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Editorial

Mathematical Modeling and Simulation in Mechanics and
Dynamic Systems

Maria Luminita Scutaru 1,* and Catalin-Iulian Pruncu 2,*

1 Department of Mechanical Engineering, Faculty of Mechanical Engineering, Transilvania University of Bras, ov,
500036 Bras, ov, Romania

2 Departimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy
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1. Introduction

Although it has previously been considered difficult to make further contributions in
the field of mechanics, the spectacular evolution of technology and numerical calculation
techniques has caused this opinion to be reconsidered and to the development of more and
more sophisticated models that describe, as accurately as possible, the phenomena that take
place in dynamic systems. Therefore, researchers have come to study mechanical systems
with complicated behavior, observing them in experiments and computer models [1–3].
The key requirement in these studies is that the system must involve a nonlinearity. The
impetus in mechanics and dynamical systems has come from many sources: computer
simulation, experimental science, mathematics, and modeling [4–6]. There are a wide range
of influences. Computer experiments change the way in which we analyze these systems.
Topics of interest include, but are not limited to, modeling mechanical systems, new
methods in dynamic systems, the behavior simulation of mechanical systems, nonlinear
systems, multibody systems with elastic elements, multiple degrees of freedom, mechanical
systems, experimental modal analyses, and the mechanics of materials.

2. Statistics of the Special Issue

The statistics of papers submitted to this Special Issue for both published and rejected
items are as follows: 23 total submissions, of which 16 were published (69.6%) [7–23] and 7
rejected (30.4%). The authors’ geographical distribution is shown in Table 1, where it can
be seen that the 67 authors are from 13 different countries. Note that it is usual for a paper
to be written by more than one author, and for authors to collaborate with authors with
different affiliations or multiple affiliations.

Table 1. Geographic distribution of authors by country.

Country Number of Authors

Romania 13
China 9
Iran 1
Italy 2

Pakistan 1
UK 3

Morocco 5
Korea 4

Bulgaria 1
Australia 4

Spain 12
Slovakia 7
Hungary 3

Mathematics 2022, 10, 448. https://doi.org/10.3390/math10030448 https://www.mdpi.com/journal/mathematics
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3. Authors of the Special Issue

The authors of this Special Issue and their main affiliations are summarized in Table 2;
it can be seen that there are three authors on average per manuscript.

Table 2. Affiliations and bibliometric indicators for authors.

Author Affiliation References

Gabriel Gavrilut Faculty of Phisics, Alexandru Ioan Cuza University, Bulevardul Carol I nr. 11, 700506 Ias, i,
Romania [8]

Liliana Topliceanu Faculty of Engineering, Vasile Alecsandri University of Bacau, 600115 Bacau, Romania [8]

Manuela Girtu Department of Mathematics and Informatics, Vasile Alecsandri University of Bacau,
600115 Bacau, Romania [8]

Ana Maria Rotundu Faculty of Phisics, Alexandru Ioan Cuza University, Bulevardul Carol I nr. 11, 700506 Ias, i,
Romania [8]

Stefan Andrei
Irimiciuc

National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125
Bucharest, Romania [8]

Maricel Agop Department of Physics, “Gh. Asachi” Technical University of Iasi, 700050 Iasi, Romania [8]

Ashif Khan Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul,
30 Pildong-ro 1 Gil, Jung-gu, Seoul 04620, Korea [9]

Jun-Sik Kim Department of Mechanical System Engineering, Kumoh National Institute of Technology,
Gumi-si 39177, Korea; junsik.kim@kumoh.ac.kr [9]

Heung Soo Kim Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul,
30 Pildong-ro 1 Gil, Jung-gu, Seoul 04620, Korea [9]

Alessandro Tarsi School of Automation Engineering, Alma Mater Studiorum—Università di Bologna, Viale
del Risorgimento 2, I-40136 Bologna, Italy; [10]

Simone Fiori Department of Information Engineering, Marches Polytechnic University, Brecce Bianche
Rd., I-60131 Ancona, Italy [10]

Kiril Tenekedjiev Australian Maritime College, University of Tasmania, 1 Maritime Way, Launceston, TAS
7250, Australia [11]

Simon Cooley Australian Maritime College, University of Tasmania, 1 Maritime Way, Launceston, TAS
7250, Australia [11]

Boyan Mednikarov Nikola Vaptsarov Naval Academy—Varna, 73 V. Drumev Str., 9002 Varna, Bulgaria [11]

Guixin Fan Australian Maritime College, University of Tasmania, 1 Maritime Way, Launceston, TAS
7250, Australia [11]

Natalia Nikolova Australian Maritime College, University of Tasmania, 1 Maritime Way, Launceston, TAS
7250, Australia [11]

Mohamed Derbeli System Engineering and Automation Department, Faculty of Engineering of
Vitoria-Gasteiz, Basque Country University (UPV/EHU), 01006 Vitoria-Gasteiz, Spain [14]

Cristian Napole System Engineering and Automation Department, Faculty of Engineering of
Vitoria-Gasteiz, Basque Country University (UPV/EHU), 01006 Vitoria-Gasteiz, Spain [14]

Oscar Barambones System Engineering and Automation Department, Faculty of Engineering of
Vitoria-Gasteiz, Basque Country University (UPV/EHU), 01006 Vitoria-Gasteiz, Spain [14]

Soufiane Montassir Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, B.P. 2202
Route d’Imouzzer, Fez 30000, Morocco [23]

Hassane Moustabchir
Laboratory of Science Engineering and Applications (LISA) National School of Applied
Sciences, Sidi Mohamed Ben Abdellah University, BP 72 Route d’Imouzzer, Fez 30000,

Morocco
[23]

Maria Luminita
Scutaru

Department of Mechanical Engineering, Transilvania University of Brassov, B-dul Eroilor
20, 500036 Brassov, Romania [3,5,6,9,12]
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Table 2. Cont.

Author Affiliation References

Sorin Vlase Department of Mechanical Engineering, Transilvania University of Brassov, B-dul Eroilor
20, 500036 Brassov, Romania [1–6,9,16]

Alexandra Saviuc Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania [13]

Tudor-Cristian
Petrescu

Department of Structural Mechanics, Gheorghe Asachi Technical University of Iasi,
700050 Iasi, Romania; [13]

Botond-Pál Gálf Autolive Romania, Brasov, Bucegi, Str. 8, 500053 Brasov, Romania [16]

Ioan Száva Department of Mechanical Engineering, Transilvania University of Brasov, B-dul Eroilor
20, 500036 Brasov, Romania [16]

Daniela Sova Department of Mechanical Engineering, Transilvania University of Brasov, B-dul Eroilor
20, 500036 Brassov, Romania [16]

Koldo Portal-Porras Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country,
UPV/EHU, Nieves Cano 12, Vitoria-Gasteiz, 01006 Araba, Spain [15]

Unai
Fernandez-Gamiz

Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country,
UPV/EHU, Nieves Cano 12, Vitoria-Gasteiz, 01006 Araba, Spain [15]

Ainara Ugarte-Anero Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country,
UPV/EHU, Nieves Cano 12, Vitoria-Gasteiz, 01006 Araba, Spain [15]

Ekaitz Zulueta System Engineering and Automation Control Department, University of the Basque
Country, UPV/EHU, Nieves Cano 12, Vitoria-Gasteiz, 01006 Araba, Spain [15]

Asier Zulueta System Engineering and Automation Control Department, University of the Basque
Country, UPV/EHU, Nieves Cano 12, Vitoria-Gasteiz, 01006 Araba, Spain [15]

Dongxu Li College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing
210037, China [17]

Bing Xu College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing
210037, China [17]

Zheshu Ma College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing
210037, China [17]

Yanju Li College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing
210037, China [17]

Pau Fonseca i Casas Department of Statistics and Operations Research, Universitat Politècnica de Catalunya,
08034 Barcelona, Spain [19]

Joan Garcia i Subirana Department of Statistics and Operations Research, Universitat Politècnica de Catalunya,
08034 Barcelona, Spain [19]

Víctor García i
Carrasco

Department of Statistics and Operations Research, Universitat Politècnica de Catalunya,
08034 Barcelona, Spain [19]

Xavier Pi i Palomés Open University of Catalonia, Computer Science, Multimedia and Telecommunications
Studies, 08860 Barcelona, Spain [19]

Gregor Bánó Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54
Košice, Slovakia

[18]

Jana Kubacková Institute of Experimental Physics SAS, Department of Biophysics, Watsonova 47, 040 01
Košice, Slovakia [18]

Andrej Hovan Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54
Košice, Slovakia

[18]

Alena Strejˇcková Department of Chemistry, Biochemistry and Biophysics, University of Veterinary
Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia [18]

Gergely T. Iványi Faculty of Science and Informatics, University of Szeged, Dugonics Square 13, 6720
Szeged, Hungary [18]

Gaszton Vizsnyiczai Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network
(ELKH), Temesvári krt. 62, 6726 Szeged, Hungary [18]
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Table 2. Cont.

Author Affiliation References

Lóránd Kelemen Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network
(ELKH), Temesvári krt. 62, 6726 Szeged, Hungary [18]

Gabriel Žoldák Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik
University, Jesenná 5, 041 54 Košice, Slovakia

[18]

Zoltán Tomori Institute of Experimental Physics SAS, Department of Biophysics, Watsonova 47, 040 01
Košice, Slovakia [18]

Denis Horvath Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik
University, Jesenná 5, 041 54 Košice, Slovakia

[18]

Dongxu Li College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing
210037, China [20]

Siwei Li College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing
210037, China [20]

Zhanghao Lu College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing
210037, China [20]

Yanju Li
College of Automobile and Traffic Engineering, Nanjing Forestry University, Na College

of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037,
China njing 210037, China

[20]

Meng Zheng
College of Automobile and Traffic Engineering, Nanjing Forestry University, Na College

of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037,
China njing 210037, China

[20]

Chukwuma
Ogbonnaya

Department of Mechanical, Aerospace and Civil Engineering, The University of
Manchester, Manchester M13 9PL, UK [22]

Chamil Abeykoon Faculty of Engineering and Technology, Alex Ekwueme Federal University, Ndufu Alike
Ikwo, Abakaliki PMB 1010, Nigeria [22]

Adel Nasser Faculty of Engineering and Technology, Alex Ekwueme Federal University, Ndufu Alike
Ikwo, Abakaliki PMB 1010, Nigeria [22]

Ali Turan Independent Researcher, Manchester M22 4ES, Lancashire, UK [22]

Yasser Zare
Breast Cancer Research Center, Biomaterials and Tissue Engineering Research Group,

Department of Interdisciplinary Technologies, Motamed Cancer Institute, ACECR, Tehran
15179-64311, Iran

[21]

Kyongyop Rhee Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee
University, Yongin 449-701, Gyeonggi, Korea [21]

Khadija Yakoubi Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez 30000,
Morocco [23]

Ahmed Elkhalf Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez 30000,
Morocco [23]

Catalin Iulian Pruncu Department of Mechanical Engineering, Imperial College London, Exhibition Rd.,
London SW7 2AK, UK [23]

Jamal Arbaoui National School of Applied Sciences of Safi, University Cadi Ayad, Marrakesh 40000,
Morocco; [23]

Muhammad Umar
Farooq

Department of Industrial and Manufacturing Engineering, University of Engineering and
Technology, Lahore 54890, Pakistan [23]

4. Brief Overview of the Contributions to the Special Issue

This analysis of topics identifies or summarizes the research undertaken. This section
classifies the manuscripts according to the topics covered in this Special Issue. There
are three topics that are dominant, namely: the modeling of the multibody systems with
symmetries, symmetry in applied mathematics, and analytical methods in symmetric
multibody systems.
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Author Contributions: Conceptualization, M.L.S. and C.-I.P.; methodology, M.L.S. and C.-I.P.; soft-
ware, M.L.S. and C.-I.P.; validation, M.L.S. and C.-I.P.; formal analysis, M.L.S. and C.-I.P.; investigation,
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Abstract: The work investigates the importance of the K-T approach in the modelling of pressure
cracked structures. T-stress is the constant in the second term of the Williams expression; it is often
negligible, but recent literature has shown that there are cases where T-stress plays the role of opening
the crack, also T-stress improves elastic modeling at the point of crack. In this research study, the most
important effects of the T-stress are collected and analyzed. A numerical analysis was carried out by
the extended finite element method (X-FEM) to analyze T-stress in an arc with external notch under
internal pressure. The different stress method (SDM) is employed to calculate T-stress. Moreover, the
influence of the geometry of the notch on the biaxiality is also examined. The biaxiality gave us a
view on the initiation of the crack. The results are extended with a comparison to previous literature
to validate the promising investigations.

Keywords: T-stress; X-FEM; notch; pipe; stress difference method (SDM)

1. Introduction

In the field of fracture mechanics especially linear elastics, the vicinity of notch tip is
often symbolized by singular stress entities. Their resistance is measured through stress
intensity factor (SIF). The SIF is mainly depended on the distance r from the tip of notch.
In this field, parameter T is introduced to enrich the parameter K (SIF) to make the model
better in the elastic stress field; this is the K-T approach [1].

In fracture mechanics body of knowledge, it is established that the same Stress Inten-
sity Factor (SIF) is required for two cracks to propagate in the same way. Experiment [2]
have shown that two plates with the same SIF and different crack length a1 > a2 show
different the propagation of the cracks. The results have shown that the propagation
speed of a2 is higher than that of a1. The study concluded that the first term of asymptotic
development is not sufficient to predict crack behavior. Therefore, it is necessary to increase
the order. The first term asymptotic development is the SIF that determines the initiation
and propagation of the crack. In addition, the second term is constant and controls the
stability of the propagation direction. It is the transverse component symbolized by T.
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Several studies have shown the significance of the T-Stress, and its influence on differ-
ent parameters of mechanics. Jayadevan [3] highlighted that plastic zone is manipulated
by the variation of T-stress. It means, the plastic area escalates with the increase in absolute
value of T-stress and changes its form. Sobotka et al. [4] demonstrated the alteration in the
plastic wake with many T-stresses which depends on plastic wakes height (HPW).

T-Stress has been an essential contributing factor in the stability of the direction of the
crack propagation. For instance, T negative gives a stable direction, and for T positive it is
unstable [5]. Fayed et al. [6] explored the impact of T-stress on propagating crack direction
by Maximum Tangential Stress (MTS). The principle of MTS is that the crack propagates in
the trend of maximum tangential stress. They obtained that the directions of the overall
crack no coincide with the initial direction of the crack. Many studies have concluded the
behavior by the fact that the tangential stress is affected by the T-Stress. MTS becomes
generalized maximum tangential stress (GMTS), which considers the constraint T in the
expression of stress. In the same context Shahani [1] studied the result on the initiating
angle of propagating crack of the stress T. The study has shown a negative T value declines
the angle of crack initiation, and a positive T value enhances it. Nejati et al. [7] gauged
the relationship between T-stress and material properties. Chen et al. [8] has shown that
Graded Poisson’s ratio affects the T-stress. Additionally, Toshio et al. [9] concluded that the
Poison’s ratio influences the T-stress on a three-dimensional edge-cracked plate.

Other important research that has shown the influences of the T-stress includes:
Zhang et al. [10], which used numerical manifold method (NMM) is employed to calculate
the T-stress for two-dimensional functionally graded material (FGM) having numerous
cracks. Noritaka et al. [11] has resulted the T-stress might open micro-branches in the mist
region. For the bending and tension load, Hancock [12] determined that T decreases with
escalating crack length. Matvienko [13] explored the influence of T-stress in problems of
the elastic and the elastic-plastic fracture mechanics.

Conventionally, the T-stress is often calculated at the crack tip, which is certainly not
the case in this research. The research evaluates the T-stress at the tip of notch through
extended finite element method (X-FEM).

The finite element method FE method is limited by the simple cases, as well as the
presence of a singularity greatly degrades the convergence of the FEM. Belytschko and
Blacken in 1999 added discontinuously enriching function in finite element approximation
by respecting boundary conditions. Later, Moës et al. [14] developed the technique and
called it as extended finite element method which is abbreviated as X-FEM. The efficiency
of the X-FEM is well endorsed in the literature. To simulate the propagation of cracks in
porous media, Wang et al. [15] integrated embedded discrete fracture method (EDFM) with
X-FEM simulating fracture associated fluid and solid mechanics. Shu et al. [16] investigated
the fatigue growth of 3-D multiple cracks by X-FEM. The implementation of X-FEM for
composites resulted successfully [17–19]. X-FEM is also used for the calculation and
analysis of failure mechanics parameters. Fakkoussi et al. [20] calculated stress intensity
factor for mode one by X-FEM. Llavori et al. [21] studied the problems of contact fatigue
by X-FEM.

The research study presents the use of X-FEM to calculate T-stress in the notch tip for
an arc of the pipe of steel P264GH. Further, it demonstrates the benefits of using the X-FEM
approach to compute K-T at the notch point in an arc under pression and revealing the
possibility of detecting the crack initiation.

The remaining article is organized as, Section 2 talks about the K-T approach, X-FEM,
and the geometry used. Section 3 deals with the numerical result obtained, compared
against FEM conclusions, along with the discussion. Finally, the conclusion is in the
other section.
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2. Materials and Methods

2.1. K-T Approach

Stress Intensity Factor has been an essential parameter in the field of linear fracture
mechanics, widely used for crack evaluation. SIF measures the strength of the singularity,
and integrates various parameters such as load, geometry, and shape of crack. M. Hadj
Meliani [22] suggested that a thin structure such as a thin pipe with a longitudinal crack, it
is very difficult to characterize the stress field by a single parameter. For linear elasticity,
the enrichment of the SIF with the T-stress is required to model the notch tip. In literature,
studies show that T explains how geometry influences tenacity (KIC) [22]. T-stress helps
in approximating the level of stress at a crack or tip of the notch. The possibility of
constructing the K(T) curve numerically has given the opportunity to predict the loading
of a crack initiation [23,24]. Including T-stress in calculations, it improves the prediction of
propagating crack under the control of mixed loading. The K-T was additionally calculated
for through-wall-cracked pipes under various pressure conditions by three dimension-3D
FE [25]. The importance of the T-Stress is established in many works.

• T-stress enhances the possibility of crack opening stresses in the context of small
crack [26];

σxx(r, θ) =
K1√
2πr

fxx(θ) + T (1)

Taking σxx(r, θ) = σcr, for the crack propagation, the first term tends to K1√
2πr

fxx(θ) to

a because K1 = Syy
√
πa, and if a tends to zero; the first term becomes negligible intheface

to T at the crack point.
lim
a→0

σxx(r, θ) = σcr = T (2)

In this case, the T-stress cannot be ignored, T play the role of crack opening, and
therefore the importance of T varies with the size of the cracks.

• T-stress influences the plastic zone. Jayadevan [3] highlighted that plastic zone is
affected by the variation of T-stress. The plastic area escalates with the upsurge in the
absolute value of T-stress and changes its form. Sobotka et al. [4] demonstrated the
deviation in the plastic wake with various T-stress which depends on plastic wakes
height (hpw).

• Propagation’s direction: Fayed et al. [6] analyzed the impact of T-stress on the prop-
agation’s direction by Maximum Tangential Stress (MTS). The principle of MTS is
in the crack propagation direction which is in line with that of maximum tangential
stress. MTS only considers the term singularity. Therefore, the direction of crack
does not coincide with the initial directions of the crack. This behavior shows that
the tangential stress is affected by the T-Stress. MTS becomes generalized maximum
tangential stress (GMTS), which considers the T-stress in the expression of stress.

• T-stress has an impact on crack initiation angle. Shahani [1] analyzed the consequence
of the T-stress on the angle of initiation of crack propagation. The study has shown
that a negative T value declines the angle of crack initiation, and a positive T value
enhances it.

• T-Stress is of prime significance when ensuring the stability of the direction of crack
propagation, such as T negative gives a stable direction, and for T positive it is
unstable [5].

T-Stress could be computed through numerous techniques. Weight Function Method
has shown its efficiency in several problems cracking-related such as edge-cracked rect-
angular plate, circular disk [27]. Kfouri [28] developed a technique for evaluating the
T-stress. The method uses the attributes of the path-independent J-integral and is called
the Esheby–Integral method.
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The stress different method (SDM) has been proposed by Yang [29]. The idea of this
method is the errors of the numerical values of σ11 and σ22 near a crack point progress
with r in the same way, and the variation must effectively eliminate errors.

T = σyy − σxx (3)

Biaxiality is a parameter that relates the SIF and T-stress:

β =
T
√
πa

K
(4)

2.2. Extended Finite Elements

One of the uses of the FE method is the study of crack propagation but is limited
for simple cases. If the mesh size does not conform to the crack, the FE method does not
treat the propagation, and the presence of a singularity degrades the convergence of the
FE method.

The solution is to add enrichment function to the FE approximation (see Figure 1);
this is the extended finite element method.

U =
N

∑
1

Niui +
Nsaut

∑
i

NiH(x)ai +

Nsin g

∑
i

∑
j

N(x)iF(x)jb
j
i (5)

where:

• H(x): The Heaviside enrichment function, H(x) =
{ −1, x > 0

+1, x < 0
• F(x): Enrichment functions near the crack front.
• N: Interpolation function of finite element. Nsaut: Number of nodes enriched with

Heaviside function. Nsin g: Number of knots enriched near the crack front.

 
Figure 1. Step of enrichment methods.

The X-FEM requires operation to confirm the enrichment status of a knot according to
its position in reference to the crack and to evaluate the functions H(x) and F(x). The posi-
tion (r, θ) in relation to the notch point is calculated herein to know if x is above or below
the crack. These operations are carried out using the level sets method. The technique for
describing crack is known as level set method. In the X-FEM, it determines the location
of the crack and the crack point, and the position to apply discontinuous enrichment and
enrichment to the crack point Figure 1. Most importantly, the level set provides an instant
result that helps track crack propagation, i.e., as the crack propagates, enrichment at the
crack front becomes discontinuous enrichment, and nodes (not enriched) become enriched.
There are two-level functions, and the first describes the crack surface (ϕ), second gives the
crack front (ψ) [30].

The X-FEM method was applied in several studies. Yousheng Xie et al. [31] have
implemented the X-FEM method in the study of propagating crack in mixed mode, and
evaluated the crack initiation angle. Reference [32] has shown the performance of the
method. The study applied X-FEM to calculate SIF for 3D crack propagation problems
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for a Compact Tension C-T specimen. X-FEM was also implemented in the analysis of
bi-material interfaces, calculating service life and fatigue resistance [33]. An integration
between the X-FEM and embedded discrete fracture method (EDFM) is established for
simulation of the process of fluid fracture propagation in porous media [15]. Savenkov
et al. [34] employed the X-FEM to represent the central surface of the crack. The application
of X-FEM for composite models is also carried out supporting current investigation [35,36].

X-FEM was used to predict components failure from a different form of notch [37].
Patria et al. [38] adopted X-FEM to study the mechanical attributes and fracture behavior of
(Reinforced Polymeric Composites) RPC materials with single edge notch three-point bending.

2.3. Geometry

An arc of pipe containing a notch under pression was numerically analyzed using
X-FEM in ABAQUS software. The material used is a steel P264GH. The arc characterized
by an inner radius Ri = 219.55 mm and thickness t = 6.1 mm. More details on geometry, the
shape of the notch, and boundary requirements used are illustrated in Figure 2 and Table 1.

Figure 2. Details of the geometry and notch study, with boundary conditions.

Table 1. Geometry properties and load.

Ri [mm] P [MPa] ϕ [deg] a [mm] t [mm] ρ [mm]

213.45 15 45 1.22–4.88 6.1 0.15

The mechanical attributes of the material used are presented in Table 2, and the
chemical composition of the material are included in Table 3.

Table 2. Mechanical characteristics of P264GH.

Young’s Modulus Poisson’s Ratio Yield Stress
Elongation to

Fracture

207,000 MPa 0.3 430 MPa 35%

Table 3. Chemical composition of P264GH.

Material C Mn S Si P Al

Tested 0.135 0.665 0.002 0.195 0.027 0.027

Steel P264GH
(Standard EN10028.2–92) 0.18 1 0.015 0.4 0.025 0.02

3. Results

This section presented the results of SIF and T-stress given by X-FEM via an user
element UEL subroutine, the calculation was executed by ABAQUS software, we used
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quadratic element C3D20 in the mesh Figure 3, with a size of 0.5 mm. The number of
elements is 246117. The number of nodes is 363256.

  
Figure 3. The mesh of 3D arc, C3D10 with 0.5 mm of size.

The T-stress is calculated through stress different method, and normalization is done
for effect of the T-stress relative to the stress intensity factor by a parameter dimensionless
termed biaxiality.

β =
T
√
πa

K
K is the value of stress intensity factor, and a is the notch length.
Figure 4 illustrates the difference of the SIF in mode 1 as a function of r, for a/t = 0.2,

by extended finite element.

Figure 4. Distribution stress intensity factor SIF at the notch tip–SIF and r for a/t = 0.2.

The elastic SIF distribution at the notch tip decreases with distance from the tip of
notch, for a/t = 0.2 the maximum value of SIF is 21 MPa

√
m at notch tip, i.e., r = 0

(see Figure 4). Near the notch tip SIF decreases rapidly to 6 MPa
√

m at r = 0.3 mm, then its
variation becomes slower.

Figure 5 shows the variation of stress σxx,σyy and T. T-stress increases with increasing
r up to r = 0.43, and after that it starts to stabilize. The numerical calculation of the stress
σxx,σyy by X-FEM is executed by ABAQUS software. Figure 6 gives the Von Mises stress
obtained by the Abaqus software.
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Figure 5. T-stress by stress different method.

  

Figure 6. Distributions of Von Mises stress near the notch.

The result obtained of biaxiality are compared with H. Moustabchir [39], who calcu-
lated the biaxiality through the finite element method, for the same geometry which is
used in this study. Figure 7 gives the variation of biaxiality as a function of a/t, by X-FEM
and FEM.

Figure 7. Variation of the biaxiality with a/t at the notch.
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The biaxiality levels up with the increase a/t, The results are identical with the H.
Moustabchir [39] recommendations. Kim and Paulino [40] has also got the same variation.
By X-FEM the biaxiality varies from −0.21 to 0.76 for a/t = 0.2 and 0.8, respectively, and it
goes from a positive to a negative value at a/t = 0.3. The difference between the results
given by X-FEM and FEM is 0.013.

4. Discussion

SIF measures the strength of the singularity, which explains the rapid variation of the
SIF obtained for r = [0, 0.3]. The more approach is made towards the notch tip, the more
the stress concentration increases, and therefore, SIF increases. Moustabchir et al. [39] used
the volumetric approach to calculate SIF, in the same condition that this research studied.
Moustabchir et al. obtained for mode I at tip notch K1 = 21.6 MPa

√
m, which differs from

our result by 0.5. The T-stress can be analyzed by the SDM. The biaxiality increases with
the rise in a/t, and the notch depth affects the value of T-stress. The same variation was
obtained in other investigations on various materials. Bouchard et al. [41] have shown
that T increases with increasing depth for a mono silicon. In [42], Sherry et al. obtained an
increase in T in absolute value with the variation of the crack size over the width of a plate.
In addition, Ayatollahi et al. [43] obtained for mode I, an increase in T-stress as a function
of the depth of the crack for a single edge notched.

If
β = 1

and

β =
T
√
πa

K
So

K = T
√
πa i.e., T = σ

Which is not the case for this study βmax = 0.78, so T �= σ, which implies that T has
no influence on the notch in our case and our condition.

Many studies have resulted that the influence of the T-stress is remarkable and signifi-
cant when T is negative [1,3,6], however, in this study for r < 0.43, negative T-stress causes
an increase in the plastic zone [27]. This will cause a crack to initiate. In the presence of a
crack, negative T can change the direction of propagating crack and decreases the crack
growth initiation angle [31].

The K-T approach is an integration between the SIF and the T-stress to improve
modelling the elastic stress at the point of the crack. The importance of T-stress has been
highlighted, and it takes the place of short crack opening stress. Besides, the importance of
the cooperation of SIF and T-stress, such as the K(T) curve was elaborated which gives a
prediction of the stress of crack initiation [44]. Neggaz et al. [44] studied the influences of
the reinforcements in the structure of composites, with the aim of reducing constraints at
notch-tip. Moreover, authors evaluated the effective stress intensity factors in the regard of
propagating crack in thin and thick panels. Therefore, an Extended Finite Element Method
(XFEM) is novel and improved technique on the elastic T-stress evaluations for a notch in a
pipe steel exposed to internal pressure.

5. Conclusions

Three-dimensional Extended Finite Element (X-FEM) analysis is applied to evaluate
the stress intensity factor and the T-stress for an arc of pipe with external notch under
internal pressure. The results are presented below:

• To study the influence of geometry and notch size on the T-stress, authors have
approached the biaxiality as a function of a/t. The evaluation endorsed that biaxiality
β increases with the increasing a/t which is in accord with president results.

• The integration of biaxiality allowed us to determine the state of the crack initiation,
and we can say that the pipe is safe in the used conditions.
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• The SIF alone does not characterize the behavior of notches. T-stress is obtained by
Stress Difference Method (SDM) along with the notch in mode I. SDM is an efficient
and simple method to calculate the fracture parameters.

• With ABAQUS-based investigations, the numerical results achieved by X-FEM are in
good agreement with the Moustabchir result [39]. The implementation of X-FEM in
the presence of a notch corrected the problems of the standard finite element method.
The advantage of the X-FEM is that the mesh is independent of the notch.

For more precision, the future objective is to calculate the parameters of fracture
mechanics by iso-geometrical analysis.
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Abstract: A system of transcendental equations (SoTE) is a set of simultaneous equations containing
at least a transcendental function. Solutions involving transcendental equations are often problematic,
particularly in the form of a system of equations. This challenge has limited the number of equations,
with inter-related multi-functions and multi-variables, often included in the mathematical modelling
of physical systems during problem formulation. Here, we presented detailed steps for using a code-
based modelling approach for solving SoTEs that may be encountered in science and engineering
problems. A SoTE comprising six functions, including Sine-Gordon wave functions, was used to
illustrate the steps. Parametric studies were performed to visualize how a change in the variables
affected the superposition of the waves as the independent variable varies from x1 = 1:0.0005:100 to
x1 = 1:5:100. The application of the proposed approach in modelling and simulation of photovoltaic
and thermophotovoltaic systems were also highlighted. Overall, solutions to SoTEs present new
opportunities for including more functions and variables in numerical models of systems, which will
ultimately lead to a more robust representation of physical systems.

Keywords: system of transcendental equation; computational solutions; code-based modelling ap-
proach; numerical analysis; Sine-Gordon equations; photovoltaics; thermophotovoltaics; solar energy

1. Introduction

The advent of the computer has made explicit solution and visualization of transcen-
dental equations (TE) easier [1]. Computing has, indeed, expanded the possibilities of
modelling and simulation of complex phenomena, processes, and systems [2]. However,
encountering non-zero TE of the form f(x) = g(x) in science and engineering poses chal-
lenges, particularly when the TE is included in a system of equations to create a system of
transcendental equations (SoTE). A TE may have many roots which may require explicit
method to find their roots using Cauchy’s integral theorem [3]. The computational solution
to SoTE may result in a single output in a case where some functions act as functions of
the output function. The output function can be represented graphically to visualize and
analyze how it changes with respect to some system variables or functions in the SoTE.

In order to increase the number of variables and parameters of a physical system
captured during numerical modelling, multi-functions may be required to be solved
simultaneously. Consequently, more methods/techniques for solving SoTEs are required
to facilitate numerical solutions of physical systems involving TE. Over the years, the need
to solve problems involving TEs or SoTEs caused scientists and engineers to use different
methods/techniques to find solutions to them [4]. For instance, Artificial Neural Network
(ANN) has been proposed for solving SoTEs [5]. A Chebyshev series has been added
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to a transcendental equation to convert it into a polynomial equation so that it can be
truncated and solved [6]. A decomposition technique has also been applied to solve TEs [7].
Lagrange inversion theorem and Pade approximation were used by Luo [8] to solve TEs
encountered in physics. Furthermore, Ruggiero [9] adopted a computational iteration
procedure to solve a TE involving wave propagations in elastic plates. The iterative process
has also been applied to solve a fourth order transcendental nonlinear equation of the
form f(x) = 0 [10]. There have been some specific attempts to solve physical problems
involving SoTEs. For instance, Falnes [11] demonstrated that the electrical impedance of
a semiconductor supporting two waves contains an entire transcendental function of the
form f(z) = exp(−z) − l − cz. Danhua et al. [12] studied a perturbed Sine-Gordon equation
with impulsive forcing to describe non-linear oscillations. They highlighted the various
application of the Sine-Gordon equations in science and engineering.

Computational methods have been applied to solve non-linear wave equations [13].
Recently, a code-based modelling (CBM) approach is an example of computational ap-
proach proposed for solving SoTEs applicable to photovoltaic and thermophotovoltaic
systems [14–16]. Although the CBM approach appears to be robust in achieving numerical
solutions to SoTEs, there are no clear steps for formulating and solving of scientific and
engineering problems involving SoTE. Therefore, the aim of this paper is to present detailed
steps of how CBM approach can be implemented to solve SoTEs. To achieve this aim, the
specific objectives are to:

1. Describe the steps for using the CBM approach for solving SoTEs.
2. Demonstrate how the CBM approach is used to solve a hypothetical SoTE including

Sine-Gordon equations.
3. Perform parametric analysis of wavelength and amplitude in Objective 2.
4. Discuss the application of the CBM approach for modelling and simulation of photo-

voltaic and thermophotovoltaic systems.

The originality of this study is realized in being the first paper to present detailed
steps for applying the CBM approach to facilitate numerical/computational solutions to
SoTEs. Although the steps are proposed for problems that may be encountered in science
and engineering, there is no doubt that any researcher from any field can adopt/adapt
the steps. The major contribution of this paper is to demonstrate how the CBM approach
can allow scientists and engineers more degrees of freedom to overcome the limitations
of including multi-functions and multi-variables during model representation of physical
systems involving SoTEs. Henceforth, Section 2 presents detailed steps for formulating
SoTEs including Sine-Gordon functions. Section 3 presents the results generated from the
simulations of the SoTE formulated in Section 2. Then, Section 4 discusses the application
of the CBM approach for solving SoTE related to photovoltaics and thermophotovoltaics,
while Section 5 concludes the study.

2. Detailed Steps for Implementing the CBM Approach

The mathematical model of a system facilitates the predictable physical behaviors
which can allow scientists or engineers to investigate the system using simulations. The
functions describing the system may include linear or/and non-linear equations and can
be solved as a system of equations. This means that the mathematical formulation of
physical problems is critically important for capturing the crucial parameters and variables
of the system under study [17]. Since any parameter excluded from the model cannot be
accounted for, robust formulation becomes a necessary step in accurate representation
of any physical system or phenomena. Once the problem is adequately formulated with
all the possible dependent and independent variables, computing can facilitate solutions
faster and accurately. As algorithms continue to facilitate the application of the computer
in different facets of human existence [18], CBM approach appears compatible with code-
based algorithms for solutions to SoTEs.

Figure 1 summarizes the steps for solving SoTEs using the CBM approach. Although
the steps may vary depending on the nature and complexity of the problem, the steps in
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the flowchart are further described to show how the approach can be adopted for finding
numerical solutions to SoTEs. Where applicable, illustrations were used to explain the
applicability of the steps.

Figure 1. Flowchart for implementing the CBM approach for solving SoTEs.
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Step 1: Define the scope and hierarchy of the system to be modelled. It is not always possible
to capture all the parameters and variables affecting a system in a single equation. This step
is crucial for defining the aspects of the system that would be included in the CB model.
It might be helpful to recognize that more parameters and functions can be added once
the basic model is established so that the decision space can be expanded. The idea is to
start from a simple model, and then increase the complexity of the model to capture more
parameters and variables.

Step 2: Formulate the SoTE representing the model of the system. This step may not
require entirely new equations. Established equations in the field of study can be used.
As an example, solar exergy equation by Petela [19] was used as solar exergy input into a
numerical integration of solar, thermal, and electrical exergies of photovoltaic module [14].
Since electrical exergy involves a SoTE, the integrated model remained a SOTE. However,
for situations where there are no extant equations, a formulation of new equations from the
first principle, statistical modelling, or through experimental study can be considered. For
instance, in order to determine the optimal location for a large-scale photovoltaic power
generation, new thermodynamic indices were formulated and combined with a SoTE [15].
In formulating a SoTE, inter-relationships among the equations in the system of equation
is fundamental in order to reach a point of convergence. Depending on the scope of the
modelling, a SoTE may include as many functions as may be required.

Step 3: Check for inter-relatedness of the equations. Without an inter-relationship between
the equations, the requirement for solving a SoTE simultaneously may prove elusive. There-
fore, any convergence reached when the equations are not inter-related does not exactly
represent a solution to a SoTE. Thus, properly linked equations to interact simultaneously
directly or indirectly during computational iteration is crucial in solving SoTEs. To achieve
direct or indirect inter-relationships, an equation may be rearranged to make the required
dependent variable the subject of the equation. In direct inter-relationship, the total output
of a function is substituted into another function, thereby creating a function of a function
relationship. A function can be decomposed during coding, where possible, to make the
algorithm easier to implement. On the other hand, indirect inter-relationship exists when
two or more functions share the same parameter or variable. The shared parameter or vari-
able by two or more functions in a SoTE may affect the output of the functions differently.
For instance, in formulating the net temperature of a body undergoing heating and cooling
simultaneously, the temperature of the body will exist in the heating and cooling functions.
Nonetheless, whilst heating tends to increase the temperature of the body, cooling tends to
reduce it.

Step 4: Write the CB model of the SoTE. In this step, each function is written as a code
in accordance with the syntax/structure of the software used. The codes can be written
and tested step-by-step instead of attempting to run the SoTEs after integrating them. By
testing preceding codes before integrating more functions, troubleshooting, or debugging
of the CB model would be enhanced because errors can be traced from the latest step. The
algorithm used for implementing SoTE codes are important because it determines how
many results that can be generated from a SoTE. CBM approach can be implemented in
software such as MATLAB, Python, Mathematica, etc. MATLAB [16] appears to be very
useful for creating CB models because it is easy to integrate the functions and visualize the
effects of the change of the independent variable on the dependent variables. In MATLAB,
an input function is presented before the output function. The algorithm is also designed
to generate visualizations of the outputs from the SoTE.

Step 5: Simulate the SoTE to visualize the training case. Testing of the CB model involves
validation tests against experimental results and training cases. The model should predict
the training cases with a reasonable accuracy and significant precision for the model to be
applied further. The model can be optimized at this stage if the accuracy of prediction is
unacceptable.

Step 6: Choose a range of the parameter to be investigated. The nature of non-zero TEs (i.e.,
f(x) = g(x)) means that it cannot be solved explicitly like linear, quadratic, or polynomial
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equations with roots when f(x) = 0. For non-zero SoTEs, a range of value of a parameter
or variable can be simulated. The solution may require an iterative process [20] with a
range of values of the parameters and variables of the system. The parameters or variables
chosen depend on the aspect of the system under investigation.

Step 7: Perform parametric studies and virtual experimentation. Parametric studies are
important during model-based studies because they allow different scenarios that can affect
the system to be simulated and analyzed. It also helps to investigate optimal solutions as
well as carryout “what if” analysis. In a study [16], after validating the CB model of a PV
module, parametric studies were used to study the effect of solar radiation, temperature,
ideality factor, number of solar cells, and number of modules in parallel on the maximum
power point. Model-based parametric study is useful for gaining deep insights without
necessarily committing excessive resources in experimental studies. Yet, results from
parametric studies may inform the ultimate design of experimental studies.

Virtual experimentation is a novel computational approach for gaining deeper insights
into direct and indirect relationships between variables or a variable and other functions in
the SoTE. This is an advanced application of CBM approach. Virtual experimentation, as
the name implies, is a virtual implementation of steps similar to the steps performed in
the laboratory. It allows some parameters of the system to be kept constant while other
variables change. The effect of the changes on the system are then analyzed. There are
studies that have discussed how virtual experimentation can be implemented [14,16]. For
instance, if solar radiation increases, it may be of interest to investigate how power and
heat generation evolve in a PV module [14]. However, this may require incorporating
an additional user defined function and/or algorithm to the CB model. For instance, to
model solar photovoltaic and thermophotovoltaics, the input radiation function is the solar
radiation function in the case of solar photovoltaic systems, whilst the input radiation
function is the radiative heat flux in the case of thermophotovoltaic system. Although solar
radiation or thermal heat flux can cause the photovoltaic process in PV cells, parametric
study may reveal more insights into how they specifically differ during power generation.

Step 8: Analyze and report results. This step involves a critical analysis of the results from
Step 7 and reporting them in the required format. Reporting may encompass generating
internal reports for decision-making as well as reporting in scholarly publications. The
detailed steps for using CBM approach for solving SoTEs have satisfied the first objective
of this study.

A Hypothetical SoTE Including a Sine-Gordon Equation

Sine wave functions are applied in physics and engineering, particularly in oscilla-
tions, vibrations, and signal processing. As an example, TE is encountered in transverse
and longitudinal wave diffraction [21]. A study by Sun [22] proposed an exact solution
to Sine-Gordon equations with transcendental characteristics. Here, hypothetical Sine-
Gordon equations (utt = uxx + Sin(u)) [22,23], linear, and quadratic functions are solved
simultaneously. The SoTE including Sine-Gordon equations simulates how interferences
affect the output wavelength, frequency, and amplitude of the resultant wave function. The
SoTE expressed in Equation (1) composed of the six functions expressed in f1 to f6 where
f6 represents the output function, while f1 to f5 represent the input functions. Since f1,
a linear function, is a TE (i.e., f(x) = g(x)), solving it alongside other equations creates a
SoTE. f1 can be transmitted through the system and visualized through f6. Likewise, a
change in the parameters in f1 to f5 can be visualized in the output function. Here, the
functions are formulated to have inter-relationships in order to facilitate convergence so
that the output function ( f6) can predict the behavior of the wave as a function of the input
functions, parameters, and variables. The CB model of the SoTE represented in f1 to f6 is
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written with MATLAB codes. The output wave ( f6) is simulated for x1 ∈ R+ between 1
and 100 within which the input and output functions are visualized.⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f1 = x1 = v1x1.
f2 = x2 = k1x1

2.
f3 = x3 = −100x2 +

K2
K3

.
f4 = x4 = k4 + v2Sin(x1).
f5 = x5 = k5 – v3Sin(x4).

f6 = x6 = x2 x4.

(1)

where v1, v2 and v3 are variables, k1 to k5 are constants and x1 to x6 represents the functions
f1 to f6, respectively.

3. Results and Discussions

The results from simulating the CB model of the SoTE are presented in this section.
The variables v1 = 10, v2 = 50, v3 = 20, 000, and constants k1 = 2000, k2 = 15, 000, k3 = 10,
k4 = 20, and k5 = 20 for x1 = 1:0.5:100 was simulated so that individual functions can
be observed, as well as their overall effect on the output function. Figure 2a–e shows the
relationship between x1 with x2, x3, x4, x5, and x6. Considering that f1 is a TE, a possible
solution to it is that v1 = 1. However, suppose that the mathematical model represents a
process in which the parameter x1 undergoes a process change but it is expected that its
index should remain as unity. Then the input value of x1 into the process must be equal to
the output value of x1. f1 is satisfied if the value of x1, before and after the process change
remains the same. By this condition, the value of x1 can be an integer, decimal, or indices
since it will yield an index of 1 (i.e., v1 = x1

x1
= 1). Later, it will be shown that changing v1

in f1 affects the frequency of the Sine-Gordon wave f4.

Figure 2. Simulation of the CB model of SoTE for x1 = 1:0.5:100. (a)input quadratic function, (b) input quadratic function,
(c) resultant polynomial function, (d) induced interference (e) output wave function.
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A parametric study is performed to observe how a change in the variables affect the
output of the Sine-Gordon wave model. The variables v1 = 10, v2 = 50, v3 = 20, 000
and constants k1 = 2000, k2 = 15, 000, k3 = 10, k4 = 20, and k5 = 20 for x1 = 1:0.5:100
were maintained while the division of the scale of the wavelength was reduced from
x1= 1:0.5:100 to x1 = 1:5:100 to observe how the characteristics of the output wave would
change. Based on the result of the simulations, the outputs of f4, f5, and f6 significantly
changed, as shown in Figure 3c–e. f5 appears to have introduced the highest interference,
as shown in Figure 3d, although it was superimposed at the output, as shown in Figure 3e.

  

 

Figure 3. Simulation of the CB model of SoTE for x1 = 1:5:100. (a)input quadratic function, (b) input quadratic function, (c)
resultant polynomial function, (d) induced interference (e) output wave function.

Again, the variables v1 = 10, v2 = 50, v3 = 20, 000 and constants k1 = 2000,
k2 = 15, 000, k3 = 10, k4 = 20, and k5 = 20 for x1 = 1:0.5:100 were maintained while the
scale of the divisions of the wavelength was increased from x1 = 1:0.5:100 to x1 = 1:0.0005:100
to observe how the characteristics of the output wave would change over a larger scope.
There was a significant increase in the frequency of the wave, as shown in the outputs of
f4, f5, and f6 as visualized in Figure 4c–e. Still, the amplitude of the wave was virtually
bounded by the two quadratic functions (Figure 4a,b) with the resultant amplitude increas-
ing progressively, as shown in Figure 4e. This implies that the resultant discontinuity of
the two quadratic functions, when visualized from the relationship between x1 and x6, did
not eliminate their effects as they constrained the amplitude of the output wave even in
their discontinuous states.
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Figure 4. Simulation of the CB model of SoTE for x1 = 1:0.0005:100. (a)input quadratic function, (b) input quadratic function,
(c) resultant polynomial function, (d) induced interference (e) output wave function.

In addition to changing the wavelength of the sine functions over the range of x1,
other parameters can be adjusted so that their effects can be visualized. With x1 = 1:0.5:100,
v1 = 100, v2 = 5000, v3 = 20, 000, and k1 = 2000, k2 = 15, 000, k3 = 10, k4 = 20, k5 = 20,
the effect of the change in v1 and v2 in the characteristics of the wave was visualized.
Although the scale of the wavelength in Figures 2 and 5 were the same, the output waves
in Figures 2e and 5e differ significantly in their frequency when v1 and v2 changed. Based
on the analysis of the outputs, the reduced frequency was caused by the effects seen in
Figures 2c and 5c, due to f4. In all the cases, there was an increasing amplitude because of
the two quadratic input functions.

From the foregoing analysis in this section, the CBM approach has been used to
demonstrate how a hypothetical SoTE including the Sine-Gordon equation was solved to
the satisfaction of research objective 2. Also, parametric analysis, which showed how the
wavelength and the amplitude responds to the change in the variables, satisfy the research
objective 3.
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Figure 5. Simulation of the CB model of SoTE for x1 = 1:0.5:100 with variation in v1 and v2. (a)input quadratic function,
(b) input quadratic function, (c) resultant polynomial function, (d) induced interference (e) output wave function.

4. Application of SoTE in Photovoltaic and Thermophotovoltaic Modelling
and Simulation

This section presents the application of the CBM approach for modelling and sim-
ulation of photovoltaic and thermophotovoltaic systems, pursuant the achievement of
objective 4. The photovoltaic and thermophotovoltaic modelling and simulation involves
a SoTE because the computation of the output voltage of the PV cells involves a tran-
scendental function [16,24,25]. Equation (2) presents the functions that have been used to
create a predictive model for power generation characteristics of the PV module. The inter-
relationships between the equations are further highlighted. Bandgap function

(
Eg
)

[26] is
an input function in calculating the saturation current function (Is) [27]. The photocurrent
function (Iph) [28] is an input function for calculating the output current of the PV (I0). The
typical problem that qualifies this to be a SoTE is that the output voltage (V0) is within
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the function I0 which is already defining the output current [29]. In order to compute the
output power of PV (Po), the function is iterated over a range of the voltage (V0) [16].

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Eg = Eg(0)− αT2

T+ β .
Iph = ( Isc + KI (Tcell − Tref )× G

Gref
.

Is = Is,ref

[
Tcell
Tref

]3
exp

[
1
k

(
Eg

Tref
− Eg

Tcell

)]
.

I0 = IphNp − IsNp

[
exp

(
qV0

ANskT

)
− 1

]
.

Po = Io × Vo.

(2)

As an example, the effect of increasing number of solar cells in series (Ns) from 36 to
72 cells is simulated and presented in Figure 6. The open circuit voltage increased as the
number of cells increases leading to an increased maximum power point of the system.

Figure 6. CB model of photovoltaic module to predict maximum power points as the number of
solar cells changes.

Furthermore, the SoTE in Equation (2) which represents solar photovoltaic generation
can be utilized to create a thermophotovoltaic model [14]. The insolation (G) can be
replaced by Steffan–Boltzmman’s radiation, where the thermal heat flux is from an artificial
source with unique radiation surface characteristics. The utility of the CBM approach is
the opportunity to adapt the algorithm for implementing SoTE to the specific problem
under investigation. In the instant case of the application of CBM approach to implement
a numerical solution for SoTE encountered in photovoltaics, two illustrations are hereby
highlighted. Equation (2) acted as the power output in the integration of solar, thermal,
and electrical exergies of a photovoltaic module, as shown in Equation (3).

.
Qloss =

[
G × Acell × τglass

(
1 − 4

3
T

Tsun
+

1
3

(
T

Tsun

)4
)]

−
(

IphNp − IsNp

[
exp

(
qVpv

ANskT

)
− 1

] )
× Vpv . (3)

Apart from using solar radiation to generate excitation in PV cells, there are increasing
research efforts to use sources of heat to generate radiative heat transfer that can cause
excitations in PV cells. Regardless, thermophotovoltaic systems still depend on the physics
of photovoltaic power generation except that thermophotovoltaic systems are not limited
by the risks associated with the intermittency of solar radiation [30]. Equation (4) shows a
numerical integration of radiative heat transfer, power density output, and thermal losses
in the core of a thermophotovoltaic system [31].

.
Qlosses =

[
n2εσFAR

(
T4

rad − T4
pv

) ]
−
(

IphNp − IsNp

[
exp

(
qVpv

ANskTpv

)
− 1

] )
× Vpv . (4)
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Both Equations (3) and (4) are SoTEs and their solutions were facilitated by using
CBM approach. The two models are crucial models for investigating the thermodynamics
of photovoltaics and thermophotovoltaics.

5. Conclusions

This study provides detailed steps on how the CBM approach can be used to solve
SoTE with multi-functions and multi-variables. To formulate the steps, a hypothetical SoTE
including Sine-Gordon equations was used to illustrate the steps for solving a SoTE. Also,
a parametric analysis was performed to investigate how a change in the variables affected
the superposition of the waves, the wavelength, and the amplitude. From the results of
the simulations, the amplitude, wavelength, and frequency of the output wave reflects the
changes in the parameters and variables of the SoTE. This means that the properties of
the Sine-Gordon wave were altered when the variables and parameters in the CB model
of the waves were adjusted. The application of the CBM approach in the modelling and
simulation of photovoltaic and thermophotovoltaic systems was presented as practical
application of CBM approach in solving a complex SoTE. In conclusion, more functions and
variables of physical systems or phenomena can be added during mathematical modelling
of problems exhibiting the characteristics of a SoTE, using the steps outlined in this study.
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Nomenclature

A ideality constant
CBM code-based modelling
CB code-based
Eg bandgap energy
I0 output current of PV module
Iph photocurrent
Is saturation current of PV module
Isc short circuit current of PV module
k Boltzmann’s const. (1.38 × 10−23 J/K)
MPP maximum power point
Ns number of solar cells in series
Np number of solar cells in parallel
P0 output power of PV module
PV photovoltaic
q electron charge (1.602 × 10−19 C)
SoTE system of transcendental equations
STC standard test condition (25 ◦C, 1000 W/m2, AM 1.5)
T temperature
TE transcendental equation
Voc open circuit voltage
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Greek symbols

α solar cell material constant
β solar cell material constant
Subscripts

cell solar cell
ph photon
pv photovoltaic
ref reference
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Abstract: This study focuses on the simultaneous stiffening and percolating characteristics of the
interphase section in polymer carbon nanotubes (CNTs) systems (PCNTs) using two advanced models
of tensile modulus and strength. The interphase, as a third part around the nanoparticles, influences
the mechanical features of such systems. The forecasts agree well with the tentative results, thus
validating the advanced models. A CNT radius of >40 nm and CNT length of <5 μm marginally
improve the modulus by 70%, while the highest modulus development of 350% is achieved with the
thinnest nanoparticles. Furthermore, the highest improvement in nanocomposite’s strength (350%)
is achieved with the CNT length of 12 μm and interfacial shear strength of 8 MPa. Generally, the
highest ranges of the CNT length, interphase thickness, interphase modulus and interfacial shear
strength lead to the most desirable mechanical features.

Keywords: polymer CNTs systems; interphase section; percolation onset; mechanics

1. Introduction

Carbon nanotubes (CNTs) have attracted considerable interest due to their outstand-
ing physical and mechanical features [1–7]. Since the CNTs have an exceptionally high
Young’s modulus and tensile strength, they are used as fortifications in polymers to form
polymer nanocomposites (PCNTs) [8–12]. Nevertheless, the CNTs incline to form agglom-
erates owing to van der Waals attraction, which reduces their surface area, disturbs net
formation and eventually, weakens the mechanical features of nanocomposites [13]. There-
fore, a satisfactory CNT dispersion is essential to exploit the potential of nanoparticles as
reinforcing agents.

The joined net of the CNTs is produced after the percolation onset [14–16]. In fact,
the percolation onset is the minimum filler concentration that can lead to net formation
in a medium. Moreover, the electrical conductivity of the system increases prominently
after the percolation onset. Studies have attempted to obtain a low percolation onset by
altering material- and fabrication-related factors [16,17]. The percolation onset can affect
the mechanical features of systems [18–20]. Favier et al. [21] correlated the high shear
modulus of films composed of cellulose whiskers to the percolation onset and formation of
the net. Accordingly, development of the percolated microstructures significantly enhances
the mechanical features of such materials. Most models for estimating the percolation
onset have the functional form of a power law [22]. These models, which fairly predict the
electrical conductivity of composites, have been used to model the mechanical features of
composites since percolation of electrical conductivity tends to occur along with mechan-
ical percolation. However, they do not consider microstructural mechanisms other than
connectivity in the modeling process.
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The interface/interphase section in the system originates from a perturbation of media
in the presence of nanoparticles (interfacial bonding between phases) or interference in
the mobility of long polymer chains [23–25]. Actually, the extremely large surface area
per unit volume of nanoparticles and the robust interfacial connections lead to formation
of a significant third phase as an interphase section in the nanocomposites [26–30]. The
interphase is created between the polymer matrix and nanoparticles, which is different from
both the polymer and nanoparticles. The interphase section is tougher than the polymer
matrix reinforcing the nanocomposites. It was reported that the viscoelastic behavior of
the PCNTs depends on the interface state and consequently, the functionalization of CNT
surfaces is essential for using the CNTs [31]. Hence, the interphase should be considered
to realize unforeseen trends in the features of a nanocomposite. Figure 1 schematically
depicts a CNT and the surrounding interphase in a polymer system.

Figure 1. Schematic diagram of a CNT and the surrounding interphase in systems.

Many researchers have attempted to characterize the interface/interphase features.
Generally, it has been reported that the dimensions and stiffness of the interphase are the
main factors affecting the mechanical behavior of systems. Therefore, the interphase plays a
reinforcing role in the mechanical testing of systems. The percolation onset may occur in the
interphase section since it accelerates formation of a connected structure before the physical
assembly of nanoparticles. The positive effect of interfacial interaction on the percolation
onset has been confirmed and it is indicative of interphase percolation [32]. Interphase
percolation has been studied based on the extension of the filler-excluded volume [33,34].

Although existing studies have considered the reinforcing feature of the interphase,
percolation of the interphase section has not been clarified adequately. The interphase
section can accelerate the percolation onset in PCNTs, resulting in a new approach for
the formation of the network structure and significant improvement in the mechanical
features. In this work, two advanced models of the tensile modulus and strength of systems
are proposed to express the stiffening and percolating characteristics of the interphase in
PCNTs. Likewise, the excluded volume of nanoparticles assumes the role of the interphase
section in the percolation onset. The predictions of the proposed advanced models are
compared to the tentative ranks of several examples. Finally, the influences of various
factors on the mechanical features of systems are plotted considering the strengthening
and percolating roles of the interphase section. The advanced models are helpful and
valuable to predict and optimize the tensile modulus and strength of the PCNTs assuming
the stiffening and percolating characteristics of the interphase section.
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2. Upgrading of Models and Equations

The Halpin–Tsai model supposes the perfect stress transference between the polymer
medium and a filler and the random three-dimensional (3D) arrangement of the filler [35]
as:

EL = Em(
1 + 2αηϕ f

1 − ηϕ f
) (1)

ET = Em(
1 + 0.5ϕ f

1 − ϕ f
) (2)

η =
Ef /Em − 1

Ef /Em + 2α
(3)

α =
l
d

(4)

where EL and ET are the moduli in the longitudinal and transverse directions, respectively.
Moreover, Em and Ef denote the Young’s moduli of the polymer media and the filler,
respectively and ϕ f denotes the filler volume fraction. In addition, α is the aspect ratio of
the filler and l and d denote the length and diameter of the particles, respectively. Moreover,
ER the relative modulus (nanocomposite’s modulus per media modulus) for a random 3D
arrangement of the fillers is as follows:

ER =
1
5

EL
Em

+
4
5

ET
Em

(5)

This model does not consider the reinforcing effect of the interphase section. Therefore,
it incorrectly predicts the modulus of systems. The above equations can be improved by
assuming the interphase section. Accordingly, the interphase is considered as a separate
phase that reinforces the systems apart from the nanoparticles. In fact, the dimensions
and concentration of the interphase are assumed to be similar to those of the nanoparticles
since both the nanoparticles and the interphase section reinforce a system simultaneously.
The advanced equations are given as:

EL = Em(
1 + 2α f η f ϕ f + 2αiηi ϕi

1 − η f ϕ f − ηi ϕi
) (6)

ET = Em(
1 + 0.5ϕ f ++0.5ϕi

1 − ϕ f − ϕi
) (7)

η f =
Ef /Em − 1

Ef /Em + 2α f
(8)

ηi =
Ei/Em − 1

Ei/Em + 2αi
(9)

αi =
l
t

(10)

where the subscripts f and i denote the filler and the interphase, respectively. Moreover,
αi denotes the aspect ratio of the interphase around the nanoparticles and t denotes the
thickness of the interphase section. These equations express the reinforcing effect of the
interphase in systems. The interphase modulus (Ei) is an intermediate quantity between Ef
and Em and its value provides information on the quality of the interphase section. The
modulus of a nanocomposite, calculated using this model, depends on ϕ f , R, l, Ef and
Em, which are the factors of the classical Halpin–Tsai model, as well as on the additional
factors due to the interphase section, namely, t and Ei. The advanced model assuming the
interphase area does not consider the perfect stress transfer between the polymer and the
filler since it correlates the extent of stress transferred to the interphase features.
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For systems containing cylindrical fillers, the volume portion of the interphase ϕi is
defined [36] as:

ϕi = ϕ f [(1 +
t
R
)

2
− 1] (11)

where R is the radius of the nanotubes (R = d/2). By substituting Equation (11) into
Equations (6) and (7), the modulus can be correlated to the characteristics of the polymer
media, nanoparticles and interphase section.

Chatterjee [37] proposed a relationship between the percolation onset and the aspect
ratio of CNTs as follows:

ϕp ≈ 1
α f

(12)

By substituting αf (the aspect ratio of the CNT as l/d) from Equation (12) into Equation (6),
the modulus can be expressed in terms of the percolation onset. However, the interphase
section swells the CNT nets and accelerates the percolation onset. Assuming the existence of
interphase section, the percolation onset of nanoparticles in the PCNTs can be expressed in
terms of the CNT volume (V) and excluded volume around CNTs (Vex) [38] as:

ϕp =
V

Vex
=

πR2l + (4/3)πR3

32
3 π(R + t)3[1 + 3

4 (
l

R+t ) +
3
32 (

l
R+t )

2
]

(13)

Clearly, the CNT volume does not change due to the interphase part, while the
excluded volume is assumed to increase to R + t due to the interphase section. When this
equation is compared to the tentative rank of percolation onset, the value of t is obtained,
whereas Equation (12) does not consider the interphase section. Moreover, it is possible
to calculate the percolation onset in a sample using the CNT dimensions and interphase
thickness. It is necessary to precisely determine the percolation onset to compute the
minimum CNT concentration required for the formation of CNT nets in systems. We added
the interphase part to the terms EL, ET and ϕp and developed the terms ηi, αi and ϕi by
assuming the interphase section. All of these terms assume the role of the interphase section
in the stiffening of systems. By substituting ϕp from the above equation into Equations (6)
and (8) (αf = 1/ϕp), the modulus of PCNTs can be expressed by assuming the reinforcing
and networking effects of the interphase section.

We proposed a model to determine the tensile strength of the PCNTs by assuming the
interphase features in our previous work [39]:

σc = ηoα f τ(1 +
t
R
)ϕ f + σm[1 − (1 +

t
R
)

2
ϕ f ] (14)

where σm denotes the media strength. In addition, ηo is an orientation factor (1 for full
filler arrangement, 3/8 for arbitrary in-plane 2D location and 1/5 for haphazard 3D filler
organization). Moreover, τ denotes the interfacial shear strength. This equation considers
the reinforcing effect of the interphase in PCNTs.

By substituting αf (αf = 1/ϕp) from Equation (13) into the above model, the tensile
strength can be expressed by simultaneously considering the stiffening and percolating
influences of the interphase section. The relative strength (nanocomposite’s strength per
media strength) can be computed by rearranging Equation (14) as:

σR = 1 +
ηoα f τ(1 + t

R )ϕ f

σm
− (1 +

t
R
)

2
ϕ f (15)

Moreover, it was suggested that τ is correlated to the interfacial factor, B in the
Pukanszky model [39] as:

τ =
σm(B − 2.04)

ηoα f
(16)
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By substituting τ from Equation (16) into Equation (15), one can calculate the relative
strength as follows:

σR = 1 + (B − 2.04)(1 +
t
R
)ϕ f − (1 +

t
R
)

2
ϕ f (17)

Pukanszky [40] recommended the following model to determine the strength of a
system by:

σR =
1 − ϕ f

1 + 2.5ϕ f
exp(Bϕ f ) (18)

where B displays a measurable rank for filler–media interaction/linkage as:

B = (1 + Acd f t) ln(
σi
σm

) (19)

where Ac and df are the specific surface area and density of the filler, respectively. Similarly,
σi is the interphase strength. The Pukanszky model can be restructured as follows:

ln(σR
1 + 2.5ϕ f

1 − ϕ f
) = Bϕ f (20)

One can calculate B based on the linear association between ln(σR
1+2.5ϕ f

1−ϕ f
) and ϕ f .

The value of B is calculated using the tentative ranks of strength determined using the
latter relationship. This rank is then used in Equation (17) to express the tensile strength
in terms of the interphase thickness and other material factors. There are many types of
CNTs such as single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs).
The improved models can be applied for all types of long CNTs.

3. Results and Discussion

3.1. Confirming Views

The concurrent stiffening and percolating features of the interphase section in the
PCNTs are described in this section using the proposed advanced models. The models
are first applied to estimate the modulus and strength of some specimens described in the
literature. The tentative ranks of samples are fitted to the proposed models. Based on the
fitting results, the values of all of the interphase terms are calculated. The ranks of t and
Ei are obtained by fitting Equations (6)–(10) to the tentative ranks. Additionally, τ and B
are calculated by fitting Equations (16) and (17) to the tentative ranks of strength. These
equations may yield dissimilar values of each interphase term, but we report the average
and reasonable ranks for the examples considered herein. Moreover, the models are used
to demonstrate influences of all the factors on the modulus and strength of PCNTs.

3.2. Tensile Modulus

Figure 2 shows the tentative points of the relative modulus and the forecasts made
using the advanced model (Equations (6)–(10)) for the polyamide 6 (PA6)/multi-walled
carbon nanotubes (MWCNTs) [41], epoxy/MWCNTs [42], phenolic/MWCNTs [43] and
PA6/MWCNTs-NH2 [44] samples. The forecasted values agree well with the tentative
ranges, thus validating the ability of the advanced model to calculate the modulus. This
model usually provides superior forecasts at low volume proportions of nanoparticles since
the deficient dispersion of nanoparticles at high filler percentages may lead to deviations
from the forecasts.
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Figure 2. Tentative and theoretical ranks of relative modulus computed using the advanced model for (a) PA6/MWCNTs [41],
(b) epoxy/MWCNTs [42], (c) phenolic/MWCNTs [43] and (d) PA6/MWCNTs-NH2 [44] samples.

According to the expressed equations, the advanced model can forecast the modulus
using suitable values of several factors. The material factors, such as R, Em and l can be
found in the original references reporting the mentioned samples. Moreover, the rank of Ef
is reflected as 1000 GPa according to [45]. Consequently, the values of the interphase factors,
including t and Ei, can be computed by applying the tentative ranks to the advanced model.
This technique forecasts the interphase features using the tentative outputs of the modulus.

In the case of the PA6/MWCNTs, t and Ei are calculated as 4 nm and 10 GPa, respec-
tively. Moreover, in the case of the epoxy/MWCNTs sample, t = 14 nm and Ei = 70 GPa,
based on the fitting of the tentative data to the advanced model. Moreover, the computed
values of t and Ei for the phenolic/MWCNTs system are 25 nm and 130 GPa, respectively,
while those for the PA6/MWCNTs-NH2 system are 25 nm and 50 GPa. As identified, the
interphase thickness cannot be higher than the radius of gyration of the macromolecules.
Moreover, the interphase modulus varies between the values of the media modulus and
the filler stiffness, that is, Em < Ei < Ef. According to these criteria, the calculations of the
interphase features are correct. Therefore, the advanced model provides correct ranks for
the interphase attributes of the PCNTs.

The calculations indicate different ranks of the interphase within the reported samples.
The best interphase is formed in the case of the phenolic/MWCNTs system, while the
poorest interphase is formed in the case of the PA6/MWCNTs sample. The interphase
thickness and modulus depend on the interfacial interaction/attachment between the
polymer media and the nanoparticles [46,47]. Researchers have applied different methods
to improve the interfacial features such as modification of the nanofiller surface or use
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of compatibilizers [48]. According to the above calculations, the best and the poorest
interfacial features are obtained in the case of the phenolic/MWCNTs and PA6/MWCNTs
samples, respectively.

Figure 3 reveals the effects of R and l on the modulus, computed using the advanced
model at the normal ranks of Em = 2 GPa, ϕ f = 0.02, Ef = 1000 GPa, Ei = 100 GPa and
t = 10 nm. The modulus is low when R is large and l is small, while the thinnest nanotubes
yield the highest modulus. These comments indicate the undesirable effects of thick and
small nanotubes and the desirable effects of thin nanoparticles on the modulus of PCNTs.
ER improves by approximately 70 % upon the addition of nanotubes with R > 40 nm and
l < 5 μm, while we get the best relative modulus of 4.5 when R = 5 nm. Therefore, it is
significant to use thin nanoparticles when producing these systems. However, the nanopar-
ticles tend to aggregate/agglomerate [49,50], which increases their thickness. Thus, the
aggregation/agglomeration of nanoparticles should be prevented to control their thickness.

Figure 3. (a) The 3D and (b) contour plans of the influences of R and l on the relative modulus as predicted by the advanced
model when Em = 2 GPa, ϕ f = 0.02, Ef = 1000 GPa, Ei = 100 GPa and t = 10 nm.

A low rank of R increases the extent of the surface area of nanoparticles, which
increases the interfacial area/interaction, since smaller nanoparticles induce stronger inter-
facial contact with the polymer media owing to the analogous sizes of the nanoparticles and
the macromolecules, which is also called the nano-effect [51]. Therefore, smaller nanoparti-
cles increase the interfacial/interphase area and strengthen the interfacial communication.
Since a larger and stronger interphase leads to stronger reinforcement in such systems, the
advanced model properly predicts the influence of nanoparticle size on the modulus.

Figure 4 additionally illustrates the roles of the interphase factors in the relative
modulus, as determined using the advanced model at Em = 2 GPa, ϕ f = 0.02, Ef = 1000 GPa,
l = 5 μm and R = 10 nm. The maximum modulus is observed at the uppermost ranks of t
and Ei. The relative modulus of 7.5 is obtained with t = 25 nm and Ei = 250 GPa. However,
the modulus decreases as the values of the interphase features decrease, for example,
t = 5 nm and Ei = 50 GPa lead to ER = 2.7. Therefore, the interphase features directly affect
the modulus according to the advanced model. These ranges are commonsensical since the
interphase acts as a reinforcing agent in the systems.
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Figure 4. Relative modulus assuming interphase factors according to the advanced model at Em = 2 GPa, ϕ f = 0.02, Ef =
1000 GPa, l = 5 μm and R = 10 nm: (a) 3D and (b) contour plans.

A thicker interphase produces a stronger nanocomposite, since a thicker interphase
shows the stronger connections between the polymer matrix and nanoparticles, which can
bear and transfer more stress during loading [52,53]. In fact, a thick interphase reveals the
strong interfacial attachments reinforcing the samples. Moreover, the interphase section
helps accelerate the percolation onset in the PCNTs owing to the connections within the
section. Certainly, a denser interphase accelerates the formation of connections in the
interphase area, which advances the percolation onset. Therefore, the effect of interphase
thickness on the modulus is reasonable. Moreover, a strong interphase stops the separation
of nanoparticles from the polymer media in the loading process. Therefore, a greater
amount of stress can be transferred from the polymer media to the nanoparticles without
debonding, thus leading to a high range of modulus.

3.3. Tensile Strength

Figure 5 compares the tentative ranks of the relative strength with the forecasts obtained
using the advanced model (Equation (17)) for the poly (vinyl alcohol) (PVA)/MWCNTs [54],
polysilsesquioxane (PSE)/MWCNTs [55], chitosan/MWCNTs [56] and poly (phenylene sul-
fide) (PPS)/MWCNTs [57] systems. The forecasts follow the tentative ranges for all the
systems. Therefore, the advanced model can appropriately forecast the tensile strength.

By comparing the tentative ranks to the forecasts obtained using the proposed model,
the value of t can be calculated for the samples. To calculate τ from Equation (16), B should
be determined using the tentative ranks of strength and the Pukanszky model. B is calcu-
lated as 17.18, 145.5, 118.3 and 26.43, respectively, for the PVA/MWCNTs, PSE/MWCNTs,
chitosan/MWCNTs and PPS/MWCNTs systems. With the abovementioned values, the
values of τ are calculated to be 3.8, 3.54, 12.9 and 1.18 MPa, respectively for the mentioned
samples. Based on the values of B and those of other factors, such as R, l and σm reported in
the original references, the values of t are predicted as 4, 7, 8 and 10 nm, respectively, for the
PVA/MWCNTs, PSE/MWCNTs, chitosan/MWCNTs and PPS/MWCNTs systems. Hence,
the advanced model can be used to compute t by assuming the fortifying and percolating
characteristics of the interphase section. Moreover, the advanced model can be used to com-
pare the interphase conditions of several samples. The interphase condition is illustrative
of interfacial interaction/attachment, which controls the mechanical features of a system.
Among the samples, the PPS/MWCNTs system exhibits the best interfacial/interphase
features, while the PVA/MWCNTs system shows the poorest interphase section.
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Figure 5. Comparison between the tentative and theoretical (Equation (17)) ranks of relative strength for (a)
PVA/MWCNTs [54], (b) PSE/MWCNTs [55], (c) chitosan/MWCNTs [56] and (d) PPS/MWCNTs [57] systems.

Figure 6 shows the influences of R and ϕ f on the relative strength using Equation
(17) with σm = 40 MPa, l = 10 μm, B = 30 and t = 10 nm. As expected, a high volume
proportion of thin nanoparticles increase the strength greatly. The σR rank of 4.5 is achieved
with R = 5 nm and ϕ f = 0.05, whereas σR = 1.3 is obtained for R > 25 nm and ϕ f < 0.014.
Accordingly, the size and concentration of the CNTs significantly alter the strength of
systems. Small nanoparticles generate a large surface area, thus intensifying the inter-
facial interaction (nano-effect) [51]. The interphase power depends on the interfacial
communication/linkage and therefore, thin CNTs strengthen the interphase area in sys-
tems. Consequently, thin nanotubes increase the strength of systems owing to the higher
ranks of interfacial range/contacts/bonding between thinner CNTs and polymer media.

The overall strength of a sample depends on the interfacial/interphase features be-
tween the polymer media and the nanofillers [58,59] since the stress is transferred through
the interphase section. Moreover, a high nanoparticle content leads to a significant increase
in strength since the strength of the CNTs is considerably higher (11–50 GPa) than that of
polymer media (up to 60 MPa). However, good dispersion of nanoparticles is assumed
in the advanced model and the aggregation/agglomeration of nanoparticles at high ϕ f
may reduce the strength of a system. Generally, the advanced model shows the reasonable
effects of R and ϕ f on the strength by considering the stiffening and percolation of the
interphase section.
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Figure 6. Influences of R and ϕ f on the relative strength as determined using the advanced model: (a) 3D and (b) contour plots.

Figure 7 shows the influences of l and τ on the relative strength as determined using
the advanced model at σm = 40 MPa, ϕ f = 0.02, R = 10 nm and t = 10 nm. The highest
relative strength of 4.5 is expectedly observed at the maximum ranks of l and τ, that is,
l = 12 μm and τ = 8 MPa. The poorest relative strength of 1.25 is observed at the least
ranks of l = 4 μm and τ = 2 MPa. Consequently, l and τ positively influence the strength of
the systems.

Figure 7. Influences of l and τ on the relative strength (Equation (17)) at σm = 40 MPa, ϕ f = 0.02, R = 10 nm and t = 10 nm:
(a) 3D and (b) contour plots.

A long nanotube can promote the interfacial extent, which enhances the mechanical
involvement between the polymer media and the nanoparticles. Moreover, it increases the
aspect ratio, which increases the overall system’s strength [60]. Furethermore, a high rank of
the interfacial shear strength τ indicates the strong interfacial interaction/adhesion, which
leads to formation of a strong interphase. As stated, a strong interphase mainly strengthens
the system due to the fortifying efficiency of the interphase as the third phase in addition
to the polymer media and the nanoparticles. The reinforcing effect of the interphase in
systems has been extensively validated in tentative and theoretical studies [61,62].

Figure 8 additionally shows the relative strength determined using the advanced
model in terms of the interfacial/interphase factors, t and B at σm = 40 MPa, ϕ f = 0.02,
l = 10 μm and R = 10 nm. The worst outputs are obtained for the lowest ranges of these
factors, while the best outputs are obtained for the highest values of t and B. Consequently,
these factors directly affect the tensile strength and a significant strength enhancement is
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achieved with a thick interphase and high B, that is, substantial interfacial features. The
maximum σR of 6.5 is observed at t = 25 nm and B = 90, whereas a slight improvement
in strength is achieved with the lowest ranks of t and B. This trend is sensible since the
high ranks of these factors promote the reinforcing and percolation effects of the interphase
section. A denser interphase leads to a greater interphase concentration in systems, which
increases the strength.

Figure 8. (a) The 3D and (b) contour plots of the relative strength in terms of t and B as determined using the advanced
model at σm = 40 MPa, ϕ f = 0.02, l = 10 μm and R = 10 nm.

The positive influence of a thick interphase on the mechanical features of systems has
been established in the literature [35,63]. Likewise, a thick interphase easily percolates in a
system, which accelerates the percolation onset. The networking of nanoparticles improves
the mechanical features considerably. Consequently, it is expected that a thicker interphase
will increase the strength. The direct relationship between the strength of a nanocomposite
and B is common in systems, according to the Pukanszky model (Equation (18)). The rank
of B reveals the features of the interphase section, such as t and σi (Equation (19)). A higher
value of B indicates a thicker and stronger interphase section, which leads to a stronger
system based on the strengthening and percolating influences of the interphase section.
Hence, the advanced equations accurately illustrate the effects of t and B on the strength of
a nanocomposite.

4. Conclusions

Two models were improved for determining the modulus and strength of systems and
used to investigate the fortifying and percolating characteristics of the interphase section in
PCNTs. The forecasts generated by both models exhibited a good match with the tentative
ranges, which validated the modulus and strength values calculated using the advanced
models. In addition, the tentative ranges and the advanced models were used to determine
the interphase features. The undesirable effects of thick and small nanotubes and the
desirable effects of thin nanoparticles on the modulus were observed. The ER improved by
only approximately 70% when R > 40 nm and l < 5 μm, but the maximum relative modulus
of 4.5 was obtained with the lowest value of R of 5 nm. Likewise, the best modulus was
detected with the highest ranges of t and Ei. The highest relative modulus of 7.5 was
achieved with t = 25 nm and Ei = 250 GPa. Consequently, t, Ei and l positively influenced
the stiffness of systems. A high concentration of thin nanoparticles led to considerable
increase in strength, as determined using the advanced model. A σR grade of 4.5 was
obtained with R = 5 nm and ϕ f = 0.05, whereas σR = 1.3 was obtained with R > 25 nm and
ϕ f < 0.014. The greatest relative strength of 4.5 was acquired with the maximum ranges of
l and τ. However, the poorest relative strength of 1.25 was observed at the minimum series
of l = 4 μm and τ = 2 MPa. Moreover, the best grades of the advanced model for strength
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were obtained with the highest ranks of t and B since they indicate the magnitude of the
interfacial/interphase features. Generally, the strength of a nanocomposite meaningfully
improves as the values of ϕ f , l, τ, t and B increase largely, although a high value of R (thick
CNTs) decreases the strength.
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Abstract: According to finite-time thermodynamics, an irreversible high temperature proton ex-
change membrane fuel cell (HT-PEMFC) model is established, and the mathematical expressions
of the output power, energy efficiency, exergy efficiency and ecological coefficient of performance
(ECOP) of HT-PEMFC are deduced. The ECOP is a step forward in optimizing the relationship
between power and power dissipation, which is more in line with the principle of ecology. Based
on the established HT-PEMFC model, the maximum power density is obtained under different
parameters that include operating temperature, operating pressure, phosphoric acid doping level and
relative humidity. At the same time, the energy efficiency, exergy efficiency and ECOP corresponding
to the maximum power density are acquired so as to determine the optimal value of each index
under the maximum power density. The results show that the higher the operating temperature and
the doping level, the better the performance of HT-PEMFC is. However, the increase of operating
pressure and relative humidity has little effect on HT-PEMFC performance.

Keywords: high temperature proton exchange membrane fuel cell; exergy analysis; ecological
analysis; ecological coefficient of performance

1. Introduction

In recent years, proton exchange membrane fuel cells (PEMFCs) have been considered
efficient and clean energy conversion devices. PEMFCs have been widely used in home
equipment and automobiles [1] due to the advantage of higher power density, lower
emission and noise. According to the operating temperature, PEMFC can be divided into
low temperature proton exchange membrane fuel cell (70–95 ◦C) and high temperature
proton exchange membrane fuel cell (120–200 ◦C). HT-PEMFC has the superiority of the
accelerated kinetics of electrode reaction [2], higher CO tolerance [3], and simpler water
and heat management systems [4,5].

At present, the research on HT-PEMFC mainly includes materials [6–8] and prepara-
tion methods [9,10]. Few people have used the first and second laws of thermodynamics to
analyze and optimize the performance of HT-PEMFC. However, thermodynamic analysis
and optimization of LT-PEMFC have been mature. Miansari et al. [11], Ozen et al. [12] and
Esfeh et al. [13] verified that the operating temperature has a significant effect on the perfor-
mance improvement of PEMFC. Li et al. [14,15] established the finite-time thermodynamic
model of irreversible PEMFC, which considered polarization loss and leakage current. The
effects of operating temperature, operating pressure and proton exchange membrane water
content on the optimal performance of the irreversible proton exchange membrane fuel cell
were numerically studied. Wei et al. [16] took the entropy production rate and ecological
coefficient of performance of PEMFC as the objective function for numerical analysis,
while optimal current density ranges were determined by different optimization objectives.
Midilli et al. [17] found that higher current density and proton film thickness leads to a
decrease in exergy efficiency of PEMFC. If the film thickness was the same, the exergy
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efficiency of PEMFC is improved with the increase of operating pressure and the decrease
of current density. Xu et al. [18] investigated exergetic sustainability indicators (ESI) of
PEMFC under different parameters. Increasing the operating temperature and pressure
decreases the irreversibility of PEMFC and increases exergetic sustainability indicators.

Therefore, the study of parameters based on thermodynamics is very important to
boost the performance of PEMFC [11–23], thus, it has been applied to the irreversibility
analysis and optimization of HT-PEMFC. Barati et al. [24] studied the influence of air
and hydrogen flow rate, operating temperature and doping level of phosphoric acid on
HT-PEMFC performance. The doping level has a significant effect on the performance
improvement, mainly because the doping level of the membrane affected the proton
conductivity of the membrane.

Lu et al. [25] established a mathematical model of HT-PEMFC and analyzed the exergy
performance of the HT-PEMFC power generation system. Consequently, an improved
farmland fertility optimization design method was put forward for optimizing the exergy,
irreversibility and output power. Compared with the original design method and genetic
algorithm, the number of iterations in the improved method was less, optimization speed
was faster, and the output power density increased by 5.2 and 2.9%, respectively.

Xia et al. [26] investigated the effects of catalyst layer thickness, operating temperature,
and proton exchange membrane thickness on HT-PEMFC performance. The results showed
that the operating temperature has a significant effect on the performance. Operating
temperature at 160–180 ◦C not only ensured the fuel cell performance, but also reduced
maintenance costs at high temperatures. The thinner thickness of the catalyst layer and
proton exchange membrane had a positive influence on the performance of HT-PEMFC,
but it was easily damaged.

Guo et al. [19] analyzed the energetic, exergetic and ecological performance of HT-
PEMFC and mathematical models of power density, entropy production rate and ecological
coefficient of performance were established based on finite time thermodynamics theory.
The results showed that the operating temperature and doping level have significant effects
on the performance of HT-PEMFC. According to the optimization criterion of maximum
power density, the optimization interval of current density is found to be the left of the
current density corresponding to the maximum power density.

Lin et al. [27] investigated the exergy efficiency of HT-PEMFC using the meta-heuristic
technique, and an improved collective animal behavior algorithm was utilized to evalu-
ate and optimize the thermodynamic irreversibility, exergy efficiency and output power.
Compared with the standard collective animal behavior algorithm and genetic algorithm,
the proposed improved collective animal behavior algorithm increased the output power
density by 1.2 and 12.1% and the exergy efficiency increased by 22.9%.

In this paper, firstly, a finite-time thermodynamic was introduced to analyze the
irreversibility of HT-PEMFC, and a mathematical model which took irreversible losses and
leakage current into consideration was established. Secondly, according to the maximum
power density criterion, the optimization interval of current density was obtained and
the optimal output efficiency, exergy efficiency and ecological coefficient of performance
corresponding to the maximum power density were achieved. At the same time, the effects
of operating temperature, operating pressure, relative humidity and doping level on the
performance of HT-PEMFC were studied.

2. Thermodynamic Model

2.1. Working Principle of HT-PEMFC

As shown in Figure 1, HT-PEMFC can directly convert the chemical energy containing
hydrogen and oxygen into electrical energy and heat energy. The whole system mainly includes
a cathode, an anode and electrolyte. The reaction of anode and cathode show as follows:

Anode reaction : H2 → 2H+ + 2e− (1)
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Cathodic reaction : 2H+ +
1
2

O2 + 2e− → H2O + heat (2)

Total reaction : H2 +
1
2

O2 → H2O + heat + electricity (3)

Figure 1. Working principle of an HT-PEMFC system fueled with H2 and O2.

2.2. Reversible Potential of HT-PEMFC

For HT-PEMFC, reversible potential [28,29] shows as follows:

Er = E0
r +

ΔS
nF

(T − 298.15) +
RT
nF

ln(
pH2 p0.5

O2

pH2O
) (4)

in Equation (4), E0
r is the ideal standard potential which value is 1.185 V, ΔS is the change

of standard molar entropy, T is the operating temperature of HT-PEMFC, R is the gas
constant, pH2 , pO2 and pH2O are partial pressures of H2, O2 and H2O, respectively.

ΔS
n

= −18.449 − 0.01283·T (5)

where ΔS is related to the operating temperature.

2.3. Overpotential of HT-PEMFC

For HT-PEMFC, due to three types of overpotential containing activation overpotential,
concentration overpotential and ohmic overpotential, its actual output voltage is generally
less than the reversible potential.

• Activation overpotential [29,30];

Eact =
RT
nαF

ln(
j + jleak

j0
) (6)

ln jleak =

(
−2342.9

1
T
+ 9.0877

)
(7)

where α is charge transfer coefficient, jleak is leakage current density, j0 is exchange
current density.
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• Concentration overpotential [28];

Econ =

(
1 +

1
α

)
RT
nF

ln(
jL

jL − j
) (8)

where j is operating current density, jL is limiting current density [29].
• Ohmic overpotential [31];

Eohm = j
tmem

σmem
(9)

where tmem is the thickness of the electrolyte, σmem is the proton conductivity of the
electrolyte [31].

σmem =
A0B

T
e
−bact

RT (10)

A0 = 68DL3 − 6324DL2 + 65750DL + 8460 (11)

B =

⎧⎨
⎩

1 + (0.01704T − 4.767)RH 373.15K ≤ T ≤ 413.15
1 + (0.1432T − 56.89)RH 413.15K < T ≤ 453.15
1 + (0.7T − 309.2)RH 453.15 < T ≤ 473.15

(12)

bact = −619.6DL + 21750 (13)

|noindent where DL is the doping level of the electrolyte, RH is the relative humidity
of the electrolyte [29].

• Output voltage;

According to Equations (1)–(13), the output voltage [32] of the HT-PEMFC can be
derived as follows:

U = Erev − Econ − Eact − Eohm= Erev −
(

1 +
1
α

)
RT
nF

ln(
jL

jL − j
)− RT

nαF
ln(

j + jleak
j0

)− j
tmem

σmem
(14)

2.4. Finite-Time Thermodynamic Performance Analysis of HT-PEMFC

All analyses are based on the following assumptions:

1. With the HT-PEMFC system operating in a quasi-steady state, provided that the oper-
ating temperature and operating pressure are continuously changing, it is assumed
that the operating pressure and operating temperature are constant at a fixed time;

2. The enthalpy of hydrogen entering the HT-PEMFC determines the maximum working
capacity of the HT-PEMFC;

3. The exergy [33] mainly contains chemical exergy εchem and physical exergy εphy, the
kinetic and potential exergy of the hydrogen are neglected

ε = εchem + εphy (15)

4. The energy required for compressing reactants is ignored.

• Output power density [34];

The output power density of the HT-PEMFC can be expressed as follows:

P = jU (16)

• Output efficiency [35];

For any energy conversion device, the thermal efficiency is the energy output divided
by the total energy input. Therefore, the output efficiency of HT-PEMFC can be shown as
Equation (16):

η =
P

−Δ
.

H
(17)
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where Δ
.

H is the total energy absorbed from hydrogen and oxygen.

Δ
.

H = − jAΔh
nF

(18)

where Δh is the change of molar enthalpy.

• Exergy efficiency [36,37];

Exergy is an indicator used to evaluate energy quality. Exergy efficiency of HT-PEMFC,
ϕ, is defined as the utilization degree of exergy, can be represented by:

ϕ =
PA
.
εin

(19)

.
εin =

jA
nF
(
εH2 + 0.5εO2

)
(20)

where
.
εin is the total input exergy rate of H2 and O2; A is the electrode effective surface

area; εH2 and εO2 are the standard chemical exergy of H2 and O2.

• Ecological coefficient of performance [14,23];

In addition to energetic and exergetic analyses, the energy conversion performance
of HT-PEMFC can also be analyzed by ecological standards. Angulo [38] proposed the
ecological criterion function E = P−TL

.
δ based on the heat engine, where P is output power,

TL
.
δ reflects the power dissipation of the engine. The objective function not only optimizes

the output power, but also takes the power dissipation into account, which makes the
objective conform to the principle of long-term ecology. On this basis, Ust [39,40] presented
a new ecological objective function, known as the ecological coefficient of performance
(ECOP), which is the ratio of output power to power dissipation. Compared with the
previous ecological objective function, the relationship between output power and power
dissipation is improved. Its expression is as follows:

ECOP =
PA

T0
.
δ

(21)

.
δ =

−Δ
.

H − P
T

(22)

2.5. Finite-Time Thermodynamic Optimization of HT-PEMFC

Since the output power and output efficiency of HT-PEMFC cannot reach the maxi-
mum at the same time, in order to minimize the power consumption of HT-PEMFC, the
maximum output power is taken as the optimization objective. The power density of
HT-PEMFC first increases and then decreases with the continuous increase of current
density. Therefore, within a certain minimum range of current density, the power density
of HT-PEMFC is bound to reach the maximum.

The power density of HT-PEMFC is related to current density j, operating temperature
T, operating pressure p, relative humidity RH and phosphoric acid doping level DL, which
can be written as

P = f (j, T, p, RH, DL) (23)

When p, RH and DL are constant, the power density is only related to current density
and operating temperature, which can be presented as

P1 = h(j, T) (24)

When the operating temperature of HT-PEMFC is T1, the power is only related to
current density j, and the maximum power density is obtained, and the corresponding
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current density is j1. Therefore, the maximum output power density at the operating
temperature T1 can be shown as

P∗
1 ,max = maxg(j) (25)

By analogy, when the operating temperature of HT-PEMFC is Tn, the maximum power
density is P∗

n, max, and the corresponding current density is jn. Thus, the relationship between
the maximum output power density P∗

n, max of HT-PEMFC and operating temperature Tn
is deduced. In addition, similar methods can be used to study the influence of operating
pressure, doping level and relative humidity on the maximum output power density of
HT-PEMFC. The relationship between these parameters and the maximum output power
density can also be acquired, which can further boost the power density of HT-PEMFC.

2.6. Output Efficiency, Exergy Efficiency and ECOP Based on Maximum Output Power Density

During the operation of HT-PEMFC, the output efficiency η decreases with the increase
of current density j. Therefore, the output efficiency reaches the maximum value in the low
current density region, but the power density is low. In order to ensure the lowest power
dissipation of HT-PEMFC, the current density jn, corresponding to the maximum power
density, is obtained according to the optimization criterion of the maximum power density.
Thus, the output efficiency of HT-PEMFC corresponding to jn is the most efficient. In order
to further improve the performance of HT-PEMFC, the effects of operating temperature,
operating pressure, relative humidity and doping level on the output efficiency of HT-PEMFC
are studied, and the relationship between these parameters and output efficiency is obtained.

As can be seen from the curve of exergy efficiency ϕ and ecological coefficient of
performance coefficient ECOP of HT-PEMFC, with the continuous work of HT-PEMFC,
ϕ and ECOP decrease with the increase of current density. Therefore, the method of
obtaining the relationship between ϕ and ECOP and different parameters is similar to that
of obtaining the relationship between output efficiency and different parameters.

2.7. Comparsion of Optimization Analysis of Different Objective Functions

Different objective functions include the maximum output power density P, the
optimal output efficiency η at the maximum output power density, the optimal exergy effi-
ciency φ at the maximum output power density and ecological coefficient of performance
ECOP at the maximum output power density, where P, η, φ and ECOP are dimensionless
functions [41]. The dimensionless maximum output power density of HT-PEMFC can be
expressed as follows:

P =
Pmax

P2,max
(26)

where Pmax is the maximum output power density of HT-PEMFC at different operating
temperature, and P2,max is the maximum output power density of HT-PEMFC at the
operating pressure p = 2 atm. The dimensionless method of output efficiency, exergy
efficiency and ecological coefficient of performance corresponding to the maximum power
density is similar to that of the dimensionless maximum power density.

3. Results and Discussion

3.1. Model Verification

Figure 2 compares the predicted model voltage and the experimental data [42] of HT-
PEMFC at 423 K and 448 K (p = 1 atm; DL = 5.6; RH = 0.38%), the experimental data are in
good agreement with the predicted data. Figure 3 shows the relationship between reversible
potential (Erev), concentration overpotential (Econ), activation overpotential (Eact), ohmic
overpotential (Eohm), and output voltage (U) with current density. The reversible potential
is a constant independent of current density. The three kinds of over-potential increase
with the increase of current density, the concentration overpotential increases exponentially,
the activation overpotential grows logarithmically, and the ohmic overpotential grows less.
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In the low current density region, the rapid decline of output voltage is mainly due to the
rapid increase of activation overpotential. In the region of high current density, the output
voltage drops rapidly, mainly because the concentration overpotential increases rapidly.

U
 (V

)

Figure 2. Comparisons of the predicted model voltage and experimental data.

Figure 3. The relationship between reversible potential, concentration overpotential, activation
overpotential, ohmic overpotential and current density.

3.2. Influences of the Operating Temperature

Figure 4a shows the variation of the dimensionless maximum power density of HT-
PEMFC with operating temperature under different pressure. It can be seen that the
maximum power density of the irreversible HT-PEMFC improves continuously with the in-
crease of operating temperature. This is mainly because, as the operating temperature rises,
the exchange current density grows, so the activation overpotential decreases. At the same
time, the increase of operating temperature will enhance the proton conductivity, which
will reduce the ohmic overpotential of HT-PEMFC. Therefore, the power loss produced
by ohmic overpotential and activation overpotential will be cut down. Therefore, as the
growth of operating temperature, the maximum power density of HT-PEMFC will increase
constantly. When the operating pressure is 1 atm and the operating temperature is 403 K,
the corresponding maximum power density is 3071.58 W m−2. When the operating tem-
perature rises up to 473 K, the corresponding maximum power density is 5291.60 W m−2.
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This indicates that the maximum power density of HT-PEMFC increases by 72%, when the
operating temperature of HT-PEMFC increases from 403 K to 473 K. The maximum power
density increases by 70% and 73%, respectively, at 2 atm and 3 atm. The result shows that
HT-PEMFC can significantly increase its maximum power density in a suitable operating
temperature range.
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Figure 4. (a) P varying with operating temperature; (b) η varying with operating temperature; (c) φ varying with operating
temperature; (d) ECOP varying with operating temperature.

Figure 4b–d reflect the η, φ and ECOP corresponding to the maximum power density
of HT-PEMFC. It is obvious that the increase of operating temperature can improve the
output efficiency, exergy efficiency and ECOP of the irreversible process of HT-PEMFC.
When the operating pressure is 1 atm and the operating temperature is 403 K, the corre-
sponding output efficiency is 22.3%, exergy efficiency is 25.93% and ECOP is 37.23%. When
the operating temperature is 473 K, the corresponding output efficiency is 26.46%, exergy
efficiency is 31.3%, and ECOP is 55.97%. This shows that when the operating temperature
of HT-PEMFC increased from 130 ◦C to 200 ◦C, its output efficiency, exergy efficiency and
ECOP increased by 19, 21 and 50%, respectively. The increase of HT-PEMFC temperature
accelerates the passage rate of protons and increases the conductivity of the proton ex-
change membrane, so the power generation of HT-PEMFC boosts, as well as the output
efficiency and exergy efficiency. As the power consumption lessens, the entropy generated
decreases and the output power increases, so the ratio of output power to power consump-
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tion increases, that is, the ecological coefficient of performance ECOP improves. However,
though raising the operating temperature can improve the performance of HT-PEMFC, it
can also cause many problems, such as high cost, poor stability, and long start-up time.

3.3. Influences of the Operating Pressure

Figure 5a shows that P of HT-PEMFC changes with operating pressure at different
operating temperatures. Obviously, with the increase of operating pressure, the maxi-
mum power density of irreversible HT-PEMFC is continuously increasing. Owing that as
the exchange current density rises with the rise of the operating pressure, the activation
overpotential will decrease and the reversible potential will boost. Therefore, with the in-
crease of operating pressure, the irreversibility of HT-PEMFC decreases and the maximum
power density of HT-PEMFC increases continuously. When the operating temperature is
453 K and the operating pressure is 1 atm, the corresponding maximum power density
is 4515.13 W m−2. When the operating pressure rises up to 3 atm, the corresponding
maximum power density is 4919.07 W m−2. From the numerical point of view, when the
operating temperature is 453 K and the operating temperature of HT-PEMFC increases
from 1 atm to 3 atm, the maximum power density of HT-PEMFC only increases by 9%.
This shows that operating pressure has little influence on HT-PEMFC.
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Figure 5. (a) P varying with operating pressure; (b) η varying with operating pressure; (c) φ varying with operating pressure;
(d) ECOP varying with operating pressure.
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It can be seen from Figure 5b–d that η, φ and ECOP correspond to the maximum power
density of HT-PEMFC. The increase of operating pressure can slightly improve the output
efficiency, exergy efficiency and ECOP of the irreversible process of HT-PEMFC. When the
operating temperature of HT-PEMFC increased from 1 atm to 3 atm, its output efficiency,
exergy efficiency and ECOP increased by 5, 6 and 9%, respectively. According to the
numerical analysis, the increase of operating pressure does not improve the performance
of HT-PEMFC as significantly as the increase of operating temperature. In addition,
increasing the operating pressure consumes extra power to compress the reactants in the
inlet, resulting in higher costs.

3.4. Influences of the Doping Level

As shown in Figure 6, with the increase of current density, ohmic overpotential will
improve. When doping level rises, the proton conductivity of HT-PEMFC increases, which
reduces the ohmic overpotential. According to the relationship between P and DL in
Figure 7a, it can be observed that the maximum power density raises endlessly with the
increase of doping level. This is mainly because, as the rise of doping level, the ohmic
overpotential decreases and the reversible potential improves. Hence, if the doping level
of HT-PEMFC is raised appropriately, the maximum power density will become larger.
When the doping level is 2, the corresponding maximum power density is 1868.52 W m−2.
When the doping level is 10, the corresponding maximum power is 4694.53 W m−2. It is
clear that when the doping level increases from 2 to 10 and relative humidity is 3.8%, the
maximum power density of HT-PEMFC increases by 150%. This indicates that DL has a
significant effect on the performance of HT-PEMFC.

2 4 6 8 10
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0.4

0.5

0.6
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m

 (V
)

j=5,000 A m 2

j=10,000 A m 2

j=15,000 A m 2

Figure 6. The relationship between ohmic overpotential and doping level at different current density
(T = 453 K, p = 1 atm, RH = 3.8%).
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Figure 7. (a) P varying with doping level; (b) η varying with doping level; (c) φ varying with doping level; (d) ECOP
varying with doping level.

Figure 7b–d show the η, φ and ECOP corresponding to the maximum power density
of HT-PEMFC varying with doping level at different relative humidity. It can be seen
that when the doping level increases, the output efficiency, exergy efficiency and ECOP of
HT-PEMFC all showed a trend of decreasing at first and then increasing. This is mainly
because the current density of the maximum is different under different doping levels.
When the doping level is small, the current density is low and the gap of current density
of the maximum power density at different doping levels is bigger, thus causing ohmic
potential increases with the increase of DL. When the doping level is high, the current
density corresponding to the maximum power density is in the region of high current
density, and the difference of the current density of the maximum power density is small
at different doping level, so the ohmic overpotential decreases with the increase of DL,
leading to the increase of reversible potential. When the relative humidity of HT-PEMFC is
3.8% and the doping level increases from 2 to 10, its output efficiency, exergy efficiency and
ECOP increases by 5, 5 and 6%, respectively. This indicates that doping level significantly
improved the maximum power density, but has little impact on output efficiency, exergy
efficiency and ECOP.
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3.5. Influences of the Relative Humidity

Figure 8a shows the change of P with relative humidity at different temperatures. It
can be seen that with the increase of relative humidity, the maximum power density of
irreversible HT-PEMFC rises. The main reason is that with the increase of relative humidity,
the conductivity of the proton exchange membrane at high temperature will boost, resulting
in the decrease of ohmic overpotential. When RH is 0, the corresponding maximum power
density is 4064.78 W m−2. When RH rises up to 7.6%, the corresponding maximum power
density is 4168.1 W m−2. This indicates that the maximum power density of HT-PEMFC
increases by only 2% when the operating temperature is 453 K and the relative humidity
increases from 0 to 7.6%. As shown in Figure 9, although relative humidity can improve
proton conductivity, increasing relative humidity has less effect on the ohmic overpotential
than the doping level. Therefore, relative humidity has little effect on the maximum power
density of HT-PEMFC.
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Figure 8. (a) P varying with relative humidity; (b) η varying with relative humidity; (c) φ varying with relative humidity;
(d) ECOP varying with relative humidity.
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Figure 9. The relationship between ohmic overpotential and relative humidity at different current
density (T = 453 K, p = 1 atm, DL = 8).

Figure 8b–d reflect η, φ and ECOP corresponding to the maximum power density of
HT-PEMFC varying with relative humidity at different temperatures. It can be seen from
the figures that the three indexes all show a monotonically increasing trend. When the
relative humidity is 0 and the operating temperature is 453 K, the corresponding output
efficiency is 24.5%, exergy efficiency was 25.1%, and ECOP is 48.16%. When the relative
humidity was 7.6%, the corresponding output efficiency was 24.68%, exergy efficiency was
26%, and ECOP was 48.667%. It reflects that when the relative humidity of HT-PEMFC
increased from 0 to 7.6%, its output efficiency, exergy efficiency and ECOP increased by 0.7,
4 and 1%, respectively. Compared with the consequences of doping levels, the numerical
results of relative humidity are significantly lower. Therefore, relative humidity has little
effect on the performance improvement of HT-PEMFC.

4. Conclusions

In this paper, the irreversibility caused by polarization and leakage current is considered,
and the finite-time thermodynamic model of HT-PEMFC is established. The influence of
operating temperature, operating pressure, doping level of phosphoric acid and relative
humidity on the maximum output power density is studied. In addition, according to the
maximum power density criterion, the influence of different parameters on output efficiency,
exergy efficiency and ecological coefficient of performance is obtained. Among them, ECOP
compromises the relationship between power and efficiency performance of HT-PEMFC.

Through numerical analysis and calculation, when the operating temperature in-
creases from 403 K to 473 K, the maximum output power density increases by 72%, the
output efficiency rises by 19%, the exergy efficiency rises by 21%, and the ecological perfor-
mance coefficient boosts by 50%. When the doping level of phosphoric acid increases from
2 to 10, the maximum power density increases by 150%. However, the operating pressure
and relative humidity have little influence on the maximum power density and the output
efficiency, exergy efficiency and ECOP.

In the future, the extended irreversible thermodynamics [43,44] that expands the scope
of classical irreversible thermodynamics into a new field could be considered to analyze
the HT-PEMFC system.
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Abstract: The spread of the SARS-CoV-2 modeling is a challenging problem because of its complex
nature and lack of information regarding certain aspects. In this paper, we explore a Digital Twin
approach to model the pandemic situation in Catalonia. The Digital Twin is composed of three
different dynamic models used to perform the validations by a Model Comparison approach. We
detail how we use this approach to obtain knowledge regarding the effects of the nonpharmaceutical
interventions and the problems we faced during the modeling process. We use Specification and
Description Language (SDL) to represent the compartmental forecasting model for the SARS-CoV-2.
Its graphical notation simplifies the different specialists’ understanding of the model hypotheses,
which must be validated continuously following a Solution Validation approach. This model allows
the successful forecasting of different scenarios for Catalonia. We present some formalization
details, discuss the validation process and present some results obtained from the validation model
discussion, which becomes a digital twin of the pandemic in Catalonia.

Keywords: SARS-CoV-2; COVID-19; SEIRD (Susceptible, Exposed, Infected and Recovered and
Death); SDL; Catalonia

1. Introduction

Computer simulations to forecast the infections, based on the Susceptible, Exposed,
Infected and Recovered and Death (SEIRD) models are common since its preliminary
inception in 1930 [1] These models can be used to represent a pandemic situation and to
forecast the new cases due to SARS-CoV-2. This paper aims to use an extended SEIRD
model to predict the pandemic situation in Catalonia.

In the current context of the pandemic situation caused by the spread of SARS-CoV-
2, the use of mathematical models to forecast the its trend becomes a valuable tool [2].
Some of these models are focused on the analysis of the theoretical spread of the virus,
understanding the dynamic behavior of the particles, as an example, using a cellular
automaton to capture the spatial relations [3] or to understand the importance of the
airborne route that dominates exposure during close contact [4]. Several models have
been centered on the understanding of the evolution of the trend of the new cases [5,6],
modeling different scenarios [7], and understanding through the evolution of the model
the effects of different non-pharmaceutical interventions (NPIs) that can be applied to
the population [8,9]. The stay at the home recommendation is analyzed in [10], and a
plethora of different NPIs are analyzed in [11,12] to understand their effectiveness. Not
only SEIRD-like models are used to predict the behavior of pandemics. Other approaches
also exist, like the use of time series [13,14]. Furthermore, the models are not only used
to represent the spread of the virus. In fact, they are also used for other aspects, like the
effects of the pandemic on the economy [15–17]. Almost all these models are focused on a
specific area because they need to be validated using a specific dataset (country, region, etc.).
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They need a good description of the trend of the evolution of new cases. From this trend,
one can obtain other variables of interest, like the hospitalization rates, etc. Furthermore,
understanding the effects of the NPIs over the trend, one can infer the effectiveness of
the NPIs over the population. We want to model new cases trend in Catalonia, a region
in Europe located in the Occidental Mediterranean Sea. To model SARS-CoV-2 spread in
Catalonia, we must estimate parameters that detail the virus propagation, like effective
reproductive number (Rt). To measure the transmission potential of a disease, we use the
basic reproduction number R0; this value represents the average number of secondary
infections produced by a single infection in a population. The average number of secondary
cases will be lower than the basic reproduction number because not all the population will
be susceptible; this will be represented by the effective reproductive number (Rt). If Rt > 1,
the number of cases will increase, on R = 1, remains stable, and with R < 1, the number of
cases will decrease. We can calculate Rt as Rt = R0Ps, being Ps, the fraction of susceptible
population. We also must consider the complexity to cope with the large amount of
information generated by all the scientists working on SARS-CoV-2 along with the project
evolution, information that must be discussed while building the model. The analysis
of this phenomenon needs experts from different areas collaborating in the study using
different viewpoints. Moreover, when experts make a model, they can introduce errors
due to a wrong understanding of the system behavior. Also, the model implementation
can introduce errors [18].

This proposal improves collaboration between experts through a formal model defined
using Specification and Description Language (SDL). The formalization provides a common
language for modeling and a concrete mechanism to generate correct simulations, an
approach that has shown to be helpful in health care [19]. Our approach allows testing
different containment measures for forecasting the spread of SARS-CoV-2 in Catalonia.
However, the unknowns regarding the system analyzed imply carefully analyzing all the
assumptions we use on the model. We use a Model Comparison Validation and Verification
technique to solve this issue, which consists of using different models to improve error
detection. The first model is a System Dynamics (SD) SEIRD model [20]. This model
implements an initial parametrization to perform a preliminary analysis of the system and
represents an overview of the system behavior.

We develop a second model, a SEIRD Python-coded model, that is a refinement of
the first SD model. This second model aims to obtain the parametrization details used
later in the last SDL model. The third model, on SDL, allows us to extend the model
semantics and structure, allowing the model representation over a cellular automaton
(CA) [21], providing results not only for all Catalonia, but also for different geographical
zones. The tree models act as a digital twin of the pandemic situation in Catalonia, enabling
the model-based discussion. A digital twin is a digital reproduction of a system, potentially
at any time (present, past, and future), driven by a simulation or a set of simulation
models. The approach we use in this research is to define a digital twin of the pandemic
situation of Catalonia since the model assumptions will be updated coherently to the
system modifications and validated continuously using the actual data we obtain from
the system.

A Digital Twin Approach

Validation of the solution implies the use of real-time data to assess the model. The
framework used in this work corresponds to the notion of digital twin (DT), introduced
in 2002 by Michael Grieves [22] and now formalized by the Digital Twin Consortium
(www.digitaltwinconsortium.org accessed on 14 July 2021). We define a digital twin as a
virtual reproduction of a system based on simulations, real-time and historical data that
allows representing, understanding, and predicting scenarios of the past, present, and
future, with verified and validated models, and synchronized at a specified frequency and
fidelity with the system. Kritzinger [23] identifies in the literature the extensive use of the
digital model and digital shadow notions as the two constituent parts of the digital twin.
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The Digital Model comprises requirements, specifications, and theoretical models, and it is
possible to create asset simulators. On the other hand, the digital shadow (DS) contains
models based on data captured from the actual world, via observation or by automatic
measurements using sensors, in an Internet of Things context.

Stark [24] from the Fraunhofer Institute, introduced the concept of the digital master
(DM), defined as the set of digital models used in the digital twin. The formula DT = DM + DS
expresses the relation between DM, DS, and DT. Digital twins can be the basis of digitalization.
We can apply the Reference Architecture Industry 4.0 (RAMI 4.0), formalized as the IEC/PAS
63088 standard, defining a graphical notation for digitalized components (I4.0 Components).
It introduces the administration shell concept, which is metaphorically a digital shell that can
cover any asset, converting it into an I4.0 Component. This approach permits representing
any physical or virtual asset as a software agent, which can send and receive messages
with an arbitrary amount of data. Furthermore, an administration shell can specify a
list of incoming messages and a list of out-coming messages in the same way as UML
components. We can represent the notion of digital twin using internally four main agent
components (DM, DS, simulators, and simulators’ traces), see Figure 1.

Figure 1. Digital Twin and the V&V Loop.

The leftmost I4.0 Component, as shown in Figure 1, corresponds to the reference asset,
and in our case, is the geographic area of Catalonia and its population. Using statistical
tools, the data collected over time (the digital shadow) is the basis for building data-based
models. In our case, we have used datasets from different countries to compare the results.

A daily process helps in the calibration of the simulation model using the data taken
from the datasets. Hence, we can obtain an evolutive simulator that produces traces
over time, which defines a virtual digital shadow. Therefore, the continuous comparison
between the real asset’s digital shadow with the virtual simulator-generated digital shadow
determines how the model must be calibrated or modified through the so called verification
and validation loop (V&V Loop).

Because it is needed to perform a validation of the model continuously, the use
of a standard formal language (SDL) that has a flowchart-like graphical representation,
that is unambiguous (consistent) and complete, and has features that connect it to the IoT
paradigm [25], simplifies this process. Essentially. SDL becomes the common language used
to understand the model assumptions. We have ultimately developed a dashboard based
on the Digital Twin Administration Shell, which is available at http://pand.sdlps.com
(accessed on 14 July 2021).
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2. Materials and Methods

As we mention, we develop three models to establish a validation through a model
comparison approach. The first model is a classical SEIRD model and allows a fast con-
ceptualization of the main model characteristics and features; this model is mainly used
to test the preliminary assumptions and draw the model’s main boundaries. The second
model, coded with Python, allows executing an optimization algorithm to find the points
on the curve where the trend changes and calculate the transmission rate, a key parameter
in our models. This model will accurately represent the trend of the pandemic situation in
Catalonia, but that does not consider the real cases nor the confinement options, details
we add on the SDL model. SDL and Python models must have similar behavior when
comparing the variable Infective Detected (in the SDL model) and Infective (in the Python
model). Both variables will also compare with the new cases time series obtained from the
local authorities database [26]. In the following sections, we detail these three models and
the interaction that exists between them.

2.1. System Dynamics Model

A classical SEIRD model is the basis of the system dynamics (SD) model, as depicted in
Figure 2. We use this model to obtain a boundary that expresses the trend. These boundaries
will be helpful to perform a validation based on the model comparisons approach [27]
since the shapes and the trends of the other models will be similar to those obtained on
this model. If not, we must reanalyze the models to detect the errors.

Figure 2. SD models implemented in Vensim PLE.

Using this model, one can test the different assumptions faster, analyze the shape
of the resulting curves and understand how the effects of the model modification, for
example, the addition of new compartments, will affect the other models. We opt to keep
this model as simple as possible, but it helps us define the boundaries of the forecast, the
general trend, and the direction of the movement. Notice, however, that this model does
not intend to make a forecast. It only serves as a basis for the discussions and becomes a
tool for fast prototyping, in the initial stages of the model’s development. Essentially, it
is used in the implementation stages to be able to detect errors in both coding or model
definition through the model comparison approach.

The equations that drive the evolution of the model (Equations (1)–(5)) presented be-
low represent the population variation of each compartment due to the flows between them,
as shown in Figure 2, assuming that the total population remains constant (Equation (6)):

S′ = − βSI
N

(1)

E′ = βSI
N

− αE (2)

I′ = αE − γI (3)
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R′ = γ(1 − μ)I (4)

D′ = γμI (5)

N = S + E + I + R + D (6)

The α (latency rate), γ (recovery rate) and μ (mortality rate) parameters will be consid-
ered constant, based on the measurements made by other studies, and N will be the total
population, assuming that there is no pre-existing level of immunization to SARS-Cov2
and that therefore the whole population is initially susceptible (S0 = N).

The mean incubation period ( 1
α ) and the mean infectious period ( 1

γ ) come from the
inverse of the above parameters. The fatality rate (μ) gives us the fraction of sick people
who do not recover. The transmission rate (β) is the product of the contact rate per day and
infectivity to make more detailed modeling. Finally, to calibrate β values, we will code a
SEIRD model in Python.

2.2. Python Model

Python model runs an optimization model representing the different turning points
that change the β we use on the SDL model. We use a simulated annealing algorithm called
“dual annealing” included in the SciPy libraries to proceed with the multiparametric opti-
mization by least-squares minimization [28]. In addition, we will also be able to estimate a
value for the effective (Rt) and the basic reproduction number (R0) from the containment
factor (ρ), the transmission rate (β), and the recovery rate (γ) with the Equation (7). The
basic reproduction number, R0, see [29], represents the average number of secondary cases
that result from the introduction of a single infectious case in a susceptible population dur-
ing the infectiousness period. The effective reproduction number, Rt, is the same concept
but after applying the containment measures:

Rt = ρ R0 =
ρ β

γ
(7)

βi varies according to a confinement coefficient ρi so that effective transmission rate
can be calculated for each segment of the curve:

βi = ρiβ (8)

As input data, we have used the 7-day cumulative incidence and the number of
turning points; using the Generalized Simulated Annealing algorithm also contained in
the SciPy package [30] to optimize the values of the confinement coefficients (ρ) at the
same time as the date on which they start to be applied. Thus, by establishing several
turning points, we can reproduce different regimes of the epidemic curve depending on
these non-pharmaceutical actions.

To fit the position of all the changing points and the transmission rate of each regime
and ensure that the algorithm converges, we will proceed in a stepwise approach. So, we
will consolidate the search boundaries of the previous fitted values to find the next ones
and so on iteratively.

We selected this technique after trying several and finding that it worked well for us.
The model allows randomly worsening the intermediate solutions to find a final solution
closer to the global optimum. However, as the number of change points has increased, the
difficulty of adjustment has also increased rapidly. Therefore, we end up approaching the
problem in parts, so it would be interesting to improve the speed of the solution to look for
other heuristics that could converge with a single execution and more efficiently. However,
these alternatives are not needed at this point of the research since the time to obtain the
solution is low, about one hour to do the whole process.

The main goal of the Python model is to estimate the changing points, as shown in
Figure 3 that presents the different regimes on the curve. The aim is to define a model that
behaves the same that the data we will obtain from the authorities (digital shadow). The
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assumption is that these points should correspond to the effect of the different government
interventions such as confinements, reopening, distribution of masks, among others.

Figure 3. Fitting the changing points to detect regime shifts in the cumulative incidence curve
(7 regimes in this picture).

2.3. The SDL Model

Specification and Description Language (SDL) is a graphical object-oriented lan-
guage with unambiguous formal semantics. The International Telecommunication Union
standardized it. SDL uses four hierarchized building blocks: (i) SYSTEM, (ii) BLOCK,
(iii) PROCESS, and (iv) PROCEDURES. Regarding the notation we use to describe the SDL
diagrams, every time we refer to an SDL element, we write it in CAPS, while the name of
the elements will be in Italic. The SYSTEM and BLOCK diagrams represent the model’s
structure, using a hierarchical decomposition.

On the other hand, PROCESS and PROCEDURES define the model’s behavior. BLOCK
and PROCESS are AGENTS that establish the communication sending SIGNALS through
CHANNELS. SIGNALS act as a trigger, generating the execution of a set of actions in a
PROCESS. All SIGNALS, sorted by time and priority in the input queue of every input
channel, own a delay parameter that represents the time.

For those not used with SDL in the following Appendix A, we will detail the main
elements of the language.

The SDL model is used to test the assumptions, and from them, effects of the NPIs. We
define different models that incorporate these modifications. Table 1 shows the different
models we develop in the frame of the project. All models are defined using SDL, but
the modeling technique differs. 1.X models are the result of SD models, while 2.X models
use cellular automaton (CA) structures, mainly to define the propagation in the different
Health regions (a Health Region is an administrative division in Catalonia). 3.X models, not
detailed here, are based on multi-agent simulation models (MAS) and are defined on SDL.

Figure 4 shows the 2.5 SDL model BLayer BLOCK diagram. Squares (BLOCKS in SDL
semantics) represent the different compartments. The semantics of the compartments is the
same as in the SD or Python models, representing the Susceptible people and the Exposed
people and so on. On the SDL model, we add some refinement with more compartments to
better detail the population’s behavior, shown in grey. The main improvements of the SDL
model are: (i) BLOCK BConfinement, representing the confined population excluded from
becoming exposed. (ii) BLOCK BInfectiveDetected, representing the infected detected. We
assume that over time the detection improves. (iii) BLOCK BContentionActions that controls
the actions taken by the authorities to prevent SARS-CoV-2 spread. (iv) CA defines each
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cell as a model that details the spread of the SARS-CoV-2 over a Catalonia Health Region,
Table 2.

Table 1. Models defined on the frame of the digital twin Catalonia’s pandemics modeling process.

Model Number Description Valid (at the Time of Writing This Paper)

1.9
The initial model contains the
initial growth and the total
lockdown

No, the total lockdown was open.

2.5 Optimistical return to normality
(schools and work). No

2.6 Increase online learning and
teleworking. No

2.7 Pessimistic return to normality. No
2.8 More NPIs application. No

2.9

Readjusted the effect of the
holidays and January restraints
added. Adding the effects of the
vaccination on the population.

Yes

Figure 4. SDL 2.5 model. Each color on the diagram represents a Compartment on the original SEIRD
model (using the same colors). The exception is for the BContentionActions BLOCK that represents
the different NPIs applied. Notice that BInfectiveDetected and BInfective refer to the single Infective
compartment on the initial SEIRD model because on the SDL 2.5 version model, we can distinguish
between real and detected cases. Notice that the 1(1) in the upper corner defines the number of pages
that detail this diagram and the current page number.
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Table 2. Catalonia Health regions.

Id. Code Description Population

6100 LL Lleida 362,850
6200 CT Camp de Tarragona 607,999
6300 TE Terres de l’Ebre 176,817
6400 GR Girona 861,753
6700 CC Catalunya Central 526,959
7100 AA Vall d’Aran 67,277
7801 BS Barcelona Sud 1,370,709
7802 BN Barcelona Nord 1,986,032
7803 BC Barcelona Ciutat 1,693,449
All CAT Catalunya 7,653,845

The use of the Health regions for validation allows us to see if the different curves for
the different Health regions follow the data correctly. We keep the parameters that define
the dynamics of the pandemic fixed and modify just the specificities of each health region,
like the time of the first case or the population. A CA secondary layer details the number of
persons included in each cell. Secondary layers represent static information needed for the
model that remains unchanged during the model execution, like the initial total population
for each health region.

As we mention, Model 2.5 is not the last model we develop; in SDL, model 2.9
represents the last refinement and contains other BLOCKS that allow us to describe the
vaccination process accurately. To represent this vaccination process, we use the digital
shadow of the system to introduce the vaccination rate on the model. Also, we can forecast
the trend of this vaccination process to forecast the trend of the pandemic evolution. We can
access the SDL model conceptualization at https://doi.org/10.6084/m9.figshare.13153100
(accessed on 14 July 2021).

3. Results

In this section, we present the process we follow to perform the continuous calibration
of the models. We consider this process also a result since, through this discussion, we will
be able to detect when and why a model is no longer valid, learning regarding the validity
of the model assumptions we use.

3.1. Models Coding and Calibration

With the diagrams that compose the SDL model, one can implement it automatically
with software that understands SDL, in our case using SDLPS (https://sdlps.com/ accessed
on 14 July 2021). We define the same time discretization used in the SD model, using
Δt = 0.1 days as the model time steep, following an activity scanning approach. Since the
SDL model is the one that we will modify continuously, this automatic implementation will
simplify the verification process (we can assume that the model implementation is correct).

To validate the model’s accuracy, we compare the daily new cases forecast with the
dataset that contains the daily new cases in Catalonia. This dataset is available through
the Open Data service in Catalonia (http://governobert.gencat.cat/en/dades_obertes/
accessed on 14 July 2021).

Since the model becomes a digital twin of the pandemic in Catalonia, it must include
the NPIs applied to reduce the expansion of SARS-CoV-2. As we mention, these NPIs
are part of the SDL model through events detailed on BContentionActions, defining a
scenario parametrization.

3.2. Second Wave Calibration

To propose β values for a potential second outbreak, we use patterns of pandemic
evolution in countries that have started earlier the school year, such as South Korea
(August 25) or Israel (September 1), as shown in Figure 5.
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Figure 5. SEIRD python-coded model results for Israel after the September 1 outbreak (top left) and for Catalonia before
schools opening (September 14) (right). See the similarity in the patterns before the outbreak.

To estimate the β in those countries, we use our Python model. We have used the
7-day cumulative incidence to obtain the turning points representing the NPIs effects. The
regimes are the first outbreak in spring, followed by a hard lockdown, a stabilization in
summer, and a second outbreak after the academic year restart. Table 3 represents the
parametrization for the SDL model version 2.5 that forecast the second wave. Several
questions yet exist, like the percent of detection that will be estimated using the percent of
asymptomatic [31].

Table 3. Parameters for model 2.5 to be considered due to NPIs. % Det denotes real cases report-
ing level.

Event Date (2020) β % Det % Conf NPIs

1 29 January 1.2 0.1 0% First infected
2 08 Febrary 1.2 0.25 0% Initial tests
3 15 March 0.6 0.45 35% Confinement
4 23 March 0.24 0.45 35% Air space closes
5 13 April 0.2 0.45 25% Workers partial comeback
6 20 April 0.18 0.45 25% Free masks
7 25 May 0.18 0.45 25% Phase 1 for some regions
8 18 June 0.18 0.54 0% Phase 3 for BCN
9 24 June 1.2 0.54 0% National day
10 25 June 0.18 0.54 0% Phase 3 for BCN
11 02 July 0.3 0.54 0% New normality
12 17 July 0.21 0.54 0% Summer plateau
13 15 September 0.24 0.7 0% School returns

To estimate the percent of confinement, we use public data that allows calculating this
percent. On March 15, the total closure of the country represents a maximum of 35% of
confinement, but the return of the industrial sector implies 10% on April 13, 2020 [32]. For
the second wave, October 10, the university population has been confined, these consist
about 3% of the population, but we must increase this value on October 25 because leisure
closes. Half of the public workers go online, representing about 7% more of the population,
which is about 10% of the population that remain at home until November 23. To estimate
the percent of detection, we use the prevalence study [31,33–36] for the 2.9 model, while
for the previous models, we use an estimation based on [37,38].

Model 2.5 begins on January 29. On March 15, the government confined the entire
population, except essential sector workers. On March 23, air space closes, on April 13,
the industrial sector workers returned to work, and on April 20, the government gave
all population basic masks. During May and June until July, the restrictions gradually
decimated where we enter the “new normal.”

In Catalonia on September 14, we got β ≈ 0.16. The time-series analysis shows that
during the summer (that defines a sort of plateau), the value of β is peaking about 0.21,
which can be considered a reference value for some kind of citizen’s behavior. The return
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to normality, with an increasing movement of citizens, can represent an inflection point.
Different tests have been performed, concluding with a β = 0.24 for 2.5 model, is this the
value obtained from the analysis done in the Israel case, using the Catalonia cumulative
incidence (85) and Israel (119), and considering that β = 0.21 will be increased by the
return to the normality and will become no smaller than the value of a total lockdown, see
Table 4. We consider a 70% detection rate due to the increasing testing, being the 30% the
asymptomatic rate we use [38].

Table 4. β comparison. (*) In South Korea, the summer outbreak is so low that the model is not proper.
(**) The forecast of a new outbreak with a β close to Israel proved to be accurate. (?) Information is
not yet available, or the situation did not occur at the time of analysis of model 2.5.

Regime Israel S. Korea Catalonia

First outbreak 0.55 0.95 0.95
Lockdown 0.12 0.09 0.15
Summer outbreak 0.34 (*) 0.43
Summer plateau 0.20 (*) 0.20
Reopening outbreak 0.33 0.48 0.30 (**)

Partial lockdown (?) 0.12 (?)

Figure 6 shows the new infections forecast from the different scenarios that we ran on
the SDL model. SDL attempts to forecast the maximum values (worst scenario).

Figure 6. Forecast for the new infections (y-axis), the red line for the 2.5 SDL model (being this an
optimistic scenario). We consider other scenarios in case 2.5 model hypotheses fail, model 2.6, and
model 2.7.

3.3. Third-Wave Calibration

For the calibration of the third wave, we use a historical data comparison to obtain
more insights regarding the behavior of the pandemic in Catalonia. We define a new model
named 2.8 that includes some new improvements over the previous models.

As in the previous models, we must define the β with the NPIs applied, selecting the
same β that in the previous wave due to the coincidence on the scenario (schools reopening
after the Christmas holidays). We use the β we apply on model 2.7 that represents model
2.5 with the adjusted β due to the observed cases.

Model 2.8 represents a new wave, but that does not show a uniform growth like on
the second wave. That depends on how the people confine due to the Christmas holidays.

We detect one issue with the prevision during the validation process that does not
invalidate the growth but avoids obtaining a better fit. We suppose that the growth does not
continue to point A (see Figure 7) because we do not consider increasing the transmission
due to increase contacts during the Christmas holidays. We suppose that remains at the
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same level observed in the summer, but clearly because now the people interact in a closed
environment, this affects the transmission.

Figure 7. Model 2.8 with the forecast for the second wave for the new cases (y-axis). Notice the
divergence between the trend of the model and point A, the highest value of the data. We are
presenting a scenario considering that the Christmas holidays have no acute effects on the β.

If we compare with the data, we see that the curve has an inflection point when the
NPIs that include increasing the restrictions in the leisure sector (restaurants, theaters,
among others) are applied, obtaining a β similar to the β we see on the descending trend of
the second wave. Table 5 shows the parametrization for the 2.8 model.

Table 5. Parameters used on the 2.8 simulation scenarios: (1) as a result of the validation process, the correct parameter for
this β is 0.3, being added on the 2.9 model. (2) the organization of the online courses needs a week to be fully implemented.

Event Date β %Det % Conf Description Event

1 01 December 2019 - - - Start of simulation
2 01 December 2019 0.81 0 0 -
3 11 December 2019 0.81 0.11 0 Pandemic Beginning
4 15 March 2020 0.81 0.17 0 Confinement
5 15 March 2020 0.81 0.17 0.35 Confinement
6 15 March 2020 0.25 0.17 0.35 Confinement
7 13 April 2020 0.25 0.17 0.2 Workers partial comeback
8 20 April 2020 0.16 0.17 0.2 Free Masks
9 06 May 2020 0.16 0.18 0.2 Phase 1 for some regions

10 01 June 2020 0.16 0.25 0.2 Phase 3 for some regions
11 18 June 2020 0.465 0.25 0.2 Phase 3 for BCN
12 18 June 2020 0.465 0.25 0 Phase 3 for BCN
13 22 June 2020 0.465 0.6 0 New normality
14 16 July 2020 0.21 0.6 0 Summer plateau
15 15 September 2020 0.34 0.6 0 School returns
16 20 October 2020 0.34 0.6 0.03 University online (2)

17 25 October 2020 0.34 0.6 0.1 Movement and restaurants restrictions
18 25 October 2020 0.15 0.6 0.1 Movement and restaurants restrictions
19 23 November 2020 0.3 0.6 0.1 Reopening restaurants
20 23 November 2020 0.3 0.6 0.03 Reopening restaurants
21 23 December 2020 0.21 (0.3) (1) 0.6 0.03 Holidays
22 11 January 2021 0.3 0.6 0.03 Schools Returns

New NPIs have been applied to the system, implying the modification of the β
parameter, suggesting the need to revise the model hypotheses and the execution of the
model following the continuous validation and verification loop.

4. Discussion

Applying a digital twin approach and focusing on a continuous validation of the
model assumptions enables testing the possible causality effects for the NPIs applied
to the population. The forecasts provided by the model seem accurate and allows us
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to understand the future evolution of the system. It will be a crucial aspect to size the
resources needed at each stage of the pandemic evolution.

We calibrated the model to show always a pessimistic view of the situation. Notice
that the forecast always tries to be over the observation’s maximum values. It will help
decision-makers understand the worst scenario and prepare consistently for it.

We can access the dashboard to see the Key Performance Indicators (KPI’s) and model
forecast, validated continuously against the actual data in a solution validation approach,
becoming a digital twin of the pandemic. Figure 8 shows the dashboards for the model
1.9 prevision on September 16, previous to the publication of the 2.5 model.

 

Figure 8. KPIs for Barcelona and its health area CA cells Model 1.9.

When the model invalidates, a divergence between the digital shadows of the system
(Catalonia SARS-CoV-2 new cases obtained from Socrata Open Data Source) and the
master’s digital shadows (simulation traces) appears. Then, one must reevaluate the
hypotheses and recalibrate the model, providing valuable information to understand the
situation. It will happen continuously since new NPIs will be applied to control the spread
of the virus. An interesting example of NPIs is when the government provides free masks to
the population. This action seems to positively affect the population, which helps increase
the confidence in the mask and change the population’s mindset.

By analyzing the different models, we can discuss the possibilities and the effects of
the NPIs before their application on the system. As an example, model 2.5, with a β = 2.4,
shows a scenario that is not optimistic but that presents a situation that implies an increase
in the number of cases. Considering the model comparison approach and using the data we
obtain from other countries, we see that the βs are highest than the proposed ones. At this
point, the model suggests that if the growth happens, this will become faster, implying that
a discussion based on models must include the needed analysis with different scenarios.

Another example is on model 2.8, where the situation presents the Christmas holidays,
using for the analysis data that comes from our observations in Catalonia. We detect that
the assumption that Christmas does not affect the β is not valid. The restoration reopening
seems to impact the increase of the number of cases in the population. It has been detected
and corrected on the 2.9 model using an accurate value for the β at this point. Notice
that the current valid model, 2.9, correctly predicts the current trend of the pandemic in
Catalonia, suggesting that the end of the cases will be possible at the end of the summer if
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the current conditions do not change (NPIs and no a variant with increased transmissibility
appears). Figure 9 shows the forecast for the current trend of the pandemic situation in
Catalonia using the current model.

Figure 9. Model 2.9 now forecasts for new cases (y-axis) the end of the pandemic situation in
Catalonia if the NPIs remain similar to the current (at 05 June 2021) and no new variants appear.

This forecast again needs a continuous validation process but shows a positive effect of
the vaccines for the disease contention. It suggests that the number of people who receive
the vaccines will not have to reach 70% to achieve the desired herd immunity to control
the spread; this time (05 June 2021), the number of people with complete vaccination is
below 24%. We will confirm this scenario if the NPIs remain similar to the current or no
new variants with the highest β appears. During the preparation of this document model,
2.9c was invalidated. The Delta variant spread and the reduction of some NPIs implied
an increase in the number of cases in Catalonia. We therefore define a new scenario (2.9d)
applying a β in our SDL model based on [39] and considering the reduction of the NPIs
due to the reopening of the leisure [40] to be able to validate our forecast again. At this
point, accurate monitoring of the epidemic using models will become an excellent tool to
understand the implications and the effects of the NPIs if the situation worsens. Figure 10
shows the different models developed until now. Notice that every time an effective NPI is
applied to the population, the model invalidates.

Figure 10. The different models that we develop due to the continuous validation process, new
cases (y-axis).

5. Conclusions

The current last model at the time of writing this paper, scenario 2.9c, needs accurate
monitoring due to the inclusion of the vaccination effect in the model. An increase in
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the number of vaccines delivered every week to the population implies a substantial
modification on the number of new cases detected later. Also, an eventual modification
on the factors (NPIs, infectivity, among others) implies a necessary change of the model
parameters to fit again with the system, following the shadows comparison of the digital
twin approach.

The proposed methodology, defining a digital twin of the pandemic, must serve
precisely to facilitate this monitoring, providing early warnings if the trend of the new
cases differs from the trend of the forecasted model (shadows comparison). Because of
the modification applied to the system, mainly the NPIs, to contain the virus spread, the
representation of the model assumptions in a graphical language simplifies the immediate
modification of the model. It makes easier the agreement between the different specialists
involved in the project. This involvement of the specialists in the digital twin maintenance
and continuous validation must serve to increase the model’s credibility, providing a way
to achieve accreditation in a continuous verification and validation loop.

In the context of Industry 4.0, the model-based discussion becomes a central element
to understand the causality of complex systems. The continuous validation of simulation
models, which includes a clear representation of the causal relations, is part of the proposed
methodology. We cannot make decisions without understanding the possible causality
rules. Although we do not fully understand that the things happen as detailed in the model,
the discussion based on these causal relations helps the decision-makers understand these
rules, and more interestingly, when the assumptions and the hypotheses assumed on the
model are not valid and must be reconsidered.
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Appendix A. SDL

Specification and Description Language (SDL) is an object-oriented, formal language.
The International Telecommunication Union—Telecommunication Standardization Sector
(ITU–T) defines it as a standard language. The document that defines the language structure
is Recommendation Z.100. Originally the language was designed to specify event-driven,
real-time, complex interactive applications that involve many concurrent activities. SDL
bases the communication between the different model elements on the use of discrete
signals [41,42].
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The conceptualization of a simulation model needs to define the following compo-
nents: (i) Structure: system, blocks, processes, and the hierarchy of processes, (ii) Commu-
nication: signals, including the parameters and channels that the signals need to travel
from element to element, (iii) Behavior: defined through the processes. (iv) Data: based
on Abstract Data Types (ADT), and (v) Inheritances: describe the relationships between
and the specializations of the model elements. At least the first two components, the
structure, and the behavior, must be described in a formal language to be able to do a
correct conceptualization of a simulation model.

The language has four levels: (i) system, (ii) blocks, (iii) processes, and (iv) procedures.
A model always starts with the definition of what we want to represent. Using an

approach based on a formal language, like SDL, we will start with a simple box that
explains what the system to be modeled will be. This system, represented by the SYSTEM
diagram, shows the uppermost level of the model’s structure. It clearly shows the elements
that we consider in the analysis. All the other elements not present inside the SYSTEM
diagram will become the ENVIRONMENT, and we express the communications between
them using the CHANNELS. Following the SDL terminology, SYSTEM is an AGENT. Other
AGENTS can appear in an SDL diagram, the BLOCKS, and the PROCESS. These other
elements appear in lower levels of the model. The CHANNELS can be unidirectional
or bidirectional and are using PORTS to connect with the BLOCKS or PROCESS. The
PORTS guarantee the independence of the different AGENTS we will use in our models. It
guarantees modularity, a crucial aspect of conceptual models since it allows us to reuse the
different model elements. Also, modularity allows performing an incremental Validation
and Verification process. It means that we do not need to Validate the whole model and
focus on a subset of the model, a set of the model’s AGENTS. Because of modularity, an
AGENT only knows what it sends and receives events using a specific PORT or CHANNEL.

To define a simulation model conceptualization, we need to detail the model structure
and behavior. SYSTEM diagrams and BLOCK diagrams represent the model structure. It
is a hierarchical decomposition of the different model elements; some good examples are
available in [42]. The behavior will be described on the PROCESS diagrams and below, on
the PROCEDURES, although these elements are not AGENTS and only represent some
pieces of code. The pieces of information that travels on the CHANNELS, from AGENT to
AGENT, are the SIGNALS. When a PROCESS receives a specific SIGNAL, it acts as a trigger,
starting to execute a set of actions in no time. To represent the time, all the SIGNALS own a
parameter, delay that represents when this SIGNAL can be processed. Every PROCESS has
an input queue for every input CHANNEL, containing the received SIGNALS ordered by
time and priority.

Being SDL a graphical language, a PROCESS uses different graphical elements to
represent the model’s behavior. In the following lines, we describe some of the more
essential elements synthetically to simplify understanding the SDL model definition.

Start. This element defines the initial condition for a PROCESS diagram.

State. The PROCESS must always start in a STATE, and this owns a name.

Input. The PROCESS starts an execution when an INPUT receives the SIGNAL
for this INPUT. All the STATES can own several different INPUTS to work with the different
SIGNALS one can receive.

Create. This element allows the creation of an AGENT.
Task. To interpret a piece of code, we can use the TASK element. In our approach,

we can use C on this element.
Output. To send a SIGNAL, we must use the OUTPUT element. We can also

add parameters to the SIGNALS and describe the destination if ambiguity about the
signal destination exists. We can direct the communication specifying destinations using
a PROCESS identifier (PId), an identifier that must own all the PROCESS. Also, we can
send using the sentence via path. We can use four PId expressions: (i) self, an agent’s own
identity; (ii) parent, the agent that created the agent (Null for initial agents); (iii) offspring,
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the most recent agent created by the agent; (iv) sender, the agent that sent the last signal
input (null before any signal received). Also, we can use {CUR_CELLS} and {ALL_CELL}
to send the information to a specific cell of the CA.

Decision. To define a bifurcation, a decision point, we can use the DECISION.
Finally, mention that on the last level of the SDL language (PROCEDURE diagrams),

we can describe pieces of code, also graphically, making the language complete. We can
use these pieces of code in the PROCESS with the PROCEDURE CALL .
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Abstract: In this work, we investigate the properties of a stochastic model, in which two coupled
degrees of freedom are subordinated to viscous, elastic, and also additive random forces. Our
model, which builds on previous progress in Brownian motion theory, is designed to describe water-
immersed microparticles connected to a cantilever nanowire prepared by polymerization using
two-photon direct laser writing (TPP-DLW). The model focuses on insights into nanowires exhibiting
viscoelastic behavior, which defines the specific conditions of the microbead. The nanowire bending
is described by a three-parameter linear model. The theoretical model is studied from the point
of view of the power spectrum density of Brownian fluctuations. Our approach also focuses on
the potential energy equipartition, which determines random forcing parametrization. Analytical
calculations are provided that result in a double-Lorentzian power density spectrum with two
corner frequencies. The proposed model explained our preliminary experimental findings as a
result of the use of regression analysis. Furthermore, an a posteriori form of regression efficiency
evaluation was designed and applied to three typical spectral regions. The agreement of respective
moments obtained by integration of regressed dependences as well as by summing experimental
data was confirmed.

Keywords: nanowire cantilever; stochastic model; double Lorentzian spectrum

1. Introduction

Many of the problems addressed by current nanosciences can be traced back to statis-
tical mechanics and the concept of fluctuations. Fundamental problems constantly arise
in nanosciences that go beyond conventional findings, complementing the emphasis and
motivations of statistical mechanics. Related fields, now broadly referred to as stochastic
processes, continue to pose a mathematical challenge.

Stochastic oscillations of anchored mechanical systems immersed in fluidic media
or kept in vacuum have attracted significant attention in the past and are important in
many ways today. The Brownian motion of a millimeter-sized mirror suspended from a
torsion wire was utilized by Kappler back in 1931 to measure the Avogadro constant [1].
The thermal fluctuations of resonant micron-scale mechanical oscillators have been studied
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extensively, mostly in connection with AFM (atomic force microscopy) cantilevers and
MEMS-based (micro- electromechanical) resonators [2–6]. Thermal fluctuations of glass
nanofibers and silicon nitride cantilevers have been used to characterize and calibrate
such systems for single-molecule force measurements [7,8]. Brownian motion has also
been used at a smaller scale in TPM (tethered particle motion) experiments to investigate
the properties of linear macromolecules such as DNA [9–11]. In contrast, thermal noise
represents the main disturbing and limiting factor in experiments that rely on highly
sensitive mechanical and opto-mechanical systems. Examples are inertial sensors [12,13] as
well as recently proposed gravitational-wave and dark matter sensors [14–16].

Under certain conditions, system noises and their corresponding statistical quanti-
ties can become valuable, measurable features of technological devices and measurement
instruments. When a particle immersed in a dissipative medium is simultaneously ex-
posed to thermal noise, it reaches an equilibrium state with time, which provides a good
possibility to measure statistical properties. Mechanical system fluctuations may also be
related to intrinsic damping mechanisms such as internal friction, thermoelastic losses,
or losses to the anchor system. Theoretical and experimental interest may then be di-
rected toward elucidating the relationships between damping strength and noise. The
well-known “fluctuation-dissipation theorem”, which is also used in this work, addresses
these general relationships.

The significance of the outputs of the monitored processes is clearly influenced by
the equipment parameters and laboratory conditions. As a result, analytical methods
differ. The power spectrum of thermal fluctuations can be derived for the case of damped
harmonic oscillators [17], which is a good approximation for AFM cantilevers in liquids
and gases [3]. The basic oscillator theory was modified by Saulson [17] to account for the
thermal noise of mechanical systems, whose losses are dominated by processes occurring
inside the material. High external dissipation conditions represent another extreme, which
usually happens for low-stiffness micron-scale [7] or even smaller (molecular) systems [18].
When immersed in viscous liquids, these structures operate in a non-resonant, overdamped
regime. Interestingly, the same overdamping conditions are present in optical tweezers
experiments, where the fluctuation theory was elaborated thoroughly [19,20].

In this work, we investigate the thermal fluctuations of micron-scale viscoelastic
mechanical systems submerged in water. In this particular case, as we show below, both
the dissipation to the surrounding fluid and the intrinsic damping play an important role.

We are interested in the stochastic motion of microbeads attached to cantilevered
photopolymer nanowires prepared by two-photon polymerization direct laser writing
(TPP-DLW) (see Figure 1a,b) [21,22]. The nanowire thickness can be tuned during the fabri-
cation process [23]. In the limiting case of thin nanowires, the stochastic thermal forces ex-
erted on the microbeads cause clearly detectable Brownian motion behavior (see Figure 1c),
specifically in the direction perpendicular to the nanowire axis, as depicted in Figure 1d).
Moreover, as recently demonstrated, photopolymer nanowires possess viscoelastic ma-
terial properties [24,25], which define the specific confinement forces investigated in the
present work.
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Figure 1. The main steps from sample preparation to measurement. (a) Light-sensitive (photoresist)
material exposed to the laser beam. Single photon (left part, in blue) and two-photon (right part,
in red) polymerization is depicted separately. (The exceptional spatial resolution can be reached by
the two-photon process. The polymerized material is indicated in gray.) (b) The illumination used
to produce three-dimensional design in the photoresist volume employing TPP-DLW. (c) Setup for
motion detection and data production. The application of a CMOS image sensor, which provides
encoded light information about position x(t) that can be converted into digital data records by
particle tracking algorithms. (d) A closer look at the mechanics of Brownian fluctuations under
anchoring conditions. The studied fluctuations in the horizontal plane are indicated by the arrows.

Our present work is closely related to the preceding study focused on the bending
recovery motion of photopolymer microbead-nanowire systems [25]. A three-parameter
linear mechanical model of viscoelastic behavior has been found to provide a good expla-
nation of the recovery time-dependence in this study. We aim to use the above theoretical
description to include the thermal motion of the microstructure. This can be done analo-
gously to other works. The original mechanistic model, which was first developed and
validated in [25], can be generalized to reflect random forces. The problem can then be
solved using the Fourier transform within the limits of the stochastic steady state in ac-
cordance with the experimental setup. The aim is to obtain the corresponding power
spectrum and autocorrelation function of Brownian motions of the microstructure analyti-
cally. To summarize, our present approach promotes a practical and empirically supported
transition from deterministic to stochastic frameworks.
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2. Initial Considerations and Model Assumptions

Our main objective is to describe the stochastic motion of viscoelastic microstructures
composed of cantilevered nanowires and spherical beads (see Figure 1) immersed in
Newtonian liquids. The 18 μm long nanowire equipped with a 5 μm sphere (both made
of Ormocomp) was prepared in a similar way as described in [25]. The previous work
also provides all relevant experimental details. We assume that the nanowire bending
is characterized by a 3-parameter linear mechanical model of viscoelastic behavior ( see
Figure 2). In the thin nanowire limit, the external viscous damping and the external
thermal forces acting on the nanowire itself are neglected. In this approximation, the
liquid surroundings interact only with the attached bead. We focus our attention on the
nanowire bending oscillations in the horizontal plane perpendicular to the nanowire axis
(see Figure 1d).

The equivalent mechanical model, which consists of ideal spring and dashpot elements
(shown in Figure 2), contains two parts. The left branch (A) stands for the nanowire forces
exerted on the microbead. The photopolymer viscoelastic properties are characterized by
the two elastic terms k1, k2 and the viscoelastic damping coefficient δ. The right branch (B)
includes the damping of the surrounding medium, with γ denoting the hydrodynamic
resistance. The inertia of the particle and the displaced fluid are neglected. Therefore,
the results obtained represent a low-frequency approximation [20].

Figure 2. The schematic depiction of the linear mechanical model for the microbead motion. Arms
A and B represent the nanowire and the hydrodynamic damping by the surrounding medium,
respectively. The internal characteristics x1, x2 are related to the total observable parameter x.

The basic mechanical model (i.e., model depicted in Figure 2, which is free of ran-
dom forces FT1 = FT2 = 0) is identical to the one given in [25]. This original form is
amended here by adding stochastic forces to the system. In agreement with the fluctuation-
dissipation theorem, uncorrelated Gaussian random forces (FT1 and FT2) are introduced in
parallel with the dissipative elements δ and γ. Due to random excitation terms, the two
displacement coordinates x1 and x2 fluctuate stochastically, which translates to the overall
microbead displacement x = x1 + x2. Unlike x1 and x2, the value of x can be observed
experimentally. The power spectral density and the autocorrelation function of the mi-
crobead stochastic oscillations are derived by solving the system of Langevin equations
describing the proposed model.

Research Design

Technological advances in microprinting 3D polymer patterns can stimulate and
motivate progress in the formulation of appropriate mathematical and physical models.
In this paper, we present a research framework associated with advanced two-photon
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microfabrication that can be applied in both practical and theoretical directions. Linear
relationships are used to characterize the viscous and elastic properties of micromechanical
systems (microbead nanowire systems) operating under stochastic (thermal) dynamic
conditions. To evaluate observable coordinate changes, digital data from a CMOS image
sensor is processed. This data can be represented mathematically as a one-dimensional
time series.

The present study is motivated by experimental results, which, after analyzing the
power spectral densities of the corresponding time series, show a kind of double Lorentzian
form. The double Lorentzian form of the spectrum appears to us as an attractive research
problem but also as a feature that has not yet been explored under the experimental
conditions described above.

We use a regression approach with an objective function containing position-dependent
weights in the spectrum to compare the theoretical model with experiments and perform
the best model parameter finding as well. In addition, our analysis focuses on a validation
strategy based on comparisons of differently obtained spectral moments.

Our study reflects the assumption that statistical mechanics models can reveal efficient
ways to parameterize optically fabricated systems that exhibit significant fluctuations due
to their size.

3. Model

The model consisting of two first-order stochastic differential equations is obtained
based on the following considerations: (i) the forces acting in the upper and lower part of
branch A are equal, and (ii) the sum of branch A and branch B forces is zero. We study the
stochastic system for two displacement coordinates

δ
dx2

dt
+ k2x2 − k1x1 = FT1 ,

γ

(
dx1

dt
+

dx2

dt

)
+ k1x1 = FT2

(1)

formulated for the uncorrelated stationary Gaussian and white noise in time t random
forces FT1(t), FT2(t). In such a framework, a set of assumptions applies to the mean values

〈FT1(t)〉 = 0 , 〈FT2(t)〉 = 0 ,

〈FT1(t)FT2(t + t′)〉 = 0 for all t, t′ ;

〈FT1(t)FT1(t + t′)〉 = CFT1 δ̂( t′ ) ,

〈FT2(t)FT2(t + t′)〉 = CFT2 δ̂( t′ )

(2)

written by means of the Dirac delta function δ̂(.) (Here, the label δ̂ is selected to distinguish
it from the parameter δ). The details and the physical rationale regarding the new parameter
pair CFT1, CFT2 will be provided later in Section 4.3. To indicate the mean value in the
space of repetitive random variants, we use the symbol 〈. . .〉, which is identified with the
physical literature. Important here is the mathematical note that random forces are the
derivatives of the corresponding Wiener processes.
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4. Results

4.1. Solution of the Stochastic Problem

Using a linear transformation involving multiplication by the terms 1/δ, 1/γ, as well
as subtraction to remove the combination of derivatives on the left-hand side, we obtained
a more standard form of the stochastic differential equation[

d
dt

+ k1

(
1
γ
+

1
δ

)]
x1 − k2

δ
x2 = FS1 ,(

d
dt

+
k2

δ

)
x2 − k1

δ
x1 = FS2 ,

(3)

where the respective dissipative terms (∼dx1/dt, ∼dx2/dt) are counterbalanced by the
auxiliary random forces FS1, FS2. There are no more mixed derivatives of variables in one
equation, which results in a qualitative change from white to colored noise. The properties
of FS1, FS2 can be represented by the linear relations

FS1(t) =
FT2(t)

γ
− FT1(t)

δ
, FS2(t) =

FT1(t)
δ

. (4)

For computational purposes, the system of Equation (3) is converted to the Fourier
domain in a standard way. Fourier images (coefficients), which we begin to denote by a
tilde become functions of the angular frequency ω. Despite the fact that . . .(ω) or . . .(ω)
symbols implying frequency dependence may be redundant in the case of white noise, it
emphasizes the dependence on ω for general reasons in other situations. It is also worth
noting that the complex conjugate’s asterisk label appears after the transition to the Fourier
representation. Assuming that cross-correlations of Fourier images F̃T1, F̃T2 vanish as a
result of Equations (2) and (4), for the relations of the first and the second-order moments,
we have

〈F̃S1〉(ω) = 〈F̃S2〉(ω) = 0,

〈F̃∗
S1 F̃S1〉(ω) =

1
γ2 〈F̃∗

T2 F̃T2〉(ω) +
1
δ2 〈F̃∗

T1 F̃T1〉(ω) ,

〈F̃∗
S2 F̃S2〉(ω) =

1
δ2 〈F̃∗

T1 F̃T1〉(ω),

〈F̃∗
S1 F̃S2〉(ω) = 〈F̃∗

S2 F̃S1〉(ω) = − 1
δ2 〈F̃∗

T1 F̃T1〉(ω) .

(5)

Of course, the properties of the above averages are sufficient to determine multivariate
Gaussian random force statistics. More precisely, the consequences of the Gaussian process
from the postulates for FT1,2 towards the statements for FS1,2 can be easily justified.

According to the Equation (3), the respective coefficients x̃1(ω), x̃2(ω), F̃S1(ω), F̃S2(ω)
are present in

G(ω)

(
x̃1(ω)
x̃2(ω)

)
=

(
F̃S1(ω)
F̃S2(ω)

)
, (6)

where

G(ω) =

[
iω + k1

(
1
γ + 1

δ

)
− k2

δ

− k1
δ iω + k2

δ

]
. (7)

Note that here G(ω) is the label of newly introduced ω-dependent matrix. The
linearity of the problem implies that the solution

(
x̃1(ω)
x̃2(ω)

)
= G−1(ω)

(
F̃S1(ω)
F̃S2(ω)

)
(8)
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can be expressed in the terms of the inverse matrix G−1(ω). The following elements of the
matrix represent a solution of the linear response type

(
G−1)

11(ω) = 1
det(G(ω))

(
iω + k2

δ

)
,

(
G−1)

12(ω) = 1
det(G(ω))

k2
δ ,

(
G−1)

21(ω) = 1
det(G(ω))

k1
δ ,

(
G−1)

22(ω) = 1
det(G(ω))

[
iω + k1

(
1
γ + 1

δ

) ]
.

(9)

We see that the formulas contain det(G) = GR + iGI , in the form 1/det(G) = (GR −
iGI)/(G2

R + G2
I ) with the auxiliary real-valued components GR(ω) and GI(ω). We also

state that

GR(ω) = −ω2 +
k1k2

γδ
, GI(ω) = ω

[
k2

δ
+ k1

(
1
γ
+

1
δ

) ]
. (10)

Next, we will use

(det(G))∗ det(G) = G2
R + G2

I (11)

often reflected in the results.

4.2. Statistical Averages, Responses to Random Perturbations

This section is about the change to mean values, which are important for the mea-
surement process, interpretation, and data processing. Only the statistics of the sum
x̃1(ω) + x̃2(ω), not isolated x̃1(ω), x̃2(ω) is observable in the experiment and allows
comparison with the model. Thus, for many aspects of the study, only the behavior of
x̃1(ω) + x̃2(ω) needs to be used to determine experimentally relevant correlations. To
understand the statistics of x, we focus on the Fourier spectrum of autocorrelation function

Cxx(ω) ≡ 〈 ( x̃∗1(ω) + x̃∗2(ω) )( x̃1(ω) + x̃2(ω) ) 〉
= 〈 x̃∗1 x̃1 〉(ω) + 〈 x̃∗2 x̃2 〉(ω) + 〈 x̃∗1 x̃2 〉(ω) + 〈 x̃∗2 x̃1 〉(ω) .

(12)

It is of course convenient to divide it into four independent terms. In the following,
these are treated independently by means of Equation (8). Partial results (so far without an
emphasis on the ω dependence) are

〈 x̃∗1 x̃1 〉 =(G−1)∗11(G
−1)11〈F̃∗

S1 F̃S1〉+ (G−1)∗11(G
−1)12〈F̃∗

S1 F̃S2〉
+(G−1)∗12(G

−1)11〈F̃∗
S2 F̃S1〉+ (G−1)∗12(G

−1)12〈F̃∗
S2 F̃S2〉 ,

〈 x̃∗2 x̃2 〉 =(G−1)∗21(G
−1)21〈F̃∗

S1 F̃S1〉+ (G−1)∗21(G
−1)22〈F̃∗

S1 F̃S2〉
+(G−1)∗22(G

−1)21〈F̃∗
S2 F̃S1〉+ (G−1)∗22(G

−1)22〈F̃∗
S2 F̃S2〉 ,

〈 x̃∗1 x̃2 〉 =(G−1)∗11(G
−1)21〈F̃∗

S1 F̃S1〉+ (G−1)∗11(G
−1)22〈F̃∗

S1 F̃S2〉
+(G−1)∗12(G

−1)21〈F̃∗
S2 F̃S1〉+ (G−1)∗12(G

−1)22〈F̃∗
S2 F̃S2〉 ,

〈 x̃∗2 x̃1 〉 =(G−1)∗21(G
−1)11〈F̃∗

S1 F̃S1〉+ (G−1)∗21(G
−1)12〈F̃∗

S1 F̃S2〉
+(G−1)∗22(G

−1)11〈F̃∗
S2 F̃S1〉+ (G−1)∗22(G

−1)12〈F̃∗
S2 F̃S2〉 .

(13)
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We can achieve a clearer relationship by including the correlations between the initially
imposed random forces F̃T1 and F̃T2 from Equation (5). The pairwise correlations take
the form

〈 x̃∗s x̃m 〉 =
(
〈F̃∗

T2 F̃T2〉
γ2 +

〈F̃∗
T1 F̃T1〉
δ2

)
g1;s,m +

〈F̃∗
T1 F̃T1〉
δ2 g2;s,m (14)

with s ∈ {1, 2}; m ∈ {1, 2}, which define the following eight coefficients

g1;1,1 = ĝ11,11 , g2;1,1 = ĝ12,12 − ĝsym
11,12 ,

g1;2,2 = ĝ21,21 , g2;2,2 = ĝ22,22 − ĝsym
21,22 ,

g1;1,2 = ĝ11,21 , g2;1,2 = ĝ12,22 − ĝ11,22 − ĝ12,21 ,

g1;2,1 = ĝ21,11 , g2;2,1 = ĝ22,12 − ĝ21,12 − ĝ22,11 .

(15)

For the relations above, we use a notation that also includes the auxiliary symbols ĝij,kl

and ĝ sym
ij,kl . They are interrelated to the combinations (G−1)∗ij (G

−1)ij of the prior G−1 terms

ĝij,kl = (G−1)∗ij(G
−1)kl , ĝ sym

ij,kl = ĝij,kl + ĝkl,ij . (16)

Obviously, the emphasis on the symmetry ĝ sym
ij,kl = ĝ sym

kl,ij will help us to handle the
complex numbers. Furthermore, we recognize that the identical pairs of indices provide
that ĝij,ij = (1/2)ĝsym

ij,ij . The advantage of the auxiliary notation by means of ĝ... is that we
obtain Cxx from Equation (12) in the compact form

Cxx =
〈F̃∗

T2 F̃T2〉
γ2

(
ĝ11,11 + ĝ21,21 + ĝ sym

11,21

)

+
〈F̃∗

T1 F̃T1〉
δ2 ( ĝ11,11 + ĝ12,12 + ĝ21,21 + ĝ22,22 (17)

+ ĝ sym
11,21 + ĝ sym

12,22 − ĝ sym
11,12 − ĝ sym

21,22 − ĝ sym
11,22 − ĝ sym

12,21

)
.

We continue the calculation to reveal the terms introduced by Equation (16)

ĝ11,11 = 1
G2

R+G2
I

[
ω2 +

(
k2
δ

)2
]

, ĝ21,21 = 1
G2

R+G2
I

(
k1
δ

)2
,

ĝ22,22 = 1
G2

R+G2
I

[
ω2 + k2

1

(
1
γ + 1

δ

)2
]

, ĝ12,12 = 1
G2

R+G2
I

(
k2
δ

)2
,

(18)

ĝ sym
11,21 = 1

G2
R+G2

I

(
2k1k2

δ2

)
, ĝ sym

12,22 = 1
G2

R+G2
I

(
2k2k1

δ

)(
1
γ + 1

δ

)
,

ĝ sym
11,12 = 1

G2
R+G2

I

(
2k2

2
δ2

)
, ĝ sym

21,22 = 1
G2

R+G2
I

(
2k2

1
δ

)(
1
γ + 1

δ

)
,

ĝ sym
11,22 = 1

G2
R+G2

I

[
2ω2 + 2k1k2

δ

(
1
γ + 1

δ

)]
, ĝ sym

12,21 = 1
G2

R+G2
I

(
2k1k2

δ2

)
.

(19)

Note that we used GR and GI from Equation (10) to express the result. After substitut-
ing these elements into Equation (17), we come to the relation

Cxx(ω) =
1

γ2 (G2
R + G2

I )

{
〈F̃∗

T2 F̃T2〉
[

ω2 +

(
k1 + k2

δ

)2
]
+ 〈F̃∗

T1 F̃T1〉
(

k1

δ

)2
}

, (20)

which is important to derive measurable results. We will apply a similar procedure later to
determine the pairwise correlations to prove the validity of the equipartition theorem.
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4.3. Towards Fusing of Theory and Experiment

Suppose that there are two finite formal limits relevant for the obtaining of the power
spectral density in the form

CFT1 = lim
Tmsr→∞

〈F̃∗
T1 F̃T1〉
Tmsr

, CFT2 = lim
Tmsr→∞

〈F̃∗
T2 F̃T2〉
Tmsr

. (21)

The formula is understood as a postulate, which introduces the duration of the
measurement time Tmsr [19] into a part of the procedure at the formal level. The correlations
in the Fourier domain can be formally taken as infinite for frequency f = ω

2π � 1/Tmsr. The
formal nature of the limits given by Equation (21) makes it evident that considerations are
not fully compatible with the Fourier framework because the measurement is dependent
on assumptions about the large time (Tmsr) of the measurement.

The occurrence of CFT1 and CFT2 later in Equation (23) can be interpreted as the
contribution of the power spectral densities of two random force variants given by the
Wiener–Khinchin theorem

lim
Tmsr→∞

〈F̃∗
Tj F̃Tj〉
Tmsr

=
∫ ∞

−∞
dt′ e−2πi f t′ 〈 FTj(t)FTj(t + t′) 〉 = CFT j (22)

considered for j = 1, 2 alternatives (see Equation (2), where the correlation function is
defined and integrated). If we extend the application of the formal limit by dividing
Equation (20) with Tmsr, we obtain the power spectrum density in the form

Sxx( f ) = lim
Tmsr→∞

Cxx( f )
Tmsr

=
1

γ2 (G2
R + G2

I )ω=2π f

{
CFT2

[
4π2 f 2 +

(
k1 + k2

δ

)2
]
+ CFT1

(
k1

δ

)2
}

.
(23)

In this way, the physical meaning of the coefficients CFT 1,2 is revealed. They can also be
represented in an independent way by expressing their relation to the absolute temperature

CFT1 = 2kBTδ , CFT2 = 2kBTγ . (24)

However, this construct also provides information about the dissipative mechanisms.
This is built with the idea that fluctuations from random forces are dissipated by the
mechanisms represented by the parameters δ, γ. As provided below in Section 4.5, the
mean potential energy for the respective degrees of freedom can be compared to determine
the equilibrium level of energy flow controlled by CFT1 and CFT2. The Equation (24) given
above is essentially the case of the general fluctuation–dissipation theorem introducing the
natural heat unit kBT.

The fluctuation–dissipation theorem is a statistical thermodynamics statement that
explains how fluctuations in a detailed balanced system determine its response to applied
disturbances. According to this theorem, two opposing mechanisms are responsible for
creating a detailed equilibrium in mechanical systems. On the one hand, there are the
consequences of the dynamics of a microsphere attached to a nanowire that is damped
by the surrounding fluid. Contributions from the internal damping mechanisms of the
nanowire also fall into the same category. Even with this damping combination, the me-
chanical energy is converted into heat. On the other hand, the presence of damping is
necessarily accompanied by fluctuations born in the viscous environment. In the case of
the surrounding liquid, these fluctuations result in typical random Brownian collisions
of liquid molecules with the microbead. In a standard way, the process is interpreted so
that on microscopic scales, heat can be converted back into the mechanical energy of the
microbead. The internal damping inside the nanowire acts likewise. Summarizing the
above statements, we arrive at a specific form of the fluctuation-dissipation theorem, which
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states that a constant dissipation flux keeps the mean mechanical energy input invariant,
while ensuring the production of new fluctuations.

As a result, let us emphasize an important point: Equation (23) can be modified to
account for the temperature effect. With the intention of linking theory with experiment,
we attain the expression

Sxx( f ) =
2kBT

γ

4π2 f 2 + KA

( 4π2 f 2 − KB )
2 + 4π2 f 2 KC

. (25)

The asymptotic, high-frequency consequence of this general result is

Sxx( f ) � kBT
2π2γ f 2 , f � 1

2π
max

{√
KA,

√
KB,

√
KC

}
. (26)

At this stage, we benefit from the choice of auxiliary parameters KA, KB, KC. Returning
to material details is possible using transformations

KA =

(
k1 + k2

δ

)2
+

γ

δ

(
k1

γ

)2
, KB =

k1k2

γδ
, KC =

[
k2

δ
+ k1

(
1
γ
+

1
δ

)]2
. (27)

These auxiliary parameters are positive for a given model specification that operates
exclusively with positive k1, k2, δ, γ. However, there is also another, more sophisticated
level of interpretation. It is interesting and also productive to assume that the result can be
written as a sum of two weighted Lorentzian functions

4π2 f 2 + KA

( 4π2 f 2 − KB )
2 + 4π2 f 2KC

!
=

1
Γ2 − Γ1

(
KA − Γ1

Γ1 + 4π2 f 2 +
Γ2 − KA

Γ2 + 4π2 f 2

)
. (28)

Here Γ1,2 play the role of free parameters, which incorporate information coming
from previously introduced KA, KB, KC. The change to Γ1,2 should be considered as
an intermediate step along with other consequences. The key consequence is double
Lorentzian form

Sxx( f ) =
kBT

2π2γ( f 2
C2 − f 2

C1)

( KA
4π2 − f 2

C1

f 2
C1 + f 2

+
f 2
C2 − KA

4π2

f 2
C2 + f 2

)
. (29)

It is based on the assumption that there exist some relations between Γ1,2 and the
corner frequencies fC1,2. When Equations (28) and (29) are combined, we obtained

f 2
C1,2 =

Γ1,2

4π2 =
1

4π2

[
KC

2
− KB ∓ 1

2

√
KC(KC − 4KB)

]
. (30)

In the above solution, we use the consensus that the plus sign corresponds to fC2. The
constraints that allow for such a solution are as follows:

KC
2

− KB ≥ 1
2

√
KC(KC − 4KB) , KC ≥ 0 , KC ≥ 4KB . (31)

If we consider the transformation to physical parameters in the sense of Equation (27)
to analyze the satisfaction of the above constraints, we obtain

KC

2
− KB =

k2
1

2

(
1
γ
+

1
δ

)2
+

k1k2

δ2 +
k2

2
2δ2 ≥ 0 , (32)

KC − 4KB =

(
k2

δ
− k1

γ

)2
+

(
k1

δ

)2
+

2k1

δ

(
k2

δ
+

k1

γ

)
≥ 0 . (33)
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Using Equation (27), we confirm that KC ≥ 0. Moreover, the trivial K2
B ≥ 0 implies

(KC/2)− KB ≥ (1/2)
√

KC(KC − 4KB). Therefore, there is no obvious contradiction with
the fact that Γ1, Γ2 correspond to f 2

C1, f 2
C2. It is also notable that the inverse transformations

( fC1, fC2) → (Γ1, Γ2) → (KB, KC) become

KB =
√

Γ1Γ2 = 4π2 fC1 fC2 ,

KC = 2
(√

Γ1Γ2 +
Γ1 + Γ2

2

)
= 4π2( fC1 + fC2 )

2 .
(34)

The result is intriguing in terms of revealing the central tendency in KB(Γ1, Γ2) and
KC(Γ1, Γ2) as representatives of the pair Γ1, Γ2.

4.4. Autocorrelation Function

The findings presented above can be augmented by using direct time representation.
According to the well-known Wiener–Khinchin relation, we have the consequence for the
autocorrelation function in the form

Rxx(t) =
∫ ∞

−∞
d f Sxx( f ) exp(2πi f t) . (35)

As a result, for Equation (29) as a specific version of Sxx( f ), we obtain a two-exponential
autocorrelation function

Rxx(t) = R0

(
R1e−2π fC1|t| +R2e−2π fC2|t|

)
, (36)

where

R0 =
kBT

2πγ( f 2
C2 − f 2

C1)
, R1 =

KA
4π2 − f 2

C1

fC1
, R2 =

f 2
C2 − KA

4π2

fC2
. (37)

It is worth noting that corner frequency parameters have a significant impact on
autocorrelation decrease over time. At a first glance, we can see the essential property
here where a pair of frequencies in the Lorentz form corresponds to a pair of damping
terms with the typical decay times proportional to 1/ fC1 and 1/ fC2. It should also be
noted that, assuming that the physical parameters are constant, the temperature is directly
manifested only in the amplitude R0. The calculations above were performed with the
help of a well-known auxiliary relation

∫ ∞

−∞
d f

exp(2πi f t)
f 2 + f 2

C
=

π

fC
exp(−2π|t| fC ) (38)

with some auxiliary parameter fC.

4.5. Sharing of Elastic Energy; Rationale for Choosing C FT1, CFT2

According to the principle of energy equipartition, average energy is evenly dis-
tributed among the various degrees of freedom of ergodic systems. As shown here, the im-
plications of this principle are valuable tools for calculating the amplitudes (CFT1, CFT2)
of a pair of random forces. The equipartition principle can be applied to the mean elastic
energies. We start by writing the energy for the Fourier modes corresponding to ω. It
is worth noting that since the inertial term is considered negligible, the zero limit of the
kinetic energy has no effect on the equipartition issues.
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Using the integration techniques already discussed, we continue to utilize the formal
limit approach (Tmrs → ∞) for the integration of the spectrum and averaging over the
respective potential energy fluctuations as follows

UP1 =
k1

2

∫ ∞

0
dω 〈x̃∗1 x̃1〉(ω) = IP11CFT1 + IP12CFT2 ,

UP2 =
k2

2

∫ ∞

0
dω 〈x̃∗2 x̃2〉(ω) = IP21CFT1 + IP22CFT2 .

(39)

The formulas below can be applied to complete the integration

IP11 = k1
2δ2 IE2 , IP12 = k1

2γ2

[
IE2 +

(
k2
δ

)2
IE0

]
,

IP21 = k2
2δ2

[
IE2 +

(
k1
γ

)2
IE0

]
, IP22 =

k2k2
1

2γ2δ2 IE0 .
(40)

These four coefficients include two spectral integrals

IE0 =
∫ ∞

0

dω

π

1
G2

R(ω) + G2
I (ω)

, IE2 =
∫ ∞

0

dω

π

ω2

G2
R(ω) + G2

I (ω)
. (41)

Going back to a spectral decomposition using a pair of Lorentzian forms (see Equation (29))
in combination with Equations (30) and (34) gives the following result

IE0 =
1

2(Γ2 − Γ1)

(
1√
Γ1

− 1√
Γ2

)
=

1
2KB

√
KC

,

IE2 =
1

2(Γ2 − Γ1)

(√
Γ2 −

√
Γ1

)
=

1√
KC

.
(42)

As a consequence, the following relationship IE2 = IE0 k1k2 /(γδ) can be used in the
mean potential energies listed below

UP1 =
k1k2

2γδ

[(
k1

δ

)
CFT1

δ
+

(
k1

γ
+

k2

δ

)
CFT2

γ

]
IE0 ,

UP2 =
k1k2

2γδ

[(
k1

γ
+

k2

δ

)
CFT1

δ
+

(
k1

δ

)
CFT2

γ

]
IE0 .

(43)

Finally, in accordance with Equation (24), we have the confirmation of the equipartition
in the form

UP1 = UP2 = KB
√

KC IE0 kBT =
1
2

kBT . (44)

4.6. The Spectrum Moments

In this subsection, we discuss the usefulness of introducing power spectral density
integrals in cases where the frequency domain over which we integrate is divided into
non-intersecting intervals. Frequency integration is motivated by the fact that providing
excessive detail for spectrum characterization may be unnecessary in certain contexts. The
second reason is that aggregation of data helps to suppress statistical errors. The third
reason is the possibility of comparing only a few moments with the moments estimated by
direct data processing.

Naturally, the analytical form of the model moments simplifies further processing.
In our case, the specificity of the moments corresponding to Lorentzian and related spectral
forms supports the overall validation process. Let the regression-related (rr) moments
obtained by analytical integration be referred to as Mrr

Sxx( fL, fH). This notation is used to
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mean that integration has occurred within the range between the lowest fL and the highest
fH frequencies. Then

Mrr
Sxx( fL, fH) =

∫ fH

fL

d f Sxx( f )

=
R0

π

[
R1

(
arctan

(
fH

fC1

)
− arctan

(
fL

fC1

))
(45)

+R2

(
arctan

(
fH

fC2

)
− arctan

(
fL

fC2

))]
.

Because the interval length may diverge, we decided to use non-normalized moments.
Recall that R1 and R2 are the two respective amplitudes of the exponentials corresponding
to the autocorrelation function (see Equation (37)). On this basis, using fC1, fC2 as natural
boundaries, we can define the system of three specific regression-related spectral moments

Mrr
Sxx(0, fC1) =

R0

π

[
R1

π

4
+R2 arctan

(
fC1

fC2

)]
,

Mrr
Sxx( fC1, fC2) =

R0

π

[
R1 arctan

(
fC2

fC1

)
−R2 arctan

(
fC1

fC2

)
+ (R2 −R1)

π

4

]
, (46)

Mrr
Sxx( fC2, ∞) =

R0

π

[
(2R1 +R2)

π

4
−R1 arctan

(
fC2

fC1

)]

with the total sum (1/2)R0 (R1 +R2). Other suitable boundary options are, of course,
possible, such as those that do not depend on regression results but instead emerge entirely
from generalized averaging procedures of the experimental spectrum.

4.7. Experimental Results and Their Regression

After the successful implementation of the experiment, we obtained data representing
the observed dynamics x(t), which we have then transformed into corresponding Fourier
images. The aim was to obtain an experimental power spectrum density { Sex

xx,j }Nex

j=1 for

the system of Nex frequencies { f j }Nex

j=1 (see Figure 3). Some of the evaluations have been
performed according to the work of [19]. Preprocessing with grouping of the adjacent
experimental spectral points is a necessary methodological peculiarity. Frequency and
spectrum groupings with eight points over the frequency decade were introduced. The
effectiveness with which the representative grouping frequencies were allocated was eval-
uated. Naturally, the grouping process affects not only the locations of representative
frequencies, but also the statistics of spectral points, potentially increasing the regression’s
feasibility. The optimization of parametric combinations is made possible by data knowl-
edge. Let us formally encapsulate the unknown model parameters in a single symbol
Par, resulting in the parameterized form of the double Lorentzian model Sxx( f j,Par) (see
Equation (29)). In addition to identifying the optimum, we will focus on estimating errors
for various components of Par.

The problem-specific emphasis is on the asymptotic behavior of the spectrum. Despite
the fact that the density of the power spectrum decreases as ∼ f−2, the high frequency
domain must be properly included in the regression due to its physical significance. Hence,
a weighted regression of the squares of Sxx( f j,Par)−Sex

xx,j deviations has been implemented.
The preference can be defined as the minimization of the objective function

Obj_F(Par) ≡
Nex

∑
j=1

[
Sxx( f j,Par)− Sex

xx,j

Sex
xx,j

]2

. (47)
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Here, the parameters and their combinations appear to be formally merged into
the vector

Par ≡
(

fC1, fC2,
KA

4π2 ,
kBT

2π2γ

)
. (48)

This is subject to optimization. We used the standard global function optimizer, which
was built on the concept of the [26] work with the implementation (scypy.optimize.curve-
_fit(. . . )) to the SciPy library [27]. The regression corresponding to Obj_F provides the
corner frequencies

fC1 = ( 0.443 ± 0.093 ) (Hz ) , fC2 = ( 4.82 ± 0.23 ) (Hz ) . (49)

Along with them
KA

4π2 = ( 0.47 ± 0.19) (Hz2 ) . (50)

Finally, there is also fixed corresponding parametric combination

kBT
2π2γ

= ( 3.53 ± 0.13 )× 10−15 (m2 Hz ) , (51)

which represents the constant factor in Sxx( f ,Par) as defined by Equation (29). The regres-
sion outcomes are depicted in Figure 3.

Figure 3. Power spectral density of microsphere fluctuations. The solid line belongs to the model
according to Equation (29). The fit was set after optimization of Obj_F(Par). Two Lorentzian
contributions spanning the entire spectrum are also shown.

Now there is a standard way to find out the autocorrelation function (see Equation (37))
via the respective parameters

R0

π
=

(
kBT

2π2γ

)
f 2
C2 − f 2

C1
= 1.532 × 10−16 (m2/Hz ) ,

R1 = 0.623 (Hz ) , R2 = 4.723 (Hz ) .

(52)
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A posteriori evaluation methodology following the regression results provides an
implication for the values of the regression-related spectral moments

Mrr
Sxx(0, fC1) = 1.414 × 10−16 (m2 ) ,

Mrr
Sxx( fC1, fC2) = 5.682 × 10−16 (m2 ) , (53)

Mrr
Sxx( fC2, ∞) = 5.772 × 10−16 (m2 ) .

We see that the sum of the moments 1.286 × 10−15 (m2) equals (R0/2) (R1 +R2),
as predicted.

Adjusting the integration boundaries can be important for the design of some al-
ternative test moments. The premise of the adjustment is that these variants should be
more closely linked to the measurement process, conditioned by the need to avoid spectral
distortions known as “aliasing” and “motion blur”. The effects occur due to too superficial
and insufficient sampling of the signal x(t) captured by the camera. This means that the
calculations must focus on bands with frequencies less than fupp, which in our case was
set to around a quarter of the Nyquist frequency. The lower limit value flow prevents
the use of extremely low frequencies. Respecting the lower limit suppresses distortions
caused by the apparatus background noise. Numerically, the boundaries we introduce are
flow = 0.1333 [Hz] and fupp = 59.97 [Hz]. The following three moments

Mex
Sxx( flow, fC1) = 0.924 × 10−16 (m2 ) ,

Mex
Sxx( fC1, fC2) = 5.687 × 10−16 (m2 ) , (54)

Mex
Sxx( fC2, fupp) = 4.952 × 10−16 (m2 )

were created to express the properties of the experimental data set, which was achieved by
partly reducing the impact of the regression results. Here we see that Simpson’s integration
quadrature based on uniform data sampling (without grouping) also provides us with
variants of spectral moments. However, even when using numerical integration, we must
be careful if we subsequently perform comparisons and interpretations. The reason is
that certain integrals approximated by a suitable summation can become dependent on
the previous regression only by their integration boundaries when these are linked to
regression parameters ( fC1 and fC2). Independence from regression can be achieved using
descriptive spectrum characteristics (analogous to descriptive statistics). This means using
characteristic frequencies in the role of integration boundaries. Then the results of the
calculation are generalized spectral averages. The fact that we do not present more moment
variants here is mainly related to the focus of this work.

When comparing the Equations (53) and (54), we see that only the central moments
for the [ fC1, fC2] band are close enough to each other, which means that Mrr

Sxx(0, fC1) and
Mrr

Sxx( fC2, ∞) are not sufficient approximations of Mex
Sxx( flow, fC1) and Mex

Sxx( fC2, fupp),
respectively. Results show that in the case of regression-related moments, there is only a
slight and negligible rise in moments compared to the use of Simpson’s rule

∼ 1.2 % increase : (55)

Mrr
Sxx(0, fC1)−Mrr

Sxx(0, flow) = 0.935 × 10−16(m2)

� Mex
Sxx( flow, fC1) ,

∼ 4.6 % increase :

Mrr
Sxx( fC2, ∞)−Mrr

Sxx( fupp, ∞) = 5.184 × 10−16(m2)

� Mex
Sxx( fC2, fupp) .

5. Discussion

Two kinds of spectral moments (Mrr
Sxx(.) and Mex

SSx(.)) were designed, calculated
and compared for the experimental input data given. We have shown by analysis that
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subsequent regression-related and the numerical integration outputs can be globally or
locally compared and evaluated. This would have an effect on the choice of the overall
regression process or model, thereby affecting at least one of them.

The studied model is based on the assumption that a pair of different corner frequen-
cies is needed to describe the spectrum. Consider a situation that, under certain parametric
conditions, only a small gap between fC1 and fC2 is observable. Alternatively, one of the
two spectrum amplitudes before the terms 1/( f 2

C1 + f 2), 1/( f 2
C2 + f 2) may be negligible

(see Equation (29)). All these cases lead to a special limit of the single Lorentz power
spectral density.

It should be noted that we did not study beyond the level of a few phenomenological
parameters provided in Par on purpose. This is related to the reasons for which the
correct determination of the four constants k1, k2, γ, δ is part of a wider methodological
issue that demands the use of several independent observations. The nanowire material
properties, rather than the model’s less universal parameters, will likely be the focus of our
future research.

6. Conclusions

Nanowires prepared by TPP-DLW from Ormocomp possess viscoelastic material
properties. This viscoelasticity determines the mechanical behavior of microstructures
comprising such nanowires.

The bending recovery motion of cantilevered nanowire systems equipped with a
microbead at the free end and immersed in Newtonian liquids was studied previously [25].
The same microstructures, in isolation, exhibit significant thermal fluctuations. In this work,
the previous mechanical model was extended with stochastic forces to explain the power
spectral density and autocorrelation function of the microstructure thermal fluctuations. In
principle, the Brownian fluctuations of cantilevered nanowires can be utilized for micron-
scale viscosity measurements. Our results pave the way for a quantitative analysis of such
micro-viscometer systems.

The calculation of the correlation functions of the characteristic coordinate was car-
ried out in the frequency domain by introducing symmetric forms for the corresponding
coefficients. The implications of the calculation concern the steady state, which can be
alternatively characterized by the spectral power density. An interesting aspect of our
approach is that the weighted regression results for the spectra have been validated using
the spectral moment system.

Theoretical considerations confirmed the double-Lorentzian power density spectrum
and the doubly-exponential autocorrelation function. As we have shown by a special
implementation of weighted regression, reasonable agreement with our experimental
observations was obtained for the spectrum. Simultaneous weighted regression of multiple
functions, including autocorrelation, is reserved for further empirically oriented work.

It is concluded that the source of thermal fluctuations is related both to energy dis-
sipation inside the photopolymer material and the surrounding liquid. In this partial
dissipation problem, we have shown that the equipartition theorem allows us to correctly
parameterize random forces. Furthermore, we believe that the stochastic mechanical model
we present has the potential to be used for further analysis and prediction of characteristics
for similar nanowire-based systems.
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Abstract: In this paper, a finite time thermodynamic model of high temperature proton exchange
membrane fuel cell (HT-PEMFC) is established, in which the irreversible losses of polarization and
leakage current during the cell operation are considered. The influences of operating temperature,
membrane thickness, phosphoric acid doping level, hydrogen and oxygen intake pressure on the
maximum output power density Pmax and the maximum output efficiency ηmax are studied. As the
temperature rises, Pmax and ηmax will increase. The decrease of membrane thickness will increase
Pmax, but has little influence on the ηmax. The increase of phosphoric acid doping level can increase
Pmax, but it has little effect on the ηmax. With the increase of hydrogen and oxygen intake pressure,
Pmax and ηmax will be improved. This article also obtains the optimization relationship between
power density and thermodynamic efficiency, and the optimization range interval of HT-PEMFC
which will provide guidance for applicable use of HT-PEMFCs.

Keywords: HT-PEMFC; irreversibility; finite time thermodynamic optimization; power density;
thermodynamic efficiency

1. Introduction

With the decreasing of oil resources and the worsening of the natural environment,
most countries have developed new/renewable energy systems and are trying to change
their existing energy structure [1–3]. The proton exchange membrane fuel cell (PEMFC)
has had considerable attention paid to it due to its excellent performance, including high
energy conversion efficiency, low operating temperature, short start-up time, high power
density and small size, etc. As a reliable power source, it has been widely used in the field
of traffic engineering.

A conventional low-temperature proton exchange membrane fuel cell (LT-PEMFC)
operates at 40–80 ◦C. Liquid water produced by the reaction affects conductivity and gas
transmission, which makes the water management and gas management more complicated.
In addition, the Nafion membrane at low temperature has low tolerance to CO and S.
The high-temperature proton exchange membrane fuel cell (HT-PEMFC) equipped with
phosphoric acid-doped polybenzimidazole membrane (PA/PBI) can increase the operat-
ing temperature to over the water boiling point (100–200 ◦C) and maintain high proton
conductivity under high temperature operating conditions. Therefore, the corresponding
water management system can be simplified greatly and the reaction rate of the cathode
and anode can be improved, with a cell efficiency that is higher than LT-PEMFC [4].

In terms of modeling HT-PEMFCs, Cheddie et al. [5] established the output voltage
and power density model of HT-PEMFC based on PBI membrane which considered the
irreversibilities of activation polarization and ohmic polarization. The results found that the
voltage loss was caused by activation polarization and ohmic polarization, and membrane
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conductivity and catalyst performance affected the polarization loss greatly. Hu et al. [6]
presented a two-dimensional model of HT-PEMFC with PA/PBI membrane, in which the
polarization loss on the cathode side was mainly considered. The mathematical model of the
cathode exchange current density was established by linear sweep voltammetry (LSV) and
the ohmic polarization of the cathode is estimated by electrochemical impedance spectroscopy
(EIS). Numerical simulation results were in good agreement with the experimental results.
Scott et al. [7,8] developed the output voltage and power model of HT-PEMFC and investi-
gated the influence of operating temperature and operating pressure on open-circuit voltage,
exchange current density and diffusion coefficient. Kim et al. [9,10] studied the influence of
operating conditions on performance degradation of HT-PEMFC. The results showed that the
doping level and current density had a significant effect on the durability of HT-PEMFC.

The above mathematical models consider the influence of polarization losses on cell
output and degradation, but the influence of irreversibility of leakage current on cell
operation is neglected. In addition, in the application of a fuel cell engine, not only the
amount but also the quality of energy should be considered, so the efficiency model should
be added into the model to study the overall optimization performance.

The fundamental purpose of finite time thermodynamics is to seek ultimate perfor-
mance of thermodynamic processes and systems with the goal of reducing irreversibility
in finite time or under the constraints of finite size [11–16]. In terms of thermodynamic
optimization research of fuel cells, Watowich et al. [17] applied the optimal control theory
to determine the limit of the fuel cell operation process, and the current path and optimal
terminal state of the constrained cell in a limited time, so as to provide maximum output
power, maximum efficiency and maximum profit. Li et al. [18] utilized finite time thermody-
namics in HT-PEMFC performance analysis to investigate the effects of kinds of parameters.
Although leakage current was considered, concentration potential was not contained in the
reversible potential. Sieniutycz et al. [19,20] established the steady-state model of PEMFC
based on finite time thermodynamics. The influence of design and operation parameters
on the performance of fuel cells was analyzed, and the power limit was predicted from the
perspective of thermodynamic optimization. Li et al. [21] conducted ecological analysis on
LT-PEMFC and derived ecological coefficient of performance. In addition to the studies of
HT-PEMFC model, lots of development was devoted to materials [22–25] and component
degradation issues [26].

Firstly, aiming at the lack of irreversible factors, this paper established a thermodynamic
model that considered various polarizations and leakage current. Secondly, the influences
of operating temperature on Pmax and thermodynamic efficiency ηmax were studied. The
influences of operating temperature, membrane thickness, phosphoric acid doping level,
hydrogen and oxygen intake pressure on the optimal performance are discussed. Finally, the
optimal relationship between power density and thermodynamic efficiency is analyzed, and
the optimal interval of power density and thermodynamic efficiency is obtained.

2. Thermodynamic Model

2.1. Internal Processess of HT-PEMFC

As shown in Figure 1, HT-PEMFC converts chemical energy into electrical energy
through electrochemical reaction of hydrogen and oxygen.

The mass transfer mechanism of HT-PEMFC is much different from LT-PEMFC. LT-
PEMFC basically uses the Nafion membrane and the proton transport carrier sulfonic
acid functional group can separate hydrogen ions and form hydronium ions with water
molecules under humidified conditions; while in HT-PEMFCs, phosphoric acid replaces
the humidified water and chemical reaction and mass transfer are based on a so-called
Grotthuss mechanism. The chemical reaction and mass transfer within the anode, the
cathode and the membrane can be expressed as Equations (1)–(3):

Anode : H2PO−
4 + H+ = H3PO4 (1)

Membrane : H3PO4 + PBI = H2PO−
4 + PBI·H+ (2)

98



Mathematics 2021, 9, 1792

Cathode : PBI·H+ = PBI + H+ (3)

When supplying hydrogen to the anode and oxygen to the cathode, hydrogen atoms
are separated into hydrogen ions and electrons under the action of anodic catalyst. Hy-
drogen ions pass through proton exchange membrane and electrons flow to the cathode
through the external circuit load; hydrogen ions combine with oxygen atoms and electrons
at the cathode to form water molecules at relative higher temperatures over water boiling
point. Therefore, water molecules are discharged in the gas phase avoiding water manage-
ment systems like LT-PEMFCs. The total electrochemical reaction of HT-PEMFC can be
formulated as Equations (4)–(6):

Anode reaction : H2 → 2H+ + 2e− (4)

Cathodic reaction : 2H+ +
1
2

O2 + 2e− → H2O(gas) + heat (5)

Total reaction : H2 +
1
2

O2 → H2O(gas) + heat + electricity (6)

Figure 1. Working principle of HT–PEMFC.

2.2. Reversible Output Voltage of HT-PEMFC

For HT-PEMFC, the reversible output voltage can be written as Equation (7),

Er = E0
r +

ΔS
nF

(T − T0) +
RT
nF

ln(
pH2 p0.5

O2

pw
) (7)

where, Er is obtained under isothermal conditions; E0
r [18] is the reference standard voltage

at ambient temperature and pressure (298.15 K, 1 atm), and its value is 1.185 V; ΔS is the
change of standard molar entropy, T is operating temperature of the HT-PEMFC, T0 is the
ambient temperature, R is the gas constant, pH2 is the intake pressure of hydrogen, pO2 is
the intake pressure of oxygen, and pw is the pressure of discharging water vapor.

The entropy change is related to the operating temperature, Equation (8) [27]:

ΔS
n

= −18.449 − 0.01283(T) (8)
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2.3. Irreversible Loss of HT-PEMFC
2.3.1. Polarization Phenomenon

For a single electrode, the electrode potential with no current passing through is the equilib-
rium potential (Er), and the electrode potential with current passing through is Ecell. In general,
Ecell < Er, the absolute value of electrode potential difference (|Er − Ecell |) is overpotential.

The activation overpotential can be written as Equation (9) [5,28]:

Eact =
RT
2αF

ln(
I + Ileak

I0
) (9)

where, I is current density, I0 is exchange current density, Ileak is leakage current density,
α is transfer coefficient, Eact is activation overpotential. Exchange current density can be
expressed as Equation (10) [7]:

ln(I0) = 2.2266 × 1000
T

− 0.4959 (10)

Ohmic overpotential can be calculated as the following Equation (11) [27]:

Eohm = I

(
lm
Km

+
2ld

σ
e f f
d

)
(11)

where, lm is membrane thickness, Km is proton conductivity in the membrane phase, ld is
thickness of diffusion layer, σ

e f f
d is electron conductivity. The proton conductivity can be

presented as Equation (12) [8]:

Km =
100
T

exp
[

8.0219 −
(

2605.6 − 70.1X
T

)]
(12)

where, X is the doping level of phosphoric acid of the proton exchange membrane.
If the reactant gas or oxidant is not supplied in time, the electrode surface cannot maintain

the reactant concentration, and concentration polarization will occur. In HT-PEMFC, the value
of the concentration overpotential is already included in the reversible potential.

2.3.2. Leakage Current

Theoretically, the electrolyte is an ionic conductor and has no electron transport.
However, in actual operation, some hydrogen and electrons will diffuse from the anode to
the cathode through the electrolyte, and a small number of electrons will flow outward
through the proton membrane. Such leakage current includes internal current and cross
current [29]. Therefore, the total current density generated by the fuel cell is equal to the
sum of the output current density and leakage current density,

Igross = I + Ileak (13)

where Igross represents the total current density generated on the fuel cell electrode, I is
the working current density that can be measured through the external load, and Ileak
represents the leakage current density.

Haji [30] found that the leakage current increased with the rise of operating tem-
perature and concluded that leakage current density and operating temperature met the
functional relationship:

lnIleak =

(
−2342.9

1
T
+ 9.0877

)
× ln 10 (14)
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2.4. Irreversible Output Voltage

The irreversible output voltage of HT-PEMFC can be expressed as Equation (15),

Ecell = Er − Eact − Eohm − Econ
= 1.185 − (

1.91 × 10−4 + 1.33 × 10−7T
)
(T − 298.15) + 4.13

×10−5T ln
PH2 PO2

0.5

0.0243 − 1.72 × 10−5T ln
I+88458.17exp(−2342.9

T )
3.95×10−6T3−0.00424T2+1.523−183

+I
(

lmT
304696.11exp( 70.1X−2605.6

T )

) (15)

2.5. Power Density and Efficiency of HT-PEMFC

The power density [31] of HT-PEMFC can be expressed as Equation (16),

P = Ecell · I = (Er − Eact − Eohm − Econ)·I
= [1.185 − (

1.91 × 10−4 + 1.33 × 10−7T
)
(T − 298.15)

+4.13

×10−5T ln
PH2 PO2

0.5

0.0243

−1.72 × 10−5T ln
I+88458.17exp(−2342.9

T )
3.95×10−6T3−0.00424T2+1.523−183

+I
(

lmT
304696.11exp( 70.1X−2605.6

T )

)
]I × 10−3

(16)

The total energy absorbed from hydrogen and oxygen is enthalpy of reaction [32],

ΔH = ∑
k

∣∣∣∣denk
dt

∣∣∣∣hk(T)− ∑
j

∣∣∣∣denj

dt

∣∣∣∣hj(T) =
I

nF
Δh(T) (17)

where Δh(T) is molar enthalpy at temperature T, j is component of the reactants, k is
component of the products in the reaction.

For the energy conversion device, the basic definition of thermodynamic efficiency is
the ratio of actual useful work to the total energy input [33]. Therefore, thermodynamic
efficiency of HT-PEMFC can be expressed as Equation (18),

η = − P
Δ H = − (Er−Eact−Eohm)·I

ΔH
= −192970 × [1.185 − (

1.91 × 10−4 + 1.33 × 10−7T
)
(T − 298.15)

+4.13

×10−5T ln
PH2 PO2

0.5

0.0243

−1.72

×10−5T ln
I+88458.17exp(−2342.9

T )
3.95×10−6T3−0.00424T2+1.523−183

+I
(

lmT
304696.11exp( 70.1X−2605.6

T )

)
]I × 10−3/·h(T)

(18)

2.6. Thermodynamic Optimization

For HT-PEMFC, P is related to I, T, lm, pH2 , pO2 and X, so P can be expressed as
Equation (19) [34–37]:

P = f
(

I, T, lm, pH2 , pO2 , X
)

(19)

When the membrane thickness (lm), hydrogen intake pressure (pH2 ), oxygen intake
pressure (pO2 ) and membrane acid doping level (X) are determined, the power density
(P) is only related to current density (I) and cell operating temperature (T), so P can be
expressed as Equation (20):

P = g(I, T) (20)
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In Equation (22), when T = T1, the power density (P) is only related to the current
density (I), the maximum power density Pmax (P1) is obtained; when T = T2, the power
density (P) is only related to the current density (I), the maximum power density Pmax
(P2) is obtained. By analogy, when T = Tn, the maximum power density Pmax (Pn) can be
obtained. And the relationship between Pmax and T can be acquired.

Similarly, when operating temperature T, film thickness lm, oxygen intake pressure
pO2 , and film acid doping level X are determined, the corresponding curve between Pmax
and pH2 can be obtained.

When the operating temperature T, film thickness lm, hydrogen intake pressure pH2

and film acid doping level X are determined, the corresponding curve between Pmax and
pO2 can be obtained.

Similarly, thermodynamic efficiency (η) is related to current density (I), cell operating
temperature (T), membrane thickness (lm), hydrogen intake pressure (pH2 ), oxygen intake
pressure (pO2 ) and membrane acid doping level (X), so it can be expressed as formula (21):

η = h
(

I, T, lm, pH2 , pO2 , X
)

(21)

When the membrane thickness (lm), hydrogen intake pressure (pH2 ), oxygen intake
pressure (pO2 ) and membrane acid doping level (X) are determined, the thermodynamic
efficiency (η) is only related to current density (I) and cell operating temperature (T), so η
can be expressed as Equation (22):

η = j(I, T) (22)

In Equation (22), when T = T1, the thermodynamic efficiency (η) is only related to the
current density (I), the maximum thermodynamic efficiency ηmax (η1) is received; when
T = T2, the thermodynamic efficiency (η) is only related to the current density (I), the
maximum thermodynamic efficiency ηmax (η2) is received. By analogy, when T = Tn,
the maximum thermodynamic efficiency ηmax (ηn) can be obtained. And the relationship
between ηmax and T can be acquired.

Similarly, when operating temperature T, film thickness lm, oxygen intake pressure
pO2 , and film acid doping level X are determined, the corresponding curve between ηmax
and pH2 can be obtained.

When the operating temperature T, film thickness lm, hydrogen intake pressure pH2

and film acid doping level X are determined, the corresponding curve between ηmax and
pO2 can be obtained.

3. Results and Discussion

The relevant parameters in the HT-PEMFC model are shown in Table 1.

Table 1. Relevant data of HT-PEMFC.

Parameter Value

current density, I
(

A m−2
)

0–20,000 [27]

operating temperature, T (K) 373–473 [20]
intake pressure, pH2 , pH2 (atm) 1–3 [27]

thickness of membrane, lm (μm) 20, 60, 100 [27]
doping level, X 2, 6, 10 [27]

electronic number, n 2
faraday constant, F

(
C mol−1

)
96,485

ambient temperature, T0 (K) 298.15
transfer coefficient, α 0.25 [20]

diffusion layer thickness, ld (m) 2.6×10−4 [20]
electron conductivity, σ

e f f
d

(
S m−1

)
53 [20]
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As shown in Table 1, some parameters referenced in this paper are from the literature [27,38].
The choice of any type of fuel cell as the vehicle power is mainly based on the application scenario
of the vehicle and the demand of the power plant. Power density, dynamic response, output
efficiency, durability and life, fuel form, emission and other aspects are selected as key indicators
for passenger vehicles. PEMFC is superior to other fuel cells in terms of efficiency, dynamic
response, durability and life, fuel form and emission.

3.1. Model Validation

Figure 2 compares model Formula (15) prediction and experimental data at 398 K
and 448 K (lm = 20 μm; X = 6; pH2 = 1 atm; pO2 = 1 atm). The experimental studies in
the literature [8] and model studies in the literature [27,38] are both based on HT-PEMFC
equipped with PA/PBI membrane and have the same specifications. The results show
that the curve predicted by the cell output voltage model has a good agreement with
the experimental data. When leakage current is not considered in the model, the output
voltage is significantly higher than that predicted by the model, especially in the low
current density region. This is mainly because leakage current mainly affects the activation
polarization, as shown in Figure 3, the activation polarization potential changes most
significantly in the low current density region.

Figure 3 shows the variation curve of reversible voltage, polarized overpotential and
irreversible output voltage versus current density of HT-PEMFC. It can be seen that the
reversible voltage is a constant independent of current density. The activation overpotential
and ohm overpotential increase with the increase of current density, and the activation
overpotential changes greatly in the area of low current density. The irreversible output
voltage decreases as the current density increases.

Figure 2. Comparison of model curve and experimental data.
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Figure 3. Reversible voltage, polarized overpotential and irreversible output voltage of HT-PEMFC.

3.2. Maximum Output Performance at a Given Temperature

Figure 4 reflects the influence of operating temperature on Pmax and ηmax of HT-
PEMFC. As can be seen from the figures, Pmax and ηmax raise with the increase of tempera-
ture. From the perspective of electrochemical kinetics, the increase of operating temperature
enhances the proton conductivity of the membrane and reduces the electrochemical polar-
ization of the HT-PEMFC. Moreover, the increase of operating temperature can improve
the exchange current density and reduce the activation overpotential, so Pmax and ηmax
will be boosted.

Figure 4a shows the impact of operating temperature on Pmax and ηmax of HT-PEMFC
under different lm. It can be seen that with the decrease of proton membrane thickness,
Pmax and ηmax will increase. If the thickness of proton membrane is reduced, the barrier of
ions passing through proton membrane and the ohmic overpotential decrease. Therefore,
Pmax and ηmax will be improved. When the temperature is 433 K, Pmax increases by 50%
and the ηmax raises by 1.8% under the change of membrane thickness, which indicates that
the membrane thickness has little influence on ηmax. The reduction of membrane thickness
can improve the performance, but fuel penetration, short circuit and other problems always
limit the thickness.

Figure 4b reveals the effect of operating temperature on Pmax and ηmax of HT-PEMFC
under different X. It is obvious that with the increase of the acid doping level of the
membrane, Pmax and ηmax will improve, and the variation range of the low temperature
zone is greater than that of the high temperature zone. The doping level directly affects the
proton conductivity of the membrane. The increase of doping level enhances the proton
conductivity of the membrane, thus reducing ohmic overpotential. Therefore, Pmax and
ηmax will be improved. When the temperature is 373 K, Pmax increases by 84% under the
change of doping level; while when the temperature is 473 K, Pmax improves by 52% under
the change of doping level. When the temperature is 433 K, the ηmax raises by 0.8% under
the change of acid doping level. This indicates that doping level has little effect on ηmax.
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Figure 4c displays the influence of operating temperature on Pmax and ηmax of HT-
PEMFC under different pH2 . Obviously, with the increase of hydrogen intake pressure,
Pmax and ηmax will improve. The increase in pressure, on the one hand, increases the
diffusion rate of the gas and improves the mass transfer of the reaction gas, which increases
the reversible electromotive force of the HT-PEMFC; on the other hand, it increases the
gas concentration and reduces the effect of concentration polarization on the reversible
electromotive force. At the temperature of 433 K, Pmax boosts by 12.5% and the ηmax
enhanced by 4.5% under the influence of hydrogen intake pressure.

Figure 4d shows the effect of operating temperature on Pmax and ηmax of HT-PEMFC
under different pO2 . It can be seen that with the increase of oxygen intake pressure, Pmax
and ηmax will increase. At the temperature of 433 K, Pmax and the ηmax raises by 6.7% and
2.9% respectively under the change of oxygen intake pressure.

 
 

(a) (b) 

  

(c) (d) 

Figure 4. Effect of operating temperature on Pmax and ηmax of HT-PEMFC under different parameters. (a) Different lm;
(b) different X; (c) different pH2 ; (d) different pO2 .

3.3. Maximum Output Performance at a Given pH2

Figure 5 reflects the effect of hydrogen inlet pressure on Pmax and ηmax of HT-PEMFC
with. It can be seen from several figures that Pmax and ηmax increase with the raise of pH2 ,
but from a numerical point of view the increase is not large. The rise of pressure not only
increases the diffusivity of the bipolar gas, but also improves the concentration of the
bipolar gas and boosts the mass transfer of the reaction gas, which will strength the mass
transfer of the reaction gas and reduce the influence of concentration polarization on the
reversible potential.
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(a) (b) 

  

(c) (d) 

Figure 5. Effect of operating temperature on Pmax and ηmax of HT-PEMFC under different parameters. (a) Different lm; (b)
different X; (c) different T; (d) different pO2 .

Figure 5a shows the impact of pH2 on Pmax and ηmax of HT-PEMFC under different
lm. It can be seen that as lm decreases, Pmax and ηmax will increase. The thinner the proton
membrane is, the smaller the barrier for ions to pass through the proton membrane, that is,
the ohmic overpotential decreases.

Figure 5b reveals the influence of pH2 in Pmax and ηmax of HT-PEMFC under different
X. It is obvious that as the doping level of phosphoric acid increases, Pmax and

ηmax will increase. The improvement of doping level increases the proton conductivity
of the membrane.

Figure 5c displays the impact of pH2 on Pmax and ηmax of HT-PEMFC under different
T. It is obvious that as the temperature rises, Pmax and ηmax will increase, and the increase
is relatively large. When the operating temperature increases, the proton conductivity of
the membrane improves and electrochemical polarization decreases; at the same time, the
increase of operating temperature can boost the exchange current density, which reduces
the activation overpotential.

Figure 5d describes the effect of pH2 on Pmax and ηmax of HT-PEMFC under different
pO2 . As can be seen from Figure 5d, with the increase of pO2 , Pmax and ηmax will strength.
Obviously, pO2 has little effect on the maximum output of the cell.
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3.4. Maximum Output Performance at a Given pO2

The influence of oxygen intake pressure on Pmax and ηmax of HT-PEMFC is shown
in Figure 6. It can be seen from several figures that Pmax and ηmax raise with the increase
of pO2 , but from a numerical point of view the improvement is not large. The increase
in pressure improves the mass transfer of the reaction gas and reduces the influence of
concentration polarization on the reversible potential.

 
(a) (b) 

 
(c) (d) 

Figure 6. Effect of operating temperature on Pmax and ηmax of HT-PEMFC under different parameters. (a) Different lm;
(b) different X; (c) different T; (d) different pH2 .

Figure 6a reflects the effect of pO2 on Pmax and ηmax of HT-PEMFC under different lm.
It can be seen that as the thickness of the proton film decreases, Pmax and ηmax will increase.

As shown in Figure 6b, pO2 has a significant effect on Pmax and ηmax of HT-PEMFC
under different X. It is obvious that as the doping level of phosphoric acid raises, Pmax and
ηmax will improve.

Figure 6c shows the impact of pO2 on Pmax and ηmax of HT-PEMFC under different T.
Obviously, as the temperature increases, Pmax and ηmax will increase and the increase is
relatively large.

Figure 6d reveals the effect of pO2 on Pmax and ηmax of HT-PEMFC under different pH2 .
It is obvious that with the increase of pH2 , Pmax and ηmax will enhance. It is clear that pH2

has little effect on the maximum output power Pmax.

107



Mathematics 2021, 9, 1792

3.5. Maximum Output Performance at a Given pO2

In the application of fuel cell vehicle, not only the quantity but also the quality of
energy should be considered. Figure 7 shows the relation curve between power density
and thermodynamic efficiency under operating temperature T (453 K), hydrogen and
oxygen intake pressure pO2 , pO2 (3 atm), membrane thickness lm (20 μm) and membrane
acid doping level X (10). In order to improve the calculation accuracy, P/Pmax is chosen to
transform the engineering problem into a mathematical problem. The curve is the willow
leaf curve going back to the origin. As shown in Figure 7, when P = PB, η = ηmax and
when η = ηA, P = Pmax. Thus, the optimal region of HT-PEMFC can be obtained.

PB ≤ P ≤ Pmax, ηA ≤ η ≤ ηmax

Figure 7. Optimization relationship between P and η.

Curve OABO is an optimization curve derived from the power and efficiency model.
When the operating point of the cell is located on the curve AB, its performance reaches
the best. When the running point is located in region 1©, it has better performance; when
the running point is located in the region 2©, it has the worst performance. Regions 3© 4© 5©
are unstable region, because these three regions are outside OABO curve; there exists no
operation points in the region 6© because P > Pmax, η > ηmax.

4. Discussion

In this paper, a finite time thermodynamic model of HT-PEMFC is established, which
takes the irreversibility caused by polarization and leakage current into account. The influ-
ences of operating temperature, proton membrane thickness, proton membrane phosphoric
acid doping level, hydrogen intake pressure and oxygen intake pressure on Pmax and ηmax
at a given temperature are studied. The results show that Pmax and ηmax both increase with
the increase of temperature. When the operating temperature is 433 K, with the decrease of
proton membrane thickness, Pmax improves greatly, but the decrease of membrane thick-
ness has little effect on ηmax. As the doping level of proton membrane phosphoric acid
increases, Pmax increases by 84% at the temperature of 373 K, and by 52% at the temperature
of 473 K. However, the increase of phosphate doping level has little influence on ηmax. The
increase of hydrogen intake pressure and oxygen intake pressure will increase Pmax and
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ηmax. The optimal relationship between power density and thermodynamic efficiency of
HT-PEMFC is also studied. The optimal interval of power density and thermodynamic
efficiency is PB ≤ P ≤ Pmax, ηA ≤ η ≤ ηmax.
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Abstract: Heat transfer analysis can be studied efficiently with the help of so-called modern di-
mensional analysis (MDA), which offers a uniform and easy approach, without requiring in-depth
knowledge of the phenomenon by only taking into account variables that may have some influence.
After a brief presentation of the advantages of this method (MDA), the authors applied it to the
study of heat transfer in straight bars of solid circular section, protected but not thermally protected
with layers of intumescent paints. Two cases (two sets of independent variables) were considered,
which could be easily tracked by experimental measurements. The main advantages of the model
law obtained are presented, being characterized by flexibility, accuracy, and simplicity. Additionally,
this law and the MDA approach allow us to obtain much more advantageous models from an
experimental point of view, with the geometric analogy of the model with the prototype not being a
necessary condition. To the best knowledge of the present authors there are no studies reporting the
application of the MDA method as it was used in this paper to heat transfer.

Keywords: geometric analogy; similarity theory; dimensional analysis; model law; heat transfer;
straight bar

1. Introduction

1.1. General Considerations

The idea of dimensional analysis and its practical application dates from the end
of the 18th century. The introduction of fundamental units allowed for the creation of
some theoretical bases for the application of dimensional analysis in the verification of the
correctness of some obtained formulas.

The method of dimensional analysis was conceived and developed in the last century
by mathematicians and engineers in order to facilitate experimental investigations of
complex structures, as well as difficult to reproduce phenomena, through the easier study
of their small-scale models.

This method involves attaching a model (usually scaled down) to the actual structure,
called a prototype. The experimental and theoretical study will be carried out/performed
on the model, and the results obtained will be transferred to the prototype based on the
rigorous application of the model law, specific to dimensional analysis.

The law of the model consists of a finite and well-determined number of dimensionless
variables, established by Buckingham’s theorem, which have as a starting point precisely
the set of variables that intervene in the description of the respective physical phenomenon.

In the classical version (classical dimensional analysis—CDA), obtaining the model
law, involves following one of the following paths:

• by the direct application of Buckingham’s theorem, presented in detail in the papers
mentioned in the paper;
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• by applying the method of partial differential equations on the fundamental dif-
ferential relations, which describe the phenomenon, when the initial variables are
transformed into dimensionless quantities (through a normalization process) and by
their appropriate grouping the desired dimensionless groups will result;

• identification of the complete form, but also the simplest of the equation (equations)
that describe the phenomenon, which we will transform into dimensionless forms,
from which the desired dimensionless groups will be identified.

These ways of obtaining the desired dimensionless groups, which in fact constitute
the law of the model, represent quite a difficult and at the same time arbitrary method,
which also presuppose the thorough knowledge of the pursued phenomenon.

Compared to these, the method called modern dimensional analysis (MDA) offers a
unique and simple way to obtain the model law, requiring only the consideration of all
variables that could have an influence on the phenomenon, which is a clear advantage to
the MDA. In this case, the complete set of dimensionless groups is obtained, and thus the
complete version of the model law.

From this complete variant, based on the exclusion of some physical or dimensional
variables irrelevant to the studied phenomenon, will result the model law, which most
accurately describes the model–prototype correlation. Thus, based on a unique and simple
approach, those correlations will be established, i.e., the model law, which ensures the
transfer of the information obtained on the model to the prototype.

In this paper, the authors established that only the law of the model, as shown in
paragraph 3.2 (of the variant I studied), can be applied to a concrete case.

A series of papers present the advantages of dimensional analysis [1,2] and the limita-
tions of using this method [3,4]. The basic results in the application of this method have
been obtained in recent decades [5–8]. The fundamentals of the method are consistently
developed and used in applications [9–13].

From all the fields in which the method of dimensional analysis has been applied, we
referred only to its application to heat transfer, which will be the subject of this article.

Some particular cases of heat transfer have been used in the literature. The complexity
of a heat transfer problem is significantly reduced using the dimensional analysis method
and transforming the problem in a scale-free form. For example, this method is used
to study the dimensionless groups in irradiated particle-laden turbulence [14]. For such
systems it is concluded that two dimensionless groups are important in the system’s
thermal response.

An experimental study on the convection heat transfer coefficient and pressure drop
values of CO2 led to the use of the dimensional analysis technique to develop correlations
between Nusselt numbers and pressure drops [15]. Other example of the dimensional
analysis in the case of heat transfer are presented in the literature [16–20].

The complexity and nonlinearity of mechanical or thermal phenomena require a new
approach regarding the correlation of experimental results with theoretical data, which
requires the development of pertinent mathematical models [21]. The conventional analysis
usually involves many trials and diagrams with measurement results.

1.2. Dimensional Modelling, a Design Tool for Heat Transfer Analysis

Starting from the geometric analogy, a first more efficient approach is given by the
similarity theory [22,23], where alongside the prototype, the model—usually a small-scaled
model—is defined. The governing equations applied to the prototype are obtained by
means of the model’s behavior [24,25]. The model must accurately reflect the behavior of
the prototype. The similarity between prototype and model is structural or functional. The
structural similarity highlights mainly the geometric similarity between prototype and
model, while the functional similarity aims to find corresponding equations that describe
both prototype and model. Additionally, geometric similarity supposes proportionality
between length and angle equality for the prototype and model. Thus, homologous points,
lines, surfaces, and volumes of the prototype and model can be defined. Functional

112



Mathematics 2021, 9, 1875

similarity involves similar processes in both systems, prototype and model, that take place
at similar times, i.e., the accomplishment of the similarity of all physical properties that
govern the analyzed process. This kind of similarity can be kinematic or dynamic, and the
phenomena occur so that, in homologous points, at homologous times, each dimension η
is characterized by a constant ratio between the values corresponding to the model and
prototype, Sη . These dimensionless ratios, which are constant in time and space, are scale
factors of the dimensions involved or similarity ratios. The scale factor Sη is defined as
the ratio between the value of the dimension corresponding to the model (η2) and the
prototype, respectively (η1):

Sη =
η2

η1
[−], (1)

The reverse of Sη represents the coefficient of transition from the original to the
model [21]. There are as many scale factors as dimensions describing the phenomenon.
Practically, the mathematical solution of the complex equations that theoretically describe
the actual phenomenon is replaced by correlations between dimensionless parameters,
which are obtained from the fundamental relations of the phenomenon by a suitable
grouping of dimensions, called similarity parameters, such as Nu, Re, St, Pr, etc. Therefore,
the dimensions are replaced by the corresponding scale factors, multiplied by constants,
and by an appropriate grouping, the similarity parameters are obtained, and correlations
among them, such as Nu = f (Re, Pr, Gr, . . .), are also obtained. By means of experimental
measurements, these correlations simplify the analysis performed and allow a reduction in
the number of measurements in order to obtain important parameters of the phenomenon.

Among the basic theorems of similarity, two of them can be highlighted:

• for two similar phenomena the homologous dimensionless groups are the same;
• the conditions that are necessary and sufficient for two phenomena to present similar-

ity are:

◦ to be of the same nature;
◦ to have the same determinant parameters of similarity;
◦ to have the same initial and boundary conditions.

In the case of complex phenomena, the number of dimensionless parameter scales
of involved variables and correlations increases very much and therefore the similarity
theory must be replaced by a more efficient method that is the dimensional analysis [26].
The main aspects concerning the similarity theory and dimensional analysis are indicated
in [27–30].

1.3. Classical Dimensional Analysis (CDA)

There is in this case a model that will be analyzed instead of the prototype, and as a
result of the experiments carried out on the model, by means of dimensionless relations
(dimensionless groups πj), the behavior of the prototype can be predicted, obviously in
conditions of similarity.

By using the πj groups, CDA simplifies very much the experimental investigations
and the graphical representations, and the results have a high degree of abstraction and
generality. The works [26,29] present in detail the main πj groups that describe thermal
energy processes.

CDA is not a substitute for experimental measurements and does not have the purpose
of explaining physical phenomena; it aims to simplify and optimize the design of exper-
iments by grouping measurable parameters of a phenomenon in dimensionless groups,
defined by Buckingham’s π theorem. Both model and prototype obey in their behavior the
conditions set out in the πj group.

By using CDA, the πj groups can be set in one of the following ways:

• by direct application of Buckingham’s π theorem;
• by applying the method of partial differential equations to fundamental differential

relations that describe the phenomenon; the initial variables are transformed into
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dimensionless quantities and then, by their suitably grouping, the πj groups are
obtained;

• by identifying the full form, but also the simplest equation(s) that describe the phe-
nomenon, which will be transformed into dimensionless forms from which the desired
πj groups will be selected.

According to [24,29] the Buckingham’s π theorem has the following statement: the
required number of independent dimensionless groups formed by combining the variables
of a phenomenon is equal to the total number of these quantities minus the number of
primary units of measurement that is necessary to express the dimensional relations of the
physical quantities.

Consider a process that can be described by a set of independent parameters yi ,
i = 1, 2, . . . , n by means of the general relation:

f (y1, y2, y3, . . . , yn) = 0, (2)

For describing the n quantities, m primary units of measurement are required and
thus, from Buckingham’s theorem, (n − m) independent πj dimensionless groups can be
formed that are able to describe the considered process. They are in a similar relation:

F(π1, π2, . . . , πn−m) = 0, (3)

The set of relations is given by:

πj = Fj(π1, π2, . . . , πn−m), j = 1, 2, . . . , (n − m) , (4)

The functional relationship among the πj groups is obtained from trials.
As mentioned in [21], CDA involves three steps, namely:

1. the selection of parameters and primary units that can most accurately describe the
phenomenon;

2. the determination of πj groups by identifying the exponents of the independent
variables;

3. the experimental determination of the functional relations among the πj groups.

Thus, the πj groups are defined as products of the representative quantities that are
involved in describing the phenomenon having unknown exponents (a, b, c, . . .). From the
condition that all the πj groups are dimensionless (the sum of the exponents of each primary
dimension must be zero), a system of equations will be obtained where the unknowns are
the exponents. It is a multiple indeterminate system, where convenient values are given
from the beginning to the exponents of the primary units, while the rest of the unknown
exponents are determined from the solution of the system. Finally, the total number of
πj groups will be obtained.

Unfortunately, all approaches of the CDA show several shortcomings. That is why
the original method described in [31,32], called modern dimensional analysis (MDA), is
according to the authors, the most efficient and easy way to approach dimensional analysis.

1.4. Objectives and Purpose of the Paper

This paper represents a theoretical and experimental study on the implementation of
modern dimensional analysis (MDA) in solving the problem of heat transfer, especially to
the metal structures used in civil and industrial constructions, protected or unprotected
with layers of intumescent paints. A fire protection, in addition to maintaining the flexibility
of the original structure, leads both to maintaining the initial load-bearing capacity of the
resistance structure for a longer time in case of fire and to increase the guaranteed time
for evacuation of persons and property subjected to fire. Other recent studies concerning
dimensional analysis are presented in [33–41].

In this article, the authors set out to achieve the following major objectives:
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• Comparative analysis of methods that use the analysis of the phenomenon on models
instead of prototypes, such as geometric analogy, theory of similarity, and classical
dimensional analysis;

• Brief presentation of the MDA method and its net advantages in the study of the
prototype-model correlation;

• Application of MDA to the study of heat transfer of straight metal bars of full circular
section (but with the possibility of extending these results to rings of annular section)
protected or unprotected by layers of intumescent paints;

• In this sense, the laws of the model are presented, which govern the heat transfer in
these thermally protected or unprotected bars, the application of which leads to a
significant simplification of the analysis of this complex and important phenomenon.

The aim of the manuscript is to apply modern dimensional analysis to the heat transfer
in a circular bar. The heat transfer in the bar is transitory. The bar is placed in air; therefore,
the boundary condition is convection. The heat transfer coefficients were considered among
the other variables in applying MDA. As indicated in the manuscript, when using MDA,
the relations of the model law are correlations among variables that are involved in the
phenomenon, and they must not be compared with the physical relations that describe
the phenomenon. In contrast with the classical dimensional analysis, MDA considers the
variables that might influence the phenomenon, without requiring a thorough knowledge
of the phenomenon and the governing relations. The relations of the model law can be
extended to bars with tubular section and structures of bars with annular cross-section.
This is also an advantage in using MDA. To the best knowledge of the authors, the heat
transfer in a circular bars described by MDA has not been reported before in the literature.

2. Method of Analysis in Modern Dimensional Analysis (MDA)

In a physical relation there is a single dependent variable and a finite number of
independent variables. The variables are denoted by (H1 , H2 , H3 , . . .), while their
dimensions are denoted by (h1 , h2 , h3 , . . .). The derived dimensions are obtained
from the combination of previously selected primary dimensions, such as hr1

1 · hr2
2 · hr3

3 ·
. . . · hrn

n (where, r1 , r2 , r3 . . . are the exponents of the primary dimensions, while n
is the number of the involved primary dimensions). A variable Hj has the dimension

[Hj] = ϕj · h
r1 j
1 · h

r2j
2 · h

r3j
3 · ··, where ϕj is a coefficient.

The author of works [31,32] indicates the following steps for analysis, which were
presented in [33]:

• the dimensional matrix (DM) is defined; it consists of the exponents of all involved
dimensions hi that describe all independent variables Hk and the dependent one. In
the case of four variables, among one is dependent (for instance H1), the dimensional
relations are:

H1 = hα1
1 · hβ1

2 · hγ1
3 · hδ1

4 ;H2 = hα2
1 · hβ2

2 · hγ2
3 · hδ2

4 ;H3 = hα3
1 · hβ3

2 · hγ3
3 · hδ3

4 ;H4 = hα4
1 · hβ4

2 · hγ4
3 · hδ4

4 . (5)

The dimensional matrix contains the exponents of these dimensions and is indicated
in rel. (6):

H1 H2 H3 H4
h1 α1 α2 α3 α4
h2 β1 β2 β3 β4
h3 γ1 γ2 γ3 γ4
h4 δ1 δ2 δ3 δ4

(6)

Matrix M, associated with the dimensional matrix, is:

M =

⎡
⎢⎢⎣

α1 α2 α3 α4
β1 β2 β3 β4
γ1 γ2 γ3 γ4
δ1 δ2 δ3 δ4

⎤
⎥⎥⎦, (7)
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In the general case, there are NV total variables and Nd primary dimensions that define
both the dimensional matrix and the associated one, as a matrix consisting of Nd lines and
NV columns.

• it is to find the quadratic submatrix A, starting with the upper right elements of matrix
M, which has the highest rank, r and which will also be the rank of the dimensional
matrix RDM = r. For this purpose, some rows (dimensions that cannot be selected
arbitrarily, but will result from the model law) and columns (dependent variables)
are eliminated from matrix M, and those independent variables are set that have the
exponents of the dimensions included in matrix A. Matrix A must not be singular
(det|A| �= 0), and the rows contain the exponents of the primary dimensions of
the remaining independent variables. The model law can comprise one or more
correlations among independent and dependent variables, as will later be indicated.

• the remaining rows of matrix M represent the reduced dimensional matrix M1. They
contain the primary dimensions (i.e., the dimensions that can be arbitrarily selected).
The columns of matrix M1, which are not included in matrix A, represent matrix B.

• the dimensional set is defined; it comprises the reduced dimensional matrix (B + A),

matrix C = −(A−1 · B
)T and the unit matrix of order n, D ≡ Inxn, as indicated by (8)

and (9) [31,32,34].

The rows correspond to the
remaining primary dimensions
k = Nd after defining matrix A

1.

B A

2.
3.
4.
. . .
k.

The rows correspond to n columns
(dependent variables) that had
matrix B; the number of the rows is
the same as that of the πj , resulting
in dimensionless quantities

1.

D ≡ Inxn C = −(A−1 · B
)T

2.
3.
4.
. . .
. . .
n.

D ≡ Inxn, (8)

It should be mentioned that matrix C is obtained from the relation:

C = −
(

A−1 · B
)T

, (9)

Relation (9) is valid if the set of new variables contains only πj dimensionless quanti-
tates and matrix D is a unit matrix.

• the rows j = 1, 2, . . . , n of matrixes D and C define all πj dimensionless quantitates.
Thus, row j of the common matrix (D and C) contains the exponents that are involved in
defining πj, which is the product between a dependent variable (from matrix B, having
the exponent 1) and all involved independent variables (from matrix A, having the
exponents from the row j of matrix C). In order to find the model law, the expressions
of all πj dimensionless variables are equal to one. In all products of matrix D there is
only one dependent variable with exponent 1, while in those of matrix C there are all
independent variables with the exponents obtained from relation (9).

As mentioned before, in the matrices A, B and C the exponents (h1, h2, . . . , hm) of
the basic dimensions involved intervene, which helps us to describe the set of variables
involved (H1, H2, H3, . . . , Hn), and in matrix D (which is a unit matrix) these unit values
will also represent exponents of dependent variables.

The illustration of how to obtain the elements of the model law is given in Figure 1:

116



Mathematics 2021, 9, 1875

 
Figure 1. The illustration of how to obtain the elements of the model law.

If considering, for example, the dimensionless variable π5, on its line there are the
exponents of all involved independent variables (H9, . . . , H14), the exponents of the
independent variables (a5 , . . . , f5), as well as the exponent of the dependent variable
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(H5), which is 1, being positioned on the main diagonal of matrix D. Consequently, π5 can
be written as:

π5 = (H5)
1 · (H9)

a5 · (H10)
b5 · (H11)

c5 · (H12)
d5 · (H13)

e5 · (H14)
f5 , (10)

As shown before, relation (10) is equal to the unit, and from this equality the dependent
variable is expressed (here being H5), i.e.,

π5 = (H5)
1 · (H9)

a5 · (H10)
b5 · (H11)

c5 · (H12)
d5 · (H13)

e5 · (H14)
f5 = 1 ⇒

⇒ H5 = 1
(H9)

a5 ·(H10)
b5 ·(H11)

c5 ·(H12)
d5 ·(H13)

e5 ·(H14)
f5

. , (11)

Then, the involved variables (H5, H9, . . . , H14) are replaced by the corresponding
scale factors (SHn), and finally, the desired expression of the fifth element of the model law
is obtained.

Obviously, some of the exponents involved being negative, the relationship obtained
will be in the form of an ordinary fraction, where both the numerator and the denominator
will have expressions of scale factors at certain powers.

Some observations can be formulated as:

• in this case, the model law will consist of eight elements, since eight dimensional
variables resulted from the calculations (π1, . . . , π8);

• at the same time, this law includes the complete set of dimensionless variables πk
involved in the description of the analyzed physical phenomenon, and the way to
obtain these dimensionless variables is the easiest and safest, which cannot be achieved
with the rest of the methods mentioned above;

• for simplification, πj variables can be further grouped.
• Some conclusions can be drawn from the previous MDA analysis, namely:
• as compared to CDA, the relations of the Model obtained from MDA are correlations

among variables that are involved in the phenomenon, which actually represent
connections between the scale factors of the involved variables. They must not be
compared with the physical relations that describe the phenomenon

• if opting for the case in which the set of new variables comprises only πj dimensionless
variables and matrix D is quadratic, but not a unit matrix, then matrix C is calculated
from relation (10) [31,32]:

C = −D ·
(

A−1 · B
)T

, (12)

the final expressions of the πj variables do not change;
• the order of introducing the dependent variables in matrix B and independent vari-

ables in matrix A and thus, their positioning in the reduced dimensional matrix (B-A)
and dimensional set (B-A-D-C), respectively, does not influence the πj relations and
model law;

• the new approach proposed by MDA has the following advantages [31,32]:

◦ all parameters that might have an influence upon the phenomenon are consid-
ered (total variables of the dimensional set). More information in defining the
relevant variables increases the degree of freedom in selecting the properties
of the model, and thus a more reliable description of the prototype is possi-
ble. Later, based on a careful analysis, the variables that have an insignificant
influence can be excluded.

◦ the πj variables can be easily and unitarily determined, which is impossible
if CDA or the theory of similarity are used. It means that the dimensional
set defined by Equation (8) represents the complete set of πj dimensionless
products of variables Hm, m = NV :

◦ the calculations required for the arbitrary grouping and analysis used by the
two previously mentioned methods, in order to obtain the πj groups, are
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eliminated. They require a thorough knowledge of the phenomenon, thus
making CDA difficult and inaccessible to many researchers;

◦ in contrast, MDA considers the variables that might influence the phenomenon
without requiring a thorough knowledge of the phenomenon and the govern-
ing relations;

◦ in order to determine the model law that consists of the constitutive expressions
of the πj variables, each πj variable is equal to one and each variable η is
replaced by the corresponding scale factor Sη . From these expressions, the
scale factors of the dependent variables are determined as function of the
independent ones, thus obtaining the components of the model law.

3. Application of MDA to the Heat Transfer in a Circular Bar. Case Study

3.1. General Approach

A metallic (steel) bar with a circular section is considered, being related to the reference
system xGrt (Figure 2).

Figure 2. Bar with circular section.

Generally, the set of variables that govern the transient heat transfer in a bar with
circular section that can be further analyzed in terms of dimensions are indicated in Table 1:

Table 1. The set of variables that govern the heat transient transfer in a beam with circular section.

Variable

Name Symbol/Formula Dimension

Heat * Q J = N · m =
kg·mx

s2 · mx =
kg·m2

x
s2

Heat rate
.

Q = dQ
dτ W = J

s =
kg.m2

x
s3

Time τ, Δτ s

Density of material
(steel, air, paint/insulating material) ρ kg

m3 =
kg

mx ·m2
r

Constant-pressure
specific heat of air cp = 1

m · dQ
dt

1
kg · J

0C = 1
kg · kg·m2

x
s2·0C = m2

x
s2·0C ;

Specific heat capacity(steel, air) C = dQ
dT

J
0C =

kg·m2
x

s2·0C
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Table 1. Cont.

Variable

Name Symbol/Formula Dimension

Thermal conductivity(steel, paint),
along directions

λx (for steel)
W

mx ·0C = J
s · 1

mx ·0C =

1
s · kg·m2

x
s2 · 1

mx ·0C =
kg·mx
s3·0C

λr (for steel or paint coat)
W

mr ·0C = J
s · 1

mr ·0C =

1
s · kg·m2

x
s2 · 1

mr ·0C =
kg·m2

x
s3·mr ·0C

Thermal diffusivity of air, along
directions

ax = λx
ρ·cp

= 1
ρ · 1

cp
· λx

ax = λx
ρ·cp

=

1
ρ · 1

cp
· λx (mx ·m2

r
kg · s2·0C

m2
x

· kg·mx
s3·0C = m2

r
s )

ar =
λr

ρ·cp
= 1

ρ · 1
cp

· λr
mx ·m2

r
kg · s2·0C

m2
x

· kg·m2
x

s3·mr ·0C = mx ·mr
s

Dynamic viscosity of air **
η = τ0x · 1

∇w0
= F0x

A · 1
∇w0

kg
s2·mt

· 1
1/s =

kg
s·mt

ηr =
τ0r∇w0

= F0r
A · 1

∇w0

kg
s2·mr

· 1
1/s =

kg
s·mr

Kinematic
viscosity

of air

νx =
ηx
ρ = 1

ρ · ηx
mx ·m2

r
kg · kg

s·mt
= mx ·m2

r
s·mt

νy =
ηr
ρ = 1

ρ · ηr
mx ·m2

r
kg · kg

s·mr
= mx ·mr

s

Prandtl number
of air, along directions

Prx = νx
ax

= νx · 1
ax

mx ·m2
r

s·mt
· s

m2
r
= mx

mt

Prr =
νr
ar
∗∗∗ mx ·mr

s · s
mx ·mr

= 1 = m0
x · m0

r · s0

Convection heat transfer coefficient
along directions

αnx

W
m2·0C = J

s · 1
m2·0C =

kg·m2
x

s3 · 1
m2

r ·0C =

kg·m2
x

s3·m2
r ·0C

αnr (when the beam is protected (insulated) by a
paint coat, then: αn f = αnr)

W
m2·0C = J

s · 1
m2·0C =

kg·m2
x

s3 · 1
mx ·mt ·0C =

kg·mx
s3·mt ·0C

Thickness of the paint coat along
the radial direction dr = δr mr

Beam volume V m3 = mx · m2
r

Area of the beam cross section Atr m2
r

Lateral area Alat mx · mt

Beam dimensions Lx, Lr, Lt mx , mr , mt

Shape factor of the cross-section ς = Alat
V = P

Atr
; P is the cross-section perimeter mt

m2
r

Gravitational acceleration g m
s2 = mx

s2

Temperature variation ΔT(K) or Δt (
◦
C) ΔT(K) or Δt (

◦
C)

Coefficient of volume expansion of
steel or of fluid/air β 1

0C

Nusselt number, along directions

Nux = αx ·lx
λ f , x

= αx · lx · 1
λ f , x

;

lx (mx)-characteristic length
kg·m2

x
s3·m2

r ·0C · mx · s3·0C
kg·mx

= m2
x

m2
r

Nur =
αr ·lr
λ f , r

= αr · lr · 1
λ f , r

;

lr (mr)-characteristic length
kg·mx

s3·mt ·0C · mr · s3·mr ·0C
kg·m2

x
= m2

r
mt ·mx

Reynolds number, along directions Rex = w0, x ·lx
νx

= w0, x · lx · 1
νx

; w0(
m
s ) is the fluid

velocity
mx
s · mx · s·mt

mx ·m2
r
= mx ·mt

m2
r
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Table 1. Cont.

Variable

Name Symbol/Formula Dimension

Rer =
w0, r ·lr

νr
= w0, r · lr · 1

νr

mr
s · mr · s

mx ·mr
= mr

mx

Péclet number, along directions
Pex = Rex · Prx mx ·mt

m2
r

· mx
mt

= m2
x

m2
r

Per =
mr
mx

Per = Rer · Prr
mr
mx

· 1 = mr
mx

Grashof number Grx =
g·β·Δt·l3

ζ

ν2
ζ

= g · β · Δt · l3
x · 1

ν2
x

mx
s2 · 1

0C ·0 C · m3
x · s2·m2

t
m2

x ·m4
r
= m2

x ·m2
t

m4
r

Stanton number, along directions
Stx = Nux

Pex
= Nux · 1

Pex
∗∗∗ m2

x
mz ·my

· mz ·my

m2
x

= 1

Str =
Nur
Per

= Nur · 1
Per

m2
r

mx ·mt
· mx

mr
= mr

mt

Fourier number, along directions
Fox = ax ·τ

l2
x

= ax ·Δτ
l2
x

= ax · Δτ · 1
l2
x

m2
r

s · s · 1
m2

x
= m2

r
m2

x

For =
ar ·τ
l2
r

= ar ·Δτ
l2
r

= ar · Δτ · 1
l2
r

mx ·mr
s · s · 1

m2
r
= mx

mr

Biot number, along directions
Bix = αx ·lx

λs, x
= αx · lx · 1

λs, x

kg·m2
x

s3·m2
r ·0C · mx · s3·0C

kg·mx
= m2

x
m2

r

Bir = αr ·lr
λs, r

= αr · lr · 1
λs, r

kg·mx
s3·mt ·0C · mr · s3·mr ·0C

kg·m2
x

= m2
r

mt ·mx

* Heat is numerically equal to the dimension of work; the work is conventionally considered a product between a force having the direction
along the bar, Fx (Nx = kg.mx

s2 ) and the displacement along the same direction x (mx). ** where the shear stress τ0 has one of the directions, x
or r, of the system xGrt, the applied force is F0, while the surface A where it occurs is in a plane that contains the direction of the shear
stress; the velocity w0 is normal to the plane where the shear stress is developed; ∇w0 represents its gradient. *** this is not suitable for
dimensional analysis (Therefore, it cannot be used in the dimensional analysis).

Having the dimensions of the variables involved in the transient heat transfer, the
MDA was applied as described by Szirtes in [31,32]. Additionally, for acquiring the simplest
relations of the model law, according to [31,32], the dimensions were duplicated (in this
case, the lengths were duplicated). This will contribute to the reduction in the number of
πj, j = 1, . . . , n dimensionless variables, once the dimensions of the variables involved
increase. Thus, the reduced number of expressions of the Model Law will be obtained.

According to the principles mentioned in [31,32], the following two sets of indepen-
dent variables were selected:

• for the first version (I): [(Q , Lt , Δt, τ, λx steel , ζ];

• for the second version (II): [
.

Q, Lt , Δt, τ, λx steel , ζ],

which are directly connected with the measurements that were performed and whose
magnitude can be controlled during experiments carried out on the model.

These sets are included in matrix A; the other quantities, representing dependent
variables, form matrix B.

It should be noted that the variables contained in matrix A are freely chosen, both for
the prototype and for the model. The advantage of choosing these two sets of independent
variables lies, inter alia, in the following:

• heating regimes can be chosen independently for prototype and model by:

◦ accepting convenient and well-determined values for the amount of heat intro-

duced into the system (Q or
.

Q);
◦ setting final temperatures compared to initial ones ( Δt),
◦ defining/accepting individual heating times (τ) of the prototype and the

model;

• length scales can also be chosen independently (expressed here as Lt, which can be
extended to the rest of the dimensions, but it is not mandatory, because the rest of the
dimensions are also included in matrix B, which represents a significant reserve for
generalizing the model to the prototype);
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• the factors ς (shape factor) of the cross sections can be chosen independently in the
prototype and for the model, respectively;

• one can define the materials of the prototype and the model by λx, which do not nec-
essarily have to be for both steel, which is also very important for the most favorable
experiments (costs, manufacturing time, test times etc).

In the following, the obtained results for these two variants are analyzed.

3.2. First Case Study

Version I is based on the above-described protocol of the MDA and the following
quantities were successively obtained:

• the dependent variables that define the heat transfer in the beam that is not coated

with intumescent paint, based on experimental research:
.

Q, Atr , Alat, rcyl , Lx, Lr

• the dependent variables that are useful for theoretical analyses:

cp air, Cair, Csteel , ax air, ar air, ρair, ρsteel , λr steel , νx air, vr air , αnx steel , αnr steel , ηx air, ηr air, βair/steel

• the dependent variables that are useful for setting convection heat transfer correlations
between dimensionless numbers (similarity criteria) Crit01, Crit02, Crit03, Prx ,
Grx air, Fox air, For air, Rer air, Str air where the mentioned dimensionless numbers
are:

Crit 01 = Rer = Per =
mx
mr

; Crit 02 = Nux = Pex = Bix = m2
x

m2
r
;

Crit 03 = Nur = Bir =
m2

r
mx ·mt

,

• the properties of the paint layer: ρpaint, λx paint, λr paint, αnr paint, δr paint

The components of the reduced dimensional matrix (B + A) are indicated in Tables 2–6,
where, as mentioned before, these elements represent exactly the exponents of the dimen-
sions involved in defining those variables.

Table 2. Matrix A, comprising independent variables.

Dimensions Q Lt Δt τ λx steel ζ = P/A

mx 2 0 0 0 1 0

mr 0 0 0 0 0 −2

mt 0 1 0 0 0 1

kg 1 0 0 0 1 0

s −2 0 0 1 −3 0
◦C 0 0 1 0 −1 0

Table 3. The quantities required by experiments (part of matrix B).

Dimensions
.

Q Atr Alat rcyl Lx Lr

mx 2 0 1 0 1 0

mr 0 2 0 1 0 1

mt 0 0 1 0 0 0

kg 1 0 0 0 0 0

s −3 0 0 0 0 0
◦C 0 0 0 0 0 0
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Table 4. The quantities required by the theoretic analysis (part of matrix B).

Dimensions cp air Cair Csteel ax air ar air ρair ρsteel λr steel νx air νr air αnx steel αnr steel ηx air ηr air βair/steel

mx 2 2 2 0 1 −1 −1 2 1 1 2 1 0 0 0

mr 0 0 0 2 1 −2 −2 −1 2 1 −2 0 0 −1 0

mt 0 0 0 0 0 0 0 0 −1 0 0 −1 −1 0 0

kg 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0

s −2 −2 −2 −1 −1 0 0 −3 −1 −1 −3 −3 −1 −1 0
◦C −1 −1 −1 0 0 0 0 −1 0 0 −1 −1 0 0 −1

Table 5. The quantities required by the heat transfer correlations between dimensionless numbers (part of matrix B).

Dimensions Crit 01 Crit 02 Crit 03 Prx air Grx air Fox air For air Rex air Str air

mx 1 2 −1 0 −1 −2 1 −1 0

mr −1 −2 2 0 1 2 0 0 1

mt 0 0 −1 0 0 0 0 1 −1

kg 0 0 0 0 0 0 0 0 0

s 0 0 0 0 0 0 −2 0 0
◦C 0 0 0 −1 0 0 0 0 0

Table 6. The properties of the intumescent paint (part of matrix B).

ρpaint λx paint λr paint αnr paint δr paint

mx −1 1 2 1 0

mr −2 0 −1 0 1

mt 0 0 0 −1 0

kg 1 1 1 1 0

s 0 −3 −3 −3 0
◦C 0 −1 −1 −1 0

By performing the above-mentioned calculations, the elements of the Dimensional
Set were finally obtained, from where all dimensionless πj expressions were extracted as
corresponding lines of the Dimensional Set. In the following, this step-by-step procedure
is presented just for the first expression of the model law (related to the dimensionless
variable) and for the rest, only the final expressions of the model law are indicated. Thus,
the following were obtained:

(a) From experiments on uncoated structures (prototype and model) the following ex-
pressions of the Model Law were obtained (that is, the final expressions in which the
corresponding scale factors Sη of the dependent variables were defined in function of
the scale factors of the independent variables):

π1 =
.

Q · Q−1 · L0
t · Δt0 · τ1 · λ0

x steel · ς0 =

.
Q · τ

Q
= 1 ⇒

S .
Q
· Sτ

SQ
= 1 ⇒ S .

Q
=

SQ

Sτ
, (13)

π2 : SAtr =
SLt

Sς
(14)

π3 : SAlat =
SQ · SLt

SΔt · Sτ · Sλx steel

(15)

π4 : Srcyl =

√
SLt

Sς
(16)
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π5 : SLx =
SQ

SΔt · Sτ · Sλx steel

(17)

π6 : SLr =

√
SLt

Sς
(18)

(b) From experiments on coated structures (prototype and model) the set of previ-
ous expressions is completed with expressions specific to the coating paint, which
are (π31 . . . π35) . The following set of expressions of the Model Law is obtained
(π1 . . . π6) and (π31 . . . π35).

π1 S .
Q
=

SQ

Sτ
, (19)

π2 : SAtr =
SLt

Sς
, (20)

π3 : SAlat =
SQ · SLt

SΔt · Sτ · Sλx steel

, (21)

π4 : Srcyl =

√
SLt

Sς
, (22)

π5 : SLx =
SQ

SΔt · Sτ · Sλx steel

, (23)

π6 : SLr =

√
SLt

Sς
, (24)

π31 : Sρpaint =
(SΔt)

3 · (Sτ)
5 · (Sλx steel

)3 · Sς(
SQ

)2 · SLt

, (25)

π32 : Sλx paint = Sλx steel , (26)

π33 : Sλr paint =
SQ

SΔt · Sτ
·
√

Sς

SLt

, (27)

π34 : Sαnr paint =
Sλx steel

SLt

, (28)

π35 : Sδr paint =

√
SLt

Sς
. (29)

(c) For theoretical investigations of parameters dependence (cp air, Cair, Csteel , ax air,
ar air, ρair, ρsteel , λr steel , νx air, vr air , αnx steel , αnr steel , ηx air, ηr air, βair/steel)
on the set of independent variables (of prototype and model), the following set of
expressions will be used (π7 . . . π21) :

π7 : Scp air =

(
SQ

)2

(SΔt)
3 · (Sτ)

4 · (Sλx steel

)2 , (30)

π8 : SCair =
SQ

SΔt
, (31)

π9 : SCsteel =
SQ

SΔt
, (32)

π10 : Sax air =
SLt

Sτ · Sς
, (33)
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π11 : Sa r air =
SQ

SΔt · (Sτ)
2 · Sλx steel

, (34)

π12 : Sρair =
(SΔt)

3 · (Sτ)
5 · (Sλx steel

)3 · Sς(
SQ

)2 · SLt

, (35)

π13 : Sρsteel =
(SΔt)

3 · (Sτ)
5 · (Sλx steel

)3 · Sς(
SQ

)2 · SLt

, (36)

π14 : Sλr steel =
SQ

SΔt · Sτ
·
√

Sς

SLt

, (37)

π15 : Sνx air

SQ

SΔt · (Sτ)
2 · Sλx steel · Sς

, (38)

π16 : Sνr air =
SQ

SΔt · (Sτ)
2 · Sλx steel

, (39)

π17 : Sαnx steel =
SQ · Sς

SLt · SΔt · Sτ
, (40)

π18 : Sαnr steel =
Sλx steel

SLt

, (41)

π19 : Sηx air =
(SΔt)

2 · (Sτ)
3 · (Sλx steel

)2

SQ · SLt

, (42)

π20 : Sηr air =
(SΔt)

2 · (Sτ)
3 · (Sλx steel

)2

SQ
·
√

Sς

SLt

, (43)

π21 : Sβair/steel =
1

SΔt
. (44)

(d) For investigations of the dependence of the parameters on the set of independent
variables and for setting of heat transfer correlations between dimensionless numbers
based on the expressions of the model law (by combining them favorably), the next
set of expressions (π22 . . . π30) will be used:

π22 : SCrit 01 =
SΔt · Sτ · Sλx steel

SQ
·
√

SLt

Sς
, (45)

π23 : SCrit 02 =

(
SQ

)2 · Sς

SLt(SΔt)
2 · (Sτ)

2 · (Sλx steel

)2 , (46)

π24 : SCrit 03 =
SΔt · Sτ · Sλx steel

SQ · Sς
, (47)

π25 : SPrx air =
SQ

SLt · SΔt · Sτ · Sλx steel

, (48)

π26 : SGrx air =

(
SQ

)2 · (Sς)
2

(sΔt)
2 · (Sτ)

2 · (sλx steel

)2 , (49)

π27 : SFox air =
SLt · (SΔt)

2 · (Sτ)
2 · (Sλx steel

)2(
SQ

)2 · Sς

, (50)
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π28 : SFor air =
SQ

SΔt · Sτ · Sλx steel

·
√

Sς

SLt

, (51)

π29 : SRex air =
SQ · Sς

SΔt · Sτ · Sλx steel

, (52)

π30 : SStr air =
1√

SLt · Sς
. (53)

In order to show how the elements of the model law can be applied for correlating the
prototype with the model, the following variables were selected:

• heat rate
.

Q1;
• model length Lx 2;
• thickness of the paint layer used for the model δr 2 paint.

These variables are governed by relations (1), (17), and (35) of the model law.
As can be observed,

.
Q1 is a quantity that refers to the prototype and cannot be

measured, since experiments were carried out only on the model, while Lx 2 and δr 2 paint
are corresponding to the model and they can be determined only for the prototype; for the
model they are obtained strictly from the elements of the model law.

Considering the set of independent variables, having the dimensions determined for
both prototype and model, the scale factors (SQ , SLt , SΔt , Sτ , Sλsteel , Sς) are considered
to be known, as well.

In order to obtain
.

Q1, relation (1) is used, where the scale factor S .
Q

is the ratio between
.

Q2 and
.

Q1. Thus, the following is obtained:

π1 S .
Q
=

SQ

Sτ
⇔

.
Q2
.

Q1

=
SQ

Sτ
⇒

.
Q1 =

Sτ

SQ

.
Q2 (54)

The model length Lx 2 is obtained from relation (17), as:

π5 : SLx =
SQ

SΔt · Sτ · Sλx steel

⇔ Lx2

Lx1
=

SQ

SΔt · Sτ · Sλx steel

⇒ Lx2 =
SQ

SΔt · Sτ · Sλx steel

Lx1

(55)
The thickness of the paint layer that covers the model δr 2 paint is acquired from relation

(29):

π35 : Sδr paint =

√
SLt

Sς
⇔ δr 2 paint

δr 1 paint
=

√
SLt

Sς
⇒ δr 2 paint = δr 1 paint ·

√
SLt

Sς
. (56)

Considering the previous relations, some observations can be made:

(a) The dependent variable
.

Q1, which has to be determined for the prototype, cannot be
excluded from the dimensional set or the model law.

(b) The other dependent variables of the model (here Lx 2 and δr 2 paint) can be analyzed
without so many restrictions, considering the set of independent variables, namely:

• if the scale factor is the same for all lengths, then SLt = SLx , and consequently
the relation of the fifth element of the model law, π5 can be neglected.

• if the thickness of the paint is the same for the prototype and model, then the
relation of π35 to the model law can be omitted.

• if it is aimed to conceive a more flexible model, then the model law allows us
to consider different scales of the lengths along directions (x, r, t) or different
thicknesses of the paint layer, but strictly considering the elements of the model
law.

As can be noticed, this is another major advantage of MDA, which cannot be obtained
if the aforementioned methods are used.
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3.3. Second Case Study

For the second significant version, II, where Q was substituted by
.

Q, the following
significant elements of the dimensional set were obtained, according to Tables 7–11:

Table 7. Matrix A, comprising independent variables.

Dimensions
.

Q Lt Δt τ λx steel ζ = P/A

mx 2 0 0 0 1 0

mr 0 0 0 0 0 −2

mt 0 1 0 0 0 1

kg 1 0 0 0 1 0

s −3 0 0 1 −3 0
◦C 0 0 1 0 −1 0

Table 8. The quantities required by experiments (part of matrix B).

Dimensions Q Atr Alat rcyl Lx Lr

mx 2 0 1 0 1 0

mr 0 2 0 1 0 1

mt 0 0 1 0 0 0

kg 1 0 0 0 0 0

s −2 0 0 0 0 0
◦C 0 0 0 0 0 0

Table 9. The quantities required by the theoretical analysis (part of matrix B).

Dimensions cp air Cair Csteel ax air ar air ρair ρsteel λr steel νx air νr air αnx steel αnr steel ηx air ηr air βair/steel

mx 2 2 2 0 1 −1 −1 2 1 1 2 1 0 0 0

mr 0 0 0 2 1 −2 −2 −1 2 1 −2 0 0 −1 0

mt 0 0 0 0 0 0 0 0 −1 0 0 −1 −1 0 0

kg 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0

s −2 −2 −2 −1 −1 0 0 −3 −1 −1 −3 −3 −1 −1 0
◦C −1 −1 −1 0 0 0 0 −1 0 0 −1 −1 0 0 −1
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Table 10. The quantities required by the heat transfer correlations between dimensionless numbers (part of matrix B).

Dimensions Crit 01 Crit 02 Crit 03 Prx air Grx air Fox air For air Rex air Str air

mx 1 2 −1 0 −1 −2 1 −1 0

mr −1 −2 2 0 1 2 0 0 1

mt 0 0 −1 0 0 0 0 1 −1

kg 0 0 0 0 0 0 0 0 0

s 0 0 0 0 0 0 −2 0 0
◦C 0 0 0 −1 0 0 0 0 0

Table 11. The properties of the intumescent paint (part of matrix B).

ρpaint λx paint λr paint αnr paint δr paint

mx −1 1 2 1 0

mr −2 0 −1 0 1

mt 0 0 0 −1 0

kg 1 1 1 1 0

s 0 −3 −3 −3 0
◦C 0 −1 −1 −1 0

The corresponding elements of the model law are:

π1 : SQ = S .
Q
· Sτ , (57)

π2 : SAtr =
SLt

Sς
, (58)

π3 : SAlat =
S .

Q
· SLt

SΔt · Sλx steel

, (59)

π4 : Srcyl =

√
SLt

Sς
, (60)

π5 : SLx =
S .

Q

SΔt · Sλx steel

, (61)

π6 : SLr =

√
SLt

Sς
, (62)

π7 : Scp air =

(
S .

Q

)2

(SΔt)
3 · (Sτ)

2 · (Sλx steel

)2 , (63)

π8 : SCair =
S .

Q
· Sτ

SΔt
, (64)

π9 : SCsteel =
S .

Q
· Sτ

SΔt
, (65)

π10 : Sax air =
SLt

Sτ · Sς
, (66)

π11 : Sar air =
S .

Q

SΔt · Sτ · Sλx steel

·
√

SLt

Sς
, (67)
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π12 : Sρair =
(SΔt)

3 · (Sτ)
3 · (Sλx steel

)3 · Sς(
S .

Q

)2 · SLt

, (68)

π13 : Sρsteel =
(SΔt)

3 · (Sτ)
3 · (Sλx steel

)3 · Sς(
S .

Q

)2 · SLt

, (69)

π14 : Sλr steel =
S .

Q

SΔt
·
√

Sς

SLt

, (70)

π15 : Sνx air =
S .

Q

SΔt · Sτ · Sλx steel · Sς
, (71)

π16 : Sνr air =
S .

Q

SΔt · Sτ · Sλx steel

·
√

SLt

Sς
, (72)

π17 : Sαnx steel

S .
Q
· Sς

SLt · SΔt
, (73)

π18 : Sαnr steel =
Sλx steel

SLt

, (74)

π19 : Sηx air =
(SΔt)

2 · (Sτ)
2 · (Sλx steel

)2

S .
Q
· SLt

, (75)

π20 : Sηr air =
(SΔt)

2 · (Sτ)
2 · (Sλx steel

)2

S .
Q

·
√

Sς

SLt

, (76)

π21 : Sβair/steel =
1

SΔt
. (77)

The mentioned dimensionless numbers have the same expressions:

Crit 01 = Rer = Per =
mx

mr
, (78)

Crit 02 = Nux = Pex = Bix =
m2

x
m2

r
, (79)

Crit 03 = Nur = Bir =
m2

r
mx · mt

, (80)

The elements of the model law are:

π22 : SCrit 01 =
SΔt · Sλx steel

S .
Q

·
√

SLt

Sς
, (81)

π23 : SCrit 02 =

(
S .

Q

)2 · Sς

SLt · (SΔt)
2 · (Sλx steel

)2 , (82)

π24 : SCrit 03 =
SΔt · Sλx steel

S .
Q
· Sς

, (83)

π25 : SPrx air =
S .

Q

SLt · SΔt · Sλx steel

, (84)
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π26 : SGrx air =

(
S .

Q

)2 · (Sς)
2

(SΔt)
2 · (Sλx steel

)2 , (85)

π27 : SFox air =
SLt · (SΔt)

2 · (Sλx steel

)2(
S .

Q

)2 · Sς

, (86)

π28 : SFor air =
S .

Q

SΔt · Sλx steel

·
√

Sς

SLt

, (87)

π29 : SRex air =
S .

Q
· Sς

SΔt · Sλx steel

, (88)

π30 : SStr air =
1√

SLt · Sς
, (89)

The elements of the model law are:

π31 : Sρpaint =
(SΔt)

3 · (Sτ)
3 · (Sλx steel

)3 · Sς(
S .

Q

)2 · SLt

, (90)

π32 : Sλx paint = Sλx steel , (91)

π33 : Sλr paint =
S .

Q

SΔt
·
√

Sς

SLt

, (92)

π34 : Sαnr paint =
Sλx steel

SLt

, (93)

π35 : Sδr paint =

√
SLt

Sς
. (94)

4. Discussion and Conclusions

The relations deduced in the paper for the case of the straight bar of the full circular
section can be applied without problems to the tubular (ring) bars, both to the resistance
structures formed/constituted by them, as well as the reticular structures used in the roofs
of industrial halls, gyms, etc.

In these cases, of the structures made of straight bar elements, on the prototype and
on the model, the homologous points (and sections) will be identified, with the help of
which the thermal stresses on the model will be transferred to the prototype using of the
model law.

It is clear that the internationally recognized work and achievements of Sedov [23],
as well as other notable scientists [1–5,8,13,22,25–28,30], are not disputed in any way
by the authors of this paper. However, a number of difficulties need to be highlighted
in addressing the issue of dimensional analysis by them and other illustrious authors
compared to the methodology developed by Szirtes, the author of the works [31,32] namely:

• the direct analysis of the differential relations that describe the phenomenon, in order
to establish the dimensionless groups, does not always allow the unitary establishment
of the complete set of these dimensionless groups;

• also, the classical methodology (CDA) is usually cumbersome and non-unitary, allow-
ing different researchers to obtain different sets of dimensionless variables;

• in order to obtain these dimensionless groups, the authors of different works use, based
on the application of Buckingham’s theorem, either the normalization of the terms of
the differential relations related to the phenomenon describing the phenomenon, or a
rather arbitrary and unambiguous combination of variables involved in describing
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the phenomenon of the main measure (dimensions), which takes place in each author
according to his own logic, so it is a non-unitary approach to the phenomenon. Thus,
based on these approaches, different sets of dimensionless variables may result, which
may even represent combinations of those deduced by other authors [36,38–47].

• the classical methodology, i.e., CDA, presupposes from the very beginning a deep
knowledge of the phenomenon and of the differential relations that govern the phe-
nomenon, which for an ordinary researcher represents an impediment;

• the classical methodology, including those presented in the papers [22,23,25,27–30],
does not explicitly allow highlighting from the very beginning of the set of inde-
pendent variables or dependent variables, but applies a hard-to-follow (and often
unexplained) logic of how these two sets were chosen;

• the involvement from the very beginning, in approaching with the help of the dimen-
sional analysis of the phenomenon, of some very complicated differential relations
whose analysis will eventually lead to the establishment of these dimensionless groups,
discourages the vast majority of researchers/engineers from using a safe, unified, and
simple way to approach the problem, as will happen with MDA;

On the contrary, the methodology, called MDA, developed by Szirtes [31,32], rep-
resents a unified approach, easy and particularly accessible to any engineer, without
requiring deep/grounded knowledge of the phenomenon, but only reviewing all parame-
ters/variables that could have any influence on it.

Here, they are defined, in a unitary and unambiguous way, on the basis of a clear and
particularly accessible protocol/procedure:

• the set of main dimensions;
• the main variables (i.e., the independent ones), i.e., those that can be chosen a priori

for both the prototype and the model;
• the dependent variables, i.e., those that can be chosen a priori only for the prototype,

and for the model will result exclusively only through the rigorous application of the
model law;

• the variables sought for the prototype, which cannot be obtained by direct mea-
surements of the prototype, but only on the basis of the results of experimental
investigations performed on the model and by the rigorous application of the model
law;

• the complete set of dimensionless variables, without the existence of ambiguous
variants, is unitary;

• here the independent variables of the dependent ones are clearly delimited from the
very beginning, based on rigorous mathematical criteria, as well as on some practical
criteria regarding the quantities that deserve and that can be determined/controlled
by experimental measurements.

In the works [36–40,42,46,47] the classical approach is applied to determining the
exponents, which will define the dimensionless groups. Thus, they are used either for the
normalization of the known differential relations or the evaluation of the main dimensions
and later the establishment of some combinations of the variables in order to obtain
dimensionless groups.

In the paper [41], the dimensionless groups are arbitrarily defined, based on a combi-
nation, according to their own logic.

The only paper in which approaches closer to MDA were found is paper [35], where
the determination of exponents was based on the methodology presented in [43], but does
not specify how to choose independent or dependent variables, which is a deficiency of the
methodology presented in [43] by Langhaar. In contrast, in Szirtes’s work, i.e., in [31,32],
each time, these independent variables are rigorously chosen, taking into account how an
experiment of the model can be conducted more easily, allowing the model to be designed
as favorably as possible for the experiments.
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The author of the paper [44] uses the choice of independent and dependent variables
but applies the standard methodology for determining exponents by solving the system of
linear equations, which describes the phenomenon.

The main advantage of MDA in setting the content of these groups of variables is
that the elimination of some variables from this whole set does not influence the ones that
remain. In other words, the expressions of a certain set will not be influenced if some of the
dependent variables are considered or not.

Accordingly, if the whole set of the variables specific to the beam coated with intu-
mescent paint was conceived, representing 35 expressions that define the model law, a
certain number of dependent variables can be neglected without affecting the rest of the
expressions.

In the above-described protocols, the general cases are indicated, from which several
particular cases can be obtained.

Moreover, if for the prototype and model, a certain variable has identical values, then
they can be ignored due to the fact that their scale factor became Sη = 1 and consequently
one will resolve useful particular cases similarly with the following:

• if both prototype and model are made of the same material (here: steel), then one has
Sαnx steel = Sαnr steel = Sλx steel = Sλr steel = Sρsteel = SCsteel = Sβsteel = 1;

• if environmental conditions for experiments are the same (the experiments are per-
formed in the same environments) then: Scp air = SCair = Sax air = Sar air = Sρair =
Sηx air = Sηr air = Sνx air = Sνr air = Sβair = 1;

• if the coating materials are identical for both prototype and model, then Sρpaint =
Sλx paint = Sλr paint = Sαnr paint = 1, i.e., the expression corresponding to the dimensionn-
less variables π31, . . . , π35 are eliminated, maintaining only the last one, π35;

• if the same scales for lengths are adopted, other simplifications of the expressions of
the model law will be obtained

It is also important to mention that, using the MDA, the model can be differently
conceived from the prototype (another material, another coat of paint, etc.), which reveals
once again the incontestable advantages of the method proposed in [30,31] as compared to
the classical dimensional analysis;

Another conclusion is that for tubular sections, where the thickness of the tube is
δr, the expression of the model law corresponding to length Lr, which is identical to rcyl ,
can be applied to the thickness of the tube too. Therefore, the model law is valid also for
tubular sections if the same scale is adopted as for Lr and rcyl .

To the best knowledge of the present authors there are no studies reporting the
application of the MDA method to the heat transfer in circular bars.
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Abstract: Turbulence in fluids has been a popular research topic for many years due to its influence
on a wide range of applications. Computational Fluid Dynamics (CFD) tools are able to provide
plenty of information about this phenomenon, but their computational cost often makes the use
of these tools unfeasible. For that reason, in recent years, turbulence modelling using Artificial
Neural Networks (ANNs) is becoming increasingly popular. These networks typically calculate
directly the desired magnitude, having input information about the computational domain. In this
paper, a Convolutional Neural Network (CNN) for predicting different magnitudes of turbulent flows
around different geometries by approximating the equations of the Reynolds-Averaged Navier-Stokes
(RANS)-based realizable k-ε two-layer turbulence model is proposed. Using that CNN, alternative
network structures are proposed to predict the velocity fields of a turbulent flow around different
geometries on a rectangular channel, with a preliminary stage to predict pressure and vorticity fields
before calculating the velocity fields, and the obtained results are compared with the ones obtained
with the basic structure. The results demonstrate that the proposed structures clearly outperform the
basic one, especially when the flow becomes uncertain. In addition, considering the results, the best
network configuration is proposed. That network is tested with a domain with multiple geometries
and a domain with a narrowing of the channel, which are domains with different conditions from
the training ones, showing fairly accurate predictions.

Keywords: Deep Learning (DL); Computational Fluid Dynamics (CFD); Artificial Neural Network
(ANN); Convolutional Neural Network (CNN); turbulent flow

1. Introduction

For many years, turbulence in fluids has been a popular research topic due to its
impact on a wide variety of applications. Several experimental studies of turbulent flows
have improved the understanding of turbulent behaviour and have been used to design
more efficient systems. Even though these experiments have been very valuable, there
are cases where experimentation is either too expensive or impractical. In these cases,
CFD provides a more detailed insight into the physics of turbulent flows. Although CFD
has the potential to predict accurately the behaviour of flows, decreasing the need for
conducting experiments, it has two main disadvantages. The first disadvantage is the high
computational cost of the simulations, which can be prohibitive in cases with very complex
geometries or in cases where very accurate turbulence models, such as LES (Large Eddy
Simulation) or DNS (Direct Numerical Simulation), are required. The second disadvantage
is the influence of the user, especially in the generation of the mesh and the selection of the
closure model. These problems, coupled with the growth of artificial intelligence, have led
to an increasing number of studies using Deep Learning (DL) techniques applied to CFD,
either as a complement to the simulations or to perform the simulations directly.
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Numerous authors have used DL techniques to complement numerical simulations
performed using CFD. Ray and Hesthaven [1] designed an ANN to detect cells where there
is a discontinuity in the results. Liu et al. [2] established a method based on Deep Metric
Learning (DML) to determine the optimal time-step value in non-stationary simulations.
Bao et al. [3] applied a physically driven approach to improve the modelling and simulation
capability of a coarse mesh, and Hanna et al. [4] designed a DL algorithm to predict and
decrease the error of the results obtained on a coarse mesh. By using coarser meshes,
substantial reductions in computational cost were obtained in both studies.

Several authors oriented DL methods to the analysed geometry. For example, Yan et al. [5],
Zhang et al. [6], and Tao and Sun [7] improved the performance and efficiency of various
geometries using DL techniques, and reached aerodynamic optimization.

However, the goal of the vast majority of studies using DL techniques applied to CFD
is to obtain fluid characteristics. Guo et al. [8] applied a CNN to achieve slightly inaccurate
but very fast predictions of stationary flow fields around solid objects. Ling et al. [9] used a
Deep Neural Network (DNN) to model Reynolds stress tensors with Reynolds-Averaged
Navier-Stokes (RANS) turbulence modelling, achieving a remarkable improvement of the
results obtained in CFD simulations. Lee and You [10] predicted the shedding of non-
stationary laminar vortices on a circular cylinder using a Generative Adversarial Network
(GAN), focusing on explaining the learning potential of the solution of the Navier-Stokes
equations. Liu et al. [11] and Deng et al. [12] designed impact and vortex detection methods,
respectively, using CNN-based techniques.

Ribeiro et al. [13] and Kashefi et al. [14], using CNN architectures, achieved very
accurate results for velocity and pressure fields of stationary fluids around simple shaped
obstacles, with a computational cost three to five orders of magnitude lower than CFD
simulations. In addition, in the study conducted by Kashefi et al. [14], different velocity and
pressure fields were obtained with slight modifications of the geometry, which is essential
for design optimization.

Among the previously mentioned studies, the study of Guo et al. [8] is the only
one in which three-dimensional domains are analysed, the rest of them only analysing
two-dimensional domains. Nowruzi et al. [15] analysed the behaviour of two airfoils in
2D and 3D using CFD and an ANN, and showed good agreements between the results
obtained by both methods. Compared to two-dimensional systems, the main disadvantage
of analysing three-dimensional systems using DL is the limited workspace [14]. For this
reason, Mohan et al. [16] developed a DL-based infrastructure that performs a dimensional
reduction of the geometry in order to analyse the flow characteristics susequently.

Although most studies are focused on laminar flows, there are several studies where
turbulent flows are examined. Fang et al. [17] applied DL techniques for turbulent channel
flow predictions, and Thuerey et al. [18] created a CNN to approximate the velocity and
pressure fields of the RANS-based Spalart-Allmaras turbulence model on airfoils.

All the aforementioned studies have required prior CFD simulations to train the
ANN. However, Sun et al. [19] designed a structured DNN architecture to approximate
the solutions of the parametric Navier-Stokes equations. Instead of using data obtained
from simulations, this DNN is trained by minimising only the error of the mass and
momentum conservation laws of the flows, thus avoiding the computational expense of
CFD simulations. Nonetheless, their study shows that data-driven ANNs are more accurate
than this kind of network.

This paper aims to compare the basic network structure for velocity field prediction
with alternative network structures, which include a previous stage to calculate pressure
and vorticity fields, providing more information about the flow to the network. The
remainder of the manuscript is divided as follows: Section 2 explains the methodology
followed to conduct CFD simulations, designing the CNN and the different neural network
structures and training them; Section 3 displays and compares the results obtained with
the proposed different structures; and Section 4 shows an evaluation of the ability of
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the proposed neural network to make predictions under different conditions from the
training ones.

2. Methodology

2.1. CFD Setup

Numerical simulations by means of CFD were conducted to obtain the required
velocity, pressure, and vorticity fields for training, validating, and testing the studied
CNNs. To perform these simulations, the Star-CCM+ [20] CFD commercial code was used.

The numerical domain consists of a two-dimensional 128 × 256 mm plate, with a
geometry located on its geometrical center. The left and right sides of the plate are set as
inlet and outlet, respectively, whereas top and bottom sides and the geometry contour are
set as walls with no-slip conditions. A detailed view of the numerical domain is provided
in Figure 1.

Figure 1. Numerical domain.

In order to collect enough samples for training the network, a total of 2065 simulations
were performed. Each simulation was carried out with one of the geometries shown in
Table 1. These geometries are based on the geometries of the study of Kashefi et al. [14],
and they were generated by changing the size and orientation of eight basic geometries.

With the previously mentioned domain, an unstructured polygonal mesh of around
50,000 cells was generated. This mesh contains more cells near the boundaries in order
to ensure good results on the most critical areas. An example of the used meshes can be
shown in Figure 2.

To verify sufficient mesh resolution of the generated meshes, the General Richardson
Extrapolation method [21] was performed, applied to the drag coefficient. For this study,
the case of a circle with a = 0.02 m is considered. This method consists of estimating the
value of the analysed parameter when the cell quantity tends to infinite from a minimum
of three meshes. Therefore, a coarse mesh (16,809 cells), a medium mesh (25,665 cells), and
a fine mesh (43,963 cells) were considered. As summarized in Table 2, the convergence
condition (R), which should be between 0 and 1 to ensure a monotonic convergence, is
fulfilled, and the estimated values (RE) of the evaluated parameters are close to the ones
obtained with the fine mesh. Therefore, the mesh is suitable for these simulations. In
addition, the results were compared with the experimental ones of Roshko et al. [22] for
Re = 6383, showing fairly similar values.

Regarding the fluid, incompressible turbulent unsteady air is considered. The den-
sity (ρ) of the fluid is equal to 1.18415 kg/m3, and its dynamic viscosity (μ) is equal to
1.85508·10−5 Pa·s. These values are assumed to be constant. The velocity at the inlet (u∞)
is set at 5 m/s, which means that the Reynolds number (Re) ranges between 6380 and
12,760, depending on the geometry and according to Expression (1).

Re =
u∞·L·ρ

μ
(1)

where L is the projection of the geometry on the direction of the flow.
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Table 1. Tested geometries.

Shape Sketch Orientation Scale Number of Data

Circle - a = 0.02 m, 0.022 m,
. . . , 0.04 m 11

Equilateral triangle 0◦, 3◦, . . . , 177◦ a = 0.02 m 60

Square 0◦, 3◦, . . . , 87◦ a = 0.02 m 30

Equilateral
pentagon 0◦, 3◦, . . . , 69◦ a = 0.02 m 24

Equilateral
hexagon 0◦, 3◦, . . . , 57◦ a = 0.02 m 20

Ellipse 0◦, 3◦, . . . , 177◦
a = 0.02 m;

b/a = 1.1, 1.2, . . . ,
2

600

Rectangle 0◦, 3◦, . . . , 177◦
a = 0.02 m;

b/a = 1.1, 1.2, . . . ,
2

600

Triangle 0◦, 3◦, . . . , 357◦
a = 0.01 m;

b/a = 1.5, 1.75;
γ = 40◦, 60◦, 80◦

720

For turbulence modelling, the RANS-based realizable k-ε two-layer [23] turbulence
model is selected, since k-ε models are the most common ones to obtain mean flow charac-
teristics for turbulent flow conditions. RANS turbulence models provide closure relations
for the RANS equations that govern the transport of the mean flow quantities. To obtain
these equations, each flow variable is divided into a mean value and its fluctuating compo-

138



Mathematics 2021, 9, 1939

nent, and then, the mean values are inserted into the Navier-Stokes equations, obtaining
the mean mass and momentum transport Equations (2) and (3).

∇·u = 0 (2)

∂

∂t
(ρu) +∇·(ρu ⊗ u) = −∇·pI +∇·(T + TRANS) + fb (3)

where u and p are the mean velocity and pressure, respectively; I is the identity tensor; T is
the viscous stress tensor; and fb is the body force.

 

Figure 2. Mesh for a circle-shaped geometry.

Table 2. Mesh verification and comparison with experimental data for the case of a cylinder with
a = 0.02 m.

Mesh Resolution Richardson Extrapolation
Experimental

Coarse Medium Fine RE p R

0.796 0.835 0.858 0.907 0.681 0.566 0.91

Depending on the modelling of the stress tensor, there are different RANS model
categories. The k-ε model corresponds to the eddy viscosity models, which are based on
the analogy between the molecular gradient-diffusion process and turbulent motion. This
kind of models uses the turbulent dynamic eddy viscosity (μt) to model the stress tensor as
a function of mean flow quantities. In the present case, TRANS is modeled by means of the
Boussinesq approximation (4).

TRANS = 2μtS − 2
3
(μt∇·u)I (4)

where S is the mean strain rate tensor defined by Equation (5).

S =
1
2

(
∇·u +∇·uT

)
(5)

The RANS-based k-ε model is a two-equation model which consists of the model
transportation equation for turbulent kinetic energy (k) (5), the model transportation
equation for the dissipation rate (ε) (6) which is empirical, and the turbulent viscosity (μt)
specification (7).

∂

∂t
(ρk) +∇·(ρku) = ∇·

[(
μ +

μt

σk

)
∇k

]
+ Pk − ρε (6)
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∂

∂t
(ρε) +∇·(ρεu) = ∇·

[(
μ +

μt

σε

)
∇ε

]
+

ε

k
Cε1Pε − ρCε2

k
k +

√
vε

(
ε2

k

)
(7)

μt = ρCμ
k2

ε
(8)

where σk, σε, Cε1, Cε2, and Cμ are model coefficients; Pk and Pε are production terms defined
by (9) and (10), respectively; and v is the kinematic viscosity (v = μ/ρ).

Pk = Gk + Gb + γM (9)

Pε = Gk + Cε3Gb (10)

where Cε3 is a model coefficient, whose value is 1 if Gb ≥ 1 and 0 if Gb < 0; Gk represents
the turbulent production given by Equation (11); Gb represents the buoyancy production
given by Equation (12); and γM represents the compressibility modification given by
Equation (13).

Gk = μS2 − 2
3

ρk∇·u − 2
3

μt(∇·u)2 (11)

Gb = −1
ρ
· ∂ρ

∂T
· μt

Prt

(∇T·g) (12)

γM =
CMkε

c2 (13)

where Prt is the turbulent Prandtl number; T is the mean temperature; g is the gravitational
vector; CM is a model coefficient equal to 2; and c is the speed of sound.

Among the various forms of the k-ε model that are available, the realizable k-ε two-
layer model is considered in the present study. This model combines the realizable k-ε
model, which satisfies certain mathematical constraints on the normal stresses consistent
with the physics of turbulence, and the two-layer approach, which allows the k-ε model
to be applied in the viscous-affected layer. With the realizable k-ε two-layer model, the
coefficients are identical to the ones of these two models separately, but the model gains
the added flexibility of an all-y+ wall treatment. For the selected turbulence model and the
studied cases, the model coefficients are the following ones: σk is equal to 1; σε is equal to
1.2; Cε1 is equal to 1.44; Cε2 is equal to 1.9; and Cμ is equal to 0.09.

Regarding the wall treatment, as mentioned before, the realizable k-ε two-layer model
uses an all-y+ wall treatment. This wall treatment emulates the low-y+ wall treatment for
fine meshes (near the boundaries), which resolves the viscous sublayer and needs little or
no modelling to predict the flow across the wall boundary; the high-y+ wall treatment for
coarse meshes (far from the boundaries), which, instead of resolving the viscous sublayer,
obtains the boundary conditions for the continuum equations.

For data generation, as non-stationary turbulence models are selected, the average
values of the velocity, pressure, and vorticity fields are extracted. To obtain these average
fields, 2 s of simulation are considered, once the flow is fully developed. The values of the
fields are interpolated in order to fit the data into a 128 × 256 grid. Then, the procedure of
Kashefi et al. [14] for data generation is followed.

First, the values are normalized following Expressions (14)–(17), to get dimension-
less values.

u∗
x =

ux

u∞
(14)

u∗
y =

uy

u∞
(15)

p∗ = p
ρ·u2

∞
(16)

ω∗ = ω·a
u∞

(17)
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where u∗
x, u∗

y , p∗, and ω∗ are the dimensionless variables.
Finally, once the variables are dimensionless, they are scaled in a range of (0, 1),

following Expression (18).

Φ′ = Φ − min(Φ)

max(Φ)− min(Φ)
(18)

where Φ is replaced by each set of u∗
x, u∗

y , p∗, and ω∗.

2.2. Convolutional Neural Network
2.2.1. Domain Representation

In this study, the same layers used by Ribeiro et al. [13] are implemented to represent
the domain. Therefore, numerical domain is represented by three different layers: the Flow
Region Channel (FRC), the Signed Distance Function (SDF) of the geometry, and the SDF
of the walls.

The FRC layer contains information about the boundary conditions of the domain.
This layer consists of giving a number to each cell of the grid depending on the boundary
condition assigned to that cell. In this case, the geometry is represented by a 0, the fluid by
a 1, no-slip walls by a 2, the inlet by a 3, the outlet by a 4, and the outline of the geometry
by a 5. A detailed example of a FRC layer is shown Figure 3.

Figure 3. Flow Region Channel representation (not to scale).

The SDF layer represents the minimum distance between each cell and the outline of
a specified contour. This function was proposed by Guo et al. [8], and as demonstrated in
that study, it provides significantly smaller errors than the typical binary representation. In
this study two different SDF layers are used, one for the geometry, shown in Figure 4a, and
another one for the no-slip walls of the channel, shown in Figure 4b.

  
(a) (b) 

Figure 4. SDF layer examples. (a) SDF of the geometry (the outline of the geometry is represented in white); (b) SDF of the
channel walls.
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To create this layer, firstly the zero level set (Z) is created (19). This is the level where
the analysed contour is located, and therefore, SDF is equal to zero.

Z =
{
(X, Y) ∈ R2/ SDF(x, y) = 0

}
(19)

Then, the sign of SDF is defined. SDF(x, y) = 0 if (x, y) is on the geometry contour;
SDF(x, y) < 0 if (x, y) is inside the geometry; and SDF(x, y) > 0 if (x, y) is outside
the geometry.

Finally, the value of each cell is calculated following Expression (20).

SDF(x, y) = min
(X,Y)∈Z

|(x, y)− (X, Y)|·sign (20)

After generating all the input layers, they are scaled in a range of (0, 1), following the
previously-mentioned Expression (18).

2.2.2. Neural Network Architecture

In the present paper, a CNN based on the previous works from Ribeiro et al. [13] and
Thuerey et al. [18] is proposed. For this network, an U-Net architecture [24] is considered,
which is a special case of an encoder-decoder network. In this case, the net consists of four
encoder/decoder blocks. Each encoder block contains two convolutional layers. The first
convolutional layer is followed by a ReLU (Rectifier Linear Unit) layer, and the second
one by a ReLU layer and a Max Pooling layer. In the first two encoding blocks, the kernel
size is equal to 5, and strided convolutions are performed on the first layer of the block,
aiming to reduce the data size for the training step. In contrast, the kernel size of the las
two encoding blocks is equal to 3. After each block, the number of filters is doubled. The
decoding phase performs the reverse process. Encoder and decoder blocks are connected
to each other by concatenation layers. A schematic view of the used CNN is provided in
Figure 5. MATLAB 2021a [25] commercial code with its Deep Learning Toolbox [26] was
used for designing and training the network.

Figure 5. CNN architecture.

With regards to the network training process, the Adam [27] optimizer was used, with
a learning rate of 0.001, a batch size of 64, and a weight decay of 0.005. The data were
split into 60% training, 30% validation, and 10% test, and the validation was performed
after each epoch. Three different configurations have been considered for the selection
of the most appropriate data-splitting ratio: 60% training, 30% validation, and 10% test
(the selected ratio); 70/20/10%; and 80/10/10%. Among these configurations, the selected
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one is the one that provides the best predictions of all the analysed magnitudes. Among
these magnitudes, pressure is the most sensitive to the data-split, and vorticity the least
sensitive, the differences between configurations being almost negligible for this magnitude.
Considerable differences also appear in the velocity fields.

In order to validate the used net, the training Root-Mean Square Error (RMSE) curves
obtained with the network used in the present study are compared with the ones obtained
with the net of Ribeiro et al. [13], which was designed for laminar flow prediction on a
channel. As this network was originally designed to predict velocity and pressure fields,
only the training curves of these magnitudes are considered for this comparison. These
curves can be shown in Figure 6.

 
(a) (b) 

 
(c) (d) 

Figure 6. Comparison of the obtained training error curves with the ones obtained with the net of Ribeiro et al. [13] for
1000 epochs. (a) RMSE or ux; (b) RMSE of uy; (c) RMSE of p; (d) Total RMSE.

The curves show that the proposed network outperforms the baseline network for
turbulent flow predictions. All the curves show a broadly similar trend. At the beginning
of the training, up to approximately epoch 50, the error of the proposed network decreases
significantly more than the error of the baseline network, except in the case of uy. Thereafter,
the difference between the two networks narrows, but when the results stabilize, the error
of the proposed network is still lower. At the end of training, the proposed network has an
error reduction of 28% in the case of ux, 42% in uy, and 30% in p.
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2.2.3. Neural Network Configurations

In the present study, four different network structures are proposed in order to deter-
mine which provides the best predictions of the turbulent flow velocity fields. All structures
have the domain characteristics as input and the velocity fields as output, but three of them
have an additional intermediate stage to calculate the pressure and vorticity fields.

The basic structure (Figure 7a) is the most popular for predicting flow characteristics.
This structure directly predicts the velocity fields. The pressure-based structure (Figure 7b)
predicts the pressure field, and then the velocity fields considering the pressure field. The
vorticity-based structure (Figure 7c) and pressure- and vorticity-based structure (Figure 7d)
are equal to the pressure-based one, but these networks predict the vorticity field and both
pressure and vorticity fields in the intermediate stage, respectively.

  

(a) (b) 

(c) (d) 

Figure 7. Studied ANN structures. (a) Basic structure; (b) Pressure-based structure; (c) Vorticity-based structure; (d) Pressure-
and vorticity-based structure.

These magnitudes are selected for the intermediate stage as they are directly related
to velocity. Regarding pressure, according to Bernoulli’s principle, a decrease in the pressure
occurs simultaneously with an increase in the velocity, and vice versa. Concerning vorticity,
this magnitude determines the local rotation of the fluid, thus relating the velocity components.

3. Results and Discussion

Aiming to determine which of the previously mentioned ANN configurations provides
the best predictions of turbulent velocity fields, a qualitative and quantitative comparison
of the results obtained with all the structures is conducted. For these two studies, the
results obtained with a test-set of 207 geometries (10% of all the samples) are considered.

3.1. Qualitative Study

The qualitative study is performed by comparing the predictions of the studied
neural network structures with the results obtained by CFD simulations. To conduct this
comparison, three different geometries, with different characteristics, are selected. The first
geometry (Figure 8a) is an ellipse, and it is considered an easy-to-predict geometry because
of its symmetry, its low Reynolds number and the fact of not having sharp corners. The
second geometry (Figure 8b) is a triangle, and it is considered an aerodynamic geometry due
to its low angle of attack and the small surface area on which the fluid directly impinges. The
third geometry (Figure 8c) is also a triangle, and it is considered a non-aerodynamic geometry
because of its high angle of attack and the big area where the fluid directly impacts.
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The results show that, although some errors appear in the contour and in the wake
behind the geometry, all the structures are able to predict the velocity fields of the easy-to-
predict geometry and the aerodynamic geometry fairly precisely. For these two geometries,
the basic structure is the one which provides the worst results, being the structure which
shows the highest errors. Between the other three structures, no clear differences are visible,
but the pressure- and vorticity-based structure seems to be the most accurate structure
with very low errors across the predicted fields.

The predictions of the non-aerodynamic geometry show the larger differences between
structures. In this case, the basic structure is clearly outperformed by the other ones,
showing poor predictions on the boundary of the geometry and, most markedly, on the
wake behind the geometry. This means that giving additional information about the flow
to the network eases predictions when the flow behaviour is uncertain. The networks
which include the prediction of the pressure show the best results on the wake behind the
geometry, and the ones which include the prediction of the vorticity show the best results
near the geometry. This is attributed to the fact that changes in the pressure field start to
appear at a considerable distance from the geometry, but the largest changes in the vorticity
field occur very close to the geometry, at its contour.

3.2. Quantitative Study

The quantitative study is focused on studying the error of the test-set. For a general
overview of the error in the whole test-set, the mean error obtained with all the structures
is analysed. Table 3 summarizes the mean error of the predicted velocity components.

Table 3. Mean absolute error of the velocity fields predicted by the tested structures.

Structure Mean Absolute ux Error (m/s) Mean Absolute uy Error (m/s)

Basic 0.1145 0.0851
Pressure-based 0.0619 0.0466
Vorticity-based 0.067 0.0331

Pressure- and vorticity-based 0.0636 0.0302

The mean error shows that all the proposed structures outperform the basic one. The
proposed networks diminish the mean absolute ux error between 41.5% and 45.9%, the
pressure-based structure being the most accurate structure. Regarding the mean absolute
uy error, the proposed structures reduce the error between 45.2% and 64.5%, the pressure-
and vorticity-based structure being the one which provides the best predictions.

In order to obtain more detailed information about the error distribution in the test-set,
histograms with the absolute error of the velocity fields in both directions are made. These
histograms can be shown in Figure 9.

The histograms of the absolute error confirm the results shown with the mean absolute
errors. Although there is not a significant difference in the maximum ux error obtained
with the tested structures, the predictions made with the basic structure have the highest
errors in almost all ranges above 0.05 m/s. As for the rest of the structures, although they
show quite similar error distributions, the pressure- and vorticity-based structure is the
structure with the least errors up to 2 m/s, but above this value, this structure produces
more errors than the other two structures. On the other hand, the pressure-based structure
has more errors below 2 m/s, but fewer above this value. For that reason, the mean error
of the pressure-based structure is the lower one.

The predictions of all structures show a very similar trend of uy error distribution,
with the basic structure having the largest errors and the pressure- and vorticity-based
structure having the smallest ones.

3.3. Performance Analysis

The main goal of calculating flow characteristics through neural networks is to reduce
the high computational cost of CFD simulations. For this reason, the time required by each
structure to make the predictions is considered a parameter of great relevance. Table 4
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shows the time required to obtain the predictions with each studied method using a single
core of an Intel Xeon 5420 CPU.

 
(a) (b) 

Figure 9. Absolute error distribution. (a) Absolute ux error; (b) Absolute uy error.

Table 4. Computational time required by each studied method to predict the velocity fields.

Method Time (s) Speedup

CFD 23,053.2 -
Basic 21.4 1077.25

Pressure-based 27.35 842.9
Vorticity-based 24.01 960.15

Pressure- and vorticity-based 28.53 808.03

The computational times required by each method show that predicting velocity
fields using CNN, in comparison with CFD, entails a reduction of around four orders of
magnitude in terms of computational time. As expected, the simplest CNN structure (the
basic structure) is the fastest one, and the most complex (the pressure- and vorticity-based
structure) is the slowest one. Nonetheless, the differences between structures are negligible
in comparison with the time required by CFD.

4. Network Testing

In order to evaluate the ability of the neural network proposed in this study to make
predictions under different conditions from the training ones, two different domains are
considered, one with two geometries and another one with a different channel.

To make the predictions of the velocity fields on these domains, the best neural
network structure is considered. For predicting the ux velocity field, the pressure-based
structure is considered, since it provides the minimum mean error and is the better one for
predicting the wake behind the geometry, which is one of the most important parameters.
To predict the uy velocity field, the pressure- and vorticity-based structure is considered,
since it has been demonstrated to be the most accurate for this field. A schematic view of
the structure of the used ANN is provided in Figure 10.
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Figure 10. ANN structure to test the proposed network under different conditions.

4.1. Multiple Objects

The domain used in this case contains two geometries, particularly two circles. There-
fore, the input layers for this case have some adaptations. The FRC layers contain two
geometries and geometry boundaries, and the SDF layer of the geometry has two zero level
sets. The SDF of the walls remains equal. A schematic view of the numerical domain and
the input layers is provided in Figure 11. The predictions of the velocity fields performed
by CFD and the proposed network are displayed in Figure 12.

 
 

(a) (b) 

  
(c) (d) 

Figure 11. Information about the used domain with multiple geometry. (a) Numerical domain; (b) FRC layer; (c) SDF layer
of the geometries (the contour of the geometries is drawn in white); (d) SDF layer of the walls.

The results show that the proposed network is able to predict the velocity fields of a
domain with multiple geometries in a fairly reliable way, with tolerable errors. These results
show two problematic areas. The first problematic area is the contour of the geometries.
Whereas with a single geometry, these errors were already visible; in this case they are
slightly higher. The second problematic area is the area between geometries. Although the
errors are not very high, the neural network does not adequately predict the interaction
between geometries, since the area with the most errors is the region where the wake of the
first geometry impacts the second geometry.
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Figure 12. Comparison of the velocity fields of a domain with two geometries obtained with CFD
and the proposed net.

4.2. Different Channel

This domain contains a single geometry, but the walls of the channel have a narrowing
on their middle. Therefore, the input layers for this case also have to be adapted. In the
FRC layer, although the outline of the walls remains with no-slip wall conditions, the inner
part of the walls has been considered as geometry, since among the possible options it
is considered to be the most appropriate one. The SDF layer of the geometry is equal to
the training ones, but the SDF layer of the walls contains a zone of negative values. A
schematic view of the numerical domain and the input layers is provided in Figure 13,
and the predictions of the velocity fields performed by CFD and the proposed network are
displayed in Figure 14.

  

(a) (b) 

  
(c) (d) 

Figure 13. Information about the used domain with a different channel. (a) Numerical domain; (b) FRC layer; (c) SDF layer
of the geometry (the contour of the geometry is drawn in white); (d) SDF layer of the walls (the contour of the walls is
drawn in white).
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Figure 12. Comparison of the velocity fields of a domain with two geometries obtained with CFD
and the proposed net.

4.2. Different Channel

This domain contains a single geometry, but the walls of the channel have a narrowing
on their middle. Therefore, the input layers for this case also have to be adapted. In the
FRC layer, although the outline of the walls remains with no-slip wall conditions, the inner
part of the walls has been considered as geometry, since among the possible options it
is considered to be the most appropriate one. The SDF layer of the geometry is equal to
the training ones, but the SDF layer of the walls contains a zone of negative values. A
schematic view of the numerical domain and the input layers is provided in Figure 13,
and the predictions of the velocity fields performed by CFD and the proposed network are
displayed in Figure 14.

  

(a) (b) 

  
(c) (d) 

Figure 13. Information about the used domain with a different channel. (a) Numerical domain; (b) FRC layer; (c) SDF layer
of the geometry (the contour of the geometry is drawn in white); (d) SDF layer of the walls (the contour of the walls is
drawn in white).
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Figure 14. Comparison of the velocity fields of a domain with a different channel obtained with CFD
and the proposed net.

There are three areas where considerable differences are observed. The first zone is
the narrowing of the channel, where the neural network underpredicts the speed increase
that occurs. The second, and most conflicting, area is the near-wall area. When the channel
narrows, the network underpredicts the impact with the walls then (noticeable in uy), and
when the channel widens again, although a decrease in velocity is visible, the network
is unable to predict the wake behind the walls (noticeable in ux). The third region is the
geometry contour. As with multiple geometries, when changing the channel, the errors in
the geometry contour increase in comparison to the simple case.

5. Conclusions

In the present paper, a CNN for predicting different magnitudes of turbulent flows is
proposed. With this CNN, alternative neural network structures for turbulent flow velocity
field prediction are proposed. In contrast with the typical network structure, which directly
calculated the velocity fields, the proposed structures perform a preliminary calculation of
pressure and vorticity fields in order to obtain more information about the flow. Performing
the predictions using the proposed networks instead of using CFD means a reduction of
about four orders of magnitude in terms of computational time.

The results indicate that the proposed network structures outperform the basic struc-
ture, showing a decrease between 41.5% and 45.9% of mean absolute ux error and a decrease
between 45.2% and 64.5% of mean absolute uy error. When the flow is simple, the results
provided by the basic structure are correct, but the more uncertain the flow, the greater the
differences between structures, with the structures with a preliminary calculation of pres-
sure and vorticity fields being much more accurate than the basic one. These differences
are more visible on the wake behind the geometry.

Finally, the best network structure is proposed considering the obtained results, and its
ability to predict turbulent flow velocity fields in domains different from those used to train
the network is evaluated. This network calculates the pressure and vorticity fields on the
preliminary stage, and used the pressure field to calculate the horizontal component of the
velocity field and both the pressure and vorticity fields to calculate the vertical component
of the velocity field. To assess the network, two different domains are considered, one
which has two geometries and another one which has a narrowing of the channel. The
results show that the network is able to predict the velocity fields when the domain has
two geometries, but when changing the channel, the errors are significant.

Therefore, this study demonstrates that obtaining fluid characteristics to predict the
desired magnitude improves predictions substantially, and that this type of structure is
applicable to different domains for the ones used for the training process.
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Nomenclature

Definition
ANN Artificial Neural Network
CFD Computational Fluid Dynamics
CNN Convolutional Neural Network
DL Deep Learning
DML Deep Metric Learning
DNN Deep Neural Network
DNS Direct Numerical Simulation
FRC Flow Region Channel
GAN Generative Adversarial Network
LES Large Eddy Simulation
RANS Reynolds-Averaged Navier-Stokes
ReLU Rectifier Linear Unit
RMSE Root-Mean-Square Error
SDF Signed Distance Function
* Dimensionless value
‘ Value ranged between [0, 1]

Mean value
a Characteristic length of the geometry
b Characteristic length of the geometry
c Speed of sound
Cε1 Model coefficient
Cε2 Model coefficient
Cε3 Model coefficient
Cμ Model coefficient
CM Model coefficient
γ Characteristic angle of the geometry
γM Compressibility modification
ε Dissipation rate
fb Resultant of body forces
g Gravitational vector
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Gb Buoyancy production
Gk Turbulent production
I Identity tensor
k Turbulent kinetic energy
L Projection of the geometry on the direction of the flow
ρ Fluid density
p Pressure
p Order of accuracy (in General Richardson Extrapolation)
Pk Production term
Pε Production term
Prt Turbulent Prandtl number
R Convergence condition (in General Richardson Extrapolation)
Re Reynolds number
RE Estimated value (in General Richardson Extrapolation)
σk Model coefficient
σε Model coefficient
T Viscous stress tensor
T Mean temperature
μ Fluid dynamic viscosity
μt Turbulent viscosity
ux Horizontal velocity
uy Vertical velocity
ω Vorticity
Z Zero level set (in SDF)
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Abstract: In recent years, machine learning (ML) has received growing attention and it has been
used in a wide range of applications. However, the ML application in renewable energies systems
such as fuel cells is still limited. In this paper, a prognostic framework based on artificial neural
network (ANN) is designed to predict the performance of proton exchange membrane (PEM) fuel cell
system, aiming to investigate the effect of temperature and humidity on the stack characteristics and
on tracking control improvements. A large part of the experimental database for various operating
conditions has been used in the training operation to achieve an accurate model. Extensive tests
with various ANN parameters such as number of neurons, number of hidden layers, selection of
training dataset, etc., are performed to obtain the best fit in terms of prediction accuracy. The effect of
temperature and humidity based on the predicted model are investigated and compared to the ones
obtained from real-time experiments. The control design based on the predicted model is performed
to keep the stack operating point at an adequate power stage with high-performance tracking.
Experimental results have demonstrated the effectiveness of the proposed model for performance
improvements of PEM fuel cell system.

Keywords: machine learning; deep learning; artificial neural network; ANN; PEM fuel cell; modeling;
control

1. Introduction

Fuel cells (FC) are conversion devices which transform hydrogen into electrical energy
through an electro-chemical process [1]. These are a trending research topic since their
efficiency (more than 40%) is higher than other renewable alternatives such as wind turbines
(≈25%) or photovoltaic systems (≈6–20%) [2]. As a consequence, several industries used
FC for their applications like aviation [3], automotive [4] and maritime [5]. According to
Wang et al. [6], the cutting-edge FC technologies that are currently under focus are polymer
electrolyte membrane fuel cells (PEMFCs), solid oxide fuel cells (SOFCs), phosphoric acid
fuel cells (PAFCs) and molten carbonate fuel cells (MCFCs). Among the several available
types, PEMFC stands out due to its high efficiency, power density and durability [7].

A PEMFC is frequently built with membrane electrode assembly (MEA) that holds an
anode and a cathode that are isolated by a proton conductive membrane [8]. The continuous
hydrogen supply goes into the anode electrode while the cathode receives oxygen. As a
consequence, protons and electrons are generated because of an oxidation reaction; the
electrolyte exchange membrane allows the path division of these particles. The electrons
move to an external electric circuit whereas the protons join the oxygen to output water [9].
To achieve a suitable system design in terms of efficiency, several PEMFC mathematical
models had been developed in recent years to understand the main phenomena that can
alter the device performance.

According to Fang, Di and Ru, PEMFC models are divided into operational mechanism
and experimental data ones [10]. In regards to the first mentioned category, based on the
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regime, these are divided into static and dynamic. Saadi et al. [11] studied three well
known models used in static analysis such as the Amphlett et al. [12,13], Larminie and
Dicks [14] and Chamberlin-Kim [15]. A simulation showed that the three approaches
had different outcomes where the Amphlett produced the most accurate results with
high complexity implementation as a downside (same disadvantage for Larmini-Dicks).
Conversely, Chamberlin-Kim appeared to be the most simple one but with low precision.
Contrarily, dynamic models are used in transient regimes where the double layer effect
heads this condition. Often, this phenomenon is modelled as with an electrical capacitor
that depends on the electrodes and individual stack features [16,17].

On the other hand, experimental methods comprise mechanisms such as fuzzy iden-
tification which has been carried by authors of [18]. In this study, the dehydration of a
PEMFC was analysed through classification based on the knowledge from an operator over
a FC. Results revealed that suitable nonlinearities like electrical features and uncertainties
can be mirrored with linguistic rules, an essential feature of this tool [19]. However, one of
the main disadvantages of fuzzy logic strategies is the computational requirement when
features are increased and thus, rules are expanded [20]. Another different approach was
used by authors of [21] where they employed support vector machine (SVM) based on
data-driven for fault diagnosis in PEMFC. In spite of the high accuracy obtained, the disad-
vantages are related to dynamics that can happen in a short period of time such as switches
that are unable to be shown by the proposed model. Additionally, in certain cases, SVM
required high computational resources which is associated with the accuracy of the model
to be trained [22].

Despite the disadvantages of the mentioned strategies, another approach is the usage
of trend tools such as artificial neural networks (ANN). This algorithmic scheme is based on
a biological approach of human brain neurons which have the capabilities of recognising,
acquiring information, and self-adjusting according to past actions (this is also known as
neuroplasticity) [23]. Recently, Nanadegani et al. [24] provided a PEMFC study based on
ANNs to increase the output power with a multilayer perceptron (MLP). Therefore, in this
study, an in-depth investigation was conducted with a commercial PEMFC to generate a
spread variety of ANNs with the aim of finding a suitable configuration that can match the
behaviour of the real PEMFC. After finding a proper ANN configuration, this was used as
a plant for the calibration of neural control algorithm.

The controller used in this research is an artificial neural network proportional-integral-
derivative (ANN-PID) controller to track a reference current. Differently to conventional
PID controllers, ANN-PID can self-tune its own gains with an inner mechanism based
on simple ANN linked with Hebbs learning rule [25]. In this research, the ANN-PID
has been contrasted with a conventional PID tuned with appropriate gains gathered in
previous experiments.

The structure of this paper has been arranged as follows. Section 2 covers further
explanation about the ANN methodology applied and its design, the data collection
procedure for the ANN training, the precision of the trained ANNs, the control design, and
the metric used to show the accuracy of tracking in later tests. Section 3 includes a contrast
between the real PEMFC curves and the ones obtained with the chosen ANN with details
about the temperature and humidity effect; additionally, this section ends with the control
results of the ANN-PID (tuned with an ANN) that was embedded in a dSpace platform
and contrasted with a conventional PID. Finally, Section 4 provides a summary of the most
significant outcomes obtained along this study as well as future viewpoints of research.

2. Materials and Methods
2.1. Artificial Neural Networks (ANNs) Model
2.1.1. Introduction to ANNs

ANNs have been considered as attractive and powerful tools to predict and ap-
proximate linear, nonlinear and even complex models, based only on input-output data
mapping [26–28]. Actually, an ANN consists of input and output layers and at least one
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hidden interconnection layer. A general architecture of ANN with N1 inputs, N2 outputs
and L hidden layers is depicted in Figure 1.
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Figure 1. Network graph of N1 input units, N2 output units and L-layer perceptron where each
hidden layer contains Mj hidden units.

ANNs can manipulate information just like the human brain thanks to the compu-
tational features of their basic units (also called nodes or neurons) which take a set of
inputs, multiply them by weighted values and put them through an activation function.
The schematic structure of the ith hidden artificial neuron at the jth hidden layer can be
depicted as Figure 2.
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x2,j w2,j Σ fact

Activation
function

...
...

xMj ,j wMj ,j

Weights

Bias
bj

i

Inputs

Figure 2. Structure of a single artificial neuron in a neural network.

There are several topologies of NNs in deep learning and they can be classified
into two groups of algorithms. The first group contains the ones that were used for
supervised deep learning problems such as fully-connected feed-forward algorithms (Multi-
Layer Perceptron, Radial Basis Network, etc.), recurrent NNs algorithms (long short term
memory, gated recurrent unit, gated feed-forward, etc.) and convolutions NNs algorithms
(deep convolutional NNs, deep convolutional inverse graphics network, deconvolutional
network, etc.). The second group contains the ones that were used for unsupervised
deep learning problems such as restricted Boltzmann machine algorithms (deep belief
network, deep Boltzmann machine, etc.) and ML auto-encoder algorithms (variational
auto-encoder, denoising auto-encoder, sparse auto-encoder, etc.). However, since modelling
the fuel cell is a supervised learning problem, different structures of feed-forward neural
network perceptron (FFNNP) with back-propagation learning rule have been implemented
in Matlab/SimulinkR and Neureal Network ToolboxTM to predict the performance of a
commercial fuel cell system (Heliocentris FC50).
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2.1.2. Data Collection and Analysis

• Data collection: The first and the most important step in the supervised learning
process is gathering the data. In other words, to carry out good training, vast amounts
of real-world data (Big Data) is required since the more data we provide to the ML
system, the faster the model can learn and improve. Besides, the collected dataset
should be well distributed throughout the operation range so as to represent the
behaviour of the fuel cell in each operating power point. To this end, a continuous
triangular signal with a period of 15 s (7.5 s for each positive/negative slop) was built
and supplied to the duty cycle of the boost converter so as to vary the stack current
from the minimum to the maximum operating value. The selection of the period
was made based on the characteristics of the fuel cell data acquisition software since
it measures the data each 0.5 s. In other words, 15 samples in different operating
current values will be measured fore each positive/negative slop. Figures 3 and 4
show, respectively, the Simulink blocks used to design the triangular signal and
the generated signal. The maximum value of this signal (0.8) drives the fuel cell to
operate at the highest current value [8–9A] where the minimum value (0.5) drives
the fuel cell to operate at the lowest operating current [0.2–0.5A]. These values can
be adjusted via the increase/decrease of the output load resistance value. We have
avoided operating currents above 9A since the fuel cell used in this study (Heliocentris
FC50) is occupied with a security system that turns off the fuel cell in case of higher
currents/temperatures [29–31].

Figure 3. Triangular signal design.

Figure 4. Triangular signal output.

To obtain data for different operating conditions, variations in temperature, humidity,
hydrogen and airflow are required. It should be noted that the fuel cell contains
an integrated control system that not only controls the supplied hydrogen but also
provides an option to set the fans of the fuel cell at the automatic mode. By using
the auto mode, the fans will automatically control the temperature, the humidity
and the supplied airflow. However, to provide large degrees of freedom, the auto
mode option of the fans was not considered. Therefore, a database containing 20,512
samples for different operating current, temperature and fan power were recorded
and presented in Figure 5. This latter also shows the influence of the air flow on
the fuel cell performance but the effect of temperature is still not well presented.
Therefore, a 3D graph that clearly shows the effect of both temperature and air flow
on the stack performance is presented in Figure 6. According to this latter, it is
shown that at low air flow (fans power = 10%), by varying the temperature from
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25 °C to 43 °C the stack performance improves in the beginning, then becomes almost
constant and finally, it deteriorates for higher temperatures. At medium air flow (fans
power = 50%), the stack performance improves with increasing temperature. However,
for higher temperatures only slight improvements occur since the membrane requires
an additional amount of water content. Regarding the last case at which the air flow
is set at its maximum value (fans power = 100%), the stack performance improves
largely with a temperature increase from T = 25 °C to over 40 °C. It is noticed that
even for higher temperatures, the stack performance is still improving and this is due
to the well humidification provided by the fans.

Figure 5. Istack-Pstack and Istack-Vstack measured data of Heliocentris FC50 fuel cell; (a,d): polarisation curves when Fans
Power = [10%, 20%, 30%] and for different operating temperature; (b,e): polarisation curves when Fans Power = 50% and for
different operating temperature; (c,f): polarisation curves when Fans Power = 100% and for different operating temperature.
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Figure 6. The Heliocentris FC50 stack power according to air flow and stack temperature.

• Inputs and outputs selection: Another factor that can improve the accuracy of the
learned function is the selection of the inputs and outputs since the accuracy is strongly
dependent on how the inputs are represented. The inputs should be entered as a
feature vector that contains enough information to properly predict the output; but
also, it should not be too large due to the dimensionality curse effect. In this study,
the input variables are selected as: stack current Istack (A), stack temperature T (°C)
and fans power (%), to predict the stack voltage Vstack (V)

• Data division (training, validation and test): When enough data is available, the next
step is to split this data into three subsets which are training, validation and test. The
training dataset needs to be fairly large and contains a variety of data in order to
contain all the needed information. Many researchers have proposed a training
set of 70%, 80% and 90% [32–35]; where the rest of data were divided between the
validation and test. In this study, the recorded data was divided as the following:
training = 14,358 data points (70% of whole data), validation = 3077 data points (15%
of whole data) and test = 3077 data points (15% of whole data). The training subset
is used to adjust the network via minimising its error. In other words, it is used for
computing the gradient and updating the weights and biases of the NNs. The valida-
tion subset is used for measuring the network generalisation and to stop the training
when the generalisation stops improving. In more detail, when the training begins to
overfit the data, the validation error starts to rise. Therefore, the weights and biases
of the network are saved at the minimum validation error point so as to balance the
accuracy of the learned function versus overfitting. The test subset is used to evaluate
the performance of learned function when applying a new set. Actually, the test subset
has no influence on the determination of the learned function parameters, but it is a
kind of ‘final exam’ to test the performance of each predicted function.

2.1.3. Designing the Network

Based on Figure 2, the output of the h(j)
i hidden layer unit can be calculated as

Equation (1) [36].

h(j)
i = fact

⎡
⎣
⎛
⎝Mj

∑
i=0

wi,jxi,j

⎞
⎠+ bj

i

⎤
⎦ (1)

where, j = [1,2, . . . , L] refers to the jth hidden layer, i = [1,2, . . . , Mj] refers to the ith neuron
in the hidden layer j, Mj = [M1,M2, . . . , ML] refers to the number of neurons at each layer,
x ∈ R

m are numerical inputs, w ∈ R
m are weights associated with the inputs, b ∈ R are

biases. fact is the activation function which is used to introduce nonlinearity into the output
of the artificial neuron. Actually, this is important since most of data in the real world is
nonlinear and the neurons should learn these nonlinear representations. There are many
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activation functions that can be used in practice such as sigmoid, tanh, ReLu, etc. [37]. In
this work a tansig function which is given in Equation (2) is used.

fact(x) =
2

1 + e−2x − 1 (2)

By using Equations (1) and (2), the kth output layer unit can be calculated as
Equation (3).

yk = f out
act

[(
ML

∑
i=0

wi,Lh(j)
i

)
+ bk

]
(3)

where k = [1,2, . . . , N2] and f out
act is a linear transfer function or also known as purelin, its

mathematical expression is given in Equation (4)

purelin(x) = x (4)

To train the FFNNP, several optimisation algorithms can be used to minimise the
performance function (also known as loss/cost function) [32,38–40]. These algorithms
use either the Jacobian of the network errors or the gradient of the network performance.
Both Jacobian and gradient are computed via the back-propagation algorithm which is an
efficient computational trick for calculating derivatives inside the deep feed-forward NNs.
In this work, we made a comparison study among the four major used algorithms including
the Levenberg–Marquardt (LM), Bayesian regularization (BR), BFGS quasi-Newton and
Scaled conjugate gradient (SCG). For each training algorithm, the following basic system
training parameters are used: maximum number of epochs = 5000, learning rate = 0.01,
performance goal = 0, time of training = Infinity. All these parameters were checked for
different number of neurons and hidden layers as presented in Table 1.

Table 1. Mean squared error of different FFNNP structures/algorithms.

Training
Algorithms

Hidden
Layers MSE/Time(s) Number of Neurons for Each Hidden Layer

1 5 10 15 20 25 30 35

LM

1 MSE 0.0241 0.0052 0.0025 0.0016 0.0017 0.0015 0.0015 0.0014
Time 1.9520 9.3870 17.1920 6.9760 6.6720 24.9600 21.1340 16.2700

2 MSE 0.0248 0.0036 0.0017 0.0014 0.0014 0.0012 0.0013 0.0012
Time 8.1680 8.1740 4.4090 31.4030 29.4810 90.1620 54.3320 235.6880

3 MSE 0.0244 0.0017 0.0015 0.0012 0.0012 0.0011 0.0011 0.0012
Time 6.9090 10.7930 6.9720 38.5620 43.3770 304.0570 193.9730 346.6590

BR

1 MSE 0.0242 0.0106 0.0022 0.0015 0.0015 0.0015 0.0014 0.0014
Time 4.3540 6.5850 33.0220 20.9350 40.8840 69.8870 225.6650 268.2380

2 MSE 0.0243 0.0022 0.0014 0.0011 0.0010 0.0009 0.0008 0.0008
Time 41.7 6.5 132.6 260.6 657.3 1583.5 2954.5 5438.6

3 MSE 0.0243 0.0015 0.0012 0.0009 0.0008 0.0007 0.0006 0.0006
Time 41.4 67.6 126 518.2 1064.3 4741.2 6936.3 13217.4

BFG

1 MSE 0.0245 0.0082 0.0065 0.0036 0.0030 0.0029 0.0022 0.0023
Time 2.2560 2.4880 1.8110 4.7750 5.3230 7.8430 13.4960 7.9190

2 MSE 0.0245 0.0088 0.0024 0.0017 0.0016 0.0020 0.0019 0.0017
Time 1.6280 2.2800 8.2930 26.7120 25.1810 20.8690 66.0140 223.0960

3 MSE 0.0251 0.0048 0.0053 0.0019 0.0017 0.0016 0.0018 0.0018
Time 1.6 8.1 15.6 27.8 85.0 278.1 601.0 1125.1

SCG

1 MSE 0.0258 0.0145 0.0100 0.0090 0.0070 0.0052 0.0096 0.0070
Time 1.2110 1.1140 1.5290 2.4660 2.8820 5.4720 2.0470 4.3250

2 MSE 0.0261 0.0204 0.0317 0.0040 0.0041 0.0023 0.0051 0.0027
Time 1.0180 1.0500 0.7660 5.9290 6.2720 11.5320 5.1960 27.5590

3 MSE 0.0261 0.0082 0.0061 0.0055 0.0028 0.0025 0.0024 0.0027
Time 1.5150 4.1530 4.7230 6.3070 12.4290 21.7610 24.7390 42.3530
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The performance of each training algorithm was measured via the mean squared error
(mse) which is given in Equation (5), where y∗i is the desired output (target), yi is the actual
(predicted) output, and N is the number of dataset.

F = mse =
1
N

N

∑
i=0

(ei)
2 =

1
N

N

∑
i=0

(y∗i − yi)
2 (5)

The best performance, in terms of training time and mean squared error mse, of each
algorithm is tinted with green colour (Table 1). The predicted output results as well as the
error that corresponds to the best performance (green cells) for each training algorithm are
respectively shown in Figures 7 and 8.

Figure 7. Predicted output results when using SCG, BFG, LM and BR.

Figure 8. Obtained training errors when using SCG, BFG, LM and BR.
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According to these figures, it is clear that the BR training algorithm with the structure
of 3 hidden layers and 30 neurons for each predicts the best output results in terms of
accuracy, where the SCG shows the worst predicted results in comparison with the rest
of the algorithms. In terms of time, the SCG shows the fastest training since it takes only
around 11 s to predict the output while the BR needs around 6930 s. However, although the
BR takes around 2 h for the training, it finally provides a highly accurate model which is
one of the main goals of this study.

Figure 9 shows the regression plots which were used to validate the performance of
the obtained trained model. According to this figure, it is clear that the predicted model
is characterised by high accuracy since most of the data points fall along a 45 degree line,
where the output is equal to the target. The goodness of the model also can be analysed
via the R values which ranged between 0 (lowest accuracy) and 1 (ideal model). In our
case, the accuracy of the obtained model is proven by the following R values: training,
R = 0.99974, test, R = 0.99735 and all, R = 0.99938.

Figure 9. Performance analysis of the predicted model.

2.2. PEMFC Control with ANN-PID
2.2.1. Control Design

Although PID control is one of the most used controllers in industries, it still suffers
from systems sufficient nonlinearity which make its constant parameters not optimal in
each operating moment. This is due to the difficulties of determining the parameters which
are usually tuned via the conventional trial and error method. As a solution, we have
designed a self-adaptive PID based feed-forward artificial neural network (ANN-PID)
aiming to avoid parameters manual tuning. The input of the ANN-PID controller is the
error e(k) which is achieved from the difference between the desired and actual PEMFC
stack currents, and the output is the duty cycle signal u(k). The error is discomposed into
three variables xi (i = [1,2,3]) similarly to the conventional PID, but they will be respectively
associated with three weights wi which are self-tuned via the Hebb supervised learning
rule method. The implementation of the of ANN-PID in the hardware system is explained
in Figure 10.
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Figure 10. Implementation of ANN-PID on Heliocentris FC50 hardware system.

The output of the ANN-PID controller Δu(k) is given in Equation (6), where k is a
positive parameter determined by the user, and the values of the three inputs xi are given
in Equation (7).

Δu(k) = k
3

∑
i=1

xi(k)wi(k) = k(x1(k)w1(k) + x2(k)w2(k) + x3(k)w3(k)) (6)

xi(k) =

⎧⎪⎨
⎪⎩

x1(k) = Δe(k)
x2(k) = e(k)
x3(k) = Δe(k)− Δe(k − 1)

(7)

The biological origin of Hebb’s supervised learning was established from a neuro-
science perspective: when two neurons are activated simultaneously, the link intensity (also
called plasticity) is proportional to the multiplication of their stimulation [41,42]. Therefore,
this concept can be translated mathematically for the adjustment of the PID parameters (kp,
ki and kd) which can be obtained through a neural settlement of Equation (8) as Equation (8)
shows, where ηi are learning rates that correspond to wi(k) [43].

wi(k) = wi(k − 1) + ηixi(k)u(k − 1)e(k) (8)

Recently, it has been found that the weight values used for PID online regulation
are mainly related to e(k) and Δe(k) [44]. Hence, the inputs xi(k) of Equation (8) can be
replaced by e(k) + Δe(k). Finally, the running algorithm of the control law can be expressed
as Equation (9). ⎧⎪⎪⎨

⎪⎪⎩
wi(k) = wi(k − 1) + ηi[e(k) + Δe(k)]u(k − 1)e(k)
w′

i(k) =
wi(k)

∑3
i=1 |wi(k)|

u(k) = u(k − 1) + K ∑3
i=1 w′

i(k)xi(k)

(9)
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2.2.2. Metrics Used for Control Performance Improvement

To achieve high tracking performance, the minimisation of the integral of the absolute
error (IAE), the root mean squared error (RMSE) and the relative root mean squared error
(RRMSE), which are described by Equation (10), have been used to adjust and tune the
gains of the controller, whereas the values can be determined by taking into account the
error reduction in real time.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

IAE =
N
∑

i=1
|ei|Δt

RMSE =

√
1
N

N
∑

i=1
(ei)2

RRMSE =

√
N
∑

i=1
(ei)2/

N
∑

i=1
(ri)× 100%

(10)

where N, ei and ri are, respectively, an observation data length time for the calculation,
the tracking error and the reference along the i-th sample.

3. Results and Discussion
3.1. Comparison between the Experiment and Simulation Results

The Istack-Vstack and Istack-Pstack polarisation curves of the simulated and real model
are presented in Figure 11. According to this figure, it is clear that the predicted model
succeeded in providing the same results obtained by the real fuel cell system. It should be
noted that the temperature in the experiment curves has an error around ±0.5 °C since it is
difficult to make experiments at constant temperatures. One other variable factor that also
should be taken into account is the input Hydrogen pressure which is controlled by the
manufacture. However, although these two variable factors can differ the predicted results
from the real ones, only slight deviations occurred.

3.2. Effect of Temperature and Humidity on the PEM Fuel Cell Stack Performance

The effects of the operation temperature on the polarisation curves for a low, medium
and high humidification (fans power are set at 10%, 50% and 100%) are presented in
Figure 11. At low humidification (Figure 11a,b), by varying the temperature from 25 °C to
43 °C the stack performance improves from T = 25 °C until T = 31 °C and then deteriorates
for temperatures up to 31 °C. The improvement of the performance from T = 25 °C until
T = 31 °C can be explained by the enhancement of the conductivity of the membrane
which leads to reducing the activation loss. However, for temperatures above 31 °C the
membrane starts to dry due to the lack of water content which leads as a consequence to
decrease the performance of the stack. At medium humidification (Figure 11c,d), the stack
performance improves with increasing temperature. However, for higher temperatures
only slight improvements occurred since the membrane requires an additional amount
of water content. Regarding the last case at which the membrane is 100% humidified
(Figure 11e,f), the stack performance is largely improved with increasing the temperature
from T = 25 °C until T = 39 °C. It is noticed that even for higher temperatures the stack
performance is still improving and this is due to the well humidification provided by
the fans. It should be noted that although the high humidification has a positive effect
on the stack performance for higher temperatures, it also has a negative effect for lower
temperatures. Hence, according to Figure 11b,f and for a low temperature equal to 25 °C, it
is clear that the stack performance for low humidification (Pmax = 33 W) is better than the
one obtained by high humidification (Pmax = 28 W).
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Figure 11. Simulation and experiment results (simulation: continuous line; experiment: dashed line); (a): Istack-Vstack
polarisation curves when Fans Power = 10%; (b): Istack-Pstack polarisation curves when Fans Power = 10%; (c): Istack-Vstack
polarisation curves when Fans Power = 50%; (d): Istack-Pstack polarisation curves when Fans Power = 50%; (e): Istack-Vstack
polarisation curves when Fans Power = 100%; (f): Istack-Pstack polarisation curves when Fans Power = 100%.

3.3. Control Results

To keep the fuel cell operating at an adequate power point, PID and NN-PID are
used. First, the controllers were designed and tested via the the predicted model so as
to determine their coefficients. Then, they were implemented on the PEMFC hardware
system using the Matlab/SimulinkTM graphical interface. To test the performance of the
PID and the NN-PID, two load variations respectively from 20 Ω to 50 Ω and from 50 Ω

to 20 Ω are applied during the experiments. The obtained results are clearly presented in
Figures 12 and 13.
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Figure 12. PID and NN-PID experimental results; (a–d): PEMFC stack current signal; (e–h): PEMFC stack voltage signal.

The waveforms of the stack current Istack and voltage Vstack are presented in
Figure 12a–d and Figure 12e–h, where (b–d) and (f–h) are respectively the zoom in of
a and e. The stack power Pstack is shown in Figure 13a–d (b–d are the zoom in of a); whereas
the duty cycle and the boost converter output signals (current, voltage and power) are
exhibited in Figure 13e–h. According to these graphs, it is clear that both PID and NN-
PID succeeded in driving the PEMFC to operate at an adequate power point even when
experiencing large load variation. However, although the PID track the reference, slow
motion at each load variation occurred. It takes around 6.8 s and 7.25 s to converge to the
desired value (response time) respectively for the first and second load variation; whereas
the NN-PID requires only 0.75 s and 0.5 s for the same load variations. Regarding the
overshoots and undershoots, the PID shows an undershoot current of 2.1 A, an overshoot
voltage of 1.11 V and an undershoot power of 10.21 W for the first load variation and an
overshoot current of 3.65 A, an undershoot voltage of 1.33 V and an overshoot power of
8.58 W for the second load variation is displayed. On the other hand, the application of
the NN-PID performs an undershoot current of 2.38 A, an overshoot voltage of 1.36 A and
an undershoot power of 11.18 W for the first load variation and an overshoot current of
4.61 A, an undershoot voltage of 2.31 V and an overshoot power of 7.2 W for the second
load variation. It should be noted that both experiments are made at different temperature
since it is difficult to keep the fuel cell operating at a constant temperature. Since the
stack current is forced via the controllers to follow the reference, the temperature effect
of each experiment on the stack performance appears in the stack voltage as presented
in Figure 12e–h. The steady state error of current, voltage and power for both PID and
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NN-PID are respectively shown in (d) and (h) of Figure 12 and (d) of Figure 13. According
to these results, it is clear that the NN-PID provides better results in terms of accuracy since
it reduces the amplitude of ripples from 0.1 A to less than 0.01 A. Therefore, although the
PID shows slightly lower overshoots in comparison with the NN-PID, this latter provides
significantly higher performance in terms of response time and steady state error.

Figure 13. PID and NN-PID experimental results; (a–d): PEMFC stack power signal; (e): Duty cycle signal (f): Boost
converter output current; (g): Boost converter output voltage; (h): Boost converter output power.

Finally, Table 2 summarises the results of the metrics used to measure the control
demeanour. It can be seen that the NN-PID achieved a better outcome in terms of the
IAE since it gathered a lower value in comparison to the PID, which represents 62.8%
of performance increment. In regards to the accuracy, the trend is still favourable for
the NN-PID which is in contrast to the PID of 93.6%. The same situation is seen in the
RRMSE since the NN-PID provided a higher improvement as 0.344% was obtained where,
in comparison, the PID achieved 5.38%.

Table 2. Comparison of the different metrics.

IAE RMSE RRMSE (%)

NN-PID PID NN-PID PID NN-PID PID
0.0049 0.0132 0.0138 0.2154 0.3440 5.3857
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4. Conclusions

This paper presented an analysis of a commercial Heliocentris FC50 PEM fuel cell
system; the objective was to model and control the device via the application of a deep
machine learning based artificial neural network. Due to its several input variations, such
as stack temperature, humidity and oxygen, which results in nonlinearities and high model
complexity, extensive tests with various ANN parameters were required to predict an
efficient model.

Since the ANN model requires a large dataset, an efficient automatic method was
designed to simplify and facilitate the data collection. This was obtained by generating
a triangular signal which varies the duty cycle of the power converter that was inserted
between the stack and the load. An experimental dataset composed of 20,512 samples
over a wide operating range (different operating current, temperature and fan power) of a
commercial stack was recorded and saved for the training process.

Different structures of feed-forward neural network perceptron with backpropagation
learning rule were tested to predict the performance of the Heliocentries FC50 fuel cell
system. A comparison study including various ANN parameters such as the training
algorithm, the number of hidden layers and the number of neurons at each layer was made
to obtain the highest accurate model. Finally, an accurate model composed of 3 hidden
layers and 90 neurons trained by BR algorithm was used for a comparison study with the
real results. On the other hand, the predicted model also was adopted for determining the
parameters of the NN-PID control method.

The effect of temperature on the PEM fuel cell stack performance was studied for
low, medium and high humidification. At low humidification, it was obtained that the
performance of the stack improves for low temperatures (from T = 25 °C until T = 31 °C)
and deteriorates for temperatures up to 31 °C. At medium and high humidifications, it was
obtained that the stack performance improves with increasing temperature. However, the
effect of temperature is clearly pronounced at higher humidification since the increase of
temperature results in a large increase in the stack performance.

At last, two controllers were designed and performed to keep the fuel cell stack
operating point at an adequate power stage. Results have demonstrated that both PID
and NN-PID have succeeded in driving the stack operation to the desired power point
even when experiencing large load variation. However, comparison results have shown
high-performance tracking in terms of response time, and steady state error was obtained
via the application of the proposed NN-PID control method.

Through this research, future trends for modelling and control of PEM fuel cell systems
were analysed and will be the goal of the forthcoming studies. Other types of ANN such as
recurrent neural network (RNN) can be an option to improve the performance of the model.
Regarding the control method, robust and adaptive controls tuned via neural approach can
be also an efficient trend to improve the tracking performance.
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Abbreviations
The following abbreviations are used in this manuscript:

FC fuel cell
PEM proton exchange membrane
ML machine learning
ANN artificial neural network
PEMFC polymer electrolyte membrane fuel cell
SOFCs solid oxide fuel cells
PAFCs phosphoric acid fuel cells
MCFCs molten carbonate fuel cells
MEA membrane electrode assembly
SVM support vector machine
MLP multilayer perceptron
ANN-PID artificial neural network proportional integral-derivative
PID proportional integral derivative
FFNNP feed-forward neural network perceptron
LM levenberg-marquardt
BR bayesian regularization
SCG scaled conjugate gradient
MSE mean squared error
BFGS broyden fletcher goldfarb shanno
IAE integral of the absolute error
RMSE root mean squared error
RRMSE relative root mean squared error
RNN recurrent neural network
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Abstract: Assimilating a complex fluid with a fractal object, non-differentiable behaviors in its dy-
namics are analyzed. Complex fluid dynamics in the form of hydrodynamic-type fractal regimes
imply “holographic implementations” through velocity fields at non-differentiable scale resolution,
via fractal solitons, fractal solitons–fractal kinks, and fractal minimal vortices. Complex fluid dynam-
ics in the form of Schrödinger type fractal regimes imply “holographic implementations”, through
the formalism of Airy functions of fractal type. Then, the in-phase coherence of the dynamics of
the complex fluid structural units induces various operational procedures in the description of
such dynamics: special cubics with SL(2R)-type group invariance, special differential geometry of
Riemann type associated to such cubics, special apolar transport of cubics, special harmonic mapping
principle, etc. In such a manner, a possible scenario toward chaos (a period-doubling scenario),
without concluding in chaos (nonmanifest chaos), can be mimed.

Keywords: differentiability; fractal hydrodynamic regimes; fractal Schrödinger regimes; fractal
soliton; fractal kink; “holographic implementations”; cubics; apolar transport; harmonic mapping
principle; period doubling scenario

1. Introduction

Common models used to describe the dynamics in complex fluids, are founded on a
mix of basic theories, derived primarily from physics and computer simulations [1–3]. In
such a context, their description implies both computational simulations based on specific
algorithms [2], as well as developments on fundamental theories. With respect to models
developed on fundamental theories, the following classes can be distinguished:

(i) A class of models developed on spaces with integer dimension—i.e., differentiable
models (for example, Navier–Stokes systems, etc.) [1–3];

(ii) Another class of models developed on spaces with non-integer dimensions, which
is clearly defined by means of fractional derivatives [4,5]—i.e., non-differentiable
models, with examples including the fractal models [6];

(iii) Expanding the previous class of models, new developments have been made based
on Scale Relativity Theory. In such a context, the dynamics of any complex fluid can
be developed on monofractal manifolds (theory of Nottale, in the fractal dimension
Df = 2) [7], or on the multifractal manifolds (as in the case of the Fractal Theory of
Motion) [8,9].
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Both in the context of Scale Relativity Theory in the sense of Nottale [7], as well as
in the one of Fractal Theory of Motion [8,9], the fundamental hypothesis is the following:
assuming that any type of complex fluid is assimilated to a fractal object, said dynamics can
be analyzed using motions of the structural units of any complex fluid, on fractal curves.

Such a hypothesis may be illustrated by considering the following scenario: between
two successive interactions of the structural units belonging to any complex system, the
trajectory of the complex fluid’s structural unit is a straight line. This straight line becomes
non-differentiable in the impact point. From such a perspective, taking into account that all
interaction points construct an uncountable set of points, it can be stated that the trajectories
of the complex fluid’s structural units become fractal curves. Given the diversity of the
structural units which compose any complex fluid and the diversity of interactions taking
place between them, extrapolating the preceding argument for any type of complex fluid,
it results that it can be assimilated to a fractal in the general sense of Mandelbrot [6].

All these considerations imply that, in the description of complex fluid dynamics,
instead of “working” with a single variable (regardless of its nature, i.e., velocity, density,
etc.) governed through a non-differentiable function, it is necessary to “work” just with
approximations of this function (i.e., mathematical function was given by averaging them
on various scale resolutions). From such a perspective, it results that any mathematical
variable purposed to characterize the complex fluid dynamics will act as the limit of a class
of functions. Thus, said variable will be non-differentiable for null scale resolutions and
differentiable otherwise [7–9]. To put it differently, from a mathematical point of view,
these variables can be explained through fractal functions, i.e., functions dependent not
only on spatial and temporal coordinates, but also on the scale resolution.

Because for a large temporal scale resolution when referring to the inverse of the
highest Lyapunov exponent [10,11], the deterministic trajectories of any structural unit
belonging to a complex fluid can be substituted by a “class” of virtual trajectories, such
that the notion of a definite trajectory can be supplanted by the one of probability density.
Considering all of the above, the fractality expressed by means of stochasticity, in the
depiction of the dynamics of complex fluid, becomes operational in the fractal paradigm
through the Fractal Theory of Motion [8,9].

In this context, the present study was directed to the modeling of the behavior of
complex fluid dynamics. A mathematical model was created considering the complex fluid
as a fractal object, and its dynamics were analyzed in the framework of Scale Relativity
Theory [7–9].

2. Mathematical Model

The complex fluid is a collection of entities (or structured units) that, by means of their
interactions, relationships, or dependencies construct a unified total. In what follows, the
complex fluid will be assimilated with a fractal. Then, Scale Relativity Theory in the form of
Fractal Theory of Motion becomes operational through the scale covariant derivative [8,9]:

d̂F
dt

=

[
∂t + V̂l∂l +

1
4
(dt)

( 2
D f

)−1
Dlp∂l∂p

]
F, (1)

where
V̂l = Vl

D − Vl
F

Dlp = dlp − id̂lp

dlp = λl
+λ

p
+ − λl−λ

p
−

d̂lp = λl
+λ

p
+ + λl−λ

p
−

∂t =
∂
∂t , ∂l =

∂
∂xl , ∂l∂p = ∂

∂xl
∂

∂xp , i =
√−1, l, p = 1, 2, 3

(2)

In relations (2), the meaning of the variables and parameters are as follows:
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• xl is the fractal spatial coordinate;
• t is the non-fractal time having the role of an affine parameter of the motion curves;
• V̂l is the complex velocity;
• Vl

D is the differential velocity independent on the scale resolution;
• Vl

F is the non-differentiable velocity dependent on the scale resolution;
• dt is the scale resolution;
• Df is the fractal dimension of the movement curve;
• Dlp is the constant tensor associated with the differentiable–non-differentiable transi-

tion;
• λl

+

(
λ

p
+

)
is the constant vector associated with the backward differentiable–non-

differentiable dynamic processes;
• λl−

(
λ

p
−
)

is the constant vector associated with the forward differentiable–non-
differentiable dynamic processes;

• F is a fractal function.

Many modes, and as such, an equally varied choice of definitions of fractal dimen-
sions exist. More precisely, the fractal dimension of the Kolmogorov type and the fractal
dimension of Hausdorff–Besikovitch type are the most frequently used [6,10,11]. Choosing
one of the above fractal dimensions in the description of any complex fluid dynamics, the
value of the fractal dimension must be constant and arbitrary in any dynamical analysis.
For instance: Df < 2 for correlative processes in complex fluid dynamics, Df > 2 for
non-correlative processes in said dynamics, etc. [10,11].

Accepting the functionality of the scale covariance principle, which refers to applying
the operator (1) to the complex velocity field (2), for the case of free motions, the geodesics
equation on fractal space takes the following form [8,9]:

d̂V̂i

dt
= ∂tV̂i + V̂l∂lV̂i +

1
4
(dt)

( 2
D f

)−1
Dlk∂l∂kV̂i = 0, (3)

This means that the fractal acceleration, ∂tV̂i, the fractal convection, V̂l∂lV̂i and the
fractal dissipation, Dlk∂l∂kV̂i, achieve their equilibrium at any point of the fractal curve.

If the fractalization is achieved by Markov-type stochastic processes (see Introduction
and [6–9]), then:

λi
+λl

+ = λi−λl− = 2λδil , (4)

In (4), λ is a coefficient linked to the differentiable-non-differentiable transition and δil

is Kronecker’s pseudo-tensor. In these conditions, the geodesics Equation (3) becomes:

d̂V̂i

dt
= ∂tV̂i + V̂l∂lV̂i − iλ(dt)

( 2
D f

)−1
∂l∂lV̂i = 0 (5)

3. Dynamics of Complex Fluids in the Form of Hydrodynamic—Type
Fractal “Regimes”

The division of the complex fluid’s dynamics on scale resolutions implies, through (5),
both the conservation law of the specific momentum at differentiable scale resolution:

∂Vi
D

dt
= ∂tVi

D + Vl
D∂lVi

D −
[

Vl
F + λ(dt)

( 2
D f

)−1
∂l

]
∂lVi

F = 0, (6)

and also the conservation laws of the specific momentum at non-differentiable scale resolu-
tions:

∂Vi
F

dt
= ∂tVi

F + Vl
D∂lVi

F +

[
Vl

F + λ(dt)
( 2

D f
)−1

∂l

]
∂lVi

D = 0, (7)
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From (6), it results that the specific force:

f i
F =

[
Vl

F + λ(dt)
( 2

D f
)−1

∂l

]
∂lVi

F, (8)

induced by the velocity fields Vi
F. This becomes a “measure” of non-differentiability of

motion curves of complex fluid entities.
In the case of stationary complex fluid dynamics

(
∂tVi

D = 0, ∂tVi
F = 0

)
, the conserva-

tion laws (6), (7) become:

Vl
D∂lVi

D −
[

Vl
F + λ(dt)

( 2
D f

)−1
∂l

]
∂lVi

F = 0, (9)

Vl
D∂lVi

F +

[
Vl

F + λ(dt)
( 2

D f
)−1

∂l

]
∂lVi

D = 0, (10)

while, in the static case (∂tVi
D = 0, Vi

D = 0, ∂tVi
F = 0) these take the form:

[
Vl

F + λ(dt)
( 2

D f
)−1

∂l

]
∂lVi

F = 0, (11)

The result (11) specifies that, although at differentiable scale resolution, the complex fluid
dynamics are absent while, at the non-differentiable scale resolution, the complex fluid
dynamics can be “dictated” by the hydrodynamic fractal- type equations:

Vl
F∂lVi

F + λ(dt)
( 2

D f
)−1

∂l∂
lVi

F = 0 (12)

∂lVl
F = 0 (13)

Equation (13) corresponds to the complex fluid incompressibility at the non-differentiable
scale resolution (i.e., the states’ density ρ at the non-differentiable scale resolution is
constant).

Generally, it is difficult to obtain an analytical solution for the previous equation
system, taking into account its non-linear nature. However, it is still possible to obtain an
analytic solution in the case of plane symmetry (for example, in (x, y) coordinates) of the
complex fluid dynamics. In order to obtain such a solution, in what follows, the method
described in [12] will be used. Let it be considered the equations system (12) and (13) in
the form:

U0∂xU0 + V0∂yU0 = σ0∂2
yyU0, (14)

∂xU0 + ∂yV0 = 0, (15)

where:

VFx = U0(x, y), VFy = V0(x, y), σ0 = λ(dt)
( 2

D f
)−1

(16)

Imposing now the following conditions:

lim
y→0

V0(x, y) = 0, lim
y→0

∂U0

∂y
= 0, lim

y→∞
U0(x, y) = 0, (17)

and considering constant flux moment per unit of depth:

Q = ρ

+∞∫
−∞

U2
0 dy = const., (18)
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the velocity fields as the solution of the equations system (14) and (15), take the form:

U0 =
1.5

(
Q
6ρ

) 2
3

(σ0x)
1
3

sec h2

⎡
⎢⎢⎣0.5y

(
Q
6ρ

) 1
3

(σ0x)
2
3

⎤
⎥⎥⎦, (19)

V0 =
1.9

(
Q
6ρ

) 2
3

(σ0x)
1
3

⎧⎪⎪⎨
⎪⎪⎩

y
(

Q
6ρ

) 1
3

(σ0x)
2
3

sec h2

⎡
⎢⎢⎣0.5y

(
Q
6ρ

) 1
3

(σ0x)
2
3

⎤
⎥⎥⎦− tan h

⎡
⎢⎢⎣0.5y

(
Q
6ρ

) 1
3

(σ0x)
2
3

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭, (20)

The previous can be simplified greatly through the use of non-dimensional variables:

X =
x
x0

, Y =
y
y0

, U =
U0

w0
, V =

V0

w0
, (21)

and non-dimensional parameters:

μ =
σ0

υ0
, υ0 =

y0
3
2

x0

(
Q
6ρ

) 1
2
, w0 =

1

(y0)
1
2

(
Q
6ρ

) 1
2
, (22)

where x0, y0, w0, and ν0 represent specific lengths, specific velocity, and “fractal degree” of
the complex fluid dynamics. In these conditions, the normalized velocity fields become:

U =
1.5

(μX)
1
3

sec h2

[
0.5Y

(μX)
2
3

]
, (23)

V =
1.9

(μX)
1
3

{
Y

(μX)
2
3

sec h2

[
0.5Y

(μX)
2
3

]
− tan h

[
0.5Y

(μX)
2
3

]}
, (24)

Any of the above relations describe the non-linear character of the velocity fields.
This character can be explained through the fractal soliton (i.e., soliton depending on
scale resolution) for the velocity field across the Ox axis, respectively “mixtures” of frac-
tal soliton-fractal kink (i.e., kink dependent on scale resolution), for the velocity fields
across the Oy axis. The specificities in the complex fluid dynamics are “explained” in
Figures 1a–d and 2a–d. Details on the soliton, kink, and other classical non-linear solutions
are given in [10,11].
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(a) 

(b) 

Figure 1. Cont.

180



Mathematics 2021, 9, 2273

(c) 

(d) 

Figure 1. Non-dimensional velocity field U for different fractal degree: (a) μ = 0.5; (b) μ = 1; (c)
μ = 1.5; (d) μ = 3.
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(a) 

(b) 

Figure 2. Cont.
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(c) 

(d) 

Figure 2. Non-dimensional velocity field V for different fractal degree: (a) μ = 0.5; (b) μ = 1; (c)
μ = 1.5; (d) μ = 3.

The velocity fields (23) and (24) induce the fractal minimal vortex (Figure 3a–d).

Ω =
(

∂U
∂Y − ∂V

∂Y

)
= 0.57Y

(μX)2 +
0.63μ

(μX)
4
3

tan h
[

0.5Y

(μX)
2
3

]
+ 1.9Y

(μX)2 sec h2
[

0.5Y

(μX)
2
3

]
−

− 0.57Y
(μX)2 tan h2

[
0.5Y

(μX)
2
3

]
−

[
1.5
μX + 1.4Y2

X(μX)
5
3

]
sec h2

[
0.5Y

(μX)
2
3

]
tan h

[
0.5Y

(μX)
2
3

]
,

(25)
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(a) 

(b) 

Figure 3. Cont.
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(c) 

(d) 

Figure 3. Fractal minimal vortex field Ω for different fractal degree: (a) μ = 0.5 (b) μ = 1; (c) μ = 1.5;
(d) μ = 3.

This previous result was used to specify the fact that the turbulence sources may be
induced by fractal vortices. As long as the complex fluid is not constrained externally,
fractal vortices do not manifest themselves. Phrasing it differently, they are “virtual”
fractal vortices and manifest as “virtual” turbulence sources. In the presence of an external
constraint, they become “real” and the turbulence mechanism is triggered. Essentially, the
discussion revolves around “holographic implementation” of turbulences in the complex
fluid dynamics. It is reminded that, since the dynamics of complex fluid entities are
described by continuous but non-differentiable curves, curves which exhibit the property
of self-similarity in every one of its points, these can be viewed as a holographic mechanism
(every part reflects the whole) of dynamics description. It is noted that the previous
choice of the fractality degree (i.e., the scale resolution, type of motion curve through its
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fractal dimension) can generally cover various types of dynamics found in complex fluids.
Moreover, it is noted that the previous Figures were obtained in a Python programming
environment.

4. Dynamics of Complex Fluids in the Form of Schrödinger-Type “Regimes”

In the case of irrotational motions of the complex fluid structural units, the complex
velocity field V̂i from (2) becomes:

V̂i = −2iλ(dt)
( 2

D f
)−1

∂i ln Ψ (26)

where ln Ψ is the fractal scalar potential of the velocity fields and Ψ is a fractal state function.
Then, substituting (26) in (5), the geodesics Equation (5) becomes (for details on the

method, see [7–9]):

λ2(dt)
( 4

D f
)−2

∂l∂lΨ + iλ(dt)
( 2

D f
)−1

∂tΨ = 0 (27)

Relation (27) is a Schrödinger equation of fractal type. As a consequence, different dynamics
of any complex fluids can be explained as Schrödinger-type fractal “regimes”. In the
particular case of the dynamics of structural units belonging to the complex fluid, on
Peano-type curves ( Df → 2) at Compton scale (λ = h/4πm0, where h is Planck’s constant
and m0 is the rest mass of the structural unit belonging to the complex fluid), (27) becomes
the standard Schrödinger equation from quantum mechanics.

The solution of the one-dimensional Schrödinger equation of fractal type can be
written in the form (for details see [13,14]):

Ψ(x, t) = 1√
t
exp

(
i x2

4μt

)
,

μ = λ(dt)
( 2

D f
)−1 (28)

and is defined, of course, up to an arbitrary multiplicative constant.
As such, the general solution of Equation (27) can be written as a linear superposition

of the form:

Ψ(x, t) =
1√

t

+∞∫
−∞

u(y)exp

[
i
(x − y)2

4μt

]
dy (29)

Now, if u(y) is an Airy function of fractal type, then Ψ(x, t) retains this property, in
the sense that its amplitude is an Airy function of fractal type. Indeed, in this case, there
will be:

u(y) ≡ Ai(y) =
1

2π

+∞∫
−∞

exp
[

i
(

ω3

3
+ ωy

)]
dω (30)

in such a way as the state function (29) will be written in the form:

Ψ(x, t) =
1

2π
√

t

+∞∫
−∞

exp

{
i

[
ω3

3
+ ωy +

(x − y)2

4ut

]}
dydω (31)

If, at first, the integration will be carried out after y, up to a multiplicative constant, the
results is:

Ψ(x, t) =
1

2π

+∞∫
−∞

exp
[

i
(

ω3

3
+ ωx − μtω2

)]
dω (32)
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The final result is obtained based on a special relationship developed in [13,14] and it
is:

Ψ(x, t) =
[

Ai
(

kx − ν2t2
)]

exp
[

iνt
(

kx − 2
3

ν2t2
)]

(33)

with
ν = k2μ (34)

In these conditions, if Ψ is chosen in the form:

Ψ(x, t) = A(x, t) exp[iφ(x, t)] (35)

where A(x, t) is an amplitude and Φ(x, t) is a phase, by identifying in (33) the amplitude
and the phase, there will be:

A(x, t) = Ai
(
kx − ν2t2),

φ(x, t) = νt
(
kx − 2

3 ν2t2) (36)

By substituting (35) in (27), by means of direct calculation, the following relation is
checked:

i∂Ψ + μ∂l∂
lΨ = −

[
∂tφ + μ(∂lφ)

2 − μ
∂l∂

lA
A

]
+

i
2A2

[
∂t A2 + 2μ∂l

(
A2∂lφ

)]
(37)

Now, the “specific constraints” necessary for Ψ to be a solution of the non-stationary
differential Equation (37) will be reducible to the differential equations:

∂tφ + μ
(

∂lφ∂lφ
)
= μ ∂l ∂

l A
A

∂t A2 + 2μ
(

A2∂lφ
)
= 0

(38)

The first of these equations is the Hamilton–Jacobi equation of fractal type, while the
second equation is the continuity equation of fractal type. From here, the correspondence
with the hydrodynamic model of fractal type, pertaining to scale relativity [7–9], becomes
evident based on the substitutions:

Vi
D = μ∂iφ,

ρ = A2 (39)

where Vi
D is the differential component of the velocity field and ρ is the density of states. In

this condition, the conservation law of fractal type of the specific momentum:

∂tVi
D + Vl

D∂lVi
D = −∂iQ (40)

and respectively, the conservation law of the density of states of fractal type:

∂tρ + ∂l
(

ρVl
D

)
= 0 (41)

can be found.
The specific potential of fractal type:

Q = −μ2 ∂l∂
l√ρ√
ρ

(42)
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through the induced specific force of fractal type:

f i = −∂iQ = −μ2∂i

(
∂l∂

l√ρ√
ρ

)
(43)

becomes a measure of the fractal degree pertaining to the motion curves.
Now, through (36), the in-phase coherence of the structural unit dynamics for any

complex fluid implies the condition

Φ(x, t) = νt
(

kx − 2
3

ν2t2
)
= const (44)

or, moreover, in the notations:

− 2
3

ν3t3 = a0X3, a1 = 0, νkxt = 3a2, a3 = const.

the cubic equation:
a0X3 + 3a1X2 + 3a2X + a3 = 0 (45)

If (45) has real roots [14,15]:
X1 = h+hk

1+k ,
X2 = h+εhk

1+εk ,
X3 = h+ε2hk

1+ε2k

(46)

with h, h the roots of Hessian, and ε ≡
(
−1 + i

√
3
)

/2 the cubic root of unity
(
i =

√−1
)
,

the values of variables h, h, and k can be “scanned” by a simple transitive group with real
parameters. This group can be revealed through Riemann-type spaces associated with the
previous cubic. The basis of this approach is the fact that the simply transitive group with
real parameters [14,15]:

Xl ↔ aXl + b
cXl + d

, l = 1, 2, 3 a, b, c, d ∈ R (47)

where Xl are the roots of the cubic (45), induces the simply transitive group in the quantities
h, h, and k, whose actions are:

h ↔ ah+b
ch+d ,

h ↔ ah+b
ch+d

,

k ↔ ch+d
ch+d k

(48)

The structure of this group is typical of SL(2R), i.e.,
[
B1, B2] = B1,[
B2, B3] = B3,[

B3, B1] = −2B2
(49)

where Bl are the infinitezimal generators of the group:

B1 = ∂
∂h + ∂

∂h
B2 = h ∂

∂h + h ∂
∂h

B3 = h2 ∂
∂h + h

2 ∂
∂h

+
(

h − h
)

k ∂
∂k

(50)
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and admit the absolute invariant differentials

ω1 = dh
(h−h)k

ω2 = −i
(

dk
k − dh+dh

h−h

)
ω3 = − kdh

h−h

(51)

and the 2-form (the metric):

ds2 =

(
dk
k

− dh + dh
h − h

)2

− 4
dhdh(

h − h
)2 (52)

In real terms
h = u + iv, h = u + iv, k = eiθ (53)

and for
Ω1 = ω2 = dθ + du

v
Ω2 = cos θ du

v + sin θ dv
v

Ω3 = − sin θ du
v + cos θ dv

v ,
(54)

the connection with Poincaré representation of the Lobachevsky plane can be obtained.
Indeed, the metric is a three-dimensional Lorentz structure:

ds2 = −
(

Ω1
)2

+
(

Ω2
)2

+
(

Ω3
)2

= −
(

dθ +
du
v

)2
+

du2 + dv2

v2 (55)

This metric reduces to that of Poincaré, in cases where Ω1 ≡ 0, which defines the
variable θ as the “angle of parallelism” of the hyperbolic planes (the connection). In fact,
recalling that

dk
k

− dh + dh
h − h

= 0 ↔ dθ = −du
v

(56)

represents the connection form of the hyperbolic plane, the relationship (54) then represents
general Bäcklund transformations in that plane. In such a conjecture, it is noted that, if the
temporal cubic is assumed to have distinct roots, the condition (56) is satisfied, if, and only
if, the differential forms Ω1 is null.

Therefore, for the metric (55) with restriction (56), the relation becomes:

ds2 =
dhdh(

h − h
)2 =

du2 + dv2

v2 (57)

The parallel transport of the hyperbolic plane actually represents the apolar transport
of the cubics (45).

Such a metric approach allows harmonic mappings from the usual space to the
hyperbolic one (space associated to the dynamics of the complex fluid), through the
functional (for details see [14–16]):

J =
1
2

�
d3X

⎡
⎢⎣ ∂lh∂lh(

h − h
)2

⎤
⎥⎦ (58)

where the usual notation ∂l denotes the gradient and d3X is the elementary volume.
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In the case of the synchronization of dynamics of any complex fluid structural units,
i.e., in-phase coherence through the condition (44), the Euler equations corresponding to
the functional (58) is: (

h − h
)
∇(∇h) = 2(∇h)2 (59)

which admits

h = i
cosh χ − sinhχe−iΩ

cosh χ + sinhχe−iΩ
, χ =

ψ

2
(60)

as a solution, as long as χ (and thus ψ) are solutions of a Laplace-type equation for the free
space.

Therefore, space-time “synchronization modes” in phase and amplitude of the com-
plex fluid structural units imply group invariances of a SL(2R) type. Then, period dou-
bling emerges as a natural behavior in the complex fluid dynamics (see Figure 4a–c where
r = tanhχ, |h| ≡ Amplitude and Ω = Ωt at various scale resolutions, given by means of
the maximum value of Ω, i.e., Ωmax).

As it can be observed in Figure 4a–c, the natural transition of a complex fluid is
to evolve from a normal period doubling state towards damped oscillating and strong
modulated dynamics. The complex fluid never reaches a chaotic state, but it permanently
evolves towards that state. There is a periodicity to the whole series of transitions, the
system evolves through period doubling, damped oscillations even reaching in some cases
an intermittent state (the damped oscillations, intermittent states, etc. will be analyzed by
us in a future paper), but it never reaches a pure chaotic state. The evolution of the systems
sees a “jump” into a period doubling oscillation state and the transition resumes towards a
quasi-chaotic state.

 

Figure 4. Cont.
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Figure 4. (a–c) A period doubling (a–c) “synchronization mode” of complex fluid structural units
(3D, contour plot, and time-series) for the scale resolution given by Ωmax = 2.

The Bifurcation Map is presented (Figure 5) where again it is observed that the complex
fluid starts from a steady state (double period state) and evolves towards a chaotic one
(Ωmax = 2) but it never reaches that state. For each periodic transition scenario, it is
possible to observe the system swiping through all the previously mentioned dynamic
states. Therefore, there is an overall periodicity with a continuous increase in oscillation
amplitude.
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Figure 5. The oscillation frequency of the complex system as a function of a scale resolution chosen
by Ωmax bifurcation map.

Let it be noted that the mathematical formalism of the Fractal Theory of Motion
implies various operational procedures (invariance groups, harmonic mappings, groups
isomorphism, embedding manifolds, etc.) with quite a number of applications in complex
fluid dynamics [17,18].

5. Conclusions

Assimilating the complex fluid with a fractal, different dynamics at various scale
resolutions are analyzed. Therefore, the following conclusions may be stated:

(i) The complex fluid dynamics, in the form of hydrodynamic-type fractal regimes,
specify velocity fields at non-differentiable scale resolution, in the form of fractal
solitons, fractal solitons–fractal kinks, and fractal minimal vortices;

(ii) The fractal vortices can be linked to turbulence sources in complex fluid dynamics at
non-differentiable scale resolutions. So long as they are not acted upon by any external
constraint, fractal vortices are virtual and non-manifest. However, the presence of
external constraints radically changes the complex fluid dynamics, in the sense that
the vortices will manifest as a real turbulences. Since the dynamics of complex fluid
entities are described by continuous but non-differentiable curves (which exhibit
the property of self-similarity in every one of their points), these can be viewed as a
holographic mechanism (every part reflects the whole) in the description of complex
fluid dynamics;

(iii) The description of the complex fluid dynamics in the form of Schrödinger type-
fractal regimes imply “holographic implementations”, through the formalism of
Airy functions of fractal type. From such a perspective, the in-phase coherence of the
dynamics of the complex fluid structural units induces various operational procedures
in the description of such dynamics: special cubics with SL(2R)-type group invariance,
special differential geometry of Riemann type associated to such cubics, special apolar
transport of cubics, special harmonic mapping principle, etc. Referring to the special
harmonic principle, in-phase coherence allows harmonic mappings from the usual
space to the hyperbolic one, situation in which the period doubling “synchronization
mode” among the structural units of a complex fluid becomes functional. In such
a manner, a possible scenario toward chaos (period doubling scenario), without
concluding in chaos (nonmanifest chaos), can be mimed.
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Abstract: We analyze the influence of repair on a two-component warm-standby system with
switching and back-switching failures. The repair of the primary component follows a minimal
process, i.e., it experiences full aging during the repair. The backup component operates only while
the primary component is being repaired, but it can also fail in standby, in which case there will be
no repair for the backup component (as there is no indication of the failure). Four types of system
failures are investigated: both components fail to operate in a different order or one of two types of
switching failures occur. The reliability behavior of the system is investigated under three different
aging assumptions for the backup component during warm-standby: full aging, no aging, and partial
aging. Four failure and repair distributions determine the reliability behavior of the system. We
analyzed two cases—in the First Case, we utilized constant failure rate distributions. In the Second
Case, we applied the more realistic time-dependent failure rates. We used three methods to identify
the reliability characteristics of the system: analytical, numerical, and simulational. The analytical
approach is limited and only viable for constant failure rate distributions i.e., the First Case. The
numerical method integrates simultaneous Algebraic Differential Equations. It produces a solution
in the First Case under any type of aging, and in the Second Case but only under the assumption
of full aging in warm-standby. On the other hand, the developed simulation algorithms produce
solutions for any set of distributions (i.e., the First Case and the Second Case) under any of the three
aging assumptions for the backup component in standby. The simulation solution is quantitively
verified by comparison with the other two methods, and qualitatively verified by comparing the
solutions under the three aging assumptions. It is numerically proven that the full aging and no
aging solutions could serve as bounds of the partial aging case even when the precise mechanism of
partial aging is unknown.

Keywords: state probability functions; partial aging in standby; Monte Carlo simulation; qualitative
and quantitative verification of simulation model

1. Introduction

Assessing the reliability of a system is a key engineering task that has economic
and safety implications. Having a better understanding of failure/repair rates of system
components is a tool to design highly reliable systems and conduct repair operations at
adequate cost levels while complying with adequate and reasonable maintenance schedules.
A common approach for improving the reliability is to provide redundancy for excessively
failing components. The redundant components may operate simultaneously in a sense
that the system will never fail if at least one of the parallel components operates [1]. Another
possibility is to design a “k out of n” configuration where all n components are in operation
and the system is not failing if at least k of them operate properly [2]. However, the standby
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arrangement is the simplest, cheapest and the most utilized one; the system operates with
some of its components (called primary) whereas the redundant components (called backup
components) are in standby, but when a primary component fails, they take its place [3]. In
this paper, we will focus on a two-component system with a standby arrangement where
the backup components may fail either while in standby, or during operation after some
imperfect switching mechanism has put those online. The switching mechanism can be
continuous type when it actively monitors the primary component and makes its own
decisions, but it can malfunction at any time [4]. However, in this paper, we will treat
exclusively the widespread mechanisms that can fail only on demand when the switching is
needed [5]. According to the failure intensities of the backup component, such systems are
classified as cold-standby, warm-standby, and hot-standby [6]. In the hot-standby system,
the intensity of failures of the backup component is the same during standby and operation,
whereas in the cold-standby, there is no failure in standby. We will concentrate on the
two-component warm-standby systems where there are failures of the backup component
in standby, but with smaller intensity compared to its operational mode.

Additionally, the reliability of a system with backup components depends on the
way of aging of the backup components while in standby. Previous works have identified
three types of aging of the backup component during warm-standby: full aging, no aging
and partial aging [7]. The full aging assumption means that the component changes its
failure/repair rate during standby as if it is operational. Under the no aging assumption,
the component does not change its failure/repair rate during standby. The partial aging
assumption models the intermediate situation where the backup component experiences
some wear during standby, but at a slower rate than if operational.

If some components of the system are deemed repairable, the system can be brought
to its full operational capacity by replacing parts or by making adjustments [8]. In most
works, the focus is on single-component repairable systems under various repair activities.
A detailed discussion on how such tasks can be approached with modern statistical tools
is offered in [9]. There are different types of repairs that can be adopted depending on
objectives. The first possibility is the so-called perfect repair (a.k.a. as-good-as-new (AGAN)
repair), where the primary component fails and it is replaced or restored to its original or
good-as-new condition [10]. Minimal repair restores the device to the condition it was in
immediately before the failure [11] (pp. 226–227). There may also be intermediate types of
repairs (e.g., the partial perfect repair procedures mentioned in [8]). In the current work,
the focus is on the case of minimal repair of the special type worse-than-old (WTO) [12].
The assumption is that during this repair, the non-repaired elements of the primary unit
age as if the latter was operational.

In this paper, we will investigate the effects that adding repair and back-switching
failures to a two-component warm-standby system with switching mechanism has on the
reliability of the system. Our goal is to analyze how this affects the system reliability under
different aging assumptions in standby. In such a system, the primary component begins
operation, and when it fails, the system will try to activate the backup component, but
a switching failure is possible. When the backup component is operational, the primary
component undergoes minimal repair. If the latter finishes before the backup component
fails, the system will try to activate back the primary component, but again a back-switching
failure is possible. However, it is possible that the backup component will fail in standby. In
that case, there will be no repair for the backup component since there will be no indication
of the failure. The system is considered to have failed when either both components fail
to operate at any given time, or when, after primary component failure, the switching
mechanism fails on demand to switch the system operation to the secondary component
(switching failure), or when, after a successful repair, the switching mechanism fails on
demand to switch the system operation back to the primary component (back-switching
failure). The primary component undergoes minimal repair, i.e., the primary component
experiences full aging during the repair. The reliability behavior of the system will be
investigated under three different aging assumptions for the backup component during
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standby: full aging, no aging and partial aging. Only mechanical aging of the components
will be considered, which excludes any influence by some software aging (for discussion of
the latter topic see [13,14]).

The focus of our investigation would be a two-component warm-standby system with
repair, switching, and back-switching failures, denoted as 2SBRSBF. Our study concentrates
on the characteristics of the uptime of the 2SBRSBF. We only consider repairs of the failed
primary component of a working system. The repair of the failed system, which relates
to downtime, is an important component of system availability, but it is outside of the
scope of our paper (for elaborate case study of data center availability using Markovian
modeling, see [14]). In [15], the causes of system and component failures were classified as
technological failures, natural disaster failures, and man-made disasters (e.g., terrorism).
In our study, we will consider only the technological failure of 2SBRSBF since the other
two types tend to cause dependent component failures, which is outside of the scope of
our study. Here, the standby mode of the 2SBRSBF is defined as a situation, where the
primary component is working properly, and the backup component is fully operational,
but its failure will not affect the normal operation of the system at this moment (in [16]
such component configuration is classified as “active/cold-standby”).

The reliability behavior of the 2SBRSBF depends on four distributions: the failure and
the repair distributions of the primary component, the failure distributions of the backup
component in operation and in standby. We will analyze two cases for those distributions.
In the First Case, all distributions will be with constant failure/repair rates. In the Second
Case, the more realistic time-dependent failure/repair rates will be applied.

We will use three methods to identify the reliability characteristics of the 2SBRSBF:
analytical, numerical, and simulational. The analytical approach is applicable for the First
Case distributions. We will develop novel analytical solutions for the state probability
functions in the case of exponential distributions. The numerical method creates and
integrates simultaneous Ordinary Differential Equations (ODEs) for 2SBRSBF. This method
is applicable for any set of First Case distributions and for Second Case distributions under
the assumption of full aging in standby. However, there are no simultaneous ODEs that
describe the behavior of 2SBRSBF with time-dependent distributions (i.e., Second Case) un-
der no aging or partial aging assumptions in standby. To facilitate the simulational solution,
we will introduce a novel method to generate failure times of the backup component in
standby under the assumptions of full aging, no aging, or partial aging. Using this method,
we will modify and generalize the algorithm from [17] to simulate the behavior of 2SBRSBF
and to calculate its most important reliability characteristics. That algorithm will produce a
novel simulation solution for any set of distributions (i.e., the First Case and the Second
Case) under any of the three aging assumptions for the backup component in standby. The
proposed algorithm will be validated quantitively by comparing with the analytical and
with the numerical solutions (if those exist) as well as quantitatively by comparing with
the full aging results.

In what follows, Section 2 summarizes the state-of-the-art in the field and outlines the
contributions of our paper. Section 3 will setup the problem for reliability characteristics
assessment of a 2SBRSBF function. In Section 4, we present a novel analytical solution
of the formulated problem in the case of distributions with constant failure/repair rate.
A numerical solution will be identified in Section 5 where a system of four simultaneous
deferential algebraic equations will model the 2SBRSBF in the case of full aging of the
backup component during standby. In Section 6, the same problem will be solved with
simulation which can be used with any distributions under three different assumptions
about the aging mechanism of the backup component. Section 7 contains the results
of three numerical examples, where we validate the proposed simulational algorithm
quantitatively (by comparing with the analytical and the numerical solutions when those
exist) and qualitatively (by checking whether the effects of no aging and partial aging
correspond to the logically expected ones). Section 8 concludes the paper.
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2. Related Works and Contributions of the Paper

Although the publications about warm-backup system reliability are growing recently,
they are rare in comparison with reliability studies of cold-backup and hot-backup system,
since the realistic models of the former tend to be more elaborate [18]. In [19] (pp. 113–115),
the analytical solution for two-component warm-standby system with switching failure
(2SBSF) was developed. The switching mechanism fails on demand. The failure distribu-
tions were considered exponential. Hence, no aging effect was taken into account. Explicit
formulae were derived for the reliability of the system and for all state probability func-
tions. In [20] (pp. 167–170), a model of a two-component warm-standby system (2SB) with
arbitrary failure distributions was proposed. Although no particular simulation algorithm
was developed, general advice was given on how to acquire the reliability function and the
state probability functions using Monte Carlo simulation and how to deal with different
aging assumptions. In [21], a model of a 2SB system was proposed under general standby,
which generalizes the three special cases of warm-, cold- and hot-standby. The failure
distributions can be arbitrary. The aging effects are accounted for using a pre-specified
virtual aging function. An integral equation, connecting the failure rates and the virtual
aging function with the reliability of the system was proposed. In [6], these results from [21]
were generalized to solve the problem of allocation of redundancy that includes two inde-
pendent and one generalized standby component. The reliability and the state probability
functions of a generic two-component standby system under full aging, no aging, and
partial aging were identified with a simulation algorithm in [22] using arbitrary failure
distributions. That solution is verified with analytical and numerical special cases. The
results from this work were expanded in [17] to model the 2SBSF, but some numerical
problems connected with random variate generation and arbitrary failure rate calculations
were resolved.

The majority of the above models consider aging effects, but none of them has repairs.
A 14-states model of two dissimilar warm-standby subsystems in series with repair

were discussed in [23]. The failure distributions are exponential, and the system is with
constant repair rates. The type of repair is AGAN. The problem of aging is not considered.
Some analytical steady-state characteristics of the system are provided using Laplace
transforms. Those characteristics for two-component warm-standby system with repair
(2SBR) can be obtained as special cases from the results in the paper. The work [4] performs
reliability analysis for a two-component warm-standby system with repair and switching
failures (2SBRSF). The failure and repair rates are constant. The switching mechanism
is of continuous type and has its own failure distribution. This leads to a possibility of
repairing the failed backup unit while the primary component operates. All failure and
repair distributions are exponential. Any failure of the switch leads to system failure. The
repairs are AGAN and no aging is considered. The system has 10 states. The reliability and
the state probability functions of the system were identified with a numerical algorithm
as a solution of an ODE system. Another interesting two-identical-component standby
system is given in [24]. The type of standby is difficult to determine since the failure in
standby mode is deterministic and happens after surpassing a pre-specified time. The
failure distribution of the operating unit is exponential, but the repair rate is arbitrary.
There is no switching failure, but the switching mechanism inspects the failed standby
unit and decides whether to replace it or to repair it. No aging is considered in this model.
Some steady-state measures of reliability are obtained using semi-Markov models. In [25],
the authors propose a system with m identical components working in parallel with s
components in warm-standby. The system includes a service station that can also fail
and be repaired. There are no switching failures, and all failure and repair distributions
of the components are exponential. The failure and repair distributions of the service
station are also exponential. The repairs are AGAN, and no aging is considered. The
reliability and the state probability functions of the system were approximated using
symbolic computer software. The work [18] presents a system of n components in series
with one component in warm-standby. There are neither switching failures nor aging
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considerations. The failure distributions are exponential, but the repair distributions are
arbitrary. The system is also subjected to non-repairable failures. Some reliability and
availability steady-state characteristics of the system are derived using Laplace transforms.
In [26], the authors discuss a three identical component warm-standby system. Initially,
the primary component is working, and the other two are in standby. The failure of the
operating unit and the repairs are with random distributions, however in standby there is
constant failure rate. The repairs are AGAN, there are no switching failures, and no aging
is considered. An integral equation, connecting the failure rates with the reliability of the
system is proposed.

The models with repair discussed above do not consider any aging effects.
In Table 1, we summarized seven characteristics for each of the above-discussed 12

papers plus the current work. The information in Table 1 highlights the novelty of our
work against the discussed state-of-the-art studies in the literature. The contributions of
our study can be outlined as follows:

1. We shall formulate a novel model of 2SBRSBF containing three operational states and
four system failure substates. The switching mechanism will fail on demand and
the repair of the primary unit will be WTO. This warm-standby system will utilize
arbitrary failure and repair distributions and will have three types of aging modes of
the backup component in warm-standby—no aging, full aging, and partial aging.

2. We shall create a novel six-attribute procedure, which gives numerically stable estimates
of the equivalent age of the backup unit under any of the three aging assumptions.

3. We shall formulate 11 properties of the event chain (EC) describing the 2SBRSBF that
can happen during the normal exploitation of the system.

4. We shall develop a novel algorithm to generate a random EC for the 2SBRSBF, which
satisfies the EC properties in step 3 above.

5. We shall propose a simulation algorithm to calculate the state probability functions
and the rest of the reliability characteristics of a 2SBRSBF in their dynamics.

6. We shall develop a novel analytical solution of the 2SBRSBF when the failure and
the repair rates are constant. We will prove that the solution is real for any constant
failure/repair rates and switching mechanism failure probabilities.

7. We shall develop a numerical solution of the 2SBRSBF under the assumption of full
aging of the backup component in warm-standby. The procedure will use a semi-
explicit system of four simultaneous differential algebraic equations (DAEs) with
differential index 1, singular constant mass matrix, and Jacobian matrix depending
only on the time. The main novelty is the calculation of stable approximations of the
failure/repair rates at any moment of time.

8. We shall verify quantitatively the results from the simulation procedure using analyti-
cal and numerical solutions in special cases of the 2SBRSBF. The solutions in the three
aging modes will serve as qualitative validation of the simulation solution.

Table 1. Overview of the state-of-the-art publications in the warm-standby area.

Reference
Arbitrary

Failure
Distribution

Arbitrary Repair
Distribution

Switching
Failure

Aging Repair Repair Type
Dynamic
Solution

[19] no N/A yes no no N/A yes
[20] (pp. 167–170) yes N/A no yes no N/A yes

[21] yes N/A no yes no N/A yes
[6] yes N/A no yes no N/A yes

[22] yes N/A no yes no N/A yes
[17] yes N/A yes yes no N/A yes
[23] no no no no yes AGAN no
[4] no no yes no yes AGAN yes

[24] no yes no no yes AGAN no
[25] no no no no yes AGAN yes
[18] no yes no no yes AGAN no
[26] yes yes no no yes AGAN yes

Current study yes yes yes yes yes WTO yes
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3. States, Transition Rates, and Distributions

The dynamics of a 2SBRSBF system can be determined by its transition between
several possible states [27]. The 2SBRSBF has four major states, but State 4 (where the
2SBRSBF system is not operational) is subdivided into 4 substates, called types.

In State 1, the primary component operates, the backup component is fully operational
but is in standby. Sooner or later, one of the two components will fail:

(A) If the primary component fails, the system will attempt a transit to State 2, where the
backup component operates and the primary component is under repair. However,
if the switching device fails to operate properly, we observe the so-called switching
failure on demand resulting in transition to State 4, where the 2SBRSBF system is not
operational (type a system failure).

(B) If the backup component fails in standby, the system will transit to State 3 where the
primary component operates but the backup component is not operational. There
will be no indication whether the system is in State 1 or in State 3, so no maintenance
decision will be made in those two states.

In State 2 sooner or later either the primary component will be repaired, or the backup
component will fail. Then one of the following two events will occur:

(A) If the primary component is repaired, the system will try a transit to State 1. How-
ever, if the switching device fails to operate properly, we observe the so-called back-
switching failure resulting in transition to State 4, where the 2SBRSBF system is not
operational (type b system failure).

(B) If the backup component fails in operation, the system will transit to State 4 where
the 2SBRSBF system is not operational (type c system failure).

In State 3, sooner or later, the primary component will fail and there will be no
operational backup component to take over. The system will transit to State 4 where the
2SBRSBF system is not operational (type d system failure).

The State 4, where the 2SBRSBF system is not operational, is irreversible in our model
regardless of the type of the system failure.

The described system is partially observable since we will not know whether the
system is in State 1 or in State 3, but State 4 and State 2 are observable. At the same
time, 2SBRSBF is controllable by three trivial event-driven decisions: (a) when the primary
component fails, attempt to move to State 2, by switching to the backup unit; (b) when the
backup unit is in operation, start repairing the primary component; (c) when the primary
component is repaired, attempt to move to State 1, by back-switching to the primary unit.

The state function Pg(t) (for g = 1,2,3,4) measures the probability of the 2SBRSBF to be
in State g at time t (for t ≥ 0). Since the system will be in one state and in one state only at
any non-negative time moment t, then:

P1(t) + P2(t) + P3(t) + P4(t)= 1, for t ∈ [0, ∞) (1)

The 2SBRSBF system starts in fully operational mode so initially it will be in State 1:

P1(0) = 1 and P2(0) = P3(0) = P4(0) = 0 (2)

If the four state functions are identified, then the 2SBRSBF system is quantitatively
described and we can calculate all its reliability characteristics. The reliability of the system
is the sum of the first three state probabilities (i.e., the probability not to be in State 4):

Rsys(t) = P1(t) + P2(t) + P3(t) = 1 − P4(t), for t ∈ [0, ∞) (3)

The mean time to failure (MTTF) of the 2SBRSBF system can be calculated as:

MTTFsys =

∞∫
0

Rsys(t)dt (4)
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The time for which the reliability of the system will be α is known as α-design life (tdes,α).
It can be identified as the unique solution of Equation (5) in the domain tdes,α ∈ (0, ∞):

Rsys(tdes,α) = α, for α ∈ (0, 1) (5)

The median (Mediansys), the B1 life (B1_life), the B10-life (B10_life), and the interquartile
range (IQRsys) of the 2SBRSBF system reliability can be easily estimated using Equation (5)
respectively as tdes,0.5, tdes,0.99, tdes,0.9, and tdes,0.25 − tdes,0.75 [20] (pp. 87–88).

To identify the four required state functions of the 2SBRSBF system, we need to know:

• The probability, pf, for switching failure on demand.
• The probability, pr, for back-switching failure on demand.
• The probability density function (PDF), f 1(t), of the failure distribution for the primary

component in operation.
• The PDF, f 2(t), of the failure distribution for the standby component in operation.
• The PDF, f 3(t), of the failure distribution for the standby component in standby.
• The PDF, f 4(t), of the repair distribution for the primary component.

Each of the four PDFs, fk(t), (for k = 1, 2, 3, 4) can be transformed into four alternative
forms: a cumulative distribution function (CDF), Fk(t), a failure/repair rate, λk(t) (as
shown in [28]), a complementary CDF, or Rk(t), and an inverse CDF, i.e., F−1

k (p). The five
forms fk(t), Fk(t), λk(t), Rk(t), and F−1

k (p) contain the same information and are equivalent.
In the ideal world the domain of the first four functions and the range of the last one
will be t ∈ [0, ∞) where t can be interpreted as time. However, this is not always the
case—those failure and repair distributions are based on information about the behavior
of the components. The first step is to summarize the available information in several
nodes of the CDF. If the reliability information is in the form of fully observed or multiply
sensor data, then we can produce an empirical distribution, using either the Kaplan-Meier
product limit estimator method [29] (see the function ecdf.m in [30], which embodies
the method) or the invertible ECDF estimator with maximum count of nodes [31], or
any other modern method. If the information is in the form of expert knowledge, then
we can extract subjective quantiles using the triple bisection method [32] as described
in [33]. The second step is to fit a parametric distribution of some type to the nodes of
the CDF identified in the first step. The work [20] (p. 399) gives several reasons to use
parametric distributions rather than empirical ones, with the most important one being that
empirical distributions can only be trusted at the beginning of the failure/repair process.
Regardless of the method utilized to identify the parameters in the second step (least
square, maximum likelihood estimation, Bayesian estimation, etc.), it is quite possible that
some of the derived parametric distributions would have substantial support for negative
values of the argument t. For purely pragmatic reasons, we assume that for each k, we
are given only procedures to calculate fk(t), Fk(t), and F−1

k (p). Such numerical procedures
exist in almost any software package. For example, the Statistics and Machine Learning
Toolbox in MATLAB contains the pdf.m, cdf.m, and icdf.m which calculate the PDF, the CDF,
and the inverse CDF values for any distribution object created by the makedist.m [30]. The
latter can choose a wide variety of parametrical 1D distributions with arbitrary specified
parameters. Unluckily, some of those parametrical distributions are defined over the whole
real axis (e.g., the normal distribution, or the extreme value distribution). Traditionally, no
numerical procedures are given for estimating the values of λk(t) and Rk(t), which have to
be approximated using fk(t), Fk(t), F−1

k (p). In this paper, any of the procedures fk(t), Fk(t),
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Rk(t), λk(t), F−1
k (p) will be called the kth original distribution since the five of them describe

in alternative form the uncertainty of a real continuous variable:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(a) fk(t), for k = 1, 2, 3, 4 with Domain t ∈ (−∞,+∞ )

(b) Fk(t) =
t∫

−∞
fk(t)dt, for k = 1, 2, 3, 4 with Domain t ∈ (−∞,+∞ )

(c) λk(t) = fk(t)/[1 − Fk(t)], for k = 1, 2, 3, 4 with Domain t ∈ (−∞,+∞ )
(d) Rk(t) = 1 − Fk(t), for k = 1, 2, 3, 4 with Domain t ∈ (−∞,+∞ )

(e) F−1
k (p), for k = 1, 2, 3, 4 with Domain p ∈ [0, 1]

(6)

Here, Rk,(t) from Equation (6) a is aka original reliability/repair function when the real
argument t is non-negative and can be interpreted as time. In our problem, the argument t
would be most often the time (or other suitable non-negative variable, e.g., mileage), so
we will use the original distribution in Equation (6) a–e to approximate their truncated
versions which take the form of conditional distributions provided that the failure/repair
has not happened till time 0:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a) fk,trun(t) = fk(t|0) = fk(t)/Rk(0), fork = 1, 2, 3, 4with Domaint ∈ [0,+∞)
(b)Fk,trun(t) = Fk(t|0) = 1 − Rk(t)/Rk(0), fork = 1, 2, 3, 4with Domaint ∈ [0,+∞)
(c)λk,trun(t) = λk(t|0) = fk,trun(t)/[1 − Fk,trun(t)], fork = 1, 2, 3, 4with Domaint ∈ [0,+∞)
(d)Rk,trun(t) = Rk(t|0) = 1 − Fk,trun(t), fork = 1, 2, 3, 4with Domaint ∈ [0,+∞)

(e)F−1
k,trun(p) = F−1

k (p|0), fork = 1, 2, 3, 4with Domainp ∈ [0, 1]

(7)

In this paper, any of the functions fk,trun(t), Fk,trun(t), Rk,trun(t), λk,trun(t), F−1
k,trun(p) will

be called the kth truncated distribution, since the five of them describe in alternative forms
the uncertainty of a real non-negative continuous variable which can be interpreted as
time. The Rk,trun(t) from Equation (7) d is aka truncated reliability/repair function. Let us
concentrate on the 2SBRSBF system at time t:

• The rate for transitioning between State 1 and State 2 will depend on P1(t), on pf,
and on the conditional failure distribution f 1(τ|t) (failure density of the primary
component in operation, given that it has not failed till time t). The reason is that any
possible previous repairs of the primary component were from minimal type which
equates to the full aging assumption for the primary component during repair and
any failure will behave like a first failure at time t.

• The rate for transitioning between State 1 and State 4 (type a system failure) will
depend on P1(t) and on the conditional failure distribution f 1(τ|t) since the same
arguments made for the State 1–State 2 transition apply.

• The rate for transitioning between State 3 and State 4 (type d system failure) will
depend on P3(t), on pf, and on the conditional failure distribution f 1(τ|t) since the
same arguments made in the State 1–State 2 transition apply.

• The rate for transitioning between State 2 and State 1 will depend on P2(t), on pr, and
on the conditional repair distribution f 4(τ|t) (repair density of the primary component,
given that the repair starts at time t). The reason is that any possible previous repairs
of the primary component were from minimal type, which equates to the full aging
assumption for the primary component during operation and any repair will look like
a first repair at time t.

• The rate for transitioning between State 2 and State 4 (type b system failure) will
depend on P2(t), on pr, and on the conditional repair distribution f 4(τ|t) since the
same arguments made in the State 2–State 1 transition apply.

• The rate for transitioning between State 1 and State 3 will depend on P1(t) and on
the conditional failure distribution f 3(τ|t) (failure density of the backup component
in standby, given that it has not failed till time t). The backup component is never
repaired until there is a system failure, which suggests that the failure rate in standby
should depend only on the time the system operates but not on the backup component
history of utilization (alternating between operational and standby modes).

202



Mathematics 2021, 9, 2547

• The rate for transitioning between State 2 and State 4 (type c system failure) will
depend on P2(t) and on the conditional failure distribution f 2(τ|tage) (failure density
of the backup component in operation, given that it has not failed till time tage). Here
tage is the equivalent aging of the backup component in operation. It depends on the
type of aging and possibly on the backup component history of utilization (alternating
between operational and standby modes).

The four state functions of 2SBRSBF system can be identified using computer simula-
tion in the above setup for any set of distributions and aging assumptions during standby.
However, for verification purposes, two alternative solution methods can be developed for
some special cases of the 2SBRSBF system. This approach was successfully applied in [34]
for verification of a novel simulation-based optimization algorithm used in redundancy
allocati on problems using Markovian models as special cases.

If we have a set of First Case distributions, then all state transitions will depend on the
absolute densities, rather than from conditional ones. The reason is that the exponential
distributions have no memory, and hence any aging assumptions are irrelevant. Then the
probabilities for transitioning between the states depend only on the current state of the
system, but not on the history describing how the system turns out to be in the current
state. This means that the 2SBRSBF system with First Case distributions degenerates to a
Markov model [27] (more precisely to a partially observable Markov decision process [35]).
Such Markov model can be conveniently visualized with the Rate Diagram (RD) [20]
(pp. 155–170) shown in Figure 1a. Using that RD, we will derive an analytical solution for
the four state probability functions of the 2SBRSBF system with First Case distributions.

Figure 1. Rate diagram for 2SBRSBF with: (a) First Case distributions; (b) Second Case distributions with full aging
in standby.

If we have a system with full aging assumption during standby, then the equivalent
aging of the backup component in operation rate tage, described above in the transitioning
between State 2 and State 4 (type c system failure) will be simply the current time t. The
reason is that the backup component is assumed to age during standby in the same fashion
as in operation, which shows that any failure of the backup component during operation
will behave like a first failure at time t. This means that the 2SBRSBF system with full
aging assumption degenerates to a semi-Markov model where the transition probabilities
depend not only on the current state but also on the current time [36]. The semi-Markov
model can be conveniently visualized with the Generalized Rate Diagram (GRD) shown in
Figure 1b [37] (pp. 521–526). Using the GRD, we can describe the 2SBRSBF system with
simultaneous ODEs. This is possible because the failure/repair rate of any distribution,
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F(t), at time t* coincides with the failure/repair rate of the conditional distribution F(τ|T)
at the same time t*, if T ≤ t*. This trivial fact is proven in Appendix A. The derived Cauchi
problem can be solved numerically. Obviously, such solution exists also for the First Case
distribution, which will allow the comparison of the analytical and the numerical solutions.

Neither the analytical, nor the numerical solutions can be derived for the cases of
the Second Case distribution under the assumptions of no aging and partial aging since
general aging effects cannot be described by any Markovian or semi-Markovian model and
there is no system of ODE which fully quantifies the reliability behavior of 2SBRSBF unless
when the primary component is subjected to full aging in standby (see [14,36]).

4. Analytical Solution

This solution is applicable only for First Case distributions, where the failure/repair
rates are constant. The rate diagram in Figure 1a can be represented as a system of three
ODEs from Equation (8) about the first three state probability functions [38]:

⎧⎪⎨
⎪⎩

dP1
dt (t) = −(λ1 + λ3)P1(t) + (1 − pr)λ4P2(t)

dP2
dt (t) =

(
1 − p f

)
λ1P1(t)− (λ4 + λ2)P2(t)

dP3
dt (t) = λ3P1(t)− λ1P3(t)

(8)

The initial conditions are given in Equation (2). After solving Equation (8), the last
probability function, P4(t), can be estimated from Equation (3) as the complement to 1 of
the other state probability functions. The analytical solution of 2SBRSBF with First Case
distributions can be described as: “set the constants from Equation (9) and form the state
probability functions from Equation (10)” (see Appendix B for the proof).

K = (λ1 + λ2 + λ3 + λ4)/2; C = (λ1 + λ3)(λ2 + λ4)−
(

1 − p f

)
(1 − pr)λ1λ4

s1 = −K +
√

K2 − C; s2 = −K −
√

K2 − C

A1 = s1+λ2+λ4
s1−s2

; B1 = s2+λ2+λ4
s2−s1

; A2 =
(1−p f )λ1

s1−s2
; B2 =

(1−p f )λ1
s2−s1

A3 = λ3(s1+λ2+λ4)
(s1−s2)(λ1+s1)

; B3 = λ3(s2+λ2+λ4)
(s2−s1)(λ1+s2)

; C3 = λ3(λ1+λ2+λ4)
(λ1−s1)(λ1−s2)

(9)

Domain : t ∈ [0, ∞)⎧⎪⎪⎨
⎪⎪⎩

P1(t) = A1es1t − B1es2t

P2(t) = A2es1t − B2es2t

P3(t) = A3es1t − B3es2t + C3e−λ1t

P4(t) = 1 − (A1 + A2 + A3)es1t + (B1 + B2 + B3)es2t − C3e−λ1t

(10)

The reliability of the system from Equation (11) and its MTTF from Equation (12) are
derived as special cases of Equations (3) and (4):

Rsys(t) = (A1 + A2 + A3)es1t − (B1 + B2 + B3)es2t + C3e−λ1t, for t ∈ [0, ∞) (11)

MTTFsys = −(A1 + A2 + A3)/s1 + (B1 + B2 + B3)/s2 + C3/λ1 (12)

5. Numerical Solution

This solution is applicable for any Second Case distribution with full aging of the
backup component in standby and for any First Case distribution. The GRD in Figure 1b
can be represented as a system of four simultaneous DAEs from Equation (16) about
the four state probability functions, Pg(t) (g = 1,2,3,4). The system of DAEs will be nu-
merically integrated from 0 to tend, where the latter will be selected sufficiently large, so
Rsys(tend) ≈ 0 (< 0 .01). The main numerical difficulty in solving Equation (16) is to advise
a procedure for stable approximation of the failure/repair rates, λk(t) (k = 1,2,3,4), at any
t ∈ [0, tend]. That problem is far from trivial since sometimes Fk(t) is so close to 1, that
the denominator of Equation (7) turns into 0. For each of the four distributions, using the
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original inverse CDF function, we can calculate the time tλ,k, where the denominator of
Equation (7) equals to 100 times the machine epsilon (ε):

tλ,k = F−1
k (1 − 100ε), for k = 1, 2, 3, 4 (13)

The approximated failure/repair rate, λk,a(t) (k = 1,2,3,4) equals to Equation (7) if its
denominator is greater than 100ε or equals the failure/repair rate at tλ,k otherwise:

λk,a =

{
fk(t)/[1 − Fk(t)] , t ∈ [0, tλ,k]

fk(tλ,k)/[1 − Fk(tλ,k)] , t ∈ (tλ,k, ∞)
, where k = 1, 2, 3, 4 (14)

Equation (14) produces numerically stable approximations of the failure/repair rates
at any non-negative time not greater than tend. This is true even when a distribution is
truncated which means that Fk(0) > 0 and only its part in the non-negative domain has
to be used. Then, according to Appendix A, the value of the failure/repair rate for any
non-negative time will be the same as that of the non-truncated distribution since the
truncated distribution can be represented as a conditional nontruncated one:

Fk,trun(t) = Fk(t|T0 = 0) = 1 − [1 − Fk(t)]/[1 − Fk(0)], t ≥ 0 (15)

Now, we can write the DAE system corresponding to Figure 1b:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dP1
dt (t) = −[λ1,a(t) + λ3,a(t)]P1(t) + (1 − pr)λ4,a(t)P2(t)

dP2
dt (t) =

(
1 − p f

)
λ1,a(t)P1(t)− [λ4,a(t) + λ2,a(t)]P2(t)

dP3
dt (t) = λ3,a(t)P1(t)− λ1,a(t)P3(t)

0 = P1(t) + P2(t) + P2(t) + P2(t)− 1

(16)

The dependent variables can be organized in a 4D vector:
→
y (t) = [P1(t), P2(t), P3(t), P4(t)]

T.
The DAE from Equation (16) is semi-explicit with differential index 1. It has a singular constant
mass matrix:

M
(

t,
→
y
)
=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠ (17)

The Jacobian matrix of the RHS of Equation (16) depends only on the time t:

J
(

t,
→
y
)
=

⎡
⎢⎢⎣

−λ1,a(t)− λ3,a(t) (1 − pr)λ4,a(t) 0 0
(1 − pr)λ1,a(t) −λ4,a(t)− λ2,a(t) 0 0

λ3,a(t) 0 −λ1,a(t) 0
1 1 1 1

⎤
⎥⎥⎦ (18)

The initial conditions given in Equation (2) together with Equations (16) and (17) form
a Cauchi problem:

M
(

t,
→
y
)→

y
′
(t) =

→
f
(

t,
→
y (t)

)
with

→
y ini =

→
y (0) = [P1(0), P2(0), P3(0), P4(0)]

T = [1, 0, 0, 0]T (19)

Here,
→
y
′
(t) = [dP1(t)/dt, dP2(t)/dt, dP3(t)/dt, dP4(t)/dt]T , M

(
t,
→
y
)

is the mass ma-

trix (17), and the 4D
→
f
(

t,
→
y (t)

)
is the RHS of Equation (16). The problem from Equation (19)

can be numerically integrated (e.g., using ode15s.m from MATLAB [39]) at 2000 evenly
distributed time points from 0 to tend:

ti = (i − 1)tend/1999 , for i = 1, 2, . . . , 2000 (20)
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The reliability function and the MTTFsys can be calculated approximating Equations (3) and (4)
as:

Rsys(ti) = 1 − P4(ti) , for i = 1, 2, . . . , 2000 (21)

MTTFsys =

[
Rsys(t1) + Rsys(t2000) + 2

1999

∑
i=2

Rsys(ti)

]
tend/1999 (22)

6. Simulation Solution

This solution is applicable for any set of distribution (First Case or Second Case) and
for any type of aging of the backup component in standby (full aging, no aging, or partial
aging). Any simulation uses multiple pseudo-realities to study the system in question. The
information from each generated pseudo-reality will be kept in an EC, whose definition
and properties will be discussed in Section 6.1. In Section 6.2 we will concentrate on
the development of specific functions generating random time intervals for the 2SBRSBF
system. Those functions will be used in Section 6.3 where an algorithm will be developed
to generate a random EC describing the 2SBRSBF system. In Section 6.4 we will extract the
information in the generated ECs to calculate the state probability functions and the rest of
the reliability characteristics of a 2SBRSBF system.

6.1. Definition and Properties of the Event Chains for 2SBRSBF

In the simulational solution, we generate a large count N of pseudo-realities in which
we observe the behavior of the 2SBRSBF system from time 0 to system failure or to time tend
whichever comes first. As in the numerical solution (described in Section 5) the constant
tend is selected sufficiently large, so Rsys(tend)< 0.01. The pseudo-realities are described
with the ECs introduced in [22] where the EC of the jth pseudo-reality is defined as the set:

ECj =
{[

timepsrj(k), statepsrj(k)
]
|k = 1, 2 , · · · , qj

}
(23)

The notation in Equation (23) shows that the jth pseudo-reality contains qj state transi-
tions (called events) where the kth consecutive event which happened at time timepsrj(k) is a
transition to state/substate timepsrj(k). The latter is coded either with 1, 2, and 3 respectively
for State 1, State 2, and State 3, or with 40, 41, 42, and 43 respectively for system failure
type b, type a, type c, and type d (all of them denoting State 4). Any EC for a 2SBRSBF
system should have the following properties:

p1) It contains at least one event: qj ≥ 1.
p2) The events happen at strictly increasing times: timepsrj(k)< timepsrj(k + 1) for

k = 1,2, . . . ,(qj − 1).
p3) The initial event is at time zero: timepsrj(1) = 0.
p4) The final event happens before tend: timepsrj(qj) < tend.
p5) The simulation starts with fully operational system: statepsrj(1) = 1.
p6) Whenever a system failure is observed the simulation ends: if statepsrj(b) > 3, then

qj = b.
p7) Whenever the State 3 is observed either it is the last event, or the next event is the

system failure type d: if statepsrj(b) = 3, then either qj = b, or qj = (b + 1) and statepsrj(qj) = 43.
p8) The State 3 and the State 4 (in all its substates) can happen only once: #[statepsrj(k) = 3] ≤ 1,

#[statepsrj(k) = 40] ≤ 1, #[statepsrj(k) = 41] ≤ 1, #[statepsrj(k) = 42] ≤ 1, #[statepsrj(k) = 43] ≤ 1.
p9) The State 1 and State 2 alternate in the beginning of the EC including to the hth

event and neither one happens later: statepsrj(k) = 1 if and only if k is odd and k ≤ h,
whereas statepsrj(k) = 2 if and only if k is even and k ≤ h.

p10) There could be maximum two events after h: h ≤ qj ≤ (h + 2).
p11) If there are events after the hth one, they are either a transition to State 3 or a

transition to State 4 (in all its substates): statepsrj(k) ≥ 3 for all k > h and k ≤ qj.
p12) The State 2 can be observed only on an even position and the previous event is

always a transition to State 1: if statepsrj(b) = 2, then b is even and statepsrj(b − 1) = 1.
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p13) The State 3 can be observed only on an even position and the previous event is
always a transition to State 1: if statepsrj(b) = 3, then b is even and statepsrj(b − 1) = 1.

The formulated EC properties will facilitate the generation of time-period variates
presented in Section 6.2. The algorithm described in Section 6.3 will generate ECs with the
formulated EC properties. The latter will be used in Section 6.4 to prove the methods for
extracting reliability information from the generated set of ECs for 2SBRSBF system.

6.2. Generating Times Periods Using Conditional Distributions from 2SBRSBF

As discussed in Section 3, to simulate an EC of a 2SBRSBF system we need to generate
random time-periods complying with the conditional failure distributions f 1(τ|t), f 3(τ|t),
and f 2(τ|tage) and with the conditional repair distribution f 4(τ|t), where t and tage are
non-negative values.

We do not know which of the four original distributions, fk(t) (k = 1,2,3,4), are defined
only in the non-negative domain and which are defined in the entire real axes so we need to
substitute them with their truncated distributions, fk,trunc(t) = fk(t|0) for k = 1,2,3,4. Noting
that if the first condition is met, then fk,trunc(t) = fk(t|0) = fk(t) (k = 1,2,3,4), and we can
safely work only with truncated distributions. So, strictly speaking, we need to generate
time-period variates from the conditional truncated distributions f 1,trun(τ|t), f 3,trun(τ|t),
f 2,trun(τ|tage), and f 4,trun (τ|t). However, for any k it is true that:

fk,trun(τ|t) =
fk,trun(τ + t)

Rk,trun(t)
=

fk(τ + t|0)
Rk(t|0)

=
fk(τ + t + 0)/Rk(0)

Rk(t + 0)/Rk(0)
=

fk(τ + t)
Rk(t)

= fk(τ|t) (24)

According to Equation (24) the conditional truncated distributions coincide with the
conditional original distributions. In case t and tage are known entities we can generate
random time-period variates as special cases of the Practical Indirect Sampling Method from
Conditional CDF (PISMCF) [17] where the algorithm is motivated, formalized, illustrated,
and proven. On its basis we can define a three-attribute procedure, PISMCF(.), which
generates numerically stable random time interval variate, Δτ, from a given conditional
CDF, F(t|Tsurv), where Tsurv is a non-negative real number representing the time of survival:

Δτ = PISMCF
(

F(.), F−1(.), Tsurv

)
(25)

In Equation (25), F(.) is the unconditional CDF which can express F(t|Tsurv) using
Equation (26):

1 − F(t|Tsurv) =
1 − F(t + Tsurv)

1 − F(Tsurv)
(26)

The second argument, F–1(.), of the PISMCF procedure from Equation (25) being the
inverse CDF, can be used to estimate the time tλ where the denominator of Equation (26) is
100 machine epsilons (ε):

tλ = F−1(1 − 100ε) (27)

In short, the algorithm for estimating Equation (25) is: (a) Calculate tλ using Equation (27);
(b) if Tsurv < tλ, then set Tcut = Tsurv, else set Tcut = tλ; (c) Generate RD as a uniformly
distributed variate in the unit interval (0,1); (d) estimate pRD = 1 − RD [1 − F(Tcut)]; (e) Set
Δτ = F−1(pRD).

Let us assume that while performing the simulation of the jth pseudo-reality for the
2SBRSBF system we have observed only the first kcur state events. The simulation probably
will continue and therefore, the EC is yet incomplete:

ECinc
j =

{[
timepsrj(k), statepsrj(k)

]
|k = 1, 2 , · · · , kcur

}
(28)

Then, the current state of the system is scur = statesprj(kcur) and the simulational time is
Tcur = timesprj(kcur) < tend (see EC property p3). The incomplete EC in Equation (28) is never
empty since kcur ≥ 1 (see EC properties p1, p3, and p5).
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If scur > 3, we do not need to generate any time-period variates since it shows a system
failure, i.e., end of the simulation in the jth pseudo-reality (see EC properties p8, p11,
and p6).

If scur is 1, we need to generate two possible time-period variates: the time to failure
of the primary unit, Δτ1, f p, and the time to failure in standby of the backup unit, Δτ1, f b.
Using Equation (25):

Δτ1, f p = PISMCF
(

F1(.), F−1
1 (.), Tcur

)
(29)

Δτ1, f b = PISMCF
(

F3(.), F−1
3 (.), Tcur

)
(30)

If scur is 3, we do not need to generate any time-period variate since the possible time
to failure of the primary unit is known to be

(
Δτ1, f p − Δτ1, f b

)
, where Δτ1, f p and Δτ1, f b are

generated in the previous State 1 (see EC properties p9 and p13).
If scur > 3, we do not need to generate any time-period variate since we have observed

a system failure of some type which means that the simulation in the jth pseudo-reality
should stop and therefore qj = kcur (see EC properties p6, p8, and p11).

If scur is 2, we need to generate two possible time-period variates: the time to repair
of the primary unit, Δτ2,rp, and the time to failure in operation of the backup unit, Δτ2, f b.
Using Equation (25):

Δτ2,rp = PISMCF
(

F4(.), F−1
4 (.), Tcur

)
(31)

Δτ2, f b = PISMCF
(

F2(.), F−1
2 (.), tage

)
(32)

If the 2SBRSBF operates with First Case distributions, the equivalent age, tage, of the
backup unit when it starts operation at time Tcur is rather irrelevant since F2(.) is the CDF of
an exponential distribution. Then we can compare the state probability functions derived
by the simulational solution with the same acquired, on one hand, from numerical solution
with the DAE system from Equation (16) according to the RD in Figure 1b and on the other
hand with the analytical solution from Equations (9)–(12) according to the RD in Figure 1a.

If, however, the 2SBRSBF operates with Second Case distributions, then in order to
use Equation (32), we have to determine the equivalent age, tage, at time Tcur. Since we
need Δτ2, f b only when the system is State 2, it follows that kcur is even (see EC property p9).
From the beginning of the jth pseudo-reality up to time Tcur, the backup component has
been in standby (kcur/2) times when the primary component was operating till its failure
(see EC property p9). Up to Tcur, the backup component has never failed in standby when
the primary component was in operation, i.e., during the compound time interval with
overall positive length Tsb (see EC properties p6, p8, and p9). The latter time length can be
defined using Equation (28) as:

Tsb =
kcur/2

∑
i=1

[
timepsrj(2i)− timepsrj(2i − 1)

]
(33)

On the other hand, the backup component has been in operation (kcur/2 − 1) times,
when the primary component was in successful repair (see EC property p9). Up to Tcur, the
backup component has never failed during operation when the primary component was
successfully repaired, i.e., during the compound time interval with overall non-negative
length Toper time (see EC properties p7, p8, and p9). The latter time length can be estimated
by noting that up to Tcur the 2SBRSBF system is either in State 1 or in State 2:

Toper = Tcur − Tsb (34)
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The non-negative value of tage will be the sum of the backup component operation
time, Toper, with the equivalent operating time Tequ with which the backup component
would age during the standby time Tsb:

tage = Toper + Tequ (35)

The equivalent operating time Tequ depends on aging in standby mechanism under
which the 2SBRSBF system functions. There are three alternative assumptions for the
nature of this aging in standby mechanism: full aging, no aging, or partial aging.

The full aging assumption accepts that the aging of the backup component during
standby is the same as during operation (see Figure 2a):

Tequ = Tsb ⇒ tage = Toper + Tsb = Tcur − Tsb + Tsb = Tcur (36)

Figure 2. Cont.
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Figure 2. Identification of the equivalent aging time for different aging assumptions: (a) under full
aging; (b) under no aging; (c) under partial aging.

Under the full aging assumption, a 2SBRSBF can be described with the DAE system
from Equation (16) according to the RD in Figure 1b, which allows us to acquire numerical
solution for Second Case distributions. The numerical solution can be compared with
simulational state probability functions.

The no aging assumption accepts that the backup component during standby never
ages (see Figure 2b):

Tequ = 0 ⇒ tage = Toper + 0 = Tcur − Tsb (37)

Under the no aging assumption, a 2SBRSBF cannot be described with a DAE system
since no RD adequately reflects the reliability behavior of the 2SBRSBF. For Second Case
distributions, the only possible solution is the simulational one.

The partial aging assumption accepts that the backup component in standby ages to
the same reliability as the backup component in operation during the equivalent operating
time Tequ

sb (see Figure 2c):

F2,trun

(
Tequ

sb

)
= F3,trun(Tsb) (38)

Equation (38) in simplified form was firstly proposed in [22], where it was successfully
tested for Two-Component Standby System with Failures in Standby. In a real 2SBRSBF
system, the failures of the backup component will be more frequent during operation
than during standby which means that F2,trun(t) ≥ F3,trun(t) for any non-negative time t.
This inequality, together with Equation (38), assures that practically always Tequ ∈ [0, Tsb].
Applying Equation (15) twice to Equation (38) we get:

Tequ =

{
F−1

2 (pequ) i f pequ < 1 − 100ε

tλ,2 i f pequ ≥ 1 − 100ε
, where pequ = 1 − 1 − F2(0)

1 − F3(0)
[1 − F3(Tsb)] (39)

In Equation (39), tλ,2 is calculated with Equation (13) for k = 2, therefore it uses the
ideas in Equation (14) for stable approximation of the equivalent operating time, Tequ, at
any Tcur ∈ [0, tend] for arbitrary incomplete EC from Equation (23) describing the behavior
of a 2SBRSBF.

Under the partial aging assumption, the 2SBRSBF cannot be described with a DAE
system since no RD adequately reflects the reliability behavior of the 2SBRSBF similarly to
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the no aging assumption. Again, for Second Case distributions, the only possible solution
is the simulational one.

We combined Equations (33)–(37) into a six-attribute procedure, TAGEASS(.), which
gives numerically stable estimates for the equivalent age, tage, of the backup unit under any
of the three aging assumptions:

tage = TAGEASS
(

F2(.), F−1
2 (.), F3(.), ECinc

j , Tcur, FlagA

)
(40)

In Equation (40), the variable FlagA is 1, 2 or 3, respectively when the 2SBRSBF operates
under the full aging, no aging, or partial aging assumptions. Then Equation (40) can be
estimated using Algorithm 1.

Algorithm 1 Equivalent Age Estimation in the jth Pseudo-Reality for 2SBRSBF

1) Calculate the total standby time of the backup component, Tsb, using (33).
2) Calculate the total operational time of the backup component, Toper, using (34).
3) If FlagA = 1 (full aging assumption), then calculate the equivalent operating time, Tequ, using (36).
4) If FlagA = 2 (no aging assumption), then calculate the equivalent operating time, Tequ, using (37).
5) If FlagA = 3 (partial aging assumption), then:

5.1) Calculate the positive constant, tλ,2, using (13) with k = 2.
5.2) Calculate the probability, pequ, using the second part of (39).
5.3) Calculate the equivalent operating time, Tequ, the first part of (39)

6) Calculate the equivalent age of the backup component, tage, using (35).

6.3. Event Chain Generation for 2SBRSBF

After developing the procedures for random time-period generation in Section 6.2, we
may simulate an EC for the jth pseudo-reality of a 2SBRSBF system which satisfies all EC
properties defined in Section 6.1.

The following is given:

(1) For each k = 1, 2, 3, 4, the original CDFs, Fk(t), defined for any real argument.
(2) For each k = 1, 2, 3, 4 the original inverse CDFs F−1

k (p), defined for any p belonging to
the unit interval.

(3) The probability, pf, for switching failure on demand.
(4) The probability, pr, for back-switching failure on demand.
(5) The value of the FlagA, which determines under which aging assumption the 2SBRSBF

operates.
(6) The positive final simulation time, tend, such that Rsys(tend) ≈ 0 (< 0 .01).
(7) The consecutive number, j, of the pseudo-reality.

It is easy to demonstrate that any EC generated by Algorithm 2 satisfies all EC
properties formulated in Section 6.1.

The event chain for the jth pseudo-reality, ECj can be calculated using Algorithm 2.
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Algorithm 2 Generation of the Event Chain for the jth Pseudo-Reality of 2SBRSBF

1) Initiate the incomplete event chain, ECinc
j :

1.1) Set, Tcur =0 (the current system time is zero)
1.2) Set, kcur = 1 (the current count of events is one)
1.3) Set, timepsrj(kcur) = Tcur (the time of the first event is zero)
1.4) Set, statepsrj(kcur) = 1 (the system starts from State 1)

2) If statepsrj(kcur) = 1 (the system is currently in State 1), then:

2.1) Estimate, Δτ1, f p = PISMCF
(

F1(.), F−1
1 (.), Tcur

)
(the possible time to failure of the primary unit).

2.2) Estimate, Δτ1, f b = PISMCF
(

F3(.), F−1
3 (.), Tcur

)
(the possible time to standby failure of the backup unit).

2.3) If tend ≤ Tcur + Δτ1, f p and tend ≤ Tcur + Δτ1, f b (the end of simulation comes first), then:

2.3.1) Set qj = kcur (the last event count in ECj)
2.3.2) Set ECj = ECinc

j (the final ECj)
2.3.3) Stop the Algorithm

2.4) If Δτ1, f p ≤ Δτ1, f b (the primary unit is failing first), then:

2.4.1) Set kcur= kcur +1 (new event)
2.4.2) Set Tcur= Tcur + Δτ2, f b (new current system time)
2.4.3) Set timepsrj(kcur) = Tcur (the time of the new event)
2.4.4) Generate RN as an evenly distributed number in the unit interval (check which is the new state)

2.4.4.1) If RN > pf, then statepsrj(kcur) = 2 (i.e., no switching failure, move to State 2)
A. If RN ≤ pf, then statepsrj(kcur) = 41 (i.e., switching failure, move to State 4, type a)

2.5) If Δτ1, f p > Δτ1, f b (the backup unit is failing first), then:

2.5.1) Set kcur= kcur + 1 (new event)
2.5.2) Set Tcur= Tcur + Δτ1, f b (new current system time)
2.5.3) Set timepsrj(kcur) = Tcur (the time of the new event)
2.5.4) Set statepsrj(kcur) = 3 (move to State 2)

3) If statepsrj(kcur) = 2 (the system is currently in State 2), then:

3.1) Estimate, Δτ2,rp = PISMCF
(

F4(.), F−1
4 (.), Tcur

)
(the possible time to repair of the primary unit).

3.2) Estimate tage = TAGEASS
(

F2(.), F−1
2 (.), F3(.), ECinc

j , Tcur , FlagA

)
(the equivalent age of the backup unit)

3.3) Estimate, Δτ2, f b = PISMCF
(

F2(.), F−1
2 (.), tage

)
(the possible time to operational failure of the backup unit).

3.4) If tend ≤ Tcur + Δτ2,rp and tend ≤ Tcur + Δτ2, f b (the end of simulation comes first), then:

3.4.1) Set qj = kcur (the last event count in ECj)
3.4.2) Set ECj = ECinc

j (the final ECj)
3.4.3.) Stop the Algorithm

3.5) If Δτ2,rp ≤ Δτ2, f b (the primary unit is repaired first), then:

3.5.1) Set kcur = kcur + 1 (new event)
3.5.2) Set Tcur = Tcur + Δτ2,rp (new current system time)
3.5.3) Set, timepsrj(kcur) = Tcur (the time of the new event)
3.5.4) Generate RN as an evenly distributed number in the unit interval (check which is the new state)

3.5.4.1) If RN > pr, then statepsrj(kcur) =1 (no back-switching failure, move to State 1)
3.5.4.2) If RN ≤ pr, then statepsrj(kcur) = 40 (back-switching failure, move to State 4, type b)

3.6) If Δτ2,rp > Δτ2, f b (the backup unit is failing first), then:

3.6.1) Set, kcur = kcur + 1 (new event)
3.6.2) Set, Tcur = Tcur + Δτ2, f b (new current system time)
3.6.3) Set, timepsrj(kcur) = Tcur (the time of the new event)
3.6.4) Set, statepsrj(kcur) =42 (move to State 4, type c)

4) If statepsrj(kcur) = 3 (the system is currently in State 3), then:

4.1) If tend ≤ Tcur + Δτ1, f p − Δτ1, f b (the end of simulation comes first), then:

4.1.1) Set, qj= kcur (the last event count in ECj)
4.1.2) Set, ECj = ECinc

j (the final ECj)
4.1.3) Stop the Algorithm

4.2) If tend > Tcur + Δτ1, f p − Δτ1, f b (the primary unit is failing first), then:

4.2.1) Set, kcur= kcur+1 (new event)
4.2.2) Set, Tcur= Tcur+Δτ1, f p − Δτ1, f b (new current system time)
4.2.3) Set, timepsrj(kcur) = Tcur (the time of the new event)
4.2.4) Set, statepsrj(kcur) = 43 (switching failure, move to State 4, type d)

5) If statepsrj(kcur) > 3 (the system is currently in State 4), then:

5.1) Set, qj = kcur (the last event count in ECj)
5.2) Set, ECj = ECinc

j (the final ECj)
5.3) Stop the Algorithm

6) Go to Step 2 (try a next transition)
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6.4. Extracting Reliability Information from the Simulated ECs

Let N be a large positive integer representing the count of the randomly simulated
pseudo-realities. Using Algorithm 2, we can simulate ECj, for j = 1,2, . . . , N. In this section,
we will extract the reliability information from the simulated ECs, approach which is the
essence of any Monte Carlo simulation [37] (pp. 290–294).

Let us calculate the state probability functions at the 2000 evenly distributed time
points from 0 to tend given in Equation (20). For a given ECj we can estimate the state, Sti,j,
at each of the time points ti:

Sti,j =

{
statepsrj(k) if timepsrj(k) ≤ ti < timepsrj(k + 1) , for k < qj

statepsrj
(
qj
)

if timepsrj
(
qj
)
≤ ti ≤ tend

, where
i = 1, 2, . . . , 2000

j = 1, 2, . . . , N
(41)

From Equation (41) it is easy to estimate the values of the first three state probability
functions at the time point, ti:

Pg(ti) =
1
N

#
(
Si,j = g

∣∣j = 1, 2, . . . , N
)
, where g = 1, 2, 3 and i = 1, 2, . . . , 2000 (42)

In Equation (42) the #
(
Si,j = g

∣∣j = 1, 2, . . . , N
)

is the count of all states at the time
point ti which are equal to g.

The fourth state probability function can be estimated using Equation (1) as:

P4(ti) = 1 − P3(ti)− P2(ti)− P3(ti) , for i = 1, 2, . . . , 2000 (43)

The reliability function and the MTTFsys can be approximated with Equations (21) and (22).
According to the ES property p1, the reliability in Equation (22) has decreasing nodes:

Rsys(ti) ≥ Rsys(ti+1) , for i = 1, 2, . . . , 1999 (44)

One way to identify the α-design life, tdes,α for given α is to transform the nodes,{[
ti, Rsys(ti)

]∣∣i = 1, 2, . . . , 2000
}

, of the system reliability from Equation (22) into strictly

decreasing purged nodes
{[

tpu
i , Rpu

sys

(
tpu
i

)]∣∣∣i = 1, 2, . . . , npu
}

where:

Rpu
sys

(
tpu
i

)
> Rpu

sys

(
tpu
i

)
, for i = 1, 2, . . . , npu (45)

Such a purging procedure is proposed in [17], where the algorithm is motivated, for-
malized, illustrated, and proven. In short, it runs in the steps summarized in Algorithm 3.

Algorithm 3 Purging Algorithm

(a) Identify the time of the first purged node
[
tpu
1 , Rpu

sys
(
tpu
1

)
= 1

]
as the greatest ti for which Rsys(ti) = 1;

(b) Substitute all internal nodes with equal reliability with one purged node in the center of the horizontal platform;

(c) Identify the time of the last purged node
[
tpu
npu , Rpu

sys

(
tpu
npu

)]
as the smallest ti for which Rsys(ti) = Rsys(t2000).

Having the strictly decreasing purged system reliability function, we can identify the
α-design life, tdes,α for any α ∈

[
Rpu

sys

(
tpu
npu

)
, 1
]
:

tdes,α = tpu
i +

[
Rpu

sys

(
tpu
i

)
− α

] tpu
i+1 − tpu

i

Rpu
sys

(
tpu
i

)
− Rpu

sys

(
tpu
i+1

) , for Rpu
sys

(
tpu
i

)
≥ α > Rpu

sys

(
tpu
i+1

)
(46)

As discussed in Section 3, the reliability numerical characteristics Mediansys, B1_life,
B10_life, and IQRsys can be estimated as tdes,0.5, tdes,0.99, tdes,0.9, and tdes,0.25 − tdes,0.75 respec-
tively by applying Equation (46) five times.
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The simulational solution is universal and exists even when the numerical and analyt-
ical solutions are impossible. Even when the numerical and the analytical solutions exist,
the simulational solution can provide richer reliability information.

For example, it is obvious that the 2SBRSBF system will have 100% chance to ever be
in the State 1. It is also clear that if tend is correctly selected, then the 2SBRSBF system will
have more than 99% chance to ever be in the State 4. However, it is interesting to know the
chance, P2,ever, for the 2SBRSBF system to ever be in the State 2, since that probability will
help us plan the resources needed for the repair of the primary unit. Similarly, the chance,
P3,ever, for the 2SBRSBF system to ever be in the State 3 is important, since that will show us
the prevalence of the failure in standby of the backup unit. So, for a given 2SBRSBF system,
we can estimate the chances, Pg,ever, for g = 1,2,3:

Pg,ever =
100
N

#
(
∃i, that Si,j = g

∣∣j = 1, 2, . . . , N
)
, where g = 1, 2, 3 (47)

In Equation (47), #
(
∃i, that Si,j = g

∣∣j = 1, 2, . . . , N
)

is the count of pseudo-realities in
which State g can be found at least once. Similarly, for a given 2SBRSBF system we can
estimate the chance, P4,ever as:

P4,ever =
100
N

#
(
∃i, that Si,j > 3

∣∣j = 1, 2, . . . , N
)

(48)

In Equation (48), #
(
∃i, that Si,j > 3

∣∣j = 1, 2, . . . , N
)

is the count of pseudo-realities in
which State 4 (system failure) can be found at least once.

As another example for reliability information, which can be acquired neither with the
numerical, nor with the analytical solution, can be found in the four conditional chances,
Pcond

g,ever (for g = 40, 41, 42, 43), of the 2SBRSBF system to have respectively type b, type a,
type c, or type d system failure, provided that system has failed:

Pcond
g,ever = 100

#
(

Si,qj = g
∣∣∣j = 1, 2, . . . , N

)
NP4,ever/100

, where g = 40, 41, 42, 43 (49)

The information in Equation (49) allows to identify the types of system failures which
dominate the 2SBRSBF system. That knowledge will increase the efficiency of the reliability
improvement measures. Equations (42), (47)–(49) use the frequentist interpretation of
probability [40] (pp. 42–43).

Knowing how to simulate an EC for the jth pseudo-reality of a 2SBRSBF system,
allows us to develop the simulational solution of a given 2SBRSBF system. We have the
following given:

(1) For each k = 1, 2, 3, 4, the original CDFs, Fk(t), defined for any real argument.
(2) For each k = 1, 2, 3, 4, the original inverse CDFs F−1

k (p), defined for any p belonging
to the unit interval.

(3) The probability, pf, for switching failure on demand.
(4) The probability, pr, for back-switching failure on demand.
(5) The value of the FlagA, which determines under which aging assumption the 2SBRSBF

operates.

The proposed algorithm in [17] uses simulation to find the reliability characteristics
of a two-component standby systems with switching failures and aging in standby. The
simulational solution for 2SBRSBF system can be obtained through a generalization of that
algorithm, which is formalized as Algorithm 4 below.

With the formulation of Algorithm 4 the universal simulational solution for a 2SBRSBF
system is complete.
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Algorithm 4 Simulational Solution of a 2SBRSBF System

1) Select the count N of pseudo-realities to be simulated as a large integer.
2) Select the final simulation time, tend, as a positive real number.
3) Set, j = 1 (initiate the consecutive number of the simulated pseudo-reality)
4) Generate the ECj, using Algorithm 2.
5) Set, j = j + 1 (move to next pseudo-reality).
6) If j ≤ N, then go to Step 4 (repeat the EC generation N times).
7) Estimate 2000 equally spaced times, ti, in the closed interval [0, tend] using Equation (20).
8) Estimate the states, Sti,j, using Equation (41).
9) Estimate the first three state probability functions,Pg(ti) (for g = 1, 2, 3) at the time points ti using Equation (42).
10) Estimate the fourth state probability function, P4(ti), at the time point ti using Equation (43).
11) Estimate the system reliability function, Rsys(ti) at the time point ti using Equation (21).
12) Estimate the system mean time to failure,MTTFsys using Equation (22).
13) Estimate the nodes,

{[
tpu
i , Rpu

sys
(
tpu
i

)]∣∣i = 1, 2, . . . , npu
}

, of the invertible reliability function using Algorithm 3.
14) Estimate the design lives, tdes,0.5, tdes,0.99, tdes,0.9, tdes,0.25 and tdes,0.75 using Equation (46) five times.
15) Set the median time, Mediansys = tdes,0.5.
16) Set the B1 life, tdes,0.99.
17) Set the B10 life, tdes,0.9.
18) Set the interquartile range, IQR = tdes,0.25 − tdes,0.75.
19) Estimate the first three unconditional chances, Pg,ever (for g = 1, 2, 3) using Equation (47).
20) Estimate the fourth unconditional chance, P4,ever using Equation (48).
21) Estimate the conditional chances, Pcond

g,ever (for g = 40, 41, 42, 43) using Equation (49).

7. Illustrative Examples

7.1. Examples Setup

We shall analyze three Illustrative Examples. In all of them, the probability for
switching failure is pf = 0.12, whereas the probability for back-switching failure is pr = 0.03.
The ratio between those values is plausible for the following reasons. If the switching is
successful, it means that the switching device operated properly. Then a back-switching
failure is less probable since it will be demanded shortly afterwards (the repair time of the
primary component is much smaller than its failure time).

In Example 1, any of the four original distributions has a constant failure/repair rate
λk shown in Table 2 (for k = 1,2,3,4). The PDFs of the original exponential distributions are:

fk(t) = λke−λkt, for t ≥ 0 where k = 1, 2, 3, 4 (50)

Table 2. Description of the original distributions in Example 1.

Component—Event—Mode Distribution Parameters

Primary Component Failure Exponential λ1 = 0.0005 failures/h
Backup Component Failure in operation Exponential λ2 = 0.0008 failures/h
Backup Component Failure in standby Exponential λ3 = 0.00025 failures/h

Primary Component Repair Exponential λ4 = 0.008 failures/h

The PDFs, the reliability/repair functions, and the failure/repair rates of the truncated
distributions from Equation (50) are plotted in Figure 3. Example 1 will illustrate the
behavior of the 2SBRSBF system with First Case distributions. Here, the original and the
truncated distributions coincide.

In Example 2, the original distributions are as follows:

(1) a Rayleigh distribution with shape parameter b1 [41] for the failures of the primary
component:

f1(t) = (t/b1)e−0.5(t/b1)
2
, for t ≥ 0 (51)

(2) a normal distribution with mean value μ2 h and standard deviation σ2 h [42] for the
failures of the backup component in operation:

f2(t) =
1√

2πσ2
e−0.5(t−μ2)

2/(σ2)
2
, for t ∈ (−∞,+∞) (52)
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(3) a Weibull distribution with a scale parameter θ3 h and a shape parameter β3 [43] for
the failures of the backup component in standby:

f3(t) =
β3

θ3

(
t

θ3

)β3−1
e−(t/θ3)

β3 , for t ≥ 0 (53)

(4) a lognormal distribution with median time tmed,4 h and shape parameter s4 [44] for
the repairs of the primary component:

f4(t) =
1√

2πs4t
e−0.5 ln2 (t/tmed,4)/(s4)

2
, for t ≥ 0 (54)

The original distribution Example 2 are described in Table 3. The PDFs, the relia-
bility/repair functions, and the failure/repair rates of the truncated distributions from
Equations (51)–(54) are plotted in Figure 4. Example 2 will illustrate the behavior of the
2SBRSBF system with Second Case distributions where the failures of the backup com-
ponent in operation have an Increasing Failure Rate (IFR). Such a typical situation can
occur when the operational failure is caused mainly by high wearing in the backup compo-
nent [11] (pp. 73–75). Here, the original and the truncated distributions coincide except for
the f 2(t) and f 2,trunc(t).

Figure 3. The truncated distributions in Example 1. The three failure distributions are shown in section (a–c), whereas the
repair distribution is shown in section (d–f). The reliability/repair functions, the PDFs and the failure/repair rates are given
respectively in the first (sections (a,d)), the second (section (b,e)), and the third row (sections (c,f)).
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Table 3. Description of the original distributions in Example 2.

Component—Event—Mode Distribution Parameters

Primary Component Failure Rayleigh b1 = 1600 h
Backup Component Failure in operation normal μ2 = 1000 h and σ2 = 900 h
Backup Component Failure in standby Weibull θ3 = 4500 h and β3 = 2.2

Primary Component Repair lognormal tmed,4 = 90 h and s4 = 0.8

Figure 4. The truncated distributions in Example 2. The three failure distributions are shown in section (a–c), whereas the
repair distribution is shown in section (d–f). The reliability/repair functions, the PDFs and the failure/repair rates are given
respectively in the first (sections (a,d)), the second (section (b,e)), and the third row (sections (c,f)).

In Example 3 the distributions are the same as in Example 2, except for the second
type, which changes to:

2) a lognormal distribution with median time tmed,2 h and shape parameter s2 for the
failures of the backup component in operation:

f2(t) =
1√

2πs2t
e−0.5 ln2 (t/tmed,2)/(s2)

2
, for t ≥ 0 (55)

The original distribution Example 3 are described in Table 4. The PDFs, the relia-
bility/repair functions, and the failure/repair rates of the truncated distributions from
Equations (51), (53)–(55) are plotted in Figure 5. Example 3 will illustrate the behavior of
the 2SBRSBF system with Second Case distributions where the failures of the backup com-
ponent in operation have a Decreasing Failure Rate (DFR). Such an atypical situation can
occur when the operational failure is caused mainly by high child mortality in the backup
component [11] (pp. 73–75). Here, the original and the truncated distributions coincide.
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Table 4. Description of the original distributions in Example 3.

Component—Event—Mode Distribution Parameters

Primary Component Failure Rayleigh b1 = 1600 h
Backup Component Failure in operation lognormal tmed,2 = 537 h and s2 = 1.3
Backup Component Failure in standby Weibull θ3 = 4500 h and β3 = 2.2

Primary Component Repair lognormal tmed,4 = 90 h and s4 = 0.8

Figure 5. The truncated distributions in Example 3. The three failure distributions are shown in section (a–c), whereas the
repair distribution is shown in section (d–f). The reliability/repair functions, the PDFs and the failure/repair rates are given
respectively in the first (sections (a,d)), the second (section (b,e)), and the third row (sections (c,f)).

7.2. Example 1 Solution

Since in Example 1, we are dealing with First Case distributions, the type of aging has
no effect on the reliability performance of the 2SBRSBF system. The simulation solution was
obtained by Algorithm 4 with N = 10,000 pseudo-realities for time from 0 to tend = 20,000 h.
Four typical pseudo-realities are shown in Table 5 where the different types of system
failures are demonstrated. The four state probability functions are shown in Figure 6a–d,
respectively. The system reliability function is depicted in Figure 7. The simulation
reliability at tend was negligible (as required Rsys(20,000) = 0.0024 < 0.01) which justifies the
selection of tend. Important simulation numerical characteristics of the 2SBRSBF reliability
can be found in Table 6. The chances of some events of interest (described in Section 6.4)
can be found in Table 7. It is revealing so see that the backup component has approximately
69% chance to endure failure in standby (State 3). Another useful fact is that the switching
failures (Type a) are more frequent than the backup component failures in operation
(Type c) (17% vs. 11% conditional chance). That fact suggests that it is easier to improve
the reliability by upgrading the switching mechanism than by upgrading the backup unit.
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Table 5. Four typical pseudo-realities from Example 1.

1

Time 0.0 h: Start of the
simulation. The primary

component operates, the backup
component is ready.

Time 0.0 h: Start of the
simulation. The primary

component operates, the backup
component is ready.

Time 0.0 h: Start of the
simulation. The primary

component operates, the backup
component is ready.

Time 0.0 h: Start of the
simulation. The primary

component operates, the backup
component is ready.

2

Time 1378.3 h: The primary
component fails in operation.

The primary component under
repair, the backup

component operates.

Time 1753.2 h: The primary
component fails in operation.

The primary component under
repair, the backup

component operates.

Time 2016.9 h: The primary
component fails in operation.

The primary component under
repair, the backup

component operates.

Time 2348.6 h: The primary
component fails in operation.

The primary component under
repair, the backup

component operates.

3

Time 1467.6 h: The primary
component successfully
repaired. The primary

component operates, the backup
component is ready.

Time 1821.4 h: The primary
component successfully
repaired. The primary

component operates, the backup
component is ready.

Time 2042.9 h: The primary
component successfully
repaired. The primary

component operates, the backup
component is ready.

Time 2406.5 h: The primary
component successfully
repaired. The primary

component operates, the backup
component is ready.

4

Time 2099.6 h: The primary
component fails in operation.

Switching failure. Type a system
failure (switching failure).

Time 4321.5 h: The primary
component fails in operation.

The primary component under
repair, the backup

component operates.

Time 8168.7 h: The primary
component fails in operation.

The primary component under
repair, the backup

component operates.

Time 3057.8 h: The backup
component fails in standby. The

primary component operates,
the backup component failed

in standby.

5

Time 4460.6 h: The primary
component successfully

repaired. Back-Switching
failure. Type b system failure

(back-switching failure).

Time 8288.8 h: The backup
component fails in operation.
Type c system failure (backup

component failure during
primary repair).

Time 3712.4 h: The primary
component fails in operation.

Type d system failure (standby
failure+ primary failure).

Figure 6. State probability functions for Example 1 (with states 1 through 4 given in sections (a–d) respectively) from the
analytical, numerical and simulation solution.
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Figure 7. Reliability functions for Example 1 from the analytical, numerical and simulation solution.

Table 6. Reliability characteristics of the 2SBRSBF from Example 1.

Count of pseudo-realities 100,000

Simulation time 2.000 × 10+4 h

Mean value (Simulation) 4.294 × 10+3 h

Median 3.418 × 10+3 h

Interquartile range 4.187 × 10+3 h

B10 life 7.922 × 10+2 h

B1 life 1.174 × 10+2 h

Mean value (Analytical) 4.282 × 10+3 h

Mean value (Numerical) 4.280 × 10+3 h

Table 7. Chances for events of interest in % for Example 1.

Unconditional Chance for State 1 to happen 100.00% The primary component operates, the backup
component is ready

Unconditional Chance for State 2 to happen 58.66% The primary component under repair, the backup
component operates

Unconditional Chance for State 3 to happen 68.98% The primary component operates, the backup
component failed in standby

Unconditional Chance for State 4 to happen 99.76% System failure

Conditional chance for type a failure to happen 16.68% Switching failure

Conditional chance for type b failure to happen 3.25% Back-switching failure

Conditional chance for type c failure to happen 11.07% Backup component failure during primary repair

Conditional chance for type d failure to happen 69.00% Standby failure + primary failure

The simulation results were verified by comparison with the precise analytical solution
(see Section 4). According to Table 6, the precise analytical MTTF is 4282 h, whereas the
simulational MTTF is estimated as 4294 h, which contains less than 0.3% error.

Also, the simulational results were verified by comparison with the numerical solution
(see Section 5), which, as seen from Figures 6 and 7, produced undistinguishable curves
from the simulational state probabilities and the simulational reliability function. According
to Table 6, the numerical MTTF is 4280 h, whereas the simulational MTTF is estimated
as 4294 h. The numerical solution for Example 1 (as well as in Examples 2 and 3) was
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derived by solving the index-1 DAE system described in Section 5 with the MATLAB
multistep procedure ode15s.m. The software successfully integrated the DAE system from 0
to tend = 20,000 h using variable-step method of variable order from 1 to 5 [45].

As seen from Figures 6 and 7, the analytical and the numerical solutions produce
undistinguishable curves from the simulational state probabilities and the simulational
reliability function. The observed overlap is an essential part of the verification of the
presented simulation algorithm: in the case of exponential distribution, the model is
Markovian, where the analytical, the numerical, and the simulational solutions should
practically coincide.

7.3. Example 2 Solution

Since Example 2 deals with Second Case distributions, the type of aging has an effect
on the reliability performance of the 2SBRSBF system. Three simulational solutions were
obtained by repeatedly using Algorithm 4 with N = 10,000 pseudo-realities for the three aging
assumptions: full aging, no aging and patrial aging of the backup component in standby.
Each of those solutions was estimated for time from 0 to tend = 8000 h. The three sets of four
state probability functions are shown in Figure 8a–d, respectively. The three system reliability
functions are depicted in Figure 9. The simulational reliabilities at tend were negligible and
much lower than 0.01 (for full aging-Rsys(8000) = 0; for no aging-Rsys(8000) = 0.0025; for partial
aging-Rsys(8000) = 0.0003) which justifies the selection of tend.

Figure 8. State probability functions for Example 2 (with states 1 through 4 given in sections (a–d) respectively) under the
three aging assumptions.
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Figure 9. Reliability functions for Example 2 under the three aging assumptions.

Important simulational numerical characteristics of the 2SBRSBF reliabilities can be
found in Table 8 for the three types of aging. The chances of some events of interest
(described in Section 6.4) can be found in Table 9 for each of the three aging assumptions.
It is revealing to see that the backup component has between 31% and 41% chance to
endure failure in standby (State 3) depending on the aging model. An interesting dynamic
is observed in the conditional chances of observing the different types of failure. At full
aging, the backup component failures during primary repair (Type c) have more than 50%
chance, whereas the primary component failures after failure in standby (Type d) constitute
only around 30% of the system failures. At no aging, the backup failures in operation are
less likely and, therefore, the primary component failures after backup failure in standby
(Type d) are more frequent than the backup component failures during primary repair
(Type c) (41% vs. 36% conditional chance). At the same time, Type c and Type d system
failures are marginally the same at partial aging of the backup component in standby
(37% vs. 42% conditional chance). Those facts suggest that to increase the reliability of the
2SBRSBF it is of paramount importance correctly to identify the aging mechanism of the
backup unit during standby.

Table 8. Reliability characteristics of the 2SBRSBF from Example 2 under the three aging assumptions.

Full Aging No Aging Partial Aging

Count of pseudo-realities 100,000 100,000 100,000

Simulation time 8.000 × 10+3 h 8.000 × 10+3 h 8.000 × 10+3 h

Mean value (Simulation) 2.837 × 10+3 h 3.457 × 10+3 h 3.242 × 10+3 h

Median 2.783 × 10+3 h 3.364 × 10+3 h 3.199 × 10+3 h

Interquartile range 1.531 × 10+3 h 2.051 × 10+3 h 1.785 × 10+3 h

B10 life 1.419 × 10+3 h 1.596 × 10+3 h 1.581 × 10+3 h

B1 life 5.536 × 10+2 h 5.735 × 10+2 h 5.818 × 10+2 h

Mean value (Analytical) NA NA NA

Mean value (Numerical) 2.837 × 10+3 h NA NA
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Table 9. Chances in % for events of interest for Example 2 under the three aging assumptions.

Full Aging No Aging Partial Aging

Unconditional Chance for
State 1 to happen 100.00% 100.00% 100.00% The primary component operates, the

backup component is ready

Unconditional Chance for
State 2 to happen 71.76% 71.78% 72.00% The primary component under repair, the

backup component operates

Unconditional Chance for
State 3 to happen 30.43% 40.78% 37.13% The primary component operates, the

backup component failed in standby

Unconditional Chance for
State 4 to happen 100.00% 99.75% 99.97% System failure

Conditional chance for type a
failure to happen 15.56% 20.11% 18.19% Switching failure

Conditional chance for type b
failure to happen 1.85% 3.30% 2.70% Back-switching failure

Conditional chance for type c
failure to happen 52.16% 35.75% 41.99% Backup component failure during

primary repair

Conditional chance for type d
failure to happen 30.43% 40.85% 37.12% Standby failure + primary failure

In Example 2, the distribution of the backup component failures in operation has an
IFR (see the blue line in Figure 5c), indicating that the wear out is the most likely reason for
those failures. This is by far the most widespread case in the engineering practice where the
backup component operates at the rear end of the bathtub curve [46]. Then, the severity of
the aging should increase the failure incidence of the backup component in operation and
subsequently should decrease the reliability. As expected, the system reliability function
is the best at no-aging and worst at full aging (see Figure 9 for 1500–5500 h). The MTTF
increases from 2837 h at full aging, through 3242 h at partial aging, to 3457 h at no aging,
which corresponds to substantial 21% improvement. Similar behavior can be observed in
the median, B10 life, and at the B1 life (see Table 8). Another expected result is that the
state probability functions for partial aging are between the state probability functions for
no aging and full aging (see Figure 8). The real distinction between the three curves can be
seen in State 2 probability function (Figure 8b) which is very sensitive to the aging mode.
The observed forms of the State 2 probability functions are justifiable since the severity
of aging increases the incidence of failure of the operational backup unit, which moves
the system to State 4 and decreases the probability of the 2SBRSBF to be in State 2. All the
above can serve as a qualitative validation of Algorithm 4 for simulating the reliability
behavior of the 2SBRSBF system.

Also, the simulational results were quantitatively verified by comparison with the
numerical solution (as described in Section 7.2), which, as seen from Figures 8 and 9,
produced undistinguishable curves from the simulational state probabilities and the sim-
ulational reliability function in the case of full aging of the backup component during
standby. This overlap is an important result: under the full-aging assumption the model is
semi-Markovian where the numerical, and the simulational solutions should practically
coincide. According to Table 8, the numerical MTTF and the simulational MTTF at full
aging are estimated to be equal (2837 h). Note that the analytical solution is impossible to
be derived in Example 2 since the failure/repair rates are not constant.

7.4. Example 3 Solution

Since Example 3 deals with Second Case distributions, similarly to Example 2, the type
of aging has effect on the reliability performance of the 2SBRSBF system. Three simulational
solutions were obtained by repeatedly using Algorithm 4 with N = 10,000 pseudo-realities
for the three aging assumptions: full aging, no aging and patrial aging of the backup com-
ponent in standby. Each of those solutions was estimated for time from 0 to tend = 12,000 h.
The three sets of four state probability functions are shown in Figure 10a–d, respectively.
The three system reliability functions are depicted in Figure 11. The simulational relia-
bilities at tend were negligible and lower than 0.01 (for full aging-Rsys(12000) = 0.0062; for
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no aging-Rsys(12,000) = 0.0011; for partial aging-Rsys(12,000) = 0.002) which justifies the
selection of tend.

Figure 10. State probability functions for Example 3 (with states 1 through 4 given in sections (a–d) respectively) under the
three aging assumptions.

Figure 11. Reliability functions for Example 3 under the three aging assumptions.
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Important simulational numerical characteristics of the 2SBRSBF reliabilities can be
found in Table 10 for the three types of aging. The chances of some events of interest
(described in Section 6.4) can be found in Table 11 for each of the three aging assumptions.

Table 10. Reliability characteristics of the 2SBRSBF from Example 3 under the three aging assumptions.

Full Aging No Aging Partial Aging

Count of pseudo-realities 100,000 100,000 100,000

Simulation time 1.200 × 10+4 h 1.200 × 10+4 h 1.200 × 10+4 h

Mean value (Simulation) 3.652 × 10+3 h 3.139 × 10+3 h 3.197 × 10+3 h

Median 3.317 × 10+3 h 2.957 × 10+3 h 2.957 × 10+3 h

Interquartile range 2.400 × 10+3 h 1.924 × 10+3 h 2.015 × 10+3 h

B10 life 1.432 × 10+3 h 1.364 × 10+3 h 1.336 × 10+3 h

B1 life 4.870 × 10+2 h 5.031 × 10+2 h 4.999 × 10+2 h

Mean value (Analytical) NA NA NA

Mean value (Numerical) 3.653 × 10+3 h NA NA

Table 11. Chances in % for events of interest for Example 3 under the three aging assumptions.

Full Aging No Aging Partial Aging

Unconditional Chance for
State 1 to happen 100.00% 100.00% 100.00% The primary component operates, the

backup component is ready

Unconditional Chance for
State 2 to happen 71.75% 71.83% 71.80% The primary component under repair,

the backup component operates

Unconditional Chance for
State 3 to happen 44.31% 35.71% 36.55% The primary component operates, the

backup component failed in standby

Unconditional Chance for
State 4 to happen 99.38% 99.89% 99.80% System failure

Conditional chance for type a
failure to happen 21.53% 17.73% 18.31% Switching failure

Conditional chance for type b
failure to happen 3.88% 2.48% 2.68% Back-switching failure

Conditional chance for type c
failure to happen 30.04% 44.06% 42.39% Backup component failure during

primary repair

Conditional chance for type d
failure to happen 44.56% 35.74% 36.62% Standby failure + primary failure

In Example 3, the distribution of the backup component failures in operation has an
DFR (see the blue line in Figure 5c), indicating that the child mortality is the most likely
reason for those failures. This is a very rare case in the engineering practice where the
backup component operates at the front end of the bathtub curve. Then, the severity of
the aging should decrease the failure incidence of the backup component in operation and
subsequently should increase the reliability. As expected, the system reliability function
is the worst at no-aging and best at full aging (see Figure 11 for 2000–8000 h). The MTTF
increases from 3139 h at no aging, through 3187 h at partial aging, to 3625 h at full aging,
which corresponds to noticeable 16% improvement. Similar behavior can be observed in
the median, B10 life, and at the B1 life (see Table 10). Another expected result is that the
state probability functions for partial aging are between the state probability functions for
no aging and full aging (see Figure 10). The real distinction between the three curves can be
seen in State 2 probability function (Figure 10b) which is very sensitive to the aging mode.
The observed forms of the State 2 probability functions are justifiable since the severity
of aging decreases the incidence of failure of the operational backup unit, which moves
the system to State 4 and increases the probability of the 2SBRSBF to be in State 2. All the
above can serve as a qualitative validation of Algorithm 4 for simulating the reliability
behavior of the 2SBRSBF system.

A partial overlap between the no aging simulation solution and the partial aging
simulation solution can be spotted in Figures 10 and 11. The same can also be observed
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in Figures 8 and 9 to a lesser extent. Those partial overlaps reflect the fact that for almost
all realistic distribution sets, under the applied method, the solution of partial aging
is much closer to the solution with no aging assumption than to the solution with full
aging assumption.

Again, the simulational results were quantitatively verified by comparison with the
numerical solution (as described in Section 7.2) which as seen from Figures 10 and 11
produced undistinguishable curves from the simulational state probabilities and the sim-
ulational reliability function in the case of full aging of the backup component during
standby (for comment on the observed overlap see Section 7.3). According to Table 10,
the numerical MTTF and the simulational MTTF at full aging are estimated to be virtually
equal (3653 h vs. 3652 h, respectively). Note that the analytical solution is impossible to be
derived in Example 2 since the failure/repair rates are not constant.

8. Conclusions

In this paper, we investigated the reliability effect of introducing a primary component
minimal repair in a two-component standby system with switching failures and aging in
warm-standby. A novel analytical solution was derived for distributions with constant
failure/repair rates. Under a full aging assumption of the backup component during
standby, an index-1 DAE system of four simultaneous equations with constant mass
singular matrix was proposed and solved to numerically approximate the state probability
functions and system reliability. A universal simulational algorithm was designed to solve
the 2SBFSR system under three types of aging. That algorithm generates pseudo-realities
with ECs, which satisfy the newly formulated EC properties for the 2SBFSR system. Novel
function to assess the equivalent age of the backup component under arbitrary aging
mechanisms was proposed and utilized during the EC generation. The system has a stable
operation with any type of distribution. There is a significant practical benefit in the
ability of the user to write their own distribution functions, which reflect several modes
of failure during operation, several modes of failure during warm-standby, and several
modes of repair.

Three numerical examples were elaborated to validate quantitatively and qualitatively
the simulational solution. To model the 2SBRSBF system with partial aging in standby,
we assumed that that the backup component in standby ages to the same reliability as the
backup component in operation. That is a logical and plausible hypothesis that allows
to produce a tractable aging model whose results can be treated as best estimate. Even if
the real aging mechanism is different the numerical examples show that the partial aging
results always will be bounded by the full aging and the no-aging results. That fact allows
the designers and the maintenance staff to correctly assess the effect of alternative measures
aiming at improving the system reliability even if the precise aging in standby mechanism
is known.

Although our model may look too specific and simplified, it is easily scalable. The
demonstrated methodology can easily be applied to multiple-component warm-standby
system with random configuration. We have not given such an example for purely vol-
ume constraints in this work. Any different aging assumptions can be incorporated by
modifying Algorithm 1 (hence the function TAGEASS). All aspects and elements of such
a multi-component warm-standby system can be found in 2SBRSBF. In such a way, our
model is suitable for applications in industrial systems, manufacturing, design of ship
electrical and propulsion systems, power plants, etc.

As a direction for future studies, we may study the ways to adapt our procedures to
the case of perfect repair [10] and intermediate repair [8], as this work only analyzed the
case of minimal repair.
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Appendix A

Given: Let the random variable T be the time to failure (or repair) of a component.
Also, let the random event A(T0) be that the component is operational at, or has not been
repaired up to, time T0. In fact, T is the deterministic time T0 plus the random time period
till the next event (failure or repair). This definition of T is true only for Appendix A. Then:

• The unconditional Cumulative Distribution Function (CDF) of T is F(t), for t ∈ [0, ∞).
• The unconditional Probability Density Function (PDF) of T is f (t), for t ∈ [0, ∞).
• The unconditional reliability (repair) function of T is R(t) = 1 − F(t), for t ∈ [0, ∞).

• The unconditional failure (repair) rate of T is λ(t) = f (t)
R(t) , for t ∈ [0, ∞).

• The conditional CDF of T if A(T0), is Fcond(τ|T0), for τ = (t − T0) ∈ [0, ∞).

• The conditional PDF of T if A(T0), is fcond(τ|T0) = dFcond(τ|T0)
dτ , for τ = (t − T0) ∈

[0, ∞).
• The conditional reliability (repair) function of T if A(T0), is Rcond(τ|T0) = 1− Fcond(τ|T0),

for τ = (t − T0) ∈ [0, ∞).
• The conditional failure (repair) rate of T if A(T0), is λcond(τ|T0) = fcond(τ|T0)

Rcond(τ|T0)
, for

τ = (t − T0) ∈ [0, ∞).

Prove: The unconditional and the conditional failure (repair) rate are equal for any
t∗ ≥ T0, i.e., λ(t∗) = λcond(t ∗ −T0|T0), for t∗ ∈ [T0, ∞).

Proof. The unconditional R(t) and f (t) are given in Figure A1a,c. The relationship between
these functions is:

f (t) =
dF(t)

dt
=

d[1 − R(t)]
dt

= −dR(t)
dt

for t ∈ [0, ∞) (A1)

Similarly, the conditional Rcond(τ|T0) and fcond(τ|T0) are given in Figure A1b,d. The
relationship between these functions is:

fcond(τ|T0) =
dFcond(τ|T0)

dτ
=

d[1 − Rcond(τ|T0)]

dτ
= −dRcond(τ|T0)

dτ
forτ = (t − T0) ∈ [0, ∞) (A2)

According to [11] (p. 72), the value of the conditional Rcond(τ|T0) can be expressed as
the ratio of two unconditional values of R(t):

Rcond(τ|T0) =
R(τ + T0)

R(T0)
forτ = (t − T0) ∈ [0, ∞) (A3)

The interdependency between Figure A1a,b illustrates Equation (A3). The constant
R(T0) is the height of the red vertical line in Figure A1a.
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Figure A1. A generic distribution described by: (a) unconditional reliability; (b) conditional reliability; (c) unconditional
density; (d) conditional density.

Let us take the first derivative about τ from Equation (A3) and multiply both sides by
negative 1. Then,

−dRcond(τ|T0)

dτ
= − d

dτ

R(τ + T0)

R(T0)
forτ = (t − T0) ∈ [0, ∞) (A4)

Let us simplify the RHS of Equation (A4) using Equation (A1) and utilizing that
τ = (t − T0):

− d
dτ

R(τ+T0)
R(T0)

= − 1
R(T0)

dR(τ+T0)
dτ = − 1

R(T0)
dR(τ+T0)
d(τ+T0)

d(τ+T0)
dτ

= − 1
R(T0)

dR(t)
dt

dt
dτ = 1

R(T0)
f (t) d(τ+T0)

dτ

= f (τ+T0)
R(T0)

(1) = f (τ+T0)
R(T0)

(A5)

According to Equation (A2), the LHS of Equation (A4) is fcond(τ|T0). Then, from
Equations (A4) and (A5) it follows that:

fcond(τ|T0) =
f (τ + T0)

R(T0)
forτ = (t − T0) ∈ [0, ∞) (A6)
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The interdependency between Figure A1c,d illustrates Equation (A6). The constant
R(T0) is the area of the green patch in Figure A1c, since from Equation (A1) it follows that

R(T0) =
∞∫

T0

f (t)dt.

The conditional failure (repair) rate of T if A(T0) can be transformed using Equations (A3)
and (A6):

λcond(τ|T0) =
fcond(τ|T0)

Rcond(τ|T0)
=

f (τ + T0)

R(T0)
÷ R(τ + T0)

R(T0)
=

f (τ + T0)

R(τ + T0)
forτ = (t − T0) ∈ [0, ∞) (A7)

Let’s select a time point t∗ ≥ T0. The unconditional failure (repair) rate of T at time t* is:

λ(t∗) = f (t∗)
R(t∗) (A8)

The nominator and the denominator in Equation (A8) are respectively the heights of
the blue lines in Figure A1a,c. The conditional time τ is simply the time t delayed with T0
(i.e., t = τ + T0).

From here, the relative time moment τ∗ which coincides with time t* is:

τ∗ = t ∗ −T0 (A9)

Equation (A9) is illustrated by the transition from Figure A1a to Figure A1b, and in
the transition from Figure A1c to Figure A1d.

The value of λcond(τ|T0) at relative time point τ∗ can be easily calculated from Equa-
tion (A7) utilizing Equations (A8) and (A9):

λcond(t ∗ −T0|T0) = fcond(t∗−T|T0)
Rcond(t∗−T|T0)

= λcond(τ∗|T0)

= f (τ∗+T0)
R(τ∗+T0)

= f (t∗)
R(t∗) = λ(t∗)

, fort∗ ∈ [T0, ∞) (A10)

�

Appendix B

Given: Let λ1, λ2, λ3, and λ4 be real positive constants, whereas pr and pf are real
positive constants less than 1. The real functions P1(t), P2(t), and P3(t) are defined in the Do-
main t ∈ [0, ∞) and satisfy the system from Equation (A11) of three simultaneous ordinary
differential equations. The initial conditions of the functions are given in Equation (A12).

⎧⎪⎨
⎪⎩

dP1
dt (t) = −(λ1 + λ3)P1(t) + (1 − pr)λ4P2(t)

dP2
dt (t) =

(
1 − p f

)
λ1P1(t)− (λ4 + λ2)P2(t)

dP3
dt (t) = λ3P1(t)− λ1P3(t)

(A11)

P1(0) = 1, P2(0) = 0, P3(0) = 0 (A12)

Find:

(a) The solution of the initial-value problem for P1(t), P2(t), and P3(t) in the Domain
t ∈ [0, ∞).

(b) The functions P4(t) = 1− P1(t)− P2(t)− P3(t) and Rsys(t) = 1− P4(t) in the Domain
t ∈ [0, ∞).

(c) The quantity MTTFsys =
∞∫
0

Rsys(t)dt.

Solution:

(a) Taking Laplace transformation [47] (pp. 331–335) of the three equations in Equation (A11)
yields a system of three algebraic equations about the Laplace transforms Y1(s), Y2(s),
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and Y3(s) of the functions P1(t), P2(t), and P3(t), where s is a complex number known
as frequency:

⎧⎨
⎩

sY1(s)− P1(0) = −(λ1 + λ3)Y1(s) + (1 − pr)λ4Y2(s)
sY2(s)− P2(0) = (1 − pr)λ1Y1(s)− (λ4 + λ2)Y2(s)
sY3(s)− P3(0) = λ3Y1(s)− λ1Y3(s)

(A13)

Substituting Equation (A12) into Equation (A13) and simplifying gives:⎧⎪⎨
⎪⎩

(s + λ1 + λ3)Y1(s)− (1 − pr)λ4Y2(s) = 1
−
(

1 − p f

)
λ1Y1(s) + (s + λ2 + λ4)Y2(s) = 0

−λ3Y1(s) + (λ1 + s)Y3(s) = 0
(A14)

The first two equations in Equation (A14) can be solved for Y1(s), Y2(s) using the
Cramer’s rule [48]:

Y1(s) =
s + λ2 + λ4

(s + λ1 + λ3)(s + λ2 + λ4)− (1 − pr)
(

1 − p f

)
λ1λ4

(A15)

Y2(s) =

(
1 − p f

)
λ1

(s + λ1 + λ3)(s + λ2 + λ4)− (1 − pr)
(

1 − p f

)
λ1λ4

(A16)

The denominator in both Equations (A15) and (A16) is a quadratic polynomial with
real coefficients 1, K, and C:

(s + λ1 + λ3)(s + λ2 + λ4)− (1 − pr)
(

1 − p f

)
λ1λ4 = s2 + 2Ks + C (A17)

where the real constants K and C are:

K = (λ1 + λ2 + λ3 + λ4)/2
C = (λ1 + λ3)(λ2 + λ4)−

(
1 − p f

)
(1 − pr)λ1λ4

(A18)

We will prove that the discriminant, Δ, of the quadratic polynomial Equation (A17) is
always positive:

Δ= (2K)2 − 4(1)C = [2(λ1 + λ2 + λ3 + λ4)/2]2 − 4
[
(λ1 + λ3)(λ2 + λ4)−

(
1 − p f

)
(1 − pr)λ1λ4

]
= (λ1 + λ2 + λ3 + λ4)

2 − 4(λ1 + λ3)(λ2 + λ4) + 4
(

1 − p f

)
(1 − pr)λ1λ4

(λ1 + λ2 + λ3 + λ4)
2 − 4(λ1 + λ3)(λ2 + λ4) + 4(1 − 1)(1 − pr)λ1λ4

= (λ1 + λ2 + λ3 + λ4)
2 − 4(λ1 + λ3)(λ2 + λ4) = [(λ1 + λ3) + (λ2 + λ4)]

2 − 4(λ1 + λ3)(λ2 + λ4)

= (λ1 + λ3)
2 + (λ2 + λ4)

2 + 2(λ1 + λ3)(λ2 + λ4)− 4(λ1 + λ3)(λ2 + λ4)

= (λ1 + λ3)
2 + (λ2 + λ4)

2 − 2(λ1 + λ3)(λ2 + λ4) = [(λ1 + λ3)− (λ2 + λ4)]
2 ≥ 0

⇒ Δ > 0

(A19)

In Equation (A19) we used that 4
(

1 − p f

)
(1 − pr)λ1λ4 > 0 since

(
1 − p f

)
> 0,

(1 − pr) > 0, λ1 > 0, and λ4 > 0. From Equation (A19) it follows that the roots s1 the
s2 of the quadratic polynomial Equation (A19) are always real and different:

s1,2 =
(
−2K ±

√
Δ
)

/2 =
(
−2K ±

√
4K2 − 4C

)
/2 = −K ±

√
K2 − C (A20)

In Equation (A20) we assume that s1 > s2 (i.e., s1 = −K +
√

K2 − C and s2 = −K −√
K2 − C). It can easily be seen that the constants s1 the s2 are always negative. Using
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the quadratic factorization formula together with Equation (A17) the denominator in
both Equations (A15) and (A16) can be factored to:

s2 + 2Ks + C = 1(s − s1)(s − s2) = (s − s1)(s − s2) (A21)

From Equations (A15)–(A17), and (A21), Y1(s), Y2(s) can be simplified to:

Y1(s) =
s + λ2 + λ4

(s − s1)(s − s2)
(A22)

Y2(s) =

(
1 − p f

)
λ1

(s − s1)(s − s2)
(A23)

Substituting Equation (A22) in the third equation of Equation (A14) we can find Y3(s):

Y3(s) =
λ3Y1(s)
(λ1 + s)

=
λ3(s + λ2 + λ4)

(s − s1)(s − s2)(λ1 + s)
(A24)

The identified Y1(s), Y2(s), and Y3(s) are rational fractions according to
Equations (A22)–(A24). To facilitate the inverse Laplace transform, those rational
fractions can be subjected to a partial fraction decomposition [49] (pp. 533–540):

Y1(s) =
s + λ2 + λ4

(s − s1)(s − s2)
=

A1

(s − s1)
+

B1

(s − s2)
(A25)

The constants A1 and B1 in Equation (A25) are:

A1 =
s1 + λ2 + λ4

s1 − s2
and B1 =

s2 + λ2 + λ4

s2 − s1
(A26)

Y2(s) =

(
1 − p f

)
λ1

(s − s1)(s − s2)
=

A2

(s − s1)
+

B2

(s − s2)
(A27)

The constants A2 and B2 in Equation (A27) are:

A2 =

(
1 − p f

)
λ1

s1 − s2
and B2 =

(
1 − p f

)
λ1

s2 − s1
(A28)

Y3(s) =
λ3(s + λ2 + λ4)

(s − s1)(s − s2)(λ1 + s)
=

A3

(s − s1)
+

B3

(s − s2)
+

C3

(λ1 + s)
(A29)

The constants A3, B3, and C3 in Equation (A29) are:

A3 =
λ3(s1 + λ2 + λ4)

(s1 − s2)(λ1 + s1)
, B3 =

λ3(s2 + λ2 + λ4)

(s2 − s1)(λ1 + s2)
, and C3 =

λ3(λ1 + λ2 + λ4)

(λ1 − s1)(λ1 − s2)
(A30)

Now, we can apply the inverse Laplace transform over Equations (A25), (A27), and
(A29) and find the solutions P1(t), P2(t), and P3(t) of the stated initial-value problem:

Domain : t ∈ [0, ∞)⎧⎨
⎩

P1(t) = A1es1t − B1es2t

P2(t) = A2es1t − B2es2t

P3(t) = A3es1t − B3es2t + C3e−λ1t

(A31)

(b) Using the Equation (A31), the required functions can be simplified to:
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Domain :t ∈ [0, ∞)
P4(t) = 1 − P1(t)− P2(t)− P3(t)

= 1 −
(

A1es1t − B1es2t)− (
A2es1t − B2es2t)− (

A3es1t − B3es2t + C3e−λ1t)
= 1 − A1es1t + B1es2t − A2es1t + B2es2t − A3es1t + B3es2t − C3e−λ1t

= 1 − (A1 + A2 + A3)es1t + (B1 + B2 + B3)es2t − C3e−λ1t

(A32)

Domain :t ∈ [0, ∞)
Rsys(t) = 1 − P4(t)

= 1 −
[
1 −

(
A1es1t − B1es2t)− (

A2es1t − B2es2t)− (
A3es1t − B3es2t + C3e−λ1t)]

= 1 − 1 + A1es1t − B1es2t + A2es1t − B2es2t + A3es1t − B3es2t + C3e−λ1t

= (A1 + A2 + A3)es1t − (B1 + B2 + B3)es2t + C3e−λ1t

(A33)

(c) The required improper integral for MTTFsys when the integrand is given by Equation
(A33) can be calculated using the following formula:

∞∫
0

e−atdt =
1
a

where a > 0 (A34)

Then,

MTTFsys =
∞∫
0

Rsys(t)dt =
∞∫
0
(A1 + A2 + A3)es1t − (B1 + B2 + B3)es2t + C3e−λ1tdt

= (A1 + A2 + A3)
∞∫
0

es1tdt − (B1 + B2 + B3)
∞∫
0

es2tdt + C3

∞∫
0

e−λ1tdt

= −(A1 + A2 + A3)/s1 + (B1 + B2 + B3)/s2 + C3/λ1

(A35)

In the derivation shown in Equation (A35) we applied Equation (A34) three times
since s1 < 0, s2 < 0, and (–λ1) < 0.
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Abstract: Helicopters are extraordinarily complex mechanisms. Such complexity makes it difficult to
model, simulate and pilot a helicopter. The present paper proposes a mathematical model of a fantail
helicopter type based on Lie-group theory. The present paper first recalls the Lagrange–d’Alembert–
Pontryagin principle to describe the dynamics of a multi-part object, and subsequently applies such
principle to describe the motion of a helicopter in space. A good part of the paper is devoted to
the numerical simulation of the motion of a helicopter, which was obtained through a dedicated
numerical method. Numerical simulation was based on a series of values for the many parameters
involved in the mathematical model carefully inferred from the available technical literature.

Keywords: Lagrange–d’Alembert principle; non-conservative dynamical system; Euler–Poincaré
equation; helicopter model; Lie group

1. Introduction

Conventional helicopters are built with two propellers that can be arranged as two
coplanar rotors both providing upward thrust, but spinning in opposite directions in
order to balance the torques exerted upon the body of the helicopter, or as one main
rotor providing thrust and a smaller side rotor oriented laterally and counteracting the
torque produced by the main rotor, as shown in the Figure 1. Helicopters with no tail rotors
(‘notar’) use a jet of compressed air to compensate for the unwanted yawing of the fuselage.

Figure 1. Eurocopter EC 135, with a fantail assembly tail rotor (reproduced from https://en.
wikipedia.org/wiki/Tail_rotor accessed on 21 April 2021).

Controls on a helicopter are numerous. Considering a rigid rotor system, the attitude
and the position of a helicopter are mainly controlled through two systems, called the
collective control system and cyclic control system. The power exerted by the rotors is usually
constant, in fact, the blades are designed to operate at a specific rotational speed. However,
it is possible to slightly vary the engine power using the throttle control, whereas the

Mathematics 2021, 9, 2682. https://doi.org/10.3390/math9212682 https://www.mdpi.com/journal/mathematics

235



Mathematics 2021, 9, 2682

direction the aircraft nose points, the yaw angle, could be changed using the pedals control.
A summary of helicopter controls is given in the following.

Collective control: The collective control is used to increase or decrease the total thrust
generated by the rotors. This technique is adopted in the main rotor and in the tail rotor.
To grow (to reduce) the thrust it is necessary to increase (to decrease) the angle of attack αc
of all blades. This angle is in each instant the same for all the blades. An example of the
usage of the collective control is illustrated in Figure 2.

Figure 2. Collective control changes the angle of attack of all blades at the same time. The main rotor
is in the grey position, horizontal to the ground, if not actuated. A maneuver of the collective control
brings the blades to rotate independently to the yellow configuration. The force generated by each
propeller is represented by F in the standard configuration and by F1 = F2 = F3 = F4 in the collective
controlled case.

Cyclic control: The cyclic control is distinctive of the main rotor. To tilt the body of a
helicopter forward and backwards (pitch) or sideways (roll), a pilot must alter the angle
of attack of the main rotor blades cyclically during rotation, as illustrated in Figure 3. In
particular, controlling the angle of attack of the blades in such a way that the forward half
of the rotor disk exerts more (less) thrust than the backward half makes the helicopter
pitch upward (downward). Generally, to vary the attitude of a helicopter it is necessary to
modify the angle of the thrust exerted by the main rotor, which is generated by the rotation
of the blades, hence it is necessary to create different amounts of thrust at different points
in the cycle. Where a greater (smaller) amount of thrust is necessary the blade increases
(decrease) its angle. Two angles, namely αp and αr, are used to indicate the direction of the
thrust vector generated by the main rotor.

Pedals control: Because of momentum conservation, the rotation of the main rotor
causes a rotation of the body of the helicopter in the opposite direction: as the engine
turns the main rotor system in a counterclockwise direction, the helicopter fuselage turns
clockwise. The amount of torque is directly related to the amount of engine power being
used to turn the main rotor system. The unwanted yawing of the fuselage may be balanced
by controlling the thrust of the tail rotor, as illustrated in Figure 4. The anti-torque pedals
change the tail rotor collective angle of attack αT

c . The yaw angle variation depends upon
variations of the tail rotor thrust or variations on the main rotor thrust. The pedals control is
used for heading changes while hovering, but also to maintain the actual helicopter nose
direction.

Actuators: The mentioned pilot control systems are actuated through a series of
devices that are briefly described in the following:

• The cyclic control and the collective control of the main rotor work through a complex
mechanical system called ‘swash-plate’, whose functioning is illustrated, e.g., at page
272 of the manual [1]. The swash-plate is composed of two parts, one that is tight
with the rotor mast and one that can rotate with the main rotor. Each blade is strictly
connected with the swash-plate revolving part using a rod. This causes a variation of
the angle of attack of the blade when the swash-plate changes position. The swash-
plate manages the cyclic and collective angles and sets up constraints in their ranges.
The collective control causes a movement upward or downward of the swash-plate
on the rotor mast, therefore all the blades increase or decrease their angle of attack
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simultaneously. The cyclic control changes the attitude of the swash-plate. This causes
a changing of the angle of attack that is different in every part of the rotation cycle.

• The tail rotor actuator is called a “pitch change spider” and, similarly to the swash-
plate, it is used to vary all the angles of attack of the blades simultaneously. A figure
at page 272 of the manual [1] illustrates the functioning of the pitch change spider.
Helicopters, usually, possess a stabilizer that reduces the noise of the wind, providing
an easier use of the yaw pedals. The pitch change spider also sets up the constraints
for the range of variation of its angle of attack αT

c .

Figure 3. Series of frames representing the rotation of the main rotor actuated by the Cyclic control.
The artwork shows the forces exerted by each blade during a rotation. The grey arrow denotes the
force F produced when the blade is horizontal, whereas the yellow (blue) arrows denote the forces
produced when the angle taken by the blade is such that the thrust is stronger (weaker) than F.

Figure 4. Anti-torque effect of the tail rotor.
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Throttle: The throttle controls the power of the engine which is connected to both
rotors by the transmission. The throttle setting must maintain enough engine power to
keep the rotor speed within the limits where the rotor produces enough lift for flight.
The throttle changes the blades’ angular velocity in a range of few values percentage.
Helicopters possess only a gear to drive both the main rotor and tail rotor, hence increasing
the speed of the main rotor causes an increase in the tail rotor speed. More throttle means
more speed and hence a larger value of thrust. The angular velocity of the rotors is usually
reported in percentage for a more intuitive perception, the value of 100% is the typical one
under standard conditions.

A helicopter is an extraordinarily complicated machine, whose functioning is based
on a number of mechanical devices whose actions interact intricately to one another. Such
complex design make its modeling and control by a pilot a fascinating challenge. The main
challenge encountered during the present research work was to design a mathematical
model that, on one hand, is able to capture the essential features of a helicopter, hence being
sufficiently accurate to predict its behavior and, on the other hand, to be simple enough for
the result to be mathematically tractable.

In the present paper, we derive, through the Euler–Poincaré formalism, the mathe-
matical model of a simplified helicopter. The model concerns a helicopter with a principal
rotor and a tail rotor. More accurate (and mathematically complicated) aircraft models
are available in the specialized literature [2–4]. The structure of the present paper may be
outlined as follows:

• Section 2 presents a summary of definitions and properties regarding Lie groups,
such as the tools used in this research to formalize the mathematical model of a
helicopter, i.e., tangent bundle, Lie algebra and exponential map. Moreover, this
section introduces a system of differential equations that are used to describe the
motion of a helicopter.

• Section 3 introduces the structure of the helicopter, a reference system and the structure
of forces used to complete the mathematical model, as the thrust of the rotors. In
addition, this section outlines a derivation of the equations of motion starting from a
Lagrangian function.

• Section 4 presents a numerical scheme to simulate on a computing platform the system
of equations determined in Section 3 using a forward Euler (fEul) method tailored to
the Lie group of rotations.

• Section 5 introduces a helicopter type and shows the values of the parameters required
to perform simulation analysis. These values are presented in tables and figures and
have been gathered (and calculated) from data-sheets.

• Section 6 illustrates eight simulation results. Each simulation is particularly focused
on a specific response, i.e., pitch response and roll response.

• Section 7 concludes this paper with a recapitulation of the obtained results and an
overview of the key points of the performed analysis.

We would like to mention that the scientific literature about system modeling (includ-
ing mechanical system modeling) is rich in inventions. A few alternative techniques to the
more traditional equation-based modeling and control are bond graph modeling utilized,
e.g., in [5] to design a Kalman filter observer for an industrial back-support exoskeleton;
closed loop identification and frequency domain analysis, utilized in [6] to determine a
dynamic model of a quadrotor prototype; deep neural networks, used in [7] to predict the
remaining useful life (RUL) of aircraft gas turbine engines. The present authors are not
familiar enough with the mentioned techniques to judge their advantages or disadvantages
in relation to the proposed modeling method, which arises as a more elaborated version of
the familiar Euler–Lagrange formalism (except for the neural-network modeling approach
that provides an approximated, data-derived model in contrast to exact models).
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2. The Lagrange–d’Alembert–Pontryagin Principle and the Forced Euler–Poincaré
Equation

In this paper, we consider non-conservative non-linear dynamical systems whose state
space G possesses the mathematical structure of a Lie group.

2.1. Definition and Properties

Let us recapitulate the following definitions and properties [8,9] (see also [10,11] for a
non-strictly mathematical viewpoint):

Matrix Lie group: A smooth matrix manifold G that is also an algebraic group is
termed a matrix Lie group. A matrix group is a matrix set endowed with an associative
binary operation, termed group multiplication which, for any two elements g, h ∈ G, is
denoted by gh, endowed with the property of closure, an identity element with respect to
the multiplication, denoted by e, such that eg = ge = g for any g ∈ G, and an inversion
operation, denoted by g−1, with respect to multiplication, such that g−1g = gg−1 = e for
any g ∈ G. A left translation L : G×G → G is defined as Lg(h) := g−1h. An instance
of matrix Lie group is SO(3) := {R ∈ R3×3 | R�R = RR� = I3, det(R) = +1}, where
the symbol � denotes matrix transposition and the quantity I3 represents a 3 × 3 identity
matrix.

Tangent bundle and its metrization: Given a point g ∈ G, the tangent space to G

at g will be denoted as TgG. The tangent bundle associated with a manifold-group G is
denoted by TG and plays the role of phase-space for a dynamical system whose state-space
is G. The inner product of two tangent vectors ξ, η ∈ TgG is denoted by 〈ξ, η〉g. A smooth
function F : G → G induces a linear map dFg : TgG → TF(g)G termed pushforward map.
For a matrix Lie group, the pushforward map d(Lg)h : ThG → TLg(h)G associated with a
left translation is d(Lg)h(η) := g−1η, with η ∈ ThG.

Lie algebra: The tangent space g := TeG to a Lie group at the identity is termed Lie
algebra. The Lie algebra is endowed with Lie brackets, denoted as [·, ·] : g× g → g, and an
adjoint endomorphism adξ η := [ξ, η]. The Lie algebra associated with the group SO(3) is
so(3) := {ξ ∈ R3×3 | ξ + ξ� = 0}. On a matrix Lie algebra, the Lie brackets coincide with
matrix commutator, namely [ξ, η] := ξη − ηξ. The matrix commutator in so(3) is an anti-
symmetric bilinear form, namely [ξ, η] + [η, ξ] = 0. A pushforward map d(Lg)g : TgG → g

is denoted as dLg for brevity. Given a smooth function � : g → R, for a matrix Lie group
one may define the fiber derivative of �, ∂�

∂ξ ∈ g, at ξ ∈ g as the unique algebra element such

that
〈

∂�
∂ξ , η

〉
e
= tr

(
(Jξ�)

�η
)

for any η ∈ g, where Jξ� denotes the Jacobian matrix of the
function � with respect to the matrix ξ. (Notice that Jξ� is a formal Jacobian, namely a
matrix of partial derivatives with respect to each entry of the matrix ξ without any regard
of the internal structure of the matrix ξ itself.)

Exponential map: Given a point g ∈ G and a tangent vector v ∈ TgG, the exponential
maps g to a point expg(v), namely, it flows the point g along a geodesic line departing from
g with initial direction v. On a matrix Lie group endowed with the Euclidean metric, it
holds that expg(v) = gExp(g−1v), where ‘Exp’ denotes a matrix exponential.

2.2. The Euler–Poincaré Equations

The Lagrange–d’Alembert–Pontryagin (LDAP) principle is one of the fundamental
concepts in mathematical physics to describe the time-evolution of the state of a physical
system and to handle non-conservative external forces. The state-variables of the system
are subjected to holonomic constraints, which are embodied in the structure of the state
Lie group G. These external forces often arise as control actions designed with the aim
of driving the physical system into a predefined state [12]. Let Λ : TG → R denote a
Lagrangian function and F : TG → TG a generalized force field. (A generalized force
field is generally taken as a smooth map from TG to its dual T�G or, for left-invariant
force fields, from an algebra g to its dual g�. We adopt a non-standard definition because it
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eases the notation and is more easily translated into implementation). The LDAP principle
affirms that a dynamical system follows a trajectory g : [a, b] → G such that:

δ
∫ b

a
Λ(g(t), ġ(t))dt +

∫ b

a
〈F(g(t), ġ(t)), δg(t)〉g(t) dt = 0, (1)

The leftmost integral is called action and the symbol δ denotes variation, namely the
change of the action value from a trajectory g to a trajectory that is infinitely close to g,
whose point-by-point change is denoted as δg. The variation vanishes at endpoints and
is elsewhere arbitrary. In the above expression, an over-dot (as in ġ) denotes derivation
with respect to the parameter t. The vanishing of the first term alone is called principle of
stationary action. The rightmost integral represents the total work achieved by the force
field F due to the variation.

A variational formulation is based on a smooth family of curves g : U ⊂ R2 → G,
where each element is denoted as g(t, ε). The index ε selects a curve in the family, and the
index t individuates a point over this curve. All the curves in the family depart from the
same initial point and arrive at the same endpoint, namely, g(a, ε) and g(b, ε) are constant
with respect to ε. The variations in (1) are defined as

δ
∫ b

a
Λ(g, ġ)dt :=

∫ b

a

∂

∂ε
Λ(g(t, ε), ġ(t, ε))dt

∣∣∣∣
ε=0

, δg(t) :=
∂g(t, ε)

∂ε

∣∣∣∣
ε=0

. (2)

The following result, enunciated directly for matrix Lie groups, is of prime importance,
as it relates a variation of velocity to velocity of variation.

Lemma 1 ([13]). Given a smooth function g : U ⊂ R2 → G on a matrix Lie group, define:

ξ(t, ε) := g−1(t, ε)
∂g(t, ε)

∂t
, η(t, ε) := g−1(t, ε)

∂g(t, ε)

∂ε
. (3)

A variation of a trajectory induces a variation of its velocity field given by

∂ξ

∂ε
= η̇ + adξ η. (4)

Assuming that the Lagrangian as well as the generalized force field F are left invariant,
we may write Λ(g, ġ) = �(g−1 ġ) and g−1F(g, ġ) = f (g−1 ġ), where � : g → R and f : g → g

denote a reduced Lagrangian and a reduced force field, respectively. In addition, if the inner
product is left-invariant, it holds that

〈F(g, ġ), δg〉g = 〈 f (g−1 ġ), g−1δg〉e. (5)

Therefore, the LDAP principle (1) reduces to

δ
∫ b

a
�(g−1 ġ)dt +

∫ b

a
〈 f (g−1 ġ), g−1δg〉e dt = 0, (6)

where it is legitimate to replace g−1 ġ with ξ and g−1δg with η and then set ε to 0.
By means of the Lemma 1, the variational formulation of the reduced LDAP principle

may be recast in a differential form.

Theorem 1 ([13]). Let ξ := g−1 ġ and η := g−1δg. The solution of the integral Lagrange–
d’Alembert equation (6) under perturbations of the form ∂ξ

∂ε = η̇ + adξ η, which vanishes at
endpoints, satisfies the Euler–Poincaré equation

d
dt

∂�

∂ξ
= ad�

ξ

(
∂�

∂ξ

)
+ f , (7)
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where ad� denotes the adjoint (The adjoint ω� of an operator ω : g → g with respect to an inner
product 〈·, ·〉 satisfies 〈ω(ξ), η〉 = 〈ξ, ω�(η)〉.) of the operator ad with respect to the inner product
of g.

The complete system of differential equations then read
{

ġ = gξ,
d
dt

∂�
∂ξ = ad�

ξ

(
∂�
∂ξ

)
+ f .

(8)

The above equations may be used to describe the rotational component of motion of a
flying object such as a helicopter or a drone. The forcing term takes into account several
external driving phenomena, such as:

Energy dissipation: Energy dissipation is due, e.g., to friction with air particles. For
instance, a linear dissipation term represents aerodynamic drag.

Control actions: Other than dissipation (which is often neglected in simplistic models),
the forcing term depends on the problem under investigation. It might serve to incorporate
into the equations control terms aimed, for instance, at stabilizing the motion or to drive a
dynamical system [14].

2.3. Particular Case: Euclidean Space

In order to clarify the physical meaning of the Euler–Poincaré equations, let us recall
the classical version of these equations for the space Rn, which is also instrumental in
describing the translational component of motion of a flying device. The principle (1) on
Rn, endowed with the Euclidean inner product, reads:

δ
∫ b

a
Λ(p(t), ṗ(t))dt +

∫ b

a
f (p(t), ṗ(t))�δp(t)dt = 0, (9)

where Λ : Rn ×Rn → R denotes a Lagrangian function, p = p(t) a trajectory in Rn and
f : Rn ×Rn → Rn a non-conservative force field. Upon computing the variation, we obtain

∫ b

a

((
∂Λ
∂p

)�
δp +

(
∂Λ
∂ ṗ

)�
δ ṗ + f�δp

)
dt = 0. (10)

Integrating by parts the second term and recalling that the variations vanish at the
endpoints, we obtain ∫ b

a

(
∂Λ
∂p

− d
dt

∂Λ
∂ ṗ

+ f
)�

δp dt = 0. (11)

Since the variation δp is arbitrary, the dynamics of the variable p is governed by the
Euler–Lagrange equation

d
dt

∂Λ
∂ ṗ

=
∂Λ
∂p

+ f (12)

where the quantity q := ∂Λ
∂ ṗ is usually termed linear momentum.

3. Mathematical Model of a Helicopter

This section introduces a helicopter model based on the Lie group G := SO(3) of the
3-dimensional rotations R.

Since, in the state space G := SO(3), it holds that (dLR)
−1(ξ) = Rξ and ad�

ξ η =
−adξ η [13], the Euler–Poincaré equations read

{
Ṙ = Rξ,
d
dt

∂�
∂ξ = −adξ

(
∂�
∂ξ

)
+ τ,

(13)
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where τ denotes the resultant of all external mechanical torques. In this context, the state
variable R ∈ SO(3) denotes the attitude of a rigid body (i.e., its orientation with respect
to a earth-fixed reference frame) and the state-variable ξ ∈ so(3) denotes its instantaneous
angular velocity. Moreover, the quantity μ := ∂�

∂ξ represents an angular momentum and
the second Euler–Poincaré equation reads μ̇ = [μ, ξ] + τ, which is a generalization of the
well-known angular momentum theorem, where the term [μ, ξ] represents the inertial
torque due to the internal mass unbalance of a body.

It is convenient to define the operator �·� : R3 → g as:

x :=

⎡
⎣x1

x2
x3

⎤
⎦ �→ �x� :=

⎡
⎣ 0 −x3 x2

x3 0 −x1
−x2 x1 0

⎤
⎦. (14)

Since any skew-symmetric matrix in so(3) may be written as in (14), it is convenient
to define a basis of so(3) = span(ξx, ξy, ξz) as follows:

ξx :=

⎡
⎣0 0 0

0 0 −1
0 1 0

⎤
⎦, ξy :=

⎡
⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎦, ξz :=

⎡
⎣0 −1 0

1 0 0
0 0 0

⎤
⎦. (15)

In order to shorten some relations, it is also convenient to introduce the matrix anti-
commutator {A, B} := AB + BA. Moreover, some relations take advantage of the skew-
symmetric projection {{·}} : R3×3 → so(3), defined as {{A}} := 1

2 (A − A�). It also pays

to define the ‘diag’ operator as diag(a, b, c) :=

⎡
⎣a 0 0

0 b 0
0 0 c

⎤
⎦.

In the present setting, we equip the algebra so(3) with the canonical metric 〈ξ, η〉e :=
tr(ξ�η). With this choice, the fiber derivative of a scalar function � : so(3) → R takes a
special form.

Lemma 2 ([15]). The fiber derivative of a scalar function � : so(3) → R under the canonical
metric takes the form

∂�

∂ξ
=

1
2
(Jξ�− J�ξ �) ∈ so(3). (16)

It is immediate to verify that the fiber derivative corresponds to the orthogonal pro-
jection of the Jacobian into the algebra g, namely ∂�

∂ξ = {{Jξ�}}. Moreover, it is convenient
to recall a property of the matrix ‘trace’ operator, namely the cyclic permutation property
tr(ABC) = tr(BCA) = tr(CAB) for any square conformable matrices A, B, C.

Modeling a complex object to obtain the differential equations that describe its rota-
tional and translational dynamics consists essentially in:

• Defining a Lagrangian function � on the basis of the kinetic and potential energy of
its components, which accounts for the geometrical and mechanical features of each
component;

• Computing the total mechanical torque τ exerted by the moving parts on the body of
the complex object.

These descriptors, for a helicopter, are evaluated in the next subsections.

3.1. Model of a Helicopter with a Single Principal Rotor and a Tail Rotor

In order to formalize the behavior of a helicopter into a mathematical model, let us
fix an inertial (earth) reference frame FE. Further, it is necessary to establish a body-fixed
reference frame FB, as shown in Figure 5: the origin of the reference frame FB is located at
the center of gravity of the helicopter and the three axes coincide with its principal inertia
axes. The thrust ϕm exerted by the principal rotor appears at the tip of the helicopter’s
body, which is located along the z-axis at a distance Dm from the center of gravity, whereas

242



Mathematics 2021, 9, 2682

the thrust ϕt exerted by the tail rotor appears at the tail of the helicopter’s body, which is
located along the −x axis at a distance Dt from the center of gravity.g g y

FB

ϕt

ϕm

Dt

Dm

Figure 5. Schematic of a helicopter with a principal rotor and a tail rotor (adapted from [12]). (The
principal rotor to center of mass distance Dm and the tail rotor to center of mass distance Dt are
expressed in meters (m).)

Furthermore, the term 1
2 um represents the intensity of the thrust exerted by the main

rotor, while 1
2 ut denotes the thrust exerted by the tail rotor, both expressed in Newtons (N).

Considering the total thrust ϕ := ϕt + ϕm as a vector, a collective control management of
the main rotor results in a change of the thrust intensity exerted, namely a change in um,
whereas a cyclic control management changes the direction of the lift exerted, therefore the
pitch angle αp (in radians (rad)) and the sideways roll angle αr (in radians). The expressions
of the thrusts (from [12]) and of their moment arms in the helicopter’s body-fixed frame
FB are given by

ϕm := 1
2 um

⎡
⎣ sin αp cos αr

− sin αr
cos αp cos αr

⎤
⎦, bm :=

⎡
⎣ 0

0
Dm

⎤
⎦, (17)

ϕt := 1
2 ut

⎡
⎣ 0

−1
0

⎤
⎦, bt :=

⎡
⎣ −Dt

0
0

⎤
⎦. (18)

The vector 2ϕm
um

may be regarded as the unit normal to the rotor disk [2]. A further
forcing term to account for the resistance of the air during forward vertical motion is
described in Section 3.4. Concerning the thrust generated by the principal rotor, we may
notice what follows:

• Whenever αr = αp = 0, the thrust takes the expression 1
2 um

⎡
⎣ 0

0
1

⎤
⎦, namely, only the

z-component is non-null and the thrust is vertical;

• Whenever αp = 0 and αr �= 0, the thrust takes the expression 1
2 um

⎡
⎣ 0

− sin αr
cos αr

⎤
⎦,

namely, the x-component is null and the thrust belongs to the y–z plane, as shown in
Figure 6, hence it may only produce a rotation along the x-axis, which corresponds to
pure rolling. (Remark: The right-hand law defines the positive angle variation.)
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Figure 6. Illustration of a positive variation of the angle of attack along the x-axis, where ϕy =

− 1
2 um sin αr and ϕz = 1

2 um cos αr are the projections of the thrust vector ϕm along the y- and z-axis,
respectively. The maneuver to control rolling assigns to the blades an angle such that a greater
amount of force is produced in the positive x-axis, namely fa, with respect to the force in the negative
x-axis, namely fb. Those two vector forces produce a torque and a precession rotation due to the
gyroscopic effect.

• whenever αr = 0 and αp �= 0, the thrust takes the expression 1
2 um

⎡
⎣ sin αp

0
cos αp

⎤
⎦, namely,

the y-component is null and the thrust belongs to the x–z plane, as shown in Figure 7,
hence it may only produce a rotation along the y-axis, which corresponds to pure
pitching.

Figure 7. Illustration of a positive variation of the angle of attack along the y-axis, where
ϕx = 1

2 um sin αp and ϕz = 1
2 um cos αp are the projections of the main rotor thrust ϕm to the x-

and z-axis, respectively. The maneuver to control the pitching assigns to the blades an angle such
that a larger amount of force is produced in the positive y-axis, namely fa, with respect to the force
along the negative y-axis, namely fb. Those two vector forces produce a mechanical torque and a
precession of the fuselage.

Notice that the inclination of the blades influences the thrust and the torque acting on
the fuselage, but does not influence directly the roll and the pitch attitude of the helicopter.
Further, notice that the thrust 1

2 um does not distribute equally across the three directions
of space and, in particular, that a change in the angles of attack of the blades weakens
the vertical component of the thrust: when a helicopter tilts, it tends to fall, unless the
thrust is compensated by the pilot. It is also worth noticing that the total thrust ϕ acting
on the fuselage has a y component that depends on the tail rotor thrust. This component
causes the translation of the helicopter in the direction of ϕt: this is called drift effect (or
translation tendency). The mechanical torque exerted by the two rotors on the helicopter’s
fuselage, expressed in N·m, is termed active torque and is given by
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τA := 1
2

(
ϕmb�m − bm ϕ�

m + ϕtb�t − bt ϕ�
t

)

=
1
2

⎡
⎣ 0 −Dtut Dmum sin αp cos αr

Dtut 0 −Dmum sin αr
−Dmum sin αp cos αr Dmum sin αr 0

⎤
⎦. (19)

The mechanical torque due to the drag of the principal rotor, namely the resultant of
the torque that tends to make the helicopter spin as a counter-reaction to the spinning of
the rotor, expressed in N·m, may be quantify by

τD := − 1
2 γumξz, (20)

where γ > 0 is termed air drag coefficient (whose measurement unit is meters) and rep-
resents the efficacy with which the air surrounding the helicopter pushes the rotor as a
reaction of its spinning. According to the canonical basis (15), the total mechanical torque
τ := τA + τD may be decomposed as τ = τxξx + τyξy + τzξz, with

⎧⎪⎨
⎪⎩

τx = 1
2 Dmum sin αr,

τy = 1
2 Dmum sin αp cos αr,

τz =
1
2 Dtut − 1

2 γum.

(21)

The component τx is responsible for the rolling of the helicopter (plane y–z), the
component τy is responsible for the pitching of the helicopter (plane x–z). The component
τz is responsible for the control of the yawing of the helicopter (plane x–y): to prevent the
spinning of the aircraft, it is necessary to control the thrust ut of the tail rotor in such a way
that Dtut − γum ≈ 0. During hovering, the vertical component of the total thrust needs
to balance the weight force of the helicopter. A further torque component is introduced
in Section 3.3 to account for friction-type resistance during fast yawing. According to the
specialized literature (see, e.g., [16]), the maximum value of the thrust um of the main rotor
(in Newtons) may be computed by the expression

um := 1
2 CuρA(lRΩm)2, (22)

where Cu is a (dimensionless) thrust coefficient that represents the efficiency of the rotor, ρ
represents the density of the air at a given temperature and altitude in kg·m−3, A denotes
the area of the rotor disk, in m2, which contributes to generating the thrust, lR represents
the radius of the rotor disk (namely, the length of each blade) in meters and Ωm denotes the
angular velocity of the rotor in rad·s−1. In fact, the product lRΩm denotes the tip velocity
of a blade. Such thrust may be expressed compactly as a quadratic function of the rotor
speed as um = βuΩ2

m. Further, the mechanical power (in Watts) that the engine transfers to
the rotor is given by

w := 1
2 CwρA(lRΩm)2Ωm, (23)

where Cw denotes a (dimensionless) power coefficient. Such power may be expressed as a
cubic function of the rotor speed, namely w = βwΩ3

m. The main rotor disk area A changes
its value thanks to collective control and consequently to αc. In fact, such value is related
to the portion of each blade that pushes the helicopter, for instance, upward. In order to
describe correctly the area of the disk that contributes to generating thrust, it is assumed
that A = πl2

R sin αc; therefore, if the blades are considered with no thickness, no built-in
twists and to be perfectly horizontal, namely in the earth inertial reference’s x–y plane, then
when αc = 0 the helicopter has no thrust. Instead, when all blades take an angle of attack
αc > 0 the thrust is no longer null and the turning of the blades produces a vertical thrust
that tends to counteract the helicopter’s weight force. The Equation (22) becomes:

um := 1
2 Cuρπl4

RΩ2
m sin αc, (24)
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with αc ∈ [αc,min, αc,max]. The minimum and the maximum value of the thrust depend
on the range of the angle of attack of the principal rotors blades, whereas the range of
the angle of attack is related to the shape and the built-in twist of the blades, besides the
swash-plate rods mobility. The power coefficient Cw is related to the thrust coefficient Cu
by the relationship

Cw =
C3/2

u√
2

. (25)

The mechanical power w absorbed by the helicopter’s engine at the reference speed of
100% is usually provided by data-sheets. Considering w as known, it is possible to calculate
the power and the thrust coefficients, that otherwise would have to be measured through
experiments. The value of the first coefficient, following the Equation (23), is

Cw =
2 w

ρA(lRΩm)2Ωm
(26)

Consequently it is possible to find the value of Cu using the Equation (25). The
expression (24) holds for the main rotor, while a similar expression may describe the thrust
exerted by the tail rotor. The equation below is based on tail rotor characteristics:

ut := 1
2 CT

uρπl4
T Ω2

t sin αT
c , (27)

where CT
u denotes the thrust coefficient of the tail rotor and lT denotes the length of the tail

rotor’s blades. The drag coefficient is generally unknown, but it is possible to estimate its
value by assuming that the helicopter hovering and that the mechanical torque of the tail
rotor balances the undesired drag torque, which would tend to make the helicopter yaw.
Indeed, in hovering condition, with the tail rotor’s blades collective angle at a value set to

a half of its interval range, namely αT
c,mid :=

αT
c,min+αT

c,max
2 (see Table 1), and at 100% of the

tail rotor speed, the helicopter should have no yawing. The drag coefficient could hence
be determined by imposing the condition e�z τ = 0, where ez := [0 0 1]�, which leads to
the expression

γ = Dt
Cul4

RΩ2
m sin αc

CT
u l4

T Ω2
t sin αT

c,mid
. (28)

The numerical values of these (as well as others) parameters will be specified in
Section 5.

Table 1. Tail rotor collective angle range, tail and main rotors weight, speed ([1], pages 303, 254 and 157), tail rotor
speed ([17], page 3) and cycling angle range ([18], page 11).

Weight Speed 100% Collective Angle Cyclic Angle

[kg] [RPM] min ÷ max [deg] Longitudinal [deg] Lateral [deg]

Main rotor 277.2 1 395 11 ÷ 31 2 −21.8 ÷ 21.8 −15 ÷ 15
Tail rotor 8.2 3584 −16.8 ÷ 34.2 − −

1 The main rotor weight is the result of the addition of various components that compose the entire main rotor. These values have been
taken from [19] (page 3) which is the technical data-sheet of the helicopter AS350B3 also known as H125, that is the lower level helicopter by
the same manufacturer. The values taken have not been modified because the model is supposed to be similar. The final weight is calculated
by the sum of: anti-vibration device (28.4 kg), main rotor mast (55.7 kg), rotor hub (57.5 kg) and four blades (4 × 33.9 kg = 135.6 kg). 2 As
stated in [20] (page 57) the value of the collective angle could vary in the range −5 ÷ 15 degrees and the negative angle could be necessary
to achieve zero lift if blades have a built-in axial twist. From Reference [1] (page 200), we know that the EC135 P2+ helicopter has a positive
twist of 16 degrees in the region where the pitch control cuff joins the airfoil section. This provides the airfoil section with a corresponding
preset pitch angle. Using the Equation (24), the collective angles range becomes 11 ÷ 31 degrees, the minimum angle and the maximum
angle to modify the intensity of the thrust generated, respectively.
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3.2. Lagrangian Function Associated to the Helicopter Model

To complete the present description of a helicopter motion dynamics, it is necessary to
write explicitly the Lagrangian function of a helicopter, which coincides with its kinetic
energy minus its potential energy, both expressed in the inertial reference frame FE.

Kinetic energy of the fuselage: The position of the center of gravity of the helicopter in
the inertial reference frame FE at time t is denoted as p(t). The position of each infinitesimal
volume of the body (fuselage) in the body-fixed frame FB is denoted by s. Since the
helicopter’s fuselage is rigid, the position of each volume element, at time t, is p(t) + R(t)s,
where R(t) ∈ SO(3) denotes a rotation matrix that takes the body-fixed frame FB to
coincide with FE. The kinetic energy of the helicopter’s body B with respect to the inertial
reference frame FE may be written as

�B :=
1
2

∫
B

∥∥∥∥d(p + Rs)
dt

∥∥∥∥
2

dm =
1
2

∫
B

‖ ṗ + Ṙs‖2dm, (29)

where dm denotes the mass content of each infinitesimal volume. Recalling that Ṙ = Rξ,
with ξ ∈ so(3), we get:

�B =
1
2

∫
B

tr(( ṗ + Ṙs)( ṗ + Ṙs)�)dm =
1
2

∫
B

tr( ṗ ṗ� + Rξss�ξ�R� + 2ṗs�Ṙ)dm

= 1
2 MB‖ ṗ‖2 + 1

2 tr(�R ξ ĴBξ���R� ) + MBtr( ṗc�B Ṙ), (30)

where the cancellation is due to the cyclic permutation property of the trace operator and
to the defining property of rotations (R�R = I3). The constant quantities that appear in the
expression (30) are defined as follows

MB :=
∫
B

dm > 0, cB :=
1

MB

∫
B

s dm ∈ R
3, ĴB :=

∫
B

ss�dm ∈ R
3×3. (31)

The quantity MB denotes the total mass of the helicopter’s fuselage. The matrix ĴB
denotes a non-standard inertia tensor [21]. The standard inertia tensor of the helicopter’s body
is defined as

JB :=
∫
B

�s��s��dm. (32)

(Refer to (14) for this notation.) These inertia tensors are related by the following result:

Lemma 3 ([21]). The non-standard moment of inertia Ĵ of a body is related to its standard moment
of inertia J by the relationship Ĵ = 1

2 tr(J)I3 − J.

The standard and non-standard moment of inertia constitute two different ways of
quantifying the inertia of a rigid body and differ only by their trace. Their difference is
particularly evident in bodies with symmetries, as the ones treated within the present
exposition.

Assuming that the shape of the fuselage may be assimilated to an ellipsoid, its standard
inertial tensor takes the form:

JB =

⎡
⎢⎢⎣

MB (b2+c2)
5 0 0

0 MB (a2+c2)
5 0

0 0 MB (a2+b2)
5

⎤
⎥⎥⎦, (33)
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where a, b, c denote the semi-axes lengths (a refers to the x-axis, b refers to the y-axis and c
refers to the z-axis). The non-standard inertial tensor of the fuselage reads

ĴB =

⎡
⎢⎣

MB a2

5 0 0

0 MB b2

5 0

0 0 MB c2

5

⎤
⎥⎦. (34)

Since the origin of the reference frame FB coincides with the center of gravity of the
aircraft, not of the fuselage alone, in general it holds that the center of mass of the fuselage
cB �= 0, therefore

�B = 1
2 MB‖ ṗ‖2 + 1

2 tr(ξ ĴBξ�) + MBtr( ṗc�B ξ�R�). (35)

Kinetic energy of the principal rotor: The position of the center of gravity of the
principal rotor with respect to the reference frame FB is individuated by the vector bm
defined in (17). A reference frame FR whose z-axis coincides with the z-axis of the reference
frame FB is associated with the rotor. Hence the position of each volume element in
the principal rotor R at time t in the inertial reference frame FE takes the expression
p(t) + R(t)(bm + Rm(t)s), where Rm ∈ SO(3) denotes the instantaneous orientation matrix
of the principal rotor (a rotation that aligns the rotor-fixed reference frame FR to the body-
fixed reference frame FB) and s denotes the position of a point of the rotor in a rotor-fixed
reference frame. The matrix Rm represents a rotation about the z-axis of the reference

frame FR, hence it takes the form

⎡
⎣cos θm − sin θm 0

sin θm cos θm 0
0 0 1

⎤
⎦, therefore Ṙm = ξmRm, where

ξm = Ωmξz and θm indicates the rotation angle of the main rotor. The time-derivative of
the position of each volume element is

d
dt [p + R(bm + Rms)] = ṗ + Ṙ(bm + Rms) + RṘms = ṗ + Rξbm + R(ξ + ξm)Rms. (36)

The angular velocity matrix ξm ∈ so(3) of the principal rotor is controlled by the
pilot and is hence a known quantity (although, as already underlined, most helicopters
are designed to keep a fixed rotor speed). The kinetic energy per mass element dm of the
principal rotor R may be written as

1
2 tr([ ṗ + Ṙbm + R(ξ + ξm)Rms][ ṗ + Ṙbm + R(ξ + ξm)Rms]�) =
1
2‖ ṗ‖2 + 1

2 tr(�R ξbmb�mξ���R� ) + 1
2 tr(�R (ξ + ξm)Rmss�R�

m(ξ + ξm)���R� ) +

tr( ṗb�mξ�R�) + tr( ṗs�R�
m(ξ + ξm)R�) + tr(�R ξbms�R�

m(ξ + ξm)���R� ). (37)

The kinetic energy of the principal rotor R in the earth frame FE may thus be written as

�R = 1
2 MR‖ ṗ‖2 + 1

2 MRtr(ξbmb�mξ�) + 1
2 tr((ξ + ξm)Rm ĴRR�

m(ξ + ξm)�) +

MRtr( ṗb�mξ�R�) + MRtr( ṗc�RR�
m(ξ + ξm)R�) + MRtr(ξbmc�RR�

m(ξ + ξm)�), (38)

where

MR :=
∫
R

dm > 0, ĴR :=
∫
R

ss�dm ∈ R
3×3 and cR :=

1
MR

∫
R

s dm ∈ R
3. (39)

In order to simplify the expression (38), we may assume that the principal rotor is
perfectly symmetric about its center of mass, which implies that cR = 0. Moreover, we
may assume that the principal rotor may be schematized as two rods of mass 1

2 MR each
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and length 2 lR, one along the x axis and one along the y-axis, spinning around the z-axis,
therefore:

JR =

⎡
⎣jR 0 0

0 jR 0
0 0 2jR

⎤
⎦ that is ĴR = jRdiag(1, 1, 0), (40)

by Lemma 3, with jR := 1
12

MR
2 (2lR)2 = 1

6 MRl2
R. (Refer to the beginning of the present

section for the notation used.) A consequence is that the expression Rm ĴRR�
m simplifies to

ĴR; therefore, the kinetic energy of the principal rotor is given by

�R = 1
2 MR‖ ṗ‖2 + 1

2 MRtr(ξbmb�mξ�) + 1
2 tr((ξ + ξm) ĴR(ξ + ξm)�) + MRtr( ṗb�mξ�R�). (41)

Rearranging these terms shows that the kinetic energy of the principal rotor may be
written equivalently as the quadratic form

�R = 1
2 MR‖ ṗ + Rξbm‖2 + 1

2 tr((ξ + ξm) ĴR(ξ + ξm)�), (42)

where the first term represents the translational kinetic energy of the center of mass of
the principal rotor in the reference system FE, whereas the second term represents the
rotational kinetic energy of the principal rotor in the reference system FE.

Kinetic energy of the tail rotor: The position of the tail rotor with respect to the
reference frame FB is individuated by the vector bt defined in (18), hence the position of
each point in the tail rotor T at time t is given by p(t)+ R(t)(bt + Rt(t)s), where Rt ∈ SO(3)
denotes the instantaneous orientation matrix of the tail rotor with respect to a body-fixed
reference frame FB and s denotes the position of a point of the tail rotor in a rotor-fixed
reference frame. In this case, it holds that

d
dt [p + R(bt + Rts)] = ṗ + Ṙ(bt + Rts) + RṘts = ṗ + Rξbt + R(ξ + ξt)Rts, (43)

where Ṙt = ξtRt. The angular velocity matrix ξt ∈ so(3) of the principal rotor is controlled
by the pilot and is hence to be held as a known quantity. Since the instantaneous axis of
rotation of the tail rotor is fixed and coincides to the −y axis, the angular matrix ξt takes
the explicit expression

ξt := −Ωtξy =

⎡
⎣ 0 0 −Ωt

0 0 0
Ωt 0 0

⎤
⎦, (44)

where Ωt denotes the instantaneous rotation speed of the tail rotor.
The kinetic energy of the tail rotor T in the earth frame FE has an expression which is

derived in a similar manner to (38) and may be written as

�T = 1
2 MT ‖ ṗ‖2 + 1

2 MT tr(ξbtb�t ξ�) + 1
2 tr((ξ + ξt)Rt ĴT R�

t (ξ + ξt)
�) +

MT tr( ṗb�t ξ�R�) + MT tr( ṗc�T R�
t (ξ + ξt)R�) + MT tr(ξbtc�T R�

t (ξ + ξt)
�), (45)

where

MT :=
∫
T

dm > 0, ĴT :=
∫
T

ss�dm ∈ R
3×3 and cT :=

1
MT

∫
T

s dm ∈ R
3. (46)

In order to simplify the expression (45), we may assume that the tail rotor is perfectly
symmetric about its own center of mass cT , which implies that cT = 0. Moreover, we
assume that the tail rotor may be schematized as a full disk of mass MT and radius lT ,
laying over the x–z plane, spinning around the y-axis, namely that

JT =

⎡
⎣jT 0 0

0 2jT 0
0 0 jT

⎤
⎦, that is, ĴT = jT diag(1, 0, 1), (47)

249



Mathematics 2021, 9, 2682

by Lemma 3, with jT := 1
4 MT l2

T . Since

Rt =

⎡
⎣cos θt 0 − sin θt

0 1 0
sin θt 0 cos θt

⎤
⎦, (48)

direct calculations show that Rt ĴT R�
t = ĴT ; therefore, the kinetic energy of the tail rotor is

given by

�T = 1
2 MT ‖ ṗ‖2 + 1

2 MT tr(ξbtb�t ξ�) + 1
2 tr((ξ + ξt) ĴT (ξ + ξt)

�) + MT tr( ṗb�t ξ�R�). (49)

Rearranging terms shows that the kinetic energy of the tail rotor may be written
equivalently as

�T = 1
2 MT ‖ ṗ + Rξbt‖2 + 1

2 tr((ξ + ξt) ĴT (ξ + ξt)
�), (50)

where the first term represents the translational kinetic energy of the center of mass of the
tail rotor and the second term represents the rotational kinetic energy of the tail rotor, both
expressed in the reference frame FE.

Potential energy associated with a helicopter model: The potential energy associated
with the helicopter is (MB + MR + MT )ḡe�z p, where the scalar ḡ denotes gravitational
acceleration.

Lagrangian function associated with a helicopter model: The Lagrangian function
associated with a helicopter model is hence obtained by gathering the kinetic energies (35),
(41), (49) and the potential energy and defining the total Lagrangian as

�H := �B + �R + �T − (MB + MR + MT )ḡe�z p

= 1
2 MB‖ ṗ‖2 + 1

2 tr(ξ ĴBξ�) + MBtr( ṗc�B ξ�R�) +
1
2 MR‖ ṗ‖2 + 1

2 MRtr(ξbmb�mξ�) + 1
2 tr((ξ + ξm) ĴR(ξ + ξm)�) + MRtr( ṗb�mξ�R�) +

1
2 MT ‖ ṗ‖2 + 1

2 MT tr(ξbtb�t ξ�) + 1
2 tr((ξ + ξt) ĴT (ξ + ξt)

�) + MT tr( ṗb�t ξ�R�)−
(MB + MR + MT )ḡe�z p.

The expression of the Lagrangian �H contains several similar terms and may be
rewritten compactly as

�H = 1
2 MH‖ ṗ‖2 + 1

2 tr(ξ ĴHξ�) + MHtr( ṗc�Hξ�R�) +
1
2 tr((ξ + ξm) ĴR(ξ + ξm)�) + 1

2 tr((ξ + ξt) ĴT (ξ + ξt)
�)− MH ḡe�z p, (51)

where the following placeholders have been made use of

MH := MB + MR + MT , ĴH := ĴB + MRbmb�m + MT btb�t , cH := 1
MH

(MBcB + MRbm + MT bt). (52)

Since the origin of the body-fixed reference frame was taken at the center of gravity of
the helicopter, it holds that cH = 0, therefore the helicopter’s Lagrangian takes the final
expression

�H( ṗ, ξ, p) = 1
2 MH‖ ṗ‖2 − 1

2 tr( ĴHξ2)− 1
2 tr( ĴR(ξ + ξm)2)− 1

2 tr( ĴT (ξ + ξt)
2)− MH ḡe�z p, (53)

where we have used the Lie-algebra property that ξ� = −ξ and the cyclic permutation
property of the trace operator. The Lagrangian (53) is a function of the variables ṗ, ξ and p.

3.3. Rotational Component of Motion

The rotational component of motion, which governs the evolution of the Lie-algebra
variable ξ, is described by the Euler–Poincaré equations (13) applied to the Lagrangian
function (53) and to the rotors-generated mechanical torque (19).
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As a first step in the determination of a Lie-group differential description of the
rotational component of motion, it is necessary to compute the fiber derivative of the
Lagrangian �H. The Jacobian of the Lagrangian at a point ξ may be computed easily by the
property:

�H(ξ + Δξ)− �H(ξ) = tr(Δξ�Jξ�H) + higher-order terms in Δξ, (54)

where Δξ denotes an arbitrary perturbation. It is essential to recall that, while evaluating
the Jacobian, the matrix ξ is to be considered as unconstrained (namely, not an element of
g). Straightforward calculations yield

Jξ�H = −1
2

(
{ξ, ĴH}� + {ξ + ξm, ĴR}� + {ξ + ξt, ĴT }�

)
. (55)

Plugging the above expression into the relation (16) and recalling that inertia tensors are
symmetric matrices, one gets the angular momentum

∂�H
∂ξ

= {{Jξ�H}} =
1
2
(
{ξ, ĴH}+ {ξ + ξm, ĴR}+ {ξ + ξt, ĴT }

)
. (56)

It pays to recall that the anti-commutator is a bilinear form, hence, upon defining

Ĵ�H := ĴH + ĴR + ĴT , (57)

the angular momentum (56) may be simplified to

μ :=
∂�H
∂ξ

=
1
2
(
{ξ, Ĵ�H}+ {ξm, ĴR}+ {ξt, ĴT }

)
. (58)

The angular momentum μ represents the ‘quantity of rotational motion’ of the heli-
copter as it is proportional to the inertia and to the rotational speed of its components. The
time-derivative of the angular momentum may be rewritten as

μ̇ =
d
dt

∂�H
∂ξ

=
1
2
(
{ξ̇, Ĵ�H}+ {ξ̇m, ĴR}+ {ξ̇t, ĴT }

)
, (59)

and direct calculations lead to

− adξ

(
∂�H
∂ξ

)
=

[
∂�H
∂ξ

, ξ

]
=

1
2
[ Ĵ�H, ξ2] +

1
2
[
{ξm, ĴR}+ {ξt, ĴT }, ξ

]
. (60)

The term μ̇ represents the rate of change of the angular momentum that is to be
equated to the total torque acting on the helicopter.

To take into account energy dissipation due to friction between the helicopter and the
air molecules during rotation of the helicopter along the vertical direction, which tends to
brake the motion of the helicopter, the equation governing the rotational motion may be
completed by introducing a non-conservative force proportional to the helicopter rotation
speed along the z-axis. The resulting Euler–Poincaré equation for the helicopter model
reads

{ξ̇, Ĵ�H} = [ Ĵ�H, ξ2] +
[
{ξm, ĴR}+ {ξt, ĴT }, ξ

]
− {ξ̇m, ĴR} − {ξ̇t, ĴT }+ 2τ − βr〈ξ, ξz〉ξz, (61)

where βr ≥ 0 is a coefficient that quantifies the braking action of the air around the
helicopter during fast yawing.

3.4. Translational Component of Motion

The translational component of motion obeys the Euler–Lagrange equation (12) writ-
ten in the inertial (earth) reference frame FE. In this case, the non-conservative force field
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is given by the total thrust ϕm + ϕt rotated of a quantity R to express it in the earth frame
FE, therefore, the Euler–Lagrange equation reads:

d
dt

∂�H
∂ ṗ

=
∂�H
∂p

+ R(ϕm + ϕt). (62)

Notice that
d
dt

∂�H
∂ ṗ

= MH p̈,
∂�H
∂p

= −MH ḡez. (63)

To take into account energy dissipation due to friction between the helicopter and
the air molecules, that tends to brake the motion of the helicopter, the equation governing
the translational motion may be completed by introducing a non-conservative force pro-
portional to the helicopter speed. Ultimately, the equation that describes the translational
motion of a helicopter may be written as follows:

MH p̈ = R(ϕm + ϕt)− MH ḡez − Bṗ, (64)

where B := diag(βh, 0, βv). The non-negative coefficients βh and βv quantify the braking
action on the helicopter, which is more pronounced along the vertical direction than
horizontally, due to the helicopter’s shape. Focusing on the Equation (64), it is clear that
when the helicopter fuselage is horizontal, namely R = I3, the tail rotor influences the
horizontal component of the second derivative of the position p. The tail rotor term when
the helicopter is tilted (R �= I3) causes an additional difficulty in controlling the position of
the helicopter.

3.5. Explicit State-Space Form of the Equations of Motion

In order to write the equations of motion in an explicit form, we start off with a few
important simplifications.

• The terms related to the principal rotors may be rewritten explicitly as follows.
The term {Ωmξz, ĴR} = jRΩm{ξz, diag(1, 1, 0)} = 2jRΩmξz. Likewise, the term
{Ω̇mξz, ĴR} = 2jRΩ̇mξz.

• The terms related to the tail rotors may be rewritten explicitly by noticing that
the term {−Ωtξy, ĴT } = −jT Ωt{ξy, diag(1, 0, 1)} = −2jT Ωtξy. Likewise, the term
{−Ω̇tξy, ĴT } = −2jT Ω̇tξy.

• The constant Ĵ�H = ĴB + MRbmb�m + MT btbt� + ĴR + ĴT . Notice that bmb�m = D2
m

diag(0, 0, 1) and btb�t = D2
t diag(1, 0, 0). In addition, recall that the reference frame

FB has been chosen with the orthogonal axes coincident with the principal axes of
inertia of the fuselage itself, hence the tensor ĴB is diagonal. As a consequence, the
total helicopter’s non-standard inertia tensor is diagonal, namely Ĵ�H = diag(jx, jy, jz).

• As a last observation, the quantity {ξ̇, Ĵ�H} may be written equivalently as Sξ̇S, where
S := diag(sx, sy, sz), with

sx :=

√
(jx + jy)(jx + jz)

jy + jz
, sy :=

√
(jy + jx)(jy + jz)

jx + jz
, sz :=

√
(jz + jx)(jz + jy)

jx + jy
. (65)

The equations of motion of the helicopter model taken into consideration in the present
paper may be written explicitly as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṙ = Rξ,
ξ̇ = S−1([ Ĵ�H, ξ2] + 2[jRΩ̇mξz − jT Ω̇tξy, ξ]− 2jRΩ̇mξz + 2jT Ω̇tξy + 2τ − βr〈ξ, ξz〉ξz

)
S−1,

τ := 1
2 Dmum sin αrξx +

1
2 Dmum sin αp cos αrξy +

1
2 (Dtut − γum)ξz,

p̈ = 1
MH

Rϕ − ḡez − 1
MH

Bṗ,

ϕ :=

⎡
⎢⎣

1
2 um sin αp cos αr

− 1
2 um sin αr − 1

2 ut
1
2 um cos αp cos αr

⎤
⎥⎦.

(66)

It is interesting to consider a few special cases of motion and how the model (66)
would simplify in these special instances.

Free fall: Let us assume that both rotors are blocked (ξm = ξt = 0) and that they
are isolated from the pilot control (um = ut = 0). In this case, the external torque τ (19)
is null. The rotational component of motion is hence described by {ξ̇, ĴB + MRbmb�m +
MT btb�t + ĴR + ĴT } = [ ĴB + MRbmb�m + MT btb�t + ĴR + ĴT , ξ2], which represents the
classical equation of a rigid body rotating freely in space under inertial forces (generally
known as Euler’s equation of a free rigid body).

Constant rotor speed and negligible rotational inertia: Assuming constant rotation
speed for the principal and the tail rotors (namely, ξ̇m = ξ̇t = 0) and assuming that the
angular momentum of the tail rotor and of the principal rotor are negligible with respect
to the angular momentum of the helicopter, we obtain the simplified model 1

2{ξ̇, ĴB +

MRbmb�m + MT btb�t } = 1
2 [ ĴB + MRbmb�m + MT btb�t , ξ2] + τ, that is the helicopter model

studied in [12].
Hovering: Using as reference FE, hovering happens when the weight MH ḡ balances

the z-component of the thrust. In this situation the helicopter may only translate sideways
in the x–y plane. Recalling that

ϕ = ϕm + ϕt =

⎡
⎣ 1

2 um sin αp cos αr
− 1

2 um sin αr − 1
2 ut

1
2 um cos αp cos αr

⎤
⎦,

defining:

ϕw := e�z

⎡
⎣ 0

0
−MH ḡ

⎤
⎦ and ϕz := e�z (Rϕ)ez, (67)

the hovering condition reads
ϕz + ϕw = 0. (68)

In fact, the scalar ϕw denotes the (negative) intensity of gravitational pull, while the
scalar term ϕz denotes the (positive) lift thrust of the main rotor. Assuming a helicopter
to be horizontal (namely, with FB and FE’s z-axes aligned), the Equation (68) becomes
2MH ḡ = um cos αp cos αr. As a special case, we could for simplicity consider αp = αr = 0.
Then, by the main rotor thrust Formula (24), the hovering condition could be read as
4MH ḡ = Cuρπl4

RΩ2
m sin αc. Hence, the value of the collective angle needed to maintain

hovering, resulting from the hovering condition, takes the form

αc,hover = arcsin

(
4MH ḡ

ρπCul4
RΩ2

m

)
. (69)

In general, changing the angle αp or αr causes a decrease in the z-axis thrust intensity, hence
every time the cyclic control is operated the helicopter tends to fall. The equation below
gives the value of the right collective angle with respect to αr and αp in order to prevent a
fall condition:
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αc,hover = arcsin
(

2MH ḡ
um cos αp cos αr

)
, (70)

where the thrust um comes from Equation (24).
The maximum linear velocity along the x-axis could be reached provided two hypoth-

esis are met: the first is the hovering condition, in order to balance the weight force and not
to decrease the helicopter height, and the second is that the horizontal component of the
thrust is purely directed along the x-axis, namely αr = 0. From (68), the formula to find the
corresponding pitch angle is:

αp,maxSpeed = arccos
(

2
MH ḡ
ūm

)
, (71)

where ūm is a value of the thrust larger than the weight force of the helicopter. (Remark: As
the collective control changes the torque exerted by the main rotor, this procedure implies a
number of concurrent actions. In fact, consider the pilot wants to change the attitude of the
helicopter using the cyclic control while keeping hovering: the cyclic control causes the need
to boost the main rotor thrust by using the collective control, and the collective control causes
an increase in the main rotor torque and hence a yaw effect that requires the pedals control
to be managed.)

No yawing: The condition of no yawing is achieved when the quantity 〈ξ, ξz〉 stays
constant to 0. Namely, the helicopter does not turn around the z-axis. In this case, the
friction due to rotation, βr〈ξ, ξz〉, is 0. Assuming ξ = 0 at some time, it is necessary to make
sure that the first derivative of the angular velocity equals zero to ensure that no yaw is
present, hence 〈ξ̇, ξz〉 = 0. From (66), it follows that

S−1(−2jRΩ̇mξz + (Dtut − γum)ξz
)
S−1 = 0. (72)

As it was already underlined while discussing equations (21), in the case of constant
main rotor speed Ωm, the condition (72) will become S−1((Dtut − γum)ξz)S−1 = 0 that
could be reduced to Dtut = γum.

No drifting: The tail thrust causes the helicopter to drift along the y-axis. This side
effect may be compensated by choosing appropriately the roll angle αr of the main rotor
thrust. The equilibrium of forces along the y-axis is reached when ϕ�ey = 0 (where
ey := [0 1 0]�). Since ϕ�ey = − 1

2 um sin αr − 1
2 ut, in order not to have longitudinal forces

the roll angle has to be set to:

αr,noDrift = −arcsin
(

ut

um

)
. (73)

With this value, the net drift force along the y-axis will drop to zero, meaning that no
acceleration along the y-axis will be detected, although any pre-existing motions along the
y-axis will not cease. Moreover, setting the angle αr to this value will cause the fuselage
to roll.

4. Numerical Methods to Simulate the Motion of a Helicopter

The principal aim of developing a mathematical model is to be able to carry out
numerical simulations of a physical system through a computing platform. From this per-
spective, the system of differential equations (66) needs to be discretized in time in order to
be implemented on a computing platform. While the equation describing the translational
component of motion may be solved through a standard numerical method, the equation
describing the rotational component of motion needs a specific numerical method.
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An ordinary differential equation, in which the initial value is known, could be
resolved numerically using the forward Euler method fEul. The first derivative of a
function could be approximated numerically as:

ḟk−1 =
fk − fk−1

h
(74)

whereas the second derivative of a function could be approximated numerically iterating
the fEul method as follows

f̈k−1 =
ḟk − ḟk−1

h
(75)

where k ≥ 1 denotes a discrete-time counter and h > 0 represents the step of resolution
of the numerical method. Developing the Equations (74) and (75), the second derivative
equation of a function may be approximated by f̈k−2 =

fk−2 fk−1+ fk−2
h2 with k ≥ 2.

Using the result in Equation (66), it is possible to set up an iteration to determine
numerically the trajectory of the center of mass of the helicopter, namely:

1
MH

Rk−2 ϕk−2 − ḡez −
1

MH
B
(

pk−1 − pk−2
h

)
=

pk − 2 pk−1 + pk−2

h2 ,

which may be rewritten in explicit form as:

pk =
h2

MH
Rk−2 ϕk−2 − h2 ḡez −

h
MH

B(pk−1 − pk−2) + 2pk−1 − pk−2. (76)

The equation Ṙ = Rξ describes the first-order derivative of helicopter attitude. The
attitude matrix R belongs to the special orthogonal group SO(3). On manifolds it is not
possible to perform linear operations and, as a consequence, to use directly the fEul method.
In this case, it is necessary to use exponential map, thus:

Rk = expRk−1
(hRk−1ξk−1). (77)

Using the expression of exponential map tailored to the manifold SO(3) leads to the
iteration

Rk = Rk−1Exp(h ξk−1). (78)

Since the second equation in (66) describes dynamics over the Lie algebra so(3), such
equation may be time-descritized through the classical Euler’s method: ξk = ξk−1 + h ξ̇k−1.
In particular, ξ̇k−1 represents the angular acceleration at the step k − 1. The resulting
iteration reads:

ξk =ξk−1 + h · S−1
(
[ Ĵ�H, ξ2

k ] + 2[jRΩ̇m,kξz − jT Ω̇t,kξy, ξk]

−2jRΩ̇m,kξz + 2jT Ω̇t,kξy + 2τk − βr〈ξk, ξz〉ξz
)
S−1.

(79)

In summary, the complete set of iterations reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pk =
h2

MH
Rk−2 ϕk−2 − h2 ḡez − h

MH
B(pk−1 − pk−2) + 2pk−1 − pk−2, k ≥ 2

Rk = Rk−1Exp(h ξk−1), k ≥ 1
ξk = ξk−1 + h · S−1([ Ĵ�H, ξ2

k ] + 2[jRΩ̇m,kξz − jT Ω̇t,kξy, ξk]+
−2jRΩ̇m,kξz + 2jT Ω̇t,kξy + 2τk − βr〈ξk, ξz〉ξz

)
S−1, k ≥ 1

Ω̇m,k = (Ωm,k − Ωm,k−1)/h, k ≥ 1
Ω̇t,k = (Ωt,k − Ωt,k−1)/h, k ≥ 1
ṗ0 = 03×1, p0 = 03×1, p1 = 03×1,
R0 = I3, ξ0 = 03,
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where k = 0 denotes the starting time and where initial conditions have been indicated as
well. The quantities whose dynamics is not prescribed are either constants or externally
controlled (by the pilot).

The numerical method used in the present implementation is the simplest one among
the plethora of numerical methods available in the scientific literature. The Euler methods
are easy to implement on a computing platform, but are the least precise ones. An analysis
of the precision of the Euler method on the special orthogonal group was covered in a
previous publication of the second author [22]. The precision of the numerical scheme to
simulate the dynamics of a flying body be increased by accessing higher-order numerical
methods such as those in the Runge–Kutta class.

5. Helicopter Type and Value of the Parameters

To implement the mathematical model studied, it is necessary to choose a specific
helicopter model and gather values from certification sheets and data sheets. The helicopter
type chosen for this study is the EC135 P2+ (also known as H135 P2+) manufactured by
AirbusTM Corporate Helicopters. Not all parameters that appear in the equations are
directly specified in the technical documentation, hence a careful usage of the equations to
infer those parameters values not directly available will be illustrated. The data have been
gathered from the manufacturer’s flight manual [23], and other manuals [1,17–20,24–26].

The EC135 P2+ helicopter is equipped with a 4-blades bearingless main rotor and a
10-blades tail rotor and is characterized by the following features:

Main rotor and Tail rotor: The main characteristics of the tail rotor and of the main
rotor are collected in Table 1. In particular, such table contains information about the rotors
collective and cyclic angle range, rotors weight and nominal spinning velocity.

Sizes: For the principal dimension values, readers are referred to the manual [23]. The
relevant values have been collected in Table 2, which consist in linear dimensions and
weights. From the sizes of the fuselage, it is readily observed that the chosen helicopter
type is relatively small, compared to larger helicopters from the army industry.

Table 2. Dimensions are taken from [23], page 7, and the weight of the main rotor blade from [19],
page 3.

Dimensions Weight

[m] [kg]

Main rotor blade 5.1 33.9 1

Tail rotor blade 0.5 −
Reference axis x y z −

Fuselage 5.87 1.56 2.20 1134.6 2

1 The value of the height is not mentioned in any of the sources found, therefore it has been calculated from the
available technical drawings. 2 The fuselage weight was computed as the weight of the empty helicopter, that
is 1420 kg, removing the weight of the main rotor and of the tail rotor. The helicopter weight value was drawn
from [18], page 2.

Center of mass: To calculate the center of mass of the helicopter it is necessary to split
the helicopter’s structure in three major parts, as in the development of its mathematical
model:

1. The fuselage or body;
2. The main rotor;
3. The tail rotor.

It is necessary to make some assumptions to calculate the center of mass of the
helicopter and to determine the values Dm and Dt. These assumptions refer to the Figure 8.
It is assumed that the center of mass of the body cB lies on the axis passing through the main
rotor and perpendicular to the base. Furthermore, it is assumed that the center of mass
of the main rotor cR locates on an axis tilted 5 degrees from the vertical one. In addition,
the main rotor and the body may be thought of as two objects composing the system

256



Mathematics 2021, 9, 2682

Body − MainRotor (B,R), and the reference system for the calculation may be thought of as
having the origin located in the point cB and one axis that matches the axis tilted 5 degrees
toward the point cR. We can determine the value of cB,R by the equation

cB,R =
WeightMainRotor

WeightMainRotor + WeightBody
· d1. (80)

Now, assuming d1 = 1.2 m as the distance between cB and cR, the above equation
gives

cB,R =
277.2

277.2 + 1134.6
· 1.2 ≈ 0.235614 m. (81)

Moreover, it is supposed that the contribution of the point cT could be disregarded
since the weight of the tail rotor is negligible compared to the fuselage weight and the
main rotor weight; therefore, the tail rotor does not contribute to the calculations of the
helicopter center of mass, hence it results cB,R ≈ cH. The value of Dt ≈ 6 m has been
inferred from the available data-sheets information and the structure drawings, and Dm,
that is the distance between the center of gravity of the helicopter and the main rotor, is
Dm = d1 − cH ≈ 0.964386 m.

Figure 8. Values used to calculate the center of mass. (Figure adapted from [23], page 7.)

Features of the engines: The EC135 P2+ helicopter type is equipped with two PW206B2
engines from Pratt and Whitney Canada CorpTM. To start engines there are two possi-
bilities: manual control or automatic control. Manual control is not certificated and is
normally deactivated. The automatic control is managed by the FADEC (Full Authority
Digital Engine Control) that governs the starting procedure, the fuel flow and the RPMs
automatically. At the start of the engines, the FADEC turns on the engines one by one
until the RPMs reach the value of 98% ([1], page 437). When either the collective control or a
manual switch are operated by the pilot, the FADEC increases the RPMs to 100% and the
flight mode is engaged. When the altitude is higher than 4000 ft the speed is automatically
increased to 104%, because the air density decreases. Moreover, to avoid loss of thrust
when the collective angle is varied, in the main rotor (pitch) or in the tail rotor (yaw), the
FADEC fixes the engine power to maintain the desired speed. The characteristics of the
engines are summarized in Table 3.
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Table 3. Values are taken from [25], pages 8 and 12. The helicopter state AEO denotes ‘all engine
operative’, whereas the state OEI stands for ‘one engine inoperative’. Typically, two possible working
mode could be selected: TOP (take-off power) that has a time-limit constraint, and MCP (maximum
continuous power).

Power Maximum Torque
Engine Mode

[ kW ] [ N · m ]

AEO TOP (max. 5 min) 2 × 333 2 × 519
AEO MCP 2 × 321 2 × 500

OEI (max. 30 s) 547 851
OEI (max. 2 min) 534 831

OEI MCP 404 629

Gear box: The gear box is a complex part that transmits power, usually reducing
angular velocity and increasing torque. Both helicopter engines drive the gear box that, in
turn, drives the main rotor shaft and the tail rotor shaft.

Main rotor thrust: The Equation (26) was used to calculate the power coefficient
of the main rotor, that is Cw ≈ 0.006968, and its thrust coefficient Cu ≈ 0.045965. It is
also possible to determine the maximum thrust um,max generated by the main rotor using
the Equation (24), setting the throttle at 100% and the collective angle at its maximum.

The obtained result is um,max ≈ 52, 729 kg·m·rad2

s2 . Such numerical result was obtained
by setting Ωm,max ≈ 41.364303 rad/s, αc,max = 0.541052 rad, ρ = 1.225 kg/m3 (which
denotes, respectively, the maximum angular speed, the maximum collective angle and the
air density at 15 Celsius degrees and 1 atm, from Table 1).

Tail rotor thrust: In the same way, it is possible to determine the power coefficient
and the thrust coefficient for the tail rotor which are respectively CT

w ≈ 0.100974 and
CT

u ≈ 0.273201. The maximum thrust generated by the tail rotor is ut,max ≈ 2601 kg · m ·
rad2/s2, whose value is calculated using the throttle at 100%, the angular velocity Ωt,max ≈
375.315601 rad/s and the maximum collective angle for the tail rotor αT

c,max ≈ 0.596903 rad,
from Table 1.

Drag term: According to Equation (28), the value of the drag term is γ ≈ 0.154546 m.
Such numerical result was obtained by setting the middle value of the interval of the tail
rotor collective angle to αT

c,mid ≈ 0.151844 rad, and the collective angle of the main rotor
consistent with hovering to αc,hover ≈ 0.268693 rad, from Equation (69).

Friction terms: Let us collect the tip velocity of the helicopter along each axis in the
vector ṗmax. Given the maximum velocity of the helicopter, we know that, once reached that
particular value, the acceleration of the helicopter along that axis will drop to 0, because of
the existence of a friction force in the opposite direction. This situation can be described as:

0 = R(ϕm + ϕt)− MH ḡez − Bṗmax. (82)

Looking closely at the term R(ϕm + ϕt), namely the propelling force of the helicopter,
it is readily observed how it takes a special configuration when the tip speed is reached,
in fact:

• To reach the tip speed along the z-axis, it is necessary that the z-axes of the inertial
reference frame FE and of the body-fixed reference FB are aligned;

• To reach the tip speed along the x-axis, we consider a motion at maximum speed due
to a total thrust directed along the x-axis while in a horizontal attitude (R = I3). In
this case, the thrust takes its maximum value (compatibly with the need to keep the
helicopter hovering).

The Figure 9 shows the force components present in some particular helicopter atti-
tudes. In the frame on the left-hand side of the figure, the helicopter is horizontal, namely
R = I3, and all the forces are directed along the z-axis, disregarding the force exerted by
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the tail rotor. In the frame on the right-hand side, the helicopter is in a hovering condition,
therefore, the friction force F3

z = 0, while the friction force F2
x along the x-axis is maximum.

Figure 9. Friction terms encountered by a flying helicopter in correspondence of an increasing horizontal speed. The
variables are defined as f 1

z = e�z ϕ, f 2
z = MH ḡ, f 3

z = e�z ṗ βv, f 1
x = e�x ϕ, f 2

x = e�x ṗ βh.

The friction terms were calculated upon determining the tip speed of the helicopter.
For the EC135 P2+ helicopter, the found values are summarized in Table 4. Since we only
know the maximum linear speed along the x-axis, we consider as null the friction force
along the y-axis.

Table 4. Airspeed value ([24], page 23). Hover turning velocity and throttle range ([23], pages 43 and
35). Rate of climbing (page 60 in [26]).

Limit Values

[m/s] [rad/s] min ÷ max [%]
Condition

Airspeed 79.7 − −
Sea level,
+20 Celsius degrees,
gross mass up to 2300 kg,
TOP mode

Rate of climbing 8.9 − −
Hover turning − 1.047 −
Throttle range − − 97 ÷ 104

Using the Equation (82) and the speed limit values, it is possible to infer the values
of the coefficients βh and βv, namely the friction term along the x-axis and the z-axis,
respectively. The vector of the maximum speed reads ṗmax = [79.7 ? 8.9]�, referring to the
Table 4. In addition, we considered the result from (71) and we end up with an equation
depending on the unknown coefficient βh, where the other terms are known:

2βhe�x ṗmax = um,max sin
(

arccos
(

2 MH ḡ
um,max

))
, (83)

where ex := [1 0 0]�. The Equation (83) allows to infer the value of the friction term.
The term arccos

(
2 MH ḡ
um,max

)
≈ 58 deg describes the angle with respect to the x-axis

of the inertial reference frame FE that the total thrust ϕ must take for the helicopter to
reach the maximum velocity. The orientation of the thrust ϕ can be managed by the pilot
by operating the cyclic control, which varies the angles αp and αr, and by controlling the
helicopter’s overall attitude R.

To determine friction coefficients, the hover condition is preserved and rolling and
pitching are not involved. The friction term βv can be determined by fixing αp = 0, αr = 0
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and R = diag(1, 1, 1), which are the conditions to reach the maximum velocity along the
z-axis. From the Equation (82), we thus obtain

βve�z ṗmax = 1
2 um,max − MH ḡ. (84)

Instantiating equations (83) and (84) with known values, the friction coefficients can
be easily computed. It has been found that βh ≈ 281 kg·s−1 and βv ≈ 1398 kg·s−1.

Using the same method, it is possible to estimate the value of βr, the friction term
linked to the yaw velocity. Let us assume the helicopter to be in the hovering condi-
tion, with ξ̇m = ξ̇t = 0. At the maximum yaw speed the angular acceleration will be
null. Since we consider a hovering condition with αr = αp = 0, the total torque τ is
equal to 1

2 (Dtut,max − γ um,hover)ξz; therefore, from the second equation in (66) we obtain
0 = S−1([ Ĵ�H, ξ2

max] + (Dtut,max − 2γMH ḡ − βr〈ξmax, ξz〉)ξz
)
S−1, where ξmax denotes the

maximal yawing speed that, from the Table 4, is known to be ξmax = 1.047 · ξz (rad/s).
Thus, isolating the friction term, this equation becomes:

βr〈ξmax, ξz〉ξz = [ Ĵ�H, ξ2
max] + (Dtut,max − 2γMH ḡ)ξz. (85)

To determine the correct value of the friction term it is necessary to fill the Equa-
tion (85), namely the tip thrust of the tail rotor ut,max, the structural values, and the drag
coefficient found. The computed result for this parameter is βr ≈ 10797 N·m·s·rad−1.

6. Numerical Experiments and Results

A series of tests of the mathematical model were carried out by means of a MATLAB®

implementation of the numerical methods explained in Section 4. In order to clarify what
can be tested, and how, it could be useful to introduce the graphic control panel shown in
Figure 10.

(a)

(b)

Figure 10. Graphic input interface: (a) graphic interface used to test the model; (b) graphic window to show the initial
attitude of the helicopter, which is linked to the value of the matrix R selected.

The cell time interval allows to set the time range for new experiments. The interface
gives the possibility to perform series of test, therefore, the initial value of time interval could
not be set at an instant of time t1 until another experiment, which ended at t1, has been
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completed. The slider named Time shows the selected instant of time in a pop-up animation
window. Every slider is linked to an editable cell, hence, any value belonging to the correct
range could be directly set. The five sliders pitch, roll, throttle, collect.MR, collect.TR are the
interface to manage the value of the variables αp, αr, Ωm, αc, αT

c , respectively. The no-yaw
button sets the angle αT

c for a no-yawing condition, from Equation (72), whereas the button
no-drift manages the value of the angle αr to achieve a no-drifting condition using the
Equation (73). The two editable cells drag and air density allow to input the values of the
coefficients γ and ρ, respectively. The three cells initial roll, initial pitch, initial yaw interface
with the matrix R forcing a value of attitude of the helicopter along the three axes x, y, z.
The button no-drift warning changes the initial roll value in order to achieve a stationary
no-drifting condition (a technique introduced in the third test).

First test—lift response: The first test lasts 10 s and does not involve pitch and roll
angles (αp = 0, αr = 0), moreover the throttle is set at 100% and the tail rotor collective
angle at αT

c,mid. About the main rotor collective angle, it has been chosen in order to produce
lift along z-axis: the value chosen is 20 degrees. Figure 11 shows the result of this simulation.
The position along x-axis is constant, which could seem reasonable because pitch angle
is not involved. On the other hand, there is a clear decrease in the y-component of the
positional variable p due to drift effect. Notice that the direction of the tail rotor thrust is
opposite to y-axis, as Figure 5 shows. The z component of the torque τ is negative, and
this is the cause of clockwise yawing. Looking closely at the entries of the position vector
p, along the x-axis it can be observed a little decrease due to the combined action of the
helicopter yawing and tail rotor drift. In fact, when the helicopter nose turns, the drift effect
causes a slight decrease in the positional x-coordinate. Note that the drift force exerted by
the tail rotor coincides with the y component of the total thrust ϕ, which is e�y ϕ. The last
remarkable observation from the first test is that the z component of the thrust ϕ has the
value of 16,191 N, which is more than the helicopter-weight force, that could be determined
from Table 2 as 1420 · ḡ ≈ 13,925 N. The resulting force along the z-axis is positive and, as
described by the graph of the z-coordinate of the center of gravity, the helicopter lifts up.

Figure 11. First test—lift response. Top panel: components of the position of cH. Middle panel: components of the thrust.
Bottom panel: components of the active torque generated by rotors.

Remark: The x, y and z components in the torque graph have been extracted from the
Equation (14) following the construction of τ, namely they are calculated by e�z τey, e�x τez

and e�y τex.
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Second test—no yaw: This simulation lasts 5 s and illustrates how to select the tail
rotor collective angle using the Equation (72) to achieve a no-yawing condition. From the
graph of the torque τ it is clear that the torque exerted on the helicopter becomes null.
Consequently, the slight decrease in the position along the x-axis, which was a side effect
of the yawing, is no more present. The result is presented in Figure 12.

Figure 12. Second test—no yaw.

Third test—neither yaw nor drift: The third test illustrates the suppression of the
drift effect due to the tail rotor. In this case, the y coordinate of the center of gravity of the
helicopter does not vary, since the helicopter’s attitude is modified by using the no-drift
warning button in the control graphic panel. Such function does not cause a change in
the angle of attack of the blades as in the previous test, but in the initial roll angle and,
as a consequence, in the matrix R. In fact, the helicopter’s attitude is set according to
the Equation (73) along the x-axis, and such rotation produces an equilibrium among the
drift effect and the thrust along the y-axis. The equilibrium among the forces causes the
y-coordinate to stay constant, as wanted. The no-drift attitude is computed through the
relation

R� :=

⎡
⎣1 0 0

0 cos(αnoDrift) − sin(αnoDrift)
0 sin(αnoDrift) cos(αnoDrift)

⎤
⎦.

The result of this experiment is shown in Figure 13. As expected, only the z coordinate
of the helicopter varies over time.

The following tests were performed starting from the result of the third test, namely
from a no yaw/no drift condition; therefore, the first 3 s of the results of each tests will be
common to every execution.
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Figure 13. Third test—neither yaw nor drift.

Fourth test—pitch response: The fourth test is about pitch response. The pitch angle
has been set to 5 degrees (constant) starting from the third second of the simulation to the
end. In the result, illustrated in Figure 14, it can be seen an increase in the y-component
of the total mechanical torque τ. It is also possible to notice, as Figure 9 shows, that the
change in the angle αp causes a variation in the ϕ components. Indeed, the x component of
the total thrust ϕ, that is e�x ϕ = 1

2 um sin αp cos αr, increases as αp increases, whereas the z
component of ϕ, that is e�z ϕ = 1

2 um cos αp cos αr, decreases as αp increases.

Figure 14. Fourth test—pitch response.
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Fifth test—positive roll response: In this test, we set the angle αr from the third
second to the sixth second to 3 degrees. The obtained result is presented in Figure 15 and
shows an increase in the x component of the mechanical torque τ. This behavior follows
the Equation (66), where αr is linked to the x component of the mechanical torque τ. In
addition, using the same equation it is immediate to see that the y component of τ is zero
because αp = 0. Let us remark that instead the z component of τ is zero because of the
no-yaw condition.

Figure 15. Fifth test—positive roll response.

As in the previous example, a change of the angle αr causes the z component of the
thrust vector ϕ to decrease. Moreover, the magnitude of the y component of the vector ϕ
increases and adds up to the drifting effect of the tail rotor. It is important to point out,
from the graph of the components of the positional vector p, that rolling causes a falling
situation, as well as a shift along the y-axis.

Sixth test—main rotor collective response: The collective control is amply used for
managing the acceleration of the helicopter. The test of this specific control system has
been made increasing up to 22 degrees the main rotor collective angle starting from the
third second to the tenth second. The increase in the main rotor collective angle causes a
thrust boost, which increases the lifting of the helicopter. The result is shown in Figure 16.
As remarked, every time collective control is operated the helicopter pilot also has to adjust
the tail rotor collective angle, since the no-yaw flight mode depends on um, which is a
function of αc. This side effect could be observed from the values of the z component of
the mechanical torque τ whose magnitude changes and needs to be adjusted through the
pedals control.

Seventh test—negative roll response: The Figure 17 shows results of a test in which
it has been tried to remove the drift effect using the cyclic control. It has already been
remarked that a force control is not sufficient to remove the drift effect, since a combined
helicopter’s attitude control is needed. The no-drift flight mode could be achieved, for
example, using a PID control on the helicopter’s attitude.
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Figure 16. Sixth test—Main rotor collective response.

Figure 17. Seventh test—negative roll response.

This test was carried out using as initial setting the same setting as for the second
test, whereas the last 2 s were simulated using the Equation (73) to change αr. Notice that
an attitude controller would ensure no drifting. Ideally, a PID controller should reduce
the value of the cyclic control as the roll angle of the helicopter approaches the value
determined by the Equation (73).

Eight test—free flight: This last test consists in a simulation of a free flight achieved
by setting multiple inputs for the cyclic control and the collective control. The obtained result
is shown in Figure 18, while Table 5 presents the time line of the controls used. The throttle
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during the test keeps constant to 100%. The results of this simulation is exemplified by a
video attached to the present paper as a supplemental material.

Figure 18. Eighth test—free flight.

A visual animation of the flight trajectory obtained in this test is available.

Table 5. Eighth test—free flight. The orange-colored values indicate that the no-yaw flight mode has
been activated in that time window.

Time Line of Controls

Time Interval (s) [0–2) [2–4) [4–6) [6–8) [8–10]

αp (deg) 0 0.5 −0.5 −0.3 0
αr (deg) 0 0 0 0.8 −2
αc (deg) 20 22 22 22 20
αT

c (deg) 11.24 11.24 8.5 12.32 12.32

7. Conclusions

The aim of this paper was to devise a mathematical model of a fantail helicopter in
the framework of Lie-group theory. The main theoretical instrument, besides of Lie-group
theory itself, is the Lagrange–d’Alembert–Pontryagin principle, which generalizes the
Lagrangian formulation of dynamics to curved manifolds and to dissipative systems.

The modeling endeavor resulted in a series of differential equations, two of which
describe the rotational dynamics of the helicopter body and two describe its translational
dynamics. The terms in the equation have been analyzed to link the abstract mathematical
notation with the physics of the real-world system under examination. In addition, a
number of specific equations to calculate thrusts and power factors have been presented
and merged to the Lie-group equations.

A specific section of the paper dealt with the numerical simulation of the flight of a
helicopter and explained a specific numerical method to solve Lie-group-type differential
equations approximately yet keeping up with the intrinsic nature of the base Lie-group
(namely, the space of three-dimensional rotations).

The equations that compose the devised helicopter model include a number of param-
eters whose values are necessary to perform actual numerical simulations. Since most of
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such values are not directly available in the literature, a careful work of identification of
the parameters through the devised equations has been carried out.

Numerical results have been illustrated and commented in order to elucidate some
aspects of the model that were deemed of particular interest, from simple flight modes
to free flight. The devised model, as the large majority of mathematical models of real-
world physical phenomena, is of potential use to control engineers (who may use such
mathematical model to design a state observer and an automatic control system to assist
the pilot), to mechanical engineers (who may use the devised model to test a helicopter
structure under stress conditions) and by pilots instructing facilities (who might use the
devised model as a prototypical flight simulator).

Supplementary Materials: The following are available at https://www.mdpi.com/2227-7390/9/21
/2682/s1.
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Abstract: In this study, a NURBS basis function-based extended iso-geometric analysis (X-IGA) has
been implemented to simulate a two-dimensional crack in a pipe under uniform pressure using
MATLAB code. Heaviside jump and asymptotic crack-tip enrichment functions are used to model
the crack’s behaviour. The accuracy of this investigation was ensured with the stress intensity
factors (SIFs) and the J-integral. The X-IGA—based SIFs of a 2-D pipe are compared using MATLAB
code with the conventional finite element method available in ABAQUS FEA, and the extended
finite element method is compared with a user-defined element. Therefore, the results demonstrate
the possibility of using this technique as an alternative to other existing approaches to modeling
cracked pipelines.

Keywords: extended iso-geometric analysis; extended finite element method; crack; pipeline; ABAQUS

1. Introduction

The fracture phenomenon is a fundamental research topic in the field of solid mechan-
ics, and a misunderstanding of the fracture mechanism may lead to a poor evaluation of
a structure’s integrity. Several experimental and theoretical studies have been conducted
in this field covering this vast physical phenomenon. The cracking issue is among the
problems that arise in this regard, so the study of the various kinds of discontinuities
and defects that appear on the surface of structures is of major importance in the field of
design and modeling for ensuring the reliability of engineering structures. These defects
may appear in the form of notches, cracks, inclusions, holes, corrosion, and other types
of material degradation. The existence of a defect on an engineering structure can cause
material and human damage; this is caused by the propagation of cracks either in terms of
direction or propagation rates. Therefore, it is necessary to predict the crack propagation
rate to be able to estimate the critical load, and the acceptable length of the crack to ensure
the stability of structures. The initiation and propagation of the crack requires a specific
study of the defect, i.e., it is necessary to adopt a criterion of rupture in the context of
fracture mechanics. Since the beginning of this research field, many methods have been
developed to give a general vision of the fracture process in order to find adequate solutions
and improve the strength of structures. With this technological progress, the simulation of
the physical phenomena tends to become purely numerical; of course, experiments play
a very important role, but due to their difficulty, and to save time and take advantage of
the data-processing tools that exist today, we had to adapt to and develop in the world of
digitalization. Numerical simulation and discontinuity problems still do not agree, since
researchers are always looking to improve numerical solutions to be able to reflect reality.
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In this sense, various numerical methods are developed that cite the classical finite element
method (CFEM) [1,2], element-free Galerkin methods (EFG) [3], the extended finite element
method (X-FEM) [4–6], the phase field numerical manifold method (PFNMM) [7], the
boundary element method [8], and the thermo-mechanical peridynamic model (TMPM) [9].
Despite the huge use of the CFEM, however, it suffers from a certain lack of treatment of the
cracking problems; it imposes that the mesh conforms with the crack or to a surface defect,
and adopting a specific mesh creates difficulties at the simulation stage. The appearance of
the enrichment approach [10–12] overcomes the shortcomings of the conventional method
and is able to simulate all types of notches, cracks, holes, and other defects, regardless
of the defect shape and mesh type. The Lagrange polynomials were used to make the
interpolation with these new techniques, i.e., the geometry and the solution of the problem
are approximated by these polynomials. Since the basis functions used are not the same as
those used in the design, discretization errors appeared in the analysis stage [13]. The real
issue occurred when we wanted to move from modeling to simulation by the process of the
finite element method. Despite the integration of simulations in modeling software, such
as CATIA, most software is still not good in this area, compared to software that is already
simulation-integrated, such as ABAQUS. That is why there are still gaps between these
two parts. This subject has become an area of interest for researchers in approximating
conical shapes, as it is known that CAD software constructs this type of shape by B-spline
curves. The advantage of these curves is that they are able to reproduce all types of conical
shapes and free surfaces in an exact way. In this field, Hughes et al. [14] started to develop
a new approach to eliminate the shortcomings of the classical method, and due to their
research, iso-geometric analysis (IGA) was developed. On the other hand, industrial com-
putational software has not yet integrated this functionality without some works that have
made the implementation of these functions in specific fields of application, for example in
LS-DYNA [15–17]. They were among the first in this field; precisely, they integrated IGA
to study shells. In Altair RADIOSS [18], IGA was implemented and proved on industrial
benchmarks. In ABAQUS [19–21], an application of IGA was implemented for linear
elasticity problems. IGA has been employed in a variety of engineering fields, including
the mechanics of vibration [22,23], fluid mechanics [24], electromagnetic problems [25],
the medical field [26], and digital image correlation [27]. The issues addressed are diverse,
including nonlinear mechanics [28], shell analysis [29–34], contact problems [35,36], fluid–
structure interactions [24], the optimization of structural design [37], buckling failure [38],
and crack problem analysis [39]. From this research, IGA has indicated the effectiveness of
its results and it can sweep the world of numerical computation. Therefore, it can become
an alternative method to the classical finite element method in the future.

Over the last few years, the mathematical formulation of the IGA method has been
revised. In addition, it was expanded to fix issues concerning discontinuities, e.g., the crack,
under the partition of the unity finite element method [40]. This new concept is known as
the extended iso-geometric analysis (X-IGA). It has been utilized by a range of authors to
address crack-growth issues in the field of fracture mechanics [41–47]. Two main functions
have been added: the Heaviside jump function is used to enrich the displacement fields
around the crack surfaces, while crack-tip enrichment functions are used to model the
singularity at the crack tip. Most of the existing research works that use this innovative
approach are limited to 2-D plate cracking problems [48,49] and cracking problems in
the cantilever beam [50]. Therefore, the strategy has only been implemented with simple
domain geometries. As for cracked shells, research is still in progress because of the diffi-
culty of modeling the cracks and approximating the geometry with the NURBS functions.
Furthermore, it requires a mathematical background. That is what made this kind of model
interesting. In this field, X-IGA has been used for a cracked 2-D pipe. However, the method
has been applied through FORTRAN language [51]. For the present investigation, we will
study the efficiency and accuracy of X-IGA for cracks with 2-D pipe geometry given by
CAD curves, with a special focus on ensuring that all stages of the calculation are done
in MATLAB code. It is noted that mesh generation is used in MATLAB independently
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of another meshing software. The strategy presented in this implementation follows the
philosophy used in the traditional FE codes, and also benefits from having a MATLAB
routine that allows for the discretization of partial differential equations based on NURBS
and B-spline. Hence, the specific aims of this paper are to formulate the X-FEM concept
in the framework of NURBS and to enrich the solution in MATLAB code to adapt it for a
cracked pipe under pressure. To validate this strategy, a P264GH steel gas pipe has been
used with uniform inner pressure. The mechanical characteristics data of this model are
taken from an experimental study [52]. Based on the above literature review, stress intensity
factors (SIF) are widely used to characterize fracture mechanics. Therefore, we evaluated
the SIF with this implementation and the obtained results were compared with the CFEM
available in ABAQUS software and the X-FEM approach, which was implemented in the
ABAQUS user-defined element (UEL) [53]. Finally, to verify the results obtained by this
strategy of X-IGA application, we made a comparison with [51].

The present study begins with a brief discussion of the IGA concept, including an
assessment of the B-spline and NURBS basis functions. The concept of discontinuity
inside a continuum formulation is outlined to provide a background for the following
discussion on the X-IGA. Later, the methodology for implementing this improved approach
is introduced. The paper concludes by providing case studies of a pipe under inner uniform
pressure. The obtained results of the present study were evaluated against the CFEM and
X-FEM solutions.

2. Outline on B-splines, NURBS, and IGA Concepts

Piecewise polynomial functions with a specified degree of continuity are known as
B-splines. In a knot vector, vector Ξ =

{
ξ1, ξ2, . . . , ξn+p+1

}
, with ξi+1 ≥ ξi; i is the index

of knots, n is the number of control points, and p is the polynomial degree. A collection
of coordinates in parametric space is used to create univariate B-Spline shape functions.
The Cox-de Boor recursion model on the appropriate knot vectors determines the ith
B-splines basis functions Ni,p(ξ) [14].

For a polynomial order p = 0,

Ni,0(ξ) =

{
1 i f ξi ≤ ξ < ξi+1

0 otherwise

}
(1)

For p ≥ 1,

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (2)

The B-splines shape function’s first derivative with respect to the parameter is:

d
dξ

= (Ni,p(ξ)) =
p

ξi+p − ξi
Ni,p−1(ξ)−

p
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (3)

An example of a cubic B-spline basis function is illustrated in Figure 1. An open
knot vector was used in this example due to the multiplicity of the first and the last knots,
which are equal to p + 1. With IGA, the construction of the geometrical model is done with
B-spline functions of open vectors. This type of vector allows for an interpolation of the
basis function at the end; it is more than suitable for enforcing the boundary conditions.
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Figure 1. An example of cubic B-splines basis functions with knot vector Ξ = (0, 0, 0, 0.5, 1, 1, 1).

2.1. Curve and Surface Building with B-spline

A linear combination of the shape functions and coefficients denoted by the control
points constructs a B-spline curve:

C(ξ) =
n

∑
i=1

Ni,p(ξ)Bi (4)

Ni,p and Bi are the ith B-spline function and control points, respectively.
A B-spline surface is defined by a tensor product and parameterized by two-knot

vectors, knot vector =
{[

ξ1, ξ2, . . . , ξn+p+1
]
,
[
η1, η2, . . . , ηn+p+1

]}
as:

S(ξ, η) =
n

∑
i=1

m

∑
j=1

Ni,p(ξ)Mj,q(η)Bi, (5)

where Ni,p(ξ) and Mj,q(η) are univariate shape functions and B is the 3-vector of control
point coordinates.

2.2. Non-Uniform Rational B-splines (NURBS)

NURBS is the generalization of the B-spline functions:

Ri,p(ξ) =
Ni,p(ξ) wi

∑n
î=1 Nî,p(ξ)wî

(6)

where wi > 0 is the weighting parameter and Ni,p(ξ) is the B-spline basis function. For
wi = 1, NURBS functions are transformed into B-splines functions. The Rhino Python
Editor performs the generation of the weights.

The NURBS shape function’s first derivative with respect to the parameter is:

d
dξ

Ri,p(ξ) = wi
W(ξ)N′

i,p(ξ)− W ′(ξ)Ni,p(ξ)

(W(ξ))2 (7)

where W(ξ) = ∑n
î=1 Nî,p(ξ) wi and W ′(ξ) = ∑n

î=1 N′
î,p(ξ)wi.

272



Mathematics 2021, 9, 2990

2.3. Curve and Surface Building with NURBS

To construct the control points for the NURBS geometry, Equation (8) is utilized:

(Bi)j =
(Bw

i )j

wi
, j = 1, . . . , k (8)

where (Bi)j is the jth element of the vector Bi and wi the ith weight. By using Equation (6)
in combination with Equation (8), the NURBS curve was constructed as:

C(ξ) =
n

∑
i=1

Ri,p(ξ)Bi (9)

By analogy with the B-spline, NURBS surfaces are constructed from a tensor product
through two-knot vector arrays. It is introduced as:

S(ξ, η) =
n

∑
i=1

m

∑
j=1

Np
i (ξ)Mq

i (η)wi,j

∑n
i=1 ∑m

j=1 Np
i (ξ)Mq

i (η)wi,j
(10)

The reformulation (10) can be done by setting up in the following form:

S(ξ, η) =
n

∑
i=1

m

∑
j=1

Rp,q
i,j Bi,j (11)

where Np
i (ξ) and Mp

i (ξ) are shape functions, respectively. Then, p and q are the order of
the basis function in the two directions and m and n are the numbers of control points in
the two directions.

2.4. Governing Equation

Let us briefly review the concept of discontinuity inside a continuum formulation.
The improved displacement field term is introduced, taking into account the displacement
field computation at the discontinuity. The concept of the partition of unity has been
used for Lagrangian basis functions; the properties of this technique are also suitable for
the B-spline and NURBS functions, which form the basis of the iso-geometric approach.
The full displacement field can be expressed as the amount of two subfields by using
this property:

Uh(x) =
N

∑
I=1

φI(x)

(
αI +

M

∑
J=1

β I JKJ(x)

)
(12)

In Equation (12), φI represents the standard basis function, KJ is the improved basis
function with m expressions, and the standard and the improved nodal degree of freedom
are αI and β I J , respectively. To develop the approximation, M will assume the value 2, and
Equation (12) can be represented as:

Uh(x) =
N

∑
I=1

ΦI(x)

[
αI + H(x)aI +

4

∑
β=1

Fβ(x)bβ
I

]
(13)

In Equation (13), KJ has been decomposed into two different enrichment terms, the
Heaviside function H(x) and the crack-tip function Fβ(x), in order to capture the disconti-
nuity and the singular fields. aI and bβ

I introduce the improved nodal degrees of freedom.
To follow the crack, the level set methodology has been applied. This allows for

representing the discontinuity as a moving interface. The signed distance, which defines
the location of an arbitrary point with respect to the interface, is still the most popular:

ϕ(x) =‖ x − x̂ ‖ sign
(
nΓd .(x − x̂)

)
(14)
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where x is a point in a mesh element, x̂ is the closet point to x on the discontinuity, and nΓd
is the interface normal.

The position of the crack in a domain is defined by the values of the level set function
that is represented as follows:

ϕ(x) =

∣∣∣∣∣∣
< 0 i f x ∈ Γ−

d
= 0 i f x ∈ Γd
> 0 i f x ∈ Γ+

d

(15)

When the body’s forces are not present, the elastostatics equation, in its strongest
form, is:

→
div

=
σ =

→
0 in Σ (16)

With the appropriate set of boundary conditions:
Essential boundary conditions:

→
u =

→
uD on Γu (17)

Natural boundary conditions:

=
σ

→
n =

→
TD on Γt (18)

Crack surface:
=
σ

→
n Γd =

→
0 on Γd (19)

where n is the normal vector, nΓd is the normal vector regarding the interface (see Figure 2),
σ is the stress tensor, and u is the displacement vector.

Σ Γ௨ 

Γ௧ 

Γௗ 

× × ××× ×× ××× 

Γୢି Γୢା 

݊  

Figure 2. Domain Σ with discontinuity Γd.

2.5. Variational Formulation

As illustrated in Figure 2, a 2-D domain has been considered in this work with con-
ventional boundary conditions: the Dirichlet Γu and the Neumann Γt boundary. The crack
face presents further traction-free boundaries Γc.

By using the virtual work theory, the weak form of the problem can be established
from the equilibrium equation, and is represented as:

Leq =
∫
Σ

(σ(u) : ε(q))dΣ −
∫
Γ

(TD.q )dΓ (20)

The stress, the strain tensor, and the traction vector are described by σ, ε, and TD, respec-
tively. u and q denote, respectively, the displacement vector and the virtual displacement.
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3. Extended Iso-Geometric Analysis (X-IGA)

3.1. X-IGA Formulation for Cracks

X-IGA aims to evaluate fractures in an engineering component without having to
re-mesh it. In the framework of the X-FEM approach, the enrichment of the shape functions
(B-spline, NURBS) is ensured by a Heaviside and crack-tip function since they constitute a
partition unit (PU). The former function was introduced to insert a discontinuity and the
latter to treat singularities at the crack tip. The approximation of the solution is given as [54]:

Uh(ξ) = ∑
IεNstand

RI(ξ)uI + ∑
JεNCrSplit

RJ(ξ)H(ξ)aJ + ∑
KεNCrTip

RK(ξ)(
4

∑
α=1

Fα(ξ)bα
K) (21)

where RI represents shape functions uI , and aJ and bα
K define the standard and the further

DOFs, respectively. Nstand includes the standard nodes of the mesh, NCrSplit includes the
nodes of elements that have been split by the crack faces, and NCrTip includes the nodes of
the crack-tip elements. The parameter coordinates are represented by ξ. The Heaviside
function, wherein the quantities on both parts of the split element are different, is denoted
by H(ξ). The purpose of the crack-tip function, among others, is to increase the accuracy
of the results, and it is denoted by Fα. These enrichment functions are characterized by the
following equations [55]:

H(ξ) = sign (ϕ(ξ)) =

{ −1 i f ϕ(ξ) < 0
+1 i f ϕ(ξ) > 0

, (22)

Fα(ξ) = Fα(r, θ) =

{
r

1
2

[
sin

θ

2
, cos

θ

2
, sinθsin

θ

2
, cos

θ

2
sinθ

]}
(23)

The polar coordinates of the crack tip are represented by r, θ.
After substituting Equation (19) in the equilibrium equation, the final phase of the

processing stage is to solve the linear algebra system:

KenrUenr = Fenr , (24)

where Kenr denotes an enriched stiffness matrix, Fenr denotes a force vector, and Uenr

denotes an enriched displacement vector as:

Uenr = {U d b1 b2 b3 b4}T , (25)

where U is the DOF vector for the IGA normal, d is the DOF for Heaviside enrichment, and
b1, b2, b3 , and b4 are the DOF vectors for the crack-tip enrichment functions. Kenr and Fenr

are constructed as follows from the element stiffness matrix:

Kenr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Kuu Kua Kub1 Kub2 Kub3 Kub4

Kau Kaa Kab1 Kab2 Kab3 Kab4

Kb1u Kb1a Kb1b1 Kb1b2 Kb1b3 Kb1b4

Kb2u Kb2a Kb2b1 Kb2b2 Kb2b3 Kb2b4

Kb3u Kb3a Kb3b1 Kb3b2 Kb3b3 Kb3b4

Kb4u Kb4a Kb4b1 Kb4b2 Kb4b3 Kb4b4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(26)

Fenr =
{

Fu Fa Fb1 Fb2 Fb3 Fb4
}T

. (27)

The number of control points Nstand, NCrSplit, NCrTip, and the number of enrichment
basis functions Ne f determine the size of each Kenr and Fenr. Each component can be
written as follows:

Krs
ij =

∫
Σe
(Br

i )
TCBs

j dΣ (r, s = u, d, b1, b2, b3, b4) (28)

275



Mathematics 2021, 9, 2990

Fu
i =

∫
Γu

RT
i TDdΓ, (29)

Fa
i =

∫
Γt

RT
i HTDdΓ, (30)

Fbα
i =

∫
Γt

RT
i fbα

TDdΓ (α = 1, 2, 3, 4) (31)

Bu
i =

⎡
⎢⎣

∂Ri
∂x 0
0 ∂Ri

∂y
∂Ri
∂y

∂Ri
∂x

⎤
⎥⎦ (32)

Ba
i =

⎡
⎢⎣

∂Ri
∂x H 0

0 ∂Ri
∂y H

∂Ri
∂y H ∂Ri

∂x H

⎤
⎥⎦ (33)

Bbα
i =

⎡
⎢⎢⎣

∂Ri fbα
∂x 0
0 ∂Ri fbα

∂y
∂Ri fbα

∂y
∂Ri fbα

∂x

⎤
⎥⎥⎦ (α = 1, 2, 3, 4) (34)

The Heaviside function (Equation (22)) is represented by H, while the crack-tip enrich-
ment function (Equation(23)) is represented by fbα

.

3.2. Construction of 2-D Pipe with X-IGA Concept

A patch with an internal interface is used to model a 2-D pipe problem (Figure 3);
this interface is the result of coinciding control points in the circumferential direction at
the beginning and end of the patch. To solve the problem correctly, we must confine the
control values of these overlapping control points so that each pair of control values for
the corresponding coincident control points is the same. The master–slave approach is a
simple solution to this problem. This method is implemented in the present study by the
global renumbering of DOFs in the physical space, where coincident DOFs are numbered
by the same indices. The global numbering is saved in an array and given as an additional
input argument.

 

Figure 3. 2-D pipe with the iso-geometric analysis approach.
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3.3. Enrichment Topology for Control Points

In IGA, every basis function is linked to its corresponding control point in a specific
way. The intersection of each supported domain with the crack face leads to enrichment by
the Heaviside function. The domain support, which contains the crack tip, will be enriched
by the singular function. According to [56], there are two ways to enrich the crack tip: with
either topological or geometrical enrichment. In this work, topological enrichment has
been employed. Figure 4 shows a schematic representation of this concept.

 ௦ܥ

 ܥ
 ்ܥ

Figure 4. The enrichment concept used in NURBS modelling [57].

According to the Figure 4, Cs denotes the crack-face control points, while CT denotes
the crack-tip-enriched control points, and Ci denotes the standard control point. For the
purpose of selecting enriched control points, the level set method has been used. We
applied the procedure that has been used by [58]. Initially, the level set values of the crack
at the mesh’s vertices are computed according to these level sets, and the formulation
determines the elements intersected by the crack and the crack-tip element.

4. Numerical Integration in the Elastic Field

For numerical integration, the standard Gaussian quadrature method cannot be ap-
plied explicitly to the XIGA since it contains various discontinuous elements. To assess
the integration rule of the crack’s split and tip elements in this study, the triangular sub-
domain methodology is used (Figure 5). This technique has been successfully implemented
by X-FEM [42], as seen in Figure 6. Each sub-triangle element has a defined number of
integration points.

 

 
(a) (b) 

Crack  

Sub-triangles 

Element 

Crack-tip 

Figure 5. Partitioning the crack face (a) and crack tip (b) using the sub-triangulation technique [42].
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Crack tip 

Discontinuity Location Sub-triangles  

Gauss-points 

Figure 6. Sub-triangles technique around the crack and the distribution of the Gauss point.

5. Fracture Parameter Evaluation

The stress intensity factor (SIF) is a crucial criterion in crack formation and growth
research. As a result, when a numerical simulation is used to solve fracture mechanics
issues, one of the objectives is to quantify the SIF. There are a range of ways to calculate
this parameter, which is used in so much of the interaction integral method [55]:

M =
∫
Γ

[
σact

ij
∂uaux

i
∂x1

+ σaux
ij

∂uact
i

∂x1
− WMδ1j

]
∂q
∂xj

dΓ, (35)

where M is the interaction integral with the aux and act index defining the auxiliary and
the actual state, respectively. The stress and the displacement are represented by σij and ui,
respectively. WM represents the interaction work; it can be described in the following form:

WM =
1
2

(
σact

ij εaux
ij + σaux

ij εact
ij

)
, (36)

where εij and q define the strain and an arbitrary function, whose values are defined as:

q =

{
1, |at the crack tip

0, |along the contour
(37)

The stress intensity factor with these two modes (I, II) and the J-integral are related by:

J =
1
E′

(
K2

I + K2
I I

)
. (38)

Based on this correlation, the following equation has been derived:

M =
2
E′
(
Kact

I Kaux
I + Kact

I I Kaux
I I
)

(39)

where

E′ =

{
E f or plane stress
E

1−ν2 f or plane strain (40)

E represents the Young’s Modulus, v is the Poisson’s ratio, and M represents the
interaction integral.

The crack opening is the field of interest of this study. Therefore, the SIF in mode I can
be obtained by choosing Kaux

I =1 and Kaux
II = 0. Finally, the SIF is defined as:

KI =
E′

2
M (41)
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6. Process of Implementing a X-FEM Code in ABAQUS

The idea of implementing the X-FEM technique is based on the fact that the ABAQUS
software does not include the stress intensity factor computation for a 2-D crack. The two
enriched functions that correspond to the Heaviside and the crack-tip functions that
appeared in Equation (13) were implemented through a user-defined element (UEL).
The implementation process requires three phases: pre-processing, processing, and post-
processing. In this study, to make the implementation easier, the input file (XFEM.inp) has
been generated by ABAQUS, and then the interaction between the crack and the mesh
was constructed to apply Equation (14). Therefore, the enriched elements and nodes have
been determined. The user-defined element (UEL) in ABAQUS is used to program the
processing stage (UEL.for) to compute the stresses and strains. The last stage consists of
calculating the Mode-I SIF, KI, by a post-processing code; indeed, the interaction integral
method explained in section five (Fracture Parameter Evaluation) has been programmed in
FORTRAN. The details for the file descriptions are based on [53], who introduce the X-FEM
implementation in ABAQUS. Thus, we have adopted the principle of this implementation
for our problem. The ABAQUS command is used to run the main file (XFEM.inp) and the
user subroutine file (UEL.for): Abaqus job = X-FEM user = UEL.for.

The resulting information of this simulation is stored in (XFEM.fil), and the ABAQUS
output conventions are included in this file. Then, we used an external subroutine for
computing the stress intensity factors. This subroutine is compiled through the ABAQUS
command “ABAQUS make job = interaction_integral”, and then run with the command
“ABAQUS interaction_integral”. The implementation process is described in Figure 7.

ModeI SIF, KI 

 Step 3:  
Post-processing 

Code Fortran 

Interaction_integral.for 

Compute stresses and strain 

XFEM.fil 

 Step 2:  
Processing 

User defined 
Element-UEL 

UEL.for 

 Step 1:  
Pre-processing 

ABAQUS FEA  

XFEM.inp 

Crack-mesh interaction Abaqus job=XFEM.inp 
UEL.for 

Abaqus make 
job=interaction_intecralL.for 

Figure 7. X-FEM implementation process in a Finite Element Code.
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7. Process of Implementing a X-IGA Code in MATLAB

In this section, the main steps of the XIGA implementation code to numerically model
a structure with a pre-existing discontinuity (a crack) have been summarized in Figure 8.
To understand the implementation, it is necessary to know two major things: the three
steps of a finite element code (pre-processing, processing, and post-processing), and the
identification of a crack using the level set method (LSM). The flowchart starts with the
introduction of the input parameters, which contain the geometrical data and the material
properties. Then, the elasticity matrix is integrated. In addition, the data required by the
NURBS functions, such as the polynomial order, control points, and node vectors, are
introduced to build the NURBS model. The next step is to introduce the crack data, length,
and coordinates of the crack points with the level set method to determine the position of
the crack and to select the enrichment points. Then, the Heaviside and crack-tip functions
are imposed on the nodes according to the technique that precedes this step. Then, the
boundary conditions, nodal force vector, and stiffness matrix are calculated. The stress,
strain, and displacement values are the output of this process. These data can be put to use
in the interaction integral to compute the stress intensity factor.

 

CAD input 

Elasticity matrix 

XIGA: NURBS orders, Controls points and vector 

Crack data: Xcr, XTip,
NoCrack and  LgthCrack  

Level set Computation 
(Choose enriched nodes) 

Boundary Conditions 

Heaviside function for split node 
Crack tip function for tip Node 

Stiffness matrix computation 
Nodal force vector computation 

Solve System 
[K] = [F]{U} 

Compute stress, strain, 
and displacement 

Compute interaction integral 
(SIF) 

Eq. (14) 

Eq. (33) 

Figure 8. Flowchart of the implementation.

8. Numerical Results and Discussions

The iso-geometric analysis is extended and used in this section to analyze the cracked
model under mechanical loading; a specimen from the industrial field is chosen. Pressure
pipes are commonly used and the performance of these systems is still under investiga-
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tion. In a 2-D linear static analysis case, an isotropic and homogeneous pipe has been
studied. The plane stress is thought to be the stress distribution state. For this analysis, The
P264GH material is used and its mechanical and chemical characteristics are described in
Tables 1 and 2, respectively.

Table 1. Mechanical characteristics for the P264GH [59].

Properties Values

Young’s Modulus 207 GPa
Poisson ratio 0.3
Yield Stress 340 MPa

Ultimate tensile strength 440 MPa
Elongation to fracture 35%

Fracture Toughness 95 MPa
√

m

Table 2. Chemical characteristic of P264GH—% by weight [60].

Material C P Al Mn S Si Fe

Tested steel 0.135 0.013 0.027 0.665 0.002 0.195 Bal.

P264GH steel according to the Standard
EN10028.2-92 0.18 0.025 0.02 1 0.015 0.4 Bal.

To examine the reliability, accuracy, and efficiency of this approach, an external axial
crack was studied. The results of the analysis were compared with the results of standard
ABAQUS software using the classical finite element method (CFEM), which is based on
the integral contour and the X-FEM method using a subroutine UEL code.

In each of these parametric directions ξ and η, the degree of the NURBS polynomial is
two (p = q = 2). In the first direction ξ, the knot vector is open and with interior duplication,
and in the second direction η, the knot vector is open and without internal duplication.

The integration is done along each Gauss point direction (p + 1) × (q + 1), and as the
sub-triangles approach was used in this case, 13 Gauss quadrature points were imposed
for each sub-triangle. For each numerical method, different mesh sizes were examined. It
is important to be aware that the crack was represented as a straight segment.

In order to figure out the fracture parameter, i.e., to estimate the stress state near a
crack tip, the stress intensity factor (SIF), KI, and the J-Integral are extracted. For the three
techniques used in this work, the interaction integral method was implemented. The X-IGA
technique was implemented in MATLAB code. The ABAQUS software was used for the
CFEM and X-FEM to extract the KI, but for the X-FEM, it is important to mention that the
software does not support the computation of this parameter in the 2-D domain, which led
to the use of a subroutine UEL.

8.1. Two-Dimensional Pipe with an Axial Crack under Uniform Pressure

In the present study, an isotropic and homogenous 2-D pipe including a 2 mm straight
edge crack with uniform pressure distribution and an outer and inner radius of Ro=20 mm
and Ri=10 mm, respectively, is examined. Three models were used in this study, which
included 320, 480, and 640 element numbers for the X-IGA method, and 1297, 3844, and
85,942 element numbers for the CFEM, with a step size of 1, 0.5, and 0.1, respectively, and
470, 1265, and 2747 element numbers for X-FEM with a step size of 1, 0.45, and 0.25 around
the crack, respectively. The NURBS geometry is represented by using several patches
(subdomains) with an internal interface. In the circumferential direction, the control points
coincide with each other on the patch, and this implies the creation of interface terms.
The NURBS geometry is illustrated in Figure 9a.
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Control points 

Figure 9. Geometry construction: (a) the NURBS model, (b) the CFEM model, (c) X-FEM model.

The FEM model has been represented by a finite element mesh on ABAQUS software.
The most important thing is that the modeling of the crack requires a specific treatment, i.e.,
it requires building a particular mesh around the crack. A ring of a triangle, as represented
in Figure 9b, is formed at the crack tip, along with concentric layers of structured quads [61].

For the X-FEM method (Figure 9c), the meshing was done in a simple way since
the crack was modeled independently of the meshing. It should be noted that, for this
technique, a half tube was treated because the implementation is heavy when using UEL
subroutines, so to overcome this problem, a half tube was analyzed with the symmetry
boundary conditions.

To perform the numerical simulation, we present Table 3, which summarizes the crack
length, crack position, and pressures applied.

Table 3. Data details for the numerical simulation.

Crack Length Ratios (a/t)
Crack Position

(x1 y1; x2 y2) (mm)
Applied Pressure

(MPa)

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 (−20 0; (−20 + a) 0) 2.5
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Figure 10 illustrates the distribution of the Von Mises stress by the three techniques
for a

t = 0.3, and a pressure of 2.5 MPa [52] has been applied. The accuracy of the stress
and strain distribution in a geometry takes a very important place in fracture mechanics,
especially when it concerns cracking problems.

CFEM/ ABAQUS 

X-FEM/UEL subroutine

Present study/ MATLAB 

(a) 

(b) 

(c)

Figure 10. The distribution of Von Mises stress: (a) with FEM analysis, (b) with X-FEM analysis,
(c) with the improved technique (X-IGA).

The zone of interest is the crack tip where the degree of damage of the defect has been
known. Obtaining a regularity of stresses in this region is a priority for numerical methods
since the calculation of fracture parameters, such as the stress intensity factor, as well as
the angle of deviation of the crack propagation, is based on the value of stresses at the
crack tip.

By comparison of the three results of Figure 10, there is a similarity in the results of
the numerical simulation. However, some errors can appear when using these numerical
techniques. The errors’ origins are detailed as follows: with the CFEM analysis, the field
of strains and stresses become singular at the crack tip, even with the integration of the
singularity in the model to improve the accuracy of the results. With the implementation
of the X-FEM method via user subroutine UEL in ABAQUS, a mesh sensitivity affects the
simulation results. For the present study, there is no singularity at the crack tip and there is
a minor sensitivity of mesh. The next section of this work shows a calculation of different
meshes for all the different methods. The X-IGA method implemented in MATLAB can be
an alternative to these numerical methods. The results presented in Figure 10 can support
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this conclusion because 4112 elements were used for the full tube with the CFEM method,
2747 elements for the half tube with the X-FEM method, and only 384 elements for the
XIGA method. For this reason, the evaluation of the stresses around an existing crack on a
pipe can be made by the present study with large elements and with a weak error, which
appears in the solution discretization.

8.2. Evaluation of the Fracture Parameter

In order to present the accuracy of the X-IGA technique, as well as the regularity of
the stress distribution around the crack tip, the SIFs were extracted and the value of the
mode I (KI) was calculated in this study, since the degree of damage that corresponds to
the opening of the crack is more severe than with the other modes [62]. To ensure that this
study is inscribed in linear elasticity, a pressure of 2.5 MPa [52] was applied. Three models
are evaluated for different mesh sizes. Therefore, the result of CFEM, X-FEM, and X-IGA
are compared. Moreover, the interaction integral approach, which is known as M-integral,
was used for calculating the SIFs.

For this comparison, the depth of the crack was varied from the thickness of the model
a/t; the thickness is t = 10 mm and a = 2, 3, . . . , 8 mm. Figures 11 and 12 illustrate the results
of the computation. The comparison between the results obtained by the X-IGA and CFEM
methods shows a good similarity. It is observed that fine meshes must be used to discretize
the areas around the crack tips for the CFEM, whereas the meshes are coarser for the XIGA.
It is clear to observe that only 640 elements are required by the present study to obtain the
result of 1297 elements with the CFEM method. Results obtained by implementing X-IGA
in MATLAB are in good agreement with the CFEM method implemented in ABAQUS.
The mentioned technique did not require much effort in dealing with the mesh in the crack
tip, whereas using ABAQUS required a specific meshing technique, due to the singularity
at the crack tip, and this can affect the numerical results.

As for the comparison between the X-IGA and X-FEM, the results show a good
similarity. It is also observed that, with X-FEM, a fine mesh must be used without a
particular treatment around the crack, since the crack is modelled independently of the
mesh. It is clear to observe that the present study requires just 640 elements for obtaining
the result of 2747 elements using X-FEM. The same enrichment functions for overcoming
the problem of singularity are used for both methods and only the shape functions are
modified. Therefore, there is a similarity of results between the two numerical methods.
When the depth of the crack approaches the inside of the pipe, the SIFs values become
maximized. It is clear to see that whatever technique is employed to simulate the crack, the
SIFs gradually increase with the crack length.
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Figure 11. The comparison between the CFEM and X-IGA method for a 2-D cracked pipe.
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Figure 12. The comparison between the X-FEM and X-IGA method for a 2-D cracked pipe.

By these results, implementing X-IGA in MATLAB shows the possibility to calculate
the fracture mechanics parameters for a cracked pipe under uniform pressure with a large
mesh size, compared to the other approaches (Figure 12). Therefore, it can be an alternative
way to evaluate the damage of a cracked pipe.

In addition to the SIF, the J-integral has specific importance when it comes to the
numerical stress analysis of cracks. To give more physical meaning to the analysis, and to
validate the strategy used in the application of X-IGA to address the cracking pipe problem,
we evaluated the J-integral with various crack lengths, as shown in Figure 13. Here, we
used 640 elements for the present study, and 2747 and 85,642 elements for X-FEM and
CFEM, respectively. The J-integral value increased gradually with the crack length and the
results obtained are similar to other numerical results.
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Figure 13. J-integral value obtained by the present study, X-FEM, and CFEM.

This problem is also analyzed by [51]; they used a UEL subroutine in the ABAQUS
software to evaluate the stress intensity factor. With the same element number and for
a = 5 mm and p = 2.5 MPa, we evaluated the performance of the present study and the
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results of both implementations are compared with Folias solutions [63], as illustrated in
Table 4.

Table 4. Comparative study of the present investigation and implementation using Fortran for a = 5 mm.

Method/
Implementation

X-IGA/
Fortran [51]

XIGA/
Fortran [51]

Present Study
MATLAB

Present Study
MATLAB

Folias Solution
[63]

Element
Number 470 767 470 767 ______

KI (MPa
√

mm) 13.18 13.015 13.85 13.51 14.37

Error (%) 8.306 9.454 3.645 6.01

Table 3 proves the significance of the present study implemented in MATLAB. It is
interesting to note that, in the present study, the error for a model with 470 elements is
3.645%, while for the study implemented in Fortran the error is 8.306%. Additionally, with
767 elements, the error for the present study is 6.01%, while for the study implemented in
Fortran the error is 9.454%. It is observed that the X-IGA implementation strategy that was
followed in the present study had a higher accuracy than the strategy followed by [51].

In addition, the accuracy of the present study can be realized by computing the error of
SIFs (%) with various crack lengths, as illustrated in Figure 14. It is noted that the maximum
error of the present study is 12.25%, while the study implemented in Fortran [51] is 27.83%.
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Figure 14. Error of SIFs with various crack length for the present study and the reference [51].

8.3. Effect of Pressure on the Fracture Parameter Calculation

Finally, in order to check the efficiency of the present study for the calculation of
the fracture parameter in the 2-D pipe domain, the inner pressure was varied with the
initial crack length a = 4 mm, so that the pressure did not exceed 4.5 MPa [64], keeping the
analysis in the elastic domain. The results of the SIFs and the J-Integral of CFEM, X-FEM,
and X-IGA are presented in Figure 15. It is observed that for the three-analyses technique,
the stress intensity factor increases with the increase of inner pressure. It is also observed
that the results for both the X-FEM and X-IGA methods became similar each time the
pressure was increased; this is due to the use of enrichment functions at the crack tip. The
singularity at the crack tip and the mesh dependency for the CFEM method makes their
results inaccurate.
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Figure 15. (a) SIFs and (b) J-Integral values for different pressures by the CFEM, X-FEM, and EX-IGA methods.

From these results, the X-IGA method can be used in the fracture parameters compu-
tation on cracked cylindrical structures under uniform pressure, the X-IGA method has
been well validated for the calculation of cracked plates [48], and this study is an extension
of the research work that has already been done in this field. The comparison between the
most-known methods in the field of numerical computation will allow us to justify the
role of this new technique: it can replace the existing methods in the current calculation
codes in the future, and the validation of the efficiency of this technique by the different
research works will convince the users in the industrial field. This is due to several reasons;
the most important reason, for the industrial sector, is the cost of calculation. Instead of
designing the model and approximating it by several meshing processes, it is enough to use
the geometry directly by the same shape functions, named B-spline or NURBS; after that,
the model will be reproduced precisely. It has been observed that X-IGA just needs a small
element for a crack in a pipe, compared to other techniques, and that with these elements,
the same results have been obtained, so if there is a complex geometry, the calculation
procedure will be very fast compared to the current method.

9. Conclusions

The aim of this investigation was to implement the X-IGA technique into a MATLAB
code for modeling cracked pipelines. The main theoretical approach was the NURBS
principle, which provided a higher-order continuity in numerical modeling.

An external crack in a two-dimensional pipe subjected to a uniform pressure has been
studied. The accuracy of this technique has been examined by deriving the stress intensity
factors and the J-integral. For several mesh sizes and for different inner pressures, SIFs
and the J-integral were extracted by X-IGA analysis using MATLAB code and its accuracy
was validated with the enrichment technique (X-FEM) using FORTRAN language and the
conventional finite element method (X-FEM) using ABAQUS software. It has been shown
that, when using the X-IGA analysis:

• The cracked pipe modeling does not need a finer mesh than other numerical tech-
niques. Therefore, the cost of computational will be reduced;

• The regularity of the stress and strain at the crack tip is obtained;
• The geometry was constructed exactly with using NURBS, which avoids the discretiza-

tion error. Therefore, confident results can be achieved;
• The error on the SIFs is minimal compared to X-IGA implemented by FORTRAN.

Other problems can be addressed by the provided technique, such as crack-growth
problems and dynamic fracture analyses in pipelines, which are planned for future research.
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Abstract: In the present paper, nonlinear behaviors of complex system dynamics from a multifractal
perspective of motion are analyzed. In the framework of scale relativity theory, by analyzing the
dynamics of complex system entities based on continuous but non-differentiable curves (multifrac-
tal curves), both the Schrödinger and Madelung scenarios on the holographic implementations of
dynamics are functional and complementary. In the Madelung scenario, the holographic implemen-
tation of dynamics (i.e., free of any external or internal constraints) has some important consequences
explicated by means of various operational procedures. The selected procedures involve synchronous
modes through SL (2R) transformation group based on a hidden symmetry, coherence domains
through Riemann manifold embedded with a Poincaré metric based on a parallel transport of di-
rection (in a Levi Civita sense). Other procedures used here relate to the stationary-non-stationary
dynamics transition through harmonic mapping from the usual space to the hyperbolic one mani-
fested as cellular and channel type self-structuring. Finally, the Madelung scenario on the holographic
implementations of dynamics are discussed with respect to laser-produced plasma dynamics.

Keywords: harmonic mapping; complex system dynamics; SL (2R) group; hidden symmetries

1. Introduction

Nonlinearity is accepted as one of the most fundamental properties of any complex
system dynamics. Interactions between the structural units of any complex system imply
mutual constraints at different scale resolution. Then, the universality of the dynamics
laws for any complex system becomes natural and must be reflected in various theoretical
models that could describe their dynamics. Some of the usual theoretical models are
based on the hypothesis that the variables characterizing the complex system dynamics are
differentiable, which can be otherwise unjustified. In such a perspective, the validations
of the previously described type of models need to be seen as sequential and applicable
on restricted domains for which integrability and differentiability are respected. Since
nonlinearity implies predominantly non-differentiable behaviors in the description of
complex system dynamics, it is necessary to explicitly introduce the scale resolution in
the equations defining the dynamics-governing variables. It implies that any variables
used in the description of any complex system now have a dual dependence on the
space-time coordinates and the scale resolution. In this new perspective, for instance,
instead of using variables defined by non-differentiable functions, approximations of these
complex functions that will be used at various scale resolutions are becoming available and
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operational. Therefore, all variables used to define the complex system dynamics will work
as a limit of families of functions, which for a null scale resolution are non-differentiable
but for non-null scale resolution are differentiable. The previous mathematical procedure
involves the development of suitable geometrical structures and a class of models for which
the motion laws are integrated with the scale laws. Such geometrical structures are built
on the concept of multifractality, and the equivalent theoretical models are based on the
scale relativity theory, either with the fractal dimension Df = 2 (standard model) or in an
arbitrary and constant dimension (multifractal theory of motion). In this class of models
(non-differentiable), the complex system’s structural unit’s dynamics can be described by
continuous but non-differentiable movement curves (multifractal motion curves). These
curves exhibit self-similarity as their main property at any of the points forming the
curve, which translates into behaviors of holographic type (every part reflects the global
system). Such a complex approach suggests that only holographic implementations can
offer complete descriptions of the complex system dynamics [1–3].

According to our previous report from [4], by assimilating any complex fluid with
a mathematic object of fractal type in the framework of scale relativity theory (SRT) [5],
various non-linear behaviors through a fractal hydrodynamic-type description as well as
through a fractal Schrodinger-type description, were established. Thus, the fractal hydrody-
namic -type description implies holographic implementations of dynamics through velocity
fields at non-differentiable scale resolution, via fractal soliton, fractal soliton-kink, and
fractal minimal vortex. The fractal Schrodinger-type description thus implies holographic
implementation of complex system dynamics though in-phase coherences of fractal state
fields via Airy fractal functions. In this last description, various operational procedures can
become functional. We can mention the fractal cubes with fractal SL(2R) group invariance
through in-phase coherence of the structural unit dynamics of any complex fluid, fractal
SL(2R) groups through dynamic synchronization among the complex system structural
units, fractal Riemann manifolds induced by fractal cubics and embedded with a Poincaré
metric through apolar transport of cubes, and harmonic mapping from the usual space to
the hyperbolic one. These procedures become operational so that several possible scenarios
towards chaos (fractal periodic doubling scenario), but without fully transitioning into
chaos, (non-manifest chaos) can be obtained.

In this work, we will analyze from a multifractal perspective the nonlinear dynamics
of complex systems, generalizing the results from [4]. In such context, exploring a hidden
symmetry under the form of synchronization groups of complex system entities leads to
the generation of a Riemann manifold with a hyperbolic type metric via parallel transport
of direction. Then, accessing complex systems’ nonstationary dynamics is performed
thorough harmonic mapping from the usual space to the hyperbolic one.

2. Mathematical Model

2.1. Motion Equation

In the following, any complex system can be assimilated with a multifractal object.
Then, since in the framework of scale relativity theory [6–9], the dynamics of complex sys-
tem entities are described through continuous and non-differentiable curves (multifractal
curves), the motion equation (with geodesics equation status) becomes (for detail see [6–9]):

d̂V̂i

dt
= ∂tV̂i + V̂l∂lV̂i +

1
4
(dt)[

2
f (α) ]−1Dlk∂l∂kV̂i = 0, (1)

where
V̂l = Vl

D − Vl
F

Dlk = dlk − id̂lk

dlk = λl
+λk

+ − λl
−λk

−
d̂lk = λl

+λk
+ + λl

−λk
−

∂t =
∂

∂t
, ∂l =

∂

∂xl , ∂l∂k =
∂

∂xl
∂

∂xk , i =
√
−1, l, k = 1, 2, 3.
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In relation (1), the meanings of the variables and parameters are as follows:

• xl is the multifractal spatial coordinate;
• t is the non-multifractal time having the role of an affine parameter of the motion

curves;
• V̂l is the multifractal complex velocity;
• Vl

D is the differentiable velocity independent of the scale resolution;
• Vl

F is the non-differentiable velocity dependent on the scale resolution;
• dt is the scale resolution;
• f (α) is the singularity spectrum of order α;
• α is the singularity index and is a function of fractal dimension Df ;
• Dlk is the constant tensor associated with the differentiable–non-differentiable transi-

tion;
• λl

+

(
λk
+

)
is the constant vector associated with the backward differentiable–non-

differentiable dynamic processes;
• λl

−
(

λk
−
)

is the constant vector associated with the forward differentiable–
non-differentiable dynamic processes.

The relation (1) shows that in the most general case of complex system structural unit
dynamics, regardless of the fractalization type, the multifractal inertial, ∂tV̂i, the multifrac-

tal convective, V̂l∂lV̂i, and the multifractal dissipative effects, 1
4 (dt)[

2
f (α) ]−1Dlk∂l∂kV̂i, are

achieving balance at any point of the movement curve.
By using the singularity spectrum, the following patterns in the complex system

dynamics can be distinguished: monofractal patterns that imply dynamics in homogenous
complex systems characterized though a single fractal dimension and having the same
scaling properties in any time interval; multifractal patterns that include dynamics in
inhomogeneous and anisotropic complex systems characterized simultaneously by a wide
variety of fractal dimensions. Thus, f(α) allows the identification of the universality classes
in the dynamics of any complex system even when the strange attractors associated with
these dynamics have different aspects. For details on the singularity spectrum and its
implication for the dynamics of complex systems, see [10–12].

2.2. Schrodinger and Madelung Scenarios in the Description of Complex System Dynamics

For a large temporal scale resolution with respect to the inverse of the highest Lya-
punov exponent [7–9], the class of deterministic trajectories of any complex system entity
can be substituted by the class of virtual trajectories. Then, the concept of definite trajecto-
ries is replaced by the one of density of probability. The multifractality is then expressed by
means of multi-stochasticity and becomes functional when describing the dynamic of any
complex system in the form of multifractal fluid dynamics (for details see [5–9]).

Many modes of multifractalization through stochasticization processes can be defined.
Among the most utilized processes, the Markovian and non-Markovian stochastic pro-
cesses are found [10–12]. In the following description of complex system dynamics, only
multifractalizations by means of Markovian stochastic processes will be discussed, i.e.,
those specified by constraints [10–12]:

λi
+λl

+ = λi
−λl

− = 2λδil , (2)

where λ is a constant associated with the differentiable–non-differentiable transitions and
δil is the Kronecker pseudo-tensor. Based on (3), the motion Equation (1) become (for
details on the mathematical procedure see [7–9]):

d̂V̂i

dt
= ∂tV̂i + V̂l∂lV̂i − iλ(dt)[

2
f (α) ]−1

∂l∂
lV̂i = 0. (3)
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The relation (4) shows that for the case of complex system structural unit dynam-
ics, only for multifractalization by means of Markovian stochastic processes (for the case
of Brownian or Levy type motions) in any point of the motion curves, the local multi-
fractal complex acceleration, ∂tV̂i, the multifractal complex convection, V̂l∂lV̂i, and the

multifractal complex dissipation iλ(dt)[
2

f (α) ]−1
∂l∂

lV̂i are in equilibrium.
In the following, let it be allowed that the motions of the entities belonging to any

complex system are irrotational. Then, the multifractal complex velocity fields from (2)
become:

V̂i = −2iλ(dt)[
2

f (α) ]−1
∂i ln Ψ, (4)

where
χ = −2iλ(dt)[

2
f (α) ]−1 ln Ψ (5)

is the multifractal complex scalar potential of the complex velocity fields from (5) and Ψ is
the function of states (on the significance of Ψ, see [5–10]). In these conditions, substituting
(5) in (4) and using the mathematical procedures from [6–9], the motion Equation (4) takes
the form of the multifractal Schrödinger equation:

λ2(dt)[
4

f (α) ]−2
∂l∂lΨ + iλ(dt)[

2
f (α) ]−1

∂tΨ = 0. (6)

Therefore, for the complex velocity fields (5), the dynamics of any complex system
entity are described through Schrödinger type “regimes” at various scale resolutions
(Schrödinger’s multifractal description). Equation (7) defines the Schrödinger scenario on
the holographic implementation of complex system dynamics.

Moreover, if Ψ is chosen in the form (Madelung’s type choice):

Ψ =
√

ρeis, (7)

where
√

ρ is the amplitude and s is the phase, then the multifractal complex velocity fields
(5) take the explicit form:

V̂i = 2λ(dt)[
2

f (α) ]−1
∂is − iλ(dt)[

2
f (α) ]−1

∂i ln ρ, (8)

which implies the real multifractal velocity fields:

Vi
D = 2λ(dt)[

2
f (α) ]−1

∂is (9)

Vi
F = λ(dt)[

2
f (α) ]−1

∂i ln ρ. (10)

In (10), Vi
D is the differential velocity field, while in (11), Vi

F is the multifractal velocity
field.

By (9)–(11) and using the mathematical procedure from [6–10], the motion Equation (4)
reduces to the multifractal Madelung equations:

∂tVi
D + Vl

D∂lVi
D = −∂iQ (11)

∂tρ + ∂l

(
ρVl

D

)
= 0, (12)

with Q the multifractal specific potential:

Q = −2λ2(dt)[
4

f (α) ]−2 ∂l∂l
√

ρ
√

ρ
= −Vi

FVi
F −

1
2

λ(dt)[
2

f (α) ]−1
∂lVl

F. (13)
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Equation (12) corresponds to the multifractal specific momentum conservation law,
while Equation (13) corresponds to the multifractal states density conservation law. The
multifractal specific potential (14) implies the multifractal specific force:

Fi = −∂iQ = −2λ2(dt)[
4

f (α) ]−2
∂i ∂l∂l

√
ρ

√
ρ

, (14)

which is a measure of the multifractality of the motion curves.
Therefore, for the multifractal complex velocity fields (9), the dynamics of any com-

plex system are described through Madelung-type “regimes” at various scale resolutions
(Madelung’s multifractal description). Equations (12)–(14) define the Madelung scenario
on the holographic implementation for complex system dynamics. In this context, any
complex system entity is in a permanent interaction with a multifractal medium through
the multifractal specific force (15). All complex systems can be identified with a multifractal
fluid, the dynamics of which are described by the multifractal Madelung equations (see
(12)–(14)). The velocity field Vi

F does not represent the contemporary dynamics. Since Vi
F is

missing from (13), this velocity field contributes to the transfer of the multifractal specific
momentum and to the multifractal energy focus. Any analysis of Q should consider the
“self” nature of the specific momentum transfer of multifractal type. Then, the conservation
of the multifractal energy and the multifractal momentum ensure the reversibility and the
existence of the multifractal eigenstates.

If the multifractal tensor is considered:

τ̂il = 2λ2(dt)[
4

f (α) ]−2
ρ∂i∂l ln ρ, (15)

the equation defining the multifractal forces that derive from the multifractal specific
potential Q can be written in the form of a multifractal equilibrium equation:

ρ∂iQ = ∂l τ̂
il . (16)

Since τ̂il can be also written in the form:

τ̂il = η
(

∂lVi
F + ∂iVl

F

)
, (17)

with
η = λ(dt)[

2
f (α) ]−1

ρ (18)

a multifractal linear constitutive equation for a multifractal “viscous fluid” can be high-
lighted. In such a context, the coefficient η can be interpreted as a multifractal dynamic
viscosity coefficient of the multifractal fluid.

2.3. Synchronization Modes in Complex System Dynamics through a “Hidden” Symmetry

The existence of multifractal specific force (15) and the multifractal viscosity tensor
(16) will be considered as the “trigger” of the complex system processes that lead both to
instabilities and to self-structuring. If the multifractal specific potential is constant, through
(15) for the one-dimensional case, the following condition is satisfied:

∂2√ρ

∂x2 + k2
0
√

ρ = 0, (19)

with
k2

0 =
E

2λ2(dt)[
4

f (α) ]−2
.
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In the above relation, E is the multifractal energy of the complex system’s entity and
m0 is the rest mass. The solution of (20) can be written in the form

√
ρ = zei(k0x+θ) + ze−i(k0x+θ), (20)

where z is a complex amplitude, z is its complex conjugate, θ is a specific phase and x is the
multifractal spatial coordinate. In such a context, z and θ “scan” each entity of the complex
system, which has as a general characteristic Equation (20), and thus the same k0.

Equation (20) has a multifractal hidden symmetry by means of a homographic group.
Indeed, the ratio ε of two independent linear solutions of Equation (20) is a solution of
multifractal Schwartz’s differential equation (for the classical case, see [6–9]):

{ε, x} =

(
ε′′

ε′

)′
− 1

2

(
ε′′

ε′

)2
= 2k2

0 (21)

ε′ =
dε

dx
, ε′′ =

d2ε

dx2 . (22)

The left part of (22) is invariant with respect to the multifractal homographic transfor-
mation

ε ↔ ε′ =
aε + b
cε + d

(23)

with a, b, c, d multifractal real parameters. The relation (24) corresponding to all possible
values of these parameters defines the multifractal group SL(2R) (for the classical case,
see [13,14]).

Thus, all of the complex system entities having the same k0 are in biunivocal cor-
respondence with the transformation of the multifractal group SL(2R). This allows the
construction of a personal parameter ε for each individual complex system entity. Indeed,
as a guide, it is chosen in the general form of solution of (22), which is written as

ε′ = l + m tan(k0x + θ) (24)

Thus, through l, m, and θ, it is possible to characterize any complex systems entity.
In such conjecture, identifying the phase from (25) with the one from (21), the personal
parameter becomes:

ε(x) =
z + zε

1 + z
, z = l + im, z = l − im, ε ≡ e2i(k0x+θ). (25)

The fact that (25) is also a solution of (22) implies, by explicitly solving (24), that the
multifractal group SL(2R):

z′ =
az + b
cz + d

, z′ =
az + b
cz + d

, ε′ =
cz + d
cz + d

ε. (26)

Therefore, the multifractal group (27) works as a synchronization mode among various
entities of any complex system process to which the amplitudes and the phases are also
connected. More precisely, through (27) the phase of ε is only moved with a quantity
depending on the amplitude of the complex system at the transition among various
complex system entities. Moreover, the amplitude of the movement is also affected from
a multifractal homographic perspective. The usual synchronization modes manifested
through delay of the amplitudes and phases of the complex system entities must describe
here only a particular case.

2.4. Riemann’s Manifold Generated through Synchronization Processes

According to the mathematical procedures from [6–9,15–17], the space of multifractal
group (27) can be structured by means of (z, z, ε) parameters, as a multifractal Riemann’s
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manifold. Indeed, the structure of multifractal group (27) is typical of an SL(2R) one,
which is taken in the standard form

[A1, A2] = A1, [A2, A3] = A3, [A3, A1] = −2A2 (27)

where Ak, k = 1, 2, 3 are the multifractal infinitesimal generators of the group. Since
the multifractal group is simple transitive, these multifractal generators can be found as
components of the multifractal Cartan coframe (for the classical case, see Cartan [15]) from
the relation.

d( f ) = ∑
∂ f
∂xk dxk =

{
ω1
[

z2 ∂

∂z
+ z2 ∂

∂z
+ (z − z)ε

∂

∂ε

]
+ 2ω2

(
z

∂

∂z
+ z

∂

∂z

)
+ ω3

(
∂

∂z
+

∂

∂z

)}
( f ) (28)

where ωk are the components of the multifractal Cartan coframe which can be found from
the system:

dz = ω1z2 + 2ω2z + ω3, dz = ω1z2 + 2ω2z + ω3, dε = ω1ε(z − z) (29)

Thus, both the multifractal infinitesimal generators and the multifractal coframe
are obtained by identifying the right-hand side of (29) with the standard dot product of
multifractal algebra SL(2R)

ω1 A3 + ω3 A1 − 2ω2 A2, (30)

so that
A1 =

∂

∂z
+

∂

∂z
, A2 = z

∂

∂z
+ z

∂

∂z
, A3 = z2 ∂

∂z
+ z2 ∂

∂z
+ (z − z)ε

∂

∂ε
(31)

and
ω1 =

dε

(z − z)ε
, 2ω2 =

dz − dz
z − z

− z + z
z − z

dε

ε
, ω3 =

zdz − zdz
z − z

+
zzdε

(z − z)ε
. (32)

In real terms from (26), these last multifractal equations can be written as

A1 =
∂

∂l
, A2 = l

∂

∂l
+ m

∂

∂m
, A3 =

(
l2 − m2

) ∂

∂l
+ 2lm

∂

∂m
+ 2m

∂

∂θ
(33)

ω1 =
dθ

2m
, ω2 =

dm
m

− l
m

dθ, ω2 =
l2 + m2

2m
dθ +

mdl − ldm
m

. (34)

It should be mentioned that in [6–9], it does not work with the previous multifractal
differential forms, but with the multifractal absolute invariant differentials:

ω1 =
dz

(z − z)ε
, ω2 = −i

(
dε

ε
− dz + dz

z − z

)
, ω3 =

−εdz
z − z

(35)

or, in real terms, exhibiting a three-dimensional Lorentz structure of this multifractal space

Ω1 = ω1 = dθ +
dl
m

, Ω2 = cos θ
dl
m

+ sin θ
dm
m

, Ω3 = − sin θ
dl
m

+ cos θ
dm
m

(36)

The advantage of this representation is that it makes obvious the multifractal connec-
tion with the multifractal Poincaré representation of the multifractal Lobachevsky plane.
Indeed, the multifractal metric is:

ds2

g
=
(

ω2
)2

− 4ω1ω2 =

(
dε

ε
− dz + dz

z − z

)2
+ 4

dzdz

(z − z)2 , (37)

or in real terms

− ds2

g
= −

(
Ω1
)2

+
(

Ω2
)2

+
(

Ω3
)2

= −
(

dθ +
dl
m

)2
+

dl2 + dm2

m2 ,
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where g is a multifractal constant.
This multifractal metric reduces to that of Poincaré

ds2

g
= −4

dzdz

(z − z)2 = −4
dl2 + dm2

m2 . (38)

in the case when ω2 = 0 or Ω1 = 0, which defines the variable θ as the “angle of
parallelism” (in Levi-Civita sense) of the multifractal hyperbolic plane (the multifractal
connection). The multifractal Riemann manifold can further be associated with particular
coherence domains induced by the parallel transport of direction. In fact, if in modern
terms dl

m represents the multifractal connection form of the multifractal hyperbolic plane,
the relations in (37) then represent a general multifractal Bäcklung transformation in that
multifractal plane. For the classical case, see [16].

2.5. Complex System Dynamics via Harmonic Mapping

In the following, we will generate non-stationary dynamics in complex systems
through harmonic map generation. Indeed, let us assume that the complex system dynam-
ics are described by the variables

(
Yj), for which the following multifractal metric was

discovered:
hijdYidYj (39)

in an ambient space of multifractal metric:

γαβdXαdXβ. (40)

In this situation, the field equations of the complex system dynamics are derived from
a variational principle, connected to the multifractal Lagrangian:

L = γαβhij
dYidYj

∂Xα∂Xβ
. (41)

In the current case, (40) is given by (39) with the constraint ω2 = 0, the field variables
being z and z or, equivalently, the real and imaginary part of z. Therefore, if the variational
principle:

δ
∫

L
√

γd3x, (42)

is accepted as a starting point, where γ =
∣∣γαβ

∣∣, the main purpose of the complex system
dynamics research would be to produce multifractal metrics of the multifractal Lobachevski
plane (or related to it). In such a context, the multifractal Euler equations corresponding to
the variational principle (43) are:

(z − z)∇(∇z) = 2(∇z)2 (43)

(z − z)∇(∇z) = 2(∇z)2,

which allows the solution:

h =
cosh

(
Φ
2

)
− sinh

(
Φ
2

)
e−iα

cosh
(

Φ
2

)
+ sinh

(
Φ
2

)
e−iα

, α ∈ R, (44)

with α real and arbitrary, as long as
(

Φ
2

)
is the solution of a Laplace-type equation for

the free space, such that ∇2
(

Φ
2

)
= 0. For a choice of the form α = 2Ωt, in which case a

temporal dependency was introduced in the complex system dynamics, (45) becomes:
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h =
i
[
e2Φ sin(2Ωt)− sin(2Ωt)− 2ieΦ]

e2Φ[cos(2Ωt) + 1]− cos(2Ωt) + 1
. (45)

In Figures 1–3, multiple nonlinear behaviors of complex dynamics at scale resolutions
in dimensionless coordinates are presented via Python simulations: (i) nonlinear behaviors
at a global scale resolution (Figure 1a,b); (ii) nonlinear behaviors at a differentiable scale
resolution (Figure 2a,b); (iii) nonlinear behaviors at a non-differentiable scale resolution
(Figure 3a,b). Let it be noted that, whatever the scale resolution, complex system dynamics
prove themselves to be reducible to self-structuring patterns. The structures are present
in pairs of two large patterns that are intercommunicated in an intermittent way. In the
0–20 range for Ω and t, the resulting structures are communicating with each other via a
channel created along the symmetry axis for t ~10. This channel is also seen for different
(Ω; t) coordinates, which is interpreted as an intermittency in the structure bonding. Based
on the properties of the studied system, there are some associations with real physical
phenomena that can be made. The self-structuring process is a well-known aspect of low-
temperature plasmas [18,19]. In recent years there have been some reports on structuring
of the laser-produced plasmas [19–21], with impacts in pulsed laser deposition technology.
The data presented here can be correlated with the plasma structuring (into a fast structure
and a slow structure, also named Coulomb and thermal structure, respectively, after the
dominant ejection mechanism) during expansion based on the ablation mechanism and
ionization state [21–23]. In recent years, a change in the understanding of this structure
has been reported, and a separation based on the ionization state was more plausible for
the energetic structuring of the plasma [21,24–26]. In a series of papers [26–30], it was
shown that each structure can be correlated with certain properties of the target. For
this reason, the use of a multifractal model would be suitable for understanding plasma
structuring and exploring the relation between the structure, which, as of now, is outside
the reach of any of the tools used [31,32]. The model shows that for the structuring process,
a communication channel is formed that will automatically appear. If the same rational
treatment is applied to the study of plasma structuring, we identify that these channels are
the double layer forming at the interface between the two structures. Comments on the
effect of the double layer separating the two-plasma structure were made in [28–32], and
it was shown that it plays an important role in controlling the kinetics of laser-produced
plasmas. Our model highlights an important aspect of the plasma double layers: they
are 3-dimensional objects with different properties seen at different investigation scales
that transcend the planar expansion. This is seen from Figures 1–3, where we see that the
channel is present for different (Ω; t) coordinates. The transcendence of the plasma double
layer over several resolution scales is understandable, as the average value is of a few tens
of Debye lengths [32], which is the core resolution scale in plasma physics. The presence
of a transient double layer driving the dynamics of a laser-produced plasma is relatively
novel and has been investigated through other modeling approaches and experimental
investigations.

Let it be noted that the mathematical formalism of the multifractal theory of motion
naturally implies various operational procedures (invariance groups, harmonic mappings,
group isomorphisms, embedding manifolds, etc.) with quite a number of applications
in complex systems and plasma physics dynamics [32]. Plotting h, once again in dimen-
sionless parameters, also highlights certain temporal self-similar properties, with the
multifractal structures being contained into similar multifractal structures at much higher
scales (Figure 4a–c). Let us also note that the structure’s communication channel has an ex-
ponential decrease in the (Ω; t) plane, which reflects the dissipation processes [32] occurring
during laser-produced plasma expansion. When they expand, laser-produced plasmas lose
particles and energy through collisional/radiative processes. This will be reflected in the
weakening of the plasma double layer and limiting of the reach to a small plasma volume
in the proximity of the double layer. The model manages to express the dissipation of the
plasma through the reduction of the channel amplitude on the Ω axis as the time variable is
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increased. This result represents an important step forward in understating the dynamics
at the front of the plume. Most of plasma diagnostics and even modeling are concerned
with late-time interactions mostly occurring in the core of the plasma. Our model manages
to capture, albeit in a multifractal picture, dissipation processes and possible recombination
occurring at the front of the plume. Expanding the reach of our results, we could find
future implementation for pulsed-laser deposition, where the front of a subsequent plasma
always interacts with the already-deposited film.

(a)

(b)

Figure 1. (a): 3D dynamics at global scale resolution of h(Ω, t) with Φ = 2.35. (b): 2D dynamics at global scale resolution of
h(Ω, t) with Φ = 2.35.
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(a)

(b)

Figure 2. (a): 3D dynamics at differentiable scale resolution of Re[h(Ω, t)] with Φ = 2.35.(b): 2D dynamics at differentiable
scale resolution of Re[h(Ω, t)] with Φ = 2.35.
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(a)

(b)

Figure 3. (a): 3D dynamics at non-differentiable scale resolution of Im[h(Ω, t)] with Φ = 2.35. (b): 2D dynamics at
non-differentiable scale resolution of Im[h(Ω, t)] with Φ = 2.35.

The results presented in Figure 4a–c also specify that, through self-structuring of the
complex system entities, channel-type patterns can also be observed.
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(a)

(b)

(c)

Figure 4. (a): 2D dynamics at global scale resolution of h(Ω = 0 − 200, t = 0 − 200); h = 5. (b): 2D dynamics at global scale
resolution of h(Ω = 0 − 400, t = 0 − 400); h = 5. (c): 2D dynamics at global scale resolution of h(Ω = 0 − 600, t = 0 − 600);
h = 5.
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3. Conclusions

By considering that any complex system dynamics can be assimilated with a math-
ematical object of multifractal type, various non-linear behaviors in the framework of
the scale relativity theory of motion are developed. In such a context, Schrödinger’s and
Madelung’s holographic implementation scenarios for any complex system dynamics
become operational through the multifractal motion curves. Exploring at various scale
resolutions a hidden symmetry of stationary dynamics in the Madelung description, syn-
chronization modes are seen forming through the SL (2R) group between the complex
system entities. In the synchronization process, the amplitudes and phase of the motions
of any complex system entity are shown to be connected, while the amplitude attributed
to each motion can be tailored from a multifractal homographic perspective. The usual
synchronization modes were proved to be manifested through the delay of the amplitude
and phases of the complex system entities, and are here a particular case. The space in-
duced by means of SL(2R) group parameters was structured at various scale resolutions as
a Riemann manifold (multifractal Riemann manifold). The generators of a special Cartan
coframe and their associated metrics were found. When a parallel transport of direction
in the Levi-Civita sense became functional, the metric was reduced to that of Poincare,
with the angle of parallelism of the hyperbolic plane defining the connections. Riemann
manifolds were associated with coherence domains, with the coherence on each domain
being induced by parallel transport of direction. Access to non-stationary dynamics at
various scale resolutions became possible via harmonic mapping from the usual space to
the hyperbolic one. Then, self-structuring of cellular and channel types were produced.
The results are discussed with possible interpretations for the dynamics of laser-produced
plasmas.
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Abstract: A simulation model can provide insight into the characteristic behaviors of different health
states of an actual system; however, such a simulation cannot account for all complexities in the
system. This work proposes a transfer learning strategy that employs simple computer simulations
for fault diagnosis in an actual system. A simple shaft-disk system was used to generate a substantial
set of source data for three health states of a rotor system, and that data was used to train, validate,
and test a customized deep neural network. The deep learning model, pretrained on simulation data,
was used as a domain and class invariant generalized feature extractor, and the extracted features
were processed with traditional machine learning algorithms. The experimental data sets of an RK4
rotor kit and a machinery fault simulator (MFS) were employed to assess the effectiveness of the
proposed approach. The proposed method was also validated by comparing its performance with
the pre-existing deep learning models of GoogleNet, VGG16, ResNet18, AlexNet, and SqueezeNet
in terms of feature extraction, generalizability, computational cost, and size and parameters of
the networks.

Keywords: computer simulations; actual systems; deep learning; transfer learning; autonomous
feature extraction; machine learning

1. Introduction

Rotating machinery is a common and critical type of mechanical equipment used in a
wide variety of modern industrial applications. Catastrophic failure of rotating machinery
may result in substantial economic loss and injury to personnel. Turbines are key rotating
parts of power plants and are susceptible to mechanical defects, such as unbalance [1,2],
misalignment [3,4] rubbing [5,6], oil whirl [7], and oil whip [8,9], during operation. The
presence of defects in turbines may cause performance degradation or even collapse of
the entire system if not rectified in a timely manner. To ensure safe and reliable operation
of rotating machinery, it is imperative that operators be able to promptly detect, isolate,
and quantify different faults using vibration signals obtained through accelerometers or
proximity sensors.

The most commonly used methods of fault diagnosis include model-based methods
and data-driven methods [10–13]. In model-based methods, the physics underlying the
system’s behavior are modeled and used for fault diagnosis. It is difficult or even impossible
to precisely model the behavior of complex systems, owing to the wide range of structural
complexities and environmental uncertainties that affect such systems [14]. Data-driven
methods use data obtained from sensors in the system to carry out fault diagnosis; these
methods do not require much knowledge about the underlying kinematics and physics of
the failure of the system [15,16]. In traditional data-driven fault diagnosis methods using
machine learning, the signals from sensors are usually subjected to preprocessing (e.g.,
noise removal, domain transformation (time to frequency), signal decomposition (empirical
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mode decomposition)), extraction of discriminative features (e.g., time and frequency
domain statistical features), selection of features that are more sensitive to damage (e.g.,
feature ranking), and processing of the selected features with supervised or unsupervised
machine learning algorithms [17]. The performance of machine learning algorithms for
fault diagnosis is heavily dependent on the set of discriminative features that is selected [18].
A set of statistical features may work well for one problem and may fail completely for
another problem in the same domain but on a different scale [19]. In general, there is no
optimized set of processing steps for fault diagnosis using handcrafted statistical features
from sensor data and machine learning algorithms. For instance, a data-driven diagnostic
strategy that uses simulation data may not be generalized to a dataset from an experimental
setup of the same problem without a complex process of model updating [20,21]. Moreover,
the extraction of damage-sensitive features is labor-intensive and requires considerable
diagnostic skills and domain expertise [22,23]. In addition, even an experienced diagnostic
expert may spend a long time optimizing the set of discriminative features to diagnose a
certain problem.

Deep learning has been successfully implemented for a variety of applications, such
as image classification, speech recognition, computer vision, medical diagnosis, finance,
marketing, and a multitude of other applications [23–26]. The inherent capability of deep
learning models to automatically extract features from raw data to describe the underlying
problem is one of their most celebrated benefits. Additionally, deep learning models
can deal with unstructured data in different formats (e.g., texts, images, pdf files, etc.)
to uncover the latent relationships between different data types and make important
predictions [27,28]. In general, data-driven methods that use deep learning algorithms
require sufficient data on the healthy and faulty states of the system for the development
of robust and effective fault diagnosis strategies. Although data on the healthy state of a
system is generally available in sufficient amounts, data on different defective states can be
limited or even completely unavailable due to the high cost associated with running the
machinery in the presence of defects. To make up for the dearth of failure data from different
defective states of expensive machinery, computer simulations can be employed to generate
a sufficient amount of healthy and faulty data using simplified mathematical models of
the actual machinery [29]. However, there are gaps between the data from simulations
and actual systems and a labor-intensive process is required to identify the parameters of
the actual system and tune those parameters to bring the response characteristics of the
simulation model closer to those of the actual system [30]. Additionally, despite the process
of parameter identification from the actual system, it is not guaranteed that a diagnostic
strategy developed from a simulation model will perform equally well for the detection,
isolation, and quantification of different defects in the actual system. In general, the better
a computer simulation represents the response behavior of an actual system, the greater its
computational cost, and vice versa.

One way to bridge the gap between computer simulation and actual systems while
keeping the simulation as simple as possible involves transfer leaning or cross-domain
knowledge transfer [31,32]. The fundamental idea of transfer learning is to leverage the
knowledge from a semantically related problem to solve a new problem with a different
domain distribution. In the general framework of transfer learning, a learning body learns
the required properties and parameters from a source task with a substantial amount of
labeled data and transfers/tunes those parameters to a target task with a limited amount
of labeled or unlabeled data [12,33]. Generally, the source and target data have different
statistical distributions [31,34]. Cao et al. [35] proposed transfer learning from a pretrained
deep convolutional neural network (CNN) for fault diagnosis of a gearbox with limited
data. The source domain consisted of a large number of labeled natural images and the
target domain comprised graphical images from the gearbox vibration signals. Xu et al. [36]
presented transfer CNNs for online fault diagnosis of bearings and pumps. In their work,
related datasets were used to train several offline CNNs, then their shallow layers were
transferred to an online CNN to improve its diagnostic performance. Yan et al. [37]
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studied the application of knowledge transfer for fault diagnosis in rotary machines while
considering the variation of working conditions, fault locations, types of machines, and
different faults. Hasan and Kim [38] studied transfer learning for fault diagnosis of bearings
under different working conditions. The only difference between the source and target tasks
was the speed of rotation. Li et al. [39] studied the fault diagnosis of rolling bearings via
deep convolution domain adversarial transfer learning. Zhang et al. [40] proposed a fault
diagnosis strategy for bearings under different working conditions using transfer learning
with neural networks. Huang et al. [41] presented a boosted algorithm (SharedBoost) to
explore transfer learning for multiple data sources and compared its results with those of
other transfer learning methods.

This paper attempted to employ simple simulation models of a rotor system to devise
a robust and autonomous diagnostic strategy for actual rotating machinery. First principles
were used to develop a simple two degree of freedom model of a rotor system with three
types of defects (unbalance, parallel misalignment, and point rubbing). The simple rotor
model was used to generate a large amount of vibration data by considering different
operation speeds and different defect severity levels. For robustness, the simulation data
was also contaminated with different levels of white Gaussian noise. The vibration signals
from the simulation models were transformed into scalograms [42,43], which were then
used to obtain a pretrained customized deep neural network. The pretrained network
was employed as a generalized autonomous feature extractor from the experimental data
sets of an RK4 rotor kit and a machinery fault simulator (MFS). The extracted features
were processed with several conventional machine learning algorithms and an optimum
classifier was identified. The performance of the customized deep learning network for
autonomous feature extraction is also compared to that of other existing pretrained models,
such as AlexNet [44], GoogleNet [45], ResNet [46], Vgg16 [47], etc. The proposed approach
is invariant to the number of health states in the simulation and experimental domains,
while no attempts are made to minimize the gap between the two domains.

2. Proposed Methodology

The limited nature of data from different defective states of actual machinery prohibits
the use of deep learning models for autonomous feature extraction and diagnostics. Devel-
opment of exact simulation models that replicate the response characteristics of the actual
machinery is often computationally expensive. Although simple simulation models can
provide insights into the characteristic behaviors of actual machinery in the presence of
defects and are less computationally expensive, they do not account for all the uncertainties
in the actual system. Transfer learning or cross-domain knowledge transfer could help
to leverage the advantages of simple simulation models for fault diagnosis of the actual
system. A schematic illustration of the basic idea of transfer learning in the context of the
current problem is shown in Figure 1.

A large amount of source data is required to train, validate, and test a deep learning
model with the highest possible degree of accuracy. That pretrained model can be used for
automatic feature extraction from a limited dataset for a target task, or its weights and bias
can be transferred to a limited target dataset using the concept of fine tuning [48,49]. In
our case, the parameters of the model trained on simulation data are employed to extract
high-level discriminative features from the target task of the experimental data. In transfer
learning, the types of defects in the source data and target data are not necessarily the
same [35,37,50]. A schematic illustration of the general workflow of the current work, which
involves employing simple simulation models to detect, isolate, and quantify different
types of defects in actual mechanical systems, is depicted in Figure 2.
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Figure 1. Fundamental idea of transfer learning.

 

Figure 2. Overall workflow of the proposed methodology.

Herein, a simple simulation model was employed to generate a large amount of source
data for the representative health states of the source task. For robustness, the simulation
data was contaminated with different levels of white Gaussian noise. The noisy source
data was transformed into scalograms via MATLAB and the scalograms were used to train,
validate, and test a customized CNN.

The neural network trained on simulation data was used to automatically extract
discriminative features from the response scalograms of the experimental data of real
machines. The discriminative features were processed using traditional machine learning
algorithms, such as support vector machine (SVM), tree classifier, K-nearest neighbor
(KNN), etc. The results of the autonomous feature extraction via a customized neural
network trained on simulation data are also compared with the results of feature extraction
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via available pretrained deep learning models (e.g., Alexnet, GoogLeNet, VGG16) in terms
of classification accuracy, generalization, computational cost, hardware requirement, etc.
The proposed approach was validated for two datasets from an RK4 rotor kit by GE
Bently Nevada (1631 Bently Parkway South, Minden, Nevada USA 89423) and a machinery
fault simulator (MFS) by SpectraQuest (8227 Hermitage Road, Richmond, VA 23228 USA).
Although, in the current work, the proposed approach was employed for the diagnosis
of rotating machinery, this approach could be extended to the damage assessment of
laminated composites, civil infrastructures, industrial robots, gearboxes, and others, where
simple simulations could be developed to gain insights into the fault characteristics of the
actual systems.

2.1. Simulation Model and Source Data Generation

As described in the previous sections, developing a simulation model that precisely
matches the response characteristics of an actual system in the absence and presence of de-
fects is either too computationally expensive or completely impossible for complex systems.
Although simple simulation models of different types of actual machinery (e.g., a turbine
simplified as a shaft-disk system) have been used to gain insight into the characteristics
of various defects in the actual system, it is never a guarantee that the simulation models
can be employed to assess damage in the actual system using a conventional approach. To
bridge the gap between the actual systems and their simulated counterparts, transfer learn-
ing or cross-domain knowledge transfer provides a natural solution. However, transfer
learning requires a large amount of data from the source task. This section describes the
simple mathematical models of a shaft-disk system with different defects that were used
to generate a large dataset for the source task. The simple rotor system considered in this
work consists of a single disk of mass m mounted at the center of a shaft with length L, as
shown in Figure 3.

Figure 3. Simple rotor-disk system for the generation of a large amount of source data.

The shaft is supported by two bearings at the ends; the bearings are linearized, ideally
with stiffness and damping. The support and/or foundation are assumed to be rigid. The
dynamic response of the shaft-disk system is represented by a fixed coordinate system at
the center of the disk. The system is characterized in terms of transverse displacements,
and the vibration along the axis of the shaft is ignored. For the isotropic properties of the
bearings at the two ends, and the disk mounted at the center of the shaft, the dynamics of
the system in Figure 3 can be defined by a time-dependent equation, as follows:

m
..
x(t) + cxT

.
x(t) + kxTx(t) = Fx(t)

m
..
y(t) + cyT

.
y(t) + kyTy(t) = Fy(t)

(1)

where x and y are the displacements at the disk along the x and y axes, respectively, m is
the mass of the disk, cxT and cyT, respectively, denote the total damping at the two bearings
along the x and y axes, and kxT and kyT denote the total stiffness at the two bearings along
the x and y axes, respectively. The terms Fx and Fy refer to the general forces acting on
the system along the x and y direction, respectively. The anisotropic supports can be
modeled using the approach proposed by Filippi et al. [51]. The characteristic behavior of
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the forcing functions acting on the system depends on the type of defect in the system. In
this work, three defects (unbalance, misalignment, and rubbing) of different magnitudes
were considered in the system shown in Figure 3 to generate a large amount of source data.
In practice, the pristine or healthy state of the rotating machinery has a small amount of
residual unbalance that cannot be completely removed despite efforts at balancing. This
small amount of residual unbalance is considered to be within the acceptable range (i.e.,
the system is considered to be healthy) if the amplitude of the vibration signals is within
a certain level of the root mean square (rms) as prescribed by the standards of ISO 7919-
2 [52–54]. Residual unbalance in the system exists when the center of mass is not coincident
with the center of rotation. The motion equation used to simulate the residual unbalance in
the rotor system is shown as follows in Equation (2):

m
..
x(t) + cxT

.
x(t) + kxTx(t) = merΩ2 cos(Ωt + α)

m
..
y(t) + cyT

.
y(t) + kyTy(t) = merΩ2 sin(Ωt + α)

(2)

where er is the eccentricity between the center of mass and center of rotation, α is the phase
angle of residual unbalance, and Ω is the rotational speed of the shaft.

The presence of unbalance, misalignment, and rubbing can be simulated as additional
forces along with the residual unbalance. The forcing functions for the three defects are
shown by Equations (3)–(5), respectively, as follows:

Fx_unb = maeaΩ2 cos(Ωt + β)
Fy_unb = maeaΩ2 sin(Ωt + β)

(3)

Fx_mis = FX2 cos(Ωt + ψ) + FX2 cos(2Ωt + ψ)
Fy_mis = FY2 sin(Ωt + ψ) + FY2 sin(2Ωt + ψ)

(4)

Fx_rub = −kr(x − δ0)H(x − δ0)
Fy_rub = f kr(x − δ0)H(x − δ0)

(5)

where ma is the added unbalance to the disk with an eccentricity of ea and phase angle of β.
The term Ω denotes the speed of rotation. The terms FXi and FYi (i = 1, 2) are the external
forces due to parallel misalignment with a phase angle of ψ. The term kr is the stiffness
of the axial rub-impact rod, f is the friction coefficient of between the two parts, H is the
Heaviside function, and δ0 is the gap between the rotor and stator. Further details on the
mathematical modeling can be found in Appendix A.

The mathematical models of unbalance (Equation (3)), misalignment (Equation (4)),
and rubbing (Equation (5)) were employed to generate the large amount of source data
necessary for the transfer learning strategy shown in Figure 2. The basic parameters of the
three simulation models are given in Table 1.

Herein, the added unbalance was simulated with a fixed value of eccentricity (ea) by
varying the value of the added mass from 1 to 20 g at increments of 2 g, misalignment was
simulated with a parallel misalignment along the y-bending angular flexibility rate axis
from 8 to 26 mm at increments of 2 mm, and rubbing was simulated by reducing the values
of clearance between the rotor and stator from 9.2 × 10−8 to 4.7 × 10−8 m at decrements of
0.5 × 10−8 m. For the three defects (unbalance, misalignment, and rubbing) of the shaft-disk
system, ten different levels of severity were considered, and each defective case of the
system was operated at 50 different speeds of rotation from 300 to 6810 rpm at increments
of 120 rpm. The steady-state vibration responses of the system were obtained along the x
and y axes at the disk location by solving the differential equation (Equations (3)–(5)) of
each defect via Newmark’s time integration algorithm [55]. The number of steady-state
responses for each defect with all severity levels was 20 × 50 = 1000 samples.
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Table 1. Material properties and parameters of the simulation models.

Model Parameter Value

General

Length of shaft (L) 1 m

Modulus of elasticity (E) 211 × 109 Pa

Modulus of Rigidity (G) 81.1 × 109 Pa

Diameter of shaft (ds) 0.01 m

Diameter of disk (d) 0.075 m

Thickness of disk (h) 0.0254 m

Density of shaft and disk (ρ) 7810 kg/m3

Mass of disk m = ρhπd2/4 0.8764 kg

Stiffness at bearing 1 along x-axis (kx1) 1.0 × 106 N/m

Stiffness at bearing 1 along y-axis (ky1) 1.0 × 106 N/m

Stiffness at bearing 2 along x-axis (kx2) 1.0 × 106 N/m

Stiffness at bearing 2 along y-axis (ky2) 1.0 × 106 N/m

Damping at bearing 1 along x-axis (cx1) 1000 Ns/m

Damping at bearing 1 along y-axis (cy1) 1000 Ns/m

Damping at bearing 2 along x-axis (cx2) 1000 Ns/m

Damping at bearing 2 along y-axis (cy2) 1000 Ns/m

Residual
Unbalance

Mass eccentricity (er) 0.000015 m

Phase angle (α) 0◦

Unbalance
Added masses (ma) (1:2:20) g

Phase angle (β) 0◦

Misalignment

Misalignment along x-axis (ΔX1 = −ΔX2) 0 m

Misalignment along y-axis (ΔY1= −ΔY2) (8:2:26) mm

Center of articulation (Z3) 0.024 m

Bending angular flexibility rate (Kb) 0.35 degree/Nm

Power of Motor (P) 700 Watt

Rubbing

Clearance between rotor and stator (δ0) (9.2: −0.5:4.7) × 10−8 m

Stiffness of axial rub-impact rod (kr) 1.2 × 107 Pa

Coefficient of friction (f ) 0.7

To account for noise in the signals from actual systems, all steady-state responses of
the three defects were added to white Gaussian noise with a signal-to-noise ratio (SNR) of
31 to 40 using the MATLAB function awgn (add white Gaussian noise to signal). The basic
mathematical form of the awgn function is shown by Equation (6).

Snoise = S + Z
Z ∼ N(0, μ)

(6)

where S is the original signal without noise and Z refers to the random noise having
normal/Gaussian distribution with zero mean and μ variance. Snoise is the output signal
contaminated with noise. Additional mathematical details of adding white Gaussian noise
can be found in the MATLAB documentation and the published literature, as shown in the
references [56–58]. The decision to use a range of SNR from 31 to 40 was made after looking
at the effect of different SNR values on the original signals obtained from simulations. The
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effect of different values of SNR on the original signal of 9 g unbalance at 300 rpm is shown
in Figure 4.

 

Figure 4. Effect of different values of sound-to-noise-ratio (SNR) on the signals obtained from the
simulation model.

As shown in Figure 4, it was observed that the SNR range of 31 to 40 accounts for the
higher and lower levels of noise in the source simulation data.

This noise contamination of the 1000 steady-state signals of each defect resulted in
20 × 50 × 10 = 10,000 samples for each defect. The steady-state response signals of the three
defects with and without noise were combined, resulting in 33,000 samples (11,000 samples
for each defect) that served as the source data from the simulation model.

2.2. Deep Learning Model for Simulation Data

The 33,000 response signals from the simulation model were transformed into scalo-
grams using continuous wavelet transform (CWT). A scalogram is essentially a time-
frequency representation of a time domain signal that is generated from the absolute
value of the CWT coefficients of that signal. The mathematical details regarding the trans-
formation of a time series to a scalogram using wavelet analysis can be found in the
references [59,60]. In this work, MATLAB was used to design a CWT filter bank with a
sampling frequency of 8500 Hz (the same as the signal acquisition frequency) and the de-
fault number of voices per octave (10 wavelet bandpass filters per octave) [61]. The analytic
Morse wavelet with the default values of the symmetry parameter and time-bandwidth
product was used in the filter bank [62–64]. More details on the parametric study of the ef-
fect of the parameters of wavelet transform can be found in the references [65–67]. The filter
bank was used to transform all the time series from the simulation models to scalograms.
Figure 5 depicts some samples of unbalance, misalignment, and rubbing scalograms for a
given speed of rotation out of 33,000 scalograms from the simulation data.
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Figure 5. Sample unbalance, misalignment, and rubbing scalograms in the simulation model at
a steady state of 3660 rpm with y-axis on a logarithmic scale; (a) Unbalance; (b) Misalignment;
(c) Rubbing.

The scalograms of the three defects have distinct characteristics in the time-frequency
domain. In general, the presence of unbalance, misalignment, and rubbing in a rotating
system are characterized by the presence of distinct frequency spectra at 1X (speed of
rotation) [68], frequency spectra at 1X and the integral multiples thereof (2X, 3X), and
frequency spectra at 1X and its sub- and super-harmonics depending on the speed of
rotation [69,70], respectively. The general characteristics of unbalance, misalignment, and
rubbing can be observed in the scalograms in Figure 5, where the presence of unbalance,
misalignment, and rubbing are shown by a distinct frequency component at the speed of
rotation, the speed of rotation and its integral multiples, and by super harmonics (dashed
red rectangle), respectively. In addition, note that the y-axis is a logarithmic scale.

The scalograms of the source data from the simulation were used to train, validate,
and test a convolutional neural network (CNN). Figure 6 depicts the detailed architecture
of the CNN used in the current work.

 

Figure 6. Architecture of the convolutional neural network used in the current study.

In the CNN architecture, convolutional, batch normalization, and ReLU layers are
used to extract high-level features from the input scalograms, and max pooling layers are
employed to down-sample those features [35]. A dropout layer is inserted to minimize
the chances of overfitting during the training process [71]. The classification layer adopts
a SoftMax function [72,73] to classify the extracted features into three different classes:
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unbalance, misalignment, and rubbing in the shaft-disk system. In the current architecture,
the max pooling layers in the first, second, and fourth hidden layers were used to account for
invariances in the simulation scalograms. Since the pretrained model was to be employed
as a generalized feature extractor from the experimental data, the max pooling layers in
the third and fifth hidden layers were excluded to accommodate the local variations in the
autonomous features of the target task.

To train the CNN, the weights were randomly initialized and tuned from scratch using
Adam optimizer as an optimization function. The data set of 33,000 scalograms was split
into 80% training, 10% validation during the training, and 10% independent test datasets.
To avoid memory problems, the scalograms were loaded in the form of an image data store
using the function “imageDatastore” in MATLAB. Figure 7 shows the accuracy and loss for
the training and validation of the network.

Figure 7. Training and validation of the customized deep learning model using simulation data.

Here, 80% of the data (training data) was used to train the CNN, while 10% of the data
(validation data) was used to evaluate the performance of the model at each iteration of the
training process. The training/validation accuracy refers to the classification/validation
accuracy for each mini batch of the training/validation dataset. The training/validation
loss indicates the performance of the model after each iteration of optimization and denotes
the sum of errors for each example of the training/validation data. From Figure 7, the
overlap between the training and validation accuracies and losses as well as the validation
accuracy of 91.5% imply that the network is optimally learning from the training data and
could be generalized to unseen instances.

To verify the generalization of the pretrained CNN to an unseen data set, the model
was tested on the remaining 10% of the dataset (testing data). Figure 8 shows the test
confusion matrix.
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Figure 8. Test confusion matrix showing the performance of the pretrained deep learning model on
unseen simulation test data (90.27% accuracy on test data).

As shown in Figure 8, the pretrained network successfully identified the presence
of misalignment and rubbing with 100% accuracy; however, it confused 29.2% instances
(321 observations) of unbalance with misalignment. The reason for the confusion between
unbalance and misalignment is that the misalignment model in Equation (4) only simulates
parallel misalignment along the y-axis, resulting in misaligned response characteristics
along the y-axis and unbalance response characteristics along the x-axis. For lower values
of added unbalance, the unbalance response from the misalignment model along the x-axis
and the actual added unbalance will be confused. Thus, 29.2% instances of unbalance were
confused with misalignment.

2.3. Experimental Data

Two experimental data sets were employed to validate the effectiveness of the pro-
posed approach. The first experimental vibration data for different health states of the
shaft-disk system was obtained from an RK4 rotor kit, a product of GE Bently Nevada
(1631 Bently Parkway South, Minden, Nevada USA 89423). The vibration signals were
obtained via proximity sensors for the following health states: normal (residual unbalance),
unbalance, rubbing, misalignment, and oil whirl. The experimental configuration of the
different health states of the rotor system is shown in Figure 9.

Figure 9. RK4 Rotor kit with different health states; (a) Normal; (b) Misalignment; (c) Rubbing;
(d) Unbalance; (e) Oil Whirl.
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Despite efforts to perfectly balance the system in the normal state, there existed a small
amount of unbalance in the system; the amplitude of the resulting vibration signal was
within the acceptable range of 10 μm of the root mean square (rms) level, as determined by
the ISO standard 7919-2.

The unbalance state was induced by attaching a 15 g screw to the disk (Figure 9d).
A special jig (Figure 9b) was employed to induce a parallel misalignment of 20 μm along
the y-axis at the coupling location. The rubbing state was simulated with a rubbing screw
(Figure 9c) that contacted the shaft when a 15 g mass was attached to the disk. The position
of the rubbing screw was adjusted such that the shaft contacted the rubbing screw once per
revolution at 3600 rpm (steady-state condition for all health conditions). An additional tool
kit (Figure 9e) was used to induce the oil whirl phenomenon at an oil pressure of 35 kPa.

Two sets of proximity sensors placed near each bearing were used to acquire the
vibration response signals for all the health states of the rotor kit; for each set of proximity
sensors, the two were installed at right angles along the x and y axes. To ensure repeatability
and account for experimental uncertainty, each health state was executed five times, and
the rotor kit was reassembled before each experiment. All five health states of RK4 were
studied at a steady-state condition of 3600 rpm. The dataset for all health states consisted
of 100 signals, with 20 signals for each case (4 signals for each health state × 5 executions
of each experiment).

The CWT filter bank designed for the simulation data was used to transform the
vibration signals from the RK4 rotor kit for all health states to scalograms without any
preprocessing. We aimed to gain insight into the characteristics of different defects and
compare the results with the outcomes of the simple simulations. Figure 10 depicts sample
scalograms of the experimental data for the different health states.

 
Figure 10. Sample scalograms of different health states in the RK4 Rotor kit at steady state of
3600 rpm: (a) normal; (b) unbalance; (c) misalignment; (d) rubbing; and (e) oil whirl (y-axis is a
logarithmic scale).

In Figure 10, some high-frequency contents are observed in the scalogram of the
normal state, implying either the presence of noise or some other small unavoidable defects
alongside the small unbalance in the system. Additionally, comparing the scalograms from
the experimental data with their simulated counterparts shows that the scalograms of the
experimental data demonstrate more complex behavior in terms of time-frequency content,
which confirms that extremely simple mathematical models cannot replicate the exact
dynamic response behavior of an actual system with and without defects. Furthermore,
the health states of normal and oil whirl were not considered in the source simulation data.
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In the next section, the CNN model pretrained on simulation data is used to automatically
extract discriminative features from the scalograms of experimental data.

2.4. Autonomous Feature Extraction Using Pretrained Models

In transfer learning, a model developed and trained for one task is reused as a start-
ing point for another related task, without expending much time or computational re-
sources [33]. As stated previously, the inner layers of a CNN autonomously extract high-
level features from the input images and use those features in the last fully connected and
classification layers to distinguish between different classes of input images. In the archi-
tecture of a pretrained network, some layers can be eliminated to retrieve the high-level
features from layer activation, and those features can be processed with traditional machine
learning algorithms, as depicted in Figure 11.

 

Figure 11. Autonomous feature extraction via a pretrained deep learning model.

The automatically extracted high-level features can be used to train, validate, and test
traditional machine learning algorithms, such as SVM, tree classifier, KNN, etc. In this
work, the activations from the last max pooling layer of the CNN trained on simulation data
were used as discriminative features for the scalograms of the experimental data from the
RK4 rotor kit. The autonomously extracted features were processed with several different
machine learning classifiers; Figure 12 shows a comparison of the different classifiers
in terms of overall classification accuracy and area under the ROC (receiver operating
characteristic) curve. The ROC area is obtained by graphing the true and false positive rates
and its value implies a tradeoff between recall and fallout. An ROC area close to 1 indicates
that the model is able to achieve a high recall (true positive rate) while maintaining a low
fallout (false positive rate) [74].

 
Figure 12. Performance of different classifiers using the automatically extracted features.
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As shown in Figure 12, the minimum and maximum training accuracies were 72.5%
and 91.3%, for the naïve Bayes and KNN classifiers, respectively. However, the overall
training accuracy could be deceiving, and the model may have overfitted the training data.
The matrices of ROC area and prediction results on an independent test set would help to
fully explore the behavior of the supervised learning classifiers.

In Figure 12, SVM stands out as the optimum classifier in terms of training accuracy
(88.8%), ROC area (98%), and test accuracy (90%). Figure 13 shows the confusion matrix
of SVM on the 80% training dataset, created to gain further insight into the classification
performance of SVM.

Figure 13. Training/validation confusion matrix of cubic SVM on the features automatically extracted
by the pretrained deep learning model from the original RK4 data.

During the training process, the classifier confused 6.2% of the instances of normal
as unbalance and misalignment, 12.5% of the instances of unbalance as normal, 6.2% of
the instances of unbalance as misalignment, 12.5% of the instances of misalignment as
unbalance, 6.2% of the instances of rubbing as misalignment, and 6.2% of the instances of
oil whirl as unbalance. Here, 6.2% and 12.5% instances refer to one and two observations,
respectively. According to the training confusion matrix, the loss of accuracy was mainly
due to the confusion of 12.5% instances of misalignment with unbalance and 12.5% instances
of unbalance with the normal state. The physical reason for this confusion is that only
parallel misalignment was induced along the y-axis, while the response along the x-axis is
purely due to residual unbalance that may coincide with the added unbalance. Similarly, a
possible explanation for confusing unbalance with the normal state is that the two share the
same response characteristics and only differ in amplitude. The domain and class invariance
of the proposed approach is verified from the high classification accuracy of the health
states of normal and oil whirl, which were not considered in the source simulation domain.

The results of the pretrained cubic SVM on the unseen test dataset are shown in the
form of a confusion matrix in Figure 14.
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Figure 14. Test confusion matrix of cubic SVM on features automatically extracted by the pretrained
deep learning model from the original RK4 data.

As shown in Figure 14, 25% of instances of misalignment were confused with rubbing
and 25% of the instances of rubbing were confused with misalignment. The results of the
test confusion matrix are within an acceptable range, as 25% of instances is equivalent to
one observation out of four from the 20% test data.

Given the above discussion, the results of autonomous feature extraction via a CNN
that was pretrained on simulation data are physically reasonable. However, the limited
size of the training and the test datasets make it difficult to draw a general conclusion. One
option is to obtain more data from the testbed by repeating the experiments; however, the
experiments have already been repeated five times.

Another option is to employ the concept of virtual sensors around the shaft, as intro-
duced by Jung et al. [75], to artificially augment the data without performing any further
experiments. In this work, the concept of virtual sensors is adopted to synthetically aug-
ment the experimental data. The main idea of virtual sensors is to obtain synthetic vibration
signals from the vibration signals of the actual orthogonal proximity sensors by rotating
the cartesian coordinate system with respect to the z-axis, as depicted in Figure 15.

 
Figure 15. Concept of virtual sensors based on simple transformation of coordinates.

The virtual signals are obtained from the actual signals using the following coordi-
nate transformation:

xVm = cos(mΔθ)xa + sin(mΔθ)ya
yVm = − sin(mΔθ)xa + cos(mΔθ)ya

(m = 1, 2, . . . ., M)
(7)
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where xVm and yVm are virtual signals along the rotated x and y axes, respectively. The terms
ax and ay refer to the actual signals obtained via the proximity sensors along the original
x and y axes, respectively, Δθ is the angle of rotation for the coordinate system of virtual
signals, and M denotes the number of virtual signals. Owing to symmetry around the shaft,
the maximum number of virtual sensors is M = π/Δθ. As shown in a previous paper [75],
xVm is equal to yVm+M/2; hence, in this work only xVm was retained from Equation (6) for
synthetic data augmentation. To identify the optimum number of virtual sensors for the
current task, a parametric study was carried out for different numbers of virtual sensors
and the effect was evaluated terms of training/validation accuracy, ROC area, and the
number of instances per class as a result of data augmentation, as shown in Figure 16.

 
Figure 16. Different numbers of virtual sensors and their effect on the classification performance and
size of dataset.

To obtain the results shown in Figure 16, the original and augmented datasets were
transformed into scalograms and processed via the pretrained CNN to extract discrimina-
tive features. A cubic SVM was employed to classify the extracted features into different
classes using 10-fold cross-validation. The results showed that the training and validation
accuracy could be increased to 99.5% by synthetic data augmentation using virtual sensors;
however, the increase in the evaluation matrices of training/validation accuracy and ROC
are relatively small compared with the increase in the size of the augmented dataset. Thus,
because of this tradeoff between the size of the augmented dataset and classification ac-
curacy, the number of virtual sensors was set at 12 for further analysis. To provide more
insight into the problem, the augmented data was split into 80% training and 20% test data.
Figure 17 shows the per class training/validation performance of the cubic SVM on the
training data in the form of a confusion matrix with 97.3% accuracy.
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Figure 17. Training/validation confusion matrix of SVM (cubic) on automatically extracted features
from the pretrained deep learning model with 12 virtual sensors on RK4.

The cubic SVM was trained via 10-fold cross-validation on the synthetically augmented
data using 12 virtual sensors. In Figure 17, the higher true positive rate and the lower
false positive rate for each class demonstrate the optimum performance of the proposed
methodology on the experimental data set. Additionally, note that the per class classification
performance increased compared with the results from the data without augmentation
in Figure 13. To show that the vibration signals synthesized through virtual sensors did
not cause overfitting of the machine learning model, the cubic SVM pretrained on the
augmented data (synthesized and measured) was employed to make predictions on the
20% unseen test data. Here, the unseen data describes a data set not seen by the network
during the training/validation process. The pretrained model showed a test accuracy of
97.14%, with the confusion matrix shown in Figure 18.

Figure 18. Test confusion matrix of SVM (cubic) on automatically extracted features from the
pretrained deep learning model with 12 virtual sensors on RK4.

As shown in Figure 18, the test accuracy on the augmented data increased from 90%
to 97.14% in comparison with the performance on the measured data, which would not
have been possible in the case of overfitting due to synthesized signals.

To further explore the robustness of the proposed approach and its ability to bridge
the gap between simple computer simulations and actual experiments, the deep learning
model trained on simulation data was compared with pre-existing deep learning mod-
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els of GoogleNet, Vgg16, ResNet18, AlexNet, and SqueezeNet [76] in terms of feature
extraction. The pre-existing deep learning models are trained and optimized on natural
images and have fixed network architectures [31]. The image dataset that is commonly
employed to train the existing pretrained networks is usually a subset of the ImageNet
database [77]. For instance, Vgg16 is pretrained on approximately 1.5 million images with
41 layers, and Alexnet is pretrained on approximately 1.2 million images with eight layers
and 60 million parameters. To verify the performance of the customized deep learning
model for autonomous feature extraction from a limited amount of experimental data, the
performance of the cubic SVM on autonomously extracted features from the simulation
model was compared with the performance of Googlenet, Vgg16, Resnet18, Alexnet, and
Squeezenet, as shown in Table 2.

Table 2. Comparison of the customized pretrained simulation model with existing pretrained deep
learning models (12 virtual sensors and cubic SVM).

Training/Validation Accuracy % ROC Area% Testing Accuracy %

Simulation Model 97.5 100 97.14

GoogleNet 93.8 99 83.57

Vgg16 95 100 83.5

Resnet18 97.1 100 86.43

Alexnet 95.2 99 85.71

SqueezeNet 90.2 99 81.43

For the results in Table 2, the features extracted by all the deep learning models were
split into 80:20 for training and testing, respectively. The 80% training data was used
to train a cubic SVM through 10-fold cross-validation, and the resulting trained model
was employed to make predictions on the 20% test dataset. According to the results
shown in Table 2, all the deep learning models performed reasonably well in terms of
training/validation accuracy, ROC area, and test accuracy, which validates the performance
of the customized deep learning model.

The results shown in Table 2 bring up an obvious question: if the existing pretrained
models perform equally well on the limited experimental dataset, then why bother using a
simulation dataset and a customized deep learning model?

The motivation behind the customized deep learning model is that the existing pre-
trained networks (AlexNet, VGG16) have fixed architectures, a fixed number of parameters,
and limited flexibility for controlling the dimensions of the extracted discriminative fea-
tures, whereas the customized deep learning model offers more flexibility in terms of
network size, number of parameters, and dimensions of the extracted discriminative fea-
tures. Furthermore, as seen from the test classification accuracy of the simulation model
in Table 2, a deep learning model pretrained on source data that resembles the target data
of the transfer learning scheme would provide better generalizability. To further support
the effectiveness of the proposed approach, the autonomous feature extraction through a
customized deep learning model for the data of 12 virtual sensors was compared with the
feature extraction through the pre-existing deep learning models in terms of size of the
network, parameters of the network, and computational time, as shown in Table 3.
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Table 3. Comparison of customized deep learning model with pre-existing deep learning models.

Name Size of Network (Bytes) Number of Network Parameters Computational Time (sec)

CPU * GPU **

Simulation Model 631,037 139,587 4.542 1.65

GoogleNet 29,670,809
(191.7%)

6,698,552
(192.2%)

25.66
(139.8%)

2.55
(42.7%)

Vgg16 554,895,306
(199.5%)

138,357,54
(199.6%)

149.47
(188.2%)

6.33
(117.2%)

Resnet18 47,156,446
(194.7%)

11,694,312
(195.2%)

23.56
(135.3%)

2.33
(34.1%)

Alexnet 245,283,524
(198.9%)

60,965,224
(199.0%)

10.14
(76.3%)

1.86
(12.12)

SqueezeNet 5,232,394
(156.9%)

1,235,496
(159.4%)

17.59
(117.9%)

1.89
(13.3%)

* CPU: Intel i7-4790 with 32 GB RAM, ** GPU: NVIDIA GeForce RTX 2080 Ti.

In Table 3, the percentage value in each cell is the percentage of the difference between
the value for the customized deep learning model and that of a pre-existing deep learning
model. One can observe that the customized deep learning model with relatively simple
architecture outperformed the pre-existing deep models developed and trained by experts
with a massive amount of training data.

In addition, as seen from the computation time, the problem-specific customized
deep learning model has more potential for practical implementation with less hardware
requirements than pre-existing deep learning models. Furthermore, in the framework of
transfer learning, the input data to the pretrained models must be of the same size as that
of the original data used during the pretraining of the network (e.g., image size, number
of channels etc.); resizing a data set as per the requirement of pre-existing deep learning
models may remove significant information in terms of the image size reduction or image
size increment. However, such issues could be easily handled with a customized deep
learning model specifically designed, trained, and transferred for a given engineering
problem as achieved in the current work.

In the previous discussion, the experimental data set from RK4 rotor kit consisted of
five health states at a steady state speed of 3600 rpm and a single severity level of each
health state. To further verify the robustness of the proposed approach, a more extensive
data set from SpectraQuest’s machinery fault simulator (MFS) [78] kit was employed.
In this work, five health states (normal, horizontal misalignment, unbalance, outer race
fault in bearing, and rolling element fault in bearing) with different speeds of operation
(49 speeds for each health state) and different severity levels (two severity levels) of each
health state were considered. Furthermore, the bearing defects were studied in the presence
of a 6 g and 35 g unbalanced mass. A detailed discussion of the data set can be referred
to in reference [79] and it is available for download at the website in reference [80]. The
vibration signals from the MFS were transformed into scalograms using the same filter
bank as used for the data from the simulation models and RK4 rotor kit. The deep learning
model pretrained on simulation data was employed to extract discriminative features from
the scalograms of the experimental data from the MFS kit and SVM was employed to
classify those features into different classes. The SVM classifier was trained through 10-fold
cross-validation and Figure 19 shows its training/validation confusion matrix on the 90%
training data with a classification accuracy of 97.8%.
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Figure 19. Training/validation confusion matrix of SVM on automatically extracted features through
the pretrained deep learning model from the data of the MFS kit.

To verify that the SVM did not overfit the training data, Figure 20 shows the testing
performance in the form of a confusion matrix on the 10% independent test data with
97.31% accuracy.

Figure 20. Test confusion matrix of SVM on features automatically extracted by the pretrained deep
learning model from the data of the MFS kit.

In Figure 20, the tags should be interpreted as follows: HM 0.5: horizontal misalign-
ment of 0.5 mm; HM 20: horizontal misalignment of 20 mm; UB 10: unbalance with 10 g
mass; UB 25: unbalance with 25 g mass; Nor: normal; BRE 35U: bearing with rolling
element fault and 35 g unbalance mass; BRE 6U: bearing with rolling element fault and
6 g unbalance mass; BOR 35U: bearing with outer race fault and 35 g unbalance mass; and
BOR 6U: bearing with outer race fault and 6 g unbalance mass.

The results show that the model can distinguish different health states and their
severity levels with a minimum accuracy of 94.6% for UB 10 and a maximum accuracy of
99.3% for BRE 6U. The misclassification results are within the acceptable range. The high
accuracy of the model on the features extracted through the simulation model shows that
the model is robust to different speeds of operations (49 different speeds for each health
state) and that the extracted features are only sensitive to the presence of defects in the rotor
system. Additionally, the high accuracy on the bearing faults in the presence of different
unbalance loads confirms the robustness of the model to different loads. Furthermore,
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the target domain class invariance of the customized deep learning model is verified
from the high accuracy on the bearing faults, which were not considered in the source
simulation data.

From the test confusion matrix of Figure 20, the high accuracy of 97.31% on the 10%
independent test data shows that the SVM model pretrained on the discriminative features
of the deep learning model did not overfit the training data. The essence of the current work
is that a domain invariant generalized feature extractor developed from simple simulations
can accommodate the gap in the response characteristics and new health states in the target
domain in a supervised learning framework.

3. Conclusions

This work proposed a domain and class invariant generalized feature extractor using
a supervised learning framework of transfer learning. A source simulation domain with
three health states was employed to detect, isolate, and quantify five health states in the
target experimental domain without minimizing the gap in the response characteristics of
the two domains. The source domain was comprised of the simulation model of a few rep-
resentative health states of the target domain, and simulation models were not required for
all prospective health states of the actual target system. The proposed methodology relies
on transfer learning, where a customized deep learning model is trained, validated, and
tested on a substantial set of simulation data, and then the pretrained model is employed
to autonomously extract discriminative features from a small experimental target dataset.
This work also discussed the synthetic augmentation of the limited experimental data
using virtual sensors, where the output from the virtual sensors was defined in terms of
the actual sensors using the concept of coordinate transformation. Synthetic augmentation
of the experimental data enhanced the performance of the proposed approach in terms
of training/validation accuracy (from 88.8% to 99.5%), test accuracy (90% to 97.14%), and
ROC area (from 97% to 100%). The effectiveness of the proposed approach was validated
by comparing its results with the pre-existing deep learning models of GoogleNet, VGG16,
ResNet18, AlexNet, and SqueezeNet in terms of training, testing, generalization, size of the
network, parameters of the network, and computational time. The current approach was
found to perform relatively better in terms of generalizability and computation cost with
more flexibility for a given engineering problem.

The proposed approach autonomously extracts discriminative features from the
vibration-based scalograms of a limited experimental dataset and eliminates the need
for labor-intensive hand-crafted statistical features. In addition, the source simulation
signals and target experimental signals are directly transformed into scalograms using
a single filter bank that eliminates the need for complex preprocessing. The generalized
autonomous discriminative features are robust to variations in the operating conditions,
severity levels of different health states, and scale of the source and target domains. This
work could be extended to assess faults in laminated composites, gearboxes, industrial
robots, civil infrastructures, etc.
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Appendix A

To simulate the added unbalance in the system, which represents unbalance that
is commonly encountered in practice, a small mass of magnitude ma is attached at an
eccentricity of ea and phase angle of β to the disk, causing a harmonic centrifugal force
of magnitude ma × ea × Ω2 along the x and y axes of the system when the system rotates
at speed Ω. The motion of the system in the presence of added unbalance is expressed
as follows:

m
..
x(t) + cxT

.
x(t) + kxTx(t) = merΩ2 cos(Ωt + α) + maeaΩ2 cos(Ωt + β)

m
..
y(t) + cyT

.
y(t) + kyTy(t) = merΩ2 sin(Ωt + α) + maeaΩ2 sin(Ωt + β)

(A1)

Misalignment is another common defect in rotating machinery. Misalignment in the
coupled machine shafts generates reaction forces in the coupling [4]. In this work, the
Gibbons [5] model was adopted to simulate the presence of misalignment in the rotor-disk
system of Figure 3. A schematic of the Gibbons model of parallel misalignment is shown in
Figure A1 [81,82].

 

Figure A1. Schematic of the Gibbons parallel misalignment model. Reprinted with permission from
ref. [82]. Copyright 2021 Elsevier.

Here, Z1 and Z2, respectively, denote the centerlines of the driver and driven shafts,
which are offset by ΔY along the vertical direction and by ΔX along the horizontal direction.
The term Z3 denotes the coupling center of articulation; MX, MY, and MZ are the three
moments; and FX, FY, and FZ are the three reaction forces. The moments and forces exerted
by coupling on the driver and driven shafts are shown by Equation (A2).

θ1 = sin−1(ΔX1/Z3), θ2 = sin−1(ΔX2/Z3)
φ1 = sin−1(ΔY1/Z3), φ2 = sin−1(ΔY2/Z3)

MX1 = Tq sin θ1 + Kbφ1, MX2 = Tq sin θ2 − Kbφ2
MY1 = Tq sin φ1 − Kbθ1, MY2 = Tq sin φ2 + Kbθ2,

FX1 = (−MY1 − MY2)/Z3, FX2 = −FX1
FY1 = (MX1 + MX2)/Z3, FY2 = −FY1

(A2)

where Kb is the bending angular flexibility rate of the flexible coupling and Tq is the torque
of the rotor shaft, which is calculated in terms of motor power P and speed of rotation Ω,
as given by Equation (A3).

P = Tq × Ω (A3)
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The moments and forces of Equation (A2) appear as periodic forces with 1Ω and
2Ω components, and the equation of motion in the presence of parallel misalignment is
modified as follows:

m
..
x(t) + cxT

.
x(t) + kxTx(t) = merΩ2 cos(Ωt + α) + FX2 cos(Ωt + ψ)

+FX2 cos(2Ωt + ψ)
m

..
y(t) + cyT

.
y(t) + kyTy(t) = merΩ2 sin(Ωt + α) + FY2 sin(Ωt + ψ)

+FY2 sin(2Ωt + ψ)

(A4)

where ψ is the phase angle. In addition, note that, besides the misalignment forces, resid-
ual unbalance is present in the system, as shown by the first term on the right side of
Equation (A4).

To simulate the rubbing phenomenon between the rotor and stator, it is assumed that
a single rub-impact occurs at the disk location, as shown by the schematic in Figure A2.

Figure A2. Schematic of a single rub-impact between the rotor and stator.

It is assumed that there is a small gap of δ0 between the rotor and stator. The rub-
impact occurs when the axial displacement of the shaft due to unbalance is larger than δ0.
The equation of motion in the presence of a single-rub impact is given by Equation (A5):

m
..
x(t) + cxT

.
x(t) + kxTx(t) = merΩ2 cos(Ωt + α) + FxR(x, y)

m
..
y(t) + cyT

.
y(t) + kyTy(t) = merΩ2 sin(Ωt + α) + FyR(x, y)

(A5)

where the terms FxR and FyR denote the nonlinear forces along the x and y axes, respectively,
due to the single rub-impact between the rotor and stator and are expressed as follows [83]:

FxR = −kr(x − δ0)H(x − δ0)
FyR = f kr(x − δ0)H(x − δ0)

(A6)

where kr is the stiffness of the axial rub-impact rod, f is the coefficient of friction between
the rotor and stator, and H is the Heaviside function, which is expressed as follows:

H(x − δ0) =

{
0 i f x < δ0
1 i f x ≥ δ0

(A7)
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