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Preface to “A Celebration of the Ties That Bind Us: 
Connections between Actuarial Science and 
Mathematical Finance” 

In the nearly thirty years since Hans Buhlmann set out the notion of the Actuary of the Third Kind, 
the connection between Actuarial Science (AS) and Mathematical Finance (MF) has been continually 
reinforced. As siblings in the family of Risk Management techniques, practitioners in both fields have 
learned a great deal from each other. This collection of articles is is set out before the reader in this spirit of 
cooperation between folks who are, not only experts in both AS and MF, but also those who present 
diverse perspectives from industry and academia. 

Topics from multiple areas, such as Stochastic Modeling, Credit Risk, Monte Carlo Simulation, and 
Pension Valuation, among others, that were maybe thought to belong to the domain of one type of risk 
manager are shown time and again to have deep value to other areas of risk management as well. 

It is my hope that this special volume will inspire future collaboration between those who seek an 
interdisciplinary approach to risk management. 

In closing, I would like to offer a hearty Thank You to all of the wonderful scholars who contributed 
to this collection of articles. Your work furthers our understanding of modeling, pricing, and mitigating 
risk in financial and insurance markets.  

Albert Cohen 
Special Issue Editor 
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Abstract: In the nearly thirty years since Hans Buhlmann (Buhlmann (1987)) set out the notion of the
Actuary of the Third Kind, the connection between Actuarial Science (AS) and Mathematical Finance
(MF) has been continually reinforced. As siblings in the family of Risk Management techniques,
practitioners in both fields have learned a great deal from each other. The collection of articles in
this volume are contributed by scholars who are not only experts in areas of AS and MF, but also
those who present diverse perspectives from both industry and academia. Topics from multiple
areas, such as Stochastic Modeling, Credit Risk, Monte Carlo Simulation, and Pension Valuation,
among others, that were maybe thought to be the domain of one type of risk manager are shown
time and again to have deep value to other areas of risk management as well. The articles in this
collection, in my opinion, contribute techniques, ideas, and overviews of tools that specialists in both
AS and MF will find useful and interesting to implement in their work. It is also my hope that this
collection will inspire future collaboration between those who seek an interdisciplinary approach to
risk management.

Keywords: actuarial science; mathematical finance; risk management

1. Background and Motivation

The construction of this special issue began in 2016, and continued through 2017, while teaching
at Michigan State University (MSU) as well as visiting colleagues from the Pacific Northwest to New
York City to the Deep South. I had known for some time that I wanted to design an issue that would
present cutting edge research in both actuarial science and financial mathematics. In truth, I had been
inspired nearly a decade earlier by this strong connection between both fields. As a Ph.D. student at
Carnegie Mellon, I had come across Hans Gerber’s paper (Gerber (1977)) on the optimal cancellation
of policies. At the time, I had begun working on a problem in optimal prediction and was looking
for inspiration in solving the problem at hand. When I came across Gerber’s paper, I had no previous
exposure to actuarial science, but I immediately recognized the power and clarity of his exposition.
I was hooked! I did eventually solve the problem in optimal prediction (Cohen (2010)) a few years later,
but not without using ideas from Gerber’s model of liabilities as an application of optimal prediction
to a new kind of risk measure. And so began my education in the overlap of the fields of insurance
and financial economics.

2. Overview

This collection you now hold in your hand is crafted in the spirit of Gerber’s paper, in that
advanced mathematical techniques and risk management go hand in hand to present managers with
better information for decision making.

For example, new ideas such as those presented in Peter Carr’s work (Carr (2017)) on Bounded
Brownian Motion naturally find their place in the modeling of financial instruments, but are perhaps

Risks 2018, 6, 4 1 www.mdpi.com/journal/risks
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also suitable for insurance models that require such bounded processes. Stephen Mildenhall’s paper
(Mildenhall (2017)) on Actuarial Geometry combines tools from the classical study of shapes with Levy
processes to provide an innovative way to study risks from an insurance perspective. Robert J. Rietz
and his group (Rietz et al. (2017)) study the effect of gainsharing (via simulation) on selecting
discount rates for defined benefit plans. Gareth W. Peters, Rodrigo S. Targino and Mario V. Wuthrich
(Peters et al. (2017)) provide a novel Monte Carlo method to calculate (coherent) capital allocations for
a general insurance company. Carolyn W. Chang and Jack S. K. Chang (Chang and Chang (2017)) utilize
an approach that integrates commonly used tools from actuarial science and mathematical finance
to price a default-risky catastrophe reinsurance contract. Daoping Yu and Vytaras Brazauskas (Yu and
Brazauskas (2017)) study the impact of model uncertainty on value-at-risk (VaR) estimators. In her
paper on predicting prices for high profile tech stocks, Nguyet Nguyen (Nguyen (2017)) applies the
Hidden Markov Model (HMM) to forecast stock prices and develop an HMM-based trading strategy.
Michael R. Metel, Traian A. Pirvu and Julian Wong (Metel et al. (2017)) investigate the Omega Measure
and it’s use for assessing portfolio performance, as well as similarities and differences with the Sharpe
Ratio when determining the optimal portfolio for different return classes. Finally, Nick Costanzino
and I (Cohen and Costanzino (2017)) look at incorporating stochastic recovery into the Black-Cox
model of bond pricing, with application to credit default swaps.

3. Conclusions

This collection of articles fits into the greater narrative of collaboration between researchers
and practitioners, driven by new and innovative ideas and products in finance and insurance.
The connection between AS and MF, for actuaries of the third kind (Buhlmann (1987)) and others
who use these tools, will only strengthen with time as the complexity of financial and insurance
instruments increases.

Acknowledgments: There are so many colleagues in both finance and actuarial science that I would like to
thank for their friendship and guidance. In Actuarial Science, I would like to thank my dear friend Emil Valdez
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actuaries. I would also like to thank Virginia Young and Kristen Moore at the University of Michigan, and in the
East Lansing/MSU community, thank you to all of my students (past and present), Ron and Mary Simon, Mark
Wenger, Kevin Clinton, Jacob Geyer, Wellington Ow, Gabor Franciscs, Darren Mason, and Robert J. Rietz for their
continued support and mentorship. Thank You to Keith Promislow for bringing me to MSU, and to Yang Wang,
now at the Hong Kong University of Science and Technology, for hiring me to help build the major in actuarial
science at Michigan State. For his wonderful paper on Actuarial Geometry, I would like to acknowledge Stephen
Mildenhall. Stephen’s paper is not only an achievement in terms of research, but is also a valuable resource for
young researchers in insurance who wish to learn about stochastic processes and geometry from an actuarial
perspective. In Finance, thank you to Steven Shreve and Dmitry Kramkov for giving me a solid education in
mathematical finance while I was a graduate student at Carnegie Mellon. Also, thank you to all in the field
who have extended the hand of friendship and brought me into your community. These include, among many
scholars: Peter Carr (NYU-Tandon), Nguyet Nguyen (Youngstown State), Harvey Stein, Sean Hilden, Shlomo
Levental (MSU), and Mark Schroder (MSU). I would like to especially thank my friend and research partner
Nick Costanzino for his insight and introduction to so many neat areas of cutting edge finance and mathematics.
I truly would not be in the position I am now without his continued support. Finally, I would like to thank my
family for their support and patience over the last couple years while this special collection of articles took shape.
I spent many late nights working on this project while they patiently waited at home for me to come back and
spend time with them. To my beautiful wife Jessica and our son Eli, I love you! In closing, I would like to dedicate
my work in editing this collection to the memory of my Godfather, Asher Cohen.
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Abstract: Diffusions are widely used in finance due to their tractability. Driftless diffusions are needed
to describe ratios of asset prices under a martingale measure. We provide a simple example of a
tractable driftless diffusion which also has a bounded state space.

Keywords: standard Brownian motion; Brownian martingale; diffusion coefficient

1. Introduction

Standard Brownian motion (SBM) is the most widely studied stochastic process because it serves
as a highly tractable model of both a martingale and a Markov process. In finance, the martingale
property describes asset prices relative to some numeraire under the assumption of no arbitrage.
The Markov property can also describe some asset prices when markets for them are thought to be
semi-strong form efficient. However, for limited liability assets, such as stocks, it is well known that
SBM cannot describe their prices because prices are non-negative, while the state space of an SBM is
the whole real line.

The observation lead Samuelson and Osborne to propose that arbitrage-free asset prices, relative to
a numeraire, be modeled as a geometric Brownian martingale (GBM). As is well known, this Markovian
martingale is obtained from standard Brownian motion by exponentiating. The convexity of the
exponential introduces a positive drift, so one can restore martingality by introducing time decay.
One can alternatively create a GBM by starting from a linear Brownian motion with constant drift and
then evaluating the scale function of the drifting Brownian motion on the drifting Brownian motion.
The resulting GBM has state space (0, ∞), making it suitable to describe arbitrage-free prices of a
limited liability asset relative to a numeraire.

While the use of a GBM addresses the lower bound constraint imposed by limited liability,
it does not address the upper bound. SBM and GBM can both achieve arbitrarily high positive values.
This renders them unsuitable to describe the prices of assets with a finite number of payouts, each of
which is bounded above. Examples would include coupon bonds and derivative securities with a finite
number of bounded payouts (e.g., a binary option). Exchange rates describe the price of one currency
in terms of another and are often legally manipulated by governments to lie between two positive
bounds. One may also wish to describe a financial concept other than a price with a stochastic process.
For example, stochastic processes are used to describe interest rates, variance rates, and hazard rates.
Historical data on these observables is typically confined to a band, which often leads to the imposition
of mean reversion in the dynamics. However, it would not be unreasonable to use the historical band
as a guide to setting a future band that these rates cannot escape.

Many concepts in probability have evolved into financial concepts. For example, a probability
can be used to describe the price of a binary option Taleb (2017), while a correlation is used to describe
the swap rate in a correlation swap Jacquier and Slaoui (2010). Since both of these probability concepts
are bounded, it becomes natural to consider bounded processes to describe all of these concepts.
In this paper, we construct a stochastic process S with the following properties:

Risks 2017, 5, 61 4 www.mdpi.com/journal/risks
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1. The process S is obtained by evaluating the scale function of a mean-repelling Ornstein Uhlenbeck
(OU) process. As a result, S is a time-homogeneous driftless diffusion. Furthermore, since the
scale function can be evaluated in closed form, the transition probabilities of S are known in
closed form.

2. The state space of the process S is (0, H), for some H > 0. In words, the process S is bounded
below and above and its natural boundaries are zero and a positive constant H. Since S has zero
drift and can’t explode, it is a martingale.

3. The diffusion coefficient of S is positive and bounded above by a positive constant h.
4. Aside from its starting value S0 ∈ (0, H), the process S has two free parameters H and h which

respectively describe the maximum value and maximum (normal) volatility of S.

Analogous with the term geometric Brownian motion, we christen this process “bounded
Brownian motion”.

2. Applications

2.1. Managed Currency

Consider a forward exchange rate in a setting when a monetary authority is able to manage the
money supply or interest rates such that a given exchange rate stays between two positive barriers
over the life of the forward contract. By adding a positive constant to the bounded Brownian motion S,
we synthesize the risk-neutral dynamics of the forward exchange rate process. Papers modeling the
spot FX process between bands include Carr and Kakuschadze (2017), Hui et al. (2008), Ingersoll (1997),
and Rady (1997).

2.2. Correlation Swap

In its simplest form, a correlation swap designates two underlying assets and a fixed maturity date.
At maturity, the dollar payoff is affine in the realized correlation of returns between two underlying
assets. The slope of this affine relation is the notional of the correlation swap which is determined at
inception. The ratio of the intercept to this notional is the correlation swap rate for maturity T, which
is also determined at inception. As we move through calendar time, the conditional expected value
of the floating leg of a seasoned correlation swap is a martingale fluctuating in the interval [−1, 1].
By multiplying S by 2

H and subtracting one, we obtain such a process.

2.3. Protection Leg of CDO

The protection leg of a CDO has a nonnegative value that fluctuates in the interval [0, H]. The value
before the maturity date T is in (0, H], while the value at T is in [0, H]. The dynamics presented here
fluctuate in the interval (0, H). However, we will show a way to change the domain to (0, H].

3. Genesis

Fix a probability space (Ω, F ,Q). We will refer to Q as the risk-neutral measure. Let X0 ∈ R and
for positive constants H and h, consider the following1 mean-repelling OU process:

dXt =
2πh2

H2 Xtdt + hdWt, t ≥ 0, (1)

where W is a Q standard Brownian motion.

1 The scaling factor 2π in the drift of X is entirely optional, but is inserted here so that the volatility of the bounded Brownian
motion can later be expressed in terms of an un-normalized Gaussian function, rather than a normalized one.
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Let S(x) : R �→ R be a C2 function which solves the linear second order ordinary differential
equation (ODE):

h2

2
S′′(x) +

2πh2

H2 xS′(x) = 0, x ∈ R. (2)

As this is a linear first order ODE in S′(x), the general solution is given by:

S(x) =
∫ x

a
exp

[
−
∫ y

b

2π

H2 zdz
]

dy, (3)

where the lower integral limits a and b are arbitrary. Since S is increasing in x, it is generally referred
to as a scale function of the diffusion process X.

Let SH(x) denote the particular increasing function obtained when a = −∞ and b = 0:

SH(x) ≡
∫ x

−∞
exp

[
−
∫ y

0

2π

H2 zdz
]

dy. (4)

Some easy calculus gives:

SH(x) =
∫ x

−∞
exp

[
−1

2
2πy2

H2

]
dy

= H
∫ √

2πx
H

−∞

exp[− z2

2 ]√
2π

dz

= HN

(√
2πx
H

)
, t ≥ 0, (5)

where N(d) : R �→ (0, 1) is the standard normal cumulative distribution function (CDF). Since N maps
R to (0, 1), (5) implies that SH maps R to (0, H).

Let {St; t ≥ 0} be the stochastic process obtained by evaluating the scale function SH on the OU
process X:

St ≡ SH(Xt) = HN

(√
2πXt

H

)
, (6)

from (5). It is well known that S is a time-homogeneous driftless diffusion. Since the range of the
function SH(·) is bounded, it is clear from (6) that the process S takes values on (0, H). Since S is
bounded, it is clearly a martingale and not just a local martingale.

4. Valuing Perpetual Claims Without Knowing Volatility

Consider perpetual claims written on the path of a single underlying asset. In this section,
we show that we can value several such claims without knowing the volatility of the underlying asset.
The price of the underlying asset will be a continuous martingale, but it need not be the particular
continuous martingale S introduced in the last section. To distinguish general results applying to
continuous martingales from particular results applying to the driftless bounded diffusion S defined
by (6), we will denote the former process by M. We being with some observations about hitting
probabilities of S and then generalize to M.

Let � and r be two real-valued constants satisfying:

− ∞ < � < X0 < r < ∞. (7)
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In words, � and r are finite and bracket X0. Let σ� and σr respectively denote the first passage
times of X to � and r. Let S0 ∈ (0, H) be the initial value of the S process:

S0 ≡ SH(X0) = HN

(√
2πX0

H

)
, (8)

from (6). Let D and U be defined by:

D ≡ SH(�) U ≡ SH(r). (9)

Since SH(·) is increasing, (7) implies that D and U satisfy:

0 < D < S0 < U < H. (10)

In words, D and U are both in (0, H) and bracket S0. Let τu and τd respectively denote the first
passage times of S to U and D. Since S is a process in natural scale, the probability that S hits U before
D starting from S0 is given by:

Q{τu < τd|S0 = S} =
S − D
U − D

, S ∈ (D, U). (11)

In fact, (11) is a standard result that holds for any continuous martingale with unbounded
quadratic variation. We will soon discuss results for such processes, but, for now, we confine our
explorations to the driftless bounded diffusion S defined by (6).

Consider a claim that pays one dollar if the process S hits U before D and zero otherwise. If interest
rates are zero, then (11) gives the value of such a claim as a function of the starting point S of the
underlying. Notice that given a direct observation of the starting value S, this value is invariant to the
volatility of the process S. Since σ� = τd and σr = τu, we can make the corresponding statements for
hitting probabilities and claim values when X is the underlying.

In fact, the affine form of the hitting probabilities of S generalize to any continuous martingale M,
whose quadratic variation becomes infinite as the horizon become infinite:

lim
T↑∞

〈M〉T = ∞. (12)

This condition is needed to rule out continuous martingales which absorb at spatial boundaries
placed between the starting value and the barrier of interest. Let (−∞, ∞) be the state space of the
continuous martingale. Suppose again that D and U are both in (−∞, ∞) and bracket M0:

− ∞ < D < M0 < U < ∞. (13)

Consider the random payoff from a “perpetual” claim on M that pays Rd at time τd if M hits
D first and Ru at time τu if M hits U first. Assuming zero interest rates and no dividends from the
underlying asset before the first exit, the initial value of this claim is:

V0 =
M0 − D
U − D

Ru +
U − M0

U − D
Rd. (14)

By setting Rd = 0 and Ru = 1, one obtains the following generalization of (11):

Q{τu < τd|F0} =
M0 − D
U − D

, (15)
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where we assume that the initial filtration F0 contains M0. By setting Rd = D and Ru = U,
one can interpret Rd and Ru as liquidating dividends from the asset whose price is M. In this case,
no assumption on interest rates is needed since the replicating strategy just holds one share.

For the above claims, monitoring of the barriers begins at time t = 0. Consider instead a more
general claim where monitoring of the exit barriers starts from some fixed time T ≥ 0. We claim
that static positions in European options maturing at T can be used to span this payoff. In particular,
consider a butterfly spread with strikes D, K, and U where −∞ < D < K < U < ∞. Suppose that the
positions in European options are chosen so that the butterfly spread pays off one dollar if ST = K at T.
Then we claim the value of this butterfly spread on M is the joint risk-neutral probability that M hits K
after T before it hits D or U after T.

Butterfly spreads can be synthesized using puts or calls. We will use puts and hence let P0(K, T)
denote the initial price of a European put of strike K ∈ R and maturity T ≥ 0. Consider the following
butterfly spread payoff:

BST =
(U − MT)

+ − (K − MT)
+

U − K
− (K − MT)

+ − (D − MT)
+

K − D
. (16)

The initial cost of forming this butterfly spread is:

BS0 =
P0(U, T)− P0(K, T)

U − K
− P0(K, T)− P0(D, T)

K − D
. (17)

Since the payoff in (16) is bounded between 0 and 1, no arbitrage forces the value in (17) to also
be bounded between 0 and 1.

Let τT
B be the first time after T that the continuous martingale M touches a barrier B. If the

martingale never touches B after T, then τT
B = ∞. Let τT

DU ≡ τT
D ∧ τT

U be the first time after T that the
martingale touches either D or U. If the martingale never touches D or U after T, then τT

DU = ∞.

Theorem 1. No arbitrage and zero interest rates implies:

BS0 = Q{τT
K < τT

DU}. (18)

Proof. We need to show that BS0 is the initial cost of a strategy that pays one dollar if τT
K < τT

DU and
which pays zero otherwise. Consider the following trading strategy. At time 0, the investor buys the
butterfly spread by:

1. buying 1
U−K puts struck at U

2. selling 1
U−K + 1

K−D puts struck at K
3. buying 1

K−D puts struck at L.

The net cost is given in (17). The put portfolio is held static to T. If ST < D or ST > U, then the
portfolio expires worthless. This matches the payoff of the desired claim since if ST < D, then we must
have τT

K ≥ τT
D = τT

DU and similarly, if ST > U, then we must have τT
K ≥ τT

U = τT
DU .

If ST ∈ (D, U), then use the payoff from the portfolio to finance the following positions:

1. if ST ∈ (D, K) buy 1
K−D shares and borrow D

K−D dollars.
2. if ST ∈ (K, U) short 1

U−K shares and lend U
U−K dollars.

If τT
K > τT

DU , then at the first exit time τT
DU of the corridor (D, U), liquidate the stock bond portfolio

for zero. Otherwise, if τT
K < τT

DU , then at the hitting time τT
K , liquidate the stock bond portfolio for one

dollar. Since the quadratic variation of M grows without bound, the risk-neutral probability that τT
K

and τT
DU are both infinite is zero. This concludes the proof. Q.E.D.
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There is a second kind of butterfly spread with a probabilistic interpretation. We first consider
the simpler spot starting case. Consider a perpetual claim written on the continuous martingale M
satisfying both (12) and (13). Suppose again that the claim pays off at τDU . For K ∈ (D, U), suppose
that the payoff at time τDU is the Local Time of M at time τDU . Loosely speaking, the payoff at τDU
accumulates over time twice the instantaneous variance experienced by the process M at K until τDU :

LM
τDU

(K) ≡ 2
∫ τDU

0
δ(Mt − K)d〈M〉t. (19)

From the Tanaka Meyer formula, the cost of creating this payoff is:

Ĝ(M, K) =

{
2 (M−D)(U−K)

U−D , −∞ < D < M < K < U < ∞

2 (K−D)(U−M)
U−D , −∞ < D < K < M < U < ∞.

(20)

This can be written much more succinctly as:

Ĝ(M, K) = 2
[(M ∧ K)− D]+[U − (K ∨ M)]+

U − D
. (21)

when graphed against either M or K, the function Ĝ is flat at zero outside (D, U) and triangular in
between. When graphed against M, the kinks are at D,K, and U and the change in slope of Ĝ at K is
two. Again, it is remarkable that the claim can be valued without knowledge of the volatility of M.

To value the forward-start version of the above claim, i.e., the claim paying:

2
∫ τT

DU

T
δ(Mt − K)d〈M〉t (22)

at τT
DU , consider the following butterfly spread payoff:

BST = 2
[(MT ∧ K)− D]+[U − (K ∨ MT)]

+

U − D
. (23)

This payoff can be synthesized by:

1. buying 2 U−K
U−D puts struck at D

2. selling two puts struck at K
3. buying 2 K−D

U−D puts struck at U.

The initial cost of forming this butterfly spread is:

BS0 = 2
U − K
K − D

P0(D, T)− 2P0(K, T) + 2
K − D
U − K

P0(U, T). (24)

Suppose that this butterfly spread is held static to maturity. If MT < D or MT > U, then the
butterfly spread expires worthless. This matches the payoff since we already know at T that local time
at K cannot increase from zero without M first hitting D or U.

If MT ∈ (D, U), then the payoff at T finances the initial position in the following trading strategy
in stocks and bonds conducted over the period (T, τT

DU).

1. if MT ∈ (D, K], be long 2 U−K
U−D shares and borrow 2 U−K

U−D D dollars
2. if MT ∈ (K, U), be short 2 K−D

U−D shares and lend 2 K−D
U−D U dollars.

This strategy is self-financing except when the stock price is near the intermediate strike K.
Using the Tanaka Meyer formula, one can show that this strategy generates the increase in the local
time from T to τT

DU .
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5. Diffusion Coefficient

So far we have been able to value various perpetual claims relative to either the price of the
underlying asset or relative to European options written on that asset. For these claims, we have
not needed to know the diffusion coefficient of the underlying asset. To value other kinds of claims
(e.g., finite lived ones), it will be useful to examine the diffusion coefficient of S as we will show that it
appears in the Jacobian when we develop the transition PDF of S.

To obtain the diffusion coefficient of S, we use Itô’s formula on (6):

dSt =
√

2πN′
(√

2πXt

H

)
hdWt, t ≥ 0, (25)

as we already know that S is driftless. Since N′(·) and h are positive, so is the diffusion coefficient of S.
Evaluating (5) at Xt and inverting implies:

√
2πXt

H
= N−1

(
St

H

)
, (26)

where N−1(p) : (0, 1) �→ R is the inverse of the standard normal CDF. Substituting (26) in (25) gives
the SDE followed by S:

dSt = a(St)dWt, t ≥ 0, (27)

where the diffusion coefficient (normal volatility) of S is given by:

a(S) ≡
√

2πN′
(

N−1
(

S
H

))
h = e−

[N−1( S
H )]

2

2 h. (28)

We note from (27) that S is indeed a time-homogeneous driftless diffusion. The diffusion
coefficient given in (28) is proportional to a standard Gaussian function of N−1

(
S
H

)
. As a consequence,

movements in S become more certain when S is near 0 or H:

lim
S↓0

a(S) = 0 lim
S↑H

a(S) = 0. (29)

Besides its starting value S0 ∈ (0, H), the process S has two free parameters H and h. We have
already seen that H defines the right end point of the domain of S. As S fluctuates through (0, H), its
volatility

√
2πN′

(
N−1

(
St
H

))
h evolves as a positive stochastic process. We now show that h defines

the right end point of the latter process’ domain.
The standard normal density function N′(·) achieves its maximum value when its argument

vanishes. The inverse normal CDF N−1(p) vanishes when its argument is 1
2 . Hence, we conclude that

volatility is maximized when St =
H
2 , i.e., at the midpoint of its domain (0, H). The maximum value of

volatility achieved is:
√

2πN′
(

N−1
(

1
2

))
h = h. (30)

Now the standard normal probability density function (PDF) is even about zero which implies
that its integral, N(·) is the sum of 1/2 and a function which is odd about zero. It follows that N−1(·) is
odd about 1/2. Since diffusion coefficient of S is proportional to the composition of the even function
N′(·) with the function N−1(M

H ) of S which is odd about H
2 , the diffusion coefficient of S is symmetric

about H
2 .
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The speed density of a diffusion with scale density s(x) and variance rate σ2(x) is 1
σ2(x)s(x) . Since

S is a process in natural scale, s(x) = 1 and its speed density is simply the reciprocal of its variance
rate. Hence, (27) implies that the speed density of S is given by:

m(S) ≡ 1

2π
[

N′
(

N−1
(

S
H

))]2
h2

=
e[N

−1( S
H )]

2

h2 , S ∈ (0, H). (31)

Let τDU be the first time that S exits the interval [D, U]. Suppose we consider how the mean of
the random variable τDU behaves in the limit as we set D = S − ε, U = S + ε and let ε > 0 shrink
down to zero. Clearly, the mean exit time approaches zero, but the question is at what speed. For a
process in natural scale such as S, Karlin and Taylor (1981) show on page 197 that the mean exit time
E[τ(S−ε,S+ε)|S0 = S] approaches zero like O(ε2), where the coefficient is given by the speed function
m(S), i.e.,

m(S) = lim
ε↓0

E[τ(S−ε,S+ε)|S0 = S]
ε2 . (32)

This is the likely origin of the term “speed density”. We note that the higher the diffusion
coefficient of a process in natural scale, the lower its speed density. This observation prompted
Rogers and Williams (1994) to jestingly suggest that m(·) alternatively be called a “sloth density”.
As indicated in (31), the speed density of the S process is inversely proportional to a Gaussian function
of N−1

(
S
H

)
. As a consequence, S exits intervals much more slowly on average when it is near zero or

H than when it is near H/2.
Recall the rough interpretation of the local time of a continuous martingale as the amount of

quadratic variation occurring at a point. More precisely, local time captures the stochastic rate at
which the quadratic variation experienced below some point in space increases as we increase the
point. Loosely speaking, the speed density of a time homogeneous one dimensional diffusion can be
interpreted as the expected calendar time spent at a point, until the first time that the diffusion exits an
interval. This rough interpretation is meant to be contrasted with the expected quadratic variation spent
at a point until the first exit. Thus the speed density is used to convert the expected local time of a
stochastic process into twice the spatial density of the occupation time.

To illustrate these points, let M now denote a time homogeneous one dimensional
diffusion martingale:

dMt = a(Mt)dWt, t ≥ 0. (33)

From (19), the local time at K evaluated at the random time τDU is:

LM
τDU

(K) ≡ 2
∫ τDU

0
δ(Mt − K)a2(K)dt. (34)

In contrast, twice the density of the occupation time at K until τDU is:

2
∫ τDU

0
δ(Mt − K)dt. (35)

From the Tanaka Meyer formula, the cost of creating the payoff in (35) is:

G(M, K) =

{
2 (M−D)(U−K)

U−D m(K), −∞ < D < M < K < U < ∞

2 (K−D)(U−M)
U−D m(K), −∞ < D < K < M < U < ∞.

(36)
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Itô and McKean (1974) refer to this function as the Green’s function. One can generalize by
starting with a drifting process, but we do not explore that here. For the bounded Brownian Motion S,
substituting (31) in (36) implies:

GS(S, K) =

⎧⎪⎨⎪⎩2 (S−D)(U−K)
U−D

exp
{
[N−1( S

H )]
2}

h2 , −∞ < D < S < K < U < ∞

2 (K−D)(U−S)
U−D

exp
{
[N−1( S

H )]
2}

h2 , −∞ < D < K < S < U < ∞.
(37)

6. Transition Density

To obtain the transition PDF of the time-homogeneous Markov process S, we first obtain the
transition PDF of the process X. Suppose that we write the stochastic differential equation (SDE) (1) as:

dXt = gXtdt + hdWt, t ≥ 0, (38)

where:

g ≡ 2πh2

H2 ≥ 0 (39)

is the expected relative growth rate in X. By standard calculations, one can show that XT is Gaussian
with mean:

EQ
0 XT = X0egT , (40)

and variance:

Vx = h2 e2gT − 1
2g

. (41)

We note that both the mean and the variance of X explode as T ↑ ∞. Both results are a consequence
of the fact that the process is mean-repelling, i.e., g > 0.

To obtain the PDF of ST , first recall that the scale function SH(x) is defined in (5) as an increasing
map from R to (0, H). Let x(S) be the inverse map from (0, H) to R:

x(S) ≡ H√
2π

N−1
(

S
H

)
, S ∈ (0, H). (42)

Since SH(·) is increasing, so is x(·). In fact, from the inverse function theorem:

x′(S) = 1
S′

H(x)
=

1√
2πN′

(√
2πx
H

) =
1√

2πN′
(

N−1
(

S
H

)) , (43)

from (5). Using the definition of the standard normal density function N′(·), (43) simplifies to:

x′(S) = exp

{
1
2

[
N−1

(
S
H

)]2
}

, (44)

for S ∈ (0, H).
Let:

q(S0, S; T) ≡ Q{ST ∈ dS|S0}
dS

, S ∈ (0, H), (45)

be the transition PDF of ST . Also let:

g(X0, x; T) ≡ Q{XT ∈ dx}
dx

=
e−

[x−X0egT ]2

2Vx√
2πVx

, x ∈ R, (46)
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be the transition PDF of XT . By the change of variables theorem for densities:

q(S0, S; T) = g(X0, x(S); T)|x′(S)|, S ∈ (0, H). (47)

Substituting (46) and (44) in (47) implies that the PDF of ST is known in closed form:

q(S0, S; T) =
e−

[x(m)−X0egT ]2

2Vx√
2πVx

e
1
2 [N

−1( S
H )]

2

=
e−

H2
4πVx

[
N−1( m

H )−N−1
(

S0
H

)
egT

]2
+ 1

2 [N
−1( S

H )]
2

√
2πVx

, S ∈ (0, H), (48)

from (42), where g and Vx are given in (39) and (41) respectively. Not surprisingly, the horizon length
T enters the PDF of ST only through the mean and variance of XT .

The future level S enters the PDF of ST only through the variable N−1
(

S
H

)
. When the PDF of ST

is considered as a function of this latter variable, (48) indicates that it is proportional to the ratio of two
Gaussian densities. The mean and standard deviation of the numerator Gaussian both increase with T,
while the denominator Gaussian is a standard normal PDF. At short maturities, the graph of q against
N−1

(
S
H

)
is dominated by the numerator Gaussian. Hence, the graph of q against S is an upside down

U. As T increases, the numerator Gaussian tends to a uniform density. Hence, as T increases, the graph
of q against N−1

(
S
H

)
tends to the reciprocal of a standard normal PDF.

An abrupt change in the shape of the PDF occurs at the maturity for which:

H2

4πVx
=

1
2

. (49)

Using (41), this critical level of T is easily found to be:

T∗ =
1

2g
ln
(

1 +
gH2

πh2

)
. (50)

For T < T∗, the net coefficient of the quadratic in the argument of the exponential is negative.
As a result, the graph of q against N−1

(
S
H

)
is Gaussian while the graph of q against S is an upside

down U. When T = T∗, the coefficient on the quadratic vanishes and the PDF becomes exponential in
the variable N−1

(
S
H

)
rather than Gaussian. When T > T∗, the coefficient on the quadratic becomes

positive. As a result, the graph of q against N−1
(

S
H

)
is the reciprocal of a Gaussian while the graph of

q against S is U shaped.
Consider a movie of the graph of the PDF q against the forward spatial variable S. As T increases,

all of the probability mass moves out from around S0 to around zero and around H. Intuitively, since
S is a martingale, the mean of ST must remain constant at S0 while the variance of ST must increase
with the horizon length T. Since S is bounded, the only way its PDF can accommodate this behavior is
to become U shaped in the interior.

Suppose one starts the martingale away from H/2 and stops it when it first hits H/2. When
S0 = H/2, the PDF of S is even in S about H/2. As a result, one knows the PDF and absorption
probability of the stopped martingale. Hence if one wants a tractable bounded process with a lower
natural barrier at zero and an absorbing upper barrier, simply start S in (0, H/2) and stop it when
it first hits H/2. This would describe the value of the protection leg of a CDO. Conversely, if one
wants a tractable bounded process with an upper natural barrier and an absorbing lower barrier,
simply start S in (H/2, H) and stop it when it first hits H/2. This could describe a variation on the
Black and Cox (1976) model for describing the dynamics of the value of a firm’s assets when default is
possible. Let S be the firm’s asset value and suppose that H is a natural upper boundary. As in Black
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and Cox, we also suppose that default and liquidation occur at the first time that S hits H/2. It would
be straightforward to value contingent claims written on the stopped process.

It is interesting to compare q with the lognormal PDF. If S is lognormally distributed, then in
the lognormal PDF, ln(S/1) plays the same role as N−1

(
S
H

)
in q. The log function maps R+ to R,

while N−1(·) maps (0, 1) to R. Both functions asymptote to ±∞ at the endpoints of their domain.
The standard parametrization of the PDF of geometric Brownian motion expresses the lognormal
PDF in terms of the mean and variance of the corresponding drifting Brownian motion. Analogously,
the above parametrization of the PDF of bounded Brownian motion expresses the PDF in terms of the
mean and variance of the corresponding OU process.

A geometric Brownian martingale has a stability property. Specifically, the probability that
the terminal level of the process is below any given positive level approaches one as the time
horizon becomes arbitrarily large. We speculate that for bounded Brownian motion, the almost
sure convergence is to the union of the two sets (0, ε) and (H − ε) for any ε > 0.
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Abstract: The literature on capital allocation is biased towards an asset modeling framework
rather than an actuarial framework. The asset modeling framework leads to the proliferation of
inappropriate assumptions about the effect of insurance line of business growth on aggregate loss
distributions. This paper explains why an actuarial analog of the asset volume/return model
should be based on a Lévy process. It discusses the impact of different loss models on marginal
capital allocations. It shows that Lévy process-based models provide a better fit to the US statutory
accounting data, and identifies how parameter risk scales with volume and increases with time.
Finally, it shows the data suggest a surprising result regarding the form of insurance parameter risk.
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insurance pricing; Lévy process; parameter risk; risk measure; risk theory

1. Introduction

Geometry is the study of shape and change in shape. Actuarial Geometry1 studies the shape and
evolution of shape of actuarial variables, in particular the distribution of aggregate losses, as portfolio
volume and composition changes. It also studies the shape and evolution paths of variables in the space
of all risks. Actuarial variables are curved across both a volumetric dimension as well as a temporal
dimension. Volume here refers to expected losses per year, x, and temporal to the duration, t, for which
a given volume of insurance is written. Total expected losses are xt—just as distance = speed × time.
Asset variables are determined by a curved temporal return distribution but are flat in the volumetric
(position size) dimension. Risk, and hence economic quantities like capital, are intimately connected
to the shape of the distribution of losses, and so actuarial geometry is inextricably linked to capital
determination and allocation.

Actuarial geometry is especially important today because risk and probability theory, finance,
and actuarial science are converging after prolonged development along separate tracks. There is now
general agreement that idiosyncratic insurance risk matters for pricing, and as a result we need to
appropriately understand, model, and reflect the volumetric and temporal diversification of insurance
risk. These are the central topics of the paper.

The paper makes two research contributions both linked to the use of Lévy processes in actuarial
science. The first contribution is theoretical. It is to explain precisely how insurance losses diversify as

1 Actuarial Geometry was originally presented to the 2006 Risk Theory Seminar in Richmond, Virginia, Mildenhall (2006).
This version is largely based on the original, with some corrections and clarifications, as well as more examples to illustrate
the theory. Since 2006 the methodology it described has been successfully applied to a very wide variety of global insurance
data in Aon Benfield’s annual Insurance Risk Study, ABI (2007, 2010, 2012, 2013, 2014, 2015), now in its eleventh edition.
The findings have remained overwhelmingly consistent. Academically, the importance of the derivative and the gradient
allocation method has been re-confirmed in numerous papers since 2006. Applications of Lévy processes to actuarial
science and finance have also greatly proliferated. However, the new literature has not touched on the clarification between
“direction” in the space of asset return variables and in the space of actuarial variables presented here.
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volume increases and to compute the impact of this diversification compared to an asset portfolio model
where risk is independent of position size. In particular we show that even when insurance losses and
an asset portfolio have the same distribution of outcomes for a particular volume, the agreement is that
of two lines crossing at an angle. It is not a first order tangency and so any risk allocation involving
derivatives—which almost all do—will produce different results. The picture we make precise is
shown in Figure 1. In the figure k is the distribution of values of an asset portfolio with initial value x,
modeled as k(x) = xX for a fixed return variable X. The map m represents aggregate losses from an
insurance portfolio with expected losses x. Even though X = m(1) = k(1) the tangent vector, ṁ(1),
to the embedding m at x = 1 is not the same as the tangent vector k̇(1). We have drawn m as a straight
line because it will naturally capture the idea of “growth in the direction X”. The full rationale behind
Figure 1 is described in Section 6.

Figure 1. Lévy process and homogeneous embeddings of R+ into the space of risks, L. The Lévy
process embedding corresponds to the straight line m and the asset embedding to the curved line k.

The second contribution is empirical. It uses US statutory accounting data to determine a Lévy
process based model for insurance losses by line of business that reflects their observed volumetric
and temporal properties. The analysis compares four potential models and determines that only one is
consistent with the data. The analysis produces specific line of business measures of non-diversifiable
parameter risk that vary substantially but that have been consistent over time. It also provides an
explicit form for the distribution of parameter risk, even though parameter risk cannot be directly
observed. Most papers on risk measures take the actual distribution of losses as given. And
much work done by companies to quantify risk is regarded as proprietary and is not published.
The explicit quantification we provide should therefore be useful as a benchmark for both academics
and practicing actuaries.

The remainder of the paper is organized as follows.
Section 2 describes the how actuaries and academics came to agree, over the last century,

that idiosyncratic insurance risk matters for pricing. This agreement provides an important motivation
for our theoretical and empirical work.

Section 3 defines a risk measure and explains how the allocation problem naturally leads to the
derivative and gradient of a risk measure.

Section 4 presents two motivating examples that it is instructive to keep in mind through the rest
of the paper, and which also illustrate Figure 1.

Section 5 defines Lévy processes and gives some basic examples. It then defines four Lévy
process-based loss models that will be used as candidate models for aggregate losses, as well as an
alternative asset-based model, and it establishes some of their basic properties.

Section 6 is the technical heart of the paper. It investigates the definition of derivative for a real
function and considers how it could be defined on more general spaces, such as the space of random
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variables. It explains how Lévy processes can be used to define “direction” and how the infinitesimal
generator of a Lévy process relates to derivatives. This allows us to pin-point the difference between
the derivatives of an insurance process and of an asset process.

Section 7 is contains all the empirical results in the paper. It shows how we can effectively quantify
parameter risk, even though it cannot be observed directly. It then determines the amount and shape
of parameter risk across many lines of business. Finally, it addresses the differences between temporal
and volumetric growth.

The paper covers topics from a variety of viewpoints befitting an article in this special edition
celebrating the connections between actuarial science and mathematical finance. As a result it is
quite long. Readers more interested in the theoretical findings can focus on Sections 4, 5.1, 5.2 and 6.
Readers more interested in the empirical analysis can focus on Sections 5.1, 5.2 and 7.

2. Why Idiosyncratic Insurance Risk Matters

In its early years property-casualty actuarial science in the US largely ignored risk theory
in rate making because of the dominance of bureau-based rates. Property rates were made to
include a 5% profit provision and a 1% contingency provision; they were priced to a 94% combined
ratio Magrath (1958). Lange (1966) describes a 5% provision for underwriting and contingencies as
“constant for all liability insurance lines in most states”. Kallop (1975) states that a 2.5% profit and
contingency allowance for workers’ compensation has been in use for at least 25 years and that it
“contemplates additional profits from other sources to realize an adequate rate level”. The higher load
for property lines was justified by the possibility of catastrophic losses—meaning large conflagration
losses rather than today’s meaning of hurricane or earthquake related, severity driven events.

Regulators and actuaries started to consider improvements to these long-standing conventions in
the late 1960s. Bailey (1967) introduced actuaries to the idea of including investment income in profit.
Ferrari (1968) was the first actuarial paper to include investment income and to consider return on
investor equity as well as margin on premium. During the following dozen years actuaries developed
the techniques needed to include investment income in ratemaking. At the same time, finance began
to consider how to determine a fair rate of return on insurance capital. The theoretical results they
derived, summarized as of 1987 in Cummins and Harrington (1987), focused on the use of discounted
cash flow models using CAPM-derived discount rates for each cash flow, including taxes. Since CAPM
only prices systematic risk, a side-effect of the financial work was to de-emphasize details of the
distribution of ultimate losses in setting the profit provision.

At the same time option and contingent claim theoretic methods, (Doherty and Garven 1986;
Cummins 1988), were developed as another approach to determining fair premiums. Interest in option
theoretic models was motivated in part by the difficulty of computing appropriate βs. These papers
applied powerful results from option pricing theory using a geometric Brownian motion to model
losses, possibly with a jump component. Cummins and Phillips (2000) and D’Arcy and Doherty (1988)
contain a summary of the CAPM and contingent claims approaches from a finance perspective and
D’Arcy and Dyer (1997) contains a more actuarial view.

The CAPM-based theories failed to explain the observed fact that insurance companies charged
for specific risk. A series of papers, beginning in the early 1990s, developed a theoretical explanation of
this based around agency, taxation and regulatory costs of capital, certainty in capital budgeting,
costly external capital for opaque intermediaries, contracting under asymmetric information,
and adverse selection, see Cummins (2000); Froot and O’Connell (2008); Froot and Stein (1998);
Froot et al. (1993); Froot (2007); Merton and Perold (2001); Perold (2001); Zanjani (2002).

At the same time banking regulation led to the development of robust risk measures and an
axiomatic theory of risk measures, including the idea of a coherent measure of risk Artzner et al. (1999).
Risk measures are sensitive to the particulars of idiosyncratic firm risk, unlike the CAPM-based pricing
methods which are only concerned with systemic risks.
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The next step was to develop a theory of product pricing for a multiline insurance company within
the context of costly firm-specific risk and robust risk measures. This proceeded down two paths.
Phillips et al. (1998) considered pricing in a multiline insurance company from a complete-market
option theoretic perspective, modeling losses with a geometric Brownian motion and without allocating
capital. They were concerned with the effect of firm-wide insolvency risk on individual policy pricing.

The second path, based around explicit allocation of capital, was started by Myers and Read (2001).
They also worked in a complete market setting and used expected default value as a risk measure,
determined surplus allocations by line, and presented a gradient vector, Euler theorem based allocation
assuming volumetrically homogeneous losses—but making no other distributional assumptions.
This thread was continued by Tasche (1999), Denault (2001) and Fischer (2003). Sherris (2006) takes
the view that, in a complete market setting, only the default put has a canonical allocation and that
there is no natural allocation of the remaining capital—a view echoed by Gründl and Schmeiser (2007).
Kalkbrener (2005) and Delbaen (2000a) used directional derivatives to clarify the relationship between
risk measures and allocations.

Concepts from banking regulation, including an own risk solvency assessment, have been adopted
by insurance regulators and have led to increased academic interest in technical aspects of risk
measurement, capital allocation and risk based pricing. A focus on catastrophe reinsurance pricing
following the US hurricanes of 2004 and 2005 and the development of a robust capital market alternative
to traditional reinsurance has also motivated research. As a result there is now a very rich literature
around this nexus, including the following.

• Technical and axiomatic characterization of risk measures: (Dhaene et al. 2003; Furman and Zitikis 2008;
Laeven and Stadje 2013).

• Capital allocation and its relationship with risk measurement: (Dhaene et al. 2003;
Venter et al. 2006; Bodoff 2009; Buch and Dorfleitner 2008; Dhaene et al. 2012; Erel et al. 2015;
Furman and Zitikis 2008; Powers 2007; Tsanakas 2009).

• The connection between purpose and method in capital allocation: (Dhaene et al. 2008;
Zanjani 2010; Bauer and Zanjani 2013b; Goovaerts et al. 2010).

• Questioning the need for capital allocation in pricing: Gründl and Schmeiser 2007.

Recent summaries include Venter (2009) and Bauer and Zanjani (2013a).
With the confluence of these different theoretical threads, and, in particular, in light of the

importance of firm-specific risk to insurance pricing, the missing link—and the link considered
in this paper—is a careful examination of the underlying actuarial loss distribution assumptions.
Unlike traditional static distribution-based pricing models, such as standard deviation and utility,
modern marginal and differential methods require explicit volumetric and temporal components.
The volumetric and temporal geometry are key to the differential calculations required to perform
risk and capital allocations. All of the models used in the papers cited are, implicitly or explicitly,
volumetrically homogeneous and geometrically flat in one dimension. For example, in a geometric
Brownian motion model losses at time t are of the form St = S0 exp(μt + σBt) where Bt is a Brownian
motion. Changing volume, S0, simply scales the whole distribution and does not affect the shape of
the random component. The jump-diffusion model in Cummins (1988) is of the same form. There are
essentially no other explicit loss models in the papers cited. Mildenhall (2004) and Meyers (2005b)
show volumetric homogeneity is not an appropriate assumption. This paper provides further evidence
and uses insurance regulatory data to explore more appropriate models.

3. Risk Measures, Risk Allocation and the Ubiquitous Gradient

3.1. Definition and Examples of Risk Measures

A risk measure, ρ, is a real valued function defined on a space of risks L = L0(Ω,F ,P). Here Ω is
the sample space, F is a sigma-algebra of subsets of Ω, and P is a probability measure on F . The space
L0 consists of all real valued random variables, that is, measurable functions X : Ω → R, defined up to
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equivalence (identify random variables which differ on a set of measure zero). As Delbaen (2000b)
points out there are only two Lp spaces which are invariant under equivalent measures, L0 and L∞,
the space of all essentially bounded random variables. Since it is desirable to work with a space
invariant under change of equivalent measure, but not to be restricted to bounded variables, we work
with L0. Kalkbrener (2005) works on L0. Risk measures are a large and important topic, but their details
are not central this paper. For more details see Föllmer and Schied (2011) and Dhaene et al. (2006).

Given a risk X ∈ L, ρ(X) is the amount of capital required to support the risk. Examples of
risk measures include value at risk at a percentile α (the inverse of the distribution of X, defined as
inf{x | Pr(X ≤ x) ≥ α}), tail value at risk (the average of the worst 1 − α outcomes), and standard
deviation ρ(X) = αSD(X).

3.2. Allocation and the Gradient

At the firm level, total risk X can be broken down into a sum of parts Xi corresponding to different
lines of business. Since it is costly for insurers to hold capital Froot and O’Connell (2008) it is natural to
ask for an attribution of total capital ρ(X) to each line Xi. One way to do this is to consider the effect
of a marginal change in the volume of line i on total capital. For example, if the marginal profit from
line i divided by the marginal change in total capital resulting from a small change in volume in line i
exceeds the average profit margin of the firm then it makes sense to expand line i. This is a standard
economic optimization that has been discussed in the insurance context by many authors including
Tasche (1999), Myers and Read (2001), Denault (2001), Meyers (2005b) and Fischer (2003).

The need to understand marginal capital leads us to consider

∂ρ

∂Xi
(1)

which, in a sense to be made precise, represents the change in ρ as a result of a change in the volume of
line i, or more generally the gradient vector of ρ representing the change across all lines. Much of this
paper is an examination of exactly what this equation means.

Tasche (1999) shows that the gradient vector of the risk measure ρ is the only vector suitable for
performance measurement, in the sense that it gives the correct signals to grow or shrink a line of
business based on its marginal profitability and marginal capital consumption. Tasche’s framework
is unequivocally financial. He considers a set of basis asset return variables Xi, i = 1, . . . , n and then
determines a portfolio as a vector of asset position sizes x = (x1, . . . , xn) ∈ U ⊂ Rn. The portfolio
value distribution corresponding to x is simply

X(x) = X(x1, . . . , xn) =
n

∑
i=1

xiXi. (2)

A risk measure on L induces a function ρ : Rn → R, ρ(x1, . . . , xn) �→ ρ(∑i xiXi). Rather than
being defined on a space of random variables, the induced ρ is defined on (a subset of) Euclidean
space Rn using the correspondence between x and a portfolio. In this context ∂ρ/∂Xi is simply the
usual limit

∂ρ

∂xi
= lim

ε→0

ρ(x1, . . . , xi + ε, . . . , xn)− ρ(x1, . . . , xn)

ε
. (3)

Equation (3) is a powerful mathematical notation and it contains two implicit assumptions. First,
the fact that we can write xi + ε requires that we can add in the domain. If ρ were defined on a
more general space this may not possible—or it may involve the convolution of measures rather
than addition of real numbers. Second, and more importantly, adding ε to x in the ith coordinate
unambiguously corresponds to an increase “in the direction” of the ith asset. This follows directly
from the definition in Equation (2) and is unquestionably correct in a financial context.
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Numerous papers work in an asset/volume model framework, either because they are working
with assets or as a simplification of the real insurance world, for example (Myers and Read 2001;
Panjer 2001; Erel et al. 2015; Fischer 2003). The resulting risk process homogeneity is essential to
all Euler-based “adds-up” results: in fact the two are equivalent for homogeneous risk measures
(Mildenhall 2004; Tasche 2004). However, it is important to realize that risk can be measured
appropriately with a homogeneous risk measure, that is one satisfying ρ(λX) = λρ(X), even if
the risk process itself is not homogeneous, that is X(λx) �= λX(x). The compound Poisson process
and Brownian motion are examples of non-homogeneous processes.

In order to consider alternatives to the asset/return framework, we now discuss the meaning
of the differential and examine other possible definitions. The differential represents the best linear
approximation to a function at a particular point in a given direction. Thus the differential to a
function f , at a point x in its domain, can be regarded as a linear map D fx which takes a direction,
i.e., a tangent vector at x, to a direction at f (x). Under appropriate assumptions, the differential of f at
x in direction v, Dx f (v), is defined by the property

lim
v→0

‖ f (x + v)− f (x)− Dx f (v)‖
‖v‖ = 0, (4)

see Abraham et al. (1988) or Borwein and Vanderwerff (2010). The vector v is allowed to tend to 0

from any direction, and Equation (4) must hold for all of them. This is called Fréchet differentiability.
There are several weaker forms of differentiability defined by restricting the convergence of v to 0.
These include the Gâteaux differential, where v = tw with t ∈ R, t → 0, the directional differential,
where v = tw with t ∈ R, t ↓ 0, and the Dini differential, where v = tw′ for t ∈ R, t ↓ 0, and w′ → w.
The function f (x, y) = 2x2y/(x4 + y4) if (x, y) �= (0, 0) and f (0, 0) = 0 is not differentiable at
(0, 0), in fact it is not even continuous, but all directional derivatives exist at (0, 0), and f is Gâteaux
differentiable. The Gâteaux differential need not be linear in its direction argument.

Kalkbrener (2005) applied Gâteaux differentiability to capital allocation. The Gâteaux derivative
can be computed without choosing a set of basis asset return-like variables, that is without setting up a
map from Rn → L, provided it is possible to add in the domain. This is the case for L because we can
add random variables. The Gâteaux derivative of ρ at Y ∈ L in the direction X ∈ L is defined as

∂ρ

∂X
= DρY(X) = lim

ε→0

ρ(Y + εX)− ρ(Y)
ε

. (5)

Kalkbrener shows that if the risk measure ρ satisfies certain axioms then it can be associated
with a unique capital allocation. He shows that the allocation is covariance-based if risk is measured
using standard deviation and a conditional measure approach when risk is measured by expected
shortfall—so his method is very natural.

We have shown that notions of differentiability are central to capital allocation. The next section
will present two archetypal examples and that show the asset/return and insurance notions of growth
do not agree, setting up the need for a better understanding of “direction” for actuarial random
variables. We will see that Lévy processes provide that understanding.

4. Two Motivating Examples

This section presents two examples illustrating the difference between an asset/return model and
a realistic insurance growth model.

Let X(u) be a Poisson random variable with mean u. Consider two functions, k(u) = uX(1)
and m(u) = X(u). The function k defines a random variable with mean u and standard deviation u.
The function m also defines a random variable with has mean u, but it has standard deviation u1/2.
The variable k defines a homogeneous family, that is k(λu) = λk(u), and correctly models the returns
from a portfolio of size u in an asset with an (unlikely) Poisson(1) asset return distribution. The variable
m is more realistic for a growing portfolio of insurance risks with expected annual claim count u.
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If we measure risk using the standard deviation risk measure ρ(X) = SD(X), this example
shows that although k(1) = m(1) = Poisson(1) have the same distribution the marginal risk for k is
∂ρ(k(u))/∂u = 1 whereas the marginal risk for m is ∂ρ(m(u))/∂u = 1/(2u1/2). For m risk decreases
as volume increases owing to portfolio effects whereas for k there is no diversification.

Next we present a more realistic example, due to Meyers (2005a), where Kalkbrener’s “axiomatic”
allocation produces a different result than a marginal business written approach that is based on a
more actuarial set of assumptions. Meyers calls his approach “economic” since it is motivated by
the marginal increase in business philosophy discussed in Section 3.2. This example has also been
re-visited recently by Boonen et al. (2017).

In order to keep the notation as simple as possible the example works with n = 2 independent
lines of business and allocates capital to line 1 . The risk measure is standard deviation ρ(X) = SD(X)

for X ∈ L. Losses Xi(xi) are modeled with a mixed compound Poisson variable

Xi(xi) = Si,1 + · · ·+ Si,Ni(xi)
(6)

where Ni = Ni(xi) is a Ci-mixed Poisson, so the conditional distribution N | Ci is Poisson with
mean xiCi and the mixing distribution Ci has mean 1 and variance ci. Meyers calls ci the contagion.
The mixing distributions are often taken to be gamma variables, in which case each Ni has a negative
binomial distribution. The Si,j, i = 1, 2 are independent, identically distributed severity random
variables. For simplicity, assume that E(Si) = 1, so that E(Xi(xi)) = E(Ni(xi))E(Si) = xi. Since t = 1
the model only considers volumetric diversification and not temporal diversification.

We can compute ρ(Xi(xi)) as follows:

ρ(Xi(xi))
2 = Var(Xi(xi))

= Var(Ni)E(Si)
2 + E(Ni)Var(Si)

= xi(1 + cixi) + xi(E(S2
i )− 1)

= cix2
i + xiE(S2

i )

= cix2
i + gixi

where gi = E(S2
i ). Note that ρ(kX) = kρ(X) for any constant k.

Kalkbrener’s axiomatic capital is computed using the Gâteaux directional derivative.
Let ρi(xi) = ρ(Xi(xi)) and note that ρ((1 + ε)Xi(xi)) = (1 + ε)ρi(xi). Then, by definition and the
independence of X1 and X2, the Gâteaux derivative of ρ at X1(x1) + X2(x2) in the direction X1(x1) is

∂ρ

∂X1
= lim

ε→0

ρ(X1(x1) + X2(x2) + εX1(x1))− ρ(X1(x1) + X2(x2))

ε

= lim
ε→0

√
(1 + ε)2ρ1(x1)2 + ρ2(x2)2 −√ρ1(x1)2 + ρ2(x2)2

ε
(7)

=
ρ1(x1)

2

ρ(X1(x1) + X2(x2))

=
c1x2

1 + g1x1

ρ(X1(x1) + X2(x2))
.
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This whole calculation has been performed without picking an asset return basis, but it can be
replicated if we do. Specifically, use the Xi(xi) as a basis and define a linear map of R-vector spaces
k : Rn → L, by (y1, . . . , yn) �→ ∑i yiXi(xi). Let ρk be the composition of k and ρ,

ρk(y1, . . . , yn) = ρ(k(y1, . . . , yn)) = ρ

(
∑

i
yiXi(xi)

)
=
√

∑
i

y2
i (cix2

i + gixi).

Then
∂ρk
∂y1

∣∣∣∣
(1,1)

=
c1x2

1 + g1x1

ρ(X1(x1) + X2(x2))
(8)

agreeing with Equation (7). It is important to remember that yXi(xi) �= Xi(yxi) for y �= 1.
Given the definition of Xi(xi), we can also define an embedding m : Rn → L,

by (x1, . . . , xn) �→ ∑i Xi(xi). The map m satisfies m(x + y) = m(x) + m(y) but it is not a linear
map of real vector spaces because m(kx) �= km(x). In fact, the image of m will generally be an
infinite dimensional real vector subspace of L. The lack of homogeneity is precisely what produces a
diversification effect. As explained in Section 3.2, an economic view of capital requires an allocation
proportional to the gradient vector at the margin. Thus capital is proportional to xi∂ρm/∂xi where
ρm : Rn → R is the composition of m and ρ,

ρm(x1, x2) = ρ(m(x1, x2)) =
√

∑
i

cix2
i + gixi. (9)

Since ρm : R2 → R a real function, we can compute its partial derivative using standard calculus:

∂ρm

∂x1
=

2c1x1 + g1

2ρ(X1(x1) + X2(x2))
. (10)

There are two important conclusion: (1) the partial derivatives of ρm and ρk (which is also the
Gâteaux derivative of ρ) give different answers, Equations (7) and (10), and (2) the implied allocations

c1x2
1 + g1x1

ρ(X1(x1) + X2(x2))
and

c1x2
1 + g1x1/2

ρ(X1(x1) + X2(x2))
(11)

are also different. This is Meyers’ example.

5. Lévy process Models of Insurance Losses

We define Lévy processes and discuss some of their important properties. We then introduce four
models of insurance risk which we will analyze in the rest of the paper.

5.1. Definition and Basic Properties of Lévy processes

Lévy processes are fundamental to actuarial science, but they are rarely discussed explicitly in basic
actuarial text books. For example, there is no explicit mention of Lévy processes in Bowers et al. (1986);
Beard et al. (1969); Daykin et al. (1994); Klugman et al. (1998); Panjer and Willmot (1992). However,
the fundamental building block of all Lévy processes, the compound Poisson process, is well known to
actuaries. It is instructive to learn about Lévy processes in an abstract manner as they provide a very
rich source of examples for modeling actuarial processes. There are many good textbooks covering the
topics described here, including Feller (1971) volume 2, Breiman (1992), Stroock (1993), Bertoin (1996),
Sato (1999), and Barndorff-Nielsen et al. (2001), and Applebaum (2004).
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Definition 1. A Lévy process is a stochastic process X(t) defined on a probability space (Ω,F ,P) satisfying

LP1. X(0) = 0 almost surely;
LP2. X has independent increments, so for 0 ≤ t1 ≤ · · · ≤ tn+1 the variables X(tj+1)−X(tj) are independent;
LP3. X has stationary increments, so X(tj+1)− X(tj) has the same distribution as X(tj+1 − tj); and
LP4. X is stochastically continuous, so for all a > 0 and s ≥ 0

lim
t→s

Pr(|X(t)− X(s)| > a) = 0. (12)

Based on the definition it is clear that the sum of two Lévy processes is a Lévy process.
Lévy processes are in one-to-one correspondence with the set of infinitely divisible distributions,
where X is infinitely divisible if, for all integers n ≥ 1, there exist independent, identically distributed
random variables Yi so that X has the same distribution as Y1 + · · ·+Yn. If X(t) is a Lévy process then
X(1) is infinitely divisible since X(1) = X(1/n) + (X(2/n)− X(1/n)) + · · ·+ (X(1)− X(n − 1/n)),
and conversely if X is infinitely divisible there is a Lévy process with X(1) = X. In an idealized
world, insurance losses should follow an infinitely divisible distribution because annual losses are
the sum of monthly, weekly, daily, or hourly losses. Bühlmann Bühlmann (1970) discusses infinitely
divisible distributions and their relationship with compound Poisson processes. The Poisson, normal,
lognormal, gamma, Pareto, and Student t distributions are infinitely divisible; the uniform is not
infinitely divisible, nor is any distribution with finite support, nor any whose moment generating
function takes the value zero, see Sato (1999).

Example 1 (Trivial process). X(t) = kt for a constant k is a trivial Lévy process.

Example 2 (Poisson process). The Poisson process N(t) with intensity λ has

Pr(N(t) = n) =
(λt)n

n!
e−λt (13)

for n = 0, 1, . . . is a Lévy process.

Example 3 (Compound Poisson process). The compound Poisson process X(t) with severity component Z
is defined as

X(t) = Z1 + · · ·+ ZN(t) (14)

where N(t) is a Poisson process with intensity λ. The compound Poisson processes is the fundamental building
block of Lévy processes in the sense that any infinitely divisible distribution is the limit distribution of a sequence
of compound Poisson distributions, see Sato (1999) Corollary 8.8

Example 4 (Brownian motion). Brownian motion is an example of a continuous Lévy process.

Example 5 (Operational time). Lundberg introduced the notion of operational time transforms in order to
maintain stationary increments for compound Poisson distributions. Operational time is a risk-clock which
runs faster or slower in order to keep claim frequency constant. It allows seasonal and daily effects (rush
hours, night-time lulls, etc.) without losing stationary increments. Operational time is an increasing function
τ : [0, ∞) → [0, ∞) chosen so that X(τ(t)) becomes a Lévy process.

Example 6 (Subordination). Let X(t) be a Lévy process and let Z(t) be a subordinator, that is, a Lévy process
with non-decreasing paths. Then Y(t) = X(Z(t)) is also a Lévy process. This process is called subordination
and Y is subordinate to X. Z is called the directing process. Z is a random operational time.

The characteristic function of a random variable X with distribution μ is defined as
φ(z) = E(eizX) =

∫
eizxμ(dx) for z ∈ R. The characteristic function of a Poisson variable with
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mean λ is φ(z) = exp(λ(eiz − 1)). The characteristic function of a compound Poisson process
X(t) = Z1 + · · ·+ ZN(t) is

φ(z) = E(eizX(t)) = E(E(eizX(t) | N(t))) (15)

= E exp
(

N(t) log
∫

eizwν(dw)

)
(16)

= exp
(

λt
∫
(eizw − 1)ν(dw)

)
(17)

where ν is the distribution of severity Zi. The characteristic equation of a normal random variable is
φ(z) = exp(iμz − σ2z2/2).

We now quote an important result in the theory of Lévy processes that allows us to identify an
infinitely divisible distribution, and hence a Lévy process, with a measure ν on R, and two constants
σ > 0 and γ.

Theorem 1 (Lévy-Khintchine). If the probability distribution μ is infinitely divisible then its characteristic
function has the form

exp
(
−σ2z2 +

∫
R
(eizw − 1 − izw1{|w|≤1}(w))ν(dw) + iγz

)
(18)

where ν is a measure on R satisfying ν(0) = 0 and
∫
R min(|w|2, 1)ν(dw) < ∞, and σ > 0, γ ∈ R.

The representation by (σ, ν, γ) is unique. Conversely given any such triple (σ, ν, γ) there exists a corresponding
infinitely divisible distribution.

See Breiman (1992) or Sato (1999) a proof. In Equation (18), σ is the standard deviation of a
Brownian motion component, and ν is called the Lévy measure. The indicator function 1{|w|≤1} is
present for technical convergence reasons and is only needed when there are a very large number of
very small jumps. If

∫ 1
−1 min(|w|, 1)ν(dw) < ∞ it can be omitted and the resulting γ can be interpreted

as a drift. In the general case γ does not have a clear meaning as it is impossible to separate drift
from small jumps. The indicator can therefore also be omitted if ν(R) < ∞, and in that case the inner
integral can be written as

ν(R)
∫
R
(eizw − 1)ν̃(dw) (19)

where ν̃ = ν/ν(R) is a distribution. Comparing with Equation (17) shows this term corresponds to a
compound Poisson process.

The triples (σ, ν, γ) in the Lévy-Khintchine formula are called Lévy triples. The Lévy process X(t)
corresponding to the Lévy triple (σ, ν, γ) has triple (tσ, tν, tγ).

The Lévy-Khintchine formula helps characterize all subordinators. A subordinator must have
a Lévy triple (0, ν, γ) with no diffusion component (because Brownian motions take positive and
negative values) and the Lévy measure ν must satisfy ν((−∞, 0)) = 0, i.e., have no negative
jumps, and

∫ ∞
0 min(x, 1)ν(dx) < ∞. In particular, there are no non-trivial continuous increasing

Lévy processes.
The insurance analog of an asset return portfolio basis becomes a set of Lévy processes

representing losses in each line of business and “line” becomes synonymous with the Lévy measure
that describes the frequency and severity of the jumps, i.e., of the losses. Unless the Lévy process has
an infinite number of small jumps the Lévy measure can be separated into a frequency component and
a severity component. Patrik et al. (1999) describes modeling with Lévy measures, which the authors
call a loss frequency curve.
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5.2. Four Temporal and Volumetric Insurance Loss Models

We now define four models describing how the total insured loss random variable evolves
volumetrically and temporally. Let the random variable A(x, t) denote aggregate losses from a line
with expected annual loss x that is insured for a time period t years. Thus A(x, 1) is the distribution
of annual losses. The central question of the paper is to describe appropriate models for A(x, t) as x
and t vary. A Lévy process X(t) provides the appropriate basis for modeling A(x, t). We consider four
alternative insurance models.

IM1. A(x, t) = X(xt). This model assumes there is no difference between insuring given insureds for
a longer period of time and insuring more insureds for a shorter period.

IM2. A(x, t) = X(xZ(t)), for a subordinator Z(t) with E(Z(t)) = t. Z is an increasing Lévy process
which measures random operational time, rather than calendar time. It allows for systematic
time-varying contagion effects, such as weather patterns, inflation and level of economic activity,
affecting all insureds. Z could be a deterministic drift or it could combine a deterministic drift
with a stochastic component.

IM3. A(x, t) = X(xCt), where C is a mean 1 random variable capturing heterogeneity and
non-diversifiable parameter risk across an insured population of size x. C could reflect different
underwriting positions by firm, which drive systematic and permanent differences in results.
The variable C is sometimes called a mixing variable.

IM4. A(x, t) = X(xCZ(t)).

All models assume severity has been normalized so that E(A(x, t)) = xt. Two other models
suggested by symmetry, A(x, t) = X(Z(xt)) and A(x, t) = X(Z(xCt)), are already included in this list
because X(Z(t)) is also a Lévy process.

An important statistic describing the behavior of A(x, t) is the coefficient of variation

υ(x, t) :=

√
Var(A(x, t))

xt
. (20)

Since insurance is based on the notion of diversification, the behavior of υ(x, t) as x → ∞ and as
t → ∞ are both of interest. The variance of a Lévy process either grows with t or is infinite for all t.
If X(·) has a variance, then for IM1, υ(x, t) ∝ (xt)−1/2 → 0 as t or x → ∞ or as t → ∞

Definition 2. For υ(x, t) in Equation (20):

1. If υ(x, t) → 0 as t → ∞ we will call A(x, t) temporally diversifying.
2. If υ(x, t) → 0 as x → ∞ we will call A(x, t) volumetrically diversifying.
3. A process which is both temporally and volumetrically diversifying will be called diversifying.

If X(x) is a standard compound Poisson process whose severity component has a variance then
IM1 is diversifying.

Models IM1-4 are all very different to the asset model

AM1. A(x, t) = xX(t)

where X(t) is a return process, often modeled using a geometric Brownian motion (Hull 1983; Karatzas and
Shreve 1988). AM1 is obviously volumetrically homogeneous, meaning A(kx, t) = kA(x, t). Therefore
it has no volumetric diversification effect whatsoever, since Pr(A(kx, t) ≤ ky) = Pr(A(x, t) ≤ y) and

υ(x, t) =
√

Var(X(t))
t

(21)

is independent of x.
Next we consider some properties of the models IM1-4 and AM1. In all cases severity is

normalized so that E(A(x, t)) = xt. Define σ and τ so that Var(X(t)) = σ2t and Var(Z(t)) = τ2t.
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Practical underwritten loss distributions will have a variance or will have limits applied so the
distribution of insured losses has a variance, so this is not a significant restriction.

Models IM3 and IM4 no longer define Lévy processes because of the common C term. Each process
has conditionally independent increments given C. Thus, these two models no longer assume that
each new insured has losses independent of the existing cohort. Example 6 shows that IM2 is a
Lévy process.

Table 1 lays out the variance and coefficient of variation υ of these five models. It also shows
whether each model is volumetrically (resp. temporally) diversifying, that is whether υ(x, t) → 0 as
x → ∞ (resp. t → ∞). The calculations follow easily by conditioning. For example

Var(X(xZ(t))) = EZ(t)(Var(X(xZ(t)))) + VarZ(t)(E(X(xZ(t))))

= E(σ2xZ(t)) + Var(xZ(t))

= σ2xt + x2τ2t = xt(σ2 + xτ2).

Table 1. Variance of IM1-4 and AM.

Diversifying

Model Variance υ(x, t) x → ∞ t → ∞

IM1: X(xt) σ2xt σ√
xt Yes Yes

IM2: X(xZ(t)) xt(σ2 + xτ2)

√
σ2

xt + τ2

t No Yes

IM3: X(xCt) xt(σ2 + cxt)

√
σ2

xt + c No No

IM4: X(xCZ(t)) x2t2
(
(c + 1)τ2

t
+ c
)
+σ2xt

√
σ2

xt + τ′2
t + c No No

AM1: xX(t) x2σ2t σ/
√

t Const. Yes

In IM4, τ′ = (1 + c)τ.

The characteristics of each model will be tested against regulatory insurance data in Section 7.
The models presented here are one-dimensional. A multi-dimensional version would use

multi-dimensional Lévy processes. This allows for the possibility of correlation between lines.
In addition, correlation between lines can be induced by using correlated mixing variables C. This is
the common-shock model, described in Meyers (2005b).

6. Defining the Derivative of a Risk Measure and Directions in the Space of Risks

This section is the technical heart of the paper. It investigates the definition of derivative for a real
function and considers how it could be defined on more general spaces, such as the space of random
variables. It explains how Lévy processes can be used to define "direction" and how the infinitesimal
generator of a Lévy process relates to derivatives. This allows us to pin-point the difference between
the derivatives of an insurance process and of an asset process.

6.1. Defining the Derivative

When ρ : Rn → R the meaning of ∂ρ/∂Xi is clear. However we want to consider ρ : L → R where
L is the more complicated space of random variables. We need to define the derivative mapping DρX
as a real-valued linear map on tangent vectors or “directions” at X ∈ L. Meyers’ example shows the
asset/return model and an insurance growth model correspond to different directions.
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A direction in L can be identified with the derivative of a coordinate path x : U → L where
U ⊂ R. Composing ρ and x results in a real valued function of a real variable ρx := ρ ◦ x : U → R,
u �→ ρ(x(u)), so standard calculus defines dρx/du. The derivative of ρ at x(u) in the direction defined
by the derivative ẋ(u) of x(u) is given by

Dρx(u)(ẋ(u)) :=
dρx

du
(22)

The surprise of Equation (22) is that the two complex objects on the left combine to the
single, well-understood object on the right. The exact definitions of the terms on the left will be
discussed below.

Section 4 introduced two important coordinates. The first is k : R → L, k(u) = uX for some fixed
random variable X ∈ L. It is suitable for modeling assets: u represents position size and X represents
the asset return. The second coordinate is m : [0, ∞) → L, m(u) = Xu, where Xu is a compound
Poisson distribution with frequency mean uλ and severity component Z. It is suitable for modeling
aggregate losses from an insurance portfolio. (There is a third potential coordinate path w(u) = Bu

where Bu is a Brownian motion, but because it always takes positive and negative values it is of less
interest for modeling losses.)

An issue with the asset coordinate in an insurance context is the correct interpretation of uX.
For 0 < u ≤ 1, uX can be interpreted as a quota share of total losses, or as a coinsurance provision.
However, uX for u < 0 or u > 1 is generally meaningless due to policy provisions, laws on
over-insurance, and the inability to short insurance. The natural way to interpret a doubling in
volume (“2X”) is as X1 + X2 where X, X1, X2 are identically distributed random variables, rather than
as a policy paying $2 per $1 of loss. This interpretation is consistent with doubling volume since
E(X1 + X2) = 2E(X). Clearly X + X has a different distribution to X1 + X2 unless X1 and X2 are
perfectly correlated. The insurance coordinate has exactly this property: m(2) = X2u is the sum of two
independent copies of Xu because of the additive property of the Poisson distribution.

To avoid misinterpreting uX it is safer to regard insurance risks as probability measures
(distributions) μ on R. The measure μ corresponds to a random variable X with distribution
Pr(X ≤ x) = μ(−∞, x]. Now there is no natural way to interpret 2μ. Identify L with M(R), the set of
probability measures on R. We can combine two elements of M(R) using convolution: the distribution
of the sum of the corresponding random variables. Since the distribution if X + Y is the same as the
distribution of Y + X order of convolution does not matter. Now 2X in our insurance interpretation,
X1 + X2, corresponds to μ � μ := μ�2, where � represents convolution, and we are not led astray.

We still have to define “directions” in L and M(R). Directions should correspond to the derivatives
of curves. The simplest curves are straight lines. A straight line through the origin is called a ray.
Table 2 shows several possible characterizations of a ray Rn each of which uses a different aspect of the
rich mathematical structure of Rn, and which could be used as characterizations in L.

Table 2. Possible characterizations of a ray in Rn.

Characterization of Ray Required Structure on Rn

α is the shortest distance between α(0) and α(1) Notion of distance in Rn, differentiable manifold
α′′(t) = 0, constant velocity, no acceleration Very complicated on a general manifold.
α(t) = tx, x ∈ Rn. Vector space structure
α(s + t) = α(s) + α(t) Can add in domain and range, semigroup structure only.

The first two use properties of Rn that require putting a differential structure on L, which is very
complicated. The third corresponds to the asset volume/return model and uses the identification of
the set of possible portfolios with the R vector space Rn. This leaves the fourth approach: a ray is
characterized by the simple relationship α(s + t) = α(s) + α(t). This definition only requires the ability
to add for the range space, which we have on L. It is the definition adopted in Stroock (2003).
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Therefore rays in L should correspond to families of random variables satisfying Xs + Xt = Xs+t

(or, equivalently, in M(R) to families of measures μs satisfying μs � μt = μs+t), i.e., to Lévy processes.
Since X0 = X0+0 = X0 + X0 a ray must start at 0, the random variable taking the value 0 with
probability 1. Straight lines correspond to translations of rays: a straight line passing through the point
Y ∈ L is a family Y + Xt where Xt is a ray (resp. passing thought ν ∈ M(R) is ν � μt where μt is a ray.)
Directions in L are determined by rays. By providing a basis of directions in L, Lévy processes provide
the insurance analog of individual asset return variables.

We now think about derivatives in a more abstract way. Working with functions on Rn obscures
some of the complication involved in working on more general spaces (like L) because the set of
directions at any point in Rn can naturally be identified with a point in Rn. In general this is not the
case; the directions live in a different space. A familiar non-trivial example of this is the sphere in
R3. At each point on the sphere the set of directions, or tangent vectors, is a plane. The collection of
different planes, together with the original sphere, can be combined to give a new object, called the
tangent bundle over the sphere. A point in the tangent bundle consists of a point on the sphere and a
direction, or tangent vector, at that point.

There are several different ways to define the tangent bundle. For the sphere, an easy method
is to set up a family of local charts, where a chart is a differentiable bijection from a subset of R2 to a
neighborhood of each point. Charts must be defined at each point on the sphere in such a way that
they overlap consistently, producing an atlas, or differentiable structure, on the sphere. Charts move
questions of tangency and direction back to functions on R2 → R2 where they are well understood.
This is called the coordinate approach.

Another way of defining the tangent bundle is to use curves, or coordinate paths, to define tangent
vectors: a direction becomes the derivative of a curve. The tangent space can be defined as the set of
curves through a point, with two curves identified if they are tangent (agree to degree 1). In the next
section we will apply this approach to L. A good general reference on the construction of the tangent
bundle is Abraham et al. (1988).

Figure 2 is an illustrative schematic. The sphere S is used as a proxy for L, an object with more
complex geometry than flat Euclidean space. The two paths m and k are shown as the red and blue
lines, passing through the same point (distribution) x on the sphere at t = 1. The red line is part of a
great circle geodesic—the analog of a straight line on a sphere—whereas the blue line is not. Above x
is the tangent plane (isomorphic to R2) to the sphere at x,TSx; π is the projection from the tangent
bundle TS to S. The derivative of ρ at x is a linear map Dρ : TSx → TR. For Euclidean spaces we can
identify the tangent bundle with the space so TR = R. Although k(1) = m(1) = x they have different
derivatives (define different vectors in TSx), ṁ �= k̇ at t = 1.

The derivative of a risk measure ρ, ∂ρ/∂X, is the evaluation of the linear differential Dρ on a
tangent vector in the direction X. Meyer’s embedding m corresponds to ∂(ρ ◦ m)/∂t|t=1 = DρX(ṁ(1))
whereas Kalkbrener’s corresponds to ∂(ρ ◦ k)/∂t|t=1 = DρX(k̇(1)). As demonstrated in Section 4 these
derivatives are not the same—just as the schematic leads us to expect—because the direction ṁ(1) is
not the same as the direction k̇(1).

The difference between k̇(1) and ṁ(1) is a measure of the diversification benefit given by m
compared to k. The embedding k maps x �→ xX and so offers no diversification to an insurer. Again,
this is correct for an asset portfolio (you don’t diversify a portfolio by buying more of the same stock)
but it is not true for an insurance portfolio. We will describe the analog of TSx next.
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∂ρ ◦ k
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= Dρx(k̇(1))
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∂t
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R, domain of ρ

ρ(x) = ρ(m(1)) = ρ(k(1))
ρ : S → R

risk measure

Figure 2. Schematic of the Kalkbrener-Meyers example, using the sphere to illustrate the more
complex space L.

6.2. Directions in the Space of Actuarial Random Variables

We now show how Lévy processes provide a description of “directions” in the space L.
The analysis combines three threads:

1. The notion that directions, or tangent vectors, live in a separate space called the tangent bundle.
2. The identification of tangent vectors as derivatives of curves.
3. The idea that Lévy processes, characterized by the additive relation X(s + t) = X(s) + X(t),

provide the appropriate analog of rays to use as a basis for insurance risks.

The program is to compute the derivative of the curve t �→ X(t) ∈ L defined by a Lévy
process family of random variables (or t �→ μt ∈ M(R) defined by an additive family of probability
distributions on R). The ideas presented here are part of a general theory of Markov processes.
The presentation follows the beautiful book by Stroock (2003). We begin by describing a finite sample
space version of L which illustrates the difficulties involved in regarding it as a differentiable manifold.

To see that the construction of tangent directions in L may not be trivial, consider the space
M of probability measures on Z/n, the integers {0, 1, . . . , n − 1} with + given by addition modulo
n. An element μ ∈ M can be identified with an n-tuple of non-negative real numbers p0, . . . , pn−1

satisfying ∑i pi = 1. Thus elements of M are in one to one correspondent with elements of the n − 1
dimensional simplex Δn−1 = {(x0, . . . , xn−1) | ∑i xi = 1} ⊂ Rn. Δn inherits a differentiable structure
from Rn+1 and we already know how to think about directions and tangent vectors in Euclidean space.
However, even thinking about Δ2 ⊂ R3 shows M is not an easy space to work with. Δ2 is a plane
triangle; it has a boundary of three edges and each edge has a boundary of two vertices. The tangent
spaces at each of these boundary points is different and different again from the tangent space in the
interior of Δ2. As n increases the complexity of the boundary increases and, to compound the problem,
every point in the interior gets closer to the boundary. For measures on R the boundary is dense.

Let δx ∈ M(R) be the measure giving probability 1 to x ∈ R. We will describe
the space of tangent vectors to M(R) at δ0. By definition, all Lévy processes X(t) have
distribution δ0 at t = 0. Measures μt ∈ M(R) are defined by their action on functions f on R.

29

Bo
ok
s

M
DP
I



Risks 2017, 5, 31

Let 〈 f , μ〉 = ∫R f (x)μ(dx) = E( f (X)), where X has distribution μ. In view of the fundamental theorem
of calculus, the derivative μ̇t of μt should satisfy

〈 f , μt〉 − 〈 f , μ0〉 =
∫ t

0
μ̇τ f dτ, (23)

with μ̇t a linear functional acting on f , i.e., μ̇t( f ) ∈ R and f �→ μ̇t( f ) is linear in f . Converting
Equation (23) to its differential form suggests that

μ̇0 f = lim
t↓0

〈 f , μt〉 − 〈 f , μ0〉
t

(24)

= lim
t↓0

E( f (X(t)))− E( f (X(0)))
t

(25)

where X(t) has distribution μt.
We now consider how Equation (25) works when X(t) is related to a Brownian motion or a

compound Poisson—the two building block Lévy processes. Suppose first that X(t) is a Brownian
motion with drift γ and standard deviation σ, so X(t) = γt + σB(t) where B(t) is a standard Brownian
motion. Let f be a function with a Taylor’s expansion about 0. Then

μ̇0 f = lim
t↓0

[E( f (0) + X(t) f ′(0) + X(t)2 f ′′(0)
2

+ o(t))− f (0)]/t (26)

= lim
t↓0

[γt f ′(0) + σ2t f ′′(0)
2

+ o(t))]/t (27)

= γ f ′(0) + σ2 f ′′(0)
2

, (28)

because E(B(t)) = 0 and E(B(t)2) = t and so E(X(t)) = E(γt + σB(t)) = γt and
E(X(t)2) = γ2t2 + σ2t. Thus μ̇0 acts as a second order differential operator evaluated at x = 0 (because
we assume μ0 = δ0):

μ̇0 f = γ
d f
dx

(0) +
σ2

2
d f 2

dx2 (0). (29)

Next suppose that X(t) is a compound Poisson distribution with Lévy measure ν, ν({0}) = 0
and λ = ν(R) < ∞. Let J be a variable with distribution ν/λ, so, in actuarial terms, J is the severity.
The number of jumps of X(t) follows a Poisson distribution with mean λt. If t is very small then the
axioms characterizing the Poisson distribution imply that in the time interval [0, t] there is a single
jump with probability λt and no jump with probability 1 − λt. Conditioning on the occurrence of a
jump, E( f (X(t))) = (1 − λt) f (0) + λtE( f (J)) and so

μ̇0 f = lim
t↓0

E( f (X(t)))− E( f (X(0)))
t

(30)

= lim
t↓0

λt(E( f (J))− f (0))
t

(31)

= λ(E( f (J))− f (0)) (32)

=
∫
( f (y)− f (0)) ν(dy) (33)

This analysis side-steps some technicalities by assuming that ν(R) < ∞. For both the Brownian
motion and the compound Poisson if we are interested in tangent vectors at μ0 = δx for x �= 0 then we
replace 0 with x because 〈 f , μ0〉 = E( f (x + X0)) = f (x). Thus Equation (33) becomes

μ̇0 f =
∫
( f (x + y)− f (x)) ν(dy) (34)
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for example. Combining these two results makes the following theorem plausible.

Theorem 2 (Stroock (2003) Thm 2.1.11). There is a one-to-one correspondence between Lévy triples and rays
(continuous, additive maps) t ∈ [0, ∞) → μt ∈ M(R). The Lévy triple (σ, ν, γ) corresponds to the infinitely
divisible map t �→ μ

(σ,ν,γ)
t given by the Lévy process with the same Lévy triple. The map is t �→ μ

(σ,ν,γ)
t is

differentiable and
μ̇
(σ,ν,γ)
t f = μ̇t f = 〈L(σ,ν,γ) f , μt〉. (35)

where L(σ,ν,γ) is a pseudo differential operator, see Applebaum (2004); Jacob (2001 2002 2005), given by

L(σ,ν,γ) f (x) = γ
d f
dx

+
1
2

σ2 d2 f
dx2 +

∫
R

f (y + x)− f (x)− d f
dx

y
1 + |y|2 ν(dy). (36)

If t �→ μt ∈ L is a differentiable curve and μ0 = δx for some x ∈ R then there exists a unique Lévy triple
(σ, ν, γ) such that μ̇0 is the linear operator acting on f by

μ̇0 f = L(σ,ν,γ) f (x) = 〈L(σ,ν,γ) f , μ0〉. (37)

Thus Tδx (M(R)), the tangent space to M(R) at δx, can be identified with the cone of linear functionals of
the form f �→ L(σ,ν,γ) f (x) where (σ, ν, γ) is a Lévy triple.

Just as in the Lévy-Khintchine theorem, the extra term in the integral is needed for technical
convergence reasons when there is an infinite number of very small jumps. Note that μ̇0 f ∈ R is a
number, L(σ,ν,γ) f is a function and its value at x, L(σ,ν,γ) f (x) ∈ R is a number. The connection between
μt and x is μ0 = δx is the measure concentrated at x ∈ R.

At this point we have described tangent vectors to L = M(R) at degenerate distributions
δx. To properly illustrate Figures 1 and 2 we need a tangent vector at a more general μ. Again,
following (Stroock 2003, sct. 2.11.4), define a tangent vector to M(R) at a general μ to be a linear
functional of the form Λμ f = 〈L f , μ〉 where L = L(σ(x),ν(x),γ(x)) is a continuous family of operators
L determined by x. We will restrict attention to simpler tangent vectors where L = L(σ,ν,γ) does not
vary with x. If μt is the Lévy process corresponding to the triple (σ, ν, γ) and f is bounded and has
continuously bounded derivatives, then, by independent and stationary increments

μ̇u f = 〈L(σ,ν,γ) f , μt〉 (38)

= lim
s↓0

E
(

f (Xs+u)− f (Xu)

s

)
(39)

= lim
s↓0

EXu

(
EXs( f (Xs + Xu)− f (Xu))

s

)
(40)

= EXu

(
lim
s↓0

EXs( f (Xs + Xu)− f (Xu))

s

)
(41)

= EXu

(
〈L(σ,ν,γ) f (Xu)

)
(42)

by dominated convergence. The tangent vector is an average of the direction at all the locations that
Xu can take.

6.3. Examples

We present a number of examples to illustrate the theory. Test functions f are usually required to
be bounded and twice continuously and boundedly differentiable to ensure that all relevant integrals
exist. However, we can apply the same formulas to unbounded differentiable functions for particular μt

if we know relevant integrals converge. Below we will use f (x) = x2 as a example, with distributions
having a second moment.
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Example 7 (Brownian motion). Let Xt be a standard Brownian motion, corresponding to Lévy triple
(σ, ν, γ) = (1, 0, 0) and f (x) = x2. The density of Xt is g(x, t) = (2πt)−1/2 exp(−x2/2t) and let lt
be the associated measure. We can compute l̇t f in three ways. First, using Stroock’s theorem Equation (37)

l̇t f =
〈

L(1,0,0) f , lt
〉
=
〈1

2
∂2 f
∂x2 , lt

〉
= 〈1, lt〉 = 1. (43)

Second, using l̇t f = d/dt〈 f , lt〉 and the fact that 〈 f , lt〉 = E(X2
t ) = t again gives l̇t f = 1. Thirdly,

differentiating d/dt〈 f , lt〉 through the integral gives

d
dt
〈 f , lt〉 =

∫
R

f (x)
∂g
∂t

(x, t)dx (44)

=
∫
R

1√
2πt

e−x2/2tx2
(

x2

2t2 − 1
2t

)
dx (45)

=
E(X4

t )

2t2 − E(X2
t )

2t
(46)

= 1 (47)

since E(X4
t ) = 3t2 and E(X2

t ) = t.

Example 8 (Gamma process). Let Xt be a gamma process, (Sato 1999, p. 45), Barndorff-Nielsen (2000),
meaning Xt has law lt = Γ(tλ, α) with density αtλ/Γ(tλ)xtλ−1e−αx and Lévy measure
ν(dx) = (λ/x)e−αxdx, γ = σ = 0 on x ≥ 0. We have

E(Xt) =
λt
α

, E(X2
t ) =

λt(λt + 1)
α2 , and Var(Xt) =

λt
α2 . (48)

Notice that ν([0∞)) = ∞ so this example is not a compound Poisson process because it has infinitely many
small jumps. But it is a limit of compound Poisson processes. For f (x) = x2, 〈 f , lt〉 = E(X2

t ) = λt(λt + 1)/α2 so

d
dt
〈 f , lt〉 = 2λ2t + λ

α2 . (49)

On the other hand, using Equation (37) with L(0,ν,0) gives

L(0,ν,0) f (x) =
∫
( f (x + y)− f (x))

λ

y
e−αydy (50)

=
2λx

α
+

λ

α2 , (51)

so l̇t f = 〈L(0,ν,0) f , lt〉 = (2λ2t + λ)/α2, agreeing with Equation (49).

Example 9 (Laplace process). Let Xt be a Laplace process with law lt, (Sato 1999, p. 98), and (Kotz et al. 2001,
p. 47) . X1 has density α exp(−α|x|)/2 and Lévy measure ν(dx) = exp(−α|x|)/|x|dx. Xt can be represented
as the difference of two Γ(t, α) variables. E(Xt) = 0, Var(Xt) = E(X2

t ) = 〈 f , lt〉 = 2t/α2 and hence

d
dt
〈 f , lt〉 = 2

α2 . (52)
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On the other hand

L(0,ν,0) f (x) =
∫
( f (x + y)− f (x))

1
|y| e

−α|y|dy (53)

=
∫
(2xy + y2)

1
|y| e

−α|y|dy (54)

= 2
∫ ∞

0
ye−αydy =

2
α2 (55)

as the first term in the middle equation is odd and hence zero.

6.4. Application to Insurance Risk Models IM1-4 and Asset Risk Model AM1

We now compute the difference between the directions implied by each of IM1-4 and AM1
to quantify the difference between ṁ(1) and k̇(1) in Figures 1 and 2. In order to focus on realistic
insurance loss models we will assume γ = σ = 0 and ν(R) < ∞. Assume the Lévy triple for the
subordinator Z is (0, ρ, 0). Also assume E(C) = 1, Var(C) = c, and that C, X and Z are all independent.

For each model we can consider the time derivative or the volume derivative. There are obvious
symmetries between these two for IM1 and IM3. For IM2 the temporal derivative is the same as the
volumetric derivative of IM3 with C = Z(t).

Theorem 2 gives the direction for IM1 as corresponding to the operator Equation (37) multiplied
by x or t as appropriate. If we are interested in the temporal derivative then losses evolve according
to the process X̃t = Xxt, which has Levy triple (0, xν, 0). Therefore, if μ0 = δz, z ∈ R, then the time
direction is given by the operator

μ̇0 f =
∫

f (z + y)− f (z)(xν)(dy) = x
∫

f (z + y)− f (z)ν(dy). (56)

The temporal derivative of IM2, X(xZ(t)), is more tricky. Let K have distribution ρ/ρ(R),
the severity of Z. For small t, Z(t) = 0 with probability 1 − ρ(R)t and Z(t) = K with probability
ρ(R)t. Thus

μ̇0 f = ρ(R)E( f (z + X(xK))− f (z)) (57)

=
∫
(0,∞)

∫
(0,∞)

f (z + xy)− f (z)νxk(dy)ρ(dk) (58)

where νk is the distribution of X(k). This has the same form as IM1, except the underlying Lévy
measure ν has been replaced with the mixture

ν′(B) =
∫
(0,∞)

νk(B)ρ(dk). (59)

See (Sato 1999, chp. 6, Thm 30.1) for more details and for the case where X or Z includes a
deterministic drift.

For IM3, X(xCt), the direction is the same as for model IM1. This is not a surprise because the
effect of C is to select, once and for all, a random speed along the ray; it does not affect its direction.
By comparison, in model IM2 the “speed” is proceeding by jumps, but again, the direction is fixed.
If E(C) �= 1 then the derivative would be multiplied by E(C).

Finally the volumetric derivative of the asset model is simply

μ̇0 f = X(t)
d f
dx

(z). (60)

Thus the derivative is the same as for a deterministic drift Lévy process. This should be expected
since once X(t) is known it is fixed regardless of volume x. Comparing with the derivatives for IM1-4
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expresses the different directions represented schematically in Figure 2 analytically. The result is also
reasonable in light of the different shapes of tZ and

√
tZ as t → 0, for a random variable Z with mean

and standard deviation equal to 1. For very small t, tZ is essentially the same as a deterministic tE(Z),
whereas

√
tZ has a standard deviation

√
t which is much larger than the mean t. Its coefficient of

variation 1/
√

t → ∞ as t → 0. The relative uncertainty in
√

tZ grows as t → 0 whereas for tZ it
disappears see Figure 3.

Figure 3. Illustration of the difference between tZ and
√

tZ for Z a standard normal as t → 0.

Severity uncertainty is also interesting. Suppose that claim frequency is still λ but that severity is
given by a family of measures ν̃V for a random V. Now, in each state, the Lévy process proceeds along
a random direction defined by V(ω), so the resulting direction is a mixture

μ̇0 =
∫

μ̇0,vdv. (61)

We can interpret these results from the perspective of credibility theory. Credibility is usually
associated with repeated observations of a given insured, so t grows but x is fixed. For models
IM1-4 severity (direction) is implicitly known. For IM2-4 credibility determines information about
the fixed (C) or variable (Z(t)) speed of travel in the given direction. If there is severity uncertainty,
V, then repeated observation resolves the direction of travel, rather than the speed. Obviously both
direction and speed are uncertain in reality.

Actuaries could model directly with a Lévy measure ν and hence avoid the artificial distinction
between frequency and severity as Patrik et al. (1999) suggested. Catastrophe models already
work in this way. Several aspects of actuarial practice could benefit from avoiding the artificial
frequency/severity dichotomy. The dichotomy is artificial in the sense it depends on an arbitrary
choice of one year to determine frequency. Explicitly considering the claim count density of losses by
size range helps clarify the effect of loss trend. In particular, it allows different trend rates by size of loss.
Risk adjustments become more transparent. The theory of risk-adjusted probabilities for compound
Poisson distributions (Delbaen and Haezendonck 1989; Meister 1995), is more straightforward if loss
rate densities are adjusted without the constraint of adjusting a severity curve and frequency separately.
This approach can be used to generate state price densities directly from catastrophe model output.
Finally, the Lévy measure is equivalent to the log of the aggregate distribution, so convolution of
aggregates corresponds to a pointwise addition of Lévy measures, facilitating combining losses from
portfolios with different policy limits. This simplification is clearer when frequency and severity
are not split.
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6.5. Higher Order Identification of the Differences Between Insurance and Asset Models

We now consider whether Figure 1 is an exaggeration by computing the difference between the
two operators k̇ and ṁ acting on test functions. We first extend k slightly by introducing the idea of
a homogeneous approximation.

Let X be an infinitely divisible distribution with associated Lévy process u �→ Xu. As usual, we
consider two coordinate maps R+ → L: the asset return model k : R+ → L, u �→ k(u) = uX1, and
the insurance model m : R+ → L, u �→ m(u) = Xu. These satisfy k(1) = m(1) = X1, but in general
k̇u �= ṁu at u = 1. We use u rather than t as the argument to avoid giving the impression that the index
represents time: remember it represents the combination of time and volume.

Obviously there is no need to restrict k to be an approximation of X1. For general u = u0 we can
construct a homogeneous approximation to m(u0) at u0 by k(u) = (u/u0)Xu0 . The name homogeneous
approximation is apt because k(u0) = m(u0), and k is homogeneous: k(su) = (su/u0)Xu0 = sk(u),
for real s > 0. For a general Lévy process X, Xxt does not have the same distribution as xXt, so m is not

homogeneous. For example if X is stable with index α, 0 < α < 2 then Xxt
d
= x1/αXt (Brownian motion

is stable with α = 2). This section will compare k̇ and ṁ by computing the linear maps corresponding
to k̇ and ṁ and showing they have a different form. We will compute the value of these operators on
various functions to quantify how they differ. In the process we will recover Meyers’ Meyers (2005a)
example of “axiomatic capital” vs. “economic capital” from Section 4.

Suppose the Lévy triple defining Xu is (σ, ν, γ), where σ is the standard deviation of the continuous
term and ν is the Lévy measure. Let L(σ,ν,γ) be the pseudo-differential operator defined by Theorem 2
and let μu be the law of Xu. Using the independent and additive increment properties of an Lévy
process and (Sato 1999, Theorem 31.5) we can write

μ̇u f = 〈L(σ,ν,γ) f , μu〉 = EXu

[
lim
s↓0

s−1EXs( f (Xu + Xs)|Xu)− f (Xu)

]
(62)

where f : R → R is a doubly differentiable, bounded function with bounded derivatives.
Regarding k as a deterministic drift at a random (but determined once and for all) speed Xu0 /u0,

we can apply Equation (62) with γ = Xu0 /u0 and average over Xu0 to get

k̇u f = EXu0
(〈L f , ku〉) = E[Xu0 /u0 f ′(uXu0 /u0)]. (63)

We can see this equation is consistent with Equation (23):∫ u

0
ẋυdυ =

∫ u

0
E[Xu0 /u0 f ′(υXu0 /u0)]dυ (64)

=
∫ u

0

∫
x/u0 f ′(υx/u0)μu0(dx)dυ (65)

=
∫ ∫ ux/u0

0
f ′(y)dyμu0(dx) (66)

=
∫

f (ux/u0)− f (0)μu0(dx) (67)

= E[ f (uXu0 /u0)]− f (0), (68)

where lt is the law of Xt.
Suppose that the Lévy process Xt is a compound Poisson process with jump intensity λ and jump

component distribution J. Suppose the jump distribution has a variance. Then, using Equation (62),
and conditioning on the presence of a jump in time s, which has probability λs, gives

ṁu f = λEXu [E( f (Xu + J))− f (Xu)]. (69)
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Now let f (x) = x. Usually test functions are required to be bounded. We can get around
this by considering min( f , n) for fixed n and letting n → ∞ and only working with relatively
thin tailed distributions—which we do through our assumption the severity J has a variance.
Since E(Xu) = λuE(J), Equations (63) and (69) give k̇u f = E(Xu0 /u0) = λE(J) and ṁu f = λE(J)
respectively so the homogeneous approximation has the same derivative in this case.

If f (x) = x2 then since E(X2
u) = λ2u2E(J)2 + λuE(J2) we get

k̇u f = 2λ2uE(J)2 + 2λuE(J2)/u0. (70)

On the other hand
ṁu f = 2λ2uE(J)2 + λE(J2). (71)

Thus

k̇u0 f = 2λ2u0E(J)2 + 2λE(J2) = 2λE(Xu0)E(J) + 2λE(J2) (72)

ṁu0 f = 2λ2u0E(J)2 + λE(J2) = 2λE(Xu0)E(J) + λE(J2). (73)

The difference k̇u0 f − ṁu0 f = λE(J2) is independent of u0 and so the relative difference decreases
as u0 increases, corresponding to the fact that Xu0 changes shape more slowly as u0 increases. If J has
a second moment, which we assume, then the relative magnitude of the difference depends on the
relative size of E(J2) compared to λE(J)2, i.e., the variance of J offset by the expected claim rate λ.

In general, if f (x) = xn, n ≥ 3 then

k̇u0 f = E(nXn
u0

/u0). (74)

On the other hand

ṁu f = λEXu

[
n

∑
i=1

(
n
i

)
Xn−i

u E(Ji)

]
(75)

= λ
n

∑
i=1

(
n
i

)
E(Xn−i

u )E(Ji). (76)

Let κn(u) be the nth cumulant of Xu and μ′
n(u) = E(Xn

u) be the nth moment.
Recall κn(u) = u

∫
xnν(dx) = λuE(Jn) and the relationship between cumulants and moments

κn = μ′
n −

n−1

∑
k=1

(
n − 1
k − 1

)
κkμ′

n−k. (77)

Combining these facts gives

E(Xn
u) = λuE(Jn) +

n−1

∑
i=1

(
n − 1
i − 1

)
λuE(Ji)E(Xn−i

u ) (78)
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and hence

k̇u0 f − ṁu0 f = E(nXn
u0

/u0)− λ
n

∑
i=1

(
n
i

)
E(Ji)E(Xn−i

u0
)

= λ(nE(Jn) + n
n−1

∑
i=1

(
n − 1
i − 1

)
E(Ji)E(Xn−i

u0
)−

n

∑
i=1

(
n
i

)
E(Ji)E(Xn−i

u0
)) (79)

= λ((n − 1)E(Jn) +
n−1

∑
i=1

(
n
(

n − 1
i − 1

)
−
(

n
i

))
E(Ji)E(Xn−i

u0
))

= λ
n

∑
i=2

(i − 1)
(

n
i

)
E(Ji)E(Xn−i

u0
).

As for n = 2, the E(Jn) term is independent of u0 whereas all the remaining terms grow with u0.
For n = 3 the difference is 3λE(J2)E(X) + 2E(J3).

In the case of the standard deviation risk measure we recover same results as Section 4.
Let ρ(μu) = (〈x2, μu〉 − 〈x, μu〉2)1/2 be the standard deviation risk measure. Using the chain rule,
the derivative of ρ in direction k̇ at u = u0, where m(u0) = k(u0), is

Dρm(u0)
(k̇) =

k̇u0(x2)− 2〈x, xu0〉k̇u0(x)
2ρ(kt0)

(80)

and similarly for direction ṁ. Thus

Dρ(k̇)− Dρ(ṁ) =
λE(J2)

2ρ(mu0)
, (81)

which is the same as the difference between Equations (7) and (10) because here ci = 0, g = E(J2) and,
since we are considering equality at u0 where frequency is x = λu0, and we are differentiating with
respect to u we pick up the additional λ in Equation (10).

This section has shown there are important local differences between the maps k and m. They may
agree at a point, but the agreement is not first order—the two maps define different directions.
Since capital allocation relies on derivatives—the ubiquitous gradient—it is not surprising that
different allocations result. Meyer’s example and the failure of gradient based formulas to add-up for
diversifying Lévy processes are practical manifestations of these differences.

The commonalities we have found between the homogeneous approximation k and the insurance
embedding m are consistent with the findings of Boonen et al. (2017) that although insurance portfolios
are not linearly scalable in exposure the Euler allocation rule can still be used in an insurance context.
Our analysis pinpoints the difference between the two and highlights particular ways it could fail and
could be more material in applications. Specifically, it is more material for smaller portfolios and for
portfolios where the severity component has a high variance: these are exactly the situations where
aggregate losses will be more skewed and will change shape most rapidly.

7. Empirical Analysis

7.1. Overview

Next we test different loss models against US statutory insurance data. Aon Benfield’s original
Insurance Risk Study ABI (2007) was based on the methodology described in this paper and the exhibits
below formed part of its backup. The Risk Study has been continued each year since, see ABI (2012,
2013, 2014, 2015) for the most recent editions. The 2015 Tenth Edition provides a high-level analysis
using regulatory insurance data from 49 countries that together represent over 90% of global P & C
premium. The conclusions reported here hold across a very broad range of geographies and lines
of business.
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The original analysis ABI (2007) focused on the US and used National Association of Insurance
Commissioners (NAIC) data. The NAIC is an umbrella organization for individual US state regulators.
The NAIC statutory annual statement includes an accident year report, called Schedule P, showing ten
years of premium and loss data by major line of business. This data is available by insurance company
and insurance group. The analysis presented here will use data from 1993 to 2004 by line of business.
We will model the data using IM1-4 from Section 5.2. The model fits can differentiate company effects
from accident year pricing cycle effects, and the parameters show considerable variation by line of
business. The fits also capture information about the mixing distribution C.

We will show the data is consistent with two hypotheses:

H1. The asymptotic coefficient of variation or volatility as volume grows is strictly positive.
H2. Time and volume are symmetric in the sense that the coefficient of variation of aggregate losses

for volume x insured for time t only depends on xt.

H1 implies that insurance losses are not volumetrically diversifying. Based on Table 1, H1 is
only consistent with IM3 or IM4. H2 is only consistent with IM1 and IM3. Therefore the data is only
consistent with model IM3 and not consistent with the other models. IM3 implies that diversification
over time and volume follows a symmetric modified square root rule, υ(x, t) =

√
(σ2/xt) + c.

7.2. Isolating the Mixing Distribution

We now show that the mixing distribution C in IM3 and IM4 can be inferred from a large book of
business even though it cannot be directly observed.

Consider an aggregate loss distribution with a C-mixed Poisson frequency distribution,
per Equation (6) or IM3, 4. If the expected claim count is large and if the severity has a variance
then particulars of the severity distribution diversify away in the aggregate. Any severity from a policy
with a limit obviously has a variance. Moreover the variability from the Poisson claim count component
also diversifies away, because the coefficient of variation of a Poisson distribution tends to zero as the
mean increases. Therefore the shape of the normalized aggregate loss distribution, aggregate losses
divided by expected aggregate losses, converges in distribution to the mixing distribution C.

This assertion can be proved using moment generating functions. Let Xn be a sequence of random
variables with distribution functions Fn and let X be another random variable with distribution F.
If Fn(x) → F(x) as n → ∞ for every point of continuity of F then we say Fn converges weakly to F and
that Xn converges in distribution to X.

Convergence in distribution is a relatively weak form of convergence. A stronger form is
convergence in probability, which means for all ε > 0 Pr(|Xn − X| > ε) → 0 as n → ∞. If Xn

converges to X in probability then Xn also converges to X in distribution. The converse is false. For
example, let Xn = Y and X be binomial 0/1 random variables with Pr(Y = 1) = Pr(X = 1) = 1/2.
Then Xn converges to X in distribution. However, since Pr(|X − Y| = 1) = 1/2, Xn does not converge
to X in probability.

Xn converges in distribution to X if the moment generating functions (MGFs) Mn(z) = E(ezXn)

of Xn converge to the MGF of M of X for all z: Mn(z) → M(z) as n → ∞, see (Feller 1971, vol. 2,
chp. XV.3 Theorem 2). We can now prove the following proposition.

Proposition 1. Let N be a C-mixed Poisson distribution with mean n, C with mean 1 and variance c, and let
X be an independent severity with mean x and variance x(1 + γ2). Let An = X1 + · · ·+ XN and a = nx.
Then the normalized loss ratio An/a converges in distribution to C, so

Pr(An/a < α) → Pr(C < α) (82)

as n → ∞. Hence the standard deviation of An/a satisfies

σ(An/a) =

√
c +

x(1 + γ2)

a
→ √

c. (83)
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Proof. The moment generating function MAn(z) of An is

MAn(z) = MC(n(MX(z)− 1)) (84)

where MC and MX are the moment generating functions of C and X. Using Taylor’s expansion we
can write

lim
n→∞

MAn/a(z) = lim
n→∞

MAn(z/a)

= lim
n→∞

MC(n(MX(z/nx)− 1))

= lim
n→∞

MC(n(M′
X(0)z/nx + R(z/nx)))

= lim
n→∞

MC(z + nR(z/nx)))

= MC(z)

for some remainder function R(z) = O(z2). The assumptions on the mean and variance of X guarantee
M′

X(0) = x = E(X) and that the remainder term in Taylor’s expansion is O(z2). The second part
is trivial.

Proposition 1 is equivalent to a classical risk theory result of Lundberg describing the stabilization
in time of portfolios in the collective, see (Bühlmann 1970, sct. 3.3). It also implies that if the frequency
distribution is actually Poisson, so the mixing distribution is C = 1 with probability 1, then the loss
ratio distribution of a very large book will tend to the distribution concentrated at the expected.

Figures 4 and 5 illustrate the proposition, showing how the aggregate distributions change shape
as expected counts increase. In Figure 4, C = 1 and the claim count is Poisson. Here the scaled
distributions get more and more concentrated about the expected value (scaled to 1.0). In Figure 5,
C has a gamma distribution with variance 0.0625 (asymptotic coefficient of variation of 0.25). Now the
scaled aggregate distributions converge to C.

Figure 4. Theoretical distribution of scaled aggregate losses with no parameter or structure uncertainty
and Poisson frequency.

Proposition 1 shows that in many realistic insurance situations severity is irrelevant to the shape
of the distribution of aggregate losses for a large book of business. This is an irritating but important
result. Severity distributions are relatively easy to estimate, particularly when occurrence severity is
limited by policy terms and conditions. Frequency distributions, on the other hand, are much more
difficult to estimate. Proposition 1 shows that the single most important variable for estimating the
shape of A is the mixing distribution C. Problematically, C is never independently observed! The power
of the proposition is to suggest a method for determining C: consider the loss ratio distribution of
large books of business.
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Figure 5. Theoretical distribution envelope of scaled aggregate losses with a gamma mixed Poisson
frequency with mixing variance c = 0.0625.

The mixing distribution C can be thought of as capturing parameter risk or systematic insurance
risks since its effect does not diversify away in a large book of business. In our context C is capturing
a number of non-diversifiable risk elements, including variation the type of insured or coverage
within a given classification, variation in the weather or other macro-risk factor over a long time
frame (for example, the recent rise in distracted driving or changes in workplace injuries driven by the
business cycle) as well as changes in the interpretation of policy coverage. We will estimate expected
losses using premium and so the resulting C also captures inter-company pricing effects, such as
different expense ratios, profit targets and underwriting appetites, as well as insurance pricing cycle
effects (both of which are controlled for in our analysis). Henceforth we will refer to C as capturing
parameter risk rather than calling it the mixing distribution.

7.3. Volumetric Empirics

We use NAIC annual statement data to determine an appropriate distribution for C (or Z(1)),
providing new insight into the exact form of parameter risk. In the absence of empirical information,
mathematical convenience usually reigns and a gamma distribution is used for C; the unconditional
claim count is then a negative binomial. The distribution of C is called the structure function in
credibility theory Bühlmann (1970).

Schedule P in the NAIC annual statement includes a ten accident-year history of gross, ceded
and net premiums and ultimate losses by major line of business. We focus on gross ultimate
losses. The major lines include private passenger auto liability, homeowners, commercial multi-peril,
commercial auto liability, workers compensation, other liability occurrence (premises and operations
liability), other liability claims made (including directors and officers and professional liability but
excluding medical), and medical malpractice claims made. These lines have many distinguishing
characteristics that are subjectively summarized in Table 3 as follows.

• Heterogeneity refers to the level of consistency in terms and conditions and types of insureds
within the line, with high heterogeneity indicating a broad range. The two Other Liability lines are
catch-all classifications including a wide range of insureds and policies.

• Regulation indicates the extent of rate regulation by state insurance departments.
• Limits refers to the typical policy limit. Personal auto liability limits rarely exceed $300,000 per

accident in the US and are characterized as low. Most commercial lines policies have a primary
limit of $1M, possibly with excess liability policies above that. Workers compensation policies do
not have a limit but the benefit levels are statutorily prescribed by each state.

• Cycle is an indication of the extent of the pricing cycle in each line; it is simply split personal (low)
and commercial (high).
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• Cats (i.e., catastrophes) covers the extent to which the line is subject to multi-claimant,
single occurrence catastrophe losses such as hurricanes, earthquakes, mass tort, securities
laddering, terrorism, and so on.

The data is interpreted in the light of these characteristics.

Table 3. Characteristics of Various Lines of Insurance

Insurance Line Heterogeneity Regulation Limits Cycle Cats

Personal Auto Low High Low Low No
Commercial Auto Moderate Moderate Moderate High No
Workers Compensation Moderate High Statutory High Possible
Medical Malpractice Moderate Moderate Moderate High No
Commercial Multi-Peril Moderate Moderate Moderate High Moderate
Other Liability Occurrence High Low High High Yes
Homeowners Multi-Peril Moderate High Low Low High
Other Liability Claims Made High Low High High Possible

In order to apply Proposition 1 we proxy a “large” book as one with more than $100M of premium
in each accident year. Figure 6 shows how the volatility of loss ratio by line varies with premium
size. It is computed by bucketing Schedule P loss ratios by premium size band and computing the
volatilities in each bucket. Each inset chart shows the same data on a log/log scale. The figure shows
three things.

1. The loss processes are not volumetrically diversifying, that is the volatility does not decrease to
zero with volume.

2. Below a range $100M-1B (varying by line) there are material changes in volatility with
premium size.

3. $100M is a reasonable threshold for large, in the sense that there is less change in volatility
beyond $100M.

The second point means that the inhomogeneity in a loss portfolio is very material in the $10–100M
premium range where most companies would try to set profit targets by line or business unit. This is
consistent with Mildenhall (2004).

We now determine C by line by applying Proposition 1. The data consists of observed schedule P
gross ultimate loss ratios λc,y by company c and accident year y = 1993, . . . , 2004. The observation λc,y

is included if company c had gross earned premium ≥ $100M in year y. The data is in the form of an
unbalanced two-way ANOVA table with at most one observation per cell. Let λ.,. denote the average
loss ratio over all companies and accident years, and λc,. (resp. λ.,y) the average loss ratio for company
c over all years (resp. accident year y over all companies). Each average can be computed as a straight
arithmetic average of loss ratios or as a premium-weighted average. With this data we will determine
four different measures of volatility.

Res1. Raw loss ratio volatility across all twelve years of data for all companies. This volatility
includes a pricing cycle effect, captured by accident year, and a company effect.

Res2. Control for the accident year effect λ.,y. This removes the pricing cycle but it also removes some
of the catastrophic loss effect for a year—an issue with the results for homeowners in 2004.

Res3. Control for the company effect λc,.. This removes spurious loss ratio variation caused by
differing expense ratios, distribution costs, profit targets, classes of business, limits, policy size
and so forth.

Res4. Control for both company effect and accident year, i.e., perform an unbalanced two-way
ANOVA with zero or one observation per cell. This can be done additively, modeling the loss
ratio λc,y for company c in year y as

λ̂c,y = λ.,. + (λc,. − λ.,.) + (λ.,y − λ.,.), (85)
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or multiplicatively as
λ̂c,y = λ.,.(λc,./λ.,.)(λ.,y/λ.,.). (86)

The multiplicative approach is generally preferred as it never produces negative fit loss ratios.
The statistical properties of the residual distributions are similar for both forms.

Figure 6. The relationship between raw loss ratio volatility, measured as coefficient of variation of loss
ratios, and premium volume, using data from accident years 1993–2004. Each inset graph plots the
same data on a log/log scale, showing that the volatility continues to decrease materially for premium
volumes in the $100Ms. The total line is distorted by changing mix of business by volume; the largest
companies are dominated by private passenger auto liability which is the lowest volatility line.

Using Proposition 1 we obtain four estimates for the distribution of C from the empirical
distributions of λc,y/λ̂.,., λc,y/λ̂.,y, λc,y/λ̂c,. and λc,y/λ̂c,y for suitably large books of business.
The additive residuals λc,y − λ̂c,y also have a similar distribution (not shown).

Figures 7–9 show analyses of variance for the model described by Equation (85). Because the data
is unbalanced, consisting of at most one observation per cell, it is necessary to perform a more subtle
ANOVA than in the balanced case. We follow the method described in (Ravishanker and Dey 2002,
sct. 9.2.2). The idea is to adjust for one variable first and then to remove the effect of this adjustment
before controlling for the other variable. For example, in the extreme case where there is only one
observation for a given company, that company’s loss ratio is fit exactly with its company effect and
the loss ratio observation should not contribute to the accident year volatility measure. Both the
accident year effect and the company effect are highly statistically significant in all cases, except the
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unadjusted company effect for homeowners and the adjusted company effect for other liability claims
made. The R2 statistics are in the 50–70% range for all lines except homeowners. As discussed above,
the presence of catastrophe losses in 2004 distorts the homeowners results.

Figure 7. Adjusted analysis of variance (ANOVA) for commercial auto, commercial multiperil
and homeowners.

Tukey’s test for interactions in an ANOVA with one observation per cell (Miller and Wichern 1977, sct. 4.11)
does not support an interaction effect for any line at the 5% level. This is consistent with a hypothesis
that all companies participate in the pricing cycle to some extent.
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Figure 8. Adjusted ANOVA for medical malpractice claims made and other liability claims made
and occurrence.

Figure 10 shows the indicated volatilities for commercial auto, commercial multi-peril,
homeowners, other liability occurrence, private passenger auto liability and workers compensation for
the four models Res1-4 and Equation (86). The right hand plot shows the impact of the pricing (accident
year) effect and the firm effect on total volatility. This Figure shows two interesting things. On the left
it gives a ranking of line by volatility of loss ratio from private passenger auto liability, 14% unadjusted
and 8% adjusted, to homeowners and other liability occurrence, 41% and 36% unadjusted and 30% and
23% adjusted, respectively. The right hand plot shows that personal lines have a lower pricing cycle
effect (28% and 32% increase in volatility from pricing) than the commercial lines (mostly over 50%).
This is reasonable given the highly regulated nature of pricing and the lack of underwriter schedule
credits and debits. These results are consistent with the broad classification in Table 3.
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Figure 9. Adjusted ANOVA for private passenger auto liability and workers compensation.

Figure 10. Left plot shows the loss ratio volatility by line for companies writing $100M or more
premium each year based on Schedule P accident year ultimate booked gross loss ratios, from 1993–2004.
The graph shows the effect of adjusting the loss ratio for an accident year pricing effect, a company
effect, and both effects (i.e., Res1-4). The right hand plot shows the differential impact of the pricing
effect and company effect by line. Each bar shows the increase in volatility of the unadjusted loss ratios
compared to the adjusted.

Figures 11–14 show the histograms of normalized loss ratio distributions corresponding to Res1-4
for the same eight lines of business. These give a direct estimate of the distribution of C. There are four
plots shown for each line.

The top left plot shows the distribution of normalized Schedule P accident year ultimate booked
gross loss ratios for companies writing $100M or more premium, for 1993–2004. The distributions
are shown for each of the four models Res1-4. LR indicates the raw model Res1, AY Avg adjusts for
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accident year or pricing cycle effect Res 2, Co Avg adjusts for company effect Res 3, and Mult Both Avg
adjusts for both Res 4, per Equation (86). All residuals are computed using the multiplicative model.

Figure 11. Commercial auto liability (top four plots) and commercial multiperil volatility (bottom

four plots). Note 9/11 loss effect in the lower-left plot. See text for a description of the plots.

The top right hand plot shows five parametric distribution fits to the raw residuals, Res1.
The distributions are described in Table 4. The shifted lognormal distribution has three parameters
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and so would be expected to fit better. The raw residuals, Res1, are typically more skewed than Res4
and do not have the same peaked shape. The commonly-assumed gamma distribution fit is shown in
bold grey; the adequacy of its fit varies from line to line.

Figure 12. Homeowners (top four plots) and medical malpractice claims made volatility (bottom four

plots). Note the 2004 homowners catastrophe losses. See text for a description of the plots.
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Figure 13. Other liability claims made (top four plots) and occurrence volatility (bottom four plots).
See text for a description of the plots.
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Figure 14. Private passenger auto liability (top four plots) and workers compensation volatility
(bottom four plots). Note vertical scale on private passenger auto loss ratios and the visibly higher
volatility of premium than loss in the lower left hand plot. See text for a description of the plots.
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Table 4. Summary of distributions fit to C in Figures 11–14.

Abbreviation Parameters Distribution Fitting Method

Wald 2 Wald (inverse Gaussian) Maximum likelihood
EV 2 Frechet-Tippet extreme value Method of moments

Gamma 2 Gamma Method of moments
LN 2 Lognormal Maximum likelihood

SLN 3 Shifted lognormal Method of moments

The lower right hand plot shows the residuals adjusted for both pricing cycle and company effects,
Res4, and it includes a maximum likelihood Laplace fit to the multiplicative model Equation (86).
This plot strongly supports the choice of a Laplace distribution for C in the adjusted case. This is a
very unexpected result as the Laplace is symmetric and leptokurtic (peaked). The Laplace distribution
has the same relationship to the absolute value difference that the normal distribution has to squared
difference; median replaces mean. One could speculate that a possible explanation for the Laplace
is the tendency of insurance company management to discount extreme outcomes and take a more
median than mean view of losses. The Laplace can be represented as a subordinated Brownian
motion, introducing operational time as in IM2 and IM4. The subordinator has a gamma distribution.
The Laplace is also infinitely divisible and its Lévy measure has density ν(x) = |x|−1e−|x|/s explored
in Example 13. See Kotz et al. (2001) for a comprehensive survey of the Laplace distribution.

The lower left hand plot shows the premium and loss volume by accident year. It shows the effect
of the pricing cycle and the market hardening since 2001 in all lines.

The analysis in this section assumes t = 1. Therefore it is impossible to differentiate models IM2-4.
However, the data shows that losses are not volumetrically diversifying, Figure 6. The data suggests
that C (or Z(1)) has a right-skewed distribution when it includes a company and pricing cycle effect
and strongly suggests a Laplace distribution when adjusted for company and pricing cycle effects.

Subsequent analyses, conducted after 2006 when the bulk of this paper was written, confirm the
parameter estimates shown in Figure 10 are reasonably stable over time. Volatility for liability lines
has increased since 2004 driven by loss development from the soft market years that has dispersed loss
ratios further as they emerged to ultimate, but the relative ordering is unchanged. Interestingly the
Global Financial Crisis had very little impact on insurance volatility other than for Financial Guarantee.

Table 5 and (ABI 2010, p. 6) show a comparison of Solvency II premium risk factors with the risk
factors computed here. Finally, Table 6 and (ABI 2012, p. 6) show a comparison of the individual line
of business parameters based on data 1992–2011 vs. the original study 1992–2004. See (ABI 2015, p. 52)
for a further update of the underwriting cycle effect on volatility by line.

Table 5. Comparison of risk factors with Solvency II premium risk factors.

Dimension Actuarial Geometry Solvency II

Time horizon to ultimate one year
Catastrophe risk included excluded
Size of company large average

Table 6. Coefficient of variation of gross loss ratio, Source: Aon Benfield Insurance Risk Study,
7th Edition, used with permission.

Line 1st Edition 7th Edition Change

Private Passenger Auto 14% 14% 0%
Commercial Auto 24% 24% 0%
Workers’ Compensation 26% 27% 1%
Commercial Multi Peril 32% 34% 2%
Medical Malpractice: Claims-Made 33% 42% 9%
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Table 6. Cont.

Line 1st Edition 7th Edition Change

Medical Malpractice: Occurrence 35% 35% 0%
Other Liability: Occurrence 36% 38% 2%
Special Liability 39% 39% 0%
Other Liability: Claims-Made 39% 41% 2%
Reinsurance Liability 42% 67% 25%
Products Liability: Occurrence 43% 47% 4%
International 45% 72% 27%
Homeowners 47% 48% 1%
Reinsurance: Property 65% 85% 20%
Reinsurance: Financial 81% 93% 12%
Products Liability: Claims-Made 102% 100% −2%

7.4. Temporal Empirics

We now investigate the behavior of the coefficient of variation of a book with volume x insured
for t years, υ(x, t) for different values of t. The analysis is complicated by the absence of long-term,
stable observations. Multi-year observations include strong pricing cycle effects, results from different
companies, different terms and conditions (for example the change from occurrence to claims made in
several lines), and the occurrence of infrequent shock or catastrophe losses. Moreover, management
actions, including reserve setting and line of business policy form and pricing decisions, will affect
observed volatility.

Reviewing Table 1, and comparing with Figure 6, shows IM2-4 are consistent with the data
analyzed so far. The difference between IM2 and IM4 compared to IM3 is the presence of a separate
time effect in υ(x, t). Both models IM2 and IM4 should show a lower volatility from a given volume
insurance when that insurance comes from multiple years, whereas model IM3 will not. This suggests
a method to differentiate IM2/4 from IM3. First, compute υ(x, 1), from the data underling Figure 6.
Then combine two years of premium and losses, from the same company and line, and recompute
volatilities. This computes υ(x/2, 2)—total volume is still x but it comes from two different years.
Similarly, combining 4, 6 or 12 years of data (divisors of the total 12 years of data available) gives
estimates of υ(x/4, 4), υ(x/6, 6), and υ(x/12, 12). Normalizing the data to a constant loss ratio across
accident years prior to performing the analysis will remove potentially distorting pricing-cycle effects.

Figure 15 shows the results of performing this analysis for private passenger auto liability.
Private passenger auto liability is used because it has very low inherent process risk and low parameter
risk, and so provides the best opportunity for the delicate features we are analyzing to emerge. In the
figure, the second column shows υ(x, 1) and the last four show υ(x/t, t) for t = 2, 4, 6, 12. The average
volume in each band is shown as average premium in the first column. Below the data we show the
averages and standard deviations of υ for broader volume bands. Clearly the differences in means
are insignificant relative to the standard deviations, and so a crude analysis of variance would not
reject the hypothesis that υ(x/t, t) is independent of t. This data implies that models IM2 and IM4 do
not provide a good fit to the data—unless τ is very small. However, if τ is small then IM2 and IM4
degenerate to IM1, which has already been rejected since it is volumetrically diversifying.
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Figure 15. Coefficient of variation of loss ratio by premium volume for private passenger auto liability,
computed using bucketed xt for t = 1, 2, 4, 6, 12.

Finally, Figures 16 and 17 provide a graphical representation of the same data for homeowners,
private passenger auto, commercial auto, workers’ compensation, commercial multi-peril and other
liability occurrence (other liability claims made and medical malpractice lack the necessary volume).
The left hand plot shows the same data as Figure 6 on a log/linear scale and a fit of υ(x, t) by√

(σ2/xt) + c. In the fit, c is estimated from the observed asymptotic volatility and σ is estimated
using minimum squared distance. The right hand plot overlays υ(x/t, t) for t = 2, 4, 6, 12 using the
method described above. Thus the private passenger auto liability plot shows the data in Figure 15.
These plots are consistent with the hypothesis that υ(x/t, t) is independent of t as there is no clear
trend with t. (The case t = 12 is subject to higher estimation error owing to the lower number
of observations.)

We conclude that of the models IM1-4 and AM1 only model IM2 of has volumetric and temporal
properties consistent with the data in the NAIC annual statement database.
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Figure 16. Fit of

√
σ2

xt + c to volatility by volume, xt, for homeowners, private passenger auto and

commercial auto. Left hand plot shows data based on a single year t = 1; right hand plot shows the
same data for t = 1, 2, 4, 6, 12.

53

Bo
ok
s

M
DP
I



Risks 2017, 5, 31

Figure 17. Fit of

√
σ2

xt + c to volatility by volume, xt, for workers compensation, commercial multiperil

and other liability occurrence. Left hand plot shows data based on a single year t = 1; right hand plot

shows the same data for t = 1, 2, 4, 6, 12.

8. Conclusions

The difference between asset geometry and actuarial geometry reflects a fundamental difference
between an individual security, or asset, and a line of insurance. A line is analogous to a mutual
fund specializing in an asset class and not to an individual asset. The choice of coordinate used to
differentiate risk measures must reflect these differences.

We have provided an introduction to the actuarial use of Lévy processes to model aggregate
losses. The Lévy process model reflects the realities of insurance: it is curved in both the volume and
time dimensions. Asset returns, in contrast, are volumetrically flat. We have clarified the notion of a
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“direction” in the space of risks and used it to explain two different allocation results derived using the
gradient of a risk measure.

US NAIC annual statement data is used to demonstrate that insurance liabilities do not
diversify volumetrically or temporally. We reviewed four models of aggregate losses based on
Lévy processes—models with a long risk-theoretic pedigree, it should be noted—and showed that
only model IM2 is consistent with the NAIC data. We also show how parameter risk can be
explicitly quantified at a distributional level even though it is unobservable. Volume-related parameter
risk, adjusted for company and pricing cycle effects, is shown to have a Laplace distribution—a
surprising result.

In conclusion, this paper is a call-to-arms. Finance now provides a theoretical justification for
pricing company-specific risk. Risk theory provides a rigorous approach to evaluating and attributing
risk to line using risk measure gradients. Regulation and Enterprise Risk Management, both of which
depend crucially on an accurate quantification of aggregate loss distributions, demand accurate and
realistic modeling. It is time to satisfy that demand with a fully data-grounded model for losses,
including appropriate parameter risk.

Conflicts of Interest: The author declares no conflict of interest.
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used is based on the balance sheet of a representative stylized company. For each line of business in
that company, allocations are calculated for the one-year risk with dependencies based on correlations
given by the Swiss Solvency Test. Two different approaches for dealing with parameter uncertainty are
discussed and simulation algorithms based on (pseudo-marginal) Sequential Monte Carlo algorithms
are described and their efficiency is analysed.

Keywords: capital allocation; premium and reserve risk; Solvency Capital Requirement (SCR);
Sequential Monte Carlo (SMC); Swiss Solvency Test (SST)

1. Introduction

Due to the new risk based solvency regulations (such as the Swiss Solvency Test FINMA (2007)
and Solvency II European Comission (2009)), insurance companies must perform two core calculations.
The first one involves computing and setting aside the risk capital to ensure the company’s solvency
and financial stability, and the second one is related to the capital allocation exercise. This exercise is a
process of splitting the (economic or regulatory) capital amongst its various constituents, which could
be different lines of business (LoBs), types of exposures, territories or even individual products in
a portfolio of insurance policies. One of the reasons for performing such an exercise is to utilize the
results for a risk-reward management tool to analyse profitability. The amount of capital (or risk)
allocated to each LoB, for example, may assist the central management’s decision to further invest in
or discontinue a business line.

In contrast to the quantitative risk assessment, where there is an unanimous view shared by regulators
world-wide that it should be performed through the use of risk measures, such as the Value at Risk (VaR)
or Expected Shortfall (ES), there is no consensus on how to perform capital allocation to sub-units. In this
work we follow the Euler allocation principle (see, e.g., Tasche (1999) and (McNeil et al. 2010, sct. 6.3)),
which is briefly revised in the next section. For other allocation principles we refer the reader to
Dhaene et al. (2012).
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Under the Euler principle the allocation for each one of the portfolio’s constituents can
be calculated through an expectation conditional on a rare event. Even though, in general,
these expectations are not available in closed form, some exceptions exist, such as the multivariate
Gaussian model, first discussed in this context in Panjer (2001) and extended to the case of multivariate
elliptical distributions in Landsman and Valdez (2003) and Dhaene et al. (2008); the multivariate
gamma model of Furman and Landsman (2005); the combination of the Farlie-Gumbel-Morgenstern
(FGM) copula and (mixtures of) exponential marginals from Bargès et al. (2009) or (mixtures of) Erlang
marginals Cossette et al. (2013); and the multivariate Pareto-II from Asimit et al. (2013).

In this work we develop algorithms to calculate the marginal allocations for a generic model,
which, invariably, leads to numerical approximations. Although simple Monte Carlo schemes (such
as rejection sampling or importance sampling) are flexible enough to be used for a generic model,
they can be shown to be computationally highly inefficient, as the majority of the samples do not
satisfy the necessary conditioning event (which is a rare event). We build upon ideas developed in
Targino et al. (2015) and propose an algorithm based on methods from Bayesian Statistics, namely
a combination of Markov Chain Monte Carlo (for parameter estimation) and (pseudo-marginal)
Sequential Monte Carlo (SMC) for the capital allocation.

As a side result of the allocation algorithm, we are able to efficiently compute both the company’s
overall Value at Risk (VaR) and also its Expected Shortfall (ES), (partially) addressing one of the main
concerns of Embrechts et al. (2014): For High Confidence Levels, e.g., 95% and beyond, the “statistical
quantity” VaR Can only Be Estimated with Considerable Statistical, as well as Model Uncertainty.
Even though the issue of model uncertainty is not resolved, our algorithm can, at least, help to
reduce the ‘̀statistical uncertainty”, measured by a variance reduction factor taking as basis a standard
Monte Carlo simulation with comparable computational cost.

The proposed allocation procedure is described for a fictitious general insurance company with
9 LoBs (see Table 1 and Section 8). Further, within each LoB we also allocate the capital to the one-year
reserve risk (due to claims from previous years) and the one-year premium risk.

Table 1. Initial synthetic balance sheet.

LoB Reserves Premium

1 MTPL 2391.64 503.14
2 Motor Hull 99.08 573.26
3 Property 449.26 748.76
4 Liability 870.27 299.73
5 Workers Compensation (UVG) 1104.66 338.63
6 Commercial Health 271.54 254.21
7 Private Health 7.32 7.20
8 Credit and Surety 49.50 34.64
9 Others 67.64 46.28
Total 5310.92 2805.87

In order to study the premium risk we follow the framework prescribed by the Swiss Solvency
Test (SST) in (FINMA 2007, sct. 4.4). In this technical document, given company-specific quantities,
the distribution of the premium risk is deterministically defined and no parameter uncertainty is
involved. For the reserve risk, we use a fully Bayesian version of the gamma-gamma chain ladder
model, analysed in Peters et al. (2017). As this model is described via a set of unknown parameters,
two different approaches to capital allocation are proposed: a marginalized one, where the unknown
parameters are marginalized prior to the allocation process and a conditional one, which is performed
conditional on the unknown parameters and the parameter is integrated out numerically ex-poste.

The remainder of this paper is organized as follows. Section 2 formally describes marginal risk
contributions (allocations) under the marginalized and conditional models. Section 3 reviews concepts
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of SMC algorithms and how they can be used to compute the quantities described in Section 2. We
set the notation used for claims reserving in Section 4, before formally defining the models for the
reserve risk (Section 5) and the premium risk (Section 6); these are merged together through a copula
in Section 7. Sections 8 and 9 provide details of the synthetic data used, the inferential procedure for
the unknown parameters and the implementation of the SMC algorithms. Results and conclusions are
presented, respectively, in Sections 10 and 11.

2. Risk Allocation for the Swiss Solvency Test

In this section we follow the Euler allocation principle (see, e.g., Tasche (1999) and (McNeil et al. 2010,
sct. 6.3)) and discuss how the risk capital that is held by an insurance company can be split into different
risk triggers. As stochastic models for these risks involve a set of unknown parameters, we present an
allocation procedure for a marginalized model (which arises when the parameter uncertainty is resolved
beforehand) and a conditional model (which is still dependent on unknown parameters).

Although we postpone the construction of the specific claims payments model to Section 5 we
now assume its behaviour is given by a Bayesian model depending on a generic parameter vector
θ, for which a prior distribution is assigned. Probabilistic statements, such as the calculation of the
risks allocated to each trigger, have to be made based on the available data, described by the filtration
{F (t)}t and formally defined in Section 4. This requirement implies that the uncertainty on the
parameter values needs to be integrated out, in a process that must typically be performed numerically.

Therefore, to calculate the risk allocations we approximate the stochastic behaviour of functions
of future observations, with the functions defined in Section 4. For the moment, let us denote by Z
a multivariate function of F (t + 1), the future data, and θ the vector of model parameters. On the
one hand, in the conditional model, we approximate the distribution of the components of the vector
Z | θ, F (t). On the other hand, in the marginalized model, the approximation is performed after the
parameter uncertainty has been integrated out (i.e., marginalized). In this later framework, we
approximate the distribution of the components of Z | F (t), where the random vector Z is defined as
Z = E[Z | F (t)], with expectation taken with respect to θ | F (t). Note that, given F (t), Z is a random
variable, as it depends on future information, i.e., F (t + 1). Both in the conditional and in the
marginalized models we use moment matching and log-normal distributions for the approximations
and couple the distributions via a Gaussian copula.

Suppressing the dependence on the available information, F (t), these two models (marginalized
and conditional) are defined through their probability density functions (p.d.f.’s), fZ(z) and fZ|θ(z | θ),
respectively, which are both assumed to be combinations of log-normal distributions and a gaussian
copula. For the conditional model, as we work in a Bayesian framework, the unknown parameter
vector θ has a (posterior) distribution with p.d.f. fθ(θ). This is, then, combined with the likelihood
fZ|θ(z | θ) to construct fZ(z), the density used for inference under the conditional model.

For the methodology discussed in this work, the important features of these two models are that
fZ(z) is known in closed form, whilst fZ(z) is not.

In summary, the two models presented in Sections 4 to 7 are defined as

Marginalized model: Z ∼ fZ(z); (1)

Conditional model: Z ∼ fZ(z) =
∫

fZ | θ(z | θ) fθ(θ)dθ. (2)

Remark 1. As the “original” model for claims payments is a Bayesian model, we use the Bayesian nomenclature
for both the marginalized and the conditional model. For the former, the Bayesian structure of prior and likelihood
is hidden in Equation (1), as the parameter θ has already been marginalized (with respect to its posterior
distribution). For the later, we explicitly make use of the posterior distribution of θ in Equation (2). Another
strategy, followed in Wüthrich (2015), is to use an “empirical Bayes” approach, fixing the value of the unknown
parameter vector θ, for example at its maximum likelihood estimator (MLE).
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Under the marginalized model we define S = ∑d
i=1 Zi as the company’s overall risk. The SST

requires the total capital to be calculated as the 99% ES of S, given by

ρ(S) = E[S | S ≥ VaR99%
(
S)]. (3)

In turn, the Euler allocation principle states that the contribution of each component Zi to the
total capital in Equation (3) is given by

ρi = E[Zi | S ≥ VaR99%(S)], ∀i = 1, . . . , d. (4)

The allocations for the conditional model follows the same structure, with Zi and S replaced,
respectively, by Zi and S in Equation (4) and reads as

ρi = E[Zi | S ≥ VaR99%(S)], ∀i = 1, . . . , d, (5)

with S = ∑d
i=1 Zi. For the models discussed below the density of fZ(z) is not known in closed form,

adding one more layer of complexity to the proposed method.

Remark 2. Observe that the log-normal approximations are done at different stages in the marginalized and the
conditional models. Therefore, we expect that the results will differ.

Although computing ρi and ρi is a static problem, for the sake of transforming the Monte Carlo
estimation into an efficient computational framework, we embed the calculation of these quantities
into a sequential procedure, where at each step we solve a simpler problem, through a relaxation of
the rare-event conditioning constraint to a sequence of less extreme rare-events. In the next section we
discuss the methodological Monte Carlo approach used to perform this task. The reader familiar with
the concepts of Sequential Monte Carlo methods may skip Section 3.1.

3. SMC Samplers and Capital Allocation

For the marginalized and conditional models presented in Sections 4 to 7 the marginal contributions
in Equations (4)) and (5) cannot be calculated in analytic form for a generic model, so a simulation
technique needs to be employed. In the sequel we provide a brief overview of a class of Monte Carlo
methods, named Sequential Monte Carlo (SMC). For a recent survey in the topic, with focus on economics,
finance and insurance applications the reader is referred to Creal (2012) and Del Moral et al. (2013).
For a generic introductory review we refer the reader to Doucet and Johansen (2009).

3.1. A Brief Introduction to SMC Methods

The class of Sequential Monte Carlo (SMC) algorithms, also called Particle Filters, has its roots
in the fields of engineering, probability and statistics where it was primarily used for sampling
from a sequence of distributions (see, e.g., Gordon et al. (1993) and Del Moral (1996)). In the
context of state-space models, SMC methods can be used to sequentially approximate the filtering
distributions of non-linear and non-Gaussian state space models, solving the same problem as the
Kalman filter—a technique with a long-standing tradition in actuarial mathematics (see, e.g., De Jong
and Zehnwirth (1983) and Verrall (1989)).

The general context of a standard SMC method is that one wants to approximate a (often naturally
occurring) sequence of p.d.f.’s

{
π̃t
}

t≥1 with the support of each function in this sequence is given by

supp
(
π̃t
)
= Rd × . . . ×Rd = Rd×t, for t ≥ 1, where t can be any artificial ordering of the sequence

that is problem specific. We assume that π̃t is (only) known up to a normalizing constant, and we write

π̃t(z1:t) = Z−1
t γ̃t(z1:t),

where z1:t = (z1, . . . , zt) ∈ Rd×t.
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3.1.1. SMC Algorithm

Procedurally, we initialize the algorithm sampling a set of N independent particles (as the samples
are denoted in the literature) from the distribution π̃1 and set normalized weights to W(j)

1 = 1/N, for
all j = 1, . . . , N. If it is not possible to sample directly from π̃1, one should sample from an importance
distribution q̃1 and calculate its weights accordingly. Then the particles are sequentially propagated
through each distribution π̃t in the sequence via three main processes: mutation, correction (incremental
importance weighting) and resampling. In the first step (mutation) we propagate particles from time
t − 1 to time t, in the second one (correction) we calculate the new importance weights of the particles.

Without resampling, this method can be seen as a sequence of importance sampling (IS) steps,
where the target distribution at each step t is γ̃t (the unnormalized version of π̃t) and the importance
distribution is given by

q̃t(z1:t) = q̃1(z1)
t

∏
j=2

Kj(zj−1, zj), (6)

where Kj(zj−1, · ) is the mechanism used to propagate particles from time t − 1 to t, known as the
mutation kernel. Therefore, after the mutation step each particle j = 1, . . . , N has (unnormalized)
importance weight given by

w(j)
t =

γ̃t(z
(j)
1:t)

q̃t(z
(j)
1:t)

= w(j)
t−1

γ̃t(z
(j)
1:t)

γ̃t−1(z
(j)
1:t−1)Kt(z

(j)
t−1, z(j)

t )︸ ︷︷ ︸
incremental weight: α

(j)
t

= w(j)
t−1α

(j)
t . (7)

These importance weights can be normalized to create a set of (normalized) weighted particles{
z(j)

1:t , W(j)
t
}N

j=1, with normalized weights W(j)
t =

w(j)
t

∑N
k=1 w(k)

t

. In this case, from the Law of Large Numbers,
N

∑
j=1

W(j)
t ϕ(z(j)

1:t) −→ Eπ̃t [ϕ(Z1:t)] =
∫
Rd×t

ϕ(z1:t)π̃t(z1:t)dz1:t, (8)

π̃t–almost surely as N → ∞, for any test function ϕ such that the expectation of ϕ under π̃t exists (see
Geweke (1989)).

Remark 3. The reader should note that the knowledge of π̃t up to a normalizing constant is sufficient for the
implementation of a generic SMC algorithm, since the normalized weights W(j)

t are the same for both π̃t and γ̃t.

In simple implementations of the SMC algorithm (such as the one discussed above), when the
algorithmic time t increases, the estimates in Equation (8) become, eventually, effectively a function
of one sample point {z(j)

t , W(j)
t }; what is observed, in practice, is that for some particle j, W(j)

t ≈ 1
and for all the others the normalized weights are negligible. This degeneracy is measured using the
Effective Sample Size (ESS) defined in Liu and Chen (1995) and Liu and Chen (1998) as

ESSt =

[
N

∑
j=1

(W(j)
t )2

]−1

∈ [1, N].

This quantity has the interpretation that ESSt is maximized when {W(j)
t , z(j)

t }N
j=1 forms a uniform

distribution on {z(j)
t }N

j=1 and minimized when W(j)
t = 1 for some j. One may also use the Gini index

or the entropy as a degeneracy measure, as discussed, for example, in Martino et al. (2017).
One way to tackle this degeneracy problem is to unbiasedly resample the whole set of weighted

particles, for example, choosing (with replacement) N samples from the system where each z(j)
t is

selected with probability weight W(j)
t . In our algorithms we propose to resample the whole set of

weighted samples whenever it is “too degenerate” and our degeneracy threshold is ESSt < N/2. Many
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different resampling schemes have been suggested in the literature and for a comparison between
them we refer the reader to Douc and Cappé (2005) and Gandy and Lau (2015).

Although the resample step alleviates the degeneracy problem, its successive reapplication at
each stage of the sampler produces the so-called sample impoverishment, where the number of distinct
particles is extremely small. In Gilks and Berzuini (2001) it was proposed to add a “move” step with any
kernel such that the target distribution is invariant with respect to it in order to rejuvenate the system.
This kernel may be, for example, as a Markov Chain Monte Carlo (MCMC) kernel, which would
begin with equally chosen weighted samples from the target distribution and then perturb them under
a single step of a Metropolis Hastings acceptance-rejection mechanism. Note that in this case the
samples start exactly in the target distribution’s stationary regime. Therefore, a single step of the
Metropolis-Hastings accept-reject mutation is strictly valid and no burn-in is required.

More precisely, we can apply any kernel M(ẑ(j)
1:t , z(j)

1:t) that leaves π̃t invariant to move the sample

ẑ(j)
1:t to z(j)

1:t (the hat denotes a sample after the resample step but before the “move” step), i.e.,

π̃t(z1:t) =
∫

M(ẑ1:t, z1:t)π̃t(ẑ1:t)dẑ1:t.

3.1.2. SMC Samplers

Although very general, the SMC algorithm presented above, in principle, requires the sequence
of p.d.f.’s to have an increasing support. However it has been shown in Peters (2005) and
Del Moral et al. (2006) that these algorithms can be applied to sequences of p.d.f.’s defined on the same
support, leading to the so-called SMC sampler algorithm discussed below. This development is central
for the insurance applications explored in this paper.

Given the sequence of densities {πt}t≥1 (and its unnormalized version, {γt}t≥1), where each
element is defined over the same support, say Rd, we create another sequence, defined on Rd×t, the
path space

π̃t(z1:t) ∝ γ̃t(z1:t) = γt(zt)
t−1

∏
s=1

Ls(zs+1, zs), (9)

which, for any Markov kernel Ls(zs+1, zs) is a density with πt(zt) as marginal (which can be seen by
integrating out z1:t−1). Note that, in Equation (9) time runs backwards, from t to 1. For completeness
we define π̃1(z1:1) = π1(z1) and γ̃1(z1:1) = γ1(z1).

If q1 ≡ q̃1 is an IS density targeting π1 ≡ π̃1 then, see Equation (6),

q̃t(z1:t) = q1(z1)
t

∏
j=2

Kj(zj−1, zj),

is defined, for Markov kernels Kj(zj−1, zj), as an IS density targeting π̃t(z1:t). For t = 1 we define
K1 ≡ 1.

As in the SMC algorithm, to generate a set of weighted samples {z(j)
t , W(j)

t }M
j=1 from πt(zt) one

can use a sequence of IS steps on the path space where the unnormalized importance weights are,
at each time step t ≥ 1, given by, see Equation (7),

w(j)
t =

γ̃t(z
(j)
1:t)

q̃t(z
(j)
1:t)

= w(j)
t−1

γt(z
(j)
t )Lt−1(z

(j)
t , z(j)

t−1)

γt−1(z
(j)
t−1)Kt(z

(j)
t−1, z(j)

t )
= w(j)

t−1α
(j)
t , (10)

where w(j)
0 ≡ 1, for all j = 1, . . . , N. The normalized weights are then computed as

W(j)
t =

w(j)
t

∑N
k=1 w(k)

t

.

The pseudo-code of the SMC sampler procedure just described is found in Algorithm 1.
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Algorithm 1: SMC sampler algorithm.

Inputs: (Forward) mutation kernels
{

Kt(zt−1, zt)
}T

t=2, (artificial) backward kernels{
Lt−1(zt, zt−1)

}T
t=2, MCMC move kernel {Mt(ẑt, zt)}T

t=1;
for j = 1, . . . , N do

Sample i.i.d. z(j)
1 ∼ π1( · );

Set w(j)
1 = 1;

Set W(j)
1 = 1

N ;
end

for t = 2, . . . , T do

for j = 1, . . . , N do

Sample z(j)
t ∼ Kt(z

(j)
t−1, · );

Calculate the weights w(j)
t = w(j)

t−1
γt(z

(j)
t )Lt−1(z

(j)
t , z(j)

t−1)

γt−1(z
(j)
t−1)Kt(z

(j)
t−1, z(j)

t )
= w(j)

t−1α
(j)
t ;

end

Calculate the normalized weights W(j)
t =

w(j)
t

∑N
j=1 w(j)

t

;

if ESSt < N/2 then

for j = 1, . . . , N do

Resample ẑ(j)
t , i.i.d from {z(k)t , W(k)

t }N
k=1;

Sample z(j)
t ∼ Mt(ẑ

(j)
t , · ) ;

Set W(j)
t = 1/N ;

end

end

end

Result: Weighted random samples
{

z(j)
t , W(j)

t
}N

j=1 approximating πt, for all t = 1, . . . , T.

The introduction of the sequence of kernels {Lt−1}T
t=2 creates a new degree of freedom in the

design of SMC samplers compared with the usual SMC algorithms, where only the forward mutation
kernels {Kt}T

t=2 should be designed. As discussed in Peters (2005) and Del Moral et al. (2006) if
one wants to minimize the variance of the importance weights one strategy is to use the following
approximation to the optimal backward kernel that minimizes the variance of the incremental weights
(which cannot be computed in practice and must be approximated)

Lt(zt+1, zt) =
γt(zt)Kt+1(zt, zt+1)

1
N ∑N

j=1 w(j)
t Kt+1(z

(j)
t , zt+1)

, (11)

which leads to incremental weights

α
(j)
t =

γt(z
(j)
t )

1
N ∑N

k=1 w(k)
t−1Kt(z

(k)
t−1, z(j)

t )
. (12)

With the methodological tools provided by the SMC samplers we now proceed on how to adapt
these methods to the allocation of risks under our generic marginalized and conditional models.
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3.2. Allocations for the Marginalized Model

For a generic random vector Z = (Z1, . . . , Zd) with known marginal densities and distribution
functions, respectively fZi (zi) and FZi (zi), and copula density c(u1, . . . , ud) on [0, 1]d, due to Sklar’s
theorem (see Sklar (1959) and (McNeil et al. 2010, chp. 5)) the joint density of Z can be written as

fZ(z) = c(u)
d

∏
i=1

fZi (zi),

where u = (u1, . . . , ud) ∈ [0, 1]d and ui = FZi (zi). In order to approximate the marginal risk
contributions ρi from Equation (4) we can use samples from the distribution

π(z) = fZ(z | z ∈ GZ) =
fZ(z)1GZ (z)
P[Z ∈ GZ]

, (13)

where the set GZ = GZ(B) is defined, for B = VaR99%(S), as

GZ =

{
z ∈ Rd :

d

∑
i=1

zi ≥ B

}
, (14)

and the indicator function 1GZ (z) is one when z ∈ GZ and zero otherwise. It should be noted that since
the boundary B in Equation (14) is given by VaR99%(S) with S = ∑d

i=1 Zi we have P[Z ∈ GZ] = 0.01,
see discussion on this point in Targino et al. (2015).

3.2.1. Reaching a Rare Event Using Intermediate Steps

Instead of directly targeting the conditional distribution (Z1, . . . , Zd) | {S ≥ VaR99%(S)} the
idea of the SMC sampler of Algorithm 1 is to sequentially sample from intermediate distributions
with conditioning events that become rarer until the point we reach the distribution of interest
(see Equation (14)). The benefit of such an approach is that the samples (particles) from a previous
step (with a less rare conditioning event) are “guided” to the next algorithmic step (when targeting
a rarer conditioning set) and, if carefully designed, no samples are wasted on the way to the target
distribution, in the sense that no samples are incrementally weighted with a strictly zero weight. This
“herds” the samples into the target sampling region of interest.

In order to sample from the target distribution defined in Equation (13) we use a sequence of
intermediate distributions {πt}T

t=1, such that πT ≡ π and

πt(z) = fZ(z | z ∈ GZt), (15)

with GZt = GZt(Bt) given by

GZt =

{
z ∈ Rd :

d

∑
i=1

zi ≥ Bt

}
.

Remark 4. Differently from Targino et al. (2015), in order to make the algorithm more easily comparable with
the one used for the conditional model, we do not transform the original random variable Z through its marginal
distribution functions. Therefore, instead of sampling from the conditional copula we sample from the conditional
joint distribution of Z.

The thresholds B1, . . . , BT−1 are chosen in order to have increasingly rarer conditioning events as
a function of t, starting from the unconditional joint density. In other words, {Bt}T

t=1 needs to satisfy
0 = B1 < . . . < BT−1 < BT = B = VaR99%(S). Note that the choice B1 = 0 assumes S > 0, P-a.s.,
otherwise B1 = −∞. Depending on the choice of the thresholds {Bt}T−1

t=1 it may be the case that the
densities defined in Equation (15) are only known up to a normalizing constant so, from now on, we
work with γt, the unnormalized version of πt:
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πt(z) ∝ γt(z) = fZ(z)1GZt
(z). (16)

If, at algorithmic time t, we have a set of N weighted samples {W(j)
t , z(j)

t }N
j=1 from πt, with

z(j)
t = (z(j)

1,t , . . . , z(j)
d,t) then we construct the following empirical approximation:

E[Zi | S ≥ Bt] ≈
N

∑
j=1

W(j)
t z(j)

i,t . (17)

It should be noticed, though, that in our application the final threshold BT = B = VaR99%(S) is not
previously known. In these cases, an adaptive strategy, similar to the one studied in Cérou et al. (2012)
can be implemented, where neither B1, . . . , BT−1 nor BT needs to be previously known. More details
on this aspect of the algorithm are provided in Section 9.1.

3.3. Allocations for The Conditional Model

From the discussion in Section 2 we see that the main difference between the marginalized and
conditional models is the fact that the former density is analytically known (in fact, it its approximated
by an analytically known density) whilst the latter is defined through an integral of a known density,
see Equations (1) and (2). In this section we discuss how to adapt the algorithm presented in Section 3.2
for situations where the target density cannot be analytically computed but a positive and unbiased
estimator for it can be calculated.

Following the recent developments on pseudo-marginal methods (see Andrieu and Roberts (2009)
and Finke (2015) for a survey in the topic) we substitute the unknown density fZ in Equation (2) by
a positive and unbiased estimate f̂Z and show the SMC procedure still targets the correct distribution—a
strategy similar to the ones proposed in Everitt et al. (2016) and McGree et al. (2015). In the context of
rare event simulations a similar idea has been independently developed in Vergé et al. (2016) where
the authors study the impact of the parameter uncertainty in the probability of the rare event, whilst we
analyse the impact in expectations conditional to the rare event (as in Equation (5)).

The idea of replacing an unknown density by a positive and unbiased estimate is in the core
of many recently proposed algorithms, such as the Particle Markov Chain Monte Carlo (PMCMC)
of Andrieu et al. (2010), the Sequential Monte Carlo Squared (SMC2) of Chopin et al. (2013) and
Fulop and Li (2013) (see also the island particle filter of Vergé et al. (2015)) and the Importance
Sampling Squared (IS2) of Tran et al. (2014). In the context of Sequential Monte Carlo algorithms this
argument first appeared as a brief note in Rousset and Doucet’s comments of Beskos et al. (2006),
where it reads that “(...) a straightforward argument shows that it is not necessary to know wk(X(i)

t0:tk
)

[the weights] exactly. Only an unbiased positive estimate ŵk(X(i)
t0:tk

) of wk(X(i)
t0:tk

) is necessary to obtain
asymptotically consistent SMC estimates under weak assumptions”.

To introduce the concept we first estimate fZ by fZ( · | θ), which can be seen as a “one sample”
approximation to the integral in Equation (2); then we show how to use an estimator based on M ≥ 1
samples from fθ. These two approaches have been named in the literature (see Everitt et al. (2016)
and references therein) as, respectively, the single auxiliary variable (SAV) and the multiple auxiliary
variable (MAV) methods.

3.3.1. Single Auxiliary Variable Method

To avoid direct use of fZ on the SMC sampler algorithm we provide a procedure on the joint
space of Z and the parameter θ, defined as Y = Rd × Θ. The reader is referred to Finke (2015) for
an extensive list of known algorithms which can also be interpreted in a extended space way. The target
distribution on this new space is defined as the joint distribution of Z and θ and its marginal with
respect to Z is precisely the density of the conditional model.

Formally, for y = (z, θ), GZ(B) = GZ =
{

z ∈ Rd : ∑d
i=1 zi ≥ B

}
and B = VaR99%(S) we define
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πy(y) ∝ γy(y) = fZ(z | θ) fθ(θ)1GZ
(z),

which has the desired marginal target distribution of interest:

π(z) ∝ γ(z) =
∫

Θ
fZ(z | θ) fθ(θ)dθ1GZ

(z). (18)

Similarly to the densities defined in Equations (9) and (16) we define a sequence of target
distributions both in Y and Y t, respectively, as

π
y
t (yt) ∝ γ

y
t (yt) = fZ(zt | θt) fθ(θt)1GZt

(zt),

and

π̃
y
t (y1:t) ∝ γ̃

y
t (y1:t) = γ

y
t (yt)

t−1

∏
s=1

Ly
s (ys+1, ys)

= fZ(zt | θt) fθ(θt)1GZt
(zt)

t−1

∏
s=1

Ls(zs+1, zs | θs) fθ(θs),

where the second identity specifies the choices of Ly
s , in terms of Ls and fθ.

Assuming we can perfectly sample from the distribution of θ (in our application this distribution
is a posterior, from which samples are generated via simulation algorithms), to move y samples
backwards from time s + 1 to s we split this process into sampling θs from fθ (ignoring θs+1) and then,
conditional on θs, moving zs+1 to zs. In other words, to sample

ys = (zs, θs)
∣∣∣ {ys+1 = (zs+1, θs+1)} ∼ Ly

s (ys+1, ys),

we split the process in two stages,

1. θs ∼ fθ(θs);
2. zs | zs+1 ∼ Ls(zs+1, zs | θs).

The importance distribution on the path space of y can be expressed as

q̃y
t (y1:t) = qy

1 (y1)
t

∏
s=2

Ky
s (ys−1, ys) = q1(z1) fθ(θ1)

t

∏
s=2

Ks(zs−1, zs | θs) fθ(θs),

and, once again, the second identity provides the choices of qy
1 and Ky

s , i.e.,

qy
1 (y1) = q1(z1) fθ(θ1) and Ky

s (ys−1, ys) = Ks(zs−1, zs | θs) fθ(θs).

Therefore, a SMC procedure targeting the sequence {π
y
t (yt)}T

t=1 produces unnormalized weights

wy
t =

γ̃
y
t (y1:t)

q̃y
t (y1:t)

= wy
t−1

γ
y
t (yt)Ly

t−1(yt, yt−1)

γ
y
t−1(yt−1)K

y
t (yt−1, yt)

= wy
t−1

fZ(zt | θt) fθ(θt)1GZt
(zt)Lt−1(zt, zt−1 | θt−1) fθ(θt−1)

fZ(zt−1 | θt−1) fθ(θt−1)1GZt−1
(zt−1)Kt(zt−1, zt | θt) fθ(θt)

= wy
t−1

fZ(zt | θt)1GZt
(zt)Lt−1(zt, zt−1 | θt−1)

fZ(zt−1 | θt−1)1GZt−1
(zt−1)Kt(zt−1, zt | θt)

,

that can be used to create weighted samples from πt(zt), which is the desired marginal of π
y
t (yt), the

density required for the capital allocation.
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Remark 5. From the structure of the mutation kernels Ky
t it should be noticed that at each iteration t a new

value of θt needs to be generated and used to sample zt | θt. In other words, for each particle j = 1, . . . , N a
different θ

(j)
t is to be used for each z(j)

t | θ
(j)
t .

3.3.2. Multiple Auxiliary Variable

In the previous algorithm we, indirectly, estimate the density fZ(z) by fZ(z | θ). In this section
we discuss how to use a different and more robust estimator, using M ≥ 1 samples from θ. In the
context of pseudo-marginal Monte Carlo Markov Chain (MCMC) Andrieu and Vihola (2015) show
that reducing the variance of the estimate of the unknown density fZ(z) leads to reduced asymptotic
variance of estimators from the MCMC. For SMC algorithms this strategy has been used, for example,
in McGree et al. (2015) and Everitt et al. (2016).

Before proceeding, we note that even in the case that M = 1 the algorithm still produces
asymptotic and unbiased estimators (when the number of particles N → ∞). However, the rate
of variance reduction in the asymptotic estimates is directly affected by the choice of M (in a non-trivial
manner). Furthermore, the asymptotic variance of Central Limit Theorem (CLT) estimators under the
class of such pseudo-marginal Monte Carlo approaches is strictly ordered in M, with M increasing
reducing the the asymptotic variance.

For any M ≥ 1, a positive and unbiased estimate for fZ(z) can be constructed as

f̂Z(z; ϑ) =
1
M

M

∑
i=1

fZ(z | θ(i)), (19)

where ϑ = (θ(1), . . . , θ(M)) ∈ ΘM and each θ(m) is sampled independently from fθ(θ). Note that when
only one sample of θ is used to estimate fZ(z) the estimator is reduced to f̂Z(z; ϑ) = fZ(z | θ). Also,
note that f̂Z(z; ϑ) → fZ(z) point-wise when M → ∞, by the law of large numbers. Indeed, since the
random variable ϑ has density fϑ(ϑ) = ∏M

i=1 fθ(θ
(i)) we obtain∫

ΘM
f̂Z(z; ϑ) fϑ(ϑ)dϑ =

∫
ΘM

1
M

M

∑
i=1

fZ(z | θ(i))
M

∏
i=1

fθ(θ
(i))dθ(1) · · · dθ(M)

=
∫

Θ
fZ(z | θ) fθ(θ)dθ = fZ(z).

Therefore the density π(z) constructed in Equation (18) is the marginal of the new target density
defined on YM = Rd × ΘM

πy(y; ϑ) ∝ γy(y; ϑ) = f̂Z(z; ϑ) fϑ(ϑ)1GZ
(z).

Apart from the cumbersome notation, the same argument from the previous section can be used
to show that a SMC procedure with estimated density f̂Z(z; ϑ) replacing fZ(z) has unnormalized
weights given by

wy
t = wy

t−1

f̂Z(zt; ϑt)1GZt
(zt)Lt−1(zt, zt−1 | ϑt−1)

f̂Z(zt−1; ϑt−1)1GZt−1
(zt−1)Kt(zt−1, zt | ϑt)

,

when targeting a sequence {πt(zt)}T
t=1 with πT(zT) = π(z).

The algorithms described in this section contain several degrees of freedom, whose choices are
discussed in detail in Section 9. In the next section we formally define the elements necessary for
constructing the statistical models underlying the risk drivers Z and Z. We also present the formulas
for the Solvency Capital Requirements (SCRs) under both the conditional and marginalized models.

After this brief introduction to SMC algorithms, in the following section we introduce the random
variables used in the risk allocation process. In particular, we formally define the random vectors
Z and Z discussed in Section 2, and identify its components with the one-year reserve risk and the
one-year premium risk.
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4. Swiss Solvency Test and Claims Development

For the rest of this work we assume all random variables are defined in the filtered probability
space (Ω,F ,P, {F (t)}t≥0). We denote cumulative payments for accident year i = 1, . . . , t until
development year j = 0, . . . , J (with t > J) on the � = 1, . . . , L LoB by C(�)

i,j . Moreover, in the �-th
LoB incremental payments for claims with accident year i and development year j are denoted by
X(�)

i,j = C(�)
i,j − C(�)

i,j−1. Remark that these payments are made in accounting year i + j.
The information (regarding claims payments) available at time t = 0, . . . , I + J for the �-th LoB is

assumed to be given by

D(�)(t) = {X(�)
i,j : 1 ≤ i ≤ t, 0 ≤ j ≤ J, 1 ≤ i + j ≤ t},

and, similarly, the total information (regarding claims payments) available at time t is denoted as

D(t) =
⋃

1≤�≤L

D(�)(t). (20)

Remark 6. By a slight abuse of notation we also use D(�)(t) and D(t) for the sigma-field generated by the
corresponding sets. Note that D(t) ⊂ F (t) for all t ≥ 0, as we assume that F (t) contains not only information
about claims payments, but also about premium and administrative costs.

The general aim now is to predict the future cumulative payments C(�)
i,j for i + j > t at time t,

given the information F (t), in particular, the so-called ultimate claim C(�)
i,J . For more information we

refer to Wüthrich (2015).

4.1. Conditional Predictive Model

As noted previously, we generically denote parameters in the Bayesian model for the � LoB by
θ(�). For the ease of exposition, whenever a quantity is defined conditional on θ(�) it is going to be
denoted with a bar on top of it.

At time t ≥ I, LoB � and accident year i > t − J predictors for the ultimate claim C(�)
i,J and the

corresponding claims reserves are defined, respectively, as

C
(�)
i,J (t) = E[C(�)

i,J | θ(�), F (t)] and R(�)
i (t) = C

(�)
i,J (t)− C(�)

i,t−i. (21)

Under modern solvency regulations, such as Solvency II European Comission (2009) and the
Swiss Solvency Test FINMA (2007) an important variable to be analysed is the claims development
result (CDR). For accident year i = 1, . . . , I, accounting year t + 1 > I and LoB �, the CDR is defined as

CDR(�)
i (t + 1) = R(�)

i (t)− (
X(�)

i,t−i+1 +R(�)
i (t + 1)

)
= C

(�)
i,J (t)− C

(�)
i,J (t + 1), (22)

and an application of the tower property of the expectation shows that (subject to integrability)

E[CDR(�)
i (t + 1) | θ(�), F (t)] = 0. (23)

Thus, the prediction process in Equation (21) is a martingale in t and we aim to study the volatility
of these martingale innovations.

Equation (23) justifies the prediction of the CDR by zero and the uncertainty of this prediction can
be assessed by the conditional mean squared error of prediction (msep):
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msep
CDR(�)

i (t+1) | θ(�), F (t)
(0) = E[(CDR(�)

i (t + 1)− 0)2 | θ(�), F (t)] (24)

= Var
(
CDR(�)

i (t + 1) | θ(�), F (t)
)

= Var
(
C

(�)
i,J (t + 1) | θ(�), F (t)

)
. (25)

Moreover, we denote the aggregated (over all accident years) CDR and the reserves, conditional
on the knowledge of the parameter θ(�), respectively, by

CDR(�)
(t + 1) =

t

∑
i=t−J+1

CDR(�)
i (t + 1) and R(�)

(t) =
t

∑
i=t−J+1

R(�)
i (t). (26)

Using this notation we also define the total prediction uncertainty incurred when predicting

CDR(�)
(t + 1) by zero as

msep
CDR(�)

(t+1) | θ(�), F (t)
(0) = Var

(
t

∑
i=t−J+1

C
(�)
i,J (t + 1)

∣∣∣ θ(�), F (t)

)
.

Remark 7. It should be remarked that, in general, as the parameter vector θ(�) is unknown none of the quantities
presented in this section can be directly calculated unless an explicit estimate for the parameter is used.

4.2. Marginalized Predictive Model

Even though cumulative claims models are defined conditional on unobserved parameter values,
any quantity that has to be calculated based on these models should only depend on observable
variables. Under the Bayesian paradigm, unknown quantities are modelled using a prior probability
distribution reflecting prior beliefs about these parameters.

Analogously to Section 4.1 we define the marginalized (Bayesian) ultimate claim predictor and its
reserves, respectively, as

C
(�)
i,J (t) = E[C(�)

i,J | F (t)] = E[C
(�)
i,J (t) | F (t)] and R(�)

i (t) = C i, J(�)(t)− C(�)
i,t−i. (27)

We also define the marginalized CDR and notice, again using the tower property, that its mean is
equal to zero

CDR(�)
i (t + 1) = C i, J(�)(t)− C i, J(�)(t + 1) with E[CDR(�)

i (t + 1) | F (t)] = 0.

Furthermore, summing over all accident years i we follow Equation (26) and denote by R(�)(t)
and CDR(�)(t+ 1) the aggregated version of the marginalized reserves and CDR, where the uncertainty
in the later is measured via

msepCDR(�)(t+1) | F (t)(0) = Var

(
t

∑
i=t−J+1

C i, J(�)(t + 1)
∣∣∣F (t)

)
. (28)

4.3. Solvency Capital Requirement (SCR)

In this section we discuss how two important concepts in actuarial risk management, namely
the technical result (TR) and the solvency capital requirement (SCR), can be defined for both the
conditional and the marginalized models.

In this context the TR is calculated netting all income and expenses arising from the LoBs, while
the SCR denotes the minimum capital required by the regulatory authorities in order to cover the
company’s business risks. More precisely, the SCR for accounting year t + 1 quantifies the risk of
having a substantially distressed result at time t + 1, evaluated in light of the available information at
time t.
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As an important shorthand notation, we introduce three sets of random variables, representing
the total claim amounts of the current year (CY) claims and of prior year (PY) claims, the later for both
the conditional and marginalized models. These random variables are defined, respectively, as

Z(�)
CY = C t + 1, J(�)(t + 1), Z(�)

PY =
t

∑
i=t−J+1

(
C

(�)
i,J (t + 1)− C(�)

i,t−i

)
and

Z(�)
PY =

t

∑
i=t−J+1

(
C i, J(�)(t + 1)− C(�)

i,t−i

)
. (29)

In the standard SST model, CY claims do not depend on any unknown parameters and are split
into small claims Z(�)

CY,s for the LoBs � = 1, . . . , L and into large events Z(p)
CY,l for the perils p = 1, . . . , P.

Small claims are also called attritional claims and large claims can be individual large claims or
catastrophic events, like earthquakes. In this context the company can choose thresholds β(�) such that
claims larger than these amounts are classified as large claims in its respective LoBs.

To further simplify the notation we also group all the random variables related to the conditional
and the marginalized models in two random vectors, defined as follows

Z = (Z1, . . . , Z2L+P) = (Z(1)
PY , . . . , Z(L)

PY , Z(1)
CY,s, . . . , Z(L)

CY,s, Z(1)
CY,l , . . . , Z(P)

CY,l), (30)

Z = (Z1, . . . , Z2L+P) = (Z(1)
PY , . . . , Z(L)

PY , Z(1)
CY,s, . . . , Z(L)

CY,s, Z(1)
CY,l , . . . , Z(P)

CY,l). (31)

Next we give more details on how the TR and the SCR are calculated in the generic structure of
the conditional and the marginalized models.

4.3.1. SCR for the Conditional Model

At time t + 1 the technical result (TR) of the �-th LoB in accounting year (t, t + 1] based on the
conditional model is defined as the following F (t + 1)–measurable random variable:

TR(�)
(t + 1) = Π(�)(t + 1)− K(�)(t + 1)− C

(�)
t+1,J(t + 1) + CDR(�)

(t + 1),

where Π(�)(t + 1) and K(�)(t + 1) are, respectively, the earned premium and the administrative costs of
accounting year (t, t + 1]. For simplicity, we assume that these two quantities are known at time t, i.e.,
the premium and administrative costs of accounting year (t, t + 1] are assumed to be previsible and,
hence, F (t)-measurable. Moreover, it should be noticed that in this context F (t) not only includes the
claims payment information defined in Equation (20). The general sigma-field F (t) should be seen as
a sigma-field generated by the inclusion in D(t) of the information about Π(�)(t + 1) and K(�)(t + 1),
for � = 1, . . . , L.

Given the technical result for all the LoBs, the company’s overall TR based on the conditional
model, and aggregated cost and premium are denoted, respectively, by

TR(t + 1) =
L

∑
�=1

TR(�)
(t + 1), Π(t + 1) =

L

∑
�=1

Π(�)(t + 1) and K(t + 1) =
L

∑
�=1

K(�)(t + 1).

In order to cover the company’s risks over an horizon of one year, the Swiss Solvency Test is
concerned with the 99% ES (in light of all the data up to time t):

SCR(t + 1) = ES99%[−TR(t + 1) | F (t)],

where SCR denotes the solvency capital requirement.
It is important to notice that even though the ES operator is being applied to a “conditional

random variable”, namely TR, the operator is not being taken conditional on the knowledge of
θ = (θ(1), . . . , θ(L)), otherwise this quantity would not be computable (as discussed in Remark 7).
Instead, the SCR is calculated based on the marginalized version of the conditional model, where
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the parameter uncertainty is integrated out. More precisely, the expected shortfall is based on the
following (usually intractable) distribution

fZ(z | F (t)) =
∫

fZ(z | θ, F (t))π(θ | F (t))dθ.

In order to compute the SCR based on the conditional model we first discuss the measurablity of
the terms in the conditional TR, which can be rewritten as

TR(t + 1) = −K(t + 1) + Π(t + 1) +
L

∑
�=1

t

∑
i=t−J+1

(
C

(�)
i,J (t)− C(�)

i,t−i

)
−

L

∑
�=1

(
Z(�)

PY + Z(�)
CY

)
.

From the above equation we see the first two terms are, by assumption, F (t) measurable and so
are all the terms of the form C(�)

i,t−i (payments already completed by time t), while the last summation
is F (t + 1) measurable and, therefore, a random variable at time t. Due to the dependence on the

unknown parameter θ the conditional ultimate claim predictor C
(�)
i,J (t) is usually not F (t) measurable.

However, under the special models introduced in Section 5 we have that C
(�)
i,J (t) depends only on the

claims data up to time t and not on the unknown parameter vector, making it F (t) measurable. In this
case one has

SCR(t + 1) = K(t + 1)− Π(t + 1)−
L

∑
�=1

R(�)
(t) + ES99%

[
L

∑
�=1

Z(�)
PY + Z(�)

CY

∣∣∣ F (t)

]
, (32)

where, by assumption,
L

∑
�=1

R(�)
(t) =

L

∑
�=1

t

∑
i=t−J+1

(
C

(�)
i,J (t)− C(�)

i,t−i

)
is F (t)-measurable.

4.3.2. SCR for the Marginalized Model

As the parameter uncertainty is dealt with in a previous step, the calculation of the SCR for the
marginalized model is simpler than its conditional counterpart.

Similarly to the conditional case, we define the TR for the marginalized model as

TR(�)(t + 1) = Π(�)(t + 1)− K(�)(t + 1)− C
(�)
t+1,J(t + 1) + CDR(�)(t + 1),

and its aggregated version as

TR(t + 1) =
L

∑
�=1

TR(�)(t + 1).

Furthermore, the SCR for the marginalized model is given by

SCR(t + 1) = ES99%[−TR(t + 1) | F (t)] (33)

= K(t + 1)− Π(t + 1)−
L

∑
�=1

R(�)(t) + ES99%

[
L

∑
�=1

Z(�)
PY + Z(�)

CY

∣∣∣ F (t)

]
, (34)

where in this case the expected shortfall is calculated with respect to the density fZ(z | F (t)).

Remark 8. For the models discussed in Section 5, as C
(�)
i,J (t) does not depend on the parameter vector θ and we

also have that R(�)
(t) = R(�)(t).

Remark 9. As we assume the cost of claims processing and assessment K(t + 1) and premium Π(t + 1) are
known at time t they do not differ from the conditional to the marginalized model.
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5. Modelling of Individual LoBs PY Claims

For the modelling of the PY claims reserving risk we need to model ZPY or ZPY as given in
Equation (29). The uncertainty in these random variables will be assessed by the conditional and
marginalized mean square error of prediction (msep), introduced in Equations (25) and (28). In order
to calculate the msep we must first expand our analysis to the study of the claims reserving uncertainty.
To do so, in this section we present a fully Bayesian version of the gamma-gamma chain-ladder (CL)
model, which has been studied in Peters et al. (2017).

Since in this section we present the model for individual LoBs, for notational simplicity we omit
the upper index (�) from all random variables and parameters.

Model Assumptions 1. [Gamma-gamma Bayesian chain ladder model] We make the following assumptions:

(a) Conditionally, given φ = (φ0, . . . , φJ−1) and σ = (σ0, . . . , σJ−1), cumulative claims (Ci,j)j=0,...,J
are independent (in accident year i) Markov processes (in development year j) with

Ci,j+1 | {F (i + j), φ, σ} ∼ Γ
(
Ci,jσ

−2
j , φjσ

−2
j
)
,

for all 1 ≤ i ≤ t and 0 ≤ j ≤ J − 1.
(b) The parameter vectors φ and σ are independent.
(c) For given hyper-parameters f j > 0 the components of φ are independent such that

φj ∼ lim
γj→1

Γ
(
γj, f j(γj − 1)

)
,

for 0 ≤ j ≤ J − 1, where the limit infers that they are eventually distributed from an improper
uninfomative prior.

(d) The components σj of σ are independent and Fσj -distributed, having support in (0, dj) for given
constants 0 < dj < ∞ for all 0 ≤ j ≤ J − 1.

(e) φ, σ and C1,0, . . . , Ct,0 are independent and P[Ci,0 > 0] = 1, for all 1 ≤ i ≤ t.

In Model Assumptions 1 (c) the (improper) prior distribution for φ should be seen as
a non-informative limit when γ = (γ0, . . . , γJ−1) → 1 = (1, . . . , 1) of the (proper) prior assumption

φj ∼ Γ
(
γj, f j(γj − 1)

)
.

The limit in (c) does not lead to a proper probabilistic model for the prior distribution, however,
based on “reasonable” observations {Ci,j}i,j the posterior model can be shown to be well defined
(see Equation (38)), a result that has been proved using the dominated convergence theorem in
Peters et al. (2017).

From Model Assumptions 1 (a), conditional on a specific value of the parameter vectors φ and σ,
we have that

E[Ci,j+1 | F (i + j), φ, σ] = φ−1
j Ci,j,

Var(Ci,j+1 | F (i + j), φ, σ) = φ−2
j σ2

j Ci,j,
(35)

which provides a stochastic formulation of the classical CL model of Mack (1993).
Even though the prior is assumed improper and does not integrate to one, the conditional

posterior for φj | σj, F (t) is proper and, in addition, also gamma distributed (see Appendix A and
(Merz and Wüthrich 2015, Lemma 3.2)). More precisely, we have that

φj | σ, F (t) ∼ Γ(aj, bj), (36)

74

Bo
ok
s

M
DP
I



Risks 2017, 5, 53

with the following parameters

aj = 1 +
t−j−1

∑
i=1

Ci,jσ
−2
j and bj =

t−j−1

∑
i=1

Ci,j+1σ−2
j . (37)

Therefore, given σ this model belongs to the family of Bayesian models with conjugate priors that
allows for closed form (conditional) posteriors – for details see Wüthrich (2015).

The marginal posterior distribution of the elements of the vector σ is given by

π
(
σj | F (t)

)
∝ hj(σj | F (t)) = Γ(aj)b

−aj
j fσj(σj)

t−j−1

∏
i=1

(Ci,j+1σ−2
j )

Ci,jσ
−2
j

Γ(Ci,jσ
−2
j )

, (38)

with aj and bj defined in Equation (37). We note that as long as Model Assumptions 1 (d) and the
conditions in Lemma A1 are satisfied, then one can ensure the posterior distribution of σ is proper.

Therefore, under Model Assumptions 1 inference for all the unknown parameters can be
performed. It should be noticed, though, that differently from the (conditional) posteriors for φj
Equation (36), the posterior for σj Equation (38) is not recognized as a known distribution. Thus,
whenever expectations with respect to the distribution of σj | F (t) need to be calculated one needs
to make use of numerical procedures, such as numerical integration or Markov Chain Monte Carlo
(MCMC) methods.

5.1. MSEP Results Conditional on σ

Following Model Assumptions 1 we now discuss how to explicitly calculate the quantities
introduced in Section 4. We start with the equivalent of the classic CL factor. From the model structure
in Equation (35) we define the posterior Bayesian CL factors, given σ, as

f̂ j(t) = E[φ−1
j | σj, F (t)], (39)

which, using the gamma distribution from Equation (36), takes the form

f̂ j(t) =
∑

t−j−1
k=1 Ck,j+1

∑
t−j−1
k=1 Ck,j

,

i.e., f̂ j(t) is identical to the classic CL factor estimate.
Following Equation (21) we define the conditional ultimate claim predictor

C i,J(t) = E[Ci,J | σ, F (t)] = Eφ

[
E[Ci,J | φ, σ, F (t)]

∣∣∣ σ, F (t)
]
,

which can be shown (see (Wüthrich 2015, Theorem 9.5)) to be equal to

C i,J(t) = Ci,t−i

J−1

∏
j=t−i

f̂ j(t), (40)

where this is exactly the classic chain ladder predictor of Mack (1993). For this reason we may
take Model Assumptions 1 as a distributional model for the classical CL method. Additionally, the
conditional reserves defined in Equation (21) and Equation (26) are also the same as the classic CL
ones, that is,

R(t) =
t

∑
i=1

C i,J(t)− Ci,t−i. (41)
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The importance of Equation (40) relies on the fact that it does not depend on the parameter vector
σ. In other words, the ultimate claim predictor based on the Bayesian model from Model Assumptions
1 conditional on σ – which is, in general, a random variable – is a real number (independent of σ). This
justifies the argument used on the calculation of Equation (32).

Remark 10. Using the notation from the previous sections the parameter vector σ plays the role of θ as the only
unknown, since, due to conjugacy properties, φ can be marginalized analytically.

For the Bayesian model from Model Assumptions 1 the msep conditional on σ has been derived
in (Wüthrich 2015, Theorem 9.16) as follows, for i + J > t

msepCDRi(t+1) | σ, F (t)(0) =
(
C i,J(t)

)2
[(

1 +
Ψt−i(t)
βt−i(t)

)
J−1

∏
j=t−i+1

(
1 + βj(t)Ψj(t)

)
− 1

]
, (42)

where

βj(t) =
Ct−j,j

∑
t−j
i=1 Ci,j

and Ψj(t) =
σ2

j

∑
t−j−1
k=1 Ck,j − σ2

j

. (43)

Moreover, the conditional msep has been shown to be finite if, and only if, σ2
j < ∑

t−j−1
k=1 Ck,j. We also

refer to Remark 12, below.
The aggregated conditional msep for CDR(t + 1) = ∑t

i=1 CDRi(t + 1) is also derived in
(Wüthrich 2015, Theorem 9.16), and given by

msepCDR(t+1) | σ, F (t)(0) =
t

∑
i=t−J+1

msepCDRi(t+1) | σ, F (t)(0)

+ 2 ∑ ∑
t−J+1≤i<k≤t

C i,J(t)C k,J(t)

[(
1 + Ψt−i(t)

) J−1

∏
j=t−i+1

(
1 + βj(t)Ψj(t)

)
− 1

]
. (44)

Remark 11. The assumption that σ2
j < ∑

t−j−1
k=1 Ck,j is made in order to guarantee the conditional msep is finite

and we enforce this assumption to hold for all the examples presented in this work. See also Remark 12, below.

5.2. Marginalized MSEP Results

The results in the previous section are based on derivations presented in
Merz and Wüthrich (2015) and Wüthrich (2015) where the parameter vector σ is assumed to
be known. In this section we study the impact of the uncertainty in σ over the mean and variance of
C i, J(t + 1) | F (t) in light of Model Assumptions 1, which can be seen as a fully Bayesian version of
the models previously mentioned.

In order to have well defined posterior distributions for σ, through this section we follow
Lemma A1 and assume that, for all development years 0 ≤ j ≤ J − 1 and t ≥ I, we have

(t − j − 1) ∧ I = 1 or at least one accident year 1 ≤ i ≤ (t − j − 1) ∧ I is such that
Ci,j+1

Ci,j
�= f̂ j(t).

For all the numerical results presented this assumption is satisfied.

Lemma 1. The ultimate claim estimator under the marginalized model is equal to the classic chain ladder
predictor, i.e., C i, J(t) = E[Ci,J | F (t)] = C i,J(t).
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Proof. Due to the posterior independence of the elements of φ (also used in Equations (39) and (40))
and the fact that C i,J(t) does not depend on σ we have

C i, J(t) = E[Ci,J | F (t)]

= E
[
E[Ci,J | φ, σ, F (t)] | F (t)

]
= E

[
E
[
E[Ci,J | φ, σ, F (t)] | σ, F (t)

] | F (t)
]

= E
[
E
[
Ci, t−i

J−1

∏
j=t−i

φ−1
j | σ, F (t)

] | F (t)
]

= E
[
C i,J(t) | F (t)

]
= C i,J(t).

Proposition 1. The msep in the marginalized model is equal to the posterior expectation of the msep in the
conditional model, i.e.,

msepCDR(t+1) | F (t)(0) = Var
( I

∑
i=1

C i, J(t + 1)
∣∣F (t)

)
= E[msepCDR(t+1) | σ, F (t)(0) | F (t)]. (45)

Proof. From the law of total variance we have that

Var
( I

∑
i=1

C i, J(t + 1)
∣∣F (t)

)
= Var

(
E
[ I

∑
i=1

C i, J(t + 1) | F (t), σ
] ∣∣F (t)

)
+E

[
Var

( I

∑
i=1

C i, J(t + 1) | F (t), σ
) ∣∣F (t)

]
= E

[
Var

( I

∑
i=1

C i, J(t + 1) | F (t), σ
) ∣∣F (t)

]
,

and the last equality follows from Lemma 1 and the fact that E[C i,J(t + 1) | F (t), σ] = C i,J(t) is
independent of σ.

Remark 12. Following the conditions required for finiteness of the conditional msep, in the unconditional
case, one can see that msepCDR(t+1) | F (t)(0) < ∞ whenever ∑

t−j−1
k=1 Ck,j > d2

j . Furthermore, we note that
this condition can be controlled during the model specification, i.e., the range of the σ2

j is chosen such that all
posteriors are well-defined.

5.3. Statistical Model of PY Risk in the SST

Note that the distributional models derived in Sections 5.1 and 5.2 are rather complex. To maintain
some degree of tractability, the overall PY uncertainty distribution is usually approximated by
a log-normal distribution via a moment matching procedure.

5.3.1. Conditional PY Model

As discussed in Section 4.3, when modelling the risk of PY claims we work with the random
variables ZPY, defined in Equation (29). Due to their relationship with the conditional CDR, see
Equations (22) and (23) and the results discussed in Section 5.1, we can use the derived properties of
these random variables to construct the model being used for ZPY.
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The conditional mean (see Equations (22), (23) and (41)) and variance (see Equations (25) and (44))
of the random variable ZPY are as follows

E[ZPY | σ, F (t)] = R(t), (46)

Var(ZPY | σ, F (t)) = msepCDR(t+1) | σ, F (t)(0). (47)

Given mean and variance, we make the following approximation, also proposed in the Swiss
Solvency Test (see (FINMA 2007, sct. 4.4.10)).

Model Assumptions 2 [Conditional log-normal approximation.] We assume that

ZPY | σ, F (t) ∼ LN
(

μPY, σ2
PY

)
,

with σ2
PY = log

(
msepCDR(t+1) | σ, F (t)(0)

R(t)2 + 1
)

and μPY = log
(R(t)

)− σ2
PY
2

.

Although the distribution of ZPY | σ, F (t) under Model Assumptions 1 can not be described
analytically it is simple to simulate from it. To test the approximation of Model Assumptions 2 we
simulate its distribution under the gamma-gamma Bayesian CL model (with fixed σ) and compare it
against the log-normal approximation proposed. For the hyper-parameters presented in Table 2 (and
calculated in Section 8) the quantile-quantile plot of the approximation is presented in Figure 1. For
all the LoBs we see that the log-normal distribution is a sensible approximation to the original model
assumptions. Note that although the parameters used for the comparison are based on the marginalized
model Figures 5 and 6 show that they are “representative” values for the distributions of μPY and σPY.

5.3.2. Marginalized PY Model

As an alternative to the conditional Model Assumptions 2 we use the moments of ZPY | F (t)
calculated in Lemma 1 and Proposition 1 and then approximate its distribution. Note that due to the
intractability of the distribution of σ | F (t) the variance term defined in Equation (45) can only be
calculated numerically, for example, via MCMC.

Model Assumptions 3 [Marginalized log-normal approximation.] We assume that

ZPY | F (t) ∼ LN
(

μPY, σ2
PY

)
with σ2

PY = log
(

msepCDR(t+1) | F (t)(0)

R(t)2 + 1
)

and μPY = log
(R(t)

)− σ2
PY
2

.

The same comparison based on the quantile-quantile plot of Figure 1 can be performed for
the marginalized model and the results are presented in Figure 2. Once again, the log-normal
model presents a viable alternative to the originally postulated gamma-gamma Bayesian CL model,
even though for Motor Hull, Property and Others the right tail of the log-normal distribution is
slightly heavier.
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Figure 1. Quantile-Quantile plots for the different lines of business (LoBs) comparing (vertical axis)
the empirical distribution of ZPY | σ, F (t) based on Model Assumptions 1 and (horizontal axis) the
log-normal approximation from Model Assumptions 2. Based on 1000 samples.

Figure 2. Quantile-Quantile plots for the different LoBs comparing (vertical axis) the empirical
distribution of ZPY | F (t) based on Model Assumptions 1 and (horizontal axis) the log-normal
approximation from Model Assumptions 3 and using posterior samples as in Figures 5 and 6. Based on
1000 samples.
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6. Modelling of Individual LoBs CY Claims

Model Assumptions 1 do not assume any specific distribution for E[Ct+1,J | F (t + 1)], the CY
claims. These claims are treated differently in the Swiss Solvency Test from PY claims and the models
used for these claims are explained in Sections 6.1 and 6.2, below. Throughout this section, we denote
by λCY = λCY,s + λCY,l the expected number of CY claims over the next year, which is the sum of the
expected CY small claims λCY,s and the expected CY large claims λCY,l .

6.1. Modelling of Small CY Claims

As mentioned in the SST Technical Document (FINMA 2007, sct. 4.4.7), the SST does not make
any explicit assumption about the distribution of individual claims; instead, the annual claims expenses are
only represented with their expected value and variance. More precisely, in (FINMA 2007, sct. 8.4.5.2) the
distribution of the premium risk, ZCY,s is assumed to be such that

CoVa2(ZCY,s | F (t)) = a1 +
a2 + 1
λCY,s

, (48)

where the constants a1 and a2 are provided by the regulatory authority (under the names of parameter
uncertainty and random fluctuation, respectively). Their values for the 2015 solvency test are found in
FINMA (2016). In order to fully specify the model for CY small claims one also needs to decide on the
mean of the variable ZCY,s | F (t), but we postpone a detailed discussion on this point until Section 8.2,
where we also present the value of λCY,s.

Model Assumptions 4 [Distribution of CY small claims] For known constants v, rs > 0 and
E[ZCY,s | F (t)] we set

ZCY,s | F (t) ∼ LN
(

μCY,s, σ2
CY,s

)
,

with σ2
CY,s = log

(
a1 +

a2 + 1
λCY,s

+ 1
)

and μCY,s = log(E[ZCY,s | F (t)])− σ2
CY,s

2
.

6.2. Modelling of Large CY Claims

In the SST (see (FINMA 2007, sct. 4.4.8)), large CY claims are split into two groups. The first group
of large claims are those triggered by the same market-wide event (a hailstorm, for example) and with
many simultaneous (small) claims. These types of claims are likely to affect all market participants
and are called “cumulated claims”. The second group encompasses individual claims with a large
claim amount, which includes, as exemplified in (FINMA 2007, sct. 4.4.8), fire in a factory building.

For each risk trigger, CY large claims are required to be modelled as a compound Poisson random
variable with i.i.d. Pareto severities, i.e.,

ZCY,l =
N

∑
k=1

Yk, (49)

where N ∼ Pois(λ) is the number of large claims in LoB under consideration and Yk
i.i.d.∼ Pareto(β, αβ)

model the intensity of large claims. Here we denote by X ∼ Pareto(β, αβ) a random variable with

density f (x) = αβα

xα+1 , for x ≥ β. It is assumed in the SST that large claims are i.i.d. within the same risk
trigger and also between different risk triggers, and independent of all ZPY and ZCY,s.

As a notational remark, if Z follows a Compound Poisson – Pareto model as a shorthand notation
we write Z ∼ CP-P(λ, β, α), with the same parameter interpretation as in Equation (49).

6.2.1. SST Model for Cumulated Claims

In this section we discuss the modelling of cumulated claims (those triggered by a market-wide
event) which are modelled as an event that impacts the whole market and then scales down to
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an individual insurance company through its market share. In particular, we present the modelling
approach used in (1) Motor Hull LoB due to hail events and (2) Workers Compensation (UVG) LoB
due to a market-wide large accident.

In both cases market-wide parameters for a compound Poisson model with Pareto intensities
have been determined by the regulator, (based on a large claims data set). The aggregated market-wide
loss is given by

Zmkt =
Nmkt

∑
k=1

Yk, mkt ∼ CP-P(λmkt, βmkt, αmkt),

where CP-P(λmkt, βmkt, αmkt) denotes a compound distribution with frequency given by Pois(λmkt)

and severity given by Pareto(βmkt, αmkt). The corresponding market-wide parameter values are found
in FINMA (2016).

Denoting by β the company’s threshold after which losses are classified as large and m its market
share in the �-th LoB, to be consistent with its assumption the company should model market-wide
large events as events above the threshold of

β∗ =
β

m
.

Then, the market-wide total loss (viewed from the specific company in consideration) is defined as

Z∗ =
N∗

∑
k=1

Y∗
k ∼ CP-P(λ∗, β∗, αmkt),

from which it is easy to see that the only unknown parameter is λ∗, since in the SST the Pareto
parameter αmkt is kept the same. This frequency parameter is chosen such that the company’s view
of the market-wide events is equivalent to the suggested market-wide process. In other words,
λmkt = P[Y∗

k > βmkt]λ
∗ hence

λ∗ = λmkt

(
β/m
βmkt

)−αmkt

. (50)

Therefore, from the company’s point of view, its own large claims are modelled as

Zcomp ∼ CP-P(λ∗, β, αmkt).

Following the SST Technical Document FINMA (2007), an upper bound γ (provided by the
regulator) is included in each Pareto random variable within the random sum. In other words, the final
distribution of the company’s large cumulated claims is given by

Z̃ =
N∗

∑
k=1

Ỹk ∼ CP-P(λ∗, β, αmkt, γ),

where Ỹk ∼ Pareto(β, αmkt, γ), a Pareto distribution defined in [β, γ] with tail index αmkt.
For efficiency purposes, this distribution is approximated by a single Pareto, with the same mean.

This leads us to the following model assumptions.

Model Assumptions 5 [Marginal distribution of cumulated claims]. For αmkt, βmkt and γ provided by
the regulator in FINMA (2016), β ∈ {1, 5}, m ∈ (0, 1),

ZCY,l ∼ Pareto
(

λ∗ βαmkt

1 − (β/γ)αmkt

(
1

βαmkt−1 − 1
γαmkt−1

)
, αmkt

)
where λ∗ is defined in Equation (50).
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Remark 13. The reader should note that for large CY claims no parameter uncertainty is considered, since both
λmkt, αmkt and γ are given by the regulator, the market share, m can be perfectly calculated and β is chosen by
the company.

6.2.2. SST Model for Individual Claims

For individual large events, the SST provides p1, the probability of observing losses larger than
CHF 1 million and standard values for αβ, for β = 1 and β = 5 (see Table FINMA (2016)). Since
the probability of large claims provided by the SST is based on a lower threshold of CHF 1 million,
a thinning process of the CP-P has to be done if the company decides to use β = 5.

Following the same procedure presented in Section 6.2.1 we can see that the company’s large
individual claims are modelled as

Zcomp ∼ CP-P(λβ, β, αβ),

with an expected number of claims larger than β equal to

λβ = λCY,l = p1λCY

(
β

1

)−αβ

, (51)

where λCY denotes the expected total number of CY claims in the �-th LoB. Similarly, the regulator
also requires a upper bound in the Pareto random variables, leading to the following distribution of
large losses

Z̃ ∼ CP-P(λβ, β, αmkt, γ).

As in Section 6.2.1, the distribution of ZCY,l | F (t) is approximated by a single Pareto, with the
same mean and Pareto index αβ.

Model Assumptions 6 [Marginal distribution of large individual claims.] For αβ, p1 and γ provided by
the regulator in FINMA (2016), β ∈ {1, 5} and λCY > 0,

ZCY,l | F (t) ∼ Pareto
(

λβ
βαmkt

1 − (β/γ)αmkt

(
1

βαmkt−1 − 1
γαmkt−1

)
, αmkt

)
,

with λβ defined in Equation (51).

7. Joint Distribution of PY and CY Claims

Although the SST does not assume any parametric form for the joint distribution of Z | F (t) or
Z | F (t) (defined in Equations (30) and (31), respectively) it is required that a pre-specified correlation
matrix Λ is used (see FINMA (2016)). In this section we discuss how to use the conditional and
marginalized models to define a joint distribution satisfying this correlation assumption.

It is important to notice, though, that the SST correlation matrix may not be attainable for some joint
distributions, as discussed in Appendix B in the case of log-normal marginals (in Devroye and Letac (2015)
the authors discuss a similar problem). Let us denote by Sn the set of all n × n, symmetric, positive
semi-definite matrices with diagonal terms equal to 1; and by S(C) = Corr(U) the correlation matrix of
a random vector U ∼ C, with elements Ui ∼ [0, 1]. The question asked in Devroye and Letac (2015) is:
given S ∈ Sn, does there exist a copula C such that S(C) = S? The answer is yes, if n ≤ 9 and the authors
postulate that for n ≥ 10 there exists S ∈ Sn such that there is no copula C such that S(C) = S.

It should be noted that, since in the SST the CY large claims are assumed to be independent from
all the other risks, the correlation matrix of (ZPY, ZCY,s, ZCY,l) | F (t) is essentially a correlation matrix
between (ZPY, ZCY,s) | F (t) and the same is true also for the conditional model.

Regardless of assuming a conditional or a marginalized model, SST’s correlation matrix Λ should
be such that, for i, j = 1, . . . , 2L + P (recall that L are the number of LoBs and P the number of perils),

Λi,j = Corr(Zi, Zj | F (t)) = Corr(Zi, Zj | F (t)).
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Remark 14. In the conditional model we need to “integrate out” the parameter uncertainty, otherwise the
(conditional) correlation would be dependent on an unknown parameter and could not be matched with the
numbers provided by the SST.

7.1. Conditional Joint Model

Under Model Assumptions 2, 4, 5 and 6our interest lies on modelling the joint behaviour
of the vector Z | σ, F (t). Under Model Assumptions 1 it can be shown that the required
conditional independence between ZCY,l and (ZPY, ZCY,s) given F (t) is equivalent to the conditional
independence between ZCY,l and (ZPY, ZCY,s) given F (t) and σ.

Moreover, since all the marginal conditional distributions of the prior year claims and small
current year claims are assumed to be log-normal, following Equations (30) and (31), the notation can
be further simplified to

Zi | σ, F (t) ∼ LN(mi(σ), Vi(σ)), for i = 1, . . . , 2L, (52)

with mi(σ), and Vi(σ) defined in Model Assumptions 2 and 4. For example, for i = L + 1,
mi(σ) = μ

(1)
CY,s, defined in Model Assumptions 4.

We are now ready to define the joint conditional model to be used.

Model Assumptions 7 [Conditional joint model.] Based on Model Assumptions 2 and 4 we link the
marginals of the conditional model through a Gaussian copula with correlation matrix Ω, with elements
(Ω)i,j = ωi,j. More formally, given F (t) and σ, the joint distribution of Z is given by

FZ(z1, . . . , z2L; Ω | F (t), σ) = C
(

FZ1
(z1 | F (t), σ), . . . , FZ2L

(z2L | F (t), σ); Ω
)

,

where FZi
( · | F (t), σ) denotes the conditional distribution of Zi | F (t), σ defined in Equation (52) and

C( · ; Ω) is the Gaussian copula with correlation matrix denoted by Ω.

Remark 15. In this section the parameter matrix Ω should be understood as a deterministic variable, differently
from σ and φ. For this reason we do not include it on the right hand side of the conditioning bar. Instead,
whenever Ω needs to be explicitly written, we include it on the left hand side of the bar, separated by the function
(or functional, for expectations) arguments by a semicolon.

In order to match SST’s correlation matrix Λ, under Model Assumptions 2 and 4, the following
equation needs to be solved with respect to Ω:

Λi,j = Corr(Zi, Zj; Ω | F (t)). (53)

To compute the right hand side of the equation above we first notice that

Cov(Zi, Zj; Ω | F (t)) = E[ZiZj; Ω | F (t)]−E[Zi | F (t)]E[Zj | F (t)],

where, from Equation (46) and the discussion in Section 6.1,

E[Zi | F (t)] = E[E[Zi | F (t), σ] | F (t)]

= E[mi | F (t)] =

{
R(i)

(t), if 1 ≤ i ≤ L,

E[Z(i−L)
CY,s | F (t)], if L + 1 ≤ i ≤ 2L,

and from Equation (A3), Appendix B,

E[ZiZj; Ω | F (t)] = E[E[ZiZj; Ω | F (t), σ] | F (t)]

= E

⎡⎣exp

⎧⎨⎩mi +
V2

i + 2Viωi,jVj + V2
j

2
+ mj

⎫⎬⎭ ∣∣∣F (t)

⎤⎦ .
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Therefore, to satisfy Equation (53) Ωi,j needs to be chosen such that the following implicit
relationship (which can be solved through any univariate root search algorithm) holds:

Λi,j

√
Var(Zi | F (t))Var(Zj | F (t)) +E[Zi | F (t)]E[Zj | F (t)]−E[ZiZj; Ω | F (t)] = 0.

7.2. Marginalized Joint Model

Similarly to Section 7.1, in this section we will fully characterize the joint distribution of Z | F (t)
under Model Assumptions 3, 4, 5 and 6.

From these assumptions we define the following notation:

Zi | F (t) ∼ LN(mi, Vi), for i = 1, . . . , 2L. (54)

Model Assumptions 8 [Marginalized joint model.] Based on Model Assumptions 3 and 4 we link the
marginal distributions of the marginalized model through a Gaussian copula with correlation matrix Ω, with
elements (Ω)i,j = ωi,j. More formally, given F (t), the joint distribution of Z is given by

FZ(z1, . . . , z2L; Ω | F (t)) = C
(

FZ1(z1 | F (t)), . . . , FZ2L(z2L | F (t)); Ω
)

,

where FZi denotes the conditional distribution of Zi | F (t) defined in (Equation 54) and C( · ; Ω) is the
Gaussian copula with correlation matrix Ω.

In order to match SST’s correlation matrix, in the joint marginalized model the Gaussian copula
correlation Ω is chosen such that (see Equation (A4), Appendix B) it satisfies

Λi,j =
exp{Viωi,jVj} − 1[

(eV2
i − 1)(eV2

j − 1)
]1/2 .

8. Data Description and Parameter Estimation

In this section we discuss how we set up the parameters in the models discussed so far, starting
from the balance sheet of a fictitious insurance company. Using this balance sheet and the information
contained in the SST we generate realistic claims triangles (see Appendix C) and, based on them,
we show how to perform Bayesian inference for the unknown parameters. Our starting point is the
fictitious balance sheet shown in Table 1, which is intended to represent a large insurance company in
Switzerland (for this reason all monetary units should be understood as millions of Swiss Francs (CHF)).

8.1. Hyperparameters for φj

Based on SST’s standard runoff pattern (see Table 3) we first compute the implied CL factors f (�)j
as follows (once again we suppress the index � of the LoB). If Fj is the deterministic cumulative claims
payment pattern for development year j we define

f j =
Fj+1

Fj
, for j = 0, . . . , J − 1.

These values can, then, be used as a hyperparameter in the prior for φj (see Model Assumptions 1,
item (c)).

To generate data from the model (see Section C) we fix φj = 1/ f j and σj = sj/ f j, where sj is
Mack’s standard deviation estimate calculated from exogenous triangles. The values of sj are presented
in Table 4. That is, {Fj}j should be understood as a (deterministic) prior payment pattern.
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8.2. Current Year Small and Large Claims

To calculate the expected number of CY claims, λCY, defined in Section 6, we first set our prior
belief for the claims ratio for each LoB, i.e., how much of the premium in that LoB is used to cover
incoming claims (all the rest covers business’ costs). This information is available in Table 5, along with
the average claim amount. Based on these values the expected number of claims is defined as

λCY =
Claims ratio × Premium
Average claim amount

.

Table 5. Claims ratio, average claim amount (in millions of CHF) and market share.

LoB Claims Ratio Average Claim Amount Market Share

1 90% 0.005
2 75% 0.003 20%
3 75% 0.004
4 75% 0.004
5 90% 0.004 10%
6 90% 0.003
7 90% 0.002
8 80% 0.003
9 80% 0.003

Given the expected number of CY claims, λCY, this value is used to compute the expected number
of individual large claims, λCY,l , as in Equation (51). Using the fact that λCY,s = λCY − λCY,l we
calculate the coefficient of variation for small CY claims as given in Equation (48).

The last ingredient in Model Assumptions 4 is E[ZCY,s | F (t)] which is given by

E[ZCY,s | F (t)] = Claims ratio × Premium −E[ZCY,l | F (t)],

and the expectation on the right hand side is given either in Model Assumptions 5 or Model
Assumptions 6, depending on the LoB.

For the large claims from Model Assumptions 5 and 6 we assume the threshold for large claims β

to be equal to 5 (millions of CHF). For the large cumulated claims we use LoBs market share as given
in Table 5. The resulting parameters can be found in Table 2. Note these parameters are the same both
for the marginalized and conditional models.

8.3. Parameter Estimation

In this section we discuss how to compute the posterior distributions of the variance parameters
σj in Model Assumptions 1, which are used to compute quantities such as the marginalized msep from
Section 5.2.

In order to compute the posteriors of σj, we assume priors centred at Mack’s Mack (1993) CL
standard deviation estimator normalized by the CL factor f , both implied by the data. Formally,

σ̂j(t) =

√
ŝ2

j (t)

f̂ j(t)
, ∀0 ≤ j ≤ J − 1, (55)

where ŝ2
J−1(t) = min{ŝ2

J−3(t), ŝ2
J−2(t), ŝ4

J−2(t)/ŝ2
J−3(t)} = min{ŝ2

J−3(t), ŝ4
J−2(t)/ŝ2

J−3(t)}.
To generate samples from the posteriors we use a Metropolis-Hastings algorithm, with proposals

given by a truncated Normal centred at the current point and standard deviation equal to 10 × dj. All
the chains are started at the CL variance estimate and the upper limit for the prior, dj = k × σ̂j(t) is set
as k = 5 times the CL variance estimate. To be left with NMCMC = 1000 samples from the posterior we
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ran the Markov chains for 12,500 iterations, discarding the first 20% as a burn-in and keeping every
10th iteration of the remaining simulations.

Some of the results are presented in Figure 3 where one finds the unnormalized posteriors, the
histogram of the MCMC outputs and a red dashed line indicating the CL variance estimate for three
different LoBs: (a) MTPL, (b) Motor Hull and (c) Property. As expected, for unidimensional and
unimodal densities the resulting estimates are highly accurate. It is also worth noticing that the larger
the development year j the more diffuse the posterior is, due to the diminishing amount of data
available. In the limit, when j = J − 1 the information available is not enough to estimate the variance
parameter and, therefore, as can be seen from the posterior distribution derived in Equation (38), the
posterior is the same as the prior.

Using the sample of size NMCMC = 1000 mentioned above, the calculated parameters for the
marginalized model are presented in Table 2. For the conditional model we use the same sample from
the posterior and calculate the one value of σPY and μPY for each sampled value σ. The resulting
(transformed) samples are presented as histograms in Figures 5 and 6 and, for comparison only,
the relevant marginalized parameters are included as a red dashed line.

(a) (b)

(c)

Figure 3. Posterior distributions for σj for the (a) Motor Third Part Liability (MTPL) (b) Property and
(c) Motor Hull lines of business. One sees solid lines representing the unnormalized posteriors, the
histogram of the Markov Chain Monte Carlo (MCMC) outputs and a red dashed line indicating the
CL standard deviation estimate. Note that for LoB MTPL we only plot selected development periods:
j ∈ {0, 7, 14, 21, 28}.

8.4. The Correlation Matrices

For the copula correlation matrices we follow the procedures outlined in Sections 7.1 and 7.2.
The resulting matrix for the marginalized model is found in Table 6. From FINMA (2016) it can be seen

89

Bo
ok
s

M
DP
I



Risks 2017, 5, 53

the values in ΩPY, CY,s are very similar to ones in the standard ΛPY, CY,s. Also, it worth noticing that
differently from SST’s original correlation matrix, the block ΩPY, CY,s is no longer symmetric, i.e., in

order to have Corr(Z(1)
PY , Z(2)

CY | F (t)) = Corr(Z(2)
PY , Z(1)

CY | F (t)) the term (1, 2) of the matrix ΩPY, CY,s is
not equal to the term (2, 1) of the same matrix.

The results for the copula correlation ΩPY, CY,s follow the same patterns as ΩPY, CY,s and for this
reason its values are omitted.

Table 6. Copula correlation matrix from the marginalized model. Correlation block for the marginalized
model: ΩPY (Table 7); ΩPY, CY,s (Table 8); ΩCY,s (Table 9).

Ω =

⎡⎢⎣ ΩPY ΩPY, CY,s 0L×P

ΩCY,s 0L×P

IP×P

⎤⎥⎦
Table 7. Correlation block for the marginalized model: ΩPY .

LoB 1 2 3 4 5 6 7 8 9

1 1 0.1517 0.1505 0.2501 0.5001 0.2501 0.1501 0.2502 0.2511
2 1 0.1520 0.1517 0.1517 0.1517 0.1517 0.1517 0.2532
3 1 0.1505 0.1505 0.1505 0.1505 0.1505 0.2515
4 1 0.2501 0.1501 0.1501 0.1501 0.2511
5 1 0.2501 0.1501 0.2501 0.2511
6 1 0.1501 0.2502 0.2511
7 1 0.1502 0.2511
8 1 0.2511
9 1

Table 8. Correlation block for the marginalized model: ΩPY, CY,s.

LoB 1 2 3 4 5 6 7 8 9

1 0.5004 0.5005 0.1502 0.2505 0.2503 0.2504 0.1504 0.2506 0.2506
2 0.5046 0.5046 0.2528 0.1519 0.2528 0.1518 0.1519 0.1519 0.2529
3 0.1506 0.2509 0.5013 0.2510 0.1506 0.1506 0.1508 0.1507 0.2511
4 0.2503 0.1502 0.2503 0.5008 0.1502 0.1503 0.1504 0.1504 0.2506
5 0.2503 0.2503 0.1502 0.1503 0.5004 0.2504 0.1504 0.2506 0.2506
6 0.2503 0.1502 0.1502 0.1503 0.2503 0.5006 0.2507 0.2506 0.2506
7 0.1502 0.1503 0.1502 0.1504 0.1502 0.2505 0.5010 0.1504 0.2506
8 0.2503 0.1502 0.1502 0.1504 0.2503 0.2504 0.1504 0.5009 0.2506
9 0.2511 0.2511 0.2511 0.2513 0.2511 0.2512 0.2514 0.2513 0.5018

Table 9. Correlation block for the marginalized model: ΩCY,s.

LoB 1 2 3 4 5 6 7 8 9

1 1 0.5006 0.1503 0.2506 0.2504 0.1504 0.1505 0.1505 0.2507
2 1 0.2505 0.1504 0.2504 0.1504 0.1505 0.1505 0.2507
3 1 0.2506 0.1503 0.1504 0.1505 0.1505 0.2507
4 1 0.1504 0.1505 0.1506 0.1506 0.2509
5 1 0.2505 0.1505 0.2507 0.2507
6 1 0.2508 0.2508 0.2508
7 1 0.1507 0.2510
8 1 0.2509
9 1
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9. Details of the SMC Algorithm

9.1. Selection of Intermediate Sets

Recall that a key component of the proposed SMC Sampler solution is to create a relaxation of
the rare-conditional events that constrain the target posterior into a sequence of increasingly difficult
constraints. In this section we discuss how one can select the sequence of constraint relaxations in an
adaptive manner.

For both the marginalized and the conditional models we use an adaptive strategy similar to
Cérou et al. (2012) in order to select adaptively online (as the algorithm runs) the levels B1, . . . , BT , as
well as the total number of intermediate sets T. When levels are being chosen adaptively one of the main
advantages of the proposed SMC algorithm is the ability to estimate, in one run, the company-wide
value at risk, the expected shortfall as well as the risk allocations.

Starting from B0 = 0 (or B0 = 0 if the conditional model is being used) the idea consists of,
at each algorithmic iteration t − 1, choosing the next level, Bt, such that a percentage p0 ∈ (0, 1) of the
(t − 1)–particles is above this set. More formally, we set Bt to be the 1 − p0 empirical quantile of the
weighted sample {s(j)

t−1, W(j)
t−1}N

j=1 or {s(j)
t−1, W(j)

t−1}N
j=1, where st−1 and st−1 denote, respectively, the sum

of the components of zt and zt. Therefore, at algorithmic time t the level Bt corresponds to an estimate
of the (1 − pt

0)-th quantile of the target distribution. In our examples we set p0 = 0.4, 0.5 and 0.7 which
induces intermediate quantiles seen in Table 10 for the algorithm. Note that, given a value of p0 the
number of levels in the algorithm is deterministic. For example, for p0 = 0.5 there are 7 levels until the
estimated quantile is above 99%.

Table 10. Intermediate quantiles for different values of p0.

p0 1 2 3 4 5 6 7

0.4 0.6 0.84 0.936 0.9744 0.9898 0.9959
0.5 0.5 0.75 0.875 0.9375 0.9688 0.9844 0.9922
0.7 0.3 0.51 0.657 0.7599 0.8319 0.8824 0.9176
p0 8 9 10 11 12 13

0.4
0.5
0.7 0.9424 0.9596 0.9718 0.9802 0.9862 0.9903

An alternative approach to choosing the level sets is to use the classic normalizing constant
estimator derived from the SMC sampler algorithm (see (Del Moral et al. 2006, sct. 3.2.1)). Using the
notation from Section 3 we have that the normalizing constant Zt = P[S > Bt] can be estimated as

Ẑt = Ẑt−1

N

∑
j=1

W(j)
t−1α̃

(j)
t , (56)

where Wt−1 and α̃t are, respectively the normalized and the incremental weights at time t − 1.
Similarly to our proposed estimate, in this alternative route one would choose Bt such that

p0 × 100% of the time t − 1 particles are above this level. Using the estimator in Equation (56) one
could stop the algorithm as soon as Ẑt < α. The main disadvantage of this approach is that although
Ẑt can be proven to be unbiased and asymptotically normally distributed when the number of particles
N → ∞ (see (Del Moral 2004, Propositions 7.4.1 and 9.4.1) and Pitt et al. (2012) for a proof in the special
case of state-space models) one can not guarantee Ẑt ∈ [0, 1]. In our experiments the results based on
this classic estimate were deemed unsatisfactory, as we observed estimates of the normalizing constant
as large as 15, as finite sample realizations.
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9.2. Marginalized Model

9.2.1. The Forward Kernel

Similarly to (Targino et al. 2015, sct. 6.1) we propose a mutation kernel Kt(zt−1, zt) such that
the condition ∑d

i=1 zi,t > Bt is always satisfied. Due to the independence assumption of the CY large
claims (the P Pareto variables) we first independently mutate the Pareto coordinates, following their
true (unconditional) marginal and then mutate the other 2L variables.

First we split the vector into its log-normal and Pareto components, zt = (z′
t, z′′

t ), where
z′

t = (zt,1, . . . , zt,2L) and z′′
t = (zt,2L+1, . . . , zt,2L+P). Using this notation and denoting zt,−m the vector

zt without its m-th component, we use

Kt(zt−1, zt) = K′
t(z

′
t−1, z′

t | z′′
t ) K′′

t (z
′′
t−1, z′′

t )

=

{
1

2L

2L

∑
m=1

[
K′(−m)

t (z′
t−1, z′

t,−m)K
′(m)
t (z′

t−1, z′t,m | z′
t,−m, z′′

t )
]}

×
2L+P

∏
i=2L+1

Pareto(z′′
t ; αi, βi),

where the kernel K′(−m)
t (z′

t−1, · ), which mutates all but the m-th dimension of z′
t−1, consists of

independent moves in each dimension, i.e.,

K′(−m)
t (z′

t−1, z′
t,−m) =

2L

∏
i=1
i �=m

K′(−m,i)
t (z′t−1,i, z′t,i).

Note that these moves are also independent of the P Pareto mutations.
Let us denote {z(j)

t−1, W(j)
t−1}N

j=1 the weighted sample approximating

πt(zt−1) = fZ(zt−1 | zt−1 ∈ GZt−1),

as defined in Equation (15). The components of the mutation kernel are then defined as

K′(−m,i)
t (z′t−1, z′t,i) = LN(z′t,i; μ̂i, σ̂i), for i = 1, . . . , 2L, i �= m, (57)

where μ̂i and σ̂i are the empirical mean and variance of {z(j)
t−1, W(j)

t−1}N
j=1 when i = 1, . . . , 2L

μ̂t−1,i =
N

∑
j=1

W(j)
t−1z(j)

t−1,i,

σ̂2
t−1,i = μ̂2

t−1,i −
N

∑
j=1

Wt−1

(
z(j)

t−1,i

)2
.

For the mutation of the remaining dimension, m, to ensure all the samples satisfy the condition
∑d

i=1 zi,t > Bt we proceed as follows. First we define

Bz
t (m) = max

{
0, Bt −

d

∑
i=1
i �=m

zt,i

}
,

and then sample the last component zm,t ∈ [Bz
t (m),+∞) according to

K(m)
t (zt−1, zt,m | zt,−m) = TN(zt,m; μ̂m, σ̂m, Bz

t (m),+∞), for m = 1, . . . , 2L, (58)
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where TN( · ; μ, σ, a, b) denotes the density of a Normal distribution with mean μ and variance σ2

truncated on support [a, b].

9.2.2. The Backward Kernel

For the backward kernel we follow the discussion in Section 3.1.2 and use the (approximation to
the) optimum kernel of Del Moral et al. (2006), given by equation Equation (11)

Lt(zt+1, zt) =
γt(zt)Kt+1(zt, zt+1)

1
N ∑N

j=1 w(j)
t Kt+1(z

(j)
t , zt+1)

,

where w(j)
t denotes the unnormalized weights at time t and the weighted sample {z(j)

t , w(j)
t }N

j=1 targets
the unnormalized density γt(zt). Proceeding in this way the unnormalized weights for the SMC
sampler algorithm (see Algorithm 1) satisfy the following recursion

w(j)
t = w(j)

t−1
γt(zt)

1
N ∑N

k=1 w(k)
t Kt(zt−1, zt)

.

9.2.3. The MCMC Move Kernel

To improve particle diversity after a resampling step (which is performed whenever the effective
sample size drops bellow N/2) the following MCMC move kernel is applied to the particles.

As in (Targino et al. 2015, sct. 6.2) we propose a Gibbs-type update combined with a slice sampler
(see Neal (2003)). For notational simplicity we suppress the dependence in t in the vector zt and denote
v∗(m) = (z∗1, . . . , z∗m, zm+1, . . . , zd) the vector where the first m components have already been updated
in the Gibbs scan. The full conditional for the m-th component of zt is given by

πt(z∗m | z∗1, . . . , z∗m−1, zm+1, . . . , zd) ∝ πt(v∗(m)) ∝ fZ(v∗(m))1GZt
(v∗(m)),

which is can be sampled from using an unidimensional slice sampler (see Neal (2003)).

9.3. Conditional Model

Following the discussion in Section 3.3.2 we use equation Equation (19) as an approximation to
the unknown density fZ(z). For our simulations M = 5 samples of the unknown parameter θ are
used, where

θ = (σ(1), . . . , σ(L)),

and each vector σ(�) = (σ
(�)
1 , . . . , σ

(�)
J ) contains all the unknown variance parameters for the �-th LoB.

Therefore, ϑ = (θ(1), . . . , θ(M)) and it should be noticed the superscript have a different interpretation
from those in σ

(�)
j .

As the parameter estimation step described in Section 8.3 is independent of the allocation
process we assume NMCMC samples for each unknown parameter vector σ have already been
created. Therefore, to sample z ∼ fZ(z) we first sample an index n ∼ U({1, . . . , NMCMC}) and
then z ∼ fZ(z | θ(n)).

9.3.1. The Forward Kernel

The forward kernel used for the conditional model follows the same structure as the one used
in the marginalized model and described in Section 9.2.1: first we sample the P independent Pareto
variables (with the same distribution as in the marginalized case) and then the remaining 2L variables.
More precisely,

K′(−m,i)
t (z′

t−1, z′t,i | ϑt) = K′(−m,i)
t (z′

t−1, z′t,i) = K′(−m,i)
t (z′

t−1, z′t,i),
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where the last term is defined in equation Equation (57) and μ̂i and σ̂i are now the empirical mean and
variance of {z(j)

t−1, W(j)
t−1}N

j=1. Likewise,

K′(m)
t (z′

t−1, z′t,m | z′
t,−m, ϑt) = K′(m)

t (z′
t−1, z′t,m | z′

t,−m) = K′(m)
t (z′

t−1, z′t,m | z′
t,−m),

with the last term defined in equation Equation (58). As samples from fϑ(ϑ) have already been
generated through MCMC then the mutation kernel in the extended space, Ky

t (yt−1, yt), is completely
characterized.

9.3.2. The Backward Kernel

As in Section 9.2.2 we use the optimum backward kernel in the extended space Y = Rd × ΘM,
which for the conditional model leads to the following incremental weights (see Equation (12))

αt =
γ

y
t (yt)

1
N ∑N

j=1 w(j)
t−1Ky

t (yt−1, yt)

=
f̂Z(zt; ϑt) fϑ(ϑt)1GZt

(zt)

1
N ∑N

j=1 w(j)
t−1Kt(zt−1, zt) fϑ(ϑt)

=
f̂Z(zt; ϑt)1GZt

(zt)

1
N ∑N

j=1 w(j)
t−1Kt(zt−1, zt)

.

9.3.3. The MCMC Move Kernel

The MCMC move kernel used for the conditional model needs to keep the target distribution in
the extended space, π

y
t (yt), invariant. The strategy adopted is to first sample ϑ∗ ∼ fϑ(ϑ) and then

zt | ϑ∗ ∼ f̂Z(zt; ϑ∗
t )1GZt

(zt).
For the second step above we use exactly the same Gibbs-sampler update as in Section 9.2.3,

with fZ( · ) replaced by f̂Z( · ; ϑt).

10. Results

In this section we present the results of the SMC procedure when used to calculate the expected
shortfall allocations from Equations (4) and (5) of the solvency capital requirement.

Before proceeding to the results calculated via the SMC algorithm, in order to understand the
simulated data presented in Figure 4, in Table 2 we present some results based on a “brute force”
Monte Carlo (rejection-sampling) simulation, which is taken as the base line for comparisons with the
SMC algorithm. The table is divided in three blocks of rows, with PY claims, CY small (CY,s) claims
and CY large (CY,l) claims.

First of all, it should be noticed that the reserves presented on the first block of Table 2 are the
ones implied by the data, which we then assume to be the true ones (ignoring, from now on, the initial
synthetic data from Table 1). That is, based on initial parameters we have generated synthetic claims
development triangles, which naturally deviate slightly from their expected values. The parameters σ

and μ for PY claims are related to the marginalized model (for the parameters of the conditional model
see Figures 5 and 6). It is also important to note that only the PY parameters are different between the
conditional and marginalized models.

For each LoB the standalone expected shortfall (ES) is calculated analytically and its value is,
then, combined with the LoB’s expectation to calculate the solvency capital requirement (SCR). These
values are added up, both within risk type (i.e., PY, CY,s and CY,l) and globally, in order to calculate
the overall standalone capital. For the marginalized and conditional models the columns “ES” and
“SCR” denote, respectively, the expected shortfall and capital allocations to each LoB. These values are
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compared to their standalone counterparts to generate the diversification benefit, which is around 45%
for PY and CY,s claims (regardless of the model used) and ranges between 30% and 70% within the PY
and CY,s groups. Due to the independence assumptions the largest diversification benefit comes from
the CY,l claims, where the capital is reduced by around 95%.

The data presented in Table 2 is calculated as follows. For the marginalized model (and conditional
model in brackets), 5 × 109 (2.5 × 107) independent samples of the model are generated in order to
calculate the overall VaR99%. Conditional on this value, for each LoB we then generate 5 × 107 (5 × 105)
samples above the VaR and use the average of these samples as the true ES allocation (presented in
Table 2). In order to asses the variance of the estimators, we divide these samples into Nrep = 500
groups of NMC = 105 (NMC = 103 for the conditional model) simulations. More formally, we
approximate the ES allocations ρi, defined in Equation (4), by

Ê[ρ̂i,MC] =
1

Nrep

Nrep

∑
k=1

ρ̂
(k)
i,MC, (59)

where ρ̂
(k)
i,MC stands for the estimate (using NMC particles) from the k-th run (out of Nrep), which is

defined according to

ρ̂i,MC =
1

NMC

NMC

∑
j=1

Z(j)
i .

Figure 4. Cumulative claims payment (in millions of CHF). Lighter colours represent more recent
accident years.
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Figure 5. Histogram of the parameter σPY for the conditional model. Red dashed line: σPY .

Similarly to the analysis performed in Peters et al. (2017) the impact of the prior density can be
assessed by comparing the sum of the SCR allocations with the SCR from the “empirical Bayes model”,
i.e., the model where the prior for σ is set as a Dirac mass on σ̂j(t), see Equation (55). In this case we
have that the total capital is equal to SCR = 505.48 and the fully Bayesian model with prior defined
with k = 5 (see Section 8.3) requires 15% more capital (both in the marginalized and conditional cases).

To check the accuracy of the SMC procedure we first analyse the estimate of the level sets
(intermediate VaRs). For p0 = 0.5, Figures 7 and 8 show, respectively, the histogram of the levels
B1, . . . , B7 (as per Table 10) for the marginalized and conditional models. The red dashed bars represent
the true value of the quantiles (based on the “brute force” MC simulations), which is very close to
the mode of the empirical distribution of the SMC estimates. It should be noticed, though, that the
SMC estimates seem to be negatively biased and the bias appears to become more pronounced for
extreme quantiles. Apart from this negligible bias we assume the levels are being sensibly estimated
and proceed, as in Targino et al. (2015), to calculate the relative bias and the variance reduction of the
SMC method when compared to a MC procedure.

96

Bo
ok
s

M
DP
I



Risks 2017, 5, 53

Figure 6. Histogram of the parameter μPY for the conditional model. Red dashed line: μPY .

For each of the LoBs the plots on the Figures 9 and 10 show the relative bias, defined as

Relative Bias =
Ê[ρ̂i,SMC]− Ê[ρ̂i,MC]

Ê[ρ̂i,MC]
,

where Ê[ρ̂i,SMC] is computed analogously to the MC estimate but, instead, using the SMC method,
with NSMC = 100. The behaviour of the two models is very similar, and we observe that the bias in the
PY and CY,s allocations are negligible (less than 5%) while for some of the large CY risks a higher bias
(of more than 10%) may be observed. Apart from the difficulty of performing the estimation based on
Pareto distributions we stress the fact that although these errors may look large, as we can see from
Table 2, their impact in the overall capital are almost imperceptible, due to the small capital charge due
to these risks.
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Figure 7. Histograms levels used in the SMC sampler algorithm with p0 = 0.5 in the marginalized
model. The red dashed bar represents the true value of the α quantile.

Figure 8. Histograms levels used in the Sequential Monte Carlo (SMC) sampler algorithm with p0 = 0.5
in the conditional model. The red dashed bar represents the true value of the α quantile.

Figure 9. Bias for the marginalized model. Note that although the bias for some of the CY large claims
is around 10% their allocated capital is rather small, as seen in Figure 11 (a).
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Figure 10. Bias for the conditional model. Note that although the bias for some of the current year (CY)
large claims is around 10% their allocated capital is rather small, as seen in Figure 11 (b).

Another way to compare the SMC calculations is through the actual capital charges, as seen in
Figure 11. In this figure we compare the 99% SCR calculated via the MC scheme discussed above with
the SMC results for the quantile level right before 99% (which, for p0 = 0.5 is 98.44%) and the one right
after it (99.22%). From this figure we see the SMC calculation based on the 99.22% quantile is very
precise, for both the marginalized and conditional models. Visually, the only perceivable difference
comes from the CY,l claims, which accounts (in total) for less than 2% of the overall capital.

To calculate the improvement generated by the SMC algorithm compared to the MC procedure
we need to analyse the variance of the estimates generated by both methods, under similar
computational budgets.

We start by noticing that the expected number of samples in the Monte Carlo scheme in order
to have NMC samples satisfying the α condition is equal to MMC = NMC/(1 − α), which can be
prohibitive if α is very close to 1. Then, similarly to Equation (59) we define the empirical variance of
the MC and the SMC algorithms which are, then, compared as follows

Variance Reduction = MMC × V̂ar(ρ̂i,MC)

/
T × NSMC × V̂ar(ρ̂i,SMC). (60)

The variance reduction statistics defined in Equation (60) takes into account how many samples
one needs to use in order to generate NMC samples via rejection sampling or NSMC using the SMC
algorithm. The later also takes into account the fact that T levels are being used and in each one NSMC
samples need to be generated. For the conditional model we further multiply the denominator by the
number of samples used to estimate the unknown density, which in our examples is set to M = 5.

The results follow on Figures 12 and 13. As in Targino et al. (2015) we observe that the variance of
the SMC estimates become smaller (compared to the MC results) for larger quantiles. In particular,
for the quantiles of interest the variance of the marginal ES allocation estimates are around 100.5 ≈ 3
times smaller than its MC counterparts, while the overall ES estimate is slightly less variable for the
MC scheme.
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Figure 12. Variance reduction for the marginalized model.

Figure 13. Variance reduction for the conditional model.

For the marginalized model we also present two plots in Figure 14, related, respectively, to
the sensitivity to (a) the parameter p0 and (b) the number of samples, NSMC. In Figure 14a, for the
same number of samples, NSMC = 100 we analyse the bias relative to the 99% ES allocations of the
first quantile larger than 99% (top plot) and the previous one (bottom plot) for p0 ∈ {0.4, 0.5, 0.7}.
The quantiles used in these different setups are presented in Table 10. Although the results may look
slightly different, the main message is the same: the “higher” quantile is effectively unbiased for PY
and CY,s risks but presents a negative bias of around 10% for some of the CY,l risks.

Regarding the sensitivity to the number of particles in the SMC algorithm, as expected,
the absolute bias decreases when the number of samples increases, as seen in Figure 14b. Although the
SMC algorithm is generically guaranteed to be unbiased when NSMC → +∞ the trade-off between
bias and the variance reduction in the allocation problem may lead us to accept a small bias in order to
have a smaller variance.
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11. Conclusions

In this paper we provide a complete and self-contained view of the capital allocation process for
general insurance companies. As prescribed by the Swiss Solvency Test we break down the company’s
overall Solvency Capital Requirement (SCR) into the one-year reserve risk, due to claims from previous
years (PY) and the one-year premium risk due to claims’ payments in the current year (CY). The later is
further split into the risk of normal/small claims (CY,s) and large claims (CY,l). For the premium risk
in each line of business we assume a log-normal distribution for CY,s risks with mean and variance as
per the SST, which also describe a distribution for CY,l risks, in this case Pareto. For the reserve risk, as
in Peters et al. (2017), we postulate a Bayesian gamma-gamma model which, for allocation purposes, is
approximated by log-normal distributions leading to what we name the conditional (when the log-normal
approximation is performed conditional on the unknown parameters) and the marginalized (when the
log-normal approximation is performed after the parameter uncertainty has been integrated out) models.

As seen in Figures 1 and 2, when assuming a Bayesian gamma-gamma model these two
approximations do not deviate considerably from the actual model assumptions. Regarding the allocations,
Figure 11 shows the results for both models are, once again, very close to each other (and to the “true”
allocations, calculated via a large Monte Carlo exercise). Therefore, the decision on which approximation
to use should not interfere with the allocation or reserving results, and is left to the reader.

The allocation process is performed using state-of-the-art (pseudo-marginal) Sequential Monte
Carlo (SMC) algorithms, which are presented in a self-contained and accessible format. Although
the algorithms described form an extremely flexible class, we provide an off-the-shelf version, where
minimal or no tuning is needed. The algorithms are also shown to be computationally efficient in
a series of numerical experiments.

One of the advantages of our proposed methodology is that it is able to compute in one single
loop (1) the value at risk (VaR) and (2) the Expected Shortfall (ES), both at the company level and (3) the
capital allocations for the risk drivers. This procedure should be compared with routinely applied
methodologies, where one simulation is performed to compute the VaR, which is used in a different
simulation to compute the allocations, in a process that accumulate different errors.

Moreover, even ignoring the computational cost of calculating a precise estimate for the required
VaR in a “brute force” Monte Carlo scheme, the proposed SMC algorithm is numerically shown to
provide estimates that are less volatile than comparable “brute force” implementations.

Author Contributions: All authors contributed equally to the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Posterior Distributions

For ease of exposition we omit the LoB index �. Under Model Assumptions 1 the posterior
distribution of the parameter vectors φ and σ, for t ≥ I, is given by
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π(φ, σ | F (t)) ∝ g(F (t) | φ, σ) fφ(φ) fσ(σ)

=

⎡⎣g(C1,0, . . . , Ct,0)
J−1

∏
j=0

t−j−1

∏
i=1

(φjσ
−2
j )

Ci,jσ
−2
j

Γ(Ci,jσ
−2
j )

C
Ci,jσ

−2
j −1

i,j+1 exp
{
−φjσ

−2
j Ci,j+1

}⎤⎦
×
[

J−1

∏
j=0

lim
γj→1

( f j(γj − 1))γj

Γ(γj)
φ

γj−1
j exp {−φj f j(γj − 1)}

]
×
[

J−1

∏
j=0

fσ2
j
(σ2

j )

]

∝

[
J−1

∏
j=0

lim
γj→1

φ
γj−1+∑

t−j−1
i=1 Ci,jσ

−2
j

j exp

{
−φj

(
f j(γj − 1) +

t−j−1

∑
i=1

Ci,j+1σ−2
j

)}]

×
⎡⎣J−1

∏
j=0

fσ2
j
(σ2

j )
t−j−1

∏
i=1

(Ci,j+1σ−2
j )

Ci,jσ
−2
j

Γ(Ci,jσ
−2
j )

⎤⎦
∝

[
J−1

∏
j=0

φ
∑

t−j−1
i=1 Ci,jσ

−2
j

j exp

{
−φj

(
t−j−1

∑
i=1

Ci,j+1σ−2
j

)}]

×
⎡⎣J−1

∏
j=0

fσj(σj)
t−j−1

∏
i=1

(Ci,j+1σ−2
j )

Ci,jσ
−2
j

Γ(Ci,jσ
−2
j )

⎤⎦ .

From the functional form of π(φ, σ | F (t)) it can be seen that the components φj of φ and σj of
σ are independent a posteriori, which is a direct consequence of the prior independence. Moreover,
since π(φ | σ, F (t)) ∝ π(φ, σ | F (t)), we have that

φj | σ, F (t) ∼ Γ(aj, bj), (A1)

with aj = 1 + ∑
t−j−1
i=1 Ci,jσ

−2
j and bj = ∑

t−j−1
i=1 Ci,j+1σ−2

j .
The marginal posterior π(σ | F (t)) and its unnormalized version h(σ | F (t)) are calculated as

π(σ | F (t)) =
∫

π(φ, σ | F (t))dφ

∝
J−1

∏
j=0

Γ(aj)

b
aj
j

fσj(σj)
t−j−1

∏
i=1

(Ci,j+1σ−2
j )

Ci,jσ
−2
j

Γ(Ci,jσ
−2
j )

= h(σ | F (t)).

Lemma A1. (from Peters et al. (2017)) For 0 ≤ j ≤ J − 1 and t ≥ 1 if either t − j − 1 = 1 or at least
one accident year 1 ≤ i ≤ t − j − 1 is such that

Ci,j+1
Ci,j

�= f̂ j(t) then the marginal posterior π(σ | F (t)) is
integrable, i.e., ∫ dj

0
hj(σj | F (t))dσj < ∞.

Appendix B. Correlation Bounds in the Log-Normal–Gaussian Copula Model

As mentioned in Section 7 and discussed, for example in (Embrechts et al. 2002, Fallacy 2), for
given marginal distributions not all linear correlations between −1 and 1 can be achieved. This can
also be seen in the following Lemma (see (Denuit and Dhaene 2003, sct. 2)).
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Lemma A2 (Correlation bounds). Let (X1, X2) be a bivariate random variable with marginal distributions
F1 and F2. Then the correlation between X1 and X2 is bounded by

Cov(F−1
1 (U), F−1

2 (1 − U))√
Var(X1)Var(X2)

≤ Corr(X1, X2) ≤
Cov(F−1

1 (U), F−1
2 (U))√

Var(X1)Var(X2)
,

for U uniformly distributed in [0, 1].

Although theoretically interesting, Lemma A2 may provide bounds that are too wide and, in some
cases just state that the correlation lies between −1 and 1. In the sequel we show that in the particular
case of a random vector with log-normal marginals and Gaussian copula it is possible to calculate
precisely the intended correlation and numerically check its limits.

Let us assume a random vector X = (X1, . . . , X2L) is normally distributed with X ∼ N(m, V),
where a general term of the covariance matrix V is given by (V)i,j = Vi,j and Vi,i = V2

i . Moreover, we
denote by Ω = Corr(X) the correlation matrix of the random vector X, i.e.,

V = diag(V1, . . . , V2L) Ω diag(V1, . . . , V2L),

with (Ω)i,j = (Ω)j,i = ωi,j.
If we define Zi = eXi , for i = 1, . . . , 2L then Zi ∼ LN(mi, Vi) with

E[Zi] = exp

{
mi +

V2
i

2

}
,

Var(Zi) = (E[Zi])
2
(

eV2
i − 1

)
. (A2)

On the other hand, since Xi + Xj ∼ N(mi + mj, V2
i + V2

j + 2Viωi,jVj) we have that

E[ZiZj] = E[eXi+Xj ] = exp

{
mi + mj +

V2
i + V2

j + 2Viωi,jVj

2

}
. (A3)

Therefore, using Equations (A2) and (A3) the correlation between Zi and Zj can be written as

Corr(Zi, Zj) =
exp{Viωi,jVj} − 1[

(eV2
i − 1)(eV2

j − 1)
]1/2 . (A4)

Since exp(·) is a strictly increasing function and the marginal distributions of (X1, . . . , X2L) are
continuous, from (McNeil et al. 2010, Proposition 5.6) we can conclude that (Z1, . . . , Z2L) has the same
copula as (X1, . . . , X2L): a Gaussian copula with correlation matrix Ω.

From equation Equation (A4) it is easy to see the correlation between Zi and Zj is a monotone
function of ωi,j which implies that Corr(Zi, Zj) will be minimal when ωi,j = −1 and maximal when
ωi,j = 1. Therefore, for a given pair of standard deviations it is possible to compute the interval of
admissible correlations for the pair (Zi, Zj). In Figure A1 the lower (left plot) and upper (right plot)
present bounds for the correlations.

105

Bo
ok
s

M
DP
I



Risks 2017, 5, 53

Figure A1. Lower (left) and upper (right) bound for correlations in a Gaussian-copula model with
Log-Normal marginal distributions, as a function of the scale parameters σ1 and σ2.

Figure A1 shows that even when the copula correlation is set to −1 if at least one of the standard
deviation parameters is “large” then minimum possible correlation between the log-normal variables
is close to zero. For example, if σ1 = σ2 = 2 then the lower bound for the correlations is approximately
−2%. As actuarial risks are usually positively correlated this may not be a problem from the modelling
point of view. The upper limit for the correlations have a different behaviour. If both standard
deviations are the same then the range of attainable correlations is upper bounded by 1, meaning that
any positive correlation can be achieved. Problems arrive when the standard deviations are sufficiently
different from each other. If σ1 = 1 then the correlation is upper bounded by 66% if σ2 = 2, 16% if
σ2 = 3 and about 1% if σ2 = 4.

Appendix C. Data Generating Process

In this appendix we describe the process used to generate claims triangles using the balance sheet
data from Table 1 in a way that the estimated reserves from the data match closely the reserves from
Table 1.

First of all, for each LoB we set the maximum number of development years as the number of
years it takes until Fj = 1, where Fj denotes the cumulative payment pattern for development year j
(see Section 8.1). As claims in the “Motor Third Part Liability (MTPL)” and “Workers Compensation
(UVG)” LoBs should take between 20 and 30 years to settle, we make a simplifying assumption that
I = max(J + 1, 10).

For different accident years we calculate the present value of the runoff pattern, using a constant
claim inflation r = 2% for all years and LoBs. More precisely, we have that

PVi(Fj) = (1 + r)−iFj for j = 1, . . . , J and j + i > I.

For the most recent accident year, i = I, we define the expected ultimate claim by

C∗
I,J = R × ∑J

j=1 PI,j

∑J
j=1 Fj

,
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where R denotes the reserves from Table 1 and

PI,j =
PVI(Fj)

∑I
i=1 ∑J

j=1 PVi(Fj)
.

Note that C∗
I,J is neither the ultimate claim predictor for the conditional model defined in

Equation (21) nor the marginalized one from Equation (27). In this context C∗
I,J is just an auxiliary

variable being used in order to simulate triangles which have estimated reserves similar to the original
ones in Table 1.

For the remaining accident years the expected ultimate claim is taken as the present value of C∗
I,J .

In other words,
C∗

i,J = PVi−I(C∗
I,J) = (1 + r)I−iC∗

I,J .

Given all the values of C∗
i,J , we compute E∗

i = F0 × C∗
i,J , the expected initial payment for each

accident year. These values are, then, combined with the coefficients of variation for CY small claims
and used to simulate the first column of our triangles as

Ci,0 ∼ LN(m∗
i , V∗

i ),

with the auxiliary parameters m∗
i = log(E∗

i ) − V∗
i /2, V∗

i = log(1 + CoVa2
CY) and CoVaCY the

coefficient of variation of CY small claims, based on Model Assumptions 4. For the remaining
development years we follow Model Assumptions 1 (a) with φj = 1/ f j and σj = sj/ f j, as discussed in
Section 8.1.

Figure 4 presents the generated cumulative claims payments for all LoBs, where each line
represents the cumulative claims payment. In each plot the lighter colours represent more recent
accident years which are not yet fully developed. The reserves calculated based on this dataset are
presented in Table 2 and given these values the original reserves from Table 1 are ignored.
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Abstract: We propose an integrated approach straddling the actuarial science and the mathematical
finance approaches to pricing a default-risky catastrophe reinsurance contract. We first apply an
incomplete-market version of the no-arbitrage martingale pricing paradigm to price the reinsurance
contract as a martingale by a measure change, then we apply risk loading to price in—as in the
traditional actuarial practice—market imperfections, the underwriting cycle, and other idiosyncratic
factors identified in the practice and empirical literatures. This integrated approach is theoretically
appealing for its merit of factoring risk premiums into the probability measure, and yet practical
for being applicable to price a contract not traded on financial markets. We numerically study
the catastrophe pricing effects and find that the reinsurance contract is more valuable when the
catastrophe is more severe and the reinsurer’s default risk is lower because of a stronger balance
sheet. We also find that the price is more sensitive to the severity of catastrophes than to the arrival
frequency; implying (re)insurers should focus more on hedging the severity than the arrival frequency
in their risk management programs.

Keywords: mathematical finance; actuarial science; catastrophe arrivals; catastrophe reinsurance;
default risk; Monte Carlo simulation

1. Introduction

Catastrophe (cat hereafter) reinsurance contracts are not traded on financial markets, instead they
are one-shot deals made between reinsurers and insurers. In actuarial science, catastrophe reinsurance
is conventionally priced according to a two-stage process where in the first stage, catastrophe modelers
like RMS (Risk Management Solutions), AIR (AIR Worldwide) and EQE (EQECAT) produce loss
distributions through catastrophe modeling and calibration, and in the second stage insurers and
reinsurers negotiate prices based on the given loss distributions with additional consideration of
non-modeled market factors. This two-stage process is complex as many elements, including input
data quality, catastrophe modeling output, and non-modeled market factors, can affect premiums, and
some of these elements cannot be quantified but require subjective judgements. It is therefore fair
to say that cat reinsurance pricing, as summarized in the following pricing norm, is a mix of art and
science:

Layer premium = Expected layer loss + Risk load factor × Standard Deviation,

where the expected layer loss and standard deviation are obtained from catastrophe models inclusive
of the consideration of the modeled factors of input quality, model errors and output uncertainty,
while the risk load factor is a subjective entry that depends on risk preference, reinsurers’ capital
position, and (re)insurance market conditions, among other considerations.
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Reinsurers may also load non-modeled market factors on top of the modeled factors to increase
the premium. In the academic literature, Froot (2001) and Froot and O’Connell (2008) have
shown that reinsurers’ monopolistic power and the high costs of capital resulted from inefficient
corporate forms1 have led to unusually high risk loadings with spreads at around 5–8 times the
expected loss. Moreover, these multiples tend to jump even higher in the aftermath of a major
cat event due to reinsurers’ “reloading” of balance sheets. In practice, reinsurers may also load
geographic concentration, data quality in capturing exposure characteristics, a cedant’s loss experience,
and reinsurance relationship.

The merit of the traditional actuarial pricing approach is that it works in the imperfect global
reinsurance market, where many reinsurers also ensemble multiple pricing models to reign in model
errors. The drawback is that the pricing norm is ad hoc but not derived from prevailing financial
valuation theories.

In mathematical finance, theoreticians have attempted to price cat reinsurance as if it were traded
on financial markets by using option pricing theory, non-arbitrage martingale pricing theory, and utility
optimization theory. They also take cat losses as exogenously given with a common assumption that
loss arrivals follow a compound Poisson process or its variations as in Bowers et al. (1986), in lieu of
using the loss output from a cat modeler. For example, Chang et al. (1989) value reinsurance in an
option theoretical framework, Dassios and Jang (2003) value cat reinsurance using the Cox process
with shot noise intensity under a no-arbitrage martingale probability measure, and Lee and Yu (2007)
value default-risky cat reinsurance with catastrophe bonds under a no-arbitrage martingale probability
measure. However, the unrealistic perfect-market assumptions, the overly-simplified specification of
the loss arrival process, and the lack of data to calibrate the process have made direct implementation
of these theories in the global reinsurance market impractical.

In this paper, we propose an integrated approach to pricing a default-risky cat reinsurance contract.
First, we apply an incomplete-market version of the no-arbitrage martingale pricing paradigm of
Harrison and Kreps (1979) and Harrison and Pliska (1981)2, which is internally consistent with option
pricing theory, to factor in the modeled risk premiums by means of a measure change. We then add
risk loading/markup (used interchangeably hereafter) to price in the non-modeled market factors
identified in practice and the empirical literature. This integrated approach is theoretically appealing
in being able to factor the risk premiums into the probability measure, and yet applicable to pricing
a contract traded on the global reinsurance market by taking into consideration non-modeled risk
loading. We could have used the equilibrium approach by imposing a preference assumption, however
applying utility functions to resolve problems incurred in incomplete markets is often impractical as
the results become overly complicated to be fully specified by practitioners (see Carr et al. (2001)).
Another problem with the equilibrium approach as documented by many empirical studies is that

1 Traditional reinsurers tend to invest in illiquid and information-intensive financial activities, and so they charge premiums
based on correlations with their own pre-existing portfolios and U.S. nationwide cat risks, rather than with any market
portfolio, resulting in significantly higher cost of capital.

2 A martingale is a stochastic variable with no drift such that the current expectation of the future value of the variable is
always equal to the current value of the variable. The above authors show that the absence of arbitrage is equivalent to
the existence of an equivalent martingale pricing measure Q (or risk-neutral/risk-neutralized pricing measure as used
by some authors) such that all normalized (with respect to a chosen numeraire) security prices are martingales and as
such they can be priced by taking expectations under the measure Q. The beauty of martingale pricing is that it applies
to both complete and incomplete markets as “absence of arbitrage” is the only required assumption. When markets are
complete with the absence of arbitrage, martingale pricing theory guarantees that the equivalent martingale measure is
unique, thus the market price of risk does not explicitly enter into the valuation process. In this context, options can be
priced preference-free as if agents were risk-neutral as in the Black–Scholes model. When markets are incomplete, however,
the absence of arbitrage no longer guarantees a unique martingale measure. In this case, information related to the market
prices of risk that embeds the risk-aversion behavior of agents is needed to uniquely identify the equivalent martingale
measure (see Geman (2005) for a review). The procedure of embedding the market price of risk to obtain such a unique
measure is often called risk-neutralization.
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for a CRRA (Constant Relative Risk Aversion) utility to work, the risk-aversion parameter must be
unreasonably small (e.g., Bollerslev et al. (2011)).

Our integrated approach proceeds as follows:

(1) We first model a default-risky reinsurer by employing Merton (1974) structural approach to
endogenize default.

– On the asset side, since the reinsurer holds a large proportion of fixed-income assets in the
asset portfolio, we model the asset dynamics taking into account explicitly the impact of
stochastic interest rates. We make a measure change from the physical pricing measure to
the equivalent martingale pricing measure Q by embedding the market price of interest
rate risk.

– On the liability side, since the reinsurer’s non-catastrophic liability shocks are idiosyncratic
and small, we apply the law of large numbers to assume away this risk premium. We also
make a measure change from the physical pricing measure to the equivalent martingale
pricing measure Q by embedding the market price of interest rate risk.

(2) We model catastrophe arrivals. We make use of the empirical finding that catastrophe derivatives
are zero-beta assets, and thus both the loss number and the amount of losses have zero
risk premiums.

(3) We proceed to price a default-risky reinsurance contract under the equivalent martingale pricing
measure Q as a martingale.

(4) Finally, we extend the pricing formula to incorporate risk load/markup to account for the
observed empirical characteristics of the (re)insurance market. The interpretation of the markup
is the same as in the traditional actuarial pricing approach except that (1) our expectation is taken
with respect to the risk-neutralized martingale pricing measure, but in the traditional approach
the expectation is taken with respect to the physical pricing measure; and (2) our markup only
needs to account for market imperfections and other idiosyncratic factors, while the markup in
the traditional actuarial approach accounts for both modeled and non-modeled factors.

To load non-modeled market factors, we suggest calibrating the markup using empirical cat
reinsurance data as it has become increasingly available because of the growth of the market.
Although endogenizing the markup could further enrich the analysis and provide more intuition,
it constitutes a major undertaking in an incomplete-market general equilibrium setting encompassing
two heterogeneous agents. Besides considering market imperfections such as “taxes, agency costs,
issuance costs”, risk aversions, and costs of capital associated with bearing the catastrophe risk
of the two counterparties, one may also need to consider the insurance underwriting cycle,
optimum total catastrophe financing, the tradeoff between capital reserve and hedging, reinsurers’
monopolistic/oligopolistic positions in the reinsurance markets, and other idiosyncratic factors
identified in the empirical literature. We will leave this task to a future project.

2. Modeling Reinsurer Default with Asset, Interest Rate, Liability, and Catastrophe Loss

Dynamics

Since the reinsurer’s asset-liability structure and catastrophe loss specification are important
factors in modeling the reinsurer’s default, we begin by employing Merton (1974) structural approach
to model the balance sheet of the reinsurer in a continuous-time no-arbitrage martingale framework.
The Merton approach has the advantage of linking the valuation of financial claims to the firm’s
assets and capital structure. Thus unlike the more recent approach to incorporate jumps and to
integrate with the capital asset pricing model (CAPM) in order to analyze corporate bond spreads
(e.g., Collin-Dufresne et al. (2012) and Coval et al. (2009)), our structural model builds upon the work
of Duan et al. (1995), Duan and Yu (2005), and Lee and Yu (2007) to properly allow for the asset,
liability, interest rate, and cat loss dynamics.
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We employ a one-factor interest rate model assuming the asset price and the instantaneous interest
rate processes are governed by the following correlated general Wiener process with drifts:

dVt

Vt
= μ(Vt, t)dt + σ(Vt, t)dZV,t, (1)

drt = μ(rt, t)dt + σ(rt, t)dZr,t, (2)

where Zv,t and Zr,t are correlated Wiener processes.
Typically, reinsurers hold a large proportion of fixed-income assets in the asset portfolio and issue

catastrophe bonds to lay off catastrophe risk (see Lee and Yu (2007)). To explicitly examine the interest
rate exposure, a further decomposition of the asset process is required to provide a direct interpretation
of interest rate risk. Projecting dZV,t onto dZr,t yields

dZV,t = ϕdZr,t+
√

1 − ϕ2dWV,t, (3)

where ϕ =
Cov(dZV,t ,dZr,t)

dt . As a result of this projection, WV,t, denoting the credit risk on the assets
of the reinsurance company, is orthogonal to Zt by construction. As explained in footnote 7 of
Duan et al. (1995), the term credit risk here is used to designate all risks other than the interest
rate risk. To the extent that defaults on fixed income assets are related to interest rates, the credit risk is
considered as part of the interest rate risk, thus WV,t may not strictly correspond to the conventional
definition of credit risk.

Theorem 1. In the one-factor interest rate model, Equation (1) can be risk-neutralized to the following
risk-neutralized asset price process with a measure change, dZ∗

t = dZt +
λr

√
rt

ν dt and dW∗
V,t = dWV,t, from the

physical measure to the equivalent martingale measure Q:

dVt

Vt
= rtdt + φVv

√
rtdZ∗

t + σVdW∗
V,t. (4)

Proof.

As shown in Appendix A of Lee and Yu (2007), substituting Equation (3) into Equation (1) yields

dVt

Vt
= μ(Vt, t)dt + σ(Vt, t)ϕdZr,t+σ(Vt, t)

√
1 − ϕ2dWV,t, (5)

and further substituting Equation (2) into Equation (5) yields

dVt

Vt
= μVdt + φVdrt + σVdWV,t, (6)

where μV = [μ(Vt, t)− σ(Vt ,t)ϕμ(rt ,t)
σ(rt ,t)

], φV = σ(Vt, t)ϕ/σ(rt, t) is the instantaneous interest rate elasticity

of the assets of the reinsurance company, and σV = σ(Vt, t)
√

1 − ϕ2 is the volatility of the credit risk.
Next, we assume the general instantaneous interest rate process, Equation (2), is specified by the

squared-root process of Cox et al. (1985 and CIR hereafter) to avoid negative interest rates:

drt = κ(m − rt)dt + v
√

rtdZt, (7)

where rt denotes the instantaneous interest rate at time t; κ is the mean-reverting force measurement;
m is the long-run mean of the interest rate; and v is the volatility parameter for the interest rate.
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Substituting Equation (7) into Equation (6), the reinsurance company’s asset dynamics can be
described as:

dVt

Vt
= (μV + φVκm − φVκrt)dt + φVv

√
rtdZt + σVdWV,t. (8)

The dynamics for the interest rate process under the risk-neutralized pricing measure, denoted by
Q, can be written as

drt = κ∗(m∗ − rt)dt + v
√

rt dZ∗
t , (9)

where κ∗ = κ + λ r; m∗ = κm
κ+λ r

; dZ∗
t = dZt +

λr
√

rt
ν dt; λ r, the market price of interest rate risk,

is constant under the assumptions of Cox et al. (1985); and Z∗
t is a Wiener process under Q.

As WV,t is orthogonal to Zt by construction and is considered as part of the interest rate risk,
we can risk-neutralize Equation (8) by making use of the market price of the interest rate risk alone
so that μV + φVκm − φVκrt = rt + φVrt, and a measure change from the physical measure to the
equivalent martingale measure Q that dZ∗

t = dZt +
λr

√
rt

ν dt and d = dWV,t. Upon rearrangement we
derive the risk-neutralized asset price process. �

On the liability side, the reinsurer faces the liability of providing reinsurance coverage to other
lines of business, plus the liability of providing reinsurance coverage for catastrophes. Since the former
liability represents the present value of future claims related to non-catastrophic policies, its value,
denoted as Lt, can be modeled like Equation (6) as follows:

dLt = μLLtdt + φLLtdrt + σLLtdWL,t, (10)

where μL = [μ(Lt, t)− σ(Lt ,t)ϕμ(rt ,t)
σ(rt ,t)

] and φL = σ(Lt, t)ϕ/σ(rt, t) denote respectively the instantaneous
expected return for the non-catastrophic policies and the interest rate elasticity of the liability of the
reinsurance company; ϕ =

Cov(dZL,t ,dZr,t)
dt ; and σV = σ(Lt, t)

√
1 − ϕ2 is the volatility of the credit

risk. This continuous diffusion process reflects the effects of interest rate changes and other small
day-to-day shocks. Since the small day-to-day shocks, denoted as WL,t, pertain to idiosyncratic shocks
to the capital market, we assume a zero risk premium for this risk.

Lemma 1. The liability process, Equation (10), can be risk-neutralized under Q using the market price of
interest rate risk as:

dLt = rtLtdt + φLv
√

rtLtdZ∗
t + σLLtdW∗

L,t. (11)

Proof.

Substituting Equation (7) into Equation (10), the reinsurance company’s liability dynamics can be
described as:

dLt

Lt
= (μL + φLκm − φLκrt)dt + φLv

√
rtdZt + σLdWL,t. (12)

Next the dynamics for the interest rate process under the risk-neutralized pricing measure Q is
given in Equation (9) as

drt = κ∗(m∗ − rt)dt + v
√

rt dZ∗
t ,

where κ∗ = κ + λ r; m∗ = κm
κ+λ r

; dZ∗
t = dZt +

λr
√

rt
ν dt; λ r, the market price of interest rate risk,

is constant, and Z∗
t is a Wiener process under Q.

As WL,t is orthogonal to Zt by construction and is considered as part of the interest rate risk,
we can risk-neutralize Equation (12) by making use of the market price of interest rate risk alone so that
μL + φLκm − φLκrt = rt + λrφLrt, and a measure change from the physical measure to the equivalent
martingale measure Q that dZ∗

t = dZt +
λr

√
rt

ν dt and dW∗
L,t = dWL,t. Upon rearrangement we derive

the risk-neutralized liability price process. �

114

Bo
ok
s

M
DP
I



Risks 2017, 5, 51

To model the catastrophic component of the liability, we first model the aggregate catastrophe
loss as a compound Poisson process as in Bowers et al. (1986). The cumulative catastrophe loss at time
t, denoted as Ct, is described as follows:

Ct = ∑N(t)
j=1 cj, (13)

where the loss number process {N(t), t ≥ 0} is assumed to be driven by a Poisson process with
intensity λ. Term cj denotes the amount of loss caused by the jth catastrophe covered by the
reinsurance contract during the specific period, where j = 1, 2, . . . , N(t), and is assumed to be mutually
independent, identical, and lognormally-distributed, and independent of the loss number process;
its logarithmic means and standard deviations are denoted as μc and σc, respectively. We assume the
loss process is exogenously calibrated by a catastrophe modeler, e.g., AIR Worldwide for hurricanes
and windstorms and RMS for earthquakes. We also make the common assumption that catastrophe
derivatives are zero-beta assets, and thus both the loss number process {N(t)} and the amount of losses
(ct have a zero-risk premium3. The loss process, Equation (13), thus retains its original distributional
characteristics after changing from the physical probability measure to the risk-neutralized measure.

3. Pricing a Cat Reinsurance Contract and the Monte Carlo Simulation Results

The reinsurer’s future payoff to the insurer can be specified as:

POR,T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

M − A if CT ≥ M and VT ≥ LT + M − A,

CT − A if M > CT � A and VT ≥ LT + CT − A,(
VT

LT+M−A

)
(M − A) if CT ≥ M and VT < LT + M − A,

( VT
LT+CT−A )(CT − A) if M > CT � A and VT < LT + CT − A,

0 otherwise,

(14)

where VT is the value of the reinsurer’s assets at T; LT is the value of the reinsurer’s liabilities at T;
CT is the catastrophe loss covered by the reinsurance contract; and M and A are respectively the cap
and attachment points arranged in the reinsurance contract. For example, when CT is larger than
the reinsurance cap M and the reinsurer’s total assets are larger than total liability inclusive of the
reinsurance obligation M − A, the payoff is M − A. When the reinsurer’s total assets are smaller than
total liability inclusive of the reinsurance obligation M − A, the reinsurer will default, and the payoff
to the insurer then is only ( VT

LT+M−A )(M − A). The present value of this future payoff determines
the value of the reinsurance contract, computed as a martingale under the risk-neutralized pricing
measure Q as:

PVR,0 = EQ
0 [e−

∫ T
0 rs ds × POR,T ], (15)

where EQ
0 denotes the expectation taken on the issuing date under the risk-neutralized pricing measure

Q. In Appendix A, we demonstrate how to compute PVR,0 via Monte Carlo simulation.
To incorporate the observed empirical characteristics of the (re)insurance market, we let the

sell-side reinsurance pricing be (1 + u)PVR,0, where u denotes the risk loading/price markup that is
higher in a hard market, but lower in a soft market.

To demonstrate the implementation using Monte Carlo simulation, we consider a base case in
which all of the parameter values in the asset, liability, interest rate, and catastrophe loss dynamics are

3 Gürtler et al. (2012) show that this premium can be significant when a mega catastrophe strikes, but we assume this scenario
away in this paper.
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consistent with previous literature4, as summarized in Table 1 below. We also assume the reinsurance
market is still hard with a markup of 40%5. Simulations were run on a monthly basis with 20,000 paths.

Table 1. Parameter Definitions and Base Values.

Asset Parameters

V Reinsurer’s assets V/L = 1.3
μV Drift due to credit risk Irreverent
φV Interest rate elasticity of asset −3
σv Volatility of credit risk 5%

WV,t Wiener process for credit shocks

Liability Parameters

L Reinsurer’s liabilities 100
μL Drift due to idiosyncratic risk 0
φL Interest rate elasticity of liability −3
σL Volatility of idiosyncratic risk 2%

WL,t Wiener process for idiosyncratic shocks

Interest Rate Parameters

r Initial instantaneous interest rate 2%
κ Magnitude of mean-reverting force 0.2
m Long-run mean of interest rate 5%
ν Volatility of interest rate 10%
λr Market price of interest rate risk −0.01
Z Wiener process for interest rate shocks

Catastrophe loss Parameters for Ct

N(t) Poisson process for the arrival of catastrophes
λ Catastrophe arrival intensity 0.5

μC Mean of the logarithm of the losses per arrival 2
σC Standard deviation of the logarithm of the losses per arrival 0.5

Other Parameters

A Attachment level of a reinsurance contract 10~30
M Cap level of loss paid by a reinsurance contract 60~90
T Maturity 3 years
u Reinsurance markup 0.4

Table 2 below summarizes the corresponding reinsurance values across all coverage layers
to form the reinsurer’s sell-side pricing schedule. As expected, as the attachment point increases,
the reinsurance value decreases, while as the cap/detachment point increases, the reinsurance value
increases. We also observe that lower layer coverage is more expensive than higher layer coverage,
e.g., the price for layer (20, 60) is 2.73468 while the price for layer (25, 65) is 1.59048, reflecting that the
lower the layer the higher the probability of penetration.

4 See Lee and Yu (2007) and Duan and Simonato (1999).
5 The size of the markup is an empirical issue, and here we assume a plausible scenario to demonstrate pricing. Zanjani (2002)

states that the marginal capital requirement for catastrophe reinsurance is about five times the premium with a price impact
of about 30%.
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Table 2. Reinsurance Pricing across All Coverage Layers.

Coverage M = 60 M = 65 M = 70 M = 75 M = 80 M = 85 M = 90

A = 10 7.26957 7.28648 7.29306 7.30003 7.30261 7.30284 7.30634
A = 15 4.45191 4.46950 4.47824 4.48331 4.48579 4.48792 4.99274
A = 20 2.73468 2.75143 2.76143 2.76739 2.16897 2.17120 2.17444
A = 25 1.57234 1.59048 1.59951 1.60448 1.60706 1.60929 1.61162
A = 30 0.93787 0.98590 1.05583 1.06080 1.06338 1.06561 1.06740

Next we examine the catastrophe effects by extending the base value scenario in Table 1 to consider
three levels of catastrophe arrival intensity λ = (0.5, 1, 2); three levels of loss volatility: σc = (0.5, 1, 2);
and three leverage scenarios: V/L = (1.1, 1.3, 1.5), with decreasing leverage. Table 3 below shows
that, as expected, as the leverage decreases the default risk decreases such that the reinsurance
contract becomes more valuable. It also shows that increases in both catastrophe arrival intensity
and loss volatility raise the reinsurance value as hedging becomes more desirable. As catastrophe
arrival intensifies and the loss becomes more unpredictable, insurers should increasingly purchase
reinsurances as the expected losses accentuate. We further observe that the loss volatility effect is more
acute than the arrival intensity effect. For example, when V/L is 1.1, doubling the arrival intensity
from 0.5 to 1 increases the reinsurance value from 7.30634 to 13.24426, but doubling the loss volatility
from 0.5 to 1 increases the reinsurance value from 7.30634 to 20.75633. This finding suggests that
insurers should be more concerned with hedging the severity of a catastrophe than with the intensity
of the arrival. Finally, as expected, the reinsurance contract is more valuable when the catastrophe is
more severe and the default risk is lower.

Table 3. Impacts of Catastrophe Intensity and Loss Volatility on Pricing.

(λ, σC)
Reinsurance Price (1 + u)PVR,0 for Coverage Payer (90, 10)

V/L = 1.1 V/L = 1.3 V/L = 1.5

(0.5, 0.5) 7.30634 7.40443 7.58688
(1, 0.5) 13.24426 13.78995 14.12347
(2, 0.5) 19.56788 19.98765 20.31452
(0.5, 1) 20.75633 21.24536 21.76542
(1, 1) 24.18776 24.35473 24.87682
(2, 1) 27.78653 28.89672 29.45328

(0.5, 2) 40.28763 41.69782 43.13476
(1, 2) 43.21675 43.87862 44.34724
(2, 2) 48.8976 49.90163 51.27658

4. Concluding Remarks

We have proposed an integrated approach to price a default-risky cat reinsurance contract
by straddling the traditional actuarial science and the mathematical finance approaches. We first
embedded modeled risk premiums by applying an incomplete-market version of the no-arbitrage
martingale pricing paradigm in mathematical finance to price the contract as a martingale by a measure
change, we then added on risk loading as commonly practiced by actuaries to price in non-modeled
market factors such as market imperfections, the underwriting cycle, and other idiosyncratic factors
identified in the empirical reinsurance pricing literature. This integrated approach is theoretically
appealing in being able to factor model risk premiums into the probability measure, and yet applicable
to a contract not traded on financial markets. We demonstrated the catastrophe arrival effects using
simulation and found that the price is more sensitive to catastrophe severity than to arrival frequency;
implying (re)insurers should focus more on hedging the severity than the arrival frequency in their
risk management programs. Finally, as expected, the reinsurance contract is more valuable when the
catastrophe is more severe and the reinsurer’s default risk is lower with a stronger balance sheet.
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Appendix A. Procedures of the Monte Carlo Simulation Method

In this section, we numerically assess the reinsurance value PVR,0 using Equation (15). Because
the premium depends on the values of the reinsurer’s assets and liabilities, we have to specify the
stochastic processes for these variables (Equations (9) and (11)). Applying Ito’s lemma to the logarithm
of the value of a reinsurer’s assets, Equation (9) becomes the following system:

d ln (Vt) =(rt − 1
2

ϕVυ2rt − 1
2

σV
2)dt + ϕVυ

√
rtdZt

∗ + σVdWV,t
∗. (A1)

We can solve the above equation. Its solution, for any 0 ≤ q < 1, is:

Vt+q = Vt exp (σV(WV,t+q
∗ − WV,t

∗)) ∗ exp [(1 − 1
2

ϕV
2υ2)

∫ t+q

t
rsds +ϕVυ

∫ t+q

t

√
rsdZs

∗] (A2)

Similarly, by Ito’s lemma, Equation (11) gives rise to:

d ln (Lt) =(rt − 1
2
ϕLυ2rt − 1

2
σL

2)dt +ϕLυ
√

rtdZt
∗ + σLdWL,t

∗. (A3)

Its solution is:

Lt+q = Lt exp (σL(WL,t+q
∗ − WL,t

∗)) ∗ exp [(1 − 1
2
ϕL

2υ2)
∫ t+q

t
rsds +ϕLυ

∫ t+q

t

√
rsdZs

∗] (A4)

We set q = 1
52 , say, on a weekly basis, and simulate the risk-neutralized interest rate process per

Equation (8) in order to approximate the whole sample path for the term of reinsurance coverage.
This in turn allows us to compute two quantities of interest:

∫ t+1
t rsds and

∫ t+1
t

√
rsdZs

∗. Second,
we simulate (WV,t+q

∗ − WV,t
∗) and (WL,t+q

∗ − WL,t
∗) using the fact that they are independent of the

path of rt, and the coefficient of correlation between them is chosen to be zero to reflect that the credit
risk shock and the idiosyncratic day-to-day liability shock are likely to be uncorrelated. Combining
(WV,t+q

∗ − WV,t
∗) with

∫ t+1
t rsds and

∫ t+1
t

√
rsdZs

∗ yields a simulated value of Vt+1 as described

in Equation (A2). Similarly, combining (WL,t+q
∗ − WL,t

∗) with
∫ t+1

t rsds and
∫ t+1

t
√

rsdZs
∗ yields a

simulated value of Lt+1 as described in Equation (A4). Third, we generate (Nt+1 − Nt), (ct+1 − ct) and
(cindex,t+1 − cindex,t). Since (Nt+1 − Nt) has a Poisson distribution with intensity parameter λ, it can be
simulated easily. For a given value of (Nt+1 − Nt), we then simulate ∑

Nt+1
j=Nt

ln cj and ∑
Nt+1
j=Nt

ln cindex,j,
knowing that ln cj and ln cindex,j are normal random variables and the coefficient of correlation between
them is ρc. After simulating these processes, PVR,0 can be easily calculated via averaging over the
contingent payoffs corresponding to the simulated values.

We implemented the simulation using MATLAB and below are two snapshots of the code, where
in Figure A1 we display the asset, liability, and interest rate processes, and in Figure A2 the Poisson
catastrophe arrival process.
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Figure A1. MATLAB code for the asset, liability, and interest rate processes.
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Figure A2. MATLAB code for the Poisson catastrophe arrival process.
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Abstract: Building on recent work incorporating recovery risk into structural models by Cohen &
Costanzino (2015), we consider the Black-Cox model with an added recovery risk driver. The recovery
risk driver arises naturally in the context of imperfect information implicit in the structural framework.
This leads to a two-factor structural model we call the Stochastic Recovery Black-Cox model,
whereby the asset risk driver At defines the default trigger and the recovery risk driver Rt defines
the amount recovered in the event of default. We then price zero-coupon bonds and credit default
swaps under the Stochastic Recovery Black-Cox model. Finally, we compare our results with the
classic Black-Cox model, give explicit expressions for the recovery risk premium in the Stochastic
Recovery Black-Cox model, and detail how the introduction of separate but correlated risk drivers
leads to a decoupling of the default and recovery risk premiums in the credit spread. We conclude
this work by computing the effect of adding coupons that are paid continuously until default, and
price perpetual (consol bonds) in our two-factor firm value model, extending calculations in the
seminal paper by Leland (1994).

1. Background and Motivation

Most legacy credit models assume that recovery is a constant. It is well known, however,
that recovery rates are not constant and indeed are correlated to a variety of risk drivers, including
default and interest rates. For example, in their study on real-world recovery rates, Altman et al. [1]
show that realized recovery rates are inversely proportional to realized default rates. This phenomena
has been successfully incorporated into recent economic capital models (c.f. [2–7]) but still hasn’t
enjoyed mainstream adoption in pricing models. One notable exception has been in CDO pricing,
where stochastic recovery has been added to many legacy models. This was necessary after the most
recent credit-liquidity crisis, whereby for a period of time it was not possible to calibrate standard CDO
models to the complete set of CDX.IG and ITRAXX.IG tranche quotes. The inability to calibrate the
standard CDO models has been attributed to the assumption that recovery at default is deterministic,
and does not depend on time or state variables. This has led to adding stochastic recovery to CDO
models (c.f. [8–13]), which is now standard practice in industry.

However, stochastic recovery has not yet received equally widespread interest and acceptance for
other credit products such as defaultable bonds, credit default swaps and credit linked notes. In fact,
there are a dearth of pricing formulas for credit products where recovery is modeled explicitly. This has
become commonplace even though recovery is clearly a key component in the determination of credit
spreads [14]. One recent approach to stochastic recovery modeling can be found in [15]. Take for
example bond pricing, where the price of a zero-coupon defaultable bond is given by the risk-neutral
expected present value of the payoff Πτ (where τ is the default time):

Πτ := N�{τ>T} + Rτ�{τ≤T}. (1)
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The first term describes receiving the full repayment of the notional N at maturity T in the event
of no default (i.e., τ > T), while the second term describes receiving a recovery Rτ in the event of
default before maturity (i.e., τ ≤ T). The price of a zero-coupon defaultable bond is therefore given by

Bt,T = Ẽt[D(t, τ ∧ T)Πτ ]

=ND(t, T)P̃t[τ > T] + Ẽt[D(t, τ)Rτ�{τ≤T}]
(2)

where ∧ is the min operator a ∧ b := min{a, b}, P̃t (resp. Ẽt) is the risk-neutral probability of default
(resp. risk-neutral expectation) conditioned on information about the default and recovery process
known at t, and D(t, s) is the present value of a dollar at time t received at time s. To evaluate (2) one
needs a model for D, default time τ, and recovery at default Rτ . As noted in [15], it is common in
structural models such as the Merton and Black-Cox models to make the simplifying assumption that
a single risk factor At representing the evolution of the underlying firm assets determines both the
default time τ and recovery at default Rτ . Symbolically, for a fixed f ∈ [0, 1] and a filtered probability
space

(
Ω,

{FA
t
}

t≥0 , F , P̃
)

,

{τ ≤ t} ∈ FA
t , ∀t ≥ 0

Rτ := f Aτ

(3)

where the natural filtration FA
t is the minimal σ−algebra containing σ(Au) for all u ∈ [0, t]. Under this

assumption, the price of a defaultable zero-coupon bond simplifies to

Bt,T = ND(t, T)P̃t[τ > T] + f Ẽt[D(t, τ)Aτ�{τ≤T}] (4)

which can be computed using only the single risk factor At.
The lack of recovery modeling is even more explicit in the case of pricing Credit Default Swaps.

For instance, the value of the default protection leg of a CDS per unit notional is given by

VProtection
t,T = Ẽt

[
D(t, τ)(1 − Rτ)�{τ≤T}

]
(5)

which is the expected risk-neutral discounted recovery amount given default. However, it is common
to make the simplifying assumption that recovery is a constant so that Rτ ≡ R in (5) and the recovery
term can be taken out of the expectation to obtain the simplified expression

VProtection
t,T = (1 − R)Ẽt

[
D(t, τ)�{τ≤T}

]
. (6)

Under this simplifying assumption, which is standard in typical CDS pricing (c.f. [16–18] etc.),
one simply needs a model for default τ and need not concern themselves with modeling recovery in
the event of default. In this paper, we explicitly model recovery and remove the constant recovery
assumption in CDS pricing thereby valuing the protection leg of the CDS using (5) directly rather
than (6).

As described by the above examples of bond and CDS pricing, lack of recovery modeling inherent
in classical structural models such as Merton and Black-Cox stems from the fact that default and
recovery are driven by the same process. This feature makes it impossible to disentangle the effects of
default and recovery. For instance, in the Merton model [19], the default time is defined as

τMerton := T�{AT<N} + ∞�{AT≥N}. (7)

This default time has the benefit that recovery at default is random in the sense that it is defined
through the random variable AT . However, a deficiency in the model is that default is only possible
at the maturity T of the bond (i.e., τMerton ∈ {T, ∞}). This is in direct violation of empirical evidence
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showing that firms default on their bonds at times before maturity as well. Black & Cox introduced
their model [20] in order to remove this deficiency by allowing default to occur at times up to and
including maturity (i.e., τBC ∈ {[0, T], ∞}). The authors are able to achieve this by introducing an
additional first passage default time τK, defined as the first time the assets At are less than the barrier K:

τK := arg inf{t ∈ [0, ∞) : At ≤ K} (8)

with the usual convention that inf{∅} = +∞. The full Black-Cox default time τBC is then

τBC = τK�{τK≤T} + T�{τK>T,AT<N} + ∞�{τK>T,AT≥N}. (9)

However, the very same default mechanism in the Black-Cox model that allows for default
before maturity forces recovery at default to be a constant. That is, (9) implies that for default before
maturity, the asset value at default is equal to the predetermined constant barrier K (i.e., AτBC = K).
Hence Black-Cox improves the default modeling of Merton at the expense of constraining recovery to a
predetermined known constant K when τBC < T.1 The main reason for this is that the Black-Cox model
(as in all one-factor structural models) intertwines default and recovery risks. In one-factor structural
models, the same process that determines default, namely At, also determines recovery. This structure
results in default and recovery rates being multiplicatively linked through the credit spread, which in
turn makes the separation of default risk from recovery risk impossible. To disentangle the default risk
from the recovery risk in a structural model, one needs to introduce a separate recovery risk driver.
This leads us to the Stochastic Recovery Black-Cox model considered herein.

This paper is organized as follows. In Section 2, we review the classic Black-Cox (BC) model as a
benchmark for our later results in Section 4 where we include recovery risk. In Section 3, we motivate
the need for adding a recovery risk driver into the BC model and present our correlated asset-recovery
model (49), which we compare with Moody’s PD-LGD model presented in [4]. In Section 4, we define
the Stochastic Recovery Black-Cox (SRBC) model and use it to price instruments based on credit quality.
Specifically, in Sections 4.1 and 4.4, we price bonds and CDS with the SRBC model. The SRBC setting
is essentially a two-factor Black-Cox model where the extra factor is recovery risk. We then compare
the prices obtained from the two-factor SRBC model with the original Black-Cox model. In Section 5,
we provide an algorithm to compute the market implied recovery rate as well as analytical formulas
for the recovery risk premium. Finally, in Section 6, we investigate the addition of coupon payments to
bond prices in the stochastic recovery structural model.

2. Review of Credit Risk and Pricing in the Black-Cox Model

In this section, we briefly review bond and CDS pricing in the classical Black-Cox framework.
In the original Black-Cox model [20], the default boundary K was taken to be exponential in time,
i.e., K(t) = Ke−β(T−t). However to simplify the exposition and results, we consider the case of
a flat-boundary corresponding to β = 0, i.e., K(t) ≡ K, although the results can be trivially extended
to the exponential boundary case as well. The results of this section will mainly serve as a benchmark
for which to compare the results in Sections 4.1 and 4.4, where recovery risk is incorporated into Bond
and CDS pricing via the Stochastic Recovery Black-Cox model described in Section 3.

We begin by listing the assumptions that form the Black-Cox model.

1 This constraint can be improved upon slightly by introducing a curved (time-dependent) boundary τK := arg inf{t ∈ [0, T] :
At ≤ K(t)} for a suitably chosen K(t). However, the fact remains there is still a single driver for both recovery and default.
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Assumption 1. (Constant Rates) The short rate is assumed to be a constant r so that the discount factor is
given by

D(t, s) = e−r(s−t). (10)

Assumption 2. (Asset Dynamics) The P̃t-dynamics of the firms asset value At at time t are assumed to follow

dAt = rAtdt + σA AtdWA
t . (11)

where r, σA are constant and WA
t is a standard Brownian process.

Assumption 3. (Default Time) Default is defined as

τBC = τK�{τK≤T} + T�{τK>T,AT<N} + ∞�{τK>T,AT≥N}. (12)

where τBC is explicitly given in (9).

Assumption 4. (Recovery Dynamics) Recovery at default is given by the asset value at default,

RτBC = AτBC . (13)

The collection of Assumptions 1–4 form the Black-Cox model, and can be used to price defaultable
bonds as well as other products such as CDS which we do in Sections 2.1 and 2.2 below.

Assumption 4 isn’t often thought of as an explicit assumption of the Black-Cox model, since, as a
one-factor model, this assumption is embedded in the default time. This is another example of the
intertwining of default and recovery. Furthermore, notice in Assumption 4 that if τBC < T then by
definition AτBC ≡ K so recovery given default is constant and deterministic. The main focus of this
paper is to remove Assumption 4 and allow for stochastic recovery at default by decoupling the asset
risk driver from the recovery risk driver. This should not be confused with adding stochasticity to
the default boundary (c.f. [21,22]) since single-factor models with stochastic boundary still cannot
disentangle the credit puzzle, as again, the asset value determines both default and recovery amount
at default.

The Black-Cox model can be used to price credit products and compute related credit risk
measures. For instance, in the case of a zero-coupon bond the price of such a defaultable zero-coupon
bond is then given by the risk-neutral pricing formula

Bt,T = NẼt[D(t, T)�{τ>T}] + Ẽt[D(t, τ)Rτ �{τ≤T}]

= ND(t, T) P̃t[τ > T] + Ẽt[D(t, τ)Rτ �{τ≤T}].
(14)

Given the price of a defaultable zero-coupon bond via (14), we define the credit spread of the
bond Bt,T as the spread St,T over the risk-free rate r which reprices the bond. Thus St,T is defined
implicitly by the solution to

Bt,T = Ne−(r+St,T)(T−t) (15)

which returns the formula

St,T =
1

T − t
ln
(

N
Bt,T

)
− r. (16)
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The risk-neutral probability of default P̃Dt,T at time t is defined as the probability under the
risk-neutral measure P̃ that the default event τ occurs at or before maturity T,

P̃Dt,T = P̃t [τ ≤ T] . (17)

The risk-neutral expected loss given default L̃GDt,T at time t is defined as

L̃GDt,T = 1 − Ẽt[D(t, τ)Rτ | τ ≤ T]
D(t, T)N

(18)

The term structure of expected Recovery Given Default R̃t,T can easily be inferred from the term
structure of Loss Given Default (18) via the relation L̃GDt,T = 1 − R̃t,T .

The other credit product we consider is a Credit Default Swap (CDS). In a CDS, one party
(the buyer) pays premiums to another party (the seller) to insure against default on a bond (c.f. [16–18]).
Pricing consists of separately modeling the present value of the fixed premiums paid by the protection
buyer, and the present value of the contingent default payment leg received by the buyer. The difference
between the two is then the value of the CDS. If there is no upfront fee at initiation of the contract, then
the premium P is given as the value that makes the contract worthless at initiation.

To be more precise, let T be the expiry of the CDS contract and let Tn := {t = t0, t1, t2, ...tn = T} be
the premium payment dates. For i = 1...n we define Δti = ti − ti−1 to be the time between payments.
The premium leg of the transaction is then given by the expected present value of the premium
payments Pt,T that the buyer pays (and seller receives), namely

VPremium
t,T = Pt,T N ×

(
n

∑
i=1

D(t, ti)P̃t[τ > ti]Δti +Ap

)
(19)

where Ap is the accrual payment in case default occurs between two payment dates. Instead of
considering premiums paid at discrete dates, we pass to the continuous limit (see [23]) and consider
the continuous premium formulation

VPremium
t,T = Pt,T N ×

(
Ẽt

[∫ T

t
D(t, s)�{τ>s}ds

]
+

1
2
· Ẽt

[
D(t, τ)�{τ≤T}

])
= Pt,T N ×

(∫ T

t
e−r(s−t)P̃t[τ > s]ds +

1
2
·
∫ T

t
e−r(s−t)P̃t[τ ∈ ds]

) (20)

where the second term is the value of the accrual, i.e.,

Ap :=
1
2

∫ T

t
D(t, s)P̃t [τ ∈ ds] . (21)

Under the same continuous premium formulation, the value of the protection (default) leg can then be
written as

VProtection
t,T = N ×

(
Ẽt

[
D(t, τ)

(
1 − Rτ

N

)
�{τ≤T}

])
= NẼt [D(t, τ ∧ T)]− Bt,T

= N
(

D(t, T)P̃t [τ > T] + Ẽt

[
D(t, τ)�{τ≤T}

])
− Bt,T .

(22)
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Using usual no arbitrage principles, the CDS premium Pt,T is given as the value that balances
these two equations, namely

Pt,T =
Ẽt

[
D(t, τ)

(
1 − Rτ

N

)
�{τ≤T}

]
∫ T

t D(t, s)P̃t[τ > s]ds + 1
2

∫ T
t D(t, s)P̃t [τ ∈ ds]

=
1
N

N
(

D(t, T)P̃t [τ > T] + Ẽt

[
D(t, τ)�{τ≤T}

])
− Bt,T∫ T

t D(t, s)P̃t[τ > s]ds + 1
2

∫ T
t D(t, s)P̃t [τ ∈ ds]

=
D(t, T)P̃t [τ > T] + Ẽt

[
D(t, τ)�{τ≤T}

]
− Bt,T

N

Ẽt

[∫ T
t D(t, s)�{τ>s}ds

]
+ 1

2 · Ẽt

[
D(t, τ)�{τ≤T}

]
=

e−r(T−t)P̃t [τ > T] + Ẽt

[
e−r(τ−t)

�{τ≤T}
]
− Bt,T

N

Ẽt

[∫ τ∧T
t e−r(s−t)ds

]
+ 1

2 · Ẽt

[
e−r(τ−t)�{τ≤T}

] .

(23)

To evaluate (23), we need a model for recovery Rt and default τ. A standard assumption [17] in a
hazard rate framework is that recovery is a constant, under which our CDS premium (23) reduces to
the classical result

Pt,T = (1 − R̄)
Ẽt

[
D(t, τ)�{τ≤T}

]
Ẽt

[∫ T
t D(t, s)�{τ>s}ds

]
+ 1

2 · Ẽt

[
D(t, τ)�{τ≤T}

] (24)

where R̄ = Rτ/N.
In Sections 2.1 and 2.2 we present Bond and CDS prices, respectively, for the Black-Cox model

which does not account for recovery risk. In Sections 4.1 and 4.4, respectively, we present bond and
CDS prices under the Stochastic Recovery Black-Cox model which does take into account recovery risk.

2.1. Bond Pricing with the Black-Cox Model

In this section we price a zero coupon bond with default risk using the Black-Cox model.
The structure of the price depends on whether the boundary K is larger or smaller than the notional N.

Definition 1. (Weak and Strong Covenants in Black-Cox Model) Let K be the default barrier and N be
the notional of the zero-coupon bond in the Black-Cox framework. We say the bond has a weak (resp. strong)
covenant if K ≤ N (resp. K ≥ N).

Definition 2. (Distances to Default) Define the following distance to default, which we will use in bond and
CDS pricing under both weak and strong covenants.
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• Weak Covenant (K ≤ N)

dw
0 =

ln
(

At
N

)
+ (r − 1

2 σ2
A)(T − t)

σA
√

T − t

dw
1 =

ln
(

At
N

)
+ (r + 1

2 σ2
A)(T − t)

σA
√

T − t

xw
0 =

ln
(

K2

NAt

)
+ (r − 1

2 σ2
A)(T − t)

σA
√

T − t

xw
1 =

ln
(

K2

NAt

)
+ (r + 1

2 σ2
A)(T − t)

σA
√

T − t

(25)

• Strong Covenant (K ≥ N)

ds
0 =

ln
(

At
K

)
+ (r − 1

2 σ2
A)(T − t)

σA
√

T − t

ds
1 =

ln
(

At
K

)
+ (r + 1

2 σ2
A)(T − t)

σA
√

T − t

xs
0 =

ln
(

K
At

)
+ (r − 1

2 σ2
A)(T − t)

σA
√

T − t

xs
1 =

ln
(

K
At

)
+ (r + 1

2 σ2
A)(T − t)

σA
√

T − t

(26)

Notice that the weak covenant distances to default dw
0 , dw

1 are the usual Merton distances to
default (c.f. [15]).

Lemma 1. (Probability of Hitting the Barrier) Let τK be the first passage time (8). Then for any constant
default barrier K > 0 and At ≥ K

P̃t [τK ≤ T] = Φ(−ds
0) +

(
K
A

) 2r
σ2

A
−1

Φ(xs
0) (27)

where Φ is the cumulative normal distribution function and ds
0, xs

0 are given by (26).

Proof. We begin this proof by noting that the value of a bond in the Black-Cox model requires a
barrier at covenant value K. One can therefore calculate directly the probability of no-default using
barrier option theory. To carry out this computation, we define the function W corresponding to a
digital option: t

W(A, t) := P̃t [AT > N] = Φ (dw
0 ) = 1 − P̃D

Merton
t,T . (28)
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From this definition (28) of W, if we add a lower barrier at K (See for example Ch.10 in [24]) then
the value W̄ of a digital option with a lower barrier at K is

W̄(A, t) := P̃0[AT > N, τK > T] = W(A, t)−
(

K
A

) 2r
σ2

A
−1

W
(

K2

A
, t
)

= Φ (dw
0 )−

(
K
A

) 2r
σ2

A
−1

Φ (xw
0 ) .

(29)

Therefore, by setting N = K in (25) and (29), we obtain the result

P̃t[τK > T] = P̃t[AT > K, τK > T] = Φ (ds
0)−

(
K
A

) 2r
σ2

A
−1

Φ (xs
0) (30)

and (27) above follows.

Note: The result (27) can also be found in, for instance, Appendix B of [25]. We provide another
direct proof within the constructive proof of Theorem 3 below, by computing

∫ ∞
K P̃t [AT ∈ da, τK > T]

in the strong covenant case.

Theorem 1. (Bond Pricing under the Black-Cox Model) Suppose that Assumptions 1–4 are satisfied. Then
the price of a defaultable zero-coupon bond (14) is given by:

I. Weak Covenant Case. If K ≤ N the price of a zero-coupon bond is given by

BBC
t,T (w) = e−r(T−t)N

[
Φ(dw

0 )−
(

K
At

) 2r
σ2

A
−1

Φ(xw
0 )

]

+ At

[
Φ(−dw

1 ) +

(
K
At

) 2r
σ2

A
+1

Φ(xw
1 )

] (31)

and the risk-neutral PD and LGD in the case of a weak covenant are

P̃D
BC
t,T(w) = Φ (−dw

0 ) +

(
K
At

) 2r
σ2

A
−1

Φ(xw
0 ) (32)

and

L̃GD
BC
t,T (w) = 1 − er(T−t) At

N

Φ
(−dw

1
)
+
(

K
At

) 2r
σ2

A
+1

Φ
(

xw
1
)

Φ
(−dw

0
)
+
(

K
At

) 2r
σ2

A
−1

Φ
(

xw
0
) . (33)

II. Strong Covenant Case. If K ≥ N the price of a zero-coupon bond is given by

BBC
t,T (s) = e−r(T−t)N

[
Φ(ds

0)−
(

K
At

) 2r
σ2

A
−1

Φ(xs
0)

]

+ At

[
Φ(−ds

1) +

(
K
At

) 2r
σ2

A
+1

Φ(xs
1)

] (34)
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and the risk-neutral PD and LGD in the case of a strong covenant are

P̃D
BC
t,T(s) = Φ (−ds

0) +

(
K
At

) 2r
σ2

A
−1

Φ(xs
0) (35)

and

L̃GD
BC
t,T(s) = 1 − er(T−t) At

N

Φ
(−ds

1
)
+
(

K
At

) 2r
σ2

A
+1

Φ
(

xs
1
)

Φ
(−ds

0
)
+
(

K
At

) 2r
σ2

A
−1

Φ
(

xs
0
) . (36)

Proof. The proof uses the same integral techniques employed in Theorem 3 below. Using the barrier
option characterization of the addition of a covenant, the price of a bond is expressed as

BBC
t,T = Ne−r(T−t) · P̃t[AT ≥ N, τK > T] + Ẽt[e−r(T−t)AT�{AT≥N,τK>T}c ]

= Ne−r(T−t) · P̃t[AT ≥ N, τK > T] + At − Ẽt[e−r(T−t)AT�{AT≥N,τK>T}].
(37)

This computation requires the joint density P̃t[AT ∈ da, τK > T], which is found in [26].
We compute the associated integrals explicitly in our constructive proof of Theorem 3 for the case of
stochastic recovery in the Black-Cox framework.

To carry out these integrals for the standard Black-Cox model, we set γ = ρA,R = A0
R0

= 1 in the
integrals constructed for the proof of Theorem 3. The difference between the weak and strong covenant
cases (with or without stochastic recovery) is that in the strong covenant case,

{AT ≥ N, τK > T} = {AT ≥ K, τK > T} = {τK > T} . (38)

This fact is reflected in the appropriate substitution in the lower limits of the integrals against the
joint density P̃t[AT ∈ da, τK > T].

Remark 1. (Special Case where K = N) Note that the special case where K = N is included in both the
strong and weak covenant formulas in that

lim
K→N+

BBC
t,T (s) = lim

K→N−
BBC

t,T (w)

= e−r(T−t)

[
NΦ(−d0)−

(
N
At

) 2r
σ2

A
−1

Φ(x0)

]
+ At

[
Φ(−d1) +

(
N
At

) 2r
σ2

A
+1

Φ(x1)

]
.

(39)

2.2. CDS Pricing with the Black-Cox Model

We now price CDS premiums using the Black-Cox model. In keeping with the continuous CDS
pricing model, we extend the premium rate defined in [23] to include recovery at τBC while protection
is paid as long as τK has not occurred.

Theorem 2. (CDS Premium under Black-Cox Model) Suppose that Assumptions 1–4 are satisfied. Then the
CDS premium (23) is given by

PBC
t,T =

e−r(T−t)P̃t [τBC > T] + Ẽt

[
e−r(τBC−t)

�{τBC≤T}
]
− BBC

t,T
N

1−Ẽt [e−r(τBC−t)
�{τBC≤T} ]−e−r(T−t)P̃t [τBC>T]

r + 1
2 · Ẽt

[
e−r(τBC−t)�{τBC≤T}

] . (40)
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In the strong covenant case, where K ≥ N, this reduces to the closed formula

PBC
t,T (s) =

e−r(T−t)P̃t [τK > T] + Ẽt

[
e−r(τK−t)

�{τK≤T}
]
− BBC

t,T (s)
N

1−Ẽt [e−r(τK−t)
�{τK≤T} ]−e−r(T−t)P̃t [τK>T]

r + 1
2 · Ẽt

[
e−r(τK−t)�{τK≤T}

]
P̃t [τK > T] = Φ (ds

0)−
(

K
At

) 2r
σ2

A
−1

Φ (xs
0) = 1 − P̃D

BC
t,T(s)

Ẽt[e−r(τK−t)
�{τK≤T}] = At

[
Φ(−ds

1) +

(
K
At

) 2r
σ2

A
+1

Φ(xs
1)

]
.

(41)

In the weak covenant case, where K ≥ N, this reduces to the closed formula

PBC
t,T (w) =

e−r(T−t)P̃t [τBC > T] + Ẽt

[
e−r(τBC−t)

�{τBC≤T}
]
− BBC

t,T (w)

N

1−Ẽt [e−r(τBC−t)
�{τBC≤T} ]−e−r(T−t)P̃t [τBC>T]

r + 1
2 · Ẽt

[
e−r(τBC−t)�{τBC≤T}

]
P̃t [τBC > T] = P̃t [τK > T, AT ≥ N] = 1 − P̃D

BC
t,T(w)

P̃t [τK > T] = Φ (ds
0)−

(
K
At

) 2r
σ2

A
−1

Φ (xs
0) = 1 − P̃D

BC
t,T(s)

Ẽt

[
e−r(τBC−t)

�{τBC≤T}
]
= Ẽt[e−r(τK−t)

�{τK≤T}] + e−r(T−t)
(
P̃t[τK > T]− P̃t[τK > T, AT ≥ N]

)
Ẽt[e−r(τK−t)

�{τK≤T}] = At

[
Φ(−ds

1) +

(
K
At

) 2r
σ2

A
+1

Φ(xs
1)

]
.

(42)

Note

• The numerator in (40) follows from direct substitution of the bond price calculated in Theorem 1
into the numerator in the general CDS formula (23). This direct substitution of the risky bond
price also reflects the flexibility in assigning a weak or strong covenant, and will in fact be the only
change observed when stochastic recovery is included in Section 5.

• To complete the proof of Theorem 2, we will need to compute the denominator in (23). In the BC,
and SRBC model forthcoming, this reduces to computing

Ẽt[e−r(τK−t)
�{τK≤T}]. (43)

We are able to compute (43) by reducing to something more manageable via the fact that
the discounted asset price is a local martingale. The reduced form follows from the optional
sampling theorem:

Ẽt[e−r(τK−t)
�{τK≤T}] =

At − Ẽt[e−r(T−t)AT�{τK>T}]
K

. (44)
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Proof. From Assumption 4, the general CDS premium (23) reduces to

PBC
t,T =

e−r(T−t)P̃t [τBC > T] + Ẽt

[
e−r(τBC−t)

�{τBC≤T}
]
− BBC

t,T
N

Ẽt

[∫ T
t e−r(T−t)�{τBC>s}ds

]
+ 1

2 · Ẽt

[
e−r(τBC−t)�{τBC≤T}

]
=

e−r(T−t)P̃t [τBC > T] + Ẽt

[
e−r(τBC−t)

�{τBC≤T}
]
− BBC

t,T
N

Ẽt

[∫ τBC∧T
t e−r(s−t)ds

]
+ 1

2 · Ẽt

[
e−r(τBC−t)�{τBC≤T}

]
=

e−r(T−t)P̃t [τBC > T] + Ẽt

[
e−r(τBC−t)

�{τBC≤T}
]
− BBC

t,T
N

1−Ẽt [e−r(τBC−t)
�{τBC≤T} ]−e−r(T−t)P̃t [τBC>T]

r + 1
2 · Ẽt

[
e−r(τBC−t)�{τBC≤T}

] .

(45)

The main quantity to solve for now is Ẽt

[
e−r(τBC−t)

�{τBC≤T}
]
, and upon it’s computation and

insertion into (45), we have the formula for the premium. By the structural definition of τBC,
it follows that

{τBC ≤ T} = {τK ≤ T} ∪ {τK > T, K < AT < N} (46)

and so

P̃t [τBC > T] = P̃t [τK > T, AT ≥ N]

Ẽt

[
e−r(τBC−t)

�{τBC≤T}
]
= Ẽt[e−r(τK−t)

�{τK≤T}] + e−r(T−t)P̃t[τK > T, K < AT < N]

= Ẽt[e−r(τK−t)
�{τK≤T}]

+ e−r(T−t)
(
P̃t[τK > T]− P̃t[τK > T, AT ≥ N]

)
.

(47)

In the case K ≥ N, the event {τBC > T} reduces to the event {τK > T}. Consequently,
we utilize (44), (45), and the integral in (81) below to return the value (41). In the case that K ≤ N,
similar calculations lead to (42).

3. Modeling Recovery Risk within a Structural Framework

The original Merton and Black-Cox structural models have been extended in several directions by
many different authors, including stochastic interest rates, bankruptcy costs, taxes, debt subordination,
strategic default, time dependent and stochastic default barrier, jumps in the asset value process,
etc. While these extensions are by no means exhaustive (c.f. [16] for a more thorough discussion),
they relax several of the main assumptions in the original models. However, none consider recovery
as a risk factor, and assume the only risk driver is the asset value itself, or perhaps interest rates if
stochastic rates are modeled. Empirical research, however, has shown that recoveries need not be
constant in time and that typically the time-series of default probabilities and recoveries are inversely
correlated [1,27]. To make matters even more complicated, Hillebrand [28] shows that this correlation
does not necessarily have to vary co-monotonously over the whole economic cycle. The correlation
between PD and LGD has been investigated by several researchers in the context of credit capital. For
instance, Giese [3] incorporates PG-LGD correlations into a single-factor Vasicek framework and finds
that capital increases by up to 35% at the 99.9% confidence interval for high-yield credit portfolios.
While investigating stressed LGDs, Miu and Ozdemir [6] find that in order to compensate for neglecting
the PD-LGD correlation in credit capital modeling, the mean LGD must be increased by about 37%
from its unbiased estimate in order to compensate for the lack of correlations.

We incorporate recovery risk into the Black-Cox model for three main reasons. First, as discussed
in Section 2, the Black-Cox model has a constant recovery K in the event of default before redemption
time. However, there is a large body of empirical evidence showing that recovery rates are
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inversely correlated with probabilities of default [1,14,27,29–34] and so recovery risk is a real financial
phenomena that should be modeled. Second, this correlation can have a very large effect on credit
capital [5,6]. Ignoring this effect in a pricing model could potentially lead to large mispricings
or significant misestimation of risk. Finally, we show that including recovery risk in a structural
framework is a mechanism which allows for larger spreads. This is important because empirical
literature suggests that structural models tend to underestimate observed credit spreads by 10–15%
on average (c.f. [35–38]). In [39], Gemmill argues that the extra observed spread is explained by other
factors such as liquidity risk. However, just as in the Merton case [15], we show in Lemma 9 that
adding recovery risk can lead to an increase in the credit spread over constant recovery models, and
suggest that recovery risk is another possible mechanism to explain the additional observed spread.

3.1. The Correlated Asset-Recovery Model

Let At denote the asset price at time t > 0 and let Rt denote the recovery amount at time t > 0.
The unobservable process Rt is interpreted as the amount that would be recovered if default were
to occur at t. The asset and recovery processes are modeled as two correlated geometric Brownian
motions on (Ω, F ,P) given by

dAt = μA Atdt + σA AtdWA
t

dRt = μRRtdt + σRRtdWR
t

ρA,Rdt = dWA
t dWR

t

(48)

where (WA
t , WR

t ) are correlated, standard Brownian motions on our probability space.

3.2. Some Preliminary Results

Lemma 2. (Existence of Risk Neutral Measure) Let (At, Rt) be the coupled measurable stochastic processes on
(Ω, F ,P) given by (48). Then there exists a risk-neutral measure P̃t such that (Xt, FX

t ) is martingale under P̃t,
where X is the coupled process Xt := e−rt(At, Rt) . Furthermore, (At, Rt) satisfy

dAt = rAtdt + σA AtdWA
t

dRt = rRtdt + σRRtdWR
t .

(49)

Proof. The proof follows from the results in [40] as the pair (At, Rt) is a two-dimensional diffusion.

Lemma 3. (Solution to the PD-LGD Equations) Let (At, Rt) be given by (48). Then, under the physical
measure, (At, Rt) is given by

At = A0 exp
(
(μA − 1

2
σ2

A)t + σAWA
t

)
Rt = R0 exp

(
(μR − 1

2
σ2

R)t + σRWR
t

) (50)

and under the risk-neutral measure,

At = A0 exp
(
(r − 1

2
σ2

A)t + σAWA
t

)
Rt = R0 exp

(
(r − 1

2
σ2

R)t + σRWR
t

)
.

(51)

As an application of Lemma 3, we give a simple proof of Theorems 1–3 in [4]. This result is the
first comparison of recovery to asset values when the underlying asset is in state K.
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Lemma 4. (Expected Recovery at Default) Consider the Asset-Recovery model (48) and define

γ := ρA,R
σR
σA

(52)

δP := (μR − 1
2

σ2
R)− γ(μA − 1

2
σ2

A) (53)

δP̃ := δ = (r − 1
2

σ2
R)− γ(r − 1

2
σ2

A). (54)

Then

Ẽ[Rs|As = K] = E[Rs|As = K]e(δ
P̃−δP)s (55)

where

E[Rs|As = K] = R0

(
K
A0

)γ

eδPs+ 1
2 σ2

R(1−ρ2
A,R)s (56)

Ẽ[Rs|As = K] = R0

(
K
A0

)γ

eδP̃s+ 1
2 σ2

R(1−ρ2
A,R)s. (57)

Proof. We consider first the behavior of X under the physical measure, and prove (56).
By Lemmas 2 and 3, and by (48), we can consider now the solution form under two standard Brownian
motions WA and W on the probability space (Ω, F , P̃) where

At = A0 exp
(
(μA − 1

2
σ2

A)t + σAWA
t

)
Rt = R0 exp

(
(μR − 1

2
σ2

R)t + σRWR
t

)
WR

t = ρA,RWA
t +

√
1 − ρ2

A,RWt

P[dWA
t dWt = 0] = 1.

(58)

Using (58) the recovery process Rt under the physical measure can be explicitly written as

Rt = R0

( At

A0

)γ
exp

(
δPt + σR

√
1 − ρ2

A,RWt

)
(59)

where γ and δP are defined by (52) and (53) respectively. Then, using (59) we have

E[Rs|As = K] = E

[
R0

( As

A0

)γ
exp

(
δPs + σR

√
1 − ρ2

A,RWs

)
|As = K

]
(60)

= R0

( K
A0

)γ
Es

[
exp

(
δPs + σR

√
1 − ρ2

A,RWs

)]
(61)

= R0

(
K
A0

)γ

eδPs+ 1
2 σ2

R(1−ρ2
A,R)s. (62)

To prove (57) we simply set μA = μR = r in (59) to recognize R under the risk-neutral measure as
a shift from δP to δP̃, and (55) follows directly by dividing the closed form solution (57) by (56).

Under this framework, the price of a zero-coupon bond with face N is

Bt,T = Ẽt[Ne−r(T−t)
�{τ>T}] + Ẽt[e−r(τ−t)Rτ�{τ≤T}]. (63)

where default τ depends on At and recovery upon default Rτ depends on Rt through (49),
thus correlating default and recovery.
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In Sections 4.1 and 4.4 we compute the bond and CDS prices (and related credit measures such
as probability of default, loss-given-default and credit spreads) in the Stochastic Recovery Black-Cox
default model where default time is defined via (9), but recovery is stochastic and correlated to asset
value via (48).

3.3. Comparison of Recovery to Asset Upon Default

One of the features of the stochastic recovery model (48) we work with is that it is possible for
the recovery value modeled, Rt, to surpass the asset value At at some time t ≤ T. This is due to the
fact that A is the manager’s estimated asset value instead of the actual asset value upon recovery.
Upon default, it may come to pass that the actual value is higher than the estimated asset value A.
Hence, it is possible that when default occurs, the debt holders are paid in full, and there is still some
remaining capital. So, Rt > N > At is possible, for example. In fact, this is entirely possible when
default occurs due to liquidity issues. In this context, At is the default driving process, and Rt the
actual firm value. Hence, this model we work with proposes that there is less information about the
asset than in the classic single-name models of Merton and Black and Cox. We also note here that in
the end, it is the firm manager that decides firm default. Whether due to capital structure reasons or
more pressingly due to day-to-day operational costs, it is the manager who has final say in this matter.
This reinforces the fact that A is used to determine default, but R determines post-default recovery.
We note that this allows for the possibility that credit spreads can be negative, at times. Given the
correlated asset-recovery process (48), it is natural to estimate the probability that assets priced in
recovery exceed the barrier K or notional N . The following Lemma provides such an estimate.

Lemma 5. At the first passage time τK, we have the estimates

P̃t[RτK�{τK<T} > K] ≤ min

{
Rt

Ke−r(T−t)

[
Φ(−ds

γ) +

(
K
At

) 2r
σ2

A
+(2γ−1)

Φ(xs
γ)

]
, 1

}

P̃t[RτK∧T > N] ≤ min
{

Rt

Ne−r(T−t)
, 1
}

.

(64)

Proof. By the Markov Inequality and Optional Sampling Theorem, it follows that after once again
setting (wlog) t = 0,

P̃0[RτK 1{τK<T} > K] = P̃0[e−r(τK∧T)RτK∧T�{τK<T} > Ke−r(τK∧T)]

≤ P̃0[e−r(τK∧T)RτK∧T�{τK<T} > Ke−rT ]

= P̃0[e−rτK RτK�{τK<T} > Ke−rT ]

≤ Ẽ0[e−rτK RτK�{τK<T}]
Ke−rT

=
R0 − Ẽ0[e−rT RT�{τK≥T}]

Ke−rT .

(65)
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The numerator in (65) is computed using the same integral techniques employed in the proof of
Theorem 3, except with a lower limit of K instead of N (i.e., strong covenant.) The second inequality,
for the probability that recovered value is above notional, is proved in the same fashion:

P̃0[RτK∧T > N] = P̃0[e−r(τK∧T)RτK∧T > Ne−r(τK∧T)]

≤ P̃0[e−r(τK∧T)RτK∧T > Ne−rT ]

≤ Ẽ0[e−r(τK∧T)RτK∧T ]

Ne−rT

=
R0

Ne−rT .

(66)

3.4. Connection between Recovery Risk and PD-LGD Correlation

In related work, Moody’s KMV has recently proposed a PD-LGD Correlation model in the
context of credit capital [4]. While the structural model they propose is the same two-factor structural
model in (49), the motivation for the model is different. The motivation for Moody’s model is the
empirically observed PD-LGD correlation presented in Altman et.al. [1], which is justified economically
in [27,34,41] among other works. However, the study in [1] was conducted in the physical measure
(realized-post-ante default rates) rather than in the risk neutral measure used in pricing, and the
economic considerations are different. Nevertheless, in [4], the authors attempt to price a bond
with this model by integration. Indeed, we are able price bonds and CDS’s in this model via a
martingale analysis, completing the analysis initially suggested in [4] by integrating against a joint
density for process and first passage time. In particular, in Sections 4.1 and 4.4 below, we explicitly
compute the bond price using stochastic calculus and the Optional Sampling Theorem, returning closed
form solutions.

4. The Black-Cox Model with Recovery Risk

In this section we introduce the assumptions that define the Stochastic Recovery Black-Cox
model (SRBC) and use it to price bonds and CDS in Sections 4.1 and 4.4 respectively. The SRBC model
essentially relaxes the recovery assumption, Assumption 2, by replacing it with a weaker assumption on
the dynamics of the recovery value, Assumption 4, allowing for randomness in recovery. In particular,
the SRBC Model assumes the following:

Assumption 5. (Constant Rates) The short rate is assumed to be a constant r so that the discount factor is
given by

D(t, s) = e−r(s−t). (67)

Assumption 6. (Correlated Asset-Recovery Dynamics) The P̃t-dynamics of the firms asset value At and
recovery value Rt at time t are assumed to follow

dAt = rAtdt + σA AtdWA
t

dRt = rRtdt + σRRtdWR
t

ρA,Rdt = 〈dWA
t , dWR

t 〉
(68)

where r, σA, σR, ρA,R are constants and WA
t , WR

t are standard Brownian processes.
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Assumption 7. (Default Time) Default is given by the standard Black-Cox (BC) default time:

τBC = τK�{τK≤T} + T�{τK>T,AT<N} + ∞�{τK>T,AT≥N}. (69)

where τBC is also explicitly given in (9).
The collection of Assumptions 5–7 form the Stochastic Recovery Black-Cox model, and can be used

to price defaultable bonds as well as other products such as CDS. which we do in Sections 4.1 and 4.4
below. Note that, just as in the original Black-Cox model, the constant interest-rate assumption can be
relaxed to include time varying deterministic rates r = r(t) with little effort.

4.1. Bond Pricing with Recovery Risk

If default can occur before the maturity T, say if the bond issuer is forced into default if assets
A ever fall below a default point K, then the bond price must reflect this extra possibility. Our main
result in this section is the computation of a closed formula for such a price, where a recovery that
is correlated to the asset is substituted at default. This incorporates the model first presented by the
authors in [4].

Theorem 3. (Bond Price under Stochastic Recovery Black Cox Model) Suppose Assumptions 5, 6, 7 hold.
Then the general price of a zero-coupon bond and related risk metrics are:

BSRBC
t,T = e−r(T−t)Ẽt

[
BSRBC

T,T

]
= e−r(T−t)Ẽt

[
N�{AT≥N,τK>T} + RT�{AT≥N,τK>T}c

]
= Ne−r(T−t) · P̃t[AT ≥ N, τK > T] +

[
Rt − Ẽt[e−r(T−t)RT�{AT≥N,τK>T}]

]
SSRBC

t,T =
1

T − t
ln

⎛⎝ 1

1 − P̃D
BC
t,T · L̃GD

SRBC
t,T

⎞⎠ .

(70)

For sake of consistency, we point out that the SRBC bond prices reduce to the Stochastic Recovery Merton
(SRM) bond prices computed in [15] as K → 0. To enable comparison with the BC model, we once again present
the result for both weak and strong covenants:

I. Weak Covenant Case. If K ≤ N the price of a zero-coupon bond is given by

BSRBC
t,T (w) = Ne−r(T−t)

[
Φ(dw

0 )−
(

K
At

) 2r
σ2

A
−1

Φ(xw
0 )

]
+ Rt

[
Φ(−dw

γ ) +

(
K
At

) 2r
σ2

A
+2γ−1

Φ(xw
γ )

]
. (71)

The risk-neutral PD and LGD in the case of a weak covenant are

L̃GD
SRBC
t,T (w) = 1 − er(T−t) Rt

N

Φ
(
−dw

γ

)
+
(

K
At

) 2r
σ2

A
+2γ−1

Φ
(

xw
γ

)
Φ
(−dw

0
)
+
(

K
At

) 2r
σ2

A
−1

Φ
(

xw
0
)

P̃D
SRBC
t,T (w) = Φ (−dw

0 ) +

(
K
At

) 2r
σ2

A
−1

Φ(xw
0 ) = P̃D

BC
t,T(w).

(72)

II. Strong Covenant Case. If K ≥ N the price of a zero-coupon bond is given by

BSRBC
t,T (s) = Ne−r(T−t)

[
Φ(ds

0)−
(

K
At

) 2r
σ2

A
−1

Φ(xs
0)

]
+ Rt

[
Φ(−ds

γ) +

(
K
At

) 2r
σ2

A
+2γ−1

Φ(xs
γ)

]
. (73)
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The risk-neutral PD and LGD in the case of a strong covenant are

L̃GD
SRBC
t,T (s) = 1 − er(T−t) Rt

N

Φ
(
−ds

γ

)
+
(

K
At

) 2r
σ2

A
+2γ−1

Φ
(

xs
γ

)
Φ
(−ds

0
)
+
(

K
At

) 2r
σ2

A
−1

Φ
(

xs
0
)

P̃D
SRBC
t,T (s) = Φ (−ds

0) +

(
K
At

) 2r
σ2

A
−1

Φ(xs
0) = P̃D

BC
t,T(s)

(74)

where
dw

γ = dw
0 + γσA

√
T − t

ds
γ = ds

0 + γσA
√

T − t

xw
γ = xw

0 + γσA
√

T − t

xs
γ = xs

0 + γσA
√

T − t.

(75)

Remark 2. We remark that the risk-adjusted SRBC distances-to-default dγ, xγ in (75) reduce to the standard
distances-to-default (d0, x0) and (d1, x1) of the BC model if γ = 0 or γ = 1, respectively. This adjustment for
gamma reflects the uncertainty of the firm manager in the partial information setting of what the recoverable
value of the firm’s assets truly are, and affects only the recovery term. It should be noted that the probability of
default is the same as in the case of no stochastic recovery. It is only the Loss-Given-Default that is affected by
adding R as a recovery driver.

The price for the zero-coupon bond under the SRBC setting is computed by employing the
optional sampling theorem to the local martingale e−rtRt. We use τ := min {τK, T}, a bounded
stopping time adapted to the filtration generated by the joint process (A, R). The same technique is
also used in the proof of the strong covenant case.

Proof. Without loss of generality, set t = 0. Under the risk-neutral measure, the corresponding bond
price at issue is

BSRBC
0,T = R0 − Ẽ0[e−rT RT�{AT≥N,τK>T}] + Ne−rT · P̃0[AT ≥ N, τK > T]

= R0 − Ẽ0

[
exp

(
δT + σR

√
1 − ρ2

A,RWT

)]
Ẽ0

[
e−rT R0

(AT
A0

)γ
�{AT≥N,τK>T}

]
+ Ne−rT · P̃0[AT ≥ N, τK > T]

= R0 − R0

Aγ
0

e−(r−δ− 1
2 σ2

R(1−ρ2
A,R))T · Ẽ0

[
Aγ

T�{AT≥N,τK>T}

]
+ Ne−rT · P̃0[AT ≥ N, τK > T]

= R0 − R0

Aγ
0

e[−γr+ 1
2 (γ−γ2)σ2

A ]T
∫ ∞

N
aγP̃0

[
AT ∈ da, τK > T

]
+ Ne−rT

∫ ∞

N
P̃0[AT ∈ da, τK > T].

(76)

We are able to calculate these two integrals using a result found in [26]:

Theorem 4. (Joint Density for Location and Maximum)
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Begin with a standard Brownian motion W on a probability space and define

Xt = μt + σWt

τa = min {t : Xt = a}
Xt = min

0≤s≤t
Xs

g(x, y, t, μ) :=
1

σ
√

t
φ
( x − μt

σ
√

t

)(
1 − exp

(
− 4y2 − 4xy

2σ2t

))

φ(x) :=
1√
2π

e−
x2
2 = Φ′(x).

(77)

Then
P̃0 [Xt ∈ dx, Xt ≥ y] = g(−x, −y, t, −μ)dx = g(x, y, t, μ)dx. (78)

Proof. See the proof of Theorem 2.1(i) in [26].

We employ the notation of Theorem 2.1(i) in [26] and focus on standard Brownian motions
by setting

μ := r − 1
2

σ2
A

σ := σA

y := ln
K
A0

≤ 0

w := ln
N
A0

≤ 0

Xt := ln
At

A0

Xt := min
0≤s≤t

ln
As

A0
.

(79)

From these definitions, it follows that

At = A0eXt

{τK > T} =

{
XT > ln

(
K
A0

)}
:=

{
τX

y > T
}

.
(80)

Using this notation, we now compute the remaining integrals in (76):

∫ ∞

N
aγ · P̃0

[
AT ∈ da, τK > T

]
= Ẽ0

[
Aγ

T�{AT>N,τK>T}

]

= Ẽ0

[
e

γ

(
ln (A0)+XT

)
�{XT>w,τX

y >T}
]
=

∫ ∞

w
eγ(x+ln A0)P̃0

[
XT ∈ dx, τX

y > T

]

=
∫ ∞

w
eγ(x+ln A0)

1
σA

√
T

φ
(
− (x − μT)

σA
√

T

)(
1 − exp

(
− 4y(y − x)

2σ2
AT

))
dx

= (A0)
γ
∫ ∞

w

1√
2πσ2

AT
exp

(
− (x − μT)2 − 2σ2

AγTx
2σ2

AT

)
dx

− (A0)
γ
∫ ∞

w

1√
2πσ2

AT
exp

(
− (x − μT)2 + 4y(y − x)− 2σ2

AγTx
2σ2

AT

)
dx.

(81)
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It follows from completing the square in the exponent of the normal density that

∫ ∞

w

1√
2πσ2

AT
exp

(
− (x − μT)2 − 2σ2

AγTx
2σ2

AT

)
dx

= e(γμ+ 1
2 γ2σ2

A)TΦ

⎛⎝−w − (μ + γσ2
A)T√

σ2
AT

⎞⎠
∫ ∞

w

1√
2πσ2

AT
exp

(
− (x − μT)2 + 4y(y − x)− 2σ2

AγTx
2σ2

AT

)
dx

= e
2μy
σ2

A
+2γy

e[γμ+ 1
2 γ2σ2

A ]TΦ

⎛⎝−w − 2y − (μ + γσ2
A)T√

σ2
AT

⎞⎠ .

(82)

Substitution of the results of (82) into (81) and leads to

R0 − R0

Aγ
0

e−(γ(r− 1
2 σ2

A)+
1
2 γ2σ2

A)T
∫ ∞

N
aγP̃0

[
AT ∈ da, τK > T

]

= R0 − R0

⎛⎝Φ

⎛⎝−w − (μ + γσ2
A)T√

σ2
AT

⎞⎠− e
2γy+ 2μy

σ2
A Φ

⎛⎝−w − 2y − (μ + γσ2
A)T√

σ2
AT

⎞⎠⎞⎠
= R0

[
Φ

⎛⎝w − (μ + γσ2
A)T√

σ2
AT

⎞⎠+ e
2γy+ 2μy

σ2
A Φ

⎛⎝−w − 2y − (μ + γσ2
A)T√

σ2
AT

⎞⎠]
.

(83)

Similiarily, substituting γ = 0 into (81) results in

∫ ∞

w
P̃0

[
XT ∈ dx, τX

y > T

]
= Φ

⎛⎝−w − μT√
σ2

AT

⎞⎠− e
2μy
σ2

A Φ

⎛⎝−w − 2y − μT√
σ2

AT

⎞⎠ . (84)

Assembling the computations in (83) and (84), along with substitution of w, y in terms of K, N and
A0, and using the form (76) leads to the closed-form solution for the weak covenant case. Note that we
have w = ln N

A0
as our lower limit of integration in the weak covenant case. To switch to the strong

covenant case, we substitute y = ln K
A0

for our lower limit and the result for bond price and associated
spreads and loss given default follows.

4.2. Consistency and Reduction to Black-Cox Model

As a result of the closed form above for BSRBC
t,T , the consistency of the model as T → t follows

quickly for both weak and strong covenants:

Lemma 6. If At > N in the weak covenant case, or if At > K in the strong covenant case, then

lim
T→t+

BSRBC
t,T (·) = N

lim
(γ,Rt)→(1,At)

BSRBC
t,T (·) = BBC

t,T (·).
(85)
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Proof. Consider that for both weak and strong covenants, the explicit formulae for distances-to-default
lead to

lim
T→t+

[
Φ(d(·)0 )−

(
K
At

) 2r
σ2

A
−1

Φ(x(·)0 )

]
= 1

lim
T→t+

[
Φ(−d(·)γ ) +

(
K
At

) 2r
σ2

A
+(2γ−1)

Φ(x(·)γ )

]
= 0.

(86)

Hence, limT→t+ BSRBC
t,T (·) = N follows from the closed-formula given in Theorem 3, as does the

reduction to the Black-Cox price when γ → 1 and Rt → At.

4.3. Greeks and Comparison with Standard Black-Cox model

Using our closed formula for bond price, we also compute the Greeks assuming
stochastic recovery:

Lemma 7. (Greeks for SRBC). Let BSRBC
t,T be the zero-coupon bond price from the Black-Cox model with

stochastic recovery (70) under a weak covenant. Then the Recovery Greeks are given by

∂

∂R
BSRBC

t,T (·) = Φ(−d(·)γ ) +

(
K
A

)κγ

Φ(x(·)γ )

∂

∂γ
BSRBC

t,T (·) = R ·
[

σA
√

T − t
(
−φ(−d(·)γ ) +

(
K
A

)κγ

φ(x(·)γ )

)]
+ R ·

[
2 ln

(
K
A

)(
K
A

)κγ

Φ(x(·)γ )

]
κα :=

2r
σ2

A
+ (2α − 1) , ∀α ∈ R.

(87)

4.4. CDS Pricing with Recovery Risk

In this section, we price CDS using the SRBC model. We again consider both the weak and
strong-covenant cases, and the results below depend on the bond prices in both covenant settings.
Because of the general definition of a CDS premium under a structural model in Section 2, the premium
here is the same as that computed for the BC model, with the exception that recovery is now defined
by the correlated process R:

Theorem 5. (CDS Premium under Stochastic Recovery Black-Cox Model) Suppose Assumptions 5–7
hold. Then the CDS premium (23) is given by:

PSRBC
t,T =

e−r(T−t)P̃t [τBC > T] + Ẽt

[
e−r(τBC−t)

�{τBC≤T}
]
− BSRBC

t,T
N

1−Ẽt [e−r(τBC−t)
�{τBC≤T} ]−e−r(T−t)P̃t [τBC>T]

r + 1
2 · Ẽt

[
e−r(τBC−t)�{τBC≤T}

] . (88)
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In the strong covenant case, where K ≥ N, this reduces to the closed formula

PSRBC
t,T (s) =

e−r(T−t)P̃t [τK > T] + Ẽt

[
e−r(τK−t)

�{τK≤T}
]
− BSRBC

t,T (s)
N

1−Ẽt [e−r(τK−t)
�{τK≤T} ]−e−r(T−t)P̃t [τK>T]

r + 1
2 · Ẽt

[
e−r(τK−t)�{τK≤T}

]
P̃t [τK > T] = Φ (ds

0)−
(

K
At

) 2r
σ2

A
−1

Φ (xs
0) = 1 − P̃D

BC
t,T(s)

Ẽt[e−r(τK−t)
�{τK≤T}] = At

[
Φ(−ds

1) +

(
K
At

) 2r
σ2

A
+1

Φ(xs
1)

]
.

(89)

In the weak covenant case, where K ≥ N, this reduces to the closed formula

PSRBC
t,T (w) =

e−r(T−t)P̃t [τBC > T] + Ẽt

[
e−r(τBC−t)

�{τBC≤T}
]
− BSRBC

t,T (w)

N

1−Ẽt [e−r(τBC−t)
�{τBC≤T} ]−e−r(T−t)P̃t [τBC>T]

r + 1
2 · Ẽt

[
e−r(τBC−t)�{τBC≤T}

]
P̃t [τBC > T] = P̃t [τK > T, AT ≥ N] = 1 − P̃D

BC
t,T(w)

P̃t [τK > T] = Φ (ds
0)−

(
K
At

) 2r
σ2

A
−1

Φ (xs
0) = 1 − P̃D

BC
t,T(s)

Ẽt

[
e−r(τBC−t)

�{τBC≤T}
]
= Ẽt[e−r(τK−t)

�{τK≤T}] + e−r(T−t)
(
P̃t[τK > T]− P̃t[τK > T, AT ≥ N]

)
Ẽt[e−r(τK−t)

�{τK≤T}] = At

[
Φ(−ds

1) +

(
K
At

) 2r
σ2

A
+1

Φ(xs
1)

]
.

(90)

Proof. Changing to the SRBC model requires only a change to the corresponding bond price in (23),
as the default trigger (time) remains τBC.

Because of this closed form, we have consistency in our model as our parameters return to the
standard Black-Cox model without stochastic recovery:

Lemma 8. (Premiums Are Model-Consistent) The SRBC CDS premiums (88) are consistent with the BC
CDS premiums (40), in that

lim
(γ,Rt)→(1,At)

PSRBC
t,T (·) = PBC

t,T (·). (91)

Proof. This result follows directly from the closed form for CDS premiums in Theorems 2 and 5,
and the result

lim
(γ,Rt)→(1,At)

BSRBC
t,T (·) = BBC

t,T (·) (92)

in Lemma 6.
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5. The Implied Recovery and Recovery Risk Premium

5.1. Implied Recovery Rates From Observed CDS Premia

We introduce notation in this section only for the function of A and t that defines the probability
of default. Specifically, define for any α ∈ R :

F(w)
α (A, t) := Φ(−dw

α ) +

(
K
A

)κα

Φ(xw
α )

F(s)
α (A, t) := Φ(−ds

α) +

(
K
A

)κα

Φ(xs
α).

(93)

Here, κα is the quantity defined in (87). Furthermore, define

MGF(At, t; w) := Ẽt[e−r(τBC−t)
�{τBC≤T}]

MGF(At, t; s) := Ẽt[e−r(τK−t)
�{τK≤T}]

Pay(At, t; w) :=
1 − MGF(At, t; w)− e−r(T−t)

(
1 − P̃D

BC
t,T(w)

)
r

+
1
2

MGF(At, t; w)

Pay(At, t; s) :=
1 − MGF(At, t; s)− e−r(T−t)

(
1 − P̃D

BC
t,T(s)

)
r

+
1
2

MGF(At, t; s)

Pro(At, Rt, γ, t; w) := MGF(At, t; w)− Rt

N
F(w)

γ (A, t)

Pro(At, Rt, γ, t; s) := MGF(At, t; s)− Rt

N
F(s)

γ (A, t).

(94)

Using the results of Theorem 3 to calculate the quantity Ẽt

[
D(t, τ)

RτBC
N �{τBC≤T}

]
of the protection

leg (22) in terms of recovery Rt, we obtain the result

PSRBC
t,T (w) =

Pro(At, Rt, γ, t; w)

Pay(At, t; w)

PSRBC
t,T (s) =

Pro(At, Rt, γ, t; s)
Pay(At, t; s)

.
(95)

We also define the recovery rate R̄t,T = R̄(t, T) := Rt
N , and solve the Stochastic Recovery Black-Cox

CDS premium PSRBC
t,T in (95) for the recovery rate to yield the Implied Recovery Rate

R̄Imp
t,T (w) =

MGF(At, t; w)− Pay(At, t; w)P̄Mkt
t,T (w)

F(w)
γ (A, t)

R̄Imp
t,T (s) =

MGF(At, t; s)− Pay(At, t; s)P̄Mkt
t,T (s)

F(s)
γ (A, t)

.

(96)
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Suppose now there are two CDS on the same obligor, except one references a senior issue with
maturity TSr = T while the other references a junior issue with maturity TJr = T. Denote the premiums
associated to these two CDS as PMkt

Sr and PMkt
Jr respectively. Then the market implied recovery ratio is

R̄Imp
Jr (t, T)(w)

R̄Imp
Sr (t, T)(w)

=
1 − Pay(At ,t;w)

MGF(At ,t;w)
PMkt

Jr (t, T)

1 − Pay(At ,t;w)
MGF(At ,t;w)

PMkt
Sr (t, T)

R̄Imp
Jr (t, T)(s)

R̄Imp
Sr (t, T)(s)

=
1 − Pay(At ,t;s)

MGF(At ,t;s)
PMkt

Jr (t, T)

1 − Pay(At ,t;s)
MGF(At ,t;s)

PMkt
Sr (t, T)

(97)

where as before R̄Imp
Sr (t, T) and R̄Imp

Jr (t, T) are the market implied term structures for recovery rates
at time t. Notice that the right hand side of (97) requires the observed CDS premiums as well as the
calibrated parameters of the original Black-Cox model, but is independent of the partial information
parameter γ. Inverting recovery to obtain implied premiums for junior and senior issues with the
same maturity leads to

PImp
Jr (t, T)(w)

PImp
Sr (t, T)(w)

=
1 − R̄Jr

t,T
F(w)

γ (At ,t)
MGF(At ,t;w)

1 − R̄Sr
t,T

F(w)
γ (At ,t)

MGF(At ,t;w)

PImp
Jr (t, T)(w)

PImp
Sr (t, T)(s)

=
1 − R̄Jr

t,T
F(s)

γ (At ,t)
MGF(At ,t;s)

1 − R̄Sr
t,T

F(s)
γ (At ,t)

MGF(At ,t;s)

(98)

which also requires knowledge of the recovery process, as well as γ.

Remark 3. The spread-ratio (98) is the Stochastic Recovery Black-Cox model implementation of Equation (6)
in [14] used to extract recovery risk premiums from empirical data.

5.2. The Price of Recovery Risk

Lemma 9. (Comparison of the Black-Cox and 2d Black-Cox Model). Using our notation for Fα defined
in (93) above, we can write our zero-coupon bond prices as

BBC
t,T (w) = Ne−r(T−t) · [1 − F(w)

0 (At, t)] + AtF
(w)
1 (At, t)

BBC
t,T (s) = Ne−r(T−t) · [1 − F(s)

0 (At, t)] + AtF
(s)
1 (At, t)

BSRBC
t,T (w) = Ne−r(T−t) · [1 − F(w)

0 (At, t)] + RtF
(w)
γ (At, t)

BSRBC
t,T (s) = Ne−r(T−t) · [1 − F(s)

0 (At, t)] + RtF
(s)
γ (At, t).

(99)

Suppressing the (w/s) superscript, we are able to compute the price of Recovery Risk in our zero coupon
bond and associated credit spread:

BSRBC
t,T = BBC

t,T + RR(Bt,T)

= BBC
t,T + [RtFγ(At, t)− AtF1(At, t)]

SSRBC
t,T = SBC

t,T + RR(St,T)

= SBC
t,T +

1
T − t

ln

⎛⎝1 + er(T−t) At
N

F1(At ,t)
1−F0(At ,t)

1 + er(T−t) Rt
N

Fγ(At ,t)
1−F0(At ,t)

⎞⎠.

(100)
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6. The Effect of Coupons

If coupons are paid at rate C per unit time, in addition to notional N, then (conditioned on the
information (At, Rt) = (A, R)) the total value of a coupon bond in our model is now derived from the
expected present value of coupons paid until τK ∧ T:

BSRBC,c
t,T := BSRBC

t,T + Ẽt[PVt,T [Cpns]]

Ẽt[PVt,T [Cpns]] := Ẽt

[∫ T

t
Ce−r(s−t)

�{τK>s}ds
]

.
(101)

By using moment-generating functions similar to those employed in calculating the premium-leg
of our CDS, we compute the expected present value of coupon income to be

Ẽt[PVt,T [Cpns]] = Ẽt

[∫ τK∧T

t
Ce−r(s−t)ds

]
=

C
r

[
1 − Ẽt

[
e−r(τK−t)

�{τK≤T}
]
− e−r(T−t)P̃t [τK > T]

]
=

C
r

[
1 − A

K

[
Φ(−ds

1) +

(
K
A

) 2r
σ2

A
+1

Φ(xs
1)

]
− e−r(T−t)

(
Φ (ds

0)−
(

K
A

) 2r
σ2

A
−1

Φ (xs
0)

)]
.

(102)

An interesting limit in these calculation is the passage to an infinite horizon for redemption time.
In the next section, we calculate the value of perpetual bonds and show consistency with the value (102)
computed for coupon bonds under finite horizon.

6.1. Perpetual Bonds

For bondholders interested in long-term bonds, say of the 100-year variety [42,43],
an approximation of this long-term bond as a perpetual bond with stochastic recovery is a useful
measure of the risk involved with such an instrument. The addition of stochastic recovery, even when
the firm-value level that triggers default is known, reflects the uncertainty of what the true value of a
firm’s assets may be worth upon default when bankruptcy occurs far off into the future.

We begin with some modeling assumptions:

• Managers set a bankruptcy level K and accordingly we recall the definition (8) of τK as the first
passage time of assets A to level K.

• Coupons are paid continuously at rate C, there is a risk-free interest rate r, and recovery at
bankruptcy is RτK .

Based on the above assumptions, and conditioned on the information (A0, R0) = (A, R), the value
of debt at time 0 (wlog) is

B0 = Ẽ0

[∫ τK

0
Ce−rsds + e−rτK RτK�{τK<∞}

]
. (103)

Lemma 10. For market parameters (γ, r, σA) such that

min

{
γr − 1

2
γ(1 − γ)σ2

A,
2r
σ2

A
+ 2γ − 1

}
> 0, (104)

the value of a perpetual bond under stochastic recovery is

B0 =
C
r

(
1 −

(
K
A

) 2r
σ2

A

)
+ R

(
K
A

) 2r
σ2

A
+2γ−1

(105)
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and
B0 = lim

T→∞

(
BSRBC

0,T + Ẽ0[PV0,T [Cpns]]
)

. (106)

Remark 4. In the Leland model [44] of perpetual bond issuance under a structural model for firm value,
the recovery upon default is modeled as

RτK = (1 − α)AτK = (1 − α)K (107)

for fractional bankruptcy cost ratio α. If we substitute R = (1 − α)A and γ = 1 into (105), then we retain
the classical Leland [44] formula

B0 =
C
r

(
1 −

(
K
A

) 2r
σ2

A

)
+ (1 − α)K

(
K
A

) 2r
σ2

A . (108)

Proof. We begin by rewriting (103) as

B0 = Ẽ0

[
C
r
(1 − e−rτK) + e−rτK RτK�{τK<∞}

]
=

C
r
+ Ẽ0

[
e−rτK

(
RτK − C

r

)
�{τK<∞}

]
.

(109)

For γ = ρA,R
σR
σA

and orthogonal decomposition

WR
t = ρA,RWR

t +
√

1 − ρ2
A,RWt, (110)

Ito-Calculus leads to, ∀t ≤ s,

Rs

Rt
=
(As

At

)γ
e[(r−

1
2 σ2

R)−γ(r− 1
2 σ2

A)](s−t)+σR

√
1−ρ2

A,R(Ws−Wt). (111)

Substituting t = 0 and s = τK returns

RτK = R0

( K
A0

)γ
e[(r−

1
2 σ2

R)−γ(r− 1
2 σ2

A)]τK+σR

√
1−ρ2

A,RWτK . (112)

If we define fK(t) as the density of our first passage time to level K, then we see that

B0 =
C
r
+ Ẽ0

[
e−rτK

(
RτK − C

r

)
�{τK<∞}

]
=

C
r
+
∫ ∞

0
e−rt

(
Ẽ0 [RτK | τK = t]− C

r

)
fK(t)dt.

(113)

Assuming that at default, the bondholder receives instead the stochastically varying amount RτK ,
it follows that, conditioned on (A0, R0) = (A, R),

B0 =
C
r
+ Ẽ0

[
e−rτK

(
RτK − C

r

)
�{τK<∞}

]
=

C
r
+
∫ ∞

0
e−rt

(
Ẽ0 [RτK | τK = t]− C

r

)
fK(t)dt

=
C
r

(
1 −

∫ ∞

0
e−rt fK(t)dt

)
+
∫ ∞

0
e−rtR

(
K
A

)γ

e((1−γ)r+ 1
2 γ(1−γ)σ2

A)t fK(t)dt.

(114)
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When rewritten, with r∗ := γr − 1
2 γ(1 − γ)σ2

A, the bond value is

B0 =
C
r

(
1 − Ẽ0[e−rτK�{τK<∞}]

)
+ R

(
K
A

)γ

Ẽ0[e−r∗τK�{τK<∞}]. (115)

Using well known results for moment-generating functions of first-passage times of Brownian
motions with drift, assuming r∗ > 0, we obtain the closed form

Ẽ0[e−rτK1{τK<∞}] =
(

K
A

) 2r
σ2

A

Ẽ0[e−r∗τK1{τK<∞}] =
(

K
A

)y(r,r∗ ,σA)

=

(
K
A

) 2r
σ2

A
+γ−1

y(g, z, σ) :=
g − 1

2 σ2 +
√
(g − 1

2 σ2)2 + 2zσ2

σ2

(116)

which results in the closed-form expression for a perpetual bond with stochastic recovery

B0 =
C
r

(
1 −

(
K
A

) 2r
σ2

A

)
+ R

(
K
A

) 2r
σ2

A
+2γ−1

. (117)

By utilizing (102), (116), and Theorem 3, we see that if in addition to r∗ > 0, we also have
r >

(
1
2 − γ

)
σ2

A, then it follows that ∀t ≥ 0

lim
T→∞

Ẽt[PVt,T [Cpns]] =
C
r

[
1 −

(
K
A

) 2r
σ2

A

]

lim
T→∞

BSRBC
t,T = R

(
K
A

) 2r
σ2

A
+2γ−1

(118)

and so we achieve consistency in the passage to infinite horizon.

7. Conclusions

In this work we introduced the Stochastic Recovery Black-Cox (SRBC) model which is essentially
a Black-Cox model with an extra recovery risk driver. We then consider pricing with recovery risk and
in particular explicitly compute closed form prices for both bonds and CDS under this framework,
as well as associated risk metrics. This framework allows us to compute the Recovery implies by bond
and CDS prices as well as compute the recovery risk premium.
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Abstract: We prove that the Omega measure, which considers all moments when assessing portfolio
performance, is equivalent to the widely used Sharpe ratio under jointly elliptic distributions of
returns. Portfolio optimization of the Sharpe ratio is then explored, with an active-set algorithm
presented for markets prohibiting short sales. When asymmetric returns are considered, we show
that the Omega measure and Sharpe ratio lead to different optimal portfolios.
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1. Introduction

In the modern world of finance and insurance, it is routine for investors, firms and companies to
manage different financial/insurance assets in the hope of increasing their capital gain. The collection
of such investments is known as a portfolio, and it is designed to match the investor’s preference.
Different compositions of varying assets allow for a diversity of combinations that suit distinct appetites.
For example, a bulge bracket investment bank such as J.P. Morgan is willing to undertake more risk
to compensate for a larger return, in comparison to a retiree who is overseeing his retirement fund.
However, despite an individual’s taste, investors face the challenge of balancing reward and risk, as
a high reward investment is often tightly linked with high underlying risk, and thus the main goal of
portfolio management is finding the optimal tradeoff between the two.

The mean-variance portfolio model, proposed by Harry Markowitz (1968) serves as the keystone
to portfolio theory. He formalized the problem of a rational, risk adverse investor that faces the tradeoff
between reward and risk as proposed above. In such a scenario, reward and risk are defined as the
expected return from the portfolio and its variance. There are problems with the implementation of the
Markowitz model when the universe of assets is large. In this situation, the assets’ sample covariance
matrix is not an efficient estimator of the assets’ true covariance matrix. Therefore, using the sample
mean and covariance matrix in the mean-variance optimization procedure will result in an optimal
return estimate different from reality. A fix for this problem is proposed in Bai et al. (2009), by using
the theory of the large-dimensional random matrix. Another reason for the poor performance of the
optimal mean-variance portfolio is perhaps due to the symmetry of asset returns. Low et al. (2016)
shows that it is possible to enhance mean-variance portfolio selection by allowing for distributional
asymmetries. Portfolio optimization under skewed returns is performed in several papers such as in
Low (2015); Hu et al. (2010).

Under the mean-variance framework, various major portfolio theories have sprouted, and
one of the major developments proposed by Willian Sharpe (1966) is known as the Sharpe ratio.
The Sharpe ratio is the most fundamental of performance measures, which are critical in the evaluation,
management and trading of portfolios. Under the mean-variance portfolio framework, the Sharpe
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ratio compares the return of the portfolio with the risk-free interest rate, which serves as a significant
benchmark, owing to the fact that if overall return of the portfolio ranks below the risk free rate,
investors should put their capital in the money market and earn interest without bearing any risk.
The Sharpe ratio is greatly incorporated as a modern investment strategy, and is highly appraised by
investors. However, the Sharpe ratio only comprises and examines the first two moments of the return
distribution, namely, the expected return and the variance in return, while distribution properties
such as skewness and kurtosis, which measure asymmetry and thickness of the tail distribution at
the third and fourth moments respectively, may profoundly impact the performance of the portfolio.
DeMiguel et al. (2009) compares the optimal mean-variance portfolio with the naive 1

N portfolio. They
found that the 1

N rule performs better than the optimal mean-variance portfolio in terms of the Sharpe
ratio, indicating that the gain from optimal diversification is higher when compared to the offset
produced by estimation error.

The failure of the Sharpe ratio to address higher moments motivated Keating and Shadwick (2002)
to develop the Omega measure, which captures all moments of the return distribution, including the
expected value and variance. The Omega measure serves as a universal performance measure as it can
be applied to any portfolio that follows a well-defined return distribution.

Even though the Omega measure was developed over 10 years ago, little research has been done
to address its compatibility with previous developments, namely, with distribution functions that
only involve lower moments. This paper aims to explore and address the backward compatibility
of the Omega measure. We consider a market (financial or insurance) encompassing several risks
within a one period paradigm. The risks are first assumed to follow a jointly elliptical distribution.
Under this framework, we prove that the Sharpe ratio and the Omega measure yield the same optimal
portfolios. Next, Sharpe ratio portfolio optimization is explored. The quasi-concavity of the Sharpe
ratio is employed to develop an active-set algorithm for markets banning short sales. The convergence
of this algorithm is established and numerical results are presented. Moreover, we show that, in
a model with asymmetric returns, the optimal Sharpe ratio portfolio fails to be optimal when Omega
measure is considered.

The remainder of this paper is organized as follows: in Section 2, we present the model. Section 3
provides the Sharpe ratio and Omega measure equivalence within the class of elliptical distributions
of returns. Portfolio optimization formulations are presented in Section 4. Numerical analysis is
performed in Section 5, with numerical results displayed in Section 6. Section 7 presents a model with
asymmetric returns. The conclusion is summarized in Section 8. The paper ends with an Appendix A
containing the proofs.

2. The Model

We have a market (financial or insurance) model that encompasses several instruments denoted
S1, ..., Sn. We consider a single period model from time t = 0 to t = 1. For each instrument, let the
arithmetic return be

Ri =
Si(1)− Si(0)

Si(0)
,

and
R = (R1, R2, · · · , Rn).

We assume the return of the portfolio follows an elliptically symmetric distribution. Then, the
vector of means E(R) = μ = (μ1, ..., μn)T and the n × n covariance matrix Cov(R) = Σ = (σij)i,j exist,
and we further assume that Σ is invertible. The density f , if it exists, is

f (x) = |Σ|− 1
2 g
[
(x − μ)TΣ−1(x − μ)

]
,
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where x ∈ Rn and g : R+ → R+ is called the density generator or shape of R, and we write

R ∼ ECn(μ, Σ; g),

where (μ, Σ) is called the parametric part and g is called the non-parametric part of the elliptical
distribution. The characteristic function ψ of R is

ψR(t) = E exp (itTR) = exp (itTμ)φ(tTΣt),

for some scalar function φ, called the characteristic generator. For background on the elliptically
symmetric distribution, which is also called elliptically countered, see Bingham and Kiesel (2002);
Fang et al. (1990).

The class of elliptical distributions, which have densities and defined mean and covariance
is rich enough to contain several common distributions of asset returns: the multivariate normal
distribution, the multivariate t distribution, normal-variance mixture distributions, symmetric stable
distributions, the symmetric generalized hyperbolic distribution, the symmetric variance-gamma
distribution, and the multivariate exponential power family (and thus the Laplace distribution).
One advantage of this class is that the non-parametric part g “escapes the curse of dimensionality”
(cf. Bingham and Kiesel (2002)). This class is chosen to model the stock returns by Bingham et al. (2003);
Chamberlain (1983); Owen and Rabinovitch (1983).

Elliptical distributions are appealing for portfolio analysis, since it is a closed class under linear
combinations. A portfolio at times t = 0 and t = 1 will, respectively, be

X(0) = Δ1S1(0) + · · ·+ ΔnSn(0),

X(1) = Δ1S1(1) + · · ·+ ΔnSn(1).

Let the arithmetic return of the portfolio be

R =
X(1)− X(0)

X(0)
.

The following Lemma gives the distribution of R.

Lemma 1. Let

wi =
ΔiSi(0)

Δ1S1(0) + · · ·+ ΔnSn(0)

be the proportion of the initial wealth invested in instrument i, and w be the vector with components wi. Then,
R follows an elliptical distribution

R ∼ EC1(μ̄, σ̄; g),

where

μ̄ := w · μ =
n

∑
i=1

wiμi, σ̄2 := wTΣ w =
n

∑
i=1

n

∑
j=1

wiwjσij.

Proof. See the Appendix A

Let us consider the Sharpe Ratio and Omega measure defined by the formal definitions.

Definition 1. The Sharpe ratio of a portfolio with return R is defined as

S(R) =
μ̄ − r f

σ̄
,
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where μ̄ is the expected return of the portfolio, σ̄ is the standard deviation of return, and r f is the risk-free
interest rate.

Definition 2. The Omega measure of a portfolio with return R is defined as

Ω(R) =

∫ ∞
L (1 − F(x))dx∫ L

−∞ F(x)dx
,

where F(x) is the cumulative distribution function of the return distribution R, and L is an exogenously satisfied
benchmark index.

The intuition behind the Omega measure is simple; by selecting a benchmark L, which serves as
a reference that our portfolio is aiming to beat, the Omega measure compares the area of the cumulative
distribution function from the right of L to the area to the left of L. Under such a definition, the Omega
measure encompasses the entire return distribution, therefore incorporating higher moment properties
as discussed.

3. Sharpe Ratio and Omega Measure Equivalence

When holding a portfolio, an investor uses a performance measure such as the Sharpe ratio or the
Omega measure to evaluate how well the portfolio is performing. Hence, it is a natural question to ask
how one should distribute his wealth in order to maximize his portfolio under the Omega measure.
The following theorem states that using the Sharpe ratio or the Omega measure to optimize portfolio
performance leads to the same optimal portfolio within the class of elliptical distributions of returns.

Theorem 1. Recall that, under our framework, the portfolio return R is elliptically distributed
R ∼ EC1(μ̄, σ̄; g). If r f = L, we claim that

max
w1,..,wn

Ω(R)

is equivalent to
max

w1,..,wn
S(R).

Proof. See the Appendix A

4. Portfolio Optimization

Given Theorem 1, we are able to transform optimization problems of the Omega measure into
optimization problems of the Sharpe ratio for elliptical distributions. Let e = μ − L, the excess expected
return above a selected benchmark index L. With no restrictions on short selling, our optimization
problem is as follows:

max
wTe√
wTΣw

, (1)

s.t.
n

∑
i=1

wi = 1.

However, certain financial markets prohibit the act of short selling, especially during periods of
financial upheaval. An example would be the U.S. securities market under the 2008 financial crisis,
when the U.S. Securities and Exchange Commission prohibited the act of short selling to protect the
integrity of the securities market. Hence, we are also interested in the following problem as well:
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max
wTe√
wTΣw

, (2)

s.t.
n

∑
i=1

wi = 1,

wi ≥ 0 i = 1, ..., n.

5. Numerical Analysis

The optimal solution to (1) can be found directly as described in the following proposition.

Proposition 1. The optimal solution to (1) is w∗ = ŵ
∑n

i ŵi
, where ŵ = Σ−1e.

Proof. See the Appendix A

We require the following properties of the Sharpe ratio in developing an algorithm for solving (2).

Proposition 2. The Sharpe ratio S(w) = wTe√
wTΣw

is a quasi-concave function and ∇S(w) = 0 iff w = cΣ−1e
for some c �= 0.

Proof. See the Appendix A

If Σ−1e ≥ 0, then our optimal solution for (1) is also optimal for (2), so let us assume that for (2),
our optimal solution w∗ �= cΣ−1e for any c. By our assumption, ∇S(w∗) �= 0 and the following
theorem is applicable.

Theorem 2 (Arrow and Enthroven (1961)). Let f (x) be a differentiable quasi-concave function subject to
non-negativity constraints. If ∇ f (x∗) �= 0 and x∗ satisfies the KKT conditions with constants μ∗, then it is
a global optimal solution.

The KKT conditions for (2), ignoring the equality constraint are as follows, where
∇S(w) = e√

wTΣw
− wTeΣw

(wTΣw)
3
2

.

e√
wTΣw

− wTeΣw

(wTΣw)
3
2
+ μ = 0 (stationarity), (3)

w ≥ 0 (primal feasibility),

μ ≥ 0 (dual feasibility),

μTw = 0 (complementary slackness).

Consider the sets P and W defined by

P := {i ∈ {1, . . . , n} : wi > 0},

W := {i ∈ {1, . . . , n} : wi = 0}.

Let us permute the data so that

e = [eP; eW ], w = [wP; wW ],
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and let ΣP be the covariance matrix of the instruments indexed by P. Let |P| be the number of elements
of P. At optimality, the first |P| rows of (3) will equal

eP − wT
PePΣPwP

wT
PΣPwP

= 0,

with solution
wP = cΣ−1

P eP, for c �= 0.

Therefore, the optimal solution of (2) is the optimal solution of (1) for some unknown subset of
instruments P. For ease in what follows, we will always take c = 1.

Our main objective then is to find the optimal set P, after which the optimal solution can be found
by solving a positive definite system of linear equations. We propose the use of the following active-set
algorithm to solve (2), which is inspired by Algorithm 16.3 in Nocedal and Wright (2006).

Algorithm 1: Sharpe Ratio active-set (SRAS) algorithm.
1: i = 0
2: wi = 0
3: j = argmax ej√

Σjj
4: wi

j =
ej√
Σjj

5: Wi = {j|wi
j = 0}

6: Pi = {j|wi
j > 0}

7: loop

8: xi
Pi = Σ−1

Pi ePi
9: xi

Wi = 0
10: pi = xi − wi
11: if pi = 0 then

12: μi
Wi =

wiT e(Σwi)Wi

(wiT Σwi)
3
2

− eWi√
wiT Σwi

13: if μi
j ≥ 0 ∀j ∈ Wi then

14: w∗ = wi

∑n
j=1 wi

j15: quit
16: else

17: ki = argmin
j∈Wi

μi
j

18: Wi+1 = Wi \ {ki}
19: Pi+1 = Pi ∪ {ki}
20: wi+1 = wi
21: end if
22: else

23: αi = min{1, min
j∈Pi ,pi

j<0

−wi
j

pi
j
}

24: if αi < 1 then

25: hi = argmin
j∈Pi ,pi

j<0

−wi
j

pi
j

26: Wi+1 = Wi ∪ {hi}
27: Pi+1 = Pi \ {hi}
28: end if
29: wi+1 = wi + αi pi
30: end if
31: i = i + 1
32: end loop

We find the portfolio consisting of a single instrument that maximizes the Sharpe ratio to initialize
the algorithm in lines 1–6. At iteration i, xi

Pi is set to maximize the Sharpe ratio, which in general is not
feasible in (2), in line 8. If the current feasible solution wi = xi, we check if μi

Wi ≥ 0. If so, then

w∗ =
wi

∑n
j=1 wi

j

is the optimal solution to (2), or else we remove the index of the minimum value of dual variables μi

from Wi to form Wi+1 in lines 11–21. If wi �= xi, wi+1 is set by moving in the direction of xi from wi

155

Bo
ok
s

M
DP
I



Risks 2017, 5, 27

while remaining feasible in (2). If wi+1 �= xi, the index of the first blocking constraint j ∈ Pi is added to
Wi to create Wi+1 in lines 22–30.

Theorem 3. The SRAS algorithm is convergent.

Proof. See the Appendix A

There is in fact a quadratic convex reformulation of this problem (see Durand et al. (2012)), which
has the following formulation under the mild condition that there exists at least one stock with ei > 0,
where z > 0 is a free constant:

min wTΣw, (4)

s.t. wTe = z,

wi ≥ 0.

After solving, the wi simply have to be normalized to sum to one to obtain the optimal solution.
The choice of z can affect solution quality, in particular when the number of instruments n becomes large
and the algorithm used to solve (4) employs a stopping criteria of the form |wi − wi+1| ≤ tolerance.
In practice, we have found that choosing z = eT1, ensuring the average value of elements of wi equals 1,
gives high quality solutions with virtually no optimality gap compared to the active-set algorithm,
without having to alter default stopping criteria.

6. Numerical Results

A computational experiment was conducted where the SRAS algorithm was compared to
Gurobi 7.0 using data derived from historical stock prices from two stock market indices. All computing
was done using Matlab R2016a on a Windows 10 64-bit, AMD A8-7410 processor with 8 GB of RAM.

Six problems were used for testing. Historical stock prices of the Dow Jones Industrial Average
and the S&P/ TSX 60 were used to calculate the expectation and covariance of instrument returns.
For each index, the past year, two years and five years were used for estimation. This data was
generated using the website InvestSpy (2017). Results are presented in Table 1 below. We observe that
the mean computing time of SRAS is over an order of magnitude faster when compared to Gurobi.

Table 1. Numerical results.

SRAS Gurobi

Time (s) Solution Time (s) Solution

Dow 1 Yr 0.0386 2.6769 0.6881 2.6769
Dow 2 Yr 0.0057 3.3883 0.5551 3.3883
Dow 5 Yr 0.0030 15.7604 0.5829 15.7604
S&P 1 Yr 0.0479 7.2073 0.6569 7.2073
S&P 2 Yr 0.0095 4.4550 0.6233 4.4550
S&P 5 Yr 0.0053 5.0557 0.5562 5.0557
Mean 0.0184 0.6104

7. Model with Skewness

We show numerically that the Omega measure is not equivalent to the Sharpe ratio for skewed
distributions. Our estimation of Omega measure uses the following proposition.
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Proposition 3. The Omega measure is equal to μ̄−L
E(max(L−R,0)) − 1, i.e.,

Ω(R) =
μ̄ − L

E (max(L − R, 0))
− 1.

Proof. See the Appendix A

We consider the skew-normal distribution Azzalini (2005), which is closed under affine
transformation and has probability distribution function

f (r) =
2
ω

φ(
r − ε

ω
)Φ

(
α(

r − ε

ω
)
)

,

where φ(·) and Φ(·) are the standard normal probability distribution function and cumulative
distribution function, respectively, with location paramter ε, scale ω and shape α.

For a given skewness γ1, let

|δ| =
√

(π/2)|γ1|2/3

((4 − π)/2)2/3 + |γ1|2/3 ,

where the sign of δ is chosen as negative for left skewness and positive for right skewness. Given δ,

α =
δ√

1 − δ2
,

and for a desired standard deviation,

ω =
σ√

1 − 2δ2/2
,

and mean,
ε = μ − ωδ

√
2/π.

We plot the Omega measure for L = 0.01, μ = 0.1 and σ = 0.3, with γ1 varying over the domain
[−0.99, 0.99] in increments of 0.01. Monte Carlo integration was used to estimate E (max(L − R, 0)) by
taking 10 million samples of R and taking the mean of max(L − R, 0).

−1 −0.5 0 0.5 1

5 · 10−2

0.1

0.15

0.2

Skewness

O
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eg
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m
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re

Figure 1. Omega measure versus skewness for a skew-normal random variable with μ = 0.1, σ = 0.3
and L = 0.01.
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Under the Sharpe ratio, we are indifferent to all of the plotted portfolios, each having a Sharpe
ratio S(R) = 0.3, but under the Omega measure, taking into consideration higher moments, it is clear
that we would prefer a portfolio with right skewness in this example.

8. Conclusions

In this paper, we have proved the equivalence of the Omega measure and the Sharpe ratio under
jointly elliptical distributions of returns. The portfolio optimization of the Sharpe ratio with and
without short sales was numerically analyzed. An active-set algorithm was presented for markets
prohibiting short sales, with an improvement in average solution time of over an order of magnitude
when compared to standard optimization techniques. Numerical experiments show that, when the
return distributions are not symmetric, the Omega measure and the Sharpe ratio are not equivalent.
Future research could be done to develop optimization methods for the Omega measure under more
general distribution assumptions such as the skew-elliptical distribution.
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Appendix A

Proof of Lemma 1.

R =
Δ1S1(1) + · · ·+ ΔnSn(1)− (Δ1S1(0) + · · ·+ ΔnSn(0))

Δ1S1(0) + · · ·+ ΔnSn(0)

=
Δ1S1(1)− Δ1S1(0)

Δ1S1(0) + · · ·+ ΔnSn(0)
+ · · ·+ ΔnSn(1)− ΔnSn(0)

Δ1S1(0) + · · ·+ ΔnSn(0)

= S1(1)− S1(0)
(

Δ1

Δ1S1(0) + · · ·+ ΔnSn(0)

)
+ · · ·+ Sn(1)

− Sn(0)
(

Δn

Δ1S1(0) + · · ·+ ΔnSn(0)

)
=

S1(1)− S1(0)
S1(0)

(
Δ1S1(0)

Δ1S1(0) + · · ·+ ΔnSn(0)

)
+ · · ·

+
Sn(1)− Sn(0)

Sn(0)

(
ΔnSn(0)

Δ1S1(0) + · · ·+ ΔnSn(0)

)
= w1R1 + · · ·+ wnRn.

Thus, the return of the portfolio R is a linear combination of R1, · · · , Rn. The closedness of
elliptical distributions under linear combinations yields the claim.

Proof of Theorem 1. Under our framework, we are now able to simplify the Omega measure. Recall
the Omega measure is defined as

Ω(R) =

∫ ∞
L (1 − F(x))dx∫ L

−∞ F(x)dx
.

Here, F(x) =
∫ x
−∞ f (r)dr is the cumulative distribution function of the portfolio with arithmetic

return R, with probability distribution function f (r). Thus,
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Ω(R) =

∫ ∞
L

(
1 − ∫ x

−∞ f (r)dr
)

dx∫ L
−∞

∫ x
−∞ f (r)drdx

=

∫ ∞
L

∫ ∞
x f (r)drdx∫ L

−∞

∫ x
−∞ f (r)drdx

.

We use Fubini’s theorem to change the order of integration. Let D1 be the integration region of the
integral in the numerator and let D2 be the integration region of the integral in the denominator, then

D1 =
{
(x, r)|x ∈ (L, ∞), r ∈ (x, ∞)

}
=
{
(x, r)|x ∈ (L, r), r ∈ (L, ∞)

}
and

D2 =
{
(x, r)|x ∈ (−∞, L), r ∈ (−∞, x)

}
=
{
(x, r)|x ∈ (r, L), r ∈ (−∞, L)

}
.

Thus, by Fubini’s Theorem

Ω(R) =

∫ ∞
L

∫ r
L f (r)dxdr∫ L

−∞

∫ L
r f (r)dxdr

. (A1)

Under elliptical distributions

f (r) =
1
σ̄

g

((
r − μ̄

σ̄

)2
)

.

Evaluating the upper integral gives us

∫ ∞

L

∫ r

L

1
σ̄

g

((
r − μ̄

σ̄

)2
)

dxdr =
1
σ̄

∫ ∞

L
(r − L)g

((
r − μ̄

σ̄

)2
)

dr

=
1
σ̄

∫ ∞

L
rg

((
r − μ̄

σ̄

)2
)

dr − L
σ̄

∫ ∞

L
g

((
r − μ̄

σ̄

)2
)

dr.

Let us perform the change of variable. Therefore, we let u = r−μ̄
σ̄ , then σ̄du = dr and r = σ̄u + μ̄

∫ ∞

L

∫ r

L

1
σ̄

g

((
r − μ̄

σ̄

)2
)

dxdr =
∫ ∞

L−μ̄
σ̄

(σ̄u + μ̄)g(u2)du − L
∫ ∞

L−μ̄
σ̄

g(u2)du

= σ̄
∫ ∞

L−μ̄
σ̄

ug(u2)du + (μ̄ − L)
∫ ∞

L−μ̄
σ̄

g(u2)du.

Thus, ∫ ∞

L

∫ r

L

1
σ̄

g

((
r − μ̄

σ̄

)2
)

dxdr

= σ̄

[
−1

2
H1

((
L − μ̄

σ̄

)2
)
+

(
L − μ̄

σ̄

)
H2

(
L − μ̄

σ̄

)
− K

(
L − μ̄

σ̄

)]
,

where
H′

1(x) = g(x), H′
2(x) = g(x2), K =

∫ ∞

−∞
g(x2) dx.

We use the same methodology for the lower integral to obtain

∫ L

−∞

∫ L

r

1
σ̄

g

((
r − μ̄

σ̄

)2
)

dxdr = σ̄

[
−1

2
H1

((
L − μ̄

σ̄

)2
)
+

(
L − μ̄

σ̄

)
H2

(
L − μ̄

σ̄

)]
.
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Let z =
L−μ̄

σ̄ , then
Ω(R) = G(z),

where
G(z) = 1 − Kz

zH2(z)− 1
2 H1(z2).

We claim that Ω(R) is a decreasing function of z. To see that, we first take the derivative of G(z)

G′(z) = −1
2

KH1(z2)(
zH2(z)− 1

2 H1(z2)
)2 ≤ 0,

since
H1(x) =

∫ x

−∞
g(u) du ≥ 0,

due to the positivity of g. Therefore, Ω(R) is a decreasing function of z. Hence,

max
w1,...,wn

Ω(R) ⇔ min
w1,..,wn

L − μ̄

σ̄
,

⇔ max
w1,..,wn

μ̄ − L
σ̄

,

⇔ max
w1,..,wn

S(R).

Therefore, maximizing the Omega measure over {w1, ..., wn} is equivalent to maximizing the Sharpe ratio
over {w1, ..., wn} with risk-free interest rate R f equal to L.

Proof of Proposition 1. The extended Cauchy–Schwarz inequality, see Johnson and Wichern (2002),
states that for vectors b and d, and positive definite matrix B, (bTd)2 ≤ (bT Bb)(dT B−1d) with equality
if and only if b = cB−1d for any constant c. It follows that, for the objective of (1), wTe√

wTΣw
≤

√
eTΣ−1e

for w �= 0, with the maximum attained by ŵ = Σ−1e. In order to satisfy the constraint ∑n
i=1 wi = 1, ŵ

is multiplied by the normalizing constant, c = 1
∑n

i ŵi
to obtain the optimal solution to (1).

Proof of Proposition 2. A function f (x) is quasi-concave if its upper level sets {x| f (x) ≥ t} are
convex. The upper level sets of S(w) form second order conic constraints, wTe ≥ t

√
wTΣw, which

define convex regions.
If ∇S(w) = e√

wTΣw
− wTeΣw

(wTΣw)
3
2
= 0, then w = cΣ−1e for c = wTΣw

wTe . Taking w = cΣ−1e for any

c �= 0, it follows directly that ∇S(w) = 0.

Proof of Theorem 3.

Lemma A1. If wi = xi but wi is suboptimal for (2), then αi+1 > 0 in the next iteration, unless there exists
a j ∈ Pi such that wi

j = 0 and pi+1
j < 0.

Proof of Lemma A1. Let Pi+1 = Pi ∪ {k} for some k ∈ Wi. In the ith iteration, consider the rows

of Pi+1 in (3), ePi+1 − wiTeΣPi+1 wi
Pi+1

wiTΣwi + μ̂i
Pi+1 = 0, where μ̂i =

√
wiTΣwiμi. Given wi = xi, it follows

that wiTe = wiTΣwi, and since μ̂i
Pi = 0, we get ΣPi+1 wi

Pi+1 =

[
ePi

ek + μ̂i
k

]
. Taking the Cholesky

decomposition, ΣPi+1 = LLT , we can write L

[
yi

Pi

yi
k

]
=

[
ePi

ek + μ̂i
k

]
with LTwi

Pi+1 = yi. Since LT is

upper triangular, Lkkwi
k = yi

k, and so yi
k = 0. Considering now the i + 1th iteration, ΣPi+1 xi+1

Pi+1 =[
ePi

ek

]
, and similarly if LTxi+1

Pi+1 = yi+1, then L

[
yi+1

Pi

yi+1
k

]
=

[
ePi

ek

]
. Since L is lower triangular,
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yi+1
Pi = yi

Pi , yi+1
k = yi

k −
μ̂i

k
Lkk

, and so xi+1
k =

−μ̂i
k

L2
kk

= −μ̂i
kΣ−1

kk . As wi is not optimal, μ̂i
k < 0, so pi+1

k > 0.

Assuming now that pi+1
j ≥ 0 for all j ∈ Pi with wi

j = 0, αi+1 > 0.

Lemma A2. If wi = xi but wi is suboptimal for (2), then S(wi+2) > S(wi) ∀α ∈ (0, 1].

Proof of Lemma A2.

S(wi+2) = S
(

wi+1 + α(xi+1 − wi+1)
)
= S

(
wi + α(xi+1 − wi)

)

=

(
wi + α(xi+1 − wi)

)T
e√(

wi + α(xi+1 − wi)
)T

Σ(wi + α
(

xi+1 − wi)
)

=

(
wi + α(xi+1 − wi)

)T
e∥∥∥Σ

1
2 (wi + α(xi+1 − wi))

∥∥∥
2

.

Focusing on the numerator,(
wi + α(xi+1 − wi)

)T
e = (1 − α)wiTe + αxi+1Te

= (1 − α)

(
Σ−1

Pi+1

[
ePi

ek + μ̂i
k

])T [
ePi

ek

]
+ αxi+1Te

= (1 − α)

[
ePi

ek + μ̂i
k

]T

xi+1
Pi+1 + αxi+1Te

= xi+1Te + (1 − α)μ̂i
kxi+1

k .

Focusing on the denominator,

∥∥∥Σ
1
2 (wi + α(xi+1 − wi))

∥∥∥
2
=
∥∥∥Σ

1
2

(
(1 − α)wi + αxi+1

)∥∥∥
2

=

∥∥∥∥∥Σ
1
2
Pi+1

(
(1 − α)Σ−1

Pi+1

[
ePi

ek + μ̂i
k

]
+ αxi+1

Pi+1

)∥∥∥∥∥
2

=

∥∥∥∥∥Σ
1
2
Pi+1

(
xi+1

Pi+1 + (1 − α)Σ−1
Pi+1

[
0

μ̂i
k

])∥∥∥∥∥
2

=
√

xi+1TΣxi+1 + 2(1 − α)xi+1
k μ̂i

k + (1 − α)2(μ̂i
k)

2Σ−1
kk

=
√

xi+1TΣxi+1 + 2(1 − α)xi+1
k μ̂i

k − (1 − α)2xi+1
k μ̂i

k

=
√

xi+1TΣxi+1 + (1 − α2)μ̂i
kxi+1

k .
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Therefore,

S(wi+2) =
xi+1Te + (1 − α)μ̂i

kxi+1
k√

xi+1TΣxi+1 + (1 − α2)μ̂i
kxi+1

k

≥ xi+1Te + (1 − α2)μ̂i
kxi+1

k√
xi+1Te + (1 − α2)μ̂i

kxi+1
k

=
√

xi+1Te + (1 − α2)μ̂i
kxi+1

k

>
√

xi+1Te + μ̂i
kxi+1

k

=
√

wiTe =
wiTe√
wiTe

=
wiTe√

wiT
Pi ΣPi Σ−1

Pi ePi

=
wiTe√

wiT
Pi ΣPi wi

Pi

=
wiTe√
wiTΣwi

= S(wi).

The algorithm is monotone increasing as for all i, S(xi) ≥ S(wi), and by the quasi-concavity of
S(w), this implies that S(wi + α(xi − wi)) ≥ S(wi). If w0 is not optimal S(w2) > S(w0) by Lemmas A1
and A2, and since S(w0) ≥ S(w) for all portfolios w of size 1, |Pi| ≥ 2 for all i ≥ 1.

Assume now that xi �= wi, and this holds until xi+m = wi+m, where m ≤ n− 2 and |Pi+m| ≤ n−m.
If the solution is not optimal, there exists q ≤ n − m − 2 indices of Pi+m such that wi+m+1

j = 0 and

pi+m+1
j < 0. After q iterations, there exists no j ∈ Pi+m+1+q such that wi+m+1+q

j = 0 and pi+m+1+q
j < 0,

so by Lemma A1, αi+m+1+q > 0 and by Lemma A2, S(wi+m+2+q) > S(wi+m+q) ≥ S(wi). Assuming
that m = 0 considers the case where xi = wi, we have shown that the algorithm is strictly increasing
after m + 2 + q ≤ n iterations.

Since the optimal value is bounded and the algorithm is strictly monotone increasing over
intervals of n iterations, the algorithm converges.

Proof of Proposition 3. Beginning from Equation (A1) of the proof of Theorem 1,

Ω(R) =

∫ ∞
L

∫ r
L f (r)dxdr∫ L

−∞

∫ L
r f (r)dxdr

=

∫ ∞
L (r − L) f (r)dr∫ L
−∞(L − r) f (r)dr

=
E (R)− L

E ((L − R)+)
− 1.
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Abstract: Future stock prices depend on many internal and external factors that are not easy to
evaluate. In this paper, we use the Hidden Markov Model, (HMM), to predict a daily stock price of
three active trading stocks: Apple, Google, and Facebook, based on their historical data. We first
use the Akaike information criterion (AIC) and Bayesian information criterion (BIC) to choose the
numbers of states from HMM. We then use the models to predict close prices of these three stocks
using both single observation data and multiple observation data. Finally, we use the predictions as
signals for trading these stocks. The criteria tests’ results showed that HMM with two states worked
the best among two, three and four states for the three stocks. Our results also demonstrate that the
HMM outperformed the naïve method in forecasting stock prices. The results also showed that active
traders using HMM got a higher return than using the naïve forecast for Facebook and Google stocks.
The stock price prediction method has a significant impact on stock trading and derivative hedging.

Keywords: hidden Markov model; stock prices; observations; states; predictions; AIC; BIC;
likelihood; trading

1. Introduction

Stock investments can have a huge return or a significant loss due to the high volatilities of
stock prices. An adaptable stock price prediction model would reduce risk and enhance potential
return in financial derivative trading. Recently, researchers have applied the hidden Markov
model for stock prices’ forecasts. Hassan and Nath (2005) used HMM to predict the stock price
for interrelated markets. Kritzman, Page, and Turkington (Kritzman et al. 2012) applied HMM
with two states to predict regimes in market turbulence, inflation, and industrial production index.
Guidolin and Timmermann (2006) used HMM with four states and multiple observations to study
asset allocation decisions based on regime switching in asset returns. Nguyen (2014) used HMM with
both single and multiple observations to forecast economic regimes and stock prices. Nobakht, Joseph
and Loni (Nobakht et al. 2012) implemented HMM using various observation data (open, close, low,
high) prices of stock to predict its close prices. In our previous work Nguyen and Nguyen (2015),
we used HMM for single observation sequence for the S&P 500 to select stocks for trading based on
performances of these stocks during the predicted regimes. In this study, we use HMM to predict
stock prices and apply the results to trade stocks. We use HMM for multiple independent observation
sequences in this study. Three stocks: Apple Inc., Alphabet Inc., and Facebook, Inc., were chosen
to implement the model. We limit numbers of states of the HMM to a maximum of four states and
use two goodness of fit tests to choose the best HMM model among HMMs with two, three, or four
states. The prediction process is based on the work of Hassan and Nath (2005). The authors use HMM
with the four observations: close, open, high, and low prices of some airline stocks to predict their
future close price using four states. They used HMM to find a day in the past that was similar to
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the recent day and used the price change in date and price of the current day to predict future close
price. However, in the paper, the authors did not explain why they chose HMM with four states.
Our approach is different from their work in the three following modifications. The first difference
is that we use the Akaike information criterion (AIC) and Bayesian information criterion (BIC) to
test the HMM’s performances with numbers of states from two to four to find the best HMM model.
The second modification is that we apply HMM for stock returns to predict future close prices and
compare the results with the naïve forecast method. The modification is based on the assumption of the
HMM’s algorithms presented in this paper: the observation sequences are independent. Applying the
HMM to stock returns, our prediction method is simpler than the method in Hassan and Nath (2005),
which will be explained in Section 3.1. Finally, we use stock prices predicted via the HMM and the
naïve method to trade these three stocks and compare the results.

The paper is organized as follows: Section 2 gives a brief introduction to HMM and its algorithms
for multiple observation sequences. Section 3 describes the HMM model selections and data collections
for stock price prediction. Section 4 presents the results of stock price predictions and stock trading,
and Section 5 gives conclusions.

2. Hidden Markov Model and Its Algorithms

The Hidden Markov Model, HMM, is a signal detection model that was introduced in 1966 by
Baum and Petrie (Baum and Petrie 1966). HMM assumes that an observation sequence was derived
from a hidden state sequence of discrete data and satisfies the first order of a Markov process. HMM
was developed from a model for a single observation variable to a model for multiple observation
variables. The applications of HMM also were expanded to many areas such as speech recognition,
biomathematics, and financial mathematics. In our previous paper Nguyen and Nguyen (2015),
we described HMM for one observation, its algorithms, and applications. In this section, we present
HMM for multiple observations and its corresponding algorithms. We assume that the multiple
observations data are independent and have the same length. The basic elements of an HMM for
multiple observations are:

• Observation data, O = {O(l)
t , t = 1, 2, . . . , T, l = 1, 2, . . . , L}, where l is numbers of independent

observation sequences and T is the length of each sequence,
• Hidden state sequence of O, Q = {qt, t = 1, 2, . . . , T},
• Possible values of each state, {Si, i = 1, 2, . . . , N},
• Possible symbols per state, {vk, k = 1, 2, . . . , M},
• Transition matrix, A = (aij), where aij = P(qt = Sj|qt−1 = Si), i, j = 1, 2, . . . , N,
• Initial probability of being in state (regime) Si at time t = 1, p = (pi), where pi = P(q1 = Si),

i = 1, 2, . . . , N,
• Observation probability matrix, B = {bi(k)}, where

bi(k) ≡ bi(Ot = vk) ≡ P(Ot = vk|qt = Si), i = 1, 2, ..., N, k = 1, 2, . . . , M.

Parameters of an HMM are the matrices A and B and the vector p. For convenience, we use a compact
notation for the parameters, given by

λ ≡ {A, B, p}.

If the observation probability assumes the Gaussian distribution, then we have a continuous HMM
with bi(k) = bi(Ot = vk) = N (vk, μi, σi), where μi and σi are the mean and variance of the distribution
corresponding to the state Si, respectively, and N is Gaussian density function. For convenience,
we write bi(Ot = vk) as bi(Ot). Then, the parameters of HMM are

λ ≡ {A, μ, σ, p},
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where μ and σ are vectors of means and variances of the Gaussian distributions, respectively.
With the assumption that the observations are independent, the probability of observation, denoted by
P(O|λ), is

P(O|λ) =
L

∏
l=1

P(O(l)|λ).

There are three main questions that readers should consider when using the HMM:

1. Given an observation data O and the model parameters λ, can we compute the probabilities of the
observations P(O|λ)?

2. Given the observation data O and the model parameters λ, can we find the best hidden state
sequence of O?

3. Given the observation O, can we find the model’s parameters λ?

The first problem can be solved by using forward or backward algorithms Baum and Egon (1967); Baum
and Sell (1968), the second problem was solved by using Viterbi algorithm Forney (1973); Viterbi (1967)
and the Baum–Welch algorithm Rabiner (1989) was developed to solve the last problem. In the paper,
we only use the algorithms to solve the first and the last problem. We first use the Baum–Welch
algorithm to calibrate parameters for the model and the forward algorithm to calculate the probability
of observation to predict trending signals for stocks. In this section, we introduce the forward algorithm
and the Baum–Welch algorithm for HMM with multiple observations. These algorithms are written
based on Baum and Egon (1967); Baum and Sell (1968); Forney (1973); Petrushin (2000); Rabiner (1989).

2.1. Forward Algorithm

We define the joint probability function as

α
(l)
t (i) = P(O(l)

1 , O(l)
2 , ..., O(l)

t , qt = Si|λ), t = 1, 2, ..., T and l = 1, 2, ..., L.

Then, we calculate α
(l)
t (i) recursively. The probability of observation P(O(l)|λ) is just the sum of

the α
(l)
T (i)′s.

The forward algorithm

1. Initialization P(O|λ) = 1
2. For l = 1, 2, ..., L do

(a) Initialization: for i = 1, 2,..., N
α
(l)
t=1(i) = pibi(O

(l)
1 ).

(b) Recursion: for t = 2, 3, . . . , T, and for j = 1, 2, . . . , N, compute

α
(l)
t (j) =

[
N

∑
i=1

αt−1(i)aij

]
bj(O

(l)
t ).

(c) Calculate:

P(O(l)|λ) =
N

∑
i=1

α
(l)
T (i).

(d) Update:
P(O|λ) = P(O|λ) ∗ P(O(l)|λ).

3. Output: P(O|λ).
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2.2. Baum–Welch Algorithm

The Baum–Welch algorithm is an algorithm to calibrate parameters for the HMM given the
observation data. The algorithm was introduced in 1970 Baum et al. (1970), in order to estimate
the parameters of HMM for a single observation. Then, in 1983, the algorithm was extended to
calibrate HMM’s parameters for multiple independent observations, Levinson et al. (1983). In 2000,
the algorithm was developed for multiple observations without the assumption of independence of
the observations, Li et al. (2000). In this paper, we use HMM for independent observations, so we
will introduce the Baum–Welch algorithm for this case. The Baum–Welch method or the expectation
modification (EM) method is used to find a local maximizer, λ∗, of the probability function P(O|λ).

In order to describe the procedure, we define the conditional probability β
(l)
t (i) =

P(O(l)
t+1, O(l)

t+2, .., O(l)
T |qt = Si, λ), for i = 1, ..., N, l = 1, 2, ..., L. Obviously, for i = 1, 2, ..., N β

(l)
T (i) = 1,

and we have the following backward recursive:

β
(l)
t (i) =

N

∑
j=1

aijbj(O
(l)
t+1)β

(l)
t+1(j), t = T − 1, T − 2, ..., 1.

We then defined γ
(l)
t (i), the probability of being in state Si at time t of the observation O(l),

l = 1, 2, ..., L as:

γ
(l)
t (i) = P(qt = Si|O(l), λ) =

α
(l)
t (i)β

(l)
t (i)

P(O(l)|λ) =
α
(l)
t (i)β

(l)
t (i)

∑N
i=1 α

(l)
t (i)β

(l)
t (i)

.

The probability of being in state Si at time t and state Sj at time t + 1 of the observation
O(l), l = 1, 2, ..., L as:

ξ
(l)
t (i, j) = P(qt = Si, qt+1 = Sj|O(l), λ) =

α
(l)
t (i)aijbj(O

(l)
t+1)β

(l)
t+1(j)

P(O(l), λ)
.

Clearly,

γ
(l)
t (i) =

N

∑
j=1

ξ
(l)
t (i, j).

Note that the parameter λ∗ was updated in Step 2 of the Baum–Welch algorithm to maximize the
function P(O|λ) so we will have � = P(O, λ∗)− P(O, λ) > 0.

If the observation probability bi(k)∗, defined in Section 2, is Gaussian, we will use the following
formula to update the model parameter, λ ≡ {A, μ, σ, p}

μ∗
i =

∑L
l=1 ∑T−1

t=1 γ
(l)
t (i)O(l)

t

∑L
l=1 ∑T−1

t=1 γ
(l)
t (i)

σ∗
i =

∑L
l=1 ∑T

t=1 γ
(l)
t (i)(O(l)

t − μi)(O
(l)
t − μi)

′

∑L
l=1 ∑T

t=1 γt(i)
.

3. Model Selections and Data Collections

The Hidden Markov Model has been widely used in financial mathematics area to predict
economic regimes (Kritzman et al. 2012; Guidolin and Timmermann 2006; Ang and Bekaert 2002;
Chen 2005; Nguyen 2014) or predict stock prices (Hassan and Nath 2005; Nobakht et al. 2012;
Nguyen 2014). In this paper, we explore a new approach of HMM in predicting stock prices. In this
section, we discuss how to use the Akaike information criterion, AIC, and the Bayesian information
criterion, BIC, to test the HMM’s performances with different numbers of states. We then will present
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how to use HMM to predict stock prices and apply the results to trade stocks. First, we will describe
the chosen data and the AIC and BIC for HMM with selected numbers of states.

Baum–Welch for L independent observations O = (O(1), O(2), ..., O(L)) with the same length T

1. Initialization: input parameters λ, the tolerance tol, and a real number �
2. Repeat until � < tol

• Calculate P(O, λ) = ΠL
l=1P(O(l)|λ) using the forward algorithm (??)

• Calculate new parameters λ∗ = {A∗, B∗, p∗}, for 1 ≤ i ≤ N

p∗
i =

1
L

L

∑
l=1

γ
(l)
1 (i)

a∗ij =
∑L

l=1 ∑T−1
t=1 ξ

(l)
t (i, j)

∑L
l=1 ∑T−1

t=1 γ
(l)
t (i)

, 1 ≤ j ≤ N

bi(k)∗ =
∑L

l=1 ∑T
t=1 |O(l)

t =v(l)k
γ
(l)
t (i)

∑L
l=1 ∑T

t=1 γ
(l)
t (i)

, 1 ≤ k ≤ M

• Calculate � = P(O, λ∗)− P(O, λ)

• Update
λ = λ∗.

3. Output: parameters λ.

3.1. Overview of Data Selections

We chose three stocks that are actively trading in the stock market to examine our model: Apple Inc.
(AAPL), Alphabet Inc. (GOOGL), and Facebook Inc. (FB). The daily stock prices (open, low, high, close)
of these stocks and information of these companies can be found from finance.yahoo.com. We used
daily historical prices of these stocks from 4 January 2010 to 30 October 2015 in this paper.

3.2. Checking Model Assumptions

The HMM’s algorithms presented in this paper are based on the assumption that the observation
sequences are independent. However, the open, low, high, and close prices of a stock are highly
correlated, which can be since from the matrix of correlation in Figure 1. On the other hand, stock
returns of these four series prices are independent, which are shown in Figure 2.

We use the Autocorrelation function (ACF) to calculate the paired correlation between the series
and plot in Figures 1 and 2. The ACF for the Facebook and Google stocks are presented in Appendix A.
We can see clearly from the figures that the return price series have low correlations while the stock
price series have very high correlations.

Furthermore, we conduct the Ljung–Box test to test the independence of each time series. We use
the test with lag = 1 for returns of the three stocks: AAPL, FB, and GOOGL, from 1 October 2014 to
1 October 2015, and present results in Table 1. Note that the stock prices are not independent, and they
failed the Ljung–Box test at significance level α = 5%, so Table 1 only displays results for stock returns.
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Figure 1. ACF test for correlation between open, low, high, and close of Apple stock daily prices from
1 October 2014 to 1 October 2015.

Figure 2. ACF test for correlation between open, low, high, and close of Apple stock daily return prices
from 1 October 2014 to 1 October 2015.
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Table 1. p-values from the Ljung–Box test for independencies of stock return series: Open, High,
Low, and Close. “*” indicates that the p-value is statistically significant at α = 5%, “**” indicates that
the p-value is statistically significant at α = 1%, and “***” indicates that the p-value is statistically
significant at α = 0.1%.

Stock Open High Low Close

AAPL 0.0010 ∗∗∗ 0.0718 0.6584 0.6566
FB 0.2151 0.0153 ∗ 0.3273 0.0094 ∗∗

GOOGL 0.5378 0.0214 ∗ 0.0010 ∗∗∗ 0.0608

The null hypothesis of the Ljung–Box test is that the data are independently distributed. Thus,
we will accept the null hypothesis if the p-value is bigger than the chosen significant level α.
From Table 1, we can see that most of the stock returns series pass the independent test at the significant
level α = 1%, and the only two series that do not pass the test at the significant level α = 0.1% are
APPL’s open returns and GOOGL’s low returns. The HMM works for dependent observation data
with a modification in calculating probabilities of observations. We will explore the case in our future
study. We will apply HMM for predicting the daily returns and then forecast future stock prices in the
next section.

3.3. Model Selection

Choosing a number of hidden states for the HMM is a critical task. We first use two standard
criteria: the AIC and the BIC to examine the performances of HMM with different numbers of states.
The two measures are suitable for HMM because, in the model training algorithm, the Baum–Welch
algorithm, the EM method was used to maximize the log-likelihood of the model. We limit numbers of
states from two to four to keep the model simple and feasible for stock prediction. The AIC and BIC
are calculated using the following formulas, respectively:

AIC = −2 ln(L) + 2k,

BIC = −2 ln(L) + k ln(M),

where L is the likelihood function for the model, M is the number of observation points, and k is
the number of estimated parameters in the model. In this paper, we assume that the distribution
corresponding to each hidden state is a Gaussian distribution. Therefore, the number of parameters, k,
is formulated as k = N2 + 2N − 1, where N is numbers of states used in the HMM.

To train HMM’s parameters, I use historical observed data of a fixed length T,

O = {O(1)
t , O(2)

t , O(3)
t , O(4)

t , t = 1, 2, ..., T},

where O(i) with i = 1, 2, 3, or 4 represents the daily returns of open, low, high or close price of a stock,
respectively. For the HMM with single observation, we use only the returns of close price data,

O = Ot, t = 1, 2, ..., T,

where Ot is stock’s return of close price at time t. We ran the model calibrations with different time
lengths, T, and saw that the model worked well for T ≥ 80. On the results below, we used blocks of
T = 100 trading days of stock price data, O, to calibrate HMM’s parameters and calculate the AIC and
BIC numbers. Thus, the total number of observation points in each BIC calculation is M = 400 for four
observation data and M = 100 for one observation data. For convenience, we did 100 calibrations
for 100 blocks of data by moving the block of data forward, (we took off the price of the oldest day
on the block and added the price of the following day to the recent day of the block). The calibrated
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parameters of the previous step are used as initial parameters for the new calibration. The training
data set is from 16 January 2015 to 30 October 2015.

The first block of stock prices of 100 trading days from 16 January 2015 to 6 June 2015 was used to
calibrate HMM’s parameters and calculate corresponding AIC and BIC. Let μ(O) and σ(O) be the mean
and standard deviation of observation data, O, respectably. We chose initial parameters for the first
prediction as follows:

A =(aij), aij =
1
N

,

p =(1, 0, .., 0),

μi =μ(O) + Z, Z ∼ N (0, 1),

σi =σ(O),

(1)

where i, j = 1, .., N and N (0, 1) is the standard normal distribution.
The second block of 100 trading day data from 17 January 2015 to 7 June 2015 was used for the

second calibration and so on. The HMM calibrated parameters from the current calibration are used
as initial parameters for the next estimation. We continued the process until we got 100 calibrations.
We plot the AICs and BICs of the 100 calibrations of these three stocks (AAPL, FB, and GOOGL) on
Figures 3–5. On Figures 3–5, the graph of AIC is located on the left and BIC is located on the right.
The lower AIC or BIC is the better model calibration. However, the Baum–Welch algorithm only finds
a local maximizer of the likelihood function. Therefore, we did not expect to have the same AIC or BIC
if we run the calibration twice. The results on Figures 3–5 showed that the calibration performances
of the model with different numbers of states differ from one simulation to others. Based on the AIC
results, the performances of HMM with two, three, or four states are almost the same. However,
based on the BIC, the HMM with two states is the best candidate for all three of the stocks. Therefore,
we choose the HMM with two states to predict prices of the three stocks in the next section.

Figure 3. AIC (left) and BIC (right) for 100 parameter calibrations of HMM using Apple, AAPL, stock
daily return prices.

171

Bo
ok
s

M
DP
I



Risks 2017, 5, 62

Figure 4. AIC (left) and BIC (right) for 100 parameter calibrations of HMM using Google, GOOGL,
stock daily return prices.

Figure 5. AIC (left) and BIC (right) for 100 parameter calibrations of HMM using Facebook, FB, stock
daily return prices.

4. Stock Price Prediction and Stock Trading

In this section, we will use HMM to predict stock prices and compare the prediction with the real
market prices. We will predict stock prices of GOOGL, APPL, and FB using HMM with two states,
the best model selected from Section 3.3, and calculate the relative errors to the real market prices.
The results will be compared with the naïve none change method. A trading strategy using HMM is
also presented in this section.

4.1. Stock Price Prediction

We first introduce how to predict stock prices using HMM. The prediction process can be divided
into three steps. Step 1: calibrate HMM’s parameters and calculate the likelihood of the model.
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Step 2: find the day in the past that has a similar likelihood to the recent day. Step 3: use the stock
returns on the day after the “similar” day in the history to be the predicted return for tomorrow price.
This prediction approach is based on the work of Hassan and Nath (2005). However, our procedure is
different from their method in that we apply HMM for the returns of open, low, high, and close prices,
which are independent, while the authors used the HMM directly to open, low, high, and close prices,
which are not independent. Due to applying the HMM for stock returns, our method is simpler than
their method in the third step. We use HMM with the returns of the four observation sequences (open,
low, high, close price), as in Hassan and Nath (2005).

Suppose that we want to predict tomorrow’s closing price of stock A, the prediction can be
explained as follows. In the first step, we chose a block of T of the four daily return prices of stock A:
open, low, high, and close, (O = {O(1)

t , O(2)
t , O(3)

t , O(4)
t , t = T − 99, T − 98, ..., T}), to calibrate HMM’s

parameters, λ, of the HMM. We then calculate the probability of observation, P(O|λ). We assumed
that the observation probability bi(k), defined in Section 2, is Gaussian distribution, so the matrix B,
in the parameter λ = {A, B, p}, is a 2 by N matrix of means, μ, and variances, σ, of the N normal
distributions, where N is numbers of states. In the second step, we move the block of data backward
by one day to have new observation data Onew = {O(1)

t , O(2)
t , O(3)

t , O(4)
t , t = T − 100, T − 99, ..., T − 1}

and calculate P(Onew|λ). We keep moving blocks of data backward day by day until we find a data
set O∗, (O∗ = {O(1)

t , O(2)
t , O(3)

t , O(4)
t , t = T∗ − 99, T∗ − 98, ..., T∗}) such that P(T∗|λ) � P(O|λ). In the

third step, after finding the past “similar” day, T∗, we estimate the return of close price at time T + 1,
by using the following formula:

O(4)
T+1 = O(4)

T∗+1 . (2)

After the first prediction for stock return of day T + 1 we update data window, O, by moving it forward
one day, O = {O(1)

t , O(2)
t , O(3)

t , O(4)
t , t = T − 98, T − 97, ..., T + 1}, to predict stock return for the day

T + 2. The calibrated HMM’s parameters in the first prediction were used as the initial parameters for
the second prediction. We repeat the prediction process as mentioned in the first prediction for the
second prediction and so on. For HMM with a single observation sequence, we use O = O(4)

t , where
O(4) is the return of close price.

The predicted close price at time T + 1, PT+1, is calculated by the predicted stock returns:

PT+1 = PT ∗ (O(4)
T+1 + 1), (3)

where PT is close price at time T and O(4)
T+1 is the return of close price calculated in (2).

The naïve none change method is applied for returns of the three stocks’ close prices. The model
simply takes the return of the close price today to use as the return of the tomorrow’s close price

O(4)
T+1 = O(4)

T .

After forecasting O(4)
T+1, we predict the next day’s close price by using Equation (3). We use the naïve

method for stock returns instead of stock prices because, for trading purposes, if we assume no change
in future stock prices, then there is no trade. We present results of using the HMM to predict these
three stocks’—AAPL, GOOGL, and FB—closing prices for one year trading, 252 days, in Figures 6– 8.
The results indicate that the HMM captures the trends of the three stocks well, while the naïve forecasts
often go to the opposite directions of the real market trends. We can see from Figure 7 that the naïve
forecast method had a few huge errors in predicting stock prices in February. The naïve model also
showed its weakness when predicted prices of Google stock at the end of July 2015 are far from the
actual prices.
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Figure 6. HMM prediction of Apple stock daily close prices from 15 August 2016 to 11 August 2017
using two-states HMM and the naïve model.

Figure 7. HMM prediction of Facebook stock daily close prices from 15 August 2016 to 11 August 2017
using two-states HMM and the naïve model.

Figure 8. HMM prediction of Google stock daily close prices from 15 August 2016 to 11 August 2017
using two-states HMM and the naïve model.
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We also compare the forecasting results of using the two-state HMM and the naïve method
numerically by calculating the mean absolute percentage error, MAPE, of the estimations.

MAPE =
1
N

N

∑
i=1

|Mi − Pi|
Mi

,

where N is number of predicted points, M is market price, and P is predicted price of a stock.
The results were shown in Table 2. In Table 2, the “Price Std.” and “Return Std.” are the standard
deviation of the stock prices and stock returns, respectively, and the efficiencies are calculated by
taking the errors of the naïve method divided by the errors of the HMM. All efficiencies in the table
are bigger than one, showing that the HMM outperformed the naïve in forecasting stock prices.

Table 2. Comparison of MAPE of stock price predictions of Apple, Google, and Facebook from 15
August 2016 to 11 August 2017, between the HMM and the naïve forecast model.

Stock Price Std. Return Std. HMM’s MAPE Naïve’s MAPE Efficiency

AAPL 17.0934 0.0113 0.0113 0.0133 1.1770
FB 14.4879 0.0111 0.0116 0.0213 1.8362

GOOGL 69.9839 0.0098 0.0107 0.0137 1.2804

Among these three stocks, GOOGL’s prices have the highest volatility, but its returns have the
lowest volatility. These factors will affect stock trading results so that we will present the results in the
next section.

4.2. Stock Trading

In this section, we will use the predicted returns to trade these three stocks: AAPL, FB, and
GOOGL. The trading strategy is: if HMM predicts that the stock price of AAPL will move up tomorrow,
or its return is positive, we will buy this stock today and sell it tomorrow, assuming that we buy and
sell with close prices. If the HMM predicts that the stock price will not increase tomorrow, then we will
do nothing. We also assume that there is no trading cost. For each trade, we will buy or sell 100 shares
of each of these three stocks. Based on the AIC and BIC results, we only use HMM with two states for
the stock trading. Again, we will use a block of 252 trading days, one year, from 15 August 2016 to
11 August 2017 for model testing. We present the results of one year trading in the Table 3.

Table 3. Stock trading results from 15 August 2016 to 11 August 2017.

Stock Models Investment $ Earning $ Profit %

AAPL HMM 10,908 3481 31.91
Naïve 10,818 3513 32.47

FB HMM 12,490 2939 23.53
Naïve 12,488 2565 20.54

GOOGL HMM 80,596 20,039 24.86
Naïve 79,965 2715 3.40

In Table 3, the “Investment” is the price that we bought 100 shares of the stocks the first time.
The “Earning” is the money gained, and the “Profit” is the percentage of return of the one-year
trading. The results show that the HMM worked better than the naïve in trading the Facebook and
Google stocks. Especially in the one year trading period, the GOOGL stock yielded a much higher
return compared to the naïve forecast method. However, the results are reversed for AAPL stock.
From Figures 6–8 and Table 2, we can see that, in the one period, the GOOGL prices have the highest
volatility and lowest risk of returns among the three stocks. The naïve results are consistent with the
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risk of return levels, the “Return Std.” in Table 2: the higher the risk, the better the return. The HMM
followed close to the risk level theoretical. Based on the results in Table 3, using an HMM model,
traders had returns of 32.00%, 24%, and 25% for AAPL, FB, GOOGL, respectively. Trading using HMM
gave much higher returns than using the naïve for two stocks FB and GOOGL, but a likely lower
return for the AAPL stock compare to the naïve.

5. Conclusions

Stock’s performances are an essential indicator of the strength or weakness of the stock’s
corporation and economic viability in general. Many factors will drive stock prices up or down.
In this paper, we use a Hidden Markov Model, HMM, to predict prices of three stocks: AAPL, GOOGL,
and FB. We first use the AIC and BIC criterions to examine the performances of HMM numbers of
states from two to four. The results showed that the HMM with two states is the best model among
the two, three and four states. We then use the models to predict stock prices and compare the
predictions with the naïve forecast results by plotting the forecasted prices versus the market prices
and evaluating the mean absolute percentage error, MAPE. The prediction errors show that HMM
worked better in predicting prices of the three stocks—AAPL, FB, and GOOGL—compared with the
naïve method. In stock trading, the HMM outperformed the naïve for two stocks: FB and GOOGL.
The graphs indicate that the HMM is the potential model for stock trading since it captures the trends
of stock prices well.
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Appendix A

Figure A1. ACF test for correlation between open, low, high, and close of Facebook daily stock prices
from 1 October 2014 to 1 October 2015.
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Figure A2. ACF test for correlation between open, low, high, and close of Facebook stock daily returns
from 1 October 2014 to 1 October 2015.

Figure A3. ACF test for correlation between open, low, high, and close of Google daily stock prices
from 1 October 2014 to 1 October 2015.
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Figure A4. ACF test for correlation between open, low, high, and close of Google stock daily returns
from 1 October 2014 to 1 October 2015.
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Abstract: This paper examines the effect of gainsharing provisions on the selection of a discount rate
for a defined benefit pension plan. The paper uses a traditional actuarial approach of discounting
liabilities using the expected return of the associated pension fund. A stochastic Excel model was
developed to simulate the effect of varying investment returns on a pension fund with four asset
classes. Lognormal distributions were fitted to historical returns of two of the asset classes; large
company stocks and long-term government bonds. A third lognormal distribution was designed to
represent the investment returns of alternative investments, such as real estate and private equity.
The fourth asset class represented short term cash investments and that return was held constant. The
following variables were analyzed to determine their relative impact of gainsharing on the selection
of a discount rate: hurdle rate, percentage of gainsharing, actuarial asset method smoothing period,
and variations in asset allocation. A 50% gainsharing feature can reduce the discount rate for a
defined benefit pension plan from 0.5% to more than 2.5%, depending on the gainsharing design and
asset allocation.

Keywords: gainsharing; pension; discount rate; hurdle rate; asset smoothing; asset allocation

1. Introduction

This paper defines the cost of gainsharing as the reduction in the expected return on plan assets
due to automatically removing a portion of excess investment gains for future gainsharing to plan
participants. Even if some further action is required to actually distribute the excess investment gains,
the cost event occurs when a portion of excess investment gains are removed from the pension plan
assets. The cost is not dependent on whether the excess investment gains are provided to current
retirees or another portion of the plan population, or whether the form of gainsharing is a 13th check
or a permanent Cost-of-Living-Adjustment (COLA).

Gainsharing in a pension context is an asymmetric benefit; that is, benefits increase under
favorable scenarios but do not decrease under unfavorable scenarios. There are many different
pension gainsharing designs, such as a floor offset plan. Using excess pension fund returns for cash
balance plan interest credit rates, perhaps with a minimum interest credit rate, is another example
of gainsharing. Pension gainsharing is typically the sharing of unanticipated investment gains with
some or all of the pension plan population—usually current retirees. Favorable (higher) mortality
experience has also been discussed as a possible gainsharing design (Piggott et al. 2005), although that
article anticipated decreases in annuity payments for unfavorable (lower) mortality experience.

Profit commissions in reinsurance provide a similar gainsharing analogy. Some brokers and
reinsurance purchasers attempt to insert profit commission language in their contracts and they
argue that these provisions are “free.” Reinsurance underwriters and actuaries understand that profit
commissions are in fact not free, and that their inclusion will increase the quoted price.
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Several states appear to have or had some form of gainsharing in their retirement systems, among
them Alaska, Arizona, Arkansas, Connecticut, Illinois, Indiana, Louisiana, Michigan, Minnesota,
Mississippi, Oregon, and Texas, and quite possibly other states.

The New York Times cited gainsharing as a contributing factor to the underfunded status of
Detroit’s two large retirement systems (New York Times 2013). Bloomberg mentioned an analysis
during Detroit’s bankruptcy proceedings that said one of the systems paid about $951M in gainsharing
benefits from 1985 to 2008, which would have accumulated to about $1.92B with the foregone interest
(Bloomberg News 2013). This particular form of gainsharing required the city council’s approval before
it was paid, but gainsharing was approved 18 times during the 23 years of the analysis. Gainsharing
was stopped in 2011, but the 2011 and 2012 payments were made retroactively due to provisions in
Michigan’s Constitution.

Washington State added a gainsharing provision to its retirement system in 1998. This provision
gave members and retirees of certain state pension plans a share of “extraordinary investment returns”
whenever the pension trust funds had average investment gains of more than 10% over the preceding
four years (Department of Retirement Systems 2014a). Gainsharing events occurred in 1998 and 2000,
for total gainsharing expenditures of about $1.0B (Washington State Court System 2014). The legislature
repealed this gainsharing provision in 2007 and replaced it with other pension benefits, including
options for early retirement (Department of Retirement Systems 2014b). The pensioners sued and the
case worked its way through the courts and was argued before the Washington State Supreme Court
in October 2013. That court ruled on August 14 2014 (Washington Education Association) that the
repeal was allowable, because the enacting language contained a reservation of rights clause, stating
that the legislature could repeal the benefits at a later date.

Yet, the actuarial literature on estimating the cost of gainsharing favorable pension investment
experience is rather meager. Dr. Jeremy Gold, an actuary who co-authored (with Lawrence Bader) a
seminal paper (Bader and Gold 2003) on the application of Financial Economics to pension plans, briefly
mentioned “skim funds” in his September 2000 dissertation (Gold 2001). The Society of Actuaries
published research papers on pension gainsharing in 2011 (Buchen et al. 2011), 2012 (New York Times
2013) and 2013 (Shang et al. 2013).

However, the current Actuarial Standard of Practice #4 (Actuarial Standards Board, 2013)
Measuring Pension Obligations and Determining Pension Plan Costs or Contributions, requires actuaries
to disclose the methods or procedures they used to estimate the cost of asymmetric benefits such
as gainsharing, effective for measurement dates on or after 31 December 2014. The language of
Section 3.5.3 of Actuarial Standards of Practice #4 (Plan Provisions that are Difficult to Measure), which
specifically mentions gainsharing, states in part, “For such plan provisions, the actuary should consider
using alternative valuation procedures, such as stochastic modeling, option-pricing techniques, or
deterministic procedures in conjunction with assumptions that are adjusted to reflect the impact of
variations in experience from year to year.”

2. Results

The baseline asset allocation was 60% equities, 25% long-term government bonds, 10% alternative
investments, and 5% treasury bills for the first three findings. There was no smoothing period used for
the first two findings. Those two findings were then compared to the results using a two-, three-, four-,
and five-year actuarial asset smoothing periods. The last finding used varying asset allocations with a
five-year smoothing period and a 10% hurdle.

There were four primary findings from an analysis of the model’s output:

1. The higher the hurdle rate, the lower the cost of gainsharing.
2. The cost of gainsharing is directly proportional to the percentage of favorable investment gains

that are gainshared.
3. If excess investment gains are calculated from smoothed assets, the cost of gainsharing decreases

as the smoothing period increases.
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4. More aggressive asset allocations lead to greater “peak” returns for a given hurdle rate and
smoothing period, which increases the cost of gainsharing. However, these greater returns also
experience greater volatility, which further increases the cost of gainsharing.

2.1. Hurdle Rate

When an actuary assumes a future discount rate, such as 7.25%, the actuary knows that the fund
will not earn exactly 7.25% every year. The fund may earn 15.54% in one year and the fund may lose
12.06% in another year. The actuary assumes that these investment gains and losses will offset each
other over time, and the fund will earn an average of 7.25% over the life of the plan.

However, when a portion of investment returns above the hurdle rate are shared with plan
participants, investment returns above 7.25% will not completely offset investment returns below
7.25% and the fund will not earn 7.25% over the life of the plan. If the fund earned 16.54% in some
future year, and the pension plan provisions required sharing half of investment gains over a 10.00%
hurdle, then plan participants would receive 3.27% of fund assets (half of the net of 16.54% minus the
10.00% hurdle rate) in that year. Thus, the fund would actually have earned only 13.27% in that year.

Figure 1 and the supporting data in Table 1 display one of the 5000 30-year simulations for
a 10% hurdle, 50% gainsharing, no smoothing period, and the baseline asset allocation. It shows
each year’s total investment return and the investment return after gainsharing. In this simulation,
the pension fund earned 10.19% before gainsharing, and gainsharing lowered the fund’s 30-year
return to 8.07%. Thus, the cost of gainsharing for this single simulation and these parameters was
a reduction in the discount rate of 2.12%. For comparison, after 5000 simulations, the fund earned
9.38% before gainsharing, and gainsharing lowered the fund’s 30-year return to 7.05%. The average
cost of gainsharing was 2.33%. The corresponding standard deviations were 10.50%, 8.05%, and 2.90%.
For comparison, the corresponding standard deviations after 5000 simulations were 2.40%, 1.88%,
and 0.52%.
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Return After Gainsharing Return Before Gainsharing

Figure 1. Annual returns before and after gainsharing.

Figure 2 displays the relationship between the hurdle rate and the cost of gainsharing for the
baseline asset allocation and smoothing period. The cost of gainsharing, which is the decrease in
the expected return on plan assets for this model, ranges from 2.57% for a 9.00% hurdle to 1.356%
for a 15.00% hurdle rate. Thus, the actuary would lower the discount rate by these amounts for
a 50% gainsharing design with these sample hurdle rates, no smoothing period, and the baseline
asset allocation.
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Table 1. Returns Before and After 50% Gainsharing in One of 5000 Simulations.

Year
Before

G/S
After
G/S

Year
Before

G/S
After
G/S

Year
Before

G/S
After
G/S

1 23.58% 16.79% 11 13.85% 11.93% 21 4.29% 4.29%
2 2.89% 2.89% 12 18.24% 14.12% 22 15.62% 12.81%
3 −13.10% −13.10% 13 2.43% 2.43% 23 30.59% 20.30%
4 5.58% 0.00% 14 27.04% 18.52% 24 −8.44% −8.44%
5 −5.08% −5.08% 15 6.80% 6.80% 25 7.73% 7.73%
6 14.50% 12.25% 16 23.86% 16.93% 26 19.34% 14.67%
7 7.54% 7.54% 17 6.63% 6.63% 27 18.58% 14.29%
8 11.14% 10.57% 18 21.30% 15.65% 28 12.44% 11.22%
9 14.24% 12.12% 19 −2.52% −2.52% 29 12.39% 11.19%
10 15.36% 12.68% 20 −2.34% −2.34% 30 16.14% 13.07%
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1.50%
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Figure 2. Cost of 50% gainsharing by hurdle rate.

2.2. Percentage of Gainsharing

Intuitively, the cost of gainsharing should be directly proportional to the percent of investment
returns over the hurdle rate that are provided to pension plan participants. Figure 3 displays the
model’s results of varying the amount of gainsharing, confirming this intuitive conclusion.
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Figure 3. Gainsharing rate vs. cost of gainsharing.

183

Bo
ok
s

M
DP
I



Risks 2017, 5, 32

2.3. Smoothing Period

An actuarial asset smoothing method averages investment gains and losses over a defined
smoothing period, typically three to five years. Plan sponsors utilize a smoothed actuarial value of
assets in the belief that this method will help stabilize their contributions, though this does not always
occur to the extent that plan sponsors desire. This paper uses the term “smoothing period” for the
longer “actuarial asset method smoothing period.”

Suppose the fund earned 17.54%, −11.06%, 7.23%, 20.48%, and 17.27% over a five-year period.
Without a smoothing period, the first, fourth, and fifth years would call for gainsharing a portion of
investment gains over 10.00% with plan participants. However, if the gainsharing plan provisions
required an investment gain to exceed a 10.00% hurdle rate for a rolling five-year period, then plan
participants would receive only 0.292% of fund assets at the end of the fifth year.

(17.54% − 11.06% + 7.23% + 20.48% + 17.27%)/5 − 10.00% = 0.292%

If the fund earned 16.08% or less in the sixth year, then plan participants would not receive
gainsharing at the end of the sixth year.

(−11.06% + 7.23% + 20.48% + 17.27% + 16.08%)/5 − 10.00% = 0.0%

Figure 4 and the supporting data in Table 2 display the relationship of the smoothing period
on the cost of gainsharing with a 10.00% hurdle. The cost of gainsharing, which is the decrease in
the assumed discount rate for this model, ranges from 1.83% for no smoothing period to 0.77% for
a five-year smoothing period. Thus, the actuary should lower the discount rate by these amounts
for these smoothing periods, given a 50% gainsharing design, a 10.00% hurdle rate, and the baseline
asset allocation.

Table 2. Cost of 50% Gainsharing by Hurdle Rate and Smoothing Period.

Hurdle Rate 9.00% 10.00% 11.00% 12.00% 13.00% 14.00% 15.00%

no smoothing 2.56% 2.31% 2.10% 1.90% 1.69% 1.50% 1.35%
2 year smoothing 1.98% 1.74% 1.50% 1.29% 1.11% 0.94% 0.80%
3 year smoothing 1.74% 1.47% 1.23% 1.04% 0.85% 0.70% 0.57%
4 year smoothing 1.58% 1.30% 1.10% 0.88% 0.71% 0.58% 0.45%
5 year smoothing 1.48% 1.23% 0.99% 0.80% 0.63% 0.49% 0.39%

0.0%
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Figure 4. Cost of gainsharing by hurdle rate and smoothing period.
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Figure 5 and Table 3 show the fund’s returns before and after 50% gainsharing with a 10% hurdle
rate for these smoothing periods.
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Return After Gainsharing Return Before Gainsharing
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Figure 5. Cost of gainsharing by smoothing period.

Table 3. Returns Before and After 50% Gainsharing by Smoothing Period for 10% Hurdle Rate.

Before G/S After G/S G/S Cost

no smoothing 9.84% 7.55% 2.30%
2 year smoothing 9.80% 8.06% 1.74%
3 year smoothing 9.88% 8.41% 1.47%
4 year smoothing 9.89% 8.59% 1.30%
5 year smoothing 9.94% 8.72% 1.22%

2.4. Asset Allocation

Four portfolios were constructed, ranging from conservative to aggressive. The allocations to
stocks and alternative investments were increased in the aggressive portfolios, while the allocation to
long-term government bonds decreased. Table 4 displays the asset allocation in each portfolio.

Table 4. Asset Allocation of the Four Portfolios.

Large Company
Stocks

Long-Term
Government Bonds

Alternative
Investments

Treasury Bills

Portfolio A 55 35 5 5
Portfolio B 60 25 10 5
Portfolio C 65 15 15 5
Portfolio D 70 10 15 5

Figure 6 and its supporting data in Table 5 display the fund’s returns before and after 50%
gainsharing for each of these asset allocations, a 10% hurdle rate, and a five-year smoothing period.
As expected, the more aggressive portfolios yielded higher returns. These higher returns provided
more favorable investment returns to be gainshared, thus increasing the cost of gainsharing for the
more aggressive portfolios. Greater volatility of the more aggressive portfolios also increases the cost
of gainsharing, as the investment return “peaks” are higher, leading to greater gainsharing. However,
a five-year smoothing period tends to dampen the cost of gainsharing.
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Figure 6. Returns and cost of gainsharing for four asset allocations.

Table 5. Effect of Asset Allocation on Returns Before and After 50% Gainsharing.

Asset Allocation Before G/S After G/S G/S Cost

55/35/5/5 9.33% 8.36% 0.97%
60/25/10/5 9.94% 8.72% 1.22%
65/15/15/5 10.61% 9.11% 1.50%
70/10/15/5 10.90% 9.23% 1.67%

2.5. Limitations of the Model

This model has some limitations because it was a one semester independent study project. For
example, inflation is a significant factor in investment returns, particularly long-term bond returns,
but the model does not reflect current or future inflation in any of the future asset class returns.
Also, current long-term bond returns are near historic lows, and the model ignores this when it
generates bond returns in the early years of the projection. Many more sophisticated models have
been developed to calculate discount rates with additional asset classes, beginning with the current
investment environment.

The use of Ibbotson data, the alternative investment class, and treasury bills all produced a
particular set of results. Using different sources of data for the historical returns or different historical
periods would undoubtedly lead to different results. While this model used only four asset classes,
most pension funds have several more asset classes, each with its own expected return and volatility.
Using more asset classes would also lead to different results.

However, these limiting factors are all applied equally to the calculation of future returns without
and with gainsharing. This paper focuses on the difference between these two returns, and not on the
absolute value of either return, thus minimizing the impact of these limitations.

This model is intended to illustrate the impact of various gainsharing designs under different
circumstances, and should not be used to calculate the cost of gainsharing in any specific situation.

3. Discussion

Many defined benefit pension plans, particularly public retirement systems, contain gainsharing
provisions. Most of these designs provide gainsharing benefits to existing retirees, but gainsharing can
also be provided to active participants. For example, a cash balance plan could provide additional
interest credits to active participants in a year when investment earnings exceed the hurdle rate. Indeed,
a few of these plans already exist. A career average plan could also provide an additional automatic
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retroactive accrual after a plan year of favorable investment experience. However, Actuarial Standards
of Practice #4 requires an actuary to select a discount rate that reflects any gainsharing provision and
to disclose how the impact was derived, or to disclose that the gainsharing benefit was not reflected in
the calculations and the rationale for excluding it. This requirement is effective for measurement dates
on or after 31 December 2014.

Note that some plan designs have been developed that may appear to be gainsharing designs,
but are not. Participants in the New Brunswick Shared Risk Pension Plan (Munnell and Sass 2013) have
a base benefit and an ancillary benefit. The base benefit does not change but the ancillary benefit can
increase or decrease, depending on the funded status of the pension plan. Participants in a Retirement
Shares Plan (Fuerst 2014) design might also have their benefits increase or decrease. Retirement Share
Plan participants can elect certain investment choices, and their benefits are based on the investment
experience of the underlying investments.

The distinguishing characteristic of these last two designs are their symmetry. That is, participants
are exposed to the risk of their benefits increasing or decreasing. In asymmetrical gainsharing plan
designs, participants’ benefits can increase with no downside risk, and that risk is borne by plan
sponsors or tax-payers in the case of public plans.

4. Materials and Methods

This section describes the development of a stochastic Excel model that demonstrates the cost of
gainsharing favorable pension investment using stochastic techniques. Analyzing the output of the
model, this paper makes certain observations on the estimated cost of gainsharing based on hurdle
rates, the percentage of gainsharing applied to excess investment gains, the actuarial asset method
smoothing period, and variations in asset allocation.

The stochastic model uses four asset classes:

• Large company stocks
• Long-term government bonds
• Alternative investments
• Treasury bills

The first three asset classes model future returns using Ibbotson (Ibbotson Associates 2010) data
from 1926 through 2009. The historical data for the first two asset classes was fitted to a pair of
three parameter lognormal distributions which were used for the model’s asset return projections.
Commercial software identified three parameter lognormal distributions as well fitting distributions to
the underlying data according to Kolmogorov-Smirnov and Anderson-Darling criteria.

A lognormal distribution was used when the original data is positively skewed, but the
natural logarithms of the original data tend to follow a normal distribution. In this distribution
(Aristizabal 2012),

• μ is the scale parameter that stretch or shrink the distribution,
• σ is the shape parameter that affects the shape of the distribution, and
• γ is the threshold parameter or location parameter that defines the point where the support set of

the distribution begins.

The third asset class (for example, real estate and private equity) was assigned parameters
intended to imitate 2.0% higher yielding investments with 10.0% greater volatility than large company
stocks. A constant treasury bill yield represented short term cash investments, typically a minor portion
of the overall asset allocation. The asset allocation among these four asset classes was a user-controlled
parameter, as was the hurdle rate, percentage of gainsharing, and asset smoothing period.

A stochastic model projected investment returns for 30 years without gainsharing and with
gainsharing, and calculated those two geometric returns for the simulation. It then calculated the
arithmetic average of 5000 such geometric averages without gainsharing and the arithmetic average
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of 5000 such geometric averages with gainsharing. The cost of gainsharing is the difference between
these two arithmetic averages.

Several assumptions are used in the model, in addition to the ones already mentioned, such as:

• Future annual benefit payments equal future annual contributions
• No correlation between asset classes
• Returns are net of investment expenses
• No administrative expenses were payable from the trust
• Continuously compounded returns of each asset class follow a lognormal distribution with mean

(r − δ − 0.5σ2) and variance σ2, where

� r is based on the average continuously compounded rate of return of each asset class over
the indicated historical data,

� δ is the dividend rate, and
� σ is based on historical prices of each asset class over the indicated historical data.

• Each year, the asset class return evolves according to the model:

� Sh = Sh−1e(r−δ−0.5σ2)h+σ
√

hZ

� where Z is a lognormal random variable, whose expected value is E(Z) = eμ+ 1
2 σ2

+ γ,
� and μ, σ, γ are parameters that fit the lognormal distribution to the underlying historical

returns for each asset class.

The model for large company stocks was defined by:

� Z ∼ lognormal(μ = 6.588, σ = 0.02834, γ = −714.18)

� and E(Z) = e(6.588)+ 1
2 (0.02834)2

+ (−714.18) = 12.148.

And for long-term government bonds, the model was defined by:

� Z ∼ lognormal(μ = 3.576, σ = 0.024905, γ = −31.033)

� and E(Z) = e(3.576)+ 1
2 (0.024905)2

+ (−31.033) = 5.823.

5. Conclusions

Despite its characterization in some media reports, gainsharing is neither good nor evil. It is
merely a design of some pension plans, like early retirement reduction factors. However, asymmetrical
gainsharing features are not free; they have an underlying cost. This model demonstrates how a
stochastic method could be used to estimate the cost of gainsharing.
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Abstract: Over the last decade, researchers, practitioners, and regulators have had intense debates
about how to treat the data collection threshold in operational risk modeling. Several approaches
have been employed to fit the loss severity distribution: the empirical approach, the “naive” approach,
the shifted approach, and the truncated approach. Since each approach is based on a different set of
assumptions, different probability models emerge. Thus, model uncertainty arises. The main objective
of this paper is to understand the impact of model uncertainty on the value-at-risk (VaR) estimators.
To accomplish that, we take the bank’s perspective and study a single risk. Under this simplified
scenario, we can solve the problem analytically (when the underlying distribution is exponential)
and show that it uncovers similar patterns among VaR estimates to those based on the simulation
approach (when data follow a Lomax distribution). We demonstrate that for a fixed probability
distribution, the choice of the truncated approach yields the lowest VaR estimates, which may be
viewed as beneficial to the bank, whilst the “naive” and shifted approaches lead to higher estimates
of VaR. The advantages and disadvantages of each approach and the probability distributions under
study are further investigated using a real data set for legal losses in a business unit (Cruz 2002).

Keywords: asymptotics; data truncation; delta method; model validation; operational risk;
VaR estimation

1. Introduction

Basel II/III and Solvency II are the leading international regulatory frameworks for banking
and insurance industries, and mandate that financial institutions build separate capital reserves
for operational risk. Within the advanced measurement approach (AMA) framework, the loss
distribution approach (LDA) is the most sophisticated tool for estimating the operational risk capital.
According to LDA, the risk-based capital is an extreme quantile of the annual aggregate loss distribution
(e.g., the 99.9th percentile), which is called value-at-risk or VaR. Some recent discussions between
the industry and the regulatory community in the United States reveal that the LDA implementation
still has a number of “thorny” issues (AMA Group 2013). One such issue is the treatment of data
collection threshold. Here is what is stated on page 3 of the same document: “Although the industry
generally accepts the existence of operational losses below the data collection threshold, the appropriate
treatment of such losses in the context of capital estimation is still widely debated.”

Various assumptions about the data collection threshold have been considered in the existing
literature: known threshold (Baud et al. 2002; Shevchenko and Temnov 2009), threshold as
unknown parameter (Baud et al. 2002), stochastic threshold whose distribution has to be modeled
(Baud et al. 2002; de Fontnouvelle et al. 2006), and time varying threshold that may scale according to
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inflation and business factors (Shevchenko and Temnov 2009). In this paper, we will assume that the
threshold is known. Given (external) operational risk databases (which often collect losses exceeding,
for example, $1 million), such an assumption is appropriate.

Further, the annual aggregate loss variable is a combination of two variables—loss frequency and
loss severity—and there are different ways to estimate risk-based capital. One way is to estimate
the untruncated severity and truncation-adjusted frequency and then compute VaR. This approach
follows directly from the results described by Brazauskas, Jones, and Zitikis (Brazauskas et al. 2015).
Another way is to estimate the truncated severity and unadjusted frequency to compute VaR. For a
comprehensive review of analytic techniques for truncated data in the context of operational risk modeling,
see Cruz, Peters, Shevchenko (Cruz et al. 2015, sct. 7.9). Furthermore, as is known in practice, the severity
distribution is a key driver of the capital estimate (Opdyke 2014). This is the part of the aggregate model
where initial assumptions about the data collection threshold are most influential. A number of authors
have examined some aspects of this topic in the past (e.g., Cavallo et al. 2012; Chernobai et al. 2007;
Ergashev et al. 2016; Luo et al. 2007; Moscadelli et al. 2005). The modeling approaches they (collectively)
considered include: the empirical approach, the “naive” approach, the shifted approach, and the truncated
approach. Since each approach is based on a different set of assumptions, different probability models
emerge. Thus, model uncertainty arises.

The main objective of this paper is to understand the impact of model uncertainty on risk
measurements, and (hopefully) help settle the debate about the treatment of data collection threshold
in the context of capital estimation. Solving such a problem under a general setup (i.e., by considering
many interdependent risks and multiple stakeholders) is only possible through extensive simulations,
but that would not produce much insight. Therefore, we simplify the problem by taking the bank’s
perspective and by studying a single risk. Under this simplified scenario, we can solve the problem
analytically (when the underlying distribution is exponential), and show that it uncovers similar
patterns among VaR estimates to those based on the simulation approach (when data follow a Lomax
distribution). We demonstrate that for a fixed probability distribution, the choice of the truncated
approach yields lowest VaR estimates, which may be viewed as beneficial to the bank, whilst the “naive”
and shifted approaches lead to higher estimates of VaR. As for the choice of severity distributions,
besides the Lomax distribution (which is heavy tailed and hence appropriate in operational risk
modeling), we intentionally select the light-tailed exponential distribution to show what happens to
VaR estimates when incorrect assumptions are made. Moreover, our step-by-step analysis not only
shows “what happens” to VaR estimates, but it helps understand the questions of “how” and “why”
it happens. Additionally, perhaps surprisingly, our numerical illustrations reveal why the shifted
approach is still popular. That is because it is flexible enough to pass standard model validation tests
and thus cannot be discarded from practical use based on such tools alone. In summary, this paper
contributes to the existing literature by performing an extensive investigation of the impact that model
uncertainty has on the VaR estimators, justifies the soundness of the regulatory recommendation
(i.e., use the truncated approach), and paves the way for a number of research problems in this
important area.

It is worth noting here that the model uncertainty considered in this paper is an epistemic one, not
a random uncertainty. It can be reduced—but not completely eliminated—by employing sound model
validation tools, and in some cases (e.g., when the shifted approach is used) may require out-of-model
knowledge. In a more general context, model uncertainty is an important topic within the model risk
governance framework as regulated by the OCC and the Federal Reserve Bank in the U.S. and the Basel
Committee on Banking Supervision for the G20 countries (e.g., Basel Coordination Committee 2014;
Office of the Comptroller of the Currency 2011).

The rest of the paper is structured as follows. In Section 2, we describe how model uncertainty
emerges and study its effects on VaR estimates. This is done by employing theoretical results (presented
in Appendix A) and via Monte Carlo simulations. Next, in Section 3, these explorations are further
illustrated using a real data set for legal losses in a business unit. Finally, concluding remarks are
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offered in Section 4. Additionally, in Appendix A we provide some technical tools that are essential for
analytic treatment of the problem. In particular, key probabilistic features of the generalized Pareto
distribution are presented, and several asymptotic theorems of mathematical statistics are specified.

2. Model Uncertainty

We start this section by introducing the problem and describing how model uncertainty arises.
Then, in Section 2.2, we review several typical models used for estimating VaR. Finally, using the
theoretical results of Appendix and Monte Carlo simulations, we finish with two parametric examples,
where we evaluate the probability of overestimating true VaR for exponential and Lomax distributions.

2.1. Motivation

In order to fully understand the problem, in this paper we will walk the reader through the entire
modeling process and demonstrate how our assumptions affect the end product, which is the estimate
of severity VaR. Since the problem involves collected data, initial assumptions, and statistical inference
(in this case, point estimation and assessment of estimates’ variability), it will be tackled with statistical
tools, including theoretical tools (asymptotics), Monte Carlo simulations, and real-data case studies.
Let us briefly discuss data, assumptions, and inference. As noted in Section 1, it is generally agreed
that operational losses exist above and below the data collection threshold. Therefore, this implies that
choosing a modeling approach is equivalent to deciding on how much probability mass there is below
the threshold.

In Figure 1, we provide graphs of truncated, naive, and shifted probability density functions
of two distributions (studied formally in Section 2.3): Exponential, which is a light-tailed model;
and Lomax, with the tail parameter α = 3.5, which is a moderately-tailed model (it has three finite
moments). We clearly see that those models are quite different below the threshold t = 195, 000,
but in practice that would be unobserved. On the other hand, in the observable range (i.e., above
t = 195, 000), the plotted density functions are similar (note that the vertical axes are in very small
units, 10−6) and converge to each other as losses get larger (note how little differentiation there is
among the curves when losses exceed 1,000,000). Moreover, it is even difficult to spot a difference
between the corresponding exponential and Lomax models, though the two distributions possess
distinct theoretical properties (e.g., for one all moments are finite, whereas for the other only three
are). Additionally, since probability mass below the threshold is one of the “known unknowns,”
it will have to be estimated from the observed data (above t). As will be shown in the case study of
Section 3, this task may look straightforward, but its outcomes vary and are heavily influenced by the
initial assumptions.
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Figure 1. Truncated, naive, and shifted Exponential (σ) and Lomax (α = 3.5, θ1) probability density
functions. Data collection threshold t = 195, 000, with 50% of data unobserved. Parameters σ and θ1

are chosen to match those in Tables 2 and 3 (see Section 2.3).
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To formalize this dicussion, suppose that Y1, . . . , YN represent (positive and i.i.d.) loss severities
resulting from operational risk, and let us denote their probability density function (pdf), cumulative
distribution function (cdf), and quantile function (qf) as f , F, and F−1, respectively. Then, the problem
of estimating VaR-based capital is equivalent to finding an estimate of qf at some probability level
(e.g., F−1(β)). The difficulty here is that we observe only those Yi’s that exceed some known data
collection threshold t � 0. That is, the actually observed variables are Xi’s with

X1
d
= Yi1

∣∣Yi1 > t, . . . , Xn
d
= Yin

∣∣Yin > t, (1)

where d
= denotes “equal in probability” and n = ∑N

j=1 1
{

Yj > t
}

. Their cdf F∗, pdf f∗, qf F−1∗ are
related to F, f , F−1, and given by

F∗(x) =
F(x)− F(t)

1 − F(t)
, f∗(x) =

f (x)
1 − F(t)

, F−1∗ (u) = F−1(u + (1 − u)F(t)
)

(2)

for x ≥ t and 0 < u < 1, and for x < t, f∗(x) = F∗(x) = 0.
Further, let us investigate the behavior of F−1∗ (u) from a purely mathematical point of view.

Since the qf of continuous random variables (which is the case for loss severities) is a strictly increasing
function and (1 − u)F(t) ≥ 0, it follows that

F−1∗ (u) = F−1(u + (1 − u)F(t)
) ≥ F−1(u), 0 < u < 1,

with the inequality being strict unless F(t) = 0. This implies that any quantile of the observable
variable X is never below the corresponding quantile of the unobservable variable Y, which is true
VaR. This fact is certainly not new (for example, see the extensive analysis by Opdyke (2014), about
the effect of Jensen’s inequality in VaR estimation). However, if we now change our perspective
from mathematical to statistical and take into account the method of how VaR is estimated, we could
augment the above discussion with new insights and improve our understanding.

A review of existing methods shows that, besides estimation of VaR using Equations (1) and (2)
under the truncated distribution framework, there are other parametric methods that employ different
strategies, such as the naive and shifted approaches (described in Section 2.2.2). In particular, those two
approaches use the data X1, . . . , Xn and either ignore t or recognize it in some other way than
Equation (2). Thus, model uncertainty emerges.

2.2. Typical Models

2.2.1. Empirical Model

As mentioned earlier, the empirical model is restricted to the range of observed data. So,
it uses data from Equation (1), but since the empirical estimator F̂(t) = 0, Formulas (2) simplify
to F̂∗(x) = F̂(x), f̂∗(x) = f̂ (x), for x ≥ t, and F̂−1∗ (u) = F̂−1(u). Thus, the model cannot take full
advantage of Equation (2). In this case, the VaR(β) estimator is simply F̂−1(β) = X(�nβ ), and as follows
from Theorem A1,

X(�nβ ) is AN
(

F−1∗ (β),
1
n

β(1 − β)

f 2∗ (F−1∗ (β))

)
.
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We now can evaluate the probability of overestimating the true VaR by a certain percentage; i.e.,
we want to study function H(c) := P

{
X(�nβ ) > c F−1(β)

}
for c ≥ 1. Using Z to denote the standard

normal random variable and Φ for its cdf, and taking into account Equation (2), we proceed as follows:

H(c) = P
{

X(�nβ ) > c F−1(β)
} ≈ P

⎧⎨⎩Z >
[
c F−1(β)− F−1∗ (β)

]
×
(

1
n

β(1 − β)

f 2∗ (F−1∗ (β))

)−1/2
⎫⎬⎭

= 1 − Φ

(√
n

β(1 − β)

[
c F−1(β)− F−1(β + (1 − β)F(t))

]
× f

(
F−1(β + (1 − β)F(t))

)
1 − F(t)

)
.

From this formula, we clearly see that 0.50 ≤ H(1) < 1, with the lower bound being achieved when
F(t) = 0. Additionally, at the other extreme, when c → ∞, we observe H(c) → 0. Additional numerical
illustrations are provided in Table 1.

Several conclusions emerge from the table. First, the case F(t) = 0 is a benchmark case that
illustrates the behavior of the empirical estimator when data is completely observed (and in that
case X(�nβ ) would be a consistent method for estimating VaR(β)). We see that H(1) = 0.5, and
then it quickly decreases to 0 as c increases. The decrease is quickest for the light-tailed distribution,
exponential(σ = 1), and slowest for the heavy-tailed Lomax (α = 1, θ2 = 1), which has no finite
moments. Second, as less data is observed (i.e., as F(t) increases to 0.5 and 0.9), the probability of
overestimating true VaR increases for all types of distribution. For example, while the probability of
overestimating VaR(0.995) by 20% (c = 1.2) for the light-tailed distribution is only 0.226 for F(t) = 0,
it increases to 0.398 and 0.811 for F(t) = 0.5 and 0.9, respectively. If severity follows the heavy-tailed
distribution, then H(1.2) is 0.444, 0.612, 0.734 for F(t) = 0, 0.5, 0.9, respectively. Finally, in practice,
typical scenarios would be near F(t) = 0.9 with moderate- or heavy-tailed severity distributions,
which corresponds to quite unfavorable patterns in the table. Indeed, function H(c) declines very
slowly, and the probability of overestimating VaR(0.995) by 100% seems like a norm (0.577 and 0.715).

Table 1. Function H(c) evaluated for various combinations of c, confidence level β, proportion of
unobserved data F(t), and severity distributions with varying degrees of tail heaviness ranging from
light- and moderate-tailed to heavy-tailed. The sample size is n = 100.

c β
F(t) = 0 F(t) = 0.5 F(t) = 0.9

Light Moderate Heavy Light Moderate Heavy Light Moderate Heavy

1
0.95 0.500 0.500 0.500 0.944 0.925 0.874 1.000 1.000 0.981
0.995 0.500 0.500 0.500 0.688 0.672 0.638 0.949 0.884 0.738
0.999 0.500 0.500 0.500 0.587 0.579 0.563 0.767 0.703 0.612

1.2
0.95 0.085 0.178 0.331 0.585 0.753 0.824 1.000 1.000 0.978
0.995 0.226 0.349 0.444 0.398 0.551 0.612 0.811 0.840 0.734
0.999 0.331 0.424 0.475 0.414 0.517 0.550 0.615 0.668 0.610

1.5
0.95 0.000 0.010 0.138 0.032 0.326 0.726 0.968 0.996 0.975
0.995 0.030 0.167 0.362 0.083 0.364 0.571 0.403 0.756 0.727
0.999 0.137 0.317 0.437 0.191 0.424 0.532 0.358 0.613 0.606

2
0.95 0.000 0.000 0.015 0.000 0.009 0.523 0.056 0.930 0.968
0.995 0.000 0.026 0.240 0.001 0.127 0.501 0.017 0.577 0.715
0.999 0.014 0.170 0.376 0.025 0.280 0.500 0.073 0.516 0.600

Threshold t is 0 for F(t) = 0 and 195, 000 for F(t) = 0.5, 0.9. Distributions: Light = exponential(σ),
Moderate = Lomax(α = 3.5, θ1), Heavy = Lomax(α = 1, θ2). For F(t) = 0: σ = θ1 = θ2 = 1. For F(t) = 0.5:
σ = 281, 326, θ1 = 890, 355, θ2 = 195, 000. For F(t) = 0.9: σ = 84, 687, θ1 = 209, 520, θ2 = 21, 667.

2.2.2. Parametric Models

We discuss three parametric approaches: truncated, naive, and shifted.
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Truncated Approach: The truncated approach uses the observed data X1, . . . , Xn and fully
recognizes its distributional properties. That is, it takes into account Equation (2) and derives maximum
likelihood estimator (MLE) values by maximizing the following log-likelihood function:

log LT
(
θ1, . . . , θk

∣∣X1, . . . , Xn
)
=

n

∑
i=1

log f∗(Xi) =
n

∑
i=1

log
(

f (Xi)

1 − F(t)

)
, (3)

where θ1, . . . , θk are the parameters of pdf f . Once parameter MLEs are available, VaR(β) estimate is
found by plugging those MLE values into F−1(β). �

Naive Approach: The naive approach uses the observed data X1, . . . , Xn, but ignores the presence
of threshold t. That is, it bypasses Equation (2) and derives MLE values by maximizing the following
log-likelihood function:

log LN
(
θ1, . . . , θk

∣∣X1, . . . , Xn
)
=

n

∑
i=1

log f (Xi). (4)

Notice that since f (Xi) ≤ f (Xi)/[1 − F(t)] = f∗(Xi), with the inequality being strict for F(t) > 0, the
log-likelihood of the naive approach will always be less than that of the truncated approach. This in
turn implies that parameter MLEs of pdf f derived using the naive approach will always be suboptimal,
unless F(t) = 0. Finally, VaR(β) estimate is computed by inserting parameter MLEs (the ones found
using the naive approach) into F−1(β). �

Shifted Approach: The shifted approach uses the observed data X1, . . . , Xn and recognizes threshold
t by first shifting the observations by t. Then, it derives parameter MLEs by maximizing the following
log-likelihood function:

log LS
(
θ1, . . . , θk

∣∣X1, . . . , Xn
)
=

n

∑
i=1

log f (Xi − t). (5)

By comparing Equations (4) and (5), we can easily see that the naive approach is a special case of
the shifted approach (with t = 0). Moreover, although this may only be of interest to theoreticians,
one could introduce a class of shifted models by considering f (Xi − s), with 0 ≤ s ≤ t, and create
infinitely many versions of the shifted model. Finally, VaR(β) is estimated by applying parameter
MLEs (the ones found using the shifted approach) to F−1(β) + t. �

2.3. Parametric VaR Estimation

2.3.1. Example 1: Exponential Distribution

Suppose Y1, . . . , YN are i.i.d. and follow an exponential distribution, with pdf, cdf, and qf given
by Equations (A1), (A2), and (A4), respectively, with γ = 0 and μ = 0. However, we observe only
variable X, whose relation to Y is governed by Equations (1) and (2). Now, by plugging exponential
pdf and/or cdf into the log-likelihoods Equations (3)–(5), we obtain

log LT
(
σ
∣∣X1, . . . , Xn

)
=

n

∑
i=1

log
(

f (Xi)

1 − F(t)

)
=

n

∑
i=1

log

(
σ−1e−Xi/σ

e−t/σ

)

= −n log σ +
n

∑
i=1

−(Xi − t)
σ

,

(6)

log LN
(
σ
∣∣X1, . . . , Xn

)
=

n

∑
i=1

log f (Xi) =
n

∑
i=1

log
(

σ−1e−Xi/σ
)

= −n log σ +
n

∑
i=1

−Xi
σ

,
(7)
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log LS
(
σ
∣∣X1, . . . , Xn

)
=

n

∑
i=1

log f (Xi − t) =
n

∑
i=1

log
(

σ−1e−(Xi−t)/σ
)

= −n log σ +
n

∑
i=1

−(Xi − t)
σ

,
(8)

where the subscripts T, N, S (for L) denote “truncated”, “naive”, and “shifted”, respectively. Then,
by maximizing the log-likelihoods (6)–(8) with respect to σ, we get the following MLE formulas for
parameter σ under the truncated, naive, and shifted approaches:

σ̂T = X − t, σ̂N = X, σ̂S = X − t,

where X = n−1 ∑n
i=1 Xi.

Next, by inserting σ̂T, σ̂N, and σ̂S into the corresponding qf’s as described in Section 2.2.2, we get
the following VaR(β) estimators:

V̂aRT(β) = −σ̂T log(1 − β), V̂aRN(β) = −σ̂N log(1 − β), V̂aRS(β) = −σ̂S log(1 − β) + t.

Further, a direct application of Theorem A2 for σ̂T (with obvious adjustment for σ̂N), yields that

σ̂T is AN
(

σ,
σ2

n

)
, σ̂N is AN

(
σ + t,

σ2

n

)
, σ̂S is AN

(
σ,

σ2

n

)
.

Furthermore, having established AN for parameter MLEs, we can apply Theorem A3 and specify
asymptotic distributions for VaR estimators. They are as follows:

V̂aRT(β) is AN
(
−σ log(1 − β),

σ2 log2(1 − β)

n

)
,

V̂aRN(β) is AN
(
−(σ + t) log(1 − β),

σ2 log2(1 − β)

n

)
,

V̂aRS(β) is AN
(
−σ log(1 − β) + t,

σ2 log2(1 − β)

n

)
.

Note that while all three estimators are equivalent in terms of the asymptotic variance, they are
centered around different targets. The mean of the truncated estimator is the true quantile of the
underlying exponential model (estimating which is the objective of this exercise) and the mean of the
other two methods is shifted upwards; in both cases, the shift is a function of threshold t.

Finally, as was done for the empirical VaR estimator in Section 2.2.1, we now define function
H(c) = P

{
V̂aR(β) > c F−1(β)

}
for c ≥ 1, the probability of overestimating the target by (c − 1)100%

for each parametric VaR estimator and study its behavior:

HT(c) ≈ 1 − Φ
(
(c − 1)

√
n
)

, HN(c) ≈ 1 − Φ
(
(c − 1)

√
n −√

n(t/σ)
)

,

HS(c) ≈ 1 − Φ
(
(c − 1)

√
n +

√
n(t/σ) log−1(1 − β)

)
.

Table 2 provides numerical illustrations of functions HT(c), HN(c), HS(c). We select the same
parameter values as in the light-tailed cases of Table 1. From Table 2, we see that the case F(t) = 0
is special in the sense that all three methods become identical and perform well. For example,
the probability of overestimating true VaR by 20% is only 0.023 for all three methods, and it is
essentially 0 as c ≥ 1.5. In this case, parametric estimators outperform the empirical estimator (see
Table 1) because they are designed for the correct underlying model. However, as the proportion of
unobserved data increases (i.e., as F(t) increases to 0.5 and 0.9), only the truncated approach maintains
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its excellent performance. Additionally, while the shifted estimator is better than the naive, both
methods perform poorly and even rarely improve the empirical estimator. For example, in the extreme
case of F(t) = 0.9, the naive and shifted methods overestimate true VaR(0.95) by 50% with probability
1.000 and 0.996, respectively, whereas the corresponding probability for the empirical estimator is 0.968.

Table 2. Functions HT(c), HN(c), HS(c) evaluated for various combinations of c, confidence level β,
and proportion of unobserved data F(t). (The sample size is n = 100.)

c β
F(t) = 0 F(t) = 0.5 F(t) = 0.9

T N S T N S T N S

1
0.95 0.500 0.500 0.500 0.500 1.000 0.990 0.500 1.000 1.000
0.995 0.500 0.500 0.500 0.500 1.000 0.905 0.500 1.000 1.000
0.999 0.500 0.500 0.500 0.500 1.000 0.842 0.500 1.000 1.000

1.2
0.95 0.023 0.023 0.023 0.023 1.000 0.623 0.023 1.000 1.000

0.995 0.023 0.023 0.023 0.023 1.000 0.245 0.023 1.000 0.991
0.999 0.023 0.023 0.023 0.023 1.000 0.159 0.023 1.000 0.909

1.5
0.95 0.000 0.000 0.000 0.000 0.973 0.004 0.000 1.000 0.996

0.995 0.000 0.000 0.000 0.000 0.973 0.000 0.000 1.000 0.257
0.999 0.000 0.000 0.000 0.000 0.973 0.000 0.000 1.000 0.048

2
0.95 0.000 0.000 0.000 0.000 0.001 0.000 0.000 1.000 0.010
0.995 0.000 0.000 0.000 0.000 0.001 0.000 0.000 1.000 0.000
0.999 0.000 0.000 0.000 0.000 0.001 0.000 0.000 1.000 0.000

NOTE: Threshold t is 0 for F(t) = 0 and 195, 000 for F(t) = 0.5, 0.9. Exponential(σ), with σ = 1 (for F(t) = 0),
σ = 281, 326 (for F(t) = 0.5), σ = 84, 687 (for F(t) = 0.9).

2.3.2. Example 2: Lomax Distribution

Suppose that Y1, . . . , YN are i.i.d. and follow a Lomax distribution, with pdf, cdf, and qf given
by Equations (A1), (A2), and (A4), respectively, with α = 1/γ, θ = σ/γ, and μ = 0. However,
we observe only variable X whose relation to Y is governed by Equations (1) and (2). Now, unlike the
exponential case, maximization of the log-likelihoods (3)–(5) does not yield explicit formulas for
MLEs of a Lomax model. So, in order to evaluate functions HT(c), HN(c), HS(c), we use Monte
Carlo simulations to implement the following procedure: (i) generate a Lomax-distributed data set
according to pre-specified parameters; (ii) numerically evaluate parameters α and θ for each approach;
(iii) compute the corresponding estimates of VaR; (iv) check whether the inequality in function H(c)
is true for each approach and record the outcomes; and (v) repeat steps (i)–(iv) a large number of
times and report the proportion of “true” outcomes in step (iv). To facilitate comparisons with the
moderate-tailed scenarios in Table 1, we select simulation parameters as follows:

• Severity distribution Lomax(α = 3.5, θ1): θ1 = 1 (for F(t) = 0), θ1 = 890, 355 (for F(t) = 0.5),
θ1 = 209, 520 (for F(t) = 0.9).

• Threshold: t = 0 (for F(t) = 0) and t = 195, 000 (for F(t) = 0.5, 0.9).
• Complete sample size: N = 100 (for F(t) = 0); N = 200 (for F(t) = 0.5); N = 1000 (for F(t) = 0.9).

The average observed sample size is n = 100.
• Number of simulation runs: 10, 000.

Simulation results are summarized in Table 3, where we again observe similar patterns to those of
Tables 1 and 2. This time, however, the entries are more volatile, which is mostly due to the randomness
of the simulation experiment (e.g., all entries for the T and c = 1 cases theoretically should be equal
to 0.5, because those cases correspond to the probability of a normal random variable exceeding its
mean, but they are slightly off). The F(t) = 0 case is where all parametric models perform well, as
they should. However, once they leave that comfort zone (F(t) = 0.5 and 0.9), only the truncated
approach works well, with the naive and shifted estimators performing similarly to the empirical
estimator. Since Lomax distributions have heavier tails than exponential, function H(c) under the
truncated approach is also affected by that and converges to 0 (as c → ∞) slower. In other words, for a
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given choice of model parameters, the coefficient of variation of VaR is larger for the Lomax model
than that for the exponential model, thus resulting in larger overestimating probabilities than those in
Table 2. The difference between the T entries in Tables 2 and 3 is also influenced by the fact that the
numerically found MLE does not often produce very stable or trustworthy parameter estimates for
the truncated approach, which is a common technical issue. Nonetheless, the overall message here
does not change: we observe certain patterns among functions HT(c), HN(c), and HS(c), which are no
different from those of Section 2.3.1, which were found using the theoretical tools.

Table 3. Functions HT(c), HN(c), HS(c) evaluated for various combinations of c, confidence level β,
and proportion of unobserved data F(t). The average sample size is n = 100.

c β
F(t) = 0 F(t) = 0.5 F(t) = 0.9

T N S T N S T N S

1
0.95 0.453 0.453 0.453 0.459 0.951 0.982 0.547 0.908 1.000
0.995 0.433 0.433 0.433 0.435 0.692 0.734 0.444 0.891 0.998
0.999 0.426 0.426 0.426 0.437 0.149 0.624 0.331 0.867 0.944

1.2
0.95 0.131 0.131 0.131 0.095 0.945 0.791 0.356 0.904 0.999

0.995 0.247 0.247 0.247 0.184 0.208 0.518 0.170 0.889 0.993
0.999 0.297 0.297 0.297 0.272 0.059 0.484 0.121 0.845 0.864

1.5
0.95 0.009 0.009 0.009 0.002 0.626 0.270 0.112 0.879 0.998

0.995 0.097 0.097 0.097 0.044 0.044 0.278 0.021 0.875 0.872
0.999 0.178 0.178 0.178 0.123 0.016 0.313 0.019 0.843 0.708

2
0.95 0.000 0.000 0.000 0.000 0.032 0.010 0.002 0.865 0.984
0.995 0.025 0.025 0.025 0.004 0.004 0.090 0.000 0.851 0.563
0.999 0.075 0.075 0.075 0.032 0.002 0.147 0.001 0.224 0.459

NOTE: Threshold t is 0 for F(t) = 0 and 195, 000 for F(t) = 0.5, 0.9. Lomax(α = 3.5, θ1), with θ1 = 1
(for F(t) = 0), θ1 = 890, 355 (for F(t) = 0.5), θ1 = 209, 520 (for F(t) = 0.9).

3. Real-Data Example

In this section we illustrate how all the modeling approaches considered in this paper (empirical
and three parametric) perform on real data. We go step-by-step through the entire modeling process,
starting with model fitting and validation, continuing with VaR estimation, and completing the
example with model-based predictions for quantities below the data collection threshold. Note that for
the parametric approaches we employ both exponential and Lomax models, although exponential is
clearly not a viable model for operational risk data (because its tail is too light for such data). However,
the exponential distribution is a model for which all relevant formulas are explicit and can be easily
verified by the reader. Moreover, the data analysis exercise also serves as an example of how to identify
inappropriate models (e.g., exponential), and if the model validation step is ignored, to illustrate how
wrong the predictions based on such models can be.

3.1. Data

We will use the data set from Cruz (2002, p. 57), which has 75 observations and represents the
cost of legal events for a business unit. The cost is measured in U.S. dollars. To illustrate the impact of
data collection threshold on the selected models, we split the data set into two parts: losses that are
at least $195,000, which will be treated as observed and used for model building and VaR estimation,
and losses that are below $195,000, which will be used at the end of the exercise to assess the quality of
model-based predictions. This data-splitting scenario implies that there are 54 observed losses. A quick
exploratory analysis of the observed data shows that it is right-skewed and potentially heavy-tailed,
with the first quartile 248,342, median 355,000, and the third quartile 630,200; its mean is 546,021,
standard deviation 602,912, and skewness 3.8.
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3.2. Model Fitting

We fit exponential and Lomax models to the observed data and use three parametric approaches:
truncated, naive, and shifted. The truncation threshold is t = 195, 000. For the exponential model,
MLE formulas for σ are available in Section 2.3.1. For the Lomax distribution, we perform numerical
maximization of the log-likelihoods (3)–(5) to compute parameter values. For the data set under
consideration, the resulting MLE values are reported in Table 4. Additionally, the corresponding
estimates for parameter variances and covariances were computed using Theorem A3.

Table 4. Parameter maximum likelihood estimators (MLEs, with variance and covariance estimates in
parentheses) of the exponential and Lomax models, using truncated, naive, and shifted approaches.

Model Truncated Naive Shifted

Exponential σ̂ = 351, 021
(
2.28 × 109) σ̂ = 546, 021

(
5.52 × 109) σ̂ = 351, 021

(
2.28 × 109)

Lomax α̂ = 1.91 (0.569) α̂ = 22.51 (5, 189.86) α̂ = 1.91 (0.569)
θ̂ = 151, 234

(
3.84 × 1010) θ̂ = 11, 735, 899

(
1.54 × 1015) θ̂ = 346, 234

(
3.84 × 1010)(

ĉov(α̂, θ̂) = 138, 934
) (

ĉov(α̂, θ̂) = 2.82 × 109) (
ĉov(α̂, θ̂) = 138, 934

)
3.3. Model Validation

To validate the fitted models, we employ quantile–quantile plots (QQ plots) and two goodness-of-fit
statistics: Kolmogorov–Smirnov (KS) and Anderson–Darling (AD).

In Figure 2, we present plots of the fitted-versus-observed quantiles for the six models of
Section 3.2. In order to avoid visual distortions due to large spacings between the most extreme
observations, both axes in all the plots are measured on a logarithmic scale. That is, the points plotted
in those graphs are the following pairs:(

log
(

Ĝ−1(ui)
)

, log
(

X(i)

))
, i = 1, . . . , 54,

where Ĝ−1 is the estimated parametric qf, X(1) ≤ · · · ≤ X(54) denote the
ordered losses, and ui = (i − 0.5)/54 is the quantile level. For the truncated approach,
Ĝ−1(ui) = F̂−1(ui + F̂(195, 000)(1 − ui)

)
; for the naive approach, Ĝ−1(ui) = F̂−1(ui); for the shifted

approach, Ĝ−1(ui) = F̂−1(ui) + 195, 000. Additionally, the corresponding cdf and qf functions were
evaluated using the MLE values from Table 4.

We can see from Figure 2 that Lomax models show a better overall fit than exponential models,
and especially in the extreme right tail. That is, most of the points in those plots do not deviate from
the 45◦ line. The naive approach seems off, but the truncated and shifted approaches do a reasonably
good job for both distributions, with Lomax models exhibiting slightly better fits.

The KS and AD goodness-of-fit statistics measure, respectively, the maximum absolute distance
and the cumulative weighted quadratic distance (with more weight on the tails) between the empirical
cdf F̂n(x) = n−1 ∑n

i=1 1{Xi ≤ x} and the parametrically estimated cdf Ĝ(x). Their respective
computational formulas are given by

KSn = max
1≤i≤n

{∣∣∣Ĝ(X(i))−
i − 1

n

∣∣∣, ∣∣∣Ĝ(X(i))−
i
n

∣∣∣}
and

ADn = − n + n
n

∑
i=1

(
i/n

)2 log

(
Ĝ(X(i+1))

Ĝ(X(i))

)
− n

n−1

∑
i=0

(
1 − i/n

)2 log

(
1 − Ĝ(X(i+1))

1 − Ĝ(X(i))

)
,

where 195, 000 = X(0) ≤ X(1) ≤ · · · ≤ X(n) ≤ X(n+1) = ∞ denote the ordered claim severities.
Additionally, Ĝ(X(i)) = F̂∗(X(i)) for the truncated approach, Ĝ(X(i)) = F̂(X(i)) for the naive approach,
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and Ĝ(X(i)) = F̂(X(i) − 195, 000) for the shifted approach. Note that n = 54 and the corresponding
cdf’s were evaluated using the MLE values from Table 4. The p-values of the KS and AD tests were
computed using parametric bootstrap with 10,000 simulation runs. For a brief description of the
parametric bootstrap procedure, see, for example, Klugman, Panjer, and Willmot (2012, sct. 20.4.5).
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Figure 2. Fitted-versus-observed log-losses for exponential (top row) and Lomax (bottom row)
distributions, using truncated (left), naive (middle), and shifted (right) approaches.

As the results of Table 5 suggest, both naive models are strongly rejected by the KS and AD tests,
which is consistent with the conclusions based on QQ-plots. The truncated and shifted exponential
models are also rejected, which strengthens our “weak” decisions based on QQ-plots. Unfortunately,
for this data set, neither KS nor the AD test can help us with differentiating between the truncated and
shifted Lomax models, as both of them fit the data very well.

Table 5. Values of KS and AD statistics (with p-values in parentheses) for the fitted models, using
truncated, naive, and shifted approaches.

Model Kolmogorov–Smirnov Anderson–Darling

Truncated Naive Shifted Truncated Naive Shifted

Exponential 0.186 (0.004) 0.307 (0.000) 0.186 (0.004) 3.398 (0.000) 4.509 (0.000) 3.398 (0.000)
Lomax 0.072 (0.632) 0.316 (0.000) 0.072 (0.631) 0.272 (0.671) 4.696 (0.000) 0.272 (0.678)

3.4. VaR Estimates

Having fitted and validated the models, we now compute several point and interval estimates
of VaR(β) for all six models. The purpose of calculating VaR(β) estimates for all—“good” and
“bad”—models is to see the impact that model fit (which is driven by the initial assumptions) has on
the capital estimates. The results are summarized in Table 6, where empirical estimates of VaR(β) are
also reported for completeness. The confidence intervals for the exponential models are derived using
Theorem A3 and based on the variance estimates from Table 4. For the Lomax models, the confidence
intervals are obtained using parametric bootstrap with 10,000 simulation runs.
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Table 6. Value-at-risk (VaR)(β) estimates (with 95% confidence intervals in parentheses), measured in
millions and based on the fitted models, using truncated, naive, and shifted approaches.

Model β Truncated Naive Shifted

Exponential
0.95 1.052 (0.771; 1.332) 1.636 (1.199; 2.072) 1.247 (0.966; 1.527)

0.995 1.860 (1.364; 2.356) 2.893 (2.121; 3.665) 2.055 (1.559; 2.551)
0.999 2.425 (1.778; 3.071) 3.772 (2.766; 4.778) 2.620 (1.973; 3.266)

Lomax
0.95 0.576 (0.071; 1.160) 1.670 (1.134; 2.206) 1.514 (0.978; 2.755)

0.995 2.281 (0.413; 4.758) 3.114 (2.257; 5.023) 5.417 (2.213; 20.604)
0.999 5.504 (1.100; 13.627) 4.214 (3.019; 8.586) 12.797 (3.649; 89.992)

Empirical estimates of VaR(β): 1.416 (for β = 0.95) and 3.822 (for β = 0.995 and 0.999).

We see from the table that the VaR(β) estimates based on the naive approach significantly differ
from the rest. The difference between truncated and shifted estimates at the exponential model is
t = 195, 000. For the Lomax model, these two approaches—which exhibited nearly perfect fits to
data—produce substantially different estimates, especially at the very extreme tail. Finally, in view of
such large differences between parametric estimates (which resulted from models with excellent fits),
the empirical estimates do not seem completely off.

3.5. Model Predictions

As the final test of our models, we check their out-of-sample predictive power. Table 7 provides
the “unobserved” legal losses, which will be used to verify how accurate our model-based predictions
are. To start with, we note that the empirical and shifted models are not able to produce meaningful
predictions because they assume that such data were impossible to occur (i.e., F̂(195, 000) = 0 for these
two approaches). So, we now work only with the truncated and naive models.

Table 7. Unobserved costs of legal events (below $195,000).

142,774.19 146,875.00 151,000.00 160,000.00 176,000.00 182,435.12 191,070.31
143,000.00 150,411.29 153,592.54 165,000.00 176,000.00 185,000.00 192,806.74
145,500.50 150,930.39 157,083.00 165,000.00 180,000.00 186,330.00 193,500.00

Source: Cruz (2002, p. 57).

Firstly, we report the estimated probabilities of losses below the data collection threshold,
F̂(195, 000). For the exponential models, it is 0.300 (naive) and 0.426 (truncated). For the Lomax
models, it is 0.310 (naive) and 0.794 (truncated). Secondly, using these probabilities we can estimate the
total, observed, and unobserved number of losses. For the exponential models, N̂ = 77.2 ≈ 77 (naive)
and N̂ = 94.1 ≈ 94 (truncated). For the Lomax models, N̂ = 78.3 ≈ 78 (naive) and N̂ = 262.1 ≈ 262
(truncated). Note how different from the rest the estimate of the truncated Lomax model is. (Recall that
this model exhibited the best statistical fit for the observed data).

For predictions that are verifiable, in Table 8 we report model-based estimates of the number
of losses, the average loss, and the total loss in the interval

[
150,000; 175,000

]
. We also provide the

corresponding 95% confidence intervals for the predictions. The intervals were constructed by using
the variance and covariance estimates of Table 4 in conjunction with Theorem A3. Notice that by
using the data points from Table 7 it is straightforward to verify that the actual number of losses is
eight, the average loss is 156,627, and the total loss is 1,253,017. We see from Table 8 that, with the
exception of the average loss measure, there are large disparities in predictions between different
approaches. This mostly has to do with the quality of model fit for the given data set, which is good for
the truncated Lomax model but bad for the other models and/or approaches. As a consequence, 95%
confidence intervals based on the truncated Lomax model cover the actual values of two important
measures—number of losses (eight) and total loss (1,253,017)—but those based on the truncated
exponential model do not. Moreover, both naive models fit the data poorly and produce point and
interval predictions that are even further from their respective targets than those of the truncated
exponential model. In addition, if one chose to ignore the model validation step and proceeded directly
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to predictions based on the naive models, they would be (falsely) reassured by the consistency of such
predictions (number of losses: 2.6 and 2.7; total loss: 426,197 and 441,155).

Table 8. Model-based predictions (with 95% confidence intervals in parentheses) of several statistics
for the unobserved losses between $150,000 and $175,000.

Model Truncated Naive

Number of Losses Average Loss Total Loss Number of Losses Average Loss Total Loss

Exponential 4.2 162,352 685,108 2.6 162,405 426,197
(3.0; 5.5) (162,312; 162,391) (452,840; 917,376) (1.9; 3.4) (162,379; 162,430) (141,592; 710,802)

Lomax 9.9 162,017 1,609,649 2.7 162,397 441,155
(3.3; 16.5) (161,647; 162,388) (543,017; 2,676,281) (1.8; 3.7) (162,343; 162,451) (288,324; 593,985)

4. Concluding Remarks

In this paper, we have studied the problem of model uncertainty in operational risk modeling,
which arises due to different (seemingly plausible) model assumptions. We have focused on
the statistical aspects of the problem by utilizing asymptotic theorems of mathematical statistics,
Monte Carlo simulations, and real-data examples. Similar to other authors who have studied some
aspects of this topic before, we conclude that:

• The naive and empirical approaches are inappropriate for determining VaR estimates.
• The shifted approach—although fundamentally flawed (simply because it assumes that

operational losses below the data collection threshold are impossible)—has the flexibility to
adapt to data well and successfully pass standard model validation tests.

• The truncated approach is theoretically sound when appropriate fits data well, and (in our
examples) produces lower VaR-based capital estimates than those of the shifted approach.

The research presented in this paper invites follow-up studies in several directions. For example,
as the first and most obvious direction, one may choose to explore these issues for other—perhaps more
popular in practice—distributions such as lognormal or loggamma. If the chosen model lends itself
to analytic investigations, then our Example 1 (in Section 2.3) is a blueprint for analysis. Otherwise,
one may follow our Example 2 for a simulations-based approach. Second, VaR can be replaced by
a different risk measure. For instance, the Expected Shortfall (also known as Tail-VaR or Conditional
Tail Expectation) has some theoretical advantages over VaR (e.g., it is a coherent risk measure), and
is a recommended measure in the Swiss Solvency Test. Third, due to the theoretical soundness of
the truncated approach, one may try to develop model-selection strategies for truncated (but not
necessarily nested) models. However, this line of work may be quite challenging due to the “flatness”
of the truncated likelihoods—a phenomenon frequently encountered in practice (see Cope 2011).
The fourth venue of research that may also help with the latter problem is robust model fitting.
There are several excellent contributions to this topic in the operational risk literature (e.g., Chau 2013;
Horbenko et al. 2011; Opdyke and Cavallo 2012), but more work can be done.
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Appendix A

In this appendix, we provide some theoretical results that are key to the analytic derivations in the
paper. Specifically, in Appendix A.1, the generalized Pareto distribution (GPD) is introduced, and a few
of its special and limiting cases are discussed. In Appendix A.2, the asymptotic normality theorems for
sample quantiles (equivalently, value-at-risk or VaR) and the maximum likelihood estimators (MLEs)
of model parameters are presented. The well-known delta method is also provided in this section.
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Appendix A.1 Generalized Pareto Distribution

The cumulative distribution function (cdf) of the three-parameter GPD is given by

FGPD(μ, σ, γ)(x) =

⎧⎨⎩1 − (1 + γ(x − μ)/σ)−1/γ , γ �= 0,

1 − exp (−(x − μ)/σ) , γ = 0,
(A1)

and the probability density function (pdf) by

fGPD(μ, σ, γ)(x) =

⎧⎨⎩σ−1 (1 + γ(x − μ)/σ)−1/γ−1 , γ �= 0,

σ−1 exp (−(x − μ)/σ) , γ = 0,
(A2)

where the pdf is positive for x ≥ μ, when γ ≥ 0, or for μ ≤ x ≤ μ − σ/γ, when γ < 0. The parameters
−∞ < μ < ∞, σ > 0, and −∞ < γ < ∞ control the location, scale, and shape of the distribution,
respectively. Note that when γ = 0 and γ = −1, the GPD reduces to the shifted exponential
distribution (with location μ and scale σ) and the uniform distribution on [ μ; μ + σ ], respectively.
If γ > 0, then the Pareto-type distributions are obtained. In particular:

• Choosing 1/γ = α, σ/γ = θ, and μ = θ leads to what actuaries call a single-parameter Pareto
distribution, with the scale parameter θ > 0 (usually treated as known deductible) and shape α > 0.

• Choosing 1/γ = α, σ/γ = θ, and μ = 0 yields the Lomax distribution with the scale parameter
θ > 0 and shape α > 0. This is also known as a Pareto II distribution.

For a comprehensive treatment of Pareto distributions, the reader may be referred to Arnold (2015),
and for their applications to loss modeling in insurance, see Klugman, Panjer, and Willmot (2012).

A useful property for modeling operational risk with the GPD is that the truncated cdf of excess
values remains a GPD (with the same shape parameter γ), and it is given by

P
{

X ≤ x
∣∣X > t

}
=

P{t < X ≤ x}
P{X > t} = 1 −

(
1 + γ

x − t
σ + γ(t − μ)

)−1/γ

, x > t, (A3)

where the second equality follows by applying Equation (A1) to the numerator and denominator of
the ratio.

In addition, besides the functional simplicity of its cdf and pdf, another attractive feature of
the GPD is that its quantile function (qf) has an explicit formula. This is especially useful for model
diagnostics (e.g., quantile–quantile plots) and for risk evaluations based on VaR measures. Specifically,
for 0 < u < 1, the qf is found by inverting Equation (A1) and given by

F−1
GPD(μ, σ, γ)

(u) =

⎧⎨⎩μ + (σ/γ)
(
(1 − u)−γ − 1

)
, γ �= 0,

μ − σ log(1 − u), γ = 0.
(A4)

Appendix A.2 Asymptotic Theorems

Suppose X1, . . . , Xn represent a sample of independent and identically distributed (i.i.d.) continuous
random variables with cdf G, pdf g, and qf G−1, and let X(1) ≤ · · · ≤ X(n) denote the ordered
sample values. We will assume that g satisfies all the regularity conditions that usually accompany
theorems such as the ones formulated below (for more details on this topic, see, e.g., Serfling 1980,
Sections 2.3.3 and 4.2.2). Note that a review of modeling practices in the U.S. financial service industry
(see AMA Group 2013) suggests that practically all the severity distributions in current use would
satisfy the regularity assumptions mentioned above. In view of this, we will formulate “user-friendly”
versions of the most general theorems, making them easier to work with. Additionally, throughout the
paper, the notation AN is used to denote “asymptotically normal.”
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Since VaR measure is defined as a population quantile, say G−1(β), its empirical estimator is
the corresponding sample quantile X(�nβ ), where �· denotes the “rounding up” operation. We start
with the asymptotic normality result for sample quantiles. Proofs and complete technical details are
available in Section 2.3.3 of Serfling (1980).

Theorem A1 (Asymptotic Normality of Sample Quantiles). Let 0 < β1 < · · · < βk < 1, with k > 1,
and suppose that pdf g is continuous, as discussed above. Then, the k-variate vector of sample quantiles(

X(�nβ1 ), . . . , X(�nβk )
)

is AN with the mean vector
(
G−1(β1), . . . , G−1(βk)

)
and the covariance–variance

matrix
[
σ2

ij
]k

i,j=1 with the entries

σ2
ij =

1
n

βi(1 − β j)

g(G−1(βi))g(G−1(β j))
.

In the univariate case (k = 1), the sample quantile

X(�nβ ) is AN
(

G−1(β),
1
n

β(1 − β)

g2(G−1(β))

)
.

Clearly, in many practical situations the univariate result will suffice, but Theorem A1 is
more general and may be used, for example, to analyze business decisions that combine a set of
VaR estimates.

The main drawback of statistical inference based on the empirical model is that it is restricted
to the range of observed data. For the problems encountered in operational risk modeling, this
is a major limitation. Therefore, a more appropriate alternative is to estimate VaR parametrically,
which first requires estimates of the distribution parameters and then those values are applied to the
formula of G−1(β) to find an estimate of VaR. The most common technique for parameter estimation
is MLE. The following theorem summarizes its asymptotic distribution. Description of the method,
proofs, and complete technical details are available in Section 4.2 of (Serfling 1980).

Theorem A2 (Asymptotic Normality of MLEs). Suppose pdf g is indexed by k unknown parameters,
(θ1, . . . , θk), and let

(
θ̂1, . . . , θ̂k

)
denote the MLE of those parameters. Then, under the regularity conditions

mentioned above, (
θ̂1, . . . , θ̂k

)
is AN

((
θ1, . . . , θk

)
,

1
n

I−1

)
,

where I =
[
Iij
]k

i,j=1 is the Fisher information matrix, with the entries given by

Iij = E

[
∂ log g(X)

∂θi
· ∂ log g(X)

∂θj

]
.

In the univariate case (k = 1),

θ̂ is AN

⎛⎜⎝θ,
1
n

1

E
[ (

∂ log g(X)
∂θ

)2 ]
⎞⎟⎠ .

Having parameter MLEs,
(

θ̂1, . . . , θ̂k

)
, and knowing their asymptotic distribution is useful.

Our ultimate goal, however, is to estimate VaR—a function of
(

θ̂1, . . . , θ̂k

)
—and to evaluate its
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properties. For this we need a theorem that would specify the asymptotic distribution of functions
of asymptotically normal vectors. The delta method is a technical tool for establishing asymptotic
normality of smoothly transformed asymptotically normal random variables. Here we will present
it as a direct application to Theorem A2. For the general theorem and complete technical details,
see Serfling (1980, Section 3.3).

Theorem A3 (The Delta Method). Suppose that
(

θ̂1, . . . , θ̂k

)
is AN with the parameters specified in

Theorem A2. Let the real-valued functions h1 (θ1, . . . , θk) , . . . , hm (θ1, . . . , θk) represent m different risk
measures, tail probabilities, or other functions of model parameters. Then, under some smoothness conditions on
functions h1, . . . , hm, the vector of MLE-based estimators(

h1

(
θ̂1, . . . , θ̂k

)
, . . . , hm

(
θ̂1, . . . , θ̂k

))
is AN

((
h1 (θ1, . . . , θk) , . . . , hm (θ1, . . . , θk)

)
,

1
n

DI−1D′
)

,

where D = [dij]m×k is the Jacobian of the transformations h1, . . . , hm evaluated at (θ1, . . . , θk), that is,

dij = ∂hi/∂θ̂j

∣∣∣
(θ1,...,θk)

. In the univariate case (m = 1), the parametric estimator

h
(

θ̂1, . . . , θ̂k

)
is AN

(
h (θ1, . . . , θk) ,

1
n

dI−1d′
)

,

where d =
(

∂h/∂θ̂1, . . . , ∂h/∂θ̂k

) ∣∣∣
(θ1,...,θk)

.

References

AMA Group. 2013. AMA Quantification Challenges: AMAG Range of Practice and Observations on “The Thorny LDA
Topics”. Munich: Risk Management Association.

Arnold, Barry C. 2015. Pareto Distributions, 2nd ed. London: Chapman & Hall.
Basel Coordination Committee. 2014. Supervisory guidance for data, modeling, and model risk management under

the operational risk advanced measurement approaches. Basel Coordination Committee Bulletin 14: 1–17.
Baud, Nicolas, Antoine Frachot, and Thierry Roncalli. 2002. Internal Data, External Data and Consortium Data

for Operational Risk Measurement: How to Pool Data Properly? Working Paper, Groupe de Recherche
Opérationnelle, Crédit Lyonnais, France.
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