly
overpredicted runoff amount by 25 million liters when the storm depth reaches 430 mm in
Peninsula Malaysia. Blind adoption of the existing SCS CN model is likely to over-predict
runoff amount when the rainfall depth of a storm event is larger than 85 mm in Peninsula
Malaysia. As such, any past study or engineering projects based upon the return period
concept of rainfall amount below 70 mm might be under-designed.
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3.8. Soft Computing and Data Mining of the 3D Runoff Difference Model

Even though the 3D runoff difference model can be expressed using the closed form
Equation (22), it is not easy to obtain the minimum (global minima) or maximum (global
maxima) runoff depth difference equations. However, with the 3D runoff difference model
as a visual aid accompanied by soft computing techniques, the data mining of this vital
information becomes attainable.

The minimum and maximum runoff depth prediction errors across multiple P and
CN0.2 scenarios between the two runoff models can be extracted from Figure 3. The
statistically significant equations can then be determined using the SPSS to formulate the
worst under and over-estimated runoff prediction error equations from Equation (2) or
Equation (8) against Equation (21).

The data mining process extracts all the minimum and maximum runoff prediction
differences (bold numbers, highlighted in red and yellow color, respectively in Figure 4)
according to each rainfall depth scenarios (in row).

 

Figure 4. Soft computing, data mining of minimum and maximum runoff depth difference of each rainfall class (in row).
Note: 1 mm = 1 million liters runoff volume in a 1 km2 area.

Two statistically significant and best correlation equations were identified through
SPSS regression modelling as:

Min Qv = 5.14 × 10−5 P2 − 0.052 P − 0.222 (25)

Max Qv = 5.14 × 10−5 P2 + 0.045 P − 0.734 (26)

where Min Qv represents worse under-predicted runoff scenarios while Max Qv repre-
sents the maximum over-predicted runoff scenarios. Equation (25) has an R2-adj of 0.999,
standard error of 0.037 and p < 0.001 while Equation (26) has an R2-adj of 0.999, standard
error of 0.191 and p < 0.001. Given a specific rainfall depth, the worst under-estimated and
over-estimated runoff prediction errors of Equation (2) or Equation (8) due to a specific
rainfall depth can be estimated by Equations (25) and (26), respectively.

It is also possible to employ soft computing technique to derive similar runoff predic-
tion error equations in term of curve number. From Figure 5, the minimum and maximum
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runoff prediction differences can be extracted as per their respective curve number (in
column) which induced the runoff difference (bold numbers, highlighted in red and yellow
color, respectively in Figure 5).

Two statistically significant and best correlation equations from SPSS regression mod-
elling results are:

Min Qv = 2.594 − (329.896/CN0.2) (27)

Max Qv = 2.2 × 10−4 CN0.2
3 − 0.061 CN0.2

2 + 4.77 CN0.2 − 86.519 (28)

where Min Qv, Max Qv and CN0.2 have been defined earlier. Equation (27) has an R2-adj
of 0.992, standard error of 0.242 and p < 0.001 while Equation (28) has an R2-adj of 0.999,
standard error of 0.255 and p < 0.001. Given a specific curve number, the worst under-
estimated and over-estimated runoff prediction errors of Equation (2) or Equation (8) due
to a specific CN0.2 area can be estimated with Equations (27) and (28), respectively.

 

Figure 5. Soft computing, data mining of minimum and maximum runoff depth difference of each CN0.2 class (in column).
Note: 1 mm = 1 million liters runoff volume in a 1 km2 area.

The dash line on the 3D model in the valley of the red zone is described by Equa-
tions (25) and (27) while Equations (26) and (28) represent the dash line found on the
ridge of the 3D runoff difference model (see Figure 2a). SCS practitioners can adopt Equa-
tions (25)–(28) to estimate the worst-case runoff prediction errors of Equation (2) when
compared to the newly found λ (0.051) model in Peninsula Malaysia. On the other hand,
regional or watershed specific equations can also be established by SCS practitioners for
their study as proposed.

3.9. Runoff Difference Curves of the Critical Rainfall Amount

This study introduced runoff difference curves which were created with numerical
analysis technique to visually present Equation (22) and to identify Pcrit. Runoff difference
curves graph combines two runoff curves (of conjugate curve numbers) into a single runoff
difference curve to represent the concept of 2 previous studies [2,20,22] in another view.
The graph can be plotted for specific CN0.2 classes across multiple rainfall depth scenarios
to show Pcrit at where the curve crosses x-axis (Figure 6).
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Figure 6. Runoff difference curve graph of Peninsula Malaysia. The graph was created to identify
Pcrit point(s) of different CN0.2 classes. Pcrit is/are the point(s) where the runoff difference curve
crosses x-axis, marked by circle(s) with solid down arrow lines. The dotted down arrow line estimates
the rainfall depth of maximum “under-design” risk for CN0.2 = 46. Note: When CN0.2 = 46 (dash
line curve), Equation (29) solved Pcrit = 199.6 mm (right bold down arrow). Equation (23) calculated
the outer boundary is at P = 25.6 mm while the lower Pcrit value = 45.2 mm (left bold down arrow).
In conclusion, for CN0.2 = 46, Equation (2) under predicts runoff amount from any rainfall depth
>25.6 mm until 199.6 mm (Pcrit) and over predicts runoff amount for any rainfall depths >199.6 mm
when compared to Equation (21).

Runoff difference curve can be used as a visual aid to identify the Pcrit amount where
the curve intersects the x-axis (when Qv = 0). Possible true solution(s) as initial guess(es) of
the trial and error process from the curve can be visually identified rather than guessing an
arbitrary starting point for numerical solution as proposed by previous researchers [2,20].
Equation (22) is a quadratic model that yields two potential Pcrit solutions.

Figure 6 illustrates the use of runoff difference curves to identify the “critical rainfall
amount” (Pcrit) of several CN0.2 scenarios. For example, at CN0.2 = 46 (dash line curve), Pcrit
is approximately 40 mm and 205 mm (eyeballed from the graph, Pcrit points are marked
by solid downwards arrow where the curve intersects the x-axis, implying that Qv is near
to 0). However, the Ia amount has not been initiated for rainfall less than 40 mm according
to Figure 3 and therefore, only 205 mm was used as the original trial and error estimate to
satisfy Equation (22) and solve for the final solution of Pcrit of CN0.2 = 46.

Runoff difference curve provides a brief overview and shows that Equation (2) will
under-predict runoff amount at CN0.2 area of 46 with any rainfall depths below the Pcrit
value (around 205 mm) and becomes an over-prediction thereafter. A non-linear under-
design risk is therefore exhibited in the curve, with a peak of approximately 115 mm in
rainfall depth (shown as dotted downwards arrow). Runoff difference curve provides
additional insight of the worst under-estimated and over-estimated runoff prediction errors
due to Equation (2) of specific rainfall depth which can be estimated with Equations (25)
and (26), respectively.

3.10. The Critical Rainfall Amount (Pcrit) Closed Form Equation

Through completing the square technique, this study has successfully used Equa-
tion (22) to obtain the closed form equation of Pcrit in terms of CN0.2. The closed form
equation can be applied to solve for the Pcrit in any pairing runoff models with any λ

values. The equation can calculate the Pcrit amount precisely and replace the trial and error
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procedure mentioned in Sections 2.11 and 2.12. SCS practitioners can refer to the proposed
method in this article to derive the specific Pcrit equation for their studies.

The derivation of the closed form equation of the critical rainfall depth (Pcrit) from this
study is shown below. From Equation (22),

Qv =

[
P−50.8

(
100

CN0.2
−1

)]2[
P+203.2

(
100

CN0.2
−1

)] −
[

P−21.606
(

100
CN0.2

−1
)1.063

]2

[
P+402.547

(
100

CN0.2
−1

)1.063
]

Let : A = 21.606
(

100
CN0.2

− 1
)1.063

Let : B = 50.8
(

100
CN0.2

− 1
)

When Qv = 0 (Runoff indifferent between 2 models), substitute A and B and solve for
P (Pcrit).

[P− B]2

[P + 4B ]
=

[P−A]2

[P + 18.631A]

After grouping and simplifying, P (Pcrit) can be solved via quadratic form as below:

a = 4B− 2A + 2B− 18.631A

b = A2 − 8AB− B2 + 2(18.631)AB

c = 4BA2 − 18.631AB2

Pcrit =
−b±

√
b2 − 4ac

2a
(29)

Pcrit = Critical rainfall depth (mm)
CN0.2= Conventional curve number of a watershed

Equation (29) is a quadratic model that yields two potential Pcrit solutions. The outer
boundary (Equation (23)) can be used as checkpoint to determine if the lower Pcrit value is
a valid solution because any rainfall depths beyond the outer boundary will start to yield
runoff difference between the two models after fulfilling the Ia requirement. The lower Pcrit
value is usually discarded due to its proximity to (or less than) the outer boundary.

If the Pcrit value < the P value of Equation (23) (outer boundary equation), the Ia is yet
to be fulfilled thus it is impossible to have any runoff or runoff difference amount. Runoff
difference curves graph is also an effective visual aid to supplement the Pcrit closed-form
equation (refer to Figure 6 example).

Results from several derived formulae were compiled in Table 3 to provide another
quick overview of the Pcrit for Peninsula Malaysia across multiple CN0.2 scenarios. Accord-
ing to the DID HP 27 dataset, the lowest calculated CN0.2 is 48.8; hence, column A tabulates
CN0.2 range from 47 to 99 to cover the entire possible CN0.2 scenario in Peninsula Malaysia.
Column B and D were calculated using Equation (6), column C used Equation (20) and
column E used Equation (29). Column F calculated CN0.2 percentage change into CN0.051.

Column A and E can be used to construct another Pcrit overview curve across multiple
CN0.2 scenarios (Figure 7) with a statistically significant equation regressed via SPSS as:

Pcrit = −245.4 ln(CN0.2) + 1132.6 (30)

Equation (30) has an R2-adj of 0.997, standard error of 3.047 and p < 0.001. Given CN0.2
value of a watershed, the corresponding Pcrit value can be estimated with Equation (30).
Equation (2) under predicts runoff amount at any rainfall depths below the Pcrit overview
curve in Figure 7 and vice versa. Figure 7 is also in line with the research outcome reported
by [2] that Equation (2) had the tendency to under-estimate runoff amount in rural and
forested watersheds as CN0.2 decreases.
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Table 3. Conjugate CN0.051 and Pcrit for Peninsula Malaysia.

(A) (B) (C) (D) (E) (F)

CN0.2 S0.2 CNλ (0.051) S0.051 Pcrit (mm) %

99 2.57 98.76 3.20 7.38 0.2%
97 7.86 96.02 10.52 12.65 1.0%
95 13.37 93.20 18.52 17.83 1.9%
93 19.12 90.36 27.10 22.86 2.8%
91 25.12 87.52 36.23 27.85 3.8%
89 31.39 84.69 45.92 32.85 4.8%
87 37.95 81.89 56.18 37.91 5.9%
85 44.82 79.11 67.05 43.05 6.9%
83 52.02 76.38 78.57 48.31 8.0%
81 59.58 73.68 90.75 53.71 9.0%
79 67.52 71.02 103.67 59.26 10.1%
77 75.87 68.40 117.35 65.00 11.2%
75 84.67 65.83 131.88 70.94 12.2%
73 93.95 63.30 147.29 77.11 13.3%
71 103.75 60.81 163.68 83.53 14.4%
69 114.12 58.37 181.14 90.22 15.4%
67 125.10 55.98 199.74 97.22 16.4%
65 136.77 53.63 219.60 104.56 17.5%
63 149.18 51.33 240.84 112.26 18.5%
61 162.39 49.07 263.60 120.38 19.6%
59 176.51 46.86 288.03 128.94 20.6%
57 191.61 44.69 314.31 138.00 21.6%
55 207.82 42.57 342.65 147.61 22.6%
53 225.25 40.49 373.28 157.83 23.6%
51 244.04 38.46 406.49 168.74 24.6%
49 264.37 36.46 442.59 180.41 25.6%
47 286.43 34.51 481.96 192.95 26.6%

 

Figure 7. Pcrit overview curve for Peninsula Malaysia. Equation (2) under predicts runoff amount for
any rainfall depths below the curve at respective CN0.2 area. The underprediction tendency worsens
as CN0.2 value decreases.

Using the same concept as presented in ?? and Section 3.10, the closed form Pcrit
can also be derived to verify previous study results where the optimum λ value was
identified as 0.05 in the USA. The correlation between Sλ and S0.2 is best represented by
S0.05 = 1.33S0.2

1.15 [2,20,22]. It is noteworthy to mention that US researchers used inches
in their dataset; hence, Equation (18) (CN formula, SI version) needs to be converted and
CNλ = 1000

Sλ+10 should be used instead. The closed form Pcrit equation can be derived with
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the same method as proposed in Section 3.10 to verify their published Pcrit (inches) values
(Table 4) in USA [2,22].

Table 4. The Pcrit (inches) values with its corresponding CN0.2 and CN0.05 values for runoff prediction
studies in USA (Modified from [2,22]).

Conjugate Curve Numbers and Pcrit Values

CN0.2 S0.2 (in) CN0.05 S0.05 (in) Pcrit (in)

100 0 100 0 -
95 0.526 94.02 0.636 2.44
90 1.111 86.95 1.501 1.72
85 1.765 79.64 2.556 1.95
80 2.5 72.39 3.815 2.27
75 3.333 65.31 5.311 2.63
70 4.286 58.51 7.091 3.05
65* 5.385 52.03 9.219 3.52 (4.51)*
60 6.667 45.9 11.785 4.04
55 8.182 40.14 14.915 4.64

50** 10 34.74 18.787 5.33 (5.35)**
45 12.222 29.71 23.663 6.15
40 15 25.03 29.947 7.13
35 18.571 20.71 38.285 8.35

Note: (4.51)* old value for CN0.2 = 65. (5.35)** old value for CN0.2 = 50.

The closed form Pcrit equation verified all Pcrit values in Table 4 except for CN0.2 =
50** and 65*. For CN0.2 = 50**, the calculated Pcrit using the closed form equation method
is 5.33 inches (instead of 5.35 inches)**. The variance to the published value is about 0.5
mm. However, for CN0.2 = 65*, the calculated Pcrit is 3.52 inches (instead of 4.51 inches)*,
which is much lower than the published value by about 25 mm.

Verification of Table 4 Pcrit values prove that the Pcrit closed form equation can
be used to calculate the exact Pcrit value for any comparing SCS CN models for SCS
practitioners. The success in the closed form equation derivation narrows the study gap
from previous work. It can be adopted to replace the trial and error technique used by
previous researchers [2,20,22].

3.11. Critical Curve Number (CNcrit)

Equation (29) will yield two possible CNcrit solutions (when Qv = 0 in Equation (22)).
Although it is possible for those CNcrit values to exist, all values must be verified. Potential
CNcrit solution(s) as the initial guess(es) to the trial and error process to satisfy Equation (22)
can be identified when visually aided by runoff difference curves.

For an example, when rainfall = 100 mm (dash line curve in Figure 8), potential CNcrit
value is about 66 (marked by bold solid down arrows where the curve intersects with the
x-axis or Qv = 0). Other possible CNcrit value were discarded because the dash line curve
intersects the x-axis at the left end at CN0.2 around 22 and 99 on the right end, those values
remain as a theoretical CN0.2 value only.

3.12. Asymptotic Curve Number of Peninsula Malaysia

According to the AFM (Section 2.10), the DID HP 27 dataset resembles the standard
behavior pattern (Figure 9) and thus Equation (16) was adopted to derive CN∞ as the best
representative CN0.2 value for the dataset. Through least square fitting method under AFM,
the fitting parameter k was identified to be 40.79 and CN∞ = 67.77. When rounded to the
closest positive integer, CN∞ = CN0.2 = 68.

104



Mathematics 2021, 9, 812

 

Figure 8. Runoff difference curves between Equation (2) or Equation (8) and (21). CNcrit is the point
that the runoff difference curve intersects the x-axis, marked by circle with solid down arrows lines.
The dotted down arrow lines estimate the rainfall depth of maximum “under and over-design” risk
for P = 100 mm, respectively. Note: when rainfall = 100 mm (dash line curve), runoff difference
curve also suggests that the return period design base on rainfall depth of 100 mm is likely to cause
under-design risk (negative Qv) in watersheds where CN0.2 value(s) is (are) <66, meanwhile incurring
over-design risk (positive Qv) in CN0.2 values >66. Estimated worst under-design risk (marked with
dotted down arrows) occurs around CN0.2 = 42 while the worst over-design risk at about 86. The
worst under and over-estimated runoff prediction errors due to Equation (2) of those CN0.2 area can
be estimated with Equations (27) and (28), respectively.

 

Figure 9. Asymptotic CN fitting of the dataset. For standard behavior pattern, CN∞ is the point
where a near to stable state of CN0.2 fits to the higher rainfall depths.

The AFM CN∞ result is in proximity to the equivalent CN0.2 value of 72.58 which was
derived in Section 3.2, whereas CN∞ = 68 also falls within the 99% CN0.2 confidence interval
of this study. This proves that the proposed SCS CN model calibration methodology in
this article is capable to produce results that are in line with other method introduced by
previous study.

Using Equation (18), the calculated S0.2 value of the AFM CN is 120.78 mm and Ia
= 0.20 × 120.78 mm = 24.16 mm. These numbers are used in formulating the SCS runoff
model with Equation (1) for benchmarking (Table 5).
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Table 5. Asymptotic CN fitting method (AFM) and new λ runoff model’s residual analyses compari-
son with descriptive and inferential statistics at alpha = 0.01 level.

AFM Model New λ Model

λ value 0.20 0.051
E 0.910 0.919

RSS 69,933 62,926
Residual Standard Deviation 17.083 16.556

Residual Standard Deviation: BCa 99% CI [14.200, 19.552] [13.875, 18.898]
Residual Skewness 0.401 −0.098

Mean Residual: −4.188 −2.079
Mean Residual: BCa 99% CI [−6.953, −1.035] [−4.814, 0.920]

Residual: Range 96.89 101.45
Residual Variance 291.822 274.091

Residual Variance: BCa 99% CI [201.207, 382.593] [192.434, 358.014]

The newly calibrated λ model has lower RSS with higher E index compared to the
runoff model formulated with the Asymptotic CN value. The models’ residual skewness
is near to zero, thus the mean residual value can act as an indicator for the predictive
model’s accuracy. The new λ model has lower mean residual with 99% confidence interval
range which spans across zero, indicating its capability to achieve zero (residual) runoff
prediction error. On the other hand, the AFM model tends to under-predict runoff volumes
since their mean residual confidence interval range is within negative value range. The
descriptive statistics indicates that the AFM model has a lower residual range. However,
the standard deviation and variance in the model’s residual are lower in the new λ model
with smaller confidence interval ranges. Hence, the new λ model has higher stability and
reliability for the dataset of this study.

AFM model faced another issue, whereby the calculated Ia value (24.16 mm) is larger
than nearly 3.10% (seven recorded rainfall events) of the DID HP 27 dataset. According to
the runoff constraint defined by SCS (as stated in Section 2.1) any rainfall depths < Ia value
would not initiate any runoff; hence, AFM model failed to comply with the SCS constraint
for those seven P-Q data pairs. On the other hand, New λ model does not have this issue.

4. Conclusions

This article presented the methodology to perform the SCS CN model calibration
under the guide of inferential statistics with regional rainfall-runoff data. The study
honed the runoff prediction accuracy of a popular rainfall-runoff model and based on its
mathematical framework to develop engineering applications. Key highlights are as below:

1. The methodology to reassess the validity of a popular runoff model was presented.
Under this study, the existing SCS runoff model is invalid for runoff modelling (alpha
= 0.01), and therefore the model must be calibrated. λ = 0.051 (99% CI ranges from
0.034, 0.051) and CN0.2 = 72.58 (99% CI ranges from 67 to 76) are the calibrated results
for runoff prediction in Peninsula Malaysia according to the dataset of this study.
Within these CN0.2 areas, SCS model underpredicts runoff amount when rainfall
depth of a storm is <70 to 85 mm and its overprediction tendency worsens toward
larger storm events if it is not calibrated. The SCS CN model underpredicted runoff
amount the most (2.4 million L/km2 area) at CN0.2 = 67 area and rainfall depth of
55 mm while it nearly overpredicted runoff amount by 25 million L/km2 area when
the storm depth reaches 430 mm in Peninsula Malaysia.

2. The closed form equation of the “Critical Rainfall Amount (Pcrit)” was solved (Sec-
tions 2.12 and 3.10) to narrow the research gap. Figure 6 example illustrated its use
and past publication errors were detected (Table 4). The “Critical Curve Number
(CNcrit)” concept and the use of the runoff difference curves graph were also intro-
duced in this article (Sections 2.11–2.13 and Sections 3.9–3.11) with demonstrated
applications shown in Figures 6–8.
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3. The 3D runoff difference model (Figure 2a,b) was created with Equation (22) to assess
the runoff prediction results of the existing SCS CN model and its type II errors.
Equations (25)–(28) to estimate the worst-case runoff prediction errors of the SCS CN
model when it is not calibrated with λ = 0.051 for runoff predictions in Peninsula
Malaysia. Any past study or engineering projects using this model and based upon
the return period concept of rainfall amount below 70 mm might be under-designed
while the model has over-design risk when a storm depth is larger than 85 mm. SCS
practitioners are encouraged to refer to the general formulae (Equations (10)–(12))
and proposed methods in this article to derive the specific model and equations for
their studies. Equation (2) must be validated with rainfall-runoff dataset prior to its
adoption for runoff prediction in any part of the world.

4. Authors cautioned that there are several limitations of the proposed methodology.
Minimum sample size should be at least 100 observations while the alpha level setting
for Null assessment is pending upon research need. BCa should be used instead of
bootstrapping and the choice of the statistical software must come with the option
to provide confidence interval for median value to cater for model calibration need
when the dataset is skewed. Runoff error analyses beyond the confidence interval or
dataset limit may not be meaningful for interpretations.

Author Contributions: Conceptualization, L.L. and Z.Y.; methodology, L.L.; software, L.L. and J.L.L.;
validation, L.L. and Z.Y.; formal analysis, L.L.; investigation, L.L. and Z.Y.; resources, L.L. and Z.Y.;
data curation, L.L.; writing—original draft preparation, L.L. and J.L.L.; writing—review and editing,
L.L., J.L.L., and Z.Y.; visualization, L.L. and J.L.L.; supervision, Z.Y.; project administration, L.L. and
Z.Y.; funding acquisition, L.L. and Z.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors would like to thank the Institute of Postgraduate Studies & Research (IPSR) of
Universiti Tunku Abdul Rahman (UTAR) for financial support in this study (IPSR/RMC/UTARRF/2019-
C2/L07). This study was also partly supported by the Brunsfield Engineering Sdn. Bhd., Malaysia
(Brunsfield 8013/0002) and partly funded by FRGS (RJ130000.7809.4F208) from the Centre for Envi-
ronmental Sustainability and Water Security of Universiti Teknologi Malaysia.

Acknowledgments: The authors appreciate the guidance from R. H. Hawkins at The University of
Arizona, Tucson, AZ, USA and 3 anonymous reviewers who provided their feedback during the
review process of this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. EM-DAT, CRED/UCLouvain, Brussels, Belgium. International Disasters Database, 1900–2020 Hydrological & Meteorological
Categories (Flood, Landslide & Storms). Available online: www.emdat.be (accessed on 16 December 2020).

2. Hawkins, R.H.; Ward, T.; Woodward, D.E.; Van Mullem, J. Curve Number Hydrology: State of the Practice; ASCE: Reston, VA, USA,
2009; p. 106.

3. Hawkins, R.H. Curve Number Method: Time to Think Anew? J. Hydrol. Eng. 2014, 19, 1059. [CrossRef]
4. Ling, L.; Yusop, Z.; Yap, W.-S.; Tan, W.L.; Chow, M.F.; Ling, J.L. A Calibrated, Watershed-Specific SCS-CN Method: Application to

Wangjiaqiao Watershed in the Three Gorges Area, China. Water 2019, 12, 60. [CrossRef]
5. National Engineering Handbook; Part 630 Hydrology, Chapter 10, Figure 10.1: USDA, NRCS. 2004. Available online: https:

//directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=17752.wba (accessed on 30 March 2021).
6. Ross, C.W.; Prihodko, L.; Anchang, J.; Kumar, S.; Ji, W.J.; Hanan, N.P. HYSOGs250m, global gridded hydrologic soil groups for

curve-number-based runoff modeling. Sci. Data 2018, 5, 180091. [CrossRef] [PubMed]
7. Jaafar, H.H.; Ahmad, F.A.; El Beyrouthy, N. GCN250, new global gridded curve numbers for hydrologic modeling and design.

Sci. Data 2019, 6, 1–9. [CrossRef]
8. Chen, Y.; Wang, Y.; Zhang, Y.; Luan, Q.; Chen, X. Flash floods, land-use change, and risk dynamics in mountainous tourist areas:

A case study of the Yesanpo Scenic Area, Beijing, China. Int. J. Disaster Risk Reduct. 2020, 50, 101873. [CrossRef]
9. Park, K.; Won, J.-H. Analysis on distribution characteristics of building use with risk zone classification based on urban flood risk

assessment. Int. J. Disaster Risk Reduct. 2019, 38, 101192. [CrossRef]
10. Sun, R.; Gong, Z.; Gao, G.; Shah, A.A. Comparative analysis of Multi-Criteria Decision-Making methods for flood disaster risk in

the Yangtze River Delta. Int. J. Disaster Risk Reduct. 2020, 51, 101768. [CrossRef]

107



Mathematics 2021, 9, 812

11. Feng, B.; Wang, J.F.; Zhang, Y.; Hall, B.; Zeng, C.Q. Urban flood hazard mapping using a hydraulic-GIS combined model.
Nat. Hazards 2020, 100, 1089–1104. [CrossRef]

12. Yalcin, E. Assessing the impact of topography and land cover data resolutions on two-dimensional HEC-RAS hydrodynamic
model simulations for urban flood hazard analysis. Nat. Hazards 2020, 101, 995–1017. [CrossRef]

13. Zelelew, D.G. Spatial mapping and testing the applicability of the curve number method for ungauged catchments in Northern
Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 293–301. [CrossRef]

14. Durán-Barroso, P.; González, J.; Valdés, J.B. Sources of uncertainty in the NRCS CN model: Recognition and solutions. Hydrol.
Process. 2017, 31, 3898–3906. [CrossRef]

15. Lal, M.; Mishra, S.K.; Pandey, A.; Pandey, R.P.; Meena, P.K.; Chaudhary, A.; Jha, R.K.; Shreevastava, A.K.; Kumar, Y. Evaluation of
the Soil Conservation Service curve number methodology using data from agricultural plots. Hydrogeol. J. 2017, 25, 151–167.
[CrossRef]

16. Fidal, J.; Kjeldsen, T. Accounting for soil moisture in rainfall-runoff modelling of urban areas. J. Hydrol. 2020, 589, 125122.
[CrossRef]

17. Sumargo, E.; McMillan, H.; Weihs, R.; Ellis, C.J.; Wilson, A.M.; Ralph, F.M. A soil moisture monitoring network to assess controls
on runoff generation during atmospheric river events. Hydrol. Process. 2021, 35. [CrossRef]

18. Hoang, L.; Schneiderman, E.M.; Moore, K.E.B.; Mukundan, R.; Owens, E.M.; Steenhuis, T.S. Predicting saturation-excess runoff
distribution with a lumped hillslope model: SWAT-HS. Hydrol. Process. 2017, 31, 2226–2243. [CrossRef]

19. Davidsen, S.; Löwe, R.; Ravn, N.H.; Jensen, L.N.; Arnbjerg-Nielsen, K. Initial conditions of urban permeable surfaces in
rainfall-runoff models using Horton’s infiltration. Water Sci. Technol. 2017, 77, 662–669. [CrossRef]

20. Jiang, R. Investigation of Runoff Curve Number, Initial Abstraction Ratio; University of Arizona: Tucson, AZ, USA, 2001.
21. DID, Hydrological Procedure No. 27. Design Flood Hydrograph Estimation for Rural Catchments in Peninsula Malaysia. JPS,

DID, Kuala Lum-Pur. 2010. Available online: https://www.water.gov.my/jps/resources/PDF/Hydrology%20Publication/
Hydrological_Procedure_No_27_(HP_27).pdf (accessed on 30 March 2021).

22. Woodward, D.E.; Hawkins, R.H.; Jiang, R.; Hjelmfelt, J.A.T.; Van Mullem, J.A.; Quan, Q.D. Runoff Curve Number Method:
Examination of the Initial Abstraction Ratio. In Proceedings of the World Water & Environmental Resources Congress 2003;
American Society of Civil Engineers (ASCE), Philadelphia, PA, USA, 23–26 June 2003; pp. 1–10.

23. ASCE-ASABE (American Society of Agricultural and Biological Engineers)-NRCS (Natural Resources Conservation Service) Task
Group on Curve Number Hydrology. Report of Task Group on Curve Number Hydrology, Chapters 8 (Land Use and Land Treatment
Classes), 9 (Hydrologic Soil Cover Complexes), 10 (Estimation of Direct Runoff from Storm Rainfall), 12 (Hydrologic Effects of Land Use and
Treatment); Hawkins, R.H., Ward, T.J., Woodward, D.E., Eds.; ASCE: Reston, VA, USA, 2017.

24. Santikari, V.P.; Murdoch, L.C. Including effects of watershed heterogeneity in the curve number method using variable initial
abstraction. Hydrol. Earth Syst. Sci. 2018, 22, 4725–4743. [CrossRef]

25. Hawkins, R.H.; Theurer, F.D.; Rezaeianzadeh, M. Understanding the Basis of the Curve Number Method for Watershed Models
and TMDLs. J. Hydrol. Eng. 2019, 24, 06019003. [CrossRef]

26. Helsel, D.R.; Hirsch, R.M.; Ryberg, K.R.; Archfield, S.A.; Gilroy, E.J. Statistical methods in water resources. In Techniques and
Methods; US Geological Survey: Reston, VA, USA, 2020; p. 458.

27. IBM. IBM, SPSS Bootstrapping 21 Guide; IBM Press: Indianapolis, IN, USA, 2012.
28. Efron, B. Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction; Cambridge University Press: London,

UK, 2010.
29. Puth, M.-T.; Neuhäuser, M.; Ruxton, G.D. On the variety of methods for calculating confidence intervals by bootstrapping.

J. Anim. Ecol. 2015, 84, 892–897. [CrossRef]
30. Schneider, L.; McCuen, R.H. Statistical Guidelines for Curve Number Generation. J. Irrig. Drain. Eng. ASCE 2005, 131, 282–290.

[CrossRef]
31. Hjelmfelt, A.T. Curve-number procedure as infiltration method. J. Irrig. Drain. Eng. ASCE 1980, 106, 1107–1111.
32. Hjelmfelt, A.T. Empirical Investigation of Curve Number Technique. J. Irrig. Drain. Eng. ASCE 1980, 106, 1471–1476.
33. Hawkins, R.H. Asymptotic determination of runoff curve numbers from data. J. Irrig. Drain. Eng. ASCE 1993, 119, 334–345.

[CrossRef]
34. González, Á.; Temimi, M.; Khanbilvardi, R. Adjustment to the curve number (NRCS-CN) to account for the vegetation effect on

hydrological processes. Hydrol. Sci. J. 2015, 60, 591–605. [CrossRef]
35. Kowalik, T.; Walega, A. Estimation of CN Parameter for Small Agricultural Watersheds Using Asymptotic Functions. Water 2015,

7, 939–955. [CrossRef]

108



mathematics

Article

Unified CACSD Toolbox for Hybrid Simulation and Robust
Controller Synthesis with Applications in DC-to-DC Power
Converter Control
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Abstract: The current article presents the design, implementation, validation, and use of a Computer-
Aided Control System Design (CACSD) toolbox for nonlinear and hybrid system uncertainty mod-
eling, simulation, and control using μ synthesis. Remarkable features include generalization of
classical system interconnection operations to nonlinear and hybrid systems, automatic computation
of equilibrium points for nonlinear systems, and optimization of least conservative uncertainty
bounds, with direct applicability for μ synthesis. A unified approach is presented for the step-down
(buck), step-up (boost), and single-ended primary-inductor (SEPIC) converters to showcase the use
and flexibility of the toolbox. Robust controllers were computed by minimization of the H∞ norm of
the augmented performance systems, encompassing a wide range of uncertainty types, and have
been designed using the well-known mixed-sensitivity closed loop shaping μ synthesis method.

Keywords: CACSD toolbox; operating point linearization; automatic uncertainty bound computation;
Model-in-the-Loop simulation; hybrid simulation; robust control; H∞ control; μ synthesis; DC-to-DC
power converters; buck; boost; SEPIC

1. Introduction

Robust Control represents a massive point of interest when it comes to Control Theory,
which has been heavily studied over the past decades. However, albeit Robust Control
brings many benefits, it is still an open field in research which gathers increasingly more
approaches over time. Basically, the goal of a robust controller is to accomplish a specified
set of performances for bounded model uncertainties which can occur in practice due to
various reasons. In other words, closed loop stability and performance are maintained
even for model parameter variations and unmodeled dynamics alike.

Over the years, multiple and various approaches for designing robust controllers
have been presented, some of them being implemented into dedicated toolboxes, such
as MATLAB’s Robust Control Toolbox [1]. This toolbox gathers the most efficient ones
based on H2, H∞, and μ synthesis methods, and it is often considered a reference in
research. However, while using these types of toolboxes leads to controllers which are
optimal for their prescribed criterion, they are not necessarily best in terms of conventional
performances. Additionally, of great use for defining and optimizing difficult robust control
problems is the Global Optimization Toolbox from in [2], providing ready-to-use solvers
using various state-of-the-art algorithms, such as Particle Swarm Optimization (PSO) and
Genetic Algorithms (GA). An important work in this direction, for computing optimal
weighting functions for the generalized plant model, is presented in [3].

Even though there is a large variety of CACSD toolboxes in the field, their number
is still expanding due to the necessity of overcoming drawbacks that the already existing
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ones have. At this point, the purpose of new toolboxes is not only to determine robust
controllers for a specific process class, but to use a unified approach that would make
them work for more types of systems, even multiple interconnected systems, in various
configurations. User experience is also more accentuated, which is why some of them
incorporate graphical user interfaces (GUIs), for improved usability.

An example is Multivar, which is a MATLAB-based application used for multiple-
input and multiple-output (MIMO) control design, presented in [4]. This toolbox supports
two working modes. It allows the user to work both in function and GUI mode (which
represents a configuration wizard for determining the controller). Multivar can be used
for LTI systems with or without time delay and it allows creating a model; converting,
approximating, and analyzing it; input–output pairing and decoupling; and controller
design and evaluation. Besides this, the user is able to export the control design and
compare it with other saved designs. Another GUI-based robust controller design tool,
which was created in LabVIEW, is presented in [5], based on the H∞ loop shaping method.
However, the goal was to provide a simple, user-friendly interface to make it easier to use,
especially for educational purposes. Therefore, as mentioned by the authors, it does not
provide the same flexibility as other design tools on the market.

LCToolbox, as presented in [6], is another MATLAB software package which is used
for robust controller design. One of the advantages of using this toolbox instead of classic
MATLAB routines is the fact that it gathers all necessary steps for controller design in
one place, while cutting the need of preprocessing steps such as separate construction of
the plant, and postprocessing steps, such as closed loop simulation. LCToolbox can be
used for both linear time-invariant (LTI) and linear parameter-varying (LPV) models, and
it also incorporates system identification methods. The controller is obtained by using
the H∞ loop shaping method. Other H∞-based CACSD toolboxes have been presented
over the past years. One example is represented in [7], which is based on linearizing or
convexifying the conventional non-convex constraints on the classical robustness margins
of H∞ constraints. The controller parameters are then computed by using an optimization
solver. This toolbox was created for MATLAB, and some of its main features are represented
by the large variety of control problems in which it could be used, such as multi-model
systems; the toolbox is designed to work with the output data of MATLAB’s System
Identification Toolbox [8]. The output of the toolbox is represented by a PID controller,
which can be easily implemented. Another example of a H∞-based CACSD toolbox is
shown in [9], in which the main advantage is the reduced conservatism of almost all types
of model uncertainties which are defined.

Controller order is an important factor when implementing it on real systems. There-
fore, this might be an issue in some cases. However, methods that are determining a
fixed structure controller are already presented, such as in [10], which is based on the H2
controller design method, but can be cumbersome to compute. In order to deal with the
high order controller problem, other toolboxes include controller simplification steps to
avoid the necessity of postprocessing, as presented in [11].

Currently acknowledged problems in this domain regard closed loop simulation,
where performance validation is generally treated ad hoc, from one control problem to
another. Another difficulty encountered is when the test cases were done only on the
linearized system for which the controller is designed, without checking if the initially
proposed performance values are additionally verified for the nonlinear plant model, and,
also, uncertainty modeling is a very cumbersome operation. The purpose of the paper is to
provide means for treating the previously stated problems in a unified manner, such as
implementing automated testing, performance validation, and report generation.

In this current iteration of the toolbox, robust controllers were designed using the well-
established routines from in [1]. The interface is scalable and the control logic and validation
can be replaced with other user-defined methods, or the current robust control approach
can be replaced with open source alternatives for the H2 and H∞ optimization problems,
such as presented in the thesis [12], with the possibility to refine the necessary solutions
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of the Algebraic Riccati Equations (AREs) using the algorithms from [13], while for the μ
synthesis problem, the thesis [14] provides a flexible, open-source implementation using
linear matrix inequalities (LMIs). A clear advantage over the ARE approach is that LMIs are
capable of solving singular and close to singular problems. Alternatively, a mixed H2/H∞
approach for stabilization and optimization using fixed-order controllers can be found
in [15]. As such, the current iteration of the proposed toolbox is MATLAB-dependent for
certain key functionalities, especially with regards to numerical simulation, robust control,
and optimization, although the exposed ideas and mathematical framework can be directly
implemented in other software environments, such as Python, Scilab, or LabVIEW.

The remainder of the paper is structured in the following manner. Section 2 describes
the software structure and features of the proposed toolbox; Section 3 describes a proposed
end-to-end workflow exemplified using modeling, control, validation, and simulation of
several DC-to-DC converter topologies; and Section 4 illustrates comparative discussions,
proposed improvements, and completions for future work and conclusions.

2. Toolbox Structure and Functionalities

The proposed toolbox has been designed with the target of end-to-end design and im-
plementation of closed loop control systems, starting from the definition of the uncertainty
set of plants to be controlled, their required operating point, along with control perfor-
mance specifications and controller synthesis, and ending with the controller validation for
the initial desired plant set.

2.1. Toolbox Features

Proposed features and advantages over existing toolboxes available in the literature:

• specify finite-dimensional dynamical systems with the general framework from
Equation (1) to be used with the MATLAB ode framework; ability to interconnect such
systems in series, parallel, and linear-fractional transformations; this functionality is
described in Sections 2.2.1 and 2.2.2;

• specify hybrid dynamical systems in the framework from in [16] as in Equation (4),
with the ability to interconnect such systems in series, parallel, and linear-fractional
transformations, upper and lower; this feature is described in Section 2.2.3;

• automatically compute equilibrium points numerically, with the possibility to impose
certain states, inputs, and/or outputs, while the remaining ones are deduced through
numerical optimization; this feature is presented in Section 2.4;

• automatically compute the uncertainty model as requested alongside a nominal
plant: additive, inverse additive, input and output multiplicative, etc. using a global
optimization algorithm, such as particle swarm optimization, to be directly used as
necessary for robust synthesis methods; removes the burden for the control engineer
to manually do this process for each plant; this feature is presented in Section 2.5;

• flexible and scalable, all features are implemented through MATLAB code and does
not need the use of Simulink, which can become cumbersome when treating families
of plants and not a single, specific, plant at a time; also, to account for the operat-
ing point in the case of linearized, nonlinear, and hybrid systems, alike, the same
interface for Model-in-the-Loop simulation is provided in the toolbox, as shown in
Sections 2.2 and 2.3;

• besides the automatic validation of the frequency response for the desired operating
point of the linearized plant family, the toolbox runs tests accounting for the uncer-
tainty behavior of the desired nonlinear plant, not only on the linearization which the
controller has been designed for. Every specification imposed in the designed phase
will be automatically tested for the entire nonlinear system family, as illustrated in the
case studies from Section 3.
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2.2. Systems Specification

The scope of software classes implemented and described in this section aims to
provide a flexible framework for simulation by using the ordinary-differential equation
ode solver exclusively, with the low-level requirement of integrating a differential state
equation. As such, exogenous signals would be reference signals and disturbances, known
a priori in a simulation context. The intrinsic signals, i.e., commands and corresponding
measurements, are passed to their corresponding subsystems by means of ode. Figure 1
encompasses an overview of the toolbox classes described in Sections 2.2–2.4. When
the relationship between two classes is of type inheritance, the inherited class will not
redundantly recall all previous properties and methods from the base class in the diagram,
unless they overload the methods and is explicitly noted.

Figure 1. Class diagram for general-purpose nonlinear, LTI, linearized, and hybrid system imple-
mentations, along with the uncertain plant factory class, interconnections, and main functionalities.

2.2.1. Nonlinear Systems

For the purpose of this paper, we will focus on finite-dimensional systems: determin-
istic and stochastic. The so-called explicit or standard system form is obtained by writing
the plant model in the following canonical form, using a set of differential equations and a
set of output equations: {

ẋ(t) = F(x(t), u(t), t);

y(t) = h(x(t), u(t), t),

(1a)

(1b)

with the vector maps F and h being Lipschitz functions. The input signal u(t) has dimension
m, state signal x(t) with dimension n, and output signal y(t) with dimension p, with t ≥ 0.
The initial conditions of the system are x(0) = x0 ∈ Rn.

Dynamical systems of the form (1) are implemented in class System. This will be the
baseline interface for all systems the toolbox works with. Its most important methods
are sim, findEqPoint, and linearize, which will be briefly described. The method sim

simulates the dynamical system described by Equation (1a) from the initial condition x0,
using the exogenous signal u(t), which is a predetermined anonymous function with
at least the input argument time. tfin can be a scalar time value representing the final
simulation time, a simulation interval, or a vector of predetermined time values. The solver
options and type are based on MATLAB’s ode framework options and are sent directly to
it. The solver type can be selected from any of the supported functions: ode113, ode15s,
ode15i, ode23, ode23t, ode23s, ode23tb, or ode45. After integrating the state equation,
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the output signal y(t) can be directly computed using the memoryless function h from
(1b). A useful particularization is also the method simInitCond, with the only difference
being that it replaces the time-varying input signal u(t) with a constant value u0, thus
obtaining an impulse response. The method findEqPoint deduces an equilibrium point
for the system given a set of specifications on the input, state, or output vectors and is
described in detail in Section 2.4. After obtaining a valid equilibrium point, a linearized
system can be obtained using the method linearize, also described there.

2.2.2. Linear Systems

Of particular interest for the framework and for control systems in general are linear
time-invariant systems, which inherit the software interface from the System class, are
implemented in the class LTISystem and are defined by{

ẋ(t) = Ax(t) + Bu(t);

y(t) = Cx(t) + Du(t).

(2a)

(2b)

Separately, a nonlinear system can be linearized in the vicinity of an operating point,
which is an equilibrium point for said system. The operating point (u0, x0, y0, t0) can
be provided by the user or can be computed using the functionality from Section 2.4.
The linearized system will work with variations of the initial variables and have the
following model:

{
Δẋ(t) = A · Δx(t) + B · Δu(t);
Δy(t) = C · Δx(t) + D · Δu(t);

⇔
{

ẋ(t) = A(x(t)− x0) + B(u(t)− u0);
y(t) = C(x(t)− x0) + D(u(t)− u0) + y0.

(3)

This latter structure is useful for MiL simulations and is implemented in the auxiliary
class LTIEqSystem, seen as an affine nonlinear system. The great advantage of having
the system from Equation (3) readily available is that it is interchangeable with the initial
nonlinear interface in a closed loop context without making further adaptations in the
source code and can be used to study the performance degradation obtained by replacing
the controller from the linearized system to the nonlinear plant.

2.2.3. Hybrid Systems

A useful extension of framework (1) for hybrid systems, to account for system discon-
tinuities, is with structures described in [16,17]:⎧⎪⎨⎪⎩

ẋ(t) = F(x(t), u(t), t), (x, u, t) ∈ C;

x+(t) = G(x(t), u(t), t), (x, u, t) ∈ D;

y(t) = h(x(t), u(t), t),

(4a)

(4b)

(4c)

with F : Rn+m+1 → Rn as the flow function, G : Rn+m+1 → Rn the jump function, and
h : Rn+m+1 → Rp the output function, while C ⊂ Rn+m+1 represents the flow set and
D ⊂ Rn+m+1 is the jump set. When executing an ode simulation, a jump condition trigger
is permanently verified and, based on the selected configuration, it allows prioritizing the
flow logic, the jump logic, or a stochastic behavior which includes randomly selecting any
of them. This jump condition will also be needed for hybrid system interconnections.

We propose a separate class in the toolbox, called HybridSystem, which inherits the
previously described class System, includes the ode event-based mechanism from HyEQ
Toolbox [16], and is extended to support time-varying differential equation systems and
exogenous input signals. Besides the base interface from System, it also provides methods
for functions G, C, and D. It also provides a wrapper function to promote any System

object to the type HybridSystem, by adding dummy G, C, and D methods, in order to
be compatible for use in hybrid system interconnections. The flexibility added by this
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class in the toolbox allows model-in-the-Loop simulations using physical processes with
hybrid dynamics, such as switching systems, i.e., electrical machines and power converters,
or simulations of the closed loop control system, seen as hybrid system through the
interconnection of a continuous-time process and a discrete-time controller, allowing the
user to assess several performance analysis steps.

2.3. System Interconnections

After defining individual or atomic systems as in previous sections, the necessity
for composing system interconnections readily appears. The classical interconnection
operations are the series, parallel, lower, and upper linear-fractional transformations (LLFT
and ULFT). Moreover, two separate approaches have been considered, i.e., to interconnect
general-purpose nonlinear systems modeled by the class System and hybrid systems
modeled by the class HybridSystem separately. The first case is useful for linearization
near an operating point, studying its system theoretical properties, and designing control
techniques, while the latter becomes useful in a model-in-the-Loop simulation context
and for closed loop system property analysis. All provided system interconnections are
implemented in classes which inherit the base class System.

The software classes presented in this section extend the series, parallel, feedback,
and lft functions from MATLAB for nonlinear and hybrid systems, based on the interfaces
from Equations (1) and (4). For hybrid system interconnections, the continuous and
discrete dynamics sets C and D, respectively, are obtained using union and intersection
set operations.

Moreover, the next discrete state for each subsystem is triggered by its own logic, pre-
defined in the jump function G and only when necessary; otherwise, it remains unchanged.
For specifying this next discrete state x+ logic, as in the interface from Equation (4c), we
will use the notation IF(CONDITION, THEN, ELSE), where CONDITION will be true when
the point in the state-space is in the jump set, i.e., (x, u, t) ∈ D or (x, u, t) �∈ C; THEN gives
the next state if a jump needs to be performed; and ELSE gives the next discrete state
otherwise.

The state, output, and hybrid domain equations for nonlinear and hybrid system
series connection, with the notations used in Figure 2, upper row, implemented in classes
SeriesConnectionSystem and HybridSeriesConnectionSystem, are as follows:

[
ẋ1
ẋ2

]
=

[
F1(x1, u, t)

F2(x2, h1(x1, u, t), t)

]
;

y = h2(x2, h1(x1, u, t), t).

[
ẋ1
ẋ2

]
=

[
F1(x1, u, t)

F2(x2, h1(x1, u, t), t)

]
;[

x+1
x+2

]
=

[
if(jump1, G1(x1, u, t), x1)

if(jump2, G2(x2, h1(x1, u, t), t), x2)

]
;

C(x, u, t) = C1(x1, u, t) ∩ C2(x2, h1(x1, u, t), t);

D(x, u, t) = D1(x1, u, t) ∪D2(x2, h1(x1, u, t), t);

y = h2(x2, h1(x1, u, t), t).

(5)

Given two initial subsystems Sys1 and Sys2 with dimensions (m1, n1, p1) and (m2, n2,
p2), respectively, the resulting series connection system will have dimensions (m = m1, n =
n1 + n2, p = p2).
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Figure 2. Series and parallel interconnections for general-purpose and hybrid systems.

The state, output, and hybrid domain equations for nonlinear and hybrid system
parallel connection, with the notations used in Figure 2, bottom row, implemented in the
classes named ParallelConnectionSystem and HybridParallelConnectionSystem, are
as follows:

[
ẋ1
ẋ2

]
=

[
F1(x1, u, t)
F2(x2, u, t)

]
;

y = h1(x1, u, t) + h2(x2, u, t).

[
ẋ1
ẋ2

]
=

[
F1(x1, u, t)
F2(x2, u, t)

]
;[

x+1
x+2

]
=

[
if(jump1, G1(x1, u, t), x1)
if(jump2, G2(x2, u, t), x2)

]
;

C(x, u, t) = C1(x1, u, t) ∩ C2(x2, u, t);

D(x, u, t) = D1(x1, u, t) ∪D2(x2, u, t);

y = h1(x1, u, t) + h2(x2, u, t).

(6)

Given two initial subsystems Sys1 and Sys2 with dimensions (m1, n1, p1) and (m2, n2,
p2), respectively, the resulting parallel connection system will have dimensions (m = m1 =
m2, n = n1 + n2, p = p1 = p2).

The state, output, and hybrid domain equations for nonlinear and hybrid system lower
linear fractional trasformation (LLFT) connection, with the notations used in Figure 3, upper
row, implemented in classes LLFTConnectionSystem and HybridLLFTConnectionSystem,
are as follows:

[
ẋ1
ẋ2

]
=

[
F1
(
x1, uLLFT

1 , t
)

F2
(
x2, uLLFT

2 , t
)];

y =

[
h1
(
x1, uLLFT

1 , t
)

h2
(
x2, uLLFT

2 , t
)].

[
ẋ1
ẋ2

]
=

[
F1
(
x1, uLLFT

1 , t
)

F2
(
x2, uLLFT

2 , t
)];[

x+1
x+2

]
=

[
if
(
jump1, G1

(
x1, uLLFT

1 , t
)
, x1

)
if
(
jump2, G2

(
x2, uLLFT

2 , t
)
, x2

)];

C(x, u, t) = C1
(
x1, uLLFT

1 , t
) ∩ C2

(
x2, uLLFT

2 , t
)
;

D(x, u, t) = D1
(
x1, uLLFT

1 , t
) ∪D2

(
x2, uLLFT

2 , t
)
;

y =

[
h1
(
x1, uLLFT

1 , t
)

h2
(
x2, uLLFT

2 , t
)],

(7)

with the predefined notations:

u =

[
u1
u2

]
=

⎡⎢⎢⎢⎣
u11

u
re f
12

u
re f
21

u22

⎤⎥⎥⎥⎦, uLLFT
1 =

[
u11

u
re f
12 + y−21

]
≡
[

u11
u12

]
, uLLFT

2 =

[
u

re f
21 + y−12

u22

]
≡
[

u21
u22

]
. (8)
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The common convention in the literature is to consider the last NCON values from the
input vector u1, i.e., u12, as control input signals, while the last NMEAS values from the
output vector y1, i.e., y12, as measurements signals. Only the vector u will be an exogenous
signal, as the feedback components y−12 and y−21 are local and private feedback components
computed implicitly at the previous time step, dictated by the selected ode solver. The
exogenous signals u11 and u22 are seen as disturbance signals, while the signals u

re f
12 and

u
re f
21 are seen as reference signals.

Given two initial subsystems Sys1 and Sys2 with dimensions (m1, n1, p1) and (m2, n2,
p2), respectively, the resulting LLFT connection system will have dimensions (m = m1 +
m2, n = n1 + n2, p = p1 + p2). The subsystem Sys1 is usually seen as the controlled
plant, while Sys2 is seen as the controller. In order to assure compatibility between the
two, several assertions must be made: NMEAS = length(y12) = length(u21) and NCON

= length(y21) = length(u12).
The state, output, and hybrid domain equations for nonlinear and hybrid system upper

linear fractional trasformation (ULFT) connection, with the notations used in Figure 3, bottom
row, implemented in classes ULFTConnectionSystem and HybridULFTConnectionSystem,
are as follows:

[
ẋ1
ẋ2

]
=

[
F1
(
x1, uULFT

1 , t
)

F2
(
x2, uULFT

2 , t
)];

y =

[
h1
(
x1, uULFT

1 , t
)

h2
(
x2, uULFT

2 , t
)].

[
ẋ1
ẋ2

]
=

[
F1
(
x1, uULFT

1 , t
)

F2
(
x2, uULFT

2 , t
)];[

x+1
x+2

]
=

[
if
(
jump1, G1

(
x1, uULFT

1 , t
)
, x1

)
if
(
jump2, G2

(
x2, uULFT

2 , t
)
, x2

)];

C(x, u, t) = C1
(
x1, uULFT

1 , t
) ∩ C2

(
x2, uULFT

2 , t
)
;

D(x, u, t) = D1
(
x1, uULFT

1 , t
) ∪D2

(
x2, uULFT

2 , t
)
;

y =

[
h1
(
x1, uULFT

1 , t
)

h2
(
x2, uULFT

2 , t
)],

(9)

with the predefined notations:

u = u12, uULFT
1 =

[
y−2
u12

]
, uULFT

2 = y−11. (10)

The common convention in the literature is to consider the first NU values from the
input vector of the plant subsystem, i.e., u11, as input uncertainty signals, while the first
NY values from the output vector of the plant, i.e., y11, as output uncertainty signals. Only
the vector u ≡ u12 will be an exogenous signal, as the feedback components y−11 and y−2
are local and private feedback components computed implicitly at the previous time step,
dictated by the selected ode solver. The exogenous signal u12 is seen as set of performance
and control signals for the plant, without any reference signals recalled explicitly compared
to the LLFT case.

Given two initial subsystems Sys1 and Sys2 with dimensions (m1, n1, p1) and (m2, n2,
p2), respectively, the resulting ULFT connection system will have dimensions (m = m1 +
m2, n = n1 + n2, p = p1 + p2). The subsystem Sys1 is usually seen as the augmented
controlled plant, while Sys2 is seen as the unstructured uncertainty block. In order to
assure compatibility between the two, several assertions must be made: NY = length(y11)

= length(u2) and NU = length(y2) = length(u11).
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Figure 3. Upper (ULFT) and lower (LLFT) linear fractional transformation interconnections for
general-purpose nonlinear and hybrid systems, with the ability to impose external reference signals.

2.4. Automatic Equilibrium Point Computation

Given a nonlinear system as in Equation (1), which may also include interconnections
of systems, an operating point is desired with some of the input, state, and output variables
imposed, such as a water level in a tank yh(t) controlled through two pumps u f low(t),
one with variable flow and one with a fixed flow, or a mechanical transportation system
having a desired velocity yω(t) with respect to input forces and loads u(t). As such, a
mechanism to automatically compute a partially imposed equilibrium point for an entire
family of uncertain plants, relative to one which is considered nominal at the design phase,
is proposed in this paragraph.

Starting from the system definition with dimensions m, n, and p, consider the sets
of indexes, denoted by I , and prescribed values, denoted by V , for the input, state, and
output variables, respectively:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Iu :=
{

iu
1 , iu

2 , . . . , iu
mu

}
, Vu :=

{
u(iu

1 ), u(iu
2 ), . . . , u

(
iu
mu

)}
, 0 ≤ mu ≤ m;

Ix :=
{

ix
1 , ix

2 , . . . , ix
nx

}
, Vx :=

{
x(ix

1), x(ix
2), . . . , x

(
ix
nx

)}
, 0 ≤ nx ≤ n;

Iy :=
{

iy
1, iy

2, . . . , iy
py

}
, Vy :=

{
y
(

iy
1

)
, y
(

iy
2

)
, . . . , y

(
iy
py

)}
, 0 ≤ py ≤ p,

(11a)

(11b)

(11c)

along with their complementary sets of values for the indexes, denoted by UI , and the
values, denoted UV , to be computed through optimization by solving a system of equations:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
UIu :=

{
iu
1 , iu

2 , . . . , iu
m̃u

}
, UVu :=

{
ũ(iu

1 ), ũ(iu
2 ), . . . , ũ

(
iu
m̃u

)}
, 0 ≤ m̃u ≤ m;

UIx :=
{

ix
1 , ix

2 , . . . , ix
ñx

}
, UVx :=

{
x̃(ix

1), x̃(ix
2), . . . , x̃

(
ix
ñx

)}
, 0 ≤ ñx ≤ n;

UIy :=
{

iy
1, iy

2, . . . , iy
p̃y

}
, UVy :=

{
ỹ
(

iy
1

)
, ỹ
(

iy
2

)
, . . . , ỹ

(
iy
p̃y

)}
, 0 ≤ p̃y ≤ p,

(12a)

(12b)

(12c)

with ⎧⎪⎪⎨⎪⎪⎩
mu + m̃u = m, Iu ∪ UIu = {1, 2, . . . , m}, Iu ∩ UIu = ∅;

nx + ñx = n, Ix ∪ UIx = {1, 2, . . . , n}, Ix ∩ UIx = ∅;

py + p̃y = p, Iy ∪ UIy = {1, 2, . . . , p}, Iy ∩ UIy = ∅.

(13a)

(13b)

(13c)
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a set of permutation matrices Pu ∈ Rm×m, Px ∈ Rn×n, Py ∈ Rp×p are obtained after sorting
the indexes such as the following system of vector-valued equations needs to be solved:⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 = F
(

Px ·
[

x

x̃

]
, Pu ·

[
u

ũ

]
, t̃
)

;

Py ·
[

y

ỹ

]
= h

(
Px ·

[
x

x̃

]
, Pu ·

[
u

ũ

]
, t̃
)

.

(14a)

(14b)

The system from Equation (14) becomes equivalent to directly solving a system of
equations of the form 0 = F (z) in the vector-valued unknown:

z =
[
x̃T ũT ỹT t̃

]T ∈ R
ñx+m̃u+ p̃y+1. (15)

If the dynamical system is time-invariant or if the required time value is known a
priori, then the time variable can be removed from the solver or it can be imposed to a
certain value t in the same manner as the for the other signals. Moreover, the method is
flexible and allows imposing and solving only the subsystem (14a) if the output variables
coincide with the states. The unknown variables from Equation (15) can be initialized to
random values or a rough estimate for the entire family of uncertain plants can be obtained
with the simulation to a step response of the nominal plant at the required amplitudes. All
systems in the uncertain physical plant set will be found in the same mathematical vicinity.
After solving the preferred algebraic system configuration from Equation (14), the desired
equilibrium point

(
u, x, y, t

)
can be reconstructed using the inverse permutation matrices

P−1
u , P−1

x , P−1
y and the notations from Equations (11) and (12). The method findEqPoint

from class System forms and solves the system (14) and computes the desired equilibrium
point for its predefined dynamical system based on the specifications from Equations (11)
and (12) given in the structure eqOpts.

After acquiring the desired equilibrium point, the system linearization can be easily
deduced through numeric differentiation methods. The most straightforward method is to
compute the first-order Jacobian matrices of the functions F and h with respect to the state
and input signals x and u, respectively:

A =
δF
δx

∣∣∣∣
(x0,u0,t0)

; B =
δF
δu

∣∣∣∣
(x0,u0,t0)

; C =
δh
δx

∣∣∣∣
(x0,u0,t0)

; D =
δh
δu

∣∣∣∣
(x0,u0,t0)

. (16)

The method linearize(x0,u0,t0) from class System of Section 1 computes the ma-
trices from Equation (16) with a first-order derivative approximation and also the output
equilibrium value y0 = h(x0, u0, t0):

A1,n,i ≈
F
(
x0 + Δxi

0, u0, t0
)− F(x0, u0, t0)

Δx
; B1,m,j ≈

F
(

x0, u0 + Δu
j
0, t0

)
− F(x0, u0, t0)

Δu
,

(17)
following that the output matrices C and D to be computed in a similar manner by replacing F
with h in the above formulas. The shorthand notations are Δxi

0 =
[
0 · · · 0 Δx 0 · · · 0

]T

and Δu
j
0 =

[
0 · · · 0 Δu 0 · · · 0

]T for the disturbance vectors corresponding to the
state with the index i ∈ 1, n or input with index j ∈ 1, m, respectively, while the optimal [18] unit
perturbations are, using double precision, Δx = tol · (1 + ||x0||) and Δu = tol · (1 + ||u0||),
tol = 10−5. Obviously, when linearizing the system, the static amplification of the initial
nonlinear system is not accounted in the procedure, but will not be relevant in the actual
control design process and implementation due to the consideration of only Lipschitz
function-based systems and, as such, it will be correctly compensated. The correct simula-
tion of the linearized system near the operating point is done using the class LTIEqSystem.
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2.5. Automatic Least Conservative Uncertainty Bound Computation

Figure 4 encompasses an overview of the toolbox classes described in Sections 2.5
and 2.6, along with showing their relationship with the classes from the previous sections.
Based on any desirable combination of the above system classes, i.e., System, LTISystem,
LTIEqSystem, HybridSystem, and their interconnections, we propose a new functionality
to aid in uncertain system modeling, ready for use in augmenting the plant for μ syn-
thesis, implemented in the classes UncertainPlantFactory, seen in Figure 1, along with
UncertaintyBoundOptimizationProblem, seen in Figure 4.

The common uncertainty model types considered in practice are gathered in Table 1.
Besides the definition of the uncertain plant G(s) starting from a nominal model Gn(s) in
relation to the uncertainty block Δ(s), the mathematical expression of Δ(s) is necessary to
experimentally deduce its frequency response. Left and right coprime factor uncertainties
are described by two blocks: ΔM and ΔN , and one of them can be selected as a free term, i.e.,
one degree of freedom (1-DOF). The class UncertainPlantFactory provides an interface
to define a nominal plant and a random plant from a prespecified set. Besides the methods
getNominalPlant and getRandomPlant, both returning a System object, it implements
each uncertainty type Δ(s) from Table 1, obtained through Monte Carlo simulation using
the magnitude characteristic in the frequency domain.

Figure 4. Closed loop control problem class which encompasses an uncertain plant set with operating
point specification, options for automatically modeling the plant uncertainty, specifying robust
control performances, synthesizing controller, and validating obtained results.
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Table 1. Commonly used classes of perturbation and uncertainty models for multiple-input and multiple-output (MIMO)
systems, implemented in class UncertainPlantFactory.

Uncertainty Type Definition Implementation

Additive G(s) = Gn(s) + Δ(s) Δ(s) = G(s)− Gn(s)

Inverse additive (G(s))−1 = (Gn(s))−1 + Δ(s) Δ(s) = (G(s))−1 − (Gn(s))−1

Input multiplicative G(s) = Gn(s)[I + Δ(s)] Δ(s) = (Gn(s))−1(G(s)− Gn(s))

Output multiplicative G(s) = [I + Δ(s)]Gn(s) Δ(s) = (G(s)− Gn(s))(Gn(s))−1

Inverse input multiplicative (G(s))−1 = [I + Δ(s)](Gn(s))−1 Δ(s) = (G(s))−1(Gn(s))− I

Inverse output multiplicative (G(s))−1 = (Gn(s))
−1[I + Δ(s)] Δ(s) = (Gn(s))(G(s))−1 − I

Left coprime factor G(s) =
(

M̃ + ΔM̃
)−1(Ñ + ΔÑ

)
ΔM̃ =

(
Ñ + ΔÑ

)
(G(s))−1 − M̃, 1-DOF

Right coprime factor G(s) = (N + ΔN)(M + ΔM)−1 ΔM = (G(s))−1(N + ΔN)− M, 1-DOF

The frequency domain relevant for the studied plant is defined in logarithmic scale as

Ω = {ω = ω1 < ω2 < . . . < ωN−1 < ωN = ω}, (18)

along with the magnitude characteristic values sampled at points from Ω. By convention,
||Δ(jω)||∞ ≤ 1, ∀ω ≥ 0; thus, the worst-case uncertainty deduced experimentally through
Monte Carlo simulation is written as Δ(s)Wexp(s). As an example for the additive uncertainty
type, the uncertain plant family will be G(s) = Gn(s) + Δ(s) ·Wexp(s), with ||Δ(jω)||∞ ≤
1, ∀ω ≥ 0 and the toolbox returns the worst-case experimental magnitude characteristic of
Wexp(s), sampled at points from jΩ through the high-level method getUncertaintyModel-
Boundary from class UncertainPlantFactory, which wraps over low-level methods such
as getAdditiveUncBoundary, getInverseAdditiveUncBoundary etc.

Due to the fact that the sampled points from the previous paragraph cannot be
directly accounted for in robust control synthesis and, moreover, they may not represent
an actual transfer function, it appears the need to compute a least conservative low-order
transfer function to model the desired uncertainty family. This problem has been solved
by employing a global optimization algorithm, such as PSO, described in [19]. The PSO
algorithm has been considered in favor of other global optimization algorithms, such as
GA, due to its inherent structure of addressing semi-continuous functions, such as our
strongly nonlinear semi-continuous function described in Equation (21) in the variable
from Equation (19).

A particle x :=
[
x1 x2 · · · xn4

]T of the optimization problem is defined as the
transfer function

Wx(s) =
k
sp ·

∏
( ◦

Ts + 1
)

∏
(

s2

◦
ω

2
n

+ 2
◦
ζ
◦
ωn

s + 1
)

∏
(
T̂s + 1

)
∏
(

s2

ω̂2
n
+ 2ζ̂

ω̂n
s + 1

) =
x1

sp ·

n1

∏
2
(xks + 1)

n2

∏
n1+1

(
s2

x2
k
+

2xk+1
xk

s + 1

)
n3

∏
n2+1

(xks + 1)
n4

∏
n3+1

(
s2

x2
k
+

2xk+1
xk

s + 1

) , (19)

with optimization variables

k > 0;
{ ◦

Ti ∈
[

1
ω

,
1
ω

]}
, i ∈ 2 : n1;

{
T̂i ∈

[
1
ω

,
1
ω

]}
, i ∈ n2 + 1 : n3;{(◦

ζ i ∈ (0, 1),
◦
ωn,i+1 ∈ [ω, ω]

)}
, i ∈ n1 + 1 : 2 : n2;{(

ζ̂i ∈ (0, 1), ω̂n,i+1 ∈ [ω, ω]
)}

, i ∈ n3 + 1 : 2 : n4.

(20a)

(20b)

(20c)
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The cost functional found to provide good results for most initial particle swarms is

JΩ,Wexp(Wx) =
N

∑
k=1

∣∣∣|Wexp(jωk)|dB − |Wx(jωk)|dB
∣∣∣ · ϕN(k) + ∑

|Wx(jωk)|<|Wexp(jωk)|
λ, (21)

where ϕN : {1, 2, . . . , N} → R+ from the first sum is a windowing function, based on the
Gaussian window function, meant to amplify the penalization for low- and high-frequency
components, while the second sum adds a high-cost term λ = 109 for each frequency point
jωk for which the candidate function Wx is below the experimental reference uncertainty
weight Wexp. The windowing function considered is defined by

ϕN(k) =
(

3− 2 · wN

(
k− N + 1

2

))2
, (22)

with the Gaussian function wN : R→ R+ and value α = 2.5:

wN(x) = e−
1
2

(
α x
(N−1)/2

)2

= e−
x2

2σ2 ⇔ log wN(x) = −1
2

(
α

x
(N − 1)/2

)2
= − x2

2σ2 . (23)

The cost functional J(Wx) is configurable, such that a different windowing function
may be provided, or that the difference between Wexp and Wx in the integral may be
considered in absolute magnitude values instead of decibels. An alternative formulation
of this minimization problem would be to use a GA, where the optimization variable
x = Wx(s) could mutate in order to obtain different transfer function structures: add or
remove real poles and zeros or, also, complex conjugate pole and zero pairs.

This functionality is implemented in the class UncertaintyBoundOptimizationProblem,
using the methods getTransferFunctionCandidate for Equation (19), computeCandidate-
Fitness and fitnessIntegral for Equation (21) based on the magnitudes of |Wexp(jω)|
and |Wx(jω)| for ω ∈ Ω from Equation (18) and optimize to use the PSO algorithm to com-
pute the best candidate transfer function Wx,optim(s). The plot function has been overloaded
to facilitate seeing the fitness function values in real-time and, moreover, the Bode plot for the
best candidate Wx(s) compared to the experimental data Wexp(s).

2.6. Robust Synthesis and Closed Loop Validation

Classical solutions to the H2/H∞ problems are presented in [20–24] and others. The
control problem is typically formulated for the nominal plant using the generalized frame-
work depicted in Figure 5a.

Figure 5. (a) Generalized plant framework; (b) generalized plant framework with uncertainties.
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This generalized plant is obtained by augmenting the physical process model with
a set of mathematical signals which aid the optimization procedure and has the follow-
ing structure:

(
z(t)
y(t)

)
=

(
P11 P12
P21 P22

)(
w(t)
u(t)

)
, with

(
P11 P12
P21 P22

)
=

⎛⎜⎝ A B1 B2

C1 D11 D12
C2 D21 D22

⎞⎟⎠, (24)

where w ∈ Rnw is the exogenous input vector, u ∈ Rnu is the control input vector, z ∈ Rnz

is the error (output, performance) vector, and y ∈ R
ny is the measurement vector. The

closed loop system is given by the LLFT interconnection of P and K:

Pzw = LLFT(P, K) = P11 + P12K(I − P22K)−1P21. (25)

For the nominal plant, the target of the robust control problem is to minimize the H∞
norm using a stabilizing controller K, which can be written as

min
K stab.

‖Pzw‖∞ = min
K stab.

sup
ω∈R+

σ(Pzw(jω)), (26)

obtaining a (sub)optimal value γ by iteration, which minimizes the effects of the input
vector w(t) as seen through the performance output vector z(t).

However, this problem ensures only nominal stability and nominal performance.
However, the plant is a model of a physical process, having uncertainties. There are
two types of uncertainties: unstructured, which illustrates neglected and unmodelled
dynamics and which are represented by a full block Δ ∈ Rm×m, and parametric, which
are represented by δI, where δ is the maximum bound of the variable parameter. In a
mixed-scenario, the following set is considered:

Δ =
{

Δ = diag
(

δ1 In1 , . . . , δs Ins , Δ1, . . . , Δ f

)
|δk ∈ R, Δj ∈ R

mj×mj , k = 1, s, j = 1, f
}

. (27)

In Figure 5b, the closed loop system containing a LLFT connection between plant
P and controller K and an ULFT connection between plant P and uncertainty block Δ
is presented. In this case, the generalized plant contains one extra input vector, i.e.,
disturbance inputs d ∈ Rnd , and one extra output vector, i.e., disturbance outputs v ∈ Rnv ,
giving the following structure:

PΔ(s) =

⎛⎝Pvd(s) Pvw(s) Pvu(s)
Pzd(s) Pzw(s) Pzu(s)
Pyd(s) Pyw(s) Pyu(s)

⎞⎠⇔ PΔ :

⎛⎜⎜⎜⎝
ẋ(t)

v(t)
z(t)
y(t)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
A Bd Bw Bu

Cv Dvd Dvw Dvu
Cz Dzd Dzw Dzu
Cy Dyd Dyw Dyu

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x(t)

d(t)
w(t)
u(t)

⎞⎟⎟⎟⎠. (28)

A mathematical tool used for studying the robustness is the structured singular value,
defined for a square matrix M ∈ CN×N with respect to the set Δ as

μΔ(M) =
1

min
Δ∈Δ

{σ(Δ)|det(I − MΔ) = 0} , (29)

if there exists Δ ∈ Δ such that the matrix I − MΔ is rank deficient; otherwise, it is 0. For
the system presented in Figure 5b, the structured singular value of LLFT(P, K), according
to Δ, can be defined as

μΔ(LLFT(P, K)(s)) = sup
ω∈R+

μΔ(LLFT(P, K)(jω)). (30)
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Besides the classicalH2/H∞ techniques, the μ synthesis framework manages to design
a controller that meets the robust stability and robust performance specifications. The
robust stability implies that a certain controller manages to stabilize all processes described
by the upper linear fractional transformation between plant and uncertainty block, while
the robust performance means that the controller is able to impose the desired closed loop
performance in the worst-case scenario. Based on the main loop theorem, a controller K
meets the robust stability and robust performance if and only if the structural singular
value of the lower linear fractional transformation with respect to Δ is smaller than 1.
Therefore, the minimization problem can be written as

inf
K stab.

sup
ω∈R+

μΔ(LLFT(P, K)(jω)), (31)

which is not a convex problem. Additionally, the structural singular values are difficult
to be explicitly computed. In order to solve this problem, the following upper bound is
used [25]:

μΔ(LLFT(P, K)(jω)) ≤ inf
D∈D

σ(D · LLFT(P, K)(jω) · D−1), (32)

where the set D is defined in relation to the uncertainty set Δ as

D =
{

diag
(

D1, . . . , Ds, d1 Im1 , . . . , d f Im f

)∣∣∣Dk = D�
k ∈ R

nk×nk , dj > 0, k = 1, s, j = 1, f
}

. (33)

Now, using this bound, the solution of the initial non-convex problem can be practi-
cally approximated by solving the following quasi-convex problem:

inf
K stab.

sup
ω∈R+

inf
D∈D

σ
(

D(jω) · LLFT(P, K)(jω) · (D(jω))−1
)

. (34)

Finally, if the system D is fixed, the problem (34) is nothing but a H∞ control problem,
in this case called the K step. Furthermore, for a fixed controller K, the D scale step can be
obtained by solving a Parrot problem for a desired set of frequencies Ω = {ω1, . . . , ωN}
using a LMI and then obtain a minimum phase system after performing an identification
step. Using these, an iterative algorithm, based on alternative D-K iterations, manages to
solve the μ synthesis problem. This procedure starts with D = I and successively applies a
K step and a D scaling step until a stopping criterion is reached.

Of great use in the controller design phase are the sensitivity, complementary sensitiv-
ity, and control effort functions, respectively, defined by

S := (I + GK)−1;

T := GK(I + GK)−1;

R := K(I + GK)−1 = KS,

(35a)

(35b)

(35c)

where G is the open loop model. The great advantage of considering this approach is that
it allows sculpting the relevant loop functions to impose steady-state and transitory regime
performances, which are specified for different frequency ranges, using adequately selected
weighting functions. Besides the minimization from Equation (34), different constraints
can be added to the optimization problem to obtain a compromise between S, KS, and T at
various frequencies:

inf
K stab.

sup
ω∈R+

inf
D∈D

σ
(

D(jω) · LLFT(P, K)(jω) · (D(jω))−1
)

,

such that
∥∥∥(WSS WTT WKSKS

)T
∥∥∥

∞
< 1,

(36a)

(36b)
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also known as the mixed-sensitivity closed loop shaping μ synthesis method. The approach
considered in this first iteration of the toolbox uses closed loop shaping with μ synthesis
for the controller. Using the work in [26] as a starting point, different frequency response
specifications, directly correlated with desired time-response performances, can be im-
posed in the weighting functions. The sensitivity weighting function WS depends on four
parameters as in

WS(s) =

( 1
M1/n s + ωB

s + ωB A1/n

)n

, (37)

where ωB represents the imposed bandwidth of the system; M imposes the H∞ norm
of the sensitivity function, in order to limit the overshoot of the system; n imposes the
slope of the sensitivity function for low frequencies; and A imposes the maximum allowed
steady-state error.

On the other hand, the complementary sensitivity weighting function WT can be
generally defined by the following structure, in a symmetrical manner compared to WS:

WT(s) =

(
s + ωBT

A1/n
T s + ωBT M1/n

T

)n

, (38)

with ωBT being the imposed bandwidth of the system; MT imposes the H∞ norm of T(s);
n imposes the roll-off slope of the closed loop system, which should be directly coupled
with sensor noise characteristics; and AT imposes the least required attenuation for high
frequencies. In practice, the complementary sensitivity bandwidth ωBT can be adapted to
the characteristics of the sensor in order to account for high-frequency noise.

Finally, the control effort weighting function with desired specifications M0 :=
|WKS(0)|, M∞ := |WKS(∞)| and |WKS(j · ωd)| = Md, M0 < Md < M∞ can be synthe-
sized by the following formula:

WKS(s) =
M∞s + M0ωd

√
M2

∞−M2
d

M2
d−M2

0

s + ωd

√
M2

∞−M2
d

M2
d−M2

0

. (39)

A higher-order counterpart can be generalized as for the previous cases, but was not
found necessary for the proposed case studies and other tested benchmark plants.

Class RobustControlSynthesisProblem uses the nominal linearized plant around a
required operating point using the system (14) and options (11)–(13), with a specified uncer-
tainty type from Table 1, modeled through class UncertaintyBoundOptimization-Problem,
allows imposing closed loop performance specifications with frequency weights (37)–(39),
and synthesizes controller solutions for the problem (36) which cover the robust stability
and robust performance problems. Additionally, the class also allows controller postpro-
cessing, using order-reduction methods to compute easily implementable controllers. The
aforementioned controller synthesis problem is illustrated in Figure 6, while the result-
ing LTI controller can be used in a MiL simulation context using the interface from class
LTIEqSystem, encompassing system (3).
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Figure 6. Robust controller synthesis diagram for the plant G, with the uncertainty set Δ determined
a priori using the functionality from Section 2.5, linearized at the operating point (u0, x0, y0); by
convention, control inputs Δuc of the linearized plant G are indexed after disturbance inputs Δud.

Class ClosedLoopControlProblem gathers all data, options, computations, and results
from the previously presented individual blocks. It is used to define the end-to-end control
problem by aggregating the uncertain plant family with its corresponding least conservative
bound optimization; the robust control synthesis procedure and metadata; and allows
Model-in-the-Loop simulations with the nonlinear, linearized, and hybrid system models,
with automatic validation of imposed performances for the nonlinear plant in the frequency
and time-domain alike.

3. Results

To showcase the ease of use and functionalities of the proposed toolbox, a set of case
studies will be illustrated for DC-to-DC power converter circuits in a unified manner
to encompass modeling, control synthesis and performance validation, considering the
topologies buck, boost, and single-ended primary-inductor converter (SEPIC). DC-to-DC
converters have been considered as a case study due to their ubiquity in various practical
domains and applications, as presented in [27], ranging from renewable energy, hybrid
and electric vehicles, controlled power sources, and many more. They can be seen as a
good benchmark for control systems, due to their switching behavior, nonlinear dynamics,
and different tried and tested control methods, such robust techniques in [28], Lyapunov
methods in [29], passivity theory in [30], or sliding mode control as in [31].

This section will be split in a subsection which presents the converter mathematical
models, a subsection with a suggested workflow for a general purpose control problem,
followed by a subsection with numerical results and simulations for each of the studied
converter topologies. For the SEPIC converter, having the most highly nonlinear behavior,
thus being more difficult to control, we will illustrate and detail all plots generated by the
toolbox, while for the buck and boost circuits, for brevity, we will show only the relevant
figures and maintain the mathematical results and discussions.

3.1. Mathematical Modeling

The nonideal step-down (buck), step-up (boost), and single-ended primary-inductor
converter (SEPIC) circuits are presented in Figure 7, where each component is described
as follows.
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Figure 7. DC-to-DC power converter circuit topologies considered in the case studies: step-down
(buck), step-up (boost), and single-ended primary-inductor (SEPIC).

• S1: switching device, usually a transistor, and S2: switching device, usually a diode
or transistor;

• L, L1, L2: converter inductors;
• C, Cin, C1, C2: converter capacitors;
• R: (variable) output load resistance;
• E: external source voltage;
• rL, rL1 , rL2 : resistances associated with the inductors;
• rC, rCin , rC1 , rC2 : capacitors parasitic resistances;
• rDS1 , rDS2 : resistances associated with the ON state of the switching devices (usually

drain source);
• VF1 , VF2 : constant voltage drops associated with the conducting phase of S1 and S2;
• μ ∈ [0, 1]: normalized duty cycle applied to S1; complementary to the PWM signal

applied to S2.

Each converter has one control switching device S1, while the other one, S2, will be
complementary to the former. Although, typically S2 is a diode, it is preferable to use two
encapsulated transistors for S1 and S2. When working in continuous conduction mode
(CCM), all converters will have an ON state, corresponding to S1 being on and S2 off, along
with an OFF state, for its complementary behavior. The corresponding LTI models, for a
constant load resistance R, for the ON and OFF states will be presented using the following
structure with the external voltage seen as disturbance input u(t) = E(t), the voltage drops
VF1 and VF2 as constant DC inputs, states from the inductor currents and capacitor voltages,
and the load resistor voltage as measured output:(

A B

C D

)
=

(
A B BV

C D DV

)
, (40)

where:{
ẋ = AONx + BON E + BV,ON

[
VF1 VF2

]
;

y = CONx + DON E + DV,ON
[
VF1 VF2

]
,

{
ẋ = AOFFx + BOFFE + BV,OFF

[
VF1 VF2

]
;

y = COFFx + DOFFE + DV,OFF
[
VF1 VF2

]
.

(41)

The control variable is the duty cycle of the switching devices μ(t) ∈ [0, 1]. Using a
convex combination of the ON and OFF equation systems from Equation (41), an averaged
state-space nonlinear model of the process is obtained close to the hybrid model’s behavior
given a sufficiently high PWM frequency:

ẋ(t) = μ(t) · xON(t) + (1− μ(t)) · xOFF(t) ≡ F
(

x(t), [E(t), R(t), μ(t)]T , t
)

. (42)
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As such, an affine nonlinear system, with respect to μ, with the state function F as
above can be implemented by inheriting the class System from the toolbox. The distur-
bances which affect the system are the voltage source E and variable output load R, which
are stochastic in nature, along with uncertainties of its components due to manufacturing
tolerances, relevant on inductors and capacitors. As the toolbox easily allows using the
output capacitor voltage or output load voltage with minor modifications, we used the re-
sistor voltage as measurement variable due to its corresponding practical control use cases.
By inheriting the class UncertainPlantFactory, a set of tolerances can be imposed on all
relevant circuit parameters and, also, an LTI uncertain set can be automatically computed
with the provided mechanisms. The equilibrium point will have only the steady-state
values of E, R, and uR imposed, with the following structure:

(u, x, y) =
([

E, R, μ
]
,
[
iL1 , uC1 , . . .

]
, uR

)
. (43)

After synthesizing a robust controller, model-in-the-loop simulations would be desired
for the averaged state-space models and, also, for a hybrid model description of the
converters. For the hybrid approach, the class UncertainPlantFactory is inherited again,
this time with individual plants of type HybridSystem. For the general approach for
CCM, based on the structure from Equation (4), the input vector is comprised of u =

[E, R, μ]T , the state vector is extended to x :=
[
zT , q, τ

]T , with z =
[
iL1 , uC1 , . . .

]T being
the physical continuous states; q ∈ {0, 1} the discrete state number, i.e., ON and OFF;
and τ ∈ [0, TPWM) the time values for a single PWM period. After each PWM period
completion, the auxiliary time state τ is reinitialized to 0. The model description becomes,
for the state-space description

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎣ż(t)
q̇(t)
τ̇(t)

⎤⎦ =

⎡⎣(1− q) · (AONz(t) + BONu(t)
)
+ q · (AOFFz(t) + BOFFu(t)

)
0
1

⎤⎦, (x, u, t) ∈ C;

⎡⎣z+(t)
q+(t)
τ+(t)

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎣
z(t){

1, if q == 0

0, if q == 1{
τ, if q == 0

0, if q == 1

⎤⎥⎥⎥⎥⎥⎦, (x, u, t) ∈ D,

(44a)

(44b)

while the flow, jump, and output functions are⎧⎪⎨⎪⎩
C(x, u, t) = {((q == 0) ∧ (τ ≤ μ(t) · TPWM)) ∨ ((q == 1) ∧ (τ > μ(t) · TPWM))};

D(x, u, t) = {((q == 0) ∧ (τ > μ(t) · TPWM)) ∨ ((q == 1) ∧ (τ > TPWM))};

y(t) = h(x(t), u(t), t).

(45a)

(45b)

(45c)

In order to encompass DCM regimes, the number of discrete states must be extended
with new LTI blocks obtained by adding the mathematical constraint of canceling the diode
S2 voltage and, as such, the corresponding current signal for that branch, along with more
sophisticated jump functions, flow and jump sets. For brevity, we will not insist on these
extensions, although an example described for the boost converter can be found in [32].

3.2. Toolbox Workflow

A suggested end-to-end workflow for the toolbox can be summarized in the following
steps, all of which should be run from intermediary methods of an instance of class
ClosedLoopControlProblem:

• inherit class System to define the nonlinear model of the process as in Equation (1)
and Figure 1;

• define equilibrium point specifications as in (11)–(13);
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• inherit class UncertainPlantFactory and overload method getRandomPlant;
• using the desired operating point, linearize a set of systems using (16) and experimen-

tally determine an uncertainty model Wexp based on Table 1;
• define uncertainty options, including transfer function structure for all particles, and

execute the methods from class UncertaintyBoundOptimizationProblem in order to
minimize the functional JΩ,Wexp(Wx) from Equation (21), obtaining Wx,opt;

• run optimization to compute the uncertainty weight Wunc(s) as in Table 1;
• define robust control specifications WS, WT , and WKS as in Equations (37)–(39);
• synthesize robust μ controller based on Figure 6;
• apply order-reducing methods on the resulting controller;
• validate frequency and time-response performance specifications using the nonlinear

system at operating point through Model-in-the-Loop simulations;
• optionally, inherit the classes HybridSystem and UncertainPlantFactory, respec-

tively, to validate time-response performance specifications using the corresponding
hybrid plant model at operating point; for DC-to-DC converter control, the last step
should be adapted for CCM or DCM operation.

3.3. Numerical Results

We will briefly present the obtained results for the three converters using the ap-
proaches established in Sections 3.1 and 3.2.

3.3.1. SEPIC Converter

The SEPIC converter state-space model for the ON state of switch S1, as structured in
Equation (41), is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
rCin

Cin
0 0 0 0 1

rCin
Cin

0 0
1
L1

− rCin
+rL1+rDS1

L1
0

rDS2
L1

0 0 − 1
L1

0
0 0 0 1

C1
0 0 0 0

0 − rDS1
L2

− 1
L2

− rDS1
+rC1

+rL2
L2

0 0 1
L2

0
0 0 0 0 − 1

(R+rC2 )C2
0 0 0

0 0 0 0 R
R+rC2

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (46)

while for the OFF state of the switch S1 is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
rCin

Cin
0 0 0 0 1

rCin
Cin

0 0
1
L1

− raux
L1

− 1
L1

rDS2+rC2
L1

− 1
L1

0 0 − 1
L1

0 1
C1

0 0 0 0 0 0

0
rDS2+rC2

L2
0 − rDS2+rC2+rL2

L2
1
L2

0 0 1
L2

0 R
(R+rC2 )C2

0 − R
(R+rC2 )C2

− 1
(R+rC2 )C2

0 0 0

0 rC R
R+rC

0 − rC R
R+rC

R
R+rC2

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (47)

with the auxiliary notation raux = rL1 + rC1 + rDS1 + rC2 + rCin .
The nominal SEPIC converter parameters and their tolerances are presented in Table 2.
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Table 2. Single-ended primary-inductor converter (SEPIC) converter parameters, values, and corre-
sponding tolerances.

Param. Val. Tol. Param. Val. Tol.

L1 2.57 [mH] ±20% L2 1.71 [mH] ±20%
rL1 130 [mΩ] ±10% rL2 110 [mΩ] ±10%

rDS1 0.01 [Ω] ±10% rDS2 80 [mΩ] ±10%
C1 4.7 [μF] ±20% C2 3.57 [μF] ±20%
rC1 270 [mΩ] ±10% rC2 350 [mΩ] ±10%
Cin 3.57 [μF] ±20% rCin 270 [mΩ] ±10%
VF1 0.2 [V] ±10% VF2 0.62 [V] ±10%

The desired operating point specifications are output signal y(t) ≡ uR(t) is at 400 [V],
with nominal voltage source and load inputs u1(t) = E = 300 [V], u2(t) = R = 80 [Ω]. The
initial guesses for the state equilibrium values where x̃ = [30, 0.5, 30,−0.5, 30] and u3(t) = μ
= 0.57 for the duty cycle control input. After computation, the actual equilibrium point is
(u, x, y) = ([300, 80, 0.5788], [300, 6.8711, 297.722,−5, 400], 400).

An input multiplicative uncertainty model, i.e., G(s) = Gn(s)[1 + Δ(s)Wunc(s)],
||Δ||∞ ≤ 1, as in Table 1 has been automatically computed from input u3(t) to out-
put y1(t), with tolerances ±10 [V] and ±5 [Ω] for inputs u1(t) = E and u2(t) = R,
based on 1000 Monte Carlo simulations. The relevant frequencies vary in the interval[
ω = 10−2, ω = 108], with 300 equally distributed samples in log domain. A successful set

of hyperparameters for the particle swarm optimization algorithm is comprised of a swarm
size of 1000, initial swarm span of 104, minimum neighbors fraction of 0.9, and inertia
range of [0.1, 1.1], for a transfer function structure as in Equation (19), with a complex pole
pair and a complex zero pair, resulting in

Wunc(s) =
0.67275

(
s2 + 941.1s + 2.222× 105)

s2 + 147.3s + 5.422× 107 . (48)

The linearized SEPIC plant family is comprised of fourth-order stable systems, in
minimal form, with four zeros, three of which are of nonminimum phase. The nominal
model is

Gn(s) = 4.1368
(s + 8.003e+5)(−s + 2.304e+4)(s2 − 717.4s + 5.145e+7)

(s2 + 2673s + 3.749e+7)(s2 + 1339s + 6.493e+7)
. (49)

The entire uncertainty family has the same structure with poles, zeros, and equi-
librium points in the vicinity of the nominal counterparts. The uncertain SEPIC plant
family structure and behavior, along with the PSO conservative bound computation are
illustrated in Figure 8. Figure 8-1 illustrates the pole-zero plot for the linearized uncer-
tain SEPIC converter family, Figure 8-2 shows the best particle frequency-response fit
Wx(s) as in Equation (19) on the right y axis, and, also, the best functional fit on the left y
axis, Figure 8-3 and 8-4 show the frequency response of the plant G(s) family and uncer-
tainty family Δ(s)Wunc(s), respectively, while Figure 8-5 illustrates the system states and
outputs for a 2% step disturbance relative to the equilibrium input value μ0 = 0.5788.
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Figure 8. SEPIC multiplicative uncertainty set computation and open loop responses for the operating
point with E = 300[V], R = 80[Ω], UR = 400[V]: step and frequency response, pole-zero placement;
the step response is simulated for nonlinear plants sampled using UncertainPlantFactory.

For controller synthesis, the preferred loop shaping specifications were selected to
highly penalize the control effort near the system resonance, as the obtained controllers
would be difficult to implement in practice, needing high sampling frequencies, i.e., fe >
20 [kHz]. As such, for the sensitivity function: ωB = 200 [rad/s], A = 10−2, M = 2, n = 1;
for the complementary sensitivity function: ωBT = 2000 [rad/s], AT = 10−4, MT = 2,
n = 2; and for the control effort M0 = 100, M∞ = 105, |WKS(j · 200)| = 250, resulting in

WS(s) =
0.5s + 200

s + 2
, WT(s) =

s2 + 4000s + 4× 106

1× 10−4s2 + 56.57s + 8× 106 , WKS(s) =
105s + 8.729× 106

s + 8.729× 104 . (50)

From the μ synthesis procedure, a controller of order 21 is obtained. After order
reduction, the smallest controller which manages to assure all imposed specifications
for the plant family, with a peak value μΔ(LLFT(P, K)) ≤ 0.8361 < 1, is given by the
third-order system

KSEPIC
red =

⎛⎜⎜⎜⎝
−1.997 3.056 3.227 −0.5018
−3.057 −2197 −6118 −0.3838
3.225 6118 −1.016× 104 0.4055

−0.5018 0.3838 0.4055 0

⎞⎟⎟⎟⎠. (51)

The controller design phase, order reduction, and frequency response closed loop
performance of the reduced-order one for the uncertain plant family are illustrated in
Figures 9 and 10. In this case, the control system has very large stability margins, with a
phase margin of ≈ 82.1[◦] and gain margin in the interval [19.4, 20.3] [dB]. Additionally,
as specified by the n = 2 and AT = 10−4 parameters of the complementary sensitivity
weighting function, WT , the closed loop control system mitigates sensor noise signals
with a considered spectrum starting from ωBT > 2000 [rad/s], using an initial roll-off
of −40 [dB/dec], followed by an attenuation of at least four orders of magnitude. In the
actual MiL simulations, the attenuation does not stop at the prescribed value, as the system
manages to maintain at least a −20 [dB/dec] roll-off.
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Figure 9. SEPIC-synthesized (order 21) vs. reduced (order 3) controllers; the peak μ value does not
monotonically decrease with respect to controller order due to the influence of the ≈3750 [rad/s]
notch over the converter resonance, which was not taken into account by the order reduction
mechanism.

Figure 10. SEPIC open loop plant family with S, T, and KS functions using the reduced-order controller, which retains all
imposed performance specifications for all test cases, provides high phase and gain margins, and guarantees closed loop
response practically similar to that of a first-order low-pass filter; a relatively low bandwidth was imposed to compensate
the SEPIC converter resonance and presence of multiple nonminimum phase zeros.

From Figure 11, the closed loop bandwidth can be observed as ωB > 200 [rad/s],
equivalent to a rise time less than ≈5 [ms], a negligible steady-state error of ≈10−2 × (yss −
y0) = 0.2 [V], where yss represents the steady state value of the system, relative to the
desired equilibrium value y0. Moreover, the system has no overshoot, and it behaves like
a first-order low-pass filter by design. The nonlinear MiL simulation options are N = 50
random plants from the uncertainty set, solver is ode15i, due to the difficulty of simulating
the closed loop plant otherwise (it is numerically unstable), with a step on the reference
signal of 5% from its initial equilibrium value of approximately 400 [V] and a simulation
time of 0.05 [s]. Almost the same conditions apply to the hybrid MiL simulation, with the
solver switched to ode113, as ode15i is not supported here, and a PWM period selected
randomly for each experiment from a nominal value TPWM = 17.5 [μs] with a ±20%
fluctuation from one simulation to another. A comparison of the nonlinear and hybrid cases
is presented also in Figure 11, where it can be seen that the transitory regime is practically
identical, but for the hybrid case, a slightly lower command signal is necessary in steady
state. Due to working with uR(t) instead of uC(t) only for the output signal, the current
ripple is propagated into the measured voltage.
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Figure 11. SEPIC-averaged state-space and hybrid model Monte Carlo closed loop simulations;
due to a relatively low bandwidth imposed in order to obtain good stability margins and easily
implementable controllers, all plants respond almost identically, although component tolerances
reach values of ±20%; the initial transients exist due to starting the simulations from the nominal
equilibrium point only.

3.3.2. Buck Converter

The buck converter state-space models for the ON and OFF states of switch S1, respec-
tively, as in Equation (41), are

⎛⎜⎜⎜⎝
− rp+rDS1

L − R
(R+rC)L

1
L − 1

L 0
R

(R+rC)C
− 1

(R+rC)C
0 0 0

rC R
R+rC

R
R+rC

0 0 0

⎞⎟⎟⎟⎠;

⎛⎜⎜⎝
− rp−rDS2

L − R
(R+rC)L 0 0 − 1

L
R

(R+rC)C
− 1

(R+rC)C
0 0 0

rC R
R+rC

R
R+rC

0 0 0

⎞⎟⎟⎠, (52)

with the auxiliary notation rp = rL +
rC R

R+rC
= rL + rC||R.

The nominal buck converter parameters and their tolerances are presented in Table 3.

Table 3. Buck and boost converter parameters, values, and corresponding tolerances.

Param. Val. Tol. Param. Val. Tol.

L 40 [μH] ±20% rL 10 [mΩ] ±10%
C 600 [μF] ±20% rC 0.2 [Ω] ±10%

rDS1 0.01 [Ω] ±10% rDS2 0.01 [Ω] ±10%
VF1 0.2 [V] ±10% VF2 0.2 [V] ±10%

The desired operating point specifications are as follows: the output signal y(t) ≡
uR(t) is at 5 [V], with nominal voltage source and load inputs u1(t) = E = 12 [V], u2(t)
= R = 15 [Ω]. The initial guesses for the state equilibrium values where x̃ = [1.25, 5] and
u3(t) = μ = 0.5 for the duty cycle control input. After computation, the actual equilibrium
point is (u, x, y) = ([12, 15, 0.4335], [0.333, 4.999], 5).

An input multiplicative uncertainty model, i.e., G(s) = Gn(s)[1 + Δ(s)Wunc(s)],
||Δ||∞ ≤ 1, as in Table 1, has been automatically computed from input u3(t) to output
y1(t), with tolerances ±1 [V] and ±1 [Ω] for inputs u1(t) = E and u2(t) = R, respectively,
based on 1000 Monte Carlo simulations. The relevant frequencies vary in the interval[
ω = 101, ω = 107], with 200 equally distributed samples in log domain. A successful set

of hyperparameters for the particle swarm optimization algorithm is comprised of a swarm
size of 1000, initial swarm span of 104, minimum neighbors fraction of 0.9, and inertia
range of [0.1, 1.1] for a transfer function structure as in Equation (19), with a real pole and a
real zero, resulting in

Wunc(s) =
0.51758(s + 510.5)

s + 2906
. (53)
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The linearized buck plant family is comprised of second-order stable systems, in
minimal form, with one zero. The nominal model is

Gn(s) =
59178(s + 8333)

s2 + 5261s + 4.114× 107 . (54)

The entire uncertainty family has the same structure with poles, zeros, and equilibrium
points in the vicinity of the nominal counterparts. The uncertain buck plant family structure
and behavior, along with the PSO conservative bound computation are illustrated in
Figure 12.

Figure 12. Buck multiplicative uncertainty set computation and open loop responses for the operating
point with E = 12[V], R = 15[Ω], UR = 5[V]: step and frequency response, pole-zero placement; the
step response is simulated for nonlinear plants sampled using UncertainPlantFactory.

For controller synthesis, the weighting function specifications were for the sensitivity
function ωB = 1200 [rad/s], A = 10−4, M = 2, n = 1; for the complementary sensitivity
function ωBT = 12× 103 [rad/s], AT = 10−4, MT = 2, n = 2; and for the control effort
M0 = 0.1, M∞ = 100, |WKS(j · 1200)| = 2, resulting in

WS(s) =
0.5s + 1200

s + 0.12
, WT(s) =

s2 + 24000s + 1.44× 108

1× 10−4s2 + 339.4s + 2.88× 108 , WKS(s) =
100s + 6006

s + 6.006× 104 . (55)

As specified by the n = 2 and AT = 10−4 parameters of the complementary sensitivity
weighting function, WT , the closed loop control system mitigates sensor noise signals
with a considered spectrum starting from ωBT > 12,000 [rad/s], using an initial roll-off
of −40 [dB/dec], followed by an attenuation of at least four orders of magnitude. From
the μ synthesis, a controller of order 17 is obtained. After order reduction, the smallest
controller which manages to assure all imposed specifications for the plant family, with a
peak μΔ(LLFT(P, K)) ≤ 0.97 < 1, is

KBuck
red =

⎛⎜⎜⎜⎝
−0.12 −0.003479 −0.4751 12.68

−0.0001768 −2.304 −1.241× 104 −0.1827
−0.4611 1.241× 104 −4.522× 104 25.09

12.68 0.1838 25.09 0

⎞⎟⎟⎟⎠. (56)

The nonlinear MiL simulation options are N = 50 random plants from the uncertainty
set, with the ode23t solver, with a step on the reference signal of 5% from its initial
equilibrium value of approximately 5 [V] and a simulation time of 0.02 [s]. The simulation
conditions for the hybrid MiL case are identical, with an additional PWM period selected
randomly for each experiment from a nominal value TPWM = 17.5 [μs] with a ±20%
fluctuation from one simulation to another. A comparison of the nonlinear and hybrid
cases is presented in Figure 13, where it can be seen that the transitory regime is practically
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identical. Due to working with uR(t) instead of uC(t) only for the output signal, the current
ripple is propagated into the measured voltage.

Figure 13. Buck averaged state-space and hybrid model Monte Carlo closed loop simulations with
a closed loop bandwidth ωB > 1200 [rad/s], equivalent to a rise time of ≈0.83 [ms], negligible
steady-state error, and no overshoot.

3.3.3. Boost Converter

The boost converter state-space models for the ON and OFF states of switch S1,
respectively, as in Equation (41), are

⎛⎜⎜⎝
− rL+rDS1

L 0 1
L − 1

L 0
0 − 1

(R+rC)C
0 0 0

0 R
R+rC

0 0 0

⎞⎟⎟⎠;

⎛⎜⎜⎝
− raux

L − R
(R+rC)L

1
L 0 − 1

L
R

(R+rC)C
− 1

(R+rC)C
0 0 0

rC R
R+rC

R
R+rC

0 0 0

⎞⎟⎟⎠, (57)

with the auxiliary notation raux = rL + rDS2 +
rC R

R+rC
= rL + rDS2 + rC||R. The nominal boost

converter parameters and their tolerances are presented in Table 3, as they correspond with
the buck converter parameters.

The desired operating point specifications are as follows: the output signal y(t) ≡ uR(t)
is at 24 [V], with nominal voltage source and load inputs u1(t) = E = 12 [V], u2(t) =
R = 15 [Ω]. The initial guesses for the state equilibrium values where x̃ = [3, 24] and
u3(t) = μ = 0.5 for the duty cycle control input. After computation, the actual equilibrium
point is (u, x, y) = ([12, 15, 0.5179], [0.3189, 23.999], 24).

An input multiplicative uncertainty model, i.e., G(s) = Gn(s)[1 + Δ(s)Wunc(s)],
||Δ||∞ ≤ 1, as in Table 1, has been automatically computed from input u3(t) to output
y1(t), with tolerances ±1 [V] and ±1 [Ω] for inputs u1(t) = E and u2(t) = R, respectively,
based on 1000 Monte Carlo simulations. The relevant frequencies vary in the interval[
ω = 101, ω = 107], with 200 equally distributed samples in log domain. A successful set

of hyperparameters for the particle swarm optimization algorithm is comprised of a swarm
size of 1500, initial swarm span of 104, minimum neighbors fraction of 0.9, and inertia
range of [0.1, 1.1] for a transfer function structure as in Equation (19), with two real poles
and two real zeros, resulting in

Wunc(s) =
0.26592(s + 512.5)

(
s + 3.535× 104)

(s + 4016)(s + 1.389× 104)
. (58)

The linearized boost plant family is comprised of second-order stable systems, in
minimal form, with two zeros, one being of nonminimum phase. The nominal model is

Gn(s) =
0.65505(−s + 8.551× 104)(s + 8333)

s2 + 2988s + 9.746× 106 . (59)

The entire uncertainty family has the same structure with poles, zeros, and equilibrium
points in the vicinity of the nominal counterparts. The uncertain boost plant family struc-
ture and behavior, along with the PSO least conservative second-order bound computation
are illustrated in Figure 14.
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Figure 14. Boost multiplicative uncertainty set computation and open loop responses for the operat-
ing point with E = 12[V], R = 15[Ω], UR = 24[V]: step and frequency response, pole-zero placement;
the step response is simulated for nonlinear plants sampled using UncertainPlantFactory.

For controller synthesis, the weighting function specifications were for the sensitivity
function ωB = 650 [rad/s], A = 10−4, M = 2, n = 1; for the complementary sensitivity
function ωBT = 3250 [rad/s], AT = 10−4, MT = 2, n = 1; and for the control effort
M0 = 0.1, M∞ = 100, |WKS(j · 650)| = 2, resulting in

WS(s) =
0.5s + 650
s + 0.065

, WT(s) =
s + 3250

0.0001s + 6500
, WKS(s) =

100s + 3253
s + 3.252× 104 . (60)

An intrinsic limitation for the boost converter is that the bandwidth must not be
imposed more than half of the value of the right-half plane non-minimum phase zero of the
process, i.e., ωB ≤ z

2 ≈ 43,000 [rad/s]. For this problem, this is a sufficiently high margin,
as we also imposed a limitation for the command signal through WKS. As specified by the
n = 2 and AT = 10−4 parameters of the complementary sensitivity weighting function, WT ,
the closed loop control system mitigates sensor noise signals with a considered spectrum
starting from ωBT > 3250 [rad/s], using an initial roll-off of −40 [dB/dec], followed by an
attenuation of at least four orders of magnitude. From the μ synthesis, a controller of order
17 is obtained. After order reduction, the smallest controller which retains all imposed
specifications for the plant family, with a peak value μΔ(LLFT(P, K)) ≤ 0.9547 < 1, is

KBoost
red =

⎛⎜⎜⎜⎝
−0.065 0.8025 −0.002966 5.007
0.7116 −9.715× 104 1.066× 104 −30.91

0.002575 −1.065× 104 −1.422 −0.113

5.007 −30.91 0.1142 0

⎞⎟⎟⎟⎠. (61)

With this regulator, the boost converter control system with parameters from Table 3
has very large stability margins, with phase margins between [81, 101] [◦] and gain margins
in the interval [40, 46] [dB]. The obtained sensitivity bandwidths vary between [828, 2510]
[rad/s], all of them better than the prespecified value of 800.

Nonlinear MiL simulation options are N = 50 random plants from the uncertainty set,
with the ode15i solver, with a step on the reference signal of 5% from its initial equilibrium
value of approximately 5 [V] and a simulation time of 0.02 [s]. The simulation conditions
for the hybrid MiL case are almost identical, with the use of the ode113 solver instead, set
to a relative tolerance of 10−8, and with an additional PWM period selected randomly for
each experiment from a nominal value TPWM = 17.5 [μs] with a ±20% fluctuation from
one simulation to another. A comparison of the nonlinear and hybrid cases is presented
in Figure 15, where it can be seen that the transitory regime is practically identical. Due
to working with uR(t) instead of uC(t) only for the output signal, the current ripple is
propagated into the measured voltage.
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Figure 15. Boost averaged state-space and hybrid model Monte Carlo closed loop simulations with a
closed loop bandwidth ωB > 650 [rad/s], equivalent to a rise time less than ≈1.53 [ms], negligible
steady-state error and no overshoot.

4. Conclusions and Future Work

There are several aspects to be discussed with regards to the presented toolbox and,
additionally, including future work to be implemented in upcoming iterations.

The main reason for which the hybrid system framework is considered for the pro-
posed toolbox is that the continuous-time plant needs to be regulated with a numerical con-
troller. The hybrid system context may include LTI or nonlinear systems, switching systems
(which are hybrid by nature), and singular systems, represented using differential-algebraic
equations (DAEs). As such, for a continuous-time plant, a continuous-time controller is
designed using the robust control framework. The controller is required to be numerically
implementable, therefore two interfaces are necessary, which lead to a hybrid system. The
numerical implementation must be easily obtained and automatically validated using rapid
control prototyping (RCP) techniques. However, the properties of the closed loop system
need to be reanalyzed after the discretization of the controller. Differential-algebraic equa-
tions represent a useful framework for modeling dynamical systems in engineering with a
network-based structure of components. They are used in various industry fields such as
mechanics (e.g., multiple-link mobile manipulator model), chemical engineering (modeling
of chemical reactions), electrical engineering, cyber-physical systems, etc. All categories of
processes taken into consideration in the hybrid framework are described using an approx-
imate model that incorporates their relevant behavior. However, these types of systems
have model and structure uncertainties. Moreover, the nonlinear systems that are linearized
around an equilibrium point introduce such uncertainties as well. Therefore, to consider
these uncertainties for the controller design, the robust control framework is mandatory.
The first main applicability of RCP was to derive the necessary C/C++ source code with
drivers for a given target microprocessor, and to simulate in reproducible conditions the
behavior of a complex system. For the latter case, the most relevant simulation types, given
in increasing order of complexity and closeness to reality, are Model-in-the-Loop (MiL),
Software-in-the-Loop (SiL), and Hardware-in-the-Loop (HiL).

Many modeling software programs return circuits or mechanical systems already in
DAE form, and it would be difficult, or sometimes impossible, to reformulate them in
an ODE form without changing variables and losing their intended physical significance.
In the context of the robust control framework used for DAEs, a significant work is the
monograph in [33]. Although the robust control theory was well formulated in the previous
years, this is still an open domain for research and publication, as surveyed and described
in [34]. The difficulty of using methods which work correctly for multiple operating
points is mitigated by using adaptive methods, such as gain scheduling for tracking
problems. Furthermore, other relevant problems are automatic C/C++ code generation
for controller implementation and the commutation between the prescribed operating
points. Considering use cases for modeling, simulation, computer-aided design, and RCP, a
relevant set of examples in the domain of power electronics, hybrid vehicles, and renewable
energy systems is given in [35,36], where, although the main limitation is that analysis,
control, and implementation aspects must be performed individually for the presented
applications, they can be generally included under the same software framework, with
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the important exception of the robust control design and verification, along with the
quantization sensitivity analysis in a unitary manner.

The main hindrance is that the majority of applications involve DAE systems of index
greater than 1, meaning they necessitate more than one derivation step in order to formu-
late the problem, so there is a great need of tools that can also deal with high order DAEs,
i.e., index 2 or 3 [37–39]. Another reason for the proposal of considering DAEs model is that
they are also explicitly related to control issues, regarding both physical and operational
constraints. Two illustrative examples are the case of improper systems, such as an ideal
PID controller, and the elements that realize the decoupling in the MIMO systems case and
when the plant has impulsive dynamics. The robust control techniques’ drawback is that
the closed loopH2/H∞ norm must be minimized using the prescribed weighting functions
that penalize the exogenous outputs and these weighting functions need to be found ad
hoc, which sometimes lead to some intermediary bad controllers and work overhead.
Furthermore, after numerical implementation, the discrete controller loses a part of the im-
posed performances due to an inadequate sampling period or badly selected quantization
levels. Although there are solutions in the literature, there is no unified approach to solve
all these mentioned problems. As an extension to the framework and mindset given by
the two previously mentioned RCP use cases, the current project proposed a highly auto-
mated toolbox for robust control design, which, in the current state-of-the-art is a highly
iterative design process, when taking into consideration plant uncertainties, although the
mathematical background for solving the optimization problems is well established. It
proposes to eliminate design overhead when considering and modifying a specification set,
manually redesigning the weighting functions, the optimization procedure, discretization
of the regulators, quantization analysis, and closed loop analysis for the linearized and
initial hybrid plant. Furthermore, in unison with high-performance numerical toolboxes, a
justified report should automatically result after its use and explicitly state when unrealistic
design specifications were considered.
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Abbreviations

The following abbreviations are used in this manuscript:

CACSD Computer-Aided Control System Design
CCM Continuous Conduction Mode
DAE Differential-Algebraic Equation
DC Direct Current
DCM Discontinuous Conduction Mode
DOF Degree of Freedom
HyEQ Hybrid Equations Toolbox
LLFT Lower Linear Fractional Transformation
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LMI Linear Matrix Inequality
LTI Linear Time-Invariant
MiL Model-in-the-Loop
ODE Ordinary Differential Equation
PSO Particle Swarm Optimization
RCP Rapid Control Prototyping
SEPIC Single-ended primary-inductor converter
ULFT Upper Linear Fractional Transformation
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Abstract: Tip control is a current open issue in soft robotics; therefore, it has received a good amount of
attention in recent years. The desirable soft characteristics of these robots turn a well-solved problem
in classic robotics, like the end-effector kinematics and dynamics, into a challenging problem. The
high redundancy condition of these robots hinders classical solutions, resulting in controllers with
very high computational costs. In this paper, a simplification is proposed in the actuation setup of
the I-Support soft robot, allowing the use of simple strategies for tip inclination control. In order
to verify the proposed approach, inclination step input and trajectory-tracking experiments were
performed on a single module of the I-Support robot, resulting in zero output error in all cases,
including those where the system was exposed to disturbances. The comparative results of the
proposed controllers, a proportional integral derivative (PID) and a fractional order robust (FOPI)
controller, validate the feasibility of the proposed approach, showing a clear advantage in the use of
the fractional robust controller for the tip inclination control of the I-Support robot compared to the
integer order controller.

Keywords: soft robotics; robust control; fractional calculus

1. Introduction

Soft robotics is a growing research field which aims to incorporating softness in
robotic bodies or in novel end effectors, enabling safe and adaptive interactions [1]. Soft
robotics is bio-inspired, since it tries to reproduce the abilities of certain animals, such
as worms, snakes or the octopus [2], to move without a rigid skeleton or exoskeleton,
exploiting their softness in order to squeeze, and adapt to unstructured environments.
The stiffness characteristics of traditional industrial robots were desirable because they
enabled the fast, reliable and precise performance of tasks, such as those required in factory
lines. Conversely, soft robotics finds application in tasks where safety and adaptability to
unstructured environments is of paramount importance [1]. Such tasks include delicate
food handling, medical procedures, and assistive tasks.

The compliance which characterizes soft robots, besides granting the desired prop-
erties, also introduces challenges from the perspective of modeling and control [3]. The
hysteresis of the materials and their high redundancy, due to the virtually infinite number
of degrees of freedom (DoF) of soft robots, makes them hard to model with high accuracy.
Closed-form equations for describing the dynamics of soft robots are available [4], but
are too computationally demanding for efficient use in control. The constant curvature
(CC) or the piecewise constant curvature (PCC) approaches [5], which assume either all
of the robot’s body, or a number of robot sections, to be circular arcs, are computationally
efficient, but tend to fail when the robot is highly nonlinear.
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A different approach is to rely on neural networks [6] or reinforcement learning [7] for
data-driven modeling of the soft robot. In [6], a dynamic model of a soft robot is learned
through supervised learning using an auto-regressive network, and is employed for closed-
loop control by model-based reinforcement learning. In [7], a multiagent reinforcement
learning approach is used to learn the kinematic model of a robotic arm. A trajectory
optimization method is also exploited for open-loop control of dynamic reaching tasks [8].
In [9], it was shown that data-driven models can exploit the retraining of their networks’
weights to accommodate external disturbances. An extensive discussion of the challenges
of such platforms can be found in [10]. While these data-driven approaches can accurately
capture the nonlinearities of soft robot dynamics, their drawback is that neural networks
are black box models which are unfit for the traditional controller design methods usually
employed for state-space models.

Due to these limitations, many workspace control strategies applied to soft robots
are based on nonlinear model-based controllers or linear model-free controller schemes.
In the last case, as no model is available for the controller tuning, different alternatives
must be used. For instance, an empirical estimation of the kinematic Jacobian matrix is
proposed in [11], and later used in an optimal control scheme. Only the works in [12]
propose workspace linear controllers, but use very complex control laws, involving the
robot’s Jacobian matrix and its derivative. See [3] for a complete survey on different soft
robot control strategies.

Feedback control of nonlinear or time-varying systems has been a challenging problem
not just for soft robotics, but since the early nonlinear control attempts at the beginning of
the last century. Among the approaches proposed for dealing with nonlinearities, robust
control has been extensively used for that purpose. This strategy aims to achieve constant
system performance (in the sense of behavior), despite potential plant changes.

Some examples of robust control approaches can be found in [13], where a fractional
controller is proposed in the robust control of a soft neck, or in [14], where a fuzzy approach
is used to model a nonlinear plant (car steering), proposing an output feedback controller
to obtain a robust behavior. Other, more advanced, control strategies have also been used,
such as the sliding mode control of a wind turbine generator shown in [15], where a robust
behavior is obtained in simulations under the conditions of variable wind-speed inputs
and other parameter uncertainties. For a detailed discussion of nonlinear system control
problems and possible solutions, see [16].

A desirable feature in robust systems consists of providing a constant overshoot
despite changes in the plant parameters (usually the gain). This feature, often called
iso-damping in the literature, provides a significant advantage in the control of time-
varying or nonlinear systems. Often, this robustness specification is based on Bode’s ideal
function (see [17]), which features a flat phase diagram, and thus a constant damping. For
instance, in [18], the tuning of a proportional integral derivative (PID) controller based on
this flat-phase condition is proposed, showing the benefits of this robust specification in
several case studies. A similar approach is found in [19], where a relay test is proposed to
find the plant parameters, followed by the application of a tuning method based on the
aforementioned condition.

Using that robust specification, a wide range of solutions are possible, from the use of
a PID control, as described above, to more advanced strategies. A very interesting approach
to the robust control problem is found using fractional calculus. Fractional order controllers
(FOCs), based on non-integer-order derivative/integral operators, show greater flexibility
in fulfilling the flat-phase condition compared to their integer-order alternatives, while
keeping most of their benefits. An extensive review of fractional calculus applications
in the field of robust control can be found in [20,21], including system modeling and
controller design.

Although many fractional controller definitions have been proposed since the first
works in [22], the non-integer-order generalization of the classic PID is generally preferred,
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probably due to its simple control law and strong similarities with the ubiquitous PID
controller, allowing classic design tools to be adapted from integer to fractional exponents.

As described in [23], the fractional order PID (FOPID) controllers defined using
Equation (1) are able to provide a robust performance despite plant parameter changes
and nonlinearities

FOPID(s) = kp + ki
1
sλ

+ kdsμ, (1)

where kp, ki, kd are the controller gains, and λ, μ are the fractional operator orders.
Given its benefits and convenience, the FOPID controllers have received particular

attention in recent decades. Approaches using the definition in Equation (1) are found in
many works. For instance, in [24], new tuning and auto-tuning methods are proposed for
the controller parameters, showing excellent results in the control of real plants, like a water
circuit or a servomotor. The same controller is used for the control of a DC motor model
in [25], also proposing the possible electronic realization of the system. Again, in [26], an
optimization method is proposed for the tuning of the same controller, showing excellent
results in the control of a real servomotor system.

In this paper, a fractional-order robust control is proposed for I-Support, an assistive
soft robot [27]. The particular cases of proportional integral derivative (PID) and fractional-
order proportional integral controller (FOPI) are considered due to their plant and model
characteristics. As a novelty, a dynamic model of the plant will be used for the controller
tuning, achieving excellent results. This is an important contribution, as similar previous
works are based on very complex control laws, while the proposed control scheme is based
on simple PID or FOPI controllers.

In the following sections, the robotic platform hardware and the chosen model are
described. In order to obtain a suitable model, the robot inputs are redefined, allowing for
a direct relationship between the actuation variables and the work-space variables, such as
orientation and inclination angles. Then, a plant model is obtained using a recursive least
squares (RLS) parameter identification method, as described in [28]. Since the identification
is done offline, other, simpler methods could be used, such as least-squares fit; however,
given the tuning method proposed, the control strategy might be upgraded to an adaptive
scheme, as in the case of [29]. Therefore, a recursive identification algorithm like RLS may
have future advantages.

Once a plant model is available, it can be used for controller tuning. According to the
iso-m procedure explained in [30], the magnitude, phase and slope of the plant are needed,
which can be obtained from the RLS identification. In addition, the system’s behavior
must be defined using standard performance specifications, like the damping ratio (phase
margin) and peak time (crossover frequency). The resulting controller parameters will be
used in the robust control scheme proposed for the I-Support robot. See [30] for details on
the method application.

It will be shown that the proposed controllers can track the robot’s end effector
configuration in termso f its orientation and inclination angles, and can effectively reject
external disturbances, despite inaccuracies in the plant’s model, thanks to the robust
fractional order control.

2. Materials and Methods

A soft robotic manipulator for the assistance of elderly people, called I-Support, has
been used in this work [27] ( Figure 1). It belongs to the class of continuum manipulators
that receive inspiration from biological models like elephant trunks or snakes. It is com-
posed of three modules, each of them actuated by three coupled McKibben actuators and
three tendon-driven actuators. In this work, the proximal module of the robot was selected
and used independently of the others. McKibben actuators are artificial pneumatic muscles,
based on an internal latex balloon surrounded by a bellow-shaped braid. The braided
structure allows the McKibben actuator to perform uni-directional bending when inflated.
The pneumatic actuators are placed within the module at 120° to enable the bending and
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elongation of the module in all directions. The cable-driven actuation, which was not used
in this work for simplicity, allows for shortening and stiffness variation in the module. The
McKibben actuators are controlled by Camozzi K8P pneumatic valves, which are controlled
by an Arduino Due board. The Arduino is, in turn, controlled by a PC using a serial port
within the Matlab environment. The module is kept together by plastic discs placed 10 mm
from each other. An internal central channel is built to hold the hose, to provide water
and/or soap.

Figure 1. I-Support kinematic description.

2.1. Plant Model

According to [31,32], this robot is hyper-redundant, making the term degrees of
freedom (DOF) not applicable in the classical sense. Nevertheless, in this specific case,
the actuation parameters have a direct effect on measurable outputs like tip position and
orientation. A correlation between the three available system inputs and the measurable
outputs can be found and used to find a plant model.

The I-Support arm module is actuated through three evenly spaced, pressure-driven
McKibben pneumatic actuators. As described in [33], the actuator elongation depends on
the input pressure, which, in time, produces a change in the position and orientation of the
end-effector according to its relative location within the robot. In this case, given the actua-
tor disposition, the different input pressures result in a specific rotation and displacement,
depending on the actuator used, as shown in Figure 1. Note that, as there is only one input
variable per actuator, its resulting translations and rotations must be bounded.

The combined action of the three actuators produce the final end-effector’s position
and orientation in the workspace (Figure 2). As in a three-dimensional environment, the fi-
nal orientation of the end effector can be defined using three Euler angles. More specifically,
in our case, where the rotation in Z axis (yaw) cannot change, the final orientation can be
described using two rotation angles in X and Y: pitch and roll. Therefore, the combination
of the three angles produced by each actuator will result in a final rotation that can be
defined or measured with two angles.

Given that translations and rotations are bound, either can be considered as an output.
In this case, end-effector rotations will be considered as the system output. A deeper study
of the robot geometry will show how the actuator pressure inputs are related to these final
angle outputs.
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Figure 2. Left: elongated I-Support module, with three equally actuated chambers. Right: bended
module with only one chamber inflated.

Starting with a single actuator (A1), and making its rotation axis parallel to the X axis
in the frame of reference (see Figure 1), results in an output angle directly related to the
input pressure of its chamber. Given that the angles can be negative, the pressures are also
negative for the moment. Although the system does not allow this configuration, it can be
solved later by adding an offset. Considering this actuator, with the index number 1, the
equations describing angle α in X are as follows

α1 = f (P1). (2)

where α1 is the angle contribution from the first actuator to the final X axis angle (α), P1
is the actuator input pressure and f is a nonlinear function describing the relationship
between them.

However, there are other two actuators with an effect on the final angle α. Given the
proposed vertical robot setup, and using the same actuator type at all locations, we can
assume that functions f relating the input pressure and actuator angle are also similar.
Therefore, the same function applies, but including a projection factor that depends on the
actuator relative angle (γ), resulting in

α2 = cos(γ2) f (P2), (3)

α3 = cos(γ3) f (P3). (4)

In fact, we can generalize the previous functions as follows

αi = cos(γi) f (Pi). (5)

Although the f functions are nonlinear, the resulting tip angles depend on the forces
produced by the linear actuators; therefore, given the robot construction, the angles can be
considered additive. The final angle in the X axis is then found by addition of the three
actuator angles

α = α1 + α2 + α3 = cos(γ11) f (P1) + cos(γ12) f (P2) + cos(γ13) f (P3). (6)

Since the three actuators are symmetrically arranged, the angles are γ11 = 0 deg,
γ12 = 120 deg and γ13 = 240 deg, and Equation (6) results in

α = f (P1)− 0.5 f (P2)− 0.5 f (P3) = f (P1)− 0.5[ f (P2) + f (P3)]. (7)
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This result shows how both actuators’, A2 and A3, effects on the angle α are divided by
two, with an opposite direction to actuator A1. This leads to the first result of our approach.
The α angle is defined by the pressure difference, which is positive when P1 is larger than
0.5(P2 + P3), and negative otherwise. In the case of P1 = P2 = P3, angle α = 0, leading to
different robot elongations depending on the pressure value, form zero (P1 = P2 = P3 = 0)
to full-length ( P1 = P2 = P3 = Pmax).

Now, β angle is defined as the rotation around Y axis. Using the previous reasoning,
but projecting in the Y axis (using sin(γ))

β = β1 + β2 + β3 = sin(γ1) f (P1) + sin(γ2) f (P2) + sin(γ3) f (P3). (8)

In the case of γ1 = 0 deg, γ2 = 120 deg and γ3 = 240 deg, Equation (8) results in

β = 0.866 f (P2)− 0.866 f (P3) = 0.866[ f (P2)− f (P3)]. (9)

Note that the value of β angle depends on the difference between P2 and P3, and
the effects of the A1 actuator cannot change it. Again, the angle depends on a pressure
difference, and the elongation is a function of the minimum pressure values. For the case
P1 = P2 = P3, angle β = 0, leading to the previous result regarding robot elongation.
As there are just two actuators involved in this case, the final elongation depends on the
minimum values between those two pressures.

At this point, we can see that α and β angles depend on the pressure difference of
actuators A1, A2 and A3, and the elongation depends on the minimum of these values.
Based on that, we can define the new input variables βi, αi and li, as a linear combination
of the pressure inputs without loss of generality.

Using the results from Equations (7) and (9), and considering the description for the
elongation behavior of the robot, the following input redefinition is proposed

αi = P1 − 0.5(P2 + P3), (10)

βi = 0.866(P2 − P3), (11)

li = min(P1, P2, P3). (12)

As β depends only on the input pressure difference of the actuators A2 and A3, the
change in βi will only lead to a change in β output angle. Likewise, αi and li inputs will
affect only the output values of α and l.

Based on thid, the I-Support can be modeled as three decoupled single-input, single-
output (SISO) systems. The transfer functions Gα, Gβ, and Gl will model the actual outputs
(α,β, l) as a function of the new inputs (αi,βi,li), defined by Equations (10)–(12). Given the
simplifications we have considered, the reality will be different in several aspects, such
as the interference between actuators and the nonlinear plant behavior, as will be shown
in the experimental sections. To deal with these problems, we propose use of a robust
controller, since this will provide a constant behavior despite the plant parameter changes
or nonlinearities, as discussed above in Section 1.

In order to find these models, recursive least squares (RLS) system identification is
proposed. Based on the above discussion, redefined inputs (αi, βi and li) were considered
instead of pressure inputs. Note that these are just the pressure input redefinition, and the
output angles still depend on the system dynamics. Although f functions are unknown,
they are considered within the resulting models, but the nonlinear part will be neglected
due to the identification method. As a robust controller is proposed, the performance results
will be constant in the entire operation range of the robot, despite these nonlinearities.
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As the control system is now defined through angle and elongation inputs, the equiva-
lence between these inputs and the pressure of each actuator is required in order to operate
the robot. In that direction, Equations (10) and (11) can be used to solve P1 and P2.

P2 = βi + P3, (13)

P1 = αi + 0.5(P2 + P3) = αi +
βi
2
+ P3. (14)

Note that values of P1 and P2 depend on αi and βi inputs, and also depend on P3,
according to Equations (13) and (14). Using these results in Equation (12) provides

li = min(αi +
βi
2
+ P3, βi + P3, P3) = min(αi +

βi
2

, βi, 0) + P3, (15)

where the min function properties are applied to obtain P3 value out of the min function,
leading to the definition of P3 value based on the inputs αi, βi, and li detailed in the
following equation

P3 = li −min(αi +
βi
2

, βi, 0). (16)

This result means all the pressure results will be positive as long as li is greater
than zero, which means that this input variable actually controls the robot elongation, as
described before.

Once our system is defined, a model is needed for controller tuning and simulation.
Given the complex behavior of the robot, system identification is the best option to obtain
a linear model from captured data. This means that we neglect the possible nonlinear
behavior, but, thanks to the proposed robust controller, a good performance will be obtained
despite the model mismatch.

Using the described inputs and outputs definition, a set of experiments were carried
out for different target inclinations in order to obtain a plant model. The experimental
setup consists of different identification experiments where a changing target was set at
one of the three inputs (for instance, αi), while keeping the other two inputs fixed (for
instance, βi, and li). A motion-capture system was used to record the real plant behavior,
and later used to obtain the output angles (α and β) variation.

For example, Figure 3 shows the input and output captured data during two specific
identification experiments.
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Figure 3. Two examples of identification experiments. The left figure shows the system response to
variations in the input αi, while the other inputs are kept constant (βi = 30 and li = 0). Right figure
shows the system response to variations in the input βi, while the other inputs are kept constant
(αi = 20 and li = 0).
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Note that quite different behaviors can be observed for ascending and descending
steps. This is probably due to the compressed air valve setting, which can result in plant
differences when the air is pushed or released.

A relatively stable output is obtained for the fixed angle, despite the important vari-
ations in the changing angle, showing that the systems obtained are mainly decoupled,
but a minimal influence still exists. Note that although the input values considered in the
identification are αi, βi and li, the resulting model includes Equations (13), (14) and (16)
dynamics (just the linear behavior, of course).

An appropriate number of experiments were performed in the I-Support, covering the
entire robot workspace for different input combinations, resulting in a total of 62 separate
datasets. Each set consists of the system input data (αi,βi) and the response obtained (α,β)
over a period of 20 s (as shown in Figure 3). Then, RLS identification was applied to
selected parts of the captured data, as shown in Figure 4. As expected, the system has an
important variation in response over the range of possible inputs. The identification results
show how the systems clearly split into two different classes, coincident with the two main
observed behaviors. Figure 4 shows a validation example of the RLS results.
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Figure 4. Validation example of the identified models showing two different behaviors. Data obtained
from the case of variations in Alpha input ranging from 10 deg to 20 deg (left of Figure 3). Showing
the Step input (Alpha input), and the Real response (Alpha output) used in the RLS identification.
Resulting model time response is also shown for comparison.

Note that although the linear model captures the system behavior quite well, there are
mismatches due to plant nonlinearity. In this case, the identification data were extracted
from the capture data shown on the left side of Figure 3, but a different identification
procedure was performed for every experiment.

Using RLS identification in every dataset will result in a different model for every
single experiment. The frequency responses of these models are shown on the left side
of Figure 5, using one color label for each identified model, showing experiment number,
αi, βi, l. Note that two groups of frequency responses can be observed in the figure.
One group shows a decayed resonance with low stationary gain values (Mag < 0 dB
when Freq → 0 rad/s), and the other group shows a significant resonant peak and higher
stationary gain values (Mag > 0 dB when Freq → 0 rad/s). These groups are highlighted
on the right side of this figure, where only the systems with maximum and minimum gains
are shown. In addition, an average model, obtained as the mean value of all resulting RLS
parameters, is shown on the right side of Figure 5.
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Figure 5. Frequency response of the models obtained using RLS, showing all the identification
experiments (left) and the three most representative examples: Lowest, Average and Maximum
Gains (right).

The transfer functions that describe these extreme systems are

Gmin =
311.86

(s + 3.154)(s2 + 2.949s + 210.9)
, Gmax =

3294.8
(s + 17.29)(s2 + 3.382s + 155.5)

, (17)

and the average system transfer function, with poles and gain found as the arithmetic
mean of the poles and gain obtained from each dataset, is

Gavg =
1403

(s + 8.665)(s2 + 3.462s + 176.7)
. (18)

Therefore, two classes can be used to model the I-Support system behavior. One
class is the low stationary gain case (Gmin), consisting of a pair of complex conjugate poles
shaped by the influence of a non-negligible real pole (three dominant poles). The other class
shows a higher stationary gain, and is described by (Gmax), with two complex dominant
poles and one negligible real pole.

The unit input time response and s plane pole locations are shown in Figure 6 for the
three described system models. An under-damped behavior is observed for the systems
with negligible real poles (Gmax, Gavg), while an oscillating over-damped response can be
observed in the case with three dominant poles (Gmin).

Note how the systems with less than 0 dB gain (Gmin, Gavg) show stationary responses
below the unit input value, while the other system (Gmax) stationary response rises above
this input level.
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Figure 6. Zero-pole representation (left) and unit input time response (right) for the three most
representative models obtained: Lowest Gain (Gmin), Average Gain (Gavg) and Maximum Gain
(Gmax) models.
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Given these results, a control scheme could be designed using two controllers, one
for each system class (two in this case), with a switching supervisor applying the correct
controller for each case. Nevertheless, the causes that affect the system behavior are not
clear; therefore, the supervisor implementation is not possible in this case. That strategy
could be considered in the future if the underlying reason leading to the differences in the
plant parameters is found.

2.2. Control Strategy

Considering these conditions, a solution will be proposed using robust control tech-
niques. As discussed before, robust controllers are able to show a constant performance
despite plant parameter variations or nonlinearities. Therefore, the average plant pa-
rameters can be used for a robust controller tuning, in this way granting an invariant
performance in the final system behavior despite changes in the plant parameters (usually
gain) or neglected nonlinear plant dynamics.

As discussed in Section 1, the fractional order generalization of the integer order PID
controller defined by Equation (1) is a convenient robust control approach, and it is suitable
in this case. Given the plant characteristics, the derivative part of the controller is not
needed and will only bring noise amplification. Therefore, the fractional order proportional
integral (FOPI) variant of the controller, defined by Equation (19), will be used.

FOPI(s) = kp + ki
1
sλ

. (19)

The three parameters (kp, ki,λ) must be tuned in order to achieve the desired system
performance. Usual control specifications are stability and responsiveness, normally
defined through frequency and damping ratio.

In order to provide a way to compare the robustness between the experiments, a small
overshoot will be forced using a target damping ratio lower than 1. As described in [34],
a phase margin of 70 deg will result in a damping ratio of 0.8, enough for a significant
overshoot. This allows us to compare the overshoot between experiments, providing a
measure of the system robustness by comparison. The design frequency must be low
enough to avoid the resonance influence in the vicinity of 10 rad/s in order to enforce
stability, with the fastest possible response. Based on this, the performance specifications
are the following

• φm = 70 deg
• ωgc = 1.5 rad/s

With the defined specifications, several tuning methods are available. The recently
published iso-m method, described in [30], is straightforward and easy to apply. In order
to tune a fractional order controller, a series of simple operations involving basic math and
the use of a graph to find the fractional exponent are needed. Therefore, this method can
be applied in the tuning of the controller described in Equation (19).

Using the average model defined in Equation (18) and the iso-m tuning method, the
controller parameters shown in Table 1 were found.

Table 1. Fractional order controller parameters.

kp ki λ

0.1878 1.8279 1.19

Based on these parameters, the resulting controller is defined as follows

FOPI(s) = 0.1878 + 1.8279
1

s1.19 . (20)

150



Mathematics 2021, 9, 702

An implementation of the fractional operator (s1.19) is then needed in order to apply
the previous controller in the feedback control scheme of the I-Support robot. One of
the most common techniques is the equivalent pole-zero approximation described in [35],
based on the operator frequency response (see, for example, [24] or [36]). Using that
approximation, the s1.19 operator implementation results in

s1.19 =
0.6614s3 + 1.763s2 + 0.4491s + 0.01586

s4 + 1.589s3 + 0.2861s2 + 0.007414s + 2.53E− 06
. (21)

The frequency response of the open-loop system cascading the controller and the
average plant model (FOPI(s) · Gavg(s)), and the closed-loop time response, are shown in
Figure 7.
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Figure 7. Frequency response (left) and time response (right) for the fractional order
controller system.

Note that, in the left side of the figure, the phase is completely flat in the vicinity of the
crossover frequency, leading to the desired iso-damping property and providing a constant
overshoot in the expected step response, shown on the right side of Figure 7.

In a similar way, the same specifications and tuning method were used in an equivalent
integer-order controller with the intention of a robustness comparison. The resulting
parameters are shown in Table 2.

Table 2. Integer order controller parameters.

kp ki λ

0.0071 1.6402 1.00

With these parameters, the resulting controller is

IOPI(s) = 0.0071 + 1.6402
1
s

. (22)

Again, the frequency and time responses of the system with controller IOPI(s) are
shown in Figure 8.

See the significant phase slope around the crossover frequency, leading to an important
difference in phase margin in the case of a gain change. Although the simulation predicts
an underdamped step response, as shown on the right side of Figure 8, in the experimental
section, how the overshoot variability is bigger in the case of the integer-order controller
will be shown.

A set of experiments were performed for both fractional- and integer-order controllers.
The results are shown and discussed in the following section.
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Figure 8. Frequency response (left) and time response (right) for the integer order controller system.

3. Results and Discussion

The experiments performed with the controllers defined in Equations (20) and (22)
were designed to assess and compare their performance and robustness properties. As
discussed earlier, the goal of robust control is to keep performance characteristics (like
overshoot) invariant despite changes in plant parameters (like gain). In this case, we have
seen that these parameters change for the different positions attained on the robot and,
therefore, a robust system should provide a constant overshoot percentage despite the end
effector position changes.

The first experiment consists of exciting the system with two-step input target angles
α and β at the same time, showing the controller robustness by overshoot comparison. Tip
orientation angles are recorded with an electromagnetic sensor (NDI Aurora®), as shown
in Figure 9. Note that a robust system is expected to have the same performance despite
plant parameter variations. Given the specifications defined, the difference in overshoot
percent values will show the system robustness, with the results showing similar overshoot
percentages in both output signals being more robust. An example of this first experiment
for target angles α = 10 and β = 30 is shown in Figure 10 for the FOPI and IOPI controllers.

Figure 9. Experimental setup.

Since the plant parameters change with the inclination, introducing two different
references for the target angles (α = 10, β = 30) allows us to observe the dynamic behavior
for two different parameter cases in a single experiment. Observe that, for the fractional-
order controller system (left), the overshoot variation is much lower (from 11% to 16%)
despite the difference in plant parameters compared to the integer controller (right), which
shows a higher overshot difference (from 0% to 17%).

A video recording of this experiment is available at https://vimeo.com/517321273
(accessed on 26 February 2021) for the case of the robust controller, showing the overshoots
during the tip positioning and the final controlled angles (Supplementary Material).
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Figure 10. Experiment 1. Time response (above) and control signal (below) for the two controllers
tested, fractional (left) and integer (right) orders.

The second experiment is a disturbance response test, showing how the control
schemes respond to system disturbances. The targets from the first experiment are kept,
but, in this case, a constant mass of 150 g is used as a disturbance during the experiment.
The setup consists of a metal bar tied to the robot scaffolding in collision with the robot,
which can be manually attached or released at any time. In this experiment, the mass was
applied at t = 5 s, and removed at t = 10 s, both producing a sudden change in the feedback
error, as shown in Figure 11. Disturbance rejection was correct for both controllers.
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Figure 11. Experiment 2. Disturbance rejection. Time response for the two controllers tested,
fractional (left) and integer (right) orders.

The third experiment is a trajectory in space describing a square of four targets. This
experiment is the most demanding of all the experiments performed, presenting the most
extreme parameter variations. In this experiment, a changing reference was programmed,
following a trajectory of four positions. The references and points are shown in Table 3.
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Table 3. Trajectory for experiment 3.

α β l

Point 1 20 20 40

Point 2 −20 20 20

Point 3 −20 −20 40

Point 4 20 −20 20

The results are shown in Figure 12.
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Figure 12. Experiment 3. Trajectory tracking. Time response for the two controllers tested, fractional
(left) and integer (right) orders.

Note how the performances are varied in the case of the IOPI controller, ranging from
under-damped to over-damped systems, which cannot be considered as robust in the sense
described before. In contrast, the FOPI controller keeps a constant performance, showing
similar overshoots and time responses during the whole trajectory, which is considered as
a robust behavior, known in the literature as iso-damping.

Although elongation input was included to provide larger plant parameter variations,
the feedback loop is only applied to orientation control (α and β). Therefore, as elongation
positions are not feedback-controlled, their results show an important error. The position
and elongation control of the I-Support robot will be addressed in future works.

4. Conclusions

A robust control for the I-Support soft robot tip orientation is proposed in this paper
through the use of a FOPI controller, and compared to a similar PID controller in terms of
performance and robustness.

Given the specific robot characteristics, a previous input variable transformation has
been applied in order to split the MIMO system into three decoupled SISO systems. This
new approach allows to define the model of each system independently and to apply a
different feedback loop to each control variable.

With these decoupled SISO systems defined, a feedback control loop was designed
and implemented in these systems, steering the robot tip orientation actuation (α and β
angles). Given the simplifications made in the model, a robust controller is proposed to
deal with the parameter variations and neglected dynamics.

The proposed robust control scheme is based on a fractional-order, proportional in-
tegral FOPI controller, tuned through a recent method (iso-m) that provides an easy and
straightforward solution to the controller parameters. This is considered a major contri-
bution of this paper, as the previous works using similar control strategies show higher
control law complexity, resulting in much higher computational costs. This is probably
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the reason for the restriction of these control strategies to the simulation environment;
therefore, none of these works provide experimental results.

Experimentation is then considered as another important contribution of this paper,
as a thorough experimental comparison has been carried out between the two proposed
controllers in the real I-Support soft robot platform.

The excellent results obtained for the I-Support tip angle control validate the appli-
cation of this modeling and control scheme and open up the possibilities of position and
elongation feedback control of the platform, which will be proposed in future works.

Besides, a further comparison with previous works based on open-loop configuration
can be made in the future, to highlight the pros and cons of each control approach and show
some hybrid (feedback-machine learning) control possibilities with that can be applied to
the I-Support robot or similar platforms.
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0/9/7/702/s1.
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Abstract: A set of tuning rules for Linear Active Disturbance Rejection Controller (LADRC) with
three different levels of compromise between disturbance rejection and robustness is presented. The
tuning rules are the result of a Multiobjective Optimization Design (MOOD) procedure followed by
curve fitting and are intended as a tool for designers who seek to implement LADRC by considering
the load disturbance response of processes whose behavior is approximated by a general first-order
system with delay. The validation of the proposed tuning rules is done through illustrative examples
and the control of a nonlinear thermal process. Compared to classical PID (Proportional-Integral-
Derivative) and other LADRC tuning methods, the derived functions offer an improvement in either
disturbance rejection, robustness or both design objectives.

Keywords: active disturbance rejection control (ADRC); multiobjective optimization; time delay
systems; tuning rules

1. Introduction

Active Disturbance Rejection Control (ADRC) [1] was proposed as an alternative for
PID (Proportional-Integral-Derivative) control and has become a new control paradigm.
It inherits from the PID controller its independence from the plant model and seeks to
compensate its weaknesses through the concept of disturbance estimation and rejection.

The ADRC lumps together the non-modeled dynamics and non-manipulable external
signals affecting the system in a single total perturbation. This signal is treated as an
extended state to be estimated by an Extended State Observer (ESO) and its impact on the
output is rejected by the control action. As a result, the ADRC loop induces the real plant
to behave like a set of cascade integrators facilitating the control design.

The fact that the extended observer jointly treats external perturbations and modeling
uncertainties highlights its attractiveness in the engineering field, since the knowledge of
the process model is kept to minimum in order to design the control loop. What is more, in
contrast with model-based approaches, the ADRC assumes a canonical form regardless
of the process dynamics and unifies the unknown discrepancies between the canonical
form and the real plant in the total perturbation [2]. The effectiveness of the ADRC has
been tested in a variety of fields including power electronics, motion and process control.
A summary of recent experimental studies in the aforementioned areas can be found
in [3]. The emergence of innovative ADRC solutions, particularly in industrial control, is a
motivation to consider this control approach for processes where a precise dynamic model
is difficult to obtain and a simplified approximation could be used instead.

The implementation of the ADRC requires the order of the system and the nominal
value of its critical gain; being the latter the parameter that usually relates the control input
with the highest order derivative of the output. When the ESO and the control law are
designed by evaluation of nonlinear functions, the algorithm is called NADRC (Nonlinear
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ADRC). On the other hand, if a linear observer together with a linear control law are used,
the control strategy is called LADRC (Linear ADRC).

The LADRC has gained popularity due to its simple structure and the reduced amount
of parameters to be tuned in comparison with the NADRC. The bandwidth parameteriza-
tion [4] formulates the observer and control law gains as functions of two main parameters—
the observer bandwidth and the controller bandwidth. Usually, their selection is based
on the closed loop desired behavior and is adjusted by trial and error turning the tuning
problem into an empirical process.

The tuning of the LADRC is considered a research area of interest. It has been
addressed taking as a starting point PID controllers operating in the control system [5,6] or
strictly proper controllers with integrator [7], which state the desired disturbance rejection
performance.

The inclusion of the nominal value of the process critical gain as the third tuning
parameter (in addition to the two bandwidths) has been discussed in [8,9]. In [10], the
nominal value of the critical gain is tuned through an online optimization process for a
tank level control problem. The main disadvantage of this approach is the time required to
perform the optimization search on the loop.

To avoid the computational cost related to the online tuning, some researches have
determined a set of functions to obtain the three main parameters (nominal value of
critical gain, observer bandwidth and controller bandwidth). In [11] a tuning method for
LADRC suitable for the control of a type of high-order systems is presented. It is based
on the interpretation of the maximum sensitivity (MS) in the Nyquist diagram of the loop
transfer function.

High-order plants can be used as approximations for some industrial processes. Never-
theless, the First Order Plus Dead Time (FOPDT) model is also a very common approxima-
tion which takes into account delays due to mass or energy transport, or limitations related
to measuring and energy conversion devices [12]. The interest in the control of the FOPDT
processes has inspired control strategies as the fractional order internal model controller
(FO-IMC) from [13], where phase margin and gain crossover frequency specifications are
employed to formulate a system of nonlinear equations which needs to be solved for the
controller design.

On the other hand, tuning rules for the second order LADRC applied to FOPDT plants
have been proposed in [14] through formulation of an optimization problem following the
Aggregate Objective Function (AOF) approach. This is, two performance indices of interest
as the settling time and the Integral of Squared Error (ISE) were merged in the Integral of
Time Weighted Squared Error (ITSE) for minimization. In addition, a robustness measure
was used as a fixed constraint.

The aforementioned work pointed out the importance of balancing the disturbance
rejection performance with the closed loop robustness. However, including the robustness
just as a constraint for the optimization problem could result in solutions offering an
optimized performance (in terms of the index selected) but with a robustness measure that
tends to be in the upper limit allowed. This may be enough for some designers, but for
others, given the complexity of the process, robustness also becomes a design objective and
a balance among all performance indices is required. As alternative, in the Generate-First
Choose-Later (GFCL) multiobjective approach the objectives are optimized simultaneously
providing a set of solutions, with different compromise, to be examined by the designer
who makes the final decision.

Some contributions to the LADRC tuning have been made in the GFCL context.
Nevertheless, they use the multiobjective approach to select some of the LADRC parameters
to control a particular system or the optimization process needs to be performed for
each design. For example, in [15] the Integral of Absolute Error (IAE) and the MS are
simultaneously minimized to select the LADRC bandwidths for the control of a power
plant. In [16] a tuning scheme for the modified ADRC (MADRC) [17] for unstable time
delay systems has been formulated as a multiobjective optimization problem regarding
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the setpoint following and disturbance rejection. This methodology is intended to be
performed adapting the problem according to the system to be controlled. It means that
the proper MADRC order should be selected and the optimization and decision making
stages need to be carried out for each study case in order to obtain the control law and
observer gains.

Motivated by the above, this paper explores the GFCL approach to provide a set of
tuning rules for the second-order LADRC parameters computation applicable to the control
of FOPDT systems. A Multiobjective Optimization Design (MOOD) procedure is used over
a group of nominal plants to obtain a set of Pareto optimal solutions with a compromise
between the step load disturbance response and robustness. Then, the LADRC parameters
are fitted to functions of the normalized delay and finally, these functions are scaled to
make them suitable for the control of a general first order system with delay. Even though
the LADRC has a certain level of robustness because it addresses the differences between
the actual system and the assumed plant in the total perturbation, its tuning considering
the robustness as an objective design balances this feature with the closed loop performance
and this is reflected in the derived tuning rules.

The tuning rules presented here have prominent advantages for the control engineer:

• They can be used to control systems approximated by a FOPDT model because only
the static gain, apparent time constant and apparent delay are required as prior
information. The FOPDT is also known as the three-parameter model and is widely
accepted in the control of industrial processes.

• The LADRC main parameters, this is, the nominal value of control gain, the controller
bandwidth, and the observer bandwidth are automatically computed through the
substitution of the model parameters in the given formulae.

• The designer can select a robustness quality (low, medium or high) for the parameters
computation which allows his/her involvement as a decision maker, but eliminates
the time and complexity of performing an entire optimization process for the controller
design. This is possible because the robustness was included as a design objective
in the optimization process formulation, in contrast with other approaches from
literature where robustness is imposed just as a constraint, and also, different Pareto
optimal solutions were used for the rules derivation.

• The parameters computed through the proposed rules ensure closed loop stability as
well as a reasonable compromise between disturbance rejection and loop robustness.

• The designer could use the rules to obtain intervals for each LADRC parameter and
adjust the selection according to the preferred performance. An LADRC tuning Matlab
app (available at Matlab central [18]) was created for this purpose. Within this tool,
the user can also vary the robustness level to visualize the performance with the
corresponding calculated parameters.

The paper is organized as follows—in Section 2 the time domain and frequency
domain formulation of the second-order LADRC as well as the loop parameterization are
presented. In Section 3, a concise description of the Multiobjective Optimization Design
procedure is given and the pertinence of this approach in the tuning of LADRC is addressed.
Section 4 describes in detail the tuning of LADRC by means of the MOOD procedure whose
results were fitted to the rules presented in Section 5. A summary guide for the LADRC
parameters computation based on the proposed rules and the interactive tuning tool are
also provided in this Section. Section 6 presents the validation of the proposal by the
simulation of two examples. Performance comparison with classical PID tuning methods
and the LADRC tuning rules from [11,14] are also presented. In Section 7 a nonlinear
thermal process is controlled by the LADRC designed according to the proposed tuning
method and, finally, Section 8 draws the conclusions.

2. Linear Active Disturbance Rejection Control

This section introduces the Linear Active Disturbance rejection control (LADRC)
algorithm for single-input single-output systems.
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The LADRC loop is mainly comprised of three blocks as shown in Figure 1.

• Tracking differentiator: It is used to generate a transient profile r1 for the reference r̃

and the corresponding derivatives ṙ1, r̈1, . . . , r(n)1 .
• Extended State Observer (ESO): It estimates the system states z1, z2, . . . , zn and the

additional state zn+1 representing the nonmodeled dynamics and perturbations.
• Controller: It provides a state feedback control law u0 for the disturbance-free modi-

fied plant. Therefore, the control law u = (u0 − zn+1)/b0 is generated to act on the
real plant and through which the disturbance information is rejected.

Tracking 

Differentiator
Controller Plant

Extended State 

Observer

Modified plant

Figure 1. Active Disturbance Rejection Control (ADRC) loop.

For the LADRC implementation, the system order n and the nominal value of its
critical gain b0 are required. Many practical applications can be approximated through first
or second order models. Moreover, if the plant is open loop stable, a low order LADRC
can be implemented and closed loop stability can be achieved by proper selection of the
LADRC parameters [5].

In this work, the second-order LADRC was selected as control algorithm for FOPDT
systems. The LADRC theoretical formulation in time domain and frequency domain, as
well as the closed loop parameterization used for the development of the tuning rules are
explained next.

2.1. Time Domain Formulation

Consider the following input-output model of a second order system.

ÿ = −a1ẏ− a0y + bu, (1)

where y is the controlled output, u is the control action, a0 and a1 are constants determining
the location of the system poles and b is known as critical gain.

The state space representation of (1) is given by (2), where w has been included to
indicate the load disturbances acting on the system.⎧⎨⎩

ẋ1 = x2
ẋ2 = −a0x1 − a1x2 + bu + w
y = x1.

(2)

In the case that a0 and a1 are unknown, the first two terms in the right side of the
expression for ẋ2 can be lumped in a function called total perturbation which also includes
load disturbances and the difference between the real value of b and its known nominal
value denoted by b0. Thus,

f = −a0x1 − a1x2 + (b− b0)u + w. (3)

The model (4) is obtained by replacing (3) in (2).
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⎧⎨⎩
ẋ1 = x2
ẋ2 = f + b0u
y = x1.

(4)

As the total perturbation is an unknown function, f is treated as an additional state
that must be estimated and compensated by the control loop. The resulting extended state
space model with x3 � f and h = ḟ unknown is⎧⎪⎪⎨⎪⎪⎩

ẋ1 = x2
ẋ2 = x3 + b0u
ẋ3 = h
y = x1.

(5)

The estimation of states in (5) is achieved through the Linear Extended State Observer
(LESO) (6) whose inputs are the measured output y and the control action u. The zi
correspond to the estimated states and Li are the observer gains. Note that, although the
LESO has a similar structure to a traditional observer, it estimates not only the system
states but also the information of the total perturbation contained in z3. In contrast with
the traditional observer, the LESO keeps the required amount of plant information to a
minimum. The analysis of convergence and experimental validation of LESO are addressed
in [19]. ⎧⎪⎪⎨⎪⎪⎩

ż1 = z2 + L1(y− z1)

ż2 = z3 + b0u + L2(y− z1)

ż3 = L3(y− z1).
(6)

According to Figure 1, the control law acting on the real plant is

u =
u0 − z3

b0
. (7)

Therefore, the double integrator (8) is obtained by replacing (7) in (4) and assuming
that z3 ≈ f . ⎧⎨⎩

ẋ1 = x2
ẋ2 = u0
y = x1

(8)

Equation (8) represents a disturbance-free modified plant which is controlled by the
feedback law

u0 = k1(r̃− z1)− k2z2, (9)

where r̃ is the setpoint and k1 and k2 are gains selected taking into account the desired
closed loop performance. Note that r̃ has been set as the reference in (9). This can be
done in practice if the tracking differentiator is omitted or the setpoint derivatives are
unbounded [20].

2.2. Frequency Domain Formulation

The block diagram from Figure 1 can be reformulated as the two degree-of-freedom
configuration of Figure 2. The direct loop transfer function GC(s) and the feedback transfer
function GF(s) are derived as follows.
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Figure 2. 2-degree-of-freedom (DOF) configuration of ADRC.

The linear extended state observer (6) in frequency domain is given by⎧⎪⎨⎪⎩
sZ1 = Z2 + L1(Y− Z1)

sZ2 = Z3 + b0U + L2(Y− Z1)

sZ3 = L3(Y− Z1),

(10)

where s is the complex variable, Y is the Laplace transform of the output, U is the Laplace
transform of the control action and Zi are the Laplace transforms of the states.

The expressions (11)–(13) are obtained by solving the system of Equation (10).

Z1 =
b0s

s3 + L1s2 + L2s + L3
U +

(L1s2 + L2s + L3)

s3 + L1s2 + L2s + L3
Y (11)

Z2 =
b0(s2 + sL1)

s3 + L1s2 + L2s + L3
U +

(L2s2 + L3s)
s3 + L1s2 + L2s + L3

Y (12)

Z3 =
−L3b0

s3 + L1s2 + L2s + L3
U +

L3s2

s3 + L1s2 + L2s + L3
Y. (13)

The control action (14) is deduced by combining the frequency domain expressions
of (7) and (9), with R being the Laplace transform of the reference.

U =
1
b0
(k1R− k1Z1 − k2Z2 − Z3). (14)

Therefore, substituting (11)–(13) in (14) and reorganizing terms, U is rewritten as

U =
k1

b0

[
s3 + L1s2 + L2s + L3

s3 + (L1 + k2)s2 + (k2L1 + L2 + k1)s

]
R

−
[
(k1L1 + k2L2 + L3)s2 + (k1L2 + k2L3)s + k1L3

b0(s3 + (L1 + k2)s2 + (k2L1 + L2 + k1)s)

]
Y.

(15)

From Figure 2 and in the absence of load disturbance (d = 0)

U = GC(s)R− GC(s)GF(s)Y. (16)

Hence, the resulting direct loop transfer function (17) and the feedback transfer
function (18) are obtained comparing the factors of R and Y in (15) with those in (16).

GC(s) =
k1

b0

(
s3 + L1s2 + L2s + L3

s3 + (L1 + k2)s2 + (k2L1 + L2 + k1)s

)
(17)

GF(s) =
(k1L1 + k2L2 + L3)s2 + (k2L3 + k1L2)s + k1L3

k1(s3 + L1s2 + L2s + L3)
. (18)
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Finally, the transfer function from output to load disturbance is

GD(s) =
G(s)

1 + G(s)GC(s)GF(s)
(19)

and the transfer function from control action to output is

GU(s) = −GC(s)GF(s). (20)

Equation (19) describes the system response to a load disturbance and (20) represents
the LADRC transfer function for disturbance rejection.

2.3. Control Loop Parameterization

The control loop parameterization seeks a set of parameters that allows the compu-
tation of the complete set of LADRC gains. In addition, if an LADRC is designed for the
control of a nominal system (e.g., a nominal FOPDT system), the loop parameterization
also allows the parameters scaling in order to make the controller suitable for other systems
of the same nature.

Consider the following theorem related to the scaling and bandwidth parameterization
of the LADRC loop.

Theorem 1. [4] Assuming Ga(s) is a stabilizing controller for plant Gn(s) and the loop gain
crossover frequency is ωc, then the controller

Ḡa(s) =
1
k

Ga

(
s

ωp

)
(21)

will stabilize the plant Ḡn(s) = kGn(s/ωp) and the new loop gain L̄(s) = Ḡn(s)Ḡa(s) will have
a bandwidth of ωcωp, and the same stability margins of L(s) = Gn(s)Ga(s).

In (21), k represents the gain scaling of plant kGn(s) respect to Gn(s) and ωp is the
frequency scaling of plant Gn(s/ωp) respect to Gn(s).

Let GA(s) be the transfer function obtained by multiplying GC(s) and GF(s) in the
right hand side of (20). This is,

GA(s) =
(k1L1 + k2L2 + L3)s2 + (k2L3 + k1L2)s + k1L3

b0(s3 + (L1 + k2)s2 + (L2 + k2L1 + k1)s)
. (22)

Equation (22) is function of b0, the observer gains Li and the controller gains ki. The
bandwidth parameterization is used to reduce the calculation of the Li to the selection of
the parameter ωo named observer bandwidth. Likewise, the ki values are made dependent
on the parameter ωc known as controller bandwidth.

Consider the state space representation of the extended model (5)

⎡⎣ ẋ1
ẋ2
ẋ3

⎤⎦ =

⎡⎣ 0 1 0
0 0 1
0 0 0

⎤⎦
︸ ︷︷ ︸

A

⎡⎣ x1
x2
x3

⎤⎦+

⎡⎣ 0
b0
0

⎤⎦
︸ ︷︷ ︸

B

u +

⎡⎣ 0
0
1

⎤⎦
︸ ︷︷ ︸

E

h (23)

y =
[

1 0 0
]︸ ︷︷ ︸

C

⎡⎣ x1
x2
x3

,

⎤⎦
whose matrix form is
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ẋ = Ax + Bu + Eh (24)

y = Cx,

with x = [x1 x2 x3]
�. Similarly, the matrix form of observer (6) is given by (25) with

z = [z1 z2 z3]
� and L = [L1 L2 L3]

�.

ż = Az + Bu + L(Cx− Cz). (25)

Let e = x− z be the estimation error. Its dynamic behavior is given by (26) and it is
obtained after subtracting (25) from (24).

ė = (A− LC)e + Eh. (26)

Assuming that h, even it is unknown, it is also differentiable and bounded, the observer
gains can be calculated through pole placement. In [4], it is proposed that the three poles
be located at position −ωo in the left semi-plane such as

sI − (A− LC) = (s + ωo)
3. (27)

Thus, the parameterization of the observer gains (28) is obtained as a function of ωo
by solving for both sides of (27) and comparing factors.

L1 = 3ωo L2 = 3ω2
o L3 = ω3

o . (28)

On the other hand, the controller gains design takes into account the frequency
representation of the modified plant (8) and the control action (9) to obtain the closed loop
transfer function

GY(s) =
k1

s2 + k2s + k1
. (29)

According to the characteristic equation of (29), the closed loop poles depends on
selection of the gains k1 and k2. Then, following the approach from [4], the poles are located
at −ωc as in (30) and the controller gains parameterization of (31) is derived.

s2 + k2s + k1 = (s + ωc)
2 (30)

k1 = ω2
c k2 = 2ωc. (31)

The bandwidth parameterization from (28) and (31) is used in (22) to obtain

GA(s) =
(
3ω2

c ωo + 6ωcω2
o + ω3

o
)
s2 +

(
2ωcω3

o + 3ω2
c ω2

o
)
s + ω2

c ω3
o

b0[s3 + (3ωo + 2ωc)s2 + (3ω2
o + 6ωcωo + ω2

c )s]
. (32)

Therefore, by proper selection of b0, ωc and ωo, the second-order LADRC estimates
and rejects the load disturbances acting on the loop.

Now, let the following FOPDT system be the plant to be controlled

G(s) =
K

Ts + 1
e−ls, (33)

where K is the static gain, T is the apparent time constant and l is the apparent delay or
dead time [21].

If Gn(s) is considered as a nominal FOPDT plant, then, following the scaling and
bandwidth parameterization theorem [see (21)], the model (33) can be treated as a scaled
version of (34) in which k = K, ωp = 1/T and Θ = l/T as shown in (35).

Gn(s) =
1

s + 1
e−Θs (34)
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G(s) = K

⎛⎜⎝ 1
s

1/T
+ 1

⎞⎟⎠e−
l
T

s
1/T . (35)

Hence, through some mathematical manipulation, the scaled controller ḠA(s) =
(1/k)GA(s/ωp) leads to the definition of the new set of LADRC parameters

b̄0 =
Kb0

T2 ω̄c =
ωc

T
ω̄o =

ωo

T
. (36)

In conclusion, if a stable second-order LADRC with parameters b0, ωc and ωo is
designed for the nominal system (34), then, the scaled LADRC with parameters b̄0, ω̄c and
ω̄o is suitable for the control of the general FOPDT plant (33).

3. Multiobjective Optimization Design Procedure

In this section, the generalities of the multiobjective optimization approach used to
address the LADRC tuning problem are presented. Particularly, the steps of a Multiobjec-
tive Optimization Design (MOOD) procedure are briefly explained and the pertinence of
this approach for the tuning problem is explored by means of a numerical example.

When designing a controller, the tuning process or solution obtained is strongly de-
pendent on the desired performance for the closed loop. The behavior of the output, control
action, and any other signals of interest is usually measured through some performance
indices or design objectives. If these indices are wanted to be minimized or maximized,
then, an optimization statement can be formulated.

For each minimized or maximized index, a particular solution is obtained. Therefore,
if different design objectives are optimized simultaneously, then, multiple solutions can
be suitable for the tuning of the same controller, not implying that one is better than the
other, but suggesting that a solution can be selected with a particular trade-off among the
aforementioned conflicting objectives. In this case, if the designer is interested, for example,
in the simultaneous minimization of two performance indices, a MOOD procedure could
aid in the tuning problem.

A MOOD procedure comprises three fundamental steps [22].

1. Multiobjective Problem (MOP) definition: The design objectives of interest are stated
as well as the decision variables and the possible constraints.

2. Optimization Process (OP): An algorithm is selected to search throughout the decision
space for the approximations of the optimal solutions (Pareto Set) and their corre-
sponding objective values (Pareto Front). This algorithm should fulfill some desirable
characteristics in order to provide the designer with useful solutions.

3. Multicriteria Decision Making (MCDM): Specialized visualization techniques are
employed to analyze the Pareto Front and Pareto Set approximations. The best
solution is the one that meets the designer’s preferences.

As an example, Figure 3 illustrates the concepts of Pareto dominance, Pareto Front and
Pareto Set for the biobjective optimization problem minθ J(θ) = [J1(θ), J2(θ)] with decision
variables θ = [θ1, θ2]. The decision vectors θ1, ..., θ5 dominates the vectors θ6 and θ7 because
the objective vectors J(θ1), ..., J(θ5) are not worse than J(θ6), J(θ7) in both objectives and
are better in at least one objective.

In order to explore the suitability of the multiobjective optimization approach for the
LADRC tuning problem, the responses to an unitary step load disturbance (r̃ = 0, d = 1)
and to an unitary step setpoint (r̃ = 1, d = 0) of the closed loop of Figure 2 with G(s) as (37)
were obtained for different combinations of the three LADRC tuning parameters in the
search space: b0 ∈ [5, 35], ωc ∈ [1, 25] rad/s, ωo ∈ [1, 25] rad/s, and following a grid
method with Δb0 = 1 and Δωo = Δωc = 0.2 rad/s.

Ge(s) =
1

s + 1
e−s. (37)
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Initially, the LADRC stability region was analyzed. Figure 4 shows the pairs (ωc, ωo)
for the critical gain nominal values b0 = 5, 15, 35 that produce a stable output in system (37).
From this figure, it is noted that as the nominal value of the critical gain increases, more
pairs (ωc, ωo) appears in the stability region which represent more possible combinations
for the LADRC tuning. In other words, there exists a stability bound that moves in the
(ωc, ωo) increasing direction as a higher value of b0 is selected.

Pareto Set 

approximation

Decision

search space

Pareto Front 

approximation

Dominated

solutions

Objective space

Figure 3. Pareto dominance, Pareto Front and Pareto set in a bidimensional case. There are no solution vectors dominating
θ1, ..., θ5 so these solutions are the approximation of the Pareto Set and their corresponding objective vectors J(θ1), ..., J(θ5)

are the approximation of the Pareto Front.

Figure 4. Closed loop stability regions for Ge(s). Each point in the region represents a combination
of parameters producing a stable output. For each value of b0 ∈ [5, 35] there exist pairs (ωc, ωo) that
produce a stable output. The b0 = 5, 15, 35 values are plotted as examples to illustrate the shape and
behavior of the stability region.

Once the LADRC stability region was obtained, interest was put in the performance
computed with those combinations of parameters. Particularly, the ITSE for load distur-
bance rejection, the robustness, and the Total Variation of control action (TV) were defined
as design objectives as stated in Table 1.
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Table 1. Design objectives for the performance evaluation of the Linear ADRC (LADRC).

Index/Design Objective Definition

Integral of the time weighted squared error value
ITSE =

t98%∫
t=0

t · (r(t)− y(t))2 dt

Total variation of the control action TV =
t98%

∑
i=1
|ui+1 − ui|

Mixed robustness ε = sup
ω

(|S(jω)|+ |T(jω)|).

Closed loop robustness is usually measured through the maximum peak of the sensi-
tivity function MS and the maximum peak of the complementary sensitivity function MT
such as 1.3 < MS < 2 and MT < 1.25 [23]. In this work, a robustness measure denoted by
ε is adopted which is defined in [24] as the structured singular value of matrix M from a
M− Δ configuration with a diagonal block structure.

The ε index has been previously used in [14] to quantify the robust stability of the
closed loop system with the LADRC and is computed as the maximum peak of the sum
of the magnitudes of the frequency responses of the sensitivity function S(jω) and the
complementary sensitivity function T(jω). The lower the value of ε, the more robust the
closed loop system.

A first look at the minimum ITSE value inside the stability region shows that
ITSEmin1 = 0.82 for the solution b01 = 17, ωc1 = 1.8 rad/s, ωo1 = 23.6 rad/s. However,
the associated robustness of ε1 = 5.93 is regarded as poor. If the constraint ε ≤ 3 is imposed
on the robustness index, then a new solution b02 = 24, ωc2 = 2 rad/s, ωo2 = 21 rad/s is
found with an ITSEmin2 = 1.13 and a corresponding robustness of ε2 = 2.99.

On the other hand, a search for the most robust controller results in the parameters
b03 = 15, ωc3 = 19.8 rad/s, ωo3 = 1 rad/s which produce εmin3 = 1.38 but with a
extremely high ITSE value of ITSE3 = 113.51. Also, if the ITSE is constrained such as
ITSE ≤ 2, then the new solution is b04 = 19, ωc4 = 21 rad/s, ωo4 = 2.8 rad/s with a
robustness εmin4 = 2.02 and a time performance index ITSE4 = 1.99.

Table 2 comprises the solutions and performance comparison discussed above. Some
additional indices as MS, MT, total variation of control action for disturbance rejection
(TVd), and total variation of control action for setpoint following (TVs) are included as
complementary information. Note that each of the LADRC set of parameters can be
considered as optimal only respect to the corresponding minimized index. For example,
the solution (b02, ωc2, ωo2) is optimal respect to the ITSE, but the robustness obtained is
the maximum allowed according to the constraint.

Table 2. Comparison of LADRC performance in control of Ge(s).

Desired Performance LADRC Parameters MS MT ε ITSE TVd TVs

min ITSE
b01 = 17
ωc1 = 1.8 rad/s
ωo1 = 23.6 rad/s

3.45 2.48 5.93 0.82 3.14 2.50

min ITSE
ε ≤ 3

b02 = 24
ωc2 = 2 rad/s
ωo2 = 21 rad/s

1.98 1.16 2.99 1.13 1.40 1.32

min ε
b03 = 15
ωc3 = 19.8 rad/s
ωo3 = 1 rad/s

1.19 1.00 1.38 113.51 1.02 33.87

min ε
ITSE ≤ 2

b04 = 19
ωc4 = 21 rad/s
ωo4 = 2.8 rad/s

1.50 1.01 2.02 1.99 1.10 29.25
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In addition to the solutions reported in Table 2, there are other sets of LADRC param-
eters within the stability region that offer a compromise between disturbance rejection,
quantified by ITSE, and robustness. To search for these alternatives, the Pareto dominance
definition was applied over the total of parameters combinations, restricting the robust-
ness measure to the range ε ∈ [2, 3] which represents a maximum sensitivity in the range
MS ∈ [1.3, 2] and a maximum complementary sensitivity in the interval MT ∈ [1, 1.4].

Figure 5a shows the Pareto Front approximation for the simultaneous minimization of
ITSE for disturbance rejection and robustness. As expected, the ITSE can not be improved
(decreased) without weakening the robustness. Likewise, a more robust closed loop system
is possible as long as the ITSE value is allowed to increase. The solutions (b02, ωc2, ωo2)
and (b04, ωc4, ωo4) from Table 2 would be located around the upper and bottom ends of
the Pareto Front approximation, respectively.

(a) (b)

(c) (d)

Figure 5. Pareto Fronts and Pareto Sets approximations for minimization of two design objectives J1 and J2. (a) the Pareto
Front approximation for the simultaneous minimization of ITSE for disturbance rejection and robustness. (b) the Pareto
Front approximation for minimization of ITSE and TV for disturbance rejection (TVd). (c) the approximation of the Pareto
Front when the ITSE for disturbance rejection is minimized simultaneously with the TV of the unitary setpoint (TVs). (d) the
Pareto Sets approximations for the three said cases.

From other point of view, Figure 5b is the Pareto Front approximation for minimization
of ITSE and TV for disturbance rejection (TVd) and Figure 5c is the approximation of the
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Pareto Front when the ITSE for disturbance rejection is minimized simultaneously with
the TV of the unitary setpoint (TVs). This figures show that there is also a compromise
between the ITSE performance and the control efforts.

Finally, the Pareto Sets approximations for the three said cases are presented in Figure 5d.
Note that the optimal values for the nominal critical gain are higher than b0 = 1, which
would be the nominal value (b0 = K/T) computed from the model (37), as is commonly
suggested in literature. Moreover, in the solutions with a compromise between ITSE
and robustness, the controller bandwidth can be selected to be greater than the observer
bandwidth (ωc > ωo) or vice versa (ωc < ωo). Nevertheless, for a compromise between
ITSE and the total variation of the control action, a selection of parameters in which ωc < ωo
seems more appropriated.

The case study addressed in this section gave some insight into the LADRC perfor-
mance in the control of a FOPDT system. In summary, there exist a trade-off between
the disturbance rejection performance of the LADRC and its robustness. The LADRC
parameters that produce this compromise are Pareto optimal and can be searched through
an optimization process were the objectives related to disturbance rejection and robustness
are minimized simultaneously. Besides, the definition of constraints over the objective and
search spaces could drive the optimization process to solutions that meet some desired
additional performance. If the aforementioned optimization procedure is applied over a
group of plants of the same kind, then the Pareto optimal alternatives could be used to
derive tuning rules reflecting the desired trade-off.

4. LADRC Tuning by Multiobjective Optimization

For the tuning problem of the second-order LADRC related to the control of FOPDT
systems, a MOOD procedure was applied to a group of nominal plants in the form of (34)
which was obtained by varying the nominal delay from Θ = 0.5 to Θ = 5 with a change of
ΔΘ = 0.1.

The FOPDT systems can be characterized based on the normalized dead time
τ = l/(l + T) with 0 ≤ τ ≤ 1 [25]. Particularly, a system is lag-dominated if τ is small,
balanced if τ is around 0.5 and delay-dominated if τ is large [26]. In terms of the nominal
delay, τ can be written as

τ =
Θ

Θ + 1
. (38)

Thus, the MOOD procedure was applied to plants with τ ranging from 0.09 to 0.83,
which includes lag-dominated, balance, and delay-dominated processes. The MOOD
results were used to fit the optimal solutions for the LADRC parameters and the fitting
curves were scaled to obtain the tuning rules as functions of the known FOPDT parameters.
In this section, each step of the MOOD procedure and the data processing of solutions are
explained in depth.

4.1. MultiObjective Problem Definition

The first stage of the MOOD procedure implies the definition of the decision space,
the objective space, and the possible constraints. The decision variables are selected from
the parametric controller; the objective space is related to the desired performance, and
finally, constrains are the design limitations imposed on the overall concept.

The plant to be controlled corresponds to the FOPDT nominal model (34). Note that
any controller designed for this plant can be scaled afterwards according to (36).

The following scaling for observer bandwidth were also adopted:

ωo = koωc, ko > 1, (39)

which indicates that LADRC parameters meeting the relation ωc < ωo are preferred. This
additional scaling is commonly suggested in literature (e.g., in [4,11,12]).

The transfer function (40) is obtained by substituting (39) in (32).
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GA(s) =
(
3koω3

c + 6k2
oω3

c + k3
oω3

c
)
s2 +

(
2k3

oω4
c + 3k2

oω4
c
)
s + k3

oω5
c

b0[s3 + (3koωc + 2ωc)s2 + (3k2
oω2

c + 6koω2
c + ω2

c )s]
. (40)

Choosing a value of ko = 10, the corresponding controller to tune is

GA(s) =
1630ω3

c s2 + 2300ω4
c s + 1000ω5

c
b0(s3 + 32s2 + 361ω2

c s)
, (41)

with the decision variables:

θ = [b0, ωc]. (42)

Two design objectives were selected: the ITSE for the response to a unitary step load
disturbance and the mixed robustness index ε. Thus, the complete multiobjective problem
is stated as

min
θ

J(θ) = [J1(θ), J2(θ)] (43)

J1(θ) = ITSE(θ) (44)

J2(θ) = ε(θ) (45)

θ = [b0, ωc], (46)

subject to

Stable in closed loop

J1(θ) ≤ ITSESIMC

2 ≤ J2(θ) ≤ 3

1 ≤ b0 ≤ 200

0.1 ≤ ωc ≤ 20

(47)

The constraints on design objectives were selected taking into account the perfor-
mances offered over the group of nominal plants by classical PID tuning rules as IMC [27],
SIMC [28], and AMIGO [29], and the LADRC tuning method from [14]. The upper limit
of J1(θ) was set as the ITSE value obtained with the SIMC approach such that the desired
closed loop time constant was equal to the apparent delay l. The SIMC tuning produced the
highest ITSE for each plant compared to the LADRC from [14] and the other PID controllers.

Similarly, the lower limit of J2(θ) is the approximation of the robustness obtained with
the AMIGO tuning rules, and its upper limit is approximately the robustness computed
with the IMC method. The other controllers offer a robustness measure between these
limits for all plants. What is more, the ε(θ) limits are related to the commonly adopted
limits for maximum sensitivity and maximum complementary sensitivity.

The search space for decision variables was specified following the results from
Section 3 where it was shown that to increase b0 contributes to a bigger stability re-
gion in terms of the bandwidths and, as a consequence, lower performance indices can
be computed.

4.2. Optimization Process

The evolutionary multiobjective algorithm ε↗−MOGA [30] was used to perform the
optimization process. This algorithm uses the epsilon-dominance concept to obtain Pareto
Front and Pareto Set approximations with limited memory resources and preserving the
diversity of the Front by adjusting its limits dynamically [31]. The algorithm parameters
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were set to 200 individuals for main population, 8 individuals for auxiliary population,
1000 generations and 1000 divisions per dimension.

The Pareto Fronts and Pareto Sets approximations obtained for the complete group
of nominal plants are presented in Figure 6. From Figure 6b, an interesting behavior is
observed. The range of the decision variables for plants with τ ≤ 0.5 is wider than for
plants with τ > 0.5. For instance, a robustness measure between 2 and 3 can be obtained for
the plant with τ = 0.09 if the LADRC parameters are selected in the ranges b0 ∈ [86, 115],
ωc ∈ [11.6, 6.6], whereas the same variation in robustness for plant with τ = 0.833 is
achieved with b0 ∈ [6.2, 9.2], ωc = [0.73, 0.71]. Another important feature is the decreasing
trend in the decision variables as the normalized delay increases. However, the rate of
change in both parameters tends to be greater for plants with τ ≤ 0.5 than for plants with
τ > 0.5.

(a) Pareto Fronts approximations

(b) Pareto Sets approximations

Figure 6. Results from the optimization process for the complete group of nominal plants. Pareto
Sets approximations for plants with τ ≤ 0.5 (black) show that the LADRC parameters for this group
have a wider range of variation and the rate of change in both parameters is greater compared to
plants with τ > 0.5 (gray). An inset showing the Pareto Sets approximations for plants with τ > 0.5
is included for better visualization.
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4.3. Multicriteria Decision Making

Once the Pareto Fronts and Pareto Sets approximations have been obtained, the last
step in the MOOD procedure is the selection of the solution or candidate solutions preferred
by the designer. Even if most of the preferences were taken into account in the optimization
process, a final selection is needed. Depending on the number of design objectives, the
visualization and graphical interpretation of the Pareto Front approximation is crucial.
Some novel ideas to rank the potential solutions obtained by evolutionary algorithms in
application to engineering problems are exposed in [32]. Likewise, an approach to the
knee solution of the Pareto Front approximation for optimization problems with many
objectives is addressed in [33].

According to the results from the optimization process, the following aspects were
considered for the decision making stage.

• For data processing, two main groups were defined: Group 1 containing data related
to plants with a normalized delay τ ≤ 0.5 and Group 2 with data belonging to plants
with τ > 0.5.

• From each Pareto Front approximation, three design alternatives distributed along
the front were selected.

• For Group 1, the selection was made using the entire Pareto Front approximation.
• For Group 2, the selection was made limiting the upper end of the front such that the

highest value for ε(θ) is 2.5. This criterion is based on the fact that the difficulty in
controlling a process increases as its normalized delay increases [25]. Thus, for this
group of plants, lower values of ε(θ) are preferred which correspond to more robust
closed loop systems.

• Selected solutions are compared in the objective space with other alternatives related
to PID and LADRC tuning rules.

Consider the first group of nominal plants (Group 1). In order to select the three
desired design alternatives, let the Pareto Fronts to be divided in two regions according to
bounds imposed on the mixed robustness measure. The upper region comprises solutions
for which 2.5 ≤ ε(θ) ≤ 3 and the lower region includes those with 2 ≤ ε(θ) < 2.5.

On each region, a point corresponding to the Nash solution was calculated by solving
the problem [34]:

max
(J1(θ),J2(θ))

(
J1

(
θ2
)
− J2(θ)

)(
J2

(
θ1
)
− J1(θ)

)
, (48)

where J1
(
θ2) is the optimal value (minimum) of the first design objective and J2

(
θ1)

is the point that minimizes the second cost function. The Nash solution (J1(θ), J2(θ))
is considered a fair selection because it dominates the larger number of points in the
rectangular area

(
J1
(
θ2)− J2(θ)

)(
J2
(
θ2)− J1(θ)

)
[34].

The third solution for Group 1 was selected as the midpoint of the Pareto Fronts. This
is, the solution meeting the condition ε(θ) = 2.5.

For the second group of plants (Group 2) the three selected solutions corresponds to
the two ends of the front and the Nash solution.

Figure 7 illustrates the concepts explained and solutions selected taking as an example
the Pareto Fronts approximations of the nominal plants with τ = 0.5 (Group 1) and τ = 0.75
(Group 2).

The complete set of Pareto Fronts approximations and selected solutions are presented
in Figure 8. For comparison purposes, the performance obtained with the PID tuning
methods IMC, SIMC, AMIGO, and the rules from [34] (SNS) are included for group 1. For
group 2, the Pareto alternatives are compared with the SIMC and AMIGO approaches.
Performance corresponding to the LADRC tuning rules from [14] (ADRCZ) are also shown
for both groups. Note that the fronts move to the right in the objective space as the
normalized delay increases. From this figure, the following remarks are derived.
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(a) τ = 0.5

(b) τ = 0.75

Figure 7. Location of the selected solutions into the Pareto Fronts approximations taking as example
two nominal plants. (a) For plants in Group 1, selected solutions are the Nash solution from upper
region NS1, the midpoint MP, and the Nash solution from lower region NS2. (b) For plants in Group 2
the selected solutions are the upper end UP, the Nash solution NS, and the bottom end BP.

• The performance obtained with the PID controllers tuned by the IMC, SIMC and SNS
rules are in the dominance area of the Pareto Fronts belonging to plants from Group 1.
Particularly, the SIMC points are dominated by the optimal solutions in all cases.

• For plants from Group 2, the performance obtained with the AMIGO tuning method
is outside the Pareto Fronts approximations due to the constraint imposed on ε(θ).
However, the alternative solutions corresponding to the bottom end of the Fronts
have better disturbance rejection with a reasonable level of robustness.

• The performance obtained with the ADRCZ tuning rules is in the dominance area
of the approximated Pareto Fronts for the entire set of nominal plants. Even though
the ADRCZ points are the results of fitting curves, they tend to move away from the
Fronts as τ increases which highlights their suboptimal feature.

With the MOOD procedure developed for the tuning problem of the second-order
LADRC applied to FOPDT nominal systems, a set of Pareto optimal solutions with a
trade-off between disturbance rejection and robustness was obtained. The distribution of
these solutions in the decision search space can lead to different fitting curves depending
on the preferred level of compromise between objectives. This idea is the core of the fitting
procedure presented in the next section.
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(a) Group 1 (τ ≤ 0.5)

(b) Group 2 (τ > 0.5)

Figure 8. Pareto Fronts approximations and selected solutions for the complete set of nominal plants. Performance points
obtained with the PID tuning methods IMC, SIMC, AMIGO, and SNS [34] as well as the LADRC tuning rules from [14]
(ADRCZ) are included for comparison. The SIMC points have been excluded from (b) for proper visualization because
these alternatives are always dominated by the Pareto optimal solutions. Information related to the same plant has been
plotted in the same color.

5. Tuning Rules for LADRC

The solutions obtained from the MOOD procedure correspond to the Pareto optimal
LADRC parameters suitable to control FOPDT plants in the form of (34). These data were
initially fitted to functions of the normalized delay τ. Afterwards, the resulting expressions
were scaled to obtain the LADRC tuning rules applicable to the control of the general
FOPDT system (33).

Data were fitted separately for the two previously defined groups of plants. This
was mainly because of the behavior observed in the rate of change of the parameters with
respect to the variation in the normalized delay (see Figure 6b). Additionally, in each group,
the three optimal solutions selected were used to fit three curves related to different levels
of robustness taking τ as independent variable. These levels of robustness were defined
as follows.

• Low level (εlow): The LADRC tuned by these approximation will offer a robustness
around 2.7 for processes with τ ≤ 0.5 and around 2.5 for plants with τ > 0.5. For
Group 1, the tuning rule was approximated using the Nash solutions of the upper
regions of the Pareto Fronts (NS1). For Group 2, the curve was fitted using the upper
ends of the fronts (UP).

• Medium level (εmed): Processes with τ ≤ 0.5 and controlled by LADRC tuned accord-
ing to this formulae will have a robustness of approximately 2.5. In the case of plants
with τ > 0.5, the robustness of the closed loop will be around 2.3. The midpoints
of the Pareto Fronts (MP) were used to approximate the tuning function in the first
group of systems and the Nash solutions (NS) were used for the second group.

• High level (εhigh): The highest robustness of the closed loop will approximately 2.2 for
systems with τ ≤ 0.5 and 2.0 for plants meeting τ > 0.5. In Group 1 the approximation
was done using the Nash solutions of the lower regions of the Pareto Fronts (NS2) and
in Group 2, the bottom ends of the fronts (BP) were used instead.
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The nominal values for the critical gain were fitted to power functions in the case of
systems with τ ≤ 0.5 and to polynomial functions for systems with τ > 0.5 such as

b0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
kb

(
τ

1− τ

)nb

, τ ≤ 0.5

ab

(
τ

1− τ

)2
+ bb

(
τ

1− τ

)
+ cb, τ > 0.5,

(49)

where kb, nb, ab, bb and cb are constants.
On the other hand, the controller bandwidth values were fitted for both groups to

power functions of the form

ωc = kω

(
τ

1− τ

)nω

, (50)

with kω and nω as constants.
The resultant fitting functions are presented in Figures 9 and 10, and the corresponding

parameters for expressions (49) and (50) are reported in Table 3.

(a) Fitting for Group 1 (τ ≤ 0.5)

(b) Fitting for Group 2 (τ > 0.5)

Figure 9. Tuning for nominal values of the LADRC critical gain. Markers indicate the optimal
solutions NS1 (�), MP (�), NS2 (�). Lines are the fitting functions for robustness levels εlow (−−),
εmed (· · · ), εhigh (-·-).
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(a) Fitting for Group 1 (τ ≤ 0.5)

(b) Fitting for Group 2 (τ > 0.5)

Figure 10. Tuning for LADRC controller bandwidth. Markers indicate the optimal solutions UP (�),
NS (�), and BP (�). Lines are the fitting functions for robustness levels εlow (−−), εmed (· · · ), and
εhigh (-·-).

As last step in the data processing, (49) and (50) were substituted in the corresponding
scaled parameters of (36) to obtain the general LADRC tuning rules

b̄0 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

K
T2

[
kb

(
τ

1− τ

)nb
]

, τ ≤ 0.5

K
T2

[
ab

(
τ

1− τ

)2
+ bb

(
τ

1− τ

)
+ cb

]
, τ > 0.5

(51)

ω̄c =
1
T

[
kω

(
τ

1− τ

)nω
]

(52)

ω̄o =
10
T

[
kω

(
τ

1− τ

)nω
]

. (53)

Equations (51)–(53) are now dependent on the three FOPDT plant parameters which
can be easily obtained for many processes by identification techniques.
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As a summary, in Table 3 a guide for the tuning of the LADRC for the control of FOPDT
plants is presented. Each of the defined levels of robustness represents a compromise
between this objective and the disturbance rejection performance. This way, the designer is
provided with three closed loop stable candidate controllers that could be tested on the
system for the final decision.

Table 3. LADRC tuning guide.

1. Approximate the process dynamics with the First Order Plus Dead Time (FOPDT) model

G(s) =
K

Ts + 1
e−ls.

2. Compute the normalized dead time. Note that the resulting normalized dead time meets the condition 0 ≤ τ ≤ 1

τ =
l

T + l
.

3. Decide whether the process belongs to Group 1: τ ≤ 0.5 or Group 2: τ > 0.5 according to the normalized dead time
computed in step 2. This classification indicates the level of robustness (quantified by ε) of each of the three
candidate controllers .

4. Use the tables given below to select the appropriate coefficients for the tuning rules according to preferences on the
robustness quality.

Group 1: τ ≤ 0.5 Group 2: τ > 0.5

Robustness level εlow εmed εhigh Robustness level εlow εmed εhigh

Robustness, ε 2.7 2.5 2.2 Robustness, ε 2.5 2.3 2.0

kb 24.129 25.632 27.952 ab 1.145 1.238 1.121

nb −0.651 −0.601 −0.518 bb −11.110 −12.192 −11.921

kω 1.946 1.938 1.903 cb 34.443 38.682 40.601

nω −0.724 −0.681 −0.604 kω 1.982 1.972 1.927

nω −0.635 −0.625 −0.612

5. Substitute the coefficients selected in step 4, the static gain, and the apparent time constant in the following rules to
compute the LADRC parameters

b̄0 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

K
T2

[
kb

(
τ

1− τ

)nb
]

, τ ≤ 0.5

K
T2

[
ab

(
τ

1− τ

)2
+ bb

(
τ

1− τ

)
+ cb

]
, τ > 0.5

ω̄c =
1
T

[
kω

(
τ

1− τ

)nω
]

ω̄o =
10
T

[
kω

(
τ

1− τ

)nω
]

.

6. Implement the second-order LADRC using the time domain or the frequency domain formulation.

Furthermore, the designer could vary the values of the LADRC parameters in the
intervals obtained based on the proposed rules to adjust the performance according to the
preferences. To help in this task, the tuning tool of Figure 11 has been developed in Matlab
App Designer and is available at Matlab Central [18]. It requires as inputs the FOPDT
model and through interaction with robustness level and manual tuning sliders, the user
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can visualize the closed loop response and evaluate the second-order LADRC performance
with the aid of some measures.

Figure 11. LADRC tuning tool. This Matlab App allows the automatic computation of the nominal
value of the critical gain b0, the controller bandwidth ωc, and the observer bandwidth ωo of the
second-order LADRC for the control of a system approximated by a FOPDT model. Available at [18].

The tuning rules proposed in this section together with the developed tuning tool allow
some degree of the designer involvement in the final selection of the LADRC parameters,
but eliminates the time and complexity of performing the entire optimization process.
The parameters computed by the proposed rules ensure closed loop stability as well as a
reasonable compromise between disturbance rejection and loop robustness.

6. Validation of the LADRC Tuning Rules

In this section, two examples are presented to validate the proposed tuning rules. The
load disturbance and setpoint responses are compared with the performance obtained from
other controllers such as PID and LADRC tuned by different methods.

The performance indices in frequency domain MS, MT, ε and in time domain ITSE,
TV, and settling time (t98%, in seconds) were calculated.

6.1. Example 1: A Lag-Dominated System

Consider the FOPDT lag-dominated system.

G1(s) =
1

10s + 1
e−2s. (54)

The Tuning Guide is used to illustrate the parameters computation. Following the
steps from Table 3:

1. From (54), K = 1, T = 10, and l = 2.
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2. The normalized dead time is

τ =
2

10 + 2
= 0.17. (55)

3. According to the normalized dead time from step 2, (54) belongs to Group 1 and thus,
the three candidate controllers have robustness of approximately 2.7 (εlow), 2.5 (εmed),
and 2.2 (εhigh).

4. For example, if a controller with a high robustness is preferred, the corresponding
coefficients for the tuning rules are kb = 27.952, nb = −0.518 for computation of b0;
kω = 1.903, nω = −0.604 for computation of ωc and ωo.

5. The nominal value of critical gain, the controller bandwidth, and the observer band-
width are computed by substituting the coefficients from step 4 and the FOPDT
parameters in the tuning rules. This is,

b̄0 =
1

100

[
27.952

(
0.17

1− 0.17

)−0.518
]
= 0.643 (56)

ω̄c =
1

10

[
1.093

(
0.17

1− 0.17

)−0.604
]
= 0.503 (57)

ω̄o = 1.903
(

0.17
1− 0.17

)−0.604
= 5.031 (58)

6. The parameters computed in step 5 can be used in the second-order LADRC for the
control of plant (54).

Note that steps 4 and 5 from the above procedure must be repeated if a different
robustness is desired. The LADRC parameters for the three levels of robustness (εlow, εmed,
εhigh) are listed in Table 4. Parameters obtained with the tuning rules proposed in [14]
(ADRCZ) are also listed together with those corresponding to the PID controllers tuned
by the IMC, SNS (from [34]), SIMC and AMIGO methods. Figures 12 and 13 show the
time responses.

Table 4. Parameters for the control of G1(s).

LADRC b0 ωc ωo PID Kp Ti Td

ADRCZ 0.349 1.950 0.960 IMC 4.320 10.800 0.751
εlow 0.688 0.624 6.243 SNS 3.420 5.475 0.970
εmed 0.674 0.580 5.795 SIMC 2.500 10.000 0
εhigh 0.643 0.503 5.031 AMIGO 2.450 5.867 0.943

The resulting values for the performance indices are reported in Table 5. It can be seen
that each of the proposed controllers offers a robustness level similar to one of the PID
alternatives with a lower ITSE for disturbance rejection. Also, the output backs to steady
state faster than with the IMC and SIMC.

Compared with the ADRCZ tuning rules, the three proposed controllers have a lower
ITSE value and return the output to steady state faster in the case of a load disturbance.
Note that with the εhigh controller, a higher robustness level and better disturbance rejection
performance can be achieved. Also, the total variation of the control action is lower for this
alternative.

On the other hand, for setpoint following operation, a similar ITSE than ADRCZ is
obtained with the εlow controller. However, it is worth noting that control actions produced
by the three alternatives are smoother, which is reflected in the total variations indices
calculated. This is mainly because the initial values of the control signals (sometimes
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referred in literature as proportional kick) are significantly lower than those reached by the
ADRCZ controller.

(a) Load disturbance step response (b) Setpoint step response

Figure 12. Closed loop time response of G1(s) with the second-order LADRC tuned with the proposed rules. Comparison
with the performance of ADRCz controller.

Table 5. Performance comparison of proposed tuning rules with other tuning methods for control of
G1(s). The εhigh controller is more robust and offers a lower ITSE for disturbance rejection than the
ADRCZ controller.

Disturbance Rejection Setpoint Following

MS MT ε ITSE TV t98% ITSE TV t98%

IMC 2.032 1.097 3.103 2.485 1.358 44.1 2.788 60.985 8.7
SNS 1.767 1.181 2.545 1.738 1.331 26.7 4.023 48.914 18.5

SIMC 1.590 1.000 2.353 6.870 1.082 46.2 6.307 2.591 12.1
AMIGO 1.446 1.135 2.029 3.770 1.252 33.6 5.702 31.503 23.3
ADRCZ 1.583 1.345 2.447 3.688 1.537 43.3 12.488 14.699 35.4
εlow 1.842 1.489 2.771 1.227 1.743 29.9 12.672 4.298 26.4
εmed 1.735 1.392 2.544 1.652 1.636 33.1 14.685 3.520 29.1
εhigh 1.598 1.258 2.236 2.982 1.438 31.4 19.404 2.562 25.9
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(a) Load disturbance response (b) Set point response

Figure 13. Closed loop time response of G1(s) with the second-order LADRC tuned with the proposed rules. Comparison
with the performance of PID controllers.

6.2. Example 2: A Delay-Dominated System

As second example, the following FOPDT delay-dominated system is analyzed:

G2(s) =
3

0.25s + 1
e−s. (59)

The normalized delay for this plant is τ = 0.80. The PID tuning rules IMC, SIMC and
AMIGO, and the LADRC tuning rules from [14] (ADRCz) were used for comparison. In
addition, the tuning rules for the second-order LADRC from [11] (ADRCH) were also taken
into account. The latter are proposed for the control of high order plants, but can be used for
self-regulatory FOPDT systems with nominal delay (τ/T) above 0.46 by approximating the
plant into the form K/(Ts + 1)n (Note that K and T have a different meaning than in (33)).

Figures 14 and 15 show the closed loop time response of G2(s) with the LADRC
and the PID controllers, respectively. The computed parameters are listed in Table 6 and
performance indices are reported in Table 7.
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Table 6. Parameters for the control of G2(s).

LADRC b0 ωc ωo PID Kp Ti Td

ADRCZ 359.316 5.029 16.140 IMC 0.173 0.650 0.195
ADRCH 345.819 2.521 33.007 SIMC 0.042 0.250 0

εlow 399.747 3.288 32.876 AMIGO 0.104 0.585 0.227
εmed 466.508 3.317 33.172
εhigh 521.205 3.301 33.007

According to the indices obtained for disturbance rejection, the proposed controllers
can improve the performance in at least one of the design objectives when compared to the
PIDs. For example, The εmed controller is more robust and produces a lower ITSE than the
PID tuned by the SIMC method. The same controller offers an improvement in robustness
and disturbance rejection in comparison with ADRCZ.

On the other hand, the ITSE calculated from the load disturbance response with the
three proposed controllers are lower than the ITSE obtained with the ADRCH controller.
The corresponding total variations of control signals are also lower and the system output
stabilizes faster, even in the case of a setpoint change. It should be noted that LADRC
parameters for ADRCH were obtained setting an required additional tuning parameter k
as 3.25 after some trial and error tests to guarantee the stability.

(a) Load disturbance response (b) Setpoint response

Figure 14. Closed loop time response of G2(s) with the second-order LADRC tuned with the proposed rules. Comparison
with the performance of ADRCz and ADRCH controllers.
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(a) Load disturbance response (b) Set point response

Figure 15. Closed loop time response of G2(s) with the second-order LADRC tuned with the proposed rules. Comparison
with the performance of PID controllers.

Table 7. Performance comparison of proposed tuning rules with other tuning methods for control
of G2(s). For all controllers MT = 1. The εmed controller is more robust and offers a lower ITSE
for disturbance rejection than the ADRCZ controller. The three proposed alternatives offers a better
disturbance rejection performance than the ADRCH controller with similar or better robustness.

Disturbance Rejection Setpoint Following

MS ε ITSE TV t98% ITSE TV t98%

IMC 1.873 2.774 15.447 1.427 3.9 0.666 2.474 3.7
SIMC 1.590 2.353 30.885 1.082 7.3 1.559 0.319 6.1

AMIGO 1.401 1.933 22.487 1.041 6.0 1.087 1.415 4.7
ADRCZ 1.622 2.357 18.875 1.069 4.0 1.329 0.310 4.3
ADRCH 1.792 2.612 20.278 1.361 7.6 2.122 0.310 7.3

εlow 1.798 2.615 15.817 1.321 4.9 1.381 0.312 4.1
εmed 1.638 2.296 17.551 1.102 5.3 1.550 0.308 4.7
εhigh 1.526 2.073 19.930 1.038 6.1 1.775 0.312 5.5

7. Control of a Peltier Thermoelectric Module

The proposed tuning rules were used to design a second-order LADRC for the control
of a thermoelectric module operating on the Peltier principle. It is assumed that the real
behavior of the Peltier cell is modeled by the nonlinear differential equations presented
in [35].

The thermal balance in the cold face is described by
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Qc f = 9.2Ṫc

Qc f = Qac f −Qpc f −Qj + Qcond

Qac f = 11.75− 0.5Tc (60)

Qpc f = 0.041Tc Ip

Qj = 0.41I2
p

Ip =
1

0.82
[Vin − 0.041(Th − Tc)]

Qcond = 0.2(Th − Tc).

The thermal balance in the hot face is

Qh f = 13Ṫh

Qh f = Qrh f + Qph f + Qj −Qcond

Qrh f = 9.59(Tr − Th) (61)

Qph f = 0.041Th Ip.

And finally, the radiator equilibrium corresponds to

Qr f = 722.55Ṫr

Qr f = Qacc −Qrh f (62)

Qacc = 167.09− 7.11Tr

The controlled output is the temperature on cold face Tc ∈ [−12.0, 6.0] ◦C and the
manipulated input is the applied voltage Vin in percentage of its range. A block diagram
representing (60)–(62) is presented in Figure 16 and the corresponding description of
variables is listed in Table 8.
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Figure 16. Block diagram of the thermoelectric module.
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Table 8. Description of variables for the Peltier cell model.

Variable Units Description

Tc
◦C Temperature on the cold face

Th
◦C Temperature on the hot face

Tr
◦C Temperature in the radiator

Vin % Voltage applied to the Peltier cell
Ip A Current flow in the Peltier cell
Qc f W Net heat flow on the cold face

Qac f W Heat flow transmitted by convection between the environment and the
cold face

Qpc f W Heat flow absorbed by the cold face due to the Peltier effect
Qj W Heat flow generated by Peltier cell due to Joule effect
Qcond W Heat flow transferred by conduction from the hot face to the cold face
Qh f W Net heat flow on the hot face
Qrh f W Heat flow transmitted by radiation between the hot face and radiator
Qph f W Heat flow dissipated by the hot face due to Peltier effect
Qr f W Net heat flow into the radiator

Qacc W Heat flow transmitted by convection between the environment and the
radiator

The Peltier cell behavior in the freeze zone (≈−8.0 ◦C) can be approximated by the
FOPDT nominal model [36]

Gp(s) =
−0.315

3.192s + 1
e−0.4s. (63)

The normalized delay for (63) is τ = 0.11. By substituting this value in the correspond-
ing tuning rules, the three second-order LADRC parameters sets (εlow, εmed, εhigh) from
Table 9 are obtained. Two additional controllers are also included for comparison purposes:
the LADRC tuned using the proposal from [14] (ADRCZ) and a PID whose parameters
were calculated by the SIMC method.

Table 9. Parameters for the control of a thermoelectric module.

LADRC b0 ωc ωo PID Kp Ti Td

ADRCZ −1.613 9.696 4.102 SIMC 12.667 3.192 0
εlow −2.885 2.744 27.439
εmed −2.758 2.496 24.957
εhigh −2.532 2.090 20.905

Consider that the cold face of the module is stable at−5.0 ◦C and a fault in power system
reduces the input voltage 10% of its nominal value. The evolution of temperature Tc and
the required voltage to reject the disturbance are shown in Figure 17a. The corresponding
performance indices ITSE (◦C2 · s), TV (%) and t98%(s) are included in Table 10.

Table 10. Performance comparison of proposed tuning rules with reference controllers for the load
disturbance response of the Peltier cell.

MS MT ε ITSE TV t98%

SIMC 1.590 1.000 2.353 2.373 10.810 12.0
ADRCZ 1.545 1.455 2.607 0.773 14.001 7.0

εlow 1.848 1.516 2.721 0.188 13.121 5.0
εmed 1.749 1.425 2.511 0.302 13.152 5.8
εhigh 1.613 1.298 2.232 0.725 13.173 7.2
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As expected, the εlow controller produces the response with lower ITSE due to the
relaxation in the robustness requirement. In addition, the total variation of control action
and settling time are the lowest among the three proposals.

(a) Load disturbance response

(b) Setpoint following

Figure 17. Closed loop time response of the Peltier thermoelectric module with the second-order
LADRC tuned with the proposed rules. Comparison with the performance of ADRCZ and SIMC con-
trollers.

On the other hand, the εmed controller offers an improvement over the performance
obtained with the ADRCZ tuning method. The robustness index is slightly lower which
indicates a more robust closed loop system and the ITSE value reflects that the output
stabilizes faster with less overshoot.

The most robust controller εhigh produces a time response similar to the ADRCZ
but the ITSE and TV values are slightly lower. Note that this controller also has a better
disturbance rejection and robustness level than the PID tuned by the SIMC method.

The thermoelectric module can be operated at different temperatures. Due to the
nonlinearities, the transient temperature response shows different behavior depending
on the magnitude and direction of the setpoint changes. An additional simulation was
performed to test the LADRC alternatives under this scenario.

In Figure 17b the time response of the cold face temperature with different setpoints is
presented. The corresponding indices are reported in Table 11.
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The three controllers designed with the proposed tuning rules guarantee the setpoint
following and the steady state is reached in less time than with the other controllers.
However, the ITSE values are above those calculated for the PID and ADRCZ. To clarify
this behavior, the output overshoot (in % of the setpoint change) has been included in
Table 11. As can be noticed, the SIMC method produces the lowest overshoot followed by
the εlow, εmed and εhigh controllers. As expected, the overshoot in output increases for high
changes in the magnitude of setpoint due to the nonlinear nature of the system.

Finally, in Figure 17b it is also shown that the three design alternatives can lead to a
lower variation of the control action in contrast with the abrupt change produced by the
other controllers when the setpoint changes. Note that this kind of peaks may be damaging
for the system. The corresponding TV indices from Table 11 support this idea.

Table 11. Performance comparison of proposed tuning rules and reference controllers for the setpoint
response of the Peltier cell.

Integral of the Time Weighted Squared Error

Setpoint (◦C) SIMC ADRCZ εlow εmed εhigh

−8 to −6 0.766 2.361 2.253 2.772 4.027
−6 to 0 14.331 25.004 20.384 24.379 34.836
0 to −3 1.429 4.369 4.727 5.722 8.342
−3 to−10 8.026 24.814 24.757 30.629 44.931

Total Variation of Control Action

−8 to −6 39.184 24.751 24.053 21.442 17.562
−6 to 0 32.630 71.937 59.848 53.764 43.455
0 to −3 34.185 99.566 25.580 23.286 20.042
−3 to−10 54.513 65.692 57.137 52.347 45.522

Output Overshoot

−8 to −6 2.849 22.343 9.651 9.052 9.425
−6 to 0 7.759 23.978 10.610 11.025 10.868
0 to −3 2.255 20.693 8.061 8.722 9.152
−3 to −10 2.161 20.077 8.565 8.100 8.579

Settling Time

−8 to −6 7.4 8.2 4.8 5.2 6.4
−6 to 0 9.2 8.2 4.8 5.4 6.6
0 to −3 7.0 8.0 4.6 5.2 6.4
−3 to −10 7.0 8.0 4.8 5.2 6.4

8. Conclusions

In this paper, a set of tuning rules for the second-order LADRC which offer three
different levels of compromise between disturbance rejection and robustness for the control
of FOPDT systems were presented. A MOOD procedure was performed to address the
tuning problem. It was focused on the simultaneous minimization of the integral of time
weighted squared error and a robustness measure. The tuning rules were obtained by fitting
a set of Pareto optimal solutions as functions of the normalized delay and the FOPDT
model parameters. Hence, all the LADRC parameters: nominal value of critical gain,
controller bandwidth, and observer bandwidth can be computed by selecting a desired
quality of robustness (i.e., low, medium or high) and substituting the FOPDT parameters
in the given rules.

An interactive tuning software was presented as complementary material. This tool
is based on the proposed rules and allows the user to adjust the LADRC parameters by
varying the robustness specification between the low and high levels. On the other hand,
the designer can modify the LADRC parameters within predefined intervals to evaluate
the overall performance of the closed loop.
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The use and convenience of the tuning rules were exemplified with the control of lag-
dominated and delay-dominated systems, as well as the control of the temperature in the
cold face of a thermoelectric module. The examples showed that the proposed tuning method
offers satisfactory performance for load disturbance rejection and setpoint following.

As part of the conceptual framework, an overall analysis on the conflicting objectives
regarding the tuning of the LADRC was done. This allows to identify as future research the
possibility of expand the objective space to include other performance criteria; for example,
the total variation of the control signal. The parameterization adopted in this paper for the
observer bandwidth oriented the optimization process to a particular area of the stability
region and as a result, smooth manipulated signals were obtained. It would be of interest
to analyze the trade-offs among other design objectives.
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Abbreviations

In the following, the most important symbols and abbreviations used in this manuscript are listed.

n System order
y System output
u Control law acting on the real plant
a0, a1 coefficients of the second-order model
b Critical gain
r̃ System setpoint
d Load disturbance
f Total perturbation
b0 Nominal value of critical gain
u0 Estate feedback control law acting on the modified plant
xi i-th system real state
zi i-th estimated state
Li i-th observer gain
ki i-th control law gain
s Complex variable
R Laplace transform of the system setpoint
Y Laplace transform of the system output
U Laplace transform of the control law
Zi Laplace transform of the i-th estimated state
G(s) Plant transfer function
GC(s) LADRC direct loop transfer function
GF(s) LADRC feedback transfer function
GA(s) Transfer function of controller
GD(s) Transfer function from output to load disturbance
GU(s) Transfer function to control action to output
GY(s) Closed loop transfer function
k Gain scaling of plant
ωp Frequency scaling of plant
ωo Observer bandwidth
ωc Controller bandwidth
b̄0, ω̄c, ω̄o Scaled LADRC parameters
K Static gain
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T Apparent time constant
l Apparent delay or dead time
Θ Nominal delay or dead time
τ Normalized delay or dead time
J1(θ), J2(θ) Design objectives
θ Vector of decision variables
ITSE Integral of Time Weighted Squared Error
TV Total Variation of control action
t98% Settling time
Ms Maximum sensitivity
MT Complementary sensitivity
ε Mixed robustness measure
Kp, Ti, Td PID controller parameters
εlow, εmed, εhigh Low, medium, and high levels of robustness
kb, nb, ab, bb, cb Coefficients of the tuning rules for the nominal value of critical gain
kω, nω Coefficients of the tuning rule for the controller and observer bandwidth
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Abstract: In order to obtain the aerodynamic loads of the vibrating blades efficiently, the eXterme Gra-
dient Boosting (XGBoost) algorithm in machine learning was adopted to establish a three-dimensional
unsteady aerodynamic force reduction model. First, the database for the unsteady aerodynamic
response during the blade vibration was acquired through the numerical simulation of flow field.
Then the obtained data set was trained by the XGBoost algorithm to set up the intelligent model of
unsteady aerodynamic force for the three-dimensional blade. Afterwards, the aerodynamic load
could be gained at any spatial location during blade vibration. To evaluate and verify the reliability of
the intelligent model for the blade aerodynamic load, the prediction results of the machine learning
model were compared with the results of Computation Fluid Dynamics (CFD). The determination
coefficient R2 and the Root Mean Square Error (RMSE) were introduced as the model evaluation
indicators. The results show that the prediction results based on the machine learning model are in
good agreement with the CFD results, and the calculation efficiency is significantly improved. The
results also indicate that the aerodynamic intelligent model based on the machine learning method is
worthy of further study in evaluating the blade vibration stability.

Keywords: machine learning; eXterme Gradient Boosting; Computation Fluid Dynamics; blade
vibration; unsteady aerodynamic model

1. Introduction

With the development of high load and high efficiency in compressors, the centrifugal
load and aerodynamic load are endured by the blade due to the strong unsteady flow in the
field. Also, the problem of blade vibration has become increasingly prominent. Therefore,
the accurate prediction of the internal flow and blade aerodynamic force in the compressor
is of great significance for evaluating the reliability of blade vibration in the design stage.

The traditional Computation Fluid Dynamics (CFD) technology can perform a high-
fidelity simulation of the linear or non-linear blade vibration in the flow field [1–3]. How-
ever, it requires high computational expenses for the large-scale calculation. This is not
suitable for the rapid evaluation of blade vibration reliability. To overcome the shortcom-
ings of calculation costs [4], the reduced order models of unsteady flow field are proposed
here based on the CFD model [5–12]. Proper Orthogonal Decomposition (POD) and Dy-
namic Mode Decomposition (DMD) are two typical modal decomposition methods, which
are based on the flow field feature extraction technology. The complex unsteady flow
field is represented with a set of characteristic modes of low-dimensional variables [5–9].
Another kind of reduced-order model based on the system identification technique has
been used for the fluid problem [10–12]. Simple mathematical mapping was employed to
describe the relationship between flow disturbances and aerodynamic characteristics.

In recent years, research on knowledge extraction and data visualization has promoted
the exploration of artificial intelligence methods for crossing with fluid mechanics. Machine
learning builds a powerful information processing framework with accurate algorithms and
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generalization capabilities. Efforts have been made for the application of machine learning
in fluid mechanics [13–21]. The interaction of fluid mechanics and machine learning is
summarized by Brunton [13], as well as the development trend of the interdisciplinary
approach. It is believed that the application of machine learning can enhance the current
fluid mechanics research. Deep Neural Networks (DNN) were stated to play a key role on
modeling complex flow by Kutz [14]. A reduction model by DNN was designed based on
the data of Direct Numerical Simulation (DNS) by Zhang [15]. The results show that DNN
can predict the anisotropic Reynolds stress effectively. Chen [16] proposed the use of a
deep Convolutional Neural Network (CNN) to extract flow information, and established a
composite network to solve the problem of input with different variables. The hybrid deep
neural network framework was used by Han [17] to directly capture the characteristics of
unsteady flow in the field. The field predicted by DNN was in agreement with the result
calculated by CFD solver. Hasegawa [18] constructed a reduced-order model combined
with a CNN auto encoder and Long Short-Term Memory network (LSTM). The model
proved to be able to predict the unsteady flow of bluff bodies. Also, the multi-core neural
network was adopted by Kou [19] to achieve the correction from the low-order model to
the high-fidelity results. A model was constructed with a combination of the Adaptive
Simulated Annealing algorithm (ASA) and Recursive Radial Basis Function neural network
(RRBF) for the cascade by Hu [20]. It was proven that the ASA-RRBF model has a higher
accuracy than the single RRBF model.

The data-driven optimization of machine learning and the application of regression
technology can map a high-dimensional flow field to a low-dimensional space, which can
effectively solve the high-dimensional nonlinear problems. The ability of machine learning
could simplify the treatment of the exploration and visualization of the high-dimensional
database, which can greatly improve performance optimization and reduce the conver-
gence cost [13]. The intelligent method provides a useful technology to extract relevant
information, which promotes a rapid development of flow dynamics. The constructed
reduced-order aerodynamic force model based on the machine learning can predict the
unsteady aerodynamic force of the blade with a reasonable accuracy and a low computation
cost [21].

Note that the current applications of artificial intelligence method in the fluids are
mostly focused on the modeling of flow characteristics, while the modeling of blade
aerodynamic force in vibration rarely involves the intelligence method. For this paper, the
XGBoost algorithm was applied for the first time to the aerodynamic modeling of an actual
compressor blade. A reduced-order intelligent model of the three-dimensional unsteady
aerodynamic force of the blade was established for consideration of machine learning
and CFD. By learning a small amount of CFD sample data, the trained low-dimensional
XGBoost model could effectively capture the characteristics of the unsteady flow. The
aerodynamic load of the compressor blade during the vibration process can be obtained by
the intelligence model through the input and output mathematical mapping. Compared
with the deep learning, the XGBoost model is suitable for data with a small number of
variables. It has the advantages of model interpretability and invariance of input data.
Also, it is convenient for parameter adjustment to achieve default predictions through
automatic iteration. Under the premise of ensuring the accuracy, this reduced-order model
presented can greatly reduce the calculation costs.

2. Description of the Machine Learning Algorithm

The eXtreme Gradient Boosting algorithm is an integrated machine learning algorithm
based on a decision tree, which is in the foundation of gradient boosting framework. It is
proposed to build an efficient and flexible algorithm by Chen [22] according to the second-
order information [23]. This algorithm is a scalable machine learning system in the lifting
method, which is integrated by multiple regression trees to form a strong classifier. The
problem of overfitting in tree model can be effectively avoided [24]. After parallelization,
it is more than one order of magnitude faster than similar algorithms under the same
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conditions [25]. The excellent performance in high-dimensional data analysis shows a
strong ability in modeling the complex process [26]. Because of its high performance and
low requirement, XGBoost has been widely used in disease prediction, credit debt default
risk prediction, driving evaluation, route planning and so on [27–30].

The principle of its algorithm is to update iteratively the parameters of the previous
classifier to reduce the gradient of the loss function and generate a new classifier [31]. By
reducing the error of prediction through several regression trees, the regression tree group
is guaranteed to have the maximum generalization ability. The regular term is added
to the loss function of the model. Then the second-order Taylor expansion of the loss
function is solved to determine the split node on the basis of the minimum loss function.
The second-order derivative information and the addition of regularization method have
improved the performance of generalization and calculation [32]. The structure of the
XGBoost algorithm is indicated in Figure 1.

Figure 1. The Structure of the eXterme Gradient Boosting (XGBoost) Algorithm.

The given sample data set is:

η= {( xi_CFD, yi_CFD)} (i = 1, 2, · · · , n, xi_CFD ∈ Rm, yi_CFD ∈ R) (1)

where xi_CFD represents the i-th feature value of the sample data, yi_CFD represents the
experiment value of the i-th label of the sample data and xi−Pre represents the predicted
value of the i-th label of the model. Define the loss functions of yi_CFD and yi_Pre:

l(yi_CFD, yi_Pre) = (yi_CFD − yi_Pre)
2 (2)

Where yi_Pre is the prediction in the integration model of the XGBoost system, which
uses the sum of the predicted value of each tree (the total number of trees is K) for the
sample. Assuming that the tree model to be trained in the k-th iteration is fk(x), the
prediction function was defined as follows:

yi_Pre =
K
∑

k=1
fk(xi), fk ∈ Γ

Γ= f(x) = ωq(x) (q : Rm → T, ω ∈ RT)
. (3)

As Γ is the space of Classification and Regression Trees (CART) numbers, q represents
the score of the structure of each tree mapping each sample to the corresponding leaf node;
ωq(x) represents the set of scores for all leaf nodes of tree q. The optimized parameter
in the XGBoost algorithm is defined as the function of f (x). While a tree is added into
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the model each time, the loss of the objective function was expected to be decreased. The
iteration functions could then be expressed as:

yi_Pre
(0) = 0

yi_Pre
(1) = f1(xi) = yi_Pre

(0) + f1(xi)

yi_Pre
(2) = f1(xi) + f2(xi) = yi_Pre

(1) + f2(xi)
· · ·
yi_Pre

(t) =
t

∑
k=1

fk(xi) = yi_Pre
(t−1) + ft(xi)

. (4)

The objective function could then be expressed as:

obj =
n
∑

i=1
l(yi_CFD, yi_Pre) +

K
∑

i=1
Ω( fi)

Ω( f ) = γT + 1
2 λ‖ω‖2

, (5)

where
K
∑

i=1
Ω( fi) indicates the regularization term of the loss function, which is the sum of

the complexity of all K trees. The number of leaf nodes T is limited with a penalty term Ω( fi)
so as to prevent overfitting. ω represents the set of scores for all the leaf nodes of each tree,
while γ and λ represent the coefficients. In order to solve the optimal objective function,
the second-order Taylor expansion of the t-th tree ft(xi) in Equation (4) is performed with
bringing into the objective function. As the loss function l(yi_CFD, yi_Pre

(t−1)) is a constant,
it can be ignored. And the leaf nodes of all trees can be regrouped. Then the node number
and leaf weights are used to optimize the regularization term of the loss function. All
samples xi of leaf nodes are divided into a sample set, denoted as Ij = {i|q(xi) = j}. The
objective function could be rewritten as:

obj =
n
∑

i=1
[l(yi_CFD, yi_Pre

(t−1)) + gi ft(xi) +
1
2 hi f 2

t (xi)] + Ω( ft) + cons tan t

≈ n
∑

i=1
[gi ft(xi) +

1
2 hi f 2

t (xi)] + Ω( ft)

=
n
∑

i=1
[gi ft(xi) +

1
2 hi f 2

t (xi)] + γT + 1
2 λ

T
∑

j=1
ω2

j

=
n
∑

i=1
[giωq(xi) +

1
2 hiiω

2
q(xi)] + γT + 1

2 λ
T
∑

j=1
ω2

j

=
T
∑

j=1
[( ∑

i∈Ij

gi)ωj +
1
2 ( ∑

i∈Ij

hi + λ)ω2
j ] + γT

=
T
∑

j=1
[Gjωj +

1
2 (Hj + λ)ω2

j ] + γT

, (6)

where gi =
∂l(yi_CFD ,yi_Pre

(t−1))

∂yi_Pre
(t−1) , hi =

∂2l(yi_CFD ,yi_Pre
(t−1))

∂(yi_Pre
(t−1))

2 , Gj = ∑
i∈Ij

gi, Hj = ∑
i∈Ij

hi, f (t) = ωq(x),

ω ∈ RT q : Rd → {1, 2, · · · , T} .
The smaller the value of the objective function is, the smaller the prediction error is,

with a better generalization ability and robustness of the model. By using the highest value
formula of the quadratic function, the weight ωj∗ of each leaf node could be obtained. The
optimal objective function can then be expressed as:

ωj∗ = − Gj

Hi + λ
, obj = −1

2

T

∑
j=1

G2
j

Hi + λ
+ γT. (7)

The modeling advantage of in XGBoost method can be concluded to the adjunction
of regularization items displayed in the objective function. The regularization items are
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related to the number and the value of leaf nodes in the tree. In addition, the sparse value
of the training data in the XGBoost algorithm should be noted. The default direction of
the branch is specified for missing values, which greatly improves the efficiency of the
algorithm [33]. As an advanced machine learning method developed in recent years, this
method has a good performance in processing high-dimensional data with the reduction
of the overfitting.

3. Methodology of Aerodynamic Intelligent Model

3.1. Data Collection for Machine Learning

The high accuracy data is the key to establishing an accurate unsteady aerodynamic
model of blade in compressor. The training process of the XGBoost model in this paper was
mainly driven by the database obtained from the CFD fluid-structure coupling computation.
The research object was a 1.5 stage axial compressor, including struts, inlet guide vanes,
first stage rotor and stator. Detailed introductions for the rig are presented in Zhang [34].

The unsteady flow field in the compressor was solved by using the numerical solu-
tion of 3-D Navier-Stokes equations adopted in software ANSYS Package. The spatial
discretization of the flow governing equations was employed on an upwind scheme, and
a second-order backward differencing was integrated for the time-accurate solution [35].
Boundary conditions imposed on the inlet consist of total pressure and total temperature. A
specified average static pressure was implemented at the exit boundary. Smooth, adiabatic
and no-slip wall boundary conditions were applied for the flow field solution [36]. While
considering the fluid-structure interaction, the blade vibration was computed under the
response to the flow. The detail simulation process of the compressor is described in refer-
ence [34]. The structural equations for mechanical blade were solved by the finite element
method. Within each time step, the flow equations and the structural equations were solved
simultaneously, exchanging information on the fluid-structure interface. This procedure
was repeated until the flow and displacements were converged, before proceeding to the
next time step. The numerical model of the 1.5-stage turbocompressor is shown in Figure 2.

Figure 2. Numerical Model of the 1.5 Stage Turbocompressor.

After the convergence of the simulation, the results computed by the commercial
CFD software were used for the current data learning, including the spatial unsteady
flow data and aerodynamic force on blade surface in time domains. The snapshot data of
the unsteady flow was captured at each time step, including pressure and aerodynamic
force of the blades at modal coordinates. The data set for training/testing was composed
with five variables, such as Cartesian coordinates, pressure and aerodynamic force. The
three-dimensional coordinate (X, Y, Z) of the structure space was taken as an input, and
the aerodynamic force was taken as an output to form the sample data S = (X, Y, Z, Force).
The flow snapshot data extracted from CFD was arranged in time series as a sequence
{S 1, S2, S3, · · · , SN}, where Si =

{
Xij, Yij, Zij, Forceij

}
, i = 1, 2, · · · , N, j = 1, 2, · · · , n. The

distribution of the aerodynamic force on the blade surface is shown in Figure 3, which
was extracted in the CFD fluid-structure coupling simulation at a single time. It can be
seen that the distribution of aerodynamic force was not uniform on both the pressure side
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(PS) and suction side (SS). Because of the unsteady flow in the field, the aerodynamic force
that acted on the blade appears in a non-linear state, which resulted in the vibration blade
indicating complex dynamic behaviors.

Figure 3. Distribution of the aerodynamic force on the blade.

3.2. Procedure of Aerodynamic Modeling Based on the XGBoost Algorithm

In this part, the methodology of aerodynamic modeling based on XGBoost algorithm
is introduced in detail. The procedure can be concluded as follows.

Step 1: Data preprocessing.
After the data collection from CFD, the features of acquired data may have different

magnitudes. When the gradient is updated, it may oscillate back and forth, and take
a long time to reach the local optimal value or the global optimal value. In order to
improve the training efficiency and avoid the numerical error caused by the size difference
of the features, the data were handled in normalization. This ensured that the same
dimension was achieved for different features, so that the descent of gradient could be a
quick convergence. The normalized function form used in this article is shown as follows:

X =
xk − xmin

xmax − xmin
. (8)

In machine learning algorithms, feature engineering is an important step in the process
of modeling. The original data were transformed into the training data with feature
engineering, providing the training model with a better robustness and generalization
ability. This paper provides three characteristics of index, distance and average value of
three-dimensional coordinates based on data information.

Step 2: Training set construction.
The training set was used to estimate the parameters in the intelligent model. As

a result, the accuracy and efficiency of the model were determined by the selection of
the training set. In order to optimize the effect of the model, the dichotomy process was
adopted to partition the training set. That is to say for N samples, each segment was divided
into the length of [C/2], where C = [N], [N/2], [N/22], · · · , 2. Then take a representative
data set from each segment to form a training set. Taking into account of the accuracy
and running time in calculation, two snapshots as {S 1, S[N/2]

}
were selected to form the

training set to train the model in this paper.
Step 3: Training process.
The training set after data preprocessing was substituted into the initial XGBoost

model established for training. The effect of prediction by the model was evaluated by
the comparison to the [N/2] + 1 snapshot data, which were selected as the test set. The
establishment of the model required the setting of hyper-parameters. The hyper-parameters
used in this article were defined as: Max-depth (the maximum depth of the tree), Learning-
rate (the learning rate), n-estimators (the number of sub-models) and objective (the given
loss function). The hyper-parameters for the initialization model are given in Table 1.
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Table 1. Parameters for XGBoost Model Initialization.

Max-Depth Learning-Rate n-Estimators Objective

40 0.35 60 Reg:gamma

Step 4: Parameter Adjustment.
The adjustment of the hyper-parameters in the XGBoost model played a key role in af-

fecting the training performance of the XGBoost algorithm. So, the GridSearchCV function
was employed to adjust the parameters of the XGBoost model. The hyper-parameters after
seeking are shown in Table 2.

Table 2. Parameters in XGBoost Model after Adjustment.

Max-Depth Learning-Rate n-Estimators Objective

19 0.1 160 Reg:gamma

Step 5: Evaluation Criteria.
The indicators as the coefficient of determination R2 and the root mean square error

(RMSE) were introduced to evaluate the accuracy of the established XGBoost model.
The fitness of the prediction to the observation can be represented by the coefficient of
determination R2, which was defined as the ratio of the regression sum of squares to the
total sum of squares. This coefficient is often used to evaluate the merits and demerits of
a regression model. If the coefficient of determination R2 is calculated to be close to 1, it
indicates that the regression model is effective. RMSE is the square root of the ratio, which
is the square sum of the errors of prediction values to the number of observations. The
optimal parameters of the model and the optimal prediction results were obtained through
model training

R2 = 1−
∑
i
(CFDi − Prei)

2

∑
i
(CFDi − CFDi)

2 , (9)

RMSE =

√√√√√ n
∑

i=1
(CFDi − Prei)

2

num
, (10)

where CFDi represents the i-th label in the sample data which is captured from CFD
simulation, CFDi represents the average value of the label in the sample set, and Prei
represents the predicted value of the i-th label in the XGBoost model. And prediction error
is defined as: error = Pre− CFD, which is the difference between the prediction of the
XGBoost model and the CFD result. The whole procedure of aerodynamic modeling based
on the XGBoost algorithm is shown in Figure 4.
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Figure 4. Procedure of Aerodynamic Modeling.

4. Modeling of Blade Aerodynamic Pressure Based on Machine Learning

In this section, the intelligent modeling is first performed for the three-dimensional
unsteady pressure of the blade during the vibration process. Also, the effectiveness and
accuracy of the model are evaluated based on the XGBoost algorithm. The three-dimension
coordinate (X, Y, Z) of the state space in blade vibration was taken as the input, and the
pressure data was taken as the output to form sample data S = (X, Y, Z, Pressure). According
to the procedure of aerodynamic modeling described above, the gradient descent method
was used to find the optimal solution. After the dimensionless processing on pressure data,
the training set was collected to train the XGBoost model. Also, the test set was brought
into the trained optimal prediction model for comparison. Finally, the prediction on the
blade aerodynamic pressure was obtained with the XGBoost model established.

The prediction results of the aerodynamic pressure of blade are shown in Figure 5 at a
certain time. The predicted values of pressure in the XGBoost model were compared with
the data in CFD simulation at 80% of the blade span. It can be seen that the curves predicted
are in good accordance with each other, indicating the accuracy of the XGBoost model.

Figure 5. Comparison between XGBoost Model and Computation Fluid Dynamics (CFD).

We unfolded the three-dimensional compressor blade along the leading edge, and
displayed the pressure surface (PS Side) and suction surface (SS Side) of the compressor
blade on the same coordinate plane. The pressure contour predicted by the XGBoost model
is exhibited in Figure 6, as well as the result simulated by CFD. The two contours look
almost the same, but there are still errors located under 40% of span, which are revealed in
Figure 7. In addition, under the program running with 0.3 s, the coefficient of determination
R2 was computed to be 0.99947. The RMSE was obtained as 1012.4 by the model, which is
approximately a 0.3% error rate to the average pressure of the blade. Compared with CFD
simulation data, the three-dimensional aerodynamic pressure model of the blade based on
the XGBoost intelligent method reflects a good accuracy and efficiency. The current study
demonstrates that it is sufficient to predict the blade aerodynamic force by capturing the
characteristic of flow based on the machine learning method.
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Figure 6. Pressure Contours of the Blade: (a) CFD; (b) XGBoost Model.

Figure 7. Error Contour for Pressure.

5. Modeling of Blade Aerodynamic Force Based on Machine Learning

Under the verification for the effectiveness of the intelligent modeling method, the
XGBoost algorithm was then used to model the unsteady aerodynamic force for the three-
dimensional blade in this section. The aerodynamic force on the blade surface was obtained
based on the integral of the pressure over the mesh grid area in CFD. Because of the micro
size of grid at the blade edge, the value of force at the blade edge was much smaller. In
order to restore the distribution of force on the blade, the process of dimensionless was
performed for the aerodynamic force Df on the blade surface

D f =
F

S× P
, (11)

where F is the aerodynamic force data on the blade surface in CFD, S is the average area
of the blade surface mesh and P equals the standard atmospheric pressure. Next, the
distribution of aerodynamic force on the blade surface was predicted by the XGBoost
model at any position during the vibration process.

The predicted values of aerodynamic force in the XGBoost model were chosen here to
compare with the data in CFD simulation at 3%, 80% and 90% of the blade span, respectively,
as shown in Figure 8. It can be seen that the aerodynamic force of the blade increases
sharply from the leading edge, and decreases at the trailing edge. It was found that the
values of aerodynamic force appear to have significant differences along the variation
of the blade span. The aerodynamic forced distributed along the direction of the blade
spanwise presents a nonlinear characteristic.

This appearance can also be observed at the distribution of force at the three-dimension
surface of the blade. The 3D plots are adopted here to show the distribution of aerodynamic
force at a blade modal location. As indicated from Figure 9, it can be seen that the distribu-
tion of the aerodynamic force predicted by the XGBoost model is accordant with the CFD
data on the pressure surface of the blade. The load of blade is mainly concentrated in the
middle part of the blade, corresponding to the region of high aerodynamic force. Because
of the non-linear feature, the unsteady force is not easy to express. According to the errors
displayed in Figure 10, the nodes of aerodynamic force modeling by XGBoost method
show good agreement with the CFD data. Although the existence of error was discovered

199



Mathematics 2021, 9, 476

at certain points, the effectiveness of the aerodynamic force model is still verified through
the comparison.

Figure 8. Unsteady aerodynamic value of the blade section.

Figure 9. Aerodynamic Force at the Blade Pressure Side: (a) CFD; (b) XGBoost Model.

Figure 10. Aerodynamic Force Error on Blade.

The dimensionless aerodynamic force contour predicted by the XGBoost model is
expressed in Figure 11, along with the contour simulated by CFD. The two aerodynamic
clouds coincide exactly with each other. Also, the errors inevitably appear in the compari-
son of XGBoost model with CFD, as indicated in Figure 12. But it can be seen that the errors
emerge mostly in the region with a large gradient. The values of error oscillate around 0
with the maximum value as 0.06, which is relatively small in contrast to the dimensionless
aerodynamic force of the blade. At the running of program with 0.23 s, the coefficient of
determination R2 of the XGBoost model was computed to be 0.99998, which is very close to
1. Also, the RMSE was obtained as 0.005846 by the model, which is approximately a 0.1%
error to the average dimensionless aerodynamic force of the blade. With the comparison
to the CFD simulation data, this shows a good accuracy and reliability of predicting the
aerodynamic force by the three-dimension aerodynamic force model of the blade based on
the XGBoost intelligent method.
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Figure 11. Aerodynamic Force on the Blade: (a) CFD; (b) XGBoost Model.

Figure 12. Error Contour for Aerodynamic Force.

To check the generalization ability and robustness of the XGBoost model, snapshot
data sets with the blade vibration at different times were used as the testing set. The trained
XGBoost model was also used to predict the aerodynamic force of each snapshot data in the
testing set. The results of prediction are revealed in Figure 13, as represented by the coeffi-
cient of determination R2 and RMSE for different testing data. For the trained aerodynamic
force XGBoost model, the prediction accuracy also shows a slight discrepancy compared to
different positions of blade vibration. The maximum coefficient of determination R2 of the
prediction model is 0.99999, with the minimum value as 0.99987. The maximum RMSE
value is 0.01852, with the minimum value to be 0.00519. The coefficients of determination
R2 are all above 0.9998, and the RMSE values are all less than 0.0186. This means that
the XGBoost model reflects a good generalization ability with high robustness. From all
analysis above, it can be concluded that the three-dimension aerodynamic model based on
the XGBoost algorithm can accurately predict the aerodynamic force of the blade on the
basis of any spatial position in the blade vibration process.

Figure 13. Graphs of Error at different testing data: (a) CFD; (b) XGBoost Model.

6. Discussion

With the assistance of CFD technology, the unsteady flow field simulation of the
compressor is considered as a full-order solution to the system. Although the data obtained
is regarded as being accurate, it is not convenient for the rapid qualitative analysis of the
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system with a high time cost and low efficiency [4]. With the simple control equation of the
reduced-order model, the data can significantly reduce computation expenses and improve
calculation efficiency [10]. The mathematical mapping between the input and output can
be set up by solving the complex Navier-Stokes equations once for training. Then the
fluid-structure coupled solution in the CFD solver can be replaced by the intelligent model.

Recently there has been research conducted on the aerodynamic reduction modeling
of wings by artificial intelligent methods. But there are considerable differences between
blades and wings. Compared with isolated wings, there is an obvious unsteady aerody-
namic interference effect in the blade row [36]. Therefore, the aeroelastic analysis of blades
is different from the traditional vibration analysis of wings in outflow. Since the internal
flow is a very complex full three-dimensional unsteady viscous flow field, the aerodynamic
interference between the blades is very prominent. It is impossible to use theory to predict
the unsteady aerodynamic force of vibrating blades with so many parameters [37]. In non-
linear dynamic analysis, it is assumed that the blade is flat with no thickness, reducing the
real three dimensions to two dimensions. However, an efficient and accurate aerodynamic
model of the three-dimension blade is the basis for the analysis of the nonlinear dynamic
system. The vibration modeling of the actual three-dimensional blades was rarely used in
the previous research.

In this paper, the XGBoost algorithm of machine learning was used to establish a
reduced-order model of the unsteady aerodynamic force for a vibrating blade. By learning
from the high-fidelity sample data, the aerodynamic distribution of a three-dimensional
blade could be quickly predicted accurately at any spatial position of the blade during
the vibration process. This provides a basis for the further nonlinear dynamic analysis
of the blade. But how to incorporate this into the nonlinear dynamics equations with an
appropriate format remains a question. It is also worth conducting further integration with
fluid mechanics to evaluate the blade vibration stability.

7. Conclusions

The internal field of the compressor is essentially a three-dimensional unsteady flow.
The flow around the blade is very complex. In order to achieve an unsteady aerodynamic
load on the blade, a reduced-order intelligent model of the three-dimensional blade in
compressor was established in this paper based on a machine learning algorithm for the
first time. The main conclusions are as follows:

(1) With the combination of the intelligent algorithm in machine learning and CFD
technology, the modeling for the aerodynamic force can be performed for a three-
dimensional blade of compressor in vibration. Also, the procedure for aerodynamic
modeling based on the XGBoost algorithm was established, which is described as
data collection, data preprocessing, training set construction, model training and
parameter adjustment.

(2) The high-fidelity data for model training can be set up by solving the complex Navier-
Stokes equations once for the flow field. Then the information of the unsteady flow
can be effectively captured based on the XGBoost model training for the mathematical
mapping between the input and output. The rapid identification was achieved for
the three-dimensional aerodynamic force on the blade, which improves the efficiency
of calculation.

(3) Based on the data of blade vibration in CFD simulation, an intelligent model based
on the XGBoost algorithm was established for the prediction of the three-dimensional
unsteady aerodynamic pressure and force. With the comparison to the CFD data, it
showed a good accuracy and reliability on the prediction in the XGBoost intelligent
method. The distribution of an unsteady aerodynamic load on the blade can be
accurately predicted on the basis of any spatial position in the blade vibration process.
It provides a new perspective for the analysis of blade nonlinear dynamics. The
aerodynamic intelligent model based on the machine learning is worthy of further
integration with fluid mechanics for evaluating the blade vibration stability.
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RMSE the Root Mean Square Error
POD Proper Orthogonal Decomposition
DMD Dynamic Mode Decomposition
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DNS Direct Numerical Simulation
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Abstract: This study investigates a hybrid nanofluid flow towards a stagnation region of a vertical
plate with radiation effects. The hybrid nanofluid consists of copper (Cu) and alumina (Al2O3)
nanoparticles which are added into water to form Cu-Al2O3/water nanofluid. The stagnation
point flow describes the fluid motion in the stagnation region of a solid surface. In this study, both
buoyancy assisting and opposing flows are considered. The similarity equations are obtained using a
similarity transformation and numerical results are obtained via the boundary value problem solver
(bvp4c) in MATLAB software. Findings discovered that dual solutions exist for both opposing and
assisting flows. The heat transfer rate is intensified with the thermal radiation (49.63%) and the
hybrid nanoparticles (32.37%).

Keywords: hybrid nanofluid; dual solutions; mixed convection; stagnation point; radiation;
stability analysis

1. Introduction

The phenomenon of the flow on a stagnation region commonly occurs in aerodynamic
industries and engineering applications. To name a few, such applications are polymer
extrusion, drawing of plastic sheets, and wire drawing. Hiemenz [1] was the first researcher
to consider the boundary layer flow toward a stagnation point on a rigid surface. Besides
this, the axisymmetric flow was considered by Homann [2], whereas the oblique stagnation-
point flow was studied by Chiam [3]. Further, Merkin [4] studied a similar problem by
considering the mixed convection flow. He discovered that the solution is not unique for
the opposing flow case. However, Ishak et al. [5] exposed that the dual solutions exist for
both opposing and assisting flows, and these behaviours were also reported by several
researchers [6–9].

In 1995, Choi and Eastman [10] presented a new type of heat transfer fluid called
nanofluid, which is a mixture of single type nanoparticles and the base fluid, to enhance the
thermal conductivity. Some works on such fluids can be found in [11–16]. Recently, some
studies have shown that advanced nanofluids composed of other types of nanoparticles
mixed with regular nanofluids could improve their thermal properties, and this mixture
is termed “hybrid nanofluid”. The earlier experimental works on the hybrid nanofluid
have been done by Turcu et al. [17], Jana et al. [18], and Suresh et al. [19]. Besides, the
numerical studies on the hybrid nanofluid flow were studied by Devi and Devi [20]. They
observed that the heat transfer rate of the hybrid nanofluid is higher than that of the regular
nanofluid. Moreover, the non-uniqueness of the solutions in the hybrid nanofluid flow
was examined by Waini et al. [21–27] Other physical aspects were considered by several
authors [28–35]. Furthermore, the review papers can be found in [36–41].

Mathematics 2021, 9, 448. https://doi.org/10.3390/math9040448 https://www.mdpi.com/journal/mathematics
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Different from the above-mentioned studies, this paper considers the assisting and
opposing buoyant flows of a hybrid nanofluid containing Al2O3-Cu hybrid nanoparticles
when the effect of thermal radiation is taken into consideration. The governing equations
along with the boundary conditions are transformed into a system of ordinary differential
equations using a similarity transformation. The system of equations is then solved
numerically using the boundary value problem solver (bvp4c) in MATLAB software. Most
importantly, in this study, two solutions are discovered for both opposing and assisting
flows. Then, further analysis is performed to study the temporal stability of these solutions
as time evolves.

2. Mathematical Formulation

Consider the flow configuration as shown in Figure 1. The free stream velocity is
U(x) = ax and the surface temperature is Tw(x) = T∞ + bx, where a and b are constants.
Meanwhile, the ambient temperature T∞ is assumed to be constant. Accordingly, the
hybrid nanofluid equations are as follows ([5,14]):

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

= U
dU
dx

+
μhn f

ρhn f

∂2u
∂y2 +

(ρβ)hn f

ρhn f
(T − T∞)g (2)

u
∂T
∂x

+ v
∂T
∂y

=
khn f

(ρCp)hn f

∂2T
∂y2 −

1
(ρCp)hn f

∂qr

∂y
(3)

subject to
v = 0, u = 0, T = Tw(x) = T∞ + bx at y = 0

u → U(x) = ax, T → T∞ as y → ∞
(4)

where u and v represent the velocity components along the x- and y- axes. Besides, g
and qr are the acceleration caused by the gravity and the radiative heat flux, respectively.
Meanwhile, the temperature of the hybrid nanofluid is given by T.

Figure 1. The flow configuration.

The expression of the radiative heat flux is ([42,43]):

qr = −4σ∗

3k∗
∂T4

∂y
(5)
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where σ∗ and k∗ denote the Stefan-Boltzmann constant and the mean absorption coeffi-
cient, respectively. Following Rosseland [42], after employing a Taylor series, one gets
T4 ∼= 4 T3

∞ T − 3T4
∞. Then, the Equation (3) turns to [43]:

u
∂T
∂x

+ v
∂T
∂y

=
1

(ρCp)hn f

[
khn f +

16σ∗T3
∞

3k∗

]
∂2T
∂y2 (6)

Further, the thermophysical properties can be referred to in Tables 1 and 2. Data
from these tables are adapted from Oztop and Abu-Nada [13], Devi and Devi [20], and
Waini et al. [21]. Note that ϕ1 (Al2O3) and ϕ2 (Cu) are the nanoparticles volume fractions,
and the subscripts n1 and n2 are corresponded to their solid components, while the sub-
scripts f , n f , and hn f signify the base fluid, nanofluid, and hybrid nanofluid, respectively.

To get a similarity solution, we employ the following similarity transformation ([5,14]):

ψ =
√

aν f x f (η), θ(η) =
T − T∞

Tw − T∞
, η = y

√
a

ν f
(7)

where ψ is the stream function defined as u = ∂ψ/∂y and v = − ∂ψ/∂x, then one gets

u = ax f ′(η), v = −√aν f f (η) (8)

Table 1. Thermophysical properties of nanoparticles and water.

Properties
Base Fluid Nanoparticles

Water Al2O3 Cu

ρ (kg/m3) 997.1 3970 8933
β× 10−5 (1/K) 21 0.85 1.67

Cp (J/kgK) 4179 765 385
k (W/mK) 0.613 40 400

Prandtl number, Pr 6.2

Table 2. Thermophysical properties of nanofluid and hybrid nanofluid.

Properties Nanofluid Hybrid Nanofluid

Dynamic
viscosity μn f =

μ f

(1−ϕ1)
2.5 μhn f =

μ f

(1−ϕ1)
2.5 (1−ϕ2)

2.5

Density ρn f = (1− ϕ1)ρ f + ϕ1ρn1 ρhn f = (1− ϕ2)
[
(1− ϕ1)ρ f + ϕ1ρn1

]
+ ϕ2ρn2

Thermal
expansion (ρβ)n f = (1− ϕ1) (ρβ) f + ϕ1 (ρβ)n1 (ρβ)hn f = (1− ϕ2)

[
(1− ϕ1)(ρβ) f + ϕ1(ρβ)n1

]
+ ϕ2(ρβ)n2

Heat capacity
(ρCp)n f =

(1− ϕ1) (ρCp) f + ϕ1 (ρCp)n1
(ρCp)hn f = (1− ϕ2)

[
(1− ϕ1)(ρCp) f + ϕ1(ρCp)n1

]
+ ϕ2(ρCp)n2

Thermal
conductivity

kn f
k f

=
kn1+2k f−2ϕ1(k f−kn1)

kn1+2k f +ϕ1(k f−kn1)

khn f
kn f

=
kn2+2kn f−2ϕ2(kn f−kn2)

kn2+2kn f +ϕ2(kn f−kn2)

where
kn f
k f

=
kn1+2k f−2ϕ1(k f−kn1)

kn1+2k f +ϕ1(k f−kn1)

Furthermore, the continuity equation, i.e., Equation (1), is identically satisfied. Now,
Equations (2) and (6) respectively reduce to:

μhn f /μ f

ρhn f /ρ f
f ′′′ + f f ′′ − f ′2 + 1 +

(ρβ)hn f /(ρβ) f

ρhn f /ρ f
λθ = 0 (9)

207



Mathematics 2021, 9, 448

1
Pr

1
(ρCp)hn f /(ρCp) f

(
khn f

k f
+

4
3

R

)
θ′′ + f θ′ − f ′θ = 0 (10)

subject to the boundary conditions:

f (0) = 0, f ′(0) = 0, θ(0) = 1,
f ′(∞) = 1, θ(∞) = 0

(11)

where (′) represents the differentiation with respect to η, Pr is the Prandtl number, R and λ
signify the radiation and the mixed convection parameters, given by:

Pr =
(μCp) f

k f
, R =

4 σ∗T3
∞

k∗k f
, λ =

gβ f b
a2 =

Grx

Re2
x

(12)

Further, Grx = gβ f (Tw − T∞)x3/ν f
2 corresponds to the local Grashof number and

Rex = ax2/ν f stands for the local Reynold’s number. Note that λ < 0 signifies the opposing
and λ > 0 signifies the assisting flows, while the forced convection flow (no buoyancy
effects) is given by λ = 0.

The skin friction coefficient Cf and the local Nusselt number Nux are defined as [43]:

Cf =
μhn f

ρ f U2

(
∂u
∂y

)
y=0

, Nux =
x

k f (Tw − T∞)

(
− khn f

(
∂T
∂y

)
y=0

+ (qr)y=0

)
(13)

By employing Equation (7), one gets:

Re1/2
x Cf =

μhn f

μ f
f ′′ (0), Re−1/2

x Nux = −
(

khn f

k f
+

4
3

R

)
θ′(0) (14)

3. Stability Analysis

The temporal stability of the dual solutions as time evolves is studied. This analysis
was first introduced by Merkin [44] and then followed by Weidman et al. [45] Firstly,
consider the new variables as follows:

ψ =
√

aν f x f (η, τ), θ(η, τ) =
T − T∞

Tw − T∞
, η = y

√
a

ν f
, τ = at (15)

Now, the unsteady form of Equations (2) and (3) are considered, while Equation (1)
remains unchanged. On using (15), one obtains:

μhn f /μ f

ρhn f /ρ f

∂3 f
∂η3 + f

∂2 f
∂η2 −

(
∂ f
∂η

)2
+ 1 +

(ρβ)hn f /(ρβ) f

ρhn f /ρ f
λθ − ∂2 f

∂η∂τ
= 0 (16)

1
Pr

1
(ρCp)hn f /(ρCp) f

(
khn f

k f
+

4
3

R

)
∂2θ

∂η2 + f
∂θ

∂η
− ∂ f

∂η
θ − ∂θ

∂τ
= 0 (17)

subject to:
f (0, τ) = 0, ∂ f

∂η (0, τ) = 0, θ(0, τ) = 1,
∂ f
∂η (∞, τ) = 1, θ(∞, τ) = 0

(18)

Then, consider the following perturbation functions [45]:

f (η, τ) = f0(η) + e− γτ F(η), θ(η, τ) = θ0(η) + e− γτG(η) (19)

Here, Equation (19) is introduced to apply a small disturbance on the steady solu-
tion f = f0(η) and θ = θ0(η) of Equations (9)–(11). The functions F(η) and G(η) in
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Equation (19) are relatively small compared to f0(η) and θ0(η). The sign (positive or neg-
ative) of the eigenvalue γ determines the stability of the solutions. By employing (19),
Equations (16)–(18) become:

μhn f /μ f

ρhn f /ρ f
F′′′ + f0F′′ + f ′′0 F− 2 f ′0F′ +

(ρβ)hn f /(ρβ) f

ρhn f /ρ f
λG + γF′ = 0 (20)

1
Pr

1
(ρCp)hn f /(ρCp) f

(
khn f

k f
+

4
3

R

)
G′′ + f0G′ + θ′0F− f ′0G− θ0F′ + γG = 0 (21)

subject to:
F(0) = 0, F′(0) = 0, G(0) = 0,

F′(∞) = 0, G(∞) = 0
(22)

Without loss of generality we set F′′ (0) = 1 [46] to get the eigenvalues γ in Equations (20)
and (21). The stability of the solutions as time evolves is determined by examining the
values of the smallest eigenvalue that was obtained. As time passes, there is an initial
decay of disturbance if γ is positive (see Equation (19)), and thus the solution is stable and
physically reliable in the long run. On the other hand, if γ is negative, there is an initial
growth of disturbance, hence the solution is unstable.

4. Results and Discussion

Equations (9)–(11) were solved numerically by utilising the boundary value problem
solver (bvp4c) in MATLAB software, which employs the 3-stage Lobatto IIIa formula [47].
This is a collocation formula and provides a continuous solution with fourth-order accuracy.
The effectiveness of this solver ultimately counts on our ability to provide the algorithm
with an initial guess for the solution. Moreover, the suitable value of the boundary layer
thickness must be chosen depending on the values of the parameters applied. To solve
this boundary value problem, it is necessary to first reduce the equations to a system of
first-order ordinary differential equations. The effects of the physical parameters such
as Al2O3 (ϕ1) and Cu (ϕ2) nanoparticles volume fractions, the Prandtl number Pr, the
radiation parameter R, and the mixed convection parameter λ on the flow behaviour
are examined.

The values of the skin friction coefficient f ′′ (0) and the local Nusselt number −θ′(0)
for several values of Pr when R = 0, λ = 1, and ϕ1 = ϕ2 = 0 (regular fluid) are compared
with published results of Ishak et al. [5], as presented in Table 3. It should be mentioned that
Ishak et al. [5] solved their problem by the Keller-box method. Meanwhile, the boundary
value problem solver (bvp4c) is employed in this study. It is found that the results are in
excellent agreement. This gives confidence to the validity and accuracy of the numerical
results for other values of parameters. Besides, the values of f ′′ (0) show a decreasing
behaviour, while the values of −θ′(0) increase for larger Pr. Additionally, Table 4 describes
the values of Re1/2

x Cf and Re−1/2
x Nux for Cu/water nanofluid when ϕ1 = R = 0 and

Pr = 6.2 with different values of λ and ϕ2. Here, we note that the values of both Re1/2
x Cf

and Re−1/2
x Nux increase with the increasing of λ and ϕ2. Besides, dual solutions are

found for opposing (λ = −1) and assisting (λ = 1) flows, whereas the unique solution is
obtained for λ = 0 (force convection flow). Furthermore, the values of Re1/2

x Cf for λ = 0
provided in the same table are compared with those of Bachok et al. [14], and the results
are in excellent agreement, which thus gives confidence to the results for other values of λ.
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Table 3. Values of f ′′ (0) and −θ′(0) for different values of Pr when ϕ1 = ϕ2 = 0 (regular fluid),
R = 0, and λ = 1.

Pr.
f ′′ (0) −θ′(0)

Ishak et al. [5] Present Results Ishak et al. [5] Present Results

0.7 1.7063 [1.2387] 1.70632 [1.23873] 0.7641 [1.0226] 0.76406 [1.02263]
1 1.6754 [1.1332] 1.67544 [1.13319] 0.8708 [1.1691] 0.87078 [1.16913]

6.2 1.52677 [0.61317] 1.65242 [2.13399]
7 1.5179 [0.5824] 1.51791 [0.58240] 1.7224 [2.2192] 1.72238 [2.21919]
10 1.4928 [0.4958] 1.49284 [0.49578] 1.9446 [2.4940] 1.94462 [2.49403]
20 1.4485 [0.3436] 1.44848 [0.34364] 2.4576 [3.1646] 2.45759 [3.16461]

Results in “[ ]” are the lower branch (second) solutions.

Table 4. Values of Re1/2
x Cf and Re−1/2

x Nux for Cu/water nanofluid when ϕ1 = R = 0 and Pr = 6.2
under various values of λ and ϕ2.

λ ϕ2
Re1/2

x Cf Re−1/2
x Nux

Bachok et al. [14] Present Results Present Results

−1
0.1 1.5811 [−0.1602] 1.8967 [−2.3965]
0.2 2.3161 [0.1908] 2.2872 [−3.8078]

0
0.1 1.8843 1.8843 1.9692
0.2 2.6226 2.6227 2.3494

1
0.1 2.1725 [0.8884] 2.0336 [3.7324]
0.2 2.9183 [1.2445] 2.4064 [5.7802]

Results in “[ ]” are the lower branch (second) solutions.

Moreover, Table 5 shows the effect of λ, R and ϕ2 on Re1/2
x Cf and Re−1/2

x Nux when
Pr = 6.2 for nanofluid (Cu/water) and hybrid nanofluid (Cu-Al2O3/water). For the first
solutions, we found that the values of Re1/2

x Cf are accelerated with the increasing of λ

and ϕ2; however, they are decelerated with R. Besides, the values of Re−1/2
x Nux enhance

with increasing values of these parameters. The local Nusselt number Re−1/2
x Nux enhance

up to 32.37% for Cu-Al2O3/water (ϕ1 = 0.1, ϕ2 = 0.04) compared to the regular fluid
(ϕ1 = ϕ2 = 0) when λ = −1, R = 0, and Pr = 6.2. Meanwhile, the values of Re−1/2

x Nux
are prominent for larger radiation (R = 1) with 49.63% enhancement compared to the
non-radiant case (R = 0) when λ = −1, ϕ1 = 0.1, ϕ2 = 0.04, and Pr = 6.2. Moreover, the
rise in λ from −1 to 1 contributes to the increment in the values of Re−1/2

x Nux up to 8.66%
when R = 1, ϕ1 = 0.1, ϕ2 = 0.04, and Pr = 6.2.

Table 5. Values of Re1/2
x Cf and Re−1/2

x Nux when Pr = 6.2 for different physical parameters.

λ R ϕ2
Cu/Water (ϕ1= 0) Cu-Al2O3/Water (ϕ1= 0.1)

Re1/2
x Cf Re−1/2

x Nux Re1/2
x Cf Re−1/2

x Nux

−1

0
0 0.9131 [−0.3719] 1.4779 [−1.1835] 1.2896 [−0.3019] 1.7766 [−1.8984]

0.02 1.0475 [−0.3432] 1.5672 [−1.4219] 1.4271 [−0.2546] 1.8673 [−2.1625]
0.04 1.1801 [−0.3071] 1.6528 [−1.6605] 1.5656 [−0.2008] 1.9563 [−2.4313]

1
0 0.8342 [−0.3440] 2.5034 [−1.5160] 1.2300 [−0.2235] 2.7541 [−2.3870]

0.02 0.9755 [−0.2936] 2.6044 [−1.8351] 1.3717 [−0.1513] 2.8430 [−2.6909]
0.04 1.1136 [−0.2334] 2.6950 [−2.1359] 1.5137 [−0.0716] 2.9272 [−2.9891]

1

0
0 1.5268 [0.6132] 1.6524 [2.1340] 1.8958 [0.7439] 1.9328 [3.0137]

0.02 1.6524 [0.6617] 1.7309 [2.4197] 2.0304 [0.8031] 2.0173 [3.3718]
0.04 1.7789 [0.7136] 1.8079 [2.7224] 2.1675 [0.8656] 2.1010 [3.7485]

1
0 1.5928 [0.8445] 2.8771 [3.7973] 1.9481 [0.9837] 3.0441 [4.7696]

0.02 1.7140 [0.9041] 2.9422 [4.1738] 2.0797 [1.0510] 3.1132 [5.2068]
0.04 1.8367 [0.9661] 3.0043 [4.5633] 2.2140 [1.1210] 3.1807 [5.6584]

Results in “[ ]” are the lower branch (second) solutions.

210



Mathematics 2021, 9, 448

The variations of the skin friction coefficient Re1/2
x Cf and the local Nusselt number

Re−1/2
x Nux against λ for several values of ϕ2 and R are illustrated in Figures 2–5. The dual

solutions of Equations (9)–(11) are possible for both assisting (λ > 0) and opposing (λ < 0)
flows. The flow is accelerated for λ > 0 because there is a favourable pressure gradient
induced by the buoyancy forces, which results in larger heat transfer and skin friction
coefficients rather than the case of λ = 0 (non-buoyant case). We note that the separation
of the boundary layer occurs when λ < 0. The dual solutions happen for λ > λc and no
solution for λ < λc. The curve terminates at λ = λc (critical value) and this point is known
as the bifurcation point of the solutions. Separately, Figures 2 and 3 display the variations
of Re1/2

x Cf and Re−1/2
x Nux against λ for different values of ϕ2 when Pr = 6.2 and ϕ1 = 0.1

in the absence of R. It is observed that the values of Re1/2
x Cf and Re−1/2

x Nux enhance
with the rising of ϕ2. Moreover, it is noticed that the boundary layer separation is delayed
with the added hybrid nanoparticles. The critical values are λc = −4.6983, −5.1215, and
−5.5404 for ϕ2 = 0, 0.02 and 0.04, respectively. Apart from that, the variations of Re1/2

x Cf

and Re−1/2
x Nux with λ for different values of R when Pr = 6.2, ϕ1 = 0.1, and ϕ2 = 0.04

are illustrated in Figures 4 and 5. In the presence of R, we found that the skin friction
coefficient Re1/2

x Cf decreases for λ < 0 but increases for λ > 0, whereas the local Nusselt
number Re−1/2

x Nux enhances for both cases. Besides, we notice that the domain of λ for
the existence of the dual solutions decreases for larger values of R where the critical values
of λ slightly increase. Note that the critical values λc for R = 0, 1, and 2 are λc = −5.5404,
−4.7843, and −4.4030, respectively. It is observed in Figures 3 and 5, the second solutions
of Re−1/2

x Nux are boundless as λ → 0− and as λ → 0+ .

 
Figure 2. The variations of the skin friction coefficient Re1/2

x Cf against the mixed convection
parameter λ for different values of the Cu nanoparticle volume fractions ϕ2.
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Figure 3. The variations of the local Nusselt number Re−1/2
x Nux against the mixed convection

parameter λ for different values of the Cu nanoparticles volume fractions ϕ2.

 
Figure 4. The variations of the skin friction coefficient Re1/2

x Cf against the mixed convection
parameter λ for different values of the radiation parameter R.
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Figure 5. The variations of the local Nusselt number Re−1/2
x Nux against the mixed convection

parameter λ for different values of the radiation parameter R.

The impact of ϕ2 and R on the velocity f ′(η) and the temperature θ(η) profiles for the
case of the opposing (λ = −1) and assisting (λ = 1) flows are presented in Figures 6–13.
There exist dual solutions for f ′(η) and θ(η) which satisfy the infinity boundary conditions
(11) asymptotically. The rising of ϕ2 leads to an upsurge in the values of f ′(η) and θ(η)
on the first solutions for both cases when Pr = 6.2, ϕ1 = 0.1, and R = 0 as shown
in Figures 6–9. Meanwhile, the velocity f ′(η) decreases when λ = −1 but increases
when λ = 1 on the first solutions for larger values of R when Pr = 6.2, ϕ1 = 0.1, and
ϕ2 = 0.04. The effect of R is to increase the temperature θ(η) inside the boundary layer
for both cases as displayed in Figures 10–13. The radiation is dominant over conduction
for larger values of R, causing a rise in the fluid temperature. It is also noticed that the
solutions of the lower branch for the velocity have negative values ( f ′(η) < 0), which
implies that the reverse flow occurs away from the wall, and these behaviors are displayed
in Figures 6, 8, 10 and 12. The behaviors of θ(η) with different values of ϕ2 and R for both
cases are given in Figures 7, 9, 11 and 13. The overshoot of the temperature θ(η) near the
wall is observed when λ = −1, and θ(η) < 0 when λ = 1 for the second solution.

The variations of γ against λ when Pr = 6.2, ϕ1 = 0.1, ϕ2 = 0.04 and R = 1 are
described in Figure 14. For positive values of γ, it is noted that e− γτ → 0 as time evolves
(τ → ∞ ). In the meantime, for the negative value of γ, e− γτ → ∞ . These behaviors show
that the first solution is stable and physically reliable, while the second solution is unstable
in the long run.
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Figure 6. The velocity profiles f ′(η) for different values of the Cu nanoparticles volume fractions ϕ2

when λ = −1 (opposing flow).

 
Figure 7. The temperature profiles θ(η) for different values of the Cu nanoparticles volume fractions
ϕ2 when λ = −1 (opposing flow).
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Figure 8. The velocity profiles f ′(η) for different values of the Cu nanoparticles volume fractions ϕ2

when λ = 1 (assisting flow).

Figure 9. The temperature profiles θ(η) for different values of the Cu nanoparticle volume fractions
ϕ2 when λ = 1 (assisting flow).
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Figure 10. The velocity profiles f ′(η) for different values of the radiation parameter R when λ = −1
(opposing flow).

Figure 11. The temperature profiles θ(η) for different values of the radiation parameter R when
λ = −1 (opposing flow).
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Figure 12. The velocity profiles f ′(η) for different values of the radiation parameter R when λ = 1
(assisting flow).

 
Figure 13. The temperature profiles θ(η) for different values of the radiation parameter R when
λ = 1 (assisting flow).
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Figure 14. Variations of the smallest eigenvalues γ against the mixed convection parameter λ.

5. Conclusions

The stagnation point flow towards a vertical plate in a hybrid nanofluid with thermal
radiation was examined in the present paper. Findings revealed that dual solutions ap-
peared for both assisting (λ > 0) and opposing (λ < 0) flows. The dual solutions were
found for λ > λc and no solution for λ < λc, while the solutions bifurcated at λ = λc. In
addition, the consequence of the copper nanoparticle volume fractions ϕ2 is to enhance
the skin friction coefficient Re1/2

x Cf and the local Nusselt number Re−1/2
x Nux for both

cases. However, the values of Re1/2
x Cf decreased for λ < 0, but increased for λ > 0,

whereas the values of Re−1/2
x Nux were intensified for both cases in the presence of the

radiation parameter R. From these findings, the increments of the local Nusselt number
Re−1/2

x Nux are observed in the range of 8.66% to 49.63% for the pertinent physical parame-
ters considered. Besides, we noticed that the domain of the mixed convection parameter λ
where the dual solutions are in existence decreased for larger R. Further, the first solution
of the velocity f ′(η) and the temperature θ(η) profiles enlarged with the increase of the
copper nanoparticles volume fractions ϕ2. Moreover, the effect of the radiation parameter
R is to increase the temperature θ(η) inside the boundary layer for both cases. Lastly, it
was discovered that between the two solutions, the solution with lower boundary layer
thickness is stable and thus physically reliable in the long run.
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Abstract: Designing and optimizing gridshell structures have been very attractive problems in
the last decades. In this work, two indexes are introduced as “length ratio” and “shape ratio” to
measure the regularity of a gridshell and are compared to the existing indexes in the literature. Two
evolutionary techniques, genetic algorithm (GA) and particle swarm optimization (PSO) method,
are utilized to improve the gridshells’ regularity by using the indexes. An approach is presented to
generate the initial gridshells for a given surface in MATLAB. The two methods are implemented in
MATLAB and compared on three benchmarks with different Gaussian curvatures. For each grid, both
triangular and quadrangular meshes are generated. Experimental results show that the regularity
of some gridshell is improved more than 50%, the regularity of quadrangular gridshells can be
improved more than the regularity of triangular gridshells on the same surfaces, and there may
be some relationship between Gaussian curvature of a surface and the improvement percentage of
generated gridshells on it. Moreover, it is seen that PSO technique outperforms GA technique slightly
in almost all the considered test problems. Finally, the Dolan–Moré performance profile is produced
to compare the two methods according to running times.

Keywords: gridshell structures; shape ratio; length ratio; regularity; particle swarm optimization;
genetic algorithm

1. Introduction

Gridshells which are also called lattice shells or reticulated shells are generally defined
as structures with the shape and rigidity of a double curvature shell consisting of a grid
not a continuous surface [1]. Although gridshells come to several forms, they are usually
designed with triangular, quadrilateral, or hexagonal faces (or grid cells) [1–10]. Forming
and optimizing gridshell structures have been very attractive problems in the past decades.
Several approaches, such as inversion method [1], dynamic relaxation [2,4,11], force density
method [3,12], and so forth [10,13], have been studied so far in the literature to address the
problem of forming a grid shell structure. Moreover, various techniques from gradient-
based to evolutionary methods have been employed for optimization of gridshells taking
into account various aspects of a gridshell such as economic, structural, or aesthetic [11–18].
The focus of this work is on the optimization problem, and it is assumed that the initial
forms of the desired gridshells are given.

Bouhaya et al. [1] coupled genetic algorithms with a geometric technique, which is
called compass method, to present a novel approach for generating elastic gridshells on
an imposed shape with boundary conditions. The authors used three benchmarks with
different Gaussian curvature to illustrate the proposed technique. These benchmarks are
also employed in the present work for generating the numerical results as they contain a
variety of conditions with different Gaussian curvatures. Richardson et al. [11] presented a
two-phase design technique. Using a multi-objective genetic algorithm, Winslow et al. [17]
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established a design tool for synthesis of optimal gridshell structures taking into account
two or more load cases such as wind load. Feng et al. [5] considered three categories of
indexes including mechanical, geometry, and economic criteria for optimization of free-
form cable-braced gridshells. Focusing on triangular gridshells and optimization over a
free-form surface, Wang et al. [16] presented a framework to generate gridshells.

We note that usually the researchers have taken into account the structural aspects of
gridshells in optimization phase and less attention has been heeded to improvement of
the gridshells’ regularity while the later can affect directly on the economy and aesthetic
indexes. In fact, improving the regularity of a gridshell may lead to decreasing the number
of different elements’ types as well as enhancing the aesthetic aspect of the desired grids.
Hence, in this work, improvement of the regularity of gridshells is considered as the main
aim. To this end, two indexes are introduced to measure the regularity of a gridshell. The
indexes are called “length ratio” and “shape ratio” and defined as the standard deviation
of all the elements’ lengths and all the inner angles in the gridshells’ faces, respectively.
There are a few studies in the literature which have worked on improving the regularity of
gridshells. In fact, to the best of our knowledge, this is the first time that these two indexes
are introduced for measuring the free-form gridshells’ regularity. Considering the geodesic
domes, Nooshin and his coworkers in [19] have proposed some measures for making the
regularity of such structures quantifiable. Here, we compare our introduced indexes with
the proposed ones in [19] on some benchmark for illustrating the practical efficiency of the
introduced indexes in this work.

It is noted that although gradient-based techniques guarantee a superior convergence
rate for the cases with a few number of design variables, in the cases with many design vari-
ables, generally, evolutionary methods work more appropriately. This is why we employ
evolutionary techniques in this work. Among the evolutionary techniques, genetic algo-
rithms (GAs) have been used the most in optimization of gridshells [1,3,5,8,10,11,13–18].
Another well-known evolutionary method is particle swarm optimization (PSO) to which
less attention has been paid for improving the gridshell structures so far. However, it is a
very powerful technique and has been applied to many other optimization problems [20–27].
Thus, these two techniques are considered in the present work.

We first present an approach, Algorithm 1, for generating initial triangular and quad-
rangular gridshells in MATLAB. Then, it is explained how the nodal positions in a given
grid can be represented as birds (or particles) in PSO technique and as chromosomes in
GA, and how these techniques can be used to improve the regularity of gridshells by
bettering the nodal positions. We introduce two indexes to make the gridshells’ regularity
quantifiable and use them in the improvement process. Moreover, providing the numerical
results, it is illustrated that our introduced indexes are practically more efficient than the
existing indexes in the literature. In addition, the performances of GA and PSO techniques
are compared through experimental results generated on eighteen test problems by which
several interesting observations are obtained. Finally, we produce the Dolan and Moré per-
formance profile [28] to have a more intuitive comparison between GA and PSO technique
based on running times.

The rest of this work is organized as follows. Section 2 presents an algorithm to gener-
ate the initial gridshells for a given surface in MATLAB, explains briefly the GA and PSO
techniques stage by stage, describes how these techniques can be used for improving the
gridshells’ regularity, and moreover provides the mathematical model for the problem. In
Section 3, first our introduced indexes are compared to two existing ones in the literature on
some benchmark, and then the performances of GA and PSO techniques are compared on
three benchmarks. Finally, Section 4 provides the concluding remarks and some directions
for the future works.

2. Main Block

Here, an approach, Algorithm 1, is presented to generate initial gridshells. Then, we
describe the genetic algorithm (GA) and particle swarm optimization (PSO) technique
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briefly for making it more convenient to read this work without having previous knowledge
of these methods. Next, two indexes are introduced for making the gridshells’ regularity
quantifiable, and finally the mathematical model of the problem is provided.

2.1. Generating An Initial Gridshell

There are several different approaches in the literature to generate an initial form of
gridshell. Bouhaya et al. [1] used the compass method which is a geometric approach and
allows creating a network of parallelograms on any surface. The authors then coupled
the compass method with genetic algorithms to propose an optimization approach. In
optimization of the cable-braced grid shells, Feng et al. [5] created the initial forms by
translating the generatrix and directrix which allows the mesh to be parallelogram. The
authors then proposed an optimization technique based on the usage of generatrix and
directrix. Wang et al. [16] formed the surface model by using NURBS (non-uniform rational
B-splines), then generated a set of uniformly distributed random points on the surface,
and finally connected the points by using Delaunay-based triangularization to generate an
initial triangular gridshell.

It is noted that usually the proposed optimization methods in the literature are based
on some generating techniques for the initial form. However, the focus of this work is on
the regularity improvement of a given gridshell without taking into account how the initial
form is obtained, and hence the presented techniques here can be used for improving the
regularity of any given initial form of a gridshell which is given as two sets. A set with
the (Cartesian) coordinates of nodes (or vertices), which is denoted by V here, and another
set which shows the faces in the grid and is denoted by F here. In fact, F is a matrix, each
row of which states which vertices form the corresponding face (or grid cell). Having the
set V of the initial gridshell, the proposed approach here can be employed to improve
the regularity of the gridshell by bettering the positions of the nodes without making any
change in the matrix F. Moreover, one can add some restrictions such as fixing the position
of some nodes to the improvement process.

In this work, for convenience and not being involved in the complication of generating
the initial gridshells which is not of our focus, it is assumed that the given gridshell is
based on a surface F(x, y, z) = 0. In this way, to keep the nodes (vertices) on the desired
surface, the improvement process is made on the first two coordinates of the vertices, i.e., x
and y, and the third coordinate is always obtained by using the surface equation. Any way,
we observe that the detailed approach here can be employed for any given initial gridshell.

Another aspect to notice is that although gridshells with the triangular to hexagonal
grid cells have been studied in the literature, triangular grids are the most widely used
in reality as they can describe any free-form shape [16]. In addition, as the triangular
gridshells have less economic advantages in construction than the equivalent structures
built of quadrilateral grids, many researchers have studied quadrangular gridshells [5]. As
a result, one can say that triangular and quadrangular gridshells are the most important
cases, and hence the focus of this work is on these two groups of gridshells.

Given a surface F (x, y, z) = 0, to build an initial gridshell, usually some uniformly
distributed random points are generated on the surface and then those points are connected
to construct the triangular or quadrangular grid cells. However, as our main object here is
to improve the regularity of the initial gridshells, we consider the equidistant points on the
surface at the beginning which is the most regular initial case, and then we see that it can
be still improved by using our introduced indexes. After generating the equidistant points
on the surface, we use a very nice function in MATLAB, i.e., surf2patch(), to transform the
coordinates (x, y, z) to two matrices V and F. However, it is possible to have duplicate
vertices in V as any vertex in a grid cell may belong to some other cells as well. Hence,
there may also be some duplicativeness in matrix F which should be removed.

This way, we present the following algorithm which generates both triangular and
quadrangular initial gridshells (matrices F, faces, and V, vertices) for any given surface
F(x, y, z) = 0.
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Some explanations are given in Appendix A Section on the used MATLAB functions
and commands in Algorithm 1. We note that Algorithm 1 works with any generated set
of points in Step 1 including the uniformly distributed random points or the equidistant
points on the surface. However, in our usage of this algorithm, we generate the equidistant
points on x−axis and y−axis (and then the third coordinates of the points are determined
by using the given surface F(x, y, z) = 0) rather than the randomly generated points. This is
only to have the most regular initial gridshell.

Algorithm 1. Generating initial triangular or quadrangular gridshells (matrices F and V) for a
given surface F(x, y, z) = 0 with some specified domain (in MATLAB)

Step 1. Generating some points on the surface in the domain. This way, we obtain three matrices
X, Y, and Z including the coordinates of the points. Set ind (0 for triangular or 1 for quadrangular
case).
Step 2. Determine the matrices F, faces, and V, vertices, as follows.

if ind
[F, V] = surf2patch(X, Y, Z)
else,
[F, V] = surf2patch(X, Y, Z, ‘triangles’).

Step 3. Remove the redundant vertices in matrices F and V as follows.
[V, ∼, I] = unique (V, ‘rows’);

F = I(F);

2.2. Genetic Algorithm

Here, we explain briefly the genetic algorithm (GA) to eliminate the need for previous
knowledge of this technique for the readers. The genetic algorithm (GA) is an iterative
search method which relies on bio-inspired operators such as selection, crossover, and
mutation. This technique was developed by Holland [29] and contains six main stages
explained below. It is noted that our main aim is not proposing an improved GA or
tuning the best parameters of GAs on the desired problems but rather is to show how this
technique can be employed to improve the gridshells’ regularity by using our introduced
indexes in MATLAB. By the way, we tested some of the very common values for the
parameters in GA taken from the literature, and then considered the best ones in our
primary generated numerical results.

(1) Generating an initial population: Based on Darwinism, in this technique it is always
assumed that there is an initial population of individuals which can change partially in
each generation (iteration in the algorithm) according to the fitness (or cost) function. In
fact, in each iteration the weak individuals are normally removed and instead some new
stronger offspring are added to the population according to the crossover and mutation
processes. We note that the number of individuals in each generation are the same as the
number of individuals in the initial population. To generate an initial population, usually
some random solutions are generated within a certain reasonable domain. Moreover, each
solution, which is a member of the initial population, should be represented as a string
(vector or matrix), which is called chromosome in this technique.

It is noted that although both matrices F and V are required to draw (or drive) the
desired gridshells, the matrix F does not change during the improvement process, and we
only need to improve the nodal positions according to the desired cost function. Hence,
only the matrix V is improved. Moreover, with the first two coordinates of each vertex,
i.e., x and y, the third coordinate can be obtained by using the given surface, that is
F (x, y, z) = 0. Therefore, in this work, the first two columns of the initially generated matrix
V are considered as a basic solution and denoted by Vnew. Then, a population of Npop
individuals is randomly generated between Vnew − t and Vnew + t as the initial population,
where t is a tolerance. As the initially generated matrix F, which shows the faces in the
gridshell, does not change in the improvement process, the same matrix is used to evaluate
every individual in the population.
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(2) Evaluating each solution: An important part in every improvement process is
determining the fitness function (in the case of maximizing) or cost function (in the case of
minimizing), and then adopting it to the process. After generating the initial population,
every individual is evaluated. The newly obtained solutions in crossover and mutation
processes are also evaluated.

Then, usually in the merging stage, all the solutions are sorted and the weak ones are
removed. Here, the cost function is considered as one of the presented indexes or their
combination. More details on the cost function in our work is given in Section 2.5.

(3) Parent selection: In genetic algorithm, two current solutions (called parents) are
selected in order to create two new solutions (called offspring or children) in crossover
stage. There are various methods to select parents among which the random selection,
tournament selection, and roulette wheel selection are the most used [30–32]. Here, we use
the roulette wheel selection method. For improving this method, we first generate a vector
of probability, i.e., P = (p1, ···, pNpop), based on the Boltzmann selection technique [33,34]
and using a selection pressure β as follows.

(i) P = exp(−β× C/Cmax)

(ii) P = P/ ∑
Npop
j=1 pj

(1)

where C is the vector of the solutions’ costs and Cmax is the cost of the worst solution in
the current population. According to experimental results, to improve the convergence of
GA technique, for each problem, we set the selection pressure β so that the summation of
the first half of components in probability vector P stays between 0.7 and 0.8. This way,
we obtain some probabilities whose summation is 1. Calculating the accumulated vector
and generating a random number from zero to 1, the first component in the accumulated
vector which is equal to or greater than this random number gives the desired parent. The
crossover percentage in GA is usually considered between 0.5 and 1 [31]. Here, it is set to
pc = 0.8. It is noted that in our primary numerical experiments on desired problems here,
changing the crossover percentage from 0.7 to 0.9 led to a negligible change in the final
results, and so the average of pc = 0.8 is considered. Therefore, as the number of parents
should be even, in each iteration Nc = 2 × [pc × Npop/2] parents are selected and the same
number of offspring (children) are generated, where [•] is the nearest integer number to •.

(4) Crossover: This is an important operator in GA which mimics mating in biological
populations. It propagates the good features from the current population to the next one
leading to better fitness (or cost) value on average. There are several strategies to do the
crossover including single point, double-point, uniform, and arithmetic crossover. Here,
as the points can move continuously on the surface, we use the arithmetic crossover. In
this way, we first generate a vector α of random numbers from the continuous uniform
distribution, and then considering X1 and X2, the new children Y1 and Y2 are generated
as follows.

Y1 = α. × X1 + (1− α). × X2 (2)

Y2 = α. × X2 + (1− α). × X1. (3)

(5) Mutation: This operator allows for global search of the solution’s space, promoting
the diversity in population characteristics. It also prohibits getting trapped in local minima.
The mutation percentage in GA is usually chosen between 0.001 and 0.5 [31], and hence
according to our primary generated numerical results pm = 0.3 is considered in this work.
This way, in each generation (from the second generation), Nm = [pm × Npop] of mutants
are generated. Moreover, to generate a mutant, a mutation rate less than 0.1 is usually
considered in GA [31,32]. Comparing the numerical results for different values 0.01, 0.02,
···, 0.08, we consider μ = 0.02 as mutation rate which determines the number of components
(or genes) which are changed in the selected solution (or chromosome), and we do the
mutation by using the standard normal distribution to change the values of the selected
components in each solution. In fact, �μ× Nv� component are changed in the selected
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solution for mutation, where Nϑ is the number of vertices in the gridshells and �•� is the
smallest integer number not less than •.

(6) Merging: After selecting parents, generating new children, and mutating some so-
lutions, we merge all the current and newly obtained solutions leading to Npop + Nc + Nm
solutions. Then, as the number of solutions in each generation should be the same, all the
solutions are sorted and arranged ascendingly according to the costs, and the first Npop
ones are selected as the next population.

We note that in GA the stages (3)–(6), explained above, are repeated until some
considered stop criteria is satisfied.

Stop criteria. In fact, in all the iterative processes such as GA and PSO, the algorithm
needs some stopping criteria. Some common stopping criteria used in the literature
are: (i) stop by exceeding the given maximum number of iterations, (ii) stop when the
improvement of solution in a given number of iterations is less than a given limit, (iii) stop
when a satisfactory solution is determined, and (iv) stop when the cost function slope is
almost zero. Here, for both GA and PSO, we consider a maximum number of M = 2000
iteration as the stop criterion.

2.3. Particle Swarm Optimization

Here, we explain briefly the particle swarm optimization (PSO) for the reader not
being required to have any previous knowledge of this technique as well. This technique is
also an iterative search method, inspired from social behavior, which was initially proposed
by Kennedy and Eberhart [30]. There are four main stages in PSO explained as follows.

(1) Generating an initial population: Like GA, it is assumed that there is some initial
population of individuals, called particles, in PSO. Usually, all the particles in PSO move
from the current positions to some new positions based on the swarm intelligence in each
iteration. Here, we consider the same initial population for PSO as the GA method. It
is noted that each row in the matrix Vnew, defined in Section 2.3, shows the position of
a particle in the initial population and the matrix is updated whenever the position of
the particles are changed. We note that the initially generated particles move toward the
positions of the so-called Pbest and Gbest, explained below.

Thus, after generating the initial population, we need to evaluate them to determine
Pbest and Gbest in the population.

(2) Velocity Updating: In this technique, the movement of each particle in every
iteration is determined by its velocity. Let xk

i and vk
i respectively denote the position and

velocity of particle i in the kth iteration in the search space. The velocity of particle i for the
next iteration is calculated as follows.

vk+1
i = wvk

i + c1r1

(
Pbestk

i − xk
i

)
+ c2r2

(
Gbestk − xk

i

)
(4)

where w is the inertia factor which controls the flying dynamics, c1 and c2 are the accel-
eration factors for the experiences of Pbest and Gbest, respectively, r1 and r2 are random
variables in the interval [0,1] which provide the ability of stochastic searching for PSO.
The accelerating factors c1 and c2 compromise the trade-off between exploitation and
exploration. It is noted that Pbestk

i is the best experienced position for particle i until the kth
iteration, and Gbestk is the best experienced position among all the particles so far. We also
note that the velocities for the particles in the initial population are set initially to be zero.

There are three parameters in Equation (4) which are w, c1, and c2. Many studies
have been done so far to determine the best parameters for PSO technique. On the in-
ertia weight, i.e., w, the studies show that a fixed w will not get to good results, and
hence several techniques have been proposed in the literature by which w is lessened
along with iteration times [26]. Some researchers suggested the interval [0.9,1.2] and some
others the interval [0,1] for w [25,26,30]. Similarly, several researchers have studied the
acceleration factors c1 and c2, and suggested different values for these factors. As our
main aim is not tuning the best parameters for the PSO method in this area, we simply
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compared the four more common strategies taken from literature [26] numerically to select
the best one. The strategies are (1) w = 1, wdamp = 0.999, c1 = 2 and c2 = 2, (2) w = 1,
wdamp = 0.999, c1 = 2.8 and c2 = 1.3, (3) w = 1, wdamp = 0.999, c1 = 1.49445 and c2 = 1.49445
and (4) Letting [yellow]ϕ1 = 2.05, [yellow]ϕ2 = 2.05, [yellow]ϕ = [yellow]ϕ1 + [yellow]ϕ2,
and ξ = 2/([yellow]ϕ − 2 +

√
[yellow]ϕ2− 4[yellow]ϕ), then we have w = ξ,

c1 = ξ × [yellow]ϕ1, and c2 = ξ × [yellow]ϕ2. We note that in the first three strategies,
the inertia weight is updated in each iteration by w = w.wdamp, and this is why wdamp is
called the damping factor. It is also noted that the values of c1 and c2 in the strategies 3 and
4 are the same. We found the first strategy as the best among these four strategies for our
desired problem, and hence we consider its parameters in this work.

We note that after updating velocities and before updating the particles’ positions, it is
important to check if the velocities are within a pre-specified range. In fact, to avoid violent
random walking and control the global exploration of the particles, some lower and upper
speed limits for each particle are determined and when the velocity of a particle exceeds
one of the limits, it is replaced with the related limit. These limits do not impact on the
particle position, and only lessen the step size of velocity, and hence the limits control the
particles’ moves and the aspects of exploration and exploitation [25,30]. Moreover, greater
(smaller) speed limits lead to global (local) exploration [25,30]. The process of controlling
velocity is called velocity clamping.

Although the movement of particles are controlled by velocity limits, sometimes even
by using the lower limit of velocity, the new position of a particle is obtained out of the
search area or feasible space. In fact, when the current position of a particle is close enough
to the borders of the search area, according to the direction of velocity, even with small
velocity, the new position of the particle will be out of the search area. This shows that in
the next iterations, according to the inertia, this will happen again that the new position
of the particle stays out of search space. Hence, to avoid such an event, the direction of
velocity is changed to the opposite direction, that is its sign will be changed. This process
is called “velocity mirror effect”.

(3) Position Updating: Unlike the genetic technique in which usually not all the
members of the population are replaced with some new children in each iteration, in the
PSO method, all the particles in the population move and change in each iteration. To do
so, after calculating the velocity of the particle i, its position is updated as follows.

xk+1
i = xk

i + vk+1
i (5)

Apart from all the modifications and limits on the velocities, the new positions of
some particles may be out of the search area. Hence, the updated positions should be
checked for being within the allowed domain. If the position of a particle exceeds the lower
or upper bounds, the position of the particle is replaced with the associated bound.

(4) Memory updating: In this technique, in each iteration, the position of every particle
may change, and it is one of the differences between GA and PSO. Therefore, after updating
the positions of the particles, we need to evaluate all the particles in order to check if it is
required to update the P best and Gbest variables as they play an essential role in movement
of the particles. However, it is not required to sort the particles after the evaluation process,
and we only need to update the memory of P best and Gbest, if it is required. In this work,
the same cost function is considered for both GA and PSO techniques.

The above-mentioned stages (2)–(4) in PSO are repeated until some considered stop
criteria is satisfied. As stated in the previous section, we consider a maximum number of
M = 2000 iteration as stop criteria for both GA and PSO in this work.

2.4. The Regularity Indexes

Here, we explain in more detail our introduced indexes, which are length ratio and
shape ratio, as well as two similar indexes introduced in [19]. As the indexes introduced
by Nooshin and his coworkers have been also called length and shape ratios, to make the
four indexes distinguishable, we denote our length and shape ratios by OLR and OSR,
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respectively, and the introduced length and shape ratios by Nooshin and his coworkers
by NLR and NSR, respectively. We recall that V is a matrix containing the position of all
the vertices in Cartesian coordinates with no redundant vertices. In fact, V is an Nv × 3
matrix, where Nv is the number of vertices in the gridshell. Each row in V provides the
Cartesian coordinates of a vertex in the grid, and the vertices are numbered in the order of
appearance in V.

In the order of appearance in V. For instance, the vertex whose coordinates are given
in the third row of V is numbered 3. The matrix F gives the vertices of each face. In fact,
in a triangular (quadrangular) gridshell, F is an Nf × 3 (Nf × 4) matrix, where Nf is the
number of faces in the grid. Each row in F shows which vertices are in the corresponding
face. To have a better understanding, a simple grid (pyramid) is given in Figure 1. The
matrices F and V for this figure are as follows.

V=

⎡⎢⎢⎣
0 0.65 0

0.35 0.45 0.7

0.35 0 0

0.75 0.65 0

⎤⎥⎥⎦ F=

⎡⎢⎢⎣
1 2 3

4 2 1

3 2 4

3 4 1

⎤⎥⎥⎦

Figure 1. A simple grid (pyramid).

As it is seen, there are four vertices and also four faces in Figure 1. The ith row in V
gives the Cartesian coordinates of the ith vertex. For example, the coordinates of vertex (1)
are (0, 0.65, 0).

The ith row in F gives the vertices of the ith face in the grid. For example, the first face
in the grid is the triangle consisting of vertices (1), (2) and (3).

Length ratios: Our introduced length ratio (OLR) is defined as the standard deviation
of lengths of all the elements in the grid. Hence, after calculation of all the lengths, OLR
can be obtained by computing the standard deviation of all the lengths. The introduced
length ratio by Nooshin and his coworkers [19] (NLR) is (the shortest element’s length/the
longest element’s length) for each face in the gridshell, and then for the gridshell is the
mean value of all the calculated values for the faces.

Hence, for both OLR and NLR, one first needs to calculate the length of all the elements
in the grid. To do so, we use the rows in F to find the beginning and end vertices of each
element, and then use matrix V to find the coordinates of the desired vertices to compute
the distance between them. For example, in Figure 1, according to the first row in F, we
calculate the distance between the vertices (1) and (2), (2) and (3), and (3) and (1) by using
their given coordinates in matrix V.

This way, we obtain the row [0.8078 0.8322 0.7382] as the lengths of elements in the
first face in this figure. The matrix of lengths, which is denoted by L, for this figure is given
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below in which each row gives the lengths of the elements in the corresponding face in
matrix F.

L=

⎡⎢⎢⎣
0.8078 0.8322 0.7382

0.8307 0.8078 0.7500

0.8322 0.8307 0.7632

0.7632 0.7500 0.7382

⎤⎥⎥⎦
Now, OLR can be simply computed as the standard deviation of all the lengths

calculated in matrix L above which is equal to 0.0398. For computing NLR, we first
calculate (the shortest element’s length/the longest element’s length) for each face. This
way, the vector [0.8870, 0.9029, 0.9171, 0.9672] is obtained in which for example the first
component corresponds to the first face in the grid, that is the first row in matrix L above.
Then, NLR is equal to the mean of all the calculated values in this vector, which is 0.9186 in
this example. As a result, we have OLR = 0.0398 and NLR = 0.9186 in this example.

Shape ratios: Our introduced shape ratio (OSR) is defined as the standard deviation
of all the angles between the elements in all the faces. Similar to the length ratio, the
NSR, which is the introduced shape ratio in [19], is (the smallest internal angle/the largest
internal angle) for each face in the gridshell, and then for the gridshell is the mean value of
all the calculated values for the faces. This time, one needs to compute the inner angles in
all the faces of the gridshell. To do so, as we have the Cartesian coordinates of the vertices
from V and the faces from F, in each iteration, we consider a face, which is triangle or

quadrangle, and compute its angles by using the formula θ = arccos(
→
a×

→
b

‖a‖×‖b‖ ), where
→
a

and
→
b are two vectors and θ is the angle between them. This way, a matrix of size of F is

obtained as a matrix of angles, denoted by A here. For example, the angles for the first face
in Figure 1 are [1.1336 0.9335 1.0746] in radian and the matrix of angles (in radian) in this
figure is as follows.

A=

⎡⎢⎢⎣
1.1336 1.9335 1.0746

1.0684 1.9506 1.1227

1.0922 1.9537 1.0957

1.0456 1.0191 1.0769

⎤⎥⎥⎦
Now, in this example, OSR can be simply calculated as the standard deviation of all

the angles calculated in matrix A above which is equal to 0.0684. To compute NSR, one
first needs to calculate (the smallest internal angle/the largest internal angle) for each face.
This way, the vector [0.8235, 0.8467, 0.8704, 0.9463] is obtained. Then, NSR is equal to the
mean value of all the calculated values in this vector, which equals 0.8717 in this example.
Briefly, we have OSR = 0.0684 and NSR0 = 0.8717 in this example.

We note that in both introduced ratios in [19], the smallest item is divided by the
largest item for each face, and the average of all the calculated values is considered as the
corresponding ratio. However, as the standard deviation is a very popular measure and
has several advantages, we considered it instead of simply dividing the smallest value by
the largest value. In fact, standard deviation measures the deviation from the mean and is
based on all the items (not only the smallest and largest). Moreover, as the square is a nice
function in which the numbers smaller than one become smaller and the numbers larger
than one become larger, and hence we can ignore the small deviations and consider the
larger ones more clearly. To show the practical efficiency of our introduced indexes, we
compare the indexes on some benchmarks in Section 3.

2.5. Mathematical Model of the Problem

Now that the problem has been completely described, the general mathematical model
of the problem is provided in this section as follows.

minf = α

(
∑Ne

i=1(li−l)
2

Ne−1

)
+β

(
∑Na

i=1(θi−θ)
2

Na−1

)
s.t. Vnew ∈ Ω, and F is given and fixed,
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where α and β are constants, Ne the number of elements, li the length of the ith element, l
the mean value of all the elements’ lengths, the number of all the angles, θi the ith angle,
and θ is the mean value of all the angles in the given gridshell. Moreover, Ω is a feasible
region in the xy plane, V new an Nv × 2 matrix which contains the first two columns of V,
which contains the Cartesian coordinates of the vertices, and F is a matrix which gives the
faces in the desired gridshell.

Moreover, Ω is a feasible region in the xy plane, V new an Nv × 2 matrix which
contains the first two columns of V, which contains the Cartesian coordinates of the vertices,
and F is a matrix which gives the faces in the desired gridshell.

One can set the constants α and β according to a specific aim in the improvement
process. For example, setting α = 1, β = 0 the gridshell’s regularity is improved according
to the length ratio while setting α = 0, β = 1 the gridshell’s regularity is improved taking
into account the shape ratio. Additionally, setting 0 < α, β < 1, we have a multi-objective
case. We note that having V new and F, one can first calculate the third coordinates of each
vertex by using the formula of the surface, and then the elements’ lengths and the inner
angles of all the faces. Therefore, the mathematical model of the problem is well-defined
and the function f can be minimized by moving V new in Ω.

Now, having described all the processes, we are ready to provide the experimental results.

3. Experimental Results

Here, several numerical results are provided in two sections. In the first one, the prac-
tical efficiency of our introduced ratios and the presented ones in [19] are compared, and in
the second one the performances of GA and PSO methods in improving the regularity of
gridshells are compared.

An important stage of generating numerical results is to choose some benchmarks.
The following criteria have been considered to choose some known benchmarks from the
literature. (1) As the indexes in [19] are introduced for geodesic domes, to have a fairer
comparison, we need some gridshell benchmark which is somehow similar to domes,
and hence we consider Hemisphere surface taken from the literature [1] as one of the
benchmarks in this work. (2) As the effect of Gaussian curvature of a gridshell on the
other structural aspects of the gridshell and vice versa have been widely studied in the
literature [1,35], for observing if the change in the Gaussian curvature has some effect on
the regularity improvement process, we need to choose gridshells with different Gaussian
curvatures (positive, negative, and both). (3) As it is not the focus of this work to be
involved in the complication of generating the initial gridshells, we consider the gridshells
which are associated with some surface equations.

This way, along with Hemisphere surface with positive Gaussian curvature, we
consider two other gridshells associated with surfaces of sinusoidal, which is a surface
with Gaussian positive and negative curvature, and Hyperbolic paraboloid, which is a
surface with Gaussian negative curvature. All the three chosen gridshells are taken from
the literature [1] and depicted in Figure 2.

Figure 2. Three benchmark gridshells (quadrangular) with different Gaussian curvature taken
from [1].
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To determine the coordinate matrices of the hemisphere gridshell, which is depicted
in Figure 2a, we use the built-in sphere () command which generates the x−, y−, and
z−coordinates of a unit sphere consisting of 20-by-20 faces. The first 10 faces situate under
or on the xy−plane, and thus we only consider the faces numbered from 11 to 20, which
are above the xy−plane, as the hemisphere.

To determine the coordinate matrices of the sinusoidal gridshell, which is depicted in
Figure 2b, the equation z = 0.05xsin(x) + sin(y) is used for 0 ≤ x ≤ 10 and 0 ≤ y ≤ 4. In fact,
on the x−axis the equidistant points with distance of 0.5 and on y−axis the equidistant
points with distance of 0.4 are considered.

To determine the coordinate matrices of hyperbolic paraboloid gridshell, which is
depicted in Figure 2c, the equation z = x2 − y2 is used for −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2. In
fact, on the x−axis the equidistant points with distance of 0.4 and on y−axis the equidistant
points with distance of 0.25 are considered. In the last two cases, i.e., sinusoidal and
hyperbolic paraboloid, the x− and y− coordinates are generated by using the meshgrid()
command, and then the z− coordinates matrix is obtained by using the surfaces’ formulas.

As our focus is on improving the regularity of gridshells, to have very regular initial
grids the equidistant points are considered rather than randomly generated points. We
note that the gridshells depicted in Figure 2 are the quadrangular ones. As the triangular
gridshells are the same as the quadrangular ones but with the triangle faces, they are
not given here to avoid the prolongation of the paper. In fact, Algorithm 1 generates the
triangular gridshells by adding the diagonal of the faces in quadrangular gridshells.

To generate the numerical results, both GA and PSO algorithms and Algorithm 1,
our presented approach to generate the initial gridshells, are implemented in MATLAB
programming environment and the program is executed on a PC with Intel(R) Core (TM)
i5-2400S Duo CPU 2.50 GHz, with GB of RAM. We note that when the primary shape
of the structural appearance is ascertained, it is not allowed to make major changes and
one can make only minor changes in the shape improvement process [5]. Therefore, to
generate the initial populations in both GA and PSO algorithms, the feasible solution
domain is restricted to a small interval around the initial equidistant generated gridshells.
To this end, considering Vnew as an Nv × 2 matrix which contains the first two columns
of V, the matrices Vmax = Vnew + 0.02 × 1Nv × 2 and Vmin = Vnew − 0.02 × 1Nv × 2 are
considered as the upper and lower bounds of the feasible domain, respectively, where
1Nv × 2 is an Nv × 2 matrix with all the entities being 1. Therefore, we recall that (i) the
initially generated equidistant gridshells are very regular and (ii) the feasible solution
domain is restricted.

As some initial conditions, we suppose that all the vertices which situate on the edges
of the gridshell should be fixed which is makeable by considering the same maximum
and minimum ranges for those vertices in matrices Vmax and Vmin. The upper and lower
bounds on the velocities of particles in the PSO method are respectively assigned as
Velmax = 0.1 × (Vmax − Vmin) and Velmin = −Velmax. The population size in GA and PSO
algorithms is usually specified between 20–60 [25,26,31,32], among which we set the
average value of Npop = 40 as the population size in both methods. Note that our primary
experimental results did not show notable changes in the results varying the population size
from 40 to 60; however, we obtained better results in both methods by increasing Npop from
20 to 40. Moreover, the stop criteria are set to a maximum number of M = 2000 iterations
for both algorithms. It is recalled that the details and the selected values of parameters
for both algorithms have been discussed in Sections 2.3 and 2.4, and hence we do not
restate them here. The other details on the implementation of algorithms and the generated
numerical results are given in the next sections.

3.1. Comparison of the Regularity Indexes

Here, our two introduced indexes, OLR and OSR, are compared to two corresponding
introduced indexes by Nooshin et al. [19], i.e., NLR and NSR. As Nooshin and his coworkers
have introduced the indexes for geodesic domes and not the free-form gridshells, we
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compare the indexes only on the hemisphere’s gridshell, depicted in Figure 2a which is the
closer one to a dome. As the main aim in this section is to compare the regularity indexes,
we only use the PSO method. To have a more complete comparison, both triangular
and quadrangular gridshells associated with the hemisphere are generated. This way,
we improve the regularity of the considered gridshells four times separately, each time
applying one of the indexes as the cost function in the PSO algorithm.

The final results rounded to three decimal places on comparing the length and shape
ratios are respectively stated in Tables 1 and 2. It is seen that using our proposed indexes
as the cost function in the PSO algorithm, the Nooshin et al.’s indexes are also lessened
(improved). For example, in Table 1, for a triangular case, the initial values of OLR and NLR
are respectively 0.087 and 0.611. By applying OLR as the cost function, after 2000 iterations,
the OLR and NLR are respectively equal to 0.083 and 0.615 which shows improvement in
both ratios. However, by applying NLR as the cost function, after 2000 iterations, the OLR
and NLR are respectively equal to 0.096 and 0.633 which shows worsening in OLR and
improvement in NLR. Some similar observations can be made for quadrangular cases in
this table and both cases in Table 2. We note that according to the definition, the best value
of NLR or SLR is 1, and so they are improving as they are approaching 1. Therefore, as
Tables 1 and 2 show, the regularity of the gridshells is practically worsened by using the
introduced indexes by Nooshin et al. [19] which shows clearly the practical efficiency of
our introduced indexes.

Table 1. The final results on comparing the length ratios.

Applied Indexes

Triangular Grid Quadrangular Grid

Initial Value
Final Value

Initial Value
Final Value

OLR NLR OLR NLR

↓ OLR 0.087 0.083 0.615 0.064 0.061 0.754
NLR 0.611 0.096 0.633 0.753 0.066 0.767

Table 2. The final results on comparing the shape ratios.

Applied Indexes

Triangular Grid Quadrangular Grid

Initial Value
Final Value

Initial Value
Final Value

OSR NSR OSR NSR

↓ OSR 0.403 0.397 0.430 0.085 0.085 0.905
NSR 0.426 0.461 0.473 0.914 0.090 0.904

3.2. Improving the Regularity

Here, the performances of GA and PSO techniques are compared together in improv-
ing the regularity of the three gridshells with different Gaussian curvature taken from the
literature [1]. Both triangular and quadrangular gridshells associated with each surface
are generated. The regularity of each generated gridshell is improved by applying our
introduced indexes and using both GA and PSO methods. Three cost functions have been
considered, (1) length ratio, (2) shape ratio, and (3) a multi-objective case by combining
both length and shape ratios with the same weight. Therefore, having three surfaces, two
generated gridshells on each surface, and considering three cost functions to improve
the regularity makes eighteen test problems on which the performances of GA and PSO
algorithms are compared. To have a better reading, all the diagrams of these two methods
on each surface are grouped and depicted in a figure. This way, Figures 3–5 provide the di-
agrams of GA and PSO techniques on Hemisphere, Sinusoidal, and Hyperbolic Paraboloid,
respectively. Note that in these figures, TH, TS, THP, QH, QS, and QHP stand for triangular
hemisphere, sinusoidal, hyperbolic parabolic, and quadrangular hemisphere, sinusoidal,
and hyperbolic parabolic, respectively.
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For convenience, a data box has been added into each diagram in which the following
information is given. (1) The applied cost function and the considered gridshell, (2) the
initial cost of each method which is the value of the cost function in the first iteration,
(3) the final cost of each method which is the value of the cost function in the last itera-
tion, and (4) the improvement percentage for each algorithm which is calculated by using
Equation (6). Of note is that the cost values are rounded to three decimal places and the
improvement percentages are rounded to one decimal place. Hence, this is why sometimes
the diagrams are not matched at the end point, that is iteration 2000, while the given final
costs are equal.

Improvement percentage =
Initial cost − Final cost

Initial cost
(6)

In each of Figures 3–5, there are two rows of diagrams, three diagrams in each row.
The first (second) row contains the diagrams associated with triangular (quadrangular)
gridshells. The applied cost functions on the diagrams in each row are always in order of
length ratio, shape ratio, and multi objective case which is length ratio + shape ratio. Next,
several observations concluded from the GA and PSO diagrams are stated and discussed.

(1) In almost all the cases, it is seen that the initial cost for triangular gridshells of
the same surfaces are higher than the cost for the corresponding quadrangular gridshells.
This is due to the higher number of elements in the triangular gridshells. To have a better
understanding, the number of vertices, denoted by Nv, and faces, denoted by Nf, in the
gridshells are given in Table 3. It is noted that the number of vertices for both triangular and
quadrangular cases are equal because Algorithm 1 uses the same procedure for generating
the initial gridshells, and the number of faces in the triangular cases are double of the one
in the corresponding quadrangular one because the algorithm generates the triangular
gridshells by adding the diagonal of the faces in quadrangular gridshells.

Table 3. The number vertices and faces in all the generated gridshells.

Gridshell Type
Triangular Quadrangular

Nv Nf Nv Nf

Hemisphere 201 400 201 200
Sinusoidal surface 231 400 231 200

Hyperbolic parabolic 187 320 187 160

(2) Although the number of vertices and faces are smaller for the hyperbolic parabolic
surface (see Table 3), the costs of either the initial or the final grids for this surface are greater
than the ones for the other surfaces. It seems that as the Gaussian curvature is negative
in this surface, considering the equidistant points do not lead to a gridshell as regular
as the surfaces with positive (or positive and negative) Gaussian curvature. However,
this observation needs further investigation to be validated which will be studied in our
future works.

(3) It is seen that the costs of either the initial or the final gridshells in almost all the
cases for the sinusoidal surface are less than the costs for the corresponding cases with
the other surfaces even when the number of vertices and faces in this surface are the most
ones. It seems that to generate the most regular gridshells, the surfaces with positive and
negative Gaussian curvature are better than the surfaces with merely positive Gaussian
curvature or the surfaces with merely negative Gaussian curvature. This observation also
needs further investigations which is of our interest for the future works.

(4) Although the initial gridshells are greatly regular because of consideration of
equidistant points and the feasible solution domain is restricted, the regularity of gridshells
in some cases has been improved more than 50% which is significant (see the second
diagram in the second row in Figure 3).
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(5) In all the cases, the (initial or final) costs increase from the length ratio to the shape
ratio and from the shape ratio to the multi-objective case. It shows that arriving at similar
angles in all the faces of gridshells is more difficult than designing the gridshells with
similar lengths in all the faces, and also that improving in both directions simultaneously
is even more difficult.

(6) It is seen that the improvement percentages of both algorithms are decreased from
Hemisphere to Sinusoidal and then to Hyperbolic Paraboloid surfaces in almost all the
cases. It may also have a relationship with the Gaussian curvature of the surfaces as it
changes from positive in the first surface to positive and negative in the second one, and
finally to negative in the third surface. Hence, it seems that the possibility of improving the
regularity on the gridshells with positive Gaussian curvature is higher than the other cases.
This observation also needs more investigation.

(7) The improvement percentages on all the three surfaces increase from the trian-
gular gridshells to the quadrangular ones which shows a higher possibility of regularity
improvement on the quadrangular gridshells.

(8) It is seen that the behavior of both algorithms are somehow similar on all the three
gridshells. Hence, it seems that changing on the Gaussian curvature or changing from
triangular to quadrangular gridshells do not affect the behavior of GA or PSO methods
considerably. This observation also needs more investigation.

(9) Finally, it is seen that in almost all the test problems, PSO outperforms GA slightly.
We note that the focus of this work is not to tune the best parameters for GA or PSO
algorithms, and hence it is possible that one gets better results on GA by changing the
values of its parameters or selecting some other strategies in the stages of this algorithm,
and surely the same can be happened to PSO technique. What we see in the Figures 3–5
states that the performance of the PSO method with described parameters is slightly better
than the performance of GA technique with detailed parameters here in almost all the cases.

Finally, to have a comparison of running times of GA and PSO, measured in CPU
seconds, on the same Np = 18 test problems provided in this section, the running times
of both methods on the test problems are considered to produce the performance profile
of Dolan and Moré [28]. In this performance profile, for two algorithms, the ratio of the
running times of the methods versus the minimum time of the two methods is considered.

Indeed, considering ti,1 and ti,2 as the running times of GA and PSO techniques, in CPU
seconds, respectively, for i = 1, 2, ···, 18, the performance ratios in this performance profile
are ri,j=

ti,j

min{ti,j :j=1.2} , for j = 1, 2 [28]. The performance of each technique is calculated as

Prj(T) = 1
Np

size
{

i
∣∣ri.j ≤ T

}
, j = 1, 2, where size is the number of test problems. This way,

Prj(t) is the probability for method j (j = 1, 2 corresponds to GA and PSO, respectively)
that a performance ratio ri,j is within the factor T. Figure 6 is the resulting CPU time
performance profiles for the two methods. In this figure, the horizontal axis T gives the
outcome of dividing the running time of the PSO method into the one of the GA method.
This axis states that in the best case, PSO technique solves some problems (almost 10% of
the test problems) around 1.45 times faster than GA method. We note that the vertical axis,
that is Per(T), at time T gives the percentage of problems solved by PSO, T times faster
than the GA method. Using this profile, one algorithm is preferred to another when its
performance diagram lies above the other [28]. Hence, Figure 6 shows clearly that PSO is
preferred to GA based on the running times. However, the differences in running times are
not so significant.
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Figure 3. The particle swarm optimization (PSO) and genetic algorithm (GA) diagrams on Hemi-
sphere gridshell considering different cost functions.

Figure 4. The PSO and GA diagrams on Sinusoidal gridshell considering different cost functions.

Figure 5. The PSO and GA diagrams on Hyperbolic Paraboloid gridshell considering different
cost functions.
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Figure 6. Dolan–Moré diagram related to comparing PSO and GAs in improving of regularity
of gridshells.

4. Conclusions

Here, we presented two indexes as length ratio and shape ratio which were defined
as the standard deviation of the lengths of all the elements and the standard deviation
of the inner angles between all the elements in a gridshell, respectively. The practical
efficiency of our introduced indexes was shown in comparison with some available indexes
in the literature. We also showed how the genetic algorithm (GA) and particle swarm
optimization (PSO) technique can be utilized for improving the gridshells’ regularity based
on the introduced ratios. To this end, an algorithm was presented to generate initial
gridshells on a given surface. Three surfaces with different Gaussian curvatures were
selected from the literature to provide the experimental results on the proposed approaches
for regularity improvement of gridshells. On each surface, triangular and quadrangular
gridshells were generated and the regularity of each gridshell was improved by using each
ratio separately and also by using a combination of both ratios with the same weight as
the cost function in both techniques. This way, PSO and GA methods were compared on
eighteen test problems.

Through the experimental results, we saw that (1) the initial cost for triangular grid-
shells on the same surfaces are usually higher than the cost for the corresponding quadran-
gular gridshells, (2) even the regularity of the very regular initially generated gridshells
by using the equidistant points can be improved up to 56% in some cases, (3) the initial
and final costs increase from the length ratio to the shape ratio and from the shape ratio
to the multi-objective case in which both length and shape ratios are combined with the
same weight, (4) the percentage improvement on all the three surfaces increase from the
triangular gridshells to the quadrangular ones showing a higher possibility of regularity im-
provement on the quadrangular gridshells, and that (5) PSO method slightly outperforms
GA technique on almost all the test problems.

Moreover, some interesting relationships between the regularity improvement and
Gaussian curvature of the selected surfaces were observed including (1) considering the
equidistant points on the surfaces with negative Gaussian do not lead to a gridshell as
regular as the surfaces with positive (or positive and negative) Gaussian curvature; (2) to
generate the most regular gridshells, the surfaces with positive and negative Gaussian
curvature are better than the surfaces with merely positive Gaussian curvature or the
surfaces with merely negative Gaussian curvature; (3) the possibility of improving the
regularity on the gridshells with positive Gaussian curvature is higher than the other cases;
and (4) the behavior of GA and PSO techniques do not change considerably from triangular
to quadrangular gridshells or from the positive Gaussian curvature to the negative one.
However, these observations need more investigation which will be made in our future
works. Another idea for a future work is to consider our introduced regularity indexes and
some structural aspects of gridshells such as strain energy simultaneously for proposing
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some multi-objective optimization method to design gridshells. It would also be interesting
to see how the regularity indexes and other structural aspects affect each other. Finally, to
have an intuitive comparison between GA and PSO based on running times, the Dolan
and Moré performance profile was produced taking into account the running times. This
profile showed that PSO is also preferred to GA in accordance with running times.
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Appendix A

In Algorithm 1, the MATLAB function of surf2patch () is used for transforming the
Cartesian coordinates (x, y, z) to two matrices V and F. However, as there is a possibility
of generating duplicate vertices in V, the command unique () is used. This command in
addition to remove the duplicate rows in V gives the positions of the removed rows which
can be used to update the matrix F (please see Step 3 in Algorithm 1). We note that having
the matrices V and F obtained by Algorithm 1, the desired gridshell can be drawn by using
the command patch () in MATLAB as follows.

Patch = patch (‘faces’, F, ‘vertices’, V) (A1)
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Abstract: At present it is claimed that all electrical energy systems operate with high values of
efficiency and reliability. In electric power systems (EPS), electrical power and distribution trans-
formers are responsible for transferring the electrical energy from power stations up to the load
centers. Consequently, it is mandatory to design transformers that possess the highest efficiency
and reliability possible. Considerable power losses and hotspots may exist in the bushing region
of a transformer, where conductors pass through the tank. Most transformer tanks are made of
low-carbon steel, for economical reasons, causing the induction of high eddy currents in the bushing
regions. Using a non-magnetic insert in the transformer tank can reduce the eddy currents in the
region and as a consequence avoid overheating. In this work, analytical formulations were developed
to calculate the magnetic field distribution and the stray losses in the transformer region where
bushings are mounted, considering a stainless steel insert (SSI) in the transformer tank. Previously,
this problem had only been tackled with numerical models. Several cases were analyzed considering
different non-magnetic insert sizes. Additionally, a numerical study using a two dimensional (2D)
finite element (FE) axisymmetric model was carried out in order to validate the analytical results.
The solved cases show a great concordance between models, obtaining relative errors between the
solutions of less than two percent.

Keywords: power transformer; stray losses; analytical methods; finite element method

1. Introduction

Nowadays, electric power systems (EPS) are constantly changing. The use of new
technologies such as smart-grids, micro-grids and renewable energy systems demand
high flexibility, performance and efficiency in the EPS. The transformer is a fundamental
component in these systems, which is present in different stages of the EPS, such as at
the generation, transmission and distribution stages [1,2]. Losses in transformers appear
in their different components, such as: windings, insulation, core and tank. These losses
depend on the operating conditions of the transformer (nominal values, DC bias, presence
of harmonics, etc.) and the electrical and magnetic properties of the materials. The study of
transformer losses is an active area of investigation because there is a compromise between
design and cost. Power losses in transformers can be separated into two types: no-load
and load losses; the no-load losses originate in the transformer core and the load losses
are composed by the ohmic losses in the windings and the stray losses. As the rated
power increases in transformers, the stray losses increase significantly. The stray losses
in structural components, such as the tank, decrement the efficiency of the transformer
considerably [3]. Losses in structural components in power transformers are due to stray
fluxes; when a time varying flux impinges on a conductive element it induces a current in
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it, generating Joule losses. Besides power losses, hotspots in structural components caused
by this phenomenon may appear. For these reasons, there are diverse techniques to reduce
losses without unduly increasing the final cost. A crucial structural part of a transformer is
the tank region where the bushings are mounted. The field concentration and overheating
in this zone can cause damage to the device [4].

Analytical and numerical models can be employed for the design of the transformer
taking into account the well-known advantages of each one: analytic models provide
accuracy, less calculation time and simplicity once the model has been developed, whereas
numeric models allow one to solve complex geometries and deal with nonlinear materials.
Several research works, analyzing the magnetic field distribution and the eddy current
power losses in the bushing transformer region, using either numerical or analytical models,
have been carried out previously [1,4–15].

An analytical model is proposed in [4,5] to determine the power losses based on
Poynting’s theorem. To obtain the solution some semi-empirical coefficients are required.
Analytical expressions were developed in [1] to calculate the magnetic field and the stray
losses in the transformer tank near the bushing. The configuration is modeled with a
finite disk and a conductor in the center. It is considered that the axial component of the
induced current density has only a small contribution to the power losses, and therefore it is
disregarded. This automatically implies that the solution obtained will be an approximation.
A study to reduce stray losses in a pad mounted transformer wall using an insert plate is
presented in [6,7]. These studies were carried out using two dimensional (2D) and three
dimensional (3D) finite element (FE) analysis. The results were validated with experimental
tests in different combinations. Additionally, numerical results were compared with
empirical formulas. In these works, it was verified that the use of non-magnetic inserts in
the transformer tank reduce eddy current losses. A transient analysis was carried out in [8]
to compute the power losses in the low-carbon steel tank of a current transformer, taking
into account different insert configurations and materials. The analyses were done using a
3D FE model. It was also concluded that using non-magnetic inserts reduce power losses
in the tank. In [9,11] the temperature distribution on transformer covers is considered.
The stray losses in the tank were analytically calculated using Turowski’s formula [4].
Maximov et al. [10] presented a study of eddy current losses in the tank of a transformer.
Numerical results and analytical formulas were obtained for the losses as a function of
the current. However, in the solution to this problem only two materials were considered:
the tank and the air. In [12,13], the determination of eddy current losses and temperature
distribution in the zone of the transformers bushing are presented. The study was carried
out with the finite difference method. An analytical solution for the bushing regions, using
the same model geometry of [10], is proposed in [14]. However in this research the presence
of harmonics in the current is considered. Oliveira et al. [15] developed a time domain
model to determine the eddy currents in the transformer tank walls considering different
types of excitations. The results obtained with the proposed model were validated with a
3D FE solution. The tank wall was considered to be made of a single magnetic material.

As can be appreciated from the literature reviewed above, in previous research where
a stainless steel insert (SSI) is added to reduce the power losses in the tank, a numerical
model is employed in the analysis, whereas analytical models are developed only for the
cases where the tank in the bushing region is made from a single material. In this paper
a mathematical model is proposed to determine the magnetic field distribution in the
tank wall bushing regions, considering a tank wall composed of two different materials, a
stainless steel section representing the insert and a low-carbon steel section modeling the
rest of the tank. An analytical calculation is also developed to determine the stray losses in
the bushing region.

2. Model

The bushing transformer region is considered through an idealized model. Consider
an infinite conductor that passes the transformer tank wall at a right angle across a circular
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hole. The tank is considered to have an annular shape with thickness h and inner and
outer radii c and b, respectively. A SSI is also considered in the tank, with a radial length
c− a. Figure 1 shows the geometry of the model. The analysis domain is divided into
four regions: Ω1 is the region existing between the conductor and the tank wall, namely,
the circular hole; Ω1 is defined by r0 ≤ r ≤ a, −h/2 ≤ z ≤ h/2, where r0 is the radius
of the conductor. Region Ω2 represents the carbon steel tank wall, that is, c ≤ r ≤ b,
−h/2 ≤ z ≤ h/2. Region Ω3 is the SSI, a ≤ r ≤ c, −h/2 ≤ z ≤ h/2. Finally, region Ω4 is
the medium at both sides of the tank wall, considered as air, r ≥ r0 , |z| > h/2.

Figure 1. Geometry and parameters of the model.

A conductor passing through the hole transports alternating electric current of the form:

I(t) = Iejωt,

where I is the current amplitude. Maxwell’s equations in the frequency domain, in each
region Ωk, have the following form:

∇× Ek = −jωμ0μkHk, ∇ ·Hk = 0,
∇×Hk = σkEk, ∇ · Ek = 0,

(1)

where k = 1 corresponds to air and the hole (region Ω1), k = 2 corresponds to the carbon
steel (region Ω2) and k = 3 is associated with the stainless insert (region Ω3). Additionally,
σ1 = 0 and μ1 = μ3 = 1. Because of the axial symmetry of the system and the symmetry
with respect to the plane z = 0, the solution to the system of Equations (1) can be sought
as follows:

Hk = Hk ϕ(r, z)eϕ, Ek = Ekr(r, z)er + Ek ϕ(r, z)eϕ, (2)

where Hk ϕ(r, z) is an even function with respect to the variable z; i.e.,

Hk ϕ(r,−z) = Hk ϕ(r, z). (3)

Due to Ampère’s circuital law and axial symmetry, the magnetic field in air and the
hole is:

H1 ϕ(r) =
I

2πr
. (4)
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Boundary conditions between regions Ω1 and Ω2,3 after taking into account
Equation (4) assume the following form (see [10,14]):

H3 ϕ

∣∣∣
r=a

=
I

2πa
, H2 ϕ

∣∣∣
r=b

=
I

2πb
,

1
r

∂
(

rH3 ϕ

)
∂r

∣∣∣∣∣∣
z=h/2

= 0,
1
r

∂
(

rH2 ϕ

)
∂r

∣∣∣∣∣∣
z=h/2

= 0,

H3 ϕ

∣∣∣
z=h/2

=
I

2πr
, H2 ϕ

∣∣∣
z=h/2

=
I

2πr
.

(5)

Additionally, on the boundary that separates regions Ω2 and Ω3 we have:

H3 ϕ

∣∣∣
r=c

= H2 ϕ

∣∣∣
r=c

, (6)

1
σ3

1
r

∂
(

rH3 ϕ

)
∂r

∣∣∣∣∣∣
r=c

=
1
σ2

1
r

∂
(

rH2 ϕ

)
∂r

∣∣∣∣∣∣
r=c

, (7)

3. Analytical Solution

Maxwell’s equations in regions Ω2 and Ω3 reduce to:

1
r

∂

∂r

(
r

∂Hk ϕ

∂r

)
+

∂2Hk ϕ

∂z2 − Hk ϕ

r2 − jωσkμ0μk Hk ϕ = 0. (8)

Equation (8) has been previously solved [10,14]. The solution of this equation has the
following form [14]:

Hk ϕ(r, z) =
(

Ak
r

+ Bkr
)

cosh(βkz)

+
∞

∑
n=0

{
Ck,n I1(λk,nr) + Dk,nK1(λk,nr)

}
cos(κnz), (9)

where I1(λk,nr) and K1(λk,nr) are the modified Bessel functions of the first order,

β2
k = jωσkμ0μk, κn =

(2n + 1)π
h

λ2
k,n = κ

2
n + β2

k k = 2, 3, n ∈ Z
+.

Constants Ak, Bk, Ck,n and Dk,n are to be obtained from boundary conditions (5)–(7).
Substitution of solution (9) into the last boundary conditions of (5) yields:

Bk = 0, Ak =
I

2π cosh(βkh/2)
.

As a result,

Hk ϕ(r, z) =
I

2πr
cosh(βkz)

cosh(βkh/2)

+
∞

∑
n=0

{
Ck,n I1(λk,nr) + Dk,nK1(λk,nr)

}
cos(κnz), (10)

The convergence of the generalized Fourier-series (10) is provided by the general
theory of linear partial differential equations, with Hermitian differential operators and
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boundary conditions (5)–(7). However, the convergence can be also proved explicitly,
which has been done, for instance, in the Appendix section of [10].

At the same time, since function cosh(βkz)/ cosh(βkh/2) can be expanded in a Fourier
series as follows [10]:

cosh(βkz)
cosh(βkh/2)

=
∞

∑
n=0

4(−1)nκn

λ2
k,nh

cos(κnz),

then, Equation (10) takes the form:

Hk ϕ(r, z) =
∞

∑
n=0

{
Ck,n I1(λk,nr) + Dk,nK1(λk,nr)

+
2I
πr

(−1)nκn

λ2
k,nh

}
cos(κnz), (11)

Let us substitute general solution (11) for H3 ϕ(r, z) into boundary condition H3 ϕ

∣∣∣
r=a

=

I/2πa. We obtain within the interval −h/2 ≤ z ≤ h/2:

∞

∑
n=0

{
C3,n I1(λ3,na) + D3,nK1(λ3,na) +

2I
πa

(−1)nκn

λ2
3,nh

}
cos(κnz) =

I
2πa

. (12)

On the other hand, within the same interval, we can write (see [10]):

∞

∑
n=0

4(−1)n

κnh
cos(κnz) = 1.

After substituting this result into (12) we come to the following equation:

∞

∑
n=0

{
C3,n I1(λ3,na)+D3,nK1(λ3,na)

+
2I
πa

(−1)nκn

λ2
3,nh

}
cos(κnz) =

∞

∑
n=0

2I
πa

(−1)n

κnh
cos(κnz), (13)

which, in turn, leads to the following:

C3,n I1(λ3,na) + D3,nK1(λ3,na) +
2I
πa

(−1)nκn

λ2
3,nh

=
2I
πa

(−1)n

κnh
.

This equation, after some simple algebraic operations, becomes:

C3,n I1(λ3,na) + D3,nK1(λ3,na) =
2I
πa

(−1)nβ2
3

λ2
3,nκnh

. (14)

A similar result can be obtained from boundary condition H2 ϕ

∣∣∣
r=b

= I/2πb:

C2,n I1(λ2,nb) + D2,nK1(λ2,nb) =
2I
πb

(−1)nβ2
2

λ2
2,nκnh

. (15)
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Boundary conditions (6) and (7) result in the following equations:

C2,n I1(λ2,nc) + D2,nK1(λ2,nc) +
2I
πc

(−1)nκn

λ2
2,nh

= C3,n I1(λ3,nc) + D3,nK1(λ3,nc) +
2I
πc

(−1)nκn

λ2
3,nh

(16)

λ2,n

σ2

{
C2,n I0(λ2,nc)− D2,nK0(λ2,nc)

}
=

λ3,n

σ3

{
C3,n I0(λ3,nc)− D3,nK0(λ3,nc)

}
(17)

The system of linear Equations (14)–(17), with respect to the constants Ck,n and Dk,n,
k = 1, n, is easy to solve. However, there is no necessity to solve this system of equations
exactly, since the magnetic field rapidly decays for an increasing outer radius b. This princi-
ple can be formally taken into account in the system of Equations (14)–(17) by considering
radius b to be sufficiently high (formally, b → ∞). The validity of this assumption for the
calculation of transformer tanks losses has been shown previously in [10,14]. By applying
the limit to Equation (15) when b → ∞ and taking into account the asymptotic behavior of
the modified Bessel functions I1(x) and K1(x), namely,

I1(x) ∝
ex

√
2πx

(
1 +O(x−1)),

K1(x) ∝
√

π

2x
e−x

(
1 +O(x−1)),

it follows that C2,n = 0. Through substitution of the result into Equations (14)–(17) and
solving this system of equations with respect to C3,n, D3,n and D2,n, we obtain:

C3,n =
2I
πΔ

(−1)n

λ2
3,nh

{
β2

3
κna

[
λ2,n

σ2
K0
(
λ2,nc

)
K1
(
λ3,nc

)− λ3,n

σ3
K1
(
λ2,nc

)
K0
(
λ3,nc

)]

− κn(β2
3 − β2

2)

λ2,nσ2c
K0
(
λ2,nc

)
K1
(
λ3,na

)}
, (18)

D3,n = − 2I
πΔ

(−1)n

λ2
3,nh

{
β2

3
κna

[
λ2,n

σ2
K0
(
λ2,nc

)
I1
(
λ3,nc

)
+

λ3,n

σ3
K1
(
λ2,nc

)
I0
(
λ3,nc

)]

− κn(β2
3 − β2

2)

λ2,nσ2c
K0
(
λ2,nc

)
I1
(
λ3,na

)}
(19)

and

D2,n =
2I

πΔc
(−1)n

λ3,nσ3h

{
κn

β2
3 − β2

2
λ2

2,n

[
K1
(
λ3,na

)
I0
(
λ3,nc

)
+ I1

(
λ3,na

)
K0
(
λ3,nc

)]− β2
3

κnλ3,na

}
, (20)

where

Δ =

[
λ2,n

σ2
K0
(
λ2,nc

)
K1
(
λ3,nc

)− λ3,n

σ3
K1
(
λ2,nc

)
K0
(
λ3,nc

)]
I1
(
λ3,na

)
−
[

λ2,n

σ2
K0
(
λ2,nc

)
I1
(
λ3,nc

)
+

λ3,n

σ3
K1
(
λ2,nc

)
I0
(
λ3,nc

)]
K1
(
λ3,na

)
. (21)
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Then, constant C2,n can be approximately calculated from Equation (15) as follows:

C2,n =
1

I1(λ2,nb)

{
2I
πb

(−1)nβ2
2

λ2
2,nκnh

− D2,nK1(λ2,nb)
}

. (22)

Solution (10) is an infinite sum that can be truncated at a term with number N− 1 and
by introducing the Lanczos sigma factor (see [16,17]):

ςn =
sin
(
πn/N

)
πn/N

(23)

to suppress Gibbs’ oscillations. Then, solution (11) takes the following form:

Hk ϕ(r, z) =
I

2πr
cosh(βkz)

cosh(βkh/2)

+
N−1

∑
n=0

ςn

{
Ck,n I1(λk,nr) + Dk,nK1(λk,nr)

}
cos(κnz), (24)

4. Electric Field and Eddy Current Losses

Eddy current losses in the transformer tank wall have an ohmic nature. The averaged
power loss density over a period is as follows [10,14]:

P(r, z) =
1
T

∫ T

0
σ(r, z)|E(r, z, t)|2dt =

|j(r, z)|2
2σ(r, z)

, (25)

where T = 2π/ω is the period. The tank wall conductivity σ(r, z) is a function of the
coordinates due to the insert in the tank wall, and j(r, z) is the current density in the
frequency domain. Then, the total losses in the tank wall are [10]:

Ptot =

2π∫
0

dϕ

b∫
a

rdr
h/2∫

−h/2

dz P(r, z) = π

b∫
a

rdr
h/2∫

−h/2

dz
|j(r, z)|2
σ(r, z)

=
π

σ3

c∫
a

rdr
h/2∫

−h/2

dz
(
|j3,r(r, z)|2 + |j3,z(r, z)|2

)

+
π

σ2

b∫
c

rdr
h/2∫

−h/2

dz
(
|j2,r(r, z)|2 + |j2,z(r, z)|2

)
. (26)

The current density can be obtained from Maxwell’s Equations (1) as follows:

jk = ∇×Hk = jk,r(r, z)er + jk,z(r, z)ez, (27)

where

jk,r(r, z) = − Iβk
2πr

sinh(βkz)
cosh(βkh/2)

+
N−1

∑
n=0

ςnκn

{
Ck,n I1(λk,nr) + Dk,nK1(λk,nr)

}
sin(κnz) (28)

and

jk,z(r, z) =
N−1

∑
n=0

ςnλk,n

{
Ck,n I0(λk,nr)− Dk,nK0(λk,nr)

}
cos(κnz) (29)

245



Mathematics 2021, 9, 184

5. Study Cases and Discussion

Several study cases are carried out in this section with different SSI sizes in the tank
wall. In order to compare the results obtained with our analytical formulas, the solution in
each case is also computed with a 2D FE model [18]. The low-carbon steel has the following
properties: a relative permeability μr = 100, a conductivity σ = 7.0 × 106 S/m and a
relative permittivity εr = 1. The SSI has a relative permeability μr = 1.0, a conductivity
σ = 1.1× 106 S/m and a relative permittivity εr = 1. The model dimensions in all the
cases are a = 8.5 cm, b = 34 cm and h = 12.7 mm. The current I carried by the conductor is
5000 A at frequency f = 60 Hz. Various radial distances of the insert (c− a) are considered,
which are obtained by varying the percentage of the tank wall volume that corresponds
to the SSI. This means that if the insert volume is 0 %, the tank wall is made only of
low-carbon steel and therefore c = a. On other hand, if the insert volume is 100%, the tank
wall would be made exclusively of the stainless steel and its radial distance would be given
by c− a = b− a = 255 mm.

The numerical solution is obtained with a time-harmonic 2D eddy current axisymmet-
ric FE model. A special 2D formulation is applied considering that field configuration is
such that the magnetic field has only one component normal to the plane and the current
density has its components in the plane, which matches with our problem. This formula-
tion is incorporated into our FE code FLD and has been compared with analytical and 3D
FE solutions, obtaining great accuracy in all cases [18]. FLD is a set of computer programs
and routines, developed by the authors, for the analysis of electromagnetic problems using
the FE method, which is programmed in Fortran 95 [19]. Using a 2D FE model permits a
large number of simulations in a much shorter time and without the computational cost of
a 3D model. Moreover, the geometry of the proposed model is represented faithfully by a
2D axisymmetric model.

The analysis domain considered in the FE axisymmetric model is composed by regions
Ω3 and Ω4. A Dirichlet boundary condition, obtained by applying Ampère’s circuital
law (4), is assigned to nodes located at the periphery of the model. Figure 2 shows the FE
meshes used to solve two different cases. Figure 2a is the mesh used for the case where the
tank wall of the transformer lacks an SSI. Figure 2b shows a case where an insert exists,
modeled by the left blue region. The mesh used for each case results from an automatic
mesh adaptation procedure; regions with a rapid variation of the field, after the iterative
procedure, will contain a higher density of elements. In all cases second order elements
were employed. Details of the implementation of the automatic mesh adaptation are
reported in [18]. In both cases, most of the elements are in the periphery of the region Ω2,
consisting of low-carbon steel, due to the skin effect in this material.

(a)

(b)
Figure 2. Mesh of the 2D FE axisymmetric model. (a) Tank wall without insert, case c = a. (b) Tank wall considering an
insert, case c− a = 85.0 mm.

In Figure 3 the magnetic field distribution of Hϕ(r, z), obtained with (4) and (24), is
presented for different radii of the SSI. Observe how the magnetic field penetrates the tank
wall according with the SSI size. Since the low-carbon steel possesses greater permeability
and conductivity than the stainless steel, it has a smaller depth of penetration (δ). Hence,
the magnetic field decays rapidly in region Ω2, whereas the magnetic field penetrates easily
to region Ω3.
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Figure 3. Magnetic field distribution inside the tank wall. (a) Case c = a. (b) Case c− a = 11.914 mm. (c) Case c− a = 85 mm.
(d) Case c− a = 183.89 mm. (e) Case c− a = 238.67 mm.

Figure 4 shows two cases of the magnetic field penetration in the tank wall and the
eddy current density obtained with 2D FE simulation. Figure 4a is the case where there
is no insert. In this solution the skin effect phenomena in the tank wall can also be seen,
producing the greater magnitude of Hϕ in the inner radius, the nearest region to the
conductor. Figure 4b presents the case in which the radial distance of the stainless insert is
c− a = 85 mm. In this case, the closed path of the eddy currents in the tank can be seen.
The magnitude of the eddy current density is greater in the low-carbon steel.
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(a)

(b)
Figure 4. Magnitude of Hϕ (color) and eddy current density (arrows) in the tank wall. (a) Case c = a. (b) Case
c− a = 85.0 mm.

Figure 5 shows the magnetic field Hϕ evaluated at the center of the tank wall (z = 0)
for different insert radii. For all cases, the analytical solution, developed in this work and
the numerical one obtained with the 2D FE model are compared. It can be seen that for all
the cases, the values of Hϕ calculated analytically match very closely the values obtained
numerically, demonstrating the validity of the analytical formula (24). In these graphs, the
behavior of the magnetic field inside the tank wall can be noticed more clearly: when Hϕ

penetrates in the low-carbon steel, it decreases rapidly, having a greater variation at the
edges of the tank. The magnetic field outside of the tank wall decreases according to the
distance to the conductor, as established in (4). Table 1 shows the relative error between
the analytical solution and numerical solutions calculated for these cases. The maximum
relative error obtained is 1.71%, which demonstrates the validity of the solutions.

Table 1. Relative error between solutions.

Case Relative
c − a Error
(mm) (%)

0 0.52
11.914 1.37

85 0.83
183.79 1.71
238.67 0.45

The relative error is calculated with

relative error =
max
i=1, n

| fi − gi|
max
i=1, n

|gi| 100%

where fi and gi are the numerical and analytical solutions respectively, evaluated at point i,
while n is the total number of points considered.

The eddy current losses Pe in the bushing region were calculated for several cases using
the analytic expressions (26), (28) and (29), and were compared with the losses estimated
using 2D FE simulations. Table 2 presents the eddy current power losses obtained for
thirteen different configurations of the tank wall, varying the volume occupied by the
stainless insert. In each case, the corresponding radial distance of the insert is shown. It can
be observed that the losses calculated in all cases differ by less than 3%, which confirms
the correctness of the analytical expressions presented previously. Figure 6 presents also
the power losses in the tank wall, calculated with the two approaches, in a graphical way.
This graph shows the reduction of the total power losses in the tank wall according to the
increment of the radial distance c− a, as expected. Although these results could point to the
use of transformer tanks made exclusively with stainless steel, at least in the bushing region,
this material is more expensive than the low-carbon steel, meaning a greater investment to
manufacture the transformer.
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Figure 5. Magnetic field Hϕ evaluated at z = 0 and z = h/2. (a) Case c = a. (b) Case c − a = 11.914 mm. (c) Case
c− a = 85 mm. (d) Case c− a = 183.89 mm. (e) Case c− a = 238.67 mm.
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Table 2. Eddy current losses in the tank wall.

Insert Radial Distance Pe Pe Relative
Case Volume Insert c − a (W) (W) Error

(%) (mm) Analytical Numerical (%)

1 0 0 334.345 333.313 0.308
2 1 6.152 317.872 316.813 0.333
3 2 11.914 303.079 302.003 0.355
4 5 27.444 267.309 266.387 0.344
5 10 49.396 224.551 223.852 0.311
6 20 85.000 168.447 168.018 0.254
7 30 114.34 130.565 130.330 0.18
8 40 139.88 101.941 101.836 0.103
9 50 162.81 78.918 78.965 0.059

10 60 183.89 59.669 59.799 0.217
11 70 203.24 43.135 43.380 0.568
12 80 221.47 28.630 28.975 1.205
13 90 238.67 15.724 16.142 2.658
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Figure 6. Power losses for different SSI dimensions.

6. Limits and Applicability of the Analytical Solution

Solution (24) was obtained under the assumption of axial symmetry. The edge effect
on the external border was neglected by formally taking the limit: b → ∞. This approach
(axial symmetry) is expected to be applicable to other cases such as when the conductor
crosses the covering plate not at the plate centre, but closer to the border of the transformer
cover. This is due to the skin effect, making the magnetic field decay exponentially from
the hole border (see Figure 7). However, in a layer near the external border, the mag-
netic field increases exponentially up to values of the magnetic field outside the plate
(Figure 7). Therefore, if the conductor is situated too close to the border, the edge effect
may become considerable.

Nevertheless, there is a case where this effect could become considerable. Just near
the external border, the magnetic field increases exponentially up to values of the magnetic
field outside the plate (see Figure 7). If the conductor is far away from the external border,
the magnetic field quantity near the plate border is small enough so that the external border
effect can be neglected. In the case of the conductor crossing the plate nearby the plate
border, the edge effect becomes considerable. However, this effect is presented only in
a small region shown in Figure 8, so that its contribution to the complete value of eddy
current losses is small. Therefore, the only restriction of our analytical solution is δ1 � d,
which is normally accomplished in actual transformers.
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Figure 7. Magnetic field behaviour in the insert and the neighbouring plate material.

Figure 8. Limiting case of a conductor close to the plate border.

7. Conclusions

A new analytical model to determine the magnetic field distribution around the
bushing region in the transformer tank, and considering the existence of a SSI, has been
developed. The results obtained with the proposed model were validated with detailed
2D FE simulations. All the cases considered show great concordance between analytical
and numerical solutions. A relative error was calculated in order to compare quantitatively
the analytical model with the numerical one. This way, it was shown that the solutions
differed by less than 2% in all the simulated cases. A formula to calculate the eddy current
losses was also developed. The power losses were calculated for a total of thirteen different
cases varying the radial distance of the insert, and again the analytical results were very
close to the numerical ones. The results show that stray losses in the tank are reduced with
increases in the SSI dimensions. The relative errors between stray losses, calculated with
the analytical and the FE models, for all cases were less than 3%.

These equations can serve as a basis to develop a thermal analysis in the bushing
regions or an economical analysis of the insert cost against the savings due to the power
loss reduction. Therefore, the new analytical model can be a useful tool for transformer
designers who are interested in obtaining the optimal size of non-magnetic inserts in the
tank wall, according to the rated values and dimensions of the transformer.
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Abstract: A pandemic situation of COVID-19 has made a cost-minimization strategy one of the
utmost priorities for commercial airliners. A relevant scheme may involve the minimization of
both the fuel- and time-related costs, and the climb trajectories of both objectives were optimized
to determine the optimum aircraft cruise altitude. The Hermite-Simpson method among the direct
collocation methods was employed to discretize the problem domain. Novel approaches of terminal
residual analysis (TRA), and a modified version, m-σ TRA, were proposed to determine the goals.
The multi-objective cruise altitude (MOCA) was different by 2.5%, compared to the one statistically
calculated from the commercial airliner data. The present methods, TRA and m-σ TRA were powerful
tools in finding a solution to this complex problem. The value σ also worked as a transition criterion
between a single- and multi-objective climb path to the cruise altitude. The exemplary MOCA was
determined to be 10.91 and 11.97 km at σ = 1.1 and 2.0, respectively. The cost index (CI) varied during
a flight, a more realistic approach than the one with constant CI. With validated results in this study,
TRA and m-σ TRA may also be effective solutions to determine the multi-objective solutions in other
complex fields.

Keywords: multi-objective optimization; cruise altitude; fuel consumption; time to climb; Hermite-
Simpson method; trajectory optimization; terminal residual analysis (TRA); m-σ terminal residual
analysis (m-σ TRA)

1. Introduction

The outbreak of COVID-19 made the year 2020 the worst year in the history of the airline
industry, with a net loss of 84.3 billion dollars [1]. The official reports from the Bureau of
Transportation Statistics (BTS) of U.S. already confirmed a net loss of 5.2 billion and 11 billion
dollars in the first [2] and second [3] quarters, respectively, of the year 2020. Revenue passenger
kilometer (RPK) fell by 55% and cargo & mail ton-kilometer (CTK) by 16.8%, and the year
2021 is also expected to be unfavorable [1]. Although Ref. [1] notes that the overall prediction
of the performance of the airline industry is favorable in 2021, the end of this pandemic is
still unpredictable. Amidst a harsh pandemic environment, tight cost management became
even more crucial, and the authors propose a rational, cost-minimizing approach. Since fuel
expenditure is almost a quarter (23.7%) of the total operating cost (TOC) [1], and the time of
arrival is also as essential as fuel costs, the focus of our study is on the minimization of both
the fuel consumption (FC) and the time of travel (TT).

The optimization of FC and TT indeed is one of the major priorities in the literature as
multi-objective [4–10] and single-objective [11–15] studies using various methods of Gauss
Pseudo-spectral method [16] (sometimes accompanied by Chebyshev direct method [4]),
energy-state [11,12], genetic algorithm [5], particle swarm [10], direct collocation meth-
ods [17,18], and statistical approach [9]. The optimization of each phase in a flight profile,
consisting of the climb, cruise, and descent, had distinct merits for improvements. First,
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the cruise phase contributes the most to the TOC, even more for a long-range flight. Air-
craft under the descent phase uses all of their potential and kinetic energy for deceleration,
but the optimization is primarily for safety [19,20]. During the climb phase, optimized
ascension protocols such as continuous climb operations (CCOs) yield a considerable re-
duction in fuel consumption [21,22]. The authors chose the climb phase for multi-objective
optimization because of its potential for further optimization [9,12].

Overall, the main objective of this study is to minimize both FC and TT in conjunction
with the climb phase. In this case, TT became the time-to-climb (TTC) to describe the time
spent to ascend to the desired optimum cruise altitude. From the perspective of aerody-
namics, cruising at higher altitudes reduces the aerodynamic drag and increases cruise
speed at a given thrust, but there is extra fuel consumption for ascension [23]. Cruising at a
lower altitude implies more aerodynamic drag and lower aircraft speed, which resulted
in increased TT. An optimally determined cruise altitude would save both fuel and time,
potentially achievable by optimizing the aircraft performance during the ascending phase.
This study does not adapt the conventional approach of total cost minimization involv-
ing constant cost index (CI) throughout a flight path [3,5,7] but shows that CI changes
over the course of the climb path. Moreover, wind shear conditions were not considered,
and only conventional International Standard Atmosphere (ISA) conditions were used.
This ISA model is equivalent to the 1976 US standard atmosphere model [24], and hence
the atmosphere model used in the present study was named ”1976 US atmospheric model”.
This study presents a distinctive method, effectively determining the optimum cruise
altitude of a generic supersonic aircraft using residual analysis arguments, incorporating
two minimizing objectives, FC and TTC. The rationale for the use of supersonic jet data
was given in the next paragraph and Section 4.

The contents start with a brief description of the indirect method and explain the difficul-
ties involved in finding the analytic solution of complex problems in Section 2.1. Section 2.2
describes the direct methods, which had gained popularity with the increase in computing
power in recent decades. The study justifies the use of direct methods over indirect methods.
There are several direct methods such as the Gauss-Lobatto [25] and the Gauss Pseudo-spectral
method [16], but the Hermite-Simpson method was chosen. The procedure with the chosen
method for the discretization of the problem domain in Section 2.2 as well. The calculated
cruise altitude result was compared to the statistically derived result from subsonic, commer-
cial airplanes in Ref. [9]. The present study intended to calculate the cruise altitude of an
aircraft by optimizing the climb trajectory in three-dimensional thrust-Mach-altitude space.
Such data in the literature using subsonic commercial aircraft [9,22] was available only in
stage-wise aerodynamic data having single column data at each flight stage, and hence, the
authors used supersonic jet data [12,26] with boundary conditions set for subsonic operations.
The details about the models were described in Section 2.3, and auxiliary models and novel
methods used in this paper were noted in Sections 2.4–2.6. The optimum climb trajectories
were obtained for each targeted objective, minimum FC and TTC. Then, the results (Section 3)
were presented followed by discussions (Section 4) and conclusion (Section 5).

2. Methods

The following Sections 2.1 and 2.2 describe the general formulation of the optimal
control problem (OCP).

2.1. Optimal Control in Continuous-Time Domain

In general, the formulation of continuous-time optimal control problem with no path
constraints on the states or the control variables and fixed initial and final time t0 and tE
can be defined as follows:

J = Φ(x(tE)) +
∫ tE

t0

L(x(t), u(t), t) dt (1)
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where the control vector trajectory u : [t0, tE] ⊂ R �→ Rnu is usually minimized in the
performance index J : [t0, tE]×Rnx ×Rnu ×R �→ R . Equation (1) is subject to:

.
x(t) = f (x(t), u(t), t),x(t0) = x0 (2)

where [t0, tE] is the time interval of the problem domain, x : [t0, tE] �→ Rnx is the state vector,
Φ : Rnx ×R �→ R is a terminal cost function, L : Rnx ×Rnu ×R �→ R is an intermediate
cost function, and f : Rnx ×Rnu ×R �→ Rnx is a vector field. This formulation is expressed
in the Bolza form where Equation (2) describes the dynamics of the system with the
corresponding initial conditions. Here, Φ(x(tE)) is the Mayer term and L(x(t), u(t), t) is
the Lagrange term.

When constraints are involved, a time dependent Lagrange multiplier vector func-
tion λ : [t0, tE] �→ Rnx , also known as co-state, is introduced to define an augmented
performance index J, which is defined as:

J = Φ(x(tE)) +
∫ tE

t0

(
L(x(t), u(t), t) + λT(t)

[
f (x(t), u(t), t)− .

x
])

dt. (3)

The Hamiltonian function H then is defined as:

H(x(t), u(t), λ(t), t) = L(x(t), u(t), t) + λT(t) f (x(t), u(t), t), (4)

which can re-write Equation (3) as:

J = Φ(x(tE)) +
∫ tE

t0

(
H(x(t), u(t), λ(t), t)−

.
λ

T
(t)

.
x
)

dt. (5)

When time t0 and tE are fixed, an infinitesimal variation in u(t), x(t), and J can be
considered which are denoted as δu(t), δx(t), and δJ. Such can be formulated as:

δJ =
[(

∂Φ
∂x − λT

)
δx(t)

]
t=tE

+
[
λTδx(t)

]
t=t0

+
∫ tE

t0

((
∂H
∂x +

.
λ

T
)

δx(t) +
(

∂H
∂u

)
δu(t)

)
dt.

(6)

The Lagrange multipliers λ : [t0, tE] �→ Rnx can arbitrarily be chosen to make δx(t)
and δx(tE) coefficient equal to zero. Hence the multipliers chosen are:

.
λ

T
(t) = −∂H

∂x
, (7)

λT(tE) =
∂Φ
∂x

∣∣∣∣
t=tE

. (8)

The chosen multipliers change the expression for J. When the initial state is fixed at
δx(t0) = 0:

δJ =
∫ tE

t0

[(
∂H
∂u

)
δu
]

dt, (9)

where the stationarity condition for the minimum at δJ = 0 becomes:

∂HT

∂u
= 0. (10)

Equations (2), (7), (8) and (10) are the necessary conditions in the first order for a
minimum of J. Equations (7) and (8) are known as the adjoint equation, describing the
co-states, and the transversality conditions, describing the initial states. These are necessary
optimality conditions defining a two-point boundary value problem, useful for finding
analytic solutions to certain types of optimal control problems. They also are used to find
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solutions in general cases using numerical algorithms. Further details are described in
Refs. [27–29].

Definition 1. (Terminal constraints). The above formulation can be given a set of terminal
constraints defined as:

ψ(x(tE), tE) = 0, (11)

where ψ : Rnx ×R �→ R
nψ is in a vector form, variational analysis shows that Equations (2),

(7) and (10) become necessary conditions for a minimum of J with the following terminal condition:(
∂ψT

∂x
+

∂ψT

∂x
ζ − λ

)T
∣∣∣∣∣
tE

δx(tE) +
∂ψ

∂t
+

∂ψT

∂t
ζ +H

∣∣∣∣
tE

δtE = 0, (12)

where ζ ∈ R
npsi is Lagrange multiplier for the terminal constraint, δtE is the infinitesimal variation

in tE, and δx(tE) is the infinitesimal variation in x(tE).

Definition 2. (Pontryagin’s maximum principle). The adaptation of inequality constraints
coupled to the input variables in optimal control problems is common under realistic conditions [30].
The input variable u then is restricted within the admissible compact region Ω , which is defined as:

u(t) ∈ Ω. (13)

In this case, Equations (2), (7) and (8) become necessary conditions, and stationarity
condition of Equation (10) is replaced with:

H(x∗(t), u∗(t), λ∗(t), t) = max
u(t)∈U

H(x∗(t), u∗(t), λ∗(t), t), (14)

for all admissible u(t). The superscript * denotes the optimal variables. The above, Pon-
tryagin’s maximum principle, Hamiltonian H must be maximized over all admissible u(t)
for optimal values of the state and co-state variables.

Definition 3. (Path constraints). The problem domain in practical applications usually restricts
the state and control trajectories where a set of constraints have to be satisfied within a time interval
[t0, tE]. The constraint in the trajectory is given as:

E(x(t), u(t), t) ≤ 0, (15)

where E : Rnx ×Rnu × [t0, tE] �→ RnP . Additionally, equality constraints can be imposed at some
intermediate point in time te, t0 ≤ te ≤ tE. These interior point constraints can be expressed as:

D(x(te), te) = 0, (16)

where D : Rnx ×R �→ R
nq . Further details are available in Ref. [31].

Definition 4. (Singular arcs). In singular arc problems, the matrix ∂2H/∂u2 becomes singular
with external arcs satisfying Equation (10). In this case, the optimality of the singular arc should be
validated [31,32]. Usually, Hamiltonian function H becomes linear in at least one of the control
variables for certain practical cases. This causes the control not to be determined with the state and
co-state by Equation (10), but by the condition where the time derivative of ∂H/∂u is zero along
the singular arc. In such cases, supplementary conditions called the generalized Legendre-Clebsch
conditions must be identified:

(−1)k ∂

∂u

[
d2k

dt2k
∂H
∂u

]
≥ 0, k = 0, 1, 2, . . . . (17)
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The computational difficulty involved in singular arc problems is the non-unique
control variables. The inequality constraint domains, especially, have complications of:

1. An unknown number of constrained sub-arcs at the initial stage of formulation.
2. Unidentified locations of the junction points where the transition from the constrained

to the unconstrained (and vice versa) occur.
3. Possible discontinuity of both the control variables u and the adjoint variable λ at the

junction points which is related to the dissatisfaction of boundary conditions.

2.2. Direct Transcription Method

The complexity involved in solving the indirect methods questions its robustness. The
direct methods, on the other hand, have advantages over indirect methods that good initial
and any co-state guesses are not compulsory, making them robust by having a broad range
for convergence even without optimally derived conditions and undetermined switching
structure. Linear interpolation discretizes a continuous solution to a set of equations with
state and control variables to solve the differential equations. As a result, this transforms an
OCP into nonlinear programming (NLP) problem where the exact solution of OCP, having an
infinite number of state and control variable combinations, is approximated to a finite number.

The typical methods are direct shooting, direct multiple shooting, and direct colloca-
tion. A direct collocation method is robust in problems with small perturbations, which is
suitable for aircraft trajectory optimization. The present study uses the Hermite-Simpson
methods with cubic polynomials to define the state trajectories and a piece-wise linear
function for the control [18] (Figure 1). This method places the collocation points at the
centers of the intervals and imposes constraints on the dynamic equations during the
discretization process.

Figure 1. The main concept of Hermite collocation methods (reproduced from Figure 1, Ref. [33]).
This method captures the local derivatives of the state variables to minimize the error between state
derivatives from dynamics and polynomial differentiation.

First, time tE is discretized into N intervals as:

t0 = 0 ≤ t1 ≤ t2 . . . ≤ tk ≤ tk+1 ≤ . . . ≤ tN = tE. (18)

The states between tk and tk+1 can be expressed in the form of cubic polynomial as:

x(t) = ak,0 + ak,1t + ak,2t2 + ak,3t3, (19)

which gives a derivative form of:

.
x(t) = ak,1 + 2ak,2t + 3ak,3t2, (20)
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where ak,0, ak,1, ak,2, and ak,3 are coefficients of the polynomial approximation in kth interval.
Since the collocation point is the midpoint of the interval:

tk,c =
tk + tk+1

2
. (21)

The values of the state and its derivatives are independent to the shifting of the interval
from [tk, tk+1] to [0, h] with h = tk+1 − t_k, time interval should be shifted. Let x(0) = xk,
x(h) = x_(k + 1),

.
x(0) =

.
xk, and

.
x(z) =

.
xk+1, and combining Equations (19) and (20) gives:⎡⎢⎢⎣

x(0)
.
x(0)
x(h)
.
x(h)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
1 h h2 h3

0 1 2z 3h2

⎤⎥⎥⎦
⎡⎢⎢⎣

ak,0
ak,1
ak,2
ak,3

⎤⎥⎥⎦. (22)

In the inverse form gives:⎡⎢⎢⎣
ak,0
ak,1
ak,2
ak,3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
− 3

h2 − 2
h

3
h2 − 1

h
2
h3

1
h2 − 2

h3
1
h2

⎤⎥⎥⎦
⎡⎢⎢⎣

x(0)
.
x(0)
x(h)
.
x(h)

⎤⎥⎥⎦. (23)

The substitution of coefficients [ak,0, ak,1, ak,2, ak,3] into Equations (19) and (20) allows
for the computation of the collocation points as:

xc(t) = x
(

h
2

)
=

1
2
(xk(t) + xk+1(t)) +

h
8
[ f (xk(t), uk(t))− f (xk+1(t), uk+1(t))]. (24)

In the time-derivative form, the points in the center of the interval is given by:

.
xc(t) =

.
x
(

h
2

)
= − 3

2h
(xk − xk+1)− 1

4
[ f (xk, uk)]. (25)

The above equation depends on the states and control at the intervals. Appropriate
values of both state and controls should be chosen for the collocation points to represent
the correct physics of the system. The control at the collocation point is given by:

uc =
uk + uk+1

2
. (26)

A defect Δk is then described as follows:

Δk =
.
xc − f (xc, uc)

= − 3
2h (xk − xk+1)− 1

4 [ f (xk, uk) + f (xk+1, uk+1)]− f (xc, uc)

= − 3
2h

[
(xk − xk+1) +

h
6 [ f (xk, uk) + 4 f (xc, uc) + f (xk+1, uk+1)]

]
.

(27)

State constraints then are redefined as:

Δk =

[
(xk − xk+1) +

h
6
[ f (xk, uk) + 4 f (xc, uc) + f (xk+1, uk+1)]

]
. (28)

The last term in the above expression is implicit Hermite integration of the system
dynamics which is used to solve nonlinear functions. Here, the NLP solver would select
[xk, uk, xk+1, uk+1] to minimize Δ to zero for convergence of the solution.

The cost function now can be defined using numerical integration schemes. When
trapezoid method is chosen, the cost function is written as:

J(u) = Φ(x(tE)) +
∫ tE

t=0
L(t, x(t), u(t)) dt. (29)
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Using trapezoid integration along the interval:

JNLP = Φ(xN) +
1
2

N−1

∑
k=1

(L(tk+1, xk+1, uk+1) + L(tk, xk, uk))(tk+1 − tk). (30)

For a special case with linear quadratic regulator and evenly discretized time points
at the intervals h, the resultant equation is expressed as:

JNLP = Φ(xN) +
1
2

N−1

∑
k=1

(
xT

k+1Q1xk+1 + uT
k+1Q2uk+1 + xT

k Q1xk + uT
k Q2uk

)
h. (31)

In general, the problem formulation using NLP in the OCP can be rewritten as:

min
xk ,uk

(
Φ(xN) +

1
2

N−1

∑
k=1

(
xT

k+1Q1xk+1 + uT
k+1Q2uk+1 + xT

k Q1xk + uT
k Q2uk

)
h

)
. (32)

where Q1 and Q2 are linear quadratic regulators, and Equation (32) is subjected to:

Δk = [(xk − xk+1) +
h
6
[ f (xk, uk) + 4 f (xc, uc) + f (xk+1, uk+1)] = 0, (33)

with constraints on states and controls defined as:

umin ≤ uk ≤ umax,
xmin ≤ xk ≤ umax,

Ceq(xk, uk) = 0,
C(xk, uk) = 0,

(34)

where Ceq and C represent equality and inequality constraints, respectively.
The procedure described in this section was used to solve the problem in this study

which is already implemented in the MATLAB-compatible toolbox ICLOCS2 [34], where
nonlinear problems were solved with interior point NLP solver IPOPT [35].

2.3. Aircraft Model

The multi-objective in this study is the achievement of both minimum FC and TTC
to reach the optimum cruise altitude. To achieve these objectives, the climb path to the
desired altitude should be optimized. First, the equation of motion (EOM) (Figure 2) in
point-mass approximation adopted from Ref. [36] can be written as follows:

.
V =

(T(M, z) cos α− FD)

m
− ε

r2
t

sin γ, (35)

.
γ =

T(M, z) sin α + FL
mV

+

[
V
rt
− ε

vr2
t

cos γ

]
, (36)

.
z = V sin γ, (37)

.
W = −T(M, z)

Isp
, (38)

where V is airspeed, T is thrust, M is Mach number, FD is drag, FL is lift, W is weight,
a product of mass m and gravitational acceleration g0, ε is the gravitational constant, rt is
the sum of the radius of the Earth Re and the altitude z, γ is the flight path angle, and α is
angle of attack. They are subject to initial conditions of V(ti) = Vi, γ(ti) = γi, z(ti) = zi,
and m(ti) = mi, where ti is the initial time. The aerodynamic properties of the aircraft are
approximated with functions of α:

FL = qSCLα α, (39)
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FD = qS
(

CD0 + ηCLα α2
)

, (40)

where q = ρV3/2 denotes the dynamic pressure, S is the aerodynamic reference area, η is
the efficiency factor (0 ≤ η ≤ 1). Both CLα and CD0 are the slope coefficients of lift and
zero-lift drag which are dependent on the Mach number, M, in most cases.

Figure 2. Longitudinal dynamics of an aircraft represented in point-mass approximation.

The objectives in this study are minimum FC and TTC. Hence, the cost functions for
each objective are given as Equations (41) and (42), respectively:

min
x(t),u(t),tE

−m(tE), (41)

min
x(t),u(t),tE

tE, (42)

The altitudes as boundary conditions were given in 1 km interval and hence the z(tE)
was given a range between 1000 m to 21,000 m with an interval of 1 km. The boundary
conditions and the constants were given as:

z(0) = 0 [m], V(0) = 129 [m/s], γ(0) = 0 [deg], m(0) = 19,050 [kg],
V(tE) = 295 [m/s], γ(tE) = 0 [deg], S = 49.24

[
m2],

ε = 3.99× 1014 [m3/s2], Isp = 1600 [s], g0 = 9.81
[
m/s2], Re= 6,378,145 [m],

with the bounds on the variables, given as:

0 ≤ z ≤ 21,000 [m] 5 ≤ V ≤ 1200 [m/s], 40 ≤ γ ≤ 40 [deg],
100 ≤ m ≤ 20,000 [kg] −20 ≤ α ≤ 20 [deg], 0 ≤ tE ≤ 600 [s],

where the accuracy criteria for the numerical solution was given as Table 1.

Table 1. Accuracy criteria for the numerical solution.

Accuracy Criteria

z [m] V [m/s] γ [deg] m [kg]

ζtol 1 0.5 1 1
χgtol 1 0.5 1 1

ζtol Maximum absolute local error
χgtol Maximum local constraint violation

The thrust and aerodynamic data should be defined either with the experimental data
or highly refined simulation data, preferably using computational fluid dynamics with
direct numerical simulation (DNS) [37] sometimes coupled with linear interaction analysis
(LIA) [38], or large eddy simulation (LES) [39] for an accurate description of an object
moving in a compressible fluid like air. Simulation data describing the macroscopic motion
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of the aircraft [26,40] also are valuable resources. In the present study, typical supersonic
aircraft aerodynamic profiles employed from Refs. [12,26] were used and reproduced in
Tables 2 and 3, where adjustments were made by Ref. [41] with linear interpolation to fill
in the ”missing” data. According to the authors in Ref. [26], the aircraft is a generic-type
supersonic interceptor.

Table 2. Thrust as a function of altitude z and Mach number M from Ref. [12] adjusted by Ref. [41]
for Aircraft 1.

Thrust, T (103 lb, 4.5×103 N)

Mach No., M
Altitude, z (103 ft, 0.3×103 m)

0 5 10 15 20 25 30 40 50 70

0 24.2 24 20.3 17.3 14.5 12.2 10.2 5.7 3.4 0.1
0.2 28 24.6 21.1 18.1 15.2 12.8 10.7 6.5 3.9 0.2
0.4 28.3 25.2 21.9 18.7 15.9 13.4 11.2 7.3 4.4 0.4
0.6 30.8 27.2 23.8 20.5 17.3 14.7 12.3 8.1 4.9 0.8
0.8 34.5 30.3 26.6 23.2 19.8 16.8 14.1 9.4 5.6 1.1
1.0 37.9 34.3 30.4 26.8 23.3 19.8 16.8 11.2 6.8 1.4
1.2 36.1 38 34.9 31.3 27.3 23.6 20.1 13.4 8.3 1.7
1.4 36.1 36.6 38.5 36.1 31.6 28.1 24.2 16.2 10 2.2
1.6 36.1 35.2 42.1 38.7 35.7 32 28.1 19.3 11.9 2.9
1.8 36.1 33.8 45.7 41.3 39.8 34.6 31.1 21.7 13.3 3.1

Table 3. Lift and drag coefficients as a function of angle of attack α and Mach number M from
Ref. [12] for Aircraft 1.

Aerodynamic
Parameters

Mach No.,

0 0.4 0.8 0.9 1.0 1.2 1.4 1.6 1.8

CLα
3.44 3.44 3.44 3.58 4.44 3.44 3.01 2.86 2.44

CD0 0.013 0.013 0.013 0.014 0.031 0.041 0.039 0.036 0.035
η 0.54 0.54 0.54 0.75 0.79 0.78 0.89 0.93 0.93

A second aircraft model (Tables 4 and 5) was then employed using the same approach
to compare the possible difference between two aircraft models. The same cost functions
and altitude range as Aircraft 1 were given with slightly different boundary and constraint
conditions as shown below:

z(0) = 0 [m], V(0) = 129 [m/s], γ(0) = 0 [deg], m(0) = 16,329.3 [kg],
V(tE) = 295 [m/s], γ(tE) = 0 [deg], S = 46.45

[
m2],

ε = 3.99× 1014 [m3/s2], Isp = 2800 [s], g0 = 9.81
[
m/s2], Re = 6,378,145 [m],

with the bounds on the variables, given as:

0 ≤ z ≤21,000 [m], 5 ≤ V ≤ 1200 [m/s], 40 ≤ γ ≤ 50 [deg],
100 ≤ m ≤20,000 [kg], −20 ≤ α ≤ 20 [deg], 0 ≤ tE ≤ 600 [s],

Refs. [12,26] mentions that both models were based on typical supersonic interceptors.
To the best of the authors’ knowledge, supersonic interceptors have two types: one is
heavy, long-range, and the other is lightweight, short-range, and the authors speculated
that Aircraft 1 belonged to the former, and Aircraft 2 for the latter for having different
initial mass (19,050 compared to 16,329.3 kg) and maximum thrust (205.65 compared to
134.55 kN). The authors note that the cruise altitude cannot be the same for all aircraft and
may vary depending on the aircraft model. The results of the aircraft model 2 and the
effects of such differences were presented and discussed in Section 4.5.
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Table 4. Thrust as a function of altitude z and Mach number M from Ref. [12] for Aircraft 2.

Thrust, T (103 lb, 4.5×103 N)

Mach No., M
Altitude, z (103 ft, 0.3×103 m)

0 5 15 25 35 45 55 65 75 85 95 105

0 23.3 20.6 15.4 9.9 5.8 2.9 1.3 0.7 0.3 0.1 0.1 0.1
0.4 22.8 19.8 14.4 9.9 6.2 3.4 1.7 1.0 0.5 0.3 0.1 0.1
0.8 24.5 22.0 16.5 12.0 7.9 4.9 2.8 1.6 0.9 0.5 0.3 0.2
1.2 29.4 27.3 21.0 15.8 11.4 7.2 3.8 2.7 1.6 0.9 0.6 0.4
1.6 29.7 29.0 27.5 21.8 14.7 10.5 6.5 3.8 2.3 1.4 0.8 0.5
2.0 29.9 29.4 28.4 26.6 21.2 14.0 8.7 5.1 3.3 1.9 1.0 0.5
2.4 29.9 29.2 28.4 27.1 25.6 17.2 10.7 6.5 4.1 2.3 1.2 0.5
2.8 29.8 29.1 28.2 26.8 25.6 20.0 12.2 7.6 4.7 2.8 1.4 0.5
3.2 29.7 28.9 27.5 26.1 24.9 20.3 13.0 8.0 4.9 2.8 1.4 0.5

Table 5. Lift and drag coefficients as a function of angle of attack α and Mach number M from
Ref. [11] for Aircraft 2.

Aerodynamic
Parameters

Mach No.,

0 0.4 0.8 0.9 1.0 1.2 1.4 1.6 1.8

CLα
3.44 3.44 3.44 3.58 4.44 3.44 3.01 2.86 2.44

CD0 0.013 0.013 0.013 0.014 0.031 0.041 0.039 0.036 0.035
η 0.54 0.54 0.54 0.75 0.79 0.78 0.89 0.93 0.93

2.4. Atmospheric Model

For a realistic approach to the problem, a 1976 US atmospheric model [24] was used.
This semi-empirical model effectively describes the atmospheric conditions around an
aircraft at all altitudes and made the mathematical approach in this study more realistic.
The formula for the model is given as:

TM = Tb + Lb(z− zb), (43)

P =

⎧⎪⎨⎪⎩ Pbe[
g0 MA(z−zb)

RTb
]
, Lb = 0;

Pb

[
Tb

Tb+Lb(z−zb)

][ g0 MA
RLb

]
Lb �= 0;

(44)

ρ =
P

RspT
, (45)

where TM is the molecular temperature, Tb is the base temperature at each atmospheric
level, Lb is the base temperature lapse rate, z is altitude, zb is the base altitude at each
atmospheric level, P is atmospheric pressure, Pb is the base pressure at each atmospheric
level, g0 is gravitational acceleration, R is universal gas constant, MA is molar mass of
Earth’s air, ρ is the density of air, and Rsp is the specific gas constant of air. The atmospheric
level, and the necessary boundary and parameter values are given in Table 6.

2.5. B-Spline Curve

The optimum trajectory solutions of each target objectives, minimum FC and TTC,
were generated with an altitude interval of 1000 m, and B-spline was selected for the
plotting of the curve connecting the property values at the end of the climb. B-spline is the
general form of the Bézier spline which builds parametric curves around the polynomial
expressions [42]. When a knot vector is B = β0, β1, . . . , βk, and control points w0, . . . , wn
are defined where B is a non-decreasing sequence with βi ∈ [0, 1], the basis functions are
defined as below:

Ni,o(β) =

{
1, i f βi ≤ β ≤ βi+1 and βi < βi+1;

0, otherwise;
(46)
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where j = 1, 2, . . . , w. The B-spline curve then is defined as:

Ni,j(β) =
β− βi

βi+j − βi
Ni,j−1(β) +

βi+j+1 − t
βi+j+1 − βi+1

Ni+1,j−1(β), (47)

C(r) =
n

∑
i=0

wi Ni,w(β). (48)

B-spline curves were used for having several advantages for the presentation of
our results:

1. A curve can be generated in a complex solution even with a relatively small number
of control points.

2. Depiction of a smooth, continuous curve joining the point data set would provide
additional information to the physical transition between the solution points.

3. The data points from the fitted curve can be used for other aircraft path tracking
problems for having a smooth transition along the curve.

Table 6. 1976 US atmosphere model: boundary and parameter values from Ref. [24].

Atmospheric
Level

Altitude Range
(km)

b * zb
† Pb (Pa) ‡ Tb (K) § Lb (K/km) ‖

Troposphere 0–11 0 0 101325 288.15 −6.5
Tropopause

(Stratosphere I) 20–32 1 11 22,632.06 216.65 0.0

Stratosphere II 20–32 2 20 5474.89 216.65 +1.0
Stratosphere III 32–47 3 32 868.02 228.65 +2.8

Stratopause
(Mesosphere I) 47–51 4 47 110.91 270.65 0

Mesosphere II 51–71 5 51 66.94 270.65 −2.8
Mesosphere III 71–84.9 6 71 3.96 214.65 −2.0

— — 7 84.852 0.37 186.87 —
Note: ∗, Interval (Layer) Number; †, Base Geopotential Altitude Above Mean Sea Level (MSL); ‡, Base Static
Pressure; §, Base Temperature; ‖, Base Temperature Lapse Rate per Kilometer of Geopotential Altitude.

2.6. Residual-Based Approach

The Pareto-optimal nature in multi-objective optimization of cruise altitude makes the
simultaneous achievement of both minimum FC and TTC impossible [43]. A Pareto-optimal
set is a solution set where a trade-off between the target objectives should occur. Hence, the
solution satisfying minimum FC and TTC should either be obtained or determined through
other measures. Numerous approaches to solve such issues include the weighted sum
method [44], the ε-constraint method [45], the particle swarm method [10], and the genetic
algorithm hybrid [5]. The first two methods [44,45] have the advantage of having an easily
acquirable set of optimal solutions with a superposition of single-objective solution sets,
incorporating single-objective designs to obtain the desired range of optimal solutions.

The present study adopts the arguments in residual analysis to determine the optimal
solution of the multi-objective problem. A novel method, terminal residual analysis (TRA),
is proposed in this study for the selection of optimum cruise altitude achieving both the
minimum FC and TTC objectives. The residual ω was the difference between the reference
solution value y and the target solution value ŷ:

ω(s) = y(z)− ŷ(z), (49)

with the use of B-spline, a set of reference solution data K was defined as:

K = {ξ1, ξ2, . . . , ξn−1, ξn}, (50)

G = {χ1, χ2, . . . , χn−1, χn}, (51)
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where n is the number of points in the B-spline curve of the solution curve assuming
equivalent intervals in the reference curve and the subjected target solution curve. Here,
an acceptable error level (AEL) σ is introduced to find the maximum, potentially the
terminal value among the pool of residuals ω in Equation (49). The selection criterion for
this approach is given as:

max(ω(z)) <
σ

100
yn(z), (52)

where yn was the reference solution data at tE. Further, a modified approach also was
introduced with a marginally acceptable error level (m-σ) TRA to compensate the low
accuracy at the low σ value which will be discussed in Section 3.2. In the modified version,
the determined altitude value was extended with linear extrapolation from the last turning
point d2ν/dσ2 = 0 towards the value of σ = 0. Here, ν is the multi-objective cruise altitude
(MOCA) which details were explained at the end of this section.

In this study, the reference data model was set to be the minimum FC solution data,
where the minimum TTC solution data was considered as a deviation from the minimum
FC solution data. This not only is because of the cost of fuel, taking up about 15 to 20%
of total operating cost [1,46–49] but also as low CI is recommended for optimal flight
operation [50]. The equation for CI in this study is as follows:

CI =
Cost o f Time [$/s]
Cost o f Fuel [$/kg]

. (53)

CI is a dimensionless coefficient describing the relationship between the cost of time
(CoT) and the cost of fuel (CoF). The unobtainable extreme values of CI are CI = 0,
representing the minimum FC for the best range, and CI = max, representing the minimum
TTC with maximum speed. CoT and CoF were assumed to be equal in the corresponding
units and hence CI was calculated to represent the total cost ratio between FC and TTC
during the climb.

The residuals between the minimum FC and TTC were subjected to σ, originating
from the minimum FC curve. Such ensured the achievement of both the minimum FC and
TTC conditions at a specific cruise altitude within σ, which was initially selected to be 1%.
With the assumption that the determined cruise altitude falls within an error range of 1%.
The cruise altitude was named a multi-objective cruise altitude (MOCA), ν, and the error
range, 1%, was selected based on the statistical results from Ref. [9] that noted about 46.8%
of the sample data already had less than 1% optimization potential in fuel consumption.
The σ value of 1, therefore, was equal to additional fuel usage of 1%, of the fuel used for
minimum FC climb to reach the desired altitude.

3. Results

The results in the following sections were mostly linked to the result of Aircraft 1.
The results and discussion about Aircraft 2 were presented and discussed in Section 4.5.

3.1. Minimum FC and TTC

As mentioned in Section 2.6, the minimum FC and TTC solution paths were the
bounds of Pareto fronts where trade-off optimal solutions lie within. The minimum FC
results had almost equivalent values with the ones of minimum TTC that later diverged
to take individual trajectories (Figure 3). One could even intuitively find that a diverging
point of two solution trajectories occurred at around 10 to 12 km.
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(a) 

 
(b) 

 
(c) 

Figure 3. The minimum FC and TTC solutions at tE in an altitude interval of 1 km. The plots of (a), TTC against FC;
(b) altitude against FC; (c) altitude against TTC are illustrated.

3.2. Terminal Residual Analysis (TRA) and Modified TRA

The residual between B-splined minimum FC and TTC solution data at tE was plotted
with the criterion of σ = 1 from the minimum FC solution in Figure 4, as proposed in
Section 2.6. The altitude for Aircraft 1 was 10.43 km at max(ω(z)), at which the residual
value started to deviate dramatically from the σ range.

 

Figure 4. The plot of residuals between the minimum TTC and FC solution data which graphically
illustrated the concept of the selection criterion max(ω(z)) described in the Section 2.6. G, residual
between minimum FC and TTC solution; σ, acceptable error level (AEL); max(ω(z)), terminal residual.
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It was clear that the optimum cruise altitude would vary depending on the value of
σ, and the effect of the variation of σ was plotted in Figure 5a. Since ν fell dramatically
after a certain level of σ, an extrapolated line was drawn from a point at which the first
local maximum

(
d2ν/dσ2 = 0

)
counting from σ = 0 was located at σ = 1.4. The linearly

extrapolated segment was named a marginally acceptable error level (m-σ). The MOCA
value with original TRA approaching towards σ = 0 fell dramatically after σ = 1.4 but the
one with m-σ TRA gradually fell until σ = 0, adapting the trends in the previous solution
segments. The modified approach added a feasible tendency for the low-σ region.

 

(a) 

 

(b) 

Figure 5. The effect of different σ on the MOCA (a) and the corresponding MOCA for the minimum
TTC objective (b) of Aircraft 1. (a) The AEL and the m-σ TRA line segment were plotted against
the MOCA, and along the TRA line, respectively. The optimum cruise altitude to achieve absolute
specific ground range (SGR) from Ref. [9] was illustrated as a star (black). The m-σ TRA value and
the absolute maximum SGR value from the reference have an almost identical fuel-saving optimum
cruise altitude. (b) The altitude 10.91 was the predicted minimum FC cruise altitude with m-σ
TRA. The corresponding altitude along the minimum TTC trajectory is achieved with σ = 1.1. AEL,
acceptable error level, σ; MOCA, multi-objective cruise altitude; TRA, terminal residual analysis;
SGR, specific ground range.

The m-σ TRA at σ = 0 resulted in the minimum fuel, optimum cruise altitude of
10.91 km. This value was close to the optimum cruise altitude of 10.64 km from the Ref. [9]
for the absolute maximum specific ground range (SGR). The difference in the determined
MOCA of the present study to the Ref. [9] was 2.5%. When the optimum cruise altitude
MOCA of 10.91 km was considered, the corresponding σ value for Aircraft 1 was close
to 1.1 in Figure 5b. It meant that a transition in the flight mode from minimum FC to
minimum TTC was possible at about 11 km, with just additional fuel usage of 1.1%. The
details of this argument were further discussed in Section 4.3.

3.3. Optimized Climb Trajectory to Given Altitudes

The climb trajectories of minimum FC and TTC were analyzed by plotting the individ-
ual trajectory curves by imposing equally spaced altitude values (Figure 6). The properties
of altitude z, fuel consumption (FC), Mach number M, cost index (CI), flight path angle
γ, and angle of attack α were plotted. All results similar trends of diverging solutions
curves from one another at a certain near-intersecting point and the dramatic differences
between the trajectories after the bifurcation. One exception was M in Figure 6g, where
the final solution set was identical in both objectives. It may be because of fixed boundary
conditions for the final speed of the aircraft (V = 295 [m/s]) and the same target altitude.
The equation for M is M = V/d, where d is the speed of sound, which was constant at the
given elevations, hence making the calculated final M in both objectives equivalent.
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(b) 

 
(c) 

 
(d) 

 
(e)  

(f) 

 
(g) 

 
(h) 

Figure 6. Climb path trajectories of: altitude z, fuel consumption (FC), Mach Number M, cost index
(CI), flight path angle γ, angle of attack α in terms of time t, M, and z for Aircraft 1 at the altitudes of
interval of 2 km from 2 to 20 km. (a) Time against z; (b) time against FC; (c) time against M; (d) time
against CI; (e) time against γ; (f) time against α; (g) M against z; (h) z against FC.

3.4. Optimized Trajectory to MOCA

As shown in Figure 7, the altitude-specific, optimized trajectories at the minimum FC
and TTC demonstrated similar patterns of overlapping line segments during the initial
stage of the climb. Hence, the MOCA specific, minimum FC climb paths were plotted in
Figure 7, where MOCA was approximated to be 11 km (which was 10.91 km). Similar to
Figure 7, the properties of altitude z, fuel consumption (FC), Mach number M, cost index
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(CI), flight path angle γ, and angle of attack α were plotted. Specifically, z continuously
increased until it reached the desired MOCA (Figure 7a), and FC showed an identical trend
in Figure 7b,h. M increased steeply until a value of 0.9 in Figure 7c, which then increased
to 1.0 at the end of the trajectory. Figure 7g had a similarity with Figure 7c for having M in
relation. γ and α varied continuously over the course of the trajectory in Figure 7e,f. CI in
Figure 7d also changed over time.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 7. Climb path trajectories of: altitude z, fuel consumption (FC), Mach Number M, cost index
(CI), flight path angle γ, angle of attack α in terms of time t, M, and z for Aircraft 1 at the multi-
objective cruise altitude (MOCA) of 11 km. (a) Time against z; (b) time against FC; (c) time against M;
(d) time against CI; (e) time against γ; (f) time against α; (g) M against z; (h) z against FC.
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4. Discussion

4.1. Effectiveness of Terminal Residual Analysis (TRA) and Modified TRA

The minimum FC and TTC trajectory solutions were generated, and the values at tE
were plotted to show the gradual increase in minimum FC and TTC to the given altitude
(Figure 3a). The trends in the ascension were similar in both trajectories but diverged
from a certain altitude (Figures 3 and 6). Using the novel residual method proposed
in this study, TRA, an acceptable error level σ was selected to be 1, which acted like a
terminal residual criterion (Figure 4). In this specific application on the determination
of the multi-objective cruise altitude, the residuals abruptly increase from max(ω(z)),
which gave TRA-determined altitude, MOCA, satisfying the given multi-objectives. TRA
initially failed to provide feasible solutions at lower σ values, and a modified m-σ TRA was
proposed, which linearly extrapolated the optimized solution curve towards σ = 0. It took
account of only the points before the first local maximum of d2ν/dσ2 near the turning point,
where ν represents the MOCA. Substituting the fuel-saving cruise altitude value obtained
from m-σ TRA to the original TRA argument yielded the desired MOCA values denoting
the required additional fuel usage from the minimum FC cruise altitude to achieve the
minimum FC and TTC cruise altitude.

The extrapolated value from m-σ TRA was 10.91 km at σ = 0, and this value was
almost equivalent to the cruise altitude of 10.64 km for absolute maximum specific ground
range (SGR) from Ref. [9]. The authors believe that this was a very close estimation
with computational simulation as the value from Ref. [9] was based on the accumulated,
regressed statistical result of more than 200,000 actual flight data. Hence, TRA had proven
its value in finding the optimum aircraft cruise altitude achieving minimum FC, which
then could be implemented to acquire the minimum FC and TTC MOCA value with the
supplemental method, m-σ TRA.

The continuous climb path in the present results was similar to the fuel consumption
model in Ref. [21]. Ref. [21] adopted a CCO model to optimize fuel consumption during
the climb, which introduced external influences such as crosswind. The accuracy was 96%,
and the maximum amount of fuel saved was 12%. The current study also had a continuous
climb path with reliable atmospheric model and aircraft aerodynamic data showing a
difference of 2.5% in the altitude solution. While the model in Ref. [21] considered various
external factors such as crosswind, our study did not employ any external factors in the
calculation. Hence, the present study is significant in two aspects: first, the proposed
novel methods, TRA and m-σ TRA, were robust even without the consideration of external
factors such as crosswind, and second, such external factors were not significant in the
determination of the optimized performance of long-range flight. The latter, especially,
would be valid as Ref. [9] already suggested that 46.8% of 200,000 flight data already had
less than 1% benefit from the optimization.

Additionally, the MOCA value within σ = 2.0 in the m-σ TRA line, fell below 12 km
(Figure 5a), leading to the MOCA range of 10.91 km to 11.97 km. The optimum cruise altitudes
determined in the statistical results of Refs. [9,51] were 10.64, 11.19, 11.67, and 11.46 km, which
implies that the altitude range calculated in the present study was appropriate.

4.2. Difference in TRA and Modified TRA

A newly proposed method, TRA, was modified into m-σ TRA as the original TRA
with σ below a certain level changed abruptly. Such abrupt change indicated that σ was
critical in determining the multi-objective goal in this study. The residual value below the
MOCA of 11.5 km was nearly constant, making a low σ criterion below 1.4% ineffective.
The linearly extrapolated value of minimum FC at σ = 0 was validated with Ref. [9],
as discussed in Section 4.1. Hence m-σ could also be an alternative approach for such cases
of significantly low σ.
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4.3. Optimum Altitude MOCA with Minimum FC and TTC

The altitude determined with the m-σ TRA method at σ = 0 was the MOCA only with
minimum FC objective. As described in Section 3.2, this approach incorporated with the TRA
could be utilized to determine the MOCA. MOCA satisfied both the minimum FC and TTC at
any altitude with the additional fuel usage denoted as σ. The initial selection of σ = 1 was to
find the cruise altitude showing the potential fuel reduction within 1%, which eventually was
determined to be 10.43 km, and its difference to the altitude 11.68 km, selected on m-σ TRA,
seemed relatively large concerning only a difference of 0.4 in the value of σ. Interestingly, the
difference in altitudes became minimum with increasing σ (Figure 5). This result emphasized
the difficulties in achieving both objectives simultaneously for an optimal altitude, which
varies even with the slightest changes in σ.

Another interesting point here is that the minimum FC altitude, 10.91 km, was about
0.8 km lower than the MOCA at σ = 1.4 (11.68 km). As mentioned in Section 1, a climb
to a higher altitude takes advantage of lower air density for reduced aerodynamic drag
but consequently consumes extra fuel for ascension. Hence, cruising at the MOCA at
σ = 1.4 may enjoy the minimum FC travel with considerably reduced travel time (TT)
due to reduced aerodynamic drag, but the same at the MOCA at the adjusted σ = 1.1 may
enjoy the fuel-economy even with higher aerodynamic drag than the former. In detail, the
MOCA with the minimum FC and TTC could be achieved at an altitude of 10.91 km with
an additional fuel usage of 1.1% of the fuel used for minimum fuel climb to an altitude of
10.91 km. It implies the potential for flight mode transition between the single-objective,
minimum FC, and the multi-objective, minimum FC and TTC. With this argument, an air-
craft cruising at an altitude of 10.91 km could switch the flight mode from the minimum
FC to the minimum FC and TTC with the extra fuel usage of 1.1%. Likewise, minimum
FC and TTC cruise mode could be achieved at an altitude of 11.68 km with the additional
fuel usage within 1.4% of the minimum FC cruise mode. The MOCA results of different s
values provided quantitative explanations for the theory and the transition criterion for
the flight mode between single-objective, the minimum FC, and the multi-objective, the
minimum FC and TTC. Additionally, it also demonstrated that the fuel-economy may not
always be achieved just by cruising at higher altitudes.

4.4. Individual Trajectory and Variable Cost Index (CI)

The trajectory solution at the determined MOCA of 10.91 km shows the trajectory
of a supersonic jet (Figure 7). These graphs clearly show the relationships between the
variables and parameters in this study, as described in Section 3.4. In the initial segment
of the climb path, the aircraft accelerated by increasing T, which increased both V and M
(Figure 7c). Throughout the whole trajectory, a fluctuated to make stable transitions in g, which
resulted in a continuous and smooth climb path of the aircraft in terms of z (Figure 7a), FC
(Figure 7b,h), M (Figure 7c), and CI (Figure 7d).

Interestingly, CI in (Figure 7d) varied over time. As mentioned in Section 1, numerous
literatures targeting for multi-objective optimization of TOC usually employ a model with
constant CI throughout a flight trajectory [4,6,8]. It may be due to the difficulties involved
in the estimation of actual CI or an attempt to reduce the number of variables to solve in
complex total cost equation such as:

CTOT =
∫ Tf light

0
f br(t) dt + 60·CI·Tf light, (54)

where CTOT is the total cost, CI is the cost index as defined in this study, Tf light is the cruise
segment flight time, and f br(t) is the time-dependent aircraft fuel-burn rate function. This
equation was re-written from Equation (6) of Ref. [52] by Dancila, B. D., et al. [8]. Given
the number of variables involved, a range of constant CI values definitely would have
made the problems more manageable. On the contrary, CI was not consistent throughout
a flight path in this study (Figure 7d). Considering the realistic aspect of an actual flight
path, the variation in CI during a flight is a more convincing phenomenon. This variation
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implies that the present approach was able to describe more pragmatic phenomena in
aircraft motion.

4.5. Limitations

The first limitation is the use of aerodynamic data of a supersonic aircraft from Ref. [12]
to find a multi-objective optimum cruise altitude. The selection of the optimum cruise
altitude is a necessity in the economic management of airliners, and in most cases, the
aircraft is subsonic. The use of a supersonic aircraft model may not be suitable to determine
general cruise altitude, but as seen in Figure 7d, M remains subsonic before reaching the
cruise altitude. Such probably may have made the MOCA result in the present study
similar to the statistically optimum cruise altitude of commercial airplanes. There also was
lack of available data for subsonic aircraft in terms of thrust, Mach number and altitude.
Such data was necessary for climb trajectory optimization. With the inadequacy in the
available data, the authors tried to maintain the feasibility of the approach and obtained
confident results for cruise altitude determination of a long-range flight. Overall, a more
refined study could be conducted using the aerodynamic data of a subsonic aircraft.

The second limitation may be the applicability of the present methodology to deter-
mine the optimum cruise altitude for all-range flight. As mentioned in Section 1, Aircraft 1
and 2 are different in their specifications, especially in their initial weight and maximum
thrust. This difference made the authors speculate Aircraft 1 to be the heavy, long-range
plane for the former and lightweight, short-range plane for the latter. The results in Figure 8
clearly shows the difference where the present approach failed to achieve reasonable cruise
altitude but only showed the potential to indicate the costs for the transition between two
objectives. The present methodology may only apply to the cruise altitude determination
of long-range flight, but since such flights require cruise altitude optimization the most [9],
our approach could be a feasible solution for a cost-minimizing strategy.

 
(a) 

 
(b) 

Figure 8. The effect of different σ on the MOCA (a) and the corresponding MOCA for the minimum
TTC objective (b) of Aircraft 2. (a) The AEL and the m-σ TRA line segment were plotted against the
MOCA, and along the TRA line, respectively. The AEL, σ, is plotted against multi-objective cruise
altitude (MOCA) ν, and linearly extrapolated m-σ TRA is also drawn along the terminal residual
analysis (TRA) line. (b) The altitude 10.91 km was the predicted minimum FC cruise altitude with
m-σ TRA of Aircraft 1, and the corresponding altitude along the minimum TTC trajectory in Aircraft
2 is achieved with σ < 6.0. AEL, acceptable error level, σ; MOCA, multi-objective cruise altitude;
TRA, terminal residual analysis.

This study proposed TRA and a modified TRA (m-σ TRA) to determine an optimum
cruise altitude satisfying minimum FC and TTC. Despite the promising results for long-
range flight, further investigation would be necessary whether this approach is also suitable
in other multi-objective optimization problems. The multi-objective optimization of aircraft
trajectory problems may be the only problem solvable using the methods proposed in this
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study. Hence, this approach may need further validation in various optimization problems
in future studies.

5. Conclusions

Multi-objective determination of cruise altitude of a supersonic aircraft was conducted
using the Hermite-Simpson method. Individual optimum climb trajectories were generated
in the discretized problem domain. A novel approach, TRA, was proposed with modified
TRA, m-σ TRA, to select the optimum cruise altitude with the minimum FC and TTC,
where σ also worked as a criterion to represent the magnitude of the transition between the
single- or multi-objective flight mode. As a result, a multi-objective cruise altitude (MOCA)
was determined to be 10.91 km for aircraft 1, which was validated with the statistical
results of subsonic, commercial airliner data. The method presented in this study was
found reliable in the multi-objective problem to determine the optimum cruise altitude of a
long-range flight, achieving both minimum FC and TTC. Although various assumptions
were used, this approach confirmed the complex multi-objective solution in aircraft cruise
altitude problems in an environment formulated as realistic as possible. Further studies
would be needed to verify this technique in other applications to validate its utility in other
fields requiring multi-objective optimum solutions.
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FC Fuel consumption
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OCP Optimal control problem
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Abstract: Water desalination presents a need to address the growing water-energy nexus. In this
work, a literature survey is carried out, along an application of a mathematical model is presented
to enhance the freshwater productivity rate of a solar-assisted humidification-dehumidification
(HDH) type of desalination system. The prime novelty of this work is to recover the waste heat by
reusing the feedwater at the exit of the condenser in the brackish water storage tank and to carry
out the analysis of its effectiveness in terms of the system’s yearly thermoeconomics. The developed
mathematical model for each of the components of the plant is solved through an iterative procedure.
In a parametric study, the influence of mass flow rates (MFRs) of inlet air, saline water, feedwater,
and air temperature on the freshwater productivity is shown with and without the waste heat
recovery from the condensing coil. It is reported that the production rate of water is increased to a
maximum of 15% by recovering the waste heat. Furthermore, yearly analysis has shown that the
production rate of water is increased to a maximum of 16% for June in the location of Taxila, Pakistan.
An analysis is also carried out on the economics of the proposed modification, which shows that the
cost per litre of the desalinated water is reduced by ~13%. It is concluded that the water productivity
of an HDH solar desalination plant can be significantly increased by recovering the waste heat from
the condensing coil.

Keywords: desalination; humidification-dehumidification; waste heat recovery; mathematical model;
yearly analysis; thermo-economics

1. Introduction

Water covers almost 71% of the total Earth’s surface [1]. Sea contains 97% of the
total water of the Earth [2] and the remaining 3% is stored in the form of rivers, glaciers,
underground water storage, and lakes, etc. The freshwater is not evenly distributed in the
world, as some geography near the equator has less availability of freshwater. The seawater
contains a large number of salts. Therefore, it is not feasible to be used for household,
agricultural, or commercial purposes [3]. Considering this aspect, desalination is an
important need of the human being. In this regard, Manju et al. [4] provided an extensive
review of the need for a desalination system to overcome future freshwater demand for
India. Among many desalination processes [5], some can be energy inefficient, costly,
and/or can have environmental impacts (CO2 emissions and other dangerous byproducts
as referenced by [6]) depending on the design parameters [7].

The use of solar radiation is undergoing intensive research for the desalination pro-
cess [5] since solar energy is a low-grade heat source considering the exergetic useful-
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ness [8]. In this aspect, Reif et al. [9] focused on the desalination system powered by solar
energy and reviewed its potential and challenges. Considering the need of the modern
world, Giwa et al. [10] proposed recent advances in the solar-assisted humidification-
dehumidification (HDH) type desalination system in terms of improved design and pro-
ductivity. Afterwards, Kabeel et al. [11] and Hamed et al. [12] developed an experimental
setup for the solar power HDH type of desalination system. Kabeel et al. [11] concluded
that the condenser with a cylindrical shell and corrugated fins led to an increase in the
rate of heat transfer, the cellulose of 5 mm gives higher productivity as compared to the
usage of cellulose of 7 mm under both natural and forced flow circulation. Whereas,
Hamed et al. [12] concluded that average productivity of the desalination unit is 22 litres
per day with an estimated cost of 0.0578 USD per litre, the best operating time during the
day is between 1 and 5 pm, and the productivity of the unit increases as the temperature
of the water which is entering the humidifier is increased. Balaji et al. [13] carried out the
numerical analysis of HDH desalination system by developing code in ‘C’ language to
study the performance for various operating conditions. Their results have indicated that
increasing the mass flow rate of air increases the gain-output-ratio and they reported that
the economic feasibility of the system is in the lower range because no external sources
were used.

Zhani et al. [14] also developed a prototype of a solar-assisted HDH desalination
system and tested it for the weather conditions of Tunisia during the summer season
(June, July, and August). They concluded that their proposed system is quite efficient tech-
nically, however it lacks in economic efficiency. Owing to the requirement of a large surface
area for solar energy collection, Elminshawy et al. [15] proposed to run the desalination
system using two energy sources i.e., solar as well as a low-grade heat source. Elminshawy
et al. [15] also developed an analytical model and the results were compared with the
experimental results. It was concluded that the cost of the water is 0.014 USD per litre,
and this corresponds to a fuel-saving equivalent to 1844 kg per hour.

Narayan et al. [16] evaluated the potential of a solar-driven humidification- dehumidi-
fication desalination plant for small-scale decentralized water production, presented [17]
the thermodynamic analysis of desalination cycles, introduced [18] an experimental inves-
tigation on the thermal design of humidification dehumidification desalination system,
and also presented [19] a thermodynamic balancing of HDH desalination by mass extrac-
tion and injection. The authors, in their reference work [17], concluded that the air-heated
cycles reported in the literature are insufficient, a dehumidifier is more vital than the hu-
midifier to the performance of a conventional water-heated cycle, and the varied pressure
systems can have a better performance than a single pressure system. The authors, in their
reference work [18], summarized that, for a water-heated closed-air-open-water humidi-
fication, a dehumidification system without any mass extraction represents a maximum
gained-output-ratio. Similarly, the authors in their reference work [19] concluded that the
uncertainty of the final results with the approximation of the air being saturated to all the
points in the humidification and dehumidification process seems to be reasonably small
based on the boundary layer data from Thiel and Lienhard [20].

Summers et al. [21] presented a comparison of the energy efficiency of a single-stage
membrane distillation desalination cycles in various configurations and reported that
the rate-limiting processes and their impact on gained-output-ratio can be determined
from the development model, and a single-stage vacuum membrane distillation is inher-
ently limited by the low temperature of condensation which results from the reduction
in pressure. McGovern [22] presented the performance limits of zero and single extrac-
tion humidification-dehumidification desalination systems and reported that the usage
of an ideal gas model for water vapour and the air is highly accurate to model HDH
systems, the influence of salinity at 35,000 parts per million is to reduce the change in moist
air humidity ratio and enthalpy by approximating 1% and 3%, respectively, for a feed
temperature of 25 ◦C and a top air temperature of 70 ◦C.
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Mistry et al. [23] carried out an entropy generation analysis of desalination technolo-
gies, including multiple effect distillation, HDH, reverse osmosis, mechanical vapour
compression, membrane distillation, and multistage flash, and also presented [24] the
effect of entropy generation rate on the performance indicators, i.e., gained output ratio,
of HDH desalination cycles. In summary, the authors in reference work [24] has reported
that for any given cycle, there is a specific mass flow rate ratio that simultaneously mini-
mizes the entropy generation rate and maximizes the gained-output-ratio; in other words,
it corresponds that the minimization of specific irreversibility leads to peak performance.

Sharqaw et al. [25] presented the exergy calculations of seawater with applications in
desalination systems and reported that the ideal mixture models give flow exergy values
that are far from the actual ones and the exergetic efficiency can differ by 80% for some
cases, and in another article, Sharqaw et al. [26] also presented the optimum thermal design
of such desalination systems and reported that the optimum mass flow rate ratio is always
greater than unity, as increasing the effectiveness of the humidifier and dehumidifier
increases the recovery ratio almost linearly, and the higher maximum temperature can
yield a higher gained-output-ratio.

Some authors like Khalifa et al. [27] carried out experimental and theoretical research
on water desalination using a direct contact membrane distillation. The authors developed
an analytical model based on heat and mass transfer equations and utilized it to predict
the temperature difference across the membrane surfaces and then calculating the vapour
pressure difference leading to the permeate flux. It was noted that the productivity of the
system is very promising since a permeate flux of 100 kg/m2·h was achieved at 90 ◦C for
hot feed side and 5 ◦C for cold side steam.

Several researchers also carried out investigations to integrate the desalination unit
with thermal energy storage. In this case, Summers et al. [28] proposed the design and op-
timization of an air heating solar collector with phase changing material integrated with
an HDH desalination plant. A two-dimensional transient finite element method was de-
veloped, and it was reported that a layer of phase-changing material of 8 cm below the
absorber plate is sufficient to produce a consistent output temperature yielding a thermal
efficiency of 35%. Moreover, the phase changing material can produce consistent air outlet
temperature throughout the day or night.

Several other researchers integrated the desalination unit with other types of energy
systems. In a work of Sulaiman et al. [29], the authors integrated the desalination plant
with a parabolic trough solar air collector and evaluated two configurations of open-water
open-air desalination units with collector installed before the humidifier or between the
humidifier and dehumidifier. It was reported that the second configuration with the
collector between the humidifier and the dehumidifier has much more advantages than the
other configuration. Whereas the gained-output-ratio of the first and second configuration
were 1.5 and 4.7, respectively. In a work of Lawal et al. [30], the authors integrated the HDH
desalination system with a heat pump and concluded that the maximum gain-output-ratio
of 8.88 and 7.63 is obtained at 80% components effectiveness using a mass flow rate ratio of
0.63 and 1.3 for modified air heated and water heated cycle, respectively.

Gabrielli and Mazzotti [31] presented a solar-driven HDH process for water desalina-
tion analyzed and optimized via an equilibrium theory and concluded it as an immediate
tool for easily determining the optimal system operation. Gabra et al. [32] presented the
mathematical models for the components constructed using CARNOT toolbox in a MAT-
LAB environment and the results have shown that FOPID (fractional-proportional–integral–
derivative) controlled offers a superior dynamic and static performance and reported that
it can be automatically adjusted to compensate the weather changes.

As noted, significant research has been conducted on solar-assisted HDH desalination
systems focusing on various design improvements with an objective to enhance the ther-
moeconomics of the system. One of the works in the performance and cost-effectiveness
of a solar-driven humidification-dehumidification desalination system is presented by
Zubair et al. [33] in which the capital cost. including supply well, equipment costs,
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and building costs, were considered. A multi-location (six locations in Saudi Arabia)
analysis has concluded that the highest annual output is noted for Sharurah and lowest
for Dhahran. Similarly, Jamil et al. [34] also reported the thermoeconomics of desalination
system and concluded that the levelized cost of water production can be variable for
various type of desalination system, for example, the production cost of reverse osmo-
sis, mechanical vapour compression, multi-effect evaporation/desalination, multistage
flash, and thermal vapour compression are 0.9 ± 0.3$/m3, 1.0 ± 0.5$/m3, 1.5 ± 0.5$/m3,
2.0± 0.5$/m3, and 2.7± 0.8$/m3, respectively. Likewise, Jamil et al. [34] presented that the
hybrid desalination plants like energy recovery devices along with the reverse osmosis can
have the lowest water production cost at 0.7 ± 0.2$/m3, leading us to the conclusion that
further system improvement is needed to cope with the uncertain water security situation
in the future.

One of the improvement can be related with the internal heat recovery mechanisms
within the same desalination system and Xu et al. [35] has emphasized that the ongoing
research on HDH desalination system has demonstrated that the internal heat recovery is
a significant and potential method for improving the system performance and reducing
the freshwater cost. Strictly speaking, conventionally, the HDH systems are driven by a
low-grade heat source in the form of a waste heat recovery from another energy system.
However, in this work, the authors are emphasizing the waste heat recovery option within
the processing circuit of the desalination plant. Although, in literature, some research is
available on different types of waste heat recovery procedures either with integration with
another external energy resource or from an internal resource. However, this area needs
more research to fully understand the potential and benefits of internal waste heat recovery.

Therefore, in this work, an opportunity of waste heat recovery is identified in HDH
desalination and the system behaviour is reported with and without this waste heat
recovery. The waste heat is recovered from the condenser coil by supplying it back to
the hot water tank. Although, a variety of research is available on different strategies
and methodologies of waste heat recovery within the system and/or integration with other
energy systems; nevertheless, no research is focused on the practical thermoeconomic
benefits of the HDH desalination plant with waste heat recovery from the condenser
coil. The summary of various waste heat recovery in desalination plants is reported in
Table 1 along with the identified gaps with the literature, thus highlighting the novelty
of the work. Additionally, the waste heat recovery from the system would influence the
system performance. However, it would also be a subject to the local conditions, either in
terms of climate to influence the thermal indicators or in terms of economic conditions
to influence the levelized cost of water production. Therefore, it is very important to
realize the analysis of the desalination plant considering the local climatic and economic
conditions. This aspect is still missing in the literature and needs more research. Another
pivot point of the analysis is that a single-day demonstration of the waste heat recovery in
the desalination plant might not be enough (see Table 1 as most of the analysis is based
on a selected duration), because the solar integration makes the performance transient.
Therefore, a yearly analysis demonstrating the pros and cons of the internal waste heat
recovery has quite a significance. Therefore, in conclusion from this discussion, and based
on the identified literature gaps, there is still a need to strengthen the research area of the
yearly demonstration of waste heat recovery considering the local climatic and economic
conditions to fully understand the gain of the system. A checklist is included in Figure 1,
highlighting various literature gaps in the literature along with the novelty of the work.
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Figure 1. Checklist of various identified literature gaps which are addressed in this work contributing
towards its novelty.

In this work, using a mathematical model and simulations for actual solar irradiance,
assessment of improvements in the productivity of the proposed system is presented.
The improvement in the HDH system is proposed in terms of recovering waste energy from
the feed water at the exit of the dehumidification part of the system. Usually, water leaving
the condenser has relatively higher enthalpy. The prime novelty of this work is to present
a yearly thermoeconomic analysis of the solar-assisted humidification dehumidification
desalination plant by recovering the energy from the wasted feed water enthalpy while
considering the local conditions.

Here, the proposed solar-assisted HDH desalination system utilizes the feed water
at the exit of the condenser/dehumidification coil by reusing it in the brackish water
storage tank. This allows the waste heat recovery (WHR) for the HDH desalination system
and lessens the requirement of secondary energy sources. The governing mathematical
model for the flat-plate solar collector, humidification chamber, and dehumidification
chamber is solved through an iterative procedure [36]. The mass and energy balance on the
brackish water storage is also solved including waste heat recovery from the condensing
coil. A parametric study in which the influence of mass flow rate (MFR) of inlet air,
saline water, feedwater, and temperature of the air on the freshwater productivity with
and without waste heat recovery is conducted. Moreover, a yearly assessment of the
proposed HDH system is also carried out to study the impact of waste energy recovery.
In this regard, the data of the Taxila city (Pakistan) are used for solar irradiance over the
complete year. A comparison of solar-assisted HDH desalination system with and without
waste heat recovery is presented for the complete year; thereby indicating the impact of
energy recovery. An economic analysis is also presented to reflect the advantages of waste
heat recovery in terms of the cost of the desalinated water.
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2. System Description

A schematic diagram of the desalination system working on humidification and dehu-
midification along with waste heat recovery from the condenser/dehumidification section
is presented in Figure 2. Saline water is pumped into the solar collector (state 2) from
brackish water storage (state 1). Water is heated in the solar collector and re-enters the
heated brackish water storage at state 3.
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Figure 2. Desalination system scheme with waste heat recovery process (the description of the state numbers 1–12 is
discussed in Section 2).
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Afterwards, the salty water is pumped to the humidification section from state 4 to
5 where it comes in direct contact with the ambient air entering at state 7. Depending on
the climatic conditions, ambient air blown through the humidification chamber at state 7
where it absorbs moisture from the falling film of water. The saturated moist air leaves
the humidification section at state 8, whereas the remaining salty water is re-circulated to
the brackish water storage. The corresponding psychometric description of this process is
presented in Figure 2a1 in which the air leaves at the saturation conditions [49].

The moist air at state 8 enters the dehumidification section where feed/cooling water
is circulated at a relatively high flow rate to facilitate dehumidification. As a result,
fresh condensed water is collected in a tank at state 12, and the air leaves the system to the
environment. The corresponding dehumidification process is described on a psychometric
chart as in Figure 2a2 [49].

The feed water at exit 11 of the dehumidification section has relatively high enthalpy
because it receives heat from the humid air. In this work, the heat from this feed water is
recovered by supplying it back to the brackish water storage tank.

There can be many practical ways to collect the condensed water from the dehumidifi-
cation section. For instance, in other configurations of thermal desalination, Patel et al. [52]
and Nayi et al. [53] have shown that an outlet pipe supported with a trough placed inside
assembly of a solar still can be used and finally the condensed water can be collected in
a beaker outside. In a theoretical and experimental study of seawater desalination based
on humidification-dehumidification technique, Mohamed et al. [54] have demonstrated
that the freshwater can be collected at the bottom of the condensation coil for a vertical
section. In another work, Rajaseenivasan et al. [55] presented an experimentally verified
HDH system with a dual-purpose collector and employed a horizontal flow shell-and-tube
heat exchanger with the condensed water collected at the bottom from the end of the
dehumidifier. Another configuration is demonstrated by Xu et al. [56] in which a novel
enhanced HDH method with weakly compressed air and internal heat recovery based on
traditional mechanical vapour compression is developed in which the moist air is used as
a working fluid instead of a vapour. In this experimentally developed configuration [57],
the freshwater is extracted from the evaporator-condenser assembly having airflow in the
horizontal direction.

3. Mathematical Model

The thermal performance of the solar-assisted desalination plant is evaluated by
developing a mathematical [58] expression of the components involved such as solar
collector, brackish water storage, humidifier [59], and dehumidifier.

3.1. Flat Plate Solar Collector

Ioan Sarbu and Calin Sebarchievici [60] have reported that the flat-plate collectors
are the heart of any solar energy collection system designed for operation in the low-
temperature range (less than 60 ◦C) [60] or the medium temperature range (less than
100 ◦C) [60]. It is used to absorbed solar energy, convert it into heat, and then to transfer
that heat to a stream of liquid (as in this case). They use both direct and diffuse solar
radiations [60], do not require tracking of the sun [60], and require little maintenance [60].
They are mechanically simpler than concentrating collectors [60]. The major applications
of these units are in solar water heating, building heating, air conditioning, and industrial
process heating [60]. For quasi-steady-state conditions [61] at a given solar time, along with
other standard assumptions [62–64], the following energy balance equation can be written

Qs
u = As

c

[
Ss −Us

L

(
Ts

p − Tamb

)]
= As

cFs
R[S

s −Us
L(T

s
2 − Tamb)] = ms

w,1cp,w(Ts
3 − Ts

2) (1)
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[
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The temperature of the absorber plate is calculated through an iterative method by
the solution of Equations (1)–(5) coupled with:

Ts
p = Ts

2 +
Qs

u/As
c

Fs
RUs

L
(1− Fs

R) (6)

The total absorbed solar radiation (S) is evaluated by considering the beam and dif-
fused components of incident solar radiation along with the incorporation of optical losses
(i.e., transmittance-absorptance product).

Ss = Is
b(τα)s

b + Is
d(τα)s

d (7)

The transmittance-absorptance product is calculated separately for beam and diffused
radiation.

(τα)s
b,d =

τs
b,dαs

p

1−
(

1− αs
p

)
 s

(8)

Fresnel’s expressions [61] are derived for the reflection of unpolarized radiation
passing from medium 1 to medium 2 with different refractive indexes given the angle
of incidence and refraction for the parallel and perpendicular components of the beam
and diffused radiation. This procedure gives two Fresnel’s expressions of the beam and dif-
fused radiation with averaged parallel and the perpendicular component of each one,
and finally, it is used to calculate the transmissivity of solar radiation from the glass cover
to the absorber plate.

Along with that, the incident angle for direct radiation is the angle of incidence,
given by:

cos θs
b = sinδs sin φs + cos δs cos φs cos ωs (9)

Afterwards, Snell’s law [61] is utilized to obtain the refractive angles from the glazing.
By taking into account the top heat loss coefficient only, the overall heat loss coefficient

Us
top is computed as follows.

Us
top =

[
1

hs
c,g−a + hs

r,g−a
+

1
hs

c,p−g + hs
r,p−g

]−1

(10)

The bottom and side heat loss coefficients are considered negligible. Practically,
it can be made possible through the usage of insulation materials which can be glass
mineral roll [65], rice husk and sunflower stalks [66], petiole piece, fibres and gypsum [67],
and mineral wool [68]. The convective heat transfer coefficient is calculated using [61,69]:

hs
a = 5.7 + 3.8vs

a (11)

The method proposed in [70] is used to compute the Nusselt number between the
absorber plate and the glass cover.
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The radiative heat transfer coefficient is given by:

hs
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1/εs
p
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1/εs
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(13)

3.2. Water Storage Tank

In this research study, the feed water of the dehumidifier is being re-used in the
brackish water storage, therefore, a mass and energy balance is of key importance. A mass
and energy balance applied on the storage tank yields:

m3 + m6 + m11 −m1 −m4 = 0 (14)

m3h3 + m6h6 + m11h11 −m1h1 −m4h4 = 0 (15)

3.3. Humidifier

The humidification section consists of a falling film of water with accompanying
airflow. It is assumed that the process is quasi-steady with negligible heat loss. The falling
film is an assumed laminar with a smooth liquid-gas interface. Figure 3 shows a typical
element in the humidifier section with accompanying zones. The mean velocity of a falling
film is calculated using the following equation [71]:

uh
w =

ρwgδ2
w

3μw
(16)

 
Figure 3. Schematic diagram of control volume analysis of the humidification section.

With the thickness of the falling film, given by [72]:

 

(17)
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The energy balance equation is [72,73]:

uh
w

∂Th
w

∂z
= αw

∂2Th
w

∂y2
2

(18)

The solution of Equation (18) requires the following boundary condition [73]:

αw
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∣∣∣∣
y=0

= −αs
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y2=0

+
λWj
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Eams [74] predicted the water evaporation rate as shown in Equation (20).

Wj = ε ∗ (Ps − Pv)
√

M/2πRTn (20)

Knudson constant of evaporation [75] ε∗ is written in terms of the coefficient of
evaporation:

ε∗ = 2ε

2− ε
(21)

whereas the coefficient of evaporation is calculated using [74]:

ε = h ∗
√

2πRTs

M
Ts

ρvλ2 (22)

Considering the evaporation affecting the heat transfer coefficient h∗, the concept of
wet bulb coefficient of heat transfer as proposed by MacLaine-Cross and Banks [76] can be
used to correct the heat transfer coefficient. It can be written as:

h∗ = h
[

1 +
eλ

Cpa

]
(23)

where e is derived from the wet-bulb coefficient, given by [76]:

e =
ωmax −ωmin

Tmax − Tmin
(24)

3.4. Dehumidifier/Condenser Section

The efficacy of the condenser, modelled as a counter-flow concentric heat exchanger,
is computed using NTU (Number of Transfer Units) method [77–79] which is used to
calculate the rate of heat transfer in heat exchangers when there is an insufficient data to
evaluate the Log-Mean-Temperature-Difference [77–79].

Therefore, in NTU method, the effectiveness of the heat exchanger is calculated which
can be converted into the actual heat transfer of the heat exchanger. It also involves the
calculation of minimum heat capacity (Cmin) and maximum heat capacity (Cmax) which can
be either heat capacity of the cold fluid or the hot fluid depending on whichever can be
minimum or maximum. The evaluation of U is carried out using the thermal resistance
diagram by computing the convective heat transfer coefficient of the humidifier and feed
water. Once the actual heat transfer is calculated, it can be used to evaluate the outlet
temperatures of both steam and finally, the mass balance can give the quantity of the
condensed fresh water. This methodological framework is presented in a stepwise format
as in Figure 4.
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Figure 4. The methodological framework for the analysis of the dehumidifier.

3.5. Auxilary Equations

The auxiliary equations aids in the extraction of the temperature-dependent thermo-
physical properties of different fluids. These are mostly empirical equations and their usage
in this work was practised with precaution in which the limit of each model is verified
with the database of Engineering Equation Solver [80] before the final implementation.

The thermal conductivity of the dry air is given by [81]:

ka = −4.937787× 10−4 + 1.018087× 10−4Ta − 4.627937× 10−8T2
a + 1.250603× 10−11T3

a (25)

The thermal conductivity of the water vapour is given by [81]:

kv = 1.3− 46× 10−2− 3.756191× 10−5Ta + 2.217964× 10−7T2
a + 1.111562× 10−14T3

a (26)

The thermal conductivity of the humid air is given by [81]:

khumid−air =

(
1

1+1.608ω

)
Ka M1/3

a +
(

ω
ω+0.622

)
Kv M1/3

v(
1

1+1.608ω

)
M1/3

a +
(

ω
ω+0.622

)
M1/3

v

(27)

The latent heat of vaporization is given by [82]:

iv = 3483181.4− 5862.7703T + 12.139568T2 − 0.0140290431T3 (28)
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The specific heat of dry air is given by [81]:

ca = 1045.356a + 0.0007083814T2
a − 2.705209× 10−7T3

a − 0.3161783T (29)

The specific heat of water vapour is given by [81]:

cv = 1360.5 + 2.31334Ta − 2.46× 10−10T5
a + 5.9× 10−13T6

a (30)

Finally, the specific heat of humid air is calculated using [81]:

chumid−air = ca + ωcv (31)

The dynamic viscosity of dry air in terms of the temperature is given by [81]:

μa = 2.287973× 10−6 + 6.259793× 10−8Ta − 3.131956× 10−11T2
a + 8.15038× 10−15T3

a (32)

The dynamic viscosity of water vapour is given by [81]:

μv = 2.562435× 10−6 + 1.816683× 10−8Ta − 2.579066× 10−11T2
a − 1.067299× 10−14T3

a (33)

Finally, for the humid air, the dynamic viscosity is [81]:
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4. Benchmarking of Simulation Results

The benchmarking of the current simulation results is accomplished by comparison
with the experimental and the simulation results of Dai et al. [75] without considering the
waste heat recovery of the feedwater from the condensing coil. A solar desalination study
having humidification and dehumidification processes, both mathematically and exper-
imentally, was presented. All of the conditions considered by Dai et al. [75] are codified
in MATLAB simulation and the desired results are obtained. The initial conditions for
this benchmarking are: inlet temperature of the air is 35 ◦C, inlet relative humidity is
40%, MFR of saline water is 1500 kg/h, the NTUs of condensing coil are 4, the MFR of
cooling coil is 2500 kg/h, and the incident solar radiation is 700 W/m2. The humidifier is
0.6m long and has a cross-sectional area of 0.56m2. Considering these input parameters
in the developed code, the compliance between the current simulation results and the
simulation results of Dai et al. [75] are shown in Figure 5 in which the variation in water
productivity is shown with changing MFR of working air along with different water film
temperature. A maximum discrepancy of 2.33% is observed between both simulation
results. The discrepancy is caused by the advanced modelling of solar collector adapted by
the authors as compared to the relatively simplified mathematical model of [75]. It is to be
stressed here that the feed water recirculation (waste heat recovery) [83] is not included for
this comparison to fully replicate the conditions of [75].

The results of the simulation study are also benchmarked by comparison with the
experimental results of Dai et al. [75]. A comparison is carried out for two cases. For the
case, I, the MFR of air is 615.6 kg/h, and the ambient relative humidity is 54%. For case II:
the MFR of air is 661.8 kg/h, and relative humidity is 49%. For both cases: the ambient
air temperature is ~22 ◦C, the feedwater temperature is ~19 ◦C, the MFR of saline water
is 2310 kg/h and the MFR of feed water in condensing coil is 3780 kg/h. Here it is
stressed that the authors of [75] replaced the solar collector by a boiler to obtain quick lab
results during experimentation. The authors of the current work carried out analysis by
considering the solar collector. Subsequently, an analysis is also carried out by solving
the boiler as a heat input. The analysis considering boiler and solar collector along with
experimental data of [75] for each of the case I and case II is shown in Figure 6a,b. It can
be observed here that the water productivity level for the solar collector is lower than the

292



Mathematics 2021, 9, 33

experimental data points because the heat loss coefficient (UL) for the solar collector case is
contributing significantly which was absent in the experimental setup of [75]. However,
the water productivity level for the case in which the authors simulated the boiler is higher
than the experimental data points because of the assumptions considered in Section 3.3.
Based on this discussion, the maximum discrepancy observed for this benchmarking is
~8% for both cases as reported in Figure 6a,b which is a plot between the temperature of
saline water and water productivity level.

 

Figure 5. Benchmarking of simulation results by comparison with simulation results of Dai et al. [75]
without waste heat recovery.

Figure 6. Comparison of simulation results with the experimental results of Dai et al. [75] for (a) case
I, (b) case II, without waste heat recovery.

5. Results and Discussion

This work aims to recover the heat from the condensing coil. Therefore, in this section,
different parameters are varied to observe their effect on freshwater productivity with
and without the waste heat recovery.

5.1. Mass Flow Rate (MFR) of Inlet Air Effect on Freshwater Production

The intake of MFR of air is an important parameter in a desalination unit because
it determines the blowing power. Therefore, simulations are carried out to observe the
influence of MFR of air on water productivity with and without waste heat recovery from
the condensing coil and it is presented in Figure 7.
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Figure 7. Effect of MFR of air on freshwater productivity with and without waste heat recovery.

It is observed that the water productivity is increased with the increase in MFR of air
because the tendency of moisture transfer increases; therefore, water productivity attains a
maximum value at 500–800 kg/h of MFR of air. However, water productivity decreases
significantly after 1100 kg/h of MFR of air. It is because very high values of MFR of air do
not give sufficient time to an air in the humidification section to cause effective evaporation;
therefore, as a result, the water productivity decreases. Dai et al. [75] recommended a
range of 500–800 kg/h of the MFR of air for the HDH desalination unit, which can be
also observed here. It is also observed that elevating the temperature of the saline water
also increases the productivity of freshwater. However, it is deduced from Figure 5 that
recovering the heat from the condensing coil by reusing the feedwater in the brackish
water storage significantly increases the freshwater productivity. It is reported that ~14%
of freshwater productivity is increased for an MFR of 800 kg/h by waste heat recovered
from the condensing coil at a saline water temperature of 85 ◦C.

5.2. Mass Flow Rate (MFR) of Saline Water Effect on Freshwater Production

Several simulations are carried out to observe the effect of MFR of saline water
on freshwater productivity from the dehumidifier/condenser. It can be observed from
Figure 8 that an increase in the MFR of the saline water increases the water production
rate. It is because a high MFR of saline water contributes to a high Reynolds number,
thus increasing the heat transfer coefficient between the water and air mixture in the
humidification section, which yields higher values of water productivity. It can also observe
that increasing the saline water temperature increases the freshwater productivity. Since the
mass transfer coefficient is a strong function of temperature, therefore, it contributes
towards a more effective mass transfer of water vapours to air. Furthermore, it is observed
that the freshwater productivity also increases by waste heat recovered. Here, an increase
of ~15% in water productivity is reported by waste heat recovery from the condensing coil
for a saline water MFR of 1800 kg/h at a water film temperature of 85 ◦C.
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Figure 8. Effect of MFR of saline water on water production with and without waste heat recovery.

5.3. Mass Flow Rate (MFR) of Feedwater Effect on Freshwater Productivity

The MFR of cooling water in the condensing coil is changed from 1200 kg/h to
4000 kg/h and its influence on freshwater productivity is studied. The simulation was car-
ried out on three different values (1, 2, and 4) of NTU of the condensing coil. The influence
of waste heat recovery is also presented here.

It can be witnessed in Figure 9 that the hourly freshwater production is directly pro-
portional to the MFR of the cooling water because its increment decreases the surface
temperature of the condenser which can increase condensation rate. Furthermore, water
productivity is increasing with the increase in the NTU of the condensing coil. A higher
value of NTU corresponds to a higher value of the overall heat transfer coefficient in the
condensing coil. Therefore, it increases the actual heat transfer; and as a result, the hourly
freshwater production is increased. Furthermore, here it is shown that the hourly produc-
tion rate of freshwater is increased to 10% by waste heat recovered from the condensing
coil at an MFR of cooling water of 4000 kg/h.

Figure 9. Effect of MFR of cooling water on freshwater productivity with and without waste
heat recovery.
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5.4. Effect of the Temperature of the Air on Freshwater Productivity

In this section, a simulation is carried out to study the effect of the ambient air
temperature on the freshwater productivity. These results are important as they will
govern the applicability of the desalination unit. Since this desalination unit is working on
humidification principle; therefore, the ambient air conditions are crucial. The behaviour is
reported in Figure 10.

 
Figure 10. Influence of temperature of the air on freshwater productivity with and without waste
heat recovery.

It is observed that the hourly freshwater production rate is directly proportional to
the ambient temperature of air because the increment in it enhances the heat and mass
transfer characteristics in the humidification chamber. Furthermore, it is reported that the
freshwater production rate is also directly proportional to the relative humidity at the exit
of the humidification chamber (state 8). This is because higher relative humidity at the
exit of the humidification section indicates a small difference between the dry bulb and the
dew point temperature of the air which is an assertive parameter towards condensation.
It is also reported here that the hourly freshwater production rate is increased to ~11% by
waste heat recovered from the condensing coil at an ambient air temperature of 45 ◦C at
full saturation conditions at the exit of the humidification chamber.

5.5. Yearly Analysis of Freshwater Productivity with and without Waste Heat Recovery

In this section, an analysis is carried out to observe the freshwater productivity rate
yearly. As the plant uses solar radiation for heating, therefore its actual output will be
important for different days of the year. For this purpose, the selected day of each month is
used for the calculation of flat-plate solar collectors. Table 2 shows the representative day
of each month [84] that is selected to carry out an analysis. Selected data such as ambient
temperature, ambient relative humidity, and velocity for analysis purposes are reported in
Table 2. The solar radiation data, including total incident, beam, and diffuse radiation for
Taxila, is presented in Figure 11.
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Table 2. Parameters for the calculation of water productivity.

Month
Representative

Day [84]
Temperature

(◦C)
RH (%)

Wind Velocity
(m/s)

January 17 11.1 84 3.5
February 16 12.3 85 2.2

March 16 18.7 84 4.7
April 15 26.8 56 10.0
May 15 28.5 22 9.4
June 11 28.8 77 4.6
July 17 32.4 81 2.7

August 16 26.7 82 3.2
September 15 23.7 45 4.1

October 15 20.8 39 2.4
November 14 15.9 100 1.0
December 10 9.1 81 1.5

 

Figure 11. Distribution of total, beam/direct, and diffused solar radiation.

Figure 12 shows the yearly freshwater productivity from the solar-assisted desalination
HDH plant with and without waste heat recovery from the condensing coil. The lower
freshwater production rate is observed for April and May. Although a significant amount of
solar radiation is experienced in these months (Figure 11) but the region of Taxila (33.745833,
72.7875) experiences high wind velocities in these months. Therefore, it increases the
overall heat transfer coefficient of the solar collector, which yields lower water production
rates. The highest freshwater production rate is observed for July where the incident
radiation is maximum, and the wind velocities are low. The water production rate in
November, December, January, and February are relatively high. Even though low ambient
temperatures are observed in these months, but relatively higher values of incident radiation
and lower wind velocities are observed; therefore, the water production rate is also relatively
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high. The water production rate in August is low because Taxila experiences very high
humidity this month; therefore, it decreases the potential of the humidification process in
the desalination unit. One important phenomenon can be observed from Figure 12 that the
water production is high for each month of the year if the waste heat from the condensing
coil is recovered. It is reported here that the freshwater productivity is increased by ~16%
for June by recovering the waste heat from the condensing coil.

 

Figure 12. Yearly freshwater production rate with and without waste heat recovery.

6. Economic Assessment

Kaya et al. [6] carried out a levelized cost analysis for solar-energy-powered seawater
desalination in the Emirate of Abu Dubai and considered multi-stage flash and multi-effect
distillation coupled with thermal power plants while mentioning that these thermal de-
salination methods are responsible for more than 90% of the desalination capacity in the
Emirate. The findings of the article [6] suggest that the analysis considering the levelized
cost of water for a combination of solar PV and a reverse osmosis system is technologically
well-positioned in terms of cheap and clean desalination systems. The authors of refer-
ence [6] considered total capital cost, annual energy consumption with a required solar
energy system to balance a zero in the grid along with the chemical costs and overhead
cost yielding a final levelized cost of water. A similar approach is adopted here in which
the economic assessment involves an estimation of the levelized cost of water production
using the total cost of ownership method, which involves capital cost, maintenance cost,
energy cost, and salvage value. This process is depicted in Figure 13.

The following variables are considered for the economical assessment. Solar collector:
The thickness of the glass cover is 3 mm, the emittance of the glass is 0.88, the refractive
index of glass is 1.526, the refractive index of air is 1, the absorptance factor of the absorber
plate is 0.94, the extinction coefficient of the glass is 32 m−1, the area of absorber plate is
1.5 m2, the number of tubes are 20, having an effective length of 20 m, while the spacing
between the tubes is 50 mm, with each tube thickness of 1 mm, having an outdoor diameter
of 10 mm, and the mass flow rate of water at the inlet of the solar collector is 0.005 kg/s.
Humidifier: The length of the section is 1 m with a width of 600 mm and a height of 20 mm,
the total mass flow rate is 0.05 kg/s. Dehumidifier: The total heat transfer surface area is
1.5 m2, the temperature of water at the inlet of the condenser is 20 ◦C, the feed water mass
flow rate is 0.01 kg/s, the inner diameter of tubes is 5 mm, the total number of tubes are
20 having an effective length of 10 m, and the shell diameter is 200 mm. Turbomachinery:
The isentropic efficiency of pumps and blowers is 0.85, the mechanical efficiency of pumps
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is 0.96, and the mechanical efficiency of blowers is 0.90. Based on these data, the total initial
cost of the system including the land and the equipment cost is estimated from the local
manufacturers and comes out to be 18,000 PKR.

 

Figure 13. A framework of life-cycle-cost analysis adapted for the economic assessment of the
desalination plant.

For an interest rate of 4%, and a life expectancy of 10 years, the capital recovery factor
is given by:

CRF =
i(1 + i)n

(1 + i)n − 1
(35)

The first annual cost can be calculated using the initial cost, and the capital recovery
factor, given by:

First Annual Cost = 180, 000PKR× CRF (36)

The maintenance cost is considered 5% of the first annual cost. The total running cost
of the equipment involves the annual energy consumption given by:

Annual Energy Consumption = 365× (
Wpump + Wblower

)× t (37)

The energy consumption of the pump
(
Wpump

)
is calculated by considering the en-

thalpy difference times mass flow rate corrected by its mechanical efficiency, and it is given
by [85]:

Wpump =
m(Hout − Hin)

ηm
(38)
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where m is the mass flow rate (kg/s) of water in the section, H is the enthalpy (kJ/kg)
and ηm is the mechanical efficiency of pump which is considered 0.96 [86]. The blower
Wblower is calculated by considering the pressure drop and it is given by [87]:

Wblower =
Q× ΔP
η0 × η1

×C (39)

The details of the parameters used in Equation (39) is given as follows:

1. The pressure drop is calculated by considering the hydraulic calculation formulas,
and it is given by:

ΔP =
f f
Re
· L
de
·ρu2

2
(40)

where f f is the friction factor, Re is the non-dimensional Reynolds number, L is the
effective length of the channel, de is the hydraulic diameter, ρ is the density of air,
and u is the averaged velocity of the channel calculated using the ratio of volume
flow rate per unit cross-sectional area. These parameters are calculated for humidifier
and dehumidifier section differently and finally, the aggregation of both pressure
differences gives the total pressure difference. The friction factor ( f f ) is given by the
empirical formula:

f f = 96
[
1− 1.3553AR + 1.9467AR2 − 1.7012AR3 + 0.9564AR4 − 0.2537AR5

]
(41)

The aspect ratio is a comparison between the shorter and the longer side of the
cross-section of the air channel given by:

AR =
Shorter dimension of the cross− section of air channel
Longer dimension of the cross− section of air channel

(42)

2. η0 is the internal efficiency of the fan which is considered 0.75 [88].
3. η1 is the mechanical efficiency of the fan which is considered 0.9 [89].
4. C is the motor capacity coefficient which is 1.1 [90].

For an industrial rate of the cost of electricity at 12 PKR/kWh, the annual running cost
is 8,176,000 PKR. The salvage value is calculated using the sinking fund factor, given by:

SRF =
i

(1 + i)n − 1
(43)

Finally, the total annual cost is calculated using the balance of life cycle costs, given by:

Total Annual cost = First Annual Cost + Annual Maintenance Cost
+ Annual Running Cost − Annual Salvage Value

(44)

With this methodology, the production cost of desalinated water is 17.16 PKR/litre
(0.15 USD/litre) without waste heat recovery and it is 14.85 PKR/litre (0.13 USD/litre)
with waste heat recovery. Therefore, the production cost of the water is decreased by ~13%
by recovering the waste heat from the condensing coil.

7. Conclusions

In this research paper, a simulation is carried out for the humidification-dehumidification
(HDH) type of desalination system in which the emphasis is given to the performance of
the plant by recovering the heat from the condensing coil by reusing the feed water in
the brackish water storage tank. The feedwater is recirculated because it has relatively
high enthalpy as it absorbs energy in the dehumidification process of air. The mathemat-
ical model of the system is simulated, and the results are validated by comparing them
with the previously published experimental and numerical results without waste heat
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recovery. Afterwards, an extensive parametric study is conducted in which MFR of inlet
air, saline water, feedwater, and the temperature of ambient air are varied. It is observed
that; for all cases, the freshwater productivity rate is increased to a maximum of 15% by
recovering the heat from the condensing coil. The yearly analysis of freshwater was carried
out and it is observed that the freshwater productivity is increased to a maximum of ~16%
in June. Furthermore, economic analysis has demonstrated that the cost of desalinated
water is decreased by ~13% by recovering the heat from the condensing coil and it is
0.13 USD/litre. It is concluded that the proposed system enhances the performance of an
existing HDH desalination system.

However, this work is a theoretical analysis of the waste heat recovery from the
condenser of the desalination system, which is finally a physical connection, in the form of
piping and tubing, from the dehumidifier to the storage tank. This piping can contribute
to some practical limitation in the cycle and other studies considering the ‘design for
manufacturing and assembly’ are suggested before the mass-scale production.
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Nomenclature

Letters

Ac Collector Area, m2

cp Specific Heat of Air, J/kg. K
d Thickness of Film, m
Ds Diameter of collector tubes, m
E Effectiveness of dehumidifier
Fs Fin efficiency
Fs

R Collector heat removal factor
F′s Collector efficiency factor
g Gravitational acceleration, m/s2

h Convective Heat Transfer Coefficient, W/m2. K
hnumber Enthalpy, J/kg
H Enthalpy, kJ/kg
I Radiation, W/m2

m Mass flow rate, kg/s
M Molecular Weight of Water
HDH Humidification-Dehumidification
P Pressure, Pa
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Qu Useful heat gain, W
R General Gas Constant, J/mol. K
Ras

p−g Rayleigh number
S Absorbed Solar Radiation, W/m2

T Temperature, K
U Heat Transfer Coefficient, W/m2. K
u,v Velocity, m/s
Ms Spacing between the collector tubes, m
Wj Water Evaporation Rate, kg/m2

WER Waste Heat Recovery
y, z Coordinate system, m
Subscript

a Air
s Saturated
v Vapor
w Water
d Diffused Radiation
Symbols

α Thermal Diffusivity, m2/s
αs

p Thermal absorptivity of absorber plate of the solar collector
β Title Angle, degree
(τα) Transmittance-absorptance product
ε Knudson Coefficient of Evaporation
εs

p Emissivity of absorber plate
φs Latitude angle
 s Reflectance of a single cover
μw Dynamic viscosity of water, kg/m.s
Γ Mass flow rate of saline water per unit width of the wall, kg/s/m
δs Earth’s declination angle
δs Falling Film Water Thickness, m
λ Latent Heat of Water, kJ/kg
ρ Density, kg/m3

θe Angle of Incidence, Degree
ω Absolute Humidity of Air, kg/kg
ωs Hour Angle
Superscript

s Related to Solar Collector
h Related to Humidifier
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Abstract: Dissipation basins are usually constructed downstream of spillways to dissipate energy,
causing large pressure fluctuations underneath hydraulic jumps. Little systematic experimental
investigation seems available for the pressure parameters on the bed of the US Department of the
Interior, Bureau of Reclamation (USBR) Type II dissipation basins in the literature. We present the
results of laboratory-scale experiments, focusing on the statistical modeling of the pressure field at the
centerline of the apron along the USBR Type I and II basins. The accuracy of the pressure transducers
was ±0.5%. The presence of accessories within basinII reduced the maximum pressure fluctuations by
about 45% compared to basinI. Accordingly, in some points, the bottom of basinII did not collide
directly with the jet due to the hydraulic jump. As a result, the values of pressure and pressure
fluctuations decreased mainly therein. New original best-fit relationships were proposed for the
mean pressure, the statistical coefficient of the probability distribution, and the standard deviation of
pressure fluctuations to estimate the pressures with different probabilities of occurrence in basinI and
basinII. The results could be useful for a more accurate, safe design of the slab thickness, and reduce
the operation and maintenance costs of dissipation basins.

Keywords: basinI; basinII; mean pressure head; pressure head with different probabilities of
occurrence; standard deviation of the pressure fluctuations; statistical modeling; USBR

1. Introduction

Hydraulic jump with the turbulent entrainment process is a function of time and position.
This phenomenon is a complex and stochastic process, so that hydrodynamic pressure fluctuations
can be analyzed using statistical methods. Energy dissipation through the hydraulic jumps with the
conversion of energy downstream of spillways is usually confined within the dissipation basins [1].
This type of hydraulic structure protects the soil against flow erosion, which can affect the dam’s
safety. Due to the large heads upstream of spillways, dissipation basins may be subjected to enormous
instantaneous pressure and velocity fluctuations, causing significant stresses in such energy dissipators.
This may cause the uplift of a basin lining, making it necessary to provide this structure with sufficient
weight or anchorage. Through the analysis of collected data, it is possible to characterize the forces
under a hydraulic jump according to the values of mean pressures, pressure fluctuations, and extreme
pressures [2].

US Department of the Interior, Bureau of Reclamation (USBR) Type II dissipation basins [3] are
designed to reduce excess kinetic energy downstream of the spillway [4–10], reduce largely (≈30%) the
required length compared to smooth basins [11], and help in reducing the costs of the structure [12].
Furthermore, knowledge of the geometric characteristics of the hydraulic jump is fundamental for the
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design of the dissipation structures. Measurement of fluctuating pressures or forces may be difficult to
carry out in the field or at the scale of real structures. Overall, there is a lack of information concerning
the hydrodynamic loading on the bottom slabs. Little systematic experimental investigation seems
available for Type II dissipation basins, and only a general understanding of the hydraulic behavior is
attained [13]. A better understanding of the distribution of pressure fluctuations may lead to a more
economical design with high safety of energy dissipation structures.

Toso and Bowers [14] stated that the peak value of the pressure fluctuations intensity coefficient
(C′P) varies up to 60% when comparing results from different works. It seems that these differences were
related to the degree of development (larger or smaller) of the flow boundary layer. Accordingly, the fully
developed flows show lower values of C′P than undeveloped ones. Endres [15] developed a real-time
acquisition system and treatment of data representative of the instantaneous pressure fields in a
hydraulic jump by analyzing instantaneous pressures downstream of a spillway. Pinheiro [16]
measured the pressure fields inside the hydraulic jump downstream of a spillway. He concluded that
the pressure fields near the bottom and along the hydraulic jump are lower than the corresponding
depth of the mean flow. Marques et al. [17] measured pressures within a dissipation basin with the
smooth bed downstream of a spillway. They proposed a dimensionless methodology that groups the
fluctuating pressures with different incident Froude numbers (Fr1) in a single trend, being a function
of the jump position. The values of Fr1 used by Endres [15], Pinheiro [16], and Marquez et al. [17]
were in the range of 4.2 to 8.6, 6 to 10, and 5 to 8, respectively. Based on the pressure data by
Enders [15], Teixeira [18] proposed second-order polynomial relationships for estimating different
pressure parameters in smooth dissipation basins.

According to Alves [2], the measurement of fluctuating pressures is highly influenced by laboratory
conditions. This may include the Reynolds number of flow, transducer accuracy, transducer installation
method, hose length, pressure point diameter, channel width, model roughness, etc. Farhoudi et al. [19]
studied the pressure fluctuations around some chute blocks in a St. Anthony Fall (SAF) type dissipation
basin. Novakoski et al. [20] showed that the negative pressures in the zone near the spillway
toe represent the risk of cavitation in the dissipation basin. They concluded that the extreme
pressures with the probabilities of occurrence equal to 0.1% and 1% require careful assessment.
Macián-Pérez et al. [21] used a numerical model to analyze pressure distributions in a USBR Type II
dissipation basin. Hampe et al. [22] estimated extreme pressures in hydraulic jumps with low Froude
numbers. Samadi et al. [23] used some explicit data-driven approaches to estimate the C′P coefficient
underneath hydraulic jumps on a sloping channel.

Mousavi et al. [24] focused on the minimal and maximal pressures, the pressure coefficients,
the power spectral density (PSD), the probability density function (PDF), and the uncertainty analysis of
the pressures along a USBR Type I basin (basinI). Mousavi et al. [25] assessed the statistical parameters
of free jumps, including mean pressure (P*

m), the standard deviation of pressure fluctuations (σ*
X),

the probability distribution coefficient (NK%), and the pressures with different probabilities (P*
K%)

along basinI. Mousavi et al. [26] evaluated artificial intelligence models to estimate the C′P coefficient
for the free and submerged jumps at the bottom of a USBR Type II basin (basinII). The results showed
the deep learning model could estimate the C′P coefficient more accurately.

However, pressure patterns on the apron of basinII have not been widely investigated in the
literature. We designed and pursued experiments to obtain some information about the effect
of chute blocks and dentated end sill on the free jumps’ characteristics and pressure fluctuation.
Experiments were conducted in the centerline of the apron along basinI and basinII with the incident
Froude numbers (Fr1) in the range of 6.14 to 8.29. In summary, the differences between the previous
works and the present paper are explained as follows:

i. Analysis of the minimal and maximal values of pressures along the free jumps within basinI

and basinII. These parameters for basinII have not been investigated in the literature.
ii. Evaluation of the PSD analysis to determine the dominant frequency of fluctuating pressures

in the free jumps for basinI and basinII. In addition, assessment of the PDF histograms for
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the fluctuating pressures at different pressure points and investigation of the skewness and
kurtosis coefficients, P*

m, extreme pressures (P*
min and P*

max), σ*
X, NK%, and P*

K% along basinI

and basinII. For reference, we benchmarked and compared our findings with previous similar
results of other authors focusing on hydraulic jumps we could retrieve in the present literature.

iii. Proposition of some new original best-fit relationships to estimate the dimensionless forms of
statistical parameters including P*

m, σ*
X, NK%, and P*

K% for the free jumps as a function of the
dimensionless position along basinI and basinII.

iv. Proposition of the hydraulic jump length (Lj) as a scaling factor for the dimensionless position
from the toe of the spillway (X*). Marques al. [17] proposed the dimensionless adjustments for
the pressure parameters. Due to the presence of significant air bubbles at the beginning of the
jump, it is difficult to measure the initial depth of the jump (Y1) with great accuracy. It seems
that the expression of Y2−Y1 (conjugated depths of hydraulic jumps) is not appropriate as a
scaling factor. In this case, the X* parameter was defined as X/Lj, where Lj is the length of
hydraulic jump. In addition, the values of Y1 were calculated using the well-known equation
of Bélanger [27].

2. Materials and Methods

2.1. Experimental Setup

In this research, the pressure field of free jumps was investigated in the hydraulic laboratory,
University of Tabriz, Iran (see Figure 1). The laboratory flume used had a length of 10 m, a width of
0.51 m, and a height of 0.5 m. The channel’s bed was considered in the form of a horizontal line in all
experiments. An Ogee spillway of 70 cm in height (H) was equipped with two different configurations
of the dissipation basins, designed according to the USBR criteria [3]. In addition, the accessories of
basinII, including eight chute blocks (3.2 cm width, 3 cm height, and 7.94 cm length) and a dentated
end sill with 6 cm height, were designed based on the maximum flow discharge. The spillway was
installed at a distance of 260 cm from the entrance head tank of the flume.

We performed some experiments on basinI and basinII with different flow discharges, ranging from
33 to 60.4 L/s, and supercritical Froude numbers (Fr1) between 6.14 and 8.29. According to the USBR
recommendation, the lengths of basinI (LI) and basinII (LII) were 200 and 125 cm, respectively. The width
of the basins was considered equal to the width of the flume (see Figure 2). At the end of the flume,
a hinged weir was used to create and stabilize the free jump position. Therefore, the hydraulic jump
was positioned at the basins’ beginning and contained within the basins (i.e., jump type A-jump [28]).

The subcritical flow depth (Y2) at the endpoint of the jumps was measured along the flume’s
centerline. To do this, we used a Data logic ultrasonic sensor device model US30, made in Italy with a
nominal accuracy of 1 mm. The discharge in the flume (Q) was measured with a transit-time clamp-on
ultrasonic flow meter. The values of supercritical flow depth (Y1) were calculated using the Bélanger’s
equation [27,29,30], which is defined as follows:

Y1

Y2
=

1
2
(−1 +

√
1 + 8 Fr2

2) (1)

Fr2 =
V2√

g × Y2
(2)

where V2 is the mean subcritical velocity, calculated using the continuity law, Fr2 is the subcritical
Froude number, and g is the gravitational acceleration.
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Figure 1. Laboratory flume and experimental setup. (a) Hydraulic jump during an experiment,
(b) basinII with chute blocks and dentated end sill, (c) Data logic ultrasonic sensor device model US30,
and (d) pressure transducers (Atek BCT 110 series with 100 mbar-A-G1/4 model).

 
Figure 2. Dimensions of spillway and accessories installed in basinII.
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To measure the (dynamic) pressure fluctuations, 25 measurement points were considered along the
centerline of the apron inside and outside the basinII (see Figure 3). Pressure therein was measured by
way of piezometers installed at the centerline of the apron along the basins. The position of the pressure
points (X) was from 2.5 cm (piezometer No. 1) to 189 cm (piezometer No. 25). The instantaneous
pressures were measured with pressure transducers (Atek BCT 110 series with 100 mbar-A-G1/4 model).
The pressure transducers used a 6-channel digital board and have an accuracy of ±0.5% within the
range of −1.0 to 1.0 m [24–26].

 

Figure 3. Distribution of the pressure points at the centerline of the apron along basinII.

Pressure transducers were calibrated before the experiments using a static pressure gauge in the
laboratory. Therefore, the mean fluctuating pressures were approximately equal to the static pressures.
The transducers were mounted on a support plate, placed under the bottom of the flume. Thus, it was
possible to eliminate possible distortion effects in the pressure signal due to the connection with rubber
hoses. The transparent plastic hoses used here had an internal diameter of 3 mm and were 200 cm
in length. Hydrodynamic pressure data were measured in time series. Accordingly, some statistical
methods were used to analyze the collected pressure data.

2.2. Statistical Parameters

Investigation of the pressure head (cm) parameter is a first step to describe the pressure field in
the hydraulic jump. The pressure parameters at each point (PX) include the minimum pressure (Pmin),
the mean pressure (Pm), the maximum pressure (Pmax), and the pressure with a certain probability
of occurrence (PK%). Marques al. [17] proposed P*

X = (PX−Y1)/(Y2−Y1) for the dimensionless form
of pressure parameters as a function of the dimensionless position of each point (X*), defined as
X* = X/(Y2−Y1), where X is the longitudinal position of each point inside the hydraulic jump. As the
upstream part of the jump exhibited significant air bubbles, it seems that the scaling of Y2−Y1 is not
appropriate for the non-dimensional position of the pressure point. As a result, in the present study,
the X* parameter was defined as X/Lj, where Lj is the hydraulic jump length.

Knowledge of the extreme pressure heads in the dissipation basins helps to understand the
energy dissipation of the hydraulic jumps. In the present study, the extreme pressure heads (P*

min
and P*

max) were investigated in detail. Marques et al. [17] proposed (σ*
X/ El) × (Y2/Y1) to analyze the

dimensionless standard deviation of the pressure fluctuations at point X. There, El is energy head loss
(cm) along the hydraulic jump. The experimental values of PK% were achieved using the pressure time
series data collected at each pressure point. The statistical coefficient of the probability distribution
(NK%) can be varied at different points of the dissipation basins. Therefore, it is necessary to determine
the longitudinal distribution of NK% to estimate the P*

K% parameter with a probability to be less than
or equal to a certain value (K) along basinI and basinII. As the estimated values of Pm, σX, and NK%
were determined at each point inside the basins, the values of PK% can be estimated using equation
PK% = Pm + NK% × σ*

X [17].
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In this study, a new statistical methodology was proposed to estimate the values of P*
K% in basinI

and basinII. To evaluate the estimated values of pressure parameters, some statistical performance
criteria were determined [31–34]. The PDF function of the normalized pressures along the hydraulic
jumps was calculated according to P∗(Z) = (1/

√
2π)×Exp(−Z2/2). The normalized pressure variable

(Z) was defined as (P[X, t]) − Pm/σX, where P[X,t] is the instantaneous pressure [35]. We pursued
an analysis of the skewness and kurtosis coefficients of pressure fluctuations [36]. Due to the high
variation in S and K coefficients, it is difficult to define a single statistical distribution to describe the
overall behavior along the jump.

3. Results and Discussion

3.1. Flow Characteristics

Table 1 presents some experimental and calculated parameters of the flow downstream of the
spillway in two dissipation basins under different free jump conditions.

Table 1. Experimental parameters in two dissipation basins.

Q (L/s) V1 (m/s) Fr1 Re1 Y1 (cm)
Y2 (cm) Lj (cm)

basinI basinII basinI basinII

33.0 3.52 8.29 58,200 1.84 20.65 19.69 142.50 102.50
43.0 3.59 7.48 74,400 2.35 23.70 22.44 162.50 112.50
47.5 3.60 7.14 81,500 2.59 24.87 23.57 189.00 122.50
52.7 3.58 6.72 89,500 2.89 26.05 24.70 189.00 122.50
55.0 3.56 6.52 92,900 3.03 26.49 25.33 189.00 122.50
60.4 3.53 6.14 100,900 3.36 27.55 26.60 189.00 122.50

1 Supercritical flow, 2 Subcritical flow.

Re1 is the Reynolds number for the supercritical flow of the hydraulic jump. The mean velocity of
the incoming flow to the dissipation basins (V1) was computed using the continuity law. According to
Table 1, the Y2 parameter in basinII decreases compared to those in the basinI case (classical hydraulic
jump). As Q increases, Y1 increases faster than V1. Accordingly, the Froude number reduces when
increasing flow discharges. The flow conditions downstream of the spillways are different compared to
the sluice gates. The Y1 parameter has an essential role in determining the values of Fr1. Reducing Fr1

with increasing Q for the free jumps downstream of the spillway has been confirmed in previous
similar results we were able to retrieve in the present literature [13,17,37,38].

3.2. Power Spectral Density Analysis

The power spectral density (PSD) analysis of the pressure data demonstrates the variation of
the PSD parameter in a wide range of frequencies. According to Figure 4, the maximum values
of the amplitude corresponding to the dominant frequency decrease by increasing distance from
the jump toe. The results indicated that the maximum variation of the PSD parameter in free
jumps within basinII was achieved at frequencies less than 5 Hz. It should be noted that the PSD
analysis of the fluctuating pressures for different points of basinI with free jumps has been studied
by Mousavi et al. [24]. The minimum frequency of pressure transducers is considered to be almost
twice the dominant frequency of the signal in the literature [39]. In the present study, a pressure data
collection frequency of 20 Hz for 90 s was used for each pressure point. The maximum amplitude at
low frequencies along the free jumps indicates large-scale vortices, which is due to the dominance
of gravitational forces [40]. Therefore, the Froude law is valid for modeling fluctuating pressures in
free jumps.
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Figure 4. Power spectral density (PSD) analysis of fluctuating pressures for basinII (Fr1 = 6.14).

3.3. Probability Density Function

In this section, the P*(Z) parameter is plotted as a function of the normalized pressure level (Z).
Furthermore, the appropriate probability distributions for each pressure point are compared with the
normal distribution. The PDF histograms of pressure fluctuations at some points on the bed of basinII

in free jumps are shown in Figure 5. In addition, the PDF function of the fluctuating pressures for
different points of basinI with the free jumps has been previously investigated by Mousavi et al. [24].
The results indicate that the PDF function does not follow the normal distribution at different points
along the free jumps, especially for the initial points of basinII. In other words, the S and K coefficients
do not match with the normal distribution values.

 

 

Figure 5. Cont.
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Figure 5. Probability density function (PDF) histograms of fluctuating pressures at some points of
basinII (Fr1 = 6.14): (a) point 1; (b) point 8; (c) point 11; (d) point 21; (e) point 22; (f) point 25.

According to Fiorotto and Rinaldo [35], positive pressure fluctuations at the beginning of the
basins have a relatively high frequency compared to negative pressure fluctuations. In this zone, the S
coefficient has positive and maximum values, and the PDF curve tail is drawn to the right. The K
values are more than the normal distribution, and the PDF curve is drawn upwards at these points.
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At the characteristic point of X*
d (point of expected flow detachment), the frequency of positive

and negative pressure fluctuations is almost identical, and S ≈ 0 (pressure point No. 11). At this
point, pressure values distribution is somewhat similar to the normal distribution. For point No. 21,
located at X*

r (endpoint of the roller), the S coefficient has negative values. Also, the K coefficient
is greater than the normal distribution value. For points located at X*

j (endpoint of the hydraulic
jump), the S values tend to move towards zero, and the data somewhat follow the normal distribution.
Pressure point No. 25 is outside basinII, and it has a normal distribution. The flow energy of the
incoming jet is dissipated after passing through the roller point of the jump, and the uniform flow
is established almost downstream of the basin. Due to the presence of accessories in basinII, all the
considered characteristic points are closer than in the absence of such structures.

3.4. Extreme Pressures

Figure 6 represents variations of the dimensionless minimum, mean, and maximum (scaled)
pressures (P*

min, P*
m, and P*

max) as a function of X* in basinII and basinI for different values of Fr1. It is
observed that the P*

min data reach lower values and have more significant fluctuations concerning the
P*

m data at the position nearest to the spillway toe (probably due to the incidence of flow in the basin).

Figure 6. Distribution of the experimental and estimated values of P*
X: (a) basinII; (b) basinI.

The P*
min data reach negative values around −0.2 approximately at X* ≤ 0.20 for basinII, and of

−0.4 at X* ≤ 0.30 for basinI, increasing with oscillations after that. This may indicate zones subject
to low pressure, which may be associated with erosion or cavitation processes. Therefore, basinII is
more reliable than basinI in terms of the possibility of cavitation. At the position of X*

j, P*
min data

begin to oscillate near the value 1.0 and slightly lower. Concerning the values of P*
max, the higher and
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more disparate values versus the P*
m values occur near the spillway, caused by the direct impact of

the flow jet on the dissipation basins. The values of extreme pressures in basinII are lower than those
for basinI. There is a narrower pressure range in basinII compared to basinI. The results indicate that
P*

max seemingly decreases with the increasing Froude number, with P*
m and P*

min somewhat constant,
in the explored range. Using the results obtained in the present study by adjusting the values of P*

X,
including P*

min, P*
m, and P*

max, a new second-order rational expression was developed for basinII

and basinI. Equation (3) is valid for 0 < X* ≤ 1.85 in basinII and 0 < X* ≤ 1.30 in basinI. According to
Figure 6, one can estimate P*

X using Equation (3). The values of α, β, γ, and δ to estimate P*
X for basinII

and basinI are provided in Table 2.

P∗X =
α+ β X∗

1 + γ X∗ + δ X∗2
(3)

Table 2. Coefficients of α, β, γ, δ, and the statistical performance criteria to estimate P*
X.

Basin P*
X A B γ δ R RMSE MAE

basinII

P*
min −0.0758 0.6885 −0.6537 0.4041 0.950 0.110 0.082

P*
m 0.3057 0.9186 −0.2466 0.4086 0.944 0.085 0.063

P*
max 0.8171 1.5498 0.4397 0.4879 0.753 0.100 0.072

basinI

P*
min −0.1220 0.5397 −1.6625 1.0825 0.909 0.155 0.122

P*
m 0.1094 2.2112 0.6233 0.4925 0.882 0.150 0.105

P*
max 0.4690 8.5806 4.2451 2.5554 0.789 0.145 0.099

* Dimensionless value.

3.5. Standard Deviation of Fluctuating Pressures

The σ*
X parameter is a function of the flow discharge and the pressure point position relative to

the beginning of the jump. In Figure 7, increasing flow discharge (i.e., decreasing Froude number)
results in σ*

X increasing. As Q increases, the dynamic energy increases, and the fluctuating component
of pressure (P′) increases as well, indicating the turbulence intensity of the flow. Along the jump,
σ*

X increases to a maximum value, in the range of X* ≤ 0.33 for basinI and basinII, and decreases after
that. It seems that the main factors for the fluctuations of pressures along the jump are turbulent flow,
eddies formation, and their movement during the jump. Therefore, in some positions, the interaction
of eddies and the basin bed causes a sudden increase in the bed pressure.

Figure 7b shows a comparison of the σ*
X values in the case of basinI with the results obtained

by Pinheiro [16] and Marques et al. [17] for free jumps. It is seen that our study displays similar
patterns to their work. However, in the downstream zone of the basin, σ*

X values are relatively higher
than the results obtained by others. This is likely to be linked to the determination of Y1 and Y2 and
identification of the initial position of the hydraulic jump. The σ*

X values for the smooth bed (basinI)
are greater than in basinII with blocks. Accordingly, the presence of accessories within the hydraulic
jumps significantly decreases σ*

X. Figure 7 demonstrates the values of σ*
X max for different Froude

numbers in basinII and basinI. A high value of σ*
X max may indicate a considerable variation of the

dynamic pressures on the bottom slab, damaging the structure. According to Figure 7, as the Froude
number (Fr1) increases, the intensity of pressure fluctuations decreases. According to Teixeira [18],
the average value of σ*

X max in a smooth basin was about 0.7.
As seen in Table 3, one has σ*

X max ≈ 0.50~0.68 for basinII, and σ*
X max ≈ 1.02~1.20 for basinI,

similarly for all Froude numbers. Accordingly, the values of σ*
X max in basinII decreased down to about

−45% compared with basinI for the free jumps. The X*
σmax position in the presence of the blocks and

end sill is closer to the spillway toe. The accessories on the bed of basinII may cause the jet to be
spread or submerged. Due to the presence of chute blocks at some points, the bottom of basinII does
not collide directly with the jet due to the hydraulic jump. Consequently, the values of pressure and
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pressure fluctuations decrease mainly therein. Figure 7 illustrates the σ*
X values for different Froude

numbers in basinI and basinII.

Figure 7. Distribution of the experimental and estimated values of σ*
X: (a) basinII; (b) basinI.

Table 3. Range of σ*
X max values and the position of X*

σmax.

Results σ*
X max X*

σmax

basinII 0.50~0.68 0.07~0.33
basinI [25] 1.02~1.20 0.25~0.33
Endres [15] 0.65~0.77 0.03~0.18

Pinheiro [16] 0.73~0.83 0.25~0.33
Marques [17] 0.69~0.76 0.22~0.40

* Dimensionless value.

We optimized Teixeira’s method [18] to assess σ*
X for basinII and basinI. A new second-order

rational expression was developed in the range of 0 < X* ≤ 1.85 for basinII and 0 < X* ≤ 1.30 for basinI.
According to Figure 7, one can estimate σ*

X using Equation (4). The values of a, b, c, and d to determine
σ*

X are provided in Table 4.

σ∗X =
a + b X∗

1 + c X∗ + d X∗2
(4)

Table 4. Coefficients of a, b, c, d, and the statistical performance criteria to estimate σ*
X.

Results a B c d R RMSE MAE

basinII 0.4661 −0.2218 −1.1229 1.2068 0.910 0.065 0.053
basinI 0.3975 0.3735 −3.3347 6.4248 0.872 0.120 0.095

* Dimensionless value.

Therefore, the new adjustment can estimate σ*
X very well with a correlation coefficient (R) equal

to 0.910 and 0.872 for basinII and basinI, respectively.
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3.6. Statistical Coefficient of the Probability Distribution

Figure 8 presents the distribution of the experimental values of the NK% coefficient obtained
from the pressure data along basinII for different probabilities from 0.1% to 99.9% with different flow
conditions in free jumps. The distribution of the NK% coefficient along basinI with the free jumps has
been previously investigated by Mousavi et al. [25].
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Figure 8. Distribution of the experimental values of the NK% coefficient along basinII.

From Figure 8, one can verify the dispersion of the NK% coefficient with the minimum and
maximum extreme pressures in the initial zone of the jumps. It is observed that for probabilities greater
than 50%, the NK% coefficient has positive values, and for probabilities less than 50%, it has negative
values. At the beginning area of the basins, the values of N0.1% are approximately −3, and for positions
X* ≥ 0.40, it has values less than −4. In addition, the N99.9% coefficient at the beginning of basinII has
values around 4 to 6. At the downstream of the basins, the NK% values are slightly stabilized and vary
in the range of 2 to 4. The results show that the variation rate of the NK% coefficient along basinII has
decreased somewhat compared to basinI.

Teixeira [18] demonstrated that in free jumps, the longitudinal distribution of the NK% coefficient
follows a second-order polynomial relationship. In the present study, the results show that the NK%
coefficient has relatively constant values along the jumps, mainly for the probabilities from 5% to 95%.
Accordingly, depending on the probability to be identified, the NK% coefficient shows a trend more or
less close to a single (average) value for each probability, regardless of Fr1 values. Table 5 displays the
average experimental values of the NK% coefficient with different probabilities along the basins.

Table 5. Average experimental values of NK% coefficient in the dissipation basins.

NK% N5% N10% N20% N30% N40% N50% N60% N70% N80% N90% N95%

basinII −1.66 −1.25 −0.80 −0.48 −0.22 0.02 0.252 0.51 0.80 1.23 1.60
basinI −1.62 −1.25 −0.82 −0.50 −0.24 0.00 0.242 0.50 0.81 1.25 1.63

To develop a method for estimating the P*
K% parameter in the case of basinII and basinI,

we identified variations in the NK% coefficient as a function of probability. Therefore, it was decided to
use the average value of NK% for each probability. According to Wiest [41], there is little effect of Fr1 on
NK%, and the latter remains constant along the dissipation basin. Accordingly, NK% follows a specific
curve acceptably well, making it possible to establish a new adjustment for NK% as a function of the
probability of occurrence (K). Therefore, we propose a second-order rational relationship to estimate
NK%:

NK% =
α+ β K

1 + γ K + δ K2 (5)

Here α, β, γ, and δ are the coefficients of Equation (5), and K is the value of the probability
in decimal. The values of coefficients in Equation (5) are shown in Table 6. The residual of the
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experimental and estimated data set of the NK% coefficient for different probabilities in basinII and
basinI is plotted in Figure 9. This parameter is defined as the difference between the experimental and
estimated values of NK%.

Table 6. Coefficients of Equation (5) for estimating NK% coefficient in dissipation basins.

Results α β γ δ

basinII −2.1625 4.3873 3.8320 −3.7389
basinI −2.0752 4.1402 3.3326 −3.3448
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Figure 9. Residual plots of the experimental and estimated data set of the NK% coefficient for different
probabilities: (a) basinII and (b) basinI.

3.7. Estimation of Pressures with Different Probabilities of Occurrence

In this study, new original adjustments were proposed for P*
m (Equation (3)), σ*

X (Equation (4)),
and NK% (Equation (5)) to estimate the pressure values with different probabilities of occurrence (PK%).
Therefore, the estimated values of Pα% were determined using Equation Pα% = Pm + NK% × σX.

Some statistical criteria for the estimated values of the P*
K% parameter in basinII and basinI are

presented in Table 7. For instance, the longitudinal distribution of the experimental and estimated data
of the P*

K% parameter with different probabilities along basinII is shown in Figure 10. The distribution
of the P*

K% parameter for different probabilities of occurrence along basinI with the free jumps has
been previously investigated by Mousavi et al. [25].

Table 7. Statistical criteria to estimate P*
K% with different probabilities of occurrence.

P*
K%

basinII basinI

R RMSE MAE WI R RMSE MAE WI

P*
5% 0.948 0.096 0.073 0.973 0.880 0.166 0.122 0.934

P*
10% 0.946 0.094 0.071 0.972 0.879 0.164 0.120 0.933

P*
20% 0.944 0.092 0.069 0.971 0.879 0.161 0.116 0.932

P*
30% 0.944 0.090 0.067 0.970 0.880 0.158 0.112 0.932

P*
40% 0.943 0.088 0.065 0.970 0.882 0.155 0.109 0.933

P*
50% 0.943 0.087 0.063 0.970 0.884 0.152 0.106 0.934

P*
60% 0.940 0.085 0.062 0.969 0.884 0.150 0.103 0.934

P*
70% 0.942 0.082 0.060 0.969 0.884 0.147 0.100 0.934

P*
80% 0.941 0.080 0.059 0.969 0.884 0.145 0.097 0.934

P*
90% 0.939 0.077 0.057 0.968 0.881 0.141 0.093 0.934

P*
95% 0.929 0.078 0.057 0.963 0.848 0.138 0.093 0.933

* Dimensionless value.
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Figure 10. Longitudinal distribution of the experimental and estimated data of P*
K% parameter with

different probabilities along basinII: (a) P*
5%; (b) P*

5%; (c) P*
60%; (d) P*

95%.

4. Conclusions

In this study, a lab-scale model of an Ogee spillway, either equipped with the USBR Type I
and II dissipation basins was installed downstream of an Ogee spillway, based on the USBR criteria,
to investigate pressure fields therein. The present study aimed to measure and provide useful insights
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about the pressure fluctuations at the bottom of basinII. We can provide here some conclusions from
our research, covering the (different) patterns of pressures along the free hydraulic jumps, as follows:

(i) For the first time to our knowledge, our results allow calculation of the statistics and extreme
values of the pressure field occurring on the bed of the dissipation basins, and demonstrate the
advantage of using a USBR Type II basin in terms of reduced stress over the basin’s bed.

(ii) The Y2 parameter in basinII was decreased against that in basinI. In addition, with increasing
flow discharge (Q), supercritical flow depth (Y1) increased more than velocity (V1). As a result,
Fr1 reduced with higher Q values.

(iii) The P*
min data reached negative values of around −0.2 approximately at X* ≤ 0.2 for basinII,

and of −0.4 at X* ≤ 0.3 for basinI (i.e., very close to spillway toe). Therefore, basinII was more
reliable than basinI in terms of the possibility of cavitation. More fluctuating values of P*

max

against the mean values occurred near the spillway, justified by the direct impact of the flow jet
on the dissipation basin.

(iv) Analysis of σ*
X showed that the dimensionless position of X*

σmax is close to 0.20 and 0.29 for basinII

and basinI, respectively, with pressure fluctuations decreasing after that. Accordingly, the position
of X*

σmax was closer to the spillway toe for basinII. With increasing flow discharge, the pressure
fluctuations increased. The pressure fluctuations range on the basin bed was visibly narrower for
basinII than for basinI. For basinII, σ*

Xmax values along the free jumps were reduced by −40%
compared to basinI.

(v) Based on the methodologies proposed by Marques et al. [17] and Teixeira [18], new original
best-fit adjustments were proposed here for the P*

m, σ*
X, and NK% parameters to estimate the

P*
K% parameter in the case of basinI and basinII. In addition, we originally displayed that NK%

values show a trend towards a single average value independently of the Froude number, and we
proposed an adjustment for NK% as a function of probability.

(vi) Some effort may be devoted to investigating the statistical distribution of pressures on the basin
bed. As observed, a deviation of the skewness from the S = 0 value for normal distribution in the
beginning area of the basins indicates a different and asymmetric distribution. Positively skewed
distributions indicate the potential for more (than normally expected) frequent outbursts of large
flow pressure, possibly requiring the increase of the structural resistance of the basin apron.

(vii) The laboratory-scale models presented herein have several limitations that should guide further
research on the topic. It should be noted that there is a potential error in scaling the pressure
heads. Therefore, just indicating the dimensionless terms may be misleading.

(viii) The results of this work contribute to the present debate about the use of dissipation basins,
and especially of USBR Type II ones for spillway flow calming, providing a quantitative assessment
of some main features of the hydraulic jump within the dissipation basin, and the modified
(reduced) maximum pressure on the basin apron, and are potentially useful for designing
dissipation basins in real-world applications.
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Abbreviation

The following symbols are used in this paper:
B Basin width (L)
basinI USBR Type I dissipation basin
basinII USBR Type II dissipation basin
C′P Pressure fluctuations intensity coefficient
El Energy head loss along the hydraulic jump (L)
Fr1 Supercritical Froude number
Fr2 Subcritical Froude number
g Gravitational acceleration (LT−2)
H Ogee spillway height
K Kurtosis coefficient
LI Length of basinI (L)
LII Length of basinII (L)
Lj Length of hydraulic jump (L)
MAE Mean absolute error
NK% Statistical coefficient of the probability distribution
PK% Pressure head with a certain probability of occurrence (L)
Pmin Minimum extreme pressure (L)
Pm Mean pressure head at each pressure point (L)
Pmax Maximum extreme pressure (L)
PSD Power spectral density of the pressure data
P(X,t) Instantaneous pressure (L)
P*

Z Probability density function (PDF) of the normalized fluctuating pressures
P′ Fluctuating component of pressure (L)
Q Flow discharge (L3T−1)
R Correlation coefficient
Re1 Reynolds number for the supercritical flow of the hydraulic jump
RMSE Root mean squared error
S Skewness coefficient
USBR US Department of the Interior, Bureau of Reclamation
V1 Mean velocity of the coming flow to the dissipation basin (LT−1)
V2 Mean subcritical velocity (LT−1)
WI Willmott’s index of agreement
X Longitudinal position of each point inside the hydraulic jump (L)
X* Dimensionless position of each point (X/Lj)
X*

d Characteristic point of the expected flow detachment
X*

r Characteristic endpoint of the roller
X*

j Characteristic endpoint of the hydraulic jump
Y1 Supercritical flow depth at the jump toe (L)
Y2 Subcritical flow depth at the end of the jump (L)
Z Normalized pressure variable
σX Standard deviation of the pressure fluctuations at point X (L)
σ*

X Dimensionless standard deviation of the pressure fluctuations at point X (L)
1 Supercritical flow
2 Subcritical flow
m Mean value
max Maximum value
min Minimum value
* Dimensionless value
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Abstract: The authors introduce a new controller, aimed at industrial domains, that improves the
performance and accuracy of positioning systems based on Stewart platforms. More specifically,
this paper presents, and validates experimentally, a sliding mode control for precisely positioning
a Stewart platform used as a mobile platform in non-destructive inspection (NDI) applications.
The NDI application involves exploring the specimen surface of aeronautical coupons at different
heights. In order to avoid defocusing and blurred images, the platform must be positioned accurately
to keep a uniform distance between the camera and the surface of the specimen. This operation
requires the coordinated control of the six electro mechanic actuators (EMAs). The platform trajectory
and the EMA lengths can be calculated by means of the forward and inverse kinematics of the
Stewart platform. Typically, a proportional integral (PI) control approach is used for this purpose
but unfortunately this control scheme is unable to position the platform accurately enough. For this
reason, a sliding mode control (SMC) strategy is proposed. The SMC requires: (1) a priori knowledge
of the bounds on system uncertainties, and (2) the analysis of the system stability in order to ensure
that the strategy executes adequately. The results of this work show a higher performance of the SMC
when compared with the PI control strategy: the average absolute error is reduced from 3.45 mm
in PI to 0.78 mm in the SMC. Additionally, the duty cycle analysis shows that although PI control
demands a smoother actuator response, the power consumption is similar.

Keywords: automatic optical inspection; kinetic theory; parallel robots; robust control;
sliding mode control

1. Introduction

Contemporary markets tend to constantly increase the number of product variants, and product
life cycles are also changing. Demand for product families in small batch sizes is increasing, therefore
reconfigurable tooling is becoming a key technology for fulfilling production requirements [1–3].
For that reason, Stewart platforms, which provide precise motion in six degrees of freedom,
are being introduced in production scenarios where continuous positioning and orientating is
required. In addition, parallel robot architectures provide high rigidity, high payload-to-weight-ratio,
high positioning accuracy, and low inertia of moving parts subjected to high loads. Compared to
anthropomorphic robotic arms, they do not have such a wide range of displacements, but they present
higher stiffness and precision as well as a simpler solution to the inverse kinematics equations [4,5].
Previous benefits, in addition to the reduction in hexapod production costs, justify the use of Stewart
platforms in industrial applications.

Mathematics 2020, 8, 2051; doi:10.3390/math8112051 www.mdpi.com/journal/mathematics
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Stewart platforms can be found in different domains, such as machinery [1,6], test beds [7], real-time
simulators for vehicles [2,8], and antenna/solar orientation platforms [9,10]. Typically, every arm is
controlled by an electro mechanical actuator (EMA), but hydraulic actuators are more suitable for
large loads [2,11], and piezoelectric actuators are commonly used in micro- or nano-scale platforms
(found in biomedical science, optics, and microscopical devices) [12]. Stewart platforms are frequently
used as camera levelling bases in a wide range of applications. These devices can be found in
rescue operations, traffic control, identification, surveillance of frontiers, agriculture control and fire
detection in forest areas, among others. The use of Stewart platforms for levelling cameras has been
introduced in automated non-destructive inspections (NDI) in order to reduce labour costs [13,14].
Thermographic cameras, sensitive to radiation in the infrared spectral range, are frequently used
in combination with external thermal stimulation systems. Thermographic inspection is normally
conducted statically by setting the infrared camera at a fixed distance from the object [15]. However,
this approach is subject to the curvature changes in the object inspected so that the spatial resolution is
reduced due to the difference in distance between the camera and the target. A different approach in
thermographic NDIs consists of applying the inspection dynamically by moving the sensor over the
surface of interest. This approach improves the inspection quality, because it permits the detection of
smaller defects, but requires higher performance in positioning control systems. Figure 1 illustrates
the influence of using static positioning by means of two infrared radiation (IR) images, only one being
properly focused.

.
Figure 1. Comparison between a corrected IR image (above) and a defocused IR image (below).

The control of Stewart platforms must deal with a complex kinetics calculation. It is a well-known
fact that, for serial robot manipulators, the solution of a forward kinematics problem is easier than an
inverse kinematics problem. However, in parallel robots the situation is just the opposite [4]. Several
solutions for the forward and the inverse kinematics are proposed in the literature. The inverse kinematic
problem, i.e., obtaining the joint space position or the six link lengths given the position/orientation
of the platform or the Cartesian space position, is straightforward to calculate at Stewart Platforms.
On the contrary, the forward kinematics problem, viz. The determination of the Cartesian space
position for a given joint space position, is more demanding computationally [16]. The most common
approach is to calculate the closed-form solution to the inverse kinematic transformation, and then
estimate the forward kinematic transformation using the Newton–Raphson method [7]. A different
approach for solving the algebraic system of equations utilises the reduced Gröbner basis form of
the system of equations under total degree term ordering of its monomials and Sylvester’s Dialytic
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elimination method [17]. Particle swamp optimisation is another powerful tool that can be used for
analysing different robot configurations [18].

In some cases, the kinematic nonlinearity of robotic actuators is a source of error which
requires special consideration [3,6]. The use of appropriate algorithms considerably reduces the
calculation time of the kinematics, and the use of simulation software is often extended to dynamics
modelling (considering the mass and the stiffness of the moving platform and legs) [19,20]. By using
a combination of design and finite elements, an integrated approach can be developed that simulates
the machine dynamics and solves the kinematics, taking into account rigid body dynamics, vibration
and strength [21].

The control strategy must command the actuators to achieve precise positioning, minimise the
error, and deal with system uncertainties. A proportional–integral–derivative controller (PID) is a
simple closed-loop method to correct uncertainties, the proportional integral (PI) controller version
being one of the most popular control approaches in the market. Several control strategies were
proposed in the literature to improve the performance of actuators in parallel robot architectures,
nevertheless, most of them were validated only through simulations. Among other schemes, the use
of inverse models, which represent the behaviour of a system mathematically, may become a simple
approach to improve the controller performance when compared to PI controllers. This strategy
corrects known nonlinearities in open loop control, even though errors caused by uncertainties
and external perturbations are not corrected. The combination of inverse models with feedback
controllers [8], such as H-infinity [11] and genetic algorithms [22], enables us to achieve higher accuracy.
Another approach is the use of inverse models to condition the closed loop feedback signal [9].
These schemes were validated by simulations.

Sliding mode control (SMC) is a nonlinear control approach that drives the state trajectory of the
system onto a specified sliding surface and maintains the trajectory on that surface for the subsequent
time under system uncertainties and perturbations. However, in conventional SMC design, a priori
knowledge of the bounds on system uncertainties must be acquired [23–25]. Several SMC-based
strategies to control Stewart platforms are proposed and verified by simulations: SMC with perturbation
estimation [26], integral SMC [5], continuous higher order SMC [27], and SMC with fuzzy tuning
design [28]. The combination of SMC with estimation techniques, such as state observers [29], allows the
conditioning of high frequency input signals [13], and estimating variables when not all states are
measured directly, by using super-twisting algorithms [2] and adaptive super-twisting algorithms [10].

This paper presents the development of an SMC aimed at positioning an inspection camera precisely
over a Stewart platform. This device is designed to perform inspections on aeronautical coupons,
which must fulfil severe quality standards, so that any positioning enhancements leads to substantial
improvements in the defect detection ratio. In the literature, the application of SMC in Stewart
platforms is validated mainly by simulations. In this study, the proposed SMC strategy is validated
experimentally as an alternative to the vendor-provided PI controller, which was producing improperly
focused images for the inspection application because it was not accurate enough. The experimental
results show that the overall platform performance can be improved by using this control scheme.
To develop the SMC strategy, in the first place the inspection platform is analysed and modelled in
Section 2, where the inverse and forward kinetics are calculated. Additionally, the system dynamics
are modelled in this section, which serve as basis to develop the SMC, in Section 3. The performance of
the proposed control scheme is evaluated and compared with the vendor-provided PI controller in
Section 4. As a final point, discussion conclusions are presented in Section 5.

2. Stewart Platform Mathematical Modelling

The Stewart platform presented in this paper must be controlled to ensure the position and
orientation of an inspection camera. The camera must check different aeronautical samples: several
sweep scans at a distance of 40 mm must be performed to ensure the quality of the specimen at different
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heights. The NDI system is shown in Figure 2a and the trajectory to follow when inspecting the
composite panel is shown in Figure 2b.

 

(a) 

 

(b) 

Figure 2. Inspection system prototype. (a) Test setup; (b) Trajectory scheme.

While recording images, it becomes essential to control the position with the greatest accuracy
possible in order to ensure that the camera is on the target, and it is vitally important that the camera
remains at a specific distance to the target to avoid defocusing, as shown in Figure 1. In this kind
of mechatronic system, an effective control strategy is mandatory to achieve successful positioning,
and consequently improve the image quality. To do this, firstly, it is necessary to perform an analysis
of the system, and create a mathematical model that represents it, as accurately as possible. Creating
the model according to the real needs (open or closed loop control, lifecycle, system instabilities, etc.)
is vitally important, so the design is optimized and accurate. In the following subsections, the kinetic
modelling and dynamic modelling are presented.

2.1. Platform Kinematics

In order to describe the Stewart platform position and orientation, six coordinates are needed.
Three of these coordinates, described by d, are positional displacements that locate the position of a
reference point in the moving platform with reference to a fixed coordinate system, selected as the base
B. The other three coordinates are angular displacements that describe the orientation of the moving
platform, represented as e, again with reference to a nonrotating coordinate system located in the base.

Bd =
[

x y z
]T

(1)

Be =
[
α β γ

]T
(2)

The platform position and orientation are controlled by the length of each actuator li.
The calculation of the actuator lengths is required to drive the Stewart platform over a certain
trajectory, this operation is done by using the Stewart platform kinematic transformations. Additionally,
to develop a successful control strategy, a correct modelling of the system is required. The following
subsections describe the inverse and forward kinematics [7,16] as well as the platform model.

328



Mathematics 2020, 8, 2051

2.1.1. Inverse Kinematics

The inverse kinematics determine the required actuator length for achieving a certain position
and orientation of the moving platform. Frame assignment for the robot wrist is illustrated in Figure 3,
where two coordinate frames, p and B, are assigned to the payload and base platforms, respectively.
The Cartesian variables are chosen to be the relative position and orientation of Frame p with respect to
Frame B, where the position of Frame p is specified by the position of its origin with respect to Frame B.
The position vectors of the centres of spherical joints in frame B and p can be expressed as:

Ppi =
[

rP cos(λi) rP sin(λi) 0
]T

(3)

Bbi =
[

rB cos(Λi) rB sin(Λi) 0
]T

(4)

Λi =
π
3
− θB

2
; λi =

π
3
− θP

2
, for i = 1, 3, 5 (5)

Λi = Λi−1 + θB; λi = λi−1 + θP, for i = 2, 4, 6 (6)

where rB and rP are the radius of the lower and upper platforms, θP = 23◦ and θB = 96◦ are the platform
and base angles between the first and second joints.

q1

q2 q3 q4
q5

q6

P1

P2
P3 P4

P5

P6

B1

B2

B3 B4

B5

B6

θP

θB

 

(a) 

P

B

Bi

Ppi
Pi

Bqi
Bd

XB

YB

ZB

ZP

XP

YP

Bbi

(b) 

Figure 3. Stewart platform schemes: (a) Stewart platform frame assignment; (b) vector diagram for the
ith actuator.

The leg vector Bqi pointing from attachment point Bi to point Pi can be expressed as follows:

Bqi =
B
PRPpi +

Bd− Bbi (7)

where B
PR is the orientation matrix required to calculate the platform spherical joint vectors in the base

coordinate system used in the rest equation terms.

B
PR =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosαcosβ cosαsinβsinγ− sinαcosγ cosαsinβcosγ+ sinαsinγ
sinαcosβ sinαsinβsinγ+ cosαcosγ sinαsinβcosγ− cosαsinγ

sinβ cosβsinγ cosβcosγ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)
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The length of each actuator can be calculated from the modules of the length vectors Bqi:

li =
∣∣∣Bqi
∣∣∣ (9)

2.1.2. Forward Kinematics

The forward kinematics allows calculating the platform position and orientation given specific
actuator lengths. Equation (9) represents a set of six highly nonlinear simultaneous equations, therefore
the Newton–Raphson method can be used to solve the kinematic problem. The objective is to calculate
the estimated lengths l∗i on an iterative process given an initial position estimation aj−1, until the value
of aj, which minimizes the fi(d, e) scalar function, is found.

fi(d, e) = li − l∗i (10)

The Newton–Raphson procedure for this case is:

1. Select an initial guess (j−1):

aj−1 =
[

dT eT
]T

(11)

2. Calculate the rotation matrix B
PR, with Equation (8), as the initial guess.

3. Calculate Bqi with Equation (7) and l∗i j−1 with Equation (9).

4. Calculate the unit vector Bq̂i:
Bq̂i =

Bqi/
∣∣∣Bqi
∣∣∣ (12)

5. Compute the inverse Jacobian matrix for the initial guess J−1
j−1:

J−1
j−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Bq̂T

1

(
B
PRa1 × Bq̂1

)T
...

...
Bq̂T

6

(
B
PRa6 × Bq̂6

)T
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (13)

6. Compute the estimation aj:

aj = aj−1 − Jj−1
(
l∗i j−1 − li

)
(14)

7. If l∗i j−1 − li is acceptable, take aj as the solution, otherwise repeat the procedure with the last
aj estimation.

2.2. Stewart Platform Dynamics

The Stewart platform is moved by means of six EMAs, attached in pairs to three positions on the
baseplate of the platform, crossing over to three mounting points on a top plate. The whole system can
be divided in six subsystems, each composed of one EMA. In these actuators, the rotary motion of
the motor is converted into linear displacements. If the interactions between actuators and external
disturbances are considered as perturbations, each EMA can be modelled as a second-order model
with a single element, as shown in Figure 4. pest represents the external forces, mi the mass attached to
the actuator, bi the friction and ki the actuator stiffness.
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(a) (b) 

Figure 4. Actuator models. (a) Actuator scheme, (b) actuator mechanical model.

With the proposed scheme, the equation that models the actuator dynamics results is as follows:

kili(t) + bi
.
li(t) + mi

..
li(t) = Fi(t) + pest(t) (15)

where t denotes the time variable. The force applied by the actuator Fi is proportional to the maximum
force Fmax and the pulse-width modulation (PMW) duty cycle dci.

Fi(t) = dci(t)Fmax (16)

3. Sliding Mode Control Calculation

The control strategy must command each actuator in order to achieve the desired trajectory with a
precise platform positioning and orientation, minimizing error and dealing with system uncertainties.
The proposed control scheme is shown in Figure 5. The platform setpoint is given in terms of position
and orientation (a), so at first the trajectory must be transformed to the equivalent actuator length
setpoint (b) by using the inverse kinematics explained in Section 2.1. Then, an SMC closed loop
control estimates the voltage outputs (c) that are needed to achieve each actuator length, based on the
EMA setpoints (b) and the measured lengths (e). The Stewart platform EMAs are controlled by the
SMC voltage input (c) and affected by possible disturbances (e.g., external forces, non-linearities) (d).
Finally, the EMA lengths (e) are measured by the encoders and transformed to the equivalent platform
position (f), which is done using the forward kinematics shown in Section 2.2. The inverse and forward
kinematics have been studied previously, therefore in this section the SMC strategy is developed.

PLATFORM 
SETPOINT

Inverse 
Kinematics SMC PLANT Foward 

Kinematics

Disturbances

PLATFORM 
POSITION

li

(a)

(b) (c) (e)

(d)

(f)

Figure 5. Stewart platform control scheme. The inverse and forward kinematics are used to calculate
the actuator length for a determined platform position, and vice versa. The sliding mode control (SMC)
generates the control action to bring the Stewart platform to the desired position.

The Stewart platform native closed loop control was a PI control strategy that provided a stable
response. The major drawback of this control was that it did not provide an accurate platform control,
therefore the NDI camera produced a low-quality IR image. To improve the positioning accuracy of the
platform, an SMC strategy was chosen, because it showed accurate results in previous studies. SMC is
a nonlinear control approach that drives the state trajectory of the system onto a specified sliding
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surface and maintains the trajectory on that surface for the subsequent time. However, in conventional
SMC design, a priori knowledge of the bounds on system uncertainties must be acquired in order to
calculate the sliding gain value that can surmount these uncertainties [23]. Perturbation estimation
strategies were studied in the literature [23,30]: one common approach to estimating perturbation pest

is as in Equation (15). Then, the system model becomes the following:

kili(t) + bi
.
li(t) + mi

..
li(t) = Fmaxdci(t) + pest(t) + p̃(t) (17)

where p̃(t) = p(t) − pest(t) represents the error between the real and estimated perturbations at the
system. To design the SMC controller, the position error is defined as follows:

e(t) = li(t) − ldi(t) (18)

where ldi represents the desired length. In the rest of this section, the time indices have been omitted for
the sake of brevity. Because the dynamic system of the EMA is a second-order system, a second-order
PID sliding surface was selected:

s =
.
e + λPe + λI

∫
e dt (19)

where λP is the proportional sliding gain and λI is the integral sliding gain. Studies show that the use
of output integral sliding mode control considerably improves the stabilisation of the desired position
of platform p as well as the velocity with which it stabilises [13].

For the system represented with Equation (17), with sliding surface defined in Equation (19) and
the position error given by Equation (18) which satisfies lim

t→0
e(t) = 0, the control law results as follows,

as proved in [30]:

dci =
mi

Fmax

(
bi
mi
− λP

)
.
li +

mi
Fmax

(
ki
mi
− λI

)
li − 1

Fmax
pest +

mi
Fmax

(..
ldi + λP

.
ldi + λIldi

)
− η sgn(s) (20)

where η is a positive switching gain and sgn(s) represents the signum function, as defined in the
following expression:

sgn(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1, for s < 0
0, for s = 0
1, for s > 0

(21)

The following candidate Lyapunov function was selected for analysing the stability of the system.
Its first derivative can be obtained as:

.
V = mis

.
s (22)

By taking the time derivative of both sides of Equation (19), the following sliding dynamics can
be generated:

.
s =

..
e + λP

.
e + λIe = −

(..
li −

..
ldi

)
− λP

(.
li −

.
ldi

)
− λI(li − ldi)

= −
( bi

mi
− λP
).
li −
( ki

mi
− λI
)
li +

dciFmax
mi

+ 1
mi
(pest + p̃) − ..

ldi − λP
.
ldi − λIldi

(23)

Then, substituting Equation (23) into Equation (22) with Equation (20) also taken into account yields:

.
V = −mi

( bi
mi
− λP
).
lis−mi

( ki
mi
− λI
)
lis + dciFmaxs + (pest + p̃)s

−mi

(..
ldi + λP

.
ldi + λIldi

)
s = −(Fmaxηsgn(s) − p̃)s = −(Fmaxη|s| − p̃s)

(24)
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If the gain is designed to meet the condition

η >

∣∣∣̃p∣∣∣
Fmax

− ε
Fmax

(25)

where ε > 0 is an arbitrary constant, then it follows that for |s| � 0,

η|s| >
∣∣∣̃p∣∣∣

Fmax
|s|+ ε

Fmax
|s| (26)

η|s| − p̃
Fmax

s >
ε

Fmax
|s| (27)

Fmaxη|s| − p̃s > ε|s| (28)

− (Fmaxη|s| − p̃s) < −ε|s| (29)

Hence, considering Equations (24) and (29), one can derive that

.
V < −ε|s| (30)

It can be concluded that the states can reach the switching surface s = 0 in finite time. Equation (30)
also ensures that the states will be confined to the surface s = 0 for all future time, because leaving the
surface requires

.
V to be positive, which is impossible as the above inequality implies. Thus, the switching

variable s→ 0 as t→∞ . According to the definition of s, we can conclude that the tracking error
satisfies lim

t→∞e(t) = 0 and lim
t→∞

.
e(t) = 0 and that li → ldi and

.
li →

.
ldi as t→∞ . Therefore, the SMC

controller guarantees a zero steady-state tracking error [30].
Due to the discontinuity of the sign function, the control input may produce chattering. To reduce

this phenomenon, the boundary layer technique was used by replacing the signum function by
hyperbolic tangent function. Hence, the proposed control law in Equation (20) using a hyperbolic
function and the proposed dynamic correction gives the following:

dci =
mi

Fmax

( bi
mi
− λP
).
li +

mi
Fmax

( ki
mi
− λI
)
li − 1

Fmax
pest +

mi
Fmax

(..
ldi + λP

.
ldi + λIldi

)
−η tanh

( .
e + λPe + λI

∫
e dt
) (31)

The equivalent control scheme for Equation (31) is presented in Figure 6.

− ̇ + −

− 1

−
̈ + ̇ +

−  tanh ̇ + +

Figure 6. SMC scheme. The PMW outputs (dci) are calculated with the actuators position feedbacks (li)
and the desired positions (ldi) as inputs.
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4. Experimental Results

In this section, the performance of the proposed SMC strategy is analysed experimentally. In order
to evaluate the SMC strategy, both accuracy and power consumption were compared with the native
PI control. For each analysis, graphs and average data were used to analyse the system behaviour.
NI MyRIO hardware system and NI LabVIEW 2017 software (National Instruments, Austin, TX, USA)
were used to control the Acrome Stewart platform (Acrome, Istanbul, Turkey). Six linear DC actuators
drove the platform and provided length feedbacks analogically. The MyRIO PWM output was applied
as a voltage to the DC motor via dual H-bridge motor drivers, which actuated as current amplifiers.

The monitoring and control loops were executed in the Xilinx Z-7010 RT processor at 1 kHz.
The PWM output, actuator lengths and setpoint data were registered at 50 Hz. The SMC gains were
adjusted experimentally: several trials were carried out to tune the control gains adequately and
obtain the optimal response of the controller. Low gain values produced high error and a slow system
response. On the other hand, it was observed that using control gains that were too high led to
chattering and an unstable system response. The PI original gains and the SMC-adjusted gains are
displayed in Table 1.

Table 1. Control gains.

PI SMC

P = 0.04 λP = 0.4
I = 0.02 λI = 0.02

In order to perform the surface inspection, the platform must follow the fixed sweep path
schematically marked in black in Figure 2b, which corresponds to the trajectory shown in Figure 7a.
In this study, the first two sweeps were analysed to limit the amount of data. The trajectory firstly
requires a displacement along the x axis at constant speed, and then, a second displacement in the
opposite x direction at a different z level. As mentioned in Section 2, the positioning must be accurate,
and particularly, so must the distance between the surface and the camera lens (z axis). Variations
lower than +/−1 mm were required to obtain valid inspection images. By using the inverse kinematics,
the required leg length setpoint profile was calculated from the inspection trajectory, which is shown
in Figure 7b. Because the platform moved along the y axis, each pair of legs moved with the same
profile with the following combinations: l1–l6, l2–l5 and l3–l4.
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Figure 7. Trajectories graphs: (a) Stewart platform absolute position and orientation (b) Actuator lengths.

To evaluate the positioning accuracy of each control strategy, both the trajectory error and length
error were analysed. The absolute position and angles measurements were not available, therefore
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the forward kinetic transformation was used to calculate these data from the known actuator lengths.
Figure 8a,b shows the length errors in PI and SMC strategies. The PI control produced a smooth
actuator response which caused length deviations up to +/− 2.0 mm, as can be observed in Figure 8a.
In this figure we can observe that the error in each pair of EMAs l1–l6, l2–l5 and l3–l4 is similar. The SMC
provided a better performance and reduced the maximum actuator length error to less than +/− 0.5 mm,
as depicted in Figure 8b.
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Figure 8. Positioning error graphs: (a) proportional integral (PI) length errors; (b) SMC length errors
graph; (c) PI trajectory errors graph; (d) SMC trajectory errors graph.

PI compared with the SMC shows a similar response during the first 0.5 s, when a continuous
setpoint is required. Under those conditions, the integral gain in both control strategies reduced the
error successfully. PI command was stable due to the low proportional gain, whereas SMC corrected the
actuator positions continuously. Nevertheless, the accumulated error in both strategies was practically
the same during this fixed period of time, as shown in Figure 9. Afterwards, as the setpoint commands
changed and EMA lengths variations were required, SMC effectively controlled the EMA lengths
within an error of less than 0.5 mm, proving the great response of this control strategy. On the contrary,
using the PI EMAs errors increased up to 2 mm: the PI control does not provide a proper PWM
command to achieve the EMAs setpoints. The PI control showed a slight difference between the
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upper error (+2 mm) and lower error (−1.5 mm). This deviation was caused by the platform weight,
which helps to shorten the EMAs downwards, but impedes their extension upwards.
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Figure 9. Absolute error comparison between the two control schemes graph.

The errors in the EMAs mentioned above caused deviations in the positioning of the Stewart
platform. Figure 8c,d shows that both control strategies followed the desired trajectory. However,
only SMC achieved a positioning y error of between +/− 1 mm. Additionally, the positioning error
along the x and z axes was considerably higher when using the PI control. Hence, the PI control,
which is not accurate enough, caused most of the recorded images to be defocused. In both strategies,
the x and z axis deviation was remarkably smaller than in the y axis, mainly because the movement
was in the y direction in the plane x/y: Because each pair of actuators was symmetrically placed along
the plane x/y, the control in the z axis was more precise and deviations were compensated between
the pairs of actuators. Although SMC presented deviations higher than 1 mm in the x axis, the NDI
exhibited a sharp image quality.

Another approach to evaluate the system accuracy is to compare the accumulated absolute EMA
error, which is the sum of the absolute error of each actuator. Figure 8 represents the absolute error
comparison between PI and SMC. Whereas the PI average error is 3.45 mm, the SMC average error is
0.78 mm. Only when no dynamic response of the EMAs was required, were the PI and SMC absolute
errors practically the same. Hence, it may be concluded that the accuracy provided by the SMC strategy
is remarkably higher.

To analyse the power consumption, its value was estimated from the duty cycle commands.
Once the duty cycle and the actuator maximum consumption were known, the power of each actuator
was calculated. Figure 10 shows that the PI control required a smooth power variation. The SMC, as a
nonlinear control, required a more demanding peak–valley consumption. In any case, the average
power consumption for both control strategies were quite similar: PI = 9.41 watts and SMC = 9.62 watts.
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Figure 10. Power consumption comparison between the two control schemes graph.
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5. Conclusions

The use of Stewart platforms as NDI orientation apparatus offers six degrees of freedom,
high rigidity, a high payload-to-weight-ratio, and low moving inertia. The aeronautical inspection
application presented in this paper requires highly precise positioning, otherwise, non-desirable
blurred imaging is obtained affecting the quality of the inspection system. A new control strategy
approach, based on the system model analysis, was proposed and validated experimentally as a
solution to overcome positioning errors.

The Stewart platform is driven by six electro mechanic actuators that must be coordinated to
achieve the desired trajectory and position. The calculation of the kinematics of the mechanism is
necessary to obtain the relationship between the position/orientation of the platform and the EMA
lengths. Whereas the inverse kinematics can be calculated directly analytically, the forward kinematics
require the use of the Newton–Raphson method to find a solution. As an alternative to the native
proportional integral (PI) control, which was unable to position the platform accurately enough,
a sliding mode control (SMC) system was proposed. The SMC strategy was calculated based on
the actuator second-order model with a single element. Interactions between actuators and external
disturbances were modelled as perturbations.

The validation, which was performed in the physical technology demonstrator, shows that
SMC can be a successful solution to control Stewart platform devices. In comparison with the
vendor-provided PI control strategy, the SMC achieves higher performance while executing the
actuators commands and desired platform positioning: the average absolute error is reduced from
3.45 mm in PI to 0.78 mm when using the SMC approach presented here. In this range of error,
the NDI system succeeds in obtaining sharp images. Although the PI control demands a smoother
actuator response, the experimental results prove that the power consumption is similar in both
control approaches.

The proposed device was constructed to perform analyses of small plain coupons; however
this control scheme can be implemented in bigger parallel platforms and anthropomorphic robotic
arms aimed at structure diagnoses of bigger and more complex structures, e.g., aircraft components,
car parts, etc. Future research on the topic should be focused on the comparison of SMC with other
robust control schemes, such as fuzzy logic controllers, H-infinite and artificial neural networks, and on
the development of a hybrid SMC, e.g., fuzzy logic SMC and artificial neural network SMC, to verify
whether there is room for improvement.
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Abstract: The main goal of the research is to design a low-cost, performing quadrotor unmaned aerial
vehicle (UAV) system. Because of low cost limits, the performance must be ensured by other ways.
The present proposal is a quaternion-based estimator used in the control loop. In order to make the
proposed solution easy to be reproduced by the reader, step-by-step instructions are given, including
component choices, design, and implementation. Throughout the article, detailed description of the
system model is given. The efficacy of the suggested quaternion-based predictive control is evaluated
by extended experimental results.

Keywords: unmanned aerial vehicle (UAV); quaternion-based estimator; low-cost design

1. Introduction

Unmanned aerial vehicles (UAV)s have fascinated many researchers and engineers, as they turned
out to be accessible in a large variety of applications, not just for costly military operations. Nowadays,
UAVs have a broad range of applications, such as: image capturing, aerial recording, military operations,
operations in hard-to-reach areas, etc., [1–7]. Along with the development of wireless communications,
the control of UAVs has become extremely precise, robust, and even predictive. New research results
in the design of UAVs and new application areas include advanced and complex control techniques
like robust and adaptive control, algorithms for different flight conditions, fault tolerance, disturbance
rejection, etc., [8–13]. All these methods increase the complexity and the cost of the UAV. Because of the
extremely alert technological progress registered in the past two decades, the global industrialization
and the minimization of the costs of electronic components, countless researchers have shown a high
interest in the development of various devices helpful for the society.

One key issue regarding the control of UAVs resides in the estimation of their position. Various
methods have been proposed. An efficient method is presented in [14], both from the point of view
of the algorithm’s performance and from the point of view of using the processing capacity of a
microcontroller. Several estimation algorithms are compared in [15], with the results showing that the
extended Kalman algorithm is slower in terms of processing time than Madgwick algorithm [15].

The approach of estimating the pitch and roll coordinates presented in [16] constitutes a reference
that fits perfectly in the context of the present paper. For the application of the algorithm proposed
in the paper, a method of fusion of the data received from an accelerometer, a gyroscope, and a
magnetometer was used to estimate, accurately, the position of a flight apparatus. A combination
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of the extension of the classical Kalman filtering algorithm and the sequential geometric correction
is proposed, completely eliminating the magnetic distortions captured by the sensor. In addition,
the paper offers a clear and concise comparison between certain popular approaches to the problem
of estimating the coordinates of a flight apparatus and the method proposed by the author. Both the
improvements and the problems that arise in the implementation of this method are presented.

From all the knowledge resulting from this state-of-art, it can be concluded that UAVs can be
made at a relatively lower cost. Simple transducers can be used, as long as this is compensated by a
high performance and optimized estimation algorithm. The authors already designed a cheap and
easy to use two-rotor equipment, in order to be multiplied for laboratory works [17,18].

Quaternion framework is widely used today to avoid locks and to ensure better computational
efficiency [19,20]. The field of application is large, ranging from mechanical systems [21] and medical
robots [22] to neural networks [23] and human activities and postures recognition [24], all research
papers reporting remarkable results. Quaternions are also used in UAV control with great success.
In [25], the authors developed a nonlinear state space model using the quaternion and angular velocity
as state variables, which simplifies the system dynamics. The main focus of the research is directed
toward the feedback linearization of the model. The simulation results are presented solely for the
attitude stabilization task of the quadcopter. A quaternion representation of the attitude of a quadrotor
is also used in [26], where various control methods are discussed and compared, such as the PD,
LQR, and backstepping methods. Various case scenarios are discussed including noisy data, actuator
restrictions, external disturbances. The attitude control of a quadrotor is designed in a quaternion
framework in [27], to avoid gimbal lock and for better computational efficiency. The controllers
are tuned based on third-order sliding mode control, with a low-pass filter to reduce chattering
and a disturbance observer to cover disturbance estimation problems. To ensure the robustness,
a disturbance compensation term is also included in the control law. The simulation results show
that the proposed method is efficient. In [28], two variants of adaptive state space controllers for
attitude stabilization and self-tuning of a quadrotor are proposed. The effectiveness of the approach
is demonstrated through simulations that use a quaternion-based nonlinear dynamic model of a
quadrotor. A quaternion representation of the attitude of a quadrotor is also used in [29], where a
quaternion-energy-based control law is defined as a Lyapunov function, with the control laws described
with unit quaternions and their axis-angle representation. Various simulation and experimental results
are presented. Unit quaternions are also used in [30] to describe a simple yet complete dynamic
model for the rotational and translational dynamics of unmanned aerial vehicles, whereas dual
quaternions are explained and used for robotic systems with multiple rotations and translations.
An unmanned aerial vehicle described with unit quaternions is presented in [31]. In this case,
a quaternion-passivity-based control is derived. The experimental results and numerical simulations
validate the results. Intermediary quaternions are used in the design of a backstepping control
technique with integral properties in [32]. Compared to classical quaternions, the proposed approach
has also the advantage that one specific orientation corresponds to only one intermediary quaternion,
which helps coping with the unwinding phenomenon. Numerical simulations, as well as experimental
tests, are presented. The robustness of the algorithm is also tested during the numerical simulations
only. In [33], a quaternion-based guidance law is proposed which feeds into an attitude control system
based on a PD+ control law. A quaternion control scheme for a quadrotor is also proposed in [34].
An attitude control algorithm is developed to stabilize the vehicle’s heading and an additional position
control law for stabilization of the vehicle in all states. In this case also, numerical and experimental
results are presented to validate the approach. An advanced control scheme, also based on quaternions,
is presented in [35] for the attitude control of a quadrotor. Here, both the model and the proportional
squared control algorithm are implemented in the quaternion space. Extended simulation results are
included to demonstrate the efficacy of the suggested novel approach. Quaternions for attitude control
are also used in [36], where a quaternion multiplicative formula is proposed to obtain the change of
the attitude angle of a quadrotor. Only some practical solutions are presented.
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Other recent significant results in UAV control includes more complex structures or calculus.
In [37], a control structure based on a hierarchical scheme is proposed, consisting of an energy-based
control to stabilize the vehicle translational dynamics and to attenuate the payload oscillation and a
nonlinear state feedback controller based on a linear matrix inequality (LMI) to control the quadrotor
rotational dynamics. The authors of [38] propose a neuroadaptive integral robust controller, while [39]
discusses the dynamic motion planning and control of an UAV using Direct and the Second Method
of Lyapunov. An interesting, but complex solution is proposed in [40], where the dynamic system is
divided in two subsystems driven by the translational and the rotational dynamics, based on a linear
parameter-varying model.

All these approaches have in common the use of advanced control algorithms, with the major
drawback of requiring expensive hardware for implementation purposes. Thus, the main objective of
the present work is to design and implement a low-cost, easy to use quadrotor UAV, accessible for
any user. A quaternion-based estimator is proposed, similarly to existing research studies. However,
in terms of the proposed control strategy, the classical PID controller is used, instead of advanced
control algorithms. In this way, the implementation of the control strategy is simplified, which triggers
the possibility of using low-cost devices for measurement and control. The final control structure
includes four controllers, one for each direction of movement. Step by step design and implementation
details are presented in order to be easily reproduced by the reader. Using simulation and experimental
data, the proposed method is validated. The results show that similar closed loop performance can be
achieved using our proposed approach, compared to other more advanced control strategies. The major
advantage is that using our proposed method, these results are achieved using a low-cost UAV with a
simple, yet efficient control strategy. The novelty of this work consists, thus, in a quaternion-based
estimator and classical Proportional-Integral-Derivative (PID) control strategy, implemented using
low-cost microcontroller and sensors. For the proposed remote control, performances are imposed in
terms of rejecting a moderate range of disturbances and filtering sensor noisy signals.

The rest of this paper is organized as follows. The materials and methods used are presented in
the next section. The resulting quadrotor UAV prototype, along with experimental data, is detailed in
Section 3. Finally, conclusions are presented in Section 4.

2. Materials and Methods

From construction point of view, the system includes the following elements: plastic skeleton
for the flight apparatus; support for the electrical circuit of the remote control; electrical circuits;
ATmega32U4 and ATmega 328 microcontrollers; four DC motors; four electronic velocity controllers;
four propellers; two wireless remote communication modules and a position detection module.

The main aspects of the flight apparatus described in this work are defined by: the number of
engines, the position of the support arms, the mass and the center of gravity of the whole assembly.
The arms are mounted in “X,” to allow easy change of direction, and the center of gravity is fixed at
the intersection of the axes of the arms. The change of direction is facilitated by the control of the
angular velocity of the engines. The motors are positioned as follows: two motors on one diagonal
are rotated in the same direction, while the remaining two motors on the other diagonal rotate in
the opposite direction. Viewed as a whole, the system is composed of a four-arm flight apparatus
mounted in “X” and a remote control that provides references to the control circuit located on the
quadrotor. They communicate via the UART protocol, using two RF transmission and reception
modules. Two-way data exchanges are made between the quadrotor and the remote control, so both
items send data and await receipt.

Regarding the mechanical design of the system, a variety of computer-aided design environments
could be used to create 3D drawings and model the parts necessary for the physical realization of the
system. In the present work AutoCAD and SolidWorks were adopted. In addition, Ultimaker Cura–a
G code generator and a 3D printer that could correctly interpret the generated code—was operated to
create the remote control.
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After choosing the components, measuring their dimensions and making the connections,
an electrical scheme could be conceived. The present practice used a CAD/CAM environment provided
by Autodesk, called Eagle.

The device is designed in such way that the center of gravity coincides with the geometric one,
also serving as the center of the coordinate system attached to the quadrotor. This coordinate system
describes the relative movements of the flight apparatus to a fixed coordinate system, with an axis
perpendicular to the earth’s surface. The other two axes of the fixed coordinate system can be chosen so
as to coincide with cardinal points whose axes are perpendicular (for example north-east or south-west).

Like any aerial vehicle, this system has also six degrees of freedom, meaning three movements
of translation and three of rotation. All these movement possibilities are strongly dependent on the
velocity and implicitly the angular velocity of the four engines. Therefore, depending on these aspects,
the following kinetic forces and moments developed and applied to the quadrotor can be distinguished:
the altitude advance, the gyroscopic effect, the yaw moment, the pitch moment, the roll moment
and, of course, the force of gravitational attraction. The increase or decrease of altitude is possible by
simultaneously increasing or decreasing the velocity of all engines. In order to maintain a constant
altitude it is necessary to drive the engines at the same velocity, each developing the same angular
velocity. Unlike the altitude movement, the kinetic yaw, pitch, and roll momenta are obtained by
differentiating the engine velocity. The yaw moment, or rotation around the vertical axis, is obtained
by simultaneously increasing the velocity of two motors rotating in the same direction. Depending on
the chosen engine group, the flight apparatus will rotate clockwise or trigonometrically.

2.1. Quaternion-Based Estimator

In order to obtain the orientation angles and to facilitate the calculus, two representations can be
used, namely: Euler angles and quaternions.

Quaternions are used to express the orientation of a coordinate system to a reference system [41].
Given an angle of rotation Ψ about the axis “r, an orientation of the coordinate system B can be
represented with respect to the system A as follows [41]:

A
B q̂ =

[
q1q2q3q4

]
=
[
cos

Ψ
2
−“rx sin

Ψ
2
−“ry sin

Ψ
2
−“rz sin

Ψ
2

]
(1)

The terms “rx, “ry, “rz represent the components of the unity vector “r of the reference system A.
A very important advantage presented by this angle expression method is that the product of

two quaternions C
Dq̂ and D

E q̂ represents the orientation of the system E with respect to the reference
system C.

Moreover, the orientation described by a quaternion A
B q̂ =

[
q1 q2 q3 q4

]
can be expressed by the

rotation matrix A
B R, representing the rotation of the coordinate system B with respect to the reference

system A. The dependence between the quaternion terms and the rotation matrix is presented in
Equation (2) [16,20].

A
B R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2q2

1 + 2q2
2 − 1 2

(
q1q4 + q2q3

)
2
(
q2q4 − q1q3

)
2
(
q2q3 − q1q4

)
2q2

1 + 2q2
3 − 1 2

(
q1q2 + q3q4

)
2
(
q1q3 + q2q4

)
2
(
q3q4 − q1q2

)
2q2

1 + 2q4
2 − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

Although, from a computational point of view, obtaining orientation using quaternions is more
efficient, they are hard to interpret physically. Thus, in order to have a clear picture of the real
movement, the orientations expressed by quaternions are transformed into representations using Euler
angles. To carry out these transformations, Equations (3)–(5) could be used [21].

Ψ = atan
(
2q2q3 − 2q1q4, 2q2

1 + 2q2
2 − 1
)

(3)
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θ = arcsin
(
2q1q3 + 2q2q4

)
(4)

Φ = atan
(
2q3q4 − 2q1q2, 2q2

1 + 2q2
4 − 1
)

(5)

In order to obtain the real values of the angles, a sensor with 9 degrees of freedom was used,
consisting of an accelerometer, a gyroscope, and a magnetometer. The sensor used is from the MPU9250
family and communicates with the microcontroller via the I2C interface, at a frequency of 400 kHz.
The I2C protocol is a very popular data transmission protocol, due to the multitude of advantages it
presents [42]. For data filtering and estimating the orientation of the aerial vehicle, the quaternion
representation described above was used. With a physical interpretation much closer to reality, the data
provided by the gyroscope are filtered and estimated easily. Thus, the angular positions on the X,
Y, and Z axes are arranged in a vector W as described in Equation (6). In addition to these three
elements, on the first position in the vector is inserted the term 0 in order to be able to perform
quaternion products.

W =
[
0 wx wy wz

]
(6)

Ref
Sensor

.
q = Ref

Sensorq ⊗W (7)

With the angular position arranged in the vector W it is possible to compute the orientation change
of the coordinate system given by the earth to the coordinate system attached to the UAV. This calculus
is represented in Equation (7).

Where the term Ref
Sensorq represents the current orientation of the coordinate system given by the

earth to the quadrotor coordinate system.
In order to obtain an orientation of the coordinate system attached to the quadrotor with respect

to the reference one, at a time t it is necessary to perform the mathematical operations detailed in
Equations (8) and (9).

Sensor
Ref

.
qgyro,k =

1
2

Sensor
Ref qest, k−1 ⊗W (8)

Sensor
Ref qgyro,k = Sensor

Ref qest, k−1 +
Sensor

Ref
.
qgyro,kTs (9)

where TS represents the sampling time, and t = k·TS.
Because of the nature of the data from the accelerometer, an optimization problem can be

formulated in which the orientation of the sensor Sensor
Ref q̂ and, implicitly of the flight system, is given

by minimizing the difference between the orientation of the reference system of the earth dref and that
of the sensor, dsensor. The objective function to be minimized of is described by Equations (10) and (11),
with the components detailed in (12)–(14).

of
(
Sensor

Ref q̂, dref, dsensor
)
= Sensor

Ref q̂∗ ⊗ dref ⊗ Sensor
Ref q̂ − dsensor (10)

of
(
Sensor

Ref q̂, dref, dsensor
)
=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2drx
(

1
2 − q2

3 − q2
4

)
+ 2dry

(
q1q4 + q2q3

)
+ 2drz

(
q2q4 − q1q3

)
− dsx

2drx
(
q2q3 − q1q4

)
+ 2dry

(
1
2 − q2

2 − q2
4

)
+ 2drz

(
q1q2 + q3q4

)
− dsy

2drx
(
q1q3 + q2q4

)
+ 2dry

(
q3q4 − q1q2

)
+ 2drz

(
1
2 − q2

2 − q2
3

)
− dsz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

Sensor
Ref q̂ =

[
q1 q2 q3 q4

]
(12)

dref =
[
0 drx dry drz

]
(13)

dsensor =
[
0 dsx dsy dsz

]
(14)

In order to solve this optimization problem, the conjugate gradient method is used, a simple,
efficient method that requires a relatively low computing power [43]. However, the conjugate gradient
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method presents a number of disadvantages related to the algorithm step, μ and the initial point
Sensor

Ref q̂0. Equations (15) and (16) describe the estimation of future orientation Sensor
Ref q̂k+1.

Sensor
Ref q̂k+1 = Sensor

Ref q̂k − μ F
‖F‖ (15)

F =
∂f
(
Sensor

Ref q̂, dref, dsensor
)

∂
(
Sensor

Ref q̂, dref
) of

(
Sensor

Ref q̂, dref, dsensor
)

(16)

The general cost function of given in (10) can be simplified to be easy to implement even in a
low-cost microcontroller. Because of the fact that by convention gravitational acceleration determines
only the Z axis of the reference system, this objective function can be expressed as in Equation (17),
while the vectors dref and dsensor are given in (18) and (19).

of
(
Sensor

Ref q̂, dref, dsensor
)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2
(
q2q4 − q1q3

)
− dx

2
(
q1q2 + q3q4

)
− dy

2
(

1
2 − q2

2 − q2
3

)
− dz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (17)

dref = [0 0 0 1] (18)

dsensor =
[
0 dx dy dz

]
(19)

The data obtained from the magnetometer will be processed in the same way as the data obtained
from the accelerometer, but with a more laborious processing given by the decomposition of the earth’s
magnetic field in both a component on the X axis and one on the Z axis. To obtain the next orientations
Sensor

Ref q̂k+1, the same conjugate gradient algorithm will be used. Equation (20) describes the objective
function, with the terms detailed in (21) and (22), while Equation (23) presents the gradient of the
objective function.
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3
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (20)

mref = [0 mrx 0mrz] (21)

msensor =
[
0 msx msy msz

]
(22)

F =
∂of
(
Sensor

Ref q̂, mref, msensor
)

∂
(
Sensor

Ref q̂, mref
) of

(
Sensor

Ref q̂, mref, msensor
)

(23)

In order to obtain both a measurement and an accurate estimation of the orientation of the
quadrotor, it is necessary to compose the two objective functions presented in Equations (10) (or the
simplified form in (17)) and (20). Also, the gradient of both functions will be used to implement the
conjugate gradient algorithm for the combination of functions. The composition will be noted with fcom

and the gradient of this compound function will be noted by Fcom. In addition, to make the algorithm
more efficient, the step μ will be variable and recomputed at each iteration, as shown in Equation (24).
The algorithm and the gradient of the new objective function are presented in Equations (25) and (26):

μt = α‖Actual
Ref

.
qgyro,k‖TS (24)

Sensor
Ref qcom,k = Sensor

Ref q̂est,k−1 − μt
Fcom

‖Fcom‖ (25)
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Fcom =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂f(Sensor

Ref q̂est,k−1, dSensor)
∂(Sensor

Ref q̂est,k−1)
f
(
Sensor

Ref q̂est,k−1, dSensor
)

∂f(Sensor
Ref q̂est,k−1, mref, mSensor)
∂(Sensor

Ref q̂est,k−1, mref)
f
(
Sensor

Ref q̂est,k−1, mref, mSensor
)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (26)

whereα is a constant chosen experimentally to minimize the measurements noise from the accelerometer
and magnetometer, TS is the sampling period, Actual

Ref
.
qgyro,k, represents the orientation given by the

gyroscope, computed using Equation (8).
Because of the fusion of measurements from the gyroscope, Sensor

Ref qgyro,k and those from the
accelerometer and magnetometer Sensor

Ref qcom,k, a weighted, very accurate estimate is obtained,
as presented in Equation (27). The weight Pk will be computed at each iteration based on the
step μt, a control constant β, and the sampling period TS, as in (28).

Sensor
Ref q̂est,k = Pk

Sensor
Ref qcom,k + (1− Pk)

Sensor
Ref qgyro,k (27)

Pk =
β

μt
TE

+ β
(28)

The proposed filter in (27) and (28) ensures an accurate estimation such that Sensor
Ref q̂est,k → Sensor

Ref qk

as k→∞. This can be easily proved using the classical Lyapunov function.
At each iteration, after obtaining the current estimate, Equations (3)–(5) are used to express the

Euler angle orientation, which gives a much easier to understand perspective on the movement of
the quadrotor.

After obtaining the orientation angles and converting them from quaternions to Euler angles,
at each iteration the rotation matrices Rx(Φ), Ry(θ), and Rz(Ψ) will be constructed. With these matrices,
the rotation matrix of the entire system Rxyz(Ψ, θ, Φ) is computed, as described in Equations (29)–(32).

Rx(Φ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 c(Φ) −s(Φ)

0 s(Φ) c(Φ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (29)

Ry(θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
c(θ) 0 s(θ)

0 1 0
−s(θ) 0 c(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (30)

Rz(Ψ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
c(Ψ) −s(Ψ) 0
s(Ψ) c(Ψ) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (31)

Rxyz(Φ, θ, Ψ) = Rx(Ψ)·Ry(θ)·Rz(Φ) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
c(θ)c(Ψ) s(Φ)s(θ)c(Ψ) − c(Φ)s(Ψ) c(Φ)s(θ)c(Ψ) + s(Φ)s(Ψ)

c(θ)s(Ψ) s(Φ)s(θ)s(Ψ) + c(Φ)c(Ψ) c(Φ)s(θ)s(Ψ) − s(Φ)c(Ψ)

−s(θ) s(Φ)c(θ) c(Φ)c(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (32)

where c(Ψ) = cos(Ψ), s(Ψ) = sin(Ψ), c(θ) = cos(θ), s(θ) = sin(θ), c(Φ) = cos(Φ), s(Φ) = sin(Φ).

2.2. Quadrotor Kinematic and Dynamic Model

In order to establish an efficient mathematical model, as close as possible to the reality,
which ensures greater system controllability, it is necessary to use the Equations of Newton classical
mechanics and of Euler for angular motions. It is also necessary to take into account both the relative
movements of the fixed coordinate system (in this case, the earth), as well as the relative dynamics of
the coordinate system attached to the quadrotor. Thus, two vectors, Pp and Pa, will be used, described
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by Equations (33) and (34). Pp is the vector of the linear and angular positions of the flight system
relative to earth, while Pa is the vector of the linear and angular velocities of the quadrotor.

Pp =
[

x y z Φ θ Ψ
]T

(33)

Pa =
[

u v w p q r
]T

(34)

To link these two vectors, the rotation matrix Rxyz(Φ, θ, Ψ) and a matrix of angular velocity
transformations, Tv(Φ, θ) is used, derived from the inverse of the derivative of the Euler angle change
rate. Thus in Equations (35)–(40) the dependencies between the vectors Pp and Pa are detailed.

vp =
[ .

x
.
y

.
z
]T

(35)

ωp =
[ .

Φ
.
θ

.
Ψ
]T

(36)

va =
[

u v w
]T

(37)

ωa =
[

p q r
]T

(38)

vp = Rxyz(Φ, θ, Ψ)·va (39)

ωp = TV(Φ, θ)·ωa (40)

The vectors vp and ωp are the derivatives of the linear and angular positions of Pp, while va and
ωa are the linear and angular velocities of the vector Pa. The matrix of angular velocity transformations
Tv(Φ, θ) is constructed as described by Equation (41).

Tv(Φ, θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 c(Φ) tan(θ) c(Φ) tan(θ)
0 c(Φ) −s(Φ)

0 s(Φ)
c(θ)

c(Φ)
c(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (41)

Performing the multiplications leads to the kinematic model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
x = uc(Ψ)c(θ) − v[c(Φ)s(Ψ) − c(Ψ)s(Φ)s(θ)] + w[s(Φ)s(Ψ) + c(Φ)s(Ψ)s(θ)]
.
y = uc(θ)c(Ψ) + v[c(Φ)c(Ψ) + s(Φ)s(θ)s(Ψ)] −w[c(Ψ)s(Φ) − c(Φ)s(Ψ)s(θ)]
.
z = −uc(θ) + vc(θ)s(Φ) + wc(Φ)c(θ)
.

Φ = p + qs(Φ)t(θ) + rc(Φ)t(θ)
.
θ = qc(Φ) − rs(Φ)
.

Ψ = q s(Φ)
c(θ) + q c(Φ)

c(θ)

(42)

From Newton’s laws, the forces acting on the quadrotor can be determined. These will be denoted
with vector Fa and calculated as described in Equations (43) and (44).

Fa = mq(ωa × va +
.
va) (43)

Fa =
[

fx fy fz
]T

(44)

where mq denotes the mass of the quadrotor, “ × ” is the vector product of the linear and angular

velocity relative to the quadrotor coordinate system, while
..
va is the linear acceleration.
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Similar to the computation of the force, the angular velocity applied to the quadrotor will also be
determined from Euler’s Equation. These velocities will be noted with Ma, and are strongly dependent
on the inertia matrix I, as it is presented in Equations (45)–(47).

Ma = I· .
ωa +ωa × (I·ωa) (45)

Ma =
[

mx my mz
]T

(46)

I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ix 0 0
0 Iy 0
0 0 Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (47)

Combining Equations (44) and (46), the dynamic model of the quadrotor relative to its own
coordinate system can be expressed as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fx = m
( .
u + qw− rv

)
fy = m(

.
v− pw + ru)

fz = m
( .
w + pv− qu

)
mx =

.
pIx − qrIy + qrIz

my = prIx +
.
qIy − prIz

mz = −pqIx + pqIy +
.
rIz

(48)

The forces and velocities described above can also be expressed by Equations (49) and (50).

Fa = mqgRxyz(Φ, θ, Ψ)T·êz − fp·ê3 + fv (49)

Ma = τa − ga + τv (50)

In the above expression mq means the total mass of the quadrotor, g is the gravitational acceleration,
êz and ê3 are the unit vectors on the Z axis of the reference coordinate system, respectively of the
coordinate system attached to the quadrotor. The element fp represents the total propulsion force

developed by the engines, and fv =
[

fvx fvy fvz
]T

represents the disturbances or forces that are
opposed to the rotation of each engine, caused by air currents. τa represents the angular velocity
generated by the velocity differences of the four motors, while τv stands for the angular velocities
produced by air currents on each motor, detailed in Equations (51) and (52). ga are the gyroscope
moments caused by the combined velocities of the four motors. Given the fact that the inertia of the
motors is negligible compared to the developed force, the gyroscopic moments may be neglected from
Equation (50).

τa =
[
τx τy τz

]T
(51)

τv =
[
τvx τvy τvz

]T
(52)

Replacing these new Equations for forces and velocities, a new dynamic model is obtained:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−mqgs(θ) + fvx = mq
( .
u + qw− rv

)
mqgc(θ)s(Φ) + fvy = mq(

.
v− pw + ru)

mqgc(θ)c(Φ) + fvz − fp = mq
( .
w + pv− qu

)
τx + τvx =

.
pIx − qrIy + qrIz

τy + τvy = prIx +
.
qIy − prIz

τz + τvz = −pqIx + pqIy +
.
rIz

(53)
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In order to control the quadrotor, the dependence between the propulsion force fp, velocity
τa, and the motor’s angular velocities Ωa =

[
Ω1 Ω2 Ω3 Ω4

]
needs to be introduced in the

model, using Equation (54). ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

fp = b
(
Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4

)
τx = b·l

(
Ω2

1 + Ω2
2 −Ω2

3 −Ω2
4

)
τy = b·l

(
Ω2

1 + Ω2
4 −Ω2

2 −Ω2
3

)
τz = d

(
Ω2

1 + Ω2
3 −Ω2

2 −Ω2
4

) (54)

where b is a propulsion coefficient and d is the aerodynamic resistance coefficient. The term l represents
the distance from the center of gravity of the quadrotor to the center of rotation of the engine. This term
is equal for all four arms of the quadrotor. In addition, replacing the terms obtained from Equation (54)
in (53) leads to a new expression of the dynamic model, given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−mqg s(θ) + fvx = mq
( .
u + qw− rv

)
mqg c(θ)s(Φ) + fvy = mq(

.
v− pw + ru)

mqgc(θ)c(Φ) + fvz − b
(
Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4

)
= mq

( .
w + pv− qu

)
b · l
(
Ω2

1 + Ω2
2 −Ω2

3 −Ω2
4

)
+ τvx =

.
pIx − qrIy + qrIz

b · l
(
Ω2

1 + Ω2
4 −Ω2

2 −Ω3
2

)
+ τvy = prIx +

.
qIy − prIz

d
(
Ω2

1 + Ω2
3 −Ω2

2 −Ω2
4

)
+ τvz = −pqIx + pqIy +

.
rIz

(55)

This model will be used as predictor in the control structure.

2.3. Quadrotor State Space Model Used for Controller Design

The next step consists in the model design in a state space form, in order to easily apply the
controller design methods. Therefore, the state vector X, the input vector u, and the output vector y
will be chosen as it is presented below:

X =
[

Φ θ Ψ p q r u v w x y z
]T

(56)

u =
[

fp τx τy τz
]T

(57)

y =
[

Φ θ Ψ fp
]T

(58)

Using this state vector X and Equations (42) and (55), one can determine the derivative of this
state vector,

.
X:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
Φ = p + qs(Φ)t(θ) + rc(Φ)t(θ)
.
θ = qc(Φ) − rs(Φ)
.

Ψ = q s(Φ)
c(θ) + r c(Φ)

c(θ)
.
p =

Iy−Iz
Ix

qr + τx+τvx
Ix.

q = Iz−Ix
Iy

pr +
τy+τvy

Iy
.
r =

Ix−Iy
Iz

pq + τz+τvz
Iz.

u = rv− qw− gs(θ) + fvx
m

.
v = pw− ru + gs(Φ)c(θ) +

fvy
m

.
w = qu− pv + gc(Φ)c(θ) +

fvz−fp
m.

x = uc(Ψ)c(θ) − v[c(Φ)s(Ψ) − c(Ψ)s(Φ)s(θ)] + w[s(Φ)s(Ψ) + c(Φ)c(Ψ)s(θ)]
.
y = uc(θ)s(Ψ) + v[c(Φ)c(Ψ) + s(Φ)s(θ)s(Ψ)] −w[c(Ψ)s(Φ) − c(Φ)s(Ψ)s(θ)]
.
z = −us(θ) + vc(θ)s(Φ) + wc(Φ)c(θ)

(59)
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As can be seen from Equation (59), the system is strongly nonlinear, presenting major problems in
the design of a control system based on models. In order to be linearized, a Jacobian matrix is used,
at certain chosen equilibrium points. Given that it is desired that in the absence of a command the
system be maintained at a fixed point at a predetermined altitude, the equilibrium points are chosen as
described below.

Xe =
[

0 0 0 0 0 0 0 0 0 xe ye ze
]T

(60)

ue =
[

mq·g 0 0 0
]T

(61)

where g = 9.8 m
s2 is the gravitational acceleration and mq is the total mass of the quadrotor.

Also, since the trigonometric dependencies between the system states do not disappear even
after the linearization by the Jacobian method, a preliminary simplification is made. Thus, in order to
eliminate the trigonometric functions from the system model, all the values of the sine functions are
approximated with their argument, respectively the cosine functions with 1. The approximate model,
resulting from the simplification, has the form as described in (62).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
Φ = p + qΦθ+ rθ
.
θ = q− rΦ
.

Ψ = qΦ + r
.
p =

Iy−Iz
Ix

qr + τx+τvx
Ix.

q = Iz−Ix
Iy

pr +
τy+τvy

Iy
.
r =

Ix−Iy
Iz

pq + τz+τvz
Iz.

u = rv− qw− gθ+ fvx
mq

.
v = pw− ru + gΦ +

fvy
mq

.
w = qu− pv + g +

fvz−fp
mq.

x = u− v(Ψ −Φθ) + w(ΦΨ + θ)
.
y = uΨ + v(1 + ΦθΨ) −w(Φ −Ψθ)
.
z = −uθ+ vΦ + w

(62)

In the state space form, the system is
.
X = h(X, u). Applying the linearization by the Jacobian

matrix method and using the equilibrium points expressed in (60) and (61), the linearized state space
system became: ⎧⎪⎨⎪⎩

.
X = Ae·X+ Be·u
y = C·X (63)

with

Ae =
∂h(X, u)
∂X

∣∣∣∣∣∣ X = Xe

u = ue
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 −g 0 0 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(64)
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Be =
∂h(X, u)
∂u

∣∣∣∣∣∣ X = Xe

u = ue
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
0 0 0 0
0 0 0 0
0 1

Ix
0 0

0 0 1
Iy

0

0 0 0 1
Iz

0 0 0 0
0 0 0 0
1

mq
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(65)

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0 0 g 0 0 0 0
0 0 0 0 0 0 −g 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1/mq 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (66)

The same model can be described as a system of Equations as indicated in (67).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
Φ = p
.
θ = q
.

Ψ = r
.
p = τx+τvx

Ix.
q =

τy+τvy
Iy.

r = τz+τvz
Iz.

u = −gθ+ fvx
mq

.
v = gΦ +

fvy
mq

.
w =

fvz−fp
mq.

x = u
.
y = v
.
z = w

(67)

2.4. Controller Design

The controller design method uses the linear model of the system (63). Considering that references
for the orientation of the quadrotor and for the altitude of flight will be transmitted from the remote
controller, and the system inputs depend on the angular velocities of the four engines, a number of
four controllers will be implemented for each direction of movement. Each controller can be designed
with any tuning algorithm, ensuring the cancellation of the steady state error and a short settling time.
An interesting choice is presented for example in [44]. If advanced controller tuning methods are used,
the performances could be increased. The idea of the present work is to implement a very low-cost
quadrotor, with the simplest control algorithm, but with results comparable with advanced control
methods. With this regard a simple PID controller is designed for each rotor, using the classical root
locus method [45]. For this method, given the characteristic polynomial of the closed-loop system,
the parameters of controller are chosen depending on the location of the poles of the system. Overshoot,
settling time and steady state error cancellation are imposed for each controller. Figure 1 illustrates
the block diagram of the control strategy chosen for this quadrotor, with the PID blocks detailed in
Figure 2. The proposed feedback control requires feedback signals and disturbance identification.
To obtain these signals, a sensor with 9 degrees of freedom, consisting of an accelerometer, a gyroscope,

352



Mathematics 2020, 8, 1829

and a magnetometer is used. Signals from this sensor must be processed because they suffer from noise
disturbance and other drawbacks. For example the gyroscope has a flowing bias. This inconvenient is
mitigated by the estimator. Both data filtering and estimating the orientation of the aerial vehicle are
realized with the quaternion representation of the estimator (27,28). The nonlinear dynamic model (55)
is used as predictor in the control structure.

Figure 1. Block diagram of the three-dimensional space orientation control.

Figure 2. Block diagram of each PID controller.

In Figure 2 the signals are denoted as follows: r(k) is the reference signal at current iteration k;
c(k) represents the control signal at this current iteration k; y(k) is the output of the system, measured by
sensors at iteration k; e(k) is the error signal at iteration k; Kp, Ki, and Kd represent the proportionality,
integration, and derivation constant, respectively. Regarding the angular velocities of the motors,
it is necessary to ensure that they behave according to the control signals received from the angular
position and altitude controllers. In view of the microcontroller’s processing capacity and the relatively
large dimensions of the program used to obtain the inclination angles and the control law previously
determined, four electronic speed control modules (ESCs) will be used to control the angular velocities
of the motors.
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The verification of the designed controllers was first performed through a numerical simulation.
The non-linear model from Equation (55) was used to carry out all simulations. Several simulation
scenarios were adjusted in order to set the simulation closer to reality. Furthermore, some restrictions
related to the actuators were applied based on real data measurements. The delay of the actuators
was implemented because of the use of the electronic speed controller (ESC). Moreover, sensor noise
was implemented to the measured feedback signals. The evaluation of the designed controller was
done both in disturbance free, constant disturbance, and real disturbance conditions. In each case the
quadrotor has to follow the same trajectory, including takes off, flying from point A to B, and rotation
around the Z axis. As quality indicators chosen to discuss the efficiency of the proposed algorithm are
the steady state position error, overshoot, and settling time. In all cases the proposed simple control
structure exhibit very similar behavior to advanced, expensive solutions.

3. Results

Figure 3 presents the resulted low-cost quadrotor UAV. It has four motors controlled by electronic
speed controllers rotating as described in Figure 4. Each motor is mounted on a plastic arm, which in
turn is attached to the carbon fiber central structure. All pieces were chosen so that the assembly has
the lowest weight and, at the same time, to maintain the condition of the center of gravity described in
the previous section.

Figure 3. The unmaned aerial vehicle (UAV) prototype.
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Figure 4. Rotational directions.

In each step of the design, the aim was to understand the functionality of each component of the
system and to describe the relationships between them using block diagrams. In this regard Figures 5
and 6 detail the block diagrams of each subsystem, highlighting the type of data provided by/for
each element.

Figure 5. Block scheme of the quadrotor UAV.
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Figure 6. Block scheme of the remote controller.

In accordance with these block schemes and the dimensions imposed by the mechanical elements,
a series of electrical components were chosen. These have been selected so that they can achieve
the specifications of the desired control, allow flexibility in resolving errors and have low cost. Also,
from the point of view of the processing capacity and the number of input and output signals,
respectively, a microcontroller was chosen that satisfies these conditions.

The wiring diagram and the implemented UAV system are presented in Figure 7.
The corresponding remote controller schemes are in Figure 8, where (a) represents the wiring diagram
designed in Eagle, while (b) is the implemented circuit.

  
(a) (b) 

Figure 7. The designed (a) and implemented (b) electronic circuit of UAV.

Measurements were realized without using the developed estimator. Figure 9 presents the raw
results of the gyroscope, accelerometer and magnetometer for a linear movement. It can be concluded
that in the case of noisy signals, such an approach is not usable in a feedback control structure. It is
obvious the necessity of the estimator.
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(a) 

 
(b) 

Figure 8. The remote controller: (a) the designed and (b) the implemented electronic circuit.

 

 
Figure 9. Raw measured output for the three degree of freedom.
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The quaternion-based estimation algorithm described in the previous section was implemented on
the microcontroller. In order to test the obtained system, a reference sequence of the form: 0, maximum
value to the right, maximum value to the left was applied. The obtained results are plotted in Figure 10.

(a) 

 
(b) (c) 

Figure 10. Measured output for the three degree of freedom: (a) pitch; (b) roll; (c) yaw.

The designed nonlinear model was tested, obtaining the results from Figure 11.
The designed control algorithms were also implemented on the microcontroller. The obtained

results in the worst-case scenario, windy conditions, are plotted on Figure 12, presenting the response
of the closed loop system to a step reference on each of the four directions of movement.

The performance was measured for different operation scenarios, including different step inputs
on each axis, wind-free and windy conditions. The results for one of the “classical” scenarios—16◦ step
input for angular position on X and Y axis and 45◦ on Z axis, 5 m altitude, with relatively high wind
speed—are presented in Table 1, highlighting good performances. All these results are comparable with
the results of advanced control algorithms in [25–36], without needing expensive hardware equipment.
In [26], where the studied quadrotor is similar with our prototype, a LQR controller is used for altitude
and a PD controller for position, resulting in a settling time for a step input between 2 and 3.7 s and
overshoot 13–20%. Using a backstepping controller combined with the PD, the settling time varies
between 2.10 and 3.70 s and the overshoot between 12 and 14%. The LQR controller used both for
altitude and position, the settling time are 2.7–3.35 s, while the overshoot is 19–25%. The combination
of the backstepping controller with LQR leads to values varying between 2.7–3.3 s, overshoot 15–25%.
In our experiments the overshot does not exceed 13.75% neither in worst case and the largest settling
time is 1.2 s. The model identification adaptive control (MIAC) used in [28] leads to settling time
between 0.8 and 1.4 s, while with the Model Reference Adaptive Control (MRAC) from the same
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study, the achieved settling time is of 0.75–2 s, very close to our values. The main advantages of these
two (MIAC and MRAC) controllers are the overshoot cancellation, but the cost is the control effort.
Analyzing the active disturbance rejection controller designed in [11], the presented settling times are
0.85–1.5 s for a 20◦ step input, overshoot is 7–25%, comparable with our results. The advantage of the
high-order sliding mode-based fixed-time active disturbance rejection control from [11] is that it tracks
the unknown disturbances in about 3 s.

 

 
Figure 11. The nonlinear model output for step input on each axis.

Table 1. The obtained performance measures.

Movement
Overshoot

[%]
Settling Time

[sec]
Steady State

Position Error

Front-back 13.75 0.65 0
Left-right 12.5 0.51 0

Rotation around the central axis 0 1.2 0
Up-down 2 0.8 0

Comparing our results with the results of the bioinspired controller from [10], the present results
are still competitive. Moreover, imposing different settling time and overshoot in the design stage, it is
possible to set a different transient response. Reducing the overshot will increase the settling time and
vice versa. Obviously, designing an advanced controller could increase the performances, but the idea
of present work was to analyze the most simple algorithm, a PID controller.
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Figure 12. The closed loop system output for step input on each axis.

4. Conclusions

The present research is focused on a low-cost, but performing UAV system design. Taken as a
whole, such a flight system presents great difficulties in obtaining positioning data, in particular due
to their complex determination or estimation algorithms. In addition to the high complexity of the
estimation algorithms, the problem of measurement errors and the resolution of the sensors must often
be taken into consideration, so that the control structures are provided with the most accurate data.
The offered solution is the quaternion-based estimation. In addition, the tuning of the proportional,
integrative, and derivative terms of the control laws is another major problem of the UAV system.
Also, the nonlinearities present in such a system introduce challenging problems.

The prototype described in the previous sections offers solution for all these problems.
As future works a global positioning system (GPS) would be added to the equipment model in

order to acquire more functionalities.
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Abbreviations

Notations Used
Ae, Be, C matrices of the state space representation
b propulsion coefficient
c(k) the control signal at this current iteration k
c(Ψ) cos(Ψ)

s(Ψ) sin(Ψ)

c(θ) cos(θ)
s(θ) sin(θ)
c(Φ) cos(Φ)

s(Φ) sin(Φ)

d aerodynamic resistance coefficient
dsensor orientation of the sensor
dref orientation of the reference system
e(k) the error signal at iteration k
êz the unit vector on the Z axis of the reference coordinate system
ê3 unit vector on the Z axis of the coordinate system attached to the quadrotor
fcom composition of functions
fx,fy,fz forces acting on the quadrotor on the X, Y and Z axes
F gradient of function f
Fa vector of forces acting on the quadrotor
fp total propulsion force developed by the engines

fv =
[

fvx fvy fvz
]T disturbances or forces that are opposed to the rotation of each engine on the X, Y

and Z axes
g the gravitational acceleration
ga the gyroscope moments caused by the combined velocities of the four motors
I inertia matrix, with components Ix, Iy, Iz on each axis
Kp, Ki, Kd the proportionality, integration, and derivative constant

l
the distance from the center of gravity of the quadrotor to the center of rotation of
the engine

m magnetic field
Ma angular velocities vector applied to the quadrotor
mq mass of the quadrotor
of objective function
Pa vector of the linear and angular velocities of the quadrotor
Pk weighting factor
Pp vector of the linear and angular positions of the quadrotor
R rotation matrix
q̂ quaternion
D
E q̂ quaternion of system E with respect to the reference system D
A
B R rotation matrix of the coordinate system B with respect to the reference system A
q̂0 initial point
q̂k+1 future orientation
q1 q2 q3 q4 components of the quaternion q
r(k) the reference signal at current iteration k
“rx, “ry, “rz components of the unity vector “r
TS sampling period
Tv(Φ, θ) matrix of angular velocities transformations
u input vector
ue input vector at equilibrium point
vp vector of the derivatives of the linear positions of Pp

va vector of the linear velocities of the vector Pa
.
va linear acceleration
wx wy wz angular positions on X, Y and Z axes
W angular positions vector
X state vector
Xe state vector of equilibrium point
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xe, ye, ze equilibrium points on the X, Y and Z axes
y output vector
y(k) the output of the system, measured by sensors at iteration k
Greek Letters
α, β constants
Ψ, θ, Φ Euler angles
τa vector of angular velocities generated by the velocity differences of the four motors

τx τy τz
angular velocities on the X, Y and Z axes generated by the velocity differences of the
four motors

τv vector of angular velocities produced by air currents on each motor
τvx τvy τvz angular velocities produced by air currents on each motor on the X, Y and Z axes
μ algorithm step
μt variable step at time t
ωa vector of the angular velocities of the vector Pa

ωp vector of the derivatives of the angular positions of Pp

Ωa =
[

Ω1 Ω2 Ω3 Ω4
]

vector of angular velocities of the four motors
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26. Chovancová, A.; Fico, T.; Hubinský, P.; Duchoň, F. Comparison of various quaternion-based control methods
applied to quadrotor with disturbance observer and position estimator. Robot. Auton. Syst. 2016, 79, 87–98.
[CrossRef]

27. Sanwale, J.; Trivedi, P.; Kothari, M.; Malagaudanavar, A. Quaternion-based position control of a quadrotor
unmanned aerial vehicle using robust nonlinear third-order sliding mode control with disturbance
cancellation. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 234, 997–1013. [CrossRef]

28. Schreier, M. Quaternion-based adaptive attitude control schemes for quadrotor systems.
Int. J. Mechatron. Autom. 2013, 3, 217. [CrossRef]

29. Sanchez, M.E.G.; Abaunza, H.; Castillo, P.; Lozano, R.; García-Beltrán, C.D. Quadrotor Energy-Based Control
Laws: A Unit-Quaternion Approach. J. Intell. Robot. Syst. 2017, 88, 347–377. [CrossRef]

30. Abaunza, H.; Castillo, P.; Lozano, R. Quaternion Modeling and Control Approaches. In Handbook of Unmanned
Aerial Vehicles; Vachtsevanos, G., Ed.; Springer: Cham, Switzerland, 2018; pp. 1–29.

31. Sanchez, M.E.G.; Abaunza, H.; Castillo, P.; Lozano, R.; García-Beltrán, C.; Rodriguez-Palacios, A.
Passivity-Based Control for a Micro Air Vehicle Using Unit Quaternions. Appl. Sci. 2016, 7, 13. [CrossRef]

32. Colmenares-Vazquez, J.; Marchand, N.; Castillo, P.; Gomez-Balderas, J.E. An intermediary quaternion-based
control for trajectory following using a quadrotor. In Proceedings of the 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017;
pp. 5965–5970.

33. Andersen, T.S.; Kristiansen, R. Quaternion guidance and control of quadrotor. In Proceedings of the 2017
International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017;
pp. 1567–1601.

34. Carino, J.; Abaunza, H.; Castillo, P. Quadrotor quaternion control. In Proceedings of the 2015 International
Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015; pp. 825–831.

35. Fresk, E.; Nikolakopoulos, G. Full quaternion based attitude control for a quadrotor. In Proceedings of the
2013 European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 3864–3869.

363



Mathematics 2020, 8, 1829

36. Ji, X. Partial study of quadrotor based on quaternions. In Proceedings of the 6th International Conference on
Computer-Aided Design, Manufacturing, Modeling and Simulation (CDMMS 2018), Busan, South Korea,
14–15 April 2018.

37. Sanchez, M.E.G.; Gonzalez, O.H.; Lozano, R.; García-Beltrán, C.; Valencia-Palomo, G.; López-Estrada, F.-R.
Energy-Based Control and LMI-Based Control for a Quadrotor Transporting a Payload. Mathematics 2019,
7, 1090. [CrossRef]

38. Shao, X.; Liu, N.; Wang, Z.; Zhang, W.; Yang, W. Neuroadaptive integral robust control of visual quadrotor
for tracking a moving object. Mech. Syst. Signal Process. 2020, 136, 106513. [CrossRef]

39. Raj, J.; Raghuwaiya, K.S.; Vanualailai, J. Novel Lyapunov-Based Autonomous Controllers for Quadrotors.
IEEE Access 2020, 8, 47393–47406. [CrossRef]

40. Guzmán-Rabasa, J.A.; López-Estrada, F.R.; González-Contreras, B.M.; Valencia-Palomo, G.; Chadli, M.;
Pérez-Patricio, M. Actuator fault detection and isolation on a quadrotor unmanned aerial vehicle modeled as
a linear parameter-varying system. Meas. Control. 2019, 52, 1228–1239. [CrossRef]

41. Chiella, A.C.B.; Teixeira, B.O.S.; Pereira, G.A.S. Quaternion-Based Robust Attitude Estimation Using an
Adaptive Unscented Kalman Filter. Sensors 2019, 19, 2372. [CrossRef]

42. Naharro, R.J.; Gómez-Bravo, F.; Garcia, J.M.; Sánchez-Raya, M.; Gómez-Galán, J.A. A Smart Sensor for
Defending against Clock Glitching Attacks on the I2C Protocol in Robotic Applications. Sensors 2017, 17, 677.
[CrossRef]

43. Abubakar, A.B.; Kumam, P.; Mohammad, H.; Awwal, A.M. An Efficient Conjugate Gradient Method for
Convex Constrained Monotone Nonlinear Equations with Applications. Mathematics 2019, 7, 767. [CrossRef]

44. Waliszkiewicz, M.; Wojtowicz, K.; Rochala, Z.; Balestrieri, E. The Design and Implementation of a Custom
Platform for the Experimental Tuning of a Quadcopter Controller. Sensors 2020, 20, 1940. [CrossRef]
[PubMed]

45. Bavafa-Toosi, Y. Introduction to Linear Control Systems; Elsevier: Amsterdam, The Netherlands, 2019. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

364



mathematics

Article

Solitary Wave Solutions of the Generalized
Rosenau-KdV-RLW Equation

Zakieh Avazzadeh 1,2, Omid Nikan 3 and José A. Tenreiro Machado 4,*

1 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
2 Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam;

zakiehavazzadeh@duytan.edu.vn
3 School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran;

omidnikan77@yahoo.com
4 Department of Electrical Engineering, Institute of Engineering, Polytechnic of Porto,

4249-015 Porto, Portugal
* Correspondence: jtm@isep.ipp.pt

Received: 21 August 2020; Accepted: 9 September 2020; Published: 17 September 2020

Abstract: This paper investigates the solitary wave solutions of the generalized Rosenau–Korteweg-de
Vries-regularized-long wave equation. This model is obtained by coupling the Rosenau–Korteweg-de
Vries and Rosenau-regularized-long wave equations. The solution of the equation is approximated
by a local meshless technique called radial basis function (RBF) and the finite-difference (FD) method.
The association of the two techniques leads to a meshless algorithm that does not requires the
linearization of the nonlinear terms. First, the partial differential equation is transformed into a
system of ordinary differential equations (ODEs) using radial kernels. Then, the ODE system is
solved by means of an ODE solver of higher-order. It is shown that the proposed method is stable. In
order to illustrate the validity and the efficiency of the technique, five problems are tested and the
results compared with those provided by other schemes.

Keywords: nonlinear wave phenomen; RBF; local RBF-FD; stability

1. Introduction

Nonlinear waves are important phenomena in scientific research. Due to that reason, a number
of models have been proposed to describe their behavior. Indeed, we find a variety of mathematical
descriptions of wave dynamics, such as the Rosenau, regularized-long wave (RLW), and Korteweg-de
Vries (KdV) equations [1–8]. The KdV equation has been applied in the description of dynamical effects
such as longitudinal astigmatic, ion sound, and magnetic fluid waves [4–9]. The convergence properties,
existence and the regularity of solutions of KdV-type equation have been discussed in [10–12].

Kaya and Aassila calculated the explicit solutions of the KdV equation with an initial condition
by using the Adomian decomposition method [13]. Özer and Kutluay applied an analytical–numerical
method to the KdV equation [14]. The RLW equation was developed by Peregrine, as an alternative to
the classical KdV formulation in order to investigate the behavior of the solution [15,16]. Benjamin et al.
proved the existence and uniqueness of the solution of the RLW model and determined its exact
expression subject to restrictions in the initial and boundary conditions [2]. The RLW is also adopted
in the modeling of long waves with small amplitudes on the water surface [17]. A noteworthy feature
of the RLW problem is that the collision between two solitary waves results either in sinusoidal
solutions, or in secondary solitary waves [18]. Since the KdV cannot describe wave–all and wave–wave
interactions, another model, known as the Rosenau equation, was proposed by Rosenau to describe
the dynamics behavior of dense discrete systems [7]. Zuo studied the solitary wave and periodic
solutions for the Rosenau-KdV model [6]. Barreto et al. discussed the existence of solutions of the
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Rosenau formulation with the plus sign in the advection-like term in moving domains by means of the
Galerkin, multiplier, and energy estimate techniques [3].

Hereafter, we propose a numerical method for the initial value problem of the general
Rosenau-KdV-RLW equation [19–24],

ut + αux + β(up)x + γuxxx − μuxxt + δuxxxxt = 0, (1)

with the initial condition
u(x, 0) = f (x) (2)

and boundary conditions

u(a, t) = u(b, t) = 0, ux(a, t) = ux(b, t) = 0, u(a, t) = u(b, t) = 0, uxx(a, t) = uxx(b, t) = 0, (3)

where u = u(x, t), is a real-valued function, the real constants α, β, γ and μ are non-negative, p ≥ 2 is a
positive integer, and f (x) is a given smooth function.

Lemma 1. (See [25].) The following conservative properties for the initial value problem (1) hold

Q(t) =
∫ b

a
u(x, t)dx =

∫ b

a
u(x, 0)dx = Q(0) (4)

and

E(t) =
∫ b

a
(u2 + cu2

x + u2
xx)dx = ||u||2L2 + c||ux||2L2 + c||uxx||2L2 = E(0), (5)

where Q(0) and E(0) are constants depending on the initial conditions.

When −a ! 0 and b ! 0, the initial boundary value problem (1)–(3) is consistent and,
the boundary condition (3) is reasonable [26]. Some particular cases of Equation (1) occur:

• if α = 0, β = 0.5, γ = 1, μ = 0, δ = 0 and p = 2, then expression (1) is the KdV equation [14,27–29],

ut + uux + uxxx = 0;

• if α = 1, β = 0.5, γ = 0, μ = 0, δ = 1 and p = 2, then expression (1) is the Rosenau equation [30–
32],

ut + αux + uux + uxxxt = 0;

• if α = 1, β = 0.5, μ = 1, γ = 0, δ = 0 and p = 2, then expression (1) becomes the RLW equation [33]

ut + ux + uux − uxxt = 0;

• if α = 1, β = 0.5, γ = 1, μ = 0, δ = 1 and p = 2, then expression (1) is the Rosenau-KdV
equation [6,34,35]

ut + ux + uux + uxxx + uxxxxt = 0;

• if α = 1, β = 1, γ = 0, μ = 1, and δ = 1, then expression (1) is the generalized Rosenau-RLW
model [26]

ut + ux + (up)x − uxxt + uxxxxt = 0;

• if p = 2, p = 3 or p ≥ 4, then expression (1) represents the classical, modified, and general
Rosenau-RLW equations, respectively.

In recent years, various analytical and numerical methods have been used to approximate the
solution of the initial boundary value problem (1)–(3). Razborova et al. presented a theoretical
approach based on the Ansatz method for the Rosenau-KdV-RLW equation [9]. Later, Razborova et al.
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used a semi-inverse Variational Principle to retrieve a single solitary wave solution [22]. Additionally,
Razborova et al. and Sanchez et al. discussed the solutions of the perturbed Rosenau-KdV-RLW
equation [23,24]. Wongsaijai et al. constructed a three-level weighted average implicit finite difference
(FD) technique [19]. Pan et al. presented a C-N pseudo-compact conservative numerical scheme
based on the FD technique [20]. Fernández and Ramos investigated a three-point compact method
with fourth-second accuracy [21]. Wang et al. and Hu and Wang formulated FD schemes with linear
three-level [31] and high-accuracy conservative [33] characteristics, respectively. Wongsaijai et al.
proposed a compact FD technique [26] and Pan et al. developed a linear-implicit FD for the
usual Rosenau-RLW equation [25,36]. Zheng et al. presented an average linear FD technique [34].
Mittal et al. implemented a numerical method based on the collocation of quintic B-splines over finite
elements [37]. Hu et al. considered a second-order conservative FD scheme [38]. Ari et al. adopted
a meshless kernel-based approach of lines [39]. Foroutan et al. developed a modified Chebyshev
rational approximation [40]. Wang et al. advanced a three-level linear conservative FD [41], while
Wongsaijai et al. came with a mass-preserving scheme, namely, a nonlinear algorithm based on a
modification of the FD [42].

In this paper, we use the local meshless radial basis function (RBF) for solving the general
Rosenau-KdV and the Rosenau-RLW models. Section 2 formulates and discusses the local meshless
RBF based on the finite difference (RBF-FD) technique for discretizing Equation (1). Section 3 provides
five numerical examples and compares the results with those of other schemes proposed in the
literature. Finally, Section 4 presents the concluding remarks.

2. The RBF-FD Collocation Method

A mesh-free (or meshless) method adopts an algebraic system of equations for the complete
domain without requiring a pre-defined mesh discretization of the domain and its boundary [43,44].
Mesh-free techniques are used to approximate scattered data, since generating meshes is one of the
most laborious tasks of mesh-based numerical processes. Indeed, a mesh-free technique provides a
low-cost alternative to schemes involving finite volume, finite difference, finite element, multivariate
splines, and wavelets, all requiring node connectivity. Meshless techniques eliminate the mesh
generation step and a collection of scattered data can be used. The RBF is one of the most widely
used meshless techniques and reveals good performance in case of multidimensional scattered data
interpolation [43,44].

Given a set of scattered node data XC = {x1, . . . , xN} ⊆ Rn and the corresponding function values
ui = u(xi), i = 1, 2, . . . , N, the RBF interpolant is represented in the form

u(x) # S(x) =
N

∑
j=1

αjφj(x, c), (6)

where {αj}N
j=1 are unknown coefficients, φj(x, c) = φ(‖x− xj‖2, c), j = 1, . . . , N, are RBF with shape

parameter c, and the operation ‖ · ‖2 represents the Euclidean norm [44,45]. Some popular choices
of RBF include the linear, Cubic, Multiquadric (MQ), Gaussian (GA), and thin-plate spline (TPS)
versions with dependence r, r3,

√
c2 + r2, exp (−cr2), and r4 ln(r), respectively, where r = ‖x− xj‖2.

The coefficients {αj}N
j=1 of Equation (6) are computed by imposing interpolation conditions S(xi) = ui,

i = 1, . . . , N. The relation (6) can be written in the following matrix form

Aφ α = f , (7)
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where

α =

⎡⎢⎢⎢⎢⎣
α1

α2
...

αN

⎤⎥⎥⎥⎥⎦ , f =

⎡⎢⎢⎢⎢⎣
f1

f2
...

fN

⎤⎥⎥⎥⎥⎦ , Aφ, ij = φj(xi), i, j = 1, . . . , N.

The non-singularity of the associated linear system was proven in [46]. The main pros of the
RBF collocation method when solving PDEs are its simplicity, easy application to different PDEs,
and efficiency for solving problems involving complex domains. On the other hand, the major con of
this method is related to the problem of full matrices. These matrices are strongly sensitive to the shape
parameter c selected in the RBF and, therefore, they become difficult to solve in problems where we
have too many unknowns. This problem arises from the fact that using the RBF interpolation increases
the condition numbers of the related matrices for a large number of nodes. This occurs particularly
when one selects inadequate data centers and uses basic functions that are infinitely smooth, such as
the MQ, with extreme values of the shape parameter c [45].

The notation of local differentiation is popular in the RBF literature, particularly for
time-dependent PDEs. The local radial basis function (RBF) generated by finite differences
(RBF-FD), raised considerable interest owing to the structure of their differentiation and interpolation
matrices [47,48]. It is possible to control the degree of sparsity of the differentiation and interpolation
matrices produced by the local RBF. This sparsity can take advantage of parallelism and solve large
problems [49,50]. The local RBFs have also been employed to reduce the model order. In some
situations, researchers have found that the local RBF technique can produce the same degree of
accuracy as the global RBF technique with a smaller mesh size [49–53]. Although small mesh sizes
result in smaller ODE systems, the overall accuracy is maintained. Interested readers can find examples
of the application of local RBFs to problems in the geosciences in [54,55]. Garshasbi et al. used the
RBF collocation method for approximating the shallow water model named the Camassa–Holm
equation [56]. Uddin connected the RBF to the pseudo-spectral method, known as RBF-PS method
to approximate the equal width equation [57]. Nikan et al. solved numerically the nonlinear
KdV-Benjamin-Bona-Mahony-Burgers (KdV-BBM-B) with the help of the RBF-PS [58]. Dehghan
and Shafieeabyaneh addressed the RLW and extended Fisher-Kolmogorov (EFK) equations using local
meshless RBF-FD [59]. Ebrahimijahan and Dehghan proposed a numerical technique for solving the
nonlinear generalized BBBM-B and RLW equations based on the integrated RBF [60]. Rashidinia et al.
implemented the local RBF-FD meshless method for generalized Korteweg-de Vries-Burgers [61] and
Kawahara [62] equations.

Let us consider that Ii = {xi1 , xi2 , . . . , xini
} is a stencil of xi. In the local RBF-FD collocation

method, the linear differential operator L at every point can be approximated only the stencil instead
of applying the complete number of point, i.e.,

L u(xi) =
ni

∑
j=1

wju(xij), (8)

where xi = xi1 is the center point of stencil Ii. Figure 1 gives an example of a domain with 9 grid
points and a stencil size of ni = 4. At the point x3, the ni − 1 = 3 nearest neighbors are used in the
computation. Figure 2 shows the sparsity patterns for N = 50 for two stencil sizes ni = 11 and ni = 15.
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Figure 1. Illustration of one-dimensional case of stencil.
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Figure 2. Sparsity patterns for N = 50 and two stencil sizes ni = 11 (a) and ni = 15 (b).

By deriving the RBF expansion of u(x) in Equation (8), the weighted differences of stencil node
can be obtained from the system as:

Aφ w = l , (9)

where

w =

⎡⎢⎢⎢⎢⎣
w1

w2
...

wni

⎤⎥⎥⎥⎥⎦ , l =

⎡⎢⎢⎢⎢⎣
Lφi1(x)|x=xi

Lφi2(x)|x=xi
...

Lφini
(x)|x=xi

⎤⎥⎥⎥⎥⎦ , Aφ, ij = φii (xij), i, j = 1, . . . , ni. (10)

Indeed, it is necessary to solve a small-sized linear system with a conditionally positive definite
coefficient matrix in each stencil. The weighted differences of the stencil nodes w1, w2, . . . , wni can be
determined from the above system.

The first, second and third order derivatives can be approximated with the help of the function
values at a set of ni nodes (including xi) in the stencil of xi. That is, we can write

∂uk(x)
∂x

∣∣∣∣
x=xi

=
ni

∑
j=1

wx,1
i,j uk(xi

j) = Wxu, (11)

∂2uk(x)
∂x2

∣∣∣∣
x=xi

=
ni

∑
j=1

wx,2
i,j uk(xi

j) = Wxxu, (12)

∂3uk(x)
∂x3

∣∣∣∣
x=xi

=
ni

∑
j=1

wx,3
i,j uk(xi

j) = Wxxxu, (13)
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where wx,l
i,j represents the weighted differences of stencil node for the order derivatives l = {1, 2, 3}.

We can obtain the following semi-discrete system by considering the notations above as

u
′
+ αWxu + βWx(u

p)− μWxxu
′
+ γWxxx + δWxxxxu

′
= 0. (14)

The above equation can be represented as

(I− μWxx + δWxxxx)u
′
= −αWxu− βWx(u

p)− γWxxxu. (15)

We must note that the matrices A = −αWx − βWx − γWxxx and B = I− μWxx + δWxxxx are
time-independent. We conclude that

u
′
= Wu, (16)

where W = B−1(−αWx − βWx(up−1)− γWxxx). Equation (16) is of the form

u
′
= F(u). (17)

Equation (17) is an ODE with respect to u and it can be solved by means of an ODE solver
in MATLAB such as ode113 or ode45. Let τ = T/M and tn = nτ, for n = 0, 1, . . . , M, so that the
mesh {tn : n = 0, 1, . . . , M} is uniform. The initial solution u0 is the starting vector. The package
ode45 is an explicit Runge-Kutta of order 4(5) formula of the Dormand–Prince pairs [63]. The ode45

is a one-step solver that computes utn given the solution at the preceding time point utn−1 . On
the other hand, the ode113 is a variable-order Predict–Evaluate–Correct–Evaluate solver of the
Adams–Bashforth–Moulton type [64]. This solver might be more efficient than the ode45 for close
tolerances and, in particular, when the ODE file function is particularly expensive to evaluate.
A multi-step solver, such as the ode113, needs the solutions corresponding to more than one preceding
time point for calculating the current solution. Hereafter, we calculate the differentiation matrices,
expressed by Wx, Wxx and Wxx, only one time outside the time-stepping operation. Additionally,
merely matrix-vector multiplications are required within the time-stepping operation.

2.1. Stability Analysis

The method of lines represents the idea of using the FD method in the time direction t to solve
a coupled system of ODEs. The numerical stability of the method of lines is investigated by a rule
of tumb. The method of lines is stable if the eigenvalues of the (linearized) spatial discretization
operator, scaled by τ, lie in the stability region of the time-discretization operator [57,65]. One defines
the stability region as the portion of a multifaceted plane consisting of eigenvalues which result in
the generation of bounded solutions. The coefficient matrix eigenvalues determine the stability of
Equation (16) [66]. Hence, we need only to demonstrate that every eigenvalue Re(λi) belonging to
the coefficient matrix has a non-positive real term Re(λi), where λi, i = 1, 2, . . . , N, represents of the
matrix eigenvalues. In other words, for all i = 1, 2, . . . , N, we must have Re(λi) ≤ 0 for obtaining
stable solutions. The reader is referred to [66] for further details. In order to investigate the stable
and unstable eigenvalue ranges of the Rosenau-KdV-RLW model, one must compute the eigenvalues
belonging to the matrix W, which are scaled by τ.

3. Computational Results and Comparisons

This section considers five test problems assessing the effectiveness and accuracy of the proposed
method for various values of h, τ and c. To measure the accuracy of method in comparison with the
exact solution, we compute the following error norms:
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L∞ = max
1≤j≤M−1

|uexact(xj, T)− u(xj, T)|,

L2 =

(
h

N

∑
j=1

(uexact(xj, T)− u(xj, T))2

) 1
2

,

RMS =

(
1
N

N

∑
j=1

(uexact(xj, T)− u(xj, T))2

) 1
2

,

where u and uexact denote the numerical solution and exact solution, respectively. In addition,
the invariants of motion are evaluated by

Q =
∫ b

a
u(x, t)dx =

N

∑
i=1

ui,

E =
∫ b

a
(u2 + cu2

x + u2
xx)dx =

N

∑
i=1

(
u2

i + c(ux)
2
i + (uxx)

2
i

)
.

It should be noted that the Gaussian function is used as a basis and the computations were
performed in MATLAB R2016a with a computer system having a configuration including Intel(R)
Core(TM) i5-2330 CPU 3.60 GHz and 8.00G RAM.

Example 1. Let us consider the general Rosenau-KdV-RLW model (1) in the case of α = μ = γ =

1, β = 0.5, p = 2 and δ = 0 in the spatial interval x ∈ [−70, 100]. The exact solution is
u(x, t) = k11 sech4[k12(x− k13t)] [38,41], where

k11 = −35
24

+
35
12

√
313, k12 =

1
24

√
−26 + 2

√
313, k13 =

1
2
+

√
313
26

·

Table 1 lists the approximation errors in terms of L∞, L2 and RMS with τ = 0.01 and ni = 489.
Table 2 compares the obtained results with those provided by the techniques described in [38,41]. It is
seen that the errors obtained by the proposed technique are inferior to the others. Figure 3 depicts
the motion of the single solitary wave with h = τ = 0.125 over the spatial intervals x ∈ [−40, 60]
(left) and x ∈ [−70, 100] (right) at final times T ∈ {0, 30, 40}. We verify that the single solitons move
to the right at a constant speed and preserve their amplitude and shape with increasing time as
anticipated. Figure 4 represents the absolute errors L∞ at final times T ∈ {0, 30, 40}. Figure 5 portraits
the eigenvalues of the linearized differentiation operator A and B (left and right panels, respectively)
with N = 100. We observe that the eigenvalues calculated for A and B are zero or have negative
values. The eigenvalues belonging to the linearized differentiation operators are real and negative
or are complex with a negative real term. Hence, the stability of the proposed system for this case
is proven.

Example 2. Let us consider the general Rosenau-KdV-RLW model (1) in the case of α = β = μ = γ = 1,
p = 5 and δ = 0 over the spatial interval x ∈ [−60, 90]. The exact solitary wave solution is u(x, t) =

k21 sech[k22(x− k23t)], where [34,41]

k21 =
4

√
4
15

(−5 +
√

34), k22 =
−5 +

√
34

3
, k23 =

5 +
√

34
10

·

Table 3 reports the L∞, L2 and RMS errors with τ = 0.01 and ni = 489. Table 4 compares the
results with those obtained by the techniques described in [34,41]. It is clear that the results of the new
method are considerably more accurate. Table 5 illustrates the conservative law of the discrete energy
E. Figure 6 depicts the motion of single solitary wave with h = τ = 0.125 (left) and h = τ = 0.0625
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(right) over the spatial interval x ∈ [−60, 90] at final times T ∈ {0, 10, 40}. The single solitons move to
the right at a constant speed preserving their amplitude and shape. Figure 7 represents the absolute
error L∞ at final times T = {30, 40}. Figure 8 plots the eigenvalues of the matrices A and B (left and
right panels, respectively) with N = 100. The eigenvalues calculated for A are negative values. For
what concerns B, they are zero or have negative values. Therefore, the stability of the proposed system
is confirmed.

Table 1. The L∞, L2 and RMS errors with τ = 0.01 N = 100, ni = 589 and c = 1.8 for Example 1.

Method T L∞ L2 RMS

RBF-FD 5 1.7556× 10−11 4.2037× 10−11 3.2241× 10−12

RBF-FD 10 3.4832× 10−11 8.3499× 10−11 6.4057× 10−12

RBF-FD 15 5.1114× 10−11 1.2388× 10−10 9.5038× 10−12

RBF-FD 20 6.6317× 10−11 1.6066× 10−10 1.2320× 10−11

RBF-FD 25 7.9818× 10−11 4.7209× 10−10 1.4929× 10−11

RBF-FD 30 9.2357× 10−11 2.2541× 10−10 1.7273× 10−11

RBF-FD 35 1.0459× 10−10 2.5348× 10−10 1.9441× 10−11

RBF-FD 40 1.1660× 10−10 2.7268× 10−10 2.0910× 10−11

Table 2. The L∞ and L2 errors under different mesh steps h = τ at T = 40 for Example 1.

Method c N ni L∞ L2

h = τ = 0.2
RBF-FD 1.65 850 801 3.8494× 10−12 9.7017× 10−12

[41] − 850 − 7.8920× 10−4 −
h = τ = 0.1

RBF-FD 3.65 1700 1689 3.2235× 10−12 2.8677× 10−11

[41] − 1700 − 1.8771× 10−4 −
[38] − 1700 − 1.1314× 10−3 −

h = τ = 0.05
RBF-FD 5.60 3400 2971 2.3648× 10−10 2.9115× 10−9

[41] − 3400 − 2.8359× 10−4 −
[38] − 3400 − 4.6987× 10−5 −
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Figure 3. Motion of the single solitary wave with τ = h = 0.05, at various times over the intervals:
x ∈ [−40, 60] (a) and x ∈ [−70, 100] (b) for Example 1.
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Figure 4. The absolute error L∞ with τ = h = 0.05, at final times T = 30 (a) and T = 40 (b) over the
interval x ∈ [−70, 100] for Example 1.
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Figure 5. The eigenvalues of A (a) and B (b) for N = 1000, ni = 589 and c = 1.08 in Example 1.

Table 3. The L∞, L2 and RMS errors with τ = 0.01, N = 900 and ni = 489 for Example 2.

Method T c L∞ L2 RMS

RBF-FD 5 1.55 1.3384× 10−8 8.7070× 10−8 1.5499× 10−9

RBF-FD 10 1.55 1.5966× 10−8 3.6942× 10−8 3.0163× 10−9

RBF-FD 15 3.10 1.7030× 10−8 5.1031× 10−8 4.1667× 10−9

RBF-FD 20 2.90 1.7257× 10−8 6.3340× 10−8 5.1717× 10−9

RBF-FD 25 1.80 1.7608× 10−8 7.3863× 10−8 6.0309× 10−9

RBF-FD 30 3.10 3.5768× 10−8 9.2721× 10−8 7.5706× 10−9

RBF-FD 35 3.10 1.8542× 10−7 2.3769× 10−7 1.9407× 10−8

RBF-FD 40 1.55 9.5039× 10−7 1.0022× 10−6 8.1827× 10−8

Table 4. The L∞ and L2 errors under different mesh steps h = τ at T = 40 for Example 2.

Method c N ni L∞ L2

h = τ = 1/4
RBF-FD 2.10 600 569 1.7483× 10−8 1.2820× 10−7

[41] − 600 − 1.7999× 10−2 −
[34] − 600 − 9.2311× 10−3 −

h = τ = 1/8
RBF-FD 3.10 1600 869 1.7234× 10−8 1.7947× 10−7

[41] − 1600 − 4.5680× 10−3 −
[34] − 1600 − 2.3321× 10−3 −

h = τ = 1/16
RBF-FD 6.80 2400 1541 1.6718× 10−8 2.4817× 10−7

[41] − 2400 − 1.1469× 10−3 −
[34] − 2400 − 5.8475× 10−4 −
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Table 5. The energy E under different mesh steps τ = h for Example 2.

Method T c N ni E

h = τ = 1/4
RBF-FD 10 2.6 600 235 6.211055573870

[41] 10 - 600 - 6.221349804819
RBF-FD 20 2.6 600 235 6.211055573872

[41] 20 - 600 - 6.221349804820
RBF-FD 30 2.6 600 235 6.211055573871

[41] 30 - 600 - 6.221349804820
RBF-FD 40 2.6 600 235 6.211055573869

[41] 40 - 600 - 6.221349804820
h = τ = 1/8

RBF-FD 10 3.1 1200 869 6.216240094383
[41] 10 - 1200 - 6.221405877565

RBF-FD 20 3.1 1200 869 6.216240094388
[41] 20 - 1200 - 6.221405877551

RBF-FD 30 3.1 1200 869 6.216240094391
[41] 30 - 1200 - 6.221405877549

RBF-FD 40 3.1 1200 869 6.216240094396
[41] 40 - 1200 - 6.216240094397

h = τ = 0.0625
RBF-FD 10 6.8 2400 1541 6.218832354561

[41] 10 - 2400 - 6.221419928242
RBF-FD 20 6.8 2400 1541 6.218832354855

[41] 20 - 2400 - 6.221419928522
RBF-FD 30 6.8 2400 1541 6.218832354657

[41] 30 - 2400 - 6.221419928339
RBF-FD 40 6.8 2400 1541 6.218832354213

[41] 40 - 2400 - 6.221419928294
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Figure 6. Motion of the single solitary wave with h = τ = 0.125 (a) and h = τ = 0.0625 (b) over the
interval x ∈ [−60, 90] at final times T ∈ {0, 10, 40} for Example 2.
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Figure 7. The absolute error L∞ with τ = h = 0.05, at final times T = 30 (a) and T = 40 (b) over the
interval x ∈ [−60, 90] for Example 2.
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Figure 8. The eigenvalues of A (a) and B (b) for N = 600, ni = 235 and c = 1.12 in Example 2.

Example 3. We consider the general Rosenau-KdV-RLW model (1) corresponding to the case α = μ = 1,
β = 0.5, p = 2, μ = 0.1 and δ = 0 over the spatial interval x ∈ [−40, 100]. The exact solution is
u(x, t) = k31 sech4[k32(x− k33t)], where [19]

k31 = − 5
456

(25− 13
√

457), k32 =

(−13 +
√

457
288

)1/2

, k33 =
241 + 13

√
457

266
·

Table 6 compares the results of the proposed method with those resulting from the schemes
in [19,41]. The computational efficiency is clearly superior to the performance exhibited by the other
schemes. Figure 9 plots the motion of single solitary wave with h = τ = 0.5, (left) h = τ = 0.25 (right)
over the spatial interval x ∈ [−40, 100] at final times T ∈ {0, 30, 40}. The peak of the solitary waves
remains the same during the simulation. Figure 10 shows the eigenvalues of the matrices A and B

(left and right panel, respectively) with N = 100. The eigenvalues calculated for A and B have zero or
negative values. Hence, the stability of the proposed system for this case is confirmed.
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Table 6. The L∞ and L2 errors under different mesh steps h = τ for Example 3.

Method T c N ni L∞ L2

h = τ = 1/2
RBF-FD 30 1.71 280 241 5.3379× 10−1 2.1555× 100

[19] 30 - 280 - 9.8675× 10−1 2.5784× 100

h = τ = 1/4
RBF-FD 30 2.90 560 431 6.5718× 10−2 3.5432× 10−1

[41] 30 - 560 - 6.9960× 10−1 1.86620

[19] 30 - 560 - 9.8675× 10−1 2.9434× 100

h = τ = 1/8
RBF-FD 30 5.40 1120 881 4.2035× 10−2 1.8697× 10−2

[41] 30 - 1120 - 1.9713× 10−1 5.1866× 10−1

[19] 30 - 1120 - 5.1920× 10−2 8.0563× 10−1
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Figure 9. Motion of the single solitary wave with h = τ = 0.5 (a) and h = τ = 0.25 (b) over the interval
x ∈ [−40, 100] at final times T ∈ {0, 10, 30} (a) and T ∈ {0, 20, 40} (b) for Example 3.
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Figure 10. The eigenvalues of A (a) and B (b) for N = 5600, ni = 431 and c = 1.14 for Example 3.
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Example 4. Let us consider the general Rosenau-KdV-RLW model (1) in the case of α = μ = 1, β = 1,
p = 2, γ = 0 and δ = 1 over the spatial interval x ∈ [−50, 150] [19,25,33,42]. The exact solution is
u(x, t) = k41 sech4[k42(x− k43t)], where

k41 =
15
19

, k42 =

√
13

26
, k43 =

169
133

·

Table 7 compares the results of proposed method with those obtained with other
schemes [19,25,33,42]. In this case, the accuracy of the method is slightly better than those achieved
with the rest. Figure 11 depicts the motion of the single solitary wave with h = τ = 0.4 (left) and
h = τ = 0.2 (right) over the spatial interval x ∈ [−50, 150] at final times T ∈ {8, 16, 24, 32}. The crest
of the soliton clearly remains the same during the simulation. Figure 12 plots the eigenvalues of the
matrices A and B (left and right panels, respectively) with N = 100. The eigenvalues calculated for A

are negative values, while for B they have zero or negative values. Hence, the stability of the proposed
system for this case is verified.

Table 7. The L∞ and L2 errors under different mesh steps h = τ with N = 250 and ni = 181 at T = 24
for Example 4.

Method T c N ni L∞ L2

h = τ = 0.8
RBF-FD 24 0.35 250 181 1.2281× 10−11 4.7975× 10−11

[42] 24 - 250 - 3.09410× 10−4 7.78402× 10−4

[25] 24 - 250 - 9.06883× 10−4 2.42851× 10−1

[33] 24 - 250 - 1.16717× 10−1 3.11658× 10−1

[19] 24 - 250 - 7.56362× 10−3 2.03287× 10−2

h = τ = 0.4
RBF-FD 24 0.65 500 381 1.3151× 10−11 5.2620× 10−11

[42] 24 - 500 - 1.87205× 10−5 4.73034× 10−5

[25] 24 - 500 - 2.48437× 10−4 6.58790× 10−2

[33] 24 - 500 - 3.27045× 10−2 8.62872× 10−2

[19] 24 - 500 - 1.82402× 10−3 4.88759× 10−3

h = τ = 0.2
RBF-FD 24 1.40 1000 631 1.3472× 10−11 5.4481× 10−11

[42] 24 - 100 - 1.16521× 10−6 2.94078× 10−6

[25] 24 - 1000 - 6.36404× 10−3 1.68468× 10−2

[33] 24 - 1000 - 8.43616× 10−3 2.21942× 10−2

[19] 24 - 1000 - 4.52324× 10−4 1.21311× 10−3

h = τ = 0.1
RBF-FD 24 2.60 2000 1831 1.4086× 10−11 5.9844× 10−11

[42] 24 - 2000 - 7.27778× 10−8 1.83776× 10−7

[25] 24 - 2000 - 1.12985× 10−4 4.23946× 10−3

[33] 24 - 2000 - 3.02978× 10−4 5.59422× 10−3

[19] 24 - 2000 - 2.21651× 10−3 3.02978× 10−3
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Figure 11. Motion of the single solitary wave with h = τ = 0.4 (a) and h = τ = 0.2 (b) over the interval
x ∈ [−50, 150] at final times T ∈ {8, 16, 24, 32} for Example 4.
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Figure 12. The eigenvalues of A (a) and B (b) for N = 1000, ni = 631, p = 8 and c = 0.95 in Example 4.

Example 5. Consider the general Rosenau-KdV-RLW model (1) with parameters as α = β = μ = δ = 1 and
γ = 0, in two spatial intervals, namely x ∈ [−60, 120] and x ∈ [−30, 120]. The exact solution is given by

u(x, t) = exp(k51) sech
4

p−1 [k52(x− k53t)],

where

k51 = (ln[(p + 3)(3p + 1)(p + 1)]/[2(p2 + 3)(p2 + 4p + 7)]/(p− 1),

k52 =
p− 1√

4p2 + 8p + 20
,

k53 = (p4 + 4p3 + 14p2 + 20p + 25)/(p4 + 4p3 + 10p2 + 12p + 21).

The initial boundary value problem (1)–(3) includes the following conservative quantities:

I1 =
1
2

∫ b

a
udx =

h
2

N

∑
i=1

ui,

I2 =
1
2

∫ b

a
(u2 + u2

x + u2
xx)dx =

h
2

N

∑
i=1

(
ui + (ux)i

2 + (uxx)i
2
)

,
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related to mass and energy. The quantities I1 and I2 are applied to measure the conservation properties of the
present method, calculated by means of the trapezoidal rule for the Rosenau-RLW equation.

Tables 8 and 9 compare the results of the proposed method with those obtained from the schemes
presented in [26,36,37,39]. It can be observed that the computational results are clearly better than the
others and that the invariants I1 and I2 remain constant during the simulation. Figure 13 plots the
motion of the single solitary wave for various p at T = {0, 30, 60} in the spatial interval x ∈ [−60, 120].
The single solitons move to the right at a constant speed and conserve their amplitudes and shapes.
Figure 14 shows the eigenvalues of the linearized differentiation operator A and B (left and right
panels, respectively) with N = 100. The eigenvalues calculated for A and B are zero, or have negative
values. Therefore, the stability of the proposed system for this case is confirmed.

Table 8. The L∞, L2 and RMS errors and the invariants I1 and I2 with N = 1500, ni = 1089, c = 2.6 and
τ = 0.01 in the spatial interval x ∈ [−30, 120] for Example 5.

Method T L∞ L2 RMS I1 I2

p = 2
RBF-FD 10 4.2666× 10−7 1.1117× 10−6 9.0769× 10−8 1.89238729 0.53169648

[37] 10 7.6292× 10−6 1.8132× 10−5 − 1.89765990 0.53317753
RBF-FD 20 4.5738× 10−7 5.3007× 10−6 1.3686× 10−7 1.89238729 0.53169648

[37] 20 9.0949× 10−6 2.2513× 10−5 − 1.89766149 0.53317753
RBF-FD 30 4.6844× 10−7 6.5742× 10−6 1.6975× 10−7 1.89238729 0.53169648

[37] 30 1.0274× 10−5 2.5463× 10−5 − 1.89766306 0.53317753
RBF-FD 40 4.7437× 10−7 7.6096× 10−6 1.9648× 10−7 1.89238729 0.53169648

[37] 40 1.1378× 10−5 2.8139× 10−5 − 1.89766459 0.53317753
RBF-FD 50 4.7692× 10−7 8.4995× 10−6 2.1946× 10−7 1.89238729 0.53169648

[37] 50 1.2447× 10−5 3.0753× 10−5 − 1.89766608 0.53317753
p = 3

RBF-FD 10 3.9146× 10−6 3.1606× 10−5 8.1606× 10−7 2.66518850 1.11037761
[37] 10 2.1569× 10−5 4.9409× 10−5 − 2.67262472 1.11347058

RBF-FD 20 4.2260× 10−6 4.9004× 10−5 1.2653× 10−6 2.66518850 1.11037761
[37] 20 2.7517× 10−5 6.5313× 10−5 − 2.67264006 1.11347058

RBF-FD 30 4.3421× 10−6 6.1274× 10−5 1.5821× 10−6 2.66518850 1.11037761
[37] 30 3.3326× 10−5 7.9999× 10−5 − 2.67265504 1.11347058

RBF-FD 40 4.4063× 10−6 7.1244× 10−5 1.8395× 10−6 2.66518850 1.11037761
[37] 40 3.9091× 10−5 9.4787× 10−5 − 2.67266966 1.11347058

RBF-FD 50 4.4481× 10−6 7.6096× 10−6 2.0648× 10−6 2.66518850 1.11037761
[37] 50 4.4846× 10−5 1.0984× 10−4 − 2.67268415 1.11347058

p = 6
RBF-FD 10 3.3603× 10−4 8.0524× 10−4 6.5626× 10−5 3.97819339 1.91229616

[37] 10 3.1032× 10−4 6.5998× 10−4 − 3.99024365 1.91764461
RBF-FD 20 3.6994× 10−4 1.3622× 10−3 1.1107× 10−4 3.97819339 1.91229616

[37] 20 3.1897× 10−4 1.1382× 10−3 − 3.99024365 1.91764461
RBF-FD 30 3.8386× 10−4 1.7513× 10−3 1.4281× 10−4 3.97819339 1.91229616

[37] 30 3.2836× 10−4 1.4631× 10−3 − 3.99172706 1.91764489
RBF-FD 40 3.9219× 10−4 2.0639× 10−3 1.6841× 10−4 3.97819339 1.91229616

[37] 40 3.4181× 10−4 1.7187× 10−3 − 3.99458409 1.91764541
RBF-FD 50 3.9792× 10−4 2.3398× 10−3 1.9060× 10−4 3.99484237 1.91634750

[37] 50 3.4127× 10−4 1.9368× 10−3 − 3.99597486 1.91764566
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Figure 13. Motion of the single solitary wave for p = 3 (a), p = 6 (b) , p = 4 (c), and p = 8 (d) at final
times T ∈ {0, 30, 60} (a,b) and T ∈ {0, 20, 40} (c,d) in the spatial interval x ∈ [−60, 120] for Example 5.

Table 9. The L∞ and L2 errors and the quantities Q and E with N = 360, ni = 295, c = 0.55 and τ = 0.1
in the spatial interval x ∈ [−60, 120] for Example 5.

Method L∞ L2 Q E

p = 4
RBF-FD 4.1402× 10−10 2.1363× 10−9 6.248401 2.859729

[39] 1.3784× 10−4 9.3510× 10−4 6.266377 2.868226
[39] 1.0310× 10−5 2.3550× 10−5 6.265844 2.867735
[39] 2.9706× 10−4 6.6954× 10−4 6.265806 2.867684
[39] 4.2250× 10−4 1.1045× 10−3 6.265992 2.867617
[26] 1.7112× 10−3 4.4788× 10−3

[36] 2.7871× 10−2 7.4517× 10−2

p = 8
RBF-FD 2.7865× 10−6 1.4924× 10−5 9.745127 4.722011

[39] 1.3784× 10−4 3.8078× 10−4 9.742126 4.735346
[39] 2.9490× 10−5 7.5220× 10−5 9.742181 4.735225
[39] 6.2856× 10−4 1.7039× 10−3 9.742146 4.735302
[39] 4.7892× 10−4 1.2762× 10−3 9.742227 4.735082
[26] 1.6189× 10−3 4.3184× 10−3

[36] 2.9534× 10−2 8.0373× 10−2

p = 16
RBF-FD 9.1964× 10−4 4.8646× 10−3 17.167390 8.372094

[39] 4.4109× 10−4 2.3334× 10−3 17.168699 8.375376
[39] 4.4493× 10−4 2.3199× 10−3 17.169258 8.375400
[39] 5.3860× 10−4 3.0231× 10−3 17.172776 8.375393
[39] 2.2709× 10−3 7.6218× 10−3 17.116828 8.375272
[26] 1.1875× 10−3 3.5725× 10−3

[36] 2.2547× 10−2 6.1304× 10−2
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Figure 14. The eigenvalues of A (a) and B (b) for N = 500, ni = 111 and c = 1.26 in Example 5.

4. Conclusions

We adopted the local meshless RBF-FD to calculate the approximate numerical solutions of the
general nonlinear Rosenau-RLW equation without performing any linearization or transformation of
the equation. In order to demonstrate the accuracy of the proposed numerical technique, the error
invariants and error norms were computed, and the results were compared with others available in
the literature. The local RBF-FD technique was verified to be remarkably accurate. In conclusion,
the method is sufficiently accurate and fast due to its limited computational load.
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Abstract: Fractional order calculus has been used to generalize various types of controllers,
including internal model controllers (IMC). The focus of this manuscript is towards fractional
order IMCs for first order plus dead-time (FOPDT) processes, including delay and lag dominant
ones. The design is novel at it is based on a new approximation approach, the non-rational transfer
function method. This allows for a more accurate approximation of the process dead-time and
ensures an improved closed loop response. The main problem with fractional order controllers is
concerned with their implementation as higher order transfer functions. In cases where central
processing unit CPU, bandwidth allocation, and energy usage are limited, resources need to be
efficiently managed. This can be achieved using an event-based implementation. The novelty of
this paper resides in such an event-based algorithm for fractional order IMC (FO-IMC) controllers.
Numerical results are provided for lag and delay dominant FOPDT processes. For comparison
purposes, an integer order PI controller, tuned according to the same performance specifications as
the FO-IMC, is also implemented as an event-based control strategy. The numerical results show that
the proposed event-based implementation for the FO-IMC controller is suitable and provides for a
smaller computational effort, thus being more suitable in various industrial applications.

Keywords: fractional order IMC; first order plus dead-time processes; event-based implementation;
numerical simulations; comparative closed loop results

1. Introduction

Fractional calculus has been reaching a larger part of the research community due to the numerous
advantages it has. The increasing interest is mainly due to the ability to capture essential dynamics
in physical phenomena. This is seconded by the demonstrated ability of fractional order controllers
to meet more design specifications and provide for overall increased robustness and performance.
Several researchers have used fractional order tools to model more accurately viscoelastic phenomena [1],
aerodynamics [2], structural engineering [3], non-Newtonian characteristics in blood [4,5], type 1
diabetes [6], diffusion phenomena in magnetic resonance imaging [7], post-exposure prophylaxis
model in HIV [8], epidemic models for infectious diseases [9], biochemical phenomena [10], etc.

In terms of fractional order control, the starting point is the generalization to arbitrary orders of
the proportional-integral-derivative (PID) controller, as proposed in [11]. Ever since then, a manifold
of papers have been published, presenting various modifications of the original fractional order
PID (FO-PID) controller, various tuning methods and improvements. The key idea is that the
generalization of the PID to a fractional order provides more flexibility in improving the system control
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performance [12,13]. Several enhancements for FO-PID controllers were proposed. An optimal FO-PID
controller was proposed and tuned based on particle swarm optimization [14]. Designs based on
phase and gain margin specifications are quite abundant [12,15,16], and quite frequently the design is
based on ensuring the iso-damping property [12,16–18]. Tuning is usually performed in the frequency
domain, but time domain approaches were also considered [19,20]. Autotuning methods for fractional
order PID controllers were also proposed [21–23]. Some rather recent review papers on fractional order
controllers can be found in [24–26] and provide an insight into fractional order control of different
types. An excellent review paper on fractional order controllers, including their most widely used
continuous and discrete approximation methods, as well as their digital and analogue implementation
methods. The paper also presents the Matlab toolboxes that facilitate the use of fractional order calculus
in modeling and control. At the same time, it clearly pinpoints the advantages and disadvantages of
using fractional order calculus in control engineering [27].

For time delay systems, including first order plus dead time (FOPDT) processes, several approaches
have been introduced and developed over the years. A recent review paper regarding the approaches
for these types of system is given in [28]. Alternative control strategies based on fractional order
calculus for variable time delay systems are proposed in [29]. For significant delays, a Smith predictor
(SP) scheme can be useful. The fractional order controller design in this SP control scheme is based on
several approaches. One method proposes a modified SP structure, where the tuning procedure is
based on Bode’s ideal transfer function and the internal model control (IMC) principle. The resulting
control system is robust to changes in the process parameters [30]. A similar design for a fractional
order PI controller in a SP control structure, also based on Bode’s ideal transfer function, is presented
in [31]. The analytical tuning rules are derived in the frequency domain and applied to various types of
processes. The advantages of the method rely on a simple design scheme and a straightforward method,
which can be easily implemented in the process industry. The SP control structure is also used as a
means for comparing various fractional order controllers for a heat diffusion system in [32]. The research
offers valuable insight into the performance of the proposed fractional order control algorithms. In [33],
a time domain approach is considered for the design of fractional order controllers in a SP structure.
Only two parameters need to be tuned, which simplifies considerably the design procedure. The tuning
rules are derived based on an ideal closed-loop transfer function, with performance specifications
imposed as overshoot and settling time.

One of the simplest tuning rules for integer order PID controllers, as well as for FO-PID controllers,
highly suitable for time delay systems, is the IMC methodology. This consists in the simple inversion
of the invertible part of the process model and in the addition of a properly selected filter. This method
has also been tackled by researchers. For the design of a fractional order IMC controller (FO-IMC),
the most widely used approach is based on using a modified fractional order filter [34]. Some tuning
methods are based on the Ziegler–Nichols approach [35], Taylor series [36], dominant pole placement
method [37]. Other approaches are based on frequency domain specifications, such as phase and gain
margins [38–42]. Such an approach is also preferred in this research.

The FO-IMC control strategy proposed in this paper is based on specifying a certain gain crossover
frequency, to ensure a specific closed loop settling time, as well as phase margin criteria to ensure a
certain closed loop overshoot. The tuning rules are exemplified for first order plus dead-time processes.
To implement the resulting fractional order controllers, an efficient method is used, namely the
non-rational transfer function (NRTF) approximation method [43]. This allows for a more accurate
approximation of the process dead-time and ensures an improved closed loop response [38]. The design
is suitable for all types of FOPDT processes, but can be easily extended to higher order processes or
even fractional order transfer functions [44]. The research is focused on controlling processes where
CPU, bandwidth allocation, and energy usage are limited [45]. In this context, the idea of event-based
control is a natural solution for controller implementation [46,47]. Such an approach has been only
recently introduced to fractional order PID controllers [46,47]. The novelty of this paper resides in
introducing an event-based methodology for FO-IMC controllers. The method is entirely original
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compared to [46,47], where a standard fractional order PID type controller is tuned according to
some frequency domain specifications. The IMC methodology presented in the current manuscript
is not used in the actual tuning. Then, the event-based implementation of the fractional order PID
controller in [46] is based on direct discretization methods that use direct fractional order mappers
of the fractional integrator and differentiator of the fractional order PID controller. The event-based
algorithm relies then on a generalization of the standard direct discretization methods for fractional
order elements, where the sampling period is considered as a variable parameter (it depends on an
event being triggered). The study implements the proposed strategy entirely in the control signal
generator, using a single function to compute the fractional order control value. The novelty of the
current manuscript, apart from a different tuning procedure and a different fractional order controller
type, is based on a two-step implementation of the event-based fractional order controller. Firstly,
the fractional order controller determined based on the FO-IMC methodology is decomposed into
an integer order PI and a fractional order filter. Then, the NRTF approach is used to determine a
standard discrete-time approximation for the fractional order filter. The remaining PI controller is
implemented in an event-based approach. Numerical results are provided for lag and delay dominant
FOPDT processes. For comparison purposes, an integer order PI controller, tuned according to the
same performance specifications as the FO-IMC, is also implemented as an event-based control strategy.
The numerical results show that the proposed event-based implementation for the FO-IMC controller
is suitable and provides for a reduction in the resources used for computing the control signal.

The paper is structured as follows. In Section 2, the proposed tuning procedure for the FO-IMC
controllers is detailed. This is a novel approach, being based on the NRTF approximation method.
Then, the event-based algorithm for the FO-IMC controller is described and the NRTF approach is
briefly presented. Section 3 presents the results obtained for lag and delay dominant FOPDT processes,
in terms of reference tracking, disturbance rejection, and robustness. Comparative results are also
given. Section 4 includes a brief discussion of the previously presented results, while the last section
concludes the research.

2. Materials and Methods

2.1. Tuning the FO-IMC Controller

The following mathematical representation of the processes is considered:

Hp(s) =
k

Ts + 1
e−τs, (1)

where k is the process gain, T is the time constant, τ is the time delay, and s is the Laplace variable.
The transfer function in (1) is generally used to model various types of processes, such as thermal,
chemical, biomedicine systems. For these types of processes, a FO-IMC control strategy is proposed,
as indicated in Figure 1, where Hc(s) is the equivalent controller in a standard feedback structure,
Hm(s) is the process model, d—is the disturbance signal, y—the output signal, r—the reference signal.

The design of the FO-IMC controller is based on the inversion of the process model. For time
delay processes, the time delay cannot be inverted and needs to be approximated, using either first
Taylor series or Padé approximations [39]. Current research has shown that using these widely used
approximation methods leads to poorer closed loop results [38], compared to a new approach based
on the non-rational transfer function (NRTF) approximation method [43]. The new approach to tuning
FO-IMC controllers for FOPDT processes in (1) is detailed next.
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Figure 1. FO-IMC closed loop control scheme.

The proposed fractional order IMC (FO-IMC) controller is given by:

HFO−IMC(s) =
Ts + 1

k
1

λsα + 1
, (2)

where α ∈ (0, 2) is the fractional order and λ is the FO-IMC filter time constant. For α = 1, the classical
IMC controller is obtained. The limiting interval of the fractional order α is chosen such that the
fractional order operation has a physical relevance from the control action point of view, as presented
in [11].

Simple computations based on the diagram in Figure 1 lead to the following transfer function for
the equivalent controller:

Hc(s) =
Ts + 1

k(λsα + 1− e−τs)
. (3)

Notice the direct occurrence of the time delay in the denominator of (3). This can be further written as
an integer order PI controller in series with a fractional order filter:

H f (s) =
s

λsα + 1− e−τs . (4)

To tune the parameters of the FO-IMC controller, simple tuning methods can be used. In this particular
approach, the phase margin and gain crossover frequency specifications are employed. These two
performance specifications refer to the loop transfer function:

Hl(s) = Hp(s)·Hc(s) =
1

λsα + 1− e−τs e−τs. (5)

To meet the phase margin constraint, the phase equation is used:

∠Hl( jωc) = −π+ PM, (6)

where ωc is the desired gain crossover frequency and PM is the desired phase margin. The phase
margin is a direct measure for the stability and robustness of a system. The larger the PM is, the more
robust the overall closed loop system becomes. The selection of the gain crossover frequency is based
on the maximization of the delay margin associated to the closed loop system, according to:

ωc =
PM
τm − τ , (7)

where τm is the maximum time delay that would make the process in (1) unstable. To meet the gain
crossover frequency constraint, the modulus equation is used:∣∣∣Hl( jωc)

∣∣∣ = 1. (8)
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Then, replacing (1) and (3) in (6) and (8), leads to the following system of equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ

tan(π−PM−τωc)−tan(π−PM−τωc) cos(τωc)−sin(τωc)

ωαc sin( απ2 )−ωαc tan(π−PM−τωc) cos( απ2 )
,

λ2ω2α
c + 2λωαc

[
cos
(
απ
2

)
− cos

(
απ
2 + τωc

)]
− 2 cos(τωc) + 1 = 0.

(9)

The tuning of the FO-IMC controller is completed when the system of nonlinear equations in (9)
is solved [12,17]. To implement the equivalent controller, an event-based algorithm is preferred.
Such an approach leads to a smaller computational effort [46] and is more suitable in various industrial
applications [46].

2.2. Event-Based Algorithm for FO-IMC Controllers

The equivalent controller for a standard feedback loop, as usually encountered in industrial
applications, obtained based on the IMC methodology is given in (3). To implement this controller,
an alternative form is preferred, as mentioned previously, with an integer order PI controller in series
with the fractional order filter in (4). The new mathematical model for this fractional order equivalent
controller is given as:

Hc(s) = C(s)H f (s) =
Ts + 1

ks
H f (s) =

T
k

(
1 +

1
Ts

)
H f (s), (10)

where C(s) is the PI controller and Hf(s) is the fractional order filter in (4).
Figure 2 presents the event-based paradigm, consisting of three components: process data

measurement (data acquisition), event detector, and control input generator.

Figure 2. Basic paradigm of an event-based controller implementation [46].

The process output is measured at each sampling period hnom, chosen according to standard
discretization rules. The measured output data is transferred into the event detector. The main task of
the detector is to decide whether an event has occurred, and in this case to trigger the control input
generator. The event detector implements a function that optimizes the control process [47–49]. One of
the most widely used event detection rules is based on computing the error signal and verifying
whether it lies within a predefined range [−Δe, Δe]:∣∣∣e(t) − e(t− hact)

∣∣∣ ≥ Δe, (11)

where hact denotes the elapsed time since the triggering of the previous event, e(t) is the current error
signal, and e(t − hact) is the error at the previous event. Apart from the event triggering condition in
(11), a safety condition is also used such that:

hact ≥ hmax, (12)

where hmax is the maximum time between two consecutive events [50].
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Once an event has been triggered, either when (11) or (12) occurs, the control input generator
computes a new value for the control signal, according to a predefined algorithm. Since the computation
of the control signal value occurs at variable sampling instants, the control law is represented by
a discrete-time control algorithm where the sampling time parameter is considered as a variable
parameter. The algorithm proposed in this paper is detailed below.

The overall Simulink implementation of such an event-based algorithm is given in Figure 3,
where the blocks stand for: nrtf_fo_filter implements the NRTF approximation of the fractional order
filter in (4), event-detector implements both the event detection part, as well as the control input
generator for the integer order PI controller. The fractional order filter in (4) is used to filter the
error signal. This occurs at every sampling period hnom. The filtered error signal is then fed to the
event-detector which implements the function that triggers of the control input generator. The latter is
based on the standard PI controller, C(s) in (10). Thus, in the proposed approach, the PI controller is
implemented in an event-based manner.

Figure 3. Simulink implementation of an event-based fractional order control algorithm.

Once the tuning of the FO-IMC has been performed and the two parameters, λ and α, determined,
the fractional order filter in (4) is implemented in a discrete-time approximation based on the NRTF
method, while the PI controller is implemented as an event-based algorithm. The control signal U(s) of
the PI controller C(s) in (10) is computed based on:

U(s) = kp

(
1 +

1
Tis

)
+ E f , (13)

where kp and Ti are the proportional gain and integral time constant and E f (s) is the Laplace transform
of the filtered error signal, at the output of the fractional order filter in (4):

H f (s) =
E f (s)

E(s)
, (14)

where E(s) is the Laplace transform of the error signal e(t) defined as E(s) = Ysp(s) − Y(s), Ysp(s) is the
Laplace transform of the reference signal, Y(s) is the Laplace transform of the measured output signal.
For the particular case of FOPDT processes, the PI controller parameters are given as: kp = T

k and
Ti = T, as resulting from (10) and (13). The event-based implementation of the PI controller can be
achieved based on (13).

2.3. Comparisons with an Event-Based PI Controller

To compare the results, a classical integer order PI controller is designed for the same process
in (1). The choice of the PI controller is based on the same number of parameters, as in the case of
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the FO-IMC controller, which allows for a similar tuning approach based on ensuring a certain gain
crossover frequency and phase margin. The PI controller transfer function is given as:

CPI(s) = kp

(
1 +

1
Tis

)
, (15)

where kp and ki are the proportional and integral gains. The same performance specifications are used,
as in the design of the FO-IMC controller. In this case, the loop transfer function is given by:

Hl(s) = Hp(s)·CPI(s) = kp

(
1 +

1
Tis

)
k

Ts + 1
e−τs. (16)

To meet the phase margin constraint, the phase Equation in (6) is used, leading to:

Ti =
tan
(
−π2 + PM− ∠Hp( jωc)

)
ωc

, (17)

where ωc is the desired gain crossover frequency and PM is the desired phase margin. To meet the
gain crossover frequency constraint, the modulus equation in (8) is used, leading to:

kp =
Tiωc∣∣∣Hp( jωc)
∣∣∣ √T2

i ω
2
c + 1

. (18)

Thus, the tuning of the PI controller is complete, with the kp and ki parameters uniquely determined
based on (17) and (18). To implement the PI controller, the event-based algorithm as proposed in [46]
will be used. For a fain comparison, the parameters of the event-based algorithm will be similar to
those used in the event-based implementation of the FO-IMC controller.

2.4. A Brief Overview of the NRTF Approximation Approach

Various discrete-time approximation methods for fractional order systems have been proposed
over the years, including direct and indirect approaches [51]. One of the advantages of direct methods
lies in the expedite approximation of fractional order systems as discrete-time higher order transfer
functions. Most of the existing methods deal with the direct approximation of simple fractional order
elements, such as the fractional order integrator or first order filter [52]. The NRTF method has been
proposed as a means to offer a discrete-time approximation of low order for any type of non-rational
transfer function, including complex fractional order elements and time delays [43]. The method
consists of four steps, as detailed briefly below. A more detailed analysis and comparisons of the NRTF
approach with other methods can be found in [43].

Step 1: The following generating function is used to replace the Laplace variable s in the fractional
order system:

w
(
z−1
)
=

1 + δ
TS

1− z−1

1 + δz−1
, (19)

where δ ε [0, 1] is a shaping knob and Ts is the sampling period. To decrease the phase error between
the approximation and the actual fractional order system, the parameter δ should be selected to be
large, while a smaller value of δ decreases the magnitude error [43]. As fractional order systems
have unlimited memory, the approximation is only possible within a certain limited frequency range.
During this step, the maximum frequency boundary ωh has to be specified, according to the Nyquist
sampling theorem, with ωh = π

Ts
. The approximation of the fractional order system will then be valid

in an interval defined as (0, ωh).
Step 2: The frequency response of the discrete-time fractional order system obtained in

Step 1 is computed. To achieve this, the discrete-time operator z is replaced with ejωTs ,
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where ω = 2π
TSNS

[
0 1 2 . . . NS

2

]
is a vector of equally spaced frequencies and Ns is also

a tuning knob. For a good approximation in the low frequency range, Ns should be large. The result of
this second step consists in a vector of frequency response values of the fractional order discrete time
transfer function.
Step 3: The inverse fast Fourier transform (FFT) algorithm is used to calculate the impulse response of
the discrete-time fractional order system:

g[n] =
1

NS

∑NS−1

k=0
G[k]e

+ j 2π
NSnk , n = 0, 1, 2, . . . , NS − 1 , (20)

with G[k] denoting the frequency response of the original fractional order system. The result of this
step is a vector (20) containing Ns impulse response values.
Step 4: The Steiglitz–McBride approach [53] is used to determine a rational discrete-time transfer
function with a similar impulse response as obtained from the inverse FFT in Step 3. The order N of
the approximation has to be specified. The larger N is, the better the approximation. This also results
in a higher order discrete-time transfer function. A compromise should be considered. The result of
this step is the final discrete-time integer order transfer function of the form:

G
(
z−1
)
=

c0 + c1z−1 + . . .+ cNz−N

d0 + d1z−1 + . . .+ dNz−N , (21)

where c0, c1 . . . cN and d0, d1 . . . dN are coefficients computed according to the SteiglitzMcBride
approach.

The step-by-step design procedure for a FO-IMC controller, as proposed in this paper, is detailed
below, along with the event-based implementation.

Step 1: Select the desired PM and τm. Compute ωc based on (7).
Step 2: Solve (9) to determine the FO-IMC controller parameters, λ and α.

Step 3: Compute the PI controller parameters according to kp = T
k and Ti = T and the fractional order

filter as indicated in (4), for the equivalent fractional order controller as described in (3).
Step 4: Select the parameters of the NRTF approximation method for the discrete-time approximation
of the fractional order filter in (4): N, ωh, and δ. The sampling period Ts is indirectly obtained as
ωh = π

Ts
.

Step 5: Select the parameters for the event-based implementation of the PI controller: h_nom = T_s,
Δ_e, and h_max. The event-based algorithm is implemented based on two functions: an event detector
(Figure 4) and a control signal generator (Figure 5), as follows.
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Figure 4. Event detector function.

Figure 5. Control input generator function.

3. Results

This section presents the main results obtained. The design is specific for FOPDT processes.
Two different types will be discussed, the lag dominant and the delay dominant process. In both
cases, reference tracking, disturbance rejection, and robustness to gain variations are considered as
simulation tests. Reference tracking tests have been included in order to show the efficiency of the
event-based controller in terms of setpoint trailing, while disturbance rejection results are considered
in order to demonstrate the ability of the event-based controller to cope with external disturbances.
Only step disturbance signals have been considered. As the results show, the event-based FO-IMC
controller ensures better closed loop results compared to the event-based integer order PI controller,
despite both controller being tuned and implemented in a similar fashion. Robustness tests are included
to demonstrate that a fractional order IMC controller is intrinsically more robust to gain uncertainties,
compared to a traditional integer order PI controller, even though robustness is not directly tackled in
the design.

3.1. The Lag Dominant FOPDT Process

The following process model is considered for the first case study:

Hp(s) =
1

4s + 1
e−s. (22)
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To design the FO-IMC controller based on the tuning method described in Section 2.1, a phase
margin PM = 85◦ and a gain crossover frequency ωc = 0.3 rad/s are imposed. The solution of (9) yields
λ = 1.95 and α = 0.85, with the FO-IMC controller given as:

HFO−IMC−NRTF(s) =
4s + 1

1
1

1.95s0.85 + 1
, (23)

while the equivalent controller is computed as:

Hc(s) =
4s + 1

1.95s0.85 + 1− e−s . (24)

In this case, the parameters of the PI controller are kp = 4 and Ti = 4. The fractional order filter:

H f (s) =
s

1.95s0.8475 + 1− e−s =
E f (s)

E(s)
, (25)

is implemented as a discrete-time transfer function based on the NRTF approach with the order
N = 7, δ = 1 and sampling period Ts = 0.1 s. For the event-based PI control algorithm, the following
parameters are used: hnom = Ts = 0.1 s, hmax = 0.5, and Δe = 0.1.

For comparison purposes, a PI controller is also designed for the same performance specifications.
The parameters are obtained according to (17) and (18), leading to:

CPI(s) = 1.3841
(
1 +

1
6.3715s

)
. (26)

The controller in (26) is then implemented in an event-based algorithm with the same parameters as in
the case of the FO-IMC controller.

The reference tracking, disturbance rejection and robustness results are given in Figures 6–9.

Figure 6. Comparison between the closed loop systems with the event-based FO-IMC and the classical
proportional integral PI controllers for reference tracking (output signal in the upper plot, input signal
in the lower plot).
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Figure 7. Comparison between the closed loop systems with the event-based FO-IMC and the PI controllers
for a 0.2 disturbance rejection (output signal in the upper plot, input signal in the lower plot).

Figure 8. Robustness validation of the event-based FO-IMC controller (output signal in the upper plot,
input signal in the lower plot).
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Figure 9. Robustness validation of the event-based PI controller (output signal in the upper plot,
input signal in the lower plot).

3.2. The Delay Dominant FOPDT Process

The following process model is considered for the second case study:

Hp(s) =
2

s + 1
e−2s. (27)

To design the FO-IMC controller based on the tuning method described in Section 2.1, a phase
margin PM = 80◦ and a gain crossover frequency ωc = 0.3 rad/s are imposed. The solution of (9) yields
λ = 0.88 and α = 0.62, with the FO-IMC controller given as:

HFO−IMC−NRTF(s) =
s + 1

2
1

0.88s0.62 + 1
, (28)

while the equivalent controller is computed as:

Hc(s) =
s + 1

2(0.88s0.62 + 1− e−2s)
. (29)

In this case, the parameters of the PI controller are kp = 0.5 and Ti = 1. The fractional order filter:

H f (s) =
s

0.88s0.62 + 1− e−2s =
E f (s)

E(s)
, (30)

is implemented as a discrete-time transfer function based on the NRTF approach with the order N = 5,
δ = 0.5 and sampling period Ts = 0.1 s. For the event-based PI control algorithm, the following
parameters are used: hnom = Ts = 0.1 s, hmax = 0.5 and Δe = 0.1.
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For comparison purposes, a PI controller is also designed for the same performance specifications.
The parameters are obtained according to (17) and (18), leading to:

CPI(s) = 0.3430
(
1 +

1
2.9055s

)
. (31)

The controller in (31) is then implemented in an event-based algorithm with the same parameters as in
the case of the FO-IMC controller.

The reference tracking, disturbance rejection, and robustness results are given in Figures 10–13.

Figure 10. Comparison between the closed loop systems with the event-based FO-IMC and the PI
controllers for reference tracking (output signal in the upper plot, input signal in the lower plot).

Figure 11. Comparison between the closed loop systems with the event-based FO-IMC and the PI
controllers for a 0.2 disturbance rejection (output signal in the upper plot, input signal in the lower plot).
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Figure 12. Robustness validation of the event-based FO-IMC controller (output signal in the upper
plot, input signal in the lower plot).

Figure 13. Robustness validation of the event-based PI controller (output signal in the upper plot,
input signal in the lower plot).

4. Discussion

A performance comparison regarding the two different event-based controllers is presented in
Table 1, for the lag dominant process. Figure 6 depicts a comparison regarding reference tracking with
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the event-based FO-IMC controller and the event-based PI controller. As indicated here, the FO-IMC
achieves a faster settling time, compared to the PI: 13 s, compared to nearly 25 s. The drawback is that
the FO-IMC control signal is twice as large, but solely during one event. Both controllers manage to
achieve this without any overshooting. Over the 40 s seconds simulation time, the event-based FO-IMC
controller requires 82 control signal computations; similarly for the event-based PI controller. In a
classical discrete-time approximation, both type of controllers would have needed 400 computations.
This leads to an overall reduction of the resources used of 79.5%. Improved disturbance rejection
results are also visible in the case of the FO-IMC controller, compared to the PI controller, as indicated
in Figure 7. The settling time for the FO-IMC is approximately 8 s, compared to 16 s for the PI. In terms
of control signal computations, there are 61 for the event-based FO-IMC implementation, compared to
60 for the event-based PI implementation and 300 for the standard discrete-time implementation.
This leads to 79–80% reduction in the resources used. The robustness validation of the event-based
FO-IMC controller is given in Figure 8, whereas the robustness tests for the event-based PI controller
are indicated in Figure 9. Although none of the control strategies were designed specifically to ensure
the robustness to gain variations, the simulation results in Figures 8 and 9 show that for ±50% gain
variations, the event-based controllers manage to maintain 0 overshoot. A comparison between the
two shows that the event-based PI controller has better chances of turning the closed loop into an
underdamped response for larger positive gain variations.

Table 1. Performance comparison between the event-based FO-IMC and event-based PI controller for
the lag dominant FOPDT process.

Test Scenario FO-IMC Control PI Control

Overshoot (%)
Settling
Time (s)

Control
Computations

Overshoot
(%)

Settling
Time (s)

Control
Computations

Reference tracking 0 13 82 0 25 82
Disturbance rejection 8 61 16 60

Robustness assessment
50% gain variation 0 7 0 15
−50% gain variation 0 23 0 40

A performance comparison regarding the two different event-based controllers is presented in
Table 2, for the delay dominant process. In this case, Figure 10 depicts a comparison regarding reference
tracking with the event-based FO-IMC controller and the event-based PI controller. The event-based
FO-IMC controller, proposed in this manuscript, achieves zero overshoot and a 7 s settling time.
The event-based PI controller achieves no overshoot, but with an oscillatory response, as well as a
larger settling time of 18 s. In terms of control effort, this is larger for the FO-IMC, compared to the
PI. A comparison regarding resources used over 40 s simulation shows that the event-based FO-IMC
requires 103 computations of the control signal, whereas the event-based PI controller needs solely 83.
This accounts for 74% reduction in the resources used for the event-based FO-IMC and a slightly better
79% for the event-based PI controller, compared to the standard discrete-time implementation (with
400 computations over the 40 s simulation period). In terms of disturbance rejection, the comparative
simulation results given in Figure 11 demonstrate the efficiency of the FO-IMC compared to the PI,
with a settling time of 7 s, compared to 12 s. In this case also, the event-based FO-IMC requires 87
computations of the control signal, higher than the 61 for the event-based PI controller. The simulation
period considered was 30 s, with a standard discrete-time implementation requiring 300 control
signal computations overall. In this case, 71% improvement in the resources used is achieved with
the event-based FO-IMC implementation and 80% with the event-based PI controller, compared to
the standard discrete-time implementation. The robustness validation of the event-based FO-IMC
controller is given in Figure 12, whereas the robustness tests for the event-based PI controller are
indicated in Figure 13. Although none of the control strategies were designed specifically to ensure
the robustness to gain variations, the simulation results in Figure 12 show that better robustness can
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be achieved by using the event-based FO-IMC controller, compared to the event-based PI controller.
The latter has oscillatory response and higher overshoot and nearly twice settling time.

The results obtained for the event-based FO-IMC controller show that this can be considered as a
viable option for controlling processes where resources, bandwidth allocation, energy usage are limited.
Furthermore, as the simulation results show, the event-based FO-IMC control strategy offers better
results in terms of reference tracking, disturbance rejection, and robustness for both lag and delay
dominant systems. The robustness of the event-based FO-IMC controller is significantly improved
compared to the event-based PI controller, for delay dominant systems. This is an aspect intrinsic to
the IMC methodology. The sole disadvantage of the event-based FO-IMC controller is that there is an
increase in the control effort and in the number of events that require the computation of the control
signal, compared to the event-based PI controller.

Table 2. Performance comparison between the event-based FO-IMC and event-based PI controller for
the delay dominant FOPDT process.

Test Scenario FO-IMC Control PI Control

Overshoot (%)
Settling
Time (s)

Control
Computations

Overshoot
(%)

Settling
Time (s)

Control
Computations

Reference tracking 0 7 103 0 18 83
Disturbance

rejection 7 87 12 61

Robustness
assessment

25% gain variation 10 9 15 20
−25% gain variation 0 12 0 20

Further research includes the modification of the FO-IMC tuning procedure to an optimization
routine where the control effort is also directly tackled, as well as the robustness property. Additionally,
an experimental validation is to be considered.

5. Conclusions

Fractional order calculus has been used to provide for a generalization of the IMC. Such an
approach is usually considered for the control of dead time processes. In this paper, FOPDT processes
are considered, including delay and lag dominant ones. The design is based on a new approximation
approach, the NRTF method, for the equivalent controller in an IMC loop and on two performance
specifications, the gain crossover frequency and the phase margin. As it has been previously
demonstrated by the authors, the NRTF method allows for a more accurate approximation of the
process dead-time and ensures an improved closed loop response.

The implementation of the final fractional order controller is usually a challenging task, since higher
order transfer functions are used to approximate the dynamics of the original controller. In situations
where CPU, bandwidth allocation, and energy usage are limited, resources need to be efficiently
managed. In this paper, a solution for this is proposed, in terms of an event-based implementation
of the FO-IMC controller. Such an approach, has only been recently proposed for fractional order
PID-type controllers, but not for other types/structure of fractional order controllers. The originality
of the approach consists in a two-step implementation. The equivalent fractional order controller,
as obtained according to the proposed FO-IMC approach, is divided into an integer order PI controller
and a fractional order filter. Then, the NRTF approach is used to determine a standard discrete-time
approximation for the fractional order filter. The remaining PI controller is implemented in an
event-based approach. Numerical results are provided for lag and delay dominant FOPDT processes.
For comparison purposes, an integer order PI controller, tuned according to the same performance
specifications as the FO-IMC, is also implemented as an event-based control strategy. The numerical
results show that the proposed event-based implementation for FO-IMC controller is suitable and
provides for better reference tracking, disturbance rejection, and robustness, compared to the integer

400



Mathematics 2020, 8, 1378

order event-based PI controller, as well as a smaller computational effort compared to a standard
discrete-time implementation, thus being more suitable in various industrial applications where
resources need to be drastically limited.
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