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Preface to ”Stability Problems for Stochastic Models:

Theory and Applications II”

Most papers published in this Special Issue of Mathematics are written by the participants of the

XXXVI International Seminar on Stability Problems for Stochastic Models. This seminar was founded

by outstanding Russian mathematician Vladimir Zolotarev (27 February 1931–7 November 2019).

The main theme of the seminar is the development of an approach to limit theorems of

probability theory and related fields proposed by V.M. Zolotarev. The main point of this approach

is that limit theorems of probability theory are treated as special stability theorems. Zolotarev

created the theoretical foundation of the key method used within this approach, namely, the theory

of probability metrics. This approach assumes that statements establishing convergence must be

accompanied by statements establishing the convergence rate. Zolotarev called the conditions of

convergence those that simultaneously serve as convergence rate and estimates “natural”. This

approach was developed in the works of Zolotarev, Kalashnikov, Kruglov, Senatov, Korolev,

Khokhlov, and their colleagues. By the mid-1970s, the investigation of the continuity and stability of

probability and statistical models, such as, say, characterization models for probability distributions

and queuing models, grew into a kind of a separate domain of probability theory. In May and

November 1974, in Leningrad and Vilnius, two compact symposia on these problems were held.

These symposia were initiated and organized by Vladimir Zolotarev. In 1975–1976 the research

seminar on stability problems for stochastic models and related topics headed by V. Zolotarev was

held at the Steklov Mathematical Institute of the Academy of Sciences of the USSR. Later, this weekly

seminar moved to the Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow

State University. Together with V. Zolotarev, this seminar was coordinated by V. Kalashnikov and

V. Kruglov. In parallel with the weekly seminars, annual international sessions were launched with

the wide participation of mathematicians from many countries. Now, this seminar is internationally

recognized for the originality and relevance of the considered problems and presented results. The

seminar formed and developed a breakthrough approach to limit theorems of probability theory such

as stability theorems. Within this approach, many deep results were obtained.

Now, the scope of the seminar embraces the following:

• Limit theorems and stability problems;

• Asymptotic theory of stochastic processes;

• Stable distributions and processes;

• Asymptotic statistics;

• Discrete probability models;

• Characterization of probability distributions;

• Insurance and financial mathematics;

• Applied statistics;

• Queueing theory;

and other fields.

xi



Here is the complete list of the International sessions of the Seminar on Stability Problems for
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V. 17–22 November 1980, Panevezys, Lithuanian SSR

VI. 19–27 April 1982, Moscow, USSR

VII. 18–24 June 1984, Saratov, USSR

VIII. 23–29 September 1984, Uzhgorod, Ukrainian SSR

IX. 13–19 May 1985, Varna, Bulgaria

X. October 1986, Kuybyshev (now Samara), USSR

XI. 4–11 October 1987, Sukhumi, Abkhasian ASSR

XII. October 1988, Kharkov, Ukrainian SSR

XIII. October 1989, Kirillov, Vologda Region, USSR

XIV. 27 January–2 February 1991, Suzdal, USSR

XV. 1–6 June 1992, Perm, Russia
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XXVI. 27 August–2 September 2006, Sovata-Bai, Romania

XXVII. 22–26 October 2007, Nahariya, Israel

XXVIII. 31 May–5 June 2009, Zakopane, Poland
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XXX. 24–30 September 2012, Svetlogorsk, Russia

XXXI. 23–27 April 2013, Moscow, Russia

XXXII. 15–21 June 2014, Trondheim, Norway

XXXIII. 13–18 June 2016, Svetlogorsk, Russia

XXXIV. 24–28 August, 2017, Debrecen, Hungary

XXXV. 24–28 September, 2018, Perm, Russia

XXXVI. 22–26 June, 2020, Petrozavodsk, Russia (on-line session),

21–25 June, 2021, Petrozavodsk, Russia (off-line session).

Most papers published in this Special Issue of the “Mathematics” are written by the participants

of the XXXVI International Seminar on Stability Problems for Stochastic Models, 21 – 25 June, 2021,

Petrozavodsk, Russia.

The scope of the seminar embraces

• Limit theorems and stability problems;

• Asymptotic theory of stochastic processes;

• Stable distributions and processes;

• Asymptotic statistics;

• Discrete probability models;

• Characterization of probability distributions;

• Insurance and financial mathematics;

• Applied statistics;

• Queueing theory;

and other fields.

This issue contains twelve papers by specialists who represent six counties: Belarus, France,

Hungary, India, Italy and Russia.

Alexander Zeifman, Victor Korolev, and Alexander Sipin

Editors
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Article

Comparing Distributions of Sums of Random Variables by
Deficiency: Discrete Case

Vladimir E. Bening 1,2 and Victor Y. Korolev 1,2,3,*

1 Faculty of Computational Mathematics and Cybernetics, Moscow State University, 119991 Moscow, Russia;
bening@cs.msu.ru or bening@yandex.ru

2 Moscow Center for Fundamental and Applied Mathematics, 119991 Moscow, Russia
3 Federal Research Center “Computer Science and Control”, Russian Academy of Sciences,

119333 Moscow, Russia
* Correspondence: vkorolev@cs.msu.ru

Abstract: In the paper, we consider a new approach to the comparison of the distributions of sums
of random variables. Unlike preceding works, for this purpose we use the notion of deficiency that
is well known in mathematical statistics. This approach is used, first, to determine the distribution
of a separate random variable in the sum that provides the least possible number of summands
guaranteeing the prescribed value of the (1− α)-quantile of the normalized sum for a given α ∈ (0, 1),
and second, to determine the distribution of a separate random variable in the sum that provides
the least possible number of summands guaranteeing the prescribed value of the probability for
the normalized sum to fall into a given interval. Both problems are solved under the condition
that possible distributions of random summands possess coinciding three first moments. In both
settings the best distribution delivers the smallest number of summands. Along with distributions
of a non-random number of summands, we consider the case of random summation and introduce
an analog of deficiency which can be used to compare the distributions of sums with random and
non-random number of summands. The main mathematical tools used in the paper are asymptotic
expansions for the distributions of R-valued functions of random vectors, in particular, normalized
sums of independent identically distributed r.v.s and their quantiles. Along with the general case,
main attention is paid to the situation where the summarized random variables are independent
and identically distributed. The approach under consideration is applied to determination of the
distribution of insurance payments providing the least insurance portfolio size under prescribed
Value-at-Risk or non-ruin probability.

Keywords: limit theorem; sum of independent random variables; random sum; asymptotic expansion;
asymptotic deficiency; kurtosis

1. Introduction

1.1. The Problem under Consideration and the Structure of the Paper

The problem considered in the paper is very close to the problem of stochastic ordering
and even may be considered as a a version of this problem. In probability theory and
statistics, a stochastic order quantifies the concept of one random variable being “bigger”
or “smaller” than another. Many different orders exist, which have different applications,
see, e.g., the book [1]. Here we propose an approach to establishing stochastic order for the
distributions of sums of independent random variables (r.v.s) based on the notion of defi-
ciency that is well known in asymptotic statistics, see, e.g., [2] and later publications [3–5].
Roughly speaking, in statistics the deficiency of a statistical procedure with respect to an
‘optimal’ procedure is the number of additional observations required to attain the same
quality of inference as is guaranteed by the ‘optimal’ procedure.

In this paper we deal with the case where the deficiency is measured in natural-valued
discrete units (number of ‘additional’ summands) and therefore here we deal with discrete

Mathematics 2022, 10, 454. https://doi.org/10.3390/math10030454 https://www.mdpi.com/journal/mathematics
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case. The notion of deficiency can be extended to the case of the continuous parameter, say,
time. This case will be considered in another work.

Along with the general case, in the paper main attention is paid to the situation where
the r.v.s being summed are assumed to be independent and identically distributed.

The first problem to be considered below consists in determination of the distribution
of a separate random variable in the sum that provides the least possible number of
summands guaranteeing the prescribed value of the (1 − α)-quantile of the normalized
sum for a given α ∈ (0, 1). The second problem considered in the paper consists in
determination of the distribution of a separate random variable in the sum that provides
the least possible number of summands guaranteeing the prescribed value of the probability
for the normalized sum to fall into a given interval. Actually, in both problems we deal
with ‘fine tuning’ of the distribution of a separate summand since we assume that different
possible distributions of random summands possess coinciding three first moments, so
that they can differ only by their kurtosis. In both settings the best distribution delivers the
smallest number of summands.

We also consider the problem where some additional randomization is introduced so
that the number of summands in the sum can be random itself. This randomization may
not be artificially induced, but also may occur when the exact number of summands is a
priori unknown and only some its ‘expected’ value can be available as the parameter of the
problem. For this case we introduce an analog of deficiency which can be used to compare
the distributions of sums with random and non-random number of summands.

Both problems are closely related with the problem of quantification of the accuracy of
approximations provided by limit theorems of probability theory. The main mathematical
tools used in the paper are asymptotic expansions for the distributions of normalized sums
of independent identically distributed r.v.s and their quantiles.

The formal settings mentioned above can be applied to solving practical problems
where the models of the observed statistical regularities have the form of distributions of
sums of r.v.s and the number of summands plays a substantial role. For example, consider
an insurance company whose portfolio consists of a finite number of insurance contracts.
Formally, the portfolio is assumed to be a finite set of r.v.s each of which characterizes the
income of the company related to a separate contract. Instead of income we can speak of
loss assuming that income is a negative loss or that loss is a negative income.

In these terms, the first setting concerns the problem of determination of the dis-
tribution of a possible loss within a separate insurance contract (say, the distribution of
an insurance payment) providing the least possible portfolio size and guaranteeing the
prescribed Value-at-Risk for the average losses. The approach considered in the paper
can be used when the distributions of the summands (possible losses) are known only
up to their three first moments and the exact Value-at-Risk is not known for sure. In the
second setting the latter requirement is replaced by that of guaranteeing the prescribed
‘non-ruin’ probability. Within the framework of this example in both settings the problem
consists in the description of the best strategy of the insurance company, if by a strategy
we mean the choice of the terms of a contract (e.g., the amount of insurance payment
related to each possible insurance event), that is, of the distribution of possible loss within
a separate contract. Briefly, the problem is to choose an optimal distribution of a separate
loss among the distributions that have the same first three moments so that the portfolio
size is least possible.

The paper is organized as follows. Section 1.2 contains a short overview of the
properties of statistical deficiency. In Section 2 we outline some results concerning the
asymptotic expansions for the distributions of R-valued measurable functions of r.v.s and,
in particular, for the distributions of normalized sums of r.v.s, as well as for their quantiles.
In Section 3 the problem of comparison of the distributions of two sums of independent
r.v.s by their deficiency is considered. The notion of asymptotic deficiency is introduced
and some formulas for the calculation of asymptotic deficiency are presented. Section 3.1
contains the solution of this problem for these distributions providing a prescribed value
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of the (1 − α)-quantile for a given α ∈ (0, 1). In Section 3.2 this problem is considered for
the distributions of sums of independent r.v.s guaranteeing a prescribed probability for an
R-valued measurable function of r.v.s, in particular, for a normalized sum of r.v.s, to fall
into a given interval. Section 4 contains an example of extension of the results of Section 3
to the case of a random number of summands in the sum (random portfolio size, in terms
of the example dealing with an insurance company). In Section 4.1 asymptotic expansions
for the asymptotic (1 − α)-quantile (called α-reserve here) under a random portfolio size
are presented and an analog of deficiency of the sum of a random number of summands
(or the strategy with a random portfolio size) with respect to the distribution of the sum of
a non-random number of summands (or a strategy with a non-random portfolio size) is
considered. In Section 4.2 the problem of comparison of these distributions by an analog of
deficiency is considered in a special case of three-point distribution of portfolio size.

Everywhere in what follows the set of real numbers is denoted by R, the set of natural
numbers is denoted by N. The distribution function of the standard normal law will be
denoted by Φ(x),

Φ(x) =
1√
2π

∫ x

−∞
ϕ(y)dy, ϕ(x) =

1√
2π

exp
{
− x2

2

}
, x ∈ R.

The distribution of a random vector (X1, . . . , Xn) will be denoted L(X1, . . . , Xn).

1.2. Asymptotic Deficiency

Following the classical terminology of [6], consider two decision rules (say, two
statistical procedures) D∗

n and Dn whose quality is characterized by the quantities π∗
n and

πn, respectively. Here n is the number of observations X1, . . . , Xn delivering the information
underlying the decision rules. Assume that the rule D∗

n is in some sense optimal whereas
the rule Dn is competing. For example, in the problem of estimation usually π∗

n and πn are
mean square deviations and π∗

n ≤ πn. In the problem of testing hypotheses usually π∗
n and

πn are powers of tests so that π∗
n ≥ πn.

By m(n) denote the number of observations required for the decision rule Dm(n) based
on m(n) observations X1, . . . , Xm(n) to attain the same quality as the ‘best’ rule D∗

n based
on n observations X1, . . . , Xn. In what follows we will keep to the asymptotic approach
assuming that n → ∞. Following [7], by the asymptotic relative efficiency (a.r.e.) of the rule
Dn with respect to the rule D∗

n we will mean the limit

e ≡ lim
n→∞

n
m(n)

(if it exists and does not depend on the sequence m(n)).
Instead of the ratio of the required number of observations, the difference m(n)− n

can be considered as well, vividly showing the additional number of observations required
by the decision rule Dn. However, many authors considered the ratio n/m(n), possibly,
because the asymptotic analysis of its properties is simpler.

The systematic analysis of the asymptotic behavior of the difference m(n)− n was
first carried out by Hodges and Lehmann in 1970 [2]. They suggested to call the difference
m(n) − n deficiency of the competing decision rule Dn with respect to the rule D∗

n and
introduced the notation

dn = m(n)− n. (1)

If the limit limn→∞ dn exists, then it is called the asymptotic deficiency of the competing
decision rule Dn with respect to the rule D∗

n and is denoted d. The number d is often called
the deficiency of Dn with respect to D∗

n. Note that if a.r.e. e 	= 1, then d = ∞, so that this
case is not so interesting. In [2] it was also noticed that for some decision rules (statistical
procedures) there typically appear cases e = 1 (see, e.g., the book [8]), that is, in these cases
the a.r.e. cannot give an answer to the question, which rule is better, whereas the deficiency

3
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can clarify the case, because, generally speaking, in this case the asymptotic deficiency can
be arbitrary.

So, the deficiency of Dn with respect to D∗
n shows, how many additional observations

(that is, how much extra information) is required to attain the desired quality, if the decision
rule Dn is used instead of the ‘optimal’ decision rule D∗

n. Therefore, the notion of deficiency
provides natural grounds for the asymptotic comparison of Dn and D∗

n in the case e = 1.
The study of the asymptotic behavior of the deficiency dn requires more sophisticated
techniques than is used to find the limit e. As a rule, this techniques employ the construction
of asymptotic expansions (a.e.s) for the corresponding functions characterizing the quality
of decision rules (see, e.g., the books [7–9]).

Since the rules D∗
n and Dn have the quality characteristics π∗

n and πn, respectively,
then, by the definition of the deficiency dn = m(n)− n, for every n we have

π∗
n = πm(n). (2)

So solve Equation (2), the integer-valued quantity m(n) should be treated as a variable
taking arbitrary real values. For this purpose the function πm(n) can be defined for non-
integer m(n) by the formula

πm(n) =
(
1 − m(n) + [m(n)]

)
π[m(n)] +

(
m(n)− [m(n)]

)
π[m(n)]+1

(see [2]).
The functions π∗

n and πn are usually unknown, so, in practice, their approximations
are used. Assume that the a.e.s

π∗
n =

a
nr +

b
nr+s + o

(
n−r−s), (3)

and
πn =

a
nr +

c
nr+s + o

(
n−r−s), (4)

hold, where a, b and c are some numbers that do not depend on n, and r > 0, and s > 0 are
constants determining the rate of decrease of these quality criteria in n. The first terms in
these expansions coincide which means that the a.r.e. of the corresponding rules equals
one. It can be easily obtained from relations (1)–(4) that

dn =
c − b

ra
n1−s + o

(
n1−s) (5)

(see [2] or [7]). Thus, the asymptotic deficiency has the form

d =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
±∞, 0 < s < 1,
c − b

ra
, s = 1,

0, s > 1.

. (6)

The asymptotic deficiency possesses the following obvious property of transitivity:
if there is some third decision rule Dn with the quality characteristic πn admitting an a.e.
of the form (4), then the deficiency dn of the rule Dn with respect the the rule D∗

n satisfies
the equality

dn = d̃n + dn,

where d̃n is the deficiency of the rule Dn with respect to Dn and dn is the deficiency of Dn
with respect to D∗

n.
The case where s = 1 is most interesting, because in this case the asymptotic deficiency

is finite. In the paper [2] some simple examples are given illustrating that this case is quite
natural in mathematical statistics (also see the book [8]).
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2. Asymptotic Expansions for the Distributions of Normalized Sums of Random
Variables

We begin with most general case. Let n ∈ N. Consider a finite set of r.v.s X1, . . . , Xn. For
the time being we do not assume that the r.v.s X1, . . . , Xn are independent and identically
distributed. Let Ln = Ln(X1, . . . , Xn) be an R-valued measurable function of X1, . . . , Xn.
(In what follows when dealing with the example of the portfolio of an insurance company
we will call this function generalized loss). In particular, Ln may be of the form Ln =

√
nTn

where Tn is the arithmetic mean,

Tn ≡ 1
n ∑n

i=1 Xi. (7)

As it has been already said, the problem consists in description of the distribution
of r.v.s Xi providing the least possible number of summands n and guaranteeing the
prescribed value of the (1 − α)-quantile of the function Ln for a given α ∈ (0, 1).

Let α ∈ (0, 1) be a small number. Consider the quantity cα(n) defined by the asymp-
totic relation

P
(

Ln ≥ cα(n)
)
= α + o(n−1), n → ∞. (8)

The quantity cα(n) is the asymptotic (1 − α)-quantile of Ln. If Ln =
√

nTn, then cα(n)
can be interpreted as the threshold, the exceedance of which by Ln is undesirable and is
assumed to have the prescribed small probability α. In terms of an insurance company,
cα(n) is the asymptotic Value-at-Risk.

By applying the Taylor formula it is not difficult to obtain the following result.

Lemma 1. Assume that there exist distribution function G(x) and functions g1(x) and g2(x)
such that

sup
x∈R

∣∣∣P(Ln < x
)
− G(x)− 1√

n
g1(x)− 1

n
g2(x)

∣∣∣ = o(n−1),

where the functions G(x), g1(x) and g2(x) are smooth enough. Then the asymptotic (1 − α)-
quantile cα(n) of Ln admits the a.e.

cα(n) = cα −
g1(cα)√
nG′(cα)

− 1
n

[
G′′(cα)g2

1(cα)

2(G′(cα))3 +
G′(cα)g2(cα)− g1(cα)g1

′(cα)

(G′(cα))2

]
+ o(n−1),

where cα satisfies the equation G(cα) = 1 − α.

Consider the application of this lemma to the case where X1, X2, . . . are independent
identically distributed r.v.s such that

EX1 = 0, EX2
1 = 1, E|X1|k+δ < ∞, k ∈ N, k ≥ 3, δ > 0 (9)

and the function Ln has the form Ln =
√

nTn with Tn defined by (7). Here the condition
EX1 = 0 means that the separate losses are centered by their expectations. Assume that the
characteristic function f (t) of the r.v. X1 satisfies the Cramér condition (C)

lim sup
|t|→∞

| f (t)| < 1. (10)

Under conditions (9) and (10), from Theorem 6.3.2 of [10] (also see [9]) it follows that
there exist functions Q1(x), . . . , Qk−2(x) and a Ck,δ ∈ (0, ∞) such that

sup
x

∣∣∣P(√nTn < x
)
− Φ(x)− ∑k−2

i=1 n−i/2Qi(x)
∣∣∣ ≤ Ck,δ

n(k−2+δ)/2
, n ∈ N, (11)

5
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For the definition of the functions Q1(x), . . . , Qk−2(x) see the book [10]. In particular,

Q1(x) = −(x2 − 1)ϕ(x)
EX3

1
6

,

Q2(x) = −(x3 − 3x)ϕ(x)
EX4

1 − 3
24

− (x5 − 10x3 + 15x)ϕ(x)
(EX3

1)
2

72
. (12)

Relations (11) and (12) and Lemma 1 directly imply the a.e. for the asymptotic (1 − α)-
quantile cn(α) of Ln presented in the following lemma.

Lemma 2. Let conditions (9) and (10) hold with k = 4, δ > 0. Then the the asymptotic (1 − α)-
quantile cn(α) of Ln admits the a.e.

cα(n) = uα +
EX3

1
6
√

n
(u2

α − 1) +
1

12n

[E2X3
1

3
(5uα − 2u3

α) +
EX4

1 − 3
2

(u3
α − 3uα)

]
+ o(n−1),

where uα is the (1 − α)-quantile of the standard normal distribution: Φ(uα) = 1 − α.

3. The Comparison of the Distributions of Two Normalized Sums of
Random Variables

3.1. The Asymptotic Deficiency of the Distributions of Summands Providing a Given
(1 − α)-Quantile of the Normalized Sums

In this section we will present an approach to the comparison of the distributions of two
sums of r.v.s in terms of the number of summands. The distribution of the random vector
X1, . . . , Xn will be denoted L(X1, . . . , Xn). Consider an R-valued measurable function of
X1, . . . , Xn.

From Lemma 1 we can easily obtain the following result.

Lemma 3. Consider a sequence {εn}n≥1 such that εn → 0 as n → ∞. Under the conditions of
Lemma 1 we have

sup
x∈R

∣∣∣P(Ln(X1, . . . , Xn) < x + εn
)
− P

(
Ln(X1, . . . , Xn) < x

)
−

−εnG′(x)− ε2
n

2
G′′(x)− εn√

n
g1

′(x)
∣∣∣ = o

(
max

{
ε2

n,
εn√

n
, n−1

})
.

Along with the r.v.s X1, . . . , Xn resulting in the value Ln(X1, . . . , Xn) of the function
Ln, consider another set of r.v.s Y1, . . . , Yn, according to which the value of the function Ln
is Ln(Y1, . . . , Yn). For example, Ln(X1, . . . , Xn) may have the form Ln(X1, . . . , Xn) =

√
nTn

with Tn defined by (7) and Ln(Y1, . . . , Yn) may have the form Ln(Y1, . . . , Yn) =
√

nUn where

Un =
1
n ∑n

i=1 Yi. (13)

Let to the distribution L(Y1, . . . , Yn) there correspond the asymptotic (1 − α)-quantile
cα(n) of Ln:

P
(

Ln(Y1, . . . , Yn) ≥ cα(n)
)
= α + o(n−1), n → ∞. (14)

Assume that the a.e. for the distribution function of Ln(Y1, . . . , Yn) has the form

P
(

Ln(Y1, . . . , Yn) < x
)
= G(x) +

1√
n

g1(x) +
1
n

g2(x) + o(n−1), (15)

where the functions G(x), g1(x) and g2(x) are smooth enough. The a.e. (15) differs from
the a.e. for the distribution function of Ln(X1, . . . , Xn) established by Lemma 1 only by

6
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the term of order n−1, which means that the two distributions are rather close. Define the
sequence of natural numbers {m(n)}n≥1 by the equality

P
(

Lm(n)(Y1, . . . , Ym(n)) ≥ cα(m(n))
)
= α + o(n−1), n → ∞. (16)

If m(n)− n = d + o(1), d ∈ R, n → ∞, then d is the asymptotic deficiency of the distri-
bution L(Y1, . . . , Y1) with respect to the distribution L(X1, . . . , Xn). In other words, d is the
asymptotic number of ‘additional’ r.v.s be included in the set Y1, . . . , Y1 in order that the
distribution L(Y1, . . . , Ym(n)) provides the same quality as the distribution L(X1, . . . , Xn).

Theorem 1. Assume that the conditions of Lemma 1 and (15) hold and G′(cα)cα 	= 0. Then
the asymptotic deficiency d of the distribution L(Y1, . . . , Y1) with respect to the distribution
L(X1, . . . , Xn) has the form

d =
2
[
g2(cα)− g2(cα)

]
G′(cα)cα

+ o(1).

Proof. From Lemma 1 and condition (15) it directly follows that

cα(n) = cα −
g1(cα)√
nG′(cα)

− 1
n

[G′′(cα)g2
1(cα)

2(G′(cα))3 +
G′(cα)g2(cα)− g1(cα)g′1(cα)

(G′(cα))2

]
+ o(n−1) (17)

and therefore

εn ≡
√

m(n)
n

cα(m(n))− cα(m(n)) =
d

2n
cα −

1
n

(
g2(cα)− g2(cα)

)
G′(cα)

+ o(n−1). (18)

Further, with the account of the definitions of m(n) (see (16)) and εn we have

α + o(n−1) = P
(

Lm(n)(Y1, . . . , Ym(n)) ≥ cα(m(n))
)
=

= P
(

Lm(n)(Y1, . . . , Ym(n)) ≥
√

n
m(n)

(
cα(m(n)) + εn

))
) (19)

Applying Lemma 3 to the right-hand side of (19) we obtain

α + o(n−1) = P
(

Lm(n)(Y1, . . . , Ym(n)) ≥ cα(m(n))
)
− εnG′(cα) + o(n−1).

Now from (16) and (18) it follows that

d =
2
[
g2(cα)− g2(cα)

]
G′(cα)cα

+ o(1).

The theorem is proved.

Now consider an example of the application of Theorem 1 to the optimization of the
portfolio size of an insurance company. Let the possible losses X1, X2, . . . related with each
insurance contract in the portfolio be independent identically distributed r.v.s satisfying
conditions (9) and (10). Consider another distribution, under which the possible losses
Y1, Y2, . . . are assumed to be independent identically distributed r.v.s such that

EY1 = 0, EY2
1 = 1, E|Y1|4+δ < ∞, δ > 0. (20)

Assume that the characteristic function p(t) of the r.v. Y1 satisfies the Cramér (C)
condition

lim sup
|t|→∞

|p(t)| < 1. (21)

7
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For each n consider the average losses Un defined by (13). Assume that

EX3
1 = EY3

1 , (22)

(for example, the r.v.s Xi and Yi are centered by their expectations and the distributions of
these centered r.v.s are symmetric). From Lemma 2 and Theorem 1 we directly obtain the
following statement.

Lemma 4. Let conditions (9), (10) and (20)–(22) hold. Then the asymptotic (as n → ∞) deficiency
of the distribution L(Y1, . . . , Yn) with respect to the distribution L(X1, . . . , Xn) (the ‘additional
number of contracts’) d has the form

d =

(
EX4

1 − EY4
1
)(

3 − u2
α

)
12

+ o(1).

Lemma 4 illustrates that if the distributions are close, then the deficiency is determined
by the kurtosis.

3.2. The Asymptotic Deficiency of the Distributions of Summands Providing a Given Probability
for the Normalized Sum to Fall into a Given Interval

To begin with, in this section we again consider the values of a measurable R-
valued function Ln(X1, . . . , Xn) and Ln(Y1, . . . , Yn) on random vectors (X1, . . . , Xn) and
(Y1, . . . , Yn) with the the distributions L(X1, . . . , Xn) and L(Y1, . . . , Yn), respectively. The
goal is to provide that the value of Ln falls into the interval [S1, S2) for some given numbers
S1 < S2. As a quality characteristic consider the probabilities

πn = P
(
S1 ≤ Ln(X1, . . . , Xn) < S2), πn = P

(
S1 ≤ Ln(Y1, . . . , Yn) < S2). (23)

If Ln(X1, . . . , Xn) =
√

nTn (see (7)) and Ln(Y1, . . . , Yn) =
√

nUn (see (22)), that is,
normalized sums of r.v.s are considered, then relation (23) means that πn and πn are
probabilities of that the normalized sums of r.v.s are inside the interval [S1, S2).

From the definition of πn we directly obtain the following result.

Lemma 5. Assume that for some r > 0 and s > 0 there exist a distribution function H(x) and
functions h1(x), h2(x) and h2(x) such that

sup
x∈R

∣∣∣P(Ln(X1, . . . , Xn) < x
)
− H(x)− 1

nr h1(x)− 1
nr+s h2(x)

∣∣∣ = o(n−r−s),

sup
x∈R

∣∣∣P(Ln(Y1, . . . , Yn) < x
)
− H(x)− 1

nr h1(x)− 1
nr+s h2(x)

∣∣∣ = o(n−r−s),

and, moreover, the functions h1(x), h2(x) and h2(x) are measurable. Then πn and πn admit a.e.s

πn = H(S2)− H(S1) +
h1(S2)− h1(S1)

nr +
h2(S2)− h2(S1)

nr+s + o(n−r−s),

πn = H(S2)− H(S1) +
h1(S2)− h1(S1)

nr +
h2(S2)− h2(S1)

nr+s + o(n−r−s).

Corollary 1. Let εn ↓ 0 as n → ∞ and S2 = S1 + εn. Assume that the functions H(x), h1(x),
h2(x) and h2(x) are smooth enough and h1(S2) 	= h1(S1). Then

ε−1
n πn = H′(S1) +

εn

2
H′′(S1) +

ε2
n

6
H′′′(S1) + o(ε2

n)+

+
1
nr h′1(S1) +

1
2nr h′′1 (S1)εn + o(εnn−r) +

1
nr+s h′2(S1) + o(n−r−sε−1

n ),

8
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ε−1
n πn = H′(S1) +

εn

2
H′′(S1) +

ε2
n

6
H′′′(S1) + o(ε2

n)+

+
1
nr h′1(S1) +

1
2nr h′′1 (S1)εn + o(εnn−r) +

1
nr+s h

′
2(S1) + o(n−r−sε−1

n ).

Lemma 5, Corollary 1 and formula (6) directly imply the expression for the asymptotic
deficiency with quality characteristics (23).

Theorem 2. Let conditions of Lemma 5 hold with s = 1. Then the deficiency dn of the distribution
L(Y1, . . . , Yn) with the quality characteristic πn with respect to the distribution L(X1, . . . , Xn)
with the quality characteristic πn has the form

dn =
h2(S2)− h2(S2) + h2(S1)− h2(S1)

r(h1(S2)− h1(S1))
+ o(1). (24)

If S2 = S1 + εn with εn ↓ 0 as n → ∞ and h′1(S1) 	= 0, then the formal passage to the
limit in (3.13) yields the formula

dn =
h
′
2(S1)− h′2(S1)

rh′1(S1)
+ o(1).

Consider an example of the application of Theorem 2 to the optimization of the
portfolio size of an insurance company. Let the possible losses X1, X2, . . . related with each
insurance contract in the portfolio be independent identically distributed r.v.s satisfying
conditions (9) and (10). Consider another distribution, under which the possible losses
Y1, Y2, . . . are assumed to be independent identically distributed r.v.s satisfying conditions
(20) and (21). Assume that in (9) and (20) k = 3. We are interested in the asymptotic
behavior of the average losses Tn (see (7)) and Un (see (13)). With the account of Lemma 5
we obtain the following statement.

Lemma 6. Let conditions (9), (10), (19) and (20) hold with k = 3. Then

P
(√

nTn < x
)
= Φ(x) +

Q1(x)√
n

+
Q2(x)

n
+ o(n−1),

P
(√

nUn < x
)
= Φ(x) +

Q1(x)√
n

+
Q2(x)

n
+ o(n−1),

uniformly in x ∈ R,

πn = Φ(S2)− Φ(S1) +
Q1(S2)− Q1(S1)√

n
+

Q2(S2)− Q2(S1)

n
+ o(n−1),

πn = Φ(S2)− Φ(S1) +
Q1(S2)− Q1(S1)√

n
+

Q2(S2)− Q2(S1)

n
+ o(n−1),

where the functions Q1(x) and Q2(x) are defined in (12),

Q1(x) = −(x2 − 1)ϕ(x)
EY3

1
6

,

Q2(x) = −(x3 − 3x)ϕ(x)
EY4

1 − 3
24

− (x5 − 10x3 + 15x)ϕ(x)
(EY3

1 )
2

72
.

Corollary 2. Let εn ↓ 0 as n → ∞ and S2 = S1 + εn. Assume that conditions of Lemma 6 hold.
Then

ε−1
n πn = ϕ(S1) +

εn

2
ϕ′(S1) +

ε2
n

6
ϕ′′(S1) + o(ε2

n)+

9
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+
1√
n

Q′
1(S1) +

εn

2
√

n
Q′′

1 (S1) + o(εnn−1/2)
1
n

Q′
2(S1) + o(n−1ε−1

n ),

ε−1
n πn = ϕ(S1) +

εn

2
ϕ′(S1) +

ε2
n

6
ϕ′′(S1) + o(ε2

n)+

+
1√
n

Q′
1(S1) +

εn

2
√

n
Q′′

1 (S1) + o(εnn−1/2) +
1
n

Q′
2(S1) + o(n−1ε−1

n ).

Theorem 2, Lemma 5 and formula (5) directly imply the following statement.

Theorem 3. Let, in addition to the conditions of Lemma 5., EX3
1 = EY3

1 . Then the deficiency dn
of the distribution L(Y1, . . . , Yn) with the quality characteristic πn with respect to the strategy
L(X1, . . . , Xn) with the quality characteristic πn (the ‘additional number of contracts’) has the form

dn = 2
Q2(S2)− Q2(S2) + Q2(S1)− Q2(S1)

Q1(S2)− Q1(S1)
n1/2 + o(n1/2).

Consider an example where the asymptotic deficiency is finite.

Corollary 3. Let εn = 1
n and S2 = S1 +

1
n , EX3

1 = EY3
1 = 0. Then under the conditions of

Lemma 5 we have

πn =
ϕ(S1)

n
+

ϕ′(S1) + 2Q′
2(S1)

n2 + o(n−2),

πn =
ϕ(S1)

n
+

ϕ′(S1) + 2Q′
2(S1)

n2 + o(n−2).

Moreover, the deficiency dn has the form

dn =
2(Q′

2(S1)− Q′
2(S1))

ϕ(S1)
+ o(1) =

S4
1 − 6S2

1 + 3
12

(EY4
1 − EX4

1) + o(1).

4. Random Number of Summands

4.1. Asymptotic Expansions for the Asymptotic (1 − α)-Quantile of R-Valued Measurable
Functions of a Random Number of Random Variables

In this section we consider the case where an additional randomization can be intro-
duced into the problem. In this case the number of summands in the sum can be considered
as random. This randomization may not be artificially induced, but also may occur when
the exact portfolio size can be unknown beforehand and only some ‘expected’ number of
summands can be available as the parameter of the problem.

Let natural-valued r.v.s N1, N2, . . . and r.v.s X1, X2, . . . be defined on one and the same
probability space (Ω,A,P). In what follows we will assume that n is the expected value
of Nn,

ENn = n. (25)

Assume that for each n ≥ 1 the r.v. Nn is independent of the sequence X1, X2, . . ..
As above, for each n ≥ 1, consider the value of an R-valued measurable function Ln =
Ln(X1, . . . , Xn). For each n ≥ 1 consider the r.v. LNn defined as

LNn(ω) ≡ LNn(ω)(X1(ω), . . . , XNn(ω)(ω)), ω ∈ Ω.

Below we will assume that the following condition holds.

Condition A. There exist k ∈ N\{1}, αi,n ∈ R, i = 1, . . . , k, βn > 0, Ck > 0, a differentiable
distribution function G(x) and measurable functions gj(x), j = 1, . . . , k such that

βn → 0, max
1≤i≤k

|αi,n| → 0

10
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as n → ∞ and

sup
x

∣∣∣P(Ln < x
)
− G(x)− ∑k

i=1 αi,ngi(x)
∣∣∣ ≤ Ckβn, n ∈ N.

Lemma 7. Let the function Ln = Ln(X1, . . . , Xn) satisfy Condition A. Then

sup
x

∣∣∣P(LNn < x
)
− G(x)− ∑k

i=1 gi(x)Eαi,Nn

∣∣∣ ≤ CkEβNn .

The elementary proof of this lemma directly follows by the formula of total probability.
Consider an example of application of Lemma 7. Let X1, X2, . . . be independent

identically distributed r.v.s satisfying conditions (9) and (10). Assume that the function Ln
is the normalized arithmetic mean (or, which is the same, the normalized sum) Ln =

√
nTn

with Tn defined in (7). Then, in accordance with what has been said in Section 2, relation
(11) holds implying the validity of Condition A. From (11) playing the role of Condition A
and Lemma 7 we obtain the following statement.

Lemma 8. Assume that Ln =
√

nTn with Tn defined in (7) and conditions (9) and (10) hold. Then

sup
x

∣∣∣P(√NnTNn < x
)
− Φ(x)− ∑k−2

i=1 Qi(x)EN−i/2
n

∣∣∣ ≤ Ck,δEN−(k−2+δ)/2
n ,

where the functions Qi(x) are defined in Theorem 6.3.2 of [10].

Relation (11) and Lemma 8 imply the following statement.

Lemma 9. Let conditions (9) and (10) hold with k = 4 and δ > 0. Assume that condition (25)
holds and

EN−1/2
n =

1√
n
+

a
n
+ o(n−1), a ∈ R,

EN−1
n =

b
n
+ o(n−1), EN−(2+δ)/2

n = o(n−1), b ∈ R.

Then

sup
x

∣∣∣P(√nTn < x
)
− Φ(x)− Q1(x)√

n
− Q2(x)

n

∣∣∣ = o(n−1)

and

sup
x

∣∣∣P(√NnTNn < x
)
− Φ(x)− Q1(x)√

n
− bQ2(x) + aQ1(x)

n

∣∣∣ = o(n−1).

We will use Lemma 9 in order to determine the asymptotic (1 − α)-quantile of Ln and
calculate the asymptotic deficiency.

Recall that, for α ∈ (0, 1), the asymptotic (1 − α)-quantile of Ln is the quantity cα(n)
satisfying the asymptotic equality

P
(

Ln ≥ cα(n)
)
= α + o(n−1), n → ∞. (26)

Correspondingly, we define the the asymptotic (1 − α)-quantile c̃α(n) of LNn by
the equation

P
(

LNn ≥ c̃α(n)
)
= α + o(n−1), n → ∞. (27)

From Lemmas 1 and 9 we directly obtain the a.e.s for these asymptotic (1 − α)-
quantiles.

11



Mathematics 2022, 10, 454

Lemma 10. Under the conditions of Lemma 8, we have

cα(n) = uα +
EX3

1
6
√

n
(u2

α − 1) +
1

12n

[E2X3
1

3
(5uα − 2u3

α) +
EX4

1 − 3
2

(u3
α − 3uα)

]
+ o(n−1),

c̃α(n) = uα +
EX3

1
6
√

n
(u2

α − 1)+

+
1

12n

[E2X3
1

3
(5uα − 2u3

α) +
b(EX4

1 − 3)
2

(u3
α − 3uα) + 2aEX3

1(u
2
α − 1)

]
+ o(n−1),

where uα satisfies the equation Φ(uα) = 1 − α.

Now define the sequence m(n) of natural numbers by the relation

P
(√

nLNm(n)
≥
√

m(n)cα(m(n))
)
= α + o(n−1), n → ∞. (28)

If
m(n) = n + d + o(1), (29)

n = 1, 2, . . ., then d can have the meaning of the expected additional number of summands
to be included in the sum in order that the function LNn exceeds cα(n) for the loss under a
non-random number n of summands. The quantity d will be called the asymptotic deficiency.

In the same way that Theorem 1 was proved, we can establish the following statement.

Theorem 4. Assume that

ENn = n, EN−1/2
n =

1√
n
+

a
n
+ o(n−1), a ∈ R,

EN−1
n =

b
n
+ o(n−1), EN−(2+δ)/2

n = o(n−1), b ∈ R,

and there exist δ > 0, a differentiable distribution function G(x) and measurable functions g1(x)
and g2(x) such that

sup
x

∣∣∣P(Ln < x
)
− G(x)− g1(x)√

n
− g2(x)

n

∣∣∣ ≤ C
n(2+δ)/2

and G′(cα)cα 	= 0. Then the expected number d of additional summands (see (28) and (29)) in the
normalized random sum LNn with respect to the normalized sum Ln has the form

d =
2
[
g2(cα)(1 − b)− ag1(cα)

]
G′(cα)cα

+ o(1),

where cα satisfies the equation G(cα) = 1 − α.

Theorem 4 implies the following statement.

Corollary 4. Under the conditions of Lemma 8 the expected additional number of summands
d (see (28) and (29)) corresponding to the normalized sum

√
NnTNn with a random number of

summands with respect to the normalized sum
√

nTn has the form

d =
2
(
(1 − b)Q2(uα)− aQ1(uα)

)
ϕ(uα)uα

+ o(1).

12
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If additionally EX3
1 = 0, then

d =
(1 − b)(3 − u2

α)(EX4
1 − 3)

12
+ o(1).

4.2. An Example of Three-Point Distribution of the Number of Summands

In this section, keeping to the terminology of the example related to optimization
of the portfolio size of an insurance company, we will use Corollary 4 to obtain a.e.s for
the asymptotic Value-at-Risk (asymptotic (1 − α)-quantile of the normalized average loss,
or asymptotic normalized α-reserve) in the case where the portfolio size Nn has a special
distribution concentrated in three points so that is symmetric around the central point.

Assume that the portfolio size Nn has the distribution of the form

P(Nn = n − hn) = P(Nn = n) = P(Nn = n + hn) =
1
3 , (30)

where hn ∈ N, hn < n, n = 1, 2, . . ., and

lim
n→∞

hn

n
= 0. (31)

Lemma 11. Let the random portfolio size Nn have distribution (30) and let condition (31) hold.
Then ENn = n and, as n → ∞,

EN−1/2
n =

1√
n
− 1

4
√

n

( hn

n

)2
+ O

( 1√
n

(hn

n

)3)
,

EN−1
n =

1
n
+

2
3n

( hn

n

)2
+ O

( 1
n

( hn

n

)4)
, EN−3/2

n =
1

n3/2 + O
( 1

n3/2

(hn

n

)2)
.

Proof. The desired statements follow from the relations

EN−1
n =

3n2 − h2
n

3n(n2 − h2
n)

=
1
n

(
1 − h2

n
3n

)(
1 +

h2
n

n2 + O
( h4

n
n4

))
=

1
n
+

2
3n

(hn

n

)2
+ O

( 1
n

(hn

n

)4)
,

EN−3/2
n =

1
3n3/2

( 1
(1 − hn/n)3/2 + 1 +

1
(1 + hn/n)3/2

)
=

1
n3/2 + O

( 1
n3/2

( hn

n

)2)
.

The formula for EN−1/2
n is established in a similar way.

Lemmas 10 and 11 imply the following statement.

Theorem 5. Assume that the normalized average loss has the form Ln =
√

nTn with Tn defined in
(7). Let the r.v. Nn be distributed according to (30) and condition (31) hold. Under the conditions of
Lemma 9, for the asymptotic α-reserve c̃α(n) corresponding to the normalized average loss

√
NnTNn

there holds the relation

c̃α(n) = cα(n)−
EX3

1(u
2
α − 1)

24
√

n

(hn

n

)2
+ o(n−1), n → ∞.

Remark 1. In addition to the conditions of Theorem 5, let

hn = γnβ + o(nβ), γ ≥ 0, 0 ≤ β < 1.

Then, as n → ∞,

n5/2−2β
(
cα(n)− c̃α(n)

)
→ γ2

24
EX3

1(u
2
α − 1).

Applying Lemma 9, by simple calculations we obtain the following statement.

13
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Lemma 12. Assume that conditions (9) and (10) hold with k = 4 and 0 < δ ≤ 1. Let conditions
(30) and (31) hold. Then

sup
x

∣∣∣∣P(√NnTNn < x
)
− Φ(x)−

(
1 − h2

n
4n2

)
Q1(x)√

n
−
(

1 +
2h2

n
3n2

)
Q2(x)

n

∣∣∣∣ = O
(

h(4+2δ)/3
n

n7(2+δ)/6

)
.

Corollary 5. Let conditions of Lemma 12 hold and hn = n3/4. Then

sup
x∈R

∣∣∣P(√NnTNn < x
)
− Φ(x)− 1√

n
Q1(x)− 1

n

(
Q2(x)− 1

4
Q1(x)

)∣∣∣ = o(n−1).

Relations (12), Lemmas 10 and 11 yield the following theorem.

Theorem 6. Let the conditions of Corollary 5 hold. Then the asymptotic α-reserves cα(n) and
c̃α(n) related to the normalized average losses

√
nTn and

√
NnTNn have the form

cα(n) = uα +
EX3

1
6
√

n
(u2

α − 1) +
1

12n

[E2X3
1

3
(5uα − 2u3

α) +
EX4

1 − 3
2

(u3
α − 3uα)

]
+ o(n−1),

c̃α(n) = uα +
EX3

1
6
√

n
(u2

α − 1)+

+
1

12n

[E2X3
1

3
(5uα − 2u3

α) +
EX4

1 − 3
2

(u3
α − 3uα)−

1
2
EX3

1(u
2
α − 1)

]
+ o(n−1),

where uα satisfies the equation Φ(uα) = 1 − α. The corresponding expected additional number d of
contracts has the form

d =
Q1(uα)

2ϕ(uα)uα
+ o(1) =

(1 − u2
α)EX3

1
12uα

+ o(1).

5. Conclusions

The paper deals with an approach to the comparison of distributions of sums of a
finite number of independent random variables by deficiency. The notion of asymptotic
deficiency of the distribution of a measurable R-valued function of a random vector with
respect to the distribution of the same function of another random vector was introduced.
Some formulas for the calculation of asymptotic deficiency were presented in the cases
where the function has the form of a normalized sum of independent identically distributed
r.v.s. The formulas for the asymptotic deficiency were obtained as the solution of two
problems, one of which deals with the description of the distribution of a separate summand
minimizing the number of summands and providing a prescribed value of the (1 − α)-
quantile of the normalized sum for a given α ∈ (0, 1). The second problem deals with
minimization of the number of summands and guaranteeing a prescribed probability for
a normalized sum of r.v.s to fall into a given interval. These results were extended to the
case of a random number of summands in the sum (or random portfolio size, in terms of
the example dealing with an insurance company). For this case, an analog of deficiency
of the sum of a random number of summands with respect to the distribution of the sum
of a non-random number of summands was introduced. The problem of comparison of
these distributions by an analog of deficiency was considered in a special case of three-
point distribution of portfolio size. The main mathematical tools used in the paper were
asymptotic expansions for the distributions of average losses and their quantiles.
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Abstract: We find an equilibrium in a single-server queueing system with retrials and strategic timing
of the customers. We consider a set of customers, each of which must decide when to arrive to a
queueing system during a fixed period of time. In this system, after completion of service, the server
seeks a customer blocked in a virtual orbit (orbital customer) to be served next, unless a new customer
captures the server. We develop, in detail, a setting with two and three customers in the set, and
formulate and discuss the problem for the general case with an arbitrary number of customers. The
numerical examples for the system with two and three customers included as well.

Keywords: equilibrium arrivals; one-server queueing system; orbit; retrials

1. Introduction

The retrial queues have been attracting increasing interest because of their importance
in modeling modern wireless telecommunication systems. Many papers have been devoted
to steady-state performance analysis of such queues with the most important sources
mentioned here [1–3]. Firstly, we outline the main settings that describe the dynamics of a
wide class of the retrial queueing systems.

There are many practical situation that can be modeled as a queueing system in which
customers are allowed to have a few attempts to be served. For instance, in call centers
with a callback option, as well as customers who cannot connect immediately with the
operator, thus register their numbers and go back at a later time. These customers can be
called orbital because it seems natural that registered customers are waiting for service in a
so-called orbit-queue (orbit). As these customers cannot be picked up immediately when the
operator becomes available, some seeking time (called retrieval time) is needed to access a
registered customer. We note that sometimes the operator may make an outgoing call, not
being aware of the presence of the registered customers in the orbit. A similar situation
(with retrial attempts) arises in many service systems where a ticket is issued upon the
arrival of a customer who will be served in a later time when the server is available.

Now we touch upon service disciplines that are considered in the retrial queueing
systems. The most traditional discipline is the so-called classical retrials, when the customers
blocked in the orbits make retrial attempts independently, in which case the retrial rate
increases (linearly) as the orbit size increases. Stability analysis of such systems are con-
sidered in the mentioned books (mainly in the Markovian setting), and in a more general
setting, this analysis has been performed in the papers [4–6].

The latter approach, in a generalized form, has been applied to the stability analysis of
a wide class of queueing systems (including many retrial systems) in the recent book [7].
The main ingredient of the analysis is to establish the negative drift of the remaining work
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(workload) when the orbit size becomes large. Moreover, a key observation is that, from the
point-of-view of stability, such a retrial system approaches the classic buffered system when
the orbit size increases unlimitedly. (We call it an asymptotically work-conserving discipline
in [5].) The following step to simplify the regenerative stability analysis has been realized
in the paper [6], in which the positive drift of the idle time of the servers is used (instead
of the positive drift of the workload) under the assumption that the orbit size increases to
infinite in probability. (For more on regenerative stability analysis, see [7].)

Another wide and important class of the retrial models is the queueing systems with
the constant retrial rate, see Chapter 7 in [7]. These models play an important role in the
analysis of modern wireless telecommunication systems. In this regard, we mention the
paper [8] in which, to the best of our knowledge, such a model has been used for the first
time to model a telephone exchange system. A retrial queueing system with a constant
retrial rate is suitable to describe the behavior of the multiple access protocols [9]. The
retrial queues with a constant retrial rate have been applied to model TCP (Transmission
Control Protocol) traffic related to short HTTP (HyperText Transfer Protocol) connections
and to describe an optical-electrical hybrid contention resolution scheme [10]. There is also
a modification of the retrial system in which, after each departure, the server seeks the
customer in orbit (this is the above-mentioned retrieval time) to be served next. For instance,
such a system has been considered in the paper [11], where a logarithmic asymptotic of
a large deviation probability of the orbit size during the regeneration period is obtained.
Moreover, in this paper we also consider the system with the retrieval time.

The most interesting and newest setting related to a retrial system is the so-called
retrial systems with coupled orbits [12], which have potential applications to model the
wireless multiple access systems. In particular, they can model the relay-assisted cognitive
cooperative wireless systems in which the users transmit packets to a common destination
node, and there are a finite number of relay nodes (i.e., orbits) that assist to retransmit the
blocked packets; when a direct source user transmission is blocked, it forwards the blocked
packet at a relay node [13]. Recent progress in the analysis of the queueing systems with
coupled orbits is presented in book [7]. (See Chapters 7–9, where motivation and further
references can be also found.)

Among the most important previous results in the analysis of the retrial systems, we
mention the explicit expression for the stationary remaining service time of the server,
which has been obtained in the recent paper [14]. It is easy to show that this result is also
applicable for the stationary retrial queueing system. The mentioned result has a potential
application in the setting in which the customers (both in the input process and in orbit)
can select the instant to capture the server. An analysis of such a setting is very close to
the main purpose of present paper. In the context of the present paper, it is important to
emphasize that in the conventional queueing theory setting, customers following an input
process are unable to make their own decision, while now we allow this possibility. To
best of our knowledge, this setting is completely new, and this is the main contribution of
our paper.

In conventional queueing theory, the structure of the input process and service process
are usually assumed to be predefined and specified by the input rate and service times of
the customers. However, there exists a different approach to the queueing which is based on
the assumption that the customers (or users) logging into the system are strategic ([15–25]).
Namely, it is assumed that the user strategy is to select the arrival instant to the system
on a time interval [0, T]. In this setting, the queue in the system is determined after each
player selects (at the initial instant t = 0) their random arrival instant in the system.
Thus, each user spends some time in the system, and this time is their personal utility
function. As a result, a non-zero-sum game is obtained, in which we need to find the Nash
equilibrium. To the best of our knowledge, the paper [15] (by Glazer and Hassin) is the
first work that considers the queue as a result of the user’s behavior, and the authors
denote this system as ?/M/1. They further formulate a non-cooperative game in which
a Poisson-distributed number of the customers determines their arrival instances in the
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queue of a single-server system, over a (limited) admission interval [0, T]. The purpose
of the customers is to minimize their waiting time in the system. It is shown in [15] that
the symmetric Nash equilibrium strategy is mixed. In particular, it was revealed that this
strategy is the (absolutely continuous) uniform distribution over time interval [0, T], except
a singularity at zero, and the density function decreases between zero and T. A similar
model ?/M/m/c with m ≥ 1 identical (exponential) servers and the buffer size c ≥ 0 for
the waiting customers is considered in the paper [22]. Note that the arrival times game with
the batch service has been investigated in [16]. A single-server bufferless system in which the
customers have a time-sensitivity function that they want to minimize, instead of their own
waiting costs, has been studied in [18]. The paper [20] establishes conditions under which
the customers cannot queue until an opening time, and shows that, in the equilibrium,
there is a singularity at instant t = 0, and that the density is positive only since an instant
te > 0. A model where the customers may incur tardiness costs in addition to the waiting
costs is considered in [21]. The paper [25] considers a model combining the tardiness costs,
waiting costs, and restrictions on the opening and closing times. (An overview of the
existing literature on this problem can also be found in [25].)

In this paper, we apply a game-theoretic approach to a callback queueing system with
one server. The queue is formed by the strategic players. (In what follows, we use the
terms ‘customer’, ‘user’, and ‘players’ as synonyms.) The player’s strategy is to choose
a moment to enter the system. If the server is busy, then the user is blocked and joins a
(virtual) orbit queue. Otherwise, if the server is free, it seeks a blocked user from the orbit
during an (exponential) retrieval time. In this setting, we will find the optimal strategies
of the players. First, we consider the case of two users, then consider in detail the case of
three players and finally formulate this problem for an arbitrary number of players.

Thus, the found optimal strategies of the players in the described retrial system is the
main contribution of this paper.

The paper is organized as follows. In Section 2, we describe the model in details. Then
in Section 3, we study the setting with two players. The simplest setting allows one to
highlight the main ideas and steps of our analysis. In Section 4, we focus on the system
with three players, and the analysis in this case turns out to be much more involved. The
analysis of the game with three players is continued in Section 5 where an algorithm on
how to find an approximation of the equilibrium is given. The developed approach is then
extended to a general setting with N + 1 players in Section 6. Moreover, we consider a few
numerical examples in Sections 3 and 6.

2. Description of the Model

Now we describe our model in more details in a general setting. We assume that there
exists a single server that serves N (‘exogenous’) customers presented in the system at the
initial instant t = 0. Unlike the conventional queueing theory setting, these customers use
some strategy to choose an instant to enter the server. By a symmetry, this strategy is the
same for each user. This strategy is determined by a distribution function, which is the
main purpose of the analysis, and it determines the instant of the attempt to enter the server,
see (1) below. This is an important difference with the standard queueing theory setting
where customers are not allowed to have their own decisions but follow the predefined
rules describing the dynamics of the system. After the departure of a served customer, the
server starts to seek the customer blocked in orbit (if any) to be served next. As mentioned
above, this seeking time is exponential with parameter γ and mean τ, and it is called
retrieve time in the retrial queueing terminology [11]. If an exogenous customer finds a
server busy, then they join a (virtual) orbit, and such orbital customers constitute a virtual
orbit queue (see [12]), which is served in FIFO (First-In-First-Out) order. If, during a retrieval
time (when the server is idle), some customer arrives then they capture server for the
exponentially distributed time with parameter μ. Recall that the arrival time is selected in
according to distribution (1). Thus, the present setting combines some features of both the
classic retrial system and a gated queue, in which the input gate remains closed until all N
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customers leave the system. In addition, a similar situation arises in a polling system (see,
for instance, [26]), in which different queues are served in an order, and server, returning to
a fixed queue, as a rule finds there a few new customers to be served.

Remark 1. In our setting, the system has initially a finite number of players, and in this case
the system is stable in a traditional sense: The number of customers is bounded. However, in our
analysis the requirement μ > γ on the parameters μ and γ appears (see (8)), which indeed can be
treated as a stability condition in the framework of the considered game setting. Moreover, when the
number of players is N (see Section 6) then the classic stability analysis could be critically important
in the asymptotic setting as N → ∞.

3. Two Players Scenario

Consider the case of two players. To find an equilibrium in this two-person game, we
will use the following approach. Suppose that one of the players (for the sake of definiteness,
the second player) uses, as a strategy, a random arrival time with the distribution function
F(t) (having density f (t)) of the following form:

F(t) =

{
p, 0 ≤ t < te,
p +

∫ t
te

f (x)dx, te ≤ t ≤ T.
(1)

That is, the second player enters the system at the initial moment t = 0 with probability
p ∈ (0, 1), otherwise, they arrive at instant t ∈ [te, T] following distribution F(t), where
te > 0 and T < ∞ are predefined constants.

Now, we find the best response of the first player to the described strategy used by the
second player. As a cost function of the first player, we will consider their average sojourn
time (the average time the player spends in the system). Thus, the objective of the first
player is to choose a strategy that minimizes the average sojourn time, that is the total time
the player spends in the system. Due to the symmetry of the problem, in the equilibrium,
the optimal strategy of the first player must coincide with the chosen strategy of their
opponent. To do this, it is sufficient that the strategy of the second player is chosen in such
a way that the cost function of the first player takes a constant value over the interval [te, T]
and at the initial instant t = 0 (see [24]). Then the payoff of the first player will not depend
on their own strategy.

Next, we find the best response of the first player to the strategy of the second player
defined by the relation (1). First, we find its cost function. The average sojourn time,
provided the first player enters the system at the instant t = 0, is:

C(0) = (1 − p)
1
μ
+ p(

1
2

1
μ
+

1
2
(τ +

2
μ
)) = (1 − p)

1
μ
+ p(

3
2μ

+
τ

2
).

In this expression, we take into account that, with the probability 1 − p, the second
player does not arrive in the system at the instant t = 0. Then the first player will be served
first, and the average sojourn time equals the average service time 1/μ. If the second player
arrives at the instant t = 0 (with the probability p), then, with probability 1/2, the first
player can be selected for service, and their average service time equals 1/μ. However,
with probability 1/2, the server chooses the second player, and then the first player joins
the orbit and waits until the second player ends service.

If 0 < t < te, then the average sojourn time of a customer that arrives at instant
t satisfies:

C(t) = (1 − p)
1
μ
+ p

(
(1 − e−μt)

1
μ
+ e−μt(

1
μ
+ τ +

1
μ
)

)
= (1 − p)

1
μ
+ p

(
1
μ
+ e−μt(τ +

1
μ
)

)
.
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To obtain this expression, we take into account that, with the probability 1 − p, the
second player does not arrive at instant t = 0. In this case, the first player is served first,
and the average (sojourn) service time equals 1/μ. If the second player arrives at t = 0
(with the probability p), then with probability 1 − exp{−μt}, it will be served in the time
interval [0, t], and then the first player will be served immediately. However, with the
probability exp{−μt}, the second player is still in the server at instant t, and then the first
player joins the orbit. This player will wait until the second player leaves the server, and
then they occupy server after time τ. We note that function C(t) decreases in t and then, in
the limit as t → 0+, we obtain:

C(0+) = (1 − p)
1
μ
+ p

(
τ +

2
μ

)
> C(0).

We require the fulfillment of the following condition on te: C(0) = C(te), that is:

1
μ
+ e−μte(τ +

1
μ
) =

3
2μ

+
τ

2
,

which yields:

te =
log 2

μ
. (2)

Similarly, for t ≥ te, we obtain the average sojourn time in the form:

C(t) = p
(
(1 − e−μt)

1
μ
+ e−μt(

1
μ
+ τ +

1
μ
)

)
+

(∫ t

te
dF(θ)

(
(1 − e−μ(t−θ))

1
μ
+ e−μ(t−θ)(

1
μ
+ τ +

1
μ
)

)
+
∫ T

t

1
μ

dF(θ)
)

,

implying,

C(t) = p
(

1
μ
+ e−μt(τ +

1
μ
)

)
+

(
1 − p

μ
+
∫ t

te
e−μ(t−θ)(τ +

1
μ
)dF(θ)

)
. (3)

Now, we find the exact shape of the target distribution function F(t) using condition
C′(t) = 0. Differentiating, we obtain:

−μp(τ +
1
μ
)e−μt − μ(τ +

1
μ
)
∫ t

te
e−μ(t−θ)dF(θ) + (τ +

1
μ
) f (t) = 0,

implying, ∫ t

te
eμθ f (θ)dθ =

1
μ

f (t)eμt − p.

Denoting:
g(t) = f (t)eμt,

we can write the equation for function g(t) in the following form:∫ t

te
g(θ)dθ =

1
μ

g(t)− p. (4)

In addition, we have the following relation:

g′(t) = μg(t),

implying,
g(t) = const · eμt and f (t) = K = const.
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Substituting g(t) to (4) we obtain:

K = μpe−μte =
μp
2

. (5)

On the other hand, condition:

1 − p =
∫ T

te
Kdt,

yields,
p = 1 − K(T − te),

and then, using expression (5), we finally obtain the probability p:

p =
1

1 + μ(T − te)e−μte
=

2
2μ + μT − log 2

. (6)

Now it follows from (3) that:

C(t) = C(te) = pe−μte(τ +
1
μ
) +

1
μ
=

1
2μ + μT − log 2

(τ +
1
μ
) +

1
μ

.

The previous analysis can be summarized as the following statement.

Proposition 1. An equilibrium in the two-person queueing game with retrials satisfies relation (1),
where f (t) = K = const for t ∈ [te, T], and parameters p, te, K satisfy conditions (2), (5), and (6).

Example 1. Consider a system which accepts the customers within interval [0, 2], and assume that
the service rate μ = 2 and the retrieval rate γ = 1

τ = 1. Then it is easy to calculate that:

te ≈ 0.347, f (t) ≈ 0.377 for t ≥ te,

the probability (to arrival at instant 0) p ≈ 0.377 and the average sojourn time is:

C(0) = C(t) ≈ 0.783 for t ≥ te.

4. Three-Player Solution

Consider the case of three players. Suppose that two of the players (for definiteness,
the second and third players) use, as a strategy, a random arrival time with the distribution
F(t) satisfying (1). We assume that customers are taken from the orbit by the server in the
order they entered the orbit, i.e., using FIFO discipline. If two customers entered the orbit
simultaneously, then the order is assigned at random (that is, each one is selected with
probability 1/2).

Now we find the best response of the first player provided they arrive at instant t = 0.
In this case, the payoff is:

C(0) = (1 − p)2 1
μ
+ 2p(1 − p)(

1
μ
+

1
2

W1
1 (0)) + p2(

1
μ
+

2
3

W0
2 (0)),

where,

W0
1 (0) =

1
μ + 1

γ ,
W0

2 (0) =
1
μ + 1

γ + 1
2 (

1
μ + 1

γ ) =
3

2μ + 3
2γ ,

W1
1 (0) =

1
1−p

T∫
te

θ∫
0

μe−μsds
θ−s∫
0

γe−γu(s + u)du +
θ∫

0
μe−μsds

∞∫
θ−s

γe−γu(s + u + 1
μ )du+

∞∫
θ

μe−μssdsdF(θ) = ( 1
μ + 1

γ ) +
1

γ(μ−γ)(1−p)

T∫
te

(γe−γθ − μe−μθ)dF(θ),
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and by Wj
i (t) we denote the average time spent in the orbit by a customer arriving at instant

t, provided that there are i customers in the orbit, and j (exogenous) customers remains
outside the system.

Now we find the value C(0+) for a customer who arrives in the system at instant
t = 0+. Then they occupy the server if both remaining players arrive after te. If one player
arrives at instant t = 0, then the customer arriving at t = 0+, evidently, joins the orbit.
Finally, if both other customers arrive at t = 0, then the customer arriving at t = 0+ joins
the end of the orbit queue. This results in:

C(0+) = (1 − p)2 1
μ
+ p(1 − p)(

1
μ
+

1
1 − p

W1
1 (0)) + p2(

1
μ
+ W0

2 (0+)) > C(0), (7)

where,

W0
2 (0+) =

1
μ
+

1
γ
+

1
μ
+

1
γ
=

2
μ
+

2
γ
> W0

2 (0).

The playoff of a customer arriving at instant te, provided that no customers arrive in
the time interval (0, te), satisfies:

C(te) = (1 − p)2 1
μ
+ 2p(1 − p)

⎛⎝ 1
μ
+

T∫
te

dF(θ)
1 − F(te)

⎛⎝ θ∫
te

μe−μsds
θ−s∫
0

γe−γτ(s − te + τ)dτ+

∫ θ

te
μe−μsds

∫ ∞

θ−s
γe−γτ(θ − te +

1
μ
+

1
γ
)dτ +

∫ ∞

θ
μe−μs(s − te +

1
γ
)ds
))

+

p2

⎛⎝ 1
μ
+

te∫
0

μe−μsds
te−s∫
0

γe−γτdτ

∞∫
te−s−τ

μe−μv(s + τ + v − te +
1
γ
)dv+

∞∫
te

μe−μsds(s +
1
μ
+

2
γ
− te)

⎞⎠ = (1 − p)2 1
μ
+

2p(1 − p)

⎛⎝ 1
μ
+ (

1
μ
+

1
γ
)e−μte +

e−μte

(1 − p)(μ − γ)

T∫
te

(e−γ(θ−te) − e−μ(θ−te))dF(θ)

⎞⎠+

p2
(

1
μ
+ 2(

1
μ
+

1
γ
)e−μte + (

1
μ
+

1
γ
)

γ

(μ − γ)2 (e
−γte − e−μte)− (

1
μ
+

1
γ
)

γ

μ − γ
tee−μte

)
.

We assume that:

μ > γ. (8)

Then the payoff value C(te) decreases by te, provided that there are no customers
arriving into the system at the interval (0, te).

The obtained latter equality and the inequality C(0+) > C(0) (see (7)) confirm that it
is more profitable for a customer to arrive with a delay following the instant t = 0 (but not
at the instant 0+). Since, in the equilibrium, the payoff should be the same on the strategy
support, then the instant when a new customer decides to arrive in the system satisfies
the equation:

C(0) = C(te).
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Now we show that an arrival at the instant t ∈ (0, te) is unprofitable even for one
player, when other players make an attempt to occupy the server since instant te. For such
t we obtain:

C(t) = (1 − p)2 1
μ
+ 2p(1 − p)

⎛⎝ 1
μ
+

T∫
te

dF(θ)

⎛⎝ 1
μ
+

θ∫
t

μe−μsds
θ−s∫
0

γe−γτ(s − t + τ)dτ+

θ∫
t

μe−μsds
∞∫

θ−s

γe−γτ(θ − t +
1
μ
+

1
γ
)dτ +

∞∫
θ

μe−μs(s − t +
1
γ
)ds

⎞⎠⎞⎠+

p2

⎛⎝ 1
μ
+

t∫
0

μe−μsds
t−s∫
0

γe−γτdτ

∞∫
t−s−τ

μe−μv(s + τ + v − t +
1
γ
)dv+

∞∫
t

μe−μsds(s +
1
μ
+

2
γ
− t)

⎞⎠ =

(1 − p)2 1
μ
+ p2

(
1
μ
+ 2(

1
μ
+

1
γ
)e−μt +

1
μ − γ

(e−γt − e−μt)− te−μt
)
+

2p(1 − p)

⎛⎝ 1
μ
+ (

1
μ
+

1
γ
)e−μt +

e−μt

(1 − p)(μ − γ)

T∫
te

(e−γ(θ−t) − e−μ(θ−t))dF(θ)

⎞⎠.

Then it is easy to check that function C(t) decreases in t < te, confirming that, even
for one player, it is better to avoid an attempt to enter the server earlier the instant te.

Now we consider the situation when the first player enters the system in the interval
t ∈ [te, T]. To study it, we define, for instant t, the (time-dependent) state probabilities,
denoted by pijk(t), that i ∈ {0, 1, 2} customers arrived in the system, in the interval [te, T],
j ∈ {0, 1} customers are in the server, and k ∈ {0, 1} customers are in the orbit, at instant t.
The arrival rate at instant t (that is the rate of exogenous customers) depends on the chosen
strategy and the number k of customers who have already entered the system up to instant
t. In an evident notation, these rates are equal to:

λ0(t) = 2
f (t)

1 − F(t)
, λ1(t) =

f (t)
1 − F(t)

,

respectively. Now we can write down the corresponding Kolmogorov backward equations
for the state probabilities:

p′000(t) = −λ0(t)p000(t),
p′100(t) = −λ1(t)p100(t) + μp110(t),
p′110(t) = −(μ + λ1(t))p110(t) + λ0(t)p000(t),
p′201(t) = −γp201(t) + μp211(t),
p′210(t) = −μp210(t) + γp201(t) + λ1(t)p100(t),
p′211(t) = −μp211(t) + λ1(t)p110(t),
p′200(t) = μp210(t).

(9)

Now we find the state probabilities for t = te as follows:
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p000(te) = (1 − p)2

p100(te) = 2p(1 − p)(1 − e−μte)
p110(te) = 2p(1 − p)e−μte

p201(te) = p2
te∫
0

μe−μθe−γ(te−θ)dθ = p2μ e−γte−e−μte
μ−γ

p210(te) = p2
te∫
0

μe−μθ
te−θ∫

0
γe−γτe−μ(te−(θ+τ))dτdθ = p2γ

e−γte−e−μte (μte−γte+1)
(μ−γ)2

p211(te) = p2e−μte

p200(te) = p2
te∫
0

μe−μθ
te−θ∫

0
γe−γτ(1 − e−μ(te−(θ+τ)))dτdθ =

= p2(1 − e−μte − γ
e−γte−e−μte (μte−γte+1)

(μ−γ)2 − μ e−γte−e−μte
μ−γ ).

(10)

Expressions (10) indeed are the initial boundary conditions for the Cauchy problem
for differential Equations (9). The probability p of an arrival at instant t = 0 can be found
from the normalization condition:

p +

T∫
te

f (t)dt = 1.

Then the average sojourn time of a player entering the system at instant t is:

C(t) =
1
μ

(
p000(t) + p100(t) + p201(t) + p200(t)

)
+ p110(t)(

1
μ
+ W1

1 (t)) + p210(t)(
1
μ
+ W0

1 (t)) + p211(t)(
1
μ
+ W0

2 (t))

=
1
μ
+ p110(t)W1

1 (t) + p210(t)W0
1 (t) + p211(t)W0

2 (t),

where,
W0

1 (t) =
1
μ + 1

γ ,
W0

2 (t) =
2
μ + 2

γ ,

W1
1 (t) =

1
1−F(t)

T∫
t

dF(θ)

(∫ θ−t
0 μe−μsds

θ−t−s∫
0

γe−γτ(s + τ)dτ+

θ−t∫
0

μe−μs
∞∫

θ−t−s
γe−γτ(θ − t + 1

μ + 1
γ )dτ +

∞∫
θ−t

μe−μs( 1
γ + s)ds

)
= 1

μ + 1
γ + 1

(1−F(t))(μ−γ)

T∫
t

e−γ(θ−t) − e−μ(θ−t)dF(θ).

In the equilibrium, the equality C(t) = C(te) = const, t ∈ [te, T] is satisfied, implying:

(
1
μ
+

1
γ
)
(

p110(t)− p110(te) + p210(t)− p210(te) + 2(p211(t)− p211(te)
)
+

1
μ − γ

⎛⎝ p110(t)
1 − F(t)

T∫
t

(e−γ(θ−t) − e−μ(θ−t))dF(θ)− p110(te)

1 − p

T∫
te

(e−γ(θ−te) − e−μ(θ−te))dF(θ)

⎞⎠
= 0.

(11)
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If condition (11) is met, then the function C(t) must be a constant on the time interval
[te, T]. It remains now to require that the condition C(te) = C(0) is satisfied. In other words,

(1 − p)2 1
μ
+ p2(

2
μ
+

1
γ
)

2p(1 − p)(
1
μ
+

1
2
(

1
μ
+

1
γ
) +

1
2γ(μ − γ)(1 − p)

T∫
te

(γe−γθ − μe−μθ)dF(θ)) =

(1 − p)2 1
μ
+

2p(1 − p)

⎛⎝ 1
μ
+ (

1
μ
+

1
γ
)e−μte +

e−μte

(1 − p)(μ − γ)

T∫
te

(e−γ(θ−te) − e−μ(θ−te))dF(θ)

⎞⎠+

p2
(

1
μ
+ 2(

1
μ
+

1
γ
)e−μte + (

1
μ
+

1
γ
)

γ

(μ − γ)2 (e
−γte − e−μte)− (

1
μ
+

1
γ
)

γ

μ − γ
tee−μte

)
or:

(
1
μ
+

1
γ
)(1 − 2e−μte)+

1
(μ − γ)

(
1
γ

T∫
te

(γe−γθ − μe−μθ)dF(θ)− 2e−μte

T∫
te

(e−γ(θ−te) − e−μ(θ−te))dF(θ))+

p(
1
μ
+

1
γ
)(

γ

μ − γ
tee−μte − γ

(μ − γ)2 (e
−γte − e−μte)) = 0.

(12)

The analysis performed above is summarized in the following statement.

Proposition 2. An equilibrium in the three-person queueing game with retrievals has the form (1),
where f (t) for t ∈ [te, T] is determined as a solution of Equations (9), (11), and (12).

5. Computing the Equilibrium

In this section, we describe in detail the numerical solution of the above obtained
equations. Let us fix te and T. We divide the interval [te, T] into k − 1 equal segments. Then
we find an approximate solution in the nodes of the grid K = {t1 = te, t2 = t1 + Δ, . . . ,
tk = tk−1 + Δ}, where Δ = (T − te)/(k − 1). We represent the values of the unknown
function f (t) at the initial moment and at the nodes of the grid as the arguments of
the problem:

{x0 = f (0) = p, x1 = f (t1), . . . , xk = f (tk) = f (T)}.

Then the derived conditions for the equilibrium can be represented as the difference
equations. More precisely, condition (11) becomes:

(
1
μ
+

1
γ
)(p110(ti)− p110(te) + p210(ti)− p210(te)+

+ 2(p211(ti)− p211(te))) +
p110(ti)

(μ − γ)(1 − p −
i−1
∑

j=1
xjΔ)

k−1

∑
j=i

(
e−γ(tj−ti) − e−μ(tj−ti)

)
xjΔ−

− p110(te)

(μ − γ)(1 − p)

k−1

∑
j=1

(
e−γ(tj−te) − e−μ(tj−te)

)
xjΔ = 0, i = 2, . . . , k.

(13)
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Condition (12) takes the form:

(
1
μ
+

1
γ
)(1 − 2e−μte)+

1
(μ − γ)

(
1
γ

k−1

∑
j=1

(γe−γtj − μe−μtj)xjΔ − 2e−μte
k−1

∑
j=1

(e−γ(tj−te) − e−μ(tj−te))xjΔ)+

p(
1
μ
+

1
γ
)(

γ

μ − γ
tee−μte − γ

(μ − γ)2 (e
−γte − e−μte)) = 0.

(14)

The Kolmogorov backward (difference) equations become:

p000(ti+1) = p000(ti)

⎛⎜⎝1 − Δ 2xi

1−p−Δ
i−1
∑

j=1
xj

⎞⎟⎠,

p100(ti+1) = p100(ti)

⎛⎜⎝1 − Δ xi

1−p−Δ
i−1
∑

j=1
xj

⎞⎟⎠+ Δμp110(ti),

p110(ti+1) = p110(ti)

⎛⎜⎝1 − Δ(μ + xi

1−p−Δ
i−1
∑

j=1
xj

)

⎞⎟⎠+ Δ 2xi

1−p−Δ
i−1
∑

j=1
xj

p000(ti),

p201(ti+1) = (1 − Δγ)p201(ti) + Δμp211(ti),
p210(ti+1) = (1 − Δμ)p210(ti) + Δγp201(ti) + Δ xi

1−p−Δ
i−1
∑

j=1
xj

p100(ti),

p211(ti+1) = (1 − Δμ)p211(ti) + Δ xi

1−p−Δ
i−1
∑

j=1
xj

p110(ti),

p200(ti+1) = p200(ti) + Δμp210(ti),
i = 1, . . . , k − 1.

(15)

Finally, the normalization condition takes the form:

p + Δ
k−1

∑
i=1

xi − 1 = 0. (16)

Now we find a solution as follows. We iterate over the values of p on the interval [0, 1].
For each p, we iterate over the values of te belonging to interval [0, T]. For each given p and
te, we solve the system of the difference Equations (13), where the state probabilities satisfy
system (15). We are looking for a pair p, te, in such a way that conditions (14) and (16)
are satisfied.

To find p and te, we first use a partition of [0, 1]× [0, T] into a grid with a small rank
and look for a node, passing through which the left sides of Equations (14) and (16) change
sign. We seek for a solution in a neighborhood of this node. More precisely, for each given
p and te, the solution x is found with Algorithm 1. First we specify the uniform distribution
over the interval [te, T] as the initial approximation of the solution x, taking into account
that there is an atom at the point t = 0 with a given probability p. Then we search for a
solution x that satisfies (13). Step 1 of Algorithm 1 is repeated until the solution is stabilized
with a given accuracy ε. In practice, the algorithm converges in 2–3 runs.

At each iteration i = 2, . . . , k at the beginning of the execution, we have xj, where
j = 1, . . . , i − 2, and state probabilities for all steps from 1 to i − 1, found on previous itera-
tions. On iteration i, we solve Equation (13) for xi−1, each time calculating the probabilities
of states at step i using an approximation of xi−1 according to (15). In this case, the sum
in the two last terms on the left-hand side of Equation (13) is partially calculated from
the old values xprev from the solution at the previous iteration, and all other components
of the equation are calculated by new ones, according to the solution x at the current
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iteration. However, as calculation experiments confirm, with each pass of the algorithm,
the difference between the solutions decreases.

Algorithm 1 Finding the solution x for p and te.

Step 0. Initialization.
for i = 1 to k do

xi ← 1−p
T−te

end for
Calculate p000(t1), . . . , p200(t1) from (10).
Step 1. Next approximations.
do

xprev ← x
for i = 2 to k do

Find xi−1 from (13) with new p000(ti), . . . , p200(ti) re-calculated with (15).
end for

while (|x − xprev| > ε)

After completing the algorithm, we get a set of values xi, where i = 1, . . . , k − 1, which

is enough to find F(T) ≈ p +
k−1
∑

i=1
xiΔ. If conditions (14) and (16) are satisfied with a given

accuracy ε, the current p, te and x give a solution, otherwise we change te and p.

Example 2. Let T = 2, μ = 2, γ = 1. The computations give the optimal values in the equilibrium:
p ≈ 0.412, te ≈ 0.380. The density of the optimal arrival time at the interval [te, T] is presented at
Figure 1. In the figure, the function f (t) first decreases in the interval [te, 0.833], then increases
in the interval [0.833, 1.676], then decreases again in the interval [1.676, 2]. The value at the
equilibrium is equal to C(t) ≈ 1.133.

Figure 1. The equilibrium density f (t) and cost C(t) for T = 2, μ = 2, γ = 1.

Example 3. If T = 4, μ = 2, γ = 1 then p ≈ 0.232, te ≈ 0.369, and C(t) ≈ 0.857. The shape of
the equilibrium density is similar to that presented in Figure 1, and C(t) ≈ 0.857.

Example 4. If T = 4, μ = 4, γ = 1 then the shape of the equilibrium density is similar to that as
given on Figure 1, and p ≈ 0.121, te ≈ 0.179, and C(t) ≈ 0.404.
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Example 5. If T = 1, μ = 2, γ = 1 then p ≈ 0.661, te ≈ 0.381, and C(t) ≈ 1.485. The density
of the optimal arrival time at the interval [te, T] is presented on Figure 2. In the figure, the function
f (t) decreases in the interval [0.381, 1].

Figure 2. Equilibrium density f (t) and cost C(t) for T = 1, μ = 2, γ = 1.

6. N Players

The same approach can be used when considering a service system with more than
3 players. Suppose that in the queueing system an arrival strategy F(t) of the form (1) is
used, and the (N)-th player is looking for a strategy that gives the best response. In this
case, the found best answer must coincide with the strategy F(t). Due to symmetry, it will
be the equilibrium in the game.

By the state of the system at an instant t, we mean the set (k, s, i), where k is the number
of claims entered into the system, i is the number of claims in the orbit, and the parameter
s, which means for s = 0 the server free, and with s = 1 the server is busy at instant t. We
denote by Wj

i (t) the average time until the server seeks for a claim in orbit at the time t
provided the system has not yet received j customers and there are i customers in the orbit.
Our purpose is to find the average sojourn time of the (N)-th customer when they enter
the system at the instant t. For t = 0, we obtain:

C(0) = (1 − p)N−1 1
μ
+

N−1

∑
i=1

pi(1 − p)N−1−i
(

1
μ
+ WN−1−i

i (0))
)

=
1
μ
+

N−1

∑
i=1

pi(1 − p)N−1−iWN−1−i
i (0).

For 0 < t < te, the average sojourn time of the (N)-th customer satisfies:

C(t) = (1 − p)N−1 1
μ
+

N−1

∑
i=1

pi(1 − p)N−1−i
(

1
μ
+ WN−1−i

i (t))
)

=
1
μ
+

N−1

∑
i=1

pi(1 − p)N−1−iWN−1−i
i (t).

29



Mathematics 2022, 10, 428

Finally, for t ≥ te, the average sojourn time of the (N)-th customer equals:

C(t) = P(idle server)
1
μ
+

N−1

∑
k=1

k−1

∑
i=0

P(busy server, k arrived customers, i orbital customers)
(
WN−1−k

i (t) +
1
μ

)
.

It gives:

C(t) =
N−1

∑
k=1

k−1

∑
i=0

(
pk,0,i(t)

1
μ
+ pk,1,i(t)(WN−1−k

i (t) +
1
μ
)

)
,

implying, after some algebra, the following expression:

C(t) =
1
μ
+

N−1

∑
k=1

k−1

∑
i=0

pk,1,i(t)WN−1−k
i (t). (17)

In this expression pk,s,i(t) denotes the state probability at the instant t, which satisfy
the following Kolmogorov backward equations:

p′k,1,i(t) = − (μ + λk(t))pk,1,i(t) + λk−1(t)pk−1,1,i−1(t)

+ λk−1(t)pk−1,0,i(t) + γpk,0,i+1(t),

p′k,0,i(t) = − (γ + λk(t))pk,0,i(t) + μpk,1,i(t);

k = 1, 2, . . . , N − 2; i = 0, . . . , k − 1.

We note that in this case,

λk(t) = (N − 1 − k)
f (t)

1 − F(t)
, k = 1, . . . , N − 2,

is the arrival rate, provided there are k customers in the system at the instant t.
Then we find the expression for Wj

i (t), the average waiting time a customer spends

in the orbit, starting with instant t, until they occupy the server. Then, substituting Wj
i (t)

in (17), we proceed as above to find the optimal strategy for the (N)-th player. To do this,
we require that the following conditions:

C(0) = C(te) = C(t) = C∗, t ∈ [te, T],

are satisfied. Finally, these conditions allow, in general, one to find the optimal strategy
F(t) along the same steps we described above for particular cases with 2 and 3 players.

7. Conclusions

We consider a single-server retrial queueing system in which the service of customers
is handled in a strategic manner, i.e., unlike the conventional retrial queues, the customers
are generated by players who choose the time to occupy the server. An equilibrium is
sought in such a system when applications are distributed in such a way that the average
service time is minimal. An equilibrium is sought in the class of mixed strategies, when
players choose the login time randomly. It is shown that the optimal strategy is such
that a player enters the system with a non-zero probability at the initial moment of time,
otherwise, it takes a random pause, and then a distribution density is used, satisfying a
system of the differential equations. This setting is described in detail for the case of two
and three players and illustrated by a few numerical examples. Moreover the model for an
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arbitrary number of players is formulated. This scenario is assumed to be considered in
detail in a future work.
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Abstract: A multi-server infinite buffer queueing system with additional servers (assistants) provid-
ing help to the main servers when they encounter problems is considered as the model of real-world
systems with customers’ self-service. Such systems are widely used in many areas of human activity.
An arrival flow is assumed to be the novel essential generalization of the known Markov Arrival
Process (MAP) to the case of the dynamic dependence of the parameters of the MAP on the rating of
the system. The rating is the process defined at any moment by the quality of service of previously
arrived customers. The possibilities of a customers immediate departure from the system at the
entrance to the system and the buffer due to impatience are taken into account. The system is ana-
lyzed via the use of the results for multi-dimensional Markov chains with level-dependent behavior.
The transparent stability condition is derived, as well as the expressions for the key performance
indicators of the system in terms of the stationary probabilities of the Markov chain. Numerical
results are provided.

Keywords: multi-server queueing model; rating; self-sufficient servers; self-checkout; assistants;
multi-dimensional Markov chains

1. Introduction

Queueing theory is very useful for modeling various real-world systems, contact
centers, airports, banks, telecommunication, and retail networks, in particular. The queue-
ing model considered in this paper has two main novel features: (i) the mechanism of
customer’s arrival is dependent on the current rating of the system and (ii) consideration
of self-service of customers via so-called self-service devices (SSD) or self-checkouts. Both
these features are inherent for many real systems, e.g., entertainment systems, contact
centers, food services, and retail networks. Thus, they have to be carefully taken into
account in system design and management aiming to guarantee the effective operation of a
system. The effective operation suggests earning the maximal profit received by the system
via customers service and a high degree of customer satisfaction.

The standard queueing models considered in the literature suggest that the arrival
flow of customers to the system does not depend on the system state. The flow entering the
service may depend on this state via the mechanism of customers admission depending on
the visibility of a queue, as well as its length and (or) the number of busy servers. In this
paper, we assume the dependence of the arrival process not on the queue length but the
rating of the system.

The rating is now the well-known notion that reflects the customers’ satisfaction and
has an influence on the choice among the competitive service systems in which the customer
can obtain service. Ratings of various service systems are now very popular and easily
available, e.g., on the Internet. Checking ratings/reviews before making consumption
decisions has become a ritual for many of today’s customers, see [1]. The rating dynamically
evaluates the current quality of customer service in this system. The rating of the system
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may cause so-called word-of-mouth advertising and has quite a strong influence on the
preferences of the customers and their arrival rate to any system. In turn, this has a high
impact on the profit earned by this system, and the ratings have to be taken into account in
the management of the system operation. Analysis of queueing systems with an arrival
process depending on the rating of the system is of high practical importance.

The existing literature about the queues with servers rating is not extensive. In [1], a
queueing model with two types of customers is considered. Sophisticated customers are
well-informed of service-related information and make their joining-or-balking decisions
strategically, whereas naive customers do not have such information and rely on online
rating information to make such decisions. The problem of optimal pricing strategy is
solved in [1]. The queueing model containing two competitive systems with customers’
choice of the system to be joined via the comparison of the individual ratings of the systems
was recently considered with the use of matrix analytic methods in [2].

In modern retail networks, hotels, banks, airports, etc., there is a robust trend for
extending the use of self-service devices (SSD) or self-checkouts. SSDs have been defined
by the new technological interfaces (e.g., the Quick Response (QR) codes, image and face
recognition, radio frequency identification (RFID)) that allow customers to produce services
without a service employee’s involvement, see, e.g., [3]. The human operator (administrator,
assistant, etc.) is involved in the service only upon request of a customer who asks for help
in resolving certain problems that he/she met during a service or in the case of violation of
the established rules by a customer. The use of SSD is becoming very wide nowadays, in
particular, in many retail networks worldwide due to many reasons. The main reason is
that it is profitable for both owners of services and customers.

The owners save money via non-payment of salaries to service employees and other
operational costs. This creates better opportunities for successful competition with very
popular now online shopping that is associated for many customers with the safest (from
the perspective of health safety) and convenient way of shopping. Statistics show that one
human operator (administrator, assistant, etc.) can easily control 6–10 SSDs. The SSDs
take up less space than the regular cash registers, which allows optimizing the store space.
With their help, it is possible to unload the cash register area and to increase its throughput.
Among other things, SSDs encourage customers to make additional purchases. At one time,
McDonald’s found out during an experiment that visitors spend an average of 30 percent
more on purchases when they are not worried that the person behind the cash register will
evaluate their choice. The use of SSDs may allow the reduction of the actual and perceived
waiting time that is strongly linked with customers satisfaction. In turn, this should imply
higher loyalty of customers and the future profit of the owner.

The main profit gained by a customer consists of: (i) having a chance to avoid long
waiting in the queue until the human server (cashier) will become available. Waiting
generally is regarded as an undesirable activity that customers must undertake to complete
the service. Waiting can lead to both emotional (anger, irritation, frustration, boredom,
stress) and behavioral (e.g., abandonment or reneging) responses, especially when it is
costly and limits the person’s ability to engage in more productive or rewarding ways to
spend their time; (ii) getting more control over his/her shopping experience; (iii) obtaining
a possibility of better distancing from other buyers what is very important in the current era
of the COVID-19 pandemic. With the continuous improvement in technology and the pro-
motion of self-service retail stores in the market, their numbers will increase. Furthermore,
the scales of users and transactions will rapidly increase in the future. For more existing
literature about the perspectives and attractiveness of the use of SSDs, see, e.g., [4–8].

In the early beginning, the spread of the use of SSDs was fully justified by the huge
investment of the companies to enforce the use of the new perspective technologies. After
they are already implemented in life, it is necessary to effectively manage the operation
of each concrete service system. To this end, besides many administrative problems, a
whole bunch of pure mathematical problems has to be resolved. One of these problems is
a traditional problem in modeling service systems. Namely, given the actual or expected
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characteristics of the arrival process, the distribution of service time of one customer, and
the required values of the service level indicators, it is necessary to optimally choose the
number of required servers (SSDs). Such indicators may be, e.g., the probability that the
waiting time of an arbitrary customer will not exceed the given value with the fixed in
advance value or the probability of customer abandonment.

It is known that, during the use of SSD for purchases, the customers can meet problems
related, e.g., to the search of the necessary good on the shelves, readability of RFIDs, correct
use of the scales, damage of the goods. To resolve the potentially arising problems, usually,
the stores have some additional staff of administrators (assistants, helpers, etc.). They
provide help to a customer if at least one of the assistants is not busy. Otherwise, the
customer should wait until one of the assistants becomes available. Therefore, the problem
of the optimal choice of the number of SSDs is supplemented by the problem of the optimal
matching of the number of required assistants to the number of the SSDs. The redundant
number of assistants implies higher, unjustified operational costs. The insufficient number
of assistants causes long waiting times for help for a customer. That, in turn, implies longer
total service time of this customer, longer waiting time of other customers, the higher
probability of the abandonment and reneging by an arbitrary customer from the system,
and the loss of potential profit that could be earned by service of customers. In this paper,
we solve the problem of computation of the values of performance indicators under any
fixed set of the numbers of SSDs and assistants. The problem is formulated and solved in
borders of the matrix queueing theory. The usability of this result for the optimal choice of
such a set is numerically illustrated.

Due to the practical importance of the effective use of SSDs, there are a lot of papers
devoted to this topic. We mention only a few of them that operate with the notion of
a customer waiting time. Analysis of the waiting time is one of the standard goals in
queueing theory. In [6], the usefulness of queueing theory for the analysis of systems with
SSD is noted. The question of the relation of the actual waiting time of a customer and the
perceived waiting time, as well as their strong link with customer satisfaction, are discussed.
Customer satisfaction is strongly associated with the loyalty of the customers, which is very
important for service providers. Therefore, analysis of the ways to increase the loyalty of
the customers strongly correlates with an analysis of the actual waiting time of a customer.
Such a time is one of the key performance indicators of the majority of queueing systems.
Thus, queueing analysis is an important part of solving the problem of the optimal design of
the systems of SSDs. However, the analysis of many queueing systems is quite complicated.
This explains why analysis of these systems is often implemented not via the use of the
analytical and algorithmic methods of queueing theory but via the computer simulation
methods. Namely, the method of computer simulation is used for the experimental study
of the systems of SSDs. In [7], the correlation of the waiting time, customer experience, and
satisfaction was discussed via the use of certain methods of sociology. The content of [8,9]
is similar to [7], and the methods of sociology are also used.

In our paper, we provide an analysis of the queueing model with SSDs and assistants.
The existing literature about the queues with service assistants is quite scarce. The recent
paper [10] is devoted to the analysis of the set of SSDs described in terms of a tandem
queueing model with a single-server first phase and a multi-server second phase. All
distributions defining the system operation are exponential. The behavior of the system is
described by a two-dimensional Markov chain that is the Quasi-Birth-and-Death-Process.
This process is easily analyzed via the tools of the matrix-geometric method by M. Neuts,
see [11].

The queueing model of the self-checkout (self-service) system considered in our paper
assumes the existence of two multi-server sub-systems. Let us denote the number of servers
in these two systems as N and M, correspondingly. The first sub-system defines the service
process of customers by themselves. Any arriving customer that does not abandon the
system (due to too long, in his/her opinion, queue) obtains service in this sub-system
and successfully departs from the system if he/she does not encounter service problems.
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If a problem occurs, the server from the second sub-system has to help in resolving this
problem if they are available. If all servers of the second sub-system are busy, the customer
that encountered the problem suspends their service until any server of the second sub-
system becomes available. After the problem is resolved, the server in the first sub-system
resumes the work while the corresponding assistant is released. A problem in service at
the first sub-system can occur an arbitrary number of times. After service is completed, the
customer departs from the system.

As follows from this brief description, our model does not belong to the class of
tandem queues because the service of an arbitrary customer does not strictly consist of
at most two sequential services at different queueing systems. This service may be the
sequence of alternating services by servers from the first and the second sub-systems.
Our model is more similar to the unreliable queue with repairmen. The first sub-system
describes the service of customers, and the second sub-system describes the behavior of
the pool of repairmen. However, the overwhelming majority of the papers devoted to this
subject consider only the joint distribution of the number of non-broken servers and the
number of busy repairmen. The duty of servers to provide service and a possible queue of
customers are not taken into account; see the survey [12], paper [13], and references therein.
In our model, namely, the characteristics of the customers’ service quality are in the focus
of the study.

Models similar to our queueing models (however, without the rating consideration) are
considered in the following papers. In [14], the model with N servers and M = 1 assistants
(called in [14] as the main servers and the consultant) is considered. Arrivals are defined
by quite a general Markov Arrival Process (MAP); for definition, properties, and related
research, see [15–18]. Other distributions characterizing the system are assumed to be
exponential. The system is comprehensively analyzed using the matrix analytic methods.
Extensive illustrative numerical examples to bring out the qualitative nature of the model
are presented. In [19], the model with N = 1 servers and M = 1 assistants is analyzed. All
parameters of the system depend on the state of a finite state random environment. All
involved distributions are assumed to be exponential. The system is analyzed using the
matrix analytic methods. In [20], the model with N = 1 servers and M = 1 assistants is
analyzed. The input buffer is finite, and the number of opportunities to ask for help by each
server is restricted. Service and help times have so-called phase-type (PH) distributions,
see [11]. The system is analyzed using the matrix analytic methods. The model considered
in [21] assumes an arbitrary number of servers and assistants (called in this paper, specialist
servers); the possibility of providing help by the assistant is only after the main service.
Service cannot be continued after receiving help. Practically, this means the consideration
of a tandem queueing model. The arrival process is the MAP, and the help times have PH
distributions. The system is analyzed using the matrix analytic methods. A little bit similar
to our model under quite general assumptions about the arrival process (the Batch Markov
Arrival process) and service times (phase-time distribution) was recently considered in [22].
In that model, if the server does not succeed in finishing the service of a customer within
a certain time, then the so-called backup server joins with the server for the service of
this customer. When both servers serve a customer, the service speed increases. Another
difference is that in [22], after obtaining help from the backup server, the server mandatorily
finishes the service. In our model, we suggest that the server can obtain help from the
assistant many times, and the server and the assistant do not cooperate in service. During
obtaining the help, service is not provided.

The additional two features of the model considered in this paper are the following.

• The model suggests the visible queue. This means that the arriving customer can see
the number of customers in the queue and can use this information to decide to join
a queue or abandon (balk) it, e.g., queueing systems managed by ticket technology
is widely used in service industries, as well as government offices, see [23]. Upon
arriving at a ticket queue, each customer is issued a numbered ticket. The number
currently being served is displayed. An arriving customer balks if the difference
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between their ticket number and the displayed number exceeds their patience level.
Analysis of a queueing model in [23] was implemented via the use of matrix analytic
methods. Systems with a visible queue were also previously considered, e.g., in [24,25].
In [24], an empirical study of queue abandonment by the patients in an emergency
department of a hospital is implemented by the methods of econometrics. In [25], the
queueing/inventory model with a visible queue was analyzed via the use of matrix
analytic methods.

• The model suggests the impatience of customers waiting in the buffer. Abandonment
or balking means the refusal of a customer from joining the queue due to it being
inappropriate for him/her in length. Another possible reason for customer loss is
his/her impatience or reneging. Initially, a customer joins the queue. However,
if his/her waiting time exceeds some critical (deterministic or random) level, the
customer departs from the system. The phenomenon of impatience is important and
received quite a lot of attention in the literature; for more references, see, e.g., [26–28].
In [27], in particular, the problem of wasting time by the server because the arriving
customer decides to join a queue and receives a ticket but then departs from the system
without canceling the ticket is considered. In [29], the authors analyzed the model
in which customers’ patience is exponentially distributed, and the system’s waiting
capacity is unlimited. Such a model is both rich and analyzable enough to provide
information that is practically important for call center managers. The distinguishing
feature of the paper [30] is that service time distributions in the considered multi-
server queueing model are generally distributed. A simple and insightful solution is
presented for the loss probability. The solution offered in [30] is exact for exponential
services and is an excellent heuristic for general service times. In [31], a single server
variant of the model from [30] is under study. In [32], the customer’s loss probability
in M/M/c queue with impatient customers is expressed in a simple formula involving
the waiting time probabilities in the M/M/c queue with patient customers. In that
paper, a probabilistic derivation of this formula is given, and possible use of this
general formula in the M/M/c retrial queue with impatient customers is outlined.
In [33–39], the retrial models with impatient customers are also considered. The model
considered in [40] assumes that the multi-server queue operates under the influence of
the random environment, and the impatience rate depends on the current state of the
random environment. In [41–43], multi-server queues with the MAP or marked MAP
arrival flows and impatient customers as the models of call centers were analyzed via
the matrix analytic methods.

The remainder of the text of this paper consists of the following. In Section 2, the
mathematical model is completely described. In Section 3, the process describing the
dynamics of the system is defined as the continuous-time multi-dimensional Markov chain
with level-dependent transitions. The generator of this chain is given. Section 4 contains
the ergodicity and non-ergodicity conditions for this Markov chain in the transparent form.
Section 5 briefly touches on the question of computation of the stationary distribution of the
Markov chain. In Section 6, expressions for computation of the key performance indicators
of the system in terms of the computed stationary probabilities of the system states are
presented. Section 7 contains the results of the numerical experiment, the aim of which is to
give insights into the shape of dependencies of the performance indicators on the number
of servers and assistants. It is worth noting that the numerical realization of the elaborated
paper algorithm results, are implemented not for a toy example with a small number of
servers and assistants but for the system with realistic numbers of SSDs and assistants.
Section 8 concludes the paper.

2. Mathematical Model

We consider a multi-server queueing system with an infinite buffer having two types
of servers. The structure of the system is presented in Figure 1.
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Figure 1. Structure of the system.

The servers of the first type correspond to self-checkouts (self-service devices). The
total number of such servers is equal to N. The servers of the second type correspond to
administrators (assistants). The total number of assistants is equal to M. If a customer
is accepted for service, he/she firstly occupies one first-type server for service during
an exponentially distributed time with the parameter μ1. After this time expires, with
a probability of 1 − p, the customer successfully finishes service and departs from the
system. With the complementary probability, the customer meets a problem with service
and requires some kind of help from an administrator. If at this moment, there is a free
administrator, this administrator provides help to the customer to resolve the problem
during an exponentially distributed with the parameter μ2 time. After that, the customer
continues his/her service during an exponentially distributed time with the parameter μ1.
The number of moments during service when a customer asks the help of an administrator
(not necessarily the same as in the previous moments) is unlimited. If the help of an
administrator is required while there is no free administrator, the customer suspends their
service and waits until any administrator will become available.

The process of customers’ arrival to the system is the generalization of the Markovian
arrival process (MAP), see, e.g., [15–18], described below. Arrivals in the classical MAP
are governed by the underlying Markov chain νt, t ≥ 0, with the state space {1, 2, . . . , W}.
The generator D of this chain is represented in the additive form D = D0 + D1, where
the components of the matrix D1 define intensities of transitions of the chain that are
accompanied by the customer’s arrival. The non-diagonal components of the matrix D0
define the intensities of transitions of the chain that are not accompanied by the customer’s
arrival. The diagonal components are negative. The moduli of these components define the
rates of the exit from the corresponding state of the Markov chain.

In contrast to a classical MAP, we assume that the transition intensities of the underly-
ing process νt additionally depend on the parameter r, r = 1, R, which defines the so-called
current rating of the system. If the rating of the system is r, then the MAP is characterized
by the square matrices D(r)

0 and D(r)
1 of size W. The average arrival rate of the MAP when

the rating of the system is r is denoted as λr, which can be found as λr = θ(r)D(r)
1 e, r = 1, R,

where θ(r) is an invariant vector of the MAP defined by the matrices D(r)
0 and D(r)

1 , and

e = (1, 1, . . . , 1)T . We do not specify the concrete form of the matrices D(r)
0 and D(r)

1 . We
only suggest that the increase in the rating cannot imply the decrease in the average arrival
rate, i.e., we require that the following inequalities hold true:

λ1 ≤ λ2 ≤ · · · ≤ λR.

The rating of the system can be dynamically changed during the system operation.
We assume that if a customer is admitted to the system without waiting in the queue, its
current rating r, r = 1, R − 1, immediately increases by one with the fixed small probability
r+. For example, if we fix r+ = 0.001, the service of 1000 customers without waiting in the
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queue leads, on average, to the increase in the rating by one. If a customer abandons the
system without service, the current rating r, r = 2, R, decreases by one with the probability
r−. For example, if we fix r− = 0.01, the loss of 100 customers leads, on average, to the
decrease in the current rating by one. At the moment of the change of the rating, transition
intensities of the underlying process νt immediately adjust their values to the new rating.

The queue is assumed to be visible. This means that an arriving customer can observe
the number of customers in the queue and leave the system without service if he/she
considers this number inappropriate. We assume that if during an arbitrary customer arrival
epoch there is no free server and the number of customers in the buffer is i, the customer
permanently leaves the system with the probability qi, i ≥ 0. With the complementary
probability, the customer joins the queue. We suggest that the limit q = lim

i→∞
qi exists,

0 < q ≤ 1. Additionally, we assume that customers can be impatient and leave the buffer
and depart from the system, independently of each other, after an exponentially distributed
with the parameter α, α ≥ 0, amount of time. In the case of α = 0, the customers are patient.

Now, let us analyze the described queueing model.

3. Process of the System States

The behavior of the system under study can be described by the regular irreducible
continuous-time Markov chain

ξt = {it, nt, rt, νt}, t ≥ 0,

where, during the epoch t,

• it is the number of customers in the system, it ≥ 0;
• nt is the number of blocked (waiting for help from an assistant) servers,

nt = 0, min{it, N};
• rt is the current rating of the system, rt = 1, R;
• νt is the state of the underlying process of the MAP, νt = 1, W.

Here and further, the notation n = 0, N means that the parameter n admits values
from the set {0, . . . , N}.

To formally define the continuous-time Markov chain ξt, it is necessary to write down,
for any pair of the states (i, n, r, ν) and (i′, n′, r′, ν′), the intensity of the transitions between
these states.

To avoid bulky denotations, following the standard methodology of investigation of
multi-dimensional Markov chains having one denumerable component, we enumerate
the states of the Markov chain ξt = {it, nt, rt, νt} in the direct lexicographic order of the
components {nt, rt, νt} and combine the set of the states with the value i of the component
it into the so-called level i, i ≥ 0.

Let Qi,j be the matrix constituted by the transition intensities from level i to level j and
let Q be the block matrix constituted by the blocks Qi,j, i ≥ 0, j ≥ 0. It is clear that the
matrix Q is the infinitesimal generator of the Markov chain ξt, t ≥ 0.

Theorem 1. The generator Q of the Markov chain ξt, t ≥ 0, has the following block three-diagonal
structure

Q =

⎛⎜⎜⎜⎝
Q0,0 Q0,1 O O . . . O O O . . .
Q1,0 Q1,1 Q1,2 O . . . O O O . . .
O Q2,1 Q2,2 Q2,3 . . . O O O . . .
...

...
...

...
. . .

...
...

...
. . .

⎞⎟⎟⎟⎠.

The non-zero blocks are defined as follows:

Q0,0 = D̂0,

Qi,i = Ii+1 ⊗ D̂0 + (−μ2Ci − μ1C̃i + μ2CiE−
i + pμ1C̃iE+

i )⊗ IRW , 0 < i < N,
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Qi,i = IN+1 ⊗ D̂0 + qi−N IN+1 ⊗ D̂1((r−R− + (1 − r−)IR)⊗ IW) + (−μ2CN − μ1C̃N+

+μ2CN E−
N + pμ1C̃N E+

N)⊗ IRW − (i − N)αI(N+1)RW , i ≥ N,

Qi,i+1 = Ẽi ⊗ D̂1((r+R+ + (1 − r+)IR+1)⊗ IW), 0 < i < N,

Qi,i+1 = (1 − qi−N)IN+1 ⊗ D̂1, i ≥ N,

Qi,i−1 = μ1(1 − p)C̃i Êi ⊗ IRW , 0 < i ≤ N,

Qi,i−1 = (i − N)αI(N+1) ⊗ ((r−R− + (1 − r−)IR)⊗ IW) + μ1(1 − p)C̃N ⊗ IRW , i > N,

where
⊗ indicates the symbol of the Kronecker product matrices, see [44];
D̂0 = diag{D(1)

0 , D(2)
0 , . . . , D(R)

0 }, where diag{. . . } denotes the diagonal matrix with the
diagonal entries listed in the brackets;

D̂1 = diag{D(1)
1 , D(2)

1 , . . . , D(R)
1 };

Ci = diag{0, 1, . . . , min{i − 1, M}, min{i, M}}, i = 1, N;
C̃i = diag{i, i − 1, . . . , 0}, i = 1, N;
IK is the identity matrix having a size indicated in the suffix (if the size of the matrix is clear

from the context, it can be omitted);
OK is a zero matrix having a size indicated in the suffix (if the size of the matrix is clear from

the context, it can be omitted);
E−

i is a square matrix of size i + 1 with all zero entries, except the entries (E−
i )l,l−1, l =

2, i + 1, i = 1, N, which are equal to 1;
E+

i is a square matrix of size i + 1 with all zero entries, except the entries (E+
i )l,l+1, l =

1, i, i = 1, N, which are equal to 1;
Ẽi is a matrix of size (i + 1)× (i + 2) with all zero entries, except the entries (Ẽi)l,l , l =

1, i + 1, i = 1, N, which are equal to 1;
Êi is a matrix of size (i + 1)× i with all zero entries, except the entries (Êi)l,l , l = 1, i, i =

1, N, which are equal to 1;
R+ is a matrix of size R × R with all zero entries, except the entries (R+)l,l+1, l = 1, R − 1,

and (R+)R,R, which are equal to 1;
R− is a matrix of size R × R with all zero entries, except the entries (R−)l,l−1, l = 2, R, and

(R−)1,1, which are equal to 1.

Proof. The proof of Theorem 1 is implemented via careful analysis of all possible transitions
of the Markov chain ξt, t ≥ 0, and further combining the intensities of these transitions
into the blocks of the generator.

The generator Q has all negative diagonal entries and non-negative non-diagonal
entries. The diagonal entries of the generator Q define, up to the sign, the total intensity of
leaving the corresponding state of the Markov chain ξt, t ≥ 0. In the case i = 0, the Markov
chain can leave the current state only if the underlying process of the arrival process makes
a transition. The intensities of such transitions are defined as the modules of the diagonal
entries of the matrix D̂0.

In the case when the system is not idle, but the buffer is empty, the Markov chain
ξt, t ≥ 0, can also change its state due to the finish of the service by a server or finish of
help provided by an assistant. The intensities of such transitions are defined as the diagonal
entries of the matrix (μ2Ci + μ1C̃i)⊗ IRW , i = 1, N.

If the number of customers in the buffer is greater than zero, the Markov chain
ξt, t ≥ 0, can also change its state due to the departure of some customers from the buffer
due to impatience. The intensities of such transitions are defined as the diagonal entries of
the matrix (i − N)αI(N+1)RW , i > N.

The non-diagonal entries of the matrices Qi,i, i ≥ 0, define the intensities of transitions
that do not lead to the change of the number of customers in the system i. Such transitions
are the following:
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(1) The underlying process of the arrival process transition, which does not imply
the acceptance of a new customer to the system (the customer is not generated or lost).
The intensities of such transitions are given as the non-diagonal entries of the matrix
Imin{N,i}+1 ⊗ D̂0 and the entries of the matrix qi−N IN+1 ⊗ D̂1((r−R− + (1 − r−)IR)⊗ IW)

for i ≥ N. Note, that here the matrix (r−R− + (1 − r−)IR) defines the possible change of
the system rating due to the loss of a customer;

(2) The number of blocked servers is increased by one. The intensities of such transi-
tions are given as the entries of the matrix (pμ1C̃min{N,i}E+

min{N,i})⊗ IRW ;
(3) The number of blocked servers is decreased by one. The intensities of such transi-

tions are given as the entries of the matrix (μ2Cmin{N,i}E−
min{N,i})⊗ IRW .

The entries of the matrices Qi,i+1, i ≥ 0 define the intensities of transitions that lead to
the increase in the number of customers i in the system by one. This can happen only in
the case when the underlying arrival process makes a transition with the generation of a
customer, and this customer is admitted to the system. The intensities of such transitions
are given as the entries of the matrices Ẽi ⊗ D̂1((r+R+ + (1 − r+)IR+1)⊗ IW), in the case
i = 1, N − 1, and the entries of the matrices (1 − qi−N)IN+1 ⊗ D̂1, if i ≥ N.

The entries of the matrices Qi,i−1, i ≥ 1, define the intensities of transitions that lead
to the decrease in the number of customers i in the system by one. This can happen if a
customer leaves the system successfully serviced (the intensities of such transitions are
given as the entries of the matrices μ1(1 − p)C̃min{N,i}Êmin{N,i} ⊗ IRW) and if a customer
leaves the non-empty buffer due to impatience (the intensities of such transitions are given
as the entries of the matrices (i − N)αI(N+1) ⊗ ((r−R− + (1 − r−)IR)⊗ IW)).

The blocks Qi,j, i, j ≥ 0, |i − j| > 1, of the generator Q are zero matrices because the
customers arrive and leave the system only one-by-one.

4. Ergodicity Condition

An important step of analysis of any Markov chain with an infinite state space is
establishing conditions for the ergodicity and non-ergodicity of this Markov chain (the
stability condition). The ergodicity and non-ergodicity conditions for the Markov chain
under study ξt are given by the following Theorem.

Theorem 2. (a) If the impatience rate α is positive, the Markov chain ξt is ergodic under all finite
values of other parameters of the considered queueing system;

(b) If the limiting probability q is equal to 1, the Markov chain ξt is ergodic under all finite
values of other parameters of the considered queueing system;

(c) If the customers staying in the buffer are patient, i.e., α = 0, the Markov chain ξt is ergodic
if the following inequality is fulfilled:

λ1(1 − q) <
N

∑
n=0

γn(N − n)μ1, (1)

where γn are the probabilities that at an arbitrary moment when the system is overloaded, the number
of assistants providing help to the servers is equal to n, n = 0, N.

These probabilities are computed by the formula:

γn =

(
1 +

N

∑
j=1

j

∏
l=1

p(N − l + 1)μ1

lμ2

)−1 n

∏
l=1

p(N − l + 1)μ1

lμ2
, n = 0, N; (2)

(d) If the customers staying in the buffer are patient, i.e., α = 0, the Markov chain ξt is
non-ergodic if the following inequality is fulfilled:

λ1(1 − q) >
N

∑
n=0

γn(N − n)μ1. (3)
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Proof. Let the generator of a Markov chain be the upper-Hessenbergian matrix, i.e., it has
zero blocks below the first sub-diagonal and other blocks Qi,i+k−1, k ≥ 0. Let the matrix Ti
be the diagonal matrix, the diagonal entries of which also coincide with the modules of the
diagonal entries of the matrix Qi,i, i ≥ 0.

If the following limits exist:

Y(k) = lim
i→∞

R−1
i Qi,i+k−1, k = 0, 2, 3, . . . , Y(1) = lim

i→∞
R−1

i Qi,i + I,

and the matrix
∞
∑

k=0
Y(k) is stochastic; then the Markov chain belongs to the class of Asymp-

totically Quasi-Toeplitz Markov chains (AQTMC), see [45].
The generator Q of the Markov chain describing the queueing system under study

defined by Theorem 1 has the particular, with respect to the upper-Hessenbergian matrix,
three-block diagonal structure.

If α > 0, then it can be verified that for this Markov chain the matrices Yk, k = 0, 1, 2
exist and are defined by: Y(0) = I, Y(k) = O, k = 1, 2.

If α = 0, then it can be verified that the matrices Y(k) exist and are defined by

Y(0) = T−1Q̃−,

Y(1) = T−1Q̃0 + I,

Y(2) = T−1Q̃+,

where
Q̃− = μ1(1 − p)C̃N ⊗ IRW ,

Q̃0 = IN+1 ⊗ D̂0 + qIN+1 ⊗ D̂1((r−R− + (1 − r−)IR)⊗ IW)+

(−μ2CN − μ1C̃N + μ2CN E−
N + pμ1C̃N E+

N)⊗ IRW ,

Q̃+ = (1 − q)IN+1 ⊗ D̂1,

and T is the diagonal matrix the diagonal entries of which coincide with the modules of
the diagonal entries of the matrix Q̃0.

Therefore, in both cases, α > 0 and α = 0, the limits Y(k), k = 0, 1, 2, exist and it
is easy to check that their sum is the stochastic matrix. This implies that the considered
Markov chain belongs to the class of AQTMC. The sufficient condition for the ergodicity
of AQTMC, see [45], rewritten for the three-block diagonal generator is the fulfillment of
the inequality:

ψY(0)e > ψY(2)e (4)

where the vector ψ is the unique solution of equations

ψ(Y(0) + Y(1) + Y(2)) = ψ, ψe = 1. (5)

The sufficient condition for the non-ergodicity is the fulfillment of the inequality

ψY(0)e < ψY(2)e.

Because for α > 0 we have Y(0) = I, Y(k) = O, k = 1, 2, inequality (4) takes a trivial
form: 1 > 0. Thus, the chain is ergodic for all finite values of other parameters of the
considered queueing system. Statement (a) of the theorem is proven.

Consider now the case α = 0. It can be verified that in this case system (4) and
inequality (5) are equivalent to the system

ϕ(Q̃− + Q̃0 + Q̃+) = 0, ϕe = 1 (6)
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and the inequality
ϕQ̃−e > ϕQ̃+e. (7)

It can be verified that

Q̃− + Q̃0 + Q̃+ = IN+1 ⊗ ((1 − q)D̂1 + D̂0 + qD̂1((r−R− + (1 − r−)IR)⊗ IW)) + H

where

H =

⎛⎜⎜⎜⎜⎜⎝
−pNμ1 pNμ1 O . . . O O

μ2 −μ2 − p(N − 1)μ1 p(N − 1)μ1 . . . O O
O 2μ2 −2μ2 − p(N − 2)μ1 . . . O O
...

...
...

. . .
...

...
O O O . . . Nμ2 −Nμ2

⎞⎟⎟⎟⎟⎟⎠⊗ IRW .

Using the so-called mixed product rule for Kronecker product of matrices, see [44], it
is possible to show that a solution of (6) has the representation

ϕ = Δ1 ⊗ Δ2 (8)

where the row vector Δ1 is a solution to the system

Δ1

[
IN+1 ⊗ ((1 − q)D̂1 + D̂0 + qD̂1((r−R− + (1 − r−)IR)⊗ IW))

]
= 0, (9)

Δ1e = 1,

and the row vector Δ2 is a solution to the system

Δ2H = 0, Δ2e = 1. (10)

By the direct substitution into (9), it is possible to check that vector Δ1 defined by

Δ1 = (θ(1), 0, . . . , 0) (11)

is the solution of equation (9).
By the direct substitution into (10), it is possible to check that vector Δ2 is defined by

Δ2 = (γ0, . . . , γN) (12)

where probabilities γn, n = 0, N, are given by Formula (2). Taking into account (8), (11),
and (12) in (4), we obtain Formula (1).

It is clear that if q = 1, inequality (1) is always true. This proves statement (b) of the
theorem. Statement (c) is also proven. The proof of statement (d) is easily made analogously
to the proof of (b).

Remark 1. Inequality (1) is intuitively transparent. Usually, the ergodicity condition is equivalent
to the requirement that in the situation when the system is very overloaded, the rate of customers
admission is less than the rate of customers service. The left-hand side of (1) is the rate of customers’
admission to the system. As it is seen from (1), this rate here depends only on the arrival rate λ1 and
does not depend on the rates λr, r = 2, R. This stems from the fact that the rating of the system,
when it is very overloaded, is equal to 1 due to the abandonment (balking) of many customers.
The right-hand side of (1) is the rate of customers’ departure from the service when the system is
overloaded. The values γn, n = 0, N, are the probabilities that n assistants provide help to the
servers and these servers do not serve customers. Correspondingly, the number of servers providing
service with the rate μ1 is equal to N − n. It follows from the formula of total probability that the
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right-hand side of (1) indeed is the rate of customers’ departure from the service when the system is
overloaded.

5. Computation of the Stationary Distribution of the Markov Chain

If the ergodicity condition is fulfilled, the stationary probabilities of the Markov chain
ξt, t ≥ 0,

π(i, n, r, ν) = lim
t→∞

P{it = i, nt = n, rt = r, νt = ν},

i ≥ 0, n = 0, min{i, N}, r = 1, R, ν = 1, W;

exist.
We form the row vectors πi, i ≥ 0, of these stationary probabilities enumerated in the

lexicographic order of the components (n, r, ν), n = 0, min{i, N}, r = 1, R, ν = 1, W.
It is a well-known fact that these stationary probabilities can be found as the solution

of the following system:
(π0, π1, . . . , πN , . . . , )Q = 0,

(π0, π1, . . . , πN , . . . , )e = 1.

Because the Markov chain ξt, t ≥ 0, is a level-dependent quasi-birth-and-death
process having one countable component, this system cannot be solved using the standard
matrix analytic methods. To solve this system, we recommend using the algorithms from
papers [46,47].

6. Performance Indicators

The probability pr, r = 1, R, that the value of the rating of the system at an arbitrary
epoch is equal to r can be found as

pr =
∞

∑
i=0

min{i,N}
∑
n=0

π(i, n, r)e.

The average rating R̄ of the system can be found as

R̄ =
R

∑
r=1

rpr.

The average customer’s arrival rate λ can be found as

λ =
R

∑
r=1

prλr.

The average output rate λout of successfully serviced customers can be found as

λout =
∞

∑
i=1

min{i,N}−1

∑
n=0

(min{i, N} − n)(1 − p)μ1π(i, n)e.

The average number Ncust of customers in the system is calculated as

Ncust =
∞

∑
i=1

iπie.

The average number Nbu f of customers in the buffer is calculated as

Nbu f =
∞

∑
i=N+1

(i − N)πie.
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The average number Nserv−1 of occupied servers is calculated as

Nserv−1 =
∞

∑
i=1

min{i, N}πie.

The average number Nblocked of blocked servers is calculated as

Nblocked =
∞

∑
i=1

min{i,N}
∑
n=1

nπ(i, n)e.

The average number Nblocked−1 of blocked servers that are currently obtaining the help
of an assistant is calculated as

Nblocked−1 =
∞

∑
i=1

min{i,N}
∑
n=1

min{n, M}π(i, n)e.

The average number Nblocked−2 of blocked servers that are waiting until any assistant
will become available is calculated as

Nblocked−2 =
∞

∑
i=M+1

min{i,N}
∑

n=M+1
(n − M)π(i, n)e = Nblocked − Nblocked−1.

The average number Nserv−2 of busy assistants is equal to Nblocked−1.
The loss probability Pent of an arbitrary customer at the entrance to the system due to

the unwillingness to wait in a long queue can be found as

Pent =
1
λ

∞

∑
i=N

N

∑
n=0

R

∑
r=1

qi−Nπ(i, n, r)D(r)
1 e.

The loss probability Pimp of an arbitrary customer due to impatience can be found as

Pimp =
αNbu f

λ
.

The loss probability Ploss of an arbitrary customer can be found as

Ploss = 1 − λout

λ
= Pent + Pimp.

7. Numerical Example

The purpose of this example is to illustrate the dependencies of the main performance
measures of the system on the number N of servers and the number M of assistants. Let
us assume that the system can have up to 50 servers and up to 10 assistants. Thus, below
we vary the parameter N over the interval (1, 50) and the parameter M over the interval
(1, 10) with the same step 1.

We assume the following values of the parameters of the system:

• The service intensity of an arbitrary customer by a server is μ1 = 0.5.
• The probability p that a customer meets a problem with service and requires the help

of an assistant is p = 0.25.
• The rate of help provided by an assistant is μ2 = 1.5.
• The parameter R that defines the maximum possible rating of the system is R = 10.
• The probability of rating increasing is r+ = 0.001.
• The probability of rating decreasing is r− = 0.005.
• The parameter α describing the impatience rate of customers is equal to 0.06.

45



Mathematics 2022, 10, 297

• The probabilities qi = qi,N that a customer will leave the system having N servers
during the arrival epoch when the number of customers in the buffer is i, are defined
as:

qi,N =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i
i+100N , i f 0 ≤ i ≤ N;

i
i+40N , i f N < i ≤ max{10, 2N};

i
i+10N , i f max{10, 2N} < i ≤ max{20, 5N};

i
i+N , i f max{20, 5N} < i ≤ max{100, 10N};

i
i+0.1N , otherwise.

• The MAP arrival flow of customers when the system has the rating r is defined by

the matrices D(r)
0 = rDbase

0 and D(r)
1 = rDbase

1 , where the matrices Dbase
0 and Dbase

1 are
defined by

Dbase
0 =

( −2.5 0.02
0.001 −0.8

)
; Dbase

1 =

(
2.46 0.02

0.001 0.798

)
.

The base arrival flow has the average intensity λ = 0.879048, the coefficient of correla-
tion of successive inter-arrival times ccor = 0.0557495 and the coefficient of variation
of inter-arrival times cvar = 1.12815.

The dependence of the average rating of the system R̄ on the parameters N and M is
presented in Figure 2.
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Figure 2. Dependence of the average rating of the system R̄ on N and M.

As is seen in Figure 2, the average rating increases with the increase in the number of
servers and assistants. Here, we do not consider the situations when M ≥ N. It is evident
that in such a situation, adding a new assistant does not improve the system performance,
and the rating is not changed. In other cases, adding new servers and (or) assistants leads
to a better quality of customer service. As the result, the average rating increases.

Figure 3 illustrates the dependence of the average customer’s arrival rate λ on the
parameters N and M.

The average arrival rate of customers also increases with the increase in the number of
servers and (or) assistants. This is explained by the evident fact that a higher rating of the
system leads to a higher arrival rate.

The dependence of the average number Nbu f of customers in the buffer on the param-
eters N and M is presented in Figure 4.

The dependence of the average number Nbu f of customers in the buffer on the param-
eters N and M is complicated and hardly predictable intuitively. On the one hand, as for a
classical system, the increase in the number of servers leads to a decrease in the waiting
time. However, for the considered system, the increase in the number of servers leads to an
increase in the arrival rate that may imply an increase in the waiting time. As one can see
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from the figure, sometimes the first factor prevails over the second one, and the average
number Nbu f of customers in the buffer decreases with the growth of N and M; sometimes
the situation changes oppositely.
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Figure 3. Dependence of the average customer’s arrival rate λ on N and M.
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Figure 4. Dependence of the average number Nbu f of customers in the buffer on N and M.

Figures 5–7 illustrate the dependencies of the average number Nserv−1 of occupied
servers, the average number Nblocked−1 of blocked servers that are under unblocking by an
assistant, and the average number Nblocked−2 of blocked servers that are waiting until an
assistant will become available on the parameters N and M.
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Figure 5. Dependence of the average number Nserv−1 of occupied type-1 servers on N and M.
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Figure 6. Dependence of the average number Nblocked−1 on N and M.
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Figure 7. Dependence of the average number Nblocked−2 on N and M.

The average number Nserv−1 of occupied servers essentially increases with the increase
in the total number of servers N. When the number of assistants M increases, the average
number of blocked servers decreases if the average arrival rate is constant. Thus, the
increase in the number of assistants M may lead to the decrease in the number of busy
servers. However, with an increasing value of M, the rating and the intensity of the
arrival flow can also increase, which may cause an increase in the number of busy servers.
Therefore, the dependence of the number Nserv−1 on the parameter M is hardly predictable.

The average number Nblocked−1 of blocked servers currently receiving the help of
assistants increases with the growth of N and M. This growth is mainly caused by the
increase in the average arrival rate. In the considered example, the average number
Nblocked−2 of blocked servers that are waiting until an assistant will become available grows
when the number of servers N grows and decreases with the increasing value of M.

The dependence of the loss probability Pent of an arbitrary customer at the entrance to
the system due to the unwillingness to wait in a long queue on the parameters N and M is
presented in Figure 8.

As it is seen from Figure 8, the loss probability of an arbitrary customer at the entrance
to the system decreases when the number N of servers grows. The dependence of Pent on
M is less essential, and Pent may decrease or increase with the growth of M.

The dependence of the loss probability Pimp of an arbitrary customer due to impatience
on the parameters N and M is presented in Figure 9.

The behavior of the dependence of the loss probability Pimp of an arbitrary customer
due to impatience on the parameters N and M is also complicated. Note that the loss
probability Pimp essentially depends on the average number of customers in the buffer (see
Figure 4) and the average arrival rate λ (see Figure 3).
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Figure 8. Dependence of the loss probability Pent on N and M.
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The dependence of the loss probability Ploss of an arbitrary customer on the parameters
N and M is presented in Figure 10.
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Figure 10. Dependence of the loss probability Ploss on N and M.

The loss probability Ploss is the sum of loss probabilities Pent and Pimp. Because in the
considered case, the main losses occur due to customers’ impatience, the behavior of Ploss
is similar to the behavior of the probability Pimp.

We considered the dependencies of the main performance measures on the number
of servers N and the number of assistants M and can conclude that these dependencies
can be quite hardly predictable. Therefore, mathematical modeling with the use of the
results presented in this paper is required for the exact estimation of the system perfor-
mance characteristics. It is worth noting that, from the point of view of potential practical
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applications, the more important problem is to define the optimal number N of servers
and the number M of assistants. To find these optimal values, first of all, it is necessary
to choose an appropriate cost criterion. In this paper, we assume that the quality of the
system operation is characterized by the following economic criterion:

E = E(M, N) = a1λout − b1λPent − b2λPimp − d1N − d2M.

Here, the cost coefficients a1, b1, b2, d1, and d2 have the following meaning:
a1 is the profit obtained by the system for the successful service of one customer;
b1 and b2 are the charges paid by the system for the loss of a customer at the entrance

of the system and due to impatience, correspondingly;
d1 and d2 are the charges paid by the system for maintaining one server and one

assistant per unit time, correspondingly;
Thus, the economic criterion E has the meaning of the average profit obtained by the

system per unit of time.
In this numerical example, we fix the following cost coefficients:

a1 = 1, b1 = 2, b2 = 3, d1 = 0.05, d2 = 0.1.

We aim to maximize the average profit of the system.
Figure 11 illustrates the dependence of the economic criterion E on the parameters N

and M.
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Figure 11. Dependence of the values of economic criterion E on N and M.

As is seen from Figure 11, the profit of the system essentially increases when the
number of the exploited servers grows from 1 to about 30. When the number of servers
grows from 30 to 40, the profit still increases, but not so essentially. A further increase
in the number of servers N leads to a slight decrease in the system profit because the
cost of adding a new server exceeds the obtained additional profit from the service of
customers. The same situation occurs when the number M of assistants grows. Thus, it can
be verified that in the considered example, the optimal value E∗ of the economic criterion
E is E∗ = 5.87082. This optimal value is achieved when the number of servers is N = 40,
and the number of assistants is M = 4.

It is worth noting that the maximal size of the blocks of the generator is defined by
the number (N + 1)RW. One of the goals of this numerical experiment was to demonstrate
the feasibility of the elaborated algorithms for more or less realistic values of the number
N of SSDs and the number M of assistants. In this experiment, we have fixed N = 50
and M = 10 and the range of rating as the set {1, . . . , 10}, which is quite enough for
the modeling of even a quite large real hypermarket. Therefore, the maximal size of the
block in this example is 510 W. Because the total number of points (N, M) for which
computations were performed to show the shape of the considered dependencies and
solve the optimization problem is NM = 500, we restricted ourselves by the base MAP of
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order 2, just to avoid long computations. For W = 2, the maximal size of the block is more
than 1000, and computation for 500 points takes several minutes. The increase in W does
not create any essential problem in computations except the increase in computation time
with the increase in W. Note that the use of the MAP of order 2 is often enough for good
matching the main characteristics of the MAP flow to the corresponding characteristics of
even quite bursty real flows.

8. Conclusions

In this paper, we have considered a queueing model having a finite number N of
servers and M assistants that help the servers when certain service problems occur. This
model fits a description of the operation of a huge variety of real-world systems with
so-called self-service of customers. We assume the novel description of an arrival process
as the generalization of the MAP to the case of rating-dependent arrival rates. Rating
dependent arrivals are typical in many real systems with competing service providers.
The effects of possible customers abandonment (balking) and impatience (reneging) are
accepted for consideration. Algorithmic analysis of this queueing model based on the use of
level-dependent multi-dimensional Markov chains is implemented. This analysis includes
the derivation of conditions for stability and non-stability of the model, computation of the
steady-state distribution of the chain, numerical illustration of the dependence of the main
performance measures of the system on N and M, and the solution of the optimization
problem.

The obtained results can be extended to the models with other possible mechanisms for
calculating the value of the rating, more complicated distributions of service and help times,
unreliable servers or (and) assistants, heterogeneous (experienced and non-experienced)
customers, etc.
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1. Introduction

Network theory has a vast literature. In the book of Barabási [1], the general aspects
can be found, while the book of van der Hofstad [2] is devoted to the mathematical models.
Any network can be considered as a graph. The nodes of the network are the vertices,
and the connections are the edges of the graph. A most famous model is the preferential
attachment model proposed by Albert and Barabási [3]. It is a discrete time network
evolution model and it describes connections of two nodes. In real life, the meaning of
connection can be any interaction or any cooperation.

There are models for cooperation more than two units. For example, Backhausz and
Móri studied three-interactions in [4]. Their model is generalised for N-interactions by
Fazekas and Porvázsnyik in [5]. Both of these papers consider cliques where, inside a team,
all members cooperate. In some sense, the opposite of the cliques, i.e., star-like connections
were considered by Fazekas and Perecsényi [6]. In [6], there is no cooperation between
two peripheral members of the team but all of them cooperate with the central member of
the team. Despite [3], in papers [4–6] the preferential attachment rule is used for certain
subgraphs and not for vertices.

We mention that in [7] the Erdős–Rényi graph, the configuration model and the
preferential attachment graph were studied when the population was split into two types.
The mathematical tool of the analysis in [7] is the theory of multi-type branching processes.

There are several continuous-time network evolution models. Here, we list only some
papers using continuous time branching processes. Early works in this direction are [8,9].
Recently, in [10], multi-type preferential attachment trees were studied. In [10], the results
of [11] on multi-type continuous time branching processes were applied to describe the
evolution of the network.

In this paper, we study a new network evolution model. The structure and the rules
of the evolution of our model were inspired both by some everyday experiences and
deep scientific results on motifs. On the one hand, we had in our mind activities and
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structures based on personal connections of the actors and where teams of some persons
are important. Thus, we considered the friendship, the recruitment of party members
and cooperation among party members, the recruitment and cooperation of volunteers,
cooperation among scientists, informal connections among the employees of a company,
etc. In these cases, the network consists of relatively small teams, a person can be a member
of several teams at the same time, new teams can be born, and they can die, a newcomer
can join the network if he/she joins an existing team.

On the second hand, our model is supported by the theory of motifs and their applica-
tions for real life networks. Here, we list only a few papers on this topic.

In [12], the authors used network motifs: ‘patterns of interconnections occurring
in complex networks at numbers that are significantly higher than those in randomized
networks’. They developed an algorithm for detecting network motifs and found motifs
with three or four vertices in biological and technological networks.

In [13], the authors analyse the local structure of several networks such as protein
signaling, developmental genetic networks, power grids, protein-structure networks, World
Wide Web links, social networks, and word-adjacency networks. For the study, they used
motifs on three or our vertices. In [14], the authors found the numbers of all 3- and 4-node
subgraphs, in both directed and non-directed geometric networks. In [15], a method for the
identification of all ordered 3-node substructures and the visualization of their significance
profile are offered.

Therefore, we wanted to study a network that consists of small substructures, a node
can be a member of several substructures at the same time, new substructures can be born
and they can die, a new node can join to the network if it joins to an existing substructure.

Concerning the mathematical tools, we follow the line of Móri and Rokob [16], where
connections of two units were described by edges and the evolution of the edges was
governed by a continuous-time branching process. In [17] we extended the model of [16]
to 3-interactions. In this paper, our aim is to study networks containing groups of different
sizes. For the sake of simplicity, we consider only groups of sizes 2 and 3. In this case, we
can obtain explicit formulae for some quantities and our implicit formulae will be also
transparent. The extension of our results to larger groups is possible. We emphasize that in
our model all the nodes have the same type. Thus, despite [7,10], the theory of multi-type
branching processes will be applied for groups of nodes and not just for the nodes.

In our model, when a new member joins to the network, it joins directly to an existing
team. If that team consists of two members, then either a new team of two members or
a new team of three members is produced. Similarly, if the new member joins to a team
of three members, then new teams having two or three members can emerge. Thus, we
obtain a two-type continuous time branching process, in which an individual can be either
an edge or a triangle of the network.

The starting individual (that is the ancestor) can be either an edge or a triangle. It
produces offspring at each time given by the driving branching process. These offspring
can be edges or triangles, and after their birth they also start their own reproduction
processes. An evolution step of the generic triangle is the following. Always one vertex
is born, but it is connected to the triangle with random number of edges. The new vertex
can be connected to 1, 2 or 3 vertices of the triangle. Therefore, the offspring of a triangle
can be a new edge, or one new triangle or three new triangles. The lifetime of a triangle is
determined by the number of its offspring. The reproduction process of an edge is similar.

The structure of this paper is the following. In Section 2, a detailed description of
our model is given. In Section 3, the general results are presented. These are the survival
functions of an edge and of a triangle (Theorem 1), the mean offspring number of an edge
and of a triangle (Corollary 1), the Perron root and the Malthusian parameter. As usual, we
obtain only implicit expression for the Malthusian parameter, but our expression is simple
and numerically tractable.

In Section 4, asymptotic theorems on the number of edges and triangles (Theorem 2)
are proved. Both of them have magnitude eαt on the event of non-extinction, where α is
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the Malthusian parameter. To prove Theorem 2, we use the underlying branching process
counted with certain random characteristics and apply the asymptotic theorems of [11].

In Section 5, the generating functions are calculated. Using the generating functions,
the probability of extinction are studied. In Section 6, the asymptotic behaviour of the
degree of a fixed vertex is considered. Here, we again apply the asymptotic theorems of [11]
but with other characteristics than in Section 4. In Section 7, we present some simulation
results supporting our theorems. Our figures and tables show that the values obtained by
simulation fit well to the theoretical results.

The proofs are based on known general results of multi-type continuous-time branch-
ing processes. Therefore, for the reader’s convenience, in Section 8, we list several results
on multi-type Crump–Mode–Jagers processes.

We mention that our model was presented in our conference paper [18]. In that
paper some preliminary theoretical results were announced together with some numerical
evidence but without mathematical proofs.

2. The Model

We study the following network evolution model. At the initial time t = 0 the network
consists of one single object, this object can be either an edge or a triangle. This object is
called the ancestor. During the evolution, this ancestor object produces offspring objects,
which can be either edges or triangles. Then, these offspring objects produce their offspring
objects and so on. The reproduction times of any fixed object, including the ancestor, are
the occurrences in its own Poisson process with rate 1.

From the theory of branching processes, we apply the following usual assumptions.
That is we suppose that the reproduction processes of different objects are independent.
Moreover, we assume that the reproduction processes of the edges are independent copies
of the reproduction process of the generic edge. Similarly, the reproduction processes of
the triangles are independent copies of the reproduction process of the generic triangle.

First, we explain the evolution of the generic edge. A Poisson process Π2(t) with
parameter 1 gives its reproduction times. At any jumping time of this Poisson process,
a new vertex appears and it is connected to the generic edge with one or two edges. The
probability that this new vertex is connected to the generic edge by one new edge is r1,
where 0 ≤ r1 ≤ 1. The other end point of this new edge is chosen from the two vertices of
the generic edge uniformly at random. We see that in this case the generic edge produces
always one new edge. The other case is that when the new vertex is connected to both
vertices of the generic edge. Its probability is r2 = 1 − r1. In this second case the offspring
of the generic edge is a triangle consisting of the generic edge and the two new edges. We
emphasize that in this last case the generic edge itself and the new triangle will produce
offspring, but the two new edges are not substantive parts of the reproduction process, so
they alone will not produce offspring.

The reproduction process of the generic triangle is similar. The Poisson process with
rate 1 corresponding to the generic triangle is denoted by Π3(t), t ≥ 0. The jumping times
of Π3(t) are the birth times of the generic triangle. At every birth time a new vertex is born
and it joins to the existing graph so that it is connected to our generic triangle with 1, 2
or 3 edges. Denote by pj (j = 1, 2, 3) the probability that the new vertex is connected to j
vertices of our generic triangle. The vertices of the generic triangle to be connected to the
new vertex are chosen uniformly at random.

By the above definition of the evolution process, at each birth step we add precisely 1
new vertex. When the new vertex is connected to one vertex of the generic triangle, the
generic triangle gives birth to one new edge. This event has probability p1. However, in the
remaining two cases we count only the new triangles and not the new edges. When the new
edge is connected to the generic triangle by two edges, these two edges and one edge of the
generic triangle form a new triangle. Therefore, with probability p2, the generic triangle
produces one child triangle. When the new edge is connected to the generic triangle by

57



Mathematics 2021, 9, 3143

three edges, these edges and the edges of the generic triangle form three new triangles.
Thus, with probability p3, the generic triangle produces three children triangles.

Any edge is called a type 2 object, and any triangle is called a type 3 object. We use
subscript 2 for edges and subscript 3 for triangles. Thus, we denote by ξi,j(t) the number of
type j offspring of the type i generic object up to time t (i, j = 2, 3). Recall that ξi,j, i, j = 2, 3,
are point processes. Then

ξ2(t) = ξ2,2(t) + ξ2,3(t) (1)

gives the total number of offspring (that is both edges and triangles) of the generic edge up
to time t. We can also see that

ξ3(t) = ξ3,2(t) + ξ3,3(t) (2)

is the number of all offspring (edges or triangles) of the generic triangle up to time t.
We denote by τ3(1), τ3(2), . . . the birth times of the generic triangle, and we de-

note by ε3(1), ε3(2), . . . the corresponding total litter sizes. That is, at the ith birth event,
the generic triangle bears ε3(i) children being either triangles or edges. The discrete random
variables ε3(1), ε3(2), . . . are independent and identically distributed having distribution
P(ε3(i) = j) = qj, j ≥ 1. By the above evolution process, we have

P(ε3(i) = 1) = q1 = p1 + p2, P(ε3(i) = 3) = q3 = p3,

P(ε3(i) = j) = qj = 0, if j /∈ {1, 3}.

We assume that the litter sizes are independent of the birth times.
Let λ3 be the life-length of the generic triangle. It is a finite, non-negative random

variable. We assume that the reproduction terminates at the death of the individual.
Therefore, ξ3(t) = ξ3(λ3) for t > λ3. Then, the reproduction process of a triangle can be
formulated as

ξ3(t) = ∑
τ3(i)≤t∧λ3

ε3(i) = S3(Π3(t ∧ λ3)), (3)

where Π3(t) is the Poisson process, S3(n) = ε3(1) + · · ·+ ε3(n) gives the total number of
offspring of the generic triangle before the (n + 1)th birth event and by x ∧ y we denote
the minimum of {x, y}.

The survival function of the life-length. Let L3(t) denote the distribution function
of the triangle’s life-length λ3. Then, the survival function of λ3 is

1 − L3(t) = P(λ3 > t) = exp
(
−
∫ t

0
l3(u)du

)
, (4)

where l3(t) is the hazard rate of the life-length λ3. We suppose that the hazard rate depends
on the total number of offspring, so that

l3(t) = b + cξ3(t) (5)

with fixed positive constants b and c.
Let λ2 be the life-length of the generic edge. Then, ξ2(t) = ξ2(λ2) for t > λ2. As the

edge always gives birth to one offspring (which can be an edge or a triangle); therefore,

ξ2(t) = Π2(t ∧ λ2) (6)

is the total number of offspring of the generic edge, where Π2(t) is the Poisson process.
We denote by L2(t) the distribution function of λ2. Then, the survival function of the

life-length of an edge is

1 − L2(t) = exp
(
−
∫ t

0
l2(u)du

)
, (7)

58



Mathematics 2021, 9, 3143

where l2 is the hazard rate of the life-length λ2. We suppose that l2 is of the form
l2(t) = b + cξ2(t).

We emphasize that we do not delete any edge or any triangle when it dies, because its
ingredients can belong to other triangles or edges, too. Thus, dead triangles and edges will
be considered as inactive objects not producing new offspring.

In Figure 1, an example is shown for our graph evolution model. For a clear view it
contains only three birth steps after the initial time t = 0. The nodes of the ancestor are
highlighted by red. The edges are labelled with the birth times t. The following objects
appear in Figure 1, which are described by the labels of their nodes:

• (1-2-3): is a triangle, the ancestor with birth time t = 0,
• (1-2-3-4): represents three triangles, i.e., the offspring of (1-2-3) at its first reproduction

time t = 0.571,
• (1-5): an edge, offspring of (1-2-3) with birth time t = 0.847,
• (1-5-6): a triangle, offspring of (1-5) with birth time t = 1.06.

Figure 1. Example of the graph evolution model with parameter set: r1 = 0.1, p1 = 0.4,
p2 = 0.2, b = 0.1, c = 0.1.

Two more examples are shown in Figure 2 with different parameters. In Figure 2a the
ancestor is an edge, while in Figure 2b the ancestor is a triangle.

(a) r1 = 0.8, p1 = 0.2, p2 = 0.5,
b = 0.2, c = 0.1

(b) r1 = 0.2, p1 = 0.3, p2 = 0.5,
b = 0.2, c = 0.2

Figure 2. Examples of the graph evolution model with two different parameter sets.
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3. General Results

The survival functions.

Theorem 1. The survival function for a triangle is

P(λ3 > t) = e−t(b+1)e
3(p1+p2)(1−e−ct)+p3(1−e−3ct)

3c . (8)

The survival function for an edge is

P(λ2 > t) = e−t(b+1)e
1−e−ct

c . (9)

Proof. At the first part of the proof we omit subscripts 2 and 3, because the calculations
are the same for edges and triangles. Let t > 0 and assume that Π(t) = k. Then, the
first k birth events happened before time t. Thus, the birth times τ(1), τ(2), . . . , τ(k) and
the corresponding litter sizes ε(1), ε(2), . . . , ε(k) are known. Therefore, the reproduction
process ξ(u) is also known for u < t. By (5), a simple calculation shows that the survival
function of an object is

1 − L(t) = exp
(
−
∫ t

0
l(u)du

)
= exp

(
−
(

bt + c
∫ t

0
ξ(u)du

))
=

= exp(−(bt + ctS(k)− c(ε(1)τ(1) + · · ·+ ε(k)τ(k)))).

Then
P(λ > t|Π(t) = k, τ(1), . . . , τ(k), ε(1), . . . , ε(k)) =

= exp(−(bt + ctS(k)− c(ε(1)τ(1) + · · ·+ ε(k)τ(k)))).

Let
(
U∗

1 , . . . , U∗
k
)

be an ordered sample of size k from uniform distribution on [0, 1].
Then, the joint conditional distribution of the birth times τ(1), . . . , τ(k) given Π(t) = k,
coincides with the distribution of

(
tU∗

1 , . . . , tU∗
k
)
. Therefore

P(λ > t|Π(t) = k) = E exp

(
−
(

bt + ct
k

∑
i=1

ε(i)
(

1 − τ(i)
t

)))
=

= E exp

(
−bt + ct

k

∑
i=1

ε(i)(U∗
i − 1)

)
,

because τ(i) = tU∗
i . The litter sizes ε(1), . . . , ε(k) are independent identically distributed

random variables, which are independent also of U∗
1 , . . . , U∗

k . Hence

P(λ > t|Π(t) = k) = E exp

(
−bt + ct

k

∑
i=1

ε(i)(Ui − 1)

)
=

= e−bt
E

k

∏
i=1

ectε(i)(Ui−1) = e−bt
(
Eε(i)

(
EUi

(
ectε(i)Ui

)
e−ctε(i)

))k
=

= e−bt

(
∞

∑
j=1

qj
ectj − 1

ctj
e−ctj

)k

= e−bt

(
∞

∑
j=1

qj
1 − e−ctj

ctj

)k

,

where we applied that Ui is uniformly distributed. Using this and the total probability
theorem, we find

P(λ > t) =
∞

∑
k=0

P(Π(t) = k)P(λ > t|Π(t) = k) =
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=
∞

∑
k=0

tk

k!
e−te−bt

(
∞

∑
j=1

qj
1 − e−ctj

ctj

)k

=

= e−(b+1)t
∞

∑
k=0

1
k!

(
∞

∑
j=1

qj
1 − e−ctj

cj

)k

=

= e−(b+1)te∑∞
j=1 qj

1−e−ctj
cj .

Therefore, the survival function for a triangle is

P(λ3 > t) = e−t(b+1)e
3(p1+p2)(1−e−ct)+p3(1−e−3ct)

3c .

Finally, the survival function for an edge is

P(λ2 > t) = e−t(b+1)e
1−e−ct

c .

The mean offspring number. Let us denote by mi,j(t) = Eξi,j(t) the expectation of
the number of type j offspring of a type i mother until time t.

Corollary 1. For any t ≥ 0, we have

m2,2(t) = r1F(t), m2,3(t) = r2F(t), (10)

where
F(t) =

∫ t

0
(1 − L2(s))ds =

∫ t

0
e−(b+1)se

1−e−cs
c ds =

1
c

∫ 1−e−ct

0
(1 − u)

b+1
c −1e

u
c du.

Eλ2 =
1
c

∫ 1

0
(1 − u)

b+1
c −1e

u
c du. (11)

For any t ≥ 0, we have

m3,2(t) = p1G(t), m3,3(t) = (p2 + 3p3)G(t), (12)

where

G(t) =
∫ t

0
(1 − L3(s))ds =

∫ t

0
e−s(b+1)e

3(p1+p2)(1−e−cs)+p3(1−e−3cs)
3c ds =

=
1
c

∫ 1−e−ct

0
(1 − u)

b+1
c −1e

u
3c (p3u2−3p3u+3)du.

Eλ3 =
1
c

∫ 1

0
(1 − u)

b+1
c −1e

u
3c (p3u2−3p3u+3)du. (13)

0 < Eλ2,Eλ3 < ∞ because b ≥ 0.

Proof. We have

mi,j(t) = Eξi,j(t) = E
(
εi,j(1) + εi,j(2) + · · ·+ εi,j(Π(t ∧ λi))

)
,

where εi,j(k) is the number of type j offspring of a type i mother at her kth birth event.
Using Wald’s identity, the average number of children is

mi,j(t) = E
(
εi,j(1)

)
E(Π(t ∧ λi)). (14)

Using that Π is a Poisson process with rate 1, and t ∧ λ is bounded for any t, from (14),
we obtain that the average number of children is
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mi,j(t) = E
(
εi,j(1)

)
E(t ∧ λi) = E

(
εi,j(1)

) ∫ t

0
(1 − Li(s))ds. (15)

Now, consider m2,2(t). Applying (9) and using the substitution u = 1 − e−cs, we
obtain

m2,2(t) = r1

∫ t

0
e−(b+1)se

1−e−cs
c ds =

r1

c

∫ 1−e−ct

0
(1 − u)

b+1
c −1e

u
c du. (16)

If we write r2 instead of r1, then we obtain m2,3(t). Thus, we obtained (10). Moreover,
with t → ∞, we have Eλ2 =

∫ ∞
0 P(λ2 > t)dt. Thus, (11) follows from (16).

Now, we turn to m3,3(t). Applying (8), and using the substitution u = 1 − e−cs,
we obtain , ∫ t

0
P(λ3 > s)ds =

∫ t

0
e−s(b+1)e

3(p1+p2)(1−e−cs)+p3(1−e−3cs)
3c ds =

=
1
c

∫ 1−e−ct

0
(1 − u)

b+1
c −1e

u
3c (p3u2−3p3u+3(p1+p2+p3))du. (17)

As E(ε3,3(1)) = p2 + 3p3, so from (15) we obtain m3,3(t). Using that E(ε3,2(1)) = p1,
we obtain m3,2(t). Thus, we obtained (12). Moreover, we have Eλ3 =

∫ ∞
0 P(λ3 > t)dt.

Thus, (13) follows from (17) with t → ∞.

Let
m∗

i,j(κ) =
∫ ∞

0
e−κtmi,j(dt), i, j = 2, 3,

be the Laplace transform of mi,j.

Proposition 1. For any κ ≥ 0, we have

m∗
2,2(κ) = r1 A(κ), m∗

2,3(κ) = r2 A(κ), (18)

where

A(κ) =
∫ ∞

0
e−κse−(b+1)se

1−e−cs
c ds =

1
c

∫ 1

0
(1 − u)

κ+b+1
c −1e

u
c du. (19)

For any κ ≥ 0, we have

m∗
3,2(κ) = p1B(κ), m∗

3,3(κ) = (p2 + 3p3)B(κ), (20)

where

B(κ) =
∫ ∞

0
e−κse−s(b+1)e

3(p1+p2)(1−e−cs)+p3(1−e−3cs)
3c ds =

=
1
c

∫ 1

0
(1 − u)

κ+b+1
c −1e

u
3c (p3u2−3p3u+3)du.

Proof. Apply the definition of m∗
i,j(κ), Corollary 1 and substitution u = 1 − e−cs.

The Perron root and the Malthusian parameter. Let

M(κ) =

(
m∗

2,2(κ) m∗
2,3(κ)

m∗
3,2(κ) m∗

3,3(κ)

)
(21)

be the matrix of the Laplace transforms. Direct calculation gives that the characteristic
roots of M(κ) are

�1,2(κ) =
(p2 + 3p3)B(κ) + r1 A(κ)±

√
((p2 + 3p3)B(κ)− r1 A(κ))2 + 4p1B(κ)r2 A(κ)

2
. (22)

The greater of the values �1(κ) and �2(κ) is called the Perron root, so

�(κ) = �1(κ) =
(p2 + 3p3)B(κ) + r1 A(κ) +

√
((p2 + 3p3)B(κ)− r1 A(κ))2 + 4p1B(κ)r2 A(κ)

2
(23)
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is the Perron root.
We assume that our process is supercritical; that is,

�(0) > 1. (24)

For supercriticality, condition

max{(p2 + 3p3)B(0), r1 A(0)} > 1

is sufficient.
That value of κ for which the Perron root is equal to 1 is called the Malthusian

parameter. Thus, using the usual notation in the theory of branching processes, α is the
Malthusian parameter if �(α) = 1. In this paper, we assume the existence of the Malthusian
parameter. From relation �(α) = 1 and (23), we obtain that the Malthusian α satisfies
the equation

r1 A(α)(p2 + 3p3)B(α)− (r1 A(α) + (p2 + 3p3)B(α)) = r2 A(α)p1B(α)− 1. (25)

Later, we use the eigenvectors of M(α). To this end, let α be the Malthusian parameter,
and let (v2, v3)

� be the right eigenvector of M(α) corresponding to eigenvalue 1 and
satisfying condition v2 + v3 = 1. Then, direct calculation shows that

v2 =
(r1 − 1)A(α)

(2r1 − 1)A(α)− 1
, v3 =

r1 A(α)− 1
(2r1 − 1)A(α)− 1

. (26)

Again, let α be the Malthusian parameter and let (u2, u3)
� be the left eigenvector of

M(α) satisfying condition u2v2 + u3v3 = 1. Direct calculation shows that

u2 =
p1B(α)((2r1 − 1)A(α)− 1)

p1B(α)(r1 − 1)A(α)− (r1 A(α)− 1)2 , u3 =
(1 − r1 A(α))((2r1 − 1)A(α)− 1)

p1B(α)(r1 − 1)A(α)− (r1 A(α)− 1)2 . (27)

4. Asymptotic Theorems on the Number of Triangles and Edges

In this section, we use Proposition 4 from Section 8. So we should check the conditions
given in Section 8. For condition (a) from Section 8, we should guarantee that not all
measures mi,j are concentrated on a lattice. By Corollary 1, these measures are absolutely
continuous, and thus it is satisfied.

Concerning condition (b1), we underline that we suppose the existence of a positive
Malthusian parameter α. To this end, in this section, we assume that (25) has a finite
positive solution α. We can check numerically the existence of this value. For (b2), we
assume (24). Condition (c) from Section 8 will be checked later in the proofs of the results
together with other conditions related to it.

Now, we analyse condition (d). We can see from Corollary 1 that F(∞) and G(∞) are
positive. Thus, we can concentrate on parameters ri and pi. If r2 = p1 = 0, then (d) is not
satisfied; however, in this case, one can study separately the process of edges (it grows at
any birth time by 1), and the process of triangles (this is described in [17]). If r1 = 0 and
p2 + p3 = 0, then (d) is not satisfied, and the evolution process is an alternating one. If
either r2 = 0 or p1 = 0, then (d) is not satisfied.

To guarantee condition (d), in this section, we assume that 0 ≤ r1 < 1, 0 < p1 ≤ 1,
and it is excluded that both r1 = 0 and p1 = 1 are satisfied at the same time. In this case,
condition (d) from Section 8 is satisfied.

The denominator in the limit theorem. In the following theorem, we need the next
formulae. In Section 8, we see that the denominator of mΦ

∞ in the limiting expression is
independent of Φ, and it is

p

∑
l,j=1

ulvj

∫ ∞

0
te−αtml,j(dt).
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It can be written in the form (and considering our two-dimensional case)

D(α) =
3

∑
l,j=2

ulvj

(
−m∗

l,j(α)
)′

. (28)

Here, ui and vi are from Equations (26) and (27). Moreover, by Corollary 1 or by
Proposition 1, we have that(

−m∗
2,2(α)

)′
= r1(−A′(α)),

(
−m∗

2,3(α)
)′

= r2
(
−A′(α)

)
, (29)(

−m∗
3,2(α)

)′
= p1(−B′(α)),

(
−m∗

3,3(α)
)′

= (p2 + 3p3)
(
−B′(α)

)
, (30)

where

− A′(α) =
∫ ∞

0
se−αse−(b+1)se

1−e−cs
c ds = − 1

c2

∫ 1

0
ln(1 − u)(1 − u)

α+b+1
c −1e

u
c du, (31)

− B′(α) =
∫ ∞

0
se−αse−s(b+1)e

3(p1+p2)(1−e−cs)+p3(1−e−3cs)
3c ds = (32)

= − 1
c2

∫ 1

0
ln(1 − u)(1 − u)

α+b+1
c −1e

u
3c (p3u2−3p3u+3)du.

Now, we turn to the number of edges and triangles. Recall that an edge is a type 2,
and a triangle is a type 3 object.

Theorem 2. Assume that (24) is satisfied and (25) has a finite positive solution α. Assume that
0 ≤ r1 < 1, 0 < p1 ≤ 1 and it is excluded that both r1 = 0 and p1 = 1 are satisfied at the
same time.

Let iE(t) denote the number of all edges being born up to time t if the ancestor of the population
was a type i object, i = 2, 3. Then

lim
t→∞

e−αt
iE(t) = iW

viu2

αD(α)
(33)

almost surely for i = 2, 3.
Let i Ê(t) denote the number of all edges present at time t if the ancestor of the population was

a type i object, i = 2, 3. Then

lim
t→∞

e−αt
i Ê(t) = iW

viu2 A(α)

D(α)
(34)

almost surely for i = 2, 3.
Let iT(t) denote the number of all triangles being born up to time t if the ancestor of the

population was a type i object, i = 2, 3. Then

lim
t→∞

e−αt
iT(t) = iW

viu3

αD(α)
(35)

almost surely for i = 2, 3.
Let i T̂(t) denote the number of all triangles present at time t if the ancestor of the population

was a type i object, i = 2, 3. Then,

lim
t→∞

e−αt
i T̂(t) = iW

viu3B(α)
D(α)

(36)

almost surely for i = 2, 3.
The quantities 2W and 3W are a.s. non-negative, E(2W) = E(3W) = 1, 2W and 3W are a.s.

positive on the event of survival.
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Proof. We apply Proposition 4. To obtain condition (71), it is enough to show that

E
[

αξi(∞) log+
αξi(∞)

]
< ∞, i = 2, 3, (37)

where

αξi(∞) =
∫ ∞

0
e−αtξi(dt), i = 2, 3, (38)

and
ξi(t) = ξi,2(t) + ξi,3(t), i = 2, 3. (39)

If i = 2, then ξ2(t) is the birth process of an edge, and the children can be both edges
and triangles. Therefore, at each birth, there is one child. Therefore,

αξ2(∞) =
∫ ∞

0
e−αtξ2(dt) = ∑

τ(i)≤λ2

1e−ατ(i) ≤
∞

∑
i=1

1e−ατ(i) = M,

where τ(1), τ(2), . . . are the jumps of the Poisson process Π2. In the Poisson process
Π2(t) the distribution of the interarrival time (τ(i)− τ(i − 1)) is exponential with rate 1.
Therefore, τ(i) has Γ-distribution Γ(i, 1). Using this, we have

E(M) =
∞

∑
i=1

E

(
e−ατ(i)

)
=

∞

∑
i=1

1

(1 + α)i =
1
α

. (40)

Let us denote by ηi the interarrival time τ(i)− τ(i − 1). Let η0 be an exponentially
distributed random variable with rate 1 that is independent of M. Then,

e−αη0(1 + M) = e−αη0 + e−αη0
∞

∑
i=1

e−α(η1+···+ηi) =
∞

∑
i=0

e−α(η0+η1+···+ηi).

Therefore, the distribution of e−αη0(1 + M) coincides with the distribution of M. There-
fore, using (40), we have

EM2 = E
(
e−αη0(1 + M)

)2
=

1
1 + 2α

(
1 +

2
α
+EM2

)
.

From this, we find

EM2 =
α + 2
2α2 < ∞.

Thus, (37) is true for i = 2.
If i = 3, then ξ3(t) is the birth process of a triangle and the children can be both edges

and triangles. Therefore, at each birth there are at most three children. Therefore,

αξ3(∞) =
∫ ∞

0
e−αtξ3(dt) = ∑

τ(i)≤λ3

ε(i)e−ατ(i) ≤ 3
∞

∑
i=1

1e−ατ(i) = 3M,

where τ(1), τ(2), . . . are the jumps of the Poisson process Π3. By the above calculation
EM2 < ∞, so (37) is true for i = 3.

If we show that
∫ ∞

0 t2e−αtmi,j(dt) < ∞, for i, j = 2, 3, then conditions (c) and (iv) of
Section 8 will be proved. Now, for i = 2 and j = 2, 3, we have from Corollary 1∫ ∞

0
t2e−αtm2,j(dt) ≤ max{r1, r2}

∫ ∞

0
t2e−αte−t(b+1)e

1−e−ct
c dt ≤

∫ ∞

0
t2e−t(α+b+1−1)dt < ∞

because α + b > 0.
For i = 3 and j = 2, 3, we have from Corollary 1∫ ∞

0
t2e−αtm3,j(dt) ≤ max{p1, p2 + 3p3}

∫ ∞

0
t2e−αte−t(b+1)e(p1+p2)

1−e−ct
c +p3

1−e−3ct
3c dt ≤
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≤
∫ ∞

0
t2e−t(α+b+1−1)dt < ∞

Thus, conditions (c) and (iv) of Section 8 are proved.
Now, turn to the number of edges.
To obtain (33), let Φx(t) = 1 if x is an edge, and Φx(t) = 0 if x is a triangle. Therefore,

EΦ2(t) = 1 and EΦ3(t) = 0. Conditions (i)− (ii)− (iii) and (v) of Section 8 are satisfied.
Thus, (69) and (70) imply (33).

To obtain (34), let Φx(t) = 1 if x is an edge and it is present at t, and Φx(t) = 0 if x is a
triangle. Therefore, EΦ2(t) = 1 − L2(t) and EΦ3(t) = 0. Conditions (i)− (ii)− (iii) and
(v) of Section 8 are satisfied. Now,∫ ∞

0
e−αt

EΦ2(t)dt =
∫ ∞

0
e−αt(1 − L2(t))dt = A(α).

Thus, (69) and (70) imply (34).
Now, we turn to the number of triangles.
To obtain (35), let Φx(t) = 0 if x is an edge, and Φx(t) = 1 if x is a triangle. Therefore,

EΦ2(t) = 0 and EΦ3(t) = 1. Conditions (i)− (ii)− (iii) and (v) of Section 8 are satisfied.
Thus, (69) and (70) imply (35).

To obtain (36), let Φx(t) = 0 if x is an edge, and Φx(t) = 1 if x is a triangle, and it is
present at t. Therefore, EΦ2(t) = 0 and EΦ3(t) = 1 − L3(t). Conditions (i)− (ii)− (iii)
and (v) of Section 8 are satisfied. Now,∫ ∞

0
e−αt

EΦ3(t)dt =
∫ ∞

0
e−αt(1 − L3(t))dt = B(α).

Thus, (69) and (70) imply (36).

5. Generating Functions and the Probability of Extinction

The joint generating function of Π2(λ2), ξ22(λ2) and ξ23(λ2). Recall that Π2 is the
Poisson process describing the reproduction times of the generic edge and λ2 is its life
length. Thus,

wi,j,k = P(Π2(λ2) = i, ξ22(λ2) = j, ξ23(λ2) = k)

is the joint distribution of the offspring size of the generic edge during its whole life and its
last reproduction time. We have

wi,j,k = P(τi ≤ λ2 < τi+1, ξ22(τi) = j, ξ23(τi) = k),

where τi is the ith jumping time of the Poisson process Π2. Thus, it again shows that wi,j,k
is the probability that the ith birth event is the last one that occurred before death, and the
total numbers of the two types of offspring up to time τi are equal to j and k, respectively.

Now, consider the sequence

ui,j,k = P(τi ≤ λ2, ξ22(τi) = j, ξ23(τi) = k).

Let ξ2(τi−1) = m and assume for a while that τi and τi−1 are fixed. Then, using (4)
and (5) for the hazard rate, we can calculate that, for fixed τi and τi−1,

P(λ2 ≥ τi|λ2 ≥ τi−1) = exp(−(b + cm)(τi − τi−1)).

We know that the increment (τi − τi−1) is exponential with parameter 1; therefore,

P(λ2 ≥ τi|λ2 ≥ τi−1) = Eτi−τi−1 exp(−(b + cm)(τi − τi−1)) =
1

1 + b + cm
. (41)
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At each birth step, the new individual can be either an edge or a triangle. Therefore,
using the above calculations, the total probability theorem, and the independence of the
type of the newly born individual and (Π2, λ2), we have the following recursion for ui,j,k.

ui,j,k = ui−1,j−1,k
r1

1 + b + c(j + k − 1)
+ ui−1,j,k−1

r2

1 + b + c(j + k − 1)
. (42)

Now, by the definition of wi,j,k, we can see that

wi,j,k = P(τi ≤ λ2 < τi+1, ξ22(τi) = j, ξ23(τi) = k) =

= P(λ2 < τi+1|τi ≤ λ2, ξ22(τi) = j, ξ23(τi) = k)P(τi ≤ λ2, ξ22(τi) = j, ξ23(τi) = k) =

=
b + c(j + k)

1 + b + c(j + k)
ui,j,k,

where by (41), b+c(j+k)
1+b+c(j+k) is the probability that the generic individual dies before the next

birth event.
Let vi,j,k =

wi,j,k

b + c(j + k)
=

ui,j,k

1 + b + c(j + k)
. Then, from (42), we obtain the following

recursion for the sequence vi,j,k

(1 + b + c(j + k))vi,j,k = vi−1,j−1,kr1 + vi−1,j,k−1r2, (43)

where the initial values are

v0,0,0 =
1

1 + b
and v0,j,k = 0 for j 	= 0 or k 	= 0. (44)

Now, we calculate the generating function G(x, y, z) of the sequence vi,j,k. We have

G(x, y, z) =
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

vi,j,kxiyjzk.

First, multiplying with xiyjzk and then taking the sum of both sides of (43), we obtain

∞

∑
i=1

∞

∑
j=0

∞

∑
k=0

vi,j,kxiyjzk(1 + b + cj + ck) =

= r1xy
∞

∑
i=1

∞

∑
j=0

∞

∑
k=0

vi−1,j−1,kxi−1yj−1zk + r2xz
∞

∑
i=1

∞

∑
j=0

∞

∑
k=0

vi−1,j,k−1xi−1yjzk−1,

where v0,j,k, j = 0, 1, . . . is given by (44), and we define vi,j,k = 0 if j < 0 or k < 0. From this
equation, we find

(1 + b)
(

G(x, y, z)− 1
1 + b

)
+ ycG

′
y(x, y, z) + zcG

′
z(x, y, z) =

= r1xyG(x, y, z) + r2xzG(x, y, z). (45)

Let h(t) = G(x, ty, tz). Now, substituting y with ty, z with tz in (45), we can obtain the
following linear differential equation.

h
′
(t) + h(t)

(
1 + b

ct
− r1xy + r2xz

c

)
=

1
ct

(46)

with the initial value condition
h(0) =

1
1 + b

. (47)
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Now, we can use the well-known method for linear differential equations. We obtain
that the solution of the initial value problem (46) and (47) is

h(t) = t−
1+b

c e
r1xy+r2xz

c t 1
c

∫ t

0
s

1+b−c
c e−

r1xy+r2xz
c sds.

With t = 1, we obtain that

G(x, y, z) = h(1) =
1
c

∫ 1

0
s

1+b−c
c e

r1xy+r2xz
c (1−s)ds.

We need the generating function of wi,j,k = vi,j,k(b + c(j + k)). It is

H(x, y, z) =
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

vi,j,k(b + c(j + k))xiyjzk =

= bG(x, y, z) + cyG′
y(x, y, z) + czG′

z(x, y, z). (48)

From here, we obtain

Proposition 2. The joint generating function of Π2(λ2), ξ22(λ2) and ξ23(λ2) is

H(x, y, z) =

e
r1xy+r2xz

c
1
c

∫ 1

0
s

1+b−c
c e−

r1xy+r2xz
c s[b + (r1xy + r2xz)(1 − s)]ds, (49)

where −1 ≤ x, y, z ≤ 1.

Corollary 2. The generating function of the total offspring distribution of the generic edge is

f2(y, z) = H(1, y, z) = e
r1y+r2z

c
1
c

∫ 1

0
s

1+b−c
c e−

r1y+r2z
c s[b + (r1y + r2z)(1 − s)]ds. (50)

The joint generating function of Π3(λ3), ξ32(λ3) and ξ33(λ3). Here, we study the
offspring of a triangle. To distinguish the notation of this subsection and the previous
subsection, but avoid too many subscripts, we use bar. Thus, here wi,j,k, ui,j,k, vi,j,k, G(x, y, z)
and H(x, y, z) denote quantities relating offspring of the generic triangle. Recall that Π3 is
the Poisson process describing the reproduction times of the generic triangle and λ3 is the
life length of the triangle. Thus,

wi,j,k = P(Π3(λ3) = i, ξ32(λ3) = j, ξ33(λ3) = k)

is the joint distribution of the offspring size of the generic triangle during its whole life and
its last reproduction time. We have

wi,j,k = P(τi ≤ λ3 < τi+1, ξ32(τi) = j, ξ33(τi) = k),

where τi is the ith jumping time of the Poisson process Π3. Thus, we again show that wi,j,k
is the probability that the ith birth event is the last one that happened before death, and the
total numbers of the two types of offspring up to time τi are equal to j and k, respectively.

Let
ui,j,k = P(τi ≤ λ3, ξ32(τi) = j, ξ33(τi) = k).

Let ξ3(τi−1) = m, and assume for a while that τi and τi−1 are fixed. Then, using (4)
and (5) for the hazard rate, we can calculate that, for fixed τi and τi−1,

P(λ3 ≥ τi|λ3 ≥ τi−1) = exp(−(b + cm)(τi − τi−1)).
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We know that the increment (τi − τi−1) is exponential with parameter 1; therefore,

P(λ3 ≥ τi|λ3 ≥ τi−1) = Eτi−τi−1 exp(−(b + cm)(τi − τi−1)) =
1

1 + b + cm
. (51)

At each birth step, the new individual can be either an edge or a triangle. Therefore,
using the above calculations, the total probability theorem, and the independence of the
type of the newly born individual and (Π3, λ3), we have the following recursion for ui,j,k.

ui,j,k = ui−1,j−1,k
p1

1 + b + c(j + k − 1)
+

+ ui−1,j,k−1
p2

1 + b + c(j + k − 1)
+ ui−1,j,k−3

p3

1 + b + c(j + k − 3)
. (52)

Now, by the definition of wi,j,k, we can see that

wi,j,k = P(τi ≤ λ3 < τi+1, ξ32(τi) = j, ξ33(τi) = k) =

= P(λ3 < τi+1|τi ≤ λ3, ξ32(τi) = j, ξ33(τi) = k)P(τi ≤ λ3, ξ32(τi) = j, ξ33(τi) = k) =

=
b + c(j + k)

1 + b + c(j + k)
ui,j,k,

where by (51), b+c(j+k)
1+b+c(j+k) is the probability that the generic individual dies before the next

birth event.

Now, let vi,j,k =
wi,j,k

b + c(j + k)
=

ui,j,k

1 + b + c(j + k)
. Then, from (52), we obtain the

following recursion for the sequence vi,j,k

(1 + b + c(j + k))vi,j,k = vi−1,j−1,k p1 + vi−1,j,k−1 p2 + vi−1,j,k−3 p3, (53)

where the initial values are

v0,0,0 =
1

1 + b
and v0,j,k = 0 for j 	= 0 or k 	= 0. (54)

Now, we calculate the generating function G(x, y, z) of the sequence vi,j,k. We have

G(x, y, z) =
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

vi,j,kxiyjzk.

First, multiplying with xiyjzk and then taking the sum of both sides of (53), we obtain

∞

∑
i=1

∞

∑
j=0

∞

∑
k=0

vi,j,kxiyjzk(1 + b + cj + ck) = p1xy
∞

∑
i=1

∞

∑
j=0

∞

∑
k=0

vi−1,j−1,kxi−1yj−1zk+

+ p2xz
∞

∑
i=1

∞

∑
j=0

∞

∑
k=0

vi−1,j,k−1xi−1yjzk−1 + p3xz3
∞

∑
i=1

∞

∑
j=0

∞

∑
k=0

vi−1,j,k−3xi−1yjzk−3,

where v0,j,k, j = 0, 1, . . . is given by (54) and we define vi,j,k = 0 if j < 0 or k < 0. From this
equation, we find

(1 + b)
(

G(x, y, z)− 1
1 + b

)
+ ycG

′
y(x, y, z) + zcG

′
z(x, y, z) =

= p1xyG(x, y, z) + p2xzG(x, y, z) + p3xz3G(x, y, z). (55)
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Let h(t) = G(x, ty, tz). Now, substituting y with ty, z with tz in (55), we can obtain the
following linear differential equation.

h
′
(t) + h(t)

(
1 + b

ct
− p1xy + p2xz + p3xz3t2

c

)
=

1
ct

(56)

with the initial value condition
h(0) =

1
1 + b

. (57)

One can see that the solution of the initial value problem (56) and (57) is

h(t) = t−
1+b

c e
p1xy+p2xz

c t+ p3xz3

3c t3 1
c

∫ t

0
s

1+b−c
c e−

p1xy+p2xz
c s− p3xz3

3c s3
ds.

With t = 1, we obtain that

G(x, y, z) = h(1) =
1
c

∫ 1

0
s

1+b−c
c e

p1xy+p2xz
c (1−s)+ p3xz3

3c (1−s3)ds.

Therefore, the generating function of wi,j,k = vi,j,k(b + c(j + k)) is

H(x, y, z) =
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

vi,j,k(b + c(j + k))xiyjzk =

= bG(x, y, z) + cyG′
y(x, y, z) + czG′

z(x, y, z). (58)

From here, we obtain

Proposition 3. The joint generating function of Π3(λ3), ξ32(λ3) and ξ33(λ3) is

H(x, y, z) = (59)

=
1
c

∫ 1

0
s

1+b−c
c e

p1 xy+p2 xz
c (1−s)+ p3 xz3

3c (1−s3)
[
b + (p1xy + p2xz)(1 − s) + p3xz3(1 − s3)

]
ds,

where −1 ≤ x, y, z ≤ 1.

Corollary 3. The generating function of the total offspring distribution of the generic triangle is

f3(y, z) = H(1, y, z) = (60)

= e
p1y+p2z

c +
p3z3

3c
1
c

∫ 1

0
s

1+b−c
c e−

p1y+p2z
c s− p3z3

3c s3
[
b + (p1y + p2z)(1 − s) + p3z3(1 − s3)

]
ds.

The probability of extinction. In Theorem 3, we give the probability of extinction. To
determine the extinction probability of the process, we consider the well-known embedded
multi type Galton–Watson process. At time t = 0, the 0th generation of the Galton–Watson
process consists of a single individual, i.e., the ancestor. The first generation consists of
all offspring of the ancestor. The offspring of the individuals of the nth generation form
the (n + 1)th generation. Under some assumptions, the extinction of our original process
has the same probability as the extinction of this embedded Galton–Watson process. The
reproduction process ξi,j(t) gives the number of type j offspring of an ancestor of type i up
to time t. With t → ∞, we obtain that the total number of offspring is ξi,j(∞). Therefore,
Corollary 1 gives us the 2 × 2 matrix of the expected total offspring number as

M =
(
mi,j(∞)

)3
i,j=2.
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Actually, mi,j(∞) is the expected offspring number of the embedded Galton–Watson
process.

Let s2 and s3 denote the probability of extinction of our process when the ancestor is
an edge, resp. triangle.

Theorem 3. Assume that 0 ≤ r1 < 1, 0 < p1 ≤ 1 and it is excluded that both r1 = 0 and p1 = 1
are satisfied at the same time. Let � be the Perron–Frobenius root of M. If � ≤ 1, then s2 = s3 = 1.
If � > 1, then s2 < 1 and s3 < 1. In any case, (s2, s3) is the smallest non-negative solution of the
vector equation

(s2, s3) = ( f2(s2, s3), f3(s2, s3)),

where f2 and f3 are given in Corollaries 2 and 3.

Proof. We apply Theorem 7.1 in Chapter 1 of [19]. By Corollary 1, mi,j(0) = 0 and mi,j(t)
is finite for any i, j. Therefore, by Theorem 7.1 in Chapter 3 of [19], the extinction of our
original process has the same probability as the extinction of the embedded Galton–Watson
process. Thus, we can apply Theorem 7.1 in Chapter 1 of [19]. Here, M is the matrix of the
expected offspring numbers of the embedded Galton–Watson process. Now, M is positively
regular because we assume that 0 ≤ r1 < 1, 0 < p1 ≤ 1 and it is excluded, that both r1 = 0
and p1 = 1 are satisfied at the same time. Thus, our result follows from Theorem 7.1 in
Chapter 1 of [19].

6. The Asymptotic Behaviour of the Degree of a Fixed Vertex

The process of the ‘good children’. To describe the degree of a fixed vertex, we
introduce a new branching process that we call the process of ‘good children’. This process
contains those objects that contribute to the degree of the fixed vertex. We can see that a
newly born vertex can have 1 or 2 edges if its parent is an edge object and 1, 2 or 3 edges if
its parent is a triangle object.

First, we consider the case when the newly born vertex has one edge, and thus, at the
beginning, it belongs to an edge object. In this paragraph, we call this edge the ‘parent’
edge. We fix the newly born vertex. Then, we distinguish those children objects of the
‘parent’ edge, which contribute to the degree of our fixed vertex. We call a child object of
the ‘parent’ edge a ‘good child’ if it contains our fixed vertex. We can see that only the
‘good children’ and their ‘good children’ offspring can contribute to the degree of the fixed
vertex. Then, the distribution of the number of ‘good children’ at a reproduction event of
the ‘parent’ edge is

P(ε̃22 = 0) = 1 − 1
2

r1, P(ε̃22 = 1) =
1
2

r1, P(ε̃23 = 0) = 1 − r2, P(ε̃23 = 1) = r2,

where ε̃22 denotes the number of edge type ‘good children’ and ε̃23 denotes the triangle
type ‘good children’. We have to consider the reproduction process of the ‘good child’,
which is the following

ξ̃2,2(t) = ε̃22(1) + ε̃22(2) + · · ·+ ε̃22(Π(t ∧ λ2)), (61)

ξ̃2,3(t) = ε̃23(1) + ε̃23(2) + · · ·+ ε̃23(Π(t ∧ λ2)), (62)

where ξ̃2,2(t) denotes the number of all edge type ‘good children’, and ξ̃2,3(t) denotes the
number of all triangle type ‘good children’ born by the ‘parent’ edge, ε̃22(1), ε̃22(2), . . . are
i.i.d. copies of ε̃22 and ε̃23(1), ε̃23(2), . . . are i.i.d. copies of ε̃23. Using Corollary 1, we see
that the mean values of the number of edge type and triangle type ‘good children’ are

m̃2,2(t) = Eξ̃2,2(t) = E(ε̃22)E(Π(t ∧ λ2)) =
1
2

r1F(t) =
1
2

m2,2(t),

m̃2,3(t) = Eξ̃2,3(t) = E(ε̃23)E(Π(t ∧ λ2)) = r2F(t) = m2,3(t).

71



Mathematics 2021, 9, 3143

Now, consider the second case where the newly born vertex has two edges, and thus
the ‘parent’ object is a single triangle. Let ε̃32 and ε̃33 denote the number of edge, resp.
triangle type ‘good children’ of the ‘parent’ triangle. The distribution of the number of
‘good children’ will be the following

P(ε̃32 = 0) = 1 − 1
3

p1, P(ε̃32 = 1) =
1
3

p1,

P(ε̃33 = 0) = 1 − 2
3

p2 − p3, P(ε̃33 = 1) =
2
3

p2, P(ε̃33 = 2) = p3.

Let ξ̃3,2(t) denote the number of all edge type ‘good children’, and ξ̃3,3(t) denote the
number of all triangle type ‘good children’ born by the ‘parent’ triangle. We obtain from
Corollary 1 that

m̃3,2(t) = Eξ̃3,2(t) = E(ε̃32)E(Π(t ∧ λ3)) =
1
3

p1G(t) =
1
3

m3,2(t),

m̃3,3(t) = Eξ̃3,3(t) = E(ε̃33)E(Π(t ∧ λ3)) =
2
3
(p2 + 3p3)G(t) =

2
3

m3,3(t).

Therefore, from Proposition 1, it is easily seen that the Laplace transforms of the average
number of offspring are

m̃∗
2,2(κ) =

1
2

r1 A(κ), m̃∗
2,3(κ) = r2 A(κ), m̃∗

3,2(κ) =
1
3

p1B(κ), m̃∗
3,3(κ) =

2
3
(p2 + 3p3)B(κ).

Let

M̃(κ) =

(
m̃∗

2,2(κ) m̃∗
2,3(κ)

m̃∗
3,2(κ) m̃∗

3,3(κ)

)
be the matrix of the previous Laplace transforms. The Perron root that is the largest
eigenvalue of M̃(κ) is

�̃(κ) =

2
3 (p2 + 3p3)B(κ) + 1

2 r1 A(κ) +

√(
2
3 (p2 + 3p3)B(κ)− 1

2 r1 A(κ)
)2

+ 4
3 p1B(κ)r2 A(κ)

2
. (63)

In the following, we assume supercriticality of the ‘good children’ process; that is, we
suppose that �̃(0) > 1. We can see that the reproduction process of the ‘good children’ is
supercritical if

max
{

1
2

r1 A(0),
2
3
(p2 + 3p3)B(0)

}
> 1.

We assume the existence of finite and positive Malthusian parameter of the ‘good
children’ process. Thus, let α̃ be the Malthusian parameter; it satisfies equation �̃(α̃) = 1.
From this equation and from (63), we see that α̃ is the solution of

1
3
(r1(p2 + 3p3)− r2 p1)A(α̃)B(α̃)− 1

2
r1 A(α̃)− 2

3
(p2 + 3p3)B(α̃) + 1 = 0. (64)

Let (ṽ2, ṽ3)
� denote the right eigenvector of M̃(α̃) corresponding to the eigenvalue 1,

and let (ũ2, ũ3)
� be the left eigenvector with the conditions ṽ2 + ṽ3 = 1 and ṽ2ũ2 + ṽ3ũ3 = 1.

Direct calculations show that

ṽ2 =
(1 − r1)A(α̃)(

1 − 3
2 r1
)

A(α̃) + 1
, ṽ3 =

1 − 1
2 r1 A(α̃)(

1 − 3
2 r1
)

A(α̃) + 1
,

ũ2 =

(
(1 − 3

2 r1)A(α̃) + 1
) 1

3 p1B(α̃)

1
3 r2 A(α̃)p1B(α̃) +

(
1
2 r1 A(α̃)− 1

)2 ,
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ũ3 =

(
( 3

2 r1 − 1)A(α̃)− 1
)( 1

2 r1 A(α̃)− 1
)

1
3 r2 A(α̃)p1B(α̃) +

(
1
2 r1 A(α̃)− 1

)2 .

Limit results for the degree. We have already mentioned that the ‘good children’
and only they can contribute to the degree of the fixed vertex. Thus, its degree is equal to
the initial degree plus the number of ‘good children’. Let 2C̃(t) be the degree of a fixed
vertex at time t after its birth in the case when the vertex belongs to an edge at its birth.
Similarly, 3C̃(t) is its degree in the case when the vertex belongs to triangle at its birth. Up
to an additive constant, iC̃(t) is the number of ‘good children’ offspring of an i type ‘parent’
object at time t. It is the sum of the number of edge type ‘good children’ i Ẽ(t) and the
triangle type ‘good children’ i T̃(t). To apply Proposition 4, we can use the same method as
in Theorem 2. Thus, for the edges, we can again use the random characteristic Φx(t) = 1 if
x is an edge and Φx(t) = 0 if x is a triangle, but the underlying process is the process of
‘good children’. This is similar for triangles.

Therefore, we have almost surely

lim
t→∞

e−α̃t
iC̃(t) = lim

t→∞
e−α̃t(

i Ẽ(t) + i T̃(t)
)
= iW̃

ṽi(ũ2 + ũ3)

α̃D̃(α̃)
,

for i = 2, 3, where 2W̃ and 3W̃ are positive on the event of non-extinction of the ‘good children’.
The last case is when the newly born vertex has three edges. Then, three triangles

contribute to the degree of that vertex. Let 3
˜̃C(t) be the degree of this vertex. Then, 3

˜̃C(t) is
the sum if ‘good’ offspring of three triangles. Thus, almost surely,

lim
t→∞

e−α̃t
3

˜̃C(t) = (3W̃1 + 3W̃2 + 3W̃3)
ṽ3(ũ2 + ũ3)

α̃D̃(α̃)
,

where 3W̃1, 3W̃2, 3W̃3 are independent copies of 3W̃.
Checking the conditions of Proposition 4 for the ‘good children’ process. To com-

plete the previous reasoning, we should check the conditions of Proposition 4. First, we
find the the denominator in the limit theorem that is we calculate D̃. By Section 8, we
see that

D̃(α̃) =
3

∑
l,j=2

ũl ṽj

(
−m̃∗

l,j(α̃)
)′

. (65)

Here, ũi and ṽi are the eigenvectors. Moreover,(
−m̃∗

2,2(α̃)
)′

= r1
2 (−A′(α̃)),

(
−m̃∗

2,3(α̃)
)′

= r2
(
−A′(α̃)

)
, (66)(

−m̃∗
3,2(α̃)

)′
= p1

3 (−B′(α̃)),
(
−m̃∗

3,3(α̃)
)′

=
2
3
(p2 + 3p3)

(
−B′(α̃)

)
, (67)

where α̃ is the Malthusian parameter in the process of ‘good children’ and A′, B′ denotes
the derivatives given in (31) and (32).

Condition (a) of Proposition 4 is true because the measures m̃i,j are non-lattice as
they are absolutely continuous. For condition (b1), we assume the existence of a positive
Malthusian parameter. That is, we assume that (64) has a finite and positive solution α̃.
Condition (b2) is true, because we assume that �̃(0) > 1. Condition (c) is a consequence of
Section 4, because m̃i,j(t) has shape cmi,j, where c is positive number.

To guarantee condition (d), in this section, we assume that 0 ≤ r1 < 1, 0 < p1 ≤ 1, and
it is excluded that both r1 = 0 and p1 = 1 are satisfied at the same time. Conditions (i)-(ii)-
(iii) and (v) are true because of the shape of Φ. Conditions (iv) and (vi) are consequences of
ξ̃i,j(t) ≤ ξi,j(t) as one can see from the proof of Theorem 2.
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The extinction of the degree process. The extinction of the degree process means
that the degree of the vertex does not increase after a certain time, that is, the reproduction
process of the ‘good children’ dies out. The probability of this kind of extinction is the
smallest non-negative root (s̃2, s̃3) of the equation

(s̃2, s̃3) =
(

f̃2(s̃2, s̃3), f̃3(s̃2, s̃3)
)
,

where f̃2 and f̃3 are the generating functions of the total ‘good children’ distribution of an
edge, resp. a triangle. Now, by (61) and (62),

f̃2(y, z) = hΠ2(λ2)

(
hε̃2,2,ε̃2,3(y, z)

)
,

where hΠ2(λ2)
is the generating function of Π2(λ2), and hε̃2,2,ε̃2,3 is the joint generating

function of ε̃2,2 and ε̃2,3. Here, by (49),

hΠ2(λ2)
(x) = H(x, 1, 1) =

1
c

∫ 1

0
s

1+b−c
c e

(r1+r2)x
c (1−s)[b + (r1 + r2)x(1 − s)]ds.

By direct calculation,

hε̃2,2,ε̃2,3(y, z) =
1
2

r1 +
1
2

r1y + r2z.

Similarly,
f̃3(y, z) = hΠ3(λ3)

(
hε̃3,2,ε̃3,3(y, z)

)
,

where by (59), the generating function of Π3(λ3) is

hΠ3(λ3)
(x) = H(x, 1, 1) =

1
c

∫ 1

0
s

1+b−c
c e

(p1+p2)x
c (1−s)+ p3x

3c (1−s3)
[
b + (p1x + p2x)(1 − s) + p3x(1 − s3)

]
ds.

Moreover, the joint generating function of ε̃3,2 and ε̃3,3 is

hε̃3,2,ε̃3,3(y, z) =
2
3

p1 +
1
3

p2 +
1
3

p1y +
2
3

p2z + p3z2.

7. Simulations

In this section, we provide some empirical results for our asymptotic theorems. We
generated our process in the programming language Julia. We needed an environment,
where the priority queues were highly applicable. Using this structure, the running time
was reasonable. A more detailed explanation of the algorithm can be found in [20].

According to Theorem 2, for large t, the graphs of the numbers of edges and triangles
are approximately straight lines on the logarithmic scale. To obtain empirical evidence of
our Theorem 2, we investigated the slope of the simulated number of edges and triangles
being born and being present up to time t on the logarithmic scale. The initial instability of
the single processes (Figure 3) motivated us to exclude the first few observations from the
calculations, but the lack of them was not relevant, because the asymptotic properties can
be observed in the later stage of the processes.
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(a) Number of edges present (b) Number of triangles present

(c) Number of edges being born (d) Number of triangles being born

Figure 3. Measurements of a single process on a logarithmic scale.

For each parameter set, we stored the mentioned measurements only in integer time
steps, and then we took the average of 100 simulated processes. In Figure 4, an example
is shown for a specific parameter set (r1 = 0.1, p1 = 0.2, p3 = 0.6, b = 0.25, c = 0.25).
The values of the averages are plotted by dots. In each case, we fitted a regression line
(plotted by continuous red line) to the last 9 values. We can see that the fit is perfect, thus,
supporting our theorem.

Our main goal was to obtain a 95% confidence interval for the slope of the linear
regression line, as that was our simulated approximation of the Malthusian parameter α.
Table 1 contains the boundaries of the 95% confidence intervals for α. The columns labelled
with 2.5% and 97.5% refer to the lower and the upper bounds obtained from simulations,
while the column of α̂ refers to the numerical solution of Equation (25).

For each fixed parameter set {r1, p1, p2, b, c}, we present the confidence intervals
calculated from the number of edges being born (E) resp. being present (Ẽ) and from
the number of triangles being born (T) resp. being present (T̃) up to time t = 14. The
confidence intervals containing the numerical Malthusian parameter α̂ are highlighted
with the ∗ symbol. We see that any confidence interval is narrow, and it either contains
α̂, or α̂ is very close to the interval. These results show that the approximation is good for
moderate values of t.
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(a) Number of edges that exist (b) Number of triangles that exist

(c) Number of edges being born (d) Number of triangles being born

Figure 4. The average of 100 processes generated by the same parameter set and the regression line.

Finally, we present some simulation results for Theorem 3, that is, for the probability
of extinction of the evolution process. We made the following computer experiment for
any fixed parameter set {r1, p1, p2, b, c} and for type 2 and type 3 ancestors. We started
to generate the process. If this process reached 210 birth steps, then we stopped it and
considered it as a non-extinct process. Otherwise, when the process did not reach 210 birth
steps, then the process died out. Applying the above method, we generated 105 processes
for each parameter sets and counted the relative frequencies of the processes being extinct.

In Table 2, we show some of the results. Column Ancestor contains the type of the
ancestor. In the column Numeric we show the numeric solution of the non-linear equation
in Theorem 3. We used Julia’s trust region method. Column Simulation contains the relative
frequencies extracted from the simulations. The simulation results slightly underestimate
the numeric values. This is reasonable because we stopped all processes at a fixed time.
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Table 1. The 95% confidence intervals for α.

r1 p1 p2 b c α̂ 2.5% 97.5%

E 0.1 0.5 0.5 0.2 0.4 0.5394 0.5393 * 0.5443 *
T 0.5390 * 0.5440 *
Ẽ 0.5410 0.5453
T̃ 0.5395 0.5444

E 0.1 0.2 0.6 0.25 0.25 0.9133 0.9130 * 0.9141 *
T 0.9134 0.9142
Ẽ 0.9133 * 0.9141 *
T̃ 0.9133 * 0.9148 *

E 0.1 0.2 0.6 0.45 0.35 0.6622 0.6585 * 0.6659 *
T 0.6606 * 0.6648 *
Ẽ 0.6608 * 0.6647 *
T̃ 0.6597 * 0.6638 *

Table 2. Comparison of the numeric values of the extinction probabilities and their relative frequen-
cies from 105 repetitions.

r1 p1 p2 b c Ancestor Numeric Simulation

0.1 0.2 0.6 0.8 0.8 2 0.9095 0.9053
3 0.8855 0.8805

0.2 0.3 0.6 0.7 0.7 2 0.9247 0.9184
3 0.9141 0.9070

0.3 0.3 0.5 0.6 0.6 2 0.7371 0.7207
3 0.6896 0.6834

8. Basic Facts on Branching Processes

In our paper, we use known results of the theory of continuous-time branching
processes. The single type general Crump–Mode–Jagers branching processes have been
described e.g., in [21–23]. The general multi-type branching processes have been studied,
e.g., in [11,19,24].

Here, we give a short description of the general multi-type branching processes based
on [11]. The individuals of this process can be of p different types, which we denote by
1, 2, . . . , p. Any individual x is described by the quantities λx, ξx, Φx, Ψx, . . . . The quantities
λx, ξx, Φx, Ψx, . . . are independent copies of the quantities λ, ξ, Φ, Ψ, . . . . Thus, we should
give the definition of λ, ξ, Φ, Ψ, . . . , which we consider as the quantities corresponding to
the generic individual.

The lifetime λ is a non-negative random variable which is not necessarily independent
from the reproduction. The lifetime distribution is L(t) = P(λ ≤ t). The reproduction
process is ξi(t) =

(
ξi,1(t), . . . , ξi,p(t)

)
, t ≥ 0. Here, the random point process ξi,j describes

the births of type j offspring of a type i mother. ξi,j(t) gives the number of type j offspring
of a type i mother up to time t. ξi,j is determined by the birth events and the numbers
of offspring. The process starts at time t = 0 with one individual called the ancestor and
denoted by x0. When a child is born, it starts its own reproduction process and so on. The
birth time of the individual x is denoted by σx.

Let Φ(t) be a non-negative random function that describes a certain aspect of the life
history of the individual. It is usually assumed that Φ(t) = 0 for t ≤ 0. Then, Φ(t) is called
a random characteristic. Let Ψ(t) be another random characteristic. Thus, the behaviour of
the individual x is described by ξx, λx, Φx, Ψx, . . . .

77



Mathematics 2021, 9, 3143

Let us define the branching process x0 ZΦ(t) counted by the characteristic Φ as

x0 ZΦ(t) = ∑
x

Φx(t − x0 σx),

where we summarize for all individuals x. Here, the left subscript x0 of Z and of the birth
time σx is important, because it denotes that the process starts with ancestor x0 and the
type of x0 has influence for the evolution of the population.

Let us denote by mi,j(t) the reproduction function, which is the expected reproduction
number mi,j(t) = Eξi,j(t).

The following facts are well-known (see [11] or [24]).
We assume the following basic conditions in this section.
(a) Not all of the measures mi,j are concentrated on a lattice.
Let

m∗
i,j(κ) =

∫ ∞

0
e−κtmi,j(dt), i, j = 1, . . . , p,

be the Laplace transform of mi,j. Let M(κ) be the matrix

M(κ) =
(

m∗
i,j(κ)

)p

i,j=1
.

(b1) There exists a positive Malthusian parameter α that is a finite positive value so that
M(α) has finite entries only, and the Perron–Frobenius root of M(α) is equal to 1. Here, the
Perron–Frobenius root is the largest eigenvalue of the matrix. Let (v1, . . . , vp)� be the right
positive eigenvector and (u1, . . . , up)� the left positive eigenvector of M(α) corresponding
to the Perron–Frobenius root. We normalize them as ∑

p
i=1 vi = 1 and ∑

p
i=1 uivi = 1.

(b2) The matrix
(
mi,j(∞)

)p
i,j=1 has an infinite entry, or all of them are finite, and its

Perron–Frobenius root is greater than 1.
(c) The first moment of e−αtmi,j(dt) is finite and positive; that is,

0 <
∫ ∞

0
te−αtmi,j(dt) < ∞, i, j = 1, . . . , p.

(d) There exists a finite positive integer K so that all elements of the Kth power of the
matrix

(
mi,j(∞)

)p
i,j=1 are positive.

Let

αξi,j(∞) =
∫ ∞

0
e−αtξi,j(dt). (68)

Proposition 4. Let α be the Malthusian parameter. Assume that the random characteristic Φ
satisfies the following conditions:

(i) Φ(t) ≥ 0,
(ii) The trajectories of Φ belong to the Skorohod space D, i.e., they do not have discontinuities of

the second kind,
(iii) E(supt Φ(t)) < ∞.

Assume also

(iv) for some ε > 0 ∫ ∞

0
t(log(1 + t))1+εe−αtmi,j(dt) < ∞, i, j = 1, . . . , p

and

(v) for some ε > 0

E sup
t≥0

{
max

{
t(log(1 + t))1+ε, 1

}
e−αtΦ(t)

}
< ∞
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for any ancestor.
Then,

lim
t→∞

e−αt
x0 ZΦ(t) = x0Y∞vimΦ

∞ (69)

is likely, where i is the type of x0,

mΦ
∞ =

∑
p
j=1 uj

∫ ∞
0 e−αtEΦj(t)dt

∑
p
l,j=1 ulvj

∫ ∞
0 te−αtml,j(dt)

, (70)

x0Y∞ is an a.s. non-negative random variable depending on the type of the ancestor x0 but not
depending on the choice of Φ.

If, in addition, we assume that

(vi)
E
[

αξi,j(∞) log+
αξi,j(∞)

]
< ∞, i, j = 1, . . . , p, (71)

then E(x0Y∞) = 1, x0Y∞ is positive with positive probability, and x0Y∞ is a.s. positive on the
survival set.

The proof is a simple consequence of Theorem 2.4 and Proposition 4.1 of [11].

9. Discussion

In this paper, a new network evolution model was introduced. This model was
inspired by those networks where small substructures play important role. In social
life, such substructures could be a group of friends. In the theory of networks, these
substructures are called motifs. In this paper, for the sake of simplicity, we consider only
two types of substructures, the edges and the triangles. The novelty of the paper is the
usage of a two-type continuous time branching process to describe these two types of
interactions. Thus, despite [7,10], the theory of multi-type branching processes was applied
for certain substructures of the network and not just for the nodes. Our paper extends the
former studies of [16,17], where only one type of interaction was considered.

In this paper, we proved that the magnitude of the number of triangles on the event
of non-extinction is eαt, where α is the Malthusian parameter. We obtained similar results
for the number of edges. We also studied the degree process of a fixed vertex and the
probability of the extinction. Our results are similar to the ones obtained for the simpler
models in [16,17]. In addition to mathematical proofs, the results were illustrated by
simulations.

In future extensions of the model, more than two types of substructures can be studied
using the theory of multi-type branching processes.
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Abstract: We consider a time-inhomogeneous Markov chain with a finite state-space which models
a system in which failures and repairs can occur at random time instants. The system starts from any
state j (operating, F, R). Due to a failure, a transition from an operating state to F occurs after which
a repair is required, so that a transition leads to the state R. Subsequently, there is a restore phase,
after which the system restarts from one of the operating states. In particular, we assume that the
intensity functions of failures, repairs and restores are proportional and that the birth-death process
that models the system is a time-inhomogeneous Prendiville process.

Keywords: continuous-time ehrenfest model; first-passage time densities; proportional intensity
functions; asymptotic behaviors

MSC: 60J28; 60J35; 60K25; 60K20

1. Introduction

Continuous-time Markov chains (CTMC) are usually used in various application fields
related to queueing systems, mathematical biology, physics, and chemistry (cf., for instance,
Anderson [1], Iosifescu and Tautu [2], Medhi [3], Bayley [4], van Kampen [5], Taylor and
Karlin [6], Sericola [7]). In these cases, the stochastic process describes the evolution in
continuous time of a Markov chain with a countable set of states that represent the number
of customers in a queue, the number of molecules in a chemical reaction, the size of the
population with births/deaths/immigrations/emigrations.

In the recent decades, particular attention has been paid to the study of these processes
under the effect of random catastrophes that produce a sudden change of the state of a
system. After such failure, one can think that the system is empty (total catastrophes) and
then the dynamics immediately restart without delay (cf., for instance, Dharmaraja et al. [8],
Giorno et al. [9–11], Di Crescenzo et al. [12], Economou and Fakinos [13,14], Chen et al. [15]).
In more realistic cases, after a failure the system can be shipped for maintenance; in these
cases, due to the extent of the failure, it is reasonable to assume random repair times. To
introduce the effect of a catastrophe related to a failure of the system, one adds to the
usual assumptions the existence of a non-zero probability of transition to an intermediate
state from which the zero, or another operating state, can be reached at some randomly
distributed instants (cf., for instance, Di Crescenzo et al. [16,17], Ye et al. [18], Mytalas
and Zazanis [19], Krishna Kumar et al. [20]). In many cases, the times to failures and the
times of repair are assumed to be exponential random variables. Some models consider
the phase-type distributions for failure and repair times (see, for instance, Altiok [21–23],
Dallery [24]).

Frequently, time-inhomogeneous Markov chains are used to model real dynamic sys-
tems. Research in this area are oriented to determine the transient and the limiting probabil-
ity distribution, and to construct a continuous time diffusion approximation (cf., for instance,
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Kendall [25], McNeil and Schach [26], Di Crescenzo et al. [27,28], Giorno et. al. [29,30]).
Moreover, some studies on the ergodicity of time-inhomogeneous birth-death chains are
considered in Ammar et al. [31], Zeifman et al. [32,33], Satin et al. [34]. For CTMC, the
evaluation of first-passage time densities and their moments via analytical and numerical
methods plays an important role (cf., for instance, Jouini [35], Giorno and Nobile [36] and
references therein).

Various research have been devoted to stochastic “logistic models” that describe biolog-
ical population growth in a limited environment or the number of customers in a queueing
system with finite capacity. In particular, the logistic model proposed by Prendiville in 1949,
and subsequently solved by Takashima in 1956, was applied in biology, in ecology and
in queueing systems (cf. Prendiville [37], Takashima [38], Giorno et al. [39], Ricciardi [40]).
The Prendiville process can be also viewed as the Ehrenfest model in continuous time (see,
Karlin and McGregor [41], Flegg et al. [42]). Furthermore, Zheng [43] gives the extension of
the Prendiville process to the inhomogeneous case. The Prendiville/Ehrenfest model has
been also used to describe queueing systems in presence of catastrophes (cf. Dharmaraja [8],
Giorno [44,45]). Moreover, Parthasarathy and Krishna Kumar [46] and Matis and Kiffe [47]
consider stochastic compartment models with Prendiville growth mechanisms.

In the present paper, we consider a time-inhomogeneous birth-death process with
a finite state-space and we assume that failures and repairs can occur at random time
instants. Specifically, the state-space of the considered stochastic process, in addition to
the operating states, includes two particular states, denoted by F and R. The dynamics
system starts from any state j (operating, F, R). Due to a failure that occurs according to a
non-stationary exponential distribution, a transition from an operating state to F occurs;
after which a repair, that leads to the state R, starting from F, is required. Even the repair
times are assumed to be random and they occur according to a non-stationary exponential
distribution. After the system has been repaired, it restarts from one of the operating states.

The plan of the paper is as follows. In Section 2, we describe the stochastic model; we
provide the Kolmogorov differential equations for the time-inhomogeneous CTMC with a
finite state-space, assuming that the times of failures, repairs, and restores are exponentially
distributed. In Section 3, we assume that the failures, repairs and restores intensity functions
are proportional; we determine the transient probabilities that, starting from an arbitrary
state j at time t0, the system reaches the state F, or the state R or one of the operating
states 0, 1, . . . , � at time t. In Section 4, we analyze the time of first failure and determine its
probability density function and related average. In Section 5, we obtain the probability
generating function of the operating states of the system and the related conditional mean.
In Section 6, the asymptotic behavior of the probabilities and of related average for the
operating state is studied, under the assumption of proportional intensity functions.

2. The Model

Let {N(t), t ≥ t0} be a time-inhomogeneous Markov chain with space-state
S = {−2,−1, 0, 1, . . . , �}, where n = −2 corresponds to the failure state (F), n = −1
describes the repair state (R) from which the process can work again and n = 0, 1, . . . , �
correspond to the operating states of the system (see, Figure 1). We assume that the arrival
(upward jumps) and departures (downward jumps) at time t occur with intensity functions
λn(t) for n = 0, 1, . . . , � and μn(t) for n = 1, 2, . . . , �, respectively. Moreover, the failures
occur according to a non-homogeneous Poisson process, with intensity function ξn(t),
starting from the operating state n, with n = 0, 1, . . . , �. If a failure occurs, then the system
goes into the failure state F, and further, the completion of a repair occurs according to
the intensity function �(t). After the repair, there is a restore phase after which the system
restarts from an operating state n, with the intensity function γn(t) for n = 0, 1, . . . , �.
Several cases can occur: (a) after the repair the system restarts from the state n = 0, so
that we have γ0(t) = γ(t) and γn(t) = 0 for n = 1, 2 . . . , �; (b) the state from which the
system restarts is chosen randomly, by setting γn(t) = γ(t) for n = 0, 1, 2 . . . , �; (c) the
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intensity functions γ0(t), γ1(t), . . . , γ�(t) are chosen by reflecting the priority of one state
over the others.

0 1 2 · · · �− 2 �− 1 �

λ0(t) λ1(t)

μ1(t)

λ2(t)

μ2(t)

λ�−3(t)

μ3(t)

λ�−2(t)

μ�−2(t)

λ�−1(t)

μ�−1(t) μ�(t)

R
γ0(t)

γ1(t)
γ2(t) γ�−2(t)

γ�−1(t)
γ�(t)

F
ξ0(t)

ξ1(t)
ξ2(t) ξ�−2(t)

ξ�−1(t)
ξ�(t)

�(t)

Figure 1. The state diagram of the Markov process N(t) modeling failures and repairs.

Specifically, in any small interval (t, t + Δt), Δt > 0, we assume that the transitions
that regulate N(t) occur according the following scheme:

• n → n + 1 with intensity function λn(t) for n = 0, 1, . . . , �− 1,
• n → n − 1 with intensity function μn(t) for n = 1, 2, . . . , �,
• −1 → n with intensity function γn(t) for n = 0, 1, . . . , �,
• n → −2 with intensity function ξn(t) for n = 0, 1, . . . , �,
• −2 → −1 with intensity function �(t),

where λn(t), μn(t), γn(t), ξn(t), �(t) are positive, bounded and continuous functions for
t ≥ 0. In Buonocore et al. [48], a time-homogeneous similar model is considered in
the biological context, assuming that λn(t) = λ, for n = 0, 1, . . . , � − 1, μn(t) = μ, for
n = 0, 1, . . . , �− 1, γn(t) = γ for n = 0, 1, . . . , �, ξn(t) = ξ for n = 0, 1, . . . , � and �(t) = �.

Let
pj,n(t|t0) = P{N(t) = n|N(t0) = j}, j, n ∈ S (1)

be the transition probabilities of N(t). Setting

ν(t) =
�

∑
n=0

γn(t), (2)

one has:

dpj,−2(t|t0)

dt
=

�

∑
n=0

ξn(t) pj,n(t|t0)− �(t) pj,−2(t|t0)

dpj,−1(t|t0)

dt
= −ν(t) pj,−1(t|t0) + �(t) pj,−2(t|t0),

dpj,0(t|t0)

dt
= γ0(t) pj,−1(t|t0)− [λ0(t) + ξ0(t)] pj,0(t|t0) + μ1(t) pj,1(t|t0), (3)

dpj,n(t|t0)

dt
= γn(t) pj,−1(t|t0) + λn−1(t) pj,n−1(t|t0)

−[λn(t) + μn(t) + ξn(t)] pj,n(t|t0) + μn+1(t) pj,n+1(t|t0), n = 1, 2, . . . , �− 1,

dpj,�(t|t0)

dt
= γ�(t) pj,−1(t|t0) + λ�−1(t) pj,�−1(t|t0)− [μ�(t) + ξ�(t)] pj,�(t|t0),
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to solve with the initial conditions

lim
t↓t0

pj,n(t|t0) = δj,n j, n ∈ S . (4)

For t ≥ t0 , denoting by

Pj(t|t0) =
�

∑
n=0

pj,n(t|t0), j ∈ S , (5)

the probability that the system is in an operating state at time t, one has:

Pj(t|t0) + pj,−2(t|t0) + pj,−1(t|t0) = 1, j ∈ S . (6)

If ξn(t) = ξ(t) for n = 0, 1, . . . , � and t ≥ t0, by virtue of (6), one obtains

�

∑
n=0

ξn(t) pj,n(t|t0) = ξ(t) [1 − pj,−1(t|t0)− pj,−2(t|t0)],

so that the first two equations of system (3) become:

dpj,−2(t|t0)

dt
= ξ(t) [1 − pj,−1(t|t0)]− [ξ(t) + �(t)] pj,−2(t|t0),

dpj,−1(t|t0)

dt
= −ν(t) pj,−1(t|t0) + �(t) pj,−2(t|t0),

(7)

to solve with the initial conditions

lim
t↓t0

pj,−2(t|t0) = δj,−2, lim
t↓t0

pj,−1(t|t0) = δj,−1. (8)

Furthermore, if ξn(t) = ξ(t) for n = 0, 1, . . . , � and t ≥ t0, by virtue of (3), one has that
the probability Pj(t|t0) satisfies the following differential equation

dPj(t|t0)

dt
= −ξ(t)Pj(t|t0) + ν(t) pj,−1(t|t0) (9)

to solve with the initial condition

lim
t↓t0

Pj(t|t0) = 1 − δj,−2 − δj,−1. (10)

Equation (9) shows that the probability that the system is in an operating state at time
t does not depend on the intensity functions λn(t) and μn(t) related to the birth-death
process without failures and repairs.

3. Proportional Intensity Functions of Failures, Repairs and Restores

We assume that

�(t) = � ϕ(t), ξn(t) = ξ ϕ(t), γn(t) = γn ϕ(t), n = 0, 1, . . . , �,

ν(t) = (γ0 + γ1 + . . . + γ�) ϕ(t),
(11)

where ϕ(t) is a positive, bounded and continuous function for t ≥ 0. We denote by

Φ(t|t0) =
∫ t

t0

ϕ(u) du, t ≥ t0 (12)

and we assume that limt→+∞ Φ(t|t0) = +∞.
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3.1. Asymptotic Behavior of the System

Let

qn = lim
t→+∞

pj,n(t|t0), j, n ∈ S , Q =
�

∑
n=0

qn = 1 − q−2 − q−1, (13)

be the steady-state probabilities of the considered system.

Proposition 1. Under the assumptions (11), one has:

q−2 =
ν ξ

ν � + ν ξ + � ξ
, q−1 =

� ξ

ν � + ν ξ + � ξ
, Q =

� ν

ν � + ν ξ + � ξ
· (14)

Proof. It follows from (7), by taking the limit as t → +∞.

Note that the last identity in (14) is the probability that the system is in an operating
state n = 0, 1, . . . , � in equilibrium regime.

3.2. Transient Behavior of the System

To determine the transient solution of system (7) with initial conditions (8), we denote
by x1 and x2 the solutions of the following equation:

x2 + (ν + � + ξ) x + ν � + ν ξ + � ξ = 0

and set
Δ = (ν − � − ξ)2 − 4 � ξ. (15)

Since x1 + x2 = −(� + ξ + ν) < 0 and x1x2 = ν(� + ξ) + ξ� > 0, for Δ ≥ 0 one has
that x1 < 0 and x2 < 0.

Proposition 2. Under the assumptions (11), for t ≥ t0 the following results hold:
(i) If Δ > 0,

pj,−2(t|t0) = q−2 + [δj,−2 − q−2] Z1(t|t0) + [ξ(1 − δj,−1)− (ξ + �)δj,−2] Z2(t|t0),

pj,−1(t|t0) = q−1 + [δj,−1 − q−1] Z1(t|t0) + [−ν δj,−1 + � δj,−2] Z2(t|t0),

Pj(t|t0) = Q + [1 − Q − δj,−2 − δj,−1] Z1(t|t0) + [(ξ + ν)δj,−1 − ξ(1 − δj,−2)] Z2(t|t0),

with

Z1(t|t0) =
x1 ex2Φ(t|t0) − x2 ex1Φ(t|t0)

x1 − x2
, Z2(t|t0) =

ex1Φ(t|t0) − ex2Φ(t|t0)

x1 − x2
.

(ii) If Δ = 0,

pj,−2(t|t0) = q−2 + ex1Φ(t|t0)
{

δj,−2 − q−2 + Φ(t|t0)
[
ξ(1 − δj,−1)− (ξ + �) δj,−2

−x1 (δj,−2 − q−2)
]}

,

pj,−1(t|t0) = q−1 + ex1Φ(t|t0)
{

δj,−1 − q−1 + Φ(t|t0)
[
−ν δj,−1 + � δj,−2

−x1 (δj,−1 − q−1)
]}

,

Pj(t|t0) = Q + ex1Φ(t|t0)
{

1 − Q − δj,−2 − δj,−1 + Φ(t|t0)
[
(ξ + ν) δj,−1 − ξ (1 − δj,−2)

−x1 (1 − Q − δj,−2 − δj,−1)
]}

,
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(iii) If Δ < 0,

pj,−2(t|t0) = q−2 + ea Φ(t|t0)
{
(δj,−2 − q−2) cos[b Φ(t|t0)]

+
1
b

[
− a (δj,−2 − q−2)− (ξ + �)δj,−2 + ξ (1 − δj,−1)

]
sin[b Φ(t|t0)]

}
,

pj,−1(t|t0) = q−1 + ea Φ(t|t0)
{
(δj,−1 − q−1) cos[b Φ(t|t0)]

+
1
b

[
− a (δj,−1 − q−1)− ν δj,−1 + � δj,−2

]
sin[b Φ(t|t0)]

}
,

Pj(t|t0) = Q + ea Φ(t|t0)
{
(1 − Q − δj,−2 − δj,−1) cos[b Φ(t|t0)]

+
1
b

[
a (1 − Q − δj,−2 − δj,−1) + (ξ + ν) δj,−1 − ξ (1 − δj,−2)

]
sin[b Φ(t|t0)]

}
,

where

a = −ν + � + ξ

2
, b =

√
4 � ξ − (ν − � − ξ)2

2
·

Proof. From (7), with conditions (8), one has that pj,−2(t|t0) is solution of the second order
differential equation

1
ϕ(t)

d
dt

[ 1
ϕ(t)

dpj,−2(t|t0)

dt

]
+ (� + ξ + ν)

1
ϕ(t)

dpj,−2(t|t0)

dt
+[ν (� + ξ) + � ξ] pj,−2(t|t0)− ν ξ = 0, (16)

to solve with the initial conditions:

lim
t↓t0

pj,−2(t|t0) = δj,−2, lim
t↓t0

[ 1
ϕ(t)

dpj,−2(t|t0)

dt

]
= (1 − δj,−1) ξ − (ξ + �) δj,−2. (17)

Similarly, for pj,−1(t|t0) one has

1
ϕ(t)

d
dt

[ 1
ϕ(t)

dpj,−1(t|t0)

dt

]
+ (� + ξ + ν)

1
ϕ(t)

dpj,−1(t|t0)

dt
+[ν (� + ξ) + � ξ] pj,−1(t|t0)− � ξ = 0, (18)

to solve with the initial conditions:

lim
t↓t0

pj,−1(t|t0) = δj,−1, lim
t↓t0

[ 1
ϕ(t)

dpj,−1(t|t0)

dt

]
= −ν δj,−1 + � δj,−2. (19)

Results of theorem follow by using standard techniques to solve (16) and (18), with the
initial conditions (17) and (19), respectively; then, recalling Equation (6), one determines
Pj(t|t0).

In Figures 2–4 the probabilities pj,−1(t|0), pj,−2(t|0) and Pj(t|0) are plotted for ϕ(t) = 1,
ξ = 1, ν = 4 and some choices of the parameter �. In particular, Δ = 3.36 in Figure 2, Δ = 0
in Figure 3 and Δ = −3.75 in Figure 4.
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Figure 2. The probabilities pj,−1(t|0), pj,−2(t|0) and Pj(t|0) are plotted for ϕ(t) = 1 and for ξ = 1.0,
� = 0.6, ν = 4.0. In (a) j = −2 (failure state) and in (b) j = −1 (repair state).
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Figure 3. As in Figure 2, for ϕ(t) = 1 and for ξ = 1.0, � = 1.0, ν = 4.0. In (a) j = −2 (failure state)
and in (b) j = −1 (repair state).
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Figure 4. As in Figure 2, for ϕ(t) = 1 and for ξ = 1.0, � = 1.5, ν = 4.0. In (a) j = −2 (failure state)
and in (b) j = −1 (repair state).

4. Time of First Failure

We denote by

Tj,−2(t0) = inf{t > t0 : N(t) = −2}, j ∈ {−1, 0, 1, . . . , �} (20)

the random variable that describes the time of first failure of the system, i.e. the time in
which the chain enters in the state F for the first time, starting from the state
j ∈ {−1, 0, 1, . . . , �} at time t0. Let

gj,−2(t|t0) =
d
dt

P(Tj,−2(t0) ≤ t|N(t0) = j), j ∈ {−1, 0, 1, . . . , �} (21)

be the density of the time of first failure.

Proposition 3. Under the assumptions (11), for j ∈ {−1, 0, 1, . . . , �} one has

gj,−2(t|t0) =

⎧⎪⎪⎨⎪⎪⎩
ξ ϕ(t)

ν δj,−1 e−ν Φ(t|t0)+
[

ξ (1−δj,−1)−ν
]

e−ξ Φ(t|t0)

ξ−ν , ν 	= ξ,

ξ ϕ(t) e−ξ Φ(t|t0)
[
1 − δj,−1 + ξ Φ(t|t0) δj,−1

]
, ν = ξ.

(22)
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Proof. We consider a time-inhomogeneous Markov process {N̂(t), t ≥ t0} with state-space
S obtained from N(t) by setting an absorbing boundary into the state −2, that corresponds
to the failure state F of the system and we denote by

p̂j,n(t|t0) = P{N̂(t) = n|N̂(t0) = j}, j, n ∈ S . (23)

the probability that the system is in state n at time t and that no failure has yet occurred. Since,

P{Tj,−2(t0) ≤ t}+ p̂j,−1(t|t0) +
�

∑
n=0

p̂j,n(t|t0) = 1, t ≥ t0,

one has P{Tj,−2(t0) ≤ t} = p̂j,−2(t|t0), so that for t ≥ t0 it results

gj,−2(t|t0) =
d
dt

p̂j,−2(t|t0), j ∈ {−1, 0, 1, . . . , �}. (24)

Hence, to determine the density of the time of first failure, it is necessary to consider
the following differential equations

dp̂j,−2(t|t0)

dt
= ξ ϕ(t) [1 − p̂j,−1(t|t0)− p̂j,−2(t|t0)],

dp̂j,−1(t|t0)

dt
= −ν ϕ(t) p̂j,−1(t|t0),

dp̂j,0(t|t0)

dt
= γ0 ϕ(t) p̂j,−1(t|t0)− [λ0(t) + ξ ϕ(t)] p̂j,0(t|t0) + μ1(t) p̂j,1(t|t0), (25)

dp̂j,n(t|t0)

dt
= γn ϕ(t) p̂j,−1(t|t0) + λn−1(t) p̂j,n−1(t|t0)

−[λn(t) + μn(t) + ξ ϕ(t)] p̂j,n(t|t0) + μn+1(t) p̂j,n+1(t|t0), n = 1, 2, . . . , �− 1,

dp̂j,�(t|t0)

dt
= γ� ϕ(t) p̂j,−1(t|t0) + λ�−1(t) p̂j,�−1(t|t0)− [μ�(t) + ξ ϕ(t)] p̂j,�(t|t0),

to solve with the initial conditions

lim
t↓t0

p̂j,n(t|t0) = δj,n, j, n ∈ S , j 	= −2, lim
t↓t0

p̂−2,n(t|t0) = 0, n ∈ S . (26)

Proceeding as in Proposition 2, one has:

p̂j,−2(t|t0) =

⎧⎪⎪⎨⎪⎪⎩
ξ
[

1−e−ν Φ(t|t0)
]
−ν
[

1−e−ξ Φ(t|t0)
]
+ξ (1−δj,−1)

[
e−ν Φ(t|t0)−e−ξ Φ(t|t0)

]
ξ−ν , ν 	= ξ,

1 − e−ξ Φ(t|t0)
[
1 + ξ Φ(t|t0) δj,−1

]
, ν = ξ,

(27)

so that, by virtue of (24), Equation (22) holds.

From (22) it follows that P{Tj,−2(t0) ≤ +∞} = 1, so that with certainty the system is
destined to fail. By virtue of (24), for j ∈ {−1, 0, 1, . . . , �} the reliability of the system before
the first repair is

P{Tj,−2(t0) > t} =
∫ +∞

t
gj,−2(τ|t0) dτ =

∫ +∞

t

d
dτ

p̂j,−2(τ|t0) dτ = 1 − p̂j,−2(t|t0)

=

⎧⎪⎪⎨⎪⎪⎩
ξ δj,−1 e−ν Φ(t|t0)+[ξ (1−δj,−1)−ν] e−ξ Φ(t|t0)

ξ−ν , ν 	= ξ,

[
1 + ξ Φ(t|t0) δj,−1

]
e−ξ Φ(t|t0), ν = ξ.

(28)
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Hence, for j ∈ {−1, 0, 1, . . . , �} the mean time to first failure is

E[Tj,−2(t0)] =
∫ +∞

t0

(t − t0) gj,−2(t|t0) dt =
∫ +∞

t0

P{Tj,−2(t0) > t} dt

=

⎧⎪⎪⎨⎪⎪⎩
ξ

ξ−ν δj,−1
∫ +∞

t0
e−ν Φ(t|t0) dt +

ξ (1−δj,−1)−ν

ξ−ν

∫ +∞
t0

e−ξ Φ(t|t0) dt, ν 	= ξ,

∫ +∞
t0

e−ν Φ(t|t0)
[
1 + ξ δj,−1 Φ(t|t0)

]
dt, ν = ξ.

(29)

In particular, by setting ϕ(t) = 1, Equation (29) leads to

E[Tj,−2] =
1
ν

δj,−1 +
1
ξ

, j ∈ {−1, 0, 1, . . . , �}.

In Figure 5 the density of the time of first failure is plotted for ϕ(t) = 1, ξ = 1.0,
� = 0.6, ν = 4.0. If j = −1 one has E[T−1,−2] = 1.25, whereas E[Tj,−2] = 1 if j is an
operating state.

=-

=
- ( | )

Figure 5. The density of the time of first failure is plotted for ϕ(t) = 1 and for ξ = 1.0, � = 0.6,
ν = 4.0.

5. Operating States and Their Probabilities

For the birth-death chain {N(t), t ≥ t0}, in addition to the assumptions (11), we
suppose that the birth and death intensity functions are

λn(t) = (�− n) λ(t), n = 0, 1, . . . , �; μn(t) = n μ(t), n = 1, . . . , �, (30)

with λ(t) and μ(t) positive, bounded and continuous functions for t ≥ 0. Note that
the birth-death intensity functions (30) define a time-inhomogeneous Prendiville process
{Ñ(t), t ≥ t0} with finite state-space {0, 1, . . . , �}. The process Ñ(t) identifies with the
process N(t) in the absence of failures, repairs and restores.

Under the assumptions (11) and (30), the transition probabilities of N(t) satisfy the
following system:

dpj,0(t|t0)

dt
= γ0 ϕ(t) pj,−1(t|t0)− [� λ(t) + ξ ϕ(t)] pj,0(t|t0) + μ(t) pj,1(t|t0),

dpj,n(t|t0)

dt
= γn ϕ(t) pj,−1(t|t0) + λ(t) (�− n + 1) pj,n−1(t|t0)

−[λ(t) (�− n) + μ(t) n + ξ ϕ(t)] pj,n(t|t0) + μ(t) (n + 1) pj,n+1(t|t0), (31)

n = 1, 2, . . . , �− 1,
dpj,�(t|t0)

dt
= γ� ϕ(t) pj,−1(t|t0) + λ(t) pj,�−1(t|t0)− [� μ(t) + ξ ϕ(t)] pj,�(t|t0),
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to solve with the initial conditions

lim
t↓t0

pj,n(t|t0) = δj,n, j ∈ S , n ∈ {0, 1, . . . , �}. (32)

Let

Gj(z, t) =
�

∑
n=0

zn pi,n(t|t0), j ∈ S (33)

be the probability generating function (PGF) of the operating states of N(t). From (31)
one has:

∂

∂t
Gj(z, t) + (z − 1) [λ(t) z + μ(t)]

∂

∂z
Gj(z, t)

= [� (z − 1)λ(t)− ξ ϕ(t)] Gj(z, t) + ϕ(t)pj,−1(t|t0)
�

∑
i=0

γi zi, j ∈ S , (34)

to solve with the conditions

Gj(z, t0) =
�

∑
n=0

δj,n zn =

{
0, j = −1,−2
zj, j ∈ {0, 1, . . . , �},

(35)

Gj(z, t0) = P(t|t0) = 1 − pj,−2(t|t0)− pj,−1(t|t0).

Proposition 4. Under the assumption (11) and (30), the PGF of the operating states of N(t) is

Gj(z, t) = e−ξ Φ(t|t0)
�

∑
i=0

δj,i [1 + (z − 1) b1(t|t0)]
i [1 + (z − 1) b2(t|t0)]

�−i

+
∫ t

t0

du ϕ(u) pj,−1(u|t0) e−ξ Φ(t|u)
[ 1 + (z − 1) b2(t|t0)

1 + (z − 1) b2(u|t0)

]�
×

�

∑
i=0

γi

[1 + (z − 1) b1(t|u)
1 + (z − 1) b2(t|u)

]i
, j ∈ S , (36)

where Φ(t|t0) is given in (12) and where

b1(t|t0) = e−[Λ(t|t0)+M(t|t0)]
[
1 + B(t|t0)

]
, b2(t|t0) = e−[Λ(t|t0)+M(t|t0)] B(t|t0), (37)

with

Λ(t|t0) =
∫ t

t0

λ(τ) dτ, M(t|t0) =
∫ t

t0

μ(τ) dτ, B(t|t0) =
∫ t

t0

λ(τ) eΛ(τ|t0)+M(τ|t0) dτ. (38)

Proof. The proof is given in Appendix A.

We remark that 0 ≤ b1(t|t0) ≤ 1 and 0 ≤ b2(t|t0) ≤ 1 for all t ≥ t0. Furthermore, we
note that the function

G̃i(z, t) =
[
1 + (z − 1) b1(t|t0)

]i [1 + (z − 1) b2(t|t0)
]�−i, i ∈ {0, 1, . . . , �}, (39)

which appears to the right-hand sides of (36), is the PGF of the time-inhomogeneous
Prendiville process Ñ(t), characterized by the birth-death intensity functions λn(t) and
μn(t), given in (30). The transition probabilities of Ñ(t) are (cf. Zheng [43], Giorno and
Nobile [49]):
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p̃0,n(t|t0) =

(
�

n

)
[b2(t|t0)]

n [1 − b2(t|t0)]
�−n,

p̃i,n(t|t0) = [b1(t|t0)]
n [1 − b2(t|t0)]

�−i [1 − b1(t|t0)]
i−n

×
min(�−i,n)

∑
r=max(0,n−i)

(
�− i

r

)(
i

n − r

){
b2(t|t0) [1 − b1(t|t0)]

b1(t|t0) [1 − b2(t|t0)]

}r

, i = 1, 2, . . . , �− 1,

p̃�,n(t|t0) =

(
�

n

)
[b1(t|t0)]

n [1 − b1(t|t0)]
�−n,

(40)

and the conditional mean and the conditional variance are:

E[Ñ(t)|Ñ(t0) = i] = i b1(t|t0) + (�− i) b2(t|t0),

Var[Ñ(t)|Ñ(t0) = i] = i b1(t|t0) [1 − b1(t|t0)] + (�− i) b2(t|t0) [1 − b2(t|t0)].
(41)

Under the assumptions (11) and (30), the probability that the system N(t) is in the
zero-state at time t can be determined from (33):

pj,0(t|t0) = Gj(0, t) = e−ξ Φ(t|t0)
�

∑
i=0

δj,i p̃i,0(t|t0)

+
�

∑
i=0

γi

∫ t

t0

du ϕ(u) pj,−1(u|t0) e−ξ Φ(t|u)
[ 1 − b2(t|t0)

1 − b2(u|t0)

]� [1 − b1(t|u)
1 − b2(t|u)

]i
, j ∈ S , (42)

where
p̃i,0(t|t0) = [1 − b1(t|t0)]

i [1 − b2(t|t0)]
�−i

is obtained from (40). Similarly, the probability that the system N(t) is in the state n = 1 at
time t follows from (36):

pj,1(t|t0) =
dGj(z, t)

dz

∣∣∣
z=0

= e−ξ Φ(t|t0)
�

∑
i=0

δj,i p̃i,1(t|t0)

+
∫ t

t0

du ϕ(u) pj,−1(u|t0) e−ξ Φ(t|u)
[ 1 − b1(t|t0)

1 − b2(u|t0)

]�−1
{
�
[
b2(t|t0)− b2(u|t0)

]
[1 − b2(u|t0)]2

×
�

∑
i=0

γi

[1 − b1(t|u)
1 − b2(t|u)

]i
+ e−[Λ(t|u)+M(t|u)] 1 − b1(t|t0)

1 − b2(u|t0)

�

∑
i=0

i γi
[1 − b1(t|u)]i−1

[1 − b2(t|u)]i+1

}
, (43)

where, by virtue of (40), one has:

p̃i,1(t|t0) = [1 − b1(t|t0)]
i−1 [1 − b2(t|t0)]

�−i−1

×
{

i b1(t|t0)[1 − b2(t|t0)] + (�− i) b2(t|t0)[1 − b1(t|t0)]
}

.

For r ∈ N, let us introduce the r-th conditional moment of N(t):

E[Nr(t)|N(t) ≥ 0, N(t0) = j] =
1

Pj(t|t0)

�

∑
n=0

nr pj,n(t|t0), j ∈ S . (44)

From (36), we have
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E[N(t)|N(t) ≥ 0, N(t0) = j] =
1

Pj(t|t0)

dGj(z, t)
dz

∣∣∣
z=1

=
1

Pj(t|t0)

[
e−ξ Φ(t|t0)

�

∑
i=0

δj,i E[Ñ(t)|Ñ(t0) = i] +
∫ t

t0

du ϕ(u) pj,−1(u|t0) e−ξ Φ(t|u)

×
{
� ν [b2(t|t0)− b2(u|t0)] + e−[Λ(t|u)+M(t|u)]

�

∑
i=0

i γi

}]
, j ∈ S , (45)

where E[Ñ(t)|Ñ(t0) = i] is given in (41).

6. Asymptotic Distribution of Operating States

To study the asymptotic behavior of the probabilities for the operating states, we
assume that the intensity functions of N(t) are proportional. Specifically, in addition to the
conditions (11), we suppose that

λn(t) = (�− n) λ ϕ(t) , n = 0, 1, . . . , �; μn(t) = n μ ϕ(t), n = 1, . . . , �, (46)

with ϕ(t) positive, bounded and continuous function for t ≥ 0.
Let

G(z) =
�

∑
n=0

znqn (47)

be the asymptotic PGF of the operating states of N(t). From (34) one has

(z − 1) [λ z + μ]
dG(z)

dz
= [� (z − 1)λ − ξ] G(z) + q−1

�

∑
i=0

γi zi, j ∈ S , (48)

to solve with the condition

G(1) = Q = 1 − q−2 − q−1. (49)

Proposition 5. Under the assumptions (11) and (46), the asymptotic PGF of the operating states is:

G(z) = (λ z + μ)ξ/(λ+μ)+� (1 − z)−ξ/(λ+μ) q−1

×
�

∑
i=0

γi

∫ 1

z
xi (λ x + μ)−ξ/(λ+μ)−�−1 (1 − x)ξ/(λ+μ)−1 dx. (50)

Proof. The general solution of the differential Equation (48) is:

G(z) = (λ z + μ)ξ/(λ+μ)+� (1 − z)−ξ/(λ+μ)

×
[
−q−1

�

∑
i=0

γi

∫ z
xi (λ x + μ)−ξ/(λ+μ)−�−1 (1 − x)ξ/(λ+μ)−1 dx + c

]
, (51)

where c is an arbitrary constant. Making use of the condition (49), we note that the term
in square brackets at the right-hand side of (51) must vanish when z → 1, allowing to
determine the constant c. Hence, from (51) we obtain (50).

The knowledge of the asymptotic PGF (50) allows to calculate the asymptotic proba-
bilities of the operating states, as

q0 = G(0), qn =
1
n!

dnG(z)
dzn

∣∣∣
z=0

, n = 1, 2, . . . , �, (52)
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and the r-th asymptotic conditional moment of N(t):

E[Nr|N ≥ 0] =
1
Q

�

∑
n=0

nr qn, r ∈ N. (53)

Proposition 6. Under the assumptions (11) and (46), one has:

q0 =
1

λ + μ

( μ

λ + μ

)ξ/(λ+μ)+�
q−1

�

∑
i=0

γi B
(

i + 1,
ξ

λ + μ

)
×F
( ξ

λ + μ
,

ξ

λ + μ
+ �+ 1;

ξ

λ + μ
+ i + 1;

λ

λ + μ

)
,

q1 =
1
μ
(λ �+ ξ) q0 −

γ0

μ
q−1, (54)

q2 =
1

2 μ2 {(λ �+ ξ) [λ (�− 1) + ξ] + ξ μ} q0 +
{ γ0

2 μ2

[
λ (�− 1) + ξ + μ

]
− γ1

2 μ

}
q−1,

where

B(x, y) =
Γ(x) Γ(y)
Γ(x + y)

(55)

denotes the beta function and

F(a, b; c; x) =
+∞

∑
n=0

(a)n (b)n

(c)n

xn

n!
(56)

is the Gauss hypergeometric function.

Proof. Since q0 = G(0), by setting z = 0 in (50) one obtains:

q0 = μ�+ξ/(λ+μ) q−1

�

∑
i=0

γi

∫ 1

0
xi (λ x + μ)−ξ/(λ+μ)−�−1 (1 − x)ξ/(λ+μ)−1 dx. (57)

Recalling that (see, Gradshteyn and Ryzhik [50], p. 1005 and p. 1008, n. 9.131)

F(a, b; c; z) =
1

B(b, c − b)

∫ 1

0
xb−1 (1 − x)c−b−1(1 − x z)−a dx, Re c > Re b > 0,

F(a, b; c; z) = (1 − z)−a F
(

a, c − b; c;
z

z − 1

)
,

by setting a = � + 1 + ξ/(λ + μ), b = i + 1, c = i + 1 + ξ/(λ + μ) and z = −λ/μ, for
i = 0, 1, . . . , � one has∫ 1

0
xi (λ x + μ)−ξ/(λ+μ)−�−1 (1 − x)ξ/(λ+μ)−1 dx = μ−ξ/(λ+μ)−�−1

×B
(

i + 1,
ξ

λ + μ

)
F
( ξ

λ + μ
+ �+ 1, i + 1;

ξ

λ + μ
+ i + 1 : −λ

μ

)
= (λ + μ)−ξ/(λ+μ)−�−1 B

(
i + 1,

ξ

λ + μ

)
F
( ξ

λ + μ
,

ξ

λ + μ
+ �+ 1;

ξ

λ + μ
+ i + 1;

λ

λ + μ

)
,

where the symmetry property F(a, b; c; z) = F(b, a; c; z) has been used in the last equality.
Hence, the first equation in (54) follows from (57). Moreover, from (50) we have:

dG(z)
dz

=
[(

�+
ξ

λ + μ

) λ

λ z + μ
+

ξ

λ + μ

1
1 − z

]
G(z)− q−1

(λ z + μ) (1 − z)

�

∑
i=0

γi zi, (58)
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so that the second equation in (54) follows from (52) for n = 1. Finally, from (58) one has:

d2G(z)
dz2 =

[
−
(
�+

ξ

λ + μ

) ( λ

λ z + μ

)2
+

ξ

λ + μ

( 1
1 − z

)2]
G(z)

+
[(

�+
ξ

λ + μ

) λ

λ z + μ
+

ξ

λ + μ

1
1 − z

] dG(z)
dz

+
q−1

(λ z + μ) (1 − z)

[( λ

λ z + μ
− 1

1 − z

) �

∑
i=0

γi zi −
�

∑
i=0

i γi zi−1
]
. (59)

Hence, by virtue of (52) for n = 2, from (59) the last equation in (54) follows.

Proposition 7. Under the assumptions (11) and (46), one obtain:

E[N|N ≥ 0] =
1

λ + μ + ξ

{
λ �+

ξ

ν

�

∑
i=0

i γi

}
, (60)

with ν = γ0 + γ1 + . . . + γ�.

Proof. By virtue of (53), from (58) one has

E[N|N ≥ 0] =
1
Q

dG(z)
dz

∣∣∣
z=1

=
1
Q

lim
z→1

[(
�+ ξ

λ+μ

)
λ (1−z)
λ z+μ + ξ

λ+μ

]
G(z)− q−1

λ z+μ ∑�
i=0 γi zi

1 − z

=
(
�+

ξ

λ + μ

) λ

λ + μ
− ξ

λ + μ
E[N|N ≥ 0]− q−1

Q
λ ν

(λ + μ)2 +
q−1

Q (λ + μ)

�

∑
i=0

i γi

from which (60) follows.

Example 1. We assume that � = 0. Under the assumptions (11), the time-inhomogeneous Markov
chain N(t) is shown in Figure 6.

0 R

γ0 ϕ(t)

F

ξ ϕ(t)

� ϕ(t)

Figure 6. The state diagram of the Markov process N(t) with � = 0.

In this case, there is only one operating state in zero, the intensity functions of failure
ξ(t) = ξ ϕ(t), of repair �(t) = � ϕ(t) and of restore γ0(t) = γ0 ϕ(t) are proportional and
pj,0(t|t0) + pj,−2(t|t0) + pj,−1(t|t0) = 1. From (42), one has:

pj,0(t|t0) = e−ξ Φ(t|t0) δj,0 + γ0

∫ t

t0

ϕ(u) pj,−1(u|t0) e−ξ Φ(t|u) du, j = −2,−1, 0. (61)

Of course, the conditional mean (45) is equal to zero for all t ≥ t0.
From Proposition 6, one obtains:

q0 =
1
ξ

( μ

λ + μ

)ξ/(λ+μ)
q−1 F

( ξ

λ + μ
,

ξ

λ + μ
+ 1;

ξ

λ + μ
+ 1;

λ

λ + μ

)
. (62)

Since,
F(a, b; b; z) = (1 − z)−a, (63)
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from (62) one clearly has
q0 =

q−1

ξ
γ0 =

� γ0

γ0 � + γ0 ξ + � ξ
,

that identifies with the probability Q, being ν = γ0.

Example 2. We assume that � = 1. Under the assumption (11) and (46), the time-inhomogeneous
Markov chain N(t) is shown in Figure 7.

0 1F R
λ ϕ(t)

μ ϕ(t)
ξ ϕ(t)

ξ ϕ(t)

� ϕ(t)

γ0 ϕ(t)

γ1 ϕ(t)

Figure 7. The state diagram of the Markov chain N(t) with � = 1.

In this case, there are two operating states 0 and 1, with intensity functions of failure
ξ(t) = ξ ϕ(t), of repair �(t) = � ϕ(t) and of restores γi(t) = γi ϕ(t) for i = 0, 1; the birth-
death intensity functions are λ0(t) = λ ϕ(t) and μ1(t) = μ ϕ(t). By setting � = 1 in the first
equation in of (54) one has

q0 =
1
ξ

( μ

λ + μ

)ξ/(λ+μ)+1
q−1

[
γ0 F

( ξ

λ + μ
,

ξ

λ + μ
+ 2;

ξ

λ + μ
+ 1;

λ

λ + μ

)
+γ1

λ + μ

λ + μ + ξ
F
( ξ

λ + μ
,

ξ

λ + μ
+ 2;

ξ

λ + μ
+ 2;

λ

λ + μ

)]
. (64)

Recalling the Gauss’ recursion function (see, Gradshteyn and Ryzhik [50], p. 1010, n. 9.137.17)

c F(a, b; c; z)− (c − b) F(a, b; c + 1; z)− b F(a, b + 1; c + 1; z) = 0 (65)

and the relation (63), one obtains:

F
( ξ

λ + μ
,

ξ

λ + μ
+ 2;

ξ

λ + μ
+ 1;

λ

λ + μ

)
=

λ + μ

λ + μ + ξ

μ + ξ

μ

( μ

λ + β

)−ξ/(λ+μ)
(66)

Making use of (66) and of the relation (63) in Equation (64), for � = 1 it follows

q0 =
μ

ξ

1
λ + μ + ξ

[(
1 +

ξ

μ

)
γ0 + γ1

]
q−1,

(67)

q1 =
λ + ξ

μ
q0 −

γ0

μ
q−1.

Of course, q0 + q1 = Q = � ν/(� ν + ν ξ + � ξ), with ν = γ0 + γ1. From (53) we have

E(N|N ≥ 0) =
q1

Q
=

λ + ξ

μ

q0

Q
− γ0

μ

ξ

γ0 + γ1
=

1
λ + μ + ξ

(
λ + ξ

γ1

γ0 + γ1

)
.

that identifies with (60) for � = 1.

Example 3. We assume that � = 2. Under the assumption (11) and (46), the time-inhomogeneous
Markov chain N(t) is shown in Figure 8.
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0 1 2F R
2 λ ϕ(t)

μ ϕ(t)

λ ϕ(t)

2 μ ϕ(t)
ξ ϕ(t)

ξ ϕ(t)

ξ ϕ(t)

� ϕ(t)

γ0 ϕ(t)

γ1 ϕ(t)

γ2 ϕ(t)

Figure 8. The state diagram of the Markov chain N(t) with � = 2.

In this case, there are three operating states 0, 1 and 2, with the intensity functions of failure
ξ(t) = ξ ϕ(t), of repair �(t) = � ϕ(t) and of restores γi(t) = γi ϕ(t) for i = 0, 1, 2; the birth-
death intensity functions are λn(t) = (2 − n) λ ϕ(t) for n = 0, 1 and μn(t) = n μ ϕ(t) for
n = 1, 2. By setting � = 2 in the first equation in of (54) one obtains

q0 =
1
ξ

( μ

λ + μ

)ξ/(λ+μ)+2
q−1

[
γ0 F

( ξ

λ + μ
,

ξ

λ + μ
+ 3;

ξ

λ + μ
+ 1;

λ

λ + μ

)
+γ1

λ + μ

λ + μ + ξ
F
( ξ

λ + μ
,

ξ

λ + μ
+ 3;

ξ

λ + μ
+ 2;

λ

λ + μ

+2 γ2
(λ + μ)2

(λ + μ + ξ) [2(λ + μ) + ξ]
F
( ξ

λ + μ
,

ξ

λ + μ
+ 3;

ξ

λ + μ
+ 3;

λ

λ + μ

)]
. (68)

By virtue of (65), one has:

F
( ξ

λ + μ
,

ξ

λ + μ
+ 3;

ξ

λ + μ
+ 1;

λ

λ + μ

)
=

(λ + μ)2

2(λ + μ) + ξ

( μ

λ + β

)−ξ/(λ+μ)

×
[ ξ

μ2 +
2

λ + μ + ξ

(
1 +

ξ

μ

)]
,

(69)

F
( ξ

λ + μ
,

ξ

λ + μ
+ 3;

ξ

λ + μ
+ 2;

λ

λ + μ

)
=

λ + μ

2(λ + μ) + ξ

( μ

λ + β

)−ξ/(λ+μ) (
2 +

ξ

μ

)
,

Making use of (69) and of the relation (63) in Equation (68), for � = 2 it follows

q0 =
μ2

ξ

1
(λ + μ + ξ) [2(λ + μ) + ξ]

q−1

×
{

γ0

[ ξ(λ + μ + ξ)

μ2 + 2
(

1 +
ξ

μ

)]
+ γ1

(
2 +

ξ

μ

)
+2 γ2

}
,

q1 =
2 λ + ξ

μ
q0 −

γ0

μ
q−1, (70)

q2 =
(ξ + λ) (ξ + 2 λ) + ξ μ

2 μ2 q0 −
[
γ0

ξ + λ + μ

2 μ2 +
γ1

2 μ

]
q−1.
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Clearly, q0 + q1 + q2 = Q = � ν/(� ν + ν ξ + � ξ), with ν = γ0 + γ1 + γ2. Finally,
from (53) one obtains

E(N|N ≥ 0) =
q1 + 2 q2

Q
=
[2 λ + ξ

μ
+

(ξ + λ) (ξ + 2λ) + ξ μ

μ2

] q0

Q

−
[
γ0

ξ + λ + 2 μ

μ2 +
γ1

μ

] ξ

γ0 + γ1 + γ2
=

1
λ + μ + ξ

{
2 λ + ξ

γ1 + 2 γ2

γ0 + γ1 + γ2

}
,

that identifies with (60) for � = 2.

7. Conclusions

In the present paper, we have considered a time-inhomogeneous CTMC with a finite
space-state in which failures and repairs can occur at random times. In addition to the
operating states, the space of the states includes two particular ones, denoted by F and
R, representing the failure state and the repair one, respectively. The failures occur ac-
cording to a non-stationary exponential distribution and they produce a transition from
an operating state to F. Subsequently, a repair is required that involves a transition from
F to R. Even the repair times are assumed to be random and occurring according to a
non-stationary exponential distribution. After the reparation, the system restarts from one
of the operating states.

Assuming that the failures, repairs and restores are characterized by proportional
intensity functions, we determine the transition probabilities that, starting from an arbitrary
state j at time t0, the system reaches the state F, or the state R, or one of the operating
states at time t. The obtained results show that that the probability that the system is
in an operating state at time t does not depend on the intensity functions related to the
birth-death process without failures and repairs. In other words, the transition probabilities
related to the states F, R, as well as the transition probability that the system occupies an
operating state, are independent of the dynamics existing between the operating states. We
determine the density of the time of first failure and the related average. Moreover, we
focus on the transition probabilities of operating states by determining the PGF and the
conditioned mean. Finally, under the assumption of proportional intensity functions, we
analyze the asymptotic behavior for the probabilities of the operating states by calculating
the asymptotic PGF and the asymptotic conditional mean.
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Appendix A. Proof of Proposition 4

Equation (34) with the conditions (35) can be solved by using the method of charac-
teristics (cf., for instance, Williams [51]). We consider the following differential equations:
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dt
dψ

= 1,
dz
dψ

= (z − 1)
[
λ(t) z + μ(t)

]
,

dGj

dψ
= [� (z − 1) λ(t)− ξ ϕ(t)] Gj + ϕ(t) pj,−1(t|t0)

�

∑
i=0

γi zi,
(A1)

with the initial conditions:

t(s, ψ = t0) = t0, z(s, ψ = t0) = s, Gj(s, ψ = t0) =
�

∑
i=0

δj,i si. (A2)

The first equation of (A1), with the related initial condition in (A2), leads to t = ψ. By
setting t = ψ in the second equation of (A1) and by using the second of (A2) one obtains:

z − 1 =
(s − 1) eΛ(ψ|t0)+M(ψ|t0)

1 − (s − 1) B(ψ|t0)
, (A3)

with Λ(t|t0), M(t|t0) and B(t|t0) defined in (38). Moreover, solving the third equation
in (A1) with t = ψ and z obtained from (A3) we have

Gj(s, ψ) = e−ξ Φ(ψ|t0) exp
{
� (s − 1)

∫ ψ

t0

λ(u) eΛ(u|t0)+M(u|t0)

1 − (s − 1) B(u|t0)
du
} �

∑
i=0

δj,i si

+
∫ ψ

t0

du ϕ(u) pj,−1(u|t0) e−ξ Φ(ψ|u) exp
{
� (s − 1)

∫ ψ

u

λ(ϑ) eΛ(ϑ|t0)+M(ϑ|t0)

1 − (s − 1) B(ϑ|t0)
dϑ

}
×

�

∑
i=0

γi

[
1 +

(s − 1) eΛ(u|t0)+M(u|t0)

1 − (s − 1) B(u|t0)

]i

, (A4)

where the use of the third of (A2) has been made. From (A3) with ψ = t, we also obtain

s =
1 + (z − 1) b1(t|t0)

1 + (z − 1) b2(t|t0)
, (A5)

with b1(t|t0) and b2(t|t0) defined in (37). By virtue of (A5), one has:

(s − 1)
∫ t

t0

λ(u) eΛ(u|t0)+M(u|t0)

1 − (s − 1) B(u|t0)
du = ln

[
1 + (z − 1) b2(t|t0)

]
,

1 +
(s − 1) eΛ(u|t0)+M(u|t0)

1 − (s − 1) B(u|t0)
=

1 + (z − 1) b1(t|u)
1 + (z − 1) b2(t|u)

·
(A6)

Finally, recalling that ψ = t and making use of (A5) and (A6), from (A4) one derives (36).
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Abstract: The problem of constructing functional optimal observers (filters) for stochastic control
systems with additive noises in discrete time are studied in this work. Under the assumption that
there is no filter of the first order, necessary and sufficient conditions for the existence of filters of
the second and third order are obtained in the canonical basis. Analytical expressions of the transfer
function matrix from the input noise to the estimation error are presented. A numerical example is
given to compare the performance of filters by the quadratic criterion in the steady state.

Keywords: discrete time functional filter; optimal unbiased estimation; steady state

1. Introduction

The reduced-order filtering problem occupies an important place in the theory of
optimal state estimation. Instead of the traditionally used Kalman filter, which forms an
estimate of the total system state vector and has an order that coincides with the order
of the system, it is proposed to construct its analogue, a functional filter with a reduced
dimension. In this case, the computational effort to implement a functional filter is reduced.
In addition, the reduced order of the filter simplifies the analysis of the dynamic system.

The problem under study is at the intersection of two classical problems of state
estimation theory: the full order filtering problem for stochastic systems and the design
functional observer problem for deterministic systems. The first problem relates to the
filtration theory and was solved for non-linear case (even for the non-stationary case) in
1959–1960 by Stratonovich [1,2], and for linear case in 1960–1961 by Kalman and Bucy [3,4],
for both continuous and discrete time. The solution to the second problem of constructing
functional observers for linear stationary fully defined systems was proposed in 1966 by
Luenberger [5]. The further development of the theory of functional observers is reflected
in detail in the books by O’Reilly [6] and Korovin and Fomichev [7]. In particular, in [7], the
conditions of existence and algorithms for the synthesis of functional observers for linear
stationary fully deterministic systems are given for various cases, namely scalar and vector
output; and scalar and vector functional. Two methods of solving the design functional
observer problem are also proposed: the pseudo-input method and the scalar observer
method. Both methods allow one to obtain necessary and sufficient conditions for the
existence of functional observers of order k (k < ν − 1, where ν is the observability index of
the system), which were first proposed in [8,9].

Much attention has been paid to the construction of the reduced-order filters for linear
systems. Minimizing the quadratic error criterion over the interval and using the solution
of the two-point boundary value problem, the reduced-order filter is designed in [10,11].
Based on the quasi-diagonal matrix decomposition and the solution of the Riccati and
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Lyapunov matrix equations, a method is proposed in [12] for determining the parameters
of continuous and digital linear filters of reduced order which ensures their asymptotic
stability provided that the estimated system is stabilizable and detectable. In [13–15], the
proof of the uniqueness of the optimal unbiased reduced-order filter and the properties
of the reduced-order innovation process in continuous and discrete time are proposed.
Developing the results obtained in [13], the necessary and sufficient conditions for existence,
stability, and convergence of the designed filter are obtained for both continuous and
discrete stochastic systems in [14], and for discrete stochastic systems with unknown inputs
in [15]. In [16], a method for the synthesis of functional optimal observers in the frequency
domain using spectral factorization in continuous and discrete time is proposed, and the
transfer function of the filter and the properties of its associated innovation sequence are
obtained. In [17], using a model reduction of the original system and solving the Lyapunov
equations involved in each iteration of the optimum search algorithm, a simple method for
reduced-order H2 filter design is proposed. An approach to design a sliding mode control-
based functional observer for discrete-time stochastic systems, existence conditions, and
stability analysis of the proposed observer are given in [18]. In [19], a generalization of the
classical unbiasedness condition in the joint problem of stabilization and optimal filtering
is presented, and an alternative method for constructing reduced-order filters is proposed,
based on reduction to a non-linear optimization problem. Conditions for existence of
second-order and third-order filters for systems in continuous time with additive noises
are proposed in [20]. In [21,22], the frequency-weighted H2-optimal model order reduction
problem is investigated, and algorithms are proposed, that constructs a reduced-order
model, which nearly satisfies the first-order optimality conditions.

In practice, reduced-order optimal filters are used in signal processing of inertial
navigation systems, in health parameter estimation for an aircraft turbofan engine, in
induction motor state estimation, in dynamic image analysis, in restoration of progressive
and interlaced video, in separation of heart and respiratory sounds, in meteorology and
oceanography applications (see [23] and references therein).

This article proposes an approach to constructing reduced-order filters, which differs
from the methods in [13–16] in that the filter order does not necessarily coincide with
the dimension of the estimated functional. Unlike the methods in [12,17,21,22], where
Lyapunov equations are used to calculate the quality criterion, this article uses the method
of integral quadratic performance measures, which makes it possible to determine the
dependence on parameters in an explicit form.

The problem formulation is presented in Section 2, where the scalar linear functional
of the state vector is estimated from the measured scalar output. Perturbations are white
random processes with a priori known probabilistic characteristics, uncorrelated with each
other at different times and with the initial state of the system. The root-mean-square
error in the steady state is chosen as a criterion of optimality. In Section 3, necessary and
sufficient conditions for the existence of filters of the second and third order are obtained
using canonical forms. Analytical expressions for the transfer function matrix are given in
Section 4. The dependence of the parameters number of second-order and third-order filters
on the order of original system is presented. Section 5 contains an illustrative example of
comparing second and third order filters by quadratic criterion in steady state. Section 6
summarizes the article.

The mathematical notations used in this text are listed in Table 1.
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Table 1. Mathematical notations.

Notation Meaning

0 zero; zero vector; zero matrix
∈ belongs to
R the set of real numbers
·ᵀ transposition of a vector or matrix
i integer
j

√
−1; integer

E[·] the mathematical expectation operator
δij Kronecker delta
Δ
= equal by definition

det(·) determinant of the square matrix
z z-transform variable
Ik identity matrix of dimension k × k
θ normalized angular frequency
ω angular frequency
·−1 inverse of the square matrix
| · | magnitude or absolute value of a complex scalar

2. Problem Statement

Consider an n–dimensional linear discrete system with stochastic perturbations and
with a scalar output:

xi+1 = Axi + Bui + wi,

yi = Cxi + vi,
i ≥ 0, (1)

where xi ∈ Rn is the unknown phase vector, ui ∈ Rm is the known input of the system, and
yi ∈ R is the measured output of the system; A, B, C are constant matrices of appropriate
sizes, wi, vi are discrete uncorrelated, and zero mean white noise processes of dimensions
n and 1, respectively, with given covariance matrices E[wiw

ᵀ
j ] = Qδij, E[vivj] = Rδij; the

initial state x0 is a random variable uncorrelated with noises wi, vi, and has E[x0] = x̄0,
E[(x0 − x̄0)(x0 − x̄0)

ᵀ] = P0. Here, Q, P0 are positive semidefinite matrices; and R > 0.
These assumptions can be represented as

E

⎡⎣⎛⎝wi
vi
x0

⎞⎠(wᵀ
j vj xᵀ0 1

)⎤⎦ =

⎡⎣Qδij 0 0 0
0 Rδij 0 0
0 0 P0 + x̄0 x̄ᵀ0 x̄0

⎤⎦, i ≥ 0, j ≥ 0.

It is also assumed that the matrices Q, R, P0 are known a priori. The first equation in the
system (1) can be understood in the sense of the stochastic difference equation [24].

Required based on the observation of the output yi and the known input ui, define an
unbiased estimate σ̃i for scalar functional

σi = Fxi, i ≥ 0, (2)

with the known matrix F ∈ R1×n, providing the minimum of the steady state mean value

of the squared observation error ei
Δ
= σi − σ̃i:

J = lim
i→∞

E[e2
i ] → min . (3)

3. Filter Design

Let matrix F have the standard decomposition [6,7]

F = PT + VC,
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where P ∈ R1×k, T ∈ Rk×n, and V ∈ R. Then, σi = Pqi + Vyi − Vvi, where qi = Txi ∈ Rk

is an unknown vector to be estimated. To reconstruct it, we use an observer of order k

q̃i+1 = Nq̃i + TBui + Myi, q̃0 = Tx̄0,

σ̃i = Pq̃i + Vyi,
i ≥ 0, (4)

where q̃i ∈ Rk is the phase vector of the observer; N, M are constant matrices of appropriate
sizes. In the second equation of the observer, the output yi of the original system (1) appears,
which makes it possible to obtain an advantage in terms of the quadratic criterion over the
filter without it.

Without loss of generality, we make the following standard [6] assumptions regarding
the original system (1) and the desired filter (4).

Assumption 1. The pair {C, A} is observable and is given in the second canonical form of
observability [7]

A =

⎛⎜⎜⎝
0 0 . . . 0 −α1
1 0 . . . 0 −α2

. . . . . . . . . . . . . . .
0 0 . . . 1 −αn

⎞⎟⎟⎠, C =
(
0 . . . 0 1

)
, (5)

where αi is the coefficients of the characteristic polynomial of the matrix A, i.e.,

α(z) = det(zIn − A) = zn + αnzn−1 + . . . + α1.

The matrix F in the canonical basis has the form:

F =
(

f1 f2 . . . fn
)
.

Assumption 2. The pair {P, N} is observable and is given in the first canonical form of observ-
ability [7]

N =

⎛⎜⎜⎜⎜⎝
0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1
−l1 −l2 −l3 . . . −lk

⎞⎟⎟⎟⎟⎠, P =
(
1 0 . . . 0

)
, (6)

where li is the coefficients of the characteristic polynomial of the matrix N, i.e.,

β(z) = det(zIk − N) = zk + lkzk−1 + . . . + l1.

Let us investigate the question of when linear filters of the second (k = 2) and third
(k = 3) order can estimate the functional (2) from the state vector. In addition, it is assumed
that there is no first-order (k = 1) filter giving an unbiased estimate for the functional (2).
Discrete-time filters of various orders starting from the first order were considered in [25].

Theorem 1. For system (1) of order higher than the third (n > 3) with stochastic perturbations
and filters (4) of the second and third order, giving an unbiased estimate of the functional (2) from
the state vector, it is true that:
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(1) the necessary and sufficient conditions for the existence of a second-order filter have the form

T =

(
f1 f2 . . . fn−1 fn − V
f2 f3 . . . fn − V t2n

)
,

M =

⎛⎜⎜⎝ −
n
∑

i=1
αi fi − t2n + αnV

−
n−1
∑

i=1
αi fi+1 − (αn − l2)t2n + l1( fn − V) + αn−1V

⎞⎟⎟⎠,

V = fn + l1 fn−2 + l2 fn−1, t2n = −l1 fn−1 − l2( fn − V), f1 f3 − f 2
2 	= 0,

l1 =
f2a − f 2

3
f1 f3 − f 2

2
, l2 =

f2 f3 − f1a
f1 f3 − f 2

2
, 1 − l1 > 0, 1 − l2 + l1 > 0, 1 + l1 + l2 > 0, (7)

a =

{
f4, if n > 4,
f4 − V, if n = 4;

fi = −l1 fi−2 − l2 fi−1, i = 5, . . . , n − 1, for n > 5,

where the condition f1 f3 − f 2
2 	= 0 means that the observer (4) of the first order cannot reconstruct

the unbiased estimate of the functional (2);
(2) the necessary and sufficient conditions for the existence of a third-order filter have the form

T =

⎛⎝ f1 f2 . . . fn−2 fn−1 fn − V
f2 f3 . . . fn−1 fn − V t2n
f3 f4 . . . fn − V t2n t3n

⎞⎠,

M =

⎛⎜⎜⎜⎜⎜⎜⎝
−

n
∑

i=1
αi fi − t2n + αnV

−
n−1
∑

i=1
αi fi+1 − αnt2n − t3n + αn−1V

−
n−2
∑

i=1
αi fi+2 − (αn−1 − l2)t2n − (αn − l3)t3n + l1( fn − V) + αn−2V

⎞⎟⎟⎟⎟⎟⎟⎠,

V = fn + l1 fn−3 + l2 fn−2 + l3 fn−1,

t2n = −l1 fn−2 − l2 fn−1 − l3( fn − V), t3n = −l1 fn−1 − l2( fn − V)− l3t2n,

b 	= f3( f 2
3 − f2a) + a( f1a − f2 f3)

f1 f3 − f 2
2

, (8)

l1 =
a(a2 − f3b) + b( f2b − f3a) + c( f 2

3 − f2a)
b( f1 f3 − f 2

2 )− f3( f 2
3 − f2a)− a( f1a − f2 f3)

,

l2 =
a( f2b − f3a) + b( f 2

3 − f1b) + c( f1a − f2 f3)

b( f1 f3 − f 2
2 )− f3( f 2

3 − f2a)− a( f1a − f2 f3)
,

l3 =
a( f 2

3 − f2a) + b( f1a − f2 f3) + c( f 2
2 − f1 f3)

b( f1 f3 − f 2
2 )− f3( f 2

3 − f2a)− a( f1a − f2 f3)
,

1 − l2
1 > 0, l2

1 − 1 < l1l3 − l2, 1 + l3 + l2 + l1 > 0, −1 + l3 − l2 + l1 < 0, (9)

a =

{
f4, if n > 4,
f4 − V, if n = 4;

b =

⎧⎪⎨⎪⎩
f5, if n > 5,
f5 − V, if n = 5,
t24, if n = 4;

c =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f6, if n > 6,
f6 − V, if n = 6,
t25, if n = 5,
t34, if n = 4;

fi = −l1 fi−3 − l2 fi−2 − l3 fi−1, i = 7, . . . , n − 1, for n > 7,

where the condition (8) for the case n > 5 means that the observer (4) of the second order cannot
reconstruct the unbiased estimate of the functional (2).
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Proof. Using the stochastic difference equations of the original system (1) and the ob-

server (4), it is not difficult to obtain that the estimation error eq
i

Δ
= qi − q̃i is described by

the equation

eq
i+1 = qi+1 − q̃i+1 = Txi+1 − Nq̃i − TBui − Myi

= TAxi − N(qi − eq
i )− MCxi + Twi − Mvi

= Neq
i + (TA − MC − NT)xi + Twi − Mvi. (10)

The equation for the error ei = σi − σ̃i has the form

ei = σi − σ̃i = Fxi − Pq̃i − Vyi = PTxi + VCxi − Pq̃i − VCxi − Vvi = Peq
i − Vvi. (11)

Based on the known results [6], we can conclude that the estimates q̃i and σ̃i are
unbiased for qi and σi, respectively, if and only if the following conditions are satisfied:

F = PT + VC, TA − MC − NT = 0, N is a Schur matrix. (12)

Moreover, if the matrix N is a Schur matrix, then [26] the observation error eq
i in the

steady state is a stationary in the wide sense random process, in which the mathematical
expectation is constant, and the correlation function depends on one variable.

Both statements of the theorem are obtained in a similar way from the conditions (12),
Assumption 1 about the canonical representations of the original system (5) and Assump-
tion 2 about the canonical representations of the desired filter (6).

Remark 1. Inequalities in Formulas (7) and (9) are discrete stability constraints for the filter (4)
obtained using the simplified stability criterion [27] for linear discrete systems.

Remark 2. If the condition (8) is violated, then there is a set of the degenerate third-order observers
whose coefficients of the characteristic polynomial according to Vieta’s formulas have the form

l1 = z1z2(C1 + z1 + z2), l2 = z1z2 − (z1 + z2)(C1 + z1 + z2), l3 = C1

and are located at the intersection of the domain of discrete stability of the matrix N and the solution
set for the system of equations

z3
1 + l3z2

1 + l2z1 + l1 = 0, z3
2 + l3z2

2 + l2z2 + l1 = 0, (13)

where z1, z2 are the roots of the characteristic polynomial z2 + l2z + l1 with coefficients l1, l2
satisfying (7); and they are determined by the quadratic formula

z1,2 =
f1a − f2 f3 ±

√
( f2 f3 − f1a)2 − 4( f2a − f 2

3 )( f1 f3 − f 2
2 )

2( f1 f3 − f 2
2 )

.

C1 is a free unknown, which is chosen so that the stability conditions (9) are satisfied:

−1 − z1 − z2 < C1 < 1 − z1 − z2,

and the variable a is determined according to the second statement of Theorem 1.
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4. Transfer Function Matrix of the Estimation Error System

This section discusses a method for calculating the optimality criterion (3) by inter-
preting [28] the steady state root-mean-square error as H2 norm of the weighted transfer
matrix of the estimation error system (10) and (11)

J = lim
i→∞

E[e2
i ] =

1
2π

π∫
−π

Weū(ejθ)

(
Q 0
0 R

)
Wᵀ

eū(e
−jθ)dθ,

where the transfer function matrix Weū(z) from the vector noise ūi
Δ
=
(
wᵀ

i vi
)ᵀ to the

estimation error ei must be stable and can be found using the following theorem.

Theorem 2. If the conditions of Theorem 1 are satisfied, then the transfer function matrix Weū(z)
of the estimation error system has the form

Weū(z) =
1

β(z)
(
W1

ew(z) . . . Wn
ew(z) Wev(z)

)
,

(1) in which, for the case of a second-order filter:

Wi
ew(z) = fi(z + l2) + fi+1, i = 1, . . . , n − 2,

Wn−1
ew (z) = fn−1(z + l2) + fn − V, Wn

ew(z) = ( fn − V)(z + l2) + t2n,

Wev(z) = −Vβ(z) + (
n

∑
i=1

αi fi + t2n − αnV)(z + l2)

+
n−1

∑
i=1

αi fi+1 + (αn − l2)t2n − l1( fn − V)− αn−1V,

β(z) = z2 + l2z + l1;

(2) in which, for the case of a third-order filter:

Wi
ew(z) = fi(z2 + l3z + l2) + fi+1(z + l3) + fi+2, i = 1, . . . , n − 3,

Wn−2
ew (z) = fn−2(z2 + l3z + l2) + fn−1(z + l3) + fn − V,

Wn−1
ew (z) = fn−1(z2 + l3z + l2) + ( fn − V)(z + l3) + t2n,

Wn
ew(z) = ( fn − V)(z2 + l3z + l2) + t2n(z + l3) + t3n,

Wev(z) = −Vβ(z) + (
n

∑
i=1

αi fi + t2n − αnV)(z2 + l3z + l2)

+(
n−1

∑
i=1

αi fi+1 + αnt2n + t3n − αn−1V)(z + l3)

+
n−2

∑
i=1

αi fi+2 + (αn−1 − l2)t2n + (αn − l3)t3n − l1( fn − V)− αn−2V,

β(z) = z3 + l3z2 + l2z + l1.

Proof. The estimation error system (10) and (11) can be written as follows:

eq
i+1 = Neq

i + B̄ūi, ei = Peq
i + D̄ūi, i ≥ 0,

B̄ =
(
T −M

)
, D̄ =

(
0 −V

)
.

For this system, the transfer function matrix from the input ūi to the output ei is equal to

Weū(z) = P(zIk − N)−1B̄ + D̄. (14)
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Using Formula (14), the necessary and sufficient existence conditions of a filter of the
appropriate order from Theorem 1, and Assumption 2 on the canonical representation of
the filter, we obtain both statements of Theorem 2. Moreover, the pair {P, N} is observable
by Assumption 2, and the pair {N, B̄} is controllable by the condition f1 f3 − f 2

2 	= 0 for the
second-order filter and by the condition (8) for the third-order filter. Consequently, using
the properties [29,30] of the concept of controllability and observability, we obtain that the
specified transfer function matrix is irreducible.

Remark 3. Depending on the order n of the original system (1) and the order k of the desired
filter (4), the transfer function matrix Weū(z) has unknown parameters indicated in Table 2.

Table 2. Transfer function matrix parameters.

The Order of the Original System
The Order of the Desired Filter

k = 2 k = 3

n = 4 V V, t24, t34

n = 5
no parameters

V, t25

n = 6 V

n > 6 no parameters

Remark 4. If the condition (8) of Theorem 1 is violated for a third-order filter, then the transfer
matrix of the error system can be calculated according to the first statement of Theorem 2.

There are various ways to find the optimality criterion without calculating the poles
of the transfer function. Firstly, calculation J can be reduced to the calculation of integrals

1
2π

π∫
−π

∣∣∣∣ b0ejθk + b1ejθ(k−1) + . . . + bk

a0ejθk + a1ejθ(k−1) + . . . + ak

∣∣∣∣2dθ, (15)

where the coefficients ai, bi depend on unknown parameters of the filter (4) according to
Theorem 2 and Remark 3. There are special formulas and tables [31–35] for calculating
integrals (15).

Secondly, by bilinear transformation [36], calculation J can be reduced to the calcula-
tion of integrals

1
2π

∞∫
−∞

∣∣∣∣ b̃0(jω)k + b̃1(jω)k−1 + . . . + b̃k

ã0(jω)k+1 + ã1(jω)k + . . . + ãk+1

∣∣∣∣2dω. (16)

There are also special formulas and tables [35,37–39] for calculating integrals (16).
Thirdly, a discrete Lyapunov matrix equation can be used [40] to calculate J.

5. Numerical Example

This section presents a numerical example of comparing second and third order filters
in terms of the asymptotic quadratic mean observation error.

We consider the system (1) and (2) of the fourth order, in which the matrices A, C are
given in the canonical form (5) with α1 = 1/16, α2 = 1/2, α3 = 3/2, α4 = 2; the matrix B is
zero matrix; the elements of the matrix F are equal to f1 = 1, f2 = 1/2, f3 = 1/3, f4 = 1/4;
the probabilistic characteristics are Q = P0 = I4, R = 1, x̄0 =

[
1 0 0 0

]ᵀ.
There is no first-order filter reconstructing the unbiased estimate of the scalar func-

tional (2). To find the unknown parameter (V) of the second-order filter (4), we solve the
problem of minimizing the optimality criterion (3), which, according to Section 4, is

J(V) =
492, 687, 360V4 + 143, 928, 576V3 + 55, 244, 160V2 − 6, 303, 956V − 396, 985

768(36V + 1)(36V + 5)(108V − 13)
, (17)
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where the parameter V must be such that the characteristic polynomial of the observer
is stable, i.e., V ∈ (−1/36, 13/108). The function (17) defined over the open interval
(−1/36, 13/108) has a global minimum at V ≈ 0.1148. Figure 1 shows the graph of the
function J(V).

Figure 1. Graph of the function (17). The global minimum of the function J(V) over the open interval
(−1/36, 13/108) is the red point (V ≈ 0.1148, J(V) ≈ 4.1223). The two blue dashed lines are the
asymptotes V = −1/36 and V = 13/108.

The numerical values of the second-order filter matrices are

P =
(
1 0

)
, N ≈

(
0 1

0.5224 −0.378

)
,

T ≈
(

1 0.5 0.3333 0.1352
0.5 0.3333 0.1352 0.123

)
, M ≈

(−1.2058
−0.6708

)
, V ≈ 0.1148.

The steady state mean value of the squared observation error in this case is

J ≈ 4.1223.

If the condition (8) is violated (t24 = 12V2 − 2V + 7/36), then, by Remark 2, degenerate
third-order observers have the form (4), in which

P =
(
1 0 0

)
, N ≈

⎛⎝ 0 1 0
0 0 1

−0.1975 + 0.5224C1 0.6653 − 0.378C1 −C1

⎞⎠,

T ≈

⎛⎝ 1 0.5 0.3333 0.1352
0.5 0.3333 0.1352 0.123

0.3333 0.1352 0.123 0.0241

⎞⎠, M ≈

⎛⎝−1.2058
−0.6708
−0.3763

⎞⎠, V ≈ 0.1148,

where the unknown C1 is chosen so that the stability conditions (9) are satisfied, i.e.,
C1 ∈ (C1, C1), C1 ≈ −0.622, C1 ≈ 1.378. According to Remark 4, the transfer function
matrix and the optimality criterion in this case are found in the same way as for the
second-order filter.
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Therefore, if the condition (8) is violated, then there is a set of degenerate observers
whose coefficients of the characteristic polynomial β(z) are at the intersection of the linear
manifold of solutions of the system (13) in which

z1 =
3 − 36V +

√
3
√

1 + 432V2

6
≈ 0.558,

z2 =
3 − 36V −

√
3
√

1 + 432V2

6
≈ −0.9361;

and the domain of discrete stability of the matrix N.
If the condition (8) is satisfied (t24 	= 12V2 − 2V + 7/36) that there exists a functional

optimal observer (4) of the third order solving the optimal filtering problem. In this case,
to find unknown variables (V, t24, t34), the problem of minimizing the optimality criterion
is solved with a restriction on the parameters that must be such that the characteristic
polynomial of the observer is stable. Figure 2 illustrates solution of this problem in discrete
stability regions given by the inequalities (9) in coordinates (l1, l2, l3) on Figure 2a and
in coordinates (V, t24, t34) on Figure 2b. As one can see, solution paths of the sequential
quadratic programming method [41] from different starting points converge to the common
minimum of the optimality criterion (4), which has the following coordinates

l1 ≈ −0.0119, l2 ≈ 0.2303, l3 ≈ 0.0591;

V ≈ 0.373, t24 ≈ −0.0636, t34 ≈ 0.0361.

(a) (b)

Figure 2. Three convergence paths (blue, green and orange arrows) to the common minimum (red
star) of the optimality criterion J from various starting points in the discrete stability regions in
coordinates (a) l1, l2, l3; (b) V, t24, t34.

The numerical values of the third-order filter matrices are

P =
(
1 0 0

)
, N ≈

⎛⎝ 0 1 0
0 0 1

0.0119 −0.2303 −0.0591

⎞⎠,

T ≈

⎛⎝ 1 0.5 0.3333 −0.123
0.5 0.3333 −0.123 −0.0636

0.3333 −0.123 −0.0636 0.0361

⎞⎠, M ≈

⎛⎝−0.503
0.0776
0.0528

⎞⎠, V ≈ 0.373.
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The optimality criterion in this case is

J ≈ 2.3179.

Thus, the optimality criterion (3) for the third-order filter turned out to be less than for
the second-order filter. Previously, second and third order filters were compared from both
practical and theoretical points of view. In the context of satellite signal processing, it has
been shown [42] that increasing the order of the filters led to an improvement in dynamic
stress performance. In [17], a smaller value of the H2 norm for a third-order filter over a
second-order filter was obtained on a numerical experiments. Moreover, it has recently
been theoretically explained [22] that, as the order of the reduced model was increased, the
deviation in the satisfaction of the optimality conditions further reduced.

6. Conclusions

Necessary and sufficient conditions for the existence of discrete unbiased filters of
the second and third order are proposed. In the canonical basis, analytical expressions are
obtained both for the transfer function matrix of the estimation error system and for the
coefficients of the characteristic polynomial of functional filters. In a numerical experiment,
filters of the second and third order are constructed for a linear stochastic discrete system
of the fourth order. The comparison was carried out according to the root-mean-square
optimality criterion. It is shown that, in comparison with the second-order filter, the
third-order filter is more optimal in terms of the quadratic criterion in the steady state.
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Abstract: We propose and analyze a model for optimizing the prefetching of documents, in the
situation where the connection between documents is discovered progressively. A random surfer
moves along the edges of a random tree representing possible sequences of documents, which is
known to a controller only up to depth d. A quantity k of documents can be prefetched between two
movements. The question is to determine which nodes of the known tree should be prefetched so as
to minimize the probability of the surfer moving to a node not prefetched. We analyzed the model
with the tools of Markov decision process theory. We formally identified the optimal policy in several
situations, and we identified it numerically in others.

Keywords: prefetching; optimization; Markov decision processes; random trees; Galton–Watson

1. Introduction

Prefetching is a basic technique underlying many computer science applications. Its
main purpose is to reduce the time needed to access some information by loading it in
advance and concurrently with the process that needs this information. From prefetching
of data and code in CPUs and memory architectures, to prefetching of web pages and video
segments in Internet-based applications, this technique is ubiquitous. Yet, the technique
fundamentally involves a tradeoff between access latency and the consumption of resources
(memory, network), and the optimization of this tradeoff is not completely understood.

Clearly, the issue here is randomness: the entity in charge of prefetching, let us call
it the “controller”, does not know in advance what is the precise data access sequence of
the process needing the data. It must therefore make decisions based on the current state
of said process and its knowledge of the possible evolution. The adequate formalism for
modeling optimal decisions in such a context is that of Markov Decision Processes (MDPs).
The principle of using Markov decision processes to optimize prefetching in the context of
video applications was first demonstrated in [1,2]. The model was extended in [3,4] and
further extended in [5].

The basic principle of these models is that the set of (video) documents to be viewed
is represented by a directed graph. The nodes represent the documents, and the edges
represent the possible transitions: which documents can be viewed after the viewing of the
current document is completed. The edges can be labeled with probabilities or frequencies.
A random “surfer” alternates viewing periods and moves to another node/document
according to the probabilities of the edges. The controller knows where the surfer stands
and knows all about the graph, but does not know which way the surfer will go: only the
odds. Its decision is to choose which nodes to download during the time the surfer views
the current document. The amount of nodes that can be downloaded is constrained by
network resources and is called the “prefetching budget”. The amount of storage memory
available to the controller is assumed to be sufficient: no memory management is involved
in the decision. The criterion to be minimized is typically the average number of times
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the surfer moves to a document that has not been prefetched: this is a measure of the
user’s dissatisfaction. The criterion might also involve some measure of the waste of
network and memory resources. An optimal policy can, in principle, be computed using
dynamic programming.

In practical situations, the probabilities that the surfer moves to some new document
after viewing the current document are not known a priori. However, these probabilities
can be learned from data using Markov models, as in [6–11]. Moreover, the optimal control
of a prefetching agent can be approximated using machine learning techniques such as
reinforcement learning, as in [2]. A way to evaluate the efficiency of a machine learning
algorithm is to test it on a problem for which the exact solution is known. The purpose
of this paper is to provide such a benchmark situation, by determining the optimal policy
and the minimal possible cost it induces, to which heuristics and learning algorithms can
be compared.

While these previous modeling attempts demonstrated that the MDP formalism is
flexible enough to take into account many features of a real system, they also illustrate that
finding an optimal policy is a complex problem. Indeed, computing an optimal prefetching
policy is very hard in general, that is when the graph of documents does not have a
particular property. In [12], the authors studied the feasibility variant of the problem. There,
it was assumed that the controller has a prefetching budget k, representing the number
of documents that can be prefetched while some document is viewed. The question is to
decide whether k is large enough so that there exists a policy that prefetches all nodes of a
graph before the random surfer tries to access them. This is a subproblem of the Markov
optimization model: if such a policy exists, the MDP model should find it as a policy that
realizes a zero cost. The results of [12,13] concluded that finding the minimum possible k
is difficult when the graph is general. Computing the optimal policy in the corresponding
MDP must be even more difficult.

However, if the underlying graph is a tree, it was proven in [12] that the minimal
budget k that ensures the existence of a costless policy can be computed in polynomial
time. The corresponding prefetching strategy is also easy to compute and has the feature of
being “connected”. This property, which we also call “greedy”, means that the controller
can choose the documents to download in the set of neighbors (in the document graph) of
the documents already downloaded.

The models and results reviewed thus far assumed that the complete space of doc-
uments is known to the controller. This ideal situation may be either unrealistic or un-
desirable. For instance, if the documents are pages on the global web, storing all the
knowledge about this graph is probably impossible and also useless since the web surfer
will not visit all the graph during a surfing session. Furthermore, since the complexity of
the decision grows exponentially with the size of the graph, it may help the controller to
limit, on purpose, the size of the known graph to a neighborhood of the current document.

The current literature lacks a model for the optimal prefetching problem, which
features a dynamic graph of documents. It also lacks situations where an optimal control
can be formally (and not just numerically) identified, even when the underlying graph
of documents is static. We fill these gaps in two ways. First, we propose a new optimal
prefetching model in which the graph of documents is dynamic. We focused on trees,
since those are the simplest graphs, with the potential for having computable solutions as
the literature review suggests. Second, we compute exactly the optimal control for some
instances of this model. We proceed with an informal description of the model, then we
highlight our contribution.

1.1. The Model

We propose to use the modeling described above, but replace the graph of known
documents with a tree of depth d. The root of this tree is the current position of the surfer.
The tree represents all the possible sequences of d moves of the surfer. After the surfer
has moved to one of the neighbors of its current position, a discovery phase adds a new
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generation of documents at depth d. The rest of the tree is then ignored: the possibility
that the surfer moves back to a node already viewed is neglected, as well as the possibility
that several paths exist from one node to another. If any of these possibilities happens in
practice, the task will become easier to the controller.

In the discovery phase, we assume that a random number of new documents is
attached to every leaf of the current tree, with a uniform distribution between 1 and
some integer p, which we refer to as the “fanout”. In practical graphs of documents, this
assumption is not very realistic. The advantages of making such an assumption are that the
space of possible configurations will remain finite and that probabilities relative to objects
in this space will be easier to write.

As in previous models, the controller is assumed to have a fixed prefetching budget:
some integer number k. Given a tree of documents with some nodes already downloaded,
the problem is to decide which k nodes to download so as to minimize the cost. We chose
as criterion the stationary probability that the surfer moves to a node that is not prefetched.
All these elements are converted in the specification of a Markov decision process, with
criterion the infinite-horizon average cost. The model has only three parameters: the depth
d and fanout p of trees and the prefetching budget k. The question is whether there is a
simple rule based on these three parameters that leads to an optimal decision.

1.2. Contribution

The first contribution of this paper is the precise specification of this MDP, in Section 3.
This specification is based on sets of trees, presented in Section 2, together with their
basic properties.

We then turn to the identification of optimal prefetching policies, in Sections 5–7. The
results we obtained include: (a) A bound on the optimal cost in general trees; (b) The
characterization of optimal policies in trees with depth 1, arbitrary fanout, and arbitrary
budget; (c) The characterization of optimal policies in trees with depth 2, arbitrary fanout,
and budget 1; (d) An exploration of the optimal policy in trees with depth 2, budget 2
and fanout less than 5. In the process of obtaining these results, we show, in Section 4, the
properties of underlying Markov chains on the “shape of trees”, which do not depend on
the specific policy used and are of independent interest. We discuss the results and the
modeling assumptions in Section 8 and conclude in Section 9.

The main notation that is used throughout the paper is summarized in Table A1 in
Appendix A.

2. Preliminaries: Sets of Trees

This section is devoted to the presentation of mathematical objects that are used in the
definition of our problem and in its solution.

The state space of the MDP we are about to construct is a set of marked trees. We in-
troduce it now, together with other sets of trees that will be useful in the analysis. We shall
use “with fanout p” as a shorthand for “with nodes having between 1 and p sons”.

Definition 1 (Trees and marked trees). Define:

(a) Tp,d the set of rooted trees of depth d with fanout p;
(b) Mp,d the set of rooted trees of depth d with fanout p and a mark in the set {0, 1};
(c) M+

p,d the set of rooted trees of depth d with fanout p and a mark in the set {0, 1} except for
leaves that have the mark 0.
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These sets are represented mathematically with the following recursive formulas:

Tp,0 = {0} (1)

Tp,d = {0} × SEQ1..p(Tp,d−1) d ≥ 1 (2)

Mp,0 = {0, 1} (3)

Mp,d = {0, 1} × SEQ1..p(Mp,d−1) d ≥ 1 (4)

M+
p,1 = Mp,0 × SEQ1..p(Tp,0) (5)

M+
p,d = Mp,0 × SEQ1..p(M+

p,d−1) d ≥ 2. (6)

In these expressions, SEQ1..p(A) denotes, in the notation of [14], a sequence of objects
in the set A, with the length between 1 and p. In (1), we associate the constant mark “0”
with nodes in unmarked trees. At the risk of being confusing, we shall say that a node in
marked trees of Mp,d or M+

p,d is “unmarked” if it has the mark 0. With this convention,

we can say that Tp,d ⊂ M+
p,d ⊂ Mp,d.

A tree t in Mp,d is represented as follows. If the depth is d = 0, t = (μ) where
μ is the mark. If d > 0, t = (μ, s) where μ = 0 or μ ∈ {0, 1} depending on the set,
and s = (s1, . . . , sm) is a list of length m ∈ [1..p]. The elements of s are called “subtrees”.
The root nodes of these subtrees are called “sons” of t. The following notation will be
useful to designate the components of a tree. Figure 1 illustrates this terminology.

Definition 2 (Mark, subtrees, internal nodes, leaves). For a tree represented as t = (μ, s),
let μ(t) : Mp,d → {0, 1} denote the mark of the root and s(t) : Mp,d → SEQ1..k(Mp,d−1) denote
the list of subtrees of t. Let also inode(t) denote the number of internal nodes in t and leaves(t)
denote the number of leaves in t.

Figure 1. A tree t of depth d = 3 with fanout p = 2. There are 2 subtrees (|s(t)| = 2), 6 internal nodes
(inode(t) = 6), and 5 leaves (leaves(t) = 5).

The cardinal of the sets defined in Definition 1 is important to know, in case we want
to turn to numerical experiments. From the recursive definition of the different sets of trees,
the following result is easily established.

Lemma 1. Let Tp,d, Mp,d, and M+
p,d denote respectively the cardinals of sets Tp,d, Mp,d and

M+
p,d. Then:

• Tp,0 = 1, Tp,1 = p and for d ≥ 2,

Tp,d =
p

∑
m=1

(Tp,d−1)
m =

(Tp,d−1)
p+1 − Tp,d−1

Tp,d−1 − 1
;

• Mp,0 = 2 and for d ≥ 1,
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Mp,d = 2
p

∑
m=1

(Mp,d−1)
m = 2

(Mp,d−1)
p+1 − Mp,d−1

Mp,d−1 − 1
;

• M+
p,1 = 2p and for d ≥ 2,

M+
p,d = 2

p

∑
m=1

(M+
p,d−1)

m = 2
(M+

p,d−1)
p+1 − M+

p,d−1

M+
p,d−1 − 1

.

Similar formulas can be established for generating functions of the size of trees in each
set. We shall not develop this analysis further. Table 1 shows the values of Tp,d, Mp,d, and
M+

p,d for small values of p and d. Clearly, these numbers grow extremely fast with d. The
sets remain manageable for small values of p and d. For instance, Figure 2 lists the 6 trees
of T2,2.

Table 1. Instances of the cardinals of the sets of rooted trees of depth d with fanout p, when marks are ignored (Tp,d), when
marks are in {0, 1} (Mp,d), and when leaves have mark 0 and other nodes have marks in {0, 1} (M+

p,d), for different d and p.

Fanout Cardinals of Sets d = 1 Cardinals of Sets d = 2 Cardinals of Sets d = 3 Cardinals of Sets d = 4

p Tp,d Mp,d M+
p,d Tp,d Mp,d M+

p,d Tp,d Mp,d M+
p,d Tp,d Mp,d M+

p,d

1 1 4 2 1 8 4 1 16 8 1 32 16
2 2 12 4 6 312 40 42 195,312 3280 1806 > 1010 > 107

3 3 28 6 39 45,528 516 60,879 > 1014 > 108 > 1014 > 1043 > 1025

4 4 60 8 340 >107 9360 >1010 >1029 >1016 >1040 >10120 >1065

Figure 2. There are 6 trees in T2,2, the set of rooted trees with depth 2 and fanout 2.

3. The MDP Model

In this section, we formally describe the five elements of the prefetching MDP. An MDP
model is formally defined by a state space, an action space, transitions, costs, and an evalu-
ation criterion. The state is usually made of numerical variables or discrete structures that
summarize the information needed for the following definitions. Actions and transitions
specify what controls are allowed to the controller, how they modify the states, and with
what probabilities. The cost function, which depends on the states and actions, quantifies
the impact of actions. The costs incurred at different time steps are aggregated into a
numerical criterion: the objective is to minimize this criterion.

3.1. Prefetching Process Flow

The prefetching process flow is summarized as follows. The current state of the
prefetching program is the currently known graph of depth d, together with the knowledge
of nodes that have been already prefetched. This is represented as a marked tree of
depth d. The surfer is assumed to stand at the root. The controller then prefetches up to k
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documents, which is represented by marking the corresponding nodes in the tree. Then,
the surfer moves randomly to one of the sons, with uniform probabilities among them.
If the document corresponding to this node is not already prefetched, then some cost is
incurred. Finally, the controller discovers a new generation of nodes. We assume that every
possible exploration/discovery of the current subtree is equally likely. After discovery,
the controller is back at the beginning of this decision loop.

3.2. State Space and Action Space

According to the prefetching process flow described previously, the state space S of
the MDP is M+

p,d as defined in Definition 1, since the leaves of a state were just discovered
and are not prefetched: their mark is 0. For a given tree t ∈ S, the action space At is the
set of all subsets of the vertices of t with cardinal at most k. An action a ∈ At will have
the effect of marking the nodes in a. Some actions will not make much sense: those that
mark already marked nodes. We choose to include them nevertheless as possible actions,
which greatly simplifies the description of the set At. The parameter k ≥ 1 is called the
prefetching budget.

3.3. Transitions

We first formalize the transition between the different trees using random variables
and set mappings. Then, we quantify the probabilities of these transitions and the costs.

Definition 3 (Prefetching process random variables). Define:

(a) t the random variable denoting the state (tree) of the prefetching MDP; t takes values in M+
p,d;

(b) ta the random variable denoting the tree after some marking action has been performed; ta
takes values in Mp,d;

(c) tb the random variable denoting the tree after the movement of the surfer and before the
exploration of the tree; tb takes values in Mp,d−1.

In the evolution of the controlled process, these three random variables will depend
on the time step n. When necessary, we use the notation t(0), ta(0), tb(0), t(1), ta(1), tb(1),
. . ., t(n), ta(n), tb(n), . . . to denote this (random) succession of trees.

Definition 4 (Discovery). Let D : Mp,d−1 → P(M+
p,d) denote the mapping such that D(t) is

the set of trees that can be discovered from tree t ∈ Mp,d−1. Elements of D(t) are in M+
p,d and are

obtained from the tree t by updating its leaves according to the following rule: for a leaf l = (μ) (i.e,
depth-0 tree) in t, update it as:

(μ) → (μ, lnew) where lnew ∈ {(0), (0, 0), · · · , (0)p}. (7)

Definition 5 (Successors after discovery). Let SD : M+
p,d → P(M+

p,d) be defined by:

SD((μ, s)) = �
ts∈s

D(ts) (8)

where � refers to the disjoint union of sets.

The set SD(t) contains all trees that are the possible results from a combination of
surfer movement and the discovery of new leaves.
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For a tree t = (μ, s) ∈ M+
p,d, let a(t) ∈ Mp,d denote the tree after marking according to

action a ∈ At. Then, s(a(t)) is the set of subtrees of t after marking action a. The transition
probability of moving from a tree t to a tree t′ under action a is:

P(t, a, t′) =

⎧⎨⎩
1

|s(t)||D(tb)|
if t′ ∈ D(tb) and tb ∈ s(a(t))

0 otherwise.
(9)

3.4. Immediate Cost

The immediate cost of moving to tree t′ by choosing action a while in tree t is:

c(t, a, t′) =

{
0 if μ(t′) = 1
1 if μ(t′) = 0.

Accordingly, the expected cost incurred when applying action a to tree t is:

c(t, a) = ∑
t′∈SD(t)

P(t, a, t′)c(t, a, t′)

but a simpler expression is available by substituting the explicit values for the probability
term and the cost term, as stated in the next lemma.

Lemma 2. The expected cost can be written as:

c(t, a) = 1 − 1
|s(t)| ∑

t′∈s(a(t))
μ(t′). (10)

Given a budget or a specific family of policies, there are states in S that will never
feature in the MDP. Thus, we shall focus only on the “usable states”.

Definition 6 (Usable states). The states in S that are attained through transitions given a specific
value of budget k or a family of policies are called usable states. Denote this set of states as U .

For example, budget dependent states for k = 1, d = 2, and p ≥ 2 will not include
states where both nodes at depth 1 (if two exist) are marked. We will come back to this in
Section 6.

3.5. Policies and Criterion

We choose as evaluation criterion the expected average cost over an infinite horizon.
The class of policies in which we optimize is, in the terminology of [15] (Section 2.1.4), that
of History-dependent, Randomized strategies (HR). However, the classical theory allows
focusing on stationary strategies only. Some of our definitions are valid in the general class
HR. In this context, γn(t) denotes the action prescribed by the policy at time step n for
tree t.

Definition 7 (Sensible policies, greedy policies). A policy γ ∈ HR is called:

Sensible if, for every state t and every time instant n, γn(t) marks k unmarked nodes, or the
number of unmarked nodes in t;

Greedy if it is sensible and if for every t, γn(t) marks: either k of the unmarked sons of t if these
are more than k or else all unmarked sons of t plus possibly nodes at a depth of at least 2.

Sensible policies do not waste the marking budget on marked nodes, unless they have
no other possibility. Among them, greedy policies mark sons as priority.
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The following observation will be useful. Its proof is immediate by unrolling the
marking/surfing/discovering cycle.

Lemma 3. Consider a stationary policy γ such that for any t, γ(t) marks nodes only up to some
depth dm. Let Mγ be the Markov chain generated by this policy. Then, the usable states U , and in
particular the recurrent classes of Mγ, contain only trees with nodes marked up to depth dm − 1.

Remark 1. Given the rules of surfing (uniform choice) and of discovery (independence of different
subtrees), it seems possible to further reduce the size of the state space by exploiting symmetries.
For instance, in Figure 2, the fourth and fifth trees will have exactly the same properties. We chose
not to exploit these symmetries, because this would lead to an extra complexity in the formalism.
Furthermore, it would render the enumeration of state spaces more complex and, as a consequence,
complicate the description of the process on tree shapes; see the following section.

4. The Markov Chain of Tree Shapes

In this section, we temporarily forget the control part of the MDP and focus on the
process of trees generated by the surfing/discovering mechanism. It turns out to contain
two Markov chains, which we identify and analyze.

4.1. Definition and Basic Properties

An important feature of the MDP constructed in Section 3 is that the shape of the
successive trees does not depend on the marking strategy. In order to formalize this, we
first define the shape of trees.

Definition 8 (Shape of trees). Consider the mapping σp,d : Mp,d → Tp,d, defined for all p and
d recursively with:

σp,0(t) = 0, σp,d(μ, (s1, . . . , sm)) = (0, (σp,d−1(s1), . . . , σp,d−1(sm))), if d ≥ 1.

The tree σp,d(t) is called the shape of tree t.

We now state the aforementioned property of the shape of trees in the MDP. Observe
that, by the definition of the succession of trees t, ta, tb, we have σp,d(t(n)) = σp,d(ta(n))
for all n.

Proposition 1. In the MDP defined in Section 3:

(i) The distribution of the sequence {σp,d(t(0)), σp,d−1(tb(0)), σp,d(t(1)), . . .} does not depend
on the strategy γ ∈ HR;

(ii) The processes {σp,d(t(n)); n ∈ N}, and {σp,d−1(tb(n)); n ∈ N} are homogeneous Markov
chains on the state spaces Tp,d and Tp,d−1, respectively.

Proof. The proof of (i) follows from the fact that transition probabilities in (9) do not
depend on the action a. Then, the Markov nature of embedded sequences σp,d(t(n)) =
σp,d(ta(n)) and σp,d−1(tb(n)) is clear since random moves of the surfer and discoveries
depend only on the shape of the current tree.

We proceed with the identification of the stationary distributions of the Markov chains
featured in Proposition 1. We first introduce the family of candidate distributions and state
their basic properties. We then prove the result about Markov chains.

Definition 9. Let πp,d : Tp,d → [0, 1] be the sequence of functions defined recursively by:

πp,0(t) = 1 (11)

πp,d(0, (s1, . . . , sm)) =
1
p

m

∏
k=1

πp,d−1(sk) d ≥ 1. (12)
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Lemma 4. The functions πp,d introduced in Definition 9 have the following properties:

(i) For each fixed d, πp,d is a probability distribution on Tp,d;
(ii) The probabilities πp,d can be expressed as:

πp,d(t) =
1

pinode(t)
.

The interpretation of Definition 9 and Lemma 4 (ii) is that the probability of a tree t
is the probability that this tree is generated by a Galton–Watson process with branching
probabilities uniform in {1, . . . , p}, stopped at generation d.

Proof. The proof of (i) proceeds by recurrence. For d = 0, the property is trivial. Assume
then the property proven up to d. Then, selecting the number of sons of a tree and using (12),
we have:

∑
t∈Tp,d+1

πp,d+1(t) =
p

∑
m=1

∑
s1,...,sm∈Tp,d

πp,d+1(0, (s1, . . . , sm)) =
p

∑
m=1

∑
s1,...,sm∈Tp,d

1
p

m

∏
j=1

πp,d(sj)

=
p

∑
m=1

1
p

⎛⎝ ∑
s∈Tp,d

πp,d(s)

⎞⎠m

=
p

∑
m=1

1
p

= 1.

We continue with the proof of (ii). Recursively, inode(t) = 1 + ∑t′∈s(t) inode(t′).
The result then follows from the definition (12).

The following properties of the distribution πp,d will be useful. The proofs of the first
two of them are straightforward and omitted.

Lemma 5. Let t be a random tree in Tp,d distributed according to πp,d. Then, |s(t)| is uniformly
distributed in {1, . . . , p}.

Lemma 6. Let t be a random tree in Tp,d distributed according to πp,d. Then, conditioned on the
fact that |s(t)| = m, the subtrees s1, . . . , sm are independent and uniformly distributed according
to πp,d−1.

Proposition 2. Consider the Markov chains M = {σp,d(t(n)); n ∈ N} and Mb = {σp,d−1(tb(n));
n ∈ N}:

(i) Both chains are ergodic;
(ii) The stationary distribution of M is πp,d;
(iii) The stationary distribution of Mb is πp,d−1.

Proof. The property (i) is proven if we can show that both chains are irreducible and
aperiodic. Irreducibility follows from the fact that there is a sequence of transitions with
a nonzero probability leading to, say, the tree that is a chain (all its internal nodes have
only one son, let us name it cp,d): if the discovery phase adds just one leaf to every leaf of tb
(this happens with positive probability), after d steps, the tree is cp,d, whatever the random
surfing moves. The tree tb itself is cp,d−1. Aperiodicity also follows from this construction
since the transition from cp,d to cp,d has a nonzero probability.

In order to prove (ii), we check that the distribution πp,d satisfies the equation π = πP.
Since M is ergodic, this will be the unique solution. We first identify the set of trees that
have a positive probability of transition to a given tree t ∈ Tp,d. To that end, we have to
reverse the process of the transformation of one tree into another. Reversing the discovery
phase, we are led to define top(t) ∈ Tp,d−1 as the tree deduced from t by removing the
leaves. Then, reversing the surfer movement, we conclude that t′ can be transformed into
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t if and only if t′ has top(t) as one of its subtrees. Let Prec(t) ⊂ Tp,d be this set. For any
t′ ∈ Prec(t), we have:

P(t′, t) =
card{τ ∈ s(t′)|τ = top(t)}

|s(t′)|
1

pleaves(top(t))
.

Accordingly, it is convenient to partition the set Prec(t) into “blocks” of states as follows:

Prec(t) = ∪p
m=1 ∪m

n=1 P(m, n)

P(m, n) := {t′ ∈ Tp,d, |s(t′)| = m, s(t′) contains top(t) exactly n times}.

Trees that have the same number of sons and the same number of occurrences of
top(t) among their sons are grouped together. By construction, we have:

P(t′, t) =
n
m

1
pleaves(top(t))

∀t′ ∈ P(m, n).

This transition probability is therefore constant in the block P(m, n). Then, we
can write:

∑
t′∈Tp,d

πp,d(t′)P(t′, t) = ∑
t′∈Prec(t)

πp,d(t′)P(t′, t)

=
p

∑
m=1

m

∑
n=1

∑
t′∈P(m,n)

πp,d(t′)
n
m

1
pleaves(top(t))

=
1

pleaves(top(t))

p

∑
m=1

m

∑
n=1

n
m ∑

t′∈P(m,n)
πp,d(t′) . (13)

We evaluate the inner sum, which is the total probability of the block P(m, n) under
the distribution πp,d. According to Lemma 6, the distribution of subtrees of t′ ∈ P(m, n) is
that of m independent trees in Tp,d−1. Therefore, the probability, conditioned on m, that
exactly n subtrees of t′ are top(t) is the following binomial distribution (resulting from
picking the n locations for trees top(t) among the m possibilities):(

m
n

)
πp,d−1(top(t))n(1 − πp,d−1(top(t)))m−n . (14)

We conclude that:

∑
t′∈P(m,n)

πp,d(t′) =
1
p

(
m
n

)
πp,d−1(top(t))n(1 − πp,d−1(top(t)))m−n . (15)

Using this result, we can evaluate the product of the distribution πp,d and the matrix
P through the following computation:

∑
t′∈Tp,d

πp,d(t′)P(t′, t)

=
1

pleaves(top(t))

p

∑
m=1

m

∑
n=1

n
m

1
p

(
m
n

)
πp,d−1(top(t))n(1 − πp,d−1(top(t)))m−n (16a)

=
1

p1+leaves(top(t))

p

∑
m=1

m

∑
n=1

(
m − 1
n − 1

)
(πp,d−1(top(t)))n

(
1 − πp,d−1(top(t))

)m−n

(16b)
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=
πp,d−1(top(t))

p1+leaves(top(t))

p

∑
m=1

m−1

∑
n=0

(
m − 1

n

)
(πp,d−1(top(t)))n

(
1 − πp,d−1(top(t))

)m−1−n

=
πp,d−1(top(t))

p1+leaves(top(t))

p

∑
m=1

1 (17a)

=
πp,d−1(top(t))

p1+leaves(top(t))
· p =

1
pinode(top(t))+leaves(top(t))

=
1

pinode(t)
(17b)

= πp,d(t).

We used (13) and (14) to obtain (16a). The binomial expansion theorem was used in (17a).
Finally, in (17b), we note that inode(t) is the sum of inode(top(t)) and leaves(top(t)), which
gives us the desired result, πp,d(t).

Finally, we prove (iii). We know that σ(tb) results from σ(t) through the random
choice of a son of t. Invoking again Lemma 6, we have: conditioned on the event
{|s(t)| = m}, each subtree is τ with probability πp,d−1(τ), and the probability that a uni-
form random choice picks τ has probability πp,d−1 as well. Since this does not depend on
m, the result is true also when removing the conditioning.

4.2. Application to Greedy Policies

As an application of Lemma 5, we obtain an upper bound on the optimal cost that can
be realized by any policy. This was based on the following result.

Lemma 7. Consider a random variable t ∈ Tp,d distributed as πp,d. Define the random variable:

C =
[ |s(t)| − k ]+

|s(t)| .

Then, C = 0 with probability 1 (in particular, EC = 0) if k ≤ p and:

EC =
1
p
Hpk, k ≥ p, (18)

where:

Hpk :=
p

∑
m=k+1

m − k
m

= p − k − k(Hp −Hk). (19)

Proof. According to Lemma 5, |s(t)| is uniformly distributed. Then:

EC =
p

∑
m=1

1
p

[m − k]+

m
=

1
p

p

∑
m=k+1

m − k
m

=
1
p
Hpk

=
1
p

p

∑
m=k+1

(
1 − k

m

)
=

1
p

(
p − k − k

p

∑
m=k+1

1
m

)

=
1
p
(

p − k − k(Hp −Hk)
)
.

We now state the bound announced.

Proposition 3. The optimal expected cost g∗ of the MDP described in Section 3 satisfies:

g∗ ≤ 1 − k
p
(
1 +Hp −Hk

)
. (20)
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The cost of any greedy policy satisfies the same bound.

Proof. Consider the policy that marks k sons of the current tree or all the sons if k is larger
than this. This is a greedy policy, in the sense of Definition 7. The average cost of this
policy is precisely given by EC as in Lemma 7, which is equal to the right-hand side in
(20). Any greedy policy will mark at least the same nodes: it will necessarily have a smaller
average cost. The optimal cost of the MDP is necessarily smaller than the cost of this
specific policy.

4.3. Metrics of Tree Shapes

We applied the results of Section 4.1 to evaluate several simple metrics in tree shapes
generated by the MDP. This may be useful in particular for estimating the quantity of
memory needed in a simulation of this process.

4.3.1. Average Number of Nodes

Let Np,d = E(|t|) be the average size of a tree t distributed according to πp,d. According
to Lemma 6, we can write, conditional on the event {|s(t)| = m}: |t| = 1 + |s1|+ . . . + |sm|
so that:

E(|t| | |s(t)| = m) = 1 +
m

∑
j=1

E(|sj|) = 1 + m Np,d−1

Np,d = E(|t|) = 1 +E(|s(t)|)Np,d−1 = 1 +
p + 1

2
Np,d−1 . (21)

Since the initial condition is Np,0 = 1, the recurrence in (21) has the solution:

Np,d =
2

p − 1

((
p + 1

2

)d+1
− 1

)
, p ≥ 2, (22)

with N1,d = d + 1. We have proven the following result.

Lemma 8. The average number of nodes in a tree t ∈ Tp,d distributed according to πp,d is given
by (22).

4.3.2. Average Number of Leaves

Let Lp,d be the average number of leaves, in trees t distributed according to πp,d.
The reasoning of Section 4.3.1 can be reproduced: according to Lemma 6, we can write,
conditional on the event {|s(t)| = m}: |t| = |s1|+ . . . + |sm|. If follows that:

Lp,d = E(|s(t)|) Lp,d−1 =
p + 1

2
Lp,d−1.

Since Lp,0 = 1, we have the following result.

Lemma 9. The average number of leaves in a tree t ∈ Tp,d distributed according to πp,d is:

Lp,d =

(
p + 1

2

)d
.

Note that the maximal number of leaves of a tree in Tp,d is p2.

4.3.3. Average Number of Nodes Created

Let Cp,d be the average number of nodes created at some time step in the Markov
chain {σp,d(t(n)); n ∈ N} in its stationary regime. It is equal to the expected number of
nodes created from some tree t ∈ Tp,d distributed according to πp,d. This number itself is
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equal to the expected number of leaves in t, since t results from the addition of leaves to
some t′, also distributed according to πp,d. We therefore have, with Lemma 9:

Cp,d =

(
p + 1

2

)d
.

4.3.4. Average Number of Nodes Deleted

Let Dp,d be the average number of nodes deleted at some time step in the Markov chain
{σp,d(t(n)); n ∈ N} in its stationary regime. By stationarity, it is expected that Dp,d = Cp,d.
We verify this with a direct computation.

Consider a tree t ∈ Tp,d. Conditioned on the events {|s(t)| = m} and the surfer
moving to the jth son, the number of nodes deleted is: 1 + ∑� 	=j |s�| (the root and the other
subtrees). Using Lemma 5 and the fact that each s� is distributed according to πp,d−1
(Lemma 6), we have then:

Dp,d =
p

∑
m=1

1
p

m

∑
j=1

1
m

(
1 + (m − 1)Np,d−1

)
=

1
p

p

∑
m=1

(
1 + (m − 1)Np,d−1

)
= 1 +

p(p − 1)
2p

Np,d−1 = 1 +
p − 1

2
Np,d−1 =

(
p + 1

2

)d

where the last equality results from (22). This is equal to the average number of nodes
created Cp,d, as expected.

5. Trees of Depth d = 1 with an Arbitrary Marking Budget

In this section, we consider trees of depth 1, and we prove the following result.

Theorem 1. When d = 1, any greedy policy is optimal.

It is quite clear intuitively that, indeed, no reasonable alternative exists. The exercise
here is to check that the theory does provide a way to prove the result formally. In the
process, we identify arguments that will be useful for the proofs of stronger results.

For the purpose of the forthcoming proof, we rename the elements of M+
p,1 as:

M+
p,1 = {tμ,j : μ ∈ {0, 1}, 1 ≤ j ≤ p}. In the notation of Section 2, we have

tμ,j = (μ; (0, . . . , 0)︸ ︷︷ ︸
j times

). Furthermore, observe that trees tb belong to Mp,0 = {0, 1}: these are

trees reduced to a root with a mark.

Proof. We shall prove the result using Theorem A1. Define the constant g and the function
f : Tp,1 → R as:

g =
Hpk

p
(23)

f (tμ,j) =
(j − k)+

j
, μ ∈ {0, 1}. (24)
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The symbol Hpk was defined in (19). We shall check that this g, f satisfies the optimality
Equation (A1). For every state s = tμ,j and every action a, we write the quantity to be
minimized in the right-hand side of this equation:

Q(s, a ) := c(s, a ) + ∑
s′∈M+

p,1

P(s, a, s′) f (s′)

= c(tμ,j, a ) + ∑
s′∈M+

p,1

P(tμ,j, a, s′) f (s′)

= c(tμ,j, a ) + ∑
μ′∈{0,1}

P(tμ,j, a, μ′)
p

∑
j′=1

1
p

f (tμ′ ,j′). (25)

We obtained (25) by conditioning the transition s → s′ on the value of the tree tb.
The new notation P(t, a, tb) stands for the probability of moving from t to tb when action a
is applied. Given the definition of f (·) in (24), we have further:

Q(s, a ) = c(tμ,j, a ) + ∑
μ′∈{0,1}

P(tμ,j, a, μ′)

⎛⎝ p

∑
j′=1

1
p
(j′ − k)+

j′

⎞⎠
= c(tμ,j, a ) + ∑

μ′∈{0,1}
P(tμ,j, a, μ′)

Hpk

p

= c(tμ,j, a ) + g. (26)

The actions a can be grouped according to the number of sons they mark in the tree ta:
this number ranges from 0 to min{j, k}. When ta has � sons marked, this determines the
cost as:

c(tμ,j, a ) =
j − �

j
.

Finally, the minimization with respect to a amounts to the following minimization
with respect to �:

min
a

⎧⎪⎨⎪⎩c(s, a ) + ∑
s′∈M+

p,1

P(s, a, s′) f (s′)

⎫⎪⎬⎪⎭ = min
0≤�≤j∧k

{
j − �

j
+ g
}

=
(j − k)+

j
+ g = f (s) + g. (27)

The constant g and the function f therefore solve Equation (A1). This function is
bounded since the state space is finite. Therefore, there exists an optimal policy γ∗ with
cost g. Clearly, this policy consists of marking up to k sons of any tree: a greedy policy in
the sense of Definition 7.

From the proof of Theorem 1 and also from Lemma 7, we have the corollary:

Corollary 1. The average value of any tree of depth 1 is Hpk/p.

Remark 2. The fact that, in the present case, f (s) = mina c(s, a) is a consequence of the fact that
the cost of the future tree s′ resulting from the transition is actually independent of the action a.

Remark 3. It was proven in [16] that the finite-horizon, total-cost optimal-value function is
given by:
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W∗
N(tμ,j) =

(j − k)+

j
+

(N − 1)
p

Hpk ,

and is realized by any greedy policy. We obtained from this result the value of
g = limN→+∞ W∗

N(tμ,j)/N and the form of function f that must satisfy f (s) − f (s′) =
limN→+∞(W∗

N(s)− W∗
N(s

′)).

6. Trees of Depth d = 2 with Marking Budget k = 1

In this section, we consider trees of depth 2, and we prove the following result.

Proposition 4. When k = 1 and d = 2, any greedy policy is optimal.

We begin with some notation and preliminary results. Then, we provide the proof.

6.1. Preliminaries

As a preliminary, observe that as a consequence of the marking/moving/discovery
cycle, the subtrees of T1,p that appear have at most one leaf marked. Indeed, at the
beginning of the cycle, trees t ∈ M+

2,p have all leaves unmarked. The marking with budget
k = 1 marks at most one of these leaves. Then, the surfer moves to one subtree tb ∈ M1,p,
which inherits this property. The discovery phase merely adds unmarked leaves at depth
2. With this observation, we can restrict our attention to the usable set U of trees with at
most one leaf marked, since only those can appear recurrently when some stationary policy
is applied.

A second preparation is to calculate the average cost under some greedy policy γ,
which therefore marks one node at depth one in any tree t. The choice of this node does
not matter. According to Lemma 3, the Markov chain Mγ generated by this policy has
recurrent states with marks only at depth 0, that is at the root. Therefore, the cost (10)
is always given by c(t, γ(t)) = 1 − 1/|s(t)|. It is then of the form assumed in Lemma 7,
and the application of (18) yields the expected cost for policy γ:

Jγ =
1
p
(

p − 1 − (Hp −H1)
)
= 1 − Hp

p
. (28)

6.2. Notation and Terminology

When d = 2, the trees of interest are simpler than in the general case, and it is
convenient to devise an appropriate notation. For trees in M+

p,2, all subtrees have depth
one and unmarked leaves. We shall adopt the simplified notation for such trees: (μ; m)
denotes a depth one tree with root marked with μ and m unmarked leaves. A typical tree
of M+

p,2 is then denoted by t = (μ; (μ1, j1), . . . , (μm, jm)) for some m ∈ [1..p].
After marking, the subtrees of depth one will have at most one leaf marked: then

(μ; m+) will denote this tree with one marked leaf. Which leaf exactly is marked does not
make a difference in the following reasoning.

In the analysis, the number of unmarked sons of a tree is a key criterion. Accordingly,
we introduce the following typology for t = (μ; (μ1, j1), . . . , (μm, jm)) ∈ M+

p,2:

Type 1:
m

∑
r=1

μr ≤ m − 1, Type 2:
m

∑
r=1

μr = m.

6.3. Proof

The proof uses the optimality equations and Theorem A1, as in Section 5. The “g”
value needed for this was computed as Jγ in (28). The next step is to evaluate the “ f ”
function in the optimality Equation (A1) in Theorem A1. It is sufficient to provide a value

127



Mathematics 2021, 9, 2437

to states that are usable in the sense of Definition 6. For other states, the value of f is
defined by (A1), since the right-hand side only contains values of reachable states.

The function f that is proposed is the following:

f (μ; (μ1, j1), . . . , (μm, jm))

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− 1

m

(
1 +

m

∑
r=1

μr +
m

∑
r=1

1
jr

)
m

∑
r=1

μr ≤ m − 1 (type 1)

−1 − 1
m

(
2

m

∑
r=1

1
jr
+ SL1(t)

Hp − p
p − 1

)
m

∑
r=1

μr = m (type 2).
(29)

In this last line, SL1(t) = |{r|jr = 1}| is the number of subtrees of t that have exactly
one leaf.

Proof of Proposition 4. We apply Theorem A1 by checking that the function f , in (29), and
the constant g = 1 −Hp/p satisfy the optimality equations. To that end, we first evaluate
the expected value of trees tb in Mp,1. Denote by Pdis : Mp,1 → M+

p,2 the transition
probability from a tree tb to a “discovered” tree t′. We can write:

f̃ (tb) = ∑
t′∈M+

p,2

Pdis(tb, t′) f (t′).

We have, for any μ ∈ {0, 1}:

f̃ (μ; j) =
p

∑
�1=1

. . .
p

∑
�j=1

1
pj f (μ; (0, �1), . . . , (0, �j)))

= −1
j

p

∑
�1=1

. . .
p

∑
�j=1

1
pj

(
1 +

j

∑
r=1

1
�r

)

= −1
j

⎛⎝1 +
j

∑
r=1

p

∑
�1=1

. . .
p

∑
�j=1

1
pj

1
�r

⎞⎠
= −1

j

(
1 +

j

∑
r=1

pj−1

pj

p

∑
�r=1

1
�r

)
= − 1

j

(
1 +

j

∑
r=1

Hp

p

)

= −
(

1
j
+

Hp

p

)
(30)

[j ≥ 2] f̃ (μ; j+) =
p

∑
�1=1

. . .
p

∑
�j=1

1
pj f (μ; (0, �1), . . . , (1, �q), . . . , (0, �j)))

= −1
j

p

∑
�1=1

. . .
p

∑
�j=1

1
pj

(
2 +

j

∑
r=1

1
�r

)

= −
(

2
j
+

Hp

p

)
(31)

f̃ (μ; 1+) =
p

∑
�=1

1
p

f (μ; (1, �)) =
1
p

p

∑
�=1

(
−1 − 2

�
− 1�=1

Hp − p
p − 1

)
= − 1

p

(
p + 2Hp +

Hp − p
p − 1

)
= −

(
1 + 2

Hp

p
+

Hp − p
p(p − 1)

)
. (32)
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From these formulas, the following identities are obtained: for any μ and μ′,

f̃ (μ; j)− f̃ (μ′; j+) =
1
j

j ≥ 2

f̃ (μ; 1)− f̃ (μ′; 1+) =
Hp

p
+

Hp − p
p(p − 1)

=
Hp − 1
p − 1

.

The following result then immediately follows:

Lemma 10. For all j ∈ {1, . . . , p}, μ, μ′ ∈ {0, 1} and all p ≥ 2, 0 ≤ f̃ (μ; j)− f̃ (μ′; j+) ≤ 1/2.

We now proceed with checking that f and g solve the optimality equations. We start
with Type 1 trees. Let t = (μ; (μ1, j1), . . . , (μm, jm)) with ∑m

r=1 μm < m. The alternative
actions are: (a) mark the root or any son already marked; (bk) mark an unmarked son
k; (ck) mark a leaf of subtree (μk, jk). For actions (bk), we denote by μ′

i the marks of the
sons after marking: μ′

i = μi for (i 	= k and μ′
k = μk + 1. Clearly, ∑m

r=1 μ′
r = 1 + ∑m

r=1 μr.
For actions (ck), which leaf is marked does not matter, so we ignore this information.

The right-hand side of the optimality equation in the cases (a), (bk), and (ck) are
respectively:

Q(t, a) =
m − ∑m

r=1 μr

m
+

m

∑
r=1

1
m

f̃ (μr; jr)

Q(t, bk) =
m − ∑m

r=1 μr − 1
m

+
m

∑
r=1

1
m

f̃ (μ′
r; jr)

=
m − ∑m

r=1 μr − 1
m

−
m

∑
r=1

1
m

(
1
jr
+

Hp

p

)
= 1 − Hp

p
− ∑m

r=1 μr + 1
m

− 1
m

m

∑
r=1

1
jr

= g + f (t) (33)

Q(t, ck) =
m − ∑m

r=1 μr

m
+

1
m

m

∑
r=1|r 	=k

f̃ (μr; jr) +
1
m

f̃ (μk; j+k ) .

Then:

Q(t, ck)− Q(t, a) =
1
m
(

f̃ (μk; j+k )− f̃ (μk; jk)
)

Q(t, b�)− Q(t, ck) = − 1
m

+
1
m
(

f̃ (μ′
k; jk)− f̃ (μk; j+k )

)
.

Both differences are negative according to Lemma 10. This implies that action (bk)
dominates all actions (ck), which in turn dominate action (a). It therefore realizes the
minimum in the right-hand side of the optimality equation. With (33), the right-hand side
and the left-hand side coincide.

Next, we consider Type 2 trees. According to the preliminary remark, we can focus
our attention on trees with at most one son marked: if this tree is of Type 2 (all sons
marked), then it has only one son. Let then t = (μ; (1, j)), j ∈ [1..p] be such a tree.
The alternative actions are: (a) mark the root or the son; (b) mark leaf of the subtree
(μk, jk). The right-hand side of the optimality equation is respectively: Q(t, a) = f̃ (1; j) and
Q(t, b) = f̃ (1; j+). From Lemma 10, we know that action (b) dominates action (a). Further,
from Definitions (29) and (32),
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f (μ; (1, j)) + g − Q(t, a) = f (μ; (1, j)) + 1 − Hp

p
− f̃ (1; j+)

= −1 −
(

2 +
Hp − p
p − 1

)
+ 1 − Hp

p
+

(
1 + 2

Hp

p
+

Hp − p
p(p − 1)

)
= −1 +

Hp

p
+

Hp − p
p − 1

(
1
p
− 1
)

= −1 +
Hp

p
− Hp − p

p
= 0.

Remark 4. It was proven in [16] that, for any tree t = (μ; (s1, . . . , sm)), in the usable set, namely
the set of trees with no sons marked, the finite-horizon total-cost optimal-value function is given by:

W∗
n (t) = n − 1

m
− n − 2

p
Hp −

1
m

m

∑
r=1

1
|s(sr)|

for 2 ≤ n ≤ N, (34)

and that this cost is realized by any greedy policy. From this result, the average cost of this policy in
the infinite horizon is then:

lim
N→∞

W∗
N(t)
N

= lim
N→∞

1
N

(
N − 1

m
− N − 2

p
Hp −

1
m

m

∑
r=1

1
|s(sr)|

)
= 1 − Hp

p
.

This matches with (28). Furthermore, it is compatible with the form of the function f in (29).
The interpretation of f (t)− f (t′) is the difference in the total expected cost when starting from
trees t or t′. According to (34), the tree-dependent cost for trees with unmarked sons would be:

f (t) = − 1
|s(t)|

(
1 +

|s(t)|
∑
r=1

1
|s(sr)|

)
.

This is indeed the value in (29) since ∑r μr = 0.

7. Trees of Depth d = 2 with Marking Budget k = 2

This section is devoted to the case where the marking budget is k = 2. In this case, we
do not present general results, but we focus on the case of trees with depth 2. For small
values of p, we describe the optimal policy, and we conjecture that this policy is optimal
for general values of p.

We begin with some additional notation, then we introduce the definitions of the
policies of interest. This allows us to formulate Conjecture 1. We then present numerical
experiments made with small values of p supporting this conjecture.

7.1. Preliminary

Similarly as in Section 6, we argue that usable states are necessarily such that the

marking of sons
m
∑

r=1
ir takes values in {0, 1, 2}. Indeed, the sons of a tree are the leaves of a

tree at the previous time step, and at most two leaves can be marked at any step.

7.2. Notation and Terminology

We first recall the representation of depth two trees of M+
2,p from Section 6.2. Such

a tree can be represented as (μ, (μ1, j1), · · · , (μm, jm)) where m ∈ [1, p], μ, μr ∈ {0, 1} and
1 ≤ jr ≤ p for all r ∈ [1, m]. μ, μr are the markings of the root and the sons, m is the number
of sons, and jr are the number of leaves of the depth one subtree (μr, jr). Based on the
number of marked sons of the tree, we classify them into two types:
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Type 1:
m

∑
r=1

μr ≤ m − 2, Type 2:
m

∑
r=1

μr ≥ m − 1.

Type 2 trees are further classified into three subtypes (remember that ∑r μr cannot
exceed 2):

Type 2a:
m

∑
r=1

μr = m − 1, Type 2b: m = 2, μ1 = μ2 = 1, Type 2c: m = 1, μ1 = 1.

We also introduce some shorthand notation for the different possible actions. Let
a(d1, d1) represent the action of marking two sons (d1 as in “depth 1”), a(d1, ljc) represent
the action of marking a son and a leaf of the tree (μc, jc) (lj as in “leaf j”), and a(ljc1 , ljc2)
represent the action of marking a leaf in each of the subtrees (μc1, jc1) and (μc2, jc2). If
c1 = c2, two leaves are marked in this subtree.

7.3. Policies

All policies of interest in our study are greedy in the sense of Definition 7. These
policies do not specify what happens when some marking budget is left after marking
all unmarked sons of a tree. We therefore specify the following variants of the greedy
policy by their precise behavior in this situation. We begin with four simple rules; three of
them rely on an order defined on the subtrees. The terms “first” and “second” used in the
specification are relative to this order:

• Greedy depth 1: Ensure that only the sons of the tree are marked;
• Greedy smallest: Ensure that the sons of the tree are marked. If budget remains,

then mark the first leaf of the smallest subtree. If budget still remains, mark the
second leaf of the smallest subtree, if any. Otherwise, mark the first leaf of the second
smallest subtree;

• Greedy largest: Ensure that the sons of the tree are marked. If budget remains, then
mark the first leaf of the largest subtree. If budget still remains, mark the second leaf of
the largest subtree, if any. Otherwise, mark the first leaf of the second largest subtree;

• Greedy leftmost: Ensure that the sons of the tree are marked. If budget remains,
then mark the first leaf of the leftmost subtree. If budget still remains, mark the
second leaf of the leftmost subtree, if any. Otherwise, mark the first leaf of the second
leftmost subtree.

The cost of policy “greedy depth 1” is known by Lemma 7:

JGreedy Depth 1 =
Hp2

p
= 1 +

1 − 2Hp

p
. (35)

Finally, we introduce the “greedy finite optimal” policy, a name that we use as a
shorthand for “the policy that seems to emerge as optimal with the finite horizon criterion”.
Its behavior is specified in Table 2. It is explained in Appendix C how the features of
this policy are extrapolated from the results obtained with the finite-horizon version of
the MDP.

The behavior of the “greedy finite optimal” policy is obvious on Type 1 (more than
two unmarked sons) and Type 2c (one son that is marked) trees. On Type 2a (one unmarked
son) and Type 2b (two sons, both marked), it introduces a threshold of 3 or 4 on the size
of the subtrees. When the tree is of Type 2a, one mark is left for marking subtrees. If all
of them have a size less than 2, the largest one is marked. On the other hand, if some of
them has a size larger than 3, the smallest of these is marked. When the tree is of Type
2b, two marks are left for marking subtrees. If both of them have a size larger than 4
(j2 ≥ j1 > 3), the smallest subtree is marked. In the other case, both subtrees are marked.
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Table 2. Specification of the greedy finite optimal policy.

Tree Type Unmarked Sons Specification of Subtree Size Optimal Action

Type 1 ≥ 2 a(d1, d1)

Type 2a 1 jr ≥ 3 for some r a(d1, ljc), jc = minr jr ≥ 3
jr < 3 for all r a(d1, ljc), jc = maxr jr

Type 2b 0 j1 > 3 j2 ≥ j1 a(lj1 , lj1)

j1 ≤ 3 j2 ≥ j1 a(lj1 , lj2)

Type 2c 0 a(lj1 , lj1)

A rationale for such a rule is as follows. When a tree has less than two unmarked sons,
it can be made costless with the two marks of the budget. Therefore, when considering
trees of Type 2a, a subtree that has less than two leaves has less priority than a subtree
with more than three leaves, which is more “vulnerable”. Among the vulnerable trees, it is
better to mark the smallest ones, in order to reduce future expected costs. Trees of Type 2b
have, so to speak, one round in advance since all sons are already marked. Subtrees of a
size less than 3 can be “protected” by devoting one mark to them: if the surfer moves to
them, the budget of the next round will be used to complete the protection. If both trees
are too large to be fully protected, the budget is devoted again to the smallest one.

We can now state the conjecture that is the focus of this section.

Conjecture 1. When k = 2 and d = 2, the “greedy finite optimal” policy is optimal.

7.4. Numerical Experiments

We provide support to Conjecture 1 with results for small p. We implemented the
policy improvement algorithm [15] (Chapter 8.6), starting with a particular greedy policy.
Prior to the implementation of the algorithm, we evaluated the average cost of the four
variants of the greedy policy introduced in Section 7.3, for p = 3, 4, 5. Of course, the greedy
policies realize a zero cost for p ≤ 2.

The average costs of the five greedy policies for small values of p are summarized in
Table 3. The row concerning the “greedy depth 1” policy was evaluated using the exact
formula (35), which gave respectively 1/9, 5/24, and 43/150 for p = 3, 4, and 5. Several
observations can be made from the data of this table. First, there is a substantial gain
of marking subtrees after having marked all the sons: there is a larger gap between the
performance of greedy depth one and the group of the other ones, than inside this group.
Second, the best performance among the four simple policies introduced in Section 7.3 was
achieved by marking the largest subtree, for all values of p tested. Picking the smallest
subtree had the worst performance compared to picking the leftmost/largest subtree.
Finally, choosing arbitrarily the leftmost (or, for that matter, the rightmost or a random)
subtree resulted in a performance between these extremes.

Table 3. Average cost of different greedy policies.

Policy Cost for p = 3 Cost for p = 4 Cost for p = 5

Greedy depth 1 0.111111 0.208333 0.286667
Greedy smallest 0.067912 0.161568 0.229741
Greedy leftmost 0.062802 0.160227 0.226289
Greedy largest 0.054369 0.156907 0.217443
Greedy finite optimal 0.054369 0.154401 0.208282

We used the greedy largest policy as a starting candidate policy for the policy iteration
algorithm for p = 3, 4, 5, since it gave the best performance among the simple policies.
In each case, the algorithm converged in a few iterations, and the resulting policy was
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the greedy finite optimal policy. The performance of the policy iteration algorithm is
summarized in Table 4. The execution time figures correspond to an implementation in
Python 3.9 running on a 1.4 GHz quad-core processor with 8 GB memory and a 1536 MB
graphic card.

Table 4. Policy iteration performance.

Fanout p No. of Iterations Size of Matrices Time to Converge

3 1 231 × 231 11 s
4 5 3336 × 3336 632 s
5 14 57,860 × 57,860 7898 s

We could have also started the algorithm with the greedy finite optimal policy and
checked that it solves the optimality equations. Selecting another policy was also a way of
checking that our implementation of policy iteration works properly, as well as measuring
“how far” from the optimum the greedy largest policy is.

Observe in Table 3 that the relative performance of the greedy finite optimal policy
was more pronounced for p = 5 as compared to p = 4. The former MDP had a larger
number of Type 2 trees. The greedy largest policy prescribed a suboptimal marking scheme
for such trees, which explains the greater cost reduction by switching to the greedy finite
optimal policy for p = 5. The greedy finite optimal policy for p = 3 coincided with the
greedy largest policy, and hence, the costs were identical.

8. Discussion

We proposed a stochastic dynamic decision model for prefetching problems, which
is simple in the sense that it has only three integer parameters, and yet can help conceive
of optimal strategies in practical situations. The simplicity of the model lies in several
assumptions that we discuss now.

We first observe that the modeling we proposed does not look practical for large
values of parameters d and p. Indeed, Table 1 clearly shows that the state space sizes that
could be handled numerically corresponded to small values of these parameters. On the
other hand, the formal results obtained so far suggest that such a numerical solution would
be needed in practice. We argue, consistent with our introduction, that large values of d are
not desirable in practice: it may be better not to know the graph at a larger distance, as long
as the complexity of the decision grows exponentially with the amount of information.
A value d = 2 may be a good compromise between excessive shortsightedness and an
excess of information. Concerning the parameters k and p, practical situations should
involve cases where these values are not far from each other. Clearly, if k ≥ p, the problem
is easy, whereas if k � p, all policies will be bad because the controller is overwhelmed by
the number of nodes to control. The modeling we propose is relevant if the network is a
bottleneck of the system: in other words, if k is not very large. Therefore, p should not be
very large either.

The next feature departing from practical cases is about the discovery process. In our
model, we assumed a uniform distribution for the new generation of nodes. Practical
graphs are known to have different node degree distributions. Here, since we identified
this mechanism with a Galton–Watson branching process, it seems possible to use other
distributions while conserving the possibility of characterizing the distribution of trees as
we did in Section 4. Therefore, evaluating the performance of simple greedy policies and
obtaining bounds might be possible with this generalization. Furthermore, the results we
obtained with budget k = 1 or depth d = 1 were probably insensitive to the distribution of
the number of sons.

The assumption we made about the movements of the “surfer” in the graph of
documents may also be questioned. We assumed a uniform choice between neighboring
documents. In addition to simplicity, we argue that this represents the most difficult
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situation for the controller, since the amount of information available to it is minimal. In the
case where nonuniform movement probabilities are known, they can easily be integrated
in the MDP, just as in the models reviewed in the Introduction. It is interesting to note
that in such a case, models can be imagined where the optimal policy is not of the greedy
type: consider just a case where the probability of moving to some son happens to be zero
(or close to zero). The prefetching budget should then be devoted to marking the other
sons and their subtrees. Apart from such obvious situations, it is difficult to imagine cases
where an optimal policy would be formally identified, since this policy should weight the
movement probabilities with the characteristics of the subtrees.

Going back to the simple model we proposed, the results of Section 7 (the case d = 2
and k = 2) and their interpretation suggest a general form for a heuristic policy. The
first principle is that sons should be marked as priority. The issue is what to do with the
remaining budget. On the one hand, the subtrees that have themselves less than k sons
are easy to deal with and can be ignored. Among the remaining subtrees, those with the
smallest number of sons should be marked first. If budget remains, the principle can be
applied recursively.

9. Conclusions and Perspectives

Among the results of this paper, we proved that simple greedy policies are optimal in
several situations, suggesting that optimal policies are always greedy. One first obvious
step in future research will be to prove the following result, generalizing Proposition 4:

Conjecture 2. When k = 1, any greedy policy is optimal.

Next, our research will focus on the more challenging case k = 2. The first objective
will be to prove Conjecture 1 and then determine how to adapt this policy to larger d.
Some numerical investigation appears to be possible there for small values of p, despite
the large size of the state space. Another line of research on formal solutions will focus on
the analysis of Markov chains defined by simple policies with the purpose of providing
bounds tighter than that of Proposition 3.

On the practical side, several issues need further investigation. The principal one is
to efficiently identify the model and the optimal control from practical data. We plan to
develop algorithms that would leverage the knowledge gained with the exact solution of
simple models, with the objective of reducing learning time and learning errors.
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Appendix A. Notation

Table A1. Main notation used in the paper.

Notation Definition

d depth of a tree
p fanout of a tree; maximal number of sons of any node in a tree
k prefetching budget; maximal number of nodes the controller can mark
SEQ1..p(A) sequence of objects in set A, with length between 1 and p
Tp,d set of trees of depth d with fanout p
Tp,d cardinal of Tp,d
Mp,d set of trees of depth d with fanout p and marks in {0, 1}
Mp,d cardinal of Mp,d

M+
p,d

set of trees of depth d with fanout p and marks in {0, 1} except for leaves
that have mark 0

M+
p,d cardinal of M+

p,d
μ(t) mark (in {0, 1}) of the root of tree t
s(t) list of subtrees of tree t
leaves(t) number of leaves in tree t
inode(t) number of internal nodes in tree t (all nodes except leaves)
S state space of MDP
t state of MDP; it takes values in M+

p,d
At action space of MDP when state is t
ta tree after the marking action; it takes values in Mp,d
tb tree after the surfer’s movement; it takes values in Mp,d−1
D(t) set of trees that can be discovered from tree t

SD(t) set of trees after surfer movement and the discovery of new leaves
when initial tree is t

a(t) tree obtained after marking tree t according to action a
P(t, a, t′) transition probability of moving from a tree t to a tree t′ under action a
c(t, a) expected immediate cost incurred when applying action a to tree t

U set of usable states (states attainable through transitions given
specific budget k)

HR class of policies corresponding to history-dependent randomized strategies
γ a marking policy
γn(t) action prescribed by policy γ at time step n on tree t
γ(t) stationary version of γn(t)
Mγ Markov chain generated by policy γ
σp,d(t) shape of tree t; a tree with the same shape as tree t and all nodes’ marks being 0
M Markov chain of tree shapes with depth d and fanout p
Mb Markov chain of tree shapes with depth d − 1 and fanout p
πp,d stationary distribution of the Markov chain of tree shapes M
EC upper bound on the optimal expected cost of any greedy policy
Hp harmonic number; finite partial sum of the harmonic series
g∗ optimal expected cost of the MDP
Np,d average number of nodes in trees distributed according to πp,d
Lp,d average number of leaves in trees distributed according to πp,d
Cp,d average number of nodes created in Markov chain M
Dp,d average number of nodes deleted in Markov chain M
g, f (s) constant and bounded function in optimality equation
P(t, a, tb) transition probability of moving from a tree t to a tree tb under action a
Jγ expected cost for policy γ
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Appendix B. MDP Facts

We borrow the below existential theorem from [17] (Theorem 2.1, Chapter V).

Theorem A1. If there exists a bounded function f (s) for every s ∈ S and a constant g such that:

g + f (s) = max
a

[
r(s, a) + ∑

s′∈S
P(s, a, s′) f (s′)

]
(A1)

then there exists a stationary policy γ∗ such that:

g = max
γ

φγ(s) = φγ∗(s). (A2)

Theorem A1 guarantees the existence of an optimal policy given that there exists
a bounded function f and constant g that satisfies (A1). We use the following theo-
rem from [17] (Theorem 2.2, Chapter V), which proves the existence of such a function
and constant.

Theorem A2. Let {sn}n≥0 and {an}n≥0 be the sequence of states and actions of the MDP when a
policy γα is followed. Define:

Wγα(s) := E

[
∞

∑
n=0

αnr(sn, an)

]
where 0 < α < 1

and Wγ∗
α (s) := max

γα
Wγα(s). For some fixed s0 ∈ S, if there exists a B < ∞ such that

|Wγ∗
α (s)− Wγ∗

α (s0)| < B for all α and s, then there exist a bounded function f and a constant g
satisfying (A1).

The uniform boundedness property on Wγ∗
α exists if the expected time to go from

any state s to the fixed state s0 is bounded by a finite value while using the optimal policy
γ∗

α. The reader may refer to Theorem 2.4, Chapter V, from [17] for a proof of the same.
A sufficient condition for the bounded expected time is that every stationary policy in the
MDP yields a unichain.

Appendix C. Finite Horizon MDP for Trees of Depth d = 2 with Budget k = 2

This section is devoted to the findings from the study of the finite-horizon prefetching
MDP, in the cases d = 2 and k = 2 and general p. These results are quoted from the unpub-
lished report [16]. Other results for finite-horizon MDP are quoted in Remarks 3 and 4.

The optimal actions for all tree types for the finite horizons n = 3, 4 are specified
in Table A2. The optimal actions for the n = 3 horizon were computed analytically and
confirmed through numerical simulations. For the n = 4 horizon, the optimal actions in
Table A2 are the numerical results. The same shorthands for marking actions from Section 7
are used here.
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Table A2. Comparison of optimal actions at n = 3 and n = 4.

Tree Type Specifications Optimal Action at n = 3 Optimal Action at n = 4

Type 1 a(d1, d1) a(d1, d1)

Type 2a jr ≥ 3 for some r a(d1, ljc), jc = minr jr ≥ 3 a(d1, ljc), jc = minr jr ≥ 3
jr < 3 for all r a(d1, ljc), jc = maxr jr a(d1, ljc), jc = maxr jr

Type 2b

j1 > 3 j2 > 3 a(lj1 , lj1) assuming j1 ≤ j2 a(lj1 , lj1) assuming j1 ≤ j2

j1 = 3 j2 ≥ 3
a(lj1 , lj1) when (A3)
holds true and a(lj1 , lj2) otw.

a(lj1 , lj2) for p < 13,
a(lj1 , lj1) when p ≥ 13
for large j2

j1 = 2
j2 > 3

a(lj1 , lj1) when (A4) holds true,
a(lj1 , lj2) when (A5) holds true,
but (A4) does not, and a(lj2 , lj2) otw.

a(lj1 , lj2) for p < 52,
a(lj1 , lj1) when p ≥ 52
for large j2

j2 = 3 a(lj2 , lj2) a(lj1 , lj2)
j2 = 2 a(lj1 , lj2) a(lj1 , lj2)

j1 = 1
j2 ≥ 4

a(lj2 , lj2) when (A6)
holds true and a(lj1 , lj2) otw.

a(lj1 , lj2)

j2 = 3 a(lj2 , lj2) for p < 5, a(lj1 , lj2) for p ≥ 5 a(lj1 , lj2)
j2 < 3 a(lj1 , lj2) a(lj1 , lj2)

Type 2c a(lj1 , lj1) a(lj1 , lj1)

The policy for Type 2 trees depends on the exact size of the subtrees, unlike the policy
for Type 1 trees, where the sizes of the subtrees are irrelevant. There are thresholds that
are functions of p, which decide the optimal action for Type 2b trees. The thresholds on j2,
with the obvious constraint j2 ≤ p, that decide the optimal action for certain specifications
of Type 2b trees are below.

j2 ≥ 6p3

6p2(Hp − 3) + 6p(5Hp − 8) + 38Hp − 15
(A3)

j2 ≥ 12p2

12pHp + 8Hp − 39
(A4)

j2 ≥ 4p2

2p(2Hp − 5) + 10Hp − 7
(A5)

j2 ≥ 6p
6Hp − 11

. (A6)

We observed a change in optimal actions for Type 2 trees for considerably large
fanouts in the numerical experiments for n = 4. Since the results of n = 4 were obtained
numerically, we could identify the critical p values after which there would be a change in
the optimal action for some j2. The precise threshold on j2 for which the optimal action
changes was not found due to the complex calculations involved. Comparing the optimal
actions, we note a simplification when going from n = 3 to n = 4. The policy for trees of
Types 1, 2a, and 2c is the same. For trees of Type 2b, the number of cases where a switch
in optimal actions occurs is smaller in the n = 4 than in the n = 3 case. When a switch
occurs in both cases, the threshold on the value j2 is observed to be larger in the case n = 4.
Naturally, we could expect that for a given specification of Type 2b trees, the optimal action
would remain the same for most of the trees as the horizon increases. With this line of
thought, we may conjecture that the threshold values disappear as n → ∞ and the optimal
actions are the same for all trees of a given type and specification. This is the principle that
led to the definition of the greedy finite optimal policy in Table 2.
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Abstract: The data transmission in wireless networks is usually analyzed under the assumption
of non-stationary rates. Nevertheless, they strictly depend on the time of day, that is, the intensity
of arrival and daily workload profiles confirm this fact. In this article, we consider the process of
downloading a file within a single network segment and unsteady speeds—for arrivals, file sizes,
and losses due to impatience. To simulate the scenario, a queuing system with elastic traffic with
non-stationary intensity is used. Formulas are given for the main characteristics of the model: the
probability of blocking a new user, the average number of users in service, and the queue. A method
for calculating the boundaries of convergence of the model is proposed, which is based on the
logarithmic norm of linear operators. The boundaries of the rate of convergence of the main limiting
characteristics of the queue length process were also established. For clarity of the influence of the
parameters, a numerical analysis was carried out and presented.

Keywords: queuing system; elastic traffic; inpatient claim; non-stationary intensity; convergence
analysis; bounds on the rate of convergence; wireless network; file transfer; daily traffic profile;
blocking probability

1. Introduction

The fifth generation (5G) networks will consist of different services with different
specifications. Experts have identified network slicing as a key technology to enable 5G
networks [1–4]. Within the framework of network slicing, many models are proposed with
different principles for slicing radio resources [5]. In some cases, it is necessary to distribute
slices between several users, and this distribution and the slices can be changed depending
on time, for example, in [6–8], various options for re-slicing the network are shown. Earlier,
we studied models for studying network slicing in the framework of papers [9,10], but we
considered a model in the form of a queuing system with stationary intensities.

Given the need to re-slice the network and because all processes are non-stationary
and depend on time. For example, a traffic profile—user activity is different depending on
the time of day. Activity may also depend on the time of year; in the summer many users
go on vacation and fly to other countries, and in winter most users are actively working
and on weekends they sit at home watching movies, for example. Taking into account
this dependence, it is necessary to consider models with non-stationary intensities. In our
work, we consider an example of downloading user files depending on the time of day. For
convenience, we consider one slice of the radio frequency channel taking into account the
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non-stationary nature, and look at the behavior of the characteristics. As a mathematical
model, we take a queuing system with a non-stationary arrival intensity of user arrival in
the system, as in [11,12], where such systems with non-stationary intensities are used for
the joint service of radio frequencies.

This article discusses a special, but rather non-standard, heterogeneous birth and death
process, for which, in principle, one can apply the methods described, for example, in
articles [13,14], but due to the specifics of the model, in order to obtain acceptable estimates,
the authors had to “trick”. In particular, the rate of convergence in the example under
consideration actually turns out to be rather slow, so that the existing (and constructed)
limiting regime begins to adequately show the situation at sufficiently large times Usually,
uniformization is used as a method for calculating the transition probabilities for Markov
chains, as in [15,16]. However, the methods based on it work very poorly in the case of slow
convergence, which takes place for the considered models. In addition, without a prior
understanding of when the limiting regime is reached, significant computational efforts
are required in order to be at least to some extent confident that the obtained solution is the
required one [17].

The goal of the paper is to explore the nonstationary queue-length process based
on file transferring in the wireless network and analyze the performance measures of
this system model. The remainder of the paper is organized as follows. In Section 2, the
queueing system and its performance measures are presented. The convergence analysis
for large service rates and arrival rates of the mentioned queueing system are described in
Section 3. Application for file transfer in the wireless network and numerical analysis of
the considered system model are discussed in Section 4, followed by the conclusions in
Section 5.

2. Queuing System

2.1. Overview and Assumptions

In this paper, we will consider a queuing system with elastic traffic and inpatient
claims. To describe the flow of requests with a variable number of users, a Poisson flow
of the first kind with the following parameters is suitable: the arrival intensity λ(t), the
minimum requirement for the resource b, and the length of the transmitted data block θ(t).
Table 1 reflects the main parameters that describe the system model and the corresponding
terms of the mathematical model. In the system under consideration, there is a resource
of volume C, a storage device with a finite capacity r. Requests also have the property
of impatience—they leave the queue with intensity γ(t). We will assume that the block
length is equal to some value θ(t). The entire volume C is divided equally between the
orders, that is, if the number of customers is 1, then the entire resource is consumed by this
customer, and the service rate is θ(t)/C; if the number of customers is 2, then the service
rate is 2θ(t)/C—the resource volume is divided in half. In the case when C cannot be
divided equally between the customers with the provision of the minimum guaranteed
threshold b, a new customer enters the queue.

Let N(t) ∈ {1, . . . , |C/b|} be the number of processed orders at the moment t ≥ 0.
Hence, the number |C/b| = N is the maximum number of requests that the device can
process simultaneously. The state-space of the system looks like this:

X := {n ∈ 0, ..., N, ..., N + r : c(n) ≤ C}. (1)

Table 1. System model parameters.

Parameter Description

λ(t) Intensity of the flow of requests for the transfer of elastic data
b Minimum guaranteed elastic data block transfer rate

θ(t) Average value of data block length
r The queue of applications for the transfer of a block of elastic data

γ(t) The rate of loss of impatient claims
C Network bandwidth (service speed)
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2.2. Continuous-Time Markov Chain

It is easy to see that the given model can be described by Markov process X(t), t > 0
where X(t) denotes the number of customers in the system at time t (queue-length process).
Denote by pn(t) = P(X(t) = n), n = 0, 1, 2, 3, . . . .

From the above assumptions, the resulting behavior of the state probabilities are
described by a forward Kolmogorov system:

p′0(t) = −λ(t)p0(t) +
C

θ(t)
p1(t) (2)

p′n(t) = λ(t)pn−1(t)−
(

C
θ(t)

+ λ(t)
)

pn(t) +
C

θ(t)
pn+1(t), 1 ≤ n < N (3)

p′N(t) = λ(t)pn−1(t)−
(

C
θ(t)

+ λ(t)
)

pn(t) +
(

C
θ(t)

+ γ(t)
)

pn+1(t) (4)

p′n(t) = λ(t)pn−1(t)−
(

C
θ(t)

+ (n − N)γ(t) + λ(t)
)

pn(t) +
(

C
θ(t)

+ (n + 1 − N)γ(t)
)

pn+1(t),

N < n < N + r (5)

p′N+r(t) = λ(t)pN+r−1(t)−
(

C
θ(t)

+ rγ(t) + λ(t)
)

pN+r(t). (6)

Now, we consider the corresponding nonstationary situation. Namely, we suppose
that the queue-length process {X(t), t ≥ 0} is an inhomogeneous continuous-time Markov
chain. All possible transition intensities say qij(t), are supposed to be non-random functions
of time. We suppose that all intensity functions are nonnegative and locally integrable
on [0, ∞).

Denote by p(t) = (p0(t), p1(t), p2(t), . . . , pN+r(t))
T the vector of state probabilities at

the moment t. Put aij(t) = qji(t) for j 	= i and aii(t) = −∑j 	=i aji(t) = −∑j 	=i qij(t).
We can consider the forward Kolmogorov system (2)–(6) as a differential equation

dp(t)
dt

= A(t)p(t), (7)

in the space of sequences l1, where A(t) is a bounded for almost all t ≥ 0 linear operator
from l1 to itself and it is generated be the corresponding transposed intensity matrix:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ(t) C
θ(t) 0 · 0 0 0 · 0 0

λ(t) −
(

C
θ(t) + λ(t)

)
C

θ(t) · · · 0 0 0 · · · 0 0

0 λ(t) −
(

C
θ(t) + λ(t)

)
· · · 0 0 0 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · −
(

C
θ(t) + λ(t)

)
C

θ(t) 0 · · · 0 0

0 0 0 · · · λ(t) −
(

C
θ(t) + λ(t)

)
C

θ(t) + γ(t) · · · 0 0

0 0 0 · · · 0 λ(t) −
(

C
θ(t) + γ(t) + λ(t)

)
· · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · 0 0 0 · · · −
(

C
θ(t) + (r − 1)γ(t) + λ(t)

)
C

θ(t) + γ(t)r

0 0 0 · · · 0 0 0 · · · λ(t) −
(

C
θ(t) + γ(t)r

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

2.3. Performance Measures

For analysis of the system let us consider some characteristics of the devoted model.
First, the probability of blocking an incoming application:

Pblock(t) = pN+r(t). (9)
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The average number of serviced applications:

C̄(t) =
N

∑
i=1

ipi(t) + N ·
r

∑
i=1

pN+i(t). (10)

The average number of applications in the queue:

Q(t) =
N+r

∑
i=N+1

(i − N)pi(t). (11)

3. Convergence Analysis

3.1. Definitions of Terms

We denote the mathematical expectation (the mean) of X(t) at the moment t if X(0) = k
as E(t, k) = E{X(t)|X(0) = k} .

The Markov chain X(t) is called weakly ergodic, if lim
t→∞

∥∥p1(t)− p2(t)
∥∥ = 0 for any

initial conditions p1(0) = p1 ∈ Ω, p2(0) = p2 ∈ Ω. For our situation any p1(t) is
considered as a quasi-stationary distribution of the chain X(t).

The mentioned Markov chain X(t) also has the limiting mean φ(t), if |E(t; k)− φ(t)| →
0 as t → ∞ for any k.

We recall the logarithmic norm of operator function from l1 to itself is calculated
as (12):

γ(B(t))1 = sup
i

(
bii(t) + ∑

j 	=i
|bji(t)|

)
, (12)

and the bound
‖U(t, s)‖ ≤ e

∫ t
s γ(B(τ)) dτ , (13)

is valid for the Cauchy operator of the corresponding differential equation

dx

dt
= B(t)x. (14)

3.2. Preliminary Considerations

Let us put that μ(t) = C
θ(t) , and μn(t) = μ(t) + max(0, n − N)γ(t) for n ≥ 1. Then

A(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ(t) μ1(t) 0 · · · 0 0

λ(t) −(μ1(t) + λ(t)) μ2(t) · · · 0 0

0 λ(t) −(μ2(t) + λ(t)) · · · 0 0

...
...

...
...

...
...

0 0 0 · · · −(μN+r−1(t) + λ(t)) μN+r(t)

0 0 0 · · · λ(t) −μN+r(t).

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

As indicated above, the considered method is based on the concept of the logarithmic
norm and the corresponding estimates for the Cauchy operator.

Assuming that p0 = 1 − ∑N+r
i=1 pi(t), then from (7) we get the following equation:

dp

dt
= B(t)p + g(t), t ≥ 0, (16)

where g(t) = (λ(t), 0, 0, . . . , 0)T and B(t) equals (17).
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B(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(μ1(t) + 2λ(t)) μ2(t)− λ(t) −λ(t) −λ(t) · · · −λ(t) −λ(t)

λ(t) −(μ2(t) + λ(t)) μ3(t) 0 · · · 0 0

0 λ(t) −(μ3(t) + λ(t)) μ4(t) · · · 0 0

...
...

...
...

...
...

...

0 0 0 0 · · · −(μN+r−1(t) + λ(t)) μN+r(t)

0 0 0 0 · · · λ(t) −μN+r(t).

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(17)

The solution to this equation can be represented in the following form:

p(t) = U∗(t, 0)p(0) +
∫ t

0
U∗(t, τ)g(τ) dτ, (18)

where U∗(t, s) is the Cauchy operator of the corresponding homogeneous equation:

dx

dt
= B(t)x. (19)

Next, we will consider estimates in "weighted" norms. Suppose d1, d2, . . . , dN+r are
positive numbers. Then let

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 d1 · · · d1

0 d2 · · · d2

. . . . . .
...

0 0 · · · dN+r.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(20)

We will denote by ‖z‖1D = ‖Dz‖1. Note that B(t) is essentially non-negative, that is,
all off-diagonal elements of B(t) are non-negative for any t ≥ 0. Then we get:

B∗∗(t) = DB(t)D−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
(
μ1(t) + λ(t)

) d1
d2

μ1(t) 0 · · · 0 0

d2
d1

λ(t) −
(
μ2(t) + λ(t)

) d2
d3

μ2(t) · · · 0 0

0
d3
d2

λ(t) −
(
μ3(t) + λ(t)

)
· · · 0 0

0 0
d4
d3

λ(t) · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · −
(

μN+r−1(t) + λ(t)
) dN+r−1

dN+r
μN+r−1(t)

0 0 0 · · · dN+r
dN+r−1

λ(t) −(μN+r (t) + λ(t)).

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(21)

Let us put the following:

γ∗∗(t) = inf
i

(
|bii(t)| − ∑

j 	=i

dj

di
bji(t)

)
. (22)

Then we will get:

γ(B(t))1D = γ
(
DB(t)D−1

)
= sup

i

(
bii(t) + ∑

j 	=i

dj

di
bji(t)

)
= −γ∗∗(t). (23)

For some positive δ we put d1 = 1, dk+1 = δdk, k ≥ 1.
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3.3. Bounds on the Rate of Convergence for Large Service Rates

First, we let δ > 1. Then we will get the following:

α1(t) = μ1(t) + λ(t)− δλ(t) = μ(t)− (δ − 1)λ(t),

αk(t) = μk(t) + λ(t)− 1
δ μk−1(t)− δλ(t) ≥

(
1 − 1

δ

)
μk−1(t)− (δ − 1)λ(t) ≥(

1 − 1
δ

)
(μ(t)− δλ(t)), 2 ≤ k < N + r,

(24)

αN+r(t) = μN+r(t)−
1
δ

μN+r−1(t) + λ(t) ≥
(

1 − 1
δ

)
(μ(t)− δλ(t)).

Therefore,

γ∗∗(t) = min(αi(t)) =
(

1 − 1
δ

)
(μ(t)− δλ(t) ). (25)

Theorem 1. Let there be a positive number delta > 1 such that,∫ ∞

0
(μ(t)− δλ(t))dt = +∞. (26)

Then the Markov chain X(t) is weakly ergodic and has the following convergence rate bounds:

‖p∗(t)− p∗∗(t)‖1D ≤ e
−

t∫
0
(1− 1

δ )(μ(t)−δλ(t) ) dτ

‖p∗(0)− p∗∗(0)‖1D, (27)

‖p∗(t)− p∗∗(t)‖ ≤ 4δN+re
−

t∫
0
(1− 1

δ )(μ(t)−δλ(t) ) dτ

‖p∗(0)− p∗∗(0)‖

≤ 8δN+re
−

t∫
0
(1− 1

δ )(μ(t)−δλ(t) ) dτ

,

(28)

for any initial conditions p∗(0), p∗∗(0) and any t ≥ 0.

We let that W = mink≥1
dk
k = mink≥0

δk

k+1 . Then we will get W‖p‖1E ≤ ‖p‖1D.

Corollary 1. From the conditions of Theorem 1, X(t) has a limit mean, then we say φ(t) = E(t, 0),
and we obtain that the following estimate is true for any j and any t ≥ 0:

|E(t, j)− E(t, 0)| ≤ 1 + δj−1

W
e
−

t∫
0
(1− 1

δ )(μ(t)−δλ(t) ) dτ

. (29)

3.4. Bounds on the Rate of Convergence for Large Arrival Rates

Now consider the case δ < 1 and assume that δ ∈ [ r−1
r , 1). In this case, we have:

α1(t) ≥ μ(t) + (1 − δ)λ(t),

αk(t) ≥ (1 − δ)λ(t) + μk(t)− 1
δ μk−1(t) ≥

(1 − δ)λ(t)− μ(t)
(

1
δ − 1

)
, 2 ≤ k ≤ N + r − 1

(30)

αN+r(t) ≥ λ(t)−
(

1
δ
− 1
)

μ(t).

Then it follows that we have the same:

γ∗∗(t) = min(αi(t)) =
(

1
δ
− 1
)
(δλ(t)− μ(t)). (31)
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Theorem 2. Let ∫ ∞

0
(δλ(t)− μ(t)) dt = +∞, (32)

for some δ ∈ [ r−1
r , 1). Then, the Markov chain X(t) is weakly ergodic and has the following

convergence rate bounds:

‖p∗(t)− p∗∗(t)‖1D ≤ e
−

t∫
0
( 1

δ −1)(δλ(t)−μ(t)) dτ

‖p∗(0)− p∗∗(0)‖1D, (33)

and

‖p∗(t)− p∗∗(t)‖ ≤ 8δN+re
−

t∫
0
( 1

δ −1)(δλ(t)−μ(t)) dτ

, (34)

for any initial conditions p∗(0), p∗∗(0) and any t ≥ 0. In addition, there is also a marginal mean
and bound (29).

In addition, note the following: if the process is homogeneous (i.e., all intensities are
constant), then the conditions of Theorems 1 and 2 are equivalent to the inequalities μ > λ
and μ < λ, respectively.

And it is also worth noting that when all intensities of the process are 1-periodic, then
there is a weak ergodicity X(t) and the estimates of Theorem 1 or Theorem 2 if:

∫ 1

0
λ(t) dt 	=

∫ 1

0
μ(t) dt. (35)

3.5. Perturbed CTMC and Bounds

In this subsection, we will consider the application of the general perturbation bound-
ing in the same way as in the work [13]) for the models under study. We will consider
a “perturbed” queue-length process X̄(t), t ≥ 0 with the corresponding transposed in-
tensity matrix Ā(t), where the “perturbing” matrix Â(t) = A(t)− Ā(t) is small. That is,
we assume that the perturbed queue is of the same nature as the original one. Then the
perturbed intensity matrix also has the same structure with the corresponding perturbed
intensities θ̄(t), γ̄(t), λ̄(t). We assume that μ̄n(t) = C

θ̄(t) + max(0, n − N)γ̄(t) for n ≥ 1.

We suppose that:∣∣∣ 1
θ(t) −

1
θ̄(t)

∣∣∣ = ∣∣∣ 1
θ̂(t)

∣∣∣ ≤ ε̂, |γ(t)− γ̄(t)| = |γ̂(t)| ≤ ε̂, |λ(t)− λ̄(t)| = |λ̂(t)| ≤ ε̂. (36)

Hence, we will get the following:

|μn(t)− μ̄n(t)| = |μ̂n(t)| = | C
θ(t) + max(0, n − N)γ(t)− C

θ̄(t)
−max(0, n − N)γ̄(t)|

≤
∣∣∣ C

θ(t) −
C

θ̄(t)

∣∣∣+ max(0, n − N)|(γ(t)− γ̄(t))|
≤ Cε̂ + rε̂ = (C + r)ε̂.

(37)

Then, from (8) we obtain the following bound:

‖Â(t)‖ = 2 sup
k
|âkk(t)| = 2 max

(
|λ̂(t)|, |λ̂(t)|+ |μ̂n(t)|, |μ̂N+r(t)|

)
≤ 2(C + r + 1)ε̂. (38)

Now from Theorem 1 and Corollary 1 in the paper [13] the following bounds of the
perturbation follow.
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Theorem 3. Suppose that under the conditions of Theorem 1 or Theorem 2 the Markov chain X(t)
is exponentially ergodic, that is,

e
−

t∫
s

γ∗∗(τ) dτ
≤ Ke−γ0(t−s), (39)

for some positive K, γ0. Then the following bounds of the perturbation take place:

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ 2ε̂(C + r + 1)(1 + log(4K) + (N + r)| log(δ)|)
γ0

, (40)

and

lim sup
t→∞

|E(t, 0)− Ē(t, 0)| ≤ 2(N + r)ε̂(C + r + 1)(1 + log(4K) + (N + r)| log(δ)|)
γ0

, (41)

for any perturbed queue with the respectively closed intensities satisfying to (36).

4. File Transfer in Wireless Network

4.1. Multi-Service Network

The system model of this work has the form of a cell, in the coverage area of which
mobile devices are located (Figure 1). Each of them has its MSISDN (Mobile Subscriber
Integrated Services Digital Number)—the mobile subscriber number of digital network
with the integration of services. Each user behaves as follows: he sends a request to
download a file, then downloads it, and also the user can disappear from the system.
Disappearance can be associated with leaving the coverage area of the cell, or with a
change in the type of service, or with the end of the service. The conclusion follows
from the description of the system model: if we sum up the flow from all users, then the
duration of the intervals between requests will not depend on the number of users, which
is described by the Poisson flow of the first kind.

Figure 1. Scheme of System Model.

The users are provided with various services that belong to different categories of
data transmission. A more detailed overview of the categories is illustrated in the Table 2.
However, of these, we consider only those that can be described by elastic traffic, such as
email, file transfer, and others.
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Table 2. Description of service types.

N. Service Name Description

1 DB Transactions Transaction in a database—for example, trans-
fer of funds from a credit card through a mobile
application.

2 File Systems Work with remote file systems. This is how
ATMs are arranged, for example. There is a
machine with an operating system, and ATMs
are connected to it and all information is stored
there.

3 File Transfer File transfer via FTP.

4 Games Online game traffic.

5 Instant Messaging Applications Instant messaging systems - messengers What-
sApp, Viber, Telegram, etc.

6 Legacy Protocols Deprecated protocols.

7 Mail Email.

8 Music Streaming Streaming services for listening to music.

9 Network Operation Network services.

10 Others Others

11 P2P Applications Applications where data transmission is based
on the principles of peer-to-peer networks. The
simplest example is Bittorrent applications.

12 Security Online video cameras, data from alarm sensors,
etc.

13 Streaming Applications Streaming services for watching movies and
video-chats.

14 Terminals Mobile terminals for credit card payments.

15 VoIP IP-telephony. For example, calls via WhatsApp
or Skype.

16 Web Applications Web applications—client-server applications in
which the client interacts with the server us-
ing a browser (Microsoft Office Online, Google
Documents).

4.2. Dataset Structure

The analysis of real traffic is of great importance, because the identification of the
patterns of its arrival can make it possible to carry out studies of the system model de-
scribed in the previous section in a non-stationary mode. Therefore, a task of this paper is
formulated as follows: to analyze the traffic on one of the cell tower. There is a monitoring
component to collect information about the system. Every hour, for each active device,
the number of bits sent and received is added up. At the beginning of the next hour, the
amount for the previous one hour is summed to the registration file. The principle of filling
data during the monitoring is shown in Figure 2. There is a following designation Sup

d,t—the
sum of bits sent by the device per day d, at hour t. The part of the log file is shown in the
Table 3. There are the column START_HOUR contains the full date and hour when the
data was transferred; and the column MASKED_MSISDN—masked device identifier of the
user; APP_CLASS—the class of the application that transfers data; UPLOAD—the number
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of bits, which were sent as we denoted Sup
d,t ; and the last DOWNLOAD—the number of

received bits as we denoted Sdown
d,t .

Figure 2. The principle of data accumulation during monitoring.

Table 3. Part of the log file.

START_HOUR MASKED_MSISDN APP_CLASS UPLOAD DOWNLOAD

12.02.2018 10:00 9BFA3001DE8C58C2453B6
9CE2E4A3704

Web Applications 111,339 78,208

12.02.2018 8:00 0C2C88351A593CD02727A
6207EB85E9E

Instant Messaging Applications 11,946 6741

12.02.2018 10:00 B9F45E1542162096408D9
4DD94499B89

Web Applications 67,143,832 4,230,675

12.02.2018 10:00 3CF6B81BC186E4C188D69
E1FE8919BB6

Web Applications 18,844 9769

11.02.2018 18:00 7EE1FCE60945D869A14EF
30E896E9131

Streaming Applications 17,219,335 403,361

11.02.2018 17:00 A746CCDCAC507B95C83
A3475C63C6BFD

Web Applications 235,455 131,712

11.02.2018 16:00 EA9D75DEB103F439A8C2
8300C2CC1757

Streaming Applications 136,767,000 4,078,817

12.02.2018 9:00 610FF30F1C9EC8939B4F
BD259255BD63

Streaming Applications 3,330,234 112,395

12.02.2018 10:00 6DFD256C104B394A884E0
6A6EF7BE156

File Transfer 26,804,578 2,111,659

11.02.2018 17:00 6C9A6A5D444E7416C0C43
10E617EB611

Web Applications 587,786 87,897

. . . . . . . . . . . . . . .

4.3. Daily Traffic Profile

We consider elastic traffic, which is characterized by such a parameter as the length of
the elastic data block. For the considered traffic model, monitoring data were taken with a
class “File Transfer”, which corresponds to the transfer of data using the FTP protocol.

To get the number of requests per second at a particular hour of the day for the selected
application class, we perform aggregation of the form:

λup(t) =
∑∞

d Sup
d,t

8 · 1024 · 1024 · l
(42)

λdown(t) =
∑∞

d Sdown
d,t

8 · 1024 · 1024 · l
, (43)

where the received sum is determined in bits, d—date and l—average packet size, equal
to 2 MB. Then, we perform the calculation on Formulas (42) and (43) and the results are
shown in Table 4.
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Table 4. Dependence of the number of requests on the time of day.

Times of Day, t λup(t) λdown(t)

0 0.484847494 0.040711044
1 0.341865943 0.031079608
2 0.190823262 0.018468431
3 0.132143012 0.013982313
4 0.118697844 0.011683847
5 0.105803565 0.009923712
6 0.116474526 0.012585431
7 0.242942093 0.019329354
8 0.548677837 0.045828017
9 0.882484275 0.062668489
10 0.916328538 0.091028611
11 0.920243822 0.087240118
12 0.814816002 0.08172834
13 0.710077612 0.0853086
14 0.820103586 0.095698016
15 0.879327048 0.090266848
16 0.951204391 0.098226292
17 0.945908433 0.09180442
18 0.990004516 0.082148071
19 0.991890388 0.074312104
20 0.907643325 0.067218977
21 0.957584488 0.066221158
22 0.926637206 0.112652817
23 0.755175635 0.067874847

4.4. Fourier Series Approximation

From the found values it is necessary to obtain some continuous function of the
dependence of the fluctuation of the upward and downward traffic flows on the time
of day. To do this, we perform approximation by the Fourier series. For clarity, we
will gradually increase the number of conditions in a row, which is to choose the most
optimal option.

Consider the dependence of the intensity of the upward data flow λup from time,
and we will carry out the approximation by the Fourier series with one, two, and three
conditions. As a result, we get a functions of the form (44)–(46) respectively and for our
example the parameters will take values, which are shown in Table 5:

a(t) = a0 + a1cos(wt) + b1sin(wt) (44)

a(t) = a0 + a1cos(wt) + b1sin(wt) + a2cos(2wt) + b2sin(2wt) (45)

a(t) = a0 + a1cos(wt) + b1sin(wt) + a2cos(2wt) + b2sin(2wt)
+a3cos(3wt) + b3sin(3wt).

(46)

Table 5. Parameters of Fourier Series Approximation for the upward data flow.

Condition w a0 a1 b1 a2 b2 a3 b3

one 0.2519 0.6472 −0.168 −0.3675 – – – –
two 0.2617 0.6521 −0.07656 −0.3992 0.1479 −0.1348 – –

three 0.2603 0.6521 −0.08888 −0.3963 0.1384 −0.1411 −0.01446 0.05875
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Using Matlab, we have built the plots of the considered approximation. It is easy to
see that the plot of the obtained approximation for the one condition (Figure 3a) differs
significantly from the initial data, therefore, so that is why we increased the number of
conditions to two and the graph of the resulting function for two conditions (Figure 3b)
significantly reflects more faithfully the relationship between real data. Then, according
to the plot of the approximation for the three conditions (Figure 3c), it could be seen that,
now, in the intervals with the highest network load, the function has become closer to the
real data points. However, in general, the graph did not receive significant changes, and
the variant of the approximation with two conditions can be considered the most optimal.

Figure 3. (a) Graph of the approximation function a(t) for upward flow with one condition; (b) Graph
of the approximation function a(t) for upward flow with two conditions; (c) Graph of the approxima-
tion function a(t) for upward flow with three conditions.

4.5. Numerical Analysis

For the numerical analysis, we will consider the following example: the volume of the
resource block is C = 100 Mbps, and the finite capacity drive is r = 100. The size of the
transferred file equals to θ(t) = θ = 10 MB, that is 80 Mb, and the minimum transfer rate is
b = 1 Mbps. The arriving intensity of device equals to λ(t) = λ · a(t), where according to
Section 4.4 a(t) equals to (46), where parameters are indicated in the Table 5 on the line for
the third condition. The intensity of the flow of leaving requests for the transfer of a block
of elastic data due to “impatience” is γ(t) = γ = 10−2.

Apply all our bounds for this specific situation.
For applying of Theorems 2 and 3 we put δ = 0.99, d0 = 1 and dk+1 = δdk for k ≥ 0.

Then, we will get:

γ∗∗(t) =
1

99
(2.97(a0 + a1 cos(wt) + b1 sin(wt) + a2 cos(2wt) + b2 sin(2wt) + a3 cos(3wt) + b3 sin(3wt))− 1.25), (47)
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e
−

t∫
s

γ∗∗(τ) dτ
≤ e−0.016(t−s); (48)

therefore, one can get K = 2 · 106 and γ0 = 0.016 in (39).
Now we obtain the following bounds on the rate of convergence:

‖p∗(t)− p∗∗(t)‖ ≤ 3 · 106 · e−0.016t‖p∗(0)− p∗∗(0)‖, (49)

from Theorem 2;

‖p∗(t)− p∗∗(t)‖1D ≤ 2 · 106 · e−0.016t‖p∗(0)− p∗∗(0)‖1D, (50)

|E(t, j)− E(t, 0)| ≤ 1 + 0.99j−1

W
e−0.016t, (51)

from Theorem 2 and Corollary 1.
The corresponding perturbation bounds are:

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ 5 · 105ε̂, (52)

and

lim sup
t→∞

|E(t, 0)− Ē(t, 0)| ≤ 108ε̂, (53)

from Theorem 3.
To solve the Cauchy problem, the 4th order Adams–Multon method was used with

the use of IntelliJ IDEA software, JDK and the JFreeChart library, the functionality of which
is used for plotting. The convergence plots were built for the characteristics specified in
Section 2.3, shown in Figures 4–6. To analyze the characteristics, two scenarios were chosen:
1. At the initial moment of time, our system is empty: X(0) = 0; 2. At the initial moment,
the system is completely occupied, that is, all devices are occupied and there are no free
places in the queue X(0) = 200. Figure 4 shows graphs for the blocking probability. Note
that, since we are considering two scenarios, then according to Figure 4a. for the first
scenario, the starting value of the probability is 0, since the system is empty and it is logical
that there will be no locks, and for the second scenario, the starting value is 1 since the
system is completely busy. We can notice that the blocking probability for the two scenarios
converges at time t = 500 and according to Figure 4b. We see that its values fluctuate
within the range of 0.000–0.013, and the period of fluctuation is 24. Further, in Figure 5, we
see that the average number of service requests converges at 100; this may indicate a high
load of devices in our system. However, the probability of blocking is small. Let us look at
the average number of applications in the queue shown in Figure 6. As shown in Figure 6a.
for the two scenarios, the graphs converge and the mean value is no less than 64 and no
more than 75, as we can see in Figure 6b.
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Figure 4. (a) Probability of blocking for t ∈ [0, 1304]. (b) Approximation of the limiting probability of
blocking for t ∈ [1304, 1329].

Figure 5. (a) The mean of applications served E(t, k) for t ∈ [0, 1304]. (b) Approximation of the
limiting mean of applications served E(t, k) for t ∈ [1304, 1329].

Figure 6. (a) The mean of applications in the queue Q(t) for t ∈ [0, 1304]. (b) Approximation of the
limiting mean of applications in the queue Q(t) for t ∈ [1304, 1329].
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5. Conclusions

In this paper, we have investigated the process of downloading user files depending on
the time in the form of a queuing system with elastic traffic and non-stationary intensities.
We have developed a method for calculating the limits of convergence of such a model.
Estimates of the rate of convergence are obtained based on the logarithmic norm of linear
operators. As a result, it was found that the rate of convergence turned out to be low
enough for an adequate representation of the situation in the limiting mode to begin at
sufficiently long times. We evaluated the characteristics of such a model, namely, the
probability of blocking new users, the average number of users downloading data, and the
average number of users waiting for the download to start. We obtained the upper and
lower bounds of their values.

We considered the model in the form of a single network slice and, in the framework
of further tasks, we can consider the model in the form of several slices. If we want to
scale our system, for example, to add another incoming stream, it will be necessary to
solve the problem of redistribution; we will have to adapt our method for the new case. In
addition, in our case, we have a one-dimensional random process, and for a new system
where it will be multidimensional, we will first need to identify a function—a mapping, to
go to the one-dimensional case to apply our method. This complexity can be viewed as a
challenge for future research.
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Abstract: When modeling real phenomena, special cases of the generalized gamma distribution and
the generalized beta distribution of the second kind play an important role. The paper discusses
the gamma-exponential distribution, which is closely related to the listed ones. The asymptotic
normality of the previously obtained strongly consistent estimators for the bent, shape, and scale
parameters of the gamma-exponential distribution at fixed concentration parameters is proved. Based
on these results, asymptotic confidence intervals for the estimated parameters are constructed. The
statements are based on the method of logarithmic cumulants obtained using the Mellin transform
of the considered distribution. An algorithm for filtering out unnecessary solutions of the system
of equations for logarithmic cumulants and a number of examples illustrating the results obtained
using simulated samples are presented. The difficulties arising from the theoretical study of the
estimates of concentration parameters associated with the inversion of polygamma functions are
also discussed. The results of the paper can be used in the study of probabilistic models based on
continuous distributions with unbounded non-negative support.

Keywords: parameter estimation; gamma-exponential distribution; mixed distributions; generalized
gamma distribution; generalized beta distribution; method of moments; cumulants; asymptotic
normality

1. Introduction

Gamma and beta classes of distributions play an important role in applied probability
theory and mathematical statistics and have proven to be convenient and effective tools for
modeling many real processes. The generalized gamma distribution and generalized beta
distribution of the second kind are quite wide classes, including distributions that have
such useful properties as, for example, infinite divisibility and stability, which makes it
possible to use distributions from these classes as asymptotic approximations in various
limit theorems. The article discusses the distribution proposed in the Ref. [1], that is closely
related to the listed popular distributions.

Definition 1. We say that the random variable ζ has the gamma-exponential distribution GE(r, ν, s, t, δ)
with the parameters of bent 0 ≤ r < 1, shape ν 	= 0, concentration s, t > 0, and scale δ > 0, if its
density at z > 0 is

gE(z) =
|ν|ztν−1

δtνΓ(s)Γ(t)
Ger, tr+s(−(z/δ)ν), (1)

where E = (r, ν, s, t, δ) and Geα, β(z) are the gamma-exponential function [2]:
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Geα, β(z) =
∞

∑
k=0

zk

k!
Γ(αk + β), z ∈ R, 0 ≤ α < 1, β > 0. (2)

Function (2) generalizes to the case β 	= 1, which is the transformation introduced
by Le Roy [3] to study generating functions of a special form. In addition, Function (2)
can be considered (under some assumptions) as a special case of the Srivastava–Tomovski
function [4], that generalizes the Mittag–Leffler function [5].

In the Ref. [1] it was shown that the distribution (1) adequately describes Bayesian
balance models [6]. This is primarily due to the fact that the distribution with the den-
sity (1) can be represented as a scaled mixture of two random variables with generalized
gamma distributions.

In turn, the generalized gamma distribution GG(v, q, θ) with the density

f (x) =
|v|xvq−1e−(x/θ)v

θvqΓ(q)
, v 	= 0, q > 0, θ > 0, x > 0, (3)

proposed in 1925 by the Italian economist Amoroso [7], has proven its validity in many
applied problems that use continuous distributions with an unbounded non-negative
support for modeling. The class of distributions (3) is wide enough and includes expo-
nential distribution; χ2-distribution; Erlang distribution; gamma distribution; half-normal
distribution (the distribution of the maximum of the Brownian motion process); Rayleigh
distribution; Maxwell–Boltzmann distribution; χ-distribution; Nakagami m-distribution;
Wilson–Hilferty distribution; Weibull–Gnedenko distribution, and many others, including
scaled and inverse analogs of the above.

In addition, it was shown in the Ref. [8] that the distribution (1) when r → 1 gives in, is
the limit of the generalized beta distribution of the second kind GB2(ν, s, t, δ) with the density

f (x) =
|ν|(x/δ)tν−1

δB(s, t)
(
1 + (x/δ)ν)t+s , ν 	= 0, s > 0, t > 0, δ > 0, x > 0, (4)

proposed in 1984 by McDonald [9]. The distribution (4), used primarily in econometrics
and regression analysis, includes the Burr distribution (or Singh–Maddala distribution);
Dagum distribution; Pearson distribution; Pareto distribution; Lomax distribution; the
Fisher–Snedecor F-distribution, and others.

Traditionally, an important place in problems of applied mathematical statistics is
occupied by the problem of estimating unknown distribution parameters. At the same
time, in order to improve the consistency between mathematical models and analyzed real
processes, researchers are considering increasingly complex mathematical abstractions. The
relevance of the statistical analysis of the distributions (3) and (4), and their particular types
and mixtures is evidenced by a large number of publications on this topic, for example, the
Refs. [10–19].

In the Ref. [1], it was shown that the gamma-exponential distribution has the following
properties.

Lemma 1. 1. Let the independent random variables λ and μ have the distributions GG(v, q, θ)
and GG(u, p, α), uv > 0, respectively. Then the distribution of λ coincides with GE(0, v, ·, q, θ);
the distribution of λ/μ for |u| > |v| coincides with GE(v/u, v, p, q, θ/α); and the distribution of
λ/μ for |v| > |u| coincides with GE(u/v,−u, q, p, θ/α).

2. For 0 < r < 1, the density gE(x), E = (r, ν, s, t, δ) coincides with the density of the ratio of
independent random variables with generalized gamma distributions GG(ν, t, δ) and GG(ν/r, s, 1).

The possibility of representing the gamma-exponential distribution as a ratio of ran-
dom variables having a generalized gamma distribution allows it to be used in a wide
range of applied problems [6,20]. In addition, the five-parameter gamma-exponential
distribution can be used to model a wide range of real phenomena, due to the wide variety
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of its possible densities [20]. Besides, for a random variable ζ with a distribution (1), the
following representation is valid [8]:

ζ
d
= δ

(
λ

μr

)1/ν

, (5)

where the independent random variables λ and μ have gamma distributions GG(1, t, 1)
and GG(1, s, 1), respectively. Moreover, if we put r = 0, the right-hand part of the ratio (5)
will have the distribution GG(ν, t, δ) [8], and for r = 1, the right-hand part of (5) will have
the distribution GB2(ν, s, t, δ) [19]. Consequently, the gamma-exponential distribution can
be viewed as the distribution connecting and generalizing distributions from the gamma
and beta classes.

In practice, the researcher deals with observable quantities that reflect the evolution of
the analyzed real process. In relation to these quantities, some model assumptions are made
about the form of their distribution. The problem of estimating unknown parameters from
real data also arises in the case of modeling a real process using the gamma-exponential
distribution. Due to the representation of the density (1) in terms of a special gamma-
exponential Function (2), the maximum likelihood method seems to be too complicated. The
same can be said about the direct method of moments, since the moments of distribution (1)
can be represented as a product of non-monotone gamma functions [1]:

Eζm =
δmΓ(t + m/ν)Γ(s − mr/ν)

Γ(t)Γ(s)
, t +

m
ν

> 0, s − mr
ν

> 0. (6)

For this reason, In the Refs. [20,21] it was proposed to estimate the parameters of the
gamma-exponential distribution using a modified method based on logarithmic moments.
In this paper, we consider the estimators for three out of five parameters of the gamma-
exponential distribution, constructed by the method of logarithmic cumulants.

The paper is organized as follows. Section 2 is devoted to the description of the method
based on logarithmic cumulants; it provides an explicit form of theoretical logarithmic
cumulants, their connection with logarithmic moments, as well as the form of strongly
consistent estimators obtained using this method. Section 3 contains auxiliary relations
necessary for formulating the main results. Section 4 contains the main results of the
paper on the asymptotic normality of estimators for unknown parameters. In Section 5, a
numerical analysis of the obtained results is carried out using the generated samples. The
paper also contains the sections of discussions and conclusions.

2. Estimators for the Parameters of the Gamma-Exponential Distribution

This section defines the estimators for the parameters of bent r, shape ν, and scale δ of
the gamma-exponential distribution (1) for fixed values of the concentration parameters s
and t. These estimators were obtained by equating the sample and theoretical cumulants of
the gamma-exponential distribution.

Let us introduce the polygamma functions

ψ(z) =
d
dz

ln Γ(z), ψ(m)(z) =
dm+1

dzm+1 ln Γ(z), m = 1, 2, . . .

To obtain an explicit form of theoretical logarithmic cumulants, consider the Mellin
transform

Mζ(z) =
∞∫

0

xz dFζ(x), z ∈ C.
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We use Lemma 1 and the representation ζ
d
= λ/μ, where the independent ran-

dom variables λ and μ have distributions GG(ν, t, δ) and GG(ν/r, s, 1), respectively. For
λ ∼ GG(ν, t, δ), the Mellin transform has the form

Mλ(z) =
δz

Γ(t)
Γ
(

t +
z
ν

)
, t +

Re(z)
ν

> 0.

Hence, for the ratio of λ ∼ GG(ν, t, δ) to μ ∼ GG(ν/r, s, 1)

Mλ/μ(z) =
δz

Γ(t)Γ(s)
Γ
(

t +
z
ν

)
Γ
(

s − rz
ν

)
, t +

Re(z)
ν

> 0, s − rRe(z)
ν

> 0,

from where we get the characteristic function of the logarithm of ζ:

Eeiy ln ζ =
δiy

Γ(t)Γ(s)
Γ
(

t +
iy
ν

)
Γ
(

s − iry
ν

)
, y ∈ R.

Thus, the cumulants of the random variable ln ζ for fixed s and t have the form

κ1(r, ν, δ) = E ln ζ =
ν ln δ + ψ(t)− rψ(s)

ν
;

κm(r, ν) = (−i)m dm

dym lnEeiy ln ζ
∣∣∣
y=0

=
ψ(m−1)(t) + (−r)mψ(m−1)(s)

νm , m > 1. (7)

The moments of the random variable ln ζ can be represented as [22]

μm(r, ν, δ) ≡ E lnm ζ = Bm(κ1(r, ν, δ), κ2(r, ν), . . . , κm(r, ν)), (8)

where Bm is a complete exponential Bell polynomial that can be recurrently defined as

Bm+1(x1, . . . , xm+1) =
m

∑
k=0

Ck
mBm−k(x1, . . . , xm−k)xk+1, B0 = 1.

An explicit form of the necessary relations connecting moments and cumulants can be
found in the Ref. [22].

In addition, we will need the following moment characteristics of the logarithm of a
random variable with a gamma-exponential distribution, calculated using the Formula (8):

σ2
m(r, ν, δ) ≡ D lnm ζ = μ2m(r, ν, δ)− μ2

m(r, ν, δ); (9)

σml(r, ν, δ) ≡ cov(lnm ζ, lnl ζ) = μm+l(r, ν, δ)− μm(r, ν, δ)μl(r, ν, δ). (10)

To define the sample logarithmic cumulants, we introduce a notation for the sample
logarithmic moments of the random variable ζ:

Lm(X) =
1
n

n

∑
i=1

lnm Xi, (11)

where X = (X1, . . . , Xn) is a sample from the distribution of ζ.
Let us denote l = (l1, l2, l3, l4). Consider the functions

K1(l) ≡ K1(l1) = (ψ(s))−1l1;

K2(l) ≡ K2(l1, l2) = (ψ′(s))−1(l2 − l2
1);

K3(l) ≡ K3(l1, l2, l3) = (ψ′′(s))−1(l3 − 3l2l1 + 2l3
1);

K4(l) ≡ K4(l1, l2, l3, l4) = (ψ′′′(s))−1(l4 − 4l3l1 − 3l2
2 + 12l2l2

1 − 6l4
1).
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Consider the statistics
K1(X) ≡ K1(L1(X));

K2(X) ≡ K2(L1(X), L2(X)); (12)

K3(X) ≡ K3(L1(X), L2(X), L3(X));

K4(X) ≡ K4(L1(X), L2(X), L3(X), L4(X)); (13)

K(X) = (K1(X), K2(X), K3(X), K4(X)).

Note that the statistics ψ(m−1)(s)Km(X) are the m-th sample logarithmic cumulants of
the gamma-exponential distribution.

The method for estimating unknown parameters considered in the paper is based on
solving the system for logarithmic cumulants:

κm(r, ν, δ) = ψ(m−1)(s)Km(X), m = 1, 2, 3, 4. (14)

To describe the solution of this system, we introduce a number of functions of sample
logarithmic cumulants with the arguments k = (k1, k2, k3, k4):

φm =
ψ(m)(t)
ψ(m)(s)

; τ(k) ≡ τ(k2, k4) = φ2
1k4 + φ3

(
k4 − k2

2

)
; (15)

R±(k) ≡ R±(k2, k4) =

√
φ1k4 ± k2

√
τ(k)

k2
2 − k4

; (16)

V±(k) ≡ V±(k2, k4) =

√
φ1k2 ±

√
τ(k)

k2
2 − k4

; (17)

D±(k) ≡ D±(k1, k2, k4) = exp
{

ψ(s)k1 +
ψ(s)R±(k)− ψ(t)

V±(k)

}
; (18)

Δ±(k) ≡ Δ±(k2, k3, k4) =

∣∣∣∣∣φ2 − R3
±(k)

V3
±(k)

− k3

∣∣∣∣∣;
Δ(k) ≡ Δ(k2, k3, k4) = min{Δ+(k), Δ−(k)};

RΔ(k) ≡ RΔ(k2, k3, k4) =

√
φ1k4 − sgn(Δ+(k)− Δ−(k))k2

√
τ(k)

k2
2 − k4

;

VΔ(k) ≡ VΔ(k2, k3, k4) =

√
φ1k2 − sgn(Δ+(k)− Δ−(k))

√
τ(k)

k2
2 − k4

;

DΔ(k) ≡ DΔ(k1, k2, k3, k4) = exp
{

ψ(s)k1 +
ψ(s)RΔ(k)− ψ(t)

VΔ(k)

}
.

The system (14) has several solutions. It was shown in the Ref. [23] that the estimators
for the parameters of bent r, shape ν, and scale δ have the form

r̂(X) = RΔ(K(X)); (19)

ν̂(X) = VΔ(K(X)); (20)

δ̂(X) = DΔ(K(X)), (21)

and the following statement holds.

Lemma 2. For fixed parameters s and t of the distribution GE(r, ν, s, t, δ), the estimators (19)–(21)
for the parameters 0 ≤ r < 1, ν > 0 and δ > 0 are strongly consistent.
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Remark 1. If it is known that ν < 0, one should consider the estimator ν̂(X) = −VΔ(K(X))
instead of VΔ(K(X)), and the estimator

δ̂(X) = exp
{

ψ(s)K1(X)− ψ(s)RΔ(K(X))− ψ(t)
VΔ(K(X))

}
(22)

instead of DΔ(K(X)).

3. Auxiliary Relations

In what follows, we will need the derivatives of Functions (16)–(18) expressed in terms
of the functions φm and τ, defined in (15). Note that

Rk2,±(k) ≡
∂R±
∂k2

(k2, k4) = ∓
k4

(
φ2

1k2
2 + τ(k)± 2φ1k2

√
τ(k)

)
2
(
k2

2 − k4
)3/2√

τ(k)
√

φ1k4 ± k2
√

τ(k)
;

Rk4,±(k) ≡
∂R±
∂k4

(k2, k4) = ±
k2

(
φ2

1k2
2 + τ(k)± 2φ1k2

√
τ(k)

)
4(k2

2 − k4)3/2
√

τ(k)
√

φ1k4 ± k2
√

τ(k)
;

Vk2,±(k) ≡
∂V±
∂k2

(k2, k4) = ∓ k2
(
φ2

1k4 + τ(k)
)
± φ1(k2

2 + k4)
√

τ(k)

2(k2
2 − k4)3/2

√
τ(k)

√
φ1k2 ±

√
τ(k)

;

Vk4,±(k) ≡
∂V±
∂k4

(k2, k4) = ± φ2
1k2

2 + τ(k)± 2φ1k2
√

τ(k)

4(k2
2 − k4)3/2

√
τ(k)

√
φ1k2 ±

√
τ(k)

; (23)

Dk1,±(k) ≡
∂D±
∂k1

(k1, k2, k4) = ψ(s) exp
{

ψ(s)k1 +
ψ(s)R±(k)− ψ(t)

V±(k)

}
;

Dk2,±(k) ≡
∂D±
∂k2

(k1, k2, k4) = exp
{

ψ(s)k1 +
ψ(s)R±(k)− ψ(t)

V±(k)

}
×

×ψ(t)Vk2,±(k) + ψ(s)Rk2,±(k)V±(k)− ψ(s)R±(k)Vk2,±(k)
V2
±(k)

;

Dk4,±(k) ≡
∂D±
∂k4

(k1, k2, k4) = exp
{

ψ(s)k1 +
ψ(s)R±(k)− ψ(t)

V±(k)

}
×

×ψ(t)Vk4,±(k) + ψ(s)Rk4,±(k)V±(k)− ψ(s)R±(k)Vk4,±(k)
V2
±(k)

.

Using the formula for the derivative of a composite function, we obtain
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∂R±
∂l1

(l) = − 2l1
ψ′(s)

Rk2,±(K2(l), K4(l))−
4l3 − 24l2l1 + 24l3

1
ψ′′′(s)

Rk4,±(K2(l), K4(l));

∂R±
∂l2

(l) =
1

ψ′(s)
Rk2,±(K2(l), K4(l))−

6l2 − 12l2
1

ψ′′′(s)
Rk4,±(K2(l), K4(l));

∂R±
∂l3

(l) = − 4l1
ψ′′′(s)

Rk4,±(K2(l), K4(l));

∂R±
∂l4

(l) =
1

ψ′′′(s)
Rk4,±(K2(l), K4(l));

∂V±
∂l1

(l) = − 2l1
ψ′(s)

Vk2,±(K2(l), K4(l))−
4l3 − 24l2l1 + 24l3

1
ψ′′′(s)

Vk4,±(K2(l), K4(l));

∂V±
∂l2

(l) =
1

ψ′(s)
Vk2,±(K2(l), K4(l))−

6l2 − 12l2
1

ψ′′′(s)
Vk4,±(K2(l), K4(l));

∂V±
∂l3

(l) = − 4l1
ψ′′′(s)

Vk4,±(K2(l), K4(l)); (24)

∂V±
∂l4

(l) =
1

ψ′′′(s)
Vk4,±(K2(l), K4(l));

∂D±
∂l1

(l) =
1

ψ(s)
Dk1,±(K1(l), K2(l), K4(l))−

2l1
ψ′(s)

Dk2,±(K1(l), K2(l), K4(l))−

−4l3 − 24l2l1 + 24l3
1

ψ′′′(s)
Dk4,±(K1(l), K2(l), K4(l));

∂D±
∂l2

(l) =
1

ψ′(s)
Dk2,±(K1(l), K2(l), K4(l))−

6l2 − 12l2
1

ψ′′′(s)
Dk4,±(K1(l), K2(l), K4(l));

∂D±
∂l3

(l) = − 4l1
ψ′′′(s)

Dk4,±(K1(l), K2(l), K4(l));

∂D±
∂l4

(l) =
1

ψ′′′(s)
Dk4,±(K1(l), K2(l), K4(l)),

where the partial derivatives of the functions R±(k), V±(k) and D±(k) are defined in the
relations (23).

4. Asymptotic Normality of the Estimators for the Parameters of the
Gamma-Exponential Distribution

Further arguments are based on the following statements [24].

Lemma 3. In Rn, the random vector Xn converges in distribution to the random vector X if and
only if each linear combination of the components of Xn converges in a distribution to the same
linear combination of the components of X.

Lemma 4. Suppose that in Rm,

√
n(Tn1, . . . , Tnm) =⇒ N(μ, Σ), n → ∞,

with Σ a covariance matrix. Let g(t) = g(t1, . . . , tm) be a real-valued function with a nonzero
differential at t = μ. Put

d =

(
∂g
∂t1

∣∣∣
t=μ

, . . . ,
∂g
∂tm

∣∣∣
t=μ

)
.

Then
√

ng(Tn1, . . . , Tnm) =⇒ N(g(μ), dΣdT).

Let us formulate the statements about the asymptotic normality of the estimators
(19)–(21) with fixed concentration parameters s and t.

Denote
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Σ =

⎛⎜⎜⎝
σ2

1 (r, ν, δ) σ12(r, ν, δ) σ13(r, ν, δ) σ14(r, ν, δ)
σ12(r, ν, δ) σ2

2 (r, ν, δ) σ23(r, ν, δ) σ24(r, ν, δ)
σ13(r, ν, δ) σ23(r, ν, δ) σ2

3 (r, ν, δ) σ34(r, ν, δ)
σ14(r, ν, δ) σ24(r, ν, δ) σ34(r, ν, δ) σ2

4 (r, ν, δ)

⎞⎟⎟⎠; (25)

dR± =

(
∂R±
∂l1

(l)
∣∣∣
l=μ

,
∂R±
∂l2

(l)
∣∣∣
l=μ

,
∂R±
∂l3

(l)
∣∣∣
l=μ

,
∂R±
∂l4

(l)
∣∣∣
l=μ

)
, (26)

where the variances σ2
m(r, ν, δ) and the covariances σml(r, ν, δ) are defined in (9) and (10),

respectively, and partial derivatives ∂R±/∂lk(l) are defined in (24).
Let φm, m = 1, 3 be defined in (15); R±(K2(X), K4(X)) be defined in (16); Km(X),

m = 2, 4, be defined in (12) and (13). The following statement holds.

Theorem 1. Suppose that r2 	= (φ3 − φ2
1)/(2φ1).

1. Let r2 > φ3/φ1. Then the estimator r̂(X) for the unknown parameter r has the form
r̂(X) = R+(K2(X), K4(X)), and when n → ∞ has the property of asymptotic normality:

√
n

r̂(X)− r√
dR+ΣdT

R+

=⇒ N(0, 1).

2. Let r2 < φ3/φ1. Then the estimator r̂(X) for the unknown parameter r has the form
r̂(X) = R−(K2(X), K4(X)) and when n → ∞ has the property of asymptotic normality:

√
n

r̂(X)− r√
dR−ΣdT

R−

=⇒ N(0, 1).

Proof of Theorem 1. The sample logarithmic moments Lm(X) defined in (11) are sums
of independent identically distributed random variables with means μm(r, ν, δ) defined
in (8) and variances σ2

m(r, ν, δ)/n defined in (9). Therefore, when n → ∞, the statistics
Lm(X), k = 1, 2, 3, 4, together with any of their linear combinations, have the property of
asymptotic normality with the corresponding limit means depending on μm(r, ν, δ), and
variances determined by the covariance matrix Σ given in (25).

In addition, under the conditions of the theorem, the components of the vector dR±
defined in (26) are finite and the function R±(K2(l), K4(l)) has a nonzero differential at the
point μ = (μ1(r, ν, δ), . . . , μ4(r, ν, δ)).

Thus, all conditions of Lemmas 3 and 4 are satisfied. Hence,
√

nR±(K2(X), K4(X)) =⇒ N(R±(K2(μ), K4(μ)), dR±ΣdT
R±).

Consider the limiting mean R±(K2(μ), K4(μ)). Note that when n → ∞

K2(X) −→ φ1 + r2

ν2 a. s.;

K4(X) −→ φ3 + r4

ν4 a. s.

Therefore, for the function τ(k) defined in (15),

τ(K2(X), K4(X)) −→ (φ1r2 − φ3)
2

ν4 a. s.

when n → ∞.
Let r2 > φ3/φ1. Then

R+(K2(X), K4(X)) −→ R+(K2(μ), K4(μ)) = r a. s.,
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and the statistic r̂(X) = R+(K2(X), K4(X)) is a strongly consistent estimator for r.
Since

R−(K2(μ), K4(μ)) =

√
2φ1φ3 + (φ3 − φ2

1)r
2

φ2
1 − φ3 + 2φ1r2

,

the statistic R−(K2(X), K4(X)) estimates the function R−(K2(μ), K4(μ)) 	= r and does not
satisfy the statement of Lemma 2.

If r2 < φ3/φ1, we similarly conclude that the statistic r̂(X) = R−(K2(X), K4(X)) is a
strongly consistent estimator for r and the statistic R+(K2(X), K4(X)) does not satisfy the
statement of Lemma 2.

Let

dV± =

(
∂V±
∂l1

(l)
∣∣∣
l=μ

,
∂V±
∂l2

(l)
∣∣∣
l=μ

,
∂V±
∂l3

(l)
∣∣∣
l=μ

,
∂V±
∂l4

(l)
∣∣∣
l=μ

)
;

dD± =

(
∂D±
∂l1

(l)
∣∣∣
l=μ

,
∂D±
∂l2

(l)
∣∣∣
l=μ

,
∂D±
∂l3

(l)
∣∣∣
l=μ

,
∂D±
∂l4

(l)
∣∣∣
l=μ

)
,

where the partial derivatives ∂V±/∂lk(l) and ∂D±/∂lk(l) are defined in (24).
Let φm, m = 1, 3 be defined in (15); V±(K2(X), K4(X)) be defined in (17); D±(K2(X),

K4(X)) be defined in (18); Km(X), m = 2, 4, be defined in (12) and (13); and the matrix Σ be
defined in (25).

Theorems 2 and 3 are proved in a completely similar way to Theorem 1.

Theorem 2. Suppose that r2 	= (φ3 − φ2
1)/(2φ1), ν > 0.

1. Let r2 > φ3/φ1. Then the estimator ν̂(X) for the unknown parameter ν has the form
ν̂(X) = V+(K2(X), K4(X)), and when n → ∞ has the property of asymptotic normality:

√
n

ν̂(X)− ν√
dV+ΣdT

V+

=⇒ N(0, 1).

2. Let r2 < φ3/φ1. Then the estimator ν̂(X) for the unknown parameter ν has the form
ν̂(X) = V−(K2(X), K4(X)), and when n → ∞ has the property of asymptotic normality:

√
n

ν̂(X)− ν√
dV−ΣdT

V−

=⇒ N(0, 1).

Theorem 3. Suppose that r2 	= (φ3 − φ2
1)/(2φ1), ν > 0.

1. Let r2 > φ3/φ1. Then the estimator δ̂(X) for the unknown parameter δ has the form
δ̂(X) = D+(K2(X), K4(X)), and when n → ∞ has the property of asymptotic normality:

√
n

δ̂(X)− δ√
dD+ΣdT

D+

=⇒ N(0, 1).

2. Let r2 < φ3/φ1. Then the estimator δ̂(X) for the unknown parameter δ has the form
δ̂(X) = D−(K2(X), K4(X)) and when n → ∞ has the property of asymptotic normality:

√
n

δ̂(X)− δ√
dD−ΣdT

D−

=⇒ N(0, 1).

Remark 2. By analogy with the arguments of the Ref. [23] concerning the statement of Lemma 2,
if it is known that ν < 0, it is easy to show that the statements of the Theorems 2 and 3 hold for the
statistics ν̂(X) = −VΔ(K(X)) and δ̂(X) defined in (22) with the corresponding modification of the
vectors of derivatives dV± and dD± .
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Denote
smm(X) ≡ σ2

m(r̂(X), ν̂(X), δ̂(X)); (27)

sml(X) = slm(X) ≡ σml(r̂(X), ν̂(X), δ̂(X)); (28)

d[m]
r (X) ≡ ∂r̂(X)

∂lm
; d[m]

ν (X) ≡ ∂ν̂(X)

∂lm
; d[m]

δ (X) ≡ ∂δ̂(X)

∂lm
, (29)

where σ2
m(r, ν, δ) and σml(r, ν, δ) are defined in (9) and (10), respectively, and the estimators

r̂(X), ν̂(X) and δ̂(X) satisfy the conditions of Theorems 1–3.

Corollary 1. Suppose that the conditions of Theorems 1–3 are met; then,

√
n

r̂(X)− r√
∑4

m=1 ∑4
l=1 d[m]

r (X)sml(X)d[l]r (X)
=⇒ N(0, 1);

√
n

ν̂(X)− ν√
∑4

m=1 ∑4
l=1 d[m]

ν (X)sml(X)d[l]ν (X)
=⇒ N(0, 1);

√
n

δ̂(X)− δ√
∑4

m=1 ∑4
l=1 d[m]

δ (X)sml(X)d[l]δ (X)
=⇒ N(0, 1),

when n → ∞, where sml(X), d[m]
r (X), d[m]

ν (X), d[m]
δ (X) are defined in (27)–(29).

Proof of Corollary 1. Due to the strong consistency of the estimators r̂(X), ν̂(X), and δ̂(X),
the quadratic form

4

∑
m=1

4

∑
l=1

d[m]
r (X)sml(X)d[l]r (X)

converges almost surely to the normalizing function from the Theorem 1. Therefore, by
Slutsky’s theorem, we obtain the statement of the Corollary 1 for the estimator of the
parameter r. Similarly, we obtain statements for estimators of the parameters ν and δ.

Based on Corollary 1, it is possible to construct asymptotic confidence intervals for
unknown parameters of the gamma-exponential distribution.

By uγ, we denote the (1 + γ)/2-quantile of the standard normal distribution.

Corollary 2. Suppose that the conditions of Theorems 1–3 are met; then, asymptotic confidence
intervals with the confidence level γ based on the estimators r̂(X), ν̂(X), δ̂(X) for the unknown
parameters r, ν, δ have the form

(Ar(X), Br(X)) =

(
r̂(X)− uγ√

n
Cr(X), r̂(X) +

uγ√
n

Cr(X)

)
;

(Aν(X), Bν(X)) =

(
ν̂(X)− uγ√

n
Cν(X), ν̂(X) +

uγ√
n

Cν(X)

)
;

(Aδ(X), Bδ(X)) =

(
δ̂(X)− uγ√

n
Cδ(X), δ̂(X) +

uγ√
n

Cδ(X)

)
,

where

Cr(X) =

√√√√ 4

∑
m=1

4

∑
l=1

d[m]
r (X)sml(X)d[l]r (X);

Cν(X) =

√√√√ 4

∑
m=1

4

∑
l=1

d[m]
ν (X)sml(X)d[l]ν (X);
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Cδ(X) =

√√√√ 4

∑
m=1

4

∑
l=1

d[m]
δ (X)sml(X)d[l]δ (X),

and sml(X), d[m]
r (X), d[m]

ν (X), d[m]
δ (X) are defined in (27)–(29).

Proof of Corollary 2. The proof is based on the relation

P

(
|r̂(X)− r| < uγ√

n
Cr(X)

)
= P

( √
n

Cr(X)
|r̂(X)− r| < uγ

)
� 2Φ(uγ)− 1 = γ,

from which we obtain the form of the confidence interval (Ar(X), Br(X)). Similarly, asymp-
totic confidence intervals for the parameters ν and δ are obtained.

5. Numerical Analysis of Theoretical Results

Let us consider the problem of obtaining numerical values of estimates for the param-
eters of bent r, shape ν, and scale δ of the gamma-exponential distribution GE(r, ν, s, t, δ)
for fixed values of concentration parameters s and t.

The method for obtaining estimators for the parameters r and ν is based on solving
the system of equations [23], where the theoretical logarithmic cumulants (7) of the second
and fourth orders are equated to their sample counterparts:

φ1 + r2

ν2 = K2(X); (30)

φ3 + r4

ν4 = K4(X). (31)

Note that the solutions [23]

r̂2
±(X) =

φ1K4(X)± K2(X)
√

τ(K(X))

K2
2(X)− K4(X)

; (32)

ν̂2
±(X) =

φ1K2(X)±
√

τ(K(X))

K2
2(X)− K4(X)

do not uniquely determine the estimators for the parameters r and ν, and whereas the
sign of r is always known, ν can be either positive or negative. In addition, numerical
experiments show that for a fixed sample, the expression (32) can give non-controversial
estimates for any sign before the radical. For this reason, when processing real data, one
should use the algorithm for filtering out unnecessary system solutions.

The algorithm for choosing the “correct” solution (r̂(X), ν̂(X)) of the system is as follows.
At the first stage, one should try to determine the sign before the radical in the

relation (32), using the domain of the parameter r ∈ [0, 1). According to the condition
of Theorem 1, it is necessary to compare the value of φ3/φ1 with one. If φ3/φ1 ≥ 1,
one should choose r̂(X) = R−(K(X)), where the function R−(k) is defined in (16). If
φ3/φ1 < 1, the values of the right-hand sides of (32) are calculated for the given sample. If
the value of r̂2

±(X) for some signs before the radical does not belong to the interval [0, 1),
the corresponding solution is eliminated and the solution with the opposite sign before the
radical is chosen as the estimate of r.

At the second stage, one should additionally use an equation similar to (30) and (31):

φ2 − r3

ν3 = K3(X).

Since the estimators r̂(X) and ν̂(X), along with the statistics K3(X), are continuous
functions of sample logarithmic moments,
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∣∣∣∣φ2 − r̂3(X)

ν̂3(X)
− K3(X)

∣∣∣∣ −→ 0 a. s.

when n → ∞.
For a fixed sample size n, this relation makes it possible to determine the “correct”

solution of the system using the values

Δ±,+ =

∣∣∣∣∣φ2 − R3
±(K(X))

V3
±(K(X))

− K3(X)

∣∣∣∣∣ and Δ±,− =

∣∣∣∣∣φ2 − R3
±(K(X))

−V3
±(K(X))

− K3(X)

∣∣∣∣∣
based on the following criteria:

• If the result r̂(X) = r̂+(X) is obtained at the first stage, one should choose the pair
(R+(K(X)), V+(K(X))) as the solution (r̂(X), ν̂(X)) if Δ+,+ < Δ+,−, and the pair
(R+(K(X)),−V+(K(X))) if Δ+,− < Δ+,+;

• If the result r̂(X) = r̂−(X) is obtained at the first stage, one should choose the pair
(R−(K(X)), V−(K(X))) as the solution (r̂(X), ν̂(X)) if Δ−,+ < Δ−,−, and the pair
(R−(K(X)),−V−(K(X))) if Δ−,− < Δ−,+;

• If the values (32) obtained at the first stage are non-controversial for any sign be-
fore the radical, the solution (r̂(X), ν̂(X)) should be chosen from four possible pairs
(R±(K(X)),±V±(K(X))), using the minimum of the values Δ+,+, Δ+,−, Δ−,+, Δ−,−
to determine the “correct” set of signs.

The estimate δ̂(X) of the scale parameter, δ is found from the equation for the first
logarithmic cumulant

ln δ +
ψ(t)− rψ(s)

ν
= L1(X),

substituting the solution (r̂(X), ν̂(X)) is found by the above algorithm instead of (r, ν), and
has the form

δ̂(X) = exp
{

L1(X) +
ψ(s)r̂(X)− ψ(t)

ν̂(X)

}
. (33)

Let us present some numerical results illustrating the method of choosing the “correct”
estimates for the parameters of bent r, shape ν, and scale δ at fixed concentration parameters
s and t of the gamma-exponential distribution (1).

Tables 1–8 provide examples of numerical values of parameter estimates obtained
using the algorithm for eliminating unnecessary solutions and constructed from the samples
of the size n from the model distribution (1) with a set of parameters E = (r, ν, s, t, δ) and
examples of the boundary values of asymptotic confidence intervals with a confidence level
γ = 0.95 for these estimates.

A simulation of pseudo-random samples from the gamma-exponential distribution
is based on the relation (5) and is carried out using standard tools in any programming
language that has the ability to generate samples from the gamma distribution.

Table 1 shows the values of the estimates of the parameters r, ν and δ, obtained
from the sample of the size n from a model distribution with a set of parameters E =
(0.5; 2.5; 2.4; 1.9; 1.0). For this set of parameters, the inequality φ3/φ1 ≥ 1 holds, and
therefore the first stage of the algorithm for eliminating unnecessary solutions gives
the estimate r̂(X) = R−(K(X)). At the second stage, since Δ−,+ < Δ−,−, the pair
(R−(K(X)), V−(K(X))) is selected as a solution (r̂(X), ν̂(X)). The estimate δ̂(X) is ob-
tained from the relation (33). Table 2 shows the values of the estimates (r̂(X), ν̂(X), δ̂(X))
obtained in the previous step and the boundaries of corresponding confidence intervals.
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Table 1. Examples of estimates for the parameters of the model distribution GE(0.5; 2.5; 2.4; 1.9; 1.0).

n R−(K(X)) Δ−,+ Δ−,− ±V−(K(X)) δ̂(X)

105 0.5096 0.0008 0.2048 ±2.5179 1.0018
5 × 105 0.5040 0.0009 0.2089 ±2.5038 1.0005

106 0.4980 0.0001 0.2101 ±2.4985 0.9990
5 × 106 0.5008 0.0001 0.2091 ±2.5013 1.0002

Table 2. Examples of estimates for the parameters and boundaries of confidence intervals for a model
distribution GE(0.5; 2.5; 2.4; 1.9; 1.0).

n r̂(X) Ar(X) Br(X) ν̂(X) Aν(X) Bν(X) δ̂(X) Aδ(X) Bδ(X)

105 0.5096 0.3935 0.6258 2.5179 2.4197 2.6161 1.0018 0.9711 1.0325
5 × 105 0.5040 0.4519 0.5560 2.5038 2.4603 2.5472 1.0005 0.9866 1.0143

106 0.4980 0.4611 0.5349 2.4985 2.4680 2.5290 0.9990 0.9891 1.0088
5 × 106 0.5008 0.4843 0.5173 2.5013 2.4877 2.5150 1.0002 0.9958 1.0046

Table 3 shows the values of the estimates of the parameters r, ν and δ obtained from the
sample of the size n from a model distribution with a set of parameters
E = (0.7;−1.8; 3.6; 3.9; 1.5). For this set of parameters, the inequality φ3/φ1 < 1 holds,
while the values of the statistics R+(K(X)) are outside the domain of the parameter
r, and therefore the first stage of the algorithm for eliminating unnecessary solutions
gives the estimate r̂(X) = R−(K(X)). At the second stage, since Δ−,− < Δ−,+, the pair
(R−(K(X)),−V−(K(X))) is selected as a solution (r̂(X), ν̂(X)). The estimate δ̂(X) is ob-
tained from the relation (33). Table 4 shows the values of the estimates (r̂(X), ν̂(X), δ̂(X))
obtained in the previous step, and the boundaries of corresponding confidence intervals.

Table 3. Examples of estimates for the parameters of the model distribution GE(0.7;−1.8; 3.6; 3.9; 1.5).

n R+(K(X)) R−(K(X)) Δ−,+ Δ−,− ±V−(K(X)) δ̂(X)

105 1.1037 0.7556 0.1394 0.0132 ±1.8551 1.4415
5 × 105 1.1254 0.7405 0.1526 0.0138 ±1.8347 1.4579

106 1.1940 0.6962 0.1696 0.0013 ±1.7980 1.5036
5 × 106 1.1828 0.7031 0.1681 0.0016 ±1.8018 1.4965

Table 4. Examples of estimates for the parameters and boundaries of confidence intervals for a model
distribution GE(0.7;−1.8; 3.6; 3.9; 1.5).

n r̂(X) Ar(X) Br(X) ν̂(X) Aν(X) Bν(X) δ̂(X) Aδ(X) Bδ(X)

105 0.7556 0.4082 1.1031 −1.8551 −2.1847 −1.5255 1.4415 1.0839 1.7991
5 × 105 0.7405 0.5998 0.8813 −1.8347 −1.9662 −1.7033 1.4579 1.3090 1.6069

106 0.6962 0.6182 0.7742 −1.7980 −1.8683 −1.7277 1.5036 1.4152 1.5920
5 × 106 0.7031 0.6670 0.7392 −1.8018 −1.8345 −1.7691 1.4965 1.4560 1.5370

Table 5 shows the values of the estimates of the parameters r, ν and δ obtained from the
sample of the size n from a model distribution with a set of parameters
E = (0.8; 1.3; 0.3; 1.4; 2.5). For this set of parameters, the expression under the outer radical
in R−(K(X)) is negative, so the first stage of the algorithm for eliminating unnecessary
solutions gives the estimate r̂(X) = R+(K(X)). At the second stage, since Δ+,+ < Δ+,−,
the pair (R+(K(X)), V+(K(X))) is selected as a solution (r̂(X), ν̂(X)). The estimate δ̂(X) is
obtained from the relation (33). Table 6 shows the values of the estimates (r̂(X), ν̂(X), δ̂(X))
obtained in the previous step, and the boundaries of corresponding confidence intervals.
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Table 5. Examples of estimates for the parameters of the model distribution GE(0.8; 1.3; 0.3; 1.4; 2.5).

n R+(K(X)) Δ+,+ Δ+,− ±V+(K(X)) δ̂(X)

105 0.8254 0.0006 0.4652 ±1.3310 2.4735
5 × 105 0.8146 0.0007 0.4565 ±1.3213 2.4893

106 0.7958 0.0002 0.4525 ±1.2944 2.4996
5 × 106 0.8009 0.0001 0.4548 ±1.3007 2.5035

Table 6. Examples of estimates for the parameters and boundaries of confidence intervals for a model
distribution GE(0.8; 1.3; 0.3; 1.4; 2.5).

n r̂(X) Ar(X) Br(X) ν̂(X) Aν(X) Bν(X) δ̂(X) Aδ(X) Bδ(X)

105 0.8254 0.6302 1.0207 1.3310 1.0545 1.6076 2.4735 2.2936 2.6535
5 × 105 0.8146 0.7302 0.8989 1.3213 1.2015 1.4411 2.4893 2.4088 2.5698

106 0.7958 0.7397 0.8519 1.2944 1.2149 1.3738 2.4996 2.4426 2.5566
5 × 106 0.8009 0.7754 0.8264 1.3007 1.2646 1.3369 2.5035 2.4779 2.5290

Table 7 shows the values of the estimates of the parameters r, ν and δ obtained from the sam-
ple of the size n from a model distribution with a set of parameters E = (0.6;−2.9; 2.1; 3.9; 0.5).
For this set of parameters, the inequality φ3/φ1 < 1 holds, while the values of both statis-
tics R+(K(X)) and R−(K(X)) lie in the interval [0, 1). Therefore, at the second stage, since
Δ+,− = min{Δ+,+, Δ+,−, Δ−,+, Δ−,−}, the pair (R+(K(X)),−V+(K(X))) is selected as a so-
lution (r̂(X), ν̂(X)). The estimate δ̂(X) is obtained from the relation (33). Table 8 shows the
values of the estimates (r̂(X), ν̂(X), δ̂(X)) obtained in the previous step, and the boundaries of
corresponding confidence intervals.

Table 7. Examples of estimates for the parameters of the model distribution GE(0.6;−2.9; 2.1; 3.9; 0.5).

n R+(K(X)) Δ+,+ Δ+,− ±V+(K(X))
δ̂(X)R−(K(X)) Δ−,+ Δ−,− ±V−(K(X))

105 0.6125 0.0009 0.0004 ±2.9217 0.49790.3854 0.0120 0.0106 ±2.5055

5 × 105 0.5871 0.0021 0.0006 ±2.8789 0.50230.4075 0.0109 0.0094 ±2.5487

106 0.6047 0.0013 0.0001 ±2.9081 0.49910.3921 0.0117 0.0103 ±2.5181

5 × 106 0.6017 0.0015 0.0001 ±2.9047 0.49950.3948 0.0116 0.0100 ±2.5249

Table 8. Examples of estimates for the parameters and boundaries of confidence intervals for a model
distribution GE(0.6;−2.9; 2.1; 3.9; 0.5).

n r̂(X) Ar(X) Br(X) ν̂(X) Aν(X) Bν(X) δ̂(X) Aδ(X) Bδ(X)

105 0.6125 0.4204 0.8046 −2.9217 −3.3210 −2.5224 0.4979 0.4604 0.5355
5 × 105 0.5871 0.4833 0.6909 −2.8789 −3.0904 −2.6674 0.5023 0.4814 0.5232

106 0.6047 0.5408 0.6686 −2.9081 −3.0401 −2.7760 0.4991 0.4865 0.5117
5 × 106 0.6017 0.5724 0.6309 −2.9047 −2.9650 −2.8445 0.4995 0.4938 0.5053

Remark 3. In some cases, when processing real data using the above methods, the lengths of
confidence intervals may unboundedly increase. This indicates that the conditions of Theorems 1–3
are violated, that is, either r2 = (φ3 − φ2

1)/(2φ1) or r2 = φ3/φ1.

6. Discussion

The majority of models of real processes using continuous distributions with un-
bounded non-negative support operate with special cases of the generalized gamma dis-
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tribution, proposed in the 1920s by the Italian economist Amoroso in the framework of
the study of the dynamic equilibrium theory [7], and special cases of the generalized beta
distribution of the second kind, proposed in the 1980s by McDonald as a generalization of
the well-known beta-type distributions used to model profitability [9].

The study of probabilistic and statistical properties of distributions from the gamma
and beta classes is very important. For example, in the Refs. [10–14], it was proposed to
use the generalized gamma distribution and its particular cases in problems of processing
radar signals and images, evaluating the concentration of harmful gases in industrial areas,
studying the periods of remission of cancer patients, analyzing neurotransmission and
anorexia. The results of the Refs. [15–19] concerning the generalized beta distribution
of the second kind and its representatives are used for meteorological research, analysis
of infectious diseases, climatic phenomena and profitability, the study of physiological
characteristics, and consumer price indexes, and can also be used in the theory of reliability
when modeling the time of failure.

This article considers the gamma-exponential distribution, a generalization of the
Amoroso distribution that gives the McDonald distribution in the limit. Thus, it can be
argued that the results of the article will be in demand when studying various models
that allow descriptions of real processes using continuous distributions with non-negative
unbounded support.

The main problem in the study of the gamma-exponential distribution is the repre-
sentation of the density (1) in terms of a special gamma-exponential function (2). This fact
makes it difficult to study the probabilistic and statistical properties of the distribution
using classical methods such as, for example, the maximum likelihood method. In addition,
the moments (6) of the gamma-exponential distribution may not exist for some parameter
values and are the products of nonmonotonic gamma functions, with arguments depending
on several parameters at once. It significantly complicates not only the application of the
method of moments, but also the interpretation of the parameters as characteristics of the
mean, spread, asymmetry, and so forth. The latter cannot be considered as a disadvantage
of this distribution, since in practice, the value of each characteristic is influenced by many
factors of a different nature.

The results of this paper concern the estimation of the bent, shape and scale parame-
ters of the gamma-exponential distribution under the assumption that the concentration
parameters are known and fixed. This formulation naturally arises in the case of using the
gamma-exponential distribution to study scale mixtures of Rayleigh, Maxwell–Boltzmann,
Fréchet (Weibull–Gnedenko), Lévy (with zero bias) distributions, and some others. How-
ever, a natural question arises about the form of statistical estimates in the case when all
five parameters are unknown.

The difficulty in applying the considered method, based on equating theoretical
logarithmic cumulants to their sample counterparts, lies in the fact that the concentration
parameters enter the equations as arguments of polygamma functions.

There are many papers related to the study of polygamma functions. For example, the
Refs. [25,26] provide the estimates of polygamma functions and inverse polygamma func-
tions in terms of elementary functions, Riemann and Hurwitz zeta functions, and Bernoulli
numbers, and also investigate the monotonicity properties of expressions associated with
polygamma functions. However, the usefulness of these results for the statistical estimation
of the arguments of polygamma functions is not obvious yet.

Thus, the problem of developing effective theoretical methods of inverting polygamma
functions is an urgent and, apparently, unsolved problem. However, due to the strict
monotonicity and continuity of the polygamma functions, the possibility of numerical
inversion is obvious, which will allow for an estimation of all five parameters of the
gamma-exponential distribution using computer technologies. The solution to this problem
is a direction of further research of the authors.
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7. Conclusions

The paper considers the problem of estimating the parameters of the gamma-exponential
distribution, which is a generalization and an intermediate link between the generalized
gamma distribution and the generalized beta distribution of the second kind. A method
for estimating unknown parameters based on logarithmic cumulants is discussed. An
algorithm for eliminating unnecessary solutions obtained by solving a system based on
logarithmic cumulants is described. The asymptotic normality of the strongly consistent
estimators for the bent, shape and scale parameters of the gamma-exponential distribution
at fixed concentration parameters is proved. Based on this result, asymptotic confidence
intervals for the estimated parameters are constructed. The results are illustrated by nu-
merical examples constructed on the basis of model samples from the gamma-exponential
distribution, implemented using the representation of the gamma-exponential distribution
as a fractional-scale mixture of gamma distributions. Possible applications of the results in
the analysis of processes using continuous distributions with a non-negative unbounded
support are discussed.
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Abstract: We present new Monte Carlo algorithms for extracting mutual capacitances for a system
of conductors embedded in inhomogeneous isotropic dielectrics. We represent capacitances as
functionals of the solution of the external Dirichlet problem for the Laplace equation. Unbiased and
low-biased estimators for the capacitances are constructed on the trajectories of the Random Walk
on Spheres or the Random Walk on Hemispheres. The calculation results show that the accuracy of
these new algorithms does not exceed the statistical error of estimators, which is easily determined in
the course of calculations. The algorithms are based on mean value formulas for harmonic functions
in different domains and do not involve a transition to a difference problem. Hence, they do not need
a lot of storage space.

Keywords: capacitance; dirichlet boundary value problem; monte carlo method; unbiased estimator;
von-neumann-ulam scheme

1. Introduction

The problems of finding potentials and mutual capacitances for complex three-
dimensional objects have become widespread with the development of high-frequency
electrical engineering. In the case of one or two conductors, they can still be solved an-
alytically, but solving problems for systems of a large number of conductors of complex
shape causes significant difficulties. The more the operation frequency is, the more impact
on the system of parasitic capacitance and induction. This is true for radio frequency
communication devices, as well as very large-scale integration circuits and multilayer
printed-circuit boards [1,2].

In inhomogeneous media with permittivity ε(x) the electrostatic potential ϕ(x) satis-
fies the boundary value problem:

Δϕ = 0, x ∈ R3 \ (Γi ∪ Γd);
ϕ(x) −→

|x|→∞
0;

ϕ|Γi = ϕi, ϕi = const;
ϕ+(x) = ϕ−(x), x ∈ Γd;

ε+
∂ϕ+(x)

∂n = ε− ∂ϕ−(x)
∂n , x ∈ Γd;∮

Γi
ε

∂ϕ
∂n dS = −qi.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1)

Here Γi denotes the conductor surfaces, Γd is the union of the dielectric interfaces, n
is the external normal to Γd, |x| is Euclidean length of x, ϕ+ and ϕ− are the values of the
potential on different sides dielectric interfaces, ε+ and ε− are the permittivity constants
on different sides dielectric interfaces, ϕi are values of the potential on the Γi, dS is the
differential element of area, and qi is the charge on Γi (Figure 1).
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Γ3
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n
ε−(x) = ε2

ε+(x) = ε1

ϕ|Γ1 = ϕ1

ε = ε0

Γd2

Γd12

Γd = Γd1 ∪ Γd2 ∪ Γd12

Γ4

x

Figure 1. Domain for the boundary value problem.

Charges linearly depend on potentials [3]: qi = ∑m
j=1 Cij ϕj. Here, Cij is mutual electro-

static capacitance for the conductors i and j, it is known that Cij = Cji. Hence, Cij is equal
to the charge qi, when all potential ϕk = 0, if k 	= j, and ϕj = 1.

The analytical solution is only available for simple geometries [3], and could not be
used for real-life tasks. Another way is to use pattern-matching algorithms, but there
is dependency on available patterns and the quality of geometry approximation with
patterns [2,4].

The methods used most for computing capacitances in complicated three-dimensional
geometries are the boundary-element technique (for example, [5–7]) and Monte Carlo
methods (for example, [8–11]).

The boundary element method is used to solve the system of integral equations of
potential theory for the charge density on the surfaces of conductors. The charge on the
conductor is then calculated by integrating the density. The main drawbacks of these
methods are the necessity of approximation of the conductor’s surface, high random access
memory requirements, and additional computational error when equations are solved
using the iterative technique.

The Monte Carlo method is used to solve the Dirichlet boundary value problem (1).
Capacitance is calculated using the Gaussian formula through the normal derivative of
the potential. Monte Carlo algorithms for a boundary value problem are based on the
representation of its solution in the form of the mathematical expectation of some random
variable, which in mathematical statistics is called an unbiased estimator. A common
drawback for Monte Carlo methods isthe necessity of a large number of simulations, but
usually they are highly parallelizable and have low random access memory requirements.

There are various formulas for the average value for the potential, which determine
both the estimate itself and the type of Random Walk along the trajectories of which it is
calculated.

One of the first works on using Monte Carlo method for real-life capacitance extraction
is [8]. This article describes Random Walk on Cubes methods for rectilinear conductors
in a homogeneous medium. The proposed algorithm uses the mean value theorem for
the potential at the center of a cube. To simplify the procedure for modeling a Random
Walk, the problem was discretized. The development of the method of Random Walk
on Cubes in various directions (multiple dielectrics, non-Manhattan polygonal shapes,
optimizations) can be found, for example, in [12–14]. Besides the statistical error of Monte
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Carlo approximations, Walk on Cubes have additional bias because of the approximation
of Green’s function for cubes using the Fourier series.

In [15], Random Walk on Boundary was described for calculating conductor’s capac-
itance in free space, in [9] Random Walk on Spheres and Walk on Boundary were used
for estimating electrostatic properties of molecules, including cases for different (constant)
permittivities. These methods were extended in [16] for analysis on multidielectric inte-
grated circuits of arbitrary geometry from a scanning electron microscopy image. Besides
the statistical error of Monte Carlo approximations, there is additional bias, because of
various discretizations, that could not be estimated along with the calculations.

In this article we discuss algorithms of the Monte Carlo method that do not require
discretization of the boundary value problem. Consequently, there is no approximation
error in them. Due to this, it is possible to estimate the error of the approximate solution
of the problem during the calculations. Furthermore, Random Walks in unbounded
regions may not reach the boundary of the conductors in a finite time with a positive
probability. Forced completion of the trajectory leads to a bias in the estimate of the
potential, which authors usually do not take into account. Our proposed algorithms are
free from this drawback.

In our previous work [10,11], we developed algorithms for mutual capacitance calcu-
lation in homogeneous media on trajectories of a Walk on Spheres and in inhomogeneous
media on trajectories of a Walk on Hemispheres, when dielectric interfaces are polyhedral.
We summarize the main results of these works here.

In this paper, we also consider a new version of the Walk on Hemispheres and its
application to the calculation of electrostatic capacitances for systems with various dielectric
interfaces, including non-Manhattan geometries.

Using the examples of conductor systems for which the capacitances are calculated
analytically [3], it is shown that the accuracy of the Monte Carlo approximation is within the
statistical error. In more complex examples, the simulation results are compared with the
results of calculating these capacitances using the programs FastCap2 and FFTCap [6,17,18].

The paper is organized as follows. Section 2 introduces a description of the problem.
Section 3 describes different kinds of unbiased estimators for the capacitance. It begins
with a description of previously proposed algorithms in Sections 3.1 and 3.2, followed by
the description of a new version of the Walk on Hemispheres in Section 3.3, and finishes
with a description of the generic algorithm for capacitance extraction with these methods
in Section 3.4. Section 4 contains the numerical results for capacitance extraction, where we
compare the results of the proposed algorithms with analytical solutions or other programs.
Section 5 concludes the paper.

2. Integral Representation for the Capacitance

Using Gauss’s theorem we have

Cij = −
∮

Γ
ε

∂ϕ

∂n
dS, (2)

where Γ is the surface containing the i-th conductor inside and separating it from others
conductors and interfaces.

Using the Poisson formula, we obtain the following representation for the normal
derivative of the potential on the shell Γ:

∂ϕ(x)
∂n

=
1

4πr2

∮
Sr

3
r2 (y − x, n)ϕ(y)dyS, (3)

where x is a point on the shell around the i-th conductor, r is distance from point x to the
nearest conductor or interface, Sr is sphere of radius r centered at point x, y is a point on Sr
(Figure 2).
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Γ1

Γ2
x

y

Γ Γ3

r

Figure 2. First steps of Random Walk on Spheres for estimation of C1j. Here Γi are conductor’s
surfaces, Γ is a shell around first conductor.

Finally, replacing the normal derivative ∂ϕ/∂n by its integral representation in the
ball, which lies entirely in the region with the dielectric constant ε, we obtain an integral
representation of the mutual capacitance of the i-th and j-th conductors:

Cij = − 1
σΓ

∮
Γ

ε

r2

∮
Sr

3σΓ

4πr2 (y − x, n)ϕ(y)dySdxS, (4)

where σΓ is a surface area Γ.

3. Unbiased Estimators for the Capacitance

Using Formula (4) we have unbiased estimator for capacitance Cij

ξ =
3ε(X)σΓ

r
(ω, n)ϕ(X + rω). (5)

Here, a random point X is uniformly distributed on Γ, r = r(X), and ω is an isotropic
vector (random unit vector). It remains to estimate the potential at the point Y = X + r(X)ω.
This can be done using the mean value formula

ϕ(x) =
∫

Q
ϕ(y)P(x, dy), x ∈ Q, (6)

where Q = R3 \ D, and D is the set of interior points of all conductors. The unbiased
estimators for ϕ(Y) are constructed on trajectories of Random Walk {Yk}∞

k=0, (Y0 = Y),
in space Q. The kernel P(x, dy) must be stochastic or sub-stochastic. It determines the
distribution of the next point of the Random Walk over the current point.

Let

ξ0 =
3ε(X)σΓ

r
(ω, n). (7)

If at time k the “weight” Wk = P(Yk, Q) < 1, then the current value of the estimator
is multiplied by the “weight”: ξk+1 = Wkξk. The Random Walk stops at time ν, when it
reaches the δ-boundary of the conductors, that is, when the distance dist(Yk, ∂D) from
point Yk to the boundary of the conductors becomes less than the δ. Hence, it must satisfy
the condition P{ν < ∞} = 1. We define estimator ξδ = ξν, if dist(Yν, Γj) < δ, and
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zero, otherwise. If the boundary ∂D is smooth enough, then |Cij − Eξδ| < cδ, for some
constant c. In practice, the estimator ξδ is simulated in a reasonable time, only if Eξν < ∞.
Having received a sufficient number of realizations of the estimator ξδ and calculating their
arithmetic mean, we obtain an approximate value of the capacitance Cij.

We will now describe some of the types of Random Walks used to calculate the
capacitances of conductors.

3.1. Random Walk on Spheres for the External Dirichlet Problem

Random Walk on Spheres (WoS) is used to solve the external Dirichlet problem for
the Laplace equation [19], and allows for the calculation of the capacitances of conductors
in a homogeneous medium [10]. Let all the conductors lie inside a sphere SR of radius R
centered at the origin. Let ρ(y) be a continuous function such that c · dist(y, ∂D) ≤ ρ(y) ≤
dist(y, ∂D) for some constant c > 0.

By the mean value theorem for harmonic functions, we obtain ϕ(x) = Eϕ(x + ρ(x)ω)
for x ∈ R3 \ D. Let {ωk}∞

k=1 be a sequence of independent isotropic vectors. Then we get a
Random Walk

Yk+1 = Yk + ρ(Yk)ωk+1,

Y0 = Y,

Wk = 1,

k = 0, 1, 2, . . . .

To restrict the region of the Random Walk, we use the Poisson formula for |x| > R:

ϕ(x) =
1

4πR

∮
SR

|x|2 − R2

|x − y|3 dyS.

Namely, if |Yk| > R, then “weight” Wk = R/|Yk|, and Yk+1 is distributed on the sphere
SR with density

p(Yk, y) =
|Yk|2 − R2

|Yk − y|3 · |Yk|
4πR2 (8)

(Figure 3).

Γ1

Γ2
X

Y0

Γ Γ3

R
O

Figure 3. Random Walk on Spheres. Return on external sphere SR.
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It is proved [19] that the Random Walk on Spheres reaches the δ-neighborhood of the
boundary of the conductors in a finite time. The formulas for simulating the Random Walk
are also given.

3.2. Random Walk on Hemispheres

The Random Walk on Hemispheres (WoH) algorithm was proposed in [20] for solving
various boundary value problems for the Laplace and Poisson equations. It allows for the
calculation of capacitances when dielectric interfaces are polyhedral [11]. In cases when
surfaces of the conductors are also polyhedral, the algorithm gives unbiased statistical
estimators of the capacitances. We will now briefly describe this algorithm.

Let all the conductors and dielectric interfaces lie inside a sphere SR of radius R
centered at the origin. If |Yk| > R, then Yk+1 ∈ SR and has a distribution density (8).
“Weight” Wk = R/|Yk|.

Now, let Yk ∈ Γdl
, where Γdl

is a component of the dielectric interface. Next, we
choose the maximum r, such, that 0 < r < dist(Yk, D ∪ Γd \ Γdl

) and part of the Γdl
,

lying in sphere Sr(Yk), is plane. The sphere is divided into two parts S+
r (Yk) and S−

r (Yk)
lying in media with permittivity constants ε+ and ε−, respectively. The point Yk+1 is
uniformly distributed in S+

r (Yk) or in S−
r (Yk) with probability ε+/(ε+ + ε−) and ε−/(ε+ +

ε−) respectively (Figure 4).

ε+

ε− Yk

Figure 4. Random Walk on Hemispheres. Exit from interface.

If Yk /∈ Γd and |Yk| ≤ R, then Yk+1 is distributed on a sphere or hemisphere. The
center of the hemisphere Ŷk must be in a plane containing a face of the conductor surface
or interface and is the orthogonal projection of Yk onto this plane.

Hemisphere radius rk = |Yk − Ŷk|/β, where 0 < β < 1 is a fixed constant. The hemi-
sphere must be contained in a medium with a dielectric constant ε(Yk). The distribution
density of the point Yk+1 on the hemisphere is the normal derivative of the Green’s function
for the half of the ball

p(Yk, y) =

⎧⎪⎨⎪⎩
2rk β
4π

(
1

|Yk−y|3 −
1

(β|Y∗
k −y|)3

)
, y ∈ H,

rk
4π

(
1 − β2)( 1

|Yk−y|3 −
1

|Yk−y|3
)

, y ∈ S.
(9)
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Here H is the plane part, and S is the spherical part of the hemisphere. The point Yk
is symmetric to Yk relative to plane H. The point Y∗

k lies outside of the sphere S and it is
inverse to the point Yk (|Ŷk − Yk| · |Ŷk − Y∗

k | = r2) (Figure 5).

SH

YŶY Y∗Y∗

r

Figure 5. Random Walk on Hemispheres. Symmetrical points on hemisphere.

If it is impossible to construct such a hemisphere, then Yk+1 is distributed uniformly
on a sphere of radius rk = dist(Yk, D ∪ Γd), centered at Yk.

Von Neumann’s Acceptance-Rejection Method can be used to simulate density (9). To
do this, we write the density in the form

p(Yk, y) =
1

4π

cos ϕYky

|Yk − y|2
· k1(Yk, y), (10)

where ϕYky is the angle between the vector y − Yk and the external normal to the surface of
the hemisphere at the point y.

The first factor in this formula is the distribution density of the point Z on the surface
of the hemisphere and the vector ω = (Z −Yk)/|Z −Yk| is isotropic one. The second factor
does not exceed the constant M = max(M1, M2), where

M1 =
2
β

√
1 + β2

⎛⎝1 −
(

β√
1 + β2

)3
⎞⎠,

M2 =
√

1 + β2 1 + β

1 − β

(
1 −

(
1 − β

1 + β

)3
)

.

To select the next point of the random walk, we simulate an isotropic vector ω and a
random variable α with uniform distribution on [0, 1]. Then we define the point Z, in which
the ray emerging from the Yk in the direction ω crosses the hemisphere. If αM < k1(Yk, Z),
then Yk+1 = Z. Otherwise, it is necessary to repeat the simulation until the inequality is
true (Figure 6).
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Γ1

Γ2
X

Y0

Γ

Y1

Γ3

Ŷ1

Figure 6. Random Walk on Hemispheres. Jump on hemisphere.

3.3. Random Walk on Hemispheres for a Convex Dielectric Interfaces (RWHC)

Let γ be a connected convex part of some dielectric interface Γdl
lying inside a sphere

Sr(x) of radius r, centered at point x. For all y ∈ Γdl
we choose the direction of the normal

vector ny so, that the surface Γdl
lies in the half-space (z − y, ny) ≤ 0. Surface γ divides the

sphere into two parts S+ and S−, lying in media with permittivity constants ε+ and ε−,
respectively, and (z − y, ny) ≤ 0 for all z ∈ S−.

The potential ϕ(x) is a harmonic function for the part of the ball bounded by surfaces
S−, γ and part of the ball bounded by surfaces S+, γ also. Using the second Green’s
formula for a harmonic function in a bounded domain, we obtain the following Theorem.

Theorem 1. Let λ = ε+/ε− and let ϕxy be the angle between vectors ny, y − x. Then the potential
ϕ(y) satisfies the mean value formulas:

ϕ(x) =
1

1 + λ
· 1

2πr2

∫
S−

ϕ(y)dyS +
λ

1 + λ
· 1

2πr2

∫
S+

ϕ(y)dyS +

+
1 − λ

1 + λ
· 1

2π

∫
γ

cos ϕxy

|x − y|2 ϕ(y)dyS, x ∈ γ, (11)

ϕ(x) =
1

4πr2

∫
S−

ϕ(y)dyS + λ · 1
4πr2

∫
S+

ϕ(y)dyS +

+ (1 − λ) · 1
4π

∫
γ

cos ϕxy

|x − y|2 ϕ(y)dyS, x /∈ γ, ε(x) = ε−, (12)

ϕ(x) =
1

4πr2

∫
S+

ϕ(y)dyS +
1
λ
· 1

4πr2

∫
S−

ϕ(y)dyS −

−
(

1 − 1
λ

)
· 1

4π

∫
γ

cos ϕxy

|x − y|2 ϕ(y)dyS, x /∈ γ, ε(x) = ε+. (13)

If λ < 1, the Formula (11) defines the stochastic kernel. To simulate the transition from
the surface γ, we chose with the probability λ/(1 + λ) a random direction ω, that satisfies
the condition (ω, nx) > 0, and define Y = x + rω. With probability 1/(1 + λ), we simulate
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a random direction ω satisfying the condition (ω, nx) < 0. We calculate Y = x + rω. If
Y /∈ S−, we change Y to a point Z ∈ γ, which is visible from x in the direction ω (Figure 7).

ε−

ε+ < ε−
S+

S−

x
γ

n

Y
ω

ε−

ε+ < ε−

S−

x

γ

n

Y

S+

ω

ε−

ε+ < ε−

S−

x
γ

n

S+

Z

Figure 7. RWHC. Jump from convex part of interface.

If λ < 1, the Formula (12) defines the stochastic kernel also. To simulate the transition
from x, we simulate a random direction ω and calculate Y = x + rω. If Y /∈ S−, than with
probability 1 − λ we change Y to a point Z ∈ γ, which is visible from x in the direction ω
(Figure 8).

ε−

ε+ < ε−

S+

S−

x
γ

Y
ω

ε−

ε+ < ε−

S+

S−

x
γ

Y
ω

ε−

ε+ < ε−

S+

S−

Z
x

γ

Figure 8. RWHC. Jump from dielectric with higher permittivity.

If λ > 1, the Formula (13) defines the stochastic kernel, if any ray outgoing from
point x intersects γ at no more than one point. The modeling procedure is similar to the
algorithm for the Formula (12).

Thus, Formulas (11)–(13) make it possible to simulate transitions from a region with
a higher dielectric constant to a region with a lower dielectric constant. To pass from
point x through the interface Γdl

, it is sufficient to take such r ≤ dist(x, D ∪ Γd \ Γdl
) that

Sr(x) ∩ Γdl
	= ∅. Reverse transitions can be provided using, for example, formulas for

solving external and internal Dirichlet problems for standard domains. The exit from
the “bad” point x can be done by Random Walk on Spheres or Hemispheres in the set
Q(x) = {y|ε(y) = ε(x)}. As always, from distant points of the external medium there is a
transition to the sphere SR.

3.4. Algorithm for Mutual Capacitance Calculation

On this basis we could describe algorithm for capacitance estimation as follows:

1. For each conductor i select shell Γi, that separate it from other conductors and dielec-
tric interfaces.

2. Select radius R for, centered at the origin, “outer” sphere, that contains all conductors
and shells.

3. Select point X uniformly on Γi and Y uniformly on sphere of radius r = r(X) =
dist(X,∪n

k=1,k 	=iΓk) centered at X. Set ξ0 as shown in (7).
4. From point Y started appropriate kind of Walk on Hemispheres (see Sections 3.2 and 3.3).
5. If at some step n process exit outside of sphere SR, next point is selected at sphere SR

and “weight” updated, as described in Section 3.1.
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6. Otherwise, if at some step n, Yn located at flat surface of k-th conductor or at δ-
neighborhood of non-flat surface of k-th conductor, estimation ξn included into Cik
accumulator and number of trajectories, that used this conductor for evaluation is
incremented by 1. (Because Cij = Cji, we could use the same accumulator and counter
for both of them.) Values in other accumulators Cij are not changed, but the number
of trajectories for j-th conductor is also incremented by 1 with the exception of nested
conductors: if j-th conductor is inside i-th, its number of trajectories is not changed.

7. If the number of evaluated trajectories is not sufficient, return to step 3.
8. The approximation for capacitance Cik is calculated as value stored in the corre-

sponded accumulator divided by the stored number of trajectories for this accu-
mulator. If the system contains nested conductors, the self-capacitance of external
conductor m is updated as Cmm = Cmm −∑j:Dj⊂Dm Cjm (here sum is taken by numbers
of conductors that are located inside m-th).

4. Results

4.1. Mutual Capacitance of Two Spheres in Free Space

Mutual capacitance for two spheres could be calculated analytically [3]. When spheres
are not nested:

C1,1 = 4πεr1r2 sinh α
∞

∑
n=1

1
r2 sinh(nα) + r1 sinh[(n − 1)α]

;

C1,2 = −4πε
r1r2 sinh α

d

∞

∑
n=1

1
sinh(nα)

;

C2,2 = 4πεr1r2 sinh α
∞

∑
n=1

1
r1 sinh(nα) + r2 sinh[(n − 1)α]

;

cosh α =
d2 − r2

1 − r2
2

2r1r2

where r1 and r2 are radii, d—distance between sphere centers. For nested spheres (r2 > r1):

C1,1 = 4πεr1r2 sinh α
∞

∑
n=1

1
r2 sinh(nα)− r1 sinh[(n − 1)α]

;

C1,2 = −C1,1;

cosh α = −d2 − r2
1 − r2

2
2r1r2

.

In Table 1 results of mutual capacitance estimation for two non-nested spheres using
Walk on Spheres are presented. Here and below Δ is error estimation, calculated as triple
square root of ratio of sample variance to number of trajectories, Time is “wall time” of
calculation, and Memory is a peak memory usage. Calculations were performed on one
personal computer (PC) with central processing unit (CPU) “AMD Ryzen 7 2700 Eight-Core
Processor 3.20 GHz”. Monte Carlo simulations were performed in parallel by eight worker
processes on one PC using the Message Passing Interface, and memory usage is at its peak
for one worker process. FastCap2 and FFTCap are 32-bit single-threaded applications,
so no parallel execution were used for them. It should also be noted that we have not
used additional optimizations, so the calculation time could be improved for the Monte
Carlo case, for example, by using a different pseudo random number generator or using
optimizations in distance calculations.
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1st sphere radius: 5;
1st sphere center: (1, 2, 3);
1st sphere shell radius: 8;
2nd sphere radius: 3;
2nd sphere center: (10, 13, 12);
2nd sphere shell radius: 8;
“External” sphere radius: 31.155;
δ: 10−8.

Table 1. Mutual capacitance estimation for two non-nested spheres, Ci,j/4πε0.

Method 1,1 Δ 1, 2 Δ 2, 2 Δ Time Memory

Analytical 5.29133 – −0.94883 – 3.18564 – – –

WoS, 105 5.14975 2.711 · 10−1 −0.93335 5.799 · 10−2 3.24719 1.268 · 10−1 – 11 Mb

WoS, 107 5.29655 2.717 · 10−2 −0.94894 5.805 · 10−3 3.19233 1.263 · 10−2 40 s 11 Mb

Usually, the bias order is the same as the order of δ, so, in this and following examples,
error of methods is equal to statistical error. We will say that results of the estimation are
matched, when the modulus of difference between the Monte Carlo estimation and the
reference solution are not more than the statistical error (|re f − est| ≤ Δ). As we can see
in the Table 1, the analytical solution and our estimation are matched, so the algorithm is
working correctly.

In Table 2, results of mutual capacitance estimation for two nested spheres using Walk
on Spheres (WoS) are presented. There is no formula for C22 in the case of two nested
spheres in [3], so we do not show the estimation results for this value.

1st sphere radius: 3;
1st sphere center: (10, 13, 12);
1st sphere shell radius: 5;
2nd sphere radius: 31;
2nd sphere center: (1, 2, 3);
2nd sphere shell radius: 35;
“External” sphere radius: 42.616;
δ: 10−8.

Table 2. Mutual capacitance estimation for two nested spheres, Ci,j/4πε0.

Method 1,1 Δ 1,2 Δ Time Memory

Analytical 3.47735 – −3.47735 – – –

WoS, 105 3.48643 1.531 · 10−1 −3.53438 1.292 · 10−1 – 11 Mb

WoS, 107 3.47455 1.531 · 10−2 −3.47807 1.289 · 10−2 30 s 11 Mb

Estimation results in Table 2 are within statistical error, so analytical solution and our
estimation are matched.

4.2. Capacitance of “Coated” Sphere

In Tables 3 and 4, results of capacitance estimation for the conductive sphere of radius
a encased in concentric spherical dielectric of radius b with relative permittivity ε using
RWHC are presented. In this example, the external sphere radius is equal to the dielectric

shell radius. Analytical solutions for this case is
16π2εε0ab
εa + b − a

[3]. Also here we compare

results with FastCap2 (FC2) [18] (correspondent sphere discretization was made using
spheregen tool from [21] with refine depth 5).
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Table 3. Capacitance estimation for coated sphere, C/4πε0.

a = 1, b = 3 Anal. FC2 RWHC, 106 Δ RWHC, 108 Δ

ε = 2 1.5000 1.5018 1.4813 3.111 · 10−2 1.4994 3.114 · 10−3

ε = 10 2.5000 2.5872 2.4403 1.889 · 10−1 2.5094 1.889 · 10−2

ε = 100 2.9411 4.3926 2.7198 2.055 2.8966 2.055 · 10−1

Comparing values in columns 2, 4, 5 of Table 3 we conclude that the analytical solution
and RWHC estimation are matched in all cases. However, comparing columns 2 and 3,
we can see that the estimation error for FC2 grows up with ε (as it is stated in [7]). So we
can state, that RWHC working correctly with high permittivities too, but more number of
simulation may be needed to get estimation with desired statistical error.

Table 4. Capacitance estimation for coated sphere. Time and memory usage.

FC2 RWHC, 108

a = 1, b = 3, ε = 2
Time, s 9 158
Memory, Mb 899 11

a = 1, b = 3, ε = 10
Time, s 9 148
Memory, Mb 899 11

a = 1, b = 3, ε = 100
Time, s 9 147
Memory, Mb 900 11

Table 4 shows that RWHC is used more often than boundary-element technique-based
methods, such as FC2, but use much less memory.

4.3. Mutual Capacitance of Two Spheres in Spherical Dielectric

In the Tables 5 and 6 results of mutual capacitance estimation using FC2 (correspon-
dent sphere discretization was made using spheregen tool from [21] with refined depth 5)
and RWHC for two conductive spheres in spherical dielectric (Figure 9) are presented. In
this case external sphere radius is set to the dielectric shell radius.

1st sphere radius: 5;
1st sphere center: (1, 2, 3);
1st sphere shell radius: 6;
2nd sphere radius: 3;
2nd sphere center: (10, 3, 11);
2nd sphere shell radius: 4;
Dielectric ball radius: 20;
δ: 10−8.
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Figure 9. Two spheres in dielectrical shell.

Table 5. Mutual capacitance estimation for two spheres in dielectric shell, Ci,j/4πε0.

i, j FC2 RWHC, 106 Δ RWHC, 108 Δ

ε = 2
1, 1 9.8444 9.9718 1.597 · 10−1 9.8192 1.598 · 10−2

1, 2 −3.3396 −3.3463 2.254 · 10−2 −3.3440 2.260 · 10−3

2, 2 6.0965 6.1454 6.760 · 10−2 6.0968 6.755 · 10−3

ε = 10
1, 1 33.262 33.440 8.264 · 10−1 32.890 8.270 · 10−2

1, 2 −21.038 −21.045 1.317 · 10−1 −21.118 1.318 · 10−2

2, 2 25.380 25.424 3.495 · 10−1 25.276 3.494 · 10−2

In this case we have no analytical solutions for reference, so we compare our results
with FC2. But we also have no error estimation for FC2 result, so we could not guarantee
that the difference will be within statistical margin of error. Comparing results in columns
2 and 3 of Table 5 we could say that the estimations are matched, but it is not true for
columns 2 and 4. In previous cases we ascertained that RWHC is matched with the
analytical solution. Also, in this case, we can see that results in columns 3 and 4 are
matched. So we can state that in this case the estimation error with FC2 is more than with
RWHC on 108 trajectories.

Table 6. Mutual capacitance estimation for two spheres in dielectric shell. Time and memory usage.

FC2 RWHC, 108

ε = 2
Time, min 13 3
Memory, Mb 1710 11

ε = 10
Time, min 14 3
Memory, Mb 1712 11

In Table 6 we can see that RWHC is better both in time and memory. This is due to the
fact that for FC2 spheres should be approximated with a large number of panels. Also, we
can see that with the refinement depth we used, we have almost reached the memory limit
for the original 32-bit fastcap application, so we cannot compare to these results with better
discretization.

4.4. Mutual Capacitance of Two Spheres in Spherical Dielectrics

In Tables 7 and 8, results of mutual capacitance estimation using FC2 (correspondent
sphere discretization was made using the spheregen tool from [21] with refined depth 5)
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and RWHC for two conductive spheres, each in its own spherical dielectric, (Figure 10) are
presented.

1st sphere radius: 5;
1st sphere center: (1, 2, 3);
1st dielectric radius: 9;
1st dielectric center: (2, 3, 4);
Relative permittivity of 1st dielectric: 2;
2nd sphere radius: 3;
2nd sphere center: (10, −3, 20);
2nd dielectric radius: 6;
2nd dielectric center: (10, −4, 20);
Relative permittivity of 2nd dielectric: 5;
External sphere radius: 30;
δ: 10−8.

Figure 10. Two spheres in dielectrical shells.

Table 7. Mutual capacitance estimation for two spheres in dielectric shells, Ci,j/4πε0.

i, j FC2 RWHC, 106 Δ RWHC, 108 Δ

1, 1 7.0277 7.0672 1.655 · 10−1 7.0255 1.654 · 10−2

1, 2 −1.8095 −1.7865 2.002 · 10−2 −1.8003 1.997 · 10−3

2, 2 5.5841 5.6409 1.866 · 10−1 5.4919 1.866 · 10−2

There are no reference analytical solutions in this case either. Using the results from
Table 7, we have reached the same conclusion as in the previous case.

Table 8. Mutual capacitance estimation for two spheres in dielectric shells. Time and memory usage.

FC2 RWHC, 108

Time, s 17 296
Memory, Mb 1775 11

4.5. Mutual Capacitance of Parallel “Pins”

In Tables 9 and 10, the results of the mutual capacitance estimation using FFT-
Cap [17,18] (correspondent discretization was made using cubegen tool from [18] with
5 panels per side) and Walk on Hemispheres for 81 conductive “pins” placed in uniform
lattice points (Figure 11) are presented. The full capacitance matrix has dimensions of
81 × 81, so we show only a few values in the table.
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Pin size: 1 × 1 × 10;
Cell size: 2 × 2;
Shell offset: 0.05;
β: 0.5;
“External” sphere radius: 14.786;
δ: 10−16.

Figure 11. 9 × 9 conductive pins.

Table 9. Mutual capacitance of 9 × 9 conductive pins, Ci,j/4πε0.

i, j FFTCap WoH, 105 Δ WoH, 107 Δ

1, 1 3.9865 3.9447 2.874 · 10−1 4.0079 2.855 · 10−2

1, 2 −1.3384 −1.3553 7.000 · 10−2 −1.3545 7.048 · 10−3

1, 81 −5.9305 · 10−3 −7.2766 · 10−3 3.514 · 10−3 −5.9480 · 10−3 3.455 · 10−4

In this case objects have flat faces, so this task is “good” for FFTCap and we can take
this solution as reference. The results from Table 9 shows that the estimations are matched.
Also, we could see that, besides matching statistical error, the results for WoH estimation
when i = 1, j = 81 have a larger statistical error than in other cases (about 6%). This is
due to the fact that these conductors are located in opposite corners of the lattice, so only a
small number of trajectories started near the first conductor will end on 81st. In this case,
to get an estimation with the desired statistical error, more simulations may be required.
For example, with 108 trajectories we get the value of −6.0515 · 10−3 and statistical error of
1.087 · 10−4 (less than 2%).

Also we could estimate difference with FFTCap results by norm: let A—FFTCap result

matrix, B—WoH result matrix for 107 trajectories from each conductor, then
‖A − B‖F
‖A‖F

≈
0.009, where ‖A‖F is Frobenius norm of matrix A.

Table 10. Mutual capacitance of 9 × 9 conductive pins. Time and memory usage.

FFTCap WoH, 107

Time, min 10 34
Memory, Mb 239 12

4.6. Mutual Capacitance of Rectangular Parallelepipeds in Dielectric Shells

In Tables 11 and 12, the results of mutual capacitance estimation using FC2 (cor-
respondent sphere discretization was made using the spheregen tool from [21] with 10
and 15 panels per side) and Walk on Hemispheres for three conductive rectangular paral-
lelepipeds in parallelepipedic dielectrics (Figure 12) are presented.
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Conductor size: 10 × 10 × 1;
Dielectric size: 12 × 12 × 3;
C1 origin: (1, 1, 1);
Diel1 origin: (0, 0, 0);
ε1: 2;
C2 origin: (1, 1, 4);
Diel2 origin: (0, 0, 3);
ε2: 4;
C3 origin: (1, 1, 7);
Diel3 origin: (0, 0, 6);
ε3: 3;
Shell offset: 0.25;
β: 0.5;
“External” sphere radius: 19.714;
δ: 10−8.

Figure 12. Rectangular parallelepipeds in dielectric shells.

Table 11. Mutual capacitance of rectangular parallelepipeds in dielectric shells, Ci,j/4πε0.

i, j FC2, n = 10 FC2, n = 15 WoH, 106 Δ WoH, 108 Δ

1, 1 17.491 17.468 17.650 8.663 · 10−1 17.452 8.661 · 10−2

2, 1 −14.252 −14.247 −14.144 2.377 · 10−1 −14.218 2.374 · 10−2

2, 2 34.100 34.092 34.381 1.736 34.030 1.737 · 10−1

3, 1 −0.848 −0.855 −0.875 5.204 · 10−2 −0.861 5.164 · 10−3

3, 2 −18.284 −18.264 −18.094 2.898 · 10−1 −18.223 2.899 · 10−2

3, 3 21.787 21.766 21.827 1.314 21.676 1.314 · 10−1

As before, we can compare the RWHC results with the FC2 estimation. In Table 11,
the results are not matched between FC2 and RWHC with 108 trajectories when i = 2,
j = 1. Because WoH results are matched for 106 and 108 trajectories and FC2 results with
15 panels per side are closer to our estimation than results with 10 panels per side, we
could assume that this discrepancy is related to an FC2 estimation error, as in example
Section 4.3.

Table 12. Mutual capacitance of rectangular parallelepipeds in dielectric shells. Time and memory
usage.

FC2, n = 10 FC2, n = 15 WoH, 108

Time, s 4 8 3840
Memory, Mb 270 591 11
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4.7. Mutual Capacitance of “Woven Bus”

In Tables 13 and 14, the results of mutual capacitance estimation using FFTCap [18]
(correspondent discretization was made using wovengen tool from [21] with 10 panels per
side) and Walk on Hemispheres for 9 × 9 woven bus [7] (Figure 13) are presented.

Width: 1;
Segment length: 8;
Distance between wovens: 1;
Shell offset: 0.1;
β: 0.5;
δ: 10−8.

Figure 13. 9 × 9 woven bus.

Table 13. Mutual capacitance of “woven bus”, Ci,j/4πε0.

FFTCap WoH, 106 Δ WoH, 108 Δ

1, 1 8.7662 8.7338 3.565 · 10−1 8.7480 3.566 · 10−2

1, 2 −5.1204 · 10−2 −5.3310 · 10−2 8.066 · 10−3 −5.1310 · 10−2 8.013 · 10−4

1, 18 −1.0981 −1.1145 5.534 · 10−2 −1.0996 5.476 · 10−3

The results in Table 13 match. The difference with FFTCap results also could be
evaluated by norm: let A—FFTCap result matrix, B—WoH result matrix for 108 trajectories

from each conductor, then
‖A − B‖F
‖A‖F

≈ 0.001.

Table 14. Mutual capacitance of “woven bus”. Time and memory usage.

FFTCap RWHC, 108

Time, min 16 176
Memory, Mb 1863 12

5. Conclusions

We developed some new numerical algorithms for extracting capacitances. These algo-
rithms do not use the approximation of the Laplace operator by its difference counterpart.
Their computational error is determined by the sum of the statistical error and the value
of the estimator bias. The statistical error is determined in the course of calculations. The
systematic error of the estimator is equal to the error when we approximate the potential at
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points lying near the boundary of the conductor by values at the boundary. This error is
controlled by the parameter δ.

The Random Walk on Spheres algorithm is universal in the case of a homogeneous
dielectric. It works for conductors with any geometry.

The Random Walk on Hemispheres is applied when dielectric interfaces are polyhedral.
In cases when surfaces of the conductors are also polyhedral, the algorithm gives unbiased
statistical estimators of the capacitances. The accuracy of this algorithm is equal to the
statistical error of the estimators, which is easily determined in the course of calculations.

The Modified Random Walk on Hemispheres algorithm works for convex dielectric
interfaces.

Computational experiments show that the algorithms are effective. For systems
where capacitances are calculated analytically [3], it is shown that the accuracy of the
Monte Carlo approximation is within the statistical error (see Tables 1–3). In more complex
examples, to prove that the Monte Carlo estimation results are correct, we have matched
them with the results of the calculation of the capacitances using the non-Monte Carlo
methods implemented in the FastCap2 and FFTCap programs [18] (see Tables 5, 7, 9, 11
and 13). The algorithm also works correctly in cases when the ratio of the permittivities is
100 or more (see Table 3).

Monte Carlo simulation times for different cases were presented with numerical re-
sults, but these are not final and could be improved upon, even with the same configuration
of PC, by using another implementation of the pseudo random number generator, for ex-
ample, or using a function for calculating distance that is optimized for a particular task.
For example, by using another implementation of pseudo random number generator, or
using function for calculating distance, that is optimized for particular task.
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Abstract: In this paper, a multi-server retrial queue with two orbits is considered. There are two
arrival processes of positive customers (with two types of customers) and one process of negative
customers. Every positive customer requires some amount of resource whose total capacity is limited
in the system. The service time does not depend on the customer’s resource requirement and is
exponentially distributed with parameters depending on the customer’s type. If there is not enough
amount of resource for the arriving customer, the customer goes to one of the two orbits, according
to his type. The duration of the customer delay in the orbit is exponentially distributed. A negative
customer removes all the customers that are served during his arrival and leaves the system. The
objects of the study are the number of customers in each orbit and the number of customers of each
type being served in the stationary regime. The method of asymptotic analysis under the long delay
of the customers in the orbits is applied for the study. Numerical analysis of the obtained results is
performed to show the influence of the system parameters on its performance measures.

Keywords: retrial queue; negative customers; resource heterogeneous queue; asymptotic analysis

1. Introduction

The theory of queuing systems with repeated calls (Retrial Queue) is an important
section of the modern teletraffic theory, the relevance of which is due to wide practical
applications, such as the performance evaluation and design of broadcast, radio, and
cellular networks, as well as local networks with the random multiple access protocols.
In the monographs [1–3], the detailed survey of recent queuing models applications in
telecommunication, modern computer networks, and information systems are presented.

The retry phenomenon is the integral feature of data transmission systems, and this
phenomenon ignored in theoretical research can lead to significant errors in engineering
decisions. Many multimedia and service applications on subscriber devices can automati-
cally generate such requests, without any relative restrictions. Such unaccounted traffic
consumes the channel resource in excess of the planned one. On the network sections, over-
flows begin to appear, that leads to the service rejection; thus, it generates more repeated
calls again.

A large number of publications has been devoted to the study of retrial queues. The most
extensive reviews of significant results, up to 2008, are presented in the monographs [4,5].

Queuing models with negative customers [6–8], or G-queues, are useful models for the
analysis of multiprocessor computer systems, neural networks, communication systems,
and manufacturing [9,10]. In its simplest version, a negative customer (negative arrival)
has the effect of a positive (ordinary) customer(s) being deleted according to some strategy.
For example:

• a negative arrival eliminates all the customers in the system or in its part, e.g., under
the service or in the buffer (catastrophes);
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• a negative arrival removes a customer from the system, e.g., from the server, from the
head of the queue, or its end;

• a negative arrival breaks the service device, etc.

Negative arrivals are interpreted as viruses, orders or inhibitor signals, etc. The
detailed overview of G-queues is presented in Reference [11]. Retrial queuing systems with
negative arrivals have been considered, for example, in References [12–15]. The effects of
negative customers considered in these papers are close to the effect of breakdowns. Retrial
queues with breakdowns have been studied in References [16–19].

Other features of modern data transmission systems are random amounts of trans-
mitted data and requests for additional resources. Often, in telecommunication systems,
calls come from different sources and have different service time characteristics and dif-
ferent priorities, or they need more than one service device, etc. These features make the
system analysis more complex. Identifying these aspects and analyzing their influence
on the systems allow to optimize networks for loss reduction. Such mathematical models
are called queuing systems with a random volume of the customers or resource queuing
systems [20–28]. Resource queuing systems are applied in modern wireless communication
networks, cloud computing systems, technical devices, or next-generation data transmis-
sion networks. It is known that, in classical queuing theory, the evaluation of almost all
performance characteristics leads us to the analysis of a stochastic process of the number
of customers in the system. However, it is insufficient if we would like to determine a
buffer space capacity of a communication network’s node which guarantees small losses of
transmitted data [20,21,23]. Incoming customers can request some resources (for example,
the amount of memory). The requests may be random or deterministic. In queuing models,
the total amount of resource is usually limited by a constant value R > 0, which is called
the buffer space capacity of the system. The buffer space is occupied by a customer at the
arrival epoch and is entirely released at the service finish epoch. If value R is finite, it leads
to additional losses of customers. The complexity of the study of resource systems is due
to an universal approach does not exist. We use asymptotic methods [15,27,29], which
give asymptotic expressions of the studied system characteristics that are acceptable for
practical usage. A retrial queuing system with limited processor sharing (close to resource
systems) is considered in Reference [30].

In the paper, the model under study is a non-classical retrial queuing system with non-
homogeneous customers. The main feature of the research is the consideration of possible
failures in the system. In the paper, we apply the theory of G-queues [6] for modeling
breakdowns in real networks. A breakdown is represented by negative customers arriving
at the queuing system and removing all served customers if any is present. So, we research
the queuing system with all mentioned above features: repeated calls, negative customers,
and resource. Such a model can be applied, for example, for 5G New Radio systems. The
key feature and the main problem of the 5G New Radio network is that people themselves,
cars, buildings, etc., are signal blockers, which is the cause of service interruptions. In this
reasoning, the scientific community has the task of analyzing the performance of these
systems and improving it in the future. Currently, there are known studies of “basic”
mathematical models of such networks. However, due to introducing this technology into
the daily lives of subscribers, we need to propose and analyze of the most appropriate
mathematical models.

The considered mathematical model is described in Section 2. In Section 3, the method
of asymptotic analysis is proposed and applied for the study. The numerical analysis is
presented in Section 4. It includes a comparison of asymptotic and simulated distributions,
numerical examples for various values of the model parameters, and calculation of some
performance characteristics, such as the probability of the first time rejecting (or, in other
words, it is a joining probability) and buffer space utilization. The problems and discussions
about the applicability of the obtained approximations are presented in the conclusion.
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2. Mathematical Model

Let us consider the multi-server retrial queue (Figure 1) with two positive and one
negative arrival processes. We call customers arrived in the k-th positive arrival process
customers of the k-th type (k ∈ {1, 2}). All the processes are Poisson with parameters
λ1, λ2 (for the first and the second type of positive customers), and α (for the negative
ones). Positive customers need the service, and the service laws are exponential with
parameters μ1 and μ2 for the first and the second type of customers, respectively. In
addition, each positive customer requires a deterministic amount of resource (x1 or x2,
respectively); therefore, a customer occupies some amount of resources during his service.
The service time does not depend on customer’s resource requirement. The service unit
has a limited capacity of resources, which equals to R. The number of servers N is limited
but large enough. If the customer cannot be served at the arrival moment (there is not
enough amount of the resource), it goes to the corresponding orbit (some virtual place). The
duration of the customers delay in the orbits is distributed exponentially with parameters
σ1 and σ2, respectively. The negative customer deletes all customers being served in the
service unit at his moment of arrival.

Figure 1. Resource retrial queue with two orbits and negative customers.

The goal of the paper is to study four-dimensional stochastic process

X(t) = (N1(t), N2(t), I1(t), I2(t)),

where Nk(t) is the number of k-type customers in the service unit at the moment t, and
Ik(t) is the number of customers in the k-th orbit at the moment t. Then, the state space has
the form:

X = {(n1, n2, i1, i2) : x1n1 + x2n2 ≤ R, ik ≥ 0, k = 1, 2},

where nk is a value of the process Nk(t), and ik is a value of the process Ik(t), where k = 1, 2.
Traditionally, continuous-time Markov chains can be represented as a transition graph.

In Figure 2, we depict such a graph for the considered Markov chain X(t). The ovals
on the graph represent the states, and the arrows show the possible transitions and their
intensities. In addition, next to each state, we show the condition under which it exists,
knowing that the central state (any state) on the graph is (n1, n2, i1, i2) ∈ X.

Let us consider in more detail the possible events that cause a change in the state of
the considered Markov chain:

• the negative customer arrival with intensity α, so the number of customers from both
types being serviced becomes equal to 0 (transitions (k1, k2, i1, i2) → (n1, n2, i1, i2) and
(n1, n2, i1, i2) → (0, 0, i1, i2));

• the first type arrival with intensity λ1:
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– if there is a sufficient resource amount for the customer, it gets serviced; therefore,
the number of customers of the first type being serviced increases by 1 (transitions
(n1, n2, i1, i2) → (n1 + 1, n2, i1, i2) and (n1 − 1, n2, i1, i2) → (n1, n2, i1, i2));

– otherwise, the customer goes to the orbit and waits for the retrial; therefore, the
number of customers in the first orbit increases by 1 (transitions (n1, n2, i1, i2) →
(n1, n2, i1 + 1, i2) and (n1, n2, i1 − 1, i2) → (n1, n2, i1, i2));

• the end of first type customer service with an intensity n1μ1; therefore, the number of
customers of the first type being serviced is reduced by 1 (transitions (n1, n2, i1, i2) →
(n1 − 1, n2, i1, i2) and (n1 + 1, n2, i1, i2) → (n1, n2, i1, i2));

• the successful retrial to service of the first type customer with an intensity i1σ1; there-
fore, the number of customers in the first orbit is reduced by 1, and the number of
customers of the first type being serviced is reduced by 1 (transitions (n1, n2, i1, i2) →
(n1 + 1, n2, i1 − 1, i2) and (n1 − 1, n2, i1 + 1, i2) → (n1, n2, i1, i2));

• similarly, we have transitions for the second type customers.

Figure 2. Graph of the input/output transitions of central state.

So, we will find the stationary probabilities

p(n1, n2, i1, i2) = Pr{N1(t) = n1, N2(t) = n2, I1(t) = i1, I2(t) = i2}.
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Let us write the following system of equations for them:

p(n1, n2, i1, i2)[λ1 + λ2 + n1μ1 + n2μ2 + i1σ1 I((n1 + 1)x1 + n2x2 ≤ R, i1 > 0)+

i2σ2 I(n1x1 + (n2 + 1)x2 ≤ R, i2 > 0) + αI(n1 + n2 	= 0)] =

λ1 p(n1 − 1, n2, i1, i2)I(n1 > 0) + λ2 p(n1, n2 − 1, i1, i2)I(n2 > 0)+

λ1 p(n1, n2, i1 − 1, i2)I((n1 + 1)x1 + n2x2 > R, i1 > 0)+

λ2 p(n1, n2, i1, i2 − 1)I(n1x1 + (n2 + 1)x2 > R, i2 > 0)+

(n1 + 1)μ1 p(n1 + 1, n2, i1, i2)I((n1 + 1)x1 + n2x2 ≤ R)+

(n2 + 1)μ2 p(n1, n2 + 1, i1, i2)I(n1x1 + (n2 + 1)x2 ≤ R)+

(i1 + 1)σ1 p(n1 − 1, n2, i1 + 1, i2)I(n1 > 0) + (i2 + 1)σ2 p(n1, n2 − 1, i1, i2 + 1)I(n2 > 0)

+α ∑
(k1,k2,i1,i2)∈X

p(k1, k2, i1, i2)I(k1 + k2 	= 0)I(n1 + n2 = 0),

(1)

where

I(A) =

{
1, if A is true,
0, if A is false.

From System (1), we write several equations for different states.

(a) For n1x1 + n2x2 = 0 :

p(0, 0, i1, i2)[λ1 + λ2 + i1σ1 + i2σ2] =

p(1, 0, i1, i2)μ1 + p(0, 1, i1, i2)μ2 + α ∑
(k1,k2,i1,i2)∈X

p(k1, k2, i1, i2)I(k1 + k2 	= 0).

(b) For [(n1 + 1)x1 + n2x2 ≤ R] ∩ [n1x1 + (n2 + 1)x2 ≤ R] :

p(n1, n2, i1, i2)[λ1 + λ2 + n1μ1 + n2μ2 + i1σ1 + i2σ2 + α] =

p(n1 − 1, n2, i1, i2)λ1 I(n1 > 0) + p(n1, n2 − 1, i1, i2)λ2 I(n2 > 0)+

p(n1 + 1, n2, i1, i2)(n1 + 1)μ1 + p(n1, n2 + 1, i1, i2)(n2 + 1)μ2+

p(n1 − 1, n2, i1 + 1, i2)(i1 + 1)σ1 I(n1 > 0)+

p(n1, n2 − 1, i1, i2 + 1)(i2 + 1)σ2 I(n2 > 0).

(c) For [(n1 + 1)x1 + n2x2 > R] ∩ [n1x1 + (n2 + 1)x2 > R] :

p(n1, n2, i1, i2)[λ1 + λ2 + n1μ1 + n2μ2 + α] =

p(n1 − 1, n2, i1, i2)λ1 I(n1 > 0) + p(n1, n2 − 1, i1, i2)λ2 I(n2 > 0)+

p(n1, n2, i1 − 1, i2)λ1 I(i1 > 0) + p(n1, n2, i1, i2 − 1)λ2 I(i2 > 0)+

p(n1 − 1, n2, i1 + 1, i2)(i1 + 1)σ1 I(n1 > 0)+

p(n1, n2 − 1, i1, i2 + 1)(i2 + 1)σ2 I(n2 > 0).

(d) For [(n1 + 1)x1 + n2x2 ≤ R] ∩ [n1x1 + (n2 + 1)x2 > R] :

p(n1, n2, i1, i2)[λ1 + λ2 + n1μ1 + n2μ2 + i1σ1 + α] =

p(n1, n2 − 1, i1, i2)λ2 I(n2 > 0) + p(n1, n2, i1, i2 − 1)λ2 I(i2 > 0)+

p(n1 + 1, n2, i1, i2)(n1 + 1)μ1 + p(n1 − 1, n2, i1 + 1, i2)(i1 + 1)σ1 I(n1 > 0)+

p(n1, n2 − 1, i1, i2 + 1)(i2 + 1)σ2 I(n2 > 0).
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(e) For [(n1 + 1)x1 + n2x2 > R] ∩ [n1x1 + (n2 + 1)x2 ≤ R] :

p(n1, n2, i1, i2)[λ1 + λ2 + n1μ1 + n2μ2 + i1σ2 + α] =

p(n1 − 1, n2, i1, i2)λ1 I(n1 > 0)+

p(n1, n2 − 1, i1, i2)λ2 I(n2 > 0) + p(n1, n2, i1 − 1, i2)λ1 I(i1 > 0)+

p(n1, n2 + 1, i1, i2)(n2 + 1)μ2 + p(n1 − 1, n2, i1 + 1, i2)(i1 + 1)σ1 I(n1 > 0)+

p(n1, n2 − 1, i1, i2 + 1)(i2 + 1)σ2 I(n2 > 0).

Because of 0 ≤ ik < ∞, Equations (a)–(e) have infinite dimension. So, for solving of
difference equations System (a)–(e), we use the method of characteristic transforms. This
method allows to find solutions of complex equations in queuing theory in more simple
way. In the paper, we introduce the following partial characteristic functions:

H(n1, n2, u1, u2) =
∞

∑
i1=0

eju1i1
∞

∑
i2=0

eju2i2 p(n1, n2, i1, i2), (2)

where j =
√
−1.

Note that h(u1, u2) =
N

∑
n1=0

N

∑
n2=0

H(n1, n2, u1, u2) = E{eju1i1+ju2i2} is a characteristic

function of the two-dimensional process (I1(t), I2(t)) of the number of customers in the
orbits.

Using Notation (2), Equations (a)–(e) are rewritten as follows:

(a) For n1x1 + n2x2 = 0 :

[λ1 + λ2]H(0, 0, u1, u2)− jσ1
∂H(0, 0, u1, u2)

∂u1
− jσ2

∂H(0, 0, u1, u2)

∂u2
=

μ1H(1, 0, u1, u2) + μ2H(0, 1, u1, u2) + α ∑
(k1,k2,i1,i2)∈X

H(k1, k2, u1, u2)I(k1 + k2 	= 0).

(b) For [(n1 + 1)x1 + n2x2 ≤ R] ∩ [n1x1 + (n2 + 1)x2 ≤ R] :

[λ1 + λ2 + n1μ1 + n2μ2 + α]H(n1, n2, u1, u2)− jσ1
∂H(n1, n2, u1, u2)

∂u1
−

jσ2
∂H(n1, n2, u1, u2)

∂u2
= λ1H(n1 − 1, n2, u1, u2) + λ2H(n1, n2 − 1, u1, u2)+

(n1 + 1)μ1H(n1 + 1, n2, u1, u2) + (n2 + 1)μ2H(n1, n2 + 1, u1, u2)−

jσ1e−ju1
∂H(n1 − 1, n2, u1, u2)

∂u1
− jσ2e−ju2

∂H(n1, n2 − 1, u1, u2)

∂u2
.

(c) For [(n1 + 1)x1 + n2x2 > R] ∩ [n1x1 + (n2 + 1)x2 > R] :

[λ1 + λ2 + n1μ1 + n2μ2 + α]H(n1, n2, u1, u2) =

λ1H(n1 − 1, n2, u1, u2) + λ2H(n1, n2 − 1, u1, u2)I(n2 > 0)+

λ1eju1 H(n1, n2, u1, u2) + λ2eju2 H(n1, n2, u1, u2)−

jσ1e−ju1
∂H(n1 − 1, n2, u1, u2)

∂u1
− jσ2e−ju2

∂H(n1, n2 − 1, u1, u2)

∂u2
.
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(d) For [(n1 + 1)x1 + n2x2 ≤ R] ∩ [n1x1 + (n2 + 1)x2 > R] :

[λ1 + λ2 + n1μ1 + n2μ2 + α]H(n1, n2, u1, u2)− jσ1
∂H(n1, n2, u1, u2)

∂u1
=

λ1H(n1 − 1, n2, u1, u2) + λ2H(n1, n2 − 1, u1, u2)+

λ2eju2 H(n1, n2, u1, u2) + (n1 + 1)μ1H(n1 + 1, n2, u1, u2)−

jσ1e−ju1
∂H(n1 − 1, n2, u1, u2)

∂u1
− jσ2e−ju2

∂H(n1, n2 − 1, u1, u2)

∂u2
.

(e) For [(n1 + 1)x1 + n2x2 > R] ∩ [n1x1 + (n2 + 1)x2 ≤ R] :

[λ1 + λ2 + n1μ1 + n2μ2 + α]H(n1, n2, u1, u2)− jσ2
∂H(n1, n2, u1, u2)

∂u2
=

λ1H(n1 − 1, n2, u1, u2) + λ2H(n1, n2 − 1, u1, u2)+

λ1eju1 H(n1, n2, u1, u2) + (n2 + 1)μ2H(n1, n2 + 1, u1, u2)−

jσ1e−ju1
∂H(n1 − 1, n2, u1, u2)

∂u1
− jσ2e−ju2

∂H(n1, n2 − 1, u1, u2)

∂u2
.

Let us denote the matrix H(u1, u2) = {H(n1, n2, u1, u2)}n1,n2 . So, the following equa-
tion can be written:

(A + λ1eju1 B1 + λ2eju2 B2)H(u1, u2)+

jσ1(C1 − e−ju1 D1)
∂H(u1, u2)

∂u1
+ jσ2(C2 − e−ju2 D2)

∂H(u1, u2)

∂u2
= 0,

(3)

where A, B1, B2, C1, C2, D1, D2 are the followings operators:

AH(u1, u2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−[λ1 + λ2]H(n1, n2, u1, u2) + μ1H(n1 + 1, n2, u1, u2)+

μ2H(n1, n2 + 1, u1, u2) + α ∑
(k1,k2,i1,i2)∈X

H(k1, k2, u1, u2)I(k1 + k2 	= 0), (a)

−[λ1 + λ2 + n1μ1 + n2μ2 + α]H(n1, n2, u1, u2)+

λ1H(n1 − 1, n2, u1, u2) + λ2H(n1, n2 − 1, u1, u2)+

(n1 + 1)μ1H(n1 + 1, n2, u1, u2) + (n2 + 1)μ2H(n1, n2 + 1, u1, u2), (b)

−[λ1 + λ2 + n1μ1 + n2μ2 + α]H(n1, n2, u1, u2)+

λ1H(n1 − 1, n2, u1, u2) + λ2H(n1, n2 − 1, u1, u2), (c)

−[λ1 + λ2 + n1μ1 + n2μ2 + α]H(n1, n2, u1, u2)+

λ1H(n1 − 1, n2, u1, u2) + λ2H(n1, n2 − 1, u1, u2)+

(n1 + 1)μ1H(n1 + 1, n2, u1, u2), (d)

−[λ1 + λ2 + n1μ1 + n2μ2 + α]H(n1, n2, u1, u2)+

λ1H(n1 − 1, n2, u1, u2) + λ2H(n1, n2 − 1, u1, u2)+

(n2 + 1)μ2H(n1, n2 + 1, u1, u2). (e)

B1H(u1, u2) =

{
0, (a), (b), (d)
H(n1, n2, u1, u2). (c), (e)

B2H(u1, u2) =

{
0, (a), (b), (e)
H(n1, n2, u1, u2). (c), (d)
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C1H(u1, u2) =

{
H(n1, n2, u1, u2), (a), (b), (d)
0. (c), (e)

C2H(u1, u2) =

{
H(n1, n2, u1, u2), (a), (b), (e)
0. (c), (d)

D1H(u1, u2) =

{
0, (a)
H(n1 − 1, n2, u1, u2). (b),(c),(d),(e)

D2H(u1, u2) =

{
0, (a)
H(n1, n2 − 1, u1, u2). (b),(c),(d),(e)

Operator E is the sum of equations for all values of n1, n2. Obviously,

E(A + λ1B1 + λ2B2) = 0,

E(C1 − D1) = 0, E(C2 − D2) = 0.

So, we have the following equation:

E(λ1(eju1 − 1)B1 + λ2(eju2 − 1)B2)H(u1, u2)+

jσ1(1 − e−ju1)ED1
∂H(u1, u2)

∂u1
+ jσ2(1 − e−ju2)ED2

∂H(u1, u2)

∂u2
= 0.

(4)

3. Asymptotic Analysis Method

Since it is not possible to find an explicit form of the solution of equations system (3)
and (4), we propose the asymptotic analysis method [15,27,29]. In the paper, we will use the
asymptotic condition of the long delay (when σ1 → 0 and σ2 → 0). The practical mean of
the long delay condition is that the service time is much less than the time of repeated call.

The algorithm of the proposed method includes the following steps.

1. Deriving of the asymptotic mean of the considered process:

(a) introducing of an infinitesimal parameter ε and an asymptotic function nota-
tion (5);

(b) rewriting of Equations (3) and (4) for the asymptotic notations;
(c) deriving of a limit solution of the asymptotic equations for ε → 0;
(d) using the inverse substitutions, we obtain the form of the first-order asymptotic

characteristic function (10), which gives the value of the asymptotic mean of
the considered process.

2. Deriving of the asymptotic variance of the considered process:

(a) using the result of the first-order asymptotic analysis 1.(d), we rewrite the
characteristic function as (11);

(b) rewriting of Equations (3) and (4) for this notations;
(c) introducing of an infinitesimal parameter ε2 and new asymptotic function

notation (13);
(d) rewriting of equations obtained in 2.(b) for the asymptotic notations;
(e) approximating asymptotic functions by its 2th-degree Maclaurin series with

respect to ε as (14);
(f) deriving of a limit solution of the asymptotic equations for ε → 0;
(g) using the inverse substitutions, we obtain the form of the second-order asymp-

totic characteristic function, which gives the value of the asymptotic variance
of the considered process.

3. Combining the results of 1.(d) and 2.(g), we obtain the final form of asymptotic
characteristic function (21).
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3.1. First-Order Asymptotics

First of all, we denote σk = γkσ, where σ → 0 and γk = const. In the first-order
asymptotic analysis method, we use the following notations:

σ = ε, uk = εwk, H(u1, u2) = F(w1, w2, ε), (5)

where ε is infinitesimal, and F(w1, w2, ε) is an asymptotic function.
Substituting Notations (5) into Equations (3) and (4), we obtain the following asymp-

totic equations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(A + λ1ejεw1 B1 + λ2ejεw2 B2)F(w1, w2, ε)+

jγ1(C1 − e−jεw1 D1)
∂F(w1, w2, ε)

∂w1
+ jγ2(C2 − e−jεw2 D2)

∂F(w1, w2, ε)

∂w2
= 0,

E(λ1(ejεw1 − 1)B1 + λ2(ejεw2 − 1)B2)F(w1, w2, ε)+

jγ1ED1(1 − e−jεw1)
∂F(w1, w2, ε)

∂w1
+ jγ2ED2(1 − e−jεw2)

∂F(w1, w2, ε)

∂w2
= 0.

(6)

Let us make limits lim
ε→0

F(w1, w2, ε) = F(w1, w2). Then, System (6) has the form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A + λ1B1 + λ2B2)F(w1, w2) + jγ1(C1 − D1)
∂F(w1, w2)

∂w1
+

jγ2(C2 − D2)
∂F(w1, w2)

∂w2
= 0,

E(λ1w1B1 + λ2w2B2)F(w1, w2) + jγ1w1ED1
∂F(w1, w2)

∂w1
+

jγ2w2ED2
∂F(w1, w2)

∂w2
= 0.

(7)

Obviously, the solution of Equation (7) has the form

F(w1, w2) = Rexp{jw1κ1 + jw2κ2}, (8)

where R = [R(n1, n2)] is the matrix of the stationary probabilities of the states of process
(N1(t), N2(t)); κ1, κ2 are normalized means of the number of customers in the orbit, which
are calculated from the following equations (obtained by substituting (8) in (7)):⎧⎪⎪⎨⎪⎪⎩

[(A + λ1B1 + λ2B2)− κ1γ1(C1 − D1)− κ2γ2(C2 − D2)]R = 0,
E[λ1B1 − κ1γ1D1]R = 0,
E[λ2B2 − κ2γ2D2]R = 0,
ER = 1.

(9)

After returning to Substitutions (5), we have obtained the first-order approximation of
the characteristic function

H(u1, u2) = F(w1, w2, ε) ≈ F(w1, w2) = Rexp
{

jw1
κ1

σ
+ jw2

κ2

σ

}
, (10)

where
κ1

σ
and

κ2

σ
are normalized means of processes I1(t) and I2(t).

3.2. Second-Order Asymptotics

The first step of the second-order asymptotic analysis is rewriting the characteristic
functions using the result of the first-order asymptotics (10) as follows:

H(u1, u2) = H(2)(u1, u2) · exp
{

j
u1

σ1
γ1κ1 + j

u2

σ2
γ2κ2

}
, (11)
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where H(2)(u1, u2) is matrix of characteristic functions of two-dimensional stochastic cen-
tered process

{
I1(t)−

κ1

σ
, I2(t)−

κ2

σ

}
.

Substituting (11) into Equations (3) and (4), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A + λ1eju1 B1 + λ2eju2 B2)H
(2)(u1, u2)+

jσ1(C1 − e−ju1 D1)
∂H(2)(u1, u2)

∂u1
− γ1κ1(C1 − e−ju1 D1)H

(2)(u1, u2)+

jσ2(C2 − e−ju2 D2)
∂H(2)(u1, u2)

∂u2
− γ2κ2(C2 − e−ju2 D2)H

(2)(u1, u2) = 0,

E(λ1(eju1 − 1)B1 + λ2(eju2 − 1)B2)H(2)(u1, u2)+

jσ1(1 − e−ju1)ED1
∂H(2)(u1, u2)

∂u1
− γ1κ1(1 − e−ju1)ED1H(2)(u1, u2)+

jσ2(1 − e−ju2)ED2
∂H(2)(u1, u2)

∂u2
− γ2κ2(1 − e−ju2)ED2H(2)(u1, u2) = 0.

(12)

The next step of the analysis is introducing the following notations (as in Section 3.1):

σk = σγk, σ = ε2, uk = ε · wk, H(2)(u1, u2) = F(2)(w1, w2, ε). (13)

Substituting (13) into Equation (12), we obtain the following system of asymptotic
equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A + λ1ejεw1 B1 + λ2ejεw2 B2)F
(2)(w1, w2, ε)+

jεγ1(C1 − e−jεw1 D1)
∂F(2)(w1, w2, ε)

∂w1
− γ1κ1(C1 − e−jεw1 D1)F

(2)(w1, w2, ε)+

jεγ2(C2 − e−jεw2 D2)
∂F(2)(w1, w2, ε)

∂w2
− γ2κ2(C2 − e−jεw2 D2)F

(2)(w1, w2, ε) = 0,

E(λ1(ejεw1 − 1)B1 + λ2(ejεw2 − 1)B2)F
(2)(w1, w2, ε)+

jεγ1(1 − e−jεw1)ED1
∂F(2)(w1, w2, ε)

∂w1
− γ1κ1(1 − e−jεw1)ED1F(2)(w1, w2, ε)+

jεγ2(1 − e−jεw2)ED2
∂F(2)(w1, w2, ε)

∂w2
− γ2κ2(1 − e−jεw2)ED2F(2)(w1, w2, ε) = 0.

(14)

The solution of System (14) will be found in the following multiplicative form:

F(2)(w1, w2, ε) = Φ(w1, w2) · (R + jεw1f1 + jεw2f2) + O(ε2), (15)

where Φ(w1, w2) is an unknown scalar function, and f1, f2 are unknown operators, which
will be found further.
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Substituting solution (15) into System (14) and using Maclaurin series, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A + λ1(1 + jεw1)B1 + λ2(1 + jεw2)B2)Φ(w1, w2)(R + jεw1f1 + jεw2f2)+

jεγ1(C1 − (1 − jεw1)D1)

[
∂Φ(w1, w2)

∂w1
(R + jεw1f1 + jεw2f2) + Φ(w1, w2)jεf1

]
−

γ1κ1(C1 − ((1 − jεw1))D1)Φ(w1, w2)(R + jεw1f1 + jεw2f2)+

jεγ2(C2 − (1 − jεw2)D2)

[
∂Φ(w1, w2)

∂w2
(R + jεw1f1 + jεw2f2) + Φ(w1, w2)jεf2

]
−

γ2κ2(C2 − ((1 − jεw2))D2)Φ(w1, w2)(R + jεw1f1 + jεw2f2) = 0,

E

(
λ1

(
jεw1 +

(jεw1)
2

2

)
B1 + λ2

(
jεw2 +

(jεw2)
2

2

)
B2

)
Φ(w1, w2)×

(R + jεw1f1 + jεw2f2) + jεγ1

(
jεw1 −

(jεw1)
2

2

)
ED1×[

∂Φ(w1, w2)

∂w1
(R + jεw1f1 + jεw2f2) + Φ(w1, w2)jεf1

]
−

γ1κ1

(
jεw1 −

(jεw1)
2

2

)
ED1Φ(w1, w2) · (R + jεw1f1 + jεw2f2)+

jεγ2

(
jεw2 −

(jεw2)
2

2

)
ED2

[
∂Φ(w1, w2)

∂w2
(R + jεw1f1 + jεw2f2) + Φ(w1, w2)jεf2

]
−

γ2κ2

(
jεw2 −

(jεw2)
2

2

)
ED2Φ(w1, w2) · (R + jεw1f1 + jεw2f2) = 0.

Make some transformations and obtain ε → 0.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((λ1w1B1 + λ2w2B2)R + (A + λ1B1 + λ2B2)(w1f1 + w2f2))+

γ1
∂Φ(w1, w2)/∂w1

Φ(w1, w2)
(C1 − D1)R − γ1κ1(w1D1R + (C1 − D1)(w1f1 + w2f2))+

γ2
∂Φ(w1, w2)/∂w2

Φ(w1, w2)
(C2 − D2)R − γ2κ2(w2D2R + (C2 − D2)(w1f1 + w2f2)) = 0,

E

(
(jw1)

2

2
λ1B1R +

(jw2)
2

2
λ2B2R + w2

1λ1B1f1+

w1w2λ2B2f1 + w1w2λ1B1f1 + w2
2λ2B2f2

)
+

γ1w1
∂Φ(w1, w2)/∂w1

Φ(w1, w2)
ED1R − γ1κ1ED1

(
− (jw1)

2

2
R + w2

1f1 + w1w2f2

)
+

γ2w2
∂Φ(w1, w2)/∂w2

Φ(w1, w2)
ED2R − γ2κ2ED2

(
− (jw2)

2

2
R + w1w2f1 + w2

2f2+

)
= 0.

(16)

The solution of System (16) has the form:

Φ(w1, w2) = exp
(
(jw1)

2

2
K11 + jw1 jw2K12 +

(jw2)
2

2
K22

)
, (17)

where K11 and K22 are normalized variances of the stochastic process (I1(t), I2(t)), and K12
is their normalized covariance. For the K11, K12, and K22 finding, we substitute (17) into
System (16):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((λ1w1B1 + λ2w2B2)R + (A + λ1B1 + λ2B2)(w1f1 + w2f2))−
γ1(w1K11 + w2K12)(C1 − D1)R − γ1κ1(w1D1R + (C1 − D1)(w1f1 + w2f2))+
γ2(w1K12 + w2K22)(C2 − D2)R − γ2κ2(w2D2R + (C2 − D2)(w1f1 + w2f2)) = 0,

E

(
w2

1
2

λ1B1R +
w2

2
2

λ2B2R + w2
1λ1B1f1 + w1w2λ2B2f1 + w1w2λ1B1f1 + w2

2λ2B2f2

)
+

γ1w1(w1K11 + w2K12)ED1R − γ1κ1ED1(−
w2

1
2

R + w2
1f1 + w1w2f2)+

γ2w2(w1K12 + w2K22)ED2R − γ2κ2ED1(−
w2

2
2

R + w1w2f1 + w2
2f2) = 0.

(18)
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For (18) solving, let us write the factors for different powers of w1, w2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ1B1 − γ1κ1D1 − γ1K11(C1 − D1)− γ2K12(C2 − D2))R+
(A + λ1B1 + λ2B2 − γ1κ1(C1 − D1)− γ2κ2(C2 − D2))f1 = 0,
(λ2B2 − γ2κ2D2 − γ1K11(C2 − D2)− γ2K12(C1 − D1))R+
(A + λ1B1 + λ2B2 − γ1κ1(C1 − D1)− γ2κ2(C2 − D2))f2 = 0,
E[(λ1B1 + γ1(κ1 − 2K11)D1)R + 2(λ1B1 − γ1κ1D1)f1] = 0,
E[(λ2B2 + γ2(κ2 − 2K22)D2)R + 2(λ2B2 − γ2κ2D2)f2] = 0,
E[−K12(γ1D1 + γ2D2)R + (λ2B2 − γ2κ2D2)f1 + (λ1B1 − γ1κ1D1)f2] = 0.

(19)

The system of the first and second equations in (19) is the heterogeneous system of
linear algebraic equations with respect to f1 and f2. The determinant of the matrix of the
system is equal to zero, while the rank of the extended matrix is equal to the rank of the
matrix of coefficients, i.e., the system has many solutions. Comparing the first and second
equations of systems (19) and the first equation of (9) (in the first-order asymptotics), we
can write:

f1 = CR + g1, f2 = CR = g2,

where
Eg1 = 0, Eg2 = 0.

So, we have the following system for g1 and g2 finding:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ1B1 − γ1κ1D1 − γ1K11(C1 − D1)− γ2K12(C2 − D2))R+
(A + λ1B1 + λ2B2 − γ1κ1(C1 − D1)− γ2κ2(C2 − D2))g1 = 0,
(λ2B2 − γ2κ2D2 − γ1K12(C1 − D1)− γ2K22(C2 − D2))R+
(A + λ1B1 + λ2B2 − γ1κ1(C1 − D1)− γ2κ2(C2 − D2))g2 = 0,
E[(λ1B1 + γ1(κ1 − 2K11)D1)R + 2(λ1B1 − γ1κ1D1)g1] = 0,
E[(λ2B2 + γ2(κ2 − 2K22)D2)R + 2(λ2B2 − γ2κ2D2)g2] = 0,
E[−K12(γ1D1 + γ2D2)R + (λ2B2 − γ2κ2D2)g1 + (λ1B1 − γ1κ1D1)g2] = 0.

(20)

After returning to Substitutions (13), we obtain that the second-order approximation
of the characteristic function has the following form:

H(u1, u2) = H(2)(u1, u2) · exp
{

ju1
κ1

σ
+ ju2

κ2

σ

}
≈ F(2)

(u1

σ
,

u2

σ

)
· exp

{
ju1

κ1

σ
+ ju2

κ2

σ

}
.

So, the asymptotic characteristic function of the considered multi-dimensional process
has the following matrix form:

H(u1, u2) = R · exp
{

ju1
κ1

σ
+ ju2

κ2

σ
+

(ju1)
2

2
K11

σ
+ ju1 ju2

K12

σ
+

(ju2)
2

2
K22

σ

}
. (21)

Therefore, two-dimensional process (I1(t), I2(t)) of number of customers in the orbits

is asymptotically Gaussian with means’ vector
{κ1

σ
,

κ1

σ

}
and covariance matrix

cov =

⎛⎜⎝ K11

σ

K12

σ
K12

σ

K22

σ

⎞⎟⎠.

4. Numerical Examples

In this section, we present the comparison of asymptotic and simulated distributions
for some values of the model parameters. In addition, some performance characteristics of
the model are evaluated.
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For the numerical examples presentation, we assume the following values of the retrial
queue parameters:

λ1 = 1, μ1 = 1, x1 = 1,

λ2 = 0.3, μ2 = 1, x2 = 3,

α = 0.1, R = 5, σ1 = 2 · σ, σ2 = 1 · σ, σ = 0.01.

We have software applications for the considering model simulation and computing
the asymptotic results.

We use the discrete-event simulation. The state of the system is changed by events,
such as:

• the arrival of the first customer,
• the arrival of the second customer,
• the arrival of the negative customer,
• the service end of the first customer,
• the service end of the second customer,
• the customer attempt to access the service unit from the first orbit, and
• the customer attempt to access the service unit from the second orbit.

The condition for stopping the simulation is the service end at least 107 customers of
each arrival process.

Note that the structural parameters of the system, such as R > x1, x2, can take any
values, and, with growth R regarding x1, x2, the number of system states increases, which
entails an increase in the time spent on analytical calculating the probability distribution.
The proposed parameter values allow for clearly demonstrating the dimension of the
system and the influence of the system load parameters, such as α, λk, μk, k = 1, 2, on the
main performance characteristics.

First, we compare asymptotic and simulated distributions for various values of σ
(the infinitesimal variable of the asymptotic analysis). In Figure 3, the two-dimensional
asymptotic probability distribution of the number of customers in orbits is presented for
σ = 0.01.

Figure 3. The two-dimensional asymptotic probability distribution of the number of customers in
the orbits.

In Figures 4–6, you may find the comparison of the asymptotic and simulated one-
dimensional distributions for various values of σ. Curves 1 and 2 are the probability
distributions of the number of customers in the first and the second orbits, respectively.
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Figure 4. Comparison of the asymptotic and simulated distributions for σ = 0.01.

Figure 5. Comparison of the asymptotic and simulated distributions for σ = 0.03.

Figure 6. Comparison of the asymptotic and simulated distributions for σ = 0.05.

The mean and the variance of considered processes are calculated (Figures 7 and 8).
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Figure 7. Asymptotic and simulate means.

Figure 8. Asymptotic and simulate variances.

In addition, the relative errors of the asymptotic means and variances (in comparison
with the simulated results) are computed (Tables 1 and 2).

Table 1. Table of relative errors of means.

σ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

δ1 0.007 0.024 0.028 0.036 0.052 0.056 0.070 0.076 0.084 0.092
δ2 0.006 0.016 0.024 0.033 0.038 0.051 0.050 0.063 0.074 0.078

Table 2. Table of relative errors of variances.

σ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

δ1 0.013 0.031 0.036 0.042 0.063 0.069 0.084 0.093 0.103 0.107
δ2 0.018 0.020 0.036 0.031 0.054 0.057 0.057 0.078 0.084 0.096

By analyzing Tables 1 and 2, we conclude that the asymptotic formula can be used for
σ < 0.05.

Another measure of distributions comparison is Kolmogorov distance

δ = max
i≥0

∣∣∣∣∣ i

∑
l=0

[ p̃(l)− p(l)]

∣∣∣∣∣,
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where p(l) is the probability distribution of the processes I1(t) or I2(t) calculated using
the asymptotic formula, and p̃(l) is the corresponding empiric distribution based on the
simulation. Values of the Kolmogorov distances for our example are presented in Table 3.

Table 3. The Kolmogorov distances between asymptotic and simulated distributions.

σ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

δ1 0.099 0.165 0.190 0.229 0.249 0.253 0.251 0.241 0.231 0.220
δ2 0.014 0.030 0.045 0.062 0.076 0.090 0.098 0.110 0.120 0.128

Another direction of the numerical analysis is the computations of the model per-
formance characteristics. The main practical feature is the joining probability Pk (the
probability that the arrival customer goes to an orbit):

Pk = ∑
(n1,n2)∈Bk

R(n1, n2),

where

B1 = {(n1, n2) : b1(n1 + 1) + b2n2 > R},B2 = {(n1, n2) : b1n1 + b2(n2 + 1) > R}.

In the following tables, the dependence Pk on the system parameters values is pre-
sented.

From Figures 9 and 10, we see that parameter α does not have much impact on joining
probability P, and we need to take into account only the system load (λ/μ) for choosing
the amount of resource R. Tables 4–7 can be used in practical goals.

Table 4. Values of joining probability P1.

R/α 0.1 0.05 0.01

4 0.273 0.295 0.315
5 0.098 0.107 0.115
6 0.069 0.074 0.079
7 0.038 0.041 0.044
8 0.015 0.016 0.018

Table 5. Values of joining probability P2.

R/α 0.1 0.05 0.01

4 0.643 0.676 0.704
5 0.500 0.525 0.547
6 0.284 0.303 0.320
7 0.151 0.162 0.172
8 0.097 0.104 0.111

Table 6. Values of joining probability P1.

R/λ2 0.1 0.05 0.01

4 0.059 0.159 0.273
5 0.020 0.057 0.098
6 0.007 0.031 0.069
7 0.002 0.016 0.038
8 0.0009 0.006 0.015
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Table 7. Values of joining probability P2.

R/λ2 0.1 0.05 0.01

4 0.319 0.484 0.643
5 0.155 0.328 0.500
6 0.069 0.176 0.284
7 0.026 0.083 0.151
8 0.010 0.045 0.097

Figure 9. Dependence of P on α.

Figure 10. Dependence of P on λ2.

5. Conclusions

In this paper, the resource multi-server retrial queue with different rates of the service
laws for different types of arrival customers and with breakdowns of servers modeling by
the negative arrival process is analyzed. The capacity of the system resources is limited.
The stationary distribution of the number of customers in the orbits and in the service unit
is obtained under the asymptotic condition of the long delay in orbits. The comparison
of the asymptotic results with simulation ones shows the high accuracy of our approach.
Finally, we provide numerical examples to show the impact of the model parameters on
some performance characteristics. Such analysis for the queuing system with a limited total
amount of resources can be used in the process of communication network node design.

In the future, we plan to study multi-server resource retrial queuing systems with
non-Poisson arrival processes and random values of the required resource. In addition,
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study of queuing systems with the service time depending on the required resource
seems interesting.
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Abstract: We apply the method of differential inequalities for the computation of upper bounds for the
rate of convergence to the limiting regime for one specific class of (in)homogeneous continuous-time
Markov chains. Such an approach seems very general; the corresponding description and bounds
were considered earlier for finite Markov chains with analytical in time intensity functions. Now
we generalize this method to locally integrable intensity functions. Special attention is paid to the
situation of a countable Markov chain. To obtain these estimates, we investigate the corresponding
forward system of Kolmogorov differential equations as a differential equation in the space of
sequences l1.

Keywords: inhomogeneous continuous-time Markov chain; weak ergodicity; rate of convergence;
sharp bounds; differential inequalities; forward Kolmogorov system

1. Introduction

In this paper we consider the problem of finding the upper bounds for the rate of
convergence for some (in)homogeneous continuous-time Markov chains.

To obtain these estimates, we investigate the corresponding forward system of Kol-
mogorov differential equations.

Consideration is given to classic inhomogeneous birth–death processes and to special
inhomogeneous chains with transitions intensities, which do not depend on the current
state. Namely, let {X(t), t ≥ 0} be an inhomogeneous continuous-time Markov chain with
the state space X = {0, 1, 2, . . . , }. Denote by pij(s, t) = P{X(t) = j|X(s) = i}, i, j ≥ 0, 0 ≤
s ≤ t, the transition probabilities of X(t) and by pi(t) = P{X(t) = i}—the probability that
X(t) is in state i at time t. Let p(t) = (p0(t), p1(t), . . . , )T be probability distribution vector
at instant t. Throughout the paper it is assumed that in a small time interval h the possible
transitions and their associated probabilities are

pij(t, t + h) =

⎧⎨⎩ qij(t)h+αij(t, h), if j 	= i,

1− ∑
k∈X ,k 	=i

qik(t)h+αi(t, h), if j = i,

where supi≥0 ∑j≥0 |αij(t, h)| = o(h), for any t ≥ 0. We also suppose that the transition
intensities qij(t) ≥ 0 are arbitrary non-random functions of t, locally integrable on [0, ∞)
and, moreover, that there exists a positive number L such that

sup
i∈X

(
∑

k∈X ,k 	=i
qik(t)

)
≤ L < ∞, (1)
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for almost all t ≥ 0. Then the probabilistic dynamics of the process X(t) is given by the
forward Kolmogorov system

d
dt

p(t) = A(t)p(t), (2)

where A(t) is the transposed intensity matrix i.e., aij(t) = qji(t), i, j ∈ X .
We can consider (2) as the differential equation with bounded operator function in the

space of sequences l1 (see details, for instance in [1]) and apply all results of [2].
Throughout this paper by ‖ · ‖ (or by ‖ · ‖1 if ambiguity is possible) we denote the

l1-norm, i.e., ‖p(t)‖ = ∑i∈X |pi(t)| and ‖A(t)‖ = supj∈X ∑i∈X |aij(t)|. Let Ω be a set of
all stochastic vectors, i.e., l1 vectors with non-negative coordinates and unit norm. Then
‖A(t)‖ ≤ 2L for almost all t ≥ 0, and p(s) ∈ Ω implies p(t) ∈ Ω for any 0 ≤ s ≤ t.

Recall that a Markov chain X(t) is called weakly ergodic, if ‖p∗(t)− p∗∗(t)‖ → 0 as t →
∞ for any initial conditions p∗(0) and p∗∗(0), where p∗(t) and p∗∗(t) are the corresponding
solutions of (2).

We consider, as in [3], the four classes of of Markov chains X(t) with the following
transition intensities:

(i) qij(t) = 0 for any t ≥ 0 if |i − j| > 1 and both qi,i+1(t) = λi(t) and qi,i−1(t) = μi(t)
may depend on i;

(ii) qi,i−k(t) = 0 for k > 1, qi,i−1(t) = μi(t) may depend on i; and qi,i+k(t), k ≥ 1,
depend only on k and does not depend on i;

(iii) qi,i+k(t) = 0 for k > 1, qi,i+1(t) = λi(t) may depend on i; and qi,i−k(t), k ≥ 1,
depend only on k and does not depend on i;

(iv) both qi,i−k(t) and qi,i+k(t), k ≥ 1, depend only on k and do not depend on i.
Each such process can be considered as the queue-length process for the corresponding

queueing system MX
t /MX

t /1.
Then type (i) transitions describe Markovian queues with possibly state-dependent

arrival and service intensities (for example, the classic Mn(t)/Mn(t)/1 queue); type (ii)
transitions allow consideration of Markovian queues with state-independent batch arrivals
and state-dependent service intensity; type (iii) transitions lead to Markovian queues with
possible state-dependent arrival intensity and state-independent batch service; type (iv)
transitions describe Markovian queues with state-independent batch arrivals and batch
service. We can refer to them as a MX

t /MX
t /1 queueing model following the original

paper [4], see also [3,5,6].
The paper is organized as follows. Section 2 introduces a description of the problem.

Section 3 considers the explicit form of the reduced intensity matrices. In Section 4, we
obtain upper bounds for the rate of convergence. Section 5 concludes the paper.

2. Preliminaries

The problem of estimating the rate of convergence, like the very fact of convergence,
is very important for studying the long-run (limiting) behavior of continuous time Markov
chains with time varying intensities, see detailed discussion, examples and references in [7].
The simplest and most convenient for studying the rate of convergence to the limiting
regime is the method of the logarithmic norm, see, for example [1,3,8].

However, there are situations in which this approach does not give good results.
Next, we show the possibility of using a different approach in such cases, namely the

method of differential inequalities.
Another (but similar) approach is to use piecewise-line Lyapunov functions, see, for

example, [9–12].
Consider here the two simplest examples of bounding the rate of convergence for

differential equations.
Let firstly

dx

dt
= Px
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be a system of differential equations with x = (x1, x2)
T , and P =

(
−5 8

2 −5

)
. Put

d1 = 1, d2 = 2, and z = Dx = (d1x1, d2x2)
T . Then dz

dt = DPD−1z, both column sums

for P∗ = DPD−1 equal to −1. Hence the logarithmic norm γ(P∗) = supi

(
p∗ii + ∑j 	=i p∗ji

)
equals −1, and we obtain a sharp upper bound on the rate of convergence ‖z(t)‖ ≤
e−t‖z(0)‖. Such a situation is typical if the matrix of the considered system is essentially
non-negative (i.e., all off-diagonal elements are non-negative for any t ≥ 0). Note that the
corresponding eigenvalues of P are −1,−9.

On the other hand, let P =

(
−3 8

−2 −3

)
. Then corresponding eigenvalues of P

are −3 ± 4i. On the other hand, the “weighting” logarithmic norm P is not less than
1. In principle, here it is also possible to reduce the matrix to the exact value of the
logarithmic norm (−3), see [2], but the corresponding transformation will be complex and
difficult to implement. The best result (Ce−3t) here can be obtained using the Lyapunov
function (which does not work well in a countable situation), but the use of differential
inequalities gives us an estimate like Ce−(3+ε)t for any positive ε, see the corresponding
description below, in Section 4. This approach deals with the sums of the columns for
various combinations of the signs of the coordinates of the solutions of the system; it is
described further in Section 4. It was first proposed in our recent papers; see [3] for the case
of finite Markov chain with analytical (in t) intensities.

In this paper, it is shown that this method can be applied in a more general situation
of locally integrable intensities, and, which is most difficult, for a countable chain that does
not lend itself to direct reasoning and requires rather fine approximation estimates.

3. Explicit Forms of the Reduced Intensity Matrices

Due to the normalization condition p0(t) = 1− ∑i≥1 pi(t), we can rewrite the system (2)
as follows:

d
dt

z(t) = B(t)z(t) + f(t), (3)

where
f(t) = (a10(t), a20(t), . . . )T , z(t) = (p1(t), p2(t), . . . )T ,

B(t)=

⎛⎜⎜⎜⎜⎜⎝
a11−a10 a12−a10 · · · a1r−a10 · · ·
a21−a20 a22−a20 · · · a2r−a20 · · ·

· · · · · · · · · · · · · · ·
ar1−ar0 ar2−ar0 · · · arr−ar0 · · ·

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠. (4)

Let y(t) = z∗(t) − z∗∗(t) be the difference of two solutions of system (3), and
y(t) = (y1(t), y2(t), . . . , )T . Then, in contrast to the coordinates of the vector p(t), the
coordinates of the vector y(t) have arbitrary signs.

Consider now the ‘homogeneous’ system

d
dt

y(t) = B(t)y(t), (5)

corresponding to (3). As was firstly noticed in [13], it is more convenient to study the rate
of convergence using the transformed version B∗(t) of B(t) given by B∗(t) = TB(t)T−1,
where T is the upper triangular matrix of the form
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T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1 · · ·
0 1 1 · · · 1 · · ·
0 0 1 · · · 1 · · ·
...

...
...

. . . · · ·
0 0 0 · · · 1 · · ·
· · · · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

Let u(t) = Ty(t). Then the system (5) can be rewritten in the form

d
dt

u(t) = B∗(t)u(t), (7)

where u(t) = (u1(t), u2(t), . . . )T is the vector with the coordinates of arbitrary signs. If one
of the two matrices B∗(t) or B(t) is known, the other is also (uniquely) defined.

The approach based on the differential inequalities (see [3]) seems to be the most
general. On the other hand, if B∗(t) is essentially non-negative (i.e., all off-diagonal
elements are non-negative for any t ≥ 0), then the method based on the logarithmic norm
gives the same results, but in a much more visual form, see [3].

Let us write out the form of the matrix B∗(t) for each class of chains; in more detail,
the corresponding transformations can be seen in [3].

For X(t) belonging to class (i) (inhomogeneous birth–death process) one has

B∗(t) = TB(t)T−1 =⎛⎜⎜⎜⎜⎝
−
(
λ0 + μ1

)
μ1 0 · · · 0 · · · · · ·

λ1 −
(
λ1 + μ2

)
μ2 · · · 0 · · · · · ·

. . .
. . .

. . .
. . .

. . . · · ·

0 · · · · · · λr−1 −
(

λr−1 + μr
)

μr · · ·
· · · · · · · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎠. (8)

For X(t) belonging to class (ii) (which corresponds to the queueing system with batch
arrivals and single services), one has

B∗(t) = TB(t)T−1 =

⎛⎜⎜⎜⎜⎜⎜⎝

a11 μ1 0 · · · 0

a1 a22 μ2 · · · 0

a2 a1 a33 μ3 · · ·
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎠. (9)

For X(t) belonging to class (iii) (which corresponds to the queueing system with
single arrivals and group services), one has B∗(t) = TB(t)T−1 =⎛⎜⎜⎜⎜⎜⎜⎝

−
(
λ0 + b1

)
b1 − b2 b2 − b3 · · · · · ·

λ1 −
(
λ1 + ∑

i≤2
bi
)

b1 − b3 · · · · · ·

. . .
. . .

. . .
. . .

. . .

0 · · · · · · λr−1 −
(
λr−1 + ∑

i≤r
bi
)
· · ·

. . .
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎠. (10)

Finally, for X(t) belonging to class (iv) (which corresponds to the queueing system
with state-independent batch arrivals and group services), one has
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B∗ = TB(t)T−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 b1 − b2 b2 − b3 · · · · · ·
a1 a22 b1 − b3 · · · · · ·

. . .
. . .

. . .
. . .

. . .

ar−1 · · · · · · a1 arr · · ·
· · · · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (11)

where

T−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0 · · ·
0 1 −1 · · · 0 · · ·
0 0 1 · · · 0 · · ·
...

...
...

. . . · · ·
0 0 0 · · · 1 · · ·
· · · · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Remark 1. Generally speaking, for models of the first and second classes, the matrix B∗(t) is
always essentially non-negative; at the same time, for models of the third and fourth classes, this
requires some additional assumptions. Under essential non-negativity of B∗(t) all bounds on the
rate of convergence can be obtained via logarithmic norm, see [3]. However, in the general case, this
approach may not work, and the method of differential inequalities described in our previous papers,
see [3,14], would be more effective.

Thus, in this paper we will consider chains of the third and fourth classes with a
countable state space. For simplicity of calculations, we will additionally assume that the
size of the simultaneously arriving and/or servicing group of customers does not exceed
some fixed number, say R, i.e., that all qij(t) = 0 for |i − j| > R and any t ≥ 0.

Let {di, i ≥ 1} be a sequence of non-zero numbers such that infk |dk| = d > 0. Denote
by D = diag(d1, d2, . . . ) the corresponding diagonal matrix, with the off-diagonal elements
equal to zero. Let w(t) = Du(t) in (7), then we obtain the following equation

d
dt

w(t) = B∗∗(t)w(t), (12)

where
B∗∗(t) = DB∗(t)D−1 =

(
b∗∗ij (t)

)
i,j≥1

. (13)

If we write out B∗(t) =
(

b∗ij(t)
)

i,j≥1
, then

b∗∗ij (t) =
di
dj

b∗ij(t), |i − j| ≤ R, (14)

and our assumption implies b∗∗ij (t) = b∗ij(t) = 0 for any t ≥ 0 if |i − j| > R.

4. Upper Bounds on the Rate of Convergence

Let us first consider a general finite system of linear differential equations, which we
will write in the form

d
dt

x(t) = B∗(t)x(t), t ≥ 0, (15)

where x(t) = (x1(t), . . . , xS(t))
T , and let D now be the corresponding finite diagonal matrix.

The simplest situation with analytical (in t) coefficients b∗ij(t) has been studied in [3,14,15].
The method of estimating under such assumption is based on the fact that, in this case, on
any finite interval, each coordinate has a finite number of sign changes, which means that
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the semiaxis can be divided into intervals, on each of which the signs of the coordinates
are constant. Consider such an (t1, t2). Choose the signs of dk-s so that all dkxk(t) > 0.
Hence ‖w(t)‖ = ‖x(t)‖D = ∑S

k=1 dkxk(t) ≥ d‖x(t)‖1 can be considered as the correspond-
ing norm.

Let ∑S
i=1 b∗∗ij (t) ≤ −αD(t), for any j, then

d
dt
‖w(t)‖ =

d(∑k wk)

dt
= ∑

i,j
b∗∗ij (t)wj(t) ≤ −αD(t)‖w(t)‖. (16)

Then

‖w(t)‖ = ‖Dx(t)‖1 ≤ e−
∫ t

s αD(τ)dτ‖Dx(s)‖1, t1 < s < t < t2, (17)

for the corresponding matrix D and corresponding function αD(t). Hence, we have

‖x(t)‖1 ≤ max |dk|
min |dm|

e−
∫ t

s αD(τ)dτ‖x(s)‖1, (18)

for any t1 < s < t < t2, and by continuity, for all t1 ≤ s < t ≤ t2.
Let now s, t be arbitrary, 0 ≤ s ≤ t < ∞. Then for any interval with fixed signs of

coordinates we have bound (18) with the corresponding D and αD(t). Let now α∗(t) =
min αD(t), and d∗(S) = d∗ = max |dk |

|dm | , where the minimum and maximum are taken over
all possible combinations of coordinate signs of the solution x(t), for any 0 ≤ s ≤ t. Then
we obtain the following general estimate

‖x(t)‖1 ≤ d∗(S)e−
∫ t

s α∗(τ)dτ‖x(s)‖1, (19)

Let there exist positive numbers M, β such that

e−
∫ t

s α∗(τ) dτ ≤ Me−β(t−s), 0 ≤ s ≤ t. (20)

Consider now an arbitrary interval [0, t∗]; if our original coefficients are locally inte-
grable, they can be approximated arbitrarily accurately by a continuous functions. In turn,
a continuous function can be approximated arbitrarily accurately by an analytic function.
As a result, instead of the integrable B∗(t), we obtain an analytic B̄∗(t), such that

∫ t∗

0
‖B∗(τ)− B̄∗(τ)‖dτ ≤ ε. (21)

Denote now by W(t, s) and W̄(t, s) the Cauchy operators for (15) and the respective
system with matrix B̄∗(t). Then, if (20) holds, in accordance with Lemma 3.2.3 [2] (see [2],
pp. 110–111) we obtain

‖W(t, s)− W̄(t, s)‖ ≤ Md∗e−β(t−s)
(

eMd∗
∫ t

s ‖B∗(τ)−B̄∗(τ)‖dτ − 1
)

≤ Md∗e−β(t−s)
(

eMd∗ε − 1
)

. (22)

Hence we have the following statement.

Lemma 1. Let all b∗ij(t) be locally integrable on [0, ∞). Let inequality (20) hold. Then

‖x(t)‖1 ≤ d∗(S)Me−β(t−s)‖x(s)‖1, (23)

for any solution of (15) and any 0 ≤ s ≤ t.
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Let us now return to a countable system (7) and consider the corresponding
truncated system

d
dt

u(n, t) = B∗(n, t)u(n, t), (24)

where B∗(n, t) =
(

b∗ij(t)
)n

i,j=1
.

Below we will identify the finite vector with entries (a1, . . . , an) and the infinite vector
with the same first n coordinates and the others equal to zero.

Rewrite system (24) as

d
dt

u(n, t) = B∗(t)u(n, t) + (B∗(n, t)− B∗(t))u(n, t). (25)

Denote by V(t, s) and V(n, t, s) the Cauchy operators for (7) and (24), respectively.
Suppose that n > S, and that, in addition

u(0) = u(n, 0) = u(S, 0), ‖u(0)‖1 ≤ 1. (26)

Then one has from (7)

u(t) = V(t)u(0) = V(t)u(n, 0). (27)

On the other hand, from (25) we have

u(n, t) = V(t)u(n, 0) +
∫ t

0
V(t, τ)(B∗(n, τ)− B∗(τ))u(n, τ) dτ. (28)

Hence in any norm we obtain the bound

‖u(t)− u(n, t)‖ ≤
∫ t

0
‖V(t, τ)‖‖(B∗(n, τ)− B∗(τ))u(n, τ)‖ dτ. (29)

Denote sup |dk |
|dm | = d̂ < ∞, where supremum is taken over all possible combinations of

coordinate signs of the solution u(t) of (7), under assumption |k − m| = 1.
Put now D∗ = diag(d∗(1), d∗(2), . . . ).
Note that according to (14) the matrix B∗∗(t) has nonzero entries only on the main

diagonal and at most R diagonals above and below it. Then

‖B∗(t)‖1D∗ = ‖B∗∗(t)‖1 ≤ K = 2Ld̂R, (30)

for almost all t ≥ 0. Then
‖V(t, s)‖1D∗ ≤ eK(t−s) ≤ eKt∗ . (31)

On the other hand, all elements of the first n−R columns of the matrix (B∗(n, τ)− B∗(τ))
are zeros for any τ ≥ 0. Hence, all the first n − R coordinates of the corresponding vector
(B∗(n, τ)− B∗(τ))u(n, τ) are also zeros too, and

‖(B∗(n, τ)− B∗(τ))u(n, τ)‖1D∗ ≤ K
n

∑
k=n−R

d̂k|uk(t)|. (32)

Put D∗∗ = diag(d̂2, d̂4, . . . ) and w∗(t) = D∗∗u(t).
Then, instead of (30) and (31) we have

‖B∗(t)‖1D∗∗ = ‖D∗∗B∗D∗∗−1
(t)‖1 ≤ K∗ = 2Ld̂2R, (33)

and
‖V(t, s)‖1D∗∗ ≤ eK∗(t−s) ≤ eK∗t∗ , (34)

respectively.
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Then

‖u(n, t)‖1D∗∗ =
n

∑
k=1

d̂2k|uk(n, t)| ≤ eK∗t∗
S

∑
k=1

d̂2k|uk(n, 0)| ≤ eK∗t∗ d̂2S
S

∑
k=1

|uk(n, 0)|. (35)

Then (35) and (26) imply the bound

d̂2n−2R
n

∑
k=n−R

|uk(n, t)| ≤
n

∑
k=1

d̂2k|uk(n, t)| ≤ eK∗t∗ d̂2S. (36)

Then

n

∑
k=n−R

d̂k|uk(n, t)| ≤ d̂n
n

∑
k=n−R

|uk(n, t)| ≤ eK∗t∗ d̂2S+2R−n. (37)

Finally, for the right-hand side of (29) we have the bound

∫ t

0
‖V(t, τ)‖1D∗‖(B∗(n, τ)− B∗(τ))u(n, τ)‖1D∗ dτ ≤ eKt∗Kt∗eK∗t∗ d̂2S+2R−n, (38)

which tends to be zero at n → ∞.
Hence we have the following statement.

Lemma 2. Let assumptions of Lemma 1 be fulfilled for any S. Then, under assumption (26), and
for any fixed ε > 0, t∗ > 0, we obtain ‖u(t)− u(n, t)‖1D∗ < ε for sufficiently large n, for any
t ∈ [0, t∗].

As a result, Lemmas 1 and 2 guarantee an estimate of the form

‖u(t)‖1 ≤ Me−βt‖u(0)‖1D∗ . (39)

Consider now two arbitrary solutions p∗(t) and p∗∗(t) of the forward Kolmogorov
system (2) with the corresponding initial conditions p∗(0) and p∗∗(0). Denote by p∗

0(t) and
p∗∗

0 (t) the respective vector functions with coordinates 1, 2, . . . (i.e., without zero coordinates).
One can write u(t) = T(p∗

0(t)− p∗∗
0 (t)). Then (see for instance [8]), the following

inequality holds: ‖p∗(t)− p∗∗(t)‖1 ≤ 2
d‖u(t)‖1.

Finally we obtain the following statement.

Theorem 1. Let the assumptions of Lemma 1 hold for any natural S. Then X(t) is weakly ergodic
and the following bound on the rate of convergence holds:

‖p∗(t)− p∗∗(t)‖1 ≤ 2M
d

e−βt‖p∗
0(0)− p∗∗

0 (0)‖1D∗ . (40)

Remark 2. A specific model (which belongs to both classes (iii) and (iv)) was investigated in [16]
by the method described here.

Namely, in this paper, the queueing model with possible transitions and respective
intensities of single arrival λ(t) and service of group of two customers μ(t) was consid-
ered. Hence

B∗(t) =
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ(t) −μ(t) μ(t) 0 0 0 · · ·
λ(t) −(λ(t) + μ(t)) 0 μ(t) 0 0 · · ·

0 λ(t) −(λ(t) + μ(t)) 0 μ(t) 0 · · ·
0 0 λ(t) −(λ(t) + μ(t)) 0 μ(t) · · ·
0 0 0 λ(t) −(λ(t) + μ(t)) 0 · · ·
. . .

. . .
. . .

. . .
. . .

. . .
. . .

· · · · · · · · · · · · · · · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let δ > 1 be a positive number. Put
d1 = 1, d2 = 1/δ, dk = δk−2, k ≥ 3 if all coordinates of solutions are positive;
|dk| = δk−1, k ≥ 1 otherwise.
Then one has,

α∗(t) ≥ min
[
λ(t)

(
1 − δ−1

)
, μ(t)(1 + δ)−

λ(t)
(

δ2 − 1
)

, μ(t)
(

1 − δ−1
)
− λ(t)(δ − 1)

]
. (41)

Moreover, d = δ−1, d̂ = δ, d∗k = δk−1, for k ≥ 1.
In particular, if the process X(t) is homogeneous i.e., λ(t) = λ and μ(t) = μ are

positive numbers, then
∫ ∞

0 α∗(t)dt = +∞ is equivalent to α∗ > 0 and this is equivalent to

0 < λ < μ. Put δ =
√

μ
λ . Hence,

α∗ = min

[(√
μ −

√
λ
)2

, λ

(
1 −

√
λ

μ

)]
. (42)

In the paper [16] the specific example with periodic intensities was considered.
Namely, let λ(t) = 2 + sin 2πt and μ(t) = 4 − cos 2πt. Put δ = 11

10 . Then,
∫ 1

0 α∗(t) dt ≥
1

22 > 0, X(t) is exponentially weakly ergodic and has the 1-periodic limiting mean (a
Markov chain has the limiting mean m(t), if limt→∞(m(t)− E(t, k)) = 0 for any k, E(t, k)
is the mathematical expectation of X(t) under initial condition X(0) = k ). Now, applying
the known truncation technique (see the detailed discussion and bounds in [8]), one can
compute all probability characteristics of the queue-length process X(t). Some of the
corresponding graphs are shown in Figures 1–4; see detailed discussion in [16].

Figure 1. The mean E(t, 0) and E(t, 100) for t ∈ [0, 28], this figure shows the rate of convergence.

221



Mathematics 2021, 9, 1752

Figure 2. The mean E(t, 0) and E(t, 100) for t ∈ [28, 29], this figure shows approximation of the
limiting mean.

Figure 3. Probability p2(t) for t ∈ [0, 28] and initial conditions X(0) = 0 and X(0) = 100; this figure
shows the rate of convergence.

Figure 4. Probability p2(t) for t ∈ [28, 29] and initial conditions X(0) = 0 and X(0) = 100; this figure
shows approximation of the limiting probability p2(t).
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5. Conclusions

In this paper, we have substantiated one of the most general methods for studying
the rate of convergence to limit characteristics for weakly ergodic Markov chains with
continuous time. Namely, the applicability of the method of differential inequalities for
countable inhomogeneous processes in the case of a nonsmooth dependence of intensities
as functions of time is shown. Thus, studying models with continuous time from the theory
of queues, biology, physics and other sciences, and obtaining guaranteed estimates of the
rate of convergence, we can both make sure that the influence of the initial conditions of the
system disappears with increasing time, and build the main characteristics of the system to
control them.
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