
Edited by

Mathematics
in Software
Reliability and
Quality Assurance

Tadashi Dohi and Shaoying Liu

Printed Edition of the Special Issue Published in Mathematics

www.mdpi.com/journal/mathematics

Mathematics in Software Reliability
and Quality Assurance

Mathematics in Software Reliability
and Quality Assurance

Editors

Tadashi Dohi

Shaoying Liu

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin

Editors

Tadashi Dohi

Hiroshima University

Japan

Shaoying Liu

Hiroshima University

Japan

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Mathematics (ISSN 2227-7390) (available at: https://www.mdpi.com/journal/mathematics/special

issues/mathematics software reliability quality assurance).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-3799-3 (Hbk)

ISBN 978-3-0365-3800-6 (PDF)

© 2022 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Editors . vii

Preface to ”Mathematics in Software Reliability and Quality Assurance” ix

Ai Liu, Shun Wang, Luis Soares Barbosa and Meng Sun

Fuzzy Automata as Coalgebras
Reprinted from: Mathematics 2021, 9, 272, doi:10.3390/math9030272 1

Rong Wang, Yuji Sato and Shaoying Liu

Mutated Specification-Based Test Data Generation
with a Genetic Algorithm †

Reprinted from: Mathematics 2021, 9, 331, doi:10.3390/math9040331 23

Moe Nandi Aung, Yati Phyo, Canh Minh Do and Kazuhiro Ogata

A Divide and Conquer Approach to Eventual Model Checking
Reprinted from: Mathematics 2021, 9, 368, doi:10.3390/math9040368 43

Kaiyi Tu, Mingyue Jiang, Zuohua Ding

A Metamorphic Testing Approach for Assessing Question Answering Systems
Reprinted from: Mathematics 2021, 9, 726, doi:10.3390/math9070726 59

Junjun Zheng, Hiroyuki Okamura and Tadashi Dohi

Availability Analysis of Software Systems with Rejuvenation and Checkpointing
Reprinted from: Mathematics 2021, 9, 846, doi:10.3390/math9080846 75

Dongming Xiang, Fang Zhao and Yaping Liu

DICER 2.0: A New Model Checker for Data-Flow Errors of Concurrent Software Systems
Reprinted from: Mathematics 2021, 9, 966, doi:10.3390/math9090966 91

Hiroyuki Okamura and Tadashi Dohi

Application of EM Algorithm to NHPP-Based Software Reliability Assessmentwith Generalized
Failure Count Data
Reprinted from: Mathematics 2021, 9, 985, doi:10.3390/math9090985 111

Ruba Abu Khurma, Hamad Alsawalqah, Ibrahim Aljarah, Mohamed Abd Elaziz, Robertas

Damaševičius

An Enhanced Evolutionary Software Defect Prediction Method Using Island Moth Flame
Optimization
Reprinted from: Mathematics 2021, 9, 1722, doi:10.3390/math9151722 129

Wanida Khamprapai, Cheng-Fa Tsai, Paohsi Wang and Chi-En Tsai

Performance of Enhanced Multiple-Searching Genetic Algorithm for Test Case Generation in
Software Testing
Reprinted from: Mathematics 2021, 9, 1779, doi:10.3390/math9151779 149

Kyawt Kyawt San, Hironori Washizaki, Yoshiaki Fukazawa, Kiyoshi Honda, Masahiro Taga

and Akira Matsuzaki

Deep Cross-Project Software Reliability Growth Model Using Project Similarity-Based Clustering
Reprinted from: Mathematics 2021, 9, 2945, doi:10.3390/math9222945 167

Meng Sun, Yuteng Lu, Yi-Chun Feng, Qi Zhang and Shaoying Liu

Modeling and Verifying the CKB Blockchain Consensus Protocol †

Reprinted from: Mathematics 2021, 9, 2954, doi:10.3390/math9222954 189

vi

About the Editors

Tadashi Dohi received his B.S.E., M.S. and Dr. of Engineering degrees from Hiroshima University,

Japan, in 1989, 1991 and 1995, respectively. Since 2002, he has been Full Professor at Hiroshima

University. In 1992 and 2000, he was a Visiting Researcher in the Faculty of Commerce and Business

Administration, University of British Columbia, Canada, and Hudson School of Engineering, Duke

University, USA, respectively, on a leave of absence from Hiroshima University. He was appointed

as the Dean of School of Informatics and Data Science and the associated Dean of Graduate School

of Advanced Science and Engineering, Hiroshima University, in 2022. His research areas include

software engineering, reliability engineering and dependable computing. He is a regular member of

ORSJ, IEICE, IPSJ, REAJ, and IEEE. He also serves as a member of Editorial Board of IEEE Transactions

on Reliability, among others.

Shaoying Liu is Professor of Software Engineering at Hiroshima University, Japan, IEEE Fellow, and

BCS Fellow. He received his Ph.D. in Computer Science from the University of Manchester, UK,

in 1992. His research interests include formal engineering methods, specification verification and

validation, specification-based program inspection, automatic specification-based testing, testing-based

formal verification, and intelligent software engineering environments. He has published a book

entitled Formal Engineering for Industrial Software Development with Springer Verlag, edited

12 conference proceedings, and published over 250 academic papers in refereed journals and

international conferences. He proposed use of the terminology ”formal engineering methods” in

1997 and has established formal engineering methods as a research area based on his extensive research

on the structured object oriented formal language (SOFL) method since 1989, and the development of

ICFEM conference series since 1997. In recent years, he has served as a General Co-Chair of QRS 2020

and ICECCS 2022 and a PC member for numerous international conferences. He is Associate Editor of

IEEE Transactions on Reliability and Innovations in Systems and Software Engineering, respectively.

He is a member of IPSJ and IEICE, Japan.

vii

Preface to ”Mathematics in Software Reliability and

Quality Assurance”

Despite the well-known fact that every complex system is controlled by software, how to develop

fault-free software in industry has been a challenging issue because it is almost impossible to guarantee

or prove in advance that the software systems under consideration are fault-free. In this sense, software

reliability and quality assurance play a central role in modern software engineering and science.

Over the last 5 decades, much effort has been expended to develop the mathematical aspects of

software reliability and quality assurance. In the formal verification and validation, mathematical logic

is frequently used. Discrete event systems, automata theory and model checking are also significant

tools to perform static analysis of software. In software testing, many kinds of optimization techniques

and meta-heuristics are applied to derive feasible solutions. Software reliability, availability and safety

assessment is based on stochastic processes and their statistical inference.

In preparing this Special Issue of the journal Mathematics (MDPI), we sent out a call for the

latest research results on software reliability and quality assurance, including formal methods and

design, automatic program generation, automatic software testing, software verification and validation,

program analysis and language theory, coalgebra theory, automata theory, hybrid system, software

reliability modeling and assessment, software safety and security, software fault tolerance and

dependability. Finally, we received several high-quality submissions and 11 high-quality papers

were finally accepted for publication. This monograph, consisting of these articles, aims to promote

the latest research results in software reliability and quality assurance.

The article “Fuzzy Automata as Coalgebras” by Ai Liu et al. focuses on the coalgebraic method,

which is of great significance to research in process algebra, modal logic, object-oriented design and

component-based software engineering. The authors propose different types of fuzzy automata as

coalgebras with a monad structure capturing fuzzy behavior and define a notion of fuzzy language to

consider several versions of bi-simulation for fuzzy automata.

Rong Wang et al. propose “Mutated Specification-Based Test Data Generation with a Genetic

Algorithm” as a specification-based testing method that does not depend on having knowledge of

the program structure. The authors provide a new method that combines formal specifications with a

genetic algorithm (GA) to effectively generate test data. More specifically, formal specifications are

reformed by GA such that they can be used to generate input values that kill as many mutants of

the target program as possible. The results, through two examples, show that the proposed method

can assist in effectively generating test cases to kill program mutants, which contributes to further

maintenance of the software.

The article “A Divide and Conquer Approach to Eventual Model Checking” by Moe Nandi

Aung et al. proposes a new technique to mitigate the state of explosion in eventual model checking,

where the technique is dedicated to eventual properties and divides an original eventual model

checking problem into multiple smaller model checking problems and tackles each of these. The

authors prove the theorem that the multiple smaller model checking problems are equivalent to the

original eventual model checking problem and conduct a case study that demonstrates the power of

the proposed technique.

Question answering (QA) enables the machine to understand and answer questions posed

in natural language, which has emerged as a powerful tool in various domains. The article “A

Metamorphic Testing Approach for Assessing Question Answering Systems” by Kaiyi Tu et al.

ix

proposes to apply the technique of metamorphic testing (MT) to evaluate QA systems from the

users’ perspectives toward helping them better understand the capabilities of these systems and

to then select appropriate QA systems for their specific needs. To demonstrate the approach, the

authors study two typical categories of QA systems, identify a total number of 17 metamorphic

relations (MRs), and apply MT to four QA systems by using all the MRs. The experiment results

demonstrate the capabilities of the four subject QA systems from various aspects, revealing their

strengths and weaknesses.

Junjun Zheng et al. performs “Availability Analysis of Software Systems with Rejuvenation and

Checkpointing” by means of a composite stochastic Petri reward net and its associated non-Markovian

availability model to capture the dynamic behavior of an operational software system in which

time-based software rejuvenation and checkpointing are both aperiodically conducted. They focus on

human-error factors during checkpointing and solve the stationary solution of the non-Markovian

availability model, which is derived on the basis of the reachability graph of stochastic Petri reward

nets and is actually not one of the trivial stochastic models, such as the semi-Markov process nor the

Markov regenerative process, and the phase-expansion approach is considered.

Dongping Xiang et al. develop “DICER 2.0: A New Model Checker for Data-Flow Errors of

Concurrent Software Systems”. While Petri nets are widely used to model concurrent software

systems, there are different kinds of Petri net tools that can analyze system properties such as deadlocks,

reachability and liveness. The authors take on the challenge of modeling the control flows and data

flows of concurrent software systems to resolve the state–space explosion problem and pseudo-states.

Through some case studies and experiments, they demonstrate the effectiveness and advantage of

DICER 2.0.

The article “Application of EM Algorithm to NHPP-Based Software Reliability Assessment with

Generalized Failure Count Data” by Hiroyuki Okamura et al. summarizes expectation maximization

(EM) algorithms for non-homogeneous Poisson process (NHPP)-based software reliability models and

provide proof of the global convergence properties. The authors derive the EM-step formulas for 12

basic NHPP-based SRMs and conduct numerical experiments to present the convergence property

of the EM algorithms. These results are useful in implementing the software reliability model as an

automatic reliability assessment tool because the general-purpose optimization algorithms for the

maximum likelihood estimation of NHPP-based software reliability models strongly depend on the

initial guess and cannot guarantee convergence.

In the article “An Enhanced Evolutionary Software Defect Prediction Method Using Island

Moth Flame Optimization”, Ruba Abu Khurma et al. are concerned with the use of software defect

prediction (SDP) to locate defects and defect-prone software modules and deal with a feature selection

(FS) problem with polynomial time complexity. The authors apply the moth flame optimization (MFO)

algorithm as an interesting swarm intelligence algorithm and propose the island BMFO (IsBMFO)

model by dividing the solutions in the population into a set of sub-populations named islands.

Twenty-one public software datasets are analyzed for evaluating the proposed method. The results

of the experiments show that improved classification results are obtained when using IsBMFO to

solve FS.

In the article “Performance of Enhanced Multiple-Searching Genetic Algorithm for Test Case

Generation in Software Testing” by Wanida Khamprapai et al., the multiple-searching genetic algorithm

is applied to improve test case generation. The enhanced multiple-searching genetic algorithm

(EMSGA), which involves a few additional processes for selecting the best chromosomes in the

GA process, is evaluated in terms of the performance through comparison with seven different

x

search-based techniques, including random search. The experimental results show that EMSGA

increased the efficiency of testing compared with conventional algorithms and could detect more

software faults.

Kyawt Kyawt San at al. consider “Deep Cross-Project Software Reliability Growth Model Using

Project Similarity-Based Clustering” to predict the potential number of software bugs from the

beginning of a development project. The authors propose a new software reliability modeling method

called a deep cross-project software reliability growth model (DC-SRGM), which is a cross-project

prediction method that uses features of previous projects’ data through project similarity. Specifically, it

applies cluster-based project selection for the training data source and modeling using a deep learning

method. Experiments involving 15 real datasets from a company and 11 open source software datasets

show that DC-SRGM can more precisely describe the reliability of ongoing development projects than

existing traditional SRGMs and the LSTM model.

The Nervos CKB (common knowledge base) is a public permissionless blockchain designed

for the Nervos ecosystem, and its consensus protocol is the key protocol to improving the limit of

the consensus performance for Bitcoin. The article “Modeling and Verifying the CKB Blockchain

Consensus Protocol” by Meng Sun et al. develops the formal model of the CKB consensus protocol

using timed automata. Based on the model, the authors formally verify various important properties

of the Nervos CKB to provide a sufficient trustworthiness assurance. In particular, the security of the

Nervos CKB against selfish mining attacks of the protocol is investigated.

The editors are proud to be able to edit such a high-quality monograph based on the above 11

articles and believe that it will be of use in considering software reliability and quality assurance

problems in practice. Finally, we thank all the authors and reviewers for their contributions to the

publication of this monograph. Our special thanks go to the Managing Editors of MDPI.

Tadashi Dohi and Shaoying Liu

Editors

xi

mathematics

Article

Fuzzy Automata as Coalgebras

Ai Liu 1, Shun Wang 2, Luis Soares Barbosa 3 and Meng Sun 2,*

Citation: Liu, A.; Wang, S.; Barbosa,

L.S.; Sun, M. Fuzzy Automata as

Coalgebras. Mathematics 2021, 9, 272.

https://doi.org/10.3390/math9030272

Academic Editor: Tadashi Dohi

Received: 17 December 2020

Accepted: 25 January 2021

Published: 29 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional clai-ms

in published maps and institutio-nal

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8511, Japan;
liuai@hiroshima-u.ac.jp

2 School of Mathematical Sciences, Peking University, Beijing 100871, China; wshun94@pku.edu.cn
3 INL (International Iberian Nanotechnology Laboratory) & INESC TEC, Universidade do Minho,

4704-553 Braga, Portugal; lsb@di.uminho.pt
* Correspondence: sunm@pku.edu.cn

Abstract: The coalgebraic method is of great significance to research in process algebra, modal logic,
object-oriented design and component-based software engineering. In recent years, fuzzy control
has been widely used in many fields, such as handwriting recognition and the control of robots or
air conditioners. It is then an interesting topic to analyze the behavior of fuzzy automata from a
coalgebraic point of view. This paper models different types of fuzzy automata as coalgebras with a
monad structure capturing fuzzy behavior. Based on the coalgebraic models, we can define a notion
of fuzzy language and consider several versions of bisimulation for fuzzy automata. A group of
combinators is defined to compose fuzzy automata of two branches: state transition and output
function. A case study illustrates the coalgebraic models proposed and their composition.

Keywords: fuzzy automata; coalgebra; fuzzy language; bisimulation; composition

1. Introduction

Control logic plays an important role in component-based programming in decid-
ing a run-time mechanisms and rules of composition. Precise control needs meticulous
implementation so that many applications may be expensive and inefficient. To tackle
this problem, there is an increasing interest in using fuzzy logic in many new areas. As
a very efficient method for handling imprecise properties, fuzzy logic then provides a
systematic approach to incorporating approximate reasoning into such systems so that
fuzzy implementations are not only cheaper and faster than precise ones, but also more un-
derstandable for users [1,2]. Therefore, some devices that profit from the use of vagueness
in their overall operation have emerged and the related theory is described in [3]. For in-
stance, the fuzzy principal component analysis method, based on the variance contribution
rate of the principal component combined with the fuzzy theory to obtain a reasonable
correction weight, is used to refine quantitative and qualitative index data of innovation
service capability [4]. Moreover, this approach makes sense not only at the control level,
but also at the test level [5].

Fuzzy control systems incorporate a number of components driven by fuzzy logic [6].
Most of them are rule-based systems that exchange information through interfaces. Tech-
nically, the modeling approach of fuzzy control systems contains three aspects: an input
stage, a processing stage and an output stage, whose details are as follows.

• The input stage transforms an input into a value. The method is to abstract the relation
of an input and its corresponding vague value into a point in a coordinate system,
where the horizontal axis stands for the input domain and the vertical axis stands for
the vagueness domain.

• The processing stage involves inference rules and generates a result for each input,
and then combines the results of the rule. In this stage, logical inference rules are used
to describe the connection between cause and effect. The rules are of the form

Mathematics 2021, 9, 272. https://doi.org/10.3390/math9030272 https://www.mdpi.com/journal/mathematics

1

Mathematics 2021, 9, 272

If 〈condition〉 then 〈conclusion〉.
Such rules provide information for the decision of control variables.

• The output stage processes the combined results from the processing stage and
converts them to a specific control value. For instance, common techniques for
conversion process includes max-min inference, max-membership principle and
mean-max membership.

Automata theory has a long history in modeling systems and applications which can
be realized as a set of states and transitions between them depending on some inputs. Fuzzy
finite-state automata (FFA) incorporate fuzziness into the internal state representation and
output of these computational systems [7]. Depending on the non-fuzzy output labels
associated with (final) states or transitions, there are different classes of FFA: FFA with final
states, FFA without final states, Fuzzy Moore FA and Fuzzy Mealy FA [8]. There are also
works considering fuzzy output maps, such as fuzzy Mealy machines and fuzzy Moore
machines [9,10]. Fuzzy automata have been studied from different aspects. In order to
study behavior control, a novel method to compute the membership values of the next
states of a fuzzy automaton with an averaging function between the membership value of
the input, and the membership value of the current state is proposed in [11]; the behaviors
of lattice-valued nondeterministic fuzzy automata are compared through two language
equivalence relations which have different discriminating power in [12]. Categories of
deterministic fuzzy automata and fuzzy languages based on a complete residuated lattice
with zero divisors are introduced in [13], a common framework for fuzzy type automata is
developed in relationships with morphisms of monads in [14], and the concept of fuzzy
regular language accepted by fuzzy finite automata is purposed in [15]. Describing systems
that behave in the same way in the sense that one system simulates the other and vice
versa, several notions of (approximate) bismulation relations are investigated in [16–18].

Along the past two decades, coalgebra has emerged as a well established general
framework for the study of the behavior of various kinds of automata [19–21]. There is in
particular a generalized determinization construction from automata to coalgebras, includ-
ing partial Mealy machines, (structured) Moore automata, Rabin probabilistic automata,
and pushdown automata [22]. A survey and hierarchy of probabilistic systems as coalge-
bras is discussed in [23]. It connects probabilistic verification with coalgebraic modeling
and compares expressiveness of system types by natural transformations between functors.
Hybrid automata specifying both discrete and continuous behavior can also be modeled as
coalgebras [24]. A coalgebraic perspective supporting a generic theory of hybrid automata
with a rich palette of definitions and results is studied in [25]. In addition, a coalgebraic
semantics framework for quantum systems is developed in [26]. One obvious advantage of
the coalgebraic view is that it induces a simple and intuitive notion of bisimulation between
coalgebras, a notion originally stemming from the world of labeled transition systems and
process algebra [27–29]. Witnessed by the notion of coalgebra homomorphism, bisimulation
on coalgebras can be defined by commutative diagrams and shown to be formally dual
to congruence on algebra [30,31]. Moreover, there is a general framework for the study of
components as concrete coalgebras and the development of the corresponding calculi [32].

A recent thesis [33] proposes a coalgebraic approach to fuzzy automata, which obtains
the following results: (a) a coalgebraic definition of the fuzzy language recognized by a
fuzzy automaton, (b) the definition of a functor describing the determinization process
of a fuzzy automata via a generalization of the powerset construction, (c) a coalgebraic
definition of bisimulation on fuzzy automata allowing the construction of a quotient fuzzy
automaton. However, it only considers the output as the current membership value for the
current state. Moreover, a coalgebraic theory of fuzzy transition systems and their concrete
fuzzy bisimulation is studied in [34]. The authors resort to relational lifting that is one
of the most used methods in bisimulation research, leading to an algorithm for testing
bisimulation in [35], and group-by-group fuzzy bisimulation and its corresponding modal
logic in [36]. Nevertheless, the output stage is omitted. To consider different types of fuzzy
automata, our main contributions are as follows:

2

Mathematics 2021, 9, 272

• Explore the fuzzy-set monad to serve as the basis to a coalgebraic approach;
• Provide a coalgebraic framework for different types of fuzzy automata, where the

notions of fuzzy language and bisimulation can be addressed;
• Define appropriate combinators for composing fuzzy automata from two branches:state

transition and output function.

Thus, we not only consider fuzzy language respecting the controlling behavior and
bisimulation relations for fuzzy automata, but also study the composition mechanism in
our coalgebraic framework.

This paper is structured as follows. Section 2 introduces different types of fuzzy
automata. Section 3 recalls the definition of the fuzzy-set monad and studies its properties.
Section 4 defines the coalgebraic models for fuzzy automata, the notion of fuzzy language
and considers several versions of bisimulation. Section 5 develops a series of combinators
for composing fuzzy automata. Section 6 discusses a case study. Section 7 concludes and
raises some topics for future work.

2. Fuzzy Automata

In a complex controlled system driven by fuzzy logic, a fuzzy automaton is the basic
unit which contains fuzzy processors and input/output interfaces. Considering fuzzy
output maps, we focus on three types of fuzzy automata: Fuzzy Moore Automata (FMrA),
Fuzzy Mealy Automata (FMlA) and Fuzzy Unified Automata (FUA). FMrA and FMlA are
obtained by modifying the definitions of fuzzy Moore machine and fuzzy Mealy machine
in [8]. Unlike the definition of fuzzy Mealy machine in [8] requiring two functions, one
to describe the next state and the other to describe the output, a fuzzy Mealy machine
is equipped with one fuzzy function to characterize completely the next state and the
output produced in [9]. For distinction between them, we name the latter one as FUA. For
simplicity, initial and final states are ignored for the moment.

Definition 1 (Fuzzy Moore Automata (FMrA)). A fuzzy Moore automaton is a 5-tuple
p = (X, I, O, α, e) where

• X is a set of states.
• I is a set of input symbols.
• O is a set of output symbols.
• α : X × I → [0, 1]X is a fuzzy transition function.
• e : X → [0, 1]O is a fuzzy output function.

Note that each non-fuzzy output map e′ : X → O corresponds to a function e : X → [0, 1]O

such that e(x) = δe′(x), where δk(t) = δ(t − k) and δ is the Dirac function.

Definition 2 (Fuzzy Mealy Automata (FMlA)). A fuzzy Mealy automaton is a 5-tuple
p = (X, I, O, α, e) where

• X, I, O, α : X × I → [0, 1]X are defined as in FMrA.
• e : X × I → [0, 1]O is a fuzzy input-output function.

Note that each non-fuzzy output map e′ : X × I → O corresponds to a fuzzy input-output function
e : X × I → [0, 1]O where e(x, i) = δe′(x,i).

Given an FMrA (X, I, O, α, e), it is easy to construct an FMlA (X, I, O, α, e′) where
e′(x, i) = e(x) without loss of information, so we regard it as a subcase of FMlA and
concentrate on the study of FMlA as coalgebras.

Definition 3 (Fuzzy Unified Automata (FUA)). A fuzzy unified automaton is a 4-tuple
p = (X, I, O, β) where

• X, I, O are defined as in FMrA.
• β : X × I → [0, 1]X×O is a fuzzy input-transition-output function.

3

Mathematics 2021, 9, 272

In classical methods, two operations F1 : [0, 1] × [0, 1] → [0, 1] and F2 : [0, 1]∗ →
[0, 1] should be defined to to define the language accepted by an automaton [7]. Instead,
we intend to define the notion of fuzzy language with the aid of the fuzzy-set monad.

3. Fuzzy-Set Monad

3.1. Fuzzy Set

The fuzzy set theory [37] was developed by Lotfi A. Zadeh in 1965. The main purpose
of using fuzzy sets is to deal with vague data under some given properties. For example,
consider a finite set of real numbers S ⊆ R and the property “close to 0”. This property
seems ambiguous because there is not an explicit criterion to judge whether objects are
closed to 0. We want to ask within what distance we can say “one real number is close
to 0”. To make it precise, the one should figure out a function which fits the property.
For example,

ψS(x) = max{0, 1− 1
m
|x|}, x ∈ [−m, m]

where m = maxs∈S|s|. This function is called the membership function and indicates that
the closer the data s ∈ S is to 0, the closer the membership value ψS(s) is to 0. Obvi-
ouly, data from which the distance to 0 are equal have the same membership value, i.e.,
ψS(s) = ψS(−s). However, the selection of membership function is not unique and usually
depends on the goal of application.

Definition 4 (Residuated Lattice [33]). A residuated lattice is an algebra K = (K,∧,∨,⊗,→
, 0, 1) with four binary and two nullary operations satisfying:

1 (K,∧,∨, 0, 1) is a lattice with the partial order ≤ which is defined by “x ≤ y if and only if
x ∨ y = y”. The greatest (least) element is 1(0) that for all x ∈ K, x ≤ 1(x ≥ 0);

2 (K,⊗, 1) is a commutative monoid with the unit element 1;
3 For x, y, z ∈ K, x ≤ y → z if and only if x ⊗ y ≤ z.

Especially, if (K,∧,∨, 0, 1) is a complete lattice, then K is called a complete residuated lattice.

Residuated lattices are the algebraic structure that characterizes fuzzy components.

Example 1. The Boolean algebra (2,∧,∨,¬) is a residuated lattice (2,∧′,∨′,⊗′,→′, 0, 1). In
this expression, 2 = {0, 1} is the set of elements. ∧′,∨′ correspond to ∧ and ∨ operations in
Boolean algebra, respectively. Multiplication ⊗′ is defined as ∧. The residuate operation →′ comes
as x →′ y := ¬x ∨ y.

Definition 5 (Fuzzy Subset [33]). Given a set X, a fuzzy subset over K of X is a function
φ : X → K that assigns to each object x ∈ X a membership value. The set of all fuzzy subsets of X
is denoted by ZK(X) and obviously ZK(X) = KX. In the sequel, we use the shorthand notation
Z(X) to represent ZK(X).

Note that Z can be interpreted as an endofunctor on Set where

Z(f) :KX → KY

κ �→ λy.
∨

x∈ f−1(y)

κ(x)

for any f : X → Y. Note that ∨
x∈X

κ(x) = ∨{κ(x)|x ∈ X}.

4

Mathematics 2021, 9, 272

3.2. Properties of Fuzzy-Set Monad

The fuzzy-set monad on Set is defined in [33]. In this section, we will firstly recall the
definition and then prove this monad is strong and commutative. Although every monad
in Set is strong, we include the explicit contribution to build up intuitions.

Definition 6 (The fuzzy-set Monad [33]). Fuzzy-set monadZ = (Z, η, μ) overK = (K,∧,∨,⊗,
→, 0, 1) satisfies for a set X

• η : Id ⇒ Z satisfies that

ηX(x)(y) =

{
1 x = y

0 otherwise,
x, y ∈ X,

• μ : Z2 ⇒ Z satisfies that

μX(Φ) =
⋃

ψ∈Z(X)

Φ(ψ)� ψ, Φ ∈ Z2(X).

where
(
⋃
i∈I

φi)(x) =
∨
i∈I

φi(x) x ∈ X, φi ∈ Z(X)

and
(a � φ)(x) = a ⊗ φ(x) a ∈ K, x ∈ X, φ ∈ Z(X)

Definition 7 (Strong monad [21]). A strong monad is a monad T = (T, η, μ) equipped with a left
tensorial strength σX,Y : T(X)×Y → T(X ×Y) that commutes with the unit and multiplication
of the monad:

X ×Y X ×Y

T(X)×Y T(X ×Y)

id

ηX × id ηX×Y

σX,Y

T2(X)×Y T(T(X)×Y) T2(X ×Y)

T(X)×Y T(X ×Y)

σT(X),Y T(σX,Y)

μX × id μX×Y

σX,Y

Theorem 1. The triple Z = (Z, η, μ) is a strong monad.

Proof. Firstly, define a left tensorial strength with components σX,Y : Z(X) × Y →
Z(X ×Y) as

σX,Y(ψ, y) = λx, λy′.(ψ(x)⊗ ηY(y)(y′))

that commute appropriately with trivial projection and associativity isomorphisms for
f : X → Z and g : Y → W:

Z(X)× 1 Z(X × 1)

Z(X)

Z(X)×Y Z(X ×Y)

Z(Z)×W Z(Z ×W)

σX,1

Zπ1π1

σX,Y

Z(f)× g Z(f × g)

σZ,W

5

Mathematics 2021, 9, 272

(Z(X)×Y)× Z Z(X ×Y)× Z Z((X ×Y)× Z)

Z(X)× (Y × Z) Z(X × (Y × Z))

σX,Y × id σX×Y,Z

∼= ∼=

σX,Y×Z

For the unit,
σX,Y · (ηX × id)(x, y)

= { Definition of × }
σX,Y(ηX(x), y)

= { Definition of σ }
⊗ ·(ηX(x)× ηY(y))

= { Definition of η }
ηX×Y(x, y).

For the multiplication, we have to show that μX×Y · Z(σX,Y) · σZK(X),Y = σX,Y · (μX × id).
For a pair (Φ, y) ∈ Z2(X)×Y,

μX×Y · Z(σX,Y) · σZ(X),Y(Φ, y)

={ Definition of σ }
μX×Y · Z(σX,Y)(⊗ · (Φ × ηY(y)))

={ Definition of Z, σ }
μX×Y(

⋃
(ψ,y′)∈Z(X)×Y

⊗ · (Φ × ηY(y))(ψ, y′)� ηZ(X×Y)(σX,Y(ψ, y′)))

={ ⊗ · (f × g)(x, y) = f (x)⊗ g(y) }
μX×Y(

⋃
(ψ,y′)∈Z(X)×Y

(Φ(ψ)⊗ ηY(y)(y′))� ηZ(X×Y)(σX,Y(ψ, y′)))

={ Definition of η }
μX×Y(

⋃
ψ∈Z(X)

Φ(ψ)� ηZ(X×Y)(σX,Y(ψ, y)))

={ Definition of σ }
μX×Y(

⋃
ψ∈Z(X)

Φ(ψ)� ηZ(X×Y)(⊗ · (ψ × ηY(y))))

={ Definition of μ }⋃
ψ′∈Z(X×Y)

(
⋃

ψ∈Z(X)

Φ(ψ)� ηZ(X×Y)(⊗ · (ψ × ηY(y)))(ψ′))� ψ′

={ Definition of η }⋃
ψ∈Z(X)

Φ(ψ)� (⊗ · (ψ × ηY(y))

6

Mathematics 2021, 9, 272

For the right side of the equation,

σX,Y · (μX × id)(Φ, y)

={ Definition of μ }
σX,Y(

⋃
ψ∈Z(X)

Φ(ψ)� ψ, y)

={ Definition of σ }
⊗ ·((⋃

ψ∈Z(X)

Φ(ψ)� ψ)× ηY(y))

={ Distributive law: ⊗ · (∪i fi × g) = ∪i(⊗ · (fi × g)) }⋃
ψ∈Z(X)

⊗ · (Φ(ψ)� ψ × ηY(y))

={ Constant Φ(ψ) }⋃
ψ∈Z(X)

Φ(ψ)� (⊗ · (ψ × ηY(y)).

In the proof of Theorem 1, we defined a left tensorial strength σ with components
σX,Y : Z(X)×Y → Z(X ×Y) as

σX,Y(ψ, y) = ⊗ · (ψ, ηY(y)) = λx, λy′.(ψ(x)⊗ ηY(y)(y′)).

Of course, a “swapped” tensorial strength σ′ with components σ′X,Y : X × Z(Y) →
Z(X ×Y) can be obtained by applying swapping operation from the left tensorial strength:

(X × Z(Y) s−−→∼= Z(Y)× X
σY,X−−→ Z(Y × X)

Z(s)−−−→∼= Z(X ×Y)).

where s =̂ 〈π2, π1〉 is product communicating. Formally,

σ′X,Y = ⊗ · (ηX(x)× φ) = λx′.λy.(ηX(x)(x′)⊗ φ(y)).

With both σX,Y and σ′X,Y, there are two ways to obtain Z(X) × Z(Y) → Z(X × Y),
as depicted in the following diagram. If the diagram commutes, then Z is commutative
with left and right strength natural transformations σX,Y, σ′X,Y. We use γ : Z(X)× Z(Y) →
Z(X ×Y) to denote the composed arrow.

Z(X)× Z(Y)

Z(X × Z(Y)) Z2(X ×Y)

Z(X ×Y)

Z(Z(X)×Y) Z2(X ×Y)

σX,Z(Y)

Z(σ′X,Y)

μX×Y

σ′
Z(X),Y

Z(σX,Y)

μX×Y

Theorem 2. The triple (Z, η, μ) is a commutative monad.

7

Mathematics 2021, 9, 272

Proof. To show the diagram is commutative, select a pair of membership functions
(ψ1, ψ2) ∈ Z(X)× Z(Y), then

μX×Y · Z(σ′X,Y) · σX,Z(Y)(ψ1, ψ2)

={ Definition of σ }
μX×Y(Z(σ

′
X,Y)(⊗ · (ψ1 × ηZ(Y)(ψ2))))

={ Definition of Z }
μX×Y(

⋃
(x,ψ)∈X×Z(Y)

⊗ · (ψ1 × ηZ(Y)(ψ2))(x, ψ)� ηZ(X×Y)(σ
′
X,Y(x, ψ)))

={ ⊗ · (f × g)(x, y) = f (x)⊗ g(y) }
μX×Y(

⋃
(x,ψ)∈X×Z(Y)

(ψ1(x)⊗ ηZ(Y)(ψ2)(ψ))� ηZ(X×Y)(σ
′
X,Y(x, ψ)))

={ Definition of η }
μX×Y(

⋃
x∈X

ψ1(x)� ηZ(X×Y)(σ
′
X,Y(x, ψ2)))

={ Definition of σ′ }
μX×Y(

⋃
x∈X

ψ1(x)� ηZ(X×Y)(⊗ · (ηX(x)× ψ2)))

={ Definition of μ }⋃
ψ′∈Z(X×Y)

(
⋃

x∈X
ψ1(x)� ηZ(X×Y)(⊗ · (ηX(x)× ψ2))(ψ

′)� ψ′)

={ Definition of η }⋃
x∈X

(ψ1(x)� (⊗ · (ηX(x)× ψ2)))

=̂{ Denotation }
f1

For the right side of the equation,

μX×Y · Z(σX,Y) · σ′Z(X),Y(ψ1, ψ2)

={ Definition of σ }
μX×Y(Z(σX,Y)(⊗ · (ηZ(X)(ψ1)× ψ2)))

={ Definition of Z }
μX×Y(

⋃
(ψ,y)∈Z(X)×Y

⊗ · (ηZ(X)(ψ1)× ψ2)(ψ, y)� ηZ(X×Y)(σX,Y(ψ, y)))

={ ⊗ · (f × g)(x, y) = f (x)⊗ g(y) }
μX×Y(

⋃
(ψ,y)∈Z(X)×Y

(ηZ(X)(ψ1)(ψ)⊗ ψ2(y))� ηZ(X×Y)(σX,Y(ψ, y)))

={ Definition of η }
μX×Y(

⋃
y∈Y

ψ2(y)⊗ ηZ(X×Y)(σX,Y(ψ1, y)))

={ Definition of σ }

8

Mathematics 2021, 9, 272

μX×Y(
⋃

y∈Y
ψ2(y)� ηZ(X×Y)(⊗ · (ψ1 × ηY(y))))

={ Definition of μ }⋃
ψ′∈Z(X×Y)

(
⋃

y∈Y
ψ2(y)� ηZ(X×Y)(⊗ · (ψ1 × ηY(y)))(ψ′)� ψ′)

={ Definition of η }⋃
y∈Y

(ψ2(y)� (⊗ · (ψ1 × ηY(y))))

=̂ { Denotation }
f2

Note that f1(x, y) = ψ1(x) ⊗ ψ2(y) = ⊗ · (ψ1 × ψ2)(x, y) = f2(x, y). Hence the
diagram commutes.

4. Going Coalgebraic

4.1. Coalgebraic Models

Since the automata introduced in Section 2 are defined over the interval [0, 1], we
assume the fuzzy-set monad Z = (Z, η, μ) is also defined over some complete residuated
lattice ([0, 1], min, max,⊗,→, 0, 1). The corresponding coalgebraic models are based on the
fuzzy-set monad.

Example 2 ([33]). Note that ([0, 1], min, max, 0, 1) is a complete lattice. Then there are several
ways to construct complete residuated lattices ([0, 1], min, max,⊗,→, 0, 1); namely

• Define
x ⊗ y = max(x + y − 1, 0)

x → y = min(1− x + y, 1)

for x, y ∈ [0, 1]. Then, ([0, 1], min, max,⊗,→, 0, 1) is a complete residuated lattice corre-
sponding to the standard Lukasiewicz algebra.

• Define
x ⊗ y = min(x + y − 1, 0)

x → y

{
1 if x ≤ y
y if y < x

for x, y ∈ [0, 1]. Then, ([0, 1], min, max,⊗,→, 0, 1) is a complete residuated lattice corre-
sponding to the standard Gödel algebra.

• Define
x ⊗ y = x · y

x → y

{
1 if x ≤ y
y
x if y < x

for x, y ∈ [0, 1]. Then, ([0, 1], min, max,⊗,→, 0, 1) is a complete residuated lattice corre-
sponding to the standard product algebra.

Consider the two functors FI,O = Z(− × O)I and Tl,O = Z(−)I × Z(O)I . Given a
FMlA (X, I, O, α, e), the corresponding TI,O-coalgebra is (X, 〈α, e〉 : X → Z(X)I × Z(O)I)
where f is the curried version of f . Given a FUA (X, I, O, β), the corresponding FI,O-
coalgebra is (X, β : X → Z(X ×O)I). Obviously, there is a natural transformation θ from
TI,O to FI,O:

θ(〈 f , g〉)(i) = γ(〈 f (i), g(i)〉)

9

Mathematics 2021, 9, 272

for f ∈ Z(X)I , g ∈ Z(O)I and i ∈ I. In the sequel, FI,O-coalgebras provide a universal
framework for defining fuzzy language and bisimulation for different fuzzy automata
while TI,O-coalgebras serve as a basis for composition calculi of fuzzy Mealy automata.

4.2. Fuzzy Language

In [33], fuzzy automata with initial fuzzy subsets and final fuzzy subsets are equipped
with the notion of fuzzy language over a set of input symbols. Due to the type of their
initial/final fuzzy subsets, that notion can not be naturally extended to the case involving
output. Here we consider the notion of fuzzy language over a set of input symbols and a
set of output symbols based on FI,O-coalgebras.

Definition 8. Let (X, f) be an FI,O-coalgebra. Define f ∗ : X → Z(X ×O∗)I∗ as follows:

f ∗(x)(i)(y, o) = f (x)(i)(y, o)

f ∗(x)(∅)(y, ∅) =

{
1 if x = y
0 if x �= y

f ∗(x)(i)(y, ∅) = 0

f ∗(x)(∅)(y, o) = 0

f ∗(x)(wi)(y, vo) =
∨

z∈X
f ∗(x)(w)(z, v)⊗ f ∗(z)(i)(y, o)

for ∀x, y ∈ X, i ∈ I, o ∈ O, w ∈ I∗, v ∈ O∗. Note that ∅ represents the empty input/output.

Lemma 1. Given an FI,O-coalgebra (X, f), ∀x, y ∈ X, w ∈ I∗, v ∈ O∗, if |w| �= |v| then

f ∗(x)(w)(y, v) = 0.

Proof. First, we prove the result for |w| > |v| by induction on |w| = n. Let x, y ∈ X, w ∈ I∗,
v ∈ O∗. If n = 0, there exists no v such that |v| < 0 and hence the result holds. If n = 1,
then v = ∅ and the result holds by the Definition 8. Assume that the result is true for
all |w| ∈ I∗ such that |w| = n − 1, n > 1. Now there are two cases: |v| = ∅ and |v| �= ∅.
For the case |v| = ∅, let |w| = w′i, where |w| = n, i ∈ I, and then

f ∗(x)(w′i)(y, ∅) =
∨

z∈X
f ∗(x)(w′)(z, ∅)⊗ f ∗(z)(i)(y, ∅).

By the induction hypothesis, f ∗(x)(w′)(z, ∅) = f ∗(z)(i)(y, ∅) = 0 and thus the result
holds. For the case |v| �= ∅, let w = w′i, v = v′o where |w| = n > |y|, i ∈ I, o ∈ O and then

f ∗(x)(w′i)(y, v′o) =
∨

z∈X
f ∗(x)(w′)(z, v′)⊗ f ∗(z)(i)(y, o).

By the induction hypothesis, f ∗(x)(w′)(z, v′) = 0 and hence ∀z ∈ X, f ∗(x)(w′)(z, v′)⊗
f ∗(z)(i)(y, o) = 0. Therefore, the result holds.

Second, by a similar proof, we can prove the result holds for |w| < |v| by induction
on |y| = n.

Lemma 2. Given an FI,O-coalgebra (X, f), ∀x, y ∈ X, w1, w2 ∈ I∗, v1, v2 ∈ O∗, if |w1| = |v1|
and |w2| = |v2|, then

f ∗(x)(w1w2)(y, v1v2) =
∨

z∈X
f ∗(x)(w1)(z, v1)⊗ f ∗(z)(w2)(y, v2)

10

Mathematics 2021, 9, 272

Proof. The results can be proved by induction on |w2| = n. If n = 0, then w2 = v2 = ∅
and w1w2 = w1, v1v2 = v1. Since f ∗(x)(∅)(y, ∅) is 1 when x = y and f ∗(x)(∅)(y, ∅) is
0 otherwise,

f ∗(x)(w1)(y, v1) =
∨

z∈X
f ∗(x)(w1)(z, v1)⊗ f ∗(z)(∅)(y, ∅)

holds, which completes the proof of the base case. Now assume that the result is true
for all |w2| = n − 1, n > 0. Let w2 = w′i and v2 = v′o, where |w′| = |v′| = n − 1, i ∈ I,
o ∈ O. Then

f ∗(x)(w1w2)(y, v1v2)

= f ∗(x)(w1w′i)(y, v1v′o)

=
∨

z∈X
f ∗(x)(w1w′)(z, v1v′)⊗ f ∗(z)(i)(y, o)

=
∨

z∈X
(
∨

r∈X
f ∗(x)(w1)(r, v1)⊗ f ∗(r)(w′)(y, v′))⊗ f ∗(z)(i)(y, o)

=
∨

z∈X
(
∨

r∈X
f ∗(x)(w1)(r, v1)⊗ f ∗(r)(w′)(y, v′)⊗ f ∗(z)(i)(y, o))

=
∨

r∈X
(
∨

z∈X
f ∗(x)(w1)(r, v1)⊗ f ∗(r)(w′)(y, v′)⊗ f ∗(z)(i)(y, o))

=
∨

r∈X
(f ∗(x)(w1)(r, v1)⊗

∨
z∈X

f ∗(r)(w′)(y, v′)⊗ f ∗(z)(i)(y, o))

=
∨

r∈X
f ∗(x)(w1)(r, v1)⊗ f ∗(r)(w′i)(y, v′o)

=
∨

r∈X
f ∗(x)(w1)(r, v1)⊗ f ∗(r)(w2)(y, v2)

Now we consider a generic fuzzy language for FI,O-coalgebras and naturally obtain
the definition for the fuzzy language accepted by a fuzzy automaton.

Definition 9 (Fuzzy language). A fuzzy language over an input set I and an output set O (with
membership values over K), is a fuzzy subset of (IO)∗, that is a function φ : (IO)∗ → [0, 1].

Example 3. For instance, let I = {i1, i2}, O = {o1, o2}. A fuzzy language φ can be defined as
φ(i1o1) = 0.6, φ(i1o2) = 0.8, φ(i2o1) = 0.5, φ(i2o2) = 1 and φ(s) = 0, ∀s ∈ (IO)∗, |s| �= 2.

Definition 10. Consider an FI,O-coalgebra (X, f : X → Z(X ×O)I). For w = i1o1i2o2 · · · ∈
(IO)∗, define wi = i1i2 · · · and wo = o1o2 · · · . Given an initial fuzzy state ε ∈ Z(X) and a final
fuzzy state τ ∈ Z(X), the fuzzy language L f recognized by (X, f) is defined by

L f (w) =
∨

x,y∈X
ε(x)⊗ f ∗(x)(wi)(y, wo)⊗ τ(y), w ∈ (IO)∗.

Naturally, the fuzzy language recognized by a FUA (X, I, O, β) is the one recognized by its
corresponding FI,O-coalgebra (X, β).

When considering the language recognized by an FMlA, the membership values of
the next state and the output must be integrated, which can be captured by the natural
transformation θ.

Definition 11. The fuzzy language recognized by a FMlA (X, I, O, α, e) is the one recognized by
the corresponding FI,O-coalgebra (X, θ(〈α, e〉)).

11

Mathematics 2021, 9, 272

4.3. Bisimulation

Let us now discuss the notion of bisimulation for fuzzy automata. In fact, coalgebra
theory provides a generic notion of bisimulation on H-coalgebras for any functor H [20].

Definition 12 (H-bisimulation). Given two H-coalgebras (X, f : X → H(X)) and (Y, g :
Y → H(Y)), an H-bisimulation between them is a relation R ⊆ X ×Y such that there exists an
H-coalgebra (R, h : R → H(R)) making the following diagram to commute.

X R

H(X) H(R)

Y

H(Y)

π1

f h

H(π1)

π2

g

H(π2)

Theorem 3. Given two TI,O-coalgebras (X, f) and (Y, g), if R ⊆ X × Y is a TI,O-bisimulation,
then R is an FI,O-bisimulation between (X, θ ◦ f) and (X, θ ◦ g).

Proof. The proof of the result is immediate from the definition.

We now consider concrete bisimulations for different types of fuzzy automata. Since
FMrA can be easily transformed to FMlA, we only focus on bisimulation for FMlA and FUA.

Given a FMlA (X, I, O, α, e), denote a transition x
i,v1−−→
o,v2

x′ if α(x, i)(x′) = v1, e(x, i)(o) = v2.

Given a FUA (X, I, O, β), denote a transition x
i|v|o−−→ x′ if β(x, i)(x′, o) = v.

Definition 13 (Bisimulation for FMlA). Given two FMlA (X, I, O, α, e) and (Y, I, O, α′, e′),
R ⊆ X ×Y is a concrete bisimulation if it satisfies the following properties.

• For (x, y) ∈ R, if x
i,v1−−→
o,v2

x′, there exists y′ ∈ Y, such that y
i,v1−−→
o,v2

y′ and (x′, y′) ∈ R.

• For (x, y) ∈ R, if y
i,v1−−→
o,v2

y′, there exists x′ ∈ X, such that x
i,v1−−→
o,v2

x′ and (x′, y′) ∈ R.

Definition 14 (Bisimulation for FUA). Given two FUA p = (X, I, O, β) and q = (Y, I, O, β′),
R ⊆ X ×Y is a concrete bisimulation if it satisfies the following properties.

• For (x, y) ∈ R, if x
i|v|o−−→ x′, there exists y′ ∈ Y, such that y

i|v|o−−→ y′ and (x′, y′) ∈ R.

• For (x, y) ∈ R, if y
i|v|o−−→ y′, there exists x′ ∈ X, such that x

i|v|o−−→ x′ and (x′, y′) ∈ R.

Theorem 4. Given two FMlA (X, I, O, α, e) and (Y, I, O, α′, e′), R is a concrete bisimulation if
and only if R is a TI,O-bisimulation between their corresponding TI,O-coalgebras.

Proof. The proof of the result is immediate from the definition.

Theorem 5. Given two FUA (X, I, O, β) and (Y, I, O, β′), R is a concrete bisimulation if and
only if R is an FI,O-bisimulation between their corresponding FI,O-coalgebras.

Proof. The proof of the result is immediate from the definition.

Since the core idea of fuzzy automata is fuzzing, the concrete bisimulation induced by
coalgebraic bisimulation seems to be too strict. To find a more suitable characterization of
bisimulation of fuzzy automata, we introduce the notion of approximate ε-bisimulation,
which requires that membership values for states in an approximate ε-bisimulation of two
transition branches should have a difference less than ε.

12

Mathematics 2021, 9, 272

Definition 15 (ε-Bisimulation for FMlA). Given two FMlA (X, I, O, α, e) and (Y, I, O, α′, e′),
a relation R ⊆ X ×Y is an approximate ε-bisimulation (ε > 0) if for all (x, y) ∈ R:

• If x
i,v1−−→
o,v2

x′, there exists y′ ∈ Y, such that y
i,u1−−→
o,u2

y′, |u1 − v1| ≤ ε, |u2 − v2| ≤ ε and

(x′, y′) ∈ R.

• If y
i,u1−−→
o,u2

y′, there exists x′ ∈ X, such that x
i,v1−−→
o,v2

x′, |u1 − v1| ≤ ε, |u2 − v2| ≤ ε and

(x′, y′) ∈ R.

Example 4. Consider two FMlA (X, I, O, α, e) and (Y, I, O, α′, e′), where X = {x1, x2}, Y =
{y1, y2}, I = {i}, O = {o}, α(x1, i)(x2) = 0.6, e(x1, i)(o) = 0.4, α′(y1, i)(y2) = 0.5, e′(y1, i)(o)
= 0.5. Then, R = {(x1, y1), (x2, y2)} is an approximate 0.1-bisimulation.

Definition 16 (ε-Bisimulation for FUA). Given two FUA (X, I, O, β) and (Y, I, O, β′), a rela-
tion R ⊆ X ×Y is an approximate ε-bisimulation (ε > 0) if for all (x, y) ∈ R,

• If x
i|u|o−−→ x′, then there exists y′ such that y

i|v|o−−→ y′, |u − v| ≤ ε and (x′, y′) ∈ R;

• If y
i|v|o−−→ y′, then there exists x′ such that x

i|u|o−−→ x′, |u − v| ≤ ε and (x′, y′) ∈ R.

Example 5. Consider two FUA (X, I, O, β) and (Y, I, O, β′), where X = {x1, x2}, Y = {y1, y2},
I = {i}, O = {o}, β(x1, i)(x2, o) = 0.8, β′(y1, i)(y2, o) = 0.7. Then, R = {(x1, y1), (x2, y2)} is
an approximate 0.1-bisimulation.

Proposition 1. For approximate ε-bisimulation, we have

1. R is an approximate ε-bisimulation if and only if R−1 is an approximate ε-bisimulation.
2. If Ri is an approximate εi-bisimulation for i = 1, 2, then R1 ◦ R2 is an approximate (ε1 + ε2)

-bisimulation.
3. If Ri is an approximate εi-bisimulation, then ∪iRi is an approximate maxi{εi}-bisimulation.

Proof. The proof of the result is immediate from the definition.

5. Composition for FMlA

A family of combinators for B(− × O)I-coalgebras where B is a monad, such as
sequential composition (;), parallel (�), choice (�) and concurrency (�) combinators
were introduced in [32]. Therefore, the composition of FUA can be naturally instanti-
ated. However, an FMlA assigns different membership values to the next state and the
corresponding output, which should be separated for composition. With some abuse of
notation, we construct sequential composition (;), parallel (�), choice (�) and concur-
rency (�) combinators for FMlA. Consider three fuzzy Mealy automata p, q, r with the
corresponding coalgebras

�p� = (Xp, 〈αp, ep〉 : Xp → Z(Xp)
I × Z(O)I)

�q� = (Xq, 〈αq, eq〉 : Xq → Z(Xq)
J × Z(R)J)

�r� = (Xr, 〈αr, er〉 : Xr → Z(Xr)
O × Z(R)O).

(�)

Some standard isomorphisms in Set are used in the definitions of combinators:

a :A × B × C → A × (B × C)

s :A × B → B × A

xr :A × B × C → A × C × B

m :A × B × (C × D) → A × C × (B × D)

dist :A × (B + C) → A × B + A × C

13

Mathematics 2021, 9, 272

Furthermore, combinators a+, s+, xr+, m+ are the corresponding isomorphisms for sums
in Set. Finally, the inverse of an isomorphism i is denoted by i−1.

The sequential composition combinator ; requires the compatibility of interfaces. The
sequential composition of p, r actually shares the data which is sent out from p. From a
coalgebraic point of view, it is a TI,R-coalgebra

�p; r� = (Xp × Xr, 〈αp;r, ep;r〉)

where αp;r is defined as:

Xp × Xr × I xr−→ Xp × I × Xr
〈αp ,ep〉×id−−−−−−→ Z(Xp)× Z(O)× Xr

a◦xr−−→ Z(Xp)× (Xr × Z(O))

id×σ′Xr ,O−−−−−→ Z(Xp)× Z(Xr ×O)
id×Zαr−−−−→ Z(Xp)× ZZ(Xr)

γ◦(id×μ)−−−−−→ Z(Xp × Xr)

and ep;r is defined as:

Xp × Xr × I xr−→ Xp × I × Xr
ep×id−−−→ Z(O)× Xr

σ′Xr ,O◦s−−−−→ Z(Xr ×O)
Zer−−→ ZZ(R)

μ−→ Z(R)

The parallel combinator � corresponds to synchronous product and composes two
coalgebras into one with their inputs (outputs) merged together. The parallel p� q produces
an output belonging to O × R after receiving an input belonging to I × J. Coalgebraically,
the semantics of the parallel combinator is a TI×J,O×R-coalgebra

�p � q� = (Xp × Xp, 〈αp�q, ep�q〉)

where αp�q is defined as:

Xp × Xq × (I × J) m−→ Xp × I × (Xq × J)
αp×αq−−−→ Z(Xp)× Z(Xq)

γ−→ Z(Xp × Xq)

and ep�q is defined as

Xp × Xq × (I × J) m−→ Xp × I × (Xq × J)
ep×eq−−−→ Z(O)× Z(R)

γ−→ Z(O × R)

The choice p � q allows the environment to choose either to input a value of type I or
one of type J, which will trigger the corresponding automata, producing the associated
output. A formal definition is

�p � q� = (Xp × Xq, 〈αp�q, ep�q〉)

where αp�q is defined as

Xp × Xq × (I + J) dist−−→ Xp × Xq × I + Xp × Xq × J xr+a−−−→ Xp × I × Xq + Xp × (Xq × J)

αp×id+ id×αq−−−−−−−−→ Z(Xp)× Xq + Xp × Z(Xq)
[σXp ,Xq ,σ′Xp ,Xq]−−−−−−−−→ Z(Xp × Xq)

and ep�q is defined as

Xp × Xq × (I + J) dist−−→ Xp × Xq × I + Xp × Xq × J xr+a−−−→ Xp × I × Xq + Xp × (Xq × J)
ep◦π1+eq◦π2−−−−−−−→ Z(O) + Z(R)

[Z(ι1),Z(ι2)]−−−−−−−→ Z(O + R)

14

Mathematics 2021, 9, 272

The concurrency combinator � combines choice and parallel, in the sense that two
fuzzy Mealy automata p and q can be executed depending on the input supplied. Let
I � J = I + J + I × J and O � R = O + R + O × R. The semantics of � is given by

�p � q� = (Xp × Xq, 〈αp�q, ep�q〉)

where αp�q is defined as

Xp × Xq × (I � J) dist−−→ Xp × Xq × (I + J) + Xp × Xq × (I × J)
αp�q+αp�q−−−−−−→ Z(Xp × Xq) + Z(Xp × Xq)

[Z(id),Z(id)]−−−−−−−→ Z(Xp × Xq)

and ep�q is defined as

Xp × Xq × (I � J) dist−−→ Xp × Xq × (I + J) + Xp × Xq × (I × J)
ep�q+ep�q−−−−−−→ Z(O + R) + Z(O × R)

[Z(ι1),Z(ι2)]−−−−−−−→ Z(O � R)

In coalgebra theory, it is [20] shown that the graph of a TI,O-homomorphism is a
TI,O-bisimulation and the greatest TI,O-bisimulation is an equivalence relationship ∼. Thus
for two given FMlA p, q, if there exists a TI,O-homomorphism between their corresponding
coalgebras �p�, �q�, we denote p ∼ q.

Theorem 6. For appropriately typed FMlA p, q, r, p′, q′,

(p; q); r ∼ p; (q; r)

(p � p′); (q � q′) ∼ (p; q)� (p′, q′)
(p � p′); (q � q′) ∼ (p; q)� (p′, q′)
(p � p′); (q � q′) ∼ (p; q)� (p′, q′)

Proof. The proof proceeds by pointwise induction. For the first law, if we assume

αp(x1, i)(x′1) = k1, ep(x1, i)(j) = t1

αq(x2, j)(x′2) = k2, eq(x2, j)(o) = t2

αr(x3, o)(x′3) = k3, er(x3, o)(h) = t3

we can obtain
α(p;q);r(x1, x2, x3)(i)(x′1, x′2, x′3)

=k1 ⊗ k2 ⊗ k3 ⊗ t1 ⊗ t2

=αp;(q;r)(x1, (x2, x3))(i)(x′1, (x′2, x′3))

e(p;q);r(x1, x2, x3)(i)(h)

=t1 ⊗ t2 ⊗ t3

=ep;(q;r)(x1, (x2, x3))(i)(h)

With these equations, it is easy to show a is a TI,O-homomorphism from �(p; q); r� to
�p; (q; r)�. Other laws can be proved similarly.

Connecting FMlA through isomorphisms leads to a bisimilarity up to an isomorphic
rearranging of input types and output types. Let f , g be isomorphic rearrangements
of input types and output types respectively. We use p{ f , g} to denote the FMlA after
arranging the input and the output types in the FMlA p.

15

Mathematics 2021, 9, 272

Theorem 7. For appropriately typed FMlA p, q, r,

p � q ∼ (q � p){s, s}
p � q ∼ q � p{s+, s+}
p � q ∼ q � p{s+ + s, s+ + s}

(p � q)� r ∼ p � (q � r){a, a−1}
(p � q)� r ∼ p � (q � r){a+, a−1

+ }
(p � q)� r ∼ p � (q � r){a∗, a−1∗ }

where a∗ is a natural isomorphism from (A � B)� C to A � (B � C) and its inverse is denoted
by a−1∗ .

Proof. Similar to Theorem 6.

The two theorems demonstrate that our combinators are well defined. In the sequel,
we compare them with the ones in [32] up to the natural transformation θ through a
theorem and an example.

Theorem 8. Given two FMlA p, q with the corresponding coalgebras in (�), the following equa-
tions holds.

θ(〈αp�q, ep�q〉) = θ(〈αp, ep〉)� θ(〈αq, eq〉)
θ(〈αp�q, ep�q〉) = θ(〈αp, ep〉)� θ(〈αq, eq〉)
θ(〈αp�q, ep�q〉) = θ(〈αp, ep〉)� θ(〈αq, eq〉)

where �,�, � correspond to our combinators in the left side and the ones for composing FI,O-
coalgebras in [32] in the right side.

Proof. The proof proceeds by pointwise induction. For the first law, if we assume

αp(x1, i)(x′1) = k1, ep(x1, i)(j) = t1

αq(x2, j)(x′2) = k2, eq(x2, j)(o) = t2

we obtain
θ(〈αp�q, ep�q〉)((x1, x2), i)((x′1, x′2), o)

=αp�q((x1, x2), i)(x′1, x′2)⊗ ep�q((x1, x2), i)(o)

=(k1 ⊗ k2)⊗ (t1 ⊗ t2)

=(k1 ⊗ t1)⊗ (k2 ⊗ t2)

=θ(〈αp, ep〉)(x1, i)(x′1, o)⊗ θ(〈αq, eq〉)(x2, i)(x′2, o)

=θ(〈αp, ep〉)� θ(〈αq, eq〉)
Other laws can be proved similarly.

Note that the case for the sequential composition combinator does not always hold. Ac-
tually, this depends on the complete residuated lattice used, since the state transition of the
first component is considered twice, which can be demonstrated by the following example.

Example 6. Recall the standard product algebra in Example 2. Consider two FMlA p =
({x1, x2}, {a}, {b}, αp, ep) and r = ({y1, y2}, {b}, {c}, αr, er) where αp(x1, a)(x2) = 0.4,
ep(x1, a)(b) = 0.5 and αr(y1, b)(y2) = 0.8, er(y1, b)(c) = 0.5. Then we can obtain �p; r� =
(U, 〈αp;r, ep;r〉) where U = {(xi, yj)|i, j = 1, 2}, αp;r((x1, y1), a)(x2, y2) = 0.4 × 0.5 × 0.8 =
0.16 and ep;r((x1, y1), a)(c) = 0.5× 0.5 = 0.25. Therefore

θ(〈αp;r, ep;r〉)((x1, y1), a)((x2, y2), c) = 0.16× 0.25 = 0.04.

16

Mathematics 2021, 9, 272

However, θ(〈αp, ep〉)(x1, a)(x2, b) = 0.4 × 0.5 = 0.2 and θ(〈αr, er〉)(x1, a)(x2, b) =
0.8× 0.5 = 0.4. Thus,

θ(〈αp, ep〉); θ(〈αr, er〉)((x1, y1), a)((x2, y2), c) = 0.2× 0.4 = 0.08.

Oppositely, if we consider the standard Gödel algebra, the two values will be both 0.4.

6. Case Study

In the sequel, we illustrate the use of fuzzy components by means of a concrete
example. For simplicity, we consider an non-fuzzy input-output function and compose
components with FI,O-coalgebras. Consider the following example of a steam turbine.

I I′×

�Δ × Δ�

��id� Temp �id� Press� �
(I I)× (I′ I′)×

(I [0, 1])× (I′ [0, 1])×
�m�

(I I′)× ([0, 1] [0, 1])×
��Ψ1� �Ψ2�

(O [0, 1])×
Setting (Defuzzification Process)

[MIN,MAX]

The system is composed of two fuzzification components Temp,Press and a defuzzifi-
cation component Setting with corresponding membership functions illustrated in Figure 1.
Note that Δ represents the copy operation.

(a) Temp (b) Press

(c) Setting

Figure 1. The graphs of membership functions.

In practice, the components Temp and Press execute in parallel. Each one will produce
a membership value corresponding to the state and membership function after receiving a

17

Mathematics 2021, 9, 272

mode signal. After that, the minimum of the two output values will become the input of
Setting. The membership function of the Setting component is determined by the following
rules (for simplicity, only whose conditions with temperature COOL are displayed).

rule 1 : If temperature is COOL and pressure is WEAK then throttle is P3.

rule 2 : If temperature is COOL and pressure is LOW then throttle is P2.

rule 3 : If temperature is COOL and pressure is OK then throttle is Z.

rule 4 : If temperature is COOL and pressure is STRONG then throttle is N2.

rule 5 : If temperature is COOL and pressure is HIGH then throttle is N3.

· · ·

The output functions are considered as non-fuzzy in this example.

(i) The coalgebraic semantic of component Temp

�Temp� = (T, θ〈αt, et〉) : T → Z(T × [0, 1])I)

is actually an FI,[0,1]-coalgebra. In this model, states are the temperature over T = [T0, T9],
inputs are operation modes over set I = {COLD,COOL,NORMAL,WARM,HOT} that are decided
by users. The fuzzy transition function is constant on the temperature and given by
αt : T × I → [0, 1]T with

〈t, COLD〉 �→ φCOL, 〈t, COOL〉 �→ φCOO, 〈t, NORMAL〉 �→ φNOR, 〈t, WARM〉 �→ φWAR, 〈t, HOT〉 �→ φHOT

for all t ∈ [T0, T9] ⊆ R. The output function et : T × I → [0, 1] is defined by
(t, i) �→ eval(αt(t, i), t) where eval is an evaluation function. As a concrete example,
suppose the fuzzy subset for the NORMAL mode is the function

φNOR(t) = max{0,
2

T3 − T6
(t − T3 + T6

2
) + 1}.

Then the membership value (output) over state T3+T6
2 under the mode NORMAL is

et(
T3+T6

2 , NORMAL) = eval(φNOR, T3+T6
2) = 1.

(ii) Press is a component whose state space P is given by the pressure in the steam turbine
and inputs are over the set I′ = {WEAK,LOW,OK,STRONG,HIGH}, which represent the
mode triggered by the users. The output of this component is the membership value
corresponding to the current fuzzy state. The dynamics of this component is

�Press� = (P, θ〈αp, ep〉) : P → Z(P × [0, 1])I′)

with the transition and output functions defined as αp : P × I′ → Z(P):

〈p, WEAK〉 �→ φWEAK , 〈p, LOW〉 �→ φLOW , 〈p, OK〉 �→ φOK , 〈p, STRONG〉 �→ φSTRONG , 〈p, HIGH〉 �→ φHIGH

for p ∈ P and
op : P × I′ → [0, 1] : (p, i′) �→ ev(αp(p, i′), p).

(iii) The dynamics of Rule and And components are denoted by �Ψ1� and �Ψ2� where

�Ψ1� = (1, η(1×O) · 〈id, Ψ1〉 : 1 → Z(1 ×O)I×I′).

In this expression O is the output set determined by the output function, namely,

Ψ1 : 1 × (I × I′) → O

18

Mathematics 2021, 9, 272

Ψ1(�, (i, i′)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P3 i = COOL∧ i′ = WEAK

P2 i′ = COOL∧ LOW

Z i′ = COOL∧ OK

N2 i′ = COOL∧ STRONG

N3 i′ = COOL∧ HIGH

· · ·
1 = {∗} is the singleton set. The notation � f� is the representation of function
f : A → B, which is defined as a coalgebra � f� = (∗ ∈ 1, c� f�), where c� f� =

1 × A
id× f−−→ 1 × B

η(1×B)−−−→ Z(1 × B). The definition of Ψ2 is similar, given a pair of
inputs of [0, 1], it outputs the minimum value of the two.

(iv) The last component Setting works as follows. Through the channel it interacts with
Temp and Press. It receives the mode information and a membership value as the
current state. The mode information determines which membership function is
accessible for the component. Then the component outputs an area whose boundary
consists of the horizontal axis and the graph of the membership function. Formally,
this model is represented by a coalgebra

�Setting� = (D, θ〈αs, es〉) : D → Z(D × P(R2))O×[0,1])

where D = [MIN, MAX] is an interval of real numbers. The output function is defined
as es(d, (o, r)) = {(x, y)|0 ≤ y ≤ min{αs(x, (o, r)), r}, x ∈ [MIN, MAX]}. Resorting to
centroid defuzzification technique, the output stage processes combine areas and
produce a control value, which will participate in the control of the system.

7. Conclusions and Future Work

The present work aims at addressing fuzzy automata from a coalgebraic perspective.
Our starting point was studying the fuzzy-set monad further. We defined a left tensorial
strength and a right tensorial strength, and proved it is a strong and commutative monad.
With these properties, we modeled different types of fuzzy automata as coalgebraic models
with the same transition structure. Based on these coalgebraic models, we defined the
notions of fuzzy language bisimulation between fuzzy automata. Moreover, we developed
some compositional combinators for fuzzy Mealy automata of two kinds: state transition
and output function and compared it with the classical component calculi in [32]. Finally,
through a case study, we discussed the application of our component calculi.

Besides these fundamental results, there are several topics left to explore. One is to
define a notion of refinement [38] of fuzzy automata, to specify an inclusion relation of fuzzy
behaviour. Fuzzy automata may involve complex behaviour such as non-deterministic
transitions or branched transitions with probability [23,39]. Therefore another topic for
future work is to develop more complex versions of fuzzy automata and analyze their
behavior and discuss their properties, namely of the suitable notions of bisimulation as
in [15,35,36].

Author Contributions: Conceptualization, M.S. and L.S.B.; methodology, A.L. and S.W.; formal
analysis, A.L. and S.W.; investigation, A.L.; writing—original draft preparation, A.L. and S.W.;
writing—review and editing, M.S. and L.S.B. All authors have read and agreed to the published
version of the manuscript.

Funding: This work has been supported by the Guangdong Science and Technology Department
(Grant No. 2018B010107004) and the National Natural Science Foundation of China under grant No.
61772038, 61532019 and 61272160. L.S.B. was supported by the ERDF—European Regional Devel-
opment Fund through the Operational Programme for Competitiveness and Internationalisation-
COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT,
within project KLEE - POCI-01-0145-FEDER-030947.

19

Mathematics 2021, 9, 272

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work is also supported by Hiroshima University. Many thanks to the
reviewers and editors.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tanaka, K. An Introduction to Fuzzy Logic for Practical Applications; Springer: Berlin/Heidelberg, Germany, 1997.
2. Zadeh, L.A. Soft Computing and Fuzzy Logic. IEEE Softw. 1994, 11, 48–56. [CrossRef]
3. Syropoulos, A.; Grammenos, T. Fuzzy Computation; A Modern Introduction to Fuzzy Mathematics; John Wiley & Sons: Hoboken,

NJ, USA, 2020; pp. 191–214. [CrossRef]
4. Wu, H.; Gu, X.; Zhen, L. Fuzzy Principal Component Analysis Model on Evaluating Innovation Service Capability. Sci. Program.

2020, 2020, 8834901. [CrossRef]
5. Böhme, M.; Pham, V.; Roychoudhury, A. Coverage-Based Greybox Fuzzing as Markov Chain. IEEE Trans. Softw. Eng. 2019,

45, 489–506. [CrossRef]
6. Simon, D.J. Introduction to Fuzzy Control. In Embedded Systems Programming; Electrical Engineering & Computer Science Faculty

Publications: Cambridge, MA, USA, 2003; Volume 16, pp. 55–56.
7. Doostfatemeh, M.; Kremer, S.C. New directions in fuzzy automata. Int. J. Approx. Reason. 2005, 38, 175–214. [CrossRef]
8. Chaudhari, S.R.; Desai, A.S. On fuzzy Mealy and Moore machines. Bull. Pure Appl. Math 2010, 4, 375–384.
9. Mordeson, J.N.; Nair, P.S. Fuzzy Mealy machines. Kybernetes 1966, 25, 18–33. [CrossRef]
10. Li, Y.; Pedrycz, W. The equivalence between fuzzy Mealy and fuzzy Moore machines. Soft Comput. 2006, 10, 953–959. [CrossRef]
11. Todinca, D.; Sora, I.; Butoianu, D.; Precup, R. A Novel Method to Compute the Membership Value of the States of Fuzzy Automata.

In Proceedings of the 2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI),
Timisoara, Romania, 17–19 May 2018; pp. 107–112. [CrossRef]

12. Pan, H.; Li, Y.; Cao, Y.; Li, P. Nondeterministic fuzzy automata with membership values in complete residuated lattices. Int. J.
Approx. Reason. 2017, 82, 22–38. [CrossRef]

13. Tiwari, S.P.; Pal, P. On a category of deterministic fuzzy automata. In 11th Conference of the European Society for Fuzzy Logic and
Technology (EUSFLAT 2019); Atlantis Studies in Uncertainty Modelling; Atlantis Press: Paris, France, 2019; Volume 1. [CrossRef]

14. Mockor, J. Monads and a common framework for fuzzy type automata. Int. J. Gen. Syst. 2019, 48, 406–442. [CrossRef]
15. Singh, A.K.; Tiwari, S.P. Fuzzy Regular Languages Based on Residuated Lattice. New Math. Nat. Comput. 2020, 16, 363–376.

[CrossRef]
16. Yang, C.; Li, Y. Approximate bisimulations and state reduction of fuzzy automata under fuzzy similarity measures. Fuzzy Sets

Syst. 2020, 391, 72–95. [CrossRef]
17. Yang, C.; Li, Y. ε-Bisimulation Relations for Fuzzy Automata. IEEE Trans. Fuzzy Syst. 2018, 26, 2017–2029. [CrossRef]
18. Yang, C.; Li, Y. Approximate bisimulation relations for fuzzy automata. Soft Comput. 2018, 22, 4535–4547. [CrossRef]
19. Rutten, J.J.M.M. Automata and coinduction (an exercise in coalgebra). In International Conference on Concurrency Theory, Proceedings

of the CONCUR 1998: CONCUR’98 Concurrency Theory, Nice, France, 8–11 September 1998; Springer: Berlin/Heidelberg, Germany,
1998; Volume 1466, pp. 194–218.

20. Rutten, J.J.M.M. Universal coalgebra: A theory of systems. Theor. Comput. Sci. 2000, 249, 3–80. [CrossRef]
21. Jacobs, B. Introduction to Coalgebra: Towards Mathematics of States and Observation; Cambridge Tracts in Theoretical Computer

Science; Cambridge University Press: Cambridge, UK, 2016; Volume 59.
22. Silva, A.; Bonchi, F.; Bonsangue, M.M.; Rutten, J.J.M.M. Generalizing determinization from automata to coalgebras. Log. Methods

Comput. Sci. 2013, 9. [CrossRef]
23. Sokolova, A. Coalgebraic Analysis of Probabilistic Systems. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The

Netherlands, 2005.
24. Neves, R.; Barbosa, L.S. Hybrid Automata as Coalgebras. In International Colloquium on Theoretical Aspects of Computing, Proceedings

of the ICTAC 2016: Theoretical Aspects of Computing, Taipei, Taiwan, 24–31 October 2016; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2016; Volume 9965, pp. 385–402. [CrossRef]

25. Neves, R.; Barbosa, L.S. Languages and models for hybrid automata: A coalgebraic perspective. Theor. Comput. Sci. 2018,
744, 113–142. [CrossRef]

26. Liu, A.; Sun, M. A Coalgebraic Semantics Framework for Quantum Systems. In International Conference on Formal Engineering
Methods, Proceedings of the ICFEM 2019: Formal Methods and Software Engineering, Shenzhen, China, 5–9 November 2019; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11852, pp. 387–402. [CrossRef]

27. Feng, Y.; Duan, R.; Ying, M. Bisimulation for Quantum Processes. ACM Trans. Program. Lang. Syst. 2012, 34, 1–43. [CrossRef]
28. Larsen, K.G.; Skou, A. Bisimulation through probabilistic testing. Inf. Comput. 1991, 94, 1–28. [CrossRef]

20

Mathematics 2021, 9, 272

29. Haghverdi, E.; Tabuada, P.; Pappas, G.J. Bisimulation Relations for Dynamical and Control Systems. Electr. Notes Theor. Comput.
Sci. 2002, 69, 120–136. [CrossRef]

30. Jacobs, B. Invariants, Bisimulations and the Correctness of Coalgebraic Refinements. In International Conference on Algebraic
Methodology and Software Technology, Proceedings of the AMAST 1997: Algebraic Methodology and Software Technology, Sydney, Australia,
13–17 December 1997; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1997; Volume 1349, pp. 276–291.
[CrossRef]

31. Venema, Y. Algebras and coalgebras. In Handbook of Modal Logic; Studies in Logic and Practical Reasoning; Elsevier B.V.:
Amsterdam, The Netherlands, 2007; Volume 3, pp. 331–426. [CrossRef]

32. Barbosa, L.S. Components as Coalgebras. Ph.D. Thesis, Universidade do Minho, Braga, Portugal, 2001.
33. Guilherme, R.J.P. A Coalgebraic Approach to Fuzzy Automata. Ph.D. Thesis, Universidade Nova De Lisboa, Lisbon, Portugal,

2016.
34. Wu, H.; Chen, Y. Coalgebras for Fuzzy Transition Systems. Electron. Notes Theor. Comput. Sci. 2014, 301, 91–101. [CrossRef]
35. Wu, H.; Chen, Y.; Bu, T.; Deng, Y. Algorithmic and logical characterizations of bisimulations for non-deterministic fuzzy transition

systems. Fuzzy Sets Syst. 2018, 333, 106–123. [CrossRef]
36. Wu, H.; Chen, T.; Han, T.; Chen, Y. Bisimulations for fuzzy transition systems revisited. Int. J. Approx. Reason. 2018, 99, 1–11.

[CrossRef]
37. Nikravesh, M.; Kacprzyk, J.; Zadeh, L.A. Forging New Frontiers: Fuzzy Pioneers I; University of California: Berkeley, CA, USA, 2007.
38. Meng, S.; Barbosa, L.S. Components as coalgebras: The refinement dimension. Theor. Comput. Sci. 2006, 351, 276–294. [CrossRef]
39. Narasimha, M.; Cleaveland, R.; Iyer, S.P. The role of observations in probabilistic open systems. Electr. Notes Theor. Comput. Sci.

1999, 25, 133–144. [CrossRef]

21

mathematics

Article

Mutated Specification-Based Test Data Generation
with a Genetic Algorithm †

Rong Wang 1,*, Yuji Sato 1 and Shaoying Liu 2

Citation: Wang, R.; Sato, Y.; Liu, S.

Mutated Specification-Based Test

Data Generation with a Genetic

Algorithm. Mathematics 2021, 9, 331.

https://doi.org/10.3390/

math9040331

Academic Editor: David Greiner

Received: 31 December 2020

Accepted: 4 February 2021

Published: 7 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional clai-ms

in published maps and institutio-nal

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Hosei University, Tokyo 184-8584, Japan; yuji@hosei.ac.jp
2 Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8511, Japan;

sliu@hiroshima-u.ac.jp
* Correspondence: rong.wang.99@stu.hosei.ac.jp
† This paper is an extended version of our paper published in 2019 IEEE Congress on Evolutionary

Computation (CEC), Wellington, New Zealand, 10–13 June 2019.

Abstract: Specification-based testing methods generate test data without the knowledge of the
structure of the program. However, the quality of these test data are not well ensured to detect
bugs when non-functional changes are introduced to the program. To generate test data effectively,
we propose a new method that combines formal specifications with the genetic algorithm (GA).
In this method, formal specifications are reformed by GA in order to be used to generate input
values that can kill as many mutants of the target program as possible. Two classic examples are
presented to demonstrate how the method works. The result shows that the proposed method can
help effectively generate test cases to kill the program mutants, which contributes to the further
maintenance of software.

Keywords: test data generation; genetic algorithm; specification-based testing; regression testing;
mutation testing

1. Introduction

Regression testing is an important technique to ensure that previously tested software
still performs in the same way after it is changed or integrated with other software [1–3].
In general, changes to software are mainly concerned with the efficiency enhancement,
robustness improvement, and configuration changes, but these changes should not result
in big alternation of the functionality defined in the specification of the software. Therefore,
specification-based testing (SBT) methods can be effectively used in regression testing.

SBT is characterized by test data being generated from the specification without
concerning the structure of the corresponding program and test results being analyzed
based on the specification [4–8]. Formal specifications may allow the test data generation
and test result analysis to be done rigorously, systematically, and even automatically in
many cases [9–12]. In our work, we mainly use formal specifications in pre- and post-
conditions, such as Vienna Development Method (VDM) [13], a formal method that has
been developed over past years [14,15], and Structured-Object-Oriented Formal Language
(SOFL) [16], which has the potential of practical use in industry and serves as a solid
foundation to develop a method of functional scenario-based test data generation [17].

However, in spite of considerable progresses having been made, it is still not easy for
SBT to generate various test data only from specifications to detect different bugs that are
contained in the program. This is because different features and effects of the program
output cannot be controlled and triggered by only input data suites that satisfy some parts
of the specification (some constraints over only input variables). Consequently, many
faulty program paths would not be detected and thus the bug detection would be likely to
fail in some cases. For the existing SBT, one of the major deficiencies is that the test data
generation only considers the constraints over input variables in the formal specification,
without making use of the constraints over outputs before the execution of a program.

Mathematics 2021, 9, 331. https://doi.org/10.3390/math9040331 https://www.mdpi.com/journal/mathematics

23

Mathematics 2021, 9, 331

To overcome the shortcomings of the existing SBT methods, we propose a new method
for test data generation in this paper. The proposed method introduces dummy variables
into some specified constraints in the specification, and makes use of the constraints
over both input and output variables to guide the test data generation, in contrast to the
conventional SBT methods that concerns only constraints over input variables. This method
features the combination of three techniques, SBT, mutation testing, and GA. It is to obtain
the enhanced (mutated) formal specifications by using a GA so that input data generated
from these specifications are more likely to kill different kinds of mutants of the target
program under test. The expected effect of the test data generated in this way is to detect
various bugs probably occurring in the program that is being developed or improved.

The work in this paper is an extension for our previous work in [18]. Comparing with
the previous work, we use more different kinds of mutants (16 types against previously 10)
for each program in our case study to gain better mutated functional scenarios that are
capable of detecting more bugs. In addition, we give additional experimental results of
the proposed approach that uses no dummy variables, and point out the importance of
introducing dummy variables. In addition, we carefully conduct more experiments with
the dummy variables that are introduced to reform different parts of original specification,
the equality and inequality relations. Based on that, we enriched the analysis for the effect
of different ways of introducing dummy variables on bug detection.

The remaining part of the paper is organized as follows. Section 2 briefly introduces
the existing work related to our approach. Section 3 illustrates how to transform formal
specifications to chromosomes as well as the corresponding genetic manipulations in GA.
Section 4 describes the main procedures of obtaining desirable reformed specifications for
test data generation by integrating GA. Section 5 presents two classic cases to demonstrate
the feasibility and efficiency of the approach. Finally, Section 6 concludes the paper and
points out future research directions.

2. Related Work

In this section, we introduce several advanced techniques that relate to our methodol-
ogy for test data generation.

Data flow analysis, a technique for computing the def-use associations for the control
flow graph (CFG) of a program, are often used to develop different strategies for test data
generation over a long history [19–21]. Many research works have proposed promising
methods for automatic test data generation that integrates the data flow analysis with
the heuristics, such as GAs [22–24], particle swarm optimization [25], and ant colony
optimization [26]. Different from these techniques, our approach conducts the testing
under the circumstance where the source code of thirty-party library under test cannot be
accessed. Thus, these techniques rely too much on the knowledge and analysis of internal
design (or code structure), but our approach focuses on generating test data without
analyzing the source code when applying the GA to the formal specification. In addition,
with respect to the usage of the GA, our approach uses the GA to search for the optimal
mutated specifications that are later used for input data generation, while the techniques
mentioned above use the GA to directly search for good input data.

The techniques of mutation-based test data generation [27,28] are used to select a set
of “good” test data by executing designed incorrect versions of an original program with a
great number of test data from the domain. Test data are selected if it can cause unintended
behaviors for a certain number of incorrect versions. These techniques mainly concentrate
on designing appropriate mutation operators to introduce small modifications for different
kinds of programming languages such as Java [29], C# [30], and C++ [31]. The incorrect
versions, also called program mutants, are created by inserting the mutant operators into
the original program. Compared with these techniques, our method selects a set of “good”
mutated specifications as a seed for further test data generation by using not only program
mutants but also the mutated specifications with the GA.

24

Mathematics 2021, 9, 331

The SBT techniques, some of them integrated with heuristic search strategies, have
been well developed to cope with different kinds of specifications, such as SOFL [9,16],
Alloy [32,33], protocol specifications [34,35], and Object Constraint Language (OCL) speci-
fication [36,37]. Among these specifications, we take an interest in the formal specification
of pre-post style like SOFL and Alloy. On the one hand, the SBT techniques for both SOFL
and Alloy generate test data only from the pre-condition and use the post-condition as an
oracle to check if the outcome is correct. On the other hand, the SBT with SOFL still needs
to be improved since a data suite generated only from the original SOFL specification is not
sufficient enough to trigger different kinds of bad behaviors of programs. On the contrary,
our approach uses both the pre- and post- conditions to generate input data, as well as
selects the optimal mutated specifications to enhance the bug detection.

3. GA with Mutated Specification

We first briefly introduce the basics of GA and then discuss how to obtain
reformed specifications.

3.1. Description for GA

GA is a heuristic search method inspired from evolutionary biology and was first
proposed by John Holland [38]. In general, a GA is involved in an iterative process with
three steps: (i) create an initial population of solutions (called individuals) represented by
a pre-defined chromosome that are typically encoded the solutions to a problem; (ii) in the
existing population, select a group of individuals by a specified selection strategy based on a
fitness function, and generate the next population from applying two key genetic operators,
crossover and mutation to those selected individuals; (iii) repeat step (ii) until the remaining
individuals in the generation are good enough according to both the fitness function and
the stop criteria.

Since GA works well in finding optimal solutions for nonlinear problems and the
specifications of pre-post style could be easily transformed to chromosomes with few
efforts, we employ GA to find the best mutated specifications in this paper. Later, we
will first describe how to transform the original formal specifications into a chromosome,
and then carefully describe the evolution in step (ii) in detail for our specific goal: to obtain
all the mutated functional scenarios from the specification, each a constraint over only
input variables.

3.2. Mutation Testing

Mutation testing, also called program mutation [39], is used to design test cases
and evaluates the quality of existing testing techniques. In mutation testing, some small
modifications are injected into the original program. Each mutated version is called program
mutant and test data are regarded as the good one if it kills the program mutants, that is, it
makes the behavior of program mutants different from that of the original program.

In our approach, both programs and the specifications are mutated. The program
mutants are used to evaluate the quality of mutated specifications. We search for good
mutated specifications that can be used to effectively generate test data for bug detection.

3.3. Mutated Specifications

We use SOFL as the formal notation for specifications in this paper. There are two
reasons: one is that SOFL, as a formal notation, is more comprehensible than other for-
mal notations since it uses the comprehensible condition data flow diagrams for system
structure as well as pre- and post- conditions for defining individual operations in the
system. Another reason is that SOFL is familiar to us and its use in industry has been
increasing [40].

In SOFL, the defining condition describes the constraints over input and output variables
after a method in the program performs. Generally, the defining condition is not used for
directly generating input data in most of existing techniques because the values of outputs

25

Mathematics 2021, 9, 331

in defining condition are unknown to us before the execution of the program. We consider
the defining conditions as an important factor for test data generation from which the test
data are sensitive to bad behaviors of the program.

Since defining conditions describe how output variables relate to input variables, they
are often used to check whether an execution of the program is correct or not, rather than
being used to directly generate input values. For a program, it is usually difficult to directly
generate input values that satisfy a defining condition without knowing the corresponding
output values. For instance, suppose input variable x and output variable y satisfy the
defining condition (x ∗ y > x + y), we cannot generate input x from (x ∗ y > x + y) due to
the unknown output y. Thus, usually (x ∗ y > x + y) is not used to help generate the input
values but can be used to check the result of executing the program with input x.

Nevertheless, by assigning appropriate values to the output variables in the defining
conditions, we can get some useful mutated specifications that can be used to directly
generate input values. For the defining condition (x ∗ y > x + y) mentioned above, input
data generated from (x ∗ 2 > x + 2) (when y = 2) may be more likely to trigger bugs than
from (0 > x) (when y = 0). Currently, it cannot be determined without further checking.
However, (x ∗ 2 > x + 2) is definitely better than (x ∗ 1 > x + 1) (when y = 1) because the
latter is always false and cannot be used to generate test data.

Our work mainly concentrates on developing a way to find appropriate output values
for the specification. These output values are then used to build the mutated specifications
that are the constraints over only input variables. Then, the mutated specifications can be
directly used to generate input values in regression testing. To achieve that, we employ GA
to seek such appropriate values of outputs from the defining condition.

Moreover, to obtain mutated specifications that are more powerful in bug detection,
some extension is considered for reforming defining conditions before applying GA. In this
extension, we make a slight change in defining conditions so as to induce the generated
test data that satisfy those reformed ones to trigger as many bad behaviors of the program
as possible.

In our method, mutated specifications are made from after applying GA to the original
specification. More precisely, the mutated specifications can be obtained by following
two rules:

1. Reforming the original specification by introducing dummy variables into defining
conditions so that test data that satisfy those reformed ones can trigger bad behaviors
of the program;

2. Finding appropriate concrete values through GA and assigning them to the output
and dummy variables that occur in the reformed specification.

Our goal is to obtain a new version of the specification from which the test data suite
can be generated to trigger as many bugs as possible in the program. Next, we will define
the chromosome forms for the reformed specification, as well as describe the crossover
operator and mutation operator. Then, we apply the GA for gaining the suitable mutated
specifications that can do well in bug detection.

We define the form of chromosomes for a condition data flow diagram (CDFD) that is
part of the SOFL language.

A condition data flow diagram (CDFD) is a directed graph that specifies how processes
work together to provide functional behaviors [41]. Every process has its own pre- and
post-conditions. For instance, Figure 1 displays a small CDFD that consists of two processes
A and B where process A first consumes two input variables x and y and produces output
z, and then process B consumes z and produces w.

The two separately defined processes A and B may not be automatically combined into
a bigger process C since we can not always infer C_pre(x, y) ∧ C_post(x, y, w) just from
A_pre(x, y) ∧ A_post(x, y, z) ∧ B_pre(z) ∧ B_post(z, w) unless we know the expression
z = Expr(x, y) in A_post(x, y, z), since, in that case, we can easily replace z with Expr(x, y)
and derive the following predicate expression:

26

Mathematics 2021, 9, 331

C_pre(x, y) ∧ C_post(x, y, w) = A_pre(x, y) ∧ A_post(x, y, Expr(x, y)) ∧
B_pre(Expr(x, y)) ∧ B_post(Expr(x, y), w).

However, the intermediate variables between two processes like variable z can not
always be replaced in real CDFDs. Therefore, our discussion on test data generation from
specifications focuses on a single process.

Figure 1. The process A and process B.

3.4. Chromosome Formation

In this approach, the specification is converted into an equivalent expression called
functional scenario form (FSF).

Definition 1. A FSF of process is the disjunction of functional scenarios: ∨n
i=1(Ti ∧ Di) :=

Spre ∧ (∨n
i=1(Gi ∧ Di))(i = 1, · · · , N) where Ti = Spre ∧ Gi is called a test condition, which is

the conjunction of the pre-condition Spre and the guard-condition Gi; and Di is a predicate called a
defining condition.

The pre-condition Spre of process S is a constraint on the input, and it contains only
input variables. A guard condition Gi is part of the post-condition but contains no output
variables. A defining condition Di is also part of the post-condition but contains at least
one output variable. The functional scenario Ti ∧ Di describes a single specific functional
behavior: when test condition Ti is true, the output of the operation is defined using
defining condition Di. In this paper, we assume that any FSF ∨n

i=1(Ti ∧ Di) of process S is
complete, which means that any input satisfying Spre must make ∨n

i=1Ti true.
Each functional scenario defines an independent function of the operation: when the

test condition holds on the input variables, the output variables will be defined by the
defining condition. Currently, test data generation from a functional scenario only takes the
test condition into account meanwhile leaving the defining condition untouched [9,42,43].

Now, we explain how to make a slight extension to change the form of defining
conditions so as to allow bad behaviors to occur. To obtain a more flexible and useful
reformed specification, we introduce dummy variables, di(i = 1, · · · , c), to the relationship
of inputs and outputs from the defining condition. Then, we build an output vector from
both the dummy variables and output variables.

Definition 2. An output vector o
′
is a vector constructed by output variables and dummy variables:

o
′
= (o1, · · · , on, d1, · · · , dc), where oi (i = 1, · · · , n) are output variables, and di (i = 1, · · · , c)

are dummy integer variables.

For a relation (f (inputs, outputs)� 0) (where � is a operator such as =,>,< . . .)
in the defining condition Di, by introducing dummy variables d1 and d2, we construct
an inequality d1 <= f (inputs, outputs) <= d2 and replace the relation f with this new
inequality in Di. Then, the output vector is formed as o

′
= (o1, · · · , on, d1,d2). In our work,

we mainly make such change to only equality relations.
We change an equality relation to such an inequality relation because an equality

relation is quite a strict condition that would drastically narrow down the exploration of
input values for a single functional scenario when output values are determined by GA.

27

Mathematics 2021, 9, 331

Therefore, dummy variables need to be introduced for equality. For the inequality relation
in the specification, dummy variables are not introduced to them because, compared with
equality relation, inequality relation is not a too strict condition for the generation of
input values. Thus, these kind of relations are used to preserve some original features
of specifications. In addition, the experimental results in Section 5 also indicate that
additional dummy variables for inequality cannot help considerably improve the quality
of the mutated specifications.

Definition 3. A chromosome [Ti ∧ Di]o′ (i = 1, · · · , N) is a reformed functional scenario Ti ∧ Di,
where some dummy variables are introduced to Di. An individual (a mutated specification) is
a constraint over symbolic inputs, established from the chromosome [Ti ∧ Di]o′ by assigning
concrete values to the output vector o

′
= (o1, · · · , on, d1, · · · , dc). A population is a group of such

individuals. For convenience, the output vector o
′

is also called d-chromo, and each element of o
′

is
called a genetic.

From this definition, a d-chromo o
′

with concrete values determines an individual
formula [Ti ∧ Di]o′ that is a constraint on symbolic inputs. Such an individual is a reformed
specification that can be used to generate test data for the program. In order to obtain good
individuals to generate test data that are useful for bug detection, we apply the genetic
manipulation to a group of individuals [Ti ∧ Di]o′ and find the appropriate d-chromo o

′
.

Each individual will be scored by evaluating the quality of the test data that are generated
from it.

3.5. Genetic Manipulations and Selection

The genetic manipulation refers to the change of genetic structure in biology, but, in
the GA, it indicates that a “child” solution is produced from a pair of “parent” solutions by
using genetic operators like crossover and mutation.

In the existing population, a pair of individuals (solutions) are selected as parents to
perform the crossover operator to produce their offspring. More specifically, as illustrated in
Figure 2, first select two individuals [Ti ∧ Di]o′1

and [Ti ∧ Di]o′2
from the current population

as parents and get their d-chromos o
′
1 and o

′
2, then swap each two genetics of the two

d-chromos with possibility p (0 < p < 1) to obtain two new individuals.

Figure 2. Crossover operator.

To perform the mutation operator, each genetic of an individual is mutated with possi-
bility q (0 < q < 1), as displayed in Figure 3. More clearly, for one individual [Ti ∧ Di]o′

with its d-chromo o
′
= (o1, · · · , on, d1, · · · , dc), each genetic of it has the possibility q to be

mutated:
o
′
i := o

′
i +�, where � is a different scalar of small value.

28

Mathematics 2021, 9, 331

Figure 3. Mutation operator.

Fitness function Grade is used to evaluate an individual (a solution) [Ti ∧ Di]o′ by
assigning a fitness value. Let Datas = data_suite_ f rom([Ti ∧ Di]o′) where data_suite_ f rom
generates a suite of input data from [Ti ∧ Di]o′ by using a constraint solver. Let N_killi,o′ =
(k1, . . . , km) where kj is the number of test data that have been generated from [Ti ∧ Di]o′
and have killed the program mutant muj as well. A test case that kills a program mutant
indicates that it fails based on the original specifications after it is executed by the program
mutant. We consider both the killing rate of program mutants Kill_rate, and the killing
rate of a data suite as important factors to compute the grade for [Ti ∧ Di]o′ :

Grade([Ti ∧ Di]o′) =
Kill_rate(N_killi,o′) · Sum(N_killi,o′)

(m · (length(Datas) + 1))
(1)

where

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Kill_rate(N_killi,o′) =

Σm
j=1 I(kj > 0)

length(N_killi,o′)
,

I(kj > 0) =
{

1 kj > 0
0 kj ≤ 0

(2)

The factor Σm
j=1 I(kj > 0) in Kill_rate is intended to encourage each mutated functional

scenario to generate a test data suite that can kill as many different kinds of program
mutants as possible. The factor Sum(N_killi,o′) as a part of the numerator in Grade would
inspire every mutated functional scenario to generate a test data suite where most test data
are effective enough to kill as many program mutants as possible.

For a given chromosome [Ti ∧ Di]o′ , its individual with appropriate d-chromo o
′
i,best is

regarded as the best if and only if this individual possesses the highest value of Grade in the
whole population. GA is to find such best individuals for these chromosomes [Ti ∧ Di]o′
(i = 1, · · · , N).

After all the individuals from the current population are evaluated, GA would select
most of the best ones to form a new population for the next generation. This process
is called selection. In our approach, we evaluate all the individuals and sort them by
descending, then select individuals in the top 50 percent of the current population to breed
the next generation.

As we can see, GA is used to find the best individuals separately for each chromosomes
[Ti ∧ Di]o′ (i = 1, · · · , N). In order to evaluate all the best individuals represented by
different chromosomes, the final formula of evaluation is made as follows:

Grade(∨n
i=1[Ti ∧ Di]o′i,best

) =
Kill_rate(N_kill) · Sum(N_kill)

(m · length(Datas))
(3)

where

⎧⎨⎩
N_kill = Σn

i=1N_killi,ó′i,best
,

Datas = {data_suite_ f rom([Ti ∧ Di]o′i,best
)}i

(4)

We use the final formula to find all the mutated functional scenarios that together hit
the highest final grade (i.e., do the best in bug detection), each mutated one with well-tuned
values for dummy variables and output variables. Additionally, this final grade is also
used for comparison between our approach and other techniques. In the case study, our

29

Mathematics 2021, 9, 331

method is compared with the conventional specification-based method with respect to test
data generation for bug detection.

4. Algorithm Summary

Our approach that incorporates GA accomplishes the goal of obtaining the mutated
specifications by taking three key steps:

1. Inject faults into the original program to obtain a set of program mutants;
2. Use reformed specification [Ti ∧ Di]o′ as seed chromosomes. Each chromosome

corresponds to a group of individuals that are generated by assigning concrete values
to the output vector in the chromosome;

3. Apply GA to each chromosome and select the best individuals (the best mutated spec-
ifications). According to the original specifications, determine whether or not a test
case from a mutated specification (a constraint over inputs) kills the program mutants.

Figure 4 displays the whole evolution process of GA. In the first round of evolution,
a group of individuals are initialized and evaluated. Then, the best individuals in the top k
(k = 50% in this paper) of the group are selected to perform both crossover and mutation
operators to produce their offspring for the next round. In the next round, all of the
individuals are evaluated and the top k of them again prepare to breed a new generation by
performing genetic manipulations. The population iteratively evolves in this process until
there has been no improvement in the population or it reaches the predefined maximum
number of generations.

In the mutation testing, we use Z3 [44], a widely used satisfiability modulo theories
(SMT) solver, as our constraint solver to generate the data suite for each individual formula
(i.e., each mutated functional scenario). The generation for a data suite takes three steps:
(1) use Z3 to generate a test data that satisfies the logical formula, (2) exclude all the test
data obtained previously from the logical formula; (3) go to step (1) to obtain another piece
of test data unless enough test data are obtained. Each individual formula is evaluated by
the fitness function that measures the quality of the test data suite.

Figure 4. The evolution in GA.

We give the pseudo-code of the algorithm in Appendix A.

30

Mathematics 2021, 9, 331

5. Case Study

In this section, we apply GA to two classic examples to demonstrate the effectiveness
of the proposed method. The original specifications are used as test oracles for determining
whether the outputs are correct or not during the evaluation of individuals.

We compare our method with the conventional method, called original specification-
based method, which directly generates input data from the original specifications by using
Z3. In the original specification-based method, neither dummy variables nor defining
condition are used to generate input values, since the defining condition contains output
variables with unknown values. The input data are directly generated from only test
conditions (pre-condition and guard-condition over only input variables) by using Z3.

Sixteen program mutants are prepared for each program in the way that the injected
faults will not cause execution crash and infinite loops since we only focus on the functional
bugs in this paper. Both methods generate a test suite of the same size 20 every time to
execute these program mutants in the evaluation process.

5.1. Case Study 1: Mod

In this program, process Mod is to find the quotient q and remainder r from dividing y
by x. For Mod, we give its formal specification in SOFL and the implementation in Python.

The formal specification of Mod is:

process Mod (y: int, x: int) r: int, q: int
pre x �= 0
post x > 0∧ y �= 0∧ y = q ∗ x + r ∧ Abs(r) < x ∧ xr ≥ 0∨

x < 0∧ y �= 0∧ y = q ∗ x + r ∧ Abs(r) < −x ∧ xr ≥ 0∨
y = 0∧ q = 0∧ r = 0

end_process

Its implementation in Python is:

def Abs(x):

if x>=0:

return x

else:

return -x

def mod(y, x):

r = y;

q = 0;

if y!=0:

if x*y > 0:

while Abs(x) <= Abs(r):

r = r - x

q = q + 1

else:

while x*r < 0:

r = r + x

q = q - 1

return r, q

In this specification, Abs is a function for calculating the absolute value of its input.
To shorten the explanation of each step, assume Abs is an inline executable predicate. Both
−7 mod 5 = 3 and −7 mod 5 = −2 satisfy the classic definition y = q ∗ x + r ∧ Abs(r) <
Abs(x). To avoid the ambiguity, the specification of Mod puts an additional condition
xr ≥ 0 in order to get only one result of −7 mod 5 = 3.

In the specification, the pre-condition, guard-conditions, and defining conditions are
listed as:

31

Mathematics 2021, 9, 331

Spre := x �= 0;
G1 := x > 0∧ y �= 0; D1 := y = q ∗ x + r ∧ Abs(r) < x ∧ xr ≥ 0;
G2 := x < 0∧ y �= 0; D2 := y = q ∗ x + r ∧ Abs(r) < −x ∧ xr ≥ 0;
G3 := x > 0∧ y = 0; D3 := q = 0∧ r = 0.

We can obtain the functional scenarios Ti ∧ Di := Spre ∧ Gi ∧ Di as follows:
T1 ∧ D1 := x > 0∧ y �= 0∧ y = q ∗ x + r ∧ Abs(r) < x ∧ xr ≥ 0;
T2 ∧ D2 := x < 0∧ y �= 0∧ y = q ∗ x + r ∧ Abs(r) < −x ∧ xr ≥ 0;
T3 ∧ D3 := x �= 0∧ y = 0∧ q = 0∧ r = 0.

For T3 ∧ D3, the input x and y are not related to the output q and r, so we do not need
to apply GA to it. Since there is an equality y = q ∗ x + r in which inputs and outputs
are related, we introduce two dummy variables d1 and d2. The chromosomes of Mod are
displayed in Table 1.

Table 1. Chromosome forms for functional scenarios of process Mod.

Chromosome D-Chromo Dummy Vars

[T1 ∧ D1]o′ : x > 0∧ y �= 0∧ o
′
=

d1 ≤ q ∗ x + r − y ≤ d2∧ (q, r, d1,d2) d1,d2
Abs(r) < x ∧ xr ≥ 0

[T2 ∧ D2]o′ : x < 0∧ y �= 0∧ o
′
=

d1 ≤ q ∗ x + r − y ≤ d2∧ (q, r, d1,d2) d1,d2
Abs(r) < −x ∧ xr ≥ 0

Apply Algorithm A1 to these chromosomes. The results are displayed in Table 2.

Table 2. Results for process Mod after applying GA.

The Best Individual of Chromosome Grade

[T1 ∧ D1]o′

o
′
= (q, r, d1,d2) 0.58

o
′
1,best = (−4, 0,−6,−6)
[T2 ∧ D2]o′

o
′
= (q, r, d1,d2) 0.55

o
′
2,best = (−7, 0, 9, 13)

Total : ∨2
i=1[Ti ∧ Di]o′i,best

0.59

To illustrate the effectiveness of data generation from the mutated specifications,
Table 3 displays the results of the conventional method that generates the test data directly
from the original specifications. For the original specification, we generate test data only
from the test condition Ti consisting of both pre-condition Spre and guard-condition Gi
meanwhile ignoring the defining condition Di because the defining condition Di involves
unknown output variables that can not directly help to generate test data.

Table 3. Results for process Mod with original specifications.

Original Specification Grade

T1 : x > 0∧ y �= 0 0.32
T2 : x < 0∧ y �= 0 0.38
Total : ∨2

i=1Ti 0.37

32

Mathematics 2021, 9, 331

For the proposed method, the final Kill_rate of ∨2
i=1[Ti ∧ Di]o′i,best

is 100%, the same as

the conventional method. It means that every program mutant has been killed by at least
one piece of test data. The corresponding final Grade is 0.59, larger than the Grade of 0.37
with the original specification-based method, indicating that the test data generated from
∨2

i=1[Ti ∧ Di]o′i,best
are of high quality that are more likely to kill all the program mutants.

The result suggests that it is plausible to use these best individuals of chromosomes to
make four mutated specifications for test case generation in the further maintenance of the
original program.

Comparing the reformed specifications with the original ones in Figure 5, we can find
the Grade of reformed ones that are always larger than that of original ones. It means that
the data suite generated from the mutated specifications is more likely to pinpoint bugs
than that of original ones, although both of them share the same Kill_rate of 100%.

Figure 5. The grade of the mutated and original.

The Effect with Dummy Variables

We conduct additional experiments to figure out how dummy variables introduced
into the different parts of defining conditions would affect the quality of the obtained
mutated specifications. We make three versions of modifications to our approach as follows:

1. Version V1: Introducing dummy variables into only inequality relation;
2. Version V2: Introducing dummy variables into both equality and inequality relation;
3. Version V3: Putting no dummy variables in defining conditions.

For convenience, the approach with no modification, that is, with dummy variables
for only equality relation, is called Version V0.

The previous experimental result for V0 and the original, as well as the results from
after applying variations of the approach V1,V2, and V3 to process Mod, are together
displayed in Figure 6.

According to Figure 6, three approaches with dummy variables V0, V1, and V2 gain
higher Grades than the approach without dummy variables V3, and even V3 seems to
behave better than the conventional method. There are no significant differences between
the evaluation of V0 and V2. However, V2 would occupy more computation resources
than V0 due to the consideration of more dummy variables. It seems that V1 gains a little
better final Grade than V0, though its Grade for each single mutated functional scenario is
not good enough.

33

Mathematics 2021, 9, 331

Figure 6. Results by four versions and the original for Mod.

In addition, by using an approach without dummy variables V1 and V3, every ob-
tained single mutated functional scenario demonstrates the strong capability to kill some
specific program mutants while leaving other program mutants not killed, though the
combination of all the functional scenarios in V1 can reach 100% total Kill_rate while,
for V3, the total Kill_rate unfortunately remains in 87.5%. This result demonstrates the
importance of introducing dummy variables into equality relation in order to accomplish
both good single and total Grades and Kill_rates.

In summary, it is necessary to introduce dummy variables into equality relations,
and the additional dummy variables for inequality relation cannot significantly improve
the proposed approach.

5.2. Case Study 2: Gcd

Process gcd is to compute the greatest common divisor of two inputs by using Stein’s al-
gorithm.

The formal specifications of gcd is:

process gcd (x: int, y: int) r: int
pre x ≥ 0∧ y ≥ 0
post x > 0∧ y > 0∧ x ≥ y ∧ r = gcd(y, x%y) ∨

x > 0∧ y > 0∧ x < y ∧r = gcd(y, y%x) ∨
y = 0∧ r = x ∨
x = 0 ∧ r = y

end_process

The implementation of process gcd in Python is:

def gcd(x, y):

if x < y:

x, y = y, x

if (0 == y):

return x

if x % 2 == 0 and y % 2 == 0:

return 2 * gcd(x//2, y//2)

if x % 2 == 0:

return gcd(x // 2, y)

if y % 2 == 0:

return gcd(x, y // 2)

return gcd((x - y) // 2, y)

34

Mathematics 2021, 9, 331

Process gcd is a recursive process and its post-condition contains itself, so it is difficult
to generate data from this kind of post-condition. We transform the original post-condition
to the following ones:

T1 ∧ D1 := x > 0∧ y > 0∧ x ≥ y ∧ x%r = 0∧ y%r = 0∧ x%y%r = 0;
T2 ∧ D2 := x > 0∧ y > 0∧ x < y ∧ x%r = 0∧ y%r = 0∧ y%x%r = 0;
T3 ∧ D3 := x ≥ 0∧ y = 0∧ r = x;
T4 ∧ D4 := y ≥ 0∧ x = 0 ∧ r = y.

Table 4 shows the chromosomes of process gcd.
Apply the algorithm to all of the chromosomes; in the meantime, make use of the

original post-condition to determine whether the outputs of codes are correct or not.
The results are displayed in Table 5.

The final Kill_rate of∨4
i=1[Ti ∧Di]o′i,best

is 100%. The corresponding Grade is 0.46, which

means roughly 46 percent of test data that are randomly generated from ∨4
i=1[Ti ∧ Di]o′i,best

can kill all the program mutants.

Table 4. Chromosome forms for functional scenarios of process gcd.

Chromosome D-Chromo Dummy Vars

[T1 ∧ D1]o′ : x ≥ y ∧ o
′
=

(d1 ≤ x%r ≤ d2)∧ (r, d1,d2, d3 d1,d2, d3,

(d3 ≤ y%r ≤ d4)∧ d4, d5, d6) d4, d5, d6

(d5 ≤ x%y%r ≤ d6)

[T2 ∧ D2]o′ : x < y ∧ o
′
=

(d1 ≤ x%r ≤ d2)∧ (r, d1,d2, d3 d1,d2, d3,

(d3 ≤ y%r ≤ d4)∧ d4, d5, d6) d4, d5, d6

(d5 ≤ y%x%r ≤ d6)

[T3 ∧ D3]o′ : y = 0 ∧ o
′
= d1, d2

(d1 ≤ x − r ≤ d2) (r, d1, d2)

[T4 ∧ D4]o′ : x = 0 ∧ o
′
= d1, d2

(d1 ≤ y − r ≤ d2) (r, d1, d2)

Table 5. Results for process gcd after applying GA.

The Best Individual of Chromosome Grade

[T1 ∧ D1]o′

o
′
1,best = 0.72

(0, 1, 10, 10, 10, 3, 6)

[T2 ∧ D2]o′

o
′
2,best = 0.58

(8, 4, 6, 2, 2, 0, 8)

[T3 ∧ D3]o′

o
′
3,best = (5,−1, 20) 0.0037

[T4 ∧ D4]o′

o
′
4,best = (4,−3, 16) 0.0037

Total : ∨4
i=1[Ti ∧ Di]o′i,best

0.46

35

Mathematics 2021, 9, 331

Conversely, the result for applying the method that generates test data directly from
the original specification is displayed in Table 6.

Table 6. Results for process gcd with original specifications.

Original Specification Grade

T1 : x > 0∧ y > 0∧ x ≥ y 0.29

T2 : x > 0∧ y > 0∧ x < y 0.49

T3 : x ≥ 0∧ y = 0 0.0035

T4 : y ≥ 0∧ x = 0 0.0035

Total : ∨2
i=1Ti 0.25

Comparing the reformed specifications with the original ones in Figure 7, we can
find that the first two reformed ones [T1 ∧ D1]o′ and [T2 ∧ D2]o′ have very high values of
Grade, 0.72 and 0.58, respectively, higher than 0.29 and 0.49 with the original specifications.
In addition, the Kill_rate of a sole [Ti ∧ Di]o′ (i = 1, 2) is 94%, indicating that the test
data generated from the first two reformed specifications are likely to pinpoint most bugs
probably occurring in the program. Only a few program mutants (6% of total), with
some faults that directly relates to the last two functional scenarios T3 ∧ D3 and T4 ∧ D4
(where x = 0 or y = 0), cannot be killed by the test data generated from either the first two
reformed specifications or the first two original specifications. Due to the very simple forms
and the limited functionality of the last two functional scenarios, there is no improvement
of test data generation using our method against the original ones.

Figure 7. The grade of the reformed and original.

The results from both classic examples demonstrate that the input data generated
from the mutated specifications are more likely to kill the mutants of programs than that
from the original specifications.

The Effect without Dummy Variables

Like what we have done for process Mod, we conduct additional experiments with
the approach without using dummy variable V3 since gcd only has equality relations in the
defining conditions. The results are shown in Figure 8.

36

Mathematics 2021, 9, 331

Figure 8. Results by four versions and the original for gcd.

The experimental results are similar to that in Mod. V0 performs better than V3. V3
still encounters the problem that every single mutated functional scenario is not able to kill
all the program mutants. It shows that the test data generated from those strict equality
relations are less likely to trigger some bad behaviors of program.

5.3. Complexity of Our Approach

We present an abstract analysis of the complexity for our approach. Generally, a GA
complexity is on the order of O(g ∗ n ∗ m) without the effect of the fitness function, where
g is the number of generations, n is the population size, and m is the number of functional
scenarios. Since our approach uses a fitness function involved in the mutation testing,
we should take both the program execution time and the data suite generation time
into consideration.

As the speed of the constraint solver to solve an individual formula (to generate a
test suite) depends on the complexity of the functional scenarios (logical formulas) whose
complexity cannot be easily determined, we associate the cost of using the constraint solver
for a singular individual with the number of input variables in, the number of output
variables out, and the number of dummy variables d. In addition, the number of dummy
variables relies on the number of equality relation in each functional scenario, which varies
in different kinds of programs. We simply assume that each functional scenario has at
least one equality relation. Thus, the complexity of using the constraint solver for each
individual is O(in + out + 2 ∗ d ∗ m). Moreover, the complexity of all the executions for
program mutants is approximately O(mu ∗ sui) with mu the number of program mutants
and sui the size of test data suite. Finally, considering the complexity of the GA together
with the mutation testing, the complexity for our approach is

O(g ∗ n ∗ ((in + out + 2 ∗ d ∗ m) ∗ (mu ∗ sui)) ∗ m).

6. Conclusions

We propose a new method for effective test data generation based on mutated pre-post
style formal specifications. The method is characterized by the integration of the functional
scenario-based testing, a genetic algorithm and the mutation testing. In the approach,
by assigning appropriate values to the unknown output and dummy variables to the
variations for the original specifications, we can obtain useful mutated specifications that
are sensitive to small syntactic structural changes of program codes.

37

Mathematics 2021, 9, 331

We have also carried out two classic cases to evaluate the performance of our method.
The results of case studies demonstrate that, for a complicated functional scenario, the pro-
posed approach is capable of effectively generating useful test data to kill as many program
mutants as possible, which outperforms the conventional data generation method.

In spite of the advantages of our method as mentioned above, there are also some
limitations and disadvantages in the application of our method. First, the proposed method
can only work on arithmetical relationships between inputs and outputs in which outputs
affect the generation of inputs. Second, as the GA usually iterates many times and executes
all the program mutants for every iteration, the cost would not be low. However, if we
have enough computing resources for applying our method, it might be worth taking time
to obtain good reformed specifications for the further maintenance of software.

In order to cope well with complex real programs, some additional extensions can be
made in our approach. Firstly, by using the character encoding standard like US-ASCII
[45], we can convert a String to a byte array so that the relationship that contains string
variables can also be manipulated by our method. Moreover, since many research works
exist concerning about the techniques of encoding complex data [46–48] that may occur
in specifications like images and videos, it is possible to transform these specifications
into appropriate arithmetical relationships so that our approach can be used in such cases.
Secondly, although there exist specifications where the input and output variables are
not specified by some explicit arithmetical equality relation, our method would still be
applicable. Because instead of directly using these specifications, we can design some
mutated arithmetical relationships (in form of inequality) of input and output that can not
only approximate to the real properties of program but also leave open the possibility of
occurrence of unexpected behaviors. Thirdly, when testing a big complex system, we can
decompose it into a set of subroutines and focus on testing small procedures one by one
using our approach. Thus, there is no need to repeatedly executing the whole system with
our algorithm.

In future work, we will focus on enhancing the capability of this method to deal with
more kinds of relationships between inputs and outputs where the values of outputs may
not directly determine the inputs. We will conduct more experiments to ensure that our
method can be well used in different kinds of programs.

Author Contributions: Conceptualization, R.W., S.L., and Y.S.; methodology, R.W. and Y.S.; in-
vestigation, R.W.; resources, R.W.; data curation, R.W.; writing—original draft preparation, R.W.;
writing—review and editing, S.L. and Y.S.; visualization, R.W.; supervision, S.L. and Y.S.; project
administration, S.L. and Y.S.; funding acquisition, S.L. and Y.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was funded by JSPS KAKENHI Grant No. 26240008.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In Algorithm A1, the function one_step creates a new population with fitness values
from the previous population through applying crossover and mutation operations; and
the function do_valuation assigns fitness values calculated by the function Grade to all of
the individuals by using the feedback of testing program mutants.

38

Mathematics 2021, 9, 331

Algorithm A1 GA to obtain mutated specifications.

Inputs: the functional scenarios from the specification: Ti ∧ Di
Individuals: o

′
= (o1, · · · , on, d1,··· ,dm) with concrete values

Outputs: the reformed specification [Ti ∧ Di]o′
run(){

result = list()
for [Ti ∧ Di]o′ in functional scenarios:

spec = Ti ∧ Di
population = initial(o

′
)

while(not enough iterations){
one_step(spec)

}
best_individual =

select_best_individual(population)
reformed_specification = (spec, best_individual)
result.append(reformed_specification)

}
one_step(spec) {

This function selects top 50% of the current population
population = keep_good_individuals(population)
do:

father, mother = random_select_two(population)
child1, child2 = crossover_operation(father,mother)
child1, child2 = mutation_operation(child1,child2)
population.put(child1,child2)

until population increases enough
do_valuation(population,spec)

}
do_valuation(population,spec){

for individual in population:
datas = data_suite_from(individual,spec)
statistic_sum = kill_program_mutants(datas)
individual.value = Grade(statistic_sum)

}

References

1. Wong, W.E.; Horgan, J.R.; London, S.; Agrawal, H. A study of effective regression testing in practice. In Proceedings of the Eighth
International Symposium on Software Reliability Engineering, Albuquerque, NM, USA, 2–5 November 1997; pp. 264–274.

2. Leung, H.K.; White, L. Insights into regression testing (software testing). In Proceedings of the Conference on Software
Maintenance, Miami, FL, USA, 16–19 October 1989; pp. 60–69.

3. Kazmi, R.; Jawawi, D.N.; Mohamad, R.; Ghani, I. Effective regression test case selection: A systematic literature review.
ACM Comput. Surv. (CSUR) 2017, 50, 1–32. [CrossRef]

4. Stocks, P.; Carrington, D. A framework for specification-based testing. IEEE Trans. Softw. Eng. 1996, 777–793. [CrossRef]
5. Richardson, D.; O’Malley, O.; Tittle, C. Approaches to Specification-Based Testing; ACM: New York, NY, USA, 1989; Volume 14.
6. Khurshid, S.; Marinov, D. TestEra: Specification-based testing of Java programs using SAT. Autom. Softw. Eng. 2004, 11, 403–434.

[CrossRef]
7. Hierons, R.M.; Bogdanov, K.; Bowen, J.P.; Cleaveland, R.; Derrick, J.; Dick, J.; Gheorghe, M.; Harman, M.; Kapoor, K.; Krause, P.;

et al. Using formal specifications to support testing. ACM Comput. Surv. (CSUR) 2009, 41, 1–76. [CrossRef]
8. Dokhanchi, A.; Hoxha, B.; Fainekos, G. Formal requirement debugging for testing and verification of cyber-physical systems.

ACM Trans. Embed. Comput. Syst. (TECS) 2017, 17, 1–26. [CrossRef]
9. Offutt, A.J.; Liu, S. Generating Test Data from SOFL Specifications. J. Syst. Softw. 1999, 49, 49–62. [CrossRef]
10. Dick, J.; Faivre, A. Automating the generation and sequencing of test cases from model-based specifications. In Proceedings of the

International Symposium of Formal Methods Europe, Odense, Denmark, 19–23 April 1993; Springer: Berlin/Heidelberg, Germany,
1993; pp. 268–284.

39

Mathematics 2021, 9, 331

11. Ed-Douibi, H.; Izquierdo, J.L.C.; Cabot, J. Automatic generation of test cases for REST APIs: A specification-based approach.
In Proceedings of the 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC), IEEE,
Stockholm, Sweden, 16–19 October 2018; pp. 181–190.

12. Alrawashed, T.A.; Almomani, A.; Althunibat, A.; Tamimi, A. An Automated Approach to Generate Test Cases From Use Case
Description Model. Comput. Model. Eng. Sci. 2019, 119, 409–425. [CrossRef]

13. Jones, C.B. Systematic Software Development Using VDM; Citeseer: Princeton, NJ, USA, 1990; Volume 2.
14. Larsen, P.G.; Battle, N.; Ferreira, M.; Fitzgerald, J.; Lausdahl, K.; Verhoef, M. The overture initiative integrating tools for VDM.

ACM SIGSOFT Softw. Eng. Notes 2010, 35, 1–6. [CrossRef]
15. Tran-Jørgensen, P.W.; Nilsson, R.S.; Lausdahl, K. Enhancing Testing of VDM-SL models. In Proceedings of the 16th Overture

Workshop, Oxford, UK, 14 July 2018; pp. 7–22.
16. Liu, S. Formal Engineering for Industrial Software Development: Using the SOFL Method; Springer Science & Business Media:

Berlin, Germany, 2013.
17. Liu, S.; Nakajima, S. Combining Specification Testing, Correctness Proof, and Inspection for Program Verification in Practice.

In Proceedings of the 3rd International Workshop on SOFL + MSVL (SOFL+MSVL 2013), LNCS 8332, Queenstown, New Zealand,
29 October 2013; Springer: Queenstown, New Zealand, 2013; pp. 3–16.

18. Wang, R.; Sato, Y.; Liu, S. Specification-based Test Case Generation with Genetic Algorithm. In Proceedings of the 2019 IEEE
Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 1382–1389.

19. Rapps, S.; Weyuker, E.J. Selecting software test data using data flow information. IEEE Trans. Softw. Eng. 1985, 367–375.
[CrossRef]

20. Weyuker, E.J. More experience with data flow testing. IEEE Trans. Softw. Eng. 1993, 19, 912–919. [CrossRef]
21. Khedker, U.; Sanyal, A.; Sathe, B. Data Flow Analysis: Theory and Practice; CRC Press: Boca Raton, FL, USA, 2017.
22. Pargas, R.P.; Harrold, M.J.; Peck, R.R. Test-data generation using genetic algorithms. Softw. Test. Verif. Reliab. 1999, 9, 263–282.

[CrossRef]
23. Girgis, M.R. Automatic Test Data Generation for Data Flow Testing Using a Genetic Algorithm. J. UCS 2005, 11, 898–915.
24. Girgis, M.R.; Ghiduk, A.S.; Abd-Elkawy, E.H. Automatic generation of data flow test paths using a genetic algorithm.

Int. J. Comput. Appl. 2014, 89, 29–36.
25. Nayak, N.; Mohapatra, D.P. Automatic test data generation for data flow testing using particle swarm optimization.

In Proceedings of the International Conference on Contemporary Computing, Noida, India, 9–11 August 2010; Springer:
Cham, Switzerland, 2010; pp. 1–12.

26. Biswas, S.; Kaiser, M.S.; Mamun, S. Applying ant colony optimization in software testing to generate prioritized optimal path
and test data. In Proceedings of the 2015 International Conference on Electrical Engineering and Information Communication
Technology (ICEEICT), IEEE, Dhaka, Bangladesh, 21–23 May 2015; pp. 1–6.

27. Harman, M.; Jia, Y.; Langdon, W.B. Strong higher order mutation-based test data generation. In Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, ACM, Szeged, Hungary,
5–9 September 2011; pp. 212–222.

28. Papadakis, M.; Kintis, M.; Zhang, J.; Jia, Y.; Le Traon, Y.; Harman, M. Mutation testing advances: An analysis and survey.
In Advances in Computers; Elsevier: Amsterdam, The Netherlands, 2019; Volume 112, pp. 275–378.

29. Ma, Y.S.; Offutt, J.; Kwon, Y.R. MuJava: An automated class mutation system. Softw. Test. Verif. Reliab. 2005, 15, 97–133. [CrossRef]
30. Derezinska, A.; Kowalski, K. Object-oriented mutation applied in common intermediate language programs originated from c.

In Proceedings of the 2011 IEEE Fourth International Conference on Software Testing, Verification and Validation Workshops,
Berlin, Germany, 21–25 March 2011; pp. 342–350.

31. Delgado-Pérez, P.; Medina-Bulo, I.; Palomo-Lozano, F.; García-Domínguez, A.; Domínguez-Jiménez, J.J. Assessment of class
mutation operators for C++ with the MuCPP mutation system. Inf. Softw. Technol. 2017, 81, 169–184. [CrossRef]

32. Jackson, D. Alloy: A lightweight object modelling notation. ACM Trans. Softw. Eng. Methodol. (TOSEM) 2002, 11, 256–290.
[CrossRef]

33. Sullivan, A.; Wang, K.; Zaeem, R.N.; Khurshid, S. Automated test generation and mutation testing for Alloy. In Proceedings of the
2017 IEEE International Conference on Software Testing, Verification and Validation (ICST), Tokyo, Japan, 13–17 March 2017;
pp. 264–275.

34. Martins, E.; Sabião, S.B.; Ambrosio, A.M. ConData: A tool for automating specification-based test case generation for communica-
tion systems. Softw. Qual. J. 1999, 8, 303–320. [CrossRef]

35. McMillan, K.L.; Zuck, L.D. Formal specification and testing of QUIC. In Proceedings of the ACM Special Interest Group on Data
Communication; ACM: New York, NY, USA, 2019; pp. 227–240.

36. Ali, S.; Iqbal, M.Z.; Arcuri, A.; Briand, L.C. Generating test data from OCL constraints with search techniques. IEEE Trans. Softw.
Eng. 2013, 39, 1376–1402. [CrossRef]

37. Jalila, A.; Mala, D.J. Automated optimal test data generation for OCL specification using harmony search algorithm.
Int. J. Bus. Intell. Data Min. 2020, 16, 231–259. [CrossRef]

38. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence; MIT Press: Cambridge, MA, USA, 1992.

40

Mathematics 2021, 9, 331

39. DeMillo, R.A.; Lipton, R.J.; Sayward, F.G. Hints on test data selection: Help for the practicing programmer. Computer 1978,
11, 34–41. [CrossRef]

40. Luo, J.; Liu, S.; Wang, Y.; Zhou, T. Applying SOFL to a railway interlocking system in industry. In Proceedings of the Inter-
national Workshop on Structured Object-Oriented Formal Language and Method, Tokyo, Japan, 15 November 2016; Springer:
Cham, Switzerland, 2016; pp. 160–177.

41. Liu, S. Formal Engineering for Industrial Software Development Using the SOFL Method; Springer: Berlin, Germany, 2004;
ISBN 3-540-20602-7.

42. Sen, K. Concolic testing. In Proceedings of the Twenty-Second IEEE/ACM International Conference on Automated Software
Engineering, ACM, Atlanta, GA, USA, 5–9 November 2007; pp. 571–572.

43. Sato, Y.; Sugihara, T. Automatic Generation of Specification-Based Test Cases by Applying Genetic Algorithms in Reinforce-
ment Learning. In Proceedings of the International Workshop on Structured Object-Oriented Formal Language and Method,
Paris, France, 6 November 2015; Springer: Cham, Switzerland, 2015; pp. 59–71.

44. De Moura, L.; Bjørner, N. Z3: An efficient SMT solver. In Proceedings of the International conference on Tools and Algorithms
for the Construction and Analysis of Systems, Budapest, Hungary, 29 March–6 April 2008; Springer: Cham, Switzerland, 2008;
pp. 337–340.

45. Mackenzie, C.E. Coded-Character Sets: History and Development; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA,
USA, 1980.

46. Basavaprasad, B.; Ravi, M. A study on the importance of image processing and its applications. IJRET Int. J. Res. Eng. Technol.
2014, 3, 1.

47. Barannik, V.; Podlesny, S.; Tarasenko, D.; Barannik, D.; Kulitsa, O. The video stream encoding method in infocommunication
systems. In Proceedings of the 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and
Computer Engineering (TCSET), IEEE, Lviv-Slavske, Ukraine, 20–24 February 2018; pp. 538–541.

48. Hur, T.; Bang, J.; Huynh-The, T.; Lee, J.; Kim, J.I.; Lee, S. Iss2Image: A novel signal-encoding technique for CNN-based human
activity recognition. Sensors 2018, 18, 3910. [CrossRef] [PubMed]

41

mathematics

Article

A Divide and Conquer Approach to Eventual Model Checking

Moe Nandi Aung 1,†, Yati Phyo 2,†, Canh Minh Do 2,† and Kazuhiro Ogata 2,*,†

Citation: Aung, M.N.; Phyo, Y.;

Do, C.M.; Ogata, K.

A Divide and Conquer Approach to

Eventual Model Checking.

Mathematics 2021, 9, 368.

https://doi.org/10.3390/math9040368

Academic Editor: Tadashi Dohi

Received: 17 January 2021

Accepted: 8 February 2021

Published: 12 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional clai-ms

in published maps and institutio-nal

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Information Science, University of Information Technology (UIT), Hlaing Township,
Yangon PO 11052, Myanmar; moenandiaung@uit.edu.mm

2 School of Information Science, Japan Advanced Institite of Science and Technology (JAIST), Nomi,
Ishikawa 923-1292, Japan; yatiphyo@jaist.ac.jp (Y.P.); canhdominh@jaist.ac.jp (C.M.D.)

* Correspondence: ogata@jaist.ac.jp
† These authors contributed equally to this work.

Abstract: The paper proposes a new technique to mitigate the state of explosion in model checking.
The technique is called a divide and conquer approach to eventual model checking. As indicated
by the name, the technique is dedicated to eventual properties. The technique divides an original
eventual model checking problem into multiple smaller model checking problems and tackles each
smaller one. We prove a theorem that the multiple smaller model checking problems are equivalent
to the original eventual model checking problem. We conducted a case study that demonstrates the
power of the proposed technique.

Keywords: eventual property; model checking; Maude

1. Introduction

Model checking is an attractive and promising formal verification technique because it
is possible to automatically conduct model checking experiments once good concise formal
models are made. It has also been used in industries, especially hardware industries. There
are still some challenges to tackle in model checking, one of which is the state explosion,
the most annoying one. Many techniques to mitigate the state explosion have been devised,
such as symbolic model checking [1] and SAT-based bounded model checking (BMC) [2],
where SAT stands for Boolean satisfiability problem. As those existing techniques are not
enough to deal with the state explosion, it is still worth tackling the issue.

Moe Nandi Aung et al. [3] tried to check that an autonomous vehicle intersection
control protocol [4] enjoyed some desired properties, where there were 13 vehicles, and
encountered the notorious state space explosion, making it impossible to conduct the
model checking experiments. Note that it was possible to conduct the model checking
experiments for a case wherein there were five vehicles. One property is the starvation
freedom property that can be expressed as an eventual property. An informal description
of the starvation freedom property is that every vehicle will pass the intersection concerned.
The case motivated us to come up with the technique proposed in the present paper.

The present paper proposes a divide and conquer approach to eventual model check-
ing. The technique splits the reachable state space from each initial state into L + 1 layers,
where L ≥ 1, generating multiple smaller sub-state spaces, dividing the original eventual
mode checking problem into multiple smaller model checking problems and tackling
each smaller one. As the name indicates, the technique proposed in the present paper is
dedicated to eventual properties. Many important software requirements can be expressed
as eventual properties. For example, halting is one important requirement many programs
should enjoy. Halting can be expressed as an eventual property. We prove a theorem
that the multiple smaller model checking problems are equivalent to the original eventual
model checking problem. We conducted a case study that demonstrates the power of the
proposed technique. Maude [5] was used as the formal specification language and Maude
LTL (linear temporal logic) model checker was used as the model checker.

Mathematics 2021, 9, 368. https://doi.org/10.3390/math9040368 https://www.mdpi.com/journal/mathematics

43

Mathematics 2021, 9, 368

The model checking algorithm adopted by Maude LTL model checker is the same
as the one used by SPIN [6], which is one of the most popular model checkers for model
checking software systems. It has been reported that Maude LTL model checker is com-
parable with SPIN with respect to model checking running performance. This implies
that whenever Maude LTL model checker encounters the state space explosion problem,
making it impossible to conduct model checking experiments, SPIN does so as well, and so
do most existing model checkers. The proposed technique aims at mitigating the state space
explosion problem and we demonstrate that it can mitigate the problem through a case
study. We are allowed to use Maude as a formal specification language for systems under
model checking. Maude is extremely expressive because it is one direct descendant of and
OBJ language family, such as OBJ3 [7] and CafeOBJ [8]. Inductively-defined data structures,
associative and/or commutative binary operators, etc., can be used in systems’ specifi-
cations under model checking with the Maude LTL model checker. Inductively-defined
data structures and associative and/or commutative binary operators cannot be used in
systems’ specifications under model checking for most existing model checkers, such as
SPIN and NuSMV [9]. This is mainly why we used the Maude LTL model checker. Those
who are more interested in the flavor of the Maude LTL model checker are recommended
to see the paper [10] in which the Maude LTL model checker is intensively compared with
the Symbolic Analysis Laboratory (SAL) [11], a collection of model checkers.

The remaining part of the paper is organized as follows. Section 2 explains some
preliminaries, such as Kripke structures and LTL. Section 3 uses a simple example to outline
the proposed technique. Section 4 describes the theoretical part of the proposed technique.
Section 5 describes the proposed technique. Section 6 reports on a case study. Section 7
mentions some existing related work. Section 8 concludes the paper and suggests some
future directions.

2. Preliminaries

This section describes some preliminaries needed to read the technical contents of the
paper. We give the definitions of Kripke structures, the syntax of LTL formulas and the
semantics of LTL formulas. We need infinite sequences of states (called paths of Kripke
structure) to define the semantics of LTL formulas. We introduce several notations or
symbols for paths, sets of paths and satisfaction relations, where satisfaction relations are
the essence of the semantics of LTL formulas. We prepared tables for those notations or
symbols. We use the symbol � as "if and only if" or "be defined as."

Definition 1 (Kripke structures). A Kripke structure K � 〈S, I, T, A, L〉 consists of a set S of
states, a set I ⊆ S of initial states, a left-total binary relation T ⊆ S × S over states, a set A of
atomic propositions and a labeling function L whose type is S → 2A. An element (s, s′) ∈ T is
called a (state) transition from s to s′ and may be written as s →K s′.

S does not need to be finite. The set R of reachable states is inductively defined as
follows: I ⊆ R and if s ∈ R and (s, s′) ∈ T, then s′ ∈ R. We suppose that R is finite. K in
s →K s′ may be omitted if it is clear from the context.

An infinite sequence of states is a sequence that consists of states infinitely many
times, where infinitely many copies of some states may occur. Let s0, s1, . . . , si, si+1, . . . be
an infinite sequence of states, where s0 is the top element (called 0th element), s1 is the
next element (called 1st element) and si is the ith element. As we suppose that R is finite,
if s0 ∈ R, then s0, s1, . . . , si, si+1, . . . only consists of bounded number of different states,
although infinitely many copies of some states occur. As usual, let ∞ be used to denote
the infinity.

44

Mathematics 2021, 9, 368

An infinite sequence s0, s1, . . . , si, si+1, . . . of states is called a path of K if and only if
for any natural number i, (si, si+1) ∈ T. Let π be s0, s1, . . . , si, si+1, . . . and some notations
are defined as follows:

π(i) � si
πi � si, si+1, . . .
πi � s0, s1, . . . , si, si, . . .
π∞ � π

π(i,j) �
{

si, si+1, . . . , sj, sj, . . . if i ≤ j
si, si, . . . otherwise

π(i,∞) � πi

πi
j � π(i,j)

where i and j are any natural numbers. Note that π(0,j) = πj. Note that πi(k) = π(k) if
k = 0, . . . , i and πi(k) = π(i) if k > i. Note that π(i,j)(k) = π(i+ k) if i ≤ j and k = 0, . . . , m,
where j = i + m, π(i,j)(k) = π(j) if i ≤ j and k > j and π(i,j)(k) = π(i) if i > j and k is a
natural number. A path π of K is called a computation of K if and only if π(0) ∈ I.

Let PK be the set of all paths of K. Let P(K,s) be {π | π ∈ PK , π(0) = s}, where s ∈ S.
Let Pb

(K,s) be {πb | π ∈ P(K,s)}, where s ∈ S and b is a natural number. Note that P∞
(K,s) is

P(K,s). If R is finite and s ∈ R, then P(K,s) is finite and so is Pb
(K,s).

Definition 2 (Syntax of LTL). The syntax of linear temporal logic (LTL) is as follows:

ϕ ::= a | � | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕ U ϕ

where a ∈ A.

Definition 3 (Semantics of LTL). For any Kripke structure K, any path π of K and any LTL
formula ϕ, K, π |= ϕ is inductively defined as follows:

• K, π |= a if and only if a ∈ π(0)
• K, π |= �
• K, π |= ¬ϕ1 if and only if K, π �|= ϕ1
• K, π |= ϕ1 ∨ ϕ2 if and only if K, π |= ϕ1 and/or K, π |= ϕ2

• K, π |= © ϕ1 if and only if K, π1 |= ϕ1

• K, π |= ϕ1 U ϕ2 if and only if there exists a natural number i such that K, πi |= ϕ2 and for
each natural number j < i, K, π j |= ϕ1

where ϕ1 and ϕ2 are LTL formulas. Then, K |= ϕ if and only if K, π |= ϕ for all computations π
of K.

⊥ � ¬� and some other connectives are defined as follows: ϕ1 ∧ ϕ2 � ¬((¬ϕ1) ∨
(¬ϕ2)), ϕ1 ⇒ ϕ2 � (¬ϕ1) ∨ ϕ2, ϕ1 ⇔ ϕ2 � (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1), ♦ϕ1 � � U ϕ1,
	ϕ1 � ¬(♦¬ϕ1) and ϕ1
 ϕ2 � 	(ϕ1 ⇒ ♦ϕ2). ©, U , ♦, 	 and
 are called next,
until, eventually, always and leads-to temporal connectives, respectively. Although it is
unnecessary to directly define the semantics for ♦, 	 and
, we can define it as follows:

• K, π |= ♦ϕ1 if and only if there exists a natural number i such that K, πi |= ϕ1

• K, π |= 	ϕ1 if and only if for all natural numbers i, K, πi |= ϕ1

• K, π |= ϕ1
 ϕ2 if and only if for each natural number i such that K, πi |= ϕ1, there
exists a natural number j ≥ i such that K, π j |= ϕ2.

Definition 4 (State propositions). State propositions are LTL formulas such that they do not
have any temporal connectives.

45

Mathematics 2021, 9, 368

Proposition 1. Let K be any Kripke structure. If ϕ is any state proposition,
then (K, π |= ϕ) ⇔ (K, π′ |= ϕ) for any paths π and π′ of K such that π(0) = π′(0).

Proof. The first state π(0) decides if K, π |= ϕ holds.

Eventual properties are those that are expressed in the form of ♦ ϕ, where ϕ is an LTL
formula. In this paper, furthermore, we give the constraint to ϕ: ϕ is a state proposition.

Let K, s |= ϕ, where s ∈ S, be K, π |= ϕ for all π ∈ P(K,s). Note that K, s |= ϕ for all
s ∈ I is equivalent to K |= ϕ. Let K, s, b |= ϕ, where s ∈ S and b is a natural number or ∞,
be K, π |= ϕ for all π ∈ Pb

(K,s). Note that K, s, ∞ |= ϕ is K, s |= ϕ.
Some logical connectives are abused for K, π |= ϕ as follows:

• (K, π |= ϕ) ∧ (K′, π′ |= ϕ′) � K, π |= ϕ and K′, π′ |= ϕ′

• (K, π |= ϕ) ∨ (K′, π′ |= ϕ′) � K, π |= ϕ and/or K′, π′ |= ϕ′

• (K, π |= ϕ) ⇒ (K′, π′ |= ϕ′) � if K, π |= ϕ, then K′, π′ |= ϕ′

• (K, π |= ϕ) ⇔ (K′, π′ |= ϕ′) � K, π |= ϕ if and only if K′, π′ |= ϕ′

We summarize some notations or symbols used in the paper in the three tables:
Tables 1–3. Table 1 describes notations or symbols for paths. Table 2 describes notations or
symbols for sets of paths. Table 3 describes notations or symbols for satisfaction relations.

Table 1. Descriptions of path notations (or symbols), where i and j are natural numbers.

Symbol Description

π a path; an infinite sequence s0, s1, . . . , si, si+1, . . . of states such that si →K si+1 for each i;
if so is an initial state, it is called a computation

π(i) the ith state si in π

πi the postfix si, si+1, . . . obtained by deleting the first i states s0, s1, . . . , si−1 from π

πi
s0, s1, . . . , si, si, . . . constructed by first extracting the prefix s0, s1, . . . , si, the first i + 1 states from π
and then adding si, the final state of the prefix, to the prefix at the end infinitely many times

π∞ s0, s1, . . . , si, si+1, . . ., the same as π

π(i,j) if i ≤ j, then si, . . . , sj, sj, . . ., the same as (πi)j−i;
otherwise, si, si, . . ., the infinite sequence in which only si occurs infinitely many times

π(i,∞) si, si+1, . . ., the same as πi

πi
j the same as π(i,j)

Table 2. Descriptions of path-set notations (or symbols), where b is a natural number.

Symbol Description

PK the set of all paths of K
P(K,s) the set of all paths π of K such that π(0), the 0th state of the path π, is s
Pb
(K,s) the set of all paths πb such that π ∈ P(K,s)

P∞
(K,s) the same as P(K,s)

Table 3. Descriptions of satisfaction relation |= notations (or symbols), where b is a natural number.

Symbol Description

K, π |= ϕ an LTL formula ϕ holds for a path π of K
K |= ϕ an LTL formula ϕ holds for all computations of K

K, s |= ϕ an LTL formula ϕ holds for all paths in P(K,s)
K, s, b |= ϕ an LTL formula ϕ holds for all paths in Pb

(K,s)
K, s, ∞ |= ϕ the same as K, s |= ϕ

46

Mathematics 2021, 9, 368

3. Outline of the Proposed Technique

Let us outline the proposed technique with a simple system (or Kripke structure)
called SimpSys as depicted in Figure 1 so that you can intuitively comprehend the tech-
nique. SimpSys has four states s0, s1, s2 and s3, where s0 is the only initial state. There
are seven transitions depicted as arrows in Figure 1. Let us consider three atomic proposi-
tions init, middle and final. The labeling function is defined as depicted in Figure 1. For
example, middle holds in s1 and s2 and does not in s0 and s3. Let us take ♦final as a
property concerned. We can straightforwardly check that SimpSys satisfies ♦final, namely
SimpSys |= ♦final, and then do not need to use the proposed technique for this model
checking experiment. We, however, use this simple model checking experiment to sketch
the technique.

Figure 1. A simple system called SimpSys.

The left part of Figure 2 shows the computation tree made from the reachable states
such that its root is the initial state s0. Let us split the computation tree into two layers such
that the first layer depth is 1. Note that it is unnecessary to specify the second (or the final)
layer depth. The first layer has one sub-state space such that its initial state is s0 as shown
in the right part of Figure 2. The second layer has three sub-state spaces such that their
initial states are s1, s2 and s3, respectively. We first conduct the model checking experiment
that ♦final holds for the sub-state space in the first layer. There are two counterexamples:
(1) s0, s1, s1, . . . and (2) s0, s2, s2, . . ., where s1 and s2 are called counterexample states. As
♦final holds for s1, s3, s3, . . ., we do not need to conduct the model checking experiment
that ♦final holds for the sub-state space whose initial state is s3 in the second layer. It
suffices to conduct the model checking experiments that ♦final holds for the two sub-state
spaces whose initial states are s1 and s2, respectively. There are no counterexamples for the
two model checking experiments and then we can conclude that SimpSys satisfies ♦final.

Figure 2. Two-layer division of the SimpSys reachable state space.

47

Mathematics 2021, 9, 368

This is how the proposed technique works. For this simple example, the number of
different states in each sub-state space is the same as or almost the same as the number of
different states in the original state space. If the number of each sub-state space is much
smaller than the number of the original state space, then even though it is impossible to
conduct a model checking experiment for the original reachable state space because of
the state space explosion, it may be possible to conduct the model checking experiment
for each sub-state space. This is how the proposed technique mitigates the state space
explosion problem.

4. Multiple Layer Division of Eventual Model Checking

This section describes the theoretical contribution of the paper. An overview of the
proposed technique is as follows: an eventual model checking problem is divided into
multiple smaller model checking problems and each smaller model checking problem
is tackled so as to tackle the original eventual model checking experiment. We need to
guarantee that tackling each smaller model checking problem is equivalent to tackling the
original eventual model checking problem. We prove a theorem for it.

We prove that an eventual model checking problem for a Kripke structure K and a
path π of K is equivalent to L + 1 eventual model checking problems for K and L + 1 paths
of K, where L ≥ 1 and the L + 1 paths are obtained by splitting π into L + 1 parts. The
L + 1 paths are π(d(0),d(1)) (= πd(0)), . . . , π(d(l),d(l+1)), . . . , π(d(L),d(L+1)) (= πd(L)). Please
see Figure 3.

We first tackle the case in which L is 1.

Lemma 1 (Two-layer division of ♦). Let ϕ be any state proposition of K. For any natural number
k, (K, π |= ♦ϕ) ⇔ ((K, πk |= ♦ϕ) ∨ ((K, πk �|= ♦ϕ) ⇒ (K, πk |= ♦ϕ))). (We could use
(K, πk |= ♦ϕ) ∨ (K, πk |= ♦ϕ) instead of (K, πk |= ♦ϕ) ∨ ((K, πk �|= ♦ϕ) ⇒ (K, πk |= ♦ϕ))
because they are equivalent).

Proof. (1) Case "only if" (⇒): There must be i such that K, πi |= ϕ. If i ≤ k, K, πi
k |= ϕ from

Proposition 1 because ϕ is a state proposition. Thus, K, πk |= ♦ϕ. Otherwise, K, πk �|= ♦ϕ.
However, i > k and K, πi |= ϕ. Hence, K, πk |= ♦ϕ. (2) Case “if” (⇐): If K, πk |= ♦ϕ,
there must be i such that i ≤ k and K, πi

k |= ϕ. As ϕ is a state proposition, K, πi |= ϕ from
Proposition 1 and then K, π |= ♦ϕ. If K, πk �|= ♦ϕ, then there must be j such that j > k and
K, π j |= ϕ. Thus, K, π |= ♦ϕ.

Lemma 1 makes it possible to divide the original model checking problem K, π |= ♦ϕ
into two model checking problems K, πk |= ♦ϕ and K, πk |= ♦ϕ. We only need to tackle
K, πk |= ♦ϕ unless K, πk |= ♦ϕ holds.

Definition 5 (EventuallyL). Let L be any non-zero natural number, k be any natural number
and d be any function such that d(0) is 0, d(x) is a natural number for x = 1, . . . , L and d(L + 1)
is ∞.

1. 0 ≤ k < L − 1

EventuallyL(K, π, ϕ, k)
� (K, π(d(k),d(k+1)) |= ♦ϕ) ∨ [(K, π(d(k),d(k+1)) �|= ♦ϕ) ⇒ EventuallyL(K, π, ϕ, k + 1)].

2. k = L − 1

EventuallyL(K, π, ϕ, k)
� (K, π(d(k),d(k+1)) |= ♦ϕ) ∨ [(K, π(d(k),d(k+1)) �|= ♦ϕ) ⇒ (K, π(d(k+1),d(k+2)) |= ♦ϕ)]

.

48

Mathematics 2021, 9, 368

Figure 3. L + 1 layer division of the reachable state space.

Theorem 1 (L + 1 layer division of ♦). Let L be any non-zero natural number. Let d(0) be 0,
d(x) be any natural number for x = 1, . . . , L and d(L + 1) be ∞. Let ϕ be any state proposition of
K. Then,

(K, π |= ♦ϕ) ⇔ EventuallyL(K, π, ϕ, 0)

Proof. By induction on L.

• Base case (L = 1): It follows from Lemma 1.
• Induction case (L = l + 1): We prove the following:

(K, π |= ♦ϕ) ⇔ Eventuallyl+1(K, π, ϕ, 0)

Let dl+1 be d used in Eventuallyl+1(K, π, ϕ, 0) such that dl+1(0) = 0, dl+1(i) is an
arbitrary natural number for i = 1, . . . , l + 1 and dl+1(l + 2) = ∞. The induction
hypothesis is as follows:

(K, π |= ♦ϕ) ⇔ Eventuallyl(K, π, ϕ, 0)

Let dl be d used in Eventuallyl(K, π, ϕ, 0) such that dl(0) = 0, dl(i) is an arbi-
trary natural number for i = 1, . . . , l and dl(l + 1) = ∞. As dl+1(i) is an arbi-
trary natural number for i = 1, . . . , l + 1, we suppose that dl+1(1) = dl(1) and
dl+1(i + 1) = dl(i) for i = 1, . . . , l. As π is any path of K, π can be replaced with πdl(1).
If so, we have the following as an instance of the induction hypothesis:

(K, πdl(1) |= ♦ϕ) ⇔ Eventuallyl(K, πdl(1), ϕ, 0)

From Definition 5, Eventuallyl(K, πdl(1), ϕ, 0) is Eventuallyl+1(K, π, ϕ, 1) because
dl(0) = dl+1(0) = 0, dl(1) = dl+1(1) and dl(i) = dl+1(i + 1) for i = 1, . . . , l and
dl(l + 1) = dl+1(l + 2) = ∞. Therefore, the induction hypothesis instance can be
rephrased as follows:

(K, πdl+1(1) |= ♦ϕ) ⇔ Eventuallyl+1(K, π, ϕ, 1)

From Definition 5, Eventuallyl+1(K, π, ϕ, 0) is

(K, π(dl+1(0),dl+1(1)) |= ♦ϕ) ∨ [(K, π(dl+1(0),dl+1(1)) �|= ♦ϕ) ⇒ Eventuallyl+1(K, π, ϕ, 1)]

49

Mathematics 2021, 9, 368

which is

(K, π(dl+1(0),dl+1(1)) |= ♦ϕ) ∨ [(K, π(dl+1(0),dl+1(1)) �|= ♦ϕ) ⇒ (K, πdl+1(1) |= ♦ϕ)]

because of the induction hypothesis instance. From Lemma 1, this is equivalent to
K, π |= ♦ϕ.

Theorem 1 makes it possible to divide the original model checking problem K, π |=
♦ϕ into L + 1 model checking problems K, π(d(0),d(1)) |= ♦ϕ, . . . , K, π(d(i−1),d(i)) |= ♦ϕ,
K, π(d(i),d(i+1)) |= ♦ϕ, . . . , K, π(d(L),d(L+1)) |= ♦ϕ. We only need to tackle K, π(d(i),d(i+1)) |=
♦ϕ if all of K, π(d(0),d(1)) |= ♦ϕ, . . . , K, π(d(i−1),d(i)) |= ♦ϕ do not hold.

5. A Divide and Conquer Approach to an Eventual Model Checking Algorithm

This section describes an algorithm that carries out the proposed technique. The
algorithm takes as inputs a Kripke structure K, a state proposition ϕ, a non-zero natural
number L and a function d such that d(x) is a natural number for x = 1, . . . , L, where
d(x) is the depth of layer x; and returns as an output success if K |= ♦ϕ holds and
failure otherwise.

An algorithm can be constructed based on Theorem 1, which is shown as
Algorithm 1. For each initial state s0 ∈ K, unfolding s0 by using T such that each node
except for s0 has exactly one incoming edge, an infinite tree whose root is s0 is made. The
infinite tree may have multiple copies of some states. Such an infinite tree can be divided
into L + 1 layers, as shown in Figure 3, where L is a non-zero natural number. Although
there does not actually exist layer 0, it is convenient to just suppose that we have layer 0.
Therefore, let us suppose that there is virtually layer 0 and so is located at the bottom of
layer 0. Let nl be the number of states located at the bottom of layer l = 0, 1, . . . , L and then
there are nl sub-state spaces in layer l + 1. In this way, the reachable state space from s0
is divided into multiple smaller sub-state spaces. As R is finite, the number of different
states in each layer and in each sub-state space is finite. Theorem 1 makes it possible to
check K |= ♦ ϕ in a stratified way in that for each layer l ∈ {1, . . . , L + 1} we can check
K, s, d(l) |= ♦ ϕ for each s ∈ {π(d(l − 1)) | π ∈ Pd(l−1)

(K,s0)
}, where d(0) is 0, d(x) is a non-zero

natural number for x = 1, . . . , L and d(L + 1) is ∞.
ES and ES′ are variables to which sets of states are set. Each iteration of the outermost

loop in Algorithm 1, which conducts the model checking experiment in layer l = 1, . . . , L +
1. ES, is the set of states located at the bottom of layer l = 0, 1, . . . L and ES′ is the empty
set before the model checking experiments conducted in the l + 1st iteration. If K, π �|= ♦ϕ

for π ∈ Pd(l)
(K,s), then π(d(l)) is added to ES′. ES′ is set to ES at the end of each iteration. If

ES is empty at the beginning of an iteration, Success is returned, meaning that K |= ♦ϕ
holds. After the outermost loop, we check whether ES is empty. If so, Success is returned,
and otherwise, Failure is returned.

Although Algorithm 1 does not construct a counterexample when failure is returned,
it could be constructed. For each l ∈ {0, 1, . . . , L}, ESl is prepared. As elements of ESl ,
pairs (s, s′) are used, where s is a state in S or a dummy state denoted δ-stt that is different
from any state in S, s′ is a state in S and s′ is reachable from s if s ∈ S. The assignment at
line 6 should be revised as follows:

ESl ← ∅

The assignment at line 10 should be revised as follows:

ESl ← ESl ∪ {(s, π(d(l)))}
The assignment at line 14 should be revised as follows:

ES ← {s | (s, s′) ∈ ESl}

50

Mathematics 2021, 9, 368

ES0 is set to {(δ-stt, s) | s ∈ I}. We could then construct a counterexample, when failure is
returned, by searching through ESL, . . . , ES1 and ES0.

Algorithm 1: A divide and conquer approach to eventual model checking.
input : K—a Kripke structure

ϕ—a state proposition
L—a non-zero natural number
d—a function such that d(x) is a natural number for x = 1, . . . , L, where
d(x) is the depth of layer x

output : Success (K |= ♦ϕ) or Failure (K �|= ♦ϕ)
1 ES ← I
2 forall l ∈ {1, . . . , L + 1} do
3 if ES = ∅ then
4 return Success
5 end

6 ES′ ← ∅
7 forall s ∈ ES do

8 forall π ∈ Pd(l)
(K,s) do

9 if K, π �|= ♦ϕ then
10 ES′ ← ES′ ∪ {π(d(l))}
11 end

12 end

13 end

14 ES ← ES′
15 end
16 if ES = ∅ then
17 return Success
18 end
19 else
20 return Failure
21 end

6. A Case Study

Many systems’ requirements can be expressed as eventual properties. Termination
or halting is one important requirement that many programs should satisfy, which can
be expressed as an eventual property. The starvation freedom property that should be
satisfied by systems, such as an autonomous vehicle intersection control protocol [4], can
be expressed as an eventual property. Some communication protocols, such as Alternating
Bit Protocol (ABP) and the sliding window protocol used in Transmission Control Protocol
(TCP), guarantee that all data sent by a sender are delivered to a receiver without any data
loss and duplication. The requirement can be expressed as an eventual property.

We use a mutual exclusion protocol as an example in the case study. The requirement
we take into account is that the protocol guarantees that a process can enter the critical
section, doing some tasks there, leaving the section and reaching a final position (or
terminating). The requirement can be expressed as an eventual property. The mutual
exclusion protocol is called Qlock, an abstract version of the Dijkstra binary semaphore in
that an atomic queue of process IDs is used.

In the rest of the section, we first describe Qlock, how to formally specify Qlock and
the property concerned in Maude and how to model check the eventual property with
the proposed technique. Let us note that when there are 10 processes that participate in
Qlock, it is impossible to complete the model checking experiment with Maude LTL model
checker, while it is possible to do so with the proposed technique. We finally summarize
the case study.

51

Mathematics 2021, 9, 368

6.1. Qlock

We report on a case study that demonstrates the power of the proposed technique.
The case study used a mutual exclusion protocol called Qlock whose pseudo-code for each
process p can be described as follows:

"Start Section"
ss : enq(queue, p);
ws : repeat until top(queue) = p;

"Critical Section"
cs : deq(queue);
fs : . . .

"Finish Section"

where queue is an atomic queue of process IDs shared by all processes participating in
Qlock. enq(queue, p) atomically puts a process ID p into queue at bottom. top(queue)
atomically returns the top element of queue. deq(queue) atomically deletes the top element
of queue. If queue is empty, deq(queue) does nothing. queue is initially empty. Each process
p is supposed to be located at one of the four locations ss (start section), ws (waiting
section), cs (critical section) and fs (finish section), and is initially located at ss. Let us
suppose that each process p stays fs once it gets there, implying that it enters the critical
section at most once.

The property to be checked in this case study is that a process will eventually get to fs.
The property can be formalized as an eventual property. When there were 10 processes,
it did not complete the model check with the Maude LTL model checker running on a
computer that carried a 2.10 GHz microprocessor and 8 GB main memory because of the
state space explosion.

6.2. Formal Specification

We describe how to formally specify Qlock in Maude. A state is expressed as a braced
soup of observable components, where observable components are name–value pairs and
soups are associative–commutative collections. When there are n processes, the initial state
of Qlock is as follows:

{(queue: empq) (pc[p1]: ss) ... (pc[pn]: ss) (cnt: n)}

where (queue: empq) is an observable component saying that the shared queue is empty,
(pc[pi]: ss) is an observable component saying that process pi is in the ss and (cnt: n)
is an observable component whose value is a natural number n. The role of (cnt: n) will
be described later.

Transitions are described in terms of rewrite rules. The transitions of Qlock are
specified as follows:

rl [start] : {(queue: Q) (pc[I]: ss) OCs} => {(queue: (Q | I)) (pc[I]: ws) OCs} .
rl [wait] : {(queue: (I | Q)) (pc[I]: ws) OCs}
=> {(queue: (I | Q)) (pc[I]: cs) OCs} .

rl [exit] : {(queue: Q) (pc[I]: cs) (cnt: N) OCs}
=> {(queue: deq(Q)) (pc[I]: fs) (cnt: dec(N)) OCs} .

rl [fin] : {(cnt: 0) OCs} => {(cnt: 0) OCs} .

where Q is a variable of queues, I is a variable of process IDs, OCs is a variable of observable
component soups and N is a variable of natural numbers. I | Q denotes a non-empty
queue such that I is the top and Q is the remaining part of the queue. deq(Q) returns the
empty queue if Q is empty and what is obtained by deleting the top from Q otherwise.
dec(N) returns 0 if N is 0 and the predecessor number of N otherwise.

start, wait, exit and fin are the labels given to the four rules, respectively. Rule
start says that if process I is in ss, then it puts its ID into Q at end and moves to ws. Rule

52

Mathematics 2021, 9, 368

wait says that if process I is in ws and the top of the shared queue is I, then I enters cs.
Rule exit says that if process I is in cs, then it deletes the top from the shared queue,
decrements the natural number N stored in (cnt: N) and moves to fs. Rule fin says that
if the natural number N stored in (cnt: N) is 0, a self-transition s →K s occurs. Rule fin is
used to make the transitions total. The natural number N stored in (cnt: N) is the number
of processes that have not yet reached fs. Use of it and rule fin make it unnecessary to use
any fairness assumptions to model check an eventual property.

Let us consider one atomic proposition inFs1. inFs1 holds in a state if and only if the
state matches {(pc[p1]: fs) OCs}, namely, that process p1 is in fs.

6.3. Model Checking with the Proposed Technique

It quickly completes to model check ♦ inFs1 for Qlock when there are five processes,
finding no counterexample. It is, however, impossible to model check the same property
for Qlock when there are 10 processes. We then use Algorithm 1 to tackle the latter case,
where L = 1 and d(1) = 3.

We use one more observable component (depth: d), where d is a natural number, to
work on the first layer. The initial state turns into the following:

{(queue: empq) (pc[p1]: ss) ... (pc[p10)]: ss) (cnt: 10) (depth: 0)}

The rules turn into the following:

crl [start] : {(queue: Q) (pc[I]: ss) (depth: D) OCs}

=> {(queue: (Q | I)) (pc[I]: ws) (depth: (D + 1)) OCs}

if D < Bound .

crl [wait] : {(queue: (I | Q)) (pc[I]: ws) (depth: D) OCs}

=> {(queue: (I | Q)) (pc[I]: cs) (depth: (D + 1)) OCs}

if D < Bound .

crl [exit] : {(queue: Q) (pc[I]: cs) (cnt: N)(depth: D) OCs}

=> {(queue: deq(Q)) (pc[I]: fs) (cnt: dec(N)) (depth: (D + 1)) OCs}

if D < Bound .

crl [fin] : {(cnt: 0) (depth: D) OCs} => {(cnt: 0) (depth: (D + 1)) OCs}

if D < Bound .

crl [stutter] :{(depth: D) OCs} => {(depth: D) OCs} if D >= Bound .

where D is a variable of natural numbers and Bound is 3. Rule stutter has been added
to make each state at depth three have a transition to itself. The revised version of rule
start says that if D is less than Bound and process I is in ss, then I puts its ID into Q at
end and moves to ws and D is incremented. The other revised rules can be interpreted
likewise. When we model checked ♦ inFs1 for the revised specification of Qlock, we found
a counterexample that is a finite state sequence starting from the initial state and leading to
a state loop that consists of one state that is as follows:

{(queue: (p1 | p2 | p3)) (cnt: 10) (depth: 3) (pc[p1]: ws)

(pc[p2]: ws) (pc[p3]: ws) (pc[p4]: ss) (pc[p5]: ss) (pc[p6]: ss)

(pc[p7]: ss) (pc[p8]: ss) (pc[p9]: ss) (pc[p10]: ss)}

We needed to find all counterexamples and then revise the definition of inFs1 such that
inFs1 holds in the state as well. When we model checked the same property for the
revised specification, we found another counterexample. This process was repeated until
no more counterexamples were found. We totally found 819 counterexamples and 819
counterexample states at depth three.

We gathered all states at depth three from the initial state, which totaled 820 states,
including the 819 states found in the last step. There was one state at depth three such that
process p1 was located at fs. For each of the 819 states as an initial state, we model checked
♦ inFs1 for the original specification of Qlock, finding no counterexample. Therefore,

53

Mathematics 2021, 9, 368

we can conclude that it completed model check ♦ inFs1 for Qlock when there were 10
processes, finding no counterexample. It took about 44 h to conduct the model checking
experiments for the second layer and it took less than 200 ms to conduct each model
checking experiment for the first layer. As there were 819 counterexamples for ♦ inFs1 in
the first layer, we needed to conduct 820 model checking experiments for the first layer.

6.4. Summary of the Case Study

The proposed divide and conquer approach to eventual model checking makes it
possible to successfully conduct the model checking experiment ♦ inFs1 for Qlock when
there are 10 processes and each process enters the critical section at most once, which
cannot be otherwise tackled by the computer used in the case study. The specifications
in Maude used in the case study are available at the webpage (http://www.jaist.ac.jp/
~ogata/code/dca2emc/).

7. Related Work

The state space explosion problem is one of the biggest challenges in model checking.
Many techniques to mitigate it have been proposed so far. Among them are partial
order reduction [12], symmetry reduction [13], abstraction [14–16], abstract logical model
checking [17] and SAT-based bounded model checking (BMC) [2]. The proposed divide and
conquer approach to eventual model checking is a new technique to mitigate the problem
when model checking eventual properties. The second, third and fourth authors of the
present paper proposed a (L + 1-layer) divide and conquer approach to leads-to model
checking [18]. The technique proposed in the present paper can be regarded as an extension
of the one described in the paper [18] to eventual properties.

Clarke et al. summarized several techniques that address the state space explosion
problem in model checking [19]. One of them is SAT-based BMC. SAT-based BMC is used
in industries, especially hardware industries. BMC can find a flaw located within some
reasonably shallow depth k from each initial state but cannot prove that systems whose
(reachable) state space is enormous (including infinite-state systems) enjoy the desired
properties. Some extensions have been made to SAT-based BMC so that we can prove that
such systems enjoy the desired properties. One extension is k-induction [20,21]. k-induction
is a combination of mathematical induction and SAT/SMT-based BMC, where SMT stands
for SAT modulo theories. The bounded state space from each initial state up to depth k is
tackled with BMC, which is regarded as the base case. For each state sequence s0, s1, . . . , sk,
where so is an arbitrary state, such that a property concerned is not broken in each state si
for i = 0, 1, . . . , k, it is checked that the property is not broken in all successor states sk+1 of
sk, which is done with an SAT/SMT solver and regarded as the induction case. If an SMT
solver is used, infinite-state systems, for example, in which integers are used, could be
handled. Our proposed technique can be regarded as another extension of BMC, although
we do not use any SAT/SMT solvers.

SAT/SMT-based BMC has been extended to model check concurrent programs [22].
Given a concurrent (or multithreaded) program P together with two parameters u and r
that are the loop unwinding bound and the number of round-robin schedules, respectively,
an intermediate bounded program Pu is first generated by unwinding all loops and inlining
all function calls in P with u as a bound, except for those used for creating threads, and then
Pu is transformed into a sequential program Qu,r that simulates all behaviors of Pu within
r round-robin schedules. Qu,r is then transformed into a propositional formula, which is
converted into an equisatisfiable CNF formula that can be analyzed by an SAT/SMT solver.
This way to model check multithreaded programs can be parallelized by decomposing the
set of execution traces of a concurrent program into symbolic subsets and analyzing the set
of execution traces in parallel [23]. Instead of generating a single formula from P via Qu,r,
multiple propositional sub-formulas are generated. Each sub-formula corresponds to a
different symbolic partition of the execution traces of P and can be checked for satisfiability
independently from the others. The approaches to BMC of multithreaded programs

54

Mathematics 2021, 9, 368

seem able to deal with safety properties only, while our tool is able to deal with leads-
to properties, a class of liveness properties. Another difference between their approach
and our approach is that the target of our approach is designs of concurrent/distributed
systems, while the one of theirs is concurrent programs.

Barnat et al. [24] surveyed some recent advancements of parallel model checking
algorithms for LTL. Graph search algorithms need to be redesigned to make the best use of
multi-core and/or multi-processor architectures. Parallel model checkers based on such
parallel model checking algorithms have been developed, among which are DiVinE 3.0 [25],
Garakabu2 [26,27] and a multicore extension of SPIN [28]. In the technique proposed in
the present paper, there are generally multiple sub-state spaces in each layer, and model
checking experiments for these sub-state spaces are totally independent from each other.
Furthermore, model checking experiments for many sub-state spaces in different layers
are independent. It is possible to conduct such model checking experiments in parallel.
Therefore, it is possible to parallelize Algorithm 1, which never requires us to redesign any
graph search algorithms and makes it possible to use any existing LTL model checker, such
as Maude LTL model checker.

To tackle a large system that cannot be handled by an exhaustive verification mode,
SPIN has a bit-state verification mode that may not exhaustively search the entire reachable
state space of a large system, but can achieve a higher coverage of large state spaces
by using a few bits of memory per state stored. The larger a system under verification
becomes, the higher chances the SPIN bit-state verification mode may overlook flaws
lurking in the system. To overcome such situations, swarm verification [29] has been
proposed. The key ideas of swam verification are parallelism and search diversity. For
each of the multiple different search strategies, one instance of bit-state verification is
conducted. These instances are totally independent and can be conducted in parallel.
Different search strategies traverse different portions of the entire reachable state space,
making it more likely to achieve higher coverage of the entire reachable state space and
find flaws lurking in a large system if any. An implementation of swarm verification on
GPUs, called Grapple [30], has also been developed. Although the technique proposed
in the present paper splits the reachable state space from each initial state into multiple
layers, generating multiple sub-state spaces, it exhaustively searches each sub-state space
with the Maude LTL model checker. It may be worth adopting the swarm verification
idea into our technique such that swarm verification is conducted for each sub-state space
instead of exhaustive search, which may make it possible to quickly find a flaw lurking in
a large system.

One hot theme in research on methods to formally verify liveness properties including
program termination is liveness-to-safety reductions. Biere et al. [31] have proposed a
technique that formally verifies that finite-state systems satisfy liveness properties by
showing the absence of fair cycles in every execution and coined the term “liveness-to-
safety reduction” to refer to the technique. The technique can be extended to what is called
“parameterized systems” in which the state space is infinite but actually finite for every
system instance [32]. Padon et al. [33] have further extended “liveness-to-safety reduction”
to systems such that processes can be dynamically created and each process state space
is infinite so that they can formally verify that such systems enjoy liveness properties
under fairness assumptions. Their technique basically reduces a infinite-state system
liveness formal verification problem under fairness to a infinite-state system safety formal
verification problem that can be expressed in first-order logic. The latter problem can be
solved by existing first-order theorem provers, such as IC3 [34,35] and VAMPIRE [36]. The
technique proposed in the present paper does not take into account fairness assumptions.
We need to use fairness assumptions to model check liveness properties, including eventual
ones from time to time. We might adopt the idea used in the Padon et al.’s liveness-to-safety
reduction technique. To our knowledge, the liveness-to-safety reduction technique has not
been parallelized. Our approach to eventual model checking might make it possible to
parallelize the liveness-to-safety reduction technique.

55

Mathematics 2021, 9, 368

8. Conclusions

We have proposed a new technique to mitigate the state explosion in model checking.
The technique is dedicated to eventual properties. It divides an eventual model checking
problem into multiple smaller model checking problems and tackles each smaller one. We
have proved that the multiple smaller model checking problems are equivalent to the origi-
nal eventual model checking problem. We have reported on a case study demonstrating
the power of the proposed technique.

There are several things left to do as our future research. One piece of future work
for us will be to develop a tool supporting the proposed technique. We will use Maude as
an implementing language with its reflective programming (meta-programming) facilities
to develop the tool that will do all necessary modifications to systems specifications (or
systems models) so that human users do not need to change systems specifications to use
the divide and conquer approach to eventual properties. It was impossible to conduct
the model checking experiment with Maude LTL model checker; the autonomous vehicle
intersection control protocol [4] enjoys the starvation freedom property when there are
13 vehicles with the tool supporting the proposed technique. The starvation freedom
property can be expressed as an eventual property. Another piece of future work will
be to complete the model checking experiment with the tool supporting the proposed
technique. To complete the model checking experiment, we may need to make the best
use of up-to-date multi-core/processor architectures. To this end, we need to parallelize
Algorithm 1 and the tool supporting the proposed technique. Therefore, yet another piece
of future work may be to evolve the tool into a parallel version that can make best use of
up-to-date multi-core/processor architectures.

Author Contributions: Conceptualization, methodology, software, investigation and formal analysis,
M.N.A., Y.P., C.M.D. and K.O.; project administration and funding acquisition, K.O. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was partially funded by JSPS KAKENHI Grant Number JP19H04082.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The specifications in Maude used in the case study are available at the
webpage http://www.jaist.ac.jp/~ogata/code/dca2emc/ (accessed on 16 January 2021).

Acknowledgments: The authors would like to thank the anonymous reviewers who carefully read
an earlier version of the paper and gave them valuable comments without which they were not able
to complete the present paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Burch, J.R.; Clarke, E.M.; McMillan, K.L.; Dill, D.L.; Hwang, L.J. Symbolic Model Checking: 1020 States and Beyond. Inf. Comput.
1992, 98, 142–170. [CrossRef]

2. Clarke, E.M.; Biere, A.; Raimi, R.; Zhu, Y. Bounded Model Checking Using Satisfiability Solving. Form. Methods Syst. Des. 2001,
19, 7–34. [CrossRef]

3. Aung, M.N.; Phyo, Y.; Ogata, K. Formal Specification and Model Checking of the Lim-Jeong-Park-Lee Autonomous Vehicle
Intersection Control Protocol. In Proceedings of the 31st International Conference on Software Engineering and Knowledge
Engineering, SEKE 2019, Lisbon, Portugal, 10–12 July 2019; pp. 159–208. [CrossRef]

4. Lim, J.; Jeong, Y.; Park, D.; Lee, H. An efficient distributed mutual exclusion algorithm for intersection traffic control.
J. Supercomput. 2018, 74, 1090–1107. [CrossRef]

5. Clavel, M.; Durán, F.; Eker, S.; Lincoln, P.; Martí-Oliet, N.; Meseguer, J.; Talcott, C. All About Maude—A High-Performance Logical
Framework: How to Specify, Program and Verify Systems in Rewriting Logic; Lecture Notes in Computer Science (LNCS); Springer:
Berlin/Heidelberg, Germany, 2007; Volume 4350. [CrossRef]

6. Holzmann, G.J. The SPIN Model Checker—Primer and Reference Manual; Addison-Wesley: Reading, MA, USA, 2004.

56

Mathematics 2021, 9, 368

7. Goguen, J.A.; Kirchner, C.; Kirchner, H.; Mégrelis, A.; Meseguer, J.; Winkler, T.C. An Introduction to OBJ 3. In Proceedings of the
Conditional Term Rewriting Systems, 1st International Workshop, Orsay, France, 8–10 July 1987; Lecture Notes in Computer
Science; Kaplan, S., Jouannaud, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1987; Volume 308, pp. 258–263. [CrossRef]

8. Diaconescu, R.; Futatsugi, K. Cafeobj Report—The Language, Proof Techniques, and Methodologies for Object-Oriented Algebraic
Specification; AMAST Series in Computing; World Scientific: Singapore, 1998; Volume 6. [CrossRef]

9. Cimatti, A.; Clarke, E.M.; Giunchiglia, E.; Giunchiglia, F.; Pistore, M.; Roveri, M.; Sebastiani, R.; Tacchella, A. NuSMV 2:
An OpenSource Tool for Symbolic Model Checking. In Proceedings of the Computer Aided Verification, 14th International
Conference, CAV 2002, Copenhagen, Denmark, 27–31 July 2002; Lecture Notes in Computer Science; Brinksma, E., Larsen, K.G.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2404, pp. 359–364. [CrossRef]

10. Ogata, K.; Futatsugi, K. Comparison of Maude and SAL by Conducting Case Studies Model Checking a Distributed Algorithm.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2007, 90, 1690–1703. [CrossRef]

11. de Moura, L.M.; Owre, S.; Rueß, H.; Rushby, J.M.; Shankar, N.; Sorea, M.; Tiwari, A. SAL 2. Computer Aided Verifi-
cation. In Proceedings of the 16th International Conference, CAV 2004, Boston, MA, USA, 13–17 July 2004; Lecture Notes
in Computer Science; Alur, R., Peled, D.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3114, pp. 496–500.
[CrossRef]

12. Clarke, E.M.; Grumberg, O.; Minea, M.; Peled, D.A. State Space Reduction Using Partial Order Techniques. Int. J. Softw. Tools
Technol. Transf. 1999, 2, 279–287. [CrossRef]

13. Clarke, E.M.; Emerson, E.A.; Jha, S.; Sistla, A.P. Symmetry Reductions in Model Checking. In Proceedings of the CAV 1998,
Vancouver, BC, Canada, 28 June–2 July 1998; Lecture Notes in Computer Science; Springer: Vancouver, BC, Canada, 1998;
Volume 1427, pp. 147–158. [CrossRef]

14. Clarke, E.M.; Grumberg, O.; Long, D.E. Model Checking and Abstraction. ACM Trans. Program. Lang. Syst. 1994, 16, 1512–1542.
[CrossRef]

15. Clarke, E.M.; Grumberg, O.; Jha, S.; Lu, Y.; Veith, H. Counterexample-guided abstraction refinement for symbolic model checking.
J. ACM 2003, 50, 752–794. [CrossRef]

16. Meseguer, J.; Palomino, M.; Martí-Oliet, N. Equational abstractions. Theor. Comput. Sci. 2008, 403, 239–264.
[CrossRef]

17. Bae, K.; Escobar, S.; Meseguer, J. Abstract Logical Model Checking of Infinite-State Systems Using Narrowing. In Proceedings
of the RTA 2013, Eindhoven, The Netherlands, 24–26 June 2013; LIPIcs; Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik:
Eindhoven, The Netherlands, 2013; Volume 21, pp. 81–96. [CrossRef]

18. Phyo, Y.; Minh, C.D.; Ogata, K. A Divideeventual model checking Conquer Approach to Leads-to Model Checking. Comput. J.
2021, [CrossRef]

19. Clarke, E.M.; Klieber, W.; Novácek, M.; Zuliani, P. Model Checking and the State Explosion Problem. In LASER Summer School
2011; Lecture Notes in Computer Science; Springer: Elba Island, Italy, 2011; Volume 7682, pp. 1–30. [CrossRef]

20. Sheeran, M.; Singh, S.; Stålmarck, G. Checking Safety Properties Using Induction and a SAT-Solver. In Proceedings of the FMCAD,
Austin, TX, USA, 1–3 November 2000; Lecture Notes in Computer Science; Springer: Austin, TX, USA, 2000; Volume 1954,
pp. 108–125. [CrossRef]

21. de Moura, L.M.; Rueß, H.; Sorea, M. Bounded Model Checking and Induction: From Refutation to Verification. In Proceedings
of the CAV 2003, Boulder, CO, USA, 8–12 July 2003; Lecture Notes in Computer Science; Springer: Boulder, CO, USA, 2003;
Volume 2725, pp. 14–26. [CrossRef]

22. Inverso, O.; Tomasco, E.; Fischer, B.; Torre, S.L.; Parlato, G. Bounded Model Checking of Multi-threaded C Programs via Lazy
Sequentialization. In Proceedings of the Computer Aided Verification—26th International Conference, CAV 2014, Held as Part of
the Vienna Summer of Logic, VSL 2014, Vienna, Austria, 18–22 July 2014; Lecture Notes in Computer Science; Biere, A., Bloem, R.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8559, pp. 585–602. [CrossRef]

23. Inverso, O.; Trubiani, C. Parallel and distributed bounded model checking of multi-threaded programs. In Proceedings of the
PPoPP ’20: 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, San Diego, CA, USA, 22–26
February 2020; Gupta, R., Shen, X., Eds.; ACM: New York, NY, USA, 2020; pp. 202–216. [CrossRef]

24. Barnat, J.; Bloemen, V.; Duret-Lutz, A.; Laarman, A.; Petrucci, L.; van de Pol, J.; Renault, E. Parallel Model Checking Algorithms
for Linear-Time Temporal Logic. In Handbook of Parallel Constraint Reasoning; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 457–507. [CrossRef]

25. Barnat, J.; Brim, L.; Havel, V.; Havlícek, J.; Kriho, J.; Lenco, M.; Rockai, P.; Still, V.; Weiser, J. DiVinE 3.0—An Explicit-State Model
Checker for Multithreaded C & C++ Programs. In CAV 2013; LNCS; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8044,
pp. 863–868. [CrossRef]

26. Kong, W.; Liu, L.; Ando, T.; Yatsu, H.; Hisazumi, K.; Fukuda, A. Facilitating Multicore Bounded Model Checking with Stateless
Explicit-State Exploration. Comput. J. 2015, 58, 2824–2840. [CrossRef]

27. Kong, W.; Hou, G.; Hu, X.; Ando, T.; Hisazumi, K.; Fukuda, A. Garakabu2: An SMT-based bounded model checker for HSTM
designs in ZIPC. J. Inf. Sec. Appl. 2016, 31, 61–74. [CrossRef]

28. Holzmann, G.J.; Bosnacki, D. The Design of a Multicore Extension of the SPIN Model Checker. IEEE Trans. Softw. Eng. 2007,
33, 659–674. [CrossRef]

29. Holzmann, G.J.; Joshi, R.; Groce, A. Swarm Verification Techniques. IEEE Trans. Softw. Eng. 2011, 37, 845–857. [CrossRef]

57

Mathematics 2021, 9, 368

30. DeFrancisco, R.; Cho, S.; Ferdman, M.; Smolka, S.A. Swarm model checking on the GPU. Int. J. Softw. Tools Technol. Transf. 2020,
22, 583–599. [CrossRef]

31. Biere, A.; Artho, C.; Schuppan, V. Liveness Checking as Safety Checking. Electron. Notes Theor. Comput. Sci. 2002, 66, 160–177.
[CrossRef]

32. Pnueli, A.; Shahar, E. Liveness and Acceleration in Parameterized Verification. In Proceedings of the Computer Aided Verification,
12th International Conference, CAV 2000, Chicago, IL, USA, 15–19 July 2000; Lecture Notes in Computer Science; Emerson, E.A.,
Sistla, A.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1855, pp. 328–343. [CrossRef]

33. Padon, O.; Hoenicke, J.; Losa, G.; Podelski, A.; Sagiv, M.; Shoham, S. Reducing liveness to safety in first-order logic. Proc. ACM
Program. Lang. 2018, 2, 1–33. [CrossRef]

34. Bradley, A.R. Understanding IC3. In Proceedings of the Theory and Applications of Satisfiability Testing—SAT 2012—15th
International Conference, Trento, Italy, 17–20 June 2012; Lecture Notes in Computer Science; Cimatti, A., Sebastiani, R., Eds.;
Springer: Berlin/Heidelberg, Germany, 2012; Volume 7317, pp. 1–14. [CrossRef]

35. Bradley, A.R. IC3 and beyond: Incremental, Inductive Verification. In Proceedings of the Computer Aided Verification—24th
International Conference, CAV 2012, Berkeley, CA, USA, 7–13 July 2012; Lecture Notes in Computer Science; Madhusudan, P.,
Seshia, S.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7358, p. 4. [CrossRef]

36. Riazanov, A.; Voronkov, A. The design and implementation of VAMPIRE. AI Commun. 2002, 15, 91–110.

58

mathematics

Article

A Metamorphic Testing Approach for Assessing Question
Answering Systems

Kaiyi Tu, Mingyue Jiang * and Zuohua Ding

Citation: Tu, K.; Jiang, M., Ding Z. A

Metamorphic Testing Approach for

Assessing Question Answering

Systems. Mathematics 2021, 9, 726.

https://doi.org/10.3390/math9070726

Academic Editors: Vassilis C.

Gerogiannis and Tadashi Dohi

Received: 8 February 2021

Accepted: 25 March 2021

Published: 28 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional clai-ms

in published maps and institutio-nal

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;
201930605023@mails.zstu.edu.cn (K.T.); zuohuading@zstu.edu.cn (Z.D.)
* Correspondence: mjiang@zstu.edu.cn

Abstract: Question Answering (QA) enables the machine to understand and answer questions posed
in natural language, which has emerged as a powerful tool in various domains. However, QA is a
challenging task and there is an increasing concern about its quality. In this paper, we propose to
apply the technique of metamorphic testing (MT) to evaluate QA systems from the users’ perspectives,
in order to help the users to better understand the capabilities of these systems and then to select
appropriate QA systems for their specific needs. Two typical categories of QA systems, namely, the
textual QA (TQA) and visual QA (VQA), are studied, and a total number of 17 metamorphic relations
(MRs) are identified for them. These MRs respectively focus on some characteristics of different
aspects of QA. We further apply MT to four QA systems (including two APIs from the AllenNLP
platform, one API from the Transformers platform, and one API from CloudCV) by using all of the
MRs. Our experimental results demonstrate the capabilities of the four subject QA systems from
various aspects, revealing their strengths and weaknesses. These results further suggest that MT can
be an effective method for assessing QA systems.

Keywords: textual question answering; visual question answering; metamorphic testing; metamor-
phic relations; quality assessment

1. Introduction

Question answering (QA) [1,2] focuses on returning right answers to given questions.
Among various QA systems, the textual question answering (TQA) and visual question
answering (VQA) represent a typical paradigm that enables the machine to answer a
question in natural language by referring to the given contents (i.e., text or image). As
shown in Figure 1, TQA [3] focuses on answering a question about a passage of text, which
is also known as an NLP task of machine reading comprehension; while VQA [4] focuses
on answering a question based on an image, which leverages techniques from the domains
of NLP and computer vision. Both TQA and VQA have various potential applications.
For example, TQA has been widely adopted by conversational agents [5] and customer
service support [6]; VQA has a broad range of applications in the autonomous agents and
virtual assistants [7]. On the other hand, a large number of neural network models have
been created for implementing both TQA and VQA. For instances, BiDAF [8], BERT [9],
RoBERTa [10] for TQA, and ViLBERT [11] for VQA.

Due to the importance and popularity of QA, it it critical to properly assess QA sys-
tems in order to demonstrate their capabilities and limitations. QA systems are commonly
evaluated by a test dataset. However, the dataset may not necessarily be representative
of the real world. Due to this, various different approaches have been proposed and
applied to evaluate QA systems, revealing a series of problems concerning different aspects.
Jia et al. [12] proposed an adversarial evaluation scheme to investigate whether QA can
answer questions about passages containing adversarially inserted sentences, and their
experimental results revealed that the QA models under investigation had poor perfor-
mance. Divyansh et al. [13] investigated popular QA benchmarks and then revealed that

Mathematics 2021, 9, 726. https://doi.org/10.3390/math9070726 https://www.mdpi.com/journal/mathematics

59

Mathematics 2021, 9, 726

TQA might ignore the passage of text when answering questions. Mudrakarta et al. [14]
proposed to apply the notion of attribution to generate adversarial questions, based on
which it was observed that QA systems often ignored important terms in questions. On the
other hand, recent studies investigated the robustness of QA systems [15,16] and further
proposed strategies for improving their robustness [17].

Figure 1. Textual question answering (TQA) and visual question answering (VQA): TQA answers a
question with reference to a passage, while VQA answers a question with respect to an image.

This study focuses on assessing TQA and VQA systems from the users’ perspective
in order to reveal to which degree QA systems satisfy the users’ expectations. This kind
of assessment is helpful for the users to better understand QA systems such that they are
able to select appropriate QA systems for their specific needs. To this end, we propose
to adopt the technique of metamorphic testing (MT). MT is a property based testing
technique, which has shown promising effectiveness in various software engineering
activities, such as testing [18], fault localization [19], and program repair [20,21]. The key
component of MT is metamorphic relations (MRs), which encode system properties via
the relationship among multiple related inputs and outputs. MT is originally applied
for software verification. In recent year, it has been successfully extended to software
validation and system comprehension [22,23].

In this study, we identify a total number of 17 MRs for QA systems. These MRs
respectively focus on different aspects of TQA and VQA, which can help the users to
understand the capability of TQA and VQA systems from different perspectives, and can
also provide guidances for the users to select appropriate systems to satisfy their specific
needs. We conduct experiments by employing four QA systems (two TQA APIs provided
by AllenNLP [24] and Transformers [25], and two VQA APIs provided by AllenNLP and
CouldCV) using all of the MRs, demonstrating the capabilities and limitations of the QA
systems under investigation. To summarize, the paper makes three major contributions.

• We proposed to apply the technique of metamorphic testing to assess QA systems
from the users’ perspectives, and presented 17 MRs by considering different aspects
of QA systems.

• We conducted experiments on four common QA systems (two TQA systems and two
VQA systems), demonstrating the feasibility and effectiveness of MT in assessing
QA systems.

• We conducted comparison analysis among subject QA systems to reveal their ca-
pabilities of understanding and processing the input data, and also demonstrated
how the analysis results can help the user to select appropriate QA system for their
specific needs.

The remainder of the paper is organized as follows. Section 2 introduces the technique
of metamorphic testing. Section 3 clarifies the overall approach, and Section 4 presents a
list of MRs identified for QA systems. Our experimental setup is introduced in Section 5,
and the experimental results are presented and analyzed in Section 6. Section 7 discusses
related work, and Section 8 concludes the present study.

60

Mathematics 2021, 9, 726

2. Metamorphic Testing

Metamorphic testing (MT) [26,27] is a property based testing technique. MT proposes
to describe the necessary properties of the target system through the relationships among
inputs and outputs of multiple executions. Such properties are expressed by metamorphic
relation (MRs). Specifically, an MR describes how to construct the follow-up input from
the given input (which is known as the source input), and also encodes the relationship
among the source and follow-up outputs (namely, the outputs for the source and follow-
up inputs respectively). As an example for illustration, consider the program Max that
implements the algorithm of finding the maximum value among two input values. An
MR for Max can be “Suppose that the source input is ts = (x, y), where x and y can be
arbitrary numeric values, and the follow-up input t f is constructed by swapping the two
input values of ts (that is, t f = (y, x)). As a result, the source and follow-up outputs are
expected to be identical”.

Generally, MRs can be identified by referring to the system’s requirements or based
on the users’ expectations on the system. Given an MR and a set of its source inputs (which
can be generated by arbitrary strategies), MT can be conducted as below. At first, the
corresponding follow-up inputs are constructed based on the source inputs according
to the MR. After that, for every group of source and follow-up inputs, MT respectively
runs the target program on both source and follow-up inputs, yielding the source and
follow-up outputs. MT finally checks each group of source and follow-up inputs and
outputs against the relevant MR to see whether or not the MR is violated. Any group
of source and follow-up inputs with which the program violates the MR is regarded to
incur an MR violation. Specifically, an MR violation is an indicator of the existence of
defects in the target system if the relevant MR is identified with reference to the system’s
requirements. Nevertheless, an MR violation reveals either the existence of defects or the
the discrepancies between the system behavior and the users expectations if the MR is
identified with respect to the users’ expected characteristics of the system.

Different from traditional testing techniques that check the correctness of the output
of individual inputs, MT checks the satisfaction of MRs on individual groups of source and
follow-up executions. Because of this, MT can be conducted without using oracles, and has
been applied for software verification and validation [18,22] as well as for helping users
to understand the system behaviors [23]. It is also noted that after MRs are identified, the
whole procedure of MT can be easily automated.

3. Methodology

This study proposes to apply MT to evaluate QA systems by considering different
users’ requirements. An overview of the approach is presented in Figure 2. Given a
set of source inputs (namely, passage-question pairs for TQA and image-question pairs
for VQA) and a list of MRs, a corresponding set of perturbed passage-question pairs
and image-question pairs are generated, which are respectively the follow-up inputs
for TQA and VQA. By executing the TQA and VQA systems with source and follow-
up inputs that are relevant to individual MRs, their source and follow-up answers are
collected. Since both TQA and VQA provide a phrase or a sentence as an output answer,
we conduct semantic similarity analysis on groups of original and follow-up answers
with respect to the relevant MR to determine the testing result. At last, for each MR and
every TQA and VQA system under investigation, we calculate the violation rate, which
denotes the rate of occurrence of MR violations. A higher violation rate indicates a higher
degree to which the system’s behaviors deviate from the users’ expectations. Based on
the evaluation data, we further conduct comparison analysis to reveal the capabilities of
QA systems under investigation. Our analysis mainly focuses on three aspects: both TQA
and VQA’s capabilities of understanding and answering questions, TQA’s capabilities of
understanding and processing passages, and VQA’s capabilities of understanding and
processing images. We also demonstrate how our analysis results can help the users to
select appropriate QA systems according to their specific needs.

61

Mathematics 2021, 9, 726

Figure 2. Overview of how metamorphic testing (MT) is applied to evaluate QA systems.

The key task of applying MT to QA systems lies in the identification of MRs by
considering the characteristics of QA systems as well as the users’ expectations on these
systems. Moreover, upon the identification of MRs, the whole evaluation procedure can
be automated.

4. Metamorphic Relations of Question Answering Systems

In order to evaluate QA systems by MT, we defined a series of MRs. These MRs
consider the users’ expected characteristics of QA systems, and thus the satisfaction and
violation of these MRs can help users to better understand the capability and limitations
of QA systems. In total, 17 MRs are identified, each of which focuses on some aspects of
QA. This section presents the details of these MRs, and also gives illustrative examples for
some MRs.

4.1. Output Relationships

Let ts and t f be a group of source and follow-up inputs of a QA system with respect
to an MR, and let As and A f be the corresponding source and follow-up outputs. In this
study, we consider the following relationships between As and A f .

• Equivalent: As and A f are regarded to be equivalent if they have similar semantics.
• Different: As and A f are regarded to be different if they have distinct semantics.

In order to determine whether two answers As and A f have similar semantics, we
first transform them into vector representations. This is done by employing the bert-
as-service API [28], which encodes a sentence with a fixed length vector by using the
BERT model [9]. BERT is a pre-trained transformer network built upon the attention
mechanism [29]. The model has multiple layers, each of which consists of an attention
sub-layer and a feed-forward network sub-layer. The former helps the model to gain a
broad range of information from the input. For an input, the attention sub-layer extracts
three vectors, namely, the query vector, key vector and value vector, and packs them
together into matrices Q, K, and V, respectively. Based on this, it conducts the self-attention
calculation as below [29].

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V, (1)

where dk represents the dimension of keys of the input, and softmax is a learned normalized
exponential function. Specifically, BERT adopts a multi-head attention mechanism, which
concats multiple attention calculations of linearly transformed queries, keys and values.
The output of the attention sub-layer is provided for another sub-layer that contains
a feed-forward network, which is responsible for conducting linear transformations as
below [29].

FFN(x) = max(0, xW1 + b1)W2 + b2. (2)

62

Mathematics 2021, 9, 726

Based on the digital vectors yielded by BERT for As and A f , we further apply the
cosine similarity analysis [30] to decide whether or not they are semantically equivalent.
Suppose that the size of the resulting vectors is n, let vs = [vs1, ..., vsn] and v f = [v f1, ..., v fn]
be the vectors representing As and A f , respectively. The semantic similarity of As and A f
is measured by

sim(As, A f) =
∑n

i=1 vsi × v fi√
∑n

i=1 vs2
i

√
∑n

i=1 v f 2
i

. (3)

As a result, a similarity score that is higher than a threshold value indicates the
equivalence of As and A f in terms of their semantics.

4.2. MRs for QA Systems

The input of TQA consists of a passage and a question, and the input of VQA contains
an image and a question. As such, we use Ps (or Is) and Qs to denotes the passage (or
image) and question in ts, and use Pf (I f) and Q f to denote the corresponding information
in t f . That is, ts = (Ps, Qs) and t f = (Pf , Q f) for TQA, while ts = (Is, Qs) and t f = (I f , Q f)
for VQA. Different MRs may operate on different input parameters of ts to construct t f ,
leading to discrepancies between ts and t f . According to this, we classify all MRs into three
categories, which are summarized in Table 1 and are explained as below.

• MR1.x has ts = (P, Qs) and t f = (P, Q f) or ts = (I, Qs) and t f = (I, Q f). That is, ts and
t f of MR1.x have the same P (or I), but different questions Qs and Q f . This category
of MRs operates on Qs to construct Q f . Hence, they focus on QA’s capability of
understanding and answering questions

• MR2.x has ts = (Ps, Q) and t f = (Pf , Q). That is, ts and t f of MR2.x have the same Q, but
different passages Ps and Pf . This category of MRs operate on Ps to construct Pf , and
they focus on the TQA’s capability of processing and understanding the input passage.

• MR3.x has ts = (Is, Q) and t f = (I f , Q). That is, ts and t f of MR3.x have the same Q,
but different images Is and I f . This category of MRs operate on Is to construct I f ,
and they concentrate on the VQA’s capability of processing and understanding the
input image.

Table 1. Summary of metamorphic relations (MRs).

Source and Follow-Up Inputs Number of MRs

MR1.x ts = (P, Qs), t f = (P, Q f) 4 (MR1.1–MR1.4)
ts = (I, Qs), t f = (I, Q f)

MR2.x ts = (Ps, Q), t f = (Pf , Q) 5 (MR2.1–MR2.5)

MR3.x ts = (Is, Q), t f = (I f , Q) 8 (MR3.1–MR3.8)

4.2.1. MR1.x

This category of MRs are designed to investigate the QA’s capability of understanding
and answering questions. For each MR, ts and t f use the same input passage or image but
different questions, that is, (P, Qs) and (P, Q f) for TQA, while (I, Qs) and (I, Q f) for VQA.
Different MRs alter Qs in different ways to construct Q f and also encode the relationship
that is expected to be satisfied by As and A f . We identify four MRs, which are described
as follows.

MR1.1 (Capitalization): Q f is constructed by replacing lowercase letters of Qs with
the corresponding uppercase letters. As a result, A f is expected to be equivalent to As.

MR1.2 (Rephrasing comparative question): Suppose that Qs contains comparative
phrases. Q f is constructed by rephrasing Qs without changing the meaning of Qs. As a
result, A f is expected to be equivalent to As.

MR1.3 (Replacing the comparative word with its antonym): Suppose that Qs contains
comparative words. Q f is constructed by replacing a comparative word in Qs with its

63

Mathematics 2021, 9, 726

antonym such that Q f expresses a different meaning from Qs. As a result, A f is expected
to be different from As.

MR1.4 (Changing the subject of a question): Q f is constructed by changing the subject
of Qs with another noun. This change leads to different meanings of these two questions.
As a result, A f is expected to be different from As.

Table 2 shows some illustrative examples of Qs and Q f of MR1.1–MR1.4, where
Q f is highlighted with underlines. For each MR, the interpretation of MR violations is
also presented.

Table 2. Interpretations and illustrations of MR1.x.

MRs Interpretation of MR Violation Examples of Pairs of (Qs,Q f)

MR1.1 QA is sensitive to the letter
case of a question.

What song won Best R&B Performance?
WHAT SONG WON BEST R&B PERFORMANCE?

MR1.2 QA is sensitive to questions using
different comparative descriptions.

In how many years will A remain higher than B in population?
In how many years will B remain lower than A in population?

MR1.3
QA cannot properly understand
the questions expressed via
different comparative words.

What type of residents tend to be more fluent than rural ones?
What type of residents tend to be less fluent than rural ones?

MR1.4
QA cannot properly understand
the questions involving
different subjects.

What is the name of the final studio album from Destiny’s Child?
What is the name of the final studio album from Bob’s Child?

4.2.2. MR2.x

This category of MRs are identified to study the TQA’s capability of processing and
understanding the input passage. For each MR, the source input is ts = (Ps, Q), and the
corresponding follow-up input is t f = (Pf , Q). Every MR proposes a way of altering Ps
to construct Pf and also predicts the relationships between the corresponding As and A f .
Table 3 summarizes this category of MRs, the details of which are presented as below.

Table 3. Summary of MR2.x.

MRs Interpretation of MR Violations Operation Used for Constructing Pf

MR2.1 TQA is sensitive to
the letter case of a passage. Capitalization

MR2.2 TQA is sensitive to the order
of sentences in a passage. Order reversing

MR2.3 TQA is sensitive to the added sentences
that are irrelevant to the question. Addition

MR2.4 TQA is sensitive to the deleted sentences
that are irrelevant to the question. Removal

MR2.5 TQA is incapable of properly understanding
and processing the question related texts. Replacement

MR2.1 (Capitalization): Pf is constructed by replacing lowercase letters of Ps with the
corresponding uppercase letters. As a result, A f is expected to be equivalent to As.

MR2.2 (Reversing the order of sentences): Pf is constructed by reversing the order of
sentences of Ps. As a result, A f is expected to be equivalent to As.

MR2.3 (Addition of irrelevant sentences): Pf is constructed by adding some sentences
that are irrelevant to the question into Ps. As a result, A f is expected to be equivalent to As.

MR2.4 (Removal of irrelevant sentences): Pf is constructed by removing sentences that
are irrelevant to the question from Ps. As a result, A f is expected to be equivalent to As.

MR2.5 (Replacing the answer-related words): Suppose that As is a numeric value,
which is an answer to questions of types of how many, how old, how long, or when. Pf
is constructed by replacing As in Ps with As + n, where n is a randomly selected numeric

64

Mathematics 2021, 9, 726

constant, which makes As + n a numeric value that is different from As and is also unique
in Ps. As a result, A f is expected to be different from As but is equal to As + n.

MR2.5 is designed by considering a special case where TQA returns a numeric value
as an answer to a given question. In this study, we consider four types of questions, namely,
how many, how old, how long, and when. An illustrative example of MR2.5 is presented in
Table 4, which demonstrates the way of constructing Pf based on both Ps and As. Obviously,
MR2.5 can only be applied to source inputs that contain the aforementioned four types
of questions.

Table 4. Example Ps and Pf of MR2.5 (n is set to be 3).

Ps:

After graduating from high school, West received a scholarship to attend Chicago’s American Academy
of Art in 1997 and began taking painting classes, but shortly after transferred to Chicago State University
to study English. He soon realized that his busy class schedule was detrimental to his musical work, and
at 20 he dropped out of college to pursue his musical dreams.This action greatly displeased his mother,
who was also a professor at the university.

Qs: How old was Kanye when he dropped out of college?
As: 20

Pf :

After graduating from high school, West received a scholarship to attend Chicago’s American Academy
of Art in 1997 and began taking painting classes, but shortly after transferred to Chicago State University
to study English. He soon realized that his busy class schedule was detrimental to his musical work, and
at 23 he dropped out of college to pursue his musical dreams.This action greatly displeased his mother,
who was also a professor at the university.

4.2.3. MR3.x

This category of MRs are identified for evaluating the VQA’s capability of processing
and understanding the input image. For each MR, the source input is ts = (Is, Q), and the
corresponding follow-up input is t f = (I f , Q). Accordingly, each MR designs a way of
altering Is to construct I f and also predicts the relationships between source and follow-up
outputs. Researchers have proposed a series of operations, such as image scaling and image
rotation, to perturb images for evaluating deep neural network based models [31]. In this
study, we consider 2D input images, and identify MRs by adopting some of the operations.

We first consider the rotation operation. To rotate an image with a given angle, a
rotation matrix is constructed and applied on the image (https://github.com/jrosebr1
/imutils, accessed on 8 October 2020). Suppose that c is the center of the rotation, θ is the
rotation angle, and x denotes the scale factor. The rotation matrix is as follows:[

α β (1− α) ∗ c.x − β ∗ c.y
−β α β ∗ c.x + (1− α) ∗ c.y

]
, (4)

where α = x ∗ cosθ and β = x ∗ sinθ. Three MRs, namely, MR3.1–MR3.3, are identified by
adopting varying rotation angles.

MR3.1: I f is constructed by rotating Is by 90 degrees. As a result, A f is expected to be
equivalent to As.

MR3.2: I f is constructed by rotating Is by 180 degrees. As a result, A f is expected to
be equivalent to As.

MR3.3: I f is constructed by rotating Is by 270 degrees. As a result, A f is expected to
be equivalent to As.

We next consider the changing of RGB images into grayscale images. This can be
implemented by using the ITU-R 601-2 (Luma transform https://github.com/python-
pillow/Pillow, accessed on 8 October 2020), where each pixel of an image is expressed as
8-bits, and is transformed as below.

L = R ∗ 299/1000 + G ∗ 587/1000 + B ∗ 114/1000, (5)

where R, G, and B are the RGB values in range of 0–255, and L is the resulting single
channel output. Based on this, MR3.4 is identified.

65

Mathematics 2021, 9, 726

MR3.4: Suppose that Is is a RGB image. I f is constructed by converting Is to its
corresponding grayscale image. As a result, A f is expected to be equivalent to As.

We further consider another two types of images operations, image flipping and resiz-
ing. Flipping an image utilizes a similar method as for rotating images but with different
parameter configurations, while resizing an image can be implemented by adopting scale
factors along the horizontal and vertical axes. Based on these two types of operations, the
following four MRs are identified.

MR3.5: I f is constructed by flipping Is horizontally. As a result, A f is expected to be
equivalent to As.

MR3.6: I f is constructed by flipping Is vertically. As a result, A f is expected to be
equivalent to As.

MR3.7: I f is constructed by magnifying the size of Is by 1.5 times. As a result, A f is
expected to be equivalent to As.

MR3.8: I f is constructed by reducing the size of Is by 1.5 times. As a result, A f is
expected to be equivalent to As.

5. Experimental Setup

A series of experiments were conducted to evaluate four QA systems by using all of
the 17 MRs. This section presents our experimental setup, including the implementation of
MRs, our subject QA systems, the datasets used in the experiments, and the source inputs
of MRs.

5.1. MRs Implementation

All of the identified MRs were implemented in order to automatically evaluate QA
systems by MT. Some specific MR implementations are presented as below.

MR1.3: MR1.3 replaces the comparative word in Qs with its antonym for constructing
Q f . To this end, we applied nltk (http://www.nltk.org/, accessed on 23 October 2020) for
part-of-speech tagging, which can identify comparative form of an adjective or adverb
in Qs. We further searched the antonym of the given word by using PyDictionary (https:
//github.com/geekpradd/PyDictionary, accessed on 23 October 2020).

MR1.4: MR1.4 changes the subject of Qs to construct Q f . In this study, we treated
a word of Qs representing the entity of PERSON as the subject of Qs. To identify and
change the subject of Qs, we applied the Named Entity Recognizer StanfordNERTag-
ger (https://nlp.stanford.edu/software/CRF-NER.html, accessed on 2 November 2020).
Given a Qs, StanfordNERTagger was first applied to extract the PERSON entity from Qs.
If the the PERSON entity was successfully identified, we further replaced it with another
PERSON entity that was not included in the passage.

MR3.1–MR3.3: These MRs rotate Is to construct I f . To automate this procedure, we uti-
lized a package called imutils (https://github.com/jrosebr1/imutils, accessed on 2 Novem-
ber 2020), which provides a function rotate_bound for rotating images by given degrees.

MR3.4–MR3.8: MR3.4 changes a RGB image to a grayscale image, MR3.5 and MR3.6
flip Is to construct I f , while MR3.7 and MR3.8 enlarge (shrink) Is to construct I f . To
implement these MRs, we used two libraries PIL (https://github.com/python-pillow/
Pillow, accessed on 8 October 2020) and OpenCV (https://opencv.org/, accessed on
8 October 2020).

To automatically check the relationship of As and A f , we employed the bert-as-service
API [28], which determines the degree to which the given two sentences have similar
semantics. This API represented a sentence as a fixed length vector according to BERT [9],
based on which we calculated the cosine similarity of vectors of As and A f to determined
whether they are equivalent or different.

5.2. Subject QA Systems

In the experiments, two TQA APIs and two VQA APIs were employed as our subject
systems, which are listed as below:

66

Mathematics 2021, 9, 726

• AllenNLP-TQA (https://demo.allennlp.org/reading-comprehension, accessed on 10
November 2020), which is a TQA API at the AllenNLP platform [24]. AllenNLP-TQA
is an implementation of the BiDAF model [8] with ELMo embeddings.

• Transformers-TQA (https://github.com/huggingface/transformers, accessed on 10
November 2020), which is a TQA API at the Transformers platform [25]. This API is
built upon the the DistilBERT model [32].

• AllenNLP-VQA (https://demo.allennlp.org/visual-question-answering, accessed on
10 November 2020), which is a VQA API at the AllenNLP platform [24]. This API is
built upon the ViLBERT model [11].

• CloudCV-VQA (http://vqa.cloudcv.org/, accessed on 10 November 2020), which is
an API provided by the CloudCV. This API utilizes the Pythia model [33].

5.3. Datasets and Source Inputs of MRs

The SQuAD 2.0 dataset [34] was used for preparing source inputs of TQA. SQuAD2.0
contains over 150,000 questions. For VQA, we utilized the DAQUAR dataset [35], which
contains 1449 images and 12,468 questions. A source input obtained from the SQuAD 2.0
dataset was a passage-question pair, while a source input extracted from the DAQUAR
dataset was an image-question pair.

Nine MRs, namely, MR1.1–MR1.4 and MR2.1–MR2.5, were used to evaluate TQA
systems, while 12 MRs, namely, MR1.1–MR1.4 and MR3.1–MR3.8, were used to evaluated
TQA systems. Each MR was applied to individual source inputs in order to generate the
relevant follow-up inputs. Note that MRs may not be applicable to some source inputs
due to its preconditions and the operations used for constructing follow-up inputs. For
example, MR1.3 operates on comparative words, and thus it cannot be applied to source
inputs whose questions contain no comparative word. As a result, different MRs may have
varying numbers of groups of source and follow-up inputs. In total, over 50,000 groups of
source and follow-up inputs are used for evaluating TQA systems, and over 80,000 groups
of source and follow-up inputs are used for evaluating VQA systems.

6. Results and Analysis

In this section, the MT results of evaluating the four subject QA systems are presented.
Then, the capabilities of our subject QA systems are analyzed and discussed with respect
to relevant MRs.

6.1. MT Results for QA Systems

To evaluate QA systems, the violation rate (VR) was used as the evaluation metric.
Given an MR and a QA system, let y be the total number of groups of source and follow-up
inputs of the MR that were applied to test the QA system, and x be the number of groups
of source and follow-up inputs with which the system violated the MR. The VR of this QA
system with respect to this MR is y

x . Obviously, a lower VR value indicated a higher degree
to which the QA system conformed to the relevant MR, revealing a higher satisfaction of
the users’ needs. Oppositely, a higher VR value denoted that the QA system was more
sensitive to the MR operations, and thus was more likely to produce unexpected answers
for the given question. Particularly, a violation rate of 0 means that no violation of the
relevant MR was revealed in our experiments, suggesting that the system was likely to be
robust with respect to the MR and all of its source and follow-up inputs.

Table 5 summarizes the VR values of four QA systems with respect to all identified
MRs. It is observed that all of the QA systems violated some MRs with different degrees,
showing VR values ranging from 0.61% to 92.98%. Consider, for example, the VR value
(65.10%) of AllenNLP-TQA with respect to MR1.1. This VR value indicated that among all
groups of source and follow-up inputs of MR1.1 that were applied to test AllenNLP-TQA,
65.10% revealed MR violations. It can also be found from Table 5 that every QA system
violated different MRs with varying VR values and that different QA systems also violated

67

Mathematics 2021, 9, 726

the same MR with varying VR values. This results further suggest that the proposed MRs
were capable of reflecting the QA systems’ capability from different aspects.

Table 5. Violation rates of question answering (QA) systems (‘*’ denotes that the number of source
input is 0, while ‘-’ means that the relevant MR is not applicable to the system).

AllenNLP-TQA Transformers-TQA AllenNLP-VQA CloudCV-VQA

MR1.1 65.10% 91.11% 10.34% 20.14%
MR1.2 42.86% 7.14% * *
MR1.3 92.98% 3.51% * *
MR1.4 86.97% 68.45% * *

MR2.1 67.37% 86.86% - -
MR2.2 8.12% 6.14% - -
MR2.3 2.05% 0.61% - -
MR2.4 3.73% 1.18% - -
MR2.5 33.18% 23.99% - -

MR3.1 - - 81.10% 66.14%
MR3.2 - - 80.79 % 62.71%
MR3.3 - - 33.58% 66.42%
MR3.4 - - 55.25 % 47.68%
MR3.5 - - 48.10% 20.86%
MR3.6 - - 79.54% 62.74%
MR3.7 - - 32.06% 29.73%
MR3.8 - - 32.68% 31.51%

Average 44.71% 32.11% 56.68% 48.47 %

6.2. Further Analysis

Based on the MT results reported in Table 5, an in-depth analysis was conducted
to reveal the capabilities of the four QA systems from different perspectives. Each VR
value reported in Table 5 represents the extent to which a system deviated from the
properties specified by the relevant MR. Furthermore, as described and explained in
Section 4, different MRs handled varying input parameters and also referred to different
capabilities of QA. More importantly, a system may have performed well in some aspects
but may have had bad performance in some other aspects, while different users may have
had concern with varying QA capabilities due to their distinct application scenarios. It was
therefore important for the users to know the strength and weakness of different systems
such that appropriate systems could be selected to satisfy their needs. Because of this,
we compared subject QA systems by inspecting VR values of MRs pertaining to specific
QA capabilities in order to reveal the strength and weakness of individual systems from
different aspects.

6.2.1. QA’s Capability of Understanding and Answering Questions

Both TQA and VQA have to understand the question and then to give an appropriate
answer to the question. When using these systems, the users may want to know which
QA system has a better capability of processing questions. Four of the proposed MRs,
namely, MR1.1–MR1.4, focus on this aspect by describing the relationships among source
and follow-up inputs that differ exactly in the input questions.

Figure 3 compares different TQA systems and VQA systems based on MR1.1–MR1.4.
As shown in Figure 3a, Transformers-TQA had lower VR values than AllenNLP-TQA for
three out of four MRs. It can be further observed from Table 5 that the average VR value
of Transformers-TQA on these four MRs was also much lower than that of AllenNLP-
TQA. Therefore, as compared with AllenNLP-TQA, Transformers-TQA exhibited better
capabilities of understanding and answering questions. Similarly, as shown in Figure 3b,
the two VQA systems also had varying violation rates for MR1.1 (the other three MRs had
0 source input for VQA and thus no data was collected). As compared with CloudCV-VQA,

68

Mathematics 2021, 9, 726

AllenNLP-TQA had a relatively lower violation rate with respect to MR1.1, suggesting that
AllenNLP-VQA was more robust to the letter case of input questions. Moreover, Figure 3b
also showed that the two VQA systems under investigation were of better capability of
handling questions with lowercase or uppercase letters than the two TQA systems, because
the former two had much lower VR values (namely, 10.34% and 20.14%) than the latter
(namely, 65.10% and 91.11%) with respect to MR1.1.

(a) Violation rates of TQA with respect to MR1.x. (b) Violation rates of QA with respect to MR1.1.

Figure 3. Violation rates of QA with respect to MR1.1–MR1.4.

6.2.2. TQA’s Capability of Understanding and Processing Passages

TQA answers a given question based on a passage, it thus needs to understand and
process the passage for exacting information related to the given question. We defined five
MRs, MR2.1–MR2.5, for investigating TQA’s capability of understanding and processing
input passages.

Figure 4 compares the violation rates of the two TQA systems (AllenNLP-TQA and
Transformers-TQA) with respect to MR2.1–MR2.5. Firstly, both TQA systems had much
lower violation rates for MR2.2–MR2.5 (VR values are lower than 35%) as compared with
those for MR2.1 (VR values are higher than 65%). These results reveal that the two TQA
systems were much more robust to the adding, removing or replacing some contents of
the input passage, but were less robust to the conversion of lowercase letters to uppercase
letters of the input passage. Secondly, Transformers-TQA had similar violation rates as
AllenNLP-TQA for MR2.2–MR2.4 (the discrepancies between the VR values of the two
systems with respect to individual MRs were about 2%), but had a very different violation
rates from AllenNLP-TQA for the other two MRs (the VR value of the former was about
20% higher than that of the latter with respect to MR2.1, while the VR value of the former
was about 10% lower than that of the latter with respect to MR2.5). In other words, the
two TQA systems had equivalent capability of dealing with passages containing sentences
of different orders as well as containing more or less irrelevant sentences. Nevertheless,
AllenNLP-TQA did better for handling passages containing lowercase or uppercase letters,
while Transformers-TQA performed better when dealing with passages containing minor
replaced contents.

6.2.3. VQA’s Capability of Understanding and Processing Images

While TQA understands and processes the input passage for answering a question, VQA
relies on the input image for giving an answer to a question. We identified eight MRs, MR3.1–
MR3.8, for investigating the VQA’s capability of understanding and processing images.

69

Mathematics 2021, 9, 726

Figure 4. TQA’s violation rates with respect to MR2.1–MR2.5.

Figure 5 compares AllenNLP-VQA and CloudCV-VQA with respect to MR3.1–MR3.8.
It was observed that except for MR3.3, CloudCV-VQA always had lower violation rates
than AllenNLP-VQA, indicating that CloudCV-VQA performed better in terms of MR3.1,
MR3.2, MR3.4–MR3.8. On the other hand, both VQA systems had different violation rates
for MRs involving the same image perturbation operation, such as rotation and flipping.
For example, consider MR3.1–MR3.3, which rotated a source image to construct a follow-up
image (but each MR rotated the image by a specific angle, such as 90 degrees, 180 degrees,
and 270 degrees). For these three MRs, AllenNLP-VQA had VR values of of 81.10%, 80.79%
and 33.58%, and CloudCV-VQA had VR values of 66.14%, 62.71% and 66.42%. A similar
observation can also be obtained when inspecting these two VQA systems with respect to
MR3.4 and MR3.5 that both flipped the source image to construct the follow-up image (but
with different flipping directions).

Figure 5. VQA’s violation rates with respect to MR3.1–MR3.8.

6.2.4. Further Analysis and Discussion

TQA and VQA had the commonality that they both needed to understand and process
the given question. Figure 3b compares our four subject systems with respect to MR1.1,
showing that the two VQA systems had relatively better capabilities than the two TQA
systems in terms of processing questions containing lowercase or uppercase letters. How-
ever, TQA and VQA differed in that the former relied on the passage of text while the
latter relied on the image. Concerning these aspects, we respectively used MR2.x and
MR3.x for evaluating TQA and VQA. It can still be found from Table 5 that the two TQA
systems generally had lower violation rates for MR2.x (which focused on TQA’s capability
of understanding and processing passages) as compared with the VQA’s violation rates for
MR3.x (that concentrated on VQA’s capability of understanding and processing images).
These results indicated that compared with the image processing capability of the two VQA
systems, the two TQA systems had better capability of processing passages. Furthermore,
Table 5 presents the average violation rates across all applied MRs for individual subject
QA systems (as shown in the last row of Table 5). Base on the average VR values, it was

70

Mathematics 2021, 9, 726

found that the two TQA systems generally performed better than the two VQA system,
because the former two had average VR values of 44.71% and 32.11% while the latter two
had average VR values of 56.68% and 48.47%.

In summary, the proposed 17 MRs encoded some characteristics of QA system, based
on which MT results revealed the capabilities of our subject TQA and VQA systems from
different perspectives. On one hand, the MT results reported the VR values for every
subject system with respect to individual MRs, which could help the users to gain a better
understanding about the capability and limitations of the relevant systems. For example,
by inspecting the VR values of AllenNLP-TQA, the users could find that this system
was good at extracting the question-related information from the passage either with or
without some irrelevant sentences (as suggested by the VR value of 2.05% of MR2.3), but it
was very incapable of properly understanding questions containing comparative words
(as indicated by the VR value of 92.98% of MR1.3). On the other hand, the MT results
supported the comparison of different QA systems by considering different aspects, which
thus provided guidance for the user to select appropriate QA systems for their specific
needs. For example, if the users wanted to use VQA systems without concerning the use
of lowercase or uppercase letters in the question description, they could check the VQA
systems’ VR values with respect to MR1.1. The reason for this is that MR1.1 encoded the
relationship between source and follow-up inputs to reflect to which degree a QA system
was sensitive to the letter case of a question. In our experiments, AllenNLP-VQA had a VR
value of 10.34%, while CloudCV-VQA had a VR value of 20.14%, with respect to MR1.1.
Based on this result, it was natural that the users would utilize AllenNLP-VQA rather than
CloudCV-VQA. Note that different users may have had varying needs and expectations
on the QA systems, and thus MT results of different MRs should be referred in different
application scenarios.

7. Related Work

A large body of studies focus on assessing the QA systems’ robustness. In order to
construct input data, various strategies have been proposed, such as adversarially inserting
sentences into the input passages of TQA [12], perturbing questions with respect to high
attribute terms [14], rephrasing questions by applying linguistic variations [36], introducing
noises into questions [15,37], and applying universal adversarial triggers [38]. Another
line of work focuses on improving or explaining QA systems’ robustness. Chen et al. [17]
proposed a model for TQA through sub-part alignment, which was able to filter out bad
prediction results and thus was of higher robustness, while Patro et al. [16] proposed a
collaborative correlated network for providing visual and textual explanations of the VQA’s
answers. Although robustness is important for evaluation, these studies are orthogonal to
our focus on assessing to what degree QA systems satisfy the users’ specific expectations.
On the other hand, most of existing studies focused on either of TQA or VQA, and proposed
strategies for changing only parts of an input (namely, question or passage). Nevertheless,
our study proposed a list of MRs, which involve various operations that can be applied to
both the input questions and the input passages (input images) of TQA (VQA).

Apart from focusing on the QA systems’ robustness, Ribeiro et al. [39] evaluated
the logic consistency of QA systems. They transformed a question and also implied the
corresponding answer by considering the positive and negative implications caused by the
given question with respect to the context. While useful, this method still did not take the
other parts of the input (i.e., passages or images) into account, and thus the evaluation was
still restricted to parts of the QA’s capabilities.

Ribeiro et al. [15] introduced MT to one of the QA systems, namely, TQA, and
proposed to use MT for evaluatig the TQA’s robustness. However, in their work, only
one MR was identified, which introduced a specific type of noises (namely, typos) into the
input passage or the input question to generate follow-up inputs. In contrast, our study
proposed applying MT as a comprehensive evaluation method for both TQA and VQA in
a user-oriented way. We have identified a large number of MRs for QA, including MRs

71

Mathematics 2021, 9, 726

that reflect systems’ robustness (such as the MRs adopting the capitalization operation on
the inputs), and also MRs that focus on particular system functionalities (such as the MRs
adopting words replacement). Moreover, these MRs are able to construct diverse test data
with changes on both the input passages (images) and questions of TQA (VQA).

8. Conclusions

In recent years, question answering (QA) has emerged as a popular and powerful
tool in various domains, due to its capability of enabling the machine to understand and
answer question posted in natural language. Unfortunately, recent studies have adopted
various techniques to evaluate QA systems, revealing a series of problems concerning
different aspects. In this paper, we focused on the evaluation of two typical categories
of QA systems, namely, the textual QA (TQA) and visual QA (VQA). We applied the
technique of metamorphic testing (MT) to QA, and identified 17 metamorphic relations
(MRs) by considering the users’ varying expectations on QA systems. In the experiments,
we evaluated two TQA systems and two VQA systems by using all of the MRs, and our
experimental results reveal their capabilities from different perspectives. These results
further suggest that the proposed MRs are capable of encoding the expected characteristics
of QA and MT can be an effective evaluation method for QA.

Author Contributions: Conceptualization, M.J. and Z.D.; methodology, M.J.; software, K.T.; data
curation, K.T.; writing—original draft preparation, M.J.; writing—review and editing, M.J., Z.D. and
K.T.; visualization, M.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by National Nature Science Foundation of China(Grant Nos.
61751210 and 61802349), and the Zhejiang Provincial Natural Science Foundation of China(Grant No.
LY20F020021).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bouziane, A.; Bouchiha, D.; Doumi, N.; Malki, M. Question Answering Systems: Survey and Trends. Procedia Comput. Sci. 2015,
73, 366–375. [CrossRef]

2. Zeng, C.; Li, S.; Li, Q.; Hu, J.; Hu, J. A Survey on Machine Reading Comprehension: Tasks, Evaluation Metrics, and Benchmark
Datasets. Appl. Sci. 2020, 10, 7640. [CrossRef]

3. Liu, S.; Zhang, X.; Zhang, S.; Wang, H.; Zhang, W. Neural Machine Reading Comprehension: Methods and Trends. Appl. Sci.
2019, 9, 3698. [CrossRef]

4. Antol, S.; Agrawal, A.; Lu, J.; Mitchell, M.; Parikh, D. VQA: Visual Question Answering. Int. J. Comput. Vis. 2015, 123, 4–31.
5. Reddy, S.; Chen, D.; Manning, C.D. CoQA: A Conversational Question Answering Challenge. Trans. Assoc. Comput. Linguist.

2019, 7, 249–266. [CrossRef]
6. Cui, L.; Huang, S.; Wei, F.; Tan, C.; Zhou, M. SuperAgent: A Customer Service Chatbot for E-commerce Websites. In Proceedings

of the ACL 2017, System Demonstrations, Vancouver, BC, Canada, 30 July–4 August 2017; pp. 97–102.
7. Li, H.; Wang, P.; Shen, C.; Hengel, A.V.D. Visual Question Answering as Reading Comprehension. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6319–6328.
8. Seo, M.; Kembhavi, A.; Farhadi, A.; Hajishirzi, H. Bidirectional Attention Flow for Machine Comprehension. arXiv 2018,

arXiv:1611.01603.
9. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-

ing. arXiv 2019, arXiv:1810.04805.
10. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly

Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692.
11. Lu, J.; Batra, D.; Parikh, D.; Lee, S. ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language

Tasks. arXiv 2019, arXiv:1908.02265.
12. Jia, R.; Liang, P. Adversarial Examples for Evaluating Reading Comprehension Systems. In Proceedings of the 2017 Conference

on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 9–11 September 2017; pp. 2021–2031.

72

Mathematics 2021, 9, 726

13. Kaushik, D.; Lipton, Z.C. How Much Reading Does Reading Comprehension Require? A Critical Investigation of Popular
Benchmarks. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium,
31 October–4 November 2018; pp. 5010–5015.

14. Mudrakarta, P.K.; Taly, A.; Sundararajan, M.; Dhamdhere, K. Did the Model Understand the Question? In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 15–20 July 2018; pp. 1896–1906.

15. Ribeiro, M.T.; Wu, T.; Guestrin, C.; Singh, S. Beyond Accuracy: Behavioral Testing of NLP Models with CheckList. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 4902–4912.

16. Patro, B.N.; Patel, S.; Namboodiri, V.P. Robust Explanations for Visual Question Answering. In Proceedings of the 2020 IEEE
Winter Conference on Applications of Computer Vision (WACV), Village, CO, USA, 1–5 March 2020; pp. 1566–1575.

17. Chen, J.; Durrett, G. Robust Question Answering Through Sub-part Alignment. arXiv 2020, arXiv:2004.14648.
18. Zhou, Z.Q.; Sun, L. Metamorphic testing of driverless cars. Commun. ACM 2019, 62, 61–67. [CrossRef]
19. Xie, X.; Wong, W.E.; Chen, T.Y.; Xu, B.W. Metamorphic slice: An application in spectrum-based fault localization. Inf. Softw.

Technol. 2013, 55, 866–879. [CrossRef]
20. Jiang, M.; Chen, T.Y.; Kuo, F.C.; Towey, D.; Ding, Z. A metamorphic testing approach for supporting program repair without the

need for a test oracle. J. Syst. Softw. 2017, 126, 127–140. [CrossRef]
21. Jiang, M.; Chen, T.Y.; Zhou, Z.Q.; Ding, Z. Input Test Suites for Program Repair: A Novel Construction Method Based on

Metamorphic Relations. IEEE Trans. Reliab. 2020. [CrossRef]
22. Zhou, Z.Q.; Xiang, S.; Chen, T.Y. Metamorphic testing for software quality assessment: A study of search engines. IEEE Trans.

Softw. Eng. 2016, 42, 264–284. [CrossRef]
23. Zhou, Z.Q.; Sun, L.; Chen, T.Y.; Towey, D. Metamorphic Relations for Enhancing System Understanding and Use. IEEE Trans.

Softw. Eng. 2020, 46, 1120–1154. [CrossRef]
24. Gardner, M.; Grus, J.; Neumann, M.; Tafjord, O.; Dasigi, P.; Liu, N.F.; Peters, M.; Schmitz, M.; Zettlemoyer, L. AllenNLP: A Deep

Semantic Natural Language Processing Platform. In Proceedings of the Workshop for NLP Open Source Software (NLP-OSS),
Melbourne, Australia, 20 July 2018; pp. 1–6.

25. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers:
State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, Virtual Conference, 16–20 November 2020; pp. 38–45.

26. Segura, S.; Fraser, G.; Sanchez, A.B.; Ruiz-Cortés, A. A survey on metamorphic testing. IEEE Trans. Softw. Eng. 2016, 42, 805–824.
[CrossRef]

27. Chen, T.Y.; Kuo, F.C.; Liu, H.; Poon, P.L.; Towey, D.; Tse, T.H.; Zhou, Z.Q. Metamorphic Testing: A Review of Challenges and
Opportunities. ACM Comput. Surv. 2018, 51, 4:1–4:27. [CrossRef]

28. Xiao, H. bert-As-Service. 2018. Available online: https://github.com/hanxiao/bert-as-service (accessed on 8 November 2020).
29. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:1706.03762.
30. Reimers, N.; Gurevych, I. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In Proceedings of the 2019

Conference on Empirical Methods in Natural Language Processing, Hong Kong, China, 3–7 November 2019.
31. Tian, Y.; Pei, K.; Jana, S.; Ray, B. DeepTest: Automated Testing of Deep-Neural-Network-Driven Autonomous Cars. In Proceedings

of the 40th International Conference on Software Engineering, Gothenburg, Sweden, 27 May–3 June 2018; pp. 303–314.
32. Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv 2020,

arXiv:1910.01108.
33. Singh, A.; Goswami, V.; Natarajan, V.; Jiang, Y.; Chen, X.; Shah, M.; Rohrbach, M.; Batra, D.; Parikh, D. MMF: A Multimodal

Framework for Vision and Language Research. 2020. Available online: https://github.com/facebookresearch/mmf (accessed on
12 September 2020).

34. Rajpurkar, P.; Jia, R.; Liang, P. Know What You Don’t Know: Unanswerable Questions for SQuAD. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Melbourne, Australia, 15–20 July
2018; pp. 784–789.

35. Malinowski, M.; Fritz, M. A Multi-World Approach to Question Answering about Real-World Scenes based on Uncertain Input.
In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13
December 2014; pp. 1682–1690.

36. Shah, M.; Chen, X.; Rohrbach, M.; Parikh, D. Cycle-Consistency for Robust Visual Question Answering. In Proceedings of
the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 6642–6651.

37. Huang, J.H.; Dao, C.D.; Alfadly, M.; Ghanem, B. A Novel Framework for Robustness Analysis of Visual QA Models. In Proceedings
of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2019; Volume 33, pp. 8449–8456.

38. Wallace, E.; Feng, S.; Kandpal, N.; Gardner, M.; Singh, S. Universal Adversarial Triggers for Attacking and Analyzing NLP.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 2153–2162.

39. Ribeiro, M.T.; Guestrin, C.; Singh, S. Are Red Roses Red? Evaluating Consistency of Question-Answering Models. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 6174–6184.

73

mathematics

Article

Availability Analysis of Software Systems with Rejuvenation
and Checkpointing

Junjun Zheng 1,*, Hiroyuki Okamura 2 and Tadashi Dohi 2

Citation: Zheng, J.; Okamura, H.;

Dohi, T. Availability Analysis of

Software Systems with Rejuvenation

and Checkpointing. Mathematics 2021,

9, 846. https://doi.org/10.3390/

math9080846

Academic Editor: Vassilis C.

Gerogiannis

Received: 15 March 2021

Accepted: 9 April 2021

Published: 13 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional clai-ms

in published maps and institutio-nal

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi,
Kusatsu 5258577, Japan

2 Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama,
Higashihiroshima 7398527, Japan; okamu@hiroshima-u.ac.jp (H.O.); dohi@hiroshima-u.ac.jp (T.D.)

* Correspondence: jzheng@asl.cs.ritsumei.ac.jp

Abstract: In software reliability engineering, software-rejuvenation and -checkpointing techniques
are widely used for enhancing system reliability and strengthening data protection. In this paper,
a stochastic framework composed of a composite stochastic Petri reward net and its resulting
non-Markovian availability model is presented to capture the dynamic behavior of an operational
software system in which time-based software rejuvenation and checkpointing are both aperiodically
conducted. In particular, apart from the software-aging problem that may cause the system to
fail, human-error factors (i.e., a system operator’s misoperations) during checkpointing are also
considered. To solve the stationary solution of the non-Markovian availability model, which is
derived on the basis of the reachability graph of stochastic Petri reward nets and is actually not
one of the trivial stochastic models such as the semi-Markov process and the Markov regenerative
process, the phase-expansion approach is considered. In numerical experiments, we illustrate
steady-state system availability and find optimal software-rejuvenation policies that maximize
steady-state system availability. The effects of human-error factors on both steady-state system
availability and the optimal software-rejuvenation trigger timing are also evaluated. Numerical
results showed that human errors during checkpointing both decreased system availability and
brought a significant effect on the optimal rejuvenation-trigger timing, so that it should not be
overlooked during system modeling.

Keywords: software rejuvenation; checkpointing; optimal rejuvenation-trigger timing; steady-state
system availability; phase expansion; human-error factors

1. Introduction

In software reliability engineering, various software fault-tolerance techniques such as
software rejuvenation and checkpointing are widely used for enhancing system reliability
and strengthening data protection. Software rejuvenation is a countermeasure against
software aging, which refers to the phenomenon that the performance or dependability
of software systems degrades with time, caused by aging-related bugs [1,2], eventually
resulting in system failures. In 1995, Huang et al. [3] first reported the aging phenomenon
in real telecommunication billing applications where the application experienced a crash
or a hang failure over time. The software-aging phenomenon exists in the real world
and is inevitable, but can nevertheless be controlled or even reversed [1,2,4]. Software
rejuvenation plays a central role in counteracting aging issues by refreshing the system’s
internal states. However, as pointed out by Alonso et al. [5], the software rejuvenation can
address aging issues well, but typically involves an overhead since the system becomes
unavailable during rejuvenation. That is to say, it is necessary and important to determine
an optimal rejuvenation schedule for achieving the best trade-off between target perfor-
mance or dependability and the associated overhead. To date, there are a number of works
devoted to solving such optimization problems [6–10]. For example, Vaidyanathan and

Mathematics 2021, 9, 846. https://doi.org/10.3390/math9080846 https://www.mdpi.com/journal/mathematics

75

Mathematics 2021, 9, 846

Trivedi [6] presented a semi-Markov reward model for a UNIX operating system, and used
this model to derive optimal software-rejuvenation schedules in terms of system availabil-
ity or downtime cost. Dohi et al. [9] considered two basic software-rejuvenation models
described by Markov regenerative processes (MRGPs), and provided transient solutions
using Laplace–Stieltjes transform (LST) and their numerical inversion. In [9], an optimal
software-rejuvenation policy that maximized interval system reliability was numerically
determined. Wang and Liu [10] recently offered a real-time decision method for optimal
software-rejuvenation timing through simulating and modeling the state-transition process
of software aging and constructing the rejuvenation decision function using an analytic
hierarchy process.

In the context of data protection, a typical technique is checkpointing, which is an
efficient method for saving re-execution time in the presence of faults [11] through saving
current data in the main memory to secondary storage. Checkpointing is easy to conduct
and has been widely studied for decades [12–16]. For example, Fukumoto et al. [12], and
Dohi et al. [13] introduced different checkpointing schemes for database systems, and
Ranganathan and Upadhyaya [14] considered the temporal behavior related to database
system states from a macroscopic viewpoint. Some of the literature also considered software
rejuvenation and checkpointing together [17–20]. Okamura and Dohi [17] focused on two
kinds of maintenance policies for a software system, and adopted a dynamic programming
approach to comprehensively evaluate aperiodic checkpointing and rejuvenation schemes
in the system. In [19], the authors introduced a stochastic reward Petri net (SRN) [21] to
model a software system of which the state moves to the execution process immediately
after a rollback recovery. In particular, according to SRN analysis, a non-Markovian state-
transition diagram was derived. More recently, a similar to but somewhat different system
from [19] was considered in [20], in which the system executes checkpointing immediately
after a rollback recovery in order to update the starting point of the recovery operation
from the past to the current time. In these previous works, the systems underwent both
aperiodic checkpointing and software rejuvenation, and their transition diagrams are not
one of the trivial stochastic models such as semi-Markov process (SMP) and MRGP. That
means that common approaches such as the LST and embedded Markov chain techniques
cannot be directly applied. To solve these complex non-Markovian transition diagrams,
the phase (PH) expansion approach [22,23], which is an approximation technique by using
phase-type (PH) distribution, was utilized and worked well in different contents. Moreover,
in [19,20], it was assumed that system failures are caused by only aging problems, but
in fact, human error is inescapable [24], and the system operator’s misoperations during
checkpointing cannot be ignored [25].

In this paper, we consider the different software systems from [19,20], where both
aperiodic checkpointing and software rejuvenation were executed, and system failure
occurred due to both software aging and human errors in checkpointing. A stochastic
framework composed of a composite SRN and its resulting non-Markovian availability
model is presented to capture the dynamics of the system from a macroscopic point of view.
More specifically, the non-Markovian availability model was derived from the reachability
graph of the composite SRN model. On the basis of the non-Markovian availability model,
which is also a nontrivial model including multiple competitive events as in [19,20], we
formulated the steady-state availability of the system by means of PH expansion, and
then determined the optimal software-rejuvenation schedule that maximized steady-state
system availability. The effects of human-error factors on both steady-state system avail-
ability and optimal software-rejuvenation schedule are investigated. The main differences
between this work and previous ones [19,20] are that we (i) consider both aging-related and
human-error-related system failures, of which the latter was overlooked in previous works;
and (ii) investigate the effect of human-error factors on system availability and software
rejuvenation. For brevity, the main contributions of this paper are summarized as twofold:

76

Mathematics 2021, 9, 846

• stochastic modeling of software systems that undergo both software rejuvenation
and checkpointing, and may fail due to both the aging problem and human errors in
checkpointing;

• investigation of the effects of human-error factors on both steady-state system avail-
ability and optimal software-rejuvenation trigger timing by the comparison of cases
where human-error-related system failures are considered or not.

The remainder of this paper is organized as follows. In Section 2, a stochastic frame-
work composed of a composite SRN and its corresponding non-Markovian state-transition
diagram for an operational software system with software rejuvenation and checkpointing
are introduced. In particular, a reachability graph was generated from the composite SRN,
and on its basis, a non-Markovian state-transition diagram was obtained. Section 3 first
defines continuous PH distribution and presents an approach to formulate the steady-state
system availability of the non-Markovian model by using the underlying approximate
CTMC of the non-Markovian model, which was derived by replacing all general distri-
butions with their corresponding PH distributions. In Section 4, we describe conducted
numerical experiments that evaluated system availability, determined the optimal software-
rejuvenation trigger timing, and quantified the effects of human-error factors. Lastly, in
Section 5, we conclude this paper with some remarks.

2. Macroscopic System Model

In this section, we first introduce the system assumptions and then present a stochastic
framework consisting of a composite SRN and its resulting non-Markovian transition
diagram to model operational software systems from a macroscopic point of view. More
specifically, the non-Markovian transition diagram was derived on the basis of a reachability
graph, which was generated from analysis of the composite SRN.

2.1. System Assumptions

Consider an operational software system that aperiodically executes checkpointing for
saving current data in the main memory in secondary storage. Without loss of generality,
it was assumed that the system suffers from software aging, so that it may fail due to
aging-related bugs, such as a memory leak and the accumulation of round-off errors. On
the other hand, system failure might also be caused by incorrect operation by the operator
during the execution of checkpointing. Once system failure occurred, a series of recovery
operations that include checkpointed data loading and rollback recovery were conducted
to recover the system. In addition, software rejuvenation was adopted to counteract the
aging problem. A few other assumptions:

• the checkpointing operation just saves the current data and does not refresh system ag-
ing;

• the clock of the rejuvenation trigger is not reset and continuously accumulates even
when the system executes the checkpointing;

• when a rejuvenation point is reached while the system is under checkpointing, the
rejuvenation waits until the checkpointing is completed;

• the system is regarded as good as new after either rollback recovery or rejuvenation.

2.2. Stochastic Reward Nets

On the basis of the above assumptions, the dynamics of the system are described
by a composite SRN as in Figures 1 and 2. Concretely, the composite SRN contains three
submodels: clock model for system aging (Figure 1a), clock model for software rejuvenation
(Figure 1b), and SRN model for system behavior (Figure 2). In these SRNs, transitions are
divided into three types: (i) immediate (IMM) transition (represented by a thin black bar),
which means the zero firing time transition; (ii) exponential (EXP) transition (represented
by a white rectangle), which refers to the exponentially distributed firing time transition;
and (iii) general (GEN) transition (represented by a thick black bar), which is generally
distributed firing time transition. The places are defined as follows:

77

Mathematics 2021, 9, 846

• Pf clock: software aging accumulates as time passes.
• Pf signal : it is time for an aging-related system failure to occur.
• Prclock: time is accumulated to trigger a rejuvenation.
• Prsignal : a rejuvenation point was reached.
• Pnormal : the system waits for checkpointing and rejuvenation in the normal execu-

tion process.
• Pcheckpointing: the system is under checkpointing.
• Prejuvenation: the system is under rejuvenation.
• Pf ailure: the system fails due to either aging-related bugs or human-error factors, and

checkpointed data are loaded for rollback recovery.
• Precovery: rollback recovery is executed to recover the failed system.
• Pcompleted: the system becomes as good as new after the completion of either rejuvena-

tion or rollback recovery.

Figure 1. Clock models for (a) system aging and (b) software rejuvenation.

Figure 2. Stochastic (Petri) reward net (SRN) model for system behavior.

On the other hand, transitions Tcint, Ttrigger, and Tf ail1 correspond to the trigger in-
tervals of checkpointing and rejuvenation, and system lifetime, respectively. Transitions

78

Mathematics 2021, 9, 846

Tcheckpointing, Trejuvenation, Tload, and Trecovery separately represent the operations of check-
pointing, rejuvenation, loading of checkpointed data, and rollback recovery. Transitions
Tf ail2 and Tf ail3 are both EXP transitions, representing failures caused by incorrect opera-
tions by the operators. Once IMM transition trej fires with satisfied guard function Grej, the
system is immediately rejuvenated. If a token appears in place Pf signal , either transition
t f ail1 or transition t f ail2 fires due to the exhausted lifetime. Transitions t f reset and trreset
represent the reset of the clocks, and tnormal means that the system becomes normal again
at the same time as when clock reset. The details of guard functions are shown in Table 1.

Table 1. Guard functions.

Guard Guard Function

Gnormal #(Pf clock) = 1 && #(Prclock) = 1
Gf ail #(Pf signal) = 1
Grej #(Prsignal) = 1 && #(Pf signal) = 0
Gtrigger #(Pnormal) = 1 && #(Pcheckpointing) = 1
Greset #(Pcompleted) = 1

2.3. Reachability Graph

A Petri net’s reachability graph is also a directed graph composed of nodes and edges,
each of which representing a reachable marking and a transition between two reachable
markings, respectively. According to analysis of the composite SRN described in Section 2.2,
a reachability graph, starting with the initial marking {Pnormal : 1, Pf clock : 1, Prclock : 1}
(here no token places are not shown for brevity), is generated and depicted as in Figure 3.
The description of nodes in the graph are summarized in Table 2. For example, node GEN
(Tcint → enable Tf ail1 → enable Ttrigger → enable) is the initial marking and represents the
normal execution state of the system in which all transitions Tcint, Tf ail1, and Ttrigger are
enable. Both nodes GEN (Tcheckpointing → enable Tf ail1 → enable Ttrigger → enable) and
GEN (Tcheckpointing → enable Tf ail1 → enable) correspond to the checkpointing execution
states, and the difference between them is whether a rejuvenation point was reached. Node
GEN (Tload → enable) means that the system failed, and the loading of checkpointed data
is being executed. This graph shows that there exist two edges from either node GEN
(Tcheckpointing → enable Tf ail1 → enable Ttrigger → enable) or node GEN (Tcheckpointing →
enable Tf ail1 → enable) to node GEN (Tload → enable). This is explained by the fact that,
during checkpointing, the system may fail due to aging-rated bugs or human-error factors,
that is, among two edges, one represents the GEN transition Tf ail1 and another corresponds
to the EXP transition Tf ail3.

Table 2. Nodes in reachability graph.

Node Description

GEN (Tcint → enable Tf ail1 → enable Ttrigger → enable) Initial marking representing the normal execution state

GEN (Tcheckpointing → enable Tf ail1 → enable Ttrigger → enable) Marking representing checkpointing-execution state with disabled
rejuvenation

GEN (Tcheckpointing → enable Tf ail1 → enable) Marking representing checkpointing-execution state with enabled
rejuvenation

GEN (Tload → enable) Marking representing system-failure state
GEN (Trecovery → enable) Marking representing rollback-recovery state
GEN (Trejuvenation → enable) Marking representing rejuvenation-execution state

79

Mathematics 2021, 9, 846

GEN (Trejuvenation->enable)

GEN (Tcint->enable Tfail1->enable Ttrigger->enable)

GEN (Tload->enable)

GEN (Tcheckpointing->enable Tfail1->enable Ttrigger->enable)

GEN (Trecovery->enable)

GEN (Tcheckpointing->enable Tfail1->enable)

Figure 3. Reachability graph.

2.4. Non-Markovian State-Transition Diagram

From the reachability graph in Section 2.3, a non-Markovian state-transition dia-
gram was derived as shown in Figure 4. This model consisted of seven states: Normal,
Checkpointing, Checkpointing′, Rejuvenation, Failure1, Recovery, and Failure2. State Normal
is the initial state and represents that the system is in the normal execution process in the main
memory and waits for the checkpointing and rejuvenation. Once a checkpoint is reached
prior to the rejuvenation point, the system state becomes Checkpointing, in which data on
the main memory are saved in secondary storage. Since the checkpointing operation does
not reset the clock of the rejuvenation trigger, a rejuvenation point may be reached dur-
ing checkpointing. In such a case, the system enters state Checkpointing′, which rep-
resents the checkpoint execution with enabled rejuvenation. After the completion of
checkpointing, the system transitions from state Checkpointing′ to state Rejuvenation. If
a rejuvenation point is reached prior to the checkpoint, the system immediately exe-
cutes rejuvenation and enters state Rejuvenation from state Normal. As mentioned in
Section 2.1, system failure may occur due to aging-related bugs and human-error factors.
Thus, two failure states, Failure1 and Failure2, were defined to distinguish two kinds of sys-
tem failures. When the system fails, a series of recovery operations, including checkpointed
data loading and the rollback recovery, are conducted to recover the system from failure.
Lastly, the system becomes Normal again from state Recovery. Of course, the system may
fail before both checkpointing and rejuvenation. The details of state notation are given
in Table 3.

Table 4 summarizes the cumulative distribution functions (CDFs) of the corresponding
transitions in the state-transition diagram. In this table, GEN represents general distribu-
tion, and EXP means exponential distribution. The reasons for making such assumptions
of probability distributions can be found in [20]. The checkpoint interval was assumed
to follow general distribution Gintv(t), and the CDF of the time needed for checkpointing
is given by Gcp(t). The time for an aging-related failure to occur follows a general distri-
bution Gf ail(t) with increasing failure rate (IFR), while the time distributions for failures
occurring during both rollback recovery and checkpointing due to incorrect operations
by operators are given by Ff ail1(t) and Ff ail2 with constant failure rates (CFRs) λ f ail1 and

80

Mathematics 2021, 9, 846

λ f ail2, respectively. Similarly, the rejuvenation-trigger interval distribution is described by
Gtrig(t), and its relevant overhead distribution is represented by Grej(t). The probability
distribution of loading time of checkpointed data and the time needed for rollback recovery
are given by Gload(t) and Grc(t), respectively.

Figure 4. Non-Markovian state-transition diagram.

Table 3. State notation in non-Markovian state-transition diagram.

State Description

Normal Normal execution process in the main memory
Checkpointing Checkpointing execution with a disabled rejuvenation
Checkpointing’ Checkpointing execution with an enabled rejuvenation
Failure1 Aging-related system failure
Failure2 Human-error-related system failure
Recovery Rollback recovery to recover from system failure
Rejuvenation Software-rejuvenation execution to refresh system’s internal states

Table 4. Cumulative distribution functions (CDFs) of transitions in state-transition diagram.

CDF Description Type

Gintv(t) CDF of checkpoint interval. GEN
Gf ail(t) CDF of time for an aging-related failure to occur. GEN
Gcp(t) CDF of time needed for checkpointing. GEN

Gload(t) CDF of loading time of checkpointed data. GEN
Grc(t) CDF of time needed for rollback recovery. GEN

Gtrig(t) CDF of time required to trigger a rejuvenation. GEN
Grej(t) CDF of rejuvenation overhead. GEN

Ff ail1(t) CDF of time for failure to occur during rollback recovery. EXP

Ff ail2(t)
CDF of time for a human-error-related failure to occur
during checkpointing execution. EXP

Figure 4 shows states Normal and Checkpointing, highlighted by a dashed rectangle
with Gf ail(t) and Gtrig(t), indicating that these GEN transitions regarding Gf ail(t) and

81

Mathematics 2021, 9, 846

Gtrig(t) are enabled and could fire under either the Normal or the Checkpointing state.
In the same way, the dashed rectangle for Checkpointing and Checkpointing′ means the
possible firings of GEN and EXP transitions regarding Gf ail(t), Gcp(t), and Ff ail2(t). This
implies that the non-Markovian state-transition diagram under consideration is neither the
SMP nor the MRGP, resulting in difficult numerical analysis. To cope with this issue, in
this paper we consider the PH expansion approach [22], which proved to be efficient for
solving such kind of non-Markovian state-transition models [19,20,26].

3. System Availability Analysis

This section first introduces the well-known continuous PH distribution [22] and then
derives the underlying approximate CTMC for the non-Markovian state-transition diagram
in Figure 4 via PH expansion approach, of which the essential idea is to replace general
distribution with its corresponding PH distribution at a high accuracy level. Lastly, the
stationary solution for the model in Figure 4 through CTMC analysis is presented. The mea-
sure of interest is steady-state system availability, which is defined as the probability that
the system is operational in the steady state.

3.1. Continuous PH Distribution

Continuous PH distribution is defined as the probability distribution of absorbing
time in a finite CTMC with absorbing states, and it is widely applied in various fields,
such as reliability assessment [26], queueing systems [27], and random telegraph noise
analysis [28]. Without loss of generality, we define Q as an infinitesimal generator matrix
of a CTMC that has m transient states and one absorbing state, and then partition Q into
four parts as below:

Q =

(
T ξ

0 0

)
. (1)

In the above, T and ξ represent transition rates among transient states and exit rates
from transient states to the absorbing state, respectively. Defining α as an initial probability
vector over the transient states, we have the CDF and probability density function (PDF)
for the continuous PH distribution:

FPH(t) = 1− α exp(Tt)1, fPH(t) = α expTt ξ, (2)

where 1 is a column vector of ones. Exit vector ξ is given by ξ = −T1. Transient states are
called phases in general.

Continuous PH distribution can be categorized into several subclasses according to
the structure of T [29]. When phase transition is acyclic, the corresponding PH distribution
is called acyclic PH distribution (APH). The APH is the widest class among mathematically
tractable PH distributions, and it can be converted into the canonical form (CF), which
is the minimal representation of APH with the smallest number of free parameters [30].
The APH and its CF are important from the viewpoint of practical applications because it
covers some well-known probability distributions, such as exponential distribution, Erlang
distribution, and their mixtures. In particular, canonical form 1 (CF1) is usually considered
and defined by

α =
(

α1 α2 · · · αm
)
, (3)

T =

⎛⎜⎜⎜⎜⎜⎝
−β1 β1 O

−β2 β2
.

−βm−1 βm−1
O −βm

⎞⎟⎟⎟⎟⎟⎠, (4)

82

Mathematics 2021, 9, 846

ξ =

⎛⎜⎜⎜⎜⎜⎝
0
0
...
0

βm

⎞⎟⎟⎟⎟⎟⎠, (5)

where αi ≥ 0, ∑i αi = 1 and 0 < β1 ≤ · · · ≤ βm for m phases.
In this paper, continuous PH distribution was applied to approximate all general

distributions in the non-Markovian state-transition diagram, that is, to determine PH
distribution with parameters (α, T , ξ), which can fit the target distribution well by means
of maximum likelihood estimation (MLE) approach [22].

3.2. PH-Expanded CTMC

According to the definition of PH distribution in Section 3.1, we define the general
distributions in Table 4 by PH distributions with appropriate phases as follows:

FPH
intv(t) = 1− αintv exp(Tintvt)1intv, f PH

intv(t) = αintv exp(Tintvt)ξ intv, (6)

FPH
f ail(t) = 1− α f ail exp(Tf ail t)1 f ail , f PH

f ail(t) = α f ail exp(Tf ail t)ξ f ail , (7)

FPH
cp (t) = 1− αcp exp(Tcpt)1cp, f PH

cp (t) = αcp exp(Tcpt)ξcp, (8)

FPH
load(t) = 1− αload exp(Tloadt)1load, f PH

load(t) = αload exp(Tloadt)ξ load, (9)

FPH
rc (t) = 1− αrc exp(Trct)1rc, f PH

rc (t) = αrc exp(Trct)ξrc, (10)

FPH
trig(t) = 1− αtrig exp(Ttrigt)1trig, f PH

trig(t) = αtrig exp(Ttrigt)ξtrig, (11)

FPH
rej (t) = 1− αrej exp(Trejt)1rej, f PH

rej (t) = αrej exp(Trejt)ξrej. (12)

Here, PH parameters (αx, Tx, ξx), x ∈ {intv, f ail, cp, load, rc, trig, rej} were estimated
on the basis of MLE using an expectation–maximization (EM) algorithm [22,31]. Using
the above-estimated PH distributions to replace general distributions, the non-Markovian
transition diagram was expanded into an approximate CTMC, alternatively called PH-
expanded CTMC, of which the infinitesimal generator matrix is given by

Q =

⎛⎜⎜⎜⎜⎜⎝
Tintv⊕Tf ail⊕Ttrig (ξ intvαcp)⊗I⊗I (1intv⊗1 f ail⊗ξ trig)αrej (1intv⊗ξ f ail⊗1trig)αload

(ξcpαintv)⊗I⊗I Tcp⊕Tf ail⊕Ttrig⊕(−λ f ail2) I⊗I⊗ξ trig (1cp⊗1trig⊗ξ f ail)αload (1cp⊗1trig⊗1 f ail⊗λ f ail2)αload

Tf ail⊕Tcp⊕(−λ f ail2) (1 f ail⊗ξcp)αrej (ξ f ail⊗1cp)αload (1 f ail⊗1cp⊗λ f ail2)αload

ξrej(αintv⊗α f ail⊗αtrig) Trej

Tload ξ loadαrc
ξrc(αintv⊗α f ail⊗αtrig) (λ f ail1⊗1rc)αload (−λ f ail1)⊕Trc

ξ loadαrc Tload

⎞⎟⎟⎟⎟⎟⎠. (13)

The infinitesimal generator matrix is derived on the basis of the Kronecker represen-
tation [23], and the order of states is {Normal, Checkpointing, Checkpointing’, Rejuvenation,
Failure1, Recovery, Failure2}. In Equation (13), ⊕ and ⊗ are the Kronecker product and
sum [32], I is an identity matrix, and 1/λ f ail1 and 1/λ f ail2 are the mean values of EXP
distributions Ff ail1(t) and Ff ail2(t), say the mean times to failure during rollback recovery
and checkpointing, respectively.

Entry (ξ intvαcp ⊗ I ⊗ I) shows that the clock of the rejuvenation trigger is not reset
and continuously accumulates, even when the system executes the checkpointing. Since
the checkpointing operation just saves the current data and does not refresh system ag-
ing, entry (ξcpαintv)⊗ I ⊗ I indicates that only the clock of checkpointing trigger is reset.
When a rejuvenation point is reached while the system is under checkpointing, rejuve-
nation waits until checkpointing is completed; in such a case, the system transits from
Checkpointing to Checkpointing′ with entry I ⊗ I ⊗ ξtrig. Entries (1intv ⊗ ξ f ail1trig)αload,
(1cp ⊗ 1trig ⊗ ξ f ail)αload, and (ξ f ail ⊗ 1cp)αload indicate aging-related failures in both nor-
mal and checkpointing states, while entries (1cp ⊗ 1trig ⊗ 1 f ail ⊗ λ f ail2)αload and (1 f ail ⊗
1cp ⊗ λ f ail2)αload represent human-error-related failures during checkpointing. In addition,
the system is regarded to be as good as new after either rollback recovery or rejuvenation,

83

Mathematics 2021, 9, 846

so the corresponding transitions are represented by entries ξrej(αintv ⊗ α f ail ⊗ αtrig), and
ξrc(αintv ⊗ α f ail ⊗ αtrig), where (αintv ⊗ α f ail ⊗ αtrig) implies that the clocks of checkpointing
trigger, system aging, and rejuvenation trigger are refreshed at the same time.

3.3. Steady-State System Availability

Steady-state system availability gives the probability that the system is operational in
the steady state, so that it provides a significant insight into the long-term performance
of a repairable system. Let Ass define the steady-state system availability. Then, we can
obtain it by

Ass = πssr, (14)

where πss is the steady-state probability vector of the PH-expanded CTMC, Q, and can be
computed by solving the following linear equation [33]:

πssQ = 1, πss1 = 1, (15)

and r is the reward (column) vector of the PH-expanded CTMC and given by

r =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1⊗ 1intv ⊗ 1 f ail ⊗ 1trig
0⊗ 1cp ⊗ 1 f ail ⊗ 1trig

0⊗ 1 f ail ⊗ 1cp
0⊗ 1rej

0⊗ 1load
0⊗ 1rc

0⊗ 1load

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (16)

It is clear that the system is only available in the normal execution process state. In
this paper, one problem of interest is to determine optimal software-rejuvenation timing
that maximizes steady-state system availability.

4. Numerical Illustration

This section is devoted to the numerical illustration of the presented model in Figure 4
by means of phase expansion. Model parameters are summarized in Table 5, where all
values are given according to the related literature [13,20,34]. All general distributions were
accurately approximated by PH distributions with appropriate phases, that is, 100 phases
for Gintv(t), Gcp(t), Gload(t), Grc(t), Gtrig(t), and Grej(t) and 10 phases for Gf ail(t) (see [20]
for more details); eventually, we obtained a large approximate CTMC consisting of 201,400
PH-expanded states. Similar to [20], in order to evaluate the effects of the checkpoint
interval and the rejuvenation-trigger interval on system availability, the mean checkpoint
interval (MCI) was varied from 1 to 10 h, and the mean rejuvenation-trigger interval (MRTI)
was changed from 5 to 35 h. In addition, human-error-related system failures both were
and were not considered, aiming at quantifying the effects of human-error factors on both
system availability and optimal software-rejuvenation timing.

84

Mathematics 2021, 9, 846

Table 5. Model parameters.

CDF Distribution Mean (h) CV

Gintv(t) Lognormal 1–10 0.2
Gf ail(t) Weilbull 10 0.5
Gcp(t) Lognormal 0.05 0.2

Gload(t) Lognormal 0.5 0.2
Grc(t) Lognormal 0.5 0.2

Gtrig(t) Lognormal 5–35 0.1
Grej(t) Lognormal 0.5 0.2

Ff ail1(t) Exponential 16.67 1
Ff ail2(t) Exponential 1.5 1

4.1. Steady-State System Availability

Here, we show the steady-state availabilities of a system that may fail due to human
error in checkpointing under different cases of MRTI and MCI. The corresponding results
are given in Table 6, which shows that steady-state system availability increased as the
value of MCI increased under each MRTI case. This means that too-frequent checkpointing
decreases system availability because the system becomes unavailable during checkpoint-
ing. The effect of MRTI on system availability is now examined. For each MCI, steady-state
system availability increases at the beginning and subsequently decreases with increasing
MRTI, implying that an optimal MRTI might exist for maximizing steady-state system
availability.

Table 6. Steady-state system availability (with human-error-related system failures). Note: MCI,
mean checkpoint interval; MRTI, mean rejuvenation-trigger interval.

MCI (h) MRTI = 5 h MRTI = 7 h MRTI = 10 h MRTI = 13 h MRTI = 15 h

1 0.83333 0.84600 0.85168 0.85226 0.85194
2 0.86380 0.87684 0.88245 0.88259 0.88192
3 0.87494 0.88747 0.89309 0.89305 0.89227
4 0.87897 0.89335 0.89846 0.89836 0.89752
5 0.88327 0.89598 0.90182 0.90155 0.90069
6 0.88679 0.89801 0.90404 0.90369 0.90278
7 0.88849 0.90022 0.90531 0.90529 0.90430
8 0.88908 0.90204 0.90635 0.90637 0.90546
9 0.88925 0.90318 0.90740 0.90714 0.90630

10 0.88929 0.90377 0.90838 0.90779 0.90694

Moreover, by comparing results in Tables 6 and 7, the latter of which gives the steady-
state system availability without considering human-error-related system failures, it is
reasonable to say that human-error factors significantly decreased system availability,
especially in the case where the value of MCI was small. In other words, although frequent
checkpointing can save data in a timely manner, it also brings a higher risk of system failure,
caused by incorrect operations. Therefore, it is crucial to determine a suitable frequency of
executing checkpointing to satisfy target system availability. For example, given a target
steady-state system availability of 0.9 and an MRTI of 10 h, an MCI equal to or larger than
5 h is a good choice.

85

Mathematics 2021, 9, 846

Table 7. Steady-state system availability (without human-error-related system failures).

MCI (h) MRTI = 5 h MRTI = 7 h MRTI = 10 h MRTI = 13 h MRTI = 15 h

1 0.84850 0.86206 0.86796 0.86821 0.86758
2 0.87067 0.88438 0.89024 0.89025 0.88942
3 0.87876 0.89200 0.89788 0.89779 0.89692
4 0.88154 0.89626 0.90174 0.90162 0.90073
5 0.88469 0.89810 0.90415 0.90393 0.90303
6 0.88735 0.89954 0.90576 0.90548 0.90456
7 0.88867 0.90117 0.90666 0.90665 0.90567
8 0.88913 0.90254 0.90741 0.90744 0.90652
9 0.88926 0.90341 0.90818 0.90800 0.90714

10 0.88929 0.90387 0.90892 0.90849 0.90761

4.2. Optimal Rejuvenation-Trigger Timing

This subsection discusses optimal software-rejuvenation timing maximizing steady-
state system availability. Figure 5 illustrates the sensitivity of steady-state system availabil-
ity with respect to the mean rejuvenation-trigger interval in the cases of MCI = 2, 4, 6, 8
and 10. The figure plots unimodal curves of the steady-state system availabilities, which
reveals the existence of optimal rejuvenation-trigger timing maximizing steady-state sys-
tem availability in each case. Specifically, the overhead incurred by frequent rejuvenation
(i.e., short MRTI) largely affects system availability. Conversely, downtime due to system
failures caused by a less frequent execution of rejuvenation smoothly decreases system
availability.

 0.87

 0.875

 0.88

 0.885

 0.89

 0.895

 0.9

 0.905

 0.91

 5 10 15 20 25 30 35

S
te

ad
y-

st
at

e
sy

st
em

 a
va

ila
bi

lit
y

Mean rejuvenation trigger interval (hrs.)

MCI = 2
MCI = 4
MCI = 6
MCI = 8

MCI = 10

Figure 5. Sensitivity of steady-state system availability with respect to mean rejuvenation-trigger
timing.

Optimal rejuvenation-trigger timings and their corresponding maximal steady-state
system availabilities in all cases are presented in Table 8. We present all optimal rejuvenation
timings for the system regardless of considering human-error-related system failures.
Optimal MRTIs for all cases of MCI were very similar, which means that the optimal
rejuvenation-trigger timing is not very sensitive to checkpoint interval. Optimal MRTIs
in the case where human-error-related system failures were not considered were slightly
smaller than those in the case with human-error-related failure when the value of MCI was
small, and vice versa when the MCI had a large value, for example, MCI = 9, 10.

86

Mathematics 2021, 9, 846

Table 8. Optimal rejuvenation-trigger timings.

MCI (h)
with Human-Error-Related Failures without Human-Error-Related Failures

MRTI (h) Ass MRTI (h) Ass

1 12.3 0.85230 11.6 0.86841
2 11.5 0.88283 11.3 0.89059
3 11.3 0.89339 11.2 0.89819
4 11.2 0.89878 11.2 0.90206
5 11.0 0.90196 11.1 0.90435
6 10.9 0.90428 11.0 0.90603
7 11.3 0.90572 11.3 0.90708
8 11.4 0.90668 11.4 0.90777
9 11.0 0.90753 11.1 0.90838

10 10.5 0.90842 10.7 0.90902

5. Conclusions

In this paper, we presented a composite stochastic Petri reward net and its resulting
non-Markovian availability model for operational software systems where both check-
pointing and software rejuvenation are adopted to protect data and to enhance the system
availability, and the system may fail due to both the aging problem and human errors
during checkpointing. More specifically, the non-Markovian availability model was de-
rived on the basis of a reachability graph that was generated from the original SRNs. In
particular, the PH expansion approach was applied to solve the stationary solution of the
non-Markovian availability model since the model was not one of the trivial stochastic
models such as SMP and MRGP, so that common approaches such as LST and embedded
Markov chain techniques do not work. Numerical results showed that human-error fac-
tors both decreased steady-state system availability and brought a significant effect on
optimal rejuvenation-trigger timing, which means that human-error factors during system
modeling should not be overlooked.

The model presented in this paper was based on a macroscopic view, providing a fun-
damental idea of how to model such a software system that undergoes both checkpointing
and software rejuvenation, and in which the system behaves with multiple competitive
events. The system’s actual behavior is very complex, and more possible events need to be
considered, for example, software environment upgrades and time-scope limitations of
used versions of libraries. Although this improvement may vastly increase difficulty in
numerical analysis, it is significant to take a microscopic look at system behavior, which will
be one of our future directions. This paper only considered both aperiodic checkpointing
and software rejuvenation, but to the best of our knowledge, there exist various kinds of
checkpointing [35] and rejuvenation techniques [8]. In the future, we aim to extend this
work to solve more complicated software systems considering different rejuvenation and
checkpointing schemes.

Author Contributions: Conceptualization, J.Z., H.O. and T.D.; methodology, J.Z., H.O. and T.D.;
formal analysis, J.Z.; investigation, J.Z.; writing—original draft preparation, J.Z.; writing—review
and editing, H.O. and T.D.; supervision, H.O. and T.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

87

Mathematics 2021, 9, 846

Abbreviations

The following abbreviations are used in this manuscript:

MRGP Markov regenerative process
LST Laplace–Stieltjes transform
SRN Stochastic (Petri) reward net
PH Phase or phase-type
CTMC Continuous-time Markov chain
IMM Immediate
EXP Exponential
GEN General
APH Acyclic PH distribution
CF Canonical form
MLE Maximum-likelihood estimation
MCI Mean checkpoint interval
MRTI Mean rejuvenation-trigger interval

References

1. Grottke, M.; Trivedi, K.S. Fighting bugs: remove, retry, replicate, and rejuvenate. IEEE Comput. 2007, 40, 107–109. [CrossRef]
2. Dohi, T.; Trivedi, K.S.; Avritzer, A. Handbook of Software Aging and Rejuvenation: Fundamentals, Methods, Applications, and Future

Directions; World Scientific: Singapore, 2020.
3. Huang, Y.; Kintala, C.; Kolettis, N.; Funton, N.D. Software rejuvenation: Analysis, module and applications. In Proceedings of the

25th IEEE International Symposium on Fault Tolerant Computing (FTC’95), Pasadena, CA, USA, 27–30 June 1995; pp. 381–390.
4. Trivedi, K.S.; Vaidyanathan, K. Software aging and rejuvenation. In Wiley Encyclopedia of Computer Science and Engineering;

John Wiley and Sons: Hoboken, NJ, USA, 2007; pp. 1–8.
5. Alonso, J.; Matias, R.; Vicente, E.; Maria, A.; Trivedi, K.S. A comparative experimental study of software rejuvenation overhead.

Perform. Eval. 2013, 70, 231–250. [CrossRef]
6. Vaidyanathan, K.; Trivedi, K.S. A comprehensive model for software rejuvenation. IEEE Trans. Depend. Secur. Comput. 2005, 2,

124–137. [CrossRef]
7. Ning, G.; Zhao, J.; Lou, Y.; Alonso, J.; Matias, R.; Trivedi, K.S.; Yin, B.B.; Cai, K.Y. Optimization of two-granularity software

rejuvenation policy based on the Markov regenerative process. IEEE Trans. Reliab. 2016, 65, 1630–1646. [CrossRef]
8. Zheng, J.; Okamura, H.; Li, L.; Dohi, T. A comprehensive evaluation of software rejuvenation policies for transaction systems

with Markovian arrivals. IEEE Trans. Reliab. 2017, 66, 1157–1177. [CrossRef]
9. Dohi, T.; Zheng, J.; Okamura, H.; Trivedi, K.S. Optimal periodic software rejuvenation policies based on interval reliability criteria.

Reliab. Eng. Syst. Saf. 2018, 180, 463–475. [CrossRef]
10. Wang, S.; Liu, J. HARRD: Real-time software rejuvenation decision based on hierarchical analysis under weibull distribution.

In Proceedings of the 20th IEEE International Conference on Software Quality, Reliability and Security (QRS’20), Macau, China,
11–14 December 2020; pp. 83–90.

11. Zhang, Y.; Chakrabarty, K. Fault recovery based on checkpointing for hard real-time embedded systems. In Proceedings of the
18th IEEE Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’03), Boston, MA, USA, 5 November 2003; pp. 320–327.

12. Fukumoto, S.; Kaio, N.; Osaki, S. Optimal checkpointing policies using the checkpointing density. J. Inf. Process. 1992, 15, 87–92.
13. Dohi, T.; Osajima, S.; Kaio, N.; Osaki, S. On the effects of checkpoint institution methods for a macroscopic database model.

Electron. Commun. Jpn. Part III Fundam. Electron. Sci. 2000, 83, 23–33. [CrossRef]
14. Ranganathan, A.; Upadhyaya, S.J. Performance evaluation of rollback-recovery techniques in computer programs. IEEE Trans.

Reliab. 1993, 42, 220–226. [CrossRef]
15. Bajunaid, N.; Menascé, D.A. Efficient modeling and optimizing of checkpointing in concurrent component-based software

systems. J. Syst. Softw. 2018, 139, 1–13. [CrossRef]
16. Sigdel, P.; Tzeng, N.F. Coalescing and deduplicating incremental checkpoint files for restore-express multi-level checkpointing.

IEEE Trans. Parallel Distrib. Syst. 2018, 29, 2713–2727. [CrossRef]
17. Okamura, H.; Dohi, T. Comprehensive evaluation of aperiodic checkpointing and rejuvenation schemes in operational software

system. J. Syst. Softw. 2010, 83, 1591–1604. [CrossRef]
18. Levitin, G.; Xing, L.; Luo, L. Joint optimal checkpointing and rejuvenation policy for real-time computing tasks. Reliab. Eng. Syst.

Saf. 2019, 182, 63–72. [CrossRef]
19. Zheng, J.; Okamura, H.; Dohi, T. A phase expansion for non-Markovian availability models with time-based aperiodic rejuvenation

and checkpointing. Commun. Stat-Theory Methods 2020, 49, 3712–3729. [CrossRef]
20. Zheng, J.; Okamura, H.; Dohi, T. Optimal rejuvenation policies for non-Markovian availability models with aperiodic checkpoint-

ing. IEICE Trans. Inf. Syst. 2020, E103-D, 2133–2142. [CrossRef]
21. Bolch, G.; Greiner, S.; De Meer, H.; Trivedi, K.S. Queueing Networks and Markov Chains: Modeling and Performance Evaluation with

Computer Science Applications, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2006.

88

Mathematics 2021, 9, 846

22. Okamura, H.; Dohi, T. Fitting phase-type distributions and Markovian arrival processes: Algorithms and tools. In Principles
of Performance and Reliability Modeling and Evaluation; Lance, F., Antonio, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 49–75.

23. Trivedi, K.S.; Bobbio, A. Reliability and Availability Engineering: Modeling, Analysis, and Applications; Cambridge University Press:
Cambridge, UK, 2017.

24. Brown, A. An Overview of Human Error. CS294-4 ROC Semin. 1990, 54. Available online: http://roc.cs.berkeley.edu/294fall01/
slides/human-error.pdf (accessed on 10 December 2020).

25. Yanagihara, M.; Odagiri, M.; Osaki, S.; Kaio, N. Optimal checkpointing procedures taking into account system failure caused by
checkpointing. Electron. Commun. Jpn. Part III Fundam. Electron. Sci. 1995, 78, 69–79. [CrossRef]

26. Zheng, J.; Okamura, H.; Dohi, T. A transient interval reliability analysis for software rejuvenation models with phase expansion.
Softw. Qual. J. 2020, 28, 173–194. [CrossRef]

27. Yang, X.; Alfa, A.S. A class of multi-server queueing system with server failures. Comput. Ind. Eng. 2009, 56, 33–43. [CrossRef]
28. Ruiz-Castro, J.E.; Acal, C.; Aguilera, A.M.; Roldán, J.B. A complex model via phase-type distributions to study random telegraph

noise in resistive memories. Mathematics 2021, 9, 390. [CrossRef]
29. Kemper, P.; Müller, D.; Thümmler, A. Combining response surface methodology with numerical methods for optimization of

Markovian models. IEEE Trans. Depend. Secur. Comput. 2006, 3, 259–269. [CrossRef]
30. Cumani, A. On the canonical representation of homogeneous Markov processes modelling failure-time distributions. Microelectron.

Reliab. 1982, 22, 583–602. [CrossRef]
31. Okamura, H.; Dohi, T.; Trivedi, K.S. Improvement of EM algorithm for phase-type distributions with grouped and truncated data.

Appl. Stoch. Model. Bus. Ind. 2013, 29, 141–156. [CrossRef]
32. Dayar, T. Analyzing Markov Chains Using Kronecker Products: Theory and Applications; Springer Science and Business Media:

New York, NY, USA, 2012.
33. Trivedi, K.S. Probability and Statistics with Reliability, Queuing, and Computer Science Applications, 2nd ed.; John Wiley and Sons:

Hoboken, NJ, USA, 2001.
34. Leung, C.H.C.; Currie, E. The effect of failures on the performance of long-duration database transactions. Comput. J. 1995, 38,

471–478. [CrossRef]
35. Tantawi, A.N.; Ruschitzka, M. Performance analysis of checkpointing strategies. ACM Trans. Comput. Syst. 1984, 2, 123–144.

[CrossRef]

89

mathematics

Article

DICER 2.0: A New Model Checker for Data-Flow Errors of
Concurrent Software Systems

Dongming Xiang 1,*, Fang Zhao 2 and Yaping Liu 3

Citation: Xiang, D.; Zhao, F.; Liu, Y.

DICER 2.0: A New Model Checker

for Data-Flow Errors of Concurrent

Software Systems. Mathematics 2021,

9, 966. https://doi.org/10.3390/

math9090966

Academic Editors: Tadashi Dohi and

Vassilis C. Gerogiannis

Received: 11 March 2021

Accepted: 22 April 2021

Published: 25 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional clai-ms

in published maps and institutio-nal

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
2 The MoE Key Lab of Embedded System & Service Computing, Tongji University, Shanghai 201804, China;

1610471@tongji.edu.cn
3 The School of Transportation Management, Zhejiang Institute of Communications, Hangzhou 310018, China;

liuyp061054@zjvtit.edu.cn
* Correspondence: dmxiang@zstu.edu.cn

Abstract: Petri nets are widely used to model concurrent software systems. Currently, there are many
different kinds of Petri net tools that can analyze system properties such as deadlocks, reachability
and liveness. However, most tools are not suitable to analyze data-flow errors of concurrent systems
because they do not formalize data information and lack efficient computing methods for analyzing
data-flows. Especially when a concurrent system has so many concurrent data operations, these Petri
net tools easily suffer from the state–space explosion problem and pseudo-states. To alleviate these
problems, we develop a new model checker DICER 2.0. By using this tool, we can model the control-
flows and data-flows of concurrent software systems. Moreover, the errors of data inconsistency
can be detected based on the unfolding techniques, and some model-checking can be done via the
guard-driven reachability graph (GRG). Furthermore, some case studies and experiments are done to
show the effectiveness and advantage of our tool.

Keywords: petri net; concurrent software systems; model-checking; data-flows

1. Introduction

Presently, concurrent software systems are widely used in our daily life. In particular,
they are successfully applied in so many safety-critical scenarios, e.g., health-care, intel-
ligent traffic, and stock exchange. Thus, how to guarantee the correctness of concurrent
systems has become a bone of contention for people’s lives and properties. In reality,
the correctness of concurrent systems is closely related with control-flows and data-flows.
However, the most existing studies mainly focus on the error detections of control-flows
such as deadlocks, livelocks and compatibility [1–3]. In fact, concurrent systems are
vulnerable to data-flow errors, e.g., missing data, lost data and data inconsistency [4–6].
Although the testing-based methods can detect these errors, they need to design a series
of test cases to cover as many execution paths as possible. Due to the difficulty in the
completeness of test cases, it is hard for these methods to guarantee a concurrent system
error-free.

The Petri net-based model-checking is a prominent method/technique for analyzing
data-flows of concurrent software systems. This is because Petri nets [7–10] have a great
capability of explicitly specifying parallelism, concurrency and synchronization [11,12].
Thus, many different kinds of Petri nets are used to check data-flow errors, such as alge-
braic Petri net (or extended concurrent algebraic nets, ECANets), predicate/transitions
net (PrTNet), and colored Petri nets (CPN), etc. Kheldoun et al. [13] transformed BPMN
(Business Process Model and Notation) models of complex business processes into to
Recursive ECATNets (RECATNets), which combine the expressive power of abstract data
types with recursive Petri nets. Furthermore, they used rewriting logics to check proper ter-
minations and LTL properties. Buchs et al. [14] proposed Concurrent Object-Oriented Petri

Mathematics 2021, 9, 966. https://doi.org/10.3390/math9090966 https://www.mdpi.com/journal/mathematics

91

Mathematics 2021, 9, 966

Nets (CO-OPN/2) to ensure the specifications of control/data-flows in a large distributed
system. Barkaoui et al. [15] provided an approach for detecting data consistency with
respect to a multilevel security policy based on ECATNets. He et al. [16] modeled smart
contracts by predicate/transition nets, and then checked their correctness of pre/post-
conditions. Wu et al. [17] developed a model-based method for quantitative safety analysis
of safety-critical systems by Timed Colored Petri Nets (TCPNs). Yu et al. [18] proposed an
E-commerce Business Process Net (EBPN) to verify the rationality and transaction consis-
tency between trading parties. All these methods place emphasis on the formalizations of
data structures and abstract data types. Thus, they are suitable to check data-flow errors
caused by these aspects.

By comparison, some checking methods based on Petri nets focus on the modeling of
conceptual data operations, e.g., read, write and delete. Dual Flow Nets (DFNs) [19] were
proposed to model control- and data-flows of embedded systems. Awad et al. [20] mapped
BPMN models into Petri nets, and then detected and repaired errors based on the work
in [21]. Contextual net (C-net) [22,23] was proposed to model a concurrent read operation.
Furthermore, its unfolding technique was developed to generate a minimal test suite for
multi-threaded programs [24]. Referring to contextual nets, Petri Net with Data Operations
(PN-DO) [5] was given to detect data-flow errors of concurrent software systems. However,
these explicit formalizations of read/write arcs and data places easily increase the scales and
complexity of Petri net models. Fortunately, WFD-net (WorkFlow net with Data) [4,25,26],
as a high-level Petri net [8], is extended with conceptual labeling data operations and
guards. Thus, on the one hand, a WFD-net can greatly model control-flows and data-flows
of concurrent systems. On the other hand, the model scales of WFD-nets are much smaller
than other Petri nets with data-flow arcs (e.g., read arcs, write arcs and delete arcs), such as
C-net and PN-DO. Furthermore, WFD-net has been widely used to do model-checking,
e.g., soundness [25], completion requirements [27] and data consistencies [28], although it
is an easy way to model software systems. In general, these verification/analysis methods
are based on the classical reachability graphs (CRG) [25] of WFD-nets. However, they easily
suffer from the problems of state–space explosion and illegal states (or pseudo-states).
This is because a state may have an exponential number of successor states since they
are produced based on the possible values of all guards. Moreover, the exclusive logical
relations (e.g., multiple choice conditions) between guards easily lead to pseudo-states.
In order to alleviate these problems, we proposed a guard-driven reachability graph (GRG)
of WFD-nets in our previous work [29].

Although a GRG of WFD-nets can describe all running information of concurrent
systems and save their state–space compared with CRG, it still likely suffers from the
state–space explosion problem. As shown in Figure 1, it easily leads to a rapid increase of
state–space with the increase of concurrent operations of WFD-nets. This is because the
interleaving semantics of GRG is based on the partial orders of fired transitions, and it
describes the behaviors of concurrent systems only by global states. Thus, a GRG-based
analysis method needs to find out all precedence relations between activities, and gen-
erates their successor states. Compared with the interleaving-semantics-based methods,
some studies are conducted on a concurrency analysis of Petri nets [30,31]. In particular,
the unfolding technique [32] can both alleviate the state space explosion problem and
characterize the concurrency relations due to its true concurrency semantics [33]. Cur-
rently, this technique has been successfully applied in different kinds of model-checking,
e.g., fault diagnosis [34], concurrent planning [35], test case generations [36], deadlock
detection [37], and verifying soundness [38], reachability and coverability [39]. Thus,
in view of these advantages, we proposed an unfolding-based method [5] to check errors
of data inconsistency. Specifically, we use an acyclic net to represent all behaviors of a
Petri net with data (PD-net [5]). On the one hand, all concurrent operations can be directly
recorded in this acyclic net. On the other hand, this formal model can store all states and
save much more space especially when a system has so many concurrent activities.

92

Mathematics 2021, 9, 966

Figure 1. The state–space (reachability graphs) of WFD-nets and state–space explosion problems. (f) is the reachability
graph of Σ1 in (a); (g) is the reachability graph of Σ2 in (b); (h) is the reachability graph of Σ3 in (c); (i) is the reachability
graph of Σ4 in (d); and (j) is the reachability graph of Σ5 in (e).

To support and improve the above previous work [5,29], we develop a new model
checker DICER 2.0. Currently, there are many Petri net tools [40–42] such as PIPE, Snoopy,
CPN Tools, Protos, and ProM. These tools can support different kinds of Petri net modeling,
e.g., Place/Transition nets [7], Timed Petri nets [9], Stochastic Petri nets [10] and High-level
Petri net [8]. Furthermore, they can be used to do structural analysis, generate condensed
state spaces, construct reachability graphs, and analyze place/transition invariants. How-
ever, most of these tools fail in unfolding a Petri net. Although Mole, ERVunfold and
Punf can do this work and conduct some model-checking (e.g., deadlocks, reachability and
coverability), they cannot support the modeling and checking of data-flows that have been
considered in some abstracted models, such as WFD-net [43] and PD-net [5]. Therefore,
the most existing Petri net tools are not suitable to analyze data-flow errors of concurrent
systems especially based on the unfolding techniques. The specified comparisons between
some Petri net tools are summarized as Table 1.

In this paper, we develop DICER 2.0 to analyze data-flows of concurrent systems.
Specifically, we can use this tool to model concurrent systems by general Petri nets, WFD-
nets and PD-nets. Meanwhile, we can draw, edit, import and export these models in DICER
2.0. Moreover, the errors of data inconsistency can be detected based on the unfolding
technique of PD-nets, and some GRG-based model-checking can be done in our tool.

This paper is organized as follows. Section 2 presents some basic notations. Section 3
introduces our model checker DICER 2.0. Section 4 gives two case studies on concurrent
systems. Section 5 conducts a group of experiments to show the advantages of our tool.
The last section concludes this paper.

93

Mathematics 2021, 9, 966

Table 1. The comparison between some Petri net tools

Tools Petri Nets Functions
Branching

Process

The Unfolding
Techniques within

Data-Flows

Data-Flow
Error

Detection

Snoopy Graphical editor
CPN Tools P/T net Reachability graph

ProM Timed Petri net Condensed state spaces × × ×
PIPE2 High-level Petri net P/T invariants

PROTOS Structural analysis

Maude ECATNet Rewriting logic
LTL model-checking

Acceleo+Maude RECATNet Transform RECATNets × × �into rewriting logics
PIPE+ PrTNet Modeling & simulating

ERVunfold P/T net Deadlocks � × ×Tours Test-case generation
PUNF Safe C-net Reachability � × ×MOLE Coverability

DICER 2.0

WFD-net Detecting

� � �PD-net data inconsistency
P/T net Deadlocks
WF-net Reachability

2. Basic Notations

A net is a triple N = (P, T, F), where P and T are two finite and disjoint sets, and they
are called place and transition, respectively. F ⊆ (P × T) ∪ (T × P) denotes a flow relation.
A marking of a net is a mapping function m: P → N, where N is a set of non-negative
integers. In details, we use a multi-set to represent a marking. A net N with an initial
marking m0 is called a Petri net Σ [7] , i.e., Σ = (N, m0). Given a node x ∈ P ∪ T, its preset
and postset are respectively denoted by •x and x•, where •x = {y | (y, x) ∈ F} and x• = {y
| (x, y) ∈ F}.

As a particular class of Petri net, workflow net (WF-net) is widely used to model
control-flows of concurrent systems.

Definition 1. A net N = (P, T, F) is a WF-net (workflow net) [43,44] if
(1) there exists only one source place i and one sink place o satisfying •i = ∅ and o• = ∅; and
(2) each node x ∈ P ∪ T is on a path from i to o.

Besides modeling control-flows of concurrent systems, we can use a net with some
data information to formalize data-flows.

Definition 2. A 7-tuple N =(P, T, F, D, Read, Write, Delete) is a net with data (D-net) [5], if
(1) (P, T, F) is a net;
(2) D is a finite set of data elements;
(3) Read: T → 2D is a labeling function of reading data;
(4) Write: T → 2D is a labeling function of writing data; and
(5) Delete: T → 2D is a labeling function of deleting data.

Given two nodes x, y ∈ P ∪ T in an acyclic D-net N =(P, T, F, D, Read, Write, Delete),
(1) x and y are in causality relation if the net N contains a path from x to y, which is

denoted by x � y. In particular, x ≺ y if x �= y;
(2) x and y are in conflict relation if ∃ t1, t2 ∈ T: t1 � x, t2 � y and •t1 ∩ •t2 �= ∅, which

is denoted by x#y;
(3) x and y are in backward-conflict relation if x• ∩ y• �= ∅, which is denoted by x#̃y ; or

94

Mathematics 2021, 9, 966

(4) x and y are in concurrency relation if ¬(x ≺ y ∨ y ≺ x ∨ x#y), which is denoted by
x co y, i.e., x and y are neither in causality relation nor in conflict relation.

OD-net (Occurrence Net with Data) is a simple acyclic net, which can be used in the
unfolding technique of PD-nets [5].

Definition 3. A D-net N = (P, T, F, D, Read, Write, Delete) is an OD-net (Occurrence net
with Data) [5] if

(1) ∀p ∈ P: | •p| ≤ 1;
(2) ∀x, y ∈ P ∪ T: x ≺ y ⇒ y ⊀ x; and
(3) no transition is in self-conflict relation, i.e., ∀t ∈ T:¬(t#t).

In an OD-net, places and transitions are called conditions and events, respectively.
In general, we use O = (B, E, G, D, Rd, Wr, De) to denote an occurrence net with data
for convenience. With respect to this formalization, B, E and G are conditions, events and
arcs, respectively. Rd, Wr and De are labeling functions of data operations (read, write and
delete), respectively.

3. DICER 2.0

DICER 2.0 is developed to model and analyze the control-/data-flows of concurrent
systems. It is the derivative version of our model checker for detecting data inconsis-
tency [45]. Currently, we can use it to do many more model checking.

3.1. The Modeling of Concurrent Systems Based on the Petri Net with Data Information

As is well known, we usually use read/write arcs, data places, labeling functions
of data operations and guards to formalize data-flows of concurrent systems [4,19,46].
In these formalizations, Petri nets such as DFN [19], PN-DO [47] and Awad method [20]
mainly use data places and flow relations to model data operations, e.g., read, write and
delete. Although these methods are suitable to accurately model the control structures of
data-flows, it lacks formal semantic descriptions about shared reading and overwriting.
Contextual net [46] can describe the concurrent (shared) reading operation by read arcs,
but it needs extra data places and flow relations to formalize data-flows, and thus may be
much more complex [48].

Compared with the above modeling methods, WFD-net [4,49] has a prominent advan-
tage. It combines the traditional workflow nets with conceptual data operations, and uses
labeling functions and guards to describe data operations and routing conditions, respec-
tively. Thus, it is not only greatly suitable to model the control-flows and data-flows of a
concurrent system but also much smaller than other Petri nets with data-operation arcs
(e.g., contextual net and PN-DO) in the scales of nodes and arcs [48]. Now, this modeling
method has been widely applied to various model-checking, e.g., detecting data-flow
errors [4] and data inconsistency in the migrations of service cases [28], checking data
inaccuracy [50] and completed requirements [27], and verifying may/must soundness of
workflow systems [25].

Definition 4. A workflow net with data (WFD-net) is a 9-tuple N =(P, T, F, D, GD, Read,
Write, Delete, Guard) [25], if

(1) (P, T, F) is a WF-net;
(2) D is a finite set of data elements;
(3) Read: T → 2D is a labeling function of reading data;
(4) Write: T → 2D is a labeling function of writing data;
(5) Delete: T → 2D is a labeling function of deleting data;
(6) GD is a finite set of guards that are related with data elements in D; and
(7) Guard: T → GD is a labeling function of assigning guards to transitions.

95

Mathematics 2021, 9, 966

Referring to the labeling functions of data operations in WFD-nets, a Petri net with
data (PD-net) [5] is proposed, i.e., a PD-net Σ is a D-net N with an initial marking m0,
i.e., Σ = (N, m0). Although this modeling method neglects the formalization of guards, it
is much suitable for generating the unfolding of Peri nets with data information due to its
simple structural semantics. For example, Σ is a WFD-net in Figure 2a, while Σ′ is a PD-net
in Figure 2c,d is its unfolding.

Figure 2. (a) A WFD-net Σ; (b) the guard-driven reachability graph (GRG) of Σ; (c) a PD-net Σ′; (d) the unfolding FCP of Σ′.

DICER 2.0 supports the modeling of WFD-nets and PD-nets. By this tool, we can
formalize the control-/data-flows of concurrent systems. Furthermore, it provides a series
of model-checking based on the guard-driven methods and unfolding techniques.

3.2. The Model-Checking Based on the GRG of WFD-Nets

The classical reachability graph [25] is a fundamental method for analyzing a WFD-
net. However, this method easily suffers from the problems of state–space explosion and
pseudo-states (or illegal states) due to its guard evaluations and their exclusive relations.
Hence, we proposed a Guard-driven Reachability Graph (GRG) in our previous work [29],
and now achieve this function in DICER 2.0.

To construct a GRG of WFD-nets, we define a state as a weak configuration in DICER
2.0, which includes a marking and some evaluations of data and guards.

Definition 5. (Weak configuration) Given a WFD-net N =(P, T, F, D, GD, Read, Write, Delete,
Guard), c = 〈m, σ, η〉 is a weak configuration, if

(1) (P, T, F) is a WF-net, and m is its marking;
(2) a mapping function σ : D → {�,⊥} assigns a defined value (�) or an undefined value

(⊥) to each data element; and

96

Mathematics 2021, 9, 966

(3) a mapping function η : GD → {TRUE, FALSE,⊥,�} assigns the values of TRUE ,
FALSE, ⊥ or � to each guard.

In DICER 2.0, we also define the basic enabling/firing rules of WFD-nets based on
weak configurations.

Definition 6. (Enabling/firing rules) Given a WFD-net N =(P, T, F, D, GD, Read, Write,
Delete, Guard) and its weak configuration c = 〈m, σ, η〉, a transition t is enabled at c and denoted
by c[t〉, if

(1) m[t〉;
(2) ∀v ∈ Read(t) : σ(v) = �; and
(3) ∀v ∈ Varb(Guard(t)): σ(v) �= ⊥ ∧ η(Guard(t)) ∈ {TRUE,�}, where the function

Varb is to obtain all variables in a guard.
After firing a transition t at the weak configuration c, a new weak configuration c′ =

〈m′, σ′, η′〉 can be generated, i.e., c[t〉c′, where
(1) m[t〉m′;
(2) ∀v ∈ Write(t) \ De(t) : σ′(v) = �;
(3) ∀v ∈ Delete(t) : σ′(v) = ⊥;
(4) ∀v ∈ D \ (Write(t) ∪ Delete(t)) : σ′(v) = σ(v);
(5) ∃g ∈ Guard(t) : Write(t) ∩ Var(g) = ∅ ⇒ η′(g) = TRUE; and
(6) ∀g ∈ GD, ∀v ∈ Varb(g) : (σ′(v) = � ⇒ η′(g) = �) ∧ ((Write(t) ∩ Varb(g) =

∅ ∧ g /∈ Guard(t)) ⇒ η′(g) = η(g)).

Let c1 and c2 be two weak configurations of a WFD-net. c2 is may-reachable from c1,
denoted as c1 →∗

may c2, if there exist some weak configurations c(1), c(2), · · · , c(n) such that
c1[t1〉c(1)[t2〉c(2)[t3〉 · · · c(n)[t3〉c2. Furthermore, a set of may-reachable weak configurations
from c1 is denoted by R(c1). Based on may-reachable sets and enabling/firing rules, we
can formalize a GRG in DICER 2.0 as follows.

Definition 7. Given a WFD-net N =(P, T, F, D, GD, Read, Write, Delete, Guard) and its
initial weak configuration c0, GRG(N) = (V+, E+, �+) is a guard-driven reachability graph
(GRG), where

(1) V+ = R(c0), E+ = {(c, c′) | ∃c, c′ ∈ R(c0), ∃t ∈ T : c[t〉c′}, and
(2) �+: E+ → T × GD such that (c, c′) ∈ E+ ∧ c[t〉c′ ∧ �+(c, c′) = 〈t, Guard(t)〉.

For example, Figure 2b shows a guard-driven reachability graph of Figure 2a, where
g1 and ¬g1 are two exclusive guards, c0 = 〈[i],−,−〉 and c1 = 〈[p1 + p2], {v1}, {∗g1}〉 are
two weak configurations such that c0[t0〉c1.

Since a GRG of a WFD-net contains all execution information of a concurrent system,
we can traverse its reachable weak configurations by DICER 2.0 to do some model-checking
such as deadlocks [51] and proper completeness [27], i.e., given a WFD-net N and its
guard-driven reachability graph GRG(N), o is its sink place and c = 〈m, σ, η+〉 is a weak
configuration such that c ∈ R(c0).

• If m(o) = 0 and no transition is enabled at the weak configuration c, then c is a
deadlock. Thus, we can check deadlocks in N according to this formal specification.
For example, the WFD-net in Figure 2a have a deadlock at the weak configuration
c8 : 〈[p3 + p4], {v2}, {¬g1}〉 because t5 cannot read the data v3 and no transition is
enabled at this time.

• If ∀c ∈ R(c0) : m(o) > 0 ⇒ m = {o}, then N is properly completed. For example,
the WFD-net in Figure 2a is not properly completed since the final weak configuration
is not reachable from the initial weak configuration and the sink place o has no token
at this time.

97

Mathematics 2021, 9, 966

3.3. The Model-Checking Based on the Unfolding Techniques of PD-Nets

Besides the model-checking based on GRGs of WFD-nets, DICER 2.0 can be used to
detect errors of data inconsistency based on the unfolding techniques of PD-nets. We first
define branching processes in DICER 2.0.

Definition 8. Given a PD-net Σ = (N, m0) = (P, T, F, m0, D, Read, Write, Delete) and an
OD-net O = (B, E, G, D, Rd, Wr, De), the mapping h : B ∪ E → P ∪ T is a homomorphism
between Σ and O. (O, h) is a branching process if satisfying:

(1) h(E) ⊆ T and h(B) ⊆ P;
(2) for each event e belonging to E, the restriction of h onto •e (resp., e•) is a bijection between

•e and •h(e) (resp., between e• and h(e)•);
(3) the restriction of h onto Min(O) is a bijection between Min(O) and m0;
(4) ∀e1, e2 ∈ E: (•e1 = •e2) ∧ (h(e1) = h(e2)) ⇒ e1 = e2; and
(5) ∀e ∈ E : Rd(e) = Read(h(e)) ∧ Wr(e) = Write(h(e)) ∧ De(e) = Delete(h(e)).

Given two branching processes (Oi, hi)=(Bi, Ei, Gi, D, Rdi, Wri, Dei, hi) and i ∈ {1, 2},
(O1, h1) is a prefix of (O2, h2) if B1 ⊆ B2 ∧ E1 ⊆ E2. All branching processes of a PD-net
Σ forms a partial order set w.r.t the binary relation of prefix, and its greatest element is
Unfolding [46], which is denoted by Un f (Σ). Please note that the unfolding of a PD-net is
also an occurrence net with data. Although the unfolding of a PD-net records its running
information, it may be infinite if there exists an infinite execution path. Therefore, it needs
to be truncated so as to get a finite complete prefix (FCP) [52]. In DICER 2.0, we refer to the
ERV method [52] to cut off the unfolding of PD-nets, and then generate its FCP.

As a matter of fact, ERV method does not consider the Petri net modeling with data
information. Moreover, it does not specify a highly efficient calculations on configurations,
cuts and cut-off events. This is mainly caused by the following two facts. On the one
hand, the most computing methods of configurations and cuts need a lot of repetitive
calculations. On the other hand, once some new events are added into a given finite prefix,
these methods usually match up them with all existing events and determine whether
they are cut-off events or not. In order to solve these problems, DICER 2.0 uses recursion
formulas and contextual information of events to compute configurations, concurrent
conditions and cuts. Meanwhile, it uses backward conflicts to guide the calculations of
cut-off events.

After generating an FCP of a PD-net Σ in DCIER 2.0, we can use its matrix manip-
ulations to detect data inconsistencies since it contains the same behavioral information
as the reachability graph of Σ (i.e., the completeness property [5] of FCP). In details, we
first get an incidence matrix of this FCP, and then use Warshell algorithm to calculate
its causality matrix J#

un f (Σ). Afterwards, we obtain a conflict matrix J#
un f (Σ) according to

the mathematical definition of conflicts. Then, a concurrency matrix Jco
un f (Σ) is calculated

by J<un f (Σ) and J#
un f (Σ), i.e., two events are in concurrency relation if they are neither in

causality relation nor in conflict relation, i.e., J#
un f (Σ) = [a(i,j)]n×n, Jco

un f (Σ) = [a′(i,j)]n×n and
Jco
un f (Σ) = [a′′(i,j)]n×n, where ei, ej ∈ E (i, j ∈ N), and

a(i,j) =
{

1 i f ei#ej
0 otherwise

a′(i,j) =
{

1 i f ei # ej
0 otherwise

a′′(i,j) =
{

1 i f ei co ej
0 otherwise

Based on the concurrency matrix Jco
un f (Σ), we can check the errors of data inconsistency

in Σ, i.e., there exists an error of data inconsistency if two concurrent events e1 and e2 have
some data operations on a share data element, i.e.,

(Read(e1) ∪Write(e1) ∪ Delete(e1)) ∩ (Write(e2) ∪ Delete(e2)) �= ∅.

98

Mathematics 2021, 9, 966

For example, Figure 2d is an FCP of the PD-net in Figure 2c. Its related matrix
calculations are conducted as shown in Figure 3. From this concurrency matrix, we can
find that e1, e2 and e3 are three concurrent events. Furthermore, they suffer from the errors
of data inconsistency because Write(e1) ∩ Read(e2) ∩ Write(e3) �= ∅.

Figure 3. Some matrix manipulations on the FCP in Figure 2b.

3.4. The Implementations of DICER 2.0

Corresponding to the specified modeling and checking methods, we now introduce
the basic framework and implementations of DICER 2.0.

Figures 4 and 5 show the user interface (UI) and basic functions of DICER 2.0, respec-
tively. Its framework is made up of two modules: graphical user interface (GUI) and model
checker (MC), as shown in Figure 6. These two modules respectively correspond to the
menus of drawing and model-checking in Figure 4.

• In the module of graphical user interface, Place/Transition nets, WFD-nets and PD-
nets can be imported, exported, drawn and edited. The labeling functions of data
operations (e.g., read, write and delete) can be added, deleted and modified in DICER
2.0. Moreover, different kinds of Petri nets are imported and exported in the format
of an extended Petri Net Markup Language [53] (ePNML). In fact, ePNML provides
a common interchange format for all types of Petri nets based on XML, and defines
specifications of data operations and guard functions. As shown in Figure 7, the label
〈isData〉 formalizes data-flows of concurrent systems, including labeling functions
of read, write, delete and guards. Since ePNML is an XML-based document, we can
create or parse these Petri nets according to some configuration files, e.g., GenerateOb-
jectList.xsl and GeneratePNML.xsl.

• In the module of model checker, Place/Transition nets and PD-nets can be unfolded,
and then we can get their FCPs. As for the FCPs of PD-nets, we can use their matrix
calculations (e.g., causality matrix, conflict matrix and concurrency matrix) to find
out all concurrent events and then check errors of data inconsistency. Additionally,
both classical reachability graphs and guard-driven reachability graphs of WFD-
nets can be constructed in DICER 2.0. Furthermore, they are used to analyze some
data-flow properties of concurrent systems, e.g., deadlocks, data inconsistency and
soundness [29].

99

Mathematics 2021, 9, 966

Figure 4. DICER 2.0 [45]. (a) Software interface; (b) the drawing menu and the model-checking
menu.

Figure 5. The basic functions of DICER 2.0.

Figure 6. The basic framework of DICER 2.0.

100

Mathematics 2021, 9, 966

Figure 7. An extended PNML [53] (ePNML) document of Petri nets with data operations and guards.

DICER 2.0 is developed-based on Platform Independent Petri Net Editor (PIPE) [40],
which is an open source and graphical tool for drawing and analyzing Petri nets. In details,
it is made up of a series of Java classes. Figure 8 shows the main hierarchy of these classes,
which includes some flow information, inheritance relations, interfaces and methods.

Figure 8. Main class hierarchy.

• The class DataLayer acts on the Petri net modeling of concurrent systems. It can be
used to create, edit (e.g., add, move, or modify), import and export a PD-net or a

101

Mathematics 2021, 9, 966

WFD-net. In this class, the method getNewData() is to obtain some information about
the Petri net components of FCPs such as events, conditions and arcs.

• The class Unfolding is developed to unfold a PD-net or a Place/Transition net. Their
FCPs can be generated by the method of unfolding_PDNet(visual, “ERV”, null). In this
Java method, the parameter visual indicates whether an FCP needs to be displayed in
the software interface, and the parameter ERV means a selected unfolding method,
such as ERV, merged process, and directed unfolding.

• The class ReachabilityGraphGenerator is used to construct a guard-driven reachability
graph of WFD-nets, and the methods generateGraph() and run(DataLayer) correspond
to this function.

• The class InconsistentData is developed to check errors of data inconsistencies based on
the unfolding of PD-nets, and the method detectISData() achieves this work in details.

• The classes GuiView and GuiFrame are used to create the front end, and display the
software interface of DICER 2.0.

• A homomorphism from conditions to places (or from events to transitions) is rep-
resented by a hashmap. Its keys and values are in the form of 〈Place, Place〉 or
〈Transition, Transition〉, where Place and Transition are Java classes of Petri net com-
ponents. Additionally, in order to improve the unfolding efficiency of PD-nets, we use
some linked hash tables to store the contextual information of events and concurrent
conditions, e.g., local configurations, pre/post-sets and cuts.

4. Case Study

To show the application scenarios of DICER 2.0, we give the following case studies.

4.1. Case _1: Intelligent Traffic Light System (ITIC)

Our first case study is conducted on an intelligent traffic light controller (ITIC) [54,55]
for a North–South and East–West intersection. In this case study, the North–South (NS)
is a main road, and the East–West (EW) is a rarely used country road. The North–South
traffic light is always GREEN if the sensor of East–West Road is not activated. Otherwise,
the North–South light will change from GREEN to YELLOW so as to give way to the
East–West traffic. Additionally, some emergency vehicles can activate an emergency sensor.
At this time, both the North–South and the East–West traffic lights need to turn RED.

In this case, of ITIC, we first use a WFD-net to model its business process, as shown
in Figure 9. Table 2 shows all places and their meanings. The Boolean functions select
(EmgSensor, EWSensor) and select(EmgSensor, EWSensor) are two exclusive guards on
t2 and t3, respectively. By using DICER 2.0, we can draw and edit this WFD-net. Then,
a guard-driven reachability graph is constructed, as shown in Figure 10. Based on this
GRG, some properties can be verified by traversing each weak configuration (or state).
For example, there is no deadlock in this ITIC system because there always exist enabled
transitions at any weak configurations. Moreover, there is no error of data inconsistency
since all concurrent transitions do not access a shared data element.

Table 2. Places and their meanings.

Place ID Meanings

p2 The yellow light of NS Road
p3 The red light of NS Road
p4 The green light of NS Road
p6 The pre-green light of EW Road
p7 The green light of EW Road
p8 The yellow light of EW Road
p10 The red light of EW Road

p0, p1, p5, p9 (Control places)

102

Mathematics 2021, 9, 966

Figure 9. A WFD-net that models an intelligent traffic light system.

Figure 10. A guard-driven reachability graph (GRG) of Figure 9. (a) A user interface for generating a GRG; (b) the
visualization of a GRG.

4.2. Case _2: Health-Care Cyber-Physical System (HCPS)

The health-care cyber-physical system (HCPS) [56] consists of a series of devices such
as e-health sensors, ambulance drones and ambulance vehicles. When an e-health sensor
detects a cardiac arrest from patients, they will transmit this information to a controller,
and then some warnings are sent to an emergency center. This center can also directly
receive an emergency call from patients. After receiving these emergency messages, both
drones and ambulances are ordered and sent to the emergency scene according to specific
locations of patients.

In this case, of HCPS, we first use a PD-net to model its business process, as shown in
Figure 11. Table 3 lists all transitions and their meanings. By using DICER 2.0, we can draw
and edit this PD-net. Then, an FCP is generated, and some errors of data inconsistency are
detected, which are respectively shown in Figure 12a,b. From Figure 12b, we can easily
find that 12 concurrent events suffer from the errors of data inconsistency.

103

Mathematics 2021, 9, 966

Figure 11. A PD-net that models a health-care cyber-physical system.

Table 3. Transitions and their meanings.

Transition ID Meanings Transition ID Meanings

t0 Receive emergency call t9 Control activity
t1 Receive warning t10 Send warming
t2 Find location t11 Store data
t3 Send ambulance t12 Receive order
t4 Send drone t13 Measure vital signals (E-health)
t5 Supervise Drone t14 Movement of the ambulance
t6 Receive data t15 Movement of the drone
t7 Storage task t16 Install defibrillator
t8 Send data

Figure 12. Cont.

104

Mathematics 2021, 9, 966

Figure 12. Detecting errors of data inconsistency based on the unfolding techniques of PD-nets; (a)
an FCP of the PD-net in Figure 11; (b) the detection results.

5. Experiments

5.1. Benchmarks

A group of experiments are done based on the following benchmarks to show the
advantages of DICER 2.0. Please note that all of these experiments are implemented on a
PC with 4.0G memory and Intel Core i5-2400 CPU.

• The Index program [57] is widely used for the experimental evaluation of multi-
threads.

• The Prime benchmark (http://docs.oracle.com/cd/E19205-01/820-0619/gdvwv/
index.html, accessed on 16 April 2021) is a tutorial program for detecting data race.

• The Child_benefit benchmark [58] is an example of transactional payment processes for
child benefits.

• The SystemC benchmark [59] illustrates a SystemC (a modeling language) module.
• The Driver [60] benchmark describes a simplified model of bluetooth drivers.
• AddGlobal [61] gives an example of concurrency bugs.
• The AppLoan benchmark [62] describes a business process of approving property loan.
• The Airport benchmark [63] shows a business process of an airport check-in system.
• Case_1 and Case_2 are two case studies of intelligent traffic light system and health-care

cyber-physical system, respectively.

5.2. Implementation and Results

(1) The experiments on the GRG of WFD-nets

The guard-driven reachability graph (GRG) of WFD-nets is an improved method
for analyzing data-flows of concurrent systems. In this experiment, we use DICER 2.0 to
compare it with the classical reachability graph (CRG) in terms of state–space and runtime.

105

Mathematics 2021, 9, 966

We first use some WFD-nets to mode the benchmarks of SystemC, AddGlobal, Approv-
eLoan, AirportCheck, and Driver in DICER 2.0, and then respectively obtain their CRGs and
GRGs. Table 4 shows the results of these experiments. Obviously, the scale of GRG is
much smaller than RG. Meanwhile, our GRG-based method spends less time to produce a
reachability graph than the CRG-based method.

Please note that although the GRGs of WFD-nets in Table 4 can save the state–space
of concurrent systems compared with CRGs, they still likely suffer from the state–space
explosion problem especially with the increase of concurrent (data) operations. In order to
alleviate this problem, we conduct the following experiments based on the unfolding tech-
niques.

(2) The experiments on the unfolding of PD-nets

The errors of data inconsistencies are usually detected based on reachability graphs
(RGs). Thus, all states and arcs of RGs need to be traversed to do this work at worst. In this
experiment, DICER 2.0 are used to detect these errors based on the unfolding techniques of
PD-nets. In details, we compare their FCPs with RGs in terms of state–space, runtime and
detection time.

We first use some PD-nets to model the benchmarks of Child_benefit, Index and Prime
in DICER 2.0. Afterwards, their FCPs are generated, and some errors of data inconsistency
are detected. Table 5 shows the scales (i.e., the numbers of nodes and arcs) of FCPs and
RGs. Obviously, FCPs take up much smaller space than RGs. Meanwhile, this table also
lists the time of generating FCPs and RGs. Thus, we can easily find that the former has a
significant advantage over the latter.

Table 4. The experimental results of GRG and CRG in DICER 2.0.

Benchmarks
CRG GRG

Nos. of Nos. of Time of Nos. of Nos. of Time of
States Arcs Constructing CRGs States Arcs Constructing GRGs

SystemC 33 62 76.6 25 39 62.5

AddGlob 50 101 125.1 30 37 72.8

AppLoan 51 112 149 17 22 63

Airport 15 16 320 12 13 220

Driver(2) 409 864 1987 172 283 532
Driver(4) 4117 14,696 14,863 2215 6094 6793
Driver(6) 22,921 105,988 95,333 13,754 48,346 45,461

CRG: Classical Reachability Graph; GRG: Guard-driven Reachability Graph. Time: (ms).

Table 5. The experimental results of unfolding PD-nets in DICER 2.0.

Benchmarks
FCPs RGs

|E ∪ B| |G| Time of Time of Nos. of Nos. of Nos. of Time of
Unfolding Error Detection Errors States Arcs Constructing RGs

Child_benefit 10 13 22 3 0 37 79 45

Index (5) 45 50 90 18 2 462 1680 557
Index (10) 90 100 180 44 3 7686 38,691 11,104
Index (15) 135 150 270 86 8 39,234 226,459 63,910
Index (20) 180 200 360 150 15 101,341 616,469 178,974

Prime (2) 37 39 75 13 0 82 197 102
Prime (4) 69 73 141 29 1 1369 5829 1795
Prime (6) 101 107 207 54 3 12,380 69,893 19,922
Prime (8) 133 141 273 92 7 75,538 509,004 160,541

Time: (ms).

106

Mathematics 2021, 9, 966

(3) The comparison experiments between DICER 2.0 and other Petri net tools.

To further show the advantage of DICER 2.0, we make some comparisons between
DICER 2.0 and other existing Petri net tools, e.g., PIPE, Tina and Punf. We select these
tools based on the following considerations.

• The same or similar runtime environments.
• The same or similar functions and features.
• Available installations.

In these experiments, we first implement the benchmarks of Case_1 and Case_2 into
different Petri net tools, and then we can get their experimental results. Tables 6 and 7
respectively show comparisons on the performance and functions of different Petri net
tools. From these tables, we can find that DICER 2.0 supports the WFD-net modeling of
concurrent systems, constructing GRGs, unfolding PD-nets and detecting errors of data
inconsistency, while other Petri net tools do not. Please note that we must model data
operations by data places and their related flows in Tina, PIPE and Punf because these tools
cannot support the formalizations of labeling functions and guard functions. With respect
to this modeling method, we can find that the model scales of Case_1 and Case_2 by these
tools is much larger than WFD-net by DICER 2.0. Meanwhile, due to the lack of guard
functions, these tools cannot model routing path conditions. Naturally, its reachability
graph (by Tina and PIPE) is smaller than our GRG. Additionally, we cannot get an FCP of
Case_2 by Punf because it cannot support the unfolding of unsafe Petri nets.

Table 6. The comparison experiments on the performance of DICER 2.0 and other Petri net tools.

Tools
Case_1 Case_2

Modeling
CRG GRG

Modeling
RG

FCP Detecting Data
(|P ∪ T ∪ F|) (|P ∪ T ∪ F|) (|B ∪ E ∪ G|) Inconsistency

DICER 2.0 31 77 68 87 608 137 1.0 (ms)

PunF 87 – – 125 – – –

Improved PIPE 31 77 – 87 608 – –

Tina 87 53 – 125 608 – –

PIPE 87 53 – 125 608 – –

CRG: Classical Reachability Graph; GRG: Guard-driven Reachability Graph; RG: Reachability Graph. Data operations are modeled by data
places and their related flows in Tina, PIPE and Punf because they cannot support the formalizations of labeling functions, guard functions
and data-flow arcs.

Table 7. The comparison experiments on the functions of DICER 2.0 and other Petri net tools.

Functions

Tools
DICER 2.0 Tina PIPE Punf Improved PIPE

Case_1

WFD-net � 	 	 	 �
Reachability graph � � � � �

Guard-driven reachability graph � 	 	 	 	
Unfolding � 	 	 � 	

Unfolding within data-flows 	 	 	 	 	
Checking data inconsistency � 	 	 	 	

Case_2

WFD-net � 	 	 	 �
Reachability graph � � � � �

Guard-driven reachability graph � 	 	 	 	
Unfolding � 	 	 	 	

Unfolding within data-flows � 	 	 	 	
Checking data inconsistency � 	 	 	 	

107

Mathematics 2021, 9, 966

6. Conclusions

Data-flow analysis plays an important role in the correctness verification of concurrent
software systems. Petri net-based model checkings are a prominent method/technique
for analyzing these data-flows. Currently, many different kinds of Petri nets have been
used to do this work such as algebraic Petri net, predicate/transitions net, and colored
Petri nets. WFD-net, as a high-level Petri net, is extended with conceptual labeling data
operations. Thus, it can greatly model control/data- flows of concurrent systems. Moreover,
its model scale is much smaller than other Petri nets with data-flow arcs such as C-net and
PN-DO. Furthermore, WFD-net has been widely used to do model checkings. However,
concurrent data operations and guard functions easily lead to the problems of state–space
explosion and pseudo-states. In order to alleviate these problems, we proposed some
efficient methods to detect data-flow errors and verify some properties. In this paper,
we develop a new model checker DICER 2.0. By this tool, we can do a series of model
checkings, e.g., detecting data inconsistencies based on the unfolding technique of PD-nets,
and checking deadlocks via the GRG of WFD-nets.

In the future work, we plan to do the following studies:
(1) The unfolding methods of WFD-nets are studied to check many more data-flow

errors and concurrency bugs [64,65] of concurrent systems;
(2) DICER 2.0 is further improved to support many more efficient model checkings;

and
(3) Timed concurrent systems are modeled and checked by the unfolding techniques

of Petri nets.

Author Contributions: D.X. proposed the idea in this paper and prepared the software application;
D.X. and F.Z. designed the experiments; D.X. performed the experiments; Y.L. analyzed the data; D.X.
wrote the paper; All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by National Natural Science Foundation of China under
Grant 62002328, Zhejiang Provincial Natural Science Foundation of China under Grant LQ20F020002,
and in part by the Key Laboratory of Embedded System and Service Computing (Ministry of
Education) under Grant ESSCKF 2019-02.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liu, G.; Jiang, C.; Zhou, M. Process nets with channels. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2012, 42, 213–225.
[CrossRef]

2. You, D.; Wang, S.G.; Seatzu, C. Verification of Fault-predictability in Labeled Petri Nets Using Predictor Graphs. IEEE Trans.
Autom. Control 2019, 64, 4353–4360. [CrossRef]

3. Li, W.; Xia, Y.; Zhou, M.; Sun, X.; Zhu, Q. Fluctuation-aware and predictive workflow scheduling in cost-effective Infrastructure-
as-a-Service clouds. IEEE Access 2018, 6, 61488–61502. [CrossRef]

4. Trčka, N.; Van der Aalst, W.M.; Sidorova, N. Data-flow anti-patterns: Discovering data-flow errors in workflows. In International
Conference on Advanced Information Systems Engineering; Springer: Berlin/Heidelberg, Germany, 2009; pp. 425–439.

5. Xiang, D.; Liu, G.; Yan, C.; Jiang, C. Detecting data inconsistency based on the unfolding technique of petri nets. IEEE Trans. Ind.
Inform. 2017, 13, 2995–3005. [CrossRef]

6. Liu, C.; Zeng, Q.; Duan, H.; Wang, L.; Tan, J.; Ren, C.; Yu, W. Petri net based data-flow error detection and correction strategy for
business processes. IEEE Access 2020, 8, 43265–43276. [CrossRef]

7. Murata, T. Petri nets: Properties, analysis and applications. Proc. IEEE 1989, 77, 541–580. [CrossRef]
8. Gerogiannis, V.C.; Kameas, A.D.; Pintelas, P.E. Comparative study and categorization of high-level petri nets. J. Syst. Softw. 1998,

43, 133–160. [CrossRef]
9. Zuberek, W.M. Timed Petri nets definitions, properties, and applications. Microelectron. Reliab. 1991, 31, 627–644. [CrossRef]
10. Balbo, G. Introduction to generalized stochastic Petri nets. In Proceedings of the 7th International Conference on Formal Methods for

Performance Evaluation; Springer: Berlin/Heidelberg, Germany, 2007; pp. 83–131.

108

Mathematics 2021, 9, 966

11. Luan, W.; Qi, L.; Zhao, Z.; Liu, J.; Du, Y. Logic Petri Net Synthesis for Cooperative Systems. IEEE Access 2019, 7, 161937–161948.
[CrossRef]

12. Moutinho, F.; Gomes, L. Asynchronous-channels within Petri net-based GALS distributed embedded systems modeling. IEEE
Trans. Ind. Inform. 2014, 10, 2024–2033. [CrossRef]

13. Kheldoun, A.; Barkaoui, K.; Ioualalen, M. Formal verification of complex business processes based on high-level Petri nets. Inf.
Sci. 2017, 385, 39–54. [CrossRef]

14. Buchs, D.; Guelfi, N. A formal specification framework for object-oriented distributed systems. IEEE Trans. Softw. Eng. 2000,
26, 635–652. [CrossRef]

15. Barkaoui, K.; Ayed, R.B.; Boucheneb, H.; Hicheur, A. Verification of workflow processes under multilevel security considerations.
In Proceedings of the 2008 Third International Conference on Risks and Security of Internet and Systems, Tozeur, Tunisia, 28–30
October 2008; pp. 77–84.

16. He, X. Modeling and Analyzing Smart Contracts using Predicate Transition Nets. In Proceedings of the 2020 IEEE 20th
International Conference on Software Quality, Reliability and Security Companion (QRS-C), Macau, China, 11–14 December 2020;
pp. 108–115.

17. Wu, D.; Zheng, W. Formal model-based quantitative safety analysis using timed Coloured Petri Nets. Reliab. Eng. Syst. Saf. 2018,
176, 62–79. [CrossRef]

18. Yu, W.; Yan, C.; Ding, Z.; Jiang, C.; Zhou, M. Modeling and validating e-commerce business process based on Petri nets. IEEE
Trans. Syst. Man Cybern. Syst. 2013, 44, 327–341. [CrossRef]

19. Varea, M.; Al-Hashimi, B.M.; Cortés, L.A.; Eles, P.; Peng, Z. Dual Flow Nets: Modeling the control/data-flow relation in embedded
systems. ACM Trans. Embed. Comput. Syst. (TECS) 2006, 5, 54–81. [CrossRef]

20. Awad, A.; Decker, G.; Lohmann, N. Diagnosing and repairing data anomalies in process models. In International Conference on
Business Process Management; Springer: Berlin/Heidelberg, Germany, 2009; pp. 5–16.

21. Sharma, D.; Pinjala, S.; Sen, A.K. Correction of Data-flow Errors in Workflows. In Proceedings of the 25th Australasian Conference
on Information Systems (ACIS), Auckland, New Zealand, 8–10 December 2014.

22. Baldan, P.; Bruni, A.; Corradini, A.; König, B.; Rodríguez, C.; Schwoon, S. Efficient unfolding of contextual Petri nets. Theor.
Comput. Sci. 2012, 449, 2–22. [CrossRef]

23. Montanari, U.; Rossi, F. Contextual nets. Acta Inform. 1995, 32, 545–596. [CrossRef]
24. Kähkönen, K.; Heljanko, K. Testing Programs with Contextual Unfoldings. ACM Trans. Embed. Comput. Syst. (TECS) 2017,

17, 1–25. [CrossRef]
25. Sidorova, N.; Stahl, C.; Trčka, N. Soundness verification for conceptual workflow nets with data: Early detection of errors with

the most precision possible. Inf. Syst. 2011, 36, 1026–1043. [CrossRef]
26. Yang, B.; Liu, G.; Xiang, D.; Yan, C.; Jiang, C. A Heuristic Method of Detecting Data Inconsistency Based on Petri Nets. In

Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October
2018; pp. 202–208.

27. Trecka, N.; van der Aalst, W.; Sidorova, N. Workflow completion patterns. In Proceedings of the 2009 IEEE International
Conference on Automation Science and Engineering, Bangalore, India, 22–25 August 2009; pp. 7–12.

28. Zou, J.; Liu, X.; Sun, H.; Zeng, J. Live instance migration with data consistency in composite service evolution. In Proceedings of
the 2010 6th World Congress on Services, Miami, FL, USA, 5–10 July 2010; pp. 653–656.

29. Xiang, D.; Liu, G.; Yan, C.G.; Jiang, C. A Guard-driven Analysis Approach of Workflow Net With Data. IEEE Trans. Serv. Comput.
2018. [CrossRef]

30. Wisniewski, R.; Karatkevich, A.; Adamski, M.; Costa, A.; Gomes, L. Prototyping of Concurrent Control Systems With Application
of Petri Nets and Comparability Graphs. IEEE Trans. Control Syst. Technol. 2017, 26, 575–586. [CrossRef]

31. Wisniewski, R.; Wisniewska, M.; Jarnut, M. C-exact Hypergraphs in Concurrency and Sequentiality Analyses of Cyber-Physical
Systems Specified by Safe Petri Nets. IEEE Access 2019, 7, 13510–13522. [CrossRef]

32. McMillan, K.L. Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits. In Computer
Aided Verification; Springer: Berlin/Heidelberg, Germany; 1992; pp. 164–177.

33. Franco, A.; Baldan, P. True Concurrency and Atomicity: A Model Checking Approach with Contextual Petri Nets; LAP LAMBERT
Academic Publishing: Saarbrucken, Germany; 2015.

34. Haar, S. Types of asynchronous diagnosability and the reveals-relation in occurrence nets. IEEE Trans. Autom. Control 2010,
55, 2310–2320. [CrossRef]

35. Hickmott, S.L.; Rintanen, J.; Thiébaux, S.; White, L.B. Planning via Petri Net Unfolding. Int. Jt. Conf. Artif. Intell. 2007, 7,
1904–1911.

36. de León, H.P.; Saarikivi, O.; Kähkönen, K.; Heljanko, K.; Esparza, J. Unfolding Based Minimal Test Suites for Testing Multithreaded
Programs. In Proceedings of the 15th International Conference on Application of Concurrency to System Design, Brussels,
Belgium, 21–26 June 2015; pp. 40–49.

37. Khomenko, V.; Koutny, M. LP deadlock checking using partial order dependencies. In International Conference on Concurrency
Theory; Springer: Berlin/Heidelberg, Germany, 2000; pp. 410–425.

38. Liu, G.; Reisig, W.; Jiang, C. A Branching-process-based method to check soundness of workflow systems. IEEE Access 2016,
4, 4104–4118. [CrossRef]

109

Mathematics 2021, 9, 966

39. Rodriguez, C.; Schwoon, S. Verification of Petri nets with read arcs. In International Conference on Concurrency Theory; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 471–485.

40. Dingle, N.J.; Knottenbelt, W.J.; Suto, T. PIPE2: A tool for the performance evaluation of generalised stochastic Petri Nets. ACM
SIGMETRICS Perform. Eval. Rev. 2009, 36, 34–39. [CrossRef]

41. Heiner, M.; Herajy, M.; Liu, F.; Rohr, C.; Schwarick, M. Snoopy—A unifying Petri net tool. In International Conference on Application
and Theory of Petri Nets and Concurrency; Springer: Berlin/Heidelberg, Germany, 2012; pp. 398–407.

42. Jensen, K.; Kristensen, L.M.; Wells, L. Coloured Petri Nets and CPN Tools for modelling and validation of concurrent systems.
Int. J. Softw. Tools Technol. Transf. 2007, 9, 213–254. [CrossRef]

43. Aalst, W.M.P.V.D.; Hee, K.M.V.; Hofstede, A.H.M.T.; Sidorova, N.; Wynn, M.T. Soundness of workflow nets: Classification,
decidability, and analysis. Form. Asp. Comput. 2011, 23, 333–363. [CrossRef]

44. Liu, C.; Zeng, Q.; Cheng, L.; Duan, H.; Zhou, M.; Cheng, J. Privacy-preserving behavioral correctness verification of cross-
organizational workflow with task synchronization patterns. IEEE Trans. Autom. Sci. Eng. 2020. [CrossRef]

45. Xiang, D.; Liu, G.; Yan, C.; Jiang, C. DICER: Data Inconsistency CheckER based on the unfolding technique of Petri net. In
Proceedings of the 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), Calabria, Italy, 16–18
May 2017; pp. 115–120.

46. Saarikivi, O.; Ponce-De-León, H.; Kähkönen, K.; Heljanko, K.; Esparza, J. Minimizing test suites with unfoldings of multithreaded
programs. ACM Trans. Embed. Comput. Syst. (TECS) 2017, 16, 45. [CrossRef]

47. Xiang, D.; Liu, G.; Yan, C.; Jiang, C. Detecting data-flow errors based on Petri nets with data operations. IEEE/CAA J. Autom. Sin.
2017, 5, 251–260. [CrossRef]

48. Xiang, D.; Liu, G. Checking Data-Flow Errors Based on The Guard-Driven Reachability Graph of WFD-Net. Comput. Inform.
2020, 39, 193–212. [CrossRef]

49. De Masellis, R.; Di Francescomarino, C.; Ghidini, C.; Tessaris, S. Enhancing workflow-nets with data for trace completion.
In International Conference on Business Process Management; Springer: Berlin/Heidelberg, Germany, 2017; pp. 89–106.

50. Evron, Y.; Soffer, P.; Zamansky, A. Incorporating data inaccuracy considerations in process models. In Enterprise, Business-Process
and Information Systems Modeling; Springer: Berlin/Heidelberg, Germany, 2017; pp. 305–318.

51. Lu, F.; Tao, R.; Du, Y.; Zeng, Q.; Bao, Y. Deadlock detection-oriented unfolding of unbounded Petri nets. Inf. Sci. 2019, 497, 1–22.
[CrossRef]

52. Esparza, J.; Römer, S.; Vogler, W. An improvement of McMillan’s unfolding algorithm. Form. Methods Syst. Des. 2002, 20, 285–310.
[CrossRef]

53. Hillah, L.-M.; Kordon, F.; Petrucci, L.; Treves, N. Pnml framework: an extendable reference implementation of the petri net
markup language. In Proceedings of the International Conference on Applications and Theory of Petri Nets, Braga, Portugal,
21–25 June 2010; pp. 318–327.

54. Aziz, M.W.; Rashid, M. Domain specific modeling language for cyber physical systems. In Proceedings of the 2016 International
Conference on Information Systems Engineering (ICISE), Los Angeles, CA, USA, 20–22 April 2016; pp. 29–33.

55. Qi, L.; Zhou, M.; Luan, W. A two-level traffic light control strategy for preventing incident-based urban traffic congestion. IEEE
Trans. Intell. Transp. Syst. 2018, 19, 13–24. [CrossRef]

56. Graja, I.; Kallel, S.; Guermouche, N.; Kacem, A.H. BPMN4CPS: A BPMN extension for modeling cyber-physical systems. In
Proceedings of the 2016 IEEE 25th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE), Paris, France, 13–15 June 2016; pp. 152–157.

57. Flanagan, C.; Godefroid, P. Dynamic partial-order reduction for model checking software. ACM Sigplan Not. 2005, 40, 110–121.
[CrossRef]

58. Lodde, A.; Schlechter, A.; Bauler, P.; Feltz, F. Data Consistency in Transactional Business Processes. In International Conference on
Business Informatics Research; Springer: Berlin/Heidelberg, Germany, 2011; pp. 83–95.

59. Blanc, N.; Kroening, D. Race analysis for SystemC using model checking. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 2010,
15, 1–32. [CrossRef]

60. Razavi, N.; Ivančić, F.; Kahlon, V.; Gupta, A. Concurrent test generation using concolic multi-trace analysis. In Asian Symposium
on Programming Languages and Systems; Springer: Berlin/Heidelberg, Germany, 2012; pp. 239–255.

61. Sinha, N.; Wang, C. Staged concurrent program analysis. In Proceedings of the Eighteenth ACM SIGSOFT International
Symposium on Foundations of Software Engineering, Santa Fe, NM, USA, 7–11 November 2010; pp. 47–56.

62. Sun, S.X.; Zhao, J.L.; Nunamaker, J.F.; Sheng, O.R.L. Formulating the data-flow perspective for business process management.
Inf. Syst. Res. 2006, 17, 374–391. [CrossRef]

63. Xiang, D.; Tao, X.; Liu, Y. An Incremental and Backward-Conflict Guided Method for Unfolding Petri Nets. Symmetry 2021,
13, 392. [CrossRef]

64. Kim, K.H.; Yavuz-Kahveci, T.; Sanders, B.A. JRF-E: Using model checking to give advice on eliminating memory model-related
bugs. Autom. Softw. Eng. 2012, 19, 491–530. [CrossRef]

65. Zhang, M.; Wu, Y.; Shan, L.U.; Qi, S.; Ren, J.; Zheng, W. A Lightweight System for Detecting and Tolerating Concurrency Bugs.
IEEE Trans. Softw. Eng. 2016, 42, 899–917. [CrossRef]

110

mathematics

Article

Application of EM Algorithm to NHPP-Based Software
Reliability Assessment with Generalized Failure Count Data

Hiroyuki Okamura * and Tadashi Dohi

Citation: Okamura, H.; Dohi, T.

Application of EM Algorithm to

NHPP-Based Software Reliability

Assessment with Generalized Failure

Count Data. Mathematics 2021, 9, 985.

https://doi.org/10.3390/math9090985

Academic Editor: Frank Werner

Received: 15 March 2021

Accepted: 26 April 2021

Published: 27 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional clai-ms

in published maps and institutio-nal

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama,
Higashi-Hiroshima 7398527, Japan; dohi@hiroshima-u.ac.jp
* Correspondence: okamu@hiroshima-u.ac.jp

Abstract: Software reliability models (SRMs) are widely used for quantitative evaluation of software
reliability by estimating model parameters from failure data observed in the testing phase. In
particular, non-homogeneous Poisson process (NHPP)-based SRMs are the most popular because of
their mathematical tractability. In this paper, we focus on the parameter estimation algorithm for
NHPP-based SRMs and discuss the EM algorithm for generalized fault count data. The presented
algorithm can be applied for failure time data, failure count data, and their mixture. The paper derives
the EM-step formulas for basic 12 NHPP-based SRMs and demonstrate a numerical experiment to
present the convergence property of our algorithms. The developed algorithms are suitable for an
automatic tool for software reliability evaluation.

Keywords: software reliability model; maximum likelihood estimation; EM algorithm; non-
homogeneous Poisson process; generalized failure count data

1. Introduction

Software reliability models (SRMs) are used to assess quantitative reliability and to
control the quality of software products. Since Jelinski and Moranda [1], and Goel and
Okumoto [2] presented SRMs based on stochastic processes, numerous SRMs have been
proposed [3–8]. In particular, non-homogeneous Poisson process (NHPP)-based SRMs
have become popular in representing the dynamics of failure occurrence processes in a
variety of situations [9–13]. By using an NHPP-based SRM, we predict the future behavior
of software failure, i.e, the number of failures experienced in future, and estimate the
quantitative measure of software reliability.

The advantage of NHPP-based SRMs is simplifying the stochastic analysis. NHPPs
are generally dominated by mean value functions. The mean value function indicates the
expected number of failures experienced at arbitrary testing time. By choosing appropriate
mean value functions, NHPP-based SRMs can fit any observed failure data. The NHPP-
based SRMs and the mean value functions have a one-to-one correspondence.

The Goel–Okumoto model [2]; Goel model [2]; Musa–Okumoto model [14]; Ohba [15,16];
Yamada, Ohba, and Osaki model [17]; Zhao and Xie model [18] are early NHPP-based
SRMs. They were constructed with the deterministic debugging scenarios of mean value
functions. Pham [19] solved a generalized differential equation by which the mean value
function in the NHPP-based SRM is governed and proposed a generalized SRM with many
redundant parameters.

Apart from such a deterministic modeling framework, almost all NHPP-based SRMs
can be characterized as Markov processes. Shantikumar [20] discussed a modeling frame-
work to integrate time-homogeneous Markov processes and NHPPs by using a binomial-
type stochastic point process. Langberg and Singpurwalla [21] presented a unified mod-
eling framework for almost all NHPP-based SRMs. Chen and Singpurwalla [22] also
discussed the framework with a self-exciting point process. Miller [23] introduced the

Mathematics 2021, 9, 985. https://doi.org/10.3390/math9090985 https://www.mdpi.com/journal/mathematics

111

Mathematics 2021, 9, 985

concept of exponential order statistics and drastically extended Langberg and Singpur-
walla’s idea. In fact, the realizations of NHPP-based SRM can be described by either the
general order statistics or record value statistics of the underlying software fault data,
where the fault-detection times are assumed to be independent and identically distributed
(i.i.d.) random variables. Specifically, the general order statistics are based on the order
of all the fault detection times, and the record value statistics focus on their maximum
detection time.

In this paper, we focus on the parameter estimation problem of NHPP-based SRMs.
In general, there are three steps to evaluating the software reliability with NHPP-based
SRM. (i) Collect the failure data such as the number of detected bugs in the testing phase, (ii)
estimate the model parameters of NHPP-based SRM to fit it to the collected data, and (iii)
compute reliability measures from the NHPP-based SRM with the estimated parameters.
Based on quantitative measures, we control the software development process. As a typical
usage of NHPP-based SRM, we estimate the number of failures that will be experienced
in the future and decide whether to continue testing the software or the software can be
released. In other words, the parameter estimation of NHPP-based SRM is frequently
executed in the software development phase. The computation cost of the estimation
should be small in practice.

Therefore, many authors have concerns about the parameter estimation problem on
NHPP-based SRMs. Nevertheless, in actual software reliability assessments, a few NHPP-
based SRMs and familiar maximum likelihood (ML) estimation methods are still used
conventionally. The main reason for this is that the practitioners wish to use intuitively sim-
ple statistical methods, which exclude empirically based tuning parameters for a few SRMs
that have survived a long history of software reliability engineering. In fact, the Bayesian
estimation methods are still minor in software engineering practice, although its theoretical
benefit is recognized. On the other hand, ML estimation is based on the maximization of
likelihood function with software failure data and possesses several rational properties
such as asymptotic efficiency. Hossain and Dahiya [24] derived necessary and sufficient
conditions that the maximum likelihood estimates (MLEs), which satisfy the non-linear
likelihood equations, exist in Goel and Okumoto SRM [2]. Knafl and Morgan [25] presented
a method to systematically solve the likelihood equations with two model parameters.
Joe [26] also discussed the confidence interval of MLEs. Zhao and Xie [18] provided the
MLEs for an extended Goel and Okumoto SRM. Jeske and Pham [27] discovered empiri-
cally that the MLEs in Goel and Okumoto SRM are not statistically consistent. It should be
noted, however, that ML estimation is always possible for all NHPP-based SRMs. Even if
the likelihood functions are strictly concave in model parameters, it is difficult to solve the
likelihood equations analytically. For instance, in the cases where the likelihood functions
are not concave and where there exists no solution for the likelihood equations inside the
parameter space, the conventional methods to calculate the MLEs cannot be used. Usually,
the Newton method and the Nelder–Mead method are used to solve the maximization
problem in the existing literature. From the recent development of computational ability, it
is becoming easier to handle a large-scale complex optimization problem.

On the other hand, it is known that the local convergence property of the Newton
method is a weakness for practical application. The local convergence property means
that the convergence radius of algorithm is limited, and thus, it may fail to obtain a result
if we set unsuitable initial guesses. For example, when we develop the application to
automatically obtain parameter estimates from given data, the local convergence property
becomes troublesome when choosing the initial guesses. Therefore, the Newton method is
not suitable for this purpose. Additionally, the Nelder–Mead method is one of the direct
search methods. The convergence property of the Nelder–Mead method is improved from
the Newton method. However, some design parameters should be provided appropriately
for the Nelder–Mead method. Even if we use the Nelder–Mead algorithm, the convergence
of algorithm is not always guaranteed for any given data.

112

Mathematics 2021, 9, 985

From the early 2000s, our research group has developed an alternative parameter
estimation algorithm based on the EM (expectation maximization) principle [28,29] and
applied it to the software reliability assessment based on NHPP-based SRMs [30–40]. As
another examples of EM algorithms in SRMs, Kimura and Yamada [41], Leadoux [42],
and Okamura and Dohi [43] attempted to use EM algorithms to estimate the imperfect
debugging model [44] and architecture-based SRMs [45,46]. Their models were based on
the continuous-time Markov chain and are closely related to Markov-modulated Poisson
processes and/or Markovian arrival processes. Additionally, Zeephongsekul et al. [47] and
Nagaraju et al. [48] proposed ECM (expectaton conditional maximization) algorithms for
NHPP-based SRMs to handle several specific models.

The EM algorithm is an algorithm that finds maximum likelihood estimates for a
statistical model with incomplete data. The idea behind our EM algorithms is to find the
incomplete data structure of NHPP-based SRMs. Concretely, in NHPP-based SRMs, we
assume that the number of failures is finite due to a finite number of software bugs, but all
of them cannot be observed, i.e., the number of reaming software failures can be regarded
as missing data. From this insight, the EM algorithm for an individual NHPP-based SRM
is developed. Although the convergence speed of EM algorithm is generally slower than
other general-purpose numerical methods such as the Newton method, it has a global
convergence property. This property allows us to reduce efforts in choosing good initial
guesses for the model parameters and is suitable for automating the estimation procedure.
In our past work [49], we summarized EM algorithms for 12 NHPP-based SRMs when
the failure data were time data. The failure time data consisted of a set of exact failure
times experienced. In practice, it is difficult to obtain exact failure times. Generally, we
record failure count data consisting of the number of failures experienced for time intervals.
For example, it is reasonable to record the number of failures per working day. From
this reason, this paper presents the EM algorithms for 12 basic NHPP-based SRMs when
the failure count data are given. In particular, we consider the generalized failure count
data that involve both failure time and count data formats, and thus, the developed EM
algorithms can be applied to either failure time data, failure count data, or their mixture.

We highlight our contributions here: (i) we derive the EM-step formula for NHPP-
based SRMs with a finite number of failures under generalized fault count data, (ii) we
derive concrete EM-step formulas for 12 basic NHPP-based SRMs, and (iii) we demon-
strate the performance on the convergence property of the presented algorithms with real
software failure data. To our best knowledge, this is the first paper that presents the EM
algorithm for the generalized fault count data in 12 basic NHPP-based SRMs.

This paper is organized as follows. In Section 2, we introduce NHPP-based SRMs that
are considered in this paper. In particular, NHPP-based SRMs are classified by failure time
distribution and present the relationship between basic 12 NHPP-based SRMs and their
failure time distributions. In Section 3, we derive the EM-step formulas for 12 basic NHPP-
based SRMs. Section 4 is devoted to a numerical example to compare the convergence
properties of EM algorithm, the Nelder–Mead method, and the quasi-Newton method.
Finally, we conclude the paper with remarks in Section 5.

2. NHPP-Based SRMs

2.1. Model Description

Let {X(t), t ≥ 0} denote the number of software failures experienced before time t.
We make the following model assumptions [21]:

• Assumption A: A software failure occurs at a random time. The probability distribu-
tion of all failure times are identical and mutually independent.

• Assumption B: The number of inherent software faults causing failures is finite.

Here, F(t) and N are the cumulative distribution function of the failure time and the
number of inherent faults. Then, the probability mass function of the cumulative number
of failures experienced by time t is

113

Mathematics 2021, 9, 985

P(X(t) = n) =
(

N
n

)
F(t)nF(t)N−n, (1)

where F(·) = 1− F(·). This is often called the framework of generalized order statistics [21].
For instance, when the failure distribution is an exponential distribution, the corresponding
SRM, the so-called exponential order statistics model, is the same as the Jelinski–Moranda
SRM [1].

Most NHPP-based SRMs are advanced models of the generalized order statistics
models. We make an additional model assumption [21]:

• Assumption C: The number of inherent faults is unknown, but prior information is
given by a Poisson distribution.

When the expected number of inherent faults is ω, the cumulative number of software
failures at time t has the following probability mass function:

P(X(t) = n) =
(ωF(t))n

n!
e−ωF(t). (2)

Equation (2) is equivalent to the probability mass function of NHPP with mean value
function ωF(t). In this modeling framework, the failure time distribution F(t) specifies an
NHPP-based SRM.

Since the NHPP-based SRM is characterized by the failure time distribution, there
have been a number of NHPP-based SRMs that change the failure time distribution. In this
paper, we propose basic NHPP-based SRMs using well-known statistical distributions as
the failure time distribution. Table 1 shows 11 basic NHPP-based SRMs and their failure
time distributions. In the table, most of the basic NHPP-based SRMs correspond to the
existing traditional NHPP-based SRMs. ‘exp’ is the so-called Goel and Okumoto model [2],
‘gamma’ is a generalized delayed S-shaped model [17,18], ‘pareto‘ is a modified Duane
model [50], ‘tlogis‘ is an inflection S-shaped model [15], and ‘lxvmin‘ is the Goel (Weibull)
model [51].

Table 1. Basic NHPP-based SRMs.

Model Failure Time Distribution

exp Exponential distribution [2]
gamma Gamma distribution [17,18]
pareto Pareto type-II distribution [50]
tnorm Truncated normal distribution [34]
lnorm Log-normal distribution [34]
tlogis Truncated logistic distribution [15]
llogis Log-logistic distribution [52]
txvmax Truncated extreme-value distribution (max) [35]
lxvmax Log-extreme-value distribution (max) [35]
txvmin Truncated extreme-value distribution (min) [35]
lxvmin Log-extreme-value distribution (min) [35,51]

2.2. Parameter Estimation

As mentioned before, the model parameters of NHPP-based SRMs should be esti-
mated from software failure data to predict the future tendency of a software failure. The
most commonly used technique for parameter estimation is maximum likelihood (ML)
estimation. In the context of ML estimation, we found model parameters that maximize the
log-likelihood function (LLF). Since the LLF depends on the failure data experienced, the
ML estimation of NHPP-based SRMs has been discussed for two types of data: failure time
data and count data. The failure time data is a set of exact times in which a software failure
occurs in the testing phase. The count data, equivalently called grouped data, consists of
the number of failures experienced for time intervals. The estimation problems for these
two data structures have been discussed separately.

114

Mathematics 2021, 9, 985

This paper deals with a generalized data structure to express both failure time and
count data. Our data structure is D := {(t1, x1, ui), . . . , (tk, xk, uk)}, where xi failures that
occur at the ith time interval, (xi−1, xi). In addition, if ui = 1, an additional failure occurs
at the end of the ith time interval, i.e, at time xi. Otherwise, if ui = 0, no failure occurs
at the instant. If ui = 0 for all time intervals, the data turns out the failure count data. If
xi = 0 and ui = 1 for all i, D is the failure time data.

Based on the generalized data, the LLF for NHPP-based SRMs is written in the
following form:

LLF(ω, θ) =
k

∑
i=1

(xi + ui) log ω +
k

∑
i=1

xi log{F(ti; θ)− F(ti−1; θ)}

+ ∑
i=1

ui log f (ti; θ)− log xi! − ωF(tk; θ). (3)

Then, the problem is to find the optimal (ω, θ), so-called maximum likelihood es-
timates (MLEs), maximizing LLF(ω, θ). However, it is noted that we cannot derive the
closed form solution of MLEs. That is, we need to utilize numerical optimization techniques
such as the Newton method, quasi-Newton method, and Nelder–Mead method.

Although conventional methods such as the Newton method and the Nelder–Mead
method may be occasionally useful in computing MLEs of the NHPP-based SRMs, it is
worth noting that these aim to solve unconstrained optimization problems in ML estimation.
However, in many cases, we have to cope with constrained optimization problems because
almost all of the model parameters of NHPP-based SRMs are implicitly constrained, such
as positive constraint.

3. EM Algorithms for NHPP-Based SRMs

This paper develops numerical procedures to compute MLEs for NHPP-based SRMs
with generalized data. The proposed estimation algorithms are based on the EM principle.
The EM algorithm is one of the statistical approaches to compute the MLEs for incomplete
data and is numerically stable because of its global convergence property. Moreover, the
proposed EM algorithms for NHPP-based SRMs are based on the closed forms of MLEs
for an arbitrary fault-detection time distribution and are capable of solving constrained
optimization problems. Although we have already developed EM algorithms for failure
time data and failure count data for several basic NHPP-based SRMs, this paper revisits
their EM algorithm when generalized data are given.

3.1. EM Algorithm

The EM algorithm is an iterative method for computing ML estimates with incomplete
data [28,29]. Let D and U be observable and unobservable data vectors, respectively, and
θ be a model parameter vector θ to be estimated from only the observable data. In the
ML estimation, we find a parameter vector by maximizing the following log-likelihood
function (LLF) L(θ;D):

L(θ;D) = log p(D; θ) = log
∫

p(D,U ; θ)dU , (4)

where p(·) is any probability density or mass function and thus p(D,U ; θ) denotes the
likelihood function for complete data (D,U).

Let Q(θ|θ′) denote the conditional expected LLF with respect to the complete data
vector (D,U) using the posterior distribution for unobservable data vector with a given
parameter vector θ′:

Q(θ|θ′) = E[log p(D,U ; θ)|D; θ′]

=
∫

p(U|D; θ′) log p(D,U ; θ)dU . (5)

115

Mathematics 2021, 9, 985

Then, the EM algorithm consists of an E-step and an M-step. The E-step computes
the conditional expected LLF with respect to the complete data vector (D,U) using the
posterior distribution for unobservable data vector with provisional parameter vector
θ′, i.e., Q(θ|θ′). In the M-step, we find a new parameter vector θ′′ that maximizes the
expected LLF:

θ′′ := argmax
θ

Q(θ|θ′), (6)

and θ′′ becomes a provisional parameter vector at the next E- and M-steps. These steps
surely increase the marginal LLF. The E- and M-steps are repeatedly executed until the
parameters converge.

3.2. EM Algorithm for NHPP-Based SRMs

Consider the complete data in NHPP-based SRMs, T1 < T2 < . . . < TN , where Ti
is the ith failure time and N is the number of all the failures. It is worth noting that the
number of all the failures in software is unobserved. Since N is the Poisson-distributed
random variable and Ti obeys F(·; θ), the complete LLF is given by

LLF(ω, θ) = N log ω − ω +
N

∑
i=1

log f (Ti; θ). (7)

From the standard argument of MLEs, the MLEs of ω and θ can be derived as

ω = N (8)

and
θ = argmax

θ

N

∑
i=1

log f (Ti; θ) (9)

respectively. These imply that the estimation problem of NHPP-based SRMs under com-
plete data can be decomposed into separate problems for two distribution functions:
Poisson distribution and the failure time distribution.

Since the number of failures and the exact failure time in intervals are unobserved, the
generalized data D := {(t1, x1, u1), . . . , (tk, xk, uk)} are incomplete data. By applying the
EM algorithm, we have the following EM-step formulas for NHPP-based SRMs with the
generalized data:

ω ← E[N|D; ω′, θ′] (10)

and

θ ← argmax
θ

E

[
N

∑
i=1

log f (Ti; θ)

∣∣∣∣∣D; ω′, θ′
]

(11)

Additionally, we obtain the following formula to compute the expected values. For
any measurable function h(·), the expected value with the generalized data is expressed as

E

[
N

∑
i=1

h(Ti)

∣∣∣∣∣D; ω′, θ′
]
=

n

∑
i=1

⎧⎨⎩ xi
∫ ti

ti−1
h(z) f (z; θ′)dz∫ ti

ti−1
f (z; θ′)dz

+ uih(ti)

⎫⎬⎭
+ ω′

∫ ∞

tk

h(z) f (z; θ′)dz, (12)

where f (z; θ) is a probability density function (p.d.f.) of failure time provided that the
parameter vector is θ. The derivation of this formula is given in Appendix A.

exp: ‘exp’ is the model where the failure time distribution is an exponential distribution.
This model is exactly the same as the Goel–Okumoto model [2]. Define the c.d.f. of failure
time as

F(t; β) = 1− exp(−βt), β > 0. (13)

116

Mathematics 2021, 9, 985

Since the MLE of an ordinary exponential distribution is given by a closed from, the
EM-step formulas for exp are directly derived from Equations (10) and (11);

ω ← E[N|D; ω′, β′] (14)

β ← E[N|D; ω′, β′]
E[∑N

i=1 Ti|D; ω′, β′]
. (15)

By applying the formula for the expected value, we have

ω ←
k

∑
i=1

(xi + ui) + ω′ exp(−β′tk) (16)

β ← ∑k
i=1(xi + ui) + ω′ exp(−β′tk)

∑k
i=1(xiτi + uiti) + ω′(tk + 1/β′) exp(−β′tk)

(17)

where

τi =
(ti−1 + 1/β′) exp(−β′ti−1)− (ti + 1/β′) exp(−β′ti)

exp(−β′ti−1)− exp(−β′ti)
. (18)

gamma: The failure time distribution becomes the following gamma distribution:

F(t; α, β) =
∫ t

0

βαuα−1 exp(−βu)
Γ(α)

du, α > 0, β > 0, (19)

where α and β are shape and scale parameters, respectively. When α = 2 is fixed, the model
reduces the delayed S-shaped SRM [17].

Similar to exp, the EM-step formulas are given using Equations (10) and (11):

ω ← E[N|D; ω′, α′, β′] (20)

α ←
{

α

∣∣∣∣∣ log α − Ψ(α) = log

(
E[∑N

i=1 Ti|D; ω′, α′, β′]
E[N|D; ω′, α′, β′]

)

− E[∑N
i=1 log Ti|D; ω′, α′, β′]
E[N|D; ω′, α′, β′]

}
(21)

β ← αE[N|D; ω′, α′, β′]
E[∑N

i=1 Ti|D; ω′, α′, β′]
, (22)

where ψ(·) is the digamma function, i.e., ψ(α) = d log γ(α)/dα. Additionally, we use
the updated α to compute β. Note that Equation (21) can easily be solved with the non-
linear equation solver such as a bisection method. In addition, E[N|D; ω′, α′, β′] and
E[∑N

i=1 Ti|D; ω′, α′, β′] are obtained as follows:

E[N|D; ω′, α′, β′] =
k

∑
i=1

(xi + ui) + ω′F(tk; α′, β′) (23)

E

[
N

∑
i=1

Ti

∣∣∣∣∣D; ω′, α′, β′
]
=

k

∑
i=1

(xiτi + uiti) + ω′(α′/β′)F(tk; α′ + 1, β′), (24)

τi =
α′

β′
F(ti−1; α′ + 1, β′)− F(ti; α′ + 1, β′)

F(ti−1; α′, β′)− F(ti; α′, β′)
, (25)

where F(t; α, β) is the complementary c.d.f. of gamma distribution with parameters α and β.
On the other hand, we need the numerical integration to obtain E[∑N

i=1 log Ti|D; ω′, α′, β′].
It should be noted that, if the shape parameter α is fixed, then the computation algorithm
becomes simple because we ignore solving the nonlinear equation and computing the
expected value E[∑N

i=1 log Ti|D; ω′, α′, β′].

117

Mathematics 2021, 9, 985

pareto: ‘pareto’ is the SRM where the failure time distribution is the Pareto distribution of
the second kind. The Pareto distribution of the second kind is called Lomax distribution:

F(t) = 1− ca

(x + c)a , a > 0, c > 0. (26)

This model was proposed as the modified Duane model [50].
Since the Pareto distribution of the second kind is a mixture of exponential distribution,

the EM algorithm for ‘pareto’ is constructed using this property. In general, the mixture
distribution is defined as a superposition of original statistical distributions with mixture
ratio. Let G(ξ; θ) be the c.d.f. of mixture ratio distribution for the parameter ξ. Then, the
mixture distribution is given by

FM(x; θ) =
∫

F(x; ξ)dG(ξ; θ). (27)

The Pareto distribution of the second kind is a mixture of exponential distribution
when the mixture ratio distribution is a gamma distribution. That is, the failure time
distribution is written in the following form:

F(t; a, c) =
∫ ∞

0
{1− exp(−ξt)} caξa−1 exp(−cξ)

Γ(a)
dξ = 1− ca

(c + t)a . (28)

For the EM algorithm of mixture-type SRMs, we also define the fault detection rate
for each fault as a hidden variable.

Let (T1, Ξ1), . . . , (TN , ΞN) be a set of failure time and its associated fault detection rate
for all the failures. The complete LLF is given by

LLF(ω, a, c) =N log ω − ω +
N

∑
i=1

log Ξi −
N

∑
i=1

ΞiTi

+ aN log c + (a − 1)
N

∑
i=1

log Ξi − c
N

∑
i=1

Ξi − N log Γ(a). (29)

Similar to gamma, we have the following EM-step formula from the MLEs of gamma
distributions:

ω ← E[N|D; ω′, a′, c′], (30)

a ←
{

a

∣∣∣∣∣log a − ψ(a) = log

(
E[∑N

i=1 Ξi|D; ω′, a′, c′]
E[N|D; ω′, a′, c′]

)
− E[∑N

i=1 log Ξi|D; ω′, a′, c′]
E[N|D; ω′, a′, c′]

}
(31)

b ← aE[N|D; ω′, a′, c′]
E[∑N

i=1 Ξi|D; ω′, a′, c′]
, (32)

On the other hand, the formula for the expected value is given by

E

[
N

∑
i=1

h(Ξi)

∣∣∣∣∣D; ω′, θ′
]
=

k

∑
i=1

⎧⎨⎩ xi
∫ ti

ti−1
h̃(z; θ′)dz∫ ti

ti−1
f̃ (z; θ′)dz

+
uih̃(ti)

f̃ (ti)

⎫⎬⎭+ ω′
∫ ∞

tk

h̃(z; θ′)dz, (33)

where h(·) is an arbitrary measurable function and

h̃(z; θ′) =
∫

h(ξ) f (z; ξ)dG(ξ; θ′), (34)

f̃ (z; θ′) =
∫

f (z; ξ)dG(ξ; θ′). (35)

118

Mathematics 2021, 9, 985

tnorm, lnorm: ‘tnorm’ and ‘lnorm’ are SRMs whose failure time distributions are truncated
and log normal distributions, respectively. The failure time distributions for tnorm and
lnorm are

tnorm: F(t) = Φ
(

t − μ

σ

)
/{1− Φ(−μ/σ)}, (36)

lnorm: F(t) = Φ
(

log t − μ

σ

)
, (37)

where Φ(·) is the c.d.f. of the standard normal distribution. Since the EM algorithms for
both models with failure time and count data were introduced in detail in the literature [34],
this paper provides the EM-step formulas with the generalized data.

• EM-step formula for tnorm:

ω̃ ← N, μ ← T(1)/N, σ ←
√

T(2)/N − (T(1)/N)2 (38)

where

N =
k

∑
i=1

(xi + ui) + ω̃{Φ(z0) + Φ(zk)}, (39)

T(1) =
k

∑
i=1

(xiτ
(1)
i + uiti) + ω̃{Φ(1)(z0) + Φ(1)

(zk)} (40)

T(2) =
k

∑
i=1

(xiτ
(2)
i + uit2

i) + ω̃{Φ(2)(z0) + Φ(2)
(zk)}, (41)

z0 = −μ/σ, zi = (ti − μ)/σ, (42)

τ
(u)
i =

Φ(u)
(zi−1)− Φ(u)

(zi)

Φ(zi−1)− Φ(zi)
, (43)

• EM-step formula for lnorm:

ω ← N, μ ← T(1)/N, σ ←
√

T(2)/N − (T(1)/N)2 (44)

where

N =
k

∑
i=1

(xi + ui) + ω′Φ(zk), (45)

T(1) =
k

∑
i=1

(xiτ
(1)
i + ui log ti) + ωΦ(1)

(zk), (46)

T(2) =
k

∑
i=1

(xiτ
(2)
i + ui(log ti)

2) + ωΦ(2)
(zk), (47)

z0 → −∞, zi = (log ti − μ)/σ, (48)

τ
(u)
i =

Φ(u)
(zi−1)− Φ(u)

(zi)

Φ(zi−1)− Φ(zi)
. (49)

119

Mathematics 2021, 9, 985

In the above formulas, Φ(z) is the complementary c.d.f. of the standard normal

distribution, and Φ(1)
(z) and Φ(2)

(z) are expressed with the p.d.f. of the standard normal
distribution φ(z):

Φ(1)
(z) = σφ(z) + μΦ(z), (50)

Φ(2)
(z) = (σ2z + 2μσ)φ(z) + (σ2 + μ2)Φ(z). (51)

In addition, after the convergence, we take ω = ω̃Φ(z0) to obtain the ML estimate for
ω in the case of tnorm.

tlogis, llogis tlogis and llogis are the SRMs with truncated and log logistic distributions,
respectively. In particular, ‘tlogis‘ is equivalent to the inflection S-shaped model [15]. The
failure time distribution of tlogis is given by

F(t) = Ψ
(

t − μ

ψ

)
/{1− Ψ(−μ/ψ)}, (52)

where Ψ(·) is the c.d.f. of standard logistic distribution

Ψ(t) =
1

1 + exp(−t)
. (53)

By taking into account the exponential of logistic distribution, we have the following
failure time distribution of llogis:

F(t) = Ψ
(

log t − μ

ψ

)
. (54)

Since logistic distribution does not belongs to the exponential family of distributions,
neither expectation nor maximization can be expressed as simple formulas. To construct
the algorithm, we consider only one assumption; the number of all failures is not observed.
Then, the EM-step formulas become

• The EM-step formula for tnorm

ω̃ ←
k

∑
i=1

(xi + ui) + ω̃′F(0; θ′) + ω̃′F(tk; θ′) (55)

θ ← argmax
θ

{
k

∑
i=1

(xi log(F(ti; θ)− F(ti−1; θ))− xi log xi! + ui log f (ti; θ))

+ (ω̃′F(0; θ′)) log(F(0; θ)) + (ω̃′F(tk; θ′)) log(F(tk; θ))

}
. (56)

• The EM-step formula for lnorm

ω ←
k

∑
i=1

(xi + ui) + ω′F(tk; θ′) (57)

θ ← argmax
θ

{
k

∑
i=1

(xi log(F(ti; θ)− F(ti−1; θ))− xi log xi! + ui log f (ti; θ))

+ (ω′F(tk; θ′)) log(F(tk; θ))

}
. (58)

The second equations in both formulas indicate that θ is updated by the MLEs when
the number of all the failures is given by ω̃′ and ω′. These algorithm are also stable if there

120

Mathematics 2021, 9, 985

exists a unique solution maximizing the right-hand side of the second term. Note that,
after the convergence, the model parameter ω in tlogis can be obtained as ω = ω̃F(0; θ).

txvmax, lxvmax, txvmin, lxvmin Suppose that the failure time caused by each failure
follows an extreme value type I distribution. The extreme value type I distribution is called
Gumbel distribution, and its definition is based on the limitation of the maximum value of
random variables. Here, the c.d.f. of a standard Gumbel distribution is defined as

Θ(t) = exp{− exp(−t)}. (59)

Similar to tnorm, lnorm, tlogis, and llogis, we consider the truncation and logarithm
of the extreme value distribution. In addition, since the extreme value distribution is not
symmetric, we also consider the case of negative samples, i.e., the minimum value of
random variables.

The failure time distributions of txvmax and lxvmax are, respectively,

F(t) = Θ
(

t − μ

θ

)
/{1− Θ(−μ/θ)}, (60)

F(t) = Θ
(

log t − μ

θ

)
. (61)

Similarly, the failure time distributions of txvmin and lxvmin are given by

F(t) = Θ
(

t + μ

θ

)
/
{

1− Θ(μ/θ)
}

, (62)

F(t) = Θ
(

log t + μ

θ

)
, (63)

where Θ(t) = 1 − Θ(−t) corresponds to the c.d.f. of a standard extreme value type I
distribution of the minimum. From Equation (63), we find that lxvmin is equivalent to the
Weibull distribution.

Since the extreme value distribution is not an exponential family, we consider only
one assumption; the number of all the failures is not observed. Then, the EM-step formulas
are given by

• The EM-step formula for txvmax and txvmin

ω̃ ←
k

∑
i=1

(xi + ui) + ω̃′F(0; θ′) + ω̃′F(tk; θ′) (64)

θ ← argmax
θ

{
k

∑
i=1

(xi log(F(ti; θ)− F(ti−1; θ))− xi log xi! + ui log f (ti; θ))

+ (ω̃′F(0; θ′)) log(F(0; θ)) + (ω̃′F(tk; θ′)) log(F(tk; θ))

}
. (65)

• The EM-step formula for lxvmax and lxvmin

ω ←
k

∑
i=1

(xi + ui) + ω′F(tk; θ′) (66)

θ ← argmax
θ

{
k

∑
i=1

(xi log(F(ti; θ)− F(ti−1; θ))− xi log xi! + ui log f (ti; θ))

+ (ω′F(tk; θ′)) log(F(tk; θ))

}
. (67)

121

Mathematics 2021, 9, 985

4. Numerical Example

We investigated the numerical characteristics of the presented EM algorithms. Here,
we compare the convergence property with the Nelder–Mead method and the quasi-
Newton method (BFGS method). First, we check the trace of model parameters until they
converge to MLE for the proposed method (EM algorithm), the Nelder–Mead method, and
the BFGS method. In this experiment, we used the fault count data, which were collected
from real software projects [53]. The statistics of fault count data are given as follow.

• Data label: SS1A
• Working days: 151
• The number of failures: 112
• LOC: Hundreds of thousands
• Software type: Operations

For the above failure count data, we estimated the parameters of ‘exp’. The MLEs of
exp are ω̂ = 354.75 and β̂ = 0.00251, and the maximum LLF is LLF(ω̂, β̂) = −180.79.

Figures 1–3 show the trace of model parameters for EM algorithm, the Nelder–Mead
method, and the BFGS method when the initial guesses are ω = 100 and β = 0.1. We use
the ‘optim’ function in R for the Nelder–Mead and BFGS methods. From these figures, we
find that the EM algorithm stably updates the model parameters and converges to close
parameters to the MLEs. However, the convergence speed is not fast, since the update
becomes smaller as the parameters are close to the MLEs. The Nelder–Mead method
provides the MLEs, but the trace of the algorithm is not stable. In particular, this algorithm
sometimes takes invalid values that violate the parameter constraints, i.e., ω < 0 or β < 0,
while searching for the parameters. Figure 3 depicts the trace of parameters for the BFGS
method. The convergence property is the worst among the three methods. Additionally,
the algorithm fails to obtain the MLE.

150 200 250 300

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4

150 200 250 300

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4

omega

be
ta

Figure 1. Trace of parameters in the EM algorithm.

122

Mathematics 2021, 9, 985

150 200 250 300

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4

150 200 250 300

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4

omega

be
ta

Figure 2. Trace of parameters in the Nelder–Mead method.

150 200 250 300

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4

150 200 250 300

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4

omega

be
ta

Figure 3. Trace of parameters in the BFGS method.

Next, we present the convergence properties for the proposed EM algorithm, the
Nelder–Mead method, and the BFGS method quantitatively. Here, we use two additional
fault count data that were collected from real software projects [53] as well as SS1A.

• Data label: SS1B
• Working days: 663
• The number of failures: 375
• LOC: Hundreds of thousands
• Software type: Operations

• Data label: SS1C
• Working days: 472
• The number of failures: 277
• LOC: Hundreds of thousands
• Software type: Operations

For three data sets—SS1A, SS1B, and SS1C—we applied the proposed EM algorithm,
the Nelder–Mead method, and the BFGS method for 12 basic NHPP-based SRMs with
100 different initial parameters. In the experiment, the initial parameters were selected by
random numbers. Tables 2–4 present the number of converged estimations, i.e., the number

123

Mathematics 2021, 9, 985

of times that the model parameters are successfully estimated for each NHPP-based SRMs
and methods. If this value is 100, the method succeeded in obtaining the MLE for all of
the initial parameters. On the other hand, if this value is 0, the estimation method fails to
obtain the MLE for all of the initial parameters due to numerical computation errors such
as overflow and underflow.

Table 2. The number of converged estimations (SS1A).

Model EM Nelder-Mead BFGS

exp 100 19 19
gamma 100 34 34
pareto 100 57 57
tnorm 100 88 88
lnorm 100 98 98
tlogis 100 100 100
llogis 100 100 100
txvmax 100 100 100
lxvmax 99 99 99
txvmin 64 65 65
lxvmin 92 92 92

Table 3. The number of converged estimations (SS1B).

Model EM Nelder-Mead BFGS

exp 100 7 7
gamma 100 7 6
pareto 100 18 18
tnorm 100 98 98
lnorm 87 87 87
tlogis 100 100 100
llogis 87 87 87
txvmax 99 99 99
lxvmax 0 0 0
txvmin 89 89 89
lxvmin 100 41 41

Table 4. The number of converged estimations (SS1C).

Model EM Nelder-Mead BFGS

exp 100 9 8
gamma 100 13 12
pareto 100 47 47
tnorm 100 98 98
lnorm 96 97 97
tlogis 100 100 100
llogis 96 96 96
txvmax 99 99 99
lxvmax 0 0 0
txvmin 89 89 89
lxvmin 100 43 43

From these results, we find that the convergence rates of the proposed EM algorithms
are 100% in the cases of exp, gamma, pareto, tnorm, and tlogis. Since the number of
converged estimations of the Nelder–Mead is almost the same as that of BFGS for all cases,
the convergence properties of their methods are the same if we use the ‘optim’ function in
R. Additionally, since lxvmax did not fit SS1B and SS1C, all of the estimation methods failed
to obtain the MLE. Furthermore, it was found that the numbers of converged estimates in
the Nelder–Mead and BFGS methods are worse than that of the EM algorithm, specifically

124

Mathematics 2021, 9, 985

in the cases of exp, gamma, and pareto. Additionally, in the cases of tnorm and lnorm, the
convergence property of EM is slightly superior to the other two methods. In exp, gamma,
pareto, tnorm, and lnorm, the failure time distributions belong to the exponential family,
and thus, their EM-step formulas do not include the numerical optimization step. That is,
these EM-step formulas are ‘pure’ EM-step formulas. Therefore, the convergence properties
outperform those of the Nelder–Mead and BFGS methods. On the other hand, in the cases
of tlogis, llogis, txvmax, lxvmax, txvmin, and lvxmin, the failure time distributions are
not in the exponential family, and we should use the numerical optimization step in their
EM-step formulas. This is the reason why the convergence property of the presented EM
algorithm is same as that in the Nelder–Mead and BFGS methods.

5. Conclusions

This paper derived EM-step formulas for 12 basic NHPP-based SRMs when the
generalized failure count data are given. Since the generalized fault count data involve
both time and count data formats, the presented EM algorithms can be applied to failure
data experienced in practice. In addition, the convergence property of EM algorithm is
better than or equivalent to other ordinary methods such as the Nelder–Mead and BFGS
methods for practical software fault data. Thus, the presented algorithms are suitable for
implementation in the automatic tool for software reliability evaluation. In fact, our research
group has developed an AddIn of Microsoft Excel to estimate software reliability [54].

In the future, we will develop a reliability assessment tool by integrating a software
repository such as GitHub, a bug tracking system, and a continuous integration system,
and the tool will continuously monitor the reliability of software.

Author Contributions: Conceptualization, H.O. and T.D.; methodology, H.O.; software, H.O.; super-
vision, T.D.; validation, T.D.; writing—original draft, H.O. and T.D.; writing—review and editing,
H.O. and T.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Derivation of Equation (12)

For convenient, ω′ and θ′ are written as ω and θ, respectively, and E[·|D; ω′, θ′] is
simplified as E[·|D]. Here we have

E

[
N

∑
i=1

h(Ti)

∣∣∣∣∣D
]
=

n

∑
i=1

⎧⎨⎩E

⎡⎣ si−1+xi

∑
j=si−1+1

h(Tj)

∣∣∣∣∣∣D
⎤⎦+ biE[h(Tsi)|D]

⎫⎬⎭+ E

[
N

∑
i=sn+1

h(Ti)

∣∣∣∣∣D
]

, (A1)

where si = ∑i
j=1(xj + bj).

According to the order statistics of failure times, the first term of the right-hand side
of the above can be rewritten as follows.

E

[
si−1+xi

∑
j=si−1+1

h(Tj)

∣∣∣∣∣D
]
=

∫ ti
ti−1

∫ ti
z1
· · · ∫ ti

zxi
∑xi

j=1 h(zj)∏xi
j=1 f (zj)dzxi · · · dz1∫ ti

ti−1

∫ ti
z1
· · · ∫ ti

zxi
∏xi

j=1 f (zj)dzxi · · · dz1
. (A2)

125

Mathematics 2021, 9, 985

Since Tsi−1+1, . . . , Tsi−1+xi are i.i.d. random variables, the multiple integrals of denominator
in Equation (A2) is given by

∫ ti

ti−1

∫ ti

z1

· · ·
∫ ti

zxi

xi

∏
j=1

f (zj)dzxi · · · dz1 =
1

xi!

(∫ ti

ti−1

f (z)dz
)xi

. (A3)

Similarly, the numerator becomes

∫ ti

ti−1

∫ ti

z1

· · ·
∫ ti

zxi

xi

∑
j=1

h(zj)
xi

∏
j=1

f (zj)dzxi · · · dz1 =
xi
xi!

∫ ti

ti−1

h(z) f (z)dz
(∫ ti

ti−1

f (z)dz
)xi−1

. (A4)

Henceforth we have

E

[
si−1+xi

∑
j=si−1+1

h(Tj)

∣∣∣∣∣D
]
=

xi
∫ ti

ti−1
h(z) f (z)dz∫ ti

ti−1
f (z)dz

. (A5)

The second term of the right-hand side of Equation (A1) is straightforwardly given by h(ti).
The third term can be derived by a similar way to the first term. Taking account of the
condition N = ν, we have

E

[
N

∑
i=sn+1

h(Ti)

∣∣∣∣∣D
]
=

∑∞
ν=sk

e−ω ων

ν!
ν!(ν−sk)
(ν−sk)!

∫ ∞
tk

h(z) f (z)dzF(tk)
ν−sk−1

∑∞
ν=sk

e−ω ων

ν!
ν!

(ν−sk)!
F(tk)ν−sk

= ω
∫ ∞

tk

h(z) f (z)dz, (A6)

where F(t) = 1− F(t).

References

1. Jelinski, Z.; Moranda, P.B. Software Reliability Research. In Statistical Computer Performance Evaluation; Freiberger, W., Ed.;
Academic Press: New York, NY, USA, 1972; pp. 465–484.

2. Goel, A.L.; Okumoto, K. Time-Dependent Error-Detection Rate Model for Software Reliability and Other Performance Measures.
IEEE Trans. Reliab. 1979, R-28, 206–211. [CrossRef]

3. Lyu, M.R. (Ed.) Handbook of Software Reliability Engineering; McGraw-Hill: New York, NY, USA, 1996.
4. Musa, J.D.; Iannino, A.; Okumoto, K. Software Reliability, Measurement, Prediction, Application; McGraw-Hill: New York,

NY, USA, 1987.
5. Pham, H. Software Reliability; Springer: Singapore, 2000.
6. Xie, M. Software Reliability Modelling; World Scientific: Singapore, 1991.
7. Rook, P. (Ed.) Software Reliability Handbook; Elsevier Science: London, UK, 1990.
8. Singpurwalla, N.D.; Wilson, S.P. Statistical Methods in Software Engineering; Springer: New York, NY, USA, 1997.
9. Li, Q.; Pham, H. A Generalized Software Reliability Growth Model With Consideration of the Uncertainty of Operating

Environments. IEEE Access 2019, 7, 84253–84267. [CrossRef]
10. Li, Q.; Pham, H. NHPP software reliability model considering the uncertainty of operating environments with imperfect

debugging and testing coverage. Appl. Math. Model. 2017, 51, 68–85. [CrossRef]
11. He, Y. NHPP software reliability growth model incorporating fault detection and debugging. In Proceedings of the 2013 IEEE 4th

International Conference on Software Engineering and Service Science, Beijing, China, 23–25 May 2013; pp. 225–228.
12. Song, K.Y.; Chang, I.H.; Pham, H. NHPP Software Reliability Model with Inflection Factor of the Fault Detection Rate Considering

the Uncertainty of Software Operating Environments and Predictive Analysis. Symmetry 2019, 11, 521. [CrossRef]
13. Sun, H.; Zhang, L.; Wu, J.; Wu, J.; Yang, H. A New Method of Model Combination Based on the NHPP Software Reliability

Models. In ICMSS 2018: Proceedings of the 2018 2nd International Conference on Management Engineering, Software Engineering and
Service Sciences; ACM: New York, NY, USA, 2018; pp. 153–158. [CrossRef]

14. Musa, J.D.; Okumoto, K. A Logarithmic Poisson Execution Time Model for Software Reliability Measurement. In Proceedings of
the 7th International Conference Software Engineering (ICSE-1084); IEEE CS Press: Los Alamitos, CA, USA; ACM: New York, NY,
USA, 1984; pp. 230–238.

15. Ohba, M. Software Reliability Analysis. IBM J. Res. Dev. 1984, 28, 428–443. [CrossRef]
16. Ohba, M. Inflection S-Shaped Software Reliability Growth Model. In Stochastic Models in Reliability Theory; Osaki, S., Hatoyama, Y.,

Eds.; Springer: Berlin, Gremany, 1984; pp. 144–165.

126

Mathematics 2021, 9, 985

17. Yamada, S.; Ohba, M.; Osaki, S. S-Shaped Reliability Growth Modeling for Software Error Detection. IEEE Trans. Reliab. 1983,
R-32, 475–478. [CrossRef]

18. Zhao, M.; Xie, M. On Maximum Likelihood Estimation for a General non-Homogeneous Poisson Process. Scand. J. Stat. 1996, 23,
597–607.

19. Pham, H.; Zhang, X. An NHPP Software Reliability Models and its Comparison. Int. J. Reliab. Qual. Safe. Eng. 1997, 4, 269–282.
[CrossRef]

20. Shanthikumar, J.G. A General Software Reliability Model for Performance Prediction. Microelectron. Reliab. 1981, 21, 671–682.
[CrossRef]

21. Langberg, N.; Singpurwalla, N.D. Unification of Some Software Reliability Models. SIAM J. Sci. Comput. 1985, 6, 781–790.
[CrossRef]

22. Chen, Y.; Singpurwalla, N.D. Unification of Software Reliability Models by Self-Exciting Point Processes. Adv. Appl. Probab. 1997,
29, 337–352. [CrossRef]

23. Miller, D.R. Exponential Order Statistic Models of Software Reliability Growth. IEEE Trans. Softw. Eng. 1986, SE-12, 12–24.
[CrossRef]

24. Hossain, S.A.; Dahiya, R.C. Estimating the Parameters of a non-Homogeneous Poisson-Process Model for Software Reliability.
IEEE Trans. Reliab. 1993, 42, 604–612. [CrossRef]

25. Knafl, G.; Morgan, J. Solving ML Equations for 2-parameter Poisson-Process Model for Ungrouped Software Failure Data.
IEEE Trans. Reliab. 1996, 45, 42–53. [CrossRef]

26. Joe, H. Statistical Inference for General-Order-Statistics and Nonhomogeneous-Poisson-Process Software Reliability Models.
IEEE Trans. Softw. Eng. 1989, 15, 1485–1490. [CrossRef]

27. Jeske, D.R.; Pham, H. On the maximum likelihood estimates for the Goel-Okumoto software reliability model. Am. Stat. 2001,
55, 219–222. [CrossRef]

28. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 1977,
B-39, 1–38.

29. Wu, C.F.J. On the convergence properties of the EM algorithm. Ann. Stat. 1983, 11, 95–103. [CrossRef]
30. Okamura, H.; Dohi, T.; Osaki, S. EM algorithms for logistic software reliability models. In Proceedings of the 22nd IASTED

International Conference on Software Engineering, Innsbruck, Austria, 17–19 February 2004; ACTA Press: Crete, Greece, 2004;
pp. 263–268.

31. Okamura, H.; Murayama, A.; Dohi, T. EM Algorithm for Discrete Software Reliability Models: A Unified Parameter Estimation
Method. In Proceedings of the 8th IEEE International Symposium High Assurance Systems Engineering, Tampa, FL, USA,
25–26 March 2004; pp. 219–228.

32. Okamura, H.; Watanabe, Y.; Dohi, T. Estimating a mixed software reliability models based on the EM algorithm. In Proceedings
of the International Symposium on Empirical Software Engineering (ISESE2002), Nara, Japan, 3–4 October 2002; IEEE Computer
Society Press: Los Alamitos, CA, USA, 2002; pp. 69–78.

33. Okamura, H.; Watanabe, Y.; Dohi, T. An iterative scheme for maximum likelihood estimation in software reliability modeling.
In Proceedings of the 14th International Symposium on Software Reliability Engineering, Denver, CO, USA, 17–20 November 2003;
pp. 246–256.

34. Okamura, H.; Dohi, T.; Osaki, S. Software reliability growth models with normal failure time distributions. Reliab. Eng. Syst. Saf.
2013, 116, 135–141. [CrossRef]

35. Ohishi, K.; Okamura, H.; Dohi, T. Gompertz software reliability model: Estimation algorithm and empirical validation. J. Syst.
Softw. 2009, 82, 535–543. [CrossRef]

36. Okamura, H.; Dohi, T. Phase-type software reliability model: Parameter estimation algorithms with grouped data. Ann. Oper.
Res. 2016, 244, 177–208. [CrossRef]

37. Okamura, H.; Dohi, T. Hyper-Erlang software reliability model. In Proceedings of the 2008 14th IEEE Pacific Rim International
Symposium on Dependable Computing, Taipei, Taiwan, 15–17 December 2008.

38. Okamura, H.; Dohi, T. Building Phase-Type Software Reliability Model. In Proceedings of the 2006 17th International Symposium
on Software Reliability Engineering, Raleigh, NC, USA, 7–10 November 2006; pp. 289–298.

39. Xiao, X.; Okamura, H.; Dohi, T. NHPP-based software reliability models using equilibrium distribution. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. (A) 2012, E95-A, 894–902. [CrossRef]

40. Kawasaki, M.; Okamura, H.; Dohi, T. A Comprehensive Evaluation of Software Reliability Modeling Based on Marshall-Olkin
Type Fault-Detection Time Distribution. In Proceedings of the 2017 24th Asia-Pacific Software Engineering Conference (APSEC),
Nanjing, China, 4–8 December 2017; pp. 486–494. [CrossRef]

41. Kimura, M.; Yamada, S. Software reliability management: Techniques and applications. In Handbook of Reliability Engineering;
Pham, H., Ed.; Springer: London, UK, 2003; pp. 265–284.

42. Ledoux, J.; Rubino, G. A counting model for software reliability analysis. Int. J. Model. Simul. 1997, 17, 289–297. [CrossRef]
43. Okamura, H.; Dohi, T. Unification of software reliability models using Markovian arrival processes. In Proceedings of the 17th

IEEE Pacific Rim International Symposium on Dependable Computing (PRDC-2011), Pasadena, CA, USA, 12–14 December 2011;
IEEE CS Press: Los Alamitos, CA, USA, 2011; pp. 20–27.

127

Mathematics 2021, 9, 985

44. Goel, A.L.; Okumoto, K. An Imperfect Debugging Model for Reliability and Other Quantitative Measures of Software Systems; Technical
Report 78-1; Department of IE & OR, Syracuse University: Syracuse, NY, USA, 1978.

45. Littlewood, B. A Reliability Model for Systems with Markov Structure. Appl. Stat. 1975, 24, 172–177. [CrossRef]
46. Ledoux, J. Availability modeling of modular software. IEEE Trans. Reliab. 1999, 48, 159–168. [CrossRef]
47. Zeephongsekul, P.; Jayasinghe, C.L.; Fiondella, L.; Nagaraju, V. Maximum-Likelihood Estimation of Parameters of NHPP

Software Reliability Models Using Expectation Conditional Maximization Algorithm. IEEE Trans. Reliab. 2016, 65, 1571–1583.
[CrossRef]

48. Nagaraju, V.; Fiondella, L.; Zeephongsekul, P.; Jayasinghe, C.L.; Wandji, T. Performance Optimized Expectation Conditional
Maximization Algorithms for Nonhomogeneous Poisson Process Software Reliability Models. IEEE Trans. Reliab. 2017,
66, 722–734. [CrossRef]

49. Okamura, H.; Dohi, T. Application of EM Algorithm to NHPP-Based Software Reliability Assessment with Ungrouped Failure
Time Data. In Stochastic Reliability and Maintenance Modeling: Essays in Honor of Professor Shunji Osaki on his 70th Birthday; Dohi, T.,
Nakagawa, T., Eds.; Springer: London, UK, 2013; pp. 285–313. [CrossRef]

50. Littlewood, B. Rationale for a Modified Duane Model. IEEE Trans. Reliab. 1984, R-33, 157–159. [CrossRef]
51. Goel, A.L. Software Reliability Models: Assumptions, Limitations and Applicability. IEEE Trans. Softw. Eng. 1985, SE-11, 1411–1423.

[CrossRef]
52. Gokhale, S.S.; Trivedi, K.S. Log-Logistic Software Reliability Growth Model. In Proceedings of the Third IEEE International

High-Assurance Systems Engineering Symposium (HASE-1998), Washington, DC, USA, 13–14 November 1998; IEEE CS Press:
Turku, Finland, 1998; pp. 34–41.

53. Musa, J. Software Reliability Data; Technical Report; Rome Air Development Center, Griffiss AFB: Rome, NY, USA, 1979.
54. Okamura, H.; Dohi, T. SRATS: Software reliability assessment tool on spreadsheet (Experience report). In Proceedings of the 24th

International Symposium on Software Reliability Engineering (ISSRE 2013), Pasadena, CA, USA, 4–7 November 2013; IEEE CS
Press: Los Alamitos, CA, USA, 2013; pp. 100–117.

128

mathematics

Article

An Enhanced Evolutionary Software Defect Prediction Method
Using Island Moth Flame Optimization

Ruba Abu Khurma 1, Hamad Alsawalqah 1, Ibrahim Aljarah 1,*, Mohamed Abd Elaziz 2,3

and Robertas Damaševičius 4,*

Citation: Khurma, R.A.; Alsawalqah,

H.; Aljarah, I.; Elaziz, M.A.;

Damaševičius, R. An Enhanced

Evolutionary Software Defect

Prediction Method Using Island Moth

Flame Optimization. Mathematics

2021, 9, 1722. https://doi.org/

10.3390/math9151722

Academic Editors: Tadashi Dohi and

Shaoying Liu

Received: 28 June 2021

Accepted: 20 July 2021

Published: 22 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional clai-ms

in published maps and institutio-nal

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 King Abdullah II School for Information Technology, The University of Jordan, Amman 11942, Jordan;
ruba_abukhurma@yahoo.com (R.A.K.); h.sawalqah@ju.edu.jo (H.A.)

2 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
abd_el_aziz_m@yahoo.com

3 School of Computer Science and Robotics, Tomsk Polytechnic University, 634050 Tomsk, Russia
4 Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
* Correspondence: i.aljarah@ju.edu.jo (I.A.); robertas.damasevicius@polsl.pl (R.D.)

Abstract: Software defect prediction (SDP) is crucial in the early stages of defect-free software
development before testing operations take place. Effective SDP can help test managers locate
defects and defect-prone software modules. This facilitates the allocation of limited software quality
assurance resources optimally and economically. Feature selection (FS) is a complicated problem
with a polynomial time complexity. For a dataset with N features, the complete search space has
2N feature subsets, which means that the algorithm needs an exponential running time to traverse
all these feature subsets. Swarm intelligence algorithms have shown impressive performance in
mitigating the FS problem and reducing the running time. The moth flame optimization (MFO)
algorithm is a well-known swarm intelligence algorithm that has been used widely and proven its
capability in solving various optimization problems. An efficient binary variant of MFO (BMFO) is
proposed in this paper by using the island BMFO (IsBMFO) model. IsBMFO divides the solutions in
the population into a set of sub-populations named islands. Each island is treated independently
using a variant of BMFO. To increase the diversification capability of the algorithm, a migration
step is performed after a specific number of iterations to exchange the solutions between islands.
Twenty-one public software datasets are used for evaluating the proposed method. The results of
the experiments show that FS using IsBMFO improves the classification results. IsBMFO followed
by support vector machine (SVM) classification is the best model for the SDP problem over other
compared models, with an average G-mean of 78%.

Keywords: moth flame optimization; island-based model; feature selection; software defect prediction;
software reliability

1. Introduction

The software industry has recently undergone further development in various aspects
related to the software development life-cycle (SDLC). An important aspect to achieve
during SDLC is reliability and error-free code. Software defect describes the error status
that occurs at the program or system level which leads to erroneous results and unexpected
actions and allows the system to behave in an unintended way [1]. There are several
reasons behind software defects [2] such as incomplete or ambiguous requirements due
to miscommunication and misinterpretation during requirements elicitation, errors in
assumptions and preliminary specifications, lack of knowledge in the domain, developers
with insufficient practical experience and technical skills, poor programming logic, and so
forth. Software defects have many negative consequences for the quality of the software
and the overall effectiveness of the system in terms of time, budget, risks, and resources [3].
For example, errors in the design stage may require a high cost of maintenance and

Mathematics 2021, 9, 1722. https://doi.org/10.3390/math9151722 https://www.mdpi.com/journal/mathematics

129

Mathematics 2021, 9, 1722

restructuring. Poor quality software production will not satisfy customer requirements and
will ultimately affect the company’s reputation [4].

Defect prediction plays an important role in identifying error-prone modules and
controlling the percentage of defects in the software, which improves the quality of the
software. This will improve the testing process as it will focus on parts that are more likely
to work incorrectly [5]. On the other hand, the distribution of errors in the code determines
the refactoring candidates, which enhances the quality and the efficiency of the software
product [6,7]. There are three categories of software defect prediction (SDP): prediction of
the number of defects, prediction of the severity of defects, and prediction of whether the
software module is defective or not. Among them, the last category is the most frequently
used, where the SDP is formulated as a binary classification problem that deals with two
classes called defect and non-defect [8].

In the literature, many machine learning algorithms have been proposed to predict
software defects either through supervised or unsupervised learning [9–14]. Supervised
learning is the most common machine learning method used to create SDP models, where
the applied learning strategy is based on inferring a pattern from a set of instances (training
data set). This pattern can then be applied to invisible instances (testing data set) to predict
their class labels. Examples of supervised data mining methods used to reliably solve the
software defects problem include decision trees (DT), artificial neural network (ANN),
naïve Bayesian (NB), support vector machine (SVM), and random forest (RF) [15].

Feature selection (FS) is a data mining step to select the most informative features in
the dataset. Its main target is to obtain a feature subset with a minimum length that, at the
same time, achieves the maximum classification performance [16]. The FS process consists
of search and evaluation sub-processes. The evaluation sub-process utilizes the dataset
characteristics (e.g., filters) or classifier (e.g., wrappers) to evaluate a feature subset [17].
For applying the search in the FS process, many methods can be performed. Traditionally,
brute force methods have been applied, but they are time-consuming. These are complete
search methods because they generate the entire feature space and traverse all the feature
subsets. Meta-heuristic methods such as swarm intelligence [18] algorithms generate
random solutions and achieve promising results within less time [19]. Swarm intelligence
methods have been used widely for enhancing the FS process, such as face recognition [20],
machine scheduling [21], medical diagnosis [17,22], multi-objective power scheduling [23]
and software defect prediction [24].

The moth flame optimization (MFO) algorithm is a swarm intelligence algorithm that
is commonly used in many applications [25–27]. MFO generates a swarm of solutions to
explore the search space. Furthermore, it adopts a spiral method to update the positions
of moths and change their positions. The gradual degradation of the number of solutions
improves the exploration/exploitation trade-offs. This supports the adaptive convergence
behavior of the algorithm. However, MFO inherits the drawbacks of swarm intelligence
algorithms, such as stagnation in local minima and premature convergence. To address
these shortcomings, the improvement of the MFO algorithm has been proposed [28–31].

The island-based model has been integrated with many swarm intelligence algorithms.
In this model, the members of the population are distributed among a set of sub-populations
where they are managed separately using local rules. In a migration step, migrants interact
with each other. Usually, this is done by exchanging the highly fit solutions between islands.
This step increases the diversity among solutions and enhances the convergence trends.
Three main factors affect the performance of the migration: the rate, the frequency, and
the topology of migration. The rate of migration determines the number of exchanged
solutions between islands. The frequency of migration indicates the number of invocations
for the migration process. Lastly, the topology of migration defines the way the solutions
are exchanged between islands. In the literature, there are many studies that integrate the
island models with metaheuristic algorithms [32–35].

This paper proposes the island model to enhance the binary MFO (BMFO) algorithm.
The new variant named IsBMFO is used to enhance the FS process and the prediction

130

Mathematics 2021, 9, 1722

of software defects. The main objectives are enhancing the diversity of the solutions,
alleviating the local minima problem, and enhancing convergence trends. The islands
are generated from dividing the population into a group of islands. Each island consists
of a group of solutions. Solutions are enhanced locally in each island, and then they
are exchanged using a migration mechanism that adopts a random-ring topology. This
topology exchanges the solution with the worst fitness in the destination island with the
solution with the best fitness from the source island.

The remaining parts of this paper are arranged into sections as follows: Section 2
discusses related studies in the literature. Section 3 provides background about the applied
classifiers, the MFO algorithm, and the island model. Section 4 describes the IsBMFO.
Section 5 describes the experiments and the related discussions. Finally, Section 6 draws
the conclusions of the paper and suggests some possible future works.

2. Related Works

Recently, the SDP problem has become a noteworthy research topic that has increasingly
attracted the interest of researchers. Several methods from statistics, information theory,
and machine learning fields have been used to predict defected models and reduce the cost
of software production and maintenance [36,37].

In [38], the authors aimed to find the count of defects when the software process is
not properly executed. For the classification of defects, the authors employed different DT
algorithms such as C4.5 and ID3. Pattern mining methods were used to evaluate the defect
patterns.

Can et al. [39] proposed a prediction model for software defects using particle swarm
optimization (PSO) and SVM called the P-SVM. Specifically, the PSO was used for the
optimization of parameters of the SVM. After identifying the optimal parameters of the
SVM, it was used to predict the defects in the software. The experiments were performed
over the JM1 dataset. P-SVM was compared with the SVM model, back propagation neural
network (BPNN) model, and optimized SVM using the genetic algorithm (SVM-GA) model.
The results proved the superiority of the P-SVM model.

Shuai et al. [40] proposed a cost-sensitive SVM (CSSVM) model which is based on
dynamic SVM using the concept of cost-sensitivity. The model was optimized using the
GA algorithm. The fitness function used the geometric accuracy metric. The results of the
experiments showed that the GA-CSSVM achieved a higher area under the curve (AUC)
value, indicating better prediction accuracy.

Agrawal and Tumar [41] proposed an FS approach based on a linear twin SVM
(LTSVM) classifier to predict the defective software modules. They worked on determining
the most important metrics set. The reduced metrics set, obtained after the FS process,
was used to enhance the predictive power of their approach. The experiments on four
PROMISE datasets showed the effectiveness of the LSTVM model.

In [42], the authors studied the software defect prediction using different methods
such as DT, decision tables, RF, NN, NB, artificial immune recognition system, CLONALG,
and Immunos. They used four software datasets from NASA. Principal component analysis
(PCA) and correlation-based FS methods were applied for evaluation. The experiments
proved that RF is the best predictor for large datasets while NP is the best predictor for small
datasets. Moreover, the experiments showed that the Immunos-99 algorithm performed
well when the FS method was applied, while the AIRSParallel algorithm performed better
without applying FS methods.

Singh and Chung [15] applied common machine learning algorithms including
artificial NN, PSO, DT, NB, and linear classifier. The authors used the KEEL tool and
k-fold cross-validation method. The results on seven open-source NASA datasets proved
the superiority of the linear classifier in terms of accuracy.

Recently, in [43], the authors used the oversampling technique SMOTE along with FS
using PSO on object-oriented metrics. The obtained features were then utilized to train
the datasets on SVM to predict defects. The experiments showed that SVM performed

131

Mathematics 2021, 9, 1722

better when the dataset was balanced with SMOTE and PSO was used for selecting the
feature set.

In [44], the authors studied the effect of 46 FS methods based on NB and DT classifiers
over software defect datasets. The results proved that there is no model that can be
considered the best FS method. This is because their performances depend on the applied
classifiers, used evaluation metrics, and datasets.

Overall, in the literature, many studies used classification algorithms for classifying
software defects datasets such as NB, KNN, C4.5, and SVM. Some of these studies proposed
GA and PSO algorithms for optimizing the SVM. However, the number of works that
addressed the problem of FS in the domain of software defect prediction is still few. This
work focuses on identifying the features subset that is considered the optimal one for
improving the efficiency of classifiers. Based on the no free lunch (NFL) theorem, no
optimization algorithm is considered the best solution to solve every optimization problem.
Hence, there is always room to develop, propose, and enhance optimization algorithms to
tackle different optimization problems. MFO has remarkable proprieties among swarm
intelligence algorithms. Therefore, in this study, we further enhance its performance to
optimize FS and produce better results for software defect prediction.

3. Background

3.1. Classification Algorithms
3.1.1. K-Nearest Neighbor Classifier (k-NN)

This is a type of classification algorithm that belongs to a larger category of pattern
recognition algorithms known as instance-based or lazy learning algorithms. Instead of
conducting the generalization in an explicit training phase, they rely on computing the
distance (similarities) between the unlabeled new query instance and its nearest k neighbors
from the labeled training instances stored in memory. The basic idea for k-NN is that the
nearby points in space are likely to have a similar class concept. In classification problems,
the input to the k-NN is the k closest examples among the training examples, and the
output is the labels of these examples. Assigning labels depends on the majority of votes
obtained from the k closest neighbors for the required example. The comparison and the
calculation of the closeness between points are done based on a predefined distance metric
such as the Euclidean distance.

3.1.2. Support Vector Machines (SVM)

SVM is a supervised robust learning model that is based on a statistical learning
framework. Given a set of training examples, the SVM maps these examples to one or the
other category. This means that SVM is a binary classifier that applies an improbable linear
method. The SVM tries to put the training examples in points in space in such a way to
maximize the gap between the two categories. In addition, SVM can perform a non-linear
classification using the kernel trick.

3.1.3. Naive Bayes Classifier (NB)

NB is a classification algorithm that applies the Bayes’ theorem, and it is considered
a probabilistic classifier. NB assumes strong independence between features. NB gives
the probability of membership of an example to each class. NB is among the simplest of
Bayesian network models that can achieve higher classification results.

3.2. Overview of Moth Flame Optimization Algorithm

The moth flame optimization algorithm (MFO) is a widely applied swarm intelligence
algorithm [45] with remarkable results. The inspiration of MFO is from an insect called a
moth. Moths move straight in nature by following a natural mechanism called transverse
orientation. This mechanism enables moths to go far distances straight by keeping the same
angle with a distant source of light such as the moon. However, the transverse orientation
does not work correctly when the source light is near the moths. Consequently, moths are

132

Mathematics 2021, 9, 1722

forced to enter a spiral path and move around the light. Figure 1 shows the movement of
moths around a candle by following a spiral path.

Figure 1. The spiral path of moths around a candle.

The MFO identifies a set of solutions (population) where the solutions are called moths.
The moths represent the possible solutions to the optimization problem. A specified fitness
function is used to determine the fitness of each moth. Another component of the MFO
is the flame. Both a moth and a flame are solutions; they differ in their update strategy.
Moths are the identified solutions that are candidates to be the best solutions, but flames
are the best achieved solutions. Each flame is replaced whenever a better solution is found
so that the best solutions are never missed.

The spiral movement of moths around the flames is formulated in Equation (1), which
describes the movement of moths in a spiral path around a candle where Moi is the ith
moth, Flj is the jth flame, and Sp is the function of spiral path.

Equation (2) shows the logarithmic function used to formulate the spiral movement
of moths, where Dsi is the distance between the ith moth and the jth flame as shown in
Equation (3), b is a constant value that determines the shape of the logarithmic spiral, and t
is a random number in [−1, 1]. The parameter t = −1 represents the closest position of a
moth to a flame, where t = 1 represents the farthest position between a moth and a flame.
To increase exploitation, the t parameter is selected in the range [r, 1], where r is decreased
linearly across iterations from −1 to −2.

Moi = Sp(Moi, Flj) (1)

Sp(Moi, Flj) = Dsi × ebt × cos(2Π) + Flj (2)

Dsi = |Moi − Flj| (3)

Equation (4) shows the gradual decrease of the number of flames across the iterations,
where Ct is the current number of iterations, M f l is the maximum number of flames, and
Mt is the maximum number of iterations.

FlameNumber = round(M f l − Ct × (M f l − 1)/Mt) (4)

133

Mathematics 2021, 9, 1722

3.3. Binary Moth Flame Optimization for Feature Selection

MFO was designed to solve continuous optimization problems. FS is a discrete
problem in which the search space consists of two values, “0” or “1”. For this reason, MFO
needs some modification to be able to optimize in a binary feature space. In [46], the authors
used the transfer functions to produce a binary optimizer from the original continuous
version of the optimizer. A mapping procedure is used to convert the continuous update
process into a binary process. Thus, the elements of the updated solutions are either “0”
or “1”.

In the proposed models, the sigmoid transfer function is used to produce a BMFO
from the original MFO. The sigmoid function defines a probability for each element of the
solution within a range [0, 1]. It was used in [47] to produce a binary variant of PSO. The
velocity (step) is analogous to the first term of Equation (2) in the MFO algorithm. This
term is redefined in Equation (5) as the probability for changing the position of moths.
Each moth updates its position in the binary search space using Equation (7) based on the
probability generated from Equation (6). Algorithm 1 shows the BMFO algorithm.

ΔMo = Dsi × ebt × cos(2Π) (5)

Tr f (ΔMot) = 1/(1 + eΔMot) (6)

Mod
i (t + 1) =

{
0, if rand < Tr f (ΔMot+1)

1, if rand
 Tr f (ΔMot+1)
(7)

Algorithm 1 The pseudo-code of BMFO.
Input: Mt, n (# moths), d (# dimensions)
Output: near optimal moth
Initialization process for the moths

while Ct ≤ Mt do
modify the number of flames using Equation (4)
FMo = Fitness(Mo);
if Ct == 1 then

Fl = sort(Mo);
FFl = sort(FMo);

else
Fl = sort(MoCt−1, MoCt);
FFl = sort(FMoCt−1, FMoCt);

end if
for i = 1: n do

for j = 1: d do
Modify r and t;
Compute Ds by Equation (3) based on the corresponding moth;
Modify the step vector of a moth ΔMo using Equation (5).
Compute the probabilities by Equation (6).
Modify the position of a moth by Equation (7)

end for
end for
Ct = Ct + 1;

end while

The fitness function is formulated in Equation (8), where Err is the error rate, |S f |
is the number of selected features in the reduced data set, |C f | is the number of features
in the original data set, and α ∈ [0, 1], β = (1 − α) are two parameters that indicate the
significance of classification and the number of selected features according to [19].

134

Mathematics 2021, 9, 1722

Fitness = α × Err + β × |S f |
|Cf| (8)

3.4. Fundamentals to Island-Based Model

The island model is an efficient method for structuring the population and increasing
its heterogeneity [33,34]. This is applied by dividing the population into smaller sub-
populations called (islands). The evolutionary algorithm is applied on each island either
in a synchronous or asynchronous way. A migration process is applied after a period
to allow solutions from different islands to exchange their positions. The exchange of
solutions between islands improves exploration/exploitation trade-offs. This happens
because the low-quality solutions with low-fitness values can approach the region where
the global optima locate. Another advantage of the island model is that it enables the
parallel implementation of the evolutionary algorithm on each island. This can minimize
the computation time of complex optimization problems.

The island model has been applied with several evolutionary computation algorithms.
The main purpose is to increase the population diversity and search the search space
effectively. Examples of island-based models include the island differential evolution [48],
island flower pollination algorithm [33], island ant colony [49], island bat algorithm [32],
and island harmony search [34].

Several factors affect the island model such as the number of islands or the number of
times the solutions are exchanged between islands. For integrating the island model with
evolutionary algorithms, the partitioning and migration operators are used. Partitioning
accounts for the number of islands (Isn) and the size of the island (Iss). In migration, the
Mrm × Iss moths are to be swapped between islands after a predetermined number of
iterations Itm, where Mrm is the migration rate and Iss is the island size.

The migration process can be performed in a synchronous or asynchronous way. In
the synchronous way, the solutions are swapped between islands simultaneously. The
asynchronous way enables solutions to change their islands to other ones after a specific
time. Therefore, the migration times are different between islands. An important factor in
migration is the topology. There are two migration typologies: either static or dynamic.
The static typologies determine the paths between islands, so they are not changeable. The
dynamic typologies determine the paths between islands during the execution time. The
effectiveness of the island model is also affected by the migration process. This indicates
which solutions will be selected to migrate between islands. A common migration policy is
known as best–worst. It selects the best solution (with the highest fitness value) from the
source island to be swapped with the worst solution (with the lowest fitness value) from the
destination island [48]. Another known policy for applying migration is random-random.
It selects a random solution from the source island to be swapped with a random solution
from the destination island [50].

4. Island-Based MFO (IsMFO) Algorithm

This section proposes the island MFO algorithm. Figure 2 shows the overall methodology
followed in this work. Initially, the population of moths is split into a set Isn islands of
moths. Each island is of size Iss moths. The MFO runs independently and asynchronously
on each island. The number of times the algorithm runs depends on the migration frequency
Frm. The moths are exchanged based on random-ring migration topology, and the number
of moths to be exchanged depends on the migration rate Mrm. The migration policy
used is the best–worst. This technique is applied more than one time until reaching the
maximum iteration.

135

Mathematics 2021, 9, 1722

Figure 2. Architecture of the proposed methodology.

The IsBMFO flowchart is shown in Figure 3, and the pseudo-code is shown in
Algorithm 2.

Figure 3. The flowchart of the proposed IsBMFO algorithm.

136

Mathematics 2021, 9, 1722

Algorithm 2 The IsBMFO pseudo-code.
———–Identification of the IsBMFO parameters———————
Set the IsBMFO parameters Mt, n, d, Isn, Iss, Mrm, Frm
———–Initialize the IsBMFO positions———————
Initialize the positions of moths
0: ——–Split IsBMFO into a group of islands———————-

Flag(y) = False, ∀y = (1, 2....n)
for K = 1 : Isn do

for i = 1 : Iss do
select y , where y ∈ (1, 2,..., n)
while Flage(y) is true do

select y , where y ∈ 1, 2, . . . , Sn
end while
Add xy to island Isk

end for
end for
while Ct ≤ Mt do

——–Improvement step———————-
for i = 1: Isn do

Update flame no using Equation (4)
FMo = Fitness(Mo);
if Ct == 1 then

Fl = sort(Mo);
FFl = sort(FMo);

else
Fl = sort(MoCt−1, MoCt);
FFl = sort(FMoCt−1, FMoCt);

end if
for i = 1: Is do

for j = 1: d do
Modify r and t;
Compute Ds by Equation (3) based on the corresponding moth;
Modify the step vector of a moth ΔMo by Equation (5).
Compute the probabilities by Equation (6).
Modify the position of a moth by Equation (7)

end for
end for

end for
———- —– Migration of moths———-
if t mod Frm = 0 then

for y = 1, .., Isn do
k = 1
while k ≤ Mrm × Is do

xWorst(k, y + 1) = xBest(k, y)
end while

end for
end if
Ct = Ct + 1

end while

The IsBMFO steps are explained next:
Step 1: This is the initialization step for the BMFO parameters. These include the #

dimensions (d), # moths (n), and the # iterations (#Mt). The fitness function f (Mo) and the
representation of a moth Mo = (mo1, mo2, . . . , mod) are also defined. The island model
parameters should be identified as follows:

137

Mathematics 2021, 9, 1722

• Island number (Isn): this determines the number of sub-populations that is less than
or equal to n.

• The size of island (Iss): the population size for each island can be computed using the
formula Iss = n/Isn since all islands are homogeneous.

• The frequency of migration (Frm): this indicates the required iterations number to call
the migration function.

• The rate of migration (Mrm): this indicates the number of moths swapped between
islands based on Iss, where Mrm × Iss ≤ Iss.

Step 2: Identifies the solutions in the population of IsBMFO. In this step, IsBMFO
follows the same process as in the MFO. The random moths are Mo = (mo1, mo2, ..., mon),
and the fitness function (i.e., f (mo)) for each moth (moj , where j ∈ (1, 2, ..., n)) is computed.

Step 3: Split the IsBMFO population into a set of islands Isn of size Iss for each one
as shown in Figure 4. The island vector is Is = (Is1, Is2, . . . , Isn), where each variable
Isj ∈ (1, 2, ..., Isn). As an example, assume Isn = 4 and Iss = 3 are the division of IsBMFO
population of size n=12. Assume that Is = (3, 4, 2, 1, 4, 2, 4, 1, 3, 2, 1, 3), then island
Is1 = (M4, M8, M11), island Is2 = (M3, M6, M10), island Is3 = (M1, M9, M12), and island
Is4 = (M2, M5, M7). Remember that each moth is assigned randomly to an island.

Step 4: The step of improvement includes updating the flames number, calculating
the objective values of moths, and sorting of moths based on their fitness values. In this
stage, the moth is updated based on the computed distance between a moth and the flame
corresponding to it.

Step 5: Migration process of IsBMFO. The main target of the migration process is to
exchange the moths between islands. After a predefined iteration number specified by
(Frm), the migration process is applied as shown in Algorithm 2. A specific number of moths
are exchanged on each island based on the migration rate Mrm, where Mrm × Iss ≤ Iss.
The migration uses the best–worst policy and a random ring topology. The best–worst
policy selects the best Mrm × Iss moths from an island to replace the worst Mrm × Iss
moths on a neighboring island. In random-ring topology, the islands are rearranged in a
random way to compose a ring (Isj, Isj+1, ..., Isk, Isj) in which the island neighbor to Isj is
island Isj+1, and the island neighbor to Isj+1 is island Isj+2, etc.

Figure 4. An illustration of island-based model.

5. Experimental Results

5.1. Model Evaluation Metrics

The basic evaluation metric that is used to evaluate the proposed software defect
prediction algorithm is the confusion matrix. Table 1 shows the confusion matrix.

138

Mathematics 2021, 9, 1722

Table 1. Confusion Matrix.

Actual Labels

Predicted labels

Defect Non-Defect

Defect TruePos FalsePos

Non-defect FalseNeg TrueNeg

From the confusion metric, other evaluation metrics can be deduced, such as:

1. Recall: The ratio of correctly classified defected instances, as in Equation (9):

Recall =
TruePos

TruePos + FalseNeg
(9)

2. Precision: The ratio of the correctly classified defected instances among the retrieved
instances. It can be calculated by Equation (10):

Precision =
TruePos

TruePos + FalsePos
(10)

3. G-mean: The recall of each class, as in Equation (11):

G-mean =

√
TruePos

TruePos + FalseNeg
× TrueNeg

FalsePos + TrueNeg
(11)

5.2. Datasets Specifications

The methodology is verified by a series of 21 public benchmark software datasets.
Table 2 describes the datasets. Eleven of these datasets are downloaded from the NASA
corpus (cleaned versions) https://figshare.com/articles/dataset/MDP_data_sets_D_and_
D_-_zipped_up/6071675 (accessed on 28 May 2021), while the remaining datasets are from
the PROMISE software engineering corpus http://promise.site.uottawa.ca/SERepository/
(accessed on 28 May 2021). NASA collected datasets from real software projects with
different specifications such as the programming language, the code size, and software
measures. The datasets consist of a set of features that have values and a goal field that
describes the instance as defect or non-defect. These features describe the program from
different sides including the lines of code measure (program length, count of lines of
comments, count of lines of comments), McCabe metrics, base Halstead measures, derived
Halstead measures, unique operators, unique operands, total operators, total operands,
cyclomatic complexity, essential complexity, design complexity, and a branch-count. The
PROMISE datasets were collected from open-source software projects.

139

Mathematics 2021, 9, 1722

Table 2. Description of datasets.

No. Name Features Instances Defects Non-Defects Defect Ratio Non-Defect Ratio

D_1 cm1 38 327 42 285 12.8 87.2
D_2 jm1 22 7782 1672 6110 21.5 78.5
D_3 kc1 22 1183 314 869 26.5 73.5
D_4 kc3 40 194 36 158 18.6 81.4
D_5 mc1 39 1988 46 1942 2.3 97.7
D_6 mw1 38 253 27 226 10.7 89.3
D_7 pc1 38 705 61 644 8.7 91.3
D_8 pc2 37 745 16 729 2.1 97.9
D_9 pc3 38 1077 134 943 12.4 87.6
D_10 pc4 38 1287 177 1110 13.8 86.2
D_11 pc5 39 1711 471 1240 27.5 72.5

D_12 ant-1.7 21 745 166 579 22.3 77.7
D_13 camel-1.6 21 965 188 777 19.5 80.5
D_14 ivy-2.0 21 352 40 312 11.4 88.6
D_15 jedit-4.3 21 492 11 481 2.2 97.8
D_16 log4j-1.2 21 205 189 16 92.2 7.8
D_17 lucene-2.4 21 340 203 137 59.7 40.3
D_18 poi-3.0 21 442 281 161 63.6 36.4
D_19 tomcat-6 20 858 77 781 9 91
D_20 xalan-2.6 21 885 411 474 46.4 53.6
D_21 xerces-1.4 21 588 437 151 74.3 25.7

5.3. Results and Discussion

The methodology for applying training and testing in the experiments is based on
a hold-out strategy in which each data set is split in a random way into 80% for training
and 20% for testing. The experiments were repeated 30 times to obtain significant results.
All experiments were conducted using a personal computer with AMD Athlon Dual-Core
QL-60 CPU at 1.90 GHz and 2 GB of memory. The EvoloPy-FS [51] was used to run
the experiments. It is a framework in Python for applying binary swarm intelligence
algorithms to solve FS problems. It is open-source and available at (www.evo-ml.com
accessed on 28 May 2021). The population size and the maximum iterations were set to 10
and 100, respectively [52].

Figure 5a illustrates the average recall obtained from applying the classifiers NB,
KNN, and SVM without FS, with BMFO-FS, and with IsBMFO-FS. As can be seen, there
was a dynamic increase in the values of recall. The lower values from the three classifiers
were achieved when the classifiers were applied to the datasets without implementing
FS. There was an increase in the recall values of the three classifiers when BMFO-FS was
implemented. The best recall results were achieved when the IsBMFO-FS was implemented.
This can be explained by the FS process having an effective influence on the classifiers’
performance. Furthermore, the island-based affected the performance of the classifiers and
enhanced the optimizer job in the feature search space. In three experiments, the SVM
classifier achieved the best performance, followed by the NB classifier. The lowest recall
results were obtained by the KNN classifier. This can be explained by the SVM having the
capability to distinguish between classes more than the KNN and NB. Furthermore, the
integration of the FS process and the island enhancement helped to increase its efficiency.
Figures 5b and 6 show the results of the precision and gmean. As can be seen, the precision
and gmean were increased dramatically when FS and FS with the island enhancement
were applied to the BMFO.

Figures 7a,b and 8 show the recall, precision, and recall results obtained from applying
IsBMFO-FS to all the datasets. It can be noticed that the SVM classifier achieved the best
results on most of the datasets. On the other hand, lower results were achieved by the NB

140

Mathematics 2021, 9, 1722

and KNN classifiers. It can be noticed that the performance results of the NB and KNN
were similar.

Figure 9 shows the convergence behavior of the three classifiers KNN, NB, and SVM
with the proposed IsBMFO. It can be seen that the convergence behavior of the classifier
SVM was better than the NB and KNN on 71% of the datasets. This can be seen in the tails
of the convergence curves that reached low values of fitness. This means that IsBMFO with
the SVM classifier can reach the global best in the time the other classifiers fall in the local
minima. In addition, the classifier NB achieved better convergence scales compared with
KNN on fifteen datasets. The convergence scales of the three classifiers were similar on six
datasets: mw1, pc2, pc3, ant-1.7, xalan-2.6, and xerces-1.4.

Table 3 shows p-values of the Wilcoxon test based on fitness. This statistical test takes
into consideration all runs to determine if the IsBMFO-SVM is meaningfully different
from other methods. Table 3 shows the superiority of IsBMFO-SVM over IsBMFO-NB and
IsBMFO-KNN.

(a) (b)
Figure 5. Results of applying classifiers without FS, with BMFO-FS, and with IsBMFO-FS on all datasets. Average recall (a)
and average precision (b).

Figure 6. Average gmean results of applying classifiers without FS, with BMFO-FS, and with IsBMFO-
FS on all datasets.

141

Mathematics 2021, 9, 1722

(a) (b)
Figure 7. Results of applying classifiers with IsBMFO-FS on all datasets. Average recall (a) and Average precision (b).

Figure 8. Gmean results of applying classifiers with IsBMFO-FS on all datasets.

142

Mathematics 2021, 9, 1722

(a) D_1 (b) D_2 (c) D_3

(d) D_4 (e) D_5 (f) D_6

(g) D_7 (h) D_8 (i) D_9

(j) D_10 (k) D_11 (l) D_12

(m) D_13 (n) D_14 (o) D_15

Figure 9. Cont.

143

Mathematics 2021, 9, 1722

(p) D_16 (q) D_17 (r) D_18

(s) D_19 (t) D_20 (u) D_21
Figure 9. Convergence curves for IsBMFO with the three classifiers KNN, NB, and SVM.

Table 3. p-values of the Wilcoxon test for the IsBMFO-SVM and other classifiers using fitness (p > 0.05
are underlined).

Datasets IsBMFO-KNN IsBMFO-NB

D_1 2.44 × 10−5 1.56 × 10−5

D_2 4.31 × 10−5 2.24 × 10−4

D_3 1.21 × 10−1 1.37 × 10−1

D_4 1.28 × 10−4 1.61 × 10−10

D_5 1.31 × 10−4 1.81 × 10−9

D_6 1.23 × 10−10 1.62 × 10−10

D_7 2.38 × 10−13 1.30 × 10−12

D_8 2.46 × 10−10 2.23 × 10−10

D_9 4.52 × 10−6 5.14 × 10−7

D_10 4.95 × 10−11 2.25 × 10−11

D_11 3.14 × 10−11 3.56 × 10−10

D_12 6.63 × 10−4 9.22 × 10−14

D_13 9.41 × 10−13 5.56 × 10−12

D_14 1.78 × 10−1 1.12 × 10−1

D_15 2.32 × 10−1 2.35 × 10−5

D_16 2.23 × 10−11 3.25 × 10−12

D_17 5.18 × 10−12 2.12 × 10−13

D_18 4.13 × 10−7 3.82 × 10−7

D_19 3.66 × 10−9 8.4 × 10−12

D_20 2.61 × 10−6 3.13 × 10−7

D_21 2.65 × 10−11 2.14 × 10−11

5.4. Analytical Description of the Relevant Features

This section presents an analytical description of the most informative features. These
features are obtained by the IsBMFO-SVM approach. Referring to Table 4, it shows the # all
features in each dataset (AF), the number of selected features (SF), the feature reduction
ratio (FRR), and the selected relevant features (RF) in the dataset. For the FFR, it is calculated
by Equation (12).

144

Mathematics 2021, 9, 1722

FFR =
AF− SF

AF
(12)

As can be seen, the FFR ranged between 48% on poi-3.0 and jedit-4.3 datasets to 74%
on pc1 dataset. The average FRR on all the datasets is 62%. This ratio indicates that the
proposed IsBMFO-SVM can reduce the dimensionality of the datasets by more than half.
This supports the proposed IsBMFO-SVM, which also outperformed other approaches in
terms of recall, precision, gmean, and convergence scales.

Table 4. Relevant features in software datasets.

Datasets AF SF FFR% RF

cm1 38 15 61% F2, F3, F7, F9, F11, F14, F17, F19, F23, F25, F26, F32, F33, F36, F38
jm1 22 9 59% F1, F2, F4, F6, F7, F11, F13, F16, F19
kc1 22 8 64% F3, F7, F9, F10, F14, F15, F18, F21
kc3 40 16 60% F2, F4, F7, F8, F9, F11, F17, F19, F23, F26, F28, F31, F33, F35, F39, F40
mc1 39 12 69% F3, F7, F8, F12, F13, F15, F20, F24, F28, F29, F32, F38
mw1 38 13 66% F1, F5, F9, F11, F14, F16, F19, F20, F22, F25, F27, F30, F31
pc1 38 10 74% F1, F6, F13, F15, F17, F21, F24, F27, F29, F35
pc2 37 14 62% F1, F3, F4, F8, F13, F14, F17, F25, F27, F29, F30, F34, F36, F37
pc3 38 11 71% F2, F3, F6, F9, F17, F20, F22, F26, F31, F34, F37
pc4 38 11 71% F1, F5, F8, F9, F14, F22, F23, F26, F31, F35, F38
pc5 39 12 69% F2, F4, F8, F10, F12, F15, F19, F25, F29, F30, F32, F37

ant-1.7 21 7 67% F1, F5, F7, F10, F16, F19, F21
camel-1.6 21 9 57% F2, F5, F6, F9, F11, F12, F14, F17, F20

ivy-2.0 21 10 52% F3, F7, F10, F11, F13, F15, F16, F19, F20, F21
jedit-4.3 21 11 48% F1, F4, F5, F7, F9, F13, F14, F15, F18, F20, F21
log4j-1.2 21 8 62% F6, F9, F10, F13, F15, F17, F20, F21

lucene-2.4 21 9 57% F2, F4, F7, F10, F11, F15, F18, F19, F21
poi-3.0 21 11 48% F2, F5, F7, F8, F9, F10, F11, F14, F17, F19, F21

tomcat-6 20 7 65% F4, F5, F8, F11, F13, F19, F20
xalan-2.6 21 8 62% F1, F3, F6, F10, F11, F12, F19, F20
xerces-1.4 21 10 52% F1, F4, F6, F7, F8, F11, F14, F16, F20, F21

6. Conclusions and Future Trends

This paper proposes the island model to enhance the BMFO for solving the FS problem
in the domain of software defect prediction. The new variant is called (IsBMFO). The island
model divides the population of moths into a set of islands and applies a migration process
to share features between islands. This concept can improve the diversity of solutions
and control the convergence of the algorithm. In IsMFO, different copies of MFO are
applied separately on each island in an asynchronous way. Three measurements are
used to evaluate the proposed approach, recall, precision, and G-mean, in addition to the
convergence scales and statistical rank test. The experiments compared the average recall,
precision, and gmean obtained from applying the classifiers NB, KNN, and SVM without
FS, with BMFO-FS, and with IsBMFO-FS. There was a dynamic increase in the values of
the evaluation measures. The lower values from the three classifiers were achieved when
the classifiers were applied to the datasets without implementing FS. The best results were
achieved when the IsBMFO-FS was implemented. In three experiments, the SVM classifier
achieved the best performance, followed by the NB classifier. The lowest results were
obtained by the KNN classifier. Furthermore, the convergence behavior of the classifier
SVM was better than the NB and KNN on 71% of the datasets.

The best achieved results were obtained by the IsBMFO-SVM model. These results
demonstrate that the proposed model can serve as an effective predictive model for the
software defect problem.

145

Mathematics 2021, 9, 1722

For future works, we suggest applying the proposed model on other classification
problems such as for medical diagnosis. Furthermore, the island-based enhancement can
be investigated with other metaheuristic algorithms.

Author Contributions: Data curation, R.A.K. and I.A.; Formal analysis, R.A.K. and I.A.; Funding
acquisition, R.D.; Investigation, R.A.K., H.A. and I.A.; Methodology, R.A.K. and H.A.; Resources,
R.A.K. and I.A.; Software, R.A.K., H.A. and I.A.; Supervision, I.A.; Validation, R.A.K., M.A.E., I.A. and
R.D.; Visualization, R.A.K. and H.A.; Writing—original draft, R.A.K., H.A. and I.A.; Writing—review
& editing, R.A.K., I.A., M.A.E., H.A. and R.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are available from the corresponding author upon reasonable
request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Levendel, Y. Reliability analysis of large software systems: Defect data modeling. IEEE Trans. Softw. Eng. 1990, 16, 141–152.
[CrossRef]

2. Ehrlich, W.K.; Iannino, A.; Prasanna, B.; Stampfel, J.P.; Wu, J.R. How faults cause software failures: Implications for software
reliability engineering. In Proceedings of the 1991 International Symposium on Software Reliability Engineering, Austin, TX,
USA, 17–18 May 1991; IEEE Computer Society: Washington, DC, USA, 1991; pp. 233–234.

3. Laprie, J.C. Dependability of computer systems: Concepts, limits, improvements. In Proceedings of the IEEE Sixth International
Symposium on Software Reliability Engineering (ISSRE’95), Toulouse, France, 24–27 October 1995; pp. 2–11.

4. Mandeville, W.A. Software costs of quality. IEEE J. Sel. Areas Commun. 1990, 8, 315–318. [CrossRef]
5. Singpurwalla, N.D. Determining an optimal time interval for testing and debugging software. IEEE Trans. Softw. Eng. 1991,

17, 313–319. [CrossRef]
6. Mens, T.; Tourwé, T. A survey of software refactoring. IEEE Trans. Softw. Eng. 2004, 30, 126–139. [CrossRef]
7. Alsawalqah, H.; Hijazi, N.; Eshtay, M.; Faris, H.; Radaideh, A.A.; Aljarah, I.; Alshamaileh, Y. Software defect prediction using

heterogeneous ensemble classification based on segmented patterns. Appl. Sci. 2020, 10, 1745. [CrossRef]
8. Wahono, R.S. A systematic literature review of software defect prediction. J. Softw. Eng. 2015, 1, 1–16.
9. Li, Z.; Jing, X.; Zhu, X. Progress on approaches to software defect prediction. IET Softw. 2018, 12, 161–175. [CrossRef]
10. Son, L.H.; Pritam, N.; Khari, M.; Kumar, R.; Phuong, P.T.M.; Thong, P.H. Empirical study of software defect prediction: A

systematic mapping. Symmetry 2019, 11, 212. [CrossRef]
11. Shen, Z.; Chen, S. A Survey of Automatic Software Vulnerability Detection, Program Repair, and Defect Prediction Techniques.

Secur. Commun. Netw. 2020, 2020, 8858010. [CrossRef]
12. Li, N.; Shepperd, M.; Guo, Y. A systematic review of unsupervised learning techniques for software defect prediction. Inf. Softw.

Technol. 2020, 122, 106287. [CrossRef]
13. Aljarah, I.; Mafarja, M.; Heidari, A.A.; Faris, H.; Mirjalili, S. Multi-verse optimizer: Theory, literature review, and application in

data clustering. In Nature-Inspired Optimizers; Springer: Cham, Switzerland, 2020; pp. 123–141.
14. Mafarja, M.; Heidari, A.A.; Faris, H.; Mirjalili, S.; Aljarah, I. Dragonfly algorithm: Theory, literature review, and application in

feature selection. In Nature-Inspired Optimizers; Springer: Cham, Switzerland, 2020; pp. 47–67.
15. Singh, P.D.; Chug, A. Software defect prediction analysis using machine learning algorithms. In Proceedings of the 2017 IEEE

7th International Conference on Cloud Computing, Data Science & Engineering-Confluence, Noida, India, 12–13 January 2017;
pp. 775–781.

16. Khurma, R.A.; Aljarah, I.; Sharieh, A. Rank based moth flame optimisation for feature selection in the medical application. In
Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8.

17. Khurma, R.A.; Aljarah, I.; Sharieh, A. An Efficient Moth Flame Optimization Algorithm using Chaotic Maps for Feature Selection
in the Medical Applications. In Proceedings of the 9th International Conference on Pattern Recognition Applications and
Methods (ICPRAM), Valletta, Malta, 22–24 February 2020; pp. 175–182.

18. Faris, H.; Aljarah, I.; Alqatawna, J. Optimizing feedforward neural networks using krill herd algorithm for e-mail spam detection.
In Proceedings of the 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Amman, Jordan, 3–5 November 2015; pp. 1–5.

19. Khurma, R.A.; Aljarah, I.; Sharieh, A. A Simultaneous Moth Flame Optimizer Feature Selection Approach Based on Levy Flight
and Selection Operators for Medical Diagnosis. Arab. J. Sci. Eng. 2021, 1–26. [CrossRef]

20. Agarwal, V.; Bhanot, S. Firefly inspired feature selection for face recognition. In Proceedings of the 2015 IEEE Eighth International
Conference on Contemporary Computing (IC3), Noida, India, 20–22 August 2015; pp. 257–262.

146

Mathematics 2021, 9, 1722

21. Jouhari, H.; Lei, D.; Al-qaness, M.A.A.; Abd Elaziz, M.; Damaševičius, R.; Korytkowski, M.; Ewees, A.A. Modified Harris Hawks
optimizer for solving machine scheduling problems. Symmetry 2020, 12, 1460. [CrossRef]

22. Sahlol, A.T.; Elaziz, M.A.; Jamal, A.T.; Damaševičius, R.; Hassan, O.F. A novel method for detection of tuberculosis in chest
radiographs using artificial ecosystem-based optimisation of deep neural network features. Symmetry 2020, 12, 1146. [CrossRef]

23. Makhadmeh, S.N.; Al-Betar, M.A.; Alyasseri, Z.A.A.; Abasi, A.K.; Khader, A.T.; Damaševičius, R.; Mohammed, M.A.;
Abdulkareem, K.H. Smart home battery for the multi-objective power scheduling problem in a smart home using grey wolf
optimizer. Electronics 2021, 10, 447. [CrossRef]

24. Anbu, M.; Mala, G.A. Feature selection using firefly algorithm in software defect prediction. Clust. Comput. 2019, 22, 10925–10934.
[CrossRef]

25. Khurma, R.; Castillo, P.; Sharieh, A.; Aljarah, I. Feature Selection using Binary Moth Flame Optimization with Time Varying
Flames Strategies. In Volume 1: ECTA, INSTICC, Proceedings of the 12th International Joint Conference on Computational Intelligence,
Budapest, Hungary, 2–4 November 2020; SciTePress: Setúbal, Portugal, 2020; pp. 17–27. [CrossRef]

26. Hussien, A.G.; Amin, M.; Abd El Aziz, M. A comprehensive review of moth-flame optimisation: Variants, hybrids, and
applications. J. Exp. Theor. Artif. Intell. 2020, 32, 705–725. [CrossRef]

27. Shehab, M.; Abualigah, L.; Al Hamad, H.; Alabool, H.; Alshinwan, M.; Khasawneh, A.M. Moth–flame optimization algorithm:
Variants and applications. Neural Comput. Appl. 2020, 32, 9859–9884. [CrossRef]

28. Kaur, K.; Singh, U.; Salgotra, R. An enhanced moth flame optimization. Neural Comput. Appl. 2020, 32, 2315–2349. [CrossRef]
29. Khurmaa, R.A.; Aljarah, I.; Sharieh, A. An intelligent feature selection approach based on moth flame optimization for medical

diagnosis. Neural Comput. Appl. 2021, 33, 7165–7204. [CrossRef]
30. Xu, Y.; Chen, H.; Luo, J.; Zhang, Q.; Jiao, S.; Zhang, X. Enhanced Moth-flame optimizer with mutation strategy for global

optimization. Inf. Sci. 2019, 492, 181–203. [CrossRef]
31. Khan, M.A.; Sharif, M.; Akram, T.; Damaševičius, R.; Maskeliūnas, R. Skin lesion segmentation and multiclass classification using

deep learning features and improved moth flame optimization. Diagnostics 2021, 11, 811. [CrossRef]
32. Al-Betar, M.A.; Awadallah, M.A. Island bat algorithm for optimization. Expert Syst. Appl. 2018, 107, 126–145. [CrossRef]
33. Al-Betar, M.A.; Awadallah, M.A.; Doush, I.A.; Hammouri, A.I.; Mafarja, M.; Alyasseri, Z.A.A. Island flower pollination algorithm

for global optimization. J. Supercomput. 2019, 75, 5280–5323. [CrossRef]
34. Al-Betar, M.A.; Awadallah, M.A.; Khader, A.T.; Abdalkareem, Z.A. Island-based harmony search for optimization problems.

Expert Syst. Appl. 2015, 42, 2026–2035. [CrossRef]
35. Awadallah, M.A.; Al-Betar, M.A.; Bolaji, A.L.; Doush, I.A.; Hammouri, A.I.; Mafarja, M. Island artificial bee colony for global

optimization. Soft Comput. 2020, 24, 13461–13487. [CrossRef]
36. Gupta, A.; Suri, B.; Kumar, V.; Misra, S.; Blažauskas, T.; Damaševičius, R. Software code smell prediction model using Shannon,

Rényi and Tsallis entropies. Entropy 2018, 20, 372. [CrossRef] [PubMed]
37. Kumari, M.; Misra, A.; Misra, S.; Sanz, L.F.; Damasevicius, R.; Singh, V.B. Quantitative quality evaluation of software products by

considering summary and comments entropy of a reported bug. Entropy 2019, 21, 91. [CrossRef] [PubMed]
38. Naidu, M.S.; Geethanjali, N. Classification of defects in software using decision tree algorithm. Int. J. Eng. Sci. Technol. 2013,

5, 1332–1340.
39. Can, H.; Xing, J.; Zhu, R.; Li, J.; Yang, Q.; Xie, L. A new model for software defect prediction using particle swarm optimization

and support vector machine. In Proceedings of the 2013 IEEE 25th Chinese Control and Decision Conference (CCDC), Guiyang,
China, 25–27 May 2013; pp. 4106–4110.

40. Shuai, B.; Li, H.; Li, M.; Zhang, Q.; Tang, C. Software defect prediction using dynamic support vector machine. In Proceedings of
the 2013 IEEE Ninth International Conference on Computational Intelligence and Security, Emeishan, China, 14–15 December
2013; pp. 260–263.

41. Agarwal, S.; Tomar, D. A feature selection based model for software defect prediction. Int. J. Adv. Sci. Technol. 2014, 65, 39–58.
[CrossRef]

42. Abaei, G.; Selamat, A. A survey on software fault detection based on different prediction approaches. Viet. J. Comput. Sci. 2014,
1, 79–95. [CrossRef]

43. Malhotra, R.; Nishant, N.; Gurha, S.; Rathi, V. Application of Particle Swarm Optimization for Software Defect Prediction Using
Object Oriented Metrics. In Proceedings of the 2021 IEEE 11th International Conference on Cloud Computing, Data Science &
Engineering (Confluence), Noida, India, 28–29 January 2021; pp. 88–93.

44. Balogun, A.O.; Basri, S.; Mahamad, S.; Abdulkadir, S.J.; Capretz, L.F.; Imam, A.A.; Almomani, M.A.; Adeyemo, V.E.; Kumar, G.
Empirical Analysis of Rank Aggregation-Based Multi-Filter Feature Selection Methods in Software Defect Prediction. Electronics
2021, 10, 179. [CrossRef]

45. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249.
[CrossRef]

46. Mirjalili, S.; Lewis, A. S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol. Comput.
2013, 9, 1–14. [CrossRef]

47. Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. In Proceedings of the 1997 IEEE
International conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA,
12–15 October 1997; Volume 5, pp. 4104–4108.

147

Mathematics 2021, 9, 1722

48. Kushida, J.i.; Hara, A.; Takahama, T.; Kido, A. Island-based differential evolution with varying subpopulation size. In Proceedings
of the 2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA), Hiroshima, Japan, 13 July
2013; pp. 119–124.

49. Michel, R.; Middendorf, M. An island model based ant system with lookahead for the shortest supersequence problem. In
Proceedings of the International Conference on Parallel Problem Solving from Nature, Amsterdam, The Netherlands, 27–30
September 1998; Springer: Berlin/Heidelberg, Germany, 1998; pp. 692–701.

50. Araujo, L.; Merelo, J.J. Diversity through multiculturality: Assessing migrant choice policies in an island model. IEEE Trans. Evol.
Comput. 2010, 15, 456–469. [CrossRef]

51. Khurma, R.A.; Aljarah, I.; Sharieh, A.; Mirjalili, S. Evolopy-fs: An open-source nature-inspired optimization framework in python
for feature selection. In Evolutionary Machine Learning Techniques; Springer: Singapore, 2020; pp. 131–173.

52. Khurma, R.A.; Sabri, K.E.; Castillo, P.A.; Aljarah, I. Salp Swarm Optimization Search Based Feature Selection for Enhanced
Phishing Websites Detection. In Proceedings of the Applications of Evolutionary Computation: 24th International Conference,
EvoApplications 2021, Held as Part of EvoStar 2021, Virtual Event, 7–9 April 2021; Springer Nature: Basingstoke, UK, 2021;
Volume 12694, pp. 146–161.

148

mathematics

Article

Performance of Enhanced Multiple-Searching Genetic
Algorithm for Test Case Generation in Software Testing

Wanida Khamprapai 1,2, Cheng-Fa Tsai 2,*, Paohsi Wang 3 and Chi-En Tsai 4

Citation: Khamprapai, W.; Tsai, C.-F.;

Wang, P.; Tsai, C.-E. Performance of

Enhanced Multiple-Searching Genetic

Algorithm for Test Case Generation in

Software Testing. Mathematics 2021, 9,

1779. https://doi.org/10.3390/

math9151779

Academic Editor: Vassilis

C. Gerogiannis

Received: 22 June 2021

Accepted: 23 July 2021

Published: 27 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional clai-ms

in published maps and institutio-nal

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science
and Technology, Pingtung 91201, Taiwan; wanida.kpp@gmail.com

2 Department of Management Information Systems, National Pingtung University of Science and Technology,
Pingtung 91201, Taiwan

3 Department of Food and Beverage Management, Cheng Shiu University, Kaohsiung 83347, Taiwan;
k0627@gcloud.csu.edu.tw

4 Department of Multimedia Business Unit II, Realtek Semiconductor Corporation, Hsinchu 30076, Taiwan;
t82327@gmail.com

* Correspondence: cftsai@mail.npust.edu.tw; Tel.: +886-08-770-3201 (ext. 7906)

Abstract: Test case generation is an important process in software testing. However, manual genera-
tion of test cases is a time-consuming process. Automation can considerably reduce the time required
to create adequate test cases for software testing. Genetic algorithms (GAs) are considered to be
effective in this regard. The multiple-searching genetic algorithm (MSGA) uses a modified version of
the GA to solve the multicast routing problem in network systems. MSGA can be improved to make
it suitable for generating test cases. In this paper, a new algorithm called the enhanced multiple-
searching genetic algorithm (EMSGA), which involves a few additional processes for selecting the
best chromosomes in the GA process, is proposed. The performance of EMSGA was evaluated
through comparison with seven different search-based techniques, including random search. All
algorithms were implemented in EvoSuite, which is a tool for automatic generation of test cases. The
experimental results showed that EMSGA increased the efficiency of testing when compared with
conventional algorithms and could detect more faults. Because of its superior performance compared
with that of existing algorithms, EMSGA can enable seamless automation of software testing, thereby
facilitating the development of different software packages.

Keywords: search-based test case generation; genetic algorithm; branch coverage; object-oriented

1. Introduction

Software testing is an important process in the software development life cycle. It
is performed to investigate the quality of software and to evaluate the risks in software
implementation. Software testing involves both valid and invalid inputs and includes the
processes of executing the developed software and checking for the expected responses.
Several techniques can be used to automatically produce inputs that conform to the behav-
ior of the software being tested, and these techniques provide high coverage in a given
branch, line, condition, or path. Various techniques have been proposed to reduce the cost,
resources, and time involved in the testing process.

The genetic algorithm (GA) is a popular and efficient search-based technique for
test case generation. GAs have been widely used to create suitable test cases [1–4]. Suit-
able test case generation helps to reduce costs in software testing given the huge cost of
creating test cases, which accounts for more than 50% of the total cost of developing a
program [5]. Researchers have investigated methods to enhance the solution efficiencies of
GAs. Multiple-searching genetic algorithm (MSGA) [6] is a successfully solved optimal
solution with high probability for routing in network system. MSGA is attractive to utilize
in other fields. From previous work [7], MSGA can generate test cases for small to medium

Mathematics 2021, 9, 1779. https://doi.org/10.3390/math9151779 https://www.mdpi.com/journal/mathematics

149

Mathematics 2021, 9, 1779

scale software but cannot increase the percentage of coverage for complex software. This
means test cases generated with MSGA cannot increase the number of executed statements
or source code in complex software. Therefore, while MSGA may be suitable for generating
test cases for small to medium scale software, it may not be flexible enough for test case
generation for complex software. Some algorithms may be suitable for generating test
cases for small to medium scale software but may not succeed in complex cases. For this
reason, we present a new algorithm for improving MSGA to make it suitable for generating
test cases. We expect that the test case generation using our algorithm will also detect
more errors or faults in the software and therefore reduce the cost of software testing by
creating the minimum number of test cases while getting the maximum coverage. Further,
our algorithm can create test cases for complex software. In this study, we used MSGA to
generate test cases for software testing because MSGA can reach the global optimum faster
than a traditional GA [7]. In addition, we refactored the algorithm to solve the problem of
executing the source code for more access to the statements.

In this study, a new algorithm called the enhanced multiple-searching genetic algo-
rithm (EMSGA), which is an improved MSGA incorporating some additional processes,
was developed. The genetic operators constitute the basic mechanism of the GA, namely
selection, crossover, and mutation. Additional processes in EMSGA include the evaluation
of chromosomes and selection of the best chromosomes to add to the next generation. In
the original MSGA, all the chromosomes that are executed with the genetic operators are
added to the next generation. EMSGA was expanded in EvoSuite, and its effectiveness
was compared with that of MSGA and seven other techniques available in EvoSuite. The
SF110 corpus and nine open-source Java projects developed by Google and the Apache
Software Foundation were employed as case studies for generating test cases using the
aforementioned algorithms.

The remainder of this paper is organized as follows. Section 2 discusses previous
research works related to this study. Section 3 describes search-based techniques for gener-
ating test cases, including representation and fitness functions. The proposed algorithm is
also introduced in this section. Section 4 presents the problem instances and tools used to
evaluate EMSGA. Section 5 presents the experimental results. Section 6 reports threats to
the validity of the algorithm. A discussion of the results is presented in Section 7. Finally,
Section 8 concludes the paper.

2. Related Work

In software engineering, GA has been successful in many areas, such as software
design, effort estimation, and maintenance. For software design [8], GA can help migration
from structure programming to object-oriented programming, and the results are better
than greedy algorithm and Monte Carlo. In software effort estimation, GA is stable, has
higher accuracy than a random approach, and consists of an exhaustive framework [9].
Furthermore, GA is utilized to manage maintenance packages taking into account the
cost-effectiveness of the package and to reduce human bias [10].

Various search-based techniques are available for test case generation. GA is one of
the most widely used techniques. Many GAs have been remodeled for increased search
efficiency. For example, a population aging process was added in a traditional GA without
modifying any original parameters of the GA to reduce the number of test cases and
increase the test coverage [4]. The features of GA and ant colony optimization (ACO) were
combined to increase the efficiency and health of test cases [11]. GA and negative selection
algorithms were merged to reduce the generation of duplicate test cases [12]. The results of
the studies indicate that these improved algorithms are capable of efficiently generating
test cases, even though the algorithms were originally improved for other applications.
MSGA is an improved GA for network systems. Even though it was improved for and
utilized in another field, we believe that an enhanced version of MSGA can increase the
efficiency of test case generation.

150

Mathematics 2021, 9, 1779

EMSGA reuses and refactors existing algorithms. The reusable nature of this algo-
rithm [13] helps to increase the reliability of results, provides faster algorithm development,
and reduces costs. Algorithm refactoring is caused by insufficient existing algorithms
to perform certain tasks. Consequently, algorithms are improved to suit the task. Al-
gorithm refactoring is challenging in terms of selecting some parts of an algorithm to
improve the performance or adding some processes to make it suitable for solving a given
problem. Several studies have examined refactoring. For example, Liu et al. (2020) [14]
studied automated refactoring for real-time systems to help reduce the effort required
by programmers to isolate portions for the execution of real-time systems under limita-
tions. Several researchers have used the SF110 corpus and EvoSuite to compare newly
developed algorithms and existing algorithms. For example, the EvoTLBO algorithm was
extended into EvoSuite to compare the results with traditional GA and monotonic GA
using 50 random classes from SF110 [15]; EvoSuite and SF110 were utilized to compare
the performance of memetic algorithm with traditional GA [16]; and nontrivial classes
were selected from SF110 to compare the efficiency of the DynaMOSA algorithm with the
many objective sorting algorithm (MOSA), the whole suite approach with archive (WSA),
and the traditional whole suite approach (WS) [17]. The SF110 corpus is considered as
a benchmark for test generation [18]. The SF110 corpus contains 110 Java projects from
SourceForge, 100 random projects, and the 10 most popular projects in SourceForge. Evo-
Suite is an automatic test generation tool for Java classes based on GA. In the present study,
the SF110 corpus and EvoSuite were considered sufficient to measure the effectiveness of
the proposed algorithm for test case generation. EMSGA was tested using SF110, and its
effectiveness was compared with that of seven algorithms available in EvoSuite.

3. Search-Based Test Case Generation

The search-based technique is widely used for test case generation [19–22]. The
following subsections describe some of the most well-known search-based techniques
before introducing the proposed EMSGA.

3.1. Representation

A population of candidate solutions is represented as a test suite [17,22], which is
a collection of test cases T = {t1, t2, . . . , tn} . Each test case is composed of various
statements t = 〈s1, s2, . . . , sl〉, where l is the total number of statements. A statement [23]
can be a variable declaration or a method call and can be of several different types, namely
a primitive, a constructor, a method, an array, or an assignment.

Figure 1 presents the generated test cases from Java code by considering the required
variables and methods to generate statements for testing the class under test. When
considering Java code, the integer array variable is a required variable to maintain the
numbers for sorting. Therefore, the integer array variable is declared in the test case. The
number of statements depends on the instruction to be used for each test. The length
of either the test case or the chromosome depends on the number of statements. The
population evolves iteratively to yield better solutions. The processes are repeated until a
stopping criterion is satisfied.

3.2. Fitness Function

In software testing, a fitness function is used to evaluate the ability of the generated
test suites to execute the source code of the program. Typically, fitness functions are
assessed based on the branch coverage metric. Complete branch coverage refers to all
control structures being executed and all lines of code being tested. This metric is defined
as follows [24,25]:

f (T) = |M| − |MT |+ ∑
b∈B

d(b, T), (1)

where |M| denotes the total number of methods, |MT | is the number of methods executed
in test suite T, and d(b, T) represents the branch distance for each branch b on test suite

151

Mathematics 2021, 9, 1779

T that b is an element of in a set of branches B. The branch distance d(b, T) is defined
as follows:

d(b, T) =

⎧⎨⎩
0 if the branch has been covered,
dmin(b, T) if the predicate has been executed at least twice,
1 otherwise.

(2)

Figure 1. Generated test cases from source code.

3.3. Genetic Algorithms

GAs [4,26] solve problems through the use of three basic operators: selection, crossover,
and mutation. In GA, a chromosome is defined as a set of parameters that represent
a proposed solution to the problem that the GA is being used to solve. The selection
operator selects certain chromosomes as parent chromosomes. Chromosomes are selected
on the basis of their fitness values. Chromosomes with higher fitness values have a
higher chance of being selected. The crossover and mutation operators are applied to the
parent chromosomes to produce offspring for the next generation. The crossover operator
exchanges certain genes of two chromosomes. The mutation operator changes the value of
some genes in a few chromosomes.

Several researchers have proposed techniques to improve the traditional GA for
enhancing its solution efficiency and enabling its application in complex problems. These
efforts have relied on adjustments of factors or integration of GAs with other strategies. For
example, the monotonic GA [26] involves additional processes after the mutation process
in the traditional GA. These additional processes measure the fitness values to determine
the best offspring or the best parent for the next population; in contrast, the traditional GA
increases the number of mutated offspring in the next population and then calculates the
fitness values of all chromosomes. Another improved version of GA is the steady-state
GA [27,28], in which the fitness values of the mutated offspring are determined and then
the offspring is compared with the parent. If the offspring is better than the best parent, the
offspring replaces the parent in the current population. The advantages of monotonic GA
and steady-state GA are similar, namely removing duplicate chromosomes and ensuring
the best chromosome is not discarded. A breeder GA [29] differs from the traditional GA
in that it uses the principle of breeding, which involves selecting the fittest chromosomes
and reproducing using those chromosomes. The breeder GA is more precise as it utilizes
the science of breeding [30]. A cellular GA [31] is an improved GA that selects the best

152

Mathematics 2021, 9, 1779

offspring after the crossover operator has been applied. The best offspring is mutated, and
the fitness value is determined. The selection of cellular GA is restricted to the overlapping
neighborhood producing slow solutions [32,33]. Table 1 summarizes the characteristic of
each GA.

Table 1. Comparison of GA-based characteristics.

Algorithm Characteristic of Algorithm

Traditional GA Applies only three basic operators: selection, crossover,
and mutation

Monotonic GA Still applies three basic operators but adds some processes to
select the best chromosome for the next generation.

Steady-state GA
Adds some processes to select the best chromosome. Similar to
the monotonic GA but replaces the best chromosome in the
current population.

Breeder GA Applies the principle of breeding to select chromosomes before
performing the basic operators.

Cellular GA Performs mutation operator on only one crossed chromosome.
Chromosomes are selected for mutation by choosing at random.

3.4. Chemical Reaction Optimization (CRO)

Chemical reaction optimization (CRO) [34] is a search-based technique that combines
the advantages of GA and simulated annealing. CRO solves problems using a set of
molecules. Each molecule possesses a molecular structure, potential energy, and kinetic
energy. The molecular structure represents a possible solution that does not have any
specific format. The potential energy is the fitness value of the corresponding molecule.
The kinetic energy quantifies the tolerance of the worst solution. The iterative processes
of CRO are similar to those of GA. A basic CRO involves four types of reactions: on-wall
ineffective collision and decomposition are reactions where a single molecule hits a wall
of the surface, and intermolecular ineffective collision and synthesis are reactions where
multiple molecules collide with each other.

On-wall ineffective collision represents a local search. There is minimal change in
the structure or properties of the molecule during this process. Decomposition is a type
of collision that produces two or more new molecules. This process represents a global
search. Intermolecular ineffective collision is the collision of multiple molecules, which
produces minimal changes in the structure or properties of the molecules, similar to on-wall
ineffective collision. Two or more collided molecules undergo small changes in structure or
properties. Synthesis is a reaction that represents a global search. In this reaction, multiple
colliding molecules fuse into a single molecule.

3.5. Random Search

Random search is the simplest search-based technique. It involves iterative searches
until an optimal solution is obtained. In each iteration, the solution is incremented with a
random vector. The fitness value of the modified solution is determined. If the modified
solution is better than the previous solution, the former replaces the latter. Otherwise, the
previous solution is retained. Random search is often utilized for comparison with other
techniques [35]. This technique can effectively solve large-scale problems [36].

4. Proposed Algorithm: Enhanced Multiple-Searching Genetic Algorithm (EMSGA)

In the multiple-searching genetic algorithm (MSGA) introduced by Tsai et al. [6], two
types of chromosomes are created to prevent the search from falling into a local optimum.
The MSGA utilizes the candidate mechanism to create more chromosomes with the same
features, resulting in better chromosomes. The MSGA has been successfully used to find
the optimal multicast route in network systems. We believe that the MSGA can also be

153

Mathematics 2021, 9, 1779

integrated with other strategies to increase search ability. Therefore, we propose EMSGA, a
regeneration MSGA with the addition of a feature-selection strategy. After the mutation
operator is employed and the fitness value is determined, only chromosomes from the best
offspring or the best parent will be selected to be included in the next-generation population.
If the mutated offspring are better than the parents, then they replace the parents in the next
generation. Otherwise, the parents are retained. Choosing the best chromosome increases
the chances of reaching the optimal solution. Generally, two mutated offspring are added
to the next-generation population, and the parents are discarded. The processes involved
in EMSGA are similar to those in MSGA, with the exception of the aforementioned best
chromosome selection mechanism after the mutation process (Figure 2). Algorithm 1 shows
the pseudocode of EMSGA.

Figure 2. Flowcharts of GA (a) [7], MSGA (b) [7], and EMSGA (c). The red box indicates the additional processes in EMSGA.
The black dashed box displays the additional processes in MSGA.

154

Mathematics 2021, 9, 1779

Algorithm 1 Pseudocode for EMSGA

1: Procedure EMSGA()
2: Create initial chromosomes
3: Evaluate fitness value of initial chromosomes and order by descending
4: while not terminal condition do

5: Select half chromosomes with the highest fitness value //Conservative chromosomes
6: Call procedure CreateExplorerChromosomes(Conservative chromosomes)
7: Evaluate fitness value of explorer chromosomes
8: Combine Conservative and Explorer chromosomes
9: Call procedure Crossover(all chromosomes)
10: //Mutation of EMSGA is the same as traditional GA
11: Mutate Conservative chromosomes with M1
12: Mutate Explorer chromosomes with M2
13: Evaluate fitness value of the mutated chromosomes
14: if the offspring is better than the best parent then

15: Add offspring in the next population
16: else

17: Add parent in the next population
18: end if

19: end while

20: return chromosomes
21: end procedure

22:
23: Procedure CreateExplorerChromosomes(Conservative chromosomes)
24: for each conservative chromosome i
25: for each gene of conservative chromosome j of i
26: Keep jth gene of ith conservative chromosome to jth candidate gene set
27: end for

28: end for

29: Creates explorer chromosomes with a number equal to the number of conservative
chromosomes

30: for each explorer chromosome i
31: for each candidate gene set j
32: Select one gene from jth candidate gene set
33: Preserve the selected gene in jth gene of ith explorer chromosome
34: end for

35: end for

36: return explorer chromosomes
37: end procedure

38:
39: Procedure Crossover(all chromosomes)
40: Set a random number r
41: if r is less than crossover probability then

42: for half of all chromosomes from i = 1 to (population size / 2)
43: Select ith chromosome and (population size − i + 1)th chromosome
44: Split the selected chromosomes with crossover method
45: Cross both chromosomes
46: end for

47: end if

48: return chromosomes
49: end procedure

The EMSGA process starts with the creation of initial chromosomes. Then, the fitness
value of the population is determined, and half of the chromosomes with the highest fitness
values are retained. The rest of the chromosomes are discarded. The preserved chromo-
somes are called the conservative chromosomes. Next, the candidate mechanism is utilized
to build the explorer chromosomes by selecting the genes of the conservative chromosomes.

155

Mathematics 2021, 9, 1779

The candidate mechanism is created to gather genes of all conservative chromosomes that
are in the same position into the same candidate gene set. Each candidate gene set selects
only one gene to create as a gene of explorer chromosome. Figure 3 illustrates the method
for creating an explorer chromosome. Thereafter, crossover and mutation are performed
on the conservative and explorer chromosomes separately. Both types of chromosomes are
assigned the same crossover probability. The mutation probabilities are defined differently.
At the end of each iteration, the chromosomes are evaluated in terms of the fitness value,
and the best chromosomes are selected and added to the next-generation population.

Figure 3. Mechanism of creating explorer chromosome. Red boxes demonstrate which one gene from each candidate gene
set was chosen.

5. Experimental Evaluation

The aim of this study was to evaluate the capability of EMSGA to generate test cases
and to compare the feasibility and effectiveness of EMSGA with those of other algorithms.

5.1. Problem Instances

The selection of problem instances is important for any empirical study on auto-
matic test case generation. This study utilized the SF110 corpus (the details of SF110 are
available online: https://www.evosuite.org/experimental-data/sf110/ (accessed on 4
March 2020)) [18] and nine open-source Java projects developed by Google and the Apache
Software Foundation to evaluate EMSGA. The SF110 corpus is widely used as a bench-
mark [17,24,37]. It contains 110 projects that were written with the Java language. Not all
classes in the SF110 corpus were employed in this experiment. Only 203 classes were chosen
based on the selection in a previous study [38]. Furthermore, nine problem instances from
Google and the Apache Software Foundation were chosen uniformly and at random based
on their sizes and functionalities (Table 2), consisting of a total of 1382 classes. EvoSuite
was applied to a total of 203 + 1382 = 1585 classes.

156

Mathematics 2021, 9, 1779

Table 2. Details of open-source Google and Apache projects. Note: the second column lists the
number of non-commenting source lines of code reported by JavaNCSS (http://www.kclee.de/
clemens/java/javancss/ (accessed on 10 December 2020)). The fourth column lists the number of
branches reported by EvoSuite.

Problem Instances No. of Lines No. of Classes No. of Branches

Java Certificate Transparency 955 30 178
Commons CLI 1480 22 961

Commons Codec 5545 68 3050
Commons Email 1505 20 209
Commons Jelly 4688 95 636

Commons Math3 65,389 918 28,450
Commons Numbers 317 5 225

Joda-Time 19,441 166 9924
Truth 4117 58 223

Total 103,437 1382 43,856

5.2. Test Generation Tool

The testing tool employed EvoSuite (EvoSuite can be downloaded from http://www.
evosuite.org (accessed on 20 February 2020)) [24] to generate test cases for Java code.
EvoSuite is widely used in software testing [3,39,40]. It utilizes search-based methods,
including genetic algorithms, to generate test cases using Java bytecode. Furthermore,
EvoSuite supports various coverage criteria to determine the quality of a solution.

In the experiment, the proposed algorithm was implemented as an extension to the
EvoSuite. To extend the new algorithm in Evosuite, a developer must create a new class
in the client module and extend the abstract class GeneticAlgorithm. The EMSGA class
implemented the basic methods for GA that EvoSuite prepares. In addition, the EMSGA
class added some processes for creating two types of chromosomes and selected the best
chromosome. Test cases of each algorithm were automatically generated, and problem
instances were executed through EvoSuite. The performance of EMSGA was compared
with that of the MSGA, traditional GA, monotonic GA, steady-state GA, breeder GA,
cellular GA, CRO, and random search. These search-based methods are provided in
EvoSuite. The coverage achieved by the algorithms was assessed in terms of the branch
coverage metric. Search budget configuration uses EvoSuite’s default of 60 s [41]. Search
budget is the time for generating test cases of the algorithm each time. The experiment was
independently repeated 10 times.

The parameter settings influence the performance of search-based methods. The
EvoSuite guides the default values (e.g., selection function, crossover function, crossover
probability, mutation function, mutation probability, population size, and chromosome
length) for test case generation. The default values of EvoSuite are the approximate values
that are suitable for generating test cases that are based on GA. Table 3 shows the default
values in EvoSuite. The same parameter setting may not be enough to fully extract the
efficiency of the algorithm [42]. As Arcuri and Fraser (2013) [43] pointed out, the default
values of EvoSuite are sufficient to evaluate the performance of algorithms for test case
generation, whereas the suitable parameter setting is time-consuming and may or may not
produce good results for algorithms. In addition, Črepinšek et al. (2014) [44] perceptively
stated that all algorithms should be examined under the same conditions.

Therefore, the default values for all nine algorithms were used in the experiment.
EMSGA assigns different mutation probabilities to the conservative and explorer chromo-
somes. If the explorer chromosomes are defined as having a higher mutation probability
than the conservative chromosomes, the optimal solution can be obtained [6]. Several
researchers have set the probability as 1/l for the mutation operator, where l is the chromo-
some length [43,45,46]. Accordingly, mutation probabilities of 1/l and 0.75 (default) were
used for the conservative and the explorer chromosomes, respectively, in this study.

157

Mathematics 2021, 9, 1779

Table 3. Default values of parameters in Evosuite.

Parameters Default Values

Population size 50
Chromosome length 40

Selection function Rank
Crossover function Single point relative

Crossover probability 0.75
Mutation function Uniform

Mutation probability 0.75
Search budget 60 s

The experiment involved 1585 × 9 × 10 = 142,650 runs of EvoSuite with the afore-
mentioned settings. The search in each run was limited to 60 s. The experiment required
at least 142,650/(60 × 24) = 99.0625 days of computational time. It was conducted on a
Windows 10 Professional (Seattle, WA, USA) ×64 system having an Intel® Core i7 CPU
with 3.40 GHz and 16 GB of RAM.

5.3. Experimental Analysis

The coverage achieved was evaluated based on the branch criterion, number of test
cases (#T), and mutation score. All the experimental results were analyzed via nonparamet-
ric Mann–Whitney U tests with a significance level (p-value) of 0.05, the Vargha–Delaney
Â12 effect size, and a 95% confidence interval for the branch coverage achieved. Boxplots
and marginal distribution plots were created using RStudio Version 1.1.383.

6. Experimental Results

The experimental results for EMSGA and the competing algorithms are presented and
analyzed in this section. The experimental results are tabulated in Table 4, which shows the
standard deviation (σ), a 95% confidence interval (CI) of the branch coverage, the p-value
for the Mann–Whitney U tests, and the Vargha-Delaney Â12 effect size.

Table 4. Results of test case generation using each algorithm.

Algorithm
Branch Coverage Mut. Score

#T p-Value
^
A12

(EMSGA:Others)Avg. σ CI Avg. σ CI

EMSGA 0.5900 0.0032 (0.5877, 0.5923) 0.4174 0.0038 (0.4146, 0.4201) 180.49351 - -
MSGA 0.5846 0.0033 (0.5823, 0.5870) 0.4166 0.0043 (0.4135, 0.4196) 181.5325 0.00578 0.87

GA 0.5829 0.0040 (0.5801, 0.5858) 0.4159 0.0046 (0.4127, 0.4192) 177.8818 0.00168 0.92
Monotonic GA 0.5855 0.0063 (0.5810, 0.5901) 0.4162 0.0050 (0.4127, 0.4198) 182.3091 0.03752 0.74

Steady-State GA 0.5699 0.0036 (0.5673, 0.5725) 0.4168 0.0023 (0.4152, 0.4185) 178.7455 0.00018 1
Breeder GA 0.5821 0.0059 (0.5779, 0.5864) 0.4167 0.0040 (0.4138, 0.4195) 180.0545 0.00466 0.88
Cellular GA 0.5588 0.0034 (0.5563, 0.5612) 0.4056 0.0044 (0.4024, 0.4087) 174.2039 0.00018 1

CRO 0.5717 0.0040 (0.5688, 0.5746) 0.4120 0.0062 (0.4076, 0.4164) 177.9416 0.00018 1
Random search 0.5683 0.0036 (0.5657, 0.5709) 0.4127 0.0025 (0.4109, 0.4144) 179.5857 0.00018 1

EMSGA achieved the highest branch coverage (0.5900). This means test cases of
EMSGA can execute 59% of the source code of the class test. The branch coverage of
EMSGA obtained that similar to the monotonic GA. However, EMSGA generated fewer
test cases than the monotonic GA due to the limited search budget. Each algorithm had
60 s to search for the optimal test cases for each class. Although EMSGA generated fewer
cases, the branch coverage of EMSGA was higher. This means that EMSGA is more
efficient than monotonic GA. In terms of the mutation score, EMSGA achieved the best
performance. The mutation score represents the number of faults that can be detected
in the test cases, which is a measure of the quality of the test cases generated by each
algorithm [47]. The Â12 measure is a comparison of effect size between the EMSGA and
the others; if Â12 > 0.5, it means EMSGA can beat that algorithm more than 50% of the time.
For example, Â12 = 0.74 means EMSGA can beat the monotonic GA 74% of the time. The

158

Mathematics 2021, 9, 1779

values of this metric for all the algorithms were found to be greater than 0.5. This means
that the EMSGA can generate higher-quality test cases than the other algorithms.

Considering the values of all the metrics, EMSGA clearly outperformed MSGA in
most categories. Furthermore, specifically in terms of the Â12 measure, EMSGA performed
significantly better than MSGA (average Â12 effect size was 0.93). In the Mann–Whitney U
tests, EMSGA exhibited a p-value of less than 0.05. From a comparison between EMSGA
and MSGA, it can be concluded that EMSGA possesses a more effective best chromosome
selection process due to the addition of genetic operators and is hence more efficient than
the traditional MSGA. The higher mutation score implies that EMSGA is better at detecting
faults than the other algorithms.

The distributions of the average branch coverage and average mutation scores ob-
tained from the 1585 classes during the execution of the test cases generated by each
algorithm are shown in Figure 4. The length of the box indicates the distribution of values
between the 25% and 75% quantiles. The horizontal line in the box represents the median
value. The dot in the box represents the mean value. The vertical lines indicate the smallest
and largest values outside the middle 50%. The dots outside the box denote the outlier val-
ues. Despite the similar distributions of coverage and mutation score for all the algorithms,
outliers of mutation score were observed across all the algorithms (see Figure 4b) except
EMSGA and random search. This suggests that EMSGA and random search can detect
up to 100% of the faults, while the other algorithms can detect approximately 80–90% of
the faults (the outliers represent the undetected faults). Considering the distribution of
coverage (see Figure 4a), EMSGA exhibited a higher average coverage than random search.
Furthermore, EMSGA presented a narrower distribution, that is, less scattered data.

Figure 4. Coverage and mutation scores achieved by each algorithm.

Figure 5 presents the distributions of the branch coverage, number of test cases,
and mutation score achieved by each algorithm. Each marginal distribution displays the
average of each metric (dashed line) and the marginal density. The marginal density is the
solid line on the right side of each marginal distribution plot that indicates the distribution
of results. The average branch coverage of all the algorithms was 57.71% (Figure 5a). Five
algorithms achieved values exceeding the average, namely EMSGA, MSGA, standard GA,
monotonic GA, and breeder GA. In terms of the number of test cases (Figure 5b) as well,
four algorithms achieved values better than the average (179.19 test cases), namely EMSGA,
MSGA, monotonic GA, breeder GA, and random search. All algorithms exhibited mutation
scores above the average (0.41). Thus, EMSGA achieved values exceeding the average for
all three evaluation metrics. The ratio of classes reached branch coverage within each 10%
branch coverage interval, as shown in Figure 6. For example, 35% of all classes that were
tested in the test cases generated by EMSGA achieved a branch coverage between 81% and

159

Mathematics 2021, 9, 1779

100%. From the experimental results, it is evident that EMSGA is feasible and effective for
generating test cases.

Figure 5. Average values of metrics for each algorithm.

Figure 6. Proportion of classes for different branch coverage intervals.

160

Mathematics 2021, 9, 1779

Figure 7 displays the association between the number of test cases and the achieved
branch coverage when problem instances were executed using test cases of each algorithm.
Several problem instances indicated the EMSGA achieved greater or equal branch coverage
while the number of test cases was less than the others. The problem instance Truth is
a small-scale program, and the test cases of all algorithms executed a similar number of
source code.

Figure 7. Problem instances that were evaluated with each algorithm.

161

Mathematics 2021, 9, 1779

7. Threats to Validity

Based on the results obtained, threats to internal validity are related to factors affecting
the behavior of the software under test [48]. One such factor observed in the experiment
was the number of test cases generated by all algorithms. Single testing might be inadequate
for summarizing the performance of the algorithms in terms of generating test cases. In
this experiment, each algorithm was run 10 times with the same tools. Furthermore, all
parameters were defined with the same default values.

Threats to external validity are related to the generalization of the results beyond the
scope of experimental analysis [22]. The SF110 corpus and nine open-source Java projects
developed by Google and the Apache Software Foundation were utilized as case studies,
which required a large number of experiments to be conducted. In this study, a total of
1585 classes were used, which included 203 classes from the SF110 corpus chosen based on
previous studies [37] and all classes of the nine open-source Java projects. The reported
results are limited to the search-based techniques employed in the experiments.

8. Discussion

EMSGA modifies the MSGA processes by comparing the parent and offspring and
choosing the better chromosomes for the next generation. The selection of the better
chromosome as input to the next generation allows for approaching the optimal solution.
Our experimental results are in accordance with the results of previous experiments, which
indicates that the branch coverage increases when a better chromosome is selected. For
example, the monotonic GA achieved better results than the traditional GA [15,22]. Our
results show that EMSGA can achieve a higher branch coverage, generate more test cases,
and obtain a higher mutation score than MSGA.

One of the contributions of this research is our examination of the efficiency of EMSGA
by extending it to EvoSuite, which is an automatic tool for generating test cases. The results
of this application provide the number of test cases, the percentage of coverage, and muta-
tion score. The results also indicate that EMSGA achieves a similar coverage with fewer test
cases compared with monotonic GA. This is probably because the population of EMSGA
contains two types of chromosomes, namely conservative and explorer chromosomes. The
explorer chromosomes are created from high-fitness chromosomes. The main objective
of software testing is to minimize the number of test cases and increase the coverage.
The number of test cases affects the software development cost [5,49]. Although EMSGA
produces fewer test cases than monotonic GA does in 60 s, the former achieves a higher
coverage for the same number of test cases. A comparison of the efficiency between the
existing algorithms in EvoSuite and EMSGA suggests that, in test case generation, the
branch coverage may not be enough to clearly demonstrate the difference between results.
The finding is consistent with Campos et al. (2018) [21], who indicated that the efficiencies
of algorithms in EvoSuite may provide little difference in results for generating test cases.
This could be due to a limitation on setting parameters, such as population size, basic
function, or timing. In particular, as Fraser and Arcuri (2015) [50] pointed out, achieving a
certain percentage of branch coverage and mutation score for a limited time may lead to
higher mutation scores, but the coverage may be lower. The above experimental results also
show that we can obtain higher mutation scores while having coverage very close to other
algorithms. These findings lead us to believe that EMSGA has the potential to generate
more test cases within a limited time and increase its coverage. Arcuri and Fraser [47] re-
ported that the performance of a search-based technique depends on the parameter settings.
A possible alternative is to find the best value of the parameters suitable for generating test
cases [22], although the default values of EvoSuite are sufficient for evaluating algorithms
in terms of test case generation. Therefore, appropriate values for EMSGA should be
determined to generate the maximum number of test cases. Furthermore, EMSGA should
be examined for other test coverage criteria.

162

Mathematics 2021, 9, 1779

9. Conclusions

This paper proposes an enhanced MSGA (EMSGA) to generate test cases for software
testing. In EMSGA, the selection process involves creating two types of chromosomes to
obtain better chromosomes before performing crossover and mutation operations. The
performance of EMSGA on the basis of branch coverage, number of test cases, and mutation
score was compared with that of other algorithms available in EvoSuite. The results show
that EMSGA is more efficient than MSGA as well as the other algorithms. In addition,
EMSGA can detect more faults in programs than the other algorithms. Therefore, because
of its superior performance, EMSGA is expected to enable seamless automation of software
testing, thereby facilitating the development of different software packages in the future.

Author Contributions: Conceptualization, W.K. and C.-F.T.; methodology, W.K. and C.-F.T.; soft-
ware, W.K.; validation, P.W. and C.-E.T.; formal analysis, W.K.; investigation, W.K. and C.-F.T.;
resources, W.K.; data curation, P.W. and C.-E.T.; writing—original draft preparation, W.K.; writing—
review and editing, W.K. and C.-F.T.; visualization, W.K.; supervision, C.-F.T.; project administration,
C.-F.T.; funding acquisition, C.-F.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Ministry of Science and Technology, Taiwan, grant
numbers MOST-108-2637-E-020-003, MOST-108-2321-B-020-003, and MOST-109-2637-E-020-003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The proposed algorithm in this study including source code and results
are available on request from the corresponding author.

Acknowledgments: The authors would like to express their sincere gratitude to the anonymous
reviewers for their useful comments and suggestions for improving the quality of this paper. We
also thank the staff of the Department of Tropical Agriculture and International Cooperation, Taiwan;
Department of Management Information Systems, Taiwan; National Pingtung University of Science
and Technology, Taiwan; and the Ministry of Science and Technology, Taiwan. It is their kind help
and support that have made to complete this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Khan, R.; Amjad, M.; Srivastava, A.K. Optimization of Automatic Generated Test Cases for Path Testing Using Genetic Algorithm.
In Proceedings of the 2nd International Conference on Computational Intelligence & Communication Technology, Ghaziabad,
India, 12–13 February 2016; pp. 32–36. [CrossRef]

2. Jatana, N.; Suri, B. Particle Swarm and Genetic Algorithm applied to mutation testing for test data generation: A comparative
evaluation. J. King Saud Univ. Comput. Inf. Sci. 2020, 32, 514–521. [CrossRef]

3. Aleti, A.; Grunske, L. Test data generation with a Kalman filter-based adaptive genetic algorithm. J. Syst. Softw. 2015, 103, 343–352.
[CrossRef]

4. Yang, S.; Man, T.; Xu, J.; Zeng, F.; Li, K. RGA: A lightweight and effective regeneration genetic algorithm for coverage-oriented
software test data generation. Inf. Softw. Technol. 2016, 76, 19–30. [CrossRef]

5. Kumar, D.; Mishra, M.M. The Impacts of Test Automation on Software’s Cost, Quality and Time to Market. Procedia Comput. Sci.
2016, 79, 8–15. [CrossRef]

6. Tsai, C.F.; Tsai, C.W.; Wu, H.C. A novel algorithm for multimedia multicast routing in a large scale network. J. Syst. Softw. 2004,
72, 431–441. [CrossRef]

7. Khamprapai, W.; Tsai, C.F.; Wang, P. Analyzing the Performance of the Multiple-Searching Genetic Algorithm to Generate Test
Cases. Appl. Sci. 2020, 10, 7264. [CrossRef]

8. Selim, M.; Siddik, M.S.; Gias, A.U.; Abdullah-Al-Wadud, M.; Khaled, S.M. A Ge-netic Algorithm for Software Design Migration
fromStructured to Object Oriented Paradigm. In Proceedings of the 8th International Conference on Computer Engineering and
Application (CEA 2014), Tenerife, Spain, 10–12 January 2014; pp. 187–192.

9. Murillo-Morera, J.; Quesada-López, C.; Castro-Herrera, C.; Jenkins, M. A genetic algorithm based framework for software effort
prediction. J. Softw. Eng. Res. Dev. 2017, 5, 4. [CrossRef]

10. Bennett, T.E.; Brown, M.S.; Pelosi, M. A Genetic Algorithm for the Generation of Software Maintenance Release Plans without
Human Bias. J. Softw. Eng. Practice 2015, 1, 6–21.

163

Mathematics 2021, 9, 1779

11. Khari, M.; Kumar, P.; Shrivastava, G. Enhanced approach for test suite optimisation using genetic algorithm. Int. J. Comput. Aided
Eng. Technol. 2019, 11, 653–668. [CrossRef]

12. Mohi-Aldeen, S.M.; Mohamad, R.; Deris, S. Optimal path test data generation based on hybrid negative selection algorithm and
genetic algorithm. PLoS ONE 2020, 15, e0242812. [CrossRef]

13. Rathee, A.; Chhabra, J.K. A multi-objective search based approach to identify reusable software components. J. Comput. Lang.
2019, 52, 26–43. [CrossRef]

14. Liu, Y.; An, K.; Tilevich, E. RT-Trust: Automated refactoring for different trusted execution environments under real-time
constraints. J. Comput. Lang. 2020, 56, 100939. [CrossRef]

15. Shahabi, M.M.D.; Badiei, S.P.; Beheshtian, S.E.; Akbari, R.; Moosavi, M.R. EVOTLBO: A TLBO based Method for Automatic Test
Data Generation in EvoSuite. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 214–226. [CrossRef]

16. Fraser, G.; Arcuri, A.; McMinn, P. A Memetic Algorithm for whole test suite generation. J. Syst. Softw. 2015, 103, 311–327.
[CrossRef]

17. Panichella, A.; Kifetew, F.M.; Tonella, P. A large scale empirical comparison of state-of-the-art search-based test case generators.
Inf. Softw. Technol. 2018, 104, 236–256. [CrossRef]

18. Fraser, G.; Arcuri, A. A Large-Scale Evaluation of Automated Unit Test Generation Using EvoSuite. ACM Trans. Softw. Eng.
Methodo 2014, 24, 1–42. [CrossRef]

19. Wang, R.; Sato, Y.; Liu, S. Mutated Specification-Based Test Data Generation with a Genetic Algorithm. Mathematics 2021, 9, 331.
[CrossRef]

20. Rani, S.; Suri, B.; Goyal, R. On the Effectiveness of Using Elitist Genetic Algorithm in Mutation Testing. Symmetry 2019, 11, 1145.
[CrossRef]

21. Tian, T.; Gong, D.; Kuo, F.C.; Liu, H. Genetic algorithm based test data generation for MPI parallel programs with blocking
communication. J. Syst. Softw. 2019, 155, 130–144. [CrossRef]

22. Campos, J.; Ge, Y.; Albunian, N.; Fraser, G.; Eler, M.; Arcuri, A. An empirical evaluation of evolutionary algorithms for unit test
suite generation. Inf. Softw. Technol. 2018, 104, 207–235. [CrossRef]

23. Fraser, G.; Zeller, A. Mutation-Driven Generation of Unit Tests and Oracles. IEEE Trans. Softw. Eng. 2012, 38, 278–292. [CrossRef]
24. Fraser, G.; Arcuri, A. Whole test suite generation. IEEE Softw. Eng. 2012, 39, 276–291. [CrossRef]
25. Aleti, A.; Moser, I.; Grunske, L. Analysing the fitness landscape of search-based software testing problems. Autom. Softw. Eng.

2017, 24, 603–621. [CrossRef]
26. Whitley, D. Next Generation Genetic Algorithms: A User’s Guide and Tutorial. In Handbook of Metaheuristics, 3rd ed.; Gendreau,

M., Potvin, J.Y., Eds.; Springer: Cham, Switzerland, 2019; Volume 272, pp. 245–274. [CrossRef]
27. Sundar, S. A Steady-State Genetic Algorithm for the Dominating Tree Problem. In Proceedings of the 10th International Conference

on Simulated Evolution and Learning, Dunedin, New Zealand, 15–18 December 2014; pp. 48–57. [CrossRef]
28. Agapie, A.; Wright, A.H. Theoretical analysis of steady state genetic algorithms. Appl. Math. 2014, 59, 509–525. [CrossRef]
29. Muhlenbein, H.; Schlierkamp-Voosen, D. Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Opti-

mization. Evol. Comput. 1996, 1, 25–49. [CrossRef]
30. Mühlenbein, H.; Schlierkamp-Voosen, D. The Science of Breeding and Its Application to the Breeder Genetic Algorithm. Evol.

Comput. 1994, 1, 335–360. [CrossRef]
31. Dorronsoro, B.; Alba, E. A Simple Cellular Genetic Algorithm for Continuous Optimization. In Proceedings of the IEEE

International Conference on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006; pp. 2838–2844. [CrossRef]
32. Pedemonte, M.; Panizo-LLedot, A.; Bello-Orgaz, G.; Camacho, D. Exploring Multi-objective Cellular Genetic Algorithms in

Community Detection Problems. In Intelligent Data Engineering and Automated Learning; Analide, C., Novais, P., Camacho, D., Yin,
H., Eds.; Springer: Cham, Switzerland, 2020; Volume 12490, pp. 223–235. [CrossRef]

33. Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [CrossRef]
34. Lam, A.Y.S.; Li, V.O.K. Chemical Reaction Optimization: A tutorial. Memetic. Comp. 2012, 4, 3–17. [CrossRef]
35. Marrison, C.I.; Stengel, R.F. The use of random search and genetic algorithms to optimize stochastic robustness functions. In

Proceedings of the 1994 American Control Conference, Baltimore, MD, USA, 29 June–1 July 1994; pp. 1484–1489. [CrossRef]
36. Zabinsky, Z.B. Random search algorithms. In Wiley Encyclopedia of Operations Research and Management Science; Cochran, J.J., Cox,

L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C., Eds.; John Wiley & Sons: New York, NY, USA, 2010; pp. 1–13. [CrossRef]
37. Rojas, J.M.; Fraser, G.; Arcuri, A. Seeding strategies in search-based unit test generation. Softw. Test. Verif. Reliab. 2016, 26, 366–401.

[CrossRef]
38. Panichella, A.; Kifetew, F.M.; Tonella, P. Automated Test Case Generation as a Many-Objective Optimisation Problem with

Dynamic Selection of the Targets. IEEE Softw. Eng. 2016, 44, 122–158. [CrossRef]
39. Grano, G.; Palomba, F.; Nucci, D.D.; Lucia, A.D.; Gall, H.C. Scented since the beginning: On the diffuseness of test smells in

automatically generated test code. J. Syst. Softw. 2019, 156, 312–327. [CrossRef]
40. Ma, P.; Cheng, H.; Zhang, J.; Xuan, J. Can This Fault Be Detected: A Study on Fault Detection via Automated Test Generation. J.

Syst. Softw. 2020, 170, 110769. [CrossRef]
41. Fraser, G. A Tutorial on Using and Extending the EvoSuite Search-Based Test Generator. In Proceedings of the 10th International

Symposium, Montpellier, France, 8–9 September 2018; pp. 106–130. [CrossRef]

164

Mathematics 2021, 9, 1779

42. Hansen, N.; Auger, A.; Finck, S.; Ros, R. Real-Parameter Black-Box Optimization Benchmarking 2010: Experimental Setup. 2010.
Available online: https://hal.inria.fr/inria-00462481 (accessed on 31 May 2021).

43. Arcuri, A.; Fraser, G. Parameter tuning or default values? An empirical investigation in search-based software engineering. Empir.
Softw. Eng. 2013, 18, 594–623. [CrossRef]

44. Črepinšek, M.; Liu, S.; Mernik, M. Replication and comparison of computational experiments in applied evolutionary computing:
Common pitfalls and guidelines to avoid them. Appl. Soft. Comput. 2014, 19, 161–170. [CrossRef]

45. Aston, E.; Channon, A.; Belavkin, R.V.; Gifford, D.R.; Krašovec, R.; Knight, C.G. Critical Mutation Rate has an Exponential
Dependence on Population Size for Eukaryotic-length Genomes with Crossover. Sci. Rep. 2017, 7, 1–12. [CrossRef] [PubMed]

46. Deb, K.; Deb, D. Analysing mutation schemes for real-parameter genetic algorithms. Int. J. Artif. Intell. Soft Comput. 2014, 4, 1–28.
[CrossRef]

47. Jia, Y.; Merayo, M.; Harman, M. Introduction to the special issue on Mutation Testing. Softw. Test. Verif. Reliab. 2015, 25, 461–463.
[CrossRef]

48. Luo, Q.; Moran, K.; Poshyvanyk, D.; Penta, M.D. Assessing Test Case Prioritization on Real Faults and Mutants. In Proceedings
of the IEEE International Conference on Software Maintenance and Evolution, Madrid, Spain, 23–29 September 2018; pp. 240–251.
[CrossRef]

49. Ammann, P.; Offutt, J. Introduction to Software Testing, 2nd ed.; Cambridge University Press: New York, NY, USA, 2016; pp. 18–19.
50. Fraser, G.; Arcuri, A. Achieving scalable mutation-based generation of whole test suites. Empir. Softw. Eng. 2015, 20, 783–812.

[CrossRef]

165

mathematics

Article

Deep Cross-Project Software Reliability Growth Model Using
Project Similarity-Based Clustering

Kyawt Kyawt San 1, Hironori Washizaki 1,*, Yoshiaki Fukazawa 1, Kiyoshi Honda 2, Masahiro Taga 3

and Akira Matsuzaki 3

Citation: San, K.K.; Washizaki, H.;

Fukazawa, Y.; Honda, K.; Taga, M.;

Matsuzaki, A. Deep Cross-Project

Software Reliability Growth Model

Using Project Similarity-Based

Clustering. Mathematics 2021, 9, 2945.

https://doi.org/10.3390/math9222945

Academic Editors: Tadashi Dohi and

Shaoying Liu

Received: 16 October 2021

Accepted: 10 November 2021

Published: 18 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan;
kks@fuji.waseda.jp (K.K.S.); fukazawa@waseda.jp (Y.F.)

2 Department of Information Systems, Osaka Institute of Technology, Hirakata City, Osaka 573-0196, Japan;
kiyoshi.honda@oit.ac.jp

3 e-Seikatsu Co., Ltd., Minato-ku, Tokyo 106-0047, Japan; masahiro.taga@e-seikatsu.co.jp (M.T.);
akira.matsuzaki@e-seikatsu.co.jp (A.M.)

* Correspondence: washizaki@waseda.jp

Abstract: Software reliability is an essential characteristic for ensuring the qualities of software
products. Predicting the potential number of bugs from the beginning of a development project
allows practitioners to make the appropriate decisions regarding testing activities. In the initial
development phases, applying traditional software reliability growth models (SRGMs) with limited
past data does not always provide reliable prediction result for decision making. To overcome
this, herein, we propose a new software reliability modeling method called a deep cross-project
software reliability growth model (DC-SRGM). DC-SRGM is a cross-project prediction method that
uses features of previous projects’ data through project similarity. Specifically, the proposed method
applies cluster-based project selection for the training data source and modeling by a deep learning
method. Experiments involving 15 real datasets from a company and 11 open source software
datasets show that DC-SRGM can more precisely describe the reliability of ongoing development
projects than existing traditional SRGMs and the LSTM model.

Keywords: software reliability; deep learning; long short-term memory; project similarity and
clustering; cross-project prediction

1. Introduction

Reliability is one of the most significant attributes in enhancing the quality of the
product in the software development process [1–3]. Assessing software reliability is vital
to delivering a failure-free software system. Despite the enormous amount of testing, a
number of software defects always occur in the product [4]. Software Reliability Growth
Models (SRGMs) express the number of potential errors or defects that might happen in
the future by analyzing past data, such as the cumulative number of errors, test cases, error
rate, and detection time [5]. Therefore, the application of SRGMs helps to optimize resource
planning and achieve highly reliable systems.

SRGMs are not always a reliable indicator in evaluating the situation of an ongoing
software project and may even lead to an incorrect plan for testing resources [6]. New
ongoing projects often do not have enough past data, which are needed in SRGM model
fitting. In most studies, SRGM model fitting relies on past data to predict the future for
the same project. Cross-project prediction is feasible in such cases requiring past data by
applying other projects. However, if a source project is dissimilar to the target project,
it affects prediction performance and leads to unstable future prediction results. One
challenge in the cross-project prediction is that the distribution of the source and target
project usually differ significantly [7,8].

To adopt a more reliable cross-project method of software reliability growth modeling
while eliminating the unrelated data from all source projects for each target project, this

Mathematics 2021, 9, 2945. https://doi.org/10.3390/math9222945 https://www.mdpi.com/journal/mathematics

167

Mathematics 2021, 9, 2945

study introduces a new SRGM method which can be utilized at the beginning stage of
ongoing projects by processing only the project data with the most common features of
the target project. For a target project with an insufficient amount of data, this method
acquires the required information and features from similar projects to use in building
the model. More specifically, a clustering method, k-means, is applied according to the
features of projects such as the correlation of datasets and the number of bugs to create a
new training data source. According to the identified clusters, the included datasets are
combined. Prediction modeling is performed by a deep long short-term memory (LSTM)
model using the merged dataset.

The goals of the study are to:

• Identify the correlation among projects by bug occurrence patterns and the same
attributes of the projects.

• Determine groups of similar projects from a defect prediction viewpoint.
• Adopt a new approach for SRGM for the initial or ongoing stage of software develop-

ment projects.

Although the idea of taking previous similar projects as a basis for the prediction of
errors is common to cross-project prediction methods, our method has a novelty in using
deep learning in combination with cluster-based project selection.

Here, we apply our proposed method, named Deep Cross-Project Software Reliability
Growth Model (DC-SRGM), to 15 cloud service development projects of a company, e-
Seikatsu, and 11 open source software (OSS) projects. Then we compare the performance
of DC-SRGM with traditional models and the deep learning LSTM models. In our case
study, DC-SRGM achieves the best scores in most cases. Hence, it can be regarded as
an effective SRGM capable of improving deep learning LSTM models. Additionally, it
significantly outperforms conventional SRGMs. Therefore, the DC-SRGM method allows
software developers and managers to understand project situations in an ongoing stage
with limited historical data.

The contributions of this work are as follows:

• A new SRGM method that uses a combination of deep learning and a cluster-based
project selection method.

• Experimental comparison to two different models using 15 empirical projects and
11 open source projects to verify the prediction accuracy of the proposed model
compared with two other models.

• Analysis of effective metrics, clustering factors, and suitable time to create reliability
growth models.

The rest of the paper is organized as follows. Section 2 reviews the background
and the related works. Section 3 presents the proposed DC-SRGM. Section 4 explains
the experimental setup, data, and design. Section 5 reports the results and evaluations.
Section 6 describes the threats to validity. Finally, Section 7 provides conclusions and
future work.

This paper is extended from our previous study [9]. We conducted additional ex-
periments to investigate the impact of clustering factors, another similarity score using
dynamic time warping, applied at different time points of ongoing projects and predictions
across organizations.

2. Background and Related Work

Studies have been conducted on SRGMs and their adoption for current project predic-
tion as well as cross-project prediction. In this section, we firstly show related works on
SRGMs in general. Secondly, we explain the current project prediction as the context of this
study. Finally, we present related works on cross-project prediction and their limitations to
motivate our method.

168

Mathematics 2021, 9, 2945

2.1. Software Reliability Growth Model

The widely used Software Reliability Models (SRMs) [10] are Software Reliability
Growth Models (SRGMs) that are used for modeling the failure or defect arrival pattern [11]
based on failure data regardless of the source code characteristics. Many SRGMs have been
studied to measure the failure process. These models require external parameters to be
estimated by the least-squares or maximum likelihood estimation to build the relevant
parameters [1]. N. Ullah et al. [11] studied different SRGMs using defect data in industrial
and open source software and performed a comparative analysis between them. To evaluate
the qualities of development projects monitored by SRGM applications, K. Honda et al. [6]
analyzed the tendencies for unstable situations in the results of different SRGM models. K.
Okumoto et al. [4] applied SRGM in developing a reliability assessment automated tool.

SRGM processes are usually performed with data from testing. Detecting and resolv-
ing failures or defects would enable software systems to be more stable and reliable. To
understand the underlying condition of the system, such processes are often described
using a mathematical expression, usually based on parameters such as the number of
failures or failure density [12]. Studies report many ways to create models based on the
model’s assumption of failure occurrence patterns.

Similar to previous studies [6,13], we focused on the Logistic model, which is the
most suitable concerning fitness for the collected experimental datasets. We employed the
model using the number of detected bugs and detected time. The Logistic model can be
expressed as

N(t) =
Nmax

1 + exp−A(t − B)
(1)

where N(t) is the number of bugs detected by time t. The parameters, Nmax, A and B were
estimated using Nonlinear Least Square Regression (NLR) function [6].

2.2. Current Project Prediction

SRGMs can be applied to current ongoing projects to allow project managers or
other stakeholders to assess the release readiness and consider optimal testing resource
allocations. Current project prediction applies existing project data as a training source
and then makes predictions for future days. Therefore, prediction models in this study are
created using only 50 percent data points of the target project’s existing data. Then these
models are used to predict the subsequent days for the rest of the data points. Each data
point refers to the cumulative number of bugs that have been reported by the corresponding
time. We considered an RNN-based LSTM as well as the Logistic model as prediction
models for current project prediction.

A Recurrent Neural Network (RNN) connects neurons with one or more feedback
loops, which is capable of modeling sequential data in sequence recognition and predic-
tion [14,15] because it includes high-dimensional hidden states with nonlinear dynamics.
These hidden states perform as the memory of the network, and its current state is con-
ditioned on its previous one [16]. A simple RNN structure has an input layer, recurrent
hidden and output layers, which accept the input sequences through time. Consequently,
RNNs are capable of storing, remembering, and processing data from past periods, which
enables the RNN to elucidate sequential dependencies [14]. However, it comes with the
challenges that the memory produced from the recurrent connections may be limited to
learning long-range sequential data.

An RNN-based LSTM network is designed to solve that problem. The LSTMs are
capable of bridging very long-time lags with an advanced RNN architecture, with self-
connected units [14,17,18]. The inputs and outputs of hidden units are controlled by gates,
which maintain the extracted features from previous time steps [14,18]. LSTM contains an
input gate, forget gate, cell state, output gate, and output response. The input gate and
forget gate manage the information flow into and out of the cell, respectively. The output
gate decides what information is passed to the output cell. The memory cell has a self-
connected recurrent edge of weight, ensuring that the gradient can pass across many time

169

Mathematics 2021, 9, 2945

steps without exploding [19]. The advantage of an LSTM model is it can keep information
over long periods by removing or adding information to the state.

For current project prediction, traditional SRGMs such as the Logistic model cannot
realize underlying project conditions if they are applied at the initial stage with limited
historical data. As a result of the preliminary experiment using one of the industrial projects
of the company, we confirmed that the Logistic model did not work well, as shown in
Figure 1a.

0 5 10 15

50
10

0
15

0
20

0

DS−F10

Time(day)

o

f
B

u
g

s

Prediction
Actual

(a)

0 5 10 15

0
50

15
0

25
0

DS−F10

Time(day)

o

f
B

u
g

s
Prediction
Actual

(b)

Figure 1. Applying the Logistic model and LSTM model on day 5 for ongoing project F10. (a) Logistic Model.
(b) LSTM Model.

Therefore, we applied an advanced technique LSTM model with the same amount
of data during model construction. At each step, the input layer receives a vector of the
number of bugs and passes the data to hidden layers, with four LSTM neurons in each.
An output layer generates a single output that gives the predictions for the next time step.
Although improvements occur (Figure 1b), the LSTM model does not always provide
accurate results at the beginning in cases with very little data that has different reliability
growth patterns.

2.3. Cross-Project Prediction

Ongoing projects have limited data for use as historical defect data. One alternative is
to employ a cross-project prediction, which utilizes external projects to construct a predic-
tion model for the current project [3,20]. In the literature, cross-project prediction is a very
well-studied subject by utilizing project data of different organizations. K. Honda et al. [5]
proposed a cross-project SRGM model to compare software products within the same com-
pany. However, they did not implement cross-project applications of SRGMs for ongoing
projects. Remarkably, there are a few studies in SRGM modeling using cross-project data.

The mismatch between the randomly selected source projects and the target project
affects the cross-project prediction performance and creates unstable results. Earlier studies
in [21,22] implied that usage of cross-company data without any modification degrades the
accuracy of prediction models. Irrelevant source project data may decrease the efficiency
of the cross-project prediction model. To overcome this issue, C. Liu et al. [23] considered
the Chidamber and Kemerer (CK) metric suite [24] and size metrics to implement a cross-
project model, which detects change-proneness class files. Source projects were selected by
the best-matched distribution.

To choose appropriate training data, X. Zhang et al. [7] investigated the efficiencies of
nine different relevancy filtering methods. A cross-project defect prediction model was con-
structed with a random forest classifier on the PROMISE repository. M. Jureczko et al. [25]

170

Mathematics 2021, 9, 2945

also studied a similar project clustering approach using k-means and hierarchical clus-
tering by a stepwise linear regression in the PROMISE data repository. They confirmed
that k-means could successfully identify similar project clusters from a defect prediction
viewpoint. The above studies with cross-project prediction focused on the clustering or
filtering approaches and employed a specific classifier to label defective modules or classes.
None of these methods dealt with the observed time series failure data.

J. Wang et al. [1] proposed an encoder–decoder-based deep learning model RNN
and performed analysis between non-parameter models and parameter models. They
applied the cumulative executive time and the accumulated number of defects. However,
a cross-project prediction model was not implemented.

In addition, most of the past studies have not investigated sufficiently in SRGMs
modeling that utilizes cross-project prediction. This study conducted projects reliability
assessment by SRGM modeling with a sophisticated method rather than traditional ap-
proaches using cross-project data, which were carefully selected with a project similarity
method.

In earlier studies, cross-project predictions models have been utilized to resolve the
requirement of huge historical data. However, one challenge in the cross-project prediction
is that the distribution of the source and target project usually differ significantly [7,8]. If
the training data contain all the source project data, a poor prediction quality can result.
Ideally, one defect prediction model should work well for all projects that belong to a
group [25].

3. Deep Cross-Project Software Reliability Model

To eliminate the unrelated data from all source projects for each target project, we
propose the Deep Cross-Project Software Reliability Growth Model (DC-SRGM), which
processes only the project data with the most common features of the target project. DC-
SRGM utilizes a cross-project prediction method that uses other projects; data as a training
data source with the advantage of LSTM modeling for time series data.

Figure 2 overviews the proposed model DC-SRGM. It includes three processes, simi-
larity scoring, clustering-based project selection, and prediction modeling. Figure 3 details
the process of selecting the most appropriate projects that share common characteristics
with the target project. The core feature of DC-SRGM is that it filters irrelevant projects
from training data sources and only selects projects with the most common characteristics
as the target project.

3.1. Similarity Scoring

Each project has its own features, such as the project size and the number of bugs [3].
Identifying similarities among the datasets is the basis used to eliminate differences be-
tween the data across projects. Otherwise, inappropriate source data may be chosen. To
exclude irrelevant projects from training data sources, the clustering factors include project
similarity scores. In DC-SRGM, cross-correlation is applied to identify the correlation
of projects against the target project. Furthermore, Dynamic Time Warping (DTW) is
considered as a comparative similarity measurement.

Cross-correlation: A measure of the similarity among the projects by aligning two
time series. The coefficients identify the connections between different time series of
datasets [26]. In given time series datasets for cumulative numbers of bugs, each dataset is
considered as one time series. The cross-correlation function of each pair taken from two
datasets is calculated.

Dynamic Time Warping (DTW): A well-known technique to measure the optimal
alignment or similarity between time series sequences of different lengths concerning the
shape of information and patterns [27]. It calculates the minimal distance to observe dissim-
ilarities among the datasets according to the scale and distribution of the project. Here, it is
used to compare the performances of DC-SRGM with different similarity measurements.

171

Mathematics 2021, 9, 2945

Figure 2. Overview of the DC-SRGM model.

Figure 3. Project selection process.

3.2. Project Clustering

Project clustering groups similar projects together using the k-means algorithm with
the following clustering factors:

• Cross-correlation similarity scores between the number of bug growth patterns;
• Normalized values of the maximum number of bugs;
• Normalized values of the maximum number of days.

Clustering results usually indicate three groups. Each group includes projects with
characteristics similar to the target project according to the cross-correlation scores and the
distribution of the projects, such as the number of bugs and the number of days.

3.3. Selection

To investigate whether a cluster for SRGM modeling exists, a prediction model is
created by the datasets from each same cluster. According to our initial analysis, the cluster
from the number of bugs prediction viewpoint exists only in the group with the target
project itself. Each group shares the most common attributes of the projects, such as failure
occurrence patterns, and only those within the same group are appropriate to model for
each project. In addition, only a cluster that belongs to the target project is selected. All
the containing projects in that cluster are combined, but the target project itself is excluded
when merging the data. Eventually, the merged group of projects eliminating the irrelevant
training data is used for model training.

172

Mathematics 2021, 9, 2945

3.4. Training and Prediction

To employ the LSTM model, the input to the network at each time step is a vector of
the number of bugs, and the single output is the number of bugs for the next step. Figure 4
shows the process of LSTM training at each time step. Because the ranges of the input
values can vary, the values of bugs are scaled into the range of zero to one. By considering
the prediction process as a time series, the input layer receives the values of the number of
bugs for nine days, and the single output node produces the prediction for the next day.
By shifting by one in each step, the model is trained to the maximum days of the training
dataset. The model is trained with 300 epochs because the results are similar to those using
500 epochs. The stochastic gradient descent method is employed using the mean squared
error loss function.

Figure 4. Model training process.

For a target project prediction, the trained model uses fifty percent of the data points
of its project to predict the following fifty percent of the data points because we considered
a project to be ongoing.

4. Experiment Methodology

Experiments were conducted to answer the following research questions RQ1–RQ5.
Figure 3 overviews the evaluation design for each research question. RQ1 compares two
different types of current project prediction: LSTM and Logistic models using only the first
half of the current project data to predict the second half of the same project, and DC-SRGM
using past projects’ data for training and the first half of the current project data as input
for prediction of the second half of the same project. Furthermore, RQ2–RQ5 address only
DC-SRGM using past projects’ data for training and the first half of the current project
data as input for prediction of the second half with different settings. We explained this
distinction as follows in Section 4.

• RQ1: Is DC-SRGM more effective in ongoing projects than other models?

This question evaluates the effectiveness of the DC-SRGM model compared to the
Logistic model and LSTM model (Figure 5, RQ1). That is, does the proposed method
correctly describe ongoing projects’ reliability despite insufficient data to apply in a
prediction model? Specifically, we used a case study to compare the performance of
different models for 15 industrial projects with a duration longer than 14 days and
11 OSS projects. Because the target is an ongoing project, the first half of its data is
used to obtain the similarity scores as well as for input data. Then the models are
used to predict the second half of the target data. The results should reveal whether
cluster-based similar project selection improves the LSTM model performance relative
to that of a traditional Logistic model.

• RQ2: What factors influence the performance of DC-SRGM?

This question examines the performance of DC-SRGM upon applying a different
clustering factor to the similarity scores of the projects. Domain experts indicated that
the projects are clustered according to the project domain type, and the same types of
projects are applied as the training source projects for modeling. We compared the
prediction results with similarity scores in terms of AE values to reveal how different

173

Mathematics 2021, 9, 2945

clustering factors influence the prediction results. This RQ helps to assess whether
DC-SRGM can be utilized when the same type of other projects is not available.

• RQ3: Do different similarity measurements affect the prediction quality of DC-

SRGM?

This question investigates the performances of DC-SRGM based on cross-correlation
and Dynamic Time Warping (DTW) to determine the impact of the similarity measure-
ment techniques on the model (Figure 3, RQ3). We analyzed the effect of the similarity
measurement on DC-SRGM by comparing the performance of two methods in terms
of AE values by model. In general, AE > 0.10 indicated a satisfactory model.

• RQ4: Can DC-SRGM precisely describe an ongoing project’s status?

This question explores the relation of the amount of utilized project data and the
model’s prediction capability for new initial stage projects. It aims to determine if
there is a suitable time for managers to begin to evaluate projects with acceptable
accuracy by DC-SRGM. Therefore, we applied the DC-SRGM model at different time
points in ongoing projects to assess the prediction performance and the impact of the
target project’s past data usage.

• RQ5: Can DC-SRGM trained with OSS datasets indicate the industrial projects’

situation?

Even if previous source projects’ data are unavailable, this question evaluates whether
DC-SRGM created with OSS datasets can predict the conditions for an industrial
project. We used open source datasets to create DC-SRGM with the same setting and
procedure performed on industrial datasets. Then the results are compared to those
predicted using industrial datasets.

Figure 5. Overview of the experiment design (Research Questions).

4.1. Initial Analysis

To identify similar groups, the initial analysis used cosine similarity and DTW. How-
ever, the similarity measurements and the prediction performance were not correlated.
Therefore, the k-means clustering method was applied. Then the optimum number of
clusters, k, was determined by the Elbow method. Initially, the clustering produced biased
results on the number of days. After adding cross-correlation coefficients in clustering
factors, projects with similar characteristics were classified well.

174

Mathematics 2021, 9, 2945

4.2. Performance Measure

We evaluated the prediction capability in terms of accuracy by considering the ratio
between the difference in the error values and the prediction over a time period, namely
average error (AE) [1]. AE is defined as:

AE =
1
n

n

∑
i=1

∣∣∣Uij − Dj

Dj

∣∣∣ (2)

where Uij denotes the cumulative number of predicted bugs by time tj, Dj represents the
cumulative number of detected bugs by time tj, and n is the project size [1]. A value closer
to zero indicates a better prediction accuracy.

We employed the Friedman test with the Nemenyi test as a post hoc test to evaluate
the statistically significant difference in performances between DC-SRGM and the baseline
methods because it is better suited for non-normal distributions.

4.3. Data Collection

The datasets were from 15 industrial projects’ data with a duration longer than 14 days
from real cloud services development projects. Each dataset consisted of the time series
number of bugs per testing day. The domains of the projects were property informa-
tion management, customer relationship management, contract management, money
receipt/payment management, and content management systems [6]. To derive more
generalized results, we aimed to include as many software projects as possible. Thus,
11 datasets from Apache open source projects were also collected from apache.org using a
bug tracking system, JIRA, to study reliability growth modeling. All the issues reported in
two minor versions, which were declared as bugs or defects excluding any other categories,
were collected for each project. Tables 1 and 2 describe details of each dataset.

Table 1. Industrial project details.

Project Days # of Bugs

F01 19 91
F02 22 137
F03 12 47
F04 17 259
F05 19 188
F06 26 263
F07 15 146
F08 17 97
F09 16 99
F10 18 184
F11 14 74
F12 25 351
F13 22 187
F14 34 331
F15 18 752

175

Mathematics 2021, 9, 2945

Table 2. OSS projects details.

Project Days # of Bugs Studied Version

Camel 36 32 2.15.1 2.15.2
Ignite 48 149 2.5 2.6

Jclouds 175 25 2.1.0 2.1.1
Karaf 56 64 4.1 4.2

Lucene 91 6 6.6.0 6.6.1
Maven 160 22 3.5.1 3.5.2
Shiro 30 6 1.3.0 1.3.1
Spark 99 185 2.3.1 2.3.2

Syncope 80 36 2.0.2 2.0.3
Tez 120 27 0.6.0 0.6.1

Zookeeper 86 14 3.4.12 3.4.13

5. Experiment Results and Discussions

5.1. Project Clustering Result of Industrial Datasets

In terms of the application of DC-SRGM targeting the industrial datasets, Table 3
summarizes the clustering factors, which are the cross-correlation similarity score, the
maximum number of bugs, and maximum number of days. Table 4 summarizes the project
clustering results in the industrial datasets. The number of projects in each group differs
slightly based on the similarity scores between the candidate target and source datasets for
each target dataset. Table 4 details each cluster, including the range of the number of bugs,
number of days, and the overall number of bugs of the included projects. “Grad” indicates
a gradual increase in the detected number of bugs. “Expo” refers to an exponential rise in
bug growth. “Expo and Grad” denotes both an exponential and gradual increase in the
number of bugs.

Table 3. Summary of the clustering factors.

Similarity Max Bugs Max Days

0∼1 47∼752 14∼36

Table 4. Summary of the clustering results. Projects are generally clustered into three groups according to similarity scores
and the project scales. Grad, Expo and Grad, and Expo indicate the growth of the number of bugs is gradually increasing,
exponentially increasing and gradually increasing, and exponentially increasing.

Cluster Clustered Projects Max Bugs Max Days Growth Type

C1 F01, F02, F04, F05, F07, F08, F09, F10, F11 91∼188 14∼22 Grad Similarity
C2 F12, F15 540∼752 18∼24 Expo # Bugs
C3 F03, F06, F13, F14 47∼331 22∼36 Expo and Grad # Days

Table 5 shows the clustering results by project, where “Cluster” represents the cluster
containing the target project. Projects applied for model building are presented in Table 4
according to the expressed cluster name. “Actual Growth” describes the bug growth of
each project. “Prediction Result” shows the growth of the number of bugs by the prediction
model created by clustered projects.

176

Mathematics 2021, 9, 2945

Table 5. Summary of the clustering results by project. Grad, Expo and Grad, Expo, and Const indicate
that the number of bugs is gradually increasing, exponentially increasing and gradually increasing,
exponentially increasing, and constantly increasing.

Project Cluster Actual Growth Prediction Result

F01 C1 Grad Grad
F02 C1 Grad Grad
F03 C3 Grad Grad
F04 C1 Grad Grad
F05 C1 Grad Grad
F06 C3 Expo Expo
F07 C1 Grad and Expo Grad
F08 C2 Grad Grad
F09 C3 Expo and Grad Grad
F10 C4 Grad Grad
F11 C5 Grad Grad
F12 C2 Expo Expo and Grad
F13 C3 Expo and Grad Expo and Grad
F14 C3 Expo and Grad Const
F15 C2 Expo Expo

In this study, since the maximum number of bugs, the maximum number of days,
and cross-correlation scores for the connections between projects are used as clustering
factors, the obtained clusters are basically three main groups depending on these factors,
their similar attributes, and data patterns. The first cluster denotes a group with moderate
to strong correlation scores. The second cluster is influenced by the exponential growth of
the number of bugs. The third cluster is grouped by the distribution of the number of days
of the projects.

For example, F01 and F02 projects have the same distribution scales and a moderate
cross-correlation score. Hence, they are grouped in the same cluster. On the other hand,
the F12 project shows exponential growth for the number of bugs and a different data
occurrence pattern. Building a model for the F01 project using F12 would overestimate the
prediction result. Hence, DC-SRGM achieves better performance when applying it in the
middle of the projects to build a model using a similar group of projects.

5.2. RQ1: Effectiveness of DC-SRGM

The experiments in RQ1 compared DC-SRGM to the Logistic and LSTM models.
Tables 6 and 7 present the AE values of the three models for the industrial datasets and
OSS datasets, respectively. Table 8 describes the results of the statistical test between
DC-SRGM and the two other models. For the industrial datasets, DC-SRGM yielded the
largest improvement. On average, it improved the AE by 24.6% and 50% compared to the
LSTM and Logistic model, respectively.

177

Mathematics 2021, 9, 2945

Table 6. Comparison of DC-SRGM with the LSTM and Logistic models by the AE values. Bold
denotes the best AE values. W/L is the number of datasets that each method is better and worse
than. “# DS Threshold below 0.1” is the number of datasets for which each model’s performance is
lower than the threshold.

Project DC-SRGM LSTM Logistic

F01 0.067 0.040 0.266
F02 0.071 0.080 0.146
F03 0.192 0.130 0.142
F04 0.091 0.260 0.377
F05 0.075 0.127 0.218
F06 0.040 0.090 0.211
F07 0.329 0.500 0.146
F08 0.049 0.104 0.187
F09 0.055 0.048 0.146
F10 0.088 0.121 0.214
F11 0.068 0.073 0.074
F12 0.095 0.161 0.359
F13 0.211 0.243 0.348
F14 0.107 0.020 0.183
F15 0.126 0.201 0.191

Average 0.110 0.146 0.220

Improved% - +24.6% +50%

W/L 10/5 4/11 1/14

DS Threshold below 0.1 10 6 1

Table 7. Prediction Accuracy of the models on OSS datasets by the AE values. Bold denotes the best
AE Values. W/L is the number of datasets for which each method is better and worse than. “# DS
Threshold below 0.1” is the number of datasets that each model’s performance is lower than the
threshold.

Project DC-SRGM LSTM Logistic

Camel 0.081 0.099 0.440
Ignite 0.067 0.063 0.110

Jclouds 0.190 0.029 0.260
Karaf 0.035 0.105 0.830

Lucene 0.270 0.438 0.950
Maven 0.120 0.122 0.240
Shiro 0.100 0.139 0.110
Spark 0.201 0.139 0.190

Syncope 0.240 0.128 0.220
Tez 0.037 0.180 0.780

Zookeeper 0.133 0.190 0.140

Average 0.134 0.148 0.388

Improved% - +9.45% +65.4%

W/L 7/4 4/7 0/11

DS Threshold below 0.1 5 3 1

178

Mathematics 2021, 9, 2945

Table 8. Statistic results with the Nemenyi test for the effectiveness of DC-SRGM. * and ** denote
that there were significant differences in the groups as the significance levels were 0.1 and 0.01,
respectively.

Models p_Value

Industry DC-SRGM and LSTM 0.0710 *
DC-SRGM and Logistic 0.0045 **

OSS DC-SRGM and LSTM 0.3657
DC-SRGM and Logistic 0.0288 *

Table 6 compares the number of datasets where each model obtained better or worse
(win or lose) scores across datasets. If a model achieved a score below the threshold (0.1), it
was considered as an indicator of good accuracy. In most cases, DC-SRGM achieved better
AE values. Figure 6a also expresses the median of AE values among the three models.
The red line represents the threshold. The DC-SRGM model had lower AE values with
a median below 0.1, implying a higher accuracy than the other two models. The LSTM
model was close to the threshold, and the Logistic model showed the worst performance.

(a) (b)

Similarity Project Type

0.
1

0.
3

0.
5

0.
7

Clustering Factor

Models
(c)

Cross−correlation DTW

0.
0

0.
4

0.
8

Similarity Scores

Models
(d)

Figure 6. Cont.

179

Mathematics 2021, 9, 2945

Day 7 Day 10 Day 12 Day 13 Day 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Applying at different time points

Models
(e) (f)

Figure 6. Comparison of the model prediction accuracy in terms of average error, AE. (a) Performance
in industrial datasets (DS), (b) Performance in OSS datasets, (c) DC-SRGM based on project similarity
and project domain type, (d) DC-SRGM based on cross-correlation and DTW, (e) DC-SRGM applied
at the different number of days, and (f) DC-SRGM across organizations.

In the case of the OSS datasets (Figure 6b and Table 7), the results slightly differed,
which is most likely due to the difference in the project nature between industrial and OSS
projects. DC-SRGM achieved the best score. It showed 65.4% improvement compared to
the Logistic model in terms of AE average and better scores in terms of W/L. However,
the performance with the LSTM model did not pass the significant test, and its boxplot
was bigger than the LSTM model. The LSTM model increased its accuracy in the OSS
environment due to the larger amount of training data. OSS datasets have a different
development environment and style; specifically, having a larger project size provides
better accuracy for the LSTM model using the current project prediction method.

There are two exceptional cases where the proposed DC-SRGM was less accurate: F03
and F14 prediction. In the clustering result, the F03 project was grouped in the third cluster,
which was grouped according to the number of days despite having a strong correlation
with the projects in the first cluster. This impacted F03 modeling and is why DC-SRGM
provided less accurate results than the LSTM and Logistic models. In terms of the F14
project, its domain differed from the other projects, and it had a long duration, according
to the domain experts of these experimental projects.

Figure 7a–d plot the results when applying DC-SRGM, LSTM, and Logistic models to
the F02, F03, F04, and F10 datasets at the middle of the projects, respectively. The predicted
number of bugs by DC-SRGM described the potential number of bugs more correctly than
the other two models. Hence, the industrial and OSS datasets results indicated that DC-
SRGM outperformed LSTM and the Logistic model and improved the prediction accuracy
when applied in an ongoing stage of industrial development. For OSS projects, DC-SRGM
significantly outperformed the Logistic model, and, on average, DC-SRGM was better than
LSTM. However, its performance slightly decreased in the industrial environment while
the performances of the LSTM model increased.

180

Mathematics 2021, 9, 2945

0 5 10 15 20

50
10

0
15

0

Prj−F02

Time (day)

o

f
B

u
g

s
Actual
DC−SRGM
LSTM
SRGM

(a)

0 5 10 15 20 25 30 35

10
20

30
40

50
60

Prj−F03

Time (day)

o

f
B

u
g

s

Actual
DC−SRGM
LSTM
SRGM

(b)

0 5 10 15

0
50

15
0

25
0

Prj−F04

Time (day)

o

f
B

u
g

s

Actual
DC−SRGM
LSTM
SRGM

(c)

0 5 10 15

0
50

15
0

25
0

Prj−F10

Time (day)

o

f
B

u
g

s

Actual
DC−SRGM
LSTM
SRGM

(d)

Figure 7. Predicted number of bugs at the middle of the projects. Actual, DC-SRGM, LSTM, SRGM
represent the actual detected number of bugs, the prediction by DC-SRGM, the LSTM model, and the
Logistic SRGM model, respectively. (a) Project F02, (b) F03, (c) F04, and (d) F10.

RQ1: Is DC-SRGM more effective in ongoing projects than other models?
The proposed DC-SRGM outperforms the LSTM and Logistic models for most datasets

as it has a lower mean AE value. The improvements are significant in industrial datasets.
Hence, DC-SRGM is more effective in describing the future number of bugs correctly for
ongoing software development projects.

5.3. RQ2: Impact of Clustering Factors on DC-SRGM

RQ2 examined the prediction accuracy of two different clustering factors on DC-SRGM.
Two models were built. One used the project similarity score, a cross-correlation, and the
other used the project domain type to identify important factors for modeling. Figure 6c
shows boxplots for AE values from the predictions using the two different clustering
factors. “Project Similarity” and “Project Domain Type” in Table 9 report the details of the
AE values, where bold denotes the better result. Blank cells are projects which cannot be
determined in the selected experiment datasets. The project similarity-based DC-SRGM
obtained better scores in most cases, and the median was below the threshold.

181

Mathematics 2021, 9, 2945

Table 9. Comparison of the prediction accuracy of DC-SRGM using project similarity and project
domain type as clustering factors. W/L is the number of datasets that each method is better and worse
than. “# DS Threshold below 0.1” is the number of datasets for which each method’s performance is
lower than the threshold.

Project Project Similarity Project Domain Type

F01 0.067 0.074
F02 0.071 0.091
F03 0.192 0.129
F04 0.091 0.137
F05 0.075 –
F06 0.040 0.119
F07 0.329 0.714
F08 0.049 0.186
F09 0.055 0.113
F10 0.088 0.096
F11 0.068 0.066
F12 0.095 –
F13 0.211 0.239
F14 0.107 –
F15 0.126 0.080

Average 0.110 0.170

W/L 9/3 3/9

DS Threshold below 0.1 10 7

On the other hand, the project domain type-based model was close to the threshold.
Hence, project clustering by similarity scores affected the model’s ability to obtain suitable
project data to learn the number of bugs. Although the domain was the same, clustering by
project domain type did not affect the model performance. There are irrelevant projects
with very different growth patterns for bugs even though they are in the same domain.
Therefore, DC-SRGM modeling should be performed using the project similarity scores as
the priority rather than the project domain type.

RQ2: What factors influence the performance of DC-SRGM?
In most cases, DC-SRGM clustered by project similarity scores outperforms the model

clustered by project domain type on AE values, indicating that project similarity is an
important factor in the clustering process for good predictions results.

5.4. RQ3: Impact of Similarity Measurements on DC-SRGM

RQ3 compared the performances of DC-SRGM based on cross-correlation and DTW
to assess the similarity measurement technique’s impact and determine a better similarity
measurement for DC-SRGM. Figure 6d shows boxplots for AE values of both methods.
DC-SRGM based on the cross-correlation had lower AE values with a median below
the threshold. On the other hand, the DTW-based model was close to the threshold,
implying that cross-correlation shows a better performance. “Cross-correlation” and DTW
in Table 10 represent details of the AE values, where bold denotes the better method.
Across 15 datasets, although there is no obvious difference between the two methods
in the number of datasets with the lower AE value, the cross-correlation-based model
outperformed the DTW-based model on average and achieved a value lower than the
threshold in more cases.

182

Mathematics 2021, 9, 2945

Table 10. Comparison of the prediction accuracy DC-SRGM using cross-correlation and DTW as
similarity measures. W/L is the number of datasets that each method is better and worse than. “# DS
Threshold below 0.1” is the number of datasets for which each method’s performance is lower than
the threshold.

Project Cross-Correlation DTW

F01 0.067 0.037
F02 0.071 0.039
F03 0.192 0.499
F04 0.091 0.081
F05 0.075 0.048
F06 0.040 0.170
F07 0.329 0.988
F08 0.049 0.166
F09 0.055 0.089
F10 0.088 0.115
F11 0.068 0.169
F12 0.095 0.115
F13 0.211 0.165
F14 0.107 0.060
F15 0.126 0.089

Average 0.110 0.188

W/L 8/7 7/8

DS Threshold below 0.1 10 7

Clustering based on DTW could not always classify relevant datasets or eliminate the
irrelevant datasets for the target project. One reason is that the DTW function returned
the scores based on the shape of the dataset sequence, whereas cross-correlation returned
the scores based on the value and pattern of the dataset. Another reason is that the cross-
correlation scores can describe the correlation level, such as significant or non-significant.
In DTW, it is difficult to identify the threshold in the variations of datasets. Therefore,
changing the applied similarity measurement technique impacted the model performance.
To identify similar project groups correctly, the cross-correlation technique is better suited
for DC-SRGM.

RQ3: Do different similarity measurements affect the prediction quality of DC-SRGM?
Cross-correlation-based DC-SRGM achieves better accuracy than DTW. To enhance

source project selection, cross-correlation is a better technique for DC-SRGM from the
SRGM modeling viewpoint.

5.5. RQ4: Impact of Applying DC-SRGM at Different Time Points

To determine the impact of the amount of data from an ongoing project applied
in DC-SRGM modeling, the experiment was conducted using the target datasets from
industrial data on days 7, 10, 12, 13, and 14. The model’s performances at different time
points were compared to determine a suitable time frame to apply DC-SRGM in ongoing
development stages. Table 11 shows the AE values of the models at each time point.
Figure 6e compares the median of AE values at each prediction time point. Accurate results
were not obtained when applying DC-SRGM on day 7 of ongoing projects, but a few
projects had significant improvement upon using them on day 10. Applying the model on
day 12 or later improved the AE values. Overall, the proposed method can identify the
correct clusters and achieve stable results starting from day 12. Therefore, DC-SRGM can
be applied to ongoing software development projects beginning on day 12.

183

Mathematics 2021, 9, 2945

Table 11. Comparison of DC-SRGM for different numbers of days. “# DS Threshold below 0.1” is the
number of datasets for which each model’s performance is lower than the threshold.

Project Day 7 Day 10 Day 12 Day 13 Day 14

F01 0.070 0.078 0.072 0.060 0.060
F02 0.050 0.030 0.045 0.040 0.050
F03 0.580 0.377 0.167 0.160 0.170
F04 0.100 0.087 0.073 0.031 0.028
F05 0.130 0.070 0.029 0.024 0.020
F06 0.140 0.225 0.039 0.043 0.030
F07 1.140 0.780 0.333 0.270 0.140
F08 0.410 0.098 0.009 0.011 0.015
F09 0.160 0.111 0.007 0.005 0.005
F10 0.190 0.112 0.143 0.110 0.079
F11 0.140 0.020 0.006 0.007 0.007
F12 0.190 0.230 0.058 0.066 0.060
F13 0.430 0.190 0.025 0.260 0.270
F14 0.130 0.100 0.131 0.120 0.100
F15 0.080 0.190 0.125 0.087 0.050

Average 0.262 0.179 0.090 0.092 0.072

DS Threshold below 0.1 4/15 7/15 10/15 10/15 12/15

RQ4: Can DC-SRGM precisely describe ongoing projects’ status?
The model applied on day 12 of the ongoing projects provides a more stable and

improved accuracy than the other models. Hence, managers can start using DC-SRGM on
day 12 to describe the reliability of a project correctly.

5.6. RQ5: Predicting the Performance by Cross Organization Datasets

For RQ5, the experiment was designed to validate the effectiveness of the DC-SRGM
model applied using cross-organization OSS datasets for predictions of industrial projects.
DC-SRGM models trained by OSS datasets were used to predict the second half of the
industrial datasets. The performance was compared with the results of models trained by
industrial datasets.

Table 12 shows the AE values predicted utilizing industrial datasets and OSS datasets
along with the performances of the LSTM model and Logistic model. Figure 6f shows the
median of AE values. Among the models, DC-SRGM based on industrial datasets achieved
the best performance on average. However, the industry-based model and OSS-based
model produced the same number of best cases. Therefore, OSS datasets can be applied to
predict industrial projects when source project data is unavailable.

RQ5: Can DC-SRGM trained with OSS datasets indicate the industrial project’s situation?
DC-SRGM trained with OSS datasets obtains a better accuracy than LSTM and Logis-

tic models. However, its accuracy is not better than the industrial projects-based model.
Thus, OSS projects can be applied when previous source project data are unavailable.

184

Mathematics 2021, 9, 2945

Table 12. Accuracies of DC-SRGM built with industrial datasets and cross-organization datasets
(OSS) are compared with the LSTM model and Logistic model. W/L is the number of datasets that
each method is better and worse than. “Threshold below 0.1” is the number of datasets for which
each method’s performance is lower than the threshold.

Project
DC-SRGM

LSTM Logistic
Industry DS Cross-org DS

F01 0.067 0.051 0.040 0.266
F02 0.071 0.104 0.080 0.146
F03 0.192 0.107 0.130 0.142
F04 0.091 0.124 0.260 0.377
F05 0.075 0.049 0.127 0.218
F06 0.040 0.136 0.090 0.211
F07 0.329 0.196 0.500 0.146
F08 0.049 0.333 0.104 0.187
F09 0.055 0.196 0.048 0.146
F10 0.088 0.120 0.121 0.214
F11 0.068 0.066 0.073 0.074
F12 0.095 0.066 0.161 0.359
F13 0.211 0.205 0.243 0.348
F14 0.107 0.172 0.020 0.183
F15 0.126 0.196 0.201 0.191

Average 0.110 0.141 0.146 0.220

W/L 6/9 6/9 2/13 1/14

DS Threshold below 0.1 10 4 6 1

5.7. Case Study

Practitioners from e-Seikatsu Co., Ltd. wanted to focus on the situation of the on-
going software development projects because it helps with effective test planning and
resource arrangements.

Because the traditional reliability growth model could not describe the growth of the
number of bugs for a project, we attempted to model with an advanced methodology, a
deep learning-based LSTM model. However, due to the lack of training data of the same
project, the model’s performance required additional refinement.

Fortunately, the company had a lot of data from previously developed and released
projects. Thus, by applying data from previous projects, we developed the DC-SRGM
to use in the middle or earlier stages of development projects. By implementing DC-
SRGM in the ongoing projects of e-Seikatsu, the proposed model provided a more accurate
prediction than the other models considered. This case study confirmed that the proposed
approach is applicable when the past data are unavailable in the initial stage of the current
development projects.

6. Threats to Validity

In this study, we treated the number of bugs growing as a time-dependent variable
for model construction. However, there may be other related factors. For example, the
number of detected bugs may depend upon testing efforts. In addition, the experiment
was conducted with one LSTM architecture, although the LSTM network architecture may
impact its prediction performance. Moreover, when collecting data from open sources, data
validity in reporting defect data [28] may be an issue. These are threats to internal validity.

We tested only DC-SRGM with two datasets from two organizations. This is in-
sufficient to make generalizations. In the future, testing of more datasets from many
organizations needs to be performed. Additionally, when comparing models, the Logistic
model was used as a traditional method since it has been well adopted in SRGMs [11,13,29]

185

Mathematics 2021, 9, 2945

and is the most suitable for fitness for the collected experimental datasets. However, the
literature reports many other traditional SRGMs. These are threats to external validity.

The training process of our method would not take much time since it usually uses
a set of time series sequences where each sequence would be around a few dozen days
to several hundred days at most, depending on the length of each similar past project. In
contrast, the project clustering process may take some time and manual efforts if various
other factors are examined for clustering. This is another threat to external validity from
the viewpoint of the practical usefulness of our method.

One threat to construct validity is that we supposed that identifying correct clusters
means the group of projects with the same or similar attributes, such as the project scale
and growth pattern of the number of bugs rather than the project domains. Therefore, the
project domains may differ within the same cluster in actual cases.

7. Conclusions and Future Work

Herein we proposed a new software reliability growth modeling method DC-SRGM
using a combination of an LSTM model and a cluster-based project selection method based
on similar characteristics of projects via a similarity scoring process. This proposed method
alleviates issues regarding insufficient previous data and is an improvement compared to
traditional methods for reliability growth modeling.

We conducted experiments using both industrial and OSS data to evaluate DC-SRGM
with a statistical significance test. The case studies showed that DC-SRGM is superior to all
other evaluated models. It achieved the highest accuracy in industrial datasets, indicating
that the project similarity is more important than the project domain type when clustering
projects. Moreover, cross-correlation performed better than DTW in specifying project
similarity from a defect prediction viewpoint. The experiment involving different time
points indicated that DC-SRGM can be used for a project with 12 days of defect data to
stably and accurately predict the number of bugs that might be encountered in subsequent
days. Finally, DC-SRGM in ongoing projects can assist managers in decision-making for
testing activities by understanding reliability growth.

As our future work, we will explore other process metrics (such as testing efforts)
and product metrics [30,31] (such as code size) for project clustering and prediction model
construction. We plan to extend experiments to confirm the usefulness and generalizability
of our method by testing more datasets from many organizations and comparing with
other prediction models, including other traditional machine learning-based approaches
reported in the literature.

From the viewpoint of practical usage, our method is expected to be implemented
within existing development tools and environments, especially continuous integration
tools with quality dashboards [32,33] to monitor cumulative numbers of bugs and continu-
ous future prediction on a daily basis. Such tool integration should also facilitate the adop-
tion of measurements and records of necessary failure and related data of (un)distributed
team development projects in target organizations.

Furthermore, to improve the quality and continuous monitoring, our method should
be extended to provide more reliability metrics beyond predicting the number of bugs.

Author Contributions: Conceptualization and methodology, K.K.S.; literature review and analysis,
all authors. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

186

Mathematics 2021, 9, 2945

References

1. Wang, J.; Zhang, C. Software reliability prediction using a deep learning model based on the RNN encoder-decoder. Reliab. Eng.
Syst. Saf. 2018, 170, 73–82. [CrossRef]

2. Washizaki, H.; Honda, K.; Fukazawa, Y. Predicting Release Time for Open Source Software Based on the Generalized Software
Reliability Model. In Proceedings of the 2015 Agile Conference, AGILE 2015, National Harbor, MD, USA, 3–7 August 2015;
pp. 76–81. [CrossRef]

3. Xu, Z.; Pang, S.; Zhang, T.; Luo, X.; Liu, J.; Tang, Y.; Yu, X.; Xue, L. Cross Project Defect Prediction via Balanced Distribution
Adaptation Based Transfer Learning. J. Comput. Sci. Technol. 2019, 34, 1039–1062. [CrossRef]

4. Okumoto, K.; Asthana, A.; Mijumbi, R. BRACE: Cloud-Based Software Reliability Assurance. In Proceedings of the 2017 IEEE
International Symposium on Software Reliability Engineering Workshops, ISSRE Workshops, Toulouse, France, 23–26 October
2017; pp. 57–60. [CrossRef]

5. Honda, K.; Nakamura, N.; Washizaki, H.; Fukazawa, Y. Case Study: Project Management Using Cross Project Software Reliability
Growth Model Considering System Scale. In Proceedings of the 2016 IEEE International Symposium on Software Reliability
Engineering Workshops, ISSRE Workshops 2016, Ottawa, ON, Canada, 23–27 October 2016; IEEE Computer Society: Washington,
DC, USA, 2016; pp. 41–44. [CrossRef]

6. Honda, K.; Washizaki, H.; Fukazawa, Y.; Taga, M.; Matsuzaki, A.; Suzuki, T. Empirical Study on Tendencies for Unstable Situations
in Application Results of Software Reliability Growth Model. In Proceedings of the 2018 IEEE International Symposium on
Software Reliability Engineering Workshops, ISSRE Workshops, Memphis, TN, USA, 15–18 October 2018; Ghosh, S., Natella, R.,
Cukic, B., Poston, R.S., Laranjeiro, N., Eds.; IEEE Computer Society: Washington, DC, USA, 2018; pp. 89–94. [CrossRef]

7. Bin, Y.; Zhou, K.; Lu, H.; Zhou, Y.; Xu, B. Training Data Selection for Cross-Project Defection Prediction: Which Approach Is
Better? In Proceedings of the 2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
ESEM 2017, Toronto, ON, Canada, 9–10 November 2017; Bener, A., Turhan, B., Biffl, S., Eds.; IEEE Computer Society: Washington,
DC, USA, 2017; pp. 354–363. [CrossRef]

8. Turhan, B.; Menzies, T.; Bener, A.B.; Stefano, J.S.D. On the relative value of cross-company and within-company data for defect
prediction. Empir. Softw. Eng. 2009, 14, 540–578. [CrossRef]

9. San, K.K.; Washizaki, H.; Fukazawa, Y.; Honda, K.; Taga, M.; Matsuzaki, A. DC-SRGM: Deep Cross-Project Software Reliability
Growth Model. In Proceedings of the IEEE International Symposium on Software Reliability Engineering Workshops, ISSRE
Workshops 2019, Berlin, Germany, 27–30 October 2019; Wolter, K., Schieferdecker, I., Gallina, B., Cukier, M., Natella, R., Ivaki,
N.R., Laranjeiro, N., Eds.; IEEE Computer Society: Washington, DC, USA, 2019; pp. 61–66. [CrossRef]

10. Goel, A.L. Software Reliability Models: Assumptions, Limitations, and Applicability. IEEE Trans. Softw. Eng. 1985, 11, 1411–1423.
[CrossRef]

11. Ullah, N.; Morisio, M. An Empirical Study of Reliability Growth of Open versus Closed Source Software through Software
Reliability Growth Models. In Proceedings of the 19th Asia-Pacific Software Engineering Conference, APSEC 2012, Hong
Kong, China, 4–7 December 2012; Leung, K.R.P.H., Muenchaisri, P., Eds.; IEEE Computer Society: Washington, DC, USA, 2012;
pp. 356–361. [CrossRef]

12. Rana, R.; Staron, M.; Berger, C.; Hansson, J.; Nilsson, M.; Törner, F. Evaluating long-term predictive power of standard reliability
growth models on automotive systems. In Proceedings of the IEEE 24th International Symposium on Software Reliability
Engineering, ISSRE 2013, Pasadena, CA, USA, 4–7 November 2013; IEEE Computer Society: Washington, DC, USA, 2013;
pp. 228–237. [CrossRef]

13. Honda, K.; Washizaki, H.; Fukazawa, Y. Generalized Software Reliability Model Considering Uncertainty and Dynamics: Model
and Applications. Int. J. Softw. Eng. Knowl. Eng. 2017, 27, 967. [CrossRef]

14. Salehinejad, H.; Baarbe, J.; Sankar, S.; Barfett, J.; Colak, E.; Valaee, S. Recent Advances in Recurrent Neural Networks. arXiv 2017,
arXiv:1801.01078.

15. Bengio, Y.; Simard, P.Y.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.
1994, 5, 157–166. [CrossRef] [PubMed]

16. Mikolov, T.; Joulin, A.; Chopra, S.; Mathieu, M.; Ranzato, M. Learning Longer Memory in Recurrent Neural Networks. In
Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015 Workshop Track Proceedings, San
Diego, CA, USA, 7–9 May 2015.

17. Zhang, X.; Ben, K.; Zeng, J. Cross-Entropy: A New Metric for Software Defect Prediction. In Proceedings of the 2018 IEEE
International Conference on Software Quality, Reliability and Security, QRS 2018, Lisbon, Portugal, 16–20 July 2018; pp. 111–122.
[CrossRef]

18. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
19. Zhu, W.; Lan, C.; Xing, J.; Zeng, W.; Li, Y.; Shen, L.; Xie, X. Co-Occurrence Feature Learning for Skeleton Based Action Recognition

Using Regularized Deep LSTM Networks. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix,
AZ, USA, 12–17 February 2016; Schuurmans, D., Wellman, M.P., Eds.; AAAI Press: Palo Alto, CA, USA, 2016; pp. 3697–3704.

20. Porto, F.R.; Minku, L.L.; Mendes, E.; Simão, A. A Systematic Study of Cross-Project Defect Prediction with Meta-Learning. arXiv
2018, arXiv:1802.06025.

21. Kitchenham, B.A.; Mendes, E.; Travassos, G.H. Cross versus within-Company Cost Estimation Studies: A Systematic Review.
IEEE Trans. Softw. Eng. 2007, 33, 316–329. [CrossRef]

187

Mathematics 2021, 9, 2945

22. Lokan, C.; Mendes, E. Investigating the Use of Chronological Splitting to Compare Software Cross-company and Single-company
Effort Predictions. In Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering,
EASE 2008, Workshops in Computing, Bari, Italy, 26–27 June 2008; Visaggio, G., Baldassarre, M.T., Linkman, S.G., Turner, M.,
Eds.; BCS: London, UK, 2008.

23. Liu, C.; Yang, D.; Xia, X.; Yan, M.; Zhang, X. Cross-Project Change-Proneness Prediction. In Proceedings of the 2018 IEEE
42nd Annual Computer Software and Applications Conference, COMPSAC 2018, Tokyo, Japan, 23–27 July 2018; Reisman, S.,
Ahamed, S.I., Demartini, C., Conte, T.M., Liu, L., Claycomb, W.R., Nakamura, M., Tovar, E., Cimato, S., Lung, C., et al., Eds.; IEEE
Computer Society: Washington, DC, USA, 2018; Volume 1, pp. 64–73. [CrossRef]

24. Chidamber, S.R.; Kemerer, C.F. A Metrics Suite for Object Oriented Design. IEEE Trans. Softw. Eng. 1994, 20, 476–493. [CrossRef]
25. Jureczko, M.; Madeyski, L. Towards identifying software project clusters with regard to defect prediction. In Proceedings of

the 6th International Conference on Predictive Models in Software Engineering, PROMISE 2010, Timisoara, Romania, 12–13
September 2010; Menzies, T., Koru, G., Eds.; p. 9. [CrossRef]

26. Egri, A.; Horváth, I.; Kovács, F.; Molontay, R.; Varga, K. Cross-correlation based clustering and dimension reduction of
multivariate time series. In Proceedings of the 2017 IEEE 21st International Conference on Intelligent Engineering Systems
(INES), Larnaca, Cyprus, 20–23 October 2017; pp. 000241–000246. [CrossRef]

27. Izakian, H.; Pedrycz, W.; Jamal, I. Fuzzy clustering of time series data using dynamic time warping distance. Eng. Appl. Artif.
Intell. 2015, 39, 235–244. [CrossRef]

28. Herzig, K.; Just, S.; Zeller, A. It’s not a bug, it’s a feature: how misclassification impacts bug prediction. In Proceedings of the
35th International Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, 18–26 May 2013; Notkin, D., Cheng,
B.H.C., Pohl, K., Eds.; IEEE Computer Society: Washington, DC, USA, 2013; pp. 392–401. [CrossRef]

29. Huang, C.; Lyu, M.R.; Kuo, S. A Unified Scheme of Some Nonhomogenous Poisson Process Models for Software Reliability
Estimation. IEEE Trans. Softw. Eng. 2003, 29, 261–269. [CrossRef]

30. Tsuda, N.; Washizaki, H.; Honda, K.; Nakai, H.; Fukazawa, Y.; Azuma, M.; Komiyama, T.; Nakano, T.; Suzuki, H.; Morita, S.; et al.
WSQF: Comprehensive software quality evaluation framework and benchmark based on SQuaRE. In Proceedings of the 41st
International Conference on Software Engineering: Software Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada,
15–31 May 2019; Sharp, H., Whalen, M., Eds.; pp. 312–321. [CrossRef]

31. He, P.; Li, B.; Liu, X.; Chen, J.; Ma, Y. An empirical study on software defect prediction with a simplified metric set. Inf. Softw.
Technol. 2015, 59, 170–190. [CrossRef]

32. Honda, K.; Nakai, H.; Washizaki, H.; Fukazawa, Y.; Asoh, K.; Takahashi, K.; Ogawa, K.; Mori, M.; Hino, T.; Hayakawa, Y.;
et al. Predicting Time Range of Development Based on Generalized Software Reliability Model. In Proceedings of the 21st
Asia-Pacific Software Engineering Conference, APSEC 2014, Jeju, Korea, 1–4 December 2014; Volume 1: Research Papers; Cha,
S.S., Guéhéneuc, Y., Kwon, G., Eds.; IEEE Computer Society: Washington, DC, USA, 2014; pp. 351–358. [CrossRef]

33. Nakai, H.; Honda, K.; Washizaki, H.; Fukazawa, Y.; Asoh, K.; Takahashi, K.; Ogawa, K.; Mori, M.; Hino, T.; Hayakawa, Y.; et al.
Initial Industrial Experience of GQM-Based Product-Focused Project Monitoring with Trend Patterns. In Proceedings of the 21st
Asia-Pacific Software Engineering Conference, APSEC 2014, Jeju, Korea, 1–4 December 2014; Volume 2: Industry, Short, and
QuASoQ Papers; Cha, S.S., Guéhéneuc, Y., Kwon, G., Eds.; pp. 43–46. [CrossRef]

188

mathematics

Article

Modeling and Verifying the CKB Blockchain
Consensus Protocol †

Meng Sun 1, Yuteng Lu 1, Yichun Feng 1 and Qi Zhang 1 and Shaoying Liu 2,*

Citation: Sun, M.; Lu, Y.; Feng, Y.;

Zhang, Q.; Liu, S. Modeling and

Verifying the CKB Blockchain

Consensus Protocol. Mathematics

2021, 9, 2954. https://doi.org/

10.3390/math9222954

Academic Editor: Frank Werner

Received: 25 October 2021

Accepted: 12 November 2021

Published: 19 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional clai-ms

in published maps and institutio-nal

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mathematical Sciences, Peking University, Beijing 100871, China; sunm@pku.edu.cn (M.S.);
luyuteng@pku.edu.cn (Y.L.); yichunfeng@pku.edu.cn (Y.F.); zhang.qi@pku.edu.cn (Q.Z.)

2 Graduate School of Advanced Science and Engineering, Hiroshima University,
Higashi Hiroshima City 739-8527, Japan

* Correspondence: sliu@hiroshima-u.ac.jp
† This paper is an extended version of our papers published in Proceedings of SEKE 2021, pp. 150–153, KSI

Research Inc. and Knowledge Systems Institute, 2021, and Proceedings of BlockSys 2020, CCIS 1267, pp. 3–17,
Springer, 2020.

Abstract: The Nervos CKB (Common Knowledge Base) is a public permissionless blockchain de-
signed for the Nervos ecosystem. The CKB consensus protocol is the key protocol of the Nervos CKB,
which improves the limit of the consensus’s performance for Bitcoin. In this paper, we developed the
formal model of the CKB consensus protocol using timed automata. Based on the model, we formally
verified various important properties of the Nervos CKB to provide a sufficient trustworthiness
assurance. Especially, the security of the Nervos CKB against the selfish mining attacks to the protocol
was investigated.

Keywords: Nervos CKB; consensus protocol; model checking; UPPAAL

1. Introduction

Blockchains are distributed digital ledgers for which there are numerous benefits
such as decentralization, persistency, and anonymity. A continuously growing ledger of
transactions being represented as a chain of blocks is provided in a blockchain, where the
transactions are distributed and maintained over a peer-to-peer network [1]. Blockchain
has become a popular technology since it was first proposed by Satoshi Nakamoto in 2008
to support Bitcoin [2] and has been successfully applied in many scenarios due to its power
to create, transfer, and own assets in crypto-economy networks. Ethereum [3] extends
the application range of blockchain and allows developers to write smart contracts and
create different decentralized applications. Both Bitcoin and Ethereum have shown their
exciting potential for building a powerful crypto-economy network and have attracted
much attention from governments and industry.

Developing a secure and trustworthy blockchain is highly challenging because of the
vulnerabilities and the complexity of the distributed execution environment. In addition
to the security issues, the processing speed is also an important concern. However, both
Bitcoin and Ethereum have a limit of processing large transactions per time unit. In other
words, their processing capability is severely limited by the scalability. To alleviate this
problem for long-term sustainability, the Nervos team proposed the Common Knowl-
edge Base (CKB) [4], which uses a decentralized and secure layer and provides common
knowledge for the peer-to-peer network.

Since the CKB has become the trust root of the decentralized secure crypto-economy
system, guaranteeing the security and consistency of the CKB consensus protocol have
become very important. In fact, there are some protocols in which vulnerabilities were dis-
covered after they have been taken as correct and used for a long time [5]. In the literature,
there are some existing works for formal modeling and verification of blockchain systems.

Mathematics 2021, 9, 2954. https://doi.org/10.3390/math9222954 https://www.mdpi.com/journal/mathematics

189

Mathematics 2021, 9, 2954

For example, the work in [6] proposed a novel approach for verifying the properties of
Ethereum smart contracts using statistical model checking, and a formal model of the
Bitcoin protocol was proposed and verified with the UPPAAL model checker [7,8] in [9].

The CKB consensus protocol [10] is the key protocol being used in the CKB to build
the secure and optimal crypto-economy system [4]. The protocol aims to overcome the
two drawbacks of Bitcoin consensus: the low transaction processing throughput and the
vulnerability to selfish mining attacks. It limits the time of connecting the sender in the search
of a lost transaction. Such a restriction improves the efficiency of transaction processing
without compromising the security of the blockchain. Furthermore, the protocol adopts a
novel “two-step confirmation”, which can be used for selfish mining attack resistance.

Since the CKB is becoming more and more popular and its applications are constantly
increasing, the security properties of the CKB should have more attention paid to them. The
security of the CKB calls for a detailed investigation, and its ability to resist selfish mining
attacks has not been formally checked. In this paper, we propose the formal model of the
CKB consensus protocol using timed automata. Based on the formal model, we verified
the corresponding important properties with mathematical rigor with UPPAAL, which is
a model checker that has been successfully used in various case studies [9,11,12]. Model
checking [13] is a formal method of verification, which requires mathematical formalisms
for both the desired properties and systems and assures system correctness w.r.t. the
properties specified in given specifications automatically. Meanwhile, model checking is
also helpful for finding and fixing bugs in the system implementation.

The work in this paper is an extension of our previous studies [14,15], where we
initially discussed the formal models of the CKB block synchronization protocol and
consensus protocol, respectively, and the verification of some important properties of these
two protocols. In this paper, we further improved the formal models of the CKB consensus
protocol and investigated its robustness against malicious attacks, especially selfish mining
attacks. The main contributions of this paper are as follows:

• The formal models of the CKB consensus protocol in timed automata are proposed;
• A family of properties is formally defined and verified in UPPAAL;
• The ability of the CKB to resist malicious selfish mining attacks is proven.

The rest of this paper is organized as follows. The Nervos CKB and CKB consensus
protocol are briefly described in Section 2. Section 3 presents the formal model of the CKB
consensus protocol. Then, a family of properties of the protocol is formally defined and
verified using UPPAAL in Section 4. Section 5 discusses the ability of the CKB to resist
selfish mining attacks. Related work is provided in Section 6. Finally, Section 7 concludes
the paper and discusses possible future studies.

2. Preliminaries

This section gives an introduction to the Nervos CKB, the CKB consensus protocol,
and attacks.

2.1. The Nervos Network

The CKB is an open, public, and PoW-based blockchain, which was proposed in the
Nervos Network [16]. It was inspired by Bitcoin, but provides higher scalability and lower
transaction costs compared to Bitcoin. There are mainly two ways to improve the scalability
of blockchain: increasing the block space to store more transactions and moving part of the
operations off-chain for execution. The Nervos Network [16] uses the second approach and
creates a two-layer environment. Figure 1 shows its layered architecture, which separates
the state and computation and provides better scalability and more flexibility to each layer.

190

Mathematics 2021, 9, 2954

Figure 1. The CKB layered architecture.

The CKB layer, designed as a public permissionless blockchain for a layered crypto-
economy network, is the first layer in the Nervos Network. It is responsible for providing
the decentralized and secure infrastructure. In addition, it also includes the operation of
state verification. In order to settle the assets that come in and out of the second layer, the
CKB layer ensures the decentralization and sustainability of the entire blockchain. The
second layer is the environment of generating transactions and calculating and is mainly
responsible for generating states and protecting privacy. For different needs, it can be
designed separately to match various scenarios. The encryption of the CKB layer protects
the activities in the second layer. The second layer’s operation can be expanded to a large
extent under the security provided by the CKB layer.

Applications on the second layer can choose the proper generation methods based
on their particular needs. The CKB layer provides common knowledge custody for the
crypto-economy network, and its design target focuses on states. Common knowledge
refers to states verified by global consensus, and crypto-assets are examples of common
knowledge. CKB can generate trust and extend this trust to the second layer, making the
whole network trustworthy.

The operations of the Nervos Network consist of three parts: state generation executed
off-chain, the state-verification-based CKB virtual machine, and storing the states in the
cell. Once a new state is generated by the second layer, it will be placed into the transaction.
Then, the transaction will be broadcast to the whole network. To overcome the shortcom-
ings of Bitcoin and Ethereum, as mentioned above, the CKB consensus protocol increases
the output and enhances the security. The two-step confirmation is used for transaction
verification where the two steps are defined as the proposal step and the commitment step.
All transactions must go through the two-step confirmation. In the Nervos Network, users
can participate in activities as three types of nodes: The mining nodes, which are responsible
for collecting transactions and generating blocks, the full nodes, which responsible for the
verification, and the light nodes, which only focus on the data they need and use the least
resources. All nodes can freely enter or exit the blockchain.

2.2. CKB Consensus Protocol

The CKB consensus protocol is a variant of Nakamoto Consensus (NC) and complies
with the PoW mechanism. While retaining the advantage of NC, the CKB consensus proto-
col improves the performance limit and resistance to selfish mining attacks by adopting
a two-step confirmation, as shown in Figure 2. The block structures in the CKB include
the proposal zone and the commitment zone [4,10]. When a blockchain user wants to
record a transaction on the blockchain, a new transaction is generated. Based on the design
of the CKB, miners put these new transactions into the proposal zone of a block. The
proposal step starts once the proposal zone receives the transactions. This step will mainly
go through two operations. The first one is to check txpid, which is defined as the first few

191

Mathematics 2021, 9, 2954

bits of the transaction ID. In the second operation, full nodes confirm whether they have
received the transaction and then verify it. When a transaction passes the above operations,
it is considered to be “proposed”. Next, the commitment step starts once the transaction
is put into the commitment zone by the miner. In this step, full nodes confirm that the
transaction is not a duplicate and it would not conflict with previous transactions. It is
assumed that the transaction’s txpid appears in the proposal zone of one block and the
commitment zone of another block, then full nodes confirm that the distance between these
two blocks on the chain is kept within a predefined range. The transaction is “committed”
after the commitment step is complete.

Figure 2. Two-step confirmation.

The block propagation mechanism adopted in the consensus protocol checks whether
the transaction in a block is lost while avoiding extra round trips. In selfish mining attacks,
some transactions are concealed by the malicious miners. If such missing transactions are
continuously requested, an extra round trip will occur. The block propagation mechanism
regulates the maximum number of steps for the round trip through the following two
operations. In the first operation, when a committed transaction is previously unknown,
its sending node will be requested. There exist some transactions that are indeed proposed,
but they are not broadcast. The sending node must provide these transactions and put them
in the prefilled transaction list. If the sending node and the receiving node have the same
list that contains these nonbroadcast transactions, these transactions can be considered
valid. In the second operation, if a transaction is still missing, the sending node will be
queried again. When the sending node does not provide this transaction within the time
limit, this node will be included in the blacklist. Just as Bitcoin consensus, the CKB cannot
resist majority attack (51% attack) either.

2.3. Selfish Mining Attack

Some blockchain systems including Bitcoin have suffered from the selfish mining
attack. In the worst case, the malicious miners can occupy the dominant position in the
mining, and the decentralized characteristics may disappear. Then, the original advantages
of the blockchain no longer exist.

The way to gain illegal benefits in a selfish mining attack is that the malicious miners
create nonpublic blocks and use these blocks to replace the blocks created by the honest
miners. When one malicious miner generates a new block and launches a selfish mining
attack, he/she hides the block and waits for the opportunity to announce it. In general,
multiple malicious miners join together to form a malicious group and share the computing
power to improve the probability of success. The more blocks these malicious miners
possess, the higher the profits they can obtain. Meanwhile, the other honest miners are

192

Mathematics 2021, 9, 2954

competing with the malicious group for mining. When the computing power of honest
miners far exceeds that of the malicious group, it will be difficult for the malicious group
to gain an advantage to obtain benefits.

The key idea of the selfish mining attack is to create a secret branch from the chain, and
the miners in the malicious group will work only on this private chain. When competing
with the honest miners for mining, the malicious group waits until the private chain is
longer than the public chain. By the time the private chain gains the upper hand, the
malicious group announces it to the public, causing a fork. Since the newly announced
chain is longer than the original chain, other miners choose the longer one to follow.
Furthermore, the blocks added thereafter are successors of this private chain. Therefore,
the private chain replaces the original one as the main blockchain. Since the original chain
is abandoned, all the mining rewards of honest miners go down the drain. The malicious
group is more profitable when the newly announced private chain becomes longer.

3. The Formal Model of the CKB Consensus Protocol

In this section, we propose the formal model of the consensus protocol using timed
automata. To accurately simulate the operations of transaction verification in the CKB
consensus protocol, this model formalizes both the verification process and the interactions
among different nodes. Such a model consists of four automata: two-step, miner, full node,
and block-propagation.

All the variables in the model are used to specify whether the operations are successful
or not. The default initial values of the variables are all 0. Once the operations are complete,
the corresponding values are assigned to the variables according to the results. The assigned
value is 1 if the operation is successfully completed and greater than 1 if the operation
is abnormal. The assigned variables are taken as parameters in the guard conditions
on transitions.

3.1. Two-Step Automaton

The two steps in the two-step confirmation are “proposal” and “commitment”, respec-
tively. All the transactions that pass the two-step confirmation are taken as legal. After a
node generates a new transaction, a miner collects the transaction and completes the PoW
to generate a new block. The transaction is firstly written in the proposal zone of one block,
and then, the proposal step begins.

The initial state of the two-step automaton in Figure 3 is T0, which represents the
generation of a new transaction. The channel collectP! simulates the operation of mining
and is used to synchronize with collectP?, which is a channel in the miner automaton. The
variable c denotes the global time, which represents the time interval of each mining epoch.
Variable cp is used to specify whether the transaction has been put into the proposal zone.
According to the CKB consensus protocol, the difficulty of the PoW and the time interval
will be adjusted to make full use of the hardware performance, maintaining high-efficiency
production. Although the time interval in the protocol is not constant, setting time c to a
fixed value in this model does not affect the simulation of verification and propagation.

The function of the proposal zone is to announce new transactions being processed
by a miner to all nodes. Transactions that have not yet passed subsequent verification
are not considered to be valid. Therefore, these transactions in the proposal zone do not
affect the legality and spreadability of the blocks. The state T1 captures “start of proposal
confirmation”. There are 4 operations in the proposal confirmation: (1) to confirm that
a transaction exists in the proposal zone; (2) to check the txpid of the transaction; (3) to
confirm that the transaction has been received by the full node; (4) to verify the transaction
content. The value of variable checkT is used to specify whether the transaction successfully
passes the txpid check. The value of checkT is zero by default before the check, and a forced
state transition will be made by the invariant.

193

Mathematics 2021, 9, 2954

Figure 3. The two-step automaton.

In the CKB consensus protocol, txid checking is performed by the full nodes, so the
channel checkTxid! is used to synchronize with the channel checkTxid? in the full node
automaton. The full node automaton assigns the checking result to checkT. The value of
variable x denotes the corresponding block height on the blockchain. Whenever a new
block is added into the blockchain, the value of x increases by 1. The height of the block in
which the transaction exists is recorded using the value of variable hp.

The process continues to move forward if all operations in the two-step confirmation
process are successful. If any verification fails, the state transfers to T9, indicating that it
is impossible to broadcast the transaction. T2 is the state for “verification of transaction”.
The channel ReceiveVerify! simulates the verification performed by a full node. Once the
verification is finished, the full node automaton assigns value 1 to the variables checkR and
checkV. The values of these two variables are used to indicate whether the transaction is
successfully received and verified by the full node, respectively. T3 is the state in which
the transaction is ready for “mining of the second step”. Variable cc marks whether the
transaction is put into the commitment zone. A transaction τ that has been verified in the
first confirmation step is regarded as a “proposed transaction”. If τ is in the proposal zone
of a block with height hp, we say that τ is proposed at height hp.

Miners can collect all the transactions that have completed the first confirmation step
and write them into a new block’s commitment zone. The channel collectC! synchronizes
with the channel collectC? in the miner automaton to simulate the mining behavior. The
mining operations in the two steps are different in the locations in which the miners write
the transaction. There are two blocks in which the transaction exists, and the height interval
between these two blocks is limited in a previously defined range.

T4 is the state for “start of the commitment confirmation”. It is reached once the
transaction has been denoted as proposed and put in the commitment zone. The value of
variable checkC shows whether this transaction conflicts with other transactions on the chain.
Channel committed! synchronizes with channel committed? in the full node automaton and
simulates the confirmation of the proposed transaction. A proposed transaction τ must
meet the constraint cc >= 1 once it enters the confirmation. This constraint means that τ
has been put into the commitment zone. The current height of this block on the chain is
captured by the variable hc.

T5 is the state that conforms to the invariant close <= hc-hp <= far. The transaction
appears in the proposal zone and the commitment zone of two different blocks. The time
spent in the two-step confirmation process creates a difference in hc and hp. The values
of the constants close and far are predefined according to the efficiency of the hardware
equipment. The height interval between the two blocks can be regarded as the time

194

Mathematics 2021, 9, 2954

required for the first step of confirmation. The setting of close is to ensure the time interval
is long enough for the transaction to be propagated to the entire network. Each node has
limited memory space in the local device, and the value of far is decided on the basis of the
number of proposed transactions that can be stored in its device.

The state transfers to T6 once the constraint checkC == 1 is satisfied, while the channel
propagating! is triggered simultaneously. All transactions that reach this state are regarded
as “committed transactions”. In the two-step confirmation process, if any of the variable
values in checkT, checkR, checkV, and checkC is greater than 1, the verification is a failure.
Transactions that fail in verification directly go to T9, which is defined as “transaction
invalid”. Invalid transactions do not undergo subsequent verification steps.

The channel propagate! synchronizes with propagate? in the block-propagation au-
tomaton. If there is a transaction τ in the commitment zone of a certain block that is either
proposed or committed, then τ can be spread to the network. If a transaction is missing,
the block-propagation automaton initiates contact and requests the missing part from the
miner automaton. The miner should respond within a short time. Otherwise, he/she is
disconnected and blacklisted.

T7 and T8 are the states that indicate “authorization of broadcast” and “prohibition
of broadcast”, respectively. The value of variable p denotes whether the transaction is
propagable. If the transaction is legal and can be propagated, then p == 1. Otherwise, the
value 2 indicates that the transaction cannot be propagated. When the state reaches T7, T8,
or T10, it means the end of the transaction verification. When the next transaction is born,
the automaton state returns to T0, and the global time and variables are reset.

3.2. Full Node Automaton

Once a new block is generated, the legitimacy and the PoW of blocks are checked
by the full node before they are broadcast. Since the two-step confirmation is transaction-
oriented rather than block-oriented for the verification process, the full node automaton is
also transaction-oriented. In this automaton, all operations aim at a single transaction.

Figure 4 (The state marked c is committed. A state is committed if any of the locations
in the state are committed. A committed state cannot delay, and the next transition must
involve an outgoing edge of at least one of the committed locations.) depicts the full
node automaton. In the first confirmation step, the full node performs the checking
of transaction txid and the verification of contents, which are captured by the channels
checkTxid? and ReceiveVerify?, respectively. State F1 is “checking of txid”, and the variable
checkT is the result. States F2 and F3 correspond to “confirmation of receiving” and
“transaction verification”, respectively. The variables checkR and checkV are used to note the
results of these two operations.

When the full node reaches the second confirmation step, it becomes responsible for
committing the transaction. Once the channel committed? synchronizes with the channel
committed! in the two-step automaton, the state F4 is reached. The assignment of the
variable checkC marks whether the operation is successful. The state moves to F5 once any
operation fails. In this case, the transaction becomes invalid.

3.3. Miner Automaton

A miner’s behavior is specified in Figure 5, where M1 captures the standby state.
Once new transactions are generated, miners package these transactions and generate new
blocks through the PoW. This automaton simulates the behavior of honest miners, so the
mining results are all public. State M2 means “new block generation”, which is reached
after mining.

195

Mathematics 2021, 9, 2954

Figure 4. The full node automaton.

Figure 5. The miner automaton.

The automaton synchronizes with channel connecting! in the block-propagation au-
tomaton through the channel connecting? if a transaction is missing. Then, the state
transfers to M3, which represents “the contact with the miner”. Channel requesting? de-
scribes the process in which the miner is asked for the missing transaction. After that, the
state transfers to M4, which stands for “response to the request”, and the miner sends the
requested transaction back. The assignment checkRe := cc uses the operation result after
the transaction is written in the commitment zone as the miner’s reply.

When the transaction is still missing, the inquiry will be launched again. Channel
querying! in the block-propagation automaton synchronizes with querying? in the miner
automaton. State M5 means “reply to query”. Variable checkQ represents the answer of
the miner. Similarly, the value of checkQ is assigned to cc. The miner is taken as suspicious
and blacklisted after two failed requests for the transaction. The channel disconnecting? is
used to simulate this operation, which synchronizes with the channel disconnecting! in the
block-propagation automaton and transfers to state M6 for “disconnection”.

3.4. Block-Propagation Mechanism

The process of the block-propagation mechanism is described in Figure 6, which
starts from the standby state P0 by synchronizing the channel propagating? with the
channel propagating! in the two-step automaton. State P1 checks if the transaction is in
the commitment zone or not. The value of variable p indicates whether the transaction
can be propagated. The transaction can be broadcast if p := 1, and the broadcasting is
forbidden if p := 2. If the value of cc is different from 1 (cc ≥ 2), the transaction is not in
the commitment zone of any public block, and the channel connecting! should be activated
to synchronize with channel connecting? in the miner.

196

Mathematics 2021, 9, 2954

Figure 6. The block-propagation automaton.

State P2 means that the transaction is previously unknown. If checkRe >= 2, which
means that the transaction is still not acquired, the state transfers to P3 for “failure in
request”. The channel querying! is used to synchronize with the channel querying? in the
miner, which must reply in a short duration (t < 3 in Figure 6). State P4, which means
“transaction invalidation”, is reached if the missing part is still unknown. Then, the miner
is blacklisted and disconnected. Such an operation is simulated by the transition labeled by
the channel disconnecting! and an assignment p := 2, which tells the two-step automaton
that this transaction should not be propagated. This transition leads the automaton back to
the initial standby state.

4. Verification of the CKB Consensus Protocol in UPPAAL

We conducted a series of experiments to explore the credibility and consistency of
the consensus protocol by formalizing and verifying its key properties. In this section, we
did not consider properties related to the malicious attackers. The presence of malicious
attackers will be discussed in the next section. In the following, we define a family of
properties that should be satisfied in the CKB consensus protocol. Based on the proposed
formal model, we conducted some experiments using the UPPAAL model checker to check
the correctness and consistency of the protocol.

First of all, based on the design of the CKB consensus protocol, newly generated
transactions must go through a process of being put into the proposal zone. We define
this process as P1, in which T1 represents that the transaction is in the proposal zone.
Subsequently, the information of such transactions will be received by other nodes, and
the legality of the blocks and the propagation will not be affected by the validity of the
transactions. The verification result in UPPAAL demonstrates that the protocol satisfies (1).

A <> TwoStep.T1 (1)

Only after a transaction successfully passes the txid check, it can be considered as
proposed. Therefore, transactions that have not completed the txid check are not “proposed
transactions”. This property is formalized as (2), and the verification result shows that the
protocol satisfies (2) as well.

A [] TwoStep.T4 imply (checkT == 1)

A [] not checkT == 1 imply not TwoStep.T4 (2)

P3 formalizes the following property: the full node should receive and verify a
transaction before it is proposed. On the other hand, the transaction cannot be considered
proposed if the full node has not received the transaction or completed the verification
of its content. In the proposal step, the transaction txid is processed first, and then, a
notification is sent to the full nodes. As mentioned earlier, the transaction cannot be

197

Mathematics 2021, 9, 2954

considered proposed until it passes the check txid (checkT == 1). Once the check fails, the
transaction will never be considered as proposed. Furthermore, the transaction must have
been received (checkR == 1) and verified (checkV == 1) by the full nodes. The state T4
in the two-step automaton indicates that the transaction is proposed. The verification in
UPPAAL shows that (3) is satisfied.

A [] TwoStep.T4 imply (checkR == 1 and checkV == 1)

A [] (not checkR == 1) or (not checkV == 1) imply not TwoStep.T4 (3)

Before the transaction is put into the commitment zone, it must have been received
and verified by the full node. A transaction that has not been received or verified by the
full node cannot appear in the commitment area. We formalize this property as (4). The
state T5 means that the transaction is put in the commitment zone. In fact, the second
step of the two-step confirmation will be activated if and only if the miner finishes placing
the transaction in the commitment area. Only through the verification of the proposal
step, the transaction will be put into the commitment zone. (4) is satisfied based on the
verification result.

A [] TwoStep.T5 imply checkR == 1 and checkV == 1

A [] not (checkR == 1 and checkV == 1) imply not TwoStep.T5 (4)

A transaction must be located in the commitment zone with height hc and satisfy the
condition: close ≤ hc − hp ≤ f ar when it is committed. Such a property is formalized
as (5), in which T6 means commitment of the transaction. The value of checkC is used
to indicate whether the transaction is in the commitment area. This property is satisfied
according to the verification in UPPAAL.

A [] TwoStep.T6 imply checkC == 1

and (close <= hc − hp and hc − hp <= f ar)
(5)

If a transaction is missing and cannot be obtained by the miner after the requesting
and querying operations, the miner will be blacklisted and disconnected. This property is
formalized as (6).

A [] BlockPropagation.P3 and BlockPropagation.P4

imply MiningNode.M6
(6)

The model is repeatable, and there is no deadlock, formalized as (7).

A [] not deadlock (7)

Both (6) and (7) are satisfied based on the verification.

5. Consistency and Robustness Analysis with Attacks

In reality, malicious attacks are always inevitable. In this section, we added attacks to
our models and checked the security properties of the protocol.

The security of CKB consensus protocol against selfish mining attacks is discussed
in this subsection. In the attack scenario, the other automaton models remain the same,
but the miner’s behavior is different. The malicious miner deliberately hides a block when
generating it. We verified whether the protocol can defend against selfish mining attacks.
The security properties are specified in the CTL formula and were proven in UPPAAL.

Figure 7 offers an automaton that simulates the behavior of a malicious miner. Com-
pared to the honest miner in Figure 5, this automaton has an additional state M7, while
the remaining states and transitions stay unchanged. When the malicious miners collect
proposed transactions and put them into the commitment zone of the new block, the state

198

Mathematics 2021, 9, 2954

transfers to M7, which is defined as “attack start”. When M7 transfers to state M2, which
is “new block generation”, the automaton synchronizes channel attack! with attack? in the
SelfishMining automaton to perform the attack. According to the result of the attack, the
selfish mining automaton returns the parameter cc, and the two-step automaton decides
whether the transition should be fired based on the value of cc. The condition cc > 0 means
that the transaction has been collected by the miner and put into the block.

Figure 7. The malicious miner automaton.

The mining competition between the malicious group and the honest miners can be
described as the following three scenarios. In the first scenario, the malicious group leads
the honest miners and generates blocks more quickly. As a result, the private chain has
an absolute advantage. If the length of the private chain is already longer than the public
chain by two, the malicious group can choose to announce the private chain immediately.
At the moment, the public chain is shorter, so it will be discarded. The malicious group
can also choose not to publish the private chain and continue mining. When the length
of the public chain is about to catch up with the length of the private chain, that is to say,
the gap between the two chains is only one, the malicious group will announce the private
chain. In the second scenario, honest miners take the lead to find the new block and put it
in the public chain. Once length of the private chain lags behind the length of the public
one, the malicious group will directly abandon the private chain. In the third scenario, the
malicious group has the same computing power as the honest miners, namely, the honest
miners and the malicious group would find blocks at the same time. There is no advantage
in the private chain. At this time, the malicious group could announce the private chain,
and then, the full nodes would choose the public chain or private chain to follow.

The malicious group could also continue to bet until the game is over. In the first
scenario, the selfish mining attack succeeds, and the malicious group will receive rewards
for all blocks on the private chain. In the second scenario, the attack fails, and the malicious
group receives nothing. In the last scenario, if a subsequent block is added to the private
chain, the malicious group can still obtain the reward corresponding to the blocks on the
private chain. Conversely, if the public chain is chosen, all blocks in the private chain will
be discarded, and the malicious group will not be able to profit.

Figure 8 is a rough attempt to illustrate the selfish mining algorithm. S0 is the initial
state. When the channel attack? fires synchronously with attack! in the malicious miner
automaton, the state transfers to S1, which is regarded as “start of attack”. In state S1,
there are two nondeterministic branches. The upper branch represents the first scenario of
mining competition, while the lower branch moves toward the second and third scenarios
of mining competition. The variable private represents the private chain’s length held by
the malicious group, and the variable public is the length of the public chain maintained
by other honest miners. Note that public is not the length of the main blockchain; it only
represents the length of the public branch when the private branch is generated. The
default values of private and public are both initially zero.

199

Mathematics 2021, 9, 2954

Figure 8. The selfish mining automaton.

It is indicated that the malicious group and honest miners are competing for mining
at the same starting point. The variable delta is the difference in length between the private
chain and the public chain and is used to distinguish the current competition between
the two. When the automaton fires the transition from S1, the variable delta is updated
first. At the beginning of the attack, since private and public are both defaulted to zero, the
value of delta should be zero regardless of whether the state transfers to the upper or lower
branch. If the automaton chooses the upper branch, the state transfers to S2. At this time,
the malicious group successfully generates a block and adds it to the private chain. The
assignment private := private + 1 implies that the length of the private chain increases by
one. While the malicious group is mining, honest miners are also competing. At this time,
if other malicious miners of the same group find the second block, the private chain is
determined to be ahead of the public chain. Then, the private chain could be announced,
and the selfish mining attack is successful. The state S6 after the transition indicates “a
successful attack”. In state S3, if the malicious group is unable to obtain a new block faster
than honest miners twice in a row, the state transfers back to S1, and the malicious group
continues to compete with honest miners.

For simplicity, we did not consider the case that the malicious group holds a favorable
position in computing power and keeps the private chain longer than the public chain.
Therefore, the state invariant was set to enforce the transition. When private is greater than
two, the private chain should be announced. The automaton can select the lower branch
to state S4, which implies “honest miners generate new block”. When the new block is
added to the public chain, the variable public increases by one. Then, the second or third
scenario of competition may occur. In the second scenario, the guard condition delta == 0
indicates that the private chain has fallen behind the public chain of the honest miner,
so the malicious group can only immediately discard the private chain. In this case, the
state transfers to S7, indicating “attack failure”. In the third scenario, the guard delta == 1
means that the private chain and the public chain have the same length at this time, and
the state transfers to S8, which implies that the two sides are equal in strength. Hence, the
malicious group would like to compete again until the outcome is clear.

Unlike the honest miners, a malicious miner hides the blocks it generates. Such a
behavior of hiding a block can happen in both the proposal and commitment steps, so
we discuss the possible selfish mining attacks in these two steps separately. First, we
assert that the attack launched at the proposal step will prevent malicious miners from
gaining benefits. According to property P3, if the transaction cannot be received by the
full nodes, it will not be regarded as proposed. In other words, this transaction is not a
“valid transaction”; the state of the two-step automaton directly transfers to T9, and this
transaction is not adopted. Some transactions may pass the proposal verification, but they

200

Mathematics 2021, 9, 2954

are not broadcast. In this case, these transactions are placed in the prefilled list and sent to
the miners during the commitment step.

Next, we explored the scenario of starting a selfish mining attack during the commit-
ment step and analyzed whether the CKB consensus protocol can effectively combat the
attack. All the following properties were successfully verified in UPPAAL.

The property “all transactions must have appeared in the proposal zone before the
commitment process” is formalized as (8). State T5 is the first stage of the commitment
process, and cp is a sign representing “the transaction already exists in the proposal zone”.
The commitment process must only be the second step of the two-step confirmation. In
other words, no transaction can skip the first step. According to (1), all transactions are
processed by being put into the proposal zone. Before a transaction performs the second
step, the nodes were informed of the transaction in the proposal zone of a block.

A [] TwoStep.T5 imply (cp == 1) (8)

Before a transaction is committed, the full nodes should receive this transaction and
verify its validity. This property is formalized as (9). State T6 means “transaction is regarded
as committed”; the condition checkR == 1 denotes that the full nodes have received the
transaction; checkV == 1 is the sign that the full nodes have verified the transaction. The
property (9) indicates that when the transaction is proposed, the full nodes have been
informed of the transaction and the content of this transaction is confirmed. According to
(8) and (9), a transaction cannot remain unknown after it is generated. Attributed to the
role of the proposal step, the transaction must be announced in the first step.

A [] TwoStep.T6 imply (checkR == 1 and checkV == 1) (9)

Assuming that the malicious miner wants to hide the block in the second step, we
have the following property (10): as long as the selfish mining attack is successful and
a block and its included transactions are hidden in the commitment process, the block
will not be propagated. State S6 represents a successful selfish mining attack, and state
T7 stands for “block-propagation”. There is a case in which a transaction is regarded as
proposed, but it does not appear in the commitment zone. This case only happens when the
malicious miners launch a selfish mining attack. According to the protocol, the full nodes
will request these missing transactions. If the malicious miner does not disclose the private
blocks and transactions in time, the protocol prohibits the propagation of these blocks.

A [] Sel f ishMining.S6 imply not TwoStep.T7 (10)

The properties (8)–(10) together reveal then that CKB consensus protocol could prevent
malicious miners from making unfair profits in selfish mining.

6. Related Work

There have been some results in the literature on the verification of blockchains and
smart contracts. Based on these studies, we can see the practical meaning of applying
formal verification techniques to blockchains.

Model checking approaches have been successfully applied in industry, especially for
verification of hardware and communication systems, and also adopted recently in the
verification of blockchain models. A formal model of the Bitcoin protocol using automata
was developed in [9], in which the probability for double-spending attacks was also studied.
The decentralized smart contract protocol (DSCP) was analyzed using game theory and the
Markov decision process in [17], and the PRISM model checker was used to verify a family
of DSCP properties. In [18], smart contracts were formally specified using Promela and
verified in SPIN. The work in [19] adopted interface automata as the semantic model for
smart contracts and used the NuSMV model checker to detect violations of the agreements.
In [6], the Behavior Interaction Priorities framework (BIP) was used to specify the behavior

201

Mathematics 2021, 9, 2954

of smart contract implementation, and the blockchain behavior was verified using the
statistical model-checking tool SMC.

Timed automata were adopted in [12] to develop a modeling framework for the Bitcoin
contracts, and some security properties were verified based on this model. The runtime
verification approach was investigated in [20,21], in which the formal model of the smart
contract was provided using some form of automata. In [22], the behavior of EVM was
formally defined in Why3, and a framework combining proofs and testing for the analysis
of EVM and smart contracts was developed.

Meanwhile, there also exist some works on blockchain consensus. In [23], a detailed
study of some network consensus algorithms was proposed. It is significant to compare dif-
ferent consensus algorithms as they are the key components in blockchain protocols. Based
on model checking techniques, Reference [24] presented an interesting semi-automatic
approach for asynchronous consensus algorithms.

To guarantee the trustworthiness of the CKB blockchain, we need to formally verify the
CKB protocols. In previous works [14,15,25], we discussed this topic, and this paper extends
our previous results by further investigating the robustness of the CKB protocols against
malicious attacks. This work is helpful for the trustworthiness of the CKB blockchain.

7. Conclusions and Future Work

In this paper, we proposed a formal model of the CKB consensus protocol using timed
automata and verified a family of properties related to the correctness and consistency of the
CKB blockchain for different cases with or without malicious attacks in the UPPAAL model
checker. We simulated potential malicious attacks in the experiments and investigated the
impacts of such attacks. The properties that were formally verified provided a reference for
possible scenarios of CKB applications. We hope that users of the CKB may understand the
behavior of the CKB consensus protocol more precisely with the help of the formal model.
According to the verification results, we can reasonably conclude that the CKB protocols
are able to counter malicious attacks.

The CKB framework is still under development, and some possible optimizations
might be adopted for the protocol to make better use of the bandwidth and computation
resource. In the future, we hope to further develop the formal model to incorporate
the optimization and provide better enhanced assurance for the trustworthiness of the
consensus protocol. We will also investigate the formal model of the consensus protocol
further to check the result under other kinds of attacks, such as the Sybil attack, etc.
Additional investigation of different concrete application scenarios and the impact of the
transport layer protocol on the CKB are in our scope as well.

Author Contributions: Conceptualization, M.S. and S.L.; methodology, Y.L., Q.Z. and Y.F.; software,
Y.F. and Q.Z.; validation, M.S., S.L. and Y.L.; formal analysis, Y.F. and Q.Z.; investigation, Y.L.;
resources, M.S. and S.L.; data curation, Y.F. and Q.Z.; writing—original draft preparation, Y.L., Y.F.
and Q.Z.; writing—review and editing, M.S. and S.L.; visualization, Y.F.; supervision, M.S. and Y.L.;
project administration, M.S.; funding acquisition, S.L. and M.S. All authors have read and agreed to
the published version of the manuscript.

Funding: The research was supported by the Guangdong Science and Technology Department
(Grant No. 2018B010107004), the National Natural Science Foundation of China under Grant No.
62172019, 61772038, and 61532019, ROIS NII Open Collaborative Research 2021-(21FS02), and Hi-
roshima University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to the members of Cryptape, and the Nervos team for
their helpful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

202

Mathematics 2021, 9, 2954

References

1. Zheng, Z.; Xie, S.; Dai, H.; Chen, X.; Wang, H. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 2018, 14,
352–375. [CrossRef]

2. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed on
2 October 2021).

3. Ethereum. Available online: https://github.com/ethereum (accessed on 2 May 2020).
4. Xie, J. Nervos CKB: A Common Knowledge Base for Crypto-Economy. 2018. Available online: https://github.com/

nervosnetwork/rfcs/blob/master/rfcs/0002-ckb/0002-ckb.md (accessed on 1 October 2021).
5. Bhargavan, K.; Blanchet, B.; Kobeissi, N. Verified models and reference implementations for the TLS 1.3 standard candidate. In

Proceedings of the 2017 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 22–26 May 2017; pp. 483–502.
6. Abdellatif, T.; Brousmiche, K.-L. Formal verification of smart contracts based on users and blockchain behaviors models. In

Proceedings of the 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France,
26–28 February 2018; pp. 1–5.

7. Behrmann, G.; David, A.; Larsen, K.G. A Tutorial on Uppaal. In Formal Methods for the Design of Real-Time Systems; Ser. LNCS;
Springer: Berlin/Heidelberg, Germany, 2004; Volume 3185, pp. 200–236.

8. David, A.; Larsen, K.G.; Legay, A.; Mikuăionis, M.; Poulsen, D.B. Uppaal SMC tutorial. Int. J. Softw. Tools Technol. Transf. 2015, 17,
397–415. [CrossRef]

9. Chaudhary, K.; Fehnker, A.; van Pol, J.; Stoelinga, M. Modeling and verification of the bitcoin protocol. In Proceedings of the
Workshop on Models for Formal Analysis of Real Systems, MARS 2015, Ser. EPTCS. Suva, Fiji, 23 November 2015; pp. 46–60.
Available online: https://arxiv.org/abs/1511.04173 (accessed on 13 September 2021).

10. Zhang, R. CKB Consensus Protocol. 2019. Available online: https://github.com/nervosnetwork/rfcs/blob/master/rfcs/0020
-ckb-consensus-protocol/0020-ckb-consensus-protocol.md (accessed on 1 October 2021).

11. Lu, Y.; Sun, M. Modeling and verification of IEEE 802.11i security protocol in UPPAAL for internet of things. Int. J. Softw. Eng.
Knowl. Eng. 2018, 28, 1619–1636. [CrossRef]

12. Andrychowicz, M.; Dziembowski, S.; Malinowski, D.; Mazurek, L. Modeling bitcoin contracts by timed automata. In Formal
Modeling and Analysis of Timed Systems, Proceedings of the 12th International Conference, FORMATS 2014, Florence, Italy, 8–10 September
2014; Ser. LNCS; Springer: Cham, Switzerland, 2014; Volume 8711.

13. Clarke, E.M.; Henzinger, T.A.; Veith, H.; Bloem, R. (Eds.) Handbook of Model Checking; Springer: Cham, Switzerland, 2018.
14. Zhang, Q.; Lu, Y.; Sun, M. Modeling and Verification of the Nervos CKB Block Synchronization Protocol in UPPAAL. In Blockchain

and Trustworthy Systems, Proceedings of the Second International Conference, BlockSys 2020, Dali, China, 6–7 August 2020; Springer:
Singapore, 2020; pp. 3–17.

15. Feng, Y.-C.; Lu, Y.; Sun, M. Modeling and Verification of CKB Consensus Protocol in UPPAAL. In Proceedings of the 33rd
International Conference on Software Engineering & Knowledge Engineering (SEKE 2021), Pittsburgh, PA, USA, 1–10 July 2021;
KSI Research Inc. and Knowledge Systems Institute: Skokie, IL, USA, 2021; pp. 150–153.

16. Nervos Network Homepage. 2020. Available online: http://www.nervos.org (accessed on 1 October 2021).
17. Bigi, G.; Bracciali, A.; Meacci, G.; Tuosto, E. Validation of decentralised smart contracts through game theory and formal methods.

In Programming Languages with Applications to Biology and Security—Essays Dedicated to Pierpaolo Degano on the Occasion of His 65th
Birthday; Ser. LNCS; Springer: Cham, Switzerland, 2015; Volume 9465, pp. 142–161.

18. Bai, X.; Cheng, Z.; Duan, Z.; Hu, K. Formal modeling and verification of smart contracts. In Proceedings of the 2018 7th
International Conference on Software and Computer Applications (ICSCA 2018), Kuantan, Malaysia, 8–10 February 2018; ACM:
New York, NY, USA, 2018; pp. 322–326.

19. Madl, G.; Bathen, L.A.D.; Flores, G.H.; Jadav, D. Formal verification of smart contracts using interface automata. In Proceedings
of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019; pp. 556–563.

20. Ellul, J.; Pace, G.J. Runtime verification of ethereum smart contracts. In Proceedings of the 2018 14th European Dependable Computing
Conference (EDCC), Iasi, Romania, 10–14 September 2018; IEEE Computer Society: Washington, DC, USA, 2018; pp. 158–163.

21. Azzopardi, S.; Colombo, C.; Pace, G.J. Model-Based Static and Runtime Verification for Ethereum Smart Contracts. In Model-
Driven Engineering and Software Development, Proceedings of the 8th International Conference, MODELSWARD 2020, Valletta, Malta,
25–27 February 2020; Revised Selected Papers, Ser. CCIS; Springer: Cham, Switzerland, 2021; Volume 1361, pp. 323–348.

22. Zhang, X.; Li, Y.; Sun, M. Towards a Formally Verified EVM in Production Environment. In Coordination Models and Languages,
Proceedings of the 22nd IFIP WG 6.1 International Conference, COORDINATION 2020, Valletta, Malta, 15–19 June 2020; Ser. LNCS;
Springer: Cham, Switzerland, 2020; Volume 12134, pp. 341–349.

23. Duan, Z.; Mao, H.; Chen, Z.; Bai, X.; Hu, K.; Talpin, J.-P. Formal modeling and verification of blockchain system. In Proceedings
of the 10th International Conference on Computer Modeling and Simulation (ICCMS 2018), Sydney, Australia, 8–10 January 2018;
pp. 231–235.

24. Tsuchiya, T.; Schiper, A. Verification of consensus algorithms using satisfiability solving. Distrib. Comput. 2011, 23, 341–358.
[CrossRef]

25. Bu, H.; Sun, M. Towards Modeling and Verification of the CKB Block Synchronization Protocol in Coq. In Formal Methods
and Software Engineering, Proceedings of the 22nd International Conference on Formal Engineering Methods, ICFEM 2020, Singapore,
1–3 March 2021; Springer: Cham, Switzerland, 2020; pp. 287–296.

203

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics

MDPI

St. Alban-Anlage 66

4052 Basel

Switzerland

Tel: +41 61 683 77 34

Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-3800-6

	mathematics_cover.pdf
	mathematics_software_reliability_quality_assurance_manuscripts.pdf
	mathematics_cover

