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Preface to ”Innovations in Photogrammetry and
Remote Sensing: Modern Sensors, New Processing
Strategies and Frontiers in Applications”

The recent development and rapid evolution of modern sensors and new processing strategies

of collected data has paved the way for innovations in photogrammetry and remote sensing.

The observation of the natural and built environment from aerial and satellite platforms benefits

from improvements in data processing strategies thanks to the introduction of approaches based

on multi-sensor data fusion, near real-time mapping and monitoring, the introduction of a new

generation of algorithms from the artificial intelligence for data processing and increased ability in the

handling of big datasets. The new generation of sensors and methods in the fields of photogrammetry

and remote sensing has also been complemented by an ever-greater level of automation and

capabilities in data processing. A very wide range of professional and research activities, previously

limited to geomatics engineering and Earth observation, now have the opportunity to exploit the

aforementioned tools in timely investigation of natural or anthropogenic features and phenomena.

More flexible and automated approaches are also required by markets related to the space economies

promoted by several countries around the world and the new opportunities arising from the use

of sensors designed for photo or video-monitoring applications from low-altitude unmanned aerial

vehicles (UAVs) or fixed locations in terrestrial surveys. In this direction, much has been achieved in

the academic and professional world in terms of accurate reconstruction of three-dimensional features

at very high spatial and temporal resolutions using close-range photogrammetry and structure from

motion (SfM) technology. The interest of researchers is now moving towards the use of very dense

point clouds to derive surface properties at desired spatial scales. However, a limited number of

papers and experiences focused on time-related issues, monitoring, dynamic assessments, quasi-real

time investigations of phenomena from repeated surveys and automated processing. This still

represents a challenging approach to surveying. This Special Issue aimed at papers related to novel

research and advances in these key areas of photogrammetry and remote sensing. Emphasis was

placed on new algorithms, modern and/or forthcoming sensors, improvements in data fusion and

processing strategies, as well as the assessment of their reliability with careful consideration of quality

assurance/quality control and error budget.

After the revision procedure, nine papers that focused on satellite and aerial/terrestrial images

and videos processing were selected and published. Five of them referred to innovative applications

from satellite data and to the development of satellite sensors. In particular, Agapiou [1] used

backscattered signal and interferometric synthetic aperture radar (InSAR) analysis from Sentinel-1

radar in addition to medium-resolution Sentinel-2 optical data images and a cloud-based facility to

produce a damage proxy map of the Beirut explosion, which occurred on the 4th of August 2020.

Qiao et al. [2] presented a novel method for change detections after a natural disaster using an optical

flow-based method and adaptive thresholding segmentation able to detect the pixel-based motion

tracking at fast speed from video sequences composed of successive passages of high-resolution

satellites. Papers based on satellite data include the work by Loghin et al. [3]. The authors discuss

the use of high-resolution stereo and multi-view imagery for the derivation of a digital surface model

(DSM) over large areas for numerous applications in topography, cartography, geomorphology, and

3D surface modelling. In particular, the paper was focused on applications based on Pléiades and

WorldView-3 imagery, that have, respectively, 0.70 m and 0.31 m ground sampling distance (GSD),

ix



for the reconstruction of small isolated objects with the assessment of their detectability, by estimating

heights as a function of object type and size, and the successive validation of measurements. Liu

et al. [4] developed a methodology based on remote sensing data for soil moisture content (SMC)

retrieval using an artificial neural network (ANN). In this paper, the quantity and quality of samples

for ANN training and testing were tested in addition to a sparse sample exploitation (SSE) method

developed to solve problems arising from sample scarcity, resultant from cloud obstruction in optical

images and/or the malfunction of in situ SMC-measuring instruments. To this aim, Sentinel-1 SAR

and Landsat-8 images were adopted. The series of papers focused on satellite methods includes the

contribution from Li et al. [5], where the authors propose a high-precision automatic calibration

model based on a novel point light source tracking system for mirror arrays. Such a method

can satisfy the requirements of high-resolution, high-precision, high-frequency on-orbit satellite

radiometric calibration and modulation transfer function detection.

Four papers focused on photogrammetric data processing were included in this Special Issue.

The paper by Nocerino et al. [6] evaluated whether the integration of visibility information

(image orientation) and photo-consistency could potentially lead to an improvement of the mesh

quality (and successive products) with tests carried out on diverse datasets of varying nature, scale,

shape, image resolution and network designs. Metrics were introduced and considered to present

qualitative and quantitative assessment of the results. Nikolov and Madsen [7] introduced a metric

for noise estimation in SfM highly detailed 3D reconstructions from close-range photogrammetry.

In particular, the authors discussed a possible approach to distinguishing real surface roughness

from reconstruction noise and proposed a number of geometrical and statistical metrics for noise

assessment based on both the reconstructed object and the capturing camera setup. Łabedź et al.

[8] proposed a methodology based on the enhancement image histograms for the improvement

of raster images and the final increasing of the accuracy level achieved in photogrammetric

reconstruction. Various types of objects were reconstructed starting from photogrammetric dataset

acquired by close-range and aerial photogrammetry. Finally, the paper by Roncella and Forlani

[9] introduce a simulation study where the accuracy estimation of camera parameters and tie

points’ ground coordinates is evaluated as a function of various project parameters in the designing

of photogrammetric fights with aerial unmanned vehicle in varying terrain shape. Several scenarios

were investigated and conclusions show that the accuracy between different block configurations

reach an order of magnitude of difference while oblique imaging is confirmed as a key requisite to

the accurate reconstruction of flat terrain, while ground control point (GCP) density is not. Moreover,

the accurate camera positioning constitutes a benefit in the accurate 3D reconstruction rather than an

increasing number of GCPs in flat terrain. This study completes the collection of papers included in

the Special Issue that testify to the growing interest in the key areas of photogrammetry and remote

sensing.

We hope that the scientific community involved in photogrammetry and remote sensing will

find the papers published in this Special Issue useful for their future investigations.

References

1. Agapiou, A. Damage Proxy Map of the Beirut Explosion on 4th of August 2020 as Observed

from the Copernicus Sensors. Sensors 2020, 20, 6382, doi:10.3390/s20216382.

2. Qiao, H.; Wan, X.; Wan, Y.; Li, S.; Zhang, W. A. Novel Change Detection Method

for Natural Disaster Detection and Segmentation from Video Sequence. Sensors 2020, 20, 5076,

doi:10.3390/s20185076.

x



3. Loghin, A.-M.; Otepka-Schremmer, J.; Pfeifer, N. Potential of Pléiades and WorldView-3
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Abstract: On the 4th of August 2020, a massive explosion occurred in the harbor area of Beirut, Lebanon,
killing more than 100 people and damaging numerous buildings in its proximity. The current article
aims to showcase how open access and freely distributed satellite data, such as those of the Copernicus
radar and optical sensors, can deliver a damage proxy map of this devastating event. Sentinel-1
radar images acquired just prior (the 24th of July 2020) and after the event (5th of August 2020)
were processed and analyzed, indicating areas with significant changes of the VV (vertical transmit,
vertical receive) and VH (vertical transmit, horizontal receive) backscattering signal. In addition,
an Interferometric Synthetic Aperture Radar (InSAR) analysis was performed for both descending
(31st of July 2020 and 6th of August 2020) and ascending (29th of July 2020 and 10th of August 2020)
orbits of Sentinel-1 images, indicating relative small ground displacements in the area near the harbor.
Moreover, low coherence for these images is mapped around the blast zone. The current study uses
the Hybrid Pluggable Processing Pipeline (HyP3) cloud-based system provided by the Alaska Satellite
Facility (ASF) for the processing of the radar datasets. In addition, medium-resolution Sentinel-2
optical data were used to support thorough visual inspection and Principal Component Analysis
(PCA) the damage in the area. While the overall findings are well aligned with other official reports
found on the World Wide Web, which were mainly delivered by international space agencies, those
reports were generated after the processing of either optical or radar datasets. In contrast, the current
communication showcases how both optical and radar satellite data can be parallel used to map other
devastating events. The use of open access and freely distributed Sentinel mission data was found
very promising for delivering damage proxies maps after devastating events worldwide.

Keywords: Copernicus; Sentinel-1; Sentinel-2; InSAR; change detection; damage proxy map; Beirut;
Lebanon; explosion

1. Introduction

In emerging situations such as industrial and technological accidences, earth observation sensors
can provide near-real-time information to local stakeholders and international organizations. This has
been already demonstrated in the past in several examples such as the case study of the blast at Cyprus
Naval Base (11th of July 2011, at Mari area, Cyprus), at the Fukushima Daiichi nuclear disaster (11th of
March 2011, Ōkuma, Japan), etc. High-resolution satellite sensors are mainly used for rapid mapping
and recording of the damage over large extents. However, the use of freely distributed sensors such
as those of the Copernicus Programme did not thoroughly investigate in the past. This is in contrast
with their wide use in monitoring other hazards all over the world, which has been demonstrated in
several articles [1–4]. This communication article aims to investigate whether the use of these sensors,
namely the Sentinel-1 and Sentinel-2, can provide reliable information, in case of emerging situations.
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For this reason, a recent catastrophic event was examined in Lebanon, aiming to produce Damage
Proxy Maps (DPM) over the area.

The event took place in the evening of the 4th of August 2020 in the area near the main harbor of
Beirut, the capital of Lebanon. According to the media, a fire near the port ignited a large nearby store of
ammonium nitrate, which is a highly explosive chemical often used in fertilizer. More than 100 people
died, while more than 5000 were wounded. It was estimated that at least 300,000 people were left
homeless from this event, while the destruction was estimated to cost between 10 and 15 billion USA
dollars [5]. The Beirut explosion generated seismic waves equivalent to a magnitude 3.3 earthquake,
according to the United States Geological Survey (USGS) Earthquake Hazard Program [6].

From the early beginning, several agencies have tried to support ground rescue investigations.
Examples of this effort are by the Center for Satellite Based Crisis Information (ZKI) of the German
Aerospace Centre (DLR) [7] that used high-resolution WorldView-2 multispectral images acquired
just a day after the event. The Advanced Rapid Imaging and Analysis (ARIA) team at NASA’s Jet
Propulsion Laboratory and California Institute of Technology in Pasadena, California, in collaboration
with the Earth Observatory of Singapore (EOS), have also processed Sentinel-1 radar images indicating
areas that are likely damaged caused by the explosion in Lebanon [8].

Figure 1 shows high-resolution red-green-blue (RGB) WorldView-2 images over the area of the
harbor (Figure 1, top) and the broader area of the explosion (Figure 1, bottom) before (Figure 1a,c)
and after (Figure 1b,d) the event. These images were released some hours after the explosion by the
European Space Imaging [9], thus allowing visualization of the destruction.
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Figure 1. Top: (a) WorldView‐2 high‐resolution optical image over the Beirut harbor area before the 

explosion and (b) after  the event. Bottom:  (c) WorldView‐2 high‐resolution optical  image over  the 

broader area of the Beirut harbor before the explosion and (d) after the event (copyrights European 

Space Imaging [9]). 

Figure 1. Top: (a) WorldView-2 high-resolution optical image over the Beirut harbor area before the
explosion and (b) after the event. Bottom: (c) WorldView-2 high-resolution optical image over the
broader area of the Beirut harbor before the explosion and (d) after the event (copyrights European
Space Imaging [9]).
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While the above-mentioned results are very important for local stakeholders as they provide
damage proxy maps in a short time, the detection of damaged areas is usually based on the processing
on either optical or radar products. In this paper, we aim to investigate the Beirut explosion that took
place on 4th of August 2020 by using in parallel both optical and radar Copernicus Sentinel data.
The detection of damage areas in different wavelengths of the spectrum can further strengthen the
final damage proxy maps.

The paper is organized as follow: initially, the methodology and the data used are presented,
while the results from the change detection and InSAR analysis from the Sentinel-1 datasets are shown.
These results are also compared with optical Sentinel-2 images as well as other published—in the
media—high-resolution results. Finally, a general discussion for the potential of space-based
applications for monitoring areas under threat is presented.

2. Study Area

The study area was focused on the harbor area of Beirut in Lebanon, where the explosion occurred,
and its surrounding area (Figure 2). While much damage was observed in the harbor area (see also
Figure 1a,b), other damages have been also reported and mapped from high-resolution satellite images
in an area 2000 m away from the blast zone, by the DLR team (see [7]). In this study, we extended the
area of interest to cover a circular area of a radius of 3000 m around the harbor area. Four main zones
were defined as follows: Zone A is an area up to 500 m from the blast site, Zone B is an area from 500 m
to 1000 m from the site of the explosion, and Zone C covers areas up to 2000 m away from the harbor.
Finally, Zone D is defined as the area from 2000 to 3000 m away from the harbor site. The northern part
of the study area is the Mediterranean Sea; therefore, no images analysis was carried out at this part.
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Figure 2. Study area indicating the harbor area (blast site) with a yellow star and the various zones
created for further consideration covering distances from 0 to 3000 m away from the blast site.
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3. Materials and Methods

3.1. Methodology

For the needs of the study, Copernicus radar freely distributed datasets were used. Once the
available images were selected from the Alaska Satellite Facility (ASF) services [10], these were further
processed by the Hybrid Pluggable Processing Pipeline (HyP3) cloud platform [11] (see more in
Section 3.3).

The radar processing at the HyP3 cloud platform included two products as follows. A change
detection map based on a pair of Radiometrically Terrain-Correct (RTC) Sentinel-1 data and an
Interferometric Synthetic Aperture Radar (InSAR) analysis map, using both ascending and descending
Sentinel-1 images, was used to map changes in the area. For the first product, the log difference for both
VV (vertical transmit, vertical receive) and VH (vertical transmit, horizontal receive) backscattering
gamma 0 amplitude polarizations of the RTC Sentinel-1 images was estimated based on the following
equation for each image pixel:

Change detection = Log10 (D2/D1), (1)

where D1 refers to the Sentinel-1 with the earlier acquisition date (before the explosion) and D2 refers
to the Sentinel-1 image taken after the explosion. Due to the small temporal window of the images,
any changes can be linked to the blast event. A significant change of the gamma-0 amplitude can
indicate areas of damage. Positive values indicate an increase in radar backscatter from the first date to
the second, while negative values indicate a decrease. It should be mentioned that Sentinel-1 images
are first filtered using the Enhanced Lee speckle filter, while the images are corrected based on the
input Digital Elevation Model (DEM) of the area of interest. Then, the images are co-registered and
radiometrically corrected (removal of radiometric distortions). The log difference of the gamma-0
amplitude for the VV and VH polarizations input images is estimated following Equation (1).

In addition, the coherence values were also mapped over the area. The degree of coherence
is defined as the normalized complex correlation coefficient of the complex backscatter intensities
S1 and S2 [12]. Coherence values can be estimated using Equation (2), where the * denotes the
complex conjugate.

γ = |〈S2 × S1*〉/√(〈S1 × S1*〉〈S2 × S2*〉)| (2)

Coherence values may range from 0 to 1; the larger the number, the higher the coherence. A low
coherence value may indicate areas that have changed between the two overpasses of the Sentinel-1
radar sensors.

The InSAR analysis of an ascending and a descending pair of Sentinel-1 images was
executed—as mentioned before in the HyP3 platform—using the Gamma software. In short, the InSAR
Gamma algorithm for the Sentinel-1 images comprises of eleven (11) steps as follows. (1) determine the
overlapping area using the two Sentinel-1 images. (2) Download the European Union Digital Elevation
Model (EU-DEM) v1.1, a hybrid Shuttle Radar Topography Mission digital elevation model (SRTM),
and ASTER Global Digital Elevation Map (ASTER GDEM) data fused by a weighted averaging
approach over the area of interest [13]. (3) Create a lookup table between the DEM and Sentinel-1
imagery. A lookup table for SLC co-registration, considering terrain heights, is created. The data
are filtered with adaptive data filtering (ADF). (4) Create a differential interferogram using the DEM
height along with the co-registration with the DEM. (5–6) Removal of the flat earth phase (5) and the
topographic phase (6). (7) Refinement of the slave image (prior to the event) with the master image
(after the event). A check for convergence is performed using the azimuth offset as a limit (less than
0.02 pixels). (8) Resampling of the slave to match the master image. (9) Create the final interferogram.
(10) Unwrap the phase using the Minimum Cost Flow (MCF) algorithm. The MCF algorithm permits
a global automatic optimization robust phase unwrapping, taking into consideration disconnected
areas of high coherence. (11) Geocode the results. The end products, as well as the sub-products
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developed through this processing chain of the InSAR analysis, are also available for downloading by
the end-user (see more in [11]).

Then, the final products from the change detection and the InSAR analysis were imported into a
Geographical Information System (GIS), namely the ArcGIS v.10 software, whereas zonal statistics per
each zone, namely Zone A to Zone D, were estimated. The overall results generated a damage detection
proxy map that was also compared with available high-resolution RGB WorldView-2 images as well as
other reports from international agencies, namely the German Aerospace Center (DLR) and the ARIA
teams. In addition, Sentinel-2 optical images, taken before and after the explosion, were downloaded
from the Sentinel Data Hub [14] in order to compare the results from the Sentinel-1 analysis.

3.2. Datasets

As mentioned earlier, two pairs of Sentinel-1 images were used for the change detection and the
InSAR analysis. Table 1 indicates the characteristics of the two Sentinel-1B Interferometric Wide (IW)
images used for the change detection analysis (see Equation (1)). An image with an acquisition date
of the 24th of July 2020 and an image taken on the 5th of August 2020 were used. The images were
taken from the same sensor (S1B) as well as with the same pass direction (ascending orbit) to minimize
any noise.

Table 1. Sentinel-1 data used for the change detection analysis.

Name Characteristics
Prior to the Event (Reference-D1)

Characteristics
After the Event (Secondary–D2)

Date The 24th of July 2020 The 5th of August 2020
Mode Interferometric Wide swath (IW) Interferometric Wide swath (IW)

Satellite Sentinel-1B Sentinel-1B
Absolute Orbit number 22,615 22,790

Pass direction ASCENDING ASCENDING
Polarization VV + VH VV + VH
Product type ground range (GRD) ground range (GRD)

Path 14 14
Frame 107 107

In addition, two pairs of Sentinel-1B images in descending and ascending orbits were processed
for the InSAR analysis. The images were taken on the 31st of July 2020 and the 6th of August 2020 with
a descending orbit (see Table 2), while another pair of Sentinel-1B images in ascending orbit, with an
overpass at the 29th of July 2020 and the 10th of August 2020, was used (see Table 3).

Table 2. Sentinel-1 data used for the Interferometric Synthetic Aperture Radar (InSAR) analysis
(descending orbit).

Name Characteristics
Prior to the Event (Reference—D1)

Characteristics
After the Event (Secondary—D2)

Date The 31st of July 2020 The 6th of August 2020
Mode Interferometric Wide swath (IW) Interferometric Wide swath (IW)

Satellite Sentinel-1B Sentinel-1B
Absolute Orbit number 33,693 22,797

Pass direction DESCENDING DESCENDING
Polarization VV + VH VV + VH
Product type Single Look Complex (SLC) Single Look Complex (SLC)

Path 21 21
Frame 480 480
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Table 3. Sentinel-1 data used for the InSAR analysis (ascending orbit).

Name Characteristics
Prior to the Event (Reference—D1)

Characteristics
After the Event (Secondary—D2)

Date The 29th of July 2020 The 10th of August 2020
Mode Interferometric Wide swath (IW) Interferometric Wide swath (IW)

Satellite Sentinel-1B Sentinel-1B
Absolute Orbit number 22,688 22,863

Pass direction ASCENDING ASCENDING
Polarization VV + VH VV + VH
Product type Single Look Complex (SLC) Single Look Complex (SLC)

Path 87 87
Frame 107 107

Finally, Sentinel-2 images of Level 2A (Bottom of Atmosphere (BOA) reflectance images) with a
spatial resolution of 10/20 m acquired before (24th of July 2020) and after (8th of August 2020)
the explosion, with limited cloud coverage over the area of interest were downloaded from the Sentinel
Data Hub. The RGB optical composite of the Sentinel-2 image taken after the explosion and the
NIR-R-G pseudo color composite of the same image were used for comparison purposes through
interpretation with the Sentinel-1 image analysis.

In addition, Principal Component Analysis (PCA) was applied to the integrated Sentinel-2 dataset
(images of 24th of July 2020 and 8th of August 2020 together) to detect any significant spectral changes
near the harbor area. The PCA is a well-known statistical analysis process that takes into account the
spectral variations within the image [15]. While this type of analysis is implemented in single image
processing, it can also be tested for a multi-temporal dataset, whereas the temporal variance will be
taken into consideration. Therefore, the PCA can be used as a fast change detection method, in cases
where the radiometric noise and the time span between the images is minimum [16,17]. In our example,
we used Sentinel 2 optical images of Level 2A processing, meaning that the images are geometric,
radiometric, and atmospherically corrected. Therefore, the PCA can explain the changes due to the
explosion over the area.

3.3. Big-Data Cloud Platform

The HyP3 big data cloud platform provided by the ASF was used to process the radar Sentinel-1
datasets. The platform is designed on Amazon cloud services, and upon submitting the request form,
the end users may select several products and processing algorithms. Further details for the potentials
of this platform can be found in [11]. The final products are distributed through Amazon’s simple
storage service (S3) and are available to the end users for downloading. The HyP3 platform currently
operates in a beta version, and its access is limited to restricted users. It runs a series of different
radar processing chains such as Interferometric SAR (InSAR), Radiometric Terrain Correction (RTC),
and change detection. The processing of the radar images is based on either the Sentinel Toolbox [18]
or Gamma software [19].

4. Results

This section provides an overview of the results generated for this analysis of the radar images.
These results are also compared with optical Sentinel-2 data as well as other high-resolution images
such as those of WorldView-2 and the public products from the DLR and ARIA teams.

4.1. Sentinel-1 Analysis

Below, the results from the Sentinel-1 radar images is provided, following the change detection
image analysis in Section 4.1.1 and the InSAR analysis in Section 4.1.2.
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4.1.1. Sentinel-1 Change Detection Analysis

Figure 3 presents the results of the change detection analysis. The two Sentinel-1B images with
acquisition dates of 24th of July 2020 and 5th of August 2020 (Table 1) have been processed based on
Equation (1). Two threshold values were selected to classify the change detection results for both VV
and VH polarizations of the Sentinel-1 images. The default value of −0.25 and +0.25 from the HyP3
platform was kept, while another lower threshold of −0.15 and +0.15 was also applied to visualize any
minor changes in the magnitude of the backscattered signals of the two images. Areas that undergo a
negative change between the two images, and therefore recorded a decrease in the backscatter returns,
are displayed in red, while those displaying a positive change that indicates an increase in backscatter
returns are displayed in blue color. In Figure 3, the four zones under study (Zone A to Zone D) are also
presented. Figure 3 is a focus of the results around the harbor area (blast site) indicating the same
results. The extent of Figure 4 is indicated in Figure 3, with a white dash line around the blast site.
As the individual products from the VV and the VH change, detection polarizations tend to give
different accuracy levels; these can be found in Appendix A. However, although the VH polarization
signals (Figures A1 and A3) tend to have much lower coherence than the VV polarization signals
(Figures A2 and A4), both of them were able to indicate areas of changes near the blast zone.

Integrating both these polarization results, the majority of the differences of the backscattered signal
(VV and VH polarizations) are around the blast zone mainly in Zone A and Zone B (Figures 3 and 4).
This is also evident in the focus area in Figure 4. However, damages have also been recorded on a
broader area mainly to the east and south of the blast site, extended in Zones C and D, and in some
areas even beyond Zone D (>3000 m). It is also important to highlight that the majority of these
changes are considered quite significant (>−0.25 or >0.25, indicated with red color in Figures 3 and 4),
which are the result from the sudden catastrophe around the harbor zone. Details for the individual
results of the VV and the VH polarizations can be found in Appendix A (see Figures A1–A4).
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Figure 3. Change detection results using the log difference of the VV and the VH backscattering
amplitude. Significant changes of the pair of images are presented with dark red and blue colors
(>−0.25 or >0.25 differences), while other minor changes in the range of −0.25 to −0.15 and 0.15 to 0.25
are also presented in light red and blue colors, respectively. The four zones under study (Zone A to
Zone D) are also given. The location of the blast size is shown with the yellow star at the center of
the figure. The white dashed rectangle around the blast site is indicating the zoom area presented in
Figure 4.
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Figure 4. Change detection results—as in Figure 3, see before—for the area around the blast site near
the harbor of Beirut (indicated with a white dashed line in Figure 3).

Table 4 summarizes the damaged areas for each zone (Zone A to Zone D) as estimated from
the GIS environment using the log difference of the VH polarizations (see also Figures A1 and A3).
The area of destruction for each zone is estimated in hectares units (10,000 m2). As shown, the majority
of the damaged area is found in Zone A with an area of 17.9 hectares, which equals 37.2% of the total
damaged area, while another 24.5% of the total damage area is reported in Zone B that extends up to
1000 m away from the blast site. Zonal statistics analysis indicate a similar pattern for Zone C and
Zone D with an approximately average damage area of 9 hectares (18.5%); however, the majority from
these areas are in the medium log difference threshold units (−0.25 to −0.15 and 0.15 to 0.25). Zone A
also reports the highest percentage in terms of areas of having a log difference more than >−0.25 and
>0.25 (17.9 hectares or 62.0% and 11.8 hectares or 76.9%, respectively).

Table 4. Zonal statistics using the VH polarization for each log difference threshold and zone (Zone A
to Zone D). Areas are measured in hectares (10,000 m2).

Log Difference Zone A Zone B Zone C Zone D Total

>−0.25 4.4 0.5 0.6 1.6 7.1
−0.25 to −0.15 4.4 7.2 6.2 5.6 23.4

0.15 to 0.25 5.5 3.8 1.8 1.9 13.0
>0.25 3.6 0.4 0.3 0.5 4.7
Total 17.9 11.8 8.9 9.5 48.2

The next table (Table 5) shows the zonal statistics for the log difference of the VV polarizations
(see also Figures A2 and A4). The VV polarizations reported a larger area of damage (99.0 hectares)
against the 48.2 hectares of the VH polarization analysis (Table 4). Zone A reports the highest percentage
of the top threshold value (>−0.25) with an area of 14.4 hectares out of the total 25.8 hectares of Zone A.
It is worth noting also that statistics from all zones (Zone A to Zone D) tend to give similar total areas
of damage ranging from 20.9 hectares (Zone D) to 26.9 hectares (Zone C).
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Table 5. Zonal statistics using the VV polarization for each log difference threshold and zone (Zone A
to Zone D). Areas are measured in hectares (10,000 m2).

Log Difference Zone A Zone B Zone C Zone D Total

>−0.25 14.4 6.0 3.8 2.5 26.7
−0.25 to −0.15 6.0 12.6 16.1 10.7 45.5

0.15 to 0.25 3.1 4.7 5.3 5.9 19.0
>0.25 2.3 2.1 1.7 1.7 7.8
Total 25.8 25.4 26.9 20.9 99.0

Synthesizing the results from Tables 4 and 5, we can see the overall changes both for the VV and
the VH polarizations. It should be mentioned that the new outcome that corresponds to the total
damaged areas (shown in Table 6) is not the sum of Tables 4 and 5, but the statistics after the spatial
union of these tables. This affects the overlapping areas, whereas the higher-ranking threshold was
kept. Based on the findings of Table 6, we can estimate the total damaged areas within 3000 m away
from the blast site to be around 117 hectares. In detail, an area of 29.0 hectares was mapped in Zone A
(0−500 m from the blast site), while an area of approximately 32.0 hectares was mapped for Zones B
and C (500–1000 m and 1000−2000 m from the blast site, respectively). Finally, an area of 24.2 hectares
was estimated in Zone D (2000−3000 m).

Table 6. Zonal statistics using the synthesis of the VH and VV polarizations for each log difference
threshold and zone (Zone A to Zone D). Areas are measured in hectares (10,000 m2).

Log Difference Zone A Zone B Zone C Zone D Total

>−0.25 11.0 5.2 4.1 2.9 23.3
−0.25 to −0.15 8.3 17.0 19.6 12.6 57.4

0.15 to 0.25 5.9 7.8 6.4 6.9 27.0
>0.25 3.7 2.1 1.6 1.9 9.2
Total 29.0 32.0 31.7 24.2 116.9

The majority of the damaged areas are found between a medium threshold value (from −0.25 to
−0.15 and 0.15 to 0.25 log difference of the VV and VH polarization) with a total area of 84.4 hectares
(57.4 and 27.0 hectares, respectively) that equals 72.1% of the total damaged area. The remaining 27.9%
of the damaged area (32.5 hectares) is found at the higher threshold values (>−0.25 and >0.25).

4.1.2. Sentinel-1 InSAR Image Analysis

Following the change detection analysis, the InSAR analysis for mapping the micromovements of
the area because of the generated seismic waves from the explosion was performed. As mentioned
earlier for the needs of the InSAR analysis, a pair of Sentinel-1B Single Look Complex (SLC) images
was used, with acquisition dates of 31st July 2020 and the 6th of August 2020.

Figure 5 shows the wrapped interferogram around the harbor site for the descending orbit
(see Table 2). The wrapped interferogram is proportional to the difference in path lengths for the SAR
Sentinel-1 image pair [12]. Interferometric fringes, visible in Figure 5, represent a full 2π cycle of phase
change. The deformation fringes, visible around the area of the harbor in Figure 5, can be linked to the
ground movement of that area due to the explosion. It should be mentioned that this observation is
only visible in the area around the harbor site. The relative ground movement between the blast site
and any other point of the area can be calculated by counting the fringes and multiplying them by half
of the wavelength. The closer together the fringes, the higher the deformation on the ground.
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Figure 5. Wrapped interferogram showing the deformation fringes as a result of the Beirut explosion
as derived from the Sentinel-1 SAR images. The color shows a full 2π cycle of phase change.

Based on this wrapped interferogram, which is mainly useful for visualization purposes, the
unwrapped interferogram was calculated for the descending orbit Sentinel-1 images (Figure 6a),
which corresponds to the change in the distance along the line of sight of the sensor. An unwrapped
interferogram converts the wrapped 2-π scale into a continuous scale (of multiples of pi). The Minimum
Cost Flow (MCF) and triangulation methods (see more in [20]) are applied through the HyP3 platform
for the phase unwrapping process.
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Figure 6. (a) Unwrapped interferogram as derived from the Sentinel-1 SAR images in descending orbit
(see Table 2). (b) Unwrapped interferogram as derived from the Sentinel-1 SAR images in ascending
orbit (see Table 3), and (c) VV and VH log difference polarizations of the same area (as in Figure 3).
Harbor area is indicated in a yellow square.

Figure 6b shows the results from the ascending orbit Sentinel-1 images. Values greater than
zero (positive) indicate relative movement away from the sensor (subsidence), while negative values
indicate movement toward the sensor (uplift). Figure 6c shows the same area with the results from the
change detection analysis. The ground relative displacements around the area of the harbor (see the
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yellow rectangle in Figure 6a,b) were estimated between −15 mm relative displacement along with the
line of sight of the sensor for the descending orbit and −5 mm for the ascending orbit.

The line of sight (LOS) displacement map was estimated for both the ascending and the descending
pairs of SLC Sentinel-1 (Figure 7a,b respectively). For estimating the LOS, we convert the unwrapped
differential phase (Figure 6) into measurements of ground movement along the look vector (line of
sight). Positive values indicate movement toward the sensor (such as uplift), while negative values
indicate movement away from the sensor (such as subsidence).
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Figure 7. (a) Line of sight (LOS) displacements as derived from the Sentinel-1 SAR images
(descending orbit). Harbor area, as indicated in a yellow square. (b) Line of sight (LOS) displacements as
derived from the Sentinel-1 SAR images (ascending orbit). Harbor area, as indicated in a yellow square.

In the area of interest, and based on the descending orbit Sentinel-1 images (see Table 2), we can
observe only positive movements (toward the sensor) that range between 5 and 9 cm; however, the more
significant movement is found in the area over the harbor area. Similar findings were also retrieved
from the analysis of the ascending orbit Sentinel-1 images of Table 3. These results are shown in
Figure 7b. Once again, the positive values indicate uplift, while the negative values indicate subsidence.
Specific pixels within the harbor area indicate the higher relative displacements.

Of course, these examples should be taken with great caution, as a low coherence is reported at
this site due to the VV and VH changes observed from the explosion, as well as the sensitivity of the
Sentinel-1 sensors (in relation to their wavelength that corresponds to≈5.54 cm). However, the findings
here are quite noteworthy, as even with low coherence, the InSAR analysis was able to detect the blast
site and locate significant changes, such as those reported from the change detection analysis.

The coherence map for both descending and ascending orbits are shown in Figure 8a,b, respectively.
Areas highlighted with purple color indicate high coherence values, while the blue color indicates
regions with low coherence. The latest (regions with low coherence), as shown in both Figure 8a,b, are
around the blast zone at the Beirut harbor, indicating a significant degree of change between the two
overpasses of the Sentinel-1 (both in the ascending as well as for the descending orbits).
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Figure 8. (a) Coherence map generated from the descending orbit images (see Table 2).
(b) Coherence map generated from the ascending orbit images (see Table 3). (c) High-resolution
WorldView-2 image.
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4.2. Sentinel-2 Image Analysis

The results from the Sentinel-1 images have also been compared with the Sentinel-2 optical
image taken after the 4th of August 2020. The RGB composite of the image is shown in Figure 9a.
Destroyed buildings can be observed in the area near the exposition site; however, these are more
evident in the NIR-R-G pseudo color composite shown in Figure 9b. Vegetated areas are shown
with red color in this figure. The correlation between the visual inspection of the Sentinel-2 and the
Sentinel-1 change detection results can be seen in Figure 9c.
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Figure 9. (a) Sentinel-2 optical image taken over the area of interest on the 8th of August 2020
(RGB composite). (b) The NIR-R-G pseudo color composite of the same image and (c) the change
detection results from the Sentinel-1 image analysis. Black arrows indicate destroyed areas from image
interpretation of the Sentinel-2 image, while yellow arrows indicate the non-detectable destroyed areas
from this analysis. The location of the blast size is shown with the yellow star.

Visual interpretation of the optical image can depict some of the most apparent damages over the
area (see black arrows in Figure 9).
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To further process the optical Sentinel-2 images, PCA was implemented in the integrated datasets
of the Sentinel-2 images taken on 24th of July 2020 and 8th of August 2020. The results are shown in
Figure 10. Figure 10a shows the results from the first principal component (PC1) while Figure 10b
shows an RGB pseudo color composite of PC1–PC3. Figure 10c shows the high-resolution optical
WorldView-2 image over the area. The red color in Figure 10 shows higher PC1 values, thus indicating
changes in the integrated temporal Sentinel-2 dataset (i.e., 24th of July 2020 and 8th of August 2020
together). As evident, higher PC1 values are located around the blast area as well as in the western
part of the harbor. Similar findings can be also reported from the pseudo color composite where the
first three principal components, namely PC1 to PC3, have been used.
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(c) the high-resolution WorldView-2 image.
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5. Comparison with Other Results

The explosion at Beirut harbor has left significant and extensive damage in the surrounding
buildings but also in other areas far away from the blast site. In the previous section, we have presented
how this destruction could be detected by the Copernicus Sentinel-1 sensor via two difference analyses:
(a) a change detection approach and (b) an InSAR analysis. The overall results were also confirmed
through other studies that have been reported only some hours after the event, such as the case of the
ARIA and the DLR teams. In addition, the availability of a high-resolution WorldView-2 image taken
over the area of interest has confirmed the results generated from the analysis of the Sentinel-1 sensors.

To evaluate the overall performance of this study, we have compared the results presented
above with other published material (maps) and available high-resolution WorldView-2 images.
Initially, we have compared our change detection results (Damage Proxy Map) with the one of the
ARIA team [8], as these have been generated with the Sentinel-1 sensor (as here). The comparison
is shown in Figure 11. Figure 11a shows the change detection results with the threshold used in our
study, while Figure 11b shows the damaged area as reported from the ARIA team. Although there
is no threshold unit for this classification, it was evident that a similar pattern is reported from both
studies, while adjusting the thresholds values would generate similar results. Once again, the area
with the most damages is the one around the blast site.
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Figure 11. (a) Change detection results as generated from the VV and VH log differences of the
Sentinel-1 images, while (b) indicates the Damage Proxy Map generated from the Advanced Rapid
Imaging and Analysis (ARIA) team [8]. The location of the blast size is shown with the yellow star.

Within the area around the harbor of Beirut, digitization of the buildings that have been damaged
has been reported by the MapAction platform [21]. Similar findings with this report are also found
in the maps generated by the DLR team, which are not shown here. Figure 12 shows the focus area,
whereas the VV and the VH log difference polarizations (as found from this study) are presented,
and the digitized results from the MapAction platform. Comparing these two results, we can see a high
correspondence between the two products; however, these were generated from different resolutions.
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Figure 12. Change detection results as generated from the VV and VH log differences of the Sentinel-1
images around the blast site, while orange polygons indicate the buildings that have been damaged as
reported by the MapAction platform [21] (digitized by the author).

A direct comparison of the high-resolution WorldView-2 image that was taken just after the
explosion over the harbor of Beirut was carried out. This image is shown in Figure 13a, whereas the
destroyed buildings can be observed in the image. The blast site, indicated with a yellow star in
Figure 13a, has now been vanished due to the highly explosive chemicals that were kept in the site.
Both the change detection analysis (Figure 13b), as well as the InSAR analysis (Figure 13c), shows a
good correlation with the visual inspection of the high-resolution WorldView-2 image despite the
difference in their spatial resolution (0.30 m of the WorldView-2 image against the 10m resolution of
the Sentinel-1 results).

16



Sensors 2020, 20, 6382

Sensors 2020, 20, x  17 of 22 

 

 

Figure 13.  (a) High‐resolution WorldView‐2  image  taken some hours after  the exposition over  the 

harbor of Beirut. The blast site is indicated with a yellow star. (b) Change detection as generated from 

the VV  and VH  log  differences  of  the  Sentinel‐1  image  and  (c)  the  InSAR  analysis  (LOS  of  the 

descending orbit images) over the area. The location of the blast size is shown with the yellow star. 

Figure 13. (a) High-resolution WorldView-2 image taken some hours after the exposition over the
harbor of Beirut. The blast site is indicated with a yellow star. (b) Change detection as generated
from the VV and VH log differences of the Sentinel-1 image and (c) the InSAR analysis (LOS of the
descending orbit images) over the area. The location of the blast size is shown with the yellow star.
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6. Conclusions

A damage proxy map based on the processing of Sentinel-1 images was carried out in this
study over the harbor area of Beirut, Lebanon after the high explosion occurred in the area on the
4th of August 2020. The analysis of this study was achieved through a change detection analysis of
Sentinel-1 images, while the seismic waves results were also mapped using an InSAR Sentinel-1
image analysis.

The analysis was able to be carried out due to the systematic observations of the Copernicus
Sentinel-1 sensors operated by the European Space Agency (ESA), while the processing chain was
carried out by the big-data cloud HyP3 platform operated by ASF. This combination allows end users
to process in a short time (less than 1-h computational time) a series of radar processing chains in
almost global coverage. Of course, this is feasible due to the free and fully open policy (FFO) of the
Sentinel datasets.

The findings of this study are well aligned with other products delivered by specialized space
centers such as the DLR and the ARIA teams, while a comparison was also performed using a
high-resolution WorldView-2 image. While the medium-resolution Sentinel-1 images and their
products do not allow us to detect individual destruction in a building level, the 10-m resolution is
enough for estimating with high accuracy the damaged area. The use of Sentinel-2 images could
support the detection analysis through visual interpretation of significant changes in the landscape as
well as through a PCA temporal analysis. This was more obvious using the NIR-R-G pseudo color
composite; however, due to the spatial resolution of the image (20 m), the detection of smaller areas
was quite challenging.

The use of both sensors, namely the Sentinel-1 and Sentinel-2, can be further utilized in the future
to support emergency situations, with an almost global coverage. In this case, other events not so
well known can be monitored by the scientific local community to support specific emergency needs.
Of course, these maps can be only indicative of the destruction, as ground verifications are needed.
In addition, the analysis of the results from this series of analyses should be seen with great caution,
as the images might suffer from other factors that influence the final outcomes. For instance, the relative
micromovements can be due to other sources, such as the atmospheric component and even DEM
accuracy, while the change detection of the VV and the VH polarizations need to be linked also with
their coherence.

Overall, the use of Sentinel data was found very promising for supporting ground investigations
after an event (such as the one presented here, or even a natural hazard). Future steps can include
considering the automation of the whole procedure, minimizing the time between the data processing
and the event itself.
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Abstract: Change detection (CD) is critical for natural disaster detection, monitoring and evaluation.
Video satellites, new types of satellites being launched recently, are able to record the motion change
during natural disasters. This raises a new problem for traditional CD methods, as they can only
detect areas with highly changed radiometric and geometric information. Optical flow-based methods
are able to detect the pixel-based motion tracking at fast speed; however, they are difficult to
determine an optimal threshold for separating the changed from the unchanged part for CD problems.
To overcome the above problems, this paper proposed a novel automatic change detection framework:
OFATS (optical flow-based adaptive thresholding segmentation). Combining the characteristics of
optical flow data, a new objective function based on the ratio of maximum between-class variance
and minimum within-class variance has been constructed and two key steps are motion detection
based on optical flow estimation using deep learning (DL) method and changed area segmentation
based on an adaptive threshold selection. Experiments are carried out using two groups of video
sequences, which demonstrated that the proposed method is able to achieve high accuracy with F1
value of 0.98 and 0.94, respectively.

Keywords: change detection; natural disasters; deep learning; threshold selection; optical
flow estimation

1. Introduction

Natural disasters, such as earthquakes, tsunamis, floods and landslides, have shown a dramatically
and globally increasing trend, both in frequency and intensity [1–3]. Accurate determination of changes
on ground features associated with destructive disaster events is crucial to quick disaster response,
post-disaster reconstruction and financial planning [4]. Change detection (CD) using remote sensing
data can effectively capture changes before and after disasters [5–7], which has been widely used in
various fields of natural disasters such as flood monitoring [8], landslide displacement tracking [9,10]
and earthquake damage assessment [11,12], as well as relief priority mapping [13,14].

With the continuing growth of earth observation techniques and computer technology, massive
amounts of remote sensing data for natural disaster with different spectral-spatial-temporal resolution
are available for surveying and assessing changes in natural disaster, which greatly promotes the
development of change detection methodologies. Many change detection approaches for natural
disaster scenes have been proposed and they can be broadly divided into traditional and deep
learning (DL)-based [15]. For traditional CD methods, the simplest approaches are algebra-based
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methods. Hall and Hay [16] firstly segmented two panchromatic SPOT data observed at different
times and then detected changes through an image differencing method. Matsuoka et al. [17], on the
basis of the difference between the backscattering coefficient and correlation coefficient achieved
in an earthquake, applied supervised classification of the pre- and post-event optical images to
present the distribution of damaged areas in Bam. These directly algebraic operations were easy to
be implemented but always generated noisy outputs, such as isolated pixels or holes in the changed
objects; thus, some transformation and models were used in CD researches. Sharma et al. [18] finished
a damage assessment of landslides in a minimum time by pseudo color transformation and extracting
the landslide affected area based on the pre- and post-earthquake Landsat-8 images. Lee et al. [19] first
proposed an optimization algorithm based on Stepwise Weight Assessment Ratio Analysis (SWARA)
model and geographic information system to assess seismic vulnerability. In order to overcome the
limitation of the sole band and improve the identification of change detection, fusing datasets acquired
from various remote sensors and geographical data are paramount to monitoring the environmental
impacts of natural disasters. ElGharbawi et al. [20] estimated the crustal deformation affected by
the 2011 Tohoku earthquake combined with two deformation patterns using Synthetic Aperture
Radar (SAR) and GPS data. With the purpose of determining the changed buildings in forested areas,
Du et al. [21] adopted the graph cuts method taking account of spatial relationships and took grey-scale
similarity from old aerial images and height difference based on Digital Surface Model (DSM) generated
from LiDAR data as two change detection indexes to optimize building detection.

Due to the rapid development of computer technology, the research of traditional change detection
approaches has tuned into integrating deep learning techniques in recent years. Deep learning-based
methods have presented promising potentials based on the extraction of high-level features.
Saha et al. [22] detected collapsed buildings from SAR images and Ji et al. [23] further put them
into a random forest classifier to detect post-seismic destroyed buildings using pre- and post-disaster
remote sensing images. In order to achieve higher accuracy, some new neural networks have been
introduced into disaster monitoring researches. Ci et al. [24] proposed a novel Convolutional Neural
Network (CNN) model in combination with a CNN feature extractor, a new loss function and an
ordinal regression classifier to evaluate the degree of building damage caused by earthquakes using
aerial imagery. Peng et al. [25] utilized an end-to-end CD method named UNet++ to fuse multiple
feature maps from different semantic segmentation levels to generate a final change map with high
accuracy. Yavariabdi et al. [26] proposed a new change detection method based on multiobjective
evolutionary algorithm (MOEA), which is robust to multispectral Landsat images with atmospheric
changes. In this method, the similarity index measure (SSIM) is used to generate the difference image.
After that, MOEA is applied to obtain a set of multiple binary change masks by iteratively minimizing
two objective functions for changed and unchanged regions and the final binary mask is optimally
fused by MRF. With the purpose of improving efficiency, in Ghaffarian et al. [27], extended U-net
based on deep residual (ResUnet) followed a Conditional Random Field (CRF) implementation was
proposed to update the post-disaster buildings from very high resolution imagery. Alizadeh et al. [12]
established a new hybrid framework of Analytic Network Process (ANP) and Artificial Neural Network
(ANN) models for earthquake vulnerability assessment. To avoid labeling a massive number of data
for the training network, transfer learning has received increased attention. Pi et al. [28] employed
transfer learning to train eight CNN models based on You-Only-Look-Once (YOLO), so as to recognize
undamaged building roofs in disaster-affected areas. Transferring learning was used by Kung et al. [29]
to manage disaster by combination of data augmentation, reference model and augmented model.
Li et al. [30] proposed SDPCANet by combining PCANet and saliency detection to make change
detection based on SAR images, which effectively reduced the number of training samples but kept
higher change detection performance.

Recently, the development of commercial video satellites and the spread of mobile devices makes
it possible to thoroughly monitor the changing process in natural disaster. For example, high resolution
video sequences from video satellites, such as SkySat and Jilin_1, can provide valuable data during
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different disaster phases [31,32]. Thus, change detection can now move from pre- and post-image
analysis to almost real-time disaster monitoring using video sequences. Although change detection for
natural disaster has been researched for years in the society of remote sensing, the main studies are
focused on pre- and post-disaster satellite imagery, while the change detection based on video satellite
for natural disaster monitoring has rarely been studied. These video sequences, which capture disaster
motion change, bring a challenge for existing CD methods because the color and texture of objects
usually remain the same while only the positions have been changed.

The aim of this paper is to explore an effective method that detects the motion change in disaster
from video sequences. Optical flow in the field of computer vision, is very likely to detect the pixel
in this video sequence owing to its fast speed and pixel-based motion tracking. However, to fuse the
result of optical flow into the final change detection map is a challenge. The generation of change
detection map required the empirical threshold for optical flow, which may vary from case to case.
Thus, this paper first presents the investigation of the motion detection property of the optical flow
estimation algorithm based on deep learning and then proposes a novel change detection framework,
OFATS, based on a new objective function for video sequence in natural disaster which combines
the optical flow results and an adaptive thresholding segmentation algorithm based on the ratio of
maximum between-class variance and minimum within-class variance.

The rest of this paper is organized as follows: Section 2 briefly reviews the optical flow estimation
methods. The proposed change detection method is then introduced in Section 3. In Section 4,
the effective of the proposed method is tested and compared with some most commonly used CD
methods using two different natural disaster datasets. Finally, the paper is concluded in Section 5.

2. Optical Flow Estimation Methods

Optical flow, which represents change of the pixels’ displacement vectors between image
frames, is most widely used in motion tracking [33]. For example, optical flow has been used
to detect human/animal movements [34,35] and medical organ lesions [36,37], robots or vehicle
navigation [38,39], measure flow motion [40], airfoil deformation and surface strain [41]. With the
assumption of instantaneous pixel value invariance over a short displacement, optical flow can be
separated into two categories: local computation method on the basis of Lucas–Kanade (LK) method
and global computation method based on Horn and Schunck (HS) formulation [42]. LK method
supposes that the adjacent pixels in a sliding window share the same motion and keep locally
constant [43]. However, the size of a sliding window is difficult to be determined and further affect
the final accuracy [33]. HS assumes that the velocity field varies globally smoothly, which is more
fit for real scenes [44]. Horn and Schunck introduced the optical constraint equation based on the
combination of velocity field and gray value to build a basic algorithm of optical flow estimation [45].
However, these traditional optical flow computation methods often provide blurred boundaries and
are hard to be used in real time [46,47]. Convolutional neural networks (CNNs) have a strong ability
of feature extraction and speckle noise suppressing [15,48,49], which has attracted more attention to
numerous computer vision tasks.

FlowNet is the first end-to-end optical flow estimation model with CNN in 2015 and it uses an
encoder-decoder structure making up of convolutional and deconvolutional layer with additional
crosslinks between these contracting and expanding networks [50]. For the encoder module, it is
made up of nine convolutional layers and Rectified Linear Unit (ReLU), and mainly used to compute
abstract features from respective fields of increasing seize, but the latter reestablishes the original
resolution by an expanding upconvolutional architecture using four deconvolutional layers and
ReLU active function layer. It turned out to be an achievable training network and can directly
compute optical flow from two input images, but it is not competitive with fine-tuned traditional
methods at accuracy and the running speed is also slower [51]. On the basis of FlowNet, FlowNet 2.0,
a novel end-to-end optical flow estimation network was proposed in the winter of 2016, which can
effectively solve the above-mentioned problems in close accuracy with the state-of-the-art methods
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while running orders of magnitude faster and be marked as a milestone for optical flow estimation
based on CNN [52]. This success benefits from the following three aspects: new adding training dataset
including tiny motion and real-word data, stacking numerous networks by warping operations and a
novel leaning schedule of multiple datasets fusion. The schematic view of FlowNet 2.0 is shown in
Figure 1. The network is separated into two parts: large displacement and small displacement optical
flow network. For the computation of large displacement optical flow, two FlowNetS is combined
and the warping layers are introduced as a refinement. To cope with small displacements, a smaller
network, FlowNet-SD is added. Then the former stacked network and the small network are fused into
FlowNet 2.0 in an optimal manner, which can achieve optimal performance on arbitrary displacements.
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Figure 1. Scheme of FlowNet 2.0.

Optical flow estimation method based on FlowNet 2.0 has achieved considerable progress.
Nevertheless, it has rarely been used to make change detection in natural disasters, as far as we
know. In fact, FlowNet 2.0 based on HS generates a dense velocity field, that is, each pixel has the
corresponding optical flow field [43]. In order to accurately divide pixels into changed and unchanged
part based on the optical flow field, the selection of an appropriate threshold is critical. However,
the threshold selection for image segmentation needs to consider the data characteristics with expert
knowledge. Thus, in this paper, a novel CD framework, OFATS, for disaster detection has been proposed
by combing motion detection based on FlowNet 2.0 and the adaptive threshold determination method
based on a novel objective function.

3. Proposed OFATS Method

In this section, OFATS, the automated CD framework for natural disaster detection from video
sequence is proposed and the workflow is as shown in Figure 2.

It consists of two main steps: motion detection where FlowNet 2.0, the optical flow estimation
method based on deep learning, is introduced to compute the displacement and change boundary
extraction based on an adaptive threshold determination algorithm which takes the ratio of
maximum between-class variance and minimum within-class variance as the new objective function.
Specially, two optimization strategies are proposed: narrowing the searching range of potential
thresholds and dynamic normalization of motion information.

26



Sensors 2020, 20, 5076

1 
 

 
Figure 2. The workflow of OFATS (optical flow-based adaptive thresholding segmentation).

3.1. Motion Detection

In this paper, the pixel displacements in horizontal and vertical are calculated by FlowNet 2.0,
denoted as u(x, y) and v(x, y), respectively, as shown in Figure 3.
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Figure 3. Illustration of displacements based on FlowNet 2.0.

The displacement can be calculated as follow:

r(x, y) =
√

u(x, y)2 + v(x, y)2 (1)

Figure 4 shows an example of displacements’ distribution based on sequence “RubberWhale” [53].
The sample frame and the corresponding optical flow field visualization result are shown in Figure 4a,b,
respectively. In Figure 4b, the angles of arrows represent directions of each pixel’s displacement r(x, y)
and the lengths show the magnitudes of displacements. Four boxes of different colors in Figure 4a,b
representing various objects with different types of motions. In order to demonstrate the detailed
difference of four boxes in Figure 4b, they are zoomed in Figure 4c–f. Overall, these figures show
that the changed area can be roughly determined by the magnitudes and directions of optical flow.
Given that magnitude changes are more obvious to detection, a proper segmentation threshold based
on magnitude should be taken into consideration, separating the changed and unchanged part in the
next step.
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3.2. Change Boundary Extraction

After the motion detection, the next step is to determine the global optimal threshold of the
displacements so as to divide the changed and unchanged part which can be viewed as a two-class
classification problem. Based on displacements characteristics, the novel objective function and two
optimizing strategies for the optimal threshold selection are proposed, respectively.

3.2.1. The Objective Function

For any CD algorithm, the key factor differentiating change from non-change is the objective
function. The goal of setting the objective function is to find the global optimal threshold which can
maximize the between-class variance and minimize the within-class variance at the same time by
exploring a finite set of the possible displacement values as the possible threshold. Otsu is widely
used for global thresholding selection [54], but it does not work when the target and background vary
widely and two classes are very unequal [55,56]. Thus, in this paper, the objective function is set as the
ratio of maximum between-class variance and minimum within-class variance:

pbest(i) =
σ2

b(i)

σ2
in(i)

(2)

where i is the iteration number and the value range is from 0 to Num, the number of unique value of
motion detection results. pbest(i) is the fitness value of ith iteration, σ2

b(i) and σ2
in(i) are the between-class

and within-class variance, and the calculations are based on Equations (3) and (4), respectively.

σ2
b = P(C1)P(C2)(µ1 − µ2)

2 (3)

σ2
in = P(C1)σ

2
1 + P(C2)σ

2
2 (4)

where P(C1), P(C2), µ1,µ2, σ2
1, σ2

2 represent probabilities of class occurrence, class mean levels and the
class variances of unchanged class C1 and changed class C2, respectively. They are defined as following:
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P(C1) =
m∑

i=1

pi (5)

P(C2) =
n∑

i=m+1

pi (6)

µ1 =
1

P(C1)

m∑

i=1

wipi (7)

µ2 =
1

P(C2)

n∑

i=m+1

wipi (8)

σ2
1 =

1
m

m∑

i=1

(wi − 1
m

m∑

i=1

wi)

2

(9)

σ2
2 =

1
n−m

n∑

i=m+1

(wi − 1
n−m

n∑

i=m+1

wi)

2

(10)

The displacements can be represented in n levels [1, 2, . . . , n] and C1 denotes pixels with levels
[1, . . . , m], and C2 denotes pixels with levels [m + 1, . . . , n]. The pixel value and the corresponding
percentage at level i are denoted by wi and pi.

To concluded, σ2
b(i) and σ2

in(i) are determined by the iteration threshold value based on motion
detection results and the iteration threshold wi corresponding to the maximal fitness value pbest(i)
is considered as the optimal threshold tbest. The displacement of each pixel which is larger than the
optimal threshold could be classified into the changed part, while the smaller ones are unchanged.

g(x, y) =
{

1, r(x, y) > tbest
0, r(x, y) ≤ tbest

(11)

However, it requires large numbers of iteration and costs much time of too many unique values in
motion detection results because the changeable range of different pixels’ displacements being really
wide. Thus, the optimizing strategies are further proposed for optimal threshold selection.

3.2.2. Optimizing Strategies for Threshold Selection

According to the distribution of displacement data, we proposed two strategies to optimize the
threshold selection criterion: narrowing the searching range of iterations and dynamic normalization
of displacements which are greater than the currently selected threshold for each iteration.

Narrowing searching range is to efficiently reduce the scope of potential thresholds determined by
the wide range of experimental data. Comparing with the change of pre- and post- disasters, the video
data with 30 FPS during disasters can record the whole minor change of each frame. Thus, it should be
labeled as ‘change’ when pixels with displacements are larger than 1 pixel. Then, the searching range
can be narrowed from 0 to 1 and the corresponding iteration number is reduced to [0, N] and N is
the number of unique values of displacements with the value from 0 to 1. According to this, a large
number of the useless pixel values are excluded and speed can be enhanced greatly.

In order to reduce the influence of large range of displacement on the calculation of objective
function, quite a lot of pixels with displacements exceeding 1 pixel have to be normalized for the
whole image. Generally, pixels with larger displacements and great variations in magnitudes of
pixels’ movements must be classified as change class; therefore, normalization is executed only for the
pixels in changed class whose displacements are more than 1 pixel. To be more elaborate, the partial
normalization dynamically changes with each iteration. For ith iteration, the threshold is wi and pixels
with displacements’ values w1, . . . , wi are automatically labeled as unchanged class C1 and other pixels
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with displacements wi+1, . . . , wn which are larger than wi are classed as changed part C2. The pixels in
C2 whose displacements w j, . . . , wn ( j ≥ i + 1), are greater than 1 need to be normalized to [wi+1, wend]
but the corresponding percentages remain unchanged. The formulas are as follows:

k j =
wend −wi+1

wmax −wmin
(12)

w j = wend + k j
(
w j −wmin

)
(13)

wend is the maximum displacement value which is most close to 1; wmax, wmin are the maximum
and minimum pixel value of changed class C2 which need to be normalized.

Based on the two strategies, the threshold calculation can be more efficient and lay a foundation
for the selection of the optimal threshold.

3.3. The Proposed CD Method

The whole flowchart of proposed OFATS is as Figure 5 shown and the details of change detection
process are implemented in Algorithm 1. The essential steps of OFATS are motion detection based on
FlowNet 2.0 and segmentation based on adaptive threshold selection criteria. For motion detection,
the selected frames are input into FlowNet 2.0 to compute the magnitude in horizontal and vertical
directions, based on which the displacements are calculated by Equation (1). After that, the next steps
are the iterative process for optimal threshold selection. Following Algorithm 1, Equations (2)–(13)
are repeatedly applied to calculate the fitness value for a fixed number to enable the iterative
optimization. Based on the optimal threshold, the displacement result can be segmented into changed
and unchanged parts.

The details of OFATS are implemented in Algorithm 1:

Algorithm 1. The proposed OFATS for change detection in natural disaster

Input: The two frames extracted from the video sequence.
Output: The change detection result.
1: Input the two frame images and calculate the movement in horizontal and vertical directions based on
FlowNet 2.0;
2: Calculate the displacements reserving a decimal fraction based on Equation (1);
3: Generate initial global fitness value gbest and iteration value i;
4: while the algorithm does not reach the termination condition do
5: I = I + 1;
6: Divide into unchanged class C1 and changed class C2 threshold wi and normalize displacements which
are larger than 1 in C2 according to Equation (12) and (13) and then involve in arithmetic by using
Equations (5)–(10);
7: Calculate between- and within-class variance by using Equations (3) and (4);
8: Calculate fitness value by using Equation (2);
9: if The solution is better then
10: Replace the current individual;
11: else
12: The individual does not change;
13: End if
14: Find out the current global best agent;
15: end while
16: return The optimal threshold.
17: Divide the image into two parts by optimal threshold value by using Equation (11).
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4. Data and Experiments

In this section, the proposed OFATS is applied to the detection of motion in two real video datasets
including tsunami dataset and landslide dataset. The experimental results can be divided into two
parts. Firstly, we verify the performance of the proposed OFATS method using video frame images
with different input parameters. Secondly, the proposed method is compared with state-of-the-art CD
methods using the two datasets.

4.1. Study Datasets

The proposed CD method is evaluated using two video frame datasets representing different
natural disasters. The first video data gives a glimpse at tsunami in Petobo, Indonesia, where a
7.5 magnitude earthquake trigged a tsunami on 28 September 2018. Digital Globe’s WorldView
captured these change progress by satellite images and transformed into a video consisting of 301
effective video clips [57]. Another example is about the slow-moving landslide produced by a subject
named massive landslides caught on camera 2 and a video clip with 172 effective frames is selected [58].
In this research, we both select six frames of two video datasets but the quantities of alternate frame
are different (at frame 160 and 165, 162 and 163, and 175 and 180 for the tsunami scene and at frame
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4960 and 4970, frame 4970 and 4980, frame 4980 and 4985 for landslide scene, respectively) as the
input image sequences for change detection in order to test OFATS’s robust to arbitrary movements.
The experimental data together with the ground truth generated by visual interpretation are shown in
Figure 6.
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Figure 6. Experimental video frames and the corresponding ground truth: (a–c) Frame 160 and 165,
Frame 162 and 163, and Frame 175 and 180 of tsunami video, respectively; (d–f) Frame 4960 and 4970,
Frame 4970 and 4980, and Frame 4980 and 4985 of landslide video, respectively.
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4.2. Evaluation of the Proposed Threshold Selection Method

In this section, the aim is to verify whether the proposed algorithm is able to automatically
determine the optimal threshold for CD. Considering the change detection as a binary classification
problem, the F1-measure is often used to test the selection of the optimal threshold. F1, which can
synthetically consider precision (P) and recall (R) in binary classification, is shown in Table 1.
The threshold that has the highest F1 will be considered as the optimum threshold. The value of F1
indicates the accuracy of change detection, and the closer to 1 means more accurate. This verification is
executed on two sides: the correspondence of the optimal threshold and the maximum F1-measure
value, and the performance to determine the optimal threshold value based on adaptive threshold
selection proposed in OFATS and Otsu, a classic thresholding way for binarization in image processing.

Table 1. Formulas related to calculating F1.

Parameter Name Formula Explanation of Abbreviations

P tp
tp+ f p tp (true positive): detects that are correctly identified as changed

tn (true negative): detects that are correctly identified as unchanged
f p (false positive): detects that are falsely identified as changed

f n (false negative): detects that are falsely identified as unchanged

R tp
tp+ f n

F1 2∗P∗R
P+R

In the first experiment, the frames 160 and 165 in the tsunami video are taken as an example
to test whether the proposed OFATS can generate the optimal threshold with the corresponding
maximum F1-measure value. If the threshold determined by the proposed objective function is in
accordance with the peak value of F1, it means that the generated threshold is optimum and OFATS
has the best performance. The variations of objective function value with respect to threshold value are
demonstrated in Figure 7, as well as the corresponding F1 value. The blue bars represent the objective
function values and the red line represents F1 values with iterated threshold values. The optimal
threshold based on OFATS and the corresponding F1 are labeled with green circle. According to
Figure 7, the maximum objective function value (6.04 × 104) corresponds to the optimum threshold
(0.3) based on which can achieve the highest peak of F1 during the whole iterations. This indicates that
OFATS can automated produce the optimum threshold with the highest F1-measure value.Sensors 2020, 20, x FOR PEER REVIEW 12 of 21 
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In order to illustrate the robustness of adaptive threshold selection in OFATS, Otsu is introduced
as a comparison of the optimal threshold selection based on the same displacements’ results in the
second experiment. There are three groups of tsunami data and three groups of landslide data and the
comparison results based on different threshold selection methods for experimental data have been
shown in Table 2.

Table 2. The optimum thresholds and the corresponding F1 values based on adaptive threshold
selection in OFATS and Otsu for the experimental data.

Adaptive Threshold Selection in OFATS Threshold Selection Based on Otsu

Study Data Experimental Frame Optimum Threshold F1 Optimum Threshold F1

Tsunami data
Frame 160–165 0.3 0.98 0.4 0.97
Frame 162–163 0.2 0.97 0.38 0.90
Frame 175–180 0.3 0.99 0.48 0.96

Landslide data
Frame 4960–4970 0.4 0.94 0.4 0.94
Frame 4970–4980 0.3 0.92 0.5 0.91
Frame 4980–4985 0.3 0.92 0.5 0.91

According to Table 2, the corresponding F1 values based on the adaptive threshold selection in
OFATS are higher than Otsu in most cases, except the case in frames 4960–4970, which OFATS has
the same threshold with Otsu. For the majority experimental frames, average F1 values based on
OFATS are 0.02 higher than Otsu. This comparison indicates that the proposed OFATS is more robust
to generate the optimum threshold thus accurately detecting the natural disaster change between
video sequences.

4.3. Comparing the Proposed Method with Other CD Methods

This section takes frames 160–165 of the tsunami video and frames 4960–4970 of the landslide video
as examples and compares the proposed algorithm with state-of-the-art CD algorithms, including Image
Differencing, Image Rationing, Change Vector Analysis (CVA), Post-classification comparison (PCC),
Kullback–Leibler divergence (KL), and Classic optical flow (COF) based on HS, a traditional optical
flow estimation method. The aim is to test the superiority but to verify the robustness of OFATS to
different range of movements.

The evaluation methods in this experiment are Producer’s Accuracy (PA), and User’s Accuracy
(UA), Overall Accuracy (OA), Kappa coefficient (K). PA and UA are local indexes, where PA is obtained
by dividing the number of correctly classified pixels in each class by the number of ground truth pixels
in the corresponding class and UA is obtained by dividing the number of the total correctly classified
pixels in the same class. Thus, there are four related indexes, that are PAc, PAun, PA for changes
and unchanges, and UAc, UAun, UA for changes and unchanges, as shown by Equations (14)–(17).
OA and K are global indexes, where OA is the proportion of number of correctly identified pixels,
both changed and unchanged, to the number of total pixels, and K builds on OA by taking into account
both the omission and commission of pixels. As OA, K, and F1 increase and approach 100%, 1, and 1,
respectively, so too does the accuracy of the CD method in differentiating changes from non-changes.

PAc =
tp

tp + f n
(14)

PAun =
f p

f p + tn
(15)

UAc =
tp

tp + f p
(16)

UAun =
f n

f n + tn
(17)

34



Sensors 2020, 20, 5076

OA and K are calculated by Equations (17) and (18):

OA =
tp + tn

tp + tn + f p + f n
(18)

k =
k1 − k2

1− k2
(19)

where k1 and k2 are computed as follows:

k1 =
tp + tn

tp + tn + f p + f n
(20)

k2 =
(tp + f n) ∗ (tp + f p) + ( f p + tn) ∗ ( f n + tn)

(tp + tn + f p + f n)2 (21)

All of the previously mentioned CD methods were used to analyze tsunami and landslide data,
and CD maps are shown in Figures 8 and 10 and the accuracy results were tabulated in Tables 3 and 4,
respectively, and demonstrated in Figures 9 and 11, respectively. The results indicate that the proposed
OFATS method has K and F1 values closing to 1 and also has the highest OA values, which shows that
it is capable of accurately distinguishing between changed and unchanged pixels. The values of K, F1,
and OA, according to Tables 3 and 4, are 0.98%, 0.97% and 98.5%, respectively, for the tsunami dataset,
and 0.94%, 0.91%, and 96.3%, respectively, for the landside dataset.

Table 3. Confusion matrices along with indexes of the tsunami data.

Method
Ground Truth

F1 K OA (%)
C U UA (%)

Image differencing
C 507,934 37,899 93.0

0.79 0.69 86.0U 237,043 1,183,204 83.3
PA (%) 68.2 96.7

Image rationing
C 624,451 841,520 42.6

0.57 0.13 51.1U 120,526 379,583 76.0
PA (%) 83.8 31.1

CVA
C 420,863 229,199 64.7

0.60 0.39 71.9U 324,114 991,904 75.4
PA (%) 56.5 81.2

PCC
C 294,325 401,789 42.2

0.41 0.07 56.6U 450,652 819,314 64.5
PA (%) 39.5 67.1

KL
C 548,695 750,222 42.2

0.54 0.11 51.9U 196,282 470,881 70.6
PA (%) 73.7 38.6

COF
C 688,338 36,873 94.9

0.94 0.90 95.2U 56,639 1,184,230 95.4
PA (%) 92.4 97.0

OFATS
C 737,237 21,164 97.2

0.98 0.97 98.5U 7740 1,199,939 99.3
PA (%) 98.9 98.2

Figure 8a is the ground truth in which white represents changes and black means unchanges.
Figure 8b–g are the results from comparative CD methods, from which most of them have difficulty
to provide a clear boundary and complete changed area, especially for the CD methods of PCC
(Figure 8e) and KL (Figure 8f). Many changed areas are wrongly detected as non-changed areas of
image differencing (Figure 8b); however, the results of image rationing and CVA (Figure 8c,d) are the
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opposite. Figure 8g from COF is better than the traditional CD methods, and the result is very similar
to OFATS (Figure 8h); however, the change detection accuracy of COF is less than the proposed method
with several tiny false alarm areas.

Table 4. Confusion matrices along with indexes of landslide data.

Method
Ground Truth

F1 K OA (%)
C U UA (%)

Image differencing
C 512,244 218,623 70.1

0.76 0.64 83.8U 100,309 1,134,904 91.9
PA (%) 83.6 83.8

Image rationing
C 540,840 205,471 72.5

0.80 0.69 85.9U 71,713 1,148,056 94.1
PA (%) 88.3 84.8

CVA
C 577,780 90,087 86.5

0.90 0.86 93.6U 34,773 1,263,440 97.3
PA (%) 94.3 93.3

PCC
C 380,536 613,376 38.3

0.47 0.14 57.0U 232,017 740,151 76.1
PA (%) 62.1 54.7

KL
C 525,254 208,691 71.6

0.78 0.67 84.9U 87,299 1,144,836 92.9
PA (%) 85.7 84.6

COF
C 611,643 140,762 81.3

0.90 0.84 92.8U 910 1,212,765 99.9
PA (%) 99.8 89.6

OFATS
C 584,927 44,777 92.9

0.94 0.91 96.3U 27,626 1,308,750 97.9
PA (%) 95.4 96.7
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Figure 8. The change detection results for tsunami dataset: (a) Ground Truth; (b) Image differencing;
(c) Image rationing; (d) CVA; (e) PCC; (f) KL; (g) COF and (h) OFATS.

To further analyze the experimental results, Table 3 presents the quantitative performance indexes
of these different CD methods for the tsunami dataset and Figure 9 visually displays this. For image
rationing, PCC and KL CD methods, the F1 values are around 0.5, OA is less than 60% and K is
smaller than 0.15, which shows these methods fail to identify the changed area. Image differencing
and CVA are slightly better than them but the results are still unsatisfying. This is because most of
these CD methods only use one band of the RGB images to directly do algebraic operation or some
transformation computing, which is unable to digging deep features to detect the change information
of the corresponding pixel with small changes. Thus, some originally changed land cover types are
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hard to be tested. Moreover, the CD results are extremely fragmented and have to be implemented by
morphologic erosion and dilation. The selection of the optimum threshold for the final binary image
also produces errors. KL detects changes based on the spectral similarity of two single band, but
the changed pixels in our research are only with displacements and no obvious spectral change in
appearance. Thus, KL is less sensitive to this kind of changes that occurring when the displacements are
small. PCC concurrently obtains the changed boundary and the “from-to” change information; however,
PCC is the least accurate of the algorithms that were studied in this paper. Only small displacements or
slight deformations occur rather than land cover type changes, resulting in PCC’s ineffectiveness in the
experimental data. Both COF and the proposed OFATS method produce reasonable CD accuracy with
values of F1, OA and K higher than 0.9. Compared to COF, the proposed OFATS can achieve higher
accuracy because high-level features can be extracted based on deep learning and the corresponding
motion results can keep a higher precision [59]. Thus, the final CD accuracy based on OFATS are higher
than that based on COF even if they use the same optimal threshold value.
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Figure 10 shows the results for landslide dataset. Table 4 and Figure 11 present the quantitative
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Similar to Table 3, Table 4 also demonstrates the superior performance of OFATS with the highest
F1, OA and K indexes, reaching 0.94, 96.3% and 0.91, respectively. Figure 11 also visually displayed
the comparison of different CD algorithms, where the three accuracy indexes of OFATS are all the
maximum but the corresponding values of PCC are minimal. The similar accuracies of the two datasets
show that the proposed OFATS method maintains excellent performance and is robust to different
motion changes. It should be noticed that nearly all CD methods perform better than in the Indonesia
tsunami case.

Although the two experimental datasets are both from natural disaster scenes, the mean pixel
displacement in the landslide dataset is larger than that of the tsunami dataset. The difference can be
used to test the robustness of OFATS. The comparative analysis will be based on K values for all of the
algorithms for both the landslide and tsunami datasets, as shown in Figure 12. The K values based
on CD methods for the two datasets have varied but the change trends are basically identical. The K
values for the traditional CD methods, other than image differencing, all follow the trend of the value
obtained from the landslide dataset being higher than that of the tsunami dataset. It is worthwhile to
be mentioned that the K values obtained from the landslide dataset are significantly higher than that
of the tsunami dataset for image rationing, CVA and KL. Specially, the K values are greater than 0.6
and less than 0.4 for the landslide and tsunami datasets, respectively, which illustrates that these CD
methods should only be fit for large displacements. The different performances of these CD methods
indicate that only when the differences between corresponding pixels on bi-temporal images are large,
like in the case of landslides, can these CD algorithms detect the change. The K values that were
obtained using PCC are less than 0.2, therefore these results further indicate that PCC is not applicable
for these two types of situations regardless of the magnitude of displacement.

Despite the variations of K values, the two CD methods based on optical flow estimation
algorithms achieved excellent results for both experimental datasets and K values were all greater than
0.8. However, the K values obtained using OFATS are 10% higher than COF for both datasets and their
absolute values are both greater than 0.9. The superiority of OFATS is not only the accuracy, but it is
also significantly more efficient in terms of computing time. Therefore, our proposed OFATS is more
practical in these actual circumstances.
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5. Conclusions

The challenging problems in natural disaster detection are how to detect the motion change and
how to determine an adaptive threshold that can automatically and rapidly produce accurate change
detection results. To solve this problem, an automatic change framework, termed as OFATS, is proposed
in this paper. First, the displacement was computed from two frames using optical flow estimation
algorithm based on deep learning. Then, the optimal threshold for rapidly separating changed from
unchanged parts was automatically generated using an adaptive threshold selection based on a new
objective function by narrowing the threshold searching range and dynamic normalization.

The proposed OFATS has been applied to two different natural disaster videos. The CD results
have been compared with seven other state-of-the-art CD methods, visually and quantitatively.
The quantitative evaluation demonstrated that the accuracies of proposed method are greater than 95%
for the two experimental datasets and it surpasses the most excellent CD algorithms by almost 4%
for tsunami data and 5% for landslide data. Experiments showed three advantages of the proposed
method: (1) it can detect the change using video datasets for natural disasters in an automatic way,
which have rarely been studied before; (2) it is highly efficient to conduct natural disaster change
detection, even for small motion; (3) it can automatically generate the optimum threshold for the
following image segmentation.
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Abstract: High-resolution stereo and multi-view imagery are used for digital surface model (DSM)
derivation over large areas for numerous applications in topography, cartography, geomorphology,
and 3D surface modelling. Dense image matching is a key component in 3D reconstruction
and mapping, although the 3D reconstruction process encounters difficulties for water surfaces,
areas with no texture or with a repetitive pattern appearance in the images, and for very small objects.
This study investigates the capabilities and limitations of space-borne very high resolution imagery,
specifically Pléiades (0.70 m) and WorldView-3 (0.31 m) imagery, with respect to the automatic point
cloud reconstruction of small isolated objects. For this purpose, single buildings, vehicles, and trees
were analyzed. The main focus is to quantify their detectability in the photogrammetrically-derived
DSMs by estimating their heights as a function of object type and size. The estimated height was
investigated with respect to the following parameters: building length and width, vehicle length and
width, and tree crown diameter. Manually measured object heights from the oriented images were
used as a reference. We demonstrate that the DSM-based estimated height of a single object strongly
depends on its size, and we quantify this effect. Starting from very small objects, which are not elevated
against their surroundings, and ending with large objects, we obtained a gradual increase of the
relative heights. For small vehicles, buildings, and trees (lengths <7 pixels, crown diameters <4 pixels),
the Pléiades-derived DSM showed less than 20% or none of the actual object’s height. For large
vehicles, buildings, and trees (lengths >14 pixels, crown diameters >7 pixels), the estimated heights
were higher than 60% of the real values. In the case of the WorldView-3 derived DSM, the estimated
height of small vehicles, buildings, and trees (lengths <16 pixels, crown diameters <8 pixels) was less
than 50% of their actual height, whereas larger objects (lengths >33 pixels, crown diameters >16 pixels)
were reconstructed at more than 90% in height.

Keywords: VHR tri-stereo satellite imagery; digital elevation model; isolated objects; dense
image matching

1. Introduction

For more than thirty years, civilian satellite sensors have been used for digital elevation model
(DEM) extraction over large areas in a timely and cost-effective manner for a wide range of applications
in engineering, land planning, and environmental management. Beginning with the year 1986,
when SPOT—the first satellite providing stereo-images, with a panchromatic Ground Sampling
Distance (GSD) of 10 m—was launched [1], the optical satellite industry has been experiencing
continuous development. Today more and more space sensors are available that acquire not only
stereo but also tri-stereo satellite imagery. The generation of high and very high resolution commercial
space imaging systems for DEM generation started in September 1999, with the launch of IKONOS [2].
Among the Very High Resolution (VHR) optical satellites providing along- and across-track stereo,
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the following systems can be mentioned: Ziyuan-3 (2.1 m), KOMPSAT-2 (1 m), Gaofen-2 (0.8 m),
TripleSat (0.8 m), EROS B (0.7 m), KOMPSAT-3 (0.7 m), Pléiades 1A/1B (0.7 m), SuperView 1-4 (0.5 m),
GeoEye-1 (0.46 m), WorldView-1/2 (0.46 m) and WorldView 3 (0.31 m).

The new generation of Earth observation satellites are characterized by an increased acquisition
capacity and the possibility of collecting multiple images of the same area from different viewing angles
during a single pass [3,4]. This multi-view aspect is essential for extracting 3D information. In recent
years, the potential of tri-stereo acquisition from high-resolution satellite images for surface modelling
has become an interesting research topic that has been addressed in various publications. The capacity
of the Pléiades system in performing 3D mapping was analyzed by Bernard et al. [5], where 17 images
acquired from different points of view were used. They showed that by means of “triple stereo”
configurations reliable digital surface models can be generated in urban areas. From their best image
combination, a root mean square error (RMSE) of 0.49 m was obtained at 295 ground control points
(GCPs). The radiometric and geometric characteristics of Pléiades imagery with a focus on digital
surface modelling are analyzed by Poli et al. [6]. The model derived from a “triple stereo” scene
(nadir, forward and backward) showed median values close to zero and an RMSE in the range of 6–7 m,
when compared with a reference light detection and ranging (LiDAR) DSM. An accurate 3D map with
tri-stereo images can be obtained by optimizing the sensor models with GCPs, leading to accuracies in
the range of 0.5 m in planimetry and of 1 m in height as demonstrated in [7].

Much of the previous research using WorldView-3 satellite images focused on their high
resolution multi-spectral information, with applications in topographic mapping, land planning,
land use, land cover classification, feature extraction, change detection, and so on [8–11]. The 3D
potential of WorldView-3 data is assessed by Hu et al. [12], where the reconstructed DEM shows height
differences of less than 0.5 m for 82.7% of 7256 ground LiDAR checkpoints located along road axes.
A new algorithm for generating high quality digital surface models is proposed by Rupnik et al. [13],
where a dense image matching method is applied for multi-view satellite images from Pléiades
and WorldView-3.

The capability of satellite images regarding a rapid evaluation of urban environments is addressed
in Abduelmula et al. [14]. They compared 3D data extracted from tri-stereo and dual stereo
satellite images combined with pixel-based matching and Wallis filter to improve the accuracy
of 3D models, especially in urban areas. The result showed that 3D models achieved by Pleiades
tri-stereo outperformed the result obtained from a GeoEye pair, in terms of both accuracy and detail.
This could mean that tri-stereo images can be successfully used for urban change analyses. The potential
of VHR optical sensors for 3D city model generation has been addressed in [15–17], showing promising
results for automatic building extraction when compared to a LiDAR elevation model, although
highlighting some difficulties in the case of small individual house reconstruction. A quantitative and
qualitative evaluation of 3D building models from different data sources was presented in [18], where
a DSM at 1 m resolution derived from a GeoEye-1 stereo-pair, a DSM from an aerial block at 50 cm
GSD, and a LiDAR-based DSM at 1 m resolution were used. Their results show that the percentage of
correctly reconstructed models is very similar for airborne and LiDAR data (59% and 67%, respectively),
while for GeoEye data it is lower (only 41%). The real dimensions of the 17 buildings surveyed were
used as ground truth-reference for the 3D building model’s quality assessment, obtaining a mean
value for the residual heights of 1.94 m for the photogrammetric DSM. In [19] the authors analyze and
validate the potential of high-resolution DSMs produced from stereo and tri-stereo Pléiades-1B satellite
imagery acquired over the Athens Metropolitan Area. From their tests, the tri-stereo model shows the
best performance in height accuracy, with an RMSE of 1.17 m when compared with elevations measured
by a differential global positioning system.

The advantages of using tri-stereo instead of stereo image pairs are described by Piermattei et al. [20],
where the nadir image increases the DSM completeness, reducing the occlusions usually caused by
larger convergence angles on the ground. Additionally, they investigate in detail the influence of the
acquisition geometry (viewing and incidence angles) of VHR imagery on DSM accuracy.
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The cited literature concentrates on the accuracy assessments either on open areas or on (large)
buildings within city areas, but not on smaller objects like cars.

The standard method of DSM generation from stereo-pairs or triples is dense image matching using
global or semi-global optimization. Because of the smoothness constraint of dense image matching [21],
the heights of small individual objects may not be reconstructed. Hence, the corresponding 3D
points will not have higher elevations compared to their surroundings. Based on this hypothesis, we
investigated the capability of dense image matching when evaluating the height of small individual,
i.e., detached, objects. While previous studies addressed the general 3D capabilities of VHR sensors,
our investigation concentrates on small, isolated object detectability by height estimation. To the best
of our knowledge, our study is the first to analyze and quantify the capability of the tri-stereo Pléiades
and WorldView-3 reconstructed DSMs for single object detection by height estimation, with focus
on vehicles, buildings, and trees. The object’s height compared with its surrounding terrain (in the
following simply referred to as height) was investigated with respect to the following parameters:
building length and width, vehicle length and width, and tree crown diameter. We investigate DSMs
from different sensors with very small GSD, Pléiades and WorldView-3, but the focus is not a comparison
of the two satellite systems. Specifically, our research investigation’s purpose is to answer the following
questions: (1) which geometric signature and minimum size must individual objects have to be detected
in the DSM-based on their reconstructed heights; and (2) what are the influences of different acquisition
times, geometries, and GSDs on dense image matching quality for single objects. In the following,
we first describe the tri-stereo satellite imagery used together with the study site (Section 2), followed
by image block orientation (in Section 3.1) using Rational Polynomial Coefficients (RPCs) and a set
of GCPs. Once the orientation is completed, the 3D reconstruction follows. The 3D coordinates of
the specific points corresponding to buildings, vehicles and trees are monoscopically measured in all
three images: forward, nadir, and backward. The elevations obtained were used for computing the
reference individual object’s height, by subtracting the correspondent elevations from a LiDAR digital
terrain model (DTM) (in Section 3.2). Subsequently, the accuracy of image orientation and the procedure
of dense image matching are detailed in Sections 4.1 and 4.2. After that, individual objects are grouped
into different classes depending on their corresponding sizes. Their automatically-reconstructed
heights are then compared with reference values (in Sections 4.3 and 4.4). Finally, the major findings of
the current work are summarized in Section 5.

2. Study Area and Data Analysis

The study area is located in Lower Austria, the north-eastern state of the country (48◦30′30′′ N;
15◦08′34′′ E; WGS84). With elevations ranging from 537 to 846 m above sea level, the region contains
different land cover types such as: urban, suburban, rural, arable, grassland, and forested areas.
Analysis was conducted based on tri-stereo satellite images acquired with both Pléiades-1B and
WorldView-3 optical satellite sensors. Each triplet consists of images that were collected during
the same pass from different sensor-viewing angles (along-track stereo): forward, close to nadir,
and backward. The location of the study area acquired with the two sensors, with an overlapping
surface of 44.5 km2, is shown in Figure 1.

For the current analyses, the reference data contains 43 GCPs measured by means of real time
kinematic (RTK) GPS with an accuracy of approximately 1 cm. A DTM generated from a LiDAR flight
campaign conducted in December 2015 is available, too. The raster DTM is in UTM 33 North map
projection, datum WGS 84 with a grid spacing of 1 m. Its height accuracy was checked against the RTK
GCPs yielding a σZ of 0.12 m. We used a digital orthophoto from 2017 at 0.20 m resolution for defining
the positions of check points (CP). The planimetric accuracy of the digital orthophoto was verified by
computing the differences between the RTK point coordinates and their corresponding position on the
orthophoto. The result showed that no shifts larger than one pixel were observed.
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Figure 1. Study area: (a) overview map of Austria with location of the study area (coordinates in UTM
zone 33N); (b) satellite imagery–blue: Pléiades tri-stereo pair and orange: WorldView-3 tri-stereo pair.

Each satellite image was delivered with RPCs that allow the transformation between object and
image space [22]. Table 1 summarizes the main acquisition parameters like along, across and overall
incidence angles, together with corresponding times and covered areas. Additionally, using the
equations found in [23] we computed the stereo intersection angles (also called convergence angles
in [24]) between each scene and their base-to-height (B/H) ratios. For WorldView-3 satellite imagery
the resulting values for the B/H ratios were twice as large as those of the Pléiades imagery.

Table 1. Acquisition parameters of Pléiades and WorldView-3 data.

Sensor Type &
Acquisition Date View

Acquisition Time
(hh:hm:ss.s)

Incidence Angles (◦) Area
(km2)

B/H
Ratio

Convergence
Angle (◦)Across Along Overall

Pléiades
13-06-2017

Forward (F) 10:09:51.5 −2.23 −6.75 6.75 158.73 0.10 (FN) 5.71 (FN)
Nadir (N) 10:10:03.7 −3.31 −1.13 3.50 158.49 0.11 (NB) 6.30 (NB)

Backward (B) 10:10:14.0 −5.00 4.95 7.02 158.78 0.21 (FB) 12.0 (FB)

WorldView-3
08-04-2018

Forward (F) 10:22:07.0 7.71 11.00 13.57 100.00 0.20 (FN) 11.52 (FN)
Nadir (N) 10:22:25.5 7.23 −0.62 7.36 100.00 0.20 (NB) 11.51 (NB)

Backward (B) 10:22:44.1 6.72 −12.20 13.97 100.00 0.40 (FB) 23.04 (FB)

(FN): Forward-Nadir, (NB): Nadir-Backward and (FB): Forward-Backward image pairs.

The tri-stereo Pléiades images were provided at sensor processing level, corrected only from
on-board distortions such as viewing directions and high frequency attitude variations [25]. For all
three images, we performed an optical radiometric calibration using the open source software Orfeo
Tool Box [26]. The pixel values were calibrated by the influence of the following parameters: sensor
gain, spectral response, solar illumination, optical thickness of the atmosphere, atmospheric pressure,
water vapor, and ozone amount, as well as the composition and amount of aerosol gasses.

In contrast, the WorldView-3 images were delivered as tri-stereo with relative radiometrically-
corrected image pixels. The relative radiometric calibration included a dark offset subtraction and
a non-uniformity correction (e.g., detector-to-detector relative gain), which is performed on the raw
data during the early stages of product generation. We computed the absolute radiometric calibration
for each WorldView-3 image. This was done in two steps: the conversion from image pixels to
top-of-atmosphere spectral radiance; and the conversion from top-of-atmosphere spectral radiance
to top-of-atmosphere reflectance. The calculations were performed independently for each band,
using the equations found in the technical sensor description [27]. Usually, the optical radiometric
calibration step is necessary before making any physical interpretation of the pixel values. In particular,
this processing is mandatory before performing any comparison of pixel spectrum between several
images from the same sensor. In our case, this pre-processing step could be omitted, since it did not
change the geometric quality of the images.

An important characteristic of both satellites—Pléiades-1B and WorldView-3—is the fast rotation
to enable recording three images within the same orbit in less than 1 min. Therefore, the images have
the same illumination conditions and shadow changes are not significant. With radiometric resolutions
of 16 bit/pixel, the images provide a higher dynamic range than the traditional 8- or 12-bit/pixel images.
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From a visual inspection, some radiometric effects were observed in the WorldView-3 forward image
(Figure 2). Here, the reflective roof surface, in combination with the imaging incidence angle and sun
elevation, caused saturation and spilling effects. In contrast, no radiometric artefacts were observed in
the Pléiades satellite images.
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Figure 2. Detail of Pléiades (first row) and WorldView-3 (second row) tri-stereo satellite images on the
same built-up area, acquired with forward-, nadir- and backward-looking.

2.1. Pléiades-1B Triplet

The Pléiades satellite system is composed of two identical satellites, Pléiades 1A/1B, which were
launched by the French space agency (CNES) in December 2011 and December 2012, respectively.
Both satellites are flying on the same sun-synchronous low-Earth orbit at an altitude of 694 km with
a phase of 18◦ and an orbital period of 98.8 min. The sensors are able to collect both panchromatic
and multispectral images [3].

The Pléiades-1B tri-stereo images used in the current investigations were acquired in the
late morning of 13 June 2017 within 23 s. Within this time, the satellite travelled a total distance (Base)
of 167.87 km, leading to an intersection angle of rays on the ground of 12◦. The B/H ratios are of
0.10, 0.11, and 0.21 for forward-nadir, nadir-backward and forward-backward image combinations.
The pansharpened images composing the triplet are available in 16 bit, each of them with four spectral
bands, i.e., red, green, blue, and near-infrared. Depending on the viewing angle, the mean values for
the GSD vary between 0.70 and 0.71 m.

2.2. WorldView-3 Triplet

The WorldView-3 Digital Globe’s very high-resolution optical sensor was launched in August
2014. Operating at an altitude of 617 km with an orbital period of 97 min, the sensor provides 0.31 m
panchromatic resolution.

According to the metadata, the tri-stereo WorldView-3 images for our study were acquired in
spring 2018, on 8 April, within 37 s. The corresponding base has a value of 279.69 km and the
intersection angle of rays on the ground is 23◦. Even though both sensor platforms fly at approximately
the same speed (~7.5 km/s), the WorldView-3 B/H ratios have higher values, because of the lower
altitude and increased acquisition time, compared to the Pléiades triplet. Hence, the B/H ratio is
0.20 for both forward-nadir and nadir-backward images, whereas for forward-backward it is 0.40.
Each image is pan-sharpened, with four spectral bands, i.e., red, green, blue, and near-infrared, with
16-bit depth and zero cloud coverage. Depending on the viewing direction, the mean GSD values
vary from 0.31 m to 0.32 m. The images were delivered as eight, two, and two tiles for close-to-nadir,
forward, and backward, respectively. As a pre-processing step, the tiles for each image were mosaicked
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accordingly. For both image triplets, Pléiades and WorldView-3, auxiliary data including the third-order
rational function model (RFM) coefficients are provided as separate files.

Figure 3 shows a visual comparison between the pan-sharpened (near) nadir images acquired
with Pléiades (left) and WorldView-3 (right) over a small area, in order to highlight the effects of the
two different resolutions of 0.70 m and 0.31 m. The same objects can be distinguished in both images:
streets, buildings, cars, and trees. The higher resolution of WorldView-3 provides a more detailed
image with clear visible cars, tree branches, and building roof edges.
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Figure 3. Comparative view of the same area from Pléiades (a) and World View-3 images (b) with
a magnified detail.

3. Data Processing and Analyses

3.1. Image Orientation

The prerequisite for a successful photogrammetric 3D reconstruction is that both interior and
exterior orientations are correctly known. The physical sensor model based on the collinearity
condition, describing the geometric relation between image points and their corresponding ground
points, yields high accuracies (typically a fraction of one pixel), but is complex, and varies depending
on different sensors types. Moreover, information about the camera model, ephemerides, and satellite
attitude may not be available to users, since they are kept confidential by some commercial satellite
image providers [28]. Usually, in practice, the RFM containing eighty RPCs is used for replacing the
rigorous physical model of a given sensor [29]. In our research work, we have used the RFM for the
photogrammetric mapping.

The workflow for DEM extraction from tri-stereo images begins with image block triangulation
and geo-referencing, based on provided RPCs and available GCPs. The main steps for the satellite
triangulation are:

1. Image point measurement of GCPs. The number of GCPs is different for the two image sets
because of the different data extent and visibility in the scenes. Therefore, 43 GCPs and 22 GCPs
were manually measured in each Pléiades and WorldView-3 tri-stereo pair using the multi-aerial
viewer, which allows a simultaneous display of the images. This step is performed in order to
stabilize the image block and to achieve higher accuracies by improving the given RPCs’ values.
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2. Tie points (TPs) extraction and RPC refinement. The orientation of the satellite imagery includes
the automatic TPs extraction as well as an automatic and robust block adjustment. During the
adjustment, a maximum number of six parameters (affine transformation in image space) can
be computed: two offsets, two drift values, and two shear values (for each image). Depending
on their significance, only a subset of these corrections could be computed by the software: two
shifts (on X and Y) and a scale on Y. TPs were automatically extracted by applying Feature
Based Matching using the Förstner operator and refining them with Least Squares Matching [30].
TPs with residuals (in image space) larger than one pixel are considered mistakes (gross errors)
and rejected. The RPCs are refined through a subsequent adjustment procedure where the
differences between image- and backprojected- (with the RFM) coordinates of the GCPs and TPs
are minimized.

3. Geo-positioning accuracy analysis. To evaluate the accuracy of the georeferenced images, 50 CPs
were used. They were manually acquired from the available orthophoto at 0.2 m GSD and
their heights were extracted at the same locations from the LiDAR DTM (1 m resolution).
For CP selection, stable details on the ground such as road marks (e.g., pedestrian crossing
lines), road surface changes, corners of paved areas and corners of parking lots were selected.
Considering the horizontal accuracy of the orthophoto (0.10 m) and the vertical accuracy of the
DTM (0.12 m), these points are less accurate than the RTK point measurements.

For the current work, the entire photogrammetric workflow was implemented in the Inpho 8.0
software from Trimble [31], designed to perform precise image block triangulation through bundle block
adjustment and 3D point cloud reconstruction using dense image matching techniques for push-broom
cameras. The same processing line was followed for Pléiades and WorldView-3 tri-stereo images.

3.2. Manual Reference Measurements

After the image orientation was completed, the manual measurement of the 3D points was performed.
For each object, the highest point was selected, such as points on a building’s ridge, on a car’s roof and
tree crown centre (approximation of the tree top). For the 3D restitution, we manually measured the
points monoscopically in all three oriented images (forward, nadir and backward), in a multi-aerial
view mode. The mean-square error of the Z object coordinate is given by the following formula [32]:

σZ =
√

2·mB·σB·ZB , (1)

with σZ the object elevation accuracy, σB the accuracy of image measurement (1/3rd of a pixel), Z the
altitude of the satellite orbit, B the base and mB the satellite image-scale number given by the Z/c ratio,
where c is the focal length of the optical system. Due to the large heights, we considered the special
case of parallelism between object and image plane; hence a single scale number for the whole satellite
image was used.

Taking into account these parameters, the estimated accuracy of the Z object coordinates is 1.36 m
and 0.31 m for the Pléiades and WorldView-3 images, respectively. These results suggest a minimum
object height of 1 m as a reference height that guarantees a reasonable analysis. Since the smallest
investigated cars have around 1.5 m height and buildings and single trees usually have more than 2 m
height, the estimated elevation accuracy does not significantly influence our investigations.

In a final step, the reference object heights are computed by using the measured Z-coordinates and
the elevations extracted from the LiDAR DTM (with 1 m resolution and σZ of 0.12 m) at each point’s
position. Assuming that the measured and extracted Z values have random and uncorrelated errors,
according to the law of error propagation, the uncertainty associated with the manual measurements for
reference object height computation is determined by the quadrature of input elevation uncertainties.

The geometric parameters, i.e., vehicle length/width, tree crown diameter and building
length/width, were directly measured on the rectified images in a geographic information system
(GIS) environment.
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Three different classes of objects were separately investigated:

(a) Vehicles are classified into four groups depending on their length: (1) passenger and family car
type, smaller than 5 m; (2) vans having lengths between 5 and 7.5 m; (3) trucks with lengths
between 7.5 and 10 m; and (4) articulated lorries, trailers and multi-trailers usually having more
than 10 m. The lengths, widths and the corresponding elevations at car’s roofs of 50 vehicles
are investigated. The computed mean reference heights are 1.5, 2.5, 3.7, and 4 m for family cars,
vans, trucks, and articulated lorries, respectively. Related to average object height, the associated
uncertainty of the manual height measurement varies between 8% for lorries and 22% for family
cars for WorldView-3 and between 34% and 68% for Pléiades.

(b) Trees are typically classified into two categories: coniferous and deciduous. Coniferous trees
are cone-shaped trees, represented mainly by spruce in our case. The second category is the
broad-leaved trees with leaves that fall off on a seasonal basis, mostly represented by beech and
oak. We needed to perform this classification due to the different acquisition times: one in June
(leaf-on conditions) and the other one in April (leaf-off conditions). The diameter and elevations
were measured for 100 trees (50 trees for each category: deciduous and coniferous). Depending
on crown diameters, they were grouped into seven categories, beginning with trees with a
crown smaller than 2.5 m, and ending at large trees with 10 m diameter. The computed mean
reference heights for the seven coniferous tree classes are: 5.5, 7.8, 11.0, 14.6, 17.2, 23.4, and 28.7 m,
with uncertainties between 1% and 6% from object height for WorldView-3 and between 5% and
24% for Pléiades. The mean reference heights for the deciduous tree classes are: 3.1, 5.4, 8.0, 12.6,
15.4, 16.2, and 18.5m, with uncertainties between 2% and 10% from object height for WorldView-3
and between 7% and 44% for Pléiades.

(c) For buildings, two geometrical parameters are taken into account: length and width. According
to their size, built-up structures are grouped into several classes starting with very small (5 m in
length and width) to large (50 m length and 25 m width). Therefore, lengths, widths, and roof ridge
elevations were measured for 100 buildings in both Pléiades and WorldView-3 images. The mean
reference height values varied from 2 m (small built-up structures) to 10–12 m (large industrial
buildings), with associated uncertainties from 2% to 16% from object height for WorldView-3 and
between 11% and 68% for Pléiades.

While identical trees and buildings were investigated in both Pléiades and WorldView-3 images,
this was not possible for vehicles, since they are moving objects. Therefore, (parked) vehicles were
randomly selected within the entire scene also using the non-overlapping parts.

3.3. Satellite Image Matching and 3D Reconstruction

Image matching algorithms were used to identify homologous objects or pixels within the
oriented images. These algorithms can be divided into area-based (e.g., [33]), feature-based (e.g., [34]),
and pixel-based matching (e.g., [35]). Alternatively, image-matching approaches are often classified into
sparse and dense matching or into local and global matching methods. The automatic image matching
and DSM reconstruction processes were individually performed for each tri-stereo-scene (Pléiades
and WorldView-3) by using the specialized module of the Inpho software, called Match-T DSM.
The DSM derivation was based on three matching strategies [30]: (a) least squares matching (LSM);
(b) feature-based matching (FBM) [36]; and (c) cost-based matching (CBM). Like in most image matching
procedures, where image pyramids were used to reduce computation time [37], in our case, the iterative
processing chain contains ten pyramid levels. On each pyramid level, three processes were performed:
the matching of homologous image points, 3D intersection in object space and DEM modelling. For the
first seven pyramids, FBM was used, and the last three image pyramid levels were processed with CBM.
CBM is a pixel-by-pixel matching technique similar to the semi-global matching algorithm [35,38].
The CBM strategy within the Match-T DSM module uses a search-path in a so-called 3D-cost-cube
for finding the corresponding pixels in images. The cost functions (e.g., correlation coefficient) are
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used to find the minimum cost path, and each direction represents an X–Y movement in the image
to match. Finding the pixel with the lowest cost generates a lowest-cost 3D model–surface model [30].
For each image pixel, the 3D object point coordinates were calculated by applying forward intersections,
finally resulting in dense photogrammetric point clouds for the entire study area.

In the last step, high resolution DSMs were generated by using the robust moving planes
interpolation method. For each grid node all points within a circular neighborhood are used to robustly
estimate a best fitting tilted plane (minimizing the vertical distances); points classified as outliers are
not considered in the plane fitting procedure. This step was performed with the scientific software
OPALS (Orientation and Processing of Airborne Laser Scanning data) [39].

4. Results and Discussion

4.1. Block Triangulation

During the satellite triangulation of the tri-stereo scene, TPs were automatically extracted in each
Pléiades image. They were homogenously distributed within the forward, nadir and backward images,
with standard deviations of the adjusted coordinates for elevations ranging from 1.49 m (2.1 GSD) to
3.49 m (5.0 GSD) (Table 2). The standard deviations of the TP elevation obtained for theWorldView-3
scenes are clearly better relative to the GSD, with a maximum value of 0.74 m (2.5 GSD). The standard
deviation of the satellite image block-triangulation was 0.54 pixels for Pléiades images and 0.46 pixels
for WorldView-3.

Table 2. Standard deviation of adjusted tie points (TPs) coordinates.

Sensor Type No. of
TPs/Image

Standard Deviation (m/pixels)

Latitude
(Along Track)

Longitude
(Across Track) Elevation

min max min max min max

Pléiades 561/552/582 0.16/0.23 0.33/0.47 0.14/0.20 0.27/0.38 1.49/2.12 3.49/4.98
WorldView-3 556/585/554 0.09/0.30 0.19/0.63 0.08/0.26 0.20/0.66 0.38/1.26 0.74/2.46

We evaluate the accuracy of the estimated orientation with respect to the measured GCPs and
CPs. The root mean square error values of their coordinates in units of meters and pixels are shown in
Table 3. For both sensors the RMSE values of the GCPs for latitude, longitude and elevation are at
sub-pixel level, showing that the block adjustment provides precise results for subsequent processing.
The small planimetric discrepancies suggest that the GCP identification in images is better than 1/3rd
of a pixel. The highest discrepancy values for the CP height are 0.85 m (1.21 GSD) for Pléiades and
0.28 m (0.93 GSD) for WorldView-3. The Pléiades elevation accuracy (0.85 m) is not as good as the
one in [5], which resulted to 0.49 m, but is more favorable than the results in [7], where 1 m RMSE in
elevation were reported. For WorldView-3, the vertical accuracy of 0.28 m fits to the results in [12],
which reported an elevation bias of less than 0.5 m for 6001 ground LiDAR CPs. The residual errors for
Pléiades images at CPs are comparable with the results obtained by [40] reporting RMSEs of 0.44 m,
0.60 m and 0.50 m at 40 GCPs for latitude, longitude and elevation, respectively.

Table 3. Root mean square error (RMSE) values of ground control point (GCP) and check point
(CP) discrepancies.

Sensor Type No. of GCPs/CPs
RMSE Values (m/pixels)

Latitude (Along Track) Longitude (Across Track) Elevation

Pléiades
43 GCPs 0.20/0.29 0.19/0.27 0.27/0.39
50 CPs 0.44/0.63 0.53/0.76 0.85/1.21

WorldView-3
22 GCPs 0.06/0.21 0.08/0.29 0.11/0.37
50 CPs 0.13/0.43 0.12/0.40 0.28/0.93
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4.2. Dense Image Matching

The dense image matching algorithm was applied individually to the two sets of image triplets
available as 4-band pansharpened products. Using four cores of a 3.50 GHz machine with 32 GB RAM,
the 3D point clouds were generated in 10 and 33 h for Pléiades and WorldView-3 datasets, respectively.
The direct output are dense 3D photogrammetric point clouds in the LAS file format with one point
for each image pixel. In the overlapping area, the Pléiades-based point cloud consists of 169 million
points, whereas the WorldView-3-based equivalent has 476 million points. Hence, it’s almost three
times denser. Overall, the reconstructed point clouds have a regular distribution on ground plane
domain, with densities of 4 points/m2 and of 12 points/m2 for Pléiades and WorldView-3, respectively.
A few small regions were not reconstructed due to occlusions (e.g., large elevation difference between
buildings/trees and surrounding ground). Nevertheless, these holes were filled using interpolation
algorithms in the following step.

Based on a neighborhood search radius of 1 m and a maximum number of 20 nearest neighbors,
we interpolated a regular grid structure using robust moving planes interpolation. For each dataset,
a digital surface model was generated using the same parameters. Since we wanted to use the direct
output of the 3D reconstruction without losing any information, the point clouds were not edited or
filtered before the interpolation step.

Usually, interpolation strategies tend to smooth the initial elevation values of the 3D point cloud.
In order to minimize this effect, we selected a small size of the grid cell (0.5 m × 0.5 m) and a relatively
small neighborhood definition for the interpolation. To determine the direct degree of smoothing,
a raster containing the maximum elevations in each 0.5 m × 0.5 m cell was computed. Using this
as a reference, the 2.5D Pléiades interpolated model showed an RMSE value of 0.079 m, while the
WorldView-3 DSM had 0.098 m. The latter was slightly higher, but these values (at sub-decimetre
level) still showed that the smoothing effect of the interpolation will not significantly influence
further analysis.

The vertical quality of the photogrammetrically derived DSMs was evaluated against the available
elevations of the GCPs and CPs (Table 4). The computed mean values for the CPs—0.07 m (Pléiades) and
0.01 m (WorldView-3) and the standard deviations of 0.30 m (Pléiades) and 0.13 m (WorldView-3)—are
comparable with the results obtained by [13], who reported mean values ranging between 0.08 and
0.29 m and standard deviations between 0.22 and 0.53 m.

For Pléiades, we obtained an RMSE in the Z-direction of 0.29 m for GCPs and of 0.31 m for CPs.
The WorldView-3 DSM showed a higher vertical accuracy, with RMSEs of 0.12 m and 0.13 m for GCPs
and CPs, respectively. This is because the vertical accuracy of the DSM is directly influenced by the
triplet acquisition geometry, especially by the intersection angle on the ground. As described in [41],
the vertical accuracy of the DSMs from VHR satellite imagery is influenced by the acquisition geometry,
where a wider angle of convergence (>15◦) enhances the height accuracy. In our case, the Pléiades
scenes with a narrow convergence angle (12◦) show a lower vertical performance than the WorldView-3
scenes, with a larger convergence angle on the ground (23◦).

Table 4. Vertical accuracy assessment of Pléiades and WorldView-3 tri-stereo digital surface models (DSMs).

Sensor Type No. of GCPs/CPs µ σ RMSE

Pléiades
43 GCPs 0.07 0.28 0.29
50 CPs 0.07 0.30 0.31

WorldView-3
22 GCPs 0.03 0.18 0.12
50 CPs 0.01 0.13 0.13

µ and σ are the mean and standard deviations. All values are given in meters.

The two high resolution DSMs derived from Pléiades and WorldView-3 tri-stereo scenes within the
WGS84-UTM33 reference system were used as source data for the following single object investigations.
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4.3. Object Height Differences

For a clear height estimation, in our work we considered only single objects, located in free,
open and smooth areas, without any other entities in their close surroundings. Assuming that in
the free, open areas, the DSM coincide with DTM elevations, we inspected the vertical quality of the
photogrammetric derived surface models by computing the vertical offsets from the reference LiDAR
DTM (1 m resolution and σZ = 0.12 m). The results showed a good correspondence of the DSMs with
the reference DTM, featuring a RMSE of 0.32 m for Pléiades and of 0.20 m for WorldView-3. When it
comes to individual objects, we sometimes observed a constant offset, but it was always below 0.30 m.
Therefore, it did not significantly impact our height investigations.

The reconstructed individual object height was extracted from the interpolated surface models.
Heights of buildings, vehicles and trees were computed by subtracting the DTM elevations from the
elevations of the highest object points (located on roof ridges, on car roofs, and on treetops) at the same
2D location.

We consider the reference height (H) as being the real object height, which was computed by
subtracting the DTM elevation from the manual measurements (Section 3.2) at the same position.

H = ZM − ZDTM (m) (2)

h = ZDSM − ZDTM (m), (3)

with H the reference object height, h the estimated object height, ZM the manual elevation measurements,
ZDTM the elevation of the ground surface and ZDSM the elevation of the reconstructed DSM.

In Equations (2) and (3) the ZDTM elevation values are identical, since for computing the reference
and the estimated heights, the same ground elevation at the same 2D position was considered. Based on
the defined equations, we obtained a reference height (H) and two estimated heights for each individual
object (from Pléiades and WorldView-3 DSMs). These values will be employed in further analysis.

4.4. Height Estimation of Single Objects

Within this investigation, we wanted to estimate the Pléiades and WorldView-3 DSMs heights at
single objects as a function of object type and size. For this purpose, three object types were analyzed:
non-moving vehicles, trees, and buildings. The main parameters taken into account were vehicle
length/width, tree crown diameter, and building length/width.

For each single object, the estimated heights were compared with the monoscopic
reference measurements based on a ratio measure. The percentage value derived by the following
equation describes how much of the reference height was reconstructed:

p (%) = h/H × 100, (4)

with H the reference height, h the estimated height, and p the reconstruction percentage.

4.4.1. Vehicles

By a visual inspection of the reconstructed Pléiades-based 3D point cloud, it was observable that
points corresponding to small vehicles (vehicles with lengths smaller than 5 m) were not elevated
against their surroundings. Larger vehicles were reconstructed in height, but not entirely (Figure 4).
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Figure 4. Height estimation for a truck. (a) Pléiades satellite image detail with profile location (left) and
reconstructed DSM Z color-coded (right); (b) WorldView-3 satellite image detail with profile location
(left) and reconstructed DSM Z color-coded (right); (c) Pléiades-; and (d) WV3-based vehicle profiles of
0.5 m width each from the matched point cloud; the red horizontal line is the corresponding measured
reference height.

Specifically, Figure 4 represents a truck with a length of ~10 m and a real height of 3.5 m that
is visible in both Pléiades (a) and WorldView-3 images (b). On the left-hand side are the magnified
satellite image details of the vehicle and on the right-hand side are the corresponding reconstructed
height color-coded DSM. From the DSMs and the cross profiles (c), it is clearly visible that in contrast
to Pléiades, where there is only ~1 m elevation change, the WV3-based profile reconstructs the vehicle
height up to 2.9 m, which represents ~83% of the real height.

Using Equation (4), the height percentages of 50 measured vehicles were computed for both cases:
Pléiades and WorldView-3 sensors. As mentioned in Section 3.2, vehicles were classified into four
different groups depending on their lengths, starting with small family cars, of approximately 5 m,
followed by vans, trucks, and finally by large articulated lorries with more than 10 m length. For each
group, containing between 10 and 13 vehicles, the mean value of the reconstruction height percentage
and the standard deviation were determined. They are shown in Figure 5a for both Pléiades (blue) and
WorldView-3 (yellow) data. By increasing length, the height percentage also increases, reaching up to
60% (Pléiades) and 92% (WorldView-3). In the case of the Pléiades imagery, small vehicles (<7 pixels
length in image) do not show any height information, while for family cars, vans, and trucks the
reconstruction height percentage is less than 30%. It exceeds 50% only for large vehicles (lengths >10 m,
14 pixels in the image). On the other hand, in WorldView-3 DSMs, vehicles have a good height
reconstruction (reaching over 90% for lengths >10 m, 33 pixels in image). An exception are family
cars (~16 pixels length), which have a percentage of less than 40%. The standard deviations of the
estimated heights are notably smaller than the overall trend and they become smaller with increasing
vehicle length.

A similar analysis was conducted by using vehicle width as the main parameter for vehicle
grouping (Figure 5b). Because small family cars and vans have similar widths (~2 m), they form a
single class, followed by trucks (2 to 2.5 m widths), and articulated lorries (2.5 to 3 m widths). Based on
the WorldView-3 DSMs, vehicles with up to 2 m widths have ~41% of their real height reconstructed.
This value is higher when compared with the percentage of the first length-class (37%) because it
contains both family cars and vans, leading to an increased mean height percentage and standard
deviation. The mean height percentages reach 59% (Pléiades) and 92% (WorldView-3) for the very large
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vehicles. The increased values of standard deviations suggest a higher variation of the reconstruction
height percentages within the width-classes considered. Therefore, the length parameter is more
suitable for the description of the vehicle’s height estimation.
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4.4.2. Trees

Trees were investigated in two separate classes: deciduous trees, located especially on roadsides,
parks and cities, and coniferous trees, found in forested areas and forest patches. Only single, isolated
trees, not close to buildings or any other objects, were taken into consideration. In this case, the visible
crown diameter was used as the geometric parameter. One hundred trees were investigated, and the
same formula for height percentage computation, Equation (4), was applied. Based on diameter,
they were grouped into seven different categories, each containing approximately 12 trees. The mean
reconstruction percentages gradually increase with crown diameter and the standard deviations
decrease (Figure 6). For WorldView-3, the heights of coniferous trees with crown diameters <2.5 m
(8 pixels in image space) are reconstructed less than 50%, whereas trees with crown diameters larger than
5 m (16 pixels in image space) are over 95%. Generally, heights of coniferous trees are better estimated
from WorldView-3 than from the Pléiades DSMs, where trees with diameters >7.5 m (11 pixels) barely
reach 75% height reconstruction. For deciduous trees (Figure 6b) it can be observed that the situation
is reversed: they get better height information from Pléiades DSM, than from WorldView-3 DSM.
This is mainly because of the different acquisition times, June for Pléiades and April for WorldView-3,
indicating leaf-on and leaf-off conditions which clearly influence the appearance and texture of the
trees in the images. For the deciduous trees, only the stems and branches are visible in the WorldView-3
images, resulting in a poor dense image matching quality. For trees with a crown diameter larger than
9 m, heights of just over 50% of the tree values are reconstructed.

When analyzing the two tree types only from the Pléiades images (Figure 6), we could see that
there is a slightly better height reconstruction for the very small and large deciduous trees, compared
with the coniferous. The small deciduous trees in the first group (with crown diameters smaller than
2.5 m) have 26% of their real height reconstructed, whereas the small coniferous trees in the first group
have only 21%. The same is true for the last group, where large deciduous trees (with crown diameters
bigger than 8.75 m) have percentages close to 80%, whereas for coniferous they reach only 75%. On the
other hand, for the coniferous trees of medium sizes (with crown diameters between 2.5 and 7.5 m) we
obtained better height reconstruction percentages than for the deciduous.
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Figure 6. Interval-based percentage and standard deviation for height estimation of single trees
(a) coniferous trees and (b) deciduous trees.

Two examples of height estimation of a coniferous (Figure 7) and a deciduous tree (Figure 8)
are shown. They were comparatively analyzed for Pléiades and WorldView-3 satellite images based
on both DSM and point cloud. For single coniferous trees with a 7 m crown diameter (Figure 7) we
achieved different results based on the input data. From the true height of 12.2 m, the estimation
resulted in approximately 12 m for WorldView-3 and only 8 m for Pléiades, which represents 98% and
65% of the real height.
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Figure 7. Height estimation of a coniferous tree with 7 m crown diameter: (a) Pléiades satellite image
detail (left), corresponding height-colored DSM and profile location (right); (b) WorldView-3 satellite
image detail (left), height-colored DSM with profile location (right); and (c) tree profile of 0.5 m width
from the matched point clouds; the red horizontal line is the measured reference height.

A small area of the DSMs and the 3D point clouds generated from the Pléiades and WorldView-3
satellite imagery are shown in Figure 8. The largest deciduous tree with leaves (Figure 8a first row) has
a reasonable appearance in the DSM and an estimated height of 14 m. Meanwhile, the same leafless
tree in the WorldView-3 image (Figure 8a second row) has a height of only approximately 4 m. A visual
analysis of height differences for this deciduous tree and a small building (next to the tree) is shown in
two profiles (c) and (d) in Figure 8.
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Figure 8. Height estimation of a deciduous tree and a small building: (a) Pléiades (first row) and
WorldView-3 (second row) views with corresponding height–color coded DSMs; (b) RGB colored 3D
point clouds, 1 m width height profiles from the matched point clouds; (c) for a deciduous tree; (d) for
a small building; the red horizontal lines are the corresponding measured reference heights.

4.4.3. Buildings

The third category of objects investigated were single buildings, usually in suburban and rural
areas. They usually had regular geometric shapes, such as rectangles or squares, which facilitated the
visual identification of the corresponding dimensions in the rectified images. The building length/width
were measured in the rectified images, based on their roof top view. For buildings with a T- or L-shaped
plan, we considered the length as the longest dimension between extreme roof edges, whereas the
width as the distance across the roof from one side to the other. One hundred buildings were chosen
to cover a wide range of dimensions from 1 to 50 m length (large industrial buildings) and widths
from 1 to 25 m. In the example shown in Figure 8b, the two small buildings are elevated against
their surroundings in the WorldView-3 data, which is not the case for the Pléiades data. In addition,
the profile (d) with two overlaid point clouds corresponding to a 3.6 by 2.5 m building clearly reveals
the higher potential of WorldView-3 sensor for height reconstruction, as opposed to Pléiades. Even if
the building edges appear very smooth, the corresponding main height is still reconstructed.

Again, Equation (4) was applied for investigating the potential of Pléiades and WorldView-3 DSMs
for building’s height estimation with respect to their lengths and widths (Figure 9). Based on their
length, we defined ten different categories, each containing approximately ten buildings (Figure 9a).
Like in the previous analyses for vehicles and trees, the computed mean height percentages for
buildings show a similar trend, values gradually increasing with building length. In case of the
Pléiades imagery, buildings with lengths smaller than 10 m (14 pixels in image space) have a height
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reconstruction percentage of less than 30%, whereas buildings with lengths greater than 5 m have
percentages beyond 50%. For both Pléiades and WorldView-3, buildings with lengths >43 pixels have
over 90% height reconstruction.
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Due to the lower variation in building-width, we considered only five intervals, starting from
0–5 m to 20–25 m (Figure 9b). Compared with height-percentage analysis based on building length,
for the width parameter the situation was different. When buildings were grouped based on
their corresponding widths, we had an increased number of items within each interval (only 5
width-intervals). This led to a higher variation of height estimation percentages, and hence to higher
values for the standard deviations within each interval. When analyzing the reconstruction height
percentages based on the WorldView-3 images for both 0–5 m and 5–10 m length/width intervals,
we could see higher mean values for the reconstruction percentages computed based on building
widths. Nevertheless, the corresponding standard deviations are larger in contrast to those computed
on the length basis. The standard deviations for the length-intervals (Figure 9a) become smaller with
increasing building length, showing a clearer trend; therefore, the length parameter gives a better
estimation when analyzing the height reconstruction of buildings.

The two scatter plots (Figure 10) show the relationships between building length and width
and the reconstruction height percentage. As expected, height accuracy is better for WorldView-3
images than for the Pléiades data. The delineation lines separate the buildings with higher and lower
reconstruction height percentage (p) than 50%. If for Pléiades data a 2D minimum building size of
7.5 m length by 6 m width is needed in order to get p > 50%, for WorldView-3 data only 4 m × 2.5 m
is needed.

The mean value for the residual heights corresponding to reconstructed buildings with p > 50%
(of 2.02 m for Pléiades with 0.7 m GSD) is comparable with the residuals of 1.94 m obtained by [18]
when using a DSM from a GeoEye stereo pair (0.5 m GSD).
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5. Conclusions

This study addresses the potential and limitations of both Pléiades and WorldView-3 tri-stereo
reconstructed DSMs for height estimation of single objects. Satellite image orientation and dense
image matching were performed. The tri-stereo images of each sensor were acquired in less than
one minute, resulting in similar radiometric characteristics, a fact that is beneficial for any image matching
algorithm. For obtaining higher accuracies (at sub-pixel level in image space and sub-meter level in object
space) the direct sensor orientation available as RPCs is improved by GCPs through a bias-compensated
RPC block adjustment. Evaluated at 50 CPs in open areas, elevation accuracies of 0.85 m and 0.28 m
(RMSE) were obtained for Pléiades and WorldView-3, respectively.

Next, photogrammetric DSMs were generated from the Pléiades and WorldView-3 tri-stereo
imagery using a dense image matching algorithm, forward intersections, and interpolation.
The estimation of a single object’s height depends on the accuracy of satellite image orientation,
but also on the elevation accuracy of the derived DSMs and on the LiDAR reference DTM. We found
that the vertical accuracy of the reference DTM w.r.t the RTK GCPs is 0.12 m, and the accuracies
of the reconstructed photogrammetric models with respect to the DTM are 0.32 m for Pléiades and
0.20 m for WorldView-3 in open, smooth areas. The vertical accuracy of the DSMs from VHR satellite
imagery is influenced by the acquisition geometry. The Pléiades scenes having a narrow convergence
angle of 12◦ show a lower vertical performance compared to WorldView-3 scenes, which have a 23◦
convergence angle on the ground. In addition, the smoothness effect of the robust moving planes
interpolation for deriving the DSMs is at sub-decimetre level. Under these conditions, the resulting
height accuracy is reasonable and does not significantly influence our investigations, since the single
objects measured are usually higher than 1.5 m. Based on the different GSDs and B/H ratios of the two
satellite systems, it can be said that σo of block adjustment, RMSE of check point elevation error and
height reconstruction success for individual objects are similar, with deviations of up to 20%.
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In order to investigate the potential of Pléiades and WorldView-3 tri-stereo DSMs for single object
height estimation, 50 vehicles, 100 trees, and 100 buildings were analyzed. Vehicle length/width,
tree crown diameter and building length/width were identified as the main geometric parameters
for classifying single objects into different groups. The results clearly show a gradual increase of the
estimated heights with object dimensions. Starting from very small objects (whose heights are not
reconstructed) the values for the height reconstruction percentage reached almost 100% for very large
single objects (e.g., buildings with lengths >35 m in the case of WorldView-3 DSM). Hence, individual
objects’ reconstructed heights strongly depend on object type, size, and the sensor being used. As an
example, if we consider the p = 50% threshold for an appropriate height reconstruction, then we obtain
the following minimum size values for the single objects: 10 m (Pléiades) and 5 m (WorldView-3) for
vehicle lengths; 5 m (Pléiades) and 2.5 m (WorldView-3) for tree crown diameters and 7.5 m × 6 m
(Pléiades) and 3.5 m × 2.5 m (WorldView-3) for building length/width. The ratio of these dimensions
fits well to the GSD ratio of 70 cm to 31 cm.

Generally, for all single objects except deciduous trees, the results achieved with WorldView-3 data
were better than those achieved by using the Pléiades data. Hence, the ability of WorldView-3-derived
DSM to perform height estimation of single objects is higher compared with Pléiades DSM. This is mainly
because of the very high resolution (0.31 m) that leads (through photogrammetric processing) to
very dense 3D point clouds, describing the real ground surface and the objects on it more accurately.
The acquisition times also play a significant role in the photogrammetric procedure. For stable
objects such as buildings, the different periods of acquisition do not affect the 3D reconstruction, but
for deciduous trees, the automatic reconstructed heights are highly underestimated in the leaf-off

season. Their leafless appearance in the images brings difficulties to the image matching process
when finding correct correspondences for tree branches. From this observation, we can conclude
that the image appearance and texture of trees (and other single objects) are also very important for
the 3D reconstruction and height estimation. For all objects investigated, the resulting histograms
(Figures 5, 6 and 9) show interesting trends, opening new investigation options for refinement such
as adding the influence of object orientation, color, and texture in the feature reconstruction ability
of heights, but these are outside the scope of the present research. The poor performance on small
individual objects is mainly caused by the continuity constraint of dense matching algorithms. A topic
for future research would be to investigate if a combination of different matching strategies can deliver
better results on single object heights.

In our investigation, the current findings are valid for Pléiades and WorldView-3 DSMs derived
from the tri-stereo images with their specific acquisition geometry. Nevertheless, the acquisition
geometry could be changed, but this is only to a very small extend under the control of the user.
A higher B/H ratio and implicit convergence angle to the ground will increase the geometric intersection
quality, leading to a higher vertical accuracy of the photogrammetric DSM. This will have a positive
effect on the single object height signature in the DSM.

From the analyses and investigations performed, the results suggest that the acquisition geometry
clearly has an effect on accuracy, but the object height estimation based on automatically derived
DSMs primarily depends on object size. Objects of a few pixel in size are hardly mapped in the DSM,
whereas, with some dependency on object type, objects of 12 pixels in size are typically mapped with
approximately 50% of their real height. To reach 90% of the real height, a minimum object size between
15 and 30 pixel is necessary.
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Abstract: Soil moisture content (SMC) plays an essential role in geoscience research. The SMC can
be retrieved using an artificial neural network (ANN) based on remote sensing data. The quantity
and quality of samples for ANN training and testing are two critical factors that affect the SMC
retrieving results. This study focused on sample optimization in both quantity and quality. On
the one hand, a sparse sample exploitation (SSE) method was developed to solve the problem of
sample scarcity, resultant from cloud obstruction in optical images and the malfunction of in situ
SMC-measuring instruments. With this method, data typically excluded in conventional approaches
can be adequately employed. On the other hand, apart from the basic input parameters commonly
discussed in previous studies, a couple of new parameters were optimized to improve the feature
description. The Sentinel-1 SAR and Landsat-8 images were adopted to retrieve SMC in the study
area in eastern Austria. By the SSE method, the number of available samples increased from 264 to 635
for ANN training and testing, and the retrieval accuracy could be markedly improved. Furthermore,
the optimized parameters also improve the inversion effect, and the elevation was the most influential
input parameter.

Keywords: soil moisture content; artificial neural network; sample optimization; synthetic aperture
radar; optical remote sensing image

1. Introduction

The soil moisture content (SMC) refers to the volume of water present in the gaps
between surface soil granules. The SMC is a critical parameter for investigating and pre-
dicting the factors associated with climate change. It also plays a key role in various fields
of science such as ecology, hydrology, and agriculture [1–3]. However, the measurement
and acquisition processes of SMC are pretty challenging. Although conventional measure-
ment methods, such as time-domain reflectometry and gravimetric technique, may yield
relatively precise SMC values at monitoring sites, they can hardly provide soil moisture
information in the case of large areas, making it difficult to describe the spatial heterogene-
ity pattern of soils. In addition, such field measurements require a considerable workforce
and lead to the deterioration of the local soil environment [4]. Remote sensing (RS) tech-
niques have been rapidly developed in recent decades, featuring fast data acquisition and
low effort consumption in their application to land surface investigation. Among other
RS techniques, synthetic aperture radar (SAR) has been proven to be promising. Apart
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from such optical sensors, the SAR can collect ground surface information even at night
and under cloudy weather conditions. The competitive penetrating power and the direct
relationship between SMC and the SAR observations also make the estimation of SMC
much more reliable [5]. Researchers have fully exploited this advantage; therefore, the SAR
has been extensively employed for SMC retrieval [6–9].

Regarding microwave data, theoretical and semi-empirical models have been estab-
lished for SMC estimation, such as the integral equation model (IEM) [10], advanced
integral equation model (AIEM) [11], Oh model [12], Dubois model [13], Michigan mi-
crowave canopy scattering model (MIMICS) [14], water-cloud model (WCM) [15], and
tau–omega model [16]. In applying these microwave models, considering the impact of
land surface vegetation on microwave RS data [17], the effect of vegetation should be
accurately quantified for a more precise SMC estimation. Because optical RS data are more
sensitive to land surface vegetation, the combination of optical and microwave detection has
emerged as an intuitive approach. Instead of deploying a single model for SMC retrieval,
researchers have attempted to modify the original models by integrating them with optical
information, hence carrying out tasks such as synergistic SMC inversion using both optical
and SAR images [18–21]. Zhang et al. [22] built a radar backscattering coefficient database
based on advanced integral equation model (AIEM) simulation, eliminated the vegetation
effect using the WCM, and acquired the SMC by minimizing the difference between the
observed bare soil backscattering coefficient and the simulated one. Han et al. [23] put
forward a model-coupling method using GF-3 and GF-1 data by incorporating a series of
models and achieved high-precision soil moisture mapping. Khabazan et al. [24] compared
the capabilities of the IEM, Oh model, and Dubois model for surface soil moisture retrieval
with C-band and L-band data to analyze the different conditions of vegetation land cover
systematically. Overall, the application of theoretical and semi-empirical models can help
represent the physical transmission processes more accurately. However, there are evident
drawbacks. Most of the models stated above have complex structures and variables. Deter-
mining the values of some of these variables, such as the surface roughness and vegetation
water content, requires laborious field experiments, and precise outcomes can hardly be
ensured [23,25].

As a non-linear empirical model, the artificial neural network (ANN) can build an
implicit relationship between input data and output targets, and it has been proven effective
for SMC retrieval [26]. Studies on SMC estimation using ANNs with microwave and optical
RS data have been conducted. For example, Baghdadi et al. [27] combined Radarsat-2
and Landsat data and inputted them to an ANN for simultaneous SMC and leaf area
index estimation; the merits and demerits of radar data in dual- and full-polarization
modes were also highlighted. El Hajj et al. [28] mainly focused on agricultural areas and
depicted high-resolution SMC maps of bare and vegetation-covered farmlands using the
backscattering coefficient and normalized difference vegetation index (NDVI) as input
parameters. El Hajj et al. [29] combined “vegetation descriptors” derived from optical
images and backscattering coefficients as ANN training and testing samples, and three
different inversion configurations were compared in terms of their performances.

As we know, samples are the key elements of ANN. To obtain ideal retrieval results,
both the quantity and quality of the samples for ANN training and testing should be
guaranteed. That is to say, not only should the sample pool be large enough, but also
the input parameters of the samples should be inclusive of the features that are helpful
to accurate SMC retrieval. As for the quantitative optimization, sufficient samples are
conducive to improving the training accuracy and representing various geographical
situations [30–32]. In many previous studies, when choosing samples, it was often required
that the data of each monitoring site in the entire research area be “complete” at one specific
time, entailing remote sensing images and in situ measurements of sound quality [28,33–35].
However, such conditions are hard to meet.

For one thing, the use of optical images is associated with contamination from clouds,
thick fogs, and mists [36], which may lead to a shortage of optical RS data. For another,
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there are temporal discrepancies between in situ measurements in a study area because
instrument malfunctions make it impossible to acquire data of some parts of the monitoring
sites in specific periods, which may also lead to the shortage of in situ data [37]. Therefore,
gathering enough samples for ANN training and testing is difficult. As for qualitative
optimization, it is of importance to determine the input parameters of ANN. In previous
studies, some common variables, including the radar incidence angle, VH/VV backscat-
tering coefficients, and NDVI, were investigated about the effectiveness of being used as
inputs of the ANN for SMC retrieval [27,33]. In fact, in addition to these commonly consid-
ered ones, variables about other factors, such as local land use, topography, and phenology,
can also be influential in local soil moisture and deserve to be given close attention.

To address the problem of quantitative optimization, a novel sparse sample exploita-
tion (SSE) method was proposed, whereby a part of the samples that were otherwise
excluded could be sufficiently utilized and incorporated into the SMC retrieval proce-
dure. To address the problem of qualitative optimization, we extended the array of input
parameters of ANN for SMC retrieval. Apart from the radar incidence angle, VH/VV
backscattering coefficients and NDVI, which were included in this paper as the basic input
parameters, parameters such as LST, land cover type, elevation, slope, and data acquisition
time, are likewise considered as the inputs of ANN in this paper. The sensitivity of SMC
retrieval to these parameters was discussed.

The rest of this paper is organized as follows. In Section 2, the study area and raw
data involved in this study are introduced in detail. In Section 3, the methodology of the
SSE is described, the array of input parameters is specified, and the entire ANN-based
SMC retrieval process is demonstrated. In Section 4, the results are discussed regarding
the retrieval accuracy improvement brought by the SSE and the respective influences of
the ANN input parameters and their combinations on SMC retrieval. Finally, Section 5
presents the conclusions drawn from the study results.

2. Study Area and Dataset
2.1. Study Area and Ground Truth Data

The study area is located in the eastern part of Austria (Figure 1). Compared with the
Eastern Alps region in the middle and west of the country, the topography in the study
area is flatter, but hilly terrain still exists. The winter is often cold, but temperatures can
be relatively high in summer, and the continental climate features dominate, thus, the
precipitation tends to be low [38]. The ground surface is prevalently covered by vegetation,
and land use types mainly comprise cropland, forest, and grassland. The croplands are
rainfed, and the staple crops are wheat and corn. Closed forests feature in the study area,
with the fractional vegetation cover (FVC) > 0.4. The principal tree species contain oak,
hornbeam, and beech. As for the hydrological conditions, surface water in this region is
closely related to the groundwater [39].

Ground truth data come from The International Soil Moisture Network (ISMN), which
was implemented in 2009 aiming exclusively to validate and calibrate SMC retrieval with
RS techniques. The data are qualitatively controlled after collecting them from the networks
and then distributed on the website portal (https://ismn.geo.tuwien.ac.at/, accessed on
20 January 2022) [40,41]. This study selected monitoring sites from WEGENERNET and
GROW, two soil moisture networks in Austria. The WEGENERNET network is situated
in Styria State with nine monitoring sites, and the GROW network is located in Lower
Austria State with 13 monitoring sites. WEGENERNET is a durable network with relatively
continuous SMC data acquisition dating from 2007. We adopted data from January 2016 to
May 2020 for our research. In contrast, for GROW, the data were available only between
May 2017 and June 2019 in an intermittent manner. The SMC data at a depth of 0–5 cm
was chosen considering the detecting ability of remote sensing techniques used in this
study. Table 1 shows the coordinates (latitude and longitude), the network, and each site’s
land cover type. As the ground truth data, the SMC observations were recorded with
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acquisition times in accordance with the corresponding acquisition times of the SAR images
(described below).

Table 1. Information of monitoring sites in the study area.

# Lat. and
Long. Network Landcover # Lat. and

Long. Network Landcover

1 46.91691◦ N
15.78112◦ E WEGENERNET farmland 12 48.15202◦ N

15.15303◦ E GROW farmland

2 46.97232◦ N
15.81499◦ E WEGENERNET farmland 13 48.15257◦ N

15.15104◦ E GROW farmland

3 46.99726◦ N
15.85507◦ E WEGENERNET farmland 14 48.15356◦ N

15.14857◦ E GROW farmland

4 46.98299◦ N
15.87115◦ E WEGENERNET farmland 15 48.15403◦ N

15.15299◦ E GROW farmland

5 46.93296◦ N
15.90710◦ E WEGENERNET farmland 16 48.15474◦ N

15.14844◦ E GROW farmland

6 46.93291◦ N
15.92462◦ E WEGENERNET grassland 17 48.15562◦ N

15.14804◦ E GROW farmland

7 46.97970◦ N
15.94122◦ E WEGENERNET grassland 18 48.15645◦ N

15.14799◦ E GROW farmland

8 46.92135◦ N
16.03337◦ E WEGENERNET farmland 19 48.15709◦ N

15.13658◦ E GROW farmland

9 46.93427◦ N
16.04056◦ E WEGENERNET farmland 20 48.15725◦ N

15.15149◦ E GROW farmland

10 48.15117◦ N
15.15417◦ E GROW farmland 21 48.15804◦ N

15.14731◦ E GROW farmland

11 48.15179◦ N
15.15424◦ E GROW farmland 22 48.18776◦ N

15.98071◦ E GROW grassland

Figure 1. Location of the study area and monitoring sites.

2.2. Remote Sensing Data

The optical RS data employed in this study was obtained by the Landsat-8 satellite.
Onboard the Landsat-8 satellite were two sensors, namely operational land imager (OLI)
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and thermal infrared sensor (TIRS), which help obtain multi-band data in the form of
visible and infrared spectra with a fine resolution. We chose Landsat-8 images considering
the synchronization of optical and land surface temperature data. The Landsat-8 images
were utilized to extract optical data and calculate land surface temperature by the thermal
infrared band. In this study, OLI-TIRS Level-1 images, downloaded from the United States
Geological Survey (USGS) data archive (https://earthexplorer.usgs.gov/, accessed on
20 January 2022), were selected. The span period was from January 2016 to April 2020,
and the spatial resolution of the images was 30 m. Based on the method described in
Section 3.1, images were selected as long as they covered at least one monitoring site that
was clear and without cloud obstruction on the date of image acquisition. The optical
RS data were then subject to preprocessing procedures, including radiometric correction,
FLAASH atmospheric correction, and band calculation. Finally, the NDVI and LST values
in the monitoring sites were derived and recorded.

The microwave RS data employed in this study came from the Sentinel-1 satellite.
Sentinel-1 provides VH and VV polarization modes C-band images with relatively high
spatiotemporal resolution and radiometric accuracy. The imaging data played a crucial part
in dynamic hydrological processes and SMC monitoring [42–46]. Here, the interferometric
wave (IW) mode images were utilized with a spatial resolution of 10 m and a revisit period
of 6 days. The images were downloaded from https://search.asf.alaska.edu/ (accessed
on 20 January 2022) by courtesy of the Alaska Satellite Facility (ASF). We chose Sentinel-1
images of the study area based on their acquisition times to ensure that the radar and optical
data were approximately synchronous in pairs. The temporally nearest microwave image
was selected for each optical image collected already. It was confirmed that the acquisition
times of the microwave images were less than five days away from the acquisition times of
their optical counterparts. Furthermore, we checked the intervals between the acquisition
times of each microwave image and their corresponding optical image to ensure that no
precipitation event had occurred during the gaps. Subsequently, the microwave images
underwent preprocessing as well. The preprocessing procedures included multi-looking,
filtering, topographical correction, geocoding, and radiometric calibration. Finally, the
backscattering coefficients in the VH and VV polarization modes of each monitoring site
were derived, and the radar incidence angles were recorded.

Table 2 shows the acquisition times of the RS data used in this study. The dates of the
radar and optical images were given in pairs.

Table 2. Acquisition times of RS images used in the study.

# Dates of
Radar Images

Dates of
Optical Images # Dates of

Radar Images
Dates of

Optical Images # Dates of
Radar Images

Dates of
Optical Images

1 18 January 2016 18 January 2016 24 24 June 2017 22 June 2017 47 3 February 2019 4 February 2019
2 26 January 2016 27 January 2016 25 31 July 2017 31 July 2017 48 27 February 2019 27 February 2019
3 30 March 2016 31 March 2016 26 11 August 2017 9 August 2017 49 23 March 2019 24 March 2019
4 18 April 2016 16 April 2016 27 4 November 2017 4 November 2017 50 30 March 2019 31 March 2019
5 23 April 2016 23 April 2016 28 20 November 2017 20 November 2017 51 16 April 2019 16 April 2019
6 4 July 2016 5 July 2016 29 5 December 2017 6 December 2017 52 27 April 2019 25 April 2019
7 12 July 2016 12 July 2016 30 24 February 2018 24 February 2018 53 2 May 2019 2 May 2019
8 23 July 2016 21 July 2016 31 21 April 2018 22 April 2018 54 18 May 2019 18 May 2019
9 29 August 2016 29 August 2016 32 28 April 2018 29 April 2018 55 3 June 2019 3 June 2019

10 22 September 2016 23 September 2016 33 31 May 2018 31 May 2018 56 14 June 2019 12 June 2019
11 29 September 2016 30 September 2016 34 2 July 2018 2 July 2018 57 19 June 2019 19 June 2019
12 16 October 2016 16 October 2016 35 18 July 2018 18 July 2018 58 27 June 2019 28 June 2019
13 1 November 2016 1 November 2016 36 26 July 2018 27 July 2018 59 4 July 2019 5 July 2019
14 9 November 2016 10 November 2016 37 2 August 2018 3 August 2018 60 14 August 2019 15 August 2019
15 3 December 2016 3 December 2016 38 19 August 2018 19 August 2018 61 2 September 2019 31 August 2019
16 14 December 2016 12 December 2016 39 30 August 2018 28 August 2018 62 8 October 2019 9 October 2019
17 20 January 2017 20 January 2017 40 19 September 2018 20 September 2018 63 20 October 2019 18 October 2019
18 5 February 2017 5 February 2017 41 28 September 2018 29 September 2018 64 1 November 2019 25 October 2019
19 9 March 2017 9 March 2017 42 6 October 2018 6 October 2018 65 5 January 2020 6 January 2020
20 2 April 2017 3 April 2017 43 22 October 2018 22 October 2018 66 9 March 2020 10 March 2020
21 9 April 2017 10 April 2017 44 30 October 2018 31 October 2018 67 2 April 2020 2 April 2020
22 27 May 2017 28 May 2017 45 11 November 2018 7 November 2018 68 10 April 2020 11 April 2020
23 13 June 2017 13 June 2017 46 15 November 2018 16 November 2018 69 26 April 2020 27 April 2020
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2.3. Auxiliary Data

The auxiliary data contained a digital elevation model (DEM) and land cover prod-
uct. This study used DEM from Shuttle Radar Topography Mission (SRTM) downloaded
from the USGS website (http://gdex.cr.usgs.gov/gdex/, accessed on 20 January 2022).
The slope data were then derived from DEM using the “Slope” tool integrated into the
ArcMap 10.5 software. Both the elevation and slope of each monitoring site were extracted
and recorded. We obtained land cover data referring to “Global Land Cover with Fine
Classification System at 30 m” (GLC_FCS30) downloaded from http://data.casearth.cn/
(accessed on 20 January 2022). The land cover types of the monitoring sites were collected.
Because of the evident attenuation effect of dense vegetation canopies on C-band radar
backscattering [47,48], we eliminated the monitoring sites located in the forests. Consid-
ering the subsequent operations of ANN training and testing, the land cover types were
transformed into numerical data. “Cropland” and “Grassland” were substituted with “1”
and “2,” respectively.

2.4. Sample Pool

After the processing procedures, the data were used to form a collection of samples.
If one monitoring site had “complete” data on one particular date, with optical RS data,
microwave RS data, auxiliary data, and in situ SMC measurement all accessible, then the
corresponding sample will be assembled. Each sample can be considered a 10-dimensional
vector, comprising 9 parameters derived from RS and auxiliary data and one ground-truth
SMC observation (specified below in Section 3.2). The samples were placed in the sample
pool (635 in aggregate) and ready to be designated as training/validation/testing datasets
in the subsequent ANN training and testing processes.

3. Methodology
3.1. Sample Quantity Optimization: Sparse Sample Exploitation

In this section, the SSE method is put forward in detail. In essence, the SSE is a sort
of data expansion technique over the time scale. By taking full advantage of the available
images and observations, it manages to gather more samples derived over a wider time
frame, thereby transferring more valuable information into the sample pool, and helping to
accomplish SMC retrieval with higher precision. Briefly, the SSE involves 2 steps:

1. For dates when the sky above the study area is clear and no in situ observation is
absent, all the samples are recorded in the sample pool.

2. For dates when the study area is partially blocked by clouds or in situ observations
are absent, the “sparse samples” with available optical, microwave data, and ground
truth observations are recorded similarly in the sample pool.

To illustrate this method straightforwardly, we take Figure 2 as an example. In Figure 2,
the images are the optical RS images covering the region of interest on six different dates,
namely d1, d2, . . . , d6. Points A, B, C, and D denote the locations of the monitoring sites,
of which the RS data and in situ SMC observations are expected. The points in pink
indicate that in situ data are available, whereas the points in yellow indicate that in situ
data are missing.

Figure 2. Schematic of sample collection process of SSE method.
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As for d1, the image is cloud-free, and every monitoring site has its SMC observations;
hence, the samples derived from the four sites are all valid for the sample pool. For d2 and
d3, the clouds start to interfere. For the traditional sample-picking method mentioned in
previous studies, data in these dates should be dismissed because optical RS data corre-
sponding to specific sites are unavailable, and not all sites have complete data. However, it
can be found that points such as C in the image of d2 and A and B in the image of d3 are
clear in optical RS images and can still yield complete data. The samples corresponding to
these points are designated as “sparse samples.” For the SSE method, these samples are
considered to be included in the sample pool.

Similarly, for d4, d5, and d6, when point B has no available in situ SMC observation
due to, hypothetically, instrument power failure, the data from point B are consequently
eliminated. For the traditional sample-picking method, the whole data in these dates will
again be abandoned due to the data’s incompleteness. For the SSE method, however,
because samples can still be formed from the complete data of points A, C, D on date d4
and D on date d5, these samples are thus collected in the sample pool. On date d6, no
sample can be collected.

Table 3 lists the comparison of sample selection via the traditional and SSE methods.
It is evident that for the traditional method, the quantity of samples is severely limited,
owing to the requirement of data completeness in the entire study area when collecting
samples. Therefore, the samples from the four points in d1 will be the only valid ones. In
contrast, the SSE method manages to enlarge the sample pool by making full use of the
sparse samples. In this study, a total of 635 samples can be collected by the SSE method, but
only 264 out of the 635 samples can be collected if the traditional method is implemented.

Table 3. Comparison of samples selection via traditional method and SSE method based on Figure 2.

Date d1 d2 d3 d4 d5 d6

traditional
method ABCD - - - - -

SSE method ABCD C AB ACD D -

3.2. Sample Quality Optimization: Input Parameter Selection

For more accurate SMC retrieval results, the combination of inputs of the ANN is
supposed to contain enough variables to represent the main features [32]. In addition to
these commonly discussed parameters, including radar backscattering coefficient, radar
incidence angle, and NDVI, some other SMC-related variables, such as data acquisition time,
land surface temperature, elevation, slope, and the land cover type, are worth considering
as well.

1. Data acquisition time: the data acquisition time was strongly correlated to the surface
soil hydraulic conductivities [49]. Meanwhile, the phenological traits of vegetation
follow a circulation of alteration on an annual basis [50,51], which plays an essential
role in vegetation effect elimination during the process of SMC retrieval in vegetation-
covered areas.

2. Land surface temperature (LST): previous studies have proven the correlation of
variation between the SMC and temperature vegetation dryness index (TVDI) [52,53].
The synergy of LST and vegetation indices (such as NDVI) on SMC retrieval has also
been stressed [54–56].

3. Elevation and slope: soil moisture was closely related to the local topographical
heterogeneity. The landscape shapes physically controlled the hydrological processes
and SMC time stability [57,58], with upland water moving to the groundwater and
lowland water coming from the groundwater, and water content increasing from the
top to the bottom of a slope in a non-linear pattern [59,60].

4. Land cover type: the land use was analyzed as a factor influencing soil hydraulic
attributes and SMC distribution. For example, human activities such as grazing,
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plowing, and urban development impact the macropores and the continuity of the
macropore network of soil, thus altering the mode of local soil water supply and SMC
distribution [49,61].

By referring to these existing studies, we here selected 9 parameters derived from
the RS and auxiliary data, namely the data acquisition time (month), radar incidence
angle (θ), VH backscattering coefficient (σVH), VV backscattering coefficient (σVV), NDVI,
LST, elevation, slope, and land cover type, as inputs of the ANN. The acquisition of the
parameters was explained in the previous sections, and we introduced the ordinal number
of the data acquisition month to present the data acquisition time for the ANN calculations.

Furthermore, to investigate the effects of the input parameters and their combinations
on SMC retrieval, a total of 7 scenarios were considered, as shown in Table 4. In Scenario 0,
all the 9 parameters were taken into account; in Scenario 1, the 4 commonly discussed
parameters, i.e., θ, σVH, σVV, and NDVI, were included as the basic inputs; in Scenario 2–6,
the other 5 parameters were added individually into the basic input parameters. By
comparing the SMC retrieving results of these scenarios, the sensitivity of SMC to specific
input parameters was assessed and analyzed.

Table 4. Scenarios of input parameter combinations for ANN SMC retrieval.

Scenario Input Parameters

0 θ, σVH, σVV, NDVI, month, LST, elevation, slope, land cover
1 θ, σVH, σVV, NDVI
2 θ, σVH, σVV, NDVI, month
3 θ, σVH, σVV, NDVI, LST
4 θ, σVH, σVV, NDVI, elevation
5 θ, σVH, σVV, NDVI, slope
6 θ, σVH, σVV, NDVI, land cover

3.3. ANN and SMC Retrieval

After selecting data using the SSE method and determining input parameters, a group
of samples was obtained. The ANN approach was then adopted to retrieve the SMC. The
ANN is the abstraction of the neural network of human brains from the perspective of
data processing. With the nodes of neurons connected sequentially, the ANN is organized
into a layered structure. As the data are inputted to the ANN, neurons perform weighted
computations and pass on the results to other neurons until reaching the output layer,
which yields the final result [31,62]. In terms of SMC estimation, the ANN approach
provides a better solution than conventional theoretical and semi-empirical models owing
to its capacity for describing non-linear relationships [63].

Moreover, the independence of the ANN from a priori knowledge and radiative
transfer information relieves the estimation process of explicit physical mechanism and
complicated parameters, and the parameters or combinations involved can be more flexi-
ble [64,65]. Figure 3 shows the flowchart of the SMC retrieval process developed in this
study, with all 9 input parameters mentioned above utilized. Here, a feed-forward percep-
tron model was employed, and the ANN has a 3-layer structure comprising input, hidden,
and output layers.
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Figure 3. Flowchart of the SMC retrieval by ANN.

The number of neurons in the hidden layer is another essential characteristic. Too few
or too many neurons may lead to underfitting or overfitting, thus affecting the accuracy of
SMC retrieval [66]. In this study, 10 neurons were contained in the hidden layer, determined
through a trial-and-error method. The SMC ground-truth observations were set as outputs.
Next, both the inputs and outputs were normalized to 0 to 1 based on their respective range
of values. The normalization procedure can improve the training speed and help prevent
the outcomes from getting stuck in local minimums to a certain extent [66].

The samples in the sample pool were randomly partitioned into training, validation,
and testing datasets in proportions of 80%, 10%, and 10%, respectively, for the following
ANN training and testing. The purpose of ANN training was to iteratively modify the
weights of correlation between the inputs and outputs thus that the differences can be mini-
mized. The training process was accomplished with training samples as well as validation
samples. The validation samples here were aimed at ensuring the generalization capacity
of the ANN and avoiding overfitting during the training process [64]. The Levenberg–
Marquardt method was chosen as the training algorithm. This method provides an optimal
solution for a certain minimizing problem [67]. Numerous iterations were conducted in
search of an optimal solution during the training process, and the maximum number of
iterations was set as 1000. The training process was stopped either when the generalization
capacity of the ANN began to level off, which indicates that more training processes cannot
improve the accuracy, or when the maximum number of iterations was reached. The testing
process was performed with the testing samples by comparing the ground truth SMC with
the estimated SMC derived from the corresponding inputs using the trained ANN. The
training and testing processes were conducted in MATLAB, and the well-trained ANN was
deployed for SMC mapping in the entire study area.

3.4. Statistical Metrics

The retrieval accuracy was evaluated using 2 statistical metrics: the root-mean-square
error (RMSE) and the correlation coefficient (r), which can be expressed as follows:

RMSE =

√
1
n

n

∑
i=1

(
SMCi − ˆSMCi

)2 (1)
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r =
∑n

i=1
(
SMCi − SMC

)( ˆSMCi − ˆSMC
)

√
∑n

i=1
(
SMCi − SMC

)2
√

∑n
i=1

(
ˆSMCi − ˆSMC

)2
(2)

where SMCi and SMC represent the ith sample’s ground-truth and mean ground-truth
SMC values of the relevant samples; ˆSMCi and ˆSMC represent the ith sample’s estimated
SMC value and the mean estimated SMC values of all the relevant samples, respectively.
The RMSE and r were calculated based on the training, validation, and testing results.

4. Results and Discussion
4.1. Evaluation of Overall Accuracy

First, the overall accuracy of the ANN was evaluated. All the 635 samples were used
and divided into training, validation, and testing datasets. The training/testing process
was conducted once, with all nine parameters being involved as the inputs of the ANN
(Scenario 0 in Section 3.2). Figure 4 shows the scatter plots of the SMC estimation results for
the training, validation, testing datasets, and the entire samples. The correlation coefficient
(r) values were also given above each plot. The results were promising, with the testing
dataset r and overall r reaching 0.85. Table 5 shows the corresponding RMSE values, which
seem favorable, with RMSE values of 0.048 m3m−3, 0.054 m3m−3, and 0.052 m3m−3 on the
training, validation, and testing datasets, respectively. The ground-truth SMC values range
from 0.024 to 0.477 m3m−3 with an average value of 0.336 m3m−3, whereas the estimated
SMC values ranged from 0.039 to 0.470 m3m−3 with the average value of 0.335 m3m−3.
In comparison with the work conducted by Alexakis et al. [33], our study quantitatively
expanded the sample pool and qualitatively improved the accuracy of SMC retrieval, with
the testing dataset r rising from 0.508 to 0.848 and the overall r rising from 0.803 to 0.850.

Figure 4. Scatter plots of SMC estimations for training (a), validation (b), testing dataset (c), and the
entire samples (d). Corresponding correlation coefficients are placed above each plot.
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Table 5. RMSE values on training, validation, and testing datasets.

Dataset Training Validation Testing

RMSE (m3m−3) 0.048 0.054 0.052

4.2. Evaluation of SSE Method

The effectiveness of the proposed SSE method was evaluated by comparing the SMC
retrieval results with and without sparse sample exploitation. Concerning the study
by Holtgrave et al. [68], considering that different schemes of the random division of
training/validation/testing datasets might give rise to different SMC retrieval outcomes,
we repeated the ANN training/testing process 50 times to assess the average SMC retrieval
performance. Since the accuracy of the testing datasets was more worthwhile in terms of
the ANN performance, only the statistical metrics on the testing datasets were discussed
in the remainder of the paper. Similarly, all nine parameters were set as the inputs of the
ANN (Scenario 0 in Section 3.2). Table 6 lists the average RMSE and r values on the testing
datasets for SMC retrieval with and without the SSE method.

Table 6. Statistical metrics on testing dataset for SMC retrieval with and without the SSE method.

Without SSE With SSE

RMSE (m3m−3) 0.090 0.068
r 0.635 0.736

The results indicate a striking increase in the SMC retrieval accuracy when introducing
the SSE method, with the RMSE decreasing from 0.090 m3m−3 to 0.068 m3m−3 and r
increasing from 0.635 to 0.736. The main reason could be the efficient utilization of the
dismissed samples in the images where optical or in situ data were partially missing,
and the sample pool could consequently be expanded. For the empirical SMC retrieval
methods, such as ANN, large samples were required during the training process. Thus, the
precise relationship between the inputs and outputs could be established [69]. Although
the SSE did not conventionally ensure that all the monitoring sites had identical time
series of data acquisition, it nonetheless enlarged the sample capacity by gathering more
samples derived over a broader period. Meanwhile, the information provided by these
samples could be made full use of, and the features of the training dataset were enriched,
consequently enhancing the representativeness of the samples as well as the stability of the
ANN. Therefore, the training precision of the ANN was improved.

4.3. Sensitivity Analysis of Input Parameters

As mentioned in Section 3.2, several scenarios were considered for the sensitivity
analysis of different input parameters. Table 7 shows scenarios 1–6 of input parameter
combinations and their statistical metrics for SMC retrieval. During the sensitivity analysis,
all the 635 samples were employed. Similarly, the ANN training/testing process was
repeated 50 times after random divisions of each scenario’s training/validation/testing
datasets. The mean statistical metrics on the testing dataset representing the average
performances were evaluated. As listed in Table 7, the first scenario was the combination
of basic input parameters, including the VH/VV backscattering coefficients, NDVI, and
radar incidence angle. For the rest of the scenarios, the data acquisition time, LST, elevation,
slope, and land cover were added individually to the basic combination.
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Table 7. Scenarios of different input parameter combinations and corresponding performances of
SMC retrieval. Ticks indicate that the parameters are chosen as input scenarios systems.

Scenarios

Input Parameters Statistical Metrics

Month σVH σVV NDVI LST Elevation Slope Land
Cover θ

RMSE
(m3m−3) r

1
√ √ √ √

0.089 0.588
2

√ √ √ √ √
0.078 0.637

3
√ √ √ √ √

0.084 0.616
4

√ √ √ √ √
0.070 0.689

5
√ √ √ √ √

0.083 0.639
6

√ √ √ √ √
0.091 0.599

4.3.1. Data Acquisition Time

Comparing scenarios 1 and 2: after the data acquisition time (i.e., the data acquisition
month in this study) was added as the input parameter, r increased from 0.588 to 0.637, and
RMSE declined from 0.089 m3m−3 to 0.078 m3m−3.

The influences of adding data acquisition time on each sample were investigated for
further analysis. For each sample participating in SMC retrieval, “accuracy improvement.”
Ii was proposed with the expressions below:

Ii = εibasic
− εinew (3)

εi_basic =
|SMCi − SMCi_basic|

SMCi
× 100% (4)

εi_new =
|SMCi − SMCi_new|

SMCi
× 100% (5)

where SMCi denotes the ground-truth SMC of the ith sample, SMCi_basic denotes the
estimated SMC of the ith sample with only basic input parameters as the ANN inputs, and
SMCi_new denotes the estimated SMC of the ith sample with a new parameter incorporated
into the basic ones as the ANN inputs. εi_basic and εi_new denote the corresponding relative
errors of the ith sample. Ii, the value of accuracy improvement is the difference between
the two errors. When Ii is positive, it means that the error of SMC retrieval with the new
input parameter is lower than that of SMC retrieval by basic input parameters, indicating
a real accuracy improvement of SMC retrieval; conversely, when Ii is negative, it means
adding the new input parameter in the ANN brings about a worse result. In addition, I
was used to denote the average accuracy improvement of corresponding i samples:

I = ∑
i

Ii (6)

Table 8 lists the results of accuracy improvement of SMC retrieval by adding data
acquisition time as the input parameter. Because of the distinctive phenological pattern
of cropland, we paid extra attention to the cropland samples. For all 635 samples, the
number of samples with Ii > 0 reached 372. Among these samples, 287 were cropland
samples, accounting for 77.2%. As for I, the average accuracy improvement of all samples
was 6.64%, whereas for cropland samples, the I was 5.66%, accounting for 85.2% of the
total gain. These results indicate that the addition of data acquisition time as the input
parameter improves the SMC retrieval performance of cropland samples, thus driving up
the retrieving accuracy of the entire samples.
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Table 8. Accuracy improvement by adding data acquisition time over total samples and cropland
samples.

Of All Samples Of Cropland
Samples

Percentage of
Cropland Samples

number of samples with Ii > 0 372 287 77.2%
I 6.64% 5.66% 85.2%

In fact, the season or data acquisition time was strongly correlated to the plant growth
condition and the corresponding SMC ground-truth data in the vegetation-covered regions.
Here, we chose three monitoring sites of which the SMC observations were continuous
and long-lasting, and the SMC time series are displayed in Figure 5. These SMC time
series generally present a periodic pattern of annual variation, respectively. For site #5,
SMC observations are high in winter and spring, begin to fluctuate in summer and keep
relatively low in August and September. For site #7, the fluctuations in summer were more
drastic, and sharp declines occurred around May in three consecutive years (2016, 2017,
and 2018). For site #9, the SMC variation is not so regular; however, some annual patterns,
such as the plateaus in February and March, the significant dips after summer, and the rises
in November, are still observable.

Figure 5. Ground-truth SMC time series of some monitoring sites: (a) Site #5 (cropland), (b) Site #7
(grassland), (c) Site #9 (cropland).
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Hence, as an input parameter, the data acquisition time contributes to a more delicate
description of the vegetation phenological features, and better SMC retrieval outcomes can
thus be obtained.

4.3.2. LST

Comparing scenarios 1 and 3: The addition of LST helped increase r to 0.616 and
decrease the RMSE to 0.084 m3m−3.

Sandholt et al. [53] defined the temperature vegetation dryness index (TVDI) as:

TVDI =
LST − LSTmin

LSTmax − LSTmin
(7)

where LSTmin and LSTmax are the minimum and the maximum land surface temperatures,
respectively, corresponding to a specific NDVI value in the LST-NDVI space. The correlation
of TVDI and SMC suggests the rationality of SMC retrieval with the synergy of NDVI
and LST.

After the addition of LST as the input parameter, for those samples with positive Ii, the
scatter plot of the relationship between TVDI and ground-truth SMC is shown in Figure 6,
and the negative correlation is evident.

Figure 6. Scatter plot of the relationship between TVDI and ground-truth SMC for those samples
with positive Ii after the addition of LST as the input parameter.

Furthermore, Schmugge [70] claimed that the soil’s surface temperature was the
function of both internal and external factors. The thermal conductivity and heat capacity,
which belonged to the internal factors, both increased with the rise of SMC. As a factor
reflecting the intensity of evapotranspiration, the spatial distribution of the LST varied
significantly with the land surface water.

In this study, the ANN managed to retrieve the SMC with higher accuracy with the aid
of the LST. This result was further proof for the conclusions made in the studies mentioned
above in Section 1.

4.3.3. Elevation and Slope

Comparing scenarios 1, 4, and 5: the retrieval accuracy improved remarkably after
incorporating the elevation into the input parameter pool. The r-value increased to 0.689,
and the RMSE decreased to 0.070 m3m−3. The slope promoted accuracy, with r up to 0.639
and RMSE falling to 0.083 m3m−3.

For further explanation, the accuracy improvement of those samples improving SMC
retrieval accuracy (Ii > 0) by virtue of incorporating topographic factors is illustrated in
Figures 7 and 8. Figure 7 displays the accuracy improvement by adding elevation as the
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input parameter for different samples of elevation and slope values. In contrast, Figure 8
indicates the accuracy improvement by adding slope as the input parameter in relation to
samples of different elevation and slope values. In each figure, samples are arranged in
descending order of their corresponding Ii

Figure 7. The accuracy improvement of samples by adding elevation as the input parameter. In (a),
the samples are categorized into three groups by elevation and (b) by the slope.
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Figure 8. The accuracy improvement of samples by adding slope as the input parameter. In (a), the
samples are categorized into three groups by elevation and (b) by the slope.

It can be observed from Figures 7 and 8 that, no matter for adding elevation or
adding slope as the input parameter, samples with relatively higher elevation (>500 m) and
steeper slope (>10◦) tended to yield better accuracy improvement results, with most of the
corresponding samples gathering in the left of the figures.

Previous studies claimed that local topographical heterogeneity reinforced the varia-
tion in the soil moisture distribution. Due to gravity and overland flow, locations with a
high elevation and steep slope were more prone to SMC change. In contrast, low and flat
locations were more inclined to SMC invariability [57,58,60,71]. Analogous to these studies,
the difference in the topography of our study area was noticeable enough to impact the soil
moisture distribution as well. Therefore, taking the elevation and slope into consideration
during SMC retrieval was rational.
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4.3.4. Land Cover Type

Comparing scenarios 1 and 6: when land cover type was considered an input param-
eter, the accuracy of SMC retrieval failed to improve as expected. Despite the existing
studies emphasizing the influences of land use on SMC distribution [72,73], the outcome
of ANN-based SMC retrieval with the assistance of land cover type did not show any
improvement. The r slightly increased to 0.599, whereas the RMSE rose marginally to
0.091 m3m−3. This was probably attributed to the poor land cover categorization of the
samples. In this study, after eliminating forest, the samples merely fell into two land cover
types; in practice, the ground-truth geographical conditions of the study area could be
quite intricate. The land cover categorization could not adequately improve the accuracy of
SMC retrieval, and a refined land cover map was required.

4.4. SMC Mapping

Figure 9 shows the map of the SMC retrieval outcome at a depth of 5 cm for the study
area on 6 October 2018. Considering the representativeness of the training samples, regions
of forests and high elevation (>500 m) were masked. In addition, the water bodies and
residential areas where no soil existed were masked as well. The gray patches indicate
masked regions. The soil moisture distribution was visually plausible based on the map,
with shades of blue and green (high SMC) mainly representing cropland and grassland,
while red or yellow ones (low SMC) representing relatively bare land.

Figure 9. Volumetric SMC mapping of the study area.

5. Conclusions

An ANN approach for SMC retrieval using microwave RS data (Sentinel-1 SAR images)
and optical RS data (Landsat-8 images) was demonstrated, and a novel SSE methodology
was proposed. With the SSE, the problem of data deficiency due to cloud contamination
in optical images and in situ instrument malfunction was resolved. Complete data were
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fully utilized in the ANN training/testing procedure, and the enlarged sample pool was
beneficial to SMC retrieval with high precision.

The sample volume could be increased from 264 to 635 by the SSE, and the SMC
retrieval accuracy was significantly enhanced. Regarding the average statistical metrics
corresponding to 50 ANN training/testing iterations, r increased from 0.635 to 0.736, and
the RMSE decreased from 0.090 m3m−3 to 0.068 m3m−3.

A couple of variables were newly considered about the inputs of ANN for SMC
retrieval. As for the sensitivity analysis of the ANN inputs, the parameters, such as the
elevation, slope, data acquisition time, LST, and the land cover type, influenced the SMC
retrieval accuracy to varying degrees. Among these parameters, the elevation had the
most significant impact on the results, as evidenced by the increase in the r-value from
0.588 to 0.689 and the decrease in the RMSE from 0.089 m3m−3 to 0.070 m3m−3. Other
parameters were also advantageous to SMC retrieval, except for the land cover type, which
barely promoted the accuracy due to the lack of refined land cover categorization. Notably,
overall, the SMC retrieval statistical metrics of Scenario 0, where all nine relevant input
parameters were considered (the situation “with SSE” discussed in Section 4.2), proved to
be much more favorable than those of the scenarios analyzed in Section 4.3. This signifies
that, to some degree, more relevant input parameters tend to improve retrieval accuracy.

The study results show that SSE is a promising method for ANN-based SMC retrieval.
However, certain limitations need to be addressed. Because study areas overseas are
beyond our reach and field surveys on topography and land cover are challenging to
implement, the inconsistency between ground truth data and RS data cannot be excluded.
The consequent biases in the SMC retrieval are inevitable. Moreover, the SMC mapping
lacks additional in situ data for further validation.

We plan to focus on sample exploitation over the spatial dimension in the future. In
other words, for study areas without sufficient samples for ANN training, synchronous data
from another site of geographical resemblance with sufficient samples will be considered
for SMC retrieval. The accuracy and conditions for the application of this method will
be investigated. Additionally, we intend to utilize state-of-the-art RS data from Chinese
satellites, such as GF-3 and GF-1, and explore their applicability in SMC retrieval problems.
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Abstract: To realize high-precision and high-frequency unattended site calibration and detection
of satellites, automatic direction adjustment must be implemented in mirror arrays. This paper
proposes a high-precision automatic calibration model based on a novel point light source tracking
system for mirror arrays. A camera automatically observes the solar vector, and an observation
equation coupling the image space and local coordinate systems is established. High-precision
calibration of the system is realized through geometric error calculation of multipoint observation
data. Moreover, model error analysis and solar tracking verification experiments are conducted. The
standard deviations of the pitch angle and azimuth angle errors are 0.0176◦ and 0.0305◦, respectively.
The root mean square errors of the image centroid contrast are 2.0995 and 0.8689 pixels along the x-
and y-axes, respectively. The corresponding pixel angular resolution errors are 0.0377◦ and 0.0144◦,
and the comprehensive angle resolution error is 0.0403◦. The calculated model values are consistent
with the measured data, validating the model. The proposed point light source tracking system
can satisfy the requirements of high-resolution, high-precision, high-frequency on-orbit satellite
radiometric calibration and modulation transfer function detection.

Keywords: radiometric calibration; modeling; geometric error; high-precision calibration

1. Introduction

With the rapid development of remote-sensing technology, China’s satellite remote-
sensing technology can realize global and multisatellite network observations, thereby
enabling comprehensive global observation with three-dimensional and high-, medium-,
and low-resolution imaging, which has gradually penetrated all aspects of the national
economy, social life, and national security [1]. Radiometric calibration is the process of
establishing the functional response relationship between the absolute value of the radiance
at the entrance pupil of the remote sensor and the digital number of the output image of
the remote sensor and determining the radiometric calibration coefficient of the remote
sensor data [2,3]. With the development of global remote-sensing quantitative applications,
it has become increasingly urgent to improve the level of quantitation in remote-sensing
applications of satellite data. On-orbit radiometric calibration and modulation transfer
function (MTF) detection by satellite remote sensors are the basis of satellite remote-
sensing quantitative applications. Therefore, higher requirements are put forward for the
accuracy of remote sensor radiometric calibration and MTF detection [4–7]. Vicarious
calibration, which is not affected by the space environment or satellite state, can account
for atmospheric transmission and environmental impacts. This approach, which can
help facilitate authenticity and model accuracy tests of on-orbit remote sensors, has been
developed rapidly [8]. As a kind of high-spatial resolution satellite site for vicarious
calibration equipment, point light sources are light-weight and small and exhibit excellent

85



Sensors 2021, 21, 2270

optical characteristics. Their layout is flexible, and they can be moved easily. The aperture
of the convex mirror depends on the pointing accuracy of the system. To ensure reliability,
it is desirable to increase the pointing accuracy, reduce the aperture size, and reduce the
volume and weight of the point light source. Furthermore, it is desirable to change the
number of mirrors to realize on-orbit radiometric calibration and MTF detection of point
light sources with different energy levels [9,10]. Point light source radiometric calibration
mainly uses the point light source equipment to reflect sunlight into the entrance pupil
of the satellite. Upon calculating the equivalent entrance pupil radiance of the satellite
combined with the target response value of the remote-sensing image, the calibration
coefficient is calculated according to the remote sensor calibration equation. Because this
procedure simplifies the radiative transfer process, it has been widely used [11–15].

According to literature research, so far, few countries have carried out on-orbit ra-
diation calibration and MTF detection of point light sources. The United States was the
first to carry out this work, followed by France and China. France has adopted active
point light source equipment, mainly using high-energy spotlight for on-orbit MTF detec-
tion of SPOT5 [16]. The United States and China mainly use reflective point light source
equipment to carry out the corresponding experiments [17–23]. The key to high-resolution
satellite on-orbit radiation calibration based on point light sources is to control the direction
of the central optical axis of the point light source reflector. When the central optical axis
of the reflector points to the sun, the sunlight enters the convex mirror perpendicularly,
the reflected light spot is in a divergent state, and the direction points toward the sun.
When the central optical axis of the reflector points toward the position of the bisector of
the angle between the satellite and the sun, the reflected light spot is reflected toward the
satellite direction in a divergent state. If the pointing position of the optical axis at the edge
is reflected toward the direction of the satellite due to low pointing accuracy, the satellite
may not observe the point light source or may observe only part of the reflected light spot,
which may cause the radiation calibration to fail. Therefore, the success or failure of the
point light source on-orbit experiment depends on the pointing accuracy, and the pointing
accuracy depends on the tracking accuracy of the system. To improve the pointing accuracy
of the system, it is necessary to improve the tracking accuracy of the system. The pointing
accuracy of the reflector equipment used by American researchers Schiller et al. [24] to
implement the SPARC method (specular array radiometric calibration) of radiation calibra-
tion is better than ± 0.5◦. In particular, a large convex mirror is used to compensate for the
lack of pointing accuracy to ensure that the reflection spot enters the pupil of the satellite.
However, the processing accuracy of large convex mirrors is difficult to ensure, and this
approach is not convenient for engineering practice and application promotion. In China,
the Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, succes-
sively conducted on-orbit radiometric calibration experiments and MTF detection based
on point light sources [7,12,13,22]. Initially, a large plane mirror was used as the reflection
point light source to perform experiments involving medium- and high-orbit satellites on
orbit [22,23]. At present, we mainly carry out on-orbit experiments of point light sources
based on convex mirrors. Compared with existing foreign point light source systems, the
difference is that we use a smaller convex mirror to overcome the disadvantages associated
with larger convex mirrors. The advantage of this approach is that it is easy to change the
number of mirrors to produce different energy levels of reflected light, which is suitable for
different resolutions in satellite radiometric calibration and MTF detection [13]. However,
the disadvantage is that the reflection spot decreases due to the reduction of the aperture
of the convex mirror, which increases the difficulty of the satellite reliably receiving the
reflected spot. Therefore, to ensure that the reflected light spot is reliably incident on the
entrance pupil of the satellite, the key technological improvement that needs to be ad-
dressed when using a smaller convex mirror is improving the pointing accuracy. Therefore,
to improve the pointing accuracy of the system, a high-precision calibration modeling
method for a point light turntable based on a solar vector was established [9]. Compared
with previous-generation equipment [22], the integrated pointing accuracy of the system
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could be enhanced; however, a camera with an automatic observation ability was not
introduced in the modeling process. Consequently, the system cannot realize automatic cal-
ibration, and it is difficult to realize the high-precision calibration of large-scale automatic
cooperative work. To realize automatic calibration, the literature [10] proposed a mirror
normal calibration method based on the centroid of the solar image; however, in the initial
stage of the model, the influencing factors such as equipment placement errors and camera
distortion corrections are not considered. Consequently, the calibration accuracy is affected
by single-point calibration and the solar image, and the calibration accuracy needs to be
further increased.

The abovementioned calibration techniques based on convex mirrors can achieve
satisfactory results in radiometric calibration and MTF detection; however, such approaches
cannot meet the requirements of high precision, high frequency and use of existing high-
resolution satellites. Nevertheless, unattended multipoint automatic and high-precision
pointing adjustment technology can satisfy these requirements. Therefore, in this study,
based on the development of a point light source turntable tracking system, an automatic
calibration modeling method is developed. Moreover, a high-precision automatic geometric
calibration model is established. The system can realize network-based remote control,
achieve high-precision pointing of the point light source array tracking system, and realize
high-frequency and high-efficiency orbit radiation calibration and MTF detection of high-
spatial resolution satellites.

The tracking accuracy described in this paper is the basic guaranteed accuracy required
to achieve a comprehensive system design accuracy better than 0.1◦; therefore, the design
accuracy of our system needs to be better than 0.1◦. To realize automatic calibration of the
point light source array and achieve the purpose of high-precision tracking of the point light
source system, this paper focuses on the establishment of a high-precision calibration model
of the point light source system. Starting from the composition of the point light source
system, the establishment of a coordinate system and the principle of geometric calibration
modeling, this paper studies the establishment of a simplified calibration model of the
point light source system. On the basis of the simplified calibration model, considering the
geometric error parameters and camera lens distortion parameters that affect the tracking
accuracy of the system, the automatic high-precision geometric calibration model is further
established. Based on the theoretical verification and solution of the model, the inverse
solution algorithm of the calibration model is proposed for experimental verification of
the calibrated model. Finally, the experimental verification and system tracking accuracy
analysis are carried out.

2. Principle of Geometric Calibration Modeling
2.1. Equipment System Composition and Coordinate System Establishment

The turntable system of the point light source is composed mainly of a posture control
module, mirror assembly, camera and electric control system. The posture control module
includes a pitching component and an azimuth component. The pitching component
adopts a “U”-shaped forked arm structure. The pitch motor drives a pitching turbine
through a two-stage reduction device to drive a mirror to rotate around the pitch axis.
The azimuth component is driven by an azimuth motor through the two-stage reduction
mechanism to cause the rotary table to rotate around the azimuth axis. The reduction ratio
of the second reduction device is 1:360. The pitch and azimuth terminals of the equipment
are equipped with an encoder detection device to feed back the rotation angle of the rotary
table terminal. The detection accuracy of the encoder is 0.02◦. The mirror assembly is
arranged between the “U”-shaped forked arms to form a pitching rotation axis. The camera
is fixed to the top of the mirror assembly to maintain the camera plane parallel to the mirror
plane. The field of view is 23◦ × 17◦. The image resolution is 1280 × 1024 pixels. The
resolutions of the azimuth and pitch pixel angles are 0.018◦ and 0.0166◦, respectively. The
electric control system is arranged at the base and two fork arms. The abovementioned
components compose a point light turntable system, as shown in Figure 1a.
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Figure 1. (a) Composition of the point light source system; (b) coordinate system establishment.

To conveniently describe the coordinate position of the sun and a satellite observed
from a certain point on Earth’s surface, a coordinate system is established based on the
position of the point light source on Earth’s surface. This system is named the north-
east upper coordinate system, which is expressed as loc and described as [ E N Up ].
E points due east in the positive direction. N points due north in the positive direction. Up
points in the vertical upward direction against the geocenter in the positive direction. The
mirror coordinate system is fixed on the turntable. The right-hand rectangular coordinate
system is composed of the z-axis of the central light axis of the mirror, which is described
as [ xmir ymir zmir ]. In addition, xmir is based on the pitch axis of the turntable and
points to the east, and ymir takes the azimuth axis of the turntable as the baseline, which is
consistent with the Up direction, with zmir pointing to the north. The camera coordinate
system is established in accordance with the mirror coordinate system, which is described
as [ xcam ycam zcam ]. The establishment of the coordinate system is shown in Figure 1b.

2.2. Principle of Geometric calibration Modeling

Based on the principle of central projection and perspective transformation [25,26], in
the same coordinate system, a collinear condition equation is established using the collinear
condition, and a geometric calibration model is established based on this equation. A
rotation transformation relationship between the image plane of the image space coordinate
system and object plane of the local coordinate system is established by using the camera to
observe the solar vector. Moreover, considering the angle readings of the pitch and azimuth
encoders, centroid coordinates of the solar image and solar position parameters at different
positions at different times, a multipoint observation equation is established, and the least
squares method is used to solve the model. Geometric calibration of the equipment is
conducted to determine the initial positions of the azimuth and pitch encoders. The mirror
normal vector diagram is shown in Figure 2.
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Figure 2. Mirror normal vector diagram.

Assuming that the point light source is placed horizontally in the initial position, the
pitch axis is orthogonal to the azimuth axis, and the central light axis of the reflector points
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to the north. This configuration is expressed as
[

0 1 0
]T

loc and
[

0 0 1
]T

mir in the
northeast upper coordinate system and reflector coordinate system, respectively. At a
certain moment, if the azimuth and altitude angles of the incident sunlight are aazimuth
and aaltitude, respectively, the turntable rotates anticlockwise and clockwise around the
pitch X-axis and azimuth axis, respectively. At this time, the central optical axis vector of
the reflector coincides with the solar vector in the northeast upper coordinate system. In
this case, in the local coordinate system, the transformation process from the optical axis
vector of the mirror center to the coordinate rotation consistent with the solar vector can be
expressed as




X
Y
Z




loc

=




cos(α− α0) sin(α− α0) 0
− sin(α− α0) cos(α− α0) 0

0 0 1






1 0 0
0 cos(β− β0) − sin(β− β0)
0 sin(β− β0) cos(β− β0)






0
1
0




loc

(1)

where α and β are the readings of the azimuth and elevation encoders at a certain time,
respectively; α0 and β0 are the initial position readings.

According to the definition of the coordinate system, if the mirror coordinate system is
rotated anticlockwise by 90◦ around the axis, the local coordinate system coincides with the
mirror coordinate system. According to the rotation matrix relationship of the coordinate
transformation, the coordinate transformation relationship can be established at any point
as follows: 


X
Y
Z




loc

= R−1
X (

π

2
)




x
y
z




mir

. (2)

Combining the coordinate rotation relation expressed in Equation (1) with the coordi-
nate transformation and rotation relation expressed in Equation (2) yields




X
Y
Z




loc

=




cos(α− α0) sin(α− α0) 0
− sin(α− α0) cos(α− α0) 0

0 0 1






1 0 0
0 cos(β− β0) − sin(β− β0)
0 sin(β− β0) cos(β− β0)


R−1

X (
π

2
)




x
y
z




mir

. (3)

In particular, when the optical axis vector of the mirror center is consistent with
the solar vector, the coordinates of the solar vector in the mirror coordinate system
are

[
0 0 1

]T
mir, and the unit vector coordinates in the local coordinate system are

[
X Y Z

]T
loc. According to Equation (3), the solar vector under the reflector can be

transformed to the vector in the local coordinate system. Based on this aspect, the coor-
dinate transformation relationship between the mirror and local coordinate systems is
established based on the solar vector.

3. Geometric Calibration Modeling of the Turntable
3.1. Basic Calibration Model of the Turntable

In terms of the initial position of the point light source in the basic calibration model
of the turntable, the X- and Z-axes in the mirror coordinate system coincide with the E- and
N-axes in the local coordinate system, respectively. The central optical axis of the reflector
points true north. The camera is affixed to the mirror assembly bracket, and the definition
of its coordinate system is consistent with the mirror coordinate system. Therefore, the
central optical axis vector of the reflector is replaced by the camera center optical axis
vector. When the camera coordinate system is transformed to the local coordinate system,
the relationship between the two coordinate systems must be established by multiplying
the left side by the rotation matrix R−1

X (π
2 ), as follows:




X
Y
Z




loc

= R−1
X (

π

2
)




x− x0
y− y0

f




cam

. (4)
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By combining Equations (3) and (4), the relationship between the camera and local
coordinate systems can be established as




Xi
Yi
Zi




loc

= RZ(αi − α0)RX(βi − β0)R−1
X (

π

2
)λ




xi − x0
yi − y0

f


 (5)

where

RZ(αi − α0) =




cos(αi − α0) sin(αi − α0) 0
− sin(αi − α0) cos(αi − α0) 0

0 0 1


, RX(βi − β0) =




1 0 0
0 cos(βi − β0) − sin(βi − β0)
0 sin(βi − β0) cos(βi − β0)


.

αi and βi are the azimuth and pitch encoder values corresponding to the encoder at
a certain moment, respectively; xi and yi are the coordinates of the centroid of the solar
image in the pixel coordinate system at a certain moment; and λ is the imaging scale factor.
Moreover, x0 and y0 are the camera main point coordinates, and i represents the camera
imaging time serial number or the solar position serial number at different times, with
i = 1 · · · n.

We define Rloc
cam = RZ(αi − α0)RX(βi − β0)R−1

X (π
2 ). Consequently, Equation (5) can

be rewritten as

(Rloc
cam)

−1




Xi
Yi
Zi


 = λ




xi − x0
yi − y0

f


 (6)

where




Xi
Yi
Zi


 =




sin aazimuth cos aaltitude
cos aazimuth cos aaltitude

sin aaltitude


, Xi represents the east (E) component of the

sun in the local coordinate system, Yi represents the component of the sun due north (N)
in the local coordinate system, and Zi represents the upward (Up) component of the sun
perpendicular to the earth plane in the local coordinate system.

Equation (6) represents the rotation transformation relationship between the image
plane in the image space coordinate system and object plane in the local coordinate system.
By dividing the first and second expressions of Equation (6) by the third expression,
xi − x0 = a(nxi − nx0) and yi − y0 = a(nyi − ny0), where a is the pixel size and n is the
number of pixels. Upon substituting this content into Equation (6), the basic calibration
model of the turntable can be expressed as





a
f (nxi − nx0) =

cos(α−α0)Xi−sin(α−α0)Yi
sin(α−α0) cos(β−β0)Xi+cos(α−α0) cos(β−β0)Yi+sin(β−β0)Zi

a
f (nyi − ny0) =

sin(α−α0) sin(β−β0)Xi+cos(α−α0) sin(β−β0)Yi−cos(β−β0)Zi
sin(α−α0) cos(β−β0)Xi+cos(α−α0) cos(β−β0)Yi+sin(β−β0)Zi

(7)

The right and left sides of the equation represent the calculation formula of the solar
vector and optical axis vector of the turntable mirror center, respectively. When x = x0
and y = y0, the optical axis vector of the reflector points toward the sun. In this case,
aaltitude = β− β0 and aazimuth = α− α0. When x 6= x0 and y 6= y0, the optical axis vector
of the reflector points toward a certain angle in space. In this case, θaltitude = β− β0 and
ϕazimuth = α− α0.

In this manner, the relationship between the camera coordinate system and local
coordinate system can be established by using the camera to observe the solar vector.
Thus, any vector in the image space coordinate system can be transformed to the local
coordinate system through the coordinate rotation transformation relationship. The solar
vector observed by the camera represents the optical axis vector of the reflector. The control
turntable uses the camera to realize data acquisition and automatic calibration in the local
coordinate system.

90



Sensors 2021, 21, 2270

3.2. High-Precision Geometric Calibration Model of the Turntable

The basic calibration model of the turntable is based on the assumption that the
turntable is placed horizontally, the pitch axis is orthogonal to the azimuth axis, and the
camera is positioned vertically. However, regardless of whether the actual turntable is
horizontal, the pitch axis is vertical to the azimuth axis, and the camera is vertical. The
levelness error, perpendicularity error, and camera placement perpendicularity error must
be considered in the high-precision control system. In particular, to realize high-precision
automatic calibration control of the turntable, it is necessary to establish a high-precision
calibration model of the turntable and examine the geometric error parameters of the
turntable obtained considering the basic calibration model. We consider that the error
matrix of the turntable placement levelness is RL, the orthogonal error matrix of the pitch
and azimuth axes is RS, and the vertical error matrix of the camera placement is RC. In this
case, the high-precision calibration model can be expressed as




Xi
Yi
Zi




loc

= λRLRZ(αi − α0)RSRX(βi − β0)RCR−1
X (

π

2
)




xi − x0
yi − y0

f


 (8)

where RL=RL
XRL

YRL
Z, RS = RS

ZRS
YRS

X , and RC = RC
XRC

YRC
Z.

According to the rotation matrix, the same kind of rotation can be combined in the
same direction. Equation (8) can be simplified to obtain a high-precision calibration model
of the turntable as




Xi
Yi
Zi




loc

= λRL
XRL

YRZ(αi − α0)RS
YRX(βi − β0)RC

YR−1
X (

π

2
)




xi − x0
yi − y0

f


 (9)

where RL
X, RL

Y, and RL
Z represent the rotation matrix around the X, Y, and Z axes from

the mirror coordinate system to the local coordinate system, respectively; RS
Z, RS

Y, and RS
X

represent the rotation matrix around the Z, X, and Y axes from the pitch axis coordinate
system to the azimuth axis coordinate system, respectively; and RC

X , RC
Y , and RC

Z represent
the rotation matrix around the X, Y, and Z axes from the camera coordinate system to the
mirror coordinate system, respectively. Consequently,

RL
XRL

Y =




1 0 0
0 cos µ0 − sin µ0
0 sin µ0 cos µ0






cos ν0 0 sin ν0
0 1 0

− sin ν0 0 cos ν0


RS

Y =




cos ω0 0 sin ω0
0 1 0

− sin ω0 0 cos ω0




RC
Y =




cos γ0 0 sin γ0
0 1 0

− sin γ0 0 cos γ0




where µ0 and ν0 represent the level offset error of the turntable installation, ω0 represents
the geometric error of the verticality of the pitch axis and azimuth axis of the turntable,
and γ0 represents the verticality offset error of the camera placement.

We define Rloc
cam = RL

XRL
YRZ(αi − α0)RS

YRX(βi − β0)RC
YR−1

X (π
2 ) =




a1 b1 c1
a2 b2 c2
a3 b3 c3


.

By inserting Equation (9), we obtain

{
a
f (nxi − nx0) =

Xia1+Yia2+Zia3
Xic1+Yic2+Zic3

a
f (nyi − ny0) =

Xib1+Yib2+Zib3
Xic1+Yic2+Zic3

. (10)

Thus, a high-precision calibration model considering the geometric error of the system
is established. However, in the process of automatic system calibration, camera lens
distortion may produce errors, which may limit the increase in the calibration accuracy.
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Therefore, it is necessary to correct the lens distortion to further reduce the error sources.
Considering the calibration model expressed in Equation (10), the chessboard calibration
results are incorporated [27], and the lens distortion correction term is added. The first term
approximation of the Taylor series expansion is adopted to correct the radial distortion
error of the lens {

(xi − x0) + ∆x = fx
X
Z

(yi − y0) + ∆y = fy
Y
Z

(11)

where xi and yi are the coordinates of the image centroid in the pixel coordinate system; x0
and y0 are the camera main point coordinates; ∆x and ∆y are the radial distortion errors of
the camera; fx and fy are the focal lengths of the camera in the x and y directions, respectively;
and X = Xia1 + Yia2 + Zia3, Y = Xib1 + Yib2 + Zib3, and Z = Xic1 + Yic2 + Zic3.

According to the camera physical calibration model [28,29], the radial distortion error
of the camera can be defined as follows:

∆x = xk1r2, ∆y = yk1r2 (12)

where x = (xi − x0), y = (yi − y0), and r2 = (xi − x0)
2 + (yi − y0)

2. Here, k1 is the radial
distortion coefficient of the camera, and r is the radial distance of the actual image point.

Substituting Equation (12) into Equation (11) yields a high-precision geometric error
calibration model with camera distortion correction, as follows:





a
fx
(nxi − nx0)

{
1 + a2k1

[
(nxi − nx0)

2 + (nyi − ny0)
2
]}

= X
Z

a
fy
(nyi − ny0)

{
1 + a2k1

[
(nxi − nx0)

2 + (nyi − ny0)
2
]}

= Y
Z

. (13)

Equation (13) represents the conversion of the solar vector in the local coordinate
system to the representation in the image space coordinate system. Thus, the relationship
between the solar vector observed by the camera in the image space coordinate system
is established, and transformation from any vector in the image space system to the local
coordinate system is realized. Finally, through actual camera observations, multipoint
data are collected to establish multipoint observation equations to achieve high-precision
calibration of the system installation geometric errors and verify the corresponding error
parameters µ0, ν0, ω0, and γ0, encoder initial positions α0 and β0, and camera principal
point and principal distance values x0, y0, fx, and fy, among other factors. In this manner,
high-precision calibration of the turntable system in the local coordinate system can be
realized, leading to increased pointing accuracy.

4. Model Verification and Solution
4.1. Verification of the Model Coordinate Rotation Transformation Relationship

When the central light axis of the reflector points toward the sun, the coordinates of
the solar vector in the mirror coordinate system are

[
0 0 1

]T
mir, and the unit vector

coordinates in the local coordinate system are
[

X Y Z
]T

loc. First, forward verification

is conducted according to Equation (3). By substituting
[

0 0 1
]T

mir and multiplying
the three terms on the right side, we can obtain the vector representation of the sun in the
local coordinate system, as follows:




X
Y
Z




loc

=




cos(α− α0) sin(α− α0) sin(β− β0) sin(α− α0) cos(β− β0)
− sin(α− α0) cos(α− α0) sin(β− β0) cos(α− α0) cos(β− β0)

0 − cos(β− β0) sin(β− β0)






0
0
1




mir

=




sin(α− α0) cos(β− β0)
cos(α− α0) cos(β− β0)

sin(β− β0)


 (14)

where aazimuth = α − α0, and aaltitude = β − β0. The result is the same as that of the

solar unit vector




X
Y
Z




loc

=




sin aazimuth cos aaltitude
cos aazimuth cos aaltitude

sin aaltitude


 in the local coordinate system.
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Thus, the accuracy of the rotation matrix is preliminarily verified. Second, the vector
representation of the sun in the local coordinate system is substituted into Equation (3) to
calculate the vector representation of the sun in the mirror coordinate system, as follows:

(Rloc
cam)

−1




Xloc
Yloc
Zloc


 =




cos(α− α0) − sin(α− α0) 0
sin(α− α0) sin(β− β0) cos(α− α0) sin(β− β0) − cos(β− β0)
sin(α− α0) cos(β− β0) cos(α− α0) cos(β− β0) sin(β− β0)






sin(α− α0) cos(β− β0)
cos(α− α0) cos(β− β0)

sin(β− β0)


 =




0
0
1


 (15)

The calculation result for Equation (15) is the same as the vector representation[
0 0 1

]T
mir of the sun in the mirror coordinate system when the optical axis of the

reflector is aligned with the sun. Both the forward and reverse verification calculation
results are the same as the predicted results, which demonstrates the accuracy of the
coordinate rotation transformation matrix of the basic calibration model. The coordinate
rotation transformation verification diagram for the calibration model is shown in Figure 3.
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4.2. Model Solution

According to Equation (13), the geometric error parameters of the system to be cali-
brated are (µ0, ν0, ω0, and γ0), the initial position parameters of the encoder are (α0 and
β0), and the camera parameters are (x0, y0, fx, fy, and k1). In total, 11 parameters exist. To
solve the model, multipoint observations are needed. To this end, the multipoint observa-
tion equation is established, and the least squares method is used to solve the unknown
parameters iteratively until the accuracy requirements are met. The solution process is
as follows:

wx = a
fx
(nxi − nx0)

{
1 + a2k1

[
(nxi − nx0)

2 + (nyi − ny0)
2
]}
− X

Z

wy = a
fy
(nyi − ny0)

{
1 + a2k1

[
(nxi − nx0)

2 + (nyi − ny0)
2
]}
− Y

Z

. (16)
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The first-order Taylor linearization expansion of Equation (16) is carried out at the
initial value

[
µ0 ν0 ω0 γ0 x0 y0 fx fy k1 α0 β0

]T
i , and the error equation

is established:

w′x = ∂wx
∂µ0

∆µ0 +
∂wx
∂ν0

∆ν0 +
∂wx
∂ω0

∆ω0 +
∂wx
∂γ0

∆γ0 +
∂wx
∂x0

∆x0 +
∂wx
∂y0

∆y0

+ ∂wx
∂ fx

∆ fx +
∂wx
∂ fy

∆ fy +
∂wx
∂k1

∆k1 +
∂wx
∂α0

∆α0 +
∂wx
∂β0

∆β0

w′y =
∂wy
∂µ0

∆µ0 +
∂wy
∂ν0

∆ν0 +
∂wy
∂ω0

∆ω0 +
∂wy
∂γ0

∆γ0 +
∂wy
∂x0

∆x0 +
∂wy
∂y0

∆y0

+
∂wy
∂ fx

∆ fx +
∂wy
∂ fy

∆ fy +
∂wy
∂k1

∆k1 +
∂wy
∂α0

∆α0 +
∂wy
∂β0

∆β0

. (17)

This equation is expressed in matrix form as

[
w′x
w′y

]
=

[ ∂wx
∂µ0

· · · ∂wx
∂β0

∂wy
∂µ0

· · · ∂wy
∂β0

]



∆µ0
...
...

∆β0




. (18)

By using the camera multipoint observation, the multipoint observation equation is
established as follows:

L1 =

[
w′x,1
w′y,1

]0

, Ln =

[
w′x,n
w′y,n

]0

, x0 =




∆µ0
...
...

∆β0




i

, A1 =




∂wx,1
∂µ0

· · · ∂wx,1
∂β0

∂wy,1
∂µ0

· · · ∂wy,1
∂β0




0

, An =




∂wx,n
∂µ0

· · · ∂wx,n
∂β0

∂wy,n
∂µ0

· · · ∂wy,n
∂β0




0

.

We define

L =




L1
...

Ln


, A =




A1
...

An


,

where
[...
]0

represents the value at
[

µ0 ν0 ω0 γ0 x0 y0 fx fy k1 α0 β0
]T

i .

L1 and Ln denote the difference matrix between the solar vector observed by the camera
and the calculated solar vector at the first and nth moment, respectively. In addition, w′x,1
and w′y,1 are the error components of the azimuth and pitch directions of the solar vector
observed by the camera and the calculated solar vector at the first moment, respectively;
w′x,n and w′y,n denote the error components of the azimuth and pitch directions of the
solar vector observed by the camera and calculated solar vector at the nth moment, re-
spectively; and x0 is the matrix of the difference between the values of each variable and
each corresponding expansion point. A1 and An denote the error equation at the first and
nth moments, respectively, which are used to calculate the partial derivative matrix of
each variable.

In this case, L = Ax0, and we perform double left multiplication of AT. After the posi-
tive definite treatment and matrix inversion, we obtain x0 =

(
ATA

)−1ATL. Subsequently,
x0 is substituted into the following expression to obtain the parameters to be solved:

[
µ0 ν0 ω0 γ0 x0 y0 fx fy k1 α0 β0

]T
i+1 =

[
µ0 ν0 ω0 γ0 x0 y0 fx fy k1 α0 β0

]T
i + x0

where
[

µ0 ν0 ω0 γ0 x0 y0 fx fy k1 α0 β0
]T

i is the first-order Taylor expan-
sion point value from the 0th to ith points (i = 0 · · · n).
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Next, the Taylor expansion point is moved to the latest solution point[
µ0 ν0 ω0 γ0 x0 y0 fx fy k1 α0 β0

]T
i+1 expansion, and x0

i+1 is solved again.
The solution is iteratively found until the accuracy requirements are met.

4.3. Inverse Calculation of the Calibration Model

After solving the model, it is necessary to verify the results. After applying the
calibration model, the encoder position coordinates α and β are calculated as the target
value when the mirror normal vector and solar vector point in the same direction. Next, the
servo motor is driven and controlled to move to the target position, and the camera collects
the data for further verification. The model inverse solution algorithm after calibration is
as follows.

According to the high-precision geometric calibration model, since the main point of
the camera coincides with the image centroid coordinates when the mirror normal vector
points toward the sun, that is, xi = x0 and yi = y0, the left term of the model is equal to
zero. The right side of the model has a denominator Xic1 + Yic2 + Zic3 6= 0. Therefore,
the following formula is established, and the inverse solution algorithm model can be
expressed as {

Xia1 + Yia2 + Zia3= 0
Xib1 + Yib2 + Zib3= 0

. (19)

According to Equation (19), the azimuth and pitch α and β of the encoder, respectively,
can be calculated by the least squares method when the normal of the reflector at different
positions points toward the sun at different times. We define

{
Xre = Xia1 + Yia2 + Zia3
Yre = Xib1 + Yib2 + Zib3

.

In this case, the α and β values satisfying the accuracy requirement can be determined
using the following formula:

min
α, β

(
X2

re+Y2
re

)
. (20)

5. Experimental Results and Analysis
5.1. Reliability Analysis of Measured Data

Before obtaining the experimental data, the equipment is placed at the initial position,
and the central light axis direction of the reflector is initially determined to be due north.
To accelerate the calibration progress, reduce the calibration time, and test the encoder’s
large-scale and multiple-angle motion characteristics, solar images at different positions of
the camera array are collected. These images are used to perform the calibration model
calculation and provide basic data to ensure accurate calibration. Using three techniques,
three groups of data are collected to analyze the universality of the model solution. For
the first group, the system moves from the right end to the left and collects two relatively
irregular sets of pixel coordinate point data spread over the image plane of the detector.
For the second group, the system moves from the right end to the left and collects a group
of pixel coordinate points evenly distributed in the image plane of the detector. For the
third group, the system moves from the left end to the right and collects a group of pixel
coordinate points that are evenly distributed in the image plane of the detector. Moreover,
the corresponding pitch, azimuth encoder readings and solar position parameters are
recorded. The data acquisition path is shown in Figure 4.

Before the model is solved, the reliability of the experimental data is analyzed. The ge-
ometric parameters µ0, ν0, ω0, and γ0 to be calibrated are set as 0, the calculated solar vector
value of the three groups of data is considered the ordinate, the actual observation value of
the optical axis vector of the mirror center is considered the abscissa for fitting analysis,
and the calculated value of the solar vector is compared with the actual observation value.
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The comparison results are shown in Figures 5–7, where xi − x0 and yi − y0 represent the
actual solar vector pitch and azimuth components observed by the camera, respectively.
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Figure 4. (a) First set of data; (b) second set of data; (c) third set of data.
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Figure 5. Fitting between the calculated solar vectors of the first group of data and actual observation values of the optical
axis vector of the mirror center.
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Figure 6. Fitting between the calculated values of the second group of data and actual observation values of the pointing
mirror center optical axis.
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Figure 7. Fitting between the calculated values of the third group of data and actual observation values of the pointing
mirror center optical axis.

It can be seen from Figures 5–7 that the data fitting results for the three groups of
different paths indicate that the linear fitting correlation coefficient values between the
calculated value of the solar vector and optical axis vector value of the mirror center
observed by the camera are greater than 0.99. The linear fitting results are ideal, which
further verifies the reliability of the experimental data and provides reliable basic data to
solve the model.

5.2. Model Calculation and Theoretical Verification

The verified data solution model is used. The data of the model are shown in Table 1.
Only 8 sets of data are listed in the table. The first row indicates the time of data collection.
The second row indicates the corresponding pitch and azimuth encoder readings when the
solar image is located at a certain position of the camera array. The third row indicates the
altitude and azimuth of the sun in the local coordinate system corresponding to the data
acquisition time.

In total, 105 sets of data are extracted from 221 sets of data to calculate the cal-
ibration model parameters. When the initial values of

[
u0 ν0 ω0 γ0 α0 β0

]
,[

x0 y0 k1
]
, and

[
fx fy

]
are [0 0 0 0 76 310] (unit:degree), [724 471 0.1063] pix-

els, and [15.6 mm 15.6 mm], respectively, the system parameters are [−0.1625 −0.178
0.10614 0.0345 77.19 310.49] (unit:degree), [719.03 470 −0.0009] pixels, and [15.614 mm
15.65 mm].

After the model is solved, it is necessary to evaluate the accuracy of the model
parameters. First, the reliability of the results of the model is analyzed theoretically. The
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image centroid coordinates are used to represent the optical axis vector of the mirror as the
X-axis, and the calculated solar vector value is considered the Y-axis in the fitting analysis.
The linear fitting correlation coefficients of the two groups of values are considered to
perform the reliability analysis of the evaluation model solution results. The fitting results
of the two groups of data are shown in Figure 8.

Table 1. Data to solve the model.

Time hh:mm:ss 9:06:53 9:09:09 9:11:46 9:14:33 9:17:14 9:21:06 9:24:12 9:27:23
Encoder angle

value/(◦)
Pitch 103.667 103.271 102.524 102.524 103.579 104.7 105.952 107.029

Azimuth 167.563 167.256 167.278 167.256 167.585 167.278 166.663 166.355
Sun

position/(◦)
Altitude 29.041 29.397 29.804 30.234 30.644 31.227 31.688 32.156
Azimuth 131.971 132.452 133.012 133.615 134.202 135.059 135.756 136.48

Sun cen-
troid/(pixel)

Pixel x 206.383 216.259 244.145 273.59 317.017 345.299 351.167 372.528
Pixel y 324.101 285.591 225.422 205.229 242.376 273.299 314.541 349.653
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Figure 8. Fitting of the image centroid and solar vector.

It can be seen from the fitting results in Figure 8 that the image centroid coordinate
represents the mirror normal direction consistent with the solar vector, and the fitting
correlation coefficient R2 is greater than 0.99998, which indicates a high linear correlation.
Therefore, the reliability of the model results can be analyzed considering the theoretical
data. Second, we analyze the error of the system calculation model. The system error
caused by multipoint data optimization is used to analyze the pixel difference caused by
the camera observation and angle difference caused by the encoder elevation and azimuth.
The pixel, pitch, and azimuth error distributions corresponding to the systematic error
distribution generated by the solution model are shown in Figure 9.

The error distribution data in Figure 9 show that the pixel error corresponds to the
system model solution error, and the pixel average error and standard deviation in the
X-axis direction are 1.253 pixels and 1.014 pixels, respectively. The average error and
standard deviation in the Y-axis direction are 0.61 pixels and 0.45 pixels, respectively. The
average error and standard deviation of the azimuth axis are 0.024◦ and 0.019◦, respec-
tively. The average error and standard deviation in the pitch axis direction are 0.012◦ and
0.0085◦, respectively. According to the standard deviation data, these results are within
the allowable error range. Therefore, from the theoretical error data, the reliability of the
calculation model results is further verified.
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Figure 9. (a) Error distribution of the solution model corresponding to X and Y pixels; (b) pitch and azimuth angle error.

5.3. Model Experiment Verification

In this step, we further verify the accuracy of the model parameters. Through the
experiment, using the model inverse solution algorithm after calibration, the corresponding
encoder pitch and azimuth target positions corresponding to the sun at different times are
inversely solved, and the motor is driven to the target position. Finally, the accuracy of
the model is verified by the actual observation of the camera. Part of the test data of the
validated model is shown in Table 2, where only 8 sets of data are presented.

Table 2. Data used to solve the model.

Sun position/(◦) Altitude 29.811 32.342 34.575 37.129 39.697 39.58 37.73 30.35
Azimuth 141.002 145.701 150.732 158.317 172.518 188.583 199.285 217.961

Encoder target angle of
inverse solution/(◦)

Pitch 106.787 109.314 111.555 114.126 116.719 116.653 114.829 107.534
Azimuth 169.585 164.905 159.895 152.336 138.186 122.168 111.467 92.747

Encoder measurement
angle/(◦)

Pitch 106.831 109.292 111.577 114.17 116.741 116.697 114.807 107.512
Azimuth 169.629 164.927 159.873 152.292 138.164 122.212 111.489 92.703

Error target and
measurement/(◦)

Pitch 0.044 −0.022 0.022 0.044 0.022 0.044 −0.022 −0.022
Azimuth 0.044 0.022 −0.022 −0.044 −0.022 0.044 0.022 −0.044

The first row in Table 2 indicates the solar altitude and azimuth angles when the
central light axis of the reflector is aligned with the sun at different times. The second
row indicates the target positions of the pitch and azimuth encoders, as calculated with
the model inverse solution algorithm after calibration. The third row indicates the actual
position measurement values of the encoder. The device considers the data presented in
the second row as the target position, rotates the motor to the target position, and uses the
encoder to detect the actual position as the feedback signal to further ensure the motion
control accuracy of the turntable. The fourth row of data is the difference between the third
row of data and the second row of data, which represents the pitch and azimuth control
deviation. Figure 10 shows that the standard deviations of the pitch and azimuth angle
control errors are 0.0176◦ and 0.0305◦, respectively. The comparison and analysis of the
pitch and azimuth encoder test data indicate that the model calculations are consistent
with the measured values. The error range is approximately 0.04◦, and the accuracy is
better than 0.1◦, which satisfies the verification requirements of the calibration model.
The accuracy of the model is thus preliminarily verified by analyzing the motion control
accuracy of the turntable and through actual observations by the solar observer.
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Figure 10. Pitch and azimuth control error.

Through the inverse calibration model, the motor is driven and controlled, and the
model is preliminarily verified. To further verify the accuracy of the model parameters, by
considering the actual observation of the camera after calibration, the solar image is tracked
and collected, and the centroid coordinates of the solar image are used for verification. The
centroid coordinates of the solar image at different times are compared with the camera
main point coordinates to reflect the deviation degree of the center light axis of the reflector
pointing toward the sun. The root mean square error (RMSE) of the two groups of data is
calculated by Equation (21) to quantitatively evaluate the correctness of the model solving
parameters and the tracking control accuracy of the system.

σ(θ) =

√
∑ (x− x0)

2

n− 1
σ(ϕ) =

√
∑ (y− y0)

2

n− 1
(21)

Here, σ(θ) and σ(ϕ) are the RMSEs of the pitch and azimuth respectively; x0 and y0 are
the coordinates of the principal point of the camera after calibration; x and y are the image
centroid coordinates.

The centroid test data of the experimental verification model are presented in Table 3,
where only 8 sets of data are listed.

Table 3. Partial centroid test data of the validated model.

Sun centroid/(pixel) Pixel x 722.355 723.784 723.463 721.453 721.31 720.256 720.454 719.536
Pixel y 474.071 472.398 473.061 469.46 472.441 469.79 471.393 470.585

Camera main point/(pixel) Pixel x 719.000 719.000 719.000 719.000 719.000 719.000 719.000 719.000
Pixel y 470.000 470.000 470.000 470.000 470.000 470.000 470.000 470.000

Error centroid and main
point/(pixel)

Pixel x 3.355 4.784 4.463 2.453 2.31 1.256 1.454 0.536
Pixel y 4.071 2.398 3.061 -0.54 2.441 -0.21 1.393 0.585

The first row in Table 3 indicates the measured image centroid coordinates when the
reflector centroid axis is aligned with the sun according to the target value of the inverse
calibration model. The second row of data pertains to the use of a checkerboard to calibrate
the camera’s main point coordinates. The third row shows the deviation between the
measured image centroid and camera main point. The two sets of data and deviations are
shown in Figure 11.

According to the two sets of data in Figure 9a,b, it can be determined by formula
(21) that the RMSE values of the X- and Y-axis pixels are 2.0995 pixels and 0.8689 pixels,
respectively, and the corresponding pixel angle resolution errors are 0.0377◦ and 0.0144◦.
The synthetic angular resolution error is calculated by formula (22) combined with the
standard uncertainty formula [30], and the synthetic angular resolution error is 0.0403◦.
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2 (22)

Here, ui is the component of error uncertainty.
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Figure 11. (a) Measured image centroid; (b) camera main point; (c) deviation.

It can be determined from the above analysis data that a small deviation exists between
the centroid coordinates of the solar image obtained by the actual observation of the camera
as the observation value and the coordinates of the main point of the camera as the real
value. Nevertheless, the two sets of data are consistent, which demonstrates the accuracy
of the calibration model. At the same time, the tracking control accuracy of the system is
also measured through the RMSE. Because the tracking accuracy of the system represents
the normal pointing accuracy of the mirror, the tracking control accuracy of the system is
also the pointing accuracy of the system.

5.4. Accuracy Analysis of System Tracking

Through the experimental verification and analysis of the calibration model, the ac-
curacy of system tracking using the model is evaluated. The tracking accuracy of the
system mainly includes the motion control accuracy, external image processing algorithm
accuracy and calibration model calculation accuracy. The accuracy of the motion control
pertains to the accuracy (0.0003◦) of the solar position calculated with the astronomical
algorithm [31] and detection accuracy of the encoder (0.02◦). The accuracy of the external
image processing algorithm pertains to the accuracy of the image centroid extraction algo-
rithm (0.032◦) [32–36], average reprojection error of the camera calibration (0.1299 pixels),
interference of the solar image noise and accuracy of the calibration model calculation. The
uncertainty sources affecting the tracking accuracy of the system are presented in Table 4.
The system tracking accuracy summarizes all the factors. The RMSE of the solar image
obtained by the actual observation of the camera as the observation value and camera
principal point coordinate as the real value is comprehensively evaluated as 0.0403◦, and
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the tracking accuracy is noted to be better than 0.1◦, which meets the requirements of the
comprehensive pointing control accuracy of the system [37–40].

Table 4. Uncertainty analysis of system calibration.

Uncertainty Sources in System Tracking Control Uncertainty and Error

Internal source

Motion control error 0.02◦

Astronomical algorithm accuracy 0.0003◦

Encoder detection accuracy 0.02◦

External source

Image processing algorithm accuracy 0.030◦

Image centroid extraction algorithm accuracy 0.0204◦

Camera calibration average reprojection error 0.0021◦

Solar image noise interference 0.0219◦

Calibration model solution accuracy 0.180◦

Comprehensive evaluation accuracy 0.0403◦

According to the data in Table 4, the uncertainty of the system calibration is approx-
imately 0.0403◦. That is, the tracking control accuracy of the system is 0.0403◦, which is
greatly improved compared with the tracking accuracy of the tracking equipment in the so-
lar photovoltaic industry and the tracking accuracy of foreign point light sources [24,41–46].
This finding demonstrates the effectiveness of the calibration model in this paper.

Overall, the motion control error, encoder detection accuracy and image centroid
extraction algorithm accuracy are the main error sources in the system control accuracy.
Therefore, it is necessary to enhance the detection accuracy of the encoder, overcome the
interference caused by the mechanical transmission error and unbalanced force in the
motion processes, and optimize the image quality and image centroid extraction algorithm.
Moreover, by enhancing the accuracy of the calibration camera and reducing the influence
of the error caused by the model, the tracking accuracy of the system can be further in-
creased to enhance the comprehensive pointing accuracy of the system and more effectively
realize radiometric calibration and MTF detection of high-spatial resolution satellites.

6. Conclusions

A high-precision automatic geometric calibration modeling method for a point light
turntable is proposed. Based on the principle of geometric calibration modeling, a high-
precision automatic calibration model is established. By analyzing the reliability of the
experimental data and solving the model, the feasibility and effectiveness of the method
are demonstrated theoretically and experimentally. This approach can overcome the
problem of the low precision of normal and single-point calibration, which limits the
enhancement of the pointing accuracy. Moreover, the approach can reduce the calibration
time, accelerate the calibration progress and increase the work efficiency, which facilitates
high-frequency and high-efficiency networking automation to carry out the calibration of
point light sources with different energy levels and increase the pointing accuracy of the
system, achieve high-precision control of the central optical axis of the point light source
reflector to point toward the target position, and reflect the light spot toward the satellite
entrance pupil. Finally, this work lays a foundation for the high-precision, high-frequency,
operational on-orbit radiometric calibration and MTF detection of high-resolution satellites.
In addition, this system modeling method provides a theoretical basis for heliostat and
solar photovoltaic equipment calibration.
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Abstract: The image-based 3D reconstruction pipeline aims to generate complete digital
representations of the recorded scene, often in the form of 3D surfaces. These surfaces or mesh models
are required to be highly detailed as well as accurate enough, especially for metric applications.
Surface generation can be considered as a problem integrated in the complete 3D reconstruction
workflow and thus visibility information (pixel similarity and image orientation) is leveraged in the
meshing procedure contributing to an optimal photo-consistent mesh. Other methods tackle the
problem as an independent and subsequent step, generating a mesh model starting from a dense 3D
point cloud or even using depth maps, discarding input image information. Out of the vast number
of approaches for 3D surface generation, in this study, we considered three state of the art methods.
Experiments were performed on benchmark and proprietary datasets of varying nature, scale, shape,
image resolution and network designs. Several evaluation metrics were introduced and considered
to present qualitative and quantitative assessment of the results.

Keywords: surface reconstruction; mesh model; 3D reconstruction; visibility constraints; volumetric
methods; dense point cloud; multiple view stereo (MVS); dense image matching (DIM);
photogrammetry; computer vision

1. Introduction

The 3D reconstruction of the physical shape or geometry of either single objects or complex scenes
is a topic of interest in countless application scenarios, varying from more industrial analyses [1],
cultural heritage related studies [2,3], environmental mapping [4,5] and city modeling [6,7] to the latest
autonomous driving and navigation applications [8]. Polygonal meshes in the form of triangular or
quadrilateral faces are typically used to represent the digital surface of such objects or scenes in the
3D space.

The employed technique used to acquire the input data highly affects the quality of the final
surface reconstruction. Among a large variety of active and passive optical sensors and methods,
image-based 3D reconstruction is frequently used due to its easiness, portability, efficiency and
reliability. In particular, dense image matching (DIM) is the process of calculating the 3D coordinates
of each pixel visible in at least two images, thus generating a dense representation of the scene.
In photogrammetry, DIM follows the image orientation, triangulation and camera calibration steps
commonly calculated within the bundle adjustment (BA) process [9].
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Equivalent to this, in the computer vision community, the task of reconstructing a dense 3D
representation of the scene from a collection of images is known as multi-view stereo (MVS) [10],
typically performed as a subsequent step to the Structure from Motion (SfM) procedure.

Traditionally, the final output of DIM is a 3D point cloud (or, in mapping applications, 2.5D digital
elevation model, DEM) of the scene [9,11]. The surface or mesh reconstruction is usually applied to the
point cloud resulting from the DIM, without any further checks on the images and their orientations.

On the other hand, MVS encompasses distinct 3D reconstruction methods that may deliver
different output products in the form of depth maps, point clouds, volume scalar-fields and meshes [12].
Such different scene representations have been initially developed for visualization and graphics
applications, each of them being optimized for different purposes, following also the evolution in
hardware and computational power. A certain class of MVS approaches generates a refined mesh model
using photo-consistency (i.e., pixel color similarity) measures and the so-called visibility information
(i.e., the image orientations and thus the 2D–3D projections) [12,13].

Paper’s Motivation and Aim

This study aimed to investigate the surface reconstruction problem for image-based 3D
reconstruction scenarios. The paper builds upon the following considerations:

• In a traditional photogrammetric pipeline, the meshing step interpolates a surface over the input
3D points. This is usually disjointed from the 3D point cloud generation DIM but can potentially
leverage and take advantage of additional information from the previous steps of the workflow,
i.e., visibility constraints and photo-consistency measures which are generally not considered in
popular meshing algorithms as Poisson [14].

• Dense point clouds can be heavily affected by poor image quality or textureless areas, resulting in
high frequency noise, holes and uneven point density. These issues can be propagated during the
mesh generation process.

• Volumetric approaches for surface reconstruction based on depth maps are well-established,
time-efficient methods for depth sensors, also known as RGB-D [15], and might be a valid approach
also for pure image-based approaches.

The aim of this work was thus to evaluate whether the integration of visibility information
(image orientation) and photo-consistency and during the meshing process can potentially lead to an
improvement of the mesh quality (and successive products). For this reason, three diverse surface
reconstruction approaches were considered and evaluated on diverse datasets (Figure 1):

• Method 1: Surface generation and refinement are incorporated in the 3D reconstruction pipeline.
The mesh is generated after depth maps and dense point clouds are estimated and is subsequently
refined considering visibility information (i.e., image orientation) to optimize a photo-consistency
score over the reconstructed surface [13,16].

• Method 2: Surface generation is disjoint from the image-based 3D reconstruction procedure.
The dense point cloud, as obtained from Method 1, is converted to a mesh model without the use
of any visibility constraints or photo-consistency checks [14,17].

• Method 3: Given the image poses, a mesh model is generated from the depth maps produced
in Method 1, employing a volume integration approach [15,18,19]. Again, in this method,
visibility and photo consistency information are not taken into consideration while reconstructing
the surface.

The results of the considered approaches were evaluated using several metrics, including accuracy,
completeness and roughness. On the contrary, the computational time was not considered a key factor
for this investigation.

The rest of the article is divided as follows. Section 2 reviews the main concepts and steps of DIM
and MVS. Section 3 provides an overview of the available DIM/MVS benchmark datasets, examining
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their suitability for the present study; surface reconstruction and assessment criteria are also addressed.
The considered surface reconstruction methods are then introduced in Section 4. The employed
datasets, carefully chosen to cover a wide range of image scale, image resolution and application
scenarios (from close range to aerial photogrammetry), and the adopted comparative metrics are
presented in Section 5, followed by a discussion of the obtained results in Section 6.
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2. On DIM and MVS

Matching is a general term used to define approaches for finding correspondences between two
images, sets of features or surfaces [20]. In photogrammetry, image matching indicates the (automatic)
procedure of identifying and uniquely matching corresponding (homologous, conjugate) features
(points, patterns and edges) between two (i.e., stereo) or more (i.e., multi-view) overlapping images. In
computer vision, the analogous step is the so-called “stereo correspondence” problem [21].

Image matching can be sparse or dense, stereo or multi-view. In sparse matching, detectors and
descriptors are usually employed to extract and characterize a set of sparse and potentially matching
image features; their local appearance is then used to search and match corresponding locations in
other images. Some approaches first extract only highly reliable features and then use them as seeds to
grow additional matches [10]. Sparse matching algorithms are an integral part of automatic image
orientation procedures implemented in SfM algorithms.

In dense image matching (DIM), a huge number of correspondences (up to pixel-to-pixel) between
image pairs (dense stereo matching) or multiple views is established. The dense correspondence
problem is still a crucial and active research topic for applications where dense and detailed 3D
data generation are needed. It is more challenging than the sparse correspondence problem,
since it requires inferring correspondences also in textureless, reflective and challenging areas [10].
Szeliski [10] identified four main steps that are usually implemented in dense correspondence
algorithms: (1) matching cost computation; (2) cost (support) aggregation; (3) disparity computation
and optimization; and (4) disparity refinement. Based on the various implementations of the
aforementioned fundamental steps, diverse methods have been proposed. Several approaches have
been developed to measure the agreement between the pixels and find the best match, from local
to semi-global [22] and global methods, from area or patch-based [23,24] to feature-based [25] or a
combination of them [26]. The most important used criterion to find corresponding pixels is known as
photo-consistency, which estimates the similarity of two (or more) pixels between two images [12].
Examples of photo-consistency metrics are the Sum of Squared Differences (SSD), Sum of Absolute
Differences (SAD), Normalized Cross Correlation (NCC) and Mutual Information (MI) [12].

The term dense stereo matching refers to the subclass of dense correspondence methods focusing
on establishing correspondences between pixels in a stereo pair of images [20]. When three or more
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overlapping images are involved in the reconstruction process, the dense matching problem is defined
as multi-view, multi-view stereo or multiple view. The ultimate goal of MVS is to reconstruct a complete
and potentially globally consistent 3D representation of the scene from a collection of images acquired
from known positions [10,27].

Examples of MVS algorithms are surface-based stereo, voxel coloring, depth map merging, level set
evolution, silhouette and stereo fusion, multi-view image matching, volumetric graph cut and carved
visual hulls [10]. An exhaustive taxonomy of DIM and MVS methods is extremely complex and, thus,
several classification schemes have been proposed up to now. For instance, Seitz et al. [27] divided MVS
algorithms based on six criteria: scene representation, photo-consistency measure, visibility model,
shape prior, reconstruction algorithm and initialization requirements. Aanæs et al. [28] divided MVS
approaches into two main categories: point cloud based methods (e.g., [23,29–32]) and volume-based
methods (e.g., [33–35]).

In this paper, we adapt the categorization proposed by Furukawa and Hernández [12], focusing
on the different output of the MVS procedure in terms of scene’s representation. MVS starts with
the search of corresponding pixels in the images in order to transform these dense correspondences
into depth maps and/or point clouds. Visibility and occlusions estimation can be integrated in the
matching process and are usually performed in coarse-to-fine manner as the dense reconstruction
progresses to optimize the photo-consistency computation [12]. Based on the photo-consistency result
(i.e., once the corresponding pixels have been identified in the images), depth maps are reconstructed
for each image used as reference and matched with its visual neighbors. The resulting depth maps are
then merged to produce the final 3D point cloud. Alternatively, when corresponding pixels with the
highest photo-consistency score are found in two or more images, they are directly converted into 3D
coordinates using collinearity in order to generate a dense point cloud.

Subsequently, the mesh generation follows. Oriented (i.e., with normals) and unoriented
(i.e., without normals) point clouds can be converted into mesh models using several algorithms,
such as Poisson surface reconstruction [14]. Alternatively, more sophisticated optimization techniques
or volumetric surface reconstruction approaches have also been largely investigated [13]. Some of
them require dense point clouds as an intermediate step while generating the surface model [36,37].
Other volumetric methods, such as the so-called Truncated Signed Distance Field algorithm (TSDF),
use straightaway depth maps and generate a surface by dividing the 3D space into 3D voxel cells
where each voxel is labeled with a distance [38]. However, while surface reconstruction from depth
maps is quite common when using RGB-D sensors [15,39], in image-based 3D applications of metric
accuracy it is still not fully exploited. Indeed, point clouds are the most common and requested product
of a photogrammetric project while mesh models are generally produced mainly for rendering and
visualization purposes.

Finally, a mesh refinement step can be undertaken [12]. This requires that images are considered
again to verify the photo-consistency, this time over the reconstructed mesh surface. The vertices
are moved to optimize their location, individually or all together. In the optimization process,
a regularization term can influence the smoothness of the final mesh and, when available, silhouettes
can be included as an additional consistency measure.

3. Benchmarks and Assessment of Surface Reconstruction Approaches

The current section is divided in two parts. In the first, existing benchmarks and evaluation
methods adopted in photogrammetry and computer vision are reviewed, showing that they mainly
focus on dense point clouds. The second part addresses the quality metrics developed in computer
graphics for the assessment of surface reconstruction approaches. Some of these metrics were adopted
in the comparative evaluation presented in Section 6.

The use of benchmarks is a common practice in the scientific community for the purpose of
assessing and comparing different techniques, methods and algorithms. They collect data characterized
by relevant features and evaluated according to significant metrics. A benchmark is usually composed of
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three elements: (1) input data to apply the investigated method; (2) reference or ground truth data against
which the achieved results are compared; and (3) assessment criteria for the evaluation procedure.

3.1. DIM/MVS Benchmarks

Bakuła et al. [40] and Özdemir et al. [41] provided overviews of benchmarking initiatives proposed
in photogrammetry and remote sensing. Knapitsch et al. [42] and Schops et al. [43] discussed and
proposed benchmarks specifically focusing on MVS. Each of the available benchmarks has unique
features, which cover different scene characteristics, from small objects in laboratory conditions, such as
in Middlebury MVS [27,44] and DTU Robot Image Data Sets [28,45] or 3DOMcity benchmark [41,46],
to more and complex scenes both indoor and outdoor (Strecha [47], ETH3D [43,48]; Tanks and
Temples [42,49]; ISPRS-EuroSDR benchmark on High Density Aerial Image Matching [50,51]. Image
resolutions also vary, from very small (0.2 Mpx Middlebury MVS) to medium (6 Mpx Strecha) up
to high (24 Mpx 3DOMcity and ETH3D) and very high resolution aerial images (136 Mpx of the
ISPRS-EuroSDR benchmark). Frames extracted from videos of different quality are also available
(ETH3D and Tanks and Temples).

Ground truth data for benchmarking MVS methods are usually acquired with laser scanner
systems and used in the form of a point cloud. Strecha and Middlebury MVS convert the point
cloud into a triangle mesh, yet the reference models are not publicly available from Middlebury MVS.
In some cases, the ground truth is available only for “training” data, while additional scenes are
provided for the evaluation (ETH3D and Tanks and Temples).

Most of the evaluation procedures impose a resampling or regularization of the MVS 3D data to
be evaluated and, if the submitted result is a mesh, a conversion into point cloud (DTU Robot Image
Data Sets, ETH3D, Tanks and Temples) is performed.

The investigated methods are often evaluated by submitting the obtained results online
(e.g., Middlebury MVS and 3DOMcity); however, open source code is also made available for
offline testing and training (DTU Robot Image Data Sets, ETH3D and Tanks and Temples).

The assessment protocol requires the reference/ground truth (GT) and tested/submitted data
(D) to be aligned, i.e., co-registered in the same reference system. This may be accomplished in
different ways: (i) using the provided image interior and exterior orientation parameters (Middlebury
MVS and ETH3D); (ii) computing a 7-Degrees of Freedom (DoF) spatial transformation through
absolute orientation of the image exterior orientation parameters (3DOMcity and Tanks and Temples);
and (iii) with an iterative closest point (ICP) refinement between the reference and test data (Tanks
and Temples).

The common metrics used in the evaluation are accuracy and completeness (Middlebury MVS,
DTU Robot Image Data Set and 3DOMcity), also defined, respectively, as precision and recall (ETH3D
and Tanks and Temples). Both criteria entail the computation of the distance between the two models.
For the accuracy assessment the distance is computed from the submitted data (D) to the ground truth
(GT). For the completeness evaluation, it is the opposite, i.e., from GT to D. The computed distances
can be signed (Middlebury MVS and 3DOMcity) or unsigned (Tanks and Temples). A threshold
distance is usually adopted to find the fraction or percentage of points falling within the allowable
threshold, which is decided according to the data density and noise. As additional accuracy parameters,
DTU Robot Image Data Set and 3DOMcity characterize the distance distributions with statistics,
such as the mean and median values, also performing some outlier removal. ETH3D and Tanks and
Temples combine the accuracy/precision p and completeness/recall r values into a single score, i.e., their
harmonic mean (F1 in ETH3D and F in Tanks and Temples), computed as: (2·p·r)/(p + r).

3.2. Surface Reconstruction and Assessment Criteria

Although aiming at the quality assessment of MVS approaches, the benchmarks described in the
previous section mainly focus on dense point clouds. However, the surface reconstruction problem is
also relevant in computer graphics. A survey on surface reconstruction methods from point clouds
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in computer graphics was provided by [52], who also distinguished the different evaluation criteria
in geometric accuracy, topological accuracy, structure recovery and reproducibility. An analogy can
be established between the quality assessment in photogrammetry and computer vision (Section 3.1)
and the geometric accuracy in this context, which also requires the comparison with a ground truth.
The Hausdorff distance (i.e., the maximum of the distances of all points of one mesh to the other [53]),
mean and root mean square distance [54] or error in normals are frequently used geometric error
measures. Metro [55] is a very popular tool for measuring the (geometric) difference between a
reference mesh and its simplified version.

When dealing with polygonal mesh surfaces, while geometry mainly refers to the position of
vertices, topology refers to the connectivity, or graph, of the mesh elements, i.e., vertices, edges and
triangles [56]. Visual exemplifications of connected components, manifolds, self-intersections and
boundaries are shown in Figure 2.
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With the aim of overcoming the issue of a “real” ground truth, i.e., the lack of the computational
representation of the reference surface, Berger et al. [57] proposed a benchmark for the assessment of
surface reconstruction algorithms from point clouds where point cloud data are simulated as being
acquired with a laser scanner. Implicit surfaces, i.e., continuous and smoothly blended surfaces [58] of
different complexity, are used as initial geometric shapes for sampling and are adopted as reference
models for a quantitative evaluation. Both geometric and topological error measures are reported.

Crucial in computer graphics is the assessment of the mesh quality degradation resulting
from simplification, resampling and other operations, for example compression and watermarking,
which alter the original mesh not only from a geometric/topological point of view but also introduce
visual distortions. Mesh visual quality (MVQ) assessment is, indeed, adopted as a criterion to design
and optimize mesh processing algorithms [59]. While in photogrammetry the quality of a produced
model is usually assessed in terms of its accuracy, precision and resolution, in computer graphics the
term quality indicates “the visual impact of the artefacts introduced by computer graphics” algorithms [60].
It has been shown that metrics frequently adopted for assessing the geometric accuracy of the mesh
(i.e., Hausdorff, mean and root mean square distances) do not correlate well with the human perception
of surface quality and therefore quality scores consistent with the perception of human observers
have been introduced [60–62]. These perceptually driven quality metrics, which try to mimic the
human visual system (HVS), are based on roughness, local curvature, saliency, contrast and structural
properties of the mesh and require a reference mesh to estimate the introduced degradation. Roughness
infers the geometric non-smoothness [63] of a surface and can be computed as either a local or a global
property: while local roughness may provide the high frequency behavior of the mesh vertices in a
local region, global roughness is an indication of the average low frequency surface characteristic [64].
Curvature is also adopted as a measure to indicate structure and noise, well correlating with visual
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experience [65]. Databases comprising reference and distorted meshes are publicly available for
assessing MVQ degradation introduced by geometrical processing [66] (subjective quality assessment
of 3D models). However, since MVQ metrics are computationally expensive, the 3D models contained
in these databases are of lower resolution (up to 50k vertices and 100k triangles) than typical models
for photogrammetric applications. Lately, machine learning tools have been applied to estimate visual
saliency and roughness of meshes without any reference model [67].

4. Investigated Surface Generation Methods

Three surface generation methods are hereafter considered. All three approaches require images
with known camera parameters (interior and exterior) as input. Therefore, to avoid bias, all three
methods share the same interior and exterior camera parameters and undistorted images, as well as
depth values and dense point clouds estimations.

SIFT feature points [68] are first extracted, then matched with cascade hashing [69] and finally
the camera poses are computed along with the sparse point cloud within an incremental bundle
adjustment, as implemented within OpenMVG library [70]. Distortions are removed from the images
before the dense matching step, which generates depth maps and a dense point cloud. Based on
PatchMatch stereo [71,72], Shen [24] introduced a patch-based stereo approach where the depth of each
pixel is calculated using random assignment and spatial propagation. OpenMVS is an open-source
library that closely follows this idea while applying some optimization steps for more efficiency and
is thus broadly used in 3D reconstruction research [42,73,74]. First, the best neighboring views are
selected based on viewing direction criteria, and potential stereo pairs are formed. Rough depth
maps are generated based on the sparse point clouds and iteratively refined using photo-consistency
(zero mean normalized cross correlation ZNCC). Estimated depth maps are subsequently filtered
taking into consideration visibility constraints while enforcing consistency among neighboring views.
Finally, overlapping depth maps are merged to generate the fused dense 3D point cloud of the scene
by minimizing redundancies and eliminating occluded areas.

The three employed surface generation methods are reported in detail in the following sections.

4.1. Photo-Consistent Volume Integration and Mesh Refinement (Method 1, M1)

The mesh reconstruction method exploiting photo-consistency and image visibility information is
based on the approach introduced by Jancosek and Pajdla [13] as implemented by OpenMVS. The 3D
space is initially discretized in tetrahedra using Delaunay tetrahedralization starting from the dense
points and free space is modeled from the visibility information of the input 3D points. The final
surface results as the interface between the free and the full space (graph cut optimization) while
respecting visibility constraints, i.e., the image orientation and the projection of the 3D points back to
the 2D image plane. Several mesh optimization steps can be performed to obtain an optimal mesh
result, being pure geometric, such as smoothing, non-manifold and spike removal, or photo-consistent.
Surface curvature, as expressed by point normals, is also taken into consideration during mesh
reconstruction and thus complex regions are represented with high density triangles, while smoother
areas may be wrapped into triangles of larger edges [75]. Photo-consistent refinement algorithms
are generally efficient enough to produce detailed surfaces even from a rough input. In this method,
an extra step of mesh refinement solution based on the idea described in [16] is implemented, by adding
a photometric consistency score along with the geometric regularization term weighted by a scalar
regularization weight. Mesh texturing is also enabled in this method, by assigning a best view to each
face and generating a texture atlas, as described in [76]. In our experiments, following the OpenMVS
implementation, we performed the extra mesh refinement step in order to take full advantage of the
visibility information.
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4.2. Surface Generation from Point Cloud (Method 2, M2)

Poisson surface reconstruction from oriented (i.e., with normals) point clouds [14] is a well-known
and commonly adopted meshing approach. It creates a watertight surface, solving the reconstruction
problem as a solution of a Poisson equation. An indicator function is computed with value one inside
the surface and zero outside. In this work, M2 is based on the screened Poisson formulation [77],
as implemented in CloudCompare [78]. The term “to screen” is adopted by the authors to indicate the
screening term associated with the Poisson equation. The screening term reduces the over-smoothing
of the data by introducing a soft constraint that forces the reconstruction to follow the input points.
The volume occupied by the orientated points is partitioned using an adaptive octree structure,
whose depth d (or level) can be decided accordingly. Selecting a depth implies constructing a voxel grid
with a resolution no better than 2d × 2d × 2d. The octree level is automatically adapted to the original
point sampling density, with the selected reconstruction depth being an indication of the maximum
achievable mesh resolution. Beside the depth value, another critical parameter is the samples per node.
It defines the number of points included in each voxel grid or node: the more noisy are the input data,
the higher should be the number of points falling in each node of the octree, which may result in a
loss of geometric details. If the original points have color information, as in our experiments, the RGB
values are interpolated and transferred to the vertices of the generated mesh.

4.3. TSDF Volume Integration (Method 3, M3)

The Truncated Signed Distance Field (TSDF) volume integration is a volumetric reconstruction
method broadly used while working with low-cost RGB-D sensors and real-time scenarios. It became
a standard method since Newcombe et al. [15] used it in the KinectFusion project followed by various
extensions and optimizations thereafter [79–82]. TSDF methods divide the 3D space (volume) into a
discretized set of voxels and fuse distance information into them and is optimized for reconstruction
speed. It is commonly combined with the marching cubes algorithm [83] (to generate a mesh, using the
voxel grid created by TSDF and creating triangles on the edges. In more detail, SDF functions yield
the shortest distance to any surface for every 3D point: depending on the sign, a point can be inside
(negative) or outside (positive) the object boundaries, with the surface boundaries lying exactly on the
zero crossing. On the other hand, in TSDF methods, a truncation threshold is added to omit everything
outside this range. The standard method, although efficient under certain scenarios, has some default
fundamental limitations as the voxel size itself defines the resolution of the final mesh and anything
below this threshold cannot be reconstructed or erroneous results are produced when slanted surfaces
are present, requiring alternative optimization solutions (e.g., [82,84]). In this work, M3 uses the TSDF
implemented in the Intel Open3D library [19]. The resulting mesh may consist of a large number of
unnecessary polygons, so further optimization steps may be performed: (1) merge the vertices of the
mesh that are within a certain tolerance; (2) eliminate all edges and vertices that are non-manifold;
(3) divide the mesh into clusters; and (4) eliminate all clusters with an area less than a certain value.

5. Datasets and Evaluation Metrics

The purpose of this study, namely the understanding and quantification of the potential benefits
of surface reconstruction methods fully integrated into the photogrammetric pipeline, requires the
usage of available benchmark data and metrics (Section 3), while pushing towards the identification of
additional test cases and evaluation measures.

5.1. Datasets

Covering a broad range of application scenarios was the highest priority while choosing the
evaluation datasets summarized in Table 1. Some of them are derived from existing benchmarks while
others originate from original projects realized by FBK/3DOM.
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Table 1. Case studies and related characteristics.

Dataset Type of
Scene

Type of
Acquisition

Num of
Images/Total Mpx

Scene Size/Mean
Image GSD

Ground
Truth

Evaluation
Criteria
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Table 1. Cont.
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Table 2. Main parameters and final mesh resolution of the investigated methods.

FBK/AVT Strecha
Fountain

Tanks and
Temples—Ignatius

FBK/3DOM
Modena

FBK/3DOM
Wooden Ornament

Image Resolution for Depth Maps
and Dense Point Cloud Generation

1
4 Full Full 1

4 Full

M1
Regularity weight 0.4 0.4 0.4 0.4 0.4

Resolution (mm) 80.0 1.3 1.2 3.0 0.04

M2
Voxel grid size (mm) 160.0 0.7 0.3 1.5 0.02

Samples per node 20 1.5 20 1.5 20
Resolution (mm) 160.0 0.3 0.2 0.7 0.01

M3
Voxel grid size (mm) 500.0 3.8 15 6.2 1.4

Resolution (mm) 160.0 2.7 5.0 3.0 0.07

5.2. Evaluation Approach and Criteria

To enable the evaluation approach, a series of steps was undertaken. First, for the datasets for
which the ground truth is available in the form of a point cloud, a surface was reconstructed using the
same approach as in Section 4.2, preserving the original point cloud resolution. The meshing result was
evaluated by computing the distance between the original point cloud and the derived mesh. Only the
vertices that fall within a defined threshold (i.e., three times the average point cloud resolution) were
retained. Moreover, interpolated triangles with a side length greater than about ten times the average
mesh resolution and small disconnected components were eliminated from the mesh models generated
by the three methods described in Section 4. Finally, a common datum was defined for the reference
and evaluated meshes. The co-registration between the reference mesh and surfaces to be compared
(called “data”) was performed in a two-step procedure: (i) an absolute orientation through reference
points or image exterior orientation parameters where available; and (ii) 7-DoF spatial transformation
refinement through ICP between the photogrammetric dense point cloud and the reference mesh.

The following metrics were used to evaluate the results:

• Accuracy was evaluated as the signed Euclidean distance between the vertices of the
(photogrammetric) data mesh and the (scanner) reference mesh. The signed Euclidean distance
was chosen instead of the Hausdorff distance to highlight any possible systematic error. For this,
both CloudCompare and Meshlab [85] implementations were tested, providing equivalent results.
The following values were computed: mean, standard deviation (STDV), median and normalized
maximum absolute deviation from the median (NMAD = 1.4826 ×MAD), root mean square (RMS)
and outliers percentage.
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• Completeness was defined as the signed Euclidean distance between the (scanner) reference mesh
and the (photogrammetric) data mesh. The percentage of vertices of photogrammetric data mesh
falling within the defined threshold (in%) was adopted as a measure for completeness.

• F-score was defined as in [42] (see Section 3.1).
• Local roughness was computed as the absolute distance between the mesh vertex and the best fitting

plane estimated on its nearest neighbors within a defined kernel size. The method implemented
in CloudCompare was adopted. Adapting the standard parameters generally used to quantify
the roughness [86], mean and RMS roughness values are reported to describe the local behavior of
the vertices in their local region (i.e., within the selected kernel). The kernel size was carefully
selected according to surface resolution.

• Local noise was assessed on selected planar regions where the plane fitting RMS was computed.
• Sections were extracted from the meshes and the mean and RMS signed distance values from data

to reference are reported.
• Local curvature variation, expressed as normal change rate, was computed over a kernel size,

i.e., the radius defining the neighbor vertices around each point where the curvature was estimated.
As for the roughness metric, the kernel size was decided according to the surface resolution and
size of the geometric elements (3D edges). The normal change rate is shown as a color map to
highlight high geometric details (e.g., 3D edges), which appear as sharp green to red contours,
and high frequency noise, shown as scattered green to red areas. The method implemented in
CloudCompare was here adopted.

• The topology of each generated surface is evaluated in terms of the percentage of self-intersecting
triangles over the total number of faces.

Given the above, the accuracy, completeness and F-score provide insight on the global geometric
correctness of the reconstructed mesh, or in other words its closeness to the reference model. At the
same time, the roughness and fitting of planar areas are a measure of the high frequency noise generated
in the meshing process, while the normal change rate mainly shows the ability of reproducing geometric
elements, such as 3D edges and contours. Finally, the percentage of self-intersecting triangles is an
indication of the level of topological errors produced by the surface generation approach.

6. Results and Discussion

In this section, the results of the performed analyses are discussed. Firstly, the dataset without
ground truth data is presented, reporting evaluations in terms of profiles, normal change rate maps
and plane fitting (Section 6.1). Then, mesh results with datasets featuring a ground truth mesh are
presented (Section 6.2).

6.1. Evaluation without a Reference Mesh: The Aerial Case Study

For the aerial dataset, no reference model is available. Thus, the quantitative evaluation is reported
in terms of plane fitting RMS in two different areas, P1 and P2 in Figure 3a. The difference in the surface
reconstruction approaches is also qualitatively shown in the section profiles S1 and S2 (Figure 3b) and
normal rate change (Figure 3c).

High noise and discrepancies can be observed while comparing the three methods. All methods
present topological errors, with non-manifold vertices as well as self-intersecting faces for M2 and M3.
M1 appears less noisy, in terms of both plane fitting RMS (Table 3) and normal change rate (Figure 3c).
The section profiles also show a less bumpy pattern.
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Figure 3. (a) Orthographic view of the urban area, with details of the extracted areas for the plane
fitting analysis (P1 and P2) and sections (S1 and S2); (b) profiles of the extracted sections; and (c) normal
change rate maps on a building.

Table 3. Quantitative and topological analyses for the aerial dataset: plane fitting and percentage of
self-intersecting faces.

Method
Plane Fitting RMS (m) Percent of Self-Intersecting Faces

P1 P2

M1 0.352 0.602 -
M2 0.391 0.606 0.01%
M3 0.385 0.547 0.5%

To evaluate the suitability of the investigated approaches for specific photogrammetric applications
that require orthophotos as the final outcome, orthographic views of the mesh models are shown
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(Figure 4). M1, which integrates the texturing step downstream the photogrammetric pipeline,
provides a result visually more comparable to a standard orthophoto. The visual appearance is
qualitatively better than the other two views, which are derived from color-vertex meshes. However,
artifacts in the building edges due to geometric defects in the mesh model can be observed.
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Figure 4. Orthographic view of the textured mesh from M1 and color vertex surfaces from M2 and M3.

6.2. Evaluation with a Reference Mesh

Figure 5 shows the surface models for the datasets where a reference surface model is available.
The related analyses are summarized in Tables 4–7 (see Section 5.2 for the definition of the metrics)
and visually shown in Figures 6–9 for the datasets Fountain, Modena, Ignatius and Wooden ornament,
respectively. The roughness map provides information on the geometric non-smoothness of the surface.
The normal change rate map highlights high geometric details (e.g., 3D edges), which appear in the
images as sharp green to red contours, and high frequency noise, shown as scattered green to red areas.
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The accuracy, completeness and F-score values (Tables 4–7) reveal that the three investigated
approaches perform similarly, with M1 and M2 usually outperforming M3.

M1 also exhibits the best metrics in terms of roughness for all the datasets. The visual inspection
and metric values for the section profiles point out that all three methods tend to over-smooth the
geometric details compared to the ground truth and that the sections from M1 are usually less noisy.
All the investigated mesh models present non-manifold vertices, and, other than the Modena’s bas-relief
(Table 5), M2 (Tables 4, 6 and 7) and M3 (Tables 4 and 7) are also characterized by self-intersecting faces.

The normal change rate maps convey additional insight on the different performances of the three
surface generation methods. It is evident that none of the approaches can reproduce the geometric
details of the reference mesh. However, M3 and especially M2 are more affected by high frequency
noise, easily distinguishable in the green to red spots spread over the models (Figures 6 and 8 from
the Fountain and Wooden ornament datasets). For Ignatius, due to the significantly lower resolution
of M3, a different kernel size is adopted for the normal change rate estimation, clearly implying an
over-smoothed geometry with respect to the other approaches. In the Modena’s bas-relief, the normal
change rate does not highlight significant differences among the investigated methods.
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Wooden ornament dataset.

From the analysis of the roughness and normal change rate maps, it can be deduced that the
methods do not show significant differences, when the starting data (dense point cloud or depth maps)
are not heavily affected by high frequency noise (Modena dataset, Figure 7). When noise characterizes
the intermediate MVS results such as for the Fountain (Figure 6), Ignatius (Figure 8) and Wooden
ornament (Figure 9) datasets, M1 generally produces less noisy surfaces while preserving better the
geometric details.
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7. Conclusions

Surface or mesh reconstruction is a cross-disciplinary topic and an important step in a 3D modeling
procedure. It can be fully integrated into the image-based pipeline as the final output of the MVS step
or applied separately from the main workflow, which implies the use of popular surface reconstruction
algorithms such as Poisson.

We investigated three different approaches of surface reconstruction in the context of
photogrammetric applications: (1) the mesh generation step, incorporated in the reconstruction pipeline,
takes into account photo-consistency and visibility information (M1); (2) the surface reconstruction
is “outsourced” from the main reconstruction workflow and does not exploit visibility constraints
or photo-consistency checks (M2); and (3) provided the image orientation parameters, the mesh
is generated by integrating the depth maps with a volumetric method, without any visibility or
photo-consistency information (M3). The comparative analysis aimed at quantifying the improvement
of approaches fully integrated into the 3D reconstruction procedure and leveraging geometric and
photo-consistency constraints, against methods disjointed from the dense reconstruction procedure
that do not further exploit image content information or the results from bundle adjustment.

We first revised the concepts and steps of MVS and reviewed existing benchmarks, highlighting
their limitations in the context of this work. Many of the publicly available data do not provide reference
data in the form of mesh models and the employed assessment criteria are usually narrowed to the
global geometric correctness through accuracy and completeness scores, ignoring other important
features such as the reproduction of fine geometric details or noise level. An overview of surface
assessment criteria adopted in computer graphics was also provided, with a focus on those considered
in this study to quantify the reconstruction noise and geometric details.

The three considered methods were introduced, and the selected datasets and evaluation metrics
were described. Drawing a definite conclusion was out of the scope of the paper. The results of the
investigation show that, in experiments with a reference model, M1 and M2 performed similarly
in terms of accuracy and completeness. However, the surface generation method integrated into
the image-based reconstruction workflow (M1) generally outperformed the other two approaches in
recovering geometric details and reducing the noise in all the considered case studies, regardless of the
characteristics of the given images (scale, resolution, texture, etc.).

Although relevant for some applications, especially in real time, computational efficiency was
not included in this evaluation, because the main interest was to test the best achievable quality
even at the expense of long calculation times. However, it should be mentioned that M3 proved to
be computationally more efficient than M1 and M2, i.e., on average 5–10 times faster than M1 and
2.5–5 time faster than M2, differences that can get larger as the complexity of the dataset increases
in terms of resolution and noise. The presented study also emphasized the lack of benchmarks and
assessment criteria specifically addressing the surface reconstruction problem for applications where
metric accuracy matters.

Our future work will include the expansion of the current investigation to further MVS
approaches and integrating perceptual evaluation metrics into rigorous accuracy assessment procedures.
The robustness of the different methods to possible variations in the interior and exterior orientation
parameters will also be examined. Moreover, we plan to further investigate the inclusion of visibility and
semantic constraints in the 3D reconstruction pipeline towards the optimization of the final products.
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Abstract: Structure from Motion (SfM) can produce highly detailed 3D reconstructions,
but distinguishing real surface roughness from reconstruction noise and geometric inaccuracies
has always been a difficult problem to solve. Existing SfM commercial solutions achieve noise
removal by a combination of aggressive global smoothing and the reconstructed texture for smaller
details, which is a subpar solution when the results are used for surface inspection. Other noise
estimation and removal algorithms do not take advantage of all the additional data connected with
SfM. We propose a number of geometrical and statistical metrics for noise assessment, based on both
the reconstructed object and the capturing camera setup. We test the correlation of each of the metrics
to the presence of noise on reconstructed surfaces and demonstrate that classical supervised learning
methods, trained with these metrics can be used to distinguish between noise and roughness with an
accuracy above 85%, with an additional 5–6% performance coming from the capturing setup metrics.
Our proposed solution can easily be integrated into existing SfM workflows as it does not require
more image data or additional sensors. Finally, as part of the testing we create an image dataset for
SfM from a number of objects with varying shapes and sizes, which are available online together
with ground truth annotations.

Keywords: Structure from Motion (SfM); 3D reconstruction; noise estimation; point clouds; roughness

1. Introduction

Structure from Motion (SfM) is widely used for visualization and inspection purposes in the
building [1–3], manufacturing [4] and energy industries [5], as well as for geology [6–8] and cultural
preservation [9–11]. Because of the reliance of SfM on 2D image data, it is prone to geometric noise and
topological defects, if optimal image capturing conditions are not met (Figure 1). This has prompted
a number of benchmarks [12–14] on the accuracy and robustness of SfM solutions, as well as on
the best possible lighting conditions, camera positions, image density and captured object surface
characteristics. The problem of determining if noise is present on a 3D reconstructed mesh and
differentiating between noise and the inherent roughness that surfaces and objects have is not a trivial
one. Because topological defects and noise on the surface of SfM reconstruction are caused by a
combination of sub-optimal capturing conditions, the surface properties of the scanned object and the
camera used to capture the 2D, they cannot easily be quantified.

The main contribution of this paper is the exploration, development and evaluation of a number
of metrics for determining if the underlying 3D reconstructed surface is noisy or rough. An overview
of the idea proposed in this paper is shown in Figure 2. The proposed metrics are chosen based on
the known weaknesses of SfM solutions, as well as on the underlying principals used in many of the
state of the art mesh simplification, quality assessment and denoising algorithms, given in the next
section. For testing the proposed metrics, we have created a image dataset from a number of number
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of different objects. This dataset, together with the ground truth noise annotations for testing are
available online (Dataset: dx.doi.org/10.17632/xtv5y29xvz.2).

(a) (b) (c) (d)

Figure 1. Illustration of Structure from Motion (SfM) reconstruction geometrical errors, which need to
be distinguished from real surface roughness. Noise parts are shown in red. The problematic areas in
(a,c), lead to geometrical errors in the reconstruction as seen in (b,d).

Figure 2. Overview of the proposed idea for using metrics extract from the mesh and capturing setup
used for SfM reconstruction, to determine if the underlying surface is noisy or rough.

2. State of the Art

Most of the commercial SfM solutions rely on global or isotropic smoothing algorithms. These
algorithms remove noise, but smooth out smaller details. Reconstruction solutions like Metashape [15],
ContextCapture [16], Reality Capture [17], etc. use this approach, with additional options for mesh
surface refinement. Such global denoising algorithms are also presented by [18–20].

Local feature or anisotropic algorithms analyze the underlying mesh geometry and normals to
distinguish noisy areas from high surface roughness areas and preserve smaller details. The research
from [21] uses a pre-filtering step and a L1-median normal filtering, while [22] uses filtered facet normal
discriptors and training of a neural network for calculating regression functions. Other research is
focused on classifying normal regions and using isotropic neighbourhoods [23] or iterative estimation
of normals and vertex movement [24,25].
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Another important factor for detecting noise is the geometric visibility of roughness, especially
on complex surfaces. There are multiple proposed solutions by [26–29], using local visibility features,
curvature calculation and normals to detect parts of meshes with low or high roughness. These
methods are used both for detecting noise on smooth meshes, but also for introducing watermarking
to meshes without distorting their appearance.

Most of the described mesh denoising algorithms are not focused directly on SfM reconstructions
and thus they do not use a lot of the information which can be taken from SfM production pipelines.
In this paper we propose noise estimation metrics, which can predict noise risk and be used to
distinguish noise caused by sub-optimal SfM reconstructions from the inherent roughness of the
reconstructed objects. These metrics combine knowledge taken directly from 3D meshes reconstructed
using SfM, with information taken from their textures, as well as from the camera setup used to capture
the images used for reconstructing the object, such as camera positions, orientations, focal length
and internal parameters. No external sensors or additional captured data are required for any of the
presented metrics. With this our main contributions in this paper can be summarized:

• We present a number of metrics that can be easily calculated as part of the normal SfM workflow;
• We explore the correlation between each metric and the presence of noise on reconstructed objects;
• We train classical supervised learning methods using combinations of these metrics and

demonstrate how to verify their accuracy;
• To verify the robustness of the metrics, we test them on objects with varying surface textures,

shapes and sizes;
• We provide the captured database of images used to create the SfM reconstructions, together with

the manually annotated ground truth data as part of the paper. This way others can use it for
comparison and testing noise estimation and removal implementations.

3. Methodology

As part of this paper we propose nine metrics for detecting noise on SfM reconstructed meshes.
These can be divided into two groups—metrics based on findings in the areas of mesh visual quality
and roughness detection, and ones based on the SfM reconstruction weaknesses to sub-optimal
capturing conditions. A total of five main observational hypotheses are made for the appearance
of noise and geometric inaccuracies in SfM reconstructions and for each, one or more metrics are
chosen as a way to describe each one. The observations are given in the numbered list below, with
corresponding metrics shown in Table 1. In the next sections, each of the metrics will be explained
in detail.

1. Noise manifests as either clumped together high frequency vertices or flat patches and
holes—when the initial feature detection and matching methods in the SfM pipeline do not
produce enough correct matches, the produced 3D surfaces can end up with overlapping or
missing parts. These manifest in geometrical surface errors, as seen in Figure 3a;

2. SfM noise normally comes from smooth, monochrome colored surfaces—monochrome surfaces
normally lack robust features like edges and angles, while smooth and transparent surfaces,
produce reflections, which change with the view direction, making correct feature matching
impossible (Figure 3b);

3. Noise is present on parts of the object that have not been seen from enough camera positions—SfM
needs to gather information of the object from multiple directions, to provide a correct geometrical
representation of the micro and macro shape of the surfaces. Not enough camera variation can
lead to 3D surface “guessing” and deformed patches. An example of this can be seen in Figure 3c,
where one object obscures another surface from being seen by the cameras resulting in noise;

4. Noise is present on parts of the object that have been seen from enough camera positions,
but were not in focus—surface features need to be extracted and matched, but if parts of the
object are blurred and out of focus, not enough information can be extracted from them. This
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is visualized in Figure 3d, where the back of the object becomes out of focus, resulting in not
enough features captured;

5. Noise is present on parts of the object that have been seen from enough camera positions, but those
positions were not diverse enough—if all the capturing positions are from the same direction,
not enough information can be extracted for the shape of the surface. This can be seen in Figure 3e,
where multiple images are taken from a surface, but none of them have enough angular diversity
in vertical direction, resulting in the reconstruction of the bottom of the surface being noisy.

(a) Observation 1 (b) Observation 2

(c) Observation 3 (d) Observation 4

(e) Observation 5

Figure 3. Examples of the five main observational hypotheses, used as a basis for the chosen mesh-based
and capturing setup-based metrics.

Table 1. The five observational hypotheses and the chosen metrics, used to describe them. The different
metrics are either based only on the reconstructed mesh itself or on the capturing setup—camera
positions, intrinsic parameters, etc.

Observation Metrics Type

1
Local Roughness from Gaussian Curvature (LRGCm)

Difference of Normals (DONm)
Vertex Local Spatial Density (VDm)

Mesh-based

2 Vertex Local Intensity Entropy (VIEm) Mesh-based

3
Number of Cameras Seeing Each Vertex (NCVs)

Projected 2D Features (PFs) Capturing Setup-based

4 Vertices in Focus (ViFs) Capturing Setup-based

5
Vertices Seen from Parallel Cameras (VPCs)

Vertex Area of Visibility (VAVs) Capturing Setup-based

A visualization of each of the metrics on the surface of a reconstructed mesh is given in Figure 4.
In the subsections below we will focus on each of the metrics’ theoretical basis, extraction methods,
interpretation, etc. For easier readability each of the metric abbreviations will have a subscript of m for
mesh-based or s for capturing setup-based. Before computing each metric, the reconstructed object is
scaled to absolute real-world scale. Once all the metrics have been presented, they will be analyzed to
determine their level of correlation. This will be presented in the Results Section 5.
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3.1. General Mesh-Based Metrics

In this subsection we will cover the metrics extracted directly from the 3D reconstructed mesh.
They are based on the vertex positions, normals and vertex color. These metrics are based on
observational hypotheses 1 and 2, presented in Section 3.

3.1.1. Local Roughness from Gaussian Curvature (LRGCm)

Rationale: Noise on the SfM surface appears as a geometric disturbance, which creates high roughness
areas on otherwise smooth surface patches.

The first calculated metric is the mesh’s local roughness, depending on a metric closely related to
Gaussian curvature. The metric was first proposed by [27], in their paper for mesh quality assessment.
Local curvature is widely used for visual quality assessment and denoising, as a characteristic
describing the local changes of the surface. Their proposed algorithm first calculates the Gaussian
curvature like metric (GC) in an area around each vertex, essentially describing how much the area
deviates from a planar surface. This is done using Equation (1), where N(F)

i is all the neighbour faces
around a point i and αj is the angle between the current vertex and the one which is incident to it.

GCi =

∣∣∣∣∣∣∣
2π − ∑

j∈N(F)
i

αj

∣∣∣∣∣∣∣
(1)

Once the local curvature is calculated, a Laplacian matrix of the angles between the connected
neighbours and each vertex is derived. Finally the local roughness metric LRGC is defined as a
weighted difference between the Gaussian curvatures of each vertex and its neighbours, weighted
according to the calculated Laplacian matrix. This is shown in Equation (2), where Dij is the Laplacian

matrix and N(V)
i is all the vertices in the neighbourhood of the current one. An in-depth explanation

of the method can be seen in [27].

LRGCi =

∣∣∣∣∣∣
GCi −

∑
j∈N(V)

i
(Dij · GCj)

∑
j∈N(V)

i
Dij

∣∣∣∣∣∣
(2)

This metric is robust to curved surfaces and gives gradual and smooth values. The method gives
a scale independent surface roughness measure. An example of the metric can be seen in Figure 4a,
where higher values denote higher roughness and higher risk of noise.

3.1.2. Difference of Normals (DONm)

Rationale: Noise on SfM surfaces appears as high frequency surface changes, especially on the edges of the
mesh and surrounding holes in it.

The metric is proposed by [30] and is used for surface roughness detection, point cloud
segmentation, obstacle detection, etc. It is a scale dependent local value, sensitive to specific resolutions
of roughness. Two radii r1 and r2 of different sizes are chosen around each vertex. The normals of
the area below the neighbourhood for each radius are computed and their difference gives the final
metric. Equation (3) is used for calculating the difference of normals , where n̂(p, r) is the normal of
the surface under each of the radii for every vertex i and r1 < r2. Get the final measure, the magnitude
of this vector is calculated, which is between [0, 1].

DONi =

∣∣∣∣
n̂(pi, r1)− n̂(pi, r2)

2

∣∣∣∣ (3)

In their work, [30] demonstrate that high frequency areas contain smaller details in point clouds.
SfM noise is normally represented as high frequency signal in clustered areas on the surface of the
reconstruction. This is why we focus on capturing very high frequency surface changes. After looking
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at the scale of the input data, the larger radius is set heuristically to 2% of the size of each object, while
the smaller radius is set to ten times smaller factor, as suggested in [30]. This makes it independent
from the scale of the object. With these input parameters, the difference of normals is especially
sensitive to roughness at the edges of objects and allows it to provide a more focused additional
roughness metric to LRGCm metric. The calculated metric is visualized in Figure 4b, where higher
values denote higher difference between the local normals and higher risk of noise.

(a) LRGCm - mesh-based (b) DONm - mesh-based (c) VDm - mesh-based

(d) VIEm - mesh-based (e) NCVs - setup-based (f) PFs - setup-based

(g) ViFs - setup-based (h) VPCs - setup-based (i) VAVs - setup-based

Figure 4. Visualization of all the proposed metrics as heat maps. For Local Roughness from Gaussian
Curvature (LRGC), DONm, VDm, higher values (indicated with red color) indicate higher risk of noise,
while for VIEm, NCVs, PFs, ViFs, VPCs and VAVs—higher values, indicate lower risk of noise.
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3.1.3. Vertex Local Spatial Density (VDm)

Rationale: When surface errors occur in SfM reconstructions, the resultant reconstruction contains areas
of high vertex density, even on supposedly smooth real world object areas.

This metric is based on point cloud segmentation methods like the one proposed by [31], using
area of interest spatial neighbourhood grouping like K nearest neighbours. This metric is calculated
by first computing a number of progressively larger search radii, connected to the overall size of the
reconstructed object. The size is chosen heuristically and is in the interval RVD = [0.1% : 0.5%] from
the size of the object, as this is seen as the vertex density that best explains the possibility of noise.
The mesh global maximum of neighbours for each of the radii is calculated. A percentage of these
maximum values is taken and used as a threshold in the subsequent calculations. The lower this
percentage is the less the local spatial density can be before it is viewed as problematic. For this paper
the percentage is set to 60%.

For each vertex the number of neighbours is captured for each of the radii. If the number is
above the threshold, a score is given for that vertex. The more instances get a number higher than

the threshold, the higher the final score for that vertex. This is shown in Equation (4), where N
(rj)

i

is the set of all neighbours for the current radius, N
(rj)
max is the maximum set of all neighbours, DC is

the density coefficient in percentage and s is the score. This way a vertex density score scaled to the
global density of the object on multiple size levels is achieved. This makes the metric invariant to the
scale of the object and it can be comparable between objects of different sizes. The calculated density
metric is shown in Figure 4c, where higher values indicate parts of higher vertex density and higher
risk of noise.

VDi = ∑
rj∈RVD

s(j) , for s(j) =





1, if N
(rj)

i ≥ DC · N(rj)
max

0, otherwise
(4)

3.1.4. Vertex Local Intensity Entropy (VIEm)

Rationale: SfM reconstruction tends to produce errors and noise when the object surface is featureless and
monochrome [32].

The intensity for each vertex is calculated from the texture RGB data. These intensities are then
used to calculate the local entropy of the mesh. Color has been used for mesh and depth map denoising
[25,33] and it is shown to give good results. We choose to use entropy [34], as it can be more easily
calculated locally on a point cloud, compared to other edge detection algorithms and can give a
measure of the surface color intensity change. To calculate the entropy H we use Equation (5), where
Pi is probability of the occurrence of the specific intensity level at vertex pi and N is the maximum
number of possible intensity values equal to 256. The visualization of the entropy is given in Figure 4d,
where higher values indicate higher entropy and more varied surface color, with lower risk of noise.

H = −
N

∑
i=0

Pi log2 Pi (5)

3.2. Capturing Setup-Based Metrics

The following metrics are unique for SfM meshes, as they are extracted from the camera capturing
setup and utilize the position, orientation, view density of the cameras, etc. The main factors for
selecting these metrics, are the dependencies demonstrated by [14,35,36], between the quality of the
capturing setup and the resultant reconstruction. To calculate these metrics a Unity implementation is
created for positioning the reconstruction and calculated camera positions, as well as reprojecting the
necessary data. We use the Unity engine, because of the easy programming pipeline using C#, fast ray
cast computation and the possibility to visualize and compute large 3D model relatively fast and easy.
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An overview of the used development pipeline is given in Section 4. These metrics are based on the
hypothesis observations 3, 4 and 5.

3.2.1. Number of Cameras Seeing Each Vertex (NCVs)

Rationale: To create a good SfM reconstruction, a high amount of overlap between images is required [9],
[11], which means that vertices “seen” by many cameras have a lower risk to contain noise.

To compute this metric, all the pixels of each of the calculated cameras are projected to the
reconstructed mesh. The metric is calculated by projecting the captured images from the calculated
camera positions towards the reconstructed mesh. Each vertex is scored depending on the amount of
image pixels projected onto it, meaning that the higher the score the more cameras have “seen” the
vertex. The visualization of the metric is shown in Figure 4e.

This metric gives an overview of how certain we are, whether the data created by the SfM system
is representative of the real world object. If not enough photos are taken from certain parts of the real
life objects, there is a bigger chance that the reconstruction of these parts will contain noise or holes.
The following metrics will expand on the information captured by this metric.

3.2.2. Projected 2D Features (PFs)

Rationale: To create the SfM reconstruction, 2D feature points are extracted from each image. These
features are matched between images and used in the triangulation of the sparse point cloud and the reprojection of
camera positions [37]. By projecting these points to the mesh, areas of higher certainty can be found, by exploiting
the fact that areas not containing any found and matched features, will produce lower quality reconstructions

We look at the 2D features extracted in the triangulation and camera position calculation step
of the SfM pipeline. In this step features are extracted from each image and matched between them.
In most SfM solutions, these 2D feature descriptors are not disclosed, but they are mostly variations
of SURF [38] or free alternatives like FAST [39] and ORB [40]. An example image with captured
feature points can be seen in Figure 5, where it can be seen that smooth areas like the eyes and noise of
the bunny statue have much less features. For each camera position, the already calculated feature
descriptor points are extracted. A radius around each point is set and the points under that area are
projected to the 3D reconstructed model. For each 3D point the metric as aggregated depending on
how many of these matched feature point areas are projected onto it.

Figure 5. An image used as input to the SfM solution and calculated feature points. A radius is set
around each of the features and all points that are in the area are projected to the reconstructed mesh.
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The higher the value of this metric for each vertex, the more 2D features were projected onto it.
Figure 4f shows this metric. As these 2D features are used in the reconstruction itself it is hypothesized
that a high metric will have less noise.

3.2.3. Vertices in Focus (ViFs)

Rationale: Structure from Motion matches points between images for creating the initial sparse point
cloud and camera position and orientation calculation. If parts of the object are captured out of focus, these
points would have blurring on them. This can increase the possibility for reconstruction noise to be present in
these parts.

To calculate the metric, first the near Np and far Fp focal plains are calculated for each camera
using the formulas presented in Equation (6). There H f is the hyperfocal distance, which is the distance
between the camera and the closest surface, which is in focus, when the lens is focused on infinity, while
the CoC is the circle of confusion calculated according to [41]. The focal length F and aperture A are
known from the EXIF data contained in the images and the distance to the object D is calculated from
the camera to the closest surface of the reconstruction. Because the object is scaled before capturing the
metrics, the measured distances between cameras and the object should be in correct units.

Np =
H f · D

H f + (D− F)
, Fp =

H f · D
H f − (D− F)

(6a)

H f =
F2

ACoC
, CoC =

F
1720

(6b)

A ray is cast from each pixel of the camera, to the corresponding face from the reconstructed
model and the distance between the two is calculated. Vertices of faces outside of the focal planes
are scored with −1 for cameras which have seen them, while ones that are inside the focal planes are
scored with 1. A lower score indicates more out of focus cameras having seen the vertex and a higher
chance of it being noisy. The metric can be seen in Figure 4g, where the lower the value, the more times
it has been out of focus and the higher risk for noise.

3.2.4. Vertices Seen from Parallel Cameras (VPCs)

Rationale: Even if multiple images have captured the surface of the object, if all of them “see” it from large
angles, without at least one central image to connect them, there is a possibility of SfM calculation error [42].

This metric is captured by computing the angle between each normal and the forward direction
of each of the calculated cameras that can “see” the vertex. This is achieved by using Equation (7),
where αm is the calculated angle between the normal Ni of vertex vi and the camera forward direction
vector C f for each camera seeing the vertex [0, i]. Two 3D vectors are parallel, if the angle between
them is either 180 or 0 degrees, but the camera has to be able to see the vertex, so an angle of 0 degrees
is not likely. The closer at least one angle is to 180 degrees, the less chance there is of noise. Figure 4h
shows this metric.

αi = arccos
C f · Ni

|C f · Ni|
(7a)

αmax = max
{1:i}

αi (7b)

3.2.5. Vertex Area of Visibility (VAVs)

Rationale: To capture a surface’s shape, SfM requires images from multiple positions and angles, so all
parts of the topology are visible. If only little variation is given in the imaging positions, the resultant mesh can
exhibit noise patches, surface deformations and holes [42].
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The metric requires the calculation of the area in space, from which each vertex is seen. We assume
that the object surface is visible from every camera point of view. To model this metric, first a
hemisphere is placed on the position of each vertex, oriented depending on the underlying normal.
A hemisphere is chosen, as the assumption is that the cameras need to be able to physically see surface
and the presence of self-occlusion. A ray is cast from each camera that “sees” the vertex. The points of
intersection between each ray and the hemisphere are calculated and their 3D coordinates are saved.
An example of this can be seen in Figure 6, with the camera position pulled closer and the hemisphere
colored for easier visualization.

Figure 6. Visualization of the calculated hemisphere positioned above each vertex in the mesh and
the camera position, together with the intersection points. The distance from the camera to the vertex
position is made in a smaller scale for easier visualization. Once all the intersection points are found
the area between them is calculated and the ratio between it and the whole area is used for the metric.

We then project the points in 2D, to avoid working with spherical geometry. The Lambert
azimuthal equal-area projection, is chosen as it represents correctly the area in all regions of the sphere.
For the projection Equation (8) is used, where (x, y, z) are the Cartesian coordinates of the points on
the sphere and (X, Y) are the projected ones. The metrics is calculated as a ratio between the area of
the projected points and the whole area. An example of the metric can be seen in Figure 4i, where the
higher the values are, the higher the area of visibility is and the lower the risk of noise. This means
that even if a lot of cameras have seen the point, if their angular coverage from different positions is
not large enough this would be penalized.

X =

√
2

1− z
x, Y =

√
2

1− z
y (8)

4. Implementation

In this section a short overview of the implementation pipeline is given. The different processing
environments for extracting each of the metrics are given in Figure 7. The initial data of the
reconstructed mesh, the camera positions and orientations and extracted feature points are taken
directly from the SfM software. For our current implementation Agisoft Metashape [15] is used, but the
same data can be extracted from many of the commercial and open source SfM applications. In our
case Metashape uses a Python based API for automation of the SfM pipeline, which can be also used
to extract the required data and parse it in a structure, used for metric extraction. For the purely
mesh-based metrics only the reconstruction itself is used and the processing is done directly in Python.
For extracting data and manipulating the 3D data, the library open3D [43] is used in. The extracted
features are manipulated and the areas around them calculated, by using OpenCV [44] for Python.
The capturing setup-based metrics are calculated through the use of the Unity game engine [45].
The engine uses C#, with specific optimizations for vector and GPU computations. Normally used for
making games and interactive experiences, we use the powerful 3D features of the engine, the camera
settings and the fast and easy ray calculating capabilities. The data from the Metashape Python API in
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these cases is saved to a custom format containing all the mesh data—vertices, faces, normals, color
information, as well as camera positions and orientation. For these metrics, the EXIF data from each
image is also used, for calculating the proper field of view and depth of field of each of the cameras.
The setup-based metrics are calculated per mesh vertex, by casting rays from each pixel of the camera
positions to the reconstructed surfaces. An example view of the Unity implementation is given in
Figure 8a, where the reconstruction together with the calculated camera positions and their forward
direction vectors are given. The projected points on the mesh are used to calculate the NCV metric and
show which parts of the object are seen by the particular camera. The input photo and the equivalent
view from the Unity camera are given in Figure 8b,c.

Figure 7. Overview of the implementation pipeline, showing what input and programming
environments are used to calculate each of the metrics. The mesh-based metrics are directly computed
in Python, while the capturing-setup based ones use a combination between Python and the Unity
game engine.

(a) View from NCV metric calculation

(b) Input image (c) Unity camera view

Figure 8. Views from the Unity implementation used for the capturing setup-based metric extraction.
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5. Testing and Results

Testing the proposed metrics was done in a number of steps. First the correlation between the
different metrics was calculated. This gave an initial idea if any of them gave redundant information,
too similar to the others. The second step was to create a dataset of images and SfM reconstructions.
These objects had varied sizes, shapes, roughness levels and were made from different materials
with different textures. We then manually annotated each one of the reconstructions on a vertex
level—as noise and not noise. This annotation was used as ground truth for testing the accuracy of the
proposed metrics.

We then separated the reconstructed objects into testing and training data and used the metrics
together with the annotated data to train a number of supervised learning classification methods.
The accuracy of the proposed metrics could then be evaluated for segmentation of the testing data into
noise and not noise vertices.

To evaluate if all metrics were useful for detecting noise, we first calculated the correlation
between the appearance of noise and each of the metrics. We then used that information to retrain the
best performing supervised classification method on different subsets of the metrics and evaluate the
resultant accuracy.

Finally, we also evaluated the proposed solution in a wider industrially relevant context, by using
a reconstruction of a wind turbine blade for testing and evaluating the results from it.

5.1. Data Gathering

To ensure the robustness of the proposed metrics, objects with different shape, size, roughness
and color, as well as material were used. All the objects are shown in Figure 9. Special care was taken
to create a diverse set of objects, to lower the possibility of bias in the proposed metrics. Some of the
ways the dataset could be separated:

1. By size of the objects—we had objects ranging from 150 mm (cups shown in Figure 9i,j, etc.) to
800 mm (the black vase Figure 9d and sea vase Figure 9f), together with the wind turbine blade
segment, which was more than 1500 mm long;

2. By material—we had objects made from stone, ceramics, plastic, clay, wood and metal.
This guaranteed that we could have varying surface properties like reflectivity, texture and
color variation;

3. By shape complexity—we had objects with simple shapes and repeated patterns like the different
cups and vases, as well as objects complex shapes, with all the possible problems that could arise
from that—self-occlusion (Figure 9c) or thin and narrow regions (Figure 9g,h).

A Canon 5Ds DSLR camera was used for capturing images of the objects. The resolution was set
to 8688 × 5792 and a zoom lens with a variable focal length of 30–105 mm was used. The zoom lens
was used, so the focal length can be easily changed depending on the size of the object. The focal length
was set at the start of the capturing process for each object and kept the same throughout, only being
changed if needed, once a new object is selected. This was done to guarantee that the captured object
was always in frame and most parts of it also in focus. The focal length was changed depending on the
size of the object. For the initial and subset tests 36 images were taken in a circle around each object in
one horizontal band. The camera was setup to such a height, so it stayed perpendicular to the side of
the objects. The research by [14], shows that this one vertical band capturing setup ensures that the
objects can be reconstructed, but there is a possibility of geometrical noise on their surfaces. For the
industrial context test 2 × 17 images in vertically stacked horizontal bands were used, because of the
larger size of the wind turbine blade, compared to the objects used in the initial and subset. This way
the front of the blade can be captured and reconstructed. All the objects were reconstructed using
Agisoft Metashape and all the required data—camera positions, orientations, internal parameters,
etc., were extracted from the program workflow, as explained in Section 4. To make them more
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manageable to work with the reconstructions were sub-sampled to around 50k vertices. The actual
number depended on the size and complexity of the shape of the object.

(a) Bunny (b) Bird Bath (c) Angel (d) Black Vase

(e) Plastic Vase (f) Sea Vase (g) Duck (h) Rooster

(i) Squares Cup (j) Stripes Cup (k) Grey Cup (l) Orange Cup (m) White Cup (n) Flower Cup

Figure 9. Objects selected for the robustness test. These objects have widely varying shape, size,
roughness profiles and materials.

The processing times of the reconstructions was between 15 and 20 min, with extracting the
two types of metrics using the Python and Unity processing pipeline added around 10 min more.
The processing time for the capturing setup ones was heavily dependent on the number of used images
and the resolution of the captured images. The mesh-based metrics’ processing time depends on the
number of vertices in the input reconstructions.

For testing the proposed solution and training the classification methods, a roughness/noise
ground truth was created for all the used objects. The ground truth was made manually by annotating
all the reconstructed meshes and masking all vertices of surfaces containing noise or any other
topological defects. The software used for annotation of the mesh vertices was also developed in Unity
(Figure 10) and at the end of the process the information for each vertex for each of the objects was
saved into an array of values—showing 0 for clear surfaces and 1 for noise and geometrical defects.
This annotated data were also used for testing the correlation between the appearance of noise and the
different metrics.

5.2. Correlation Analysis

The correlation between the different independent metrics needed to be tested, to ensure that
highly correlated ones were removed, as they did not give any new information and could introduce
uncertainty and interfere the detection of the noise. In addition, the correlation between the metrics
and the appearance of noise was also analyzed. To compute the correlation between the metrics a
correlation matrix was calculated using the Pearson correlation coefficient [46]. The matrix is shown in
Figure 11.
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Figure 10. View from the annotation tool used for creating the roughness versus noise ground truth for
each of the meshes. The vertices painted red are set as reconstruction noise.

Figure 11. Correlation matrix of the used metrics, together with the dependent variable. For easier
visualization the metrics are shown with their coded names—VPCs: vertices seen from parallel camera,
VAVs: vertex area visibility, ViFs: vertices in focus, NCVs: number of cameras seeing each vertex,
PFs: projected 2D features, VIEm: vertex local color entropy, LRGCm: local roughness from Gaussian
curvature, DONm: difference of normals and VDm: vertex local spatial density.

We chose to consider a cutoff between metric correlation higher than 0.5 and with the dependent
variable lower than 0.1. From the correlation matrix it can be seen that one of the metrics had a high
correlation with the others—the number of cameras seeing each vertex (NCVs). Because this metric
was quite generic and much of the information that it carried was present in the vertices seen from
parallel camera (VPCs), with correlation of 0.65 and the vertex area visibility (VAVs), with correlation
of 0.53, as well as projected 2D features (PFs) metric, we chose not to include NCVs in the final set
of metrics.

The correlation between the independent variable metrics and the dependent variable, which
in our case was the presence of noise and geometric inaccuracies, was further explored. From the
correlation matrix in Figure 11, we could deduce that three mesh roughness metrics LRGCm, DONm

and VD had the highest correlation with the presence of noise. This was expected as these metrics
were directly connected to the topology of the mesh. From the capturing setup-based metrics the
most correlated ones to the presence of noise were PFs, NCVs, ViFs, but NCVs was removed from
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consideration dues to the high correlation with the other metrics. These observations will be used in
Section 5.4, when different subsets of the metrics are tested out.

5.3. Initial Testing

For the initial test we used all the proposed metrics, except NCVs. Further testing of subsets of
metrics will be given in Section 5.4. The metrics were used to train a number of supervised learning
classification methods—support vector machines (SVM), K-nearest neighbours (KNN), naive Bayes
(NB), decision trees (DT), as well as more complex ensemble methods—random forests (RF) and
AdaBoost (AB). The implementations were taken from Scikit-learn [47]. The hyperparameter used
for each classifier are given in Table 2. Because of the limited number of test objects, we used a cross
validation, where we trained on all but one and tested on it. We did this for each of the objects. Because
the two classes—noise and not-noise were not balanced, an oversampling strategy was deployed when
pre-processing the training data. The oversampling was done using Synthetic Minority Over-Sampling
Technique (SMOTE) [48].

Table 2. Used hyperparameters for the tested classification methods—support vector machines
(SVM), K-nearest neighbours (KNN), naive Bayes (NB), decision trees (DT), random forests (RF)
and AdaBoost (AB).

Method Parameters

SVM C = 8, kernel = linear, gamma = scale
RF n_estimators=150, max_depth=10, min_sample_split = 3
AB n_estimators=150, learning_rate = 0.5

KNN n_neighbors = 5, weights = uniform, algorithm = auto
NB default parameters
DT criterion= entropy, max_depth=10, min_sample_split = 2

Because of the imbalanced dataset, we focused not only on the accuracy, but on the precision,
recall and F1-score, which are shown in Table 3. The table presents the average of all calculated
performance factors for all the tested objects. From these, the AdaBoost classifer provided the best
results, depending on the combination of the calculated factors.

Table 3. Average results from the 14 objects and the chosen classical classifiers—support vector
machines (SVM), K-nearest neighbours (KNN), naive Bayes (NB), decision trees (DT), random forests
(RF) and AdaBoost (AB).

Method ACC Precision Recall F1

SVM 0.816 0.569 0.842 0.679
RF 0.824 0.580 0.879 0.699
AB 0.851 0.630 0.844 0.742

KNN 0.812 0.568 0.789 0.660
NB 0.809 0.558 0.832 0.668
DT 0.824 0.578 0.885 0.699

All the tested classifiers gave satisfactory results, with high recall, which indicated that it classified
noise vertices as such. On the other hand they also classified non-noise vertices as noise, which was
shown by the low levels of precision. This shows that metrics could be useful for signalling to possible
areas under risk of noise and could be a part of a semi-automatic SfM noise estimation pipeline, where
a user then verifies the results. For an easier visualization of the performance of the achieved noise
risk assessment, the pseudo-colored visualizations of the annotated and classified noise vertices are
also given in Figure 12. Looking closer at these visualizations, some problems can be seen in the
classified noise from rough objects like the bird bath (Figure 12h) and the sea vase (Figure 12l), where
the noise and roughness had a very closely related appearance. The same can be seen on objects like
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the bunny (Figure 12g) and the angel statue (Figure 12i), where the small rougher surface patches
could sometimes closely resemble noise, especially close to self areas of self-occlusion, because of their
more complex shapes.

Further complicating the non-trivial task were the manually annotated areas. For example, in the
case of the two white cups (Figure 12e,f) the overall low reconstruction accuracy meant that there was
noise with different levels of severity. Where the cutoff between acceptable surface and noise was
could become very arbitrary, without classifying the whole surface as noisy. One way to alleviate this
was to have multiple people annotate the same objects and get an average annotation. This will be
further explored in the Conclusion and Future Work Section 6.

(a) Squares Cup (b) Stripes Cup (c) Grey Cup (d) Orange Cup

(e) White Cup (f) Flower Cup (g) Bunny (h) Bird Bath

(i) Angel (j) Black Vase (k) Plastic Vase (l) Sea Vase

(m) Duck (n) Rooster

Figure 12. The annotated ground truth vertices on the left and the same classified vertices using our
proposed method on the right. The noise vertices are colored red, while the non-noise ones are blue.

5.4. Subset Testing

The calculated results in the previous section were based on all metrics except NCVs. To test
how much influence each of the metrics had on the calculated performance, a number of subset tests
were performed. A total of five main tests were set up as shown in Table 4. Because both the LRGCm

and DONm are used in the literature for point cloud classification, they were used separately, as a
baseline naive first test for detecting noise on SfM reconstructions. The second test checked if NCVs

would have negative influence on the results, because of its high correlation with VPCs and VAVs
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metrics. All other metrics were used for this test scenario. Using the information gathered in Section
5.2, the LRGCm, DONm and VDm were set as main metrics, because of their high correlation with the
presence of noise. The third scenario tested how important are the mesh and capturing setup-based
metrics for the performance of noise estimation. The fourth test took the three designated main metrics
and created five subsets, but adding each of the capturing setup-based metrics, to see how important
they were separately. The final test again took the main metrics and combined them with the other
ones, which were either more correlated or less correlated to the noise.

Table 4. The four main subset test scenarios. Each of the scenarios is designed to test the impact of
different metrics or combination of metrics on the final results.

Testing Scenario Description

1 LRGCm and DONm separately
2 All metrics, with and without the most correlated metric—NCVs
3 Mesh-based versus capturing setup-based metrics
4 Each capturing setup-based metric’s impact on the results
5 Impact on the results from different combinations of setup-based metrics

The best performing classification method from the initial test was chosen for this
scenario—AdaBoost. It was retrained with the different subsets of metrics and the results are given in
Table 5. Again the average of the calculated performance factors using the left one out strategy for
cross validation. For visualization purposes the resultant detected noise from each subset for one of
the test objects is shown in Figure 13, together with the ground truth annotated noise.

Table 5. Results from testing different subsets of the proposed metrics. Each of the subsets is used
to train the best performing classification method from the first testing scenario AdaBoost. Different
subsets are created to test the posed question in Table 4.

Subsets ACC Precision Recall F1 Testing Scenario

Only LRGCm 0.723 0.492 0.652 0.574 1
Only DONm 0.686 0.407 0.788 0.537 1
All, without NCVs 0.889 0.674 0.863 0.756 2
All, with NCVs 0.852 0.635 0.848 0.725 2
LRGCm, VDm, DONm 0.828 0.592 0.833 0.692 3
LRGCm, VDm, DONm, VIEm 0.837 0.611 0.822 0.701 3
VPCs, VAVs, ViFs, PFs 0.707 0.425 0.753 0.544 3
LRGCm, VDm, DONm, PFs 0.840 0.615 0.829 0.706 4
LRGCm, VDm, DONm, ViFs 0.838 0.615 0.809 0.699 4
LRGCm, VDm, DONm, VAVs 0.837 0.612 0.811 0.698 4
LRGCm, VDm, DONm, VPCs 0.839 0.614 0.824 0.704 4
LRGCm, VDm, DONm, NCVs 0.831 0.603 0.799 0.701 4
LRGCm, VDm, DONm, PFs, ViFs 0.814 0.565 0.869 0.683 5
LRGCm, VDm, DONm, VIEm, VPCs, VAVs 0.839 0.615 0.822 0.703 5
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Figure 13. Visualization of the noise estimation results, using different subsets of metrics, together with
the ground truth annotation. The different testing scenarios are separated for easier comparison.

The naive approaches to using only the LRGCm and DONm yielded overall lower results, showing
that only analyzing the roughness profile of the reconstruction could not completely separate noise
from real world surface roughness. The results also showed that, as expected, the mesh-based metrics
gave the highest effect on the performance of the classification method, meaning that they were the
most useful in discriminating between noise and surface roughness. The texture metric VIEm helped
boost the overall accuracy and precision of the detection. This can be seen in Figure 13, with a lot less
random noise vertices, compared to the purely LRGCm, VDm, DONm trained detector. The capturing
setup-based metrics on their own were too vague to properly discern between noise and surface
roughness, as seen from the lower overall accuracy. When introducing them to the mesh-based metrics,
it could be seen that they also boosted the overall performance when segmenting the noise from
the roughness. Overall different combinations of the metrics could be useful in different situations,
depending if it was more important to detect more of the noise correctly, but also mis-classified some
of the roughness as noise, or vice-versa. The combination between the mesh-based metrics with the
different capturing-setup metrics also showed that depending on the structure of the objects different
capturing metrics could be useful. Larger objects benefited more from the ViFs and VPCs metrics,
while smaller objects benefited more from VAVs and VPCs metrics. The PFs metric was the one that
always gave positive impact to the performance, as it was directly connected to the captured 2D
feature points.

5.5. Industrial Context Test

The final test was made to give a wider industrial application context to the proposed metrics.
We wanted to test if the described metrics could be used on data from different areas. This would
also provide a better understanding on the generalization capabilities of the proposed metrics. We
chose to test on wind turbine blade data, as this is an industrial inspection area which has began to use
SfM for capturing information more and more and research is focused on ensuring the high quality
of the reconstructions [49]. In addition, wind turbine blade data are hard to acquire, because of the
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requirements by blade manufacturers, that blades in use are not normally imaged. If the proposed
metrics can be used to train noise recognition methods on generic data and then can be used no wind
turbine blade surface reconstructions, it would make researching and benchmarking SfM results from
blades surfaces much more easily accessible.

For the test, a decommissioned wind turbine blade segment was selected (Figure 14a). To ensure
that the blade had different types of surface roughness and damaged areas, it was additionally
sandblasted. The image capture was done in an outdoor environment. Because the object was
considerably larger than the ones used in the previous tests and normally the leading edge and sides of
blades are inspected, a different image capture pattern was selected. Two vertical bands of 17 images
in a semi-circle pattern are captured, leading to 34 images in total. The best performing classifier was
chosen from the first two tests—AdaBoost.

We chose also the best performing combination of metrics—all except NCVs. All the
reconstructions used in the previous testing scenarios were used as training data for AdaBoost. To
evaluate the performance of the metrics on the blade, ground truth noise and roughness annotations
were also made for it. The calculated classification results had an accuracy of 0.843, while the precision
was 0.786 and recall was 0.877. For this test the precision-recall curve was also calculated for giving
a better idea of the performance of the trained model using the proposed metrics (Figure 14b). We
chose to use it instead of a ROC curve, on the basis of the unbalanced dataset. This way the calculated
results were going to be less skewed and “optimistic” [50]. The area under the curve (AUC) of the
precision-recall curve is 0.877. Finally, the pseudo-colored visualization of the classified and annotated
vertices for the wind turbine blade model are given in Figure 14c. Overall the metrics provided
acceptable results, by capturing all the problem areas around the top, bottom and back of the object,
without misclassifying the real damaged areas of the edge of the blade. This showed that a transfer
learning effect could be used, where the training could be done on more easily accessible generic 3D
reconstruction objects and how noise was seen on them, and then the trained classifier could be used
on specialized input data like wind turbine blades, with high level of accuracy.

(a) (b) (c)

Figure 14. The wind turbine blade used for the second testing scenario (a), together with the
precision-recall curve of the classification model (b) and the visualized annotation compared to
classified vertices (c). Red vertices are noise, blue are non-noise.

6. Conclusions and Future Work

The problem of detecting noise and geometric disturbances of 3D reconstructed meshes resulting
from SfM is a non-trivial one. In these meshes noise and regular surface roughness can exhibit the
same characteristics, making it difficult for detecting noise without miss classifying the roughness.
This is why in this paper we present a number of metrics based on both the mesh surface and on
the capturing setup. This combination of metrics is chosen, as it has been observed from the state
of the art in SfM testing and benchmarking, that the appearance of geometrical errors and noise on
the reconstructions is highly correlated to the quality of the capturing setup, the used camera and
the number of images taken. By combining these metrics and analysing their performance we are
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trying to address a gap in the knowledge of SfM results and how they can be used in applications like
industrial inspection and surface roughness estimation. In addition, none of the proposed metrics
require external sensor data and can be easily integrated in normal SfM production pipeline.

To test the metrics a dataset of images is captured from a number of objects with different shapes,
sizes, textures and materials. These objects are then reconstructed and the metrics are captured from
them. The amount of correlation between the metrics and between the metrics and the presence of
noise is computed and is seen that only one of the metrics—the NCVs is highly correlated to the others.
A number of classical supervised learning classification methods are trained on the metrics, together
with ground truth manually annotated data. The results from classifying the meshes as noisy and not
noisy vertices are shown to be usable, with the metrics generally giving a good overview which parts
of the meshes contain noise, with some noise miss-classified as roughness. On the other hand surface
patches, which contain real life damages are correctly classified as not noise. The captured dataset of
images, together with the ground truth annotations will be available online for use for training and
testing purposes.

Different combinations of the proposed metrics are also tested, to see how individual metrics
influence the performance of detecting noise. We demonstrate that a naive approach of just using
the roughness of the surface of the reconstruction does not yield high quality results, with an
overall accuracy between 0.68 to 0.72. The results could be dramatically improved by introducing
a combination of all the mesh-based metrics proposed in the paper, pushing the accuracy to 0.85.
The mesh-based metrics manage to describe the rough parts of objects, but tend to be less discriminative
between the parts with high roughness and the ones with geometrical errors. The use of capturing
setup-based metrics is shown to be helpful in discerning between the two, as they pinpoint areas of
the reconstructed surface, that have been reconstructed under sub-optimal conditions. Combining
them with the mesh-based metrics yield at least another 5–6% increase in the performance of the noise
estimation, depending on which mesh-based metrics, they are combined with.

Finally we test the larger context of the proposed metrics for detecting noise on 3D reconstructions,
which have significant difference from the data used for capturing the training metrics. This way
such robustness can be tested. A wind turbine blade is selected, as their inspection has become of
particular research interest. The blade also has a different size, shape and material from all the other
tested objects. We demonstrate that we can achieve usable results, without miss-classifying any surface
damage as reconstruction noise. This result also shows that the proposed metrics can be used as a
form of transfer learning, where a noise detector can be trained on generic widely available data and
then used on specialized data, which does not contain a large enough dataset, like wind turbine blade
surfaces. The produced results of 0.843 accuracy 0.786 precision and 0.877 recall, show that the same
level of quality of noise estimation can be achieved for wind turbine blades, which can be seen as an
extended general applicability of the presented research.

The next step in verifying the results of the publication, would be comparing the reconstructed
meshes to ground truth of the object, captured with a high resolution scanner. The difference between
the two can be used, as a more objective noise ground truth, which can be then used to compare to the
estimated noise risk. A look into global deformations in the overall shape of the reconstructed objects,
as well as self-occlusions and fractal parts of the objects, can also be used to further introduce more
metrics for assessing the risk of noise. Finally, one can also look even more into the influence of the
camera specifications on the possibility of noise, such as the use of fixed focus lens versus an automatic
focus one, as well as the use of rolling versus a global shutter.

Our future work would build on the results from this paper, by comparing them to both
traditional mesh denoising algorithms and newer point cloud and mesh classification methods using
convolutional and deep neural networks. For this a larger dataset of SfM object reconstruction is
being build, so enough data are present. Finally, it is deemed interesting to look into detecting the
illumination levels of the environment and see if they can be used as reliable indicators, as the role of
the capturing setup lighting in the presence of noise, requires more research.
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Abbreviations

The following abbreviations are used in this manuscript:

SfM Structure from Motion
LRGC Local Roughness from Gaussian Curvature
DON Difference of Normals
VD Vertex Local Spatial Density
VIE Vertex Local Intensity Entropy
NCV Number of Cameras Seeing Each Vertex
PF Projected 2D features
ViF Vertices in Focus
VPC Vertices Seen from Parallel Cameras
VAV Vetex Area of Visibility
GC Gaussian Curvature
SVM Support Vector Machines
KNN K-nearest Neighbours
NB Naive Bayes
DT Decision Trees
RF Random Forest
AB AdaBoost
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Abstract: The accuracy of photogrammetric reconstruction depends largely on the acquisition condi-
tions and on the quality of input photographs. This paper proposes methods of improving raster
images that increase photogrammetric reconstruction accuracy. These methods are based on modify-
ing color image histograms. Special emphasis was placed on the selection of channels of the RGB
and CIE L*a*b* color models for further improvement of the reconstruction process. A methodology
was proposed for assessing the quality of reconstruction based on premade reference models using
positional statistics. The analysis of the influence of image enhancement on reconstruction was
carried out for various types of objects. The proposed methods can significantly improve the quality
of reconstruction. The superiority of methods based on the luminance channel of the L*a*b* model
was demonstrated. Our studies indicated high efficiency of the histogram equalization method (HE),
although these results were not highly distinctive for all performed tests.

Keywords: photogrammetry; preprocessing; enhancement; point cloud; 3D reconstruction; image
processing; image histogram

1. Introduction

Until recently, photogrammetric reconstruction was available to a narrow community
of remote sensing specialists [1,2]. It has become widely available thanks to the devel-
opment of mobile applications using cameras installed in smartphones [3]. However,
reconstructions made with these applications do not provide sufficient reliability for engi-
neering applications [4]. Its potential use is building surveying, cost estimation, modeling
space for virtual and augmented reality [5–8]. Unfortunately, it is very difficult to extract
precise data allowing for sufficiently precise modeling from point clouds generated by
these technologies [9–11]. This led to a search for methods to improve reconstruction
quality and reliability [12–14]. The trust of engineers in this reconstruction is crucial [15].

Photographs are not always taken correctly. This depends on the lightning condi-
tions [16], the availability of a given property, the amount of time one can spend on
registration, the quality of the photo equipment and many other factors [17,18]. The
image file format should also be taken into account when capturing images [19]. The
quality of the photographs is especially important for the automated photogrammetric
reconstruction process [20,21]. Its impact is particularly noticeable when processing large
image datasets [22], or using the markerless method [23]. Therefore, there is a need to
correct and improve the quality of these photos. Image preprocessing is used to enhance
the quality of images [24] and it is a very significant issue from the point of view of 3D
modeling and photogrammetric reconstruction [25]. It includes many different methods
such as histogram enhancement, color balancing, denoising, deblurring or filtering [26].
Some methods have already been used to improve photo quality in the photogrammetric
reconstruction pipeline. Many of these are associated with the deblurring of images [27–29].
The literature also includes studies on the use of using polarizing filters or High Dynamic
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Range (HDR) images, [25] decolorization [30] or novel techniques for the conversion of the
color signal into a grayscale [31]. Significant research within this area has been reported by
Gaiani et al. [32]. They developed an advanced pipeline consists of color balancing, image
denoising, color-to-gray conversion and image content enrichment, including new methods
for image denoising and grayscale reduction. Another result of evaluating the impact of
image processing for photogrammetry were presented by Feng et al. [33]. Presently, neural
networks, especially the ones based on deep models, are used to improve photogrammetric
quality [29,34–36].

On the contrary to create the advanced photogrammetric pipeline [32] or use sophis-
ticated tools, such as neural networks we looked for a simple way to improve photos to
obtain the best material for photogrammetric reconstruction. We assumed that selected
methods of improving images, based on histogram operations, should give the desired
results. Our methodology is designed to work directly on photographs, as a preprocessing
step in the photogrammetric reconstruction pipeline. It can be used independently of
reconstruction software, which required testing with black-box type tool. We verified the
correctness of our method by comparing the reconstructions obtained from the prepro-
cessed materials with the most reliable geometric model at our disposal. In addition to
methods of improving image quality, finding a good way to compare the reconstruction to
a reliable model is not an obvious task.

In our previous work [37] we explored the improvement of input images for pho-
togrammetric reconstruction. Our conclusion was that reconstruction using unprocessed
photos does not always give satisfactory results. We tested several methods of image
preprocessing based on histogram analysis however, we focused only on grayscale images
in that paper. Reconstruction based on such images is correct in terms of structure, but it is
also somewhat limited as it is not possible to use colored textures. To correct this incon-
venience, we tested the following image processing methods: histogram stretching (HS),
histogram equalizing (HE), adaptive histogram equalizing (AHE) and exact histogram
matching (EHM) on color images with the use of different color spaces.

2. Materials and Methods
2.1. Research Method

Several methods of processing photographic material were selected for our study.
The processing results were used to generate photogrammetric reconstructions of pho-
tographed objects. The reconstructions were in the form of point clouds. Each recon-
struction was compared with a suitable reference model. The reference models featured a
representation of polygonal meshes. The aim of our study was to characterize individual
material processing methods in terms of their suitability for generating geometrically cor-
rect point clouds. Therefore, the selection of reliable reference models and reliable methods
for comparing reconstructions to reference models were an important element of our study.

Two real-world objects were selected as case studies. The first was a porcelain swan
figurine. The second was a large historical building. Analyses carried out on objects of
such different scales resulted in a wide range of recommendations regarding the methods
of processing photographic material that had been tested. At the same time, they required
other methods of obtaining reference models. Unfortunately, different modeling methods
give models with varying degrees of fidelity. When selecting the appropriate measures for
such different objects, the same methods of comparing the reconstruction with the models
were used. The results of these comparisons were also characterized in relation to the scale
of the object.

2.2. Photo Improvement Methods

In this paper, we focused on improving the quality of images, mainly in terms of
contrast and brightness. We did not explore the influence of other factors (such as sharp-
ness), which shall be a part of further research. We focused only on color photographs
(Figure 1), as we already published research on monochrome images [37]. Two different
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color spaces are used in the imaging processing—RGB and L*a*b*. The RGB space image
was divided into three separate channels—red, green and blue. Each channel was treated
as a single monochrome image, therefore histogram corrections were performed on each
channel separately (Figure 2), and the RGB image was recombined afterwards. In the L*a*b*
space image was also divided into three separate channels – L*, a* and b*. The L* channel
represents brightness (luminance), a* channel color position between red and green and b*
channel color position between yellow and blue. In order to preserve the original colors of
an image, modifications were introduced into the L* channel only. For this channel to be
considered a monochrome image, its values were previously transformed to the [0 1] range.

Figure 1. Example of an underexposed image.

(a) (b)

Figure 2. Histograms of RGB channels (a) and L channel of L*a*b* space (b).

As described in Algorithm 1 each image needs to be converted back into RGB space to
perform a photogrammetric reconstruction.

2.2.1. Histogram Stretching (HS)

The first image enhancement method that we used was common histogram stretching.
This process maps the intensity values of the image into new values to redistribute the
information of the histogram toward the extremes of a gray-level range. This increases the
intensity range, although some of the brightness values are not represented in the processed
image [38]. Transformed images with their histograms are presented in Figures 3 and 4.
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Algorithm 1: Histogram modification in L*a*b* space
Input: IRGB—image in RGB space

1 convert IRGB into IL∗a∗b∗
2 divide IL∗a∗b∗ into separate channels
3 leave a∗ and b∗ channels without any changes
4 transform L∗ channel to the [0 1] range
5 perform certain histogram operation on L∗ channel
6 transform back L∗ channel to the [0 100] range
7 combine IL∗a∗b∗′ from separate channels
8 convert IL∗a∗b∗′ into IRGB′
9 return IRGB′—modified image in RGB space

(a) (b)

Figure 3. Image transformed with the use of histogram stretching in RGB (a) and L*a*b* space (b).

(a) (b)

Figure 4. Histograms of RGB channels (a) and L channel of L*a*b* space (b).

2.2.2. Histogram Equalizing (HE)

The second way to improve image contrast that we tested was the histogram equaliza-
tion. This technique effectively stretches the most common intensity values—it extends the
intensity range of an image. Afterwards, intensities can be distributed better—low-contrast
areas will have higher contrast and the cumulative histogram would increase linearly [24].
Performing histogram equalization on separate RGB channels often leads to unrealistic
effects. Therefore, this operation is more suitable for images in different color spaces, such
as L*a*b* (Figure 5).

The resulting histograms are as flat as possible, without noticeable peaks. However,
it should be noticed that many intensities are not represented in obtained images. This is
represented as white gaps between the histogram bars (Figure 6).
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(a) (b)

Figure 5. Image transformed with the use of histogram equalizing in RGB (a) and L*a*b* space (b).

(a) (b)

Figure 6. Histograms of RGB channels (a) and L channel of L*a*b* space (b).

2.2.3. Adaptive Histogram Equalizing (AHE)

The third method of improving images that we tried was adaptive histogram equal-
ization. This method differs from ordinary histogram equalization in the way that the
adaptive method (AHE) calculates histograms in separate parts of the image (tiles) instead
of the entire image [39]. In each tile, a transformation function is calculated for each pixel
based on neighboring values. The classic AHE approach tends to overamplify contrast and
noise. Therefore, contrast-limited adaptive histogram equalization (CLAHE) was applied
in place of AHE. In this algorithm, the histogram is first truncated at a predefined value and
the transformation function is calculated afterwards. This situation takes place especially
in homogeneous areas [40].

After performing the equalization, an algorithm combines neighboring tiles using
bilinear interpolation to eliminate artificially induced boundaries. The resulting image
and its histogram differ significantly from the image obtained with the use of the standard
histogram equalization technique (Figures 7 and 8).
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(a) (b)

Figure 7. Image transformed with the use of adaptive histogram equalizing in RGB (a) and L*a*b*
space (b).

(a) (b)

Figure 8. Histograms of RGB channels (a) and L channel of L*a*b* space (b).

2.2.4. Exact Histogram Matching (EHM)

The last image enhancement process consists of two main stages. In the first stage,
a mean histogram of the whole set of images is calculated. This is performed by adding
histograms of each image (separately for each channel) and dividing the result by the num-
ber of images in the set. In the second step, an exact histogram matching operation [41,42]
is used to adapt the histogram of each image to match the obtained average histogram
(Figures 9 and 10).

(a) (b)

Figure 9. Image transformed with the use of exact histogram matching in RGB (a) and L*a*b* space (b).
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(a) (b)

Figure 10. Histograms of RGB channels (a) and L channel of L*a*b* space (b).

2.3. Photogrammetric Reconstruction

For photogrammetric reconstruction, we used Agisoft Metashape, which is used ex-
tensively worldwide. During the reconstruction phase, the same parameters were used for
each step to keep the test method consistent. The reconstructions were created indepen-
dently for each set of photos, i.e., the original photos and those transformed following the
algorithms described. We chose two types of objects to validate the method’s correctness
regardless of the scale of the object subjected to photogrammetric reconstruction. Compar-
isons between individual reconstructions were performed using Cloud Compare software.

Agisoft Metashape provides a built-in tool for assessing the quality of photos, but this
is based on sharpness only. For this purpose, it analyzes contrast between pixels and deter-
mines the quality factor which takes a value from 0 to 1. According to the manufacturer’s
recommendation, images with a factor lower than 0.5 should be excluded from the recon-
struction process. This criterion is not always reliable, because in the case of directional
blur, which is most common when taking pictures, sharp areas can still be detected by
algorithm, and qualify the picture as good quality [43]. There is no information about any
image preprocessing techniques implemented in Metashape, therefore it should be treated
as a black-box tool.

A DSLR camera was used in the registration of photographs for the photogrammetric
reconstruction. The sensor was not calibrated in any of the described case studies, in addi-
tion a markerless method was used. This was due to the intent to present a method that
can be used in a wide range of cases without having to meet any special requirements.

2.3.1. Reference Model of the Porcelain Figurine

The first testing datum was a little porcelain figurine, about 12 cm high. Its reference
model was acquired with the use of a 3D scanner that operates in the field of structural
light (Figure 11a). The scanner, unfortunately, was not able to reach all the covered parts
of the object. The fragments of the figurine that did not have a correct digital representa-
tion were filtered out in the process of analysis. They were also the same fragments for
which obtaining a correct representation during the photogrammetric reconstruction met
with failure.
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(a) (b)

Figure 11. Porcelain figurine models: (a) mesh acquired by the 3D scanner, (b) point cloud obtained
with the use of photogrammetric reconstruction.

2.3.2. Reference Model of the Castle in Nowy Wiśnicz

The castle in Nowy Wiśnicz is in the north-eastern part of the town, less than 400 m
from the Market Square. The origins of the castle date back to the fourteenth century,
but its present shape is from the seventeenth century. It is a typical example of a palazzo
in fortezza. Its quadrangular shape is accentuated by four corner towers. There is an
additional segment to the south. The entire layout is surrounded by bastion fortifications
in the shape of a pentagon with the longest dimension of 190 m. Together with bastions
and curtain walls, it covers approx. 19,500 m2 (Figure 12b). The height of the castle
itself, measured from the level of the courtyard inside the fortifications, is about 36 m
(Figure 12a) [44].

Obtaining a reference model of such a large object was not possible using a 3D
scanner. It was created using photogrammetric methods and verified via comparison with
a point cloud obtained using airborne LiDAR. It is a combination of several partial models
covering various parts of the castle. The individual partial models were obtained from
separate sets of photos taken to ensure high quality. The photos were taken from human
eye-level and from different heights, for which an UAV (Unmanned Aerial Vehicle) was
used. There were 2300 photos in total. Partial reconstructions of the castle’s buildings
were generated in Agisoft Metashape. They were then compiled using orthogonal versor
matrix multiplication in Cloud Compare and combined into a single point cloud and then
converted into a mesh model.

The point cloud used to validate the model represented a digital terrain and cover
model. It was obtained from the state surveying repository. In Poland, by virtue of the
law [45], the numerical terrain model and land cover data are currently available free of
charge. They can be downloaded from the governmental servers of National Geoportal [46]
as a grid of points with x, y, z coordinates, deployed at 1 m intervals. There are also LAS
standard point cloud data available [47], acquired as a part of the ISOK project (National
Land Cover IT System) [48]. As a result of this project, 98% of the territory of Poland
was scanned, with a density of between 6–12 points/m2. The point cloud is available in
the form of LAS files, where each point is represented by X, Y, Z, coordinates, RGB color
(Figure 13a) and assigned to one of four classes: ground, structure, water and vegetation
(Figure 13b) [47]. This enables the individual segmentation layers to be compared sepa-
rately [49]. These data are reliable from a geolocation point of view, but insufficient for
many engineering applications. Especially in the case of building walls, which, as elements
with a mostly vertical geometry, are very poorly covered with points, as they are recorded
via airborne LiDAR flyovers [50]. The fixed measurement interval does not provide the
coordinates of distinctive elements of building geometry (corners, ridges, tops of towers).
However, this is a feature that can be used for verification. The ISOK model points were
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used in this work for the systematic sampling of model correctness. The sparse ISOK point
cloud precisely defines the space into which the dense cloud of the reference model must fit.
After appropriate scaling and fitting of the reference model, the correctness was assessed by
comparing the sparse ISOK cloud to the dense cloud of the reference model by examining
the root mean square distance (RMS) between the superimposed structures (Figure 14).
The RMS error estimation method allows the determination of a fitting error’s statistical
values, which are expressed in spatial distance, which is well understood by engineers
potentially using such models [51].

(a) (b)

Figure 12. Polygonal models of the castle in Nowy Wiśnicz: (a) building only (4,133,352 faces), (b) the
building with fortifications (1,966,487 faces).

(a) (b)

Figure 13. ISOK point cloud: scanning colors (a); class colors (b).

Figure 14. Distance error (RMS) for reconstructed model and reference LAS ISOK: LAS ISOK to
reconstructed model—point-to-mesh mapping.
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3. Results

The subject of our research was to determine whether the preprocessing of photos
used to perform photogrammetric reconstruction affects its quality. Our research on
grayscale images has shown that uniformity of pictures in terms of brightness and contrast
can significantly improve the quality of a model obtained via reconstruction. However,
using monochrome images has the disadvantage that the resulting texture does not pre-
cisely reflect the object’s appearance. For this reason, the photographs of the objects
mentioned in the previous section were processed in color spaces in accordance with the
methods presented.

The general scheme of the tests carried out on each set of photos is as follows:

1. Photo correction using one of the methods mentioned.
2. Creation of a sparse and then dense point cloud by photogrammetric reconstruction.
3. Registration using the ICP method to match the received data sets [52].
4. Comparison of individual reconstructions using the distance calculation: recon-

structed model cloud to reference model cloud.
5. Statistical and visual analysis of the obtained results.

Classical statistical measures such as mean or standard deviation can be used when
a variable is quantitative in nature. However, when the variable is ordinal, it is better to
use positional measures such as median or interquartile range. In the case under study,
the variable is the distance of a point derived from the photogrammetric reconstruction
from the reference model obtained with the scanner. Therefore, the variable can be consid-
ered ordinal – the smaller the distance, the more correct the result. The analyzed statistical
quantities are quartiles and in the interquartile range. Subsequent quartiles provide in-
formation about how far away from the original model the 25% (Q1), 50% (Q2—median),
and 75% points (Q3) are. These values are calculated from distances given in absolute
(unsigned) quantities, so a distance of 0.10 cm is treated the same as a distance of −0.10 cm.
However, in the case at hand, this is irrelevant because the objective is to determine the
number of points that are within a given range of distances, without taking into account
whether they are outside or inside the reference model. The smaller the value of a given
quartile, the better the result because it means that a given percentage of points lies at a
closer distance to the reference model. For example, in the case of the swan figure and the
HE method in the L*a*b* space, the third quartile is 0.17 cm, which means that 75% of the
points are closer to the reference model than this value. For the same method in RGB space,
these 75% of the points are closer than 0.20 cm, which is a larger value, and therefore the
points are further away from the reference model (Table 1).

Another measure that is calculated is the interquartile range (IQR), which is one of the
values that determines dispersion. This measure is determined using a signed number and
determines the degree of diversity—the higher the interquartile range value, the greater
the variety of a feature. The value of this measure is calculated based on the difference
between the third and first quartiles: IQR = Q3 −Q1. In other words: the 50% of points
are within the interval defined by the value of IQR. A narrower interval means a higher
concentration of points in closer proximity to the reference model, so in the case under
analysis, a lower value of IQR indicates a better result.

Based on quartile values obtained, it was also possible to perform an analysis of the
length of the “tails”, i.e., the number of outlying points beyond a specific value of the
distance from the reference model. The average of the values of Q3 for all the measurements
taken was assumed to be this particular value (σ). The values obtained determined how
many points were at a significant distance from the reference model. These points can
therefore be treated as incorrectly reconstructed. Due to the different number of points
in the cloud for each reconstruction, what is important here is the value in percentage
terms—the smaller it is, the fewer points are at a significant distance from the reference
model, and thus it can be considered more accurate.
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3.1. Case Study 1—The Porcelain Figurine

The set of images used for photogrammetry reconstruction consisted of 33 pho-
tographs. Twelve of them were underexposed, and eleven of them were overexposed.
The dense clouds obtained in the figurine reconstruction process consisted of several hun-
dred thousand points. These were then reviewed for duplicates, leading to the removal
of approximately 10% of points from each cloud. The final number of obtained points is
shown in Table 1. The obtained reconstructions are quite difficult to compare in terms
of quality visually (Figure 15). However, the differences in contrast and color saturation
of the textures are well demonstrated. Particularly notable is the low contrast in the re-
construction created using the original images (Figure 15a). As described in Section 2.2,
the modification of the image in L*a*b* space involves transforming the histogram on
the luminance channel without modifying the color channels, which can easily be seen in
Figure 15f–i. On the other hand, modifying individual channels in the RGB color space
results in changes in the saturation of individual colors (Figure 15b–e) and can also lead to
errors in texture colors.

Table 1. Number of points and statistical measures for the reconstruction of the porcelain figurine.

Method Aligned Cams Points Q1 Median Q3 IQR

original 24 350,232 0.05 0.11 0.19 0.23

L*a*b*

AHE 23 365,903 0.05 0.12 0.20 0.23
EHM 23 300,097 0.05 0.10 0.19 0.19
HE 24 313,622 0.05 0.10 0.17 0.20
HS 27 338,858 0.05 0.11 0.19 0.21

RGB

AHE 23 337,649 0.05 0.11 0.19 0.21
EHM 23 280,334 0.05 0.11 0.20 0.21
HE 23 316,222 0.05 0.11 0.20 0.20
HS 27 373,312 0.05 0.12 0.22 0.23

avg: 0.20

Upon a statistical analysis of the results (presented in Table 1), one can see very similar
results for all investigated methods. The value of the first quartile in each case was 0.05 cm.
The median values also differed very little. Only values for the third quartile showed
a slightly bigger variation, where the best value was attained for the HE method in the
L*a*b* space. However, it should be noted that the differences in individual values were
minuscule and approximate the reconstruction obtained using unprocessed photograph.

The situation was slightly different when tail analysis was performed (Table 2). The σ
value for the figurine was taken as 0.2 cm. This value was exceeded by 23.40% of points
when reconstructed from images without enhancement, and only 17.84% of points when
corrected using the HE method in L*a*b* space. In general, methods operating in L*a*b*
space performed better in this case, with an average of 22.16% of points above the σ value,
compared to 25.48% for methods operating in RGB space. A similar relationship can also be
observed by analyzing the distribution of values for 2σ and 3σ. It should also be noted that
the number of points located at a distance above 2σ, i.e., above 4 mm from the reference
model, was relatively small—for the previously mentioned HE method in L*a*b* space, it
is 3.62% of the total number of points in the cloud.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 15. Dense point clouds of the porcelain figurine. Reconstructions based on photographs: (a) original; preprocessed
in the RGB space with the use of: (b) histogram stretching, (c) histogram equalizing, (d) adaptive equalizing, (e) exact
histogram matching; preprocessed in the L*a*b* space with the use of: (f) histogram stretching, (g) histogram equalizing,
(h) adaptive equalizing, (i) exact histogram matching.

The distribution of deviations is not uniform over the entire surface of the model.
The largest number is found in the ear region of the figure, as this section was the most
difficult to reconstruct for the photogrammetric reconstruction algorithms (Figure 16).
The different reconstructions were similar to each other in terms of error deviations. Vi-
sually, the largest number of points, located at distances above 3σ, was found for the HE
method in RGB space (Figure 16c), which is confirmed by the numerical values (Table 2). It
is also notable that for the method based on the EHM algorithm, the upper part of the figure
was not correctly reconstructed for both RGB and L*a*b* space processed photographs
(Figure 16e,i).

164



Sensors 2021, 21, 4654

Table 2. Tail analysis for swan figure (σ = Q3 = 0.2).

Method σ [%] 2σ [%] 3σ [%]

original 81,949 23.40 16,829 4.81 4232 1.21

L*a*b*

AHE 92,521 25.29 12,898 3.52 4756 1.30
EHM 69,061 23.01 14,381 4.79 3695 1.23
HE 55,938 17.84 11,367 3.62 3165 1.01
HS 76,199 22.49 13,910 4.10 3846 1.13

RGB

AHE 78,988 23.39 15,156 4.49 4268 1.26
EHM 69,099 24.65 13,064 4.66 4015 1.43
HE 79,759 25.22 18,559 5.87 6565 2.08
HS 106,967 28.65 26,207 7.02 4564 1.22

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 16. Dense point clouds of the porcelain figure. Distances to the model up to 3σ = 0.6 cm: (a) original; preprocessed
in the RGB space with the use of: (b) histogram stretching, (c) histogram equalizing, (d) adaptive equalizing, (e) exact
histogram matching; preprocessed in the L*a*b* space with the use of: (f) histogram stretching, (g) histogram equalizing,
(h) adaptive equalizing, (i) exact histogram matching.

165



Sensors 2021, 21, 4654

As mentioned, both original and preprocessed reconstructions are quite similar. This
may suggest that in the case of easily accessible objects of small size, repeating the acqui-
sition of a series of photographs with more attention to lighting conditions and correct
camera settings would prove a better reconstruction improvement method than source
image processing. To verify this hypothesis, an additional analysis was performed with
photographs that met the proper acquisition conditions.

Upon visual comparison of the reconstruction (Figure 17), it can be seen that the point
cloud contained more detail than the others shown in Figure 15. Numerical data also
confirmed this. The cloud consisted of 521,404 points, which was an increase of 39.7%
relative to the reconstruction with the highest number of points (retrieved using the HS
method in RGB space) and 48.9% more than the reconstruction made from the original
images. However, the number of points in the cloud itself was not conclusive, as the points
may not have been reconstructed correctly. Nevertheless, the repeated reconstruction
gained some advantage here as well. Both quartiles and IQR values were 0.01 lower on
average than the best reconstructions obtained by the histogram improvement method.
The value of IQR, which is a measure of dispersion, was also 0.05 (21.7%) lower than the
value obtained for the reconstructions made from the originally acquired images. The tail
analysis also confirmed the desirability of re-taking the image sequence. The number of
points above σ equaled 17.15%, with 23.40% for the original reconstruction and 17.84%
for the best reconstruction obtained using the HE method in L*a*b* space. The number of
points above 3σ represented only 0.46% of the total number of points, which was a decrease
by 54.5% from the best reconstruction and 61.9% from the original one.

(a) (b)

Figure 17. Improved reconstruction of the porcelain figurine: (a) RGB dense cloud, (b) absolute
distance mapping.

3.2. Case Study 2—The Castle in Nowy Wiśnicz

The castle in Nowy Wiśnicz is an object several times larger than the presented
model of the figurine. The number of images used in its reconstruction process was
about ten times greater, and the number of points of the dense cloud about 100 times
greater (about 30 million points—Table 3). The whole set of selected images used for
photogrammetric reconstruction consisted of 338 photographs, and about 20% of them
were underexposed. The first look at the resulting models allowed us to notice that
the reconstruction made with the use of original photographs were incorrectly made
(Figure 18a). In fact, this error inspired the research towards improving the quality of
the reconstruction without repeating the photographic registration process. The defects
could also be seen with the use of the AHE method in RGB space. The deviations were
more clearly visible when analyzing images where the distance from the reference model
was marked with the corresponding color (Figure 19). Similar to the reconstruction of the
porcelain figurine, differences in contrast and color saturation of the textures were also
apparent here. For reconstructions created using images processed in RGB space, color
distortion was noticeable (Figure 18c–e). On the other hand, when using the AHE method
in L*a*b* space, considerable texture brightening was visible.

166



Sensors 2021, 21, 4654

Table 3. Number of points and statistical measures for the reconstruction of the castle in
Nowy Wisnicz.

Method Aligned Cams Points Q1 Median Q3 IQR

original 338 41,833,893 11.78 47.73 87.30 75.90

L*a*b*

AHE 338 30,328,057 0.05 0.10 0.17 0.19
EHM 338 31,144,627 0.04 0.10 0.19 0.20
HE 338 28,241,790 0.05 0.10 0.17 0.19
HS 338 29,980,758 0.04 0.10 0.16 0.18

RGB

AHE 338 30,774,070 0.06 0.16 0.46 0.31
EHM 338 30,223,244 0.05 0.10 0.17 0.19
HE 338 30,163,377 0.05 0.11 0.17 0.19
HS 338 31,055,419 0.05 0.11 0.19 0.20

avg: 0.21

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 18. Dense point clouds of the castle. Reconstructions based on photographs: (a) original; preprocessed in the RGB
space with the use of: (b) histogram stretching, (c) histogram equalizing, (d) adaptive equalizing, (e) exact histogram
matching; preprocessed in the L*a*b* space with the use of: (f) histogram stretching, (g) histogram equalizing, (h) adaptive
equalizing, (i) exact histogram matching.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 19. Dense point clouds of the castle. Distances to the model up to 3σ = 0.63 m: (a) original; preprocessed in the
RGB space with the use of: (b) histogram stretching, (c) histogram equalizing, (d) adaptive equalizing, (e) exact histogram
matching; preprocessed in the L*a*b* space with the use of: (f) histogram stretching, (g) histogram equalizing, (h) adaptive
equalizing, (i) exact histogram matching.

Analysis of the statistical values strongly highlighted the defect in the original recon-
struction. The value of Q1 reached 11.78 m and IQR, which is a measure of dispersion as
high as 75.90 m (Table 3). For reconstructions based on modified images, these values were
several orders of magnitude smaller. The value of the first quartile oscillated around 5 cm,
while the third quartile for almost all reconstructions was less than 20 cm. It was larger
only in the previously mentioned AHE method in RGB space and amounted to 46 cm. This
numerically confirmed the visually observed abnormality in this reconstruction. However,
it should be noted that the Q3 value was a small fraction (about 0.4%) of the castle dimen-
sions, which demonstrates the correctness of the reconstruction since 75% of the points lied
within this dimensional deviation from the reference model. It is interesting that each of
the 338 photographs, was aligned by the software. This indicates that the reconstruction
error occurs already at the keypoint extraction stage. This observation should be deeply
investigated in subsequent studies.
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The above conclusions are also confirmed by tail analysis (Table 4). The σ value
was assumed to be 0.21 cm in this case. Almost all (89.22%) points for the reconstruction
performed from unenhanced images were above this value. The lowest and therefore best
values were achieved for the HS and HE enhancement methods in L*a*b* space—14.58%
and 14.96%, respectively. Again, methods operating in L*a*b* space tended to perform
better—on average, 16.47% of points were above the σ value, compared to 23.32% for
the methods operating in RGB space. Of course, this was affected by the aforementioned
reconstruction incorrectness for the AHE method in RGB, for which the σ value was 39.47%.
The number of significant deviations from the reference model was the smallest for the
methods operating in L*a*b* space. A deviation of more than 63 cm (3σ) was observed
for less than 1% of the points for the three methods operating in this space. Among the
methods operating in RGB, only in two cases, a deviation above 3σ was noted for about 1%
of the points, while for the AHE method in this space, it was more than 23% of the points.

Table 4. Tail analysis (σ = Q3 = 0.21) for the reconstruction of the castle in Nowy Wisnicz.

Method σ [%] 2σ [%] 3σ [%]

original 37,325,857 89.22 36,496,517 87.24 36,157,816 86.43

L*a*b*

AHE 4,706,784 15.52 759,082 2.50 254,641 0.84
EHM 6,477,239 20.80 1,889,706 6.07 736,932 2.37
HE 4,225,890 14.96 661,988 2.34 159,952 0.57
HS 4,372,294 14.58 764,709 2.55 258,619 0.86

RGB

AHE 12,145,976 39.47 8,087,475 26,28 7,209,241 23.43
EHM 4,945,613 16.36 975,302 3.23 323,573 1.07
HE 4,659,034 15.45 799,797 2.65 261,054 0.87
HS 6,829,555 21.99 2,295,160 7.39 987,314 3.18

The fragments of the reconstruction with the largest deviation from the reference
model were marked in Figure 19 in red. The reconstruction defect for the original images is
clearly visible (Figure 19a) as is the one for the AHE method in RGB (Figure 19d), where
additional elements of the castle towers and walls, positioned at the wrong angle, are
visible. In all cases, the deviations occurred within the courtyard in front of the main
entrance to the castle. In two cases, RGB HS and L*a*b* EHM, they were slightly larger
(Figure 19b,i). An indication of this was also reflected in the statistics featured in Table 4.
It is also noteworthy that a significant amount of the points that diverged the most from
the reference model were associated with vegetation that was not present on the reference.
Removing this vegetation would require manual manipulation of the reconstruction, which
the authors wanted to avoid in order not to distort the results of the comparisons. Other
inaccuracies included roof edges that were difficult to reconstruct. The least amount of
such inaccuracies was found in the HS improvement in L*a*b* space (Figure 19f).

4. Discussion and Conclusions

The research presented in this paper was intended to verify the effectiveness of image
enhancement methods for photogrammetric reconstruction. It is an extension of earlier
studies performed on grayscale reduced images, which demonstrated that modifying the
histogram of individual images can significantly improve reconstruction quality. However,
monochromatic images do not fully represent the reconstructed object correctly due to
the lack of realistic color reproduction. For this reason, we explored the performance of
image modifications using histogram enhancement methods (HS, HE, AHE, EHM) in color
spaces (RGB and L*a*b*). As demonstrated, histogram modifications affected the final
shape of the reconstruction. The clearest example of this is the case study presented in
Section 3.2, regarding the castle in Nowy Wiśnicz. Although the reconstruction based
on the original photographs was incorrect, the other reconstructions, obtained using the
modified photographs, were already accurate, which should be considered a success of
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the presented method. This is evident both from the visual side (Figure 18) and from the
statistical analyses (Tables 3 and 4). Each of the reconstructions looked slightly different,
which also proves that modifications of the source photographs impacted the final result.

Two case studies were selected so as to present the method’s application on objects
of different sizes. For a small object, the influence on the quality of the reconstruction
was more visually noticeable. Statistically, the deviations of the reconstruction from the
reference model were rather small, and it is difficult to unambiguously indicate which of
the point clouds obtained represent better quality. However, this is influenced by the fact
that the reconstruction performed based on original images was roughly correct, i.e., it
reflected the object’s original shape. The reconstruction obtained from photographs taken
with attention to appropriate lighting conditions indicates that proper image acquisition is
advantageous over image preprocessing methods. However, registration cannot always
be repeated for various reasons, such as the temporary availability of the object to be
reconstructed. In such cases, improving the quality of the photographs using appropriate
methods can give the expected results.

Architectural objects, such as the castle in Nowy Wiśnicz presented in Section 2.3.2, are
significantly more challenging in terms of obtaining the correct exposure of the collected
material. It is impossible to choose the optimal lighting by oneself, as it is directly related
to the current weather conditions. Additionally, in the case of such an object, the number
of photos that must be taken is much greater, which results in longer recording and data
post-processing times. In most situations, it is not possible to verify the correctness of
registration at the place of acquisition, e.g., by performing preliminary reconstruction.
In such cases, it is reasonable to use image preprocessing, as demonstrated in this paper.

Based on the histogram correction methods analyzed, several conclusions can be
drawn. Visual analyses of the obtained reconstructions (Figures 15 and 18) indicated the
superiority of methods that operate in L*a*b* space. In the RGB space, all the color channels
are modified, which leads to color distortions in the textures. Similarly, from a statistical
point of view, methods that operate in the L*a*b* space are more efficient. It is possible
that this is related to the aforementioned falsification of the colors of the photographs,
but such a conclusion requires further research. Our experiments did not result in any
unequivocal recommendations regarding the superiority of specific histogram methods;
however promising results were obtained using histogram equalization and histogram
stretching in L*a*b* space. This is important since these methods are well-known and
considered basic, are mathematically simple and do not require significant computation
power. However, further research in this direction is required.
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Abbreviations
The following abbreviations are used in this manuscript:

HS histogram stretching
HE histogram equalizing
AHE adaptive histogram equalizing
EHM exact histogram matching
CLAHE contrast-limited adaptive histogram equalization
UAV Unmanned Aerial Vehicle
LiDAR Light Detection and Ranging
ISOK IT System of the Country Protection
RMS Root Mean Square
ICP Iterative Closest Point
IQR interquartile range
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Abstract: Acknowledged guidelines and standards such as those formerly governing project planning
in analogue aerial photogrammetry are still missing in UAV photogrammetry. The reasons are many,
from a great variety of projects goals to the number of parameters involved: camera features, flight
plan design, block control and georeferencing options, Structure from Motion settings, etc. Above
all, perhaps, stands camera calibration with the alternative between pre- and on-the-job approaches.
In this paper we present a Monte Carlo simulation study where the accuracy estimation of camera
parameters and tie points’ ground coordinates is evaluated as a function of various project parameters.
A set of UAV (Unmanned Aerial Vehicle) synthetic photogrammetric blocks, built by varying terrain
shape, surveyed area shape, block control (ground and aerial), strip type (longitudinal, cross and
oblique), image observation and control data precision has been synthetically generated, overall
considering 144 combinations in on-the-job self-calibration. Bias in ground coordinates (dome effect)
due to inaccurate pre-calibration has also been investigated. Under the test scenario, the accuracy
gap between different block configurations can be close to an order of magnitude. Oblique imaging
is confirmed as key requisite in flat terrain, while ground control density is not. Aerial control by
accurate camera station positions is overall more accurate and efficient than GCP in flat terrain.

Keywords: UAV; photogrammetry; camera calibration; GNSS-assisted block orientation; dome effect;
Monte Carlo simulation

1. Introduction

Accurate knowledge of camera interior orientation elements and proper mathematical
modelling of the image formation process are key elements for image metrology. UAV
photogrammetry is no exception in this respect [1]. Camera calibration, the process leading
to the estimation of such model parameters, has long been (and still is) one of the most
researched topics in close range photogrammetry [2] as well as in computer vision [3,4].
At least in the former area, there is general agreement on conditions providing optimal
results [1,5]: camera parameters should be estimated in a Least Squares Bundle Block
Adjustment (BBA) of a highly redundant camera network with strong geometry (highly
convergent images, orthogonal roll angles, more than six rays per point, and large scale
variations in images), a testfield with appropriate targets, highly accurate image matching
of targets, image points covering full frame format, and significance tests to avoid over-
parametrization [6–8]. Not all conditions need to be satisfied nor are Ground Control Points
(GCP) generally necessary.

In the context of UAV camera calibration, assessing the accuracy of calibration pa-
rameters computed in various image block configurations by on-the-job self-calibration
is still a disputed argument. Current technology also allows, besides the traditional case
of block control by GCP, GNSS-assisted self-calibration. Evaluating the effects of residual
calibration errors on tie point accuracy, in the case of pre-calibration as well as of on-the-job
self-calibration, on the other hand, is of relevant interest, especially from a practical point
of view.
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In this paper a set of UAV synthetic photogrammetric blocks, built by varying terrain
shape, surveyed area shape, block control (ground and aerial), strip type (longitudinal,
cross and oblique), image observation, and control data precision has been synthetically
generated. Through a set of Monte Carlo simulations the actual performance of each single
configuration has been investigated. From an operational standpoint, analytical camera
calibration comes in two versions: pre-calibration or on-the-job calibration. Both use a BBA
with additional parameters; the former is normally executed in a laboratory test field under
optimal camera network geometry, with estimated parameters kept fixed later in actual
surveys; the latter estimates camera parameters as a by-product of the BBA of the actual
survey block [9].

How to transfer close-range expertise on camera calibration, with its strong roots in
industrial and metrology applications, to UAV photogrammetry is still an investigated topic.
In a way, UAV photogrammetry is indeed a mix of close-range and aerial photogrammetry,
as it inherits consumer cameras from the former and block geometry features from the
latter (e.g., a basic flight plan made of nadir imagery along parallel strips). To complicate
matters, UAV platforms come in two versions, fixed-wing and rotary-wing, with marked
differences in flight management and camera pointing flexibility. The wealth of ongoing
research devoted to UAV camera calibration witnesses a not-yet-settled issue, with many
questions still open and even “old” certainties put under scrutiny [10].

Pre-calibration is well suited when the camera is mechanically stable and repeatable in
focusing operations [11]; a further constraint is that it should be operated in the field under
similar conditions (image scale, scene depth, etc.) to that of calibration. Most software
packages provide specific camera calibration tools, with calibration patterns and automatic
target detection to speed up operations. With fixed-wing platforms, cameras are easily
removed from the drone body and so pre-calibration can take place in laboratory settings.
With rotary-wing platforms both indoor and outdoor options are generally feasible. It
should be noted, however, that if similarity of image scale between calibration and survey
block is sought, indoor or laboratory calibration can be troublesome, especially with longer
focal length optics.

As far as the alternative between pre-calibration and on-the-job calibration is con-
cerned, the outcomes of the many study cases on UAV camera calibration are not all
consistent, and the situation looks poised to remain so. The results of [12] found that,
with dense ground control, differences between on-the-job and pre-calibration were not
substantial. In [13], proper distortion modelling is the goal to pursue to avoid systematic
errors; pre-calibration is recommended together with an after-flight calibration check based
on k1-k2 parameters’ equifinality. Oblique imaging in the range of 20◦ to 45◦ with respect
to nadir amounting to at least 10% of block images should be included to reduce doming.
The authors of [14] recommend robust pre-calibration (longitudinal and double cross with
a few oblique ones) and claim that an on-site block as small as 20 images, with four oblique
images at block corners, in a scene with sufficient height variations, might be enough to
achieve this aim. Additionally, using pre-calibrated parameters, they found virtually the
same residuals on GCP for two flights executed at a three-day distance over the same
test field, implying a good short-term stability of camera parameters. In a rectangular
block with high-overlap nadir imagery, [15] found pre-calibration to be more accurate
than on-the-job calibration, though the main improvement came from accurate camera
distortion modelling. On the other hand, it has been found in empirical tests [16–18] that
Interior Orientation (IO) elements are not stable or that the reliability of the pre-computed
parameters is questionable, due perhaps to poor repeatability of focusing, shocks in landing
or different ambient temperatures. According to [1], pre-calibration remains the best option
in the case that basic conditions for self-calibration cannot be met on site. However, in prac-
tice, on-the-job calibration is the method of choice, perhaps optimizing flight parameters to
meet both survey requirements and safe conditions for self-calibration.

The progress in feature-based matching, with tens of thousands of tie points extracted
and often matched across more than a dozen images, makes self-calibration without
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targets possible [19,20], on condition of a reasonably textured scene. Therefore, tie points’
distribution over the full frame format and accurate image matching can be taken for
granted in most survey flights. In his analysis, [1] highlights the importance of scale
changes within images as a key factor allowing, even with limited geometric block strength,
full or partial recovery of IO and distortion parameters. Flight planning software for UAVs
commonly incorporates the so-called double-grid option, with cross strips providing the
orthogonal roll angles to reduce projective coupling between Exterior Orientation (EO)
and IO parameters. Multi-scale self-calibration, with scale changes between images arising
from blocks flown at different altitudes, has been shown [14] being less effective, at least
unless GCP are introduced [10,21].

Simulations, as well as empirical studies, showed that large systematic elevation
errors (the so-called doming effect) could arise from inaccurate estimations of calibration
parameters [22]. The addition of oblique imaging to nadir imagery along parallel strips
has been proposed and shown to be beneficial [13,23–25]. Rather than adding another
flight layer, even flying the longitudinal strips with moderate-to-strong (30◦ to 45◦) camera
axis inclination along flight direction [12,21,26] proved effective in eschewing systematic
errors in elevation. The effectiveness of the gently oblique (20◦ camera pitch) double grid
proposed by [26] has also been confirmed by [27]. More radically, the very advantage
of using nadir images at all, as well as of the large overlaps of UAV blocks, has been
questioned: from homologous ray intersection analysis, [10] suggests switching, whenever
feasible, to a simple or double grid image acquisition mode where the UAV camera always
points towards the center of the area of interest at ground level. On the other hand, a
simulation study [28] showed that, with only gently inclined camera axes, otherwise
negligible correlations among decentring and radial distortion parameters may arise and
affect calibration results as well as reduce the doming effect mitigation of oblique imaging.

Most flight planning software allows for simple and double grid schemes and, for
multi rotors, for Point Of Interest (POI) mode, where the UAV takes a circular path around
a ground target that is always kept centred in the camera frame. It should be noted,
however, that (to the best of authors’ knowledge) all experimental studies with oblique
imaging have been performed with multi-rotor platforms, where the camera is normally
mounted on a gimbal. Oblique imaging with fixed wings, though an option available in
some platforms, is more difficult to achieve in practice, so meeting optimal conditions
for on-the-job self-calibration with these platforms may be harder; [24] suggest including
gently banked turns in the flight plan to this aim.

In aerial blocks, the basic camera network geometry is determined by image overlap
(side and forward), as the area of interest is typically covered by nadir imagery along
parallel strips. Increasing overlap to a much higher degree than necessary for stereo
coverage is common in UAV blocks; due to high repeatability of extracted key points, it
increases ray multiplicity and so network strength. How effective this larger overlap is
in improving self-calibration is, however, questioned [10], as the average ray intersection
angle decreases with increasing overlap.

In aerial and UAV photogrammetry, block georeferencing and block control by GCP
are intertwined and enforced in the BBA. Finding rules for determining the most efficient
density and distribution of GCP in a UAV survey is not a trivial task, given the number of
parameters involved. Indeed, the topic is still a debated subject of investigation [29,30] and
is further complicated if accurate camera station positions are employed. Using Camera
Stations (CS) determined by on-board Global Navigation Satellite System (GNSS) receivers
to georeference and control the block is indeed a more than 30-year-old technique [31],
known as GPS-supported or GPS-assisted aerial triangulation [32,33]. In many of today’s
papers this technique is (improperly, in the author’s opinion) referred to as Direct Geo-
referencing (DG), a term that should be restricted to blocks where camera E.O. data are
all determined by GNSS-assisted inertial navigation, and in principle there is no need for
tie points. The availability on the market of both fixed-wing and multi-rotor platforms
equipped with dual frequency GNSS receivers with Real Time Kinematic (RTK) technology
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enables GNSS-assisted block georeferencing and control, minimising the need for control at
ground level [34,35]. As this technology becomes less expensive and satellite constellations
improve their coverage, ensuring cm-level accuracy, it can be expected that it will gain
ground, especially whenever site conditions make GCP survey difficult [36,37]. Notice that
RTK is not strictly necessary, though it allows quick, on-site checking of the positioning
quality. Indeed, the GNSS observations might as well be recorded on board and elaborated
later in Post Processing Kinematic (PPK) mode, exploiting more sophisticated processing
options and possibly improving positioning accuracy [35,38].

Agreeing with the Computer Vision approach, [13] believe that GCP or GNSS-determined
CS need not to be involved in the BBA but instead used to compute an Helmert transforma-
tion from the BBA arbitrary reference frame and the mapping reference frame. However,
it is also acknowledged in the paper that GCP or GNSS-determined CS help to refine
calibration or limit block deformations that may arise from un-modelled systematic errors
(such as residual calibration errors) and, to some extent, might also improve calibration
parameter estimation. It is therefore worth investigating whether moving the control from
ground points to CS changes the accuracy of the calibration parameters in a self-calibrating
BBA. A few experiences [11] as well as previous simulation studies [13,39] suggest camera
calibration with UAV blocks flown with GNSS-assisted block georeferencing and control
deserves a more systematic investigation. In particular, in early tests [34,40] and later
ones [35] it has consistently been found that in nadir-only imagery blocks a bias in eleva-
tion could arise using self-calibration and that a way to cope with this problem is to use at
least one GCP. Lately, however, no need for such single GCPs has been found if oblique
images are added [27].

In the context of UAV camera calibration, this paper therefore has two objectives. The
main one is to assess the accuracy of calibration parameters computed in various image
block configurations by on-the-job self-calibration under realistic conditions, representative
of two widespread operating scenarios in UAV surveys. Besides the traditional case of
block control by GCP, a well-searched topic, of special interest in authors’ view is the
performance of a GNSS-assisted self-calibrating BBA as a function of the number of GCP;
more precisely, just one at block centre or none at all.

The second paper goal is to assess the effects of residual calibration errors on tie
point accuracy in case of pre-calibration as well as of on-the-job self-calibration, again as a
function of different block configurations.

Compared to other papers on the subject, the experiments herein try for a more
systematic approach through simulations, to gain insight on the influence of several factors
affecting UAV camera calibration. To this aim, a set of synthetic UAV photogrammetric
blocks has been generated that encompasses overall 144 different combinations of landform,
surveyed area shape, block control type (ground and aerial), number and type of strip
layers, precision of image coordinates and control data. In a Monte Carlo (MC) scheme,
each simulated block combination has been adjusted by a self-calibrating BBA where the
simulated, true values of image and control data have been corrupted with random errors,
executing 1000 runs for each combination. A similar approach, here applied in a more
comprehensive test setup, has been already proposed by [41,42], applied to GNSS-assisted
block orientation by [39] and also adopted by [35] to generate precision maps. Another
example of a Monte Carlo simulation study focused on the dome effect is also presented
in [43].

Of course, the problem dimensionality is so large that many other factors could have
been considered in the simulations (first of all image overlap, instead kept fixed to values
frequently adopted in today’s UAV surveys). A choice was made to limit computing time
and memory storage.

2. Materials and Methods

For the simulated blocks to be as realistic as possible, it has been decided to build them
from the BBA output of two real blocks, each flown over a different landform according to
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the same flight plan. The motivation for this choice is to avoid an unrealistic distribution of
the tie points over a regular grid and, most of all, an artificially high and fairly homogeneous
distribution of the tie point ray multiplicity i.e., of the number of images an object point
is observed on. As the two sites present rather different characteristics, the tie point
distribution and their multiplicity can be expected to differ as well; this should help
in clarifying whether and how these two factors affect the calibration accuracy. In the
following, first the characteristics of the real blocks are described, then the procedure to
build the synthetic blocks is illustrated.

2.1. Characteristics of the Two Real Survey Flights

The first block (Flat) images the Torrente Baganza riverbed (44◦43′3′′ N, 10◦14′18′′ E)
made of bare terrain (gravel and sand) with bushes and a few rows of high trees. The
second block (Hilly) images a steep ravine located in the Appenines, about 20 km South-
West of Parma (Italy) (44◦40′29′′ N, 10◦8′57′′ E) with bare terrain, boulders as well as trees,
grass and bushes. Images have been acquired with a DJI (Shenzhen, China) Phantom 3
equipped with a FC300X camera with a resolution of 4000 × 3000 pixels, a pixel size of
1.56 micrometres and a 3.61 mm nominal focal length (21 mm equivalent 35 mm format
focal length). The flight plan (see Figures 1 and 2) is made of three different strip types,
all flown at constant elevation above sea level (a.s.l.), i.e., with nominal camera station
positions all in the same horizontal plane:

- 7 nadir-imaging longitudinal strips with 80% forward overlap and 70% sidelap;
- 12 nadir-imaging cross strips with 80% forward overlap and 70% sidelap matching

the longitudinal strips;
- 2 rings of 36 oblique images, regularly spaced along a horizontal circle, with camera

axes pointing downwards at the circle centre ground projection (POI mode), with an
angle from nadir close to 49 degrees. As the longitudinal strips length is designed
to be twice the block width, the centre of each ring has been designed to be close to
the (square) half-block centre while the circle radius is slightly larger than half the
half-block diagonal.

Pix4D capture flight planning software has been used with the double grid option
for shooting the longitudinal and cross strips as well as the ring of oblique images. Two
separate flights have been executed in each site, one for the double grid, the other for the
rings. The flight elevation above ground level (a.g.l.) is computed with respect to the
lowest terrain point in Flat block and to the highest in Hilly block. Both full blocks (i.e.,
including all images of all strip types) have been oriented with Agisoft’s Metashape v. 1.5.3
and georeferenced on navigation data only. Figure 1 shows the orthophotos (top) and the
DEMs (bottom) of both areas. The camera stations are shown, color-coded according to
strip type, superimposed to the orthophotos. Table 1 summarizes the main characteristics
of the two flights, that show different average GSD, number of extracted tie points, average
image overlap and reprojection error.

Table 1. Summary of the real blocks’ characteristics used as a basis for simulated data generation.

Description Block “Flat” Block “Hilly”

Area size (Width × Height) (m) 480 × 290 450 × 300
Terrain type Flat Hilly

DSM hmin–hmax a.s.l. (m) 136–160 (tree tops) 218–305
# images 396

# long. strips/# images per strip 7/24
# cross strips/# images per strip 13/12

# oblique images rings 2 × 36
Flight abs. elevation a.s.l. (m) 190 355

Flight elevation a.g.l. (m) 49 49
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Table 1. Cont.

Description Block “Flat” Block “Hilly”

GSD min–max (cm) 1.3–2.4 2.2–6.0
baselenght (long. & cross) (m) 13 13
# tie points, effective overlap 111,000, 7 85,000, 15

Reprojection error (pix) 0.97 1.59

Figure 1. The top row shows the orthophoto of the Flat (left) and Hilly (right) areas, with superimposed the camera stations
locations, colour-coded per strip type: longitudinal (yellow), cross (blue), oblique (orange). The bottom row shows the DEM
generated from the sparse tie points.

Figure 2. The surveyed area (orange background) with the trajectories of the three strip types: Longitudinal (blue); Cross
(red); POI (brown). The figure depicts a Control type GCP with Enhanced control tightness (see Table 3) where GCP are
represented by triangles. Different colours of triangles refer to control tightness: Basic (red) or Enhanced (red + green).
(Left): LCO block configuration. (Right): HLCO block configuration.
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On-the-job self-calibration has been executed in the BBA, enabling the estimation of
the camera parameters listed in Table 2. Notice that the camera mount of the Phantom 3 is
such that the largest side of the sensor is perpendicular to flight direction. As such, the Y
axis is “along strip” and the X axis is “across strip”: the image coordinate system is oriented
with the Y axis in flight direction and the X axis 90◦ clockwise with respect to Y.

Table 2. Camera parameters estimated in the BBA.

Principal
Distance

Principal
Point

Radial
Distortion

Decentring
Distortion

Scaling and
Non-Orthogonality

Acronym c PPx, PPy k1, k2, k3 P1, P2 B1, B2

No particular refinement of the BBA adjustment results has been carried out, as the
goal of the operation was simply to provide data for the simulations.

2.2. Generation of Block Configurations for the Simulation

Different block configurations are generated by selectively removing from the full
block one of the strip types (namely: the cross strips, the oblique images or both) in the
original projects. Each block configuration is labeled according to the strip type it contains
using the letters L, C and O to label longitudinal strips, cross strips and POI images,
respectively. For instance, an LCO configuration corresponds to the original full block,
while an LC configuration represents a block made of longitudinal and cross strips only,
and so on. A block configuration is therefore made of one, two or three different strip types.

In order to account for the effect of different area shapes on calibration, exploiting the
1:2 width-to-heigth ratio of the rectangular original block, the second half of the original
full block (LCO) has been cut out, allowing the generation of square block configurations
also from the (original) first half-block. Configurations derived from this square block
recieve the prefix H. As such, the HLO configuration is made of a longitudinal square
block complemented with a ring of oblique images; HO is a POI (single ring) over the
square area, and so on. For each block configuration, camera stations and pose, tie point
ground coordinates and camera calibration parameters are exported to act as true data for
the simulation.

Overall, four block configurations (LCO, LC, LO and L) have been considered for
the rectangular area and five (HLCO, HLC, HLO, HL and HO) for the square area. Each
configuration has been generated for both the Flat and Hilly areas.

As far as block control is concerned, both ground-only (GCP case) and GNSS-assisted
(GNSS case) have been tested with both Basic and Enhanced tightness (see Table 3). In
GCP Basic (see red triangles in Figure 2), 8 and 5 GCP are placed at the corners and in the
middle of the block square(s), respectively, for the rectangular and square area. In GCP
Enhanced, 15 and 9 GCP are arranged in three rows along the longitudinal flight lines,
respectively, for the rectangular and square blocks (see red and green triangles in Figure 2).
In GNSS Basic as well as in GNSS Enhanced, all camera stations’ positions are used as
control information; however, in the former no additional GCP are used, while in the latter
a single GCP, located at the block centre, is fixed.

Table 3. The two block control cases each with two different tightness levels, depending on the
number of GCP fixed.

Block Control Case Tightness

GCP (Ground)
Basic: 5–8 GCP

Enhanced: 9–15 GCP

GNSS (Aerial)
Basic: no GCP

Enhanced: 1 GCP
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Two sets of observation precisions have been considered to simulate both a medium
as well as a high-precision data set (see Table 4). Though “average” users cannot do much
to improve the precision of the control data, in principle a better quality of positioning
data can be foreseen. As far as the GNSS case is concerned, a better hardware (especially a
better antenna), a good satellite configuration and expertise in PPK GNSS data might do
the job. As far as the GCP case is concerned, using a Total Station shifts the accuracy range
below the cm level [30]. Tie point image coordinate precisions depend on image quality
and object texture characteristics so, once the image block is acquired, the user has a limited
ability to intervene. Some differences can be expected in point identification performances,
if different Structure from Motion algorithms (i.e., different software packages) are used, or
if different processing parameters are chosen (e.g., the Orientation quality parameter in
Metashape). A matching precision of 1 pixel and of 1/3rd of a pixel has been considered.

Table 4. Measurement precisions levels considered in the simulations.

Precision Level CS Coord.
(cm)

GCP Coord.
(cm) Tie Point Img. Coord. (pix)

Medium 3.0 0.5 1
High 1.0 0.17 0.33

Table 5 summarizes the combinations of BBA configurations tested in the MC simula-
tion. The combination of Area shape and Strip types yields nine different configurations.
Combining them in all possible ways (16) with the parameters Landform, Measurement
precision, Block control type and Block control tightness, a total of 144 different cases were
investigated in the MC simulations.

Table 5. Parameters accounted for in the simulated BBA.

Parameter

Area shape and Block type rectangular: L, LC, LCO, LO
square: HL, HLC, HLCO, HLO, HO

Landform Flat, Hilly
Measurement precision Medium, High

Block control case GNSS, GCP
Block control tightness Basic, Enhanced

2.3. Generation of True Values and True Errors for the Synthetic Data

The true values of the exterior and interior orientation parameters (including the
camera optical and sensor distortion parameters) and of the tie points’ ground coordinates
of the simulated blocks are taken from the real blocks, i.e., from the estimated parameters
values after a free-net self-calibrating BBA executed with Agisoft MetaShape (Agisoft,
St. Petersburg, Russia) on the two real blocks. The tie points’ distribution and their mul-
tiplicity in the simulated block is also taken from the real blocks. To this aim, the list
of tie points in each image has been exported from MetaShape and the tie point image
coordinates’ true values have been generated by projecting the ground point coordinates
with the collinearity equations, according to the estimated exterior orientation parameters
and camera parameters. The synthetic image coordinates so obtained incorporate the
optical and sensor frame distortion estimated for the real block. Therefore, though the same
camera has been used in both real flights, the synthetic block’s IO parameters are slightly
different. For instance, the focal length true value for the Flat terrain block is 2335 pixels
(21.01 mm equivalent 35 mm format focal length) while for the Hilly terrain block it is
2320 pixels (20.88 mm equivalent 35 mm format focal length). Normally distributed errors
with standard deviations according to Table 4 have been generated in each run of the MC
simulation and added to the true observations.
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Running the BBA in the MC simulations, the standard deviations assigned to the
observations should be the same as those reported in Table 4. This is true for the tie points’
image coordinates; for the GCP and the CS coordinates, however, in a real block it might
be advisable to reduce their standard deviations (i.e., by a factor three/four) to reduce
unmodeled errors, as the much larger number of image observations with respect to the
other observation types needs to be counterbalanced by increasing the weights of the
latter [1,40,42,44]. In this case, however, being the observations affected by zero mean
gaussian errors, the effect of varying to some extent the weights of the observations have
negligible effects on the final results.

2.4. Accuracy Evaluation of Camera Calibration Parameters

The calibration parameters’ accuracy will be investigated at the single parameter level
as well as at a global (image) level. The former analysis will focus primarily on the three
IO parameters, the latter on the largest residual distortion over the whole image frame.

Correlations between parameters play a key role in estimation errors, not affected by
the MC simulations, and will also be considered in the evaluation of the nine configurations.
Given this paper’s objectives, special attention will be given to comparison between GNSS-
assisted and traditional GCP block control.

To present the results, the nine block configurations have been (albeit arbitrarily)
ranked according to a decreasing block “strength score” (see Table 6).

Table 6. Block configurations ranked by decreasing “strength”.

1 2 3 4 5 6 7 8 9

LCO LO HLCO HLO LC HLC L HL HO

The overall calibration accuracy of each block configuration will be measured by the
largest residual distortion. To this aim, a grid of 20 by 15 points has been set over the image
frame. At each iteration of the MC scheme, the maximum residual distortion error on such
grid points (i.e., the distance between the true image distortion correction and the one
computed with the estimated distortion parameters) is recorded. Upon completion of MC
simulations, the average and standard deviation of the maxima per iteration are computed.
To weigh the alternative between GNSS and GCP block control in the calibration, the
percentage gain in modelling distortion (reducing the average max residual distortion) will
be computed for identical block configurations and similar block control tightness.

2.5. Accuracy Evaluation of Ground Coordinates

The accuracy of the ground coordinates in each of the 144 cases is evaluated by
comparing, for each tie point coordinate, the true values of the coordinates against the
estimated value in each block adjustment. For each check point coordinate, the mean
error, the error standard deviation and the RMSE obtained in the 1000 MC iterations is
computed and averaged over all the tie points common to all block configurations. As
the number of tie points depends on the block configuration, in order for the comparisons
to be made on an equal basis, only points common to all configurations have been used
in computing the error statistics. As such points are fairly distributed over the survey
area, restricting the analysis to the common set doesn’t affect the statistics’ significance.
However, this common tie point set has been built excluding the HO configuration (POI
case with oblique images only), as very few tie points turned out to be common to other
blocks. Using such a small amount, in our opinion, would have affected the significance of
the results for all configurations too much. As such, the sample size of the error statistics
for HO configuration is not homogeneous with the other configurations [10]. As a matter
of fact, in our test the HO case turned out to yield in most cases quite singular results,
hardly in agreement with a trend that could be spotted in the other configurations and
mainly quite poor [10]. Additionally, in our experiment design we did not think of the

181



Sensors 2021, 21, 6090

POI as a real standalone configuration, but rather as a complement of nadir imagery. A
reason for such disappointing results might be that the POI is not that far from an “orbital
motion” critical configuration [45]. We present them anyway, with this caveat and without
any further comment.

2.6. Dome Effect and Pre-Calibration

Our test has not been specifically designed to study the so-called dome effect [22]
that may show up when residual calibration errors and weak block geometry produce
systematic errors in tie point coordinates, mostly apparent in elevation. Indeed, except
in one case (GNSS control case with noGCP), the block control applied in the simulations
(see Figure 2) always foresees at least one GCP in the block centre, therefore limiting the
magnitude of the Z coordinate error at the block center. However, taking advantage of the
144,000 camera calibration parameter sets estimated in the BBA of the MC simulations in the
nine block configurations of the experiment, we investigated the 3D tie point coordinates
sensitivity to (inaccurate) pre-calibrated camera parameters, i.e., the dependence of the
dome size on the pre-calibration block configuration, through a second MC simulation.

To set “better” conditions for the dome effect to show up, a slightly modified L
(ongitudinal) image block configuration has been extracted from the Flat block. In addition
to the original tie points, in this block a set of more than 1600 check points has also been
generated as follows. The horizontal coordinates of each check point are taken from the
nodes of a regular 5 × 5 m grid set over the area, while their elevation is set equal to
the average elevation of all the tie points in the original Flat block. The synthetic image
coordinates of tie points and check points are then generated error-free, i.e., by projection
on the images according to true values of camera parameters, ground coordinates and EO
parameters. Finally, only four GCP located at the block corners are used as control in the
modified L block.

In the new MC simulation, consisting of 144,000 runs over the modified L block,
random errors with a standard deviation of 1 pixel (Medium precision in Table 4) are
applied to tie points’ image coordinates only, while check point image coordinates are left
unperturbed. The modified L block observations are then adjusted, fixing the four GCP
at the corners, in pre-calibration mode, i.e., using fixed camera calibration parameters.
Such camera parameters are taken, in each run of the new MC simulation, from one of the
144,000 calibration parameter sets estimated in the first MC simulation. After the BBA, the
ground coordinates of the check points are computed by forward intersection (i.e., keeping
fixed the estimated EO parameters). In this way, only the effect of the tie point image
errors and of the pre-calibrated parameters is transferred via the EO parameters to the
check points ground coordinates, as the check points image coordinates are error-free. On
completion of the MC simulation then we get 144,000 Z error sets for the check points, each
set representing the dome effect generated in the flat area by application to the modified
L block of a pre-calibrated camera parameter set coming from one of the 144 originally
tested configurations.

We divide the 144,000 error sets in 144 groups, according to the block configuration
the camera parameters have been estimated on. To summarize the results, for each group
(block configuration) the average Z error, calculated as the average over all check points of
the mean Z error of the 1000 MC runs in each check point, is computed. Moreover, the error
range due to each pre-calibration configuration is computed as follows. Out of the 1000 runs
over each check point, the largest positive, largest negative and standard deviation (being
the mean approximately zero for all the points) of the Z error are recorded. Finally, the
average of all check points differences between the largest positive and negative error
(i.e., the maximum range) is computed, hereafter named the Z error range. The analysis of
both errors should highlight the influence of the pre-calibration block configuration on a
dome effect-prone block such as the modified L block.
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3. Results

In the following, all figures and tables, unless explicitly stated, refer to simulations
with random errors generated under Medium precision (see Table 4): 3 cm for CS, 0.5 cm
for GCP and 1 pixel for image coordinates.

3.1. Camera Calibration Parameters
3.1.1. Principal Distance

Figure 3 presents the RMSE in pixels of the estimated principal distance (as a function
of the nine block configurations, of the terrain type (Flat, Hilly) and of the control tightness
(Basic or Enhanced).

Figure 3. RMSE of the principal distance as a function of block type, terrain type and control tightness: (top): GCP case;
(bottom): GNSS case.

The plots show an accuracy deterioration from strong to weak block configurations
which is comparatively larger in flat terrain, especially in the GCP case. Oblique images
are necessary for accurate estimation of the principal distance: if they are included, the
accuracy range is from 0.05 to 0.29 pixel irrespective of control type and tightness as well
as terrain type. If they are missing, a sharp decrease in accuracy may occur, from 0.4 to
2.9 pixels. The importance of oblique images becomes apparent when computing the ratio
between the principal distance average RMSE of the four LC, HLC, L and HL configurations
without oblique images and the corresponding average RMSE of the configurations LCO,
LO, HLCO and HLO with oblique images (see Table 7).
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Table 7. Ratio between average principal distance RMSE for LC, HLC, L and HL configurations and
average principal distance RMSE for LCO, LO, HLCO and HLO configurations for different terrain
types, block control type and tightness.

Control
Enhanced Basic

Hilly Flat Hilly Flat

GNSS 6.1 4.7 7.5 8.7
GCP 9.0 9.1 8.7 9.0

As can be seen, the accuracy gap in principal distance determination without and with
oblique images ranges from a factor 5 to 9. In the GCP case the gap is largest and almost
the same, irrespective of terrain type and control tightness. In the GNSS case, if no GCP is
fixed (Basic) the gap is quite significant, while it is the lowest if 1 GCP is fixed (Enhanced),
especially in flat terrain. This on the one hand means that, in flat terrain, oblique images
are even more necessary than in hilly ones; on the other hand, that GNSS control with
1 GCP partly compensates for a less geometrically strong block configuration.

Without oblique images, in the GCP case it is the terrain type that ensures (Hilly) or
prevents (Flat) accurate determination of the principal distance, while control tightness
plays only a minor role; flat terrain is critical also in the GNSS case as, unless a single GCP
is employed, the estimation error raises quickly well above 1 pixel. In both GCP and GNSS
cases, the same block configurations in hilly terrain provides better results than in a flat
one (on average about two times better in our test settings). The HO case (a single ring
of oblique images) stands out: it is the only case where, with GCP control, Flat is more
precise than Hilly and in the GNSS case Flat Basic (noGCP) is not markedly worse than
Flat Enhanced (1 GCP).

3.1.2. Principal Point Location

Figures 4 and 5 represent the RMSE in pixels of the Principal Point (PP) coordinates
PPx and PPy as a function of the nine block configurations, of the terrain type (Flat, Hilly)
and of the control tightness (Basic or Enhanced).

Figure 4. Cont.
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Figure 4. RMSE of the principal point x coordinate as a function of block configuration, terrain type (Flat, Hilly) and control
tightness (Basic or Enhanced): (top): GCP case; (bottom): GNSS case.

Figure 5. RMSE of the principal point y coordinate as a function of block configuration, terrain type (Flat, Hilly) and control
tightness (Basic or Enhanced): (top): GCP case; (bottom): GNSS case.

With both GCP and GNSS block control, control tightness is not critical for PPx
estimation, as the values for Basic and Enhanced cases are very similar. In the GCP case, the
accuracy gap between hilly and flat terrain deteriorates markedly moving from strong to
weak block configurations, up to a factor 3.8 in HL. To the contrary, in the GNSS case, both
for flat and hilly terrain, the accuracy level is weakly dependent on the block configuration
and control tightness: indeed, the accuracy gap between the two terrain types is quite
stable and never exceeds a factor of 1.7. Finally, the HO case appears again as a singular
and critical one, both with GCP or GNSS-assisted block control, and particularly so in the
latter case, with an eightfold decrease in accuracy.
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PPy accuracy is overall substantially worse than PPx, at least in weak block configu-
rations. In hilly terrain the accuracy gap with respect to PPx is limited for both GCP and
GNSS cases: the ratio RMSE_PPx/RMSE_PPy ranges from 1 to 1.7; in flat terrain, to the
contrary, the PPy RMSE is worse by a factor ranging from 1.5 (LCO Enhanced) up to 9
(HL Basic).

The plot of the GCP case shows that ground control tightness is not critical for PPy
estimation in both terrain types. In the GNSS case, however, this is true only with hilly
terrain, while in flat terrain and block configurations lacking oblique images the 1 GCP
case is significantly more accurate. In both GCP and GNSS cases and hilly terrain the PPy
accuracy is very stable with respect to block configuration and always better than in flat
terrain under the same block configuration. In the GNSS case and flat terrain, moreover,
the error increases when moving from strong to weak block configurations with a marked
jump and at a higher rate when oblique images are removed; a growing gap also opens
between Basic (no GCP) and Enhanced (1 GCP) control tightness. The overall relative
accuracy gap between the strongest and the weakest block configurations is significant: for
the GCP case the error increases by a factor of 3 in hilly terrain to a factor of 9 in flat terrain,
while the respective figures for the GNSS case are from 2.4 to 15. Finally, also for PPy, the
HO case is critical.

3.1.3. Calibration Overall Accuracy

Figure 6 shows the average of the maximum distortion error value registered over the
image frame as a function of the nine block configurations, of the terrain type (Flat, Hilly)
and of the control tightness (Basic or Enhanced), respectively, in the GCP and GNSS cases.

Figure 6. Average value of the maximum distortion error (in pixels) registered over the image frame as a function of the
nine cases, of the terrain type (Flat, Hilly) and of the control tightness (Basic or Enhanced), respectively, in the GCP and
GNSS cases.
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Both the GCP and GNSS cases show similar trends, with a slight degradation of
accuracy for decreasing block configuration strength. A hilly terrain yields more accurate
distortion modelling than a flat one: by a factor of 1.8 to 2.3 in the GCP case and from 1.4 to
2.9 in the GNSS case. The HO case is somehow apart, with the largest values about four
times worse than the worst result of the other eight block configurations. As far as the
block control type is concerned, while in the GCP case the control tightness has little or no
influence on distortion accuracy, in the GNSS case with flat terrain the Enhanced control (1
GCP) is clearly more effective when oblique images are missing.

To measure, if any, the overall calibration accuracy gap between the GCP and GNSS
case, Figure 7 plots the percentage accuracy gain of performing camera calibration in a GCP
or GNSS case, for the nine block configurations. More precisely, for each pair of GCP and
GNSS identical configurations, the difference of the average max distortions is computed
and expressed as percentage.

Figure 7. Percentage accuracy gap in camera distortion modelling between GCP and the GNSS case for each of the nine
block configurations as a function of the terrain type (Flat, Hilly) and of the control tightness (Basic or Enhanced).

∆maxD of the distortion in the GCP case for each of the nine block configurations, two
terrain types and two control cases:

∆maxD =
maxD(GCP)−maxD(GNSS)

maxD(GCP)
(1)

where: maxD(GCP) = average value of maximum distortion error over the image frame
in the 1000 MC runs when the block configuration is adjusted with the GCP control type.
maxD(GNSS) = average value of maximum distortion error over the image frame in the
1000 MC runs when the block configuration is adjusted with the GNSS control type.

In Figure 7 a positive value means the GNSS case is more accurate in modelling the
overall image distortion than the GCP case, and vice versa for negative values. Overall,
the GNSS delivers a better calibration in most cases, sometimes with quite a significant
improvement (up to 45%). In the four strongest block configurations (all with oblique
images) GNSS performs markedly better in flat terrain (+23% on average), while GCP is
better in hilly terrain (+14% on average). In weaker blocks GNSS performs almost always
better than GCP (+20% on average). The largest gains are in flat terrain if at least 1 GCP is
used (Enhanced tightness case), with three cases exceeding a 30% gain.

3.2. Ground Point Coordinate Accuracy

The ground coordinates accuracy is evaluated by comparing the true against the esti-
mated coordinates for a set of tie points common to all block configurations (see Section 2.5).
Such coordinates are influenced by the estimated interior orientation and distortion param-
eters, whose accuracy, as shown in the previous sections, can vary strongly with the block
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configuration and control type. At the same time, different block configurations (e.g., LCO
vs. HO) have different tie point projections redundancy, projecting ray intersection angles
and image multiplicity which affect the accuracy of the tie points as well.

Rather than the magnitude (absolute values) of the coordinates’ RMSE, it seems more
appropriate here to present a relative comparison among the different block configurations,
as this provides a measure of the accuracy gain when flying according to one or another
block configuration. More precisely, the relative accuracy loss ∆RMSE has been computed as:

∆RMSE =
RMSE(LCO)− RMSE(CFGi)

RMSE(LCO)
(2)

where RMSE(CFGi): average RMSE on tie points in the CFGi configuration, with CFGi = LCO,
LO, ..., HL and HO; and RMSE(LCO): average RMSE on tie points in the LCO configuration.

Figure 8 shows the percentage loss ∆RMSE of the ground coordinates RMSE of every
block configuration with respect to the reference configuration (LCO) as a function of
terrain type and control tightness in the GCP case and in the GNSS case. The top figures
refer to horizontal coordinates and the bottom ones to elevation. Please note that the
previously used sequence order of the block configuration labels in the graphs has been
modified in such a way as to have a monotonic decreasing accuracy.

Figure 8. Cont.
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Figure 8. X, Y and Z tie points’ coordinates in GCP and GNSS cases: percentage RMSE loss of each of the nine block
configurations w.r.t. the reference block configuration (LCO), as a function of terrain type and control tightness; (top): X, Y
coordinates; (bottom): Z coordinate.

In both the GCP and the GNSS case, the block configurations split in three groups of
similar accuracy: (1) LCO, HLCO, LC and HLC; (2) LO, HLO, L and HL; and (3) HO, which
is a singular case. This suggests that cross strips look more important than oblique images
to ensure accurate ground coordinates, while the opposite is true for camera calibration
parameter estimation accuracy (see Table 7).

For the horizontal coordinates, in the GCP case and hilly terrain, group (1) blocks
are roughly equally accurate (differences below 10%); group (2) blocks are 20% to 30%
less accurate than LCO; and block HO is 120% less accurate than LCO. In flat terrain the
accuracy gap range in group (2) is larger (30% to 50%). In the GNSS case the accuracy
gap pattern is basically the same as the GCP case, with a larger group (2) gap (from 35%
to 60%).

As far as elevations are concerned, in the GCP case the accuracy gaps in group (2)
range from 24% to 35% in hilly terrain and from 35% to 70% in flat terrain. Moreover, in
flat terrain a noticeable dependence on control tightness is apparent. A smaller accuracy
gap is found in the HO case (from 60% to 80%) with respect to horizontal coordinates. In
the GNSS case the picture is more complex. In group (2) the rate of accuracy decrease in
flat terrain is larger than in hilly terrain, and even more so between Basic and Enhanced
control tightness (the accuracy gap reaches 180%). In HO configuration the accuracy gap
goes from 60% (Hilly Dense) to 150% (Flat Sparse).

For a comparison between GCP and GNSS case, Figure 9 reports for the tie point
coordinates RMSE the percentage gain (or loss) relative to the GCP case. More precisely, the
relative accuracy gaps ∆RMSE_CT between GCP and GNSS RMSE for the same configuration
have been computed as:

∆RMSE_CT =
RMSEGCP(CFGi)− RMSEGNSS(CFGi)

RMSEGCP(CFGi)
(3)
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where: RMSEGCP(CFGi): average RMSE on tie points in CFGi configuration with GCP
block control type; RMSEGNSS(CFGi): average RMSE on tie points in CFGi configuration
with GNSS block control type.

Figure 9. Percentage accuracy gap between the GCP and the GNSS cases, relative to the GCP case, for tie point coordinates’
RMSE as a function of the nine configurations, of the terrain type (Flat, Hilly) and of the control tightness (Basic or Enhanced).
Positive values mark a better RMSE for GNSS compared to GCP, and vice versa for negative values. (Top): horizontal
coordinates; (bottom): elevations.

A positive value means the GNSS case is more accurate than the GCP case and vice
versa for negative values.

From Figure 9 it can be seen that the horizontal coordinates’ accuracy does not show
significant differences between the GCP and GNSS cases: the largest for all configurations
(less than 5%) can be expected in flat terrain with basic control; in hilly terrain the differences
are below 1%. The HL and HO configurations are (partial) exceptions, with differences up
to 8% and 16%, respectively. In elevation the pattern is somehow similar, with differences
even more insignificant in hilly terrain. However, in flat terrain there is a clear distinction
for block with and without oblique images. In the former case the GNSS case is better (up
to 14%) while in the latter the GCP case is markedly better unless the single GCP (Enhanced
control case) is fixed: the gap grows from 14% (LC) to almost 55% (HL).

Comparison of GNSS-controlled blocks vs. GCP-controlled ones is strongly influenced
by the instruments’ actual precision in Camera Station and GCP coordinate determination
and by the weights assigned to such information in the BBA (see Section 2.3). Such
precisions, in author’s opinion, are representative of the current state-of-the-art of most
UAV surveys. In our test context the two solutions (GCP control network vs. GNSS-assisted
orientation) are largely balanced and provide similar tie point accuracy results. Should this
not be the case (e.g., should a less-precise on-board receiver be used) one solution would
provide significantly better performance than the other.
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3.3. Effect on Tie Points RMSE of Increased Block Control Precision

As pointed out at the beginning of this section, all the above-presented results refer
to errors in GNSS-determined camera stations, GCP coordinates and image coordinates
generated according to Medium precision in Table 4. With error magnitudes three times
smaller i.e., generated according to High precision observations as reported in Table 4, the
tie points RMSE patterns as a function of block configuration are broadly similar to those
shown in the previous paragraph. To measure the improvement (if any) brought by the
increased measurement precision, Figure 10 shows the percentage accuracy gain for the tie
points ground coordinates achievable with High precision measurements as opposed to
Medium precision measurements. More precisely, the accuracy gain ∆i has been computed
separately for horizontal (X, Y) and vertical (Z) tie point coordinates as:

∆i =
RMSEi(Medium)− RMSEi(High)

RMSEi(Medium)
i = (X, Y), Z (4)

where RMSEi(Medium) = average value of the tie points’ coordinate i RMSE over the
1000 MC runs with observation errors of image coordinates, camera stations and GCP,
respectively, of 1 pixel, 3 cm and 0.5 cm. RMSEi(High) = average value of the tie points’
coordinate i RMSE over the 1000 MC runs with observation errors of image coordinates,
camera stations and GCP, respectively, of 0.33 pixel, 1 cm and 0.17 cm.

Figure 10. Percentage accuracy gain of the tie points’ ground coordinates when measurement error standard deviations in
the MC simulations decrease from 3 cm for CS, 0.5 cm for GCP and 1 pixel for image coordinates (Medium precision in
Table 4) to 1 cm, 0.17 cm and 0.33 pixel, respectively (High precision in Table 4). (Top): GCP control case; (bottom): GNSS
control case.

Overall, the ground coordinates’ accuracy increase is very limited in hilly terrain in
both the GNSS and GCP cases, where it is lower than 2% in almost all cases, and even
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less for the horizontal coordinates. In flat areas, accuracy gains, though in absolute terms
mostly small, are larger than in hilly terrain in both control cases and, again in both control
cases, are more significant for elevations. The gains pattern as a function of the block
configuration is, however, different. In the GCP case, perhaps surprisingly, the largest
gains (from 5 to 7% in horizontal coordinates and from 6 to 12% in elevation) are found
for the stronger configurations with cross strips (LCO, LC, HLCO and HLC). In the GNSS
case the only noticeable gains in horizontal coordinates are for the square block (from 6 to
12%). Still in the GNSS case, the largest accuracy gains (from 20% to 26%) are registered for
the elevations, in flat terrain and Basic control tightness (no GCP) in block configurations
without oblique images.

3.4. Dome Effect

As anticipated in Section 2, a second MC simulation has been carried out to evalu-
ate whether and to what extent applying pre-calibrated parameters may still cause the
occurrence of the dome effect in the current block being adjusted. In particular, the influ-
ence of the pre-calibration block characteristics is investigated. From this new simulation,
144,000 Z error sets, each computed on 1600 check points, have been obtained. Every error
set represents the dome effect generated on the check points by the application of a pre-
calibrated camera parameter set, obtained in one of the first 144,000 MC simulations, in the
adjustment of the simulated image observations of a L (ongitudinal) block configuration
flown over a flat area, with four GCPs at the corners (see Section 2.6 for details).

The 144,000 error sets have been divided in 144 groups, according to the configuration
type of the pre-calibration block. To summarize the results, for each group the average Z
error and the Z error range have been computed. Rather than measuring the magnitude
of elevation distortion, here the focus is on the effectiveness of the pre-calibration block
configurations in preventing it. Therefore, Figure 11 shows the percentage increase of
the average Z error and of the Z error range of each pre-calibration block configuration
with respect to the reference configuration LCO. Both values refer to Z errors computed
over the 1600 check points in the 1000 adjustments of the modified L (ongitudinal) block
configuration with the 1000 camera parameter sets obtained in the former MC simulation.
More precisely, the relative percentage differences ∆Z for the average Z error have been
computed as:

∆Z =
Z error(CFGi pre_cal.)− Z error (LCO pre_cal.)

Z error (LCO pre_cal.)
(5)

where Z error (CFGi pre-cal.): average Z error on 1600 check points in a L block in a flat area
adjusted with camera parameters from a pre-calibration block in CFGi configuration, with
CFGi = LCO, LO, ..., HL and HO; and Z error (LCO pre-cal.): average Z error on 1600 check
points in a L block in a flat area adjusted with camera parameters from the reference
pre-calibration block. The reference LCO varies according to block control type (GCP or
GNSS), control tightness and terrain type.

Likewise, the relative percentage differences ∆Z_range for the Z error range have been
computed as:

∆Z_range =
eZ range(CFGi pre_cal.)− eZ range (LCO pre_cal.)

eZ range (LCO pre_cal.)
(6)

where eZ range (CFGi pre-cal.): average Z error range (difference of the largest positive and
the largest negative Z error) on 1600 check points in a L block in a flat area adjusted with
camera parameters from a pre-calibration block in CFGi configuration, with CFGi = LCO,
LO, ..., HL and HO; and eZ range (LCO pre-cal.): average Z error range (difference of the
largest positive and the largest negative Z error) on 1600 check points in a L block in a
flat area adjusted with camera parameters from the reference pre-calibration block. The

192



Sensors 2021, 21, 6090

reference LCO varies according to block control type (GCP or GNSS), control tightness and
terrain type.

Figure 11. Average Z error increment (left) and Z error range increment (right) when applying to a L configuration block a
pre-calibrated camera parameter set estimated with a given configuration with respect to a pre-calibration set estimated
with LCO configuration. The results are presented for both the GCP (top) and GNSS (bottom) block control cases, as a
function of block configuration, block control and terrain type.

From Figure 11 left, it is apparent that the percentage error gap can be dramatic,
especially in flat terrain and in square blocks, if oblique images are missing: the worst
case is HL, with 150% and 90% increase in GCP and GNSS case, respectively. In all cases
pre-calibration parameters estimated on hilly terrain perform better compared to those
on a flat terrain: except for the HO case, the percentage increase of the Z error is always
less than half compared to that from a calibration over flat terrain, and much less so in the
strongest block configurations.

In the GCP case, with pre-calibration executed over a hilly terrain, LO, HLCO and
HLO configurations are on par with LCO pre-calibration. This applies also to LC and,
perhaps surprisingly, to L (only 7% worse than LCO). Square blocks without oblique images
(HLC or HL), on the other hand, deliver calibration parameters that produce Z errors 20 to
30% worse. Pre-calibration parameters estimated over a flat terrain with square blocks are
not as effective even with oblique images (HLCO +13% and HLO +20%), and much worse
without (+97% and +160% in HLC and HL, respectively).

In the GNSS case with pre-calibration executed over hilly terrain, all rectangular
configurations (LO, LC and L) and the square configurations with oblique imaging (HLCO
and HLO) are on a par with LCO. As in the GCP case, HLC (+17%) and HL (+33%) produce
instead significantly larger Z errors. In flat terrain a pre-calibration with GNSS rectangular
blocks perform better than square ones, as in the GCP case, even if they include oblique
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images (HLCO +23% and HLO +39%). Comparing GNSS and GCP pre-calibration, GNSS
is always better in rectangular blocks and in all square blocks except those including
oblique images.

In both the GNSS and the GCP case, the pre-calibration block control tightness seems
to play a marginal role (i.e., increasing block control does not significantly reduce the gap
with respect to the reference case LCO).

The Z error range looks rather independent of the terrain type and block control; it
is larger for weaker configurations, but without a clear monotonic trend (i.e., matching
the decreasing “block strength” emerging from the previous analysis). The ratio between
average height of the dome (Volume/Area) and error range (difference between maximum
and minimum height of the dome) is almost constant in flat terrain, from 6 to 7; in hilly
terrain instead, it increases from 1.9 to 4.9 with decreasing block strength.

A comparison between the effectiveness of camera calibration when taking advantage
of GNSS-determined camera stations and when using GCP is among the paper objectives.
The average Z error obtained using camera parameters from the same calibration block con-
figuration adjusted with GNSS-determined camera stations with respect to the equivalent
error obtained from adjustments with camera parameters obtained with GCP control is
shown in Figure 12. To compare both pre-calibrations, the percentage difference ∆pre-cal has
been computed as:

∆pre−cal =
Z error(GCP pre_cal.)− Z error (GNSS pre_cal.)

Z error (GCP pre_cal.)
(7)

Figure 12. Percentage Z error difference on check points for blocks pre-calibrated with camera parameter sets estimated
with GNSS-determined camera stations or GCP. Percentages are shown as a function of the nine cases of the terrain type
(Flat, Hilly) and of the control tightness (Basic or Enhanced). Positive values mark comparatively smaller Z errors for GNSS
w.r.t GCP and vice versa for negative values.

Positive ∆pre-cal values mark comparatively smaller Z errors for GNSS pre-calibration
w.r.t. GCP pre-calibration and vice versa for negative values.

It is apparent that in hilly terrain both control types are basically equivalent, as
differences are below 5%. Likewise, block control tightness is not very important as
differences between Basic and Enhanced are also below 5%. In flat terrain with oblique
images GCP performs better; however, just slightly so, with differences ranging from almost
insignificant (LO, less than 1%) to small (HLO, 13%). Without oblique images, GNSS pre-
calibration is better, with improvements up to 30% for square blocks (HLC and HL) and a
bit smaller (up to 19%) in rectangular shaped blocks (L and LC). Interestingly, also with
Basic tightness (no GCP) the GNSS case seems to deliver better calibration parameters than
GCP when flying over a flat terrain.
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4. Discussion
4.1. Camera Calibration Parameters

Overall, as far as the estimation accuracy of the IO parameters is concerned, the GNSS
and the GCP cases show similar trends with respect to block configuration, terrain type
and block control. Accurate estimation of the principal distance (see Figure 3) is ensured if
POI oblique images are included to complement nadir-imaging longitudinal (and possibly
cross) strips; if they are missing, the accuracy becomes two-to-five times worse. The HL
case in flat terrain is particularly critical for both the GNSS and GCP case (up to ten times
worse than the best case). It should also be noted that [10] in a single POI block (HO case)
the accuracy is five times worse than the best case. Cross strips, on the other hand, provide
only a marginal improvement. Although, at first thought, this might seem surprising, the
image block being much more rigid with cross-strips, it is actually in line with findings
from [10,18] where cross strips attained less than expected improvements or worse results.
It should be noted, as far as principal distance is concerned, that nadir-imaging cross strips
do not introduce significant new geometrical constraints (from a projective point of view)
for its estimation. On the contrary, having a more significant depth change in the scene
pictured by the oblique images (as well as due to the object geometry e.g., as in the hilly
study area), drastically increases the accuracy of the estimation.

The accuracy of Principal Point (PP—see Figures 4 and 5) estimation in hilly terrain is
very stable with respect to block configuration and control tightness, while in flat terrain the
accuracy gets worse with weak block geometries. It should be noted, in this context, that the
use of cross strips increases, although not drastically, the determination of the PP location.
In fact, it is well known (see for instance [8]) that the use of 90-degree-rolled images
in a calibration image block prevents, or at least reduces, the insurgence of unwanted
correlations between the parameters and in particular the ones associated to the PP.

The average and standard deviation of the maximum residual distortion affecting
the image coordinates after camera calibration parameter estimation (see Figure 6) show
trends quite similar to those of PP accuracy estimation. It is worth pointing out that, in this
analysis, the distortion error considers both the effects due to a not accurate estimation of
the radial and tangential calibration parameters and the ones induced by a not accurate
Principal Distance and Principal Point estimation. In other words, the reported errors
represent the image coordinates error on image plane due to all the estimated parameters.
It is therefore intuitive that this analysis shows similar trends of the ones in Figures 4 and 5.
The HO case is a stunning exception in the GNSS case as, even in hilly terrain, the accuracy
is more than ten times worse than the best case. This is also true for the maximum average
distortion, where HO shows a clear gap compared to other configurations.

To summarize the comparison between block control by GNSS or GCP, there is perhaps
no outright winner, but a clear edge for the GNSS case, which performs better especially in
weaker block geometry configurations. In agreement with findings from [10,27], accurate
determination of all interior orientation parameters is possible with GNSS even without
GCP, if oblique images can be included. At first sight, this seems to contradict authors’ [40]
and others’ previous tests [34]. However, it should be noted that in both the cited cases
the GNSS-assisted blocks were made of nadir images only, as the flights were performed
with fixed-wing platforms. Moreover, the authors of [35], flying only longitudinal strips,
found adding 1 GCP necessary and sufficient to recover bias in elevation due to inaccurate
determination of principal distance.

The question about the optimal survey block configuration is likely to remain open,
as the variety of parameters to explore is really too large. As far as our contribution to
this point is concerned, a few basic configurations and their combinations have been taken
into account. However, some promising variants in the imaging geometry i.e., flying the
longitudinal strips with moderate-to-strong (30◦ to 45◦) camera axis inclination along flight
direction [26] that recently received attention [10,27,28] were not considered. Another
caveat applies to block size and shape, especially in the GNSS case, as pointed out in [27]:
should large blocks be composed by juxtaposing basic, optimized sub-block tiles? Do
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results found with this and other simulations apply to any block size and shape? Is a
complete layer of oblique images necessary to complement a basic longitudinal strip layer
or, as suggested in [14], is taking just one at each block corner enough? From the results,
longitudinal nadir-only blocks should be limited to hilly terrain (in the presented case
the largest image scale was three times bigger than the smallest one), where calibration
is still fine and the accuracy loss on ground coordinate (see next section) compared to
LCO is negligible in horizontal coordinates and does not exceed 20% in elevation. This
agrees with [1]. Adding two flight layers (C and O) to the basic longitudinal one delivers
of course the top results. It should be noted that, in most cases (see Figures 4–6) dropping
one of the two results in significant worse accuracies (at least as far as the percentage error
increment is considered) of the estimated camera model parameters, but does not result in
a significant accuracy loss for the ground coordinates (see Figure 8), except for the GNSS
control case on flat terrain. If a choice is to be made between cross and oblique, our results
are ambiguous. In flat terrain oblique images are necessary for accurate determination
of all IO parameters, while cross strips are only effective with PP coordinate estimation.
On the other hand, LC and HLC configurations for rectangular and square blocks show
significantly better RMSE on tie point coordinates for hilly terrain, and better or comparable
ones for flat terrain compared to LO and HLO.

Do GNSS-based and GCP-based image blocks deliver equivalent calibration accuracy?
Broadly speaking the answer is negative, as the former performs always better than the
latter in flat terrain if 1 GCP is used, with improvements up to 30%, while the latter is 10%
to 20% better with strong block configurations in hilly terrain. It should be noted, however,
that from a practical standpoint, GNSS-assisted UAV surveys come with significantly fewer
operational constraints than traditional GCP-based ones, especially if the area investigated
presents accessibility issues and if total time of operation is critical. The simulations seem
to confirm what several of the previously cited authors illustrate in their contributions:
the current state of the GNSS technologies implemented in most of the modern RTK UAV
systems are already precise enough to implement accurate, and maybe also reliable, GCP-
free surveys in most of (if not all) operational conditions. In author’s opinion, acquiring
also some GCP (at least one) remains an important requirement nonetheless: as far as the
accuracy of the ground points is concerned, introducing at least one GCP might highlight
some RTK solution bias and reduce it to some extent. In author’s experience the GNSS UAV
navigation solution is sometimes affected by systematic errors, easily masked in a pure
GNSS-assisted solution. Additional independent ground control constraints can therefore
dramatically increase the survey reliability. At the same time, as the simulations highlighted,
including at least one GCP in the GNSS-assisted block might increase significantly (though
not drastically) also the quality of the IO and distortion parameters estimation, especially
for the weaker image block geometries.

4.2. Check Point Coordinates Accuracy

With the exception of HO case, the accuracy loss of horizontal coordinates as a function
of the block configuration grows from just 1% (LC) to 30% (HL) in hilly terrain but reaches
60% (HL) in flat terrain. The double grid configurations show the lower loss (Figure 8).
The pattern is similar for the GNSS and GCP cases, though in flat terrain the loss rate is
more pronounced for the former.

As far as elevations are concerned, in hilly terrain the pattern is similar to horizontal
coordinates, though the loss is higher (38% in HL case) in both the GCP and GNSS cases. In
flat terrain, however, the GNSS and the GCP show, to the contrary, clear differences. In the
former, without oblique images, the accuracy loss is quite sensitive (up to 175% in HL) to
afford the lack of ground control. Adding (at least) a single GCP does not really solve the
problem as the overall loss remains very high (75% in HL). To the contrary, with inclusion
of oblique images, there is no difference between adding or not the single GCP and the
overall loss is below 50% in the worst case (HLO). This suggests that adding the GCP as
proposed in [40] is not the best solution to error estimation in the principal distance: using
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a stronger block configuration is more effective. In the light of [27] results and of authors’
findings, a double grid with a moderate pitch angle configuration seems the best trade-off,
though perhaps not yet an operational solution for many fixed-wing platforms.

In the GCP case, increasing the control tightness does not bring substantial improve-
ments in horizontal coordinates; in elevations the gains are a bit higher, but not much.
Though a meaningful comparison is difficult, this result only partly agrees with findings
in [12].

Accuracy gains by increasing by a factor three the control precision (Figure 10) are
very limited in hilly terrain, being less than 5% in both horizontal and vertical coordinates.
In flat terrain the situation is more complex. In GCP case the improvement is between 5%
and 10% in elevation and mostly less than 5% in horizontal coordinates. This point agrees
with [12] results. With aerial control, the improvement in horizontal coordinates is still
modest, below 10%. In elevation, to the contrary, configurations without oblique images
gain from 15% (with a single GCP fixed) to 25% (without GCP) while the remaining are
basically not affected.

4.3. Dome Effect

Before discussing the results of Section 3.4, it should be stressed again that they refer
to the case of pre-calibration only. In other words, what has been presented is an analysis
of the pre-calibration block configuration performance in possibly delivering an effective
camera calibration parameter set. All the IO and distortion parameter sets evaluated in
the different image block configurations were applied (i.e., were used as pre-calibrated
parameters) in a single (always the same) L (ongitudinal) image block. For the results
presented in Figure 11, the LCO configuration has been taken as “gold standard” and
the results of the other configuration types have been measured relative to that case,
in order to measure the calibration accuracy loss when pre-calibrating with a weaker
block configuration.

As far as Z error increase is concerned (see Figure 11 left), a pre-calibration over hilly
terrain with both control types (GCP and GNSS) is always better than one over flat terrain.
Moreover, except for some weaker configurations (i.e., HLC and HL) the increase in Z
error is very limited i.e., up to 7% worse. For HLC the increase is ca. 19%, while for HL
is stronger (32%). In flat terrain, on the other hand, if the configuration includes oblique
imaging, the accuracy loss is minimal only for rectangular block shapes (LO) while in
square blocks (HLCO and HLO) the gap is noticeable (10 and 20% in GCP case and 23
to 40% in the GNSS case). Without oblique imaging, there are again similarities between
GCP and GNSS control, but the gap loss with respect to LCO is reversed (now GCP is
almost twice worse than GNSS). In other words, the weaker the pre-calibration block
configuration, the more that an accurate camera station position helps in camera calibration.
Again, square blocks are less effective than rectangular ones: LC and L are about three to
four times better (GCP case) or even more (GNSS case) than HLC and HL. Motivations for
this behaviour should be further investigated. In fact, the differences between the square
vs. rectangular image blocks resides only, in authors’ opinion, in a number of observations
approximately two times larger, that should not be enough to justify the results. At the
same time, analysing the results of camera model parameters estimations and the connected
ground point accuracy (see previous sections), even if square (H) blocks provide usually
worse results, the differences with rectangular configurations are much smaller.

It is interesting to compare the results presented in Figure 11 with those concerning the
actual accuracy in determining the IO and calibration parameters (shown in Figures 3–6)
and the associated behaviour of the different image block configurations.

Looking at the increase in the Z error range (see Figure 11 right) three points can be
stressed: the loss with respect to LCO is generally much larger; pre-calibration on hilly
terrain does not rule out the chance of large errors; the gap between flat and hilly terrain is
mostly small in the GCP case but, in the GNSS case for HLC and HL configurations, the
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error range for pre-calibration in hilly terrain is even larger than in flat terrain (a fact yet
without a clear explanation).

The comparison between GCP-based and GNSS-assisted (camera-based) block control
shows that pre-calibration with the latter is generally a better option, as smaller Z errors
compared to GCP control are obtained. Indeed, results shown in Figure 12 indicate that,
as long as oblique imaging is included in the block, it makes little difference in terms of
Z error whether block control is achieved with GCP or GNSS, as all LCO, LO, HLCO and
HLO configurations obtain similar errors with both control types. This can be seen as in
agreement with the claim of [13] that calibration is first and foremost a matter of block
imaging geometry and camera modelling and that oblique imaging is an essential element
of such imaging geometry in blocks flown over flat terrain as well as, generally, with all
previous works on optimal imaging for camera calibration. On the other hand, looking
at weaker configurations, when imaging geometry is less robust (LC, HLC, L and HL),
camera projection centres are more helpful than GCP in flat terrain. There also seems to be
a dependence of the improvement amount on the block shape, while cross strips seem less
important. Indeed, with our test settings the gain is limited (from 12 to 19%) in rectangular
blocks (LC and L), while it is larger (up to 30%) with square blocks (HLC and HL). In short,
if, for whatever reason, oblique imaging is not applicable in a survey over flat terrain, using
GNSS-assisted orientation is more advisable than using GCP; the remarkable indication
is that this applies also when no GCP are available on ground i.e., in the Basic tightness
control case, which is in agreement with results shown in Figures 6 and 7.

5. Conclusions

Drawing conclusions in a topic as complex as UAV camera calibration with reasonable
confidence on their scope and validity is never easy, as the results always come out of
given experiment settings, never exhaustive of the multi-dimensional space of the process
relevant parameters. As such, keeping in mind the test characteristics depicted in Section 2,
a few conclusions are presented in the following.

As far as accuracy of interior orientation parameters is concerned, though trivial to
say, the calibration block configuration matters a lot: the accuracy decrease could be as
high as 30 times in the worst case for the principal distance, though less (nine times) for
the PP coordinates. Oblique images help a lot (LO is almost as good as LCO), though a
POI-only (HO) calibration is not recommendable: in our findings nadir looking images
are also necessary. The comparison between ground (GCP) and aerial (GNSS-assisted)
block control configurations shows that over flat terrain the latter deliver 20% to 60% more
accurate calibration parameters than the former, in almost all configurations and for all
IO parameters. In hilly terrain GCP control is generally better, though no more than 20%.
Unless oblique images are included, estimation of principal distance in the GNSS case over
flat terrain might result in large errors.

Estimation errors of the calibration parameters in a pre-calibration block, when applied
as fixed parameters in a subsequent BBA, affect ground point coordinates. In this respect
our conclusions are that configuration of the pre-calibration block matters in general,
and particularly when flying over flat terrain. The average Z error increase for weaker
configurations compared to LCO can be as large as 150% with GCP control; less so, but still
up to 90% for GNSS control. GNSS-assisted block control is in most cases a better option
than GCP control in pre-calibration (only with oblique imaging included the difference is
minimal). In weaker configurations over flat terrain, camera station positions constrain the
block more than GCP.

As far as tie point ground coordinates RMSEs are concerned, weakening the calibration
block configuration leads to sizeable but limited percentage accuracy losses in hilly terrain
(below 35%) while losses reach 70% in elevation in flat terrain. Block control by GNSS or
by GCP are in practice equally accurate in horizontal coordinates, while in elevation GNSS
without oblique imaging and no GCP might perform up to 50% worse.
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Simulations also confirm that, as many practical experiments have shown, in the
GNSS case GCP are generally not necessary for both horizontal coordinates and elevations;
however, in flat terrain oblique imaging is necessary to avoid errors in the latter.
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