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Preface to “Advanced Energy Storage Technologies 
and Their Applications (AESA)” 

The depletion of fossil fuels, the increase of energy demands, and the concerns over climate 
change are the major driving forces for the development of renewable energy, such as solar, wind and 
wave energy. However, the intermittency of renewable energy has hindered its large-scale deployment, 
which, therefore, has necessitated the development of advanced energy storage technologies. The use of 
large-scale energy storage can effectively improve the efficiency of energy resource utilization, and 
increase the adoption of variable renewable resources, the energy access, and the end-use sector 
electrification (e.g., electrification of transport sector).  

To unlock the world’s creativity, remove the existing barriers and encourage international 
cooperation, an international joint research association entitled “Advanced Energy Storage and 
Applications (AESA)” has been created. It aims to provide a platform for presenting the latest research 
outcomes on the technology development of large-scale energy storage and empower both academia 
and industry to explore success through this platform. 

This special issue, published in the journal of Energies, is a milestone achievement of AESA, 
which includes 22 outstanding contributions (20 original research papers and 2 reviews) across the 
world. The topics cover a wide range including lithium-ion battery, electric vehicles (EVs), and thermal 
energy storage. New models have been proposed for parameter verification, state of charge and peak 
power estimation, equalization, and capacity decay predication. Battery self-heating-related research 
have also been reported. As one of the major applications of Lithium-ion battery, EVs represent 
another popular topic. The energy distribution of the power sources, energy optimization strategies 
and automatic control techniques were investigated comprehensively. In addition, latest progresses 
about superconducting magnetic, latent thermal, and compressed air energy storages have also been 
reported. 

Finally, we wish to express our deep gratitude to all the authors and reviewers who have 
significantly contributed to this special issue. Sincere thanks also go to the editorial team of MDPI and 
Energies for giving the opportunity to publish this book and helping in all possible ways, especially 
Dr. Terry Zhang for his endless support. 

Rui Xiong, Hailong Li and Joe (Xuan) Zhou 
Special Issue Editors 
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Advanced Energy Storage Technologies and Their
Applications (AESA2017)

Rui Xiong 1,2,*, Hailong Li 3,4 and Xuan Zhou 5
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School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
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Abstract: This editorial summarizes the performance of the special issue entitled Advanced Energy
Storage Technologies and Applications (AESA), which is published in MDPI’s Energies journal in
2017. The special issue includes a total of 22 papers from four countries. Lithium-ion battery, electric
vehicle, and energy storage were the topics attracting the most attentions. New methods have been
proposed with very sound results.

Keywords: lithium-ion battery; electric vehicle; energy storage

To reduce the usage of fossil fuel and ease air pollution, many countries have put huge efforts to
promote the development of electric vehicles. Lithium-ion batteries are the main power sources of
electric vehicles, and have been the research focus in both industry and academia [1,2].

This special issue has focused on advanced energy storage technologies and their applications,
which covers all kinds of energy storage and application fields, such as:

(1) Novel energy storage materials and topologies;
(2) Application in electrical/hybrid driven system and electrical/hybrid vehicles;
(3) Next generation energy storage devices, systems, or techniques;
(4) Large-scale energy storage system modeling, simulation and optimization, including testing and

modeling ageing processes;
(5) Advanced energy storage management systems, including advanced control algorithms and fault

diagnosis/online condition monitoring for energy storage systems;
(6) Business model for the application and deployment of energy storage;
(7) Lifecycle analysis, repurposing, and recycling.

After peer-reviewing, papers in high scientific quality and innovativeness were accepted. A total
of twenty-two papers were accepted, with the following geographical distribution of authors:

(1) China (18).
(2) USA (2).
(3) Germany (1).

Energies 2017, 10, 1366 1 www.mdpi.com/journal/energies
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(4) Italy (1).

The lithium-ion battery has been investigated broadly, including equivalent circuit modeling
and parameter estimation [3,4], state of charge and peak power estimation [5,6], battery pack
equalization [7], and battery capacity decay [8]. Recently, battery heating-related characteristics
have been a research focus. Zhu et al. [9] investigated an impedance-based temperature estimation
method considering the electrochemical non-equilibrium with short-term relaxation time for facilitating
vehicular application. Hong et al. [10] developed a thermal runaway prognosis scheme for battery
systems in electric vehicles based on the big data platform and entropy method. The low-temperature
preheating techniques of lithium-ion batteries were investigated in [11,12].

The driving performance of electric vehicles (EVs) is highly dependent on the energy distribution
of the power sources and the electronics’ reliability. Energy optimization strategies and automatic
control techniques were investigated in [13–15]. Ding et al. [16] investigated the impact of silicon
carbide (SiC) metal oxide semiconductor field effect transistors (MOSFETs) on the dynamic
performance of permanent magnet synchronous motor (PMSM) drive systems. In another paper,
Ding et al. [17] investigated the impact of SiC on the powertrain systems in EVs.

Other energy storage forms have also been investigated aside from lithium-ion batteries or
DC-DC, including superconducting magnetic energy storage (SMES) [18], latent thermal energy
storage (LTS) [19], and compressed air energy storage [20]. Refs. [21,22] investigated the design
of pump-turbines.

Two reviews are presented in this special issue. Lanahan et al. [23] analyzed recent case studies—
numerical and field experiments—seen by borehole thermal energy storage (BTES) in space heating
and domestic hot water capacities, coupled with solar thermal energy. Benato et al. [24] offered a
wide overview on the large-scale electrochemical energy projects installed in the high-voltage Italian
grid. Detailed descriptions of energy (charge/discharge times of about 8 h) and power intensive
(charge/discharge times ranging from 0.5 h to 4 h) installations were presented with some insights
into the authorization procedures, safety features, and ancillary services.

Acknowledgments: Guest editors would like to express their sincerest gratitude to Energies’ in-house editor
and reviewers for their wonderful work and effort. Without their support, the efficient handling of all receive
manuscripts, it would not have been possible to publish this special issue. Sincere gratitude is also expressed to
the joint support by the National Natural Science Foundation of China under Grant No. 51507012 and Beijing
Nova Program under Grant No. Z171100001117063.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Pumped hydro energy storage (PHES) is currently the only proven large-scale energy
storage technology. Frequent changes between pump and turbine operations pose significant
challenges in the design of a pump-turbine runner with high efficiency and stability, especially for
ultrahigh-head reversible pump-turbine runners. In the present paper, a multiobjective optimization
design system is used to develop an ultrahigh-head runner with good overall performance.
An optimum configuration was selected from the optimization results. The effects of key design
parameters—namely blade loading and blade lean—were then investigated in order to determine
their effects on runner efficiency and cavitation characteristics. The paper highlights the guidelines for
application of inverse design method to high-head reversible pump-turbine runners. Middle-loaded
blade loading distribution on the hub, back-loaded distribution on the shroud, and large positive
blade lean angle on the high pressure side are good for the improvement of runner power performance.
The cavitation characteristic is mainly influenced by the blade loading distribution near the low
pressure side, and large blade lean angles have a negative impact on runner cavitation characteristics.

Keywords: ultrahigh-head pump-turbine; multiobjective optimization; blade loading; blade lean

1. Introduction

Benefits of pumped hydro energy storage (PHES) on electrical system operations are prominent.
The flexible generation of PHES can provide upregulation and downregulation in power systems.
Furthermore, PHES enable quick start and the provision of spinning and standing reserves. Interest in
this technology has been renewed because of the increase in variable renewable energy, such as wind
power [1,2]. In recent years, higher head and larger capacity PHES stations have been developed in
order to reduce the construction costs [3].

The pump-turbine is a key component in PHES stations. It usually takes only one runner
functioning as pump or turbine. Therefore, pump and turbine efficiencies should be guaranteed for the
runners during water pumping and electricity generation. Furthermore, the cavitation performance
and operation stability have to be improved for both operating conditions. It is difficult to develop
a pump-turbine runner with high overall performance because the targets affect each other and
sometimes conflict in its two operations [4,5].

Energies 2017, 10, 1169 4 www.mdpi.com/journal/energies
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The pump-turbine runners are usually designed from pump mode, and then verified with turbine
mode [1,5], given that the requirements for pump operation are difficult to meet, and the relatively
good performance can be maintained when pumps operate as turbines [6,7]. The runners are more like
centrifugal pump impellers in shape, rather than Francis turbine runners. Furthermore, pump-turbine
runners with higher working heads possess more prolonged flow channels. Low efficiency and bad
cavitation characteristics are the main challenges in the development of ultrahigh-head pump turbines,
especially the runners.

Computational fluid dynamics (CFD) has been widely used in the development of the pump-turbine
runner [8,9]. The profile of the runner can be modified by changing the design parameters on the basis
of internal flow analysis [10,11]. However, this CFD flow analysis cannot directly propose a blade
configuration with favorable flow pattern. Moreover, the direct CFD-based modification technique
is considerably time consuming and requires intensive experience. With the development of design
theory and computer technology, three-dimensional (3D) inverse design methods have been increasing in
popularity for turbomachinery in the past 30 years [12–14]. In the so-called inverse design methods, the
geometry of the blades is unknown and it can be directly calculated according to the design specifications.
The main advantage of the inverse design methods is the closer relationship between the design
parameters and the hydrodynamic flow field. However, no direct relationship can be given between
geometric parameters and runner performances. Accordingly, trial and error in flow analyses and
model tests is still necessary.

More systematic approaches, such as optimization techniques, have been applied in the design of
turbomachinery [9,15]. Optimal design associated to turbomachinery is a multiobjective and difficult
problem by its nature. Gradient-based optimization methods have been successfully applied in the
foil design [16,17]. It is known that gradient techniques are efficient in terms of convergence rate, but
do not guarantee production of the global optimum. On the other hand, multiobjective evolutionary
algorithms (MOEAs) have gained increasing popularity over the past two or three decades [18–20]. These
population-based methods mimic the evolution of species and the survival of the fittest, and comparted
to the gradient-based optimization techniques, they offer advantages, such as good approximations
to optimal sets of solutions, generating multiple trade-off solutions in a single iteration [18,21].
Recently, a multiobjective optimization design strategy has been used to develop pump-turbine
runners [22,23]. The strategy has been built by combining 3D design method, CFD analysis, design
of experiment (DoE), response surface methodology (RSM), and multiobjective genetic algorithm
(MOGA). A middle-high-head turbine runner with high efficiency and stability has been designed
by using this strategy [23]. Because of its simplicity, its ease of use and its suitability to be coupled
with specialized numerical tools, for instance CFD techniques, the strategy can be widely used in the
development of fluid machines.

In this study, a parametric design study of an ultra-head pump-turbine runner is carried out based
on multiobjective optimization. First, the multiobjective optimization design system was introduced
and an ultrahigh-head pump-turbine runner was designed. The runner with high overall performance
was obtained. Then, the impact of blade loading and stacking conditions on the runner performance
was assessed, where the runners are optimally described using the inverse design method and their
performance was estimated with CFD analyses. The main aim is to offer a guideline for the design
ultrahigh-head pump-turbine runners by means of comparisons and analyses of design parameters on
the runners’ performances.

2. Optimization Design System

Figure 1 shows the flow chart of the design strategy used in this study. The design approach was
based on the coupling of the parameterization of the blade shape with a 3D inverse design method to
produce the blade geometry, DoE to reduce the number of calculation times, CFD analysis to estimate
the objective functions, RSM to correlate the design parameters with the objectives, and MOGA to
search the Pareto front for the trade-off design [22,23].
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Figure 1. Procedures for multiobjective optimization.

2.1. 3D Inverse Design

The 3D design software TURBODesign 5.2 was used to parametrically describe the runner
shape [12,15]. The flow through the runner is considered as water at normal temperature. When
TURBODesign 5.2 is used for design, the flow is simplified to steady and inviscid, and the blades
are represented by sheets of vorticity. Strength of the vorticity is determined by a circumferentially
averaged velocity torque rVθ , defined as

rVθ =
B

2π

∫ 2π
B

0
rVθdθ (1)

It is referred to as the “blade loading”, here is the blade number.
For the incompressible potential flow, blade pressure distribution can be expressed as follows [12,15].

p+ − p− =
2π

B
ρWbl

∂
(
rVθ

)
∂m

(2)

where subscripts + and – represent either side of the blades, ρ is the water density, Wbl is the relative
velocity on the blade surface, and m is in the direction of streamlines in the meridional plane.
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Equation (2) shows the direct relationship of ∂
(
rVθ

)
/∂m with the difference between pressure

on the upper and lower surfaces of the blade. The other important input specification is the stacking
condition. This condition specifies the blade lean at the high pressure side (HPS) of the pump-turbine
runner blades as shown in Figure 2, which affects the wrap angle of the blades [12,15,24].

Figure 2. Blade lean at high pressure side.

2.2. CFD Analyses

The widely used commercial code ANSYS CFX 15.0 was used to conduct the CFD analyses. CFD
analyses were conducted for two purposes: one was the estimation of objective functions and the
other was validation and analyses of optimization results. The accuracy of the objective functions
is important for the optimization process. Thus, as shown in Figure 3, 3D, turbulent, and steady
flow simulations were performed for the full passage pump-turbine using the Reynolds-Averaged
Navier–Stokes (RANS) equations [22,23]. For steady flow simulations, the RANS equations can be
expressed as

∂Vi
∂xi

= 0 (3)

∂(ViVj)

∂xj
= −1

ρ

∂p
∂xi

+ ν
∂2Vi

∂xi∂xj
+

∂(−Vi
′Vj

′)
∂xj

(4)

where V is the velocity, p is the pressure, ρ is the density, and ν is the kinematic viscosity, respectively.
The Reynolds stresses are modeled according to the turbulent viscosity hypothesis as −Vi

′Vj
′ = νt(

∂Vi
∂xj

+

∂Vj
∂xi

)− 2
3 kδij, here k is the turbulent kinematic energy, and δij is the Dirac Delta function. The turbulence

model is an important factor for CFD. For turbomachinery, performance parameters like efficiency and
cavitation can be predicted with reasonable accuracy by solving the RANS equations with advanced
turbulence models, such as standard k − ε, and renormalization group (RNG) k − ε [10,22,23,25]. In this
study, RNG k − ε turbulence model was used for the closure of the RANS equations with the standard
wall function method since it is economical and robust for predicting steady calculation with acceptable
accuracy [25].

The computational domain includes spiral casing, stay vanes, guide vanes, runner, and draft
tube as shown in Figure 3. The frozen rotor model was used at interfaces between the stationary and
rotating components. No-slip wall conditions were set for stationary and rotating parts. Inlet and
outlet boundaries were set as follows: static pressure zero was set at the inlet and the flow discharge
(Qm = 0.284 m3/s, listed in Table 1) was set at the outlet under pump mode; the flow discharge
(Qm = 0.305 m3/s, listed in Table 2) was set at the inlet and the static pressure was set at the outlet
under turbine mode. Stochastic fluctuations of the velocities with a 5.0% free stream turbulent intensity
were adopted as the mass flow rate was specified. ANSYS ICEM and TurboGrid were used for mesh
generation. Hexahedral meshes were mainly used except in the volute tongue with tetrahedral meshes
because of its complicated structure.
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Figure 3. Whole flow passage model.

2.3. Optimization Strategy

The RSM model was used to describe the approximate relationships between the optimization
targets and input design parameters. The second-order polynomial function was used in this study.

ŷi = β0 +
m

∑
j=1

β
j
ixi +

m

∑
j=1

β
j
iixi

2 + ∑
i �=j

β
j
ikxixk (5)

where ŷi is the target, xi and xk are input parameters, β0, βi, βii, and βik can be determined by following
the principle of least square regression with the help of a set of sample points in the design space.

The distribution of sample points in design space has significant influence on the accuracy of
RSM model. The Latin hypercube sampling method was used in DoE, wherein the sample points are
equiprobable, random, and orthogonally distributed in the design space. As the quadratic approximation
model Equation (5) is used, the least number S of sample points should be

S ≥ (N + 1)(N + 2)/2 (6)

where N is the number of input variables selected.
When the RSM between the optimization targets and inputs was generated, the multiobjective

optimization was then implemented with modified non-dominated sorted genetic algorithm (NSGA-II).
In NSGA-II, the fast non-dominated sorting and crowding technique is adopted. NSGA-II is suitable
for the optimization design of the pump-turbine runners with a reduction in computation complexity
and an improvement in elitist strategy.

All the utilized software was integrated into the iSIGHT platform as shown in Figure 1.
The optimization design process began with the selection of input parameters. After the variation
ranges on the input parameters were determined, different combinations of the input parameters were
used to generate a number of runner configurations with TURBODesign5.2. Then, runner performances
were estimated under different operating conditions by using ANSYS CFX 15.0 and the RSM model
between the optimization targets was generated. The CFD calculations were time consuming. Finally,
NSGA-II was implemented on the RSM model and the optimal solutions were determined. It was
unnecessary to regenerate the runners and estimate their performance in this optimization process.
The optimal solutions could be obtained in a short time.

3. Design of the Ultrahigh-Head Pump Turbine Runner

3.1. Design Specifications

The specific design parameters were based on Yangjiang PHES station located in the Guangdong
Province of China [26]. In turbine mode, the rated head was Hr = 659.0 m, and the maximum and
minimum net head were Hmax = 693.85 m and Hmin = 624.66 m, respectively. In pump mode, the
maximum and minimum heads were Hmax = 712.46 m and Hmax = 652.11 m, respectively. The
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rated capacity of the reversible synchronous motor was Pr = 444.44 MW and its rotational speed was
nr = 500 rpm.

In order to conduct the model tests on a standard test rig [27], scaled pump-turbine runners were
designed. The design parameters are shown in Table 1, where Hm, Qm, and nm are the design head,
design flow discharge, and rotational speed of the model runners, respectively. The number of the
blades is B = 9. Figure 4 shows the meridional shape of the blades, which were derived on the basis
of the centrifugal pump and one-dimensional flow calculation. The main geometrical parameters of
the runner are high-pressure side (HPS) diameter D2, HPS width b2, low-pressure side (LPS) shroud
diameter D1s, and LPS hub diameter D1h. The value of these main parameters is given in Table 2.

Table 1. Design parameters of a model pump-turbine.

Mode Hm/m Qm/m3 nm/rpm

Pump 59.40 0.284 1200
Turbine 59.31 0.305 1200

Figure 4. Meridional blade shape.

Table 2. Geometric parameters for meridional blade shape.

Parameter b2/m D1h/m D1s/m D2/m

Value 0.042 0.132 0.250 0.540

3.2. Optimization Settings

As the description in Section 2.1, blade loading and blade stacking are the most important
parameters in determining the blade shape [12,15,24]. Blade loading distributions are usually given
along the hub and shroud streamlines. The blade loading between the hub and shroud is determined
by using linear interpolation. As shown in Figure 5, along each streamline, three-segment distribution
was adopted. Four parameters—namely, connection point locations NC and ND, slope of the linear
line SLOPE, and loading at the low pressure edge DVRT—were used to control the distribution curve.

Blade stacking specifies the blade lean angle θ at the HPS of the blade as shown in Figure 2.
The rake angle β in Figure 2 is given as

β = arctan
[(

θ · D2

2

)
/b2

]
(7)

The stacking condition was imposed linearly along the HPS of the blade in this study.
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Figure 5. Blade loading distributions.

As shown in Figure 5, a total of eight variables are necessary for the control of the blade loading
distribution. When the blade loading and blade lean angle are identified as optimization parameters,
there are nine variables. The sensitivity on the runners’ shape and the range of these variables are
tested by the trial designs of the runners [22,23]. In this study, extensive trial designs were made by
using the design software TURBODesign 5.2 to check whether blades with a reasonable shape could be
obtained. With these trial designs, three variables were fixed at NCh = 0.7, NDh = 0.8, and NDs = 0.8,
and the variation range of the other input variables were determined as shown in Table 3.

The optimization targets were set as the runner efficiencies ηmP and ηmT at the pump design point
and turbine rated point. In pump-turbines, the cavitation performance in pump mode is usually worse
than that in turbine mode. During the design, as the cavitation requirement is satisfied in pump mode,
it can be satisfied in turbine mode. Therefore, the lowest pressure plow on the blade at the pump design
point was also set as an optimization target. The optimization was made to maximize the runner
efficiencies, ηmP and ηmT, and to increase pressure plow. Considering these three objective functions
were likely conflicting, MOGA was employed to find a number of trade-off solutions.

Table 3. Variation range of input parameters.

Optimized Inputs Parameters Range

Blade loading

NCs 0.7 ∼ 0.8
SLOPh −1.0 ∼ 2.0
SLOPs −2.0 ∼ 2.0
DRVTh −0.2 ∼ 0.2
DRVTs −0.2 ∼ 0.2

Blade lean angle θ −20.0
◦ ∼ 20.0

◦

The efficiencies ηmP and ηmT are defined in Equations (8) and (9), respectively.

ηmP =
ρgHmPQmP

MmPωmP
(8)

ηmT =
MmTωmT

ρgHmTQmT
(9)

where Qm and Hm are the discharge and head given in Table 1, ωm is the angular velocity. Momentum
Mm acting on the runner was calculated through CFD analyses introduced in Section 2.2.
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In order to generate the quadratic RSM model as shown by Equation (5), 40 different runner
geometries were provided by using TURBODesign 5.2. Therefore, 80 CFD calculations were conducted.
The parameters setting for NSGA-II is shown in Table 4.

Table 4. Parameter settings for NSGA-II.

Parameters Value

Population size 100
Number of generations 100
Crossover probability 0.9

Crossover distribution index 10
Mutation distribution index 20

Initialization mode Random

3.3. Optimization Results

Figure 6 shows the optimization results. There are a total of 10,000 different optimized runners
as shown in Figure 6a. The original 40 sample runners produced in DoE are also shown in Figure 6a.
These samples were random, equiprobable, and orthogonally distributed. So that a high accuracy
could be obtained as the RSM model shown in Equation (5) was used. The trade-off relationship
between pump efficiency, turbine efficiency, and minimum pressure at the blade surface is indicated in
the Pareto front surface in Figure 6b.

Figure 6. Optimization results. (a) Optimized runners; and (b) Pareto front surface.

Four runner configurations on the Pareto front in Figure 6b—denoted by 1, 2, 3, and 4—are selected
for further detailed study. These runners were selected with an artificial screening method, in which a
limited range was set to each optimization target, and the runners satisfying the target conditions were
selected. Table 5 shows the performance comparisons calculated by CFD and estimated by RSM. The
initial baseline runner was also reported. The CFD results shown in Table 5 were obtained from the
redesigned runners by using optimized blade loading and blade lean. As shown in Table 5, there are
some differences in the objective functions between the RSM estimation and CFD calculation. When
the RSM model approach expressed in Equation (5) is used in the optimization procedure, the response
surface is an approximation of runner performance predicted by CFD analyses. Simulation-based
objective functions are inherently noisy, which is the typical problem in the numerical optimization
process [18,21]. Therefore, it is necessary to develop robust and efficient optimization methodologies
that can afford satisfactory designs even for limited computational resources.
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Table 5. Comparison of the selected runners and the initial runner.

Runner Mode
Runner Efficiency η/% Low Pressure on Blade Surface pmin/Pa

RSM CFD RSM CFD

1
pump 96.29 95.28 −72,461.6 −178,610

turbine 93.61 93.25 - -

2
pump 96.21 95.91 −247,114.3 −282,009

turbine 93.94 93.04 - -

3
pump 96.47 95.66 −302,416.2 −276,037

turbine 94.16 93.42 - -

4 (Preferred runner)
pump 96.31 96.43 −248,645.4 −263,678

turbine 94.02 93.14 - -

Initial runner
pump - 95.86 - −326,890

turbine - 92.45 - -

Runner 4 is recommended as the preferred runner through comprehensive consideration of
runner efficiencies and minimum pressure on blade surface. As shown in Figure 7, the blade loading
distributions of the initial runner on the hub and shroud are both back-loaded, while the optimized
blade loading distributions are middle-loaded on the hub and back-loaded on the shroud for preferred
runner 4. The blade lean is θ = 0

◦
for the initial runner, and θ = −2.0

◦
for the preferred runner 4 at the

HPS, respectively.
Compared the preferred runner 4 with the initial runner, the runner’s efficiencies are increased

about 0.6% and 0.7% under pump mode and turbine mode, respectively. At the same time, the runner
cavitation performance is greatly increased by raising the minimum pressure on the blade surface.
Figure 8 shows the comparison of the shapes among the preferred and initial runners. The preferred
runner has a negative blade lean angle θ = −2.0

◦
, and rake angle β = −12.65

◦
, whereas the initial

runner has no lean on the HPS. Near the low pressure side (LPS), the blade cross-sections are in
distorted shape in the preferred runner.

Figure 7. Blade loading distributions of the initial runner and the preferred runner.
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Figure 8. Comparison of the blades for two runners.

4. Parametric Effects on the Runner Performance

With the optimization, the runner with good overall performance could be developed as shown
in Table 5. As discussed in Section 3.3, there were some differences in the performance estimated by
RSM model and CFD prediction. In order to assess the impact of the main design parameters on the
runner performances and increase the quantitative credibility of the optimized results, besides runners
1–4, more runners (A–H) were selected from the optimized results as shown in Figure 9. These runners
were redesigned using the optimized design parameters and numerically simulated with CFD. Table 6
shows main design parameters and the CFD calculated performances for runners A–H, as well as the
initial runner and the preferred runner.

Figure 9. Selected runners and Pareto front surface.
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Table 6. Design parameters and performances of the runners.

Runner
Design Parameters Performance

∂
(
rVθ

)
/∂m θ, β/o ηmT/% ηmP/% plow/Pa

Initial runner Figure 7a 0.0, 0.0 92.45 95.86 −326,890
Preferred runner Figure 7b −2.0, −12.65 93.14 96.43 −263,678

A Figure 12a −2.0, −12.65 93.09 95.53 −286,616
B Figure 12b −2.0, −12.65 92.82 95.89 −282,646
C Figure 12c −3.0, −18.60 93.15 95.88 −388,540
D Figure 12d 0.0, 0.0 93.34 96.10 −230,361
E Figure 7b 19.0, 64.87 93.96 95.96 −336,242
F Figure 7b 20.0, 65.89 94.08 96.45 −341,955
G Figure 7b −19.0, −64.87 92.97 96.03 −360,081
H Figure 7b −18.0, −63.66 93.14 95.41 −405,167

4.1. Effects of Blade Loading

The blade lean angles for runners A–D are θA = θB = −2.0
◦
, θC = −3.0

◦
, and θD = 0.0

◦
, while

the blade lean angles for the initial runner and the preferred runner are θi = 0.0
◦

and θP = −2.0
◦
,

respectively. Figure 10 shows the comparisons of the shapes among runners A–D and the preferred
runner. For runners A, B, and the preferred runner, their blade shapes are similar near HPS. As shown
in Figure 10b, the blade shapes are a little different near HPS for runners C, D, and the preferred runner
because of a slightly different blade lean. Near LPS, the blade shapes of runner D and the preferred
runner are similar, and the blades tilt more to the turbine rotation direction than the other runners.

Figure 10. Blade configuration comparisons.
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According to Table 6, the preferred runner and runner D have a higher efficiency in both turbine
and pump mode. Furthermore, the minimum pressure at the blade surface is lower for these two
runners. Figure 11 shows the pressure distributions on the blade suction surface under pump mode
for different runners. Smaller low pressure zones on the blade suction side in pump mode show that
the preferred runner and runner D have better cavitation characteristics.

Figure 12 shows the blade loading for runners A–D. Blade loading distributions are aft-loaded
on the hub and shroud for runners A, B, and C, similar to the initial runner in Figure 7a. For runner
D, blade loading distributions are middle-loaded on the hub and aft-loaded on the shroud, similar
with the preferred runner shown in Figure 7b. The preferred runner has same blade lean angle with
runners A and B, meanwhile runner D has the same blade lean angle as the initial runner. Therefore,
the performance improvement for the preferred runner and runner D is mainly provided by the
blade loading distribution. Synthetically considering the effects on efficiency and cavitation, it is
recommended to design the runner to be middle-loaded on hub and back-loaded on shroud for blade
loading distributions.

 

Figure 11. Pressure distribution on suction surface for different runners.
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Figure 12. Blade loading distributions for runners A–D.

4.2. Effects of the Blade Lean

More runners marked by E–H were investigated. For these four runners, the blade loading
distributions were almost the same with the preferred runner and runner D, while the blade lean
angles changed greatly, θE = 19.0

◦
, θF = 20.0

◦
, θG = −19.0

◦
, and θH = −18.0

◦
, respectively. Figure 13

shows the shapes of these four runners. It can found that large positive or negative blade lean angles
significantly change the spatial shape of the blades from shroud to hub.

Figure 13. Geometry comparison for runners E–H.
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Table 6 shows that runners E and F with large positive blade lean angle have a higher efficiency
than the preferred runner and the initial runner in both turbine mode and pump mode. Runners G
and H with large negative blade lean angles retain a relative high efficiency in pump mode, but the
efficiency in turbine mode decreases. For all these four runners, the minimum pressure at the blade
surface is lower than that of the initial runner and the preferred runner. It is clearly shown in Figure 11
that low pressure zones on the blade suction surface for runners F and H are larger than those for the
initial and preferred runner.

The cavitation characteristics of the runner mainly depend on the blade shape near the runner’s
LPS. The blade loading for the preferred runner and runners D–H are almost the same, so that the
large blade lean on the HPS induces the blade shape change near the runner’s LPS, and deteriorates
the runner’s cavitation characteristics. Therefore, the large blade lean on the HPS is not recommended
to be used for the ultra-head reversible pump-turbine runner considering cavitation characteristics.

5. Conclusions

In the present paper, a multiobjective optimization design strategy is briefly presented. The
design approach is a combination of 3D inverse design to parameterize the blade geometry, CFD for
flow analysis, DoE to reduce the number of calculation times, RSM to correlate the design parameters
with the objectives, and MOGA to search the trade-off design. The strategy is used to develop an
ultrahigh-head pump-turbine runner. Based on the trade-offs among the optimized targets, a runner is
recommended from the optimized runners. Compared to the initial runner, the preferred runner’s
efficiency under turbine mode is increased by about 0.7% and the pump efficiency by about 0.6%,
while the runner’s cavitation is greatly promoted.

The hydrodynamic performance characteristics of the pump-turbine correlate strongly with the
design parameters. Based on the optimization, the effects of blade loading and blade lean on the
runners’ geometry and performance are studied. It is suggested that middle-loaded blade loading
distribution on the hub, and back-loaded distribution on the shroud—as shown in Figure 7b—are
good for the improvement for the runner efficiencies under two operating modes. On the shroud, the
blade loading should be reduced near the LPS because the cavitation is most likely to occur in this
zone. The large positive blade lean angle on the high pressure side can increase the runner efficiency
under turbine mode. However, large blade lean angles may induce drop on the lowest pressure, and
deteriorate the cavitation characteristics.

For the large capacity pump-turbine unit, besides the efficiency and cavitation performances, the
operation stability for both operating conditions should be guaranteed [3,28]. Under pump mode,
instabilities with cavitation in the hump region limit the normal operating range of the unit. Under
turbine mode, pressure fluctuations mainly determine smooth operations for the unit. The flow field is
converted into a fully separated unsteady state in these cases. Therefore, enlarging the present strategy
to consider the unsteady characteristics of the pump-turbine would be valuable.
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Nomenclature

b2 High pressure side width
B Number of blades
D1H Hub diameter for low pressure side
D1S Shroud diameter for low pressure side
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D2 High pressure side diameter
DRVT Blade loading at leading edge
H Head height
Hmax Maximum head height
Hmin Minimum head height
Hr Rated head height
k Turbulence kinetic energy
m Percentage meridional distance
M Torque acting on runner
n Revolution speed
NC Fore connection point on blade loading distribution curve
ND Aft connection point on blade loading distribution curve
Pr Rated output power
Q Discharge
r Radius or radial direction
SLOPE Slope of the middle line on blade loading distribution curve
V Tangentially velocity
Wmbl Relative velocity on blade surface
x Input parameter or Cartesian coordinate
y Optimization targets
β Blade rake angle or coefficients in polynomial for RSM
η Unit efficiency
θ Blade lean angle
ρ Fluid density
ω Angular velocity
νt Turbulent kinematic viscosity
Superscripts

Circumferential average
+ Upper side of blade
- Lower side of blade
′ Fluctuation
Subscripts

bl Blade surface
H Hub
m Model unit or meridional direction
P Pump mode
S Shroud
T Turbine mode
θ Tangential component
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Abstract: It is difficult to predict the heating time and power consumption associated with the
self-heating process of lithium-ion batteries at low temperatures. A temperature-rise model considering
the dynamic changes in battery temperature and state of charge is thus proposed. When this model is
combined with the ampere-hour integral method, the quantitative relationship among the discharge rate,
heating time, and power consumption, during the constant-current discharge process in an internally
self-heating battery, is realized. Results show that the temperature-rise model can accurately reflect
actual changes in battery temperature. The results indicate that the discharge rate and the heating time
present an exponential decreasing trend that is similar to the discharge rate and the power consumption.
When a 2 C discharge rate is selected, the battery temperature can rise from −10 ◦C to 5 ◦C in 280 s.
In this scenario, power consumption of the heating process does not exceed 15% of the rated capacity.
As the discharge rate gradually reduced, the heating time and power consumption of the heating
process increase slowly. When the discharge rate is 1 C, the heating time is more than 1080 s and the
power consumption approaches 30% of the rated capacity. The effect of discharge rate on the heating
time and power consumption during the heating process is significantly enhanced when it is less
than 1 C.

Keywords: lithium ion battery; low temperature preheating; temperature-rise model; heating time;
power consumption

1. Introduction

Lithium batteries have become the main source of power for electric vehicles because of the
advantages they offer, such as reduced pollution, a long life cycle, high energy density, and good
power performance [1]. However, the performance of lithium batteries at low temperatures is poor.
When the temperature decreases, the ohmic, polarization, and total internal resistance of batteries
increase [2]. For example, the ohmic resistance of a charging LiFePO4 battery at −5 ◦C is five times
that at room temperature [3]. When the temperature is below −10 ◦C, there is a significant drop in
battery capacity, as well as a loss in power [4]. Battery charging is also more difficult than discharging
in this environment. In this case, if the battery is forced to charge, lithium deposits and dendrites will
appear on its negative electrode, which cause an internal short circuit [5]. So far, it has been difficult to
solve the low-temperature performance problem of lithium batteries through the use of innovative
materials [6]. Therefore, it is often necessary to heat the battery to a suitable operating temperature
before using the battery in low temperature conditions.

At present, methods for heating batteries in low temperature environments are divided primarily
into external heating and internal heating. Wang Facheng et al. [7] used a heating wire to heat air at the
inlet of an air duct of a battery box, and subsequently heat batteries through air convection. Hyun-Sik
Song et al. [8] also achieved battery heating by way of air convection. The above heating method can
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make the battery temperature rise rapidly to the appropriate temperature and the battery performance
is improved significantly at low temperatures. However, this method causes unnecessary energy loss
in the heating process, and the energy utilization of techniques that heat by way of air convection is
low. Zhang Chengning et al. [9] heat batteries using a wide-line metal film. Comparing with that it is
almost not able to discharge prior to heating, the battery can subsequently release 50% of the stored
electric energy after heating.

Liu Cunshan et al. [10] established a low-temperature heating model for power batteries, and
compared the effect of a positive temperature coefficient (PTC) heater and an electrothermal film
heater. The electrothermal film heating mode does not affect the heat dissipation of the battery and
has insulating performance at some degree. However, the power batteries used in electric vehicles
are composed of a plurality of cells, which are arranged closely together, in series and in parallel [11].
In the external heating mode, battery cells are not uniformly heated, which causes a rapid rise in local
temperature. As a result, battery consistency deteriorates and the life of the battery pack is greatly
shortened. In more severe cases, the deterioration in battery consistency causes failure of isolated
cells, resulting in serious accidents. Compared to the external heating methods, the main advantage of
internal heating is the use of heat generated by internal resistance in the charging/discharging process.
The internal heating methods are characterized by high energy efficiency and can achieve uniform
battery heating. Yan Ji et al. [12] simulated a battery pack equivalent to two groups of cells, which,
at a certain frequency, are alternately charged and discharged for battery heating after DC/DC boost,
ultimately getting the ideal temperature rise effect. The mutual pulse heating consumes little battery
power and is free of convective heat transfer system. However, it appears that the current used in
this process is too large. In addition, the charging voltage of the battery in the heating process may
reach 4.5 V, which is significantly higher than the charging cut-off voltage and increases the possibility
of the formation of lithium dendrites. Zhang Jianbo et al. [5] established a frequency domain model
for a lithium-ion battery, which had a rated capacity of 3.1 A·h, and proposed the use of sinusoidally
alternating currents for internal heating. The battery can be heated from −20 ◦C to 5 ◦C within
15 min and the temperature distribution remains essentially uniform. However, the heating process
is accompanied by large transient voltages. The maximum battery voltage recorded experimentally
is 4.5 V. If an appropriate AC amplitude and frequency cannot be selected in practical applications,
the battery may continue to be in a state of over-voltage, causing some damage. Zhao Xiaowei et al. [13]
proposed the use of a large current pulse for heating a 3.2 V, 12 A·h lithium-iron phosphate battery.
The charge and discharge cut-off voltages were 2.1 V and 3.6 V respectively. The heating process
comprised a total of 18 charge and discharge cycles. In the final realization, the battery temperature rises
from −10 ◦C to 3 ◦C. Ruan Haijun et al. [14] heated batteries with a high-frequency alternating current,
using a constant polarization voltage as a boundary condition. Ultimately, the battery temperature
can be raised from −15 ◦C to 5.6 ◦C in 338 s. The constant polarization voltage is managed for battery
heating to achieve a good tradeoff between short heating time and less damage to battery lifetime
based on an electro-thermal coupled model. However, as the study only proved that there was no
significant capacity decay in the battery after 30 repeated internal heating tests, the overall health of the
battery, if the test is repeated more than 30 times, cannot be ascertained. Although pulsed heating can
effectively heat batteries, alleviating the impact of low temperatures, larger charge pulse amplitudes
result in stronger polarization of the anode surface, leading to the formation of lithium dendrites [15].

The main reason for the failure of lithium batteries is the generation of lithium dendrites during
the charging process in low-temperature environments [16]. The lithium metal precipitates on the
graphite anode surface at low temperatures or during charging at a high rate, and further reacts
with the electrolyte. As a result, both available electrolyte and lithium ions are lost, and the battery
volume changes, leading to poor contact between active substances and the current collector [17].
The embedding of both electrolyte and lithium ions accelerates the peeling of graphite particles.
The corrosion of both the collector and the adhesive reduces battery capacity [18], eventually causing
permanent damage to the battery. Though the discharging capacity of lithium batteries decreases and
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the discharging platform voltage drops, discharging in low temperature conditions does not cause
permanent damage to the battery.

On the basis of the foregoing, this study develops a method to internally preheat lithium-ion
batteries at low temperatures by way of constant-current discharging. This indicates that the
temperature generated by internal resistance during battery discharging is used to heat the battery
in a low temperature environment. Besides, it is difficult to predict the heating time and power
consumption associated with the self-heating process of lithium-ion batteries at low temperatures.
A temperature-rise model considering the dynamic changes in both battery temperature and state
of charge (SOC) is thus proposed. When this model is combined with the ampere-hour integral
method, the quantitative relationship among the discharge rate, heating time, and power consumption,
during the progress of constant-current discharging for internally self-heating battery, is realized.
Further, the problem of predicting the heating time and power consumption of the self-heating at low
temperature is solved in this paper.

2. The Temperature-Rise Model

The Thevenin model is used to analyze the discharging process. As shown in Figure 1, Rr

represents the ohmic resistance, Ur is the voltage on Rr, Cp and Rp represents the polarization
capacitance and polarization resistance respectively, Up is the voltage on Cp and Rp, UOCV is the
open circuit voltage, E is the terminal voltage, Iis the discharging current. In this paper, Rtotal is
equivalent to the combination of Rr, Cp and Rp, which is annotated as R in the temperature-rise model.

Figure 1. Thevenin model

Heat generated by a battery can be divided into irreversible heat and reversible heat.
The irreversible heat includes Joule heat and concentration polarization heat. The reversible heat, also
known as reaction heat, refers to energy that is released or absorbed in the electrochemical reaction to
maintain the energy balance of the reaction. Referring to [19], the simplified heat generation equation
used in this paper can be expressed as (1):

Qt = QJ + Qr = I(E − UOCV) + IT
∂UOCV

∂T
(1)

QJ = I(E − UOCV) = I2R, (2)

where, I is the operating current of the battery (positive for charge, negative for discharge), E is the
battery voltage, UOCV is the open circuit voltage, Qt is the total heat generation power. QJ is the
irreversible heat generation power, which represents the sum of both the heat generated by ohmic
resistance when current flows and the heat generated by concentration difference through material
transfer in the battery. Qr is the reversible entropic heat or reaction heat, which depends on the
direction of current and the sign of the entropy coefficient. The entropy potential is greatly influenced
by the state of charge (SOC) and varies with different chemical compositions [20]. The difference
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between the battery terminal voltage and the open circuit voltage results from the voltage generated
by internal resistance when current flows [21]. Therefore, the irreversible heat can be expressed as
Equation (2), where R is the equivalent internal resistance of the battery.

Battery temperature is influenced by heat generation, heat conduction, and thermal diffusion [22].
In addition to internal heat production, the battery also distributes heat to the exterior when it works
at a low temperatures. There are two main approaches for heat loss: convection and heat radiation.
Thermal radiation is very small compared to thermal convection and is therefore ignored [23]. The heat
dissipation can be expressed by (3):

Qdis = −hA(T − T∞), (3)

where h is the equivalent heat transfer coefficient, A is the surface area of the battery, T is the battery
temperature, and T∞ is the ambient temperature. Therefore, the heat balance equation can be obtained
as the following equation:

mc
dT
dt

= QJ + Qr + Qdis = I2R + IT
∂UOCV

∂T
− hA(T − T∞), (4)

where m is the mass of battery and c is the specific heat capacity. From Equation (4) we can see
that the total heat generated by the battery is influenced by current, resistance, entropy potential,
the equivalent heat transfer coefficient and battery temperature. One can yield that a greater current
and resistance lead to greater heat generation. Conversely, a greater equivalent transfer coefficient and
battery temperature results in more heat dissipation. As a result, the total heat generated is reduced.
The battery temperature-rise model developed in this paper will take into account changes in the
resistance and entropy coefficient during the process of battery heating so as to guarantee accuracy.

According to Equation (4), we can get the linear differential equation relating to battery
temperature in Equation (5).

dT(t)
dt

= (
I ∂VOCV

∂T
mc

− hA
mc

)T(t) +
I2R
mc

+
hAT∞

mc
. (5)

Equation (5) can be rewritten in discrete-time. The relevant expression, shown in Equation (6),
is deduced, using the Laplace transform as,

sT(s)− T(t0) = (
I ∂VOCV

∂T
mc

− hA
mc

)T(s) + (
I2R
mc

+
hAT∞

mc
)

1
s

, (6)

where, t0 is the initial time and t is the current time. Under periodic sampling conditions, t0 = kT0,
t = (k + 1)T0, and k = 0, 1, 2, 3..., Equation (6) can be rewritten as:

sT(s)− T(kT0) = (
I ∂VOCV

∂T
mc

− hA
mc

)T(s) + (
I2R
mc

+
hAT∞

mc
)

1
s

(7)

Upon further rearrangement, we can get Equation (8) as,

T(s) =
T(kT0)

s + hA−I ∂VOCV
∂T

mc

+
1

s(s + hA−I ∂VOCV
∂T

mc )

I2R + hAT∞

mc
(8)

Equation (9) is obtained from Equation (8) by the inverse Laplace transform

T((k + 1)T0) = e−
hA−I

∂VOCV
∂T

mc tT(kT0) +
mc

hA − I ∂VOCV
∂T

(1 − e−
hA−I

∂VOCV
∂T

mc t)
I2R + hAT∞

mc
. (9)
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3. Model Validation

3.1. Model Parameter Acquisition

The battery tested in this study was a commercial 18650 lithium-ion battery, which has a rated
capacity of 2.6 A·h. The cathode of the battery is LixNiCoAlO2, and the anode is graphite. The
specifications are shown in Table 1.

Table 1. Battery parameters.

Parameters Symbol Value

Mass m 45 g
Surface area A 4.287 × 10−3 m2

Capacity Q 2.6 A·h
Voltage Vrate 3.63 V

Upper cut-off voltage Vup 4.2 V
Lower cut-off voltage Vlow 2.75 V

The experimental set-up is shown in Figure 2. The temperature sensor is attached to the battery,
and the side surface of the battery tested in this experiment is covered by an insulating film. The battery
temperature data measured by the temperature sensor is sent to the computer via the battery
temperature measuring device. And the computer controls the battery to charge and discharge
via the Arbin battery tester. Detailed parameters of the battery tester and temperature chamber are
shown in Table 2.

Figure 2. Experimental set-up.

24

Bo
ok
s

M
DP
I



Energies 2017, 10, 1121

Table 2. Equipment parameters.

Arbin Battery Tester

Voltage range: 0 V–5 V
Current range: 0 A–50 A
Voltage accuracy: full-range ± 0.05% FSR
Current accuracy: full-range ± 0.01% FSR
Number of channels: 4

Temperature Chamber
Temperature range: −50 ◦C~150 ◦C
Temperature error:<0.5 ◦C
Chamber volume: 0.5 m × 0.5 m × 0.6 m

The batteries are tested by the hybrid pulse power characteristic (HPPC) rule [24] to obtain the
relation between internal resistance and SOC at different temperatures. The schematic of the HPPC test
is shown in Figure 3, the battery is excited by a charging pulse and a discharging pulse at a certain SOC,
and the pulse width is set to 10 s. After that, the battery is discharged to the next SOC point. The result
of HPPC test with 10% SOC intervals at 25 ◦C is shown in Figure 4. The equations of charging ohmic
resistance Rc

r , charging total resistance Rc
total , discharging ohmic resistance Rd

r and discharging total
resistance Rd

total are as follows:

Rc
r =

U2 − U1

Ic
(10)

Rd
r =

U5 − U4

Id
(11)

Rc
total =

U3 − U1

Ic
(12)

Rd
total =

U6 − U4

Id
(13)

Above all, U1, U2, U3, U4, U5, U6, are the terminal voltage at point 1, 2, 3, 4, 5, 6. In addition, Ic, Id
are charging current and discharging current respectively.

Figure 3. The schematic of the HPPC test.
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Figure 4. The result of HPPC test at 25 ◦C.

The results of HPPC tests at different temperatures are shown in Figure 5. The battery is excited
by a pulse of 2.6 A under different conditions, and the voltage of the battery will exceed the range
of cut-off voltage at both low SOC and low temperature. As a result, the data of resistance at both
low SOC and low temperature are missing. Besides, the battery is excited by the mode of constant
current—constant voltage at high SOC, preventing the voltage of battery from exceeding the upper
cut-off voltage. In this paper, the SOC of the battery is defined as the ratio of residual capacity to
the rated capacity. According to Figure 5, the internal resistance gradually increased with decreasing
temperature. The battery resistance is effectively stable when the SOC is between 50% and 90%.
The resistance increases when the SOC is less than 50% or more than 90%.
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Figure 5. Battery internal resistance curves at different temperatures.
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The relationship between the open circuit voltage (OCV) and SOC is significant for describing
the basic performance of a battery. SOC-OCV curves vary with different types of batteries [25].
The SOC-OCV curves obtained by the battery test system are shown in Figure 6.

The open circuit voltage of the battery is mainly affected by the SOC and the temperature.
The open circuit voltage increases gradually with increasing SOC, and decreases gradually with
decreasing temperature. The effect of SOC on the open circuit voltage is significantly greater than that
of temperature. The fluctuation of open circuit voltage caused by the variation of 5 ◦C in temperature
does not exceed 5 mV.

Figure 6. Curves of battery open circuit voltage at different temperatures.

The entropy coefficient is an important parameter for estimating the reaction heat. Firstly,
the open circuit voltages of the battery should be measured at different temperatures and SOC points.
Through the analysis of the data measured, different open circuit voltage corresponding to different
temperatures is obtained at a certain SOC. Referring to [26], a linear function of the temperature and
the OCV at a specified SOC is fitted by the least square method. The slope of the derived function is
used as the entropy coefficient at the defined SOC. The entropy coefficient at 50% SOC is shown in
Figure 7. The above fitting methods were implemented at different SOC points. An entropy coefficient
curve with 10% SOC intervals was obtained, as shown in Figure 8. The entropy coefficient is more than
zero when the SOC is within a 20–90% range but less than zero when the SOC exceeds 90%. The value
of the entropy coefficient is small, which is always in the range of −0.4 to 1.6 mV/◦C. According to the
reaction heat equation, which is IT ∂UOCV

∂T , the small value of the entropy coefficient implies that the
contribution of reaction heat is limited. This also shows that most of the heat is generated by Joule
heat, and reaction heat contributes less to the temperature rise of the battery.
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Figure 7. Entropy coefficient for SOC = 50%.
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Figure 8. Entropy coefficient curve for varying SOCs.

The heat dissipation in the heating process can be expressed by the equivalent heat transfer
coefficient. The equivalent heat transfer coefficient is an important parameter in the energy conservation
model, which can affect the accuracy of the battery temperature raise model. In practical application,
hundreds of individual batteries are connected in series to compose a battery pack, which are put in the
battery box of an electric vehicle. The battery box has an insulating effect on the batteries. In order to
simulate the actual environment of the battery box in an electric vehicle and reduce the heat dissipation
of the battery at low temperatures, the side surface of the battery tested in this experiment is covered
by an insulating film which is a thin sponge with stickiness [27]. As a result, the equivalent heat
transfer coefficient will be smaller due to the insulating film. The equivalent heat transfer coefficient
of the battery is obtained by the temperature gradient calculated during the battery cooling process.
The energy conservation equation is shown in Equation (14).

mc
dT
dt

= −hA(T − T∞), (14)
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where m = 45 g, c = 1.72 J/g·K [5], and T∞ = −10 ◦C. If h is a constant value, a solution to Equation (14) is:

ln(T − T∞) = − hA
mCp

t + con. (15)

Equation (15) shows that there is a linear function between ln(T − T∞)and time, and the
equivalent heat transfer coefficient can be determined from the slope of the curve of ln(T − T∞)

with t [28]. The battery temperature and ln(T − T∞) when the battery cools down are shown in
Figure 9. Figure 9b shows the linear relationship with time, resulting in an equivalent heat transfer
coefficient of 5.035 W/m2·K.
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Figure 9. Curves of (a) battery temperature; (b) ln(T − T∞), when the battery cools down.

3.2. Temperature-Rise Model Validation

The fluctuation of both battery temperature and SOC is relatively large in the process of battery
discharge for self-heating. This paper establishes a temperature-rise model which takes into account
the dynamic characteristic of the battery temperature and SOC. Tests analyzing the discharge process
for self-heating at low temperature were carried out. The discharge rates selected are 1 C, 1.5 C, and
2 C. The ambient temperature is −10 ◦C, the target temperature is 5 ◦C [5], and the initial SOC of the
tested battery is 80%. The experimental results are compared with the simulation results, and the
accuracy of the temperature rise model is verified by the error between the actual temperature and
the simulation.

Plots of the predicted temperature, actual temperature and the error between these values
are shown in Figure 10. The predicted temperature obtained from the temperature-rise model is
essentially identical to the actual temperature of the battery. The maximum error between the predicted
temperature and the actual temperature does not exceed 1 ◦C during the process of self-heating, which
is the same as [26]. Hence, it can be demonstrated that the temperature-rise model established for
ICR18650 batteries in this paper is highly accurate.
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Figure 10. Comparing the estimated temperature with the measured temperature at (a) 1 C; (b) 1.5 C;
(c) 2 C discharge rates.

4. Calculation Results and Analysis

According to the temperature-rise model developed in this paper, the time required for heating
the battery from the ambient temperature to the target temperature at different discharge rates is
obtained, as shown in Figure 11. The curve is fitted by the least squares method to obtain the function
of the battery discharge rate and the heating time, which is shown in Equation (12), where x is the
discharge rate and y is the heating time in seconds.

y = 3.74227 × 10−9e−
x

0.0484 + 5.35283 × 10−8e−
x

0.06003 + 8293.17524e−
x

0.43995 + 182.07697. (16)

As can be seen from Figure 11, the battery temperature can be raised from −10 ◦C to 5 ◦C in
280 s when the discharge rate is 2 C. When the discharge rate decreases, the heating time gradually
increases in response. The heating time is 1080 s when the discharge rate is 1 C. The effect of current
discharge on the heating time is significantly enhanced when the discharge rate is less than 1 C. As the
discharge rate continues to decrease, the heating time rapidly increases. The heating time is more
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than 2640 s when the discharge rate is 0.8 C, which is far longer than the reasonable heating time in
actual applications.
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Figure 11. Time required for heating the battery from ambient temperature to the target temperature at
different discharge current rates.

Further, the power consumption of the self-heating process can be calculated by combining the
battery temperature-rise model with the ampere-hour integral method [29]. The ampere-hour integral
equation is shown as Equation (17).

SOCt = SOC0 −
∫ t

0

I
Q

dt, (17)

where SOC0 is the initial SOC of the battery, SOCt is the SOC at time t, I is the discharge current of
the battery, and Q is the rated capacity of the battery. Additionally,

∫ t
0

I
Q dt is defined as the power

consumption in this paper. The power consumption of the battery during heating at different discharge
current rates is shown in Figure 12. The curve is fitted utilizing the least squares method to further
obtain the function of the battery discharge rate and power consumption shown in Equation (18),
where x is the discharge rate and z is the total variation of SOC during the heating process, i.e.,
the power consumption.

z = 2.54425 × 10−6e−
x

0.04527 + 86035.57986e−
x

0.06101 + 0.93799e−
x

0.59824 + 0.11457. (18)

According to Figure 12, the power consumption of the battery at a 2 C discharge rate is less than
15% of the rated capacity. As the discharge rate gradually reduced, the power consumption increases
slowly. The power consumption of the heating process is 30% of the rated capacity when the discharge
rate is 1 C. The effect of discharge rate on power consumption is significantly enhanced when it is less
than 1 C. When the discharge rate is 0.8 C, the power consumption of the heating process is 60% of
the rated capacity, which is twice the value at 1 C. Therefore, the discharge rate should be selected
in the range of 1 C–2 C in applying the constant-current discharge method to heating a battery at
low temperature.
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Figure 12. Power consumption of the battery heated from ambient temperature to the target
temperature at different discharge current rates.

5. Conclusions

A temperature-rise model considering the dynamic fluctuation in battery temperature and SOC
is proposed, and it is possible to predict the battery temperature during the progress of battery
self-heating at low temperature. Tests in which the battery was heated from −10 ◦C to 5 ◦C were
conducted at different discharge rates. The results show that the temperature-rise model can accurately
reflect actual variation in battery temperature. The maximum error between the predicted temperature
and actual temperature is less than 1 ◦C during the process of battery self-heating.

When the temperature-rise model developed in this paper is combined with the ampere-hour
integral method, the quantitative relationship among the discharge rate, the heating time, and the
power consumption during the self-heating process is realized. The difficulty in predicting the heating
time and power consumption during the self-heating process is thus addressed. The results indicate
that the discharge rate and the heating time present an exponential decreasing trend and it is similar
with the discharge rate and the power consumption. When a 2 C discharge rate is selected for
constant-current discharging to the internal heating battery, the battery temperature can rise from
−10 ◦C to 5 ◦C in 280 s. In this case, the power consumption of the self-heating process does not
exceed 15% of the rated capacity. As the discharge rate gradually reduced, the heating time and power
consumption of the heating process increased slowly. When the discharge rate was 1 C, the heating
time exceeded 1080 s, and the power consumption reached 30% of the rated capacity. The effect
of discharge rate on the heating time and power consumption during the self-heating process is
significantly enhanced when the discharge rate is less than 1 C. When the discharge rate is 0.8 C,
the power consumption of self-heating process is 2.45 times that at 1 C, and the heating time is twice
that at 1 C. Therefore, the discharge current rate should be selected in the range of 1 C–2 C in applying
the constant-current discharge method to battery self-heating. The method of self-heating is suitable for
heating the lithium-ion battery which is fully charged at low temperature before the normal operation.
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Abstract: We present analyses of three families of compressed air energy storage (CAES) systems:
conventional CAES, in which the heat released during air compression is not stored and natural
gas is combusted to provide heat during discharge; adiabatic CAES, in which the compression
heat is stored; and CAES in which the compression heat is used to assist water electrolysis for
hydrogen storage. The latter two methods involve no fossil fuel combustion. We modeled both
a low-temperature and a high-temperature electrolysis process for hydrogen production. Adiabatic
CAES (A-CAES) with physical storage of heat is the most efficient option with an exergy efficiency
of 69.5% for energy storage. The exergy efficiency of the conventional CAES system is estimated to
be 54.3%. Both high-temperature and low-temperature electrolysis CAES systems result in similar
exergy efficiencies (35.6% and 34.2%), partly due to low efficiency of the electrolyzer cell. CAES with
high-temperature electrolysis has the highest energy storage density (7.9 kWh per m3 of air storage
volume), followed by A-CAES (5.2 kWh/m3). Conventional CAES and CAES with low-temperature
electrolysis have similar energy densities of 3.1 kWh/m3.

Keywords: compressed air energy storage (CAES); adiabatic CAES; high temperature electrolysis;
hydrogen storage; thermodynamics

1. Introduction

Large penetrations of wind and solar energies challenge the reliability of the electricity grid, due to
their intermittency and uncertainty. Storage technologies are being developed to tackle this challenge.
Compressed air energy storage (CAES) is a relatively mature technology with currently more attractive
economics compared to other bulk energy storage systems capable of delivering tens of megawatts
over several hours, such as pumped hydroelectric [1–3]. CAES stores electrical energy as the exergy of
compressed air. Figure 1 is a simplified schematic of a CAES plant. Electricity is supplied by the grid to
run the air compressors and charge the storage system. Waste heat is released during the compression
phase. Air is stored for later use—often in an underground cavern. During the discharge phase,
compressed air is combusted with a fuel, and expanded in a turbine (expander) to regenerate electricity.
Currently, there are two commercial CAES plants in operation: Huntorf in Germany (since 1978)
and McIntosh in USA (since 1991) [4]. Moreover, there are some smaller projects in operations or
in construction and planning phases, most notably General Compression’s 2 MW, 300 MWh project
in Texas, USA and SustainX’s 1.5 MW, 1 MWh project in New Hampshire, USA [5].
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Figure 1. Schematic of a generic conventional compressed air energy storage (CAES) system.

The prospects for the conventional CAES technology are poor in low-carbon grids [2,6–8]. Fossil fuel
(typically natural gas) combustion is needed to provide heat to prevent freezing of the moisture present
in the expanding air [9]. Fuel combustion also boosts the work output in comparison to solely
harnessing the energy stored in the compressed air.

We develop analytical models to assess the thermodynamics of two strategies to make CAES
greenhouse gas (GHG) emissions-free. Both utilize the temperature increase from the air compression
process to eliminate the need for gas combustion. This heat is generated during the charging phase.
Because of its low temperature and correspondingly low exergy, the compression heat is rejected to
the ambient environment in the conventional CAES setup. This heat could, in principle, be stored to
heat the expanding air provided that the temperature of this stored heat is high enough. The primary
method to achieve such high temperatures is to increase the operating pressure of the compressors
and to eliminate intercooling between compression stages (i.e., adiabatic compression). This, however,
poses practical challenges due to high operating pressures and temperatures of the compressors
(e.g., metallurgical limits on compressor blades).

Physical storage of the compression heat is the core of the Adiabatic CAES (A-CAES) concept—
the first carbon-free CAES system we investigate. Chemical storage of the compression heat in the form
of hydrogen, and combustion of hydrogen instead of natural gas during the discharge phase is the
second strategy we analyzed. Hydrogen can be produced via electrolysis of steam at high temperatures
(HTE) or water at low (ambient) temperatures (LTE). The HTE concept benefits from the lower
electricity demand of the electrolysis process at higher temperatures. Utilizing the high-temperature
heat of compression lowers the electricity demand of hydrogen production in the CAES-HTE system.
This saving is achieved at the expense of higher electricity demand of the air compressor which,
in CAES-HTE, operates at higher pressures with limited or no cooling. The CAES-LTE concept is
comparable to the conventional CAES system (diabatic compression with the use of coolers between
compressor stages). However, hydrogen is produced onsite with a low-temperature electrolyzer.

Electrolysis of steam (HTE) instead of water (LTE) requires more thermal but less electrical
energy. Figure 2 illustrates the theoretical energy requirements as functions of the electrolysis reaction
temperature (see Appendix A for details). In a high-temperature electrolyzer, steam is disassociated
in the cathode to produce hydrogen and O2−, while O2− is oxidized in the anode to produce oxygen.
The theoretical total energy demand of the electrolysis process (change in enthalpy, ΔH) equals
the electricity demand (reversible work, i.e., change in the Gibbs free energy, ΔG) plus the heat demand
of the reaction (change in entropy multiplied by the reaction temperature, ΔS × T) from a source of
at least as high a temperature as the reaction temperature. While the total energy demand (enthalpy
change) of electrolyzing steam increases at higher temperatures, its electricity demand decreases.
The savings in electricity consumption of the electrolyzer come at the expense of its higher heat load.
Therefore, electrolysis of steam instead of water could be particularly attractive when electricity supply
is constrained and high-temperature heat is abundant. Note that the actual electricity demand of
the electrolyzers will be higher than the theoretical value (ΔG) because the electrolyzer cell efficiency
is less than 100%.
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Figure 2. Theoretical energy demand for electrolysis as a function of the reaction temperature.

Existing literature has studied the thermodynamics of conventional CAES [10–15], A-CAES [16–22],
and combustion of hydrogen instead of natural gas to fuel conventional CAES [23]. Moreover,
alternative advanced CAES designs have also been studied such as isothermal CAES, CAES paired with
cogeneration of heat and power, CAES with humidification, and trigeneration CAES systems [24–29].

With this paper, we introduce the concepts of CAES-HTE and CAES-LTE, and provide
a comparative thermodynamic analysis of these approaches against A-CAES and conventional CAES.
We also assess the sensitivity of our results to two key design parameters: the storage pressure of
compressed air and the maximum discharge temperature of the high-pressure compressor. CAES-HTE
can potentially be an alternative to A-CAES as a zero-carbon energy storage system that makes use of the
otherwise wasted heat of compression. A-CAES stores it as high-temperature thermal energy whereas
CAES-HTE stores it as chemical energy. This paper explores whether the use of the compression heat
at sufficiently high temperatures could reduce the electricity demand of hydrogen production enough
to make the efficiency of CAES-HTE competitive with A-CAES. CAES-LTE is analyzed to provide the
most direct baseline for CAES-HTE.

Based on our analysis, A-CAES scored the highest storage efficiency (69.6%) followed by
conventional CAES (54.3%), CAES-HTE (35.6%, assuming an electrolyzer efficiency of 50%), and
CAES-LTE (34.2%, assuming an electrolyzer efficiency of 50%). CAES-HTE has the highest energy
storage density (7.9 kWh per m3 of storage volume) compared with A-CAES (5.2 kWh/m3).
Conventional CAES and CAES-LTE have similar energy intensities (3.1 kWh/m3). The conventional
CAES system modeled here uses natural gas at a rate of 3.97 GJ per MWh of gross (total) electricity
generated. This corresponds to 15.27 GJ per MWh of net or incremental electricity (difference between
electricity released and stored) delivered by the plant. Other technical figures of merit are introduced
and evaluated as well.

2. Materials and Methods

We use an analytical model to compare the thermodynamics of the conventional CAES, A-CAES,
CAES-HTE, and CAES-LTE systems. Our general strategy is applying the First and Second Laws
of thermodynamics to the individual system components and modeling air as an ideal gas with
temperature-independent specific heat values. We quantify the mass, energy, and exergy flows into
and out of the storage facility. The schematics of the modeled conventional CAES, A-CAES, CAES-HTE
and CAES-LTE systems are illustrated in Figures 3–6.

We also assess the sensitivity of our results to two key design parameters: the storage pressure of
compressed air and the maximum discharge temperature of the high-pressure compressor.
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The modeled compressed air storage systems use both electrical energy (to compress air and
possibly to generate hydrogen) and heating energy provided by natural gas (only conventional CAES).
We use three metrics to compare their energy use: heat rate, work ratio, and roundtrip exergy efficiency
(storage efficiency). The heat rate is defined as the external heating fuel (natural gas here) consumed
per unit of gross (total) electricity generated by the storage plant (GJ/MWh, on a lower heating value
basis, LHV). The heat rate of A-CAES, CAES-HTE, and CAES-LTE is zero as they do not use an external
fuel (i.e., natural gas). We also report the heat rate based on the net (incremental) electricity delivered
by the storage plant. This metric assists in comparing conventional CAES with conventional gas
turbines to manage intermittency of wind and solar in low-carbon grids.

The work ratio quantifies the amount of electrical energy consumed by the compressor (and
also the electrolyzer, when applicable) per unit of gross electrical energy generated by the expander.
The roundtrip exergy efficiency is the ratio of the exergy delivered (i.e., turbine work) to the exergy
provided to the storage plant. The input exergy is the summation of the compression work, the LHV
exergy of natural gas (conventional CAES), and the electricity consumed by the electrolyzer (CAES-HTE
and CAES-LTE).

One of the critiques of using compressed air to store electricity at scale is its low exergy density.
Here, we define exergy density of the storage facility as the ratio of the delivered exergy (i.e., expansion
work) to the volume of the air storage cavern. Exergy density is especially important when the storage
medium is scarce.

We define the emissions intensity as the ratio of the GHG emissions from natural gas consumption
to the gross electricity supply by the storage plant (i.e., total electricity delivered). This variable
is zero for all systems studied except conventional CAES—the only configuration in which a fossil fuel
is burned. As we do for the heat rate, we express the emissions intensity of conventional CAES based
on both the gross and the net electricity delivered.

This section summarizes our general modeling assumptions and simplifications. See Appendix A
and nomenclature for the full thermodynamic analysis and the list of symbols.

We model one complete charge and discharge cycle at full load of the compressor and expander
(i.e., no part-load operations). We treat air as an ideal gas with temperature-independent specific
heat. We ignore the fuel mass and treat the mixture of air and fuel as pure air. Equations (1)–(5) show
the general ideal gas formulae we use. The ambient environment (subscript 0) is set at the standard
ambient temperature and pressure of 25 ◦C and 101 kPa. This condition is the reference state for
calculating the internal energy, enthalpy, entropy, and exergy throughout our analysis.

m =
P V
R T

mass of the air present in cavern (1)

h = (T − T0)Cp specific enthalpy of air (2)

u = (CvT)− (
CpT0

)
specific internal energy of air (3)

s = Cp ln
(

T
T0

)
− R ln

(
P
P0

)
specific entropy of air (4)

ψ = (h − h0)− (s − s0)T0 specific stream exergy of air (5)

The air storage cavern has a fixed volume. Its pressure varies between a minimum (Pem) and
a maximum (Pf l) during the charge and discharge processes. In order to maintain its mechanical
integrity and to ensure high-enough flow rates for the discharging air, the cavern is not fully discharged
in practice. The air mass remaining in the storage at the end of the discharge phase (when all
the “working air” has been withdrawn) is called the “cushion air”. We model the cavern as adiabatic.
Raju et al. [10], Steta [20], and Xia et al. [30] studied heat transfer between the stored air and the cavern
wall, which is beyond the scope of our work. The rate of heat transfer depends on several factors
such as residence time of air in the cavern and its temperature, rock properties, cavern size and shape.
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Raju et al. estimated the rate of heat loss at the Huntorf CAES plant in the order of few percent of
the compressor power.

The coolers (heat exchangers) following each compression stage are assigned a fixed approach
temperature, Tac. This is defined as the difference between the temperature of the cooling fluid
(e.g., water) entering the cooler (TCL

in, coolant, set at T0) and that of the cooled compressed air leaving
the compressor cooler (TCL

out, air). This implies the inlet temperature of the cavern and the output of all
the compressor coolers are fixed and equal to Tac + T0 (see Equation (6)).

TCN
in = TCL

out,air = Tac + T0 inlet temperature of cavern and discharge of compressor coolers (6)

The discharge temperature of the combustion chambers (Tcc
out) is maintained at a fixed value.

The expander has two stages. The high-pressure (HP) and low-pressure (LP) stages, which have equal
but variable expansion ratios (XR) and determined according to the instantaneous pressure of the
cavern (Equation (7)).

XRHP = XRLP =

√
P0

PCN
=

√
XR instantaneous expansion ratio (7)

The temperature of the air stream leaving the storage plant during the discharge process (Tet)
is constrained to be fixed and constant. Following Osterle [13], an imaginary final heat exchanger
(FHX) is placed at the exhaust of the storage plant to account for the exergy loss by the exhaust
stream to the ambient environment. This heat exchanger cools down the expanded air from Tet to
the ambient temperature.

Heat flows (Q) are reckoned to be positive if they enter the system (e.g., heat added in the combustor).
Work done by the system on the surroundings has a positive sign (e.g., expansion work).

As shown in the Appendix A, the First and Second Laws of thermodynamics are applied to each
system component to quantify the work, heat, and exergy fluxes during the charge and discharge
processes. Once these are determined, the roundtrip exergy efficiency (ηstorage), work ratio (WR), heat
rate (HR), emissions intensity (GIplant), and exergy density (ρ) of the storage plant are calculated by
applying Equations (8)–(12).

ηstorage =
WTB

−WCM + XNG − Welectolysis
(8)

WR =
−WCM − Welectolysis

WTB
(9)

HR =

(
mNG LHVNG

WTB

)(
3.6 GJ
MWh

)
(10)

GIplant = (HR)(GING) (11)

ρ =
WTB

V
(12)

2.1. Modeling Conventional CAES

In the conventional CAES system we modeled (Figure 3), air is compressed in a three-stage
compressor (CM) and then stored in the cavern (CN). Each compression stage is followed by
a cooler (CL) to reduce the compression work of the succeeding stage and to reduce the volumetric
requirement of air storage by increasing the density of the stored air. The compression heat is released
to the ambient environment.
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Figure 3. Schematic of the conventional CAES system. The compression train (CM) is composed of
three stages: low-, intermediate-, and high-pressure (LP, IP, and HP). The expansion train (TB) is made
of high- and low-pressure stages (HP and LP). “Q” and “W” represent heat and work interactions
between the system and the surroundings. The air leaving the cavern is preheated in the recuperator
by the hot air leaving the low pressure turbine (internal heat transfer). “0” indicates ambient condition.
CL, CN, CC, RP, and FHX stand for the cooler, cavern, combustor, recuperator, and final exhaust
heat exchanger.

During the discharge phase, air is first preheated in a recuperator (RP). It is then combusted with
natural gas (NG) to generate work in the expanders (turbines, TB). We modeled a two-stage expander.
In the recuperator, the exhaust of the low-pressure turbine preheats the air leaving the cavern and
entering the high-pressure combustor to reduce the fuel demand.

The compressor has three stages: low (LP), intermediate (IP), and high pressure (HP). All stages
have variable but equal compression ratios throughout the charging process. The compression ratios
(CR) vary according to the instantaneous pressure of the cavern.

2.2. Modeling A-CAES

Figure 4 illustrates the A-CAES system we analyzed. The compression heat is stored in two
thermal energy storage systems (TS1 and TS2). Coolers between compression stages are eliminated
in A-CAES to increase the discharge temperature of the compressors. We therefore, model a two-stage
(LP and HP) compressor. Only one cooler (heat exchanger, between the TS2 discharge and the cavern
inlet) exists and cools the compressed air prior to storage.

The expansion train of A-CAES is made up of two stages (HP and LP). The withdrawn compressed
air is heated in TS1 and TS2 before expanding and generating electricity (combustors are eliminated).
No recuperator is considered. This is owing to the low discharge temperature of the LP expander.
The discharge stream is cooled to the ambient temperature in the final exhaust heat exchanger
(FHX). TS1 absorbs heat from the air leaving the low-pressure compressor and provides heat to
the compressed air entering the high-pressure expander. TS2 interacts with the high-pressure compressor
and the low-pressure expander. Refer to Appendix A for more details.

Similar to the analysis of conventional CAES, the temperature of the air entering the cavern is set
as constant. The intake temperatures of the expanders (i.e., exhaust of TS1 and TS2) are constrained to
be constant. However, their values are dictated by the amount of heat stored during the charging phase.
Note that the inlet temperatures of the expanders in the conventional CAES system were constant as
well, but their values were a preset design parameter, satisfied by variable combustion rates. The TS1
and TS2 units are modeled as isobaric and adiabatic.
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Figure 4. Schematic of the A-CAES system. All of the low pressure (LP) and a portion of the high
pressure (HP) compression heat are stored in two thermal storage facilities (TS1 and TS2). The same heat
storage units release the heat to the withdrawn compressed air prior to expansion during the discharge
phase. “Q” and “W” represent heat and work interactions between the system and the surroundings.

The maximum exit temperature of the high-pressure compressor is a preset parameter, which will
be varied in the sensitivity analysis section. Our rationale for this design constraint is the following.
The exit temperature of the compressor is a key parameter for determining the exergy supplied to and
stored in thermal storage. This consequently impacts the temperature of the air entering the expanders.
Moreover, there are technical constraints such as the stress on and the fatigue of compressor blades
driven by the maximum exit temperature of the compressor [31,32].

Once a full charge and discharge cycle is modeled, the overall performance of A-CAES
are characterized with Equations (8)–(12). The heat rate and GHG emissions intensity of A-CAES
are zero as no fuel is consumed.

2.3. Modeling CAES-HTE and CAES-LTE

As illustrated in Figure 5, the compressor of CAES-HTE is made up of two stages similar to
A-CAES to increase the temperature of the compression heat stored, in contrast to our CAES-LTE and
conventional CAES models with three stage compressors. A heat exchanger cools the exhaust stream
of the LP compressor to a constant temperature before entering the HP compressor. The maximum
discharge temperature of the HP compressor is a design parameter and is preset, similar to the A-CAES
model. Whereas using a one stage compressor could generate higher temperature heat, the operating
temperature of the compressor would be in excess of 1000 ◦C, compared to the 500–700 ◦C range
considered in the literature for practical reasons (e.g., mechanical integrity of compressor blades) [31,32].
The heat absorbed from the exhaust stream of the HP compressor is used to make steam, to heat up
the steam to the constant temperature of the electrolyzer, and to provide the heating energy required
for the electrolysis process. A heat exchanger follows the electrolyzer to further cool the compressed
air to a fixed temperature before entering the cavern. The generated hydrogen is stored to burn and
heat the air during the discharge phase. We choose not to consider any physical storage of heat, similar
to conventional CAES and in contrast to A-CAES. This is due to the relatively low temperature of
air upon giving its heat to the HTE system. The discharge phase of CAES-HTE is identical to that of
conventional CAES with the distinction that hydrogen (produced during charging), instead of natural
gas, fuels the combustors.

The simulated CAES-LTE system (Figure 6) has a similar configuration as the CAES-HTE system,
with the difference that a low-temperature electrolyzer (LTE) is used instead of a HTE. Moreover,
a three-stage compression train is used, similar to conventional CAES. This is because there is no need
to produce high-temperature heat. Increasing the number of compression stages in CAES-LTE reduces
the compression work compared to CAES-HTE.
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Figure 5. Schematic of the CAES-HTE system simulated. HTE stands for high temperature electrolyzer.
“Q” and “W” represent heat and work interactions between the system and the surroundings. The air
leaving the cavern is preheated in the recuperator by the hot air leaving the low pressure turbine
(internal heat transfer). The air leaving the high pressure compressor provides the heat demand of
the HTE (internal heat transfer).

 

Figure 6. Schematic of the CAES-LTE system simulated. LTE stands for low temperature electrolyzer.
“Q” and “W” represent heat and work interactions between the system and the surroundings. The air
leaving the cavern is preheated in the recuperator by the hot air leaving the low pressure turbine
(internal heat transfer).

Analysis of CAES-LTE is similar to that of CAES-HTE. The difference is that there is no explicit
constraint on the maximum temperature of the air leaving the HP compressor. This is because
the utilization of a three stage compressor and coolers results in temperature below the metallurgical
limit of the turbines blades, similar to the conventional CAES design.

The heat rate and GHG emissions intensity of both CAES-HTE and CAES-LTE are zero because
they burn hydrogen rather than natural gas. The storage efficiency and work ratio of the systems
are quantified by Equations (8) and (9). CAES-HTE and CAES-LTE have higher work ratios compared
to conventional CAES because of the work load of the electrolyzer.

3. Results

This section provides a series of numerical examples based on the analytical models developed
in Section 2 and in Appendix A. The main question being addressed is whether the chemical storage
of the high-temperature heat of compression as hydrogen (CAES-HTE) is thermodynamically superior

42

Bo
ok
s

M
DP
I



Energies 2017, 10, 1020

to the physical storage of the heat (A-CAES). The sensitivity of the results to the storage pressure
and discharge temperature of the high-pressure compressor are discussed as well. We also discuss
the thermodynamics of conventional CAES and CAES-LTE to benchmark performance of CAES-HTE
and A-CAES. The Appendix A section also includes details on the temperature range of each system
component over the storage cycle.

3.1. Thermodynamic Comparison of A-CAES and CAES-HTE

Table 1 lists the parameters used to compare the thermodynamics of A-CAES and CAES-HTE
in the base case scenario. We consulted the design parameters of the two existing commercial
CAES plants (Huntorf and McIntosh [10,15,33–36]), as well as literature on design of A-CAES
systems [15,16,20,31,32,36] to choose these values. In the sensitivity analysis section, we discuss
the impact of two key design parameters, cavern storage pressure and discharge temperature of the
HP compressor. The simulation results are tabulated in Table 2. Refer to the nomenclature for the list
of symbols.

Table 1. Inputs for analysis of the A-CAES and CAES-HTE systems in the base case. The conventional
CAES and CAES-LTE systems use the same values with the main exception that the maximum storage
pressure is 7 MPa instead of 10 MPa.

Parameter Value Parameter Value Parameter Value

γ 1.4 V 0.56 Mm3 LHVH2 120 MJ/kg
Cp 1.006 kJ

kg·K R 0.287 kJ
kg·K xH2 114 MJ/kg

PCN, f l 10 MPa Tac 30 ◦C TTB,LP
in 850 ◦C

PCN,em 5 MPa ηTB 85% Tet 130 ◦C

ηCM 85% TCL
in,coolant 25 ◦C TTB,HP

in 530 ◦C

TCM,HP,Max
out

600 ◦C TTS2,ch
out 100 ◦C

Table 2. Simulation results for the A-CAES and CAES-HTE systems simulated in the base case scenario.

Variable A-CAES CAES-HTE (100% Efficient Electrolzer) CAES-HTE (50% Efficient Electrolzer)

WCM (TJ) 15.22 15.22 15.22
Qelectrolysis (TJ) - 7.96 7.96
Welectrolysis (TJ) - 14.82 29.65

QTS (TJ) 13.62 - -
WTB (TJ) 10.58 15.99 15.99
QCC (TJ) - 17.59 17.59

ηstorage (%) 69.5 53.2 35.6
WR 1.44 1.88 2.81

ρ(kWh/m3) 5.2 7.9 7.9

The compression work to fully charge the cavern for both A-CAES and CAES-HTE is the same
(15.22 TJ). This is because the compressors in both systems are identical (equal pressure, temperature,
and mass of working air). The high temperature electrolyzer of the CAES-HTE system uses 14.83 TJ to
produce enough hydrogen for combustion during the discharge phase. The electrolyzer has a heating
load of 7.96 TJ to generate steam and electrolyze it. This heat is supplied by the thermal energy
dissipated from the compressors. Therefore, about 52% of the compression work is recovered and
used in the HTE to produce hydrogen. In the adiabatic system, about 89% of the compression work
is physically stored (13.62 GJ). The remainder of heat is released to the ambient environment. Therefore,
the A-CAES system recovers and utilizes a higher portion of the energy supplied to the compressor
(compression work).

Because the temperature of the expanding air is higher in the CAES-HTE configuration (due to
the combustion of hydrogen), the generated work (15.99 TJ) is larger than that of the A-CAES system
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(10.58 TJ). The heat load of CAES-HTE combustors is 17.59 TJ. This is while the heat transferred to
the expanding air in the A-CAES system is 13.62 TJ (equal to the stored heat).

The A-CAES system is thermodynamically more efficient than the CAES-HTE system based on
our analysis. Physical storage of the compression heat leads to an overall storage efficiency of 69.5%
(A-CAES) compared to 35.6% for its chemical storage in the form of hydrogen (CAES-HTE, assuming
a 50% efficient electrolyzer). The simulated CAES-HTE system uses 29.65 TJ more electricity (to produce
hydrogen in the electrolyzer) compared to A-CAES (both systems have the same compression work of
15.22 TJ). The CAES-HTE system however, produces 5.41 TJ of additional work because it combusts
hydrogen and the expanding air has a higher temperature. Therefore, for each unit of excess electrical
energy used by the CAES-HTE system, roughly 0.18 unit of excess electrical energy is generated.
This relatively large gap lowers the overall efficiency of CAES-HTE.

The performance of CAES-HTE would be less attractive in the real world due to the inefficiencies
of the electrolyzer itself. The energy efficiency of the electrolysis process can be defined as the ratio
of the theoretical electricity demand (ΔG) to the actual use. No commercial large-scale HTE facility
currently exists to our knowledge. The efficiency of the laboratory-scale systems are reported as about
50% (at operating temperatures of about 850 ◦C [37]). To estimate the upper bound of the CAES-HTE
performance, we also run the simulation with an ideal electrolyzer (100% efficient). This would
halve the work load of the electrolyzer to 14.82 TJ. This decrease in energy consumption improves
the roundtrip efficiency of the CAES-HTE system to 53.2% from 35.6%.

The storage requirements of hydrogen are likely to degrade the performance of CAES-HTE too.
One would need to compress the hydrogen for storage and use later during the discharge phase
in CAES-HTE. We have ignored this additional work load in our analysis.

The hydrogen-based system benefits, however, from a higher exergy density (7.9 kWh/m3)
compared to A-CAES (5.2 kWh/m3). This is because the CAES-HTE system stores energy both as
mechanical energy (compressed air) and as chemical energy (hydrogen). Thus A-CAES would require
52% more cavern volume to generate the same amount of work in our analysis.

3.2. Sensitivity of A-CAES and CAES-HTE to Exit Temperature of the HP Compressor

We treat the maximum exit temperature of the HP compressor (TCM,HP,Max
out ) as a key design

parameter for A-CAES and CAES-HTE. Tables 3 and 4 present the sensitivity of the results to this
parameter (all other parameters are similar to the base case scenario, Table 1).

Table 3. Sensitivity of the CAES-HTE results to the maximum exit temperature of the HP compressor
(TCM,HP,Max

out ). Results are based on an ideal electrolyzer.

Variable
TCM,HP,Max

out (◦C)

500 600 700 800

WCM (TJ) 14.20 15.22 16.24 17.25
Qelectrolysis (TJ) 7.24 7.96 8.70 9.45
Welectrolysis (TJ) 15.19 14.83 14.45 14.07

THTE (◦C) 460 555 650 745
ηstorage (%) 54.4 53.2 52.1 51.1

For CAES-HTE, setting a higher exit temperature for the HP compressor translates to a higher inlet
temperature for this compressor and a lower cooling load for the LP cooler (because the compression
ratio is constant). This provides more thermal energy for the electrolysis process, which reduces its
electricity demand to produce the same amount of hydrogen. Nevertheless, as the maximum discharge
temperature of the high pressure compressor (TCM,HP,Max

out ) increases from 500 ◦C to 800 ◦C, less cooling
by the LP cooler increases the work load of the HP compressor (because of the higher inlet temperature
of the HP compressor). As shown in Table 3, the net effect of a higher compression work and a lower
electrolysis work is an increase in the exergy demand of CAES-HTE to charge the cavern. The total
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input exergy (summation of work of compressor and electrolyzer) increases from 29.39 TJ to 31.32 TJ.
The discharge phase is insensitive to these changes in our model. Storage efficiency of the CAES-HTE
system drops from 54.4% to 51.1% across this range. Results are presented for a CAES-HTE system
with an ideal (100% efficient) electrolyzer.

Table 4. Sensitivity of the A-CAES performance to the maximum discharge temperature of the
high-pressure compressor (TCM,HP,Max

out ).

Variable
TCM,HP,Max

out (◦C)

500 600 700 800

WCM (TJ) 14.20 15.22 16.24 17.25
QTS (TJ) 12.60 13.62 14.63 15.65
WTB (TJ) 10.43 10.58 10.61 10.88

ηstorage (%) 73.4 69.5 65.4 63.1

TTB,HP,Min
out (◦C) 54 26 −8 −31

TTB,LP,Min
out (◦C) 142 181 217 259

In the A-CAES system, raising TCM,HP,Max
out increases the compression work too. This is because

less cooling is done in the low pressure cooler and consequently, the inlet temperature to the HP
compressor is elevated. At the same time, more heat is stored in TS2 from the air leaving the HP
compressor. The turbine’s total work increases by about 4% (from 10.43 to 10.88 TJ) as TCM,HP,Max

out
is raised from 500 to 800 ◦C. This small increase in the expansion work despite a much higher (24%,
from 12.60 to 15.65 TJ) increase in the total thermal energy stored (QTS) occurs because the thermal
energy stored in TS1 (QTS1) and, consequently, the heat given to the air entering the HP turbine and
the work generated by the HP turbine, ought to decrease to allow higher temperatures for the intake
and thus discharge of the high pressure compressor. Note that TS1 precedes the HP compressor and
HP expander (see Figure 4).

The net effect of increasing TCM,HP,Max
out is lowering the storage efficiency of A-CAES. Its efficiency

decreases from 73.4% to 63.1% when TCM,HP,Max
out increases from 500 to 800 ◦C. Comparing Table 3 with

Table 4 shows that storage efficiency of A-CAES is more sensitive to the temperature of air stream
leaving the compressor, compared with that of CAES-HTE.

An important design consideration in our model is the discharge temperature of the expander.
This variable needs to remain above the freezing point of water to avoid mechanical damage to
the expanders. Referring to Table 4, the exit temperature of the HP turbine drops as TCM,HP,Max

out
increases. Because less heat can be stored in TS1 and then released to the compressed air entering
the high pressure expander. This temperature drops below the freezing point when TCM,HP,Max

out reaches
700 ◦C in our analysis. Designing A-CAES in the real world would need to include a detailed analysis
to optimize the performance of the plant and avoid freezing concerns. For instance, although they
are constrained to be equal in our model, the HP expander can be designed to have a lower expansion
ratio than the LP expander. This will raise and lower the discharge temperatures of the HP and LP
expanders, respectively.

3.3. Sensitivity of A-CAES and CAES-HTE to Storage Pressure

The storage pressure of air is our second key design parameter. The sensitivity of the CAES-HTE
and A-CAES results to the maximum storage pressure are shown in Tables 5 and 6. All parameters
are from Table 1. The maximum cavern pressure is varied in the range of 7–12 MPa, compared to
10 MPa in the base case. The minimum storage pressure is kept at 5 MPa in all cases.

For the CAES-HTE system, the compression work and hydrogen demand increase at higher
storage pressures. This is because more air needs to be stored and heated. The operating temperature
of the electrolyzer slightly decreases at higher pressures since we keep the maximum discharge
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temperature of the high-pressure compressor fixed. Higher cavern pressures translate to higher
compression ratios. Keeping the TCM,HP,Max

out constant requires a lower inlet temperature for the HP
compressor at higher cavern pressures. Therefore, TS1 (preceding the HP compressor) needs to absorb
more heat from the compressed air leaving the LP compressor and entering the HP compressor.
A lower discharge temperature for the HP compressor decreases the temperature of the air entering
the electrolyzer, and thus the electrolysis reaction temperature. This temperature drops from 578 to
544 ◦C as the maximum storage pressure of air (PCN, f l) is raised from 7 to 12 MPa for a CAES-HTE
system with an ideal electrolyzer.

Table 5. Sensitivity of the CAES-HTE model to maximum storage pressure. Results are based on
an ideal electrolyzer.

Variable
Pfl (MPa)

7 8 10 12

WCM (TJ) 5.88 8.93 15.22 21.73
Qelectrolysis (TJ) 3.15 4.75 7.96 21.15
Welectrolysis (TJ) 5.72 8.69 14.82 22.79

THTE (◦C) 578 569 555 544
WTB (TJ) 6.18 9.39 15.99 22.79
QCC (TJ) 6.82 10.35 17.60 25.03

ηstorage (%) 53.3 53.3 53.2 53.1
ρ (kWh/m3) 3.1 4.7 7.9 11.3

Table 6. Sensitivity of the A-CAES model to the maximum storage pressure.

Variable
Pfl (MPa)

7 8 10 12

WCM (TJ) 5.88 8.93 15.22 21.73
QTS (TJ) 5.24 7.97 13.62 19.48
WTB (TJ) 3.90 6.00 10.58 15.36

ηstorage (%) 66.3 67.2 69.5 70.7
ρSTORAGE (kWh/m3) 1.9 3.0 5.2 7.6

TTB,HP,Min
out (◦C) 5 11 26 33

The expansion work increases at higher cavern pressures because more compressed air is handled,
and at higher pressures. The net impact of higher cavern pressures on the storage efficiency is negligible
(slightly negative). Increased work loads for the compressor and the HTE cancel out the higher
expansion work. The exergy density of the cavern increases ~2.7 times as the maximum storage
pressure increases from 7 to 12 MPa. Therefore, increasing the cavern pressure substantially improves
the exergy density of the plant while it marginally degrades the storage efficiency. In the real world,
however, the storage efficiency is likely to degrade more compared to the scenario pictured here.
For example, we have assumed a fixed isentropic efficiency for the compressors whereas their efficiency
is likely to degrade at higher compression ratios [38].

For the A-CAES system, higher cavern pressures translate to higher compression work as well.
At the same time, more waste heat recovery opportunities are available. The expansion work also
increases as a larger mass of air and at a higher pressure is expanded. The net effect of higher
compression work, recovered heat, and expansion work is positive on the storage efficiency of A-CAES.
It rises from 66.3% to 70.7% as the cavern pressure is lifted from 7 to 12 MPa. The exergy density of
the cavern at 12 MPa is almost 4 times that of 7 MPa, as more air is stored in the same cavern, and at
higher pressures. Finally, the exit temperature of the HP expander is also raised, due to more stored
heat despite the higher expansion ratios. This is beneficial in addressing the concerns with freezing of
vapor in the expanding air and damaging the turbine blades.
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3.4. Thermodynamics of Conventional CAES and CAES-LTE

In Table 7, we present the results for thermodynamics of conventional CAES and CAES-LTE
systems. For the most part, we use the same input parameters as for A-CAES and CAES-HTE
(Table 1), such as air storage temperature, minimum cavern pressure, and discharge temperature
of the final heat exchanger. This is to benchmark the performance of A-CAES and CAES-HTE.
The primary difference is that the compression train of CAES and CAES-LTE is made up of three
stages. This is because there is no need to generate high temperature heat in these designs. Therefore,
more intercooling can be performed to lower the compression work, similar to the McIntosh and
Huntorf CAES plants. Moreover, the maximum storage pressure of the cavern is set at 7 MPa instead of
10 MPa, again as high temperature heat is not needed. As the number of compression stages increases
and their compression ratio drops, energy losses during the compression (charging) phase decrease.
This is because the compression process gets closer to an isothermal instead of an adiabatic process.

Table 7. Simulation results for the conventional CAES and CAES-LTE systems.

Variable CAES-LTE (100% Efficient Electrolzer) CAES-LTE (50% Efficient Electrolzer) CAES

WCM (TJ) 4.56 4.56 4.56
Qelectrolysis (TJ) 1.38 1.38 -
Welectrolysis (TJ) 6.47 13.48 -

WTB (TJ) 6.18 6.18 6.18
QCC (TJ) 6.82 6.82 6.82

ηstorage (%) 54.7 34.2 54.3
WR 1.83 2.92 0.74

ρ (kWh/m3) 3.1 3.1 3.1

The storage efficiency of the CAES-LTE system with a 50% efficient electrolyzer is 34.2%, which
is comparable to that of the CAES-HTE system. This indicates that the lower electricity demand of
the electrolyzer in CAES-HTE system is offset by its higher compression work. Using an ideal (100%
efficient) electrolyzer instead of a 50% efficient electrolyzer leads to an overall storage efficiency of
54.7% for CAES-LTE.

The efficiency of the conventional CAES system is 54.3%, which is lower than that of A-CAES (69.5%)
and similar to the hydrogen-fueled CAES systems with ideal electrolyzers (53.2% for HTE and 54.7% for
LTE). The conventional CAES system has the lowest work ratio (0.74) because it burns natural gas with a
heat rate of 3.97 GJ per MWh of gross electricity generated, or 15.27 GJ per MWh of net electricity.

4. Discussion

Our analysis shows that the A-CAES system has the highest exergy storage efficiency, followed by
conventional CAES, and then the hydrogen based CAES systems. High exergy losses in electrolyzers
constitute a key contributor to the overall low storage efficiency of CAES-HTE and CAES-LTE.

Current literature has identified A-CAES as a potentially important component of low carbon grids
with large penetration of renewable energies from an economic point of view. This paper builds on
the same premise and provides further insight into thermodynamic performance and competitiveness
of A-CAES.

The economics of conventional CAES are likely to be more attractive compared to the other
systems studied here unless significant GHG emissions restrictions are in place. The emissions
intensity of the conventional CAES system modeled is 262 kgCO2e/MWh of gross electricity generated
whereas the other three systems emit no greenhouse gases. The emissions of the electricity consumed
to charge these plants are not included for this calculation. However, if emissions per unit of net
rather than gross electricity generated by the CAES plant (generation minus consumption, equal to
1 − WR) is considered, the corresponding emissions intensity is 1008 kgCO2e/MWh. In other words,
the conventional CAES plant would emit 1 metric ton of CO2e per incremental MWh of electricity
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it adds to the grid supply. This is almost 50% higher than that of a simple gas combustion turbine
(679 kgCO2e/MWh, using an efficiency of 35% and heat rate of 10.26 GJ/MWh), which competes
with storage for filling in the gaps in the supply of intermittent renewables. This high emissions level
highlights the shortcoming of the conventional CAES systems in carbon-constrained grids.

Assessing the competitiveness of these storage technologies to support integration of renewable
energies into low-carbon grids requires a comprehensive analysis, including both thermodynamics
and the economics of practical implementation. Precise thermodynamic assessment of these systems
in the real world calls for complex numerical analyses due to their complexities, which is beyond
the scope of this paper. Here we offer a few insights into the thermodynamic and economic trade-offs
of these systems in the real-world.

Our thermodynamic analysis indicates that prospects for hydrogen-based CAES systems are likely
weaker than those of A-CAES due to the lower storage efficiency. Even assuming an ideal electrolyzer
leads to storage efficiencies in the lower 50% range as the high end for the CAES-HTE and CAES-LTE
configurations studied here, compared to around 70% for A-CAES. Using a currently more realistic
electrolyzer efficiency of 50% lowers the overall efficiency of the hydrogen-fueled systems to the mid
30% range. Although thermal losses would decrease the efficiency of A-CAES, they would not be as
significant as the electrolyzer losses.

Capital and operating costs of these CAES systems are different, with conventional CAES currently
being the most mature and inexpensive for large scale adoption, in the absence of tight emissions
restrictions. The design and operation of A-CAES plants are complicated by the need for high-pressure
and high-temperature compressors, thermal stores, and high-pressure turbines [31]. In contrast,
the engineering and economic complications of high-temperature electrolyzers and hydrogen storage
and combustion complicate the CAES-HTE systems. The design and operations of a CAES-LTE system
would be simpler because can operate at pressures and temperatures of conventional CAES systems.
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Nomenclature

A-CAES Adiabatic compressed air energy storage
CAES Compressed air energy storage
CAES-HTE Compressed air energy storage paired with a high-temperature electrolyzer
CAES-LTE Compressed air energy storage paired with a low-temperature electrolyzer
CC Combustor
Ch Charge process
CL Cooler (heat exchanger) following compressor stages
CLnt Latent heat of evaporation (kJ/kg)
CM Compressor
CN Cavern for air storage
coolant Cold stream of compressor cooler
CP, Cv Specific heat at constant pressure and volume ( kJ

kg·K )

CR Compression ratio
dch Discharge process
E Voltage applied to electrolyzer (volts)
em State of depleted cavern
et Exhaust stream of the storage plant
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FHX Heat exchanger located at exhaust of the plant
f l State of fully charged cavern
G Gibbs free energy (kJ)
GI GHG emissions intensity of plant or fuel (kgCO2e/MWh or kgCO2e/GJ, respectively)
h Specific enthalpy (kJ/kg)
Δh0

f Standard enthalpy of formation (kJ/kg)
HP High-pressure equipment
HR Heat rate (GJ/MWh)
HTE High temperature electrolysis/ electrolyzer
in Inlet conditions
IP Intermediate-pressure equipment
ist Isentropic process
IX Exergy loss (kJ)
LHV Lower heating value (kJ/kg)
LP Low-pressure equipment
LTE Low-temperature electrolysis/ electrolyzer
m Mass of air or fuel (kg)
M Molar mass (kg/kMole)
n Molar coefficient
NG Natural gas
out Outlet conditions
P Pressure (kPa)
Q Thermal energy (kJ)
R Ideal gas constant ( kJ

kg·K )

RP Recuperator
s Specific entropy ( kJ

kg·K )

s0 Standard entropy ( kJ
kg·K )

S Entropy (kJ)
sns Sensible heat (kJ/kg)
T Temperature
Tac Approach temperature
TB Turbine (expander)
TS Thermal energy storage unit
u Specific internal energy (kJ/kg)
U Internal energy (kJ)
V Volume of air storage (m3)
W Work (kJ)
WR Work ratio
x Specific exergy (kJ/kg)
X Exergy (kJ)
XR Expansion ratio of turbine
ρ Exergy density of cavern (kWh/m3)
γ Specific heat ratio of air
η Efficiency (%)
ψ Exergy of air stream (kJ/kg)
0 Standard conditions

Appendix A

We here discuss the details of the analytical models developed to assess the thermodynamics of
the compressed air energy storage systems.

We use the following general assumptions and simplifications. One complete charge and
discharge cycle is analyzed (without part-load operation). Air is modeled as an ideal gas with
temperature-independent specific heat. Mass of the fuel is assumed negligible compared to the compressed
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air and the mixture of air and fuel is treated as pure air. Equations (A1)–(A5) list the general ideal gas
formulae used. The ambient environment (subscript 0) is at standard conditions (P0 = 101 kPa and T0

= 25 ◦C). This condition is also the reference state for calculating the internal energy, enthalpy, entropy,
and exergy in our analysis.

m =
P V
R T

(A1)

h = (T − T0)Cp (A2)

u = (Cv T)− (
Cp T0

)
(A3)

s = Cp ln
(

T
T0

)
− R ln

(
P
P0

)
(A4)

ψ = (h − h0)− (s − s0)T0 (A5)

In our model, similar to Huntorf and McIntosh CAES plants, the cavern has a fixed volume.
Cavern’s pressure varies between a minimum pressure (Pem) and a maximum (Pf l). In order to maintain
its mechanical integrity and to ensure high-enough flow rates of the withdrawn air, the cavern is not
fully depleted. The air mass remaining in the cavern at the end of the discharge phase (when all
the “working air” has been withdrawn to generate electricity) is called the “cushion air”.

The cavern and thermal storage units are modeled as adiabatic. The coolers (heat exchangers)
following each compressor stage are constrained to have a fixed approach temperature (Tac), defined
as the difference between temperature of the cooled compressed air leaving the heat exchanger (TCL

out,air)
and temperature of the coolant (TCL

in, coolant). This implies the inlet temperature of the cavern and
the discharge of all the compressor coolers is constant through the charging process (Equation (A6)).

TCN
in = TCL

out,air = Tac + TCL
in, coolant = Tac + T0 (A6)

During the discharge phase, we constrain the exit temperature of the combustors at a fixed value
(e.g., through controlling fuel combustion). The expander (turbine) has two stages; high-pressure
(HP) and low-pressure (LP). These stages are constrained to have equal but variable expansion ratios
(Equation (A7)), according to the instantaneous pressure of the cavern.

XRHP = XRLP =

√
P0

PCN
=

√
XR (A7)

Temperature of the air stream leaving the storage plant (Tet) is set to be fixed. An imaginary
heat exchanger (FHX) is placed at the exhaust of the storage plant to account for the exergy loss of
the exhaust stream to the ambient environment. This heat exchanger cools the air leaving the LP
turbine or recuperator, from Tet down to the ambient temperature (see Figure 3).

The heat flows (Q) are reckoned to be positive if they enter the system (e.g., heat added
in the combustor, QCC) and negative if they leave the system (e.g., heat dissipated in the compressor
coolers, QHC). The work (W) done by the system on the surroundings has a positive sign
(e.g., expansion work, WTB) whereas the work done on the system has a negative sign (e.g., compression
work, WCM).

A.1. Thermodynamic Modeling of Conventional CAES

In the conventional CAES system (Figure 3), air is compressed in a multi-stage compressor (CM)
and then stored in the cavern (CN). Each compression stage is followed by a heat exchanger (cooler, CL)
to reduce compression work of the succeeding stage and to reduce the volumetric requirements for air
storage. The compression heat (heat absorbed by the coolers) is rejected to the ambient environment.

We model the compressor of conventional CAES system to have three stages: low-pressure (LP),
intermediate-pressure (IP), and high-pressure (HP). All the stages have variable but equal compression
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ratios and a fixed isentropic efficiency throughout the entire charging process. The compression ratio
(CR) varies to match the instantaneous pressure of the cavern (PCN) (see Equation (A8)).

CRHP = CRIP = CRLP = 3

√
PCN
P0

=
3√CR (A8)

During the discharge phase, air is preheated in a recuperator. It is then combusted with natural
gas (NG) and generates work in the expanders (TB). We model a two-stage expander. In the recuperator,
the exhaust of the low-pressure (LP) turbine preheats the air entering the high-pressure (HP) combustor.

The two existing commercial CAES plants (Huntorf and McIntosh) have a similar configuration
as the one modeled here, except that the Huntorf facility does not utilize a recuperator.

A.1.1. Charge Phase of Conventional CAES

At the beginning of each charging phase, the initial temperature (Tem) and pressure (Pem)

of the cavern are known from the previous storage cycle. Therefore, the mass of the cushion air
is calculated by applying the ideal gas equation of state. The relationship between changes in the mass
of air present in the cavern (dmair, ch) and its instantaneous pressure (Pch) is found by applying the First
Law of thermodynamics to the control volume of the cavern (Equation (A9)).

dQ − dW = dUCV − hair, in dmair, ch (A9)

Since the cavern is adiabatic and has a fixed volume, dQ = dW = 0. Using Equations (A1)–(A3),
the above equation is transformed into Equation (A10).

dmair,ch =
dPch V

R γ TCN
in

(A10)

Because the inlet temperature of the cavern (TCN
in ) is fixed and known, Equation (A10) is integrated

to find the total mass of working air (mair,ch) as the cavern is charged and its pressure raises from
Pem to Pf l (Equation (A11)). Once the mass of air in the fully charged cavern (mair, f l) is determined
(Equation (A12)), its temperature (TCN, f l) is calculated by applying the ideal gas equation of state
(Equation (A13)).

mair,ch =

(
Pf l − Pem

)
V

R γ TCN
in

(A11)

mair, f l = mair,em + mair,ch (A12)

TCN, f l =
Tem Pf l

Pem +
(

Pf l − Pem

)
Tem

γ TCN
in

(A13)

The compression work for charging the cavern is quantified by applying the First Law of
thermodynamics to each compression stage and summing them up (Equation (A14)). Work of
the low-pressure compressor is formulated in Equation (A15). A similar equation is applicable to the
intermediate-pressure and high-pressure compressors. The inlet temperature of each stage is fixed and
known. The instantaneous discharge temperature of each compressor stage is determined by applying
the isentropic compression formulae (see Equation (A16) for the LP compressor).

WCM =
∫ Pf l

Pem
(dWCM,LP + dWCM,IP + dWCM,HP) (A14)

dWCM,LP = Cp

(
TCM,LP

in − TCM,LP
out

)
dmair,ch (A15)
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TCM,LP
out = TCM,LP

in − TCM,LP
in − TCM,LP

out, ist

ηCM
(A16)

TCM,LP
out, ist = TCM,LP

in CRLP
(γ−1)/γ

The total compression heat is determined by applying the First Law of thermodynamics to each
compressor cooler and integration (Equation (A17)). As a case in point, Equation (A18) quantifies
an increment of heat dissipated by the cooler of the HP compressor. Note the inlet temperature of
each cooler equals the discharge temperature of the preceding compression stage. The discharge
temperature of the coolers is set to be fixed (Equation (A6)).

QCL =
∫ Pf l

Pem
(dQCL,LP + dQCL,IP + dQCL,HP) (A17)

dQCL,LP = Cp

(
TCL,LP

out − TCL,LP
in

)
dmair,ch (A18)

Once the initial (em) and final (fl) states of the cavern over the charging phase in addition to
the compression work are determined, the change in internal energy (ΔUch), entropy (ΔSch), and
exergy (ΔXch) of the cavern as well as the exergy loss (IXch) are calculated with Equations (A19)–(A22).

ΔUch = mair, f l u f l − mair,em uem (A19)

ΔSch = mair, f l s f l − mair,em sem (A20)

ΔXch = ΔUch − T0 ΔSch (A21)

IXch = −ΔXch − WCM + mair,ch ψair,ch (A22)

since air entering the system is at ambient conditions, ψair,ch = 0.

A.1.2. Discharge Phase of Conventional CAES

Similar to the charging process, we use the First Law of thermodynamics to find the relationship
between the instantaneous temperature and changes in the mass and pressure of the air present
in the cavern during the discharge phase (Equation (A23)).

dmair,dch =
dPCN V
R γ TCN

(A23)

Using Equation (A23) and the state equation for ideal gas, mass of air left in the cavern at the end
of the discharge process (cushion air, mair,em) and total mass of air withdrawn (working air, mair,dch)
are calculated via Equations (A24) and (A25).

dmair,dch

mair,dch
=

dPCN
γ PCN

mair,em = mair, f l

(
Pem

Pf l

) 1
γ

(A24)

mair,dch = mair, f l − mair,em =
V
R

(
Pem

Tem
+

Pf l − Pem

γ TCN
in

)⎛
⎝1 −

(
Pem

Pf l

) 1
γ

⎞
⎠ (A25)

52

Bo
ok
s

M
DP
I



Energies 2017, 10, 1020

Now that mass of the cushion air is known (Equation (A24)), the state equation is applied to
determine the instantaneous and final temperature of the compressed air in the cavern (Equations (A26)
and (A27)).

TCN, dch = Tf l

(
PCV
Pf l

)(γ−1)/γ

(A26)

Tem = Tf l

(
Pem

Pf l

)(γ−1)/γ

(A27)

The initial temperature of air in the fully discharged cavern is set to T0 (i.e., temperature of the air
in cavern at the beginning of the very first cycle). This temperature eventually reaches asymptotic
limits after many cycles, regardless of the initial temperature we choose. Simulation is run until this
asymptotic limit is reached and all the results are reported then.

Temperature of the air entering the low- and high-pressure turbines (TTB,LP
in and TTB,HP

in )
is set fixed and constant in the analysis. However, the discharge temperature varies according to
the instantaneous expansion ratio, which is itself a function of the instantaneous cavern pressure.
The First Law of thermodynamics is applied to each expander stage to find the work generated
(Equations (A28) and (A29)). The instantaneous discharge temperature of the high-pressure expander
is quantified by Equation (A30), based on the isentropic expansion formulae. A similar set of equations
can be written for the low-pressure turbine. We use a fixed isentropic efficiency for all stages.

WTB =
∫ Pem

Pf l

(dWTB,HP + dWTB,LP) (A28)

dWTB,HP = Cp

(
TTB,HP

in − TTB,HP
out

)
dmair,dch (A29)

TTB,HP
out = TTB,HP

in + ηTB

(
TTB,HP

out, ist − TTB,HP
in

)
(A30)

TTB,HP
out, ist = TTB,HP

in XRHP
(γ−1)/γ

Once the instantaneous exit temperature of the high-pressure expander (TTB,HP
out ) is quantified, total

heat added in the low-pressure combustor is determined by applying the First Law of thermodynamics
(Equation (A31)). Note that TCC,LP

in = TTB,HP
out and TCC,LP

out = TTB,LP
in .

QCC,LP =
∫ Pem

Pf l

Cp

(
TCC,LP

out − TCC,LP
in

)
dmair,dch (A31)

The instantaneous temperature of air entering the high-pressure combustor is expressed as
a function of the cavern’s pressure by applying the First Law of thermodynamics to the recuperator
(Equation (A32)). Similar to the low-pressure combustor, the heat added in the high-pressure
combustor is quantified by applying the First Law of thermodynamics (see Equation (A33)). Note
that TCC,HP

in = TRP
out,coolant and TCC,HP

out = TTB,HP
in . Tet is the fixed temperature of the exhaust stream of

the plant, which is leaving the recuperator (RP) and entering the final heat exchanger (FHX).

TCC,HP
in = TCN, dch + TTB,LP

out − Tet (A32)

QCC,HP =
∫ Pem

Pf l

Cp

(
TCC,HP

out − TCC,HP
in

)
dmair,dch (A33)
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Once the heat added in the combustor is known, the total mass and exergy of the fuel (natural
gas) are quantified (Equations (A34) and (A35)).

mNG =
QLP,CC + QHP,CC

LHVNG
(A34)

XNG = mNG xNG (A35)

The First Law of thermodynamics is applied to quantify the heat recovered in the recuperator and
the heat dissipated in the final heat exchanger (Equations (A36) and (A37)).

QRP =
∫ Pem

Pf l

Cp

(
Tet − TTB,LP

out

)
dmair,dch (A36)

QFHX =
∫ Pem

Pf l

Cp (T0 − Tet) dmair,dch (A37)

Finally, the change in internal energy, entropy, and exergy of the cavern as well as exergy lost
over the discharge process are calculated (Equation (A38) to Equation (A41)). The exergy of air
stream leaving the storage plant (ψair,dch) is zero, similar to the exergy of air entering the plant (ψair,ch).
This is because both air streams are at ambient conditions.

ΔUdch = mair,em u em − mair, f l u f l (A38)

ΔSdch = mair,em s em − mair, f l s f l (A39)

ΔXdch = ΔUdch − T0 ΔSdch (A40)

IXdch = −ΔXdch − WTB + XNG − mair,dch ψair,dch (A41)

A.1.3. Roundtrip Analysis of Conventional CAES

Once the work, heat, and exergy fluxes during the charge and discharge processes are quantified,
the storage efficiency, work ratio and heat rate of the storage plant are calculated (Equation (A42) to
Equation (A44)). The GHG emissions intensity of the plant and cavern exergy density are determined
by using Equations (A45) and (A46).

ηstorage =
WTB

−WCM + XNG − Welectolysis
(A42)

WR =
−WCM − Welectolysis

WTB
(A43)

HR =

(
mNGLHVNG

WTB

)(
3.6 GJ
MWh

)
(A44)

GIstorage = (HR) (GING) (A45)

ρ =
WTB

V
(A46)

We use an emissions intensity of 66 kgCO2e/GJ for natural gas to account for upstream emissions
in addition to combustion emissions [2].

Figure A1 illustrates the temperature range for each system component over the full charge and
discharge cycle. In parentheses by each component are the minimum and maximum temperatures
in ◦C as the plant goes through a full charging and discharge cycle. For instance (39,70) at the discharge
of the cavern indicates the temperature of the fully discharged cavern (39 ◦C at 5 MPa) and fully
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charged cavern (70 ◦C at 7 MPa). If only one number is shown (e.g., discharge of the HP combustor),
then the temperature is constant throughout the cycle.

 

Figure A1. Temperature range of the conventional CAES system in the base case scenario. Values in
each bracket show minimum and maximum temperature. The cavern operates between 5 and 7 MPa.
All compression stages and expansion stages have equal pressure ratios.

A.2. Thermodynamic Modeling of Adiabatic CAES (A-CAES)

Figure 4 illustrates schematics of the A-CAES system simulated in this paper. The compression
heat is stored in two thermal energy store facilities (TS1 and TS2). The coolers (heat exchangers)
between the compressor stages are eliminated in order to increase the temperature of the compression
heat available for thermal energy storage. Only one cooler is used, between TS2 and cavern, to lower
temperature of the air prior to storage in the cavern.

The compressors have two stages, low-and high-pressure. The LP and HP stages have variable
but equal compression ratios. The instantaneous compression ratio in the A-CAES system is therefore,
given by Equation (A47).

CRHP = CRLP = 2

√
PCN
P0

=
2√CR (A47)

The expansion train of A-CAES is made up of two stages as well, LP and HP. The withdrawn air
is heated in TS1 and TS2 before expansion and power generation (no combustor exists in A-CAES).
The final heat exchanger (FHX) cools the discharge stream of the low-pressure expander to
the ambient temperature.

The TS1 unit absorbs heat from the air leaving the low-pressure compressor and provides heat
to air entering the high-pressure expander. TS2 interacts with the high-pressure compressor and
the low-pressure expander. TS2 stores heat at higher temperatures compared to TS1 since it is in
contact with the high temperature air leaving the HP compressor (see Figure A2). Therefore, in our
design, TS2 is set to release its high temperature heat to the compressed air entering the LP compressor
so that the temperature of air leaving the turbine remains above freezing, to avoid damaging turbine
blades (the temperature and amount of heat stored in TS1 are not sufficient for this purpose).

The temperatures of the air entering the expanders (i.e., exhaust of TS1 and TS2) during
the discharge phase are constrained to be constant. However, their values are dictated by amount
of the heat stored. Note that the inlet temperatures of expander in the conventional CAES system
were constant as well but their values were a design parameter (i.e., preset). The thermal energy
storage units (TS1 and TS2) are modeled isobaric and adiabatic.

A.2.1. Charge Phase of A-CAES

Equations (A6) and (A10) remain applicable to determine the temperature and mass of compressed
air entering the cavern over the charging period. Similarly, Equations (A11)–(A13) quantify changes
in the mass and temperature of compressed air in the cavern.
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The compression work of A-CAES is calculated by applying the First Law of thermodynamics
to the LP and HP compressors and summing them up (Equation (A48)). The work and discharge
temperature of the LP compressor are quantified by Equations (A49) and (A50). Similar formulae can
be written for the HP compressor.

WCM =
∫ Pf l

Pem
(dWCM,LP + dWCM,HP) (A48)

dWCM,LP = Cp

(
TCM,LP

in − TCM,LP
out

)
dmch (A49)

TCM,LP
out = TCM,LP

in − TCM,LP
in − TCM,LP

out, ist

ηCM
(A50)

TCM,LP
out, ist = TCM,LP

in CRLP
(γ−1)/γ

The maximum exit temperature of the high-pressure compressor is a preset parameter, which will
be varied in the sensitivity analysis section. Our rationale for this design constraint is the following.
The exit temperature of the compressor is a key parameter for determining the exergy supplied to and
stored in thermal storage. This consequently impacts the temperature of the air entering the expanders
during the discharge phase. Moreover, there are technical constraints such as the stress on and
the fatigue of compressor blades driven by the maximum temperature of the compressor.

Thermal storage units (TS1 and TS2) are constrained to have a constant discharge temperature
over the charging period. The constant exit temperature of TS2 (succeeding the HP compressor)
is preset (TTS2,ch

out ). The constant exit temperature of TS1 (preceding the HP compressor) is, however,
dictated by the value chosen for maximum discharge temperature of the HP compressor (TCM,HP, Max

out ).
Solving the system of equations composed of Equations (A51)–(A53) finds the fixed inlet temperature
of the high-pressure compressor (TCM,HP

in ) that limits its maximum exit temperature to the preset value
of TCM,HP, Max

out . Note that TCM,HP
in is equal to TTS1,ch

out .

CRHP, Max = 2

√
Pf l

P0
= 2

√
CRMax (A51)

TCM,HP,Max
out = TCM,HP

in +
TCM,HP,Max

out, ist − TCM,HP
in

ηCM
(A52)

TCM,HP,Max
out, ist = TCM,HP

in (CRHP,Max)
γ−1

γ (A53)

Equation (A54) gives the total heat stored in TS2 during the charging phase. The inlet temperature
of TS2 is equal to the exit temperature of the high-pressure compressor and is a function of the
instantaneous compression ratio (see Equations (A55) and (A56)). The exit temperature of TS2 (TTS2,ch

out )
is constrained to be constant throughout the charging process. Equations (A57)–(A59) show similar
formulae for TS1 absorbing and storing the heat from compressed air leaving the LP compressor.

QTS2,ch =
∫ Pf l

Pem
Cp

(
TTS2,ch

out − TCM,HP
out

)
dmair,ch (A54)

TCM,HP
out = TCM,HP

in − TCM,HP
in − TCM,HP

out, ist

ηCM
(A55)

TCM,HP
out, ist = TCM,HP

in (CRHP)
γ−1

γ (A56)

QTS1,ch =
∫ Pf l

Pem
Cp

(
TTS1,ch

out − TCM,LP
out

)
dmair,ch (A57)
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TCM,LP
out = TCM,LP

in − TCM,LP
in − TCM,LP

out, ist

ηCM
(A58)

TCM,LP
out, ist = TCM,LP

in (CRLP)
γ−1

γ (A59)

Exergy of the heat stored in TS1 and TS2 is similarly quantified (Equations (A60) and (A61)).
The exergy of the air stream is calculated according to Equations (A2), (A4) and (A5) since the inlet
and outlet temperature and pressure of TS1 and TS2 are known.

ΔXTS1,ch =
∫ Pf l

Pem

(
ψTS1,ch

out − ψCM,LP
out

)
dmair,ch (A60)

ΔXTS2,ch =
∫ Pf l

Pem

(
ψTS2,ch

out − ψCM,HP
out

)
dmair,ch (A61)

Air stream leaving TS2 is further cooled in the aftercooler prior to entering the cavern.
Equation (A62) quantifies the heat rejected to the ambient in the aftercooler. Equation (A63) expresses
the total heat that is dissipated by the compressor, equal to the heat stored by TS1 and TS2 plus the heat
rejected to the ambient environment by the aftercooler

QCL =
∫ Pf l

Pem
Cp

(
TCN

in − TTS2,ch
out

)
dmair,ch (A62)

QCM = QCL + QTS1,ch + QTS2,ch (A63)

Equations (A19)–(A21) remain applicable for quantifying the changes in the internal energy,
entropy, and exergy of the air stored in the cavern of A-CAES. Exergy destroyed over the charging
period is shown in Equation (A64).

IXch = −ΔXch − WCM + mch ψ0 − ΔXTS1,ch − ΔXTS1,ch (A64)

A.2.2. Discharge Phase of A-CAES

Changes in the mass and temperature of compressed air present in the cavern of A-CAES during
the discharge period are expressed by Equations (A23)–(A27), similar to the conventional CAES model.

We assume perfect storage of heat, i.e., all the thermal energy stored during the charging phase
is released back to the expanding air without any losses. The exit temperature of TS1 and TS2
is assumed to remain constant over the discharge period.

The First Law of thermodynamics is applied to perform a series of trials and errors in order to find
the fixed (but unknown) exit temperature of TS1 so that the heat released by TS1 during the discharge
period (Equation (A65)) becomes equal to the heat previously stored in it during the charge period
(Equation (A57)).

QTS1,dch =
∫ Pem

Pf l

Cp

(
TTS1,dch

out − TCN, dch

)
dmair,dch (A65)

TCN,dch is the instantaneous temperature of air leaving the cavern (Equation (A26)).
Once the exit temperature of TS1 is calculated, work and discharge temperature of the high-pressure

expander are found through applying the First Law of thermodynamics to the high-pressure expander
(Equations (A66) and (A67). The instantaneous expansion ratio is expressed by Equation (A7).

WTB,HP =
∫ Pem

Pf l

Cp

(
TTS1,dch

out − TTB,HP
out

)
dmair,dch (A66)

TTB,HP
out = TTS1,dch

out + ηTB

(
TTB,HP

out, is − TTS1,dch
out

)
(A67)
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TTB,HP
out, ist =

(
TTS1,dch

out

)
XRHP

(γ−1)/γ

Upon determining the intake temperature of TS2 during the discharge phase (equal to TTB,HP
out ),

we again use the First Law of thermodynamics to express heat of TS2 during the discharge phase
(Equation (A68)). The same trial and error procedure explained for TS1 is applied to Equations (A68)
and (A54) to find the exit temperature of TS2.

QTS2,dch =
∫ Pem

Pf l

Cp

(
TTS2,dch

out − TTB,HP
out

)
dmair,dch (A68)

The changes in the exergy stock of TS1 and TS2 are quantified by Equations (A69) and (A70).
Since we model the thermal storage systems as ideal (no losses), the exergy released by TS1 and TS2
is equal to the exergy stored during the charging phase.

ΔXTS1,dch =
∫ Pf l

Pem

(
ψTS1,dch

out − ψCN
dch

)
dmair,dch (A69)

ΔXTS2,dch =
∫ Pf l

Pem

(
ψTS2,dch

out − ψTB,HP
out

)
dmair,dch (A70)

Now that the inlet temperature of the low-pressure turbine is determined (equal to discharge
temperature of TS2), the First Law of thermodynamics is used to determine the work of the
low-pressure turbine (Equation (A71)) and its exit temperature (Equation (A72)).

WTB,LP =
∫ Pem

Pf l

Cp

(
TTS2,dch

out − TTB,LP
out

)
dmair,dch (A71)

TTB,LP
out = TTS2,dch

out + ηTB

(
TTB,LP

out, ist − TTS2,dch
out

)
(A72)

TTB,LP
out, ist =

(
TTS2,dch

out

) (
XRLP

(γ−1)/γ
)

Finally, we quantify the heat dissipated by the final exhaust heat exchanger via Equation (A73).

QFHX =
∫ Pem

Pf l

Cp

(
T0 − TTB,LP

out

)
dmair,dch (A73)

Equations (A38)–(A40) remain applicable to calculate the changes in the internal energy, entropy,
and exergy of cavern over the discharge phase. Equation (A74) quantifies the total exergy loss during
the discharge phase of A-CAES.

IXdch = −ΔXdch − WTB − mair,dch ψair,dch − ΔXTS1,dch − ΔXTS1,dch (A74)

A.2.3. Roundtrip Analysis of A-CAES

Equations (A42)–(A46) are applicable for the performance of the A-CAES system. Since no fuel
is consumed, the heat rate and GHG emissions intensity of A-CAES are zero.

Similar to Figure A1, Figure A2 shows the temperature range for each A-CAES system components
over the storage cycle.
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Figure A2. Temperature range of the A-CAES system in the base case scenario. Values in each bracket
show minimum and maximum temperature. The cavern operates in 5–10 MPa range. The compressor
and expander stages have equal pressure ratios.

A.3. Modeling CAES Paired with a High-Temperature Electrolyzer

The compressor of the CAES-HTE system simulated has two stages (similar to A-CAES). A cooler
(heat exchanger) lowers the temperature of the exhaust stream of the LP compressor to a fixed
value before entering the high-pressure compressor. The maximum discharge temperature of
the high-pressure compressor is a design parameter and is preset, similar to A-CAES. The discharge of
the HP compressor is fed into a high-temperature electrolyzer. Its heat is used to boil water, to heat up
the generated steam to the constant temperature of the electrolyzer (THTE), and to provide the heating
energy required for the electrolysis process.

A cooler follows the electrolyzer, lowering temperature of the compressed air to a fixed value
(TCN, in) before storage in the cavern. The generated hydrogen is stored separately to combust and heat
the expanding air during the discharge phase. No physical storage of heat is performed, in contrast to
the A-CAES configuration.

The discharge phase of CAES-HTE is identical to that of the conventional CAES in our model,
with the distinction that hydrogen fuels the combustors instead of natural gas.

The heating loads of the high-pressure and low-pressure combustors during the discharge phase
determine the amount of hydrogen fuel needed and consequently the energy demand of the electrolyzer
during the charge phase. We therefore, discuss the discharging phase first and then the charging phase.

A.3.1. Discharge Phase of CAES-HTE

Equations (A23)–(A27) remain applicable for quantifying the changes in the mass and temperature
of the compressed air remaining in the cavern during discharge. Similar to the conventional CAES
system, the inlet temperatures of the low-pressure and high-pressure turbines (TTB,LP

in and TTB,HP
in )

are preset. Therefore, Equations (A28)–(A30) quantify the expansion work and the instantaneous
exit temperature of the turbines (expanders). The heat load of the low-pressure and high-pressure
combustors are determined by applying Equations (A31), (A33) and (A75). Finally, the mass and
exergy of the hydrogen fuel needed are calculated via Equations (A76) and (A77).

QCC = QLP,CC + QHP,CC (A75)

mH2 =
QCC

LHVH2
(A76)

XH2 = mH2 xH2 (A77)

Equations (A38)–(A40) remain applicable for quantifying the changes in internal energy, entropy,
and exergy of the compressed air present in the cavern. The exergy lost during the discharge phase
is quantified by Equation (A78).

Idch = −ΔXdch − WTB + XCC
H2 − mair,dch ψair,dch (A78)
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A.3.2. Charge Phase of CAES-HTE

Charging phase of CAES-HTE is similar to that of conventional CAES with the key difference that
exhaust stream of the HP compressor transfers some of its heat to an electrolyzer to generate hydrogen
and the rest to the ambient in an aftercooler. As with the A-CAES simulation, the maximum discharge
temperature of the HP compressor is preset. This parameter dictates the exit temperature of the LP
cooler (a constant but unknown parameter).

Equation (A9) to Equation (A13) remain valid for quantifying changes in the mass and temperature
of compressed air in the cavern during the charge period. Work by the LP compressor and its
discharge temperature are calculated by applying the First Law of thermodynamics to the low-pressure
compressor (Equations (A79) and (A80)).

WCM,LP =
∫ Pf

Pem
Cp

(
TCM,LP

in − TCM,LP
out

)
dmair,ch (A79)

TCM,LP
out = TCM,LP

in − TCM,LP
in − TCM,LP

out, ist

ηCM
(A80)

TCM,LP
out, ist = TCM,LP

in CRLP
(γ−1)/γ

The next step after quantifying the inlet temperature of the LP cooler (equal to exit temperature of
the LP compressor, Equation (A80)) is finding its discharge temperature, which is same as the inlet
temperature of the HP compressor. This temperature is constrained to remain constant during
the charging period. Its value, however, is dictated by another design parameter: the maximum
exit temperature of the HP compressor. Similar to the A-CAES model, solving the system of equations
of Equations (A51)–(A53) finds the inlet temperature of the high-pressure compressor (TCM,HP

in , which
is equal to TCL,LP

out ).
Once the inlet temperature of the HP compressor is known, its work and instantaneous exit

temperature are determined by applying Equations (A81) and (A82).

WCM,HP =
∫ Pf l

Pem
Cp

(
TCM,HP

in − TCM,HP
out

)
dmair,ch (A81)

TCM,HP
out = TCM,HP

in − TCM,HP
in − TCM,HP

out, ist

ηCM
(A82)

TCM,HP
out, ist = TCM,HP

in CRHP
(γ−1)/γ

As illustrated in Figure 2, the energy demand of the electrolyzer depends on the reaction
temperature. For the sake of simplicity, we assume a fixed electrolysis temperature, equal to the average
exit temperature of the HP compressor over the charge process.

Since the instantaneous inlet temperature of the electrolyzer is known as a function of
the compression ratio (equal to TCM,HP

out , Equation (A82)), one can apply the First Law of
thermodynamics to the electrolyzer to find its exit temperature (THTE

out ), which results in the desired heat
load of the electrolyzer (QHTE, total , quantified in the next paragraphs and expressed by Equation (A97)).
A trial and error process is used (similar to the A-CAES system) to find THTE

out .
Total heat demand of the electrolyzer (QHTE, total) is dictated by the mass of hydrogen needed to

fuel the combustors during the discharge process. This heating load is made up of four components:
sensible heat load to bring water to 100 ◦C (QSns,water), latent heat load to boil it (QLnt,water), sensible
heat load to bring the steam from 100 ◦C to the electrolysis temperature (QSns,steam), and the heat
required for the electrolysis process itself (QHTE).
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In a high-temperature electrolyzer, steam is disassociated in the cathode to produce hydrogen
and O2− while O2− gets oxidized in the anode producing oxygen (Equations (A83)–(A85)).

H2O + 2e → H2 + O2− (A83)

O2− → 1
2

O2 + 2e (A84)

H2O → H2 +
1
2

O2 (A85)

One mole of hydrogen and half a mole of oxygen are generated per mole of water. The relationship
between mass of hydrogen and water are shown in Equation (A86).

mH2O = mH2

(
MH2O

MH2

)(
nH2O

nH2

)
(A86)

The sensible heat load of water, sensible heat load of steam, and the latent heat are quantified by
Equations (A87)–(A89).

QSns,water = mH2O Cp (Tboil − T0) (A87)

QSns,steam = mHTE
H2O Cp (THTE − Tboil) (A88)

QLtn,water = mHTE
H2O CLnt (A89)

For the electrolysis process itself, the total energy requirement (ΔH), the change in entropy
(ΔS), and the electricity demand (change in the Gibbs free energy, ΔG) are determined by
Equations (A90)–(A92) as a function of the reaction temperature (T).

ΔHHTE(T) = nH2 ΔhH2(T) + nO2 ΔhO2(T)− nH2O ΔhH2O(T) (A90)

ΔSHTE(T) = nH2 ΔsH2(T) + nO2 ΔsO2(T)− nH2O ΔsH2O(T) (A91)

ΔGHTE(T) = ΔHHTE(T)− THTE ΔSHTE(T) (A92)

The changes in specific enthalpy (Δh) and entropy (Δs) of the reactant and products are expressed
by Equations (A93) and (A94), respectively. Symbols Δh0

f and s0 represent the standard specific
enthalpy of formation and the standard specific entropy. Specific heat (cp) is itself a function of
temperature. The values for the standard enthalpy of formation, standard entropy, and specific heat of
water and steam are shown in Table A1.

Δh(T) = Δh0
f +

∫ THTE

T0

Cp(T) dT (A93)

Δs(T) = s0 +
∫ THTE

T0

Cp(T)
T

dT (A94)

We therefore, use Table A1 and Equations (A90)–(A94) to quantify the heat and work load of
the electrolyzer, as shown in Equations (A95) and (A96).

QHTE = THTE ΔSHTE(@THTE) (A95)

WHTE = ΔGHTE(@THTE) (A96)

Finally, the total heat load of the electrolyzer (QHTE, total) is determined by Equation (A97). This
variable is used to find the discharge temperature of the electrolyzer (THTE

out ) through the trial and error
procedure explained earlier.

QHTE, total = QSns,water + QLnt,water + QSns,steam + QHTE (A97)
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Table A1. Thermodynamic properties used to quantify energy demand of electrolysis [39,40].

Component Δh0
f (kJ/mol) s0 (kJ/kmolK) Cp (kJ/kmolK) CLnt (kJ/mol) n

H2(gas) 0 131 27.28 + 0.00326 T + 50, 000/T2 - 1
O2 (gas) 0 205 29.96 + 0.00418 T − 167, 000/T2 - 0.5

HO2(liquid) −285.83 70 75.44 40.7 1
HO2(gas) −241.82 189 30 + 0.01071 T + 33, 000/T2 - 1

The First Law of thermodynamics is applied to each cooler to determine the heat dissipated by
the LP and HP coolers (Equations (A98)–(A100)). Note that the discharge temperature of the HP
cooler is preset to the approach temperature plus the ambient temperature (Tac + T0), same as
the conventional CAES model. The intake temperature of the high-pressure compressor (TCM,HP

in )
is equal to the exit temperature of the LP cooler. The total compression heat is equal to the heat dissipated
in the compressor coolers (Equation (A98)) plus the heat load of the electrolyzer (Equation (A97)),
as shown in Equation (A101).

QCL =
∫ Pf l

Pem
(dQCL,LP + dQCL,HP) (A98)

dQCL,LP = Cp

(
TCM,HP

in − TCM,LP
out

)
dmair,ch (A99)

dQCL,HP = Cp

(
TCN,in − THTE

out

)
dmair,ch (A100)

QCM = QCL + QHTE, total (A101)

Equations (A19)–(A21) remain valid for quantifying the changes in the internal energy, entropy,
and exergy of the compressed air in the cavern. The exergy lost over the charging process of CAES-HTE
is calculated by Equation (A102).

IXch = mch ψ0 + XH2 − ΔXch − WCM − WHTE (A102)

A.3.3. Roundtrip Performance of CAES-HTE

Equations (A42)–(A46) remain applicable for expressing the roundtrip performance of the
CAES-HTE system. Since no fuel is consumed, the heat rate and GHG emissions intensity of HTE-CAES
are zero.

The temperature range of the components of the CAES-HTE system in the base case are illustrated
in Figure A3.

 

Figure A3. Temperature range of the CAES-HTE system in the base case scenario. Values in each bracket
show minimum and maximum temperature. The cavern operates in 5–10 MPa range. The compressor
and expander stages have equal pressure ratios.
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A.4. Modeling CAES Paired with a Low-Temperature Electrolyzer (CAES-LTE)

The CAES-LTE system modeled is similar to the CAES-HTE system in the sense that hydrogen
is produced onsite to fuel combustors during the discharge phase. However, water instead of steam
is electrolyzed in a low-temperature electrolyzer.

Similar to the conventional CAES system and in contrast to CAES-HTE, we do not impose any
constraint on the maximum discharge temperature of the high-pressure compressor (TCM,HP,Max

out ).
Additionally, the exit temperature of the compressor coolers is constant and preset to the ambient
temperature plus the approach temperature, similar to the conventional CAES model.

We model a three-stage compressor for CAES-LTE since there is no need for producing
high-temperature heat in this system (electrolysis occurs at the ambient temperature). Using three
stages reduces the work requirements of the compressor, as discussed for conventional CAES.
The compression ratio in the CAES-LTE system is given by Equation (A8).

Equations (A42)–(A46) are used to characterize performance of the CAES-LTE system. Similar to
the CAES-HTE system, the CAES-LTE design does not consume natural gas, therefore its heat rate and
GHG emissions are zero.

Similar to Figure A3, Figure A4 shows the temperature range for each CAES-LTE system
components in the base case scenario.

Figure A4. Temperature range of the CAES-LTE system in the base case scenario. Values in each bracket
show minimum and maximum temperature. The cavern operates in 5–7 MPa range. The different
stages of the compression and expansion trains have equal pressure ratios.
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Abstract: A thermal runaway prognosis scheme for battery systems in electric vehicles is proposed
based on the big data platform and entropy method. It realizes the diagnosis and prognosis of
thermal runaway simultaneously, which is caused by the temperature fault through monitoring
battery temperature during vehicular operations. A vast quantity of real-time voltage monitoring
data is derived from the National Service and Management Center for Electric Vehicles (NSMC-EV)
in Beijing. Furthermore, a thermal security management strategy for thermal runaway is presented
under the Z-score approach. The abnormity coefficient is introduced to present real-time precautions
of temperature abnormity. The results illustrated that the proposed method can accurately forecast
both the time and location of the temperature fault within battery packs. The presented method is
flexible in all disorder systems and possesses widespread application potential in not only electric
vehicles, but also other areas with complex abnormal fluctuating environments.

Keywords: thermal runaway; battery systems; big data platform; National Service and Management
Center for Electric Vehicles

1. Introduction

Battery systems are critical components that strongly influence the driving performance and
cost-effectiveness of electric vehicles (EVs). The travel distance, acceleration performance, and security
requirements of EVs cannot be satisfied by the energy density and power density of the single-cell.
Therefore, the cells need to be assembled into a small battery module according to certain forms,
and battery systems can be composed of a number of battery modules in series or parallel to satisfy
the driving requirement of EVs [1]. Thermal runaway may occur with extreme phenomena, such as
battery leakage, smoking, or gas venting in the event the heating rate exceeds the dissipation rate.
In recent years, a spectrum of fatal fire accidents has shown the great threat to system safety and
durability. Generally, thermal runaway occurs when an exothermic reaction gets out of control, which
is interpreted as the reaction rate increasing due to the temperature increasing, and causes a further
increase in temperature and, hence, a further increase in the reaction rate. In some serious cases,
thermal runaway possibly results in an explosion [2]. Battery degradation and failure are strongly
dependent on the abnormality in cell temperature. Furthermore, to maintain the healthy state of the
battery, thermal management strategies are employed in electric vehicles [3].

A preeminent battery thermal management system (BTMS) is necessary and essential because
extreme temperatures affect the driving performance and safety of EVs. In some extreme cases,
thermal runaway might trigger fires and explosions if the battery temperature gets out of the safety
scope. The effectiveness of a BTMS depends on the design of the battery system and the operating
conditions. Daowd et al. [4] proposed an intelligent battery management system (BMS), including
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a battery pack charging and discharging control, with a battery pack thermal management system.
Finally, an experimental setup was implemented for the validation of the proposed balancing system.
Panchal et al. [5,6] presented in situ measurements of the heat generation rate for a prismatic lithium-ion
battery and a lithium-ion pouch cell (20 Ah capacity) at 1C, 2C, 3C, and 4C discharge rates and 5 ◦C,
15 ◦C, 25 ◦C, and 35 ◦C boundary conditions (BCs). The results show that the highest rate of heat
generation was found to be 91 W for the 4C discharge rate and 5 ◦C BC, while the minimum value
was 13 W measured at a 1C discharge rate and 35 ◦C BC. This illustrated that the increase in the
discharge rate and the discharge current caused a consistent increase in the heat generation rate for
an equal depth of discharge points. A model was developed using the neural network approach and
the predicted heat generation rate demonstrates an identical behavior with experimental results from
this model. Lan et al. [7] developed a novel design of BTMS based on aluminum mini-channel tubes
and applied it to a single prismatic lithium-ion cell under different discharge rates. To investigate
the thermal performance of a lithium-ion battery pack, Qian et al. [8] established a three-dimensional
numerical model using a type of liquid cooling method based on mini-channels and cold-plates. Though
simplified approaches, Mastali et al. [9] developed the simplified electrochemical multi-particle model
and homogenous pseudo-two-dimensional model to decrease the computational time; the speed and
simplicity of three-dimensional electrochemical-thermal models are still of concern. The second type
of model is the equivalent circuit model (ECM), where the battery is regarded as a mass point [10,11].
Therefore, they are suitable to be implanted in the battery management system (BMS) for the state
of charge (SOC) or the state of health (SOH) estimation [12–15]. Lin et al. [16] and Forgez et al. [17]
added lumped-parameter thermal models to the ECM to predict the thermal characteristics of the cell,
which made the model more comprehensive. The results showed this method could effectively control
the battery temperature at a 5 ◦C discharge and the temperature uniformity was obviously improved.
Through the studies mentioned in the literature, apart from a few studies monitoring temperature changes
through the temperature sensor, no effective and systematic theory or method concerns the accurate
and timely temperature fault detection and early detection and warning of thermal runaway during
real operation.

Meanwhile, in order to maintain higher energy density, the size and complexity of the battery
cell is growing, which leads to a potential temperature imbalance and a risk of various battery faults.
So many fault diagnosis methodologies have been presented to reveal the thermal runaway of battery
systems. For external short-circuit detection, Xiong et al. [18] extracted the OCV-SOC relationship from
any existing current-voltage measurements by using an H infinity filter within several seconds. The
results show that the estimated OCV can result in accurate SoC estimation with a maximum error of
1%. Seo et al. [19] proposed a high accuracy model-based switching model method (SMM) to detect
the internal short circuit (ISCr) in the lithium-ion battery, which helps the battery management system
to fulfill early detection of the ISCr. Zhang et al. [20] proposed a novel method to perform online
and real-time capacity fault diagnosis for a parallel-connected battery group (PCBG) and the fault
simulation and validation results demonstrate that the proposed methods have good accuracy and
reliability. Due to the inconsistent and varied characteristics of lithium-ion battery cells, Chen et al. [21]
and Liu et al. [22] proposed the multi-scale dual H infinity filters and model-based sensor fault
diagnosis method, which can significantly reduce the computation work and retains good model
accuracy. Bai et al. [23] applied a combined power generation system (CPGS) to achieve a reliable
evaluation of a distribution network with micro-grids combined with fault duration. In addition, many
model-based diagnostic algorithms, such as extended Kalman, were presented to diagnose thermal
faults in lithium-ion batteries [24–27], and the simulation and experimental studies were demonstrated
to illustrate the effectiveness of the proposed schemes. Zheng et al. [28] presented a battery pack
system in a demonstrated EV with 96 cells in series and discovered the battery power fade fault
during the demonstration. The preliminary analysis indicated that the internal or contact resistance
increase causes the fault and calculating the Shannon entropy clearly identified the cause of the power
fade fault. Rezvanizanian et al. [29] examined the mobility prediction of LiFeMnPO4 batteries for an
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emission-free electric vehicle. Through the comparison with an adaptive recurrent neural network
(ARNN) with regression, the former performs with better accuracy in two different road types and
driving modes. All of these mentioned studies have modeled under online detection and prediction
on the SOH of battery system. However, the literature has rarely explored temperature fault diagnosis
and prognosis issues of battery systems directly for the real-time running vehicles. The conventional
threshold methods lack the ability of identifying the time and location that the abnormity occurs if the
abnormal data remains within the permitted limits together with the safety data. The existing BMS
technology generally cannot achieve an early warning effect of battery thermal runaway.

This paper focuses on a prognosis method for the thermal runaway of battery systems caused by
a temperature fault during vehicular operations. For addressing these mentioned issues, the entropy
method was employed. Furthermore, the abnormity coefficient was set up using the Z-score method
to evaluate the fault severity. Accordingly, homologous management strategies were proposed to
handle detected temperature fault problems and make real-time assessments of the fault levels. A vast
quantity of real-time voltage monitoring data was derived from the NSMC-EV in Beijing to validate
the proposed method. The results show that the proposed method can accurately forecast both the
time and location of the temperature fault within battery packs.

The remainder of this paper is structured as follows: Section 2 gives a brief introduction of the
proposed prognosis method. Section 3 describes the big data platform for data acquisition. Section 4
presents the detailed prognosis analysis and discussions about temperature faults for battery systems.
Finally, the key conclusions is summarized in Section 5.

2. Diagnosis and Prognosis Method

Information entropy has been widely employed to judge the degree of system disorder in
thermodynamics, information science, and other fields, which was firstly introduced by Laude
Elwood Shannon in 1948 [30]. It generally judges the degree of system disorder in a wide range of
scientific fields and is still an important method nowadays [31]. Due to the capability of measuring the
information content, combined with the case of information processing, it is a useful and popular method
for information entropy. The typical calculation process of the Shannon entropy is shown as follows:

H(X) = −
n

∑
i=1

p(xi) log p(xi) (1)

where H(X) is the Shannon entropy, p(xi) is the data probability density in the ith region, and n is the
number of regions.

The Z-score denotes the standard score, which has the function of risk prediction in the fields of
statistics and finance. For instance, Nanayakkara [32] developed a financial distress prediction model
for Sri Lankan companies using the Z-score model. Chadha and Aloy et al. [33,34] used Altman’s
Z-score model to evaluate the financial performance and avoided the high cost that is associated with
distress in predicting bankruptcy. However, the Z-score method has not demonstrated the ability and
potential of risk prediction of mechanical or electrical faults, especially electric vehicles. In this paper,
the Z-score method is applied to quantitatively evaluate the temperature fault within battery packs,
which can perform real-time detection and prognosis of abnormal temperature by setting the abnormal
coefficient. The voltages and temperatures of different cells are different due to the inconsistency of
the battery pack. The formula of the Z-score is expressed as:

Z =
x − μ

δ
(2)

where x is a specific score, μ is the average score and σ is the standard deviation.
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In order to confirm a reasonable real-time detection and evaluation standard, the abnormity
coefficient based on the Z-score is implemented as follows:

A =
|E − Eave|

σE
(3)

where E denotes the Shannon entropy, Eave denotes the average Shannon entropies, and σE denotes the
standard deviation of entropy.

It is worth mentioning that there are multiple iterations of the past data in the entropy calculation.
However, monitoring and diagnosis are required in real-time to predict the state of the battery and
connection failure, thus, the Shannon entropy calculation needs to be appropriately modified to
accommodate the online implementation requirement of EVs. The diagnosis and prognosis algorithm
flowchart based on the different extreme value selections for the Shannon entropy is shown in Figure 1.

Figure 1. The diagnosis and prognosis algorithm flowchart.

3. Data Acquisition Platform

The temperature and voltage data was derived from the NSMC-EV [35], which has the functions
of monitoring and collecting the real-time running data of EVs, such as the voltage and temperature
of the battery systems, conducting in-depth analysis and research through big data techniques.
The monitoring and management process of the NSMC-EV is shown in Figure 2. The data acquisition
frequency from the monitored vehicles ranges from 0.03 Hz to 1 Hz. In addition, the failure statistics
of the vehicle running state are categorized into six levels according to failure types, where the first
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level is the most dangerous. When anomalous information, such as the temperature reaching the limit
threshold, a corresponding fault alarm will be immediately dispatched to the relevant vehicle according
to the established response protocols. Eventually, the statistical statements about the vehicle-running
characteristic and fault statistics will be detected in the forms of daily, weekly, and annual reports.

Figure 2. The monitoring and management process of the NSMC-EV.

Through the big data platform, running information and the key component states of the monitored
vehicles can be obtained using the vehicle-to-platform communication. The main monitoring objects and
purposes of NSMC-EV are shown in Table 1, which illustrates that there is a potential thermal runaway
risk once the battery temperature reaches beyond the maximum threshold. Meanwhile it requires human
intervention for identifying potential problems to safeguard vehicle operation and maintain the battery
cycle life. The logical topological management structure of NSMC-EV is sketched in Figure 3, which is a
multi-level structure of “acquisition/access-storage-analysis-application”, implementing the fusion and
centralized supervision multi-source information, one-stop query and service, as well as data-supporting
the whole series of models. Until now, this center has provided around-the-clock monitoring service
for over 7000 units of EVs mainly consisting of public vehicles, such as taxis, buses, and sanitation
vehicles, etc.

Table 1. The main monitoring objects and purposes of NSMC-EV.

Order Number Monitoring Object Monitoring Purpose

1 Battery voltage To confirm whether there is a value beyond the range.

2 Cell voltage
The low voltage will lead to insufficient capacity, and the
high voltage will cause high temperature, gas precipitation,
water losses, and grid corrosion of the battery.

3 Battery temperature

To identify potential problems and optimize the vehicle
operation and cycle life of the battery. Once beyond the
maximum value means that there is a potential thermal
runaway and it requires human intervention.

70

Bo
ok
s

M
DP
I



Energies 2017, 10, 919

Table 1. Cont.

Order Number Monitoring Object Monitoring Purpose

4 Ambient temperature
Too high an ambient temperature will shorten battery life
and too low an ambient temperature will lead to battery
capacity decline.

5 Temperature difference Large temperature difference is because of the inconsistency
of the battery, which will cause endurance deterioration.

6 Charge and discharge current
Provide the health state information of the battery to users,
which can be used to indicate the operating state and the
integrity of the battery connection.

Figure 3. The logical topological management structure of the NSMC-EV.

4. The Thermal Fault Prognosis Analysis and Discussion

4.1. Thermal Management Schematic

A well-designed thermal management system possesses the function of regulating EV and
HEV battery pack temperatures evenly, keeping them within the desired operating range. Proper
thermal design of every module has a positive impact on overall pack thermal management with the
corresponding thermal behavior. In general, a battery thermal management system (BTMS) with few
battery modules, using air as the heat transfer medium, is less complicated, which is more effective
than using liquid for cooling/heating. Nevertheless, a battery thermal management system with a
large number of battery modules faces the opposite issues. General schematics of BTMS using air
and liquid are shown in Figure 4a,b, respectively [36]. Either natural or forced air convection can be
used for air BTM. Figure 4a illustrates three air BTM methods including passive air cooling, passive
air cooling/heating and active air cooling/heating. As opposed to air, liquid has higher thermal
conductivity and heat capacity. Liquid BTM is regarded as a better solution, which can be divided
into passive or active methods, shown as Figure 4b. The thermal management system may be passive
(i.e., only the ambient environment is used) or active (i.e., a built-in source provides heating and/or
cooling at cold or hot temperatures). The thermal management control strategy is settled through
the electronic control unit. A thermal management system probably uses air for heating/cooling
ventilation or liquid as the cooling/heating insulation layer. In addition, phase change materials
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are another choice for cooling/heating as thermal storage. However, the combination of these three
methods are the most common scheme in current BTMS.

 
(a) (b) 

Figure 4. General schematic of BTMS using air and liquid. (a) Three air BTM methods; (b) Three liquid
BTM methods.

Generally, for parallel HEVs, an air thermal management system is suggested, whereas for EVs
and series HEVs, liquid-based systems are more suitable for optimum thermal performance. NiMH
batteries require a more elaborate thermal management system than lithium-ion and valve-regulated
lead acid (VRLA) batteries. Lithium-ion batteries need a well-behaved thermal management system
due to the concerns of safety and low-temperature performance. Furthermore, the location of the
battery pack has a strong impact on the type of BTMS and whether the pack is air-cooled, liquid cooled,
or another method is used.

In addition to considering the temperature of a battery pack, uneven temperature distribution
should also be taken into account. Temperature variation from module to module could lead to different
charging/discharging behaviors for each module. This, in turn, leads to electrically-unbalanced
modules or packs and reduced pack performance. Higher temperatures degrade batteries more
quickly, while low temperatures reduce power and energy capabilities, resulting in cost, reliability,
safety, range, or drivability implications. Therefore, battery thermal management is all-important for
EVs to keep the cells in the desired temperature range, minimize cell-to-cell temperature variations,
prevent the battery from going above or below acceptable limits, and maximize the useful energy from
the cells and the pack with little energy for operation.

A perfect BTMS not only heats and cools the battery system as soon as possible, but also controls
the system’s thermal safety to prevent thermal runaway. The typical types of temperature faults in
NSMC-EV are over-temperature and excessive temperature difference (TD), which are usually caused
by abnormal temperature variation. Detecting when and where the abnormal temperature occurs will
play an extremely important role in safe battery management. The normal operating temperature
range of lithium-ion batteries is −20 to 60 ◦C, which is generally controlled at 15–60 ◦C for the safe
operation of the vehicles. The maximum permissible TD is 5 ◦C, which means the limitation of TD
within 5 ◦C. There are a certain amount of temperature probes in different locations of the battery
pack for different vehicles, the monitoring platform of NSMC-EV will send an over-temperature alarm
when any temperature probe exceeds 45 ◦C and an excessive TD alarm when TD > 5 ◦C.
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4.2. The Fault Prognosis of Over-Temperature

In order to verify the feasibility and reliability of the proposed prognosis method for temperature
anomaly, the cell data of Vehicle 1 (vehicle plate: Jing Q6S772, Fukuda pure electric sanitation truck,
a style of 5023ZLJEV 2T dump truck, with a top speed of 45 km/h. The type of battery is a lithium-ion
phosphate battery with 120 cells in series, the monomer voltage is 3.3 V and total voltage is 396 V)
on March 6th, 2017 was retrieved from NSMC-EV and the work period of the monitored vehicle
was 09:48:39–16:07:52 (more than 6 h), which experienced an over-temperature alarm of T > 45 ◦C at
11:07:20. There are 16 temperature probes in the different locations of the battery pack and the data
acquisition frequency of 0.05 Hz. The temperature and SOC curves of Vehicle 1 are shown in Figure 5,
which demonstrates that the temperature of Probe 1 and Probe 9 had different fluctuations form the
other probes. In addition, Probe 1 experiences an over-temperature fault with the vehicle running.
However, although the abnormity appeared early, it cannot be identified before the alarm occurs by
the conventional temperature sensor because it is still in the normal temperature range of T < 45 ◦C.

Figure 5. The temperature and SOC curves of Vehicle 1.

As for the presented entropy method in Section 2, the length of the computation window K has
significant influence on the accuracy of entropy. If K is too small, the temperature fluctuations cannot
be fully revealed. On the contrary, the iterations would become too few to pick out the abnormal
temperature fluctuations. Furthermore, because of the graduality and stability of temperature,
the temperature fluctuations are relatively small and the position of the abnormal temperature is
difficult to detect in a short period of time, so K = 100 was selected as the length of the computation
window in this study through the trial-and-error method.

With the vehicle operation and the rise of the battery temperature, the temperature of all probes
will gradually stabilize. It is difficult to detect the abnormal temperature fluctuations after temperature
stability or failure, so the monitoring data should be processed from the vehicle starting every day.
Figure 6a shows the abnormal coefficients of Vehicle 1 in the first 6 h. Probe 1 and Probe 9, especially
Probe 1, have obviously larger abnormal coefficients than the others do. This fluctuation of abnormal
coefficients is consistent with the temperature fluctuation shown in Figure 5, which verifies that
the proposed method can accurately identify the time and location of the abnormal temperature.
In order to verify the prognosis performance of the proposed method, the first 3 h were chosen as the
calculation unit, during when the over-temperature has not been triggered. The abnormal coefficient
in the first 3 h of Vehicle 1 is shown in Figure 6b, which shows that both Probe 1 and Probe 9 with
abnormal temperature can be detected. Therefore, the proposed method can accurately predict the
over-temperature fault.
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(a) (b) 

Figure 6. The abnormal coefficient in the (a) first 6 h and (b) first 3 h of Vehicle 1.

As shown in Figure 6, the anomaly coefficient curves have crosses and accidental extremes,
which are not conducive to quantifying the level of the abnormal coefficient. In order to make the
abnormal coefficient more readable, and to facilitate a horizontal comparison and evaluation between
different temperature probes, a boxplot was employed to express the abnormal coefficient to forecast
the temperature faults in this section, which is represented as Ab. Boxplots can reflect the center and
spread scope of the data distribution. By drawing the boxplots of multiple sets of data on the same
coordinates, the distribution difference is clearly displayed. The structure diagram of the boxplot is
shown in Figure 7. The boxplot requires the statistical concept of quartiles, which means the position
numbers of three segmentation points. Q1 denotes the lower quartile, which is equal to the number of
25% of all values. Q2 is the median, which is equal to the number of 50% of all values. Q3 is the upper
quartile, which is equal to the number of 75% of all values. The abnormal coefficient Ab is the median
of the boxplot in this paper.

Figure 7. The structure diagram of the boxplot.

The abnormal coefficient boxplot in the first 6 h and the first 3 h of Vehicle 1 are shown in Figure 8a,b,
respectively. The results reveal that both Probe 1 and Probe 9 can be easily detected and the Ab of Probe
1 is much greater than that of Probe 9 and the others. By defining certain detection thresholds as Ab = 1
and Ab = 1.2, the over-temperature fault alarm can be avoided if the abnormal temperature is detected
in advance by this method. Actually, for the purpose of accurate over-temperature fault prognosis,
much more monitoring data were derived from NSMC-EV. The evaluation strategy of the abnormal
temperature was obtained by the trial-and-error method through a large number of analytical results,
which is feasible, reliable, and can accurately forecast both the time and location of over-temperature
faults. Thus, this method can effectively prevent the over-temperature fault by detecting the abnormal
temperature in real-time.
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(a) (b) 

Figure 8. The abnormal coefficient boxplot of the (a) first 6 h and (b) the first 3 h of Vehicle 1.

4.3. The Fault Prognosis of Temperature Difference

The other typical thermal fault in NSMC-EV is excessive temperature difference (TD). The cell
data of Vehicle 2 (vehicle plate: Jing B1Y163, CA E30 electric taxi) on November 2nd, 2016 was retrieved
from NSMC-EV and the work period of the monitored vehicle was 07:55:57–23:59:54 (more than 16 h),
which experienced an excessive TD fault alarm with a TD > 5 ◦C at 18:14:55, after the tested vehicle
traveled for more than 9 h. There are 16 temperature probes in the different locations of the battery
pack and the data acquisition frequency is 0.1 Hz. The temperature curves of Vehicle 2 are shown in
Figure 9. This revealed that the temperature of Probe 11 has an abnormal fluctuation with the vehicle
running, which directly leads to the generation of the TD fault. However, this abnormity cannot be
detected by the conventional temperature sensor because it is still in the normal temperature range of
0–30 ◦C.

Figure 9. The temperature curves of Vehicle 2.

The SOC, speed, and TD curves of Vehicle 2 on November 2nd, 2016 are shown in Figure 10. This
demonstrates that this car charged twice and parked several times at 14:58:03 and 21:47:46. In addition,
the TD curves rise slowly with the increase of speed and vehicular running.
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Figure 10. SOC, speed and TD curves of Vehicle 2.

The abnormal coefficient and boxplot of Vehicle 2 in the first 3 h on November 2nd, 2016 are
shown in Figure 11a,b, respectively. It is observed from Figure 11a that some probes have anomalous
extremum points but no probe has obviously larger abnormity coefficients than the others. Figure 11b
displays that the median position of all probes that also be confirmed to Ab < 1, which is consistent
with the temperature curves in Figure 9. Thus, all of the probes have a safe temperature status and no
abnormal temperature can be detected in the first 3 h.

(a) (b) 

Figure 11. The abnormal coefficient and boxplot at the first 3 h of Vehicle 2. (a) The abnormal coefficient
curves; (b) Boxplot of the abnormal coefficient.

Due to the design flaws of the battery box or the thermal runaway of batteries, the tendency
of the temperature change of different temperature probes will have certain differences. With the
vehicle operation and the rising of the battery temperature, the temperature will be gradually stabilize.
It is difficult to detect the abnormal temperature fluctuations after the temperature become stable, or
there is a failure, so the first 3 h from the starting point are taken as the initial calculation window,
if the abnormal temperature probe cannot be detected, then continues to calculate for the next 3 h.
The abnormal coefficient and boxplot of Vehicle 2 at the first 6 h and the first 9 h on November 2nd,
2016 are shown in Figures 12 and 13, respectively. Figure 12a indicates that Probe 11 has an abnormal
temperature fluctuation, but is difficult to detect due to the interference of Probe 2, Probe 6 and Probe
16. Figure 12b shows that the median position of Probe 11 is greater than those of the others and
the abnormal coefficient Ab > 1, which is consistent with the temperature curves in Figure 9. Thus,
abnormal temperature of Probe 11 can be detected in the first 6 h. From Figure 13a, Probe 11 has a
distinct abnormal fluctuation and is easier to detect. Figure 13b demonstrates that the median position
of Probe 11 is higher compared to those of other probes and the abnormal coefficient Ab > 1. The results
show excellent consistency with the previous temperature curves in Figure 9. The excessive TD fault
of Vehicle 2 occurred after it traveled more than 9 h. Therefore, the proposed prognosis method can
detect the abnormal probe in real-time and identify the fault location in advance.
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(a) (b) 

Figure 12. The abnormal coefficient and boxplot at the first 6 h of Vehicle 2. (a) The abnormal coefficient
curves; (b) Boxplot of the abnormal coefficient.

(a) (b) 

Figure 13. The abnormal coefficient at the first 9 h of Vehicle 2. (a) The abnormal coefficient curves; (b)
Boxplot of the abnormal coefficient.

In order to verify the stability of this method, the cell data of Vehicle 2 on November 1st, 2016
was derived from NSMC-EV and the period of the monitoring data was 10:51:05–23:36:38. An alarm
of excessive temperature difference of TD > 5 ◦C at 17:12:15 occurred in Vehicle 2 after the tested
vehicle traveled for more than 9 h. The temperature curves of Vehicle 2 are shown in Figure 14, which
illustrates that the temperature of Probe 11 has different fluctuations with the vehicle running. However,
the abnormal temperature cannot be identified as long as it is still in the safe temperature range.

 

Figure 14. The temperature curves of Vehicle 2.

The abnormal coefficient and boxplot at the first 3 h of Vehicle 2 are shown in Figure 15. Figure 15a
indicates that Probe 11 has an abnormal temperature fluctuation and can be detected out. Figure 15b
demonstrate that Probe 11 can be easily detected and the limitation of the abnormal coefficient of Probe
11 is Ab > 1. However, the excessive TD fault can be avoided if the abnormal temperature is detected in
advance. Actually, for accurate excessive TD fault prognosis, much more monitoring data were retrieved
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from NSMC-EV and analyzed, which reveals the proposed method is feasible, reliable, and stable to
accurately predict the time and location of excessive TD faults within a battery pack. Thus, this method
can effectively prevent the excessive TD fault by detecting the abnormal temperature in real-time.

(a) (b) 

Figure 15. The abnormal coefficient and boxplot at the first 3 h of Vehicle 2. (a) The abnormal coefficient
curves; (b) Boxplot of the abnormal coefficient.

4.4. The Security Management Strategy and Discussion

Through the above analysis, the over-temperature fault and excessive TD fault can be predicted
using the proposed method and it has well-behaved reliability and stability. By implementing a certain
detection threshold as Ab = 1 and Ab = 1.2, the cell with abnormal temperature can be detected before the
thermal faults occur, which has vital significance for the future prognosis and safety management of the
battery fault, especially for the prevention of thermal runaway. The prognosis strategy of the thermal
fault can be obtained through analyzing much more monitoring data retrieved from NSMC-EV using the
trial-and-error method. The prognosis strategy flowchart of the thermal fault is shown in Figure 16.

Figure 16. The prognosis strategy flowchart of a thermal fault.

78

Bo
ok
s

M
DP
I



Energies 2017, 10, 919

NSMC-EV currently provides around-the-clock monitoring services, mainly for public vehicles
apart from private cars, such as taxis, buses, and sanitation vehicles, which always have a relatively
small number of cells. Nevertheless, according to the analysis and discussion of different sets of
monitoring data, by setting a suitable value of the calculation window K, this technique is still
valid even if the EV has a larger number of cells (i.e., Tesla, with 6000+ cells). Therefore, it has a
strong timeliness and will have greater application prospects if some private cars with more cells are
monitored and managed by NSMC-EV in the future, which will also provide a foundation for the
establishment of safety precaution mechanisms for battery thermal runaway.

5. Conclusions

This paper presents a real-time thermal fault diagnosis and prognosis method based on the
NSMC-EV in Beijing. A vast quantity of real-time voltage monitoring data was collected from this big
data platform to verify the effectiveness of the presented prognosis method. The Shannon entropy
was applied to analyze the monitoring data. The analysis results showed that the proposed method
could detect probes with abnormal temperature, which can also effectively predict the occurrence
time and location. These were achieved with a relatively small calculation effort, which makes it
implementable in a real safety BMS. The feasibility, reliability, and stability of the prognosis capability
were also discussed and verified by analyzing extensive monitoring data. Furthermore, the prognosis
and safety management strategy for thermal faults of battery systems were also developed by applying
the Z-score method, and the abnormity coefficients were implemented to make real-time evaluation on
the faulty levels. The presented method is flexible in all disorder systems with abnormal fluctuations
regardless the data types and application fields, so it possesses widespread application potential in not
only electric vehicles, but also other areas with complex abnormally fluctuating environments.
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Abstract: In view of severe changes in temperature during different seasons in cold areas of northern
China, the decay of battery capacity of electric vehicles poses a problem. This paper uses an electric
bus power system with semi-active hybrid energy storage system (HESS) as the research object
and proposes a convex power distribution strategy to optimize the battery current that represents
degradation of battery capacity based on the analysis of semi-empirical LiFePO4 battery life decline
model. Simulation results show that, at a room temperature of 25 ◦C, during a daily trip organized
by the Harbin City Driving Cycle including four cycle lines and four charging phases, the percentage
of battery degradation was 9.6 × 10−3%. According to the average temperature of different months
in Harbin, the percentage of battery degradation of the power distribution strategy proposed in this
paper is 3.15% in one year; the electric bus can operate for 6.4 years until its capacity reduces to 80% of
its initial value, and it can operate for 0.51 year more than the rule-based power distribution strategy.

Keywords: electric bus; hybrid energy storage system; energy management; convex optimization;
LiFePO4 battery degradation

1. Introduction

As the sole power source in a traditional electric vehicle, a battery needs to satisfy the power
and energy demands of a bus under different operating conditions. When the battery is repeatedly
over-charged and over-discharged in the long-term operating, the battery degradation will be accelerated.
Furthermore, when the battery is operated at low temperature, its capacity degradation is more significant.
The hybrid energy storage system (HESS) is composed of a battery and super capacity (SC); the battery
provides the required energy and the SC satisfies the instantaneous power requirements, can effectively
inhibit the battery charge and discharge current changes, and optimizes the working conditions of the
energy system [1].

Currently, experts and scholars in the field of electric vehicle hybrid energy storage research
are focused on the modeling and performance of the system components, system parameters
matching, power distribution, etc. In terms of system component modeling and experimentation,
Luo et al. [2] derived and verified a driving cycle life prediction model for LiFePO4 battery based
on the experimental verification of the existing capacity decay model for LiFePO4 under a constant
current charge/discharge condition. Abeywardana et al. [3] proposed a new type of inverter combined
with boost circuits used in HESS, which eliminates the high current injected into the drive motor as
compared to conventional controllers that eliminate the equivalent series resistance of the inverter.
Henson et al. [4] conducted a comparative study of the battery/SC with different depths of discharge
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(DODs) for minimizing the cost of the HESS. Xiong et al. [5,6] used different algorithms to estimate
the relationship of the voltage to the state-of-charge (SOC) and capacity of lithium ion battery, and
they also validated the accuracy of the method through hardware-in-the-loop experiments. In terms of
system parameter matching and power distribution, Mid-Eum et al. [7] used the convex optimization
method to optimize the power loss and battery power fluctuations considering the real-time dynamic
load to propose a method for calculating the SC reference voltage. Song et al. [8,9] proposed a new
semi-active topology; the operation cost of the HESS, including the battery degradation cost and
electricity cost, is minimized by using the dynamic programming (DP) approach. Further, they studied
four topologies and proposed a rule-based power distribution strategy with four kinds of topologies
based on the optimization results. Hu et al. [10] conducted energy efficiency analysis and component
selection of the plug-in hybrid power system using convex optimization.

In summary, there have been studies related to the parameter matching and system control of
HESS facing battery degradation. However, to the best of our knowledge, there are no published papers
that combine the climatic conditions in northern China and the corresponding urban driving cycle
operating conditions to optimize the functioning of the HESS. In order to attain the full potential of the
HESS to enhance the battery life of electric buses under local conditions, in this study, we considered
the electric bus operating in Harbin, China as an example, and proposed a method to optimize
charge/discharge current of battery through convex optimization considering the average monthly
temperature change in one year.

This paper is organized as follows. In Section 2, we analyze the configuration and working modes
of the HESS. In Section 3, we introduce the models of LiFePO4 batteries, SCs, and vehicle. Section 4
presents a convex optimization power distribution strategy based on the semi-empirical model of
battery degradation. In Section 5, the simulation results and operating years were analyzed and the
results are compared with those of the rule-based strategy.

2. Analysis of Configuration and Working Modes of Hybrid Energy Storage System

As the main energy source of electric vehicles, energy-based batteries have the disadvantages of
low power density and high capacity degradation [11]. In order to satisfy the peak power demand,
the power density of batteries should be sufficiently high; further, considering a battery that is the
only power source of a traditional electric car, in principle, the only way to increase the power density
of the batteries is to increase the number of batteries. Thus, it will result in high cost and high
battery degradation. However, the SCs have characteristics of high power density and low capacity
degradation. A combination of the battery and SC satisfies power and energy requirements, as well as
the different performance requirements of the vehicles.

According to the different connections between the battery, SC, and DC/DC converter, the HESS
can be classified into three major types, namely, fully active, passive, and semi-active, as shown in
Figure 1. In the fully active HESSs, both the battery and SC are connected to the DC bus via a DC/DC
converter; two DC/DC converters can simultaneously control the output power of the battery and the
SC. Further, it has good control margins. However, a fully active HESS has low system efficiency and a
complicated system structure owing to the existence of the two converters; it also increases the system
cost owing to the additional cost of the DC/DC converter. Therefore, the fully active topology can
achieve a good control effect, but at the expense of system efficiency, complexity, and cost [12]. In the
passive topology, the battery and SC are directly connected to the DC bus and the system structure
is simple. Owing to the absence of a converter, the system efficiency of the passive topology is the
highest, whereas it is uncontrollable of the energy flowing [13]. In the semi-active topology, either
the battery or the SC is connected to the DC/DC converter through a unique converter to control the
distribution of the output power of the two energy sources. Since the DC bus is connected to one of
the battery and SC directly, a fast DC/DC converter is required to maintain DC voltage when the load
is changed. However, compared to the fully active and passive topologies, the semi-active topology
solved the problems of low efficiency, high cost, uncontrollability, etc. [14].
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(a) (b)

 
(c) (d)

Figure 1. The topology of the electric vehicle HESS: (a) fully active topology; (b) passive parallel
topology; (c) semi-active topology 1; and (d) semi-active topology 2.

The topology adopted in this study is shown in Figure 1d. Semi-active topology 2 employs a
DC/DC converter to decouple the SC from the battery/DC bus. Furthermore, the DC bus voltage is
equal to the battery voltage as they are directly connected. Compared to the other three topologies,
the use of SC is more flexible [15], and its working mode is shown in Figure 2. In the driving mode,
both the battery and SC provide power to the motor, and the SC satisfies the instantaneous high power
requirements. In the braking mode, the energy charging for the SC first through the converter, then the
braking energy charging for the battery when the SC is full. For the power conversion between SC and
DC bus, a fast three-leg bidirectional DC/DC converter is used. It can be operated in the interleaved
manner and has the merit of being commercially available [16,17]. The degradation of the SC is very
small and its working life can accommodate millions of charge/discharge cycles. The power demand
from the vehicle will be volatile during rapid acceleration and braking; hence, the SC plays the role
of power and energy buffer when it is connected between the battery and driving motor through the
DC/DC converter.

 
(a) (b)

Figure 2. The different modes of operation of semi-active topology: (a) power flow based on driving
mode; and (b) power flow based on braking mode.

3. Power System Modeling Based on HESS

3.1. Battery Model

Compared to the Nickel Metal Hydride (Ni-MH) power battery, lead-acid power battery, and
the other driving batteries utilized in electric vehicles, the LiFePO4 battery has the characteristic of
good battery service life and high energy density. However, its low temperature performance is not
outstanding [18]. The parameters of the LiFePO4 cell used in this study are shown in Table 1.
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Table 1. Basic parameters of the LiFePO4 battery cell.

Item Value

Vbat_norm, nominal voltage (V) 3.2
Qbat, capacity (Ah) 180

mbat_cell, cell mass (kg) 5.6
Ibat_max,min, max dis/charge current (A) ±540

The Rint model shown in Figure 3 was adopted to represent the battery behavior, where Ubat
is the battery terminal voltage and Rbat is the resistance of the battery. Since the voltage and SOC
are strongly correlated [19] in Equation (1), and in order to adopt the subsequent power distribution
strategy, the one-time curve fitting is used to find the functional relationship between the battery open
circuit voltage Vbat and its SOC, as shown in Figure 4.

Vbat = (Vbat1 − Vbat0)SOCbat + Vbat0 (1)

where Vbat1 is the open circuit voltage corresponding to SOCbat = 100% and Vbat0 is the open circuit
voltage when SOCbat = 0. The storage energy Ebat of the battery pack can be calculated as

Ebat =
1
2

nbatQbat(Vbat
2 − Vbat0

2) (2)

where nbat is the number of battery cells and Qbat is the cell capacity. The battery pack output power
Pbat can be calculated by Equation (3).

Pbat = −dEbat
dt

(3)

The power consumption on battery internal resistance Pbat_loss can be calculated by the following
equation, where Ibat is the current flowing through the battery cell. The charge resistance and discharge
resistance of the cell are measured under different SOCs at a room temperature of 25 ◦C, as shown in
Figure 5.

Pbat_loss = nbatIbat
2Rbat (4)

batU
batR batI

batV

Figure 3. Rint model of the LiFePO4 battery.
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Figure 4. The relationship between Vbat and SOC.
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Figure 5. Charge and discharge resistances of the LiFePO4 cell at room temperature of 25 ◦C.

3.2. Super Capacitor Model

The main purpose of using the SC is to protect the battery more effectively; it has the characteristics
of high charge and discharge efficiency, long service life, and better low temperature performance.
The SC equivalent circuit model is shown in Figure 6, where Rcap is the equivalent series resistance,
Icap is the current flowing through the SC cell, Ccap is the capacitance of the SC cell, and Vcap is
the Open Circuit Voltage (OCV) of the SC cell. In this study, we use The Maxwell Technologies®

company’s super capacity and the parameters of the SC cell are listed in Table 2. Since the SC can
achieve millions of charge/discharge cycles, this article ignores the capacity degradation of the SC in
the entire process [20]. The open circuit voltage method is used to express the relationship between its
open circuit voltage Vcap and SOCcap.

Vcap = Vcap1SOCcap (5)

where Vcap1 is the open circuit voltage corresponding to SOCcap = 100%. As shown in Equation (6),
Ecap is the energy released when the SC is discharged from the fully-charged state to SOCcap.

Ecap =
1
2

ncapCcapVcap1
2(1 − SOCcap) (6)

where ncap is the number of SC cells. The output power of the SCs Pcap is the first derivative of its
release time, as shown in Equation (7).

Pcap = −dEcap

dt
(7)

The power consumption on SCs internal resistance Pcap_loss can be calculated by Equation (8),
where Icap is the current flowing through the SC cell.

Pcap_loss = ncapIcap
2Rcap (8)

capC
capR capI

capV

Figure 6. Equivalent circuit modelof the SC.
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Table 2. Basic parameters of the SC cell.

Item Value

Vcap_norm, nominal voltage (V) 2.7
Ccap, capacity (F) 2 × 103

Rcap, resistance (Ω) 3.5 × 10−4

mcap_cell, cell mass (kg) 0.36
Icap_max,min, max dis/charge current (A) ±1.6 × 103

3.3. Battery Degradation Model

The high cost of lithium-ion battery is one of the main factors restricting the development of
electric vehicles. The conversion cost of electric vehicles can be reduced by extending the lifespan of
lithium-ion battery. In recent years, researchers have made significant efforts to calculate and predict
the degradation of the battery [21–23]. In Ref. [21], the authors conducted a series of charge/discharge
experiments through constant current-constant voltage (CC-CV) and used a scanning electron
microscope (SEM) to characterize the structure of cathode, anode, and separator in Li-ion batteries.
The results have shown that the capacity fading of batteries can be attributed primarily to the loss of
active Li+ and the losses of cathode and anode active materials. In Ref. [22], a large number of charge
and discharge experiments were carried out on LiFePO4 batteries, and the semi-empirical formula
of battery decay percentage and ambient temperature, charge/discharge rate, and cycling time were
obtained. In Ref. [23], the effect of parameters such as the end of charge voltage, DOD, film resistance,
exchange current density, and over voltage of the parasitic reaction on the capacity fading and battery
performance were studied. However, in summary, it is very difficult to calibrate and parameterize the
degree of battery degradation in an electric vehicle during actual operation. Therefore, we considered
many factors that affect battery degradation and adopted the semi-empirical model used in Ref. [24].
The semi-empirical formula is as shown in Equation (9).

Qloss = B · e−( E+a·n
RT )(Ah)

x (9)

where Qloss is the percentage of battery degradation, E is the activation energy, R is the gas constant,
T is the absolute temperature, Ah is the Ah-throughput, and B, a, and x are constants. The percentage
of discrete battery degradation at different temperatures can be calculated using Equation (10).

Qloss_k+1 − Qloss_k = 9.78 × 10−4e−( 15162−1516·n
0.849R(|285.75−T|+265) ) · ΔAh · Qloss_k

−0.1779 (10)

where Qloss_k and Qloss_k+1 are the percentages of battery capacity decay degradation for the steps k
and k + 1, respectively. ΔAh is the Ah-throughput from tk to tk+1, and it satisfies Equation (11), where
Δt is the sampling time.

ΔAh =
1

3600
· |Ibat| · Δt (11)

3.4. Vehicle Model

The vehicle power system model can be used to obtain the power demand of the vehicle at
different times during the operation. The power demand of a vehicle should be the output power of
the driving wheel for an electric bus with semi-active HESS. The output power of the driving wheel is
the product of the demand torque and the required angular velocity, as shown in Equation (12).

Pdem = TdemωdemηT
−k (12)

where ηT is transmission system efficiency; and k is the power factor: k = 1 when the bus is in the
driving state and k = −1 when the bus is in the braking state. Tdem andωdem are the demand torque and
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the demand angular velocity, respectively, which can be calculated as shown in Equation (13). The basic
parameters involved in Equation (13) are listed in Table 3. In Table 3, aω is angular acceleration, and
the total mass mbus is equal to the sum of the body quality, passenger quality, batteries, and SCs mass
(15% additional mass).

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Tdem =
[
(mbusgcr cos(θ) + mbusa + mbusg sin(θ)) + ( Jaω

Rw
+ 1

2ρAcdv2)
]
· Rw

gfinal

ωdem =
v·gfinal

Rw

Among :
mbus = mveh + mp + 1.15(nbatmbat_cell + ncapmcap_cell)

a = dv
dt ; aω = a

Rw

(13)

In the optimization process, the minimal mileage L of more than 50 km should be considered,
obtained at a constant cruising speed v0 (50 km/h) on a flat road [25]. Accordingly, we can deduce the
following inequality constraints.

nbat ≥
(

1
2
ρAcdv0

2 + mbusgcr

)
L

Vbat_normQbatηT
(14)

We assume that the maximum required power in the drive mode and brake mode is provided by
the SCs (SCs output power in driving mode, and SCs absorb power in braking mode). The following
inequality constraints should be satisfied when selecting the number of SCs.

ncap ≥ max{|Pdem|}∣∣Icap_max
∣∣Vcap_norm

(15)

Table 3. Basic parameters of the vehicle.

Item Value

mveh, body quality 1.3 × 104

mp, passenger quality (F) 3 × 103

cr, rolling resistance coefficient 0.007
ρ, air density (kg/m3) 1.18
J, total inertia (kgm2) 143.41
A, frontal area (m2) 7.83

cd, aerodynamic drag coefficient 0.75
Rw, wheel radius (m) 0.51
gfinal ,final gear ratio 6.2

ηDC, DC/DC converter efficiency 0.9
ηT, powertrain efficiency 0.9

4. Convex Optimal Control Strategy Based on the Battery Degradation

Through the driving cycle, we can calculate the power demand of the bus at every step. In the
driving mode, the required power Pdem should be the output power of the drive motor on its output
shaft. The electrical power output on the DC bus is equal to the motor output power plus the motor
power loss, which is obtained by the fitting. The electrical power output on the DC bus at this time
is the total power to be satisfied by the batteries and the SCs (considering the efficiency of DC/DC
converter).

Assuming that the SCs are in the same energy storage state at the beginning and end of the driving
cycle, the degradation percentage Qloss_sum of the battery is calculated using the following equation.

Qloss_sum =
N

∑
k=1

Qloss(k) (16)
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In order to reduce the computation time in the convex optimization, as shown in Figure 7,
the relationship between the battery current Ibat and the battery degradation percentage Qloss is
determined at room temperature 25 ◦C based on Equation (9). Irrespective of the braking or driving
modes, Qloss always increases as the charge or discharge current Ibat increases. Hence, the optimization
of the entire driving cycle of battery degradation can be equivalent to optimizing the entire driving
cycle of the battery current in the absolute value. There is the following relationship:

Minimize

{
N

∑
k=1

Qloss(k)

}
⇔ Minimize

{
N

∑
k=1

|Ibat(k)|
}

(17)

Therefore, as shown in Equation (18), the equivalent optimization target for the purpose of
optimizing the battery degradation could be obtained. According to the constraints of the optimization
target in the convex optimization [26], Equation (18) satisfies the requirement that the convex
optimization must be a convex function or an affine function for the objective function.

J = Minimize

{
N

∑
k=1

|Ibat(k)|
}

(18)
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Figure 7. The relationship between battery charge/discharge current Ibat and battery degradation
percentage Qloss.

The implementation process of the convex optimization strategy used in this study is shown
in Figure 8. In order to satisfy the constraints on the number of battery cells and SC cells in
Equations (14) and (15), the number of selected battery and SC cells is nbat = 120 and ncap = 240,
respectively. The battery pack and SC pack in the HESS are all grouped by n series and one parallel
connection, and the unbalance between the cells is ignored [27]. As the energy source of the vehicle, the
LiFePO4 battery pack is not only for the drive motor to provide energy, but also for the super capacitor
when SOCcap is low. The SC pack is between the LiFePO4 battery pack and the drive motor, acting as
an energy and power buffer, and absorbing the braking energy from the drive motor during braking.

According to the output voltage changes of the battery and the SC cell, we can constrain the
output energy range of the battery pack and capacitor group,

{
Ebat(k) ∈ nbatQbat

2 ([Vbat_min
2, Vbat_max

2]− Vbat0
2)

Ecap(k) ∈ ncapCcap
2 ([Vcap_min

2, Vcap_max
2]− Vcap0

2)
(19)
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where Vbat_min, Vbat_max, Vcap_min, and Vcap_max are the maximum and minimum voltages
corresponding to the battery and the SOC of the SC, given by Equation (20).

{
Vbat_min,max = SOCbat_min,max(Vbat1 − Vbat0) + Vbat0
Vcap_min,max = SOCSC_min,maxVSC1

(20)

The range of the output power of the battery and SC pack can be limited according to the
maximum charge/discharge current of the battery and SC cell.

{
Pbat ∈ [Ibat_min, Ibat_max]nbatVbat
Pcap ∈ [Icap_min, Icap_max]ncapVcap

(21)

The power consumed on the battery pack and the SC pack internal resistance can be calculated
from Equation (22). {

Pbat_loss = nbatIbat
2Rbat

Pcap_loss = ncapIcap
2Rcap

(22)

where Ibat and Icap are the currents flowing through the battery and the SC cell, respectively. Both Ibat
and Icap have the following constraints.

{
Ibat ∈ [Ibat_min, Ibat_max]

Icap ∈ [Icap_min, Icap_max]
(23)

For the battery pack and the SC pack, it is necessary to satisfy the total power demand in different
cases, by satisfying the following equation constraints.

{
Pbatopen + PcapopenηDC = Pemloss + Pdem/ηT Pdem ≥ 0

Pbatopen + Pcapopen/ηDC = Pemloss + PdemηT Pdem < 0
(24)

where Pbatopen and Pcapopen are the output powers of the battery pack and SC pack, respectively. Pemloss
is the motor power loss and can be interpolated by the motor power loss curve.

In this study, we use Equation (18) as an optimization target, and the battery pack energy Eb, SC
pack energy Ecap, battery pack port output power Pbatopen, and SC pack port output power Pcapopen

as the convex optimization variables. The battery pack power Pbat, SC pack power Pcap, battery pack
power loss Pbat_loss, and SC pack power loss Pcap_loss are used as the equation constraints of the convex
optimization. The overall optimization function is given in Table 4.

Figure 8. The implementation process of the convex optimization strategy.
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Table 4. Convex optimization function of hybrid energy storage system

Variables Ebat(N + 1), Ecap(N + 1), Pbatopen(N), Pcapopen(N)

Minimize
N
∑

k=1
|Ibat(k)|

Subject to

{
Pbatopen(k) + Pcapopen(k)ηDC = Pemloss(k) + Pdem(k)/ηTPdem(k) ≥ 0
Pbatopen(k) + Pcapopen(k)/ηDC = Pemloss(k) + Pdem(k)ηTPdem(k) ≥ 0

Pbat_loss(k) = nbatIbat0
(k)2Rbat; Pcap_loss = ncapIcap0(k)

2Rcap
Pbat(k) = −ΔEbat(k); Pcap(k) = −ΔEcap(k)
Ebat(k) ∈ ([Vbat_min

2, Vbat_max
2]− Vbat0

2)nbatQbat/2
Ecap(k) ∈ ([Vcap_min

2, Vcap_max
2]− Vcap0

2)ncapCcap/2
Pbat(k) ∈ [Ibat_min, Ibat_max]nbatVbat(k)
Pcap(k) ∈ [Icap_min, Icap_max]ncapVcap(k)
Ibat ∈ [Ibat_min, Ibat_max]; Icap ∈ [Icap_min, Icap_max]

∀k ∈ {0, . . . , N}

According to the description of the convex optimization problem in Ref. [26], the constraint
conditions in Table 4 are convex or affine functions; the entire convex optimization problem satisfies
the convex optimization requirement, and the convex optimization implementation flow is shown in
Figure 9.
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Figure 9. Convex optimization implementation flow.

5. Simulation and Results Analysis

In order to verify the effectiveness of the HESS optimization proposed in this study, we compared
its performance with that of the rule-based power distribution strategy under the Harbin city driving
cycle [28]. The Harbin city driving cycle and the power demand is shown in Figure 10. The convex
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optimization result is shown in Figure 11. It can be observed that the battery only provides a small range
of demand for power fluctuations, whereas the SC satisfies instantaneous high power requirements.
When the required power is greater than a certain threshold, the SC and the battery pack together
provide the power required. However, owing to the presence of DC/DC converter efficiency and
powertrain efficiency, the sum of the power of the battery pack and the SC pack is much greater than
the power demand. Furthermore, the same as the result of two efficiency effects, in the braking mode,
the SC cannot recover all the braking energy. In addition, as shown in Figure 11b, the battery only
provides a small demand for power and the SC satisfies instantaneous high power requirements;
this can be reflected in the relationship between power demand and SC power. When the power
demand fluctuates in the range of 0 kW to 20 kW, the SC does not output power. This part of the
power is borne by the battery and when the power demand fluctuates in the range of 20 kW to
the highest power demand, the SC satisfies the power demand. Owing to the efficiency of DC/DC
converter and the efficiency of the powertrain, the slope of the fitted line k is slightly greater than 1
when the demand power is greater than 20 kW. When the power demand fluctuates in the negative
range, the SC absorbs the braking energy, and the slope of the fitting line k is less than 1 owing to
the DC/DC converter efficiency and the efficiency of the powertrain. The entire convex optimization
process consumes 1.33 × 107 J, i.e., approximately 3.70 kWh. Since the optimization target is absolute
value of the battery current, while the terminal voltage drop of the battery pack is very small in one
driving cycle. Therefore, the optimization goal also has a significant role in optimizing the battery
energy consumption.
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Figure 10. Harbin city driving cycle and the power demand.
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Figure 11. Convex optimization results: (a) power distribution results based on convex optimization;
and (b) the relationship between power demand and SC power.

Figure 12 shows the battery current and battery degradation percent at a room temperature of
25 ◦C based on convex optimization. In the latter part of the driving cycle, the acceleration/deceleration
of the vehicle is violent; hence, the battery current undergoes greater fluctuations. However,
the maximum value of the battery current does not exceed 200 A. The battery runs within 1C
discharge magnification rate altogether. In addition, according to the relationship between the battery
charge/discharge current Ibat and the battery degradation percentage Qloss in Figure 7, it can be
observed that the battery current has approximately an exponential relationship with the battery
degradation percentage Qloss when the battery current is greater than zero. Therefore, Qloss obtained in
Figure 12 is more intense than the battery current fluctuation. At room temperature of 25 ◦C, the battery
degradation percent in one driving cycle is 2.16 × 10−4%.
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Figure 12. Battery current and battery degradation percentage at room temperature of 25 ◦C based on
convex optimization.

In order to verify the effectiveness of the proposed optimization method in this paper for the
electric bus equipped with semi-active HESS, it is compared with the rule-based strategy in Harbin
driving cycle. The rule-based strategy is shown in Figure 13 [9,29]. When the power demand Pdem ≥ 0,
the battery only provides the threshold power Pthr, and when Pdem > Pthr, the battery will provide the
part of power demand exceed according to the SOCcap. When the power demand Pdem < 0, it is also
need to charge for SC according to the charge of state of the SC, when the SC pack is fully charged and
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then to the battery pack for energy braking. According to the characteristics of the SC power and the
power demand relationship obtained from the convex optimization, the threshold power Pthr in the
rule-based strategy is set to 20 kW, and the same power system model and initial parameters are used
to calculate the power distribution based on the rules strategy, as shown in Figure 14.
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Figure 13. The implementation process of rule-based strategy.
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Figure 14. Power distribution results based on the rule-based strategy.

Figure 15 shows the battery current and battery degradation percent at 25 ◦C based on the rule
strategy. In the latter part of the driving cycle, it can be seen that the SC obtained the energy from
braking cannot satisfy the power demand; this part of the power demand difference can only be borne
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by the battery. Therefore, the battery experiences a large output power fluctuation. The battery current
and battery decay percentages have several significant peaks in the later stages based on the rule
strategy. However, in contrast, the SC satisfies the instantaneous high power ripple and the battery
outputs a smaller power fluctuation in the convex optimization. According to the energy management
strategy evaluation method in Ref. [30], the standard deviation of the battery current in two strategies
has been calculated, as shown in Equation (25), where the Ib_avg is the average of battery current, s is
the standard deviation of battery current.

s =

√√√√√
N
∑

k=1
(Ib(k)− Ib_avg)

2

N
(25)

The standard deviation of the battery current based on the convex optimization strategy and
rule-based strategy is 31.03 and 43.99, respectively, the battery current fluctuation based on the
convex optimization strategy is smaller than rule-based strategy. Figure 16 shows the battery capacity
degradation curve based on convex optimization and rule-based strategy. At approximately t = 1050 s,
t = 1320 s, and t = 1360 s, the battery degradation percent based on the rule strategy has three significant
rising intervals, which correspond to three battery current pulses based on the rules strategy; further,
it can be reflected from the battery current and battery degradation percentage result of the rule-based
strategy shown in Figure 15. In contrast, the battery power fluctuation is smoother when based
on the convex optimization strategy, thus protecting the battery better. The rule-based strategy
consumes 1.35 × 107 J in one driving cycle, i.e., approximately 3.75 kWh, and the percentage of battery
degradation is 2.31 × 10−4%.
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Figure 15. Battery current and battery degradation percentage at room temperature of 25 ◦C based on
the rule strategy.

In order to further reflect the real situation of a bus running on Harbin city roads in a day, and
quantitatively analyze the potential of convex optimization relative to the rule-based strategy to
improve battery life, we use nine Harbin city driving cycles (total 50.4 km) to simulate a cycle line:
a bus from the bus terminal, followed by a cycle line, and subsequently back to the bus terminal. When
the bus arrives at the terminal again, the CC-CV is used to recharge the battery. When the battery pack
is recharged, the SOCbat returns to 0.9. Table 5 shows the indicators of the battery pack when the bus
drives in one cycle line based on the two strategies.
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Figure 16. The percentage of battery degradation under two strategies.

Table 5. The indicators of two strategies under one cycle line.

Strategy Total Length Initial SOC Final SOC ΔSOC Recharge Time

Based on
convex 50.4 km 0.9 0.4223 0.4777 1561 s

Based on rules 50.4 km 0.9 0.4112 0.4888 1598 s

For the LiFePO4 battery pack with 120 cells in series and one in parallel, the SOC of the battery
varies from SOCbat = 0.9 to SOCbat = 0.4223 through one cycle line under convex optimization, and the
SOC of the battery varies from SOCbat = 0.9 to SOCbat = 0.4112 through one cycle line under rule-based
strategy. In the process of the recharge phase, the recharge magnification is set to 1C. The entire
recharge state continues for 1561 s in convex optimization and 1598 s in rule-based strategy. After the
recharge, the battery SOC of the convex optimization strategy and the rule-based strategy are returned
from SOCbat = 0.4223 and SOCbat = 0.4112 to SOCbat = 0.9, respectively. According to the actual
operation, the electric bus run four line cycles (approximately 200 km) in one day, and the electric bus
needs to recharge the battery four times. Assuming that the battery is fully charged (SOCbat = 0.9) in
the first trip every day, the battery SOC change curve based on the convex optimization strategy and
rule-based strategy can be obtained as shown in Figure 17.
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Figure 17. The battery SOC change based on different power distribution strategies in one day: (a) the
battery SOC based on the optimization strategy described in this paper; and (b) the battery SOC based
on the rules of the power distribution strategy.

The battery capacity degradation will occur during the entire charge/discharge process. Therefore,
we can obtain the battery degradation percentage curve of the battery pack using the semi-empirical
model in one day according to the battery charge/discharge situation. At room temperature of 25 ◦C,
Qloss base on the convex optimization strategy and the rules strategy are shown in Figure 18. After a
day of operation (four cycle lines and four charging phases), Qloss based on convex optimization is
9.6 × 10−3%, and the battery pack can be used for approximately 2.08 × 103 days when the battery
degradation is attenuated to 80% of its initial capacity, whereas Qloss based on rules strategy is
10.3 × 10−3%, and the battery pack can be used for approximately 1.94 × 103 days when the battery is
attenuated to 80% of its initial capacity.

Notably, there are two main causes of the greater battery degradation under rule-based strategy:
(1) The battery current Ibat based on the convex optimization is more stable; hence, this results in a
smaller Qloss than the rule-based strategy, and this is reflected in the comparison of battery degradation
under the two strategies shown in Figure 16; (2) Since the rule-based strategy consumes more energy
in one day, the battery discharges deeper during operation (SOCbat ∈ [0.4223, 0.9] during one cycle
line based on convex optimization and SOCbat ∈ [0.4112, 0.9] during one cycle line based on rules).
Similarly, in order to return the battery back to the initial SOC, the rule-based strategy must be charging
deeper than the convex optimized strategy (charging time t = 1561 s based on the convex optimization
and t = 1598 s based on the rules). Consequently, the rule-based strategy increases the SOC operating
range of the battery used in the same road cycle as compared to the strategy based on the convex
optimization, which also increases the percentage of battery capacity degradation.

The battery usage time based on the two strategies is approximately 15 h in one day, but the usage
time of the rule-based strategy is slightly longer because the charging time is longer. In Figure 18, Qloss
slope of the battery charging phase is larger than Qloss at the time of traveling on the road; hence, the
battery degradation caused by charging the battery at a charging magnification of 1C is greater than
that caused by running on the road.
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Figure 18. Qloss based on the two strategies in one day: (a) battery degradation percentage based on
convex optimization strategy; and (b) battery degradation percentage based on rules strategy.

In order to obtain further analysis of Qloss for one year in Harbin, we assume that the Harbin
city bus will run for cycle lines in one day, and the bus operates for 30 days in a month. Therefore,
the bus will operate for 360 days in a year. According to the average temperature of different months
in Harbin, the daily value of Qloss for every month can be calculated. It is assumed that the vehicle
in each month is running at the monthly average temperature value and ignores the self-heating
effect of the battery [31]. The semi-empirical model is also used to calculate the battery degradation.
The average monthly temperature in Harbin is given in Table 6 [32], i.e., the temperature range of
T ∈ [−18.3 ◦C, 23.0 ◦C].

Table 6. The average temperature of the city in Harbin.

Month Jan Feb Mar Apr May Jun

Temp (◦C) −18.3 −13.6 −3.4 7.1 14.7 20.4

Month Jul Aug Sep Oct Nov Dec

Temp (◦C) 23.0 21.1 14.5 5.6 −5.3 −14.8
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According to the different average temperatures in different months, we can calculate the electric
bus battery degradation percentage in one day for different months, as shown in Figure 19.
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Figure 19. Percentage of battery degradation Qloss in one day for different months.

As evident in Figure 19, Qloss in different months based on the rules strategy is larger than that
based on the convex optimization strategy. It can also be observed that, when the temperature is within
±10 ◦C during spring and autumn, Qloss is minimal, whereas Qloss is large in summer and winter with
higher or lower temperatures. Especially in the winter months of December, January, and February,
the two strategies under daily operation of the battery degradation reached ≥ 0.01%. This directly
reflects the problem of large degradation of LiFePO4 battery at low temperatures. The total battery
degradation percentage of the year is shown in Table 7.

Table 7. The total battery degradation percentage in different month of the year.

Month Jan Feb Mar Apr May Jun

Qloss base on the
convex/rules (%) 0.348/0.375 0.315/0.342 0.252/0.276 0.195/0.216 0.231/0.252 0.261/0.282

Month Jul Aug Sep Oct Nov Dec

Qloss base on the
convex/rules (%) 0.276/0.297 0.264/0.288 0.231/0.252 0.189/0.207 0.264/0.288 0.324/0.351

In Table 7, Qloss in one year based on the convex optimization strategy is 3.15%, and Qloss based
on the rules strategy is 3.43%. A quantitative analysis of battery life extension is addressed in this
paper, assuming that the battery cannot be used when its capacity reduces to 80% of the initial value.
Subsequently, the year of usage of the battery can be calculated using Equation (26).

Yope = 20/
12

∑
m=1

Qloss_month(m) (26)

where Yope is the year of usage of battery and Qloss_month is the percentage of Qloss per month. It can be
calculated that the bus equipped with HESS can operate for 6.35 years based on the convex optimization
strategy. However, the bus equipped with HESS can operate for 5.84 years based on the rules strategy.
The superiority of the convex optimization strategy is reflected, further illustrating the effectiveness of
the use of convex optimization.
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6. Conclusions

This paper used the electric bus power system with semi-active HESS as the research object,
in the Harbin city driving cycle and proposed a convex optimization power distribution strategy
target to optimize the battery current that represents battery degradation. According to the average
temperature of different months of the year in the northern city of Harbin, the percentage of battery
degradation of the electric bus with the HESS is analyzed and calculated. Simulation results show that
using the convex optimization strategy proposed in this paper, at a room temperature of 25 ◦C, in a
daily trip composed of the Harbin City Driving Cycle—including four cycle lines and four charging
stages—the percentage of the battery degradation is 9.6 × 10−3%, whereas the battery degradation
is 10.3 × 10−3% based on the rules under the same conditions. Assuming the daily mileage of an
electric bus is approximately 200 km, and it will operate for 360 days in a year, the percentage of
battery degradation is 3.15% in one year in Harbin. Before the battery capacity reduces to 80% of
the initial value, the electric bus can run for 6.35 years based on the strategy proposed in this paper.
However, the battery degrades 3.43% per year in Harbin using the rule-based strategy, and the bus can
run for 5.84 years. Thus, the convex-based optimization strategy can operate for 0.51 year more than
the rule-based strategy.
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Abstract: This paper proposes a positive temperature coefficient (PTC) self-heating method, in which
EVs can be operated independently of external power source at low temperature, with a lithium-ion
battery (LIB) pack discharging electricity to provide PTC material with power. Three comparative
heating experiments have been carried out respectively. With charge/discharge tests implemented,
results demonstrate the superiority of the self-heating method, proving that the discharge capability,
especially the discharge capacity of the self-heated pack is better than that of the external power
heated pack. In order to evaluate the heating effect of this method, further studies are conducted
on temperature distribution uniformity in the heated pack. Firstly, a geometric model is established,
and heat-generation rate of PTC materials and LIB are calculated. Then, thermal characteristics
of the self-heating experiment processes are numerically simulated, validating the accuracy of our
modeling and confirming that temperature distributions inside the pack after heating are kept in
good uniformity. Therefore, the PTC self-heating method is verified to have a significant effect on the
improvement of performance of LIB at low temperature.

Keywords: lithium-ion battery; PTC self-heating method; self-heating experiment; thermal modeling

1. Introduction

Improving the performance of the Lithium-ion batteries (LIBs) at low temperature has become an
urgent problem to be solved, since some problems may exist, such as dramatic decrease of discharge
rate and serious degradation of discharge capacity [1,2], which may lead to shortened driving range,
deteriorated dynamic performance, restricted feasibility and applicability for electric vehicles (EVs) [3].
One of the relatively feasible methods proved to be effective is heating the LIB pack [4–8].

Generally, two types of heating methods for LIB have been adopted: the external heating and the
internal heating.

As for the researches on the external heating, Wang et al. [9] have put forward a battery
bottom-heating method with a design of a bench test, and their experimental results verified the
bottom-heating method could effectively improve discharge capacity of LIB pack. Based on charge-/
discharge performance experiments on the heated cell, Zhang et al. [10] proved a method of wide-line
metal film heating, which could be efficiently applied to enhance cell performances at low temperature.
With a low-temperature-heating model for the cell established and a method of electro-thermal-film
heater recommended, Cun-shan et al. [11] confirmed the practical efficacy of their method via
simulations and experiments. On the basis of experiments on a convection heat transfer method, in
which the battery pack was heated by using heated wires to transfer heat through the air, Wang et al. [12]
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found that the surface temperature of the battery pack could be increased from −15 ◦C to 0 ◦C after
about 21 min of heating.

For the researches on the internal heating methods [13], Hand and Stuart [14–18] have proposed
a method with which battery electrolyte be directly heated with Alternating Current(AC). However,
they also warned that Direct Current (DC) should not be applied as it might generate a lot of gas inside
and thus damage the battery. Zhang J. et al. [19] pointed out that within a certain scope, the higher the
sine AC rose, the lower the frequency might be, and the more rapidly the battery temperature would
be increased. Comparing the heat generation process of battery charge and discharge, Zhao et al. [20]
proposed that LIB could be heated at low temperature by combining the large pulse discharge with
the small pulse charging.

It can be deduced from the above research that the heating method with external resistance is to
heat the battery via heat conduction. The battery heats up rapidly, while the size and weight of the
battery pack may be increased. In the heating method with convective heat transfer, there are still
some problems such as longer heating time, lower heat exchange efficiency, and poorer temperature
uniformity inside the battery pack after heating. Even for a heating method that applies AC to a
battery to heat it, problems still exist; for instance, the circuits used in the external heating are complex,
and the impact of AC heating on battery life remains to be verified. Moreover, the heating methods
discussed above are highly dependent on an external power supply, which will be an inconvenience
for EVs. For example, when an external power supply is not available in a cold environment, EVs may
not function normally at low temperatures.

To solve the above problems, a positive temperature coefficient (PTC) self-heating method is
proposed in this paper. With this method, EVs can be operated independently of external power at low
temperature, with the LIB pack being heated on its own when it discharges electricity to provide PTC
material power. The main advantages of the method are: (1) Making full use of the PTC heat generation
characteristics. Namely, when the temperature is low, and the PTC resistances are small, heating
power will be increased. When the temperature rises to a certain extent, the PTC resistances increase
sharply, and heating power will be reduced to avoid overheating the LIB pack. (2) Improving heating
effects. In a low-temperature environment, as the LIB internal resistances rise, the heat generated
by the resistances will also increase, which can be partially transferred directly within the LIB, thus
further promoting the heating effects. Based on the PTC self-heating method, three comparative
heating experiments, including an external power source heating experiment and two self-heating
experiments, were carried out. With further tests on charge/discharge performance implemented,
results reveal that the discharge performance of a self-heated battery is better than that of a pack heated
by an external power source.

In order to evaluate the heating effectiveness of this method, further study has been conducted to
examine temperature distribution uniformity of the heated LIB pack. The heat transfer of the external PTC
materials and the internal heat of LIB are analyzed theoretically, and a geometric model is established.
The thermal parameters of LIB are obtained, and the heat generation rate of the PTC materials and LIB
are calculated with our experimental data. The thermal characteristics of the self-heating process are
numerically simulated. With comparison of the simulation results and the experimental results, the
accuracy of the modeling and simulation is verified. The results also demonstrate that temperature inside
the LIB pack after heating is kept in good uniformity, which proves that this method has the advantage
of improving heating effectiveness.

2. Experimental Method

2.1. Design of PTC Self-heating for LIB Pack

The LIB used in this paper is the 35Ah square aluminum-plastic-film LiMn2O4 cell, its basic
parameters are specified in Table 1. When charged and discharged under different temperatures
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with different rates, its discharge capacity and 1C charge characteristics are shown in Table 2 and in
Figure 1, respectively.

Table 1. Basic parameters of the LiMn2O4 cell.

Parameters Unit

Mass 1.08 (kg)
Length/width/height 246/180/14.7 (mm)

Rated Voltage 3.7 (V)
Rated Capacity 35 (Ah)

Maximum Voltage 4.2 (V)
Minimum Voltage 3.0 (V)

Resistance ≤1 mΩ

Table 2. Discharge capacity of a cell at different temperatures and discharge rates (Unit: Ah).

Temperature

Rates
0.3C (10 A) 1C (35 A) 2C (70 A)

20 ◦C 36.1 35.2 33.8
0 ◦C 33.7 32.4 32.0

−20 ◦C 20.3 15.6 14.8
−40 ◦C 6.9 0.2 0.0

0 5 10 15 20 25 30 35

3.2

3.4

3.6

3.8

4.0

4.2

 20
 10
 0
 -10
 -20
 -30
 -40

Figure 1. The 1C charge characteristics of a cell at different temperatures.

From the above results, it can be noted that with the decrease of temperature, the discharge
capacity corresponding to the same discharge rate, will diminish, and the low-temperature charging
performance is more obviously subject to temperature. The battery cannot be charged at a rate of 1C
below −10 ◦C, which means it is very difficult to charge the battery in winter. Therefore, heating LIB
at low temperature seems to be quite necessary.

Accordingly, a PTC self-heating method is proposed in this paper. In the design, PTC resistance
bands are embedded in slotted aluminum plates, which are arranged between two sides of each cell.
PTC is heated by electricity derived from LIB pack, and the heat generated by PTC materials is rapidly
transferred to the cell through those aluminum plates. The extra slots on the aluminum plates will
be formed as air ducts to dissipate heat at high temperature. This design achieves an integration of
low-temperature heating and high-temperature cooling, with a schematic diagram shown in Figure 2.
The product of LIB pack with PTC material is exhibited in Figure 3. From Figure 3, there are 24 cells in
each of the two columns of the test pack, and in each column, there are 23 aluminum plates placed
between two sides of every two cells, ensuring that each cell has at least one side contacting with
the aluminum plates. Besides, a temperature sensor is installed at the center of each cell side and on
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the positive/negative column of each cell. The characteristic of PTC material is shown in Figure 4.
Figure 4a depicts the resistance characteristic of PTC material. The resistances will be increased
exponentially when the temperature rises to the Curie temperature (TC).

 

  

 

PTC heat 
vent 

 

Cell 

  

P/+

N/-

Al-plates with PTC  

Figure 2. Schematic diagram of PTC self-heating method.

PTC 
Material

Insulating 
layer

Figure 3. Product of battery pack with PTC.

Figure 4. The characteristics of the PTC material: (a) The resistance characteristic of PTC; and (b) the
current curve in the heating process at −40 ◦C.

Thereafter, the resistances of the PTC material remain steady and the heat generation rate will be
kept constant. Figure 4b is a current change curve when the PTC resistance bands are provided with
an external power (220 V AC) at −40 ◦C. It can be seen from the figure that the temperature of the PTC
material will reach the TC point in a very short time (about 40 s) after the power supply is switched
on; the current is then basically kept at a constant state, and the PTC material is sustained at a state of
constant power to heat the LIB pack.
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2.2. Experiment

The experiment consists of three procedures:

(1) External power source heating experiment: when the tested pack is at SOC = 100%, heat is
generated only by PTC resistance bands, and the external electricity power (220 V AC) serves as
a supplying power;

(2) Self-heating Experiment I: when the pack is at SOC = 100%, heat is generated by PTC resistance
bands and the internal resistances of the battery, and the source of supplying power is the
pack itself;

(3) Self-heating Experiment II: when the pack is at SOC = 60%, heat is generated by PTC resistance
bands and the internal resistances of the battery, and the source of supplying power is the
pack itself.

Detailed steps of the external power source heating experiment are as follows:

Step 1 Soak the tested pack into a −40 ◦C incubator for more than 5 h, to maintain the average
temperature inside the battery at −40 ◦C;

Step 2 Connect PTC materials with 220 V AC current, then start to heat the pack;
Step 3 Suspend the first heating process when the lowest temperature collected in the pack is raised

to −20 ◦C;
Step 4 Test the pack with hybrid pulse power characteristic (HPPC) specification by Digatron

EVT500-500 (Digatron Power Electronics Company, Aachen, Germany);
Step 5 Repeat Step 2;
Step 6 Stop the second heating process when the lowest temperature collected in the pack is raised to

0 ◦C;
Step 7 Repeat Step 4;
Step 8 Test the pack with 1C constant-rate discharge until the discharge cutoff voltage is reached, then

terminate the experiment.

As can be seen from the above steps, the experiment is composed of two heating processes.
The lowest temperature of each cell in the pack rises from −40 ◦C to −20 ◦C during the first heating
process; and rises from −20 ◦C to 0 ◦C during the second process. An HPPC test is carried out
after each process to study the recovery of charge/discharge performance. Furthermore, a 1C
constant-current (CC) discharge rate test is conducted to investigate the recovery of the LIB capacity
after the second process.

The experimental steps for Self-heating Experiment I and II are virtually identical to those of
the external power source heating experiment, with the only difference being that the supply power
is derived from the pack itself, which can only be used to supply DC current, rather than from the
external power source (220 V AC). Therefore, the current transmitted through the PTC material is DC
rather than AC. The devices used in the experiments are listed in Table 3 and the photos of experiments
are shown in Figure 5.

Table 3. Main devices needed in the experiments.

Serial Number Device

1 Battery Management System (BMS)
2 Digatron EVT 500V-500A
3 Incubator
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Figure 5. The scene photos of the experiments.

3. Comparison of Experiment Results

3.1. Comparison of Heating Results

The results of two heating experiments are shown in Tables 4 and 5.

Table 4. Results acquired in the three experiments after the first heating process.

Experiment Types Time (min) Temperature (◦C) Rate (◦C/min)

External power source heating 31 −39.8 to −20.3 0.629
Self-heating I 34.2 −39.4 to −20.7 0.459
Self-heating II 43.33 −32 to −20.3 0.270

Table 5. Results acquired in the three experiments after the second heating process.

Experiment Types Time (min) Temperature (◦C) Rate (◦C/min)

External power source heating 45 −23.2 to −0.5 0.504
Self-heating I 48 −19.3 to −2.4 0.352
Self-heating II 52 −19.7 to −2.7 0.327

As can be observed in Tables 4 and 5:

(1) During the process of external power source heating experiment, the temperature of the pack
increases quickly with the highest heating rate, as the externally applied 220 V AC is high and
stable and the PTC material generates heat quickly.

(2) Although the discharge capability of the pack is poor at low temperatures, the heating effect of
the pack cannot be neglected when it is heated via supplying power to the PTC resistance bands.
In the fully-charged state (SOC = 100%), the self-heating rate will be about 70% of the external
power source heating rate.

(3) As the battery SOC grows larger, better heating effects will be achieved, and a higher heating rate
can be obtained.

However, some underlying information may have not been reflected from data presented in the
above tables, which only represents the surface temperature of the LIB and cannot accurately reflect
the actual temperature inside the battery. Reasons are that during processes of heating, in addition to
the heat produced by the external PTC resistance bands, the internal Joule heat is also generated due
to battery discharge. Hence, the temperature values collected by temperature sensors (attached to cell
surfaces) are comparatively lower than the actual temperature.
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3.2. Variations of Total Voltage and Average Temperature of the Pack in Self-Heating Process

In the external power source heating experiment, since there is no charge/discharge process for
the pack, the variations of total voltage and average temperature of the pack are discussed only in the
self-heating experiment.

With the pack at 100% SOC, the variations of total voltage and average temperature of the pack in
the Self-heating Experiment I are shown in Figures 6 and 7.
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Figure 6. The first heating curves of Self-heating Experiment I.
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Figure 7. The second heating curves of Self-heating Experiment I.

In the self-heating processes, the total voltage of the pack rises with the increase in temperature.
As can be seen from Figure 6, the initial total voltage of the pack is 190 V at −39.4 ◦C. At the moment
when the pack is supplying power to PTC resistance bands, the total voltage dramatically drops to
142 V since the internal resistances are relatively large at that time. After 34.2 min of heating, the
temperature of the pack will go up to −20.7 ◦C, and then the total voltage will rise to 172 V. That
is because during the heating process, though the pack consumes part of its energy in discharging,
its charge transfer is speeded up and the voltage platform is elevated gradually as the temperature
increases. When the circuit is disconnected and the heating process terminated, the total voltage will
be raised to 187 V, which illustrates that, after heating, the internal resistances being subjected to the
temperature rise are significantly decreased.

Similarly, the curves of the pack heated from −19.3 ◦C to −2.4 ◦C are shown in Figure 7.
The voltage platform rises from 172 V to 186 V as the temperature increases; the total voltage is
restored to 189 V after heating is stopped, signifying that the temperature may become higher and the
internal resistances of the pack grow smaller with a longer heating time. However, the duration of
heating time has been increased to about 48 min, since the resistances of the PTC material increase
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rapidly with the rise in temperature, resulting in a slow heating rate. Further details about the heat
generation rate curves will be given in Section 4.

When the pack is at 60% SOC, the variations in total voltage and average temperature of the pack
during Self-heating Experiment II are shown in Figures 8 and 9.
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Figure 8. The first heating curves of Self-heating Experiment II.

0 500 1000 1500 2000 2500 3000 3500

160

165

170

175

180

185

 Total voltage (V)
 Average temperature ( )

Time/s

V
ol

ta
ge

/V

-21

-18

-15

-12

-9

-6

-3

 T
em

pe
ra

tu
re

/

Figure 9. The second heating curves of Self-heating Experiment II.

As shown in Figure 8, the initial total voltage of the pack is indicated as 183 V and the initial
average temperature is −32 ◦C. After supplying power to the PTC resistance bands, its total voltage
drops quickly to 140 V, which means that at this moment large resistances exist inside the pack. After
43.3 min of heating, its temperature is raised from −32 ◦C to −20.3 ◦C, with the voltage platform lifted,
and the total voltage rises from 140 V to 160 V. When heating is ended, the voltage is restored to 178 V,
signifying a significant decrease in its internal resistances.

Again similarly, the initial total voltage of the pack in Figure 9 is indicated as 178 V and its initial
average temperature is −19.7 ◦C. After supplying power to the PTC resistance bands, the pack’s total
voltage goes down to 161 V. With 52 min of heating, the temperature goes up to −2.7 ◦C. When heating
is terminated, the total voltage is restored to 177 V.

Comparing the results of the two self-heating experiments, we find that the pack with larger SOC
can provide higher voltage, so the heating time will be shortened and the temperature will be raised
more quickly, and a better heating effect will be achieved. From Figures 6–9, it should also be taken
into account that when the total voltage data is being collected, the curves in all figures, in view of the
sensor acquisition accuracy, may have different degrees of right-angle folding, which, nevertheless,
will not affect voltage variations in the heating process.
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3.3. Pulse Charge–Discharge Capability of the Heated LIB Pack

HPPC tests are implemented to check the performance recovery of pulse charge–discharge
capability for the pack after each heating process.

Figures 10 and 11 are the test results after each heating in the external power source heating
experiment.
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Figure 10. Pulse discharge capability of the pack after the first heating with an external power source.
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Figure 11. Pulse discharge capability of the pack after the second heating with an external power source.

After the first heating, the temperature rises to −20.3 ◦C, the battery can be discharged at the 0.5C
rate for 10 s, but fails to be discharged at the 1C rate, and its discharge curve is shown in Figure 10.
As can be seen from Figure 11, after the second heating, the temperature rises to 0.5 ◦C, the discharge
performance of the pack is remarkably improved, and then the pack can be discharged at the 3C rate
for 10 s, but not at the 3.5C rate.

Figures 12 and 13 exhibit graphs of HPPC tests after each heating in Self-heating Experiment I.
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Figure 12. Pulse discharge capability of the pack after the first heating in Self-heating Experiment I.
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Figure 13. Pulse discharge capability of the pack after the second heating in Self-heating Experiment I.

From Figures 12 and 13, we find that after the first heating the pack can be discharged at the 0.57C
rate for 10 s when heated to a temperature of −20.7 ◦C, yet not at the 1C rate; after the second heating,
when the pack is heated to −2.4 ◦C, and its performance has been significantly improved, it can be
discharged at the 3C rate, but not at the 3.5C rate.

Figures 14 and 15 give the test results after each heating in Self-heating Experiment II.
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Figure 14. Pulse discharge capability of the pack after the first heating in Self-heating Experiment II.

0 500 1000 1500 2000 2500 3000

145

150

155

160

165

170

175

180

185

Time/0.1s

Vo
lta

ge
/V

-120

-100

-80

-60

-40

-20

0

 Voltage
 Current

 C
ur

re
nt

/A

Figure 15. Pulse discharge capability of the pack after the second heating in Self-heating Experiment II.

As seen in Figure 14, when it is heated to −20.3 ◦C after the first heating, the pack can be
discharged at the 0.29C rate for 10 s, but fails at the 0.43C rate for 10 s. As seen in Figure 15, when it is
heated to −2.7 ◦C after the second heating, the pack can be discharged at the 1.5C rate for 10 s, but
fails at the 2C rate for 10 s.

Results of charging performance recovery are obtained as follows:
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(1) Only pulse dynamic tests can be used to verify the pack’s charge capability when it is at 100% SOC.
The results of charging performance recovery for the external power source heating experiment
are consistent with those of Self-heating Experiment I. After the first heating, the pack cannot be
charged at the 0.5C rate; after the second heating, the pack can be charged at the 0.5C rate for 10 s,
but fails at 1C.

(2) In Self-heating Experiment II, after the first heating, the pack (at SOC = 60%) cannot be charged
at the 0.29C rate; after the second heating, it can be charged at the 0.34C rate for 10 s, but fails at
the 0.5C rate.

Comparing the three heating experiments, we can conclude that:

(1) The charge–discharge performance recovery of the pack after the second heating is obviously
superior to that after the first heating, due to the fact that the second heating temperature tends
to be relatively higher, LIB electrolyte viscosity is decreased, and the charge transfer is speeded
up. It is also confirmed that the low-temperature discharge capability of LiMn2O4 LIB is much
better than its charge ability.

(2) When the pack is at 100% SOC, though the pack in Self-heating Experiment I consumes part of its
energy, there is no significant difference between its discharge capacity during self-heating and
external power source heating. Moreover, the former is comparatively better than the latter.

(3) The charge/discharge capability of LIB in Self-heating Experiment II is relatively poor when LIB
is at 60% SOC, mainly due to influential factors such as smaller SOC, lower voltage platform,
slower heating rate, longer heating time, more consumption of energy, etc.

3.4. Constant-Current Discharge Capability of the Heated LIB Pack

The HPPC tests prove that when the pack is at 100% SOC in self-heating experiments,
its charge/discharge performance is relatively better. In order to further study its capacity recovery,
1C CC discharge rate tests (based on the PNGV Battery Test Manual, the Freedom CAR Battery Test
Manual for Electric Vehicles is jointly compiled by the authors and the battery manufacturers) are
implemented on three heated packs. The test results are depicted in Figure 16.
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Figure 16. Comparison of 1C CC discharge tests.

As can be seen in Figure 16:

(1) Although the pack in Self-heating Experiment I consumes part of its energy, it has discharged
up to 19.834 Ah energy, with the highest capacity at 1C CC among the three packs. In contrast,
the discharge capacity of the pack in the external power source heating experiment is only
12.853 Ah. Thus, the internal heat is proved to be of non-negligible value. Compared with
the external power source heating method, which depends solely on the PTC heating material,
the self-heating method can integrate the internal heat with the external heat to effectively
promote the restorability of battery discharge capacity. Therefore, even when the self-heated LIB
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pack is at a state of SOC < 100% after heating, its discharge capacity is still larger than that of
the external power source heated pack at 100% SOC. Thereby, the superiority of the self-heating
method is validated.

(2) When the pack is at 60% SOC and heated in the Self-heating Experiment II, the pack discharges
the least capacity (<2 Ah). This is mainly because the initial SOC of the pack is comparatively
small; the voltage platform is lower than that of the pack at 100% SOC and its heating rate is low,
so the two heating processes will require a longer time and consume more energy, causing lower
residual capacity. Another reason is that the 1C discharge rate is too large for the pack when SOC
< 60% at low temperatures. Moreover, in order to protect the pack from being damaged during
the experiment, its discharge cutoff voltage is set to be comparatively higher than its minimum
cutoff voltage, leading to the consequence that virtually no energy is discharged.

4. Modeling for PTC self-heating

The above experimental results show when the pack at 100% SOC is heated from −40 ◦C to
0 ◦C by using the self-heating method and the external power source heating method, its pulse
charging/discharging capabilities are equivalent to each other, and yet the 1C CC discharge capacity
of the former pack is far greater than that of the latter pack. One possible reason for that result may be
that the temperature is not distributed uniformly. Accordingly, a self-heating model is established to
further study the temperature distribution uniformity of the pack after heating.

Generally, thermal models for a battery come in a variety of types, such as an electrochemical–thermal
coupled model, an electro-thermal coupled model, a thermal abuse model, a 1D model, a 2D model, a 3D
model, etc. [21–25]. An electrochemical–thermo-coupled model is a battery thermal model established
on the basis of the thermo–chemical reaction of the battery, in which the temperature in the battery is
considered to be distributed uniformly, with the distribution of current density on the battery pole
pieces being ignored. Tiedemann et al. [26], Pollard and Newman [27], and Bernardi et al. [28] have
performed many in-depth studies on the electrochemical–thermo-coupled model. The equation of the
heat generation rate model proposed by Bernardi, which is one of the most widely used models, will
be adopted in this paper.

In this paper, the discussed heat resources generated by heating a LIB pack with self-heating
method are derived from two sources: internal heat and external heat. (1) The internal heat refers to
the amount of heat produced by the internal resistances, when the LIB is supplying power to the PTC
resistance bands; (2) the external heat means the amount of heat produced by the PTC resistance bands.
Thus, thermal modeling usually begins with an analysis of the heat generation theories of the internal
and external power source.

4.1. Theoretical Analysis of Heat Generation

4.1.1. Theoretical Analysis of the Internal Heat Generation

The internal heat generation of the LIB is the internal heat source of the thermal model, so
the calculation accuracy of heat generation directly influences the accuracy of the thermal model.
As the assumption of Bernardi heat generation model is not consistent with the actual temperature
distribution in the LIB, some researchers have made improvements in the Bernardi heat generation
model based on the introduction of the current density.

(1) The Bernardi heat generation rate model.

The equation for Bernardi’s heat generation rate model is as follows [28]:

qB = I(E0 − E) − IT(dE0/dT), (1)

where qB denotes the heat generation rate, the unit is W; I denotes the charge/discharge current,
the unit is A, and in the charging process, I has a negative value, while in the discharging process,
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I has a positive value; T denotes the temperature, the unit is K, and the average temperature is
adopted when calculating qB; dE0/dT denotes the change rate of open circuit voltage with the
temperature; Joule heat and reaction heat are mainly considered in qB. In Equation (1), I(E0 − E)
denotes joule heat, and IT(dE0/dT) denotes reaction heat.

(2) The advanced Bernardi heat generation rate model.

The equation for the advanced Bernardi heat generation rate model is as follows:

qB = J[(E0 − E) − T(dE0/dT)], (2)

where Jdenotes the charge/discharge current density of the positive/negative plate.

According to the LIB temperature variation during the charging/discharging process at different
currents, the accuracies of the two models are compared and the results are shown in Figure 17.
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Figure 17. Comparison of simulation results of two models and the experimental results.
(a) Temperature variation in the charge process; and (b) temperature variation in the discharge process.

It can be seen from Figure 17 that the calculation accuracy of the advanced Bernardi heat
generation model is not superior to that of the initial one, and the advanced model is also highly
computationally demanding, which is not conducive to calculations for the heating model of the LIB
pack. Therefore, this paper adopts the Bernardi heat generation model.

4.1.2. Analysis of Internal Heat Conduction

Before establishing the model, we initially set up a differential equation of heat conduction for a
LIB cell, which will help us to understand at the microscopic level the heat generation, heat transfer,
and temperature rise inside the cell.

Also before establishing the thermal differential equation, we put forward some assumptions: (1) The
inner part of a cell composed of different materials should be simplified into an isotropic continuous
medium; (2) if heat is generated inside a cell, the internal heat should be uniformly distributed.

Next, we assume that a micro-unit will be taken out from a cell; as shown in Figure 18, qx, qy, qz

represent the heat fluxes flowing respectively into the micro-unit from its left side, from below, and from
the back, respectively; qx+dx, qy+dy, qz+dz stand for the heat fluxes flowing out of the micro-unit from
the right side, from the top, and from the front, respectively. According to Fourier’s law, Equation (3)
can be obtained:

qx+dx = qx +
∂qx

∂x
dx qy+dy = qy +

∂qy

∂y
dy qz+dz = qz +

∂qz

∂z
dz. (3)
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Figure 18. The micro-unit of the cell.

Here, the internal instantaneous heat power of the micro-unit is
•
qdxdydz. If there is no internal heat

source in a micro-unit, then
•
q = 0; and the thermodynamic increment of a micro-unit is ρc ∂T

∂τ dxdydz,

where
•
q denotes the heat power per unit volume; ρ denotes the density; c denotes the specific heat

capacity; T denotes the temperature; and τ denotes the time.
According to the conservation of energy, a general expression of the heat conduction differential

equation in the rectangular coordinate system can be obtained:

ρc
∂T
∂τ

= λx
∂2T
∂x2 + λy

∂2T
∂y2 + λz

∂2T
∂z2 +

•
q. (4)

4.1.3. Analysis of the External Heat Conduction

As the heat generated externally is originated primarily from the PTC material, this paper analyzes
the external heat transfer, with two aspects considered—heat conduction and heat convection—and
with the radiation heat transfer being ignored.

The theoretical basis of heat transfer is Fourier’s law, which can be expressed as: the heat flux
at any point and any time is proportional to the temperature gradient at that point. The formula is
as follows:

→
q = −λgradT = −λ

∂T
∂n

→
n , (5)

where
→
q denotes the heat flux density of heat conduction; λ denotes the coefficient of heat conductivity;

and n denotes the direction of the outer normal. Since the heat is transferred from the points of high
temperature to those of low temperature, the resulting value in Equation (5) is negative.

As the sides of the cells are heated directly by the aluminum plates arranged between the sides of
every two cells, the other sides of the cells can only be heated by the heated air flow, which can be
calculated by using the Newton cooling formula:

q = h(Tw − Tf ), (6)

where h denotes the heat transfer coefficient and the unit is W/(m2·K).

4.1.4. Heat Generation and Conduction Model

Combining the heat conduction differential equation and the Bernardi heat generation rate model,
the heat generation and conduction model can be obtained:

ρc
∂T
∂t

= λx
∂2T
∂x2 + λy

∂2T
∂y2 + λz

∂2T
∂z2 + βI[(E0 − E)− IT(dE0/dT)], (7)
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where β is the correction coefficient of the heat generation rate.
The initial and boundary conditions are as follows:

⎧⎪⎪⎨
⎪⎪⎩

T(x, y, z; 0) = T0

−λ ∂T
∂n

∣∣∣
w
= q(t)

−λ ∂T
∂n

∣∣∣
w
= h(Tw − Tf )

. (8)

4.2. The Establishment of a Geometric Model

Several assumptions are made to simplify the geometry model of the pack. (1) As the thickness of
each element inside the LIB is very small, the amount of calculation work will become considerable
if the three-dimensional model is established with every element. Therefore, the cell composed of
different materials is simplified into an isotropic continuous medium. (2) The PTC heat generation
rate is assumed to be equivalent to the heat generation rate of aluminum plates; because the thermal
conductivity of aluminum plates is relatively larger and the PTC resistance bands are embedded in the
aluminum-plate containers, the heat produced by the PTC material can be rapidly transferred to the
aluminum plates. (3) The connectors, wires, and insulation objects inside the pack are ignored, and the
irregular structures of the pack are assumed to be regular cuboids. All the above assumptions can help
simplify the model and shorten the calculation. (4) Based on the symmetry principle, the 48 s battery
pack can be reduced to a 1/4 model composed of 12 cells. Simulations of the temperature field of the
whole LIB pack can thus be simulated with boundary conditions.

Based on the above simplifications, the 1/4 geometry model falls into four aspects: (1) 12 cells;
(2) 12 aluminum plates, including an aluminum plate at the center of the original 48s pack; (3) the LIB
pack shell; and (4) the air flow inside the pack. Relevant parameters for modeling are listed in Table 6
and a geometric model is shown in Figure 19.

Table 6. The parameters of the 1/4 geometry model.

Components Size (Length × Width × Height, Unit: mm3)

A cell 180 × 14.7 × 246
Aluminum plate 170 × 5 × 198

shell of the container 220 × 262.5 × 296

 

Figure 19. The 1/4 geometry model.

4.3. Acquisition of Model Parameters

4.3.1. Acquisition of the Thermo-Physical Parameters

The general thermo-physical parameters of each components inside LiMn2O4 cell are as shown
in Table 7.
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Table 7. The thermo-physical parameters.

Components

Parameters
Density (kg/m3) Specific Heat

Capacity J/(kg·K)
Heat Conductivity

Coefficient W/(m·K)

Anode 2840 839 3.9
Aluminum foil 2710 903 238

Cathode 1671 1064 3.3
Copper foil 8933 385 398
Separator 659 1978 0.33

Shell of the cell 1636 1377 0.427

Yet, some thermo-physical parameters still need to be calculated, such as: density, specific heat
capacity, heat conductivity coefficient, etc.

(1) The cell density can be calculated by using the mean method, and the general formula is:

ρ =
M
V

, (9)

where M is the total quality of the cell, and V the total volume of the cell.
(2) The specific heat capacity of the cell can be calculated by using the theoretical equation expressed

as Equation (10):

Cp =
1
M ∑ n

i=1miCi =∑ n
i=1(ρV)iCi/∑ n

i=1(ρV)i. (10)

(3) The heat conductivity coefficient of the cell can be calculated by using the thermal resistance
method, which leads to Equations (11) and (12):

λx =
Lx

(Lxp/λp) + (Lxn/λn) + (Lxs/λs) + (Lxw/λw)
(11)

λy = λz =
Lxpλp + Lxnλn + Lxsλs + Lxwλw

Lx
(12)

where Lx is the thickness of the cell; and Lxp, Lxn, Lxs, Lxw and λp, λn, λs, λw denote the
lengths and the heat conductivity coefficients of cathode plates and anode plates, separator, and
shell, respectively.

Based on Equations (9)–(12), the calculated results are: density 2182.7 kg/m3; specific heat capacity
1100 J/(K·kg); and heat conductivity coefficient 0.895 W/(m·K).

4.3.2. Internal and External Heat Generation Rates

The discharge voltage and current in the heating processes are acquired with self-heating
experiments. The calculation approach discussed in Section 4.1 is used to determine the internal and
external heat generation rate. The heat generation rates are obtained many times to fully demonstrate
the real-time changes in heating, so the simulation may be kept closer to the actual experiment. Graphs
of the heating current and power during the first and second heating experiments are shown in
Figures 20 and 21, respectively.
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Figure 20. Heating current and heating power in the first self-heating process.
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Figure 21. Heating current and heating power in the second self-heating process.

Comparing Figure 20 with Figure 21, we find:

(1) In the first self-heating process, the heating current tends to decrease, while the heating power
keeps increasing. The reasons may be that the PTC material resistances increase as the temperature
rises; at the same time, the pack voltage platform is also being raised, and the degree of resistance
increase is greater than that of the voltage rise.

(2) In the second self-heating process, although the temperature is still rising, the battery voltage
platform has been basically stabilized. At this time, as the PTC material resistances increase
dramatically, the heating current will decrease and the heating power is gradually reduced.

With the calculation results of the internal and external heat generation rate, we can acquire a
graph of the heat generation rate for the pack from −40 ◦C to 0 ◦C. As shown in Figure 22, the mean
value of the external heat generation rate is 72.386 kw/m3, and the mean value of the internal heat
generation rate is 8.337 kw/m3, which is about 11.5% of the former.
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Figure 22. Variation of the internal and external heat generation rates of the whole self-heating process.
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5. Results and discussion

We write the program according to the results in Figure 22 and import the geometric model in to
our simulation design, then conduct a numerical simulation.

Although the heat generation rate inside the battery is rather small, it cannot be ignored because of
its direct effect on the battery. In order to better verify the characteristics of the internal heat generation,
two cases are also included in the simulation:

(1) Considering the co-generation of both the internal and the external heat in the heating process,
which is in line with the actual situation.

(2) Ignoring the internal heat, with only the external heat considered.

The curves of temperature rise, acquired from experiments and simulations on the battery during
two heating processes, are shown in Figures 23 and 24, respectively.
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Figure 23. Comparison of simulation and experimental results in the first self-heating process.
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Figure 24. Comparison of simulation and experimental results in the second self-heating process.

As shown in Figures 23 and 24, simulation curves of the internal and external co-heating are in
good agreement with the temperature rise curves obtained during the experiments. The average and
maximum temperature difference in the first heating process are 0.201 ◦C and 0.938 ◦C, respectively.
The average and maximum temperature difference in the second heating process are 0.164 ◦C and
0.783 ◦C, respectively. The above results verify the accuracy of the simulation results. The simulation
curve, without regard for the internal heat, is significantly lower than the curve in the experimental
process, which fully illustrates the significance of internal heat on the LIB temperature rise. Even if the
heat rate is comparatively tiny, it should not be ignored.
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Next, utilizing the function of temperature contour, we further analyze the temperature
distribution inside the pack after heating. The results are shown in Figures 25 and 26.

Figure 25. Temperature distribution of 12 cells on the z = 0 section (the center) at the end of the first
self-heating process.

Figure 26. Temperature distribution of 12 cells on the z = 0 section (the center) at the end of the second
self-heating process.

As can be seen from Figure 25, for the cell on the far left, namely in the middle of the original 48-s
battery pack, it is raised to the highest temperature of −18.8 ◦C after heating; for the cell on the far
right, namely close to the pack container shell, the lowest temperature only reaches −23.47 ◦C after
heating. The maximum temperature difference inside the pack amounts to 4.67 ◦C. Similarly, as can be
seen in Figure 26, the highest and lowest temperatures within the pack after heating are 0.248 ◦C and
−3.258 ◦C, respectively, with a maximum temperature difference of 3.506 ◦C.

Although the quantity of heat generation for each cell is virtually identical, the temperature of the
cell on the far left is the highest and the temperature of the cell on the far right is the lowest. The reason
may be that the position of the cell on the far left is at the center of the original 48-s pack, and the heat
convection is slow, as a result, it is kept at the highest temperature and vice versa, as the cell on the far
right is placed next to the outer shell of the pack and the heat convection is rapid, it is maintained at
the lowest temperature. The temperature difference after the second heating is smaller than that of
the first heating, which may be explained by the fact that with the extension of heating time, the heat
generated inside the battery is more favorable for the uniform temperature distribution.
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6. Conclusions

The work presented in this paper can be summarized as follows:

(1) A PTC self-heating method is proposed, in which the supplying power is the pack itself rather
than the external power source, and EVs can be operated independently of external power source
in cold areas.

(2) Although the power consumption of the pack truly exists in the self-heating experiment process
(the consumed energy in the whole self-heating experiment is approximately 13% of the total
pack energy), the experimental results show that the charge/discharge capability and capacity
recovery of the pack in Self-heating Experiment I are superior to that of the pack in the other two
heating experiments. The results fully illustrate the superiority of the method and the pack with
a high SOC is more helpful to the recovery of LIB performance.

(3) Although the average internal heat generation rate is only 11.5% of the external heat generation
rate, the impact of temperature rise on capacity recovery cannot be ignored because the internal
heat has a direct effect on the inside of LIB.

(4) The simulation results verify the accuracy of the modeling and simulation, and demonstrate
that temperature distribution inside the pack after heating is kept uniform, which further proves
that this method is of great value for the performance improvement of LIB and can be utilized
to effectively promote the feasibility and applicability of EVs at low temperatures. However, if
the initial SOC of the LIB pack is small and self-heating is unavailable, external power source
heating is an alternative approach. The main reasons are that the energy and capacity of the pack
with the external power source heating cannot be reduced. In our future work, we will work at a
strategy that can incorporate the advantages of both internal and external heating to reduce the
restrictions on initial SOC.
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Abstract: The DC/DC converters and DC/AC inverters based on silicon carbide (SiC) devices as
battery interfaces, motor drives, etc., in electric vehicles (EVs) benefit from their low resistances, fast
switching speed, high temperature tolerance, etc. Such advantages could improve the power density
and efficiency of the converter and inverter systems in EVs. Furthermore, the total powertrain system
in EVs is also affected by the converter and inverter system based on SiC, especially the capacity of
the battery and the overall system efficiency. Therefore, this paper investigates the impact of SiC on
the powertrain systems in EVs. First, the characteristics of SiC are evaluated by a double pulse test
(DPT). Then, the power losses of the DC/DC converter, DC/AC inverter, and motor are measured.
The measured results are assigned into a powertrain model built in the Advanced Vehicle Simulator
(ADVISOR) software in order to explore a direct correlation between the SiC and the performance of
the powertrain system in EVs, which are then compared with the conventional powertrain system
based on silicon (Si). The test and simulation results demonstrate that the efficiency of the overall
powertrain is significantly improved and the capacity of the battery can be remarkably reduced if the
Si is replaced by SiC in the powertrain system.

Keywords: DC/DC converters; DC/AC inverters; silicon carbide (SiC); electric vehicles (EV);
powertrain system; battery

1. Introduction

Because of the global energy crisis and environmental pollution, the past decade has witnessed the
rapid development of new energy vehicle technologies, such as Electric Vehicles (EVs), Hybrid Electric
Vehicles (HEVs), Plug-in Hybrid Electric Vehicles (PHEVs), etc. As a result, more and more companies
that produce transportation vehicles are developing new technologies for EVs/HEVs/PHEVs [1–11].
The main challenge of EVs/HEVs/PHEVs development remains the limited cruising range due to
the small battery capacity and the long charging times according to the available battery charging
technologies, especially for pure electric vehicles [3–7]. Hence, it is important to maximize the efficiency
of each component in the powertrain system of EVs [8]. The high efficiency of the system will distinctly
reduce the burden of the battery and extend the cruising range.

A typical powertrain system in an EV and the corresponding losses are shown in Figure 1.
The main contributions of the total losses are copper and iron losses in a permanent magnet
synchronous machine (PMSM), and switching and conduction losses of switching devices in both the
DC/DC converter and inverter, respectively.
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Figure 1. The components of the powertrain system in an electric vehicle (EV) and the corresponding losses.

Currently, the conventional insulated-gate bipolar transistor (IGBT) or Si metal-oxide-semiconductor
field-effect transistor (MOSFET) technologies based on silicon (Si) material dominate the semiconductor
fields in the application of power converters and inverters. However, the Si IGBT/MOSFET is
now reaching the material’s theoretical limits. Higher efficiency, higher power density, and higher
temperature application are the urgent requirements in traction converters and inverters of EVs.
Recently, wide band-gap (WBD) silicon carbide (SiC) MOSFET has exhibited great potential to replace
Silicon (Si) as the dominant transistor technology according to its extreme advantages, such as faster
switching speed, lower voltage-drop, higher operating temperature, etc. [1,2,12–17]. Such outstanding
characteristics of SiC are due to the advantages of its material and structure, such as higher electron
velocity, higher energy gap, higher thermal conductivity, etc., which are shown in Figure 2. As a result,
a motor drive system, which consists of a converter plus an inverter, based on SiC devices can provide
higher efficiency and higher power density in comparison with their Si counterparts [9,10,18–21].

Figure 2. The components of the powertrain system in an EV and the corresponding losses.

Much research involving SiC has been widely conducted by many researchers [1,2,9–23]. Most of
the work reflects an enormous effort investigating the switching and conduction losses of SiC [1,9,12,23].
For example, Ref. [22,23] developed a loss model of SiC, and both the conduction loss and switching
loss of SiC are less than that of Si. The efficiency of the inverter based on SiC is 99.1% while the
efficiency of the Si-inverter is 97.1%. The above work mostly focuses on the losses of the SiC-inverter
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or converter. However, the impact of SiC on the overall-powertrain system has not been explored
systematically yet.

Therefore, this paper comprehensively investigates the impact of SiC on the powertrain systems
in EVs. First, the characteristics of SiC are measured by a double pulse test (DPT). Then, the power
losses of the DC/DC converter, DC/AC inverter, and motor are tested. The experimental results are
assigned into a powertrain model built in the Advanced Vehicle Simulator (ADVISOR) software in
order to explore a direct correlation between the SiC and the EV’s battery capacity as well as the overall
powertrain system efficiency. The SiC results are compared with the conventional powertrain system
based on Si.

The remainder of this paper is organized as follows. In Section 2, the characteristics of SiC and Si
are evaluated. In Section 3, the efficiencies of the DC/DC converter, DC/AC inverter, and motor are
measured. In Section 4, simulations of the powertrain are implemented in ADVISOR. Conclusions are
drawn in the final section.

2. SiC Device Characterization

The characteristics of a SiC power device are investigated experimentally in this Section,
and compared with the Si counterparts. Both dynamic and static characteristics are tested. The test
bench adopts a double pulse test (DPT), which is the widely accepted test method. Figure 3 shows the
DPT test bench. A high accuracy current probe and a high accuracy voltage probe are used, namely a
current probe TCPA300 plus TCP303 and a voltage probe P5100A.

The switching transition waveforms of SiC and Si are described in Figures 4 and 5, respectively.
Both the turn-on and turn-off speed of SiC are faster than the Si counterparts. The quantified results
are summarized in Table 1. The turn-on time of SiC is 85 ns while the turn-on time of Si is 143 ns at
25 ◦C. Meanwhile, the turn-on time of SiC is 79 ns while the turn-on time of Si is 145 ns at 175 ◦C.
The turn-on times of both SiC and Si are around a constant value as the temperature changes. However,
the turn-off time of Si is 752 ns at 175 ◦C, which is almost twice the value of 328 ns when Si operates at
25 ◦C. The turn-off time of SiC is not sensitive to the change of temperature, as well as its turn-on time.
Such characteristics indicate that the switching loss of SiC is not increasing as the temperature rises.
However the switching loss of Si incredibly rises as the temperature increases.

The variation tendencies of the voltage-drops of SiC and Si are different with their switching
losses, as shown in Table 2. The voltage-drop of SiC becomes higher as the temperature increases,
while the Si counterpart reduces as the temperature rises. However, the voltage-drop of Si is almost
20 times the value of SiC at 25 ◦C, which demonstrates that the conduction loss of SiC is much smaller
than that of Si. Therefore, the test results of both the dynamic and static characteristics of SiC show
that the power losses of SiC are much smaller than the Si counterparts.

(a) (b)

Figure 3. A double pulse test (DPT) bench. (a) Simplified DPT circuit; (b) Actual components in the
test bench.
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b c

(a)

(b)

(c)

Figure 4. Switching transition waveform of SiC. (a) Total switching transition; (b) Turn-off transition;
(c) Turn-on transition.

b

c

(a)

Figure 5. Cont.
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(b)

(c)

Figure 5. Switching transition waveform of Si. (a) Total switching transition; (b) Turn-off transition; (c)
Turn-on transition.

Table 1. Characteristic comparison between SiC and Si.

SiC (Cree CAS300M12BM2)
Si Insulated-Gate Bipolar Transistor

(IGBT) (Infineon FF400R12KE3)

25 ◦C 175 ◦C 25 ◦C 175 ◦C

DC voltage 270 V 270 V 270 V 270 V
Turn-on time 85 ns 79 ns 143 ns 145 ns
Turn-off time 153 ns 148 ns 328 ns 752 ns

On-state resistance 4.8 mΩ 7.84 mΩ / /
Collector-emitter saturation voltage / / 832.5 mV (9.5 A) 583.0 mV (9.4 A)

Output capacitance 12.7 nF 13.4 nF 32.7 nF 35.3 nF

Table 2. Voltage-drop comparison between SiC and Si under different temperatures.

Temperature
SiC (Cree CAS300M12BM2) Si (Infineon FF400R12KE3)

Vds Id Vce Id

25 ◦C 44.2 mV 9.2 A 832.5 mV 9.5 A
100 ◦C 60.1 mV 9.2 A 686.9 mV 9.3 A
175 ◦C 73.7 mV 9.4 A 583.0 mV 9.4 A

3. Efficiency of the Powertrain System

The efficiency of the powertrain system is investigated in this Section. An experimental setup
for a powertrain system is shown in Figure 6. There are three main components in the powertrain,
namely the DC/DC converter, inverter, and PMSM. The main losses are switching and conduction

127

Bo
ok
s

M
DP
I



Energies 2017, 10, 533

losses of switching devices in both the DC/DC converter and the inverter, and iron loss and copper
loss in the PMSM.

Both the voltages and currents of the DC/DC converter and DC/AC inverter are measured,
respectively, by a Power Analyzer. Then, the efficiencies of both the converter and the inverter are
obtained. Meanwhile, the output torque and speed of the motor are measured by a dynamometer,
which are employed in the calculation of the efficiency of the PMSM.

Figure 6. The structure of the experimental setup.

3.1. Efficiency of a Buck-Boost DC/DC Converter

The fundamental topology of a buck-boost DC/DC converter is shown in Figure 7. The buck-boost
converter consists of two SiC MOSFETs (or Si IGBTs), two parallel diodes, an inductance, and two
capacitors. The switching loss and conduction loss of SiC are the main contributions for the power
losses of the DC/DC converter. The switching losses can be expressed as a function of the integration
voltage and current during commuted intervals,

Eswitching = ET_on + ET_off =
∫ t2

t1

Vds · Iddt+
∫ t4

t3

Vds · Iddt (1)

where ET_on and ET_off are the turn-on and turn-off losses, respectively. t1, t2, t3, and t4 represent the
start and end of turn-on and turn-off, respectively. The switching losses of Si can be calculated the
same as those of SiC.

The conduction loss of SiC can be calculated directly by the current and voltage,

Pconduction = Id
2 · Rds(on) = Vds · Id (2)

Additionally, the power losses of the converter also contain the loss of inductance resistance and
the capacitors’ equivalent series resistances (ESR). Hence, the total losses, namely the efficiency of the
converter, can be measured and calculated as follows,

ηconverter = (U2 · i2)/(U1 · i1) (3)

where U1 and U2 are the input and output voltages of the converter, respectively. i1 and i2 are the
input and output currents of the converter, respectively.
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Figure 7. Topology of the DC/DC converter.

Figure 8 shows the efficiency comparison between the SiC- and Si-converters. The blue curve and
black curve are measured by the experiments while the red curve and yellow curve are fitted based
on the measured results. The peak efficiency of the SiC-inverter is nearly 93% at the output power of
30 kW, which is approximate 1% higher than that of the Si-converter.

Figure 8. Efficiency comparison between the Si- and SiC-converters.

3.2. Efficiency of Inverter-PMSM

Figure 9 shows the fundamental topology of the DC/AC inverter and PMSM. The inverter
contains six SiC MOSFETs (or Si IGBTs), six parallel diodes, one capacitor, etc. The switching loss
and conduction loss of SiC are the main contributions for the power losses of the inverter, which is
the same as that of the DC/DC converter. The loss model of the inverter can be found in Ref. [24–26].
This Section presents the measurement method and the test results.

 

Figure 9. Topology of the DC/AC inverter-permanent magnet synchronous motor (PMSM).

129

Bo
ok
s

M
DP
I



Energies 2017, 10, 533

The input power of the inverter is equal to the output power of the converter, as shown in Equation (4).
The output power of the inverter is equal to the input power of the motor. The measurement method
is shown in Figure 10. ia, ib, ic represent the currents of Phase A, Phase B, and Phase C, respectively.
Uab, Ubc, Uac are the three line-line voltages. Hence, the expression of the output power of the inverter
is shown in Equation (5). The efficiency of the inverter can be calculated according to Equation (6).

Pinput = U2 · i2 (4)

Poutput = Uac · ia + Ubc · ib (5)

ηinverter = (Uac · ia + Ubc · ib)/(U2 · i2) (6)

For the PMSM, the output power is mechanical energy, which is measured by a dynamometer.
Hence, the efficiency of the motor is expressed as

ηmotor = T · n/[9.55(Uac · ia + Ubc · ib) ] (7)

where T is the output mechanical torque of the motor and n is the mechanical speed of the motor.

 

Figure 10. Measurement points of the DC/AC inverter.

The waveforms of Phase A and the αβ currents are shown in Figure 11. It is clearly seen that
the currents of the Si-drive system include more harmonic components, which will induce more
power losses in the motor. The phase current is dependent on the output phase voltage of the inverter.
The distortions of the phase voltage are contributed by the voltage-drop, turn-on time and turn-off
time of the switching devices, and the dead time of the phase leg [27–29]. The voltage-drop, turn-on
time, and turn-off time of SiC MOSFETs are smaller than their Si IGBTs counterparts, which were
measured and are shown in Tables 1 and 2 of Section 2 in this paper. Meanwhile, the shorter dead time
could be set in the SiC-drive due to the faster turn-on and turn-off speed. Therefore, the distortions of
the phase voltage of the Si-drive are more than the SiC-drive counterparts, resulting in more harmonic
components in the current of the Si-drive system.
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Figure 11. Phase current and αβ current waveforms under 800 rpm and 8 N·m of the motor. (a) Current
waveforms of the Si-drive system; (b) Current waveforms of the SiC-drive system.

There are two main losses in the motor, namely core losses in the iron core and copper losses
in the winding. Both the core losses and copper losses include two parts; one part is induced by the
fundamental current, and the other part is induced by the harmonic currents [24,30–32]. The core
losses in the motor are composed of the eddy current loss Pe and hysteresis loss Ph. Both types of
losses are caused by variation of the flux density in the core. Bertotti’s model [30] is shown as,

Pc = Pe + Ph = ke

∞

∑
n=1

(nω1)
2

Bp,n
2 + kh

∞

∑
n=1

(nω1)Bp,n
x (8)

where ke and kh are the eddy loss coefficient and the hysteresis loss coefficient, respectively,ω1 is the
fundamental angular frequency of the applied voltage, and n is the order of the harmonic. The peak
flux density of the nth-order harmonic Bpcurrent,n due to the nth-order current is predicted by [31],

Bpcurrent,n = μ0
2W
πδ ∑

n=1
In∑

v

1
v

KsovKdpvFv(r) (9)

The copper losses also include the fundamental component loss and the losses related with
the harmonic currents [32]. The harmonics induce eddy currents in the conductors, which cause a
non-uniform distribution of the current density within the cross-sectional area of each conductor. Such
non-uniform distribution of the current density in a conductor according to its own current is called
the skin effect, while that according to the currents in adjacent conductors is called the proximity effect.
The expression of the copper losses can be written as follows [32],

Pcu = Irms
2Rdc +

∞

∑
h=3

In
2Rn,ac (10)

where Irms is the rms current, Rdc is the dc resistance, and In is the rms current of the nth current. Rn,ac

is the value of the nth harmonic resistance, which is determined by its dc value Rdc multiplying the ac
skin and proximity gain,

Rn,ac = Rdc
(
Kn,se + Kn,pe

)
(11)

where Kn,se is the nth resistance gain caused by the skin effect, and Kn,pe is the nth resistance gain
caused by the proximity effect. Therefore, the phase current of the Si-drive system includes more
harmonic components, resulting in more power losses in the motor.

Meanwhile, the amplitude of the phase current in the Si-drive system is higher than the SiC-system
counterpart when the output powers of the two systems are the same. Hence, the efficiencies of both
the inverter and the motor in the SiC-drive system are higher than the Si-system counterpart as shown
in Figure 12. As a result, the efficiency of the overall inverter-motor system based on SiC is higher than
that of the Si-system, especially with light loads.
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(a) (b)

Figure 12. Efficiency comparison of Si and SiC based inverter-motor systems under different output
powers. (a) 400 rpm; (b) 1000 rpm.

Due to the limited power rating of the dynamometer in our lab, the efficiency of the overall
inverter-motor system during the full power range is expanded from the limited tested results shown
in Figure 13, which will be adopted in the next Section. When the speed was smaller than 800 rpm and
the torque was below 350 N·m, the efficiency of the overall inverter-motor system was measured by
experiments. Then the range of the efficiency was expanded when the speed was higher than 800 rpm
and the torque was bigger than 350 N·m through fitting formulas. There are several fitting algorithms
to fit formulas based on MATLAB, such as Gaussian, Interpolant, Polynomial, Wei bull, etc. Among
these fitting methods, the formulas fitted by the Polynomial had the best fitting degree, and the optimal
fitting degree was 0.9682. Hence, the polynomial was adopted and the corresponding fitting formulas
are shown as Equations (12) and (13), respectively.

η = 0.01941n3 − 0.01153n2T − 0.001971nT2 + 0.0205T3 − 0.0405n2

+0.02037nT − 0.02738T2 + 0.006666n − 0.0154T + 0.9134
(12)

η = 0.02362n3 − 0.01249n2T − 0.0010351nT2 + 0.02103T3 − 0.05183n2

+0.02005nT − 0.02814T2 − 0.007325n − 0.0152T + 0.953
(13)
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Figure 13. Efficiency comparison of Si and SiC based inverter-motor systems under full power range.
(a) Si-system; (b) SiC-system.

4. Simulations in ADVISOR

The ADVISOR software provides a simulation environment based on MATLAB for EVs.
The powertrain architecture of an EV in ADVISOR is shown in Figure 14. The efficiencies of the
motor, inverter, and converter could be assigned to the motor and control module, respectively. Then,
the comprehensive comparison between the SiC based powertrain and the Si based powertrain is
implemented through the simulations. The U.S. Environmental Protection Agency Urban Dynamometer
Driving Schedule (UDDS) cycle was adopted in these simulations. UDDS represents city driving
conditions for a light duty vehicle as shown in Figure 15. Two typical topologies are investigated,
namely Topology A: battery-inverter-motor, and Topology B: battery-converter-inverter-motor.

Figure 14. Powertrain architecture of the Electric Vehicle in ADVISOR.
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Figure 15. Urban Dynamometer Driving Schedule (UDDS) cycle.

4.1. Topology A: Battery-Inverter-Motor

The topology A is shown in Figure 16, which consists of battery, DC/AC inverter and PMSM.
The efficiency contours and actual operating points for the Si- and SiC-inverter-motor systems in
ADVISOR are shown in Figure 17, which are drawn based on the experimental results. The efficiency
of the SiC-inverter-motor system is higher than the Si-system counterpart during the full power range.
Hence, the power loss of the SiC-inverter-motor system is much smaller than that of the Si-system
during the total UDDS cycle as shown in Figure 18. Meanwhile, the SOC of the battery in the SiC-system
is also higher than that in the Si-system due to the higher efficiency of the SiC-inverter-motor system
shown in Figure 19. The quantified results are given in Tables 3 and 4.

 

 
Figure 16. Topology A: Battery-inverter-PMSM.

(a)

Figure 17. Cont.
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(b)

Figure 17. The efficiency contours and actual operating points of the Si- and SiC-inverter-motor system
at different speeds and different torques. (a) Si-inverter-motor system; (b) SiC-inverter-motor system.

Figure 18. Power loss comparison of the SiC- and Si-inverter-motor systems.

Figure 19. Battery SOC comparison of the SiC- and Si-inverter-motor systems.

Different elevations are considered, namely 0, 1.5%, 3.0%, and 4.5%. All the power consumptions
in the SiC-system are smaller than those in the Si-system, as shown in Tables 3 and 4. When the
elevation is 0, the improvements of equivalent fuel, output energy of the battery, braking energy
recuperated, and efficiency of the overall system are 12.50%, 8.85%, 14.98%, and 13.00%, respectively.
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Such incredible enhancements are due to the higher efficiency and more sinusoidal waveform phase
current of the SiC-inverter-motor system.

Additionally, the higher elevation increases the power consumption due to more output torque
required. For example, the output energy of the battery in the SiC system is 15,307 KJ when the
elevation is 4.5%, while the output energy of the battery is 9783 KJ when the elevation is 1.5%.

Table 3. Comparison of SiC- and Si-systems at zero elevation for Topology A.

Description
SiC (Cree

CAS300M12BM2)
Si Insulated-Gate Bipolar Transistor

(IGBT) (Infineon FF400R12KE3)
Improve (%)

Elevation 0 0 -
Equivalent fuel (L/100 km) 2.1 2.4 12.50

Drive distance (km) 12 12 -
Output energy of battery (kJ) 7285 7992 8.85

Efficiency of inverter-motor system (%) 87.5 79 10.76
Braking energy recuperated (kJ) 990 861 14.98
Efficiency of overall system (%) 36.5 32.3 13.00

Table 4. Comparison of SiC- and Si-systems at 1.5%, 3.0%, and 4.5% elevations for Topology A.

Description
SiC

(Cree CAS300M12BM2)
Si IGBT

(Infineon FF400R12KE3)

Elevation 1.5 3 4.5 1.5 3 4.5
Equivalent fuel (L/100 km) 2.9 3.7 4.5 3.2 4.1 5

Drive distance (km) 12 12 12 12 12 12
Output energy of battery (kJ) 9783 12,480 15,307 10,736 13,719 16,847

Efficiency of inverter-motor system (%) 88.4 89.9 91.06 81.37 82.75 83.56
Braking energy recuperated (kJ) 742 559 442 631 484 365
Efficiency of overall system (%) 25.6 19.4 15.5 22.9 17.7 14

4.2. Topology B: Battery-Converter-Inverter-Motor

In this section, the DC/DC converter is taken into account. The topology is shown in Figure 20.
There are the battery, DC/DC converter, DC/AC inverter, and PMSM in the powertrain system.
Actually, many EV powertrain systems adopt this topology, which can easily adjust the DC voltage
in the system. The efficiency of the SiC-converter-inverter-motor system is higher than the Si-system
counterpart during the full power range, which is the same as topology-B. Hence, the power loss of
the SiC-converter-inverter-motor system is much smaller than that of the Si-system during the total
UDDS cycle, as shown in Figure 21. Additionally, the battery SOC for the SiC-system is higher than
that of the Si-system, as shown in Figure 22. The quantified results are summarized in Tables 5 and 6.

For topology B, four scenarios are also considered, namely 0, 1.5%, 3.0%, and 4.5% elevations.
The output energy of the battery in the SiC-system is smaller than those of the Si-system for every case
shown in Tables 5 and 6. Its improvement is 14.31%, which is more than the improvement of 8.85%
for topology A. The improvements of the other parameters of topology B, such as equivalent fuel,
efficiency of the converter-inverter-motor, braking energy recuperated, and efficiency of the overall
system, are all higher than their counterparts of topology A, which is due to taking the SiC DC/DC
converter into account in the powertrain system. Its efficiency is higher than that of the Si DC/DC
converter. Table 6 also shows that the higher the elevation, the more power consumption is needed.

 

Figure 20. Topology B: Battery-converter-inverter-PMSM.
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Figure 21. Power loss comparison of the SiC- and Si-converter-inverter-motor systems.

Figure 22. Battery SOC comparison of the SiC- and Si-converter-inverter-motor systems.

Table 5. Comparison of the SiC- and Si-systems at zero elevation for Topology B.

Description
SiC (Cree

CAS300M12BM2)
Si IGBT (Infineon

FF400R12KE3)
Improve (%)

Elevation 0 0 -
Equivalent fuel (L/100 km) 2.2 2.6 15.38
Drive distance (km) 12 12 -
Output energy of battery (kJ) 7599 8821 14.31
Efficiency of converter-inverter-motor system (%) 83.59 70.94 17.83
Braking energy recuperated (kJ) 915 696 31.47
Efficiency of overall system (%) 34.4 28.4 21.14

Table 6. Comparison of the SiC- and Si-systems at 1.5%, 3.0%, and 4.5% elevations for Topology B.

Description SiC (Cree CAS300M12BM2)
Si IGBT

(Infineon FF400R12KE3)

Elevation 1.5 3 4.5 1.5 3 4.5
Equivalent fuel (L/100 km) 3 3.8 4.7 3.5 4.5 5.5
Drive distance (km) 12 12 12 12 12 12
Output energy of battery (kJ) 10,148 12,897 15,765 11,778 15,009 18,382
Efficiency of converter-inverter-motor system (%) 86.51 88.41 89.62 73.7 75.25 76.26
Braking energy recuperated (kJ) 681 511 383 514 386 287
Efficiency of overall system (%) 24.4 18.7 15 20.5 15.8 12.7

5. Conclusions

This paper comprehensively investigated the impact of SiC power devices on the powertrain
of EVs. The characteristics of SiC were measured and demonstrated outstanding advantages, such
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as faster switching speed, lower voltage drop, and more stability than the Si counterparts. Hence,
both the DC/DC converter and DC/AC inverter based on SiC exhibited higher efficiency than that
of the Si systems. Furthermore, there are low harmonic components in the phase currents of the
SiC-system. Therefore, the high efficiency of the motor benefits from the more sinusoidal waveform of
the phase current.

Two typical topologies of drive systems were analyzed by ADVISOR. Both topologies A and B
based on SiC represented remarkable enhancements of the performances, such as smaller equivalent
fuel consumption, smaller output energy of the battery, more efficiency and braking energy recuperated,
etc. The smaller output energy of the battery, higher efficiency, and more braking energy recuperated
means that EVs could adopt a smaller battery pack, reduce their weight, increase cruise distance, etc.
Therefore, this work is meaningful for improving the performances of EVs.
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Abstract: Torque coordination control significantly affects the mode transition quality during the
mode transition dynamic process of hybrid electric vehicles (HEV). Most of the existing torque
coordination control methods are based on the mechanism model, whose control effect heavily
depends on the modeling accuracy of the HEV powertrain. However, the powertrain structure is
so complex, that it is difficult to establish its precise mechanism model. In this paper, a torque
coordination control strategy using the data-driven predictive control (DDPC) technique is proposed
to overcome the shortcomings of mechanism model-based control methods for a clutch-enabled
HEV. The proposed control strategy is only based on the measured input-output data in the
HEV powertrain, and no mechanism model is needed. The conflicting control requirements of
comfortability and economy are included in the cost function. The actual physical constraints of
actuators are also explicitly taken into account in the solving process of the data-driven predictive
controller. The co-simulation results in Cruise and Simulink validate the effectiveness of the proposed
control strategy and demonstrate that the DDPC method can achieve less vehicle jerk, faster mode
transition and smaller clutch frictional losses compared with the traditional model predictive control
(MPC) method.

Keywords: mode transition; torque coordination; data-driven predictive control (DDPC); hybrid
electric vehicle (HEV)

1. Introduction

The multi-energy powertrain system is the most distinctive feature that makes hybrid electric
vehicle (HEV) more energy efficient than the traditional vehicle, and its key technology directly
determines the economy, reliability, safety and comfortability in HEV. The control of the HEV
multi-energy powertrain system can be classified into two kinds of core problems. The first is the energy
distribution and efficiency optimization of multi-energy sources, and the second is the dynamic torque
coordination between the multi-power sources. The former aims to improve the fuel economy and
reduce emissions at arbitrary driving cycles. It belongs to the research category of energy management
strategy and has been widely concerned [1–3]. By contrast, the latter, which is critical to the ride
comfortability, switching rapidity and durability in HEV, is relatively less studied, but it directly
determines people’s purchase intention and influences the industrialization process of HEV. In fact, in
order to improve the fuel economy, frequent transitions among basic operation modes are required,
such as the motor-only mode, the engine-only mode, the compound driving mode and the regenerative
braking mode. However, mode transitions are often accompanied by the target torque mutation of
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the engine, the clutch and the motor. The vehicle impact, jitter and clutch excessive wear will appear
with unfavorable coordination; thus, the comfortability and clutch durability will be influenced in the
vehicle driving. In fact, torque coordination control has become not only the key problem of the HEV
multi-energy powertrain system, but also a tough tradeoff commonly concerned by the business circle
and the academia.

It is well known that the HEV powertrain structure is very complicated. To facilitate the torque
coordination control problem, early research works neglected the clutch dynamic characteristic, which
is a crucial factor to the mode transition performance. The torque compensation control strategy using
the fast response ability of the motor was an early torque coordination control method [4,5]. The engine
torque was estimated online, and the motor’s fast response characteristic was used to compensate the
output torque lag of the engine to decrease the total driving torque fluctuation of the mode transition
process, which could thus improve the comfortability. The advantages of this method are that it is
simple and easy to realize. A model matching control (MMC) method was proposed in [6]. The control
idea was similar to the torque compensation control strategy. Compared with the torque compensation
method, the motor torque demand was not simply equal to the difference between the total demand
torque and the estimated engine torque, but was obtained by a model matching controller using the
actual total torque and acceleration pedal as its inputs.

Taking the clutch dynamic characteristic into account, many research works handled the
torque coordination problem from the perspective of state equations under different running modes.
A fuzzy adaptive sliding mode approach was applied to the mode transition control in [7], and the
switched hybrid theory was applied to the control of a parallel hybrid electric vehicle drivetrain [8].
The model predictive control (MPC) method was also used to manage HEV mode transitions in [9,10],
in which two model predictive controllers were needed to accomplish the comfortable transition and
synchronize the two drivetrain parts, which were divided by the clutch. Considering the discontinuity
of the clutch, a model reference control (MRC) law was proposed to coordinate the engine torque,
the clutch torque and the motor torque during the mode transition dynamic process from motor-only
mode to compound driving mode [11]. The MPC method was combined with the MRC in [12], and
good mode transition performance has been achieved in the MATLAB/Simulink environment. Only
one model predictive controller was needed, which greatly reduced the calculation amount of the
control strategy and was more suitable for the real-time control application. However, when the MPC
method is further applied in the vehicle simulation platform, the mode transition performance is
unsatisfactory, especially the vehicle jerk outdistances the recommended value, which is 10 m/s3 in
Germany and 17.64 m/s3 in China [13]. This motivates us to find a more practical solution to solve the
torque coordination control problem.

It is worth pointing out that most of the above HEV torque coordination control methods are
based on the mechanism model, whose control effect heavily depends on the modeling accuracy
of the controlled process. The HEV powertrain is a multi-input and multi-output, nonlinear and
strong coupling system, so it is difficult to establish its precise mechanism model. Even if the global
exact mathematical model of HEV powertrain system can be obtained, the model is surely high order
nonlinear, which makes it difficult to use the mechanism model-based control methods. The mechanism
modeling is simplified to some extent for the convenience of controller design in the existing research,
which is bound to bring about many unmodeled dynamics and a poor control effect. Although a
seven-order mathematical model is used in [9,10], the quadratic terms proportional to vehicle speed
are neglected in the resistance torque model in order to facilitate the control design; thus, the dynamic
characteristics of the HEV powertrain system cannot be precisely described.

In recent years, the data-driven theory has provided a new path for the modeling and controlling
of complex systems [14,15]. There are abundant online and offline measurement data in the HEV
operation process, which provide the possibility for the realization of the data-driven modeling and
control for the HEV mode transition dynamic process. As one of the efficient data-driven control
methods, the data-driven predictive control (DDPC) algorithm was proposed in recent years, which
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combines the modeling superiority of the data-driven and the multiple-constraint handling capability
of the predictive control [16]. It was firstly proposed in [17]. Its basic idea is to use the data-driven
method to establish the data model of the controlled object and use the predictive control method
to design the controller. DDPC has been used for a multidimensional blast furnace system [18],
wind power generation [19], the distributed solar collector field [20], biped robots [21], a waste water
system [22], a vapor compression refrigeration cycle system [23] and other industrial applications.
Furthermore, a small quantity of application research works relative to DDPC have been used for
fast and dynamic situations, such as automated manual transmission (AMT) vehicle starting [24],
dual-clutch transmission [25] and high-speed train operation [26]. Since the actual engine torque,
the clutch torque and the motor torque and their change rates are all limited by actuator saturation,
the torque coordination control of HEV powertrain is a multiple-constraint optimal control problem.
Therefore, it might be a good choice to solve the HEV’s torque coordination control problem by the
DDPC method.

To the best of our knowledge, the proposed torque coordination control strategy based on the
DDPC method is a novel contribution for the HEV dynamic process control during the mode transition
process. Taking the representative mode transition process from motor-only mode to compound driving
mode as an example, a data-driven predictive controller is designed for the torque coordination control
problem of HEV, which overcomes the shortcomings of the traditional mechanism model-based control
methods. This controller is directly obtained only based on the input-output data of HEV powertrain
system, and no accurate mechanism model is required. A multi-objective function is constructed, which
deals with the tradeoff between the transition rapidity and the riding comfortability. The time-domain
hard constraints of the actuating units are also explicitly taken into account during the optimization
control solution. The Cruise simulation results demonstrate that the designed data-driven predictive
controller works very well during the mode transition process. A model predictive controller is also
designed for comparison. Cruise simulation results show that the DDPC method achieves better mode
transition quality compared with the MPC method, i.e., shorter transition duration, better transition
comfortability (smaller vehicle jerk) and lower clutch abrasion (less frictional losses). This further
validates the superiority of the DDPC method.

The remainder of this paper is organized as follows. In Section 2, the HEV model is built in Cruise
simulation software. In Section 3, the detailed implementation of the proposed torque coordination control
strategy based on DDPC method is introduced for the mode transition process from the motor-only
mode to the compound mode. In Section 4, Cruise simulation results validate the effectiveness of the
proposed DDPC method and its advantages over MPC method. Finally, the concluding remarks are given
in Section 5.

2. HEV Model in Cruise and Problem Formulation

In order to obtain the input-output data, which can fully reflect HEV dynamics, a complete
clutch-enabled HEV model is established in the professional automotive simulation software Cruise,
which is used by Volkswagen, General Motors, Qoros and other automobile companies; the block
diagram of the powertrain configuration is shown in Figure 1. The detailed vehicle parameters are
shown in Table 1. This HEV model can well describe the HEV’s transient dynamic characteristics, e.g.,
the delay characteristics of engine output torque, the torsional vibration characteristics of the clutch
and the driving shaft, the tire slip characteristics, etc. The engine power is delivered to the drive-line
using the friction torque of the clutch. The rule-based energy management strategy is adopted in the
supervisory controller.

To improve the fuel economy and reduce emissions, multiple operation modes are required,
including stop mode, motor-only mode, engine-only mode, compound driving mode, regenerative
brake mode, charging mode, and so on. Therefore, various mode transition dynamic processes may
appear in HEV operation. The mode transition processes related to the clutch slipping phase are
relatively complicated and deserve intensive study. Among these processes, the mode transition from
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motor-only mode to compound driving mode is the most typical dynamic process, which will be
studied in this paper.

Figure 1. The block diagram of the powertrain configuration.

Table 1. Key vehicle parameters in the cruise simulation platform.

Component Parameter Value and Unit

Vehicle

Vehicle mass 1430 kg
Air density 1.29 kg/m3

Vehicle frontal area 2.15 m2

Aerodynamic drag coefficient 0.3

Engine
Moment of inertia 0.19 kg·m2

Maximum speed 5800 r/min
Maximum torque 130 Nm

Clutch Moment of inertia 0.001 kg·m2

Maximum transferable torque 200 Nm

Motor
Moment of inertia 0.15kg·m2

Maximum speed 8000 r/min
Maximum torque 65 Nm

Battery Maximum charge 50 Ah

Tyre Moment of inertia 1.1 kg·m2

Dynamic rolling radius 0.308 m

Gear Box Moment of inertia 0.005 kg·m2

Gear ratio 3.62, 2.22, 1.51, 1.08, 0.85

SRT Moment of inertia 0.018 kg·m2

Transmission ratio 5.5

Differential Torque split factor 1.0
Moment of inertia 0.02 kg·m2

For the convenience of research, we use the vehicle speed of 27 km/h as the mode transition
threshold. When the vehicle speed is lower than 27 km/h, the HEV is propelled only by the electric
motor, and the two sides of the clutch are separated. When the vehicle speed exceeds 27 km/h, the two
sides of the clutch remain separated; the vehicle is still propelled by the electric motor separately; and
the engine is started. When the clutch slip speed is less than a given threshold ε, the mode transition
dynamic process from motor-only mode to compound driving mode begins. The clutch enters into the
slipping phase, during which time the coordination control of the engine, clutch and motor will directly
determine the transition quality. When the clutch slip speed is zero, the HEV works in compound
driving mode; the motor propels the HEV along with the engine; and the clutch is locked.

The indices to evaluate the torque coordination quality during the mode transition dynamic
process mainly are comprised of riding comfortability, rapidity and economy.
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a. Riding comfortability refers to whether the impact due to the acceleration change is acceptable
to the passengers during the mode transition dynamic process. It can be expressed by the vehicle
jerk, namely the change rate of acceleration.

j =
dav

dt

where j represents the vehicle jerk whose unit is m/s3 and av represents the vehicle acceleration
whose unit is m/s2. The smaller the jerk, the better the riding comfortability.

b. Rapidity means whether the response speed to the mode transition command can satisfy the
driver’s requirement. It can be represented by the mode transition duration. The shorter the
transition duration, the better the rapidity.

c. Economy refers to the torque coordination strategy’s influence on the component service life in
the powertrain system. For the mode transition process related to clutch slipping phase, frictional
losses can be used to represent the clutch abrasive wear resulting from the control strategy.

Wsl =
∫ t f

t0

Tc |Δω| dt

where Wsl represents the clutch frictional losses, Tc is the clutch torque and t0 and t f are the
initial time and terminal time of clutch slipping phase, respectively. Δω = ωm − ωe is the clutch
slip speed; ωm is the motor speed; ωe is the engine speed; and | · | is the symbol for absolute
value. It can be seen that the clutch slip speed, the clutch torque and the clutch slipping duration
mainly contribute to frictional losses. The less the frictional losses, the longer the clutch working
life and the better the mode transition economy.

3. Data-Driven Predictive Controller

In this section, we propose a data-driven predictive controller, which is directly based on the
input-output data of the Cruise simulation platform in order to deal with the torque coordination
control problem during the mode transition from motor-only mode to compound driving mode. Firstly,
we deduce the subspace predictor from the state space equation in brief and get the computational
formula of subspace matrices. Then, we represent the parts that can be finished offline, i.e., open-loop
data sample, the identification of subspace matrices and subspace predictor verification. Finally,
we translate the torque coordination control problem considering physical constraints into a quadratic
programming problem; thus, we can accomplish the data-driven predictive torque coordination
control online.

3.1. Derivation of the Subspace Predictor Equation

At the k-th sampling instant, the discrete state equations of the mode transition dynamic process
from motor-only mode to compound driving mode are as follows:

x(k + 1) = Ax(k) + Bu(k) (1.a)

y(k) = Cx(k) (1.b)

yb(k) = Cbx(k) (1.c)

where u(k) ∈ Rl is the input variable, y(k) ∈ Rm is the output variable, yb(k) ∈ Rmb is the constrained
output variable, x(k) ∈ Rn is the state variable and A ∈ Rn×n, B ∈ Rn×l , C ∈ Rm×n, Cb ∈ Rmb×n are
the state, input, output and constrained output gain matrix, respectively.

Notably, the state space Equation (1) is just used to reveal the relationship between the state space
equation and the subspace predictor. The state space matrices are not required for the design of the
proposed data-driven predictive controller. We are only interested in identifying the subspace matrices.

144

Bo
ok
s

M
DP
I



Energies 2017, 10, 441

Equation (1) is a three-input three-output system for the studied mode transition dynamic process.
Its input is selected as u(k) = [Te(k) Tc(k) Tm(k)]

T, where Te is the engine torque, Tc is the clutch
torque, which is proportional to the normal pressure between two sides of the clutch and can be
controlled by the displacement of clutch release bearing, and Tm is the motor torque. y(k) = Δω(k) is
selected as the system output. The engine speed ωe and motor speed ωm constitute the constrained
output yb(k) = [ωe(k) ωm(k)]

T; thus, l = 3, m = 1, mb = 2.
The open-loop data collection of the input, the output and the constrained output u(k), y(k)

and yb(k) for k ∈ {1, 2, 3, . . . , 2i + j − 1} are collected through the Cruise simulation platform, whose
details are shown in Section 3.2.

Next, the data block Hankel matrices Up, U f , Yp, Y f , Yb
p and Yb

f are constructed to identify
the subspace matrices, which are used to design the data-driven predictive torque coordination
controller [16].

The data block Hankel matrices Up and U f for u(k) are denoted by:

Up =

⎡
⎢⎢⎢⎢⎢⎢⎣

u(1) u(2) · · · u(j)
u(2) u(3) · · · u(j + 1)
u(3) u(4) · · · u(j + 2)

...
...

. . .
...

u(i) u(i + 1) · · · u(i + j − 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2)

U f =

⎡
⎢⎢⎢⎢⎢⎢⎣

u(i + 1) u(i + 2) · · · u(i + j)
u(i + 2) u(i + 3) · · · u(i + j + 1)
u(i + 3) u(i + 4) · · · u(i + j + 2)

...
...

. . .
...

u(2i) u(2i + 1) · · · u(2i + j − 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3)

The data block Hankel matrices Yp and Y f for y(k) are constructed as follows:

Yp =

⎡
⎢⎢⎢⎢⎢⎢⎣

y(1) y(2) · · · y(j)
y(2) y(3) · · · y(j + 1)
y(3) y(4) · · · y(j + 2)

...
...

. . .
...

y(i) y(i + 1) · · · y(i + j − 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (4)

Y f =

⎡
⎢⎢⎢⎢⎢⎢⎣

y(i + 1) y(i + 2) · · · y(i + j)
y(i + 2) y(i + 3) · · · y(i + j + 1)
y(i + 3) y(i + 4) · · · y(i + j + 2)

...
...

. . .
...

y(2i) y(2i + 1) · · · y(2i + j − 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5)

where p and f denote the past and the future, respectively. The matrices above have i-block rows and
j-block columns. The constrained output Hankel matrices Yb

p and Yb
f for Yb(k) can be constructed in

the same way. The past and future state sequences are defined as follows [16]:

Xp =
[

x(1) x(2) x(3) · · · x(j)
]

, (6)

X f =
[

x(i + 1) x(i + 2) x(i + 3) · · · x(i + j)
]

. (7)

where i ≤ j.
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By recursive substitution of (1.a) and (1.b), the matrix output equations used in subspace
identification are obtained as below:

Yp = ΓiXp + HiUp, (8)

Y f = ΓiX f + HiU f , (9)

where:

Γi =

⎡
⎢⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAi−1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (10)

Hi =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
CB 0 · · · 0 0

CAB CB · · · 0 0
...

...
. . .

... 0
CAi−2B CAi−3B · · · CB 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (11)

The following matrix equation can be reduced from the iteration of (1.a):

X f = AiXp + Δd
i Up, (12)

where Δd
i =

[
Ai−1B Ai−2B · · · B

]
.

The following formula is obtained by solving the matrix Equation (8):

Xp = Γ†
i (Yp − HiUp), (13)

where † represents the Moore-Penrose pseudo-inverse.
When (13) is substituted into (12), the following formula can be obtained:

X f = AiΓ†
i Yp + (Δd

i − AiΓ†
i Hi)Up. (14)

The following formula is derived when (14) is substituted into (9):

Y f = Γi AiΓ†
i Yp + Γi(Δd

i − AiΓ†
i Hi)Up + HiU f . (15)

With enough measurement data, (15) can be written as the following optimal predictive output:

Ŷ f = LwWp + LuU f , (16)

where:

Wp =

[
Yp

Up

]
. (17)

Equation (16) is the subspace predictor equation. It shows that the future output can be predicted
based on the past input-output data and the future input. Wp is the past input-output data matrix.
U f is the future input data matrix. Lw and Lu are the coefficient matrix of Wp and U f , respectively.

The least-square prediction Ŷ f can be found by solving the least square problem:

min
Lw ,Lu

∥∥∥∥∥Y f −
(

Lw Lu

)(
Wp

U f

)∥∥∥∥∥
2

.
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Ŷ f can be found by the orthogonal projection of the row space of Y f into the row space spanned
by Wp and U f :

Ŷ f = Y f

/[
Wp

U f

]
.

[
Lw Lu

]
= Y f

[
Wp

U f

]†

= Y f

[
WT

p UT
f

] ([
Wp

U f

] [
WT

p UT
f

])−1

. (18)

The terms Γb
i , Hb

i , Ŷ
b
f , Wb

p, Lb
w, and Lb

u of constrained output yb(k) can be obtained in the same
way as (10), (11) and (16)–(18).

3.2. Identification of Subspace Matrices

The prediction accuracy of the subspace matrix identification method is sensitive to different
open-loop data. During the open-loop data collection phase, to get an accurate subspace predictor
equation, we should design the input data to fully excite the system dynamics relevant to the control
goal. That is to say, the designed input data should be as diverse as possible.

As shown in Figure 2a–c, the input data Te, Tc and Tm, which can fully excite the system
characteristics of the HEV powertrain, are constructed. The system output Δω and constrained
outputs ωe, ωm can be obtained after the input data act on the built HEV dynamics model, as shown
in Figure 2d–f. The sample time Ts is chosen to be 0.01 s; the number of rows i in the input-output
data matrix is chosen to be 20; and the number of columns j in the input-output data matrix is chosen
to be 180. Thus, the open-loop data at 219 sampling instants are collected during the studied mode
transition dynamic process.

Based on the sampling data as shown in Figure 2, the data block Hankel matrices Up, U f , Yp, Y f ,
Yb

p, Yb
f of input u(k), output y(k) and constrained output yb(k) can be constructed. Then, the subspace

matrices Lw, Lu, Lb
w and Lb

u can be solved using the corresponding formulas.
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Figure 2. Input and output data of 219 sample points for identification: (a) Engine torque Te; (b) Clutch
torque Tc; (c) Motor torque Tm; (d) The clutch slip speed Δω; (e) Engine speed ωe; (f) Motor speed ωm.

3.3. Verification of the Subspace Predictor Equation

The input-output sampling data from the 220th–599th sampling instant are used to verify the
effectiveness of the identified subspace predictor equation (i.e., whether the identified subspace
predictor equation can well reflect the HEV’s dynamic characteristics). The constructed fully-excited
input data Te, Tc, Tm and the specific identification prediction effect are shown in Figure 3.
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Figure 3. Input and output data for verification and identification results: (a) Engine torque Te; (b) Clutch
torque Tc; (c) Motor torque Tm; (d) The identified results of the clutch slip speed Δω; (e) The identified
results of constrained engine speed ωe; (f) The identified results of constrained motor speed ωm.
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As shown in Figure 3d–f, the predictive output can fit the actual output very well when Δω is not
equal to zero. Since the data used to identify the predictive model do not include the case that Δω is
equal to zero, a small predictive error appears when Δω is equal to zero. The subject investigated in
this paper is the clutch slipping phase during which Δω is not equal to zero, so the predictive error
appearing in Figure 3 will not influence the design of the proposed data-driven predictive controller.

3.4. Description of the Optimization Problem

The control input sequence increment Δu f (k) to be optimized at time k can be expressed as follows:

Δu f (k) =

⎡
⎢⎢⎢⎢⎣

Δu(k)
Δu(k + 1)

...
Δu(k + Nu − 1)

⎤
⎥⎥⎥⎥⎦ ,

where:

Δu(k + q) =

⎡
⎢⎣

ΔTe(k + q)
ΔTc(k + q)
ΔTm(k + q)

⎤
⎥⎦ , q = 0, 1, . . . , Nu − 1.

The predictive control output sequence ŷ f (k + 1) is defined as follows:

ŷ f (k + 1) =

⎡
⎢⎢⎢⎢⎣

ŷ(k + 1)
ŷ(k + 2)

...
ŷ(k + Np)

⎤
⎥⎥⎥⎥⎦ .

Np and Nu are used to represent the prediction horizon and the control horizon, respectively.
The cost function is usually defined as a quadratic form in order to make the predictive output as

close as possible to a given reference output. A penalty term is added to the cost function to punish
the violent changes of control variables. Therefore, considering the input and output constraints,
the optimal control problem during the mode transition dynamic process from motor-only mode to
compound driving mode can be described as below:

min
Δu f (k)

J(y(k), Δu f (k), Np, Nu)

J =
∥∥∥Γy(ŷ f (k + 1)− Re(k + 1))

∥∥∥2
+

∥∥∥ΓuΔu f (k)
∥∥∥2

(19.a)

s.t. umin(k + q) ≤ u(k + q) ≤ umax(k + q), q = 0, . . . , Nu − 1, (19.b)

Δumin(k + q) ≤ Δu(k + q) ≤ Δumax(k + q), q = 0, . . . , Nu − 1, (19.c)

ybmin(k + s) ≤ yb(k + s) ≤ ybmax(k + s), s = 1, . . . , Np, (19.d)

where:

Γy =

⎡
⎢⎢⎢⎢⎣

τy,1 0 · · · 0
0 τy,2 · · · 0
...

...
. . .

...
0 0 · · · τy,Np

⎤
⎥⎥⎥⎥⎦ , Γu =

⎡
⎢⎢⎢⎢⎣

τu,1 0 · · · 0
0 τu,2 · · · 0
...

...
. . .

...
0 0 · · · τu,Nu

⎤
⎥⎥⎥⎥⎦ ,
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Re(k + 1) =

⎡
⎢⎢⎢⎢⎣

r(k + 1)
r(k + 2)

...
r(k + Np)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

αy(k)
α2y(k)

...
αNp y(k)

⎤
⎥⎥⎥⎥⎦ .

In this cost function, the control objective of the first part is to force the clutch slip speed to
converge to zero, which realizes the fast mode transition and reduces the wear and tear to the clutch.
The control objective of the second part is to limit the torque changing rate of the engine, the clutch
and the motor to ensure the mode transition comfortability. Obviously, these two control objectives are
contradictory. The weighting factors Γy and Γu are given to trade off the two conflicting objectives.
The bigger the weighting factor Γy, the faster the mode transition process. The larger the weighting
factor Γu, the less the vehicle jerk.

Re(k + 1) is the reference sequence of Δω within the prediction horizon, and α ∈ (0, 1) is an
adjustable parameter. The smaller α is, the faster the clutch slip speed reaches zero. Thus, the clutch
can finish the engagement more quickly.

3.5. Predictive Output Equation

In order to deal with the optimal control problem (19.a), the predictive output equation will be
deduced in this section based on the data-driven method and the predictive control method.

To guarantee regulation with zero steady-state error for the reference input, the subspace matrix
incremental input-output expressions are as follows:

ΔŶ f = LwΔWp + LuΔU f , (20)

and:

Δŷ f (k) = Lw(1 : mNp, :)

[
Δyp
Δup

]
+ Lu(1 : mNp, 1 : lNu)Δu f (k). (21)

where:

ΔWp =

[
ΔYp

ΔUp

]
, Δyp =

[
Δy(k − i + 1) Δy(k − i + 2) · · · Δy(k)

]T
,

Δup =
[

Δu(k − i) Δu(k − i + 1) · · · Δu(k − 1)
]T

.

Therefore, the optimal prediction of the future outputs can be derived as the following form:

ŷ f (k + 1|k) = y(k) + LΔ
w(1 : mNp, :)

[
Δyp
Δup

]
+ SNp ,Nu Δu f (k)

= F + SNp ,Nu Δu f (k), (22)

where SNp ,Nu is the mNp × lNu dynamic matrix containing the step response coefficients and formed
from Lu:

SNp ,Nu = Lu(1 : mNp, 1 : lNu)

⎡
⎢⎢⎢⎢⎣

Il×l 0 · · · 0
Il×l Il×l · · · 0

...
...

. . .
...

Il×l Il×l · · · Il×l

⎤
⎥⎥⎥⎥⎦ (23)

y(k) =
[

y(k) y(k) · · · y(k)
]T

(24)
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LΔ
w is constructed from Lw, and F is the free response for the case of measured disturbances:

LΔ
w(k, :) =

k

∑
i=1

Lw(i, :), 1 ≤ k ≤ mNp (25)

F = y(k) + LΔ
w(1 : mNp, :)

[
Δyp
Δup

]
(26)

Sb
Np ,Nu

, yb(k), LbΔ
w , Fb about ŷb

f (k + 1|k) can be calculated in the same way as (23)–(26).

3.6. Data-Driven Predictive Controller with Constraints

The DDPC problem (19.a) is usually converted into the following quadratic programming problem:

min
Δu f (k)

1
2

Δu f (k)THΔu f (k) + G(k + 1|k)TΔu f (k), (27)

s.t. CuΔu f (k) ≤ b.

First, the expression of H and G will be briefly inferred. When (21) is substituted into (19.a),
the following formula can be obtained:

J = Δu f (k)T(SNp ,Nu)
TΓT

y ΓySNp ,Nu Δu f (k) + Δu f (k)TΓT
uΓuΔu f (k)

− 2E(k + 1)TΓT
y ΓySNp ,Nu Δu f (k) + E(k + 1)TΓT

y ΓyE(k + 1)

= J′ + E(k + 1)TΓT
y ΓyE(k + 1), (28)

where E(k + 1) = Re(k + 1)− F.
The last term in J is irrelevant to Δu f (k), so the cost function will be minimized if J′ obtains

the minimum.

J′ = 1
2

Δu f (k)THΔu f (k) + G(k + 1|k)TΔu f (k), (29)

where:

H = 2((SNp ,Nu)
TΓT

y ΓySNp ,Nu + ΓT
uΓu),

G(k + 1|k) = −2(SNp ,Nu)
TΓT

y ΓyE(k + 1).

Therefore, the optimal problem (19.a) is converted into the quadratic programming problem (27).
Then, the constraint condition matrix Cu and b of the quadratic programming problem (27) will

be inferred from (19.b)–(19.d).
Let:

u f (k) = u f =

⎡
⎢⎢⎢⎢⎣

u(k)
u(k + 1)

...
u(k + Nu − 1)

⎤
⎥⎥⎥⎥⎦ , u f min(k) = u f min =

⎡
⎢⎢⎢⎢⎣

umin(k)
umin(k + 1)

...
umin(k + Nu − 1)

⎤
⎥⎥⎥⎥⎦ ,
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u f max(k) = u f max =

⎡
⎢⎢⎢⎢⎣

umax(k)
umax(k + 1)

...
umax(k + Nu − 1)

⎤
⎥⎥⎥⎥⎦ , Δu f (k) = Δu f =

⎡
⎢⎢⎢⎢⎣

Δu(k)
Δu(k + 1)

...
Δu(k + Nu − 1)

⎤
⎥⎥⎥⎥⎦ ,

Δu f min(k) = Δu f min =

⎡
⎢⎢⎢⎢⎣

Δumin(k)
Δumin(k + 1)

...
Δumin(k + Nu − 1)

⎤
⎥⎥⎥⎥⎦ , Δu f max(k) = Δu f max =

⎡
⎢⎢⎢⎢⎣

Δumax(k)
Δumax(k + 1)

...
Δumax(k + Nu − 1)

⎤
⎥⎥⎥⎥⎦ ,

yb = ŷb
f (k + 1|k) =

⎡
⎢⎢⎢⎢⎣

yb(k + 1)
yb(k + 2)

...
yb(k + Np)

⎤
⎥⎥⎥⎥⎦ , (30)

yb
min =

⎡
⎢⎢⎢⎢⎣

yb
min(k + 1)

yb
min(k + 2)

...
yb

min(k + Np)

⎤
⎥⎥⎥⎥⎦ , yb

max =

⎡
⎢⎢⎢⎢⎣

yb
max(k + 1)

yb
max(k + 2)

...
yb

max(k + Np)

⎤
⎥⎥⎥⎥⎦ ,

the constraint conditions (19.b)–(19.d) change to the following form:

u f min ≤ u f ≤ u f max, (31.a)

Δu f min ≤ Δu f ≤ Δu f max, (31.b)

yb
min ≤ yb ≤ yb

max. (31.c)

For the constraint condition (31.a),

u f = C1u(k − 1) + C2Δu f ,

where:

C1 =

⎡
⎢⎢⎢⎢⎢⎣

I3×3

I3×3

I3×3

I3×3

I3×3

⎤
⎥⎥⎥⎥⎥⎦

, C2 =

⎡
⎢⎢⎢⎢⎢⎣

I3×3 0 0 0 0
I3×3 I3×3 0 0 0
I3×3 I3×3 I3×3 0 0
I3×3 I3×3 I3×3 I3×3 0
I3×3 I3×3 I3×3 I3×3 I3×3

⎤
⎥⎥⎥⎥⎥⎦

.

Therefore, (31.a) can be changed to the following form:

[
C2

−C2

]
Δu f ≤

[
u f max − C1u(k − 1)
−u f min + C1u(k − 1)

]
.

Constraint Condition (31.b) can be changed to the following form:

[
I3Nu×3Nu

−I3Nu×3Nu

]
Δu f ≤

[
Δu f max
−Δu f min

]
.
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Constraint Condition (31.c) can be changed to the following form from (22) and (30):

[
Sb

Np ,Nu

−Sb
Np ,Nu

]
Δu f (k) ≤

[
yb

max − Fb

−yb
min + Fb

]
.

Overall, the constraint condition matrices can be derived as the following form:

Cu =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C2

−C2

I3Nu×3Nu

−I3Nu×3Nu

Sb
Np ,Nu

−Sb
Np ,Nu

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u f max − C1u(k − 1)
−u f min + C1u(k − 1)

Δu f max
−Δu f min
yb

max − Fb

−yb
min + Fb

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

According to the receding horizon principle of predictive control, only the first element of Δu f (k)
is implemented, and the calculation is repeated at each time instant. Hence, at the k-th sampling
instant, the control law is given as follows:

Δu(k) =
[

I3×3 03×3 03×3 03×3 03×3

]
Δu f (k).

4. Results and Discussion

The co-simulation of Cruise and MATLAB/Simulink R2010a is conducted under the urban driving
cycle (UDC), which is shown in Figure 4a. The simulation time step is equal to 0.01 s. The maximum
torque and maximum speed of the engine, clutch and motor are shown in Table 1. Np is chosen to
be 20, and Nu is chosen to be five. ε = 30rad/s; ωemin = 720 r/min; ωmmin = 0 r/min; α = 0.8;

τy,1 = τy,2 = · · · = τy,20 = 0.8; and τu,1 = τu,2 = · · · = τu,5 =

⎡
⎢⎣

4 0 0
0 1 0
0 0 2

⎤
⎥⎦. To improve the transition

comfortability, the variation ranges of control increments are as follows: −50 Nm/s≤ ΔTe ≤50 Nm/s,
−50 Nm/s≤ ΔTc ≤50 Nm/s and −100 Nm/s ≤ ΔTm ≤ 100 Nm/s.

4.1. Data-Driven Predictive Control Method

Figure 4b–f show the Cruise simulation results of the proposed data-driven predictive torque
coordination control strategy considering the constraints. At 60.44 s, the vehicle speed reaches 27 km/h;
the mode transition from motor-only mode to parallel hybrid operation begins; the engine is started
with a constant torque 60 Nm; and the two sides of the clutch are still separated. At 61.22 s, the engine
speed rises very close to the motor speed (the clutch slip speed reaches 30 rad/s), and the clutch enters
into the slipping phase. At about 61.49 s, the clutch slip speed reaches zero, then the clutch torque
increases with a predetermined pattern to lock up reliably according to its characteristics. It can be seen
that good transition quality can be achieved. The amplitude of vehicle jerk is 9.96 m/s3, which avoids
the discomfort of the passengers during the mode transition process. The mode transition duration is
about 1.06 s, which can well meet the driver’s transition demand. The slipping duration of the clutch
is only 0.27 s, and the total friction work is only about 8.59 J. This helps to prolong the clutch life.

The control effect of different switch triggers ε on the vehicle jerk, mode transition duration, clutch
slipping duration and clutch frictional losses is shown in Table 2. Additionally, the vehicle jerk of the
DDPC method under different ε is shown in Figure 5. It can be seen that a small switch trigger implies
less usage of clutch torque. The smaller the switch trigger, the smaller the vehicle jerk and the less
the clutch frictional losses. However, the smaller the switch trigger, the longer the mode transition
duration. Taking sensor inaccuracy and actuator delay into account, it is hard to achieve small jerk
with a too small ε [12], so ε is selected to be 30 rad/s.
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Figure 4. Cruise simulation results of the data-driven predictive controller considering the constraints:
(a) Urban driving cycle (UDC); (b) Jerk; (c) The clutch slip speed Δω; (d) The engine torque Te; (e) The
clutch torque Tc; (f) The motor torque Tm.
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Figure 5. Vehicle jerk of data-driven predictive controller considering the constraints under different ε.
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Table 2. Cruise simulation results of data-driven predictive controller under different speed
difference thresholds.

ε Jerk Range Transition Duration Clutch Slipping Duration Clutch Frictional Losses

10 rad/s −4.8–2.96 m/s3 1.18 s 0.32 s 0.002 J
30 rad/s −9.96–6.76 m/s3 1.06 s 0.29 s 8.59 J
50 rad/s −9.96–32.1 m/s3 1.01 s 0.27 s 42.92 J

4.2. Comparison with the Model Predictive Control Method

In this subsection, the torque coordination control effect of the DDPC method is compared with
that of the MPC method to further illustrate the advantages of the proposed mode transition strategy.

To get the model predictive torque coordination controller, the built HEV vehicle model as shown
in Figure 1 can be simplified to the structure in Figure 6.

C

C

J1 e J2 m

Te Tc Tm Twh

Figure 6. Simplified model of the HEV drive-line.

The equivalent inertia moment of the clutch input side J1 = Je, where Je is the inertia moment of
the engine.

The equivalent inertia moment of the clutch output side can be expressed as:

J2 = Jc + Jm + JGB +
JSRT

i2GB
+

mR2

i2GBi2SRT
+

JD

i2GBi2SRT
,

where Jc, Jm, JGB, JSRT and JD are the inertia moments of the clutch, motor, gearbox, single ratio
transmission (SRT) and differential, respectively.

The vehicle resistance torque can be expressed as:

Twh = [mgsinα + frmgcosα +
ρ

2
cD Av(ωwhR)2]R.

For the selected UDC, the road inclination angle is equal to zero; thus:

Twh = [ frmg +
ρ

2
cD Av(ωwhR)2]R.

In the existing torque coordination control literature using the MPC method [10,11], for the
convenience of the model predictive controller design, the contributions of the quadratic term of ω2

wh
to Twh are all considered small since the development of this powertrain model is built for the clutch
engagement at low vehicle speeds (below 27 km/h). Thus, without significant loss of accuracy, the
resistance torque Twh is simplified as Twh = frmg.

The equivalent vehicle resistance torque can be expressed as:

Twh =
Twh

iGBiSRT
=

Twh
i

.

The state variable, control vector, output and constrained output are defined as:
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x =

[
ωe

Δω

]
, u =

⎡
⎢⎣

Te

Tc

Tm

⎤
⎥⎦ , yc = Δω, yb = ωe.

Therefore, the dynamic equation in the mode transition of the HEV drive-line can be written as:

ẋ = Acx + Bcuu + Bcdd

yc = Ccx (32)

yb = Cbx

where:

Ac =

[
− be

J1
0

be
J1
− bm

J2
− bm

J2

]
, Bcu =

[
1
J1

− 1
J1

0
− 1

J1
1
J1
+ 1

J2
1
J2

]
, Bcd =

[
0

− 1
J2i

]
,

d = frmg, Cc =
[

0 1
]

, Cb =
[

1 0
]

.

Then, applying zero-order hold discretization with a sampling period Ts to (32) gives the discrete
state-space model:

x(k + 1) = Ax(k) + Buu(k) + Bdd(k)

yc(k) = Ccx(k) (33)

yb(k) = Cbx(k)

where A = eAcTs , Bu = (
∫ Ts

0 eAcτdτ)Bcu.
The increment form of (33) is as follows:

Δx(k + 1) = AΔx(k) + BuΔu(k)

yc(k) = CcΔx(k) + yc(k − 1) (34)

yb(k) = CbΔx(k) + yb(k − 1)

The predictive output at the k-th instant is defined as:

yc(k + 1|k) =

⎡
⎢⎢⎢⎢⎣

yc(k + 1|k)
yc(k + 2|k)

...
yc(k + 20|k)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Δω(k + 1|k)
Δω(k + 2|k)

...
Δω(k + 20|k)

⎤
⎥⎥⎥⎥⎦ .

The optimal control input sequence is defined as:

Δu f (k) =

⎡
⎢⎢⎢⎢⎢⎣

Δu(k)
Δu(k + 1|k)
Δu(k + 2|k)
Δu(k + 3|k)
Δu(k + 4|k)

⎤
⎥⎥⎥⎥⎥⎦

,

where:

Δu(k + i|k) =

⎡
⎢⎣

ΔTe(k + i)
ΔTc(k + i)
ΔTm(k + i)

⎤
⎥⎦ , i = 0, 1, 2, 3, 4.
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The iteration form of (34) is:

yc(k + 1|k) = Sc,xΔx(k) + Icyc(k) + Sc,uΔu f (k),

where:

Sc,x =

⎡
⎢⎢⎢⎢⎣

Cc A 0 · · · 0
Cc A Cc A · · · 0

...
...

. . .
...

Cc A Cc A · · · Cc A

⎤
⎥⎥⎥⎥⎦ , Δx(k) =

⎡
⎢⎢⎢⎢⎣

Δx(k)
Δx(k + 1)

...
Δx(k + 20)

⎤
⎥⎥⎥⎥⎦ , Ic = I20×1,

Sc,u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CcBu 0 0 0 0
CcBu CcBu 0 0 0
CcBu CcBu CcBu 0 0
CcBu CcBu CcBu CcBu 0
CcBu CcBu CcBu CcBu CcBu

...
...

...
...

...
CcBu CcBu CcBu CcBu CcBu

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The cost function of the model predictive controller is selected the same as that of the data-driven
predictive controller, which is shown in (19.a). The constrained model predictive control law
can also be solved as a quadratic programming problem, where H = 2(ST

c,uΓT
y ΓySc,u + ΓT

uΓu),
G = −2ST

c,uΓT
y Γy(Re(k + 1)− Sc,xΔx(k)− Icyc(k)).

The results of the proposed DDPC method and the traditional MPC method are shown in Figure 7.
To visually demonstrate the advantages of DDPC, the detailed data that can indicate the transition
quality are shown in Table 3. As shown in the table, compared with the MPC method, the DDPC
method can achieve smaller jerk, shorter mode transition duration, shorter clutch slipping duration
and less clutch wear and tear under the same simulation conditions.

Table 3. Cruise simulation results compare between the DDPC method and the MPC method.

Indices DDPC MPC

Jerk Fluctuation Range −9.96–6.76 m/s3 −82.47–87.92 m/s3

Mode Transition Duration 1.05 s 1.24 s
Clutch Slipping Duration 0.27 s 0.5 s
Clutch Frictional Losses 8.59 J 19.3 J

(a) (b)

Figure 7. Cont.
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(c) (d)

(e)

Figure 7. Comparison between the DDPC method and the MPC method for the torque coordination
control problem during the mode transition dynamic process from the motor-only mode to compound
driving mode: (a) The clutch slip speed Δω; (b) Partially enlarged view of (a); (c) Jerk; (d) The motor
speed ωm and the engine speed ωe; (e) Partially enlarged view of (d).

5. Conclusions

A new torque coordination control strategy based on the DDPC method has been proposed to
solve the torque coordination problem during the HEV mode transition dynamic process to improve
the mode transition quality. The conflicting control objectives of the mode transition, which are small
jerk and short transition duration, have been simultaneously considered in the optimal objective
function by tracking a properly-selected output reference sequence and limiting the change rates of the
actuators. Cruise simulation results have validated the effectiveness of the proposed DDPC method.
The results compared with the MPC have further shown that the DDPC can achieve higher mode
transition quality, which contributes to the improvement of the riding comfortability and the economy
of HEV greatly.

In this paper, the mode transition dynamic process from the motor-only mode to the compound
driving mode has been taken as an example of the proposed DDPC method. As time goes on, the system
characteristics and the component parameters may change with the long-term aging and the diverse
driving conditions, so the predictive model should be updated using the real vehicle operation data,
which are newly collected online so that the performance of the proposed strategy can be guaranteed
steadily in the long term. The performance monitoring method of the data-driven predictive controller
will be our future work.
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Abstract: Energy management strategies (EMSs) are critical for the improvement of fuel economy of
plug-in hybrid electric vehicles (PHEVs). However, conventional EMSs hardly consider the influence
of uphill terrain on the fuel economy and battery life, leaving vehicles with insufficient battery power
for continuous uphill terrains. Hence, in this study, an optimal control strategy for a PHEV based
on the road grade information is proposed. The target state of charge (SOC) is estimated based on
the road grade information as well as the predicted driving cycle on uphill road obtained from the
GPS/GIS system. Furthermore, the trajectory of the SOC is preplanned to ensure sufficient electricity
for the uphill terrain in the charge depleting (CD) and charge sustaining (CS) modes. The genetic
algorithm is applied to optimize the parameters of the control strategy to maintain the SOC of battery
in the CD mode. The pre-charge mode is designed to charge the battery in the CS mode from a
reasonable distance before the uphill terrain. Finally, the simulation model of the powertrain system
for the PHEV is established using MATLAB/Simulink platform. The results show that the proposed
control strategy based on road-grade information helps successfully achieve better fuel economy and
longer battery life.

Keywords: plug-in hybrid electric vehicles; energy management strategy; road grade; state of charge

1. Introduction

Plug-in hybrid electric vehicles (PHEVs) achieve a longer all-electric range (AER) with a higher
battery capacity compared to conventional hybrid electric vehicles (HEVs). Hence, the PHEV has
improved fuel economy, as it replaces more fossil fuel with cheaper grid electricity [1]. The fuel
economy and power battery are two important PHEV research fields.

Energy management strategies (EMSs) and driving conditions (such as road conditions, traffic
conditions, and weather conditions) strongly influence the fuel economy of PHEVs. Hence, the EMSs of
conventional HEVs, which aim at optimizing the power split rate between the engine and motor, such
as the rules-based control strategy [2], the equivalent-consumption minimization strategy [3], and the
EMS based on the driving-pattern recognition [4,5], have been extensively analyzed in previous studies.
Furthermore, the vehicles can obtain considerable information of driving conditions, such as traffic
lights, traffic congestion, and road grade, with the development of intelligent vehicle technologies.
In previous studies, the terrain and trip distance were used to optimize the EMS of an HEV [6,7].
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For the power battery of a PHEV, relevant studies focus on the battery state estimation and
charging schedule designs. Several estimation approaches have been employed to estimate the accurate
SOC of batteries, such as estimation approaches based on data-driven multi-scale extended Kalman
filtering [8], battery SOC estimators using a bias correction technique [9] and an adaptive H infinity
filter method [10]. Furthermore, optimization algorithms are employed for the charging schedule
design; the objectives include load following/stabilization [11], battery health [12], etc.

Different from the EMSs of conventional HEVs, the EMSs for PHEVs are divided into two
categories: the charge depleting–charge sustaining (CD–CS) control strategy and blended control
strategy. For the CD–CS strategy, PHEVs can operate in either the CD mode or the CS mode. In the
CD mode, the motor is the primary power source, consuming considerably cheaper and cleaner grid
electricity. The PHEV switches to the CS mode to avoid excessive battery discharge when the state of
charge (SOC) of the battery reaches the minimum boundary. In the CS mode, the PHEV is driven by
both the engine and the motor to maintain the SOC near a specific value like conventional HEVs [13].
Figure 1 shows the trajectory of the SOC for the CD–CS control strategy. The advantage of the
CD–CS strategy is that it has a simple control rule to achieve real-time control. However, the optimal
fuel economy cannot be achieved when the range is not within the AER, which is validated [14].
A blended control strategy is developed based on the assumption that the entire driving cycle is
known. The optimization algorithms, such as dynamic programming [15] and Pontryagin’s Minimum
Principle [16], are utilized to achieve global optimization in the blended strategy. Prof. Xiong in
Ref. [15] present a procedure for the design of a near-optimal power management strategy for the
hybrid battery and ultracapacitor energy storage system in a plug-in hybrid electric vehicle considering
battery durability and longevity performance, and this approach shows excellent performance against
uncertain diving cycles and battery packs. In the blended control strategy, electricity and fossil fuel
are blended for the consumption at the beginning of the range, and the minimum boundary of the
SOC of the battery is reached until the end of range. However, the future driving cycle must be
provided accurately. In recent studies, the future driving cycle was predicted using the Markov chain
model [17] and the neural network mode [18] using historical traffic data. In addition, the future
driving cycle can be predicted using the traffic information obtained from intelligent transportation
systems [19,20]. However, an accurate prediction of the driving cycle usually requires considerable
traffic data and involves complex calculations. For the blended strategy, the tradeoff between the
accuracy of driving-cycle prediction and computational complexity needs further study.

Figure 1. The trajectory of the SOC in the CD–CS control strategy.

Furthermore, for the real-time control strategies of PHEVs, a good vehicle performance, in terms
of fuel economy, power, and battery life, cannot be ensured, if the driving conditions are not considered.
The slope is proven to be an important factor that influences the fuel consumption of the HEV [21,22].
PHEVs usually operate in the hybrid-driving mode while driving uphill, and the engine and motor
coordinately work together to ensure that the engine operates in the high-efficiency region. However,
the SOC of the battery tends to reach the minimum boundary. Moreover, increasing the depth of
discharge of the SOC will degrade the battery life [23]. Hence, the PHEV is driven only by the engine
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to avoid degrading the battery life when the SOC is lower than the minimum boundary. On the other
hand, when the vehicle is driven only by the engine, both the power of the vehicle as well as the
fuel economy are affected, because the engine cannot be ensured to operate in the high-efficiency
region. Currently, to solve this problem, there are two major solutions: (1) maintaining the minimum
boundary of the SOC at a higher level in mountainous terrain, such as 50%, to avoid excessive battery
discharge during the hybrid driving phase in the CS mode [24]. However, this solution requires more
battery capacity to satisfy the requirement of the AER, which will increase the cost of the vehicle;
(2) temporarily extending the minimum boundary of the SOC to meet the requirement of excessive
electricity during the hybrid driving phase in the CS mode [25]. However, to restore the power of the
battery, it needs to be continuously charged by the engine after driving through the uphill terrain,
which increases the fuel consumption. Moreover, the increased depth of discharge of the SOC will
reduce the battery life. Hence, it is necessary to develop an optimal EMS that can improve the fuel
economy and the battery life considering the condition of the road.

This study focuses on two problems for the basic control strategy while driving continuously
uphill. Firstly, in the CD mode, the PHEV may switch to the CS mode in uphill terrain, as the SOC
reaches the minimum boundary. Therefore, the engine becomes the primary power source to drive the
vehicle, which increases the fuel consumption. Secondly, in the CS mode, considerably low SOC will
reduce the power or cause excessive battery discharge while driving uphill.

In this study, an optimal EMS for the PHEV based on the road-grade information is proposed to
improve both the fuel economy and battery life. The most important issues are analyzed, including
the prediction of the electricity consumption for the uphill terrain and the planning of trajectory of
the SOC. First, the electricity consumption for the uphill terrain is predicted based on the road grade
and the average velocity of the traffic obtained from the GPS/GIS system. Moreover, the trajectory
of the SOC is preplanned based on the target SOC for the uphill terrain in the CD and CS modes.
The proposed EMS was simulated on the MATLAB/Simulink (R2014a, MathWorks, Natick, MA, USA)
platform under the comprehensive driving cycle. The effectiveness of the proposed control strategy
was validated by comparing with the results of the basic control strategy.

The rest of the paper is organized as follows: Section 2 presents the structure and the basic
control strategy of the powertrain system. Section 3 explains the prediction of the road grade and the
electricity consumption for the uphill terrain. Section 4 proposes the energy management of the PHEV
considering the condition of the road. Section 5 provides the simulation results and analyses of the
proposed approach. Section 6 gives the conclusions of this study.

2. Basic Control Strategy

2.1. The Structure and Parameters of the Powertrain System

Figure 2 shows the structure of the PHEV analyzed in this study. The power sources are the
engine and the motor, which is an integrated starter generator (ISG). The engine and ISG are coaxially
arranged to achieve dynamic coupling, and the master clutch is placed between the engine and the ISG.
Furthermore, a dual-clutch transmission (DCT) is used to meet the different requirements of the driving
conditions in terms of speed and torque. The powertrain system of the PHEV can operate in one of six
working modes, including the pre-charge mode, the driving and charging mode, the engine-driving
mode, the electric-driving mode, the hybrid-driving mode, and the regenerative-braking mode.
Moreover, the working modes are switched by changing the status of the master clutch and dual
clutches. Table 1 gives the basic parameters of the PHEV.

As the length of the paper is limited, the basic control strategy of the PHEV based on the
driving-pattern recognition is introduced directly and used as the reference for the proposed control
strategy [26]. The main idea of the basic control strategy is stated as follows: first, the basic control
strategy is divided into the CD and CS modes based on the SOC of the battery. Six benchmark
driving cycles, namely, ECE, NYCC, UDDS, LA92, HWFET, and US06HWY, are considered as typical
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driving cycles to represent the different road types, namely urban congestion, suburban, and highway
conditions. The driving-pattern recognition is realized using the clustering-analysis method [27].
Moreover, the key control parameters are optimized via the genetic algorithm (GA) under the different
typical driving cycles, and the corresponding optimized results are saved in the database. Based on
the results of the driving-pattern recognition in real time, the PHEV is controlled by the corresponding
optimal parameters, which are obtained from database.

Figure 2. The powertrain configuration of the PHEV.

Table 1. Basic parameters of the PHEV.

Description Parameters Value

Basic parameters of the vehicle

vehicle mass/kg 1325
frontal area/m2 2.275
drag coefficient 0.3146

rolling radius/m 0.308
rolling resistance coefficient 0.00995

ISG
peak power/kW 30

maximum torque/N·m 115

Engine peak power/kW 80
maximum torque/N·m 140

NI-H power battery

capacity/A·h 38.5
rated voltage/V 288

initial SOC 0.85
minimum SOC 0.3

DCT
speed ratio 3.917/2.429/1.436

1.021/0.848/0.667
efficiency 0.95

2.2. Control Strategy in CD Mode

The CD mode of the PHEV comprises the electric-driving and hybrid-driving modes. In the CD
mode, the PHEV is mainly driven by the motor to make full use of the battery. If the required power
of the vehicle is less than the maximum power of the motor, only the motor will drive the vehicle;
otherwise, both the engine and the motor will drive the vehicle together. In our previous research,
the efficiency optimization models for the powertrain system under different working modes were
developed to obtain the mode-switching schedules [26]. Figure 3 shows the mode-switching schedule
of the CD mode.
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Figure 3. The mode-switching schedule in the CD mode.

To achieve better fuel economy, the mode-switching schedule needs to be adaptively modified
based on the driving-pattern recognition. Hence, the mode-switching schedule is adjusted by a control
parameter K1, which is limited to the range [0, 1] to avoid exceeding the maximum power of the motor
(borderline a). Hence, the borderline a will adaptively fluctuate by multiplying the control parameter
K1. Furthermore, the control parameter K1 is regarded as a design variable to be optimized offline
under different typical driving cycles, and the optimized results are saved in the database.

2.3. Control Strategy in CS Mode

The CS mode of the PHEV comprises the electric-driving mode, driving and charging mode,
engine-driving mode, and hybrid-driving mode. In the CS mode, the vehicle is mainly driven by the
engine to maintain the battery SOC. Through the optimal torque distribution between the two power
sources, the engine operates in the high-efficiency region to improve fuel economy. Figure 4 shows
the mode-switching schedule of the CS mode. Similar to the CD mode, the control parameters K2, K3,
and K4 are used to modify the mode-switching schedule based on the result of the driving-pattern
recognition. The three control parameters are limited to the range [0, 1]. Furthermore, the three control
parameters are optimized offline via GA. The controller will select the corresponding optimized
parameters from the database based on the result of the driving-pattern recognition.

Figure 4. The mode-switching schedule in the CS mode.

3. The Prediction of the Electricity Consumption for the Uphill Terrain

The electricity consumption for the uphill terrain is predicted to determine the target SOC of the
battery. The road grade and the velocity profile are crucial factors affecting the energy consumption of
the HEV, which was validated in a previous research [21]. To determine the target SOC for the uphill
terrain, the road grade and the driving cycle need to be predicted.
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3.1. Road Grade Information with GPS/GIS System

The PHEV is assumed to be equipped with a GPS/GIS system, which is a reasonable assumption.
If the origin and destination of the vehicle are entered in the digital map, the GPS/GIS system can
provide the elevation and the length of the road [28]. The location and the distance of the PHEV with
respect to the uphill road can be obtained from the GPS, thereby facilitating the prediction of the road
grade. Figure 5 illustrates the estimation of the road grade using the length of the uphill road and the
difference in altitude between the starting and ending points.

The road grade is estimated using the following expression:

i = tan
(

arcsin
E2 − E1

L

)
× 100%. (1)

where E2 is the elevation of the road for the sampling point of the road ahead, E1 is the elevation
of the road for the current location of the PHEV, and L is the traveling distance between the two
sampling points.

Figure 5. Road grade estimation using GPS/GIS.

3.2. The Prediction of the Driving Cycle along the Slope

Traffic information, such as traffic flow, velocity limits, and average velocity of the traffic, can be
obtained from GPS/GIS. The average velocity of the traffic is the average velocity of all the vehicles on
a specific road segment. The average velocity of the traffic on the uphill road is used to predict the
driving cycle. First, the uphill road is divided into several segments to sample the average vehicle
velocity, and the average velocities of the different segments are used to construct the reference velocity
profile in the spatial domain, as shown in Figure 6. The length of the segment for the sampling of the
average velocity plays a key role in the accuracy of the prediction. The length of the segment is set as
160 m [29].

Figure 6. An example of the velocity profile in the spatial domain.
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The velocity profile in the time domain, which is defined as the reference driving cycle, is obtained
by domain transformation. The domain transformation is expressed as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δt(k ⇒ k + 1) = Δd
Vs(k)

t(k + 1) = t(k) + Δt(k ⇒ k + 1)
k = 1, 2, 3..., S

Δd
Vt(k) = Vs(k)

(2)

where Δt(k ⇒ k + 1) is the time period for the average-velocity sampling of the segment k in the time
domain, t(k) is the initial time for the sampling of the segment k in the time domain, Δd is the length
of the segment for the average-velocity sampling in the spatial domain, Vs (k) is the average velocity of
the vehicle of the segment k in the spatial domain, Vt (k) is the average velocity of the vehicle of the
segment k in the time domain, and S is the length of the continuous uphill road.

However, the reference driving cycle is not reasonable as the real-driving conditions, as the
velocity changes abruptly. To achieve a reasonable driving cycle that reflects the actual driving cycle
to the highest possible degree, a second order Butterworth filter with a cut-off frequency of 0.4 Hz
is utilized to filter the reference velocity profile. Figure 7 shows the filtering procedure. The filtered
velocity profile is selected as the predicted driving cycle for the uphill road. As it is difficult to obtain
the traffic information from a simulation environment, this study assumes that the average velocity
of the PHEV driving through a specific segment is the same as the average velocity of the traffic
obtained from the GPS/GIS system. Hence, the prediction of the driving cycle on the uphill road can
be achieved, as shown in Figure 8. The average velocity of the traffic is set as the reference driving
cycle, which is obtained from the GPS/GIS. The predicted driving cycles can then be constructed using
the Butterworth filter.

Figure 7. Filtering procedure for the velocity profile.

Figure 8. An example of the prediction for the driving cycle.

3.3. Calculation of Target SOC for the Uphill Terrain

The variation in the SOC during the uphill terrain is calculated based on the road grade and the
predicted driving cycle. The traffic information obtained from the GPS/GIS system can be updated
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every 300 s [30]. Hence, during the interval of the update of the traffic information, the variation in
the SOC can be simulated under the predicted driving cycle in time. The simulation model of the
powertrain system of the PHEV has been extensively studied, and is not discussed further in this
paper. Figure 9 shows the structure of the powertrain-system model.

Figure 9. Structure of PHEV powertrain system model.

Based on the variation in the SOC during the uphill terrain, the target SOC for the uphill terrain is
determined as follows:

SOCt = SOC0 + ΔSOC (3)

where SOCt is the target SOC for the uphill terrain, SOC0 is the minimum boundary of the SOC,
and ΔSOC is the variation in the SOC during the uphill terrain.

4. Energy Management Strategy Based on Road Grade Information

In the paper, in order to avoid excessive battery discharge and reduce the fuel consumption of the
PHEV during a continuous uphill terrain trip, an energy management strategy based on road grade
information has been proposed for PHEV, whose control diagram is shown in Figure 10. The proposed
control strategy is developed based on the basic control strategy.

Figure 10. Control diagram for the proposed control strategy.

In the top layer, driving cycles on the uphill road can be predicted with the average vehicle velocity
of the traffic obtained from GPS/GIS, and the target SOC for the uphill terrain can be determined by
online calculation.

In the bottom layer, the SOC trajectory is preplanned in the CD and CS modes. The SOC trajectory
planning strategy can make sure sufficient electricity to drive motor during the uphill terrain. Therefore,
the engine can operate in the high-efficiency region with the optimal torque distribution between the
engine and motor, which effectively improves the overall efficiency of whole system. The battery SOC
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is maintained at the target value SOCt through the battery SOC balance control method in the CD
mode, and the battery SOC is charged to the target value of SOCt through the pre-charge method
in the CS mode. The details of the proposed energy management strategy will be introduced in the
following sections.

4.1. Control Strategy for CD Mode

4.1.1. SOC Trajectory Planning Strategy

Due to the sufficient electricity of the power battery in CD mode, it’s necessary to make a judgment
whether the current SOC would meet the demand for uphill. The driving mileage per SOC in CD mode
denoted by a (km·%−1) was determined offline under different typical driving cycles. The driving
mileage per battery SOC, a, which is shown in Table 2, was used to estimate the variation of SOC in the
CD mode.

Table 2. Driving mileage per SOC (km·%−1) in CD mode.

Driving Cycle ECE NYCC NEDC UDDS LA92 HWFET US06HWY

a 1.401 1.222 0.786 0.783 0.592 0.599 0.525

The diagram of SOC trajectory planning in the CD mode is shown in Figure 11, and the control
flow is described as follows:

(1) Road grade estimation: The destination of travel, the road path, and the elevation as well as
length of the road are determined from the vehicle navigation system (GPS/GIS) before traveling.
Then the road grade can be calculated by Equation (1).

(2) Driving cycle prediction: The predicted driving cycle on the uphill road is constructed through
average velocity of the traffic on the uphill road obtained from the GPS/GIS.

(3) Target SOC calculation: The variation in SOC during the uphill terrain is calculated, and the
target value SOCt for uphill is then determined.

(4) Driving mileage lookup: The type of real-time driving cycle is obtained based on driving pattern
recognition, and the driving mileage, a, per SOC is referred from Table 2 based on the real-time
driving cycle of PHEV.

(5) SOC control decision: The initial battery SOC for encountering the uphill terrain is calculated
before the vehicle took the uphill road. The initial battery SOC for the uphill terrain, which is
defined as SOCg, can be calculated using Equation (4). If SOCg is greater than SOCt, the vehicle
is still on the electric-driving mode to consume electric energy; otherwise the SOC trajectory is
planned by the SOC balance control method:

SOCg = SOC(t)− L(t)
a

(4)

where SOC (t) is the current SOC of power battery, L (t) is the distance between the vehicle current
position and uphill road, and a is the driving mileage per SOC in CD mode. Because the result of
driving pattern recognition changes with time, the SOCg can be dynamically calculated according
to real-time driving cycle.

(6) SOC balance control: The PHEV controller switches to SOC balance control to ensure that the
target value SOCt is maintained. As a result, there is sufficient battery power to encounter the
uphill terrain when the PHEV took uphill road. Note that the vehicle is controlled by basic
strategy after entering the uphill road.
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Figure 11. Diagram of the battery SOC trajectory in CD mode.

4.1.2. SOC Balance Control

In the SOC balanced control mode, engine and motor work together to maintain a roughly constant
battery SOC. It is similar to the basic control strategy in the CS mode. However, the basic control
strategy in the CS mode cannot ensure sufficient battery power for uphill terrains, since the battery SOC
may change too much during certain driving conditions. Therefore, the SOC balance control method
has been proposed, which takes the fuel economy as well as the SOC variation into consideration.
The key control parameters of this control strategy are optimized by GA. The optimization target is
to obtain optimal parameters to restrict the variation in battery SOC, which can also ensure the fuel
economy of PHEV.

(1) Optimization objective function

In order to restrict the battery SOC variation, SOC variation is converted to the corresponding fuel
consumption. The equivalent fuel consumption is integrated into the optimization objective function.
The SOC correction method has been used for objective function in this paper as follows:

Δ f uel =
ΔSOC · Qcap · Ubat · ηeng_chg

1000 · ρ
(5)

where Δfuel is the equivalent fuel consumption (L), ΔSOC is the variation of battery SOC between the
initial and final values, Qcap is the capacity of battery (Ah), Ubat is the average value of battery bus
voltage during drive cycles (V), ηeng_chg is the average value of the engine's power efficiency (g/kW·h),
and ρ is the density of gasoline (g/L).

To optimize the fuel economy and prevent excessive variation in the SOC, the fuel consumption
and equivalent fuel consumption are integrated in the optimization objective function. Therefore, the
optimal control parameters can make sure both the fuel consumption and the SOC variation are the
minimum. The fitness function is given by:

Min f (x) =
∫

Fueluse(t)dt + wp · |Δ f uelp|
s.t. xl

i ≤ xi ≤ xk
i i = 1, 2, 3, ..., n

(6)

where n is the number of optimization variables; xl
i and xk

i are the upper and lower boundaries of the
optimization variables, respectively; wp is the weight coefficient of Δfuel, which is used for adjusting
the limitation of SOC variation. The weight coefficient is set as 1.2 using an enumerative technique
based on experience and simulation.

(2) Optimized parameters

The mode-switching schedule of the SOC balance control method is the same as that of the basic
control strategy in the CS mode, shown in Figure 4. To optimize the fuel economy of the PHEV,
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the control parameters K2, K3, and K4 are set as the design variables to modify the mode-switching
schedule. Furthermore, the electric-driving mode and the driving and charging mode are the most
critical modes that influence the variation in the SOC. Hence, two other control parameters SOCele and
SOCcharge are created to modify the mode-switching schedule of the electric-driving mode and driving
and charging mode, which are given in Equations (7) and (8):

SOCele = SOCmin + Ke (7)

SOCcharge = SOCmin + Kc (8)

where SOCele is the upper boundary of the SOC in the SOC balance control. The controller switches
to the electric-driving mode to consume surplus electric energy when the SOC reaches the upper
boundary. Ke is the control parameter that modifies SOCele. SOCcharge is the threshold for switching to
the driving and charging mode. To avoid unnecessary fuel consumption, the controller switches to the
driving and charging mode only when the SOC is lower than this threshold. Kc is the control parameter
that modifies SOCcharge. SOCmin is the lower boundary of the SOC in the SOC balance control, which is
considered SOCt based on the calculation of the target SOC for the uphill terrain, given in Section 3.

The five control parameters Ke, K2, K3, K4, and Kc are set as the design variables for the
optimization. Table 3 lists the range and initial values of the design variables. The range is selected to
ensure that the engine operates in the high-efficiency region and that different working modes will not
interfere with each other.

Table 3. Range of the design variables.

Design Variable Initial Value Range

Ke 0 0~0.1
K2 1 0.6~1
K3 1 0.6~1
K4 1 0.6~1
Kc 0 0~0.1

(3) Optimization results

The five design variables are optimized using the GA under the different typical driving cycles.
For the optimization of the parameters, the maximum number of generations is set as 80, and the
population is initialized by 100 random individuals. Moreover, the elitist amount is set as 10, and the
mutation rate is set as 0.4. Table 4 gives the results of the optimization. Figure 12 shows the history of
the optimization process for the typical driving cycle LA92.

Table 4. Optimization results of design variables.

Driving Cycle Ke K2 K3 K4 Kc

ECE 0.078 0.774 0.808 1 0.012
NYCC 0.005 0.846 0.993 0.889 0.000
NEDC 0.000 0.718 0.643 0.610 0.058
UDDS 0.063 0.948 0.972 0.845 0.054
LA92 0.060 0.998 0.931 0.886 0.001

HWFET 0.001 0.654 0.663 0.628 0.048
US06HWY 0.077 0.794 0.991 0.962 0.003
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Figure 12. Optimization result under the driving cycle LA92. (a) Best fitness of optimization under the
driving cycle LA92; (b) Best individual of optimization under the driving cycle LA92.

Figure 12a shows the development of the GA. The points terminate after 43 generations, and the
fitness value, i.e., the fuel-consumption is 0.674. According to the optimization results, the variation in
SOC is maintained within 0.006, 0.002, 0.013, 0.002, 0.003, 0.008 and 0.019, respectively, under the six
typical driving cycles. These values satisfy the requirements of the SOC balance control in terms of the
consistency of SOC. Figure 13 shows the trajectory of the SOC for the parameter optimization, taking
the driving cycle LA92 as an example. The battery SOC is effectively maintained at the initial value.

Figure 13. The trajectory of the SOC under the driving cycle LA92.

4.2. Control Strategy for the CS Mode

In the CS mode of the PHEV, the pre-charge mode is designed considering the road grade
information based on the basic control strategy. The controller switches to the pre-charge mode
before the uphill road based on the prediction of the target SOC for the uphill road, given in
Section 3. The pre-charge mode comprises the driving and charging mode, engine-driving mode, and
hybrid-driving mode; however, while the electric-driving mode is temporarily terminated to increase the
SOC rapidly. As Figure 4 given in Section 2 indicates, the powertrain system of the PHEV will operate in
the driving and charging mode when the system behavior is within sections A and B. In the driving and
charging mode, the engine operates at the optimal operating points to improve fuel economy, and the
remaining power is then used to charge the battery. The vehicle operates only in the electric-driving
mode when the velocity of the vehicle is below the launch-speed limit of the engine. The engine launch
speed is set as 30 km/h. First, the driving mileage in the pre-charge mode is determined. The driving
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mileage per battery-SOC variation in the pre-charge mode, defined as b (km·%−1), is determined under
different typical driving cycles simulated offline, given in Table 5.

Table 5. Driving mileage per SOC (km·%−1) in the pre-charge mode.

Driving Cycle ECE NYCC NEDC UDDS LA92 HWFET US06HWY

b 0.157 0.330 0.443 0.641 0.783 1.636 8.026

Figure 14 shows the diagram of the SOC trajectory planning in the CS mode. The control flow is
described as follows:

(1) Road-grade estimation: The destinations of travel, the path of the road, and the elevation as well
as the length of the road are determined from the vehicle navigation system (GPS/GIS) before
starting. Then, the road grade can be calculated using Equation (1).

(2) Driving cycle prediction: The predicted driving cycle on the uphill road is developed using the
average velocity of the traffic obtained from the GPS/GIS system.

(3) Target-SOC calculation: The variation in the SOC during the uphill terrain is calculated, and the
target-battery SOCt for the uphill road is then determined.

(4) Driving mileage lookup: The type of real-time driving cycle is obtained through the
driving-pattern recognition, and the driving mileage b per SOC is referred from Table 5 based on
the real-time driving cycle of the PHEV.

(5) Pre-charge mode: The particular location between the vehicle and the uphill road is determined.
When the PHEV arrives at the particular location, the controller switches to the pre-charge mode
at this point. Hence, the SOC increases to the target value when the vehicle enters onto the
uphill road. Note that the vehicle is controlled by basic strategy after entering the uphill road.
The starting time of the pre-charge mode is given by:

(SOCt − SOC0) · b = L′(t) (9)

where L′(t) is the distance between the vehicle and the uphill road when the controller switches
to the pre-charge mode, SOCt is the target battery SOC for the uphill road, and SOC0 is the
minimum boundary of the SOC.

By employing Equations (3) and (9), the distance to the slope at which the controller switches to
the pre-charge mode is calculated using Equation (10):

L′(t) = ΔSOC · b (10)

Figure 14. Diagram of the battery SOC trajectory in CD mode.
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5. Simulation and Analysis

To verify the effectiveness of the proposed control strategy, a backward simulation model has been
established using the MATLAB/Simulink platform. The proposed pre-charge mode may lead to double
energy conversion losses. In order to evaluate the performance of the proposed strategy, the efficiency
models of the key components have been integrated into the simulation model. The efficiency models
consist of ISG motor, battery and inverter. The efficiencies of inverter and DCT are modeled as
the fixed values 0.92 and 0.95, respectively. The ISG motor working efficiency, which is shown in
Figure 15, is obtained from the experiment data. The efficiency model of the power battery is a function
of charging/discharging power and SOC as shown in Figure 16. The proposed strategy has been
simulated in the CD and CS modes, and the basic strategy is selected as a benchmark strategy for
comparison. Table 1 lists the parameters for the simulation.

Figure 15. ISG motor efficiency map.

Figure 16. Power battery efficiency model. (a) Charging efficiency model of battery; (b) Discharging
efficiency model of battery.

5.1. Simulation in the CD Mode

Five types of driving cycles (New York bus, 1015, Manhattan, WVUSUB, and HL07) were
successively combined into a comprehensive cycle to simulate and evaluate the performance of
the proposed control strategy. The information of the road grade and average velocity of the traffic
are assumed to be known. The continuous uphill road has a road grade of 4%, an overall length of
3.3 km, and appears at 4724 s, as shown in Figure 17. Table 6 and Figure 18 give the comparison results
between the control strategy based on the road grade information and the basic control strategy.
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Figure 17. Test driving cycle for the CD mode.

Table 6. Comparing results for the CD mode.

Result Basic Strategy Proposed Strategy Savings (%)

Fuel consumption (L) 0.640 0.596 6.878
Electricity consumption (kw·h) 5.591 5.693 −1.789

Initial SOC for uphill 0.322 0.391 -
Final SOC for uphill 0.303 0.304 -

Cost of energy consumption (RMB) 7.897 7.605 3.688

Different from the conventional HEV, a PHEV is mainly driven by the motor in the CD mode,
and the power comes from two components: the electricity from the power grid and the fossil fuel.
Hence, the cost of energy consumption, which is defined as Qc, is adopted to evaluate the energy
economy of the PHEV in the CD mode [31]. The cost of energy consumption is expressed using the
following equation:

Qc = J f Q f + JeQe. (11)

where Jf is the fuel price (RMB/L), which is set as 7.8 RMB/L; Je is the electricity price (RMB/kW·h)
which is set as 0.52 RMB/kW·h; Qf is the fuel consumption (L); Qe is the electricity consumption (kW·h).

As shown in Figure 18b, the proposed strategy switches to the SOC balance control at 4565 s,
and the target SOC is 0.402. The SOC balance control is maintained for 156 s, and the SOC of the
proposed strategy effectively maintains at SOCt, as the initial SOC for the uphill terrain only slightly
changes to 0.391. However, the initial SOC for the uphill terrain in the basic strategy drops to 0.322,
as the road grade is not considered. As shown in Figure 18a, the fuel consumption of the proposed
strategy is higher than that of the basic strategy during the SOC balance control, as the engine works
in tandem with the motor to conserve the battery power. When the PHEV enters the uphill road,
the proposed strategy maintains the vehicle operate in the CD mode. The electric motor becomes
the primary power source for the proposed control strategy; hence, the fuel consumption reduces.
However, for the basic strategy, the PHEV switches to the CS mode at 4756 s because it reaches the
minimum boundary of the SOC. Moreover, the engine becomes the primary power source, thereby
increasing the fuel consumption of the basic control strategy.

Compared to the basic strategy, the fuel consumption and the cost of energy consumption of the
proposed strategy improve by 6.878% and 3.688%, respectively. Hence, the proposed control strategy
effectively improves the fuel economy in the CD mode.
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Figure 18. Simulation results in the CD mode. (a) Fuel consumption under the test driving cycle;
(b) SOC trajectories under the test driving cycle; (c) Electricity consumption under the test driving cycle.

5.2. Simulation in the CS Mode

The five selected types of driving cycles (New York bus, 1015, Manhattan, WVUSUB, and HL07)
were successively combined into a longer comprehensive cycle for the simulation process to ensure
that the range of variation in the SOC includes the CS mode. The information of the road grade and
average velocity of the traffic are assumed to be known. The continuous uphill road has a road grade
of 8%, an overall length of 5.1 km, and appears at 9350 s, as shown in Figure 19. When the SOC is
lower than the minimum boundary and the required power of vehicle is more than that generated by
the engine at the optimal operating point, the basic strategy has two different cases: (1) the vehicle is
driven only by the engine to avoid excessive battery discharge [13]; (2) the vehicle is driven by both
the engine and the motor together while the range of the SOC in the CS mode is temporarily extended
to ensure fuel economy and power [25]. The two cases of basic strategy have both been simulated
for comparison with the proposed strategy. Table 7 and Figure 20 give the simulation results of the
proposed control strategy and the basic control strategy.
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Figure 19. Test driving cycle for CS mode.

Table 7. Comparing results for CS mode.

Result
Proposed
Strategy

Basic Strategy Savings (%)

Case 1 Case 2 (Corrected) Case 1 Case 2 (Corrected)

Fuel consumption (L) 1.453 1.462 1.494 0.616% 2.744%
Fuel consumption for uphill (L) 0.582 0.770 0.585 24.431% 0.547%
Electricity consumption (kw·h) 4.135 4.135 4.135 0 0

Initial SOC for uphill 0.355 0.308 0.308 - -
Final SOC for uphill 0.301 0.303 0.251 - -

Figure 20. Simulation results in CS mode. (a) Fuel consumption under the test driving cycle; (b) Fuel
consumption during the uphill terrain; (c) SOC trajectories under the test driving cycle; (d) Electricity
consumption under the test driving cycle.
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Note that the electricity consumption is only estimated in the CD mode. Generally, the electricity
consumption is estimated only using the electricity from the power grid. However, in the CS mode, the
consumed electricity mainly comes from the fossil fuel in the driving and charging mode. As slopes
are not encountered during the CD mode, with the same control rules in the CD mode, the electricity
consumptions of the two strategies are both 4.135 kW·h, as shown in Figure 20d.

In the first case, for the basic strategy, the vehicle is driven only by the engine when the SOC is
lower than the minimum boundary. The proposed strategy effectively improves the fuel economy.
As shown in Figure 20c, the controller switches to the pre-charge mode at 7640 s, and the SOC increases
to 0.355 when the vehicle enters the slope. After the uphill terrain, the final SOC of the proposed
control strategy is 0.301, which is close to the minimum boundary without excessively discharging the
battery. As shown in Figure 20b, the proposed strategy significantly reduces the fuel consumption
on the uphill road owing to the optimal torque distribution between the engine and motor. Figure 21
illustrates that, during the uphill terrain, the proposed strategy can ensure that the engine operates
at relatively optimal operating points; furthermore, the vehicle can be driven in the electric-driving
mode at low speed and torque, which effectively improves the efficiency and reduces the emission of
the engine. Compared to the basic control strategy, the proposed control strategy improves the fuel
consumptions by 0.616% and 24.431% in the whole trip and during the uphill terrain, respectively.

Figure 21. Engine operating points during uphill terrain. (a) Engine working point for the proposed
control strategy; (b) Engine working point for the basic control strategy.

In the second case, for the basic strategy, the motor works in tandem with the engine during
the uphill terrain. The proposed control strategy effectively improves the fuel economy and battery
life of the PHEV. As shown in Figure 20c, for the proposed strategy, the electricity of the battery is
sufficient because the controller switches to the pre-charge mode before encountering the uphill road;
whereas in the basic strategy, the SOC drops to 0.251 after the uphill terrain. Hence, the depth of
discharge in the basic strategy is lower than the minimum boundary by 16.43%, thereby excessively
discharging the battery. There is an evident difference between the ending SOCs of the two strategies.
Hence, the SOC correction method based on the SAE J1711 standard is necessary to calculate the
equivalent fuel consumption that compensates for the difference in the SOC [32]. By using this method,
the fuel economy of the proposed strategy improves by 2.744%. Furthermore, the battery discharges
excessively in the basic strategy, which reduces the battery life.

6. Conclusions

An optimal EMS for the PHEV based on the road grade information is proposed in this study.
The effectiveness of the proposed strategy is validated via the simulation, which improves both the
fuel economy and battery life of the PHEV. The following work was conducted in this study:
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(1) An algorithm that predicts the electricity consumption during the uphill terrain was developed
based on the information obtained from the GPS/GIS system. The road-grade information is
obtained from the GPS system, and the driving cycles on the uphill road are predicted through
the average velocity of the traffic obtained from the GIS system. Furthermore, the target SOC for
the uphill road is calculated based on the road grade information and predicted driving cycles.

(2) In the CD mode, the trajectory of the SOC is preplanned using the SOC balance control method
based on the target SOC. The key control parameters are optimized using the GA to balance the
SOC and improve the fuel economy. Compared to the basic control strategy, the simulation results
show that the proposed strategy improves the fuel consumption and cost of energy consumption
by 6.878% and 3.688%, respectively.

(3) In the CS mode, the trajectory of the SOC is preplanned using the pre-charge mode. The power
battery is charged to the target SOC before entering the uphill road. Moreover, the proposed
strategy improves the fuel consumption in the CS mode compared to that of the basic control
strategy, and the excessive battery discharge is avoided during the continuous uphill terrain.
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Abstract: The accurate peak power estimation of a battery pack is essential to the power-train control
of electric vehicles (EVs). It helps to evaluate the maximum charge and discharge capability of the
battery system, and thus to optimally control the power-train system to meet the requirement of
acceleration, gradient climbing and regenerative braking while achieving a high energy efficiency.
A novel online peak power estimation method for series-connected lithium-ion battery packs is
proposed, which considers the influence of cell difference on the peak power of the battery packs.
A new parameter identification algorithm based on adaptive ratio vectors is designed to online
identify the parameters of each individual cell in a series-connected battery pack. The ratio vectors
reflecting cell difference are deduced strictly based on the analysis of battery characteristics. Based on
the online parameter identification, the peak power estimation considering cell difference is further
developed. Some validation experiments in different battery aging conditions and with different
current profiles have been implemented to verify the proposed method. The results indicate that
the ratio vector-based identification algorithm can achieve the same accuracy as the repetitive RLS
(recursive least squares) based identification while evidently reducing the computation cost, and the
proposed peak power estimation method is more effective and reliable for series-connected battery
packs due to the consideration of cell difference.

Keywords: power estimation; parameter identification; ratio vector; cell difference; recursive
least squares

1. Introduction

With the global issues of energy shortage and environmental degradation, the lithium-ion battery,
because of its high energy and power density and long service lifetime, has become one of the
most readily available and low-cost energy storage components in electric vehicles (EVs). However,
the lithium-ion battery cells are sensitive to over- and under-voltage, over- and under-temperature,
and some extreme working conditions may even lead to safety issues. Thus, to guarantee the safety of
the vehicle and to enhance the performance of the batteries, a battery system is generally equipped
with a battery management system (BMS). The most important task of a BMS is to provide an accurate
and real-time estimation of the internal states of the battery, such as state of Charge (SOC), state of
health (SOH) and peak power etc. [1].
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The estimation of the peak power in the vehicular application is generally used to evaluate the
maximum charge and discharge capability of the battery system, and thus help to optimally control
the power-train system to meet the requirement of acceleration, gradient climbing and regenerative
braking while achieving a high energy efficiency [2].

The peak power can be determined by three methods. The first one is the hybrid pulse power
characterization (HPPC) proposed by Partnership for New Generation Vehicles (PNGVs) [3]; the second
method considers the SOC limit of the battery, i.e., the peak power is calculated based on the limitation
of the permitted maximum and minimum SOC [4]; and the third method is the voltage-limited
method [4–12]. No matter what method is used, in a real BMS, the peak power estimation can be
implemented with two types of techniques: techniques based on a characteristic map and on dynamic
battery models [13].

Within the techniques based on the characteristic maps [14,15], the static interdependence existing
among the peak power, battery states (e.g., SOC and SOH), working conditions (e.g., voltage and
temperature) and pulse duration is applied. The dependencies are stored in the non-volatile memory
of the BMS in the form of look-up tables. When the battery system is working, the BMS determines
the peak power of the battery according to the present battery states, working conditions and the
requirement of the duration of power delivery. Normally, the characteristic map can be obtained in
advance by various test procedures, for example, the HPPC test procedure [3]. The main advantages of
this technique are its simplicity and straight forward implementation. However, this technique suffers
from the drawbacks that only static battery characteristics are considered, massive experiments should
be implemented to obtain the characteristic map, and a significant amount of non-volatile memory is
required which increases the cost of the BMS.

Another technique is the model-based estimation [4–12]. So far, there have been many researches
of model-based power estimation, and the main difference among the existing researches lies in the
type of models they used. If the model can track the battery dynamics well, then the peak power can
also be estimated accurately. One more important aspect that should be taken into consideration is
that the model should be adaptive to different aging states and temperatures. Thus, model adaption
techniques are often applied [5,7,8], in which the model parameters are identified online to improve
estimation accuracy. Generally, the model-based power estimation is more promising, and the above
mentioned researches have been validated and proven to be effective for the power estimation of a
single battery cell.

One common drawback of the above mentioned techniques is that the characteristic difference
among the cells of a battery pack has not been considered. As we know, in EV applications, due to
the requirement of voltage and power, the battery system is generally composed of tens to hundreds
of cells connected in series. Because of the restrictions of production technology and tolerances,
material defects and contaminations, small differences among cells may exist. Furthermore, in real
applications, the working conditions, e.g., temperature distributions, are also different among cells.
This non-homogeneity among cells leads to the peak power of the battery system being limited by the
weakest cell. Although this is a big challenge of battery management, to the best of our knowledge,
there are few researches on this problem so far.

An ideal solution of this problem is to estimate the peak power for each individual cell online,
i.e., to design an estimator which works well for estimating cell peak power, and to replicate that
estimator N times to estimate the peak power for all the N series-connected cells in the battery systems.
With the accurate power estimation of all the cells, we can determine the peak power for the battery
system by considering the limitation of the weakest cell. This method provides the best estimation
of the peak power for the battery system, however, it incurs a high computation cost, thus is not
suitable to implement online within a low-cost microcontroller-based BMS. In reference [5], Waag et al.
proposed a power estimation technique with consideration of the difference between the characteristics
of individual cells in a battery pack. The method has been validated with a software-in-the-loop
test. The adaption is implemented through a simplified relationship between cell voltage and pack
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averaged voltage. The method is enlightening, however, it assumes the dynamic of each cell to be equal,
which may not necessarily hold true in real battery systems; moreover, the difference of polarization
effect of each individual cell is not strictly considered.

In this paper, as the main scientific contribution, a peak power estimation technique which
comprehensively considers the cell difference in a pack is proposed. A novel model parameter
identification algorithm considering cell difference is firstly put forward. A mean battery cell model
is fabricated to describe the average characteristics of the battery pack. The average parameter of
the battery pack is estimated with the mean battery model, then several ratio vectors describing the
characteristic difference between the battery pack and each battery cell are used to yield the parameter
estimation for each cell. The ratio vectors are deduced strictly based on a comprehensive analysis of
the pack’s and cells’ characteristics. Based on the parameter identification, the peak power estimation
of the battery pack is further developed. Since the parameters for each cell are obtained, the limitation,
imposed by the weakest cell, on peak power is also taken into consideration in power estimation.
Some validation experiments are implemented in which the power estimations with 1 s, 10 s and 30 s
durations are obtained. The results indicate that with the online parameter identification considering
cell difference, the proposed power estimation method is adaptive to different aging states, working
currents and cell inconsistency.

2. Power Estimation for One Single Battery Cell

Peak power means, based on the present conditions, the maximum power that can be maintained
continuously for a specific time period, e.g., 1 s or 10 s, without violating the preset operational limits
on the cells. From this definition, the peak power is limited by the safe operation area of the battery,
which is normally defined by temperature, voltage, current and SOC etc. Since the forecast period
of power prediction is less than tens of seconds, the influence of temperature and SOC changes can
be neglected because they do not change rapidly. Thus, in this paper, the limitations by voltage and
current are mainly considered in power estimation.

2.1. Lumped Parameter Battery Model

Normally, in the model-based peak power estimation, the lumped-parameter battery model is
needed, and the equivalent circuit model shown in Figure 1 is widely used because of its simplicity and
acceptable accuracy. The model can be described in a mathematical way with Equation (1), where UOC
represents the open circuit voltage (OCV) which relates with SOC directly. RO is the ohmic resistance,
and RTH and CTH are the impedance parameters normally corresponding to charge transfer and double
layer capacitor effects. UB and UTH are the terminal voltage and the voltage on CTH respectively, IB is
the working current. All parameters (RO, RTH and CTH) change with different temperatures, SOC and
SOH of the battery. {

UB = Uoc − UTH − IBRO.
UTH = − UTh

RTHCTH
+ IB

CTH

(1)

Figure 1. The equivalent circuit model.
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2.2. Online Model Parameter Identification

The accuracy of the battery model influences the estimate of the peak power. As we mentioned
above, all the parameters in the model vary along with the actual working conditions of the battery.
Moreover, the parameters cannot be obtained from direct measurements using sensors. Thus,
the accurate identification of the model parameters in various conditions is the key to guarantee
the accuracy of the power estimate.

For the online model parameter identification of li-ion batteries, many researches can be found.
Basically, the parameter identification techniques are the recursive least squares (RLS) type or adaptive
filtering (AF) type of methods [16–25], e.g., Xiong et al. [23] proposed a data-driven estimation
approach which can simultaneously obtain the model parameter and the internal state of the battery.
These techniques have been widely proven to be effective in online parameter identification. Because of
the recursive computation process, these methods are easy to implement in real time. In such
techniques, the parameters of the battery model are identified with only real-time measurements
of current and voltage needed. In this paper, we use the RLS-based parameter identification technique.

If we define the dynamic voltage response caused by the cell impedance as:

Ud = UB − UOC(SOC) (2)

then, the difference equation of the dynamic voltage shown in Figure 1 can be expressed with:

Ud,k+1 = aUd,k + bIB,k+1 + cIB,k (3)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a = e− Δt
τ

b = −RO

c = e− Δt
τ RO − (1 − e− Δt

τ )RTH
τ = RTHCTH

(4)

where Δt is the sampling period of current and voltage, and k is the sampling point.
Define: ⎧⎪⎨

⎪⎩
zk = Ud,k
hk = [Ud,k−1, IB,k, IB,k−1]

θ̂LS,k = [a, b, c]
(5)

then the RLS-based model parameter identification can be implemented recursively with the
following equation: ⎧⎪⎨

⎪⎩
∧
θLS,k+1 =

∧
θLS,k + Lk+1(zk+1 − hT

k+1

∧
θLS,k)

Lk+1 = Pkhk+1(1 + hT
k+1Pkhk+1)

Pk+1 = Pk − Lk+1hT
k+1Pk

(6)

Note that, in this parameter identification method, the battery SOC should be obtained in
advance. The SOC estimation has been well studied in a lot of previous researches, for example,
Xiong et al. [26] proposed an online battery SOC estimation method. This method was applied based
on the hardware-in-loop (HIL) setup, where the novel adaptive H infinity filter was proposed to realize
the real-time estimation of the battery SOC. The experiment results indicated the high estimation
accuracy and strong robustness of the method to the model uncertainty and measurement noise. Thus,
the SOC estimation is not further studied in this paper.

Another factor which should be taken into account is the influence of current and its direction
on the parameters. Normally, the parameters of the equivalent circuit model change not only with
different temperature, SOC and SOH, but also with the current and current direction. In this paper,
however, the focus is the consideration of the influence of cell difference. Thus, the influence of the
current and its direction on the parameters has not been well considered. To take the influence of
current and its direction on the parameters into account, the identification algorithm can be divided
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into to two parts; each part deals with the parameter identification in a specific current direction.
In this case, the RLS-based parameter identification algorithms introduced in the paper will be divided
into two parts in a similar way. We believe that, with this design, the accuracy of the identification will
be improved. This will be considered in our future works.

2.3. Power Estimation

Normally, when the battery cells are used in an EV, the battery supplier will provide a current
limitation of the batteries. In any case, the current of the battery cell should never exceed this limitation
value. Besides this limitation, the peak power of the battery in real applications is also limited
by voltage. Thus, in this paper, the limitations by both voltage and current are considered in the
power estimation.

(1) Limitation by voltage

With a pulse current lasting for a period of m × Δt, the terminal voltage of the battery will be [6]:

Um,m+k = Uoc(SOCk)− Im+k[
Δt
C

dUoc(SOC)
d(SOC)

∣∣∣
SOC=SOCk

+ RO + (1 − e− Δt
τ )RTH

m−1
∑

i=1
(e− Δt

τ )
m−1−i

]− (e− Δt
τ )

m
UTH,k (7)

thus, the maximum charge and discharge current considering the voltage limitation are:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Imin,vol,k+m =
Uoc(SOCk)−UTH,k(e−

Δt
τ )

m
−Umax

Δt
C

dUoc(SOC)
d(SOC)

∣∣∣
SOC=SOCk

+RO+RTH(1−e− Δt
τ )

m−1
∑

i=1
(e− Δt

τ )
m−1−i

Imax,vol,k+m =
Uoc(SOCk)−UTH,k(e−

Δt
τ )

m
−Umin

Δt
C

dUoc(SOC)
d(SOC)

∣∣∣
SOC=SOCk

+RO+RTH(1−e− Δt
τ )

m−1
∑

i=1
(e− Δt

τ )
m−1−i

(8)

where Umax and Umin are the allowed maximum and minimum voltages of the battery, Imin is the
maximum charge current and Imax is the maximum discharge current, k is the sampling point, and Δt
is the sampling period.

(2) Power estimation

Considering all the limitations by current and voltage, the maximum charge and discharge current
of the battery lasting for the period of m × Δt from sampling step k can be determined by:

{
Imin = max(Imin,batt, Imin,vol,k+m)

Imax = min(Imax,batt, Imax,vol,k+m)
(9)

where Imin,batt and Imax,batt are the permitted maximum charge and discharge currents suggested by the
battery suppliers. Then, the peak power estimation of the battery can be obtained by:

⎧⎪⎪⎨
⎪⎪⎩

Pmin = Um,k+m Imin = {Uoc(SOCk)− Imin[
Δt
C

dUoc(SOC)
d(SOC)

∣∣∣
SOC=SOCk

+ RO + RTH(1 − e− Δt
τ )

m−1
∑

i=1
(e− Δt

τ )
m−1−i

]− (e− Δt
τ )

m
UTH,k}Imin

Pmax = Um,k+m Imax = {Uoc(SOCk)− Imax[
Δt
C

dUoc(SOC)
d(SOC)

∣∣∣
SOC=SOCk

+ RO + RTH(1 − e− Δt
τ )

m−1
∑

i=1
(e− Δt

τ )
m−1−i

]− (e− Δt
τ )

m
UTH,k}Imax

(10)

According to the elaborations above, the online adaptive peak power estimation of a single battery
cell can be illustrated in Figure 2. The process illustrated in Figure 2 has now been widely used and
proven to be effective in the power estimation of a single battery cell.
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Figure 2. Peak power estimation of a single battery cell. SOC: state of charge; and OCV: open
circuit voltage.

3. Power Prediction of Series-Connected Battery Packs

For a battery pack consisting of tens to hundreds of cells connected in series, it is the performance
of each individual cell which limits the peak power. In a battery pack, the peak power is actually
limited by the weakest cell, which is the cell that first reaches the predefined voltage or current limit
during charging or discharging. Normally, the weakest cell limiting power delivery is the cell with
the largest impedance. The SOC of each cell also influences the power capability; in any case, in a
full-featured BMS, the problem caused by SOC imbalance can be alleviated by cell balancing [27] or
cell SOC estimation [28]. Thus, in this paper, the influence of SOC imbalance to power capability is
neglected, and the main focus of this study is the influence of cell impedance.

To determine the weakest cell, a straight forward method is to online identify the parameters of all
individual cells. This method requires a huge computation cost, and is not suitable to be implemented
on a low-cost microcontroller-based BMS. In reference [29], Roscher et al. proposed a reliable state
estimation of multi-cell Li-ion battery systems, where a dimensionless vector reflecting the ratio of
all the cells’ total impedances is used to determine the impedance parameters of all individual cells,
and Waag et al. [5] used a similar method to deal with the problem caused by cell difference. The works
of Roscher and Waag are enlightening, however, they assume the dynamic of each cell to be equal,
which may not necessarily hold true in real battery systems; moreover, the difference of polarization
effect of each individual cell is not strictly considered. We propose a peak power estimation technique
which comprehensively considers the cell difference in a pack.
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3.1. Improved Parameter Identification for Series Connected Battery Systems

(1) Basic idea

For simplicity, a small battery pack consisting of two series-connected cells is taken as an example
to develop the improved parameter identification for series-connected battery systems. The impedance
parameters of the two cells are RO1, RHT1, CTH1, and RO2, RTH2, CTH2. A battery cell, called “mean cell”,
with the mean characteristics of the two individual cells is constructed; the impedance parameters of
the mean cell are ROm, RTHm, CTHm. With the fabricated mean cell, the battery pack can be considered
to be composed of two same mean cells, and the system is shown in Figure 3.

 

Figure 3. A simplified battery pack consisting of two series-connected individual cells.

We define three ratio vectors, which reflect the differences among the battery characteristics:
⎧⎪⎪⎨
⎪⎪⎩

A = [ RO1
ROm

, RO2
ROm

]

B = [
exp(−Δt/τ1)
exp(−Δt/τm)

, exp(−Δt/τ2)
exp(−Δt/τm)

]

C = [ RTH1
RTHm

, RTH2
RTHm

]

(11)

For the battery pack, during charge and discharge, the mean parameters can be easily identified
online with the RLS-based algorithm as introduced above when we consider that the pack is composed
of two same mean battery cells. Then, the parameters of each individual cell can be obtained by
combining the ratio vectors and the online identified mean parameters by the following equation.
We can see that the determination of the ratio vectors is critical in the proposed method.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

RO1 = A[1]ROm
RO2 = A[2]ROm
exp(−Δt/τ1) = B[1] exp(−Δt/τm)

exp(−Δt/τ2) = B[2] exp(−Δt/τm)

RTH1 = C[1]RTHm
RTH2 = C[2]RTHm

(12)

(2) Determination of ratio vector A

When the battery pack works under a current I, we have:

RO1/RO2 = UO1/UO2 (13)
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where UO1 and UO2 are the voltages of RO1 and RO2 under current I (shown in Figure 1). Then,
theoretically, vector A can be determined with:

A = [ RO1
ROm

, RO2
ROm

] = [ UO1
UOm

, UO2
UOm

] (14)

In real applications, it is difficult to obtain UO1, UO2 and UOm online because they cannot be
directly measured, thus it is difficult to get the value of A with Equation (14). However, according to
the model shown in Figure 1, we can find that, if the current changes suddenly, RO will cause a sudden
voltage change. Based on this analysis, we can determine A with the sudden voltage changes of each
individual cell and the mean cell, as shown in Equation (15), where ΔUs1, ΔUs2 and ΔUsm are the
sudden voltage changes of the cells respectively.

A = [ RO1
ROm

, RO2
ROm

] = [ ΔUs1
ΔUsm

, ΔUs2
ΔUsm

] (15)

We here illustrate the voltage responses of the two cells under a current cycle, as shown in
Figure 4a. The RLS-based identification results of RO for the cells in this case are shown in Figure 4b.
We can find, from Figure 4, that the sudden voltage change ratio of the cells is very close to the RO
ratio of the cells (in this case, the ratio is close to 1.05), which proves that Equation (15) can be used to
determine vector A.

(a) (b)

Figure 4. Voltage and ohmic resistance of the two cells: (a) voltage of the two cells; and (b) ohmic
resistance of the two cells.

(3) Determination of ratio vector B

The polarization voltages of the cells can be obtained by:

{
UTH1,k = exp(− Δt

τ1
)UTH1,k−1 + (1 − exp(− Δt

τ1
))RTH1 IB,k

UTH2,k = exp(− Δt
τ2
)UTH2,k−1 + (1 − exp(− Δt

τ2
))RTH2 IB,k

(16)

From Equation (16), we have:

UTH1,k

UTH2,k
=

exp(− Δt
τ1
)UTH1,k−1 + (1 − exp(− Δt

τ1
))RTH1 IB,k

exp(− Δt
τ2
)UTH2,k−1 + (1 − exp(− Δt

τ2
))RTH2 IB,k

(17)

Normally, the time constant of the RTHCTH network is much larger than the sampling period
(generally several or tens of mini seconds), thus:

{
1 − exp(− Δt

τ1
) → 0

1 − exp(− Δt
τ2
) → 0

(18)
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By substituting Equation (18) with Equation (17), we have:

UTH1,k

UTH2,k
≈ exp(− Δt

τ1
)UTH1,k−1

exp(− Δt
τ2
)UTH2,k−1

(19)

Thus:
exp(− Δt

τ1
)

exp(− Δt
τ2
)
=

UTH1,k/UTH1,k−1

UTH2,k/UTH2,k−1
(20)

If we define: ⎧⎪⎨
⎪⎩

Kτ1 = UTH1,k/UTH1,k−1
Kτ2 = UTH2,k/UTH2,k−1
Kτm = UTHm,k/UTHm,k−1

(21)

then, from Equation (21), we can define ratio vector B as:

B = [
exp(−Δt/τ1)
exp(−Δt/τm)

, exp(−Δt/τ2)
exp(−Δt/τm)

] = [ Kτ1
Kτm

, Kτ2
Kτm

] (22)

On the other hand, during charge and discharge, the polarization voltages can also be
calculated as: {

UTH1 = Ud1 − IBRO1
UTH2 = Ud2 − IBRO2

(23)

in which Ud is the dynamic voltage response caused by the impedance, and can be calculated by
Equation (2).

After measuring the terminal voltages of each cell and the pack, the dynamic voltage caused by
the impedance can be calculated with Equation (2). Then, with Equation (23) and the identified ohmic
resistances of cell 1, cell 2 and the mean cell, the polarization voltages can be obtained. Finally, the ratio
vector reflecting the difference of polarization time constants, B can be calculated with Equations (21)
and (22).

(4) Determination of ratio vector C

Based on Equation (17), we have:

⎧⎪⎪⎨
⎪⎪⎩

RTH1 =
UTH1,k−exp(− Δt

τ1
)UTH1,k−1

(1−exp(− Δt
τ1

))

RTH2 =
UTH2,k−exp(− Δt

τ2
)UTH2,k−1

(1−exp(− Δt
τ2

))

(24)

If we define: ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

KRTH1 =
UTH1,k−exp(− Δt

τ1
)UTH1,k−1

(1−exp(− Δt
τ1

))

KRTH2 =
UTH2,k−exp(− Δt

τ2
)UTH2,k−1

(1−exp(− Δt
τ2

))

KRTHm =
UTHm,k−exp(− Δt

τm )UTHm,k−1

(1−exp(− Δt
τm ))

(25)

then, the ratio vector C can be determined as:

C = [ RTH1
RTHm

, RTH2
RTHm

] = [ KRTH1
KRTHm

, KRTH2
KRTHm

] (26)

With vector B, and the identified time constant of the mean cell τm, we can get τ1 and τ2 with
Equation (22), then with Equations (25) and (26), we can finally determine vector C, as shown in Figure 5.
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Figure 5. Calculation process of ratio vector B and ratio vector C.

(5) Online update of the ratio vectors

For a battery system composed of N series-connected battery cells, the ratio vectors reflecting the
characteristics differences among the cells are:

⎧⎪⎨
⎪⎩

A = [ ΔUs1
ΔUsM

, ΔUs2
ΔUsM

, . . . , ΔUsn
ΔUsM

]

B = [ Kτ1
KτM

, Kτ2
KτM

, . . . , Kτn
KτM

]

C = [ KRTH1
KRTHM

, KRTH2
KRTHM

, . . . , KRTHn
KRTHM

]

(27)

When using the ratio vectors to determine the parameters for each individual cell, to avoid the
possible fluctuations and errors, an AF is further designed. We here take the design of the AF of vector
A as an example.

According to Equation (15), at the sampling step k, the sudden voltage change vector of all the
individual cells can be estimated with:

ΔUpre
s,k = Ak−1ΔUsM,k (28)

If the ratio vector A carries some errors, then the estimated sudden voltage changes of the
individual cells should be different from the true values; then, we can adjust A with the errors as:

Ak = Ak−1 + gA(ΔUs,k − ΔUpre
s,k ) (29)

in which, gA is an adjustment gain for vector A.
Similarly, we design the filters for vectors B and C as shown below:

{
Kpre
τ,k = KτM,kBk−1

Bk = Bk−1 + gB(Kτ,k − Kpre
τ,k)

(30)

{
Kpre

RTH,k = KRTHM,kCk−1

Ck = Ck−1 + gC(KRTH,k − Kpre
RTH,k)

(31)

in which, gB and gC are the adjustment gains for vectors B and C respectively.
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3.2. Power Estimation Considering Cell Difference

For a battery pack consisting of N series-connected battery cells, the current limitation of each
battery cell can be calculated with Equation (8) and the identified cell parameters based on the proposed
identification method. The peak power estimation will be:

⎧⎨
⎩

Psysmin = N × min
i=1:N

(Uchg
B,i,k+m Ii,min)

Psysmax = N × max
i=1:N

(Udis
B,i,k+m Ii,max)

(32)

In conclusion, the power estimation of the battery system considering the cell difference is
illustrated in Figure 6. The main advantage of this method is that the power estimation takes the cell
difference into consideration with an acceptable computation cost.

 
Figure 6. Power estimation of the battery pack consisting of series-connect battery cells considering
cell difference.
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4. Case Study

4.1. Experimental Setups

A small battery pack composed of 10 series-connected cells is constructed to validate the proposed
peak power estimation method. Table 1 lists the basic information and the allowed voltage and current
limitations of the battery cell suggested by the supplier at 25 ◦C.

Table 1. Basic information of the battery cell provided by the supplier.

No. Parameter Value

1 Nominal capacity (Ah) 80
2 Nominal voltage (V) 3.7
3 Discharge cut-off voltage (V) 2.8
4 Charge cut-off voltage (V) 4.2
5 Allowed maximum 30 s pulse discharge current (15%–85% SOC) (A) 480
6 Allowed maximum 30 s pulse charge current (15%–85% SOC) (A) 240

Several tests with different current profiles are designed to thoroughly investigate the performance
of the method. During the tests, the battery pack is put in an environmental chamber, and the
temperature is set to 25 ◦C. The current profiles are obtained from an EV during the J1015, New European
Driving Cycle (NEDC) and Federal Test Procedure-75 (FTP-75) cycle tests, and are shown in Figure 7.
The tests are then implemented by a battery tester (Arbin BTS 2000, Arbin, College Station, TX, USA)
with the obtained current profiles.

 
(a) (b) (c) 

Figure 7. Current profiles of the tests: (a) current profile of the J1015 cycle test; (b) current profile of the
New European Driving Cycle (NEDC) cycle test; and (c) current profile of the Federal Test Procedure-75
(FTP-75) cycle test.

To investigate the performance of the proposed method in different cell aging conditions and
different current profiles, the battery pack is firstly tested with the NEDC current profile, followed by
50 constant full charge/discharge cycles. Then, the battery pack is tested with the J1015 current profile,
followed by another 50 full charge/discharge cycles. At last, the battery pack is tested with the FTP-75
current profile. The overall test procedure is illustrated in Figure 8.

The actual battery current and voltage, and the voltages of the 10 cells during the tests are all
simultaneously measured by the BMS. With all the measured currents and voltages, we obtained the
parameters of each individual cell by the repetitive implementation of the RLS-based identification,
and the identification results are considered as the reference values of the parameters. On the other
hand, the cell parameters are also identified by the newly proposed method, and the identification
results of the new method are then compared with the reference values obtained from the repetitive
RLS-based identification to investigate the performance of the proposed method.
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Figure 8. The overall test procedure.

Meanwhile, the power of the battery pack is estimated by the measured signals and the identified
parameters. Both the peak power estimations with and without considering cell differences are
obtained. The peak power estimation without considering cell differences is based on the parameters
of the mean battery cell, and the process is shown in Figure 2, while the power estimation considering
cell differences is realized with the method shown in Figure 6. The estimation results with and without
considering cell differences are compared to investigate how cell differences affect the peak power of
the battery pack. In the identification, the parameters are arbitrarily initialized with zero.

4.2. Results and Discussions

Figures 9–11 show the parameter identification results obtained by the repetitive RLS algorithm
and the proposed method during the tests. In all tests, we find that the parameters obtained by the
proposed method are very close to the reference values identified by the repetitive RLS algorithm,
especially after the convergence of the algorithm. We also find that, because of the design of the AF of
the ratio vectors, the convergence of the proposed method is a little slower than the repetitive RLS
algorithm. This can be seen more clearly by a close look at the identified results during the interval
from 0 s to 200 s. In this time interval, the parameters identified by the different methods show big
differences. Before convergence, the parameters identified by both methods have large errors, and the
errors are also different in different methods. Thus, during convergence, the parameters are not the
same in different methods. However, the convergence of the repetitive RLS-based algorithm is faster
than the ratio vector-based algorithm. This is because the ratio vector-based algorithm should first use
the results identified by traditional RLS as the mean value of the parameters, and then determine the
parameters for each individual cell with the ratio vectors. Moreover, to avoid the possible fluctuations
and errors, the adaptive filters are further designed, and the adaptive filters slow down the convergence
of the algorithm further. Normally, the RLS-based algorithm converges within less than 150 iteration
steps, and according to the results, the presented method converges within less than 250 iteration steps.

To validate the accuracy of the parameters identified by the proposed method, we focus on the
identification results at the end of the tests, which are also shown in Figures 9–11. We can see that the
parameters identified by the two methods respectively are almost the same. A clear convergence of the
ratio vectors can be found in the identification results. By comparing the impedance results shown
in Figures 9–11, we can also conclude from the results that, during the aging process, the internal
impedances of the battery cells are getting larger, regardless of the ohmic resistance or the charge
transfer resistance. The larger impedance during the aging process is caused by increasing the thickness
of the SEI layer, and the decreasing the conductivity of the electrolyte etc. [30,31].
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Figure 9. Identified parameters under the NEDC cycle test: (a) RO identified by the repetitive
recursive least squares (RLS); (b) RO identified by the proposed new method; (c) RTH identified
by the repetitive RLS; (d) RTH identified by the proposed new method; (e) CTH identified by the
repetitive RLS; and (f) CTH identified by the proposed new method.
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Figure 10. Identified parameters under the J1015 cycle test: (a) RO identified by the repetitive RLS;
(b) RO identified by the proposed new method; (c) RTH identified by the repetitive RLS; (d) RTH

identified by the proposed new method; (e) CTH identified by the repetitive RLS; and (f) CTH identified
by the proposed new method.
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Figure 11. Identified parameters under the FTP-75 cycle test: (a) RO identified by the repetitive
RLS; (b) RO identified by the proposed new method; (c) RTH identified by the repetitive RLS;
(d) RTH identified by the proposed new method; (e) CTH identified by the repetitive RLS; and (f) CTH

identified by the proposed new method.

Table 2 lists the comparison of the computation time cost by the two methods, from which we
can conclude that the proposed method can achieve the same identification accuracy while evidently
reducing the computation cost. Note that the time listed in Table 2 is the total computation time cost
by the algorithms in different test cycles when they are executed on a PC with a 2.4 GHz CPU.
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Table 2. Computation time cost of the identification algorithms.

Test Cycles
Computation time of

the RLS (s)
Computation Time of the

New Method (s)
Time Reduced (%)

J1015 1.46 0.67 54.1
NEDC 2.74 1.28 53.2
FTP75 5.71 2.66 53.4

Figures 12 and 13 show the peak power estimation results of the battery pack during the
tests. Both the estimations with and without considering cell differences are shown in the figures.
Some conclusions can be drawn from the results.

Figure 12. Power estimation results under the NEDC cycle test: (a) 1 s discharge power estimation
result; (b) 1 s charge power estimation result; (c) 10 s discharge power estimation result; (d) 10 s
charge power estimation result; (e) 30 s discharge power estimation result; and (f) 30 s charge power
estimation result.
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Figure 13. Power estimation results under the FTP75 cycle test: (a) 1 s discharge power estimation
result; (b) 1 s charge power estimation result; (c) 10 s discharge power estimation result; (d) 10 s
charge power estimation result; (e) 30 s discharge power estimation result; and (f) 30 s charge power
estimation result.

(1) The power capability of the battery pack is firstly influenced by the required power duration;
the longer the duration required, the smaller the power capability will be. The power capability lasting
for 1 s is obviously larger than the power capabilities lasting for 10 s and 30 s. This is reasonable
because during charge/discharge, the impedance caused by the internal polarization of the battery
plays a more and more dominant role, which limits the power capability of the batteries. This can also
be deduced from Equations (8) and (10).

(2) In the middle SOC range, the charging power capability is smaller than the discharging
power capability within the same condition. From Equations (8) and (10), we can see that, if the
difference between the charge and discharge impedances is neglected, the main factors affecting
charging and discharging power capabilities are the cut-off voltages, Umax and Umin. Generally,
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the difference between the OCV and Umin is much larger than the difference between the OCV and
Umax, especially when the battery works in a middle SOC range, which makes the charging power
capability smaller than the discharging power capability.

(3) During the aging process, the power capability of the battery pack is getting smaller. We can
see this phenomenon by comparing the estimation results shown in Figures 12 and 13. We can clearly
find that the peak power estimations during the FTP-75 test are smaller than those during the NEDC
test. As introduced above, between the FTP-75 and NEDC tests, there exist 50 full charge/discharge
cycles, in which the impedances of the battery cells are getting larger. The larger impedance introduces
a smaller power capability.

(4) Due to cell difference, the power estimation results considering cell difference are smaller
than the estimation results without considering cell difference. This result supports the statement that,
because of the cell difference, the peak power of the battery pack is limited by the characteristics of the
weakest cell. In the estimation without considering cell difference, an equivalent battery module that
consisted of mean battery cells is used (Figure 2). The performance of the mean cell will of course be
better than the worst cell in the pack.

(5) The influence of the cell difference on the pack power capability is dependent on the power
duration. For the charge/discharge powers with a 1 s duration, the influence of cell difference
can be neglected. This means that, for instant power capability estimations, it is not necessary to
consider the influence of cell difference. However, if the estimation of continuous power capability
is needed, then the consideration of cell difference is critical. We can see from the results that, in the
estimations of the 30 s power capability, the results considering cell difference are much smaller
than those without considering cell difference. The phenomenon can actually be deduced from
Equations (8) and (10). During the process of charge/discharge, the impedance caused by the internal
polarization of the battery plays a more and more dominant role, limiting the power capability of the
batteries. The difference of polarization impedance among the cells then affects the power capability
more and more evidently as the current excitation continues.

5. Conclusions

This paper proposed a new method to online estimate the power capability of the battery packs
composed of series-connected cells. The main contribution is that the cell inconsistency is considered
in the estimation by designing a novel ratio vector-based parameter identification algorithm. The main
conclusions and summarizations are drawn below.

(1) A ratio vector-based parameter identification algorithm is proposed which can achieve the
same identification accuracy as the repetitive RLS-based identification while evidently reducing the
computation cost. This facilitates the online implementation of the algorithm.

(2) Based on the ratio vector-based parameter identification, the estimation of the power capability
of the battery pack composed of series-connected cells is further developed. Validation results indicate
that the proposed method is effective to estimate the power capability considering cell difference.

(3) Due to cell difference, the power estimation considering cell difference is smaller than the
estimation results without considering cell difference.

(4) The influence of the cell difference on the pack power capability is dependent on the power
duration. For instant power capability estimations, it is not necessary to consider the influence of cell
difference. However, if the estimation of continuous power capability is needed, the consideration of
cell difference is critical.
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Nomenclature

UB Battery terminal voltage
UOC Battery open circuit voltage
IB Battery working current
RO Ohmic resistance of the battery
UTH Voltage on network describing the charge transfer effect
RTH Resistance of charge transfer
CTH Double layer capacitor
Ud Dynamic voltage on the impedance under current excitation
Δt Sampling period
k Sampling point
θ Parameter vector of the battery model
Umax Allowed maximum voltage of the battery
Umin Allowed minimum voltage of the battery
Imax,batt Allowed maximum discharge current of the battery suggested by the battery suppliers
Imin,batt Allowed maximum charge current of the battery suggested by the battery suppliers
Imax,volt Allowed maximum discharge current of the battery limited by voltage
Imin,volt Allowed maximum charge current of the battery limited by voltage
ROm Ohmic resistance of the mean battery cell
RTHm Charge transfer resistance of the mean battery cell
CTHm Equivalent capacitor of charge transfer effect of the mean battery cell
UO Voltage on the ohmic resistance under current excitation
ΔUsm Sudden voltage change during current pulse of the mean battery cell
ΔUs Sudden voltage change during current pulse of the battery
A Vector reflecting the difference of ohmic resistance
B Vector reflecting the difference of time constant of charge transfer effect
C Vector reflecting the difference of charge transfer resistance
ΔUpre

s Predicted sudden voltage change during current pulse
N Number of the battery cells connected in series
gA Adjustment gain for vector A
gB Adjustment gain for vector B
gC Adjustment gain for vector C
Psysmin Maximum charge power of the battery system
Psysmax Maximum discharge power of the battery system
Kpre
τ,k Predicted ratio of the charge transfer voltages at sampling point k

Kτ Ratio of charge transfer voltages
KRTH Ratio of the charge transfer resistance
Kpre

RTH,k Predicted ratio of the charge transfer resistance at sampling point
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Abstract: This paper investigates the impact of silicon carbide (SiC) metal oxide semiconductor field
effect transistors (MOSFETs) on the dynamic performance of permanent magnet synchronous motor
(PMSM) drive systems. The characteristics of SiC MOSFETs are evaluated experimentally taking into
account temperature variations. Then the switching characteristics are firstly introduced into the
transfer function of a SiC-inverter fed PMSM drive system. The main contribution of this paper is the
investigation of the dynamic control performance features such as the fast response, the stability and
the robustness of the drive system considering the characteristics of SiC MOSFETs. All the results of
the SiC-drive system are compared to the silicon-(Si) insulated gate bipolar transistors (IGBTs) drive
system counterpart, and the SiC-drive system manifests a higher dynamic performance than the
Si-drive system. The analytical results have been effectively validated by experiments on a test bench.

Keywords: silicon carbide (SiC) MOSFET; silicon (Si) IGBTs; permanent magnet synchronous motor
(PMSM); switching characteristics; dynamic performance

1. Introduction

Wide band-gap power device materials, such as silicon carbide (SiC), are drawing increasing
attention due to a number of superior qualities they possess, such as high switching-speed, lower
specific on-resistance, and higher junction operating temperature capability [1–7]. The application of
SiC in a motor drive inverter can reduce both switching and conduction losses, shorten dead time in a
phase-lag, and increase switching frequency, etc. Hence, the SiC-inverter can provide higher efficiency
and higher power density in comparison to its silicon (Si) inverter counterpart [8–11], which is benefit
for the electric vehicles with limited capacity battery [11,12].

Aside for these inverter-level benefits, the SiC-inverter also affects features of the dynamic
performance of a motor drive system, such as fast response, relative stability and robustness, etc.
This has not been clearly addressed yet, therefore, this paper investigates the impact of a SiC-inverter on
the performance of a motor drive system, which is unlike some previous works that solely considered
SiC-inverter systems [13].

Because of its high efficiency and fast response characteristics, permanent magnet synchronous
motors (PMSMs) are widely adopted in a host of high performance applications where low torque
ripple, high efficiency, and remarkable dynamic response are highly demanded, such as dynamic
positioning systems, machine-tool spindle electrical power steering and traction drives in electric
vehicles, etc. [14]. Hence, the dynamic performance of a PMSM fed by a SiC voltage source inverter
(VSI) is worthy of further investigation. Numerous research activities have been conducted to analyze
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different aspects of the dynamic response, such as frequency response, fast response, relative stability
and robustness [15–17].

The dynamic performance analysis of a VSI-fed PMSM is based on state equations, with the
d- and q-axis components of the stator currents and the rotor flux linkage as state variables [15].
A transfer function of the drive system was developed according to the state equations and control
theory [18–20]. Then classical techniques such as Bode plots and Nyquist diagrams were used for
analyzing the dynamic performance of the controlled system [20,21]. The traditional Bode plots were
used to evaluate the frequency response in control engineering [21]. The frequency response manifests
the bandwidth and the fast response capability of the system.

Not only an adequate bandwidth promises a fast response ability of a PMSM system, but also
sufficient relative stability and robustness guarantee its long-term robust operation. The relative
stability of a system can be evaluated by the specified gain- and phase-margins described by Nichols
plots of loop transfer functions [22]. In addition, the robustness of the system can be investigated by
H-infinity conditions on sensitivity functions [23,24].

The dynamic performance of a motor is mainly related with sampling delay and microprocessor
calculation time, control strategies, and the characteristics of a given motor and inverter, etc.
Researchers have performed a large amount of valuable work regarding the dynamic performance
of the motor drive system [25–27]. In [25], the sampling and microprocessor delay were considering
in a transfer function of a drive system to analyze the dynamic performance of a PMSM system.
In [26], a synchronous sampling (synchronized with the pulse-width modulation (PWM) carrier) of
instantaneous phase current value was adopted in a current feedback loop, which achieved a higher
bandwidth than the conventional methods. In [27], the oversampling, namely sampling and controller
updating done with a higher rate than the regular sampling methodology counterparts, is adopted to
improve the frequency response.

Aside from the sampling delay, the computational effort on the digital signal processor (DSP)
also causes a time delay [28–32]. In order to overcome the time delay, some program compensations
have been done [28]. In addition to the software program improvements, faster microprocessors were
adopted recently to reduce the delay time, such as field-programmable gate arrays (FPGAs), which
take advantage of parallel calculations [29–32]. The use of efficient hardware and software allows
the control algorithm to be run in less than 10 μs [29], which is less than the computation time of a
DSP28335 (usually more than 50 μs in our previous projects).

In addition to the sampling and microprocessor analysis, more research activities are currently
conducted on the applied control strategies for improving the dynamic performance of PMSM drive
systems [15,28,33–37]. In [15], a new predictive direct torque control (DTC) method was developed,
which is introduced to achieve the fastest dynamic response in the transient state compared to the
conventional DTC method. In this proposed method only the parameters of one voltage vector need
to be calculated in contrast with the previous studies where the parameters of two voltage vectors
must be calculated, resulting in a lower computational burden. In [28], a proposed controller is based
on a combination of deadbeat and direct predictive control techniques for a PMSM drive system.
The computational delay was compensated by a modification of the control process. The proposed
technique exhibited faster response as well as better robustness than the conventional proportional
integral (PI) field-oriented control (FOC) technique. In [33], a per-phase control in the abc-domain
was proposed, which requires only one frame transformation execution. Such a control scheme yields
excellent sinusoidal current command tracking and disturbance rejection.

Although many advanced control strategies and emerging fast computation microprocessor
technologies have been to improve the dynamic performance of the PMSM drive system, few
investigations have been done from the viewpoint of SiC-MOSFET characteristics. Hence, the purpose
of this study was to explore the impact of SiC-MOSFET switching on the dynamic performance of
a PMSM drive system. The SiC-MOSFET characteristics are evaluated experimentally through a
double-pulse test (DPT), taking temperature into consideration. The switching performance is applied

204

Bo
ok
s

M
DP
I



Energies 2017, 10, 364

to a physical model of voltage distortion in a SiC-inverter to quantify the distorted voltages. Then,
the switching performance of a SiC-MOSFET is firstly introduced into the transfer function of the
PMSM drive system. As a result, the fast response, the stability, and the robustness of the system can
be conveniently investigated from a control theory point of view. Finally, the analytical results are
effectively validated by experiments. All the studies of the SiC-MOSFET drive system are compared to
a Si-IGBT drive system counterpart.

The remainder of this paper is organized as follows: in Section 2, the characteristics of the
power devices are evaluated by DPT, and the distorted voltage of the inverter is quantitatively
calculated. In Section 3, a novel PMSM transfer function is developed, taking into account the
switching performance of the power device. In Section 4, the dynamic performances of the PMSM
are analyzed based on transfer functions. In Section 5, the experimental setup and the validation are
illustrated. Conclusions are drawn in the final section.

2. Power Devices Characteristics

In order to analyze the dynamic performance of the PMSM drive system considering the power
device characteristics, in this section of the paper we investigate the switching characteristics of a
SiC MOSFET (CAS300M12BM2, CREE, Durham, NC, USA) and a Si IGBT (FF400R12KE3, Infineon,
Am Campeon, Neubiberg, Germany) by a double-pulse test (DPT). The DPT setup was built as shown
in Figure 1, where a DC source voltage (270 V) is assigned to a leg of the inverter, and the inductors of
two phases in the PMSM are adopted as the load inductors. The lower switch of phase-leg is selected as
the device under test (DUT). A high precision voltage probe (P5100A, Tektronix, Beaverton, OR, USA)
and a TCPA300 current probe (Tektronix, Beaverton, OR, USA) plus a TCP303 are used to measure the
voltage (VDS) and channel current (IC) of the DUT, respectively.

 
(a) (b)

Figure 1. DPT test bench. (a) Simplified DPT circuit; (b) Actual components in the test bench.

 
(a) (b)

Figure 2. Total switching transitions. (a) Si IGBT; (b) SiC MOSFET.
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This setup is used to characterize the on-state voltage drop, the turn-on and turn-off transient
processes. A comparison of the switching waveforms for the Si IGBT and SiC MOSFET are presented
in Figure 2. The enlarged figures of turn-on and turn-off transients are shown in Figure 3. The red
lines show the collector-emitter voltage (VCE) for IGBT or drain-source voltage (VDS) for the MOSFET.
The green lines represent the channel current of the power devices and the blue lines display the
waveforms of the gate-drive signals.

 
(a)

 
(b)

Figure 3. Turn-on and turn-off trajectories. (a) Si IGBT; (b) SiC MOSFET.

Figure 3 shows that the turn-on and turn-off times of the Si IGBT are 127.6 ns and 342.9 ns,
respectively, when the ambient temperature is 25 ◦C and the channel current is 11A. Both the turn-on
and turn-off times of the SiC MOSFET, which are 84.8 ns and 153.2 ns, correspondingly, are smaller
than those of the Si counterpart.

In addition, the accumulation of system losses leads to an increase in the device junction
temperature after a long operation time. The characteristics of the devices under different temperatures
are systematically explored in this paper, which is helpful to analyze the properties of semiconductor
devices in practical applications taking thermal effects into account. Hence, the switching times of
both SiC and Si are tested at different temperatures applied by a hot plate.

Figure 4 illustrates the switching times of power devices at different temperatures. The turn-off
times of Si IGBT increase as the increasing temperature. However, the switching time of SiC MOSFET
remains constant under different temperatures. In addition to the switching times of the two devices,
the other characteristics of the two devices are also measured as shown in Table 1. The voltage drop
of SiC MOSFET is about 5% of Si IGBT. The value of SiC MOSFET is 44.2 mV and the counterpart
of Si IGBT is 832.5 mV. The output capacitance of SiC MOSFET is also smaller than that of Si IGBT.
These different characteristics are vital for calculating the phase voltage distortions and evaluating the
dynamic performances of SiC- and Si-drive system.
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(a) 

 
(b) 

Figure 4. Switching time of power devices at different temperatures. (a) Si IGBT; (b) SiC MOSFET.

Table 1. Test parameters measured by the DPT.

Symbol Quantity
Value

SiC MOSFET Si IGBT

ton Turn on time 84.8 ns 127.6 ns
toff Turn off time 153.2 ns 342.9 ns
Vd Voltage drop 44.2 mV 832.5 mV
Co Output capacitance 12.7 nF 32.7 nF
ΔV average voltage distortion −2.42 V −3.28 V

In [38,39], the phase voltage distortions of the inverter are developed, taking the dead time,
switching time, voltage drop and output capacitance into account. In Figure 5a, the deviation appears
in the waveform of the inverter phase voltage. Vref displays the ideal fundamental phase voltage of the
inverter that would result if there were no distortion voltage effects. As the PMSM is an inductive load,
the phase current waveform i lags behind Vref by an angle θ′. Since the distortion voltage increases
(decreases) the inverter phase voltage for the negative (positive) half cycle of the phase current as
shown in Figure 5b, the average voltage distortion over an entire cycle could be illustrated by the
square wave in Figure 5a.

The average voltage distortion is the superposition of ΔV on the ideal voltage Vref shown as
broken line in Figure 5a. Therefore, the fundamental phase voltage with distortion voltage V1 is the
sum of Vref and ΔV1, which is described as a heavy solid curve. When the harmonic components of the
current are ignored the phase displacement between V1 and i corresponds to the fundamental power
factor angle of the load. It can be seen that the real fundamental phase voltage differs from the reference
one in both the phase and magnitude. Therefore, when the fundamental phase voltage reduces and
power factor angle increases, the current will increase to maintain a constant output power.
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Vref+ V Vref

V1

i

'

V

V1

(a) (b)

Figure 5. The voltage distortion and its impact on current. (a) Representation of waveforms of the
voltage and current; (b) Average voltage distortion induced by four aspects.

According to the mathematical model of the phase voltage distortion, less switching times, smaller
output capacitances and lower voltage drops of SiC MOSFET will reduce the phase voltage distortion.
With a faster switching speed, the dead-time of SiC MOSFET in phase-leg configuration can be reduced,
which helps to reduce the phase voltage distortion.

3. Transfer Functions of a PMSM Drive System Considering Device Characteristics

In order to conveniently investigate the impact of the power devices’ characteristics on the
dynamic performance of a PMSM, this paper develops a novel PMSM drive system transfer function
taking into account the device characteristics. Then the impacts of SiC-MOSFETs on the fast response,
relative stability and robustness of the PMSM drive system are explored based on the proposed
transfer function.

3.1. Transfer Function of the Inverter

The input signal uc of inverter originates from a microprocessor (DSP38335), which is 3.3 V space
vector PWM (SVPWM) waveform. Then, the input signal is amplified to a power signal ua via a driver
broad and a power device. A phase lag between uc and ua is induced due to the lag of the inverter.
Hence, the inverter used in motor drive system can be assumed as a black box with a gain and a phase
delay. The simplified transfer function of it could be represented by a first-order lag system [40]:

G1(s) = Kr/(τrs + 1) (1)

where, Kr = 2
πua/ucm is the inverter gain, ucm is the maximum gate drive signal voltage, ua is the

maximum phase voltage. τr is delay time constant, depends on the switching cycle 1/f sw, turn-on time
ton, turn-off time toff and the dead time Tdt:

τr = a1/ fsw + a2Tdt + a3ton + a4toff (2)

where, a1, a2, a3, a4 are the coefficients of the switching cycle, dead time, turn-on time and turn-off
time, respectively.

Both the turn-on and turn-off time of SiC are smaller than those of the Si counterpart as shown in
Section 2. The benefit of this is that a smaller dead time duration and a higher switching frequency can
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be achieved in a SiC-inverter. Hence, the delay time constant τr1 of the SiC-inverter is shorter than that
of a Si-inverter according to (2):

τr1 < τr2 (3)

It is known that the distorted voltage of SiC-inverter is less than that of a Si-inverter counterpart
as shown in Figure 5. Consequently, the amplitude of the phase voltage of SiC-inverter is higher than
that of a Si-inverter when the DC sources are the same ones. Hence, it is concluded that the gain of a
SiC-inverter Kr1 is higher than that of a Si-inverter Kr2:

Kr1 < Kr2 (4)

3.2. Transfer Function of the Motor and PI Regulator

The input and output are the command and output currents, respectively. The control strategy of
id = 0 is adopted in this drive system. Hence, the tracking characteristic of the q-axis current iq can
reflect well the dynamic performance of the system. A simplified equation of the motor voltage is
shown in the following equation:

uq = Riq + p(Lqiq) +ψfωe (5)

where, p is a differential operator, ψf is the flux linkage of the permanent magnet, ωe is the electric
angular velocity of the motor. From (5), the transfer function of PMSM in q-axis frame is expressed as:

G2(s) = 1/
(

Lqs + Ra
)

(6)

where, Lq is the q-axis inductance and Ra is the stator resistance.
Besides, the equation of PI regulator in the time domain is:

u(t) = Kpe(t) + Ki

∫
e(t)dt (7)

where, Kp and Ki are the proportional and integral coefficients, respectively and e(t) is the error between
the reference and feedback signals. The transfer function of the PI regulator can be obtained by a
Laplace transform of (7):

G3(s) = Kp(τis + 1)/(τis) (8)

where, τi = Kp/Ki.
In conclusion, the current control model of the PMSM drive system is shown in Figure 6. The

open-loop transfer function of system can be written as:

G(s) = G1(s)G2(s)G3(s) =
KqKrKp(τis + 1)

τis
(
τqs + 1

)
(τrs + 1)

(9)

where, Kq = 1/Ra, τq = Lq/Ra.
The PI regulator of the q-axis current is designed by applying pole zero cancellation, namely

setting τi = τq [40]. Thus the closed-loop transfer function is obtained taking the characteristics of
devices into account:

Gc(s) =
KqKrKp

τrτis2 + τis + KqKrKp
=

ω2
n

s2 + 2ξωns +ω2
n

(10)

where, ωn =
√

KqKrKp/τrτi represents the undamped natural frequency. ξ =
√
τi/4KqKrKpτr

represents the damping ratio.
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Figure 6. Schematic model of q-axis current of PMSM.

4. Dynamic Performance Analysis of the PMSM

4.1. Fast Response Performance

As a basic requirement of industrial applications, an advanced and smart inverter fed PMSM
system needs fast response performance. In general, the fast response performance of the control
system can be evaluated via the bandwidth and the settling time.

According to (10), the closed-loop frequency characteristic of the system can be expressed as:

Gc(jω) =
irqs(jω)

ir∗qs(jω)
=

ω2
n

(jω)2 + 2ξωn(jω) +ω2
n
= MB(ω)ejϕB(ω) (11)

When the closed-loop amplitude-frequency characteristic MB(ω) equals 0.707 times the amplitude
at zero-frequency, the corresponding frequency is defined as cut-off frequencyωb, i.e.:

1/

√√√√
(

1 − ω2
b

ω2
n

)2

+

(
2ξ
ωb
ωn

)
= 0.707 (12)

Hence, the relationship among the cut-off frequency ωb, the undamped natural frequency ωn

and the damping ratio ξ can be obtained as:

ωb = ωn

√
1 − 2ξ2 +

√
2 − 4ξ2 + 4ξ4 (13)

From the monotonicity analysis of (13), it can be concluded thatωb decreases as the increase of ξ,
and increases asωn increses. The following equations are obtained by substituting (3) and (4) into (10):

ωn1>ωn2 (14)

ξ1>ξ2 (15)

where, ωn1 and ωn2 represent the undamped natural frequencies of SiC- and Si-drive systems,
respectively. ξ1 and ξ2 represent the damping ratios of SiC- and Si-drive systems, respectively.

Equations (14) and (15) are substituted into (13), resulting in:

ωb1>ωb2 (16)

Hence, compared with the Si-drive system, the SiC-drive system manifests a higher bandwidth
leading to a fast response.

In addition, the settling time of the system ts can be calculated as:

ts ≈ 4/ξωn = 4/
(√

τi/4KqKrKpτr ·
√

KqKrKp/τrτi

)
= 8τr (17)
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From (17), the settling time ts is directly proportional to the delay time constant τr of the inverter.
Hence, the settling time of the SiC-drive system is shorter than that of a Si-drive system according
to (3). According to the aforementioned analyzing results and the system parameters shown in Table 2,
the Bode plot of the closed-loop transfer functions for the two systems was drawn, as shown in Figure 7.
The bandwidth ωb is usually defined by −3 dB amplitude response in Bode plots for a closed loop
drive system. Thanks to the superior switching characteristics of SiC MOSFET, the bandwidth of the
SiC-drive system is 1190 Hz, which is higher than the 1090 Hz of the Si-drive system.

Table 2. The main parameters of the PMSM drive system.

Symbol Quantity Value

UDC Input DC voltage 270 V
Ucm Maximum gate driving voltage 20 V
Lq q axis inductance 5.19 mH
Ra Stator resistance 0.25 Ω
Kp Proportional coefficient 3.8

Figure 7. Bode plot of the inverter fed PMSM system with different power devices.

4.2. Relative Stability Analysis

In the process of motor control system design, stability is a necessary condition for the control
system to work properly. Additionally, the control system should also have a high level of relative
stability. During the operation of a PMSM system, accumulated losses will lead to an increase
in temperature. Furthermore, changes in the temperature affect the stator resistance Ra and q-axis
inductance Lq, which are likely to destroy the stability of the whole system.

Based on the Nyquist criterion, when the open-loop transfer function of the control system has no
pole in the right part of the S-plane, and the open-loop frequency characteristic curve G(jω) passes
through the point (−1, j0), the control system is at the critical stable edge. In this case, if the control
system parameters drift, and it is possible to make open-loop frequency characteristic curve of the
control system surround the point (−1, j0), resulting in the control system instability.

In control theory, the stability margins which include the phase margin and amplitude margin are
evaluation indexes of the relative stability of the system. The phase- and amplitude-margins of the
system determine the stability of the dynamic performance.

From the open-loop transfer function G(s) of the drive system in (9), the frequency characteristic
G(jω) can be obtained as:

G(jω) = ω2
n/(jω(jω+ 2ξωn)) (18)

The amplitude-frequency characteristic A(ω) and the phase-frequency characteristic φ(ω) are:
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A(ω) = ω2
n/

(
ω

√
ω2 + (2ξωn)

2
)

(19)

ϕ(ω) = −90◦ − arctan(ω/2ξωn) (20)

When the open-loop amplitude-frequency characteristic of a system is equal to 1, i.e.,
A(ω) = |G(jω)| = 1, the corresponding frequency is defined as the open-loop cut-off frequency ωc.
The difference between the phase angle φ(ωc) and −180◦ at the open-loop cut-off frequency represents
the phase margin γ of the system, that is:

20lg|G(jωc)| = 0 (dB) (21)

γ = 180◦ + ϕ(ω c) (22)

According to (19) and (21), the open-loop cut-off frequency can be calculated as:

ωc = ωn

√
−2ξ2 +

√
4ξ2 + 1 (23)

And the phase margin γ can be derived from (22):

γ = arctan
2ξ√√

4ξ4 + 1−2ξ2
= arctan

1√
−1/2 + 1/4

√
4 + 1/ξ4

(24)

It is observed that the phase margin is only related to the arctangent function, the phase margin
increases with an increase of damping ratio ξ. From (15), the damping ratio ξ1 of the SiC-drive system
is larger than that of the Si-drive system ξ2, which results in a larger phase margin in SiC-drive system.

When the open-loop frequency characteristic curve of the system intersects with the negative real
axis, i.e., φ(ω) = −180◦, the corresponding frequency can be obtained by (20), known as the phase
cross-over frequencyωg:

ωg = 2ξωn · tan 90◦ = n · 2ξωn (25)

where, n tends to infinity.
Atωg, the reciprocal of the open-loop amplitude-frequency characteristic A(ωg) is defined as the

amplitude margin Kg of the drive system:

Kg = 1/A(ωg) = 1/
∣∣G(jωg)

∣∣ (26)

According to (19) and (26), the amplitude margin of a system can be calculated as;

Kg = 4nωnξ
2
√

n2 + 1 (27)

The amplitude margin of the second-order system also tends to infinity, which makes the
comparison between the two systems impossible. In order to facilitate the comparison, it is assumed
that the phase cross-over frequency ωg is the corresponding frequency of the phase-frequency
characteristic φ(ω) = −179◦ replacing φ(ω) = −180◦. The amplitude margin at this scenario can
be calculated as:

Kg ≈ 4 × 572 ·ωnξ
2 (28)

Equations (14) and (15) show that the natural frequency ωn and the damping ratio ξ of the
SiC-drive system are higher than the counterparts of the Si-drive system. Hence, it is not difficult to
draw the following conclusion from (28):
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Kg1 > Kg2 (29)

where Kg1, Kg2 represent the amplitude margin of SiC- and Si-drive system, respectively.
In order to figure out the phase- and amplitude-margins of the system, a Nichols plot is plotted

using the transfer function of the drive system. Unlike the Bode plot, the Nichols plot presents both
phase and magnitude information in one diagram.

In summary, due to the faster switching speed and lower voltage drop of the SiC MOSFET, the
voltage distortion of the system is smaller. Consequently, the natural frequency and damping ratio
in the second-order system transfer function of a SiC-drive system are larger than that of a Si-drive
system, which yields larger phase- and amplitude-margins in the SiC-drive system.

As shown in Figure 8, the phase- and amplitude-margins of the SiC-drive system are 67.63◦ and
97.68 dB, which is larger than the counterparts of the Si-drive system (59.18◦ and 91.39 dB, respectively).
Hence, the relative stability of the SiC-drive system is better.

Figure 8. Nichols plot of the inverter fed PMSM system with different power devices.

4.3. Robustness Analysis

Robustness represents the sensitivity of the control system. In a case of a servo system, the
robustness performance analysis is one of the fundamental issues in controller design. When the
system is influenced by energy-bounded interference signals, such as system parameter variations due
to varying load torque, the system robustness is a significant index to evaluate system performance.

Figure 9 shows a single-input-single-output (SISO) PMSM drive system with negative
feedback-control. As the energy-bounded interference signal u(T) injected into the system, the
controlled plant G2(s) transforms to G̃2(s), as described by:

G̃2(s) = G2(s) + ΔG2(s) (30)

where ΔG2(s) is the uncertain part of the plant which is assumed to satisfy the following equation:

|ΔG2(jω)| < WT(ω) (31)

where WT(ω) is a weighting function that represents the upper bound for the plant uncertainty.
If the closed-loop system remains stability under such uncertain interferences, it is assumed that the
feedback-control system is robust.
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Figure 9. System block diagram with the disturbance injected.

The variation rate of the transfer function of the system could be deduced by the following
procedures: the errors of the open-loop and closed-loop transfer functions caused by changes of
parameters could be expressed by (32) and (33), respectively:

ΔG(jω) = G1(jω)G3(jω)ΔG2(jω) (32)

ΔGc(jω) =
G1(jω)G3(jω)(G2(jω)+ΔG2(jω))

1+G1(jω)G3(jω)(G2(jω)+ΔG2(jω))

− G1(jω)G2(jω)G3(jω)
1+G1(jω)G2(jω)G3(jω)

(33)

Since G1(jω)·G2(jω)·G3(jω) >> G1(jω)·ΔG2(jω)·G3(jω), the (33) could be rewritten as:

ΔGc(jω) =
ΔG2(jω)G1(jω)G3(jω)

[1 + G1(jω)G2(jω)G3(jω)]2
(34)

Combining (9), (10), (32) and (34), the variation rate of the transfer function of the system is
derived, as expressed by following equation:

ΔGc(jω)/Gc(jω) = S(jω) · ΔG(jω)/G(jω) (35)

S(s) = 1/(1 + G1(s)G2(s)G3(s)) (36)

In the robustness analysis, the sensitivity function S(s) is an essential index, which reflects the ratio
of the relative deviation ΔG(jω)/G(jω) of the open-loop characteristics to the gain of the closed-loop
frequency characteristics ΔGc(jω)/Gc(jω). When the value of S(s) is small enough, the relative
deviation of the closed-loop characteristics will be limited within the engineering allowance. Hence,
the control system has a robustness capability under energy-bounded interferences.

In addition, S(s) could also be defined as the ratio of the variation rate ΔGc(s)/Gc(s) of the transfer
function to the variation rate ΔG2(s)/G2(s) of the controlled plant G2(s), as described by:

ΔGc(s)/Gc(s)
ΔG2(s)/G2(s)

=
1

1 + G1(s)G2(s)G3(s)
= S(s) (37)

Equation (37) manifests that reducing the gain of S(s) would result in the diminution of the
adverse effect on control error of PMSM drive system caused by the interference u(T). The sensitivity
function S(s) provides a general description of the impact by feedback disturbances in the control
system. The S(s) of the PMSM drive system in this paper could be obtained as follows by substituting
(10) into (37):

S(s) = 1/
(

1 + KqKrKp/
(
τrτis2 + τis

))
(38)

According to the switching characteristic of the SiC MOSFET and Si IGBT analyzed above, the
SiC MOSFET presents higher switching speed and lower voltage drop. The phase voltage distortion of
the SiC MOSFET inverter system is lower than the counterpart of the Si IGBT inverter system. Thus,
the gain of SiC-drive system Kr1 is greater than that of the Si-drive system Kr2. Besides, as the delay
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time constant of an inverter defined in (2), it could be seen that the delay time constant of SiC-inverter
τr1 is less than that of the Si-inverter system τr2.

In conclusion, with the greater inverter system gain Kr1 and lower inverter delay time τr1,
the sensitivity S(s) of the SiC-drive system is smaller. The preferable robustness performance of the
SiC-drive system is thus clarified.

5. Experimental Analysis

The impact of SiC MOSFETs on the dynamic performance of PMSM drive systems is further
validated experimentally in a SiC-drive system, and the results were compared with those of the
Si-drive system.

The experimental setup is illustrated in Figure 10. In order to prevent unpredictable factors from
impacting the voltage and current waveforms, the same control boards based on DSP28335, the same
current sensors (LEM DHAB s/14) and same PMSM with a Tamagawa resolver (TS2640N321E64) are
used in the two test drive systems. An AD2S1210 resolver-digital converter with a highest accuracy of
0.24 rpm is adopted. The only difference is the power switching device: SiC MOSFET (CAS300M12BM2,
Cree, 1200 V, 300 A) and Si IGBT (FF400R12KE3, Infineon, 1200 V, 400 A) are adopted.

 

Figure 10. Experimental setup of the PMSM drive system.

5.1. Fast Response Performance Results

The same control strategy and PI parameters are set in the two systems, yielding a relative fair
comparison. The speed controller is a conventional two-loop PI control. One is the inside loop, namely
current loop. The corresponding Kp and Ki are 2.3 and 0.01 for the direct-axis current id separately.
The Kp and Ki for the quadrature-axis current iq are 2.5 and 0.005, respectively. The other one is the
outside loop, namely the speed loop. The corresponding Kp and Ki are 0.042 and 0.00035, respectively.
A series of bandwidths of q-axis currents are measured under different switching frequencies and
dead times, and the effects of the different power devices on the bandwidth of PMSM drive system are
explored. Additionally, the speed settling times of the two PMSM drive systems are investigated and
compared as well.

5.1.1. The q-Axis Current Tracking Experiments

The references of sinusoidal current with different frequencies are assigned to the SiC- and Si-drive
systems, respectively, and the loci of actual current tracking are recorded. As the frequency of the
reference current increases, the phase difference between the reference and actual current increases,
and the amplitude of the actual current waveform decreases. When the amplitude of actual current
waveforms declines to 0.707 times the amplitude of the reference current, the corresponding frequency
is defined as the bandwidth of the drive system.

Figure 11 shows the experimental results at a switching frequency of 15 kHz and a dead time
of 2 μs. Figure 11a shows experimental results of the q-axis reference current and the actual q-axis
current when the frequency and the amplitude of the reference current are 545 Hz and 6 A, respectively.
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The actual current of the SiC-drive system presents 5.3 A amplitude and 53.8◦ phase lag. Meanwhile,
the actual current of the Si-IGBT system has 4.2 A amplitude and 116◦ phase lag. The SiC-drive system
manifests a faster dynamic response compared with the Si-drive system.

(a) (b)

Figure 11. The q-axis current tracking experimental results. (a) Commanded and actual q-axis current.
(b) Bode plot of systems at 15 kHz switching frequency and 2 μs dead time.

Besides, the loci of the current tracking of the two systems are recorded at a large scale of
frequencies, then the Bode plot is obtained shown in Figure 11b. The bandwidth of the SiC-drive
system is 675.1 Hz, which is higher than that of the Si-drive system (545.4 Hz). Moreover, the
current bandwidths of the two systems under different switching frequencies and dead times are
comprehensively compared in Table 3.

Table 3. The frequency response results of q-axis current with different switching frequency and
dead time.

Variables q Axis Current Bandwidth/Hz

Switching Frequency/kHz Dead Time/μs SiC-Drive System Si-Drive System

10
2 671.5 537.4
3 663.4 526.3
4 653.2 514.5

15
2 675.1 545.4
3 668.8 531.2
4 658.5 524.9

In accordance with the aforementioned analysis, faster switching speed, lower dead time, smaller
voltage drop and output capacitance indeed result in a lower phase voltage distortion, and a higher
bandwidth. Hence, the experimental results are consistent with the conclusions presented in Section 4.

5.1.2. The Step Response of the Speed Loop

The references of step speed (0 to 100 rpm) are assigned to the two PMSM drive systems under
no-load conditions. The speed response loci are captured under different switching frequencies
and dead times. Figure 12a,b illustrate the experimental results of the Si- and SiC-drive systems,
respectively, at 15 kHz switching frequency and 2 μs dead time. The setting time of the SiC-drive
system is 59.51 ms, which is less than that of the Si-drive system (68.27 ms).
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(a) (b)

Figure 12. Step response of speed loop at 15 kHz with different dead time; (a) Si IGBT based system;
(b) SiC MOSFET based system.

Furthermore, the detailed experimental step response results of speed under different switching
frequencies and dead times, are summarized in Table 4. The settling time extends as the dead time
increases and the switching frequency declines, which means the fast response performance of the
drive system deteriorates.

Table 4. The step response results of speed loop with different switching frequency and dead time.

Variables Settling Time ts/ms

Switching Frequency/kHz Dead Time/μs SiC-Drive System Si-Drive System

10
2 61.31 71.12
3 64.95 75.61
4 68.23 82.96

15
2 59.51 68.27
3 63.24 73.53
4 66.79 80.27

5.2. Relative Stability Results

In this section, the relative stabilities of the two drive systems are investigated by experiments.
The Nichols plot is drawn based on the transfer function of the drive system and experiment as shown
in Figure 13. The phase and amplitude margins of the SiC-drive system are 62.33◦ and 99.82 dB,
respectively, while the counterparts of the Si-drive system are 51.83◦ and 86.03 dB. A significant
improvement in relative stability by adopting SiC MOSFETs can be observed from the results.
In addition, thanks to the superior characteristics of the SiC MOSFET, the phase and amplitude
margins can be further increased by decreasing the dead time and the switching period, whereas, the
phase and amplitude margins of the Si-drive system are penalized by its limited switching speed and
operation frequency.
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Figure 13. The Nichols plot of systems at 15 kHz switching frequency and 2 μs dead time.

5.3. Robustness Performance Results

In order to evaluate the robustness performance of the drive system, an external torque is
suddenly applied to the motor while the motor is operating at a steady-state. Figure 14 shows the
experimental result.

(a)

 
(b) (c)

Figure 14. The real speed response curves with the external torque changes suddenly. (a) The
fluctuations of the speeds at 15 kHz switching frequency and 2 μs dead time; (b) The fluctuations of
the speeds of Si-drive system with different dead times; (c) The fluctuations of the speeds of SiC-drive
system with different dead times.

The real speed response curves are measured. The fluctuations of the speeds are due to the external
torque changing abruptly from 5 to 10 Nm. Both the speed deviation and regulation restoration time of
the SiC-drive system are smaller than the counterparts of the Si-drive system. The different switching
frequencies and dead times are adopted to comprehensively investigate the robustness performance of
the two drive systems. When the switching frequency and dead time are 15 kHz and 2 μs the speed
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deviation of the SiC-drive system is 7.5 rpm, while the value of the Si-drive system is more than 10 rpm,
as shown in Figure 14. Besides, the regulation restoration time of the SiC system is 143.1 ms, which is
less than that of the Si system (220 ms). Hence, it is experimentally verified that the SiC-drive system
achieves the better robustness performance to suppress the disturbance in the transient process.

It is worth mentioning that the turn-off time of the Si IGBT is increasing as temperature rises,
which will increase the delay time constant τr and decrease the gain Kr of the Si-inverter. Hence, the fast
response, relative stability and robustness capability of the Si-drive system will be worse. On the
contrary, the switching time of the SiC MOSFET is almost invariable under different temperatures. As
a result, the SiC-drive system can maintain superior dynamic performance for a long-time operation.

6. Conclusions

In this paper, the impact of SiC MOSFETs on the dynamic performance of PMSM drive systems
has been addressed. The transfer function of SiC-drive system was first developed taking into account
the switching characteristics of the SiC MOSFETs. The Bode plot, the Nichols plot and the sensitivity
function were developed to display the fast response, relative stability and robustness capability of
the SiC-drive system, respectively. Both the analytical and experimental results manifested that the
SiC-drive system has higher dynamic performance features such as a faster response, a higher relative
stability and more robustness than the Si-drive system counterpart. This study can be helpful for the
applications of SiC MOSFETs in motor drive systems.
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Abstract: Latent thermal energy storage (LTS) systems are versatile due to their high-energy storage
density within a small temperature range. In shell-and-tube type storage systems fins can be used
in order to achieve enhanced charging and discharging power. Typically, circular fins are evenly
distributed over the length of the heat exchanger pipe. However, it is yet to be proven that this
allocation is the most suitable for every kind of system and application. Consequently, within this
paper, a simulation model was developed in order to examine the effect of different fin distributions
on the performance of shell-and-tube type latent thermal storage units at discharge. The model
was set up in MATLAB Simulink R2015b (The MathWorks, Inc., Natick, MA, USA) based on the
enthalpy method and validated by a reference model designed in ANSYS Fluent 15.0 (ANSYS,
Inc., Canonsburg, PA, USA). The fin density of the heat exchanger pipe was increased towards the
pipe outlet. This concentration of fins was implemented linearly, exponentially or suddenly with
the total number of fins remaining constant during the variation of fin allocations. Results show
that there is an influence of fin allocation on storage performance. However, the average storage
performance at total discharge only increased by three percent with the best allocation compared to
an equidistant arrangement.

Keywords: thermal energy storage; shell-and-tube; phase change material (PCM); circular fins

1. Introduction

Thermal energy storage is currently an important topic in energy science and research. Latent
thermal energy storage (LTS) is of particular interest, because of its high-energy storage density. The
phase change material (PCM) within the LTS stores a high amount of energy within a small temperature
range by changing its phase state.

Originally used for spacecraft thermal control applications, the development and exploration of
new PCM for different temperature ranges has led to a wide range of applications [1]. Latent thermal
storage units can be found in heat pumps, building temperature control, off-peak electricity storage,
waste heat recovery systems, the cooling of electronic devices and many other fields [1,2]. Furthermore,
the combination of solar power and LTS, like solar heating systems and solar cooking, is currently
being researched [1]. Malan et al. [3] examined the potential use of LTS in solar thermal power plants
for performance optimisation. Due to the variety of possible applications, several reviews have been
carried out inter alia by Sharma et al. [1]; Zalba et al. [4]; and Farid et al. [5].

Depending on the type of application, an adequate storage material has to be applied. Besides
a suitable temperature range of the phase transition, the thermal energy capacity and the thermal
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conductivity are main criteria [1]. Due to the phase change enthalpy, the heat capacity of PCM is
high in small temperature ranges, while the heat conductivity of PCM is generally low. Since the low
heat conductivity presents a disadvantage on discharging when high heat transfer rates are required,
the low thermal conductivity can limit the applications of PCM [5,6].

In order to extend the range of application and to achieve better storage performances, research
activities have been carried out to examine the heat transfer process [4,7,8]; storage types and
configurations like a combination of different PCMs within one storage unit [9–15]; and the integration
of highly heat conductive materials into the storage material, examples of which are copper, aluminum,
stainless steel or carbon fiber [16–22]. These materials can be integrated in different forms, such as fins,
honeycombs, wool or brush-form. For detailed information, the reader is referred to the reviews of
Fan and Khodadadi [23], as well as Jegadheeswaran and Pohekar [24].

The most common way to improve the performance of shell-and-tube LTS is to integrate
longitudinal or circular fins into the storage unit [16]. Khalifa et al. [20] showed that the extracted energy
per time of a LTS could be improved by 86% by adding four longitudinal fins into a shell-and-tube type
LTS unit. Various articles investigate the performance enhancement by fin shape and design variation.
For instance, Al-Abidi et al. [19] studied the design of shell-and-tube LTS using longitudinal fins.
Furthermore, the influence of circular fin quantity and diameter have been examined by Erek et al. [25]
with evenly distributed fins, which is the most common way of fin placement. Since the fin material
is only relevant if highly conductive material is applied [26], fins can be the main costing of a
thermal energy storage. Therefore, an increase of the number of fins is not economically viable
in many cases. Furthermore, adding additional fins increases the storage weight whereas the storage
capacity is generally decreased, which is a disadvantage particularly for mobile application. Therefore,
the objective of this study was to investigate whether and to what extend it is possible to improve
storage performance of shell-and-tube type LTS on discharge with a constant amount of fin and storage
material by adjustment of fin positioning.

For this purpose, simulation models for shell-and-tube type LTS with circular fins were developed
in MATLAB [27] Simulink [28]. The distribution of these fins was varied in 30 different ways and their
storage power during discharging was examined. Most of the examined designs increased their fin
density towards the end of the storage, whereas one geometry represented a homogeneous distribution
of fins. For validation, a comparison of these models to an ANSYS Fluent [29] model was undertaken.
Since conduction is the dominant heat transfer type during discharge [7,24], convectional effects in the
liquid PCM were neglected for reasons of model simplification.

In the following sections, the mathematical description and numerical implementation;
the validation; the boundary conditions; and the results will be demonstrated and discussed.

2. Description of the Simulation Model

2.1. Storage Setup

The setup of a shell-and-tube type LTS is shown in Figure 1. Within a container (shell), several
storage elements are consistently distributed. The main component of the storage elements is a tube
with heat transfer fluid (HTF) on the inside and PCM on the outside. For charging and discharging,
the HTF flows through the pipes. The temperature difference between the HTF and the other parts of
the storage elements causes charging or discharging of the storage system. Typically, the PCM changes
its phase during these processes. On charging, the PCM melts and solidifies on discharging. Since the
PCM has a comparatively low heat conductivity, fins can be included into the storage unit to improve
the charge and discharge power. In the following, several different types of fin allocations and their
effects on the storage performance during discharge will be examined with numerical simulations,
examples of which are pictured in Figure 2. The types of analyzed fin allocations can be categorized
into five groups. Each allocation consisted of a storage element with 100 fins. Mostly, the fin density
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(fins per axial distance) increased towards the storage unit outlet in order to adapt the fin density to
the temperature difference between HTF and PCM.

Figure 1. (a) shell-and-tube latent thermal energy storage (LTS) and (b) single storage element. HTF:
heat transfer fluid; and PCM: phase change material.

 

Figure 2. Single storage element with (a) homogeneous; and (b) uneven distribution of circular fins.

The examined groups of arrangements are described as follows:

• Division of the storage into three sections of the same length, with a different fin density in each
section—the density ratio F3 is calculated according to Equation (1):

F3 =
Nsec II

Nsec I
=

Nsec III

Nsec II
(1)

• Division of the storage into two sections of the same length, with a different fin density in each
section—the density ratio F2 is calculated according to Equation (2):

F2 =
Nsec II

Nsec I
(2)
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• Linear increase of distances between the fins towards the storage element inlet with a minimum
distance Δx0 between two fins—the distance Δxn between the fins n and n + 1 is calculated in
consideration of the factor for linear increasing distances FL:

FL =
Δxn − Δx0

n·(Δx1 − Δx0)
(3)

• Exponential increase of distances between the fins towards the storage element inlet—the factor
for exponential increasing distances FE is calculated according to Equation (4):

FE =
Δxn+1 − Δx0

Δxn − Δx0
(4)

• Homogeneous arrangement

Altogether, 30 different distributions of fins were investigated with a storage containing 20 storage
elements of one-meter length, an outer storage element diameter of 40 mm and an inner tube diameter
of 10 mm. The pipe wall thickness and the thickness of the fins was one millimeter.

The material properties of the HTF and the PCM are listed in Table 1. The phase change of the
PCM RT42 takes place within a temperature range of 4 ◦C. The water inlet temperature THTF,in was set
to 22 ◦C. The material properties of the pipe walls and fins corresponded to the material properties of
pure copper.

Table 1. Properties of applied materials.

Material Application
Phase Change Temperature

Solid-Liquid (◦C)
Latent Heat of
Fusion (kJ/kg)

Liquid Heat
Capacity (kJ/kg·K)

Liquid Density
(kg/m3)

RT42 PCM 40–44 176 2.0 760
Water HTF 0 334 4.18 998

2.2. Numerical Model

The model was set up in MATLAB Simulink. The simulation was based on the transport equation:

∂(ρφ)

∂t
+ div(ρφu) = div(Γ·gradφ) + Sφ. (5)

From this equation, the energy conservation equation can be deduced:

∂(ρcT)
∂t

+ div
(
ρ
⇀
u cT

)
= div(λ·gradT) + Sh. (6)

To simplify the model and to achieve a shorter computational time, the impulse and mass
conservation equations were neglected and a constant HTF volume flow rate was assumed.
The following adaptions have been made in relation to the PCM calculation:

• Neglect of convectional effects in the liquid PCM;
• Neglect of the temperature dependency of material properties within one phase;
• Application of an enthalpy method with apparent heat capacity;
• Integration of the phase change enthalpy according to Rösler and Brüggemann [30] by applying

an apparent heat capacity.
capp = csen + cL (7)

cL = 4L
exp

(
−
{[

4(T−Tm)
TL,l−TL,s

]2
})

(TL,l − TL,s)·
√
π

(8)
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The governing equation for the PCM is

ρceff
∂T
∂t

=

(
1
r

)
∂

∂r

(
λr

∂T
∂r

)
+

∂

∂x

(
λ

∂T
∂r

)
. (9)

Besides the adaptations for the PCM, the following simplifications were determined for the HTF:
• Incompressible fluid;
• One-dimensional convection (axial);
• Constant predefined velocity.

The governing equation for the HTF is:

ρc
∂T
∂t

+ uρ
∂T
∂x

= α
Aα

V
(TF − Twall) + λ

∂2T
∂x2 . (10)

In order to further reduce the computational effort, geometrical symmetry was included in the
calculation. Therefore, the shell-and-tube storage system was simplified by considering only a single
storage element within the simulation, as seen in Figure 1. This storage element was rotationally
symmetric, thus the storage could be simulated like a two-dimensional model as shown in Figure 3.

Figure 3. Section of the discretized two-dimensional model with exemplary declaration of elements,
interfaces and radii.

This model was spatially discretized using the finite volume method resulting in Equation (11),
while the time discretization was executed by MATLAB Simulink.

aPTP = aET0
E + aW T0

W + aNT0
N + aST0

S +
(

a0
P − aE − aW − aN − aS

)
·T0

P (11)

With the element declaration indices of Figure 3, the geometrical indices of the coefficients are
explained in Equation (12):

EP = Ei
j, EE = Ei+1

j , EW = Ei−1
j , EN = Ei

j+1, ES = Ei
j−1 (12)

The subsequent coefficients for Equation (11) are listed in the following:

aE =

(
ΔxE

2λE AEP
+

ΔxP
2λP AEP

)−1
, (13)
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aW =

(
ΔxW

2λW AWP
+

ΔxP
2λP AWP

)−1
, (14)

aN =
2πΔxP

1
λN

ln
( rj+1

rj+1;j

)
+ 1

λP
ln
( rj+1;j

rj

) , (15)

aS =
2πΔxP

1
λS

ln
( rj;j−1

rj−1

)
+ 1

λP
ln
( rj

rj;j−1

) , (16)

a0
P = ρcapp

ΔVP
Δt

, (17)

aP = a0
P (18)

The radii, which contain a semicolon in its indices, mark the border between the associated
elements, while the other radii mark the center of the elements.

In order to calculate the convection of the HTF, the coefficients of the equations calculating the
tube wall and the HTF have to be adapted. The convectional heat transfer within the fluid can be
considered by adjusting the coefficient aW of Equation (11) for the HTF volumes:

aW =

(
ΔxW

2λW AWP
+

ΔxP
2λP AWP

)−1
+

.
mFcF, (19)

while the convectional heat transfer between the HTF and the pipe wall was calculated by modifying
the coefficient aN of the HTF and the coefficient aS of the pipe wall elements:

aN =

⎛
⎝

1
λN

ln
rj+1
rj+1;j

2πΔxP
+

1
αF ANP

⎞
⎠

−1

, (20)

aS =

⎛
⎝ 1
αF ASP

+

1
λP

ln
rj

rj;j−1

2πΔxP

⎞
⎠

−1

. (21)

In order to account for the boundary conditions, the coefficients of the discretization equation of
the boundary elements were adapted. An adiabatic boundary condition was calculated by setting the
appropriate coefficient a to zero. Furthermore, losses to the surrounding were calculated by:

aE,W,N,S = αamb Aedge, (22)

TE,W,N,S = Tamb. (23)

Although included into the model, ambient losses were neglected within the following
simulations, in order to avoid as many sources of uncertainties as possible. Similar to the ambient
losses, Equation (24) was applied to include the inlet temperature:

TW = TF,in. (24)

Altogether, the following starting and boundary conditions were set in relation to the coordinate
system of Figure 3:

• T0 = 62 ◦C for every element
• .

q = 0 for r = 0

• .
q = αamb· (Tamb−T(rsu))

Nsu
for r = rsu

• .
q = 0 for x = 0 and r > rwall
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• .
q = 0 for x = xsu and r > rwall

• .
q = 0 for x = 0 and rHTF < r ≤ rwall

• .
q = 0 for x = xsu and rHTF < r ≤ rwall

• T = THTF,in for x = 0 and r ≤ rHTF

• .
q = 0 for x = xsu and r ≤ rHTF

• Simulation domain length of 1 m
• Simulation domain radius of 20 mm

The spatial discretization was defined within a s-function. To solve the system of semi-discretized
ordinary differential equations, the ode113 (Adams) solver was chosen.

In each simulation, the storage was discharged completely within a physical time of 9000 s.
The condition defining the state of total discharge was the remaining storage energy of 0.1% in relation
to the starting conditions.

2.3. Validation

In order to validate the model, the storage unit with equidistant spacing was modeled in the
commercial computational fluid dynamics (CFD) tool ANSYS Fluent [29]. Similar to the other
simulation models, the storage unit was simplified by simulating only a single storage element
and exploiting its geometry. Hence, the storage could be simulated using a two-dimensional model.

All material properties were set in conformity with the MATLAB Simulink model. The boundary
conditions of both the ANSYS Fluent and the MATLAB Simulink model were set adiabatic to ensure
heat loss independency. However, the flow speed was increased by a factor of 30 to obtain a high
Reynolds number of about 2000. In this way, deviations caused by the different types of flow
discretization were minimized while the flow was still laminar. The absolute output powers of
both simulation environments are shown in Figure 4.
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Figure 4. Comparison of equidistant allocation in ANSYS Fluent and MATLAB Simulink.

Even though the simulations do not show total congruency, the performance of both storage
models are very similar and deviations are negligible. Differences between the simulations can be
seen shortly after the start of the simulation. Although the Reynolds number was increased, these
differences were caused by the different flow discretization types. The HTF of the Simulink model
was defined to be one-dimensional, while the ANSYS Fluent model calculates two-dimensionally.
Therefore, the ANSYS model had a higher flow speed in the middle of the inner pipe and a lower
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flow speed close to the pipe wall. Furthermore, it considers radial convection. Consequently, the
output temperature of the ANSYS Fluent model drops at an earlier point in time. Since this output
temperature drop involves a lower output power, the level of discharge of the ANSYS storage after 20 s
is lower than that of the Simulink model. As the times of total discharge are almost the same, the output
power of the ANSYS Fluent storage unit has a higher output power within a time of 50–500 s. In spite
of these small deviations, the difference of the power integrals of both simulations is less than 0.5%.

Apart from the deviations caused by different types of flow discretization, the results show a
very good compliance. Since the effects of the flow discretization are consistent for all MATLAB
Simulink fin allocations, the results of the arrangement analysis simulation are reliable. Furthermore,
simulations with increased numbers of elements in MATLAB Simulink were performed to ensure
grid independency.

3. Results and Discussion

Figure 5 shows the average absolute storage power until full discharge of all fin arrangements.
It can be seen that the examined allocations differ, therefore, the storage performance was affected
by fin allocation. The most efficient geometry consisted of storage elements with a distribution of
fins that linearly increased the fin density using a growth rate of FL = 10. This geometry achieved
an average output power of about 716 W until total discharge, while the least efficient arrangement
with an exponential growth rate factor of FE = 1.035 had an average output power of 655 W leading
to a difference of 8.5%. The equidistant distribution of fins achieved an average absolute power of
695 W, which is about three percent less than the achieved maximum average power. Consequently,
a homogeneous distribution of fins is not the best type of arrangement in any case considering total
storage discharge. It has to be noted that three of the four kinds of uneven fin distribution pass a
maximum value within the variation of growth rate. Therefore, it can be assumed that a further
variation of the growth rate factors would not cause significant improvements in terms of storage
performance compared to the achieved maximum values.
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Figure 5. Absolute average power until total storage discharge of all examined arrangements of fins.

Within all different kinds of fin arrangements, a growth rate F close to the equidistant model
did not lead to the shortest discharge time. The shortest times of discharge were achieved using
linear growth rates of FL = 10 and FL = 15, followed by an exponential growth rate of FE = 1.014.

229

Bo
ok
s

M
DP
I



Energies 2017, 10, 274

The difference between these discharge times was only 12 s (0.17%). Due to this fact, both types of
distribution are of interest for further research.

Since the yet discussed values only represent the final state, it was also useful to look at the
discharge progress to examine intermediate results. Figure 6 depicts the progress of absolute output
power of selected arrangement types. For reasons of clarity, only the most efficient storage unit in
relation to the average power until total discharge and the storage unit with equidistant arrangement
of fins are represented.
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Figure 6. Storage performances of two simulated allocations of fins.

The figure shows the typical plot for LTS with regard to the performance. From 3000 s physical
time until about 5900 s, the output power of the inhomogeneous distribution was higher than the
arrangement with equidistant fin distribution. At 5000 s, the relative difference in output power
between the allocations was about 5.2%. In addition, most of the non-equidistant arrangements
provided higher average power until a simulation time of about 5900 s. At that time, the average
output power of the homogeneous distribution was about 0.8% less than the maximum average power.
Although the arrangement with a linear growth rate factor of FL = 10 is the fastest type for total
discharge, it did not provide the highest power all over the time. In the time range between 5900 s and
8000 s physical time, the storage unit using a homogeneous distribution had a higher output power.

In Figure 7, the power values for discharge times of 6300 s and 5000 s can be seen. At these times,
the difference between the allocations are clearly recognizable. At 6300 s, the equidistant geometry
provided about 26% more power than the allocation with the highest output power at total storage
discharge. Furthermore, at 5000 s it can be seen that the higher the growth rate factor gets at that time,
the more output power the storage units generate temporarily.

The differences in storage performance also caused different levels of discharge at certain times
of simulation, which is also depicted in Figure 7. These differences can be explained by considering
the storage temperatures. Figures 8 and 9 show the temperatures of the HTF and pipe wall elements
within a storage unit with the linear growth rate of FL = 10 on one hand, and the equidistant fin
distribution on the other. The depicted physical times are 5000 s and 6300 s, respectively. The HTF
temperature of the last element is directly proportional to the output power. It is recognizable that
both fin arrangements have different material temperatures at the displayed points in time.
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Figure 8. Heat transfer fluid (HTF) and wall element center temperatures of two distributions at 5000 s
physical time.

At 5000 s of physical time, the PCM was not yet totally solidified. Due to the high heat conductivity
of the fins, the pipe wall was close to the phase change temperature in a wide range at the storage
outlet. In addition, high temperature deviations occurred between adjacent pipe wall elements from
60% to 100% relative axial position. Due to different material properties of the fins and the PCM, pipe
wall elements adjoining fins had a higher temperature than adjacent pipe wall elements, which border
the PCM elements.

Although both storage units still contained liquid PCM, the storage unit with an allocation with
linear growth rate factor of FL = 10 had a higher amount of PCM that was still not solidified. This led
to a larger difference in temperature between the pipe wall and the HTF within a relative length of 30%
to 100% when comparing the FL = 10 storage unit with the one containing an equidistant arrangement
of fins. Consequently, the storage with non-equidistant fin allocation had a higher output power at
5000 s of physical time.
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Figure 9. Heat transfer fluid (HTF) and wall element center temperatures of two distributions at 6300 s
physical time.

In contrast, at 6300 s of physical time, almost all of the PCM changed its phase in the
non-equidistant case, while the pipe wall of the other arrangement was still close to the phase change
temperature at the outlet of the storage unit. This indicates that the FL = 10 storage unit cooled more
uniformly. Furthermore, the high pipe wall temperature in the end of the storage unit led to a higher
HTF temperature at the outlet since the mass flow rate in the simulation was moderate. Consequently,
the output power of the storage with equidistant fin allocation was higher at that time. The simulation
results show that non-equidistant arrangements of fins can achieve a higher average output power
than the homogeneous distribution of fins. These types of thermal energy storage units can be applied
for all targeted levels of discharge. It should be noted that these results may vary using different
storage types or mass flow rates, since higher heat transfer coefficients between the fluid and the tube
might enhance the effect of fin arrangement modification. Further parameters, which might have an
impact on the results, are the fin and the storage material, the number and width of the fins such as the
outer storage element diameter. Decreasing the thermal conductivity of the storage material might
increase the effect of adjusted fin distributions, whereas decreasing the latent heat of fusion might
reduce the effect. Although the heat conductivity of copper is high, an even higher heat conductivity
of the fins such as higher storage unit diameters, a lower number of fins such as thinner fins can
also amplify the effect on storage performance. However, a modification of these parameters might
also have an influence on the optimum growth rate factors. Due to the large variety of parameters,
an optimization depending on the case of application is recommendable.

Since the charging process of the storage unit was not examined within this work and the
influence on the system performance is small, further investigations have to be conducted with respect
to technical application.

4. Conclusions

Within this study, LTS performance enhancement by varying circular fin positioning was
examined. Therefore, different kinds of circular heat conduction fin distributions with a constant
amount of fins and storage material were investigated numerically in order to improve the storage
power at discharge. The latent thermal storage units were set up within MATLAB Simulink. The models
examine shell-and- tube type LTS containing copper fins and tubes and the paraffin Rubitherm RT42
as a storage material. Different fin allocations were studied including the linearly and exponentially
increased fin density towards the outlet of the storage units, the section by section change of the fin
density, and the equidistant fin distribution.

In order to validate the results, appropriate thermal energy storage was set up in ANSYS Fluent.
A comparison of the different simulation environments was conducted by examining the storage
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performance at discharge. Apart from small deviations caused by different flow discretization,
the performances of both storage units show very good congruency.

The results of varying the fin arrangements within the LTS show that fin allocation affects storage
performance. Non-equidistant distributions can cause a higher average output power at all levels of
storage discharge than equidistant ones. At total storage discharge, the average output power of a
homogeneous fin arrangement could be improved by three percent using a linear growth rate factor of
10. Exponentially increased fin densities towards the storage element outlet also showed promising
results. A detailed investigation of the storage material and the HTF temperatures demonstrated that
uneven distributions of fins could induce a more uniform discharge. Since the present work examined
storage discharge exclusively and the achieved increase of storage performance was generally low,
further work analyzing the effects of fin distribution on storage charge and the significance for
applications is recommended.
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Nomenclature

Latin symbols

a Temperature conductivity (m2·s−1)
A Area (m2)
c Specific heat capacity (J·kg−1·K−1)
E Element (-)
F Factor for fin concentration
l Length of the storage (m)
L Latent heat (J·kg−1)
.

m Mass flow (kg·s−1)
N Number of fins
r Radius (m)/radial coordinate (m)
.
q Heat flux (J·s−1)
S Heat source term
t Time (s)
T Temperature (K)
u Flow velocity (m·s−1)
→
u Flow velocity vector
V Volume (m3)
x Axial coordinate (m)

Greek symbols

α Heat transfer coefficient (W·m−2·K−1)
Δ Difference (-)
ρ Density (kg·m−3)
ϕ General variable
Γ Diffusion coefficient (m2·s−1)
λ Heat conductivity (W·m−1·K−1)
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Subscripts

amb Ambience
app Apparent value

E Concerning the element left of the calculation element/exponential
edge Concerning the edge of the calculation element, that borders the ambience
EP Concerning the element east of the calculation element (CE) and the CE
F Heat transfer fluid
h Concerning the specific enthalpy

HTF Concerning the outer radius of the HTF
in Inlet
I Concerning the first section
II Concerning the second section
III Concerning the third section
j Position indicator in radial direction
l Liquid phase
L Linear/latent
m Thermodynamic mean
n Counting variable
N Concerning the element above the calculation element

NP Concerning the element north of the calculation element (CE) and the CE
P Concerning the calculation element
s Solid phase
S Concerning the element below the calculation element

sec Concerning one section of the storage element
sen Concerning the sensible heat capacity
SP Concerning the element south of the calculation element (CE) and the CE
su Storage unit
W Concerning the element right of the calculation element

wall Pipe wall
WP Concerning the element west of the calculation element (CE) and the CE

0 Concerning minimum distance
1 First element
2 Storage element divided into two parts
3 Storage element divided into three parts
α Convective heat transfer

ϕ Concerning the general variable

Superscripts

i Position indicator in axial direction
0 Concerning the last time step
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Abstract: Due to the low cost, small size, and ease of control, the switched-capacitor (SC) battery
equalizers are promising among active balancing methods. However, it is difficult to achieve the full cell
equalization for the SC equalizers due to the inevitable voltage drops across Metal-Oxide-Semiconductor
Field Effect Transistor (MOSFET) switches. Moreover, when the voltage gap among cells is larger,
the balancing efficiency is lower, while the balancing speed becomes slower as the voltage gap gets
smaller. In order to soften these downsides, this paper proposes a cell-to-cell battery equalization
topology with zero-current switching (ZCS) and zero-voltage gap (ZVG) among cells based on
three-resonant-state SC converters. Based on the conventional inductor-capacitor (LC) converter,
an additional resonant path is built to release the charge of the capacitor into the inductor in
each switching cycle, which lays the foundations for obtaining ZVG among cells, improves the
balancing efficiency at a large voltage gap, and increases the balancing speed at a small voltage gap.
A four-lithium-ion-cell prototype is applied to validate the theoretical analysis. Experiment results
demonstrate that the proposed topology has good equalization performances with fast equalization,
ZCS, and ZVG among cells.

Keywords: battery equalizers; battery management systems; switched-capacitor (SC) converters;
zero-voltage gap (ZVG); modularization; electric vehicles (EVs)

1. Introduction

The world is being confronted with unprecedented crises, i.e., the depletion of fossil fuels and the
global warming [1]. Energy conservation is becoming of paramount concern to people. In response
to the crises, electric vehicles (EVs) have been implemented and are considered to be the inevitable
development trend of vehicles for the future [2]. Due to high energy density, long lifetime, and
environmental friendliness, lithium-based batteries have been dominating the high power battery
packs of EVs [3,4]. However, the terminal voltage of a single lithium battery cell is usually low, e.g.,
3.7 V for lithium-ion batteries and 3.2 V for lithium iron phosphate (LiFePO4) batteries [5,6]. In order
to meet the demands of the load voltage and power, lithium batteries are usually connected in series
and parallel [7]. For example, Tesla Model S uses 7616 lithium-ion 18650 cells connected in series and
parallel [8]. Unfortunately, there are slight differences among cells in terms of capacity and internal
resistance, which cause the cell voltage imbalance as the battery string is charged and discharged.
On the one hand, this imbalance reduces the available capacity of battery packs. On the other hand, it
may lead to over-charge or over-discharge for a cell in the battery pack, increasing safety risks. In fact,
the most viable solution for this problem might not originate merely from the improvement in the
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battery chemistry. It also uses suitable power electronics topologies to prevent the cell imbalance,
which is known as battery equalization.

During the last few years, many balancing topologies have been proposed, which can be classified
into two categories: the passive balancing methods [7,9] and the active balancing methods [10–32].
The passive equalizers employ a resistor connected in parallel with each cell to drain excess energy
from the high energy cells [7,9]. These methods have the outstanding advantages of small size,
low cost, and easy implementation. However, their critical disadvantages are energy dissipation
and heat management problems [7]. To overcome these drawbacks, active cell balancing topologies
are proposed, which employ non-dissipative energy-shuttling elements to move energy from the
strong cells to the weak ones [7], reducing energy loss. Therefore, active balancing methods have
higher balancing capacity and efficiency than the passive equalization ones. They can be further
divided into three groups, which are capacitor based [10–18], inductor based [19–21], and transformer
based [22–32] methods. Among these active balancing topologies, switched-capacitor (SC) based
solutions have the inherent advantages of smaller size, lower cost, simpler control, and higher efficiency.
Ref. [10] proposes an SC equalizer for series battery packs. As shown in Figure 1a, one capacitor is
employed to shift charge between the adjacent two cells. The capacitor is switched back and forth
repeatedly, which diffuses the imbalanced charge until the two cell voltages match completely [10].
The main disadvantage of this structure is the high switching loss. To solve this problem, an automatic
equalization circuit based on resonant SC converters is proposed in [15]. As shown in Figure 1b, an
inductor L0 is added to form a resonant inductor-capacitor (LC) converter, which operates alternatively
between the charging state and discharging state with zero-current switching (ZCS) to automatically
balance the cell voltages [15]. However, it is difficult to apply this topology to the systems with low
voltage gap among cells. For example, the voltage difference among lithium-ion battery cells is not
allowed to exceed 0.1 V [15]. This small voltage difference causes the Metal-Oxide-Semiconductor
Field Effect Transistor (MOSFETs) of the equalizers to fail to conduct, which results in the inevitable
residual voltage gap among cells. Moreover, the equalization current becomes smaller as the voltage
gap gets smaller, resulting in a very long balancing time.

Figure 1. Battery equalizers based on switched-capacitor (SC) converters. (a) the classical SC
equalizer [10]; (b) the resonant SC equalizer [15]; and (c) the proposed equalizer based on an
inductor-capacitor-switch (LCS) converter.

In order to overcome these problems, a battery equalizer is proposed based on a resonant LC
converter and boost converter that offers several major advantages, e.g., ZCS and zero-voltage gap
(ZVG) among cells, etc. [16]. However, the balancing efficiency of this topology is strongly related to
the voltage conversion ratio, which is expressed as ηe = Voutput/Vin. The lower the conversion ratio
(or the larger the voltage difference), the larger the balancing current, but the lower the balancing
efficiency. This means that high efficiency cannot be achieved at a large voltage gap. Ref. [33]
proposes a high-efficiency SC converter that decouples the efficiency from the voltage conversion
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ratio. Ref. [34] applies the switched-capacitor gyrator to photovoltaic systems, demonstrating ultimate
improvement in the power harvesting capability under different insolation levels. Based on these
works, the objective of this paper is to introduce an adjacent cell-to-cell battery equalization topology
based on three-resonant-state LC converters, with the potential of fulfilling the expectations of high
current capability, high efficiency, easy modularization, ZCS, and ZVG among cells. As shown in
Figure 1c, except the classical design, an additional switch Q4 is added to be connected in parallel with
the LC tank, which is hereinafter to be referred as the inductor-capacitor-switch (LCS) converter. This
structure obtains another resonant current path to release the residual energy stored in the capacitor to
the inductor, which lays the foundations to achieve the bi-directional power flow and weakens the
couplings of a large voltage gap with low efficiency and a small voltage gap with slow balancing speed.

2. The Proposed Equalizer

2.1. Basic Circuit Structure

As shown in Figure 2, the proposed equalizer can be easily extended to a long series battery
string without limit. The architecture consists of n battery cells connected in series and n − 1 resonant
LCS tanks connected in parallel with each two adjacent battery cells, through which energy can be
exchanged among all cells.

The proposed equalizer has several major advantages per the following:

(1) The proposed equalizer can achieve ZCS for all MOSFETs, and obtain ZVG among cells.
(2) Due to the other resonant current path, the balancing efficiency is improved at a large voltage

gap among cells, and the balancing speed is increased at a small voltage gap.
(3) By changing the parameters of the resonant LCS converter, different balancing speeds can be

achieved to meet the requirements of different energy storage devices.
(4) The concept is modular [35], and the topology can be extended to any long series-connected

battery strings or individual cells without limit.

Figure 2. Schematic diagram of the proposed system for n series-connected battery cells.

2.2. Operation Principles

In order to simplify the analysis for the operation states, the following assumptions are made: the
proposed equalizer is applied to two cells connected in series, i.e., B0 and B1, where B0 is over-charged
and B1 is undercharged. The operation principles are shown in Figure 3. The switching sequence is set
as (Q0, Q2), (Q1, Q3), and Q4, as shown in Figure 4. Three resonant states S1–S3 are employed to charge,
discharge, and release the LC tank, which is connected to a voltage of VB0, VB1, or 0 in each switching
state, respectively. Figure 5 shows the theoretical waveforms of the proposed equalizer at VB0 > VB1.
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Figure 3. Operating states of the proposed equalizer at VB0 > VB1. (a) charge state S1; (b) discharge
state S2; (c) release state S3.

Figure 4. Switching sequences of the proposed equalizer at VB0 > VB1.

Figure 5. Theoretical waveforms of the capacitor voltage and the resonant current at VB0 > VB1.

Charge State S1 [t0-t1]: At t0, switches Q0 and Q2 are turned ON with ZCS. The LC tank is
connected with B0 in parallel through Q0 and Q2, as shown in Figure 3a. B0, L0, and C0 form a resonant
current loop. The capacitor C0 is charged by B0. vC0 increases from −Vh2, which is a remnant of C0

from the last period (see Figure 5). iL0 and vC0 in this state can be expressed as

iL0(t) =
VB0 + Vh2

Zr ·
√

1 − ρ2
· e−ρωn(t−t0) · sin

[
ωn ·

√
1 − ρ2 · (t − t0)

]
, (1)

vC0(t) = −Vh2 + (VB0 + Vh2) ·
{

1 − e−ρωn(t−t0)√
1 − ρ2

· cos
[

ωn ·
√

1 − ρ2 · (t − t0)

]}
, (2)

where Zr =
√

L0/C0, ωn = 1/
√

L0C0, and ρ = RS/2Zr. RS represents the equivalent parasitic
resistance in each current path.

The charge state ends when iL0 crosses zero at t = t1. From Equation (1), the duration of this state
is determined by

Δt = t1 − t0 =
π

ωn ·
√

1 − ρ2
. (3)
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At t1, vC0 is positively charged to Vh1, which can be given by

Vh1 = vC0(t1) = (VB0 + Vh2) · (1 + e−ρωnΔt√
1 − ρ2

)− Vh2. (4)

Discharge State S2 [t1-t2]: At t1, the switches Q1 and Q3 are turned ON with ZCS, connecting B1

to the resonant LC tank. B1, L0, and C0 form a resonant loop. B1 is charged by C0. iL0 and vC0 in this
state are given as

iL0(t) = − Vh1 − VB1

Zr ·
√

1 − ρ2
· e−ρωn(t−t1) · sin

[
ωn ·

√
1 − ρ2 · (t − t1)

]
, (5)

vC0(t) = Vh1 − (Vh1 − VB1) ·
{

1 − e−ρωn(t−t1)√
1 − ρ2

· cos
[

ωn ·
√

1 − ρ2 · (t − t1)

]}
. (6)

At t = t2, the discharge state ends when iL0 drops to zero. The voltage Vr of C0 at t = t2 is
represented by

Vr = Vh1 − (Vh1 − VB1) · (1 + e−ρωnΔt√
1 − ρ2

). (7)

Release State S3 [t2-t3]: During this state, the resonant LC tank is short-circuited by turning on
the switch Q4 with ZCS. This releases the residual charge of the capacitor into the inductor and even
charges reversely the capacitor C0, so B0 can charge C0 with a large current at the beginning of S1. This
state provides the opportunity to transfer energy from a low voltage cell to a high voltage one, which
lays the foundations to achieve ZVG among cells. iL0 and vC0 in this state are given by

iL0(t) = − Vr

Zr ·
√

1 − ρ2
e−ρωn(t−t2) · sin

[
ωn ·

√
1 − ρ2 · (t − t2)

]
, (8)

vC0(t) = Vr · e−ρωn(t−t2)√
1 − ρ2

· cos
[

ωn ·
√

1 − ρ2 · (t − t2)

]
. (9)

The release state ends when iL0 crosses zero at t = t3. The voltage Vh2 of C0 at t = t3 can be
expressed as

−Vh2 ≡ vC0(t3) = Vr · e−ρωn(t3−t2)√
1 − ρ2

· cos
[

ωn ·
√

1 − ρ2 · (t3 − t2)

]
= −λVr, (10)

where

λ =
e−ρωnΔt√

1 − ρ2
=

e−πρ/
√

1−ρ2

√
1 − ρ2

. (11)

By solving Equations (4), (7), and (10), Vh1, Vr, and Vh2 can be calculated as

Vh1 =
VB0 + λ2VB1

1 − λ + λ2 , (12)

Vr =
VB1 − λVB1

1 − λ + λ2 , (13)

Vh2 =
λ(VB1 − λVB0)

1 − λ + λ2 . (14)

The operating period T is composed of three resonant states, which can be expressed as

T =
3π

ωn ·
√

1 − ρ2
=

3π · √L0C0√
1 − ρ2

. (15)
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The direction of the balancing power flowing can be changed by controlling the switching sequences.
According to the above analysis, the switching sequence (Q0, Q2), (Q1, Q3), Q4 is to deliver energy from
B0 to B1. In the case of energy transferred from B1 to B0, the switching sequence is changed to (Q1, Q3),
(Q0, Q2), Q4. Figure 6 shows the three consecutive operating states of the proposed equalizer: (a) charge
state; (b) discharge state; and (c) release state at VB0 < VB1. Figure 7 shows the corresponding switching
sequence. It can be seen that, by controlling the switching sequence, energy can be delivered between two
adjacent cells arbitrarily, by which ZVG between cells can be achieved without any limit.

It is important to note that the release state can also be achieved by turning simultaneously on Q1

and Q2 without using Q4, which results in a reduced MOSFET number but complex control. Figures 8
and 9 show the three consecutive operating states without using Q4 and the corresponding switching
sequences at VB0 > VB1. Figures 10 and 11 show the three consecutive operating states without using
Q4 and the corresponding switching sequences at VB0 < VB1. The operation principles of this system
are similar to those shown in Figures 3–6 and will not be described here in detail.

Figure 6. Operating states of the proposed equalizer at VB0 < VB1. (a) charge state; (b) discharge state;
(c) release state.

Figure 7. Switching sequences of the proposed equalizer at VB0 < VB1.

Figure 8. Operating states of the proposed equalizer without using Q4 at VB0 > VB1. (a) charge state;
(b) discharge state; (c) release state.
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Figure 9. Switching sequences of the proposed equalizer without using Q4 at VB0 > VB1.

Figure 10. Operating states of the proposed equalizer without using Q4 at VB0 < VB1. (a) charge state;
(b) discharge state; (c) release state.

Figure 11. Switching sequences of the proposed equalizer without using Q4 at VB0 < VB1.

2.3. Equalizing Power and Efficiency

During one switching period T, the charge delivered to C0 from B0 is

ΔQD = C0 · (Vh1 + Vh2), (16)

and the charge received by B1 is expressed as

ΔQR = C0 · (Vh1 − Vr). (17)

Using Equations (12)–(14) and (16), the average power flowing out of B0 is obtained as
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Pavg,D = ΔQD · VB0 =
VB0 ·

√
1 − ρ2

3πZr
× (1 + λ) · [(1 − λ) · VB0 + λ · VB1]

1 − λ + λ2 , (18)

and, using Equations (12)–(14) and (17), the average power flowing into B1 is given as

Pavg,R = ΔQR · VB1 =
VB1 ·

√
1 − ρ2

3πZr
× (1 + λ) · [VB0 − (1 − λ) · VB1]

1 − λ + λ2 . (19)

Based on Equations (18) and (19), the equalization efficiency ηe can be calculated as

ηe =
Pavg,R

Pavg,D
=

VB1

VB0
· VB0 − (1 − λ) · VB1

(1 − λ) · VB0 + λ · VB1
× 100%. (20)

Figure 12 shows the balancing efficiency curves obtained from Equation (20) as a function of the
L0/C0 ratio, for various RS, under the conditions of VB0 = 3.3 V and VB1 = 3.2 V. It can be observed
that the efficiency increases as the L0/C0 ratio increases or RS decreases, which show how the coupling
of the large voltage gap with low efficiency can be weakened by keeping RS as low and the L0/C0

ratio as high as possible. However, from Equations (1) and (5), it can be concluded that the balancing
current would become smaller as the L0/C0 ratio increases. Therefore, an appropriate L0/C0 ratio
(e.g., L0/C0 = 10) should be selected in order to achieve a higher balancing efficiency and larger
balancing current.

Figure 13 presents the efficiency curve as a function of power at L0/C0 = 10 and RS = 0.18 Ω.
The balancing efficiency rises rapidly when the power increases from 0.12 W to 0.5 W and basically
stays at a high value when the power increases from 0.5 W to 0.9 W, but decreases slightly when the
power increases from 0.9 W to 1.3 W. The peak efficiency of 91.5% is achieved at 0.74 W.

Figure 12. Theoretical efficiency ηe as a function of L0/C0 ratio with different RS.

Figure 13. Theoretical efficiency ηe as a function of power at L0/C0 = 10 and RS = 0.18 Ω.
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3. Experimental Results

In order to verify the theoretical analysis and evaluate the equalization performance of the
proposed system, a prototype for four 6200-mA·h lithium-ion cells is implemented and tested. Figure 14
shows the photographs of the experimental setup. The MOSFETs are implemented by STP220N6F7
MOSFETs with 2.4 mΩ internal resistance. The values of L0 and C0 are determined as 10.99 μH and
1.05 μF, respectively. The measured equivalent resistance RS in the LC converter is about 0.18 Ω.
A MicroAutoBox® II manufactured by dSPACE (Wixom, MI, USA) was used for the digital control,
which can generate Pulse-Width Modulation (PWM) singles to control the MOSFETs, and receive the
cell voltage information by analog-to-digital converters.

Figure 14. Photographs of the implemented engineering prototype for four lithium-ion battery cells.
(a) balancing circuit; (b) experimental platform.

Figure 15 shows the experimental waveforms of resonant current iL0 and capacitor voltage vC0

with different switching sequences. It can be observed that the MOSFETs are turned ON and OFF
at zero current state, thus significantly reducing the switching losses. This provides the equalizer
with the potential to work at higher frequencies, leading to a small size of the proposed equalizer.
From Figure 15a,b, it can be seen that controlling the switching sequence can govern the direction of
the balancing power flowing. This agrees well with the theoretical waveforms.

Figure 15. Experimental waveforms of the proposed equalizer with different switching sequences.
(a) energy transfer from B0 to B1; (b) energy transfer from B1 to B0.
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Figure 16 shows the measured efficiency ηe as a function of power at L0/C0 ≈ 10. When power
increases from 0.226 to 0.595 W, ηe increases from 47.7% to 89.1%. When power increases from 0.595 to
0.913 W, ηe decreases slightly from 89.1% to 81.5%. This indicates that the proposed equalizer obtains a
high efficiency over a wide range of output power.

Figure 16. Measured efficiency ηe as a function of power at L0/C0 ≈ 10.

Figure 17 shows the experimental results for two cells connected in series. The initial cell voltages
are set as VB0 = 3.240 V and VB1 = 2.574 V, respectively. The initial maximum voltage gap is about
0.666 V. It is important to note that, in order to achieve the initial cell voltages, the battery string is
not balanced until 200 s’ standing. Figure 17a shows the balancing result with the classical switched
capacitor. After about 8.2 h, the voltage gap between the cells is still larger than 0.109 V, which shows
that the switched capacitor method cannot achieve ZVG between the two cells. Figure 17b shows the
balancing result with the resonant switched capacitor. The balancing speed is increased a lot, but ZVG
between cells is still not achieved after 8000 s. Figure 17c shows the balancing result with the proposed
method. We observe that, after about 2056 s, the cell voltages are fully balanced to the same value of
3.171 V, showing the outstanding balancing performances (i.e., fast balancing and ZVG between cells)
of the proposed scheme. Figure 17d shows the balancing result using the proposed equalizer without
the release sate. It can be seen that the balancing speed becomes slow, and ZVG between cells cannot
be achieved, which indicates that the release sate plays an active role in the balancing process.

Figure 17. The voltage equalization results for two cells. (a) the classical SC method [10]; (b) the
resonant SC method [15]; (c) the proposed method based on a LCS converter; (d) the proposed method
based on a LCS converter without the release sate.
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Figure 18 shows the experimental results for four cells connected in series. Because of the nonlinear
behavior of lithium-ion batteries, it is very difficult to determine when the cell voltages are fully
balanced. Thus, it is optimal to take numerous small equalization cycles to complete the energy
exchange. In our method, one equalization cycle includes 10-s equalization time and 20-s standing
time for the equalizer. The initial cell voltages are set as VB0 = 3.216 V, VB1 = 2.783 V, VB2 = 3.233 V,
and VB3 = 3.023 V, respectively. After about 12,960 s, a balanced voltage of 3.096 V is achieved with
about 178 equalization cycles.

Figure 18. The voltage equalization results for four cells.

4. Comparison with Conventional Equalizers

In order to systematically evaluate the proposed scheme, Table 1 gives a comparative study with
conventional battery equalizers focusing on the components, balancing speed, balancing efficiency,
ZCS, ZVG among cells, and modularization. It is assumed that the battery string includes n cells
connected in series, which is divided into m battery modules. Components focuses mainly on the
numbers of switches (SW), resistors (R), inductors (L), capacitors (C), diodes (D), and transformers
(T). The equalization speed is determined by the equalization current, the number of cells involved in
balancing at the same time, and the average switching cycles to complete the charge transportation
from the source cell to the target one. The balancing efficiency is evaluated according to the average
energy conversion efficiency for one switching cycle and the average switching cycles to transfer
energy from a cell to another one. ZCS and ZVG are evaluated according to whether the systems
can achieve ZCS for all MOSFETs and obtain ZVG among cells in a battery string. Modularization is
evaluated according to the implemented complexity of the equalizers when a new cell is added. These
balancing performance parameters are fuzzified into three fuzzy scales, for which “H” represents
the higher performance, “L” represents the lower performance, and “M” represents the medium
performance, specifically, Speed (L: low, H: high), Efficiency (L: low, H: high), ZCS (L: no, H: yes), ZVG
among cells (L: no, M: yes), and Modularization (L: difficult, H: easy).

All of the existing solutions provide good performance targeting. For example, the dissipative
equalization method [9] has the outstanding advantages of small size, low cost, and easy implementation.
However, the excess energy is consumed by the shunt resistors, resulting in a very low balancing efficiency.

SC based methods [10–14] tend to be lighter and smaller due to the absence of any magnetic
components. Moreover, they have the outstanding advantages of simple control, easy modularization,
and automatic equalization without cell monitoring circuits. However, the balancing efficiency is very
low at a large voltage gap among cells, and the balancing speed becomes slower as the voltage gap gets
smaller. In other words, these methods cannot have a high equalization efficiency and a fast balancing
speed at the same time.
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Inductor based methods [19–21] require only inductors and MOSFETs. Therefore, the sizes of these
solutions are small, and the costs are low. These approaches can also achieve automatic equalization
among cells without the requirement of cell monitoring circuits. Moreover, they are easily modularized
and not limited to the numbers of battery cells in a battery string. However, they work in the
hard-switching mode, and the switching loss tends to be high, leading to a low balancing efficiency.
Particularly, ZVG among cells cannot be achieved due to the asymmetry of inductors and the voltage
drops across power electronic devices.

Transformer-based solutions [22–32] have the inherent advantages of easy isolation, high efficiency,
and simple control. However, it is definitely difficult to apply a single multi-winding transformer into
a long series-connected battery string because of the mismatching, bulk size, and high complexity
implementation of the multi windings. Moreover, the mismatched multi windings naturally cause the
imbalance voltages during the balancing. In addition, these methods need additional components for
the equalization among modules, leading to bulk size and loss related to the modularization.

By using an additional switch Q4 connected in parallel with the LC tank, the proposed solution
obtains another resonant current path to release the residual energy stored in the capacitor to the
inductor, which lays the foundations to achieve the bi-directional power flow and weakens the
couplings of a large voltage gap with low efficiency and a small voltage gap with slow balancing speed.
From Table 1, it is apparent that the size of the proposed equalizer is comparable with the existing
solutions. Moreover, it has clear advantages in terms of the balancing speed, efficiency, ZCS, ZVG, and
modularization, which make the proposed system be a feasible solution for EVs in the future.

5. Conclusions

In this paper, an adjacent cell-to-cell equalizer with ZCS and ZVG based on three-resonant-state
SC converters is proposed. The scheme configuration, modular design, operation principles, theoretical
analysis, cell-balancing performance, and comparative studies with the conventional battery equalizers
are presented. The proposed scheme obtains ZCS due to the three resonant states of the LCS converter,
which reduces inherently the frequency dependent switching losses, allowing efficient operation at
very high switching frequencies. ZVG among cells is achieved thanks to the newly added resonant
current path, which also weakens the couplings of a large voltage gap with low efficiency and a
small voltage gap with slow balancing speed. A prototype with four 6200-mA·h lithium-ion cells is
optimally implemented. Experiment results show that the proposed scheme exhibits good balancing
performance with ZCS and ZVG, and the measured peak conversion efficiency is 89.1% at L0/C0 ≈ 10.
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Abstract: Considering that generally frequency instability problems occur due to abrupt variations in
load demand growth and power variations generated by different renewable energy sources (RESs),
the application of superconducting magnetic energy storage (SMES) may become crucial due to its
rapid response features. In this paper, liquid hydrogen with SMES (LIQHYSMES) is proposed to play
a role in the future energy internet in terms of its combination of the SMES and the liquid hydrogen
storage unit, which can help to overcome the capacity limit and high investment cost disadvantages
of SMES. The generalized predictive control (GPC) algorithm is presented to be appreciatively used
to eliminate the frequency deviations of the isolated micro energy grid including the LIQHYSMES
and RESs. A benchmark micro energy grid with distributed generators (DGs), electrical vehicle
(EV) stations, smart loads and a LIQHYSMES unit is modeled in the Matlab/Simulink environment.
The simulation results show that the proposed GPC strategy can reschedule the active power output of
each component to maintain the stability of the grid. In addition, in order to improve the performance
of the SMES, a detailed optimization design of the superconducting coil is conducted, and the
optimized SMES unit can offer better technical advantages in damping the frequency fluctuations.

Keywords: superconducting magnetic energy storage (SMSE); load frequency control; generalized
predictive control (GPC); energy internet

1. Introduction

The increasing number of renewable energy sources (RESs) and distributed generators (DGs) has
become a serious challenge for the stability and reliability of the electric power system, because of
the fluctuation of power supply needed to meet the demand [1,2]. With the concerns related to this
and other problems, e.g., conventional energy cost, greenhouse gas emissions, security of traditional
power systems [3], the concept of the energy internet is proposed [4], which is composed of numerous
micro-energy grids and supports the flexible access of various RESs [5]. Therefore, energy storage
technology is crucial for the energy internet to suppress power fluctuations and achieve the efficient
operation of RESs by decoupling the electricity generation from demand [6,7].

Superconducting magnetic energy storage (SMES) units offer quick responses to power
fluctuations and the ability to deliver large amounts of power instantaneously, while their limited
storage capacity is a weak point for long term operation [8]. Liquid hydrogen (LH2) storage units
have the characteristics of large storage capacity [9] and economic efficiency that can make up for the
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disadvantages of SMES, but their response is too slow to be used as the single storage mode to support
the RESs in the energy internet.

Some studies have focused on the use of LH2 as the cooling medium for SMES [10–12] for a long
period, and the concept of liquid hydrogen with SMES (LIQHYSMES) that combines the SMES with
LH2 storage units is proposed for further study [13]. The simulation and analysis of the buffering
behavior of the LIQHYSMES plant model was carried out in [14] and it seems to be capable of handling
even very strong variations of the imbalance between supply and demand. Also, different SMES
structure designs for the 10 GJ range are compared in terms of size and ramping losses in [15], and
the cost targets for different power levels and supply periods are addressed. It can be concluded
from these publications that the application of LIQHYSMES are quite feasible and suitable for the
energy internet.

The load frequency control (LFC) has been widely used in conventional electric power systems,
and the micro-grid can maintain the stability of frequency by the optimal control, proportional integral
(PI) control and other methods [16–18]. In the micro energy grid including LIQHYSMES units proposed
here, the changes of the state of the system are fairly rapid so a controller with robust performance
over a wide range of operating conditions is strongly needed for LFC in an isolated micro energy
grid. The LFC of the micro-grid including the SMES was studied in [19], however the impacts of
the parameters were not taken into account. The GPC algorithm can also be used to control isolated
micro-grids with electric vehicles [20].

In this paper, a LIQHYSMES unit to be used as the energy storage system with RESs in the energy
internet to solve the frequency instability problem is proposed. Based on the presentation of the
LIQHYSMES characteristics, the benefits and applications to the energy internet are analyzed. Then a
new coordinated LFC controller based on the GPC algorithm is proposed for the equivalent model of
the micro energy grid with LIQHYSMES. Meanwhile, the optimization design of the superconducting
coil parameters, including initial current, inductance and initial energy storage capacity is carried out
in this paper.

The rest of this paper is organized as follows: Section 2 introduces the structure of the LIQHYSMES.
In Section 3, the equivalent models of the components in the micro energy grid for LFC are constructed.
Then, the coordinated LFC controller based on GPC is proposed in Section 4. In Section 5, the
superconducting coil is optimized; the effectiveness and robustness of the proposed coordinated
controller is demonstrated by numerical simulations on an isolated micro energy grid with LIQHYSMES
in Section 6. Finally, conclusions are drawn in Section 7.

2. Liquid Hydrogen with Superconducting Magnetic Energy Storage (SMES)

The core of the energy internet in the future is the electric power system, combined with the
natural gas network, transportation network and thermal network to form a comprehensive network.
As shown in Figure 1, the LIQHYSMES can play an important role as the energy router in connecting,
scheduling and controlling the networks concertedly in the future energy internet.

Figure 1 shows the structure of the hybrid energy storage device, which consists of three major
parts: the electrochemical energy conversion (EEC), the LIQHYSMES storage unit (LSU) and the power
conversion & control Unit (PCC). When a power fluctuation occurs as a result of the RES connected to
the electric power system, it’s prone to cause a power imbalance and affect the stability of the electric
power system.

To suppress the fluctuation rapidly, the PCC will control the SMES unit to charge or discharge
depending on the supply and demand imbalance of the system, in which condition the energy is stored
and released by means of electric energy. As shown in Figure 2, the SMES system has a DC magnetic
coil that is connected to the AC grid through a power conversion system. Meanwhile, PCC will control
the LH2 storage unit to work on the conversion of electric energy to achieve the slow suppression of
the fluctuation. The surplus electric energy generated by the RESs can be converted into chemical
energy by the electrolyser. Then, the gaseous hydrogen produced previously is liquefied into LH2
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for storage. On the contrary, when a power shortage occurs in the electric power system, the liquid
hydrogen stored in the liquid hydrogen tank is vaporized and supplied to the gas turbine (GT), fuel
cells (FC), and combined heat & power (CHP) to supply electricity and heat to the electric power
system and the thermal network, respectively.

Figure 1. The liquid hydrogen with superconducting magnetic energy storage (LIQHYSMES) unit
used in the energy internet.

Figure 2. The schematic diagram of superconducting magnetic energy storage (SMES) connected to
electric AC grid.

The schematic of a LIQHYSMES device is shown in Figure 3. It includes a multi-stage compressor,
two-stage heat exchangers (HEX), liquid nitrogen or multi-component refrigerants' pre-cooling (PREC),
expansion turbines and gas recycling (EXP-REC), Joule-Thomson expansion valves (JTV), a LH2 storage
tank and liquid nitrogen shielding. SMES based on coated conductors (based on high temperature
superconductors, mostly YBaCuO and magnesium diboride (MgB2) superconducting wires [21,22]) is
utilized here, which could be operated in the LH2 bath for sharing cooling system. In the charging
process 1–4 shown in Figure 3, the gaseous hydrogen obtained after electrolysis is passed through a
multistage compressor, heat exchangers and JTV1, so that most of the gaseous hydrogen is liquefied
and stored in the LH2 tank at 10 bar and 30 K. Besides, a small amount of unliquefied gaseous hydrogen
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is fed to the JTV2 as a cooling medium for the SMES coil at 1.2 bar and 20 K, and subsequently supplied
to the HEX and re-compressed for another expansion cycle. From the discharge process 5 to process 8,
the LH2 stored in the LH2 tank is sent to JTV2. Then the LH2 is converted into gaseous hydrogen
through the two HEX stages for use in GT, FC or CHP.

LIQHYSMES features the combined use of LH2 storage and SMES to stabilize power fluctuations
in the electric power system with RES. The combined use of the SMES and liquid hydrogen can help
to expand storage capacity substantially. On the other hand, the liquid hydrogen is used as cooling
medium for the SMES and shares the refrigeration plant with it to enhance the refrigeration efficiency
and reduce the investment cost.

Figure 3. Schematic of the LIQHYSMES.

The use of LIQHYSMES is not subject to strict geographical restrictions, and can be applied to a
variety of voltage levels in the electric power system, which are of important significance for achieving
large-scale use of RES.

3. The Micro Energy Grid Including LIQHYSMES

The micro energy grid concept is consistent with the notion of the future electric power system,
the characteristics of which will be profoundly different from those of the systems existing today.
It represents the further development of microgrids. In a microgrid the energy is only transmitted in
the form of electricity. However, in the micro energy grid with LIQHYSMES shown in Figure 1 the
energy can be converted into electricity, chemical energy, thermal energy and other forms. The smart
loads (SL) become controllable, and energy-storage systems, as well as vehicle-to-grid (V2G) systems,
further contribute to active controllable loads. Renewable energy sources will thus be used more and
more in homes, buildings, and factories [23].

The configuration architecture of the micro energy grid is presented in Figure 4. It is composed of
a micro turbine (MT), DGs, an electrical vehicle station, smart loads and a LIQHYSMES unit. The micro
energy grid is managed by a distribution management system (DMS). Phasor measurement units
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(PMUs) are installed in this micro energy grid to measure the real-time information of the components.
A large number of data from PMUs can be handled by cloud computing in the DMS [24–30]. The micro
energy grid is capable to work in either the grid-connected or isolated mode, transforming from one
into the other by controlling the circuit breaker 1. In the grid-connected mode, the deviation of the
frequency resulting from abrupt variations in load demand growth and generated power variations
from different RESs can be eliminated rapidly by the electric power system to maintain stable operation.
The isolated micro energy grid on the other hand needs to control the components coordinately to
maintain the stability. With the LIQHYSMES, the system inertia could be increased, thus improving
the frequency stability of the isolated micro energy internet. Here the equivalent model for LFC of the
isolated micro energy grid is constructed.

Figure 4. Schematic of a micro energy grid including the LIQHYSMES.

3.1. Model of LIQHSMES

During the LFC, the voltage and current of the superconducting coil vary with the frequency
deviation to supply different amounts of power to maintain the stability of the system. When a
disturbance disappears, the current of the superconducting coil should be restored to the initial value
preparing for the subsequent disturbances.

The deviation of the superconducting coil (SC) voltage is given by:

ΔEd =
KSMES

1 + sTDC
Δ f (1)

The deviation of the SC current is expressed as:

ΔId =
ΔEd
sLSC

(2)

The power supplying by the SMES can be obtained as follows:

ΔPSMES = ΔEd · (ISC0 + ΔId) (3)

Therefore, the model of the SMES in LFC can be represented as in Figure 5. Herein, the GPC
algorithm proposed to be used in LFC is based on the controlled auto-regressive integrated
moving-average (CARIMA) model. It can identify and linearize the model of the system online,
so a feedback of the deviation of the SC current is added to eliminate the error caused by linearization
and achieve rapid recovery of SC current meanwhile.
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Figure 5. The transfer function model of the SMES unit for load frequency control (LFC).

The power supplied by the LH2 storage unit and SMES to the micro energy grid are only controlled
by PCC and are independent of each other, which means the two can be regarded as a common parallel
system in the LFC. When the frequency deviation is negative, the controlled LH2 storage unit provides
power to compensate the power shortage by using the FC, GT or CHP. When the frequency deviation
is positive, the LH2 storage unit utilizes the electrolyser for consumption of excess power. The model
of the LH2 storage unit for LFC is shown in Figure 6. Here, the FC is used as the device to convert
the LH2 into electric energy. The FC constant time is set as same as the electrolyser time constant to
simplify the model used in this paper.

Figure 6. The transfer function model of the LH2 storage unit for LFC.

3.2. Models of Other Components

Figure 7 shows the model of a micro-turbine for LFC, which simulates the dynamic process of the
micro-turbine output power following the LFC signal. The model includes the governor, fuel system
and gas turbine of the micro-turbine. The equivalent models of the fuel system and the turbine are
represented by the first-order inertia units.

Figure 7. The transfer function model of the micro turbine for LFC.

Since there are different numbers of EVs in each EV station, the modelling of EVs could be handled
by using equivalent EVs with different inverter capacities. The equivalent EV model which can be used
for LFC is shown in Figure 8 [31]. The EV can be charged and discharged only within the range of ±μe.
However, if the energy of the EV exceeds the upper limit (i.e., Emax), the EV can only be discharged
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within the range of (0~μe). Also, if the energy of the EV is smaller than the lower limit (i.e., Emin),
the EV can only be charged within the range of (−μe~0). Te is the time constant of EV.

Figure 8. The transfer function model of the electric vehicle for LFC.

In the micro energy internet, the loads data computing center can calculate the total supplied
power depending on the frequency deviation. Subsequently, it adjusts the amount of smart loads in
need of being open or closed, although the output power of each smart load is uncontrollable. Smart
loads have the advantage of rapid response for LFC and the model is shown in Figure 9.

Figure 9. The transfer function model of the smart load for LFC.

Because the fluctuation of wind power and photovoltaic (PV) power output is relatively large,
they can be all equalized to the disturbance sources in the LFC model [32]. The power disturbances of
wind have similar responses to PV systems in the LFC model, so it is only considered here.

Based on the LFC response models of the above-mentioned components, a model of micro energy
network including LIQHYSMES with load frequency controller for LFC is constructed as shown in
Figure 10. ΔPL is the load disturbance, ΔPW is the fluctuation of the wind power generation, and Ht is
the inertia constant of the micro energy internet.

Figure 10. The control model of the micro energy grid including LIQHYSMES.

4. Generalized Predictive Control Algorithm for LFC

The principle of the GPC algorithm can be summarized as three parts: predictive model, rolling
optimization and feedback compensation. In the GPC algorithm, the predictive model is described
by the CARIMA model, which is suitable for unstable system and is easier to be recognized online.
The LFC signals shown in Figure 10 are the multiple inputs and the frequency deviation is the single
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output of the predictive model. Also, the unmeasured disturbance caused by load disturbance or
the fluctuation of wind power generation and measurable noise are taken into account in the model.
The predictive model can be described as follows:

A(z−1)Δ f (t) =
5

∑
i=1

Bi(z−1)Δui + D(z−1)w(t) + ξ(t)/Δ (4)

where t is the discrete sampling time point of control, Δui is the LFC signal for each component in
Figure 10, z−1 is the backward shift operator. Δ = 1 − z−1 is the difference operator, which represents
the effect of random noise. ξ(t) is a n-dimensional zero mean white noise sequence. A(z−1), B(z−1),
D(z−1) are the polynomial matrixes of z−1:

⎧⎪⎨
⎪⎩

A(z−1) = In×n + a1z−1 + a2z−2 + . . . + ana z−na

Bi(z−1) = bi0 + bi1z−1 + bi2z−2 + . . . + binb z−nb

D(z−1) = d0 + d1z−1 + d2z−2 + . . . + dndz−nd

(5)

where a1, a2 . . . , bi1, bi2 . . . and d1, d2 . . . are the polynomial coefficients, na, nb, nd are the orders of
the polynomial, respectively. na is the prediction time domain, nb is the control time domain, where
the first term can be 0, denoting the number of time delays of the response, and nd is the interference
time domain.

In order to track the set reference value w(t + j) of the predicted output, we can calculate the
control vectors using optimization techniques based on the following objective function:

J =
na

∑
j=1

||
∧

Δ f (t + j|t)− w(t + j)||2Q +
5

∑
i=1

(
nb

∑
j=1

||Δui(t + j − 1)||2R) (6)

where Q and R are the positive definite weighting matrixes,
∧

Δ f (t + j|t) is an optimal j-step prediction
of the frequency deviation at time t. The reference value w(t + j) of the j-step frequency deviation
is set as constant 0. The control vectors can be obtained by many algorithms to solve this quadratic
programming problem, such as sequential minimal optimization (SMO) [33–37]. Herein, the function
’quadprog’ provided by Matlab is used and the first row of the vectors Δu(t|t) is carried out as the
LFC signals to eliminate the frequency deviation at the sampling time point t.

In the GPC algorithm, the recursive least squares method is used to identify the parameters
of the predictive model for the LFC in the micro energy internet, which means that the polynomial
matrixes A(z−1), B(z−1), C(z−1) vary with the sampling time. Then the optimal control sequence can
be calculated. This online identification and the control sequence correction mechanism constitute the
GPC algorithm feedback correction.

5. The Optimization Design of the Superconducting Coil

The SC parameters, e.g., initial current ISC0, coil inductance LSC and initial stored energy Esc0,
are optimized to improve the control effect of the LFC model for the micro energy internet. In order to
improve the stability, the following objective function can be used:

Min J1 =
∫ tsim

0
|Δ f |dt (7)

where tsim is the total simulation time.

Δ f (s) = (ΔPMT(s) + ΔPEV(s) + ΔPSL(s) + ΔPSMES(s) + ΔPLH2(s)− ΔD) · 1
2Hts

(8)

ΔD is the system uncertainty model which represents several operating conditions of unpredictable
wind power and loads variation.
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The response of SMES is expressed as:

PSMES(s) = (
R(s)

sLSC(1 + sTDC) + 1
+

ISC0

s
)(

sLSCR(s)
sLSC(1 + sTDC) + 1

) (9)

The input signal R(s) is the load frequency control signal. Also the responses of other components
can be expressed as the form of SMES so that the response of the frequency deviation can be obtained.
Then, the numerical inversion of Laplace transform is employed for the time domain response of the
frequency deviation.

Moreover, the initial stored energy is given by:

Esc0 =
1
2

LSC ISC0
2 (10)

To optimize the Esc0, the optimal LSC and ISC0 is obtained by taking it into consideration.
The above two parts are weighted linearly, so the optimization problem can be formulated as follows:

Min J = W1 J1 + W2ESC0 (11)

Subject to:
0.001 ≤ LSC ≤ 10H

1.5 ≤ ISC0 ≤ 4kA

where the weighting factors are set as W1 = 1, W2 = 0.01 in this paper. Then the particle swarm
optimization (PSO) is applied to solve the problem. Figure 11 shows the flowchart of PSO [38].

Figure 11. Flowchart of PSO.
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6. Simulation Study

Simulations are carried out based on the above-mentioned model of micro energy grid, and the
model parameters are shown in Table 1. Some of the values are chosen referring to [20]. Suppose that
the micro energy grid is in steady isolated state at the beginning of the simulation. The wind power
from an offshore wind farm in Denmark is shown in Figure 12, where ΔPW = 0 means the wind power
is equal to the average power during the period.

Table 1. Parameters of the micro energy grid.

Grid Component Parameters Values Unit

SMES

TDC 0.03 s
KSMES 1 /

Kid 1 /
LSC 5 H
ISC0 1.5 kA

δSMES 0.15 pu·MW/s

LH2 storage unit

TEEC 1 s
Tc 50 s

TFC 1 s
δLH2 0.006 pu·MW/s

MT

Tf 0.1 s
Tt 8 s
R 2.5 Hz/pu·MW

δMT 0.01 pu·MW/s
μMT 0.04 pu·MW

EV

Te 1 s
δe 0.05 pu·MW/s
μe 0.025 pu·MW

Emax 0.95 pu·MWh
Emin 0.80 pu·MWh

SL δSL 0.1 pu·MW

Gird Inertia Ht 7.11 s

Figure 12. The power fluctuation of wind power generation.

As shown in Figure 13, it can be concluded that the frequency response of the system is better
under the control of the GPC algorithm proposed in this paper than PI during the simulation period,
except for the initial moment. The frequency deviation of the system is controlled generally within the
range of ±0.002 Hz with LIQHYSMES, which shows that the controller based on the GPC algorithm
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offers better stability and robustness. The frequency oscillation is smoother and the range is smaller
with the LIQHYSMES unit compared with the conditions without it. It can be seen that the LIQHYSMES
unit plays a positive role in suppressing the oscillation of the load frequency caused by wind power
fluctuation in an isolated micro energy grid.

Figure 13. The frequency deviation of the micro energy grid.

At the initial moment of the simulation, the PI control is more effective than the GPC algorithm,
because there is little historical data provided for the online identification of the system predictive
model parameters causing the large prediction deviations and the remarkable frequency fluctuations.
Actually this situation can be avoided by providing historical inputs and outputs data on the
parameters of the predictive model to be pre-set before the simulation.

Figures 14 and 15 show the active output power of the components of the micro energy grid
controlled by the two methods. SMES has the ability to respond quickly to the frequency oscillation,
while the response speed of the LH2 storage unit is slower due to its larger inertia. Since the output
power of each smart load is not adjustable, the total active output power of the smart loads can’t
change smoothly. In addition, electric vehicles based on V2G technology can also be used as energy
storage devices to participate in the system of load frequency control.

Figure 14. The output power increment of micro turbine (MT), EV, smart loads, non-optimized SMES
and LH2 storage unit controlled by PI.
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Figure 15. The output power increment of MT, EV, smart loads, non-optimized SMES and LH2 storage
unit controlled by generalized predictive control (GPC).

For an isolated micro energy grid with RESs, the abrupt change in load demand is also a challenge
for the system to maintain frequency stability. Assuming that there are step disturbances in load
demand (ΔPL = −0.1 pu, ΔPL = 0.12 pu, and ΔPL = 0.06 pu at t = 5 s, t = 40 s and t = 80 s, respectively).
The fluctuation of the wind power is added to obtain the combined power disturbances shown in
Figure 16.

Figure 16. The power disturbances applied in the case.

Figure 17 shows the frequency deviation results when PI control and GPC algorithm are applied
to the LFC. Comparing with PI control, GPC can suppress the frequency oscillation more rapidly and
the peak of it is also smaller with or without the LIQHYSMES unit. In the case with LIQHYSMES unit,
the advantage of the proposed GPC algorithm in suppressing the frequency oscillation is more obvious.
Figures 18 and 19 show the active power contribution of the various components of the system. In the
event of abrupt change in load demand, SMES can provide or consume power from the system in
response to a rapid change in load frequency.

Based on the PSO algorithm, the superconducting coil parameters of LIQHYSMES are optimized,
and the iterative process of optimization is shown in Figure 20. The number of particles is set as 50
and the number of the iterations is set as 200. Here, the input signal R(s) is chosen as a step signal with
the amplitude of 0.1.
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Figure 17. The frequency deviation of the micro energy grid.

Figure 18. The output power increment of MT, EV, smart loads, non-optimized SMES and LH2 storage
unit controlled by PI.

Figure 19. The output power increment of MT, EV, smart loads, non-optimized SMES and LH2 storage
unit controlled by GPC.
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Figure 20. Iteration process, (a) initial current; (b) coil inductance; (c) initial stored energy.

The optimized LIQHYSMES unit is applied to the load frequency control of the micro energy grid,
and the performance of the non-optimized LIQHYSMES unit is compared in Table 2.

As shown in Figures 21 and 22, the system with optimized SC is able to maintain better frequency
stability when different load disturbances occur. As the wind power fluctuating, the output power
of SMES unit with optimized SC increases comparing with the non-optimized SC controlled by the
two methods as shown in Figures 23 and 24. The tendency is the same in the case with the combined
disturbances as shown in Figures 25 and 26.
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The proposed GPC algorithm utilizes CARIMA that features an easy online identification.
Meanwhile, it can improve the robustness of the controller. However, as the high penetration rate of
the DGs in the energy internet, CARIMA may result in prediction deviations for the LFC. Therefore, it
is necessary to have stochastic studies with given confidence interval in this condition.

Table 2. The Parameters of SC.

Parameter Non-Optimized SC Optimized SC

ISC0 1.5 kA 1.784 kA
LSC 5 H 1.241 H
ESC0 5.625 MJ 1.975 MJ

Figure 21. The frequency deviation only with wind power fluctuation.

Figure 22. The frequency deviation with combined disturbances.
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Figure 23. The output power increment of MT, EV, smart loads, optimized SMES and LH2 storage unit
controlled by PI only with wind power fluctuation.

Figure 24. The output power increment of MT, EV, smart loads, optimized SMES and LH2 storage unit
controlled by GPC only with wind power fluctuation.

Figure 25. The output power increment of MT, EV, smart loads, optimized SMES and LH2 storage unit
controlled by PI with combined disturbances.
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Figure 26. The output power increment of MT, EV, smart loads, optimized SMES and LH2 storage unit
controlled by GPC with combined disturbances.

7. Conclusions

Energy storage devices are necessary in the energy internet due to an increasing number of RESs
are adopted in the future. The LIQHYSMES unit can obtain better economic benefits with promising
applications. The LFC controller based on GPC algorithm is designed and applied to the micro grid
energy including the LIQHYSMES unit. To obtain better control effect, the SC parameters are optimized
as well. Simulations of the load frequency control based on the equivalent model of the micro grid
energy are carried out and the results are summarized as follows.

1. The LIQHYSMES unit can be used to achieve the energy storage and transformation in the energy
internet. It is also helpful for the efficient use of renewable energy through solving the frequency
instability problems of the isolated micro energy grid.

2. In the isolated micro energy grid including the LIQHYSMES unit, the proposed controller based
on GPC algorithm can obtain better robust performance on LFC in complex operation situations,
namely, random renewable energy generations and continuous load disturbances. It plays a
significant role in the load frequency control, especially in the cases where the load demand
changes violently in the system with RESs.

3. The optimization SC parameters of the SMES can offer better technical advantages in alleviating
the load frequency fluctuations in different cases.

For the future work, an experimental study which implements the proposed method in reality
will be carried out.
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Nomenclature

ΔD Unpredictable wind power and loads variation
TDC Converter time constant
TEEC Electrolyser time constant

ΔEd Deviation of the SC voltage Tc Liquefier time constant
ESC0 Initial stored energy of SC TFC FC time constant
Emax Maximum controllable energy Tf Governor time constant
Emin Minimum controllable energy Tt Generator time constant
Δ f Deviation of the frequency Te EV time constant
Ht Gird inertia ΔuMT LFC signal for MT
ΔId Deviation of the SC current Δu1

ISC0 Initial current of SC ΔuE LFC signal for EV
J1, J Objective functions Δu2

KSMES Gain of the SMES ΔuSL LFC signal for SL
Kid Gain of the feedback in SMES Δu3

LSC Coil inductance of SC ΔuSMES LFC signal for SMES
na Prediction time domain Δu4

nb Control time domain ΔuLH2 LFC signal for LH2 storage unit
nd Interference time domain Δu5

ΔPSMES Output power increment of SMES δSMES Power ramp rate limit of SMES
ΔPLH2 Output power increment of LH2 storage unit δLH2 Power ramp rate limit of LH2 storage unit
ΔPMT Output power increment of MT δMT Power ramp rate limit of MT
ΔPE Output power increment of EV δe Power ramp rate limit of EV
ΔPSL Output power increment of SL δSL Power ramp rate limit of SL
ΔPL Load disturbance μMT Power increment limit of MT

ΔPW Fluctuation of the wind power generation
μe Inverter capacity limit of EV
W1, W2 Weighting factors

R Speed regulation of MT
ΔXMT Valve position increment of the governor

R(s) Input signal of LFC
tsim Total simulation time ξ(t) White noise sequence
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Abstract: Numerical simulations were performed to investigate pressure fluctuations in the S-shaped
region of a pump-turbine model. Analyses focused on pressure fluctuations in the draft tube and in
the gap between the guide vanes and runner. Calculations were made under six different operating
conditions with a constant guide vane opening, and the best efficiency point, runaway point, and
low-discharge point in the turbine brake zone were determined. The simulated results were compared
with experimental measurements. In the draft tube, a twin vortex rope was observed. In the gap
between the guide vanes and runner, a low frequency component was captured at both the runaway
and low-discharge points in the turbine brake zone, which rotated at 65% of the runner frequency.
This low frequency component was induced by the rotating stall phenomenon. At the runaway
point, a single stall cell was found in the gap between the guide vanes and runner, while at the
low-discharge point, four stall cells were observed.

Keywords: pump-turbine; pressure fluctuation; S-shaped region; vortex rope; rotating stall

1. Introduction

Pumped hydro energy storage (PHES) is currently the only proven large-scale (>100 MW) energy
storage technology. There are great benefits in using PHES in electricity generation systems. Its flexibility
can provide upregulation and downregulation. Its quick start capabilities make it suitable for black
starts, and for providing spinning and standing reserves. Interest in this technology has recently been
renewed because of the increasing use of renewable energy such as wind-powered electricity generation.
Such technology is weather dependent, and so is highly variable over time [1,2].

A key component of PHES stations is the pump-turbine. Pump-turbines usually use a single
runner to perform the functions of both pump and turbine. In order to adapt to the load changes of the
power system, a pump-turbine is required to frequently switch between turbine mode and pump mode.
This leads to extended operations in off-design operating conditions, such as at start-up and during load
rejection processes. In the associated transient processes of pump-turbines, the S-shaped characteristics
of the performance curves in turbine mode usually induce instability problems. The most common
problems are difficulties in synchronizing with power grids during turbine start-ups, and unstable
performance during turbine load rejections [3,4].

In recent years, both experimental and modelling studies have investigated the unstable flow
characteristics of pump-turbines operating in off-design conditions [5–10]. Husmatuchi et al. [5,6]
experimentally investigated pressure fluctuations in the gap between the guide vanes and runner.
In their research, a low frequency component was observed under runaway conditions and turbine
brake conditions. This low frequency instability was induced by one stall cell rotating inside the runner.
Widmer et al. [7] performed numerical simulations of flows in a model pump-turbine. It was concluded
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that the unstable characteristics observed with low flow masses were induced by stationary vortex
formation and rotating stall. Cavazzini et al. [8] carried out a numerical analysis of the load rejection
process at a constant rate, and with a large guide vane opening of a pump-turbine in turbine mode.
The flow analysis showed clearly the onset and development of unsteady phenomena progressively
developing into an organized rotating stall during turbine brake operations. Both experimental and
numerical studies have revealed complex flow characters in the S-shaped region of pump-turbines.
Such vortexes may partially block the flow [7,9,10], or cause stall cells to rotate in the runner channels
at 50%–70% of the runner rotation frequency [5,6,8].

As pump-turbines operate in or near the S-shaped region, vortex ropes are inevitably formed in
the draft tubes [11]. Ruprecht et al. [12] and Kirschner et al. [13] investigated unstable characteristics
in the draft tube of a pump-turbine. They reported that pressure fluctuations are mainly induced by
vortex ropes in the draft tube. Usually, a single-helical vortex rope is formed in the draft tube; therefore,
most research has focused on regimes with a single helical vortex rope [11–13]. However, for some
hydraulic turbines, at small flow masses, the single helix is replaced by a double helix, and twin vortex
ropes can be formed [11,14]. One of the first detailed reports of twin vortex ropes in draft tubes was
presented by Wahl [14], who was able to measure their precession frequency.

In this paper, numerical simulations are performed to study instability near, or in, the S-shaped
region of a pump-turbine model operating under off-design conditions. The model runner was
designed by Wang et al. [15–17] during the development of the Liyang Pumped Storage Power Station
in Jiangsu Province, China. Model tests were conducted in a stand high-head test rig at the Harbin
Institute of Large Electric Machinery of China. The analyses mainly focus on the pressure fluctuations
and flow characteristics in the draft tube and in the gap between the guide vanes and runner. In the
draft tube of the pump-turbine model, pressure fluctuations are mainly caused by a twin vortex rope.
In the gap between the guide vanes and runner, a low frequency component induced by rotating stalls
is captured both at runaway and low-discharge conditions.

2. Object and Research Methods

2.1. Scaled Pump-Turbine Model

The scaled model pump-turbine runner used in this study is shown in Figure 1. The model was
designed in order to conduct measurements on a standard test rig. The main parameters of the model
runner are listed in Table 1. The scale of the model was one-tenth of the prototype turbines installed
in aforementioned Liyang Pumped Storage Power Station. The rated specific speed of both model
and prototype is ns = 145.80 m · Kw. The specific parameters of the prototype pump-turbine are as
follows. In turbine mode, the rated head is Hr = 259 m and the rated output power is Pr = 255 MW.
The rotational speed is nr = 300 rpm for both turbine and pump modes. In pump mode, the maximum
and minimum heads are Hmax = 298 m and Hmin = 239 m, respectively.

 

Figure 1. Model runner.
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Table 1. Parameters of pump-turbine model in turbine mode.

Parameter Value

D2 (runner inlet diameter in turbine mode, mm) 448.2
n (runner rotating speed, rpm) 1200
Zb (number of runner blades) 7

Zs (number of stay vanes) 20
Zg (number of guide vanes) 20

Hr (rated head, m) 37.68
Qr (rated discharge, m3/s) 0.384
n11 (rated unit speed, rpm) 87.62

Q11 (rated unit discharge, m3/s) 0.311
ns (rated specific speed, m·Kw) 145.80

Model tests were conducted on a standard hydraulic machinery test rig at the Harbin Institute of
Large Electric Machinery, China. Figure 2 gives a schematic diagram of the model test rig. The test
rig had two test stations, A and B, of which Station A could be used to conduct the model tests
for Francis turbines and reversible pump-turbines. The main specifications of the test rig and the
pressure sensor (PCB112A22) used for the pressure fluctuation measurement are listed in Table 2.
All measurements were conducted in accordance with International Electrotechnical Commission (IEC)
Standard 60193 [18].

(a) (b) 

Figure 2. International Electrotechnical Commission (IEC) standard test rig. (a) Schematic diagram;
and (b) test section.

Table 2. Characteristics of test rig performance and pressure sensors.

Item
Parameter Characteristic Value

The test rig

Maximum head (m) 150
Maximum discharge (m3/s) 2.0

Runner diameter range (mm) 300–500
Generating power (kW) 500

Test accuracy in efficiency (%) ±0.2

Pressure sensor

Measurement range (mPa) 0.345
Sensitivity (mv/kPa) 14.5

Resolution (kPa) 0.007
Sampling frequency (kHz) 0.5–250

Constant current excitation (mA) 2–20
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In Figure 3, the measured S-shaped characteristics in some smaller guide vane openings are given.
Of these, the unit speed n11, unit discharge Q11, and unit moment M11 are defined as follows:

n11 =
nD2√

H
, Q11 =

Q
D2

2

√
H

, M11 =
M

D3
2 H

(1)

where n stands for the runner rotating speed, D2 for the runner inlet diameter in turbine mode, H for
the head in the model tests, Q for the discharge, and M for the moment. The four-quadrant test was
conducted under a constant speed of n = 500 rpm. In Figure 3, only the first quadrant is illustrated, in
order to clearly show the S-shaped characteristics. The normal operating range of the turbine mode is
indicated by the two vertical lines.

(a) 

 
(b) 

Figure 3. S-shaped curves at constant guide vane openings. (a) n11 − Q11 characteristic curve; and
(b) n11 − M11 characteristic curve.

2.2. Numerical Solutions

Three-dimensional turbulent flow simulations were conducted for the full-passage pump-turbine.
The extensively-used commercial code ANSYS CFX 15.0 (ANSYS Inc., Canonsburg, PA, USA) was
used to conduct the numerical simulations.

Turbulence models are important factors in computational fluid dynamics (CFD). An advanced
turbulence model, the detached eddy simulation (DES), was adopted to provide highly detailed
simulations of flow patterns and unsteady phenomena. The shear stress transport k −ωmodel was
used in the boundary layer, while the Smagorinsky-Lilly model was applied in detached regions [8].

The ANSYS ICEM (a powerful meshing software) and Turbo Grid were used for grid generation.
The computational domain was divided into five parts for meshing (Figure 4), namely the spiral casing,
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stay vanes, guide vanes, runner and draft tube. Structured mesh was created for all these parts except
for the spiral casing tongue, where unstructured mesh was employed due to the irregular structure.

   
(a) (b) (c) 

 
(d) (e)

Figure 4. Boundary mesh for the full flow passage. (a) Spiral casing; (b) stay vanes; (c) guide vanes;
(d) runner; and (e) draft tube.

At the inlet of the spiral casing, the mass flow rate was specified according to stochastic
fluctuations of the velocities with a 5% free stream turbulent intensity. Static pressure was set at
the outlet of the draft tube. The interfaces between stator-rotor blocks were set as the standard
transient sliding interfaces. Walls were defined with no-slip wall boundary conditions. Runner blades,
runner hub and shroud were fixed as rotating walls. The time-step size was set as 0.000139 s, such
that one runner revolution was divided into 360 time steps. Second-order implicit time-stepping was
adopted for time discretization. The convergence residuals for continuity and momentum equations
were below 1.0 × 10−5. All calculations were conducted in a cluster computer with eight Intel 5645
2.4 GHz processors, 96 GB RAM, and 2 TB hard drives (Dell Inc., Round Rock, TX, USA).

As shown in Figure 3, at a guide vane opening of A = 17.0 mm, OP1 is the best efficient point
(BEP), OP2–OP4 are the operating points in the normal operating range, while OP5 is the runaway
point and OP6 is the low-discharge point in the turbine brake. Usually, the guide vane opening is
given as an angle; however, its width was used in this study. The opening angle was γ = 18.0o at
A = 17.0 mm.

Four meshes (Table 3) were used to test mesh independence. The calculated points were OP2–OP4
(Figure 4). The calculated efficiency errors for OP2–OP4 are given in Table 4. Here, the error was
calculated as Err =

(
ηcal − ηexp

)
/ηnum × 100.0%. In the simulations, the head cover and stay ring

were not included; therefore, some leakage losses and the mechanical losses were not incorporated.
The calculated efficiency ηcal is mainly the hydraulic efficiency, and is calculated by means of a time
average after the calculated unsteady condition becomes stable. Simulated results show that mesh
density has a weak influence on efficiency as the grid density is high (3.62 million). After considering
the complex unsteadiness, Mesh III was chosen for the simulations. The validation of the numerical
results in the next section also shows that the numerical solutions used can provide reliable results.

Table 5 gives more information on Mesh III. There were a total of 4.5 million elements in the
whole domain. Figure 3 shows the boundary mesh for different components. Ten element layers with
normal stretching ratios were created from the walls for improving the velocity profile from the no-slip
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boundaries. Near the wall, the value of no-dimensional distances was y+ = 50 − 180. The mesh in
the domain of the guide vanes, runner and diffuser section of the draft tube was finer than that in
the other flow domain, in order to capture the complex flow characteristics in these components at
higher resolution.

Table 3. Mesh densities (millions).

Mesh
Component Spiral Casing Stay Vanes Guide Vanes Runner Draft Tube Full Domain

Mesh I 0.50 0.45 0.35 0.41 0.47 2.18
Mesh II 0.67 0.72 0.65 0.71 0.87 3.62
Mesh III 1.00 0.45 1.20 0.98 0.87 4.50
Mesh IV 1.00 1.16 1.04 1.45 1.13 5.78

Table 4. Mesh independence checks.

Operating Point
Mesh

Mesh I Mesh II Mesh III Mesh IV

OP2 5.51 2.67 2.43 1.92
OP3 7.88 4.54 3.25 3.07
OP4 10.63 5.49 4.37 3.86

Table 5. Statistics and quality of the mesh. BEP: best efficient point.

Component Spiral Casing Stay Vanes Guide Vanes Runner Draft Tube

Mesh type Hexahedral (except for small part near tongue in casing)
Mesh density (millions) 1.0 0.45 1.2 0.98 0.87

Aspect ratio (0–100) 1–70.1 1–75.7 1–82.3 1–78.6 1–68.2
Mesh expansion factor (0–20) 0.1–15.4 0.1–18.1 0.1–12.3 0.1–10.6 0.1–11.8

Minimum orthogonality (0–90) 32.7 33.5 42.5 45.5 71.2
First layer thickness (mm) 1.6 1.6 0.2 0.2 1.6

Mesh incremental ratio 1.75 1.75 1.5 1.5 1.75
y+ (at the calculated BEP) 165.0 172.5 80.3 54.1 140.8

2.3. Validation of the Numerical Results

Numerical results were compared with experimental measurements (Table 6). In the numerical
simulations, the discharge Q, and the runner rotating speed n, were specified with the same values as
those in the measurements, while the head H, and the moment M, were time-averaged values within
the simulations. The Reynolds number was Re = ωD2

2/ν = 2.82× 106, whereω is the runner rotation
angular velocity, D2 is the runner inlet diameter in turbine mode, and ν is the kinematic viscosity.

The agreement between numerical and experimental results was quite good in terms of n11, Q11,
and M11, with an error less than 5.0% at OP1 and OP2–OP4. At OP5 and OP6, there was a significant
increase in error (Table 5). As regards moment M, at OP5, its values should be zero, and at OP6,
its value should be a small negative value. Minor numerical overestimation in the moment will
induce a significant increase in errors. Moreover, mechanical friction losses were not considered in the
numerical simulations. These losses are closely related to the runner rotation rate and they remain
almost unchanged with the operating condition. Therefore, the corresponding reduction of hydraulic
power at these two points will induce significant increases in percentage errors, as shown in Table 6.
Even at these two points, the errors in n11 and Q11 are still smaller than 5.0%. This means that the
hydraulic heads are still well predicted in spite of the simplification of mechanical friction losses.
The comparisons demonstrate the capability of the numerical simulations to predict the hydraulic
characteristics of the pump-turbine with sufficient accuracy.
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Table 6. Investigated operating points and their values of n11, Q11, and M11.

Case Parameter Calculation Experiment Error

OP1
n11 75.56 74.58 1.29
Q11 0.180 0.178 1.29
M11 188.83 185.97 1.51

OP2
n11 85.27 84.24 1.21
Q11 0.172 0.170 1.21
M11 157.58 152.03 3.52

OP3
n11 89.56 89.26 0.33
Q11 0.163 0.162 0.33
M11 133.63 127.89 4.29

OP4
n11 93.37 95.14 1.90
Q11 0.141 0.144 1.90
M11 88.93 84.99 4.43

OP5
n11 97.26 101.08 3.92
Q11 0.09 0.093 3.92
M11 16.53 0.44 97.3

OP6
n11 95.56 94.98 0.60
Q11 0.032 0.031 0.60
M11 -33.65 -48.26 43.4

3. Results and Discussion

Pressure monitors in the whole water passage are presented in Figure 5. Monitor SC1 was located
on the spiral casing wall. In the gap between the guide vanes and runner, 20 monitors (GV1–GV20)
were arranged evenly around the circumference. On the draft tube wall there were three monitors,
DT1, DT2 and DT3. Pressure fluctuations on monitors GV5, GV15, and DT1–DT3 were registered in the
model test [19,20]. In a pump-turbine, pressure fluctuations in turbine mode are usually stronger than
those in pump mode. Moreover, fluctuation amplitudes in the draft tube and vaneless gap between
the guide vanes and runner are usually larger than those in the spiral casing and stay vane channels.

Figure 5. Pressure monitors in the whole passage.

For pressure fluctuation analyses, in frequency domains, the frequency spectrum was normalized
as f / fn, where f is the frequency component and fn is the runner rotating frequency. In time domains,
the pressure fluctuations are normalized by Equation (2).

c̃p =
p − p
ρE

(2)

where c̃p is the pressure fluctuation coefficient, p is the instantaneous pressure, p is the time-averaged
pressure, and E is the specific energy.
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3.1. Pressure Fluctuations in the Draft Tube

Three monitors, DT1–DT3, were located on the conical section in the draft tube. Table 7 shows the
pressure fluctuations of monitor DT2 at six different operating conditions, along with the numerical
and experimental results. The experimentally-measured pressure fluctuations are only listed in the
table for OP2–OP4. This is because pressure fluctuations were not measured at operating points in
the S-shaped region. Instead, pressure fluctuations were measured during the efficiency test [19,20].
Therefore, only the operating points in the normal operating ranges are given in the table.

Table 7. Amplitude and dominant frequency of pressure fluctuations at DT2.

Case
Amplitude (%) Dominant Frequency (f 1/fn)

Calculation Experiment Calculation Experiment

OP1 5.57 - 0.82 -
OP2 8.12 6.95 0.84 0.82
OP3 9.13 7.94 0.86 0.89
OP4 8.88 10.09 1.18 1.16
OP5 3.39 - 1.19 -
OP6 0.91 - 0.75 -

Although the amplitudes have relative errors of a little more than 13.0% between numerical
and experimental results, the first dominant frequency ( f1) is in good agreement. The single helical
vortex rope in the draft tube usually rotates at 20%–40% of the runner rotating speed [11]. However,
the dominant frequencies have higher values (Table 6). These higher frequencies may be induced
by a twin vortex rope [14]. The pressure fluctuations at monitor DT2 at OP3 are shown in Figure 6a
and the frequency spectrum is shown in Figure 6b. A total of 32 runner revolutions were calculated
after the unsteady simulation stabilized (Figure 6). The first dominant frequency measured during the
experiment was 0.89 fn, compared with 0.86 fn in the simulation. Based on Table 7 and Figure 6, it can
be seen that the pressure fluctuations in the draft tube are mainly induced by vortex ropes.

(a) (b) 

Figure 6. Measurements from monitor DT2 at OP3. (a) Pressure fluctuations; and (b) frequency spectrum.

Band-pass filtering was employed to extract the first dominant frequency component of 0.86 fn

from the calculated pressure fluctuations of DT1, DT2 and DT3 at OP3. As shown in Figure 7, α stands
for the phase difference of pressure between DT1 and DT2, and β represents the phase difference
between DT2 and DT3. The α value was near zero, while βwas not, which means that a twin vortex
rope developed in the draft tube. If the same measurements were made at the other operating points,
the twin vortex rope structure could also be detected.
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Figure 7. Band-pass-filtered pressure fluctuations at OP3.

Figure 8 shows the precession of a twin vortex rope at OP3 at a runner rotational period of
T. The pressure contours at the planes where monitors DT1 and DT2 were located are also shown.
The twin vortices are labelled A and B, and they rotate with the same angular velocity. This velocity
corresponds to the dominant frequency of the twin vortex ropes, 0.86 fn. Figure 9 shows a photograph of
a vortex rope observed during the experiment. The twin vortex rope is generated alongside cavitation.
This figure is simply used to verify the generation of twin vortex ropes because cavitation was not
considered, and only a single flow field was simulated in the present study. It is well known that
vortex ropes in draft tubes are usually induced by a high residual swirl in the input flow, which often
forms a single helical vortex rope. Therefore, further research is required to understand the transition
from a single to a double rope, and the influences of geometry on this process.

 (a) (b) (c) (d) 

Figure 8. Twin vortex rope in the draft tube at OP3: (a) t = t0; (b) t = t0 + 1/3T; (c) t = t0 + 2/3T; and
(d) t = t0 + T.
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Figure 9. Photograph of a twin vortex rope taken during the experiment, with ropes 1 and 2 labelled.

3.2. Pressure Fluctuations in the Vaneless Gap

Table 8 shows the amplitude and dominant frequency of pressure fluctuations on GV5.
The experimentally measured pressure fluctuations are only listed in the table for the three operation
points OP2–OP4 (as per Table 7). The guide vanes and runner blades interact to generate pressure
fluctuations in the gap between them. The dominant frequencies are rotor-stator interaction frequency
7fn and its harmonics, for both simulated and experimental results.

Table 8. Amplitude and dominant frequency of pressure fluctuations at GV5.

Case
Amplitude (%) Dominant Frequency (f 1/fn)

Calculation Experiment Calculation Experiment

OP1 5.45 - 7.00 -
OP2 5.61 6.12 7.00 7.00
OP3 8.96 10.45 7.00 7.00
OP4 35.69 30.78 7.00 7.00
OP5 35.78 - 7.00 -
OP6 28.95 - 7.00 -

The pressure amplitudes in operating conditions of low mass flow rate at OP4–OP6 were much
higher than those at OP1–OP3. These increased amplitudes are believed to be induced by serious flow
separation at the inlet of the runner. Figure 10 shows the distribution of streamlines at the guide vanes
and runner channels under operating conditions OP1, OP5 and OP6. At OP1, the streamlines were
well distributed at both guide vanes and runner channels, and there was no obvious flow separation.
At OP5, flow separation occurred at the inlet of the runner, leading to backflow cells and vortices in
the runner channels. However, the streamlines at the guide vanes still remained uniform. At OP6,
backflow cells and vortices entirely filled the runner channels and flow separation occurred at the
guide vanes.

(a) (b) 

Figure 10. Cont.
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(c) 

Figure 10. Streamlines in the guide vanes and runner. (a) Best efficiency point (OP1); (b) runaway
point (OP5); and (c) low-discharge point (OP6).

Figure 11 presents the calculated pressure fluctuations and frequency spectrum at GV5 for
operation conditions OP1, OP5 and OP6. For these three points, a low frequency component of 0.42fn
was captured at OP1, and 0.65fn was well captured at OP5 as well as OP6, except for the blade passing
frequency and its harmonics. The frequency component 0.42fn at OP1 was about half of the vortex
rope frequency, according to Table 6. Consequently, the component 0.42fn was the rotation frequency
of a single helical vortex rope. The frequency 0.65fn was also well captured at the other 19 monitors
in the gap between the runner and guide vanes at OP5 and OP6 (Figure 12). However, as shown in
Table 7, the frequency of the twin vortex rope is different at OP5 and OP6. Therefore, the frequency
0.65fn cannot be the rotation frequency of a single helical vortex rope at OP5 and OP6.

(a) (b) 

Figure 11. Measurements at monitor GV5. (a) Pressure fluctuations; and (b) frequency spectra.

Figure 12 shows the band-pass-filtered pressure signals of 0.65fn for monitors GV1 to GV20 at
OP5 and OP6, respectively. It is mentioned by Brennen [21] that the rotating stall phenomenon may
occur in one, or in a cascade of rotor or stator blades, operating at a high incidence angle. Usually,
the stall appears on a few adjacent runner channels and stall cells propagate in the circumferential
direction. In Figure 12, the propagation of stall cells is represented by parallel lines, and they have the
same direction as the rotating direction of the runner. At OP5, there is one single stall cell in the gap
between the runner and guide vanes, while at OP6, there are four stall cells. The band-pass-filtered
pressure signals for the four circumferentially-distributed monitors, GV5, GV10, GV15 and GV20,
are redrawn in Figure 13 for OP5 and OP6, respectively. At OP5, the pressure signals of GV5 and GV15
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had a phase difference of π, which is the same as for monitors GV10 and GV20 because of a single
stall cell. At OP6, as there were four stall cells all together, and there was no definite phase difference
among the four monitors.

(a) (b) 

Figure 12. Propagation of rotating stall. (a) Runaway point OP5; and (b) low-discharge point OP6.

(a) (b) 

Figure 13. Band-pass-filtered pressure. (a) Runaway point OP5; and (b) low-discharge point OP6.

4. Conclusions

This study investigated flow in a reversible pump-turbine model. The unstable characteristics
along a constant guide vane opening were simulated, and the numerical results were compared with
experimental measurements. Analyses focused on the pressure fluctuations in the draft tube and in
the gap between the runner and guide vanes. The main conclusions are summarized as:

(1) In the draft tube, a twin vortex rope formed under all the operating conditions that were
investigated. The twin vortex rope rotated at 0.75–1.19 times the runner rotation speed, which
was much faster than for single vortex ropes.

(2) In the gap between the runner and guide vanes, pressure fluctuations were mainly caused by
rotor-stator interactions and vortices due to flow separation. A low frequency component 0.65fn
was well captured at both runaway and low-discharge points in the turbine brake zone, and was
the effect of a rotating stall phenomenon. At the runaway point, a single stall cell was found in
the gap, while at the low-discharge point, four stall cells were found.
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Abstract: An impedance-based temperature estimation method is investigated considering the
electrochemical non-equilibrium with short-term relaxation time for facilitating the vehicular
application. Generally, sufficient relaxation time is required for battery electrochemical equilibrium
before the impedance measurement. A detailed experiment is performed to investigate the regularity of
the battery impedance in short-term relaxation time after switch-off current excitation, which indicates
that the impedance can be measured and also has systematical decrement with the relaxation time
growth. Based on the discussion of impedance variation in electrochemical perspective, as well as
the monotonic relationship between impedance phase shift and battery internal temperature in the
electrochemical equilibrium state, an exponential equation that accounts for both measured phase
shift and relaxation time is established to correct the measuring deviation caused by electrochemical
non-equilibrium. Then, a multivariate linear equation coupled with ambient temperature is derived
considering the temperature gradients between the active part and battery surface. Equations
stated above are all identified with the embedded thermocouple experimentally. In conclusion, the
temperature estimation method can be a valuable alternative for temperature monitoring during cell
operating, and serve the functionality as an efficient implementation in battery thermal management
system for electric vehicles (EVs) and hybrid electric vehicles (HEVs).

Keywords: lithium-ion battery; internal temperature estimation; impedance; phase shift; electric
vehicles (EVs)

1. Introduction

Lithium-ion battery, which has been proven to be the ideal power source for electric vehicles
(EVs) and hybrid electric vehicles (HEVs), strikes the best balance between power/energy density
and costs for energy storage [1,2]. As safety behaviors and a longer cycle life of the battery demands
a narrow temperature range, battery temperature always acts as one of the most essential operating
parameters [3]. Surface mounted thermal sensors (thermistors and thermocouples) suffer from heat
transfer delay due to the thermal mass of batteries. In consequence of cell thermal non-equilibrium,
the internal temperature differs from the external counterpart [4]. It is complicated to directly measure
the internal temperature of large format batteries in the vehicular application. An on-line detection of
battery internal temperature, which is essential to facilitate operation control, can help improve the
accuracy of BMS (battery management system) and the security of the power battery (battery pack).
The electrochemical-thermal model [5–8] and electrical-thermal model [9–12] are widely employed
to investigate the battery temperature performance during high power extraction. Inserted thermal
sensors and thermal imaging are also commonly used in battery thermal research [12–14].

Energies 2017, 10, 60 284 www.mdpi.com/journal/energies

Bo
ok
s

M
DP
I



Energies 2017, 10, 60

Nowadays, a simple technique to monitor battery internal temperature based on impedance
measurement has been proposed [15–20]. Hande [15] provided a technique to estimate the cell internal
temperature by measuring the pulse resistance. Srinivasan et al. [16] firstly demonstrated the intrinsic
relationship between battery internal temperature and the phase shift obtained from EIS (electrochemical
impedance spectroscopy). Schmidt et al. [17] introduced a sensorless temperature measurement method
for a 2 Ah pouch cell via the real part of impedance spectroscopy at high frequencies with state of
charge (SoC) status unknown and they also studied the influence of temperature gradient on the
method by experiments. Richardson and Howey [18] proposed a one-dimensional model, which was
validated utilizing internal thermocouple measurement, to estimate the temperature distribution for a
2.3 Ah LiFePO4 cylindrical cell by combined the real and imaginary impedance and battery surface
temperature. Further, they extended the estimation using an electrical-thermal model coupled with
impedance measurement [19]. Schmidt et al. [17] and Richardson et al. [19] also showed that the
estimated temperature inferred from impedance represented the equivalent uniform cell temperature.
The impedance phase shift is another important parameter in the EIS test. Our previous work [20] has
presented evidence for the existence of the intrinsic relationship between measured impedance phase
shift and the internal cell temperature with electrochemical equilibrium, which is seldom influenced
by battery degradation for an 8-Ah LiFePO4 battery. Raijmakers et al. [4] also put forward an intercept
frequency which was extracted from impedance spectra of a Li(NCA)O2 and a LiFePO4 battery
and exclusively related to the internal battery temperature based on EIS. As aforementioned, the
impedance-based temperature estimation methods eliminate the requirements of too many hardware
temperature sensors and knowledge of the cell thermal properties [4,17–19]. Battery SoC and health
often visibly change and several effective estimation strategies considering uncertain driving conditions
for EVs and HEVs have been presented [21–26]. Zhang et al. [23] proposed an online battery SoC and
SoE (state of energy) estimation method. This method was applied based on the hardware-in-loop
setup, where the novel adaptive H infinity filter was proposed to realize the real-time estimation
of battery SoC and SoE. The experiment results indicated the high estimation accuracy and strong
robustness of the method to the model uncertainty and measurement noise. The impedance-based
temperature estimation method reveal that there is a certain frequency which is distinctly dependent
on the temperature but does not depend on SoC and battery aging state for the LiFePO4 battery [4,
20], which is helpful to implement the impedance-based temperature method from lab to online
application in consequence of methods capable of measuring impedance spectra using existing power
electronics [27,28].

However, to satisfy the criteria of linearity and time invariance [29,30], the impedance is
generally measured at an operating point with a perturbation of a small AC (alternating current)
signal and long relaxation time, which hinders the practical application of the impedance-based
method when the battery operates under charge and discharge conditions. The interpretation of the
measured impedance under operating condition should be systematically investigated, particularly
the impedance measurement under short-term relaxation time warrants further investigation for
effective estimation.

In our previous study [20], the monotonic relationship between impedance phase shift and battery
internal temperature, which is employed as a reference to the temperature estimator for LiFePO4 battery,
has been identified in the frequency range of 1–100 Hz with electrochemical equilibrium. Influence of
battery SoC and aging are negligible in the selected frequency range. In this paper, we extend on our
earlier work by investigating and validating the temperature estimation method with the embedded
thermocouple under operating conditions. As shown in the flowchart (Figure 1), the relationship
between phase shift and internal temperature is firstly reproduced with temperature homogeneities
and artificial temperature gradients under the electrochemical equilibrium state. Regardless of battery
internal and surface temperature gradients, the measured impedance phase shift with electrochemical
equilibrium corresponds to the cell internal average temperature. Secondly, in order to promote
the vehicular application, a detailed experiment is conducted to investigate the regularity of battery
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impedance phase shift after charge/discharge current excitations with short relaxation time. It is
indicated that the impedance phase shift can also be obtained even under the current excitations.
The phase shift descends as the relaxation time increases, which is considered the main contribution of
this work to improve the accuracy of the estimation method. An exponential equation that accounts
for both measured phase shift and relaxation time is established at 10 Hz tentatively. Furthermore,
considering the effect of ambient temperature, a multivariate linear equation is derived and verified
experimentally. The predicted internal temperature shows good agreement with the measured internal
temperature, which guarantees a more precise assessment of the battery internal temperature.

Figure 1. Implementation flowchart.

2. Experiments

The cells adopted in the experiments are commercial LiFePO4 batteries with 30 Ah capacity
(Shanghai Aerospace Power Technology, Shanghai, China), as depicted in Figure 2. The specifications
of the lithium ion battery used are displayed in Table 1. One thermocouple is placed at the geometric
center of the pouch cell in order to directly measure the battery internal temperature. Four experimental
procedures are designed as shown in Figure 1, and the detailed introductions are shown in accordance
with the orders of their appearance, respectively.

Figure 2. Battery and experimental device. (a) The cell sample; (b) the location of the internal
thermalcouple; (c) the electrochemical workstation; (d) the environmental chamber; (e) the temperature
monitor station; and (f,g) the locations of the cells during tests.
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Table 1. Specifications of the lithium ion battery used.

Parameter Name Values

Nominal voltage 3.2 V
Nominal capacity 30 Ah

Electrode chemistry LiFePO4/graphite
Internal resistance ≤4 mΩ

Core size 13 mm × 132 mm × 184 mm
Storage temperature −20–45 ◦C

Normal Charge voltage 3.7 V
Discharge ending voltage 2.5 V

Weight 0.675 kg
Energy density 144 Wh/kg
Manufacturer Shanghai Aerospace Power Technology (Shanghai, China)

2.1. Impedance Phase Shift Measurement with Electrochemical Equilibrium

2.1.1. Tests with Homogeneous Temperature

The cell impedance spectra are obtained using an electrochemical workstation (Solartron SI 1287,
1255B, Solartron Mobrey, Durham, UK). The frequency range of the impedance measurement is set to
span from 10 kHz to 0.1 Hz with perturbation current of 1.5 A. The ambient temperature is controlled by
a Vötsch C4-180 environmental chamber (Vötsch, Germany), as displayed in Figure 2d. Measurements
are made over the range −20–40 ◦C with an interval of 10 ◦C, and in the range of 0%–100% SoC.
The whole test sequence is called A1 for simplification, and the detailed steps are shown in Table 2.
The temperatures from all thermocouples are measured utilizing a HIOKI temperature unit (LR8510)
(HIOKI, Nagano, Japan) and recorded by a HIOKI wireless logging station (LR8410-30). The tested cell
is charged and discharged using an ARBIN instrument (ARBIN, College Station, TX, USA) with the
test procedures listed in Table 2.

Table 2. Electrochemical impedance spectroscopy (EIS) test procedures A1 at various state of charge
(SoC) and temperature. CC-CV: constant current-constant voltage.

Step No. Type Rate End Condition Set Temperature (◦C)

1 Rest 0 4 h
25

2 Charge (CC-CV) 0.5 C (1 C = 30 A) Voltage limit 3.7 V;
current limit: 0.01 C

3 Rest 0 2 h 40, 30, 20, 10, 0, −10,
and −20 respectively4 EIS 1.5 A 10 kHz–0.1 Hz

5 Rest 0 2 h 25

6 Adjust the battery SoC, and repeat the EIS tests

7 End

2.1.2. Tests with Artificial Temperature Gradient

To investigate the influence of temperature gradient on EIS measurements, an artificial temperature
gradient is constructed. The cell temperature gradients are controlled with the combination of the
environmental chamber and a heating plate. Considering the thickness of the cell is 13 mm (Table 1),
it facilitates the formation of the stabilized temperature difference, and it is beneficial to verify the
relationship between the measured phase shift and the mean temperature value from the results of
the embedded thermalcouple, thereby the two lateral surfaces of the cell are imposed [17]. One side
of the battery cell is covered with the heat plate, and another side is exposed to the environment as
depicted in Figure 3. An internal temperature gradient of the cell forms when the temperatures of
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the environment (TAm) and heating plate (Th) are different. To obtain a more accurate result, two
thermocouples are employed to measure the actual temperatures (T1 and T2) of both side of the cell
in each test, and all temperature data are logged as presented in Table 3. T1 is the measured surface
temperature of the heating plate side, and T2 is the measured surface temperature without heating
plate. No. 1 represents the uniform temperature of battery which is all involved in the environment
chamber without heating plate. No. 2, No. 3, and No. 4 are used to describe the artificial temperature
gradient sets. The influence of the internal temperature gradient on battery behavior is investigated at
50% SoC. The particular experiment procedures are illustrated in Table 4.

Figure 3. Artificial temperature gradient experiments diagram.

Table 3. The artificial temperature gradients.

Data Sets T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

No. 1 6 9 12 15 18 22

No. 2 8 4 12 6 13 11 17 13 21 15 26 18
No. 3 11 1 15 3 16 8 20 10 25 12 29 15
No. 4 14 −3 18 −1 19 5 23 7 28 9 33 11

T1: Surface temperature with heating plate (◦C); T2: Surface temperature without heating plate (◦C).

Table 4. EIS test procedures B1 at artificial temperature gradients at 50% SoC.

Step No. Type Rate End Condition
Set Temperature (◦C)

Heating Plate Ambient

1 Rest 0 4 h -

252 Charge (CC-CV) 0.5 C Voltage limit 3.7 V;
current limit: 0.01 C -

3 Rest 0 2 h -
4 Discharge 0.5 1 h -

5 Rest 0 4 h
T1 T26 EIS 1.5 A 10 kHz–0.1 Hz

7 End

2.2. Impedance Phase Shift Measurement with Different Relaxation Time

2.2.1. Impedance Phase Shift Measurement after Different Relaxation Time

The experiments are designed to investigate the variation of phase shift after different relaxation
time. The whole test sequence is called C1 as depicted in Table 5. The cell is first fully charged by
ARBIN at room temperature. The charged cell is discharged to 50% SoC followed by a rest period of
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four hours at 20 ◦C. Then, the cell voltage and temperature are recorded with the 24 A pulse charging
and discharging protocol periodically. Subsequently, relaxation time of 0 s, 10 s, 30 s, 60 s, 90 s, and 120 s
is set before the EIS experiment, sequentially. After that, four hours rest is scheduled to equilibrate the
cell with the chamber temperature again. The temperature control method [31], which leads to a shift
of time constants and enlargements of impedance, is a powerful tool in impedance analysis. In order
to distinguish each response of elemental steps in the high-medium frequency range, the expansion of
impedance measurement are examined by lowering the temperature. Thus, Steps 6–12 are repeated at
10 ◦C and 5 ◦C to check the effect of relaxation time on impedance spectrum in more detail.

Table 5. The battery impedance test procedures C1 after different relaxation time.

Step No. Type Rate End Condition Set Temperature (◦C)

1 Rest 0 4 h

252 Charge (CC-CV) 0.5 C Voltage limit 3.7 V;
current limit: 0.01 C

3 Rest 0 2 h
4 Discharge 0.5 C 1 h

5 Rest 0 4 h
20, 10, and 56 Charge 24 A 10 s

7 Discharge 24 A 10 s

8 Repeat Steps 6, 7 200 times

9 Rest 0 0 s, 10 s, 30 s, 60 s, 90 s,
and 120 s respectively

20, 10, and 5
10 EIS 1.5 A 10 kHz–0.1 Hz
11 Rest 0 4 h

12 End

Battery temperature first rises with the increasing pulse cycles and then gradually reaches
static state because of thermal equilibrium. Following the pulse experiments described in Table 5,
the maximum relaxation period of 120 s is set to ensure that thermal response of the battery to the
applied 200 cycles is not obviously altered when the current excitation is switched-off. The cell internal
temperature is just dropped by at most 0.3 ◦C during the relaxation periods monitored by the internal
thermalcouple. Therefore, temperature and SoC are assumed to keep constant for all the tests to isolate
the effect of relaxation time before EIS tests. The test procedures C2 in Table 6 are designed to obtain
the phase shift at the homogeneous temperature with electrochemical equilibrium which refers as the
static point in the following discussion. The ambient temperature values inputted in procedures C2
are calculated from battery internal and surface after the period pulse swing in procedure C1 (Table 5).

Table 6. The battery impedance test procedures C2.

Step No. Type Rate End Condition Set Temperature (◦C)

1 Rest 0 4 h

252 Charge (CC-CV) 0.5 C Voltage limit 3.7 V;
current limit: 0.01 C

3 Rest 0 2 h
4 Discharge 0.5 1 h with 2.5 V

5 Rest 0 4 h 22 (the temperature
after pulse swing)6 EIS 1.5 A 10 kHz–1 Hz

10 Repeat Steps 5, 6 two times and Step 5 for 12.5 ◦C, and 8 ◦C respectively

11 End
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2.2.2. Validation Experiments Design

The validation experiments are conducted using constant-current discharge and pulse swing
excitation profiles. The procedures of battery charge and discharge are the main factor inducing
the variation of battery internal temperature. Based on the above analysis and referring to other
research methods for the battery temperature [11,14], the test programs are executed at various
ambient temperatures. The discharge pulses of different current magnitudes (15 A, 20 A, and 24 A) are
applied to the battery using the TOYO power booster (PBI 250-10) (TOYO Corporation, Tokyo, Japan).
The impedance measurements are carried out by 10 s, 30 s and 60 s relaxations with no current load,
and the surface and internal temperature are also monitored simultaneously.

3. Results and Discussion

3.1. Impedance Phase Shift with Equilibrium Temperature at 10 Hz

Many studies have elucidated that the EIS characteristics of battery are dramatically impacted
by the external environment and internal conditions, especially the temperature [16–20,32].
The electrochemical reaction rate, transfer rate and diffusion rate of lithium-ion are slowed down
resulting from the temperature decreasing [32], so the lower temperature enlarges the battery impedance.
The EIS procedures A1 are performed and the results are illustrated in Figure 4a. As can be seen, the
phase shift changes distinctly with the temperature in the whole frequency range. The relationship
between impedance phase shift and battery temperature at 10 Hz is indicated in Figure 4b. A certain
frequency range, which is able to exclude the influence of SoC and battery aging on the impedance
phase shift, was selected in previous research [4,20]. As illustrated in Figure 4b, the phase shift does
not alter with SoC at 10 Hz, which facilitates the impedance-based temperature estimator design since
the SoC often visibly changes and is hard to be estimated and calculated in the vehicular application.
The phenomenon mainly related to battery electrochemical reaction and diffusion process has been
interpreted in our previous study from the electrochemical perspective [20]. In this study, we utilize the
phase shift values at 10 Hz tentatively to track the battery internal temperature for the representative
of other available frequency points, and the relationship between phase shift and temperature is
employed as a reference for the estimation model in the next section.

Figure 4. Relationship between impedance phase shift and temperature. (a) Phase shift at different
frequencies and 50% SoC; and (b) the phase shift at various SoC and 10 Hz.

3.2. Impedance Phase Shift with Artificial Temperature Gradients

Some typical EIS measurements at 50% SoC and with different temperature gradients from
procedures B1 are depicted in Figure 5. Different temperature gradients are artificially constructed
by controlling the temperature of the ambient environment and the heating plate. Because of heat
dissipation between cells and the environment, the battery surface temperatures are different with the
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setting values, so the actual measured values displayed in Table 3 are used in the paper. The internal
temperatures of 6 ◦C, 9 ◦C, 12 ◦C, 18 ◦C and 22 ◦C were measured at the central position, and 6 ◦C
(Figure 5a,b) and 18 ◦C (Figure 5c,d) are presented here for the representative. The black, red and dark
cyan color lines represent the battery phase shift measured with thermal equilibrium. The gradient
perpendicular to the electrodes is assumed to be linear, as shown in Figure 3. In Figure 5, the impedance
spectroscopy and phase shift values are almost the same, even with different temperature gradients,
and the effect of high temperature gradients on the phase shift is slightly larger in medium frequencies.
It indicates that even under temperature gradients, the cell performs as under a uniform temperature
with electrochemical equilibrium. The experimental results are beneficial to the impedance-based
estimation method. The effect of temperature non-uniformity on the electrochemical impedance was
studied by Schmidt et al. [17], who also proposed that the uniform temperature was the cell internal
average temperature based on the impedance results at high frequencies. The variation of the phase
shift in our paper may be related to cell impedance characteristics and the experiments schemes.
Anticipated detailed interpretation for the measured results will be in next study.

Figure 5. EIS and phase shift with artificial temperature gradients: (a,c) EIS results; and (b,d) phase
shift results.

3.3. Impedance Phase Shift Correction Considering Relaxation Time

Because of the complexity of the battery charge and discharge process in practical applications, there
is seldom sufficient time to satisfy the cell to reach electrochemical equilibrium. The short-term current
interruption, such as waiting at red lights, may be the opportunity for AC incentives. Barai et al. [33]
and Schindler et al. [34] have studied the impedance of lithium ion cell with different relaxation process
between the removal of an electrical load and the impedance measurement. We find that the phase
shift is also correlative to relaxation time, especially when the battery is at low temperatures. The
impedance measurements are taken after current pulses; when the battery temperature reaches an
approximate steady state (200 cycles), the current is switched off to allow the impedance test with
different relaxation time.

291

Bo
ok
s

M
DP
I



Energies 2017, 10, 60

The evolution of the impedance spectra and phase shift directly after switch-off the pulse current
is illustrated for the tests of C1 and C2 in Figure 6. The impedance arc enlarges and the phase shift
goes down with the elevation of relaxation time.

Figure 6. Impedance results at various relaxation time. (a) EIS results at 20 ◦C; (b) enlarged phase shift
results at 20 ◦C; (c) EIS results at 10 ◦C; (d) enlarged phase shift results at 10 ◦C; (e) EIS results at 5 ◦C;
and (f) enlarged phase shift results at 5 ◦C.

The temperature during the pulse excitation is elucidated in Figure 7. Tin is the battery
internal temperature, and Tsurf(1)–(5) represent the battery surface temperature monitored by the
thermalcouples. The temperature first ascends with the increment of cycles and then gradually reaches
static state due to the thermal equilibrium. The impedance test is performed in the relaxation break as
shown the grey rectangle in Figure 7. The cell internal temperature which is monitored by the internal
thermalcouple drops by at most 0.3 ◦C during the maximum relaxation period (120 s). The thermal
response of the battery to the applied 200 cycles is not obviously altered when the current excitation
is switched-off. It can be argued that the exponential decay of the phase shift is not associated with
temperature decay. Therefore, temperature and SoC are kept constant for all the tests to isolate the
distraction of relaxation time before cell impedance measurements.
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Figure 7. Battery temperatures during the test procedures C1. Battery temperatures at (a) 20 ◦C;
(b) 10 ◦C; and (c) 5 ◦C.

The temperature values inputted in procedures C2 is the calculated temperature after the periodic
pulse swing, and the impedance obtained in C2 is employed in Figure 6 (static scatters) for comparison.
Two major features can be extracted from the results of the recorded spectra: (1) it is apparent that the
impedance arc enlarges with the incremental relaxation time gradually, especially at low temperatures;
and (2) the phase shift particularly slumps at a certain frequency point. In this study, the phase
shift at 10 Hz for the representative of other frequency points is selected to estimate battery internal
temperature tentatively, thereby the relationship between phase shift and relaxation time at 10 Hz is
displayed in Figure 8. The observed variations are linked to the physical processes occurring at the cell
during the relaxation period.

Figure 8. Cont.
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Figure 8. Experimental and fitting results of impedance phase shift at 10 Hz. Phase shift results at
(a) 20 ◦C; (b) 10 ◦C; and (c) 5 ◦C.

The EIS is constituted with the impedance under discrete excitation frequency. The phase shift
can be obtained from [20]:

ϕ( fx) = tan−1
{−Im{Z( fx)}

Re{Z( fx)}
}

, x ∈ [1, 2, . . . , n] (1)

where fx, x ∈ [1, 2, . . . n] is with the variation of excitation frequency.
Battery relaxation is mainly dominated by diffusion processes and may take up to several hours,

especially when the battery is almost empty, at low temperature, and after charging or discharging
with high current rates [35]. The changes of imaginary part are mainly related to the battery capacitive
component. The porosity of the electrodes confers a capacitance to the electrodes when a potential
difference is applied to the cell, and the electrodes can be considered as a parallel plate capacitor as
described by the Barai et al. [33]. One common observation reports that the capacitance of the cell
follows an exponential decay with a subsequent continuous relaxation. The authors attribute their
findings to ionic diffusion during the redistribution of ions within the electrolyte after switch-off the
pulse current. This redistribution of ions declines the battery capacitance until the overall concentration
of the electrolyte reaching equilibrium. As the concentration of ions at the electrolyte surface decreases,
when compared to that of the cell under polarization, the total cell capacitance goes down. Therefore,
one alternative explanation is that the reduction in the concentration gradients with the electrolyte
induces the enlargement of the impedance arc in Figure 6. Because the variation in concentration
gradient does not occur instantaneously, but rather occurs at several minutes or hours, the total cell
capacitance decreases accordingly as a function of relaxation time. Similarly, the solid state diffusion
will occur within the bulk of the particles during the relaxation period, which leads to a rearrangement
of the lithium atoms in the electrode materials and will be also reflected in the change of observed
impedance arc. S. Schindler et al. [30] also indicated the real part of medium impedance arc rises after
the electrical load removed because of battery polarization by experiments.

The shrinking phenomenon of phase shift in Figure 6 should be considered in the temperature
estimation method. A possible way to incorporate the information about the relaxation time is
to introduce a correction phase shift factor ϕ′, which is calculated from tre and measured phase
shift ϕ, and indicates whether the battery is completely recovered or not. An exponential function
corresponding to time is numerously employed to describe the battery relaxation process, such as
voltage relaxation [35], and the double layer capacitance relaxation [33]. The phase shift relaxation
process is also assumed to proceed as an exponential decay with the time constant τ, and the equation
can be described as:

ϕ′ = ϕ · (1 + a · e
−tre
τ ) (2)
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where a is the pre-exponential factor. We assume that the state of battery does not obviously alert during
the frequency sweeping from 10 kHz to 10 Hz, so tre represents the relaxation time, Tcore = f (ϕ) is the
estimated internal temperature with measured phase shift, and T′

core = f (ϕ′) is the estimated internal
temperature corresponding to correction ϕ′. When a equals 0.065, τ equals 85 s in the equation for the
cells, the phase shift of the cell follows the exponential decay, and the experimental data (scatters) and
simulation data (line) fit very well as illustrated in Figure 8. Equation (2) takes account for the effect
of relaxation time on impedance phase shift, and the evaluation plays a vital role in the subsequent
estimation model. In the validation experiments, a relaxation period of 60 s is adopted firstly. The
cells are tested utilizing pulse swing excitation profiles above zero temperature, and constant-current
discharge at subzero temperature to avoid the lithium dendrites. The temperature of the embedded
thermocouple Tin is employed to verify the estimated results. The estimated results before and after
relaxation time optimization are respectively presented in Table 7. In the results, we can find that the
correction Equation (2) can improve the accuracy of the proposed model. The estimated results at a
lower temperature are more accurate than that in a higher temperature, which is probably ascribed to
the uncertainty of the impedance measurement as the decreasing of impedance at higher temperature.
The correction considering the relaxation time, which can promote estimation accuracy, is the main
contribution of this work. To further improve the accuracy of the estimator, a multivariate linear
regression equation associated with environment temperature is proposed in Section 3.4.

Table 7. The verification of the temperature estimator considering the relaxation time.

TAm Current Cycles/SoC ϕ Tin Tcore T′
core No.

20 (◦C)

24 (A)
500 −2.719 26 27.94 27.42 1

1000 −2.647 26.3 28.36 27.86 2

20 (A)
500 −3.074 24.5 25.84 25.26 3

1000 −3.0548 24.5 25.95 25.37 4

15 (A)
500 −3.3313 22.5 24.32 23.69 5

1000 −3.3303 22.7 24.33 23.69 6

10 (◦C)

24 (A)
500 −6.983 12.0 12.91 12.37 7

1000 −7.0134 11.9 12.84 12.29 8

20 (A)
500 −7.5696 11.1 11.49 10.9 9

1000 −7.5884 11.0 11.45 10.85 10

15 (A)
500 −8.0317 10.3 10.37 9.891 11

1000 −8.0522 10.3 10.30 9.797 12

0 (◦C)

24 (A)
SoC I −9.4269 7.0 8.709 8.395 13
SoC II −7.8341 10.2 10.85 10.24 14

20 (A)
SoC I −10.331 5.9 7.77 7.426 15
SoC II −8.7908 8.6 9.37 9.077 16

15 (A)
SoC I −11.294 4.8 6.77 6.393 17
SoC I −10.094 6.8 8.016 7.68 18

−10 (◦C)

24 (A)
SoC I −19.94 −2.5 −1.63 −2.12 19
SoC II −18.26 −0.5 −0.3438 −0.7924 20

20 (A)
SoC I −22.717 −4.7 −3.76 −4.314 21
SoC II −17.546 −0.7 0.28 −0.2282 22

15 (A)
SoC I −25.138 −6.1 −5.61 −6.227 23
SoC II −23.239 −4.9 −4.156 −4.727 24

−20 (◦C) 24 (A)
SoC I −33.087 −13.7 −12.4 −13.57 25
SoC II −31.82 −12.5 −11.3 −12.14 26

SoC I represents the 50% SoC; SoC II represents the state of battery reaching cut-off voltage.
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3.4. Multivariate Linear Optimization and Validation

The environment temperature, operating time, current and other battery properties all have
a great influence on battery internal temperature. Because the impedance reduces significantly at
higher temperatures (T > 10 ◦C), a multivariate linear regression equation is established to improve
the battery internal temperature estimation accuracy. The relationship is expressed as:

Tmult = β0 + β1 × T′
core + β2 × TAm (3)

To simplify the algorithm, we assume that the internal average temperature T′
core is related to the

battery property, and the environment temperature TAm is mainly pertinent to heat dissipation.
When considering the situation in which n independent multivariate observations x1, . . . , xn have

been collected, and the number of responses measured in each observation is y, the multivariate linear
regression model can be written as:

y = β0 + β1x1 + · · ·+ βnxn (4)

To obtain the parameter vector (β1, . . . ,βn), N sets of observations:

X =

⎡
⎢⎢⎢⎢⎣

x11 x12 . . . x1n
x21 x22 . . . x1n

...
...

. . .
...

xN1 xN2 . . . xNn

⎤
⎥⎥⎥⎥⎦, Y =

⎡
⎢⎢⎢⎢⎣

y1

y2
...

yN

⎤
⎥⎥⎥⎥⎦

n is the number of independent variables, N is the number of data sets.
Nine data sets in Table 7 (the even sequences in No. 2–18) are selected to identify the three

parameter vector (β0,β1,β2). The goodness of fit (R test), significance test (F test), and regression
coefficient significance test (t test) are calculated. The values are all presented in Table 8. At test level
α = 0.05, all the test values (R, F, and t) prove that Equation (3) is effective and reliable to be used.

Table 8. The parameter vector values in equation.

β0 β1 β2 R Test
F Test t Test

T′
core TAm T′

core TAm

1.9235 0.7408 0.1829 0.9983 206.5 14.8 10.2 2.7

3.5. Estimation Method Validation

After the obtainment of phase shift according to the correction Equation (1), the measured phase
shift can be modified considering relaxation time with Equation (2). Then, the internal average
temperature can be calculated from the relationship described in Figure 4. On the basis of multivariate
linear equation operation, the estimated temperature Tmult can be observed finally.

To further verify the estimated results, a discharge profile is involved at 10 ◦C and 20 ◦C as
displayed in Figure 9. The AC frequency excitations (10 Hz, dark cyan arrows) are executed after the
relaxation process (10 s and 30 s). The estimated temperature results are, respectively, presented in
scatters for comparison in Figure 9a,b.

In Figure 9, the estimation temperature Tcore has larger deviation compared to Tin, and the
estimation results T′

core and Tmult show good concordance with the measured cell internal temperature.
The results with 30 s relaxation at 20 ◦C are more accurate than that with 10 s, as shown in Figure 9d. One
interpretation is that the battery will be more stabilized and balanced with the incremental relaxation
time because of the faster ions transfer and diffusion at higher temperature. Thus, the impedance can
be obtained more precisely. Another interpretation could be that the model term to correct for the

296

Bo
ok
s

M
DP
I



Energies 2017, 10, 60

ambiguous error is more accurate for the 30 s relaxation, as it is already closer to the static value. When
the battery operates at 10 ◦C, the maximum errors are 1.58 ◦C with Equation (2), and 0.76 ◦C with
Equation (3). When the cells are operated at 20 ◦C, the errors are 2.07 ◦C and 0.91 ◦C, respectively.
It indicates that the multivariate linear equation can improve the model accuracy, which mainly
contains two aspects: on one hand, Equation (2) is used to modify the measuring deviation caused
by electrochemical non-equilibrium. On the other hand, the ambient temperature is introduced in
Equation (3) to consider battery temperature distribution due to uneven heat dissipation.

 

Figure 9. Estimated results with 10 s and 30 s relaxation time. Estimated results with (a) 10 s; (b) 30 s
relaxation time; and temperature error at (c) 20 ◦C; (d) 10 ◦C.

The impedance changes with the degradation of the cell. Identifying ageing and degradation
mechanisms in a battery is a main and most challenging goal in the implementation. L.H.J.
Raijmakers et al. [4] conduct battery cyclic life tests and their temperature estimated method does
not depend on the battery aging. The relationship between the phase shift and battery cyclic aging
for the LiFePO4 cell has been discussed in the previous study [20], which shows that the impedance
magnitude varies obviously with aging, but the phase shift is not affected by the battery cyclic aging.
The aforementioned research facilitates the temperature estimation method in our study. They just
test the cyclic life of the cells, however, the calendar life and other complicated utilization mode,
e.g., charging and discharging rates like the ones corresponding to the New European Driving Cycle
or Urban Dynamometer Driving Schedule, may cause different ageing effects. Hence, validating the
relationship between phase shift and other degradation mode is the next focus in our work.

4. Conclusions

Based on the monotonic relationship between impedance phase shift and battery internal temperature
proposed in the previous study [20], the impedance-based temperature estimation method is further
developed considering electrochemical non-equilibrium caused by current excitation. The impedance
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phase shift can be measured with a short-term relaxation after the current excitation switch-off.
The relationship between phase shift and relaxation time at 10 Hz, which is representative of other
frequency points, is investigated tentatively. The results demonstrate that the phase shift descends
exponentially with the increment of the relaxation time at 10 Hz, responsible for the redistribution
of ions within the electrolyte, which cause the decrease of phase shift after switch-off of the pulse
current. An exponential equation is proposed to correct the measuring deviation due to electrochemical
non-equilibrium. Considering the temperature inhomogeneities and uncertainty impedance measurement
in higher temperature, a multivariate linear equation coupled with ambient temperature is derived. The
temperature estimation method may be more accurate in low temperatures corresponding to the high
resolution relationship between the temperature and the measured phase shift. The correction proposed
in the study is established and verified under the excitation frequency 10 Hz. The model proposed in
the paper does not rely on the battery thermal characteristics and surface temperature sensors, it can
afford us much convenience in temperature monitoring during cell operating and is also functional as
an efficient implementation in battery thermal management system for EVs and HEVs.
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Nomenclature

◦C Degree Centigrade
A Ampere
C Current magnitude in terms of cell capacity (1 C = 30 A)
Hz Hertz
s Seconds
V Volt
h Hour
ϕ Measured phase shift
tre Relaxation time
τ Time constant
a Pre-exponential factor
ϕ′ Correction phase shift factor
t Time (s)
T Temperature (◦C)
Th Temperature of heating plate
T1 Measured surface temperature of the heating plate side
T2 Measured surface temperature without heating plate
Z Impedance
TAm Ambient temperature (◦C)
Tcore Estimated internal temperature with measured phase shift
T′

core Estimated internal temperature corresponding to correction phase shift
Tin Measured internal temperature from embedded thermocouple
Tmult Estimated temperature with Multivariate linear optimization
(β1, . . . ,βn) Parameter vector
fx Frequency (Hz)
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Acronyms

EV Electric vehicle
HEV Hybrid electric vehicle
BMS Battery management system
EIS Electrochemical impedance spectroscopy
LiFePO4 Lithium iron phosphate
Li(NCA)O2 Lithium cobalt aluminum nickel oxide
CC-CV Constant charge-constant voltage
AC Alternating current
SoC State of charge
SoE State of energy

Subscripts/Superscripts

re Relaxation
h Heat
Am Ambient
core Core
in Internal
mult Multivariate
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Abstract: The driving pattern has an important influence on the parameter optimization of the energy
management strategy (EMS) for hybrid electric vehicles (HEVs). A new algorithm using simulated
annealing particle swarm optimization (SA-PSO) is proposed for parameter optimization of both
the power system and control strategy of HEVs based on multiple driving cycles in order to realize
the minimum fuel consumption without impairing the dynamic performance. Furthermore, taking
the unknown of the actual driving cycle into consideration, an optimization method of the dynamic
EMS based on driving pattern recognition is proposed in this paper. The simulation verifications for
the optimized EMS based on multiple driving cycles and driving pattern recognition are carried out
using Matlab/Simulink platform. The results show that compared with the original EMS, the former
strategy reduces the fuel consumption by 4.36% and the latter one reduces the fuel consumption by
11.68%. A road test on the prototype vehicle is conducted and the effectiveness of the proposed EMS
is validated by the test data.

Keywords: hybrid electric vehicles (HEVs); energy management strategy (EMS); particle swarm
optimization (PSO); multiple driving cycles; driving pattern recognition

1. Introduction

To meet user demands for vehicle power performance, the parameters of hybrid electric vehicles
(HEVs) are optimized to maintain the battery state of charge (SOC) and reduce the vehicle fuel
consumption. This is not only related to the design parameters of the power system, but also the
control parameters of the energy management strategy (EMS). To improve HEV performance in
terms of fuel economy and ensure excellent driving performance, the simultaneous optimization
for the main parameters of powertrain components and control system is necessary [1]. Recently,
numerous works have been proposed to find the best solution. The genetic algorithm is used for
the optimization of HEV control parameters which effectively improves the fuel economy [2–5].
The energy management algorithms based on adaptive multi-operating modes proposed in [6]
solve the problem that different driving cycles should be provided with different control algorithms.
Besides, the matching method of the powertrain based on driving cycles is presented for fuel cell
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HEVs [7]. The above optimization algorithms are used to optimize the parameters of the power
system or energy control strategy of HEVs. Several algorithms have been employed to optimize the
parameters of both the power system and control strategy, such as the particle swarm optimization
(PSO) algorithm [8–10] and multi-objective genetic algorithm [11]. A genetic algorithm with simulated
annealing is proposed in [12] to balance between economy and dynamic performance. The DIRECT
algorithm global optimization method has been used for calibrating the parameters of the vehicle EMS
from the perspective of fuel economy [13]. Compared with the mentioned optimization algorithms,
simulated annealing particle swarm optimization (SA-PSO) has the advantages of achieving a global
optimal solution [14]. It is difficult but necessary to develop a set of global optimal solutions for the
simultaneous optimization of power system and control parameters.

It’s well known that the effectiveness of EMS for HEVs is greatly influenced by the driving
patterns. However, the optimized parameters of HEVs based on a certain driving pattern may not
maintain the battery SOC balance in other patterns, not to mention the best fuel consumption [15].
Therefore, energy management strategies based on driving pattern recognition have recently been
put forward in the literature [16,17]. To optimize the vehicle performance on a random driving
pattern, a multi-mode driving control algorithm using driving pattern recognition is developed for
HEVs [18,19]. An intelligent energy management for parallel HEV based on driving cycle identification
is proposed using a fuzzy logic controller or fuzzy neural network [20–22]. The machine-learning
methods intelligently and automatically discriminate between the driving conditions [23,24]. To solve
the multi-objective optimization problem for the longevity and energy efficiency of the energy
storage system, a new optimization framework for determining an instantaneously optimized power
management strategy has been proposed by Zhang et al. in [25], which shows excellent real-time
power optimization performance against unknown diving cycles and operating conditions.

In these studies, the parameter optimization of the energy storage system, which is also very
important for the effectiveness of EMS, is not taken into consideration. As mentioned above,
the advantage of SA-PSO compared with other optimization algorithms is that it can obtain global
optimization results, so it is meaningful to utilize the SA-PSO to realize the parameter optimization
based on multiple driving cycles. Meanwhile the EMS based on driving pattern recognition should
take advantage of the optimized parameters. However, few works have comprehensively analyzed
how to combine the optimized parameters with the EMS based on driving pattern recognition. Besides,
the EMS based on driving pattern recognition should emphasize more the influence of the variation
range of battery SOC while focusing on the vehicle fuel economy. In general, the simultaneous
optimization for parameters of power system and control strategy on this premise of maintaining
balance of the battery SOC is worth studying and meaningful to improve the fuel economy.

In this paper, a new methodology for parameter optimization using a SA-PSO algorithm is proposed
to pursue the best fuel consumption without impairing the dynamic performance. The parameters of
the power system and control strategy for HEV are both optimized based on multiple driving cycles.
In addition, an algorithm of the dynamic EMS based on driving pattern recognition is proposed in
this paper. Twenty-three typical driving cycles from ADVISOR (2002, National Renewable Energy
Laboratory, Golden, CO, USA) have been selected and classified according to the clustering analysis
method through the Euclidean distance. Furthermore, the Euclid approach degree is used to realize the
driving pattern recognition. The control parameters have been optimized at each class of driving patterns
based on the optimization of multiple driving cycles. The proposed energy management strategies
based on parameter optimization under multiple driving cycles and driving pattern recognition
are both simulated on the Matlab/Simulink (R2010a, MathWorks, Natick, MA, USA) platform
under the comprehensive driving cycles. Furthermore, road tests of the prototype vehicle with
the proposed control strategy are conducted. The results of both the simulation and road tests validate
the effectiveness of the proposed control strategies.
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2. Hybrid Electric Vehicle (HEV) Rule-Based Energy Management Control Strategy

The hybrid power system considered in this paper is a typical parallel Integrated Starter and
Generator (ISG) hybrid system, as shown in Figure 1. The engine and ISG motor are connected through
a master clutch, and either of them can drive the vehicle alone. The ISG motor can also be used as a
generator to charge the battery.

Figure 1. Configuration of the integrated starter and generator (ISG) type hybrid electric vehicle (HEV).

As shown in Figure 2, the basic control strategy in this paper is a rule-based logic threshold EMS
which relies on several modes or states of operation and its decision to change modes is dependent on
the power requirement of acceleration or deceleration, the SOC of the energy storage unit, and the
vehicle speed [26,27]. In order to ensure that the engine operates more in high efficiency regions, in this
paper, the coefficients of the engine torque in high efficiency regions (Fup and Flow) are designed to
obtain the maximum and minimum engine torques based on the existing results presented in [28].
As shown in Figure 2a, when the battery SOC is higher than the low limit SOClow and if the required
speed is less than a certain value V1, the vehicle will operate at pure electric mode. When the battery
SOC is lower than SOClow in Figure 2b, an additional torque Tchg is required from the engine to charge
the battery. Therefore, the revised rule-based EMS is proposed as shown in Table 1. The parameters of
the control strategy are shown in Table 2.

Figure 2. Logic diagram of control strategy. (a) SOC > SOClow; (b) SOC ≤ SOClow.
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Table 1. Revised rule-based energy management strategy (EMS).

Operating Mode Constraint Condition Torque Distribution

Electric Driving Mode

0 < Tv ≤ Toff
SOCup > SOC > SOClow; V > Vl
SOCup > SOC > SOClow; V ≤ Vl
SOC > SOCup

Tm = Tv; Te = 0

Driving & Charging Mode
Toff < Tv ≤ Tlow
SOClow ≤ SOC ≤ SOCup; V > Vl
0 ≤ Tv ≤ Tup

Te = Tlow
Tm = Tv − Tlow
Te = Tup
Tm = max(Tv − Tup, Tchg max)

Engine Driving Mode
Tlow ≤ Tv ≤ Tup
SOCup > SOC > SOClow; V > Vl
Tup ≤ Tv; SOC ≤ SOClow

Te = Tv; Tm = 0

Motor Driving Mode Tup < Tv; SOC > SOClow; V > Vl Te = Tup; Tm = Tv − Tup

Regenerative Braking Mode Tv ≤ 0; SOC < SOCup Tv = Tm + Tmechanic

Tv ≤ 0 and SOC > SOCup Tv = Tmechanic

Table 2. Parameters of control strategy.

Name Unit Description

SOCup - Maximum expectation of battery SOC
SOClow - Minimum expectation of battery SOC

V km/h Current speed
Vl km/h Speed floor. When SOC > SOClow and V < Vl, pure electric mode starts

Tmax Nm Maximum steady-state torque of engine
Foff - Engine off torque coefficient, To f f = Tmax × Fo f f

Flow - Minimum torque coefficient of engine in high efficiency regions,
Tlow = Tmax × Flow

Fup - Maximum torque coefficient of engine in high efficiency regions,
Tup = Tmax × Fup

Tchg Nm Active charging torque of ISG motor. Tchg max is the maximum charging torque
of motor

Tv Nm Vehicle demand torque
Tm Nm Output torque of the ISG
Te Nm Output torque of the engine

Tmechanic Nm Mechanic braking torque

3. Power System and Control Strategy Parameter Optimization Based on Multiple Driving Cycles

3.1. Basic Idea for Parameter Optimization

To pursue the best fuel consumption under actual driving cycle conditions, the parameter
optimization of the power system and control strategy of HEV based on multiple driving cycles
has been proposed. Six types of typical cycles are employed, considering the influence of urban
congestion, suburban and highway conditions. The constraints of dynamic performance for the vehicle
are shown in Table 3. The six types of driving cycles are shown in Table 4. The parameters of the
vehicle’s power system are shown in Table 5. The optimization method for the main parameters of
power system and control strategy based on multiple driving cycles is generalized as follows:

(1) The assumption that the revised rule-based EMS is used for HEV.
(2) The initial parameters of power system and control strategy are selected and their values

are chosen.
(3) Six types of driving cycles are selected and combined into a comprehensive driving cycle.
(4) The simultaneous optimization for the main parameters of power system and control strategy is

carried out using SA-PSO algorithm with vehicle performance constraints.
(5) The optimal power system and control parameters are applied to the HEV EMS.
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Table 3. Constraints of dynamic performance for the HEV.

Max. Speed Max. Slope of Climb Acceleration Time from 0 to 100 km/h

km/h % s

160 ≥50 ≥30 ≤12
(Engine Driving Mode) (Electric Driving Mode) (Engine Driving Mode) (Hybrid Driving Mode)

Table 4. Six types of typical driving cycles.

Mode FTP LA92 SC03 UDDS HWFET US06_HWY

Type urban congestion suburban highway

Table 5. Power source parameters of the HEV.

Description Engine (PIC) ISG Motor (PISG)

Max Power (kW) 72 30
Max Torque (Nm) 137 115

The diagram of optimization method based on multiple driving cycles is shown in Figure 3.

Figure 3. Diagram of optimization method under multiple driving cycles.

3.2. Parameter Definition of Power System and Control Strategy

The parameters of the power system and control strategy in terms of engine power (PIC) and ISG
power (PISG) are optimized in this paper to make sure that the engine and motor work in high efficiency
regions on the premise of satisfying the requirements of vehicle dynamic performance. The variation
of each design parameter of the power system (PIC and PISG) is considered ±70% about the initial
values, according to the results presented in [15]. The control parameters (Flow, Fup, Foff, SOClow, SOCup

and Vl) are designed to ensure that the engine can work in high efficiency regions without interference
with each other, as shown in Table 6. The initial values of selected parameters are obtained from the
prototype vehicle.
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Table 6. Variation of each parameter.

Optimal Variable Initial Value Variation Range

PIC (kW) 72.0 21.6–122.4
PISG (kW) 30.0 9–51

Flow 0.6 0.43–0.73
Fup 0.9 0.75–0.93
Foff 0.235 0.2–0.4

SOClow 0.25 0.2–0.4
SOCup 0.8 0.75–0.9

Vl 32 10–50

3.3. State of Charge-Fuel Consumption Correction Method

In order to eliminate the influence of SOC on the vehicle fuel consumption evaluation, the battery
SOC correction method should be used to correct fuel economy in the case initial and final battery SOC
are not the same during a driving cycle. The SOC-fuel consumption correction method used in this
paper is as follows:

Δ f uel =
ΔSOC · Qcap · Ubat · ηeng_chg

1000 · ρ (1)

where Δfuel is the equivalent fuel consumption (L), ΔSOC is the variation of battery SOC between
the starting and ending points, Qcap is the total battery capacity (Ah), Ubat is the average battery bus
voltage during drive cycles (V), ηeng_chg is the average the engine power efficiency (g/kWh), and ρ is
the gasoline density (g/L).

3.4. Optimization Objective Function

Taking the characteristics of different driving cycles into consideration, the target of parameter
optimization of the power system and energy management control strategy is to achieve a set of
optimal parameters to reduce fuel consumption as much as possible without impairing the dynamic
performance. The fuel consumption is the optimization objective with the dynamic performance as the
constraint. In order to prevent the excessive variation of battery SOC (ΔSOC), and specifically avoid
exceeding the lower limit of SOC range, the weight coefficient of Δfuel under different driving cycles is
set to enable the motor to drive alone. The fitness function is as follows:

Min f (x) =
∫

Fueluse(t)dt +
6

∑
i=1

wi·|Δ f ueli| (2)

s.t. uj(x) ≥ 0 j = 1, 2, 3, ..., m
xl

i ≤ xi ≤ xk
i i = 1, 2, 3, ..., n

where uj(x) are the constraint conditions of vehicle dynamic performance (e.g., maximum speed and
accelerating ability) as shown in Table 3, n is the number of optimization variables, which equals 8 in
this study, xl

i and xk
i are the upper and lower bounds on the optimization variables respectively.

Considering the difference of the speed range and mileage of each driving cycle, the weight
coefficients wi of Δfuel under driving cycles HWFET, FTP, LA92, US06_HWY, UDDS, SC03 through
enumerative technique based on experience and simulation are chosen as 1.0, 1.0, 1.5, 1.3, 1.3 and
1.0, respectively.

3.5. Parameter Optimization for HEV Based on Simulated Annealing Particle Swarm Optimization Algorithm

The SA-PSO algorithm, firstly introduced by Metropolis et al. [29], is an optimization algorithm
which combines the PSO with the Simulated Annealing method. This method has high efficiency
in searching the global minimum value and the characteristics that it is easily realizable and has
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the advantages of both SA and PSO algorithms [30]. The particle swarm will gravitate towards the
optimum solution after continuous iterations. All particles’ positions and velocities are updated
according to the following formulas:

vt+1
i = w(t)vt

i + c1r1(pt
i − xt

i ) + c2r2(pt
gi − xt

i ) (3)

xt+1
i = xt

i + vt+1
i (4)

where pt
i is the individual best optima for particle i after t iterations, pt

gi is the group optima after t
iterations, w(t) is the inertia weight, c1 and c2 are two positive constants, r1 ∈ [0, 1] and r2 ∈ [0, 1] are
two random parameters independent of each other, vt

i is the velocity of particle i in iterative t, and xt
i is

the position of particle i in iterative t.
Based on the above analysis, the complete SA-PSO algorithm flowchart is shown in Figure 4.

Figure 4. Optimization model based on the simulated annealing particle swarm optimization algorithm.

The detailed procedure of SA-PSO algorithm for parameter optimization is explained as follows:

Step 1: Initialize a group of random particles. The inertia should be chosen to provide a balance
between the global and local exploration. The initialization consists of the following major parameters:

• Generation number: 25 Constants; c1 and c2: 2.05, 2.05; Initial temperature T: 9000 ◦C; Final
temperature T0: 0.05 ◦C; Anneal speed K: 0.9.

Step 2: Calculate and update the fitness function f (x) of all particles. Determine pt
i and pt

gi of the current
generation. Update new velocities and positions of each particle according to Equations (3) and (4).
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Step 3: Calculate the difference between the optimal and non-optimal function value Δf (x). Accept
the optimal solution if Δf (x) is greater than 0, otherwise generate a random number r within (0, 1).
When r is lower than min[1, exp(−Δ f (x)/t)], accept the optimal solution and go to Step 2, or go to the
next step.
Step 4: Introduce the simulated annealing mechanism. Stop the program and output the optimal
solution if the convergence criteria is satisfied, otherwise carry out the annealing process and the
command “T = 0.9 × T”.

3.6. Simulation of Optimal Parameters Based on Multiple Driving Cycles

The simulation studies for the vehicle fuel economy are carried out using the Matlab/Simulink
platform. The selected six types of driving cycles (HWFET, FTP, LA92, US06_HWY, UDDS, SC03)
are successively combined into a comprehensive cycle according to driving cycles. The time-speed
relationship of the comprehensive driving cycle is shown in Figure 5. The eight parameters of the
power system and control strategy are optimized by the SA-PSO algorithm based on the comprehensive
driving cycle, and the optimization results of the parameters are shown in Table 7.

Figure 5. Time-speed relationship of the comprehensive driving cycle.

Table 7. Comparison of optimization results.

Optimal Variable Initial Value Optimal Value

PIC (kW) 72.0 67.0
PISG (kW) 30.0 26.0

Flow 0.6 0.48
Fup 0.9 0.90
Foff 0.235 0.23

SOClow 0.25 0.30
SOCup 0.8 0.78

Vl 32 35.06

The optimized parameters satisfy the requirements of vehicle dynamic performance. The variation
of the battery SOC and engine operation points of HEVs are simulated under the comprehensive
cycle conditions, as shown Figures 6 and 7. The variation of battery SOC stays within 0.05 which
meets the requirements for HEV in terms of the battery SOC consistency. Meanwhile, the battery
SOC always fluctuates around the initial SOC value, which enables the battery to work in its high
charging/discharging efficiency region. Furthermore, the engine can work in its high efficiency region
and the vehicle can be driven in the electric driving mode with low speed and torque, which effectively
improves the overall efficiency of whole system.
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Figure 6. Variation of battery SOC under the comprehensive cycle conditions.

Figure 7. Engine operating points under the comprehensive cycle conditions.

4. HEV Dynamic Control Strategy Based on Driving Pattern Recognition

As mentioned above, the control parameters optimization based on multiple driving cycles is
analyzed under known driving cycle conditions. However, in practice, the vehicle actual driving cycle
is a random and uncertain process. In order to achieve better fuel economy, the EMS of HEVs based
on driving pattern recognition is proposed after the parameter optimization under multiple driving
cycles, which can optimize the control parameters in vehicle real-time control.

The diagram of EMS for HEVs based on driving pattern recognition is shown in Figure 8. Firstly,
the characteristic parameters of different typical driving cycles are picked up, which are used for the
clustering analysis. The control parameters of each class of the driving cycle are optimized offline
based on multiple driving cycles as mentioned in Section 3. The driving pattern recognition has been
realized using the Euclid approach degree. At last, the dynamic energy management control strategy for
HEVs based on driving pattern recognition is achieved for vehicle real-time control.

Figure 8. Diagram of EMS based on driving pattern recognition.
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4.1. Selection and Classification of Characteristic Parameters for Typical Patterns

In view of the variety and complexity of vehicle driving patterns, it is significant to take all
types of driving patterns into account. However, this is impractical due to the massive workload
and limitation of calculation ability. Therefore, twenty-three typical driving cycles from ADVISOR
are used as the research object. These driving cycles shown in Table 8 are Mode 1: JPN1015; Mode 2:
ARTERIAL; Mode 3: CBD14; Mode 4: CBDTRUCK; Mode 5:COMMUTER; Mode 6: ECE_EUDC;
Mode 7: HL07; Mode 8: LA92; Mode 9: MANHATTAN; Mode 10: NYCC; Mode 11: NYCCOMP;
Mode 12: NYCTRUCK; Mode 13: NurembergR36; Mode 14: REP05; Mode 15: SC03; Mode 16: UDDS;
Mode 17: UDDSHDV; Mode 18: US06_HWY; Mode 19: WVUCITY; Mode 20: WVUSUB; Mode 21:
ARB02; Mode 22: ECE; Mode 23: IM240.

Table 8. Related characteristic parameters of twenty-three typical cycles.

Mode vmax vavg amax dmax aavg davg ri

1 69.97 22.68 0.79 0.83 0.57 0.65 0.32
2 64.37 39.70 1.07 2.01 0.60 1.79 0.22
3 32.19 20.42 0.98 2.06 0.81 1.79 0.214
4 32.19 14.85 0.36 0.62 0.29 0.56 0.187
5 88.51 70.28 1.03 2.01 0.28 1.89 0.122
6 119.99 32.11 1.05 1.39 0.54 0.79 0.277
7 128.75 85.75 3.58 2.55 1.29 0.80 0.097
8 108.15 39.61 3.08 3.93 0.67 0.75 0.163
9 40.72 10.98 2.06 2.50 0.54 0.67 0.362
10 44.58 11.41 2.68 2.64 0.62 0.61 0.351
11 57.94 14.10 4.11 3.88 0.48 0.54 0.331
12 54.72 12.15 1.96 1.87 0.55 0.65 0.52
13 53.70 14.34 1.88 2.11 0.58 0.55 0.31
14 129.23 82.88 3.79 3.19 0.44 0.50 0.034
15 88.19 34.50 2.28 2.73 0.50 0.60 0.195
16 91.25 31.51 1.48 1.48 0.51 0.58 0.189
17 93.34 30.32 1.96 2.07 0.48 0.58 0.333
18 129.23 97.91 3.08 3.08 0.34 0.41 0.033
19 57.65 13.58 1.14 3.24 0.30 0.39 0.303
20 72.10 25.86 1.30 2.16 0.33 0.42 0.252
21 129.20 70.03 3.53 3.62 0.66 0.70 0.075
22 49.99 18.26 1.06 0.83 0.64 0.74 0.33
23 91.23 47.07 1.47 1.56 0.44 0.68 0.05

There have been some works in the literature about the selection of characteristic parameters
for typical cycles [20–24]. Based on the relative importance of each parameter in driving pattern
recognition, seven parameters are chosen as the characteristic parameters of driving pattern recognition
in this paper. They are the maximum vehicle speed vmax, average vehicle speed vavg, maximum
acceleration amax, maximum deceleration dmax, average acceleration aavg, average deceleration davg

and engine idle time ratio ri, respectively. The clustering analysis is used for classification of the typical
cycles. The distance between each two driving patterns of the twenty-three typical ones is calculated
by the characteristic parameters with Euclidean distance, as expressed by Equation (5):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖yi − yj‖ =
√(

yi1 − yj1
)2

+
(
yi2 − yj2

)2
+ ... +

(
yim − yjm

)2

=

√
10
∑

m=1

(
yim − yjm

)2

i �= j∩i, j ∈ Z+∩i, j ∈ [1, 23]

(5)
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Before the calculation, the feature matrix of driving cycles and under-recognition cycles should be
dealt with by min–max Normalization due to the inconsistency between the physical dimension and
quantity of feature vectors of driving cycles, as described in Equation (6):

y′i =
yi − ymin

ymax − ymin
(6)

where yi is the original variable, ymin is the minimum value of unscaled variable and ymax is the
maximum value of an unscaled variable. The feature vectors are scaled to the closed interval [0, 1].

The clustering-feature tree shown in Figure 9 is obtained through Statistical Product and Service
Solutions (SPSS) software (20.0, IBM SPSS, New York, NY, USA). As the clustering scale of samples
decreases and the sample space is more subtly divided, the driving cycles of each category become
higher. In this paper, in order to ensure the similarity of each driving cycle and the accuracy of the
classes, the twenty-three types of typical driving patterns are divided into five classes when the scale
of clustering distance is 0.057 (the first class includes 6, 9–13, 19; the second class includes 1, 8, 17, 20,
22; the third class includes 4, 21, 23; the forth class includes 3, 7, 14; the five class includes 5 and 18).

Figure 9. Clustering-feature tree of twenty-three typical patterns.

4.2. Recognition and Parameter Optimization of Driving Patterns

Although the actual vehicle driving patterns are random and uncertain, one of the twenty-three
typical patterns can be selected to represent the actual driving pattern with the maximum similarity as
the recognition result, and this is the basic idea of the dynamic control strategy for HEVs.

The driving pattern recognition is achieved using the Euclid approach degree. The representative
feature vector An (n = 1, 2, . . . , 23) stands for the selected twenty-three reference driving patterns,
and each vector contains seven characteristic parameters of the reference driving patterns shown in
Table 8. The vector B also contains seven characteristic parameters of the driving patterns. The distance
between the feature vector of actual driving pattern and reference feature vectors is calculated by the
Euclidean distance σ (An, B):

σ(An, B) = 1 − 1√
m

(
m

∑
k=1

(An(k)− B(k))2

) 1
2

(7)

where m is the number of the characteristic parameters (m = 7). In order to eliminate the deviation
caused by different parameter units, parameters are standardized using the method of Maximum
magnitude of 1.
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The driving pattern showing the maximum similarity is recognized as the reference driving cycle
as expressed:

σ(B, Ai) = max{σ(B, A1),σ(B, A2), ...,σ(B, An)} (8)

As shown in Equation (8), the result of driving pattern recognition means that the historical actual
driving pattern B belongs to the driving pattern Ai. In order to verify the effectiveness of driving
pattern recognition, a comprehensive test driving cycle is established to represent the actual driving
pattern. The comprehensive test driving cycle consists of five different types of typical cycles including
NEDC, LA92, HWFET, UDDS and US06, as shown in Figure 10. An algorithm for real-time driving
pattern recognition is proposed based on the assumption that the driving pattern will not change
suddenly within a short period of time. This real-time driving pattern recognition algorithm can
predict future driving cycles through the past sampling data analysis within a short time window.
The time window for the information extraction of characteristic parameters is 120 s based on the
research as presented in [31,32]. The recognition of driving patterns for each time window is realized
using the Euclid approach degree. The result of driving pattern recognition under the comprehensive test
driving cycles is shown in Figure 11.

Figure 10. Time-speed relationship of the comprehensive test cycle conditions.

Figure 11. Result of driving pattern recognition under the comprehensive test cycle conditions.

4.3. Optimization of Control Parameters Based on Driving Pattern Recognition

In this section, the control parameters (Flow, Fup, Foff and V1) of each class have been optimized
based on multiple driving cycles, which has been introduced in Section 3 in detail. The optimization
results of control parameters of each class are shown in Table 9.
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Table 9. Optimization results of control parameters.

Classes Flow Fhigh Foff Vl

First 0.50 0.80 0.25 23.66
Second 0.48 0.90 0.23 35.06
Third 0.63 0.83 0.32 11.77
Forth 0.59 0.917 0.33 23.64
Fifth 0.68 0.80 0.40 15.98

In order to verify the effectiveness of the control parameter optimization, the driving cycles of
the first class is taken as an example. The seven typical driving cycles of the first class are set as a
comprehensive driving cycle (ECE_EUDC + MANHATTAN + NYCC + NYCCOMP + NYCTRUCK +
NurembergR36 + WVUCITY) as shown in Figure 12. The variation of battery SOC (ΔSOC) in the first
class of driving cycles is shown in Figure 13 and Table 10, where the control parameters are effective in
controlling the variation of battery SOC.

Figure 12. Time-speed relationship in the first class of driving cycles.

Figure 13. Variation of SOC in the first class of driving cycles.

Table 10. Variation of state of charge.

Mode ECE_EUDC MAN-HATTAN NYCC NYC-COMP

ΔSOC −0.007 −0.017 0.01 0.009

Mode NYC-TRUCK NuremberR36 WVU-CITY Comprehensive

ΔSOC 0.02 0.006 −0.015 0.005

5. Simulation

The proposed dynamic control strategy for HEVs based on parameter optimization at multiple
driving cycles and driving pattern recognition has been simulated using the Matlab/Simulink platform
under the comprehensive driving cycle (NEDC + LA92 + HWFET + UDDS + US06).
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As shown in Figure 14, the variation of battery SOC stays within 0.01 under comprehensive
driving cycle conditions with the proposed EMS based on driving pattern recognition. Meanwhile,
the battery SOC always fluctuates around the initial SOC during the whole process, which enables
the battery maintain to work in the high efficiency region. Compared with the EMS without driving
pattern recognition, the battery SOC variation is more reasonable.

Figure 14. Variation of SOC under comprehensive driving cycle conditions.

Besides, the engine output power with the proposed EMS is generally larger than that with the
EMS without driving pattern recognition, as shown in Figure 15. Therefore, the load of the engine is
improved, which means that the engine will operate in higher efficient regions. The motor output
torque at the comprehensive driving cycle is shown in Figure 16. The proposed EMS based on driving
pattern recognition can adjust the control parameters to drive the vehicle in pure electric driving mode
with low speed and torque, which prevents the engine from working in the low efficiency region and
reduces fuel consumption. The reduction of the engine fuel consumption is shown in Figure 17.

Figure 15. Engine power under the comprehensive driving cycle. (a) Engine power based on driving
pattern recognition; (b) engine power based on multiple driving cycle optimization.
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Figure 16. Motor torque under comprehensive driving cycle. (a) Motor power based on driving pattern
recognition; (b) motor power based on multiple driving cycle optimization.

Figure 17. Fuel consumption under comprehensive driving cycle conditions.

The comparison results of fuel economy among control strategies of rule-based, multiple driving
cycles optimization and driving pattern recognition are shown in Table 11 where Q100 is the fuel
consumption of 100 km. For fuel economy comparison, SOC correction is very necessary. Therefore
the SOC correction method in the SAE standards [33] is applied to compensate for the SOC difference.
Compared with the rule-based control strategy, the fuel consumptions of energy management strategies
based on multiple driving cycle optimization and driving pattern recognition are improved by 4.36%
and 11.68%, respectively. Meanwhile the variation of battery SOC becomes smaller, which effectively
improves the economic performance of the HEV vehicle.
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Table 11. Fuel economy comparison results.

Factor
Rule-Based

Control Strategy
Multiple Driving

Cycles Optimization
Driving Pattern

Recognition

Fuel Consumption (L) 3.23 3.10 2.96
Corrected Fuel Consumption (L) 3.43 3.28 3.03

Q100 (L/100 km) 4.75 4.55 4.36
Corrected Q100 (L/100 km) 5.05 4.83 4.46

Fuel Saving - 4.24% 8.24%
Fuel Saving (SOC corrected) - 4.36% 11.68%

ΔSOC −0.28 −0.250 −0.098

6. Road Test on the Prototype Vehicle

The proposed dynamic control strategy for HEVs based on driving pattern recognition has been
experimentally validated on a prototype HEV. The specifications of the prototype vehicle are shown in
Table 12. The vehicle control software is developed on the Development to Production (D2P, DEV+PROD,
Germany E.ON, Essen, Germany) and Matlab/Simulink platforms. The experiment is performed
under the following conditions:

(1) Since the prototype HEV can only be tested on campus, for the sake of safety, the road test is
only carried out at the low speed. Although the campus condition is only classified as an urban
driving cycle, it is still valid to analyze the effectiveness of the proposed optimization method of
HEV control strategy.

(2) The required torque during the whole test is too small compared with the maximum capacity
of the HEV power system. To ensure that the vehicle operates in each mode without loss of
generality, the parameters Foff = 0.20, Flow = 0.44, Fup = 0.64, Vl = 15 are designed as the optimal
control strategy parameters according to the actual test conditions.

Table 12. Specifications of the prototype vehicle.

Main Parameter Value

Curb weight (kg) 1350
Rated payload (kg) 1875
Effective radius (m) 0.295

Frontal area (m2) 2.28
Maximum engine torque (Nm) 137

Nominal motor power (kW) 20
Rated voltage (V) 288

The results of the road test have been presented in Figure 18 where the vehicle speed ranges
from 0 to 45 km/h. The operation modes include the electric driving mode, driving & charging mode,
engine driving mode and hybrid driving mode. The prototype HEV operates at electric driving mode
during the starting process, and the small required torque prevents the engine from working in the
low efficiency region. The engine driving mode is mostly activated during cruising (30–35 km/h).

The effectiveness of the control strategy proposed in this paper is well verified, as seen in
Figure 18. The engine can operate in the designed operating region, which effectively improves
the system efficiency. Meanwhile, the battery SOC fluctuates smoothly and the magnitude of SOC
variation is only 0.005, which well meets the requirements to keep the battery SOC as constant as
possible. The engine is able to work in tandem with the motor, so as to improve the vehicle economy.

In order to show the effectiveness of the proposed algorithm better, the comparison results of
road tests among different control strategies have shown in Table 13. However, during the different
road rests, the vehicle can’t be ensured to operate under the same working conditions among the
several road tests with different control strategies. Therefore, these comparison results are roughly
taken as a reference.
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Figure 18. Road test results under the comprehensive driving cycle. (a) Time-speed curve of the road
test; (b) variation of battery SOC; (c) engine operating points during testing; and (d) engine and motor
toque distribution during testing.
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Table 13. Road test comparison results.

Factor
Rule-Based

Control Strategy
Multiple Driving

Cycles Optimization
Driving Pattern

Recognition

Total Mileage (km) 21.67 22.23 21.24
Fuel Consumption (L) 1.38 1.34 1.25

Corrected Fuel Consumption (L) 1.45 1.40 1.27
Corrected Q100 (L/100 km) 6.69 6.30 5.98

7. Conclusions

(1) A new methodology for parameter optimization under multiple driving cycles using SA-PSO
algorithm is proposed to the simultaneous optimization for parameters of power system and
control strategy. It’s beneficial to achieve the best fuel consumption without impairing the
dynamic performance.

(2) The EMS of HEVs based on driving pattern recognition, which optimizes the control parameters
in real-time, is proposed after the parameter optimization under multiple driving cycle conditions.
The proposed dynamic control strategy for HEVs based on parameter optimization under multiple
driving cycles and driving pattern recognition has been simulated using Matlab/Simulink
platform under the comprehensive driving cycle. Basically, the problem that the optimization
based on a certain driving cycle cannot keep the battery SOC balance in other cycles has been
solved in this paper.

(3) The simulation results show that compared with the original EMS, the former strategy reduces the
fuel consumption by 4.36% and the latter one reduces the fuel consumption by 11.68%. The results
validate the fact that the fuel consumption of EMS based on driving pattern recognition is greatly
improved compared with that of the rule-based control strategy and more effective than that of
multiple driving cycles. Meanwhile, the variation of battery SOC with the EMS based on driving
pattern recognition is more reasonable than that of the optimization based on multiple driving
cycles. It will serve as a guideline for calibrating the key parameters for road test.

(4) The proposed dynamic control strategy for HEVs based on driving pattern recognition is validated
on a prototype HEV by a road test. The test results show that the EMS developed in this paper
can effectively distribute the engine torque and motor torque, and significantly improve the fuel
consumption of the vehicle. Furthermore, the battery SOC fluctuates smoothly and the battery
SOC balance is well maintained during the test process. It will serve a reference role in dynamic
control strategy for HEVs in real world.
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Abstract: This paper presents an improved battery parameter estimation method based on typical
operating scenarios in hybrid electric vehicles and pure electric vehicles. Compared with the
conventional estimation methods, the proposed method takes both the constant-current charging and
the dynamic driving scenarios into account, and two separate sets of model parameters are estimated
through different parts of the pulse-rest test. The model parameters for the constant-charging scenario
are estimated from the data in the pulse-charging periods, while the model parameters for the dynamic
driving scenario are estimated from the data in the rest periods, and the length of the fitted dataset is
determined by the spectrum analysis of the load current. In addition, the unsaturated phenomenon
caused by the long-term resistor-capacitor (RC) network is analyzed, and the initial voltage expressions
of the RC networks in the fitting functions are improved to ensure a higher model fidelity. Simulation
and experiment results validated the feasibility of the developed estimation method.

Keywords: lithium-ion battery; operating scenario; equivalent circuit modeling; parameter estimation

1. Introduction

Lithium-ion batteries have been widely used in the energy storage systems of hybrid electric
vehicles (HEVs) and pure electric vehicles (EVs) because of their low self-discharge rate, high energy
and power densities. To ensure the safe and reliable operation of lithium-ion batteries, the battery
management system (BMS) is of significant importance. The main task of a BMS includes monitoring
of critical states, fault diagnosis and thermal management [1–7].

1.1. Review of the Literature

The performance of a BMS is highly dependent on the accurate description of battery characteristics.
Hence, a proper battery model, which can not only correctly characterize the electrochemical
reaction processes, but also be easily implemented in embedded microcontrollers, is necessary for
a high-performance BMS. There are two common forms of battery models available in the literature: the
electrochemical model and the equivalent circuit model (ECM). The electrochemical model expresses
the fundamental electrochemical reactions by complex nonlinear partial differential algebraic equations
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(PDAEs) [8]. It can accurately capture the characteristics of the battery, but requires extensive
computational power to obtain the solutions of the equations. Hence, such models are suitable for the
battery design rather than the system level simulation. In contrast, the ECM abstracts away the detailed
internal electrochemical reactions and characterizes them solely by simple electrical components; thus, it
is ideal for circuit simulation software and implementation in embedded microcontrollers. The accuracy
of the ECM is highly dependent on the model structure and model parameters. Theoretically, a higher
order ECM can represent a wider bandwidth of the battery application and can generate more accurate
voltage estimation results. However, the high order ECM can not only increase the computational
burden, but also reduce the numerical stability for the further battery states’ estimation [9,10]. Hence,
considering a tradeoff among the model fidelity, the computational burden and the numerical stability,
the second order ECM is employed in this paper [11–18]. The common structure of the second order
ECM is illustrated in the top subfigure of Figure 1, where the open circuit voltage (OCV), which is
a function of state of charge (SoC), stands for the open circuit voltage, Rin is the internal resistance,
which represents the conduction and charge transfer processes [19–21], and two resistor-capacitor (RC)
networks approximately describe the diffusion process. Among them, the short-term RC network
models the fast dynamics diffusion process (Part A in the bottom subfigure of Figure 1), and the
long-term RC network represents the slow dynamics diffusion process (Part B in the bottom subfigure
of Figure 1). The above model parameters can be identified either through the time-domain or the
frequency-domain parameter extraction experiments. For the time-domain parameter estimation
methods, model parameters are usually identified through fitting the voltage response from the
parameter extraction experiment with the exponential-based functions. The electrochemical impedance
spectroscopy (EIS) test is the commonly-used frequency-domain parameter extraction experiment.
Compared to the time-domain test process, one limitation of the EIS test is that the amplitude of
the current excitation is so low that the battery can be considered as equalized during the whole
test process, which seldom happens in HEV/EV applications. In order to overcome the above
drawback, references [22–24] propose superimposing the direct current (DC) offset over the EIS
signals to determine the current dependency of impedance parameters. However, since significant
time is required for the EIS test, the battery SoC changes significantly during the test procedure if the
amplitude of the superimposed current is improper. This can reduce the parameter estimation accuracy
and make this method practically not applicable at moderate and high current rates [25,26]. Based on
the aforementioned analysis, the second order ECM with parameters estimated by the time-domain
analysis is discussed in this paper.

Figure 1. The second order equivalent circuit model (ECM). OCV, open circuit voltage.

322

Bo
ok
s

M
DP
I



Energies 2017, 10, 5

Generally speaking, batteries usually operate in two scenarios in automotive applications:
The constant-current (CC) charging scenario and the dynamic driving scenario [27]. Usually, the
motions of lithium ions under the continuous external excitation (representing the CC charging
scenario) and the discontinuous external excitation (representing the dynamic driving scenario) show
different characteristics, and this difference is related to the diffusivity of ions. In other words,
the model parameters, especially the RC network parameters, show diverse values under different
operating scenarios [21,28]. Therefore, battery parameters should be identified separately according to
the actual operating scenarios. Abundant research work has been conducted to seek the accurate ECM
for the specific operating scenario. For the charging scenario, a universal model based on a simple
mathematical equation with constant parameters is proposed [29–31]. The mathematical equations
include one polynomial component and one or two exponential functions, and relevant parameters
can be obtained by fitting collected charging profiles. Verification results in related literature show that
the overall model output profiles match well with the experimental data, but there still exists obvious
estimation errors during certain periods (at the beginning of the plateau region and the last charging
region). This is mainly caused by the constant parameters during the whole charging process since
the actual model parameters, such as time constants, may vary greatly at different SoC regions [32].
The works in [32–34] estimate the model parameters through the data in the rest periods of the
pulse-rest test at different SoC points, and the estimated model parameters can be shown as functions
of SoC. However, the charging concentration process under continuous excitation is different from the
charging recovery process under the rest period [19,35]; thus, the estimated model parameters may not
accurately represent the charging characteristics of the battery. For the dynamic driving scenario, many
modeling approaches have been reported on the basis of the pulse discharge analysis. In [36–38], model
parameters are obtained by simple algebraic operations. This is straightforward, but large estimation
errors exist. A more accurate method is to fit the voltage response of the whole rest period with an
exponential function [39–41]. The limitation of this method is its poor dynamic performance. In order
to improve the battery model accuracy, Hu and Wang in [42] propose a two time-scale identification
algorithm to separate the identifications of slow and fast battery dynamics. This method shows better
frequency response matching without increasing computational complexity. Xiong in [17] uses the bias
correction method to ensure the battery model prediction performance. This approach shows excellent
performance and high accuracy against uncertain operating scenarios and battery packs. Instead of the
conventional pulse-rest test, [43,44] propose two types of application-oriented parameter extraction
tests, leading to a fast dynamics battery model with high fidelity. One major limitation of this kind of
method is that the parameter extraction test corresponds to a specific operating scenario. If the actual
load profiles show obviously different bandwidths under different working conditions, the parameter
extraction test should be re-implemented. One solution to overcome this drawback is to conduct as
many parameter extraction tests as possible to cover the typical load characteristics, but this requires
an extensive amount of time and effort.

1.2. Contributions of This Paper

Based on the battery parameter estimation methods discussed above, it can be concluded that
seldom does work in the previous literature discuss a battery model considering both the CC charging
and dynamic driving scenarios. Hence, the focus of this paper is to propose a battery parameter
estimation method, which is applicable to common operating scenarios in HEV/EV applications.
The main contributions are: (1) both the constant-current charging and the dynamic driving scenarios
are taken into consideration, and two separate sets of model parameters are estimated through different
parts of the pulse-rest test; (2) the model parameters for the constant-current charging scenario are
estimated from the data in the pulse-charging periods; (3) the model parameters for the dynamic
driving scenario are estimated from the data in the rest periods, and the length of the fitted dataset
is determined by the spectrum analysis of the load current; (4) the unsaturated phenomenon caused
by the long-term RC network is analyzed, and the initial voltage expressions of the RC networks
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in the fitting functions are improved to ensure a higher model fidelity; (5) both the simulation and
experiment results agree with the analysis and demonstrate the improvement of the proposed battery
parameter estimation method over the existing ones.

2. Parameter Extraction Procedure

2.1. Parameter Extraction Test Design

It can be seen from Figure 1 that the second order ECM contains one OCV-SoC relationship
and five impedance parameters (Rin, Rshort, Cshort, Rlong and Clong), which need to be estimated.
Theoretically, all of the impedance parameters mentioned above should be multivariable functions of
SoC, the C-rate of the load current (C is the amplitude of the current with which the battery can be
fully discharged in 1 h), temperature and cycle numbers [39,45]. These functions not only make the
parameter extraction process complex and time consuming, but also increase the computational burden
of the BMS. Hence, within certain error tolerance, some relationships can be simplified or ignored.
Usually, aging periods are generally in the range of months to years. While for the system-level
simulations of automotive applications, the time periods of interest are typically in the range of
seconds to hours or days in special cases [43,45]. Hence, the long-term aging effect is usually ignored
in the parameter estimation process and handled separately in most cases [39,46].

In this paper, all of the model parameters are estimated through the discharging/charging
pulse-rest test at room temperature (22 ◦C–25 ◦C). A lithium-ion polymer battery with nickel-
manganese-cobalt-based cathode and graphite-based anode is under test. Its specifications are given
in Table 1, and the detailed experimental steps are described as follows.

Table 1. Specification of the tested battery.

Charge Capacity 40.99 Ah

Discharge capacity 40.89 Ah
Nominal voltage 3.7 V

Charge cutoff voltage 4.2 V
Discharge cutoff voltage 2.7 V

The discharging pulse-rest test starts with a fully-charged battery. In each cycle of the test, the
battery is discharged at a 2% SoC step with C/2 constant current, then followed by a rest period.
This cycle is repeated until the battery is fully discharged. Data points (including current, voltage,
charging capacity and discharging capacity) are collected with the sampling frequency of 1 Hz.
The relevant voltage and current profiles of the discharging pulse-rest test during the 66%–64% SoC
interval are plotted in the bottom subfigure of Figure 1. The charging pulse-rest test is conducted
similarly, that is it begins with a fully-discharged battery, then charged at a 2% SoC step with C/2
constant current and followed by a rest period. In order to eliminate the polarization voltage, the
OCV values are extracted at the end of each rest period. Too short a rest time leads to a large OCV
estimation error, whereas too long a rest time makes the whole test time consuming. It has been shown
previously that for the lithium-ion polymer batteries, electrochemical reactions are negligible after a
2-h rest period [47,48]. Therefore, the rest time in this paper is predetermined as 2 h.

2.2. Parameter Estimation Algorithm

The electrical behavior of the ECM is expressed as the following state space formalism:

[
dVRC,short/dt
dVRC,long/dt

]
=

[
−1/RshortCshort 0

0 −1/RlongClong

][
VRC,short
VRC,long

]
+

[
1/Cshort
1/Clong

]
I (1)

Vt = OCV(SoC) + IRin + VRC,short + VRC,long (2)
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where Equation (1) is the state equation and Equation (2) is the output equation, VRC,short and VRC,long
represent the voltages across the short-term and the long-term RC networks, respectively, OCV(SoC) is
an eighth-order polynomial equation as a function of SoC, Vt is the battery terminal voltage and the
positive current I represents charging. Rin represents the internal resistance; Rshort and Rlong denote the
diffusion resistances; and Cshort and Clong represent the diffusion capacitances. Among them, Rin can
be directly obtained from each pulse-rest cycle through Equation (3); the corresponding four variables
(V1, V2, I1 and I2) are marked in the bottom subfigure of Figure 1, and the variation of identified Rin

with SoC is shown in Figure 2. SoC can be calculated through Equation (4), in which Cap denotes the
capacity of the battery in Ah.

Rin =
V2 − V1

I2 − I1
(3)

SoC = SoC(0) +
1

3600Cap

∫ t

0
I(τ)dτ (4)

Figure 2. Rin variation with different state of charge (SoC).

For the CC operating scenario (I �= 0), the analytical solutions of Equation (1) are derived as:
⎧⎨
⎩ VRC,short(t) = VRC,short(0)e

− t
τshort + IRshort(1 − e−

t
τshort )

VRC,long(t) = VRC,long(0)e
− t

τlong + IRlong(1 − e
− t

τlong )
(5)

where VRC,short(0) and VRC,long(0) are the initial voltages of corresponding RC networks and
τshort = RshortCshort, τlong = RlongClong, which represent the short-term and the long-term time
constants, respectively.

Substituting Equation (5) into Equation (2), the output equation is rewritten as:

Vt(t) = OCV(SoC) + IRin + VRC,short(0)e
− t

τshort + VRC,short(0)e
− t

τlong + IRshort(1 − e−
t

τshort ) + IRlong(1 − e
− t

τlong ) (6)

During the rest period, where there is no current excitation (I = 0), Equation (6) can be simplified to:

Vt(t) = OCV(SoC) + VRC,short(0)e
− t

τshort + VRC,long(0)e
− t

τlong (7)

With the knowledge of Rin and charging/discharging OCV-SoC relationships, RC network
parameters (Rshort, Cshort, Rlong and Clong) can be obtained through fitting the experimental data
with relevant exponential functions, as

⎧⎨
⎩ y = IRshort(1 − e−

t
τshort ) + IRlong(1 − e

− t
τlong ) I �= 0

y = VRC,short(0)e
− t

τshort + VRC,long(0)e
− t

τlong I = 0
(8)
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where y = Vt − OCV(SoC) − IRin. Since there only exists 2% SoC variation during each
pulse-charging/discharging period, it is reasonable to make an assumption that the RC network
parameters keep constant during this period. In addition, considering that the battery has converged
to the steady state after a 2-h rest, VRC,short(0) and VRC,long(0) are set as zero at the beginning of the
pulse-charging/discharging period.

Based on the above analysis, the RC network parameters can be estimated through fitting the
experimental dataset with Equation (8). The cost function of the curve fitting method J is to minimize
the sum of squared errors between the estimation results and the measured data, subjected to the
following constraints: ⎧⎨

⎩ J = min
r,τ

n
∑

k=1
[Vm

t (tk)− Ve
t (r, τ, tk)]

2

s. t. Rshort, τshort, Rlong, τlong > 0
(9)

where tk is the input time sequence, n is the length of the fitted experimental dataset, r = [Rshort, Rlong],
τ = [τshort, τlong], Ve

t is the model estimated voltage and Vm
t is the voltage measurements from the

pulse-rest test.

3. RC Network Parameters Estimation

Based on the Introduction in Section 1, the RC network parameters show diverse values under
different operating scenarios. In HEV/EV applications, batteries usually work in two typical scenarios:
the CC charging scenario and the dynamic driving scenario. In the CC charging scenario, continuous
external charging currents are applied to the batteries, and the transport of ions is mainly driven by the
electric field. While for the dynamical driving scenario, especially for the urban driving condition, the
load current has the characteristics of discontinuous amplitude values and a wide-spread frequency
spectrum. In this case, besides the electric field, the gradient in concentration is also largely responsible
for the transport of ions within batteries [45]. Therefore, the RC network parameters employed in
different operating scenarios should be identified through different identification approaches.

3.1. RC Network Parameters for the CC Charging Scenario

The polarization voltage (VP) is adopted to illustrate the variation of RC network parameters under
the CC excitation. According to the aforementioned battery output equation, VP can be obtained as:

VP = VRC,short + VRC,long = Vt − OCV(SoC)− IRin (10)

The VP-SoC profile during the C/2 rate CC charging process is shown in Figure 3. Since in the
HEV/EV application, batteries seldom work in the extremely low or high SoCs, the voltage profile
from 10%–90% SoC is covered. It can be observed from Figure 3 that the polarization voltage increases
dramatically in Stage I (10%–18% SoC), then it declines slowly and shows a concave shape curve
in Stage II, with the local minimum value at around 30% SoC. During Stage III (40%–70% SoC),
the polarization voltage becomes relatively stable. After that (70%–90% SoC), the polarization voltage
rises sharply.

Figure 3. VP versus SoC under constant-current (CC) charging.
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The variation of the polarization voltage during the above SoC range is closely related to the
internal electrochemical reaction process during charging. In the initial SoC region, a relatively
large amount of energy is needed to form the nucleation on the surfaces of the electrodes; thus, the
polarization voltage increases quickly. Once the nuclei are formed, the following lithium ions’ removal
process needs less energy. This explains the concave shape voltage curve occurring from 18% SoC
to 40% SoC. While in the last charging stage, the lithium-ion concentration increases in the negative
materials. Hence, a large amount of energy is needed to insert the lithium ions, which leads to the
obvious growth of the polarization voltage in the high SoC region. The detailed explanation for the
electrochemical reaction mechanism occurring during the CC charging process can be found in [28,32].

As mentioned in Section 2, the model parameters are estimated through fitting the measured data
either from the pulse-charging period or the rest period. In order to select the proper experimental
datasets that can better describe the charging characteristic of the battery, the profiles of the polarization
voltage during the pulse-charging and the following rest periods, which are also calculated from
Equation (10), are compared in Figure 4. Figure 4a shows the polarization voltage under the
pulse-charging excitation, and Figure 4b plots the absolute values of the polarization voltage during
the following rest. It can be seen from both figures that the shape of the polarization voltage curve
strongly depends on the SoC. In Figure 4a, it is obvious that the final value of the polarization voltage
obtained from 26%–28% SoC is the lowest, which is similar to point C in Figure 3. In addition, the final
values of the voltage curves obtained from 18%–20% SoC and 50%–52% SoC are almost coincident
with each other, which approximately matches the corresponding parts (point B and point D) in
Figure 3. Meanwhile, the relations among the final voltage values collected from 14%–16% SoC,
60%–62% SoC and 80%–82% SoC are also identical to the relations among point A, point E and point
F in Figure 3, respectively. Hence, it can be summarized from Figure 4a that the final values of the
polarization voltage obtained from different pulse-charging periods are approximately consistent
with the corresponding points in Figure 3. While in Figure 4b, the variation trend of the predicted
stable voltage values differs greatly compared to the results in Figure 4a. This is because in the
pulse-charging period, the ion migration is driven by external electric potential. While in the rest
period, the transport of ions is mainly dominated by diffusion, owing to the concentration gradient.
The detailed explanation of the electrochemical reactions occurring under different load current has
been discussed in [21,45].

Figure 4. (a) The profiles of VP at different SoC intervals during the pulse-charging period; (b) the
profiles of |VP| at different SoC points during the rest period.

Consequently, it can be concluded that the voltage response during the pulse-charging period can
better describe the characteristic of the CC charging process because of the similar current excitation.
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3.2. RC Network Parameters for the Dynamic Driving Scenario

3.2.1. Typical Dynamic Driving Scenarios

For the dynamic driving scenario, especially for the urban driving scenario, vehicles accelerate
and brake frequently, which cause the long lasting load current to seldom exist. There are two typical
kinds of standard urban driving cycles, namely the urban dynamometer driving schedule (UDDS)
and the worldwide harmonized light vehicles test procedure (WLTP), which are the American and
European certification cycles, respectively. The load current profiles and the load current amplitude
distributions of the two driving cycles are plotted in Figure 5. It can be observed from Figure 5a,b that
both of the dynamic current profiles vary frequently over the test span. Meanwhile, from Figure 5c,d,
it can be concluded that: (1) the discharging current accounts for a much larger portion, compared
to the charging current during the regenerative process; (2) among the load currents, the low C-rate
discharging current, particularly around zero-value amplitudes, accounts for a larger portion in both
tests. Hence, the voltage response during the rest period can be employed to estimate the RC network
parameters for the dynamic driving scenario.

Figure 5. (a) The load current profile of the urban dynamometer driving schedule (UDDS) test; (b) the
load current profile of the worldwide harmonized light vehicles test procedure (WLTP) test; (c) the
load current amplitude distribution of the UDDS test; (d) the load current amplitude distribution of
the WLTP test.

3.2.2. Determination of the Length of the Fitted Experimental Dataset

The diffusion process, which is caused by the gradient in concentration, plays a major role in
the low C-rate load current and rest cases. Since the electrochemical reactions occurring during
the diffusion process are very complex, these reactions can be accurately modeled as infinite
series-connected RC networks with a wide range of time constants (τ1, τ2, . . . , τj). Usually, the values
of time constants depend on the electrode thickness and the structure of the battery to a great extent,
and typical time constants are in the range of seconds to minutes [45]. The second order RC network
can only approximate the diffusion process by two parts: the fast dynamics part (the short-term RC
network with τshort) and the slow dynamics part (the long-term RC network with τlong).
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In general, the values of the two time constants are closely related to the length of the fitted
experimental data Δt. When only the initial segment of the voltage response is employed in parameter
estimation, such as Part A in the bottom subfigure of Figure 1, the voltages across the shorter-term
RC networks have a larger degree of variability, which means that the shorter-term RC networks
have a greater impact on the initial segment of the voltage response. This in turn leads to the smaller
estimated time constants and subsequently ignores the slower dynamics diffusion process. On the
contrary, after the initial phase of the rest period, such as Part B in the bottom subfigure of Figure 1,
the voltages across the shorter-term RC networks have converged to zero; thus, the voltage variation
caused by the shorter-term RC networks is negligible. Instead, the voltages across the longer term RC
networks make a remarkable contribution to the total voltage response. Subsequently, it can be inferred
that the measured data show a slower varying characteristic, which represent the slower dynamics
diffusion process and can be modeled by the RC networks with larger time constants. Hence, if the
whole voltage response of the long time rest period is adopted, data with slower varying values will
account for a large portion, which will lead to the relatively larger estimated time constants. However,
too large time constants will make the model output voltage severely lag behind the actual response
and result in a poor dynamic performance.

In order to further illustrate the above analysis, a third order RC network circuit is simulated in
MATLAB; two equivalent time constants (τ’short and τ’long) are estimated from the different value of Δt.
In the simulation, the resistances of the three RC networks are all set as 1 mΩ, and the time constants
are predetermined as τ1 = 40 s, τ2 = 200 s and τ3 = 2000 s (τ3 >> τ2> τ1). The applied excitation consists
of a 400-s pulse-discharging current and a 2-h rest period, and the amplitude of the current is 20 A.
Time constants estimated by different lengths of the voltage response are given in Table 2. It can be
clearly seen from Table 2 that both τ’short and τ’long decrease simultaneously with the reduced value of
Δt, which is consistent with the previous analysis. Hence, to obtain the appropriate values of the time
constants, Δt should be predetermined properly, which is illustrated in detail as follows.

Table 2. Equivalent time constant estimation results with different values of Δt.

Δt (s) 7200 3600 1800 1400 1200 1000 900 850 800

τ’short (s) 88.67 67.18 48.53 45.10 43.74 42.59 42.08 41.83 41.63
τ’long (s) 971.0 484.3 284.4 256.7 245.3 235.3 230.9 228.8 226.8

k 1 4.049 × 10−12 4.395 × 10−5 0.1448 0.8759 2.154 5.299 8.311 10.41 13.03
1 k represents the degree of resistor-capacitor (RC) voltage variability; the detailed expression can referred to in
Equation (13).

During Δt, the derivative of Equation (13) with respect to τi during the rest period is expressed as:

∣∣∣∣dVRC,i

dτi

∣∣∣∣ = Δt|VRC,i(0)|
τ2

i
e−

Δt
τi (11)

where VRC,i is the voltage across the i-th RC network, i ∈ {1,2,3, . . . , j}, VRC,i(0) is the corresponding
initial voltage, Ri is the resistance of the i-th RC network and τi is the time constant of the i-th RC
network, which is subject to τ1 < τ2 < . . . < τj.

After the pulse-discharging period, |VRC,i(0)| can be expressed as:

|VRC,i(0)| = |I|Ri(1 − e−
D
τi ) (12)

where D denotes the length of the pulse-discharging period.
For the two well-separated time constants τi and τi+m (τi+m ≥ 10τi and 0 < m <j − i), the voltage

across the shorter term RC network VRC,i has a larger degree of variability when satisfying the
following requirement:
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|dVRC,i/dτi|
|dVRC,i+m/dτi+m| = k (13)

where the constant k denotes the degree of variability, and it is subject to k > 1.
Substituting Equations (11) and (12) into Equation (13), the value of Δt can be derived as:

Δt = ln

⎡
⎣ Ri(1 − e−

D
τt )τ2

i+m

kRi+m(1 − e−
D

τt+m )τ2
i

⎤
⎦ τiτi+m
τi+m − τi

(14)

In Equation (14), since the values of Ri and Ri+m are nearly of the same order of
magnitude [39,43,46], the value of Ri/Ri+m can be neglected when compared to the value of τ2

i+m/τ2
i ;

thus, Δt can be simplified as:

Δt = ln

⎡
⎣ (1 − e−

D
τt )τ2

i+m

k(1 − e−
D

τt+m )τ2
i

⎤
⎦ τiτi+m
τi+m − τi

(15)

Equation (15) shows that k and τi should be determined before calculating Δt. In the
aforementioned simulation, the value of k for τ2 and τ3 can be obtained directly from Equation (13),
as shown in Table 2. This indicates that when k is larger than one, the estimated τ’short and τ’long are
closer to τ1 and τ2. This is because the voltage across the RC network with τ3 has a lower degree of
variability, compared to those with τ1 and τ2. It can be observed from Table 2 that τ’short and τ’long are
nearly stable when k is larger than 10. Hence, k is selected as 10 throughout the paper.

In order to set a proper τi in Equation (15), the discrete Fourier analysis of the load current is
employed to determine the lower bandwidth limitation of the ECM. The current spectrums of UDDS
and WLTP tests are shown in Figure 6. It can be observed in Figure 6a,b that there exists a large DC
component (Points A and C) due to the nonzero mean value of the two current profiles. Since the
characteristics of the DC component cannot be modeled by the RC circuit, they are neglected when
determining the length of the fitted dataset. The major low frequency components for the two profiles
are around 0.00146 Hz (point B) and 0.00138 Hz (the mean value from point D to point E), respectively.
Hence, the mean value of the long-term time constant is selected as 704 s. In order to exclude the
voltage variation caused by the larger time constants (larger than 10τi), the prior 1-h measured battery
voltage dataset is employed to estimate the RC parameters.

Figure 6. The spectral analysis of the load current: (a) the urban dynamometer driving schedule
(UDDS) test; (b) the worldwide harmonized light vehicles test procedure (WLTP) test.

3.2.3. Improved Fitting Function

From Equations (6) and (7), it can be observed that only the initial values VRC,short(0), VRC,long(0)
and time constants τshort, τlong can be obtained directly from the fitting results; thus, we should do the
further computations to obtain the resistances and capacitances of RC networks.
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In [37,39–41], two initial voltages across the RC networks are predetermined as IRshort and IRlong
respectively, from which the resistances of the RC networks can be derived under the knowledge of the
current value. In [49], the capacitances of the RC networks are firstly obtained from the initial voltage
values. Both of the above two methods have an assumption that the capacitors of the RC networks
have already converged to the steady state at the end of the pulse-discharging period.

Usually, in the parameter extraction test, in order to obtain as much data as possible at different
SoC intervals, the length of the pulse-charging/discharging period is usually set as several minutes
(resulting in 2% SoC variation in this paper), while the rest time is usually set as one or more hours
(such as 2 h in this paper) to get an accurate OCV value. For the short-term RC network, the voltage
can easily converge to the equilibrium state during the pulse-discharging process, which is shown in
Figure 7. In other words, there is no current flowing through the capacitor branch of the short-term RC
network during the last stage of the pulse-discharging period; thus, VRC,short(0) at the beginning of the
rest period can be expressed as:

VRC,short(0) = IRshort (16)

However, for the long-term RC network, the voltage varies continuously due to a relatively
large time constant, as illustrated in Figure 7. The voltage across the long-term RC network has not
reached the equilibrium state at the end of the pulse-discharging period; thus, there always exists a
significant proportion of the load current I(1− e−D/τlong) flowing through the corresponding capacitor.
Consequently, VRC,long(0) at the beginning of the rest period should be written as:

VRC,long(0) = IRlong(1 − e
− D

τlong ) (17)

where I is the value of the pulse-discharging current. Since the SoC variation in each test cycle
is set as 2% in this paper, it can be assumed that the model parameters keep constant during the
pulse-discharging period.

Figure 7. The voltage curve of RC networks during one cycle of the discharging pulse-rest test.

4. Experimental Results and Discussions

4.1. RC Network Parameter Estimation Results

Based on the aforementioned analysis in Section 3.1, for the case of the CC charging scenario,
the charging pulse-rest test is implemented firstly. The parameters are estimated from the voltage
response of the pulse-charging period, and the estimation results are shown in Figure 8. Figure 8a
plots two estimated time constants; it can be seen that the general order of the magnitude of the
short-term time constant is 10 s; it fluctuates greatly when the SoC changes, especially in the middle
SoC region, while the order of the magnitude of the long-term time constant is 100 s; it is relatively flat
during the whole SoC region. Figure 8b plots two estimated resistances; it can be observed that in the
middle SoC range, the short-term resistance has a larger value, which means that the voltage across the
short-term RC network accounts for more weight during this period. Hence, it can be observed from
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Figures 3 and 8b that the variation tendencies of the polarization voltage and the short-term resistance
are similar during the middle SoC range. At the end of the charging process, the short-term resistance
decreases and stabilizes around a very small value, while the long-term resistance increases almost
linearly after 60% SoC, leading to a similar variation tendency of the polarization voltage, compared to
the corresponding part in Figure 3. Hence, it can be concluded that the long-term diffusion process
plays a major role in this stage.

Figure 8. Parameter estimation results for the constant-current (CC) charging scenario: (a) time
constant; (b) resistance.

For the case of the dynamic driving scenario, the discharging pulse-rest test is implemented, and
the data from the rest periods are adopted in the parameter estimation. According to the analysis
in Section 3.2.2, different time constants will be obtained from the fitted experimental datasets in
different lengths. Firstly, in order to compare the best fit performances for the measured datasets in
different lengths, the measured battery terminal voltage response at 60% SoC during a 2-h rest period
is adopted, and the curve fitting results are shown in Figure 9. It can be observed from Figure 9a that
the fitting result of the whole measured voltage response shows a better performance during most of
the rest period, especially in the equilibrium state. Whereas for the performance of the first 200 s, the
fitting result through the prior 0.5-h measured voltage response yields less errors, which is illustrated
in Figure 9b. Parameter estimation results in Figure 10 show the time constants estimated from the
measured voltage dataset in different lengths, ranging from 30 min–2 h with a 30-min interval. It can
be observed that the time constants, both for the long term and the short term, increase simultaneously
when the length of the fitted dataset increases. In addition, by comparing Figure 10 with Figure 8a,
it can be concluded that the time constants applied in the CC charging scenario and the dynamic
driving scenario show different variation tendencies. Hence, it is essential to adopt different sets of
model parameters for different operating scenarios.

Figure 9. Curve fitting results of VP during the rest period of the discharging pulse-rest test at 60%
SoC: (a) the overall result; (b) a close look at the transient part at the beginning.
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Figure 10. Time constant estimation results with different lengths of the experimental dataset: (a) τshort;
(b) τlong.

After determining the length of the fitted experimental dataset, we can subsequently obtain the
resistances. Figure 11 shows the Rlong estimation results by the conventional fitting function and
the improved fitting function. It can be concluded from Figure 11 that the Rlong estimated by the
conventional fitting function is generally less than the one estimated by the improved fitting function,
because it neglects the (1 − e−D/τlong) part. In order to demonstrate the advantage of the improved
fitting function, data from the 20th cycle of the discharging pulse-rest test are adopted. In this cycle,
SoC changes from 62% to 60% during the pulse-discharging period, then keeps the value of 60% during
the following rest period. The current profile of the 20th discharging pulse-rest test is applied on the
ECM MATLAB/SIMULINK model as an excitation. Figure 12a,b shows the model output voltage
responses with two sets of estimated model parameters. It can be seen that the model with parameters
estimated by the proposed fitting function outputs better estimation results. The lower voltage error is
mainly contributed by the higher voltage drop across the long-term RC network, as plotted in Figure 12c.
In addition, the root mean square errors (RMSEs) between the measured voltage and the model output
voltage at different SoCs are given in Table 3. It can also be seen that the model parameters estimated by
the proposed fitting function show a better performance for a wide range of SoC.

Figure 11. Rlong estimation results.

Table 3. Comparison of RMSE at different SoC.

SoC (%) 10 20 30 40 50 60 70 80 90

RMSE (mV)
Conventional fitting function 1.802 1.714 2.167 1.540 1.268 2.803 2.416 1.558 1.444

Improved fitting function 0.7658 0.7582 0.9707 0.7643 0.5000 1.202 1.242 0.7104 0.6482
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Figure 12. Voltage curves of one cycle of the discharging pulse-rest test (62%–60%): (a) the overview;
(b) a close look; (c) the voltage across the long-term RC network.

4.2. Model Verification

In this paper, the CC charging test and the consecutive UDDS test, which respectively represent
two typical operating scenarios in HEV/EV applications, are conducted separately to verify the
effectiveness of the model. For the charging condition, the battery is charged from 10%–90% SoC.
The typical charging current in practice varies from C/8 to 2C [50], and a C/2 rate current is employed
in the charging test. The consecutive UDDS test starts from 90% SoC to 20% SoC, with a 10-min rest
period in between to simulate a short parking time. In the real application, a specific set of parameters
can be selected by the characteristics of the measured load current. For example, if the values of the
current are approximately constant over a certain time interval, parameters estimated from the data in
the pulse-charging periods are employed. On the other hand, parameters estimated from the data in
the rest periods are employed when the load current shows the characteristics of high dynamics over a
certain time interval.

Firstly, for the CC charging scenario, three model outputs and measured battery terminal voltage
curves are plotted in Figure 13, and the corresponding RMSEs are given in Table 4. It can be observed
that during the whole charging process, the model with parameters estimated from the data in
pulse-charging periods outputs a voltage curve matching the measured curve better because of
considering the continuous external electric driving forces. However, parameters estimated from the
data in the rest periods result in relatively larger errors, especially in the high SoC region. In addition,
during most part of the charging period, the model with parameters used in the dynamic driving
scenarios outputs a voltage higher than the experimental voltage. Comparing the corresponding
curves in Figures 8b and 11, it can be deduced that the higher estimated voltage is mainly caused by
the larger value of estimated Rlong, especially during the middle range of the SoC region.

Table 4. RMSE of model voltage estimation under the CC charging test.

Modeling Methods Dynamic Condition Rest-Period Pulse-Period

RMSE (mV) 18.41 19.76 5.448
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Figure 13. Verification results of different parameter estimation methods under the CC charging test.

In order to verify the robustness of the proposed parameter estimation method, the CC charging
voltage profiles at different initial SoC are plotted in Figure 14. This shows that the estimated voltage
curves match well with the measurement voltage curves, despite the different initial SoC.

Figure 14. CC charging voltage profiles at different initial SoC: (a) initial SoC = 20%; (b) initial SoC = 40%.
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Secondly, in order to demonstrate the improvement of the proposed battery modelling approach
during the dynamic driving scenario, the model and experimental voltage outputs in the consecutive
UDDS validation are plotted in Figure 15a, the corresponding calculated SoC profile is shown in
Figure 15b, and the detailed figure from 10,000 s to 12,000 s is plotted in Figure 15c. The RMSE of the
aforementioned estimation methods during the whole consecutive UDDS test are also shown in Table 5.
Figure 15b shows that the consecutive UDDS test is started from 90% SoC, and terminated when the
value of SoC drops below 20%. It can be observed from Figure 15c that parameters estimated by the
improved fitting function generally demonstrate a better performance, especially during the dynamic
period (ranging from 10,000 s to 11,400 s), because considering the unsaturated phenomenon of the
long-term RC network. It can also be concluded that the model containing parameters estimated by
the prior 1-h experimental data from the rest period gives voltage output with the least error, especially
during the short-time rest period. In addition, it can be seen from Figure 5a that there exists a relatively
long-time and high C-rate discharging current in the UDDS cycle approximately ranging from 150 s to
300 s. Since larger time constants are obtained from the data of the whole rest period, this causes the
corresponding voltage output not to recover fast after a relatively long-time discharging current, which
leads to an offset of voltage errors in comparison to the voltage error caused by the proposed approach.

Figure 15. Cont.
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Figure 15. Verification results of different parameter estimation methods under the UDDS tests: (a) The
overall look; (b) The calculated SoC profile (c) The close look.

Table 5. RMSE of the model voltage estimation under the urban dynamometer driving schedule
(UDDS) test.

Modeling Methods Conventional Improved-2 h Improved-1 h

RMSE (mV) 8.504 6.329 4.244

5. Conclusions

In this paper, an advanced battery parameter estimation method based on two general operating
scenarios in HEV/EV applications is proposed. Firstly, the second order ECM is employed, and the
model parameter extraction process is described in detail. Considering the typical operating scenarios
in HEV/EV applications, namely the CC charging scenario and the dynamic driving scenario, two
sets of model parameters are extracted from the charging/discharging pulse-rest tests. Specifically,
voltage responses of the pulse-charging phases are selected to estimate model parameters applied
in the CC charging scenario. For the dynamic driving scenario, the model parameters are identified
through the measured data from the rest period. Instead of employing the data from the whole rest
period, only the prior portion of the collected data is selected, and the length of the fitted data is
determined by the frequency spectrum analysis of the load current under two typical urban driving
conditions. In addition, an unsaturated phenomenon caused by the long-term RC network is analyzed
in detail, and subsequently, an improved fitting equation with more accurate initial voltage expression
of the RC network is adopted. Finally, verification tests simulating the CC charging scenario and the
dynamic driving scenario are conducted, respectively, and comparisons between the conventional
and the proposed battery parameter estimation methods are given. Experimental results show that in
both cases, the voltage profiles predicted from the proposed model show a better conformity to the
experimental data.

It is important to note that the proposed battery parameter estimation method for the dynamic
driving scenario only considers the typical urban driving conditions at room temperature. However, the
characteristics of the load current under the other special conditions (such as the highway driving
condition and the extremely cold condition) will be obviously different. For the future work, the
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influence caused by different C-rates of the current profiles, bandwidths of the current profiles and
temperature effects will be considered, and the parameter extraction test will be modified accordingly.
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Abstract: A state-of-charge (SOC) versus open-circuit-voltage (OCV) model developed for batteries
should preferably be simple, especially for real-time SOC estimation. It should also be capable
of representing different types of lithium-ion batteries (LIBs), regardless of temperature change
and battery degradation. It must therefore be generic, robust and adaptive, in addition to being
accurate. These challenges have now been addressed by proposing a generalized SOC-OCV model for
representing a few most widely used LIBs. The model is developed from analyzing electrochemical
processes of the LIBs, before arriving at the sum of a logarithmic, a linear and an exponential function
with six parameters. Values for these parameters are determined by a nonlinear estimation algorithm,
which progressively shows that only four parameters need to be updated in real time. The remaining
two parameters can be kept constant, regardless of temperature change and aging. Fitting errors
demonstrated with different types of LIBs have been found to be within 0.5%. The proposed model
is thus accurate, and can be flexibly applied to different LIBs, as verified by hardware-in-the-loop
simulation designed for real-time SOC estimation.

Keywords: electrochemical process analysis; SOC-OCV modeling; SOC estimation; lithium-ion batteries

1. Introduction

Lithium-ion batteries (LIBs) have been massively deployed in electric vehicles (EVs), hybrid
electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and stationary energy storage
systems. Their attractiveness is their high voltage, high energy density, high efficiency, long cycle
lifetime, and environmental benignity. Because of these advantages, their rapid growth is likely to
continue with a strong likelihood of becoming the dominant storage technology. Along with this growth,
accurate modeling of batteries is essential for control, optimization, energy management, diagnosis and
prognosis in real time. The developed model will usually rely on the SOC-OCV relationship, which, in
general, is for representing the battery electrochemical processes and thermodynamics at various SOCs.
It is therefore a meaningful function needed for battery modeling, especially in the case of lumped
parameter circuit models with an electromotive force (EMF) and a series of Resistance-Capacity (RC)
networks [1–5]. For the RC networks, their parameters are always obtained experimentally based
on data fitting, rather than specific physical principles. Similarly, the EMF is acquired by measuring
the battery open-circuit terminal voltage when it reaches a steady state. It effectively reflects the
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concentration ratio of resultants to reactants during battery charging and discharging, and is therefore
determined by the inherent electrochemical properties of the battery. This EMF is subsequently used
as the approximate OCV.

The SOC-OCV function is therefore representative for a particular battery, and is generally
a nonlinear monotone function between SOC and OCV for all LIBs. It is hence widely used in battery
management systems (BMS) for correcting SOC calculation. Specific cases can be found in [6–9],
where model based estimation of battery SOC and capacity has been developed using the SOC-OCV
relationship. It has also been revealed in [10] that the accuracy of the SOC-OCV curve has great
influence on the SOC value estimated. The same applies to battery capacity estimation, which has
commonly been relied on for state-of-health (SOH) determination. It is consequently important to
determine the SOC-OCV relationship precisely, if an accurate estimation of the battery state is necessary.

For this, some studies have proposed diversified methods for OCV modeling with each having
distinctive pros and cons [11–21]. Xiong in [11] proposed a novel systematic state-of-charge estimation
framework for accurately estimating SOC of the battery, where the relationship between battery SOC
and OCV is highly employed. With the accurate battery model and adaptive filter based battery
SOC estimator, the SOC of the battery pack can be accurately estimated. Reference [12] developed
an EMF model as a function of the battery temperature, terminal voltage under open-circuit condition
(not steady-state) and its slope. Its model parameters were determined from experimental data, but its
accuracy gradually reduces as the battery ages. References [13,14] next use exponential and logarithmic
functions for describing the relationship among OCV, EMF and time. However, like in [12], they result
in battery models with high complexity, and are therefore difficult for usage in real time. Reference [15]
proposed an alternative adaptive OCV estimation method based on battery diffusion principles.
This method demonstrates high accuracy with its estimated SOC and capacity, but it is complex
and has difficulty in online estimation because of its many coupled and non-coupled parameters.
Reference [16] then employed a dynamic hysteresis model for predicting the OCV, where a hysteresis
voltage has been included in the function for SOC. This model demonstrates high accuracy with
Li4Ti5O12 (LTO), LiFePO4 (LFP), LiMn2O4 (LMO) and LiNi1/3Mn1/3Co1/3O2 (LNMCO) batteries,
but its OCV hysteresis is generally not suitable for real-time model updating. Reference [17] proposed
an OCV model structure in which simplified hyperbolic and exponential functions are used to represent
phenomenological characteristics associated with the lithium-ion intercalation/deintercalation process.
The developed SOC-OCV model applying to LiFePO4 battery demonstrated higher accuracy compared
to five OCV models summarized in [18]. However, its adaptability to other types of lithium-ion
batteries needs to be further investigated. Reference [19] developed another type of OCV model that
generates OCV vs. SOC curves based on the electrode half-cell data, which is able to be used for battery
diagnostics and prognostics, and is an effective method especially for determining the degree of battery
degradation in a quantitative manner. This approach requires half-cell data and thus opening the cells
to reach high accuracy, which has difficulty in real-time SOC estimate applications.

This paper expands the main ideas in [10] and introduces a new model structure for the SOC-OCV
relationship with some distinctive features that are especially important for model updating in real
time: (1) the model uses four base functions that capture the fundamental electrochemical foundations
over low, middle, and high SOC ranges; (2) it fits the experimental data for a large class of batteries
of different types well, with very high accuracy; (3) it is simple and contains much fewer numbers
of parameters than common existing models such as piece-wise interpolation types; (4) due to its
simplicity, it becomes uniquely suitable for real-time updating on the parameter values. In other words,
it is desirable for data-driven model identification, which is essential for adaptive battery management
systems that can accommodate aging, environment variations, fault diagnosis, SOC estimation,
and SOH monitoring.

Parameters of the generalized model must next be optimized for mapping out the SOC-OCV
characteristics of different LIBs. For this, a nonlinear iterative algorithm has been developed, which
is beyond the concepts presented in [10]. A real-time SOC estimation algorithm is then presented
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for online adaptive parameter updating needed for ensuring model accuracy throughout the battery
lifetime. The updated model parameters can, in turn, be used for indicating SOH of the tested battery
from the perspective of thermodynamics.

Contributions of the paper can thus be summarized as: (i) analysis of electrochemical
processes during charging/discharging of commercial lithium-ion batteries, and their related function
characteristics; (ii) development of a generalized SOC-OCV model that is simple, accurate and flexible
for real-time battery state estimation; (iii) identification and verification of the proposed SOC-OCV
model; (iv) analysis of parameter properties of the SOC-OCV model; and (v) hardware-in-the-loop
(HIL) demonstration of real-time SOC estimation using the proposed SOC-OCV model.

The above contributions have been organized into five sections with Section 2 describing the
SOC-OCV relations and electrochemical processes of various commercial LIBs. They include LMO,
LNMCO and LFP batteries with graphite anodes, and novel batteries with LTO anodes. The generalized
SOC-OCV mapping model and identification method are also introduced in this section. Section 3 then
verifies the model accuracy for a variety of LIBs. The model robustness towards ambient temperature
and battery aging is also analyzed in the section. Implementation issues and SOC estimation using the
proposed SOC-OCV model are subsequently discussed in Section 4, where efficacy and accuracy of
the estimation have been established. Finally, Section 5 summarizes the main findings of the paper,
and highlights some related future issues.

2. Generalized SOC-OCV Model for Batteries

2.1. Experimental

Five types of batteries were tested to get their OCV-SOC curves. The battery types and their
rated capacities are G//LMO-90 Ah, G//LNMCO-28 Ah, G//LNMCO + LMO-25 Ah, G//LFP-60 Ah,
LTO//LNMCO + LMO-8.5 Ah. In the tests, the batteries were first discharged to the cutoff voltage
with 1/20 C rated and rested for 2 h. Then, batteries were charged to the cutoff voltage, followed
by a 2 h rest and then discharged to the cutoff voltage. Both the charge/discharge rate were 1/20 C.
Arbin Instruments BT2000 test systems were used for the tests, and, during the test, batteries were put
in the temperature chamber at 25 ◦C. SOC = Qres/Qmax, where Qres represents residual capacity of
the battery, and Qmax is the maximum available capacity at the current of 1/20 C. From the test data,
V-SOC curves for charge/discharge regime can be obtained, respectively, and then, by averaging the
two V-SOC curves, the OCV-SOC curve of a battery is determined [22].

2.2. Electrochemical Analysis of OCV

Consider a commercial LIB with an LNMCO cathode and a graphite anode, its experimental OCV
curve as a function of SOC and the corresponding dQ/dV profile is displayed in Figure 1, and its
schematic presentation of the electrochemical redox reactions is illustrated in Table 1 [23]. The shown
OCV behavior is caused by electrode redox reactions experienced by the cathode and anode materials.
Particularly, in stage I, where the voltage gradually drops to a certain level, the main electrochemical
reactions of the active materials can proceed, resulting in tardy voltage variations. This dynamic
voltage decrease can appropriately be represented by a linear function that is associated with the
continuous electrochemical redox reactions. In stage II, only small traces of electrochemical reactions
occur due to the relatively low cell voltage. The cell voltage then suddenly drops, and can be described
by a specific logarithmic function with a real (not complex) power. To better clarify this function form,
the dQ/dV profile (differentiates the battery charged capacity (Q) to the terminal voltage (V)) derived
from the SOC-OCV curve in Figure 1 is evaluated, beginning with the layered LNMCO cathode.
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Figure 1. SOC-OCV curve (red line) and dQ/dV profile as a function of OCV (blue line) for the
LNMCO/graphite lithium-ion battery.

Table 1. Schematic presentation of the electrochemical redox reactions of the LNMCO/Graphite
lithium-ion battery.

Electrode C 1©-A 1© C 1©-A 2© C 2©-A 2© C 2©-A 3© C 2©-A 4©

Cathode
C 1© C 2©

Ni4+↔Ni3+ Ni3+↔Ni2+

Anode
A 1© A 2© A 3© A 4©

LiC6↔LiC12 LiC12↔LiC18↔LiC36 LiC36↔LiC72 LiC72↔C6

At the cathode, its presented voltage gradually increases/decreases throughout the whole
electrochemical charging/discharging processes. When it is charged to above 4.5 V, all lithium
ions deintercalated from the bulk of the material, along with the oxidation from Ni2+ to Ni4+ and
from Co3+ to Co4+. The layered LNMCO structure is thus damaged, attributed to the degraded
electrochemical performance caused by the high charging voltage [24,25]. Consequently, the layered
LNMCO cathode with homogenous phase reactions only works over the range of 0 ≤ x ≤ 2/3 in
Li1−xCo1/3Ni1/3Mn1/3O2 [26]. Moreover, according to the first principle calculations reported, there
are two solid state redox reactions occurring when the voltage is below 4.5 V. They are ascribed
to Li1/3Co1/3Ni1/3Mn1/3O2 and Li2/3Co1/3Ni1/3Mn1/3O2 ranging from 4.2 V to 3.9 V (Ni4+/Ni3+,
labeled as C 1©), and Li2/3Co1/3Ni1/3Mn1/3O2 and LiCo1/3Ni1/3Mn1/3O2 at 3.9 V–3.7 V (Ni3+/Ni2+,
labeled as C 2©), respectively.

In theory, the dQ/dV plot of the LNMCO electrode should therefore show two isolated peaks
near these voltage plateaus. The two peaks are not separated, and hence appear as a broad peak in the
dQ/dV plot [27]. On the other hand, for the graphite anode, there are five phase transformation stages
during the charging/discharging processes over the voltage range from 0.8 to 0.01 V [28]. They include
three main plateaus corresponding to the three pairs of redox reaction peaks in the dQ/dV plot
of the graphite electrode. They are LiC6↔LiC12 at 0.10/0.08 V (labeled as A 1©), LiC12↔LiC36 at
0.14/0.11 V (labeled as A 2©), and LiC36↔LiC72 at 0.22/0.20 V (labeled as A 3©), respectively. In addition,
an unobvious plateau (or peak), LiC72↔C6 above 0.3 V (labeled as A 4©), usually appears in the
SOC-OCV curve and dQ/dV plot.

The overall SOC-OCV curve of the cell in Figure 1 can be obtained using the approach reported
in [29]. In other words, when the cathode is on a steady electrochemical reaction plateau, an additional
peak will emerge at each distinct anode phase transformation plateau. Therefore, each peak in the
dQ/dV plot of the cell can be distinctively identified. For example, C 1©-A 2© represents the state in
which the cathode is on its first plateau and the anode is on its second plateau. The peak voltage
in the dQ/dV plot is the difference in plateau voltage between the cathode and the anode [23]. It is
also informative to point out that the number, location and shape of the peaks in the dQ/dV plot
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usually vary with operating conditions and degradation of the LIBs. It is therefore possible to identify
performance decline origins of many cells based only on their dQ/dV variations.

Similarly, in the case of the spinel LMO cathode shown in Figure 2 and Table 2, it exhibits
two electrochemical plateaus at 4.1 V (labeled as C′ 1©) and 3.95 V (labeled as C′ 2©). They correspond
to the two phase transformations notated as Mn2O4/Li0.5Mn2O4, and Li0.5Mn2O4/LiMn2O4 [30,31].
Likewise, for the olive LFP cathode shown in Figure 3 and Table 3 [29], it manifests a unique voltage
plateau at 3.45 V (labeled as C” 1©), which has been verified as the phase transformation between
FePO4 and LiFePO4 [32]. In addition, unlike the LNMCO/graphite battery, the SOC-OCV curves of the
LMO/graphite and LFP/graphite systems can be divided into three stages. In stage I, redox reactions
basically completely with only slight traces of them continuing. The main process in this stage is also
charge accumulation, whose effect is a rapid decrease of OCV value that can nicely be described by
an exponential function. The latter two stages (II and III) are identical to the two stages (I and II) of
LNMCO/graphite batteries, and are for representing the main electrochemical reaction and charge
accumulation stages.

 

Figure 2. SOC-OCV curve and dQ/dV profile of the LMO/graphite lithium-ion battery.

Table 2. Schematic presentation of the electrochemical redox reactions of the LMO/Graphite
lithium battery.

Electrode C′ 1©-A 1© C′ 1©-A 2© C′ 2©-A 2© C′ 2©-A 3©

Cathode
C′ 1© C′ 2©

Mn2O4↔Li0.5Mn2O4 Li0.5Mn2O4↔LiMn2O4

Anode
A 1© A 2© A 3©

LiC6↔LiC12 LiC12↔LiC18↔LiC36 LiC36↔LiC72

 

Figure 3. SOC-OCV curve and dQ/dV profile of the LFP/graphite lithium-ion battery.
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Table 3. Schematic presentation of the electrochemical redox reactions of the LFP/Graphite
lithium-ion battery.

Electrode a” C” 1©-A 1© b” C” 1©-A 2© c” C” 1©-A 3© d” C” 1©-A 4©

Cathode
C” 1©

FePO4↔LiFePO4

Anode
A 1© A 2© A 3© A 4©

LiC6↔LiC12 LiC12↔LiC18↔LiC36LiC36↔LiC72 LiC72↔C6

For example, the voltage of the LFP batteries rapidly decreased in stage I because the main
component is basically the FePO4 without any more phase transformation. Upon reaching stage
II, the voltage of the LFP battery remains relatively steady. The low voltage is attributed to
the extraction/insertion reactions of the LFP cathode, assigned to the first-order phase transition.
A flat voltage plateau is thus produced with two phase regions corresponding to FePO4 and
LiFePO4. Taking the stage I into consideration, it may therefore introduce some differences when
determining parameters for the SOC-OCV model, as compared to the earlier LNMCO battery. Figure 4
shows the SOC-OCV curve and corresponding dQ/dV profile of the novel lithium-ion batteries
with NMC+LiCoO2 (LCO) cathode and LTO anode, and the phase transformation is relatively
uncomplicated. Table 4 reports its schematic presentation of the electrochemical redox reactions [33].
For the LTO anode [34], the phase transformation between Li7Ti5O12 and Li4Ti5O12 occurs near 1.55 V,
showing a long plateau. For the LiCoO2 cathode, it exhibits two very weak peaks at 4.19/4.13 V and
4.06/4.03 V (labeled as C′ ′ ′ 1©and C′ ′ ′ 2©) and a pair of strong redox peak at 3.97/3.85 V (labeled as
C′ ′ ′ 3©), corresponding to the reduction/oxidation reactions of Co4+/Co3+ [35], respectively. In view
of the flat plateau of the LTO anode, the dQ/dV curve primarily reflects the characteristics of the
NMC+LCO cathode and the LTO anode. However, due to the approximate phase transformation
voltage of LCO and NMC, overlaps of peaks will appear in the dQ/dV curve of the LTO lithium-ion
battery. The three stages of the SOC-OCV curve of the NMC+LCO/LTO batteries are similar to those
of LMO/graphite and LFP/graphite batteries.

 

Figure 4. SOC-OCV curve and dQ/dV profile of the NMC+LCO/LTO lithium-ion battery.

Table 4. Schematic presentation of the electrochemical redox reactions of the NMC+LCO/Graphite
lithium-ion battery.

Electrode a′ ′ ′ C′ ′ ′ 1©-A′ 1©/C′ ′ ′ 2©-A′ 1©/C 1©-A′ 1© b′ ′ ′ C′ ′ ′ 3©-A′ 1©/C 2©-A′ 1©
LCO + NMC

cathode
C′ ′ ′ 1© C′ ′ ′ 2© C 1© C′ ′ ′ 3© C 2©

Co3+↔Co4+ Co3+↔Co4+ Ni2+↔Ni3+ Co3+↔Co4+ Ni3+↔Ni4+

LTO anode
A′ 1©

Li7Ti5O12↔Li4Ti5O12
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It is confirmed from electrochemical analysis of different types of LIBs that a three-segment
SOC-OCV model is more potentially suitable for capturing all characteristic features of the described
electrochemical processes. This model structure and its suitability for real-time implementation are
described next.

2.3. Generalized SOC-OCV Model

The proposed generalized SOC-OCV model is shown in Equation (1), where a logarithmic function
with real (not complex) power, a linear function, and an exponential function with a shifted exponent
can clearly be seen:

VOCV = a + b · (−lns)m + c · s + d · en(s−1) (1)

where VOCV and s represent the OCV and SOC of the battery, respectively, and 0 ≤ s ≤ 1, m > 0 and
n > 0.

To match the processes described in Section 2.2, the logarithmic function must be tuned to
play a predominant role at low SOC, where charge accumulations on the surfaces of the active
materials happen within the LIB. The linear function, in turn, dominates the middle SOC range,
where primary phase transformation of the active materials occurs. The last exponential function then
contributes to the high SOC behavior, where both partial redox reaction and charge accumulation
occur. The three functions in Equation (1) are therefore essential, and will interact with each other to
form the generalized OCV model over the whole SOC range.

Compared with [10], coefficients m and n included in Equation (1) are for adapting the model to
match with different types of LIBs, since they depend on active materials of electrodes used in the
LIBs. Their specific values and properties will be discussed in Section 3, where the hypothesis of m
and n being invariant for a specific type of LIBs will also be proved. In other words, it will be proved
that both m and n will not change with temperature and aging. Consequently, the SOC-OCV model
is reduced to a sum of only four proportionally scaled terms, whose coefficients are a, b, c and d in
Equation (1). Only these four coefficients require tuning in real-time to arrive at the desired SOC-OCV
mapping. The complexity of realizing Equation (1) has therefore been considerably reduced, which is
certainly encouraged for real-time state estimation.

2.4. Recursive Parameter Identification

For a given class of LIBs, its six model parameters in Equation (1) must collectively be determined
from offline experimental data. This determination is nonlinear because of the logarithmic and
exponential functions included in Equation (1). Some amount of complexity may therefore be involved,
but will subsequently be proven to be otherwise since m and n are fixed for a given class of LIBs, and
hence do not need real-time updating. They must, however, be determined for once at the beginning
of real-time execution. Typical non-linear algorithm for optimization is thus needed, and is usually run
iteratively. One possibility is the gradient based iterative search method, which mathematically, relies
on the following equation, expressed in terms of the unknown parameter vector θ = (a, b, c, d, m, n):

VOCV = a + b · (−lns)m + c · s + d · en(s−1)(0 ≤ s ≤ 1, m > 0, n > 0), (2)

y = F (s; θ) = a + b · (−lns)m + c · s + d · en(s−1). (3)

The obtained N sets of experimental data (s(k), y(k)), k = 1, . . . ,N, when substituted in Equation (3),
further lead to the following equations:

y(k) = F(s(k); θ) + e(k), k = 1, . . . , N
Y = F(S; θ) + E,
where Y = [y(1), . . . , y(N)]T , S = [s(1), . . . , s(N)]T , E = [e(1), . . . , e(N)]T

. (4)
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A nonlinear least square estimation problem has thus been formed. The purpose is to find the
parameter vector that can minimize the following expression:

min
θ

ε(θ) = 1
2 (Y − F(S; θ))T(Y − F(S; θ))

Let G(θ) =
(

∂F(S;θ)
∂θ

)T
=⎡

⎢⎣
1 (−lns1)

m

...
1

...
(−lnsN)

m

s1 en(s1−1)

...
sN

...
en(sN−1)

b · [ln(−lns1)] · (−lns1)
m d · (s1 − 1) · en(s1−1)

...
b · [ln(−lnsN)] · (−lnsN)

m

...
d · (sN − 1)en(sN−1)

⎤
⎥⎦

T . (5)

The process must usually be executed iteratively, using the gradient based algorithm provided
as follows:

θj+1 = θj + μjG
(
θj
) (

Y − F
(
S; θj) , (6)

where the step size μj must be selected to ensure algorithm convergence.
The algorithm is stopped only when

∣∣∣∣θj+1 − θj
∣∣∣∣ is smaller than a pre-defined small threshold.

3. Verification of OCV Model

3.1. Estimation Accuracy Analysis with Different LIBs

To validate the proposed OCV model, a series of experiments were performed on different classes
of LIBs to obtain SOC-OCV mapping data. Each experiment was performed with the battery charged
from its fully discharged state at a current of 0.05 C. The charging continued until the terminal voltage
of the battery reached the charging voltage limit. The battery was subsequently open-circuited for 2 h,
after being discharged at 0.05 C until the battery terminal voltage reached the discharge voltage limit.
Taking the average potential between the charge and discharge branch at C/20 and the normalized
C/20 capacity, the voltage and its corresponding SOC can be regarded as OCV versus SOC curve [22].

The estimated and experimental SOC-OCV mapping for LMO, LNMCO, LNMCO and LMO,
and LTO and LFP LIBs can eventually be illustrated in Figure 5a. Figure 5b shows the relative estimated
and experimental error of each SOC-OCV mapping, which clearly indicates their close fitting except at
both ends of the curve where there are a few points with larger errors. Other than those, the estimation
errors have been kept within 0.5% for the LIBs except for the LFP battery when their SOCs are kept
between 15% and 95%. The estimation errors are kept within 0.5% for the LFP battery when its SOC is
kept between 15% and 90%. This is, in fact, the most widely used SOC region found in EVs. The larger
errors at both ends of each SOC curve are thus not critical, but can still be explained from two aspects.
The first is related to the model accuracy at both ends, where the more sensitive logarithmic and
exponential functions are used. The second is related to polarization and Ohmic resistance, which are
remarkably enlarged around 0% SOC and 100% SOC. The outcome is an enlarged random fluctuation
of measured voltage, which can, no doubt, result in OCV measurement inaccuracy.

Different from other types of LIBs, the LFP LIB is attributed to the first-order phase transition
mentioned in Section 2. Its freedom degree related to its terminal voltage is thus tiny, leading to very
flat voltage plateaus in the middle SOC range. However, the change rate increases significantly at
both ends of the SOC curve, which will then bring larger estimation errors to the LFP LIB than other
types of LIBs when represented by the same proposed model. Despite that, the model errors are still
well kept within 1% throughout the entire SOC range. The proposed generalized OCV model is thus
accurate for representing different types of LIBs because of the presence of coefficients m and n. It is
also more accurate than the model presented in [10] for the LNMCO battery. This can clearly be read
from Figure 6, where the maximum estimation error for the LNMCO battery is noted to be below 0.5%
when the proposed OCV model is used. The same battery will have an estimation error of 1% when
the model in [10] is used. Precision enhancement is thus doubled with the proposed model, in addition
to its flexible adaption to other types of LIBs.
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Figure 5. (a) the estimated and experimental SOC-OCV mapping for various LIBs; and (b) relative
error of the OCV estimation.

Figure 6. Comparison results of the old model and improved model for the LNMCO battery.

Moreover, it should be highlighted that parameters used with the SOC-OCV model are closely
correlated to the intrinsic characteristic features of the LIBs. For example, parameter a is noted to relate
to the voltage plateau with its value becoming bigger as the plateau rises higher. This can noticeably be
seen in Table 5 and Figure 5. Similarly, parameter c is noted to relate to the rate of increase of voltage
in the linear function, included for demonstrating the phase transformation processes. Its value will
rise as the voltage increases faster, which certainly matches well with analytical results presented in
this subsection.

Table 5. Model parameters for various LIBs.

Battery Type *
Parameters

a b c d m n

LMO 3.875 −0.335 −0.5332 0.8315 0.653 0.6
LNMCO 3.5 −0.0334 −0.106 0.7399 1.403 2

LNMCO&LMO 3.6 −0.111 −0.5 1.113 1.093 1.9
LFP 3.135 −0.685 −1.342 1.734 0.478 0.4
LTO 2.235 −0.00132 −0.3503 0.6851 2.964 1.6

* LMO: G//LMO battery; LNMCO: G//LNMCO battery; LNMCO&LMO: G//LNMCO+LMO battery;
LFP: G//LFP battery; LTO: LTO// LNMCO+LMO battery.

Two OCV models were selected in the literature, taking NCM and LFP battery, for example,
which is compared to the proposed OCV model. All of the parameters in the two OCV models are
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refitted for the data illustrated in Figure 5 using the Matlab curve fitting toolbox (version, Manufacturer,
City, US State abbrev. if applicable, Country), the results with their root mean square (RMS) and
maximum errors are shown in Table 6. It can be seen that Model #1 has better accuracy for the LFP
battery, while it is poor for the LNMCO battery. The fitting results of Model #2 are in contrast to Model
#1. It should be noted that neither of them has good accuracy for both types of batteries. The proposed
model has acceptable precisions for both NCM and LFP batteries, manifesting better adaptability
compared to the other two models. It therefore can be regarded as a generalized model of commercial
lithium-ion batteries.

Table 6. Compared fitting results of OCV models.

# OCV Model Reference

RMS Error
for LNMCO

Battery
(mV)

Max Error
for LNMCO

Battery
(mV)

RMS Error
for LFP
Battery
(mV)

Max Error
LFP Battery

(mV)

1 VOC(s) = K0 − K1/s − K2s + K3ln(s) + K4ln(1 − s) [20] 16.6 36.5 6.2 14.8
2 VOC(s) = K0 + K1e−α(1−s) − K2/s [21] 9.7 21.8 34.9 141
3 VOC = a + b · (−lns)m + c · s + d · en(s−1) Proposed 13.0 20.6 15.3 27.3

3.2. Sensitivity Analysis of the Proposed Model

Case I Sensitivity towards temperature variation

The estimated and experimental results for the LNMCO battery at different temperatures are
shown in Figure 7a–c. Their relative errors are shown in Figure 7d. Parameters of the model in
Equation (1) used are shown in Table 7, where it has been noted that coefficients m and n have been
kept constant regardless of temperature. Despite this, it can be seen from Figure 7 that the proposed
OCV model fits the measured values well at 10 ◦C, 25 ◦C, and 45 ◦C, respectively. Their relative errors
over a wide span of the SOC range are, in fact, always smaller than 0.5%. The proposed model is thus
robust since its accuracy is not degraded by battery temperature variation. Moreover, coefficients m and
n for the specific battery type have been fixed without affecting the model accuracy. Model updating
has therefore been done by adjusting parameters a, b, c and d in Equation (1) only, which is dramatically
simpler since they are simply proportional gains.

Figure 7. The estimated and experimental results for the LNMCO battery at different temperatures:
(a) 10 ◦C; (b) 25 ◦C; (c) 45 ◦C; and (d) relative errors.
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Table 7. Model parameters of the LNMCO Battery at different temperatures.

Temperature (◦C)
Parameters

a b c d m n

10 3.517 −0.0439 −0.2493 0.9134 1.4 2
25 3.5 −0.0334 −0.106 0.7399 1.4 2
45 3.535 −0.0571 −0.2847 0.9475 1.4 2

Case II Sensitivity to battery aging

Conventionally, the battery OCV will change as it ages even at the same SOC. This is caused by
variation of battery thermodynamics, which was affected in experiments by cycling the charging and
discharging processes for evaluating the proposed OCV model. The estimated and experimental results
obtained for the LMO battery at different degradation states are shown from Figure 8a–d, while the
model parameters used at different battery aging stages are listed in Table 8. Obviously, coefficients
m and n have been kept unchanged after being first determined. Despite this, Figure 8 shows the
estimated and experimental results matching well at various battery aging stages. Their relative error
is, in fact, within 0.2%, except at a few individual SOC points where the relative error has been bigger
at 0.5%. The proposed OCV model is thus robust against battery aging.

From Table 8, it can also be seen that the model parameters change monotonically as the battery
degrades. Taking the linear function of Equation (1), for example, its parameters a and c (considering
the negative sign of c) increase as the battery ages. These parameters can thus be employed for
SOH estimation, but can be rather complex since the SOC-OCV model in Equation (1) manifests the
comprehensive effects of three functions (logarithmic, linear and exponential). Estimation of battery
degradation mechanism is hence rather complex with the origin of model parameter variations caused
by electrochemical dynamics needing to be investigated first. This is, however, beyond the scope of
the paper.

Figure 8. Estimated and experimental results for the LMO battery at different aging states: (a) 92 Ah;
(b) 82 Ah; (c) 69 Ah; and (d) relative errors.
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Table 8. Model parameters of the LMO battery at different aging states.

Capacity (Ah)
Parameters

a b c d m n

92 3.875 −0.3351 −0.5332 0.8315 0.6537 0.6
82 4.061 −0.3683 −0.4946 0.5933 0.6537 0.6
69 4.132 −0.3838 −0.4912 0.5016 0.6537 0.6

4. Application of SOC Estimation

An HIL simulation platform has been set up for validating the proposed generalized OCV model
and its feasibility for SOC estimation. In relation to SOC estimation, a first-order equivalent circuit
and the proposed OCV model have been used for simulating the battery dynamics. An estimation
algorithm based on a proportional-integral (PI) observer has also been employed for determining the
estimated SOC for comparison with the actual SOC measured from the tested battery group. Principle
of the PI observer has been explained in [36], and will hence not be discussed with the HIL platform
described below. It is noticeable that the parameter uncertainties of the equivalent circuit model have
an impact on SOC estimation. The detailed theoretical and quantitative analysis can be found in
another paper [37].

4.1. HIL Simulation Platform

The HIL simulation platform is shown in Figure 9, where the central processing system is
a computer for controlling the hardware experiment, obtaining voltage/current data, and executing
the real-time simulated model. Specific hardware used includes the current/voltage acquisition board
and the CAN bus to TCP (Transmission Control Protocol) conversion card. Software includes the
Matlab/Simulink model, and driver for the CAN-TCP data acquisition card. The CAN-TCP conversion
module is for receiving the CAN bus data frame. The real-time data is used by the simulated model in
the central processing system for estimating the battery SOC. The estimated SOC will then be compared
with the true SOC measured by the Arbin Instruments BT2000. This instrument is inter-faced to the
thermal chamber, where the tested battery is placed for verification purposes.

Thermal chamber

Tested cells
Computer

Can bus to
 Ethernet 

conversion 
module

Battery management 
system

Arbin BT2000

Current sensor

Figure 9. Hardware-in-loop simulation platform.
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4.2. Accuracy Verification

Two LNMCO cells in series have been used for forming the battery group with a total nominal
capacity of 28 Ah. SOCs of each cell in the group have also been estimated by the PI observer and the
first-order circuit model, in which the proposed SOC-OCV model has been employed. From the cell
SOCs, SOCs of the battery group can then be calculated by using the following formula [38]:

SOCB = QB
rem

QB
max

× 100%

= min(Qmax[1]×SOC[1],...Qmax[n]×SOC[n])
min(Qmax[1]×SOC[1],...Qmax[n]×SOC[n])+min(Qmax[1]×(1−SOC[1]),...Qmax[n]×(1−SOC[n]))

= Qmax[i]×SOC[i]
Qmax[i]×SOC[i]+Qmax[j]×(1−SOC[j]) × 100%,

(7)

where QB
max means the maximum available capacity of the pack, and QB

rem represents the residual
capacity or maximum discharge capacity of the group. It should be noticeable that temperature will
affect the SOC estimation, especially at low temperatures. The model parameters will vary with the
battery temperature. Therefore, two typical temperatures at 5 ◦C and 25 ◦C have been tested with DST
(dynamic stress test) profiles included for verifying SOC estimations. The model parameters have also
been updated online to ensure estimation accuracy as temperature changes.

The estimated and true SOCs obtained from the HIL simulation platform at DST profiles
are successively shown in Figure 10a–d, where the columbic counting results from the Arbin
test instrument was regarded as the true SOC. Figure 10a–b show the estimated results at 5 ◦C,
while Figure 10c,d show the estimated results at 25 ◦C. The estimated error is obviously large at the
beginning because of overshooting of the PI observer, but will eventually converge to a very small
value as time progresses. The estimated error is also noted to be large at partial SOC, where one
possible reason is related to the assumption of resistance and capacitance of the first-order RC model
being constant. Such an assumption has, no doubt, simplified calculation, but does not reflect the
actual scenario, where resistance and capacitance of the RC model at partial SOC are considerably
different from those at low and high SOCs. The other possible reason is related to inherent errors that
may occur within the OCV model. These errors will, no doubt, affect estimation accuracy, but will
usually not be as significant. Estimation error after the initial overshoot period of the battery group
can thus be controlled within 3% in Figure 10 for both 5 ◦C and 25 ◦C. In other words, the proposed
OCV model is suitable for SOC estimation with high precision and good adaptability demonstrated.

 

Figure 10. Estimation and true values of SOC at DST profilesat different temperatures, (a) SOC estimation
at 5 ◦C; (b) estimation error at 5 ◦C; (c) SOC estimation at 25 ◦C; (d) estimation error at 25 ◦C.
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5. Conclusions

From analyzing electrochemical processes of common LIBs, the charge accumulation, primary
phase transformation, and partial redox reaction and charge accumulation processes have been
identified. To account for these three processes, a generalized OCV model with a logarithmic, a linear
and an exponential function has been developed. The model includes six parameters, but with only four
proportional parameters requiring real-time updating. The other two parameters, which contribute to
its nonlinear characteristics, can be kept constant after first being determined for a particular type of
LIB. Complexity is thus reduced, but without affecting precision since the estimation error can still be
controlled within 0.5% for all common types of LIBs. Efficacy of the model for SOC estimation has also
been proven through HIL simulation and experiments, with errors of smaller than 3% observed at
different temperatures and stages of degradation. The proposed model is thus robust and accurate,
while retaining simplicity for real-time implementation. Further extension of the model for SOH
estimation is also possible but will only be more thoroughly investigated in the future.
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Abstract: A battery model that has the capability of analyzing the internal non-uniformity of local
state variables, including the state of charge (SOC), temperature and current density, is proposed
in this paper. The model is built using a set of distributed parameter equivalent circuits. In order
to validate the accuracy of the model, a customized battery with embedded T-type thermocouple
sensors inside the battery is tested. The simulated temperature conforms well with the measured
temperature at each test point, and the maximum difference is less than 1 °C. Then, the model is
applied to analyze the evolution processes of local state variables’ distribution inside the battery
during the discharge process. The simulation results demonstrate drastic distribution changes of the
local state variables inside the battery during the discharge process. The internal non-uniformity is
originally caused by the resistance of positive and negative foils, while also influenced by the change
rate of open circuit voltage and the total resistance of the battery. Hence, the factors that affect the
distribution of the local state variables are addressed.

Keywords: lithium ion battery; distributed parameter equivalent circuit model; internal
non-uniformity

1. Introduction

The lithium ion battery is one of the most promising candidates for the energy storage system
(ESS) in electrical vehicles. To reduce the cost, prolong the life and ensure the safety of the ESS, the
optimal design of the battery cell and pack with robust battery management system (BMS) is essential.
Two kinds of battery models are proposed to fulfill the optimal design and to be implanted in the BMS,
respectively. The first kind of model is physics based. A model based on the theory of intercalation
electrodes and concentrated solutions was proposed by Doyle et al. [1]. Lou et.al. [2] built an extended
single particle model for higher rates simulation. Kim et al. [3,4] developed a multi-scale multi-domain
model framework, which resolved electrochemical, thermal and electrical coupled physics at varied
length scales in the lithium ion battery. Three-dimensional electrochemical-thermal models were
proposed and widely used by researchers [5–8] to analyze heat generation and temperature distribution
in the lithium ion battery. A two-dimensional model was reported by Shin’s group [9–11] for the
thermal behavior and scale-up design of the lithium-polymer battery. These models are usually
computationally complex and time consuming. In addition, a large number of parameters is needed
for model inputs, and some of the parameters are extremely hard to obtain. Thus, such models are only
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suitable for cell designing and analyzing. For example, a three-dimensional electrochemical model was
proposed by Kohneh et al. [12] and used to examine the effect of parameters, such as current collector
thickness and tab location, on reducing non-uniform voltage and current distribution in the cell. Liu et
al. [13] developed an integrated computational method that considered the mechanical, electrochemical
and thermal behaviors of the lithium ion battery to study the nail penetration problem. Samba et
al. [14] used the electrical-thermal model to design the battery thermal management system. Though
simplified approaches, such as the simplified electrochemical multi-particle model and homogenous
pseudo two-dimensional model, were developed by Mastali et al. [15] to decrease the computational
time, the speed and simplicity of three-dimensional electrochemical-thermal models are still of concern.
The second kind of models is the equivalent circuit model (ECM). Here [16–20], the battery is usually
regarded as a mass point. Only a few parameters are in the model and can be derived from the external
characteristics of the cell [21,22]. Therefore, they are suitable to be implanted in the battery management
system (BMS) for the state of charge or the state of health estimation [23–26]. Lumped-parameter
thermal models were added to ECM to predict the thermal characteristics of the cell by Lin et al. [27]
and Forgez et al. [28], which made the model more comprehensive.

Meanwhile, in order to reach higher power and energy density, the size of the battery cell is
growing. This leads to the imbalance of the potential, current density, temperature and state of
charge (SOC) becoming significant, so the battery can no longer be treated as a mass point. Large
SOC differences up to 5.3% were reported by Fleckenstein et al. [29] in a LiFePO4 cell. Taking the
computational cost into consideration, a new model to predict the internal imbalance of the battery
is desired at this stage. Therefore, the distributed parameter equivalent circuit model (DPECM) is
proposed in our former works [30]. However, the former proposed model could only solve the electric
related variables, and the model is only validated by the terminal voltage. As the temperature of
lithium ion batteries is vital for their life span, safety and performance, thermal models need to be
established and implemented into the former proposed model, to analyze the distribution and variation
trend of internal current, voltage and temperature.

On the other hand, the validation of those models that could obtain the internal variables is
somehow technically difficulty, because the distribution of the internal potential, current density or
SOC cannot be measured directly. Wang’s group [31,32] proposed an in situ measurement method
for current distribution in a lithium ion battery. The structure of the cell was changed because the
positive electrode was segmented along the length of the electrode sheet; while temperature is much
easier to measure compared to other variables inside a battery. Forgez et al. [28] and Li et al. [33]
successfully embedded thermocouples into cylindrical and pouch cells, respectively. They proved that
the cell characteristics affected by the embedded sensors were negligible. To validate the proposed
model in our research, a customized cell with nine T-type thermocouples embedded inside the battery
was provided by the battery manufacture. The customized battery was tested for the parameter
identification and validation of the temperature distribution inside the battery.

The remaining parts of this paper are arranged as follows. Section 2 describes the experimental
setup, cell dimensions and temperature sensor locations. Section 3 introduces the modeling method
and validation. The internal non-uniformity is discussed in Section 4. The conclusions are summarized
in Section 5.

2. Experiments

The cell studied in this paper is a 35 Ah LiNi1/3Co1/3Mn1/3O2 (NCM) pouch cell, which has
a total of 36 laminated layers. Each laminated layer is composed of positive foil, positive material,
separator, negative material, and negative foil, and the characteristics of each component are presented
in Table 1. The top view from cell thick direction and the cell dimensions are shown in Figure 1. The
length and width of the main body are 195 mm and 165 mm, respectively. Positive and negative tabs
locate at two opposite sides of the cell, whose length and width are 40 mm and 80 mm, respectively.
The total thickness of the cell is only 14 mm, which is much smaller than the length and width of battery,
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so the differences of local SOC, current density, and potential along thick direction are ignored in this
paper. In order to acquire internal temperature reliably, nine T-type thermocouples are embedded
inside the cell during the manufacturing process of the cell using the same method proposed by Li
et al. [33]. The thermocouples were sandwiched by two pieces of separators and then placed in the
middle of the thickness before vacuuming and sealing of the cell. Nine thermocouples are uniformly
distributed on the middle plane.

Table 1. Properties of each battery component.

Component Thickness Heat Conductivity Coefficient Specific Heat Capacity Electrical Resistivity

(μm) (w · m−1 · k−1) (J · kg−1 · k−1) (Ω · m)

Positive foil 20 238 903 2.83 × 10−8

Positive material 160 3.9 839 —
Separator 40 0.33 1978 —

Negative material 110 3.3 1064 —
Negative foil 10 398 385 1.75 × 10−8

Ly=195mm

Lx=165mm Lty=80mm

T(1,1)

T(1,2)

T(1,3)

T(2,1)

T(2,2)

T(2,3)

T(3,1)

T(3,2)

T(3,3)

Figure 1. Cell dimensions and thermocouple locations.

In order to obtain the model input parameters and verify the accuracy of the model, two sets of
experiments are executed. One is for parameter estimation, and the other is for validation.

2.1. Parameters Identification Experiments

2.1.1. Parameters Identification of the Lumped First-Order Resistor-Capacitor (RC) Model

A typical lumped first-order resistor-capacitor (RC) model is shown in Figure 2. It consists of
a voltage source, a resistor and a parallel branch of the resistor and capacitor. The voltage source
represents the open circuit voltage (OCV) of the cell. Resistor RΩ represents the ohmic resistance in the
cell. The parallel branch is utilized to model the chemical diffusion in the cell. In order to obtain the
parameters of the first-order RC lumped model, pulse discharge is a widely-used method for lithium
ion batteries. In this paper, the cell was put into an environment chamber during the test to keep
the ambient temperature constant, and then, discharge pulses were applied to the cell by battery test
equipment: Arbin BT-2000. Each discharge pulse depleted 5% of the total capacity and was followed
by 2 hours of rest. To make the parameters suitable for different current rates, the discharge pulse at
each SOC contained multiple current rates, including the current fragments of 0.5C, 1C and 2C, as
shown in Figure 3a. The corresponding voltage response of the cell is shown in Figure 3b.
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Figure 3. Voltage and current profiles for parameter estimation.

The lumped first-order RC model parameters can be estimated according to the current and
voltage curve using the method proposed by Huria et al. [34,35]. The parameters were determined
using the parameter estimation tool in Simulink Design Optimization. The tool iteratively simulated
the discharge voltage profile while comparing the simulation results with experimental data. The
nonlinear least squares algorithm was used to minimize the sum of square error. The fitting result
of the discharge pulse at SOC = 0.55 is presented in Figure 4. The fitted results agree well with the
experimental data. The estimated parameters of Uocv, RΩ, Rct and Cct are shown in Figure 5.
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Figure 4. Fitting results of the pulse discharge at SOC = 0.55.
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2.1.2. Entropy Change Measurement

The entropy change of the lithium ion battery can describe the generated reversible heat. It can be
calculated using Equation (1):

ΔS = F
dU
dT

(1)

where ΔS is the entropy change of the battery; F is the Faraday constant; U is the equilibrium potential
of the battery; T is the temperature.

The entropy change could be calculated through the OCV variation with temperature. The
method proposed by Forgez et al. [28] was used in this paper to obtain the coefficient of OCV variation
with temperature. The cell was discharged to an objective SOC and rested to the steady state. Then,
the temperature of the environment chamber was changed to different values, as shown in Figure 6a.
In order to extract the temperature coefficient from these data, the voltage was fitted by the function
V(t, T) = A+ BT +Ct with A, B and C as constants and B corresponding to the temperature coefficient
∂U/∂T. The fitting results for ∂U/∂T estimation are shown in Figure 6b. The ∂U/∂T results are shown
in Figure 7.
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Figure 6. Temperature and voltage profiles for ∂U/∂T estimation at SOC = 0.
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Figure 7. ∂U/∂T estimation results.

2.2. Validation Experiments

In order to analyze the voltage and temperature characteristics, constant current discharge at
1C, 2C and 3C rates was performed using Arbin BT-2000. The temperature was measured by an
Agilent 34901A. The voltage and temperature during the discharge process with different rates are
shown in Figure 8a. Figure 8b shows the temperature measured by the internal thermocouples. The
thermocouples at T(1, 1) were broken, so the data are not shown here. At the end of discharge,
temperature at the center of the cell (T(2, 2)) is the highest. The center temperature close to the positive
tab (T(1, 2)) is higher than that close to the negative tab (T(3, 2)), which might be caused by the different
properties of positive and negative tabs. Although the geometries of positive and negative tabs are
the same, the positive aluminum tab has a smaller heat conductivity coefficient and larger electrical
resistivity compared to the negative Copper tab. Therefore, more heat is accumulated around the
positive tab, leading to a higher temperature around positive tab. The temperature values of T(2, 1)
and T(2, 3) are almost the same, owning to the symmetric cell structure.
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Figure 8. Voltage and temperature experimental results.

3. Modeling and Validation

The model is comprised of two parts. One is the electrical part, which is used to solve the
electrical-related variables, such as the potential, current density and SOC. The other is the thermal
part to solve the thermal-related variables, including heat generation, conduction and dissipation.
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3.1. Electrical Model

The schematic of the electrical part in DPECM is shown in Figure 9. According to the layered
structure and electrochemical principles of pouch batteries [36–38], the proposed model consists of five
parts, including the positive and negative tabs, the positive and negative foils and the main material
body. The current flow of positive and negative tabs only exists in the horizontal plate. The positive
and negative foils not only have current flowing in the horizontal plate, but also have current pouring
into or pumping out from the sub-models. The main material body, including the positive and negative
materials, electrolyte and separator, etc., is divided into a group of sub-models. Each sub-model is
represented by a first-order RC equivalent circuit. The first-order RC model is adopted in this paper,
because Hu et al. [39] indicated that the first-order RC equivalent circuit model was the most suitable
candidate for an NCM cell after comparing twelve battery models. One branch of the sub-models
was magnified in the right side of Figure 9 to show the details of first-order RC model. It consists of a
voltage source, a resistor and a parallel branch of the resistor and capacitor.

e

rΩ

cp rp

ϕ+
(i,j)

ϕ−
(i,j)

Figure 9. Distributed parameter equivalent circuit model (DPECM) structure.

The current of the sub-model located at the i-th row and j-th column in Figure 9 could be calculated
as Equation (2):

i(i,j) =
e(i,j) − (ϕ+

(i,j) − ϕ+
(i,j))− up(i,j)

rΩ(i,j)
(2)

where the subscript (i, j) represents the node location; i is the current of the sub-model; e is the
equilibrium potential of the sub-model; ϕ− is the node potential on the negative foil connected with
the sub-model; ϕ+ is the node potential on the positive foil connected with the sub-model; rΩ is the
ohmic resistance of the sub-model; up is the polarization voltage of the sub-model, which could be
calculated as:

cp
dup

dt
= i − up

rp
(3)

where up is the initial polarization voltage; rp is the polarization resistance of the sub-model; cp is the
polarization capacitor of the sub-model. The resistance value rp in the sub-model is calculated using
the equivalent resistance of the lumped first-order RC model multiplied by sub-model numbers. The
capacitance value cp in the sub-model is calculated using the equivalent capacitance of the lumped
first-order RC model divided by sub-model numbers.
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In this paper, up is iteratively updated. Therefore, Equation (3) needs to be discretized. The
discretized result of Equation (3) using the Euler method is:

up,t+Δt = up,t +
itrp,t − up,t

rp,tcp,t
Δt (4)

where Δt is the step time; up,t is the polarization voltage at instant t; up,t+Δt is the polarization voltage
at instant t + Δt; rp,t, cp,t and it are the polarization resistance, polarization capacitance and current of
the sub-model at instant t, respectively.

Assume that there are N nodes in total on the positive foil and tab, as shown in Figure 9. According
to Kirchhoff’s current law, the sum of currents flowing through each node is zero. Therefore, a typical
node equation is:

i(i,j) = (ϕ+
(i−1,j) − ϕ+

(i,j))/r+(i−1,j)(i,j) + (ϕ+
(i+1,j) − ϕ+

(i,j))/r+(i+1,j)(i,j)

+(ϕ+
(i,j−1) − ϕ+

(i,j))/r+(i,j−1)(i,j) + (ϕ+
(i,j+1) − ϕ+

(i,j))/r+(i,j)(i+1,j)
(5)

where the subscript (i, j) represents the node location; ϕ+
(i,j) is the potential of the node located at (i, j);

r+(i−1,j)(i,j), r+(i+1,j)(i,j), r+(i,j−1)(i,j) and r+(i,j+1)(i,j) are resistances between two adjacent nodes. As the
locations of all nodes are even in this paper, all of the resistances between two adjacent nodes are equal
on the positive foil. Therefore, Equation (5) could be simplified as:

− 4ϕ+
(i,j) + ϕ+

(i−1,j) + ϕ+
(i−1,j) + ϕ+

(i,j−1) + ϕ+
(i,j+1) = r+i(i,j) (6)

where r+ represents the resistance between two adjacent nodes.
Define a connectivity function as:

fc(a, b) =

{
1 (when node a and node b are connected)
0 (when node a and node b are disconnected)

a, b ∈ 1, 2, ..., N and a �= b (7)

The relationship between the current of all sub-models and the potential of all nodes located on
the positive foil and tab is:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
N,i �=1

∑
i=1

f+c (1, i) f+c (1, 2) · · · f+c (1, N)

f+c (2, 1) −
N,i �=2

∑
i=1

f+c (1, i) · · · f+c (2, N)

...
...

. . .
...

f+c (N, 1) f+c (N, 2) · · · −
N,i �=N

∑
i=1

f+c (N, i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ϕ+
1

ϕ+
2
...

ϕ+
N

⎤
⎥⎥⎥⎥⎦ = r+

⎡
⎢⎢⎢⎢⎣

i1
i2
...

iN

⎤
⎥⎥⎥⎥⎦ (8)

where f+c (a, b)(a, b ∈ 1, 2, ..., N and a �= b) is the connectivity function of the positive foil and tab;
ϕ+

n (n ∈ 1, 2, · · · , N) is the potential of the n-th node on the positive foil and tab; in(n ∈ 1, 2, · · · , N) is
the current of the n-th sub-model.

Define:

A+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
N,i �=1

∑
i=1

f+c (1, i) f+c (1, 2) · · · f+c (1, N)

f+c (2, 1) −
N,i �=2

∑
i=1

f+c (1, i) · · · f+c (2, N)

...
...

. . .
...

f+c (N, 1) f+c (N, 2) · · · −
N,i �=N

∑
i=1

f+c (N, i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Φ+ =
[

ϕ+
1 ϕ+

2 · · · ϕ+
N

]′
and I =

[
i1 i2 · · · iN

]′
Therefore, the node potential equations of the positive foil and tab could be written as:

A+Φ+ = r+I (9)

where A+ is an N × N matrix representing the node connectivities of the positive foil and tab; Φ+ is
an N-dimensional node potential vector of the positive foil and tab; I is an N-dimensional sub-model
current vector. Those nodes on the positive tab do not have sub-models, so the currents of the
sub-models in the corresponding places of I are set to zero.

Similarly, the node potential equations of the negative foil and tab could be deduced as:

A−Φ− = −r−I (10)

where A− is an N × N matrix representing node connectivities of the negative foil and tab; Φ− is an
N-dimensional node potential vector of the negative foil and tab; r− is the resistance between two
adjacent nodes on the negative foil. Those nodes on the negative tab do not have sub-models, so the
currents of the sub-models in the corresponding places of I are set to zero.

The current of all sub-models could be organized as:

RΩI = E − (Φ+ − Φ−)− VP (11)

where E is the N-dimensional equilibrium potential vector of sub-models; VP is the polarization
voltage vector of sub-models; RΩ is an N × N-dimensional diagonal matrix of sub-model ohmic
resistances that:

RΩ = diag(rΩ1, rΩ2, · · · , rΩN) (12)

The resistance is set to be infinity for those nodes that do not have sub-models. Define:

GΩ = RΩ
−1 (13)

In order to solve the coupled sub-model currents and node potentials, combine Equations (9)–(11),
and the following equation is obtained:

{
A+Φ+/r+ = GΩ(E − Φ+ + Φ− − VP)

A−Φ−/r− = −GΩ(E − Φ+ + Φ− − VP)
(14)

It could be simplified as:

[
A+/r+ − GΩ GΩ

GΩ A−/r− − GΩ

] [
Φ+

Φ−

]
=

[
GΩ(E − Vp)

−GΩ(E − Vp)

]
(15)

In order to solve Equation (15) to obtain Φ+ and Φ−, boundary conditions and initial values are
needed. In this paper, the boundary conditions are: the node potentials at the edge of the negative tab
are set to zero; the nodes at the edge of the positive tab share the external current evenly. The initial
value of Vp is set to 0. The initial value of each element in E is equal to the equilibrium potential when
SOC = 1. The initial values of rΩ, rp and cp are also set to be the corresponding values when SOC = 1.
The currents of sub-models I could be obtained by substituting the Φ+ and Φ− into Equation (11).

The current flow in the positive foil and tab could be calculated as:

�J+ = −γ+∇Φ+ (16)

where�J+ is the current flow in the positive foil and tab; γ+ is the electrical conductivity of the positive
foil and tab.
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Similarly, the current flow in the negative foil and tab could be calculated as:

�J− = −γ−∇Φ− (17)

where�J− is the current flow in the negative foil and tab; γ− is the electrical conductivity of the negative
foil and tab.

3.2. Thermal Model

The schematic of the thermal part in DPECM is shown in Figure 10. Each sub-model consists
of a parallel branch of the current source and capacitor, a resistor and a voltage reference [28]. The
current source represents the heat generation source. The capacitor represents the heat capacitance
of the sub-model. The voltage reference provides the ambient temperature of the sub-model. The
resistor represents the resistance of heat conduction and convention from the sub-model to the ambient
environment. The heat conduction in the cell is modeled by the resistors between two adjacent nodes.
The values of the resistors are calculated through the thermal properties of each layer using the method
proposed by Chen et al. [40].

The heat generation of each sub-model is composed of irreversible and reversible heat as Equation
(18):

q̇g,i = i(e − (ϕ+ − ϕ−)) + iT
∂e
∂T

(18)

where q̇g,i is the heat generation rate of the i-th sub-model; T is the temperature of the sub-model.

q̇ Cp

Rh

Tamb

T(i,j)

Figure 10. Thermal model.

Assume that the number of thermal nodes in Figure 10 is M. As the positive and negative tabs do
not have connected sub-models, where the generated heat of those nodes are set to zero, so the heat
generation rate of all of the sub-models could be described as:

Q̇g =

[
0 0 · · · 0︸ ︷︷ ︸

M−N

q̇g,1 q̇g,2 · · · q̇g,2N−M︸ ︷︷ ︸
2N−M

0 0 · · · 0︸ ︷︷ ︸
M−N

]′
(19)

The heat conducted from other nodes could be calculated as:

Q̇c = AtT (20)
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where Q̇c is an M-dimensional vector representing the conductive heat; T is an M-dimensional vector
representing temperatures of all nodes; At is an M × M matrix representing the thermal connectivities
of nodes in the thermal model, which is defined as:

AT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
M,i �=1

∑
i=1

f T
c (1, i) f T

c (1, 2) · · · f T
c (1, M)

f T
c (2, 1) −

M,i �=2
∑

i=1
f T
c (1, i) · · · f T

c (2, M)

...
...

. . .
...

f T
c (M, 1) f T

c (M, 2) · · · −
M,i �=M

∑
i=1

f T
c (M, i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where f T
c (a, b)(a, b ∈ 1, 2, ..., M and a �= b) is the connectivity function of the nodes in the thermal

model.
The heat generation rate of the i-th node in the positive foil and tab is:

q̇+i =
N

∑
j=1

f+c (i, j)(ϕi − ϕj)
2/(2r+) (21)

Therefore, the heat generation rate of all of the nodes on the positive foil and tab is:

Q̇+ =

[
q̇+1 q̇+2 · · · q̇+M︸ ︷︷ ︸

N

0 0 · · · 0︸ ︷︷ ︸
M−N

]′
(22)

Similarly, the heat generation rate of all of the nodes on the negative foil and tab is:

Q̇− =

[
0 0 · · · 0︸ ︷︷ ︸

M−N

q̇−1 q̇−2 · · · q̇−M︸ ︷︷ ︸
N

]′
(23)

The temperatures of all of the nodes can be calculated as Equation (24):

T = T0 + Δt(Q̇+ + Q̇− + Q̇c + Q̇g)/(mC) (24)

where T0 is the initial temperature vector; Δt is the step time; m is the equivalent mass of the battery
block corresponding to the sub-model; C is the equivalent specific heat capacity of the battery.

3.3. Solution

The above proposed model is built and solved using MATLAB language (M-code). The solution
of the potential and current density of each sub-model can be obtained by Equations (11) and (15). The
advantage of this method is that the variables in the electrical part are coupled directly. Then, the Vp

of the next step is predicted. At the same time, the outputs of the electrical model are used to calculate
the heat generation rate, so the thermal part of the model can be solved. The flow chart of the solving
method is shown in Figure 11.
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Initialization

Solve electrical sub-model

Update Vp for next step Solve thermal sub-model

Reach stop condition?

End

Yes

No

Figure 11. The flow chart of the solving method.

4. Results and Discussion

The simulated and experimental temperatures at the cell center (T(2, 2)) and positive side center
(T(1, 2)) during 1C, 2C and 3C discharge are shown in Figure 12. The simulated temperature conforms
with the experimental data very well, and the simulated temperature error is less than 1 °C. The accurate
temperature results indicate that the proposed model has the capability of predicting internal situations
in the cell.
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(a) Temperature at location T(2,2)
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(b) Temperature at location T(1,2)

Figure 12. Temperature validation at different discharge rates.

4.1. Non-Uniformity Distribution at the Initial State

During discharge, according to the structure shown in Figure 9, the current from sub-models
flows through the positive foil and then is collected at the positive tab end. After the current passes
the external circuit and comes back to the negative tab end, it is allocated to sub-models through the
negative foil. At the beginning of battery charge/discharge, SOC and temperature are uniform in all
sub-models since the battery is rested to steady state, but the current distribution becomes non-uniform
when the current flows to relatively narrow tabs. Figure 13a,b shows the current density in the positive
and negative current collectors, respectively. The direction of arrows represents the current direction,
and the length of arrows represents the magnitude of the current flow. Therefore, the current close
to tabs is larger than that in the opposite side. Figure 13c,d shows the potential of the positive and
negative collectors, respectively. Since the thickness of each foil is uniform, large potential drops are
produced close to tabs because of larger current flow in those areas. Figure 13e shows the current
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density in sub-models. The potential differences between two end nodes (ϕ+ − ϕ−) of sub-models
close to tabs are smaller than that of the central part. At the same time, the polarization voltages
of all of the sub-models are zero, and the equivalent potentials of all of the sub-models are equal
at the beginning of the discharge. Therefore, the current flows through the sub-models, decided by
Equation (2), close to tabs are higher at the beginning of the discharge process. The temperature close
to tabs, shown in Figure 13f, is higher due to higher current density in foils and sub-models.
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(a) Current flow in the positive collector
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(b) Current flow in the negative collector

(c) Potential distribution on the positive collector (d) Potential distribution on the negative collector

(e) Current density in the sub-models (f) Temperature distribution of the cell

Figure 13. Non-uniformity at the beginning of the 1C discharge.
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4.2. Non-Uniformity Evolution During Discharge

The non-uniformity becomes more complex after the initial state. It changes with the current
profile and ambient temperature. The distribution of the current density and temperature in the
sub-models could change dramatically, which sometimes even turns into an inverse distribution
compared with the initial state.

The distributions of current flowing through sub-models and temperature at the end of the 1C
discharge are displayed in Figure 14. Figure 14a indicates that the current density close to tabs becomes
smaller than those at the cell center, which is inverse compared to the situation at the initial state, as
shown in Figure 13e. This is associated with the non-uniform current accumulation and potential
change in the sub-models. The current of the sub-model is calculated by (e − (ϕ+ − ϕ−)− up)/rΩ,
so the current is decided by both the potential (e) and the voltage difference between positive and
negative foils (ϕ+ − ϕ−). The voltage difference between positive and negative foils close to tabs is
always smaller than that at the cell center during discharge because of the existence of foil resistance
and the current flow direction. While the accumulation of larger current in the sub-model causes lower
local SOC during the discharge process, the local SOC of the sub-models close to tabs becomes lower
than that at the cell center. Therefore, the potential difference of sub-models close to tabs and the cell
center increases gradually. The influence of the potential difference becomes stronger along with the
accumulation of non-uniform current distribution and finally dominates the current of the sub-models,
which inverses the current density distribution. Figure 14b indicates that the temperature at the cell
center becomes the highest, which is mainly due to the poor heat dissipation at the center.

(a) Current density in the sub-models (b) Temperature distribution of the cell

Figure 14. Non-uniformity at the end of the 1C discharge.

To further illustrate the evolution of internal non-uniformity during discharge, three points (P(1,2),
P(2,2) and P(3,2) in Figure 1) are selected to be analysis points. The current density and local SOC at
those three points are calculated and presented in Figure 15. Figure 15a indicates that the difference of
the local current density declines at the beginning of the discharge. The current at P(3,2) is the largest,
and the current at P(2,2) is the smallest. The current becomes uniform at around SOC = 0.38. After
the current crosses the point at SOC = 0.38, the current difference rises again, leading to the current at
P(2,2) being the largest. The current difference decreases again after SOC around 0.2.

The current non-uniformity will cause a local SOC difference of each sub-model as shown in
Figure 15b. The local SOC difference increases before the current cross point and decreases later, which
can be explained by its definition. The SOC, defined as:

SOC = SOC0 +

∫
idt

3600C
(25)
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is decided by the initial state and current flow through the sub-model. The local SOC difference reaches
the maximum value at the current cross point and then is eliminated by the inversed current density
distribution. The appearance of the current cross point is caused by the relatively flat characteristics of
de/dSOC and dr/dSOC between 0.8 > SOC > 0.2, as shown in Figure 16. The effects of resistance in
foils are counteracted by the parameter difference caused by the local SOC difference at the current
cross point. After the current cross point in Figure 15a, the increase of the de/dSOC difference becomes
larger and dominates the current distribution, which enlarges the difference of the current density.
It is worth noting that the direction of currents in sub-models remains the same, while the shape
of the current density distribution changes from the bowl-shaped distribution to the peak-shaped
distribution. The rapid increase in cell impedance after SOC < 0.2 makes the difference in current
density decrease again.
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Figure 15. Non-uniformity evolution during discharge.
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Figure 16. Parameter characteristics. OCV, open circuit voltage.

4.3. Limitation of Technique

As mentioned in Section 1, the distributions of internal potential, current density or SOC can
hardly be measured directly without changing the geometry and characteristics of the commercial
lithium ion battery. Though the proposed model has the capability of predicting internal temperature,
current density and potential, only the distributions of internal temperatures can be measured even
using a customized battery. Therefore, only the internal temperatures predicted by the proposed model
are validated at the present stage.
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5. Conclusions

In this paper, a DPECM model consisting of a directly-coupled electrical model and a thermal
model for a lithium ion battery is proposed. The model is simpler than the 3D electrical-chemical
thermal model, and the parameters are easier to obtain, which is similar to the lumped ECM model.
However, the proposed model has the capability of simulating the internal distribution of the current
density, potential and temperature inside a cell. The model is validated by comparing the simulated
temperature with measured results at test points in a customized cell that is embedded with nine
T-type thermocouples. The simulated temperature error is less than 1 °C, indicating that the model can
be applied to predict the internal characteristics of the battery. Summarizing the simulation results, the
following conclusions can be obtained:

1. The initial non-uniformity of current density inside a 35-Ah NCM pouch cell is caused by the
electrode foil resistance and relatively narrow tab.

2. The current flow through the sub-models close to tabs is higher than that at the center at the
beginning of discharge, because the potential drops in positive and negative foils.

3. A current cross point exists during the constant discharge process. The local SOC difference
increases with the reduction of the average SOC until the average SOC arrives at that point and
then decreases until the average SOC arrives at zero.

4. The current flow through the sub-models close to tabs becomes lower than that at the center at
the end of discharge due to the accumulation of the local SOC difference, rapid OCV drop and
rapid resistance increase.
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Abstract: Buildings consume approximately 3
4 of the total electricity generated in the United States,

contributing significantly to fossil fuel emissions. Sustainable and renewable energy production can
reduce fossil fuel use, but necessitates storage for energy reliability in order to compensate for the
intermittency of renewable energy generation. Energy storage is critical for success in developing a
sustainable energy grid because it facilitates higher renewable energy penetration by mitigating the
gap between energy generation and demand. This review analyzes recent case studies—numerical
and field experiments—seen by borehole thermal energy storage (BTES) in space heating and domestic
hot water capacities, coupled with solar thermal energy. System design, model development, and
working principle(s) are the primary focus of this analysis. A synopsis of the current efforts to
effectively model BTES is presented as well. The literature review reveals that: (1) energy storage
is most effective when diurnal and seasonal storage are used in conjunction; (2) no established link
exists between BTES computational fluid dynamics (CFD) models integrated with whole building
energy analysis tools, rather than parameter-fit component models; (3) BTES has less geographical
limitations than Aquifer Thermal Energy Storage (ATES) and lower installation cost scale than hot
water tanks and (4) BTES is more often used for heating than for cooling applications.

Keywords: borehole thermal energy storage; seasonal thermal energy storage; BTES; ground source
heat pump (GSHP) transient system simulation tool (TRNSYS); EnergyPlus; diurnal storage; solar
thermal; solar-coupled GSHP; system modeling; component modeling

1. Introduction

Optimizing the performance of a sustainable and renewable grid is becoming an increasingly
important topic. Societal dependence upon energy has increased significantly in the last several
decades; from 10 billion MWh in 1950 to 28.5 billion MWh in 2013, totaling a 280% increase in total
energy consumption in the United States [1]. Population has grown from 150 million to 316 million
during the same period, indicating an energy use per capita increase of 33%. Fossil fuels generate 72%
of the electricity produced in the United States, negatively impacting air quality and contributing to
global warming [2–5].

Buildings consume approximately 3
4 of total electricity generated in the United States and

represent about 40% of the primary energy use. Building heating, ventilation and, air-conditioning
(HVAC) systems are also major energy users and drivers of electric peak demand [3]. Electric
utilities meet peak demand with fossil fuel energy sources because of convenient storage and quickly
accessible energy [6–8]. Peak demand from buildings therefore drives fossil fuel-based pollution.
To minimize pollution and building energy use, investigation of non-fossil fuel energy sources in
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both grid independent and grid-connected capacities is vital [9–13]. However, renewable energy
sources are highly variable because of their dependence upon weather [11,12]. Energy storage is one
solution for increasing grid flexibility and facilitating greater penetration of renewables. Sovacool et
al. stated that the United States’ grid cannot accommodate wind and solar penetrations higher than
35% without failure if solely dependent on renewable technologies with no method for storage due to
their intermittent nature [11]. Others agree with this study, finding penetrations of 30–33% plausible
with no energy storage [12,13]. Thermal energy storage at the building level can relieve electric peak
demand and fossil fuel emissions.

A majority of renewable grid solutions consist of distributed generation (DG) with energy
storage and smart-grid control [4,5,9,14–18]. A number of studies indicate that a diverse portfolio
of different energy management techniques, including energy storage, are necessary for sustainable
and reliable energy use [11,12,19,20]. Jacobson et al. provide a thorough economic feasibility analysis
implementing wind, water, and solar (WWS) renewable energy generation with the grid, primary
reliability stemming from energy distribution algorithms coupled with various methods of energy
storage [12,19]. Mason et al. demonstrate a similar renewable energy analysis in New Zealand,
concluding that generation mixing, combined with both hydro and virtual energy storage, as well as
load shifting allow for a 100% renewable energy grid [20]. Becker et al. illustrate that expensive energy
storage can be minimized by selecting the right combination of energy generation depending upon
the transmission grid [21]. Others conclude that grid flexibility and energy storage are required to
achieve higher renewable energy penetrations with larger grid sizes [4,22,23]. Nordell concludes that
varying solar intensity, a primary energy source results in the need for seasonal storage in conjunction
with short term storage [24]. According to Hyman, installation of thermal storage results in optimal
outcomes with time variant loads, time dependent energy costs, and previously required equipment
or system upgrades [25]. Marnay et al. claim that decoupling thermal energy and electrical energy
requirements is potentially cost effective because it allows for the charging and discharge of energy
storages during cost effective periods for otherwise unrelated loads [26].

Among different storage technologies, thermal energy storage nears 100% round trip efficiency,
compared to the 80% efficiency batteries possess [27–29]. Using thermal storage for viable solar
energy utilization through solar thermal panels to meet building heat loads becomes an important
discussion [13,28,30,31]. Excess thermal energy generated throughout the day can be stored for either
short or seasonal periods [32,33]. Since seasonal storage might have slow charging or discharging rates,
coupling seasonal storage with diurnal storage might bridge this gap. Diurnal thermal energy storage
takes the forms of chilled water and ice storage for cooling, and hot water tank storage for heating
with greater energy transfer rates [30,32,34–37]. Seasonal thermal storage stores thermal energy when
solar radiation or other energy sources are abundant or inexpensive to avoid energy shortages during
periods of limited sun exposure or high energy cost [30,31,34,36,38–41]. The practices of using water
tanks as a diurnal buffer in conjunction with solar collectors, and ice storage with conventional chillers
are well documented [13,25,30,32,33,35]. Seasonal storage for both heating and cooling applications
remains an emerging technology [30,31,34,39,41–46]. Therefore, coupling solar energy with sensible
storage for diurnal and seasonal periods is a logical next step for DG and higher renewable energy
penetrations, especially with thermal energy end use [9,14,35,41,46–49].

Thermal energy generation is readily implemented with DG mini-grids because thermal energy
supports higher roundtrip efficiencies [8,15]. However, solar heating systems present the paradox
of being available during the day when the sun is visible and remaining offset from peak demand
periods [30,43]. This mismatch between utility energy demand and renewable energy supply is
dubbed the “duck curve” [6,7]. Storage thus becomes a necessary consideration when implementing
solar energy in the smart grid discussion [11,12]. Thermal storage can manifest in many different
forms, which will be discussed throughout the paper [25,30,34,38,45,50–53]. Because building HVAC
systems provide a major draw on the electrical grid, addressing HVAC loads with thermal energy
is a practical grid decentralization solution, with solar thermal panels readily implementable at the
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demand side [8,27,38,46,50]. This study reviews seasonal subsurface thermal energy storage systems
that accommodate entire load or partial (peak) load demands. Concentrated solar power plants are not
included in the review, as the focus of this review is the system demand side [28]. A brief discussion of
other seasonal energy storage techniques is shown in Section 2. Modeling techniques and tools, with
advantages and shortcomings are considered in Section 3. An overview of diurnal thermal energy
storage is provided.

2. Seasonal Thermal Energy Storage for Meeting Demand Side Space Heating, Cooling and
Domestic Hot Water (DHW) Loads

Sensible thermal storage collects energy by increasing (or reducing) the temperature of a medium
with finite heat capacitance (typically water) [30,54,55]. Seasonally, it is stored in a variety of mediums
for use during periods of higher demand and/or limited energy availability [30,39,44,55–60]. The most
prominent modes of storage found by this literature review are: (1) Hot Water Energy Storage (HWTES);
(2) Gravel-Water Thermal Energy Storage (GWTES); (3) Aquifer Thermal Energy Storage (ATES); and
(4) Borehole Thermal Energy Storage (BTES) [34,44]. Each storage method presents various advantages
such as cost, location, capacity, and energy discharge capability. Among these four, BTES is the most
flexible energy storage technique [61] and therefore is the primary focus of this analysis because of
universal demand-side energy storage and resulting peak-load grid draw mitigation [33,39,41,57,61].
Other thermal storage methods are briefly described below.

2.1. Hot Water Thermal Energy Storage (HWTES)

Hot Water Thermal Energy Storage functions similarly to a hot water boiler: it uses heated water
contained in tanks, well insulated to reduce heat losses and extend the effective storage period of the
tank [30,55,57]. Hot water tanks are not commonly integrated with the surrounding geometry [38,46].
However, Dincer and Rosen present a buried concrete tank case study, despite significantly higher
installation costs [32]. Similar thermal properties of the tank cement and surrounding soil provide
additional heat capacity and a greater quantity of working fluid [32].

2.2. Gravel Water Thermal Energy Storage (GWTES)

Gravel water thermal energy storage units are comprised of a water gravel mixture insulated on
the top and sides in a tank [62,63]. The specific heat of this mixture is lower than pure water [30]. As a
result, the container must then be larger than a water-only storage tank to store comparable amounts
of thermal energy [44,64]. Figure 1 below is a schematic of a gravel-water tank.

Figure 1. Gravel water thermal energy storage concept [57].

2.3. Waste Snow Pits and Ice-Pond Seasonal Thermal Storage

The primary methods of storing cooling capacity energy for seasonal periods of time are: (1) waste
snow pits/warehouses and (2) ice-pond seasonal cooling storage [65]. Historically, snow and ice
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have been stored by Scandinavian cultures, insulated in shelters termed Fabrikaglace [66]. While snow
utilizes latent heat storage, large volumes of storage are still required for adequate cooling capacity [67].
Taylor presented the first ice pond for air conditioning at Princeton university in 1979, producing
annual savings of 31,000 $/year [68]. Yan et al. optimize a seasonal cold energy storage to supplement
capacity to existing chillers with a payback time of 6 years [69]. Skosberg and Nordell describe a snow
storage system in Sundsvall, Sweden for a hospital hosting a well-insulated pit equal to 2000 MWh of
cooling capacity [45]. Efforts to develop seasonal cooling storage methods are most notably made in
Japan and Norway [45,65,69–71].

2.4. Aquifer Thermal Energy Storage (ATES)

Similar to GWTES, Aquifer Thermal Energy Storage collects energy in a mixture of water and
earth, but utilizes natural formations [30,58]. Aquifer energy storage provides an alternative to the
previously mentioned storage systems due to ideal combinations of the high specific heat provided
by water as well as lower cost attained from the absence of a tank [59,60]. However, ATES requires
specific considerations to ensure proper performance. For example, ATES must use benign working
fluids to minimize the risk of aquifer contamination with hazardous chemicals [72]. Thus, water is
usually the working fluid due to mild environmental impact in comparison to other high specific
heat fluids such as glycol mixtures and hydrocarbon oils [37,44]. Aquifers work with a heat source,
charged by heated fluid from solar collectors, and a heat sink linked through a heat exchanger to heat
the fluid required for DHW or space conditioning end use. ATES can be used for heating or cooling
purposes: during summer, cool water temperatures are used for cooling, and during the winter, warm
water (solar heated or not) is used for heating purposes [32,61,73]. ATES is characterized by a defining
layer of non-porous rock between two volumes of water at different temperatures [30,36,57,60]. Water
thermal pollution can have a negative impact on the environment, harmful to many species, and must
be mitigated [74]. To reduce the impact of heated groundwater, water used in ATES is isolated, with
surrounding rock possessing little porosity in order to prevent heat contamination [34]. It is important
to note that the plausibility of this technology is strictly limited to preexisting aquifer formation.
Figure 2 details a simplified ATES schematic.

Figure 2. Aquifer thermal energy storage concept sketch [30].

The lack of insulation in this system is an important design consideration. To avoid excessive
heat losses, the maximum volume to surface area ratio should be achieved through optimal borehole
depth for the fluid bearing pipes [30,32,58,60]. In ATES storage, the thermal front is important for
determining storage efficiency [60]. A thermal front characterizes the temperature profile between
injected water into ATES, for storage, which if allowed to reach the production well will result in
greater heat loss [60]. Rock-cavern thermal energy storage, or CTES, is an energy storage method
similar in concept to ATES [31,39,61]. CTES functions by using heat exchangers to exchange heat
with a water storage medium, contained by an artificial underground spaces (the distinction from
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natural aquifers), which can be very expensive to construct [31,39,61]. Because of this expensive
construction cost, existing spaces are often utilized such as abandoned mines or areas previously used
for underground oil storage [31,39]. Drilling cost for ATES systems range broadly from 200 $/ft to
970 $/ft [75,76]. Due to the nature of ATES open-loop configuration, typically only two boreholes are
need in comparison to many for a comparable energy storage system of BTES variety and may cost
significantly less. These systems offer high extraction and injection rate, and are used in some cases as
both diurnal and seasonal storage, simplifying overall design [31,77].

2.5. Borehole Thermal Energy Storage

The primary seasonal thermal energy storage for heating presented in this review is BTES [43,78].
The underlying principle of the technology is consistent with the previous methods, BTES stores
thermal energy utilizing soil and rock as a thermal medium [30,34,43,64,78]. BTES is a prevalent choice
of seasonal storage because of its universal applicability, not limited to specific formations as with
ATES and GWTES [30,32,33,36,46,48]. However, variations in climate can impact the performance of
BTES systems [79]. Limitations of BTES include the comparatively large amount of heat loss compared
to insulated water tank or gravel tank systems [30,56]. ATES and CTES systems also see an added
advantage of combined short and seasonal time scale storage by combining large storage space and
water as the storing medium [24]. A final major concern for BTES installation is the drilling cost
associated with the borehole field, considerably more than in ATES configurations. A typical borehole
design can be seen in Figure 3 below.

Figure 3. Single borehole design concept [61].

Despite high drilling cost thermal energy storage using boreholes is still a cost effective option.
In comparison to thermal energy storage, batteries, a competing mode of energy storage, offer an
attractive energy storage solution because of reduced unit storage size. Despite this advantage, BTES
storage possesses a number of promising assets. BTES systems offer increasing energy return throughout
their lifespan, while battery longevity is limited by the chemical reactions utilized [41,80]. The cost of
batteries ranges from $300/kWh, to $400/kWh for medium and large size storage applications such
as the Tesla Powerwall [80–83]. BTES energy storage at Drake Landing has a capital cost of $2.6/kWh
(thermal) [43]. BTES stores thermal energy and not electrical energy which represent significantly
different capital costs. A qualitative table is supplied below in Table 1. The intent of this table is
to impart a comparative sense of the key advantages and disadvantages of various energy storage
methods. Capacity values for snow waste pit are around half of liquid water due to the significantly
lower density of snow compared to liquid water or ice. In contrast, ice ponds offer higher storage
capacity than water due to latent heat of fusion and a density similar to liquid water.
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BTES is the focus of this review and the principles of construction, component modeling, system
working principles, and integration into systems will be discussed in the following sections.

3. BTES Principles

BTES effectively provides a large amount of heat storage despite reduced specific heat of the
storage medium because of an easily increased storage volume [30,34,64]. Ground source heat pumps
(GSHPs) can be coupled with BTES technology in two distinct manners. A passive GSHP system
extracts energy from the ground when heating is needed, using the higher ground temperatures
during the cold season [84,85]. These systems can utilize the ground as a heat sink during the summer
season, combining both heating and cooling; the cooling heat rejection in this way can act as a
charging source [46,62,84,85]. He and Lam demonstrate heating and cooling using a single system
with energypiles in place of ground loop heat exchangers, simulated in TRNSYS [86]. The second type
of system is the variety implemented at Drake Landing Solar Community (DLSC), featuring seasonal
“charging” of the borehole with excess solar energy input to the ground [43,48,87–89]. However, DLSC
is unique in the fact that heating is provided by water to air heat exchange fan coils located in each
home [43]. The higher temperature of the systems ensure the longevity and efficiency of the BTES and
GSHP system in colder climates [47,89]. Nam et al. find that GSHP systems coupled with solar thermal
energy can maintain better soil temperature balances to perform at higher COPs over the lifetime
of the system [79]. Sliwa and Rosen summarize a number of natural and artificial heat regeneration
options for BTES alternative to solar thermal coupling [90]. Higher temperatures of the borehole after
solar charging result in higher GSHP COP’s and thus less electrical energy use overall. The second
system is of interest in achieving higher renewable energy penetration.

3.1. BTES Construction

BTES works by entrenching a series of vertically orientated pipes with a u-tube structure in the
soil, passing a working fluid through a heat exchanger, and transferring heat between the working fluid
and the surrounding soil. Supplementary heat storage is easily implemented by drilling additional
holes for heat exchangers [30,44,48,88]. Certain systems exist with buried horizontal piping, where
lower burial depths produce lower cost and more flexible installation options [61,84]. Seibertz et al.
ascertained that the lifetime and efficiency of shallow, geothermal systems is lengthened by allowing
for regeneration and efficiency rather than simply heating and cooling [59]. However, a large volume
of thermal storage material to the total surface area ratio is critical in order to minimize heat loss; thus
horizontal orientation can often be detrimental to the system’s ability to retain heat [84]. Likewise,
Lee finds vertical piping advantageous due to higher temperatures at lower depths in the winter and
lower temperature in the summer [61]. The comparatively large ground area required for horizontal
trenching is also not inherent to a building site, and seasonal ground temperatures can fluctuate
significantly at relatively low burial depths [84]. As a consequence of the presented disadvantages of
horizontally entrenched pipes, vertical pipes are the more prevalent selection [64].

Stored energy in BTES is extracted when needed by the pipe-soil interface acting as a heat
exchanger [43,64]. The design of BTES can vary in size, ranging from two pipes (one home) [91]
up to more than 500 pipes for large scale community systems [43,78]. Large communities such as
Drake Landing or Neckarsulm require larger BTES volumes for greater total storage in contrast to
single building applications [47,50,64,92]. This is because heating and cooling loads impact the sizing
of a borehole field [30,43,64,78]. Başer et al. conclude that undersized BTES volume will result in
greater heat losses and inefficiencies in their study; this is due to greater temperature gradients per
unit energy of storage, resulting in greater heat transfer rate [93]. A characteristic system design for
a community scale borehole is shown below in Figure 4. This type of system is representative of a
solar-coupled BTES system with GSHP, and is based on the design provided by Nussbicker et al. in
their study in Crailshem, Germany [48]. Solar collectors collect energy when solar radiation is present,
and depending upon the system demand either circulate water to meet heating demand or transport
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the heated fluid to the short term storage tank [30,38,39,78,94,95]. Thermal energy stored in the water
tank is dispensed during the evening to meet peak demand or sent to the BTES if unneeded. BTES
functions in either charging or discharging mode, pumping water from hot tanks to the centre of the
borehole field to inject energy or pumping cool water from the outside of the borehole field inward to
extract the energy [30,43,78,96].

Figure 4. Concept diagram of solar-coupled GSHP with integrated BTES and diurnal storage [48].

A borehole field would ideally be insulated at the boundaries to minimize heat transfer or
mass transport in undesirable directions [30,43,47,78,91]. However, insulating the sides is usually
infeasible because of exponentially increasing cost. Excavation costs in borehole construction are
already normally between 24 and 40% of installation totals [30,33,34,36,97].

3.2. BTES Performance Metrics

Measuring the performance of BTES systems can be done in many ways. For example, the COP
of the GSHP used in the system (if a heat pump is the primary driver for the system) is a useful metric
if the desired goal of the installation is to improve heat pump performance by raising evaporator
temperatures [47,79,84,91]. A more common measure of system efficiency remains the BTES efficiency,
which is a measure of the total heat extracted (Qextracted) divided by the total heat injected into the
storage (Qinjected), as shown in below equation [43,48,91,98]:

ηBTES =
Qextracted
Qinjected

(1)

This metric is directly impacted by the properties of the soil porosity, conductivity, water table
presence, and groundwater flow [43,78,98,99] and is reported in [43,64,98]. High temperature BTES
storage with direct heat exchange coupled to air units rather than heat pump assisted systems exist
in installations such as DLSC. It is concluded that efficiency performance metric will likely be lower
due to higher ΔT and subsequently greater heat losses. Also, due to a “warmup” period for borehole
temperatures to reach target operating temperatures, less heat may be extracted during this warmup
period than normal operation leading to a misleadingly low efficiency measure [43,96]. This definition
of borehole efficiency is used in [43,47,48,50,64,91,98,100].

Solar fraction refers to the amount of heating demand met with solar energy [43,101]. However,
other studies have used fraction of collected solar energy from the total available radiative energy
available [102]. The former definition is much more useful in energy supply as it explicitly states the
amount of heating energy that is provided from solar energy. Sweet and McLeskey define internal
system efficiency as the heat provided to the home divided by the total solar energy collected, thus
incorporating all system losses into their metric [50]. They also report total system efficiency (ηsytem,total)
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as the provided heat divided by the incident solar radiation upon the solar collectors, representative
equations below in the following equations:

ηsystem,internal =
Heat Provided to Homes

Heat Provided by Solar Collectors

ηsystem,total =
Heat Provided to Homes

Total Incident Solar Radiation on Solar Collectors
Not surprisingly, both of these fraction amounts are considerably lower than other system metrics.

While total system efficiency characterizes the overall performance of the system, solar fraction
provides a better understanding of how well the system meets an energy goal, and BTES efficiency
provides a better understanding of required energy storage size. This efficiency metric is discussed in
Sweet and McLeskey [50].

The most common economic measure of BTES system effectiveness is cost savings, usually
represented as a payback period contrasted with a conventional heating system [64,79]. This
representative value is useful for retrofits and small-scale studies, discussed in [64,79]. Larger
community scales systems are typically novel and difficult to compare against.

3.3. Examples of BTES Systems

Borehole Thermal Energy Storage makes a convincing case for effective STES based on multiple
studies with diverse applications [35,43,64,72,92]. Previous studies acknowledge the push for
centralized community thermal storage development, stating that the existing work on the performance
of single family homes is insufficient when compared to community sized developments [50,56].
The greater development of community scale BTES technology is attributed to the scalable efficiency
of solar assisted BTES technology with storage size [95]. Increasing thermal seasonal storage efficiency
sponsors less grid energy draw from space heating loads because they are met with stored solar
thermal energy [103]. Some numerical models validate with experimental data, but in large scale
studies, often numerical studies are the norm because of construction costs.

3.3.1. Residential and Small Scale Demonstration of BTES

Contrasting the movement towards larger, community centric BTES installations there are several
studies illustrating how coupled solar collectors can increase BTES efficiency [64,104–106]. These study
focus on smaller scale, low-cost BTES system from a greenhouse study or single buildings. For example,
Zhang et al. analyzed a retrofitted greenhouse possessing solar collectors, water tank, and a small
borehole field using both TRNSYS and validated with experimental data. The system achieved an
efficiency of 80% and 44% solar utilization and an expected payback of 14 years [64]. There are also
instances of storage coupling with other mediums such as gravel water storage [63,107].

3.3.2. Community and Large Scale Demonstration of BTES

There are a number of successful large-scale BTES installations, especially in Europe. Sibbet et
al. present a large scale and successful study at Drake Landing in Okotoks (AB, Canada) [43]. Drake
Landing is an energy efficient community where each home meets the Canadian gold standard of
building home efficiency [43,78]. Hugo and Zmeureanu confirm that improved home envelope thermal
efficiency can significantly reduce heating loads in cool climates [108]. Figure 5 shows the schematic
for the heating system at Drake Landing. The borehole field is insulated on the top, and runs through
two buffer tanks filled with hot water (top) and cold water (bottom). The tanks provide the water
needed for the BTES: heated water to store the energy in the ground from the hot water tank, and
cool water for the cool water tank to extract the energy from the borehole. The heat transferred to
the residential water lines provides DHW and space heating. Excess energy during the summer is
stored in the borehole field during the winter for later use. Solar collectors mounted on building roofs
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provide the heat source. Boilers in fall and winter are backups should unusual occurrence avert the
necessary energy. This system is an effective renewable energy storage system, where space and water
heating consume approximately 80% of the energy supplied to residences [109].

Figure 5. Design schematic of solar thermal energy system with short and long term storage [43].

Based on numerical and validated with experimental results, the overall performance for the fifth
year show that the system achieved:

• 94–98.5% STTS Efficiency (short term thermal storage)—Annual average

• Efficiency =
Qout,tank
Qin,tank

[98]

• 36–41% BTES Efficiency—5th Year
• 89–97% Utilized Solar Fraction (5th Year)

Reported BTES round-trip efficiency is relatively low at Drake Landing due to high groundwater
flow [98]. However, other studies have reported BTES efficiencies of 80–90% [46,48,64,98]. Thus,
proper site assessment regarding groundwater flow is important to promote higher efficiencies [98,99].
Seibertz et al. determined that monitoring of cooling behavior from thermal gradients makes it possible
to identify high ground-water flow zones using a decay time comparison [59].

McDaniel et al. numerically analyzed in TRNSYS the annual energy cost reduction of combined
heat and power coupled with a BTES system retrofit at the University of Massachusetts, Amherst
campus [98]. The thermal energy comes from preexisting steam systems, which operate at maximum
capacity during the summer months when demand and cost are lowest, storing the energy until the
winter. The seasonal shift of energy results in a payback time of 9 years, with a BTES efficiency of 90%.
This study from McDaniel delineates the relationship between increasing BTES efficiency and size,
with a higher efficiency resulting from a borehole field consisting of 6000 boreholes.

BTES storage utilization features more prominently in Western Europe than other regions of the
World [24,31,35,42,56,78,87,89,110]. Germany, Norway and Sweden, among the nations of Europe,
boast the greatest number of STES systems. Switzerland is the world leader in BTES use, with
annual geothermal heating of 1 TWh provided by installations [61]. Germany especially seeks to
utilize BTES for solar energy storage in communities [35,39,48,57,88]. Table 2 show some of the more
prominent examples.
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German practice appears to follow modularizing the construction of their BTES and accompanying
solar collectors by adding additional solar collectors and ground heat exchangers after initial
construction [48]. The Neckersulm borehole features the double U-pipe configuration validated
by Zeng et al. to improve heat exchange with the surrounding earth, and has both numerical and
experimental assessment of system performance [88,114]. The Crailsheim installation approaches
the issue of separating diurnal and seasonal storage by isolating two solar arrays, one to seasonally
service the BTES and another to charge hot water tanks for daily usage [48]. Attenkirchen provides
a buried the water tank used for daily storage in the center of the BTES field, recycling some of the
heat loss from the tank into the BTES [89]. Table 2 shows that solar assisted boreholes require less
volumetric capacity, with injected energy supplementing the performance of GSHPs. This is supported
by Rad et al. in a feasibility study of combined solar thermal and GSHP systems, determining that
solar assistance leads to shorter required borehole lengths to meet the same loads [46]. Figure 6 below
illustrates the relationship between increasing solar panel array area and increasing equivalent storage
for a solar thermal system. This relationship demonstrates that more collected energy necessitates
larger storage.

 

Figure 6. Increasing solar collector area and equivalent design storage of BTES.

4. Design and Modeling of BTES

Large costs for the construction of BTES tend to emphasis the importance in numerical simulations
to ensure economic and thermodynamic feasibility. Three types of programs are present in building
energy simulation: Building Energy Simulation (BES) tools such as EnergyPlus, building envelope
heat and mass transfer (HAM) programs such as WINDOW (window and daylight modeling software
from Lawrence Berkeley National Laboratory) and WUFI Pro (Wärme Und Feuchte Instationär, or
transient heat and moisture ) , and computational fluid dynamics (CFD) such as MODFLOW, COMSOL
and TOUGH2 [115]. Modeling of BTES requires appropriate tool selection, which depends on the
application and goal of the study: from whole building energy simulations, to more detailed heat
and mass transfer programs. Accordingly, this study reviews various modeling techniques based
on component level design, system level design, as well as a development of integration between
these two.

4.1. Parameters to Consider in BTES Modeling and Development

Total storage capacity of the borehole depends on total volume of the borehole, porosity, and
overall specific heat [30,40,99,116]. Catolico et al. assert that lower thermal conductivities allow for
higher heat retention and thus better borehole efficiencies [99]. This is due to more concentrated
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thermal plumes which cause higher thermal gradients near the pipes and thus better heat transfer to
and from the pipes during discharge periods [99].

Thermal conductivity depends on the material or soil temperature, but is often considered a
constant property [116,117]. Moradi et al. utilize a model developed by Smits et al. adapted to the
relevant geometry, treating the thermal conductivity as a constant [116,118]. Moradi finds that thermal
conductivity increases proportionally to increasing water content because soil is a medium consisting of
air, water, and organic matter in COMSOL, validated with experimental data [93,116,119,120]. Higher
fractions of water lead to higher thermal conductivity and storage as the respective coefficients increase;
these higher fractions of water are coined “water bridges” [119,120]. Greater measured porosity leads
to higher levels of saturation with water present, resulting in higher thermal conductivity. In addition,
thermal conductivity rises due to (1) increase in solid matter per unit volume; (2) less soil pores filled
with air; (3) consistent contact for conductive heat transfer flow [120].

Soil saturation will lead to higher convection coefficients as well as higher thermal conductivity,
which unfavorably impacts Borehole heat retention, and should be avoided [121]. Boundary layer
models directly impact simulation accuracy and are critically important [99,114,116,119]. Convective
heat losses induce more heat loss than conductive heat losses, however both lower the efficiency
of BTES [99,116,122]. High permeability in soils, both unsaturated and saturated, leads to higher
convection coefficients and subsequently higher heat losses [99,116]. This confirms McDaniel’s
observation that high groundwater flows lead to low BTES efficiency [98]. Li et al. establish that
this applies only to BTES with solar or other heat injection, with GSHP installations lacking heat
injection featuring higher thermal restoration in areas with higher groundwater flow [123]. The
effects of convective boundary layers regarding heat transfer from soil to pipe have not been fully
explored and should be studied further to fully understand the effect upon BTES efficiency [99]. The
appropriate sizing of BTES and accompanying diurnal storage with ensuing codependence dictates
system performance [41,44,49].

4.2. Component Design Level Modeling Software and Development

Numerical solutions providing a Multiphysics approach to defining ground heat transfer
providing more accurate and robust solutions than a parameter fit white-box model approach taken by
a larger whole building platform. Clio and Mirianhosseinabadi note that while numerical solutions
present a high degree of versatility and accuracy, often they are prone to computational inefficiencies
as a consequence of complicated hybrid coordinate systems, contrasted with analytical solutions [124].
Their study confirms that TRNSYS and EnergyPlus are highly utilized tools for residential homes in
BTES simulation [124]. Simpler models like G-functions in GLHEpro (for EnergyPlus) or the Duct
Storage Model developed by Hellstrom in TRNSYS may not accurately depict BTES heat transfer and
fluid flow. BTES modules within larger simulations do not solve using a multiphysics approach, nor
do they take ground water flow into account, to facilitate acceptable simulation times [125,126].

Studies examining more in-depth heat transfer in soil use COMSOL, GLHEpro and
TOUGH2 [99,116,125,127,128]. COMSOL is a finite element analysis tool used for multiphysics
approaches, such as fluid flow behavior [129]. TOUGH2 is a numerical solution program for heat and
fluid flow in porous and fractured media [130]. GLHEpro uses a numerical simulation based upon
“G-functions” which provide an accurate solution to the temperature profile of the earth envelope and
do not have lengthy computational times [125]. Additionally, MODFLOW is the USGS program for
modeling groundwater flow, or other flow in porous media [131]. Certain projects exist that utilize
MODFLOW in [132].

In addition to commercially available software, Zeng et al. developed a quasi-three-dimensional
model for the thermal network in a borehole field for a multitude of heat exchanger arrangements [114,133].
A more popular model often utilized in optimization case studies for BTES modeling is Ingersoll’s
infinite-line source model, and has been used in many studies as the underlying solution to the heat
transfer in BHE [134–136]. Yet more optimization studies on system design use Hellstrom’s DST model
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in Kjellsson et al. [137]. Finite line-source models by Zeng et al. and Molina et al. (with groundwater
advection) illustrate the importance of consideration of axial heat transfer in BHE fields especially with
shorter lengths [133,138]. Eskilson and Claesson present a detailed three dimensional computer model
combining the interactions between convective heat flow and conductive ground process, which is
incorporated into the GLHEpro software used by the EnergyPlus BES platform [139]. Catolico et al.
establish that there are a number of existing models for modeling the behavior of heat and fluid flow
in the ground, but there is a lack of effective property models for evaluating the pertinent heat and
mass transfer parameters [99]. However, Shonder et al. present parameter estimation techniques
coupled with Ingersoll’s one-dimensional Borehole model giving an accurate solution for variable
conductivities and heat capacities of grout and fluid of the Borehole [140].

4.3. System Design Level Modeling Tools and Efforts to Couple System Level and Component Level Models

TOUGH2 and COMSOL provide more robust analyses of BTES and can accurately model the heat
storage. In contrast to high accuracy heat characteristic modeling, TRNSYS, EnergyPlus, and ESP-r
are commonly used modeling platforms for system level analysis, discussed in Section 4. TRNSYS is
the most prevalent modeling program when modeling BTES, using the Duct Storage Model (DST) to
predict ground heat transfer [46,47,50,62,64,86,91,92,96,98,126]. There exists certain efforts to use open
source EnergyPlus [41,49,124] which relies upon an outside program, GLHEpro, to perform the sizing
parameters of a borehole [125,127,141]. Other studies have attempted to model vertical heat exchanger
behavior in ESP-r [43,94].

The discussion then turns to coupling whole-building analysis tools (EnergyPlus, TRNSYS),
with accurate multiphysics solutions (TOUGH2 and COMSOL). This approach, used for enhanced
building envelope modeling, is known as “BES-HAM” or “BES-Hygrothermal” Coupling [115,142–145].
Co-simulation of software using MatLab and Simulink environment is not a novel process for HVAC
application [142–144,146–149]. Ferroukhi et al. present a successful effort of TRNSYS and COMSOL
co-simulation to model the hygrothermal effects in a multi-layer wall [143]. Huang et al. present a
co-simulation of COMIS tool with EnergyPlus for hygrothermal effects of moisture transfer across
multiple zones [150]. There are more efforts that seek to co-simulate TRNSYS and MODFLOW [151].

Catolico et al. present a BTES model utilizing TOUGH2, which at present has not been
co-simulated with any BES analysis tool [99]. TOUGH2 can accurately model the effects of groundwater
flow upon heat transfer in soil and thus would be a useful tool for effective modeling, especially in
studies where high ground water flows are suspected [43]. The modular approach of the “types”
built in TRNSYS facilitates co-simulation with programs like TOUGH2 and COMSOL, using Simulink
“S-functions” as a linking mechanism to combine accurate building energy evaluation, and BTES
heat transfer modeling More recently, Rad et al. developed an updated TRNSYS type for BTES
simulation [100]. The type is based on the Ground Heat Exchanger Analysis Design and Simulation
(GHEADS) developed by Leong and Tarnawski [152]. The advantage of the GHEADS model over the
Duct Storage Model provided by Hellstrom is a coupled heat and moisture flow model, the presence
of ground water table, and soil freezing and thawing cycles. When applied to the DLSC community
design, Rad et al. found a 38% reduction in Borehole footprint a number could be achieved for similar
system performance. This model by Rad et al. is a comprehensive model that combines complex
coupled heat and mass transfer BTES modeling with system level modeling.

5. System Sizing and Integration of Diurnal and Seasonal Storage

BTES functions in either charging or discharging modes that are rather slow compare to diurnal
storage systems such as water tanks or ice storage For example, the BTES system in DLSC took about
4–5 years to fully charge [43]. For this reason, some studies have proposed and/or implemented
hybrid diurnal/seasonal systems illustrated in Figure 4. Solar panels heat water while solar irradiation
energy is present, and pass the heat energy to the evaporator side of the heat pump. If system demand
does not require solar energy, the heated fluid is stored in a water tank, or transported to the BTES to
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store for later use. The water thus heated from the boreholes is used to raise the temperature of the
evaporator in a ground source heat pump and finally meet system demand [84,85].

System configuration is relatively consistent across design scenarios except in the case of
Zhang et al. and DLSC when BTES temperatures are high enough to provide system heat by direct heat
exchange, and GSHPs are not used [64,96]. However, the addition of short term storage is required
to provide higher heat transfer rates from fluid medium rather than the earth medium of BTES [41].
Additionally, the sizing of diurnal water based storage, BTES, and solar collector area are dependent
upon both each other, and the heating and cooling loads [41]. Sweet and McLeskey analyze the sizing
of a borehole for a single family residence in TRNSYS [50]. Six different home sizes (from 75 m2 to
220 m2) were parametrically analyzed with six different BTES sizes ranging from 10 m3 to 50 m3 with
solar collectors sized to 80% of the south facing roof on the home (Kalaiselvam notes that as a rule
of thumb, solar collectors should be sized to 10% of the total floor area [33]). The results of the study
show that for each home size, a borehole field of 15 m3 provided optimal results, independently of the
home size and solar panel area.

Effective storage system sizing is based upon both demand loads and supplied energy [43].
Hseih et al. performed a parametric analysis study in Rheinfelden, Switzerland of diurnal and STES
configurations in a suburban area with 11 homes using EnergyPlus. With the addition of diurnal
thermal storage the study concluded that system efficiencies rapidly increase, from 15% to 47%
retention of solar fraction. The addition of long term storage increased the solar fraction used from
47% to 61%. Converting the system to centralized rather than decentralized storage reduced the
system solar fraction utilization from 61% to 44% due to heat losses from transport piping. However,
while the decentralized long term storage is effective for a smaller community, the potential to reduce
installation costs outweighs the effectiveness of the decentralization in large applications. This is
similar to the community in Okotoks (AB, Canada) [43,72]. The study by Hseih et al. acknowledges
the need for water based diurnal storage integrated with STES for effective utilization of energy from
solar collectors. Roth contributes a number of seasonal storage solutions that utilize a diurnal storage
component in order to ensure the proper distribution of cooling energy [153]. Xu notes that water
based storage is advantageous for faster response times, while seasonal thermal energy storage has
comparatively lower discharge rates [36].

In addition to seasonal energy storage, diurnal thermal storage stores excess renewable
energy generated during the day for later use at night, improving system efficiency [30,32,43,154].
Alternatively, some diurnal energy storage seeks to store energy purchased throughout the day during
periods of off-peak loading [6,155,156]. Lee, Joo, and Baek demonstrate how thermal collector control
strategies can be implemented to eliminate space heating during peak electric hours [18].

Rather than providing energy for the entire day, peak energy solar eliminates energy use during
the most expensive energy cost periods associated with on-peak demand. Various combinations
of these solar and off-peak heating purchasing schemes exist [88,155,156]. In addition to reducing
consumer cost, peak-load generators often operate at much lower efficiencies than baseload generators,
and implementation of solar thermal demand-side systems can reduce peak-load generator use [28].
Wholly grid-independent systems require significantly more storage than the aforementioned partially
grid-reliant systems to meet 24 h demand, presenting difficulties and additional costs during
installation [12]. Hyman details a thorough economic analysis for the installation details of thermal
energy storage [25].

Diurnal Storage for Space Cooling Using Absorption Chilling or Ice Storage

Diurnal thermal storage can also provide space cooling by releasing stored heat to an absorption
chiller, which produces cooling from a heat input via chemical process [155–157]. Chillers of this type
have an expected performance (COP) of 0.15–0.6 [157]. The low COPs delineate that absorption chillers
are more economical when used with waste or solar heat, rather than purchased heating [155–157].
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Absorption chillers can increase solar thermal energy penetration during the cooling season if seasonal
thermal energy storage is not available [155,156].

Most Cooling Thermal Energy Storage (CTES) is typically short term and provided by storing
chilled water, or ice, chosen because of high heat capacity, due to stored latent heat. For example,
chilled water with a 5 ◦C temperature difference has a density storage of 5.8 kWh of cooling energy
per cubic meter of water [158], whereas ice storage boasts an energy storage density four to six times
that of cold water storage [159]. Cooling capacity storage is an emerging technology utilizing natural
resource to produce the intended affect [66,160–162]. The IKEA building, located in Centennial (CO,
USA) utilizes combines an ice storage units in conjunction with a GSHP BTES system to supplement
cooling season capacity [163]. After a review of the literature, it is apparent that no combined system
for seasonal and diurnal cooling exists comparable to coupled diurnal and seasonal BTES with water
tank systems.

6. Conclusions and Research Outlook

Energy storage is a critical component for future renewable energy grid performance [11,12,19–22].
The current United States grid relies heavily upon centralized generation and distribution transmission
of energy in electrical form. This is not favorable for the implementation of intermittent renewable
energy, which requires storage [11,12,19]. Additionally, thermal energy storage presents considerably
lower capital cost than electrical energy storage [43,83]. This literature review considers seasonal
energy storage mechanisms demonstrated in recent implementation. Acknowledging the importance
of energy storage for renewable energy penetration, previous studies state that examination of various
options for optimal energy management and system reliability remains the primary concern [164].
While BTES is the most universal STES method, other methods may be more effective depending
upon geography and immediate hydraulic features [24,30,38,57]. The path to effective STES design
is best navigated by thorough evaluation of environmental site characteristics and soil properties.
Additionally, proper design practice regarding the integration of diurnal and seasonal storage yield
higher system performance [37]. Integrated diurnal and seasonal energy storage provides a critical
combination of extended storage periods (seasonal storage) and high discharge rates (diurnal storage)
and promotes the highest levels of renewable energy penetration and efficiency, providing robust
demand response. BTES modeling tools range from in-depth analysis allowing for subsystem design,
to whole building simulations that incorporate simpler subsurface heat transfer models into energy
design analysis [50,124,127]. Tool selection depends on the desired type of analysis, studies looking at
whole building/community use analysis tools such as EnergyPlus and TRNSYS, while more detail
Multiphysics tools such as COMSOL and TOUGH2 are used to model the heat transfer characteristics
of BTES. Careful review on previous studies highlights that:

• Community scale BTES requires a “charging” period of few years for the design system
temperature to be reached;

• Most single-residential scale BTES often do not require solar thermal panels because of low system
demand, which thermal regeneration in the ground can recover;

• BTES is more commonly used for space heating and DHW applications than cooling applications;
• BTES is less geographically limited than ATES and requires lower installation costs than HWTES

or GWTES;
• Coupled diurnal and seasonal storage increases the overall utilization of captured solar energy;
• Coupled diurnal and seasonal storage systems are much more prevalent for heating than

cooling applications;
• Performance metrics for BTES systems and components can be inconsistent across the field,

however BTES efficiency is always defined as the fraction of energy extracted divided by the
energy injected;
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• Although there are a handful of studies coupling BTES at the component model with a system
level simulation, most previous studies have not bridged the modeling gap between the two
levels of modeling.

Coupling integrated system and component level models is critical for modeling practice to
improve system performance and lower capital costs. Jacobson et al. present a nation scale model to
illustrate the effect of energy storage with renewable generation. However, no such model exists that
segregates different energy end uses, undoubtedly for simplification. A comprehensive model that
addresses different end uses in different sectors and regions could more accurately depict the role of
BTES in the changing smart-grid.
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Abstract: This paper offers a wide overview on the large-scale electrochemical energy projects
installed in the high voltage Italian grid. Detailed descriptions of energy (charge/discharge times
of about 8 h) and power intensive (charge/discharge times ranging from 0.5 h to 4 h) installations
are presented with some insights into the authorization procedures, safety features, and ancillary
services. These different charge/discharge times reflect the different operation uses inside the electric
grid. Energy intensive storage aims at decoupling generation and utilization since, in the southern
part of Italy, there has been a great growth of wind farms: these areas are characterized by a surplus of
generation with respect to load absorption and to the net transport capacity of the 150 kV high voltage
backbones. Power intensive storage aims at providing ancillary services inside the electric grid as
primary and secondary frequency regulation, synthetic rotational inertia, and further functionalities.
The return on experience of Italian installations will be able to play a key role also for other countries
and other transmission system operators.

Keywords: large-scale electrochemical storage; energy and power intensive; ancillary services

1. Introduction

This paper is an overview of the large scale electrochemical storage stationary installations in Italy.
Many previous papers [1–24], which are briefly reported in the following, highlighted the role of Italy
as a path-maker in the field of large scale electrochemical storage in the high voltage network. In [1–3],
a detailed description of the Italian energy intensive installations can be found, whereas papers [4–10]
offer some analyses of the main features of sodium-sulphur technology. Paper [15] thoroughly analyses
the authorization procedures of Italian energy storage systems. In the papers [11,12], the reader can find
scientific and technological details of the sodium nickel chloride batteries of the Italian installations
whereas papers [13,19] are devoted to a steady-state electric model of this technology; in [20,21]
this model has been enlarged to take transient behaviour into account. Safety tests performed on a
Na-NiCl2 battery are fully presented in [22,23]. Papers [16,17] consider the model of battery under
faulted condition and their arc flash respectively. Paper [18] is devoted to the computation of battery
efficiency including auxiliary equipment losses.

The main contribution of this paper is to thoroughly present all the features of these installations.
In particular, the paper describes how the Italian transmission system operator (TSO in the following)
has chosen two energy storage strategies in the high-voltage network. In the first one, the electrochemical
energy storage systems (EESS) is conceived to release renewable generation from electric loads and to
avoid overload conditions in the existing overhead lines. This use implies longer charge/discharge
intervals (about 8 h) and a kind of “energy service” more than a “power service”; therefore,
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these installations have been called “energy intensive” installations. For Italian “energy intensive”
installations [1–3], Terna was chosen because of its extensive history of successful installations, the
Sodium-Sulphur (Na-S) electrochemistry [4–10], supplied by the Japanese NGK INSULATORS, LTD.
There have been three installation sites located in the South of Italy (around Benevento city): two
installations of 12 MW and one of 10.8 MW (wholly 34.8 MW Na-S storage has been installed). It is
worth remembering that Na-S batteries belong to the Na-beta battery family (as Na-NiCl2 [11–13]).
The other direction has involved electrochemical technologies with short charge/discharge intervals
(from 0.5 to 4 h). The tested technologies are in the Li-ion family and sodium-nickel chloride. The
installation sites are Sardinia (9.15 MW installed power in Codrongianos) and Sicily islands (6.8 MW
installed power in Ciminna). Due to their high use flexibility allowed by the Power Conversion
System (PCS) [14], power intensive installations have been applied in the field of grid ancillary services.
Moreover, a brief cost comparison is also presented in Section 5.

2. Energy Intensive Projects

The three energy intensive installations are very similar. A unit makes use of module series and
parallel connection. A 12 MW installation extends over an area of 7000 m2, and involves the use of
medium (20 kV) and low (400 V) voltage levels, in detail (see Figure 1a):

� 10 units of 1.2 MW each;
� 10 Power Conversion Systems (PCS) of 1.2 MW (in other Italian installations, there are 2.4 MW

PCS instead of 2 PCS of 1.2 MW);
� 2 shelters for MV switchboards (QMT1, QMT2);
� 2 shelters for LV switchboards (QBT1, QBT2);
� 2 shelters for emergency generators (GE1, GE2);
� Shelter for the control system.

The connection of the power systems to the national grid is performed by means of a MV/HV
(20/150 kV) transformer. The HV level is 150 kV since all the energy driven installations are located
in South Italy (in North Italy, the HV level is 132 kV). The Italian unit, also called “assembly”, has
a rated power of 1.2 MW with 40 modules of 30 kW (see Figure 1b). The structure is composed of
a self-supporting latticed frame with shelves for module placement, a Battery Management System
(BMS) container part, ventilation, and a cooling system. Each module is protected by a BMS. The BMS
includes a disconnection relay that disconnects the battery from any load if the value of any battery
parameter is outside the predefined operating range.

The controlled parameters are the module temperature, the dc-side current and voltage. The
battery status is calculated from these basic parameters. Other BMS functions include: detection of
alarms, warnings and battery capacity limitation signals; Control interface with PCS and data logging.
The frame is of galvanized steel. The frame thickness is at least 2.3 mm both on lateral sides and on the
covering. The dimensions (in meters) are 9.410 length × 4.800 depth × 4.820 height. It is worth noting
that the standard NGK unit had five modules of 50 kW per rack (i.e., 250 kW per rack) whereas in the
Italian installations five modules of 30 kW (150 kW per rack) have been employed: this gives greater
spacing between modules. The Terna assembly is also equipped with a double redundant fire and gas
detection system: the first is based on SO2 detection (in extremely remote case of fire and cell breaking),
the second is based on ventilation system continuous air analysis that can detect the possible presence
of smoke. Figure 2 shows some photographs of the energy intensive installation in Ginestra.

400

Bo
ok
s

M
DP
I



Energies 2017, 10, 108

13,35

Storehouse

PCS

PCS

1.
2 

M
W

 

1.
2 

M
W

 

1.
2 

M
W

 

1.
2 

M
W

 

1.
2 

M
W

 

1.
2 

M
W

 

1.
2 

M
W

 

1.
2 

M
W

 
1.

2 
M

W
 

1.
2 

M
W

 

PCS

PCS

PCS 

PCS PCS 

PCS 

PCS 

PCS 

G
E 

1 

G
E 

2 

Q
 B

T 
1 

Q
 B

T 
2 

Q
 M

T 
1 

Q
 M

T 
2 

87
.5

 m
 

11.97 
2.47 

86 m 

(a) (b) 

Figure 1. (a) 12 MW installation constituted of 10 units of 1.2 MW; (b) Frontal view of the 1.2 MW unit
(the other four racks are back-to-back with the visible ones).

 

Figure 2. Some photos of Italian Na-S “energy intensive” installation in Ginestra.

2.1. Safety Features

In order to have a general overview of safety features, Table ?? reports all the safety levels which
have been implemented in Italy. An additional protection for SO2 confinement has been realized: it
consists of an automatic system for ventilation block by means of ventilation grid shutting (based on
SO2 detection) with the dual effect of avoiding the access of oxidizing agents and the SO2 spreading.
It is worth noting that, once running, the heat produced by charging and discharging cycles is sufficient
to maintain operating temperatures and no heaters are required. Heaters are in operation only when
the battery is idle and the temperature falls below 305 ◦C. In any case, if the battery is not running
and the heaters fail, the temperature tends to decrease. It is not an issue of safety but only a matter
of battery performance degradation. The battery has a very good thermal insulation and the worst
thing which can occur (if for a long time the heaters do not work) is that the molten substances solidify.
The battery can withstand 10 cycles (the so-called freeze-thaw cycles) with temperature lower than
150 ◦C.

401

Bo
ok
s

M
DP
I



Energies 2017, 10, 108

Table 1. Safety levels of the Na-S unit starting from the cell level.

Component Function

Cell Level

Safety tube

� Controls the quantities of sodium and sulphur which can
combine in case of β”-alumina failure

� Avoids the rupture of cell case
� Limits the short-circuit current (blocking the sodium flow)

Corrosion protection layer in aluminium alloy Fe-Cr Zeros the corrosion possibility due to sodium polysulphides during
the discharge phase

Further thermal insulation and fire-resistant layers
inside the cells Prevents fire inside one cell from propagating to the adjoining ones

Module Level

Fuses (equipped for each four-cell block) Interrupt over-current in case of a short-circuit

Cell connections Limit the over-voltages inside the module

Module dry sand filling � Absorbs the active material in case of a cell rupture
� Avoids the fire spreading generated by a cell

Insulated double-walled stainless steel enclosure with
thickness equal to 0.8 ÷ 1 mm

� Avoids the material spill in the environment
� Avoids cell contact with oxygen and stops combustion

Control and monitoring
� Controls charge-discharge
� Failure detection and alarming
� Puts the equipment out of service if it fails

Electrically Insulated compartment Prevents active material from leaking outside, hence short circuits
can be avoided

Fire resistance panels in the upper and lower part of
the module

Avoid the fire spreading between one module and the preceding or
successive one for a given time

Unit level

Galvanized steel cabinet walls with thickness ≥2.3 Good protection from direct lightning and to bullets due to
vandalism or stray hunting shots

2.2. Tests Performed by NGK on the New Italian Module

In recent years, a lot of tests have been performed on the most used module, i.e., on NGK E50. As
already mentioned, Terna has required a safety enhanced module with the same dimensions as the
previous one but with fewer cells inside, with more sand between cells and with fire resistant carbon
sheets inside the module. It is therefore inferable that all the results obtained in the tests on the “old”
module would give equal or better results than the new one. This has been confirmed by some tests
commissioned by Terna whose results are reported in Table ??. In particular, in order to verify the
effectiveness of sheets inside the cell a test has been performed: the cells adjoining to that fired are not
damaged so that no fire propagation has occurred inside the module. Another test has been performed
in order to verify the effectiveness of the sheets inside the module: the fire has not propagated outside
the module.

Table 2. Safety Tests performed by NGK on the new module.

Test Purpose Figures Results

External
short

circuit

Confirm safety against
external short circuit

 

- No damages
- No substance leakage
- Sound connection status
- Correct operation of protections
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Table 2. Cont.

Test Purpose Figures Results

Exogenous
fire

Confirm safety against
exogenous fire

- Exposed to fire for more than 60
min with outer temperature
about 890 ◦C

- No module fire or explosion
- No substance leakage

Flooding Confirm safety against
flood

- Immersed in water for more
than 12 h

- No module fire or explosion
- No substance leakage

Fall Confirm safety against
fall

- Collided part of module
enclosure was deformed

- No module fire or explosion
- No substance leakage

2.3. The Authorization Procedure

The authorization procedures have been wholly presented in [15]. The most important European
regulation which can be applied to the stationary application of sodium batteries is the Directive
96/82/CE, also known as “Seveso II”, and the Directive of the European Parliament 2012/18/UE
also known as “Seveso III”, both concerning the major-accident hazards related to the presence of
hazardous substances. It is worth noting that each EU member state had to incorporate the provisions
of the “Seveso III” directive into national law by 31 May 2015. In order to evaluate the Seveso II
implications, the entire amount of chemical substances (during charge and discharge and consequently
sodium, sulphur, and polysulphides) in the energy storage installation project has to be determined.
By considering the toxic substance amounts as the most restrictive ones, it is possible to demonstrate
that up to a rated power of 12 MW the installation falls under article 6 prescriptions of Legislative
Decree 334/99, which represents the Italian decree in force during the period when the evaluation
of Terna projects was made by the competent authorities. These prescriptions foresaw to send a
notification of the installation of the three sites to the competent authority for assessing the risk of
major accidents (offices “relevant risks and integrated environmental authorization” of the Ministry of
Environment, of the Region, of the Provinces and territorially competent Municipalities, Provincial
Prefecture, the “Regional Technical Committee of the Fire Department”) at least 180 days before the
start of construction, together with:

� A detailed project information;
� A Risk Analysis Assessment (performed in collaboration with the Department of Industrial

Engineering of Padova University), which showed that, in case of occurrence of given
events (earthquake and vibration, flooding, mishandling, direct and indirect lightning strikes,
endogenous or exogenous fire, sabotage and hunting, and external impacts), the safety/mitigation
systems adopted in the plant would have reduced the risk of release of chemicals in the
environment to negligible values. The tools used in the risk assessment have been the FMEA
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(Failure Modes and Effects Analysis) and the FMECA (Failure Modes and Effects and Criticality
Analysis). In a range between 1 and 25, the maximum computed risk priority number has been 9.

Furthermore, Terna, in accordance with the EU Directive “Seveso”, has drafted an internal
document called “Prevention Policy for Major Accidents”, holding the management criteria to be
undertaken for the prevention of “significant” accidents.

3. Power Intensive Projects

In the following, a detailed description of the power intensive installations and of their uses inside
the high voltage network are presented. These installations have also been named “Storage Labs”.

3.1. Ciminna (Sicily) and Codrongianos (Sardinia) Power Intensive Installations

Since the power system architecture of the two installations is very similar, only Codrongianos
Storage Lab is described (see Figure 3). Its single-line diagram is shown in Figure 4. In Figure 5,
some photographs of the HV/MV transformer and battery unit racks are shown. The different power
ratings, and the different storage typologies are reported in Table ?? (in Table ?? for Ciminna). There
are 10 different EESS branches, subdivided in two groups of five (three branches are foreseen for future
storage technologies). Each EESS has its own PCS (composed by four 250 kVA rated power inverters),
step-up LV/MV transformer (1.25 MVA, 15 kV/0.55 kV, Yd connected) and a dedicated MV cable
line [16]. The 15 kV bus bar is then connected to the 150 kV HV ac sub-transmission grid through a 40
MVA, 150 kV/15.6 kV transformer shown in Figure 5 (Yy connected). A grounding transformer (GT)
with a 385–770 Ω resistor (depending on the temperature) provides a ground path for the otherwise
ungrounded 1.7 km long MV system connected to the 15 kV bus bar. PCSs are fully described in [14]:
generally, PCS is constituted of a first stage made by a DC–DC converter and of a second stage
made by a DC–AC converter to maintain the inverter dc side voltage. Moreover, this two-stage
architecture avoids the PCS oversizing due to the EESS voltage variation during the charge/discharge
operations. In fact, a Δu% percentage EESS voltage variation with respect to the rated value requires
an inverter component overrating of 1 + Δu% for both the voltage and the current (maximum current
corresponding to minimum battery voltage), resulting in an inverter power oversizing of about 1 +
2 Δu%. For instance, by hypothesizing a maximum current and voltage variation of 20% (ΔVmax and
ΔImax respectively), the inverter rated power must be oversized of 40% as in the following:

P = ΔVmax·ΔImax = Vn(1 + 20%)·In(1 + 20%) ≈ 1.40 Pn = Pn + ΔP

 

Figure 3. Two views from above the Codrongianos substation.
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Figure 4. Single-line diagram of Italian “power intensive” installation (Storage Lab) in Codrongianos.
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Table 3. Different storage technologies installed in Codrongianos (Sardinia).

Codrongianos (Sardinia)

Power (MW) Energy (MWh) Electrochemistry

1 1.231 Lithium Iron Phosphate
1.2 0.928 Lithium Nickel Cobalt Aluminium
1 0.916 Lithium Manganese Oxide

1.08 0.540 Lithium Nickel Cobalt Manganese
1 1.016 Lithium Titanate

1.2 4.15 Sodium-Nickel Chloride
1 2 Sodium-Nickel Chloride

Table 4. Different storage technologies installed in Ciminna (Sicily).

Ciminna (Sicily)

Power (MW) Energy (MWh) Electrochemistry

1 1.231 Lithium Iron Phosphate
0.9 0.570 Lithium Nickel Cobalt Aluminium
1 0.916 Lithium Manganese Oxide
1 1.016 Lithium Titanate

1.2 4.15 Sodium-Nickel Chloride

 

Figure 5. Some photos of the Italian “power intensive” installation (Storage Lab) in Codrongianos.

For these Storage Lab installations, some features have been studied and published; in particular:

� modelling of battery under faulted conditions and assessment of protection system behavior [16];
� the arc-flash in these energy storage systems [17];
� the efficiency calculations including auxiliary power losses [18];
� the steady-state and transient modelling of Na-NiCl2 [13,19–21], including safety tests [22,23].

3.2. Power Intensive Ancillary Services and Advanced Functionalities

3.2.1. Primary Frequency Control: Provision of Frequency Containment Reserve (FCR)

This service [24] is delivered in accordance with the Italian Grid Code (Annex 15 of [25]) and
requests EESS to modulate the active power output (ΔP, in MW) proportionally (depending on the
droop parameter, σ, expressed in % and fully configurable) to the deviations of the grid frequency (ΔF,
in Hz) around its nominal value of 50 Hz, as in (1):

ΔPFCR = − 1
σ

100
· ΔF

50
· Prated (1)

Figure 6 shows the FCR service regulation patterns.
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Figure 6. FCR ancillary service regulation patterns.

EESS may shift the active power flow direction continuously and take less than 100 ms for a
complete inversion (full inversion from maximum discharge active power to maximum charge one) as
shown in Section 4. The value of the droop parameter σmay be set to a small value in order to allow
EESS to perform a greater active power contribution in case of wide frequency deviations. This service
will play a key role since in the European grid there is an ever-growing decreasing of power frequency
characteristic of primary control (also known as regulating energy) due to the increase of generation
by renewable resources [26].

3.2.2. Secondary Frequency Control: Provision of Frequency Restoration Reserve (FRR)

In accordance with the secondary frequency control [24], this service consists in performing active
power output variation ΔPFRP as requested by an external control signal (L%, whose percentage range
is 0–100%) fed to local control system from Terna Central Supervisory Control And Data Acquisition
(SCADA). It is worth remembering that FRR regulation is a power plant service. A reserved regulation
band (half-band, HB, expressed in MW) around the active power set-point (the actual balancing
program or the stand-by mode) is dedicated in accordance with:

ΔPFRP = 2 · HB · (L% − 50%)

100%
(2)

As already mentioned, the percentage set-point control signal L% is forwarded by Terna to the
plant and it is defined in the range of 0–100%. Set-point signal is updated and forwarded every 8 s to
the plant with a maximum variation within the total regulation band of 4%.

3.2.3. Provision of Synthetic Rotational Inertia (SRI)

In addition to FCR, EESSs could be equipped with SRI (operated independently from FCR) [24]
in order to contribute in reducing the fastest frequency transient phenomena, since the beginning.
The EESS high rapidity of varying the generated or absorbed active power P has made feasible
several scenarios which were not possible with traditional power plants. In the specific, these EESS
characteristics may help mitigate the reduction of European grid rotational inertia: therefore, EESS
may be requested to deliver an active power proportionally to the measured derivative frequency,
i.e., to the rate of change of frequency (df/dt). However, it is crucial to implement robust control
blocks for a reliable frequency rate of change sampling. This could be fulfilled by feeding the control
block numerical algorithm with a proper and adequate frequency sampling, insuring on one hand
computational accuracy and on the other hand fast solution times. The result must be available
within a time frame assessable in tens of milliseconds. The faster the P response, the more effective
the mitigation of frequency variation is. Such a P response should not be confused with a fast FCR
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regulation set with low droop value because its contribution depends linearly on the instantaneous
measured frequency deviation. By assuming both FCR and SRI committed together, each contribution
must be distinguished: EESS may be engaged in FCR with droop not sufficient to let the plant fill
the P capability though still guaranteeing fast response, and at the same time SRI may provide EESS
full P capability access just in case of sudden frequency deviation. EESS has to deliver ΔPSRI (in MW)
proportionally (depending on a parameter, KW, expressed in MW·s/Hz and fully configurable) to the
filtered derivative frequency measurement (Δf /Δt, in Hz/s), as in (3):

ΔPSRI = −kw ·
(

Δ f
Δt

)
Butterworth− f iltered value

(3)

Figure 7 shows the SRI service regulation patterns.

Δf/Δt [Hz/s] 

ΔP [MW] 

Deadband 

Deadband 
Th

re
sh

ol
d

Figure 7. SRI ancillary service regulation patterns.

The necessity to implement such a service is to emulate the stabilizing contribution to frequency
deviations guaranteed by the rotating masses, in prevision of an ever-growing passage from traditional
power plants (with rotating synchronous generators) to static inverter-equipped power generation.
For a prompt SRI response, it has been crucial to implement a reliable, accurate, and fully configurable
digital filter of grid frequency for feeding the regulator: Infinite Impulse Response filters (IIR—e.g.,
Butterworth filters) have been selected as the best compromise between speed and accuracy of response.
IIR filters are fully configurable in terms of filter order and cut-off frequency to adjust filtering to the
effective harmonic content inside grid frequency and to achieve an adaptive filtering by means of high
stopband attenuation and effective noise cancellation. In addition, IIR filters enable the achievement of
low-rate phase delays and may be designed as inherently stable.

3.2.4. Congestions Mitigation and Balancing Program

HV line congestion mitigation/active power balancing service [24] is used to set a specific active
power profile to EESS through XML file or with a manual set-point. As long as this service is activated,
other active power regulations (FCR and FRR regulations), whenever turned on, must provide their
contribution around this active power profile. In the case of active power balancing service deactivate,
reference power is zero MW and all other services (in P) are requested to deliver their own output
around this value.

3.2.5. Voltage Regulation

Two operating modes are available as mutually exclusive [24]:

(1) Local Bus Bar Voltage Regulator: the scope of this service is to adjust local substation voltage (HV
bus bar). Measured voltage error will lead to a reactive power contribution (Q) in accordance
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with a predetermined U-Q curve, fully configurable, so to reduce the deviation between actual
voltage and its set value;

(2) Regional Voltage Regulator (RVR): the scope of this regulation is to adjust relevant Terna
substation voltages (pilot substations with high fault levels) through a coordinated plant reactive
power regulation. In this case, the remote controller is in charge of computing the exact amount
of reactive power to be requested to the plant to reach Terna substation voltage set value. The
remote controller aims at nullifying voltage deviation between the measured value and set value
of each Terna HV pilot substation.

3.2.6. Further Functionalities

In addition, EESSs are equipped with advanced functionalities [24]. A functionality represents
the capability of EESS to perform a specific service, in addition to the aforementioned ones or in a
mutually exclusive way and it may be demanded through automatism or on request of the operator.

(1) Local Frequency Integrator (LFI): this functionality is operated in background and is automatically
activated (fully configurable) in emergency conditions (high frequency transient) for restoring
nominal frequency value through an integral control loop feedback. It is used when isolated grid
conditions are detected.

(2) Defense plan (switch opening and active power modulation): the task is handling the
shedding of load/production in order to keep the integrity of the grid, in case of abnormal
conditions resulting from occurrence of extreme contingencies. This may be obtained through the
following commands:

a. Switch opening;
b. Active power (P) modulation within 300 ms.

EESS rapidity of varying the active is also used for these additional commands:

• Instantaneous maximum P feeding into the grid;
• Instantaneous maximum P absorption from the grid;
• Instantaneous P exchange stop.

The extremely fast response recorded for active power modulation (less than 300 ms from the
request to the full activation) leads to considering, when including EESS in system defense plan, the
utilization of this command (maximum power feeding or maximum power absorption, depending
on the desired direction) instead of switch opening, traditionally used also for pump storage. In this
regard, in some operational conditions, the effectiveness of EESS as a defense plan is doubled.

4. Some Returns on Operational Experience

In order to have some measures on the real behaviour of the Italian energy intensive installations,
Figure 8 shows the discharge/charge module power and current for a standard cycle. This involves:

� a discharge phase of 10 h where for 7 h the discharge constant power is 0.6 p.u. and for 3 h the
constant discharge power is 1 p.u.;

� a charge phase of 10 h where a constant charge power of 1 p.u. for 8 h after which a supplementary
charge (as already mentioned in Section 4) is needed in order to reach 100% of SoC.

In Figure 9, the voltage and temperature inside a module are shown with reference to the standard
cycle shown in Figure 8. With regard to the transient conditions, Figure 10 shows the inversion of the
power flow from discharge to charge. It is worth noting that power inversion occurs in about 150 ms
which is fully suitable for energy intensive stationary installations in the HV grid. The inversion from
charge to discharge has a very similar behaviour.
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Figure 8. Current and DC power behaviour during a standard cycle in a module.

Figure 9. Voltage and temperature (at side and bottom of the module) during a standard cycle.
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Figure 10. Rated discharge to rated charge power: active one (dark line) and instantaneous one (azure

line).

With reference to the Storage Lab installed in Sardinia, an operational data diagram focusing on
FCR regulation triggered by the occurrence of a deep frequency transient is shown (see Figure 11).
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?? and Table 6 report the technical datasheet of the EESS devoted to FCR regulation and its
configuration, respectively.

Table 5. Technical datasheet of EESS devoted to FCR in Codrongianos (Sardinia).

Capability ±1.0 MW
Nominal storage capacity 1.0 MWh

Overload peak ±1.3 MW
Overload peak sustainability 60 s

Battery technology Li-ion -

Table 6. FCR service configuration in the EESS of Table ??.

Merit order 1 -
Frequency set-point 50 Hz

Deadband 20 mHz
Hysteresis deadband 50% % of deadband

Droop 0.50% %

Figure 11. EESS GIG, total P output versus a real frequency transient (FCR contribution).

The frequency profile has experienced an initial under frequency phase, reaching the transient
minimum value of 49.39 Hz, followed by an overshooting up to 50.17 Hz and consequent damped
oscillations around 50 Hz.

Figure 11 clearly shows that the EESS can fully supply its rated power since the very beginning
of the network transient, without noticeable delays. Furthermore, during the subsequent frequency
variations, the EESS switches from discharge to charge according to the frequency error, contributing
to oscillation damping. Notably, the actual EESS FCR behavior perfectly matches the expected one,
confirming the efficacy of the control system.

5. A Brief Cost Comparison

In order to have a comparison between the different cost components of the battery
installations [27], Figures 12–14 present the cost pie charts of Li-ion, Na-NiCl2, and Na-S respectively.
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The average total cost of Li-ion installations is 1.3 M€/MW and by considering an average discharge
time for this technology equal to 1 h, the cost per MWh is 1.3 M€/MWh. The average total cost
of Na-NiCl2 installations is 3.0 M€/MW and by considering the nominal discharge time for this
technology equal to 3 h, the cost per MWh is 1.0 M€/MWh. The average total cost of Na-S installations
is 3.3 M€/MW and by considering the nominal discharge time for this technology equal to 7.2 h, the
cost per MWh is 0.46 M€/MWh.

Batteries

PCS

Transformer

Auxiliary equipment

System Controls & Instrumentation (SCI) 

Other  

Switching and actuating equipment 

Figure 12. Li-ion percentage costs.

Batteries

PCS

Transformer

Auxiliary equipment

System Controls & Instrumentation (SCI) 

Other  

Switching and actuating equipment 

Figure 13. Na-NiCl2 percentage costs.

Batteries

PCS-SCI

Auxiliary equipment 

Other  

Switching and actuating equipment 

Figure 14. Na-S percentage costs.

The percentage ratio between PCS-SCI and battery costs is higher for Li-ion installations since the
battery costs are lower.
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6. Conclusions

This paper gives a wide overview of the energy storage projects installed in the Italian high
voltage network. Safety issues, authorization procedures, and use applications of the energy and
power intensive stationary electrochemical storage are throughout presented and developed. Li-ion
(of different families), sodium-sulphur, sodium-nickel chloride electrochemistries have been tested
with a total installed power of 50.75 MW.

In conclusion, it is possible to give some tendency lines: sodium-sulphur and sodium-nickel
chloride with their long discharge times seem more suitable for energy intensive applications whereas
Li-ion batteries seem more suitable for power intensive ones. Sodium-nickel chloride batteries show an
attitude to be employed also in power intensive applications due to their intermediate discharge times.

Italian installations and their return on experience will play a key role in completely understanding
the real battery behaviours in stationary applications including aging phenomena.

Author Contributions: Roberto Benato wrote the paper whereas the remaining co-authors collected the cost and
installation data.
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