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Abstract: Arterial hypotension is associated with incidence of postoperative complications, such as
myocardial infarction or acute kidney injury. Little research has been conducted for the real-time
prediction of hypotension, even though many studies have been performed to investigate the factors
which affect hypotension events. This forecasting problem is quite challenging compared to diagnosis
that detects high-risk patients at current. The forecasting problem that specifies when events occur is
more challenging than the forecasting problem that does not specify the event time. In this work, we
challenge the forecasting problem in 5 min advance. For that, we aim to build a systematic feature
engineering method that is applicable regardless of vital sign species, as well as a machine learning
model based on these features for real-time predictions 5 min before hypotension. The proposed
feature extraction model includes statistical analysis, peak analysis, change analysis, and frequency
analysis. After applying feature engineering on invasive blood pressure (IBP), we build a random
forest model to differentiate a hypotension event from other normal samples. Our model yields an
accuracy of 0.974, a precision of 0.904, and a recall of 0.511 for predicting hypotensive events.

Keywords: machine learning; vital sign; invasive blood pressure; feature engineering; hypotension;
arterial hypotension

1. Introduction

Arterial hypotension that occurs during anesthesia may increase the incidence of
postoperative complications, such as myocardial infarction or acute kidney injury [1]. Care-
ful monitoring of the patient’s hemodynamic changes is required during anesthesia, and
when hypotension is detected, immediate treatment is provided to maintain hemodynamic
stability. If the patient’s hemodynamic changes are predicted in advance, it will be possible
to provide safer anesthesia to the patient by maintaining hemodynamic stability. Most
patient monitor devices that monitor a patient’s vital signs store the data for a short time [2],
and the data are mostly deleted without being utilized for other purposes.

However, these vital sign data can be useful in developing a tool which can predict a
patient’s hemodynamic changes.

While research on hypotension in operation room mostly focuses on investigating the
factors affecting a hypotension event, not much research has been performed on real-time
prediction of hypotension. The advanced warning that hypotension is imminent at least
5 min ahead enables clinicians to take proper measures to reduce the impact of hypotension.
This forecasting problem is quite challenging compared to diagnosis that detects high-risk
patients at current. The forecasting problem that does not specify when the event occurs is
easier than the forecasting problem that specifies the event time. Furthermore, it is very
difficult to advance the predictable time compared to the event occurrence time. In this
work, we will challenge the forecasting problem in 5 min advance.
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Previous works on hypotension prediction have proposed various indices that orig-
inate from the waveform of vital signs. Recently, machine learning algorithms have re-
placed the scoring system, identified significant factors, and measured their effect on an
event automatically.

In this study, we propose a systematic feature engineering that is applicable to any
kind of vital signs and build a machine learning model that predicts hypotension in
advance. We aim to build a simple model that does not require many vital signs and only
requires invasive blood pressure (IBP). Instead of hand-crafted features on IBP, we propose
a common feature extraction model that can be applicable to various kinds of vital signs.
The feature extraction model includes the statistical analysis, peak analysis, change analysis,
and frequency analysis. We build an ensemble model using a random forest model to
handle numerous features in heterogenous samples.

2. Related Works

Many studies using vital signs have been performed in the intensive care unit (ICU);
however, there is little research for the operation room where vitality is relatively constant
compared to ICU [3–9].

Recently, studies that predict hypotension, depth of anesthesia, hypothermia, etc.,
have been conducted in the operating room. Topics of the studies using vital signals during
surgery encompass estimation of the depth of anesthesia, estimation of blood pressure,
event prediction regarding blood pressure, and heart failure. The former models were
designed to predict whether a patient would suffer an event or not at the initial stage of
operation [10–14]. These works can inform high-risk patients, but are limited in alerting
an alarm for real-time treatment for an event. The recent prediction models are developed
into real-time prediction models and the number of works is limited. We briefly reviewed
real-time models in terms of classification and regression.

2.1. Real-Time Event Detection

Yang et al. [15] reported a convolutional neural network (CNN)-based deep learning
model that predicts the stroke volume with a 20 s arterial blood pressure waveform. Lee
et al. [16] created a CNN-based deep learning model to predict hypotension before 5 min,
10 min, and 15 min, respectively, using IBP, electrocardiography (ECG), photoplethysmog-
raphy (PPG), and capnography (CO2). They demonstrated that the precision and recall
were higher than our research, but their experimental setting was different from ours. They
included only the period where non-hypotension lasted for 20 min only. Their environment
was less realistic because their model did not work on samples that included any data below
the criteria. In addition, it is not sure that they focused on predictions for the very first
time point of hypotension. As hypotension occurred, an alarm given in a timely manner
was required in the first place. Chen and Qi [17] proposed a feature-based model. They
predicted heart failure by statistical features; textualization; and imaging using HR, SBP,
DBP, SpO2, and pulse pressure difference (PP). Among the statistical feature models, the
gradient boosting tree model had the highest accuracy of 84%, while textualization and
imaging models had accuracies of 81% and 83% for the logistic regression and convolution
neural network models, respectively. Furthermore, in predicting heart failure, the statistical
feature-based model gave the best results. The statistical features used in this study in-
cluded the mean; variance; minimum; maximum; 25%, 50%, and 75% quantiles; skewness;
kurtosis; and first-order difference of each feature.

These real-time detection models suffer from the class imbalance problem and rarely
achieve good performance. Most works set up an artificial environment to make the
models work.

2.2. Real-Time Regression

The following works have been proposed to real-time regression for blood pressure or
depth of anesthesia. The real-time regression model showed better performance compared

2
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to the event detection model because regression models are free from the class imbalance
problem that the event detection model suffers from. This imbalance problem makes the
model difficult to generalize. The models adopted in previous works were developed from
machine learning models incorporated with feature engineering to the deep learning model.
RNN-based models suitable for time sequence were adopted, and CNN models suitable
for imaging were also adopted after the vital sign transformed into an image.

Regarding the model adopted machine learning with feature engineering, Jeong
et al. [18] developed a blood pressure prediction model by applying the deep learning
model to non-invasive blood pressure and other vital signs. This work proposed a concise
model using derived variables rather than the original waveform data.

Gopalswamy et al. [10] proposed a long short-term memory (LSTM) model to predict
intraoperative blood pressure and length of stay (LOS) using temperature, respiratory
rate (RR), heart rate (HR), diastolic blood pressure (DBP), systolic blood pressure (SBP),
fraction of inspired O2 (FiO2), and end-tidal CO2n (EtCO2). Sadrawin et al. [1] reported
artificial neural networks (ANNs) which can predict the depth of anesthesia using elec-
troencephalography (EEG), electromyography (EMG), HR, pulse, SBP, DBP, and signal
quality index (SQI). Regarding CNN models, Liu et al. [19] presented a CNN model that
can predict the depth of anesthesia by transforming the EEG signal into a spectral im-
age through modified short-time Fourier transform (STFT) transformation. Chowdhury
et al. [20] demonstrated that a deep learning model can predict the depth of anesthesia by
imaging the ECG and PPG signals as a heat map.

2.3. Research Gaps

From the literature review, we found several research gaps:

• Little research has been conducted using the vital signs collected in the operation
room, while plenty of research has been carried out in ICU.

• Previous works focusing on the vital signs in the operation room deal with the depth
of anesthesia. Rare events such as hypotension are important for patient health.

• Most studies focus on diagnoses that can identify high-risk patients who will suffer
an event rather than prognosis. To react to the event in a preventive way, a real-time
prediction model is required.

• Light-weight real-time prediction models are more effective for instant answering.
However, existing works used many kinds of vital sign [14,15,18,19,21].

3. Materials and Methods

3.1. Patient Population

The data used in this paper were collected in Soonchunhyang University Bucheon
Hospital through the Vital Recorder [21] program, which used the Bx50 monitor for patients
whose blood pressure was measured with intra-arterial catheters (ART) during operations.
These data were based on the continuous monitoring of blood pressure as IBP and were
collected from 30 December 2019 to 30 October 2020 using an IBP time series of 888 patients.
IBP data were recorded in units of 100 Hz.

3.2. Preprocessing

A moving average was widely used to smooth data and remove short-term fluctuations
to highlight the patterns embedded in time sequences. High-resolution data naturally
exhibit fluctuations, making patterns distorted and feature extraction difficult.

To derive samples from waveform IBP, we set the specific feature observation pe-
riod, delay period, and event observation period, accordingly. The feature observation
period refers to the period where features are extracted, the delay period refers to how
far into the future the forecasting targets, and the event observation period is when the
event is observed.

For our model, the observation period was set as 20 s, the delay period was set as
5 min to provide enough time for medical staff to react, and the event observation period

3
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was set as 1 min. To differentiate the samples related to hypotension from normal samples,
the observation period was kept as short as possible. However, the frequency-based
features required many time points. Thus, we compromised these two contradictions and
set up the observation period as 20 s. In other works, the observation period was set to 30 s.
We aimed to vary the observation period up to 30 s and check the performance. The class
information was retrieved over a 1 min observation period. A class observation period was
set up instead of picking a point, though this was not due to difficulties in characterizing a
certain point. The class observation period was long enough to generate more samples for
the hypotension event. In our future work, we aim to perform various experiments with
varying observation and class observation periods.

A hypotension sample is defined as a case where the maximum value of a 2 s moving
average of IBP during the class observation period falls short of 65 mmHg. A normal
sample is defined as a case where the minimum value of a 2 s moving average of IBP during
1 min exceeds 65 mmHg. Blood pressure data were used for feature extraction during the
observation period. We excluded samples associated with hypotensive events which occur
during the observation window or the delay period; otherwise, it would be unnecessary to
make the prediction.

Any sample that satisfied the hypotension event during the data observation and delay
periods were also excluded. In addition, if the hypotensive event occurred consecutively,
only the first event needed to be considered. This specifically relates to cases with a
maximum value of the 2 s moving average of the data combined with the observation
section, whereby the delay section is <65 was excluded. This aimed to make a prediction at
least 5 min in advance, except for cases where hypotension was predicted in a situation
with hypotension. The results of preprocessing are shown in Table 1.

Table 1. The number of normal samples and hypotension samples with different windowing interval.

Interval Normal Samples Hypotension Samples

30 s 240,314 11,956
10 s 721,020 35,887

For real-time forecasting, data samples were continuously generated through window-
ing, as shown in Figure 1. We attempted two choices for the length of windowing interval,
30 and 10 s, and compared their respective prediction results. As the windowing interval
decreased, more samples were generated, which helped to examine the data in a fine grain.

delay (5 min)
class observation

(1 min)
observation

(20 s)

windowing size

(30 s, 10 s)

feature extraction

Smaple#1 feature1 feature2 feature3 … feature3
6

feature3
7 class 1

Sample#2 feature1 feature2 feature3 … feature3
6

feature3
7 class 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

class 

definition

time

Figure 1. Sample generation process with an observation, delay, and class observation period. The
observation period is how long feature generation can be observed, the delay is how far future events
can be predicted, and the class observation is how long the event can be recognized.

4



Sensors 2022, 22, 3108

Vital signs, as a form of time series through continuous monitoring, may display
artifacts and noises due to electronic device errors, intraoperative events, or external
pressure, as shown in Figure 2. To exclude artifacts and noise, we developed a criteria
and excluded the samples that can satisfy various conditions. For example, the feature
observation period and the class observation period, of which the maximum value exceeds
200 and the minimum value is under 20, were excluded. The case where the difference
between the maximum and minimum during the feature observation or class observation
is <30 conformed to an artifact. The difference between continuous values of 30 or less also
conformed to artifacts. These slight variations for IBP occurred when the external pressure
was applied to patients, usually to measure non-invasive blood pressure (NIBP) with cuffs.

delay (5 min)
class observation

(1 min)
observation

(20 s)

windowing size

(30 s, 10 s)

feature extraction

Smaple#1 feature1 feature2 feature3 … feature3
6

feature3
7 class 1

Sample#2 feature1 feature2 feature3 … feature3
6

feature3
7 class 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

class 

definition

time

Figure 2. Artifacts marked in red on the time series of IBP.

4. Methodology

4.1. Feature Engineering

We proposed a systematic feature engineering process using domain knowledge. The
proposed feature engineering process is not specific to only one vital sign, but can generally
be applied to any vital sign signal.

The feature can be extracted in terms of the time domain and the frequency domain.
The extensive feature engineering on the data observation period provides a hint for future
events. To extract abnormality in values and their distribution, descriptive statistical
analysis and peak analysis were both applied accordingly. The abrupt changes through
change analysis were also captured.

4.2. Descriptive Analysis

Through descriptive statistical analysis, the representative values were selected through
the mean, minimum, and maximum. The dispersion metrics describe the size of the distri-
bution of values. The dispersion metrics include the range, variance, standard deviation,
and inter-quartile range (IQR). To explain the shape and symmetry of data distribution,
skewness and kurtosis were used as representative metrics. Skewness is a statistic which
can indicate the degree of asymmetry of a distribution. If the distribution is symmetrical,
such as a normal distribution or a T distribution, the skewness is 0. The skewness of a
distribution with a long tail to the right and that to the left denote positivity and negativity,
respectively. The kurtosis describes the weight of the tails of data distribution compared
to standard normal distribution. The root sum square (RSS) was adopted by taking the
square root of the sum of the squares of all the data points. RMS takes the square root of the
arithmetic mean square of data points. These metrics represent the data as representative
values. RSS implies the signal strength, while the RMS indicates the average of RSS.

4.3. Peak Analysis

The peak analysis aims to find the location of the local maxima or the minimum of a
signal, and sorts the peaks by height, width, or prominence. Since our goal was to detect
hypotension event, we defined the peak as the downward-sloping portion below 65, as
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marked in red in Figure 3. The statistical features on the peak detection results can be
derived by the number of peaks, the mean, the standard deviation for the peak interval,
the mean, the maximum, the minimum, the standard deviation for the peak value, and the
crest factor. The crest factor shows the ratio of peak values to other values and represents
the degree to which the peak is abnormal.

Figure 3. Downward peaks detected with a certain threshold.

Figure 3 demonstrates that the peaks can characterize the cyclic patterns, even though
the patterns seem apparently similar to each other. The bounding box area shows different
patterns with a low peak and a downward peak as well. Two peak points in the downward
peak appear consecutively, as marked in red in Figure 3.

As demonstrated in Figure 3, peaks are useful to characterize cyclic patterns, even
when they appear similar to one another. The bounding box area in red in Figure 3 shows
different patterns from other time points. Two peak points in the downward peak appeared
consecutively compared to other peak points.

4.4. Change Analysis

In the change analysis, the changes in mean and variance were detected. The change
detection algorithm partitions a signal into adjacent segments where a statistic, such as the
mean and the variance, is constant within a segment. To be more specific, the algorithm
partitions the data into two parts and calculates the sum of the residual error of each
part from its local mean. After detecting change points, the statistics, such as the number
of changes in the mean, variance, and mean variance of blood pressure values, were
accordingly derived. The red line in Figure 4 depicts the time point at which the mean
changes (Figure 4a) and the time points at which the variance changes (Figure 4b).

4.5. Frequency Analysis

The waveform data recorded in the time domain can be transformed into the frequency
domain, as shown in Figure 5. The frequency analysis extracts major frequencies in forming
the time series. The frequency analysis was divided into Fourier transform and wavelet
transform. The spectrum through the Fourier transform, displaying the power, indicates
how much a given frequency contributes to the signal. We used the fundamental frequency
with the highest power and other frequencies which follow the fundamental frequency.
The frequencies with the top three powers were used as features.

In the wavelet transform, a wavelet, i.e., an oscillation form, was convolved with
time-series data by scaling the wavelet and shifting into timelines.

Wavelet families include various mother wavelets that can be applied differently
depending on domains. The Morlet parent function can identify oscillated patterns.
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(a) 

(b) 

Figure 4. Change points analysis results. (a) Mean change; (b) variance change.

Wavelet transform is a form of time–frequency representation. It gives the coefficients
of scaling and shifting coefficients. The baseline of the signal’s scalogram is extracted
through continuous wavelet transform. The scalogram value represents how much a
wavelet scaled by a scale contributes to a signal at a certain time. We derived 10 scale values
with the top scalogram values as features. The transformation of the time domain data
into the frequency domain is shown in Figure 5. At the right upper panel in Figure 5, the
periodogram from FFT shows the fundamental frequencies that lay at 0.02 and its multiples
in terms of the relative frequency.

The scalogram at the right bottom panel indicates the absolute value of the continuous
wavelet transform of an IBP time series, plotted as a function of scale and power. Wavelet
algorithm changes the wavelet scale and checks how much the scaled wavelet fits to the
signal. It gives the contribution of each scale to the total energy of the signal.

The 36 aforementioned features are listed in Table 2 below.
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Figure 5. Fourier transform and wavelet transformation of the time domain signal.

Table 2. Details of the feature set.

Category Features Number of Features

Statistics

Mean of blood pressure

9

Max of blood pressure
Min of blood pressure
Sd of blood pressure

Skewness of blood pressure
Kurtosis of blood pressure

RMS of blood pressure
RSS of blood pressure
IQR of blood pressure

Peak

Number of peak

11

Mean of peak interval
Sd of peak interval
Mean of peak value
Max of peak value
Min of peak value
Sd of peak value

Crest factor
The number of changes in mean
The number of changes in var

The number of changes in mean-var

Fourier
Top 3 power

6Frequency of top 3 power

Wavelet Top 10 scales with high scalog values 10

Total 36

4.6. Model

We then applied machine learning to extract the features. We adopted the sophisticated
model on account of numerous features. Random forest is a machine learning technique
proposed by [22] and is one of the ensemble learning methods used for classification and
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regression analysis. In a random forest model, several decision trees are constructed, and
each tree individually learns the sampled data using bagging with different sets of features.
Bagging is a method used to sample datasets by allowing duplicates. Then, the results
of classification are voted on, and the result that receives the most is determined as the
final classification result. This is effective for large data processing and has the advantage
of improving model accuracy by avoiding the overfitting problem. A random forest was
constructed for each extracted feature combination. The number of decision trees of random
forest was designated as 100. Figure 6 presents the overall framework of our model.

 

Figure 6. Research framework to build the hypotension prediction model.

5. Experiment and Results

5.1. Data Collection

Our dataset collected vital signs, EMR, and anesthesia record from adult patients
(age ≥18 years) who underwent laparoscopic cholecystectomy under general anesthesia at
Soonchunhyang University Bucheon Hospital, Bucheon City, Republic of Korea between
30 December 2019 and 31 October 2000. The vital signs were collected using the vital
recorder [21]. Data collection was approved by the Soonchunhyang Bucheon hospital
review board (approval No. SCHDB_IRB_2011-11-015). Informed consent was obtained
from all subjects or their legal guardians. All methods were performed in accordance with
the relevant guidelines and regulations.

5.2. Experiment Results

The hypotension prediction model was built under a different feature set, as shown in
Figure 6. Our dataset had an imbalance problem with far less hypotensive samples than
normal samples. To resolve the class imbalance problem, the most widely used methods
are up-sampling and down-sampling. Up-sampling upsizes the small class at random,
while down-sampling downsizes the large class at random.

To overcome this imbalance, the data for the minor class were augmented by up-
sampling the training dataset. Up-sampling copies the data from the low-quantity class
as much as the data from the high-quantity class to make the distribution of the classes
the same. Up-sampling was performed by merely copying the hypotension samples for as
many normal samples, as shown in Figure 7. Up-sampling processing was only performed
in training data, but the validation dataset was kept as original.

Stratified k-fold cross validation was performed to evaluate the model. In k-fold
cross validation, the data were divided into k splits, k-1 splits were used as the train set,
and the remaining one split was used as the test set. k-fold is used when the data are
independent and have the same distribution. For the data in this study, stratified k-fold was
used instead of k-fold, because the distribution of each class was not the same. Stratified
k-fold cross validation performs k-fold while maintaining the distribution of classes, as
shown in Figure 8. In this study, we set k to 5.

9
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≥

 

 
Figure 7. Up-sampling of hypotension class to resolve the class imbalance.

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 +  𝑇𝑁
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑒𝑛𝑠𝑡𝑖𝑣𝑖𝑡𝑦) =  𝑇𝑃𝑇𝑃 + 𝐹𝑁

Figure 8. Visual representation of cross validation.

Accuracy for all classes and precision and recall for the hypotension class were used
as the model performance indicators. Each expression is as follows. The hypotension is the
same metric of sensitivity.

Accuracy =
TP + TN

TP + FN + FP + TN
(1)

Precision =
TP

TP + FP
(2)

Recall (Senstivity) =
TP

TP + FN
(3)

TP, TN, FP, and FN represent the true positives, true negatives, false positives, and
false negatives, respectively. As indicated by the performance, precision and recall of
hypotension class were primarily used. Due to the sample imbalance, the metric should
focus on the minor class. The precision and recall of hypotension class were presented first
and the accuracy was presented as an overall metric.

The performances according to the feature sets are listed in Table 3. The results in
Table 3 show that the fundamental frequencies and the Morlet wavelet, which captures
the oscillation patterns, are both effective in improving characterization between the hy-
potension and normal class. The accuracy was as high as 0.974, but precision and recall for
the positive class (hypotension) were rather low. This shows that the model works better
with the normal class than with the hypotension class. The model was trained to precisely
detect the hypotension and, as a result, it misses a significant portion of the hypotension,
consequently yielding a low recall.
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Table 3. Prediction results according to different windowing intervals and different feature sets.

Feature Set

Windowing

30 s 10 s

Accuracy Precision Recall Accuracy Precision Recall

Statistics 0.961 0.679 0.316 0.967 0.792 0.403
Peak + Change 0.958 0.646 0.269 0.963 0.750 0.338

Peak + Change + Fourier 0.963 0.759 0.335 0.971 0.873 0.451
Peak + Change + Fourier + Wavelet 0.964 0.780 0.345 0.972 0.891 0.468

Statistics + Peak + Change 0.963 0.745 0.339 0.970 0.861 0.444
Statistics + Peak + Change + Fourier 0.965 0.775 0.372 0.973 0.887 0.491

Total 0.966 0.970 0.379 0.974 0.904 0.511

To improve the performance, we modified the machine learning algorithm by adding
different class weights to the cost function of the algorithm. Various methods were used
to assign the weight onto the class as shown in Table 4. The balanced method involves
adding weight in reverse order to the class distribution. The balanced subsample calculates
weights which are inversely proportional to the class frequency based on bootstrap sam-
ples. We could improve the recall when adjusting the weight assigned to each class, but
should compromise the precision metric. Thus, we kept the original normal without the
weight assignment.

Table 4. Prediction results according to different weights on the classes.

Class Weight

Windowing

30 s 10 s

Accuracy Precision Recall Accuracy Precision Recall

balanced 0.964 0.795 0.326 0.972 0.914 0.461
balanced

subsample
0.964 0.800 0.326 0.972 0.914 0.462

6:4 0.966 0.789 0.388 0.974 0.901 0.515
7:3 0.965 0.764 0.393 0.974 0.893 0.519
8:2 0.965 0.757 0.400 0.974 0.884 0.523
9:1 0.965 0.739 0.408 0.974 0.867 0.526

We also checked the receiver operating characteristic (ROC) curves for the best per-
formed model in Figure 9. The ROC curves are consistently close to the ideal point which
is (0, 1) for all cross-validation sets. As shown in Figure 9, the specificity relating to the
normal class, calculated as the 1-x axis value (False Positive Rate), is very close to 1. This is
because most of the samples are normal and the algorithm works well for this major class.

To build an explainable machine learning algorithm, we assessed the impact of any
given variable on the performance using feature importance. Feature importance is com-
puted based on how important any given feature is to aid in the classification process
when the classifier is built, determined by its effect on the performance measures. Gini
importance is computed from the random forest structure. As shown in Figure 10, the most
important features are listed as mean, RSS, RMS, and min of IBP. In terms of feature groups,
the statistical feature set, the peak analysis feature set, the frequency analysis feature set,
and the change analysis feature set were found to be important in that order.

5.3. Exploratory Analysis

Table 5 lists the vital signs according to hypotension and non-hypotension. All vital
signs, except for the number of changes in the mean, were found to be significantly different.
Overall, the IBP of the hypotension class is lower than that of the non-hypotension class.
However, its skewness is higher. The IBPs of hypotension patients reach higher peaks than
the non-hypotension class, and the peak values of the hypotension class are lower than
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those of the non-hypotension class. In addition, the peak values of the hypotension class
have rather larger deviation than the normal class. The frequency of the hypotension class
is higher than the non-hypotension class. This implies that IBP right before hypotension
exhibits high vibration. The wavelet’s scales of the hypotension class are lower than
those of the non-hypotension class. This implies that more sharp oscillations occur in the
hypotension class compared to the non-hypotension class.

Figure 9. Receiver operating characteristic curves for each fold.

Figure 10. Feature importance plot.
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Table 5. Clinical patient characteristics in terms of vital signs.

Features

Non-Hypotension Hypotension

p-Value
Mean

Standard
Deviation

Mean
Standard
Deviation

mean 84.403 12.810 65.480 10.956 <0.001
min 60.737 10.545 44.821 9.254 <0.001
max 124.119 18.869 105.325 17.668 <0.001
sd 17.528 4.873 16.007 4.485 <0.001

skewness 0.717 0.250 0.917 0.319 <0.001
rms 86.299 13.085 67.514 11.215 <0.001
rss 172,598.647 26,169.658 135,027.662 22,429.642 <0.001

IQR 28.128 10.679 22.535 8.861 <0.001
kurtosis −0.678 0.841 −0.252 1.130 <0.001

p_n: number of peaks 30.221 23.457 52.457 30.431 <0.001
p_interval:means of peaks interval 81.605 67.791 45.741 30.487 <0.001

p_interval_std: standard deviation of
peak intervals

47.246 79.895 25.111 29.733 <0.001

p_mean: mean of peaks 58.673 4.928 49.040 10.455 <0.001
p_max: maximum of peaks 62.625 3.514 56.908 11.508 <0.001
p_min: minimum of peaks 55.299 6.916 42.889 10.630 <0.001

p_std: standard deviation of peaks 2.052 1.766 3.927 2.327 <0.001
Cf: crest factor 1.442 0.111 1.566 0.154 <0.001

cp1: number of mean changes 1.000 0.002 1.000 0 0.699
cp2: number of variance changes 0.257 0.437 0.282 0.450 <0.001

cp3: number of mean and variance
changes

0.991 0.095 0.987 0.112 <0.001

freq1: first strongest frequency 1.270 0.350 1.321 0.471 <0.001
freq2: second strongest frequency 1.271 0.349 1.323 0.469 <0.001
freq3: third strongest frequency 1.273 0.350 1.327 0.467 <0.001

po1: power of freq1 44,614.235 29,670.556 34,609.313 24,780.054 <0.001
po2: power of freq2 44,543.150 29,603.424 34,514.360 24,627.371 <0.001
po3: power of freq3 44,427.961 29,481.031 34,375.202 24,425.994 <0.001

scale1: the first largest scales of wavelet 0.785 0.288 0.775 0.426 <0.001
scale2: the second largest scales of

wavelet
0.787 0.290 0.777 0.431 <0.001

5.4. Comparison Analysis with Another Dataset

We performed an extra experiment with another dataset to verify the universal-
ity of our model. The public data from Seoul National University Hospital include all
6388 cases published in VitalDB whereby arterial pressure waveform monitoring was
performed under general anesthesia. Those who are under the age of 18, weigh less than
30 kg or more than 140 kg, or who are less than 135 cm or more than 200 cm in height were
excluded. In addition, the data cover 3278 files, excluding cases of transplant surgery, heart
surgery, and vascular surgery. Like the data from Bucheon Hospital, it is recorded in units
of 100 Hz. In this paper, only 983 were used for comparison, i.e., 30% of the data from Seoul
National University Hospital. We found that the performance of our model for this dataset
decreased, especially in terms of precision, as shown in Table 6.

Table 6. Verification results of the proposed model for other dataset.

Windowing

30 s 10 s

Accuracy Precision Recall Accuracy Precision Recall

0.989 0.652 0.441 0.992 0.764 0.540
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The data from Seoul National University Hospital performed worse than the data from
Soonchunhyang University Bucheon Hospital. This appears to be due to the difference in
the type of surgery between the two datasets. In the case of the Seoul National University
Hospital data, all surgeries, except for transplant surgery, heart surgery, and vascular
surgery, were included, whereas the data from Soonchunhyang University Bucheon Hospi-
tal were only for laparoscopic cholecystectomy. In addition, although the Seoul National
University Hospital data had a larger number of samples than the Bucheon Hospital data,
the event imbalance was more severe. Based on 30 s, the ratio of hypotension samples
over entire samples for Bucheon hospital was 4.7% (11,956/240,314) and the ratio for Seoul
hospital was 1.3% (3559/260,683).

6. Discussion and Conclusions

Currently, several studies that predict the amount of stroke, heart failure, and hypoten-
sion using vital signs during surgery have been published [15,16,18,19]. In the near future,
results of these studies may be adopted as useful diagnostic tools, enabling an immediate
reaction to hemodynamic changes and improving perioperative prognosis.

The present authors conducted a study to predict the occurrence of hypotension 5 min
in advance using vital signs. For that, we proposed a systematic feature engineering to
build a real-time prediction model for hypotension in the operation room. This forecasting
problem is quite challenging compared to diagnosis that detects high-risk patients at
current. In particular, the forecasting problem that specifies the event occurrent time is very
difficult to advance the predictable time. In this work, we challenged this problem through
a systematic feature engineering and machine learning algorithm.

To process this problem, we tried to set up more a realistic condition than previous
works. We included any hypotension, while previous works included the hypotension
events that last for long time. One-off occurrences are more difficult to detect because there
may be less precursor symptoms. In addition, we doubted whether previous works focus
on the first point rather than following points during the hypotension. Any samples that
embed hypotension during the observation and the delay should be deleted because they
may give hints.

For more information, we performed the comparison between the patients who suffer
hypotension or not. Appendix A Table A1 lists the clinical characteristics of patients,
including electronic medical record and laboratory data. The only age among demographics
and anesthesia time, operation time, crystal fluid amount, blood loss, and anesthesia
method among operation-related variables recorded in EMR differed significantly between
hypotension and normal groups. Among the preoperative test results, most variables such
as Hb, Hct, Plt, PT, INR, aPTT, AST, ALT, Alb, Na, K, and Cl have significantly lower values
of hypotensive patients than those of normal patients. Glc, BUN, and Cr did not differ
significantly and had no clinical implication. Among preoperative laboratory test results,
chloride concentration differed significantly between the groups. Among past disease
records, valvular heart disease, Diabete smellitus, HbA1c, and cerebrovascular disease
showed a significant difference between normal and hypotension groups. The presence of
this disease is found to significantly increase the risk of hypotension.

From the current experiment, we could identify several future research directions.
Our problem is highly imbalanced for the hypotension class; thus, the model tends to

be fitted to the normal class. As a consequence, it is hard to achieve good performance for
the hypotension class. More specifically, our model does not cover hypotension samples,
resulting in low recall. The low recall indicates that many patients who suffer hypotension
later show no difference 5 min later compared to normal patients. This arguably suggests
that the 5 min delay was too long, or that our feature engineering was insufficient. In future
work, we will compromise the delay by checking the time point when differences between
hypotension class and normal class are maximized.

From the feature importance, we found that the IBP values themselves were lower in
hypotension than in the normal class. From this observation, more sophisticated statistical
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features can improve the performance. p-Values corresponding to a certain one-side test
statistic will tell the difference in the distributions of IBP in normal and hypotension classes.
These p-values indicate how a large portion of the data is lower than the threshold. We aim
to vary the threshold to improve the performance.

Data were generated with windows of 30 s and 10 s, and features were extracted
accordingly. The shorter the windowing interval, the better the performance. Furthermore,
the model using all the features among the feature combinations showed the best perfor-
mance. For future work, we will generate samples with the windowing interval in small
units, such as 1 s. Furthermore, we will vary the observation and class observation period
and check the performance. The best combination will be derived through the experiment.

Lastly, we will also apply other algorithms, such as deep learning on raw data, or
other assemble methods, such as XGboost or stacking based on the same feature sets.
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Appendix A

Table A1. Clinical patient characteristics in terms of demographics, operation records, preoperative
test results, and past disease history (% for discrete variable or standard deviation for continuous
variable).

Characteristics No Hypotension (n = 347) Hypotension (n = 541) p

Demographics

Sex (Male) 182 (52.4%) 304 (56.2%) 0.306

Age 58.75 (15.04) 64.23 (15.15) <0.001 *

Wt 62.34 (16.71) 61.53 (18.32) 0.507

Ht 154.31 (36.22) 152.71 (39.43) 0.541

BMI 23.00 (6.81) 22.59 (7.46) 0.404

ANE.Time 246.48 (133.48) 270.44 (174.82) 0.030 *

Operation Time 177.87 (119.72) 203.90 (178.96) 0.017 *

Crystal (mL) 894.81 (742.36) 1184.80 (1187.60) <0.001 *

Colloid(mL) 239.39 (287.54) 274.62 (295.75) 0.080

Blood loss 201.06 (296.78) 373.76 (732.39) <0.001 *

Urine. output 473.90 (968.22) 403.19 (548.59) 0.166
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Table A1. Cont.

Characteristics No Hypotension (n = 347) Hypotension (n = 541) p

ASA

1 94 (27.1%) 88 (16.3%)

<0.001 *

2 129 (37.2%) 192 (35.5%)

3 112 (32.3%) 201 (37.2%)

4 12 (3.5%) 54 (10.0%)

5 0 (0.0%) 3 (0.6%)

6 0 (0.0%) 3 (0.6%)

EM 71 (20.5%) 175 (32.3%) <0.001 *

Anesthesia Method

BPB 0 (0.0%) 1 (0.2%)

<0.001 *

BPB_Volatile 0 (0.0%) 1 (0.2%)

CSE 0 (0.0%) 1 (0.2%)

MAC 0 (0.0%) 2 (0.4%)

spinal 5 (1.4%) 8 (1.5%)

TIVA 195 (56.2%) 171 (31.6%)

volatile 147 (42.4%) 357 (66.0%)

Preoperative Test

Hb 10.03 (5.52) 8.22 (5.92) <0.001 *

Hct 29.83 (16.32) 24.50 (17.63) <0.001 *

Plt 197.13 (134.62) 164.36 (140.36) 0.001 *

PT 10.25 (5.40) 8.99 (6.39) 0.002 *

INR 0.79 (0.42) 0.69 (0.50) 0.004 *

aPTT 27.18 (14.72) 23.91 (17.26) 0.004 *

AST 21.12 (17.61) 18.01 (17.89) 0.011 *

ALT 19.10 (19.65) 14.93 (17.92) 0.001 *

Alb 3.00 (1.80) 2.47 (1.92) <0.001 *

Glc 71.67 (62.64) 64.42 (71.44) 0.122

BUN 13.40 (10.95) 12.19 (12.15) 0.134

Cr 1.97 (9.75) 1.43 (7.69) 0.357

Na 110.41 (56.63) 93.87 (65.06) <0.001 *

K 3.27 (1.73) 2.80 (1.99) <0.001 *

Cl 82.88 (42.61) 70.80 (49.13) <0.001 *

History of Diseases

HBsAg 17 (6.2%) 10 (2.7%) 0.050 *

RPR 4 (1.5%) 2 (0.5%) 0.441

Hypertension 150 (43.2%) 271 (50.1%) 0.054

Atrialfibrillation 16 (4.6%) 29 (5.4%) 0.734

Coronary artery disease 18 (5.2%) 38 (7.0%) 0.338

Angina pectoris 11 (3.2%) 18 (3.3%) 1.000

Myocardial infarction 3 (0.9%) 8 (1.5%) 0.620

Congestive heart failure 5 (1.4%) 16 (3.0%) 0.221

Valvular heart disease 3 (0.9%) 16 (3.0%) 0.062 *

Asthma 15 (4.3%) 36 (6.7%) 0.190
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Table A1. Cont.

Characteristics No Hypotension (n = 347) Hypotension (n = 541) p

COPD 8 (2.3%) 20 (3.7%) 0.337

Interstitial lung disease 1 (0.3%) 1 (0.2%) 1.000

Hepatitis 8 (2.3%) 6 (1.1%) 0.263

Liver cirrhosis 9 (2.6%) 12 (2.2%) 0.894

Viral carrier 4 (1.2%) 3 (0.6%) 0.552

Fatty liver 1 (0.3%) 0 (0.0%) 0.823

HBV 12 (3.5%) 8 (1.5%) 0.088

HCV 4 (1.2%) 4 (0.7%) 0.786

Alcoholic 4 (1.2%) 5 (0.9%) 1.000

Autoimmune 0 (0.0%) 1 (0.2%) 1.000

Acute kidney injury 4 (1.2%) 7 (1.3%) 1.000

Chronic kidney injury 19 (5.6%) 26 (4.8%) 0.237

End stage renal disease 16 (4.6%) 30 (5.5%) 0.647

Diabetes mellitus 77 (22.2%) 178 (32.9%) 0.001 *

HbA1c 1.42 (2.80) 2.04 (3.20) 0.003 *

Thyroid disease 17 (4.9%) 18 (3.5%) 0.452

Myasthenia gravis 0 (0.0%) 1 (0.2%) 1.000

Morbid obesity 2 (0.6%) 2 (0.4%) 1.000

Epilepsy 2 (0.6%) 2 (0.4%) 1.000

Cerebrovascular disease 14 (4.0%) 42 (7.8%) 0.037 *

Cerebral aneurysm 8 (2.3%) 11 (2.0%) 0.971

Dementia 6 (1.7%) 15 (2.8%) 0.440

Note: * p < 0.05.
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Abstract: Several studies have reported that pre-pregnant women’s body mass index (BMI) affects
women’s weight gain with complications during pregnancy and the postpartum weight retention. It
is important to control the BMI before, during and after pregnancy. Our objectives are to develop
a technique that can compute and visualize 3D body shapes of women during pregnancy and
postpartum in various gestational ages, BMI, and postpartum durations. Body changes data from
98 pregnant and 83 postpartum women were collected, tracked for six months, and analyzed to
create 3D model shapes. This study allows users to simulate their 3D body shapes in real-time and
online, based on weight, height, and gestational age, using multiple linear regression and morphing
techniques. To evaluate the results, precision tests were performed on simulated 3D pregnant and
postpartum women’s shapes. Additionally, a satisfaction test on the application was conducted on
new 149 mothers. The accuracy of the simulation was tested on 75 pregnant and 74 postpartum
volunteers in terms of relationships between statistical calculation, simulated 3D models and actual
tape measurement of chest, waist, hip, and inseam. Our results can predict accurately the body
proportions of pregnant and postpartum women.

Keywords: 3D body shapes; body weights and measures; postpartum period; pregnancy period;
anthropometry

1. Introduction

Obesity during pregnancy is a serious health problem for women. Worldwide, obste-
tricians and midwives have confronted increasing obesity among pregnant women [1,2].
Reports [3–5] showed that women with a pre-pregnant body mass index (BMI) of either
overweight or obese levels are at risk of developing diabetes during pregnancy compared
to women with normal pre-pregnant BMI, even after taking the weight gains during a
normal pregnancy into account. Women with diabetes during pregnancy tend to have high
blood pressure, which can lead to abdominal surgery and premature birth [6]. Therefore,
it is important for all women who are planning to become pregnant to control a proper
weight before and during pregnancy using multi-faceted interventions throughout the
reproductive years as a part of a long-term follow up and behavioral interventions to
minimize pregnancy weight gain [7]. The BMI before pregnancy affects not only the weight
gain during pregnancy, but also the postpartum weight retention [8,9]. It was reported that
if a woman in the postpartum period was unable to regulate her weight to her pre-pregnant
weight within six months, postpartum weight retention could predict future weight gain
and long-term obesity [10]. Another study suggested that the BMI of a woman of more than
six months postpartum would indicate the retaining of extra body fluids produced during
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pregnancy, as well as extra fat during the first six months postpartum [11]. Sui Z. et al. [12]
reported a statistically significant indication that women with a high degree of body image
dissatisfaction were more likely to have higher gestational weight gain. Hill B. et al. [13]
also reported that the timing of pregnancy and body attitudes could predict gestational
weight gain (GWG). The findings suggested that lower attractiveness in early-to-middle
pregnancy was associated with higher GWG [13]. Therefore, in this work, the 3D body
shape simulation of women before, during, and after pregnancy has been developed with
an expectation that women will not misestimate their BMI to prevent being overweight
during pregnancy and the postpartum period. A 3D body simulation may encourage
women to prevent overweight behaviors before and throughout pregnancy to maintain
good health in the long run. Having 3D models in three stages of before, during, and
after pregnancy to compare, is one of the ways to motivate women to develop long-term
healthy behaviors.

There are some research reports that look at correlations between body shapes and BMI
for women [14–16]. Nevertheless, there is no physical simulation for the shape proportion
of pregnant and postpartum woman subjects, as they are a population group vulnerable to
the use of the 3D body scanner for data collection. The word “vulnerable” is in the context
of human research protections. Pregnant women are considered vulnerable due to the
involvement of the fetus that may be affected by the research and the fetus cannot give
consent [17]. It was not possible to collect the body shape data using the 3D body scanner
in the study. The reason for this is that most pregnant women are concerned about the
safety of 3D body scanners and have questions about the potential consequences of the
use of the scanner at all stages of pregnancy [18]. It is difficult to obtain an approval for
applications for research projects involving human subjects from the Institutional Review
Board (IRB), and especially when asking for consent forms for research subjects [17]. We
also needed pregnant and postpartum women to measure their own body circumferences
at home every four weeks during pregnancy and postpartum.

Therefore, it was necessary to collect data of various shapes using a tape measurement
of pregnant and postpartum women by forward tracking six months before and after
giving birth. Then data were analyzed and processed to create a simulation of 3D modeling
of pregnant and postpartum women based on data of non-pregnant female shapes from
SizeThailand [19,20]. Although there is a web application with a non-pregnant female
simulation, including Body Visualizer [21] developed by Black and Broscaru [22] from Max
Planck Gesellschaft, which published as a part of US Patent Application [23] and became
US Patent [24]. The process mentioned in the patent has been in use for studying female
sensitivity to changes in their perceived weight by altering the body mass index (BMI)
of the participants’ personalized avatars to deal with body perception [25]. Furthermore,
the process has also been in use for body size estimation in females varying in BMI as a
measure to deal with rising cases of Anorexia patients [26]. In addition, the process uses
the virtual caliper for the accurate 3D body measurements [27].

Body Visualizer has used the dataset based on SizeUSA, American and European
Surface Anthropometry Resource (CAESAR) as the basis for creating 3D body shapes
visualization [28,29]. It is a visualization tool for a parametric 3D body model that provides
metrically accurate anthropomorphic measurements based on laser scans of thousands
of people from different ethnicities. However, it is still lacking the 3D body models for
pregnant and postpartum women, especially for Asian women. Therefore, in this study we
focused on simulating the 3D shape of pregnant and postpartum women for Thais. In this
article, 3D body shape simulation of non-pregnant, pregnant, and postpartum womens’
shape with body proportions are predicted in real-time and online from weight, height and
gestational age. A real-time prediction in our study is a service that provides the predictions
via an HTTP call to simulate the 3D shape of pregnant and postpartum women via the
web browser after the users input their data. The body shape proportion of pregnancy and
postpartum women were analyzed using the linear regression of 587 pregnancy data and
503 postpartum data. The simulations of pregnant and postpartum women were further
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modified based on non-pregnant simulations from our previous study, which was analyzed
from the SizeThailand database with 6767 females’ data [19,20]. SizeThailand is a national
sizing surveys project that includes 13,442 adults, both males, and females across Thailand
at various ages [30].

Application Z-Size Ladies [31], described in this paper, was intended to collect user
data in the form of BMI timeline and simulate the 3D female body shape for non-pregnant,
pregnant women and postpartum women. Z-Size Ladies application [31] is a tool that
helps pregnant and postpartum women to simulate their 3D-body shapes. The aim of
developing the Z-Size Ladies application is to be a tool that can create a precise online
3D model for non-pregnant, pregnant, and postpartum women in real-time with a simple
set of input data of their weight, height, and gestational age. The tool was validated by
several linear regression studies and users’ survey. The simulation of the body shape
from body measurements can be considered as a low-cost alternative to full-body 3D
scanning [32]. Furthermore, this application can be applied to provide online clothing
services. The users only put in their weight, height, and gestational age; then they will
know their body shape proportions. More supporting information about Z-Size Ladies can
be showed/downloaded in Supplementary Materials.

2. Literature Reviews

There are some relevant studies on the prediction of 3D body shape during pregnancy
using multiple 3D body scans with a purpose of setting the standard sizing chart for ma-
ternity wear that addresses the changes throughout pregnancy [33]. Vaughan et al. [34]
matched personal weight, height and age with the overall body shapes taken from Magnetic
Resonance Imaging (MRI) images to create 3D adjustable parametric human body models
using OpenGL with 3D mesh deformation along with Artificial Neural Networks (ANNs)
trained and assessed with the clinical data of 23,088 patients, including pregnant and post-
partum patients from the National Health and Nutrition Examination Survey (NHANES)
data from 1999 to 2012. The ANNs used in their study managed to predict the anthropo-
metric measurements with the following margins of error including subscapular skinfold
thickness within 3.54 mm, waist circumference 3.92 cm, thigh circumference 2.00 cm, arm
circumference 1.21 cm, calf circumference 1.40 cm, and triceps skinfold thickness of 3.43 mm.
An alternative regression analysis method gave overall predictions slightly less accurate
for subscapular skinfold thickness within 3.75 mm, waist circumference 3.84 cm, thigh
circumference 2.16 cm, arm circumference 1.34 cm, calf circumference 1.46 cm, and triceps
skinfold thickness 3.89 mm. The results showed a parametric model of the patient’s body
shape and ligament thickness using OpenGL and adjusted by 3D mesh deformation. How-
ever, the 3D image that resulted from the mesh deformation looked unrealistic, despite the
accurate anthropometric measurements.

Haddox et al. [35] created a musculoskeletal model of a pregnant woman to simulate
the changes in segmental mass and inertia distribution. It included a case of changing
breast size during pregnancy. That caused pregnant ladies to fall due to the changes on the
centers of the upper trunks, pelvis regions, and torso centers along with lumbar curvatures.
They used datasets from 25 pregnant Caucasian ladies in six sessions and postpartum
women obtained from US Air Forces Research Lab as models having BMI before pregnancy
between 18.9 to 26 kg/m2. That was substantially lower than the average BMI of American
women at 26.5 kg/m2.

Ponnalagu et al. [36] pointed out that waist circumference (WC) is a simpler anthropo-
metric measurement that has strong association with an individual’s metabolic risk level.
BMI alone is not adequate since Asians have a high tendency to deposit fat at the viscera
compared with their European counterparts. This explains why Asians have a higher
fat percentage than Europeans despite having the same BMI. Furthermore, high waist
circumference increased the risks of developing hypertension, type 2 diabetes mellitus,
hypercholesterolemia, joint pain, low back pain, and hyperuricemia as mentioned in the
paper by Darsini et al. [37].
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Han et al. [38] investigated the cut-off points of body mass index (BMI) and waist
circumference (WC) for gestational diabetes mellitus (GDM) and interactions between high
BMI and high WC on the risk of GDM. They collected the data during 2010 to 2012 from
17,803 Chinese pregnant women from Tainjin who were at 4–12 week gestation. The results
showed that higher than 22.5 kg/m2 BMI and higher than 78.5 cm WC were the cut-off
points for gestational diabetes mellitus (GDM).

Jacobson et al. [39] invented Electronic Monitoring of Mom’s Schedule (eMOMS™)
for monitoring improved postpartum weight, blood sugars, and breastfeeding among high
BMI women who had BMI between 25 to 35 kg/m2. It offered an interactive communica-
tion between patients and physicians via Facebook, FaceTime and Skype. However, this
invention focused only on weight rather than taking other anthropometric variables into
account to help postpartum mothers to keep other physical factors of the body in check.

Ha et al. [40] conducted studies on postpartum weight retention in relation to gesta-
tional weight gain and pre-pregnancy BMI due to the rising cases of maternal overweight
and obesity in Vietnam. They studied 2030 pregnant women recruited from three cities in
Vietnam who were 24–28 weeks of gestation for the analyses on gestational weight gain
(GWG). In addition, they followed 1666 mothers for 12 months after delivery for the anal-
yses on 12-month postpartum weight retention (PPWR). They recorded all pre-pregnant
BMI. The results showed that both pre-pregnancy BMI and GWG were significantly as-
sociated with PPWR since those pregnancies with underweight before pregnancy and
excessive GWG contributed to greater weight retention twelve months after giving birth.
The measures to prevent postpartum maternal obesity should target at risk women who are
underweight or overweight at the first antenatal visit and control their weight gain during
the course of pregnancy.

Nagpal et al. [41] carried out analyses on postpartum weight retention (PPWR) on
150 participants while taking anthropometric variables other than BMI and weight into
account, such as waist circumference, hip circumference, and waist hip ratio. The results
showed the postpartum weight retention was associated with the anthropometric measure-
ments including waist circumference, hip circumference and waist-hip ratio. Increasing
waist circumference and hip circumference could be applied to make the risk assessment
for developing non-communicable diseases (NCD), such as gestation diabetes, which have
been rising during the post-partum period.

3. Methodology

The Faculty of Nursing at Chiang Mai University and Maharaj Nakorn Chiang Mai
Hospital approved the ethical authorization document for this study for data collection of
pregnant and postpartum mothers with the following objectives:

(A) To collect six-month forward tracking data on body weight, body circumference,
chest, waist, hip, upper arms and thighs during the pregnancy and postpartum period;

(B) To carry out an accuracy test of the Z-Size Ladies program in terms of 3D shape
simulation compared with women during pregnancy and postpartum period.

This study was a ‘prospective study’ on volunteering pregnant women and postpar-
tum women. The samples were women from antenatal care, who used postnatal services,
and took their babies for vaccination at secondary and tertiary hospitals. A sample size of
98 pregnant and 83 postpartum women was analyzed for calculating model shapes of the
pregnant and postpartum women. For the 3D simulation testing, a new group of 75 preg-
nant women and 74 postpartum women were compared in body shape proportion. The 3D
body shape simulation of pregnant and postpartum women is based on the simulation of
the non-pregnant female shape simulation studied in Sinthanayothin et al. [42].

The data collection started at 12–16 weeks of pregnancy and zero weeks of postpartum.
The research assistant measured the body circumferences of chest, waist, hip, thighs
(left/right), and upper arms (left/right) and explained to the volunteers how to measure
their body size by themselves. The measurement was delicate, therefore the interrater
agreement was essential that the participants had to hold the measuring tape in the correct

22



Sensors 2022, 22, 2036

position and not too tight. The measurement values could vary approximately ±2 cm.
The measurements were taken at home by pregnant/postpartum women subjects with
the assistance of someone at home. The measurement was taken every four weeks. There
would be a reminder notice from the research assistant when the schedule was approaching.
Three measurements were taken at each position and the median value was recorded for
each position. The volunteers sent their measured data to the research team via mobile
LINE application each time they measured their body shape.

3.1. The Simulation of the Female Shape in Three Dimensions (Z-Size Ladies)

The 3D simulation results for non-pregnant female bodies in various weights and
heights are shown in Figure 1 [42].

–

 

Pregnant Women’s Body Proportion Using Multiple Linear 

–

Figure 1. 3D body simulation for non-pregnant females using Morphing Technique.

3.2. The Correlation Analysis of Pregnant Women’s Body Proportion Using Multiple Linear
Regression of the 587 Data Collected from 98 Pregnant Women

The data from 98 pregnant women volunteers were collected and analyzed. Informa-
tion of all pregnant volunteers is shown in Table 1. The data were 587 sets in total. Each
data contained woman’s age, pre-pregnancy weight, height, gestational age, weight gain
during pregnancy, inseam (measure once at 12–16 week pregnancy), and body circumfer-
ence measurements: chest, waist, hip, upper arm (left/right), and thigh (left/right). The
data used for this study were from 94 women who were 12-week gestation; 98 of 16-week
gestation; 91 of 20-week gestation; 82 of 24-week gestation; 79 of 28-week gestation; 78 of
32-week gestation and 65 of 36-week gestation, a total of 587 sets.

Table 1. Information the pregnant participants.

Information Range Average SD

Age (Yw—Years) 18–43.5 29.64 5.24
Pre-Pregnancy Weight

(Wpp—Kg)
38–102 54.07 11.30

Height (Hw—cm) 104–174 157.58 5.97
Gravida (Gr—child) 1–2 1.39 0.49

Pregnancy Week (Wkp—Weeks) 12–36 23.05 7.88
Weight Gain (Wg—Kg) −5–26 6.33 5.01

Wendland et al. [43] investigated the relationship between waist circumference and
obesity-related pregnancy. The variables used in the correlation analysis were age, height,
gravida, gestational age, uterine height, gestational BMI, and pre-pregnancy BMI. Similar
work by Ricalde et al. [44] reported that some postpartum women’s anthropometric was
related to birth weight. Therefore, in this pregnancy study, the relationships between
the body shape proportion and variables of pregnancy such as woman’s age, weight,
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height, gestational age, weight gain during pregnancy were analyzed using multiple linear
regression, which could be calculated in Excel [45].

The correlation indicates the relationship between the body shape proportion and
variables of pregnancy such as woman’s age, weight, height, gestational age, weight
gain during pregnancy, and so on as shown in Equation (1), where Value is the propor-
tion of pregnancy woman’s body: Chest, Waist, Hip, Upper Arm, Thigh, respectively.
Yw = Woman’s age (Default is set to 30 in case age is unknown), Wpp = Pre pregnancy
weight (Kg), Hw = Women’s Height (cm), Gravida = Number of pregnancies (The default is
set to 1, when pregnant for the first time), Wkp = Gestational age or Pregnant week (Weeks)
and Wg = Weight gain during pregnancy (Kg), respectively.

Value = (A × Yw) +
(

B × Wpp

)

+ (C × Hw) + (D × Gr) +
(

E × Wkp

)

+
(

F × Wg

)

+ G (1)

Although there is no direct factor of BMI categories in our correlation analysis, the
body proportions, chest, waist, hip, thigh, and upper arm circumferences were calculated
using a multiple linear regression method based on 587 data collected from 98 pregnant
women. However, when a user wanted to predict her 3D pregnancy shape at other gestation
ages using the web app (Z-Size Ladies), weight gain during pregnancy was unknown.
Therefore, weight gain during pregnancy (Wg) would be predicted from pre-pregnancy
BMI as shown in Table 2 based on the Institute of Medicine (IOM), 2009 [46].

Table 2. Weight gained during pregnancy (kg) at each pregnancy stage based on pre-pregnancy BMI.

Pre-Pregnancy
BMI Type

Pre-Pregnancy BMI
(Kg/m2) (WHO)

Weight Gain
(Kg)

Weight Gain per
Week during the

Quarter 2–3 (Kg/Wk)

Under weight <18.5 12.73–18.18 0.45 (0.45–0.59)
Normal weight 18.5–24.9 11.36–15.91 0.45 (0.36–0.45)

Over weight 25.0–29.9 6.82–11.36 0.27 (0.23–0.32)
Obese ≥30.0 5.00–9.09 0.23 (0.18–0.27)

3.3. Simulation of Pregnant Women in 3D

The real-time visualization of 3D morphing of pregnant and postpartum female body
shapes on the online Z-Size Ladies web application was implemented using the three.js
library [47] incorporated with HTML5, JavaScript, and CSS for client-side development.
Python, flask, and MySQL were employed for the server-side. Three.js was used as it was a
cross-browser JavaScript library to ease the process of creating and displaying real-time 3D
computer graphics and animation in the web browser.

A 3D model of a pregnant woman was created from a pregnant thin avatar shown in
Figure 2 using a female model from Turbosquid [48,49] and combined with other avatars
shown in Figure 3 for simulating a pregnancy figure by morphing technique.

The pregnant avatar refers to the pregnant women’s simulation based on our previous
studies [42]. The pregnant woman simulation is a combination of a woman shape and a
pregnant shape. As the non-pregnant female simulation is a combination of a thin avatar
(Figure 3A) and other avatar shapes (including Figure 3B big breast, (C) big waist, (D) big
hip, (E) tall avatar, (F) long legs), so to simulate a pregnant woman, a pregnant thin avatar
(Figure 2 or Figure 3G) is added.

TurboSquid is a digital media company that sells 3D models used in 3D graph-
ics to a variety of industries, including computer games, architecture, and interactive
training [48,49].
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shown in ‘front view’. However, if avatar is shown in only ‘front view’, the shape

Figure 2. Creating a thin pregnancy avatar.

 

shown in ‘front view’. However, if avatar is shown in only ‘front view’, the shape

Figure 3. Seven avatars with accessories (eyes, eyes brows, hair, cloths): (A) thin, (B) big breast,
(C) big waist, (D) big hip, (E) tall avatar, (F) long legs and (G) pregnant thin avatar. (Avatar (G)) has
different view/pose as we would like to emphasize that this avatar has been added to this study
while other avatars are from our previous study. Avatars (A–F) are shown in ‘front view’. However,
if avatar (G) is shown in only ‘front view’, the shape changes from pregnancy would be difficult
to notice).

Details of creating a 3D non-pregnant female shape by combining thin, big breast, big
waist, big hip, tall and long legs avatars can be found in the article by Sinthanayothin et al. [42].
The idea of utilizing a combination of the avatar bodies for 3D shape simulation came
from the morphing technique [50]. Morphing is a geometric interpolation technique, which
mixed different characteristics of the objects. The body shape simulation that adjusted only
a specific part was a challenge. For example, chest or hip circumference could be set bigger
or smaller with the least impact on the waist and others. Therefore, our team designed the
avatars in different ways to combine the shape of the body and to be able to adjust the size
of specific parts as needed. Therefore, the 3D non-pregnant female shape was created by
combining thin, big breast, big waist, big hip, tall and long legs avatars using the morphing
technique to make it easier to adjust only a specific part of the body.

For simulating a pregnant body shape, the morphing technique was applied as shown
in Equation (2):

Pi = (1 −
5

∑
i=0

Ki)× Ai + (K0 × Xi) + (K1 × Bi) + (K2 × Ci) + (K3 × Di) + (K4 × Ei) + (K5 × Fi) (2)

where Xi is pregnant thin avatar, Ai–Fi are avatars with thin, big breast, big waist, big hip,
tall and long legs, respectively.

25



Sensors 2022, 22, 2036

The simulation of a non-pregnant body shape from our previous study [42] showed
that the variables K1–K5 depended upon the BMI values. Therefore, a similar experi-
ment was performed in this study by testing 30 pregnant female subjects whose 3D data
were simulated using Equation (2) in comparison with the statical measurement from
Equation (1).

In our experiment, the K0–K5 values are the sum between K00–K05 and the correspond-
ing values between Alp0–Alp5 shown in Equation (3a,b). Where K00–K05 are depended on
the values of Chest, Waist, Hip, Height and Inseam as shown in Equation (3c,d) respectively.

K0 = K00 + Alp0, K1 = K01 + Alp1, K2 = K02 + Alp2 (3a)

K3 = K03 + Alp3, K4 = K04 + Alp4, K5 = K05 + Alp5 (3b)

Where K00 = 0, K01 =
(Chest − 57)
(200 − 57)

, K02 =
(Waist − 40)
(160 − 40)

, (3c)

K03 =
(Hip − 68)
(180 − 68)

, K04 =
1.36 × (Height − 165)

(199 − 165)
, K05 =

(Inseam − 78)
(120 − 48)

(3d)

The simulations of pregnant and postpartum women were further modified based
on data from non-pregnant females from our previous study [42]. The constant values
of Equation (3) were derived from the size of the designed avatars as mentioned in [42].
“The thin avatar was used as a default or initial model with the minimum values of chest,
waist, and hip of approximately 57, 40, and 68 cm, respectively. The avatar with the big
breast was applied to adjust the size of the chest values. The chest circumference of the
avatar with the big breast was set as maximum chest values of approximately 200 cm.
Similarly, for the avatar with the large waist and with the big hip, the size of the waist
and hip of these avatars were set as maximum values of approximately 160 and 180 cm,
respectively. For inseam, the default value for the thin avatar was approximately 73 cm.
In this work, the minimum and maximum values of the inseam have been set to 48 and
120 cm, respectively. The last avatar (tall avatar) with the height of 200 cm is set to be the
maximum height value.”

The values of Chest, Waist, Hip, and Inseam, which are the values that defined
K00–K05, were calculated from the non-pregnant female body shape according to the
article by Sinthanayothin et al. [42], which can be expressed by linear equations shown in
Equation (4a–d) respectively.

Chest = 0.872260 × Weight − 0.437949 × Height + 110.131573 (4a)

Waist = 0.931735 × Weight − 0.497702 × Height + 104.780946 (4b)

Hip = 0.729978 × Weight − 0.152380 × Height + 78.526838 (4c)

Inseam = −0.059182 × Weight + 0.547734 × Height − 14.226815 (4d)

From our experiments of cross-sectioning and measuring the circumference of 3D
simulation figures, the Alp0–Alp5 were functions of the BMI, which could be calculated as
the following polynomial equations. The quadratic functions derived from second-order
polynomial regression and parameters from the experiment were performed to obtain a 3D
pregnant woman model that was the closest to the calculated statistical value as shown in
Equation (5a–f).

Alp0 = (Alp01 × BMI × BMI) + (Alp02 × BMI) + Alp03 (5a)

Alp1 = (Alp11 × BMI × BMI) + (Alp12 × BMI) + Alp13 (5b)

Alp2 = (Alp21 × BMI × BMI) + (Alp22 × BMI) + Alp23 (5c)

Alp3 = (Alp31 × BMI × BMI) + (Alp32 × BMI) + Alp33 (5d)
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Alp4 = (Alp41 × BMI × BMI) + (Alp42 × BMI) + Alp43 (5e)

Alp5 = (Alp51 × BMI × BMI) + (Alp52 × BMI) + Alp53 (5f)

AlpXY is a variable that depends on the gestational age (Wkp), so it can be written as a
quadratic function shown in Equation (6a).

AlpXY = (AlpXYC × Wkp × Wkp) + (AlpXYB × Wkp) + AlpXYA (6a)

where AlpXYA, AlpXYB and AlpXYC are constants calculated by polynomial fitting shown
in Table 3. These values were applied to the morphing equations to obtain 3D pregnant
women model closed to the calculated statistical value, as shown in Equation (1).

Table 3. Correlation coefficient AlpXY used in morphing equations.

AlpXY AlpXYA AlpXYB AlpXYC

Alp01 −6.956 × 10−3 4.582 × 10−4 −8.577 × 10−6

Alp02 4.671 × 10−1 −2.857 × 10−2 5.314 × 10−4

Alp03 −6.945 3.811 × 10−1 −6.870 × 10−3

Alp11 −1.033 × 10−4 −2.141 × 10−5 6.106 × 10−7

Alp12 5.440 × 10−3 9.985 × 10−4 −2.975 × 10−5

Alp13 −1.019 × 10−1 −9.765 × 10−3 3.342 × 10−4

Alp21 −3.492 × 10−4 9.483 × 10−5 −2.375 × 10−6

Alp22 1.685 × 10−2 −7.334 × 10−3 1.539 × 10−4

Alp23 −1.692 × 10−1 1.215 × 10−1 −2.524 × 10−3

Alp31 −1.053 × 10−5 2.944 × 10−5 −3.744 × 10−7

Alp32 −2.220 × 10−3 −2.386 × 10−3 4.237 × 10−5

Alp33 1.524 × 10−2 4.118 × 10−2 −9.049 × 10−4

Alp41 1.083 × 10−4 −2.414 × 10−5 6.383 × 10−7

Alp42 −4.416 × 10−3 1.477 × 10−3 −3.730 × 10−5

Alp43 8.753 × 10−2 −2.232 × 10−2 5.554 × 10−4

Alp51 −1.808 × 10−4 9.690 × 10−6 6.453 × 10−7

Alp52 1.370 × 10−2 −1.370 × 10−3 −1.147 × 10−5

Alp53 −1.656 × 10−1 2.241 × 10−2 −1.634 × 10−5

If Wkp (the gestational age) is less than 12 weeks, Alp0 can be calculated as shown in
Equation (6b).

Alp0 = Alp0 × Wkp/12 (6b)

3.4. The Correlation Analysis of Postpartum Women’s Body Proportion Using Multiple Linear
Regression of the 503 Data Collected from 83 Postpartum Women

The data from 83 postpartum women volunteers were collected and analyzed. Infor-
mation of all postpartum volunteers was shown in Table 4. The data were 503 sets in total.
Each data contains the woman’s age, pre-pregnancy weight, height, gravida, baby weight,
postpartum week, postpartum weight, inseam (measure once at zero weeks of postpartum),
and body circumference measurements: chest, waist, hip, upper arm (left/right), and thigh
(left/right). The data used for this study were from 81 women of 0-week postpartum; 76 of
4-week postpartum; 73 of 8-week postpartum; 72 of 12-week postpartum; 72 of 16-week
postpartum; 70 of 20-week postpartum and 59 of 24-week postpartum, a total of 503 sets.
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Table 4. Information the postpartum participants.

Information Range Average SD

Age (Yw—Years) 17.1–45.25 29.05 5.17
Pre-Pregnancy Weight

(Wpp—Kg)
38–95 56.35 12.10

Height (Hw—cm) 142–173 156.85 5.99
Gravida (Gr—child) 1–2 1.41 0.49

Baby Weight (Wb—Kg) 2.1–4.02 2.97 0.42
Postpartum Week
(Wkppt—Weeks)

0–24 11.37 7.94

Postpartum Weight (Wppt—Kg) 35.5–117 59.51 12.19

The correlation indicates the relationship between the body shape proportion and
variables of postpartum such as woman’s age, pre-pregnancy weight, height, gravida, baby
weight, postpartum week and postpartum weight, as shown in Equation (7), which is
similar to Equation (1), however, with postpartum parameters. The values are the propor-
tion of a postpartum woman’s body: Chest, Waist, Hip, Upper Arm, Thigh, respectively.
Yw = Woman’s age (Default is set to 30 in case age is unknown), Wpp = Pre pregnancy
weight (Kg), Hw = Height (cm), Gr = Number of pregnancies (The default is set to one,
when pregnant for the first time), Wb = Baby weight in Kg (The default is set to three in
case baby weight is unknown), Wkppt = Postpartum week (Weeks) and Wppt = Postpartum
weight (Kg), respectively.

Value = (A × Yw) +
(

B × Wpp

)

+ (C × Hw) + (D × Gr) + (E × Wb)
+
(

F × Wkppt

)

+
(

G × Wppt

)

+ H
(7)

The postpartum weight (Wpp) from measurement was already used as an indepen-
dent variable in calculating the body circumference of postpartum women according to
Equation (7). However, when a user wants to predict her 3D postpartum shape at other
postpartum weeks using web app (Z-Size Ladies), postpartum weight is unknown. In the
case of calculating the postpartum weight as a dependent variable, it would be complicated
since it involved many factors such as BMI, pre-pregnancy weight, gestational weight
gain, baby weight, and postpartum age. Moreover, data must be divided into four groups
according to BMI types (underweight, normal weight, overweight and obese). Therefore,
data from 83 postpartum women must also be divided into four groups, resulting in less
than 30 postpartum women in each group. Data with n < 30 may not be sufficient for
statistical analysis calculations [51].

Therefore, in the postpartum simulation application, the postpartum weight (Wpp)
was predicted from the review articles. Theananansuk and Lertbunnaphong [52] concluded
that the mean weight retention at the sixth week postpartum in Thai singleton pregnancy
with normal pre-pregnancy BMI was 4.99 Kg. Cheng and Schmitt [53,54] discussed the post-
partum weight retention in Asia and reviewed other articles showing that the postpartum
weight retention at 0–24 weeks with inversion was approximately 7.4–2.5 Kg. Huang [8]
studied 602 postpartum Taiwanese women and provided gestational weight gain (GWG),
body weight retention and BMI at six months postpartum. Therefore, GWG from Huang [8]
was compared to the values from IOM 2009 [46] to calculate GWG as shown in Table 5.
The calculated weight retention results at six-month postpartum are shown in Table 6.
Comparing results from six-month weight retention calculated for this study by applying
the rule of three in arithmetic in comparison with the corresponding results from Huang [8]
and IOM 2009 [46] have shown the weight retention. The results implied that females with
extreme levels of BMI were slightly more vulnerable from higher weight retention than
Taiwan females with corresponding BMI types, while the results were on the reverse for
the case of normal weight and overweight.
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Table 5. Comparison of gestational weight gain (GWG) for different types of BMI, obtained from two
sources [8,46].

Pre-Pregnancy
BMI Type

Pre-Pregnancy
BMI (Kg/m2)

(WHO)

Weight Gain
(Kg)

GWG (Average
Total Weight Gain

(Kg) from IOM)

GWG (Kg) from
Huang et al.,

2010

Under weight <18.5 12.73–18.18 15.455 14.36
Normal weight 18.5–24.9 11.36–15.91 13.635 14.37

Overweight 25.0–29.9 6.82–11.36 9.09 13.07
Obese ≥30.0 5.00–9.09 7.045 11.15

Table 6. Comparison of weight retention at six-month postpartum for different types of BMI.

Pre-Pregnancy BMI Type
Pre-Pregnancy BMI

(Kg/m2) (WHO)
Weight Gain (Kg)

(IOM 2009)

Weight Retention at
6-mo Postpartum

(Huang et al., 2010)

Weight Retention at
6-mo Postpartum

(Apply in This Study)

Under weight <18.5 12.73–18.18 3.32 3.573
Normal weight 18.5–24.9 11.36–15.91 2.57 2.430

Overweight 25.0–29.9 6.82–11.36 1.67 1.161
Obese ≥30.0 5.00–9.09 −0.29 −0.183

An article by American Pregnancy Association (APA) [55] provided an average preg-
nancy weight gain distribution in a total of 30 pounds (13.63 Kg) as shown in Table 7.

Table 7. Average pregnancy weight gain distribution in a total of 13.63 Kg (30 pounds) suggested by
APA. About half belongs to Mom and the other half belongs to the baby.

Pregnancy Weight Gain Distribution Weight (Kg) Belongs to Mom or Baby

The weight of the baby by the end of pregnancy 3.4 Baby
The weight of the placenta 0.68 Baby

Attributed to increased fluid volume 1.82 Baby
Increased blood volume 1.82 Baby/Mom
The weight of the uterus 0.91 Mom

The weight of breast tissue 0.91 Mom
Maternal stores of fat, protein and other nutrients 3.18 Mom

The amniotic fluid 0.91 Mom

From the above assumption, the weight retention at zero weeks (or delivery date)
would be about half of the GWG (Average total weight gain from IOM), which were 7.7275,
6.8175, 4.545 and 3.5225 for pre-pregnancy BMI of underweight, normal weight, overweight
and obese, respectively. Therefore, the weight retention from 0–24 weeks can be calculated
by fitting graphs with different BMI types, as shown in Figure 4. The corresponding
equations could be expressed as shown in Equations (8)–(11) with X referring to postpartum
weeks while YUW, YNW, YOW, YOB are postpartum weight retention for the case of pre-
pregnancy BMI type: underweight, normal weight, overweight and obese, respectively. In
addition, postpartum weight was calculated as a summation of pre-pregnancy weight and
weight retention.

YUW = 0.0064X2 − 0.3268X + 7.7275 (8)

YNW = 0.0068X2 − 0.3452X + 6.8175 (9)

YOW = 0.0052X2 − 0.2662X + 4.5450 (10)

YOB = 0.0057X2 − 0.2915X + 3.5225 (11)
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–  -

𝑌௎ௐ = 0.0064𝑋ଶ − 0.3268𝑋 + 7.7275𝑌ேௐ = 0.0068𝑋ଶ − 0.3452𝑋 + 6.8175𝑌ைௐ = 0.0052𝑋ଶ − 0.2662𝑋 + 4.5450𝑌ை஻ = 0.0057𝑋ଶ − 0.2915𝑋 + 3.5225

𝑃𝑖 = (1 − ෍ 𝐾𝑖) × 𝐴𝑖ହ
𝑖=ଵ + (𝐾ଵ × 𝐵𝑖) + (𝐾ଶ × 𝐶𝑖) + (𝐾ଷ × 𝐷𝑖) + (𝐾ସ × 𝐸𝑖) + (𝐾ହ × 𝐹𝑖)

𝐾ଵ = 𝐾଴ଵ + 𝐴𝑙𝑝ଵ,   𝐾ଶ = 𝐾଴ଶ + 𝐴𝑙𝑝ଶ      𝐾ଷ = 𝐾଴ଷ + 𝐴𝑙𝑝ଷ      𝐾ସ = 𝐾଴ସ + 𝐴𝑙𝑝ସ      𝐾ହ = 𝐾଴ହ + 𝐴𝑙𝑝ହ 

Figure 4. Weight retention estimation from 0 to 24 weeks postpartum, with pre-pregnancy BMI types.

3.5. Simulation of Postpartum Women in 3D

The 3D model of a postpartum woman was calculated in a similar way to the non-
pregnant female [42], although with different parameters. For simulating a postpartum
body shape, the morphing technique was applied, as in Equation (12), which was similar
to Equation (2).

Pi = (1 −
5

∑
i=1

Ki)× Ai + (K1 × Bi) + (K2 × Ci) + (K3 × Di) + (K4 × Ei) + (K5 × Fi) (12)

where Ai–Fi are avatars with thin, big breast, big waist, big hip, tall and long legs, respec-
tively. From the experiment, it was found that the K1–K5 values were also proportional to
the BMI and also depended on the postpartum weeks as well. In our experiment, a second
order polynomial fitting curve and parameters from the experiment were performed as
shown in Equation (13a–c), which is similar to Equation (3a–d):

K1 = K01 + Alp1, K2 = K02 + Alp2, K3 = K03 + Alp3, K4 = K04 + Alp4, K5 = K05 + Alp5 (13a)

Where K01 =
(Chest − 57)
(200 − 57)

, K02 =
(Waist − 40)
(160 − 40)

, (13b)

K03 =
(Hip − 68)
(180 − 68)

, K04 =
1.36 × (Height − 165)

(199 − 165)
, K05 =

(Inseam − 78)
(120 − 48)

(13c)

The values of Chest, Waist, Hip and Inseam are the values calculated from non-
pregnant female body shape according to the article by Sinthanayothin, et al. [42]. The
values could be expressed as linear equations shown in Equation (14a–d), which are similar
to the ones shown in Equation (4a–d).

Chest = 0.872260 × Weight − 0.437949 × Height + 110.131573 (14a)

Waist = 0.931735 × Weight − 0.497702 × Height + 104.780946 (14b)

Hip = 0.729978 × Weight − 0.152380 × Height + 78.526838 (14c)

Inseam = −0.059182 × Weight + 0.547734 × Height − 14.226815 (14d)
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From the experiments of cross-sectioning and measuring the circumference of 3D
simulation figures, Alp1–Alp5 were functions of the body mass index (BMI), which could be
calculated as the following morph equations, which were quadratic functions shown in
Equation (15a–f). They are similar to those shown in Equation (5a–e).

Alp1 = (Alp11 × BMI × BMI) + (Alp12 × BMI) + Alp13 (15a)

Alp2 = (Alp21 × BMI × BMI) + (Alp22 × BMI) + Alp23 (15b)

Alp3 = (Alp31 × BMI × BMI) + (Alp32 × BMI) + Alp33 (15c)

Alp4 = (Alp41 × BMI × BMI) + (Alp42 × BMI) + Alp43 (15d)

Alp5 = (Alp51 × BMI × BMI) + (Alp52 × BMI) + Alp53 (15e)

AlpXY is a variable that depends on the postpartum weeks (Wkppt), so it can be written
as a quadratic function shown in Equation (16) and similar to Equation (6a).

AlpXY = (AlpXYC × Wkppt × Wkppt) + (AlpXYB × Wkppt) + AlpXYA (16)

where AlpXYA, AlpXYB and AlpXYC are the constants calculated by polynomial fitting
shown in Table 8. These values were applied to the morphing equations to obtain 3D post-
partum women model closed to the calculated statistical value, as shown in Equation (7).

Table 8. AlpXY correlation coefficients used in morphing equations for 3D postpartum woman model.

AlpXY AlpXYA AlpXYB AlpXYC

Alp11 3.942 × 10−4 −6.943 × 10−6 1.720 × 10−7

Alp12 −2.351 × 10−2 5.974 × 10−4 −1.915 × 10−5

Alp13 2.716 × 10−1 −8.912 × 10−3 3.394 × 10−4

Alp21 −1.201 × 10−3 6.315 × 10−5 −1.935 × 10−6

Alp22 6.153 × 10−2 −2.718 × 10−3 8.334 × 10−5

Alp23 −5.699 × 10−1 1.173 × 10−2 −5.636 × 10−4

Alp31 1.668 × 10−5 −1.037 × 10−5 3.959 × 10−7

Alp32 −4.785 × 10−3 6.078 × 10−4 −1.986 × 10−5

Alp33 7.614 × 10−2 −7.619 × 10−3 1.400 × 10−4

Alp41 −6.535 × 10−5 2.052 × 10−5 −9.603 × 10−7

Alp42 3.961 × 10−3 −5.569 × 10−4 3.121 × 10−5

Alp43 −2.846 × 10−2 1.740 × 10−3 −1.908 × 10−4

Alp51 −3.400 × 10−4 −1.750 × 10−5 7.106 × 10−7

Alp52 1.718 × 10−2 2.525 × 10−4 −1.226 × 10−5

Alp53 −1.914 × 10−1 1.244 × 10−2 −4.478 × 10−4

4. Results

4.1. Statistical Correlation and 3D Modeling Simulation for Pregnant Female Body Shape

The results of the correlation analysis of pregnant women shape with independent
variables using multiple linear regression of the 587 data collected from 98 pregnant women
are shown in Table 9. Coefficient values were calculated according to the woman’s age,
pre-pregnancy weight, height, gestational age, and weight gain during pregnancy, which
were applied to the statistical calculation of pregnant female body shape in Equation (1).
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Table 9. Coefficient values for the multiple linear regression of pregnant women.

Value A B C D E F G

Chest −0.016 0.674 −0.132 0.090 0.100 0.457 69.896
Waist 0.108 0.752 −0.203 1.315 0.591 0.840 59.394
Hip −0.022 0.736 −0.012 −0.491 −0.074 0.970 58.071

Upper Arm 0.017 0.306 −0.075 0.004 0.016 0.272 21.423
Thigh 0.031 0.516 −0.026 −0.064 −0.066 0.668 29.115

Figure 5 shows the results of the pregnant women 3D simulations at various gestational
ages for women with four types of pre-pregnancy BMI: Underweight (BMI < 18.5); Normal
weight (18.5 ≤ BMI ≤ 24.9); Overweight (25.0 ≤ BMI ≤ 29.9); and Obese (BMI ≥ 30.0).

− . . − . . . . .
. . − . . . . .

− . . − . − . − . . .
. . − . . . . .
. . − . − . − . . .

Normal weight (18.5 ≤ BMI ≤ 24.9) (25.0 ≤ BMI ≤ 29.9) and Obese (BMI ≥ 

 

’s

Figure 5. The simulated 3D models before pregnancy and during pregnancy 12, 24, and 40 weeks
with four types of pre-pregnancy BMI: underweight, normal weight, overweight and obese.

4.2. Statistical Correlation and 3D Modeling Simulation for Postpartum Female Body Shape

The results of the correlation analysis of postpartum women’s shape with independent
variables using multiple linear regression of the 503 data collected from 83 postpartum
females are shown in Table 10. Coefficient values were calculated according to the woman’s
age, pre-pregnancy weight, height, gravida, baby weight, postpartum week, and postpar-
tum weight, which were applied to the statistical calculation of postpartum female body
shape in Equation (7).

Table 10. Coefficient values for the multiple linear regression of postpartum women.

Value A B C D E F G H

Chest −0.036 0.033 0.013 0.689 −0.066 −0.066 0.550 53.038
Waist 0.041 −0.064 −0.213 2.880 −2.098 −0.396 0.870 75.729
Hip 0.058 −0.074 −0.180 −0.022 −0.387 −0.196 0.780 83.935

Upper Arm 0.002 −0.014 −0.164 0.984 −0.533 −0.013 0.297 35.833
Thigh −0.046 0.162 −0.124 −1.189 1.112 −0.072 0.390 41.065
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Figure 6 shows the results of 3D simulation of postpartum women from the postpartum
week of zero to 24 weeks with Height of 165 cm, Pre-pregnancy Weight of 60 Kg, Baby
weight of 3 Kg.
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. − . − . . − . − . . .
. − . − . − . − . − . . .
. − . − . . − . − . . .

 − . . − . − . . − . . .

 

Figure 6. 3D simulation models of postpartum women.

4.3. The Accuracy Test on 3D Modeling of Pregnant Women

For accuracy test on pregnant simulation, the average and standard deviation of the
measurements, Pearson coefficients and relative errors were calculated to measure the asso-
ciation and agreement between pairs of measurement methods. Furthermore, confidence
interval plots were examined to assess and compare the results of the two methods.

The accuracy test on 3D modeling of pregnant women was divided into two parts:

A. Comparison of body measurements in centimeters of chest, waist, hip, upper arm,
thigh, and inseam between 3D models of pregnant women and the calculated sta-
tistical values for 30 datasets, with the mean age of 28.22 ± 4.69 years, the height
of 159.13 ± 4.78 cm, the pre-pregnancy weight of 61.82 ± 18.19 Kg and gestational
age of 12–36 weeks with the mean at 24 ± 9.9 weeks. Z = Z-Size Ladies statisti-
cal values, B = Manual cross-section on 3D model and measured body circumfer-
ences, Chest = chest, Waist = waist, Hip = hip, Thigh = thigh circumference, Upper
Arm = upper arm circumference and Inseam = leg length, respectively. Where Avg
is the mean, SD is the standard deviation, L CI and U CI are the lower and upper
bounds of the 95% confidence interval, R Error is the relative error and Corr is the
correlation, as shown in Table 11. Also 95% Confidence Interval (CI) plot for the
mean measurements of chest, waist, hip, upper arm, thigh, and inseam of pregnant
women between Z-Size Ladies statistical values and manual cross-section 3D values
are shown in Figure 7.

B. Comparison of chest, waist, hip, and arm thigh in centimeters between the values
calculated from the statistical data and the values obtained from 75 pregnant vol-
unteers using a tape measurement at Maharaj Nakorn Chiang Mai Hospital, with
the mean age of 29.72 ± 4.95, the height of 156.97 ± 5.32 cm, the pre-pregnancy
weight of 55.37 ± 10.01 Kg and the mean gestational age at 6–39 weeks with the
mean of 25.71 ± 9.9 weeks. When Z = Z-Size Ladies statistical values, M = Manual,
Weight Z = estimated maternal weight with App, Weight M = actual mother’s weight,
Chest = chest, Waist = waist, Hip = hip circumference and Upper Arm = upper arm
circumference. Avg is the mean, SD is the standard deviation, L CI and U CI are
the lower and upper bounds of the 95% confidence interval, R Error is the relative
error and Corr is the correlation, as shown in Table 12. Also 95% Confidence Interval
(CI) plot for the mean measurements of weight, chest, waist, hip, and upper arm of
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pregnant women between Z-Size Ladies statistical values and tape measurements are
shown in Figure 8.

Table 11. Comparing the average results of chest, waist, hip, upper arm circumference, thigh, and
inseam, with the standard deviation, the lower and upper bounds of the 95% confidence interval, the
relative error, and the correlation between the Z-Size Ladies statistical value and the circumference
values measured cross-sectionally on 3D modelling for the case of pregnant women.

Chest Waist Hip Upper Arm Thigh Inseam

Z B Z B Z B Z B Z B Z B

Avg 94.51 95.30 96.92 97.06 103.98 103.93 30.70 31.60 59.80 58.98 69.51 69.93
SD 10.49 10.86 14.05 14.36 11.22 12.42 4.66 4.63 7.79 7.06 2.56 2.91

L CI 90.76 91.41 91.89 91.92 99.96 99.49 29.03 29.94 57.01 56.45 68.59 68.89
U CI 98.26 99.19 101.95 102.20 108.00 108.37 32.37 33.26 62.59 61.51 70.43 70.97

R Error 0.836% 0.144% 0.048% 2.931% 1.371% 0.604%
Corr 0.989 0.962 0.961 0.968 0.902 0.960

. . . . . . . . . . . .
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Figure 7. 95% Confidence Interval (CI) plot for the mean measurements (30 data from pregnant) of
chest, waist, hip, upper arm, thigh, and inseam between Z-Size Ladies statistical values and manual
cross-section 3D values.

Table 12. Comparing the average weight measurement, chest, waist, hip, and upper arm circumfer-
ence with the standard deviation, the lower and upper bounds of the 95% confidence interval, the
relative error and the correlation between the Z-Size Ladies statistical value and the value measured
by tape measurement on 75 pregnant volunteers.

Weight Chest Waist Hip Upper Arm

Z M Z M Z M Z M Z M

Avg 62.94 63.40 92.36 92.27 96.10 96.26 101.65 101.11 29.83 29.05
SD 10.41 12.11 7.71 8.40 13.23 12.77 9.30 8.89 3.51 3.35

L CI 60.58 60.66 90.62 90.37 93.11 93.37 99.55 99.10 29.04 28.29
U CI 65.30 66.14 94.10 94.14 99.09 99.15 103.75 103.12 30.62 29.81

R Error 0.725% 0.098% 0.166% 0.534% 2.685%
Corr 0.960 0.940 0.963 0.917 0.893
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Figure 8. 95% Confidence Interval (CI) plot for the mean measurements (from 75 pregnant volun-
teers) of weight, chest, waist, hip, and upper arm between Z-Size Ladies statistical values and tape
measurements.

4.4. The Accuracy Test on 3D Modeling of Postpartum Women

Similarly to Section 4.3, in order to calculate the accuracy test for postpartum simula-
tion, the average and standard deviation of the measurements, Pearson coefficients and
relative errors were calculated to measure the association and agreement between pairs of
measurement methods. Furthermore, confidence interval plots were examined to assess
and compare the results of the two methods.

The accuracy test on 3D modeling of postpartum women was divided into two parts:

A. Comparison of body proportion in centimeters of chest, waist, hip, upper arm, thigh,
and inseam between 3D models of postpartum women and the calculated statis-
tical values for 30 datasets, with the mean age of 27.4 ± 6.18 years, the height of
155.43 ± 5.67 cm, the pre-pregnancy weight of 57.13 ± 47.09 Kg and postpartum
age of 0–24 weeks with the mean at 9 ± 12 weeks. Z = Z-Size Ladies statistical
values, B = Manual cross-section on 3D model and measured body circumferences,
Chest = chest, Waist = waist, Hip = hip, Thigh = thigh circumference, Upper Arm =
upper arm circumference and Inseam = leg length. Avg is the mean, SD is the stan-
dard deviation, L CI and U CI are the lower and upper bounds of the 95% confidence
interval, R Error is the relative error and Corr is the correlation, as shown in Table 13.
Also 95% Confidence Interval (CI) plot for the mean measurements of chest, waist, hip,
upper arm, thigh, and inseam of postpartum women between Z-Size Ladies statistical
values and manual cross-section 3D values are shown in Figure 9.

B. Comparison of chest, waist, hip, and upper arm in centimeters between the values
calculated from statistical data and the values obtained from 74 postpartum volun-
teers using a tape measurement at Maharaj Nakorn Chiang Mai Hospital, with the
mean age of 29.90 ± 5.67, the height of 156.94 ± 6.07 cm, the pre-pregnancy weight
of 57.26 ± 13.92 Kg and the mean postpartum age at 0–24 weeks with the mean of
7.02 ± 5.12 weeks. Z = Z-Size Ladies statistical values, M = Manual, Weight Z = esti-
mated maternal weight with App, Weight M = actual mother’s weight, Chest = chest,
Waist = waist, Hip = hip circumference and Upper Arm = upper arm circumference,
respectively. Avg is the mean, SD is the standard deviation, L CI and U CI are the
lower and upper bounds of the 95% confidence interval, R Error is the relative error
and Corr is the correlation, as shown in Table 14. Also 95% Confidence Interval
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(CI) plot for the mean measurements of weight, chest, waist, hip, and upper arm of
postpartum women between Z-Size Ladies statistical values and tape measurements
are shown as in Figure 10.

Table 13. Comparing the average results of chest, waist, hip, upper arm circumference, thigh, and
inseam, with standard deviation and the correlation between the Z-Size Ladies statistical value and the
circumference values measured cross-sectionally on 3D modeling for the case of postpartum women.

Chest Waist Hip Upper Arm Thigh Inseam

Z B Z B Z B Z B Z B Z B

Avg 90.08 89.71 84.70 85.35 96.34 96.31 26.77 29.01 53.90 56.50 67.38 67.14
SD 7.17 7.85 10.23 10.75 8.31 8.98 2.77 1.89 6.32 3.09 2.62 3.24

L CI 87.51 86.90 81.04 81.50 93.37 93.10 25.78 28.33 51.64 55.39 66.44 65.98
U CI 92.65 92.52 88.36 89.20 99.31 99.52 27.76 29.69 56.16 57.61 68.32 68.30

R Error 0.411% 0.767% 0.031% 8.368% 4.824% 0.356%
Corr 0.963 0.979 0.992 0.882 0.969 0.985

. .
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Figure 9. 95% Confidence Interval (CI) plot for the mean measurements (30 data from postpartum) of
chest, waist, hip, upper arm, thigh, and inseam between Z-Size Ladies statistical values and manual
cross-section 3D values.

Table 14. Comparing the average weight measurement, chest, waist, hip and upper arm circumference
with the standard deviation and the correlation between the Z-Size Ladies statistical value and the
value measured by tape measurement on 74 postpartum volunteers.

Weight Chest Waist Hip Upper Arm

Z M Z M Z M Z M Z M

Avg 61.92 61.29 91.06 92.18 88.16 91.77 98.63 100.56 26.70 28.46
SD 10.16 12.69 6.59 10.56 9.22 11.95 7.95 10.33 3.06 4.42

L CI 59.61 58.40 89.56 89.77 86.06 89.05 96.82 98.21 26.00 27.45
U CI 64.23 64.18 92.56 94.59 90.26 94.49 100.44 102.91 27.40 29.47

R Error 1.028% 1.215% 3.934% 1.919% 6.184%
Corr 0.891 0.847 0.828 0.901 0.736
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Figure 10. 95% Confidence Interval (CI) plot for the mean measurements (74 postpartum volun-
teers) of weight, chest, waist, hip, and upper arm between Z-Size Ladies statistical values and tape
measurements.

4.5. Satisfaction Test of the Developed Tool That Helps Pregnant/Postpartum Women to Simulate
Their 3D-Body Shapes, Based on Height, Weight, and Gestational Age (Web App Z-Size Ladies)

Survey results of the satisfaction test of the web app Z-Size Ladies by 149 pregnant
and postpartum volunteers at Maharat Nakorn Chiang Mai Hospital are shown in Table 15,
the highest score of each item was five.

Table 15. Satisfaction test for using Z-Size Ladies, surveyed from 149 pregnant and postpartum
volunteers.

Information Rating Stars

This application is interesting. 4.66
Working efficiency such as fast response. 4.44

Ease of use. 4.32
Layout, keypad size, icon placement on screen. 4.19

Would you recommend this app to other pregnant women? 4.51
Do you think you will use the app again during pregnancy or after delivery? 4.56

How many stars would you rate the average for this app? 4.50

5. Discussion

The results of the correlation analysis of pregnant/postpartum women’s body shape
with independent variables: pre-pregnancy weight; height; gestational age/ postpartum
duration; and weight gain are shown in Tables 9 and 10, respectively. Errors that could occur
during statistical modeling in this study could come from the multiple regression models
in the independent variables [56] such as pre-pregnancy weight, height, age, gestation age,
and body circumferences measurements data (chest, waist, hip). Our regression models
assumed that those variables and data were obtained from measurement without errors.
Moreover, errors could come from a small sample size, which might lead to insignificant
results, whereas too large a sample size may increase the risk of harming volunteer subjects
and might cause them discomfort [57].

Also, our developed technique can simulate 3D body shapes of women during preg-
nancy and postpartum in various gestational ages, BMI, and postpartum duration as shown
in Figures 5 and 6, respectively. The pregnancy simulation included various gestational
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ages starting from 12–40 weeks with four types of pre-pregnancy BMI: underweight; nor-
mal weight; overweight and obese; and the postpartum at 0–24 weeks. For pregnancy
simulation, different types of pre-pregnancy BMI indicates differences in weight gain
during pregnancy. Therefore, 3D simulation of pregnant women was simulated at vari-
ous gestational ages for women with four types of pre-pregnancy BMI according to IOM
2009 [46].

Note that for Figures 7 and 9, the y-axis is in cm and the x-axis represents body
circumference measurements. For Figures 8 and 10, the y-axis displays in kg for weight
and cm for circumferences and, the units are in the square blanket under the x-axis after
each parameter value. The values on the y-axis are quite wide in range due to the different
sizes of the upper arm and hip being quite significant.

Comparing results from the accuracy test on body measurements between the sta-
tistical values from this study (Z-Size Ladies) and the corresponding results taken from
the manual measurement of the cross-section of the pregnant 3D model taken from Z-Size
Ladies on 30 datasets are shown in Table 11. The accuracy is a measure of the degree
of closeness of the measured or calculated value to its actual value. The percent relative
errors are less than 3% with the maximum error being the upper arm (Relative error =
2.931%). However, the results show a strong correlation with the overlap plots of 95%
confident interval between the results from Z-Size Ladies statistical values with the manual
cross-section measurements of 3D models (Corr > 0.9). It implies that the results from the
statistic values of Z-Size Ladies are comparable to the results from the manual cross-section
measurements of the 3D model.

The accuracy test on body measurements between Z-Size Ladies statistic values and
the manual tape measurements from 75 volunteers with the gestational age of 6–39 weeks
is shown in Table 12. Table 12 shows all relative errors less than 3%, and the maximum
error is in the upper arm (Relative error = 2.685%). It indicates a high correlation and some
overlapping plots of 95% confident interval between the results from Z-Size Ladies and the
results from the tape measurement (Corr > 0.89) even though the correlation is slightly less
than the cross-section measurement on the 3D models. This is due to the locations in the
manual tape measurements and the locations of measurements by Z-Size Ladies causing
the variations. The highest correlation with the least relative error is at the chest and waist
measurements due to the relative ease of locating the level for girt measurements of the
chest and waist. However, the measurement of the upper arm has the lowest correlation
value (Cor = 0.893) due to the difficulties in locating the places for upper arm measurements
under the armpits.

Comparing results from the accuracy test on body measurements between the sta-
tistical values from Z-Size Ladies and the corresponding results taken from the manual
measurement of the cross-section of postpartum 3D models taken from Z-Size Ladies for
30 datasets are shown in Table 13. The maximum relative error belongs to the position of
the upper arm and thigh with 8.368% and 4.824%, respectively. Also, the lowest correlation
and less overlapping plots of 95% confident interval are at the upper arm and thigh mea-
surements due to the difficulty in locating the exact location for manual measurements of
upper arms and thighs, which are near the armpits and crotch.

The accuracy test on body measurements between Z-Size Ladies statistic values and
the manual tape measurements from 74 volunteers with postpartum age of 0–24 weeks is
shown in Table 14. The maximum relative error belongs to the position of the upper arm
(Relative error = 6.184%) and waist (Relative error = 3.934%). The 95% confident interval
shows non overlapping in the position of the upper arm. The measurement of the upper
arm also has the lowest correlation value (Cor = 0.736) as well.

Comparison the accuracy test between 3D modeling of pregnant and postpartum
women, the 3D pregnant simulation shows a higher correlation between statistical val-
ues and 3D body measurements, less error, and the 95% confident interval plots show
the intervals overlapped better than the postpartum shape simulation. Furthermore,
Figures 9 and 10 show the upper arm relative error rate is relatively high and the 95%
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confidence interval plots show the intervals are not overlapped. This indicates that the
3D simulation of pregnant women is more accurate than the simulation of postpartum
women in this study. This may be due to postpartum women beginning to work after the
delivery of their babies and, as such, the arm, thighs, and other muscles become distinctly
different from the calculated values, leading to variations in the upper arm and other body
measurements.

This study presents a 3D model shape simulation of pregnant and postpartum women.
The data of woman’s anthropometric measurements in different gestational and postpartum
stages were collected. Based on the work of our previous study [42], pregnancy data was
included to generate models to predict the shape of women at specific pregnancy and
postpartum periods, based on pre-pregnancy measurements. The work led to the creation
of a web application (Z-Size Ladies) to display 3D pregnancy and postpartum models,
allowing women to input their metrics and observe the simulation. The website was
validated through a survey from the users and received positive satisfaction scores from
pregnant and postpartum women as illustrated in Table 15.

The limitations of this study were the resource deficiencies and the small sample size.
Our research was a long-term perspective study that collected data six months before and
after pregnancy. It was time-consuming and demanding to the participants. Therefore, the
drop-out rate was high. The study excluded all possible aspects, such as our volunteers
were pregnant and postpartum women with single pregnancy, who may not have regular
exercise and may not have disabilities. In addition, this study included only a sample of
Asians and did not include any foreigners.

6. Conclusions

Our web app (Z-size Ladies) accurately predicts the body proportions of pregnant and
postpartum women based on a woman’s age (years), pre-pregnancy weight (Kg), height
(cm), gravida (number of pregnancies, the default is one), pregnancy/gestational week
(weeks) and weight gain (program predicted automatically with adjustable personalized
input from the user). The experiment results have shown that Z-Size Ladies could generate
3D models of pregnant participants, as well as postpartum participants, with high accuracy
and could be considered as a lower-cost alternative method to the use of a full-body 3D
scanner. However, more participants are needed to ensure continuity and high statistics
for the study and to improve the accuracy of 3D models for pregnant and postpartum
women. Better algorithms for 3D data reconstruction on the obscured sections, such as
armpits and thighs, would be required for improving the accuracy of upper arm and thigh
measurements.

Supplementary Materials: The following supporting information can be showed/downloaded
at: Z-Size Ladies Website: https://zsize.openservice.in.th/; Video: https://vimeo.com/660604220
(accessed on 28 December 2021).
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Abstract: The global prevalence of visual impairment due to diseases and accidents continues
to increase. Visually impaired individuals rely on their auditory and tactile senses to recognize
surrounding objects. However, accessible public facilities such as tactile pavements and tactile signs
are installed only in limited areas globally, and visually impaired individuals use assistive devices
such as canes or guide dogs, which have limitations. In particular, the visually impaired are not
equipped to face unexpected situations by themselves while walking. Therefore, these situations
are becoming a great threat to the safety of the visually impaired. To solve this problem, this study
proposes a living assistance system, which integrates object recognition, object extraction, outline
generation, and braille conversion algorithms, that is applicable both indoors and outdoors. The
smart glasses guide objects in real photos, and the user can detect the shape of the object through a
braille pad. Moreover, we built a database containing 100 objects on the basis of a survey to select
objects frequently used by visually impaired people in real life to construct the system. A performance
evaluation, consisting of accuracy and usefulness evaluations, was conducted to assess the system.
The former involved comparing the tactile image generated on the basis of braille data with the
expected tactile image, while the latter confirmed the object extraction accuracy and conversion rate
on the basis of the images of real-life situations. As a result, the living assistance system proposed
in this study was found to be efficient and useful with an average accuracy of 85% a detection
accuracy of 90% and higher, and an average braille conversion time of 6.6 s. Ten visually impaired
individuals used the assistance system and were satisfied with its performance. Participants preferred
tactile graphics that contained only the outline of the objects, over tactile graphics containing the full
texture details.

Keywords: image processing; object detection; artificial intelligence; blind; braille system

1. Introduction

The leading cause of visual impairment can be congenital or a result of accidents,
aging, or diseases. In addition, the number of people with acquired vision loss is increasing
because of urban environmental factors resulting from the development of electronic
devices [1,2]. A survey made by the World Health Organization (WHO) in 2020 indicated
that approximately 2.2 billion people, which accounts for 28.22% of the global population,
are visually impaired (i.e., near or distance visual impairment) [3,4].

Visually impaired people rely on their auditory perception and somatosensation—primarily
sound and braille—to obtain information from the environment; they use assistive devices
such as canes to recognize obstacles. However, although 28.22% of the global population
accounts for visually impaired individuals [5,6], accessible facilities are not universally
installed, leading to issues of social discrimination due to the limitations of their activi-
ties. Particularly, they cannot face unexpected situations outdoors independently, thereby
restricting their activities to indoors or in their neighborhood. Accessible facilities such
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as tactile pavements and tactile signs are not appropriately installed in all institutions.
Moreover, some countries do not provide support for assistive devices. In addition, most
artworks, such as paintings and sculptures, cannot be touched to preserve them, making it
difficult for visually impaired people to enjoy cultural activities through their imagination
alone with tactile brochures. Therefore, researchers conducted numerous studies to help
them become self-sufficient in their daily lives. In particular, studies on providing informa-
tion via braille have recently gained attention. However, most of these studies focused on
tactile maps or graphic image braille conversion. A system is needed worldwide to ease
their daily lives because it is difficult to assist the visually impaired individuals in real life.

This study proposes a living assistance system based on images of the surroundings
and objects that visually impaired people want to experience in real life that are captured
by smart glasses. The system stores object information using an object detection algorithm
to provide voice guidance when the user goes outdoors. Moreover, the system provides an
object image braille conversion service using an object extraction algorithm when indoors
and carrying a braille pad. The braille data are generated as binary data to enable use in
various braille pads, and the images are generated at three degrees of expression to enable
users to recognize the shapes at different types. The accuracy of the proposed system is
calculated by comparing the example tactile image with the expected tactile image on the
basis of the braille data, and the usefulness of the system is evaluated by comparing the
object detection results in real-life images and the execution time.

2. Related Research

Researchers conducted various studies regarding the living assistance for visually
impaired people. Previous studies were focused on the generation of tactile signs and maps
as navigation aids for the visually impaired, image conversion, and the development of
tactile image output devices for braille pads. However, there is a lack of studies on the
generation of tactile images based on real-life images or systems that assist with real-life
outdoor activities, such as the automatic object detection voice guidance system proposed
in this study.

2.1. Similar Research

2.1.1. Tactile Graphics

Tactile maps and images are generated through image processing based on general
maps to create tactile maps. Tactile maps are the most provided navigation aid for the
visually impaired people by public institutions. However, tactile maps are gradually being
provided by various institutions, fueling further research on their development.

Kostopoulos et al. [7] proposed a method for generating tactile maps based on a map
image created by reading the road names written on a map via OCR and converting it into
a road image, as shown in Figure 1. Although the proposed system for creating tactile maps
can quickly recognize roads on the basis of the road names, it cannot detect alleys without a
name. Moreover, OCR is slow and limited although it is faster than the existing algorithms.

Zeng et al. [8] developed an interactive map in which the user can zoom in and out,
as shown in Figure 2. They allowed users to explore the tactile map by dividing it into zoom
levels. However, a post-experiment survey found that visually impaired people preferred
maps with only two zoom levels, and the usage time increased due to various factors such
as the production of the interactive map, the guidance of the selections, and the selection.

Moreover, Krufkaf et al. [9] proposed an advanced braille conversion algorithm for
vector graphics on the basis of previous studies. The algorithm extracted object boundaries
using the outline information of the graphic based on the vector graphics hierarchical
characteristics. The levels are classified on the basis of the extracted boundaries, and the
multi-level braille is converted to a braille tablet using the tiger advantage braille printer
program [10]. Although the proposed multi-level braille conversion system can provide
meaningful results, it is difficult to apply to real-life objects using vector graphics, as shown
in Figure 3.
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Figure 1. Map image-based tactile map production method [7].

Figure 2. iPad and HBMap system-based interactive maps [8].

Figure 3. Outputs of proposed method for the vector graphic [9].

In Korea, Kim et al. [11] investigated braille conversion on the basis of images captured
via a webcam. The locations with and without data are compared to identify characters
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in the image by analyzing the images using MATLAB. Figure 4 shows the evaluation
of the recognition level according to the font size, font type, and camera performance.
In addition, an algorithm was developed by configuring an optimal environment based on
the evaluation results. Although their research showed significant results, the system can
only convert numbers and uppercase English letters, and it cannot identify objects other
than letters or recognize Korean letters.

Figure 4. Image conversion according to font size and font [11].

Lee et al. [12] developed a banknote recognition system using Raspberry Pi as a
camera. The process consisted of two steps (i.e., extraction and matching). The researchers
compared the extraction algorithms SIFT, SURF, and ORB; they adopted SIFT because
it yielded the highest recognition rate. The system achieved high accuracy even when
changing the shooting method or in unsuitable environments (e.g., low light or rotated
banknote) by generating vector images using extreme values as features. Nevertheless,
the brute-force algorithm requires extensive time for recognition, as shown in Figure 5,
making it unsuitable for this study, which uses many objects.

Figure 5. Keypoints Matching Using the Brute-Force Algorithm [12].

2.1.2. Braille Pad

Researchers have made several attempts to output tactile images by combining a
haptic device with a braille display [13].

Kim, S. et al. [14,15] proposed a 2D braille display to output data in the digital acces-
sible information system (DAISY) and the electronic publication (EPUB) formats. They
developed the braille pad for outputting braille information and the technology for tactile
image conversion, as shown in Figure 6. Tactile image tests were conducted using simula-
tors, and the tactile image conversion technology quantizes and binarizes data to convert
graphs, graphic images, and even photos, enabling them to obtain significant results.

Prescher et al. [16] proposed a PDF-editor-based braille pad and braille conversion
system. The user interface (UI) for displaying and editing PDF content was designed
to show on one screen using a horizontally long touch-enabled braille pad. As both the
content and editing UI are displayed on one screen, excessive information is provided at
once, making it difficult for first-time users. Moreover, it can only translate the diagrams
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and text input, which are in PDF files rather than images, although it can display diagrams
as shown in Figure 7.

Figure 6. Braille pad prototype and Output screen [14,15].

Figure 7. Braille pad and Output example [16].

2.1.3. Supplementation and Service

In addition, various products and services are being researched to assist the
visually impaired.

Kłopotowska et al. [17] studied architectural typhlographics and developed them
through multi-criteria analysis by integrating the characteristics of braille maps and archi-
tectures (Figure 8). The study results show the future growth potential of typhlographics
on the basis of its social values of enabling tourism for the visually impaired in addition to
its broad utility in the development of tactile architectural drawings such as diversification
of architectural education and interior design.

Morad [18] studied the assistive devices that receive location coordinates via the global
positioning system (GPS) and process data through a PIC controller to output specific voice
messages stored in the device for visually impaired people. The study aimed to develop an
affordable and easy-to-use assistive device that helps the visually impaired people find their
way on their own as they listen to the voice messages through the headset. It received a
positive response from them when the device was used by people with visual impairments.

On the other hand, Fernandes et al. [19] proposed a radiofrequency identification
(RFID)-based cane navigation system to guide people with visual impairments by using the
RFID device installed under the road. The navigation system provides audio navigation
assistance to reach the desired destination through the route calculation and location
tracking using the RFID tags once the user inputs a specific destination in the cane. It is
considered to have a significant growth potential owing to its higher accuracy than GPS
and the easy-to-update feature of the navigation system.

Liao et al. [20] proposed the integration of the GPS and RFID technologies to develop
a system for indoor use in order to address the shortcoming of the GPS system used. This
hybrid system receives location data based on GPS and fine tunes the specific location data
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with RFID, which was developed to provide walking assistance to users. The study results
are expected to facilitate the development of the walking assistance system for the visually
impaired individuals and the enhancement of GPS accuracy.

Figure 8. Typhlogics in the form of a book that shows tactile information tables and tourist facilities
for blind tourists [17].

2.2. Algorithms

2.2.1. YOLO

You Only Look Once v3(YOLOv3), a Darknet-53 network-based object detection algo-
rithm, passes through layers of various sizes and compares them with object characteristics
analyzed in the dataset to detect objects [21–23]. This study used YOLOv3 for object detec-
tion to identify objects within the line of sight of users. YOLOv3 has undergone several
versions of development, making it more accurate than other algorithms [24–27]. In addi-
tion, it is fast and specialized for real-time detection as it searches only once, enabling an
object detection from images in real time. According to the study of Redmon et al. [23].
YOLOv3 yielded an mAP of 57.9% in a COCO dataset test, demonstrating the high speed
and accuracy of the algorithm. Figures 9 and 10 shows the YOLOv3 operating structure and
the network structure, respectively. The method detected through the network is shown in
Figure 11 and is expressed by Equation (1).

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwetw

bh = pheth

(1)

2.2.2. Grabcut

The GrabCut algorithm allows more effective object feature classification and ease of
use than previous algorithms [28,29], such as Magic Wand, Intelligent Scissors, Bayes Matte,
Knockout2, and GraphCut. This algorithm is used to separate the detected objects from
the background, exploiting its advantages of high speed and extraction accuracy with only
user-specified regions. Through GraphCut-based segmentation, the color values between
pixels are calculated. A color model is generated on the basis of the color values of the
model, and the foreground and background are separated via segmentation, as shown
in Figure 12. After adding a mask to distinguish the foreground and background on the
basis of the selection of the user, the separated foreground can be re-extracted, as shown in
Figure 13.
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Figure 9. YOLOv3 network detection method [24].

Figure 10. YOLOv3 network architecture [24].
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Figure 11. Numerical expression of YOLOv3 object detection [23].

Figure 12. GrabCut principle image-Convergence of iterative minimization. (a) The energy E for the
llama example converges over 12 iterations. The GMM in RGB colour space (side-view showing R,G)
at initialization (b) and after convergence (c) [28].

Figure 13. Grabcut example image [28].
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2.2.3. Canny

In contrast to Contour, which is a contour line detection algorithm that generates
boundary lines based on the height of the boundary detection target [30], Canny identifies
the boundary values of the object to generate an outline [31]. In comparison to previous al-
gorithms for generating outlines, Canny is fast and applicable to color images. Therefore, it
was used to generate outlines for converting the extracted object to braille. In addition, new
criteria were added to prevent it from generating abnormal outlines to achieve a low error
rate and stable and improved system performance. Additionally, the criteria of existing
algorithms are strengthened, and a parametric closed outline generation technique is pro-
vided through numerical optimization. Accordingly, additional criteria were hypothesized,
and various equations and operators were used to satisfy the hypotheses. Figure 14 shows
the results of this application, indicating its suitability as an outline generation algorithm.

Figure 14. Canny example image [31].

3. System Design and Configuration of Use Environments

The automatic-object-detection-algorithm-based braille conversion system for the
living assistance of the visually impaired mainly targets visually impaired people including
those with limited sight who typically use braille since the system is fully operated by
smartphones. The images of surrounding environment and objects are captured with smart
glasses, and the braille images are generated on the braille pads. The relevant objects
are captured through smart glasses, and the tactile image is the output on a braille pad.
Figure 15 shows the structure of the system, which is operated through a smartphone.
To detect objects, it is connected to smart glasses via Bluetooth using the smartphone.
The camera screen of the smart glasses and the screen of the desired field of view are
confirmed through the smartphone and a shooting request is sent when the smart glasses
are connected. When the shooting request reaches the smart glasses, it takes a photo with
the built-in camera and sends it to the smartphone. The location and name of the objects
in the photo are transmitted through the smart glasses and confirmed via TTS when the
system performs object detection at the request of the user. The image is converted to
braille, and the braille data are transmitted to the braille pad to allow the user to confirm
the shape of the object. Once the transmission is completed, the user can recognize the
shape of the object with the tactile image generated through the braille pad.

Figure 15. System schematic.
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4. System Configuration

Table 1 shows the configuration of the proposed system in five steps: shooting, object
detection, object extraction, outline generation, and braille conversion. The algorithms for
all steps except shooting are constructed on an integrated server to increase the processing
speed and store and use various image data. Each step can be separately executed through
a smartphone on the basis of the scope of use and selections of the user. Moreover, only the
result data are stored on the smartphone. The data from each step are maintained until the
step is executed again. Figure 16 presents the overall process of the system.

Table 1. Requirements of proposed system.

Function Description

Image shooting

Capture photo of user-specified field of view and generate image

Transfer to image controller and store

Receive voice guidance data at user request

Object detection

Learn object images in database defined by system administrator

Generate object recognition model

Recognize objects based on image and store result image

Store analysis result data

Transmit voice guidance data at user request

Object extraction
Extract objects from image based on data

Resize and store extracted object images

Outline generation

Preprocess image

Calculate average color values based on extracted object images

Generate object outline based on color values

Braille conversion

Analyze generated outline and create braille data

Analyze resolution of linked braille pad

Convert data size to braille pad resolution

Figure 16. process.

4.1. Object Detection

In the object detection step, the YOLOv3 algorithm was used to detect a variety of
objects in real time. Figure 17 shows the results from the application of the system to a
real object.
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Figure 17. Object detection example [32].

4.2. Object Extraction

The extraction step was configured using Python, and image processing algorithms
used were from OpenCV. The objects were extracted using GrabCut after preprocessing the
image. Figure 18 shows the structure of the object extraction step.

Figure 18. Structural diagram of object extraction steps.

4.2.1. Image Preprocessing

The contrast of the entire image, which refers to the difference in brightness between
bright and dark areas in an image, is enhanced to clearly distinguish the colors of the
detected image. An image with a small difference in brightness between bright and dark
areas has a low contrast value, while an image with a large difference in brightness between
bright and dark areas has a high contrast value. The contrast value refers to the contrast
ratio. To increase the contrast value, dark areas must be darkened by increasing the color
value of the pixels, and bright areas must be brightened by lowering the color values of
the pixels.
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Although there are various algorithms for increasing contrast value, the most basic
technique is to multiply each pixel by a value based on the desired brightness of 1.0 [33,34].
Multiplication techniques are categorized into two methods: multiplying a MAT and using
the saturate equation through the clip algorithm. However, they are not suitable for this
study because these methods are mainly used on grayscale images to adjust only the
brightness values. Instead, we examined algorithms used for colored images. The contrast
of colored images is adjusted using a histogram equalization algorithm [35]. In addition,
histogram smoothing converts a colored image composed of RGB channels into YCrCb
channels and separates them into individual Y, Cr, and Cb channels, respectively, as shown
in Figure 19. Y represents the luminance component, while Cr and Cb represent the
chrominance components. Histogram equalization is applied to the separated luminance
channels to increase the contrast value of the image.

Figure 19. Histogram equalization Example.

Histogram equalization can be applied to an image composed of RGB channels to
increase the contrast of the image. It increases the contrast by converting a colored image
composed of RGB channels to YCrCb channels and separating them into individual Y,
Cr, and Cb channels, respectively. Y represents the luminance component, while Cr and
Cb represent the chrominance components. The contrast of color images is increased by
applying the histogram equalization in the separated luminance component.

However, histogram equalization adjusts the contrast value of the entire image at once,
making the bright areas very bright and dark areas very dark. This results in an unbalanced
image overall. The CLAHE algorithm, which separately adjusts the brightness of specific
areas in the image, was used to adjust the average brightness while increasing the contrast
value [36]. To apply CLAHE, the image is converted to the LAB format and separated
into individual channels to separate it into colored and grayscale [37] images. Channel L
represents the brightness of the light and is expressed as a black and white image, while
channels A and B represent the degree of color. Channel A represents magenta and green,
and channel B represents blue and yellow. Moreover, the images are sequentially searched
on the basis of the specified grid size, and the contrast value is adjusted to increase the
contrast value in channel L and the black and white images. The channels are combined
and converted back to the RGB format for other image processing after searching all images
and adjusting the contrast value. Using the image from Figure 17, the contrast of an image
was increased (Figure 20) through image channel separation, as shown in Figure 21.
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Figure 20. LAB Image by channel.

Figure 21. Contrasted image.

4.2.2. Object Extraction

The stored object location information is imported to extract objects from the image
whose contrast was increased in the preprocessing step. Approximately 10 is added to or
subtracted from each x and y value in the stored object location information to distinguish
the surrounding pixels easily, as shown in Figure 22. GrabCut is used for object extraction.
A black background is generated around it when an object is extracted, leaving only the
object. In addition, the image size is reduced on the basis of the location information
to fit the image size to the object and save it. Figure 23 shows the result of using the
GrabCut algorithm.

4.3. Outline Generation

It is hard for users who have difficulty distinguishing objects to recognize objects
with large amounts of information at once. Therefore, the tactile image generation was
divided into three types depending on the desired type of expression of the user. These
three types were “Out,” which displays only the outermost part such that the user can
recognize the overall shape of the object; “Feature,” to ensure that the user can recognize
the inner boundaries and form of the object; and “Detail,” which displays all information
even the text in the object. Figure 24 shows the structure of the outline generation step.
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Figure 22. Object measurement range.

Figure 23. Object extracted image.

4.3.1. Image Processing

In the image processing step for generating the outline, the noise was removed and
the colors were averaged. GaussianBlur was performed to remove the noise created by
increasing the contrast and other noise [38]. GaussianBlur is used to remove large noise,
while averaging [39,40] removes small components and detailed features, such as letters
and shapes. Each algorithm was performed with varying degrees of frequency and intensity
depending on the outline generation type selected by the user.

In the Out mode, starting from the 7 × 7 kernel and sigma 0, the algorithm was run
as it gradually reduces the search size to ensure an iterative and powerful preprocessing
and to completely remove noise, features, and information. In the Feature mode, starting
from the 5 × 5 kernel and sigma 0, the algorithm was run as it gradually reduces the search
size to moderately remove noise and information. On the other hand, in the Detail mode, it
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searched with a 3 × 3 kernel and sigma 0 to remove noise while maintaining features and
information. Figure 25 shows the image processing results.

Figure 24. Outline creation step structure.

Figure 25. Image after performing.

4.3.2. Outline Generation

Canny [31] was used because it had a higher speed than Contour [30] although both
Contour and Canny yielded similar accuracies for the outline generation algorithm. To gen-
erate the outline for each mode, the arrangement average and standard deviation of the
images are calculated based on the noise-removed image, and the sum is set to a maximum
value, so that the outline generation degree varies depending on the value range and mode.
The morphology operations erosion and dilation were used to remove noise and small
outlines remaining in the generated outline image. For braille conversion, the thickness
was increased three times to confirm the line region, and the generated outlines were stored
as individual images according to the mode. The thickness was increased three-fold by
repeating the morphology dilation operation [41] three times, and the generated outlines
were saved as an individual image on the basis of the mode to clearly define the lines for
braille conversion. Figure 26 shows the result of outline generation.

4.4. Braille Conversion

Finally, the braille data were generated in the braille conversion step. For the data size,
an image with a horizontal or vertical size of 416 was used as an input in the detection
network in YOLOv3. The transformed image was resized on the basis of the detected
location information of the object in the object detection process. Moreover, the data
size was converted through braille data resizing on the basis of the received braille pad
resolution when the braille pad was connected, ensuring that the output braille fitted the
braille pad.
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Figure 26. Outline image—Step-by-step image completed up to thickness increase.

n × n Comparison Conversion

At this stage, the outline images generated through Python were imported and con-
verted to braille data to create braille images. Colored values in which the color and
brightness can be identified were searched via array comparison because images in Python
are expressed as an array. A two-dimensional array of the same size as the image was
generated to perform the search. The image was searched in a 5 × 5 pixel neighborhood,
and it was checked whether there are color data in the center pixel (>0), as shown in
Figure 27. A value of 1 was stored in the same location as the generated two-dimensional
array if there are color data. An array was finally generated by searching the entire image,
which is stored for transmission to the braille pad. The tactile image was generated by the
same technique; the image was searched, and a circle was created in areas with a value.
Figure 28 shows the results of braille transformation through comparative transformation.

Figure 27. Example of braille conversion process.

Figure 28. Generated braille image.
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5. Experiment and Evaluation

We evaluated the accuracy and usefulness of the tactile image generated by the
proposed system. To evaluate the accuracy, the expected result images and the system
result images for a variety of objects were compared. On the other hand, to evaluate
the usefulness, the execution time of the system was calculated using photos in diverse
situations that can be confirmed in real life, which verified the applicability of the system
in real life.

5.1. Experiment

5.1.1. Object Data Generation

The highly well-known and stable Microsoft COCO dataset [42] was used as the basic
dataset because the dataset was required for object detection through YOLOv3. Table 2 lists
the selected objects. Additionally, based on the COCO dataset object list, objects that give
visually impaired people discomfort were added according to survey results, thus forming
a dataset with 100 types of objects. The survey was conducted among visually impaired
people in Korea at a welfare center. Table 3 summarizes the results.

5.1.2. Accuracy Evaluation

To select the objects for the evaluation criteria, the objects that the visually impaired
frequently use or encounter in real life were categorized into the following: (1) “indoors”
and “outdoors” and (2) based on their sizes (i.e., large, medium, and small), resulting
in a total of six objects. The following size criteria were applied: objects difficult to
hold in the hands were classified as large, objects that can be held with two hands as
medium, and objects that can be held with one hand as small. For the objects that are most
frequently encountered outdoors, “car” was selected for large, “fire hydrant” for medium,
and “traffic cone” for small. On the other hand, “closet” was selected for large, “chair”
for medium, and “comb” for small for the objects that are most frequently used indoors.
Figures 29 and 30 show the comparison between the expected data and actual object results.
The actual results were compared with [43,44] the braille for the “Detail” mode to verify
the expression of details in the images.

5.1.3. Usefulness Evaluation

To evaluate the usefulness, based on the three photos with the themes of “walking,”
“eating,” and “washing face,” the conversion time in each step was measured and averaged,
and the identified objects were compared with [43,44] the detected object list. Only the
name and location value of the object closest to the user were used when there were
duplicate objects in the braille conversion step, thus performing braille conversion without
any duplicate objects. Figure 31 shows the photos used for the evaluation, converted
photos, and detected objects list, with conversion times of 5.8, 4.5, and 7.4 s, respectively.

5.2. Overall Evaluation

The main object was compared with the expected generated data to evaluate the
accuracy of the tactile image. We verified the amount of time needed for conversion to
evaluate the usefulness of the system.

In the accuracy evaluation, the expected result image was visually compared with
the resulting image of the system, and the accuracy of the generated tactile image was
measured. The results showed that the final image has an average accuracy of 85% which
is similar to that of the expected image.

In the usefulness evaluation, the list of detected objects was compared and the con-
version time was measured on the basis of the photos of three situations that users can
encounter in real life. For the objects detected in photos of real-life situations, the results
indicated an accuracy of approximately >90%. By excluding duplicate objects, the average
time needed to convert the objects was less than 6.6 s, exhibiting that it can be quickly used
in real life.
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Table 2. COCO dataset object list [42].

Person Backpack Umbrella Handbag Tie Suitcase Bicycle Car Motorcycle Airplane
Bus Train Truck Boat Traffic light Fire hydrant Stop sign Parking meter Bench Bird
Cat Dog Goose Sheep Cow Elephant Bear Zebra Giraffe Frisbee
Skis Snowboard Sports ball Kite Baseball bat Baseball glove Skateboard Surfboard tennis racket Bottle

Wine glass Cup Fork Knife Spoon Bowl Banana Apple Sandwich Orange
Broccoli Carrot Hot dog Pizza Donut Cake Chair Couch Potted plant Bed

Dining table Toilet TV Laptop Mouse Remote Keyboard Cell phone Microwave Oven
Toaster Sink Refrigerator Book Clock Vase Scissors Teddy bear Hair drier Toothbrush

Table 3. List of selected objects.

Person Backpack Umbrella Handbag Tie Suitcase Bicycle Car Motorcycle Airplane
Bus Train Truck Traffic light Fire hydrant Subway Bench Bird Cat Dog

Sports ball Skateboard Bottle Wind glass Cup Fork Knife Spoon Bowl Chair
Tissu Potted plant Bed Dining table Toilet TV Laptop Mouse Remote Keyboard

Cell phone Microwave Sink Refrigerator Book Clock Pillow Scissors Toothbrush Toothpaste
Hair drier Braille pad Tree Street lamp Utility pole Manhole Vending machine Elevator Standing board Escalator
Shampoo Conditioner Lottion Stair Traffic cone Bollard Radio Desk Whellchair Eletric rice cooker

Gas cooker Closet Washing machine Teapot Electric fan Comb Bookmark Soap Glasses Key
Shoes Shower Tumbler Walking stick Plate Pencil Electric kettle Pen Eraser Earphones
Towel Chopsticks Meat Fish Hat Rice Kimchi Bread Cushin Mattress
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This system can output tactile images generated on the basis of braille data of objects
with a shape similar to those of real-life objects, yielding significant results.

Ten visually impaired individuals were satisfied with the performance of the assistance
system. Moreover, they preferred the Out type, which simplifies the tactile information
in a straightforward manner, over the Detail type, which converts the real objects of
complex composition.

Figure 29. Comparison of expected and actual data(Outdoors).

Figure 30. Comparison of expected and actual data(Indoors).
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Figure 31. As a result of applying it to real life photos.

6. Conclusions and Discussion

6.1. Conclusions

The proposed system was designed to inform visually impaired people about the
types of obstacles in their field of view and to help them recognize their shapes. The system
used an AI algorithm with high processing speed to quickly guide the user and integrated
a simple image processing algorithm to provide tactile images in a short time. This study
proposes a new and simple type of assistive device for visually impaired people who usually
use braille, including people with limited sight. However, new algorithms or the latest
technologies were not applied in the proposed system. The proposed braille conversion
algorithm yielded an accuracy of 85% in relation to the expected result, demonstrating its
usefulness. By excluding duplicate objects, approximately 12 out of 13 objects that can
be confirmed in real life were detected on average. In addition, the conversion took an
average of 6.6 s, indicating that the system is sufficient for use in real life.

6.2. Discussion

This study proposes a living assistance system that is applicable both indoors and
outdoors by integrating object recognition, object extraction, outline generation, and braille
conversion algorithms. According to the experiments and evaluations, we found that the
system developed on the basis of the database tailor-made to the needs of visually impaired
people (includes people with limited sight), who usually use braille, was useful.

However, some limitations of this study include the object extraction results obtained
through GrabCut using the coordinates of the detected objects with YOLOv3 did not match
with the real object. Moreover, some images other than the object image are left, indicating
an inaccuracy in the braille conversion.

Therefore, we plan to perform primary development research to further improve the
accuracy of the system and to generate and apply YOLOv3-based object masks although a
more advanced system may require additional conversion time. Furthermore, we plan to
conduct secondary development research to convert detected objects to icons and reflect
the areas of improvement found from tests.
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Abstract: Magnetic resonance fingerprinting (MRF) based on echo-planar imaging (EPI) enables
whole-brain imaging to rapidly obtain T1 and T2* relaxation time maps. Reconstructing parametric
maps from the MRF scanned baselines by the inner-product method is computationally expensive.
We aimed to accelerate the reconstruction of parametric maps for MRF-EPI by using a deep learning
model. The proposed approach uses a two-stage model that first eliminates noise and then regresses
the parametric maps. Parametric maps obtained by dictionary matching were used as a reference and
compared with the prediction results of the two-stage model. MRF-EPI scans were collected from
32 subjects. The signal-to-noise ratio increased significantly after the noise removal by the denoising
model. For prediction with scans in the testing dataset, the mean absolute percentage errors between
the standard and the final two-stage model were 3.1%, 3.2%, and 1.9% for T1, and 2.6%, 2.3%, and
2.8% for T2* in gray matter, white matter, and lesion locations, respectively. Our proposed two-stage
deep learning model can effectively remove noise and accurately reconstruct MRF-EPI parametric
maps, increasing the speed of reconstruction and reducing the storage space required by dictionaries.

Keywords: magnetic resonance fingerprinting; echo-planar imaging; T1 and T2* relaxation times;
denoising convolutional neural network; self-attention; feature pyramid network

1. Introduction

Quantitative magnetic resonance (MR) relaxometry can quantify the relaxation time
(e.g., T1, T2, T2* relaxation time) to clarify the physical and pathological properties of
human tissues [1]. Quantitative MR relaxometry was reported to increase accuracy and
precision compared with conventional weighted magnetic resonance imaging (MRI) in
detecting lesions, and it can even synthesize traditional weighted images [2,3]. However,
clinical applications of quantitative MR relaxometry are limited by the length of the imaging
procedure required to estimate the tissue relaxation time; moreover, motion artifacts can
interfere with the results, and the procedure does not meet the needs for clinical scheduling
efficiency. Magnetic resonance fingerprinting (MRF) is an approach for designing the rapid
quantitative sequence [4]. MRF has the advantage of providing quantitative images of
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multiple types of relaxation times simultaneously in a relatively short imaging time (several
minutes). However, because MRF image reconstruction requires comparison with a vast
computer simulation database (dictionary matching), the extended image reconstruction
time has become a considerable challenge in the development of MRF [5].

The dictionary matching process is computationally expensive and requires storage
space for the simulation database, which hinders clinical applications of MRF. Thus, opti-
mizing the MRF signal matching process is crucial. Toward this aim, dimension reduction
algorithms, such as singular value decomposition, were the first to be used. Studies have
used singular value decomposition to project the database into low-dimensional space,
speeding up the MRF signal matching process by 3.4–4.8 times that of using only the
inner-product method [6,7]. Compared with approaches reducing the dimensionality of
the database, a model trained by deep learning can eliminate the storage usage of the MRF
simulation database and achieve near real-time reconstructions. Recent studies on the use
of deep learning to accelerate the MRF reconstruction process have included the use of a
one-dimensional (1D) neural network, a convolutional neural network (CNN), and a recur-
rent neural network (RNN) to train models for learning the simulated information [8–10].
Studies have also modeled the reconstructed images in a two-dimensional (2D) fashion by
using the data after matching the dictionary with the scanned images [11–13]. Moreover,
deep learning models can combine multiple tasks, including the reconstruction of MRF
parametric maps, preprocessing, and tissue segmentation, thus reducing computation times
from hours to seconds [13]. Deep learning is therefore an efficient method for MRF image
reconstruction. In addition to deep learning studies of MRF reconstruction, one study used
generative adversarial networks to speed up the generation of simulation data [14]. As the
graphics hardware and deep learning algorithms mature, MRI imaging techniques can be
optimized with deep learning to improve computational performance and thus increase
the feasibility of clinical applications [2].

Most deep learning studies for the MRF image reconstruction have developed their
models based on the original MRF protocol by Ma et al., which has a signal with long
time steps (a thousand-time points) [4]. Therefore, most models are designed to reduce
the time dimension. For instance, Fang et al. used a two-stage deep learning strategy
that entailed first extracting features through a fully connected neural network and then
training the U-Net-based model to learn the spatial distribution of the brain tissue [12]. The
feature extraction step is a process of reducing high-dimensional data to low-dimensional
data. Longer time steps can compensate for the effects of noise, but for MRFs with shorter
time steps, such as those used in this study (35-time points), the effects of noise cannot be
underestimated. Cohen et al. demonstrated the extent to which noise affected the accuracy
of their model, but they did not specifically design the model for noise reduction [8]. In
addition, the selection of training and testing data is another critical point for training
MRF models. Cohen et al. trained their model by simulation dictionary and tested using a
digital brain phantom [8]. Hoppe et al. developed their CNN-based model by simulation
dictionary and tested using a quantitative phantom. Chen et al. also devised a CNN-based
model and tested their model by using the human scan data from another quantitative
MRI method [15]. For the study using the same MRF protocol as this study, they only used
scan data and did not include the simulation dictionary for training [13]. Their model
performance had a between 5% and 10% error. Ideally, the deep learning model should
be trained with the simulation dictionary, and the performance of the dictionary learning
model is tested with human scan data. A dictionary learning model ensures that the model
has learned all the possible situations, and models tested with human scan data are more
convincing. Therefore, we designed and trained our model for noise reduction and used
the dictionary learning model to predict human scan data to verify the performance of the
proposed model.

MRF image reconstruction is a regression task for deep learning models, and the pres-
ence of noise affects the model performance [16]. A denoising CNN model (DnCNN) was
proposed for image denoising; it is highly effective in general image denoising tasks [17].
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Furthermore, the model can complete denoising tasks with an unknown noise level. Be-
cause dictionary matching is performed using the 1D approach, we modified the DnCNN
for 1D signal denoising for the first stage of the proposed model. For the second stage of
the model, which was aimed at learning the Bloch equation simulation [18], we designed
a pyramidal model to extract features of the MRF signal evolution. A pyramid CNN
exhibited promising performance in object detection tasks [19], and the advantage of the
pyramid architecture is that it can extract and combine features from various scales. In
addition, the self-attention mechanism has been used in natural language processing and
can achieve state-of-the-art performance [20]. A CNN with self-attention can associate
each pixel in a 2D image to generate a global reference between pixels [21]. We thus
added the self-attention layer to the model for focusing on the connection between features
extracted by the CNN. The weight of important features can be enhanced through the
self-attention mechanism.

This study aimed to develop a deep learning model to replace the computationally
expensive inner-product method for MRF reconstruction. We investigated how precisely the
proposed model learned the Bloch equation simulation [18] and the relationship between
the noise and model performance with scanned data. In the present study, MRF-echo-
planar imaging (MRF-EPI) was used to scan the whole brains of 32 subjects to obtain T1 and
T2* parametric maps [22–24]. Herein, we propose a two-stage model that first reduces MRF
signal noise and then reconstructs parametric maps of MRF by a dictionary-learning model.

2. Materials and Methods

2.1. Population

The relevant institutional review board (2019-711N) approved this study, and the
subjects provided informed consent before undergoing scanning. The MRF scan was imple-
mented using a 3T scanner (Magnetom Skyra, Siemens Healthineers, Erlangen, Germany)
with 14 healthy subjects and 18 subjects with multiple sclerosis (MS). The healthy group
comprised eleven men and three women (aged 22–33 years; mean: 26 years). The MS
group contained seven men and eleven women (aged 23–73 years; mean: 39 years). The
scans of 32 subjects were used to evaluate the proposed model and are referred to as the
“scanned data”.

2.2. Magnetic Resonance Fingerprinting Imaging and Dictionary Generation

The acquisition method used was a previously proposed and validated MRF-EPI imag-
ing sequence [13,22–24]. The imaging parameters of the MRF sequence were as follows:
in-plane spatial resolution = 1 × 1 mm2; slice thickness = 2 mm; bandwidth = 998 Hz/px;
GRAPPA factor = 3; partial Fourier = 5/8, variable flip angle (34◦–86◦), echo time
(21–81.5 milliseconds [ms]), repetition time (3530–6570 ms), and fat suppression. The
acquisition time was 4 min 23 s for 60 slices of the whole brain. In addition, using the same
spatial resolution, fluid-attenuated inversion recovery (FLAIR) was obtained for lesion
segmentation. The MRF dictionaries were generated for each slice, with 598,842 entries
based on the design of MRF-EPI using the Bloch equation simulation [18]. The ranges of T1
and T2* values were 100–4000 ms and 10–3000 ms (excluding those T1 smaller than T2*),
respectively, with a 2% spacing. The range of flip angle efficiency B1+ was 0.6–1.4 with a
0.05 spacing.

The T1 and T2* maps of the scanned data were reconstructed by the inner-product
method based on the 2%-increment dictionary. Figure 1 displays the schematic process
of the MRF imaging. There were four steps in the MRF imaging process. The first was
the MRF-EPI scan, which had a total of 35 images for each slice in which each pixel can
be considered as a signal with 35 values (Figure 1a). Every pixel has its specific signal
evolution that depends on the T1 and T2* relaxation times for the tissue of that pixel. The
second was the dictionary generation, and the simulated dictionary was generated using
the Bloch equation [18], given a certain range of T1 and T2* values (Figure 1b). The third
was dictionary matching, where the MRF scanned signals were matched to the simulated
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dictionary signals one by one using the inner product (Figure 1c). When each pixel was
matched, the parametric images were obtained, as in step 4 (Figure 1d). The time required
for dictionary matching in the third step depends on the size of the dictionary in the second
step. The denser the dictionary is, the more signal entries there are, and the longer the
matching time is. This is where the challenge of MRF image reconstruction lies.

 

Figure 1. Schematic of the reconstruction for T1 and T2* maps of the magnetic resonance fingerprint-
ing. (a) MRF baseline scan. (b) Dictionary generation process. (c) Dictionary matching by the inner
product. (d) Parametric maps after matching pixel by pixel. MRF = magnetic resonance fingerprinting;
AU = arbitrary unit; GM = gray matter; WM = white matter; CSF = cerebrospinal fluid.

2.3. Dictionaries and Image Preprocessing

We separated the dictionaries with the 2% increment in the simulation into training
and validation datasets using two divisions. The first division split the training and
validation datasets by the T1 and T2* value range. T1 and T2* values were 500–2500 ms and
50–1500 ms, respectively, for the training, and the other entries were used for the validation.
In this division, we aimed to test whether the deep learning model was able to learn Bloch
equation simulation [18] to predict relaxation times that were not in the training range.

In the second division, the training and validation datasets were divided according to
the incremental spacing of the T1 and T2* values (i.e., 4%, 6%, 8%, . . . , 20%). We sampled
the entries by different intervals in the 2%-increment dictionary (i.e., 2, 3, 4, . . . , 10) to
obtain dictionaries with the mentioned increment as a training dataset and the remaining
unsampled ones as a validation dataset. For instance, the 2%-increment dictionary had
T1 values of 100 ms, 102 ms, 104.04 ms, . . . , to the end, and T2* values of 10 ms, 10.2 ms,
10.404 ms, . . . , to the end. We sampled the T1 values of 100 ms, 104.04 ms, . . . , to the end,
and then sampled the T2* values 10 ms, 10.404 ms, . . . , to the end, obtaining a 4%-increment
dictionary for training. Other unsampled entries, T1 values 102 ms, . . . , to the end, and T2*
values 10.2 ms, . . . , to the end, were used as validation data. In this division, we aimed to
test how accurate the deep learning model was in predicting the relaxation times in the
training range.

To compare the reconstructed result between the standard dictionary matching and the
proposed model for different tissues, manual and automatic segmentation of different brain
tissues was performed. Lesion locations for the MS group were manually segmented on
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FLAIR images by an expert radiologist. We used the SPM12 [25] to automatically segment
the white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) from the T1 map
obtained through MRF. A threshold of 80% of the maximum value was applied to the
probability maps generated by SPM12 to create binary masks.

2.4. Noise Analysis and Denoising CNN

According to the inner product, the MRF scanned signals obtained from the subjects
were first matched to the 2%-increment dictionary, which was the densest in our experiment.
The matched signal from the simulated dictionary was considered as the noise-free signal.
The signal without noise was subtracted from the scanned signal to obtain the residual for
calculating the signal-to-noise ratio (SNR) as follows:

SNR = 10 × log10
∑

k
i=1 s2

i

∑
k
i=1 n2

i

, (1)

where s and n are the matched signal from the simulated dictionary and the residual
gathered by the difference between the scanned and matched signal, respectively; k is the
length of the signal, which was 35 in our case. The SNR is in decibels (dB). We collected the
amplitudes of residuals from 21 subjects (3 healthy subjects and 18 patients), slice by slice,
and this collection was referred to as the “noise dataset” for training the denoising model.
The temporal order of each residual was useless and thus discarded. The scans of the other
11 subjects were used as the testing dataset for evaluating the denoising model. Figure 2a
displays a schematic of how the noise was obtained and collected.

Figure 2b displays the feedforward denoising CNN proposed for image denoising [17].
The denoising CNN was modified for noise reduction of 1D signals in this study. The
proposed model began with a convolution layer followed by a rectified linear unit (ReLU)
activation function and ended with a convolution layer. The model had 32 units of layers in
the middle, and each unit included a convolutional layer followed by batch normalization
and a ReLU. Each convolution layer had a kernel size of 3, padding of 1, and 64 channels
(one channel for the final output).

The simulated dictionary signals plus randomly sampled noise from the noise dataset
served as the input to train the model, and the output was the residuals (i.e., noise). The
noise-free signals were obtained by subtracting the output of the model from the noisy
scanned data. Independent-samples t test was used to measure the difference between the
SNR of the training and testing datasets. Paired-samples t test was used to measure the
difference in the SNR before and after denoising.

2.5. Pyramid CNN with Self-Attention for MRF Parametric Image Reconstruction

Figure 2c displays the deep learning model, which was based on a 1D CNN with a
pyramidal structure. The dashed line extending from the green box indicates the detailed
structure inside each green box. The input for the pyramid model was a 1D signal, and the
outputs were T1 and T2* values. The backbone consisted of three convolutional layers with
kernel sizes of 17, 11, and 7, and the number of channels was 128, 256, and 512, respectively.
Each convolutional layer was followed by a ReLU activation function and then a dropout
layer with 0.2 probability as a convolution block.
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Figure 2. Schematic of the noise collection, denoising CNN, pyramid model, and flowchart of the
two-stage model. (a) Collection of the noise dataset. AU = arbitrary unit. (b) Denoising CNN.
(c) Weighted pyramid dual-path CNN with attention. (d) Flowchart of the successive process of the
proposed model.

The output of T1 and T2* relaxation times had two paths. A multihead self-attention
layer [20] with eight heads was first connected after each convolution block of each pathway.
The expressions of the multihead self-attention are as follows:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)W
O, (2)

headi = Attention(Qi, Ki, Vi) = softmax
(

QiKi
T

√
ds

)

Vi, . (3)

and







Qi = XiW
Q
i

Ki = XiW
K
i

Vi = XiW
V
i

, and X = X1, . . . , Xh (4)

Equations (2)–(4) comprise the scaled dot-product self-attention with multihead.
Q, K, and V are the query, key, and value matrices. The corresponding matrices are,
X ∈ R

l×dch(l×h×ds), Xi ∈ R
l×ds , WQ

i ∈ R
ds×ds , WK

i ∈ R
ds×ds , WV

i ∈ R
ds×ds , and

WO ∈ R
hds×dch , where l is the length of the signal after each convolution block; dch and h
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are the input channels and number of heads, respectively; ds is dch divided by h; dch is 128,
256, and 512 for each convolution block; and h is 8 in our implementation.

The output of the attention layer was weighted by a learnable parameter gamma and
added back to its input as the input to the next layer [26]. The next layer was a flatten layer
for connecting a fully connected layer with 128 output features, followed by a ReLU, and
then a fully connected layer with three output features. The final output layer was a fully
connected layer with one output feature, and its input was the sum of the outputs from the
different scales after being weighted by the learnable parameter gamma. The output after
the learnable parameter is given by:

Y = γXa + X (5)

and Y = ∑
m

i=1γiXi. (6)

Y in Equation (5) is the input to the flatten layer, whereas Xa is the output after the
attention layer. Y in Equation (6) is the input for the final fully connected layer. Because
three convolutional layers created separate scales, m was equal to three.

The proposed model was named the weighted pyramid dual-path CNN with attention
(WPDaCNN). Three other models were employed as comparisons for the proposed model.
The first was a model without the weighted parameter gamma and the self-attention
layer, denoted by PDCNN. The second was a model based on PDCNN but without the
pyramid structure, denoted by DCNN (only the output of the third convolutional layer
was considered). The final one was a model based on DCNN but with only a single path,
denoted by SCNN (the output feature for the final layer of the single path became two).

2.6. Experimental Setup and Two-Stage CNN Framework

Figure 2d was the flowchart of the successive process of our model. The MRF signals
with noise were first inputted to the stage I model to predict the noise. The denoised MRF
signals were obtained by subtracting the predictive noise from the MRF signals with noise.
Then, the denoised signals were inputted to the stage II model for outputting the T1 and
T2* values.

The experiment was performed on a computer with an Intel Xeon W-2102 CPU and an
NVIDIA Quadro P6000 24 gigabyte GPU. The deep learning models were built based on the
PyTorch package (version 1.7.1+cu110) using Python 3.8.5, and the data preprocessing for
dictionary generation and matching was performed by programming platform MATLAB
R2020a (MathWorks; Natick, MA, USA). Statistical analysis was performed using SPSS
Statistics 24 (IBM; Armonk, NY, USA).

The L2 loss multiplied by 10,000 was applied to train the first stage DnCNN models.
For the second-stage pyramid models, the L1 loss and mean absolute percentage error
(MAPE) were employed and added for training. The loss functions are as follows:

LossstageI = 10000 ×
∑

N
i=1

(

yiresidual − y
p
i residual

)2

N
, (7)

LossstageII =
∑

N
i=1

∣

∣

∣yi − y
p
i

∣

∣

∣

N
+

100 × ∑
N
i=1

∣

∣

∣yi − y
p
i

∣

∣

∣ /yi

N
. (8)

Equation (7) is the loss function for the first stage model, and Equation (8) is that for
the second stage. We referred to the denoising study using the L2 loss for training the first
stage [17], and the constant 10,000 was set empirically. The L1 loss for training the second
stage was referenced to the literature that used the same MRF protocol as this study [13],
and the MAPE term was used to balance the T1 and T2* for model learning. N is the total
number of values, yiresidual is the true residual, y

p
i residual is the predicted residual, yi is the

T1 and T2* values within the simulated dictionary, and y
p
i is their predicted values. The
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value of the loss function corresponding to each stage was used as the error to identify the
model with the lowest error.

Figure 3 presents a flowchart of our experiments. Figure 3a represents the workflow
for training the DnCNN. There were 60 slices with their own unique simulated dictionaries,
and thus a total of 60 models need to be trained. Because of the lengthy training time,
the scanned data were split into single training and testing datasets for the experiment
rather than split into multiple folds. The training and testing datasets consisted of 21 and
11 subjects from the scanned data, respectively. The noise dataset was obtained from the
training dataset, as described in the Section 2.4. The DnCNN was trained for 100 epochs
by inputting simulated signals plus randomly sampled values in the noise dataset. After
100 epochs, the trained model that corresponded to the lowest training error was selected
as optimal. The testing dataset was then inputted to the optimal model for prediction.

 

Figure 3. Schematic flowchart for our experiments. (a) Workflow for training the denoising models.
(b) Workflow for training the pyramid models for comparison. (c) Workflow for training the final
two-stage models. The dashed line for the pretrained stage I model indicates that the model weights
were frozen and did not change during the training process.

Figure 3b indicates the workflow for training the models with different structures,
namely, WPDaCNN, PDCNN, DCNN, and SCNN. The simulated dictionary was split
into training and validation datasets according to the division described in the Section 2.3.
Subsequently, each model was trained for 100 epochs, and the one with the lowest error for
the validation dataset was selected as the optimal model.

Figure 3c displays the workflow for training the final two-stage model. We first
connected the pretrained stage I model with the untrained stage II model and then froze
the weights of the stage I model. The input for training was the simulated signal from the
dictionary and did not pass through the denoising model while training. The scanned data
was split into half for the validation dataset and another half for the testing dataset. After
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each epoch, the validation dataset was fed into the entire two-stage model for evaluating
the error (loss) of the two-stage model. We observed that the second-stage model converged
rapidly, and excessive training epochs led to overfitting; thus, only 25 epochs were set, and
the optimal model was the one with the lowest validation error within 25 epochs. The
testing dataset was then inputted to the optimal model for prediction.

Each whole-brain scan included 60 slices, with each slice corresponding to a distinct
simulated dictionary. Hence, we trained a two-stage model for each slice with 598,842 entries
as the input, and 60 models were eventually produced (Figure 3a,c). Because of the identical
design concept of the pulse sequence for each slice, when we trained different models for
comparison (i.e., WPDaCNN, PDCNN, DCNN, and SCNN), only one model of each type
was trained by using a dictionary of the first slice (Figure 3b). During model training, the
batch size was 500, and the optimizer employed was Adam with a learning rate of 0.01
and a scheduler with a 5% learning rate reduction per epoch. The intraclass correlation
coefficient (ICC) was used to assess the consistency between the dictionary matching and
prediction of the final two-stage models. The correlation coefficient was applied to test the
mean and difference between the standards and predictions.

3. Results

3.1. SNR of Scan Data and after Denoising by DnCNN

Figure 4a displays the corresponding SNR before and after denoising. The SNR varied
from slice to slice, with lower SNRs in the cranial and caudal portions and higher SNRs in
the middle. Figure 4b contains two examples of the scanned signal after denoising. The
noise was effectively removed after denoising, and the SNR increased (25 dB vs. 47 dB and
16 dB vs. 31 dB). Table 1 presents the SNR and statistics before and after the denoising by
the DnCNN for the training and testing datasets. The results for various tissue types were
obtained after applying the tissue masks that were created by the automatic and manual
segmentation mentioned in the Section 2.3. The SNRs in both the training and testing
datasets increased, and the increases after denoising were statistically significant (p < 0.001).
The SNRs of GM and WM were similar, whereas the SNR of CSF was lower than that of
GM and WM. Regarding the differences in mean SNR between the training and testing
datasets, the p values were 0.40 and 0.32 for the original and denoised SNRs, respectively.
This result suggested that the mean SNRs of the training and testing datasets were not
significantly different, either before or after denoising. Therefore, the model performed
well in the testing dataset.

 

 ±  ±  ±  ±  ±  ±  ±  ±  ±  ±  ±  ±  ±  ±  ±  ± 

Figure 4. Signal-to-noise ratio (SNR) before and after denoising. (a) Plot of the mean (solid color box)
and standard deviation (thin line bar) of the SNR in slices of the whole brain. (b) Two examples of the
signal before and after denoising were gathered from one pixel in slice 35 (top) and slice 13 (bottom).
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Table 1. SNR before and after the denoising model.

Training Testing

Tissue Type Original SNR Denoised SNR p Value Original SNR Denoised SNR p Value

Whole Brain 21.33 ± 1.45 37.75 ± 1.55 <0.001 * 21.78 ± 1.41 38.31 ± 1.34 <0.001 *
GM 22.22 ± 1.51 39.10 ± 1.56 <0.001 * 23.01 ± 1.52 39.86 ± 1.31 <0.001 *
WM 22.44 ± 1.49 40.03 ± 1.68 <0.001 * 22.79 ± 1.69 40.48 ± 1.60 <0.001 *
CSF 18.97 ± 1.60 33.29 ± 1.59 <0.001 * 18.75 ± 1.30 33.31 ± 1.34 <0.001 *

GM = gray matter; WM = white matter; CSF = cerebrospinal fluid; MS = multiple sclerosis; SNR = signal-to-noise
ratio. The unit of SNR is in dB. “*” indicates that the p value is less than 0.05.

3.2. Performance of the Pyramid CNN Models

For the first division, models learned well on the training dataset but poorly on
the validation dataset. The mean MAPE of all models on the training dataset was 1.4%,
and that on the validation dataset was 54.8%. For the second division, Figure 5 presents
the pyramid model performance for different dictionary increments. As the increment
increased, the losses of WPDaCNN and PDCNN increased smoothly, but the losses of
DCNN and SCNN increased ruggedly. For the L1 loss, WPDaCNN was the model with
the optimal performance under all dictionary increments. The lowest L1 loss was 10 ms
and 4.5 ms for the training and validation, respectively, at the dictionary with the densest
increment. Compared with SCNN, DCNN had lower losses, except for training losses at
the increments of six and eight and validation losses at six.

 

 ±  ±  ±  ±  ±  ±  ±  ± − ±  ±  ±  ± − ±  ±  ±  ±  ±  ±  ±  ± 
 ±  ±  ±  ±  ±  ±  ±  ± − ±  ±  ±  ± − ±  ±  ±  ± − ±  ±  ±  ± 

Figure 5. Performance of pyramid models trained under different dictionary increments. The solid
line is the model prediction by training data, and the dashed line is that of the testing data. (a) L1 and
MAPE of the WPDaCNN and PDCNN models. (b) L1 and MAPE of the DCNN and SCNN models.

3.3. MRF Parametric Maps Reconstruction by the Two-Stage Model

The dictionary matching using the inner product by the CPU required 1.5 min to
reconstruct a slice, and the previous model with the same MRF protocol as this study by
the CPU required 0.08 s [13]. The time required for the GPU with a two-stage model to
reconstruct a slice was 0.02 s. Tables 2 and 3 present the statistical analysis of T1 and T2*
values from 32 subjects by standard dictionary matching and that by the proposed two-
stage model. Results for various tissue types were obtained by applying the corresponding
tissue mask derived from the automatic and manual segmentation. In both validation and
testing datasets, all ICCs were higher than 0.94 in T1 and T2* relaxation times for all tissues.
The MAPE decreased by approximately a factor of two after denoising for all tissue types.
In GM, WM, and MS lesions, the MAPE was less than 3.2% for T1 and 2.8% for T2* with
denoising. CSF had a much higher MAPE compared with other tissue types. The overall
MAPE with the denoising for the whole brain was approximately 6% and 4% for the T1 and
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T2* values, respectively. Most of the overall increase in error was contributed by CSF. The
previous model based on U-Net and scan data for training was MAPE of five to ten [13].

Table 2. Statistical analysis of T1 relaxation times between dictionary matching and the proposed
two-stage model for each tissue of scanned data.

Validation (7 Healthy and 9 with MS)

Standard (ms) Predicted (ms) ICC MAPE (%) Mean (ms) Difference (ms) R p Value

WB 1483 ± 147 1461 ± 146 1.00 5.9 (12.6) 1472 ± 145 22.9 ± 5.5 0.53 <0.05 *
GM 1278 ± 42 1269 ± 42 1.00 3.0 (7.1) 1273 ± 42 9.2 ± 2.1 −0.22 0.41
WM 803 ± 35 794 ± 36 1.00 3.0 (6.8) 799 ± 36 8.8 ± 2.1 −0.45 0.08
CSF 2993 ± 233 2894 ± 229 1.00 7.4 (15.1) 2943 ± 231 99.5 ± 21.5 0.17 0.54
MSL 1194 ± 208 1192 ± 207 1.00 1.7 (3.9) 1193 ± 207 1.8 ± 3.4 0.28 0.46

Testing (7 Healthy and 9 with MS)

WB 1521 ± 153 1496 ± 151 1.00 6.2 (12.9) 1509 ± 152 25.9 ± 8.4 0.27 0.31
GM 1286 ± 42 1276 ± 43 1.00 3.1 (7.2) 1281 ± 42 10.6 ± 4.2 −0.16 0.57
WM 825 ± 51 816 ± 51 1.00 3.2 (7.0) 820 ± 51 9.1 ± 2.5 −0.25 0.35
CSF 3003 ± 224 2897 ± 230 1.00 7.4 (14.5) 2950 ± 226 106.3 ± 29.8 −0.22 0.41
MSL 1284 ± 152 1279 ± 151 1.00 1.9 (4.2) 1282 ± 152 5.2 ± 4.4 0.10 0.81

WB = whole brain; GM = gray matter; WM = white matter; CSF = cerebrospinal fluid; MSL = lesion of multiple
sclerosis; ICC = intraclass correlation coefficient; MAPE = mean absolute percentage error. “*” indicates that the
p value is less than 0.05. The values in parentheses in the MAPE column are the results without noise removal.
The difference is from the pairwise pixel-value difference.

Table 3. Statistical analysis of T2* relaxation times between dictionary matching and the proposed
two-stage model for each tissue of scanned data.

Validation (7 Healthy and 9 with MS)

Standard (ms) Predicted (ms) ICC MAPE (%) Mean (ms) Difference (ms) R p Value

WB 95 ± 26 83 ± 18 0.97 4.2 (11.3) 89 ± 22 11.9 ± 7.8 0.96 <0.001 *
GM 53 ± 3 53 ± 2 0.94 2.6 (6.0) 53 ± 2 0.3 ± 1.2 0.49 0.05
WM 53 ± 2 53 ± 2 0.98 2.2 (5.8) 53 ± 2 0.1 ± 0.5 0.35 0.18
CSF 245 ± 90 189 ± 61 0.96 9.3 (20.1) 217 ± 75 56.3 ± 29.5 0.96 <0.001 *
MSL 78 ± 7 79 ± 7 1.00 2.0 (4.8) 79 ± 7 −0.3 ± 0.4 −0.43 0.25

Testing (7 Healthy and 9 with MS)

WB 104 ± 35 89 ± 24 0.97 4.6 (10.5) 96 ± 30 14.5 ± 11.0 0.96 <0.001 *
GM 53 ± 2 53 ± 2 1.00 2.6 (5.6) 53 ± 2 −0.0 ± 0.1 0.40 0.12
WM 54 ± 2 54 ± 2 1.00 2.3 (5.2) 54 ± 2 −0.1 ± 0.1 −0.21 0.43
CSF 268 ± 101 204 ± 70 0.96 10.2 (18.9) 236 ± 85 63.8 ± 34.0 0.93 <0.001 *
MSL 86 ± 14 87 ± 15 1.00 2.8 (6.5) 87 ± 14 −0.7 ± 0.9 −0.71 <0.05 *

WB = whole brain; GM = gray matter; WM = white matter; CSF = cerebrospinal fluid; MSL = lesion of multiple
sclerosis; ICC = intraclass correlation coefficient; MAPE = mean absolute percentage error. “*” indicates that the
p value is less than 0.05. The values in parentheses in the MAPE column are the results without noise removal.
The difference is from the pairwise pixel-value difference.

Figure 6 displays a Bland–Altman plot for all subjects of dictionary matching and the
two-stage model. The fifth and sixth columns of Tables 2 and 3 lists the mean and difference
(with standard deviations) between them. A significant positive correlation was observed
for the whole brain for T1 and T2* in the validation dataset and T2* in the testing dataset.
The significant positive correlation also appeared in the CSF for T2* for both validation
and testing datasets. A significant negative correlation was observed for the MS lesion for
T2* in the testing dataset. In both validation and testing datasets, the mean difference was
less than or equal to 10 ms for GM and WM, and 5 ms for the MS lesion, for T1. The mean
difference was less than or equal to 0.7 ms for GM, WM, and the MS lesion for T2* in both
validation and testing datasets. Figure 7 depicts a single slice from an MS patient for the
tissue masks, FLAIR, standard and predicted maps for T1 and T2*, and their corresponding
difference maps. The standard maps were obtained by dictionary matching using the
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inner-product method, and the predicted maps were gathered by the proposed two-stage
model. The MAPE for GM, WM, and MS lesions was low. The MAPE was higher for the
CSF region compared with other tissue types in the difference map, especially for T2*.

 

Figure 6. Bland-Altman plot for mean T1 and T2* relaxation times of 32 subjects (18 with MS lesions)
for the whole brain and different tissues. (a,c) Plot for all tissues. (b,d) Cropped views of GM, WM,
and MS lesion shown in (a) and (c).

 

Figure 7. Magnetic resonance fingerprinting parametric maps of a single slice in a
Figure 7. Magnetic resonance fingerprinting parametric maps of a single slice in an MS patient
matched by the simulated dictionary (standard) and predicted by the proposed model. (a) Top is the
tissue masks; bottom is the FLAIR. (b) Standard maps by dictionary matching, predicted maps by the
proposed two-stage model, and difference maps between them.
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4. Discussion

Herein, we propose a two-stage model for predicting parametric maps of MRF-EPI.
The prediction results achieved a MAPE of equal to or less than 3% from the standard
dictionary matching for GM, WM, and MS lesions. In our approach, the first stage used MRF
signal denoising, and the second stage used regression of the simulated signal by the Bloch
equation [18]. The model’s prediction error with denoising was approximately one-half
that without denoising, and in this, we demonstrated the importance of removing the noise.
Furthermore, the pyramid model with self-attention learned well on the simulated signal
and achieved MAPE of approximately 2% and 1% for the training and validation datasets,
respectively, for the dictionary with the densest increment. Our proposed model accurately
reconstructed parametric maps of MRF-EPI and can therefore replace the computationally
expensive inner-product dictionary matching method.

Noise is an unavoidable problem when MRI is conducted using fast imaging tech-
niques, and acquisition speed and SNR are perennial tradeoffs. Several approaches have
been proposed for MRI denoising [27]. In general, denoising techniques are based on
specific assumptions to model prior properties, such as inherent pattern redundancy and
sparsity. The disadvantages of such modeling are that obtaining high performance is
computationally expensive and that several manual parameters must be selected [17].
Unlike prior-based approaches, deep learning–based DnCNN is both effective and time
efficient. A previous study demonstrated that by filtering the MRF baseline images, the
image quality improved for parametric maps [24]. We also performed noise reduction on
the MRF baseline image, but we did so on the signal evolution of each pixel instead of
on 2D images. SNRs for both the training and testing datasets increased by nearly twice
the original SNRs after denoising. No significant difference was observed between the
training and testing datasets before and after denoising in our experiments. This result
demonstrated that the DnCNN performed well in handling MRF signals with noise for
both training and testing datasets. In addition, we observed a decrease in the SNR on the
cranial and caudal sides, which conforms with observations in previous studies [28,29].

In learning simulated signals with different increments, the error in model prediction
on both training and validation datasets increased as the increment increased. We observed
that the PDCNN and WPDaCNN had fewer errors and a smoother error trend than did
the DCNN and SCNN. From this result, we observed that the model with the pyramid
structure was more stable than the model without the pyramid structure. In addition, in
the first division type of our experiments, the model was made to learn certain T1 and
T2* ranges of simulated signals and to predict the data outside the simulated scope as
validation. This approach resulted in poor prediction for the validation dataset. This result
demonstrated that the model did not learn the Bloch equation simulation [18] well. The
model must be made to learn all the expected ranges for the simulated signals to ensure
accurate predictions. Moreover, regarding the performance of the PDCNN and WPDaCNN,
the validation loss was lower than the training loss at any increment, indicating that the
model accurately regressed the learned data within the range of T1 and T2* contained in
the training dictionary. That is, once the model learned the dictionary with a 4% increment,
it was able to regress the T1 and T2* of the dictionary with a 2% increment well. Deep
learning models perform better with a single output compared with multiple outputs [13].
In our experimental results, the overall performance of the DCNN was superior to that of
the SCNN, which demonstrated that the dual-path for outputting T1 and T2* was beneficial
in improving the model performance.

To address the problem of noise, previous studies have used Gaussian noise to test the
performance of their model [8,24], but actual MRI noise distributions are non-Gaussian [30,31].
Thus, we created a noise dataset on the basis of the difference between simulated and
scanned data and randomly sampled the data from this dataset to train our deep learning
model. Furthermore, models trained by L1 loss were reported to perform more favorably in
MRF image reconstruction compared with other loss functions [13]. Hence, we concurrently
used L1 loss and MAPE loss to avoid the model’s overfitting to either T1 or T2* values
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(Equation (8)). In addition, studies have demonstrated the power of CNNs and the ability
of RNNs to outperform CNNs in MRF image reconstruction [9,10]. For natural language
processing, Transformer, which relies entirely on the self-attention mechanism, has been
proposed as having a lower computational cost and more advanced performance than
RNNs [20]. We combined a CNN with the self-attention mechanism to make the model
learn the correlations among features captured by the CNN. Furthermore, the performance
of a two-stage model is superior to that of a single-stage one for object detection but at
the expense of computational speed [32]. Our results also indicated that the two-stage
model with noise reduction outperformed the one-stage model without noise reduction.
Moreover, the computation time of the model in the GPU (0.02 s) for predicting a single
slice was 4500-fold faster than that of the commonly used inner-product matching in the
CPU (90 s). Finally, although correlations were observed in the Bland–Altman analysis, the
MAPE for clinically interesting tissues (GM, WM, and MS lesions) was less than or equal to
3%, and the mean T1 and T2* values of these tissues are consistent with those in previous
studies [1,33–36].

Clinical MRI relies on qualitative imaging, which can require one hour to obtain
multiple contrast weightings. Prolonged scanning is a burden for patients who cannot
recline for long periods and may record motion artifacts because of patient movement.
Additionally, qualitative imaging can be affected by the scanner and imaging parameters
used, which hinders disease follow-up. By contrast, MRF quantitative imaging can generate
multiple relaxation time maps in only a few minutes of scanning time. MRF has been
demonstrated to have high repeatability and reproducibility [37,38]. MRF is a favorable
approach to obtaining quantitative MR relaxation measurements. In addition, quantitative
MR relaxometry can synthesize conventional contrast weightings [2,3], which can be useful
for adherence to current clinical diagnostic standards. Furthermore, quantitative MRI
relaxometry–based tissue segmentation was reported to have favorable repeatability [39]
and can be beneficial in clinical settings for tracking the time course of a disease. With
improvements addressing the drawback of the long reconstruction time of MRF, this
approach is expected to replace the conventional weighted imaging currently used in
clinical practice. In this study, we propose a two-stage model that is able to learn the
simulated dictionary with dense increment and more quickly than dictionary matching.
Our model can accelerate MRF reconstruction and thus increase the feasibility of MRF for
clinical applications.

This study has some limitations. First, the gold standard we applied to evaluate the
accuracy of our models was the use of the parametric maps by dictionary matching, and
no other reference quantitative method was used. However, the quantification accuracy
of MRF-EPI by dictionary matching was validated with a phantom and had good agree-
ment [22,23]. Second, the prediction time we reported in the Results section was for only
one slice, and approximately 30 s were required to compute 60 slices consecutively. This
result was due to the continuous GPU computing also involving memory usage and data
transfer time. Finally, because of the design of MRF-EPI, the simulated dictionary differed
by slice. Therefore, we trained a total of 60 models corresponding to each slice, and this
required training time and space to store the trained weights for the model. Approximately
nine days were required to train the denoising model for stage I, and 18 h to train different
pyramid models for comparison. Regarding the final two-stage model, an excessive epoch
number led to poor model prediction for the scanned data because of overfitting. Therefore,
we used a relatively small number of training sessions (25 epochs), and approximately two
days were required for model training. Regarding storage space, space requirements were
smaller compared with those for the simulated dictionary (15 megabytes for the model
weights and 203 megabytes for the dictionary of each slice).

In this study, we proposed a two-stage model. The MRF signal noise reduction was
for the first stage, and the T1 and T2* value prediction was for the second stage. The
results showed that noise removal was very beneficial for predicting the T1 and T2* values.
Compared with other studies, we used real noise and the simulation dictionary to train
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the model to ensure generalizability. Our proposed model was designed using a 1D
architecture, which required model training for each slice. If the model is designed in 3D,
a single model will be able to cover the whole brain. However, compared with the multi-
model approach, the single model has fewer parameters for learning, and it is conceivable
that the noise reduction performance may be worse. We used the denoising CNN proposed
by Zhang et al. in 2017 [17]. Other advanced denoising deep learning models, such as a
denoising autoencoder [40], are available and can be used in MRF studies in the future to
improve the model performance in noise reduction. Besides, MRF using EPI fast imaging is
sensitive to magnetic field inhomogeneity and can have distortion artifacts at the air-tissue
interface. A common approach for distortion correction is image registration [41]. In
addition, MRI image analysis often requires the segmentation of tissues such as GM, WM,
CSF, and lesion to observe the correlated volumetric changes [42]. Deep learning is well
established in image registration and segmentation, such as VoxelMorph [43], which used
the spatial transformer function, and U-Net [44], a well-known architecture commonly used
for medical image segmentation. In the future, a multi-task deep learning model for MRF
can be added to specifically handle the image denoising, registration, and segmentation
tasks to achieve a one-stop efficient MRF image reconstruction and enhance the value of
MRF in clinical applications.

5. Conclusions

In conclusion, we effectively removed the noise from MRF-EPI in a 1D manner and
thus improved the performance of a deep learning model in the regression task for MRF
parametric map reconstruction. The proposed model achieved a prediction error equal to
or less than 3% in the T1 and T2* map for tissues of clinical interest, such as GM, WM, and
MS lesions. Compared with the 1.5 min required for the CPU computation using the inner-
product method, the proposed model can achieve a computation speed of 0.02 s for a slice
in the GPU. Our proposed two-stage model, trained with dense-increment simulated dictio-
naries, can accelerate image reconstruction and reduce the space required by dictionaries,
thus improving imaging efficiency. Future research can target deep learning models that
incorporate image processing, such as image registration and segmentation, to overcome
the distortion and measure the brain volumetry for facilitating MRF in clinical applications.
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Abstract: Deep learning based medical image registration remains very difficult and often fails
to improve over its classical counterparts where comprehensive supervision is not available, in
particular for large transformations—including rigid alignment. The use of unsupervised, metric-
based registration networks has become popular, but so far no universally applicable similarity
metric is available for multimodal medical registration, requiring a trade-off between local contrast-
invariant edge features or more global statistical metrics. In this work, we aim to improve over the
use of handcrafted metric-based losses. We propose to use synthetic three-way (triangular) cycles
that for each pair of images comprise two multimodal transformations to be estimated and one
known synthetic monomodal transform. Additionally, we present a robust method for estimating
large rigid transformations that is differentiable in end-to-end learning. By minimising the cycle
discrepancy and adapting the synthetic transformation to be close to the real geometric difference of
the image pairs during training, we successfully tackle intra-patient abdominal CT-MRI registration
and reach performance on par with state-of-the-art metric-supervision and classic methods. Cyclic
constraints enable the learning of cross-modality features that excel at accurate anatomical alignment
of abdominal CT and MRI scans.

Keywords: image registration; cycle constraint; multimodal features; self-supervision; rigid alignment

1. Introduction

Medical image registration based on deep learning methods has gathered great interest
over the last few years. Yet, certain challenges, especially in multimodal registration, need to
be addressed for learning based approaches, as evident from the recent MICCAI challenge
Learn2Reg [1]. In order to avoid an elaborate comprehensive annotation of all relevant
anatomies and to avoid label bias, unsupervised, metric-based registration networks are
widely used for intramodal deep learning based registration [2,3].

However, this poses an additional challenge for multimodal registration problems, as
currently no universal metric has been developed and a trade-off has to be made between
using local contrast-invariant edge features such as NGF, LCC, and MIND or more global
statistical metrics like mutual information. Metric-based methods also entail the difficulty
of tuning hyperparameters that balance similarity weights (ensuring similarity between
fixed image and warped moving image) and regularisation weights (ensuring plausible
deformations).

Ground truth deformations for direct supervision are only available when using syn-
thetic deformation fields. The now very popular FlowNet [4] estimates deformation fields
between pairs of input images from a synthetically generated dataset that has been obtained
by applying affine transformations to images. However, for medical applications, synthetic
deformations have been deployed for monomodal image registration [5–7]. Alternatively,
label supervision that primarily maximises the alignment of known structures with expert
annotations could be employed [2,8,9]. This leads to improved registration of anatomies
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that are well represented, but can introduce a bias and deteriorating performance for
unseen labels.

On the one hand, the focus of supervised approaches on a limited set of labelled
structures may be particularly inadequate for diagnosis of a pathology that cannot be
represented sufficiently in the training data. Using metric supervision, on the other hand,
has little potential to improve upon classical algorithms that employ the same metric as sim-
ilarity terms during optimisation. With efficient (parallelised) implementations, adequate
runtimes of less than a minute have recently been achieved for classical algorithms.

Learning completely without metric or label supervision, self-supervision, would
remedy the aforementioned problems and enable the development of completely new
registration methods and multimodal feature descriptors without introducing annotation
or engineering biases.

Self-supervision approaches have been used in medical and non-medical learning
based image processing tasks. Recently, a self-supervised approach for learning pretext-
invariant representations for object detection has outperformed supervised pre-training
in [10]. By minimising a contrastive loss function, the authors construct image repre-
sentations that are invariant to image patch pertubation, similar to the representation of
transformed versions of the same image and differ from representations of other images.
In [11], semantic features have been learned with self-supervision in order to recognise
the rotation that has been applied to an image given four possible transformations as
multiples of 90 degrees. The learned features have been useful for various visual perception
tasks. For rigid registration between point clouds, an iterative self-supervised method
has been proposed in [12]. Here, partial-to-partial registration problems have been ad-
dressed by learning geometric priors directly from data. The method comprises a keypoint
detection module which identifies points that match in the input point clouds based on
co-contextual information and aligns common keypoints. For monomodal medical image
registration, in [13] spatial transformations between image pairs have been estimated in a
self-supervised learning procedure. Therefore, an image-wise similarity metric between
fixed and warped moving images is maximised in a multi-resolution framework while the
deformation fields are regularised for smoothness.

In [14], cycle-consistency in time is used for learning visual correspondence from
unlabelled video data for self-supervision. Their idea is to obtain supervision for corre-
spondence by tracking backward and then forward, i.e., along a cycle in time, and use the
inconsistency between the start and end points as the loss function. For image-to-image
translation, a cycle-consistent adversarial network approach is introduced in [15]. The au-
thors use a cycle consistency loss that induces the assumption that forward and backward
translation should be bijective and inverse of each other. Another approach that addresses
inconsistency is introduced in [16] for medical image registration. It uses information
from a complete set of pairwise registrations, aggregates inconsistency, and minimizes the
group-wise inconsistency of all pairwise image registrations by using a regularized least-
squares algorithm. The idea to measure consistency via registration cycles for monomodal
medical image data has been used in [17] that estimates forward and reverse transforma-
tion jointly in a non-deep-learning approach and [18] using registration circuits to correct
registration errors. In [19], a monomodal unsupervised medical image registration method
that trains deep neural network for deformable registration is presented using CNNs with
cycle-consistency. This approach uses two registration networks that process the two in-
put images as fixed and moving images inversely to each other and gives the deformed
volumes to the networks again to re-deform the images to impose cycle-consistency.

Previous deep learning based registration work has often omitted the step of rigid or
affine registration, despite its immense challenges due to often large initial misalignments.
Image registration challenges such as [1] provide data that has been pre-aligned with
help of non-deep-learning-based methods, whereas the challenge’s image registration
tasks are then often addressed with deep learning based methods. Rigid transformation
is often the inital step before performing deformable image registration, and only few
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works [20] investigate deep learning techniques for this step. As evident from the CuRIOUS
challenge [21], so far no CNN approach was able to learn a rigid or affine mapping between
multimodal scan pairs (MRI and ultrasound of neurosurgery) with an adequate robustness.
Besides that, no label bias can occur with rigid alignment. Hence, a learning model for
large linear transformations is of great importance.

Contributions

In order to avoid the difficulty of choosing a metric for multimodal image registration,
we propose a completely new concept. For learning multimodal features for image registra-
tion, our learning method requires neither label supervision nor handcrafted metrics. It
extends upon research that successfully learned monomodal alignment through synthetic
deformations, but transforms this concept to multimodal tasks without resorting to complex
modality synthesis.

The basic idea of our novel learning based approach is illustrated in Figure 1. It relies
on geometric instead of metric supervision. In this work

• We introduce a cycle based approach including cycles that for each pair of CT and
MRI scans comprise two multimodal transformations to be estimated and one known
synthetic monomodal transformation.

• We restrict ourselves to rigid registration and aim to learn multimodal registration
between CT and MRI without metric supervision by minimising the cycle discrepancy.

• We use a CNN for feature extraction with initially separate encoder blocks for each
modality followed by shared weights within the last layers.

• We use a correlation layer without trainable weights and a differentiable least squares
fitting procedure to find an optimal 3D rigid transformation.

• We created to the best of our knowledge the first annotated MRI/CT dataset with
paired patient data that are made publicly available with manual segmentations for
liver, spleen, left and right kidney.

Our extensive experimental validation on 3D rigid registration demonstrates the high
accuracy that can be achieved and the simplicity of training such networks.

Figure 1. Our proposed self-supervised learning concept for multimodal image registration aiming
to minimise a cycle discrepancy. In every training iteration, another (known) random transformation
matrix R23 is used to generate a synthetic image. Like this, a cycle consisting of two unknown
multimodal transformations (with the transformation matrices R21 and R31) and a known monomodal
transformation (with the transformation matrix R31) is obtained, leading to the minimisation problem
of |R23 · R31 − R21| → min that is used for learning.
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2. Materials and Methods

We introduce a learning concept for multimodal image registration that learns with-
out metric supervision. Therefore, we propose a method to learn with the help of a
self-supervised learning procedure using three-way cycles. For our registration models,
the architectural design consists of modules for feature extraction, correlation, and reg-
istration. Implementation details, open source code and trained models can be found at
github.com/multimodallearning/learning_without_metric (accessed on 8 March 2021).

2.1. Self-Supervised Learning Strategy

Our deep learning based method learns multimodal registration without using metric
supervision. Instead, it is based on geometric self-supervision by minimising the cycle
discrepancy created through a cycle consisting of two multimodal transformation and one
monomodal transformation. The basic cycle idea is illustrated in Figure 1: Initially, a fixed
image ( Image 1) and a moving image ( Image 2) exist. The transformation R21 is unknown
and is to be learned by our method. In each training iteration, we randomly deform the
moving image ( Image 2) by applying a known random transformation R23 and hereby
obtain a synthetic image ( Image 3). By bringing the individual transformations into a cycle,
the minimisation problem of

|R23 · R31 − R21| → min (1)

can be derived. We chose to minimise the discrepancy as given in Equation (1) instead
of minimising the difference between the transformation combination R23 · R31 · R12 and
the identity transformation Id with |R23 · R31 · R12 − Id| → min in order to avoid that our
method only learns identity warping. For optimisation, we use the mean squared error loss
function to minimise the cycle discrepancy between the two flow fields generated by the
transformation matrices R21 and R23,31 = R23 · R31.

As we restrict our model to rigid registration, we create the synthetic transformations
R23 by randomly initialising rigid transformation matrices with values that are assumed to
be realistic from an anatomical point of view.

The advantages of our learning concept are manifold. First, in comparison to super-
vising the learning with a known similarity metric and regularisation term, the need for
balancing a weighting term is removed and the method is applicable to new datasets with-
out domain knowledge. Second, it enables multimodal learning, which is not feasible using
synthetic deformations in conjunction with image-based loss terms (cf. [6]). Third, it avoids
the use of domain discriminators as used, e.g., in the CycleGAN approach [15,22], which
usually requires a large set of training scans with comparable contrast in each modality
and may be sensitive to hyper-parameter choices.

On first sight, it might seem daring to use such a weak guidance. While it is clear
that once suitable features are learned the loss term enables convergence, since the cycle
constraint is fulfilled. Yet to initiate training towards improved features, we primarily
rely on the power of randomness (by drawing multiple large synthetic deformations) and
explorative learning. In addition, the architecture contains a number of stabilising elements:
a patch-based correlation layer computation, outlier rejection and least squares fitting, that
are described in detail below in Sections 2.3 and 2.4.

2.2. Training Pipeline

We apply our self-supervised learning strategy in the training procedure by going
through the same steps in each training iteration as visualised in Figure 2: First, a random
transformation matrix R23 is generated and applied on the moving image in order to obtain
the synthetic image. Then, moving and fixed image are passed through feature extraction,
correlation layer and transformation computation module to obtain the transformation
matrix R21. The same step is also performed for fixed and synthetic image to obtain R31.
After this, R23 and R31 are combined to obtain R23,31. Finally, the mean squared error of the
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deformations calculated with help of R21 and R23,31 is determined. The individual modules
for this training pipeline are described in more detail in the following Sections 2.3 and 2.4.

Figure 2. Pipeline to train our registration model: A random transformation matrix R23 is generated
and used to obtain the synthetic image. The pair of moving and fixed image as well as the pair of
synthetic and fixed image are passed through feature extraction, correlation layer and transformation
computation module (see following Sections 2.3 and 2.4) to obtain the transformation matrices R21

and R31. Then, R23 and R31 are combined to obtain R23,31. As a final step, the mean squared error
(MSE) of the deformations calculated with help of R21 and R23,31 is determined.

2.3. Architecture

The architecture used for our registration method comprises three main components
for feature extraction, correlation, and transformation computation.

We chose to use a CNN for feature extraction with initially separate encoder blocks
for each modality and shared weights within the last few layers. These features are subse-
quently fed into the correlation layer, which has no trainable weights and whose output
could be directly converted into displacement probabilities. Our method employs a robust
and differentiable least squares fitting to find an optimal 3D rigid transformation subject
to outlier rejection. Figure 3 visualises the procedure for feature extraction, correlation,
and computation of the rigid transformation matrix that is used for registration.

For our feature extraction CNN, we use a Y-shaped architecture (cf. Figure 3) [9]
starting with a separate network part for each of the two modalities (ModalityNet), which
takes the respective input and passes it through two sequences with a structure of 2×.

• (Strided) 3D convolution with a kernel size of three and padding of one;
• 3D instance normalisation;
• leaky ReLU.

The two convolutions of the first sequence are non-strided and output eight feature
channels. The first convolution of the second sequence has a stride of two and doubles the
number of feature channels to 16, whereas the second convolution of the second sequence
is non-strided and keeps the number of 16 feature channels. Whereas the size of the input
dimensions are preserved within the first convolution sequence, the strided convolution
within the second sequence leads to a halving of each feature map dimension. The output
of the ModalityNets are passed into a final module with shared weights (SharedNet), which
finalises the feature extraction by applying two sequences of the same structure as used for
the separate ModalityNets. Here, the first sequence comprises non-strided convolutions
that output 16 feature channels while keeping the spatial dimensions as output by the
ModalityNets. The first convolution of the second sequence has a stride of two leading to
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another halving of the spatial dimension’s sizes and doubles the number of feature channels
to 32. The second convolution of the second sequence is non-strided and keeps the number
of 32 feature channels. The output of the SharedNet is given to a 1 × 1 × 1-convolution
providing the final number of 16 feature channels followed by a Sigmoid activation function.
As we use correlation and transformation estimation techniques without trainable weights,
our model only comprises 80k trainable parameters within the feature extraction part.

Figure 3. The process of feature extraction, correlation, and computation of the rigid transforma-
tion matrix: A CNN is used for feature extraction starting with a separate network part for each
modality (ModalitiyNetMR and ModalityNetCT) followed by a module with shared weights (Shared-
Net). The obtained features are correlated by calculating patch-wise the sum of squared differences
(SSD). Subsequently, grid points with high similarity are extracted and used to define point-wise
correspondences to calculate the rigid transformation matrix with a least squares fitting.

2.4. Correlation and Transformation Computation

As suggested in previous research [3,4], the use of a dense correlation layer that
explores a large number of discretised displacements at once is employed to capture larger
deformations robustly. This way the learned features are used to define a sum of squared
differences cost function akin to metric learning [23].

Similar to [24], which operates directly on input image pairs and uses normalised cross
correlations (NCC), we use a block-matching technique to find correspondences between
the fixed features and a set of transformed moving features. We correlate the obtained
features by calculating patch-wise the sum of squared differences (SSD) and extract points
with high similarity of a coarse grid with a spacing of 12 voxel. The extracted grid points
are used to define point-wise correspondences to calculate the rigid transformation matrix
with a robust (trimmed) least squares fitting procedure.

For the correlation layer, we choose a set of 11 × 11 × 11 discrete displacements
with a capture range of approx. 40 voxel in the original volumes. After calculating the
sum-of-squared-differences cost volume, we sort the obtained SSD costs and reject the 50%
of the displacement choices that entail the highest similarity costs. We apply the Softmax
function on the remaining displacement choices to obtain differentiable soft correspon-
dences. While we use this differentiable approach to estimate regularised transformations
within a framework that comprises trainable CNN parameters, the learned features could
also be used for other optimisation frameworks [9].

The displacement candidates output by the Softmax function are added to the coarse
moving grid points. In a least squares fitting procedurce comprising five iterations, the final
rigid transformation matrix that serves for transformation of the moving image is deter-
mined. The best-fitting rigid transformation can be found by computing the singular value
decomposition S = UΣVT with the matrix S = XTYT (X: centered fixed grid points xi, Y:
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centered moving grid points with added displacement candidates yi) and the orthogonal
matrices U and V obtained by the singular value decomposition. This leads to the rotation

Q = V













1
1

...
1

det(VUT)













UT (2)

and the translation
t = ȳ − Qx̄ (3)

with x̄ being the mean values for fixed grid points and ȳ the mean moving grid points with
added displacement candidates.

This way, the rigid transformation matrices R21 and R31 are determined. To combine
the synthetic transformation R23 and the predicted transformation R31 matrix multiplication
is used yielding R23,31. The transformation matrices R21 and R23,31 are used to compute the
affine grids that are then given to the MSE loss function during training and the affine grid
computed by R21 is used for warping during inference to align the moving image to the
fixed image.

This approach has the advantage of being very compact with only 80k parameters
ensuring memory efficiency and fast convergence of training. The multimodal features
learned by our model are generally usable for image alignment and can be given to various
optimisation methods for image registration once trained with our method.

3. Experiments and Results

Our experiments are performed on 16 paired abdominal CT and MR scans from
collections of The Cancer Imaging Archive (TCIA) project [25–28]. We have manually
created labels for four abdominal organs (liver, spleen, left kidney, right kidney), which we
use for the evaluation of our methods. Apart from a withheld test set, they are publicly
released for other researchers to train and compare their multimodal registration models.
The pre-processing comprises reorientation, resampling to an isotropic resolution of 2 mm
and cropping/padding to volume dimensions of 192 × 160 × 192.

To increase the number of training and testing pairs and model realistic variations in
initial misalignment we augment the scans with 8 random rigid transformations each that
on average reflect the same Dice overlap (of approx. 43%) as the raw data. All models are
trained for 100 epochs with a mini-batch size of 4 in less than 45 min each using ≈8 GByte
GPU memory.

The weights of the CNN used for feature extraction (FeatCNN) are trained for 100 epochs
using the Adam optimiser with an initial learning rate of 0.001 and an cosine anneal-
ing scheduling.

3.1. Comparison of Training Strategies

We compare three different strategies to train our FeatCNN in a two-fold cross-validation:

1. FeatCNN + Cycle Discrepancy (ours): Our proposed self-supervised cycle learning
strategy;

2. FeatCNN + MI Loss: Learning with metric-supervision using Mutual Information
(MI) as implemented by [29];

3. FeatCNN + NCC2 Loss: Learning with metric-supervision using squared local nor-
malised cross correlations (NCC2) [24,30];

4. FeatCNN + Label Loss: Supervised learning with label supervision.

All methods share the same settings for the correlation layer and a trimmed least square
transform fitting (with five iterations and 50% outlier rejection). Hyperparameters were
determined on a single validation scan (#15) for cyclic training and left unaltered for all other
experiments. The same trainable FeatCNN comprising the layers as described in Section 2.3
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is used to train with our Cycle Discrepancy Loss, MI, NCC2, and Label Loss. For correlation,
we chose to extract corresponding grid points within a grid with a spacing of 12 voxels
and use patches with a radius of 2 to patch-wise calculate the SSD. We use a displacement
radius of 4 and discretise the set of displacements possibilities for the correlation layer
with a displacement step (resp. voxel spacing) of 5. To adjust the smoothness of the
soft correspondences, the costs obtained by SSD computation are multiplied by a factor
of 150 when given to the Softmax function. As the soft-correspondences are needed for
differentiability only during training, we increase this factor to 750 for inference.

For our cycle discrepancy method, we create the synthetic transformation matrices
R23 by randomly initialising them with values that are assumed to be realistic from an
anatomical point of view. Therefore, the maximum rotation is ±23◦ and the maximum
translation ±42 voxel (which equals 84 mm for our experiments) in every image dimension.

The results demonstrate a clear advantage of our proposed self-supervised learning
procedure with an average Dice of 72.3% compared to the state-of-the-art MI metric loss
with 68.14% and NCC2 Loss with 68.1%, which is suitable for multimodal registration due
to its computation involving small local neighbourhoods [24] (see Table 1 for qualitative
and Figure 4 for quantitative results). This result comes close to the theoretical upper bound
of our model trained with full label supervision with 79.55%.

(a) (b) (c) (d)

Figure 4. Qualitative results of our proposed cycle discrepancy approach FeatCNN + Cycle Dis-
crepancy (c). We visualise the comparison to initial (a) before warping as well as to the methods
FeatCNN + MI Loss (b) and FeatCNN + Label Loss (d) (coronal slices). The top row shows the fixed
MRI and (warped) moving labels. The bottom row visualizes the (warped) moving CT and a jet
colourmap overlay of the fixed MRI scan.
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Table 1. Results for our cross-validation experiments: Dice scores listed by anatomical structures of
our 3D experiments using FeatCNN for feature extraction and MI Loss, NCC2 Loss, Label Loss or
our Cycle Discrepancy for training.

Liver Spleen Lkidney Rkidney Mean

initial 59.32 36.90 36.59 37.02 42.46
± 14.03 ± 19.49 ± 19.53 ± 22.08 ± 18.78

FeatCNN + MI Loss 75.07 63.17 69.86 64.46 68.14
± 9.38 ± 22.13 ± 26.34 ± 29.45 ± 21.92

FeatCNN + NCC2 Loss 75.08 61.09 72.19 64.04 68.10
± 12.22 ± 23.69 ± 27.51 ± 31.76 ± 23.80

FeatCNN + Cycle Discrepancy 77.95 69.89 70.18 71.85 72.30
± 8.16 ± 16.00 ± 24.34 ± 34.40 ± 20.75

FeatCNN + Label Loss 81.24 73.84 83.15 79.97 79.55
± 8.75 ± 18.32 ± 26.62 ± 33.59 ± 21.82

3.2. Comparison of Inference Strategies and Increased Trainset

To further enhance our method, we extend it by a two-level warping approach during
inference. Therefore, we present our model the input moving and fixed image to warp the
moving image and then apply our model to the resulting warped moving image and the
fixed image again. For both warping steps, we set a displacement radius of 7 voxel and a
grid spacing of 8 voxel. For the first warping step, we use a displacement discretisation of
4 voxel and refine this hyperparameter to 2 voxel for the second warping step.

Moreover, as our dataset is quite small and our method does not require labels, when
considering an application scenario where a number of MR/CT scan pairs have to be
aligned offline, a fine-tuning of the networks on this test data would be feasible. Therefore,
we aim to further increase the performance of our method with training on all available
paired CT and MR scans without splitting the dataset.

In Table 2 we compare the results of single-level and two-level warping as well as the
cross-validation results and the results when training on the whole available image data.
We compare the results achieved by our method with the results achieved using the rigid
image registration tool reg_aladin of NiftyReg [24] applied to the image pairs used without
the symmetric version and one registration level.

Table 2. Results for our experiments comparing single-level and two-level warping approach as well
as cross-validation and training without withheld data: Dice scores listed by anatomical structures of
our experiments using Cycle Discrepancy for training.

Liver Spleen Lkidney Rkidney Mean

initial 59.32 36.90 36.59 37.02 42.46
± 14.03 ± 19.49 ± 19.53 ± 22.08 ± 18.78

cross-validation 77.95 69.89 70.18 71.85 72.30
1 warp ± 8.16 ± 16.00 ± 24.34 ± 34.40 ± 20.75

cross-validation 80.71 72.12 79.33 74.65 76.68
2 warps ± 9.33 ± 17.08 ± 26.06 ± 36.91 ± 22.34

trained without withheld data 81.04 71.11 76.27 76.49 76.23
1 warp ± 8.22 ± 18.03 ± 24.25 ± 32.64 ±20.88

trained without withheld data 81.85 76.77 79.81 80.17 79.65
2 warps ± 0.58 ± 13.64 ± 24.52 ± 34.65 ± 20.25

NiftyReg 83.97 76.55 79.83 79.26 79.90
reg_aladin ± 6.19 ± 12.00 ± 7.12 ± 37.55 ± 15.15
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Introducing a second warping step increased our cross-validation results by more than
4% points. When training without a withheld testset, we achieved further improvements
by another 3% points. These results are on a par with the results of state-of-the-art classic
method NiftyReg- reg_aladin.

4. Discussion

In this work, we presented a completely new concept for multimodal feature learning
with application to 3D image registration without supervision of labels or handcrafted
metrics. We introduced a new supervision strategy that is based on synthetic random
transformations (two across modality and one within) that form a triangular cycle. Min-
imising the two multimodal transformations in such a cycle constraint avoids singular
solutions (predicting identity transforms) and enables the learning of large rigid deforma-
tions. Through explorative learning, we are able to successfully train modality independent
feature extractors that enable highly accurate and fast multimodal medical image alignment
by minimising a cycle discrepancy in training. We also created the first public multimodal
3D MRI/CT abdominal dataset with manual segmentations for validation. To the best of
our knowledge our work is also the first deep learning model for robustly estimating large
misalignments of multimodal scans.

Despite the very promising results, there are a number of potential extensions that
could further improve our concepts. The idea of incremental learning and predicting more
useful synthetic transformations to improve detail alignment could be considered and has
already shown potential in preliminary 2D experiments.

While the gap between training and test accuracy is relatively small due to the ro-
bust architectural design, further fine-tuning would be applicable at test time (since no
supervision is required) with moderate computational effort. Combining hand-crafted
domain knowledge with self-supervised learning might further boost accuracy. Similarly,
domain adaptation through adversarial training could be incorporated to explicitly model
the differences of modalities. While the gap between training and test accuracy is relatively
small due to the robust architectural design, further fine-tuning would be applicable at test
time (since no supervision is required) with moderate computational effort.

5. Conclusions

With our method, we were able to improve over the use of handcrafted metric-based
losses by using synthetic three-way cycles. By minimising the cycle discrepancy, we are
able to learn multimodal registration between CT and MRI without metric supervision.
We created a robust method to estimate large rigid transformations that is differentiable in
end-to-end learning. Our method is able to successfully perform intra-patient abdominal
CT-MRI registration that outperforms state-of-the-art metric-supervision.
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Abstract: Tinnitus is an auditory condition that causes humans to hear a sound anytime, anywhere.
Chronic and refractory tinnitus is caused by an over synchronization of neurons. Sound has been
applied as an alternative treatment to resynchronize neuronal activity. To date, various acoustic thera-
pies have been proposed to treat tinnitus. However, the effect is not yet well understood. Therefore,
the objective of this study is to establish an objective methodology using electroencephalography
(EEG) signals to measure changes in attentional processes in patients with tinnitus treated with audi-
tory discrimination therapy (ADT). To this aim, first, event-related (de-) synchronization (ERD/ERS)
responses were mapped to extract the levels of synchronization related to the auditory recognition
event. Second, the deep representations of the scalograms were extracted using a previously trained
Convolutional Neural Network (CNN) architecture (MobileNet v2). Third, the deep spectrum fea-
tures corresponding to the study datasets were analyzed to investigate performance in terms of
attention and memory changes. The results proved strong evidence of the feasibility of ADT to treat
tinnitus, which is possibly due to attentional redirection.

Keywords: tinnitus; auditory discrimination therapy; EEG evaluation; event-related synchronization;
event-related desynchronization; convolutional neural network

1. Introduction

Tinnitus is the perception of sound in the absence of an external source [1]. It affects
between 5 and 15% of the world population [2]. Tinnitus is caused by exposure to loud
noise, fever, ototoxicity, or a transient disturbance in the middle ear [1]. Tinnitus can be
perceived by people of all ages, either those with normal hearing or those with hearing
loss [3]. Lenhardt classified tinnitus into objective and subjective [4]. Objective tinnitus is
associated with peripheral vascular abnormalities detectable by stethoscopic inspection,
whereas subjective tinnitus is determined as an acoustic perception merely experienced by
the patient [5]. The tinnitus of interest for the present investigation is the subjective one.

Subjective tinnitus can become chronic and refractory, and it may be caused by the
over synchronization of neurons, which affects cognitive, attentional, emotional, and even
motor processes [1]. Cognitive impairment has been frequently reported in patients with
tinnitus over the last few years [6]. Particularly, working memory and attentional processes
that are affected include deficits in (1) executive control of attention [7], (2) attentional
changes [6], and (3) selective and divided attention [8]. Furthermore, tinnitus differs across
patients in its perceptual characteristics (e.g., frequency and intensity), in its time course
(constant, fluctuating, and intermittent), response to interventions (e.g., masking sounds
and somatic maneuvers), etiologic factors, and comorbidities [9]. This heterogeneity of
tinnitus is reflected by a substantial variability in tinnitus pathophysiology [10], which
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causes a high variability in the treatment outcome. Therefore, a major challenge in clinical
tinnitus research is the identification of relevant criteria for subtyping patients [11,12].

The attentional neurophysiological mechanisms altered by the presence of tinnitus can
be recorded over the human scalp using the electroencephalography (EEG) technique [13].
EEG allows monitoring neural oscillations and ongoing electrical activity, which is made
up of several simultaneous oscillations at different frequencies [14–16]. Neural oscillations
have traditionally been studied based on event-related experiments, where event-related
potentials and (de-) synchronization levels have been estimated [5]. Specifically, event-
related neural oscillatory responses at different frequency bands reflect different stages of
neural information processing [14,15,17]. Event-related oscillations are typically studied
as (1) event-related desynchronization (ERD), which refers to the phasic relative power
decrease of a certain frequency band, and (2) event-related synchronization (ERS), which
implies a relative power increase. As the term indicates, both ERD and ERS are neural
patterns occurring in relation to emotional, cognitive, motor, sensory, and/or perceptual
events [18–20]. In tinnitus patients, power changes in various frequency bands reflects
changes in neural synchrony [5]. The levels of synchronization related to auditory stimuli
are carried out here to evaluate the effect of auditory discrimination therapy (ADT).

It is well established that sound brings about physiological, cognitive, and psychologi-
cal changes, which is why sound-based therapies have become seven of the twenty-five
most widely used treatments for tinnitus according to [12]. ADT is an acoustic therapy
based on the oddball paradigm principle. This therapy is designed to reduce attention
toward tinnitus, thereby reducing its perception [21]. The oddball paradigm consists of
a pair of stimuli: standard and deviant pulses, which are randomly presented. The pa-
tient must identify deviant (40%) from standard (60%) pulses. This therapy intends to
redirect the patient attention toward other sensorial events different from tinnitus so as to
reduce its perception. It requires the attention of the patient on the therapy by presenting
a composed sound of standard and deviant pulses in a random way. The patient must
identify which type of pulse is presented, either standard or deviant. The standard pulse
is the same tone that the tinnitus is, and the deviant pulse is 10% more than the standard
one. Auditory discrimination has shown an improvement in tinnitus symptoms attributed
to the rehabilitation of auditory processing frequencies of the auditory cortex damaged
due to tinnitus [22] and prevention of auditory cortex reorganization [23]. Training at
tones that differed from the dominant tinnitus pitch is beneficial due to the effect of lateral
inhibition. Furthermore, stimulating specific frequency regions close to but not within
the tinnitus frequency region will likely promote or strengthen lateral inhibitory activity,
thus disrupting the pathological synchronous activity of the tinnitus-generating region [24].
There are currently several areas of opportunity suggested by the scientific community to
study [25]. A distinctive niche refers to finding objective measures to evaluate the effect of
treatments in patients with tinnitus, since there are conventional clinical protocols based on
a trial-and-error procedure, and there is no formal and adequate follow-up of the treatment.
At present, the most used way to evaluate acoustic therapies is through subjective methods
such as the visual analogue scale and ad hoc questionnaires [3]. For instance, [26] evaluated
the effectiveness of using sound generators with individual adjustments to relieve tinnitus
in patients unresponsive to previous treatments and according to the Tinnitus Handicap
Inventory (THI) test. The authors found improvement in quality of life, with good response
to sound therapy. Not only subjective but also objective evaluation has been recently
undertaken. The investigation presented by [27] compared sound therapies based on mu-
sic, retraining, neuromodulation (e.g., ADT), and binaural sounds using neuro-audiology
assessments and psychological evaluations. The first assessment revealed that the whole
frequency structure of the neural networks showed a higher level of activeness in tinnitus
sufferers than in control individuals. According to the psychological evaluation, the retrain-
ing treatment was the most effective sound-based therapy to reduce tinnitus perception
and to release stress and anxiety after 60 days of treatment. Nonetheless, binaural sounds
and ADT produced very similar effects. Furthermore, ADT showed to exert less side
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effects. Secondly, [28] evaluated the feasibility of Binaural Sound Therapy (BST) for tinnitus
treatment by comparing its effect with Music Therapy (MT) effect. According to the THI
questionnaire outcomes, BST reduced tinnitus perception. On the other hand, slightly major
neural synchronicity over the right frontal lobe was reflected after two-month treatment.

In the light of the above discussion, the present work aims to establish a methodology
based on EEG analysis to evaluate objectively the effectiveness of ADT to redirect the atten-
tion of patients with tinnitus. For this purpose, the database “Acoustic therapies for tinnitus
treatment: An EEG database” [29] was used. From the database, only control and ADT
groups were selected. Afterwards, ERD and ERS responses were mapped for two study
cases: (1) before and (2) after applying the ADT. For ERD–ERS maps, Continuous Wavelet
Transform (CWT) related to auditory material recognition was computed. Thereafter, deep
representations from the resulting scalograms images using pre-trained Convolutional
Neural Networks (CNNs) were extracted. Finally, deep spectrum features were analyzed
to investigate the performance in terms of cognitive changes, specifically those related to
attention and memory. The foregoing may provide solid evidence of the feasibility of ADT
to treat subjective, chronic, and refractory tinnitus. The conduction of the investigation is
described below.

2. Materials and Methods

The methodology for this work was undertaken into four steps: (1) to analyze and
select the EEG signals of interest from the aforementioned database, (2) to estimate the
ERD/ERS maps based on CWT, (3) to extract deep features based on CNN, and (4) to
analyze statistically data based on centroids and Euclidean distances. This methodology is
shown in Figure 1 and described in detailed in the following paragraphs.

Figure 1. Four-step based methodology followed for the current research study: (1) EEG Analysis,
(2) ERD/ERS Mapping, (3) Deep Feature Extraction, and (4) Comparison Analysis: Tinnitus vs.
Control group.

2.1. EEG Database

The database for this research is available at Mendeley Data under the title “Acoustic
therapies for tinnitus treatment: An EEG database” [29]. This database was created by
following a protocol formerly approved by the Ethical Committee of the National School of
Medicine of the Tecnologico de Monterrey, described, published, and registered under the
trial number: ISRCTN14553550.

From the cohort, two groups were selected: tinnitus patients treated with ADT and
controls. There were eleven participants per group. Both groups were treated for 8 weeks
and were instructed to use the sound-based therapy for one hour every day at any time
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of the day. Note that controls were acoustically stimulated with relaxing music. In both
cases, the sound therapy was monitored by psychometric and electroencephalographic
evaluations before and after the 8-week treatment. For the EEG monitoring, four auditory
stimulation conditions were found: (1) 3 min at resting state, (2) 3 min at listening to the
corresponding therapy, (3) 2.5 min at listening to intermittent stimuli, and (4) 5 min at
listening to everyday soundscapes where individuals had to identify 5 different sounds.
The last case was the only one analyzed for this research. As this research aimed to evaluate
objectively the effectiveness of ADT to redirect the patient’s attention, the EEG analysis
of tinnitus patients when recognizing everyday sounds (e.g., mobile ring, car horn) at
common soundscapes could reveal whether the tinnitus attention had been reduced, and
they were able to identify those sounds.

Two different soundscapes were played, while five associated auditory stimuli were
randomly played. Whenever participants identified auditory stimuli, they pressed a
keyboard button. The soundscapes and their related auditory stimuli to be identified for
each monitoring session were: (1) construction in progress: (i) human sound (yelling), (ii)
police siren, (iii) mobile dialing, (iv) bang, and (v) hit; and (2) restaurant: (i) human sound
(tasting food), (ii) microwave sound, (iii) glass breaking, (iv) door closing, and (v) soda
can being opened. All the stimuli lasted 1 s and were repeated 50 times at a random rate.
Participants kept their eyes closed during the stimulation. Every monitoring session was
around 60 min long [3]. The experimental timing protocol is illustrated in Figure 2.

 

Figure 2. Timing protocol for EEG data in use. Each trial was around 60 min long. In each trial,
participants listened to a soundscape and identified five randomly played auditory stimuli by pressing
a button on the keyboard. There were two types of induced events: (1) auditory material encoding
and (2) auditory material retrieval.

To record the EEG data, a g.USBamp amplifier was used, which was configured as
stated in Table 1. Furthermore, clinical (level of hearing loss and frequency, intensity, and
laterality of tinnitus) and demographic (gender, age) characteristics from the cohort selected
were registered.
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Table 1. EEG recording system configuration.

Sampling rate 256 Hz

Number of channels 16

Channels used by region
Prefrontal (FP1, FP2), Frontal (F7, F3, Fz, F4, F8), Temporal (T3,
T4, T5, T6), Central (C3, C4), Parietal (Pz), Occipital (O1, O2)

Reference method Monopolar @ Cz

Electrode placement system International 10–20 system

2.2. EEG Signal Pre-Processing

The EEG signals were pre-processed as follows. Firstly, the low-frequency components
were eliminated by applying a Butterworth-type Band Pass digital filter with order 6
of zero phase, and with cutoff frequencies between 0.1 and 30 Hz. Secondly, channels
were removed according to the criteria reported in [30]: flat for more than 5 s, maximum
acceptable high-frequency noise standard deviation of 4, minimum acceptable correlation
with nearby channels of 0.8. Thirdly, Artifact Subspace Reconstruction (ASR) bad burst
correction was performed in order to remove bad data periods with transient or large-
amplitude artifacts that exceeded 20 times the standard deviation of the calibrated data [30].
Fourthly, Independent Component Analysis (ICA) was applied with RunICA function.
Finally, the independent components (ICs) distinguished as non-brain sources were rejected
by the ICLabel classifier. The probability range for components flagged for rejection was
set between 0.6 and 1. There were five non-brain source categories: (1) muscular, (2) ocular,
and (3) electrocardiographic artifacts, (4) line noise, and (5) channel noise.

Due to the previous pre-processing stage alongside with some missing material recog-
nition responses in the initial monitoring session, there was a significant loss of auditory
material retrieval events; therefore, the sample of interest had to be reduced to 5 tinnitus
patients composed of four adults aged 30–59 years old and one elderly aged 60–85 years
old: 3 males and 2 females.

Table A1 (located in Appendix A) shows up the rejected channels, the percentage of bad
data periods with transient or large-amplitude artifacts, and the independent components
distinguished as non-brain sources.

2.3. ERD/ERS Maps

To begin this process, EEG signals over the frontal lobe and middle line (Fz) were
carried out to monitor the ADT effect on tinnitus sufferers. Channel Fz was selected to
analyze EEG information, since it is the recording site for clinical diagnosis of tinnitus.

Secondly, the epochs were extracted 500 ms before and 1 s after the keyboard button
press; i.e., the recognition of the familiar sound played randomly during the everyday
soundscape (Figure 2). This event refers to the auditory material retrieval. A negative
window was proposed as a reference to measure changes in potential prior to the event
whilst the positive window is aligned with the timing protocol corresponding to the time of
appearance of ERD/ERS responses associated with the auditory memory and attentional
mechanisms involved [31].

Thirdly, the CWT was the time-frequency analysis applied to each of 50 epochs per
stimulus (5 stimuli in total). Wavelet of the Complex Gaussian family (Equation (1))
was selected, since they are based on complex-valued sinusoids constituting an analytic
signal, possessing the shift invariance property. The sampling frequency was 256 Hz. The
frequency range oscillated between 0.1 and 30 Hz.

f (x) = Cpe−ixe−x2
(1)

The integer p is the parameter of this family built from the complex Gaussian function.
Cp is such that ‖ f p ‖2= 1 where fp is the pth derivative of f.
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Fourthly, the baseline correction (BC) was carried out using the subtraction method
based on Equation (2).

BC =
(

P(t, f )− R( f )
)

(2)

where P(t,f ) is the power value given a time-frequency point subtracted by the average
value of the baseline values from −400 to −100 ms at each frequency range prior to the
appearance of an auditory recognition event [32].

Finally, the coefficient matrices resulting from the CWT per epoch were averaged,
and the absolute value was carried out to obtain only real estimations. CWT scalograms
were plotted as a function of time windows from −500 ms to 1 s and a frequency ranging
from 0.1 to 30 Hz, for the purpose of representing the auditory synchronization and
desynchronization activity over the Fz area before and after the ADT-based procedure.

2.4. Deep Feature Extraction

The CNN is often used in disease detection and classification [33,34]. Nonetheless, in
this paper, it was executed with the aim of extracting a distributed vector representation
of the scalograms images resulted from training a model to classify tinnitus from control
patients. From now on, such vector representations will be known as deep spectrum features.
The premise with such deep spectrum features is that images from tinnitus patients result
in vector representations that are closer among them and, at the same time, distant from
vector representations corresponding to control participants. The CNN utilized was the
MobileNet V2, which is based on a streamlined architecture that uses depth-wise separable
convolutions, a form of factorized convolutions, with the aim to build lightweight deep
neural networks. MobileNet uses 3 × 3 depth wise separable convolutions, which uses
between 8 and 9 times less computation, and it is extremely efficient relative to standard
convolutions. Furthermore, the model has the effect of drastically reducing model size and
computational cost [35]. This feature helps face the high computing capability and the large
memory requirements characterized in a CNN method [33]. The pre-trained CNN was
transferred to our recognition of auditory material task for extracting the deep spectrum
features from the scalogram images carried out in the previous section.

The dataset used was 2468 scalogram images, divided into four classes, tinnitus
patients before (801 images) and after (667 images) the treatment and control subjects
before (500 images) and after (500 images) the treatment. There is a significantly larger
number of tinnitus samples compared to the control ones (approximately 59% against 41%,
respectively).

The pixel values in the images were into the range [0, 255]. So, as part of the model
expectation, the pre-processing method included with the CNN model was executed
to rescale the pixel values in [−1, 1]. Furthermore, the scalograms were resized from
1200 × 900 to 160 × 160.

To start with, the base model from the MobileNet-V2, which is pre-trained on the
ImageNet dataset model, was executed to classify between controls and tinnitus patients
before the corresponding sound-based treatment.

Secondly, the feature extractor converted each 160 × 160 × 3 image into a 5 × 5 ×
1280 block of features. Hence, a classifier was added on top of it so the top-level classifier
can be trained accordingly.

Thirdly, in order to generate predictions from the block of features, a GlobalAverage-
Pooling2D layer was used to average over the spatial 5 × 5 spatial locations with the aim to
convert the features to a single 1280-element vector per image. In addition, a Dense layer
was applied to convert these features into a single prediction per image. Positive numbers
predicted class 1 (Control participants), and negative numbers predicted class 0 (Tinnitus
patients). There were 1.2K trainable parameters in the Dense layer, which were divided in
2 variable objects: the weights and biases.

Fourthly, the model was compiled. An Adam optimizer was used with a learning
rate of 1 × 10−4, dropout value of 0.2, and a batch size of 32. The architecture of the
model executed is shown in Figure 3. An exhaustive search was executed to find optimal
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learning, epochs, batch size rate, and dropout values hyper parameters in the classifier
block; learning rates from 1 × 10−3 to 1 × 10−6, dropout values from 0.1 to 0.5, epochs
from 15 to 100, and batch size from 25 to 45 were explored.

−

− −

Figure 3. MobileNet-V2 architecture.

Fifthly, the MobileNet-V2 base model was trained by using 25 epochs. Learning curves
of the training and validation accuracies were plotted (Figure A1 located in Appendix A),
getting 69% accuracy on the validation set. An 80/20 validation was applied: 80% of data
was used for model construction, and 20% of the data was used for model validation. The
validation metrics were evaluated after the corresponding epochs.

Finally, the convolutional base, pre-loaded with weights trained on ImageNet without
the classification layers, was applied for the feature extraction of scalogram images related
to the auditory material recognition task carried out from tinnitus patients and controls
during the two monitoring sessions: before and after the corresponding sound-based
treatment.

2.5. Comparison Analysis: Tinnitus vs. Control Group

Once deep spectrum features were extracted per scalogram, in order to analyze tinni-
tus and control groups, a statistical evaluation was performed to acquire the significant
differences among all the study datasets. Furthermore, an estimator was calculated to evalu-
ate the effect of the sound-based therapy, and finally, centroids and distances were obtained
to measure the closeness between the instances of the tinnitus group and control group.

2.5.1. Statistical Evaluation

The statistical analyses were conducted separately for each dataset: tinnitus patients
and controls before and after the treatment considering the recognition of auditory material.

The Lilliefors test was used to assess data distribution between-tinnitus subjects,
within-tinnitus subjects, and within-control subjects before and after the sound-based treat-
ments. After achieving a normal distribution, the statistical significance of any differences
among the groups stated in Table 2 was evaluated with the Student’s t-test. p-values
were stated at 5% for both statistical processes. p-values greater than 0.05 will represent a
statistically significant relationship in ERD/ERS responses between the indicated study
data sets, whilst p-values less than 0.05 will show significant differences. Significant re-
lationship responses between the tinnitus group after the sound-based treatment versus
control group could help point out whether ADT was a reliable treatment. Additionally,
box plots were created.
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Table 2. Study groups. Tinnitus vs. Control group.

Tinnitus

Intra-Subject
Comparison

Inter-Subject
Comparison

Before After Before After

Control
Intra-subject
comparison

Before X X X X
After X X X X

2.5.2. The Differences in Differences (DID) Estimator

The DID estimator was estimated to analyze the differential effect of the sound-based
treatment on the tinnitus group versus the control group in both experimental designs:
between subjects and within subjects. The DID model is based on Equation (3).

Y = β0 + β1Time + β2 Intervention + β3(Time·Intervention) + ε (3)

where β0 is the baseline average, β1 is the time trend in the control group, β2 is the difference
between two groups pre-intervention, and β3 is the difference in changes over time.

DID is a quasi-experimental design that makes use of longitudinal data from treat-
ment and control groups to estimate a causal effect of a specific intervention or treatment
by comparing the changes in outcomes over time. DID requires data from pre-/post-
intervention, such as cohort or repeated cross-sectional data. The approach gets rid of
biases in post-intervention period comparisons between the treatment and control group
and from comparisons over time in the treatment group [36].

2.5.3. Centroid and Distance Measures

Firstly, there were calculated centroid values based on the mean values of the co-
ordinates of all the data instances from control and tinnitus groups before and after the
treatment (Equation (4)).

Ci =
1
p

p

∑
j=1

x
j
i (4)

xu is the u-th deep spectrum feature vector where xu ∈ R
1280, u ∈ {1, 2, . . . , p} (p is

the number of scalograms for a given group). Additionally, i ∈ {1, 2, . . . , 1280} where i is
the i-th component of the vector x.

Secondly, Euclidian distance was calculated between each data instance and the
corresponding centroids (Equation (5)). Media (Equation (6)) and standard deviations
(Equation (7)) were reported. By applying the present criteria, it was possible to measure
the closeness between the instances of the tinnitus group after receiving the therapy with
respect to the control centroids. Analysis based on centroids and distances offered a novel
multidimensional approach for identifying tinnitus groups already treated that exhibited
similarities in ERD/ERS responses compared with control groups. If the mean Euclidian
distance between the instances of the tinnitus group after treatment and the centroids of the
control group is shorter than the corresponding between the instances of the tinnitus group
before treatment and the centroids of the control group, this could indicate the existence of
neural similarities, which could support the effectiveness of treatment in some scenarios.

D =

√

(xu
1 − Ck

1)
2
+ (xu

2 − Ck
2)

2
+ . . . + (xu

1280 − Ck
1280)

2
(5)

where xu is a deep spectrum feature vector and Ck is the k-th centroid.

x =
∑

N
i=1 D

N
(6)
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s =

√

∑
N
i=1(Di − x)2

N
(7)

In summary, the pipeline of the EEG analysis undertaken for this research was followed
in four stages: (1) EEG Analysis, (2) ERD/ERS Mapping, (3) Deep Feature Extraction, and
(4) Comparison Analysis. Figure 4 presents in detail the whole pipeline.

𝐷 = ට(𝑥ଵ௨ − 𝐶ଵ௞)ଶ + (𝑥ଶ௨ − 𝐶ଶ௞)ଶ +⋯+ (𝑥ଵଶ଼଴௨ − 𝐶ଵଶ଼଴௞ )ଶ𝑥௨ 𝐶௞ 𝑘𝑥 = ∑ 𝐷𝑁𝑖=1𝑁
𝑠 = ඨ∑ (𝐷௜ − 𝑥)ଶே௜ୀଵ 𝑁

 

Figure 4. Pipeline of the EEG analysis to evaluate the effectiveness of ADT to treat subjective, chronic,
and refractory tinnitus.

3. Results

Table 3 shows the training and validation accuracies of the MobileNet-V2 model used
in the current research study. Although the classification metric is not the main purpose
of the work, the classification percentage was reported to obtain a reference of the model
performance used for the extraction of deep features.

Table 4 shows the clinical (laterality, frequency, and intensity of tinnitus, heart rate,
and hearing loss) and demographic (age, sex) characteristics of the study sample of tinni-
tus patients.

From the 11 participants, five were selected. The rest of them were rejected for any of
the following two reasons: there were no auditory material recognition responses in the
initial monitoring session during the acoustic therapy or during the pre-processing stage
due to segment rejection for artifacts, and/or the channel Fz was eliminated due to the
transient or large amplitude artifacts.
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Table 3. Training and validation accuracies of the MobileNet-V2 model used in the current research
study.

Epochs Training Accuracy Validation Accuracy

1 0.6321 0.642
2 0.6324 0.6307
3 0.6331 0.625
4 0.6341 0.6364
5 0.6345 0.6335
6 0.635 0.6349
7 0.637 0.6359
8 0.6477 0.6392
9 0.6511 0.6449
10 0.6623 0.6492
11 0.681 0.6392
12 0.682 0.644
13 0.6874 0.6392
14 0.681 0.6477
15 0.682 0.6591
16 0.681 0.66
17 0.6825 0.672
18 0.6835 0.6899
19 0.6855 0.6899
20 0.6817 0.6909
21 0.682 0.6591
22 0.681 0.66
23 0.6825 0.672
24 0.6835 0.6821
25 0.6855 0.6899

Average 0.6758 0.661684211

Table 4. Clinical and demographic characteristics of the study sample: Tinnitus patients.

Subjects Age Sex * Laterality ** Frequency [Hz] Intensity [dB] BPM *** HL ****-L HL-R

1 Adult M R 125 90 75 96 20
2 Elderly M R 6000 70 79 56 52
3 Adult M L 8000 50 69 29 30
4 Adult F B 2000 87.5 86 63 70
5 Adult F B 6000 20 * 13 10

* M: male, F: female, ** R: right, L: left, B: both. *** BPM: beats per minute. **** HL: hearing loss → L: left and R:
right.

Event-related (de) synchronizations maps extracted during the auditory recognition
task before and after the sound-based treatment are shown in Figures 5 and 6.

In Table 5, we can see p-values as a result of the Student’s t-test to statistically assess all
tinnitus patients and control participants before and after the sound-based treatment under
the experimental condition related to the recognition of acoustic material. Estimations
indicated with a plus sign refer to those p-values above 0.05. These represent a statistically
significant relationship in the ERD/ERS responses between the two study conditions. On
the other hand, in Table 6, we can see p-values as a result of the Student’s t-test to statistically
assess each tinnitus patient and all control participants before and after the sound based
treatment under the experimental condition of recognition of acoustic material. Estimations
indicated with a plus sign refer to those p-values above 0.05. These represent a statistically
significant relationship in the ERD/ERS responses between the two stated study datasets.
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Figure 5. Tinnitus group. ERD/ERS responses over Fz before (a) and after (b) ADT-based treatment
during the auditory recognition event. Fz was selected to illustrated central tendencies since it is the
clinical recording site to diagnose tinnitus.

 

Figure 6. Control group. ERD/ERS responses over Fz before (a) and after (b) the sound-based
treatment during the auditory recognition event. Fz was selected to illustrated central tendencies,
since it is the clinical recording site to diagnose tinnitus.
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Table 5. p-values as a result of within-subjects design where the Student’s t-test was applied in
tinnitus subjects versus control participants in different sessions undertaken before and after the
sound-based treatment.

Tinnitus S1
*–Control S1

Tinnitus
S1–Control S2 **

Tinnitus
S2–Control S1

Tinnitus
S2–Control S2

Tinnitus
S1–Tinnitus S2

Control
S1–Control S2

Tinnitus Patients - - + - +

Control Patients -

* S1: before the sound-based treatment. ** S2: after the sound-based treatment. -: significant differences (p < 0.05).
+: significant relationship (p > 0.05).

Table 6. p-values as a result of between-subjects design where the Student’s t-test was applied in each
tinnitus subject versus the control participants in different sessions undertaken before and after the
sound-based treatment.

Tinnitus Patients
Tinnitus S1

*–Control S1
Tinnitus S1–Control

S2 **
Tinnitus S2–Control

S1
Tinnitus S2–Control

S2
Tinnitus

S1–Tinnitus S2

1 + - + - +
2 - - - - +
3 - - + - +
4 - - - - +
5 - + + + +

* S1: before the sound-based treatment. ** S2: after the sound-based treatment. -: significant differences (p < 0.05).
+: significant relationship (p > 0.05).

In Figure 7, boxplots display the distribution of the different study datasets: tinnitus
and control groups in two monitoring sessions: before and after the sound-based treatment.

 

Figure 7. Box plots of five subjects as a result of between-subjects design to obtain the statistical
distribution between-tinnitus subjects versus control participants in two monitoring sessions. T-
S1: tinnitus group before the sound-based treatment, T-S2: tinnitus group after the sound-based
treatment, C-S1: control group before the sound-based treatment, C-S2: control group after the
sound-based treatment.
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Table 7 shows the differential effect of the sound-based treatment on the ‘tinnitus
group’ versus the ‘control group’ in both experimental designs: between-subjects and
within-subjects. The DID negative refers to a negative therapy effect, whilst positive
estimators have to do with a positive treatment effect.

Table 7. DID between-subjects and within-subjects.

Subjects DID ADT-Based Treatment Effect

1 0.0327 Positive effect
2 −0.0018 Negative effect
3 0.0152 Positive effect
4 0.0464 Positive effect
5 0.0741 Positive effect

All tinnitus patients 0.0225 Positive effect

On the other side, in Table 8, we can see the means and standard deviations of
Euclidian distances between each data instance of tinnitus and control groups before and
after the treatment with regard to the corresponding control centroids with the aim to
measure the closeness among the different study groups.

Table 8. Distance measures among data instances of control and tinnitus groups and control centroids.

Instances-Centroids Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Tinnitus S1 *—
Control S1 **

Mean 2.0867 1.9623 1.9567 1.8840 1.9407
STD 0.2664 0.2350 0.2798 0.2002 0.2553

Tinnitus S2—
Control S1

Mean 2.1166 1.9433 1.9745 1.8803 1.9214
STD 0.2747 0.2520 0.2733 0.2349 0.2537

Tinnitus S1—
Control S2

Mean 2.0166 1.9092 2.0065 1.8570 1.9025
STD 0.2738 0.2379 0.2830 0.2081 0.2623

Tinnitus S2—
Control S2

Mean 2.0432 1.8968 2.0307 1.8560 1.8884
STD 0.2821 0.2640 0.2852 0.2404 0.2568

Control S1—
Control S2

Mean 1.7758 1.7562 1.8997 1.7025 1.8513
STD 0.2827 0.2345 0.2969 0.2298 0.3289

* S1: before the sound-based treatment. ** S2: after the sound-based treatment.

4. Discussion

The aim of this study was to establish an objective methodology based on EEG analysis
to measure changes in attentional processes in tinnitus patients treated with ADT.

Regarding the ERD/ERS responses of the tinnitus group (Figure 5), the absence of ERS
response during the initial monitoring session (before ADT) and the increase in 4–13 Hz
ERS during the final monitoring session (after ADT) could indicate increased cognitive
demands such as semantic memory (cognitive processes responsible for accessing and/or
bringing back information from long-term memory) and attentional processes [37] during
the performance of the experimental task. Moreover, regarding [1,38], the alpha power
increase in the final session may indicate that the ADT-based treatment had increased
attention to everyday acoustic environments, and tinnitus sufferers were able to identify
typical related auditory stimulus. Furthermore, during the first session, high-frequency
energy is observed between 25 and 30 Hz after 500 ms of the stimulus onset. This could
mean that tinnitus patients were able to identify the auditory stimuli at high frequencies as
they perceived the task with a high complexity level because alongside the tinnitus sounds,
they heard their own tinnitus causing a division in their attention. Nonetheless, during the
final monitoring session, the responses are observed as normal. In addition, there was a
notable decrease in the reaction time from 0 to 500 ms, and there was a frequency decrease
in the neurons communication with the aim to meet the task.

On the other hand, ERD/ERS responses of the control group (Figure 6) kept high
levels of synchronization within the alpha band in both monitoring sessions, which could
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indicate that the semantic memory was maintained throughout the sound-based therapy.
However, the reaction time was changed as well. During the first monitoring session, there
was a dispersed reaction time from 0 to 1 s as the experimental paradigm is new for the
subjects. Therefore, the reaction times were more diverse. Even so, the central tendency is
tardy, closed to the second 1. On the other side, during the final monitoring session, such
variability decreases considerably downsizing the reaction time range from 1 to 500 ms.

One recurring problem with tinnitus research is that there is no objective way of assess-
ing whether treatments counteract tinnitus. A recent systematic review examined the work
to date on trying to find suitable objective measures of tinnitus [39]. The authors identified
21 articles, studying objective tests that included blood tests, electrophysiological measures,
radiological measures, and balance tests. They concluded that the quality of evidence was
generally poor and had failed to identify any reliable or reproducible objective measures of
tinnitus. According to a subjective comparison among several acoustic therapies with the
aim to evaluate the effect in tinnitus patients through a psychological evaluation [27], the re-
training treatment was the most effective sound-based therapy to reduce tinnitus perception
and to release stress and anxiety after 60 days of treatment. Nonetheless, binaural sounds
and ADT produced very similar effects. Furthermore, ADT showed to exert less side effects.
Nonetheless, nothing has yet been shown to offer the necessary specificity and sensitivity
to be used as a biomarker in tinnitus treatment. As findings have shown, considerable
variability and lack of consistency among studies suggest that further work in this area is
needed [25]. Unlike the current research study, we herein proposed a quantitative approach
based on EEG analysis and deep feature extraction to objectively measure ADT-based
treatment comparing the tinnitus group with a control group to ensure reproducibility
and sensibility measurement. A recent study by [28] combined objective and subjective
measures to evaluate the effect of BST in tinnitus patients. The THI questionnaire reported
that BST increased tinnitus perception in 15% of the patients. Furthermore, according to
EEG monitoring, BST did not tend to reduce tinnitus perception but instead appeared
to reduce tinnitus distress due to the slightly major neural synchronicity over the right
frontal lobe found after the treatment. Unlike the current research, a new methodology was
herein proposed as a first approach to evaluate the effect of the ADT-based treatment by
EEG analysis.

In contrast to evoked activity, induced response refers to modulations of ongoing
neural activity commonly quantified by event-related oscillations (EROs). As EROs reflect
the coupling and uncoupling of neural networks, these EEG parameters give an insight
into the functional neural network dynamics [5]. As far as it is known, ERD/ERS has not
been undertaken to monitor electrophysiological changes in tinnitus sufferers during an
acoustic therapy, it had been exemplified above the versatility of ERD/ERS estimation to
capture the dynamics of neural oscillations related to emotional, cognitive, perceptual, and
motor events [5]. Based on the previous statement, ERD/ERS maps were extracted so that
deep features can be carried out to quantify the level of synchrony of the EEG signals by
performing a cross-sectional study, comparing the tinnitus patients with control subjects at
the end of the ADT-based treatment.

Based on [12], we supported the notion that tinnitus heterogeneity influences the ob-
served variability in treatment response after an analysis of collected data of 5017 tinnitus
bearers where participants reported which treatments they tried, the duration and the
outcome of the given treatment, alongside with the demographic and tinnitus character-
istics. Sound therapy can effectively suppress tinnitus, at least in some patients [40], but
there is still a lack of research on the efficacy of sound therapy. It is necessary to analyze
the characteristics of individual tinnitus patients and to unify the assessment criteria of
tinnitus [24]. In Tables 6 and 7, p-values above 0.05 and DID results suggest all the adult
patients had a positive effect after the ADT-based treatment, whilst the elderly patient, un-
der the same experimental conditions, had a negative effect. Furthermore, the subject who
faced a significant improvement having the highest DID estimator and a similar statistical
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distribution to the control groups before and after the sound-based treatment is the one
with the lowest tinnitus intensity registered, alongside with low hearing loss in both ears.

Regarding treatment duration, it should be interpreted with caution, as it is well-
known that certain treatments require some time for adaptation, whereas other treatments
require longer periods to be effective [12]. There is still uncertainty about the duration
of treatment that may be required to achieve an improvement [25]. During this study,
ADT-based treatments lasted 8 weeks. However, they were not applied for all patients even
though 2 months is the minimum necessary time that has been empirically reported to find
changes [12].

Tinnitus impairment can be quantified by various validated questionnaires such as
THI. However, a recent analysis revealed a high variability in the outcome instruments used
in clinical trials, indicating the need to standardize outcome measurement [9]. Furthermore,
the outcome measures carried out through the THI in [12] were retrospective and subjective,
which could have biased the results. This is why questionnaires are considered a subjective
metric. According to [25], a further limitation of the current tools for assessing tinnitus
impact is the reliability and repeatability of such measures: self-report measures of tinnitus
have an associated risk of variability, as they supply a momentary snapshot, whereas the
experience of tinnitus changes with time and context. Based on the previous evidence, it
was proposed a first quantitative approach to objectively measure and evaluate the effects
of ADT using ERD/ERS techniques along with the extraction of deep spectrum features.
Significant relationship responses between the ‘tinnitus group’ after the sound-based
treatment versus the ‘control group’ (Tables 5 and 6), positive DID estimators (Table 7),
and close distance measures (Table 8) indicate the existence of neural modifications, which
could explain why this treatment is so effective in some scenarios. Results from this research
might help point out ADT as a potential solution for certain patients, but it is not a viable
treatment for many others.

According to [24], patients with more severe initial tinnitus respond better to sound
therapy; however, in the current study, the opposite results were observed. In Tables 6 and 7,
p-values above 0.05 and positive DID estimators suggest that the subject who faced a better
performance is the one with the lowest tinnitus intensity registered, alongside with low
hearing loss in both ears. The elderly patient who did not benefit from acoustic therapy
was due to the time he had suffered from tinnitus: around 30 years.

Our study comes with some inherent limitations. First, although we started analyzing
11 tinnitus patients, this number was reduced to 5 tinnitus subjects due to one of the fol-
lowing reasons: the rest did not show auditory material recognition responses in the initial
monitoring session before receiving the ADT-based treatment or during the preprocessing
stage, and the channel Fz was eliminated due to the transient or large amplitude artifacts.
The final sample was insufficient, so it might not be representative of all patients with
tinnitus. Second, the improvement trend is inevitable; however, it would be interesting to
carry out a deep spectrum features analysis by theta, alpha, and beta bands to know ex-
actly which cognitive demands are increasing or decreasing in terms of semantic, working
memory, and attentional processes in each tinnitus subject compared with control subjects.

5. Conclusions

In conclusion, a new methodology based on ERD/ERS analysis and deep spectrum
features extraction was successfully implemented to measure changes in attentional pro-
cesses in tinnitus patients treated with ADT. Based on the previous implementation, our
results pointed out that tinnitus attention was significantly reduced after the ninth week of
an ADT-based treatment in adult patients. Furthermore, the therapy reported significant
improvements in the patients with the lowest intensity recorded of tinnitus, alongside with
low hearing loss in both ears. It is worth mentioning that this acoustic therapy is based on
redirecting the attention that the patient has his tinnitus, this attention is focused on the
deviant pulse of the oddball paradigm that is different from the frequency of the tinnitus.
After eight weeks of treatment, the patient reports a reduction in the perception, but beyond
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the reduction in the level of tinnitus perception, there is a reduction in the attention level,
which results in the improvement of the patient.

Future work will entail measuring the EEG signals over the whole frontal lobe (Fp1,
Fp2, F7, F3, Fz, F4, and F8). Furthermore, different neural network architectures could be
applied to ensure the increase of the accuracy percentage in the classification stage to make
the deep feature extraction stage more reliable.
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Appendix A

Table A1. Rejected channels, the percentage of bad data periods with transient or large-amplitude
artifacts, and the independent components distinguished as non-brain sources.

Subjects Sessions
Channels
Rejected

Percentage of Bad
Data Periods

Components Flagged
for Rejection

1
1 0 17.5% 3
2 1 0.4% 3

2
1 2 0.0% 2
2 1 0.0% 7

3
1 2 0.0% 1
2 2 0.0% 0

4
1 4 46.5% 4
2 1 20.0% 3

5
1 2 13.0% 4
2 4 15.1% 3

6
1 0 3.4% 3
2 2 1.3% 3

7
1 12 1.9% 0
2 3 1.4% 2

8
1 4 12.4% 2
2 3 1.7% 4

9
1 1 5.3% 3
2 0 0.7% 2

10
1 0 1.1% 2
2 0 0.7% 3

11
1 1 0.7% 3
2 4 1.1% 2
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Figure A1. Training and validation curves to display the classification performance of the MobileNet-
V2 model used in the current research study.
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Abstract: Numerous studies indicated the physical benefits of regular exercise, but the neurophys-
iological mechanisms of regular exercise in elders were less investigated. We aimed to compare
changes in brain activity during exercise in elderly people and in young adults with and without
regular exercise habits. A total of 36 healthy young adults (M/F:18/18) and 35 healthy elderly
adults (M/F:20/15) participated in this study. According to exercise habits, each age group were
classified into regular and occasional exerciser groups. ECG, EEG, and EMG signals were recorded
using V-AMP with a 1-kHz sampling rate. The participants were instructed to perform three 5-min
bicycle rides with different exercise loads. The EEG spectral power of elders who exercised regularly
revealed the strongest positive correlation with their exercise intensity by using Pearson correlation
analysis. The results demonstrate that exercise-induced significant cortical activation in the elderly
participants who exercised regularly, and most of the p-values are less than 0.001. No significant
correlation was observed between spectral power and exercise intensity in the elders who exercised
occasionally. The young participants who exercised regularly had greater cardiac and neurobiological
efficiency. Our results may provide a new exercise therapy reference for adult groups with different
exercise habits, especially for the elders.

Keywords: exercise; EEG; EMG; ECG; brain activity; age; exercise habit

1. Introduction

Regular physical exercise is associated with health benefits and is a crucial element of
preventive strategies for promoting health. During exercise, moving the body requires a
substantial degree of brain activity, necessitating the activation of numerous neurons to
generate, receive, and interpret repeated, rapid-fire messages from the nervous system [1].
However, the neurophysiological mechanisms underlying the effects of exercise are poorly
understood and require further investigation. Cycling is a common exercise, and daily
cycling can enable a large proportion of the population to meet their recommended physical
activity levels [2]. Several studies have reported that cycle ergometers are suitable for
measuring physiological signals emitted during exercise. Studies on cycling exercise have
reported that such exercise can induce specific changes in cortical activity. These changes
are measured through various methods, including electroencephalography (EEG), the aim
of which is to study the modulation of brain activity associated with performing cycling
tasks [3–7].
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Hottenrott et al. reported that cortical brain activation could be measured during
cycling exercise; they suggested that higher cortical brain activation is necessary to increase
muscle strength at higher cadences [4]. Enders et al. recently revealed that EEG power
increased significantly in the frontal cortex and parietal cortex as fatigue accumulated
throughout high-intensity cycling exercise activities. Notably, they observed a broadband
increase in EEG power, in contrast to other studies that investigated various exercise
conditions and observed changes that were limited to the alpha and beta bands [5]. Brum-
mer et al. localized the exercise-induced changes in brain cortical activity by using the
active-EEG/low-resolution electromagnetic tomography analysis and demonstrated that
motor cortex activity increased with additional exercise intensity on a cycle ergometer [6].
Although Brummer et al. used different methodologies from other, earlier research, all
of the aforementioned studies have focused on the effects of exercise intensity on cortical
activity in young people or athletes [7]. Few studies have examined the activity of the
cerebral cortex during exercise in other segments of the population, especially in older
adults. Moreover, few studies have investigated the neurobiological differences between
regular and occasional exercisers during physical exercise.

Accordingly, the aim of the present study was to investigate the changes in brain
activity during exercise in elderly people and young adults. Previous studies have proposed
the use of heart rate as a measure of exercise intensity [8]. They have described a positive
linear correlation between increasing exercise intensity and changes in heart rate. However,
because of age-related factors, the heart rate should not be directly used as an index for
measuring exercise intensity. Santos reported that the aging process significantly alters
the mean heart rate, which decreases with advancing age [9]. Therefore, the mean heart
rates of young adults and elderly people at rest differ. In the present study, we used the
average maximum heart rate ratio (AMHRR) [10,11], which can reduce the effect of age on
the resting heart rate and maximum heart rate in response to exercise, and hypothesized
that the AMHRR would facilitate the comparison of EEG and electromyography (EMG)
readings between elderly people and young adults at the same exercise intensity.

We measured cardiac, cerebral, and muscular activity levels in elderly people and
young adults in response to cycling exercise and investigated the differences between
physiological signals obtained from four study groups: regularly exercising elderly people,
occasionally exercising elderly people, regularly exercising young people, and occasionally
exercising young people. In general, under a constant cycling period and intensity, regularly
exercising young adults could achieve higher exercise efficiency with lower brain activation
compared with the other participants. However, occasionally exercising young adults
and elderly people may need to recruit more muscle units and increase the activation of
the motor cortex during cycling compared with regularly exercising young adults. We
hypothesized that physiological signal patterns would be similar between the occasionally
exercising young adults and elderly people. We also anticipated that as age increases, the
significant differences of physiological signals between occasional and regular exercisers
may be more obvious in elderly adults than in young adults.

2. Materials and Methods

2.1. Participants and Data Acquisition

This study included 36 healthy young adults (18 men and 18 women aged 22.39 ± 3.56 years)
and 35 elderly people (20 men and 15 women aged 64.65 ± 2.21 years) as participants.
The elderly participants as well as the young participants were subdivided into 2 groups
according to the time spent on exercise per week; specifically, participants who exercised
for a total time of more than 3 h every week were considered as regularly exercising
individuals, and those exercised for a total time of less than 3 h every week were regarded
as occasionally exercising individuals [12]. All participants provided informed consent after
receiving a detailed explanation of the purpose and potential benefits, and risks involved
in the study. This study was conducted according to the guidelines of the Declaration of
Helsinki and approved by the Institutional Review Board of National Yang Ming Chiao
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Tung University (YM106115E-1, 7 March 2019). Moreover, all participants were confirmed
by physicians that their body mass index (BMI) was not overweight and without any
lower limb or pelvic injuries, and had no brain-related diseases such as stroke, epilepsy,
neurodegenerative diseases, orthopedic, or cardiovascular diseases. ECG, EMG, and EEG
signals were recorded using V-AMP (Brain Products GmbH, Munich, Germany) with a
1 kHz sampling rate. The EEG channels included 10 wired wet electrodes, namely F3, F4, Fz,
C3, C4, Cz, P3, P4, Pz, and A1, and were used according to the international 10/20 system
(Figure 1a) [13]. The ground electrode was positioned at FPz. The EEG impedance level
was maintained at <20 kΩ during the recording. The A1 channel was used as the reference
for all electrodes.

 

 

Ω

  

(a) (b) 

Lead 1 

Lead 2 

Figure 1. Locations of electrodes for EMG, ECG, and EEG. (a) location of electrodes for EEG (b) loca-
tion of electrodes for ECG and EMG.

Electrocardiography (ECG) signals were recorded using 2 bipolar lead electrodes. The
lead 1 (negative) electrode was situated below the right clavicle, on the mid-clavicular
line within the rib cage frame; the lead 2 (positive) electrode was placed on the lower left
abdomen, also within the rib cage frame. The surface EMG (sEMG) electrodes were placed
on the quadriceps muscle (Figure 1b).

2.2. Experimental Protocol

We conducted an experiment to record EEG, ECG, and EMG signals while the par-
ticipants performed the cycling exercise. Each of the participants sat on an electronically
braked cycle ergometer in the upright position, with electrodes attached to their body. The
study involved a pretest session and an experimental session. The pretest session involved
10 40 s stages of increasing workload with 20 s of rest between stages. For every participant,
the workload ranged from 1 to 10. After the pretest session, the participants took a 5 min
rest. The root mean square (RMS) amplitudes of EMG signals recorded for each stage
were calculated, and the maximum RMS amplitude was considered the subject-specific
maximum workload. For a participant, a workload corresponding to 40% of the maximum
RMS amplitude was defined as the suitable workload for this participant. For safety,
we assigned lighter exercise loads to the elderly participants to avoid injury or muscle
damage due to over-load, considering the effects of declining physiological function with
aging. Hence, the pretest session was considered to be excessively strenuous for the elderly
participants, their suitable workload was set to 3.

In the experimental session, the participants were asked to ride the bicycle in 3 5-min
exercise stages, resting for 30 s between stages. These 3 stages corresponded to relatively
light, suitable, and relatively heavy workloads. EEG, ECG, and EMG signals were recorded
simultaneously while the participants performed the exercise. Signals were also recorded
for 5 min before the exercise (pre-exercise period) and for another 5 min after the exercise
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(post-exercise period). In this study, we required subjects to minimize their head and
upper body movement as much as possible during the experiment. The participants
were also asked not to move during the resting period. Figure 2 illustrates the overall
experimental protocol.

AMHRR =  averaged heart rate in each stage െ RHRpredicted maximal heart rate ሺ220 െ age െ RHRሻ ൈ 100%

WTሺa, bሻ  =  න 𝑥ሺ𝑡ሻ𝜓ሺ௔,௕ሻሺ𝑡ሻ𝑑𝑡ஶ
ିஶ

𝜓ሺ௔,௕ሻሺ𝑡ሻ  =  1ඥ|𝑎| 𝜓ሺ𝑡 െ 𝑏𝑎 ሻ

Figure 2. Overall experimental protocol.

2.3. Data Analysis

2.3.1. ECG Analysis

ECG signals were detrended to remove low-frequency shifts, and the peak-to-peak
R waves were identified to calculate RR intervals. The RR interval is the time elapsed
between 2 successive R waves of the QRS signal on the ECG. We further used the AMHRR
to monitor the status of each participant during the experiment [14]. The AMHRR can be
defined as follows:

AMHRR =
averaged heart rate in each stage − RHR

predicted maximal heart rate(220 − age − RHR)
× 100% (1)

where RHR is the average heart rate during rest [10,11].

2.3.2. EEG Analysis

For each participant, EEG signals recorded during the 5 min rest and during the
exercise sessions were subjected to band-pass filtering between 1 and 45 Hz. Although
participants were advised not to blink their eyes, clench their teeth, tense their muscles, or
move their heads, these activities occasionally occurred and introduced artifacts into the
EEG data. All signals with these artifacts were discarded during offline data processing.
We further applied a moving average to the remaining signals for artifact suppression.
Subsequently, each signal was divided into non-overlapping 1 min segments and then
subjected to the wavelet transform [15].

The wavelet transform is based on small wavelets with a limited duration. The wavelet
transform of a continuous-time signal x(t) can be defined as follows:

WT(a, b) =
∫ ∞

−∞
x(t)ψ(a,b)(t)dt (2)

where

ψ(a,b)(t) =
1

√

|a|
ψ

(

t − b

a

)

(3)

is called the mother wavelet. The notations a and b denote the dimensionless frequency scale
variable and time-like translation variable, respectively. The Wavelet transform enables the
achievement of excellent localization both in the time domain through translations of the
mother wavelet and in the scale (frequency) domain through dilations.

In this study, we used the Morlet wavelet [15] to transform each 1 min non-overlapping
segment of an EEG signal (Figure 3b) in the 9 channels into temporal-spectral maps
(Figure 3c). Each of these maps had 60,000 samples on the horizontal axis and 7 passbands—
namely 1–4 (delta), 4–8 (theta), 8–10 (low alpha), 10–12 (high alpha), 13–21 (low beta), 21–30
(high beta), and 31–45 Hz (gamma) Hz—on the vertical axis (Figure 3d). The spectral power
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levels in each frequency band were averaged to obtain a frequency-averaged temporal
power curve, which was again averaged across time to derive a frequency-time-averaged
value. Thus, the average power per minute per frequency band was calculated. Each
exercise stage was 5 min. Thus, the average power was calculated for 3 different workloads
(Figure 3e). Subsequently, to normalize the average power for each exercise stage, this
power was divided by the power at rest before exercise, thus yielding the normalized
power (Figure 3f).

 

Figure 3. EEG signal analysis procedure. (a) Five-minute EEG signals during exercise. (b) Five-
minute signals divided into 1-min segments. (c) Temporal–spectral maps after the application of the
Morlet wavelet transform on 1-min segments. (d) Temporal–spectral map divided into seven bands:
delta, theta, low-alpha, high-alpha, low-beta, high-beta, and gamma bands. (e) Average power of
each frequency band in each exercise stage. (f) Normalized average power of each frequency band in
each exercise stage.

2.3.3. EMG Analysis

The EMG signals were detrended to remove low-frequency shifts caused by the
position fluctuations produced during the cycling exercise. The EMG signals were then
subjected to band-stop filtering between 55 and 65 Hz for the removal of noise effects.
After preprocessing, the signals were divided into 5 s segments (5000 sample points). RMS
is usually used to predict muscle activity. Generally, a higher RMS value means higher
muscle activity. RMS can be derived as follows:

RMS =

√

√

√

√

1
N

N

∑
n=1

x2
n (4)

where x2
n represents the EMG signal and N represents the length of the signal.
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2.3.4. Statistical Analysis

Pearson correlation analysis was used to evaluate the linear relationships between
normalized power of EEG and the AMHRR or RMS of EMG. The AMHRR was considered
an indicator of heart load for the various exercise stages. Thus, we could observe EEG
and EMG changes with different exercise loads. In addition, paired-sample t-tests were
used to examine for significant within-group changes before and after exercise (stage 3
and rest 2) to determine the post-exercise recovery status. In this study, MATLAB R2013b
software (Mathworks, Natick, MA, USA) was applied for data analysis. Figure 4 illustrates
a summary of the analysis procedures of EEG, ECG and EMG used in this study.

RMS =  ඩ1𝑁 ෍ 𝑥௡ଶே
௡ୀଵ𝑥௡ଶ

 

 
Figure 4. EEG, ECG, and EMG procedures in this study.

3. Results

3.1. Changes in Heart Rate and AMHRR with Exercise Stages

The mean heart rate and the AMHRR of the young and elderly participants during
the different exercise stages are presented in Tables 1 and 2. Figure 5 illustrates the ECG
analysis results for mean heart rate and AMHRR.The results revealed that in all groups,
the heart rate and the AMHRR increased gradually with each exercise stage. The heart
rates of the elderly participants were lower than those of the young participants. However,
the AMHRR values of the elderly participants were not significantly different from those
of the young participants, indicating that the cardiac load conditions of both the young
and elderly participants were similar. The AMHRR was derived by normalizing the heart
rate and excluding the effects of basal heart rate and age. Therefore, the AMHRR was
suitable for observing the physiological state of the heart. We used Pearson correlation co-
efficient analysis to estimate the association between normalized EEG power and AMHRR
per minute.

Table 1. ANOVA results for heart rate in young and elderly participants during different exercise
stages. * Indicates p-value < 0.05.

Heart Rate (BPm)

Mean SD F Post Hoc Test (p < 0.05)

Rest 1

Youth Regular 87.26 10.39

14.97 *

Elderly Regular, Occasional
Youth Occasional 91.67 13.86 Elderly Regular, Occasional
Elderly Regular 72.57 8.18 Youth Regular, Occasional

Elderly Occasional 73.07 9.27 Youth Regular, Occasional

Stage 1

Youth Regular 127.33 16.11

11.65 *

Elderly Regular, Occasional
Youth Occasional 122.19 13.39 Elderly Regular, Occasional
Elderly Regular 103.95 16.63 Youth Regular, Occasional

Elderly Occasional 103.65 14.23 Youth Regular, Occasional
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Table 1. Cont.

Heart Rate (BPm)

Mean SD F Post Hoc Test (p < 0.05)

Stage 2

Youth Regular 140.34 19.90

9.35 *

Elderly Regular, Occasional
Youth Occasional 134.19 16.38 Elderly Regular, Occasional
Elderly Regular 115.43 19.18 Youth Regular, Occasional

Elderly Occasional 114.12 17.14 Youth Regular, Occasional

Stage 3

Youth Regular 152.12 21.66

10.81 *

Elderly Regular, Occasional
Youth Occasional 147.16 17.20 Elderly Regular, Occasional
Elderly Regular 124.22 20.69 Youth Regular, Occasional

Elderly Occasional 122.78 18.06 Youth Regular, Occasional

Rest 2

Youth Regular 110.19 16.87

5.65
Youth Occasional 109.42 18.10
Elderly Regular 94.03 15.45

Elderly Occasional 94.20 13.32

Table 2. ANOVA results for AMHRR in young and elderly participants during different exer-
cise stages.

AMHRR (%)

Mean SD F Post Hoc Test (p < 0.05)

Rest 1

Youth Regular
Youth Occasional
Elderly Regular

Elderly Occasional

Stage 1

Youth Regular 36.33 11.79

1.47
Youth Occasional 28.29 10.36
Elderly Regular 37.78 17.69

Elderly Occasional 36.89 16.17

Stage 2

Youth Regular 48.33 14.58

1.41
Youth Occasional 40.72 12.84
Elderly Regular 51.98 20.87

Elderly Occasional 49.79 20.29

Stage 3

Youth Regular 58.96 16.26

0.71
Youth Occasional 53.69 12.83
Elderly Regular 62.54 24.02

Elderly Occasional 60.56 21.28

Rest 2

Youth Regular 20.95 9.60

1.96
Youth Occasional 17.59 8.66
Elderly Regular 26.08 16.53

Elderly Occasional 25.86 13.06

3.2. Changes in EEG during Exercise in Young Participants with and without Exercise Habits

We used Pearson correlation analysis to estimate the correlation between normalized
EEG power and the AMHRR. Table 3 presents a summary of the regression coefficients of
normalized EEG power and the AMHRR for all frequency bands. According to this table, a
moderately strong correlation was observed, with the normalized coefficient ranging from
0.4 to 0.6. The results demonstrated that changes in EEG at the most frequency bands at
C3, C4, and Cz were significantly and positively correlated with the AMHRR in both the
young and elderly participants (p < 0.001). Moreover, the effect of exercise on EEG was
mainly observed in the alpha band.
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Table 3. Regression coefficients for the correlation between normalized EEG power and AMHRR during exercise.
Boldface values represent moderate positive correlation between normalized EEG power and the AMHRR (correlation
coefficient > 0.4).

Delta Theta L-Alpha H-Alpha L-Beta H-Beta Gamma

C3

Youth Occasional
0.1787

(0.1959)
0.2137

(0.1207)
0.4083

(0.0022)
0.4699

(0.0003)
0.3848

(0.0041)
0.2407

(0.0796)
0.1770

(0.2004)

Youth Regular
0.4426

(0.0008)
0.4215

(0.0015)
0.4679

(0.0004)
0.4493

(0.0007)
0.3831

(0.0042)
0.2130

(0.1220)
0.1404

(0.3113)

Elderly Occasional
0.3759

(0.0066)
0.2405

(0.0892)
0.2583

(0.0673)
0.2672

(0.0580)
0.2463

(0.0815)
0.2088

(0.1414)
0.2381

(0.0925)

Elderly Regular
0.7037

(<0.0001)
0.6519

(<0.0001)
0.6913

(<0.0001)
0.6441

(<0.0001)
0.5516

(<0.0001)
0.5376

(<0.0001)
0.5284

(<0.0001)

C4

Youth Occasional
0.2498

(0.0685)
0.2907

(0.0329)
0.4961

(0.0001)
0.5641

(<0.0001)
0.4637

(0.0004)
0.3110

(0.0221)
0.2288

(0.0961)

Youth Regular
0.2103

(0.1268)
0.2221

(0.1065)
0.3645

(0.0067)
0.3643

(0.0068)
0.2607

(0.0569)
0.0716

(0.6068)
−0.0280
(0.8406)

Elderly Occasional
0.3585

(0.0098)
0.2222

(0.1170)
0.2012

(0.1569)
0.2087

(0.1417)
0.2184

(0.1237)
0.1866

(0.1899)
0.2366

(0.0947)

Elderly Regular
0.6107

(<0.0001)
0.6164

(<0.0001)
0.6644

(<0.0001)
0.6070

(<0.0001)
0.3623

(0.0071)
0.2948

(0.0305)
0.2788

(0.0412)

Cz

Youth Occasional
0.1729

(0.2112)
0.2076

(0.1319)
0.3869

(0.0038)
0.4639

(0.0004)
0.3673

(0.0063)
0.2385

(0.0824)
0.1706

(0.2176)

Youth Regular
0.2310

(0.0929)
0.2845

(0.0371)
0.4181

(0.0017)
0.4113

(0.0020)
0.3397

(0.0120)
0.1716

(0.2146)
0.0650

(0.6404)

Elderly Occasional
0.3904

(0.0046)
0.2652

(0.0600)
0.2624

(0.0629)
0.2700

(0.0553)
0.2668

(0.0584)
0.2342

(0.0981)
0.2798

(0.0468)

Elderly Regular
0.4380

(0.0009)
0.4607

(0.0005)
0.5498

(<0.0001)
0.5505

(<0.0001)
0.4959

(0.0001)
0.5027

(0.0001)
0.4986

(0.0001)

 

Figure 5. ECG analysis results for mean heart rate and AMHRR.
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According to Table 3, we could also observe the effect of exercise habits on normalized
EEG power in the young participants. The correlation between normalized EEG power at
C3 and the AMHRR was higher in young participants who exercised regularly, and the
correlation between normalized EEG power at C4 and the AMHRR was higher in young
participants who exercised occasionally.

3.3. Changes in EEG during Exercise in Elderly Participants

As presented in Table 3, the regression coefficients revealed a moderate or high
correlation between normalized EEG power and the AMHRR in the elderly participants
who exercised regularly. However, the correlation observed for the elderly participants
who exercised occasionally was low and nonsignificant. Combining the results for elderly
participants and young participants revealed that maintaining adequate exercise habits was
more imperative for older adults than for younger adults. As illustrated in Figure 6, the
elderly participants who exercised regularly demonstrated consistent EEG power changes.
As the AMHRR increased, the normalized EEG power also increased. By contrast, no clear
trend was observed for the elderly participants who exercised occasionally. The changes
in EEG power were more dispersed. These results indicated that adequate exercise habits
may lead to more stable brain wave changes in elderly people during exercise.

Figure 6. Figure 6. Scatter plots of correlation between normalized EEG power and AMHRR in low-alpha band (C3).

3.4. Paired t-Test Results Observed during and after Exercise

Figure 7 displays the normalized power values and statistical analysis results observed
at C3 (low beta) at stage 3 and during post-exercise rest. Accordingly, the normalized
power value during post-exercise rest would decrease to 1 if the power value during the
pre- and post-exercise rest periods were identical. According to the plots in Figure 7, we
observed the recovery speed of EEG power after exercise. The results revealed a significant
difference in the change in normalized power between the exercise stage and post-exercise
rest state in the young participants, regardless of their exercise habits. By contrast, in the
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elderly participants, the difference in the change in normalized power between stage 3
and post-exercise rest states was nonsignificant. Table 4 presents a summary of the results
of the paired t-test for normalized EEG power in stage 3 and in the post-exercise rest
state. In particular, the difference between the young and elderly participants was clearly
observed in the beta band. The young participants recovered faster after exercise; therefore,
a significant difference in the change in normalized power was observed. By contrast,
the elderly participants recovered more slowly after exercise; hence, the difference in the
change in normalized power was nonsignificant.

Figure 7. Histogram of EEG normalized power in low-beta (C3) band during exercise stage 3 and post-exercise rest.

Table 4. p values for paired-sample t-tests of normalized EEG power during and after exercise.

Delta Theta L-Alpha H-Alpha L-Beta H-Beta Gamma

C3

Youth Occasional p = 0.0861 p = 0.0872 p = 0.1032 p = 0.0545 p = 0.0093 p = 0.0272 p = 0.0064

Youth Regular p < 0.001 p = 0.0011 p = 0.6801 p = 0.5305 p = 0.0023 p = 0.0011 p < 0.001

Elderly Occasional p = 0.0122 p = 0.0621 p = 0.9527 p = 0.9249 p = 0.6933 p = 0.1791 p = 0.0027

Elderly Regular p = 0.1019 p = 0.6662 p = 0.0180 p = 0.0324 p = 0.1596 p = 0.3657 p = 0.3446

C4

Youth Occasional p = 0.0658 p = 0.0499 p = 0.0738 p = 0.0348 p = 0.0049 p = 0.0151 p = 0.0034

Youth Regular p < 0.001 p = 0.0022 p = 0.4626 p = 0.4761 p = 0.0021 p < 0.001 p < 0.001

Elderly Occasional p = 0.0240 p = 0.0543 p = 0.7284 p = 0.8185 p = 0.5308 p = 0.1379 p = 0.0017

Elderly Regular p = 0.0122 p = 0.4295 p = 0.0197 p = 0.0569 p = 0.5484 p = 0.9590 p = 0.1634

Cz

Youth Occasional p = 0.0808 p = 0.0902 p = 0.1752 p = 0.0640 p = 0.0106 p = 0.0252 p = 0.0045

Youth Regular p = 0.0015 p = 0.0211 p = 0.9572 p = 0.8219 p = 0.0109 p = 0.0037 p < 0.001

Elderly Occasional p = 0.0254 p = 0.0952 p = 0.8433 p = 0.8706 p = 0.9117 p = 0.4567 p = 0.0040

Elderly Regular p = 0.1706 p = 0.3402 p = 0.6988 p = 0.6412 p = 0.7912 p = 0.6926 p = 0.0321

Overall, the alpha and beta bands could reflect changes in brain wave power during
and after exercise. The alpha band can be used to observe changes in brain wave power
during exercise, and the beta band can be used to observe recovery in rest states after
exercise. However, further understanding of the effect of age and exercise habits on EEG
changes is warranted.
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3.5. Relationship between EMG RMS and AMHRR for the Four Test Groups

Figure 8 displays the results of the linear regression on the differences in EMG RMS
between stages 2 and 1 (i.e., ∆EMG RMS) and the difference in AMHRR between stages 2
and 1 (i.e., ∆AMHRR). Because of the extensive individual differences in EMG RMS values
and the location of the EMG bipolar electrodes, we normalized the EMG RMS values;
that is, we divided the RMS values for stages 2 and 3 by those for stage 1. This can be
used to observe the increase in ∆EMG RMS with exercise load. The results revealed a
more significant trend of increasing ∆EMG RMS with ∆AMHRR in the young participants
than in the elderly participants. Additionally, the regression coefficients for the young
participants who exercised occasionally were higher than those for the young participants
who exercised regularly. However, for the elderly participants, a low correlation was
observed between the ∆EMG RMS values and ∆AMHRR, regardless of their exercise
habits, and their ∆EMG RMS values were more clustered. This low correlation may be
because in this study, the elderly participants were assigned a fixed cycling load that was
lower than those assigned to the young participants.

△ △Figure 8. Linear regression between △EMG RMS and △AMHRR.

4. Discussion

This study used ECG, EMG, and EEG to explore changes in physiological signals
transmitted during cycling exercise in young and elderly participants with different exercise
habits. We assigned lighter exercise loads to the elderly participants to avoid muscle
damage or injury from overload, considering the effects of declining physiological function
with aging. According to previous research, exercise intensity (workload) is reflected in the
response of many physiological processes, including heart rate [16]. Therefore, we defined
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the exercise load according to the AMHRR and further observed changes in EEG and EMG
with gradually increasing exercise loads.

4.1. Spectral Power of EEG Increases with AMHRR during Exercise

We observed that during exercise, the normalized power of each frequency band of the
EEG signal was positively and linearly correlated with the AMHRR. We also determined
that an increase in normalized EEG power was consistent with an increase in AMHRR.
This consistency was observed in most EEG frequency bands, including the delta, theta,
low-alpha, high-alpha, low-beta, and high-beta bands. Furthermore, these phenomena
were more evident in the low-alpha, high-alpha, low-beta, and high-beta frequency bands.
Earlier research reported that cortical activity increased with fatigue during exercise in
order to maintain a constant physical output [1]. Schillings et al. also reported that the
energy loss associated with fatigue during exercise may cause increased brain activation in
the motor cortex [17].

Previous studies determined that during exercise, EEG cortical activation was most
affected in the alpha and beta frequency bands [18–21]. Therefore, most experiments and
literature reviews on the effects of exercise on EEG cortical activity were limited to these
two frequency bands. Several previous studies involving ergometer cycling revealed that
incremental graded exercise tests resulted in increased alpha power in the central and
parietal regions as well as increased EEG current density in the primary motor region.
Bailey et al. showed an increase in alpha and beta power after sustained intensity bicycle
ergometer exercise with a progressively increasing workload [3]. Lin et al. reported
increased EEG power in the alpha and beta bands in the frontal and central areas during
high-resistance pedaling exercise [22]. They further proposed that the fatigue situation
would be accompanied by an increase in α and β power. However, increased EEG beta
activity may be associated with attentional demands and higher levels of arousal. Other
studies demonstrated that the effect of exercise on EEG cortical activity was not limited to
the alpha and beta bands [3,5]. Our results demonstrated that the alpha band was more
suitable for observing changes in brain activation during exercise. However, the beta band
was more appropriate for determining the differences between brain activation observed
during exercise and that observed during post-exercise rest.

4.2. Young People Who Exercise Regularly Have a More Coordinated Use of Their Dominant Leg

Our results reveal that the EEG differences between young participants who exercised
regularly and those who exercised occasionally were in the activation of motor cortical
areas in the left and right hemispheres (i.e., C3 and C4). A higher correlation was observed
between normalized power changes at C3 and exercise load in the young participants
who exercised regularly. However, the normalized power at C3 and that at C4 in the
young participants who exercised occasionally were moderately correlated. The concept
of limb dominance was based on the fact that the two hemispheres of the brain function
differently and tend toward activities that use one limb under voluntary control [23]. Bhise
et al. observed that when for an inherently manipulative task, most participants used the
dominant leg [24]. Young people who exercise regularly have greater coordination in the
use of the dominant leg, meaning that they require only the dominant leg to complete
the exercise. However, young people who exercise occasionally must use both legs to
compensate for the deficiency of the dominant leg [25–27]. The RMS of EMG signals is
often used as a concise quantitative indicator of muscle activity; we found that the young
participants who exercised occasionally had significantly higher EMG RMS values than did
those who exercised regularly. Our results indicate that the dominant legs of young people
who exercise occasionally require more force output to perform a given task. However,
that the young participants who exercised occasionally had lower EEG activation in the C3
region than did those who exercised regularly.
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4.3. Regular Exercise in Elderly People Induces Significant Cortical Activation during Exercise

We observed that the highest increase in EEG normalized power occurred when the
participants were at their highest AMHRR (exercise workload). This phenomenon was
particularly notable in the elderly participants who exercised regularly. The results reveal
that the normalized EEG power increased with the AMHRR in the elderly participants
who exercised regularly, with the corresponding correlation being moderate to high. The
heart rate increases with the delivery of oxygenated blood around the body and into
the brain. Muscles require relatively high energy during exercise. Similarly, the brain
consumes glucose or other carbohydrates when the body is in motion [28]. Therefore, the
brain becomes more active during exercise. This suggests that elderly people who exercise
regularly require relatively high exercise performance and muscle strength during exercise,
which may induce considerable activation of the cerebral cortex. However, the change
in normalized EEG power with respect to exercise load was less consistent in the elderly
participants who exercised occasionally. Accordingly, the results reveal no significant
correlation between normalized EEG power and the AMHRR. Although this phenomenon
could also be observed in the young participants, the results were less pronounced than
those observed in the elderly participants. Our results show that the difference in EEG
signal changes between the elderly participants who exercised occasionally and those
who exercised regularly was more significant than that between the young participants
who exercised occasionally and those who exercised regularly. For elderly people, regular
exercise can help reduce the functional decline associated with aging.

4.4. EEG Recovery after Exercise Is Slower in Elderly People

The paired t-test revealed significant beta band activation in the young participants
in stage 3 and during post-exercise rest. By contrast, this phenomenon was not observed
in the elderly participants. These results indicate that the young participants returned
to a resting state more quickly after exercise, whereas the elderly participants required a
longer time to recover. Aging affects the post-exercise recovery process. Several studies
have revealed a functional decrease in the replenishment of energy supply before and after
exercise. Research has presented evidence of differences in acute recovery of physiological
parameters after fatiguing exercise between younger and older participants. For similar
exercise stimuli, elderly people require a longer recovery period when returning to baseline
levels after exercise [29]. Although this study did not reveal a significant difference in
exercise recovery between the elderly participants with and without exercise habits, the
EEG results demonstrate that the elderly participants who exercised regularly had superior
brain regulation of exercise load than did those who exercised occasionally.

However, there are still some limitations in this study. First, the muscle artifacts
occurring in the head and neck musculature during cycling exercise may be recorded in
EEG signals. In this study, we asked subjects to minimize their head and upper body
movement as much as possible during the experiment. Unfortunately, experimental
protocols are still sensitive to physiological and non-physiological artifacts, including
motion artifacts that may contaminate the EEG recordings. Following the procedure of
artifact suppression, we applied a simple cleaning noise method, moving average, to
remove the noise caused from motion artifacts in EEG signals. Although these procedures
can eliminate motion artifacts but may also decrease the sensitivity in EEG signals. Second,
the strength of muscle will decrease with aging, and there exist an individual difference in
this aging effect. In this study, we did not take the muscle strength decay of elderly and
individual muscle ability into consideration in the experiment setup.

5. Conclusions

This study revealed the AMHRR to be a suitable indicator of exercise intensity and
that the physiological indicators of ECG and EEG in elderly people are different from those
in young people because of aging. We found that the EEG spectral power of elders who
exercised regularly revealed the strongest positive correlation with their exercise intensity.
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The results demonstrate that exercise-induced significant cortical activation in the elderly
participants who exercised regularly, and most of the p-values are less than 0.001. No
significant correlation was observed between spectral power and exercise intensity in the
elders who exercised occasionally. The young participants who exercised regularly had
greater cardiac and neurobiological efficiency. Therefore, appropriate exercise habits may
benefit brain responsiveness and improve the efficiency of cardiac and neurobiological
responses to exercise. Our results may provide a new exercise therapy reference for adult
groups with different exercise habits, especially for the elders.
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Abstract: We have developed a sensor for monitoring the hemoglobin (Hb) concentration in the
effluent of a continuous bladder irrigation. The Hb concentration measurement is based on light
absorption within a fixed measuring distance. The light frequency used is selected so that both arterial
and venous Hb are equally detected. The sensor allows the measurement of the Hb concentration
up to a maximum value of 3.2 g/dL (equivalent to ≈20% blood concentration). Since bubble
formation in the outflow tract cannot be avoided with current irrigation systems, a neural network
is implemented that can robustly detect air bubbles within the measurement section. The network
considers both optical and temporal features and is able to effectively safeguard the measurement
process. The sensor supports the use of different irrigants (salt and electrolyte-free solutions) as well
as measurement through glass shielding. The sensor can be used in a non-invasive way with current
irrigation systems. The sensor is positively tested in a clinical study.

Keywords: hemoglobin sensor; bladder irrigation monitor; absorption near infrared; artificial intelligence;
bubble detection

1. Introduction

In urology, continuous bladder irrigation (CBI) is an important standard care proce-
dure [1–4] after transurethral resection of the bladder (TURB) or the prostate (TURP). The
dominant goal of CBI is to prevent the formation of blood clots and consecutive bladder
tamponade, a medical condition requiring an additional and foremost avoidable follow-up
surgery [5]. The purpose of CBI in the given application scenario is, therefore, to keep
the blood concentration in the bladder at a very low level. Technically, CBI provides a
continuous dilution of the bladder content with fresh irrigation fluid (often saline) and thus,
prevents clot formation. Although nearly trivial from a pure technical point of view, CBI is
involved when applied in clinical practice. Improper CBI may trigger bladder spasms by ir-
ritating the bladder, cause undesired bleeding [5], lead to bladder rupture or perforation [6],
and might even become life-threatening [7]. These and other possible complications result
primarily from increased pressure, due to a high flow rate. Consequently, there are two
optimization goals for an optimally adjusted CBI: On the one hand, the flow should be
high enough to dilute the blood sufficiently, and on the other hand, the flow should be
as low as possible to avoid pressure-related complications. Since the amount of bleeding
after surgery cannot be controlled, the optimal flow speed changes over time. Hence, CBI
demands extensive and continuous supervision and management by medical personnel,
imposing a heavy burden on nurses responsible for a whole urological station [8,9].

CBI supervision is, on the one hand, comprised of rather technical aspects, such as
caring for a filled fluid reservoir and an empty waste reservoir, ensuring a continuous flow
of fluids into and out of the bladder. On the other hand, there are aspects with high medical
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relevance, in particular, choosing the right irrigation flow. Too high a flow will keep the
blood concentration low, but may cause severe negative effects to the patient. In the case of
the urethral catheter becoming clogged by a clot, continued irrigation may even lead to
bladder rupture [5]. Too low a flow will not suffice to dilute the blood and will result in an
ineffective procedure.

Today, nurses inspect the coloring of the waste fluid and estimate the flow speed
accordingly. Obviously, this approach has significant drawbacks. Estimating the blood
concentration in the outflow demands a high level of experience and is observer-dependent.
Furthermore, it is affected by external conditions, such as the current illumination. Ad-
ditionally, nutrition can have a significant effect on urine color, such as betanins leading
to beeturia [10], easily confused with hematuria. Other foods known to change urine
color include blackberries and rhubarb, which turn urine pink or red, while fava beans
and aloe turn it reddish brown. Medications can also affect the color of urine, such as
phenazopyridine, a drug used to numb urinary symptoms, the antibiotic rifampin, and
laxatives containing senna, which can turn urine reddish-orange. The anti-inflammatory
drugs sulfasalazine and phenazopyridine, as well as certain chemotherapy drugs turn
urine orange-red, while the antimalarials chloroquine and primaquine, the antibiotics
metronidazole and nitrofurantoin, the muscle relaxant methocarbamol, and laxatives con-
taining cascara turn urine reddish-brown. In addition to the drug itself, the food coloring
contained in the coating, e.g., in the case of tablets, pills, and dragees, can also discolor the
urine. The discoloration of the urine and, thus, of the waste fluid is easily mistaken for an
increased amount of blood, which in turn leads to an increased irrigation flow. The color
of the excretory fluid is, therefore, not a reliable indicator for the adjustment of the flow.
Detection of acute bleeding might become obscured, again putting patients at risk.

In order to better estimate the blood concentration, Hageman et al. [11] developed the
Hemostick, a color scale to visually compare blood color. While this device significantly
contributes to standardize the estimation of blood concentration between nurses, it still
is affected by illumination influences. Furthermore only a limited number of discrete
reference colors are available. Therefore, as can be observed in Figure 9, the distinction
of blood concentration based on observation or color comparison becomes quickly un-
feasible. Ding et al. [12] evaluated a CBI control system able to adjust the irrigation flow
automatically based on the estimation of the blood concentration. The system features a
color monitor to estimate the blood concentration. It thus resembles an automated version
of the approach presented in [11]. In [13], Chan et al. presented a device to measure the
blood concentration, using the light absorption principle. In order to estimate the blood
concentration, they investigated light emitting diodes (LED) with different colors (i.e., red,
green, blue) and finally decided on using green LED. Unfortunately, they did not specify
the particular wavelengths of the used LEDs. To measure the transmitted light, a light
dependent resistor (LDR) was used. Timm et al. [14] proposed a system based on light
absorption for non-invasive estimation of hemoglobin (Hb) concentration in human tissue.
They used three different, well-defined wavelengths to estimate the Hb concentration. The
system was tested in a technical setting. Zhang et al. [15] described a system to estimate
blood loss during endoscopic surgery based on Hb measurements. Their system is also
based on absorption since they use a photoelectric sensor. Unfortunately, they did not
provide any specifics on the sensor.

The new Hb concentration sensor proposed in this article also exploits the light
absorption principle and thus, is closely related to the work in [13–15]. The advantage of
using the absorption principle compared to color monitoring is the improved accuracy
of the estimates. Independence from dietary coloring effects can be achieved through the
selection of appropriate light frequencies. In contrast to [13], our approach is far more
rigorous. The light absorption properties of blood and other coloring components were
taken into account, and an optimal light frequency was selected. In contrast to [14], our
system is dedicated to monitor CBI. The measurements take the light absorption of the
irrigation tubing into account, as well as influences of the irrigation fluid. In contrast to [15],
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our system measures the Hb concentration in a defined tube in contrast to being integrated
in a collecting bucket. In addition, practical aspects, such as gross mismeasurements due
to bubble formation in the outflow tubes and measurement through thin glass panes, were
taken into account. The system was evaluated in a clinical study.

The proposed sensor is part of a comprehensive mobile CBI monitoring system.
Although the overall system is outside the scope of this paper, the main reasons for its
developments will be briefly presented. As mentioned earlier, continuous monitoring
of CBI is important. In this regard, a single nurse can take care of about two to four
patients, provided that they are in the same room and the nurse has no other duties. In
reality, however, there are easily twenty concurrent CBI on a urology ward, spread across
multiple rooms and cared for by a single nurse. Therefore, continuous monitoring of all
patients is not feasible. In addition, the nurse must maintain the CBIs by emptying or
changing the waste bags and replacing empty saline bags in a timely manner. Finally,
the nurse also has to manage the daily routine of attending to the well-being of patients,
dispensing medications, conferring with physicians, and much more. Regardless of what
a nurse is doing, he/she always has the pressure in the background that he/she should
be monitoring CBIs. This has several negative consequences. Nurses are under constant
stress, even when monitoring a particular CBI because other CBIs cannot be monitored
at the same time. Nevertheless, acute bleeding in one or more patients can occur at any
time. On the other hand, maintenance of the CBIs also places a burden on the nursing
staff since overflowing waste bags as well as empty reservoir bags should be avoided
as much as possible. The monitoring system relieves the nursing staff of this pressure
since the flow rate and Hb/blood concentration are constantly monitored by a technical
system. The flow and concentration measurements can be used to effectively calculate
whether irrigation is being performed optimally. As soon as one of the parameters leaves
its predefined limits, alarms can be transmitted to a mobile device and/or to the ward
room. In addition, the current status of all CBIs can be visualized simultaneously, giving
the nurse an optimal overview of all patients. The use of the monitoring system allows
nurses to fully concentrate on their respective tasks, while giving them the security of
knowing that they will be informed in time if intervention is required. Overall, the system
thus provides the opportunity to improve CBI monitoring and thus patient care, while at
the same time reducing the workload of nurses, thus indirectly further improving patient
care. The proposed sensor is an extremely important and integral component of such
a monitoring system. Additional fields of application are conceivable, but will not be
considered further at this point.

2. Materials and Methods

2.1. Selecting the Measurement Method

A requirement for the sensor development was the seamless integration with existing
CBI systems. A refractometer-based approach or the use of other sensors that require direct
contact with the medium to measure Hb concentration is, therefore, inappropriate. The Hb
measurement in this work is performed based on light absorption. A known amount of
light is exerted by a LED, passed through a tube filled with CBI waste fluid and captured
on the opposite side. According to Beer’s Law, the concentration is then related to the
intensities and measurement section via the following:

It = I0 · 10−ε∆zc,

where It and I0 denote the transmitted and incident light intensities, respectively, ε and c
denote the molar absorptivity and concentration of the light absorptive compound, and ∆z
is the optical path length through the drainage fluid. By selecting a proper power supply
and wavelength for the LED, we obtain constant I0 and ε. When the outflow tube is full of
drainage fluid, ∆z is also constant and determined by the diameter of the tube. Therefore,
we can infer the Hb concentration c solely based on It.
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2.2. Selecting the Light Source

In this simple form, Beer’s Law is only valid for a single light absorbing material. The
waste fluid is, however, composed of various materials, i.e., irrigation fluid and potentially
additional medications, as well as urine and blood. The latter two materials are compounds
on their own. We, therefore, investigated how strong the influence of the additional
ingredients would be. In a work from Pegau et al. [16], we found that the influence of
salt on the absorption property of water is very small in the near infrared frequency band
and that salt might even lower absorptivity. From Palmer et al. [17], we learned that the
absorption of water compared to Hb is negligible (approx. ratio 1:40,000). Additionally,
urine coloring molecules, such as betanins, have their main absorption in the range of
400–600 nm and absorb only very little light in the near infrared as Gonçalves et al. [18]
reported. In summary, we can state that Hb absorption is absolutely dominant, particularly
in the near infrared but also in the visible spectral band. Hence, we apply Beer’s Law in its
simple form without danger of significantly degrading the measurement accuracy.

The absorption curve of Hb and HbO2 is shown in Figure 1. For the formation of
blood clots, it is basically irrelevant whether Hb is oxygenated or not. In order to account
for both Hb versions at the same time, isobestic points, i.e., points at which two chemical
species have the same molar absorptivity, should be used for measurement. For Hb and
HbO2 the main isobestic points are at frequencies of 420, 545, 570, and 800 nm. In tests
with blood samples and the targeted tubing, it was found that the absorption for the lower
frequency points is way too high for a CBI monitoring system. The transmitted amount of
light quickly drops below values that can be reliably distinguished from background noise.
Additionally, total absorption is reached very quickly, so increasing the light intensity
would not help. Combined with knowledge of the absorption properties of other relevant
materials, these findings led to the determination of the central measurement frequency at
800 nm.

Figure 1. Molar extinction coefficient e in [ L
mol·cm ] of Hb and HbO2 for wavelengths between 250 and

1000 nm. Major isobestic points are located at 420, 545, 570 and 800 nm.

For an LED, the emitted light intensity as well as the light frequency depend on the
applied current. Especially when using batteries in a mobile setting, care must be taken
to provide a constant current supply. To this end, we implemented a small electronic
component (see Figure 2), that guarantees a constant current over a wide voltage range.
Implementation was done on a stripboard, using regular size electronic components.
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Figure 2. LED needs a constant current to emit a well-defined light. (Left): Circuit diagram of the
used electronic. (Right): Test results with and without load. Constant current can be guaranteed for
a wide range of input voltages.

2.3. Selecting the Light Sensor

In order to measure the transmitted light, a photo resistor (LDR), or a photo diode
(PD) would theoretically be sufficient, as shown in [13]. Taking practical considerations
into account, i.e., the fact that the CBI tubes do have reinforcing ribs, a single measurement
is not sufficient for a reliable monitoring system. Even more problematic is the fact that
bubbles are traveling unpredictably in the outflow tube. Gain ribs appear darker in the
detector image and suggest increased Hb values, while the presence of bubbles dramatically
decreases light absorption and suggests lower Hb values. While slightly increased Hb
readings might be tolerable, significantly lower readings would put patients at risk. As a
consequence, measuring the Hb concentration with a single point measurement (LDR/PD)
is very dangerous in practice. We propose to use a camera chip instead. At only moderately
increased cost, a wealth of measurements can be performed, enabling the application of
advanced image processing techniques.

For system demonstration, we chose a monochrome camera without an IR filter, which
provides us with 10 bit linear intensities. While the concrete camera model is irrelevant,
the three mentioned properties of the camera are important. A monochrome camera lacks
a Bayer filter; hence, all pixels generate readings of the same quality. The lack of IR filtering
allows for reliable measurements in the near infrared frequency band. The 10 bit color
depth increases the dynamic range and provides an increased measurement range.

2.4. Extending the Measurement Interval

Considering the exponential relationship between the intensity and Hb concentration,
the dynamic range of even a 10 bit sensor is rather limited. Starting from an exposure
ELow that just saturates the sensor for pure irrigation fluid, the maximum measurable Hb
concentration is less than 0.6 g/dL (equivalent to ≈4% blood). Increasing the exposure time
by a factor of 8 (EHigh) allows measurements of more than 3.2 mg/dL Hb (≈20% blood), but
leads to overexposure for the Hb concentration below 0.1 g/dL. We, therefore, introduced a
dual-exposure setup, which is controlled, using a hysteresis threshold TLow,High. We chose
TLow (i.e., where we switch from EHigh to ELow) at 0.2 g/dL Hb and THigh at 0.6 g/dL Hb. In
terms of sensor readings, i.e., intensities, the TLow is at 800 and the THigh is at 80. The overall
measurement range of the proposed sensor, therefore, covers the interval [0–3.23] g/dL
hemoglobin concentration or [0–21.5]% blood concentration.

2.5. Processing of Sensor Images

We apply three different image processing methods, namely the detection of shadow
artifacts caused by the gain ribs, detection of bubbles, and automatic exposure adjustment.

Figure 3 gives an impression of the effect created by the gain ribs. The left subfigure
shows a small, opened segment of the tube placed on a white paper with parallel pencil
lines. Significant distortion of the lines can be observed near the ribs, which act like plano-
convex lenses. The subfigure on the right shows the effect of the ribs on the detector image.
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The horizontal position of the artifacts depends on how the tube was inserted into the
sensor. Vertical line artifacts with mainly decreased intensity can be observed. In some
cases, even a slight intensity increase can occur, depending on the positioning of a rib within
the optical pass. Although the positioning of the tube cannot be controlled in practice, the
artifacts can be reliably detected. Since the tube does not change its position during the
entire CBI process, it is practical to automatically select an artifact-free measurement ROI
when setting up the system. This can be realized by inspecting the intensity profile of a
horizontal line and comparing it to a known intensity profile. An exemplary profile is
depicted in Figure 4. The blue regions are those that are not directly illuminated, while the
yellow regions are transitional zones that are partially lit. Both regions are a constant size
and determined during the sensor assembly since they solely depend on the actual camera
and LED placement. The union of the red and green regions is the potential measurement
area. In the example, we detected two artifact regions, marked in red, and an artifact-free
region, where we can safely place the measurement ROI.

Figure 3. (Left): A segment of the waste fluid tube. Reinforcement ribs are running along the tube.
The ribs significantly change the optical pass of light traveling through the tube. (Right): Acquired
sensor image with marked artifacts caused by reinforcements. The horizontal location of the shadows
depends on the tube placement and cannot be controlled. We note that the right figure was intensity
adjusted for better depiction, which amplified intensity variations in the vertical direction as well as
the noise level.

Figure 4. Exemplary intensity profile segmented into regions: (blue) background region, (yellow)
transitional region, (red) artifact region, (green) measurement region.

As already mentioned earlier, bubbles pose a significant problem to the measurement
process. While the gain ribs create static artifacts that only slightly and systematically alter
the measurements, bubbles are dynamic by nature and severely impact the measurement.
Figure 5 demonstrates the effect of a bubble in the sensor image. Please note that for
all image sequences, the same specimen was used, i.e., a small tube section filled with
diluted blood and sealed with a small fraction of air, similar to those depicted in Figure 9.
Striking is the difference in the image sequences depicted in Figure 5. The only difference
between the sequences is the location with respect to the camera and LED, where the
bubble travels along the tube. Already, these examples demonstrate that a bubble detection
based on classic approaches is not feasible. The situation becomes even more challenging
when several small bubbles form a foam-like cluster. Furthermore, we found that also
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pure image processing of a single image is not sufficient to reliably detect bubbles: in the
case that a bubble of a reasonable size remains static within the light pass, the images
can be indistinguishable from images without bubbles at a lower Hb concentration. It
is, therefore, imperative to use a system that can analyze image sequences. To this end,
we trained a convolutional recurrent neural network comprised of convolution layers to
extract optical features followed by long short-term memory (LSTM) layers to account for
the temporal aspect. The network was trained on video sequences acquired with the sensor
hardware. To this end, test specimen with various blood concentrations and bubble sizes
were prepared (see Section 2.8). The network was trained fully supervised. The ground
truth was generated by manually marking the images in the sequences where a bubble just
entered the view or almost completely left the view. The remaining images were classified
automatically. Figure 6 depicts the network architecture. For details on the network and
how it was trained, we refer the interested reader to [19].

Figure 5. Examples of the appearance of bubbles in the sensor image. (Upper row): bubble pass-
ing the sensor close to the LED. (Middle row): bubble passing the sensor close to the camera.
(Lower row): bubble passing near the center of the tube. For all images, the same specimen was used,
so Hb concentration as well as bubble size are the same.

Figure 6. Network to detect bubbles in the optical path. The convolutional layers extract image
features, such as bright and dark edges, bright spots, etc., while the LSTM layers account for the
temporal components. The network is able to detect bubbles traversing in both directions and even
accounts for those that remain static in the optical path for an extended time.

2.6. Sensor Signal Processing

Sensor signal processing, i.e., bubble detection, Hb value generation, and communi-
cation, was implemented on a Raspberry Pi 4B. The camera was connected via the USB
3 interface, which also provided power to the LED. Furthermore, the Raspberry Pi was
used to communicate the data to the main system and to control additional sensors that are
out of the scope of this paper. The operating system used was a completely stripped-down
Ubuntu Linux with a custom compiled kernel.

The bubble detection network was run on the ARM-CPU exploiting the ONNX Run-
time [20]. The camera provides images at a frame rate of 25 fps. All images are analyzed by
the network. Sequences of 8 images are combined to guarantee stable outputs, even in the
case that the network fails to detect a bubble or falsely detects a bubble in an image. The
output frequency of the sensor was set to 10 measurements per second. Data were provided
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to the user side (C# DLL) by means of a double buffer. Overall, power consumption for the
running system is below 700 mA.

To further support future integration of the sensor, we quantized the network to fixed
point representation (Figure 7), using a quantization aware training (QAT) method. The
resulting network was implemented on FPGA (Xilinx xc7z020-clg400-1). As shown in
Table 1, the standard version of the network still leaves sufficient resources for additional
hardware, such as a MIPI camera interface as well as the calibration tables to convert sensor
readings into Hb values. Thus, the whole signal processing can be performed on a single
SoC of a size less than 20 × 20 × 2 mm. This not only reduces the overall sensor size,
but also significantly lowers the overall power consumption and, in turn, enables mobile
CBI monitoring.

Figure 7. Schematic representation of the sensor. On the left side, an LED exerts light that is
transmitted through the tube filled with irrigation waste fluid. The transmitted light is captured by
a camera. The bright squares next to the tube represent thin glass plates that can be inserted into
the optical pass to seal the LED and the camera and to enable effective cleaning and disinfection in
clinical application.

Table 1. Listing of hardware resources used for bubble detection and MIPI interface on the FPGA.
Two different implementations of the bubble detection network are given: one that complies with
the current specifications regarding frame rates as well as a maximum performance version. Please
note that the standard version leaves sufficient space to realize a MIPI interface to directly connect
the camera.

FPGA Utilization (c7z020-clg400-1)

Resource Bubble Detection Standard Bubble Detection Performance MIPI Interface

BRAM 15% 16% 4%
DSP 5% 5% 4%
FF 20% 26% 0%
LUT 73% 99% 6%

2.7. Sensor Housing

A sensor used in clinical practice needs to be cleaned and disinfected. Neither the
camera lens nor the LED are well suited for this process. Besides potential deterioration
effects, camera lenses feature sharp edges where bacteria and other germs might survive.
It is therefore mandatory to seal the optical components. A particularly suited material
for the case at hand appears to be glass. We conducted a series of tests using glass cover
slips for microscopic samples with a thickness of 0.15 mm ± 0.02 mm. Assuming circular
openings for the camera lens (� ≈ 1.0 cm) and the LED light channel (� ≈ 0.5 cm), the
cover slips appear to be sufficiently robust.

Since the positions of the glass plates, camera, and LED are rigid and only light
frequencies in a very small band are used, we confirmed in tests that the influence of glass
is a constant offset to the measurement. This was expected by altering Beer’s Law in the
following way:

It − ∆It = (I0 − ∆I0) · 10−ε∆zc,

136



Sensors 2021, 21, 5723

where ∆It and ∆I0 denote the attenuation of the exerted and captured intensity by the two
glass slips.

The housing itself was 3D printed from black acrylonitrile butadiene styrene (ABS).
Tests with white ABS showed significant light penetration in the sensor, which greatly
affected the measurements. Although it would be possible to shield the measurement path
by other means, using black material seemed to be the most direct approach.

In contrast to [13], we decided for a rigid housing instead of a clamp. While a clamp
has the advantage that it can be most easily attached to a variety of tubes, it is much
harder to know the true length of the measurement distance. Furthermore, the clamp
pressure deforms the tube and thus introduces uncertainty. Lastly, it is much harder to
avoid ambient illumination to impact on the measurement. An image of the sensor is given
in Figure 8. Three versions of the sensor were assembled and provided for integration.

Figure 8. Image of the assembled sensor as used in the clinical validation study. Communication and
power supply were realized using a USB 3 interface. A short tube segment was inserted to showcase
sensor attachment to the CBI system.

2.8. Preparation of Test Specimen

Figure 9 depicts a set of test specimen used for sensor development. A complete
set always covered a concentration range between 0% and 22% in 2% increments, i.e.,
12 samples. Each specimen was manufactured in two different versions: one with saline
irrigation fluid and one with an electrolyte-free irrigation fluid. The latter is mainly used
during surgery, but opened bags are used up afterwards.

Figure 9. Test specimen samples. Tube segments were filled with diluted blood and sealed with
hot glue. In order to test the effect of bubbles, a small fraction of air was left inside. This also
prevented direct contact between the hot glue and test liquid. Samples were produced for blood
concentration between 0% and 22% in increments of 2%. Hb concentration was measured using a
hemoglobin analyzer.

To produce the test specimens, the drain tube of an irrigation system was cut into
pieces approximately 6 cm long. One end of the tube segments was sealed with hot glue.
Percentage indicators were written on each tube, using waterproof ink. This was done in a
preparatory phase to avoid any delay when working with the blood.

The blood used for development was fresh porcine blood obtained immediately after
slaughter. A total of 6 mL diluted Heparin (250 IU/mL) was added to 200 mL blood to
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prevent clotting (coagulation), and the mixture was carefully stirred to avoid sedimenta-
tion/separation. Since the proposed sensor actually measures the Hb concentration, the
ground truth Hb value was measured using a hemoglobin analyzer (Measuring range:
0–25.5 g/dL; Imprecision (within run): CV < 1%; Calibrated against HiCN reference
method.). Then, the blood was diluted with the respective irrigation fluid. The prepared
liquid was poured into the tube segment, leaving approximately 0.5–1.0 cm of air, and the
tube was sealed with hot glue. Leaving a small air bubble in the tube served two purposes:
first, the presence of an air bubble allowed the effect of air bubbles to be studied accurately
during scanning. Second, the air prevented possible adverse effects from the hot glue
coming in direct contact with the liquid.

Samples prepared in this way provided valid measurements for one working day.
Repeated measurements the following day showed significant deterioration, even when
the samples were stored in the refrigerator.

In order to assess the effect of urine, additional test specimens were prepared. Human
urine, collected immediately after waking up, was used for this purpose. With this urine,
we were able to ensure a maximal content of salts and other metabolites. Tests on pure
urine samples and samples composed of blood, urine and irrigation fluid revealed no
significant effect on the measurements.

3. Results

In a planned self-experiment, the sensor was tested using blood from three human
donors. Using human blood donations did not require ethics approval, according to the
local ethics council. The full laboratory setup of the CBI monitoring system is shown in
Figure 10 (left). The liquid flowed from the upper bag via a Foley catheter through a 3D
printed bladder model into the urine bag. A pump controlled the rate of inflow. The Hb
sensor was mounted to the outflow tube to detect the Hb level for data collection. To obtain
five different blood concentrations, we prepared five bags filled with 500 mL saline solution
and varied amounts of blood. As a reference measurement, the Hb concentration of each
bag was measured via blood gas analysis (BGA). The average difference of the sensor-
detected Hb level from the BGA-detected Hb level was 0.29 g/dL. The Hb concentration
in human blood is 15 g/dL on average, so the measurement error with regard to the
full measurement interval was estimated as ~10%. We note that the full measurement
range of the sensor was tested in the laboratory trials. Since measurement accuracy drops
significantly at higher concentrations, an increased mean deviation from the BGA was to
be expected. Table 2 gives a rough estimate of the measurement accuracy for some blood
concentrations. The highest blood concentration that can be quantified by the sensor is
roughly 20%, i.e., 3 g/dL Hb concentration.

Additionally, we employed random Hb concentrations to model the rise and fall in
Hb level to simulate a real-life complication scenario, presented as a graph of the Hb level
over time as depicted in Figure 10 (right). To imitate acute bleeding, blood was injected
into the 3D-printed bladder model. The blood supply was replaced with a saline solution
to resemble stopped bleeding. In the experiments, the sensor time constants for the CBI
system, with the sensor placed near the waste bag, were 33 s for rise and 119 s for fall.
Accordingly, the sensor’s response times were 2.7 min for rise and 9.9 min for fall. However,
we would like to point out that these values strongly depend on temperature, irrigation
flow, emissivity of the material and size, i.e., length and diameter of the respective irrigation
tube, including the catheter. Furthermore, bubble detection was tested. The sensor reliably
recognized random air bubbles or artificially generated air bubbles in the outflow tube.
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Figure 10. (Left): full system setup for clinical laboratory trials using blood from human donors:
(1) blood donor, (2) display, (3) 3D bladder model, (4) Hb sensor, (5) urine bag, and (6) pump. The
sensor was used in an extended setup, which is not in the scope of this paper. (Right): two exemplary
measurement curves for increasing and decreasing Hb concentrations. Sensor time constants were
estimated as 33 s for rise and 119 s for fall.

Table 2. Measurement errors with respect to the measured blood concentration. With increasing
blood concentration the measurement accuracy drops due to the non-linearity of Beer’s Law. We
note that these values were acquired during development and were not part of the clinical study.

Measurement Error of the Sensor

Blood concentration 4% 5% 15% 19% 21%

Absolute error 0.11% 0.17% 0.73% 1.5% 2.5%

Relative error 2.75% 3.4% 4.87% 7.9% 11.9%

After receiving a positive ethical vote, a clinical trial involving 20 patients was con-
ducted to test the sensor and other components of the CBI monitoring system. All patients
were male (mean age: 73.1 years) and underwent TURB. CBI was administered as part of
the standard treatment procedure. Further patient information was not collected to keep
the data protection footprint low. For each patient, Hb levels were monitored for at least
three hours, using the CBI monitoring system. As a reference measurement, we regularly
checked the Hb level in the urine bag via BGA. We would like to point out that, unlike the
Hb sensor, our BGA device did not allow to measure the Hb level continuously. The Hb
level detected by BGA is the average of several minutes. Figure 11 depicts an example of
the sensor-detected Hb level’s development illustrated as a red line. As gray data points,
ten BGA-detected Hb levels are presented. The median Hb values are at a comparable level.
The mean deviation of the sensor-detected Hb level from that of the BGA-detected Hb level
across all patients was −0.003 g/dL. Between minute 120 and 140, we noted a rise in Hb
levels. The reason was an incorrectly configured inflow speed of saline solution. As the
inflow speed was accelerated, the Hb level decreased to normal. Thus the sensor reliably
measured Hb levels within a clinically acceptable deviation and with a high responsiveness
across all experiments. In the patient study, the functionality of the Hb sensor’s air bubble
detection could also be positively confirmed.
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Figure 11. Measurement curve for a real patient. The blood gas analysis agrees well with the sensor
readings. At approximately minute 125, the irrigation was inadvertently left off after the urine bag
was emptied, resulting in a real-life example of the importance of the continuous monitoring of CBI.

4. Discussion

As shown in the results, we were able to design a sensor to measure the Hb concentra-
tion in the effluent of a CBI with decent accuracy (±0.003 g/dL). While accuracy is highest
for very small concentrations, it drops for higher concentrations, due to the exponential
relation between concentration and absorption. However, for practical application this does
not have negative implications. Already at 10% blood concentration, medical personnel
should consider intervention. In case of a low irrigation flow, the flow should be increased
to prevent cloth formation. In case of an already high irrigation flow, acute bleeding should
be assumed. To increase measurement accuracy, we extended the measurement interval,
using multiple exposure times. Further extension using even higher exposure times does
not improve the situation, since total absorption occurs—given the fixed tube diameter.

We decided on a rigid sensor housing to achieve the most reliable measurements for
system demonstration. This, of course, comes at the drawback that only a particular tube
diameter is supported by the sensor. However, insets can be easily designed to account for
various tube diameters. Vastly larger tube diameters decrease the measurement interval
significantly since total absorption occurs earlier, while smaller tube diameters increase
the measurement interval. In any case, an individual re-calibration of the sensor will
be necessary.

The effect of salt on the measurement cannot be completely ignored. As can be found
in the work of Pegau et al. [16], salt lowers the absorption of near infrared light by water
and thus, can lead to an underestimation of the Hb concentration. As a consequence, it is
definitely necessary to calibrate the sensor for the respective irrigation fluid. However, the
amount of salt introduced by urine is negligible and does not have a significant effect on
the measurement accuracy.

As stated in Section 2.8, we prepared the blood samples for the development from
porcine blood. Although it is very similar to human blood, the calibration tables do
not perfectly fit the practical application. A re-calibration with human blood was not
conducted prior to the study since the developers had no access to human blood samples.
A re-calibration at the hospital site was not possible since the procedure is technically
involved and developers could not travel due to COVID-19 restrictions. Still, the achieved
results during the clinical study were more than satisfying.

For system demonstration, we used a cheap camera without housing and other
accessories. This camera was not designed for medical applications but rather for rapid
prototyping. As such, it is relatively large (40 × 40 × 38 mm) and the main reason for
the current overall sensor size of 44 × 44 × 85 mm. Additionally, the constant current
supply electronic is relatively large (40 × 23 × 12 mm). Using a miniaturized camera
and an integrated electronic, the overall size of the sensor can easily be reduced to less
than 15 × 15 × 30 mm in total. Realizing a SoC version, the sensor including evaluation
electronic could be realized in a package not larger than 25 × 25 × 30 mm.

Additionally, an approach similar to that of Hageman et al. [11] can be extended
into a non-invasive measurement solution, such as the one presented by Ding et al. [12].
However, such a solution is inferior to the absorption-based approach for several reasons.
Firstly, in the absorption approach, the emitter and sensor can be placed in line with the
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test sample. This allows for a technically less-involved setup, because all geometries can be
assumed to be planar and of a constant size, without significant sacrifice of accuracy. Any
additional material, such as the tube or glass slides (c.f. Sections 2.5 and 2.7) only play a
minor role when considering Beer’s Law.

In contrast, a reflectivity-based system must consider a technically involved angled
arrangement because the light emitter and sensor cannot be in the same position. More
importantly, the tube has a significant, non-trivial impact on the reflectance characteristics.
In particular, the coloring of the tube affects the perceived color, regardless of whether
a color scale is used by personnel or a computerized evaluation is performed. Lastly,
reflection spectra appear to be less specific than absorption spectra.

A completely different method for estimating blood concentration in the effluent could
be developed based on the photoacoustic effect. Briefly, when a medium is irradiated with
a sequence of light flashes, periodic heating (and cooling) occurs. The resulting alternation
of volume expansion and contraction constitutes a source of sound [21]. Using laser sources
with specific wavelengths and, for example, piezoelectric acoustic receivers, it is possible
to measure Hb concentration with high precision and specificity. In [22] a system for
in vitro measurement of Hb and HbO2 is described. Integrating the laser emitter into a
catheter, a similar system could even allow concentration measurements directly in the
bladder, which would significantly reduce the response time of the sensor (cf. Section 3).
On the other hand, a rather expensive optical fiber would have to be integrated into the
catheter, which is a disposable product. In [23], an interesting work is presented that
aims at miniaturizing a photoacoustic sensing system. However, we assume that current
solutions are still relatively large, complex and expensive and often require much more
energy, compared to the sensor presented here.

Lastly, the clinical study only evaluated sensor functionality, i.e., the quality of the
Hb measurement as well as bubble detection during clinical application. Further pro-
cessing of sensor readings to, for example, generate alarms or treatment guidance, was
neither performed nor part of the study. Sensor readings were acquired blindly and
evaluated retrospectively.

5. Conclusions

Although further investigations are required as part of an approval study in accor-
dance with the German as well as the international Medical Devices Act, the basic practical
suitability of the sensor was demonstrated. Its non-invasive applicability allows a simple
extension of the existing CBI systems and thus, a gapless monitoring of the irrigation
procedure. Measuring the Hb concentration using the absorption principle (Beer’s Law)
provides reliable data for the application at hand. In combination with a (mobile) commu-
nication system, monitoring data can be immediately transferred to nurse guard rooms or
even mobile devices. This significantly reduces the burden on nursing staff to care for an
entire ward, while still ensuring effective CBI for the benefit of patients.
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Abstract: The mechanical properties of biological cells, especially the elastic modulus and viscosity
of cells, have been identified to reflect cell viability and cell states. The existing measuring techniques
need additional equipment or operation condition. This paper presents a cell’s viscoelasticity
measurement method based on the spheroidization process of non-spherical shaped cell. The
viscoelasticity of porcine fetal fibroblast was measured. Firstly, we introduced the process of recording
the spheroidization process of porcine fetal fibroblast. Secondly, we built the viscoelastic model for
simulating a cell’s spheroidization process. Then, we simulated the spheroidization process of porcine
fetal fibroblast and got the simulated spheroidization process. By identifying the parameters in the
viscoelastic model, we got the elasticity (500 Pa) and viscosity (10 Pa·s) of porcine fetal fibroblast.
The results showed that the magnitude of the elasticity and viscosity were in agreement with those
measured by traditional method. To verify the accuracy of the proposed method, we imitated the
spheroidization process with silicone oil, a kind of viscous and uniform liquid with determined
viscosity. We did the silicone oil’s spheroidization experiment and simulated this process. The
simulation results also fitted the experimental results well.

Keywords: robotic cell manipulation; mechanical properties; elasticity measurement; viscosity
measurement; cell mechanics

1. Introduction

The mechanical properties of biological cells, especially the elastic modulus and
viscosity of cells, can provide an important basis for the evaluation of cell viability and cell
states and the judgment of biological activity [1–3], and is crucial for the understanding of
cell structure and physiological function [4–6]. To measure cell viscoelasticity, scientists
have developed methods such as atomic force microscopy (AFM) [7–12], magnetic tweezers
technique [13,14], optical tweezers technique [15,16], microfluidic technique [17–19], and
micropipette aspiration (MA) technique [20–24]. These methods are suitable for different
situations. AFM technique detects the viscoelasticity of the cell by moving the cantilever
probe in vertical direction and monitoring its bending displacement. Magnetic tweezers
technique and optical tweezers technique apply a certain force to the magnetic beads or
silicon beads adhered to cells through magnetic field or light field to deform cells and
obtain the viscoelasticity of cells. Microfluidic technique obtains the viscoelasticity of cells
by detecting the deformation of cells under different microchannels and different shear
forces. MA technique obtains the viscoelasticity of cells by measuring the length of the
cells aspirated into the micropipette under different pressures.

Among these techniques, MA technique has become widely used due to the reasons
of no need to purchase or prepare additional equipment, lower measurement cost, and
easier integration into existing commercial micro-operation systems [25]. However, the
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micropipette aspiration method has high requirements for the seal between the cell and
the micropipette in the measurement process [26]. Slightly improper sealing will result
in ineffective MA operations, which will have a great impact on the measurement results.
Meanwhile, the measuring of results is highly dependent on the accuracy of the force
sensor. The viscoelasticity differences of the same cells measured by the same research
groups using the micropipette aspiration method will also be very large. For example,
the elasticity of human chondrocytes measured by Jones et al. was 0.65 ± 0.63 kPa [27],
wherein the standard deviation was as large as the measured value. As the shape of the cell
might be non-spherical, it will be more difficult to seal the cell and micropipette. In order
to eliminate the influence of sealing on the measurement results, it is necessary to design a
cell viscoelastic measurement method based on the micropipette aspiration platform and
with low requirements for sealing.

In this paper, we proposed a cell’s viscoelasticity measurement method based on the
spheroidization process of non-spherical shaped cell. The spheroidization process means
the process of some deformable non-spherical objects turning into spherical shapes due
to surface tension. We firstly introduced the method of recording the spheroidization
process of porcine fetal fibroblast and recorded the fetal fibroblast’s spheroidization pro-
cess. Secondly, we built the viscoelastic model for simulating non-spherical shaped cell’s
spheroidization process based on the fact that the capsule-like porcine fetal fibroblast will
finally become spherical (Figure 1). Then, we simulated the spheroidization process of
porcine fetal fibroblast and got the simulated spheroidization process. By changing the
parameters in the simulations, we got the elasticity and viscosity that best fitted the experi-
ments. The magnitude of the elasticity and viscosity of fetal fibroblast was in agreement
with those measured in other literatures. To verify the accuracy of this method, we imitated
the spheroidization process with silicone oil, a kind of viscous and uniform liquid with
determined viscosity. We did the silicone oil’s spheroidization experiment and simulated
this process. The simulation results fitted the experimental results well.

 

 

Figure 1. Spheroidization process of the capsule-like porcine fetal fibroblast. (a–d) From capsule-like
cell to spherical-like cell.

2. Materials and Methods

2.1. System Setup

The spheroidization experiment of porcine fetal fibroblast was performed on the
self-developed NK-MR601 micro-operation system [28–30] (Figure 2). The system con-
sists a microscope (CK-40, Olympus, Tokyo, Japan); a CCD camera (W-V-460, Panasonic,
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Osaka, Japan, frame rate: 20 frame/s); a motorized X-Y stage (travel range: 100 mm,
repeatability: ±1 µm/s, maximum speed: 2 mm/s); two X-Y-Z manipulators (travel range:
50 mm, repeatability: ±1 µm/s, maximum speed: 1 mm/s); a self-developed micro-injector,
providing negative pressure to aspirate the fetal fibroblast and positive pressure to eject
the fetal fibroblast; a self-developed motion control box, controlling the micro-platform,
micro-manipulators, and micro-injector through the host computer.

μ

μ

μ

μ

 

μ

 
 

 
 

Figure 2. NK-MR601 micro-operation system.

The silicone oil spheroidization experiment was performed on NK-MR601 with
the CCD replaced by a highspeed camera (C110, Miro, Wayne, NJ, USA, frame rate:
1000 frame/s).

The micropipettes used in the spheroidization experiments of porcine fetal fibroblast
and silicone oil were made from borosilicate glass tubes with an outer diameter of 1 mm and
an inner diameter of 0.8 mm. The micropipette used in the fetal fibroblast spheroidization
experiments were pulled by the puller (MODEL P-97, Sutter Instrument, Novato, CA,
USA), and fractured by the microforge (MF-900, NARISHIGE, Tokyo, Japan) with an inner
diameter of 10 µm. The micropipette used in the silicone oil spheroidization experiments
was pulled and fractured by hand by Yaowei Liu, with an outer diameter of 200 µm.

2.2. Preparation and Spheroidization of Porcine Fetal Fibroblast

We obtained the porcine fetal fibroblast from a sow at day 35 of pregnancy. After
removal of head, internal organs and limbs, the remaining parts were cut into pieces at
approximately 1 mm3. We smeared the pieces evenly in a 35 mm dish and cultured in Dul-
becco’s modified Eagle’s medium (DMEM), containing 15% fetal calf serum (FCS), 0.1 mM
non-essential amino acids (NEAA), 6 µL/mL Gentamycin and 0.05 mM L-glutamine. Cells
were cultured in a 37 ◦C humidified incubator containing 5% CO2. Cells were trypsinized
and cryo-preserved for use when cells grown to ~90% confluence.

The spheroidization experiments of porcine fetal fibroblast were carried out in Medium
199 (Sigma). Figure 3 shows the typical images of the porcine fetal fibroblast
spheroidization process:

(1) Give negative pressure in the micropipette to aspirate the cell into the micropipette;
(2) Give positive pressure in the micropipette to eject the capsule-like porcine fetal

fibroblast out of the micropipette;
(3) Record the length and the width of the non-spherical shaped cell;
(4) The end of the spheroidization process. The pressure was adjusted by hand. The

cells were placed near the tip of micropipette initially and aspirated into the mi-
cropipette for more than 10 s. The images were captured with 50 frames per second
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and measured with 2 frames per minute. The initial ratio was determined by the
inner diameter of micropipette and the cell volume in the experiment. The method of
detecting the size of capsule-like fetal fibroblast is described in Appendix A.

 

 

 

 

Figure 3. Typical images in the spheroidization process of porcine fetal fibroblast. (a–d) From porcine fetal fibroblast just
coming out of the micropipette to porcine fetal fibroblast becoming a sphere.

2.3. Spheroidization of Silicone Oil

Figure 4 shows the method of recording the silicone oil spheroidization process:

(1) Drop culture medium M199 (Sigma) into a petri dish (Corning, 430165 35 mm × 10 mm).
Overlay M199 drop with silicone oil (Sigma-Aldrich, St. Louis, MO, USA). The pink
liquid in Figure 4 represents M199 and the blue liquid represents the silicone oil.

(2) Move the micropipette tip into the silicone oil drop. Give negative pressure in the
micropipette to aspirate some silicone oil into the micropipette.

(3) Move the micropipette tip into M199 solution. Provide positive pressure in the mi-
cropipette to eject silicone into M199 solution. Record the silicone oil spheroidization
process with a high-speed camera.

 

 

 

 

Figure 4. (a) Drop M199 into a petri dish and overlay M199 with silicone oil; (b) aspirate silicone oil
into the micropipette; (c) move the micropipette tip into M199 and eject silicone oil.
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2.4. Viscoelastic Model

We use a viscoelastic model to study the spheroidization process. The cell is modeled
as homogeneous viscoelastic liquid, which is surrounded by infinitesimal thin cortical
layer. We use the Jeffrey’s viscoelastic fluid model (Equation (2)) because it is indepen-
dent of the frame of reference and the motion as a whole in space [31]. Besides, it has
only 2 additional parameters, while being able to imitate the viscoelastic behavior. More
complex models (e.g., heterogeneous liquid) are hard to modify the parameters to obtain
reliable results. In the simulation, the cortical layer is realized by surface tension. We made
the following assumptions:

(1) The inner material of fibroblast is homogeneous and isotropic. Based on this assump-
tion we can get global cell properties.

(2) The fibroblast is incompressible. It is for the ease of simulation.
(3) The influence of gravity and pressure variance because of different depth is negligible.

It is reasonable by comparing the gravity and pressure variance with hydrostatic
pressure (about 1/106 in micron scale).

∇
T =

∂T

∂T
+ (v·∇)T −∇v·T − T·(∇v)T (1)

λ
∇
T + T = 2ηE (2)

ρ
Dv

Dt
= ∇·(−pI + K + T) (3)

K = 2µE (4)

where
∇
T denotes the upper convection derivative [32] of T defined by Equation (1). T is

the viscoelastic stress tensor that changes with time according to Equation (2). v is the
velocity field. λ is the characteristic time. η is the viscosity in the viscoelastic term. E is the
strain-rate tensor. ρ is the density of porcine fetal fibroblast and is assumed to be constant
in the following simulation. p is the pressure. Dv/Dt is the material derivative of v. I is
the unit tensor. K is the shear stress tensor which can be obtained from Equation (4). µ is
another viscosity in the pure viscous term. Equation (3) is the Navier-Stokes equation.

An analogy of the model in one dimension can be illustrated as Figure 5. The total
stress tensor (right terms in the bracket of Equation (3)) is composed of hydrostatic pressure
−pI, viscous stress K and viscoelastic stress T. In this figure, E is the stiffness coefficient
of spring, η and µ are the viscosities of two dashpots, and λ = η/E. The bottom line
represents a Maxwell model, for which the relationship of strain rate e and stress σ is
λ

.
σ + σ = ηe in 1D case. By replacing the time derivative with upper convected derivative

and extend the equation to 3D tensor form, we get Equation (2). The usage of upper
convected derivative for continuum materials was argued by Oldroyd in [31].

,
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Figure 5. Illustration of viscoelastic model.

147



Sensors 2021, 21, 5561

2.5. Simulation of the Spheroidization Process

We used Ansys Student Fluent software to simulate the spheroidization processes.
Two-dimensional axisymmetric was adopted for efficiency.

For the simulation of fibroblast, we set the capsule-like porcine fetal fibroblast as a
cylinder in the middle and two hemispheres at both ends, as shown in Figure 6 (only 1/4
part was used by applying the axisymmetric and symmetric condition). In this paper, the
length was set as 20.8 µm, the width was set as 8.6 µm. The computation domain was a
rectangle of 16 × 10 µm2 which was divided into 0.1 × 0.1 µm2 structural quadrilateral
grids. The pressure variance in the scale of several micrometers is of the order of 0.01 Pa,
which is far less than the barometric pressure. Besides, it is balanced by the gravity, so we
neglected both pressure variance and the gravity. We used volume of fluid (VOF) model to
introduce the surface tension. Laminar flow was adopted because of low Reynolds number.
We set the four boundaries as axisymmetric, symmetric and pressure outlet, respectively.
The densities were set as 1080 kg/m3 [25] for fibroblast and 998.2 kg/m3 (the density
of water at 20 ◦C) for surrounding liquid. The surface tension coefficient T was set as
10 µN/m [33]. The viscosity η and elasticity E (E = η/λ) were introduced with user-defined
scalars (UDS, see Appendix B). Ansys Student Fluent software solves the momentum
Equation (3) without viscoelastic stress term T by default. We used user-defined scalars
(UDS) to insert T into the equation (see Appendix B for more details). To study the influence
of viscosity and elasticity, we firstly set λ = 1 s, and changed viscosity η as 10 Pa·s, 20 Pa·s,
50 Pa·s, 100 Pa·s, 200 Pa·s, and 500 Pa·s. Secondly, we set η = 500 Pa·s, and changed λ as
500 s, 100 s, 20 s, 1 s, 0 s, 1 s and 0.02 s [33]. The timestep was 3 s. Based on the results
obtained when the parameters selected in a wide range, we made more compact selections
and compared the results with experimental data. The one that fitted best was viewed as
measurement result.

μ μ
μ μ

 °
μ η η λ

λ η
η

λ

 

μ μ

μ

Figure 6. Capsule-like porcine fetal fibroblast.

For the simulation of silicone oil, the initial shape was set as axisymmetric while the
contour being obtained by image processing procedure (see Appendix A). The computation
domain was a rectangle of 500 × 200 µm2 which was divided into 2 × 2 µm2 structural
quadrilateral grids. As is shown in Figure 7, one boundary is symmetric axis and others
are pressure outlet. Using the contour obtained by image processing (Appendix A), a
user-defined function sets the corresponding region as silicone oil (secondary phase), while
the remainder as culture medium (primary phase). The viscosity µ was inserted by setting
the material property of silicone oil in the software. The viscoelastic stress term T was
removed because it was considered as pure viscous liquid. Volume of fluid model and
laminar flow was adopted. Then we run the simulation with 1 ms timestep. Please see the
simulation procedure details in Appendix B.
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λ
η

η

Figure 7. Geometric shape and boundary settings.

3. Results

3.1. Spheroidization Result of Porcine Fetal Fibroblast and Its Simulation

The porcine fetal fibroblast was used in the experiments.
The typical images in the spheroidization process of porcine fetal fibroblast have

been shown in Figures 1 and 2 (Video S1). The length and the width changing process
was shown in Figure 8. The whole spheroidization process took 15 min to reach a 90%
width–length ratio.

 

λ
η

η

Figure 8. Variation of porcine fetal fibroblast length and width with time.

We got the simulated width–length ratio at the condition that λ = 1 and changed
viscosity η, as shown in Figure 9. Video S2 shows the simulated spheroidization process
of porcine fetal fibroblast. The results show that a larger η will prevent the porcine fetal
fibroblast from turning into a sphere, and the spheroidization time becomes longer.
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Figure 9. The simulated spheroidization process when λ = 1 and viscosity η changed.

We got the simulated width–length ratio at the condition that η = 500 Pa·s and changed
λ, as shown in Figure 10. The experimental results showed that the spheroidization process
was more intense in the initial stage, but because the elasticity was smaller when λ was
larger, the small elasticity will bring a lag effect in the later stage of spheroidization, which
would make the later stage of spheroidization slow down significantly.

λ η

η
λ

λ

 

η λ

η λ

η

Figure 10. The simulated spheroidization process when η = 500 Pa·s and λ changed.

Finally, by changing the values of η and λ in the simulation experiment, different
curves of the spheroidization process of the simulated porcine fetal fibroblast were ob-
tained. By comparing with the curves of the spheroidization process obtained in the real
experiment, the elasticity and viscosity could be obtained. Figure 11 shows the length
and width variation of porcine fetal fibroblast with time in the experiment and simulation.
The viscosity η obtained in this experiment is 10 Pa·s and the elasticity E is 500 Pa. The
magnitude of the results was in agreement with the measured results in [29].
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Figure 11. Variation of porcine fetal fibroblast length and width with time in the experiment and simulation.

3.2. Spheroidization Result of Silicone Oil and Its Simulation

Figure 12 shows the typical images in the spheroidization process of silicone oil.
Video S3 shows this process of slowing down 100 times. Video S4 shows the simulated
spheroidization process of silicone oil.

 

Figure 12. Typical images in the spheroidization process of silicone oil. (a–d) From silicone oil just coming out of the
micropipette to silicone oil becoming a sphere.

We defined the time span from the release to 95% width–length ratio as spheroidization
time, which is denoted as ts. The ts was 80 ms in the experiment.

The viscosity and density of the silicone oil (Sigma-Aldrich) at 25 ◦C was 9.71 Pa·s and
0.971 g/mL. To simulate the spheroidization process of silicone oil, we also need to know
the surface tension coefficient with culture medium of silicone oil. We measured the surface
tension coefficient between silicone oil and culture medium by Du Noüy ring method [26],
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the coefficient was 0.024 N/m. The detail is shown in Appendix C. The method of detecting
the contour of the silicone oil is shown in Appendix A.

Figure 13 shows the simulation results of silicone oil with different viscosities and
surface tension coefficient. The R-square values of the fitted curves are 0.99 and 0.98. The
results revealed that spheroidization time increases linearly as viscosity and the reciprocal
of surface tension coefficient increases. The results showed that the spheroidization time ts

was 100 ms in the simulation, which was similar to the real experiment (80 ms).

(a) (b) 

 

Figure 13. Simulation results: (a) spheroidization time increases linearly as viscosity increases. (b) Spheroidization time
increases linearly as the surface tension coefficient increases.

4. Discussion

We should know that the results measured in this paper were based on the bulk
measurements, by which the cells were assumed as isotropic, homogeneous. However, in
reality cells are very heterogeneous and contain organelles. We also need to measure the
local force and dissipative gradients, as well as map them across the cell surface [34–36].
Considering the measuring efficiency, only two parameters are necessary to describe the
cellular mechanics, so the bulk measurement is more appropriate.

We used the cells in the suspension state instead of adherent state in this paper. Because
our method needs to aspirate to the whole cell into the micropipette, and it is difficult to
aspirate the adherent cells into the micropipette because of the adhesion. Since the whole
suspension cell was sucked into the micropipette, the cell spheroidization process was only
related to the shape of the micropipette. The seal between the cell and the micropipette
will not affect the spheroidization recording results, which can avoid the influence of seal
in the micropipette aspiration method.

We performed the cell experiments three times and the simulations 12 times per cell.
As the cells were collected from one batch, the experimental curves were very similar. The
parameters in the simulation were set not very accurate (just integers), so the results of these
three cells were the same. The measurement results may be significantly different among
different cell types or different cell batches. Our future work will focus on measuring the
viscoelasticity of different cell types and improving the simulation accuracy by adjusting
the parameters more accurately.

We could see that the simulation results shown in Figure 10 do not overlap with the
experiment results shown in Figure 7 exactly. We supposed that there were three reasons:

(1) The whole spheroidization process would take a tremendously long time in a
in vitro environment, which would influence the viscoelasticity of the cell a lot. We
only recorded the spheroidization process when the cells reached a 90% width–length
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ratio, which took about 15 min. Meanwhile, the simulation process recorded the whole
spheroidization process. So, the experiment results and the simulation results could not
overlap exactly.

(2) As mentioned above, the parameters in the simulation were not set very accurately
(just integers), so the simulation results could not exactly fit the experiment results.

(3) The initial velocity was set to zero. This may have caused an initial acceleration
stage from zero, while the non-zero initial shrink in velocity was found from the experiment.
The problem was handled by running several steps in advance.

We know that if the viscous term of a viscoelastic body is increased, then it takes
longer to get back to its original shape. Our results showed that a larger η will prevent the
porcine fetal fibroblast from turning into a sphere, which could further verify the validity
of our simulation results.

5. Conclusions

This paper presents a cell’s viscoelasticity measurement method based on the
spheroidization process of a non-spherical shaped cell. We firstly introduced the pro-
cess of recording the spheroidization process of porcine fetal fibroblast. We secondly built
the viscoelastic model for simulating a cell’s spheroidization process. We simulated the
spheroidization process of porcine fetal fibroblast and got the simulated spheroidization
process. Then we got the elasticity (500 Pa) and viscosity (10 Pa·s) of porcine fetal fibroblast
by identifying the parameters in the viscoelastic model. The results showed that the magni-
tude of the elasticity and viscosity were in agreement with those measured by a traditional
method. To verify the accuracy of the proposed method, we imitated the spheroidization
process with silicone oil, a kind of viscous and uniform liquid with determined viscos-
ity. We did the silicone oil’s spheroidization experiment and simulated this process. The
simulation results also fitted the experimental results well.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21165561/s1, Video S1: The spheroidization process of porcine fetal fibroblast (0 to 15 s:
slowing down 5 times; 16 to 23 s speeding up 100 times). Video S2: The simulated spheroidization
process of porcine fetal fibroblast. Video S3: The spheroidization process of silicone oil. Video S4:
The simulated spheroidization process of silicone oil.
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Appendix A. Size Measurements of Porcine Fetal Fibroblast and Silicone Oil

In the initialization step of the simulation, we chose the image where the porcine fetal
fibroblast and silicone oil were just out of the micropipette, then extracted its contour. The
flow chart of image processing is shown in Figure A1. After the processes, we got a list of
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contour points where x axis was the axisymmetric axis. As the contour was symmetric, we
used the upper half of it to conduct an axisymmetric simulation, which saved time and
computational resources, and was more convenient to show the results. For the consecutive
images, length and width were measured automatically for silicone oil and manually for
fibroblast because of the low contrast ratio.

 

μ μ

μ μ

 
−

φ

Figure A1. Image processing: (a) ROI of grayscale image; (b) binarized image; (c) axisymmetric contour; (d) upper side of
contour; (e) flow chart of image processing.

Appendix B. Simulation Procedure

We used Ansys Student Fluent to simulate the spheroidization process. The Fluent
software provides the volume of fluid (VOF) module for multiphase simulation such that
we can simulate the surface tension between cells and culture medium. Because the veloci-
ties in such processes are small (of the order of 1 nm/s), the Reynolds number is small, so
the laminar model was adopted. For the cell simulation, we used user-defined scalars (UDS)
to introduce the viscoelastic stress term. Details of the simulation are described below.

Geometry: rectangle region of 16 × 10 µm2 for fibroblast and 500 × 200 µm2 for
silicone oil;

Mesh: structural quadrilateral grids of 0.1 × 0.1 µm2 for fibroblast and 2 × 2 µm2 for
silicone oil;

Boundary conditions:

left and top—pressure outlet with 0 Pascal gauge pressure;
right—symmetric for fibroblast and pressure outlet for silicone oil;
down—axisymmetric;
Fluid filed settings:

General: 2D axisymmetric;
Models panel: multiphase—VOF (Phase Interactions—Surface Tension), Viscous (Laminar);
Materials: The density and viscosity are set in this stage. In this paper, the values are:

1080 kg/m3 of density and 500 Pa s of viscosity for fibroblast, 9.71 kg/m3 of density and
9.71 Pa s of viscosity for silicone oil, 998.2 kg/m3 (the density of water at 20 ◦C) of density
and 1.003 × 10−3 Pa s for surrounding liquid.

Initialization and UDS equations:

Ansys Student Fluent provides user-defined functions (UDF) for customizing fluid
simulation. In this paper, a C code file utilizing predefined macros sets the initial fibroblast
and silicone oil area, as well as introduces equations about viscoelastic stress T. To add
T into the momentum equation, four scalars were defined and added to the momentum
equation by DEFINE_SOURCE macro. The usage of UDF can be found in official ANSYS
Fluent UDF Manual. The initial velocities were set as zero.
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For an arbitrary user-defined scalar φ, Fluent solves the Equation (A1).

∂ρφ

∂t
+

∂

∂xi
(ρuiφ − Γk

∂φ

∂xi
) = S (A1)

where ρ is the density, u is the velocity, Γ is the diffusion coefficient, S is the source term.
The terms in the equation represent unsteady term, convective flux, diffusion and source
from left to right. Expanding Equation (2) and using Einstein summation convention, we
get Equation (A2):

λ
∂τij

∂t
+ λuk

∂τij

∂xk
− λτik

∂uj

∂xk
− λτkj

∂ui

∂xk
+ τij = µ(

∂ui

∂xj
+

∂uj

∂xi
) (A2)

The first term was added with DEFINE_UDS_UNSTEADY macro. The second
term was added with DEFINE_UDS_FLUX macro. Other terms were added with DE-
FINE_SOURCE macro. It should be noticed that for 2D axisymmetric setup in this paper,
the gradients along normal direction of the geometry plane were all zero. Therefore, only
four scalars τ11, τ12, τ21, τ22 were defined. Besides, a factor 2π should be multiplied for
volume and area because of axisymmetric condition according to the manual.

Solver: 1 ms of timestep for silicone oil and 3 s for fibroblast. For each time step,
iterate at most 100 steps with 0.001 as convergence absolute criteria.

Notes:

1. The quadrilateral grids are suggested for the meshing as it is more stable than
triangular grids in the simulation. We suppose that it was because triangular grids cause
larger curvature, which makes surface tension change dramatically within a local area.

2. The mesh size should not be too small, not only for the computation efficiency,
but also for the convergence. When reducing the mesh size down to a certain scale,
the simulation gets hard to converge. It is also supposed to be the result of large local
surface tension.

Appendix C. Surface Tension Coefficient Measurement of Silicone Oil

As is illustrated in Figure A2, when the interface between silicone oil and culture
medium was flat and the platinum ring was on the interface, we have

F0 + B = G (A3)

where F0 is the external force in this case, B is the buoyancy, G is the total weight of platinum
ring and its frame.

( )

ρ Γ
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଴ܨ + ܤ = ܩ

 

Figure A2. Du Noüy ring method to measure surface tension coefficient.
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When we pull the platinum ring up, it stuck the interface, causing a circle of interface
protruding (Figure A2), and an extreme thin film formed near the ring. Inner and outer
interface both contributed to the surface tension, i.e.,:

Ftotal_tension = 2πdγ (A4)

where γ was the surface tension coefficient.
The pull is a quasi-static process, we can get

Fm + B = G + Ftotal_tension (A5)

where Fm was the maximum external force in the process. The change of B was negligible
compared with change of external force, so we used the same notation B. Combining (A3),
(A4) and (A5), we get:

γ =
Fm − F0

2πd
=

∆F

2πd
(A6)

In this experiment, the diameter d was 14 mm, and we got that ∆F was 2.11 mN in
average, so γ was 0.024 N/m.
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Abstract: Conventional ultrasonic coherent plane-wave (PW) compounding corresponds to Delay-
and-Sum (DAS) beamforming of low-resolution images from distinct PW transmit angles. Nonethe-
less, the trade-off between the level of clutter artifacts and the number of PW transmit angle may
compromise the image quality in ultrafast acquisition. Delay-Multiply-and-Sum (DMAS) beamform-
ing in the dimension of PW transmit angle is capable of suppressing clutter interference and is readily
compatible with the conventional method. In DMAS, a tunable p value is used to modulate the signal
coherence estimated from the low-resolution images to produce the final high-resolution output and
does not require huge memory allocation to record all the received channel data in multi-angle PW
imaging. In this study, DMAS beamforming is used to construct a novel coherence-based power
Doppler detection together with the complementary subset transmit (CST) technique to further
reduce the noise level. For p = 2.0 as an example, simulation results indicate that the DMAS beam-
forming alone can improve the Doppler SNR by 8.2 dB compared to DAS counterpart. Another
6-dB increase in Doppler SNR can be further obtained when the CST technique is combined with
DMAS beamforming with sufficient ensemble averaging. The CST technique can also be performed
with DAS beamforming, though the improvement in Doppler SNR and CNR is relatively minor.
Experimental results also agree with the simulations. Nonetheless, since the DMAS beamforming
involves multiplicative operation, clutter filtering in the ensemble direction has to be performed on
the low-resolution images before DMAS to remove the stationary tissue without coupling from the
flow signal.

Keywords: delay-and-sum (DAS); delay-multiply-and-sum (DMAS); signal coherence; power doppler
detection; plane-wave (PW) imaging; complementary subset transmit (CST); coherent plane-wave
compounding (CPWC)

1. Background

Delay-and-Sum (DAS) beamforming is routinely adopted to produce image output in
medical ultrasound imaging by compensating the time delay of the received echo according
to the geometric path of propagation before coherent summation [1]. However, it suffers
from intrinsic limitations such as insufficient image resolution and noticeable off-axis
clutter. For plane-wave (PW) imaging which depends on the unfocused transmit wave
to illuminate a wide field-of-view [2], these limitations are notably evident. In single-
angle PW imaging, the received backscattered echoes from one PW transmit event are
processed using DAS beamforming in the direction of receiving channel to generate the
corresponding low-resolution image at frame rate on the order of kHz. Therefore, PW
imaging is also referred as ultrafast imaging. The image quality of PW imaging can be
improved by coherent plane wave compounding (CPWC) in which synthetic transmit
focusing is achieved from multi-angle PW transmit [3,4]. Specifically, low-resolution
images are firstly acquired from several PW transmit angles and then coherently combined
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to achieve the final high-resolution CPWC image. Considering an imaging depth of 75 mm,
the pulse-repetition-interval (PRI) for pulse-echo imaging will be 100 µs with the sound
velocity of 1.5 mm/µs. This corresponds to a frame rate of 10 kHz for low-resolution PW
imaging. Assuming that every 10 low-resolution images is coherently combined to improve
the image quality, the resultant high-resolution CPWC images will be produced at a frame
rate of 1 kHz. With this high frame rate, CPWC imaging has been utilized to detect the
motion of imaged objects in transient elastography [4,5] and Doppler flow imaging [6–13].
However, it should be noted that the image quality in CPWC imaging relies on the number
of low-resolution images involved in the compounding, and thus an inevitable trade-off
between the image quality and the frame rate exists. In other words, with just a few PW
transmit angles, the image quality in CPWC imaging is generally unsatisfactory due to the
presence of high clutter artifacts.

Note that the aforementioned CPWC imaging for each image pixel is actually per-
formed by coherently summing all the received channel data from all the PW transmit
angles. These data can be represented as an echo matrix comprising two dimensions of
the PW transmit angle and the receiving channel. Thus, the CPWC imaging is actually
constructed using two-dimensional DAS beamforming. Note that the signal coherence of
the two-dimensional echo matrix can be used to reject low-coherence clutters and thermal
noises to further improve the multi-angle PW image quality. One particular example is
Delay-Multiply-and-Sum (DMAS) beamforming. Originally, DMAS beamforming is devel-
oped to extract the signal coherence in the dimension of receiving channel by multiplying
the received echoes between every possible channel pair after time compensation [14].
In order to improve the computational efficiency of the original DMAS beamforming,
alternative high-order versions of DMAS beamforming have been recently proposed with
flexibly tunable image quality in [15,16]. Take the BB-DMAS [16] as an example, where a
rational p value is used to represent the order of DMAS beamforming. Note that a higher
image quality can be achieved by adopting a higher p value to emphasize more spatial co-
herence in DMAS beamforming. The implementation of BB-DMAS beamforming involves
the magnitude scaling of time-delayed channel signal by p-th root and the subsequent
p-th power after channel sum. DMAS beamforming has also been extended to multi-angle
PW imaging by extracting the signal coherence of two-dimensional echo matrix. In [17],
DMAS beamforming is applied in the dimension of receiving channel to exploit the spatial
coherence of synthesized echoes in different channels. The synthesized channel data is
produced by summing the echo matrix in the dimension of PW transmit angle for synthetic
transmit focusing as in CPWC imaging [17]. On the contrary, the two-dimensional spatial
coherence can be also derived directly from the entire echo matrix using echoes in both
dimensions [18].

In this study, a novel coherence-based DMAS power Doppler detection together with
complementary subset transmit (CST) is proposed for multi-angle PW imaging. Power
Doppler provides essential information of the backscattered power of flow signal and gener-
ally has higher sensitivity to small vessels than color Doppler [19,20]. This is because these
small vessels may not be detectable using velocity estimation in color Doppler due to noises.
The proposed method firstly adopts DMAS beamforming in the dimension of PW transmit
angle to suppress the background noise and clutter. Then, the CST technique is used to
further reduce the noise level in power Doppler detection by correlation of two complemen-
tary DMAS signals. Unlike the coherent flow power Doppler (CFPD) method [21,22] that
relies on short-lag spatial coherence [23] to extract the coherence of blood flow signal in the
dimension of receiving channel, the proposed DMAS beamforming is based on the signal
coherence among low-resolution images from distinct PW transmit angles. It is compatible
with current CPWC imaging and does not require huge memory allocation to retain the
entire channel data in the echo matrix. In other words, the delayed channel data is firstly
summed to one low-resolution image pixel. Then, DMAS beamforming in the dimension
of PW transmit angle can be performed by magnitude-scaling these low-resolution images
from distinct PW transmit angles before restoring the signal dimensionality to produce

160



Sensors 2021, 21, 4856

the high-resolution image after coherent compounding. Section 2 introduces the basics of
DMAS beamforming in the dimension of PW transmit angle for power Doppler detection
and the subsequent implementation of CST technique. Simulation methods in this study
are described in detail in Section 3, together with experimental setups. In Section 4, image
quality of the proposed DMAS-based power Doppler detection is quantitatively presented.
Section 5 concludes our results with discussions.

2. Theory

2.1. Basics of Power Doppler Detection

In Doppler ultrasound imaging, the motion of red blood cells in the vessel is detected
by repetitive pulse transmissions to observe the temporal variations of backscattered signals.
For each image pixel, the recorded signal corresponding to the f -th pulse transmission is
generally referred to as the f -th Doppler ensemble where f is the index of ensemble (f = 1, 2,
. . . , F). In other words, there are a total of F ensembles available for velocity estimation in
color Doppler and/or power estimation in power Doppler. Note that, in order to separate
the blood flow signal from the stationary tissue signal and the thermal noises, a temporal
clutter filter has to be applied to the Doppler ensembles to extract signal components with
frequencies within a low-order threshold and a high-order threshold. In other words,
the Doppler ensembles is band-pass filtered in the ensemble direction which is also called
the slow-time direction. In this study, the band-pass clutter filtering is implemented using
singular-value decomposition (SVD) [24,25] whose low-order and high-order thresholds
are both adaptively determined.

Conventionally, the blood flow estimation can be achieved by autocorrelation of these
Doppler ensembles as proposed in [26]. Specifically, the Doppler power is represented
using the zero-lag autocorrelation as

PD =
F

∑
f=1

∣

∣

∣
y f
∣

∣

∣

2
(1)

where y f is the f -th Doppler ensemble after beamforming. Note that the Doppler power in
Equation (1) is simply the summation of the squared magnitude of each Doppler ensemble.

In multi-angle PW imaging, the DAS beamforming (i.e., CPWC image) is the coherent
summation of low-resolution image pixels from distinct PW transmit angles. Therefore,
given the low-resolution image pixel as xm where m is the index of PW transmit angle
(m = 1, 2, . . . , M), the output of DAS beamforming is represented as

yDAS =
M

∑
m=1

xm (2)

Note that the summation in Equation (2) is to produce the high-resolution CPWC
image. After substituting Equation (2) into Equation (1), the conventional power Doppler
detection of DAS beamforming in CPWC imaging is calculated as
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In other words, the power of the high-resolution image is summed among ensembles
to provide the final power Doppler estimation of DAS beamforming.

2.2. Power Doppler Detection of DMAS Beamforming

The DMAS beamforming in this study is implemented using baseband data to elimi-
nate the need for oversampling of radio-frequency waveform [16]. Specifically, when the
baseband data for low-resolution image pixel from the m-th PW transmit angle (i.e., xm

in Equation (2)) is represented as xm = amejφm , DMAS beamforming in the dimension of
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PW transmit angle is performed by first maintaining the phase of low-resolution pixel but

adopting the p-th root to scale the pixel magnitude as
∧
xm = p

√
amejφm . Then, the p-th power

of the summation of magnitude-scaled low-resolution image pixels from all the available
PW transmit angles is performed to produce the final high-resolution image pixel. In other
words, DMAS beamforming in the dimension of PW transmit angle can be defined as

yDMAS =

(

M

∑
m=1

∧
xm

)p

=
(

wH∧
x
)p

(4)

where
w = [ 1 1 1 . . . 1 ]

T
= 1

∧
x = [ ∧

x1
∧
x2

∧
x3 . . .

∧
xM ]

T

Here, the symbol H represents Hermitian transpose and the real-valued weighting
vector w is actually a unity vector 1 to equally emphasize the contribution from all the
available PW transmit angles. For power Doppler detection, the magnitude of DMAS
image is averaged among consecutive ensembles before the calculation of image power. In
other words, the power Doppler of DMAS beamforming in this study is formulated as

PDDMAS =

(

F

∑
f=1

∣

∣yDMAS

∣

∣

)2

(5)

Though the proposed DMAS beamforming is also applicable to B-mode imaging,
it should be noted that the DMAS beamforming in this study is calculated from low-
resolution images after SVD clutter filtering in order to remove both stationary tissue and
noises for power Doppler estimation.

2.3. Power Doppler Detection of DMAS Beamforming with CST (DMAS-CST)

DMAS beamforming with CST technique depends on DMAS signals from two subsets
of PW transmit angles. The idea of complementary subset is similar to that in [27–29] but
is defined in the dimension of PW transmit angle instead of receiving channel. Specifically,
DMAS beamforming is performed using the available PW transmit angles in each transmit
subset and the beamforming output is denoted as yDMAS1 and yDMAS2, respectively, for
subset 1 and subset 2:

yDMAS1 =
(

wH
1
∧
x
)p

yDMAS2 =
(

wH
2
∧
x
)p

where the weighting vector w1 for subset 1 is related to the weighting vector w2 for subset
2 by w1 = 1−w2 to ensure the complementary property. Note that, when the total number
of available PW transmit angle is odd-valued, the subset 1 and 2 can share one specific PW
transmit angle to equalize the number of PW transmit angle in each subset. For example,
when there are totally seven PW angles in the transmit sequence, w1 and w2 can be
respectively defined as [1 1 1 0.5 0 0 0] and [0 0 0 0.5 1 1 1] so that each subset comprises half
of the total PW transmit angles. For even number of PW transmit angle, on the other hand,
any PW transmit angle should belong to either one of the two complementary subsets. The
two DMAS signals are then correlated to reduce the noise level and a square root of the
correlation is performed to restore the dimensionality of DMAS signal. In other words, the
DMAS-CST beamforming can be formulated as

yDMAS−CST =
√

yDMAS1 y∗
DMAS2 =

(

wH
1 R w2

)

p
2 (6)
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where the symbol * is for complex conjugate and R =
∧
x
∧
x

H
is the autocorrelation matrix of

magnitude-scaled low-resolution image pixels from different PW transmit angles (i.e.,
∧
x in

Equation (4)). Note that the power Doppler detection of DMAS-CST beamforming is also
implemented by ensemble averaging of yDMAS−CST before power estimation as

PDDMAS−CST =

(

F

∑
f=1

yDMAS−CST

)(

F

∑
f=1

yDMAS−CST

)∗
(7)

The signal flowchart of DMAS-CST beamforming for power Doppler estimation is
schematically represented in Figure 1. It should be noted that, when both w1 and w2
are replaced with the unity vector 1, power Doppler of DMAS-CST beamforming in
Equation (7) will degenerate to that of DMAS beamforming in Equation (5). In other
words, the original DMAS beamforming can be understood as a special case of DMAS-CST
beamforming. Moreover, it is expected that the achievable noise reduction in DMAS-CST
beamforming should rely on the number of ensembles. Note that the complementary
weighting vectors w1 and w2 can effectively eliminate the uncorrelated noise only when
the noise component in the autocorrelation matrix R is diagonal. However, this statistically
demands sufficient ensemble averaging for the noise component to converge to σ2

NI where
I is the identity matrix and σ2

N is the noise variance of magnitude-scaled low-resolution
image.

* 2
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Figure 1. Schematic diagram of DMAS-CST beamforming for power Doppler detection in multi-angle PW imaging. Note
that the wall filtering is performed on low-resolution images of each PW transmit angle before DMAS beamforming.

3. Methods

3.1. Simulation Setup

The Field II program [30,31] has been used for all simulations. The simulation
schematic is shown in Figure 2. A flow channel with a radius of 2 mm is embedded
in the speckle-generating tissue phantom to simulate the blood vessel with an inclined
angle of 45◦. The scatterers inside the flow channel are assumed to move according to
a parabolic velocity distribution (i.e., laminar flow) with the peak velocity at the center
of 15 mm/s. The scatterer density is set to contain about 10 scatterers per resolution cell
and the scattering magnitude of the tissue is assumed to be 60 dB higher than that of
the blood flow in the flow channel. White Gaussian noises are included into the simu-
lated channel waveforms before beamforming to achieve a channel signal-to-noise ratio
of 0 dB for the blood flow signal. A 128-elements linear array transducer was used for
both transmission and reception in the simulations. The transmit frequency is set to be
5 MHz. A total of 7 plane waves evenly spanning an azimuthal angular range of −7.5◦

to +7.5◦ are sequentially transmitted with a pulse-repetition-frequency (PRF) of 3.9 kHz
to produce low-resolution images of size 375 × 128 from distinct PW angles. Therefore,
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the compounded high-resolution imaging has a frame rate of approximately 556 Hz. Note
that the low-resolution images are constructed using baseband DAS beamforming in the
direction of receiving channels as conventional CPWC imaging. The PW transmit sequence
is repeated 15 times to provide an ensemble number of 15. Other detailed parameters
are shown in Table 1. For each PW transmit angle, the corresponding low-resolution
images from different ensembles are clustered in the ensemble direction to form a three-
dimensional matrix of 375 × 128 × 15 for SVD clutter filtering to eliminate high-frequency
noise and stationary tissue. In the simulation, the low-order and high-order thresholds of
SVD clutter filter are set to 2 and 10, respectively. Finally, the filtered low-resolution images
of different PW transmit angles were compounded using either DAS or DMAS processing
to produce the high-resolution power Doppler image with ensemble averaging.

−

 

Figure 2. Schematic diagram of the simulated flow channel in the speckle phantom. Note that the
intersection of the image plane of the array transducer and the cylindrical vessel will be an ellipse.

Table 1. The imaging parameter of Field II simulations.

Imaging System

Transducer Linear Array
Pitch 0.3 mm

Number of elements 128
Elevation focus 30 mm

Sampling frequency 20 MHz
Image size in pixels 375 (axial) × 128 (lateral)

Transmit Pulse

Center frequency 5.0 MHz
Excitation 3 cycles

PW transmit angle 7 (−7.5◦~+7.5◦)
Ensemble 15

PRF 3.9 kHz

Phantom

Speed of Sound 1540 m/s
Scattering magnitude 60 dB (tissue clutter)

0 dB (blood flow)
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3.2. In Vivo Experimental Setup

The animal data was provided by the S-Sharp Corporation (New Taipei, Taiwan).
The data was collected from a 6-month-old female New Zealand white rabbit. The rabbit
was anesthetized with an intramuscular injection of Zoletil® 50 according to its body
weight and placed on a warming pad to maintain its body temperature at 37 ◦C. The
L154BH linear array with a center frequency of 6.4 MHz was used in the experiment. The
experimental PW transmit sequence comprises 6 PW angles which equidistantly increasing
from −5◦ to +5◦ with a PRF of 4 kHz. The corresponding low-resolution images were
beamformed by Prodigy ultrasonic imaging system (S-sharp, New Taipei City, Taiwan)
and then processed offline using Matlab (The MathWorks, Natick, MA, USA) for SVD
clutter filtering. Therefore, the effective high-resolution frame rate is about 667 Hz. A total
of 64 ensembles were acquired and each ensemble is compounded from low-resolution
images from 6 angles. The detailed imaging parameters are shown in Table 2. In the in vivo
experiment, the low-order and high-order thresholds of SVD clutter filter are set to be 10
and 40, respectively. These thresholds are determined using the descendent magnitude
of each singular value. One typical example in Figure 3 demonstrates that the low-order
threshold is regarded as the turning point at which the curve of singular value has a slope
of −1 to indicate the beginning of the flattened curve. On the other hand, the high-order
threshold corresponds to where the curve of singular value is about to decrease linearly.
This is because the high-order singular value of white Gaussian noise should follow a linear
distribution under the logarithm scale [32]. Similar to the simulations, the SVD clutter
filter is also individually applied to the low-resolution images of each PW transmit angle.
Then, these filtered low-resolution images are coherently compounded using either DAS
or DMAS beamforming to produce the final high-resolution power Doppler image.

−

−

−

 

Figure 3. The curve of singular value of the in vivo experimental data and the corresponding
low-order and high-order threshold for SVD clutter filtering.

Table 2. The imaging parameter of in vivo experiment.

Prodigy Imaging System

Transducer L154BH
Pitch 0.3 mm

Number of elements 128
Elevation focus 20 mm

Sampling frequency 25.6 MHz
Image size in pixels 520 (axial) × 128 (lateral)

165



Sensors 2021, 21, 4856

Table 2. Cont.

Transmit Pulse

Center frequency 6.4 MHz
Excitation 5 cycles

PW transmit angle 6 (−5◦~+5◦)
Ensemble 64

PRF 4 kHz

3.3. Quantitative Analysis

In order to quantitatively compare the image quality among different beamforming
methods in power Doppler imaging, two region-of-interests (ROIs) are defined in the
power Doppler image to respectively represent the blood flow area and the background
area. The calculation of Doppler signal-to-noise ratio (SNR) and contrast-to-noise ratio
(CNR) are defined as follows [33]:

SNR = 10 · log10

(

Mblood

Mbackground

)

CNR = 10 · log10

(

|Mblood − Mbackground|
σbackground

)

where Mblood and Mbackground are the mean power of blood flow and background signals,
respectively, and σbackground represent the standard deviation of background signals. For
each power Doppler image in this study, its leftmost upper panel shows the corresponding
ROIs for the blood flow region (blue box) and the background region (white box).

4. Results

4.1. Simulations

Power Doppler images of the simulated flow phantom in DMAS beamforming and
DMAS-CST beamforming are respectively provided in the upper and lower panels of
Figure 4. Seven PW transmit angles are used for coherent compounding (i.e., [−7.5◦ −5◦

−2.5◦ 0◦ +2.5◦ +5◦ +7.5◦]). The flow velocity in the simulation is 15 mm/s and the ensemble
number for averaging is 15. The power Doppler images from left to right correspond to
different p values of 1.5, 2.0 and 2.5 in both DMAS and DMAS-CST beamforming while
DAS beamforming is also provided as a reference in the leftmost panels. Note that the
power level of Doppler image is represented using the brightness as shown in the color
bar. A brighter image pixel means that the Doppler power in this spatial location is
higher than that in other pixels. The background region (i.e., the white box) does not
enclose any flow vessel and thus its power only comes from the random noises. Since the
background region of DMAS image appears to be darker than that of DAS image, visual
observations indicate that the power Doppler images with DMAS beamforming alone
generally have a lower noise level in the background than that with DAS beamforming.
Specifically, the Doppler SNR increases from 17.1 dB in DAS to 21.8 dB, 25.3 dB, and 28.4 dB
in DMAS, respectively, with the p value of 1.5, 2.0, and 2.5. Take the p value of 2.0 in DMAS
beamforming as an example, the improvement in Doppler SNR is 8.2 dB compared to the
DAS counterpart. On the other hand, when DMAS beamforming is performed together
with the CST technique, it is also apparent in Figure 4 that the background noise can
be further suppressed to a lower level in DMAS-CST beamforming. The corresponding
Doppler SNR improves by another 6.4 dB, 6.0 dB, and 4.5 dB, respectively, for the p value
of 1.5, 2.0, and 2.5. Note that the improvement in Doppler SNR due to the CST technique
appears to decrease with the p value in DMAS beamforming. This observation will be
discussed later. Note that DAS beamforming with CST technique can also improve the
Doppler SNR but only by 3.4 dB.
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− − −
Figure 4. Simulated power Doppler images of flow phantom for DAS beamforming, DMAS beamforming with the p value
of 1.5, 2.0 and 2.5, respectively from left to right. Seven PW transmit angles are used (i.e., [−7.5◦ −5◦ −2.5◦ 0◦ +2.5◦ +5◦

+7.5◦]). Upper panels: without the CST technique. Lower panels: with the CST technique.

The Doppler SNR and CNR are also provided as a function of ensemble number
ranging from 1 to 15 in Figures 5 and 6. In Figure 5, it should be noted that the Doppler
SNR without the CST technique generally remains unchanged with the ensemble number
in both DAS and DMAS beamforming. This is because the incoherent summation of power
Doppler ensembles only helps to smooth the noise variation in the background but is not
able to suppress the noise level. With the CST technique, on the contrary, the achievable
Doppler SNR in both DAS-CST and DMAS-CST beamforming appears to consistently
increase with the ensemble number. This is as expected since the CST technique depends
on a diagonal autocorrelation matrix among PW transmit angles (i.e., R in Equation (6)) to
remove the uncorrelated random noises. Nonetheless, for random noises, it takes sufficient
realizations (i.e., sufficient power Doppler ensembles) for the autocorrelation matrix to
converge to the diagonal form. This is why the SNR improvement due to the CST technique
would increase with the ensemble number. Take DMAS beamforming with p value of
2.0 as an example, the CST technique improves the Doppler SNR by 2.9 dB and 6.0 dB,
respectively, when the ensemble number is 6 and 15. Similarly, the Doppler SNR in DAS
beamforming also improves by 1.7 dB and 3.4 dB due to the CST technique, respectively for
the ensemble number of 6 and 15. On the contrary, the Doppler CNR appears to increase
with the ensemble number no matter whether the CST technique is performed or not. This
comes from the reduction of noise variation in the process of ensemble averaging. For DAS
beamforming, however, the Doppler CNR without and with the CST technique almost
overlap with each other. In other words, the CST technique barely improves the Doppler
CNR in DAS beamforming. For DMAS beamforming, on the other hand, the Doppler CNR
markedly increases due to the CST technique for all p values considered here. Take the
p value of 2.0 as an example, the CST technique improves the Doppler CNR in DMAS
beamforming by 0.9 dB and 3.2 dB, respectively when the ensemble number is 6 and 15.
Nonetheless, it should be noted that the CST technique could adversely lead to the decrease
of Doppler SNR and CNR when the ensemble number is small (e.g., smaller than three in
the simulation as shown in Figures 5 and 6).
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Figure 5. Quantitative analysis of Doppler SNR in the simulations as a function of ensemble number for (a) DAS beamform-
ing and (b–d) DMAS beamforming with the p value of 1.5, 2.0, and 2.5, respectively.

 

−
−

Figure 6. Quantitative analysis of Doppler CNR in the simulations as a function of ensemble number for (a) DAS beam-
forming and (b–d) DMAS beamforming with the p value of 1.5, 2.0, and 2.5, respectively.

Since the DMAS-based power Doppler detection in this study relies on the signal
coherence among low-resolution images from different PW transmit angles, the effect of
the number of PW transmit angle should be considered. Figure 7 shows that the simulated
power Doppler images when the number of PW transmit angle is reduced to 5 (i.e., [−5◦

−2.5◦ 0◦ +2.5◦ +5◦]). All other imaging parameters remain the same as those in Figure 4.
Compared to its 7-angle counterpart in Figure 4, it should be noted that the 5-angle power
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Doppler images in Figure 7 exhibit higher background noise level and the resultant Doppler
SNR and CNR also decrease relative to those in Figure 4. For example, the Doppler SNR in
DMAS beamforming without CST technique decreases from 21.8 dB, 25.3 dB, and 28.4 dB
in Figure 4 to 19.8 dB, 22.6 dB, and 25.1 dB in Figure 7, respectively, with the p value
of 1.5, 2.0, and 2.5. In other words, when a smaller number of PW transmit angle is
used to construct the final high-resolution power Doppler image for a higher frame rate,
the Doppler SNR and CNR may decrease in DMAS beamforming. This implies that the
coherence-based suppression of random noises performs better when more realizations of
noise are available from distinct PW transmit angles. In DMAS-CST beamforming, on the
other hand, the Doppler SNR also decreases from 28.2 dB, 31.3 dB, and 32.9 dB in Figure 4 to
26.2 dB, 28.3 dB, and 29.4 dB in Figure 7. Note that the Doppler SNR in DAS beamforming
also decreases from 17.1 in Figure 4 to 15.7 in Figure 7. However, it should be taken
into considerations that the ensemble number of power Doppler image is fixed to 15 for
both 5-angle and 7-angle transmit sequences in this comparison. In practical applications,
DMAS-CST beamforming may be expected to suffer less from a smaller number of PW
transmit angle and will be discussed later.

 

− −
Figure 7. Simulated power Doppler images of flow phantom for DAS beamforming, DMAS beamforming with the p value
of 1.5, 2.0 and 2.5, respectively from left to right. Five PW transmit angles are used (i.e., [−5◦ −2.5◦ 0◦ +2.5◦ +5◦]). Upper
panels: without the CST technique. Lower panels: with the CST technique.

It has been clearly indicated in the theory section that the DMAS-based power Doppler
in this study is performed by averaging the magnitude of Doppler signal among different
ensembles and then the power of the averaged Doppler signal is estimated as in Equa-
tion (5). This is different from the conventional approach in which the power of Doppler
signal is averaged among ensembles as in Equation (1). The reason for performing ensem-
ble averaging of signal magnitude instead of signal power can be justified by the power
Doppler images as shown in Figure 8. In the upper panels, the power Doppler images are
constructed using ensemble averaging of signal magnitude for both DAS beamforming
and DMAS beamforming with the p value of 1.5, 2.0, and 2.5, respectively, from left to right.
In the lower panels, however, the power Doppler images are constructed using ensemble
averaging of signal power as in the conventional approach. Therefore, some of the panels
in Figure 8 are just duplicates of those in Figure 4. It is apparent that the power Doppler
images in the upper panels consistently have a lower noise level than their counterpart
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in the lower panels, especially for DMAS beamforming. Specifically, the Doppler SNR in
DMAS beamforming improves by 1.3 dB, 2.0 dB, and 2.8 dB, respectively for p values of
1.5, 2.0, and 2.5 when the ensemble averaging is switched from power to magnitude. Note
that the Doppler SNR in DAS beamforming also improves by 0.5 dB but this minor change
in noise level is not visually detectable in the corresponding power Doppler images.

 

− − −
Figure 8. Simulated power Doppler images of flow phantom for DAS beamforming, DMAS beamforming with the p value
of 1.5, 2.0, and 2.5, respectively, from left to right. Seven PW transmit angles are used (i.e., [−7.5◦ −5◦ −2.5◦ 0◦ +2.5◦ +5◦

+7.5◦]). Upper panels: ensemble averaging of signal magnitude. Lower panels: ensemble averaging of signal power.

4.2. Experiments

Experimentally acquired power Doppler images of the rabbit’s kidney are provided
in Figure 9 for DAS and DMAS beamforming without and with CST technique. Visual
observations also demonstrate that the power Doppler images with DMAS beamforming
generally has a lower noise level in the background than that with DAS beamforming.
These observations on experimental images are in agreement with those on simulations.
Specifically, the experimental Doppler SNR without CST technique increases from 25.6 dB
in DAS to 28.5 dB, 30.9 dB, and 33.0 dB in DMAS, respectively, with the p value of 1.5, 2.0,
and 2.5. Take the p value of 2.0 in DMAS beamforming as an example, the improvement
in experimental Doppler SNR is 5.3 dB compared to the DAS counterpart. On the other
hand, when DMAS beamforming is performed together with CST technique, it is also
apparent in Figure 9 that the background noise can be further suppressed to a lower level
in DMAS-CST beamforming. Specifically, the experimental Doppler SNR in DMAS-CST
beamforming improves by 6.5 dB, 5.9 dB, and 5.0 dB, respectively, with the p value of
1.5, 2.0, and 2.5, compared to those in DMAS beamforming alone. The efficacy of CTS
technique on alleviating uncorrelated noises is also consistent between the experimental
and the simulation results. Besides, though the CST technique in the experiments does
help to further boost the Doppler SNR, the achievable improvement also decreases with
the p value in DMAS beamforming.
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− − −
Figure 9. Experimental power Doppler images of rabbit’s kidney for DAS beamforming, DMAS beamforming with the
p value of 1.5, 2.0, and 2.5, respectively from left to right. Six PW transmit angles are used (i.e., [−5◦ −3◦ −1◦ +1◦ +3◦ +5◦]).
Upper panels: without the CST technique. Lower panels: with the CST technique.

The experimental Doppler SNR and CNR are quantitatively provided as a function
of ensemble number ranging from 1 to 64 in Figures 10 and 11. It should be noted that
the experimental Doppler SNR without the CST technique in Figure 10 generally remains
unchanged with the ensemble number for both DAS and DMAS beamforming. This
phenomenon agrees with the simulation results in Figure 5. In contrast, when the CST
technique is performed together with either DAS or DMAS beamforming, the experimental
Doppler SNR increases with the ensemble number. This is also consistent with that in the
simulations because sufficient power Doppler ensembles would allow the autocorrelation
matrix to be diagonal for the CST technique to remove uncorrelated noises. With the
p value of 2.0, the experimental Doppler SNR improves from 30 dB, 30.3 dB, and 30.9 dB in
DMAS beamforming alone to 31.6 dB, 34.5 dB, and 36.8 dB in DMAS-CST beamforming,
respectively, when the ensemble number increases from 16, 32, and 64. When the ensemble
number is small, however, it should be noted that the CST technique may adversely
compromise both Doppler SNR and Doppler CNR. For example, with the p value of
2.0, the Doppler SNR with only one ensemble actually decreases from 26.8 dB in DMAS
beamforming to 24.3 dB in DMAS-CST beamforming. This observation also agrees with
that in simulations. Actually, Figure 10 shows that the CST technique demands an ensemble
number larger than eight in the experiments to provided improvement in Doppler SNR for
both DAS and DMAS beamforming.

171



Sensors 2021, 21, 4856

Figure 10. Quantitative analysis of Doppler SNR in the experiments as a function of ensemble number for (a) DAS
beamforming and (b–d) DMAS beamforming with the p value of 1.5, 2.0, and 2.5, respectively.

 
Figure 11. Quantitative analysis of Doppler CNR in the experiments as a function of ensemble number for (a) DAS
beamforming and (b–d) DMAS beamforming with the p value of 1.5, 2.0, and 2.5, respectively.

In contrast, the Doppler CNR in Figure 11 increases with the ensemble number due
to the reduced variation of noise no matter whether the CST technique is performed or
not for both DAS and DMAS beamforming. For DAS beamforming, however, the CST
technique appears to barely improve the Doppler CNR for all number of ensembles. For
DMAS beamforming, on the other hand, the CST technique with sufficient ensembles could
provide noticeable improvement in Doppler CNR due to the suppressed noise background.
For example, the CST technique improves the Doppler CNR in DMAS beamforming by
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1.2 dB and 1.6 dB, respectively, with the ensemble number of 32 and 64 when the p value
is 2.0.

5. Discussion and Conclusions

In this study, DMAS beamforming of low-resolution images from distinct PW transmit
angles is used to construct a novel coherence-based power Doppler detection in multi-angle
PW imaging. Moreover, the CST technique is also developed to further reduce the noise
level in power Doppler detection by correlation of two DMAS signals from complementary
subset transmit. Since the proposed method is based on signal coherence of the echo matrix
in the dimension of PW transmit angle, it can be readily applied to boost the performance
of conventional CPWC imaging by replacing DAS beamforming of low-resolution images
with DMAS beamforming. Note that the proposed DMAS beamforming of low-resolution
images does not require the raw channel data and thus is relatively free from huge memory
allocation to record the entire echo matrix in multi-angle PW imaging. Specifically, DMAS
beamforming in the dimension of PW transmit angle is performed by first maintaining
the phase of low-resolution pixel but adopting the p-th root to scale the pixel magnitude.
After the summation of magnitude-scaled low-resolution image pixels from available PW
transmit angles, the p-th power is performed to produce the final high-resolution image
pixel. Here, the p value represents the degree of signal coherence considered in DMAS
beamforming and thus a higher p value generally produces higher-quality images. For
the implementation of CST technique, complementary transmit subsets can be defined
from the available PW transmit angles to produce the corresponding signals in DMAS
beamforming. Then, the two DMAS signals can be correlated to reduce the noise level in
the final power Doppler imaging. Note that the CST technique is also applicable to DAS
beamforming by correlating two complementary DAS signals from conventional CPWC
imaging.

It should be emphasized that both the DMAS beamforming and the CST technique
improve the quality of power Doppler image by including the signal coherence into the
image output. They are intrinsically different from a simple nonlinear mapping of the
pixel value which would darken any low-intensity pixel regardless of whether the pixel
belongs to noise or blood flow and thus degrade the image contrast. In order to validate
this, a weaker flow is simulated as shown in Figure 12 by reducing the peak velocity to only
5 mm/s while all other simulation parameters and signal processing remain unchanged
to those in Figure 4. Note that the weaker flow intensity is demonstrated both by the
lower brightness of the flow region and the corresponding Doppler SNR in Figure 12 than
its counterpart in Figure 4 for each panel. With the same noise level in the simulation
of both Figures 4 and 12, their difference in Doppler SNR actually represents the image
contrast of power Doppler detection between the stronger and the weaker flow signals.
Take the DMAS-CST beamforming in the lower panels as an example, the Doppler SNR
decreases from 28.2 dB, 31.3 dB, and 32.9 dB in Figure 4 to 23.6 dB, 26.5 dB, and 27.8 dB in
Figure 12, respectively, with the p value of 1.5, 2.0, and 2.5. Therefore, the image contrast
of DMAS-CST beamforming between Figures 4 and 12 is respectively 4.6 dB, 4.8 dB, and
5.1 dB. Compared to the DAS reference whose image contrast is 4.3 dB (i.e., 17.1–12.8),
DMAS-CST beamforming exhibits no significant change in image contrast with marked
suppression in background noises. In other words, the proposed DMAS-CST beamforming
can preserve the image contrast of conventional DAS beamforming while improving the
Doppler SNR significantly.
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Figure 12. Simulated power Doppler images of flow phantom for DAS beamforming, DMAS beamforming with the p value
of 1.5, 2.0, and 2.5, respectively from left to right. Upper panels: without the CST technique. Lower panels: with the CST
technique. All simulation parameters and signal processing remain the same as those in Figure 4 except that the peak flow
velocity is reduced from 15 mm/s to 5 mm/s to produce a weaker flow after clutter filtering. Note that the brightness of
each panel is normalized to that of its counterpart in Figure 4.

Moreover, in the proposed DMAS and DMAS-CST beamforming, the Doppler power
is estimated using a square-of-sum approach as defined in Equations (5) and (7). Compared
to the conventional sum-of-square power estimation in Equations (1) and (3), the square-
of-sum approach additionally includes the cross-correlation among ensembles into the
estimated Doppler power. Therefore, the square-of-sum power can be understood as the
sum-of-square power compensated by the cross-correlation among ensembles. Note that,
with a sufficient number of ensembles, the cross-correlation term will statistically approach
zero for uncorrelated thermal noises but will remain large for true flow signal. This is
exactly why the averaging of signal magnitude before taking power (i.e., square of sum) in
upper panels of Figure 8 always provides higher Doppler SNR and CNR than the averaging
of signal power (i.e., sum of square) in the corresponding lower panels. This observation is
also similar to that reported in [34] which uses larger lag of autocorrelation to represent the
Doppler power.

Both simulations and experiments have been performed to validate the DMAS-based
power Doppler imaging. Results indicate that, since the random noises have a low co-
herence among low-resolution images, the proposed DMAS beamforming is capable of
producing a lower background noise level than the DAS counterpart and thus the achiev-
able Doppler SNR increases with the p value in DMAS beamforming. Besides, when the
CST technique is integrated with DMAS beamforming, the corresponding Doppler SNR
further improves by another 6.4 dB, 6.0 dB, and 4.5 dB in the simulations for DMAS-CST
beamforming with the p value of 1.5, 2.0, and 2.5, respectively. Note that the improvement
in Doppler SNR due to the CST technique decreases with the p value. Our experimental
results also confirm the decrease of achievable improvement in Doppler SNR with the
p value in DMAS-CST beamforming. This is because the DMAS beamforming without CST
technique already helps to suppress not only the low-coherence image clutter but also the
uncorrelated random noises. Consequently, when the random noises have been largely
suppressed by adopting a higher p value in DMAS beamforming, there will be fewer resid-
ual noises left for the CST technique to remove. This is probably why the efficacy of CST
technique on Doppler SNR appears to degrade with the increasing p value in DMAS-CST

174



Sensors 2021, 21, 4856

beamforming. On the other hand, the CST technique in DAS beamforming barely leads to
any improvement in Doppler CNR, as demonstrated by the overlap of Doppler CNR with-
out and with CST technique in both Figures 6a and 11a. This observation is consistent with
that reported in [28] even though their complementary subsets are defined in the receiving
aperture while ours are defined in the PW transmit angle. Nonetheless, it should be noted
that the CST technique in DMAS beamforming does provide a marked improvement in
Doppler CNR. Moreover, in order to remove the random noises effectively, the CST tech-
nique demands sufficient ensembles to ensure the diagonal autocorrelation matrix of noises
from distinct PW transmit angles. Consequently, the CST technique may adversely degrade
the quality of power Doppler detection when the number of ensembles is small. As the two
complementary weighting vectors w1 and w2 are selected to respectively correspond to
the negative and the positive PW transmit angles in this study, it can be generalized to any
complementary pair. Theoretically, the complementary pair with interleaved PW transmit
angles should be preferred to minimize the angle difference between the two subsets. This
is because, when the imaged features have a certain orientation, a large difference in PW
transmit angle between the two subsets could make the imaged features more visible in
one transmit subset than the other. In this case, these particular features will be relatively
suppressed by the correlation of the two complementary DMAS signals as compared to
other features without obvious orientations.

Our results also indicate that the performance of DMAS-based power Doppler imaging
would improve with the number of PW transmit angles. This is because the image clutter
and noises can be better distinguished from the true flow signal by comparing among the
low-resolution image pixels from more PW transmit angles. Nonetheless, it should be noted
that the aforementioned observation is based on the same number of ensemble for two PW
transmit sequences with different number of PW transmit angle. In practical applications,
the number of PW transmit angle is actually related to the achievable number of ensemble
for averaging. For example, with a temporal window of 1 s for Doppler detection and a
PRI of 100 µs, the number of high-resolution ensembles will be 2000 and 2500, respectively
for a PW transmit sequence with 5 angles and 4 angles. For DMAS beamforming without
CST technique, since the corresponding Doppler SNR in both simulations and experiments
generally remains unchanged with the number of ensemble, the 5-angle PW transmit
sequence will be preferred due to its larger number of PW angles for better coherence
estimation in DMAS beamforming. For DMAS-CST beamforming, on the contrary, the
corresponding Doppler SNR noticeably increase with the number of ensemble and thus
the advantage of the 5-angle PW transmit sequence could be compromised by its smaller
number of ensemble compared to that of the 4-angle PW transmit sequence. In other words,
DMAS-CST beamforming may suffer less from the smaller number of PW transmit angle
due to the corresponding increase in the number of ensemble.

One major limitation of DMAS-based power Doppler imaging may be its computa-
tional efficiency. Since the proposed DMAS beamforming involves multiplicative operation
of the low-resolution images from distinct PW transmit angles, the low-resolution images
have to be firstly grouped according to its PW transmit angle and then each group is
individually band-pass filtered in the direction of ensemble using SVD to remove the
stationary tissue before DMAS beamforming. Otherwise, if the band-pass filtering is per-
formed after DMAS beamforming, the multiplicative coupling between the blood flow
and stationary tissue will be no longer removable. Consequently, the band-pass filtering
has to be repetitively performed by M times where M is the total number of PW transmit
angle for DMAS beamforming. For DAS beamforming (i.e., CPWC imaging), on the other
hand, its linear operation allows the band-pass clutter filter to be implemented in the
final high-resolution images to ease the computational burden. Note that, however, the
computational complexity in clutter filtering increases not only for the proposed DMAS
beamforming but also for any nonlinear beamforming such as CFPD in [21]. In this case,
a simpler filter such as Finite Impulse Response may be preferred instead of the SVD filter
in this study for real-time implementation of DMAS-based power Doppler imaging.
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Abstract: Accurate brain tissue segmentation of MRI is vital to diagnosis aiding, treatment planning,
and neurologic condition monitoring. As an excellent convolutional neural network (CNN), U-Net is
widely used in MR image segmentation as it usually generates high-precision features. However, the
performance of U-Net is considerably restricted due to the variable shapes of the segmented targets
in MRI and the information loss of down-sampling and up-sampling operations. Therefore, we
propose a novel network by introducing spatial and channel dimensions-based multi-scale feature
information extractors into its encoding-decoding framework, which is helpful in extracting rich
multi-scale features while highlighting the details of higher-level features in the encoding part, and
recovering the corresponding localization to a higher resolution layer in the decoding part. Concretely,
we propose two information extractors, multi-branch pooling, called MP, in the encoding part, and
multi-branch dense prediction, called MDP, in the decoding part, to extract multi-scale features.
Additionally, we designed a new multi-branch output structure with MDP in the decoding part to
form more accurate edge-preserving predicting maps by integrating the dense adjacent prediction
features at different scales. Finally, the proposed method is tested on datasets MRbrainS13, IBSR18,
and ISeg2017. We find that the proposed network performs higher accuracy in segmenting MRI brain
tissues and it is better than the leading method of 2018 at the segmentation of GM and CSF. Therefore,
it can be a useful tool for diagnostic applications, such as brain MRI segmentation and diagnosing.

Keywords: magnetic resonance images; brain tissue segmentation; multi-scale feature learning;
multi-branch pooling; multi-branch dense prediction; multi-branch output

1. Introduction

The segmentation of brain tissues from magnetic resonance (MR) images is of primary
importance for subsequent diagnosis, pathological analysis, prognosis assessment, and
brain development monitoring [1]. MR images have different kinds of modalities, including
T1, T1C, T2, PD, T1IR, and FLAIR, and each reflects particular characteristics of tissue
regions in brain.

For example, both T2 and FLAIR sequences describe low signals in the white matter
region and high signals in the gray matter region. T2 depicts marked high signals for the
cerebrospinal fluid, where FLAIR shows low or no intensity signals [2,3]. Hence, we can
aggregate these multiple modalities to capture richer information to improve brain tissue
segmentation performance.

Generally, the goal of brain segmentation is to classify brain voxels as three major
brain structures: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF).
Traditional manual segmentation is time-consuming and tedious, and it is easy to produce
bias due to the operator’s subjective experience. Thus, the research on automatic brain
tissue segmentation algorithm has been receiving extensive attention [4–7].

A few machine learning methods for automatic brain tissue segmentation have been
proposed in literature, including methods based on hand-crafted features [7–10] and
methods based on multi-atlas registration [11,12]. However, the performances of these
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methods are limited, owing to the fuzzy brain tissue edge [13], the multi-source noise, and
the inhomogeneous intensity in brain MR images.

Recently, deep learning has been extensively applied in medical image segmentation;
for example, segmenting local lesions such as tumors [14–16] and organs such as brain
tissues [5,17,18]. By pooling features with different resolutions in the encoding path and
recovering sharp object boundaries in the decoding path, the U-Net [19] can capture rich
contextual information because of this encoding-decoding manner. The U-Net framework
and its extensions have become the most common deep neural networks used in medical
image segmentation.

However, it still faces challenges considering the complex anatomical structures and
variable shapes of brain tissues. Five examples are shown in Figure 1, where the intensity
of white matter is similar to the gray matter in the rugged edge (in the yellow box), hence,
it is difficult to segment these brain tissues successfully because of the description of
confused boundaries.

 

Figure 1. Illustration of complex anatomical structures and variable shapes in MRBrain2013S dataset.
The first row lists the brain MR images in different areas. The second row shows the corresponding
ground truth labels, where the colors denote different regions of the brain: red represents the
cerebrospinal fluid (CSF), green the gray matter (GM), and blue the white matter (WM). Other tissues
are represented with gray.

In terms of segmenting brain tissues accurately, we discovered that the problem of
the U-Net-based models is the lack of multi-scale context information with a suitable
receptive field. Unfortunately, the exploitation of multi-scale CNN features for semantic
segmentation is a challenging task.

Conventionally, the multi-scale technique can be divided into two typical strategies:
pooling at multiple scales and convoluting at multiple fields-of-views. For the former, [20]
applies pooling operations with different grid scales. However, without a suitable number
of grid scales, the detailed boundary information will be lost. For the latter, mainstream
methods [21,22] adopt multiple rates of atrous convolution with a larger receptive field
to harness multi-scale context information. However, although they can capture global
information by multiple rates of atrous convolution, it is easy to encourage irrelevant
redundant information [23] if without a suitable receptive field. In [21,22], extracting the
multi-scale information is encoded in the last feature map; however, extracting multi-
scale information in the previous feature layer is equally important, especially in medical
image processing.

In addition, the above methods focus on extracting the multi-scale feature information
on the spatial dimension. To learn better feature representation, the channel dimension-
based multi-scale feature extracting is crucial; however, the related study is still lacking.
Zhang et al. [24] suggest that a structure called “Densely Adjacent Prediction” might be
used to encode spatial information into channels, and utilizes the adjacent channel infor-
mation to predict results; however, it lacks the complementary multi-scale features [25].
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To solve the aforementioned problems, https://orcid.org/0000-0001-7365-0053, (ac-
cessed on 29 April 2021) jointly obtain high-precision multi-scale CNN features. In this
work, we propose to segment brain tissues with a novel Multi-scale Spatial and Channel
Dimension U-Net (MSCD-UNet).

Our proposed architecture is based on UNet and influenced by the information ex-
tractors named multi-branch pooling (MP) and multi-branch dense prediction (MDP). To
overcome the limitation of the 3D-UNet network, we propose a novel network by embed-
ding the MP and MDP into 3D-UNet. The embedded network can capture more context
cues while enhancing the details of multi-scale information by using the extractor MP in the
encoding part and recovering the corresponding localization to a higher resolution layer by
using the extractor MDP in the decoding part. Extensive experiments on three benchmarks
with MRBrain2013, IBSR18, and ISeg2017 datasets demonstrate that our approach performs
competitively against other state-of-the-art methods. The contributions of our paper are
itemized in the following:

1. We have proposed a novel network by introducing spatial dimension and channel
dimension-based multi-scale CNN feature information extractors into its encoding-
decoding framework. In the encoding part, we propose the multi-branch pooling
information extractor, called MP, to capture multi-scale spatial information for the
information compensating. As pooling is easy to lose the useful spatial information
when the feature map resolution is reduced, we propose the MP by using multiple
max pooling with different kernel sizes in parallel to reduce the information missing
and collect the neighborhood information with a suitable receptive field;

2. In the decoding part, we propose the multi-branch dense prediction, an information
extractor, called MDP, to capture multi-scale channel information for the informa-
tion compensating. During the decoding phase, after the maps resolution upsizing,
the spatial information in these decompressed feature maps is fixed and the de-
tailed information is represented more in channel dimension, so we consider that
the prediction results at the adjacent position are related to the result of the center
position. We divided the prediction result into multiple channel groups, and the
multi-scale channel information of the center position can be created by averaging
these groups for the purpose of information compensation. In addition, we designed
a multi-branch output structure with MDP in the decoding part to form more accurate
edge-preserving predicting maps by integrating the dense adjacent prediction features
at different scales.

The two proposed ideas are first used in this paper. We carry out extensive experi-
ments on three benchmarks (MRBrainS12, IBSR18, and ISeg2017) to evaluate our method.
The results have proved the feasibility of our proposed method and the performance
of improvement.

The remainder of the paper is structured as follows. The related work of brain tissue
segmentation is described in Section 2. In Section 3, a detailed scheme of our solution is
presented, including spatial-based multi-scale feature extractor in encoding, channel-based
multi-scale feature extractor in decoding, multi-branch output structures, and MSCD-UNet.
We perform MSCD-UNet experiments with MRBrain2013, IBSR18 and ISeg2017 datasets in
Section 4, and discuss the results in Section 5. Finally, we conclude the paper with future
work suggestions in Section 6.

2. Related Works

In this section, we briefly describe the related work of MRI brain tissue segmentation.
Subsequently, we list the typical brain segmentation approaches in three categories: atlas-
based registration, traditional machine learning-based, and deep learning-based. Atlas-
based approaches are widely used in multi-modal circumstances [26,27]. These methods
rely on registering several atlases to the target image, and then propagating the manual
labels to this image. The label fusion strategy [28–30] is used to adjust the registered
labels of different atlases to form the final segmentation. Because the accuracy of the
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registration processing is the key affecting the final segmentation result, it needs a large
number of target templates to adapt the difference of brain anatomy, and these approaches
are computationally expensive and perform poorly.

To address the above problems, many traditional methods based on machine learning
are applied to segment brain tissues. For example, [31] adopted both intensity and spatial
features to complete brain segmentation by using support vector machine. Tong et al. [17]
used discriminative dictionary learning and sparse coding techniques to label brain tis-
sues. Wang et al. [32] effectively integrated 3D Haar-like features from multi-source
images together by utilizing the random forest technique to perform tissue segmentation.
Zhang et al. [33] proposed a novel hidden Markov random field (HMRF) model which can
encode spatial information through the mutual influences of neighboring sites to improve
its accuracy and robustness. K. Mishro et al. [34] proposed a type-2 AWSFCM clustering
algorithm to perform segmentation tasks. It assigned the problematic equidistant pixels to
a single cluster by offering larger weight to pixel closing to the expected decision boundary.
However, the main limitation of these traditional methods is that the intensity profiles of
more detailed brain tissues overlap [16], and it is hard to distinguish between tissues in
different brain regions.

Recently, deep learning methods based on CNN have become a powerful tool for
segmenting brain tissues, which can overcome the drawback of atlas-based registration
and traditional machine learning models. Zhang et al. [35] trained a CNN model for infant
brain tissue segmentation by harnessing 2D single patches on axial plane slices of T1, T2,
and FLAIR images. Moeskops et al. [36] introduced multiple patch sizes and multiple
convolution kernel sizes into CNN to obtain multi-scale information to recognize the
detailed information for brain tissue segmentation. Chung et al. [37] proposed to combine
the dynamic random walker with the decay region of interest into CNN to acquire smooth
segmentation of subcortical structures. However, these patch-based voxel classification
methods still face troubles such as the limitation of local information and the complexity of
boundaries surrounded by adjacent voxels.

Recently, fully CNN (FCNN) has been widely applied in brain segmentation to solve
the above problems, as they predict the labels of voxels within the input patch simultane-
ously. Nie et al. [38] trained a shared network for each modality image, then fused their
high-layer features in the final predicting layer. Xu et al. [39] regarded three serial slices as
input of three channels to predict the middle slice by using the fully CNN. Chen et al. [40]
proposed a model named VoxResNet to segment brain MR images, which can jointly
encourage features of high-level context information and low-level image appearance to
compensate the missing information at different levels. Dolz et al. [41] proposed Hyper-
DenseNet, which can learn more complex combinations between modalities to expand
the learning ability of all levels of abstraction and representation. Li et al. [42] captured
and aggregated multi-scale features of brain tissues by using a multi-modality aggre-
gation network named MMAN to accomplish brain segmentation with better accuracy.
Chen et al. [43] presented a Dense-Res-Inception network to segment the cerebrospinal
fluid, which is able to produce distinct features in terms of intensity, location, shape, and
size. Lei et al. [44] proposed a dual aggregation network to adaptively aggregate differ-
ent information of infant brain MRI modalities. Qamar et al. [18] proposed to combine
dense connection, residual connection, and inception module to achieve excellent results.
Yu et al. [45] developed a densely connected 3D-DenseVoxNet to preserve maximum infor-
mation flow to ease the network training. Taoc et al. [46] presented a network very deep in
architecture based on dense convolution network for volumetric brain segmentation. They
used a model of bottleneck with compression to reduce the number of feature maps in each
dense block, so as to reduce the number of learned parameters and result in computational
efficiency. Dolz et al. [47] proposed a FCNN that adopts 3D spatial context of triplanar
data and both global and local information for MRI brain segmentation. Sun et al. [48] pro-
posed a volumetric feature recalibration (VFR) layer, which could richly capture the spatial
contextual information, then leverage it for volumetric weighting between spatial layers.
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An in-depth summarization of some of the related works in brain MRI segmentation
along with techniques, advantages, and limitations is documented in Table 1.

Table 1. An overview of some related works on brain MRI segmentation problems.

Paper Technique Advantage Limitation

[27–31] Atlas-based registration
Robustness to weak edges, strong

adaptability.

Limited by the fuzzy brain tissue
edge, multi-source noise, and

inhomogeneous intensity.

[31] SVM

Preserves information in the
training images, and easy to

implement.

Response time increase
dramatically with dataset size.

Slow training, memory intensive,
and performance patient-specific

learning.

[17]
Discriminative dictionary

learning

[32] Hidden Markov random field

[33] Clustering algorithm

[35–37] Patch-wise CNN

Fast, easy to implement, and low
resource hungry.

Capture discriminative
features from a large input patch.

Sensitive to the patch size, lack of
global information, difficult to

converge small dataset.

[18,41,43–47]
FCNN with dense

connection
Extract more reasonable and

contextual information. Large training time and storage
space. High computational

complexity.[48]
FCNN with richer spatial

information
Learn required weight for spatial

feature extracting.

In this paper, we present a 3D U-Net-based architecture that includes multi-branch
pooling and multi-branch dense prediction to capture the multi-scale features, which are
the important factors that enable a FCNN to capture the complex contextual information
and enlarge its limited receptive field.

3. Materials and Methods

Deep learning, one of the most effective methods in computer vision, is widely used.
As illustrated in Figure 2, we designed a novel, fully convolutional neural network (FCNN)
constructed by a 3D UNet with the proposed feature information extractors (MP and MDP).
The proposed network is called Multi-scale MSCD-UNet. The details of the proposed
approach are listed in the next subsection.

3.1. Model Overview

In Figure 2, the input slices were randomly cropped with the same center point from
3 modalities (T1, FLARI, T1_IR); thus, they have the corresponding position information.
The concrete architecture of the MSCD-UNet consists of three main modules: MP, MDP,
and multi-branch output. We exploit MSCD-UNet to capture the rich multi-scale semantic
information in the encoding path by using multiple max pooling with different kernel sizes
in parallel, and allow the detailed object boundary recovering in the decoding path by
dividing the dense prediction maps into multiple groups. For each scale in the decoding
path, we use a concatenation operation to connect these dense prediction maps for the
information compensating. The multi-branch output module under a deeply supervised
network component aims at largely discovering the learning ability of CNN from bottom to
top layers, and producing more precise segmentation results by integrating the predicting
maps of identical size at the last layer.
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Figure 2. The architecture of proposed MSCD-UNet for brain segmentation consisting of MP, MDP, and the multi-branch
output module. Three input samples with size 32 × 32 × 32 were randomly cropped with a same center point from
3 modalities (T1, T2-FLARI, T1_IR), they have the corresponding position information. Solid red box represents the
subnetwork for T1 MR image.

3.2. Multi-Branch Pooling and Multi-Branch Dense Prediction

The information loss of down-sampling and up-sampling operations of an FCNN-
based model is a common problem, which is mentioned as the weak ability of feature
extracting in the encoding and decoding paths. In the encoding path, the repeated ac-
cumulation of pooling and convolution with strides at consecutive layers meaningfully
reduces the spatial resolution of feature maps, then causing a loss of spatial information.
In the decoding path, deconvolutional layers have been used to recover the correspond-
ing localization for the higher resolution layer; it will result in great losses in channel
dimension. In order to enhance the ability of feature extracting in spatial and channel
dimensions, we propose to utilize a multi-scale spatial and channel dimensions-based
network to capture higher semantic information during encoding and gradually recover
the spatial information during decoding.

Multi-branch pooling (MP): pooling is employed to improve the invariants of the
transformed image, the compact representations of semantic information, and the better
robustness to noise and clutter [49]. The size of the feature map can be reduced by using
different pooling scales, which will effectively ensure the validity of information and speed
up the calculation. Empirically, max-pooling is widely used in the field of medical image
processing; however, it is easy to lose the useful spatial contextual information when the
feature map resolution is reduced. In order to reduce the loss of information, inspired
by [20], they have adopted multiple rates of atrous convolution in parallel to harness
multi-scale context information. However, although they can capture global information
by multiple rates of atrous convolution, it is easy to encourage irrelevant redundant
information without a suitable receptive field. Thus, we propose multi-branch pooling
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to collect the multi-scale spatial information during the encoding procedure, which in
parallel consists of multiple max pooling with different kernel sizes. The parallel max-
pooling separates the feature maps into different adjacent regions and produces pooled
representations for the same location, while the neighborhood information with a suitable
receptive field can be captured for the information compensating. After the MP operation,
these parallel feature maps pooled with different kernels finally have identical size, and
each time the feature map size is reduced by factor of two. In addition, we can see from
Figure 3, the intensities of different brain tissues in different local regions of the brain
are close to each other; thus, a lot of redundant information will be produced by using
atrous convolution with a large receptive field. However, the proposed MP, as illustrated
in Figure 4, can capture the multi-scale context information with a suitable receptive field.

 

Figure 3. Example of the modality of T1_IR from patient no. 5 MRI. In this example, the intensities of
different brain tissue in the different local brain regions are close to each other, like the examples in
the red boxes.

 

K K
Figure 4. Encoding path with multi-branch max pooling.

Our proposed MP contains a three-branch structure with bin size 2 × 2 × 2, 3 × 3 × 3,
and 5 × 5 × 5 in first pooling stage, and a two-branch structure with bin size 2 × 2 × 2 and
3 × 3 × 3 in last pooling stage. The key idea of MP is to use suitable kernels, whose size is
controlled by the parameter K. In order to gain the optimal combination of kernel size K,
we enumerate different kernel sizes and validate the performance respectively; the results
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are detailed in Section 4.1. Additionally, we perform extensive experiments to compare the
performance between the max pooling and the average pooling in Section 4.1.

Multi-branch dense prediction (MDP): as in the work of [19], the decoding module
consists of a series of simple bilinear up-samplings by a consecutive factor of 2, which
could be regarded as a naive decoding module. However, this naive decoding module
may not fully recover the segmented object details. During the decoding phase, the
compressed feature maps from the deepest encoding layer will be used to recover feature
maps resolution by using deconvolution and up-sampling operation. After the maps
resolution upsizing, the spatial information in these decompressed feature maps is fixed
so the detailed information is represented more in channel dimension; thus, it implies we
will be supposed to focus on the collection of complex information in channel dimension.
Inspired by [24], considering that the predict results at the adjacent position are related
to the result of the center point, they have divided the feature channels into one group
in each up-sampling operation, where the number of feature channels has been fixed,
resulting in a loss of information. In order to enhance the ability of feature extracting in
channel, we design a channel-based multi-scale feature extractor (see Figure 5), named
MDP, in which the feature channels are divided into multiple groups to free the fixed
feature channels; the result of center point can be created by averaging these groups for the
information compensating.

 

(݈, ݊,݉)
(݈ − 1, ݊ + 1,݉ + 1)(݈, ݊,݉) 	݇ଵ × ݇ଵ × ݇ଵ, ݇ଶ × ݇ଶ × ݇ଶ, ݇ଷ × ݇ଷ × ݇ଷ݇ଵ × ݇ଵ × ݇ଵ, ݇ଶ × ݇ଶ × ݇ଶ, ݇ଷ ×݇ଷ × ݇ଷ R	R௟,௠,௡௞ଵ = 1݇ଵ × ݇ଵ × ݇ଵ 	 ෍ ௟ା௥ିቔ௞భଶݕ ቕ,௠ା௦ିቔ௞భଶ ቕ,௡ା௧ିቔ௞భଶ ቕ(௥×௞భା௦ା௧)଴ஸ௥,௦,௧ழ௞భ ,

R௟,௠,௡௞ଶ = 1݇ଶ × ݇ଶ × ݇ଶ 	 ෍ ௟ା௥ିቔ௞మଶݕ ቕ,௠ା௦ିቔ௞మଶ ቕ,௡ା௧ିቔ௞మଶ ቕ	(௥×௞మା௦ା௧) ,଴ஸ௥,௦,௧ழ௞మR௟,௠,௡௞ଷ = 1݇ଷ × ݇ଷ × ݇ଷ 	 ෍ ௟ା௥ିቔ௞యଶݕ ቕ,௠ା௦ିቔ௞యଶ ቕ,௡ା௧ିቔ௞యଶ ቕ(௥×௞యା௦ା௧)଴ஸ௥,௦,௧ழ௞య ,
R௟,௡,௠ 	(݈, ݊,݉) ,݈)௟,௡,௠௖ݕ ݊,݉) c

Figure 5. The components of multi-branch dense prediction (MDP).
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For the decoding path, the feature point at the spatial location (l, n, m) is responsible
for its semantic information. In order to collect as much spatial information as possible
into channels, this information extractor can be considered to predict results at the adjacent
position, e.g., (l − 1, n + 1, m + 1). When obtaining the final predicted results, results at the
center position (l, n, m) can be created by averaging the related scores. Concretely, suppos-
ing that the three window sizes are k1 × k1 × k1, k2 × k2 × k2, k3 × k3 × k3, respectively,
we divided the feature channels into three groups k1 × k1 × k1, k2 × k2 × k2, k3 × k3 × k3,
respectively. The outputs of MDP R are formed as follows:

Rk1
l,m,n =

1
k1 × k1 × k1

∑
0≤r,s,t<k1

y
(r×k1+s+t)

l+r−⌊ k1
2 ⌋, m+s−⌊ k1

2 ⌋, n+t−⌊ k1
2 ⌋

, (1)

Rk2
l,m,n =

1
k2 × k2 × k2

∑
0≤r,s,t<k2

y
(r×k2+s+t)

l+r−⌊ k2
2 ⌋, m+s−⌊ k2

2 ⌋, n+t−⌊ k2
2 ⌋

, (2)

Rk3
l,m,n =

1
k3 × k3 × k3

∑
0≤r,s,t<k3

y
(r×k3+s+t)

l+r−⌊ k3
2 ⌋, m+s−⌊ k3

2 ⌋, n+t−⌊ k3
2 ⌋

, (3)

where Rl,n,m represents the result at the position (l, n, m) and yc
l,n,m is the feature map at

position (l, n, m) belonging to channel group c. The MDP scheme is illustrated in Figure 5.
We employed MDP as the output of our decoding module (see Figure 2). We set

k1 = 1, k2 = 3, k3 = 4 to conduct our experiments. In order to prove the validity of MDP,
we tested the baseline model U-Net only with k1 = 1 in the experimental section, and the
results show that the MDP can improve the final performance. The results are detailed in
Section 4.2.

3.3. Multi-Branch Output Modules and Loss Functions

The idea of multi-branch output modules is widely used in the deeply supervised
network. In view of our proposed network, collecting multi-scale information in the
decoding path can encourage more reliable and accurate predictions of the final results.
Thus, we integrate multiple branch output in each scale after MDP operation (see Figure 2
for an illustration). Concretely, given a total H branch output, each output will generate
the prediction by an up-sampling operation with the associated weights. The multiple loss
function of the whole network can be defined as a weighted sum of all of the branch output
loss; its calculation formula is as follows:

Lossside(W, w, gT) =
H

∑
h=1

βhlh
side

(

W, wh, gT
)

, (4)

where βh stands for the weight of the hth output loss function, lh
side is the cross-entropy loss

function, and the count of the additional output H is set to 3. lside is unfolded with the
following formula:

lside

(

W, wh, gT
)

= − ∑
i∈gT

∑
c

ωcgTclogP
(

W, wh
)

, (5)

where gT is the label of ground truth, c denotes the cth classification label and ωc is the
associated weight, and P(·) indicates the output of network as the probabilistic prediction
in the cth output way. Finally, a fusion layer can be applied to aggregate the prediction
from each additional output by:

Loss f use(W, w, f ) = ∅

(

gT, σ

(

H

∑
h=1

fn Aph
side

) )

, (6)
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where fn represents the fusion weight, Aph
side indicates the activation of the hth output way,

σ denotes the softmax activation function, and ∅ is the cross-entropy loss function. Finally,
the final loss function of the network can be formed as:

Loss f inal = Loss f use(W, w, f ) + Lossside(W, w). (7)

3.4. Network Architecture

The U-Net [19] has been widely applied in medical image segmentation, which
adequately combines the low-level high resolution and the high-level low resolution
feature maps. Our proposed MSCD-UNet is similar to the 3D-UNet [50], but it can make
up for the deficiency of information missed in U-Net by using MP and MDP to capture
rich multi-scale context information.

The architecture of MSCD-UNet in this paper is shown in Figure 2. We follow the
strategy in [48], where sub-volumes of 32 × 32 × 32 are used as input for training. Instead
of using the standard 3D U-Net with multi-channel inputs, we use a parallel feed forward
network with different modalities and fuse their deep-high level features for voxel-wise
prediction. The parallel feed forward network consists of three parts: input part, encoding
part, and decoding part. The input part is divided into three parallel paths where the
input data are T1, T2-FLAIR, and T1-IR, respectively. The encoding part includes two
stages, each stage contains two 3 × 3 × 3 convolution layers and each is followed by
a batch normalization (BN) and a non-linear activation function (ReLU). At the end of
each stage, the MP is attached to reduce resolution. The number of feature channels is
doubled after each stage. Similarly, the decoding part also contains two stages, each stage
consists of a deconvolution layer of 2 × 2 × 2 followed by BN and ReLU. There are also
two 3 × 3 × 3 convolution layers each followed by BN and ReLU. Additionally, MDP
is used to collect complex multi-scale channel information to recover the corresponding
localization to higher resolution layer in each stage. Finally, a fusion layer can integrate
the prediction result from each MDP output to produce more accurate edge-preserving
segmentation results.

3.5. Dataset Introduction

Our proposed method is successful on the MRBrainS13 dataset of brain segmentation
challenge. The method is evaluated in this section by three different datasets: MRBrainS13,
IBSR18, and ISeg2017.

(1) MRBrainS13 is from the official website [51]. In the training dataset, it has five
brain MR images, including 2 male subjects and 3 female subjects, and each subject is
associated with 3 modality-channels (i.e., T1, T1_IR, FLAIR) and the manually marked
labels of 4 classes, namely, gray matter (GM), white matter (WM), cerebrospinal fluid (CSF),
and background, as shown in Figure 6. In the test dataset, it has 30 brain MR images. All
the modality has been bias-corrected and the data of each subject is aligned. The voxel
size is 0.958 mm × 0.958 mm × 3 mm for all modalities. Each modality of the MRI data is
represented by a 240 × 240 × 48 volume;

(2) IBSR18 is also used to evaluate our MSCD-UNet [52]. The IBSR18 training dataset
contains 18 subjects, each subject in training data has a single T1-weighted modality. All
volumes have a size of 256 × 256 × 128 voxels, with voxel space ranging from 0.8 mm ×
0.8 mm × 1.5 mm to 1.0 mm × 1.0 mm × 1.0 mm. A total of 4 anatomical brain structures
are targeted for segmentation.

(3) ISeg2017 is also used to evaluate our MSCD-UNet [53]. ISeg2017 dataset has
the combined modalities of T1w and T2w. MRT1 images are obtained with 144 sagittal
slices utilizing the following parameters: flip angle = 7◦, TR/TE = 1900/4.38 ms, and
resolution = 1 × 1 × 1 mm3. Likewise, MR-T2 images are obtained with 64 axial slices by
using: flip angle = 150◦, TR/TE = 7380/119 ms, and resolution = 1.25 × 1.25 × 1.95 mm3.
Ten infant subjects with manual labels were provided for training.
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× × × ×

 

Figure 6. Example of MR images with different image modalities and the labels manually marked
by experts; the first three images from left to right are FLAIR, T1, and T1_IR. The fourth image is
the ground truth labels where the colors denote different regions of brain tissues: red represents
cerebrospinal fluid (CSF), green the gray matter (GM), and blue the white matter (WM). Gray denotes
the other tissues.

3.6. Evaluation Metrics

The following common segmentation indicators are employed to evaluate and com-
pare our model with other state-of-the-art methods. The Dice Coefficient (DC), the 95th
percentile of the Hausdorff Distance (HD), and the Absolute Volume Difference (AVD)
are applied on MRBrainS13 to complete our experiments. For the IBSR18, DC is used for
evaluation [54]. For the ISeg2017, DC and ASD is used for evaluation.

Dice coefficient (DC) is defined by the area overlap between the ground truth and
segmentation prediction results as:

DC(G, P) = 2
G ∩ P

G + P
× 100%, (8)

where G is the ground truth and P represents the predicted segmentation result. DC is a
metric of area overlap between the predicted segmentation result P and the ground truth G.

Because the conventional Hausdorff distance is very sensitive to the outliers, the Kth

ranked distance, i.e., h95 = Kth
p∈Pming∈G ‖ g − p ‖, is used as to suppress the outliers [52];

it is defined as:
HD(G, P) = max{h95(G, P), h95(P, G)}, (9)

A smaller value HD(G, P) represents a higher proximity between ground truth and
segmentation result.

The absolute volume difference (AVD) is used to evaluate the difference between the
predicted volume and the true volume as:

AVD(G, P) =

∣

∣Vg − Vp

∣

∣

Vg
× 100%, (10)

where Vp is the volume of prediction and Vg is the volume of truth. A lower value of AVD
means the ground truth and prediction result are closer to each other.

The Average Surface Distance (ASD) is used to calculate for the predicted result P and
the corresponding ground truth G; it is defined as:

ASD(G, P) =
1
2

(

∑a∈G minb∈pd(a, b)

∑ G
+

∑b∈p mina∈gd(b, a)

∑ P

)

, (11)

where d(a, b) =‖ a − b ‖ represents Euclidean distance between points a and b.
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3.7. Implementation Details

Tensorflow is used on the workstation with a NVIDIA GTX_1080Ti GPU in our
experiments. In the pre-processing step for the MRBrainS13, IBSR18, and ISeg2017 datasets,
MR images are normalized with the zero-mean method, which is calculated as follows:
(1) each image is processed by subtracting a Gaussian smoothed image and applying a
contrast-limited adaptive histogram equalization to enhance local contrast, (2) the resulting
intensity value is subtracted by the mean intensity value and then divided by the standard
deviation.

In the training phase, to avoid overfitting, data augmentation techniques (flipping,
rotation, elastic stretching, shifting, zoom) are applied in the training procedure to get
good performance. The network is trained for 18,000 iterations with ADAM optimizer
and Xavier initialization, and the epoch is set as 1. The learning rate is set as 0.001, then
being reduced by a factor after every 5000 iterations. Due to the limited capacity of GPU
memory, for the input samples and the label samples, both of them with size 32 × 32 × 32,
are randomly cropped with a same center point from 4 modalities (T1, FLARI, T1_IR, the
label image); thus, they have the corresponding position information. A total of around
72,000 sub-volume samples are extracted by random sampling to feed into the network. For
the loss function, the weight of hth output loss function βh is set as [1,1,1], the associated
weight of the cth class label ωc is set as [1,1,2,2], and the fusion weight fn is set as [1,1,1].

In the test phase, the final prediction result is obtained by the majority voting strategy
on the results of overlapping with a stride of 8.

4. Results

We performed an ablation study to investigate the efficacy of employing multi-branch
pooling (MP), multi-branch dense prediction (MDP), and multi-branch output module by
using five-fold cross-validation.

4.1. Ablation for Multi-Branch Pooling (MP)

In order to gain the optimal combination kernel sizes of MP, we enumerated different
kernel sizes and test the performance on the MRBrain13 training dataset. We tried different
kernel sizes K ranging from 2 to 7 to exploit the optimal combination in the two pooling
stages. We named the combination of kernel in the first pooling stage “FP”, and the
combination of kernel in the second pooling stage “SP”. In the case K = 7, which roughly
equals to the feature map size (8 × 8), the structure becomes “really global pooling”. The
results are presented in Table 2. From the results, we can find that the performance is better
when the “FP” is the combination kernel size of 5, 3, 2, and “SP” is the combination kernel
size of 3, 2. When the “FP” is 2 and “SP” is 2, it represents the standard 3D-UNet.

Table 2. Performances of the combination kernel sizes in the two pooling stages by 5-fold cross-
validation in MRBrain13 training dataset (DC:%, HD:mm, AVD:%). The “FP” represents the first
pooling stage, the “SP” represents the second pooling stage, and the “K” represents the combination
of kernels.

GM WM CSF

K K DC HD AVD DC HD AVD DC HD AVD

FP 7,5,3,2 SP 7,5,3,2 82.47 2.10 7.99 83.59 3.61 7.71 78.22 3.30 8.61

FP 5,3,2 SP 5,3,2 83.12 1.94 7.79 85.40 2.89 7.52 81.45 2.58 8.59

FP 5,3,2 SP 3,2 86.08 1.71 6.76 89.02 1.76 6.71 84.15 2.24 7.82

FP 5,3,2 SP 2 84.50 1.75 7.01 86.04 2.75 7.17 83.23 2.44 8.02

FP 3,2 SP 3,2 85.98 1.90 7.22 88.90 2.32 6.59 84.63 2.18 8.13

FP 3,2 SP 2 82.25 2.03 8.07 84.34 3.48 7.42 83.01 2.98 8.66

FP 2 SP 2 85.94 1.85 7.09 88.83 2.39 6.82 83.79 2.31 8.30
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In additional, in order to exploit the collecting ability of spatial information between
max pooling and average pooling, each max pooling was replaced with average pooling
in MP. The result of UNet_MP_Aver is shown for MP using average pooling in Table 3. It
indicates that the UNet_MP_Max achieves higher performance over the UNet_MP_Aver.
Comparing with average pooling, max pooling can effectively reduce the collection of
redundant information.

Table 3. Performances of UNet, UNet_MP_Max, and UNet_MP_Aver by 5-fold cross-validation (DC:%, HD:mm, AVD:%).

Tissue GM WM CSF

Evaluation Metric DC HD AVD DC HD AVD DC HD AVD

UNet 85.94 1.85 7.09 88.83 2.39 6.82 83.79 2.31 8.30

UNet_MP_Max 86.08 1.71 6.76 89.02 1.76 6.71 84.15 2.24 7.82

UNet_MP_Aver 85.08 1.98 8.05 88.27 2.23 7.47 82.71 2.70 8.84

4.2. Ablation for Multi-Branch Output with Multi-Branch Dense Prediction (MDP)

As described in Section 3.2, we utilized MDP on the feature maps after using the
concatenation layer. To analyze the performance of using MDP at each branch output,
Table 4 provides the results of each branch output (B1, B2, B3) with MDP in each scale, in
which B1-MDP is 1/4 scale of output, B2-MDP stands for 1/2 scale, and B3-MDP represents
1/1 scale. Additionally, B1, B2, and B3 respectively represent the branch output without
MDP. According to the results (displayed in Table 4), it can be seen that the performance
is improved by increasing the scale of feature maps and the results of Dice score on WM,
GM, and CSF satisfy B1-MDP < B2-MDP < B3-MDP, and B1 < B2 < B3. The fusion of multi-
branch output is the key prediction result in the proposed network because it controls the
network prediction compensation and performance in different scales. When fusing the
branch output prediction with B1-MDP + B2-MDP + B3, named as B4, the segmentation
performance is obviously improved for the evaluation metrics on GM and CSF compared
with those of two other fusions, B5 (B1 + B2 + B3) and B6 (B1-MDP + B2-MDP + B3 MDP).

Table 4. Performances of B1, B2, B3, B1-MDP, B2-MDP, B3-MDP, B4, B5, B6, and MSCD-UNet by
5-fold cross-validation (DC:%, HD:mm, AVD:%).

Tissue GM WM CSF

Evaluation Metric DC HD AVD DC HD AVD DC HD AVD

B1 72.35 3.12 8.37 75.97 2.79 9.31 70.59 3.78 11.47

B2 75.42 3.06 7.92 79.49 2.37 8.92 77.51 3.69 10.15

B3 (UNet) 85.94 1.85 7.09 88.83 2.39 6.82 83.79 2.31 8.30

B1-MDP 73.04 2.05 8.14 74.33 2.93 9.56 71.06 3.02 9.75

B2-MDP 76.08 2.19 7.66 76.02 2.53 8.74 77.15 3.24 9.82

B3-MDP 85.88 2.01 8.05 88.87 2.23 7.47 83.81 2.70 8.84

B4 86.12 1.91 6.81 88.30 2.06 7.17 83.98 2.23 8.43

B5 85.96 1.93 7.05 89.03 1.88 7.03 83.62 2.40 8.11

B6 85.97 1.99 6.81 89.30 2.09 7.12 83.86 2.31 8.55

MSCD-UNet 86.41 1.52 5.76 89.18 2.13 7.21 84.29 2.16 7.73

Figure 7 provides a visual comparison of the segmentation results produced by the
trained UNet and our MSCD-UNet on the MRBrainS13 dataset. It shows that, with MP
and MDP, more accurate segmentation results can be generated. Specifically, additional
details are preserved, including boundaries and edges.
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Figure 7. Segmentation results of the UNet and MSCD-UNet on the MR BrainS13 dataset. The rows
show the segmentation results of different slices. From first column to last column: FLAIR, manual
segmentation, segmentation result of UNet, segmentation result of MSCD-UNet. Center patch in
solid yellow box of each segmentation result is highlighted. Each color denotes different brain tissue
class, i.e., gray matter (blue), white matter (green), cerebrospinal fluid (red), and other tissues (gray).

Finally, it is observed that the result using MSCD-UNet (UNet_MP_Max + B4) is
visually more accurate than those of other fusion strategies.

We also evaluate the MP and MDP on IBSR18 by five-fold cross-validation, where the
IBSR18 consists of a larger single-modality T1-weighted MRI with more tissue labels. The
evaluation is performed by using five-fold cross-validation on 18 subjects. However, the
proposed MSCD-UNet has three channels as the input. Thus, a single subnetwork (e.g.,
subnetwork for T1 MR images presented in Figure 2) was reserved in MSCD-UNet while
the remaining network structures were removed. The results are shown in Table 5. The
Dices on GW, WM, and CSF are 85.39%, 89.08%, and 88.14% for UNet, respectively, and
89.82%, 91.18%, and 90.57% for MSCD-UNet, respectively. It reveals that, along with the
using of MP and MDP, the performance of MSCD-UNet is obviously improved. Figure 8
provides a visual comparison of the segmentation results produced by the trained UNet
and MSCD-UNet on the IBSR18 dataset.

Table 5. Cross-validation results of MRI brain segmentation using UNet and MSCD-UNet on IBSR18.
(DC:%).

Evaluation Metric DC

Tissue GM WM CSF

UNet 85.39 89.08 88.14

MSCD-UNet 88.42 90.31 90.57
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Figure 8. Segmentation results on the IBSR dataset using UNet and MSCD-UNet. The rows show the
segmentation results of different slices. From first column to last column: T1, manual segmentation,
segmentation result of UNet, segmentation result of MSCD-UNet. Center patch in solid yellow box
of each segmentation result is highlighted. Each color denotes different brain tissues classes, i.e., gray
matter (green), white matter (blue), cerebrospinal fluid (red), and other tissues (gray).

We have evaluated our proposed MSCD-UNet on ISeg2017, where the ISeg2017
consists of T1W, T2W, and label image. Like [44], the evaluation is performed by using
nine subjects for training and one subject for validation. We evaluated our results on the
ninth subject of the dataset. However, the proposed MSCD-UNet has three channels as
the input. Thus, a subnetwork (e.g., subnetwork for T1, FLARI MR images presented
in Figure 2) was reserved in MSCD-UNet while the remaining network structures were
removed. The results are shown in Table 6. The Dices on GW, WM, and CSF are 91.36%,
89.91%, and 94.70% for UNet, respectively, and 92.17%, 90.47%, and 95.60% for MSCD-
UNet, respectively. We can see that using the MP and MDP can yield improvements over
the baseline of 3D-UNet.

Table 6. The validation results of MRI brain segmentation using UNet and MSCD-UNet on ISeg2017.

Methoed
GM WM CSF Average

DSC ASD DSC ASD DSC ASD DSC

UNet 0.9136 0.354 0.8991 0.385 0.9470 0.135 0.9136

Ours 0.9217 0.322 0.9047 0.362 0.956 0.110 0.9274

4.3. Comparison with Existing State-of-the-Art Methods

We compare the results between our proposed MSCD-UNet and the state-of-the-art ap-
proaches on MRBrainS13 online test dataset. The segmentation of WM, GM, and CSF is eval-
uated by using the three metrics. A comparison listed in Table 7 indicates that the MSCD-
UNet achieves better performance than many state-of-the-art methods [39–41,46,55,56].
The reason that our MSCD-UNet performs better is that our model can capture multi-scale
information in spatial and channel dimensions by using MP and MDP to alleviate the lack
of contextual information and the information loss during the encoding and decoding.
Comparing with the similar U-Net architectures [42,48], Li et al. [42] have proposed a
Dilated-Inception block to extract multi-scale features from brain MRI; however, it is easy
to harness the irrelevant redundant information by using a larger dilation rate. In order
to avoid harnessing the irrelevant redundant information, the proposed MP can capture
multi-scale feature information with a suitable receptive field. From Table 7, we can see
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that our proposed architecture achieves better performance than [42]. Sun et al. [48] had
the leading method in 2018; however, our proposed method obtained the best score on the
GM and CSF, although [48] has a higher score on the CSF. Additionally, our architecture
is parameter more efficient compared to [48], with 15 million learned parameters, less
than [48], which has 20 million learned parameters. Our proposed multi-branch pooling
(MP) and multi-branch dense prediction (MDP) can capture multi-scale feature information
with a suitable receptive field, and it is sensitive to segment these brain tissues in edge
because the intensity of tissues in edge vary greatly. Thus, our method achieves the best
performance on the GM and CSF due to the greatly variation of intensity in the edge.

Table 7. A comparison with the state-of-the-art methods on MRBrainS2013 online test Dataset.

Tissue GM WM CSF

Evaluation Metric DC HD AVD DC HD AVD DC HD AVD

MSCD-UNet 86.69 1.23 5.65 89.73 1.75 6.21 85.15 1.66 5.70

Sun [48] 86.58 1.29 5.75 89.87 1.73 5.47 84.81 1.84 6.84

Li [42] 86.40 1.38 5.72 89.70 1.88 6.28 84.86 2.03 6.75

Dolz [41] 86.33 1.34 6.19 89.46 1.78 6.03 83.42 2.26 7.31

Chen [40] 86.15 1.44 6.60 89.46 1.93 6.05 87.25 2.19 7.68

Bui [46] 86.06 1.52 6.60 89.00 2.11 5.54 83.76 2.32 6.77

Geraud [39] 86.03 1.44 6.05 89.29 1.86 5.83 82.44 2.28 9.03

Andermatt [55] 85.40 1.54 6.09 88.98 2.02 7.69 84.13 2.17 7.44

Stollenga [56] 84.89 1.67 6.35 88.53 2.07 5.93 83.47 2.22 8.63

We also compare the results between our proposed MSCD-UNet and the state-of-
the-art approaches on ISeg2017. The segmentation of WM, GM, and CSF is evaluated by
using the three metrics. The results are shown in Table 8. The Dices on GW, WM, and
CSF are 92.17%, 90.47%, and 95.60%, respectively, for our method. Compared to four
other approaches [18,44–46], the performance has a higher average Dice score than [45,46].
Although the average Dice is lower than [18], the Dice on GM is higher; additionally, the
optimal parameters are waiting to be found, and we will further exploit the potential of
MP and MDP in future work.

Table 8. A comparison between proposed architecture and other 3D-based state-of-art methods in
terms of DSC and ASD.

Method
GM WM CSF Average

DSC ASD DSC ASD DSC ASD DSC

Ours 0.9217 0.322 0.9047 0.362 0.956 0.110 0.9274

Lei [44] 0.926 0.307 0.908 0.353 0.959 0.114 0.931

Yu [45] 0.8851 - 0.8546 - 0.9371 - 0.8922

Qamar [18] 0.9205 - 0.9050 - 0.958 - 0.9278

Taoc [46] 0.9157 - 0.9125 - 0.9469 - 0.9250

5. Discussion

In this paper, we proposed a Multi-scale Spatial and Channel Dimension-based U-
Net for MRI brain segmentation. In our approach, an information extractor multi-branch
pooling (MP) is used to capture spatial information in the encoding part, and an infor-
mation extractor multi-branch dense prediction (MDP) is used to collect as much spatial
information as possible into channels in the decoding part. As the intensity of white
matter is similar to the gray matter in the rugged edge, enlarging the size of receptive field
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can improve the recognition performance. In our experiments, we validated that using
multiple max pooling with different kernel sizes in parallel can dramatically improve the
segmentation performance comparing to the standard 3D U-Net. For example, as shown
in Table 2, the Dice coefficients of GM, WM, and CSF by using five-fold cross-validation
are 85.94%, 88.83%, and 83.79, respectively, while using the MP can improve the Dice to
86.08%, 89.02%, and 84.15%, respectively. Integration of the multi-scale spatial information
in the encoding part can further improve the segmentation accuracy.

Regarding the decoding part, this naive decoding module may not fully recover the
segmented object details. During the decoding phase, the compressed feature maps from
the deepest encoding layer will be used to recover feature map resolution by using decon-
volution and up-sampling. After the maps resolution upsizing, the spatial information in
these decompressed feature maps is fixed, so the detailed information is represented more
in channel dimension. Hence, it is necessary to collect the complex information in channel
dimension. To probe the influence of channel-based multi-scale feature extractor (MDP),
we conducted the experiments with and without MDP. The evaluation performance results
including DC, HD, and AVD can be seen in Table 4. From these results, we can see the
performance of GM, WM, and CSF segmentation improved from 85.94% to 86.41%, 88.83%
to 89.18%, and 83.79% to 84.29% on Dice, respectively.

However, our study has some limitations. Although our analysis shows that the
MP and MDP with multi-branch output are effective in segmentation of GM, WM, and
CSF, if the combination of different kernel sizes in MP and different groups in MDP are
selected by a manual setting, which may be tedious and prone to errors if applied in some
extreme cases. Nevertheless, this is evidence of the capability of MP and MDP in brain
tissue segmentation tasks, indicating the need of further study on this issue to increase
the accuracy of such approaches. Another limitation of our model is that it has more than
15 million learned parameters and therefore the training of this model takes more than
8 h. The parameter of the proposed MSCD-UNet is three times larger than the standard
3D-UNet because the MSCD-UNet has three subnetworks for the T1, FLAIR, and T2 in
parallel. We used T1, T2, and FLAIR as multi-channel input in the MSCD-UNet, and
while the training time was substantially reduced, the performance of segmentation was
not satisfactory. Therefore, we should focus on the relationship between this parallel
architecture and the performance of segmentation. We believe that the performance of
segmentation would be improved, even without this parallel architecture.

6. Conclusions

We propose a novel Multi-scale Spatial and Channel Dimension-based U-Net, referred
to as MSCD-UNet, by integrating the multi-scale context information in spatial and channel
dimensions for brain tissue segmentation. It contains three modules: MP, MDP, and multi-
branch output. The MP is an extractor to capture spatial information during the encoding
procedure, which consists of multiple max pooling with different kernel sizes in parallel.
Extensive experiments indicate that the proposed information extractor MP can effectively
enhance the representative ability by exploiting the multi-scale spatial information. The
MDP and multi-branch output is a channel-based multi-scale feature extractor, which can
recover the corresponding localization to a higher resolution layer in the decoding path.
An ablation study demonstrates the effectiveness of the proposed MDP and multi-branch
output. This reflects the importance of capturing multi-scale features in enhancing the
learning ability in the encoding and decoding paths. We validated our proposed network
on the MRBrainS13, IBSR18, and ISeg2017 datasets for brain tissue segmentation and
achieved state-of-the-art results as compared to other existing approaches. The proposed
method can promote the research on automated brain tissue segmentation as well as offer
a useful and effective tool for assessing and diagnosing neurodegenerative diseases and
disorders of human brain. In future work, we will explore the proposed network for other
medical image challenges.
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Abstract: Lung CT image segmentation is a key process in many applications such as lung cancer
detection. It is considered a challenging problem due to existing similar image densities in the
pulmonary structures, different types of scanners, and scanning protocols. Most of the current
semi-automatic segmentation methods rely on human factors therefore it might suffer from lack of
accuracy. Another shortcoming of these methods is their high false-positive rate. In recent years,
several approaches, based on a deep learning framework, have been effectively applied in medical
image segmentation. Among existing deep neural networks, the U-Net has provided great success
in this field. In this paper, we propose a deep neural network architecture to perform an automatic
lung CT image segmentation process. In the proposed method, several extensive preprocessing
techniques are applied to raw CT images. Then, ground truths corresponding to these images
are extracted via some morphological operations and manual reforms. Finally, all the prepared
images with the corresponding ground truth are fed into a modified U-Net in which the encoder is
replaced with a pre-trained ResNet-34 network (referred to as Res BCDU-Net). In the architecture,
we employ BConvLSTM (Bidirectional Convolutional Long Short-term Memory)as an advanced
integrator module instead of simple traditional concatenators. This is to merge the extracted feature
maps of the corresponding contracting path into the previous expansion of the up-convolutional
layer. Finally, a densely connected convolutional layer is utilized for the contracting path. The results
of our extensive experiments on lung CT images (LIDC-IDRI database) confirm the effectiveness of
the proposed method where a dice coefficient index of 97.31% is achieved.

Keywords: segmentation; lung; CT image; U-Net; ResNet-34; BConvLSTM

1. Introduction

Lung cancer is known as the second most prevalent type of cancers in both genders in
the world [1]. According to the World Health Organization (WHO), lung cancer is responsi-
ble for 1.3 million deaths per year in the world [2]. It is estimated that around 228,820 new
lung cancer cases (116,300 in men and 112,520 in women) and around 135,720 deaths from
this disease (72,500 in men and 63,220 in women) are identified in the United States each
year [3]. Lung cancer is known as a malignant tumor characterized by the unnatural growth
of the cell in the lung tissue. Rapid diagnosis of this cancer can significantly decrease the
death rate and enhance patient survival chances. This is very important in improving the
clinical situation of patients. Thus, it is necessary to present an intelligent algorithm for the
early diagnosing of lung cancer.

Recent advances in computer vision and image processing technologies have signifi-
cantly helped the healthcare systems particularly in the analysis of medical images. In this
regard, image segmentation is widely used as one of the most fundamental, useful, and
well-studied topics in image analysis. Image segmentation can significantly improve the
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recognizability of parts of an image by assigning a label to each pixel in the image such
that those pixels with the same labels have similar visual features characteristics.

Segmentation is a substantial process in medical image processing and can reveal very
useful information concealed in the images. In some medical applications, the classification
of image pixels into descriptive regions, such as bones and blood vessels, is of interest.
While in other applications it is more appropriate to look for pathological regions, such as
cancer or tissue deformities [4]. One of the most important segmentation tasks in medical
images is to identify redundant pixels or unwanted regions located as background. This
segmentation is considered as one of the most challenging steps, especially in CT (computed
tomography) or MRI (magnetic resonance imaging), to provide critical information about
the shapes and volume of body organs. In other words, the overall performance of
automated cancer detection is highly dependent on the output of the segmentation stage [5].

In the lung segmentation stage, we seek to distinguish those pixels associated with
the lung from every other pixel in the surrounding anatomy. Radiologists often use a CAD
(computer-aided design) system to provide a secondary consideration for an accurate diag-
nosis. This method is useful for improving the efficacy of the cure. For many CAD systems,
a precise segmentation process of the target organ is required, which is a fundamental step
and a prerequisite for effective image analysis. The segmentation of lung fields is particu-
larly challenging because the lung zone is highly inhomogeneous. In addition, pulmonary
structures present similar congestions in different scanners and scanning protocols which
make the segmentation difficult. It becomes even more challenging because of the presence
of nodules attached closely to the lung wall. Figure 1 offers two examples of lung CT scans
that show the exact location of the node attached to the lung wall. This figure also clearly
represents the challenge of dividing the lungs despite these nodules.

  

(a) (b) 

–

Figure 1. Two examples of nodules attached to the lung wall in CT-scan images. (a). represents one nodule attaching to the
outer wall of the lung, (b). represents one nodule attaching to the outer wall of the lung (orange arrows).

Medical image segmentation is an important and inseparable step in the diagnosis
process. For example, in the process of diagnosing lung cancer, the main steps are as follows:
(1) image pre-processing; (2) image segmentation; (3) feature extraction; (4) lung cancer
identification; (5) diagnosis of the disease [6,7]. It so happens that various algorithms
directly use the segmentation step in their work [8–10]. For example, Wang et al. [10]
conducted a study on differentiating COVID-19 from non-COVID-19 CT scans. In their
proposed method, images of patients were first segmented during a single step using a
deep neural network. Then, the images and tags were given to a network for classification.
They could achieve a 0.959 ROC AUC score. Unlike the previous example, some methods
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extract the region of interest and do segmentation indirectly within the feature extraction
stage [11–13]. For example, Pathak et al. [13] proposed a system for the detection of
COVID-19 in CT scans that considered a prepressed transfer learning. The system used
a neural network to extract the features from CT images, and a 2D convolutional neural
network was considered for the classification. The proposed system was tested on 413
COVID-19 and 439 non-COVID19 images with 10-fold cross-validation, and it achieved
93.01% accuracy.

It is clear that medical image segmentation is always accompanied by disease detection
algorithms. However, algorithms that specifically try to segment with high accuracy will
ultimately perform better for the diagnostic model. For this reason, we will also present a
robust system for accurate segmentation of the lung area in this article.

Generally, many techniques have been reported in the literature for the segmentation
of medical images. The most important drawback of the existing methods is relying on the
utilization of manual (hand-crafted) features to successfully segment the regions of interest.
In addition, most techniques are unable to segment nodules attached to the lung wall.
Recent advances in medical image processing by using deep learning-based methods have
revealed great influences in clinical applications. These methods can appropriately learn
important features of medical images and consequently overcome the limitation of hand-
crafted features [14]. In this paper, we propose a deep learning-based method to accurately
segment the lung tissue. In order to achieve a successful segmentation, we require the raw
CT images with their associated ground truths. Unfortunately, current lung CT databases
do not come with binary masks (ground truths). Hence, we propose a semi-automatic
method to resolve this issue by producing the corresponding masks. Then, we apply
appropriate pre-processing steps in order to enhance the quality of images used in the
training phase. In the last phase, all these pre-processed images with corresponding binary
masks are fed into a deep neural network. Our proposed deep model is a combination
of the ResNet and BCDU-Net. In fact, the backbone and the basis of the deep learning
network used in this paper are BCDU-Net. On the other hand, using pre-trained networks
such as ResNet, which have been trained in the ImageNet data collection, increases the
speed of training and the power of the network extension. So, the proposed method in this
paper is a novel BCDU-Net architecture that takes the advantage of ResNet-34 instead of
ordinary convolution layers in the encoding section.

The contributions of the current manuscript are:

• Applying novel extensive preprocessing techniques to improve quality of the raw images.
• Proposing a new method for extracting ground truths corresponding to the input images.
• Employing a new deep learning-based algorithm for proper segmentation of lungs.

The rest of this paper is organized as follows: Section 2 reviews some previous
segmentation models. Section 3 introduces the proposed method in detail. Section 4 is
devoted to evaluating the performance of our method through extensive experiments.
Section 5 draws some conclusions. Section 6 highlights future works.

2. Related Works

There are several techniques that have been developed to address the segmentation
task. Most of these approaches are mainly divided into five categories: threshold-based,
edge-detection, region growing, deformable boundary, and learning-based methods. In
what follows, we briefly review these categories.

2.1. Threshold-Based Methods

Since the lungs are filled with air during the CT scan, they are characterized by dark
areas in the associated grayscale image. Therefore, threshold-based approaches rely on this
principle that normal lung tissues have less density than the surrounding regions. On this
basis, the lung regions are separated by specifying a suitable threshold on the images [15].
These approaches are of the most popular lung segmentation methods because of their
simplicity in performance and computation. They can also be used in real-time applications.
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However, these methods have some deficiencies in lung segmentation. (1) They are not able
to effectively remove the trachea and main stem bronchi [16]. (2) Due to various conditions
in different images like air volume and image acquisition protocol, a universal gray-level
segmentation threshold would not be suitable [17]. (3) They are not often successful in cases
where anomalies represent higher densities compared to those in natural lung tissues [18].

2.2. Edge-Detection Methods

Lung segmentation can be also performed by using edge detection techniques. Edge
in image processing is defined as the boundary between the two regions with relatively
distinct gray surface properties. Some of the well-established spatial edge detection tech-
niques are Prewitt, Robert, Sobel, Prewitt, Laplacian, and Canny. In what follows, we refer
to canny as the most effective edge detector algorithm.

Canny is a well-known conventional edge detection algorithm. It can find the edges
of image regions by isolating noise from the image. The main advantage of this method
is that it does not affect the properties of the image edges and find edges and critical
thresholds. Canny is capable of achieving three important properties, i.e., great localization
of edge points, small error rate, and one-to-one responses to every single edge. As a
result, it normally performs well, thus, it is considered as one of the best methods to
extract the edges compared to other existing methods [19]. Shin et al. [20] demonstrated
the performance evaluation of different edge detectors and concluded that the Canny
detector has the best performance and robustness compared to other edge detectors. In this
regard, Campadelli et al. [21] detected edges from chest radiograph images and achieved
an accuracy of 94.37%. Mendonca et al. [22] identified the image edges using a spatial
detector for lung tissue segmentation in radiograph images. They used 47 radiograph
images and achieved a sensitivity of 0.9225 and a positive predictive value of 0.968.

In brief, the benefits of edge-based methods are (1) performing well in discriminating
between the background and the objects within an image, (2) high-level approach in
image segmentation similar to the way human perception segments the images. The main
deficiencies of these methods are: (1) sensitivity to noise, (2) working inappropriately on
images with smooth transitions and low contrast.

2.3. Region Growing Methods

Segmentations based on image regions are called region growing techniques. The basic
idea in this method is to collect pixels posing similar characteristics within a commonly
formed area. In another word, this category of methods starts the segmentation process
with a set of seeds. The seeds in any given image, can either be one single pixel or a
group of several pixels. After forming the seeds, the next step is to determine whether the
neighboring pixels must be added to the region or not. This is decided based on similarity
criteria such as color, intensity, variance, texture, and motion. Gradually, these pixels
begin to grow and form regions. Finally, when the image is completely divided by all the
growing regions and all the textural stages of the image are obtained as the boundaries
of the final regions, the algorithm is terminated. Region growing methods are utilized
in many medical applications such as cavities segmentation in the cardiac images [23],
blood vessel extraction in the angiographic data [24], renal segmentation [25], brain surface
extraction [26], and lung CT image segmentation [27].

Region growing technique has some advantages including low computational com-
plexity and high speed. However, its performance is highly dependent on the location of the
seed points and the growing conditions. It can be stated that region growing methods are
sensitive to noise or variation of intensity. This could result in holes or over-segmentation
and also dependency performance on its initial seeds. Its particular disadvantage in lung CT
images is that it cannot segment the nodules attached to the borders of the lung image [13].
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2.4. Deformable Boundary Models

These models consider the entire object’s boundary and can incorporate prior knowl-
edge about the object’s shape as a constraint toward a precise segmentation outcome. For
example, in lung segmentation, the boundary of the lung is determined by the evolution of
particular interior and exterior forces to fit the shape of the lung. Therefore, the parametric
representations used in these models can provide a concise and analytical description of
the lung. The most popular approach in deformable models is an active contour model
or snake [28]. Itai et al. [29] segmented the lung region from a CT image using a 2D para-
metric deformable model, called the SNAKES algorithm, without considering any manual
operations. Shi et al. [30] proposed an extraction technique for the lung region by using a
new deformable model through radiograph images.

Also, there exist some active contour models with many privileges such as providing
smooth and closed segmented contours and obtaining sub-pixel details of the object’s
boundaries [14]. However, one of the limitations of these models is that they often require
human interaction within the construction of the initial contour. Therefore, they normally
perform poorly in non-interactive applications, as the algorithm cannot be initialized close
to the desired structure of interest. Another limitation of the SNAKE model is that they
have weak convergence in the face of boundary concavities.

2.5. Learning-Based Models

Learning-based approaches are presented in the area of segmentation of medical im-
ages as well. In traditional learning-based methods, the segmentation process is addressed
as engineered features. Pixel classification-based approach [31] is known as one of the
most important categories in these techniques. However, it is very challenging to select
sub-pixels and extract some features to train the classification of a greater number of pixels.
To overcome this problem a super pixel learning-based method have used in [32] to prune
the pixels and merge them with the confined regions of shape constraints to segment lung
CT images. Generally, these methods have two shortcomings to extract the features. The
first drawback is relying on using hand-crafted features to achieve the segmentation results.
Another limitation is that designing the representative features for different applications is
very difficult.

Segmentation techniques based on deep learning can be ranked as pixel-based learn-
ing techniques for classification. Unlike conventional pixel or super-pixel classification
methods, which often use hand-crafted features, deep learning approaches can process
natural data in its raw form as well as learning features and overcoming the limitations
of hand-crafted features [19]. These approaches have predominately utilized for semantic
segmentation of natural image scenes and have also found many applications in biomedical
image segmentation tasks. They also contributed to decrease the manual manipulations
needed for segmentation and improving the accuracy and speed of segmentation. One
of the most important recent applications of segmentation is to accurately quantify the
COVID-19 virus effects. In [33], a new deep-learning-based method is used for auto-
matic screening of COVID-19 with limited samples in order to complete the screening of
COVID-19 and prevent further spread of the virus.

Previous deep learning methods purposed for medical image segmentation are mostly
based on the patches of images. Convolutional neural network (CNN) is the most success-
ful and widely used approach among many deep learning architectures community for
medical image analysis [34]. It is easy to use CNN to classify each pixel in the image sepa-
rately by offering the extracted neighboring regions of a particular pixel. For example, the
authors in [35] proposed a method based on light patches and sliding windows neuronal
membranes segmentation in microscopic images. This method has two deficiencies: redun-
dant computation caused from sliding window and huge overlap within input patches
from neighbor pixels.

To overcome these problems, the use of a fully convolutional network (FCN) was
introduced by Long et al. [36] in which the last fully connected layers of the CNN
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replaced by transpose convolutional layers. With emerging of the end-to-end FCN,
Ronneberger et al. [37], using the idea of the FCN, proposed U-shape Net (U-Net) frame-
work for biomedical image segmentation. U-Net is one of the most popular FCNs for
segmentation of medical images. U-Net configuration (Figure 2) comprises two paths; a
contracting path to capture context and a symmetric expanding path to obtain accurate
localization. The contraction path includes consecutive convolutional layers and max-
pooling layer. It is used to extract attributes while constraining the attributes map size.
The expansion path achieves up-conversion and has the convolution layers to retrieve the
size of the feature maps with the loss of localization knowledge. Also, the localization
information is shared from the contraction layer to the expansion layer by applying skip
connections. These connections are utilized in parallel and allows data to be transmitted
directly from a network block to another with no extra computational cost. Ultimately, the
convolution layer draws the attribute vector to the number of classes required at the final
partitioning output. The U-Net model has some advantages compared to other patch-based
segmentation approaches [38]: (1) It works well with very few training data. (2) It can uti-
lize the global location and context information simultaneously. (3) It ensures maintenance
of the complete texture of the input images.

 

Figure 2. The U-Net architecture [37]. In the contraction path of this network, feature channels are doubled in each
down-sampling. Conversely, the expansion path is responsible for decreasing feature channels. The skip connections are
also displayed with gray arrows drawn to incorporate two feature maps.

U-Net has offered state-of-the-art performance in biomedical image segmentation.
In recent years, different extensions of U-Net have been proposed [39–43]. For example,
Milletari et al. [39] proposed V-Net as an extension of U-Net for 3D medical image seg-
mentation. Furthermore, in an extended paper, Cicek [40] proposed a U-Net architecture
for 3D images. Zhou et al. [41] developed a nested U-Net architecture. Other researchers
have developed various extensions of the U-net. The most significant changes in these
methods are mainly related to the skip connections. For example, in Attention U-Net [42],
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the extracted features at the skip connection are transferred to a processing stage first, and
then they are concatenated to each other. One of the limitations of these networks is their
two-stage process, i.e., first applying separate processing steps to each group feature map
and then concatenating the feature maps together. In [43], a residual attention U-Net was
proposed for automated segmentation of COVID-19 Chest CT images. This deep learning
model is based on U-Net which uses the residual network and attention mechanism to
enhance feature extraction and generate high-quality multi-class segmentation results. The
use of this method has led to 10% improvement in the segmentation performance.

In order to improve the original U-Net network, instead of using the desired convolu-
tion layers, various other architectures can be used in the encoding part of this network. For
example, a U-Net-based network is presented in [44] wherein the ResNet34 pre-training
model is used in its contraction path (left U). The greatest advantage of this modification is
increasing the speed of training and the power of the network extension.

In another work, U-Net has been extended to a network called BCDU-Net [45] and
achieved better performance than modern alternatives for medical image segmentation. In
this network, the encoding path includes four stages. Each stage is composed of two 3 × 3
convolutional filters on the image. After each convolution filter, there is a 2 × 2 max-pooling
and a RELU activator. These three layers together form a down-sampling process. In each
down-sampling, feature channels are doubled. The encoding path gradually extracts the
representation of images and increases the dimensions of the representation layer by layer.
This network offers two contributions. First, it uses densely connected convolutions to
prevent the learning redundant features problem in successive convolutions in the last
encoding path layer of general U-Net. Second, batch normalization is utilized in the
decoding path after each up-sampling stage. Batch normalization helps to improve the
performance, speed, and stability of neural networks. The resulting output from the batch
normalization function is given to a bidirectional convolutional LSTM [46] (BConvLSTM).
The feature maps are processed with BConvLSTM to integrate in a more complex way than
simple concatenation in U-Net. BConvLSTM itself applies two ConvLSTMs on the input
data in both forward and backward directions and then determines the data dependencies
in both directions.

According to the above discussions and also the pre-trained ResNet framework [47] that
makes the neural network wider, deeper, and faster, we propose an architecture that is mainly
inspired by BCDU-Net and ResNet34 to automatically segment the lung CT images. In the
next section, the proposed model will be described and presented with all the required details.

3. Proposed Method

The proposed model encompasses three major steps: (1) ground truth extraction,
(2) image pre-processing and data preparation, and (3) deep learning-based segmentation.
Moreover, our novel deep learning model is composed of BCDU-Net and ResNet34. The
block-diagram of different steps of the proposed method is depicted in Figure 3. In what
follows, we first introduce the database used in this study followed by a description of
the process of semi-automatically re-producing database images. Then, we provide pre-
processing operations to prepare data stepwise. Finally, we describe the method based on
deep learning to segment these images and the corresponding masks.

 

‘ ’

𝐵𝑖𝑛𝑎𝑟𝑦 (𝑖, 𝑗) = {1     if     𝑓(𝑖, 𝑗) < 𝑇0             otherwise       ,     𝑇 = 604

Figure 3. The pipeline of the proposed method.
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3.1. DICOM Images Reading

In this paper, we used the LIDC-IDRI dataset which involves lung cancer CT scans with
marked-up annotated lesions as well as diagnostic information [48]. It is an internationally
available resource of development, training, and assessment of diagnostic methods used
by the computer (CAD) to diagnose lung cancer. All CT scans are in DICOM format
and measured in HU and they have three channels and a resolution of 512 × 512. The
original DICOM images and their corresponding XML files are related to 1018 CT scans of
1010 patients registered in this data collection. These images consist of a chest CT scan and
an XML file annotated by four professional medical experts. The first step is to read and
import these DICOM images.

3.2. Ground Truth (GT) Extraction

Our deep learning architecture requires both input images and their corresponding
ground truth for successful segmentation. This database lacks labels for lung images, thus,
we need to manually extract every ground truth for CT images. Ground truth is in form of
masks that could be used to extract ROI from images to be then fed to the deep learning
model. Because the ground truth plays a vital role in the segmentation process, custom
masks were created using a semi-automatic technique so that they could be verified to
be ‘correct’.

In the CT scans, the lungs are declared as dark zones, while lighter areas inside the
lungs are considered to be blood vessels or air. The purpose of this step is to extract lung
regions as accurately as possible from each CT scans slice. This step should be performed
with extra care to avoid missing any region of interest particularly those attached to the
lung wall. Seven steps are carried out to get the masked lungs. These are as follows [22]:

1. Conversion to binary image: In the first step, slices of DICOM images are converted
into binary using the threshold method represented by Equation (1). A threshold
of -604 HU was applied to extract lung parenchyma [23]. The transformed image to
binary is shown in Figure 4b.

Binary (i, j) =

{

1 if f (i, j) < T
0 otherwise

, T = 604 (1)

2. Removing the blobs connected to the CT image border: To classify the images correctly,
the regions connected to the image border are removed, as shown in Figure 4c.

3. Labelling the image: Pixel neighbourhoods with the same intensity level can consider
being a connected region. When this process is applied to the entire image some
connected regions are formed. Figure 4a shows connected regions of integer array of
the images that are labelled.

  

(a) (b) (c) 

Figure 4. (a). Main CT image, (b). Binary image, (c). Image after eliminating border blobs.
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4. Keeping the labels with two largest areas: As shown in Figure 5b, labels with the
two largest areas (both lungs) are kept whereas the tissues with areas less than the
expected lungs are removed.

  

(a) (b) 

Figure 5. (a). Labeled image, (b). Image with the two largest labeled areas kept.

5. Applying erosion operation (with a disk of radius 2): This operation is applied on
the image at this step to separate the pulmonary nodules attached to the lung wall
from the blood vessels. The erosion operator reduces the bright areas of the image
and makes the dark areas appear larger as shown in Figure 6a.

6. Applying closure operation (with a disk of radius 10) [15]: The aim of using this
operator is to maintain the nodules connected to the lung wall. This operator can
remove small dark spots from the image and connect small bright gaps. The image
obtained by applying this operator is shown in Figure 6b.

7. Filling in the small holes within binary mask: In some cases, due to a breach in binary
conversion using thresholding, a series of black pixels belong to the background
appear in the binary image. These areas, known as holes, may be helpful. Therefore,
we must obtain these areas by filling them as shown in Figure 6c.

 
  

(a) (b) (c) 

In the final step, binary masks are produced which are stored in ‘.bmp’ format. The 

Figure 6. Results of applying (a). Erosion operation, (b). Closure operation, (c). Filling small holes (binary mask).

In the final step, binary masks are produced which are stored in ‘.bmp’ format. The
proposed steps sometimes fail and do not produce the correct binary mask due to two
main reasons: (1) all the above steps may cause partial tissues, which could involve lung
components, to be ignored in CT scan; (2) sometimes a closure operation, which connects
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small bright cracks, causes connection of two pixels that fill the non-pulmonary tissue, e.g.,
air instead of the lung. Figure 7 shows 2 samples of these problems.

In the final step, binary masks are produced which are stored in ‘.bmp’ format. The 

 

(a) 

 

(b) 

Figure 7. (a). Sample of missing a part of the lung in the generated mask, due to considering only
the two largest areas, (b). Sample of misplaced pixels connecting that fills the non-pulmonary space
with white pixels.

Motivated by the above discussions, we need to provide a manual segmentation after
producing binary masks by the mentioned algorithm, if necessary. We extracted 1714 binary
masks for 10 patients (averagely 170 samples for each patient) using this semi-automatic
method. It takes hours to label each CT image by experts, while production of each mask
takes on average around three minutes in our proposed method, considering the worst
conditions and the need for manual reform. Therefore, the main advantage of this method
is to save a lot of time. Also, we plan to publicize our produced masks soon to help other
researchers using them in future researches.

3.3. Data Preparation

Following the GT extraction described above, we now aim to prepare input raw
images to improve the training process of the deep learning network by applying a few
preprocessing steps. Therefore, we use two stages including edge detection functions and
dilation morphological operations.

According to the description of the LIDC-IDRI database in previous sections, all CT
scans have 512 × 512 resolution and three channels. In this stage of the proposed method,
we want to improve the overall segmentation performance. It seems that if we increase the
focus of the network during training on a series of specific image features, it will help to
improve the forecast. In this regard, we have changed the channels of each image. To do
this, we convert these default channels for each CT image to three newly designed channels
as follows. In this regard, we use several preprocessing operations such as edge detection
functions and dilation morphological operations to generate new images. Then, these
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images are fed to our proposed network. The main advantage of this idea is that if these
newly generated images are fed to a deep neural network, its training can be faster and
more accurate. In other words, the proposed channels can provide focused information for
the deep neural network which are compatible with the associated masks. This leads to
more efficient training and ultimately reduction of false-positive measures. Details of the
proposed image conversion are as follows:

(a) Image binarization: In this process, a binary image is created with two values on the
grey surface, i.e., black and white. The lung region poses a black colour with the value
zero. Figure 8 shows the binarization process of a CT image.

  

(a) (b) 

holes in the lung’s re

Figure 8. Image binarization process. (a). Original CT, (b). binarized.

(b) Dilation morphological operation: Morphological operations, typically applied to
binary images, are used to extract and describe the geometry of the object in the
image [49,50]. As a result of the binarization process described before, there would still
be remaining regions of white colour around the lungs regarded as unwanted noise.
Thus, morphological operations can be used to remove these regions. Moreover, there
could still be some small black holes in the lung’s region, suspicious of noise caused
by the binarization process. These holes should be also removed using morphological
operations.

The morphological operation involves two basic operators: dilation and erosion.
Dilation [51] is applied when the segmented object loses part of its target area. This
operator increases the target area of the segmentation. It also increases the sensitivity but
decreases the specificity. The dilation operation can be mathematically represented as
Equation (2).

A ⊕ B = ∪
x∈B

Ax (2)

where A is the image and B is the structuring element. In fact, Equation (1) means that the
matrix A is transmitted by each of the points B and then the assembly of all the transferred
matrices is calculated. We applied a dilation operation to remove redundant white regions
around the lung and small black gaps inside it. Figure 9 shows the result of the dilation
process. As can be seen, the orange arrow section (noise) in a binary image is removed in
the dilation result.

209



Sensors 2021, 21, 268



 

 
 

(a) (b) 

Figure 9. Image after (a). binarization; (b). dilation.

(c) Edge detection: As already stated, the edge detection filter determines the vertices
of an object and the boundaries between objects and the background in the image.
This process can also be used to improve the image and eliminate blur. An important
advantage of the Canny technique is that it tries to remove the noise of an image
before edge extraction and then applies the tendency to find the edges and the critical
value of the threshold. Motivated by the advantages expressed so far, we also applied
the Canny method to detect the edges in the source images. Figure 10 shows the
result of the edge detection process.



 

 

Figure 10. Edge detection using Canny.

As a result, it cuts down the data quantity and removes unwanted parts, while
preserving the required structural features in the image. Next, we need to generate new
images with proposed filled channels. The first image channel is filled with the original
image (Figure 11a). The second channel of the output image would be an image containing
an edge detection process (Figure 11b). In the end, the third new channel would be the
image result of the dilation operation (Figure 11c). This helps to reduce the area around
the object and also removes the noise. Figure 11 shows the result of the combination
of channels. We generated 1714 new lung CT images for 10 patients using the above
processing method.

As shown in Figure 11, the resulting image of the combination of the three channels
is red. This is due to the arrangement of these channels. As mentioned earlier, the first
channel of the new image contains the original image. The second and third channels have
been replaced with edge detection processes and dilation operation, respectively. Since
black pixels are dominant in the input image (including the edges and resulting image
after applying the expansion operations) the final composite image receives the greatest
effect from the first channel, leading to a dominant red color. However, if the main image
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is placed on the second channel, the output image will be green, and similarly blue for the
third channel.

   

(a) (b) (c) 

   

 

(d) 

Figure 11. (a). First new channel, (b). Second new channel, (c). The second new channel (d). Result of a combination of new
channels.

3.4. Lung Segmentation Using Deep Learning

Since the main goal of this paper is to extract lungs from CT images, our proposed
model must successfully address the semantic segmentation problem. U-Net is the most
related available deep architecture in this regard. U-Net can learn from a relatively small-
size training dataset. In addition, it vastly speeds up training time if a pre-trained model is
used. Hence, a good starting point to train the network when dealing with image inputs is
using a pre-trained ImageNet model along with its weights. On the other hand, ResBlocks
architecture, which was proposed in [47,51], can facilitate the training process, while it
offers a deeper network due to having all accumulated layers. Moreover, according to
the experiments conducted in different networks and comparing their results, the use of
the convolution layer instead of the pooling layer is preferred. This is because pooling
layers generate huge semantic feature loss in the image. Thus, it seems ResNet architecture
can be a more appropriate choice for the encoder part of the U-Net (the left half of the
U). Figure 12 shows the block diagram of the ResNet-34 algorithm used in the encoder
section of our proposed network. Our proposed model is mainly inspired by BCDU-Net
and ResNet-34 [52] named as Res BCDU-Net. The backbone of this network is a ResNet-34
structure as the encoder which is shown in Figure 13. Details of different layers in the
proposed model are described as follows.
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

Figure 12. Block diagram of the ResNet-34 in the encoder of Res BCDU-Net.

• Encoding path: In Res BCDU-Net, the encoder is replaced with a pre-trained ResNet-
34 network. The last layer of this path like BCDU-Net adopts a densely connected
convolutions mechanism. So, the last layer, in contrast to all residual blocks in this
path, never attempts to combine features through summation before being transferred
to a layer; instead, it tries to concatenate the features. In other words, features that are
learned per block are passed to the next block. This strategy can help the network to
avoid learning redundant features. Figure 13 shows the difference between Res blocks
and dense blocks.



 

(a) 

 

Figure 13. (a). ResNet Concept, (b). One Dense Block in Dense Net [53].

• Decoding path: In the decoding path, two feature maps should be concatenated: the
feature maps corresponding to the same layer from the encoding path and those from
the previous layer of the up-sampling function. In this Network, batch normalization
was performed after the output of each up-sampling, before processing of two feature
maps. Afterward, the resulting output is given to a BConvLSTM layer. In a standard
ConvLSTM, only forward dependencies are processed. However, it is very important
not to lose information concealed in any sequence. Therefore, the analysis of both
forward and backward approaches has been proven to improve predictive network
performance [54]. Both forward and backward ConvLSTMs are considered as standard
processes. Therefore, two set parameters are considered as BConvLSTM. This layer
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can decide on the present input by verifying the data dependencies in both directions.
Figure 14 illustrates our proposed network schematically.



Figure 14. Res BCDU-Net architecture. The contraction path consists of Res blocks and a max-pooling layer. Such the
U-Net, in each downsampling of encoding path, feature channels are doubled (64 to 128 to 256 to 512). In the last layer of
the contracting path, we used 3 convolutional blocks with 2 dense connections. As seen, in the expansion path, the output
of each batch normalized is given to a BConvLSTM layer.

4. Experimental Results

We evaluated the performance of our proposed neural network on 1714 CT images of
the LIDC-IDRI dataset with the corresponding generated ground truth as described in the
previous section. The experiments were implemented based on the Keras module with the
TenserFlow backend. The network was trained for 50 epochs and batch size 32.

4.1. Evaluation Metrics

Several well-established criteria were used for performance evaluation of our proposed
network, namely accuracy (AC), precision (Pr), recall (Re), and F1-score. We first calculated
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true positive (TP), false positive (FP), true negative (TN), and false negative (FN). These
performance measures are mathematically expressed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 − score = 2 × Precision × Recall
Precision + Recall

(6)

To turn the results into a more reliable form, Dice’s coefficient [55] is also used to
evaluate our results. The Dice score is normally used to determine the performance of the
segmentation step on the given images. This is a kind of similarity measure between two
different objects. It is equal to the number of overlapping pixels between the two partitions
divided by the size of the whole two objects. The Dice score is calculated as:

DSC = 2 × |E ∩ Q|
|E|+|Q| (7)

where, E is the segmented lung parenchyma area’s pixels based on our network, Q is the
ground truth image’s pixels and |E ∩ Q| represents the intersect pixels of two images. We
also calculated the receiver operating characteristics (ROC) curve and the area under the
curve (AUC). ROC curve is defined as a plot of TPR to FPR, with TPR placed on the y-axis
and FPR on the x-axis. AUC is defined as the underlying area of the ROC curve. In other
words, it measures the quality in which the network can segment the input data.

4.2. Results

We grouped randomly the dataset into training data (1200 images), validation data
(257 images), and test data (257 images) in proportion 70%, 15%, and 15%. We also repeated
our experiments 10 times and reported the obtained average performance across all run
in this paper. All image sizes are 512 × 512. The input of the network consists of the CT
images with three separate designed channels and corresponding ground truth annotations
that we generated semi-automatically. Since the image segmentation process corresponds
to a pixel-wise classification problem, the task of the neural network is to assign a label
or class to all pixels of the input image. The output of the trained network is a pixel-wise
mask of the image. Each pixel is given one of two categories:

Class 1: Pixels that fall within the lung area are labelled by ‘0’.
Class 2: Pixels related to the non-lung class are represented by the label ‘1’.

According to the above descriptions, first, we calculated the confusion matrix as
shown in Figure 15.

According to Figure 14, we can see that the TP is very high, and also the point of
attention achieved a very low FP. With respect to these values, calculated amounts for
the accuracy, precision, recall, and F1-score measures are obtained as 97.83%, 99.93%,
97.45%, and 98.67%, respectively. Table 1 summarizes the results of the precision, recall,
F1-score, accuracy, and dice score for another and our methods with LIDC dataset (The
best-maintained metrics are highlighted in bold). We also provided some visual example
results in Figure 15 to better compare U-Net and BCDU-Net.

214



Sensors 2021, 21, 268

 Recall  y (%)

 95.18 

 97.15 

 96.73 
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Figure 15. Confusion Matrix for the proposed method.

Table 1. Comparison of proposed network performance and the state-of-the-art alternatives on LIDC-IDRI dataset.

Methods Precision Recall F1-Score Accuracy (%) Dice Coefficient

U-Net [37] 96.11 96.34 96.22 95.18 95.02
RU-Net [38] 95.52 97.21 96.35 97.15 94.93

ResNet34-Unet [44] 97.32 98.35 97.83 96.73 95.28
BCDU-Net [45] 99.02 98.03 98.52 97.21 96.32

Proposed Method 99.12 97.01 98.05 97.58 97.15

According to Table 1, we find that the performance of our proposed method per-
formed better compared to related methods. According to this table, several results can be
concluded as follow:

• Using the ResNet34 structure in the encoder section of the U-Net network has consid-
erably improved the obtained results particularly in the quantity of recall.

• BCDU—Net model generally performs better than the ResNet structure in the con-
tracting path of the U–Net.

• Using ResNet within BCDU-Net has achieved a better DSC similarity score compared
to cases where these networks are used individually.

• Using images under our designed channels help to improve the quantitative results in
all the evaluation criteria in comparison to using default channels.

• The high level of recall in our proposed model (with three new channels) arises from
small FP as shown in the confusion matrix.

As shown in Figure 16, the U-Net model does not work well because of its deficiencies.
The BCDU-Net model resolves much of the shortcomings in the image segmentation
by U-Net but it sometimes appears a false-positive diagnosis mode (third column). In
our proposed method, this problem has been resolved to a large extent and the final
segmentation image is much similar to its corresponding mask (compare with U-Net and
BCDU-Net in three last columns from right in Figure 16). It can be concluded that the
combination of new channels to generate initial CT images and emphasis on components
such as the edges and removal of additional items that are irrelevant in new filled channels
greatly improves the adaptability power of the network.
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Figure 16. Sample results. From left to right: Original CT image, Ground Truth, U-Net, BCDU-Net, and Proposed method.

The proposed method has solved the high false-positive challenge as well. Also,
losing the attached nodules to the lung wall challenge has been resolved by our proposed
method (see and compare two last columns from right in Figure 16). It seems that the
first challenge is resolved by the idea of combining three new channels in the CT images
because it focuses on some components such as the edges and also removes the irrelevant
objects and noise in the raw CT images. It can help the final segmentation network to be
accurate. The second challenge is resolved by using the ResNet architecture in the first
half of BCDU-Net because there is only one Pooling layer in the ResNet architecture and it
causes less semantic information to be lost. In addition, the densely connected convolution
mechanism in the last layer of the encoding path of the network plays an important role to
prevent learning redundant features. To better represent the two above challenges and how
the proposed method has resolved them, we have included these two challenges along
with the components generated by our algorithm in Figure 17. It seems in this figure, the
two challenges described, with the help of our proposed method, are solved using the new
hybrid channels in the images and the use of ResNet34 architecture in the encoder section
of the neural network.
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Figure 17. Visualizes the challenges for segmentation. First row presents the challenge of considering micro pulmonary
tissues in the segmented image as the non-pulmonary region causing high false positive. Second row presents the challenge
of losing attached nodules to the lung wall. (A yellow circle wrapped around the center of the nodule).

The overall performance of our proposed method, the ROC curve and also the accuracy
of training and validation proposed network for LIDC-IDRI dataset are shown in Figure 18.

 

(a) (b) 

Figure 18. (a). ROC curve of Res BCDU-Net; (b). The accuracy of training and test for Res BCDU-Net.

According to Figure 18a, the AUC corresponds to 0.9732 which implies the effective-
ness of the proposed model performance. Figure 18b shows that the network converges
quickly; on the other hand, it converges after the 35th epoch. We also can see that the
accuracy of training increases to over 99% after the 35th epochs. This is a good indicator
of appropriate training of the network. In the validation phase, from epoch 0 to 30, it has
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a descending trend, which indicates inappropriate selection of weights, but the accuracy
has been gradually increased from the 35th to 55th epochs. The training and validation
accuracy will overlap between 35th and 50th.

4.3. Ablation Study

In this section, we conduct the ablation study to determine the effects of each compo-
nent on the performance of the segmentation system. In detail, we intend to answer these
questions in this section: (1) How does the use of images with the new three channels affect
the overall performance of the system? (2) What is the effect of automatically producing
binary labels for each of the images? (3) What is the effect on execution time and assisting
the medical community? (4) What is the effect of using densely connected convolutions
and BConvLSTM in the proposed deep neural network on the final performance of the
system?

First, we discover the role of the new CT image channels in the segmentation perfor-
mance. So, we did our experiments using images with their own default channels. The
result can be found in Table 2. As we can see, the performance of our proposed method,
where CT images are filled with newly designed channels, is higher than when they are
filled with default channels.

Table 2. Impact of CT image channels on system performance.

Channel Type in CT Images Precision Recall F1-Score Accuracy (%) Dice Coefficient

Default 99.12 97.01 98.05 97.58 97.15
Proposed 99.93 97.45 98.67 97.83 97.31

As the second work in this section, we look at the running time of the binary mask
production algorithm. In this paper, we first used an automated algorithm to produce
masks, and then, if necessary, we applied manual modification to each of the generated
images. It takes hours to label each CT image taken by the Radiologists; whereas in our
proposed method, without manual correction, all masks were produced within 10 min,
on average. Considering the worst conditions and the need for manual correction and
examination of each image produced by the algorithm, each mask requires 3 min to be
made. Looking at Figure 19 the proposed method is capable of producing a similar number
of images in a time of nearly 10 min. This figure shows the time of execution measured
on the dimension of the data set from 50 to 1700 images. Furthermore, the execution time
is reduced to 20% only with respect to the computation time without loading the image.
As the number of images increases linearly, we can see that the execution time increases
linearly, while the time required for the analysis of images by an expert will be greatly
increased by increasing the number of images and parameters such as fatigue and so on.

Finally, we aim to examine the effect of densely connected convolution mechanism in
the last layer of the encoding path of neural network and also the rule of using BConvLSTM
on the skip connection. Table 3 shows these results. For this comparison, the CT images
with new channels are assumed to be the network input, and the ResNet blocks are also
used in the encoding section. Given the values in Table 3, we can observe the positive
impact of using dense connection mechanism and BConvLSTM on system performance.
(Please note that we have already discussed the role of ResNet blocks in the encoding path
of the network in Table 1.)

Table 3. Impact of using densely connected convolutions and BConvLSTM on system performance.

Method Precision Recall F1-Score Accuracy (%) Dice Coefficient

Without Densely Connected Convolutions
and BConvLSTM

97.02 94.32 95.55 96.21 96.19

Ours (With Densely Connected Convolutions
and BConvLSTM)

99.93 97.45 98.67 97.83 97.31
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Figure 19. The execution time of the binary mask production algorithm.

5. Conclusions

In this paper, we proposed Res BCDU-Net to automatically and accurately segment
the lung region from CT images. The proposed method consists of three main steps.
First, we presented a semi-automatic technique to extract the ground truth for each lung.
One of the great benefits of our method is that one can manage to produce all mask
images, intelligently, without the need for the expertise of a radiologist and that saves a
huge amount of time. Second, we proposed a novel three image channel generation and
observed a significant decrease in the false positive rate and higher dice coefficients due
to effective network input imagery. Finally, we designed the segmentation framework
using a novel deep network architecture using a BCDU-Net with an encoder of pre-trained
ResNet-34. This model was named Res BCDU-Net. It performed well, as verified through
our extensive experiments on the large LIDC-IDRI dataset.

We have seen that combining ResNet and BCDU-Net networks as well as using CT
images with newly designed channels in the proposed method has led to a few false
positives as well as higher dice similarity scores. We have also seen that by using the
automated algorithm used in the label production section for the dataset, the execution
time is much less than the one used for producing masks and this is one of the most
important advantages of this method.

The application of the proposed algorithm in daily work is being accepted. Because
accurate and reliable segmentation of lung tissue is of particular importance in various
clinical applications such as computer-assisted bronchoscopy, quantification of emphysema,
and diagnosis of lung cancer. Therefore, the great potential goal of our work is applying it
to clinical application to help the medical community in their daily work.

6. Future Works

One of the interesting research topics that could be pursued in the future is the
adaptation and testing of the proposed method for 3D lung CT images. In this regard, a
network such as V-Net can be used. Another idea for future works could involve using
a combination of deep learning-based networks to segment medical images. It is also
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possible to examine the use of data enhancement methods and their impact on overall
performance.
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Abstract: Decellularized tissue is an important source for biological tissue engineering. Evaluation of
the quality of decellularized tissue is performed using scanned images of hematoxylin-eosin stained
(H&E) tissue sections and is usually dependent on the observer. The first step in creating a tool for
the assessment of the quality of the liver scaffold without observer bias is the automatic segmentation
of the whole slide image into three classes: the background, intralobular area, and extralobular area.
Such segmentation enables to perform the texture analysis in the intralobular area of the liver scaffold,
which is crucial part in the recellularization procedure. Existing semi-automatic methods for general
segmentation (i.e., thresholding, watershed, etc.) do not meet the quality requirements. Moreover,
there are no methods available to solve this task automatically. Given the low amount of training data,
we proposed a two-stage method. The first stage is based on classification of simple hand-crafted
descriptors of the pixels and their neighborhoods. This method is trained on partially annotated data.
Its outputs are used for training of the second-stage approach, which is based on a convolutional
neural network (CNN). Our architecture inspired by U-Net reaches very promising results, despite a
very low amount of the training data. We provide qualitative and quantitative data for both stages.
With the best training setup, we reach 90.70% recognition accuracy.

Keywords: H&E; decellularization; liver; tissue engineering; semantic segmentation; convolutional
neural networks

1. Introduction

Decellularized tissue scaffolds consisting of extracellular matrix proteins after complete cell
removal represent natural three-dimensional matrices with great potential in tissue engineering [1,2].
Recellularization of the decellularized scaffold can be used for in vitro engineering of artificial
organs [3,4], providing an alternative strategy to other methods such as cell repopulation of synthetic
matrices [5] or growing chimeric organs in genetically altered animals [6].
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Nevertheless, despite research efforts, the construction of liver tissue in vitro remains very
challenging. The quality of decellularized scaffold is crucial for the initial cell-scaffold interaction [7,8],
and thus determines the success of the cell repopulation process. However, the assessment of the
scaffold quality prior to recellularization represents one of the remaining problems to be solved.
The assessment criteria available are very fragmented and concentrate mainly on bulk properties.
Morphological evaluation is mostly qualitative and rather superficial [9,10].

The Whole Slide Scan microscopy (WSS) has been widely used in last years. It allows to study
and archive detail images of whole samples. The image processing techniques allow to design efficient
semiautomatic and automatic procedures for quantitative analysis. The general algorithms available
in free software can be often successfully used to solve simple tasks. In the paper [11], the authors
used ImageJ application based on the Gray Level Co-occurence Matrix and Run-Length Matrix [12]
to analyze liver fibrosis in H&E images. In more complex tasks, the use of an image processing
tool and using a scripting language might be necessary. In [13], the Matlab software with its script
language was used for quantitative analysis of cells and tissues. The most challenging tasks require the
most advanced algorithms. The convolutional neural networks introduced by LeCun in [14,15] have
promising results also in WSS microscopy. The most common tasks are image classification and image
segmentation. The convolutional neural network-based approach to solve this problem for nuclei and
cells can be found in [16].

The first method for the quantitative evaluation of the structure quality with respect to particular
liver scaffold features such as intralobular sinusoidal vessel structures was introduced in [8]. However,
this method requires an initial user input thus it is observer dependent. The first step in creating an
observer independent and reproducible evaluation method of the scaffold structure quality is the
semantic segmentation into three classes: background, intralobular area, and extralobular area.

Due to the neural networks improvements in recent years, most hand-crafted feature descriptors
for semantic segmentation, if enough data are available, become obsolete. However, a suitable
dataset with liver tissues does not exist and the creation of a new one includes per-pixel labels of
high-resolution data which is very time demanding and costly.

Therefore, in this paper, we propose a two-stage method. In the first stage we utilize Naive Bayes
classifier [17] trained on a simple texture descriptor. The outputs of this classifier we utilize as training
data for the convolutional neural network.

The main contributions of this paper are the following:

1. We introduce a two-stage method for semantic segmentation of liver scaffold hematoxylin-eosin
(H&E) stained section images. In the first stage, we train the Naive Bayes classifier on simple
texture descriptors. In the second stage, we utilize the classifier’s outputs as training data for
U-Net-based convolutional neural network.

2. We compare the single-stage approach with the two-stage method on a small subset of manually
annotated data with the two-stage method reaching superior results.

2. Materials and Methods

2.1. Scaffold Sample Preparation

After the explantation from domestic pigs (Sus scrofa), the liver was decellularized by perfusion
with detergent solutions (1% Triton X-100, 1% SDS) via the portal vein and hepatic artery, and finally
washed with saline using a system of peristaltic pumps (Masterflex L/S, Cole-Palmer, Vernon Hills,
IL, USA). Scaffold samples were fixed in 10% buffered formalin, embedded in paraffin, and eventually
cut on a microtome in 4 µm thick sections. The tissues were taken with ethical approval from the
Ministry of Education of the Czech Republic (no. MSMT-4428/2018-2).
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2.2. Histological Staining and Imaging

Histological sections were mounted on glass slides, deparaffinized, and subjected to
hematoxylin-eosin staining resulting in blue stained nuclei and pink stained cytoplasm. Whole slide
scans were produced using Nanozoomer 2.0HT Digital Slide Scanner (Hamamatsu, Hamamatsu City,
Japan). The source lens used for data acquisition was 40×. The typical size of the source area was
about 15 × 10 mm. The resolution of the images is 227 nm per pixel. The size of an uncompressed
image data was 7 to 19 GB.

2.3. Image Processing

The input image of H&E stained scaffolds is described by selected texture features. As a result of
the small amount of training data and the lack of full image annotation we used a two-stage method.
In the first stage, the training set of partially annotated images was used. This classifier is then used
per-pixel for the WSS segmentation. To increase accuracy, the classifier is trained based on a simple
annotation for a particular image. Thus, the obtained segmentations are used in the second stage to
train a convolutional neural network that does not require further adjustment.

2.4. Preprocessing and Data Annotation

WSS data are stored in NDPI file format and partial annotations are stored in NDPA format.
Background, intralobular, and extralobular areas are annotated by with magenta, black, and red color,
respectively (see Figure 1). The area with the particular type of tissue is selected by drawing a polygon.
With this procedure few representative parts of the image were picked. The full annotation of the
whole slide image was not generated due to large time demands. Annotations were produced by an
operator supervised by a tissue engineering expert.

Figure 1. Example of partially annotated H&E Whole Slide Scan (WSS). The manually selected
extralobular area is labeled in red. The magenta delineation shows the scan background and the
intralobular area is annotated in black. The green, cyan, blue, and yellow annotation represents the
rough delineation of the central vein.
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Based on metadata, the pixel size for each layer from the pyramid representation of the NDPI
file format was extracted. The vertices of the annotation polygons were recalculated to the proper
resolution. A 10 µm pixel bitmap is created from the pyramid representation of NDPI files. The image
was then divided into tiles of 255 × 255 px for easier processing.

2.5. Handcrafted Texture Feature Segmentation (HCTFS)

The texture features were designed to describe the pixel intensity and the neighborhood texture.
We started from our formerly designed method for scaffold texture segmentation [8] and extended the
feature vector to better distinguish the differences between the “background” and the “intralobular”
area. The flow-chart of the algorithm can be seen in Figure 2. To keep the computation demands low,
the texture features are as simple as possible. The first three features originate from RGB intensity.
This takes into account the color information in the H&E stained scaffold images. Only the red
channel, which is strongly correlated with other color channels, is used in the calculation of other
features. The next two features are obtained by a Gaussian filter [18] with a Standard Deviation for the
Gaussian kernel of 2 and 5 pixels. The Sobel filter [19] is used to describe the local discontinuity in
the image. The Sobel filter response at the pixel location is used as one feature. The information from
the neighborhood discontinuity is generated by the Gaussian Response Filter of the Sobel filter with a
standard deviation of 2 and 5 pixels. The last feature is a median of the neighborhood of 10 pixels in
diameter. The responses of each feature extractor can be found in Figure 3.

Figure 2. Handcrafted Texture Feature Segmentation algorithm. Input H&E stained image is divided
into tiles. Each tile is processed separately. Red (R), Green (G), and Blue (B) image channels are used as
first features. The Sobel filter and the Gaussian smoothing with the standard deviation of 2 pixels and
5 pixels (Gauss(2)) and Gauss(5)) are applied to the Red channel. The output of the Sobel filter is used
to calculate two features based on the Gaussian of the Sobel filter with a standard deviation of 2 pixels
and 5 pixels (Gauss(2) of Sobel) and the median of Sobel with neighborhood with size 10(Med(10) of
Sobel). These features are used for image segmentation based on per-pixel classification.

The features obtained from partially annotated areas of the image are then used to train the
Gaussian Naive Bayes Classifier. The studies of the classifier can be found in the paper [20,21].
The scikit-learn implementation was used [22] for our experiments. The annotations were performed
to distinguish the three following classes: background, intralobular areas, and extralobular areas.
The classifier was pre-trained on a general dataset and then used for per-pixel segmentation.
Before each use, it is additionally trained using target image data and available partial annotations for
that image.
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Figure 3. Features used for per-pixel Handcrafted Texture Feature Segmentation (HCTFS). In each
subfigure, the intralobular, extralobular, and empty areas are on the left, middle (the vertical structure),
and right, respectively. Red, Green, and Blue image channels are in the first row. The Gaussian
smoothings with the standard deviation of 2 pixels and 5 pixels together with the Sobel filter are in the
second row. The Gaussian of the Sobel filter with a standard deviation of 2 pixels and 5 pixels are in the
third row. The last feature in the figure is the median of the Sobel filter with a neighborhood of size 10.

2.6. Fully-Convolutional Neural Network

The second tested method inspired by [23–25] is built upon a feed-forward fully-convolutional
neural network (CNN), with an encoder–decoder structure. Based on our previous research [26],
we believe that such a structure is perfectly suitable for semantic segmentation tasks. Firstly, the encoder
compresses the data from raw image pixels on the input into a feature vector representation. Secondly,
based on the feature vector, the decoder produces output maps with the same size as the input.
One map is produced for each class, i.e., our network produces three maps in total.
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Our architecture is based on U-Net [24], however, we have made a few minor changes. Firstly,
our architecture also utilizes skip connections between corresponding layers of encoder and decoder,
however, unlike skip connections in the original implementation of U-Net, our skip connections are
implemented as element-wise additional. Secondly, due to the relatively small amount of training data,
we employ a much smaller architecture to prevent overfitting. To be more specific, our architecture
called UNet-Mini uses only 128k parameters, whereas the original implementation of U-Net uses over
17M parameters. Our encoder, and decoder are composed of only four (de)convolutional layers with
16, 32, 64, and 64 number of kernels, respectively, kernel size ks = 3 × 3 and stride s = 1.

Apart from these differences, our architecture follows a standard setup of (de)convolution
followed by batch normalization and the ReLU activation. Four deconvolutions in decoder are followed
by the convolution with kernel size ks = 1 × 1 and stride s = 1. This layer performs a classification
task, therefore, it utilizes the classical Softmax activation function. The detailed description of the
architecture can be found in Figure 4.
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Figure 4. Structure of UNet-Mini architecture. The encoder is composed of four convolutional layers,
each followed by batch normalization (BN) and the ReLU activation function. The decoder mirrors
this structure. N in the last convolutional layer convF of the decoder represents the number of classes
(i.e., 3). conF is followed by the Softmax activation.

The neural network is implemented and trained in Python using Chainer deep learning
framework [27,28]. Experimental settings and results can be found in Section 3.2.

3. Experiments and Results

3.1. Handcrafted Texture Feature Segmentation

To train the first stage classifier in Handcrafted Texture Feature Segmentation, we used a dataset
that contained 60 different areas of 8 WSS. This pre-trained classifier with small additional annotation
for every image was then used to produce 33 WSS segmentations for the second stage based on CNN.
The first stage segmentation output can be seen in Figure 5.
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Figure 5. Output of the handcrafted texture feature-based segmentation. The background class is in
dark purple, the intralobular area is represented by teal color, and the extralobular area is in yellow.

3.2. Semantic Segmentation via CNN

Generally, a huge amount of data is necessary for network training. For this initial experiment,
we used only 33 WSS (with average resolution approximately 3000 × 2000 pixels) without any original
labels. The annotations resulting from the HCTFS of the individual scans were then utilized as the
labels. We believe our network should handle occasional mislabels of the HCTFS, learn the correct
structure for each class, and outperform the first method.

The data were converted to gray-scale and split into three subsets—training (25 scans),
development (4 scans), and testing (4 scans) set. Considering the size of scans, we decided to cut
each of them into the crops of the size of 224 × 224 pixels with 100 pixels overlay. Furthermore,
to produce more training data, we resized each scan to half of the original resolution and repeated
the whole cutting process. This process was repeated two times in total. In the last step, we resized
the original scan to the size of 224 × 224 pixels. Thanks to this process, we got 11,384 training images,
2739 development images, and 2425 testing images. Such amount of data represents still quite a small
data set for the training of the neural network. To overcome this problem and improve the network’s
robustness, we also used data augmentations. To be more specific, each image crop was modified with
a random number of augmentations. The possible augmentations were the following: horizontal flip,
vertical flip, white noise, and Gaussian blur. This process was repeated three times for each image
crop. This leads to 45,536 training images in total. All the pixel values were normalized from 0 to 1.

UNet-Mini is trained for the semantic segmentation of an input image into one of the three
following classes: intralobular, extralobular, and background. The Adam optimization method [29]
with standard parameters setup and also standard SGD optimizer with a starting learning rate l = 0.01
and step decay d = 0.1 every 10 epochs were the hyperparameters we used for updating UNet-Mini’s
parameters. In both cases, we use the cross-entropy loss for the network training and mini-batch
size 32. The training is stopped after 35 epochs. We used 1 GPU NVidia 1080Ti for training.

Both optimizers reach comparable results, with the best recognition accuracy of 92.35% on the
development set. It is necessary to note that the reached accuracy is calculated by comparing the
network results with the results from HCTFS. As it was already mentioned, the HCTFS’s results
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contain some mislabels, therefore, our goal was not to completely replicate the original results, but to
filter out these mistakes and to learn to segment the scans more precisely.

To objectively compare both methods, we manually label additional ground-truth data patch on
the original images. The resulting images can be found in Table 1. UNet-Mini overcomes the HCTFS
method by more than 4% on both sets. This means that UNet-Mini learns to generalize better than
the original method despite incorrect data in the training set. Plus, UNet-Mini does not need any
additional image specific labels.

Table 1. Comparison of classification recognition rates. Bold font indicates best results.

Method Dev Set Test Set

HCTFS 86.47% 86.51%
UNet-Mini 90.87 % 90.67%

Furthermore, we provide examples of qualitative results comparing both methods. Figures 6
and 7 show the results, where the UNet-Mini corrected or partially corrected the original mistakes
in labels. On the other hand, an example of obvious mislabels made by the network can be found in
Figure 8. Finally, Figure 9 provides an example of equally good results from both tested methods.

Figure 6. Example of semantic segmentation, where the neural network reached better results.
The original image (on the left), the result from the HCTFS (in the middle), and the results from
the neural network (on the right).

Figure 7. Example of semantic segmentation, where the neural network reached better results.
The original image (on the left), the result from the HCTFS (in the middle), and the results from
the neural network (on the right).
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Figure 8. Example of semantic segmentation, where the neural network reached worse results.
The original image (on the left), the result from the HCTFS (in the middle), and the results from
the neural network (on the right).

Figure 9. Example of semantic segmentation, where the neural network reached comparable results.
The original image (on the left), the result from the HCTFS (in the middle), and the results from the
neural network (on the right).

4. Discussion

The scaffold function is directly linked to its structure [30]. Current approaches to analyze
scaffold quality include the qualification of the residual DNA content, the amount (or ratio) of
structural proteins such as collagen I, collagen IV, laminin, fibronectin, or elastin, and presence
of glycosaminoglycans [31,32].

The morphological assessment consists of subjective evaluation of scaffold structure preservation
which is supposed to be as close to the native liver structure as possible. H&E staining represents a
fast and simple histological method to visualize the scaffold structure as well as cell removal from
samples. The typical structural unit of the liver is a lobule, ideally a hexagonally shaped structure with
intralobular space occupied by sinusoidal vessels surrounded by hepatocytes. The scaffold consists of
the extracellular matrix of the vessel walls forming conduits, empty inter-sinusoidal space after the
removal of hepatocytes, and interlobular septa formed by thick protein fibers.

The presence and distribution of individual structural proteins is usually confirmed by
immunohistochemistry representing more time and cost consuming method. The ultrastructure
can be visualized by scanning electron microscopy; however, the cost and extended time spent during
sample processing makes this powerfull technique not always available. Scaffold images obtained by
any of these methods have a potential to be quantitatively analyzed. However, for the development of
a new quantitative method, we selected H&E stained images. They can be produced in a fast and easy
way while still carrying the information necessary to evaluate structural integrity of the scaffold.

The segmentation of liver scaffold from H&E stained image based on handcrafted texture features
works well in the interactive mode where additional partial segmentation of a particular image is given.
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Without additional per image classifier training, the segmentation algorithm provides unstable results.
This makes it dependent on the manual annotation of each examined image. Considering the very
promising results that we have reached in our initial experiments, we would like to further investigate
possible usage of semantic segmentation via neural networks. In our future research, we would like to
extend our training set with additional slides. Moreover, we would like to perform extensive testing of
other neural network architectures.

5. Conclusions

The first step in the decellularized liver analysis can be successfully represented by the whole
slide segmentation. Due to the lack of completely annotated WSS, we designed a two-state solution.
The first stage is segmentation based on hand-crafted features that are trained using partially annotated
WSS. The second stage uses CNN with a U-Net scheme. The two-stage approach has proved to be
useful to compensate the lack of training data, and reaches semantic segmentation accuracy over 90%
and overcomes the handcrafted features by more than 4%. In our future work, firstly, we would like to
enrich our dataset. Especially images obtained using different scanners are very desirable because such
data can provide a classifier bigger robustness and better generalization capacity. Secondly, with more
data, we believe, utilizing more complex neural network architecture would be possible. We also plan
to use the suggested algorithm in the open-source application for the scaffold tissue evaluation.
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Abstract: In this paper, we introduce a simple method based on image analysis and deep learning
that can be used in the objective assessment and measurement of tremors. A tremor is a neurological
disorder that causes involuntary and rhythmic movements in a human body part or parts. There are
many types of tremors, depending on their amplitude and frequency type. Appropriate treatment
is only possible when there is an accurate diagnosis. Thus, a need exists for a technique to analyze
tremors. In this paper, we propose a hybrid approach using imaging technology and machine
learning techniques for quantification and extraction of the parameters associated with tremors.
These extracted parameters are used to classify the tremor for subsequent identification of the
disease. In particular, we focus on essential tremor and cerebellar disorders by monitoring the
finger–nose–finger test. First of all, test results obtained from both patients and healthy individuals
are analyzed using image processing techniques. Next, data were grouped in order to determine
classes of typical responses. A machine learning method using a support vector machine is used to
perform an unsupervised clustering. Experimental results showed the highest internal evaluation for
distribution into three clusters, which could be used to differentiate the responses of healthy subjects,
patients with essential tremor and patients with cerebellar disorders.

Keywords: tremor; essential tremor; ataxia; finger–nose–finger test

1. Introduction

A tremor is one of the most common involuntary movements seen in neurological disorders. It is
characterized as a rhythmic, involuntary oscillation of a body part by muscle innervations that imply
repetitive contractions [1–4]. Various types of tremors occur, depending on their causes. In general,
tremors can be divided into two types: resting and action tremors. Action tremors can be further
classified into postural tremors, kinetic tremors, task-specific tremors and intention tremors [5,6].
In clinical practice, a tremor is most commonly classified by its appearance and cause or origin.
There are actually more than 20 types of tremors. Among them, the most common cause of resting
tremors is Parkinson’s disease (PD). The most common causes of postural and kinetic tremors are
essential tremors (ET) and cerebellar disorders (CD). It is easy to distinguish PD resting tremors from
other tremors because trembles occur at rest and weaken when the target muscles contract [4,5,7].
On the other hand, there are various causes of action tremor, and it is not easy to identify the cause.

The most common causes of action tremors are essential tremors (ET) and cerebellar disorders
(CD). ET tremor behaves regularly, but CD tremor behaves irregularly and sometimes includes intention
tremor [5,6]. Both ET and CD patients have several common features, such as increased tremor when
mentally stressed and restricted fine movements. In clinical practice, clinicians try to distinguish
these two tremors, ET and CD, by neurological examinations such as FNF (finger–nose–finger)
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test [1,6,7]. However, it is not easy to detect subtle irregularities of finger movement and observe
where the finger tremor becomes stronger during the FNF test by usual observation. For this reason,
distinguishing between ET and CD could be difficult even for a skilled neurologist. Therefore,
we propose a non-contact method of distinguishing ET from CD featuring image processing technology
and including measurement of tremor severity to confirm its effectiveness.

The rest of this paper is organized as follows: In Section 2, we review the literature relating to
our research. In Section 3, the materials and methods are proposed. The method of disease diagnosis
and analysis is described in Section 4. Then some experimental results are described in Section 5
using datasets collected by two neurologists who specialize in patients with tremors. In Section 6,
we present discussions and plans for future research. Finally, we conclude the paper by giving remarks
in Section 7.

2. Related Works

ET is a disease in which tremors only appear as a symptom and are not life-threatening. However,
it is clinically important to make an early diagnosis, allowing treatment specific to ET when available
and improving the patient’s quality of life [8]. The prevalence of ET is approximately 2.5–10% of the
population [9]. Although it can develop in any age group, it is mainly seen in the elderly: 4% of people
over 40 years old and 5–14% of people over 65 years old have ET [10–12]. Although the cause of ET is
not well understood, speculation exists that a hyperexcited state of the sympathetic nerve is involved
because the symptoms increase with stress [13]. CD results from causes such as cerebellar infarction,
inflammation, demyelination, autoimmunity, trauma, degeneration and tumors. Symptoms of CD

include cerebellar ataxia, intention tremor and cerebellar sway of the upper limbs [5,7,12]. ET is rarely
life-threatening, while CD can be. However, ET often disturbs a patient’s quality of life. Therefore,
an early diagnosis, differentiating ET from CD, is important. In addition, even in those who are highly
skilled, it may be difficult to differentiate tremors when the patient first presents with the symptom.

Currently, the diagnosis of a patient’s disease using the characteristics of tremor is performed
subjectively based on the experience and skills of specialists. However, there are various problems
with this. Doctors who are not specialists, such as family doctors and on-duty doctors, do not have a
means of quantitatively evaluating a tremor, incurring the risk of misdiagnosis. Such quantification is
important in determining the proper treatment.

Various tremor rating scales have been used to evaluate symptoms [14–16], but these are qualitative
and subjective, and errors may occur depending on the person who assesses them [17,18]. Therefore,
how to more accurately quantify tremor characteristics has become an urgent subject of research.
For example, such research has included the acquisition of tremor signals using devices such as
multipolar EMGs, electromagnetic tracking devices, accelerometers and gyroscopes, using the resulting
data for evaluation and diagnosis [19]. However, since these methods require a large-scale dedicated
device, it is unrealistic to use them in an examination room. In addition, these methods often
require attaching a sensor or the like to the patient, resulting in different symptoms due to stress
or the burden imposed during the examination. Recent tremor-related research has been done
using magnetic resonance imaging (MRI) and a neurophysiological assessment [20]. Results indicate
a significant association between severe tremors and malfunctions in specific areas of the brain.
Moreover, the literature includes applicable developments in image processing in the framework of
deep learning [21,22].

The severity assessment of ET or CD is determined by expert opinion and is likely to be subjective
in nature. Several investigators have tried to quantify these symptoms. Analysis of FNF test,
a classic neurological examination method, has been reported using an accelerometer or inertial sensor.
Using inertial sensors, the changes of spatiotemporal parameters are related to the disability level in
patients with multiple sclerosis [23] or cerebellar ataxia [24]. Using a three-dimensional motion capture
system, analyses of body movements during FNF test in patients with poststroke could discriminate
between patients with mild and moderate upper limb impairments [25]. These studies have been

236



Sensors 2020, 20, 6684

successful in quantifying the severity of symptoms. However, no research has ever tried to capture
and distinguish between the characteristics of ET and CD. Furthermore, the fine movements of the
fingertips during the FNF test has never been analyzed by monitoring them with a video over time.

3. Materials and Proposed Imaging Method for Tremor Quantification

In this section, we describe the architecture of our proposed system in which tremors are
characterized based on visual data collected by performing the FNF (finger–nose–finger) test.
Specifically, these visual data are collected using a smartphone, as in the actual diagnostic,
for distinguishing ET from CD. The purpose of this analysis is to automatically and objectively
diagnose the disease and measure its severity. In the FNF test, patients move their index finger back
and forth between their nose and the examiner’s finger to see whether tremors occur. As a result,
non-specialist doctors such as family doctors or on-duty doctors can avoid misdiagnosis, detecting
life-threatening problems, and averting MRI imaging and other unnecessary medical costs. In addition,
without the need for sensors, no burden is placed on the patient, and the FNF test analysis can be
performed easily. The system is composed of the following four components: the dataset collection
system, image preprocessing, feature extraction, disease diagnosis and analysis.

3.1. Subjects and Design of Data Collection System

Data collection for the FNF test was conducted in an examination room at the Miyazaki University
Hospital for ET patients (N = 10; female, n = 4; age, 71.5 +/− 8.1, mean +/− SD) and CD patients (N = 18;
female, n = 9; age, 68.1 +/− 7.5), with images captured in a side view. Figure 1 illustrates the process of
the data collection system. The smartphone camera is fixed at a distance of about 1~1.5 m from the
doctor and the patient. The recorded video has a resolution of 480 × 640 pixels, and the frame rate is
30 frames per second (fps). The doctor places his index finger at various locations in front of the patient.
The patient touches his/her index finger to the doctor’s index finger and then touches his/her index
finger to his/her own nose. Repeat several times with the doctors moving the target finger each time.

– –

’

− −
−

doctor’s index finger 

 

severity of the patients’ tremor

, upper limb tremor ≥ 1 test tremor ≥ 2

Figure 1. The illustration of the data collection system.

Two neurologists made diagnoses and evaluated the severity of the patients’ tremors based
on the essential tremor rating assessment scale [15] or the scale for assessing and rating ataxia [14].
According to these scales, patients were classified into two groups; mild (ET, upper limb tremor < 1 cm;
CD, FNF test tremor < 2 cm) or severe (ET, upper limb tremor ≥ 1 cm; CD, FNF test tremor ≥ 2 cm).
The video data were recorded by two neurologists using smartphones. The data or healthy subjects
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(N = 8; female, n = X; age, X +/− X) include data recorded with the cooperation of members of the
laboratory, featuring a recorded video of the diagnostic test performed on two ordinary healthy people
at the Miyazaki University Hospital. The FNF test was performed by winding red or green tape around
the subject’s finger. This protocol was approved by the Ethics Committee of the University of Miyazaki,
with a waiver of written informed consent obtained from all participants.

3.2. Image Preprocessing Component

In this component, image preprocessing is performed in preparation for further analysis. In the
first step, the patient’s finger area must be extracted from the video image in each frame. Figure 2
shows the algorithm for extracting the finger area. First, a background image is detected as a noise
source, and then the region of interest is set by removing the noise. Subsequent processes include
inputting an image for extracting the finger area, threshold processing, noise processing and finger
area estimation, finally obtaining the coordinates of the finger area.

−

’

’

Thresholding

Setting Region of Interest (ROI)

Noise Removal

Finger Region Estimation

Noise Extraction

Finger Region Coordinates

Input Image

Input Background Image

 

Figure 2. Finger area extraction algorithm.

Due to the location for recording video in the examination room, noise can occur for many reasons
when extracting the finger area. In the presence of noises, we perform a noise removal process by using
background modeling with an initial background as an image that does not include the target object.
By converting the RGB image to HSV, we perform the defined thresholding of the hue information in
order to obtain the finger object. The input image and converted HSV image are shown in Figure 3a,b,
respectively [16]. Hue information representing the hue of the HSV image, Saturation information
representing the saturation, and Value information representing the brightness are thresholded, and the
finger is obtained by taking the logical product with the region of interest.

We also performed noise processing by calculating the aspect ratio of each area resulting from
the labeling process. Since the finger area has a shape close to that of a square, threshold values are
applied to the calculated aspect ratio to remove areas of the same size as finger areas that are elongated
in vertical or horizontal orientations and could not be removed by noise processing using labels.
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(a) (b) 

Figure 3. (a) Input image. (b) The converted HSV image for the input image.

3.2.1. Estimation of Finger Area when Multiple Labels Exist

Even if noise processing is performed, not all noise can be removed. In addition, noise processing
sometimes removes the finger area. In such a case, the finger area is estimated as follows: If multiple
labels exist, such as frame t, select the label closest to the coordinates of the finger area surrounded
by the red circle detected in the previous frame. The coordinates of the finger area are obtained by
calculating the center of gravity of the labeled object.

3.2.2. Estimation of Finger Area when No Label Remains

If the finger area is mistakenly removed during noise processing, all labels can be lost. In that
case, a smoothing process is performed using finger area coordinates from preceding and subsequent
frames to estimate the finger area. For example, as shown in Figure 4, when two frames with no
label continue for two successive frames, the difference between X coordinate and Y coordinates is
calculated from the preceding and subsequent frames, and the coordinate values are evenly calculated
for the unlabeled frames. The finger area is estimated by substituting a value that changes.

Frame X Y

t 154 187

t+1 - -

t+2 - -

t+3 286 199

Frame X Y

t 154 187

t+1 198 191

t+2 242 195
 

Figure 4. Estimation of finger area when no label remains.

3.3. Feature Extraction Process

Now, we present the feature extraction process for the detected finger areas in an FNF test. In this
process, we extract the following six measures.
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3.3.1. Mean Square Deviation (RMSD: Root-Mean-Square Deviation)

This measure quantifies the vertical distance of the patient’s up and down positions. In Figure 5,
the finger region is shown as a graph in the rectangular coordinate plane. In order to do so, we employ
a linear-quadratic function along with the least square method. Since the linear-quadratic function
represents a parabola curve, we can estimate the vertical distance that the finger moves up and down
by computing the root mean square deviation (RMSD) measure. The formula for calculating RMSD is
shown below:

RMSD =

√

√

√

√ n
∑

i=1

(

yi −
⌢

y i

)2

n
, (1)

where n is the number of plotted data points,yi is the plotted value, and
⌢

y i is the value of the
approximated quadratic function.
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Figure 5. Plot of finger trajectory and approximate curve.

3.3.2. Dispersion of Acceleration

As the second measure in consideration, dispersion of acceleration digitizes variations in speed.
This measure was selected because healthy people have constant finger movements. However,
patients with tremor symptoms have varying rates of change. Therefore, acceleration is calculated for
each frame using the coordinate data of the finger region. Next, by calculating the variance from the
calculated acceleration, we can quantify the dispersion of acceleration. The formula for calculating this
variance is shown below.

Variance =
1
n

n
∑

i=1

(xi − x)2, (2)

where n is the number of frames, xi is the acceleration in each frame, and x is the average value of
the acceleration. Using the dispersion of acceleration that digitizes variation in speed change, we can
quantify how the patient’s finger is decelerating near the examiner’s finger.

240



Sensors 2020, 20, 6684

3.3.3. Histogram Feature

In the case of tremor patients, particularly ET patients, their fingers often slow down near the
examiner’s finger when performing the FNF test. Therefore, the following equation is used to determine
whether the finger is moving back and forth with a constant rhythm.

Histogram =
(hmax − hmed)

n
, (3)

where n is the number of frames, hmax the maximum value of the histogram, and hmed is the median value
of the histogram. The difference between the simple maximum value and the median value requires
a different round-trip time (number of frames) depending on the moving image, so normalization
is performed by dividing by the number of round-trip frames. In the histogram method, we first
construct a histogram by taking the X coordinate on the image of the finger as the vertical axis and the
frame number as the horizontal axis. We then divide the range between the maximum frequency of X
coordinate and the minimum frequency of X coordinate into four equal parts [12]. Finger movement
can be considered unstable if angle analysis indicates that the finger moves up and down an excessive
number of times. Moreover, the ratio between the time required in the initial movement of the patient’s
finger from the examiner’s finger to the patient’s nose and the time required for the return trip is longer
for tremor patients. In this case, the average moving distance is used for digitizing how much the
finger is shaking.

3.3.4. Angular Feature

In the FNF test, the fingers are moved horizontally, but in patients with tremor symptoms, fine up
and down vibrations occur. In order to detect this, the angle at which the finger has moved between
frames is considered and calculated by using the following equation.

θ = tan−1 yn − yn−1

xn − xn−1
, (4)

However, the range of θ is −180◦ ≤ θ ≤ 180◦. Here, (xn, yn) is the coordinate data for the finger
region of the nth frame, and (x(n−1), y(n−1)) is the coordinate data for the n − 1 frame. The total number
of frames satisfying −150◦ < θ < −30◦ or 30◦ < θ < 150◦ is determined using the angle obtained from
the above equation; the number of times the finger swings up and down is also obtained. An example
of the finger movement angle is shown in Figure 6.

Frame
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’

Figure 6. Angle of finger movement.
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3.3.5. Measure of Round-Trip Time Ratio

In order to detect abnormality in the FNF test, the following equation is used to determine the
ratio between the time required for initial and return paths in finger movement:

Time Ratio =
f 0

f r

, (5)

where f 0 is the average number of frames on the initial path and f r is the average number of frames
on the return path. Here, a threshold value is set for the amount of finger movement in each frame,
as shown in Figure 7. The frames in which finger movement exceeds the threshold value are extracted,
and the average number of frames for the initial and the return path is obtained. Then, the ratio
between the time required for initial and return trips is calculated.
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Figure 7. Amount of finger movement in each frame.

3.3.6. Measure of Average Travel Distance

The final feature to be extracted is the average moving distance digitizing how much the finger
is shaking when first touching the examiner’s finger. Tremor patients shake their fingers when
touching the examiner’s finger in the FNF test. This is especially remarkable in ET patients. Therefore,
initial and return frames are extracted during the calculation process for the round-trip time ratio. Thus,
the average moving distance of the fingers during that period is calculated using the following formula.

d =
1

(m2 −m1) + (m4 −m3) + 2

















m2
∑

i=m1

di+

m4
∑

i=m3

di

















(6)

where d represents the average moving distance, di is the moving distance in the i frame, m1 is the first
frame of the first touch, m2 is the last frame of the first touch, and m3 is the first frame of the second
touch, m4 is the frame at the end of the second touch.

4. Method of Disease Diagnosis and Analysis

A classifier is learned by using the feature values obtained in Section 3, and the disease is
diagnosed by classifying the data using that classifier. In this study, we classify by supervised learning.
Supervised learning is a method of learning a classifier that correctly outputs the relationship between
data and class, using the information on the label for the data and the class of data provided in advance.
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The methods used as classifiers are as follows: linear discriminant analysis, logistic regression analysis,
support vector machine (SVM), and the k-nearest neighbor method (k-NN method). Verification of the
classifier is performed by k-fold cross-validation. Briefly, we will describe these classifiers as follows:

4.1. Linear Discriminant Analysis

Linear discriminant analysis is a method of finding a straight line that can best classify which
group to enter when new data are obtained using data provided in advance that was divided into
different groups.

4.2. Logistic Regression Analysis

In medical statistics, logistic regression analysis is one of the statistical methods used in multivariate
analysis. In this method, when the objective variable (class) is binary, the probability P that an event
occurs when one of the classes is an event is expressed by the equations in (7).

P′ = ln
(

P
1−P

)

= b0 + b1x1 + b2x2 + . . .+ bpxp,
P = 1

1−e−P′ ,
(7)

where b0 is a constant, bp is a partial regression coefficient, and xp is a covariate (feature amount).

4.3. Severity Measurement in ET Patients

Figure 8 shows the algorithm for measuring severity in ET patients. Threshold processing is
applied to the feature amount calculated by the histogram analysis, angle analysis, and the average
moving distance proposed in Section 2, and if it is equal to or greater than the threshold, one point is
added to each. If the total number of points finally scored is less than 2, the score is mild, and if the
total score is 2 or more, the score is severe.

Feature Value

Histogram

>ThH1

Angle

>ThA1

Distance

>ThD1

Score

>Th1

Mild

Score=Score+1

Score=Score+1

Score=Score+1

Severe

No

No

No

No

Yes

Yes

Yes

Yes

 

Figure 8. Severity measurement algorithm for essential tremors (ET) patients.
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4.4. Severity Measurement in CD Patients

Figure 9 shows the algorithm for measuring severity in CD patients. Threshold processing is
applied to the feature amount calculated by RMSD, histogram analysis, angle analysis, and average
moving distance proposed in Section 2, and if it is above the threshold, one point is added to each.
If the total score is less than 3 points, the severity score is mild, and if the total score is 3 points or more,
the score is severe.

Feature Value

RMSD

>ThR2

Histogram

>ThH2

Angle

>ThA2

Score

>Th2

Mild

Score=Score+1

Score=Score+1

Score=Score+1

Severe

No

No

No

No

Yes

Yes

Yes

Yes

Distance

>ThD2

Score=Score+1
No

Yes

 

–

Figure 9. Algorithm for measuring severity in cerebellar disorders (CD) patients.

5. Experimental Results

This section describes the results of experiments using the proposed method. This time,
we conducted an experiment using 8 sets of data for healthy people, 10 data for ET patients, and 18
data for CD patients. For training and testing data separation, we applied the k-fold cross-validation
technique. In our system, we set k = 5 and therefore, the dataset is split into five folds. Machine
learning is performed in experiments that each have multiple classes, as follows: (1) healthy subjects
and tremor patients, (2) ET patients and CD patients and (3) healthy subjects, ET patients and CD

patients. After learning is completed, k-fold cross-validation is performed. The results are shown in
Tables 1–3, respectively.

244



Sensors 2020, 20, 6684

Table 1. Classification results of healthy subjects and tremor patients.

Classifier Accuracy (%)

Linear discriminant 83.9
Logistic regression 85.0

SVM 86.7
k-NN 83.4

Table 2. Classification results of ET patients and CD patients.

Classifier Accuracy (%)

Linear discrimination 79.3
Logistic regression 72.2

SVM 83.6
k-NN 70.0

Table 3. Classification accuracy of healthy subjects, ET patients and CD patients.

Classifier Accuracy (%)

Linear discrimination 68.9
SVM 76.1
k-NN 60.0

We have also conducted experiments measuring the tremor severity of ET and CD patients using
the method proposed in Section 3. In these experiments, the threshold was determined by using a total
of four training data in experiments featuring examinations by Doctor A and Doctor B, which had a
low rate of accuracy in determining the severity of ET and CD patients. Tables 4 and 5 provide samples
of the experiment results.

Table 4. Accuracy of severity measurement in ET patients.

Severity Measurement Total Number Correct Number Accuracy (%)

Mild 4 3 75.0%
Severe 4 3 75.0%
Total 8 6 75.0%

Table 5. Accuracy of severity measurement in CD patients.

Severity Measurement Total Number Correct Number Accuracy (%)

Mild 7 6 85.7%
Severe 9 6 66.7%
Total 16 12 75.0%

6. Discussion

As a result of training the classifier using the proposed feature quantity and k-division
cross-validation, in the classification experiment featuring healthy subjects and tremor patients,
Table 1 shows the best results using SVM, with an accuracy of 86.7%. In all three misdiagnoses,
the examining doctors incorrectly assessed the symptoms to be mild and had difficulty in correctly
assessing the symptoms even when reviewing the videos.

According to the classification of ET and CD patients, from Table 2, the best result was obtained
with SVM, and its accuracy was 83.6%. Four misdiagnoses occurred, in three of which physicians
incorrectly assessed the symptoms to be mild. The data for the single remaining ET patient presented
CD-like characteristics, such as a high RMSD value due to severe symptoms with much shaking of
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the finger up and down and much time for the initial trip from examiner’s finger to patient’s nose.
These severe symptoms seem to be the cause of the misclassification.

As shown in Table 3, a classification experiment featuring healthy subjects, ET patients and CD

patients, the best result was obtained using SVM, with an accuracy of 76.1%. The accuracy was slightly
less than with the above two classification experiments. In order to improve the accuracy, new features
that better differentiate classes must be studied, and the dataset should be enlarged.

6.1. About Severity Measurement

Improving the measurement of severity first involves adapting the threshold to the amount
of feature data, calculating the score, and then taking the measurement. As a result of doing so,
the measurement accuracy for both ET and CD patients could be improved to 75.0%. In one example,
the inaccuracy resulted from repeating training for the FNF test. In this case, the score was low, and the
doctor incorrectly assessed the symptoms as severe, though the experimental results indicate that the
symptoms were actually mild. In addition, since the purpose of this study is to facilitate measurements
in the examination room, the conditions for recording video, such as camera placement, have not yet
been optimized. For this reason, some erroneous results were obtained because the feature amount
for the average moving distance of the finger increases when the camera is close and decreases when
the camera is far. In order to solve this problem, normalization processing could be added so that the
feature amount does not change depending on the conditions of video recording.

6.2. Future Outlook

In the future, the main issues will be the examination of new features and the use of new methods.
The ET tremor is regular, and its frequency is generally 4–12 Hz [4,26,27]. In order to focus on the
frequency component of tremors in future research, it is expected that diagnostic accuracy will be
improved by performing analysis using the fast-Fourier transform.

Due to the fact that severity is difficult to define, we only differentiated mild and severe symptoms
rather than attempting a more granular assessment. As a future challenge, we will quantify the degree
of severity. Doing so will allow understanding the effect of therapy and enables doctors to modify
prescriptions when symptoms do not improve.

7. Conclusions

In this paper, we proposed a non-contact method of discriminating ET and CD and a method of
measuring tremor severity by analyzing the FNF test using image processing technology. We proposed
feature quantities to quantify what a doctor actually focuses on in the FNF test and trained a classifier
using these feature quantities. As a result of performing k-fold cross-validation on the classifier,
SVM obtained an accuracy of 83.6% in classifying ET and CD patients. In addition, threshold
processing was applied to the amount of feature data in each dataset, the score was calculated, and the
severity was evaluated. As a result, the severity of symptoms for both ET and CD patients could be
evaluated with an accuracy of 75.0%.

In the future, we expect to improve diagnostic accuracy by examining new features and using
new methods, including some analysis of frames per second (fps) increase and Eigen background
models focusing on tremor frequency and on detecting the nose of the patient and the finger of the
examiner. Since the Eigen background model is based on the method of principal component analysis,
we expect that a more clear foreground image (in our case, the finger area) would be extracted. It is also
necessary to consider various approaches to quantify severity. In addition, we will increase the amount
of data collected and aim to build a more reliable system. Moreover, in our future work, we would like
to explore and analyze the raw recorded data by using a machine learning approach, such as using
recurrent convolutional neural networks to extract prominent features from the data.

246



Sensors 2020, 20, 6684

Author Contributions: This paper is organized and written by the second author T.T.Z. The second author also
laid down the conceptual model and supervised experiments by the first author Y.M. who was her Master’s
student. The third author N.I. and the fourth author H.M. provided the experimental environments to obtain
real-life data and gave medical interpretations. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Miskin, C.; Carvalho, K.S. Tremors: Essential Tremor and Beyond. In Seminars in Pediatric Neurology;
WB Saunders: Philadelphia, PA, USA, 2018; Volume 25, pp. 34–41.

2. Mansur, P.H.G.; Cury, L.K.P.; Andrade, A.O.; Pereira, A.A.; Miotto, G.A.A.; Soares, A.B.; Naves, E.L.
A review on techniques for tremor recording and quantification. Crit. Rev. Biomed. Eng. 2007, 35, 343–362.
[CrossRef] [PubMed]

3. Jombík, P.; Spodniak, P.; Bahýl’, V.; Necpál, J. Visualization of Parkinsonian, Essential and Physiological
Tremor Planes in 3D Space. Physiol. Res 2020, 69, 331–337. [CrossRef] [PubMed]

4. Wang, X.X.; Feng, Y.; Li, X.; Zhu, X.Y.; Truong, D.; Ondo, W.G.; Wu, Y.C. Prodromal Markers of Parkinson’s
Disease in Patients With Essential Tremor. Front. Neurol. 2020, 11, 874. [CrossRef] [PubMed]

5. Buijink, A.W.; Contarino, M.F.; Koelman, J.H.; Speelman, J.D.; Van Rootselaar, A.F. How to tackle tremor
-systematic review of the literature and diagnostic work-up. Front. Neurol. 2012, 3, 146. [CrossRef]

6. Kamble, N.; Pal, P.K. Tremor syndromes: A review. Neurol. India 2018, 66, 36–47. [CrossRef]
7. Crawford, P.; Zimmerman, E. Differentiation and diagnosis of tremor. Am. Fam. Phys. 2011, 83, 697–702.
8. Lee, S.; Chung, S.J.; Shin, H.W. Neuropsychiatric Symptoms and Quality of Life in Patients with Adult-Onset

Idiopathic Focal Dystonia and Essential Tremor. Front. Neurol. 2020, 11. [CrossRef]
9. Geraghty, J.J.; Jankovic, J.; Zetusky, W.J. Association between essential tremor and Parkinson’s disease.

Ann. Neurol. 1985, 17, 329–333. [CrossRef]
10. Dogu, O.; Sevim, S.; Camdeviren, H.; Un, S.; Louis, E.D. Prevalence of essential tremor: Door-to-door

neurologic exams in Mersin Province, Turkey. Neurology 2003, 61, 1804–1806. [CrossRef]
11. Louis, E.D.; Marder, K.; Cote, L.; Wilder, D.; Tang, M.X.; Lantigua, R.; Gurland, B.; Mayeux, R. Prevalence of

a history of shaking in persons 65 years of age and older: Diagnostic and functional correlates. Mov. Disord.

1996, 11, 63–69. [CrossRef]
12. Louis, E.D.; Faust, P.L. Essential tremor: The most common form of cerebellar degeneration?

Cerebellum Ataxias 2020, 7, 1–10. [CrossRef] [PubMed]
13. Handforth, A.; Parker, G.A. Conditions associated with essential tremor in veterans: A potential role for

chronic stress. Tremor Other Hyperkinetic Mov. 2018, 8, 517. [CrossRef]
14. Schmitz-Hübsch, T.; Du Montcel, S.T.; Baliko, L.; Berciano, J.; Boesch, S.; Depondt, C.; Giunti, P.; Globas, C.;

Infante, J.; Kang, J.S.; et al. Scale for the assessment and rating of ataxia: Development of a new clinical scale.
Neurology 2006, 66, 17–20. [CrossRef] [PubMed]

15. Elble, R.; Comella, C.; Fahn, S.; Hallett, M.; Jankovic, J.; Juncos, J.L.; LeWitt, P.; Lyons, K.; Ondo, W.;
Pahwa, R.; et al. Reliability of a new scale for essential tremor. Mov. Disord. 2012, 27, 1567–1569. [CrossRef]

16. Mitsui, Y.; Ishii, N.; Mochizuki, H.; Zin, T.T. A Study on Disease Diagnosis by Tremor Analysis. Int. Multi

Conf. Eng. Comput. Sci. 2018, 1, 14–16.
17. Bilge, S.; Jenq-Neng, H.; Su-In, L.; Linda, S. Tremor Detection Using Motion Filtering and SVM. In Proceedings

of the 21st International Conference on Pattern Recognition (ICPR 2012), Tsukuba, Japan, 11–15 November
2012; pp. 178–181.

18. Ishii, N.; Mochizuki, Y.; Shiomi, K.; Nakazato, M.; Mochizuki, H. Spiral drawing: Quantitative analysis and
artificial-intelligence-based diagnosis using a smartphone. J. Neurol. Sci. 2020, 411, 116723. [CrossRef]

19. Zdenka, U.; Otakar, S.; Martina, H.; Arnost, K.; Olga, U.; Václav, H.; Chris, D.N.; Evzen, R. Validation of a
new tool for automatic assessment of tremor frequency from video recordings. J. Neurosci. Methods 2011,
198, 110–113. [CrossRef]

247



Sensors 2020, 20, 6684

20. Benito-León, J.; Serrano, J.I.; Louis, E.D.; Holobar, A.; Romero, J.P.; Povalej-Bržan, P.; Kranjec, J.;
Bermejo-Pareja, F.; Del Castillo, M.D.; Posada, I.J.; et al. Essential tremor severity and anatomical changes in
brain areas controlling movement sequencing. Ann. Clin. Transl. Neurol. 2019, 6, 83–97.

21. Yuan, X.; Liu, Q.; Long, J.; Hu, L.; Wang, Y. Deep Image Similarity Measurement Based on the Improved
Triplet Network with Spatial Pyramid Pooling. Information 2019, 10, 129. [CrossRef]

22. Figueroa-Mata, G.; Mata-Montero, E. Using a Convolutional Siamese Network for Image-Based Plant Species
Identification with Small Datasets. Biomimetics 2020, 5, 8. [CrossRef]

23. Daunoraviciene, K.; Ziziene, J.; Griskevicius, J.; Pauk, J.; Ovcinikova, A.; Kizlaitiene, R.; Kaubrys, G.
Quantitative assessment of upper extremities 3 motor function in multiple sclerosis. Technol. Health Care

2018, 26, 647–653. [CrossRef] [PubMed]
24. Krishna, R.; Pathirana, P.N.; Horne, M.; Power, L.; Szmulewicz, D.J. Quantitative assessment of cerebellar

ataxia, through automated limb functional tests. J. Neuroeng. Rehabil. 2019, 16, 31. [CrossRef] [PubMed]
25. Johansson, G.M.; Grip, H.; Levin, M.F.; Häger, C.K. The added value of kinematic evaluation of the timed

finger-to-nose test in persons post-stroke. J. Neuroeng. Rehabil. 2017, 14, 11. [CrossRef] [PubMed]
26. Sharma, S.; Pandey, S. Approach to a tremor patient. Ann. Indian Acad. Neurol. 2016, 19, 433–443. [CrossRef]
27. Martuscello, R.T.; Kerridge, C.A.; Chatterjee, D.; Hartstone, W.G.; Kuo, S.H.; Sims, P.A.; Louis, E.D.;

Faust, P.L. Gene expression analysis of the cerebellar cortex in essential tremor. Neurosci. Lett. 2020,
721, 134540. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

248



MDPI

St. Alban-Anlage 66

4052 Basel

Switzerland

Tel. +41 61 683 77 34

Fax +41 61 302 89 18

www.mdpi.com

Sensors Editorial Office

E-mail: sensors@mdpi.com

www.mdpi.com/journal/sensors





MDPI  

St. Alban-Anlage 66 

4052 Basel 

Switzerland

Tel: +41 61 683 77 34 

Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-4031-3 


