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Editorial

Special Issue “Quantitative Risk Assessment in Life, Health
and Pension Insurance”

Anna Rita Bacinello

Department of Economics, Business, Mathematics and Statistics “Bruno de Finetti”, University of Trieste,
34100 Trieste, Italy; bacinel@units.it

The high volatility in financial markets, together with the ultra-low interest rates
environment and the increased expectation of life, constitute serious threats for providers
of long-term investment guarantees and lifelong benefits. Even if the COVID-19 pandemic
is currently causing a mortality shock, its influence on future mortality is not clear, and one
possible scenario could be a further increase in the life expectancy of survivors. The risk
involved by all these “exogenous” factors is amplified by the uncertainty characterizing the
individual behavior when taking decisions concerning, e.g., surrender, partial withdrawals,
annuitization. The study of suitable solutions allowing to build resilience against these
risks is a real challenge.

This Special Issue contributes to this challenge, and collects five high-quality research
papers analyzing theoretical or practical aspects related to the following topics:

(i) Design of new pension insurance products and risk-management of loan insurance
(Olivieri 2021; Planchet et al. 2022);

(ii) Assessing capital requirements for demographic risk in a life insurance portfolio—
stochastic models and numerical techniques (Clemente et al. 2021; Costabile and
Viviano 2021);

(iii) Analysis and risk-management of the long-term impact of COVID-19 on the life
insurance business (Carannante et al. 2022).

In detail, the paper by (Clemente et al. 2021) focuses on the evaluation of capital
requirements for both mortality and longevity risk. To this end, a stochastic model for tra-
ditional life insurance contracts is proposed and framed within the Solvency II Directive. In
this context, the authors extend the classical methodologies developed in a local accounting
framework, and prove that that the valuation of demographic profit can be significantly
affected by the financial conditions in the market, so that the financial component cannot be
completely separated from a purely demographic one. The paper ends with the presenta-
tion of a case study of a portfolio of life insurance contracts, which testifies the effectiveness
of the model in highlighting the main drivers of capital requirement evaluation.

The paper by Costabile and Viviano (2021) addresses the problem of approximating the
future value distribution of a large and heterogeneous life insurance portfolio by proposing
two regression-based methodologies: the former is an extension of the well-known least
squares Monte Carlo approach; the latter is grounded on the class of generalized beta
distribution of the second kind. Extensive numerical experiments are conducted in order to
assess the performance of the proposed methods, both in terms of accuracy and efficiency.
To this end, a solid benchmark based on nested simulations is considered. The obtained
results show that both methods represent valid alternatives to the benchmark in terms of
accuracy, but strongly outperform it in terms of computational time. These conclusions are
particularly relevant for insurance companies, helping them to reduce the computational
effort needed to evaluate solvency capital requirements.

The paper by Olivieri (2021) introduces some elements of flexibility in the traditional
annuity design that can better meet the preferences of annuitants, hence fighting their
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lack of attractiveness observed in many markets. In more detail, on one hand, the new
design allows the benefit amount to fluctuate according to a given mortality/longevity
experience, and on the other, provides a pricing structure alternative to classical upfront
loading. This structure is based on periodical fees applied to the policy account, as usually
occurs in the case of variable annuities. The fees can be assessed in order to incorporate an
allowance for both the expected profit and the risk retained by the insurer. This product can
be particularly appealing for individuals that need a longevity protection different from
that supplied by traditional annuities: even if they are exposed to the risk of future benefit
reductions as a consequence of higher longevity, this risk can be compensated by a lower
premium loading.

The paper by Carannante et al. (2022) investigates the long-term effects of COVID-19
on life insurance profitability, and proposes a proactive mortality risk management based
on dynamic premium adjustments which allows to prevent these effects and to increase the
resilience of the business. In particular, the authors explore how the COVID-19 pandemic
mortality shock has affected the profitability of annuity providers, and conclude that,
unlike what might be expected, the involved mortality acceleration does not increase the
profitability if their portfolios are well diversified in terms of age of the annuitants. Then,
the longevity improvements continue to represent the main issue for these providers and
lead them to frequently adjust their mortality assumptions, particularly if their portfolio is
composed by contracts held by relatively young people.

The paper by Planchet et al. (2022) starts from the observation that many loans are
currently rejected due to the presence of a pathology in the applicant, and analyzes how
improvements in the knowledge of health and pooling risks, based on open data and risk
pooling scenarios, can broaden access to loan insurance. In particular, the authors show
how to use open data to estimate loan insurance premiums for a variety of diseases, and
prove that through these data, the descriptions of the risks of mortality and disability
for serious pathologies can be significantly refined. Then, a more accurate assessment
of these risks enables enlargement of the insurance portfolios and to keep premiums at
reasonable levels.

All the papers appearing in this Special Issue underwent a refereeing process subject
to the usual high standards of Risks. I would like to thank all the authors for their excellent
contributions and all the referees for their thorough and timely reviews. I would also like
to extend my heartfelt thanks to the MDPI Editorial Team, especially to Mr. Ivan Wang.

Funding: This research received no external funding.
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Abstract: The aim of this paper is to provide a stochastic model useful for assessing the capital
requirement for demographic risk in a framework coherent with the Solvency II Directive. The model
extends to the market consistent context classical methodologies developed in a local accounting
framework. The random variable demographic profit, defined in literatue under local accounting
principles, is indeed analysed in a Solvency II framework. We provide a unique formulation for
different non-participating life insurance contracts and we prove analytically that the valuation of
demographic profit can be significantly affected by the financial conditions in the market. Regarding
this topic, we implement the Vašíček model to add randomness to risk-free rates. A case study has
also been developed considering a portfolio of life insurance contracts. Results prove the effectiveness
of the model in highlighting the main drivers of capital requirement evaluation (e.g., the volatility of
both mortality rates and risk-free rates), also compared to the local GAAP framework.

Keywords: life insurance; Solvency Capital Requirement; Solvency II; local GAAP; risk theory

1. Introduction

Two key innovations, brought by the Solvency II directive in insurance, are the
introduction of the market consistent framework for the valuation of assets and liabilities
and the definition of risk-based principles for the assessment of the Capital Requirement.
In this context, the quantification of losses on an annual time horizon at a given confidence
level is a crucial element in determining the requirement. Each company must decide
whether to adopt the standard approach or to use its own (partial or full) internal model,
which has to be approved by the local supervisory authority. Furthermore, several sources
of risk are involved in the valuation process; measuring the dependence between them is
also a crucial point.

In this framework, we focus on demographic profit and we provide a stochastic model
to quantify the capital requirement for both mortality and longevity risk. In the literature,
several papers have dealt with this topic. In particular, Olivieri and Pitacco (2008) design
a framework for a market-consistent analysis of the life-annuity portfolio. The authors
link the traditional approach to a risk-neutral valuation assessing the cost of capital for
longevity risk and measuring the amount of target capital for mortality and longevity risk.
Hari et al. (2008) analyse the relevance of longevity risk for the solvency position of annuity
portfolios distinguishing between micro and macro-longevity risks.

Stevens et al. (2010) quantify the value of annuity liabilities and of the related longevity
risk capital requirement by applying the classical Lee–Carter model to estimate the uncer-
tainty of future survival probabilities. Bauer and Ha (2015) propose an approach for the
calculation of the required risk capital based on least-squares regression and Monte Carlo
simulations. Savelli and Clemente (2013) provide an approach based on risk theory to evalu-
ate the capital requirement for mortality and longevity risk in a local accounting framework.
Boonen (2017) examines the consequences for a life insurance company of a calibration
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of longevity and financial risks by using the expected shortfall instead of value-at-risk.
Furthermore, the notion of market-consistent valuation of insurance liabilities has been in-
vestigated recently by several authors (Pelsser and Stadje 2014; Dhaene et al. 2017) and the
analyses have also been extended to a dynamic multi-period setting (Barigou et al. 2019).

Dahl (2004) model mortality intensity as a stochastic process and quantify mortality
risk by capturing the importance of time dependency and uncertainty. This paper con-
tributes to the existing literature, proposing a different approach for modelling the capital
requirement for mortality and longevity risk. We adapt the well-known gain and loss
decomposition (Bacinello 1986) to a Solvency II framework, providing a closed formula for
the random variable demographic profit and loss of a life insurance company. We show
that this general formula holds for different non-participating life insurance contracts and
we analytically split it into several elements in order to emphasize the main key drivers.
To the best of our knowledge, a closed formula is not already available in the literature in
a market-consistent framework. Additionally, it is noteworthy that, although our aim is
not to forecast future mortality rates, the proposed approach is also consistent with the
application of mortality models.

In particular, we assume a portfolio of non-participating life insurance policies com-
posed by several cohorts of contracts, where in each cohort all the policyholders have the
same characteristics (e.g., age, gender etc.) and the only element of distinction is repre-
sented by the sums insured. Hence, policyholders in the same cohort are assumed to be
independent and identically distributed (i.i.d.), with the exception of the insured sums. It is
noteworthy that the aggregation between different cohorts is not considered here as well
as the possible presence of derivative contracts. Therefore, further research will concern
the aggregation of several cohorts and portfolios composed of different contracts in order
to catch the effects of both dependencies and natural hedging (see, e.g., Cox and Lin 2007).

Through this model, we prove the analytical decomposition of the expected demo-
graphic profit/loss, highlighting main drivers. Additionally, we assess the distribution via
Monte Carlo simulations and we identify a Solvency Capital Requirement compliant with
Solvency II. Furthermore, we assure that the model accurately reflects different sources
of profit as requested by the requirements set by the Solvency II Directive (European
Parliament and Council 2015, art. 123). In addition, a numerical section is presented to
apply the proposed approach to alternative life insurance policies; here, we focus on the
risk identified in Shen and Sherris (2018) as idiosyncratic risk.

The remainder of this paper is organized as follows. Section 2 exploits the traditional
Homans formula, based on local Generally Accepted Accounting Principles (GAAP), adapt-
ing it to a market consistent context. Section 3 focuses on the random variable demographic
profit, also providing a decomposition of this random variable useful for profit and loss
composition. Section 4 presents the algebra underlying the model and the proof of a
recursive formula that supports the results. Section 5 presents some simplified examples
to emphasize the main key drivers. In Section 6, we assess our proposal by developing
detailed case studies based on a real portfolio composed by different non-participating life
insurance contracts. In particular, the main results confirm the effectiveness of the model
in measuring the capital requirement and assessing the different components that affect
the demographic results. In Section 7, we propose the conclusions of our paper.

2. Technical Profit and Gain/Loss Decomposition in a Solvency II Framework

In this section, we provide a formula for the random variable (r.v.) technical profit of a
life insurance company. In particular, we define it in a market consistent framework accord-
ing to the definition of technical liabilities given by the Solvency II regulation. Furthermore,
we prove that a gain and loss decomposition is possible in order to emphasize the main
profit components. The decomposition is developed in a similar fashion to the well-known
decomposition provided by Homans (Bacinello 1986; Savelli and Clemente 2013) in a local
accounting framework.

4
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We start by briefly recalling the r.v. technical profit, that we denote1 with Ỹt+1, in a
local accounting context (Savelli and Clemente 2013; Savelli 1993):

Ỹt+1 = [VBt + B̃t+1 − Ẽt+1 − S̃t+1](1 + j̃t+1)− [X̃t+1 + ṼBt+1]. (1)

First of all we specify that, consistent with the provisions of Solvency II (European
Parliament and Council 2015, 2021), our purpose is to evaluate the capital requirement on
an annual time horizon, therefore the stochastic variables will be those evaluated in t + 1
since the valuation instant coincides with t.

The random variable technical profit Ỹt+1 is defined as the difference of two terms.
The first one is the sum of the complete technical provisions VBt,2 and the gross earned pre-
miums B̃t+1, net of expenses Ẽt+1 and surrenders S̃t+1 accumulated at the actual financial
return rate j̃t+1

3. The second term in Equation (1) is the sum of total claim costs X̃t+1 and
the complete technical provisions stored at the end of the year ṼBt+1. It is noteworthy that
we consider with the r.v. X̃t+1 different non-participating life insurance policies (i.e., as
specified later, this r.v. could be equal to zero or to the total lump sums paid in the case of
death or survival according to the kind of benefit covered by the insurance policy).

With the introduction of the Solvency II framework (European Parliament and Council
2021), the previous formula has to be adapted to consider the market consistent valuation
of assets and liabilities. Referring only to non-hedgeable liabilities, these are calculated as
the sum of Best Estimate and Risk Margin (see Art. 77 of Directive 2009/138/EC). Hence,
we can rewrite Equation (1) as:

ỸMCV
t+1 = [BEt + B̃t+1 − Ẽt+1 − S̃t+1](1 + j̃t+1)− [X̃t+1 + B̃Et+1]. (2)

It should be pointed out that the Risk Margin is not considered since the purpose of
this model is to identify a Solvency Capital Requirement consistent with the legislation and,
therefore, with the Delegated Acts. Indeed, Delegated Regulation (European Parliament
and Council 2015) assumes that the worst case scenario does not change the amount of Risk
Margin included in the technical provisions. Therefore, the inclusion of this aforementioned
component in Equation (2) when the formula is used for risk capital purposes is not in
line with the constraints introduced by the regulation and could inappropriately affect the
comparison with the standard formula requirement. Similarly to the well-known results
regarding the decomposition of the classical Homans formula, we prove in the Appendix A
the five components of the technical profit formula in a stochastic context. Our main
interest is to focus on the first and the second components, respectively the demographic
and financial profit and loss. Using rate-based expressions4 instead of amounts (therefore
switching from uppercase letters to lowercase ones), we can define the demographic profit
(loss) as:

1ỹMCV
t+1 = {[beR f (t),q(t)

t + bt+1 · (1 − α∗ − β∗)− γ∗] · (wt − s̃t+1) · (1 + j∗)

− (x̃t+1 + w̃t+1 · b̃e
˜R f (t+1), ˜q(t+1)

t+1 ), }
(3)

where beR f (t),q(t)
t is the rate of best estimate based on the risk-free curve available at time

t and realistic demographic assumptions q(t) at time t, bt+1 is the premium rate, α∗, β∗
and γ∗ are expense loading coefficients for acquisition, management and collection costs,
respectively. The term (wt − s̃t+1) is the difference between the amount of the sums insured
wt in time t and surrenders s̃t+1; j∗ is the first order financial rate (i.e., the technical rate
assumed in the premium assessment). Similarly the reserve at the end of the year is

computed as the product of sums insured w̃t+1 and the best estimate rate b̃e
˜R f (t+1), ˜qt+1

t+1
based on financial ˜R f (t + 1) and demographic ˜q(t + 1) assumptions in force at time t + 1.
It is noteworthy that Equation (3) also allows to analyse the effects of a possible change in
the demographic technical base in t + 1. From a qualitative point of view, demographic
risk is defined as the possibility of suffering losses because of a variation in the effective
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mortality of the cohort of policyholders. Since we deal with policyholders that have the
same characteristics within the same cohort, we assume that the probabilities of death
of the entities are the same and the demographic evolution of the single policyholder is
independent from the others (i.e., policyholders are i.i.d.). The only difference between
them is represented by the insured sum. We point out that, although a change in value of
risk-free rates is considered in the evaluation of capital requirement related to interest risk,
a model oriented to highlight the valuation concerning the bridge between the Local GAAP
Technical Provisions and the market consistent valuation of Solvency II Best Estimate, must
consider the effect of risk-free rates component. The best estimates involved in the valuation
(see Equation (3)) depend on risk-free rates. Additionally, considering x̃t+1, it is possible to
find a capital requirement framework in line with the proposal made in the Quantitative
Impact Study n.2, carried out in may 2006 for the preparation of final SCR standard formula,
where a closed notation was provided for both mortality and longevity risk.

A peculiar mention must be given also to another profit component, the so-called
financial profit, which is necessary to explain some key aspects of the model. It is defined
as follows:

2ỹMCV
t+1 = ( j̃t+1 − j∗) · [beR f (t),q(t)

t · wt + bt+1(1 − α∗ − β∗) · (wt − s̃t+1)+

− γ∗ · wt − g∗t · beR f (t),q(t)
t · s̃t+1],

(4)

where j̃t+1 is the r.v. that describes the rate of return of invested assets and g∗t is a specific
penalization coefficient applied in case of surrender (see Appendix A for details on the
formula). As expected, the sign of this component depends on the relation between the
effective investment rate and the technical rate guaranteed to the policyholders. For the
sake of brevity, the other profit components are reported in Appendix A, in particular
that for expenses, for lapses and a residual margin. As proved, the sum of these five
components gives back the whole technical profit (see Equation (2)).

3. The Demographic Profit and Its Factorisation

Given the gain and loss decomposition provided in the previous section, we now focus
only on the demographic component (see Equation (3)). Indeed, modelling this random
variable, we are able to assess the capital requirement for mortality or longevity risk. After
some simple manipulations, it is possible to rewrite Equation (3) as follows:

1ỹMCV
t+1 = Db

t+1 · [q∗x+t · (wt − s̃t+1)− z̃t+1]+

+ (beR f (t),q
t − vb

t ) · (wt − s̃t+1) · (1 + j∗)− w̃t+1 · (b̃eR̃ f (t+1),q
t+1 − vb

t+1),
(5)

where Db
t+1 is the complete sum-at-risk rate at time t + 1 and q∗ is the first-order annual

death probability, vb
t is the complete reserve rate based on a first order basis. The sum-at-

risk are here defined “complete” since complete reserve rate is considered (i.e., including
expenses reserves); they can be negative, as in pure endowment and annuities cases. This
formula is based on the following relation that describes the evolution of the sums insured
over time:

w̃t+1 = wt − s̃t+1 − z̃t+1, (6)

where z̃t+1 is the amount of sums insured eliminated in case of death.5 In Equation (5),
we assume that the best estimates in t and in t + 1 are calculated on the same realistic
demographic assumptions. Therefore, we simplify the notation using q instead of q(t)
and q(t + 1). Since the assessment is carried out on a one-year time span, it makes sense
to consider that, within such a short period of time, the insurer does not change its
demographic expectations. However, it is possible to evaluate the additional effect on the
demographic profit of a one-year change of the second-order demographic assumptions.6

6
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It is worth pointing out that the first term in Equation (5), here denoted as 1ỹLG
t+1:

1ỹLG
t+1 = Db

t+1 · [q∗x+t · (wt − s̃t+1)− z̃t+1], (7)

represents the demographic profit in a local accounting framework (Savelli and Clemente 2013).
Additionally, it is interesting to separately highlight the effects of risk-free rates

volatility and demographic trends. In this regard, we provide the following decomposition:

1ỹMCV
t+1 =1 ỹLG

t+1 +1 ỹMCVR f−j∗
t+1 +1 ỹMCVq−q∗

t+1 , (8)

where 1ỹMCVR f−j∗
t+1 is the demographic profit given by the differences between the first

order financial rate j∗ and the risk-free rate curve. The term 1ỹMCVq−q∗
t+1 instead measures

the demographic profit originated by the differences between first-order and second-order
death probabilities (q∗ and q, respectively). To provide this decomposition and to define
the second and the third term in Equation (8), we denote with epvj∗ ,q

t the expected present
value of future cash-flows evaluated at time t and compute by using first-order discount
rates j∗ and second-order death probabilities q. In other words, this amount differs from
beR f (t),q

t only in terms of discounting factors.
It is easy to show that 1ỹMCVR f−j∗

t+1 is defined as:

1ỹMCVR f−j∗
t+1 =(wt − s̃t+1) · [(beR f (t),q

t − epvj∗ ,q
t )(1 + j∗)− (b̃e

˜R f (t+1),q
t+1 − epvj∗ ,q

t+1)]

+ (b̃e
˜R f (t+1),q

t+1 − epvj∗ ,q
t+1) · z̃t+1,

(9)

and the third component in Equation (8) is:

1ỹMCVq−q∗
t+1 =(wt − s̃t+1) · [(epvj∗ ,q

t − vb
t )(1 + j∗)− (epvj∗ ,q

t+1 − vb
t+1)]+

(epvj∗ ,q
t+1 − vb

t+1) · z̃t+1.
(10)

It is interesting to note that 1ỹMCVR f−j∗
t+1 is strictly related to the difference between

the best estimate and the expected present value of future cash-flows epvj∗ ,q
t . In particular,

we have a positive value if this difference, accumulated at the technical rate j∗, is greater
than the analogous difference computed at time t + 1. It must be noted that the difference
(beR f (t),q

t − epvj∗ ,q
t ) only depends on the difference between the risk-free rates at time t and

the technical rate j∗. For instance, a sudden and substantial change in value of the risk-free
curve entails a jump in t + 1 greater than the jump in t.

We also recall that we are focusing here only on the demographic profit. Hence,
the whole effect of the risk-free rate curve on the technical profit can be assessed by also
considering the financial profit. However, this point goes beyond the scope of the paper
that is to quantify the capital requirement for mortality or longevity risk.

The term 1ỹMCVq−q∗
t+1 depends instead on the difference between the expected present

value epvj∗ ,q
t and the technical provisions defined according to local accounting rules.

Both values are computed with the same discounting rate j∗, but using a different life
table (second-order and first-order, respectively). It must be pointed out that the sign of

1ỹMCVq−q∗
t+1 is mainly related to the comparison between the term (epvj∗ ,q

t − vb
t ), accumu-

lated at the technical rate j∗, and the same difference evaluated at time t + 1. We have
indeed that the last term in Equation (10) usually has a very low weight and hence a low
effect on the sign of 1ỹMCVq−q∗

t+1 .
Now, we focus on the expected demographic profit (i.e., 1ỹMCV

t+1 ) and we prove
(see Section 4) that when t > 1, we have:

E
[

1ỹMCV
t+1

]
= E

[
1ỹMCVR f−j∗

t+1

]
(11)

7



Risks 2021, 9, 175

since
E
[

1ỹLG
t+1

]
= −E

[
1ỹMCVq−q∗

t+1

]
. (12)

This result shows that in case the second-order life table chosen by the insurance
company is stable in the period (t, t + 1], the sign of the average demographic profit
depends mainly on the differences between the risk-free curve and first-order financial rate.
In particular, by Equation (9), we can also rewrite the mean as (when t ≥ 1):

E
[

1ỹMCV
t+1

]
= E

[
1ỹMCVR f−j∗

t+1

]
E
[

1ỹMCV
t+1

]
= wt · (1 + j∗) ·

[
bt + beR f (t),q

t −E

[
b̃e

˜R f (t+1),q
t+1

]
·1 Ej∗ ,q

x+t −E[x̃t+1]

]
.

(13)

On the basis of Equation (13), it easy to show that (see Section 4):

E
[

1ỹMCV
t+1

]
= 0, (14)

if, at time t, the one-year spot rate is equal to j∗.
It is worth pointing out that, at the inception of the contract (i.e., when t = 0),

by Equation (13) the expected value of the demographic profit also depends on the differ-
ences between first-order and second-order life tables.

4. Model Algebra and Underlying Recursive Formula

We report in this section the main results and related proofs needed to support the
presented stochastic model.

Theorem 1. Considering a without-profit life insurance contract, we have that E
[

1ỹLG
t+1
]
=

−E
[

1ỹMCVq−q∗
t+1

]
for t > 1.

Proof. The starting point is represented by the sum of Equations (7) and (10). However,
we specify that, instead of using the compact notation of Equation (7), we consider the
extended definition of demographic profit:

1ỹLG
t+1 = [vb

t + π] · (wt − s̃t+1) · (1 + j∗)− (x̃t+1 + w̃t+1 · vb
t+1)

= Db
t+1 · [q∗x+t · (wt − s̃t+1)− z̃t+1],

where π is the constant pure premium rate obtained as π = πt+1 = bt+1(1− α∗ − β∗)− γ∗.
The proof regarding the equality between the two equations can be found in (Savelli and
Clemente 2013). Hence, we have:

1ỹLG
t+1 +1 ỹMCVq−q∗

t+1 = vb
t · (wt − s̃t+1) · (1 + j∗) + π · (wt − s̃t+1) · (1 + j∗)

−vb
t+1 · w̃t+1 − x̃t+1 + epvj∗ ,q

t · (wt − s̃t+1) · (1 + j∗)

−vb
t · (wt−s̃t+1) · (1 + j∗)− (epvj∗ ,q

t+1 − vb
t+1) · (wt − s̃t+1 − z̃t+1).

By Equation (6), it is possible to rewrite the previous relation as follows:

1ỹLG
t+1 +1 ỹMCVq−q∗

t+1 =
(

π + epvj∗ ,q
t

)
· (wt − s̃t+1) · (1 + j∗)

− x̃t+1 − epvj∗ ,q
t+1 · (wt − s̃t+1 − z̃t+1)

= (wt−s̃t+1) ·
[(

π + epvj∗ ,q
t

)
· (1 + j∗)− epvj∗ ,q

t+1

]
+epvj∗ ,q

t+1 · z̃t+1 − x̃t+1.

8
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We now compute the expected value and we consider the case of an endowment
policy. The result is easily extendable to pure endowment and term insurance policies,
since these contracts can be seen as specific cases of an endowment contract.

E
[

1ỹLG
t+1 +1 ỹMCVq−q∗

t+1

]
=

E[wt − s̃t]
[(

π + epvj∗ ,q
t

)
· (1 + j∗)− epvj∗ ,q

t+1

]
+ epvj∗ ,q

t+1 ·E[z̃t+1]−E[x̃t+1].

Since x̃t+1 = z̃t+1 for an endowment contract and E[z̃t+1] = qx+t ·E[wt − s̃t], we have:

E
[

1ỹLG
t+1 +1 ỹMCVq−q∗

t+1

]
=

E[wt − s̃t]

((
π + epvj∗ ,q

t

)
· (1 + j∗)− epvj∗ ,q

t+1 · px+t − qx+t

)
.

Focusing on the term in the bracket, we prove that the following recursive equation holds:(
π + epvj∗ ,q

t

)
· (1 + j∗) = epvj∗ ,q

t+1 · px+t + qx+t. (15)

In the case of a endowment contract with unitary sum insured, we have:

epvj∗ ,q
t =n−t px+t · (1 + j∗)−(n−t) +

n−t−1

∑
h=0

h/1qx+t · (1 + j∗)−(h+1)+

− π
n−t−1

∑
h=0

h px+t · (1 + j∗)−h =

n−t px+t · (1 + j∗)−(n−t)+

+ (qx+t · (1 + j∗)−1 +
n−t−1

∑
h=1

h/1qx+t · (1 + j∗)−(h+1))+

− π · (1 +
n−t−1

∑
h=1

h px+t · (1 + j∗)−h),

which, for s = h − 1, could be rewritten as:

epvj∗ ,q
t =n−t px+t · (1 + j∗)−(n−t)+

+ (qx+t · (1 + j∗)−1 +
n−t−2

∑
s=0

(s+1)/1qx+t · (1 + j∗)−(s+2))+

− π · (1 +
n−t−2

∑
s=0

s px+t · (1 + j∗)−(s+1)).

Considering now:

epvj∗ ,q
t

1Ex+t
=n−t−1 px+t+1 · (1 + j∗)−(n−t−1)+(

qx+t

1 px+t
+

n−t−2

∑
s=0

(s+1)/1qx+t

1 px+t
· (1 + j∗)−(s+1)

)
+

− π

1Ex+t
− π ·

n−t−2

∑
s=0

s px+t+1 · (1 + j∗)−s,

we have:
epvj∗ ,q

t

1Ex+t
= epvj∗ ,q

t+1 −
π

1Ex+t
+

qx+t

1 px+t

9
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which, with simple algebra, easily follows Equation (15):

Having proved Equation (11), the final purpose of this section is to consider the
demographic risk expressed in Equation (3) and to prove the following theorem:

Theorem 2. Considering a without-profit endowment insurance contract that pays a lump sum
equal to 1 either in the case of death or in the case of survival at the end of the contract and without
benefits in the case of lapses, if second-order technical bases at time t and time t + 1 are the same,
the following recursive equation holds:

(bet + π)(1 + it(0, 1)) =/1 qx+t + bet+1 ·1 px+t, (16)

where it(0, 1) is the one-year risk-free spot rate in force at time t and bet and bet+1 are the pure best
estimate rates computed using realistic demographic and financial assumptions in force at time t
and neglecting expenses and expenses loadings.

Proof. We recall here that the definition of the best estimate rate of an endowment policy
computed using realistic demographic assumption q and the risk-free rate curve it in force
at time t.

bet =n−t px+t ·
[

n−t−1

∏
h=0

(1 + it(0, h, h + 1))

]−1

+

n−t−1

∑
k=0

k/1qx+t

[
k

∏
h=0

(1 + it(0, h, h + 1))

]−1

− π · ä(x+t):(n−t),

(17)

where it(0, h, h + 1) is a risk-free forward rate.
The previous formula is also equal to:

bet =n−t px+t

[
n−t−1

∏
h=0

(1 + it(0, h, h + 1))

]−1

+/1 qx+t · (1 + it(0, 1))−1+

n−t−1

∑
k=1

k/1qx+t

[
k

∏
h=0

(1 + it(0, h, h + 1))

]−1

− π ·
n−t−1

∑
h=1

hEx+t − π.

(18)

From Equation (18), we have that the following relation holds:

(bet + π) · (1 + it(0, 1))−/1 qx+t =n−t px+t

[
n−t−1

∏
h=1

(1 + it(0, h, h + 1))

]−1

+
n−t−2

∑
s=0

(
(s+1)/1qx+t

[
s+1

∏
h=1

(1 + it(0, h, h + 1))

]−1)

− π ·
n−t−1

∑
h=1

(
h px+t

[
h

∏
j=1

(1 + it(0, j, j + 1))

]−1)
.

(19)

10
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Since the estimation of the best estimate at time t + 1 under the assumption in force at
time t is equal to:

bet+1 =n−t−1 px+t+1

[
n−t−1

∏
h=1

(1 + it(0, h, h + 1))

]−1

+

+
n−t−2

∑
k=0

(
k/1qx+t+1 ·

[
k+1

∏
h=1

(1 + it(0, h, h + 1))

]−1)
+

− π · ä(x+t+1):(n−t−1),

(20)

it is noticeable that the right-hand side of Equation (19) is equal to bet+1 ·1 px+t. Hence,
we have:

(bet + π)(1 + it(0, 1)) =/1 qx+t + bet+1 ·1 px+t. (21)

It is worth pointing out that the proof can be easily adapted to the cases of single
premiums, pure endowment or term insurance contracts and flat rates, that have also been
analysed in the paper. All of these combinations can be considered as special cases of the
one that has been proved.

The most interesting aspect of this recursive formula concerns the fact that Equation (3)
for t > 1, has an expected value different from 0 when the technical rate j∗ differs from the
spot rate it(0, 1). This difference between Equation (3) and Equation (21) will be relevant
for the interpretation of the results reported in Sections 5 and 6.

5. The Profit Formation

We focus in this section on the expected demographic profit considering two non-
participating life insurance contracts: a pure endowment and a term insurance. We consider
these two policies because their combination allows us to obtain other traditional policies
issued in the insurance market. As is well-known, an Endowment contract coincides with
the sum of a Pure Endowment7 and a Term Insurance8 with the same maturity and same
sums insured, and an Annuity can be defined as the sum of several Pure Endowments
with different maturities and a Term Insurance with variable insured sums is a slight
adjustment of the classical Term Insurance. Hence, previous formulas can be used as a
basis for evaluating the different kinds of contracts previously mentioned.

We consider a cohort of policyholders, whose main characteristics are summarized in
Table 1. We start from a simplified application that allows us to provide additional insights.
In particular, for the sake of simplicity, we assume a flat risk free-rates constant over time
and we neglect the effect of expenses. Additionally, we are assuming that the risk-free
rates are equal to the technical rate j∗ guaranteed to the policyholder. We have instead
that the insurance company priced contracts assuming first-order death probabilities q∗
equal to 85% of the death probabilities given by the ISTAT2016 population life table.
In this first analysis, we assume that the observed mortality follows rates given by the
ISTAT2016 population life table. In other words, a prudential pricing has been applied
by the insurance company and, hence, a demographic profit is expected. In this regard,
we compare in Figure 1 how the profit is released over time in either a market-consistent
or a local accounting framework.

We emphasize that the stochastic evolution of the cohort implies deviations from
0 of the r.v. demographic profit. The comparison shows how these fluctuations impact
differently in a Local GAAP context and in a market consistent context (see Theorem 2). In a
local accounting framework (i.e., see 1ỹLG

t+1, Equation (7)), the expected profit varies over
time, depending on the trend of the sum-at-risk, the implicit safety loading and the effects
of mortality. As expected, in a market consistent context, because of unlocked technical
bases, the expected profit (i.e., 1ỹMCV

t+1 ) occurs when the difference between the technical
bases and realistic assumptions is revealed, while only the unexpected profit linked to the
idiosyncratic risk of the mortality rates occurs over time. In particular, at the inception

11
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of the contract, we notice the effect of the difference between first-order basis (used for
premium assessment) and second-order basis (used for the market-consistent valuation of
technical provisions). In other words, implicit safety loadings are released as a technical
profit at the end of the first year.

Table 1. Model parameters.

Individual age at policy issue 40

Gender Male

Policy duration 20

Expenses loadings 0%

Risk-free rates 1%

Number of policyholders 15,000

Initial sums insured 1,510,653,999

CV9 1.99

I order demographic basis 0.85·ISTAT2016

II order demographic basis ISTAT2016

Technical rate 1%

From year 2 to the end of the contract, we observe that E
[

1ỹMCV
t+1

]
is equal to 0. We are

indeed assuming that risk-free rates are constant and equal to first-order technical rate j∗
and that the realistic assumptions used for best estimate valuation are kept unchanged over
time by the company: these results derive from Theorem (1) and Theorem (2) of Section 4.

The same analysis has been also applied to term insurance contracts. In this case,
we maintain the same assumptions reported in Table 1, but we assume that premiums
have been computed using an ISTAT2014 life table, while insureds die at the same rates
used for the pure endowment portfolio; therefore, also in this case we have an implicit
safety loading.

It is worth pointing out the higher expected demographic profit with respect to a
pure endowment portfolio and a different behaviour at time 1 between regular and single
premiums (see Figure 1, top). A higher profit is here realised when a single premium is
charged because of greater values of the implicit safety loading.10

Figure 1. Pattern of expected demographic profit for a Pure Endowment and a Term Insurance.

Previous examples assumed a full coincidence between technical rates and risk-free
rates. The advantage is the fact that demographic profit is not affected by the behaviour of
financial rates. We analyse now the effects of alternative risk-free rates and we focus only
on the expected profit evaluated in a market-consistent framework.

12
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Figure 2, left hand-side, reports the pattern of the expected profit for a pure endow-
ment. In this case, the same assumptions of Table 1 have been considered, but constant
spot risk-free rates equal to 2% are assumed. Higher risk-free rates lead to an increase of
the initial profit due to a lower technical provision at the end of the year because of higher
discounting effects.11 A lower increase is observed in the case of regular premiums because
also future cash-in (premiums) are discounted at higher rates.

Figure 2. Expected demographic profit in the Pure Endowment.

Following periods, namely for t > 1, are instead characterized by expected losses.
This behaviour can be explained by Equation (9). As shown in Figure 3, the reserve jump
(beR f (t),q

t − epvj∗ ,q
t ) is negative and is accumulated at a rate j∗. This amount is higher than

the term (b̃eR f (t+1),q
t+1 − epvj∗ ,q

t+1). The same result can also be explained by Equation (13),
where, under the assumption that the best estimates at time t and t+ 1 are positive, we have
an expected loss if j∗ is smaller than the spot rate i(t, t + 1).

Figure 3. Expected present value and best estimate rates.

It is also interesting to note that in case of a negative best estimate we have an opposite
result. In Figure 4, we consider again a pure endowment with the same characteristics but
we assume an extraordinarily large flat rate equal to 20%. It could be noticed that, in line
with Equation (13), in time periods in which beR f (t),q

t is negative, a positive expected profit
is observed (see 0 ≤ t ≤ 11 in Figure 4).

13
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Figure 4. Expected demographic profit in the Pure Endowment with higher risk-free rates.

In Figure 5, we report the behaviour of the expected profit in case of either a regular
and a single premium for the term insurance. Policyholder and contract characteristics
are the same reported in Table 1 and the risk-free rate is equal to 2%. Results confirm a
consistent behaviour independent of the kind of policy considered.

However, because of the lower best estimate rate, the effect of financial rates is less
relevant when a term insurance contract is considered.

Finally, in this section, the analysis has been developed assuming a constant risk-free
rate for all maturities. However, considering the case of a risk-free curve, similar comments
follow from Equations (9) and (13) based on the comparison between the technical rate j∗
and the forward rates for each period (t, t + 1).

Before presenting the next section, it is emphasized that, for a particularly young
insurance company, the strictly one year vision can lead to incorrect and partial results,
indeed if the Solvency Capital Requirement were calculated over a three-year time horizon,
the results would be the opposite.

Figure 5. Expected demographic profit in the Term Insurance with higher risk-free rates.

6. The Application of the Model to Non-Participating Life Policies

In this section, we analyse the behaviour of our model in terms of volatility and capital
requirement by developing a detailed case study. We consider a portfolio characterized by
three non-participating insurance policies: a Pure Endowment, an Endowment and a Term
Insurance. To this end, we are able to catch how the different characteristics of the contracts
can affect the demographic profit distribution and the related capital requirement.

In Table 2, we summarize the general characteristics (age and contractual duration
of the policy) and the expense loadings. For the sake of comparability, we assume that
different policies have been underwritten by policyholders with the same characteristics.
Furthermore, the sums insured at time 0, w0, are calculated as the sum of the individual
sums insured of each policyholder:

w0 =
l0

∑
i=1

Ci = l0 · C̄0, (22)

where l0 is the number of policyholders in t = 0.
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Table 2. Model parameters.

Individual age at policy issue 40

Policy duration 20

Premium type Annual premiums (20)

Acquisition loading 50%

Collection loading 2.5%

Management loading 0.15%

Number of policyholders (l0) 15,000

Expected value of the single insured sum 100,000

CV of the sums insured 1.99%

The risk-free rate curve used is the one provided by EIOPA for the Euro area (at the
end of 2015); we preferred to use a curve calibrated in a quiet period, which does not
present particular types of stress. We have chosen the one without volatility adjustment.
Demographic technical bases are summarized in Table 3 and are different for each policy
because the goal is to highlight specific profit creation considering a realistic rating process.

Consequently, for the Endowment and the Term Insurance with positive sum-at-risk,
the pricing is carried out with the ISTAT2014 demographic table. Pure Endowment, charac-
terized by a negative sum-at-risk, has been priced multiplied by the death probabilities,
derived by ISTAT2016 life tables, by a coefficient αt between 0.8 and 0.9 that depends on
the age of the policyholder. The effective mortality of all portfolios is instead described
by the ISTAT2016 table. We are obviously aware that second-order mortality can be af-
fected by self-selection or medical-selection (e.g., in term insurance products to identify
calibrated risks). Similarly, term insurance and endowment policies are usually priced
using a different life table. To assure a greater comparison between results we considered
in this numerical analysis similar technical bases for different policies. The results can be
easily adapted to the case of a higher customization of life tables.

It is also noteworthy that future mortality rates can be obviously obtained using
forecasting models (as, for instance, the Lee–Carter model). However, the main comments
described in this section also hold in the case of projected second-order life tables.

Table 3. Demgraphic assumptions.

Pure Endowment Endowment Term Insurance

First order—q* αt·ISTAT2016 ISTAT2014 ISTAT2014

Second order—q ISTAT2016 ISTAT2016 ISTAT2016

The model is applied by means of Monte Carlo simulations. In particular, the num-
ber of deaths is simulated in a one-year time horizon by a Binomial distribution with
parameters equal to the number of policyholders and the second-order death probability.
To consider the variability of the sums insured, we extract the insured capital at the end of
the year and the amounts paid in case of death by LogNormal distributions with mean and
CV defined in Table 2.

Another key element is the assessment of the Best Estimate rate at the end of the
period. It is assumed that, on average, the spot rates at the end of the year will coincide
with the forward rates inferable from the risk-free curve of spot rates at the beginning of
the year. The volatility of risk-free rates is introduced through the use of a Vasicek model
(Vasicek 1977); particularly effective in case of negative risk-free rates for shorter maturities.
Hence, the calibration of the Vašíček model is carried out for each policy and at each time
point, requiring that the expected value of the best estimate rate, calculated at the end
of the time span, coincides with the best estimate rate calculated with the forward rates
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implicit in the spot rate curve at the beginning of the time horizon. This method has been
selected to eliminate the possibility of arbitrage. In this way, the expected present value in
t of the best estimate calculated from t + 1, is equal to the expected present value in t + 1 of
the best estimate (obviously calculated in t + 1 ) since the spot rates in t + 1 coincide with
the forward rates inferable from the spot curve available in t. Given this constraint, valid
alternatives, which consider the adjustment of the yield term, are the models proposed
in (Ho and Lee 1986; Black et al. 1990). However, it is specified that, since the model is
balanced on forward rates, the most important element is the sigma σ multiplier of the
infinitesimal increment of the Brownian Motion dWt as it is the parameter that directly
influences the volatility of the risk-free rate curve.

The results of the stochastic model are presented. Two points must be highlighted:

• For each policyholder, 10 million simulations have been made. Therefore, the results
are particularly consistent, especially in terms of volatility;12

• The total amount of the sums insured at the inception of the policy (t = 0) is equal to
approximately 1.5 billion euros. It is therefore noted that any Capital Requirement, in
terms of magnitude, must be compared with the value just mentioned, although at
first glance it may seem particularly high.

First of all, Table 4 shows13 the results of the simulation model applied at the inception
of the contract (t = 0) and with a one-year view to the portfolio of Pure Endowment policies.

Table 4. Simulated MCV results—Pure Endowment.

Pure Endowment t = 0 t = 10 t = 19

E
[

1ỹMCV
t+1

]
(T) 150,339,562 −8,882,965 −19,893,883

E
[

1ỹMCV
t+1

]
150,349,827 −8,760,096 −19,894,122

E
[

1ỹMCV
t+1

]
on wt 9.95% −0.61% −1.38%

σ(1ỹMCV
t+1 ) 4,345,500 5,937,483 1,821,044

γ(1ỹMCV
t+1 ) −0.04 −0.02 0.97

SCR −138,942,272 24,208,313 23,333,458

SCR on wt −9.20% 1.62% 1.60%

It should be noted that the initial Best Estimate rate at the time 0+ is negative (equal to
−7.65%). Despite the significant contribution of the implicit safety demographic loading,
the largest share of expected profit derives from the difference between the first order
financial rate (j∗ = 1%) and the discounting spot rate for longer maturities. For instance,
the expected survival benefits paid to the policyholder at the end of the coverage are
discounted by using a spot rate equal to 1.57%.14

Additionally, we have that the capital requirement, computed here using a value at
risk at a 99.5% confidence level, is negative. We have indeed that the huge expected profit
allows to cover adverse fluctuation of demographic assumption also in the worst case
computed at the previously mentioned confidence level. A different situation is instead
obtained, assumed to be at times t = 10 and t = 19, respectively. In Table 4 we also report
the main characteristics of profit distribution as well as the capital requirement computed
on a one-year view at different time periods.

It is interesting to note that, after the first year of contract, where the expected profit at
inception is accounted for, the risk-free forward rate higher than the technical rate leads to
significant expected losses (in accordance to Equation (13). This effect increases as the year
progressively grows because forward rates grow over time. Because of this behaviour we
have positive requirements in both periods.
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In Table 5, we provide results obtained applying the model in a local accounting
framework. It is noteworthy that we observe that the standard deviation in t = 10 increases
due to the greater volatility of risk-free rates, while in t = 19 only the strictly demographic
volatility remains, because the only risk-free rate is known. As regards skewness, what
happens is similar: in t = 0 and t = 10 the skewness deriving from the Vašíček model is
the main driver, while in t = 19 only the skewness of the purely demographic component
remains. With reference to the simulated SCR, it should be noted that the previous Solvency
0 and Solvency I regulations indicated 0.3% of positive sum-at-risk as a capital requirement
for life underwriting risk without differentiations related to the characteristics of the
insurance portfolio.

Table 5. Local GAAP results—Pure Endowment.

Pure Endowment t = 0 t = 10 t = 19

E
[

1ỹLG
t+1

]
(T) 2528 230,554 1,040,705

σ(1ỹLG
t+1)(T) 16,455 615,730 1,799,850

γ(1ỹLG
t+1)(T) 2.41 1.54 1.09

SCR 19,463 792,091 2,397,872

SCR on wt 0.01% 0.05% 0.16%

A similar analysis has been developed for an Endowment; we report in Table 6 the main
characteristics of the distribution of 1ỹMCV

t+1 and the SCR ratio according to the three time
periods. Table 7 summarizes analogous values computed in a local accounting framework.

Table 6. Simulated MCV results—Endowment.

Endowment t = 0 t = 10 t = 19

E
[

1ỹMCV
t+1

]
(T) 153,901,015 −9,096,636 −20,084,746

E
[

1ỹMCV
t+1

]
153,905,829 −9,138,027 −20,084,746

E
[

1ỹMCV
t+1

]
on wt 10.19% −0.61% −1.38%

σ(1ỹMCV
t+1 ) 4,588,717 6,020,325 0

γ(1ỹMCV
t+1 ) −0.05 −0.02 0

SCR −141,802,756 24,821,250 20,084,746

SCR on wt −9.39% 1.66% 1.38%

Table 7. Local GAAP results—Endowment.

Endowment t = 0 t = 10 t = 19

E
[

1ỹLG
t+1

]
(T) 260,745 395,352 0

σ(1ỹLG
t+1)(T) 750,933 595,986 0

γ(1ỹLG
t+1)(T) −2.41 −1.54 0

SCR 3,289,428 2,091,067 0
SCR on wt 0.22% 0.14% 0%
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Endowment contract shows similar results to the pure endowment case in terms of
both expected profit and capital requirement ratio. The main differences can be noticed in
the last year of the contract (t = 19). We have indeed that, given the fact that the payment of
benefit is certain, we have no volatility and, hence, the capital requirement is only needed
to face expected losses.

As well-known previous contracts are typically chosen for saving purposes and the
financial profit is the key issue for an insurance company. Therefore, we investigate the
behaviour of the demographic profit in the case of a term insurance, which is typically
chosen by policyholders for risk-protection purposes. The main results are reported in
Table 8.

Table 8. Simulated MCV results - Term Insurance.

Term Insurance t = 0 t = 10 t = 19

E
[

1ỹMCV
t+1

]
(T) 20,898,387 −271,353 −269,009

E
[

1ỹMCV
t+1

]
20,891,192 −269,927 −269,285

E
[

1ỹMCV
t+1

]
on wt 1.38% −0.02% −0.02%

σ(1ỹMCV
t+1 ) 777,012 1,224,059 1,820,823

γ(1ỹMCV
t+1 ) −2.42 −1.48 −0.97

SCR −17,219,206 24,821,250 6,769,046

SCR on wt −1.14% 0.36% 0.47%

It is interesting to note that the expected gain accounted for in t = 1, although strictly
greater than the expected losses of the subsequent periods, is lower than those of other
policies (e.g., pure endowment, endowment). In this case, the very small volume of
mathematical reserves ensures that expected losses and expected profits are very low. The
previous comment is also explained by the fact that we are assuming the same first and
second-order life tables in term insurance and endowment. On the other hand, despite
the volatility of sums insured paid in the case of death, a lower ratio between the capital
requirement and the sums insured is observed.

Comparing the results of the Term Insurance with those obtained in a Local GAAP
context (see Table 9), we observe that also in this case, the volatility in t = 0 and t = 10 is
mainly driven by the volatility of the Vašíček model, while in t = 19 it remains only the
volatility of the strictly demographic component. As in the case of the Pure Endowment,
it is clearly observed that where the financial component is zero (in t = 19 the only spot
rate is known), only the purely demographic skewness remains.

Table 9. Local GAAP results—Term Insurance.

Term Insurance t = 0 t = 10 t = 19

E
[

1ỹLG
t+1

]
(T) 266,582 800,159 2,160,710

σ(1ỹLG
t+1)(T) 767,745 1,206,226 1,799,850

γ(1ỹLG
t+1)(T) −2.41 −1.54 −1.09

SCR 3,335,518 4,265,074 4,320,054

SCR on wt 0.22% 0.29% 0.29%

Finally, it should be noted that, despite the different nature of the alternative policies,
a similar effect of the implicit forward rates is noticed both in terms of expected gains/losses,
and in terms of capital requirement.
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7. Conclusions

In this paper, we focus on the evaluation of the capital requirements for both mortality
and longevity risk. In particular, we adapt classical actuarial relations to the market
consistent framework required by the Solvency II directive. We provide a specific model
that is able to catch the characteristics of demographic risk for non-participating life
insurance contracts. As is well-known, in a local accounting context, differences between
expected and observed mortality rates are a key topic for assessing demographic risk. We
show that in a market-consistent framework, the financial component cannot be completely
separated from the purely demographic one. We prove indeed that in the case where
second-order demographic assumptions are stable over time, the connection between
the financial guaranteed rate and the risk-free rate curve becomes the key element for
the assessment for one-year demographic risk. Hence, to have a complete view of the
insurance position, the main results must then be compared with the financial profit and
the capital requirement for market risk too. Therefore, further research should regard an
integrated assessment of both demographic and financial risks that could be helpful for
defining strategies and future management actions regarding both portfolio characteristics
and asset allocation. Finally, further developments will exploit the proposed model and
closed formulas to quantify both idiosyncratic and systematic volatility to quantify the
Solvency Capital Requirement.
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Appendix A. Homans’ Revised Decomposition

We show here the decomposition of Equation (2) in five components. For the sake
of brevity, we limit this appendix to the definition of the five components we found. The
proof follows by simple algebra.

ỸMCV
t+1 =1 ỹMCV

t+1 +2 ỹMCV
t+1 +3 ỹMCV

t+1 +4 ỹMCV
t+1 +5 ỹMCV

t+1 (A1)

It is noteworthy that we focus exclusively on without-profit policies. The reason for
this choice lies in the fact that the model aims at isolating the demographic component.

We give now the definition of the five components expressed in rate notation. The
first component represents the demographic profit and it is defined as in Equation (3):

1ỹMCV
t+1 = [beR f (t),q(t)

t + bt+1(1 − α∗ − β∗)− γ∗](wt − s̃t+1)(1 + j∗)+

− (x̃t+1 + b̃eR f (t+1),q(t+1)
t+1 )

(A2)

While the second profit component as defined in Equation (4) could be seen as:

2ỹt+1 =( j̃t+1 − j∗) · (beR f (t),q(t)
t · wt + bt+1(1 − α∗ − β∗)(wt − s̃t+1)+

− (γ∗wt)− (g∗t · beR f (t),q(t)
t · s̃t+1)

(A3)

The lapse profit, is defined as:

3ỹMCV
t+1 = (beR f (t),q(t)

t − γ∗ − g∗t · beR f (t),q(t)
t ) · (1 + j∗) · s̃t+1 (A4)

where g∗t is a penalization coefficient that considers a surrender penalty:
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g∗t =

{
0 i f t < τ

(1 + js)−(m−t) i f t >= τ
(A5)

where τ > 0 and j∗s < j∗ are fixed by the undertaking.
The fourth component of profit is the expense one and it is defined in the follow-

ing way:

4ỹt+1 = (1 + j∗)[(Δα∗t+1 + Δβ∗
t+1) · bt+1 · (wt − s̃t+1) + Δγ∗

t+1 · wt] (A6)

where Δα∗t+1, Δβ∗
t+1 and Δγ∗

t+1 depend on the differences between the first order expense
assumptions and the realistic ones.

The last component, is the residual profit:

5ỹt+1 = ( j̃t+1 − j∗)[(Δα∗t+1 + Δβ∗
t+1) · bt+1 · (wt − s̃t+1)+

+ Δγ∗
t+1 · wt]

(A7)

Notes

1 From now on, each random variable will be indicated with the tilde.
2 “Complete technical provisions” VBt indicates the sum of the pure mathematical reserve (expected present value of the benefits

net of the expected present value of the premiums) and the expense reserve. Both are calculated on locked and prudential
(demographic and financial) bases: hence both demographic and financial bases used are the same as applied in the pricing phase.

3 By “actual financial return rate” we mean the yield obtained by the company, different from the technical rate j∗ used in the
pricing phase.

4 The rates are calculated on unitary insured sums, so as to be able to distinguish the trends of the main quantities from the
monetary amounts of the insured sums.

5 In this context x̃t+1 = z̃t + 1 for term Insurance and Endowment Policies; x̃t+1 = 0 for Pure Endowment policies.
6 The technical bases of the first order are those used in the pricing phase, they are therefore the prudential ones that lead to

an expected profit. The second order bases, on the other hand, are the realistic assumptions of the Undertaking: therefore q
indicates the best estimate of the probability of death of the individual policyholder while j indicates the best estimate of the
return deriving from the investment of premiums and reserves.

7 As is well-known, a Pure Endowment is a policy that, in the face of a single premium or regular (constant) Premiums, entitles to
receive a certain insured sum upon maturity, only if the insured is alive on that date. Hence, the best estimate in t is equal to the

first part of Equation (17), hence bet =n−t px+t ·
[

∏n−t−1
h=0 (1 + it(0, h, h + 1))

]−1

− π · ä(x+t):(n−t).

8 A Term Insurance is a policy that pays the beneficiary a certain insured sum on a generic policy anniversary t if the policy-

holder dies in the time span [t − 1, t): the best estimate at time t is therefore ∑n−t−1
k=0 k/1qx+t

[
∏k

h=0 (1 + it(0, h, h + 1))

]−1

− π ·
ä(x+t):(n−t).

9 CV stands for Coefficient of Variation of initial sums insured.
10 λt is calculated as λt =

(q∗t − qt)

qt
and while in the Pure Endowment λt was set equal to 15%, using ISTAT2014 entails that when

t = 0, λ0 = 24.64%, then it increases until t = 19, where λ19 = 32.34%.
11 E

[
1ỹMCV

1
]
= π · w0 · (1 + j∗)−E

[
b̃eR f (1),q

1

]
· w0 ·1 p40 This formulation is easily obtainable by computing the expected value on

Equation (3), when t = 0.
12 With an Intel i7 8700K processor (working in parallel—6 Cores, 12 Threads) it requires about 18 min.
13 In all tables, T stands for Theoretical values, i.e., the exact characteristics of the random variables computed using closed formulas.
14 Results are strongly influenced by the risk-free curve used. For instance, using the EIOPA curve for August 2020 we obtain an

expected profit in t = 19 in Table 4, because of a spot rate equal to 0.69%.
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Abstract: This paper addresses the problem of approximating the future value distribution of a large
and heterogeneous life insurance portfolio which would play a relevant role, for instance, for solvency
capital requirement valuations. Based on a metamodel, we first select a subset of representative policies
in the portfolio. Then, by using Monte Carlo simulations, we obtain a rough estimate of the policies’
values at the chosen future date and finally we approximate the distribution of a single policy and of
the entire portfolio by means of two different approaches, the ordinary least-squares method and a
regression method based on the class of generalized beta distribution of the second kind. Extensive
numerical experiments are provided to assess the performance of the proposed models.

Keywords: GB2; LSMC; metamodel; regression models; Solvency II

JEL Classification: G22

1. Introduction

In many relevant situations, life insurers face the necessity to determine the distri-
bution of the value of their portfolio of policies at a certain future date. This happens,
for example, when regulators need to maintain solvency capital requirements in order to
continue to conduct business, as stated in the Solvency II directive or in the Swiss Solvency
Test. In particular, Article 101(3) of the European directive requires that the Solvency
Capital Requirement “shall correspond to the Value-at-Risk of the basic own funds of an
insurance or reinsurance undertaking subject to a confidence level of 99.5% over a one-year
period” (see European Parliament and European Council 2009). As a consequence, insur-
ers are obliged to assess the value of assets and liabilities at a future date, the so-called risk
horizon, in order to derive their full loss distributions. To achieve this, the relevant risk
factors must be projected at the risk horizon and then, conditional on the realized values,
a market consistent valuation of the insurer’s assets and liabilities is required. This has
led insurance and reinsurance companies to face a computationally intensive problem.
Indeed, due to the complex structure of the insurer’s liabilities, in general, closed form
formulas are not available and a straightforward approach, common among insurers, is to
obtain an estimate through nested Monte Carlo simulations. Unfortunately, this approach
is extremely time consuming and becomes readily unmanageable from a computational
point of view. In this regard, one possible alternative method proposed in the literature
to reduce the computational effort and to preserve the accuracy of the desired estimates
is the Least-Squares Monte Carlo (LSMC) method, firstly introduced by Carrière (1996),
Tilley (1993), and Longstaff and Schwartz (2001) in the context of American-type Option
Pricing. Application of the LSMC method for valuing solvency capital requirements in the

Risks 2021, 9, 177. https://doi.org/10.3390/risks9100177 https://www.mdpi.com/journal/risks
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insurance business was proposed in Cathcart and Morrison (2009) and Bauer et al. (2010).
Moreover, Floryszczak et al. (2016) and Krah et al. (2018) illustrate a practical implemen-
tation of the LSMC in this particular context. The above-mentioned papers, proposed in
the actuarial literature, share the common feature of evaluating capital requirements for a
single policy.

In the case of an entire portfolio of policies, the nested simulation approach is even
more difficult to implement due to the huge computational effort needed. For instance,
assuming 10,000 outer trajectories simulated from the current time to the risk horizon for
each one of the v risk factors, and then 2500 inner paths for each outer, with a monthly
discretization for 20 years, and considering an insurance portfolio composed of 10,000
contracts, the total number of cash-flow projections needed would be 10,000 × v × 2500 ×
12 × 20 × 10,000 = v × 6 × 1013, which is very hard to manage.

In order to keep the computational complexity of the evaluation problem at a reason-
able level, we propose a metamodeling approach. Metamodeling, introduced in system
engineering (see Barton 2015), can be defined as “the practice of using a model to describe
another model as an instance” (see Allemang and Hendler 2011). This approach has also
been widely used in the actuarial literature to estimate the price and Greeks of large portfo-
lios of life insurance policies. For instance, Gan (2013) developed a metamodel based on
data clustering and machine learning to price large portfolios of variable annuities, while
Gan and Lin (2015) tackled a similar problem by developing a functional data approach.
In addition, Gan (2015) compares the data clustering approach and Latin hypercube sam-
pling to select representative variable annuities. Finally, Gan and Valdez (2018) proposes a
metamodel to estimate partial Greeks of variable annuities with dependence.

In the present paper, the metamodel we propose to approximate the future value
distribution of a life insurance portfolio is constructed in different steps:

1. Select a subset of representative policies by means of conditional Latin hypercube
sampling;

2. Project the risk factors from the evaluation date to the risk horizon by means of outer
simulations;

3. Compute a rough estimate of each representative policy by means of a very limited
(say two) number of inner simulations;

4. Create a regression model to approximate the distribution of the value of representa-
tive policies;

5. Use the regression model to estimate the future value distribution of the entire portfolio.

We propose two different approaches to develop the regression model in steps 4
and 5. The first approach relies upon the well-established Ordinary Least Squares (OLS)
method for approximating the conditional distribution of each representative policy at
the risk horizon, and then a second OLS regression is applied to estimate the future value
distribution of the entire portfolio. Roughly speaking, we may say that the LSMC method
is applied to estimate the distribution of the value of each representative policy at the risk
horizon, and then this information is extended to the entire portfolio by means of a simple
OLS regression. We call this approach the LSMC method.

The second approach exploits the class of generalized beta of the second kind (GB2)
distributions to model the conditional distribution of each representative policy value at
the risk horizon and also to estimate the future value distribution of the entire portfolio.
We underline that the GB2 regression model has been used in Gan and Valdez (2018) for
modeling the fair current market values of guarantees embedded in a large variable annuity
portfolio starting from a set of representative policies. Extensive numerical experiments
have been conducted in order to assess the performance of the proposed models. The re-
mainder of the paper is structured as follows. Section 2 provides the evaluation framework
and Section 3 introduces the metamodeling approach. Section 4 illustrates some numerical
results, and finally, in Section 5, conclusions are drawn.
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2. The Evaluation Framework

We consider a life insurance portfolio with M contracts underwritten by different
policyholders (males and females) of different ages at the inception date t = 0. We take
into account different types of life insurance policies which differ from each other in terms
of maturity, policyholders’ ages, and sex. In particular, we consider unit-linked products,
term life insurance and immediate life annuities. We assume that the unit-linked product
pays, upon reaching maturity, and assuming the survival of the insured, the maximum
value between the minimum guaranteed benefit and the value of a specific reference asset.
The immediate life annuity is assumed to pay 10% of the level of a given reference asset
continuously whilst the insured is alive; finally, the term insurance contract pays the total
value of the asset upon the death of the policyholder before maturity. Regarding all the
possible policy configurations, see Table 1.

Table 1. This table shows the parameters used to generate the life insurance portfolio.

Feature Value

Policyholder age {55, . . ., 65}
Sex {Male, Female}

Maturity {10, 15, 20, 25, 30}
Product type {Unit-linked, Term Insurance, Life Annuity}

Since our task is to approximate the portfolio value distribution at the risk horizon
starting from a set of representative policies, we use the Conditional Latin Hypercube
Sampling (CLHS) method (see Minasny and McBratney 2006). Indeed, this approach
has already been applied to select subsets of representative policies providing reliable
results, e.g., see Gan and Valdez (2018). Therefore, in order to select a set of s representative
contracts, we apply the CLHS method to the design matrix X, which contains all the features
characterizing each specific policy, i.e., types, maturity, sex and age of the policyholder.
Note that the categorical variables are treated as dummy variables.

In order to project the cash-flows generated by the contracts over time, we need to sim-
ulate the possible evolution of the risk factors. In this regard, we consider a computational
framework where mortality, interest rate and the reference asset are taken into account.
Despite insurance companies being exposed to systematic and non-systematic mortality
risks, in our setting we consider only the first component for computational purposes due
to the big dimension of the portfolio that will be considered.

Let (Ω,F,P) be a filtered probability space large enough to support a process X in
Rk, representing the evolution of financial variables, and a process Y in Rd, representing
the evolution of mortality. The filtration F = (Ft)t≥0 represents the flow of information
available as time passes by; this includes knowledge of the evolution of all state variables
up to each time t and of whether the policyholder has died by then. Specifically, we define
Ft as the σ-algebra generated by Gt ∪Ht, where

Gt = σ(Zs : 0 ≤ s ≤ t), Ht = σ
(
I{ς≤s} : 0 ≤ s ≤ t

)
,

and where Z = (X, Y) is the joint state variables process in Rk+d. Thus, we have F = G∨H,
with G = GX ∨GY and with H = (Ht)t≥0 being the smallest filtration with respect to
which ς is a stopping time and interpreted as the remaining lifetime of an insured. For more
detail of modeling mortality under the intensity-based framework, see Biffis (2005).
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Under the physical probability measure, P, we assume that the financial risk factors
(reference asset value S, and interest rate r) dynamics are described by the following
stochastic differential equations

dS(t) = S(t)(r(t) + λ)dt + S(t)σSdW1,P(t), (1)

S(0) = S0,

where λ is the risk premium, σS is a positive constant, W1,P(t) is a standard Wiener process,
and r(t) is the risk-free interest rate, which is assumed to follow the dynamics

dr(t) = α(θ − r(t))dt + σrdW2,P(t), (2)

r(0) = r0.

Here, W2,P(t) is a standard Wiener process, and the coefficients α, θ, σr are positive
constants representing the speed of mean reversion, the long-term interest rate, and the
interest rate volatility, respectively. Further, we assume that the two Wiener processes,
W1,P(t) and W2,P(t), are correlated with the correlation coefficient ρ.

In the absence of arbitrage opportunities, an equivalent martingale measure Q exists,
under which all financial security prices are martingales after deflation by the money
market account. We refer the readers to Biffis (2005) for more detail. Under the risk-neutral
probability measure, Q, the dynamics in Equations (1) and (2) can be re-written as

dS(t) = S(t)r(t)dt + S(t)σSdW1,Q(t),

and

dr(t) = α
(

θ − σr

α
γ − r(t)

)
dt + σrdW2,Q(t),

where γ is the market price of risk. Note that W1,Q(t) and W2,Q(t) are two correlated
standard Wiener processes with the coefficient of correlation ρ under Q.

Concerning mortality, following Fung et al. (2014), we assume that the force of mor-
tality, μx+t(t), under the physical probability measure P for an individual aged x at time
t = 0, evolves accordingly to the following one-factor, non-mean-reverting and time-
homogeneous affine process:

dμx+t(t) = [a + bμx+t(t)]dt + σμ

√
μx+t(t)dW3,P(t), (3)

μx(0) > 0,

where a �= 0, b > 0, σμ > 0 represent the volatility of the mortality intensity and W3,P(t) is
a standard Wiener process which is assumed to be independent with respect to W1,P(t) and
W2,P(t). As pointed out by Fung et al. (2014), the important advantages of the mortality
model defined in Equation (3) are its tractability since analytical expressions are available
to evaluate survival probabilities, and also its simplicity since the model dynamics can
be easily simulated. Furthermore, this model guarantees that, under specific conditions,
the force of mortality is strictly positive (i.e., if a ≥ σ2

μ/2).
The dynamics in Equation (3) under Q can be defined as

dμx+t(t) =
[
a +

(
b − δσμ

)
μx+t(t)

]
dt + σμ

√
μx+t(t)dW3,Q(t),

μx(0) > 0,

where W3,Q(t) is a standard Wiener process under the risk-neutral measure and δ is the
market price of the systematic mortality risk.

Note that the parameters in the stochastic mortality model are estimated by calibrating
the implied survival curve to the one obtained from the Italian population data of year 2016
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(assumed to be t = 0) collected from the Human Mortality Database (see Fung et al. 2014).
The calibration procedure was conducted for all policyholder ages and genders reported
in Table 1.

Finally, it is worth noting that, due to the flexibility of the methodology that will be
proposed, different and/or more complex dynamics to describe the evolution of the risk
factors may be assumed with respect to the ones assumed above.

3. Problem and Methodology

Under the framework defined in Section 2, we need to evaluate the streams of pay-
ments embedded in each policy inside the insurance portfolio. Before discussing the
methodology, let us recall some results provided by Biffis (2005) related to the time-τ
fair values of the most common payoffs embedded in typical life insurance products,
i.e., survival and death benefits.

Proposition 1. (Survival benefit.) Let C be a bounded G-adapted process. Then, the time-τ fair
value SBτ(CT ; T) of the time-T survival benefit of amount CT , with 0 ≤ τ ≤ T, is given by:

SBτ(CT ; T) = E
[
e−
∫ T

τ rsdsI{ς>T}CT | Fτ

]
= I{ς>τ}E

[
e−
∫ T

τ (rs+μs)dsCT | Gτ

]
.

In particular, if C is GX-adapted, the following holds:

SBτ(CT ; T) = I{ς>τ}E
[
e−
∫ T

τ rsdsCT | GX
τ

]
E
[
e−
∫ T

τ μsds | GY
τ

]
.

Proposition 2. (Death benefit.) Let C be a bounded G−predictable process. Then, the time-t fair
value DBτ(Cς; T) of the death benefit of amount Cς, payable in case the insured dies before time T,
with 0 ≤ τ ≤ T, is given by

DBτ(Cς; T) = E
[
e−
∫ ς

τ rsdsCςI{τ<ς≤T} | Fτ

]
= I{ς>τ}

∫ T

τ
E
[
e−
∫ u

τ (rs+μs)dsμuCu | Gτ

]
du.

In particular, if C is GX-predictable, the following holds

DBτ(Cς; T) = I{ς>τ}
∫ T

τ
E
[
e−
∫ u

τ rsdsCu | GX
τ

]
E
[
e−
∫ u

τ μsdsμu | GY
τ

]
du.

We refer the readers to Biffis (2005) for the corresponding proofs and further de-
tails. Therefore, as we can see from Propositions 1 and 2, evaluating life insurance poli-
cies at future times implies solving conditional expectations for which often analytical
formulas do not exist. Due to this, simulation-based approaches are extensively used
(see Boyer and Stentoft 2013), among which we mention the nested simulations method
where a high number of inner simulations branch out from another huge set of outer scenar-
ios. However, the simulations within simulations approach is computationally challenging,
especially when several policies are considered, as in our case. Therefore, in the following,
we are going to discuss two methodologies to evaluate the streams of payments embedded
in each policy inside the insurance portfolio. For this purpose, we project the relevant risk
factors affecting the policy (i.e., S, r, and μ) under the physical probability measure from
time t = 0 up to the risk horizon τ, and then for each outer scenario another set of inner
trajectories is simulated under the risk-neutral measure.

In order to avoid the huge computational cost of a pure nested model, as in the LSMC
approach, we simulate n possible outer trajectories of the risk factors and then for each of
them we further simulate n̄ � n inner paths. Following this approach, let Zi be an n × v
matrix, where the row vector zi

k contains the kth outer scenario of the v risk factors affecting
the value of the ith representative policy. For each vector zi

k and for time τ < t ≤ T, we
simulate n̄ trajectories under the risk-neutral probability measure. To simplify the notation,
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we focus on the ith representative policy, and we denote zk
j,t the vector containing the

time-t values of the risk factors along the jth inner trajectory corresponding to the kth outer
scenario. Moreover, we label Y a n × s matrix where the element yik represents the value of
the ith policy corresponding to the kth outer scenario obtained by averaging across the few
inner simulations. Formally,

yik =
1
n̄

n̄

∑
j=1

∑
τ<t≤Ti

Φi
t

(
zk

j,t

)
i = 1, . . . , s, and k = 1, . . . , n, (4)

where Φi
t(·)s represent the discounted cash-flows at time t of the ith policy with maturity Ti.

In this way, we obtain a first (rough) estimate of each representative policy value
distribution at the future time τ. The next step is to obtain a more accurate estimate of
the distribution of the time-τ value of each representative policy and then to infer the
distribution of the time-τ value of the entire portfolio. We achieve this by applying two
different approaches, an OLS as in the least-squares Monte Carlo method and a GB2 model.

3.1. The LSMC Method

The least-squares Monte Carlo method applied to the problem of computing the
distribution of the insurer’s liabilities at a certain future date is based on the idea that
the bias deriving from the few inner simulations can be reduced by approximating the
involved conditional expectations with a linear combination of basis functions depending
on some covariates, whose coefficients are estimated through an ordinary least-squares
procedure (see Bauer et al. 2010 for further details).

A straightforward application of the LSMC approach would be to apply the method
on each policy inside the insurance portfolio. However, this kind of strategy would be
quite computationally expensive due to the big dimensions of an insurance portfolio. Due
to this, we propose applying the LSMC method first on just a set of representative policies
and then through an OLS regression extend it to the entire portfolio.

Hence, according to the LSMC method, we assume that the conditional ith representa-
tive policy value, ŷik, can be expressed as a linear combination of basis functions depending
on the covariate matrix zi

k as follows:

ŷik =
L

∑
j=1

β̂i
jej

(
zi

k

)
i = 1, . . . , s and k = 1, . . . , n, (5)

where ej(·) is the jth basis function in the regression, L is the number of basis functions,
and β̂i

js represent the coefficients estimated through

(
β̂i

1, . . . , β̂i
L

)
= argmin

β1,...,βL

⎡⎣ n

∑
k=1

(
yik −

L

∑
j=1

βi
jej

(
zi

k

))2
⎤⎦.

In this way, we obtain an n × s matrix Ŷ where each row vector ŷk contains the values
of each representative policy corresponding to the kth outer scenario.

Now, in order to approximate the distribution of the value of the entire portfolio, we
construct an OLS regression model for each outer scenario. In this regard, we denote with
X an M × (w + 1) matrix, where the row vector xi contains the w covariates (gender, product
type, age, and maturity) characterizing the ith contract in the portfolio plus an intercept
term (M is the total number of contracts inside the insurance portfolio). Moreover, let X̄ be
the s × (w + 1) matrix describing the structure of the representative insurance portfolio.
Hence, x̄i contains the w covariates characterizing the ith representative contract plus an
intercept term.

Therefore, we regress each row vector ŷk (k = 1, . . . , n) on the covariate matrix X̄,
and once the coefficients are estimated, we extend them to the remaining policies by
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exploiting the matrix X. In this way, we obtain the value of the ith contract corresponding
to the kth outer scenario, which is denoted by v̂ik. Formally,

v̂ik = xi β̂
′
k i = 1, . . . , M and k = 1, . . . , n, (6)

where

β̂′
k =

(
X̄′X̄

)−1
X̄′ŷ′

k.

Finally, the entire portfolio value distribution is obtained by adding up all the policy
values in Equation (6) corresponding to each outer scenario.

3.2. The GB2 Model

A GB2 model appears to provide a flexible family of distributions as it nests a range of
standard distributions as special or limiting cases, such as the log-normal, the generalized-
gamma, the Burr type III, the Burr type XII and many other (see McDonald 1984). Moreover,
it has been used in several actuarial applications (e.g., see Gan and Valdez 2018) to model
the fair market value of a portfolio made up of life insurance policies. A GB2 random
variable can be constructed from a transformed ratio of two gamma random variables.
The density function of a GB2 random variable, Y, is given by

f (y) =
|a|

bB(p, q)

(y
b

)ap−1[
1 +

(y
b

)a]−p−q
, y > 0, (7)

where a �= 0, p > 0, q > 0 are shape parameters, b > 0 is the scale parameter, B(·) is the
Beta function, and its expectation equals:

E[Y] = b ·
B
(

p + 1
a , q − 1

a

)
B(p, q)

, (8)

which exists if −p < 1
a < q.

In order to approximate the value of the portfolio, at first we approximate the time-τ
value of each representative policy, and then we use this information to approximate the
distribution of the value of the entire insurance portfolio at the risk horizon. To achieve this,
we construct two different GB2 regression models which exploit the generated information
at the risk horizon

(
i.e. S(τ), r(τ), and μ(τ)

)
, and then the features characterizing uniquely

each policy, respectively.
Specifically, since the policy values yik obtained from Equation (4) are not accurate

due to the few inner trajectories on which they are based on, we aim at reducing the bias
by estimating the involved conditional expectation through a GB2 regression model. In
this regard, we assume that the ith policy value at time τ conditioned on a specific outer
scenario is a GB2 random variable with parameters (ai, pi, qi, bi). In particular, we make
the b− parameter depend on some independent covariates (i.e., the value at time τ of the
risk factors which affect the policy of interest). Note that several approaches to incorpo-
rate covariates in the GB2 regression model exist as well as different re-parametrization
(see Beirlant et al. 2004; Frees and Valdez 2008). However, as noticed by Sun et al. (2008)
and Frees et al. (2016), incorporating them into the scale parameter, b, facilitates the inter-
pretability of the model; indeed, as can be seen in Equation (8), the expectation will change
proportionally with respect to b, allowing one to interpret the regression coefficients as
proportional changes.

Hence, b
(
Zi) = exp

(
Ziβ′

i
)
, where βi = (βi;0, βi;1, . . . , βi;v) are the corresponding coef-

ficients attached to each risk-factor. Note that the matrix Zi now includes an intercept term.
We can use the maximum likelihood method to estimate the parameters. Since we

incorporate covariates through the scale parameter, we can write the log-likelihood function
of the model as
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l(ai, pi, qi, βi) =n ln
|ai|

B(pi, qi)
− ai pi

n

∑
k=1

zi
kβ′

i + (ai pi − 1)
n

∑
k=1

ln(yik)− (pi + qi)
n

∑
k=1

ln

[
1 +

(
yik

exp
(
zi

kβ′
i
))ai

]
, (9)

where i = 1,. . . s, n is the number of the generated outer scenarios and yik denotes the value
of the ith policy corresponding to the kth outer scenario.

Once we estimate the parameters for the GB2 model, we use the expectation for
predicting the value of the policy at time τ. Since we incorporate covariates through the
scale parameter, we can estimate it as

ŷik =
exp

(
zi

k β̂′
i

)
B
(

p̂i +
1
âi

, q̂i − 1
âi

)
B( p̂i, q̂i)

, i = 1, 2, . . . , s and k = 1, . . . , n, (10)

where zi
k is the vector containing the kth outer scenario of the risk factors affecting the ith

representative policy.
Once we obtain an estimate of the distribution of each representative policy at time τ,

we extend this information to the remaining policies. As already carried out for the OLS
model, we are going to exploit both the matrices X̄ and X on which we now construct a
new GB2 regression model.

Therefore, let Ŷ be the n × s matrix whose elements ŷik denote the value of the ith
representative policy corresponding to the kth outer scenario obtained through Equation (10).

Now, we construct a GB2 regression model in order to infer, starting from the set of
representative policies, the distribution of the entire portfolio. Hence, recalling the pdf
defined in Equation (7), we define the following log-likelihood function as:

l(ak, pk, qk, βk) =s ln
|ak|

B(pk, qk)
− ak pk

s

∑
i=1

x̄iβ
′
k + (ak pk − 1)

s

∑
i=1

ln(ŷik)− (pk + qk)
s

∑
i=1

ln

[
1 +

(
ŷik

exp
(
x̄iβ

′
k
))ak

]
, (11)

where s is the number of the representative policies and x̄i is the row vector containing the
information of the ith representative contract.

Once again, after we estimate the parameters through the maximum likelihood ap-
proach, we can then derive the distribution at the risk horizon for all the policies inside the
insurance portfolio as

v̂ik =
exp

(
xi β̂

′
k

)
B
(

p̂k +
1
âk

, q̂k − 1
âk

)
B( p̂k, q̂k)

, i = 1, 2, . . . , M and k = 1, . . . , n, (12)

where v̂ik is the value of the ith contract corresponding to the kth outer scenario.
Finally, the entire portfolio value distribution is again obtained by adding up all the

policy values corresponding to each outer scenario.
Note that the log-likelihood functions in Equations (9) and (11) may have multiple

local maxima and since an analytic solution does not exist, we need to rely on a numerical
procedure to estimate the involved parameters. We adopt the same multistage optimization
algorithm described in Gan and Valdez (2018).

4. Numerical Results

In this section, we present some numerical results obtained by exploiting the pre-
viously defined models. In particular, we consider a life insurance portfolio with M =
10,000 contracts, and we focus on approximating its value distribution at the future time
τ = 1 year. These policies can be of three different types: a unit-linked pure endowment
contract with a minimum maturity guarantee G = 100 payable upon the survival of the
policyholder at the maturity date T, term life insurance policy which pays the value of a
reference asset in case of death before maturity T, and an immediate life annuity contract
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with continuous survival benefits equal to the 10% of a reference asset value up to the entire
life of the insured person. We consider different policyholders, both males and females,
with different ages x at time t = 0, which is also assumed to be the inception time of each
policy. These characteristics are reported in Table 1. We assume that the insurance benefits
depend upon a reference asset with the initial value S0.

In Tables A1 and A2 given in Appendix A, we report the values of the involved
parameters in Equations (1)–(3). In particular, concerning mortality, we have calibrated the
survival curve implied by Equation (3) on the Italian males and females mortality data in
the year 2016 obtained from the Human Mortality Database for each age x ∈ {55, . . . , 65},
and we assumed a longevity risk premium δ = 0.

We conduct this numerical experiment by varying both the number of outer simula-
tions, n, and the number of representative policies, s. In particular, we adopt a monthly
Euler’s discretization setting in order to project n ∈ {1000, 5000, 10000} outer trajectories of
each risk factor under the P-measure, and then for each outer scenario we further simulate
n̄ = 2 inner trajectories under the risk-neutral probability measure. With this simulation
set, we are able to obtain a first rough estimate of Y on which we construct the LSMC and
GB2 models discussed in Sections 3.1 and 3.2, respectively. Note that, concerning the LSMC
method, we exploit as basis functions Hermite polynomials of orders 1 and 2, which are
denoted, respectively, as LSMC_1 and LSMC_2 hereafter.

To determine the number of representative contracts s, we start from the informal rule
proposed by Loeppky et al. (2009), which provide reasons and evidence supporting that the
sample size should be about 10 times the input dimension. In our case, the dimension of
covariates in the design matrix X is 5 (including the binary dummy variables converted from
the categorical variables), and so we choose s = 50 as the initial number of representative
contracts. However, we investigate the models’ performances by setting s = 75 and
s = 100.

Finally, the results are compared with a solid benchmark obtained through a nested
simulations approach based on 10,000 × 2500 simulations. This allows us to conclude on
the reliability of the proposed methodologies and to compare them in terms of computa-
tional demand.

Figure 1 shows the Quantile-Quantile (Q-Q) plots of the portfolio value at time τ = 1
obtained by the nested simulations algorithm (assumed to be the theoretical one) and
those predicted by the GB2 regression model and the LSMC models based on n = 10,000
outer simulations and by varying the number of representative contracts s ∈ {50, 75, 100}.
In this regard, we can see from Figure 1 that the proposed methodologies provide a good
approximation except for the right tail of the distribution. In particular, concerning the
GB2 regression model, we can see that the higher the number of representative contracts,
the better the approximation.

For a comprehensive analysis, we perform multiple runs of each proposed method; in
particular, the following analysis is based on 50 runs.

In Tables 2–4, we report the Mean Absolute Percentage Error (MAPE) relative to
different quantities obtained by performing 50 runs of the proposed methodologies with a
fixed number of outer scenarios (n = 10,000) and by varying the number of representative
contracts (s ∈ {50, 75, 100}).
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Figure 1. Q-Q plots relative to the future value distribution of the insurance portfolio. The theoretical
distribution is assumed to be the one obtained by nested simulations based on 10,000 × 2500
trajectories. The first row refers to the GB2 regression model based on 10,000 outer scenarios and by
varying the number of representative contracts, s ∈ {50, 75, 100}. The second and third rows refer to
the LSMC method with Hermite polynomials of orders 1 and 2 based on 10,000 outer scenarios and
by varying the number of representative contracts, s ∈ {50, 75, 100}.

Table 2. This table reports the MAPE of the estimates obtained by running 50 times the GB2 and LSMC methods with
n = 10,000 and s = 50. The benchmark values are based on a nested simulations algorithm with 10,000 ×2500 trajectories
applied to the entire portfolio.

5th Perc. 10th Perc. Median Mean 90th Perc. 95th Perc. 99th Perc. 99.5th Perc.

GB2 2.812% 2.180% 1.798% 2.594% 3.832% 4.016% 6.154% 4.375%

LSMC_1 3.238% 3.000% 2.399% 2.557% 2.398% 2.174% 2.436% 2.722%

LSMC_2 2.762% 2.754% 2.567% 2.557% 2.436% 2.114% 2.356% 2.841%

Table 3. This table reports the MAPE of the estimates obtained by running 50 times the GB2 and LSMC methods with
n = 10,000 and s = 75. The benchmark values are based on a nested simulations algorithm with 10,000 × 2500 trajectories
applied to the entire portfolio.

5th Perc. 10th Perc. Median Mean 90th Perc. 95th Perc. 99th Perc. 99.5th Perc.

GB2 1.971% 1.782% 0.806% 0.542% 3.605% 3.949% 6.094% 3.867%

LSMC_1 2.500% 1.338% 1.530% 1.392% 1.251% 1.657% 0.941% 1.678%

LSMC_2 1.828% 1.047% 1.756% 1.392% 1.307% 1.485% 1.842% 2.142%
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Table 4. This table reports the MAPE of the estimates obtained by running 50 times the GB2 and LSMC methods with
n = 10,000 and s = 100. The benchmark values are based on a nested simulations algorithm with 10,000 × 2500 trajectories
applied to the entire portfolio.

5th Perc. 10th Perc. Median Mean 90th Perc. 95th Perc. 99th Perc. 99.5th Perc.

GB2 1.986% 1.745% 0.519% 0.347% 1.129% 1.313% 2.856% 1.944%

LSMC_1 1.629% 1.504% 0.440% 0.627% 0.764% 0.824% 0.958% 2.561%

LSMC_2 1.148% 1.145% 0.578% 0.627% 0.762% 0.986% 2.101% 2.334%

If we compare Tables 2–4, it is evident that increasing the number of representative
contracts s leads to a better approximation of the mean and of the other considered mea-
sures of position. Moreover, it seems that the GB2 model, at least for a low number of
representative contracts, is not able to adequately model the right tail of the distribution.

In Table 5, we report the Mean Percentage Error (MPE) and MAPE relative to the
mean estimates obtained by running the GB2 and LSMC methods 50 times with different
numbers of outer simulations, n, and representative contracts, s.

Table 5. This table reports the MPE and MAPE of the mean estimates obtained by running 50 times the GB2 and LSMC
methods and varying the number of outer simulations (Outer) and that of representative contracts s. The benchmark value
is based on a nested simulations algorithm with 10,000 × 2500 trajectories applied to the entire portfolio.

s = 50 s = 75 s = 100

Outer Method MPE MAPE MPE MAPE MPE MAPE

GB2 3.612% 3.612% 0.163% 0.983% −0.240% 0.923%
1000 LSMC_1 −3.475% 3.475% −2.104% 2.221% −1.017% 1.364%

LSMC_2 −3.475% 3.475% −2.104% 2.221% −1.017% 1.364%

GB2 2.981% 2.981% 0.715% 0.747% −0.301% 0.474%
5000 LSMC_1 −2.840% 2.840% −1.533% 1.533% −1.029% 1.092%

LSMC_2 −2.840% 2.840% −1.533% 1.533% −1.029% 1.092%

GB2 2.594% 2.594% 0.491% 0.542% 0.179% 0.347%
10,000 LSMC_1 −2.557% 2.557% −1.392% 1.392% −0.490% 0.627%

LSMC_2 −2.557% 2.557% −1.392% 1.392% −0.490% 0.627%

Looking at Table 5, we can see that for a fixed number of outer scenarios and for
each applied method, the accuracy of the mean estimates increases with the number of
representative contracts s. Moreover, it is evident that in most of the considered config-
urations, the GB2 model outperforms the LSMC methods. Furthermore, if we look at
the last column of Table 5 (s = 100), for instance, we can see that the higher the number
of outer scenarios, the better the approximation. Finally, we can see that increasing the
number of basis functions up to degree two in the LSMC method does not improve the
accuracy of the mean estimates. This is probably due to the few outer simulated trajectories
(at most 10,000 paths), which is not sufficient to appreciate the improvement which is
usually expected. In the left-hand side of Figure A1 given in Appendix B, we report the
corresponding box-plots from which it is possible to see that, in each of the considered
configurations, the LSMC method systematically underestimates the quantity of interest.

Concerning the estimate of the 99.5th percentile of the distribution, which would
be of interest for valuing solvency capital requirements, Table 6 reports the MPE and
MAPE relative to 50 estimates obtained by varying both the number of simulations and the
number of representative contracts.
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Table 6. This table reports the MPE and MAPE of the 99.5th percentile estimates obtained by running the GB2 and LSMC
methods 50 times and varying the number of outer simulations (Outer) and that of representative contracts s. The benchmark
value is based on a nested simulations algorithm with 10,000 × 2500 trajectories applied to the entire portfolio.

s = 50 s = 75 s = 100

Outer Method MPE MAPE MPE MAPE MPE MAPE

GB2 3.936% 6.570% −1.512% 5.453% 1.410% 4.494%
1000 LSMC_1 −2.664% 3.715% −6.308% 6.478% −2.961% 4.253%

LSMC_2 −0.252% 6.487% −4.211% 7.150% −1.438% 5.517%

GB2 4.110% 4.723% 3.813% 4.018% 0.081% 2.653%
5000 LSMC −2.908% 3.001% −4.708% 4.722% −1.659% 2.006%

LSMC_2 −1.787% 3.484% −3.118% 4.017% −0.462% 3.110%

GB2 4.157% 4.375% 3.737% 3.867% 0.421% 1.944%
10,000 LSMC_1 −2.643% 2.722% −1.560% 1.678% −2.522% 2.561%

LSMC_2 −2.259% 2.841% −0.131% 2.142% −1.007% 2.334%

From Table 6, we can detect a similar behaviour as the one previously discussed.
Specifically, we can see that, concerning the GB2 model, an increase in the number of
representative contracts (for fixed n) leads to an improvement of the resulting estimates.
On the contrary, for the LSMC method, there is no clear pattern. Indeed, as we can see,
increasing the number of representative contracts (for a fixed n) does not lead to a clear
improvement in the results. Moreover, increasing the number of basis functions as well as
the number of outer simulations does not increase the accuracy of the estimates (see also
the right side of Figure A1 in Appendix B). As in the case of the mean estimate, this could
be due to the small number of outer simulations, and so we may conclude that passing
from 1000 to 10,000 trajectories is still not sufficient to exploit more basis functions. Once
again, if we look at the case of n = 10,000 and s = 100, the GB2 model outperforms the
LSMC approach.

Now, let us examine the speed of the proposed algorithms with respect to the bench-
mark. Table 7 shows the runtime of GB2 and LSMC expressed as a percentage of the
time required by the nested simulation method based on 10,000 outers and 2500 inners.
Note that we conducted all experiments using R on a computer equipped with an Intel®

Core(TM) i7-1065G7 CPU 1.50 GHz processor with 12 GB of RAM and Windows 10 Home
operating system.

Table 7. Percentage of the runtime required by the GB2 and LSMC methods with respect to the nested simulations approach.
Note that the computational demand to construct the benchmark with a nested simulations approach based on 10,000 ×
2500 scenarios applied to the entire portfolio is about 187,200 s.

Method
n = 1000 n = 5000 n = 10,000

s = 50 s = 75 s = 100 s = 50 s = 75 s = 100 s = 50 s = 75 s = 100

GB2 0.069% 0.078% 0.098% 0.337% 0.380% 0.501% 0.660% 0.832% 1.021%

LSMC_1 0.005% 0.006% 0.007% 0.012% 0.018% 0.019% 0.036% 0.045% 0.047%

LSMC_2 0.005% 0.006% 0.007% 0.013% 0.019% 0.020% 0.037% 0.046% 0.047%

As we can see from Table 7, by applying the proposed methodologies, we have
drastically reduced the computational time required instead by a nested simulations
approach. Moreover, as expected, the LSMC method presented in Section 3.1 outperforms
the GB2 model in terms of time in each of the proposed configurations. However, this is
due to the existence of a closed form formula for the estimation of the involved parameters.
Indeed, as stated in Section 3.2, the estimation procedure for the GB2 model is based on a
multistage optimization algorithm due to the complexity of the likelihood functions, which
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may have multiple local maxima. Regardless, if compared with the simulations within
simulations method, the GB2 model proved to be an accurate and efficient alternative.

Full LSMC

To provide an exhaustive analysis, we consider a straightforward application of the
LSMC method. Hence, we apply the LSMC method on each contract composing the
insurance portfolio without considering any set of representative policies. The results
are then compared with those already shown in the previous section both in terms of
accuracy and computational demand. Just as an example, we construct the LSMC model
by exploiting as set of basis functions Hermite polynomials with order 1 based on 10,000
× 2 simulations (LSMC_Full). Table 8 reports the MPE and MAPE relative to the 5th-
percentile, the mean, and the 99.5th percentile estimates obtained by performing 50 runs
of the proposed methods. Further, we report the results relative to the GB2 model (GB2)
and LSMC method with Hermite polynomials of order 1 (LSMC_1) and order 2 (LSMC_2)
based on 10,000 × 2 simulations and s = 100 representative policies.

Table 8. This table reports the MPE and MAPE relative to the 5th percentile, the mean, and the 99.5th percentile estimates
obtained by applying different methodologies. GB2 stands for the GB2 regression model based on n = 10,000 outer scenarios
and s = 100 representative policies; LSMC_1 refers to the LSMC method based on n = 10,000 outer scenarios and s = 100
representative policies with Hermite polynomials of order 1; LSMC_2 refers to the LSMC method based on n = 10,000
outer scenarios and s = 100 representative policies with Hermite polynomials of order 2; LSMC_Full refers to the LSMC
method based on n = 10,000 outer scenarios and constructed on each contract in the insurance portfolio. The results are
compared with the corresponding benchmark value based on nested simulations with 10000 × 2500 trajectories applied to
the entire portfolio.

Method
5th Perc. Mean 99.5th Perc.

MPE MAPE MPE MAPE MPE MAPE

GB2 −1.986% 1.986% 0.179% 0.347% 0.421% 1.944%

LSMC_1 −1.472% 1.629% −0.490% 0.627% −2.522% 2.561%

LSMC_2 −0.742% 1.148% −0.490% 0.627% −1.007% 2.334%

LSMC_Full −0.501% 1.032% −0.084% 0.461% −0.420% 1.070%

As is shown in Table 8, the errors relative to the LSMC_Full approach are lower than
those of the other proposed methods since the estimates are based on the entire insurance
portfolio, i.e., this approach does not suffer of any uncertainty related to the missingness of
policies in its estimation procedure. Figure A2 given in Appendix B reports the box-plots
on which the quantities in Table 8 are based on.

Finally, we compare these methods in terms of time. In Table 9, we report the com-
putational time required by the algorithms. We can see that the naive application of the
LSMC approach is more computationally expensive with respect to the GB2 and LSMC
models based on a set of representative policies.

Table 9. Runtime, in seconds, of GB2 model and LSMC methods based on 10,000 × 2 simulations and
s = 100 representative contracts (GB2, LSMC_1, LSMC_2). LSMC_Full refers to the LSMC method
applied to each contract in the insurance portfolio.

Method Time

GB2 1911.445

LSMC_1 87.824

LSMC_2 88.290

LSMC_Full 7847.960
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5. Conclusions

In this paper, we addressed the problem of approximating the value of a life insurance
portfolio at a future time by proposing two different methodologies able to avoid the
time-consuming nested simulations approach. The first approach can be thought of as
extension of the well-known LSMC method, while the second is based on the GB2 distri-
bution, which is widely used to approximate the fair value of portfolios of life insurance
policies. To validate the proposal, we have considered a solid benchmark obtained by
nested simulations, and we compared the two proposed methodologies both in terms of
accuracy and efficiency. The analysis has been carried out by considering an ever increasing
number of simulations and representative policies, from which it turned out that, generally,
both the methodologies are able to provide increasingly accurate results. Moreover, the
LSMC method proved to be faster in computational terms but also less accurate than
the GB2 model. Furthermore, the proposed methodologies have been compared with a
straightforward application of the LSMC method (i.e., without considering any subset of
representative policies), which turned out to be more accurate but computationally more
expensive.

Extensive numerical results have shown that the proposed methods represent viable
alternatives to the full nested Monte Carlo model. Therefore, the proposed metamodeling
approach may help insurance and reinsurance undertakings to reduce the computational
budget needed, for instance, in the context of evaluating solvency capital requirements.
In this regard, it can be used to evaluate the future cash-flows (inflows and outflows)
generated by the entire portfolio by considering at first only a subset of policies, and then
extend to the remaining ones. Indeed, this represents the main issue for deriving the full
loss distribution on which the Value-at-Risk measure should be obtained, as prescribed by
the European Solvency II directive.
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and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Parameter Values

Table A1 shows the parameter values assumed for the dynamics of the reference asset
and interest rates defined in Equations (1) and (2).

Table A1. Parameters of the reference asset value process, S, and interest rate stochastic process, r.

S0 σS λ r0 α θ σr γ ρ

100 0.20 0.00 0.04 0.10 0.02 0.02 0.00 0.00

Table A2 shows the estimated parameters of the mortality model defined in Equation (3)
obtained by fitting the corresponding survival curve on that implied by the Italian males
and females mortality data in year 2016 obtained from the Human Mortality Database for
each age x ∈ {55, . . . , 65}.
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Table A2. Estimated parameters of the stochastic mortality model for Italian male (left) and female
(right) aged x ∈ {55, . . . , 65} in 2016.

Age
Male Female

â b̂ σ̂μ â b̂ σ̂μ

55 0.00040 0.0881 0.00157 0.00010 0.10017 0.00100

56 0.00700 0.0705 0.00262 0.00001 0.11110 0.00100

57 0.00001 0.1051 0.00100 0.00001 0.11060 0.00100

58 0.00001 0.1045 0.00390 0.00009 0.10740 0.00850

59 0.00040 0.0832 0.00100 0.00001 0.11570 0.00100

60 0.00060 0.0743 0.00100 0.00042 0.08362 0.00669

61 0.00030 0.0907 0.00100 0.00044 0.08505 0.00100

62 0.00010 0.1033 0.00710 0.00001 0.11990 0.00100

63 0.00012 0.1063 0.00750 0.00040 0.09704 0.00182

64 0.00008 0.1112 0.00810 0.00039 0.09860 0.00376

65 0.00020 0.1075 0.00123 0.00049 0.09558 0.00720

Appendix B. Further Results

Figure A1 reports the boxplot relative to the mean (left) and the 99.5th percentile
(right) estimates obtained by running 50 times the GB2 and LSMC methods varying both
the number of outer scenarios, n, and that of the representative policies, s. In this regard,
we can see that the variability of the estimates decreases as the number of outer scenarios
and the number of representative contracts increases.

Figure A1. Boxplots relative to the mean (left) and the 99.5th percentile (right) estimates obtained
by running the GB2 and LSMC methods 50 times and varying the number of outer simulations n
and that of representative contracts s. The red line refers to the benchmark value based on a nested
simulations algorithm with 10,000 × 2500 trajectories applied to the entire portfolio.

Figure A2 compares the straightforward application of the LSMC approach with
respect to the proposed methodologies providing the boxplots relative to the mean and the
99.5th percentile estimates.
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Figure A2. Boxplots relative to the mean and the 99.5th percentile estimates obtained by running the proposed methodolo-
gies 50 times. GB2 stands for the GB2 regression model based on 10,000 outer scenarios and s = 100 representative policies;
LSMC_1 refers to the LSMC method based on 10,000 outer scenarios and s = 100 representative policies with Hermite
polynomials of order 1; LSMC_2 refers to the LSMC method based on 10,000 outer scenarios and s = 100 representative
policies with Hermite polynomials of order 2; LSMC_Full refers to the LSMC method based on 10,000 outer scenarios
and constructed on each contract in the insurance portfolio. The red line refers to the benchmark value based on a nested
simulations algorithm with 10,000 × 2500 trajectories applied to the entire portfolio.
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Abstract: We consider annuity designs in which the benefit amount is allowed to fluctuate (up or
down), based on a given mortality/longevity experience. This way, guarantees are relaxed in respect
of traditional annuity arrangements. On the other hand, while the annuitant is exposed to the risk
of a future reduction of the benefit amount because of higher longevity, he/she can immediately
take advantage of a lower premium loading, as well as of a future increase of the benefit amount in
the case of higher mortality. Flexibility in the annuity design could be welcomed by individuals, as
the conservative features of traditional products partly explain their lack of attractiveness in most
markets. To further contribute to the flexibility of the product, we suggest a pricing structure based
on periodic fees applied to the policy fund, instead of the usual upfront loading at issue. Periodic fees
are more suitable to support a revision of the arrangement after issue, which is currently not allowed
in traditional annuity products. We show that periodic fees can be introduced by identifying a
discount factor to be used for pricing and reserving. We assume stochastic mortality, and we compare
alternative mortality/longevity linking solutions, by assessing the periodic fees and other quantities.

Keywords: mortality/longevity-linked annuities; aggregate longevity/mortality risk; longevity
guarantee; periodic longevity fee

JEL Classification: G22

1. Introduction

The need for individuals to take autonomous decisions regarding their post-retirement
income is widely recognized. Such a need has become more urgent after the adoption
of Defined Contribution principles (in place of Defined Benefit) in Pillar I and II pension
systems of many countries, as individuals are thus exposed to significant financial and
longevity risks when in retirement. Among the private arrangements providing a post-
retirement income, traditional life annuities are perhaps the most protective form for
individuals, thanks to the longevity and financial guarantees they provide. This suggestion
is supported by the classical result by (Yaari 1965), which identifies annuities as the optimal
choice for a retiree. However, guarantees of traditional annuities expose the provider to
major risks, furthermore over a long-term time horizon; this is why guarantees are matched
by a conservative structure of benefits and investments, with loadings judged to be very
high. These are some of the reasons explaining the so-called annuity puzzle, i.e., the fact
that individuals are not attracted by life annuities and markets remain underdeveloped
(see, for example, (Davidoff et al. 2005) and, for a recent contribution and updated list of
references, (Peijnenburg et al. 2016)).

The current pandemic may suggest that planning the post-retirement income is no
longer a topical issue. On the contrary, longevity remains a matter not to be disregarded,
neither by individuals nor by providers. While it is clear that the COVID-19 pandemic
is currently causing a mortality shock, different scenarios about the future mortality are
possible, including an increase in the life expectancy of the survivors (see, for example,
Cairns et al. 2020; Milevsky 2020). Furthermore, social security could be in greater difficulty
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in the near future, due to the economic crises that have occurred in the latest years. It is,
therefore, still relevant to consider situations where a significant part of the post-retirement
income will have to be covered with private resources. Individuals will have to decide
whether to self-annuitize their money, retaining all risks, or transfer all or part of the risks
to providers, who then in turn have to develop cost-effective and attractive solutions.

In a scenario characterized by longevity but also by mortality shocks (which in the cur-
rent pandemics are particularly severe at high ages), it is convenient to redefine longevity
guarantees, so as to make them cheaper and more appealing both for individuals and
providers. In particular, if the benefit amount is contingent on an appropriate mortal-
ity/longevity experience, possible profits and losses originated by unanticipated mortal-
ity/longevity are (at least partially) shared between individuals and providers, resulting
in lower loadings, but also providing the opportunity to design a more flexible product
structure.

Mortality/longevity-linked annuity benefits have been addressed in several contribu-
tions in the latest decade; see, in particular, (Bravo and de Freitas 2018; Chen and Rach
2019; Chen et al. 2019; Denuit et al. 2011; Milevsky and Salisbury 2015; Richter and Weber
2011; Weinert and Gründl 2021). Some forms already exist in the market; for example, in
Danish deferred group annuities the benefit amount is increased by a bonus if the actual
investment performance exceeds the guaranteed return or if the mortality experience is
higher than expected (see Andersen and Skjodt 2007). While alternative linking coefficients
have been examined in the literature, the problems mainly discussed are the fair valua-
tion of the contract, as well as optimality issues for the individual, in an expected utility
framework. The idea of linking a post-retirement income benefit to a mortality/longevity
experience has not been developed for the first time in the latest decade, however. Con-
versely, such an idea is very old, dating back to the 17th century, when the so-called tontine
investments were conceived. However, tontine annuities were originally designed not for
protecting against the longevity risk, but for speculative purposes; see (McKever 2009) and
(Milevsky 2014) for historical notes. Recently, mortality/longevity-linking structures have
been adopted within pooled arrangements; while the best known are Group-Self Annuiti-
zation pools (see, for example, Piggott et al. 2005; Qiao and Sherris 2012), other schemes
are investigated in (Stamos 2008), (Donnelly et al. 2013) and (Donnelly 2015), to cite some
contributions. Pooled arrangements are self-insured: no guarantee is provided; individ-
uals pool together their money, trying to take advantage of pooling effects. Self-insured
solutions are cheaper than annuities, but individuals retain all risks, as members of the
pool. In contrast, some forms of guarantees should be kept in mortality/longevity-linked
annuities. A general description of linking coefficients, including as particular cases most
of the solutions analysed in the literature both for insured and self-insured arrangements,
is developed by (Olivieri and Pitacco 2020a).

As mentioned above, annuities are usually viewed as a very conservative product by
individuals, as they represent an inflexible and illiquid asset, they imply an irreversible
decision at issue, they do not satisfy bequest needs or they meet bequest preferences only
partially, if a death benefit is included (see Pitacco 2016). Innovation can be pursued in
various respects. Making the benefit amount contingent on mortality/longevity is un-
doubtedly an important innovation. In particular, it favours the adoption of not excessively
prudential assumptions about future mortality, otherwise necessary given that annuities
extend over a very long time-horizon. Bequest preferences can be met by introducing
death benefits. While this is customary in annuities (as mentioned above), with death
benefits payable up to some (not very high) age, Bernhardt and Donnelly (2019) introduce
bequest in pooled arrangements. Several opportunities for innovation can be obtained
when combining different benefits, such as the just mentioned case of annuities and death
benefits. Particularly interesting in this regard is the combination of different forms of
annuities; Chen et al. (2019, 2020) and Chen and Rach (2019) consider the case of fixed
annuity benefits combined with mortality/longevity linked-benefits.
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Another line of innovation can be developed in respect of the structure of the fees. It
is traditional for life annuities to define and charge the premium loading at issue, when
the individual transfers their money to the provider. Such a pricing structure concurs
to the inflexibility of the product, as on one hand pricing assumptions are fully chosen
at issue, on the other the provider is required to pre-define the management over time
of the upfront loadings. Conversely, periodic fees can pave the way for greater product
flexibility, for example making it easier to switch to different forms of benefits after issue,
or making it possible to revise the pricing assumptions. In this latter regard, we note that
while the possibility of revising pricing assumptions can be viewed with suspicion by
individuals, any change will not necessarily be to the advantage of the provider (rather,
it may be favourable to the individual); in principle, any change in pricing assumptions
will be limited by the policy conditions underwritten at issue. Periodic fees are a natural
choice when periodic premiums are paid, i.e., usually in the case of endowments. In a
mortality/longevity linking framework, Hanbali et al. (2019) focus in particular on the
case of pure endowments, by assuming level premiums (subject to possible adjustments
in time). Periodic fees are common in variable annuities, independent of the time-profile
of the premium stream. Here, guarantees are priced by charging a periodic fee to the
policy account value, with the possibility for the policyholder to waive the guarantee at
any time (except for agreed time windows), with a consequent interruption of the relevant
fee charge; for a general overview, see (Bacinello et al. 2011). In a recent contribution by
(Chen et al. 2021) periodic fees are introduced in a tontine scheme, and are expressed as a
proportion of the benefit amount; the size of the fee that makes the individual indifferent
between choosing a fixed-benefit or a tontine annuity is in particular examined, identifying
this way the range of acceptable fee levels in tontine arrangements.

In this paper, we consider mortality/longevity-linked annuities, that include guaran-
tees in the form of barriers for the benefit amount. We further develop Olivieri and Pitacco
(2020a, 2020b), by introducing periodic fees instead of an upfront fee at issue. Periodic fees
are charged to the policy fund value and their level is assessed based on the losses and
profits retained by the provider, which in turn depend on the linking coefficient and the
barriers for the benefit amount. The metric we use to assess the required fees is the business
value for the provider; this quantity, defined as the present value of future profits net of
the cost of capital, is suitable as a joint summary of the losses and profits retained by the
provider. We show that the periodic fee identifies a discount factor to be used for pricing
and reserving. We then define the individual reserve, and split it into two components, one
covering the value of future benefits and one the value of future fees; such an information
can be useful in some applications.

The remainder of the paper is organized as follows. In Section 2, we describe the
model, in particular the mortality/longevity-linking annuity benefits examined in the
paper (Section 2.1), the structure of periodic fees and the corresponding discount factor
(Section 2.2), the individual reserve and its components (Section 2.3), the business value to
the provider (Section 2.4); finally, we discuss how to assess the required fees, based on an
assessment of the business value (Section 2.5). Some numerical findings are illustrated in
Section 3, more specifically in Section 3.3, after having sketched the stochastic mortality
model adopted (Section 3.1) and provided details about the arrangements analysed in the
numerical implementation (Section 3.2). Finally, Section 4 concludes the paper, with some
final comments.

2. Model Setup

2.1. Mortality/Longevity-Linked Annuity Benefits

We consider a discrete-time annuity immediate in arrears, i.e., with payments at the
end of the year. For simplicity, one cohort only is addressed, homogeneous in all respects.
The entry time is 0 and the entry age is x. In this paper, we focus on mortality/longevity
risk only, while we disregard other risks. For this reason, a deterministic financial setting is
adopted.
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We follow the general linking structure described in (Olivieri and Pitacco 2020a), to
which we refer for a detailed discussion about the rationale and actuarial technique backing
the annuity benefit adjustment. We consider the following two alternative mortality/
longevity-linked annuity benefits:

bt = bt−1 · px+t−1(0)
p̃x+t−1

; (1)

bt = b0 · 1 + ax+t(0)
1 + ax+t(t)

, (2)

where b0 is chosen at time 0 in both cases. The meaning of the quantities in Equations (1)
and (2) is as follows: px+t−1(0) denotes the annual survival probability at age x + t −
1 provided by a best-estimate mortality assumption (i.e., life table) at time 0; p̃x+t−1
represents the proportion of survivors (or longevity index) observed in a chosen population;
ax+t(0), ax+t(t) denote the actuarial value at age x + t of a unitary discrete-time annuity in
arrears, based on the best-estimate mortality assumptions (namely, life tables), respectively,
at time 0 and t. An interpretation about the two adjustments coefficients follows below.

In Equation (1), which we will call linking by means of the survival probability, the
benefit amount is adjusted based on the comparison between the survival rate realized
in a given population, p̃x+t−1, and a benchmark, px+t−1(0), chosen at time 0. An increase
(decrease) of the benefit amount follows from px+t−1(0) > p̃x+t−1 (px+t−1(0) < p̃x+t−1),
i.e., in the case of higher realized mortality (longevity) than predicted by the benchmark.
We note that, for an annuity business, a profit (loss) is typically reported by the provider
in the case of higher mortality (longevity); thus, the benefit adjustment in (1) serves to
mitigate such a profit (loss), partially transferring it to the individuals. The strength of the
mitigation effect depends, however, on the population in which p̃x+t−1 is measured (as
well as on other policy conditions, such as any barriers set for the benefit amount).

As far as the population is concerned, the choice is between the provider’s pool or
a reference population. While the provider’s pool usually shows a small size and is thus
subject to major random fluctuations, large reference populations are more appropriate, so
that deviations between p̃x+t−1 and px+t−1(0) can be mainly attributed to an unanticipated
underlying mortality/longevity trend. Random fluctuations represent a traditional risk
for insurers (and annuity providers), and the relating risk management actions should
be arranged using the well-known pooling arguments. Conversely, mortality/longevity-
linking benefits are recommended to cope with unanticipated mortality/longevity trends.
In the following, we then assume that p̃x+t−1 is measured on a large population. We finally
note that any possible difference between the mortality/longevity in the provider’s pool
and the reference population may be due not only to random fluctuations, but also to
different underlying trends. A basis risk follows for the provider, which we do not address
in this paper.

It is interesting to note that rule (1) is equivalent to the following:

bt = b0 · t px(0)
t p̃x

, (3)

where t px(0) is the survival probability from age x to age x + t provided by the best-
estimate mortality assumption at time 0, while t p̃x is the proportion of survivors from age
x to age x + t in the reference population. Equation (3) shows an important feature, which
does not emerge explicitly from Equation (1): the adjustment coefficient should be applied
to the benefit amount defined at the time the benchmark is referred to, namely time 0 in
this case. In other words, there must be a consistency between the time-frame involved by
the adjustment coefficient and the reference time of the quantity to which such a coefficient
is applied.

Coming to the benefit adjustment in Equation (2), which we will call linking by means
of the actuarial value of the annuity, we first note that ax+t(h) = ∑

ω−(x+t)
s=1 (1 + i)−s ·
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s px+t(h), where i is a chosen discount rate, s px+t(h) the survival probability (from age
x + t to age x + t + s) based on best-estimate assumptions at time h, and ω the maximum
attainable age (that we assume to be deterministic). The ratio 1+ax+t(0)

1+ax+t(t)
then involves a

comparison between possibly different mortality assumptions (or life tables) adopted to
assess the actuarial value of a unitary annuity, at time 0 and time t. The actuarial value
in the numerator, in particular, is a benchmark. If higher (lower) mortality is forecasted
at time t, then ax+t(0) > ax+t(t) (ax+t(0) < ax+t(t)), implying an increase (reduction) of
the benefit amount. Updated mortality/longevity assumptions in the actuarial value of
the annuity can result in a profit (loss) for the provider, which is (partially) mitigated by
the benefit adjustment. We note that, in line with what commented above for the linking
by means of the survival probabilities, having set the benchmark at time 0, the benefit
adjustment is applied to the benefit amount at the same time.

Both in the linking by means of the survival probability and by means of the actuarial
value of the annuity, explicit guarantees can be introduced, for example, by setting bounds
for the benefit amount or the benefit adjustment. Furthermore, it is also reasonable to
accept a maximum age to apply the benefit adjustment (say, age 95), in order to avoid that
the individual is exposed to the risk of benefit reductions at very advanced ages.

2.2. Policy Fund and Periodic Fees

In this section, we describe the main setting for periodic fees. As with other annuity
products, each individual only pays an initial capital S at entry time 0, and then will cash
the annuity benefit annually, until death. Unlike the usual setting for annuities, where
the premium loading is charged entirely to the initial capital at time 0, we assume that
periodic fees are charged to the policy fund at the beginning of each year. This is similar
to what happens in variable annuities. In our discussion, we disregard expenses; the fee
(whether it is obtained as a single initial or a periodic loading) is justified by the logic of
the safety loading, i.e., by the fact that the arrangement incorporates guarantees whose
cost is charged to the individual. When expenses are also addressed, periodic expenses can
be added to the periodic fee, while an upfront loading to cover initial expenses could be
included.

In this paper, we are mainly concerned with identifying appropriate pricing and
reserving logics when fees are periodic. Any possible revision after issue of the fee level
requires criteria that we do not address in this paper. In what follows, we assume that
the periodic fee level is chosen at time 0, and kept fixed over the whole policy duration;
some comments about the possible revision of the fee level after issue will be made later, in
Section 3.3.

As stated in Section 2.1, in this paper we consider a pool consisting of one cohort only,
homogeneous in all respects (entry age, risk class, benefit amount). With Nx+t we denote
the number of individuals in the pool at time t (age x + t). At time 0, Nx = nx known,
while Nx+t is random because of the mortality in the cohort.

Let At denote the individual fund (or policy fund) for a policy in-force at time t. No
death benefit is paid out by the provider, so that upon death the policy fund is released to
the pool (as a form of mortality credit). The dynamics of the policy fund is then described
by the following balance equation:

At · Nx+t = At−1 · Nx+t−1 · (1 − ξ) · (1 + i)− bt · Nx+t , (4)

where: ξ is the proportional premium loading (or fee) that is charged to each policy fund at
the beginning of each year and i is the (deterministic) return on investments. At time 0,
A0 = S.

The policy fund is random because of the mortality in the pool and the path of the
benefit amount; in a more general setting, random financial returns can also be addressed.
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Solving backwards Equation (4) (note that Aω−x = 0), we find:

A0 =
ω−x

∑
s=1

bs · ((1 − ξ) · (1 + i))−s · Nx+s

nx
. (5)

Equation (5) shows that the periodic fee ξ identifies a discount factor, to be used for
pricing. However, in order to quantify ξ, we still need a valuation principle. While we
know that A0 = S, the expression on the right hand side of Equation (5) is still random,
as both the sequences bs and Nx+s are random. Furthermore, there are two unknowns in
Equation (5), namely b0 and ξ. We further discuss this problem in Section 2.5, after having
introduced some quantities. We point out, however, that the approach we suggest to assess
the periodic fee will not directly make use of Equation (5); the discussion just developed
allows us to say that the periodic fee identifies a discount factor to be used for pricing
purposes (as well as for reserving; see Section 2.3).

We note that, if policy conditions admit, the periodic fee could be updated after issue
first extending Equation (5) and then implementing an appropriate valuation principle. As
already mentioned, in this paper we do not develop the discussion in this respect.

2.3. Individual Reserve and Components

In order to define the individual reserve, we make the following comments. As is
well-known, the individual reserve corresponds to the best-estimate value of liabilities
plus a risk margin. We assume that the risk margin can be measured through the periodic
fee, which (as noted in Section 2.2) identifies a discount factor. We further assume that, to
be consistent, the best-estimate assumptions should be those defined when the periodic
fee was assessed, i.e., at time 0 in this paper. Consider a policy in-force at time t. The
individual reserve is defined as follows:

Vt = bt ·
ω−(x+t)

∑
s=1

((1 − ξ) · (1 + i))−s · s px+t(0) . (6)

It is useful to note that no future update of the benefit amount is explicitly considered
in the definition of the individual reserve, as the periodic fee already includes in the reserve
an allowance for the future benefit adjustments.

For shortness, we denote the sum in Equation (6) as ax+t(0; ξ), where the symbol
ξ refers to the fact that discounting is based also on the periodic fee (conversely, the
notation ax+t(0) will be kept to denote the expression commented in Section 2.1, i.e., when
discounting is based on the interest rate only).

It could be useful to split the individual reserve into components. A possible splitting
is the following:

Vt = bt · ax+t(0; ξ) = bt · ax+t(0) + bt · (ax+t(0; ξ)− ax+t(0)) . (7)

The first quantity, V[ben]
t = bt · ax+t(0) is the best-estimate value of future benefits, while the

second, V[fee]
t = bt · (ax+t(0; ξ)− ax+t(0)), can be interpreted as the part of the individual

reserve accounting for fees. This decomposition could be useful first to identify the risk
margin included in the individual reserve. It could be further useful in the case of a switch
to a different benefit structure, as the provider could only use V[ben]

t to determine the new
benefit level or, in the case of revision of the fee, the revision itself could be limited to the
component V[fee]

t . These aspects are not further developed in this paper.

2.4. Pool Fund, Present Value of Future Benefits, Present Value of Future Profits and
Business Value

We now address quantities defined in the provider’s perspective. Each individual
in the pool pays the initial capital S at time 0, and will cash the annual amount bt at time
t, t = 1, 2, . . . , until death. The following quantity describes what we call the pool fund, i.e.,
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the remaining money at time t of the total amount of initial capital, net of the benefits paid
so far and including interest on investments:

Ft = Ft−1 · (1 + i)− bt · Nx+t , (8)

with F0 = S · nx. Periodic fees do not enter the assessment of the pool fund; indeed, as
individuals transfer money to the pool only at time 0, periodic fees do not originate a real
periodic cash flow. Rather, they consist in a loading which is charged annually to the policy
funds of the survivors, as expressed by Equation (4).

The difference between the pool fund and the pool reserve, namely

SPt = Ft − Vt · Nx+t , (9)

expresses the surplus cumulated by the provider in the time-interval (0, t). If we consider
the surplus cumulated over the whole pool duration (0, ω − x), we find:

SPω−x = S · nx · (1 + i)ω−x −
ω−x

∑
s=1

bs · (1 + i)ω−x−s · Nx+s (10)

= nx · (1 + i)ω−x ·
(

S −
ω−x

∑
s=1

bs · (1 + i)−s · Nx+s

nx

)
, (11)

where: PVFB0 = ∑ω−x
s=1 bs · (1 + i)−s · Nx+s

nx
represents the Present Value of Future Benefits

(PVFB) at time 0, expressed per policy issued. The quantity PVFP0 = S − PVFB0 then
represents the total profit, usually called Present Value of Future Profits (PVFP) at time 0,
expressed per policy issued.

The PVFB and the PVFP are quantities of great interest for the assessment of the
business value. Their definition can easily be extended to times after issue. If nx+t is the
number of policies in-force (i.e., in the portfolio) at time t, then

PVFBt =
ω−(x+t)

∑
s=1

bt+s · (1 + i)−s · Nx+t+s

nx+t
(12)

expresses the PVFB at time t per policy in-force at that time, while PVFP at time t can be
assessed as follows:

PVFPt = Vt − PVFBt . (13)

Alternative valuation assumptions can be adopted in the assessment of PVFB, PVFP, in
particular with regard to mortality. The proportions Nx+t+s

nx+t
in (12) lead to an entity-specific

assessment , as the size of the total amount of future payments to be made by the provider
(namely, the amounts bt+s · Nx+t+s) is measured with the number of survivors in the pool,
which in their turn results from the mortality in the pool itself. Entity-specific assessments
are convenient, for example, to perform a realistic valuation of provider’s liabilities. The
adoption of the proportion of survivors in the reference population, s p̃x+t, in place of Nx+t+s

nx+t
is to be preferred in market-consistent assessments, such as those involved by pricing issues.
In this case, mortality/longevity risks to which the provider is exposed (e.g., because of a
small pool size or a pool composition affected by adverse-selection), but could be offset
by appropriate market transactions, should be excluded from the valuation. Since we are
discussing the setting of appropriate fees, in this paper we follow a market-consistent logic,
and we disregard risks specific to the provider. In particular, we do not consider different
mortality situations between the provider’s pool and the reference population, so that we
accept Nx+t+s

nx+t
= s p̃x+t at any age.

For further details about the assessment of PVFB and PVFP in more general situations,
we refer to Olivieri and Pitacco (2020a, 2020b).
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We now assess the business value for the provider, which is the part of PVFP net
of the cost of capital that the provider is required to hold to manage the business (for
references and an application to traditional annuities, see Blackburn et al. 2017). We assess
the cost of capital in a market-consistent style, i.e., as frictional costs net of the value of the
limited liability put option. The limited liability put option takes a positive value when,
because of the possible depletion of capital, the provider may fail to meet (at least in part)
its obligations. We assume that the provider can always obtain the extra capital necessary
to fulfil all obligations, in the case the amount initially allocated to the pool becomes
insufficient. In this case, the limited liability put option takes a null value. Frictional costs
(which arise mainly because of agency costs) are usually assessed as a proportion ρ of the
capital held on top of the pool reserve. We assume that such a capital is in the amount
required by regulation; we denote with RCt the capital required at time t per policy in-force
at that time. The annual frictional cost per policy in-force at the beginning of the year
is then:

FCt = ρ · RCt−1. (14)

The present value of frictional costs at time t, per policy in-force, is obtained as follows:

PVFCt =
ω−(x+t)

∑
s=1

FCt+s · (1 + i)−s · s p̃x+t . (15)

We assess RCt following the Solvency 2 principles, which require an amount of capital
so to avoid default with 99.5% probability, allowing only for risks non-diversifiable on
the market. A long-term time horizon in which to assess possible defaults seems the
most logical choice in respect of longevity risk, due to its long-term nature. We obtain the
required capital at time t per policy in-force from the following condition:

Pr(RCt + Vt < PVFBt) = 0.005 . (16)

Finally, we define the business value at time t, per policy in-force, as follows:

BVt = PVFPt − PVFCt . (17)

2.5. Setting the Periodic Fee

As is well-known (see, for example, Duffie 2001), the market price of a security is given
by the present value of its expected cash flows, where the present value is assessed with the
risk-free rate and the expected value is obtained with a suitably risk-adjusted probability
measure. When the market is incomplete, as is the case for example of insurance and
pension markets, there are infinite suitable probability measures, among which the provider
has to choose one to price the annuity contract. This approach apparently contrasts with
the traditional insurance pricing model, which first employs best-estimate assumptions,
and then adds an implicit or explicit safety loading. The safety loading, in particular,
represents the expected profit to the provider and its size should be justified by the risks
taken by the provider itself. What is common to both approaches is that the expected profit
to the provider is 0 under the chosen valuation assumptions; however, a reward for the
retained risks is included, either through the risk-adjustment of the probabilities or the
safety loading.

Mortality/longevity-linked annuities certainly require an innovative pricing approach,
as they imply a new concept of longevity guarantee, as we have commented in Sections 1
and 2.1. It could be convenient to match somehow market principles with the traditional
model. To this aim, we note that of the various quantities described so far, there is one
explicitly affected both by expected profits and the risks borne by the provider, which is
the business value. Risks, in particular, affect the business value via frictional costs, as they
are proportional to the required capital, whose size in turn depends on the potential losses
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reported by the provider, apart from the largest losses as identified by the accepted default
probability.

We extend the 0 expected profit principle to the business value. Adopting the periodic
fee structure described in Section 2.2, at time 0 we assess the periodic fee ξ so that

E[BV0] = 0 . (18)

Such an equation can be solved once a (stochastic) mortality model describing the mor-
tality/longevity of the reference population has been chosen. In Section 3.1, we briefly
describe the model that we have adopted in the numerical implementation.

We now address some computational issues. First we note that Equation (18) reason-
ably requires stochastic simulation, although this depends on the mortality model (however,
one can hardly count on closed formulae). Second, as already noted (see Section 2.2), given
S, there are two unknowns in the relevant equations, namely b0 and ξ, which among
other things are related, as the higher is ξ, the lower is b0, and vice versa. Whatever is
the approach adopted (market-based, traditional or the one we are discussing), there is
one degree of freedom, in respect of which we proceed as follows. First we set ξ = 0
and assess b0 solving Equation (6), for t = 0 (having V0 = S, at that time). We denote
such an initial benefit amount as b∗0 ; in practice, b∗0 = S

ax(0)
. Then we assess the expected

business value, under b∗0 ; we use the notation BV∗
0 = E[BV0; b∗0 ]; if such a quantity is �= 0

(reasonably, it takes a negative value), we adjust (typically, we reduce) the initial benefit
amount, so to reach a value 0 for the business value. In practice, we set V[fee]

0 = −BV∗
0 and

we find b0 =
S−V[fee]

0
ax(0)

(see Equation (7)). Finally, we find the periodic fee ξ by solving at
time t = 0 Equation (6) (which has now only one unknown) in respect of ξ (here, we can
use a routine for the internal rate of return). We point out that once b0 and ξ have been
set, we cannot exclude that E[BV0] �= 0. This is because the components of BV0 are not
necessarily proportional to b0 and usually they are not proportional to ξ. Equation (18) is
used to set the fee in a consistent way in the various situations (in particular, working with
different mortality/longevity-linking coefficients), but (as we will see in the numerical
implementation in Section 3) the fee thus determined can still entail value creation for the
provider.

3. Results

3.1. Mortality Model

A stochastic mortality model is required to simulate the survival rates realized in
the reference population and in the pool, as well as to obtain updated best-estimate
assumptions at every time, consistently with the simulated experience. After the seminal
paper by (Lee and Carter 1992), a very prolific research has developed on the stochastic
modelling of mortality. Several models are described in the literature; most of them are
suitable to obtain accurate projections at the initial time, but can present computational
complexity when processing future best-estimate assumptions. Here we adopt a model
discussed in (Olivieri and Pitacco 2009), which fits the evaluation needs mentioned above,
and is computationally tractable. Below, we recall the main features of the model, referring
to (Olivieri and Pitacco 2009) for details.

We refer to a given cohort and denote with q̃x+t = 1 − p̃x+t the random mortality rate
at age x + t. We define q̃x+t as follows:

q̃x+t = qx+t(0) · Zx+t , (19)

where: qx+t(0) = 1 − px+t(0) is the mortality rate based on best-estimate assumptions at
time 0; Zx+t is a (positive) random coefficient (ensuring 0 ≤ q̃x+t ≤ 1) which measures the
deviation of the observed mortality rate compared to the best-estimate one at time 0. We
assume:
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Zx+t ∼ Gamma(αx+t, βx+t) ; (20)

a Gamma distribution also follows for q̃x+t, with parameters obtained from those in (20). If
the Poisson distribution is accepted for the annual number of deaths reported by the cohort,
conditional on a given value for the mortality rate, then the unconditional distribution of
the annual number of deaths is described by a negative binomial (or Poisson-Gamma) law.
We point out that while the Poisson distribution describes random fluctuations in mortality,
the Gamma (i.e., the coefficient Zx+t, whatever is its probability distribution) describes
aggregate deviations.

The parameters of (20) are first chosen at time 0 , when the cohort starts being observed;
thus, αx+t = ᾱ0 and βx+t = β̄0 at time 0, where ᾱ0, β̄0 are given values. Then, year
after year the parameters are updated, through an inferential procedure based on the
information carried by the observed annual number of deaths. In particular, after h years of
observation, once the numbers of deaths dx, dx+1, . . . , dx+h−1 and the number of survivors
nx, nx+1 = nx − dx, . . . , nx+h−1 = nx+h−2 − dx+h−2 have been reported, the initial ᾱ0, β̄0
are replaced with the following values: ᾱh = ᾱ0 + dx + dx+1 + · · ·+ dx+h−1, β̄h = β̄0 +
nx · qx(0) + nx+1 · qx+1(0) + · · ·+ nx+h−1 · qx+h−1(0). Updating the parameters αx+t, βx+t
introduces an implicit correlation among the coefficients Zx+t’s, which is something one
expects when an underlying longevity trend drives mortality. Nevertheless, fluctuations
in the number of deaths in the opposite direction in respect of the prevailing trend are
still admitted at any time. We point out that updating the parameters of the probability
distribution of Zx+t allows to update the current best-estimate assumptions, as well as
the projection of the future number of survivors in the cohort. Details of the inferential
procedure are described in (Olivieri and Pitacco 2009).

In the numerical implementation, we consider a cohort initial age x = 65. We set
ᾱ0 = β̄0, so to have E0[Zx+t] = 1, E0[q̃x+t] = qx+t(0) (we specify in the subscript of
the symbol E the time at which the expected value is assessed, thus meaning that the
state of information about mortality is specified at that time). Based on the information
gained from the observed number of deaths up to time h, the best-estimate mortality rate
is reassessed as qx+t(h) = ᾱh

β̄h
· qx+t(0), where ᾱh

β̄h
� 1, depending the realized mortality

path. The best-estimate mortality rates qx+t(0) are modelled through a Gompertz law with
parameters as in (Bacinello et al. 2018). The remaining expected lifetime at age 65 is almost
20 years at time 0; to avoid distortions from major random fluctuations at the highest ages,
the cohort is examined up to age 100 (any payments beyond that age is disregarded). The
values ᾱ0 = β̄0 = 100 ᾱ0 = β̄0 = 1000 are alternatively adopted; if ᾱ0 = β̄0 = 100, the
coefficient of variation of Zx+t at time 0 is 0.1, while it is 0.0316 if ᾱ0 = β̄0 = 1000. Given
the meaning of Zx+t, the former choice of ᾱ0, β̄0 then depicts a situation with a higher
dispersion in aggregate mortality than the latter choice. To distinguish the two alternative
scenarios, shortly we will refer to the choice ᾱ0 = β̄0 = 100 as to a scenario with major
aggregate deviations; the term moderate aggregate deviations will be used instead to refer
to the choice ᾱ0 = β̄0 = 1000 (it is useful to stress that the adjectives ’moderate’ and ’major’
do not have an absolute meaning here, but they are used in comparative terms between
the two situations).

3.2. Benefit Arrangements

We examine the following arrangements:

1. Fixed benefit : bt = b0 for all times t.
2. Linking by means of the survival probability, with benefit amount defined by

Equation (3).
3. Linking by means of the actuarial value of a unitary annuity, with benefit amount

defined by Equation (2).

Arrangement 1 represents a standard case, to which arrangements with a mortal-
ity/longevity linking can be compared. For arrangements 2 and 3, barriers to the benefit
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amount are adopted, both on an annual and a global basis. Year by year, we require
0.9 · bt−1 ≤ bt ≤ 1.1 · bt−1, so to avoid strong variations in the benefit amount from one
year to the next. In respect of the possible total variation of the benefit amount we consider
two cases, implying a different proportion of the risk sharing between the provider and the
individual. Specifically, we require alternatively:

• Case (a): 0.75 · b0 ≤ bt ≤ 1.25 · b0;
• Case (b): 0.9 · b0 ≤ bt ≤ 1.1 · b0.

Finally, we admit that the benefit amount can be updated up to age 95; beyond that
age, the benefit amount keeps flat, at the latest updated level.

As mentioned earlier, we disregard financial risk and we adopt a deterministic setting
in this regard. Our aim is to make a comparison of the periodic fees and other quantities
for the alternative linking solutions. These comparisons are not affected by the interest rate
level, when it is deterministic. Thus, we simplify and take i = 0, supported in this choice
by the low level of interest rates in recent years.

3.3. Implementation and Discussion

In the implementation discussed in this section, the main purpose is to compare the
periodic fees required for alternative annuity designs. Some of the quantities described in
Section 2 are additionally quoted, in particular the components of the individual reserve, the
present value of future profits and the business value. Rather than the absolute values we
have obtained for the various quantities, it is the comparison between them that is significant.
While absolute values are affected by the various choices made, in particular with regard to
the mortality model and the interest rate, their comparison allows a better understanding of
what the various linking mechanisms imply, in respect of alternative choices. All assessments
have been developed simulating the number of survivors in the reference population; the
same proportion of survivors than those of the reference population has been adopted for
the pool. The information gained from the mortality observed in the reference population
has also been used to update the best-estimate mortality assumptions after issue. The initial
capital paid by each individual is S = 100 monetary units.

Table 1 quotes the periodic fee, assessed as described in Section 2.5, for alternative
arrangements. The proportion ρ of frictional costs has been set to 2%, following market
practice (see Blackburn et al. 2017). Tables 2 and 3 list the expected value, the 0.01- and the
0.99-quantiles of the benefit amounts for some times t and for the various arrangements. It
is convenient to analyse these three tables jointly, as the time-profile of the benefit amounts
helps understanding the size of the fee, while the latter explains the differences among the
initial benefit amounts b0 under the different arrangements.

The arrangement with fixed benefits can be used as a reference case. It requires the
highest fees, due to the absence of any form of risk sharing between the provider and the
individual. In comparison, mortality/longevity-linking arrangements require lower fees, as
they imply, in particular, possible reductions of the benefit amount. When interpreting the
results, it should be remembered that when the benefit is linked to a mortality/longevity
experience, either by means of the survival probability or the actuarial value of the annuity,
the benefit is allowed both to decrease (and this implies a sharing of losses due to higher
longevity) and increase (in this case, profits due to higher mortality are shared). The size of
the fee is affected by the extent of the possible reduction in losses to the provider, but also
by that of profits.

Overall, it seems that the fee is much affected by the loss sharing effect. This emerges,
for example, when comparing the cases (a) and (b) for the linking by means of the survival
probability; indeed, narrower barriers for the benefit amount imply in particular a reduced
participation to possible losses.
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The importance of the magnitude of possible losses as a key to interpreting the level
of the required fee also emerges when comparing (for any given arrangement) a scenario
with moderate deviations in aggregate mortality to one with major deviations. Higher fees
are required under the latter scenario. In this regard, it is useful to note that deviations are
admitted in terms both of higher and lower mortality rates. Under a scenario with major
deviations, higher fees are required; this suggests that the fee itself is in particular affected
by the possibility to share the possible losses occurring because of lower mortality rates.

When comparing the fees required for arrangement where benefits are linked by
means of the survival probability in the different cases, a univocal behaviour emerges. The
same does not happen for arrangements where benefits are linked by means of the actuarial
value of the annuity; in this latter case, it seems that the trade-off between profits and
losses assumes a different balance depending on the parameters accepted for the benefit
barriers and the mortality scenario. For example, ξ takes the same value in a scenario of
moderate aggregate deviations, independent of the barriers we have tested for the benefit
amount (clearly, a different choice for such barriers could result in a different value for the
required fee). From Table 2 we see also that the expected benefit amount and the 0.01- and
0.99-quantiles coincide (apart from roundings) in the two cases (a) and (b).

In principle, the coefficient linking the benefits to the survival rate implies a different
time-profile of the adjustments when compared to the coefficient linking the benefit to the
actuarial value of the annuity. This is shown, for example, by the quantiles of the benefit
amounts quoted in Tables 2 and 3. For a given mortality scenario, the coefficient linking the
benefits to the actuarial value of the annuity implies a larger benefit adjustment in earlier
times than the coefficient linking the benefit to the survival probability; on the other hand,
lower adjustments are then required later in time by the former coefficient. This effect can
be explained by the time-horizon referred to by the quantities in the adjustment coefficient;
if we compare (3) with (2), we can realize that the actuarial value of the annuity refers to
a longer time-horizon than the survival probability in the early years of the annuity (i.e.,
when t is small); the opposite happens when t is high. The time-profile of the adjustments
has an impact on the size of the cash flows, and then on the proportion of the total profits
and losses retained by the provider, as well as on the fee.

Table 1. Periodic fee ξ (to be charged each year to the policy fund value).

Arrangement
Moderate Aggregate

Deviations
Major Aggregate

Deviations

Fixed benefits 0.069% 0.242%
Benefits linked to surv. prob.,
case (a)

0.003% 0.025%

Benefits linked to act. value,
case (a)

0.013% 0.033%

Benefits linked to surv. prob.,
case (b)

0.006% 0.093%

Benefits linked to act. value,
case (b)

0.013% 0.019%
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Table 2. Benefit amount bt (expected value and 0.01- and 0.99-quantiles) for selected times. Moderate aggregate deviations.

Time t Fixed
benefits

Benefits Linked to Surv.
Prob., Case (a)

Benefits Linked to Act.
Value, Case (a)

Exp.
value

0.01-
quant.

0.99-
quant.

Exp.
value

0.01-
quant.

0.99-
quant.

0 5.199 5.242 5.236
5 5.199 5.242 5.213 5.272 5.236 5.069 5.408
10 5.199 5.242 5.168 5.320 5.236 5.052 5.426
15 5.199 5.242 5.097 5.398 5.236 5.037 5.443
20 5.199 5.243 4.984 5.526 5.236 5.029 5.454
25 5.199 5.246 4.805 5.741 5.236 5.037 5.447
30 5.199 5.253 4.527 6.114 5.236 5.093 5.388

Time t Benefits Linked to Surv.
Prob., Case (b)

Benefits Linked to Act.
Value, Case (b)

Exp.
value

0.01-
quant.

0.99-
quant.

Exp.
value

0.01-
quant.

0.99-
quant.

0 5.240 5.236
5 5.240 5.211 5.270 5.236 5.069 5.408
10 5.240 5.166 5.318 5.236 5.052 5.426
15 5.240 5.095 5.396 5.236 5.037 5.443
20 5.241 4.982 5.524 5.236 5.029 5.454
25 5.243 4.804 5.739 5.236 5.037 5.447
30 5.244 4.716 5.764 5.236 5.093 5.388

Table 3. Benefit amount bt (expected value and 0.01- and 0.99-quantiles) for selected times. Major aggregate deviations.

Time t Fixed
benefits

Benefits Linked to Surv.
Prob., Case (a)

Benefits Linked to Act.
Value, Case (a)

Exp.
value

0.01-
quant.

0.99-
quant.

Exp.
value

0.01-
quant.

0.99-
quant.

0 5.090 5.228 5.223
5 5.090 5.228 5.143 5.326 5.221 4.717 5.784
10 5.090 5.228 5.011 5.487 5.222 4.671 5.846
15 5.090 5.231 4.806 5.757 5.223 4.629 5.905
20 5.090 5.240 4.494 6.223 5.224 4.607 5.946
25 5.090 5.253 4.030 6.534 5.225 4.635 5.929
30 5.090 5.247 3.921 6.534 5.226 4.804 5.736

Time t Benefits Linked to Surv.
Prob., Case (b)

Benefits Linked to Act.
Value, Case (b)

Exp.
value

0.01-
quant.

0.99-
quant.

Exp.
value

0.01-
quant.

0.99-
quant.

0 5.184 5.231
5 5.185 5.101 5.282 5.229 4.725 5.755
10 5.185 4.970 5.442 5.229 4.708 5.755
15 5.187 4.767 5.703 5.229 4.708 5.755
20 5.185 4.666 5.703 5.229 4.708 5.755
25 5.179 4.666 5.703 5.231 4.708 5.755
30 5.175 4.666 5.703 5.233 4.812 5.745

Table 4 quotes the initial fee π equivalent to the periodic fees in Table 1, obtained from
the following condition:
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S = b0 · ax(0) · (1 + π) . (21)

We note that Equation (21) represents the standard approach to premium loading for
annuities. As for the periodic fee, a valuation principle is required, or an explicit choice
of π, given that Equation (21) has two unknowns (namely, b0 and π). Here, we assess π
consistently with what performed for ξ, i.e., solving Equation (18).

The fees quoted in Table 4 can be compared as discussed for Table 1. When comparing
Table 4 with Table 1, we obtain an assessment of the overall loading implied by a given
periodic fee. Among the advantages of periodic fees when compared to an upfront loading,
we mention the fact that their structure is similar to that of other products, in particular
financial investments; then, periodic fees can represent a solution in which individuals
are more confident, being more familiar with such a pricing structure. Furthermore, as
already mentioned, the application of periodic fees makes it easier to change the guarantee
at some point in time, since in the event of a switch from a benefit structure to another the
provider can stop applying the current fee and determine the new level according to the
new underwritten guarantee, similarly to what happens (for example) in variable annuities.
We also note that periodic fees may allow a revision of the pricing basis after issue, if
justified by the emerging scenario and if admitted by policy conditions. In this respect, it is
necessary to predefine appropriate triggers identifying situations where a revision of the
fee is justified. Triggers could, for example, be related to a mortality/longevity index, or
a measure of value to the provider, or the default probability of the provider. This topic
deserves a specific research, and is not further developed in this paper.

Table 4. Equivalent initial fee π (to be charged to the initial capital).

Arrangement
Moderate Aggregate

Deviations
Major Aggregate

Deviations

Fixed benefits 0.845% 2.933%
Benefits linked to surv. prob.,
case (a)

0.038% 0.311%

Benefits linked to act. value,
case (a)

0.155% 0.400%

Benefits linked to surv. prob.,
case (b)

0.076% 1.132%

Benefits linked to act. value,
case (b)

0.155% 0.236%

Table 5 lists the individual reserve Vt and its components, namely V[ben]
t and V[fee]

t ,
for a sample of times and a sample of linking arrangements. First we note that at time 0

the proportion V[fee]
t
Vt

corresponds to the equivalent initial fee π; then, such a proportion
decreases in time, as it is quite natural, given that the time-horizon of the obligation of the
provider gradually reduces. In the table we only include some arrangements and only a
scenario of moderate aggregate deviations, as other situations suggest similar comments.
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Table 5. Individual reserve Vt and components V[ben]
t , V[fee]

t , at selected times t. Moderate aggre-
gate deviations.

Fixed Benefits

Time t Age x + t Vt
V [ben]

t
Vt

V [fee]
t
Vt

0 65 100.000 99.155% 0.845%
5 70 80.512 99.286% 0.714%

10 75 62.970 99.410% 0.590%
15 80 47.576 99.525% 0.475%
20 85 34.378 99.632% 0.368%
25 90 23.095 99.736% 0.264%
30 95 12.387 99.847% 0.153%

Benefits Linked to Surv. Prob., Case (a)

Time t Age x + t Vt
V [ben]

t
Vt

V [fee]
t
Vt

0 65 100.000 99.962% 0.038%
5 70 80.614 99.968% 0.032%

10 75 63.126 99.974% 0.026%
15 80 47.750 99.979% 0.021%
20 85 34.545 99.984% 0.016%
25 90 23.242 99.988% 0.012%
30 95 12.496 99.993% 0.007%

Benefits Linked to Act. Value, Case (a)

Time t Age x + t Vt
V [ben]

t
Vt

V [fee]
t
Vt

0 65 100.000 99.845% 0.155%
5 70 80.597 99.869% 0.131%

10 75 63.102 99.892% 0.108%
15 80 47.721 99.913% 0.087%
20 85 34.515 99.933% 0.067%
25 90 23.207 99.952% 0.048%
30 95 12.458 99.972% 0.028%

In Table 6, we quote the expected value of the Present Value of Future Profits and the
Business Value at time 0, per policy issued, for the various arrangements examined so far.
We first note that the magnitude of E[PVFP0] is in line with that of the overall loading (see
Table 4). Indeed, a large part of the profit is originated by the loading. As is well-known,
large loadings impact negatively on the demand; while PVFP0 measures the profit per
policy issued, the total profit gained by the provider also depends on the pool size. This
should not be disregarded when performing a profit test of the business with the purpose
of identifying a cost-effective solution that may prove attractive to the individual.

As to the business value, first we note that it is not 0. As commented in Section 2.5,
condition (18) is a notional reference, which is useful to set the fee consistently in different
situations; not necessarily such a condition leads to a situation of a 0 expected value for the
business value, as it emerges from Table 6. In such a table, the business value is quoted as a
proportion of the present value of future profits. We see that such a proportion is different,
depending both on the arrangement and the scenario. In view of practical implementations,
the fee obtained under condition (18) could be taken as the minimum acceptable fee for the
provider. An additional loading could be suggested by further assessments; for example,
instead of condition (18), reference to the tail of BV0 could be made, by setting an accepted
level for the probability of incurring into a negative business value, or setting a target
value for the expected business value. In any case, clearly, the loading must prove to be
acceptable for individuals. Investigating this aspect is outside the scope of this paper.
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Table 6. Present Value of Future Profits and Business Value (expected values), at time 0.

Arrangement
Moderate
Aggregate
Deviations

Major Aggregate
Deviations

PVFP[pool]
0

BV[pool]
0

PVFP[pool]
0

PVFP[pool]
0

BV[pool]
0

PVFP[pool]
0

Fixed benefits 0.820 25.160% 2.713 29.071%
Benefits linked to surv. prob.,
case (a)

0.034 52.960% 0.341 28.146%

Benefits linked to act. value,
case (a)

0.151 42.137% 0.387 23.347%

Benefits linked to surv. prob.,
case (b)

0.076 17.690% 1.140 24.734%

Benefits linked to act. value,
case (b)

0.151 42.137% 0.246 9.468%

We finally note that the annual profits, the present value of future profits and the
business value can be affected by basis risk in mortality, i.e., by a different mortality in
the pool than in the reference population; however, such an aspect is not included in the
assessments summarized in this section.

4. Conclusions

In this paper, we investigate annuity designs in which the benefit amount is adjusted
in time in relation to a given mortality/longevity experience, compared to a chosen bench-
mark. Such designs imply a new definition of the longevity guarantee, which deserves
attention, given that individuals prove to be dissatisfied with traditional annuities, but
need to obtain longevity protection in the private market.

In this paper, in particular, we are concerned with a pricing structure which is innova-
tive for an annuity product. Instead of the traditional upfront single loading, we consider
periodic fees, which seem more versatile to introduce opportunities of flexibility into the
product. We consider a periodic fee charged year by year to the policy fund value, and we
show that this identifies a discount factor, to be used for pricing and reserving. Trying to
match traditional with market pricing rules, we assess the periodic fee using a condition
expressed in terms of business value. This way, the fees incorporate an allowance for both
the expected profit and the risk retained by the provider.

Future steps in the research may concern an assessment of individual preferences
in respect of the alternative linking solutions. The business value for the provider could
be further examined, by addressing the demand function, as well as the limited liability
put option. The implications of switching between alternative linking rules or guarantees
require a specific study, as well as the possibility of updating the periodic fee after issue.
Addressing a pool consisting of multiple cohorts or heterogeneous in other respects is
also significant, in particular to detect possible smoothing effects if the linking coefficient
accounts for the mortality experienced over different cohorts. An explicit pricing of the
guarantees is a topic to further develop. In this regard, modelling guarantees as financial
options offers the possibility to test pricing models developed in that field. Matching the
mortality/longevity with a financial linking should also be considered, as most annuities
in the market are participating in respect of the return on investments.
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Abstract: Life insurance profitability depends on reliable mortality risk projections and pricing. While
the COVID-19 pandemic has caused disruptions around the world, this is a temporary mortality
shock likely to dissipate. In this paper, we investigate the long-run impact of COVID-19 on life
insurance profitability. Due to the long-run dynamics of the mortality characterised by a decreasing
effect of the COVID-19 mortality acceleration, we suggest proactive mortality risk management by
implementing prompt premium adjustments, in order to increase the resilience of the business.

Keywords: SCR; profitability; annuity; mortality projections

1. Introduction

Aside from the social and health consequences of COVID-19, the pandemic has led
to economic and market shocks. Interest rates and equity markets have declined, credit
spreads have widened, and volatility has increased. The additional volatility in global
markets affecting the value of equity, fixed investments, and low interest rate income has
led to the need to implement unconventional monetary policy measures, such as negative
rates, large asset purchase programmes, forward guidance, and targeted liquidity provision
measures (ECB 2021). Likewise, the impact of COVID-19 on the insurance industry risks is
becoming severe.

Insurance companies are required to investigate the potential disruption across the
business caused by the pandemic. Indeed, the pandemic is likely to disrupt investments,
finance, capital, underwriting, claims, and actuarial functions in several business areas.
Over the next few months, due to the increasing uncertainty around new business and
underwriting, the appetite for new insurance products may decline, as consumers face
increasing temporary or permanent unemployment, potential loss of income, and general
market volatility. Cash flow expectations over the next years also depend on global equity
markets that have seen reduced investment returns. “The insurance sector must deal
with challenging market conditions and maintain operations, while at the same time
protecting employees and policyholders” (EIOPA 2020a). The decline in asset liquidity
and the increase in overdue liabilities may cause a decrease in assets relative to liabilities
(EIOPA 2020b).

According to Karlsson (2020), the pandemic may have seriously affected the operation
of European insurance companies, by representing a serious threat for the solvency stability.
Understanding how the COVID-19 pandemic has affected insurance companies is crucial
especially in light of the “double-hit” scenario characterised by a resurgence of the virus,
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reported by previous stress test exercises by Moody’s Analytics (2020). The insurance
industry’s profitability is linked to operational and financial management both of them
suffering the effect of the pandemic. The future financial cash flows could be affected by
the uncertainty and pessimism due to the pandemic, the spillover effect of the overall
decline in the market, leading to investors’ herd behaviour to negative abnormal returns.
Conversely, in Farooq et al. (2021), the authors take also into account a possible opposite
effect of the COVID-19 outbreak of the increasing demand for insurance contracts and
premiums. From the operational management point of view, insurers are responding to
the widening pandemic on multiple fronts as health insurance, non-life and life offices,
some classes of business being most exposed to coronavirus and adversely impacted. Some
business classes are more exposed to the COVID-19 outbreak than the others. The portfolio
concentration of higher risk business classes seriously threatens the insurance companies,
by suggesting more well-diversified portfolios.

In particular, the health insurance premiums continued to grow steadily after the outbreak
as pointed out in Wang et al. (2020) and Nguyen and Vo (2020). In particular, in correspondence
to the profound shock to the health care systems due to the surge of COVID-19, major
commercial health insurance companies increased operating income from decreased care
utilization: for instance UnitedHealth Group, CVS Health Care Benefits Segment, Anthem,
and Humana all saw operating earnings over 200% of their 2019 amount, much of which has
been attributed to delays in routine care (Bryan and Tsai 2021).

Focusing exclusively on aspects related to non-life insurance, the insurers tried to
adapt the policies to the new challenges exposed by the crisis in response to the COVID-19,
specifically by providing the business interruption (BI) insurance, the crisis having been
reaffirmed the importance of business continuity planning. With regard to property and
casualty (P&C), the impact on business and coverage has been profound, estimated at
USD 80 to USD 100 billion in the case of business interruption (BI) coverage, a critical area
of concern under COVID-19 (Marsh 2021). In general, according to an interesting study
by Gründl et al. (2020), the insurance industry alone will not be able to provide sufficient
coverage for business interruption losses like those occurring during the COVID-19 crisis,
as the markup of a hypothetical insurance contract in the top 20% of the realised price
markups of NatCat insurance would lead an expected shortfall of the loss distribution
which is about 100 times higher. In the automobile insurance field, reductions in driving
and accident claims led to premium refunds early during the pandemic by causing well-
documented premium changes (Scism 2020).

The uncertain mortality and morbidity events related to COVID-19 are also affecting
the life insurance and annuity business. Mortality improvements over the past several
years have been muted, likely to continue mainly as a combined effect of the temporary
mortality shock due to the pandemic. Indeed, the debate is ongoing on how temporarily
stressed mortality rates change post-COVID-19 mortality rates (Andresson and Lindholm
2021) and the mortality term structure (Milesky 2021; Spiegelhalter 2020).

The scarce literature on the topic enlightens that life insurance companies have been
forced to significantly adjust life insurance premiums or offerings to account for the in-
creased mortality risk (Pułanska 2021).

Harris et al. (2021) suggest minimal observable premium adjustments through Febru-
ary 2021. They find evidence that premiums raised “for unhealthy older smokers, and
policies offered to individuals age 75 and above were differentially removed from the
market”. Overall, small adjustments in the life business offering correspond to increases in
mortality risk perceived from insurers as modest in the short run, by implicitly assuming
no effects in the long-run perspective. To the best of our knowledge, in light of the mortality
stress temporariness, the academic literature has not extensively focused on the possible
changes in profitability margins for life insurance companies.

The novelty of our research properly consists in examining the long-run impact of
COVID-19 on life insurance profitability. We suggest connecting the profitability analysis
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to the temporary excess of deaths due to the COVID-19 which will be softened in the long
run by the structural improvements of longevity projections (Carannante et al. 2021b).

Actuarial assumptions and forecasting are crucial for an effective mortality risk man-
agement strategy and preserving the expected cash flows over the coming years. Un-
derstanding the impact of future structural improvement scenarios, as well as increased
short-term mortality combined with heightened attention to social and health care im-
provements in the longer term will allow life insurance offices to maintain profitability.
In other words, proactive mortality risk management, which requires revising mortal-
ity assumptions to make timely decisions in reserves and forecasting, will enable the
insurance industry to build resilience and tackle the immediate challenge of position-
ing the business for the future. The remainder of the paper is structured as follows. In
Section 2, we introduce the issue of profitability, define profit resilience in life insurance,
and how to quantify it with particular reference to annuity contracts. Section 3 details
the numerical applications, focusing on the mortality, financial, and cash flow aspects.
Section 4 concludes.

2. Profit Resilience in Annuity

We analyse the expected profit of a variable immediate annuity contract.
The general actuarial model used for the evaluation of the insurance contract and to

estimate the future cash flows belongs to the life insurance methodologies, which represent
the actuarial practice in many countries, according to a time-discrete approach, which, see
Olivieri and Pitacco (2015).

The contract under consideration is an immediate single premium annuity with a
revalued instalment for an individual of age x at time 0 in which the contract is underwritten.
Obviously, since it is an immediate annuity, the single premium is the only possible
alternative. In this case, in order to implement the profit-sharing mechanism that prevails
in the Italian market, we implement an actuarial model with cliquet guarantees with annual
returns recognised to policyholders depending only on the most recent performance of an
investment portfolio. The contract valuation can the be reduced to that of a sequence of
one-year forward-start options, see Bacinello (2001, 2003a, 2003b).

To assess the effects depending on age, we consider policyholders aged 20, 40, and 60.
In the case of an annuity, the instalment is constant and the pure premium for an individual
at age x is given by:

Px = R ·
ω−x−1

∑
t=1

lx+t

lx
· (1 + i)−t (1)

where:
Px is the pure premium based on the first-order mortality basis table;
R is the constant instalment paid by the insurance company during the policyholder’s life
with a value agreed at contract time;
lx is the number of policyholders at age x deduced by the first-order mortality basis table
used to compute the pure premium;
i is the technical rate;
ω is the extreme age, thus ω − 1 is the last age for a policyholder and lω = 0.

Since we consider a variable annuity, the pure premium is defined as:

Px = R0 ·
ω−x−1

∑
t=1

lx+t

lx
· (1 + i)−t (2)

where:
R0 is the first instalment defined at contract time.
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The following instalments are variable based on segregated fund returns with the
following formula:

Rt = Rt−1 · (1 + rt) (3)

where:
Rt is the instalment at time t if the policyholder is alive;
Rt−1 is the instalment at time t−1 if the policyholder is alive;
rt is the downgraded rate of return used to vary the rate based on the segregated fund
return rate using the following formula:

rt = max
(

gt − i − mt
1 + i

, mg
)

(4)

where:
gt is the segregated fund return rate for the period (t − 1, t) recognised at time t;
mt is the rate retained by the insurance company on the segregated fund return;
mg is the minimum guaranteed rate of the segregated fund.

Once the pure premium and method of variation of the instalment are determined,
the expenses loaded premium at age x can be calculated:

PTx =
Px · (1 + α)

(1 − β)
(5)

where:
α is the loading rate of the annuity payment;
β is the loading rate of the administrative costs.

The expected profit is defined as:

E(U)x,k = PTx,k − BEx,k − CoCx,k (6)

where:
E(U)x,k is the present expected profit at time k when the contract is purchased by an
individual at age x;
PTx,k is the expenses loaded premium at time k for a policyholder at age x; BEx,k is the
best estimate of the contract liability a time k for a policyholder at age x according to
Solvency II principles, by considering the financial options and guarantees to include in the
insurance contract;
CoCx,k is the cost of capital due to the allocation of the capital requirement under Solvency
II for a contract sold a time k for a policyholder at age x.
Cost of capital, CoCx,k, is determined according to Solvency II requirements:

CoCx,k = ∂ ·
m

∑
l=1

C · SCRx,k+l−1(
1 + ir f (k, k + l)

)t (7)

where:
∂ is the cost of capital rate increase;
ir f (k, k + l) is the risk-free rate for the time horizon (k, k + l);
C is the cost of capital rate, that is, the unrealised extra-return compared to the risk-free rate;
SCRx,k+l−1 is the solvency capital requirement for the time horizon k + l − 1 and a policy-
holder of age x;
m is the number of years when the risk expires in terms of capital requirements.

To determine CoCx,k, we consider the EIOPA (2014) standard formula with particular
reference to the market, longevity, expense, and operational risks. To note is that in
determining RORAC, the overall SCR is considered, while in determining CoC only non-
hedgeable risks are considered.
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Furthermore, important to note is that BEx,k is equal to the present expected value of
the liability if considering a reliable technical basis, depending on the mortality table. We
assume that the realistic projected mortality table is obtained using the stochastic mortality
model considering the scenario without the effects of the COVID-19 pandemic, and the
scenario with an acceleration of mortality due to COVID-19 (Carannante et al. 2021a, 2021b);
a reliable administrative expenses assumption, that is, an annual cost per contract; the
risk-free rate maturity structure for discounting contract cash outflows; a stochastic model
to determine gt, that is, the segregated fund return rate for the period (t − 1, t) recognised
at time t, which allows determining the variation of the annuity instalment Rt, using the
Vasicek model.

The Vasicek model is largely used to evaluate the short-term evolution of a return
rate, using a stochastic differential equation according to which shocks fluctuate around a
long-term value as a function of volatility (for further details, see Vasicek (1977)):

drt = (α + βrt)dt + σdZt (8)

where:
rt is the short-term interest rate at time t;
α is the mean-reverting force of the shocks;
β is the long-term interest rate mean;
σ is the market volatility;
Zt is a Wiener process.

3. Numerical Application

The application is developed by analysing several different aspects of the definition of
an immediate annuity contract. The first concerns the demographic scenario that evaluates
the evolution over time of mortality considering the effects of the pandemic. Second, for
the financial aspect, we observe the interest rate trend on which the variation of annuity
instalment will be based. Third, the cash-flow analysis allows evaluating the differences in
the premium in the function of the use of baseline or accelerated mortality tables. The last
is the profitability analysis that allows quantifying the extra profit due to the adjustment of
the mortality table.

3.1. Demographic Scenario

The first step in evaluating profitability is to determine the demographic technical
basis, that is, the individual death probabilities. In this sense, we use a stochastic model
capable of projecting the probabilities of life over time. The model defines the probabilities
of death with respect to two scenarios.

The baseline scenario assumes the absence of the COVID-19 pandemic, and the pro-
jections of survival probabilities are obtained through the Renshaw and Haberman (2003)
estimation using the data on deaths collected in the Human Mortality Database,1 with
reference to the entire Italian population, considering the historical series from 1950 to 2017
for all ages from 0 to 100.

The alternative scenario considers the COVID-19 pandemic as a mortality acceleration
factor estimated through a multiplicative model, that is, the projections of the accelerated
probability of death obtained from the product between the probabilities of the basic
scenario model and the multiplicative factor that depends on age x and time t.

Cairns et al. (2020) define the multiplicative factor as a negative exponential function
as follows:

π(x, t) =
α(x)

ρ(x, t)
exp
( −t

12ρ(x, t)

)
(9)
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where:
α(x) is the expected proportion of deaths by COVID-19 at age x;
ρ(x, t) is the expected loss of years of life expectancy at age x and time t.

The α and ρ parameters in Formula (9) are computed from the COVID-19 deaths
data and the all-causes mortality data of the Italian population for the year 2020. The
data are collected weekly by the Italian Health Institute2 (ISS) and the Italian Statistical3

(ISTAT). α(x) is calculated as the ratio of the number of deaths due to COVID-19 infection
and the total of deaths for the age x, while ρ(x, t) is calculated as the product of the life
expectancy at age x and time t and the proportion of deaths due to COVID-19 at age x on
the total mortality due to COVID-19. π(x, t) is calculated as a negative exponential function,
aggregating the data in a monthly granularity, and it is used as a multiplicative coefficient
to recalibrate the mortality projection obtained by the Renshaw–Haberman model. Figure 1
shows the death projections by age for 2021 per 100,000 population, distinguishing between
deaths due to COVID-19 and all other causes. To make the data easier to read, we report
them in logarithmic scale:

Figure 1. Non-COVID-19 and COVID-19 death projections by age for the year 2021.

As Figure 1 shows, the number of deaths from COVID-19 proportionally follows the
trend in mortality for all causes of deaths, except for older ages where the proportion
of deaths appears higher. This suggests a relationship between age and mortality from
COVID-19, with a mortality shock currently present.

3.2. Financial Scenario

We estimate the Vasicek model parameters α, β, and σ using EURO SWAP maturing
at one year (1Y) and ten years (Y10) from 31 January 2005 to 31 December 2020.4 Figure 2
shows both the Y1 and Y10 EURO SWAP time series.

Figure 2 shows a generalised reduction in interest rates. The decreasing trend affects
the values of the simulated interest rate structures using both the annuity instalments
variation and the discounted cash flows best estimate. The Vasicek parameters are shown
in Table 1.

As Table 1 shows, the parameter α is very close to zero, suggesting a strong persistence
in the time series, as also observed in Figure 2, with no strong fluctuations with respect
to the decreasing trend. The parameter β is estimated at around 1.20%, being affected
by a period in which rates even exceeded 3% (up to 2009) and the most recent periods
of negative rates (from 2016). The parameter σ is 0.48 suggesting quite high volatility.
Therefore, according to the estimated model, a divergent trend from the mean is expected,
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consistent with the most recent time interval in which rates are downward and continue to
decrease with non-negligible volatility.

Figure 2. Y1 and Y10 EURO SWAP time series from 31 January 2005 to 31 December 2020.

Table 1. Vasicek parameters estimation using the Y1 and Y10 EURO SWAP time series.

Parameter Estimation

α 0.00069
β 1.20514
σ 0.48054

3.3. Cash Flow Analysis

We perform the cash flow analysis considering the conditions shown in Table 2.
Important to note is that the A62I unisex table with 50% male and 50% females is the most
used by insurance companies for annuity contracts.

Table 2. Cash flow analysis variables.

Variable Notation Values

Contract years k 2022, 2024, 2026, 2032
Policyholder ages x 20, 40, 60

Mortality table lx A62I unisex with 50% male and 50% female
Initial annual instalment R0 EUR 1000

Technical rate i 0%
Guaranteed minimum rate mg 0%

Retained rate mt 1%
Loading rate for instalment payment α 1.50%
Loading rate for administrative costs β 5%
Annual management costs at time t EUR 0.50

Annual inflation of management costs 2%
Cost of capital increasing rate ∂ 1.00

Cost of capital rate C 6%

Using these data, the segregated fund return rate is simulated based on a zero-coupon-
bond forward rate at one year for the period 2022 to 2142 for a total 1000 scenarios.

Tables 3 and Tables 5–7 show the effects of COVID-19 acceleration, comparing (for an
immediate annuity contract for policyholders of age x = 20, 40, and 60), the pure premium
(PT), the best estimate of liability (BE), the solvency capital requirement (SCR), the cost of
capital (CoC), the expected value of the profit (E(U)), and the RORAC. Table 3 relates to
an annuity contract signed in 2022.
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Table 3. Effects of COVID-19 for an annuity contract signed in 2022.

Year 2022 2022 2022 2022 2022 2022 2022 2022 2022
Demographic Table Base Base Base Accelerated Accelerated Accelerated Difference Difference Difference

Individual Age 20 40 60 20 40 60 20 40 60

PT 73,064 52,302 31,917 73,064 52,302 31,971 0 0 0
BE 65,844 44,896 25,806 66,767 44,822 25,735 −77 −74 −71

SCR 5867 3433 2475 5792 3416 2451 −75 −17 −24
CoC 11,584 4886 2465 11,516 4852 2178 −68 −34 −287

E(U) −4364 2521 3646 −4219 2628 4004 145 107 358
E(U)/PT −6.0% 4.8% 11.4% −5.8% −5.0% −12.5% 0.2% 0.2% 1.1%

RORAC = E(U)/SCR −74.4% 73.4% 147.3% −72.8% 76.9% 163.4% 1.5% 3.5% 16.1%

As Table 3 shows, for policyholders aged 20, the contract is at a loss even without
COVID-19 acceleration. This is due to the technical basis used to determine the expenses
loaded premium, already inadequate to determine future longevity of the age considered.
Furthermore, the RORAC is negative, and the mortality increase due to COVID-19 deter-
mines an increment of only 1.5%. For the year 2022, the pandemic acceleration causes an
increase in profitability at most equal to 16.1% of RORAC. Furthermore, for ages 40 and 60,
there is a huge profit for the insurance company even without considering the effects of the
pandemic on mortality.

We further explore the profitability of annuity contracts in Table 4 showing the annual
cash flows for the three ages considered for one hundred years forward, comparing the
baseline mortality table, ignoring the pandemic effects, and the accelerated mortality table.

Table 4. Cash flow analysis for one hundred years forward.

t Base 20 Accelerated 20 Base 40 Accelerated 40 Base 60 Accelerated 60

1 1051 1051 1050 1050 1046 1046
2 1051 1051 1050 1050 1041 1041
3 1052 1052 1051 1051 1036 1036
4 1053 1053 1051 1051 1030 1030
5 1054 1054 1051 1051 1023 1023
6 1054 1054 1051 1051 1016 1016
7 1055 1055 1051 1051 1008 1008
8 1056 1056 1050 1050 1000 1000
9 1057 1057 1050 1050 990 990

10 1057 1058 1049 1049 980 979
11 1058 1059 1049 1049 969 968
12 1059 1060 1048 1048 956 956
13 1060 1061 1047 1047 943 942
14 1061 1062 1046 1046 928 927
15 1062 1063 1045 1045 911 910
16 1063 1064 1043 1043 893 892
17 1063 1066 1041 1041 873 871
18 1064 1067 1039 1039 851 849
19 1065 1068 1036 1036 827 825
20 1066 1069 1033 1033 800 797
30 1070 1080 975 975 387 372
40 1056 1077 806 805 36 34
50 997 1029 395 383 19 17
70 401 416 19 19 0 0
90 20 21 0 0 0 0

100 0 0 0 0 0 0

As Table 4 for all ages, the expected cash flows for the baseline scenario and the
accelerated scenario are similar, showing some differences only for very large values of t
that do not affect the value of BE. Furthermore, no particular differences emerge when

66



Risks 2022, 10, 40

comparing the BE distributions by age and mortality basis. The results are shown in
Figures 3–5. Therefore, both in terms of expected values and variability, cash flows and
BEs are little affected by the mortality shock due to COVID-19.

Figure 3. BE distribution for the baseline and accelerated mortality tables for age 20 (EUR/thousands).

Figure 4. BE distribution for baseline and accelerated mortality tables for age 40 (EUR/thousands).

Figure 5. BE distribution for baseline and accelerated mortality tables for age 60 (EUR/thousands).

Table 5 shows the results of an annuity contract signed on 1 January 2024.

Table 5. Effects of COVID-19 for an annuity contract signed in 2024.

Year 2024 2024 2024 2024 2024 2024 2024 2024 2024
Demographic Table Base Base Base Accelerated Accelerated Accelerated Difference Difference Difference

Individual Age 20 40 60 20 40 60 20 40 60

PT 73,063.66 52,302.43 31,916.68 73,063.66 52,302.43 31,916.68 0.00 0.00 0.00
BE 66,473.08 45,310.30 26,085.22 66,391.41 45,233.16 26,011.08 −81.67 −77.15 −74.15

SCR 5967.65 3473.89 2496.08 5892.18 3456.21 2471.78 −75.47 −17.68 −24.30
CoC 11,828.06 4971.35 2233.67 11,757.23 4936.24 2213.17 −70.84 −35.11 −20.49

E(U) −5237.49 2020.77 3597.79 −5084.98 2133.03 3692.43 152.51 112.26 94.64
E(U)/PT −7.2% 3.9% 11.3% −7.0% 4.1% 11.6% 0.2% 0.2% 0.3%

RORAC = E(U)/SCR −87.8% 58.2% 144.1% −86.3% 61.7% −149.4% 1.5% 3.5% 5.2%

As Table 5 shows, not all the contracts are in profit. For policyholders aged 20, the
insurance company is at loss, with RORAC −87.8%, and the adjustment of the tables to
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the effects of COVID-19 allows partial recovery only at 1.5%. For policyholders aged 40
and 60, the contract always has positive expected profitability both with and without the
COVID-19 acceleration adjustment. In summary, for an annuity contract signed in 2024,
the COVID-19 acceleration allows increasing profitability by only 5.2% of RORAC for a
policyholder age 60. Conversely, with very young policyholders, it does not allow full
recovery of the loss due to the increase in longevity from 2022 to 2024.

Table 6 shows the effects of COVID-19 for an annuity contract signed on 1 January
2026.

Table 6. Effects of COVID-19 for an annuity contract signed in 2026.

Year 2026 2026 2026 2026 2026 2026 2026 2026 2026
Demographic Table Base Base Base Accelerated Accelerated Accelerated Difference Difference Difference

Individual Age 20 40 60 20 40 60 20 40 60

PT 73,063.66 52,302.43 31,916.68 73,063.66 52,302.43 31,916.68 0.00 0.00 0.00
BE 67,114.49 45,732.18 26,368.39 67,028.23 45,651.28 26,290.94 −86.25 −80.90 −77.45

SCR 6070.58 3515.85 2517.68 5994.27 3497.69 2493.14 −76.31 −18.17 −24.54
CoC 12077.99 5058.48 2270.46 12003.72 5022.09 2249.39 −74.27 −36.40 −21.07

E(U) −6128.82 1511.77 3277.82 −5968.30 1629.07 3376.35 160.52 117.30 98.52
E(U)/PT −8.4% 2.9% 10.3% −8.2% 3.1% 10.6% 0.2% 0.2% 0.3%

RORAC = E(U)/SCR −101.0% 43.0% 130.2% −99.6% 46.6% 135.4% 1.4% 3.6% 5.2%

As Table 6 shows, for a policyholder aged 20, the insurance company is at loss with
huge negative RORAC −101.0%, which reduces only to −99.6% considering the COVID-
19 effects. Contracts with policyholders aged at least 40 maintain reduced profitability
compared to the previous two years but are still satisfactory, even more so considering
an increase in RORAC with acceleration due to COVID-19 of at least 3.6%. In summary,
considering the data relating to the year 2026, the acceleration of mortality due to COVID-19
entails a negligible increase in profitability compared to the increase in longevity from the
year 2022 to the year 2026.

Table 7 shows the results for an annuity contract signed on 1 January 2032.

Table 7. Effects of COVID-19 for an annuity contract signed in 2032.

Year 2032 2032 2032 2032 2032 2032 2032 2032 2032
Demographic Table Base Base Base Accelerated Accelerated Accelerated Difference Difference Difference

Individual Age 20 40 60 20 40 60 20 40 60

PT 73,063.66 52,302.43 31,916.68 73,063.66 52,302.43 31,916.68 0.00 0.00 0.00
BE 69,134.24 47,057.37 27,254.28 69,033.10 46,964.43 27,166.33 −101.14 −92.94 −87.95

SCR 6395.46 3648.20 2585.94 6316.43 3628.56 2560.78 −79.03 −19.64 −25.16
CoC 12867.52 5332.32 2385.92 12782.22 5291.93 2363.12 −85.29 −40.39 −22.80

E(U) −8938.10 −87.26 2276.48 −8751.67 46.07 2387.24 186.43 133.32 110.76
E(U)/PT −12.2% −0.2% 7.1% −12.0% 0.1% 7.5% 0.3% 0.3% 0.3%

RORAC = E(U)/SCR −139.8% −2.4% 88.0% −138.6% 1.3% 93.2% 1.2% 3.7% 5.2%

As Table 7 shows, for policyholders aged 20, the insurance company is heavily at loss
with a reduction in RORAC compared to the previous decade (2022) equal to 65%. For all
the ages considered in the year 2032, the acceleration of mortality due to Covd-19 entails a
negligible increase in profitability compared to the increase in longevity from the year 2022
to the year 2032. Considering a balanced portfolio in terms of the age of policyholders, the
empirical evidence suggests that in 2032, insurance companies need to update the currently
used A62I mortality table.
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3.4. Focus on Profitability

Figures 6–8 show the RORAC indicator trend by year for the three ages considered.
To note is that for all ages analysed, the impact of COVID-19 is very modest and decreases
over the years, except for policyholders aged 60, for which in 2022 the impact of COVID-19
determines a consistent reduction in RORAC. In addition, as noted in Tables 3 and 5–7, for
all three ages considered, the RORAC trend decreases with significant variations over the
years. This trend confirms the significant weight of the longevity risk in the management
of annuities.

Furthermore, looking more deeply at the longevity risk and how much it can affect
profitability, the distributions of expected profit and RORAC for the year 2022 shown in
Figures 9–11 indicate high variability of profit and consequently RORAC in all scenarios
considered and for all ages:

Figure 6. RORAC by year for a policyholder aged 20.

Figure 7. RORAC by year for a policyholder aged 40.
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Figure 8. RORAC by year for a policyholder aged 60.

Figure 9. Expected profit and RORAC distributions for a policyholder aged 20.

Figure 10. Expected profit and RORAC distributions for a policyholder aged 40.

Figure 11. Expected profit and RORAC distributions for a policyholder aged 60.
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Estimating the expected profit and relative distribution, we obtain the probability of a
negative profit, which could prove very useful to understand that even in the presence of
a positive profit value, the risk of obtaining a negative result could be high. For example,
taking into account the 2022 contracts, the probability of a negative profit is equal to
0.596 for policyholders at age 20, 0.253 at age 40, and 0.012 at age 60. Therefore, while
for policyholders aged 60 the probability of obtaining a negative result is negligible, for
policyholders aged 40, despite a very positive value of profit and RORAC, this probability
is to be taken into account and confirms the importance of a good pricing and longevity
risk monitoring system.

3.5. Discussion

The analysis of profitability is of great practical and policy value to study how the
pandemic affects the insurance market. In particular, the study provides useful indications
we can re-formulate as valuable recommendations. In order to increase the resilience of the
life insurance business to the COVID-19 pandemic, proactive risk management is required.
We suggest taking into account the profitability in the long run by implementing prompt
premium adjustments. Due to the long-run dynamics of the mortality characterised by
a decreasing effect of the COVID-19 acceleration, accurate safety loadings are necessary
to guarantee stability for the insurance industry. In order to evaluate the effects of the
acceleration of mortality in the life insurance business, we initially define a framework
to operate. In this sense, we analyse the demographic scenario, which shows a greater
acceleration of mortality due to COVID-19 for older ages, and the financial scenario, which
shows that interest rates tend to decrease in the long term with a certain volatility. The
two scenarios make it possible to define the contractual conditions of the immediate
annuities for which the cash flow and profitability from 2022 to 2032 are analysed. With
regard to cash flow, it is observed that the acceleration in mortality does not generate large
differences, with the exception of the older ages and considering a rather long period of
time. Regarding profitability, it is noted that age and time are the determining factors to be
taken into consideration. In particular, if we consider a short time horizon, adapting the
mortality tables to the acceleration from COVID-19 allows obtaining greater profitability for
the older ages, while it does not allow to remedy the inadequacy of the tables themselves
for the older ages, recording a loss. Similarly, the broader the time horizon, the lower
the margin obtained from the use of tables that take acceleration into account while the
improvement in longevity tapers the margin more and more, increasing the losses for the
younger age and also recording losses for the middle ages. In accordance with our results,
Harris et al. (2021) observe an adjustment in life insurance market profitability in presence
of some particular health condition or old age, although to a limited extent.

4. Concluding Remarks

The pandemic phenomenon has a non-material impact on the profitability of annuity
contracts as it has an instant impact since in a pandemic event there is an increase in mortal-
ity only in the first years of the contract and therefore for medium and long-term contracts
such as annuities, post-shock mortality quickly tends to mortality without considering the
COVID-19 effect.

Therefore, for these contracts, with medium and long durations, this effect with
an accidental and unsystematic nature leads to non-material increases in profitability
with respect to the same contracts without COVID-19 effects with the same contractual
conditions.

On the other hand, as regards the opposite phenomenon, that is the longevity risk, it
is a systematic risk that has a material impact over the entire duration of the contract and
for such contracts, with medium or long durations, this risk is significant. In fact, if we
consider a contract with a very young insured, for example with age x = 20, we always
have negative returns that increase in material measure passing from the marketing year
2022 to the year 2032 or to the year 2042. For example if we consider the RORAC for x = 20
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passing from the year 2022 to 2024 we have a contract always with negative profitability
and a loss of RORAC without the COVID-19 effect equal to 13.4% while with the COVID-19
effect this loss of RORAC is equal to 13.5%. If we consider the year 2026 the differences
become even more significant, in fact without the COVID-19 effect there is a loss of RORAC
equal to 26.6% while with the COVID-19 effect this loss is equal to 26.8%.

Therefore, we can conclude that in just two calendar years, the longevity risk and
therefore the increase in the life expectancy of the insured lead to an increase in losses
for the insurer of approximately 13% while considering four years this increase in loss
exceeds 26%.

These conclusions are also fully consistent with the same ones in the paper by
Carannante et al. (2021c) in which the authors analyse a pure mortality risk insurance product
such as term insurance which cover the opposite risk compared to those of annuities.

Even for these contracts, the acceleration of mortality from COVID-19 would lead to
price increases with the same profitability always lower than 0.5%.

Besides in the paper we show that COVID-19 would bring material increases in
profitability for insurance companies only in the case of old insureds, in fact for instance if
we consider in the commercial year 2022 an insured 60 years old we have, after COVID-19
mortality shock, a RORAC increase equal to 16%, but in our opinion, this case is not real
because if we analyse a real new business Italian insurance portfolio the majority of the
insured are younger than 50 years old. We conclude that from a theoretical point of view
the COVID-19 phenomenon has brought benefits to insurers for non-young policyholders
but from a real point of view given the real age of the policyholders of annuity insurance
portfolios, the profit margins are not material.

Therefore, the study confirms that it is much more important how the estimated trend of
post-COVID-19 mortality realigns to what was predicted in the ante-COVID-19 situation, rather
than the shock level recorded in a very short period (1–2 years), i.e., during the pandemic.

The effects of COVID-19 are expected to continue hitting some property-casualty lines
harder than others. Nevertheless, pension schemes and annuity portfolios are also exposed
to the aftermath of the pandemic. According to Deloitte (2021), the growth and profitability
in annuities and many non-term life insurance products will likely be impacted throughout
2021 and beyond with persistently low interest rates. The profitability of life offices also
seems to be threatened by the temporary shock of mortality.

In light of these considerations, our paper explores how the COVID-19 pandemic
mortality shock might affect the profitability of insurance companies considering immediate
annuity contracts, as well as the financial and actuarial aspects. Unlike the commonly
assumed post-pandemic effects, COVID-19 mortality acceleration did not and will not
bring insurance companies a huge increase in annuity contract profitability, considering a
risk portfolio with different ages.

On the other hand, the increasing longevity issue will remain the main problem over
the years and will lead insurance companies to adjust their mortality tables with a frequency
that never exceeds five years, particularly if the portfolio is composed of a rather low mean
policyholder age (see Supplementary Materials).
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Abstract: In France, access to a loan requires one to obtain loan insurance and the presence of a
pathology in the applicant may be a reason for refusal. Improving knowledge of health risks and
pooling risks are two methods of broadening access to loans. We attempt to analyse these possibilities
using open data and risk pooling scenarios. We find that the removal of medical selection can be
ensured if the current framework is adjusted. We also demonstrate how to use open data to estimate
loan insurance premiums for a variety of diseases. We take two examples: breast cancer and type
1 diabetes. Broadening access to borrowing would be beneficial for patients and for the development
of the economy associated with these projects.

Keywords: borrower insurance; mortality; serious illnesses

1. Introduction

Every year, borrowers are refused loans for the purchase of a property or the creation
of a business because of their health status. The human impact is all the greater, as these
patients did not choose to be ill. The impossibility of supplementing their financial resources
with a loan to help them achieve a life goal can be perceived as discrimination. These
refusals also have an economic impact beyond the loan itself, as these life projects would
have contributed to the development of the economy.

Some of these refusals are due to insurers’ insufficient knowledge of health risks. This
refusal is the insurer’s response to a risk of financial loss deemed too great due to the risks
of death or temporary or permanent disability.

It may seem that insurers would have no issue in appreciating the risk. Insurers’
actuaries generally know how to rate contracts on the basis of policyholder statistics.
They also know how to deal with illnesses in various ways; in the underwriting process
of protection insurance for products with death and disability benefits, premiums are
increased notably when medical examinations reveal the presence of an illness. In some
countries, such as in the United Kingdom, lower premiums are even applied for annuities
in the presence of illness (Ridsdale 2012).

Still, for diseases that are currently refused, insurers do not have the corresponding
statistics. It is not easy to find external information for reasons of health privacy. We have
only partial access to data that enable us to construct statistics from such sources as health
or life insurance data or national health data. Expert assessments of the risks associated
with diseases are not unanimous; there are many diseases and associated risk factors, and
scientific advances and changes in behaviour modify the risk levels. Faced with this lack
of knowledge, insurers take a cautious approach (and they are obliged to do so to avoid
bankruptcy and failure to honour their guarantees) and in practice have no choice but to
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replace excessively high rates with a refusal to accept them in order to avoid a significant
image risk (and they are obliged not to exceed a usury rate).

Furthermore, pooling high risks with low risks comes up against population behaviour.
Within the existing framework, an insurer who creates a loan contract without medical
selection, therefore being maximally inclusive with regard to pathologies, risks seeing
an influx of patients who have been refused a loan elsewhere without this influx being
compensated for by a sufficient influx of low-risk individuals; the experiment would come
to nothing.

Thus, the existing framework does not favour the detailed knowledge of risks associ-
ated with pathologies or the pooling of high health risks with lower risks. Here we try to
use open data and our knowledge of insurance to find ways out of the current situation.
Throughout the paper we take breast cancer and diabetes as application examples. After an
overview of mortality risks and the insurability of removing medical selection, we describe
a generic approach to estimating loan insurance pure premiums for patients and apply it
to breast cancer and type 1 diabetes. Throughout, we distinguish between mortality and
temporary or permanent disability risks and provide elements for inclusive approaches.
We hope that these elements can contribute to widening access to borrowing.

2. Overall Picture Based on French Mortality Benchmarks

For about fifty pathologies, the pathology sheets on the Ameli website (Ameli 2018a)
provide information on the level of mortality in the general population. They give (at the top
of their second page) mortality rates by age group. In Figure 1, we plot these mortality risks
by age groups on a log scale for two pathologies, diabetes (Ameli 2018d) and breast cancer—
both the risky active breast cancers (Ameli 2018b) and the less risky under (SEER 2020)
breast cancers (Ameli 2018c). We also plot the mortality risks of various French populations
not defined by pathology in order to compare them with the mortality risks of patients.

Figure 1. Annual mortality rate in France between the ages of 25 and 65 for different populations
(55% men and 45% women)1.

We can first observe the consistency of the risks of populations not defined by a
pathology. The general French population had a similar risk (represented in black) in
2016 (noted general population in 2009–2013 (Blanpain 2016)) and 2018 (noted general
population 2021–2016 (Blanpain 2018)) with a decreasing trend. When segmented in green
by income twenties (Blanpain 2018) and in blue by diplomas (Blanpain 2016), the level of
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mortality falls as one’s socio-professional level increases. In red, the average risk of insured
individuals, from a table known as “IA 2013” (Tomas and Planchet 2014), is around the
line of executives and higher intellectual professionals (which is the lowest blue curve).
In yellow-dotted lines, an average of actuarial tables in loan insurance2, corresponding
to the subscription to high incomes and an absence of severe pathology, demonstrates a
risk lower than that in red of policyholders in general, which are, on average, less selected
or even lower than the first twentieth in terms of income. The risk of death in case of
disability, from tables known as “BCAC 2013” (Bagui 2013), is particularly high. Although
it decreases in the early years (following an accident or illness, probably due to the death of
those most at risk and a stabilization of health conditions for the others) before rising with
age, it remains higher than for non-retired inactive individuals (disabled or not). We are
used to the use of the latter curves and know that the order of magnitude is correct.

Secondly, the coherence observed between these reference curves allows us to reconstruct
mentally and approximately what would be the mortality risks given by the Amelie pathology
records if they were available in finer age brackets (the horizontal segments in Figure 1 would
be inclined, similarly to the close reference curves, with approximately the same centres).
We see that the risks of active breast cancer are of the order of those of disabled insured
individuals in the years following the cause of disability and that the risks of the general
population with breast cancer or diabetes are much higher than those of the borrower
population, even in the case of breast cancer under surveillance. It is therefore necessary to
study in greater detail the risks associated with different forms of disease and the transposition
of risk to the socio-professional status of borrowers. This is conducted in Section 3.

Before moving to Section 3, however, it is interesting to note that Figure 1 helps us to
appreciate what the risk of borrowers would be in the absence of medical selection. As
the majority of loan applicants are executives, especially when weighted by amount, the
risk should be close to the lowest blue curve. In the absence of medical selection, the risk
should be similar to the red curve (tends to be higher due to this, tends to be lower due
to the financial resources needed to borrow). Associating these professional categories
with a twentieth, this would then correspond to the 5th twentieth of the French population,
represented by the green-dotted line, i.e., an increase in risk of the order of 40% compared
to current borrowers (yellow-dotted line)—or perhaps less, as patients with serious health
conditions are likely to be less inclined to seek a loan and because fixed costs embedded
into the insurance premiums absorb the risk (by definition they do not increase with the risk
of borrowers). Given fixed insurance costs that do not increase with the risk of borrowers,
commercial premiums that would keep current margins would be increased by less than
40% for all borrowers compared to current ones. However, given the almost 100-fold
difference between these risks and those of people with active breast cancer, for example,
this theoretical view’s framework is insufficient and severe conditions are over-represented
in one or a handful of insurers rather than being distributed evenly between insurers.

3. A Generic Method to Estimate Loan Insurance Premiums for Patients

We observe that if the framework is to be adjusted, it is important to refine our
knowledge of the risks according to factors related to the pathology to minimize patient
exclusion. In this section, we describe a method of finding aggregate open data in a way
that estimates loan insurance premiums for a variety of pathologies. We do not claim
that this is optimal; on the contrary, it sets the scene for potential improvements by other
authors. We focus on France, but the approach is not limited to France.

3.1. Mortality Risk of Patients in the General Population According to Various Risk Factors

Finding mortality risks for specific diseases can typically be done with a Google or
PubMed search on the disease and on keywords such as “survival”, “age”, “mortality
rate”, “death rate”, “mortality”, “death”, “breast cancer”, and “type 1 diabetes” (or their
equivalents in French). As illustrated in Section 4 with breast cancer and diabetes, articles
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are found that model mortality from national datasets, clinical trials, or epidemiologic
studies, along with various risk factors.

We performed this for a number of diseases. Trade-offs have to be made between
choosing recent articles or articles with more data and more risk factors. Otherwise article
results must be combined to get the most out of different articles. Sometimes no adequate
study is found in France or the desired country and studies from other countries are
transposed while adjusting the results to macro statistics in France.

This step is relatively specific to each pathology.

3.2. Transposition to Borrowers

The mortality risks obtained so far correspond to patients in the general population,
not to patients who have the typical wealth and lifestyle of borrowers. However, as
observed in Figure 1, the mortality of current policyholders and insured borrowers is, on
average, 2 to 2.5 times lower than that of the general population. Thus, do loan applicants
with a medical condition have the normal risk of patients with that condition or about half
the risk?

3.2.1. Theoretical Considerations and Definition of a Relative Risk Multiplier

It is logical that mortality in the event of illness is lower among loan applicants than
the general population: they are, on average, more educated about health and therefore
get screened earlier, have better living conditions and fewer co-morbidities and therefore
recover more easily from health problems. Thus, the more the survival of a disease de-
pends on these elements, the higher the survival of the insured persons compared to the
general population.

A mathematical perspective provides an a priori idea of quantification for certain
diseases. Insured populations are typically half as likely to die from all causes. This
translates into a reference ratio for causes of death: the death rate for a given cause (death
rate relative to the size of the population, not the diagnosed population) is 2 + x times less
than that of the general population, where x is centred in some way around zero (sometimes
positive, sometimes negative, depending on the pathology).

In particular, if a condition is very common, x is likely to be small in absolute terms
(because if x were large, the other causes of death would have to have a large x on average
in the other direction for all-cause mortality to be what it is). Mortality from this condition is
itself decomposed as the product of incidence and mortality, if diagnosed. Here, depending
on the disease considered, knowledge of the qualitative link between incidence and socio-
professional category gives an idea of post-diagnosis mortality. Thus, in the case of breast
cancer, the death rate (relative to the population size) of insured women can be expected
to be about half that of women in the general population. Considering that screening is
much more frequent and early in the higher socio-professional status, the incidence in the
diagnostic sense and not in relation to a stage of the pathology should tend to be greater in
insured women: we can expect the mortality rate in the case of breast cancer to be less than
half that in the general population.

Cancers are special in that their early detection radically changes the associated
survival—hence the screening approaches for breast cancer, melanoma, or colon cancer. For
other diseases, we expect a lower incidence in the insured population than in the general
population due to better health on average. However, the insured population tends to see
the doctor earlier, so there is a tendency not to be very far from the incidence in the general
population. Thus, the factor two of all-cause mortality would be found more in terms of
mortality in the case of pathology than in terms of incidence.

Thus, the consensus is that the relative risk between mortality in the presence or
absence of a specific pathology—the “relative mortality risk” due to that pathology—
should be on average a little larger for insured individuals than for the general population,
and smaller in the case of pathologies, such as cancers, for which insured individuals are
screened particularly early. This is why we define the “relative risk multiplier” as the ratio
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between these two relative risks, which should, therefore, on average, be a little higher
than 1 but lower than 2, and probably lower than 1 for breast cancer.

3.2.2. Mathematical Definition of the Multiplier and How to Obtain it

Let us consider four populations: A′, B′, C′, and D′. The prime is, here, to indicate
that they are chosen to compute a risk multiplier ρ′ that does not exactly correspond to
any one insurance loan. Let us use the same letters to represent their annual mortality risk:
qx

A′
, qx

B′
, qx

C′
, and qx

D′
. Table 1 shows how to choose the definition of these populations

to obtain a relative mortality multiplier by combining their mortality risks.

Table 1. Risk multipliers.

Population with
a Pathology

Healthy Population
(*)

Relative Mortality
Risk Due to Disease

Higher socio-professional
status qx

A′
qx

B′
qx

A′
/qx

B′

General population qx
C′

qx
D′

qx
C′

/qx
D′

(*) Here, the word “healthy” is an abuse of language to indicate that the population has not been selected for a
particular pathology.

The relative risk multiplier ρ is then defined by:

ρ′ = qx
A′

/qx
B′

qxC′/qxD′

It is very difficult to find qx
A′

/qx
B′

on the Internet as it requires articles that focus on a
pathology in high socioeconomic populations, whereas articles that focus on a pathology
tend to also focus on social inequalities and more particularly on low socioeconomic
populations. However, the multiplier can be rewritten as follows:

ρ′ = qx
A′

/qx
C′

qxB′/qxD′

This might seem a pure change of notation, but it leads us to search for other types
of articles in the scientific literature that are easier to find, as social inequalities are an
important issue for social and health policies. It is what permits one to use open data to
estimate the risks of borrowers with a disease without having to guess what ρ′ might be.
qx

A′
/qx

C′
is found in articles that study the impact of socioeconomic status on survival

outcome in the case of a disease. qx
B′

/qx
D′

is found in articles that study the impact of
socioeconomic status on mortality in the general population; it is important to find the
same definition of socioeconomic status for the two ratios to be comparable (diplomas,
occupations, salaries, etc.).

The relative risk multiplier is therefore computed with the definitions of high socioeco-
nomic status and the pathology found in such articles. Let us remove primes when defining
the relative risk multiplier that would be based on borrowers with a specific definition of
the pathology related to the insurance contract and underwriting process:

ρ =
qx

A/qx
C

qxB/qxD

Of note, D and D′ represent the same general population. The mortality rate of loan
applicants with a medical condition is then derived from the definition of ρ:

qx
A = qx

B × qx
C

qxD × ρ

In this formula,
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- qx
B (annual mortality rate of borrowers) and qx

D (annual mortality rate in the general
population) are functions of age and possibly gender. qx

B is an average of placeholder
borrower tables calculated by the laboratory; an insurer can apply its own experience table;

- qx
C (annual mortality rate of persons with the pathology) depends on age and possibly

gender but also on disease-related variables, such as how long ago the diagnosis was
made and elements of disease severity;

- qx
A (annual mortality rate of borrowers with the pathology) has all these variables;

- ρ is theoretically a function of age, wealth, history of disease, and any other character-
istic associated with the loan applicant.

We make the assumption ρ ≈ ρ′; we assume that the multiplier established with
populations A′, B′, C′, and D’ is sufficient to rate contracts if it is a mortality adjustment. To
validate this hypothesis, for a given pathology it can be useful to establish ρ′ for various
countries to ensure that it is robust with similar values despite different environments.
Additionally, if ρ′ were greater than 150% or less than 75%, for example, this assump-
tion would need to be adjusted, for example by considering different categories of the
pathology and different categories of high socio-professional status (at the cost of difficult
internet searches).

In the case of breast cancer, we obtain a multiplier ρ of 83% for French data. For
diabetes, we obtain a multiplier of 115% for France, 108% for Korea, 111% for the United
States, and 123% for Scotland. It should be noted that these multipliers are in line with
the most likely expectations expressed at the beginning of the section: multipliers slightly
below 1 when early diagnosis in the higher socio-professional status makes a difference to
the risks and slightly above 1 for frequent pathologies.

At this stage, it is therefore possible for insurers to establish mortality tables for an
inclusive or partially inclusive approach for various conditions, bearing in mind that
mortality risk is the most important guarantee in loan contracts.

3.2.3. Temporary Disability

As for mortality, for each disease the first step is to look for sources of data or studies
that can be used to model the transition to temporary disability, or at least to work stoppage,
and the continuation of temporary disability. This search is not easy, as the available data
mentioning a specific disease in connection with work stoppage are often very macroscopic
indicators. Luckily, in terms of modelling, mortality is the most important guarantee of loan
insurance, thus approximations are more acceptable than when modelling mortality risk.

A solution is to rely on the American open data database made available by the
National Center for Health Statistics (NHIS 2016). As this is an American database, the
risks of temporary disability are lower and the prevalence of certain pathologies, such
as diabetes, is higher. It is then a question of comparing the macroscopic indicators to
appreciate the differences, modelling the risk in the United States, and adjusting it to the
French macroscopic indicators within the framework of the understanding obtained when
comparing the indicators.

This American database was compiled from a questionnaire sent each year between
2010 and 2018 to different, randomly selected individuals. It consists of 284,809 individuals,
55% of whom are women. A total of 3.3% of the women were diagnosed with breast cancer
and the mean and median ages of these women are 68 and 70 years, respectively. The mean
age at diagnosis is 56 years. It is possible to test different combinations of variables and
thus select the most relevant ones.

With this database, we can model the annual probability ix to get into work stoppage
of more than d days, and the average duration of work stoppage that follows dx. The risk
is then the product of both (ixdx). Similar to mortality, we can define populations A, B, C,
and D and their associated risks ix

A, ix
B, . . . , dx

D, and we get the formula that defines a
risk multiplier ρ:

ix
Adx

A = ix
Bdx

B × ix
Cdx

C

ixDdxD × ρ
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Here, A and B still represent French borrowers, but C and D represent American
workers, with a specific pathology in the case of A and C. ix

Cdx
C and ix

Ddx
D are modelled

based on the American database, ix
Bdx

B comes from knowledge of French insurers and we
make the assumption that the risk multiplier is the same as for mortality: ρ ≈ ρ′ (a higher
mortality is associated with a more severe disease and greater risk of disability).

For applications for breast cancer and diabetes we decided to model incidence (ix
C and

ix
D) and duration (dx

C and dx
D) separately to facilitate the modelling in a Markovian approach.

1. For incidence, we considered a logistic regression giving the annual probability of a
work stoppage greater than three days. We chose a logistic regression because this
annual incidence is a probability is between 0 and 1, but other models could have
been chosen. The three-day threshold was chosen by expert judgement to differentiate
temporary disability from pure work stoppage.

2. For duration, we considered a gamma regression, giving the duration of a work
stoppage greater than 3 days. We chose a gamma regression because it leads to
durations that are positive, but other models could have been chosen.

The use of regressions improves the understanding of the relationship between tem-
porary disability and risk factors. It is important to look for the most relevant explanatory
variables for the condition under study.

ix
B is an average of placeholder borrower tables calculated by the laboratory using the

same approach as for mortality. An insurer can use its own experience table. For dx
B we

used the BCAC 2013 tables (Bagui 2013).
The approach we described here is limited in terms of risk factors compared to the

risk factors that are typically found in articles related to mortality risks. As cases that
lead to higher mortality risk likely also lead to higher disability risks, we should include
mortality-related risk factors with some proportionality rules and interpolations on the risk
factors already modelled for disability risk.

3.2.4. Permanent Disability

As with temporary disability, it is particularly difficult to find permanent disability
statistics related to diseases but we found an approach for modelling temporary disability
with open data.

As shown in Table 2, a French study (Cuerq et al. 2008) provides the probabilities P3
and P10 of becoming disabled 3 years and 10 years after diagnosis for various pathologies.
It is possible to interpolate and extrapolate these data to model permanent disability risk as
a function of time.

Table 2. Percentage of patients in permanent disability 3 and 10 years after the start of long-term
sickness in France.

Rate (%)

Long-Term Sickness 3 Years Later 10 Years Later

Multiple sclerosis 14.0 23.4
Incapacitating stroke 19.8 21.9
Severe active rheumatoid arthritis 10.1 7.1
Chronic arteriopathies with ischemic manifestations 10.6 17.0
Coronary artery disease 9.9 15.1
Heart failure, severe heart disease 9.6 14.3
Severe chronic kidney disease and nephrotic syndrome 7.6 13.2
Severe forms of neurological conditions, severe epilepsy 8.8 13.0
Long-term psychiatric conditions 9.9 13.0
Severe chronic respiratory failure 9.0 12.6
Severe ankylosing spondylitis 8.0 12.5
Malignant tumors 8.4 10.8
Severe high blood pressure 5.1 9.8
Chronic active liver disease and cirrhosis 5.9 8.6
Type 1 and 2 diabetes 3.3 7.6
Crohn’s disease and active ulcerative colitis 2.2 4.7
Severe primary immunodeficiency, AIDS 1.9 3.6
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Let us denote the annual probability of entering permanent disability as px. Here, also,
let us consider four populations, A, B, C, and D, and let us reuse the mortality risk multiplier
ρ (that transposes relative risk to policy-holders) so that the following can be written:

px
A = px

B × px
C

pxD × ρ

where A and B represent policy-holders, C and D the population of workers, and A and C
are identified as having a specific pathology.

Using constant values of px
C between 0 and 3 years following diagnosis, noting that

q′xC is the annual death rate of people from population C when in permanent disability,
and considering the average values of px

C, qx
C and q′xC over the first three years post-

diagnostic, P3 is the probability of entering permanent disability in the first, second, or
third year without dying:

P3 = px
C
(

1 − q′x
C
)2

+
(

1 − qx
C − px

C
)

px
C
(

1 − q′x
C
)
+
(

1 − qx
C − px

C
)2

px
C

Considering that px
C, qx

C, and q′xC are small and that the product of more than two
of these numbers is negligible compared to 1, the probability of ending up with permanent
disability after 3 years is:

P3 ≈ px
C(3 − 3q′x

C − 3qx
C − 3px

C
)

.

As a result, px
C ≈ P3/3 in the first three years following diagnosis and this estimation

is slightly prudent. A simpler approach is to neglect mortality, as we see that it is slightly
prudent with respect to px

C. Neglecting mortality, the probability of remaining out of
permanent disability is:

1 − P3 ≈
(

1 − px
C
)3

As a result, px
C ≈ 1− (1 − P3)

3 is a refined approximation that is still slightly prudent
overall from diagnosis to 3 years later.

Similarly, if we neglect mortality up to 10 years following diagnosis, the probability of
remaining out of permanent disability starting from the percentage 1 − P3 of people 3 years
after diagnosis is:

1 − P10

1 − P3
≈
(

1 − px
C
)7

As a result, px
C ≈ 1 −

(
1−P10
1−P3

)1/7
is an estimation that is slightly prudent from year 3

to 10 after diagnosis. We use it for any year following the first three years post-diagnosis,
and this might be prudent because, as diseases stabilise, the risk of entering long-term
disability is lower.

For a given pathology, we have just defined px
C as two numbers that represent

weighted means over age, gender, and disease risk factors. This is why we define px
D

similarly. Concretely, we multiply the probability of entering disability during at least
one month (Kusnick-Joinville et al. 2006) by the probability to remain in disability and
enter permanent disability based on the BCAC 2013 tables as performed by (Bagui 2013),
averaged over working ages. px

B is an average of placeholder borrower tables calculated
by the laboratory using the same approach as mortality.

We detailed how to compute the annual probability of entering permanent disability,
px

A. We also need to define the annual probability of dying when in permanent disability,
q′x A. In real life, it is greater than the death rate when not in permanent disability, but
to evaluate loan insurance premiums it does not have great importance and qx

A already
represents the weighted average of the two death rates, thus qx

A can be used as well.
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3.2.5. Premium Calculation

A Markov model is a simple approximation for assembling mortality and temporary
or permanent disability risks3. A four-state Markov model is shown in Figure 2.

 

Figure 2. Diagram of a Markov model with four states.

Each arrow corresponds to a probability; the probability of death from one of the three
other states, probability of going into temporary disability, of going into permanent disabil-
ity before the end of the three years in temporary disability (after three years the transition
is automatic), and the probability of returning to the work state. These probabilities would
typically be functions of age, pathology characteristics, and length of time in the state or
length of time in the diagnosis in a semi-Markovian framework.

In practice, it is difficult to find data for each arrow. A three-state Markov model shall
thus be used, as described in Figure 3, with steps of one year.

Figure 3. Diagram of a Markov model with three states.

At t = 0, the proportion of borrowers is 1 in the “Work or Disability” state and 0 in
the other two states. It is therefore represented by a vector (1; 0; 0). At each subsequent
time step, the proportion of borrowers in each state is the product of, on the one hand, the
transition matrix made up of the annual transition probabilities and, on the other hand, the
vector of the proportion of borrowers in the states of the previous time step.

Note that the matrix is as follows (in Table 3) and that its numerical value is different
for each date (t = 0, 1, etc. over the duration of the contract) depending on the age and the
initial characteristics of the pathology.

Table 3. Transition matrix.

1−qx
A−px

A px
A qx

A

0 1−qx
A qx

A

0 0 1

The pure premium is the sum of the amounts the insurer must pay to the borrowers in
the year for each state multiplied by the proportion of borrowers in the state. The simplest
example is that of a loan covered by a borrower’s insurance policy for death only, as it
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does not depend on parameters related to disability. Each year t ≥ 0 the proportion St of
patients is alive:

S0 = 1St =
x=x0+(t−1)

∏
x=x0

1 − qx
A

who have borrowed an amount C at age x0 for a term T with an interest rate r. In the
case of death, the insurer must take over the payment of the remaining balance, or capital
remaining due (CRD):

CRDt = [
C
T

(
1 + r)T

]
(T − t)

assuming in this loan that the same amount, in square brackets, is to be repaid every year.
Then, the pure premium PA is:

PA =
T

∑
t=0

St qx0+(t−1)
A CRDt

Note that in a two-state model (alive, dead) St is obtained by reading the proportion
in the first state; in the three-state model (work-or-disability, disability, and death) St is the
sum of the proportions of the first two states.

The inclusion of charges (e.g., distribution, claims handling, and reinsurance costs)
would result in a commercial premium that is higher than the pure premium.

This pure premium PA for a borrower with a medical condition can be compared to
the pure premium PB for a borrower under usual conditions by replacing A with B in the
transition matrix. The additional premium PA − PB due to the pathology can be defined as
a percentage p of the usual premium or a permillage m:

p =
PA − PB

PB 100

m =
(

PA − PB
)

1000

In practice, not all expenses are proportional to the risk: there are fixed costs. The
fixed costs do not increase with risks; therefore, surcharges in real life should be lower than
the one we computed here.

Examples are given below for breast cancer and diabetes.

4. Application to Two Diseases: Breast Cancer and Diabetes

We apply the modelling to breast cancer and type 1 diabetes.

4.1. Breast Cancer
4.1.1. Mortality by Risk Factor

Dabakuyo et al. (2008) modelled mortality in women with active invasive breast
cancer. This study was based on data from 3831 French women with breast cancer. The
data were collected between 1982 and 1997, with a median follow-up time of 9 years, on
women aged 19 to 99 at diagnosis (mean and median age of 61 years). They model risk
ratios (HR) based on 2615 women and the following risk factors:

- Age at diagnosis;
- Oestrogen receptor function;
- TNM stage;
- SBR grade.

The impact of these risk factors was calculated with a Cox model using the following
reference population:

- Age between 45 and 59;
- Stage T of 1;
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- Stage N of 0;
- Stage M of 0;
- Oestrogen receptor dysfunction;
- SBR grade of 1.

We do not provide the results of the model here; the goal is to illustrate the type of
information one finds to model loan insurance risks.

Such a model of mortality risk must be transposed from the general population to the

insured population using a multiplier defined as ρ′ = qx
A′

/qx
C′

qx B′/qx D′ .

To obtain qx
A′

/qx
C′

, a ratio of mortality risks of women with breast cancer but differ-
ent socio-professional groups, we relied on the study by (Gentil-Brevet et al. 2008). This
study is based on a sample of 1150 French women with invasive breast cancer diagnosed
between 1995 and 1997 who were followed up with to 2006. It is important to carefully
note the distribution of socio-professional status in the study in order then to compute
qx

B′
/qx

D′
accordingly:

- 42.5% were in the higher socio-professional status (SPS+) group defined as “executives,
middle professional group, and clerical employees”. Their survival 5 and 7 years

post-diagnosis was (1 − qx
A′
)

5
= 88.2% and (1 − qx

A′
)

7
= 83.0%, thus on average

qx
A′

= 1 − 88.2%
1
5 and qx

A′
= 1 − 83.0%

1
7 ;

- 16.6% did not have a specified SPS;
- 40.9% were in the lower socio-professional status (SPS−) group defined as “famers,

artisans, manual workers, unemployed”; Their survival 5 and 7 years post diagnosis
was 77.4% and 69.4%.

The general population being approximately represented by as many SPS+ as SPS−,
we computed qx

C′
as the average of the mortality rate of the two populations:

qx
C′

=
[
1 − 88.2%

1
5 + 1 − 77.4%

1
5

]
/2 over 5 years and qx

C′
=
[
1 − 83.0%

1
5 + 1 − 69.4%

1
5

]
/2.

This leads to qx
A′

qxC′ = 66.4% from diagnosis to 5 years later and qx
A′

qxC′ = 68.1 % from

diagnosis to 7 years later. Thus, we have two possible values.
To obtain qx

B′
/qx

D′
, a ratio of mortality risks depending on socio-professional status,

we used mortality tables by sex and standard of living quintile (Blanpain 2018). As in the
article by (Gentil-Brevet et al. 2008), we separated the socio-professional status into two
groups (SPS+ and SPS−). We used the same weighting as the article for the population
affected by breast cancer: 25% of women are under 50 years of age, approximately 50% are
between 50 and 70 years of age and 25% are between 71 and 85 years of age. We obtained
the mortality rates of 686 and 860 per 100,000 persons, respectively, for the SPS+ and SPS−
populations: qx

B′

qx D′ =
686
860 = 80%.

Alternatively, qx
B′

/qx
D′

can be obtained with mortality tables by sex and the socio-
professional status provided by (Blanpain 2016). It needs to be combined with the distribu-
tion of socio-professional status among females, such as those provided by (Maruani and
Meron 2012) to make weighted average mortality rates that have similar socio-professional
statutes, as in (Gentil-Brevet et al. 2008). We do not detail the calculation, as it is long and

does not bring much to this article—we obtained qx
B′

qx D′ = 85%.

The multiplier is then one of four different values depending on the choice of the
numerator and denominator: ρ′ = 66.4 %

80 % = 83% or 68.1 %
80 % = 85.1% or 66.4 %

85 % = 78.1%
or 68.1 %

85 % = 81.1%. We chose the first value, as it is close to the average of the four
values and slightly higher—thus closer to more prudent premiums (additionally, while
building these values we felt it had the best match of assumptions between the numerator
and denominator).
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4.1.2. Short-Term Disability

Using the American database, incidence and duration were modelled among women
as follows:

- A logistic regression (glm function in R, using “family=binomial(logit)”) yields the
following average incidence rate:

ix =
1

1 + e−(α+βx+γ 1breast cancer)

where 1breast cancer is 1 or 0 depending on whether the person was diagnosed with
breast cancer or not. We then have ix

D = 1
1+e−(α+βx) and ix

C = 1
1+e−(α+γ+βx) . Our

regression found that β = −0.019 (more frequent work stoppage at younger ages) and
γ = 0.53 (effect of cancer). α was adjusted to match the average frequency of work
stoppage in France (Kusnick-Joinville et al. 2006);

- A gamma regression (glm function in R, using “family = Gamman(link = ‘log’)”) yields
the following average duration:

dx = e−(α+βx+γ 1breast cancer)

We then have dx
D = e−(α+βx) and dx

C = e−(α+γ+βx). Here, β = 0.018 (longer work
stoppage with age) and γ = 0.73 (effect of cancer). α was adjusted to match the average
frequency of work stoppage in France (Kusnick-Joinville et al. 2006).

4.1.3. Long-Term Disability

In Table 2, we do not have data for breast cancer, only for cancers (“tumours”). We
still considered the latter, which is prudent, as breast cancer has a similar prognostic value
to most cancers.

- px
C = 1 − (1 − 0.084)1/3 = 2.88% for t between 0 and 3 years.

- px
C = 1 −

(
1−0.108
1−0.084

)1/7
= 0.38% for t beyond 3 years.

4.1.4. Results

Table 4 illustrates additional premiums, in the last column, depending on various
breast cancer cases described in the other columns. These are the m values we obtain
for women who are 42 years old at the time of application for a 10-year loan and were
diagnosed 3 years ago with a non-metastatic breast cancer.

The additional commercial premium may be smaller than the additional pure premium
due to fixed costs (and commercial decisions).

It is possible to pool some cases, as shown in Table 5, to provide loan access to
a maximum number of patients. The weighting used to calculate the average excess
premiums is the distribution of such cancers found in SEER4, a free application that
provides very precise statistics on cancers in the United States.

Figures 4 and 5 show the additional disability pure premium (this time expressed as a
percentage p) as a function of the age of the borrower at the time of application. Here, all
severities of breast cancers have been pooled.

Of note, it would not have made much sense to express additional mortality premiums
as a percentage p. This is because it would have been particularly high for young women
(who have a particularly low mortality risk in the absence of breast cancer)—according
to the model we developed, we observe that Tables 3 and 4 are roughly valid for all ages.
Additionally, it would not have made much sense to express additional disability premiums
as a permillage m. This is because long-term disability is limited at higher ages.

86



Risks 2022, 10, 51

Table 4. Detailed additional pure mortality premiums.

T Stage N Stage M Stage SBR Grade Oestrogen Receptor Function m

1 0 0 1 Positive 2.2
2 0 0 1 Positive 6.4
3 0 0 1 Positive 8.9
1 1 0 1 Positive 5.9
2 1 0 1 Positive 14.6
3 1 0 1 Positive 19.7
1 0 0 2 Positive 5.8
2 0 0 2 Positive 14.4
3 0 0 2 Positive 19.4
1 1 0 2 Positive 13.2
2 1 0 2 Positive 31.0
3 1 0 2 Positive 41.3
1 0 0 3 Positive 8.3
2 0 0 3 Positive 20.0
3 0 0 3 Positive 26.8
1 1 0 3 Positive 18.4
2 1 0 3 Positive 42.4
3 1 0 3 Positive 56.2
1 0 0 1 Negative 3.2
2 0 0 1 Negative 8.5
3 0 0 1 Negative 11.7
1 1 0 1 Negative 7.8
2 1 0 1 Negative 18.9
3 1 0 1 Negative 25.4
1 0 0 2 Negative 7.7
2 0 0 2 Negative 18.7
3 0 0 2 Negative 25.1
1 1 0 2 Negative 17.2
2 1 0 2 Negative 39.7
3 1 0 2 Negative 52.7
1 0 0 3 Negative 10.9
2 0 0 3 Negative 25.8
3 0 0 3 Negative 34.4
1 1 0 3 Negative 23.8
2 1 0 3 Negative 54.1
3 1 0 3 Negative 71.3

Table 5. Pooled additional pure mortality premiums.

T Stage N Stage M Stage SBR Grade Oestrogen Receptor Function p

- - 0 - - 13.5
1 - 0 - - 5.8
2 - 0 - - 21.1
3 - 0 - - 31.7
4 - 0 - - 36.7
- 1 0 - - 7.2
- 0 0 - - 24.9
- - 0 1 - 3.5
- - 0 2 - 11.5
- - 0 3 - 21.1
- - 0 - Negative 21.4
- - 0 - Positive 11.3
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Figure 4. Additional pure premium p for short-term disability as a function of age.

Figure 5. Additional pure premium p for long-term disability as a function of age.

4.2. Diabetes

There is much open data about diabetes in France but little about type 1 diabetes.
Thus, to take a more complex example and appreciate the limits of what open data brings,
we present the modelling of type 1 diabetes.

4.2.1. Mortality by Type of Diabetes

We failed to identify French articles that finely modelled type 1 diabetes mortality,
thus we searched for articles from neighbouring countries. We selected a Danish study that
investigated the evolution of relative and absolute mortality rates in 4821 type 1 diabetic
patients followed between 2002 and 2011 (Jørgensen et al. 2013). Of these, 54% were male,
the median age was 44 years, and the median follow-up time was 18 years.

Standard-mortality ratios (SMR) are calculated relative to the general population by
sex, current age, age at diagnosis, and the presence or not of kidney disease, as diabetic
nephropathy is a complication that can progress to renal failure. They are presented in
Figure 6.

Unsurprisingly, mortality is higher for those diagnosed at a young age and for those
with kidney disease. Given the high risk associated with kidney disease, in what follows
we decided to limit the mortality risk to other cases of type 1 diabetes.

To model the mortality rates of diabetics in France, we apply the Danish SMR to the
mortality rates of the general French population. The model must then be transposed
from the general population to the insured population using a multiplier defined as

ρ′ = qx
A′

/qx
C′

qx B′/qx D′ .

We did not find articles to produce this multiplier specifically for type 1 diabetes in
France, so we decided to simply estimate it for diabetes (essentially type 2).
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Figure 6. SMR by age at diagnosis and current age5.

To obtain qx
A′

/qx
C′

, a ratio of mortality risks with diabetics from different socio-
professional groups, we relied on a French article (Piffaretti et al. 2016). They studied the
mortality of 7218 individuals with type 2 diabetes who answered a questionnaire in 2001
and 2007 and were followed until 2013. Figure 7 shows the relative risks according to their
socio-professional category.

Figure 7. Relative risks according to socio-professional category with executives as reference (source:
Piffaretti et al. 2016).

Figure 8 shows the distribution of socio-professional status. Based on the two figures,

we estimate qx
A′

qxC′ =
1

qxC′/qx A′ where A′ are executives with diabetes and C′ is decomposed

into various categories:

qx
A′

qxC′ =
1

1 ∗ 9.6% + 1.36 ∗ 9.0% + 1.05 ∗ 11.7% + 1.20 ∗ 18.4% + 1.36 ∗ 26.7% + 1.36 ∗ 6.3% + 1.14 ∗ 18.3%
= 82%

For qx
B′

/qx
D′

, we use mortality tables by sex and socio-professional status (Blanpain
2016). In order to be able to compare the average relative risks, we used the age and sex
weighting of the article used for diabetes (Piffaretti et al. 2016).

We obtain qx
B′

qx D′ = 71.6%.

This leads to the multiplier ρ′ = qx
A ′

/qxC′
qx B ′/qx D′ =82%/71.6% = 115%.

We searched for multipliers from other countries and found articles from which it is
straightforward to obtain a multiplier for Scotland (Walter et al. 2011), the United States
(Dray-Spira et al. 2010), and South Korea (Kim et al. 2016). We observe that the French
multiplier is of the same order of magnitude as these multipliers, which are presented in
Table 6.
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Figure 8. Distribution of socio-professional status.

Table 6. Multiplier for diabetes in various countries.

South Korea 108%

United States 111%

Scotland 123%

France 115%

4.2.2. Short-Term Disability by Age and Age of Diagnosis

To model disability in type 1 diabetes, we relied on American database statistics from
2016 and 2017 due to the diabetes type variable only being present for these two years.
During this period, 60,000 Americans completed questionnaires, capturing the impact of
type 1 diabetes on the incidence and maintenance of disability. We modelled the incidence
and duration as follows:

- A logistic regression yields the following average incidence rate:

ix =
1

1 + e−(α+βx+γ 1diabetes type 1+δ τ)

where 1diabetes type 1 is 1 or 0 depending on whether the person was diagnosed with
breast cancer or not, and τ is the time since diagnosis (set to 0 for those without type 1
diabetes). We then have ix

D = 1
1+e−(α+βx) and ix

C = 1
1+e−(α+γ+βx+δ τ) . Regression found

β = 0.003 (almost no impact of age, overall), γ = 0.14 (effect of type 1 diabetes), and
δ = −0.04. α was adjusted to match the average frequency of work stoppage in France
(Kusnick-Joinville et al. 2006).

- A gamma regression yields the following average duration:

dx = e−(α+βx+γ 1diabetes type 1+δ τ)

We then have dx
D = e−(α+βx) and dx

C = e−(α+γ+βx+δ τ). Here, β = 0.024 (longer work
stoppage with age) and γ = 0.32 (effect of type 1 diabetes). α was adjusted to match the
average frequency of work stoppage in France, observed in (Kusnick-Joinville et al. 2006).

4.2.3. Long-Term Disability

In Table 2, we do not have data for type 1 diabetes, only for type 1 or 2 diabetes. We
still considered the latter. We think it is prudent, as our short-term disability analysis in the
US database demonstrates lower risks for type 1 diabetes than type 2 (data not shown).
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- px
C = 1 − (1 − 0.033)1/3 = 1.11% for t between 0 and 3 years.

- px
C = 1 −

(
1−0.076
1−0.033

)1/7
= 0.65% for t beyond 3 years.

4.2.4. Results

Figure 9 shows additional mortality premiums expressed in percentage depending on
applicant age and how long ago the applicant was diagnosed with type 1 diabetes.

Figure 9. Additional pure premium p for mortality risk as a function of applicant age and whether
diagnosis is recent or not (three cases).

Figure 10 shows the additional pure premium for disability (both short-term and
long-term) as a function of applicant age and time since the diagnosis of type 1 diabetes.

Figure 10. Additional pure premium p for disability risk as a function of applicant age, if diagnostic
is recent or not (three cases).

As we can observe, the processes of obtaining premiums for type 1 diabetes and breast
cancer were relatively similar. This suggests that the same process can be conducted for all
severe diseases, in the worst case grouping them, such as grouping type 1 and 2 diabetes
or taking prudent approximations, such as taking long-term disability risks associated
with cancers instead of breast cancer. The process we conducted is the one described in
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Section 3. It is an example of the process and other means to estimate risks based on open
data that can lead to the best estimations, such as adjusting disability risks based on the
risk of mortality.

5. Conclusions

This study has demonstrated that, based on open data, it is possible to significantly
refine the description of the risks of mortality and disability for serious pathologies that
currently lead to numerous insurance refusals. A more precise assessment of these risks
makes it possible to include more people in the insurance with excess risks, which allows
the premium to be kept to a reasonable level.

The methodology presented makes it possible to extend the work to many other
diseases, even if each disease requires significant bibliographic and information cross-
checking efforts. The examples of diseases taken suggest it is sometimes possible to
estimate risks related to great details for some pathologies, such as the exact grade of and
oestrogen receptor function of a breast cancer, and that it is sometimes not necessarily
feasible except by taking prudent approximations, such as using all-cancer long-term
disability risk instead of breast cancer. This means that it is possible to cover a large
range of diseases without taking strongly prudent approximations if one accepts that the
granularity of disease definition is sometimes coarse, depending on the found open data.

A difficult question was how to transpose risks from the general population to high
socio-economic profiles. We defined this transposition via the definition of a multiplier
that interestingly permits us to transpose studies that link social inequalities and mortality
risks into loan insurance premiums—a different field. We were able to suggest that the
multiplier would tend to be slightly smaller than one when mass screenings exist for the
studied disease, and slightly greater than one otherwise (and if the disease is a frequent
one). This was perfectly verified in the examples we considered.

Beyond the technical aspects of being able to use a diverse set of open data to generate
loan insurance premiums comes the question of how to pool diseases to facilitate access
to loans. The results we observed for breast cancer and type 1 diabetes suggest that non-
metastatic breast cancers could be covered as a whole, as well as type 1 diabetes in the
absence of nephropathy.

For even greater inclusion of patients, a framework would be needed to mutualize
severe risks with low risks, e.g., by covering all cases of breast cancer and diabetes or even
by eliminating medical selection. The latter option would dilute the excess risk across all
insured individuals, with a potential but limited increase in basic premiums as we find in
part 1, but runs the risk of high risks being concentrated in the first insurer or insurers to
try this.
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Notes

1 For insured risks this gender breakdown is based on expert opinion, as the data at our disposal does not distinguish between
the sexes.

2 Average, maximum and minimum of best estimate actuarial tables among a group of French insurer for the mortality and
temporary disability incidence of borrowers. Female risks were obtained by dividing by 1.5 (expert judgement) and male risks
where deducted by considering that the tables contained 55% males (expert judgement).
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3 Since the conditional transition probabilities depend on the time spent in the state, semi-Markovian models are better suited, but
given the context of this study, this simplification is acceptable.

4 Surveillance Research Program, National Cancer Institute SEER* Stat software (seer.cancer.gov/seerstat) version 8.3.9.
5 In blue and red for men and women respectively. The solid lines represent those without kidney disease. The numbers associated

with the curves (15, 30 and 45) are the ages at diagnosis.
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