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Preface to ”Recent Developments of Function Spaces

and Their Applications I”

As one of the central topics of modern harmonic analysis, the theory of function spaces has found

wide applications in various branches of mathematics, such as harmonic analysis, partial differential

equations, geometric analysis, and potential analysis, and has, for a long time, received a lot of

attention. The development of various function spaces on different underlying spaces provides many

new working spaces and research tools for the study of other related analysis fields.

This book contains 13 papers from the Special Issue “Recent Developments in Function Spaces

and Their Applications I”, including 12 research articles and 1 survey article. These papers concern

some of the recent progress in the theory of various function spaces, such as Morrey and weak Morrey

spaces, Hardy-type spaces, John–Nirenberg spaces, Sobolev spaces,and Besov and Triebel–Lizorkin

spaces, as well as their applications in harmonic analysis, the boundedness of operators, potential

analysis, and partial differential equations.

As the guest editors of the Special Issue, we hope that this book will be interesting and useful to

researchers and graduate students in harmonic analysis, function spaces, and related areas.

      Dachun Yang and Wen Yuan

Editors
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Abstract: Let �p ∈ (0, ∞)n be an exponent vector and A be a general expansive matrix on Rn.
Let H�p

A(R
n) be the anisotropic mixed-norm Hardy spaces associated with A defined via the non-

tangential grand maximal function. In this article, using the known atomic characterization of
H�p

A(R
n), the authors characterize this Hardy space via molecules with the best possible known decay.

As an application, the authors establish a criterion on the boundedness of linear operators from
H�p

A(R
n) to itself, which is used to explore the boundedness of anisotropic Calderón–Zygmund oper-

ators on H�p
A(R

n). In addition, the boundedness of anisotropic Calderón–Zygmund operators from

H�p
A(R

n) to the mixed-norm Lebesgue space L�p(Rn) is also presented. The obtained boundedness of
these operators positively answers a question mentioned by Cleanthous et al. All of these results are
new, even for isotropic mixed-norm Hardy spaces on Rn.

Keywords: expansive matrix; (mixed-norm) Hardy space; molecule; Calderón–Zygmund operator

1. Introduction

This article is devoted to exploring the molecular characterization of the anisotropic
mixed-norm Hardy space H�p

A(R
n) from [1], where �p ∈ (0, ∞)n is an exponent vector and A

is a general expansive matrix on Rn (see Definition 1 below). Recall that, as a generalization
of the classical Lebesgue space Lp(Rn), the mixed-norm Lebesgue space L�p(Rn), in which
the constant exponent p is replaced by an exponent vector �p ∈ [1, ∞]n, was studied by
Benedek and Panzone [2] in 1961, which can be traced back to Hörmander [3]. Moreover,
based on the mixed-norm Lebesgue space, the real-variable theory of various mixed-norm
function spaces has rapidly developed over the last two decades; as can be seen, for instance,
in ref. [4] on mixed-norm α-modulation spaces, in ref. [5] on mixed-norm Morrey spaces, in
refs. [1,6–12] on mixed-norm Hardy spaces, as well as in [13–17] on mixed-norm Besov
spaces and mixed-norm Triebel–Lizorkin spaces. For more details on the progress made
with regard to the theory of mixed-norm function spaces, we refer the reader to [18–27]
as well as to the survey article [28]. In particular, Cleanthous et al. [6] first introduced
the anisotropic mixed-norm Hardy space H�p

�a (R
n) associated with an anisotropic quasi-

homogeneous norm | · |�a, where�a ∈ [1, ∞)n and �p ∈ (0, ∞)n, via the non-tangential grand
maximal function, and then established its various maximal function characterizations.
Later on, Huang et al. [10,11] further completed the real-variable theory of H�p

�a (R
n).

On the other hand, motivated by the important role of discrete groups of dilations in
wavelet theory, Bownik [29] originally introduced the anisotropic Hardy space Hp

A(R
n),

where p ∈ (0, ∞). Nowadays, the anisotropic setting has proved useful not only in
developing the function spaces arising in harmonic analysis, but also in some other areas
such as the wavelet theory (see, for instance [29–32]) and partial differential equations

Mathematics 2021, 9, 2216. https://doi.org/10.3390/math9182216 https://www.mdpi.com/journal/mathematics
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(see, for instance [33,34]). Very recently, inspired by the previous works on both the
Hardy spaces H�p

�a (R
n) and Hp

A(R
n), Huang et al. [1] introduced the anisotropic mixed-

norm Hardy space H�p
A(R

n) associated with A, via the non-tangential grand maximal
function, and established its various real-variable characterizations, respectively, by means
of the radial or the non-tangential maximal functions, atoms, finite atoms, the Lusin area
function, the Littlewood–Paley g-function or g∗λ-function. The space H�p

A(R
n) includes the

aforementioned Hardy space H�p
�a (R

n) as a special case; see Remark 1(i) below.

However, the molecular characterization of H�p
A(R

n), which can be conveniently used
to study the boundedness of many important operators (for instance, Calderón–Zygmund
operators) on the space H�p

A(R
n), is still missing. Thus, to further complete the real-variable

theory of anisotropic mixed-norm Hardy spaces H�p
A(R

n), in this article, we characterize

the space H�p
A(R

n) via molecules, in which the range of the decay index ε is in a sense the
best possible known decay (see Remark 1(iv) below). As an application, we then obtain a
criterion on the boundedness of linear operators on H�p

A(R
n) (see Theorem 3 below), which

is used to prove the boundedness of anisotropic Calderón–Zygmund operators on H�p
A(R

n).

In addition, the boundedness of anisotropic Calderón–Zygmund operators from H�p
A(R

n)

to the mixed-norm Lebesgue space L�p(Rn) is also presented. When A is as in (6) below,
the obtained boundedness of these Calderón–Zygmund operators positively answers a
question mentioned by Cleanthous et al. in [6] (p. 2760); see [1,10] and Remark 2(iv) for
more details. All these results are new, even for the isotropic mixed-norm Hardy spaces
on Rn. Here, we should point out that a molecular characterization of H�p

A(R
n) has also

been independently established in [35], in which the range of the decay index ε is just a
proper subset of that from the present article. In this sense, the molecular characterization
obtained in [35] is covered by the corresponding result of the present article.

The remainder of this article is organized as follows.
In Section 2, we present some notions on expansive matrices, homogeneous quasi-

norms, the mixed-norm Lebesgue space L�p(Rn) and the anisotropic mixed-norm Hardy
space H�p

A(R
n) (see Definitions 3 and 5 below).

Section 3 is devoted to characterizing the space H�p
A(R

n) via molecules (see Theorem 1
below). To do this, we first give the notion of the anisotropic mixed-norm molecular Hardy
space H�p,r,s,ε

A (Rn) (see Definition 7 below). Then, by the known atomic characterization of

H�p
A(R

n) from [1] (Theorem 4.7) (see also Lemma 2 below), we have H�p
A(R

n) ⊂ H�p,r,s,ε
A (Rn)

with continuous inclusion. Therefore, to complete the proof of Theorem 1, we only need to
show H�p,r,s,ε

A (Rn) ⊂ H�p
A(R

n) and the inclusion is continuous. Observe that, to obtain the
inclusion of this type, the general method is to decompose a molecule into an infinite linear
combination of the related atoms (see, for instance [36] (7.4) or [37] (3.23)), which does not
work in the present article since the uniformly upper bound estimate of the dual-bases of
the natural projection of each molecule on the infinite annuli of a dilated ball (see [36] (7.2)
or [37] (3.18)) is still unclear due to its anisotropic structure. To overcome this difficulty,
the main idea is to directly estimate the non-tangential maximal function of a molecule on
the infinite annuli of a dilated ball (see (16) below), in which we need fully use the integral
size condition of a molecule (see Definition 6(i) below). Then, we prove that H�p,r,s,ε

A (Rn) is

continuously embedded into H�p
A(R

n), which completes the proof of Theorem 1.
As applications, in Section 4, we present the boundedness of anisotropic Calderón–

Zygmund operators from H�p
A(R

n) to the mixed-norm Lebesgue space L�p(Rn) (see Theorem 2
below) or to itself (see Theorem 3 below). For this purpose, by the known finite atomic char-
acterization of H�p

A(R
n), we first give the proof of Theorem 2. To prove Theorem 3, we then

obtain a technical lemma, which shows that, if T is an anisotropic Calderón-Zygmund oper-
ator of order � as in Definition 11, then, for any (�p, r, �)-atom ã, T(ã) is a harmless constant
multiple of a (�p, q, s0, ε)-molecule with s0 and ε, respectively, as in Definition 11 and (24)

2
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below; see Lemma 8 below. In addition, the density of H�p,∞,s
A, fin(R

n) ∩ C(Rn) in H�p
A(R

n) is
also presented in Lemma 9 below. Using this density and the molecular characterization
of H�p

A(R
n) from Section 3, we establish a useful criterion on the boundedness of linear

operators on H�p
A(R

n) (see Theorem 4 below), which shows that, if a linear operator T maps

each atom to a related molecule, then T has a unique bounded linear extension on H�p
A(R

n).
Applying this criterion and Lemma 8, we then prove Theorem 3.

Finally, we make some conventions on notations. Let 0 be the origin ofRn, N := {1, 2, . . .}
and Z+ := {0} ∪N. We always use C to denote a positive constant which is independent
of the main parameters, but may vary from line to line. The notation f � g means f ≤ Cg
and if f � g � f , then we write f ∼ g. We also use the following convention: if f ≤ Cg and
g = h or g ≤ h, then we write f � g ∼ h or f � g � h, rather than f � g = h or f � g ≤ h.
For each multi-index β := (β1, . . . , βn) ∈ (Z+)n =: Zn

+, let |β| := β1 + · · ·+ βn and

∂β :=
(

∂

∂x1

)β1

· · ·
(

∂

∂xn

)βn

.

For each r ∈ [1, ∞], we denote by r′ its conjugate index, namely 1/r + 1/r′ = 1.
Moreover, if�r := (r1, . . . , rn) ∈ [1, ∞]n, we denote by�r′ := (r′1, . . . , r′n) its conjugate index.
In addition, for each set Ω ⊂ Rn, we denote by Ω� the set Rn \Ω, by 1Ω its characteristic
function, and by |Ω| its n-dimensional Lebesgue measure. For any s ∈ R, we denote by 
s�
the largest integer not greater than s. Throughout this article, the symbol C∞(Rn) denotes
the set of all infinitely differentiable functions on Rn.

2. Preliminaries

In this section, we present some notions on expansive matrices, mixed-norm Lebesgue
spaces and anisotropic mixed-norm Hardy spaces (see, for instance [1,2,29]).

We begin with recalling the notion of expansive matrices from [29] (p. 5, Definition 2.1).

Definition 1. An expansive matrix, i.e., a dilation, is a real n× n matrix A satisfying:

min
λ∈σ(A)

|λ| > 1,

and here and thereafter, σ(A) denotes the set of all eigenvalues of A.

Let b := |det A|. Then, by [29] (p. 6, (2.7)), it is easy to see that b ∈ (1, ∞). By [29] (p. 5,
Lemma 2.2), we know that there exists an open ellipsoid Δ, with |Δ| = 1, and r ∈ (1, ∞)
such that Δ ⊂ rΔ ⊂ AΔ. This further implies that, for any j ∈ Z, Bj := AjΔ is open,
Bj ⊂ rBj ⊂ Bj+1 and |Bj| = bj. For each x ∈ Rn and j ∈ Z, an ellipsoid x + Bj is called
a dilated ball. Hereinafter, we always use B to denote the collection of all such dilated
balls, namely:

B :=
{

x + Bj : x ∈ Rn and j ∈ Z
}

(1)

and:

ω := inf
{

i ∈ Z : ri ≥ 2
}

. (2)

The following notion of the homogeneous quasi-norm is just [29] (p. 6, Definition 2.3).

Definition 2. For any given dilation A, a homogeneous quasi-norm, with respect to A, is a
measurable mapping ρ : Rn → [0, ∞) satisfying:

(i) If x �= 0, then ρ(x) ∈ (0, ∞);
(ii) For any x ∈ Rn, ρ(Ax) = bρ(x);
(iii) There exists some R ∈ [1, ∞) such that, for any x, y ∈ Rn, ρ(x + y) ≤ R[ρ(x) + ρ(y)].

3
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Throughout this article, for a fixed dilation A, by [29] (p. 6, Lemma 2.4), we can use
the following step homogeneous quasi-norm ρ defined by setting for any x ∈ Rn:

ρ(x) := ∑
j∈Z

bj1Bj+1\Bj
(x) when x �= 0, or else ρ(0) := 0 (3)

for both simplicity and convenience.
For any �p := (p1, . . . , pn) ∈ (0, ∞)n, let:

p− := min{p1, . . . , pn}, p+ := max{p1, . . . , pn} and p ∈ (0, min{p−, 1}). (4)

The following definition of mixed-norm Lebesgue spaces is from [2].

Definition 3. Let �p := (p1, . . . , pn) ∈ (0, ∞]n. The mixed-norm Lebesgue space L�p(Rn) is
defined to be the set of all measurable functions f on Rn such that:

‖ f ‖L�p(Rn) :=

{∫
R
· · ·
[∫

R
| f (x1, . . . , xn)|p1 dx1

] p2
p1 · · · dxn

} 1
pn

< ∞

with the usual modifications made when pi = ∞ for some i ∈ {1, . . . , n}.

Obviously, when �p := (

n times︷ ︸︸ ︷
p, . . . , p) with some p ∈ (0, ∞], the space L�p(Rn) is just the

classical Lebesgue space Lp(Rn).
Recall that a Schwartz function is a C∞(Rn) function ϕ satisfying that, for any ν ∈ Z+

and multi-index γ ∈ Zn
+,

‖ϕ‖γ,ν := sup
x∈Rn

[ρ(x)]ν|∂γ ϕ(x)| < ∞.

Denote by S(Rn) the collection of all Schwartz functions as above, equipped with the
topology determined by {‖ · ‖γ,ν}γ∈Zn

+ ,ν∈Z+
, and S′(Rn) its dual space, equipped with the

weak-∗ topology. For any N ∈ Z+, denote by SN(Rn) the following set:⎧⎨⎩ϕ ∈ S(Rn) : ‖ϕ‖SN(Rn) := sup
γ∈Zn

+ , |γ|≤N
sup
x∈Rn

[
|∂γ ϕ(x)|max

{
1, [ρ(x)]N

}]
≤ 1

⎫⎬⎭.

Hereinafter, for any ϕ ∈ S(Rn) and j ∈ Z, let: ϕj(·) := b−j ϕ(A−j·).
Let λ−, λ+ ∈ (1, ∞) be two numbers such that:

λ− ≤ min{|λ| : λ ∈ σ(A)} ≤ max{|λ| : λ ∈ σ(A)} ≤ λ+.

We should point out that if A is diagonalizable over C, then we can let:

λ− := min{|λ| : λ ∈ σ(A)} and λ+ := max{|λ| : λ ∈ σ(A)}.

Otherwise, we may choose them sufficiently close to these equalities in accordance
with what we need in our arguments.

Definition 4. For any fixed N ∈ N, the non-tangential grand maximal function MN( f ) of
f ∈ S′(Rn) is defined by setting, for any x ∈ Rn:

MN( f )(x) := sup
ϕ∈SN(Rn)

sup
y∈x+Bj , j∈Z

| f ∗ ϕj(y)|.

4
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We now recall the notion of anisotropic mixed-norm Hardy spaces as follows; see [1]
(Definition 2.5).

Definition 5. Let �p ∈ (0, ∞)n and N ∈ N∩ [
( 1
min{1,p−} − 1) ln b

ln λ−
�+ 2, ∞) with p− as in (4).

The anisotropic mixed-norm Hardy space H�p
A(R

n) is defined as the set of all f ∈ S′(Rn) such that

MN( f ) ∈ L�p(Rn). Moreover, for any f ∈ H�p
A(R

n), let:

‖ f ‖
H�p

A(R
n)

:= ‖MN( f )‖L�p(Rn).

Observe that, by [1] (Theorem 4.7), we know that the Hardy space H�p
A(R

n) is indepen-
dent of the choice of N as in Definition 5.

3. Molecular Characterization of H�p
A(R

n)

In this section, we characterize H�p
A(R

n) via molecules. Recall that, for any r ∈ (0, ∞]
and measurable set Ω ⊂ Rn, the Lebesgue space Lr(E) is defined as the set of all measurable
functions g on Ω such that, when r ∈ (0, ∞),

‖g‖Lr(Ω) :=
[∫

Ω
|g(x)|r dx

]1/r
< ∞

and
‖g‖L∞(Ω) := ess sup

x∈Ω
|g(x)| < ∞.

We now introduce the notion of anisotropic mixed-norm (�p, r, s, ε)-molecules as follows.

Definition 6. Let �p ∈ (0, ∞)n, r ∈ (1, ∞]:

s ∈
[⌊(

1
p−
− 1
)

ln b
ln λ−

⌋
, ∞
)
∩Z+ (5)

and ε ∈ (0, ∞), where p− is as in (4). An anisotropic mixed-norm (�p, r, s, ε)-molecule, associated
with some dilated ball B := x0 + Bk0 ∈ B with x0 ∈ Rn, k0 ∈ Z and B as in (1), is a measurable
function m satisfying the following two conditions:

(i) For any k ∈ Z+, ‖m‖Lr(Uk(B)) ≤ b−kε|B|1/r‖1B‖−1
L�p(Rn)

, where U0(B) := B and, for any
k ∈ N,

Uk(B) = Uk(x0 + Bk0) := x0 + (AkBk0) \ (Ak−1Bk0);

(ii) For any multi-index γ ∈ Zn
+ with |γ| ≤ s,

∫
Rn m(x)xγ dx = 0.

Henceforth, we call an anisotropic mixed-norm (�p, r, s, ε)-molecule simply by a (�p, r, s, ε)-
molecule. Via (�p, r, s, ε)-molecules, we give the following notion of anisotropic mixed-norm
molecular Hardy spaces H�p,r,s,ε

A (Rn).

Definition 7. Let �p ∈ (0, ∞)n, r ∈ (1, ∞], s be as in (5) and ε ∈ (0, ∞). The anisotropic mixed-
norm molecular Hardy space H�p,r,s,ε

A (Rn) is defined to be the set of all f ∈ S′(Rn) satisfying that
there exists a sequence {λk}k∈N ⊂ C and a sequence of (�p, r, s, ε)-molecules, {mk}k∈N, associated,
respectively, with {B(k)}k∈N ⊂ B such that:

f = ∑
k∈N

λkmk in S′(Rn).

5
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Moreover, for any f ∈ H�p,r,s,ε
A (Rn), let:

‖ f ‖
H�p,r,s,ε

A (Rn)
:= inf

∥∥∥∥∥∥
{

∑
k∈N

[
|λk|1B(k)

‖1B(k)‖L�p(Rn)

]p}1/p
∥∥∥∥∥∥

L�p(Rn)

,

where the infimum is taken over all decompositions of f as above and p as in (4).

The main result of this section is the subsequent Theorem 1.

Theorem 1. Let �p ∈ (0, ∞)n, r ∈ (max{p+, 1}, ∞] with p+ as in (4), s be as in (5):

N ∈ N∩
[⌊(

1
min{1, p−}

− 1
)

ln b
ln λ−

⌋
+ 2, ∞

)
with p− as in (4),

and ε ∈ ((s + 1) logb (λ+/λ−), ∞). Then, H�p
A(R

n) = H�p,r,s,ε
A (Rn) with equivalent quasi-norms.

Remark 1. (i) When:

A :=

⎛⎜⎜⎜⎝
2a1 0 · · · 0
0 2a2 · · · 0
...

...
...

0 0 · · · 2an

⎞⎟⎟⎟⎠ (6)

with�a := (a1, . . . , an) ∈ [1, ∞)n, the Hardy space H�p
A(R

n) and the anisotropic mixed-norm

Hardy space H�p
�a (R

n) from [6] coincide with equivalent quasi-norms; see [1] (Remark 2(iv)).
In this case, Theorem 1 is new. Moreover, if A := d In×n for some d ∈ R with |d| ∈ (1, ∞),
here and thereafter, In×n denotes the n× n unit matrix, then H�p

A(R
n) becomes the classical

isotropic mixed-norm Hardy space from [7] which is just a special case of H�p
�a (R

n) from [6];
see [10] Remark 4.4(i) for more details. Even in this case, Theorem 1 is still new;

(ii) Let ϕ : Rn × [0, ∞)→ [0, ∞) be an anisotropic growth function (see, for instance, ref. [38]
(Definition 2.5)). Recall that, in [38] (Theorem 3.12), the authors established a molecular
characterization of the anisotropic Musielak–Orlicz Hardy space Hϕ

A(R
n); see also [37,39] for

the special cases. It follows from [40] (Remark 2.5(iii)), that the anisotropic Musielak–Orlicz
Hardy space Hϕ

A(R
n) and anisotropic mixed-norm Hardy space H�p

A(R
n) in this article cannot

cover each other, and hence neither do [38] (Theorem 3.12) and Theorem 1;
(iii) Let p(·) : Rn → (0, ∞] be a variable exponent function satisfying the so-called globally

log-Hölder continuous condition (see [40] (2.5) and (2.6))). Very recently, the molecular
characterization of the variable anisotropic Hardy space Hp(·)

A (Rn) was established by Liu [41]
(Theorem 3.1) and, independently, by Wang et al. [42] (Theorem 2.9) with some stronger
assumptions on the decay of molecules. As pointed out in [1] (Introduction), the variable
anisotropic Hardy space Hp(·)

A (Rn) in [41] or [42] and the anisotropic mixed-norm Hardy

space H�p
A(R

n) in this article cannot cover each other. Thus, Theorem 1 cannot be covered
by [41] (Theorem 3.1) or [42] (Theorem 2.9);

(iv) When A := d In×n for some d ∈ R with |d| ∈ (1, ∞) and �p := (

n times︷ ︸︸ ︷
p, . . . , p) with some

p ∈ (0, ∞), the space H�p
A(R

n) becomes the classical isotropic Hardy space Hp(Rn) and
logb (λ+/λ−) = 0. In this case, Theorem 1 gives a molecular characterization of Hp(Rn)
with the best possible known decay of molecules, namely, ε ∈ (0, ∞).

To show Theorem 1, we need several technical lemmas. First, Lemma 1 is just [1]
(Lemma 4.5).
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Lemma 1. Let �p ∈ (0, ∞)n, i ∈ Z and r ∈ [1, ∞] ∩ (p+, ∞] with p+ as in (4). Assume that
{tk}k∈N ⊂ C, {B(k)}k∈N := {xk + B�k

}k∈N ⊂ B and {ak}k∈N ⊂ Lr(Rn) satisfy that, for any
k ∈ N, supp ak ⊂ xk + AiB�k

:

‖ak‖Lr(Rn) ≤
|B(k)|1/r

‖1B(k)‖L�p(Rn)

and: ∥∥∥∥∥∥
{

∑
k∈N

[
|tk|1B(k)

‖1B(k)‖L�p(Rn)

]p}1/p
∥∥∥∥∥∥

L�p(Rn)

< ∞,

where p is as in (4). Then:∥∥∥∥∥∥
[

∑
k∈N
|tkak|p

]1/p
∥∥∥∥∥∥

L�p(Rn)

≤ C

∥∥∥∥∥∥
{

∑
k∈N

[
|tk|1B(k)

‖1B(k)‖L�p(Rn)

]p}1/p
∥∥∥∥∥∥

L�p(Rn)

,

where C is a positive constant independent of {tk}k∈N, {B(k)}k∈N and {ak}k∈N.

The following notions of anisotropic mixed-norm (�p, r, s)-atoms and anisotropic
mixed-norm atomic Hardy spaces H�p,r,s

A (Rn) are from [1].

Definition 8. Let �p ∈ (0, ∞)n, r ∈ (1, ∞] and s be as in (5).

(i) A measurable function a on Rn is called an anisotropic mixed-norm (�p, r, s)-atom if:

(i)1 supp a ⊂ B with some B ∈ B, where B is as in (1);

(i)2 ‖a‖Lr(Rn) ≤ |B|1/r

‖1B‖L�p(Rn)
;

(i)3 For any α ∈ Zn
+ with |α| ≤ s,

∫
Rn a(x)xα dx = 0.

(ii) The anisotropic mixed-norm atomic Hardy space H�p,r,s
A (Rn) is defined to be the set of all

f ∈ S′(Rn) satisfying that there exists a sequence {λk}k∈N ⊂ C and a sequence of (�p, r, s)-
atoms, {ak}k∈N, supported, respectively, in {B(k)}k∈N ⊂ B such that:

f = ∑
k∈N

λkak in S′(Rn).

Furthermore, for any f ∈ H�p,r,s
A (Rn), let:

‖ f ‖
H�p,r,s

A (Rn)
:= inf

∥∥∥∥∥∥
{

∑
k∈N

[
|λk|1B(k)

‖1B(k)‖L�p(Rn)

]p}1/p
∥∥∥∥∥∥

L�p(Rn)

,

where the infimum is taken over all decompositions of f as above.

We also need the atomic characterization of H�p
A(R

n) obtained in [1] (Theorem 4.7).

Lemma 2. Let �p, r, s and N be as in Theorem 1. Then:

H�p
A(R

n) = H�p,r,s
A (Rn)

with equivalent quasi-norms.

In addition, by [29] (p. 8, (2.11), p. 5, (2.1) and (2.2) and p. 17, Proposition 3.10), we
have the following conclusions.

7
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Lemma 3. Let A be some fixed dilation. Then:

(i) For any i ∈ Z:
Bi + Bi ⊂ Bi+ω and Bi + (Bi+ω)

� ⊂ (Bi)
�,

where ω is as in (2);
(ii) There exists a positive constant C such that, for any x ∈ Rn, when k ∈ Z+:

1
C
(λ−)

k|x| ≤ |Akx| ≤ C(λ+)
k|x|

and, when k ∈ Z \Z+:

1
C
(λ+)

k|x| ≤ |Akx| ≤ C(λ−)
k|x|;

(iii) For any given N ∈ N, there exists a constant C(N) ∈ (0, ∞), depending on N, such that,
for any f ∈ S′(Rn) and x ∈ Rn,

M0
N( f )(x) ≤ MN( f )(x) ≤ C(N)M0

N( f )(x),

where M0
N( f ) denotes the radial grand maximal function of f ∈ S′(Rn) defined by setting,

for any x ∈ Rn,
M0

N( f )(x) := sup
ϕ∈SN(Rn)

sup
k∈Z

| f ∗ ϕk(x)|.

Denote by L1
loc(R

n) the set of all locally integrable functions on Rn. Recall that the
anisotropic Hardy–Littlewood maximal function MHL( f ) of f ∈ L1

loc(R
n) is defined by

setting, for any x ∈ Rn:

MHL( f )(x) := sup
k∈Z

sup
y∈x+Bk

1
|Bk|

∫
y+Bk

| f (z)| dz = sup
x∈B∈B

1
|B|
∫

B
| f (z)| dz, (7)

where B is as in (1).
The two following lemmas are, respectively, from [1] (Lemma 4.4) and [16] (p. 188).

Lemma 4. Let �p ∈ (1, ∞)n and u ∈ (1, ∞]. Then, there exists a positive constant C such that,
for any sequence { fk}k∈N of measurable functions:∥∥∥∥∥∥

{
∑

k∈N
[MHL( fk)]

u

}1/u
∥∥∥∥∥∥

L�p(Rn)

≤ C

∥∥∥∥∥∥
(

∑
k∈N

| fk|u
)1/u

∥∥∥∥∥∥
L�p(Rn)

with the usual modification made when u = ∞, where MHL denotes the Hardy–Littlewood maximal
operator as in (7).

Lemma 5. Let �p ∈ (0, ∞]n. Then, for any t ∈ (0, ∞) and f ∈ L�p(Rn):∥∥| f |t∥∥L�p(Rn) = ‖ f ‖t
Lt�p(Rn)

.

In addition, for any μ ∈ C, t ∈ [0, min{p−, 1}] and f , g ∈ L�p(Rn), ‖μ f ‖L�p(Rn) =

|μ|‖ f ‖L�p(Rn) and:

‖ f + g‖t
L�p(Rn)

≤ ‖ f ‖t
L�p(Rn)

+ ‖g‖t
L�p(Rn)

.

We now prove Theorem 1.

8
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Proof of Theorem 1. Let �p ∈ (0, ∞)n, r ∈ (max{p+, 1}, ∞] with p+ as in (4) and s be as
in (5). Then, by the fact that a (�p, r, s)-atom is a (�p, r, s, ε)-molecule for any ε ∈ (0, ∞), as well
as the notions of both H�p,r,s

A (Rn) and H�p,r,s,ε
A (Rn), it is easy to see that H�p,r,s

A (Rn) ⊂ H�p,r,s,ε
A (Rn)

with continuous inclusion. In addition, by Lemma 2, we have H�p
A(R

n) = H�p,r,s
A (Rn) with

equivalent quasi-norms. Therefore, H�p
A(R

n) ⊂ H�p,r,s,ε
A (Rn) and this inclusion is continuous.

Thus, to complete the proof of Theorem 1, it suffices to prove that:

H�p,r,s,ε
A (Rn) ⊂ H�p

A(R
n) (8)

holds true with continuous inclusion. For this purpose, without loss of generality, for
any f ∈ H�p,r,s,ε

A (Rn), we may assume that f is not the zero element of H�p,r,s,ε
A (Rn). Then,

by Definition 7, we find that there exists a sequence {λk}k∈N ⊂ C and a sequence of
(�p, r, s, ε)-molecules {mk}k∈N, associated, respectively, to {B(k)}k∈N ⊂ B such that:

f = ∑
k∈N

λkmk in S′(Rn), (9)

and:

‖ f ‖
H�p,r,s,ε

A (Rn)
∼

∥∥∥∥∥∥
{

∑
k∈N

[
|λk|1B(k)

‖1B(k)‖L�p(Rn)

]p}1/p
∥∥∥∥∥∥

L�p(Rn)

(10)

with p as in (4). Take two sequences {xk}k∈N ⊂ Rn and {ik}k∈N ⊂ Z such that, for any

k ∈ N, xk + Bik = B(k). From (9), we deduce that, for any N ∈ N∩ [
( 1
p − 1) ln b

ln λ−
�+ 2, ∞)

and x ∈ Rn:

MN( f )(x) ≤ ∑
k∈N

|λk|MN(mk)(x)1xk+Aω Bik
(x) + ∑

k∈N
|λk|MN(mk)(x)1(xk+Aω Bik

)�(x)

=: J1 + J2, (11)

where ω is an integer as in (2).
For the term J1, by the boundedness of MN on Lq(Rn) with q ∈ (1, ∞] (see [43]

(Remark 2.10)) and the definition of (�p, r, s, ε)-molecules, we conclude that, for any ε ∈
((s + 1) logb (λ+/λ−), ∞) and k ∈ N:

‖MN(mk)‖Lr(Rn) � ‖mk‖Lr(Rn) � ∑
�∈Z+

‖mk‖Lr(U�(B(k)))

� ∑
�∈Z+

b−�ε |B(k)|1/r

‖1B(k)‖L�p(Rn)

∼ |B(k)|1/r

‖1B(k)‖L�p(Rn)

,

where U0(B(k)) := B(k) and, for each � ∈ N:

U�(B(k)) = U�(xk + Bik ) := xk + (A�Bik ) \ (A�−1Bik ).

This, together with the well-known inequality that, for any {αk}k∈N ⊂ C and t ∈ (0, 1]:[
∑

k∈N
|αk|
]t

≤ ∑
k∈N

|αk|t

9
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as well as Lemma 1 and (10), implies thatL

‖J1‖L�p(Rn) �

∥∥∥∥∥∥
{

∑
k∈N

[
|λk|MN(mk)1xk+Aω Bik

]p
}1/p

∥∥∥∥∥∥
L�p(Rn)

�

∥∥∥∥∥∥
{

∑
k∈N

[
|λk|1B(k)

‖1B(k)‖L�p(Rn)

]p}1/p
∥∥∥∥∥∥

L�p(Rn)

∼ ‖ f ‖
H�p,r,s,ε

A (Rn)
. (12)

Then, we deal with J2. To this end, we assume that Q is a polynomial with a degree not
greater than s. Then, from Definition 6 and the Hölder inequality, it follows that, for any
N ∈ N, ϕ ∈ SN(Rn), ν ∈ Z and x ∈ (xk + Bik+ω)

� with k ∈ N:

|(mk ∗ ϕν)(x)|

= b−ν

∣∣∣∣∫Rn
mk(z)ϕ

(
A−ν(x− z)

)
dz
∣∣∣∣

≤ b−ν ∑
�∈Z+

∣∣∣∣∣
∫

U�(xk+Bik
)

mk(z)
[
ϕ
(

A−ν(x− z)
)
−Q

(
A−ν(x− z)

)]
dz

∣∣∣∣∣
≤ b−ν ∑

�∈Z+

sup
z∈A−ν(x−xk)+A�Bik−ν

|ϕ(z)−Q(z)|
∫

U�(xk+Bik
)
|mk(z)| dz

� bik/r′−ν ∑
�∈Z+

b�/r′ sup
z∈A−ν(x−xk)+A�Bik−ν

|ϕ(z)−Q(z)|‖mk‖Lr(U�(xk+Bik
))

� bik−ν
∥∥∥1xk+Bik

∥∥∥−1

L�p(Rn)
∑

�∈Z+

b(1/r′−ε)� sup
z∈A−ν(x−xk)+A�Bik−ν

|ϕ(z)−Q(z)|. (13)

For any k ∈ N and x ∈ (xk + Bik+ω)
�, it is easy to see that there exists some j ∈ Z+

such that x ∈ [xk + (Bik+ω+j+1 \ Bik+ω+j)]. Then, for any ν ∈ Z and � ∈ Z+, by Lemma 3(i),
we have:

A−ν(x− xk) + A�Bik−ν ⊂ A−ν+�(Bik+ω+j+1 \ Bik+ω+j) + A�Bik−ν

= Aik−ν+�([Bω+j+1 \ Bω+j] + B0) ⊂ Aik−ν+�(Bj)
�. (14)

When ik ≥ ν, we pick Q ≡ 0. Then, by (14), the fact that ϕ ∈ SN(Rn) and (3), we find
that, for any N ∈ N and � ∈ Z+:

sup
z∈A−ν(x−xk)+A�Bik−ν

|ϕ(z)−Q(z)| ≤ sup
z∈Aik−ν+�(Bj)�

min
{

1, ρ(z)−N
}

≤ b−N(ik−ν+�+j). (15)

When ik < ν, we let Q be the Taylor expansion of ϕ at the point A−ν(x − xk) with
order s. Then, from the Taylor remainder theorem, Lemma 3(ii) and (14), we deduce that,
for any N ∈ N∩ [s + 1, ∞) and � ∈ Z+:

10
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sup
z∈A−ν(x−xk)+A�Bik−ν

|ϕ(z)−Q(z)|

� (λ+)
�(s+1)(λ−)(s+1)(ik−ν) sup

z∈A−ν(x−xk)+A�Bik−ν

min
{

1, ρ(z)−N
}

� b�(s+1) logb(λ+)(λ−)(s+1)(ik−ν) sup
z∈Aik−ν+�(Bj)�

min
{

1, ρ(z)−N
}

� b�(s+1) logb(λ+)(λ−)(s+1)(ik−ν) min
{

1, b−N(ik−ν+�+j)
}

.

This, combined with Lemma 3(iii), (13) and (15), further implies that, for any k ∈ N,
N ∈ N∩ [s + 1, ∞) and x ∈ [xk + (Bik+ω+j+1 \ Bik+ω+j)] with some j ∈ Z+:

MN(mk)(x)

∼ sup
ϕ∈SN(Rn)

sup
ν∈Z
|(mk ∗ ϕν)(x)|

�
∥∥∥1xk+Bik

∥∥∥−1

L�p(Rn)
∑

�∈Z+

b(1/r′−ε)� max

{
sup

ν∈Z, ν≤ik
bik−νb−N(ik−ν+�+j),

sup
ν∈Z, ν>ik

bik−νb�(s+1) logb(λ+)(λ−)(s+1)(ik−ν) min
{

1, b−N(ik−ν+�+j)
}}

.

Notice that the supremum over ν ≤ ik has the largest value when ν = ik. Without
loss of generality, we can take s = 
(1/ min{1, p−} − 1) ln b/ ln λ−� and N = s + 2,
which implies that bλs+1

− ≤ bN and the above supremum over ν > ik is attained when
ik − ν + �+ j = 0. By this and the fact that ε ∈ ((s + 1) logb(λ+/λ−), ∞), we conclude that:

MN(mk)(x) �
∥∥∥1xk+Bik

∥∥∥−1

L�p(Rn)

× ∑
�∈Z+

{
b−�ε + b−�[ε−(s+1) logb(λ+/λ−)]

}
max

{
b−Nj,

[
b(λ−)s+1

]−j
}

�
∥∥∥1xk+Bik

∥∥∥−1

L�p(Rn)

[
b(λ−)s+1

]−j

∼
∥∥∥1xk+Bik

∥∥∥−1

L�p(Rn)
b−jb−(s+1)j ln λ−

ln b

�
∥∥∥1xk+Bik

∥∥∥−1

L�p(Rn)
bik [(s+1) ln λ−

ln b +1]b−(ik+ω+j)[(s+1) ln λ−
ln b +1]

�
∥∥∥1xk+Bik

∥∥∥−1

L�p(Rn)

|xk + Bik |σ
[ρ(x− xk)]σ

�
∥∥∥1xk+Bik

∥∥∥−1

L�p(Rn)

[
MHL

(
1xk+Bik

)
(x)
]σ

∼
∥∥1B(k)

∥∥−1
L�p(Rn)

[
MHL

(
1B(k)

)
(x)
]σ, (16)

where:

σ :=
(

ln b
ln λ−

+ s + 1
)

ln λ−
ln b

>
1

min{1, p−}
.

11
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By this and Lemmas 4 and 5, we obtain:

‖J2‖L�p(Rn) �
∥∥∥∥∥∑

k∈N

|λk|
‖1B(k)‖L�p(Rn)

[
MHL

(
1B(k)

)]σ∥∥∥∥∥
L�p(Rn)

∼

∥∥∥∥∥∥
{

∑
k∈N

|λk|
‖1B(k)‖L�p(Rn)

[
MHL(1B(k) )

]σ}1/σ
∥∥∥∥∥∥

σ

Lσ�p(Rn)

�
∥∥∥∥∥∑

k∈N

|λk|1B(k)

‖1B(k)‖L�p(Rn)

∥∥∥∥∥
L�p(Rn)

�

∥∥∥∥∥∥
{

∑
k∈N

[
|λk|1B(k)

‖1B(k)‖L�p(Rn)

]p}1/p
∥∥∥∥∥∥

L�p(Rn)

∼ ‖ f ‖
H�p,r,s,ε

A (Rn)
.

This, together with (11), (12) and Lemma 5 again, implies that:

‖ f ‖
H�p

A(R
n)

= ‖MN( f )‖L�p(Rn) � ‖ f ‖
H�p,r,s,ε

A (Rn)
,

which completes the proof of (8) and hence of Theorem 1.

4. Some Applications

In this section, as applications, we establish a criterion on the boundedness of linear
operators on H�p

A(R
n), which further implies the boundedness of anisotropic Calderón–

Zygmund operators on H�p
A(R

n). Moreover, the boundedness of these operators from

H�p
A(R

n) to the mixed-norm Lebesgue space L�p(Rn) is also obtained.
We begin with the definition the notion of anisotropic Calderón–Zygmund operators

from [29] (p. 60, Definition 9.1).

Definition 9. An anisotropic Calderón–Zygmund standard kernel is a locally integrable function
K on E := {(x, y) ∈ Rn ×Rn : x �= y} satisfying that there exist two positive constants C and τ
such that, for any (x1, y1), (x1, y2), (x2, y1) ∈ E:

|K(x1, y1)| ≤
C

ρ(x1 − y1)
,

|K(x1, y1)−K(x1, y2)| ≤ C
[ρ(y1 − y2)]

τ

[ρ(x1 − y1)]1+τ
when ρ(x1 − y1) ≥ b2ωρ(y1 − y2),

and:

|K(x1, y1)−K(x2, y1)| ≤ C
[ρ(x1 − x2)]

τ

[ρ(x1 − y1)]1+τ
when ρ(x1 − y1) ≥ b2ωρ(x1 − x2),

with ω as in (2). Moreover, an anisotropic Calderón–Zygmund operator is a linear operator
T satisfying that it is bounded on L2(Rn) and there exists an anisotropic Calderón–Zygmund
standard kernel K such that, for any f ∈ L2(Rn) with compact support and x /∈ supp f ,

T( f )(x) =
∫

supp f
K(x, z) f (z) dz.

Hereinafter, for each � ∈ N, let C�(Rn) be the collection of all functions on Rn

whose derivatives with order not greater than � are continuous. The following no-

12
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tion of anisotropic Calderón–Zygmund operator of order � originates from [29] (p. 61,
Definition 9.2).

Definition 10. Let � ∈ N. An anisotropic Calderón–Zygmund operator of order � is an anisotropic
Calderón–Zygmund operator T whose kernel K is a C�(Rn) function with respect to the second
variable y and satisfying that there exists a positive constant C such that, for any γ ∈ Zn

+ with
1 ≤ |γ| ≤ �, t ∈ Z and (x, y) ∈ E with ρ(x− y) ∼ bt:∣∣∣∂γ

y K̃
(
x, A−ty

)∣∣∣ ≤ C[ρ(x− y)]−1 ∼ Cb−t, (17)

where the implicit equivalent positive constants are independent of x, y, t and, for any x, y ∈ Rn

with x �= Aty, K̃(x, y) := K(x, Aty).

Then, we first have the boundedness of anisotropic Calderón–Zygmund operators of
order � from H�p

A(R
n) to L�p(Rn).

Theorem 2. Let �p ∈ (0, ∞)n and T be an anisotropic Calderón–Zygmund operator of order � with
� ∈ [s0 + 1, ∞), where s0 := 
(1/p− − 1)ln b/ln λ−� and p− is as in (4). Then, there exists a
positive constant C such that, for any f ∈ H�p

A(R
n):

‖T( f )‖L�p(Rn) ≤ C‖ f ‖
H�p

A(R
n)

. (18)

To prove this theorem, we need the finite atomic characterization of anisotropic mixed-
norm Hardy spaces H�p,r,s

A, fin(R
n); see [1] (Theorem 5.3). Denote by C(Rn) the set of all

continuous functions on Rn.

Lemma 6. Let �p ∈ (0, ∞)n and s be as in (5):

(i) If r ∈ (max{p+, 1}, ∞) with p+ as in (4), then ‖ · ‖
H�p,r,s

A, fin(R
n)

and ‖ · ‖
H�p

A(R
n)

are two

equivalent quasi-norms on H�p,r,s
A, fin(R

n);

(ii) ‖ · ‖
H�p,∞,s

A, fin(R
n)

and ‖ · ‖
H�p

A(R
n)

are two equivalent quasi-norms on H�p,∞,s
A, fin(R

n) ∩ C(Rn).

Here and thereafter, H�p,r,s
A, fin(R

n) denotes the anisotropic mixed-norm finite atomic Hardy space,
namely the set of all f ∈ S′(Rn) satisfying that there exists K ∈ N, {λk}k∈[1,K]∩N ⊂ C and a
finite sequence of (�p, r, s)-atoms, {ak}k∈[1,K]∩N, supported, respectively, in {B(k)}k∈[1,K]∩N ⊂ B

such that:

f =
K

∑
k=1

λkak in S′(Rn).

Moreover, for any f ∈ H�p,r,s
A, fin(R

n), let:

‖ f ‖
H�p,r,s

A, fin(R
n)

:= inf

∥∥∥∥∥∥
{

K

∑
k=1

[
|λk|1B(k)

‖1B(k)‖L�p(Rn)

]p}1/p
∥∥∥∥∥∥

L�p(Rn)

,

where p is as in (4) and the infimum is taken over all decompositions of f as above.

13
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In addition, let �p ∈ (1, ∞)n and i ∈ Z+. Then, by Lemma 4 and the fact that, for any
dilated ball B ∈ B and ε ∈ (0, p), 1Ai B ≤ b

i
ε [MHL(1B)]

1
ε , we know that there exists a

positive constant C such that, for any sequence {B(k)}k∈N ⊂ B:∥∥∥∥∥∑
k∈N

1Ai B(k)

∥∥∥∥∥
L�p(Rn)

≤ Cb
i
ε

∥∥∥∥∥∑
k∈N

1B(k)

∥∥∥∥∥
L�p(Rn)

. (19)

Now, we show Theorem 2.

Proof of Theorem 2. Let �p, r and s be as in Lemma 6(i). We next prove this theorem in
two steps.

Step (1). In this step, we prove that (18) holds true for any f ∈ H�p,r,s
A, fin(R

n). For this

purpose, for any f ∈ H�p,r,s
A, fin(R

n), by Lemma 6, we can find some K ∈ N, three finite
sequences {λk}k∈[1,K]∩N ⊂ C, {xk}k∈[1,K]∩N ⊂ Rn and {ik}k∈[1,K]∩N ⊂ Z, and a finite
sequence of (�p, r, s)-atoms, {ak}k∈[1,K]∩N, supported, respectively, in {xk + Bik}k∈[1,K]∩N ⊂
B such that f = ∑K

k=1 λkak in S′(Rn) and:

‖ f ‖
H�p,r,s

A, fin(R
n)
∼

∥∥∥∥∥∥
{

K

∑
k=1

[ |λk|1xk+Bik

‖1xk+Bik
‖L�p(Rn)

]p}1/p
∥∥∥∥∥∥

L�p(Rn)

. (20)

From the linearity of T and Lemma 5, we obtain:

‖T( f )‖L�p(Rn) �
∥∥∥∥∥ K

∑
k=1
|λk|T(ak)1xk+Bik+ω

∥∥∥∥∥
L�p(Rn)

+

∥∥∥∥∥ K

∑
k=1
|λk|T(ak)1(xk+Bik+ω)�

∥∥∥∥∥
L�p(Rn)

=: J1 + J2. (21)

We first deal with J2. To do this, by a similar argument to that used in the proof of [44]
(4.13), we conclude that, for each k ∈ [1, K] ∩N and x ∈ (xk + Bik+ω)

�:

T(ak)(x) �
∥∥∥1xk+Bik

∥∥∥−1

L�p(Rn)

[
MHL

(
1xk+Bik

)
(x)
]u

,

where:

u :=
(

ln b
ln λ−

+ s0 + 1
)

ln λ−
ln b

>
1
p

.

This, together with Lemmas 5 and 4, and (20), implies that:

‖J2‖L�p(Rn) �
∥∥∥∥∥ K

∑
k=1

|λk|
‖1xk+Bik

‖L�p(Rn)

[
MHL

(
1xk+Bik

)]u
∥∥∥∥∥

L�p(Rn)

∼

∥∥∥∥∥∥
{

K

∑
k=1

|λk|
‖1xk+Bik

‖L�p(Rn)

[
MHL(1xk+Bik

)
]u
}1/u

∥∥∥∥∥∥
u

Lu�p

�
∥∥∥∥∥ K

∑
k=1

|λk|1xk+Bik

‖1xk+Bik
‖L�p(Rn)

∥∥∥∥∥
L�p(Rn)

�

∥∥∥∥∥∥
{

K

∑
k=1

[ |λk|1xk+Bik

‖1xk+Bik
‖L�p(Rn)

]p}1/p
∥∥∥∥∥∥

L�p(Rn)

∼ ‖ f ‖
H�p,r,s

A, fin(R
n)

. (22)

14
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For J1, take g ∈ L(�p/p)′(Rn) such that ‖g‖
L(�p/p)′ (Rn)

≤ 1 and:

∥∥∥∥∥ K

∑
k=1
|λk|p[T(ak)]

p1xk+Bik+ω

∥∥∥∥∥
L�p/p(Rn)

=
∫
Rn

K

∑
k=1
|λk|p[T(ak)(x)]p1xk+Bik+ω

(x)g(x) dx.

From this, Lemma 5 and the Hölder inequality, it follows that, for any q ∈ (1, ∞)
satisfying p+ < qp < r:

(J1)
p �

∥∥∥∥∥ K

∑
k=1
|λk|p[T(ak)]

p1xk+Bik+ω

∥∥∥∥∥
L�p/p(Rn)

∼
∫
Rn

K

∑
k=1
|λk|p[T(ak)(x)]p1xk+Bik+ω

(x)g(x) dx.

�
K

∑
k=1
|λk|p

∥∥∥[T(ak)]
p1xk+Bik+ω

∥∥∥
Lq(Rn)

∥∥∥1xk+Bik+ω
g
∥∥∥

Lq′ (Rn)

�
K

∑
k=1
|λk|p‖T(ak)‖

p
Lr(Rn)

∥∥∥1xk+Bik+ω

∥∥∥1/q

Lr/(r−qp)(Rn)

∥∥∥1xk+Bik+ω
g
∥∥∥

Lq′ (Rn)
.

This, combined with the boundedness of T on Lt(Rn) for any t ∈ (1, ∞) (see [29]
(p. 60)), Definition 8(i) and the Hölder inequality again, further implies that:

(J1)
p �

K

∑
k=1
|λk|p

∥∥∥1xk+Bik

∥∥∥−p

L�p(Rn)

∣∣Bik

∣∣p/r∣∣Bik+ω

∣∣(r−qp)/rq
∥∥∥1xk+Bik+ω

g
∥∥∥

Lq′ (Rn)

∼
K

∑
k=1
|λk|p

∥∥∥1xk+Bik

∥∥∥−p

L�p(Rn)

∣∣Bik+ω

∣∣[ 1
|Bik+ω |

∫
xk+Bik+ω

[g(x)]q
′
dx

]1/q′

�
K

∑
k=1
|λk|p

∥∥∥1xk+Bik

∥∥∥−p

L�p(Rn)

∫
Rn

1xk+Bik+ω
(x)
[

MHL

(
gq′
)
(x)
]1/q′

dx

�
∥∥∥∥∥ K

∑
k=1
|λk|p

∥∥∥1xk+Bik

∥∥∥−p

L�p(Rn)
1xk+Bik+ω

∥∥∥∥∥
L�p/p(Rn)

∥∥∥∥[MHL

(
gq′
)]1/q′

∥∥∥∥
L(�p/p)′ (Rn)

.

Note that p+/p ∈ (0, q), we know that (�p/p)′ ∈ (q′, ∞]. By this, (19), the bounded-
ness of MHL on L�υ(Rn) with �υ ∈ (1, ∞]n (see [10] (Lemma 3.5)), Lemma 5, the fact that
‖g‖

L(�p/p)′ (Rn)
≤ 1 and (20), we conclude that:

J1 �
∥∥∥∥∥ K

∑
k=1
|λk|p

∥∥∥1xk+Bik

∥∥∥−p

L�p(Rn)
1xk+Bik

∥∥∥∥∥
1/p

L�p/p(Rn)

‖g‖1/p

L(�p/p)′ (Rn)

�

∥∥∥∥∥∥
{

K

∑
k=1

[ |λk|1xk+Bik

‖1xk+Bik
‖L�p(Rn)

]p}1/p
∥∥∥∥∥∥

L�p(Rn)

∼ ‖ f ‖
H�p,r,s

A, fin(R
n)

.

From this, (22), (21) and Lemma 6(i), we deduce that (18) holds true for any f ∈
H�p,r,s

A, fin(R
n), which completes the proof of Step (1).
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Step (2). This step aims to show that (18) holds true for any f ∈ H�p
A(R

n). To this end,

for any f ∈ H�p
A(R

n), by the obvious density of H�p,r,s
A, fin(R

n) in H�p
A(R

n), with respect to the

quasi-norm ‖ · ‖
H�p

A(R
n)

, we find that there exists a Cauchy sequence { fi}i∈N ⊂ H�p,r,s
A, fin(R

n)

such that
lim
i→∞

‖ fi − f ‖
H�p

A(R
n)

= 0.

By this and the linearity of T, it is easy to see that, as i, ι → ∞:

‖T( fi)− T( fι)‖H�p
A(R

n)
= ‖T( fi − fι)‖H�p

A(R
n)

� ‖ fi − fι‖H�p
A(R

n)
→ 0.

Therefore, {T( fi)}i∈N is also a Cauchy sequence in H�p
A(R

n). By this and the complete-

ness of H�p
A(R

n), we know that there exists some h ∈ H�p
A(R

n) such that h = limi→∞ T( fi)

in H�p
A(R

n). Let T( f ) := h. Then, for any f ∈ H�p
A(R

n):

‖T( f )‖
H�p

A(R
n)

� lim sup
i→∞

[
‖T( f )− T( fi)‖H�p

A(R
n)
+ ‖T( fi)‖H�p

A(R
n)

]
∼ lim sup

i→∞
‖T( fi)‖H�p

A(R
n)

� lim
i→∞

‖ fi‖H�p
A(R

n)
∼ ‖ f ‖

H�p
A(R

n)
. (23)

This finishes the proof of Step (2) and hence of Theorem 2.

Motivated by [29] (p. 64, Definition 9.4), we introduce the vanishing moment condition
as follows.

Definition 11. Let �p ∈ (0, ∞)n, � ∈ N satisfy:

1
p−
− 1 <

(ln λ−)2

ln b ln λ+
�

and s0 := 
(1/p− − 1)ln b/ln λ−�, where p− is as in (4). An anisotropic Calderón–Zygmund
operator T of order � is said to satisfy T∗(xγ) = 0 for any γ ∈ Zn

+ with |γ| ≤ s0 if, for any
g ∈ L2(Rn) with compact support and satisfying that, for each β ∈ Zn

+ with |β| ≤ �,∫
Rn g(x)xβ dx = 0, the equality

∫
Rn T(g)(x)xγ dx = 0 holds true for each γ ∈ Zn

+ satisfy-
ing |γ| ≤ s0.

We have the following boundedness of anisotropic Calderón–Zygmund operators on
H�p

A(R
n).

Theorem 3. Let �p, �, s0 be as in Definition 11. Assume that T is an anisotropic Calderón–
Zygmund operator of order � and satisfies T∗(xγ) = 0 for any γ ∈ Zn

+ with |γ| ≤ s0. Then, there
exists a positive constant C such that, for any f ∈ H�p

A(R
n),

‖T( f )‖
H�p

A(R
n)
≤ C‖ f ‖

H�p
A(R

n)
.

By [1] (Lemma 6.8) and [45] (Lemma 2.3), we easily obtain the succeeding Lemma 7;
the details are omitted.

Lemma 7. Assume that E ⊂ Rn, F ∈ B with B as in (1), E ⊂ F and there exists a constant
c0 ∈ (0, 1] such that |E| ≥ c0|F|. Then, for any �p ∈ (0, ∞)n, there exists a positive constant C,
independent of E and F, such that:

‖1F‖L�p(Rn)

‖1E‖L�p(Rn)

≤ C.
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To prove Theorem 3, we need the following technical lemma, which is motivated
by [44] (Lemma 4.10) and [39] (Lemma 4.13).

Lemma 8. Let �p, �, s0 be as in Definition 11. Assume that r ∈ (1, ∞] and T is an anisotropic
Calderón–Zygmund operator of order � satisfying T∗(xγ) = 0 for any γ ∈ Zn

+ with |γ| ≤ s0.
Then, there exists a positive constant C such that, for any (�p, r, �)-atom ã supported in some
dilated ball x0 + Bi0 ∈ B with x0 ∈ Rn, i0 ∈ Z and B as in (1), 1

C T(ã) is a (�p, r, s0, ε)-molecule
associated with x0 + Bi0+ω, where:

ε := � logb(λ−) + 1/r′ (24)

and ω is as in (2).

Proof. Let T be an anisotropic Calderón–Zygmund operator of order � satisfying:

T∗(xγ) = 0 for any γ ∈ Zn
+ with |γ| ≤ s0.

For any (�p, r, �)-atom ã supported in some dilated ball x0 + Bi0 ∈ B, without losing
generality, we may assume that x0 = 0. Then, by the vanishing moments of ã and
Definition 11, we find that T(ã) has vanishing moments up to an order of s0.

Let U0(Bi0) := Bi0+ω and, for any k ∈ N:

Uk(Bi0) := (AkBi0+ω) \ (Ak−1Bi0+ω).

To show that T(ã) is a harmless constant multiple of a (�p, r, s0, ε)-molecule associated
with Bi0+ω, it suffices to prove that, for any k ∈ Z+:

‖T(ã)‖Lr(Uk(Bi0 ))
� b−kε|Bi0+ω |1/r

‖1Bi0+ω
‖L�p(Rn)

, (25)

where ε is as in (24).
Indeed, from the boundedness of T on Lr, the fact that supp ã ⊂ Bi0 , the size condition

of ã and Lemma 7, it follows that:

‖T(ã)‖Lr(Uk(Bi0 ))
� ‖ã‖Lr(Bi0 )

� |Bi0 |1/r

‖1Bi0
‖L�p(Rn)

� |Bi0+ω |1/r

‖1Bi0+ω
‖L�p(Rn)

and hence (25) holds true for k = 0.
On another hand, for any (�p, r, �)-atom ã, k ∈ N, x ∈ Uk(Bi0) and y ∈ Bi0 , by Lemma 3(i),

we know that x− y ∈ Bi0+k+2ω \ Bi0+k−1, which implies that ρ(x− y) ∼ bi0+k. From this
and (17), we deduce that, for any γ ∈ Zn

+ with 1 ≤ |γ| ≤ �:∣∣∣∂γ
y

[
K(·, Ai0+k·)

](
x, A−i0−ky

)∣∣∣ � [ρ(x− y)]−1 � b−i0−k. (26)

Note that supp ã ⊂ Bi0 . Then, we have:

T(ã)(x) =
∫

Bi0

K(x, y)ã(y) dy =
∫

Bi0

K̃(x, A−i0−ky)ã(y) dy, (27)

where K̃(x, y) := K(x, Ai0+ky) for any x, y ∈ Rn with x �= Ai0+ky. Moreover, by Taylor
expansion theorem for the variable y at the point (x, 0), we easily obtain:

K̃(x, ỹ) = ∑
γ∈Zn

+ , |γ|≤�−1

∂
γ
y K̃(x, 0)

γ!
(ỹ)γ + R�(ỹ), (28)

17
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where ỹ := A−i0−ky for any y ∈ Bi0 . This, combined with (26), further implies that:

|R�(ỹ)| � sup
t∈B−k

sup
γ∈Zn

+ , |γ|=�

∣∣∣∂γ
y K̃(x, t)

∣∣∣|ỹ|� � b−i0−k sup
t∈B−k

|t|�.

By the fact that, for any t ∈ B−k, ρ(t) < b−k < 1 and [29] (p. 11, Lemma 3.2), we
conclude that, for any � ∈ N as in Definition 11,

sup
t∈B−k

|t|� � sup
t∈B−k

[ρ(t)]�
ln λ−

ln b � b−k� logb(λ−).

Thus, we have:

|R�(ỹ)| � b−i0−kb−k� logb(λ−).

From this, (27), (28), the vanishing moments of atoms and the Hölder inequality, it
follows that, for any (�p, r, �)-atom ã, k ∈ N and x ∈ Uk(Bi0):

|T(ã)(x)| ≤
∫

Bi0

∣∣∣R�(A−i0−ky)ã(y)
∣∣∣ dy

� b−i0−kb−k� logb(λ−)
∫

Bi0

|ã(y)| dy

� b−i0−kb−k� logb(λ−)|Bi0 |1/r′ ‖ã‖Lr(Bi0 )

∼ b−k[1+� logb(λ−)]b−i0/r‖ã‖Lr(Bi0 )
.

This, together with the size condition of ã, (24) and Lemma 7, imply that, for any
k ∈ N:

‖T(ã)‖Lr(Uk(Bi0 ))
� b−k[1+� logb(λ−)]b−i0/r‖ã‖Lr(Bi0 )

|Bi0+k+ω |1/r

� b−k[1+� logb(λ−)]bk/r |Bi0 |1/r

‖1Bi0
‖L�p(Rn)

� b−kε|Bi0+ω |1/r

‖1Bi0+ω
‖L�p(Rn)

,

which completes the proof of (25) for k ∈ N and hence of Lemma 8.

In addition, we also need the subsequent density of H�p
A(R

n).

Lemma 9. Let �p ∈ (0, ∞)n. Then:

(i) H�p
A(R

n) ∩ C∞
c (Rn) is dense in H�p

A(R
n); here and thereafter, C∞

c (Rn) denotes the set of all
infinitely differentiable functions with compact support on Rn;

(ii) For any s as in (5), H�p,∞,s
A, fin(R

n) ∩ C(Rn) is dense in H�p
A(R

n).

Proof. To prove (i), we first show that, for any ϕ ∈ S(Rn) with
∫
Rn ϕ(x) dx �= 0 and

f ∈ H�p
A(R

n), as k → −∞,

f ∗ ϕk → f in H�p
A(R

n). (29)

For this purpose, we first assume that f ∈ H�p
A(R

n)∩ L2(Rn). In this case, to prove (29),
we only need to show that, for almost every x ∈ Rn, as k → −∞:

MN( f ∗ ϕk − f )(x)→ 0 for almost every x ∈ Rn as k → −∞ (30)

18
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where N := N�p + 2 with N�p := 
( 1
min{1,p−} − 1) ln b

ln λ−
� + 2. Indeed, note that, for any

k ∈ Z, f ∗ ϕk − f ∈ L2(Rn). Then, by [29] (p. 13, Theorem 3.6), we know that, for any
k ∈ Z, MN( f ∗ ϕk − f ) ∈ L2(Rn). From this, ref. [29] (p. 39, Lemma 6.6), (30) and the
Lebesgue-dominated convergence theorem, it follows that, (29) holds true for any f ∈
H�p

A(R
n) ∩ L2(Rn).

Subsequently, we prove (30). To this end, let g be a continuous function with compact
support. Then, g is uniformly continuous on Rn. Thus, for any δ ∈ (0, ∞), there exists
some η ∈ (0, ∞) such that, for any y ∈ Rn satisfying ρ(y) < η and x ∈ Rn,

|g(x− y)− g(x)| < δ

2‖ϕ‖L1(Rn)
.

Without loss of generality, we can assume that
∫
Rn ϕ(x) dx = 1. Then, for any k ∈ Z

and x ∈ Rn, we have:

|g ∗ ϕk(x)− g(x)| ≤
∫

ρ(y)<η
|g(x− y)− g(x)||ϕk(y)| dy +

∫
ρ(y)≥η

· · ·

<
δ

2
+ 2‖g‖L∞(Rn)

∫
ρ(y)≥b−kη

|ϕ(y)| dy. (31)

By the integrability of ϕ, we can find a K ∈ Z such that, for any k ∈ (−∞, K] ∩Z:

2‖g‖L∞(Rn)

∫
ρ(y)≥b−kη

|ϕ(y)| dy <
δ

2
.

From this and (31), we deduce that, for any x ∈ Rn:

lim
k→−∞

|g ∗ ϕk(x)− g(x)| = 0 holds true uniformly.

Therefore, ‖g ∗ ϕk − g‖L∞(Rn) → 0 as k → −∞. This, together with [29] (p. 13, Theo-
rem 3.6), again implies that:

‖MN(g ∗ ϕk − g)‖L∞(Rn) � ‖g ∗ ϕk − g‖L∞(Rn) → 0 as k → −∞. (32)

For any given ε ∈ (0, ∞), there exists a continuous function g with compact support
such that:

‖ f − g‖2
L2(Rn) < ε.

By (32) and [29] (p. 39, Lemma 6.6), we again know that there exists a positive constant
κ such that, for any x ∈ Rn:

lim sup
k→−∞

MN( f ∗ ϕk − f )(x)

≤ sup
k∈Z

MN(( f − g) ∗ ϕk)(x) + lim sup
k→−∞

MN(g ∗ ϕk − g)(x) + MN(g− f )(x)

≤ κMN�p(g− f )(x).

Thus, for any λ ∈ (0, ∞), we have:∣∣∣∣∣
{

x ∈ Rn : lim sup
k→−∞

MN( f ∗ ϕk − f )(x) > λ

}∣∣∣∣∣
≤
∣∣∣∣{x ∈ Rn : MN�p(g− f )(x) >

λ

κ

}∣∣∣∣ � ‖ f − g‖2
L2(Rn)

λ2 � ε

λ2 .

This implies that, for any f ∈ H�p
A(R

n) ∩ L2(Rn), (30) holds true.
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When f ∈ H�p
A(R

n), by an argument similar to that used in [43] (p. 1700), it is easy to
see that (29) also holds true.

Moreover, if f ∈ H�p,r,s
A, fin(R

n) and ϕ ∈ C∞
c (Rn) with

∫
Rn ϕ(x) dx �= 0, then, for any

k ∈ Z,
f ∗ ϕk ∈ C∞

c (Rn) ∩ H�p
A(R

n)

and, by (29),

f ∗ ϕk → f in H�p
A(R

n) as k → −∞.

This, combined with the density of the set H�p,r,s
A, fin(R

n) in H�p
A(R

n), further implies that

C∞
c (Rn) ∩ H�p

A(R
n) is dense in H�p

A(R
n), which completes the proof of (i).

We now prove (ii). By (i) and the proof of [43] (Theorem 6.13 (ii)) with some slight
modifications, we conclude that H�p,∞,s

A, fin(R
n) ∩ C(Rn) is dense in H�p

A(R
n). This finishes the

proof of (ii) and hence of Lemma 9.

Applying Lemmas 6, 7 and 9 as well as Theorem 1, we obtain a criterion on the
boundedness of linear operators on H�p

A(R
n) as follows, which plays a key role in the proof

of Theorem 3.

Theorem 4. Let T be a linear operator defined on the set of all measurable functions. Assume
that �p ∈ (0, ∞)n, r ∈ (max{p+, 1}, ∞] with p+ as in (4) and s̃ is as in (5) with s replaced by
s̃. If there exists some i0 ∈ Z and a positive constant C such that, for any (p(·), r, s̃)-atom ã
supported in some dilated ball x0 + Bk0 ∈ B with x0 ∈ Rn, k0 ∈ Z and B as in (1), 1

C T(ã) is a
(p(·), r, s, ε)-molecule associated with x0 + Bk0+i0 , where s and ε are as in Theorem 1, then T has a

unique bounded linear extension on H�p
A(R

n).

Proof. Let �p ∈ (0, ∞)n, r ∈ (max{p+, 1}, ∞] and

s̃ ∈
[⌊(

1
p−
− 1
)

ln b
ln λ−

⌋
, ∞
)
∩Z+

with p− as in (4). We next show Theorem 4 by considering two cases.
Case (1). r ∈ (max{p+, 1}, ∞). For this case, let f ∈ H�p,r,s̃

A, fin(R
n). Then, by the notion

of H�p,r,s̃
A, fin(R

n) in Lemma 6, we find that there exists some K ∈ N, three finite sequences
{λk}k∈[1,K]∩N ⊂ C, {xk}k∈[1,K]∩N ⊂ Rn and {ik}k∈[1,K]∩N ⊂ Z, and a finite sequence of
(�p, r, s)-atoms, {ak}k∈[1,K]∩N, supported, respectively, in {xk + Bik}k∈[1,K]∩N ⊂ B such that:

f =
K

∑
k=1

λkak in S′(Rn) (33)

and:

‖ f ‖
H�p,r,s

A, fin(R
n)
∼

∥∥∥∥∥∥
{

K

∑
k=1

[ |λk|1xk+Bik

‖1xk+Bik
‖L�p(Rn)

]p}1/p
∥∥∥∥∥∥

L�p(Rn)

. (34)

This, together with (33) and the linearity of T, implies that T( f ) = ∑K
k=1 λkT(ak) in

S′(Rn), where, for any k ∈ [1, K]∩N, 1
C T(ak) with C being a positive constant independent

of k is a (�p, r, s, ε)-molecule associated with xk + Bik+i0 with s, ε and i0 as in Theorem 4.
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From this, Theorem 1, Definition 7, as well as Lemmas 7, 4 and 5, (34) and Lemma 6, we
further deduce that, for any f ∈ H�p,r,s̃

A, fin(R
n):

‖T( f )‖
H�p

A(R
n)
∼ ‖T( f )‖

H�p,r,s,ε
A (Rn)

�

∥∥∥∥∥∥
{

K

∑
k=1

[ |λk|1xk+Bik+i0

‖1xk+Bik+i0
‖L�p(Rn)

]p}1/p
∥∥∥∥∥∥

L�p(Rn)

� bi0/τ

∥∥∥∥∥∥∥
⎡⎣ K

∑
k=1

{ |λk|[MHL(1xk+Bik
)]1/τ

‖1xk+Bik
‖L�p(Rn)

}p⎤⎦1/p
∥∥∥∥∥∥∥

L�p(Rn)

∼ bi0/τ

∥∥∥∥∥∥∥
⎧⎨⎩ K

∑
k=1

[ |λk|τ MHL(1xk+Bik
)

‖1xk+Bik
‖τ

L�p(Rn)

]p/τ
⎫⎬⎭

τ/p
∥∥∥∥∥∥∥

1/τ

L�p/τ(Rn)

�

∥∥∥∥∥∥
{

K

∑
k=1

[ |λk|1xk+Bik

‖1xk+Bik
‖L�p(Rn)

]p}1/p
∥∥∥∥∥∥

L�p(Rn)

∼ ‖ f ‖
H�p,r,s̃

A, fin(R
n)
∼ ‖ f ‖

H�p
A(R

n)
, (35)

where τ ∈ (0, p) is a constant.

Moreover, by the obvious density of Hp(·),r,s̃
A, fin (Rn) in H�p

A(R
n) with respect to the quasi-

norm ‖ · ‖
H�p

A(R
n)

and a proof similar to the estimation of (23), we conclude that, for any

f ∈ H�p
A(R

n), (35) also holds true. This finishes the proof of Theorem 4 in Case (1).

Case (2). r = ∞. In this case, by Lemma 9(ii), we know that H�p,∞,s̃
A, fin(R

n) ∩ C(Rn) is

dense in H�p
A(R

n). From this, repeating the proof of Case (1) with some slight modifications,
it follows that Theorem 4 also holds true when r = ∞, which completes the proof of
Theorem 4.

We now prove Theorem 3.

Proof of Theorem 3. Indeed, Theorem 3 is an immediate corollary of Theorem 4 and
Lemma 8. This finishes the proof of Theorem 3.

Remark 2. (i) Assume that � ∈ N, p ∈ (0, 1] and:

1
p
− 1 ≤ (ln λ−)2

ln b ln λ+
�. (36)

When �p := (

n times︷ ︸︸ ︷
p, . . . , p) with some p ∈ (0, ∞), the spaces H�p

A(R
n) and L�p(Rn) are just,

respectively, the anisotropic Hardy space Hp
A(R

n) of Bownik [29] and the Lebesgue space
Lp(Rn). In this case, Theorems 2 and 3 implies that, for any � ∈ N and p ∈ (0, 1] as in (36),
the anisotropic Calderón–Zygmund operator of order � (see Definition 10) is bounded from
Hp

A(R
n) to Lp(Rn) (or to itself), which are just, respectively, ref. [29] (p. 69, Theorem 9.9

and p. 68, Theorem 9.8). Moreover, let A := d In×n for some d ∈ R with |d| ∈ (1, ∞), � = 1.

Then, (ln λ−)2

ln b ln λ+
� = 1

n and H�p
A(R

n) becomes the classical isotropic Hardy space Hp(Rn). In
this case, by Theorems 2 and 3 and [37] ((i) and (ii) of Remark 4.4), we further know that,
for any p ∈ ( n

n+1 , 1], the classical Calderón–Zygmund operator is bounded from Hp(Rn) to
Lp(Rn) (or to itself), which is a well-known result (see, for instance [46]).

(ii) When A := d In×n for some d ∈ R with |d| ∈ (1, ∞), the space H�p
A(R

n) becomes the
mixed-norm Hardy space H�p(Rn) (see [7]). In this case, Theorems 2 and 3 are new.
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(iii) Very recently, Bownik et al. [47] introduced a kind of more general anisotropic Calderón–
Zygmund operators (see [47] (Definition 5.4)) and established the boundedness of these
operators from the anisotropic Hardy space Hp(Θ) to the Lebesgue space Lp(Rn) or to itself
(see, respectively, ref. [47] (Theorems 5.12 and 5.11)), where Θ is a continuous multi-level
ellipsoid cover of Rn (see [47] (Definition 2.1)). Here, we should point out that the space
H�p

A(R
n), in this article, is not covered by the space Hp(Θ), since the exponent p in Hp(Θ) is

only a constant. Thus, Theorems 2 and 3 are covered by neither [47] (Theorems 5.12 or 5.11).
(iv) Recall that Huang et al. also introduced another sort of anisotropic non-convolutional β-order

Calderón–Zygmund operators (see [1] (Definition 8.3)) and obtained the boundedness of these
Calderón–Zygmund operators from H�p

A(R
n) to the mixed-norm Lebesgue space L�p(Rn) (or

to itself), where β ∈ (0, ∞) and �p ∈ (0, 2)n with:

p− ∈
(

ln b
ln b + β ln λ−

,
ln b

ln b + (�β� − 1) ln λ−

]
,

where the symbol �β� denotes the least integer not less than β; see [1] (Theorem 8.5). Observe
that the Calderón–Zygmund operator in [1] (Definition 8.3) is different from the one used
in the present article (see Definition 10) and ref. [1] (Theorem 8.5) requires the integrable
exponent �p which belongs to (0, 2)n; however, this restriction is removed in Theorems 2 and 3.
Thus, Theorems 2 and 3 cannot be covered by [1] (Theorem 8.5).

5. Conclusions

In this article, we characterize the anisotropic mixed-norm Hardy space H�p
A(R

n) via
molecules, in which the range of the decay index ε is the known best possible in some sense.
As an application, we then obtain a criterion on the boundedness of linear operators on
H�p

A(R
n), which is used to prove the boundedness of the anisotropic Calderón–Zygmund

operators on H�p
A(R

n). In addition, the boundedness of anisotropic Calderón–Zygmund

operators from H�p
A(R

n) to the mixed-norm Lebesgue space L�p(Rn) is also presented. When
A is as in (6), the obtained boundedness of these Calderón–Zygmund operators positively
answers a question formulated by Cleanthous et al. in [6] (p. 2760). All these results are
new, even for the isotropic mixed-norm Hardy spaces on Rn.
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Abstract: In view of the importance of Besov space in harmonic analysis, differential equations,
and other fields, Jaak Peetre proposed to find a precise description of (Bs0,q0

p0 , Bs1,q1
p1 )θ,r. In this paper,

we come to consider this problem by wavelets. We apply Meyer wavelets to characterize the real
interpolation of homogeneous Besov spaces for the crucial index p and obtain a precise description
of (Ḃs,q

p0 , Ḃs,q
p1 )θ,r.

Keywords: real interpolation; besov space; meyer wavelet

1. Introduction

Since the middle of 20th century, the study of interpolation space has greatly promoted
the development of function space, operator theory, and developed a set of perfect mathe-
matical theories. It greatly enriches the theory of harmonic analysis, see [1–4]. However,
for a long time, only the real interpolation spaces of Lebesgue spaces have been studied
thoroughly, their forms are known as Lorentz spaces, and there are a lot of literature about
Lorentz spaces, see [2,5–9].

For the real interpolation of Besov spaces, we can refer to [9–16]. When the index
p is fixed, it has been shown that (Bs0,q0

p , B
s1 ,q1
p )θ,r are still Besov spaces, see [4,9,16]. The

interpolation for the index p is very different to which for the indices s and q. If p0 �= p1,
then (Bs,q

p0 , Bs,q
p1 )θ,r will fall outside of the scale of Besov spaces. J. Peetre proposed to

consider the real interpolation of Besov spaces in [4]. For more than forty years, due to
some inherent difficulties, little progress has been made in this regard.

In this paper, we consider the interpolation problem introduced in [4] for the crucial
index p. Wavelets have localization of both frequency and spatial position, which provides
a powerful tool for the study of the interpolation of Besov spaces. In this paper, we obtain
a precise description of (Ḃs,q

p0 , Ḃs,q
p1 )θ,r by Meyer wavelets. Further, as q = r, we prove that

(Ḃs,q
p0 , Ḃs,q

p1 )θ,q can fall into the Besov–Lorentz spaces in [17].
For Besov and Triebel–Lizorkin spaces, we use the characterization based on the

Littlewood–Paley decomposition, see [9,18,19]. Given a function ϕ, such that its Fourier
transform ϕ̂(ξ) ∈ C∞

0 (Rn) and satisfies

supp ϕ̂ ⊂ {ξ ∈ Rn : |ξ| ≤ 2} and ϕ̂(ξ) = 1, if |ξ| ≤ 1
2

.

For u ∈ Z, we define ϕu by

ϕu(x) = 2n(u+1)ϕ(2u+1x)− 2nu ϕ(2ux).

Mathematics 2021, 9, 2235. https://doi.org/10.3390/math9182235 https://www.mdpi.com/journal/mathematics
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These functions {ϕu(x)}u∈Z satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

supp ϕ̂u ⊂ {ξ ∈ Rn,
1
2
≤ 2−u|ξ| ≤ 2};

|ϕ̂u(ξ)| ≥ C > 0, if
1
2
< C1 ≤ 2−u|ξ| ≤ C2 < 2;

|∂k ϕ̂u(ξ)| ≤ Ck2−u|k|, for all k ∈ Nn;
+∞

∑
u=−∞

ϕ̂u(ξ) = 1, for any ξ ∈ Rn.

Denote the space of all Schwartz functions on Rn by S(Rn). The dual space of
S(Rn), namely, the space of all tempered distributions on Rn, equipped with the weak-∗
topology, is denoted by S′(Rn). Denote the space of all polynomials on Rn by P(Rn).
Let f ∈ S′(Rn)\P(Rn). Define fu = ϕu ∗ f , the fu is called the u-th dyadic block of the
Littlewood–Paley decomposition of f . We recall the definition of Ḃs,q

p and Ḟs,q
p .

Definition 1. Given s ∈ R, 0 < q ≤ ∞ and u ∈ Z. For f ∈ S′(Rn)\P(Rn), we define

(i) For 0 < p ≤ ∞, f ∈ Ḃs,q
p , if

(
∑
u

2usq‖ fu(x)‖q
Lp

) 1
q
< ∞.

(ii) For 0 < p < ∞, f ∈ Ḟs,q
p , if

∥∥∥∥∥
(

∑
u

2usq| fu(x)|q
) 1

q
∥∥∥∥∥

Lp

< ∞.

As q = ∞, it should be replaced by the supremum norm.

The definition of the above two spaces are independent of the selection of the functions
ϕ, see [9].

Then, we recall some notations of Meyer wavelets. Let Ψ0 be an even function in
C∞

0 ([− 4π
3 , 4π

3 ]) satisfying ⎧⎨⎩0 ≤ Ψ0(ξ) ≤ 1;

Ψ0(ξ) = 1, for |ξ| ≤ 2π

3
.

Let

Ω(ξ) =

√
(Ψ0(

ξ

2
))2 − (Ψ0(ξ))2.

Then, Ω(ξ) is an even function in C∞
0 ([− 8π

3 , 8π
3 ]). It is easy to get⎧⎪⎨⎪⎩

Ω(ξ) = 0, for |ξ| ≤ 2π

3
;

Ω2(ξ) + Ω2(2ξ) = 1 = Ω2(ξ) + Ω2(2π − ξ), for
2π

3
≤ ξ ≤ 4π

3
.

Denote Ψ1(ξ) := Ω(ξ)e−
iξ
2 . For all ε = (ε1, · · · , εn) ∈ {0, 1}n, define

Φ̂ε(ξ) :=
n

∏
i=1

Ψεi (ξi).

Furthermore, Γ := {(ε, k), ε ∈ {0, 1}n \ {(0, ..., 0)}, k ∈ Zn} and

Λ := {(ε, j, k) : ε ∈ {0, 1}n \ {(0, ..., 0)}, j ∈ Z, k ∈ Zn}.

For (ε, j, k) ∈ Λ, denote

Φε
j,k(x) := 2

jn
2 Φε(2jx− k).
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For f ∈ S′, let aε
j,k = 〈 f , Φε

j,k〉. The following results are well-known, see [17,18,20].

Lemma 1. The Meyer wavelets {Φε
j,k}(ε,j,k)∈Λ form an orthogonal basis in L2(Rn), hence, for all

f ∈ L2(Rn), the following wavelet decomposition holds in L2 sense,

f = ∑
(ε,j,k)∈Λ

aε
j,kΦε

j,k.

In this paper, we first give some precise descriptions of (Ḃs,q
p0 , Ḃs,q

p1 )θ,r with wavelets.
Let χ(x) be the characteristic function on the unit cube [0, 1)n. For Borel set F in Rn, denote
|F| the Lebesgue measure of F. Suppose that j, u ∈ Z, 1 < p0 < p1 < ∞ and 1

α = 1
p0
− 1

p1
,

denote

cj,n(τ) := inf

⎧⎨⎩λ :

∣∣∣∣∣∣
⎧⎨⎩x ∈ Rn : ∑

(ε,k)∈Γ
|aε

j,k|χ(2jx− k) > 2−
nj
2 λ

⎫⎬⎭
∣∣∣∣∣∣ ≤ τ

⎫⎬⎭,

bp0,p1
j,n,u :=

(∫ 2uα

0
(cj,n(τ))

p0 dτ

) 1
p0
+ 2u

(∫ ∞

2uα
(cj,n(τ))

p1 dτ

) 1
p1

.

Theorem 1. Given θ ∈ (0, 1), s ∈ R, 1 < p0 < p1 < ∞, 0 < q, r ≤ ∞ and 1
p = 1−θ

p0
+ θ

p1
. For

f = ∑
(ε,j,k)∈Λ

aε
j,kΦj,k, we have

(i) f ∈ (Ḃs,q
p0 , Ḃs,q

∞ )θ,r if, and only if,

∑
u

2−urθ

⎧⎨⎩∑
j

2jsq
[∫ 2up0

0
(cj,n(τ))

p0 dτ

] q
p0

⎫⎬⎭
r
q

< ∞;

(ii) f ∈ (Ḃs,q
p0 , Ḃs,q

p1 )θ,r if and only if

∑
u

2−urθ

{
∑

j
2jsq
[
bp0,p1

j,n,u

]q
} r

q

< ∞.

The above wavelet characterization is slightly complicated. Yang-Cheng-Peng [17]
introduced Besov–Lorentz spaces. Further, when q = r, we can prove that (Ḃs,q

p0 , Ḃs,q
p1 )θ,q are

just the Besov–Lorentz spaces defined in [17]. We have

Theorem 2. Let θ ∈ (0, 1), s ∈ R, 0 < q ≤ ∞, 1 < p0 < p1 < ∞, 1
p = 1−θ

p0
+ θ

p1
, u ∈ Z and

f = ∑
(ε,j,k)∈Λ

aε
j,kΦε

j,k. Then the following conditions are equivalent.

(i) f ∈ (Ḃs,q
p0 , Ḃs,q

p1 )θ,q if, and only if,

∑
j

2jsq

⎧⎪⎨⎪⎩∑
u

2uq

∣∣∣∣∣∣
⎧⎨⎩x ∈ Rn :

∣∣∣∣∣∣ ∑
(ε,k)∈Γ

aε
j,kΦε

j,k(x)

∣∣∣∣∣∣ > 2u

⎫⎬⎭
∣∣∣∣∣∣

q
p
⎫⎪⎬⎪⎭ < ∞.

(ii) f ∈ (Ḃs,q
p0 , Ḃs,q

p1 )θ,q if, and only if,

∑
j

2jsq

⎛⎜⎝∑
u

2uq

∣∣∣∣∣∣
⎧⎨⎩x ∈ Rn : 2

nj
2 ∑
(ε,k)∈Γ

|aε
j,k|χ(2jx− k) > 2u

⎫⎬⎭
∣∣∣∣∣∣

q
p
⎞⎟⎠ < ∞.
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Although the above main results still not solve the problem proposed by J. Peetre [4]
thoroughly, we obtain a precise description of (Ḃs,q

p0 , Ḃs,q
p1 )θ,r by Meyer wavelets. The wavelet

characterization of real interpolation spaces of Besov spaces provides people with an
effective means to study the continuity of linear operators and bilinear operators on such
spaces. We are using this point to study the well-posedness of non-linear fluid equations.

The plan of this paper is the following. In Section 2, we recall the general background
of the real interpolation method and Lorentz spaces. Then we review wavelet characteriza-
tion of Ḃs,q

p and Ḟs,q
p . In Section 3, we give the proof of Theorem 1. Finally, in Section 4 we

prove Theorem 2.
In this paper, A � B means the estimation of the form A ≤ CB with some constant C

independent of the main parameters, C may vary from line to line. A ∼ B means A � B
and B � A.

2. Preliminaries on Real Interpolation and Wavelets

In this section, we present some preliminaries on real interpolation and wavelets.

2.1. K-Functional and Real Interpolation

The K-functional was introduced by J. Peetre in the process of dealing with real
interpolation spaces, see [1,4]. If (A0, A1) is a pair of quasi-normed spaces which are
continuously embedded in a Hausdorff space X, then the K-functional

K(t, f , A0, A1) := inf
f= f0+ f1

{‖ f0‖A0 + t‖ f ‖A1}

is defined for all f = f0 + f1, where f0 ∈ A0, f1 ∈ A1.

Definition 2. Let 0 < θ < 1 and 0 < q < ∞. We define

(A0, A1)θ,q,K =:{
f : f ∈ A0 + A1, ‖ f ‖(A0,A1)θ,q,K

=
{∫ ∞

0

[
t−θK(t, f , A0, A1)

]q dt
t

} 1
q
< ∞

}
.

(1)

Further, we define

(A0, A1)θ,∞,K =:{
f : f ∈ A0 + A1, ‖ f ‖(A0,A1)θ,∞,K

= sup
t

t−θK(t, f , A0, A1) < ∞
}

. (2)

Bergh-Löfström [1] has shown that the norms of the spaces (A0, A1)θ,q,K in (1) and (2)
have the following discrete representation.

Lemma 2. Let 0 < θ < 1. Then,

‖ f ‖(A0,A1)θ,q,K
∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
∑
j∈Z

2−jqθK(2j, f , A0, A1)
q

] 1
q

, 0 < q < ∞;

sup
j∈Z

2−jθK(2j, f , A0, A1), q = ∞.

(3)

In the following part, we always use this form. For x ∈ Rn and function f (x), the
distribution function σf (λ) and rearrangement function f ∗(τ) are defined in the follow-
ing way

σf (λ) = |{x : | f (x)| > λ}| and f ∗(τ) = inf{λ : σf (λ) ≤ τ}.

We review some results about K-functional, see [3].

28



Mathematics 2021, 9, 2235

Lemma 3. Suppose that 0 < p < ∞ and f ∈ Lp + L∞. Then

K(t, f , Lp, L∞) ∼
[∫ tp

0
( f ∗(τ))pdτ

] 1
p

.

Lemma 4. If 0 < p0 < p1 < ∞ and 1
α = 1

p0
− 1

p1
, then

K(t, f , Lp0 , Lp1) ∼
[∫ tα

0
( f ∗(τ))p0 dτ

] 1
p0
+ t
[∫ ∞

tα
( f ∗(τ))p1 dτ

] 1
p1

.

For 0 < p < ∞, K-functional can be replaced to Kp functional, see [21]. Define Kp
functional by

Kp := Kp(t, f , A0, A1) = inf
f= f0+ f1

(‖ f0‖p
A0

+ tp‖ f1‖p
A1
)

1
p ,

and

‖ f ‖(A0,A1)θ,q,Kp
=

[∫ ∞

0
[t−θKp(t, f , A0, A1)]

q dt
t

] 1
q
.

We recall an important lemma about Kp(t, f , A0, A1) , see [21].

Lemma 5. Let (A0, A1) be a couple of quasi-normed spaces. For any 0 < p < ∞, we have

‖ f ‖(A0,A1)θ,q,K
∼ ‖ f ‖(A0,A1)θ,q,Kp

.

2.2. Lorentz Spaces and Lebesgue Spaces

In this subsection, we present first the definition of Lorentz spaces which are the
generalization of Lebesgue spaces and then some relative lemmas.

Definition 3. For 1 ≤ p < ∞ and 0 < r < ∞, the Lorentz spaces Lp,r are defined as follows

Lp,r =

⎧⎨⎩ f : ‖ f ‖p,r =

[
r
p

∫ ∞

0

(
τ

1
p f ∗(τ)

)r dτ

τ

] 1
r

< ∞

⎫⎬⎭.

For r = ∞,

Lp,∞ =

{
f : ‖ f ‖p,∞ = sup

τ
τ

1
p f ∗(τ) < ∞

}
.

It is easy to see that Lp,p = Lp. Further, Lp,∞ corresponds to the weak Lp spaces.
The above definition depends on the rearrangement function f ∗(τ). These spaces can be
characterized by distribution function σf (λ) also, see [2].

Lemma 6. Let 1 ≤ p < ∞ and 0 < r ≤ ∞. Then, for any f ∈ Lp,r, one has

‖ f ‖p,r ∼
[

r
∫ ∞

0

(
λσ

1
p
f (λ)

)r dλ

λ

] 1
r

and ‖ f ‖p,∞ ∼ sup
λ

λσ
1
p
f (λ).

The above continuous integral can be written as the following discrete form, see [17].

Lemma 7. Suppose that 1 ≤ p < ∞ and 0 < r < ∞. Then f ∈ Lp,r, if

(
∑
u

2ru|{x ∈ Rn : | f (x)| > 2u}|
r
p

) 1
r

< ∞,
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as r = ∞, the Lr-norm should be replaced by the L∞-norm.

The above Lorentz spaces are in fact real interpolation of Lebesgue spaces Lp, see [1].

Lemma 8. Assume that 0 < p0 < p1 ≤ ∞, 0 < r ≤ ∞, 0 < θ < 1 and 1
p = 1−θ

p0
+ θ

p1
. Then

(Lp0 , Lp1)θ,r = Lp,r, with
1
p
=

1− θ

p0
+

θ

p1
.

By Lemma 8, we get another characterization of Lp,r as below.

Corollary 1. Let all parameters be as defined in Lemma 8. Then,

‖ f ‖p,r ∼
[∫ ∞

0

(
t−θK(t, f , Lp0 , Lp1)

)r dt
t

] 1
r
.

2.3. Wavelet Characterization of Ḃs,q
p and Ḟs,q

p

For any function f (x) in Ḃs,q
p or Ḟs,q

p in Definition 1, the following wavelet decomposi-
tion holds in the sense of distribution,

f = ∑
(ε,j,k)∈Λ

aε
j,kΦε

j,k.

We recall the wavelet characterization of Ḃs,q
p and Ḟs,q

p in this subsection, see [16–18,20].
For any s ∈ R and 0 < q ≤ ∞, denote

Ss,q f (x) :=

⎛⎝ ∑
(ε,j,k)∈Λ

2qj(s+ n
2 )|aε

j,k|qχ(2jx− k)

⎞⎠ 1
q

.

When s = 0 and q = 2, we denote S f := Ss,q f .

Lemma 9. Let s ∈ R and 0 < q ≤ ∞.

(i) For 0 < p < ∞, f ∈ Ḟs,q
p (Rn) if, and only if,

‖Ss,q f ‖Lp < +∞.

(ii) For 0 < p ≤ ∞, f ∈ Ḃs,q
p (Rn) if, and only if,

⎡⎢⎣∑
j∈Z

2qj(s− n
p +

n
2 )

⎛⎝ ∑
(ε,k)∈Γ

|aε
j,k|p
⎞⎠

q
p
⎤⎥⎦

1
q

< ∞.

It is easy to see that Ḟ0,2
p = Lp. In [17], Yang-Cheng-Peng proved the wavelet charac-

terization of Lorentz spaces Lp,r.

Lemma 10. Suppose that 1 ≤ p < ∞, 0 < r < ∞ and u ∈ Z. Then f ∈ Lp,r, if

(
∑
u

2ru|{x ∈ Rn : |S f (x)| > 2u}|
r
p

) 1
r

< ∞,

as r = ∞, the Lr-norm should be replaced by the L∞-norm.
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Remark 1. f and S f can control each other by using good−λ inequality. When the Fourier
transform of f is supported on a ring, f and S f can control each other. The distribution function
σf (λ) and rearrangement function f ∗(τ) can be replaced by σS f (λ) and (S f )∗(τ), see [17].
Without affecting the proof, these notations are not strictly distinguished in this paper.

3. Proof of Theorem 1

In this section, we characterize (Ḃs,q
p0 , Ḃs,q

∞ )θ,r, and (Ḃs,q
p0 , Ḃs,q

p1 )θ,r with wavelets. Now we
come to prove Theorem 1.

Proof. Denote
‖ f ‖p := ‖ f ‖Lp , ‖ f ‖(A0,A1)θ,q

:= ‖ f ‖(A0,A1)θ,q,K
.

For any function f in Ḃs,q
p , the following wavelet decomposition holds in the sense

of distribution,
f = ∑

(ε,j,k)∈Λ
aε

j,kΦε
j,k.

From Lemma 9, it follows that

Kq(t, f ) := Kq(t, f , Ḃs,q
p0 , Ḃs,q

p1 ) = inf

⎡⎢⎣∑
j

2jq(s− n
p0
+ n

2 )

⎛⎝ ∑
(ε,k)∈Γ

|xε
j,k|p0

⎞⎠
q

p0

+tq ∑
j

2jq(s− n
p1
+ n

2 )

⎛⎝ ∑
(ε,k)∈Γ

|aε
j,k − xε

j,k|p1

⎞⎠
q

p1

⎤⎥⎦
1
q

.

Denote
xj = ∑

(ε,k)∈Γ
xε

j,kΦε
j,k(x) , aj = ∑

(ε,k)∈Γ
aε

j,kΦε
j,k(x).

By Lemma 9, we deduce that

‖xj‖p0 = 2j(− n
p0
+ n

2 )

⎧⎨⎩∑
k

(
∑
ε

|xε
j,k|2
) p0

2
⎫⎬⎭

1
p0

∼ 2j(− n
p0
+ n

2 )

⎧⎨⎩ ∑
(ε,k)∈Γ

|xε
j,k|p0

⎫⎬⎭
1

p0

,

‖aj − xj‖p1 = 2j(− n
p1
+ n

2 )

⎧⎨⎩∑
k

(
∑
ε

|aε
j,k − xε

j,k|2
) p1

2
⎫⎬⎭

1
p1

∼ 2j(− n
p1
+ n

2 )

⎧⎨⎩ ∑
(ε,k)∈Γ

|aε
j,k − xε

j,k|p1

⎫⎬⎭
1

p1

.
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Hence,

Kq(t, aj) ∼
[
∑

j
2jsq inf

(
‖xj‖q

p0 + tq‖aj − xj‖q
p1

)] 1
q

∼
{

∑
j

2jsq[inf(‖xj‖p0 + t‖aj − xj‖p1)
]q} 1

q

=

{
∑

j
2jsq[K(t, aj, Lp0 , Lp1

)]q} 1
q

.

Consequently,

‖ f ‖(Ḃs,q
p0 ,Ḃs,q

p1 )θ,r
∼
{∫ ∞

0
[t−θKq(t, a)]r

dt
t

} 1
r

∼

⎧⎪⎨⎪⎩
∫ ∞

0

⎡⎣t−θ

{
∑

j
2jsq[K(t, aj, Lp0 , Lp1)

]q} 1
q
⎤⎦r

dt
t

⎫⎪⎬⎪⎭
1
r

. (4)

If 1 < p0 < p1 < ∞, then Lp0 = Ḟ0,2
p0 and Lp1 = Ḟ0,2

p1 . Applying Remark 1, we have

(S∗ f )(τ) := (S∗0,2 f )(τ) = inf{λ : |{x ∈ Rn : S0,2 f (x) > λ}| ≤ τ}.

For aj = ∑
(ε,k)∈Γ

aε
j,kΦε

j,k(x), we have

Saj(x) := S0,2aj(x) =

⎛⎝ ∑
(ε,k)∈Γ

22j(0+ n
2 )|aε

j,k|2χ(2jx− k)

⎞⎠ 1
2

=

⎛⎝ ∑
(ε,k)∈Γ

2jn|aε
j,k|2χ(2jx− k)

⎞⎠ 1
2

= 2
jn
2 ∑

k

(
∑
ε

|aε
j,k|2
) 1

2

χ(2jx− k)

∼ 2
jn
2 ∑
(ε,k)∈Γ

|aε
j,k|χ(2jx− k).

Thus,

Saj(x) = 2
jn
2 ∑
(ε,k)∈Γ

|aε
j,k|χ(2jx− k). (5)

By (5), we deduce that

(S∗aj)(τ) = inf{λ : |{x ∈ Rn : Saj(x) > λ}| ≤ τ}

= inf

⎧⎨⎩λ :

∣∣∣∣∣∣
⎧⎨⎩x ∈ Rn : 2

jn
2 ∑
(ε,k)∈Γ

|aε
j,k|χ(2jx− k) > λ

⎫⎬⎭
∣∣∣∣∣∣ ≤ τ

⎫⎬⎭
= inf

⎧⎨⎩λ :

∣∣∣∣∣∣
⎧⎨⎩x ∈ Rn : ∑

(ε,k)∈Γ
|aε

j,k|χ(2jx− k) > 2−
jn
2 λ

⎫⎬⎭
∣∣∣∣∣∣ ≤ τ

⎫⎬⎭.
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Denote

cj,n(τ) := inf

⎧⎨⎩λ :

∣∣∣∣∣∣
⎧⎨⎩x ∈ Rn : ∑

(ε,k)∈Γ
|aε

j,k|χ(2jx− k) > 2−
jn
2 λ

⎫⎬⎭
∣∣∣∣∣∣ ≤ τ

⎫⎬⎭. (6)

Hence,

(S∗aj)(τ) = cj,n(τ). (7)

Let us prove the theorem in two cases.

(i) For p1 = ∞, by Remark 1 and Lemma 3, we have

K(t, aj, Lp0 , L∞) ∼
[∫ tp0

0
(a∗j (τ))

p0 dτ

] 1
p0 ∼

[∫ tp0

0

[
(S∗aj)(τ)

]p0 dτ

] 1
p0

.

By (6) and (7), we get

K(t, aj, Lp0 , L∞) ∼
[∫ tp0

0

(
cj,n(τ)

)p0 dτ

] 1
p0

. (8)

Applying (4), (8) and the discrete representation of the spaces (A0, A1)θ,q,K which is
described in Remark 3, we obtain

‖ f ‖r
(Ḃs,q

p0 ,Ḃs,q
∞ )θ,r

∼ ∑
u

2−urθ

⎧⎨⎩∑
j

2jsq
[∫ 2up0

0

(
cj,n(τ)

)p0 dτ

] q
p0

⎫⎬⎭
r
q

.

(ii) For 1 < p0 < p1 < ∞, by Lemma 4, similar as we did in (i), we have

K(t, aj, Lp0 , Lp1) ∼
[∫ tα

0

(
cj,n(τ)

)p0 dτ

] 1
p0
+ t
[∫ ∞

tα

(
cj,n(τ)

)p1 dτ

] 1
p1

, (9)

where 1
α = 1

p0
− 1

p1
. Denote

bp0,p1
j,n,u, :=

(∫ 2uα

0
(cj,λ(τ))

p0 dτ

) 1
p0
+ 2u

(∫ ∞

2uα
(cj,λ(τ))

p1 dτ

) 1
p1

.

Combining (4) with (9) and using the discrete representation of the spaces (A0, A1)θ,q,K
which is described in Remark 3, we know that

‖ f ‖r
(Ḃs,q

p0 ,Ḃs,q
p1 )θ,r

∼ ∑
u

2−urθ

{
∑

j
2jsq
[
bp0,p1

j,n,u

]q
} r

q

.

The proof of Theorem 1 is complete.

4. Proof of Theorem 2

Now we come to prove Theorem 2.

Proof. Applying Lemma 5, the same as we did in the proof of Theorem 1, we can also get

‖ f ‖(Ḃs,q
p0 ,Ḃs,q

p1 )θ,r
∼

⎧⎪⎨⎪⎩
∫ ∞

0

⎡⎣t−θ

{
∑

j
2jsq[K(t, aj, Lp0 , Lp1)

]q} 1
q
⎤⎦r

dt
t

⎫⎪⎬⎪⎭
1
r

,
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where f = ∑
(ε,j,k)∈Λ

aε
j,kΦε

j,k, aj = ∑
(ε,k)∈Γ

aε
j,kΦε

j,k. As r = q, we can write

‖ f ‖(Ḃs,q
p0 ,Ḃs,q

p1 )θ,q
∼
{∫ ∞

0

[
t−θq ∑

j
2jsq[K(t, aj, Lp0 , Lp1)

]q]dt
t

} 1
q

∼
{

∑
j

2jsq
[∫ ∞

0
t−θq[K(t, aj, Lp0 , Lp1)

]q dt
t

]} 1
q

=

⎧⎨⎩∑
j

2jsq

([∫ ∞

0
t−θq[K(t, aj, Lp0 , Lp1)

]q dt
t

] 1
q
)q⎫⎬⎭

1
q

∼
{

∑
j

2jsq‖aj‖q
(Lp0 ,Lp1 )θ,q

} 1
q

.

Thus,

‖ f ‖(Ḃs,q
p0 ,Ḃs,q

p1 )θ,q
∼
{

∑
j

2jsq‖aj‖q
(Lp0 ,Lp1 )θ,q

} 1
q

. (10)

We will prove the theorem in two cases.

(i) For aj = ∑
(ε,k)∈Γ

aε
j,kΦε

j,k(x) and 1
p = 1−θ

p0
+ θ

p1
, using Lemma 7, we have

‖aj‖(Lp0 ,Lp1 )θ,q
= ‖aj‖p,q =

⎧⎪⎨⎪⎩∑
u

2uq

∣∣∣∣∣∣
⎧⎨⎩x ∈ Rn :

∣∣∣∣∣∣ ∑
(ε,k)∈Γ

aε
j,kΦε

j,k(x)

∣∣∣∣∣∣ > 2u

⎫⎬⎭
∣∣∣∣∣∣

q
p
⎫⎪⎬⎪⎭

1
q

. (11)

From (10) and (11), it follows that

‖ f ‖q
(Ḃs,q

p0 ,Ḃs,q
p1 )θ,q

∼ ∑
j

2jsq

⎧⎪⎨⎪⎩∑
u

2uq

∣∣∣∣∣∣
⎧⎨⎩x ∈ Rn :

∣∣∣∣∣∣ ∑
(ε,k)∈Γ

aε
j,kΦε

j,k(x)

∣∣∣∣∣∣ > 2u

⎫⎬⎭
∣∣∣∣∣∣

q
p
⎫⎪⎬⎪⎭.

(ii) Applying Lemma 10, we obtain another equivalent form of ‖aj‖p,q,

‖aj‖(Lp0 ,Lp1 )θ,q
= ‖aj‖p,q =

(
∑
u

2ru|{x ∈ Rn : |Saj(x)| > 2u}|
q
p

) 1
q

=

⎧⎪⎨⎪⎩∑
u

2uq

∣∣∣∣∣∣
⎧⎨⎩x ∈ Rn : 2

nj
2 ∑
(ε,k)∈Γ

|aε
j,k|χ(2jx− k) > 2u

⎫⎬⎭
∣∣∣∣∣∣

q
p
⎫⎪⎬⎪⎭

1
q

. (12)

Applying (10) and (12), we obtain that

‖ f ‖q
(Ḃs,q

p0 ,Ḃs,q
p1 )θ,q

∼ ∑
j

2jsq

⎧⎪⎨⎪⎩∑
u

2uq

∣∣∣∣∣∣
⎧⎨⎩x ∈ Rn : 2

nj
2 ∑
(ε,k)∈Γ

|aε
j,k|χ(2jx− k) > 2u

⎫⎬⎭
∣∣∣∣∣∣

q
p
⎫⎪⎬⎪⎭.

We finish the proof of Theorem 2.
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Abstract: In this systematic review, the authors give a survey on the recent developments of both the
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1. Introduction

In this article, a cube Q means that it has finite side length and all its sides parallel to
the coordinate axes, but Q is not necessarily open or closed. Moreover, we always let X be
Rn or a given cube of Rn. Recall that the Lebesgue space Lq(X) with q ∈ [1,∞] is defined to
be the set of all measurable functions f on X such that

‖ f ‖Lq(X) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[∫
X
| f (x)|q dx

] 1
q

when q ∈ [1,∞),

ess sup
x∈X

| f (x)| when q = ∞

is finite. In what follows, we use 1E to denote the characteristic function of a set E ⊂ Rn, and
for any given q ∈ [1,∞), Lq

loc (X) to denote the set of all measurable functions f on X such
that f 1E ∈ Lq(X) for any bounded measurable set E ⊂ X.

It is well known that Lp(X) with p ∈ [1,∞] plays a leading role in the modern analysis
of mathematics. In particular, when p ∈ (1,∞), the space Lp(X) enjoys some elegant
properties, such as the reflexivity and the separability, which no longer hold true in L∞(X).
Thus, many studies related to Lp(X) need some modifications when p = ∞: for instance,
the boundedness of Calderón–Zygmund operators. Recall that the Calderón–Zygmund
operator T is bounded on Lp(Rn) for any given p ∈ (1,∞), but not bounded on L∞(Rn).
Indeed, T maps L∞(Rn) into the space BMO (Rn) which was introduced by John and
Nirenberg [1] in 1961 to study the functions of bounded mean oscillation; here and thereafter,

BMO (X) :=

⎧⎪⎪⎨⎪⎪⎩ f ∈ L1
loc (X) : ‖ f ‖BMO (X) := sup

cube Q⊂X

�
Q

∣∣∣ f (x) − fQ
∣∣∣ dx < ∞

⎫⎪⎪⎬⎪⎪⎭
with

fQ :=
�

Q
f (y) dy :=

1
|Q|

∫
Q

f (y) dy

and the supremum taken over all cubes Q ofX. This implies that BMO (X) is a fine substitute
of L∞(X). Furthermore, it should be mentioned that, in the sense modulo constants,
BMO (X) is a Banach space, but, for simplicity, we regard f ∈ BMO (X) as a function rather
than an equivalent class f +C := { f + c : c ∈ C} if there exists no confusion. Moreover,

Mathematics 2021, 9, 2264. https://doi.org/10.3390/math9182264 https://www.mdpi.com/journal/mathematics

37



Mathematics 2021, 9, 2264

the space BMO (X) and its numerous variants as well as their vanishing subspaces have
attracted a lot of attention since 1961. For instance, Fefferman and Stein [2] proved that
the dual space of the Hardy space H1(Rn) is BMO (Rn); Coifman et al. [3] showed an
equivalent characterization of the boundedness of Calderón–Zygmund commutators via
BMO (Rn); Coifman and Weiss [4,5] introduced the space of homogeneous type and studied
the Hardy space and the BMO space in this context; Sarason [6] obtained the equivalent
characterization of VMO (Rn), the closure in BMO (Rn) of uniformly continuous functions,
and used it to study stationary stochastic processes satisfying the strong mixing condition
and the algebra H∞ + C; Uchiyama [7] established an equivalent characterization of the
compactness of Calderón–Zygmund commutators via CMO (Rn) which is defined to be
the closure in BMO (Rn) of infinitely differentiable functions on Rn with compact support;
Nakai and Yabuta [8] studied pointwise multipliers for functions on Rn of bounded mean
oscillation; and Iwaniec [9] used the compactness theorem in Uchiyama [7] to study
linear complex Beltrami equations and the Lp(C) theory of quasiregular mappings. All
these classical results have wide generalizations as well as applications and have inspired
a myriad of further studies in recent years: see, for instance, the References [10–13]
for their applications in singular integral operators as well as their commutators, the
References [14–19] for their applications in pointwise multipliers, the References [20–22]
for their applications in partial differential equations, and the References [23–28] for more
variants and properties of BMO (Rn). In particular, we refer the reader to Chang and
Sadosky [29] for an instructive survey on functions of bounded mean oscillation and also
Chang et al. [25] for BMO spaces on the Lipschitz domain of Rn.

Naturally, BMO (X) extends L∞(X), in the sense that L∞(X) � BMO (X) and, more-
over, ‖ · ‖BMO (X) ≤ 2‖ · ‖L∞(X). Similarly, such extension exists for any Lp(X) with p ∈ (1,∞).
Indeed, John and Nirenberg [1] also introduced a generalized version of the BMO condition
which was subsequently used to define the so-called John–Nirenberg space JNp(Q0) with
exponent p ∈ (1,∞) and Q0 being any given cube of Rn. Recall that for any given p ∈ (1,∞)
and any given cube Q0 of Rn, the John–Nirenberg space JNp(Q0) is defined to be the set of all
f ∈ L1(Q0) such that

‖ f ‖JNp(Q0) := sup

⎡⎢⎢⎢⎢⎢⎣∑
i

|Qi|
{�

Qi

∣∣∣ f (x) − fQi

∣∣∣ dx
}p

⎤⎥⎥⎥⎥⎥⎦
1
p

< ∞, (1)

where the supremum is taken over all collections of interior pairwise disjoint cubes {Qi}i of Q0.
It is easy to see that the limit of JNp(Q0) when p→∞ is just BMO (Q0) (see also Corollary 2
below). Moreover, the John–Nirenberg space is closely related to the Lebesgue space Lp(Q0)
and the weak Lebesgue space Lp,∞(Q0) which is defined in Definition 1 below. Precisely, let
p ∈ (1,∞). On the one hand, the inequality obtained in ([1], Lemma 3) (see also Theorem 2
below) implies that JNp(Q0) ⊂ Lp,∞(Q0); additionally, by ([30], Example 3.5), we further
know that JNp(Q0) � Lp,∞(Q0). On the other hand, it is obvious that Lp(Q0) ⊂ JNp(Q0)
with ‖ · ‖JNp(Q0) ≤ 2‖ · ‖Lp(Q0), but the striking nontriviality was shown very recently by
Dafni et al. ([31], Proposition 3.2 and Corollary 4.2), who say that Lp(Q0) � JNp(Q0).
Combining these facts, we conclude that

Lp(Q0) � JNp(Q0) � Lp,∞(Q0). (2)

Therefore, John–Nirenberg spaces are new spaces between Lebesgue spaces and weak
Lebesgue spaces, which motivates us to study the properties of JNp. Furthermore, various
John–Nirenberg-type spaces have also attracted a lot of attention in recent years (see,
for instance, [31–37] for the Euclidean space case and [30,38–40] for the metric measure
space case).

It should be mentioned that the mean oscillation truly makes a difference in both
BMO and JNp; for instance,
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(i) Via the characterization of distribution functions, we know that BMO is closely
related to the space Lexp whose definition (see (6) below) is similar to an equivalent
expression of BMO but with f − fQ replaced by f (see Proposition 3 below);

(ii) There exists an interesting observation presented by Riesz [41], which says that in (1),
if we replace f − fQi by f , then JNp(Q0) turns to be Lp(Q0). Moreover, this conclusion
also holds true when Q0 is replaced by Rn (see Proposition 28 below).

The main purpose of this article is to give a survey on some recent developments of
both the John–Nirenberg space JNp and the space BMO, including their several generalized
(or related) spaces and some vanishing subspaces. We begin in Section 2 by recalling
some definitions and basic properties of BMO and JNp. Section 3 summarizes some recent
developments of the John–Nirenberg–Campanato space, the localized John–Nirenberg–
Campanato space, and the special John–Nirenberg–Campanato space via congruent cubes.
Section 4 focuses on the Riesz-type space, which differs from the John–Nirenberg space in
subtracting integral means, and its congruent counterpart. In Section 5, we pay attention
to some vanishing subspaces of the aforementioned John–Nirenberg-type spaces, such as
VMO, XMO, CMO, VJNp, and CJNp on Rn or any given cube Q0 of Rn. In addition, several
related open questions are also summarized in this survey.

More precisely, the remainder of this survey is organized as follows.
Section 2 is split into two subsections. In Section 2.1, via recalling the definitions of

distribution functions and some related function spaces (including the weak Lebesgue
space, the Morrey space, and the space Lexp), we present the relation

L∞(Q0) � BMO (Q0) � Lexp(Q0)

in Proposition 2 below, which is a counterpart of (2) above, and also show two equivalent
Orlicz-type norms on BMO (Rn) in Proposition 3 below; moreover, the corresponding
results for the localized BMO space are also obtained in Corollary 1 below. Section 2.2 is
devoted to some significant results of JNp, including the famous John–Nirenberg inequality
(see Theorem 2 below), and the accurate relations of JNp and Lp as well as Lp,∞ (see
Remark 2 below). Furthermore, some recent progress of JNp is also briefly listed at the end
of this subsection.

Section 3 is split into three subsections. In Section 3.1, we first recall the notions of the
John–Nirenberg–Campanato space (for short, JNC space), the corresponding Hardy-type
space, and their basic properties, which include the limit results and the relations with
other classical spaces. Then we review the dual theorem between these two spaces and the
independence over the second sub-index of JNC spaces and Hardy-type spaces. Section 3.2
is devoted to the localized counterpart of Section 3.1. The aim of Section 3.3 is the summary
of the special JNC space defined via congruent cubes (for short, congruent JNC space),
including their basic properties corresponding to those in Section 3.1. Furthermore, some
applications about the boundedness of operators on congruent spaces are mentioned
as well.

In Section 4, via subtracting integral means in the JNC space, we first give the
definition of the Riesz-type space appearing in [37] and then present some basic facts
about this space in Section 4.1. Moreover, the predual space (namely, the block-type space)
and the corresponding dual theorem of the Riesz-type space are also displayed in this
subsection. Section 4.2 is devoted to the congruent counterpart of the Riesz-type space and
the boundedness of some important operators.

Section 5 is split into three subsections. Section 5.1 is devoted to several vanish-
ing subspaces of BMO (Rn), including VMO (Rn), CMO (Rn), MMO (Rn), XMO (Rn),
and X1MO (Rn). We first recall their definitions and then review their (except MMO (Rn))
mean oscillation characterizations, respectively, in Theorems 11–13 below. Meanwhile,
an open question on the corresponding equivalent characterization of MMO (Rn) is
also listed in Question 11 below. Then, we further review the compactness theorems
of the Calderón–Zygmund commutators [b, T], where b belongs to the vanishing sub-
spaces CMO (Rn) as well as XMO (Rn), and propose an open question on [b, T] with
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b ∈ XMO (Rn). Moreover, the characterizations via Riesz transforms of BMO (Rn),
VMO (Rn), and CMO (Rn), as well as the localized results of these vanishing subspaces,
are presented. Furthermore, some open questions are listed in this subsection. Section 5.2
devotes to the vanishing subspaces of JNC spaces. We first recall the definition of the van-
ishing JNC space on cubes in Definition 17 and then review its equivalent characterization
as well as its dual result, respectively, in Theorems 19 and 20. Moreover, for the case of Rn,
we review the corresponding results for VJNp(Rn) and CJNp(Rn), which are, respectively,
counterparts of VMO (Rn) and CMO (Rn) (see Theorems 21 and 22 below). As before,
some open questions are also listed at the end of this subsection. Section 5.3 is devoted to
the congruent counterpart of Section 5.2, and some similar conclusions are listed in this
subsection; meanwhile, some open questions on the JNC space have affirmative answers in
the congruent setting (see Proposition 32 below).

Finally, we make some conventions on notation. Let N := {1, 2, . . .}, Z+ := N ∪ {0},
and Zn

+ := (Z+)n. We always denote by C and C̃ positive constants which are independent
of the main parameters, but they may vary from line to line. Moreover, we use C(γ, β, ...)
to denote a positive constant depending on the indicated parameters γ, β, . . . Constants
with subscripts, such as C0 and A1, do not change in different occurrences. Moreover,
the symbol f � g represents that f ≤ Cg for some positive constant C. If f � g and g � f ,
we then write f ∼ g. If f ≤ Cg and g = h or g ≤ h, we then write f � g ∼ h or f � g � h,
rather than f � g = h or f � g ≤ h. For any p ∈ [1,∞], let p′ be its conjugate index, that is, p′
satisfies 1/p + 1/p′ = 1. We use 1E to denote the characteristic function of a set E ⊂ Rn, |E| to
denote the Lebesgue measure when E ⊂ Rn is measurable, and 0 to denote the origin of Rn.
For any function f on Rn, let supp ( f ) := {x ∈ Rn : f (x) � 0}. Let X be a normed linear
space. We use (X)∗ to denote its dual space.

2. BMO and JNp

It is well known that the space BMO has played an important role in harmonic analysis,
partial differential equations, and other mathematical fields since it was introduced by
John and Nirenberg in their celebrated article [1]. However, in the same article [1], another
mysterious space appeared as well, which is now called the John–Nirenberg space JNp.
Indeed, BMO can be viewed as the limit space of JNp as p → ∞ (see Proposition 6 and
Corollary 2 below with α := 0). To establish the relations of BMO and JNp, and also to
summarize some recent works of John–Nirenberg-type spaces, we first recall some basic
properties of BMO and JNp in this section.

This section is devoted to some well-known results of BMO (X) and JNp(X), respec-
tively, in Sections 2.1 and 2.2. In addition, it is trivial to find that all the results in Section 2.1
also hold true with the cube Q0 replaced by the ball B0 of Rn.

2.1. (Localized) BMO and Lexp

This subsection is devoted to several equivalent norms of the spaces BMO and localized
BMO. To this end, we begin with the distribution function

D( f ;X)(t) := |{x ∈ X : | f (x)| > t}|, (3)

where f ∈ L1
loc (X) and t ∈ (0,∞). Recall that the distribution function is closely related to

the following weak Lebesgue space.

Definition 1. Let p ∈ (0,∞). The weak Lebesgue space Lp,∞(X) is defined by setting

Lp,∞(X) :=
{

f is measurable on X : ‖ f ‖Lp,∞(X) < ∞
}
,

where, for any measurable function f on X,

‖ f ‖Lp,∞(X) := sup
t∈(0,∞)

[
t|{x ∈ X : | f (x)| > t}| 1p

]
.
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Moreover, the distribution function also features BMO (X), which is exactly the famous
result obtained by John and Nirenberg ([1], Lemma 1’): there exist positive constants C1
and C2, depending only on the dimension n, such that, for any given f ∈ BMO (X), any
given cube Q ⊂ X, and any t ∈ (0,∞),

∣∣∣∣{x ∈ Q : | f (x) − fQ| > t
}∣∣∣∣ ≤ C1e

− C2
‖ f ‖BMO (X) t|Q|. (4)

The main tool used in the proof of (4) is the following well-known Calderón–Zygmund
decomposition (see, for instance, [42], p. 34, Theorem 2.11, and also [43], p. 150, Lemma 1).

Theorem 1. For a given function f which is integrable and non-negative onX, and a given positive
number λ, there exists a sequence {Qj} j of disjoint dyadic cubes of X such that

(i) f (x) ≤ λ for almost every x ∈ X \⋃ j Qj;
(ii) |⋃ j Qj| ≤ 1

λ‖ f ‖L1(X);
(iii) λ <

�
Qj

f (x) dx ≤ 2nλ.

As an application of (4), we find that for any given q ∈ (1,∞), f ∈ BMO (Rn) if and
only if f ∈ L1

loc (R
n) and

‖ f ‖BMOq(Rn) := sup
cube Q⊂Rn

[�
Q

∣∣∣ f (x) − fQ
∣∣∣q dx

] 1
q

< ∞.

Meanwhile, ‖ · ‖BMO (Rn) ∼ ‖ · ‖BMOq(Rn) (see, for instance, [42], p. 125, Corollary 6.12).
Recently, Bényi et al. [44] gave a comprehensive approach for the boundedness of

weighted commutators via a new equivalent Orlicz-type norm

‖ f ‖BMO(X) := sup
cube Q⊂X

‖ f − fQ‖Lexp(Q). (5)

This equivalence is proved in Proposition 3 below. Here and thereafter, for any given
cube Q of Rn and any measurable function g, the locally normalized Orlicz norm ‖g‖Lexp(Q) is
defined by setting

‖g‖Lexp(Q) := inf
{
λ ∈ (0,∞) :

�
Q

[
e
|g(x)|
λ − 1

]
dx ≤ 1

}
. (6)

Moreover, for any given cube Q of Rn, the space Lexp(Q) is defined by setting

Lexp(Q) :=
{

f is measurable on Q : ∃λ ∈ (0,∞) such that
�

Q
e
| f (x)|
λ dx < ∞

}
.

The space Lexp(Q) was studied in the interpolation of operators (see, for instance, [45],
p. 243), and it is closely related to the space BMO (Q) (see Proposition 3 below).

On the Orlicz function in (6), we have the following properties.

Lemma 1. For any t ∈ [0,∞), let Φ(t) := et − 1. Then,

(i) Φ is of lower type 1, namely for any s ∈ (0, 1) and t ∈ (0,∞),

Φ(st) ≤ sΦ(t);

(ii) Φ is of critical lower type 1, namely there exists no p ∈ (1,∞), such that for any s ∈ (0, 1)
and t ∈ (0,∞),

Φ(st) ≤ CspΦ(t)

holds true for some constant C ∈ [1,∞) independent of s and t.
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Proof. We first show (i). For any s ∈ (0, 1) and t ∈ (0,∞), let

h(s, t) := Φ(st) − sΦ(t) = est − 1− s(et − 1).

Then,
∂
∂t

h(s, t) = sest − set = s(est − et).

From this and s ∈ (0, 1), we deduce that for any t ∈ (0,∞), ∂∂t h(s, t) < 0, and hence
h(s, t) ≤ h(s, 0) = 0, which shows that Φ is of lower type 1 and hence completes the proof
of (i).

Next, we show that Φ is of critical lower type 1. Suppose that there exist a p ∈ (1,∞)
and a constant C ∈ [1,∞), such that for any s ∈ (0, 1) and t ∈ (0,∞), Φ(st) ≤ CspΦ(t),
namely

est − 1 ≤ Csp(et − 1). (7)

From p ∈ (1,∞) and the L’Hospital rule, we deduce that

lim
s→0+

Φ(st)
spΦ(t)

= lim
s→0+

est − 1
sp(et − 1)

= lim
s→0+

test

psp−1(et − 1)
= ∞,

which contradicts (7), and hence Φ is of critical lower type 1. Here and thereafter, s→ 0+

means s ∈ (0, 1) and s→ 0. This finishes the proof of (ii) and hence of Lemma 1. �

Before showing the equivalent Orlicz-type norms of BMO (X), we first prove the
following equivalent characterizations of BMO (X). These characterizations might be well
known. However, to the best of our knowledge, we did not find a complete proof. For the
convenience of the reader, we present the details here.

Proposition 1. The following three statements are mutually equivalent:

(i) f ∈ BMO (X);
(ii) f ∈ L1

loc (X) and there exist positive constants C3 and C4, such that for any cube Q ⊂ X and
any t ∈ (0,∞), ∣∣∣∣{x ∈ Q : | f (x) − fQ| > t

}∣∣∣∣ ≤ C3e−C4t|Q|;
(iii) f ∈ L1

loc (X) and there exists a λ ∈ (0,∞), such that

sup
cube Q⊂X

�
Q

e
| f (x)− fQ |
λ dx < ∞.

Proof. We prove this proposition via showing (i) =⇒ (ii) =⇒ (iii) =⇒ (i).
First, the implication (i) =⇒ (ii) was proved by John and Nirenberg in [1], Lemma 1’

(see (4) above).
Next, we show the implication (ii) =⇒ (iii). Suppose that f satisfies (ii). Then, there

exist positive constants C3 and C4, such that for any cube Q ⊂ X and any t ∈ (0,∞),∣∣∣∣{x ∈ Q : | f (x) − fQ| > t
}∣∣∣∣ ≤ C3e−C4t|Q|

and hence
�

Q
e

C4
2 | f (x)− fQ | dx

=
1
|Q|

∫ ∞

0

∣∣∣∣∣{x ∈ Q : e
C4
2 | f (x)− fQ | > t

}∣∣∣∣∣ dt
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=
1
|Q|

(∫ 1

0
+

∫ ∞

1

)∣∣∣∣∣{x ∈ Q : e
C4
2 | f (x)− fQ | > t

}∣∣∣∣∣ dt

≤ 1 +
1
|Q|

∫ ∞

1

∣∣∣∣{x ∈ Q : | f (x) − fQ| > 2C−1
4 log t

}∣∣∣∣ dt

≤ 1 +
1
|Q|

∫ ∞

1
C3e−C42C−1

4 log t|Q| dt

= 1 + C3

∫ ∞

1
t−2 dt = 1 + C3, (8)

which implies that f satisfies (iii). This shows the implication (ii) =⇒ (iii).
Finally, we show the implication (iii) =⇒ (i). Suppose that f satisfies (iii). Then, there

exists a λ ∈ (0,∞), such that

sup
Q⊂X

�
Q

e
| f (x)− fQ |
λ dx < ∞.

From this and the basic inequality x ≤ ex − 1 for any x ∈ R, we deduce that

sup
cube Q⊂X

�
Q

∣∣∣ f (x) − fQ
∣∣∣ dx ≤ λ sup

cube Q⊂X

�
Q

[
e
| f (x)− fQ |
λ − 1

]
dx < ∞,

which implies that f satisfies (i), and hence the implication (iii) =⇒ (i) holds true. This
finishes the proof of Proposition 1. �

In what follows, for any normed space Y(X), equipped with the norm ‖ · ‖Y(X), whose
elements are measurable functions on X, let

Y(X)/C :=
{

f is measurable on X : ‖ f ‖Y(X)/C := inf
c∈C ‖ f + c‖Y(X) < ∞

}
.

Proposition 2. Let Q0 be a given cube of Rn. Then,

[L∞(Q0)/C] � BMO (Q0) �
[
Lexp(Q0)/C

]
.

Proof. Indeed, on the one hand, from
�

Q

∣∣∣ f (x) − fQ
∣∣∣ dx ≤ 2

�
Q

∣∣∣ f (x) + c
∣∣∣ dx ≤ 2‖ f + c‖L∞(Q0)

for any c ∈ C, we deduce that [L∞(Q0)/C] ⊂ BMO (Q0). Moreover, let g(·) := log | · −c0|,
where c0 is the center of Q0. Then, g ∈ BMO (Q0) \ [L∞(Q0)/C] (see [46], Example 3.1.3,
for this fact).

On the other hand, by Proposition 1(iii), we easily find that BMO (Q0) ⊂ [Lexp(Q0)/C].
Moreover, without loss of generality, we may assume that Q0 := (−1, 1) and let

g(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− log(−x), x ∈ (−1, 0),
0, x = 0,
log(x), x ∈ (0, 1).

We claim that g ∈ [Lexp(Q0)/C] \ BMO (Q0). Indeed, for any ε ∈ (0, 1), let Iε := (−ε, ε).
Then,

�
Iε

∣∣∣g(x) − gIε

∣∣∣ dx =
1
2ε

∫ ε

−ε

∣∣∣log |x|
∣∣∣ dx = −1

ε

∫ ε

0
log(x) dx = 1− log(ε)→∞

43



Mathematics 2021, 9, 2264

as ε→ 0+, which implies that g � BMO (Q0). However,

∫
Q0

e
1
2 |g(x)| dx = 2

∫ 1

0
e− 1

2 log(x) dx = 2
∫ 1

0
x− 1

2 dx = 4 < ∞,

which implies that g ∈ Lexp(Q0). Therefore, BMO (Q0) � [Lexp(Q0)/C], which completes
the proof of Proposition 2. �

Now, we show that the two Orlicz-type norms, (5) and

‖ f ‖L̃exp(X) := inf

⎧⎪⎪⎨⎪⎪⎩λ ∈ (0,∞) : sup
cube Q⊂X

�
Q

[
e
| f (x)− fQ |
λ − 1

]
dx ≤ 1

⎫⎪⎪⎬⎪⎪⎭
for any f ∈ L1

loc (X), are equivalent norms of BMO (X).

Proposition 3. The following three statements are mutually equivalent:

(i) f ∈ BMO (X);
(ii) f ∈ L1

loc (X) and ‖ f ‖BMO(X) < ∞;
(iii) f ∈ L1

loc (X) and ‖ f ‖L̃exp(X) < ∞.

Moreover, ‖ · ‖BMO (X) ∼ ‖ · ‖BMO(X) ∼ ‖ · ‖L̃exp(X).

Proof. To prove this proposition, we only need to prove that for any f ∈ L1
loc (X),

‖ f ‖BMO (X) ∼ ‖ f ‖BMO(X) ∼ ‖ f ‖L̃exp(X).

We first show that for any f ∈ L1
loc (X), ‖ f ‖BMO (X) ≤ ‖ f ‖BMO(X) and ‖ f ‖BMO (X) ≤

‖ f ‖L̃exp(X). To this end, let f ∈ L1
loc (X). For any cube Q ⊂ X and any λ ∈ (0,∞), by t ≤ et − 1

for any t ∈ (0,∞), we have

�
Q

∣∣∣ f (x) − fQ
∣∣∣ dx ≤ λ

�
Q

[
e
| f (x)− fQ |
λ − 1

]
dx ≤ λ,

which implies that �
Q

∣∣∣ f (x) − fQ
∣∣∣ dx ≤ ‖ f − fQ‖Lexp(Q)

and hence
‖ f ‖BMO (X) ≤ ‖ f ‖BMO(X).

Moreover, to show ‖ f ‖BMO (X) ≤ ‖ f ‖L̃exp(X), it suffices to assume that f ∈ L̃exp(X);
otherwise, ‖ f ‖L̃exp(X) = ∞, and hence the desired inequality automatically holds true. Then,

by t ≤ et − 1 for any t ∈ (0,∞), we conclude that for any n ∈ N and any cube Q ⊂ X,

�
Q

| f (x) − fQ|
‖ f ‖L̃exp(X) +

1
n

dx ≤
�

Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣e
| f (x)− fQ |

‖ f ‖
L̃exp(X)+

1
n − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ dx. (9)

From the definition of ‖ · ‖L̃exp(X), we deduce that for any n ∈ N, there exists a

λn ∈
(
‖ f ‖L̃exp(X), ‖ f ‖L̃exp(X) +

1
n

)
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such that

sup
cube Q⊂X

�
Q

[
e
| f (x)− fQ |
λn − 1

]
dx ≤ 1.

By this, (9), and the monotonicity of e(·) − 1, we conclude that, for any n ∈ N and any
cube Q ⊂ X, �

Q

| f (x) − fQ|
‖ f ‖L̃exp(X) +

1
n

dx ≤ 1

and hence �
Q
| f (x) − fQ| dx ≤ ‖ f ‖L̃exp(X) +

1
n

.

Letting n→∞, we then obtain

‖ f ‖BMO (X) = sup
cube Q⊂X

�
Q
| f (x) − fQ| dx ≤ ‖ f ‖L̃exp(X).

To summarize, we have, for any f ∈ L1
loc (X),

‖ f ‖BMO (X) ≤ ‖ f ‖BMO(X) and ‖ f ‖BMO (X) ≤ ‖ f ‖L̃exp(X). (10)

Next, we show that the reverse inequalities hold true for any f ∈ L1
loc (X), respectively.

In fact, we may assume that f ∈ BMO (X) because, otherwise, the desired inequalities
automatically hold true. Now, let f ∈ BMO (X). Then, for any cube Q ⊂ X and any
λ ∈ (C−1

2 ‖ f ‖BMO (X),∞), by (4) and the calculation of (8), we obtain

�
Q

e
| f (x)− fQ |
λ dx

≤ 1 +
1
|Q|

∫ ∞

1

∣∣∣∣{x ∈ Q : | f (x) − fQ| > λ log t
}∣∣∣∣ dt

≤ 1 +
1
|Q|

∫ ∞

1
C1e
− C2
‖ f ‖BMO (X) λ log t|Q| dt

= 1 + C1

∫ ∞

1
t
− C2λ
‖ f ‖BMO (X) dt = 1 + C1

and hence �
Q

[
e
| f (x)− fQ |
λ − 1

]
dx ≤ C1,

where C1 ∈ (1,∞) is as in (4). From this and Lemma 1(i) with s replaced by 1/C1, we
deduce that

�
Q

⎡⎢⎢⎢⎢⎣e | f (x)− fQ |
λC1 − 1

⎤⎥⎥⎥⎥⎦ dx ≤ 1
C1

�
Q

[
e
| f (x)− fQ |
λ − 1

]
dx ≤ 1. (11)

On the one hand, by (11) and

C1

C2
‖ f ‖BMO (X) < λC1 < ∞,

we conclude that

‖ f − fQ‖Lexp(Q) = inf
{
λ̃ > 0 :

�
Q

[
e
| f (x)− fQ |
λ̃ − 1

]
dx ≤ 1

}

45



Mathematics 2021, 9, 2264

≤ C1

C2
‖ f ‖BMO (X)

and hence

‖ f ‖BMO(X) = sup
cube Q⊂X

‖ f − fQ‖Lexp(Q) ≤ C1

C2
‖ f ‖BMO (X). (12)

On the other hand, by (11), we conclude that

sup
cube Q⊂X

�
Q

⎡⎢⎢⎢⎢⎣e | f (x)− fQ |
λC1 − 1

⎤⎥⎥⎥⎥⎦ dx ≤ 1.

From this and
C1

C2
‖ f ‖BMO (X) < λC1 < ∞,

we deduce that

‖ f ‖L̃exp(X) = inf

⎧⎪⎪⎨⎪⎪⎩λ ∈ (0,∞) : sup
cube Q⊂X

�
Q

[
e
| f (x)− fQ |
λ − 1

]
dx ≤ 1

⎫⎪⎪⎬⎪⎪⎭
≤ C1

C2
‖ f ‖BMO (X).

Combining this with (12), we have, for any f ∈ BMO (X),

‖ f ‖BMO(X) ≤ C1

C2
‖ f ‖BMO (X) and ‖ f ‖L̃exp(X) ≤

C1

C2
‖ f ‖BMO (X).

This, together with (10), then finishes the proof of Proposition 3. �

Remark 1. There exists another norm on Lexp(Q0), defined by the distribution functions as follows.
Let f be a measurable function on Q0. The decreasing rearrangement f ∗ of f is defined by setting,
for any u ∈ [0,∞),

f ∗(u) := inf{t ∈ (0,∞) : |{x ∈ Q0 : | f (x)| > t}| ≤ u}.
Moreover, for any v ∈ (0,∞), let

f ∗∗(v) :=
1
v

∫ v

0
f ∗(u) du.

Then, f ∈ Lexp(Q0) if and only if f is measurable on Q0 and

‖ f ‖L∗exp(Q0) := sup
v∈(0,|Q0 |]

f ∗∗(v)
1 + log( |Q0 |

v )
< ∞.

Meanwhile, ‖ · ‖L∗exp(Q0) is a norm of Lexp(Q0) (see [45], p. 246, Theorem 6.4, for more
details). Furthermore, from [45] (p. 7, Corollary 1.9), we deduce that ‖ · ‖L∗exp(Q0) and ‖ · ‖Lexp(Q0) are
equivalent. Notice that f ∗ and f ∗∗ are fundamental tools in the theory of Lorentz spaces (see [47],
p. 48, for more details).

Recently, Izuki et al. [48] obtained both the John–Nirenberg inequality and the
equivalent characterization of BMO (Rn) on the ball Banach function space which contains
Morrey spaces, (weighted, mixed-norm, variable) Lebesgue spaces, and Orlicz-slice spaces
as special cases (see [48], Definition 2.8, and also [49], for the related definitions). Precisely,
let X be a ball Banach function space satisfying the additional assumption that the Hardy–
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Littlewood maximal operator M is bounded on X′ (the associated space of X; see [48],
Definition 2.9, for its definition), and for any b ∈ L1

loc (R
n),

‖b‖BMO X := sup
B

1
‖1B‖X

∥∥∥|b− bB|1B
∥∥∥

X,

where the supremum is taken over all balls B of Rn. It is obvious that ‖ · ‖BMO L1(Rn)
=

‖ · ‖BMO (Rn). Moreover, in [48] (Theorem 1.2), Izuki et al. showed that under the above
assumption of X, b ∈ BMO (Rn) if and only if b ∈ L1

loc (R
n) and ‖b‖BMO X < ∞; meanwhile,

‖ · ‖BMO X ∼ ‖ · ‖BMO (Rn).

Furthermore, the John–Nirenberg inequality on X was also obtained in [48] (Theorem 3.1),
which shows that there exists some positive constant C̃, such that for any ball B ⊂ Rn and
any τ ∈ [0,∞),

∥∥∥∥1{x∈B: |b(x)−bB |>τ2n+2‖b‖BMO (Rn)}
∥∥∥∥

X
≤ C̃2

− τ
1+2n+4‖M‖X′→X′ ‖1B‖X,

where ‖M‖X′→X′ denotes the operator norm of M on X′. Later, these results were applied
in [49] to establish the compactness characterization of commutators on ball Banach
function spaces.

Now, we come to the localized counterpart. The local space BMO (Rn), denoted by
bmo (Rn), was originally introduced by Goldberg [50]. In the same article, Goldberg also
introduced the localized Campanato space Λα(Rn) with α ∈ (0,∞), which proves the dual
space of the localized Hardy space. Later, Jonsson et al. [51] constructed the localized Hardy
space and the localized Campanato space on the subset of Rn; Chang [52] studied the
localized Campanato space on bounded Lipschitz domains; Chang et al. [20] studied the
localized Hardy space and its dual space on smooth domains as well as their applications to
boundary value problems; and Dafni and Liflyand [53] characterized the localized Hardy
space in the sense of Goldberg, respectively, by means of the localized Hilbert transform
and localized molecules. In what follows, for any cube Q of Rn, we use 	(Q) to denote its
side length, and let 	(Rn) := ∞. Recall that

bmo (X) :=
{

f ∈ L1
loc (X) : ‖ f ‖ bmo (X) < ∞

}
,

where

‖ f ‖ bmo (X) := sup
Q

�
Q

∣∣∣ f (x) − fQ,c0

∣∣∣ dx

with

fQ,c0 :=

⎧⎪⎪⎨⎪⎪⎩ fQ if 	(Q) ∈ (0, c0),
0 if 	(Q) ∈ [c0, 	(X)) (13)

for some given c0 ∈ (0, 	(X)), and the supremum taken over all cubes Q of X. Furthermore,
a well-known fact is that bmo (X) is independent of the choice of c0 (see, for instance, [54],
Lemma 6.1).

Proposition 4. Let X be Rn or a cube Q0 of Rn. Then,

[L∞(X)/C] ⊂ [ bmo (X)/C] ⊂ BMO (X) (14)

and

‖ · ‖BMO (X) ≤ 2 inf
c∈C ‖ ·+c‖ bmo (X) ≤ 4 inf

c∈C ‖ ·+c‖L∞(X). (15)
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Moreover,

[L∞(Rn)/C] � [ bmo (Rn)/C] � BMO (Rn) (16)

and, for any cube Q0 of Rn,

[L∞(Q0)/C] � [ bmo (Q0)/C] = BMO (Q0) �
[
Lexp(Q0)/C

]
(17)

with
‖ · ‖BMO (Q0) ≤ 2 inf

c∈C ‖ ·+c‖ bmo (Q0) ≤ 4‖ · ‖BMO (Q0).

Proof. First, we prove (15). To this end, let f ∈ L1
loc (X). Then, for any c ∈ C and any cube

Q of X,
�

Q

∣∣∣ f (x) − fQ
∣∣∣ dx =

�
Q

∣∣∣[ f (x) + c] − ( f + c)Q
∣∣∣ dx

≤ 2
�

Q

∣∣∣ f (x) + c
∣∣∣ dx ≤ 2‖ f + c‖L∞(Q).

From this and the definitions of ‖ · ‖BMO (X) and ‖ · ‖ bmo (X), it follows that (15) holds
true, which further implies (14).

We now show (16). Indeed, let

g1(x) :=

⎧⎪⎪⎨⎪⎪⎩log(|x|) if x ∈ Rn \ {0},
0 if x = 0.

From [46] (Example 3.1.3), we deduce that g1 ∈ BMO (Rn). However, g1 � bmo (Rn)
because, for any M > max{c0, 1}, by the sphere coordinate changing method, we have

�
B(0,M)

∣∣∣log(|x|)
∣∣∣ dx ∼ log(M),

which tends to infinity as M→ ∞. Thus, g1 ∈ BMO (Rn) \ [ bmo (Rn)/C], and hence we
have [ bmo (Rn)/C] � BMO (Rn). Moreover, define

g2(x) :=

⎧⎪⎪⎨⎪⎪⎩log(|x|) if |x| ∈ (0, 1),
0 if |x| ∈ {0}⋃[1,∞).

Notice that g2 � L∞(Rn) and g2 = max{g1, 0} ∈ BMO (Rn). Then, for any cube Q ⊂ Rn,
if 	(Q) ∈ (0, c0), then �

Q

∣∣∣g2(x) − (g2)Q
∣∣∣ dx ≤ ‖g2‖BMO (Rn);

if 	(Q) ∈ [c0,∞), then
�

Q

∣∣∣g2(x)
∣∣∣ dx ≤

�
B(0,1)

log(|x|) dx ∼ ‖g2‖L1(Rn) ∼ 1.

To summarize, ‖g2‖ bmo (Rn) � 1 + ‖g2‖BMO (Rn), which implies that g2 ∈ bmo (Rn)

and hence L∞(Rn) � bmo (Rn). This shows (16).
We next prove (17). By the above example g2, we conclude that L∞(Q0) � bmo (Q0).

Meanwhile, BMO (Q0) � [Lexp(Q0)/C] was obtained in Proposition 2. Moreover, for any
given f ∈ BMO (Q0), we have f ∈ L1(Q0) and hence

inf
c∈C ‖ f − c‖ bmo (Q0)
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=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�
Q

∣∣∣ f (x) − fQ
∣∣∣ dx ≤ ‖ f ‖BMO (Q0) if 	(Q) ∈ (0, c0),

inf
c∈C

�
Q
| f (x) − c| dx ≤ 2‖ f ‖BMO (Q0) if 	(Q) ∈ [c0, 	(Q0)),

≤ 2‖ f ‖BMO (Q0).

Combining this with the observations that [ bmo (Q0)/C] ⊂ BMO (Q0) and that,
for any c ∈ C,

‖ f ‖BMO (Q0) = ‖ f + c‖BMO (Q0) ≤ 2‖ f + c‖ bmo (Q0),

we find that [ bmo (Q0)/C] = BMO (Q0) and

‖ f ‖BMO (Q0) ≤ 2 inf
c∈C ‖ f + c‖ bmo (Q0) ≤ 4‖ f ‖BMO (Q0).

To summarize, we obtain (17). This finishes the proof of Proposition 4. �

Let f ∈ L1
loc (X). Similar to Proposition 3, let

‖ f ‖bmo1(X) := sup
cube Q⊂X

∥∥∥ f − fQ,c0

∥∥∥
Lexp(Q)

(18)

and

‖ f ‖bmo2(X) := inf

⎧⎪⎪⎨⎪⎪⎩λ ∈ (0,∞) : sup
cube Q⊂X

�
Q

[
e
| f (x)− fQ,c0

|
λ − 1

]
dx ≤ 1

⎫⎪⎪⎬⎪⎪⎭, (19)

where c0 ∈ (0, 	(X)), and fQ,c0 is as in (13). To show that they are equivalent norms of
bmo (X), we first establish the following John–Nirenberg inequality for bmo (X), namely
Proposition 5 below. In what follows, for any given cube Q of Rn, (a1, . . . , an) denotes
the left and lower vertex of Q, which means that for any (x1, . . . , xn) ∈ Q, xi ≥ ai for any
i ∈ {1, . . . , n}. Recall that for any given cube Q of Rn, the dyadic system DQ of Q is defined by
setting

DQ :=
∞⋃

j=0

D
( j)
Q , (20)

where, for any j ∈ {0, 1, . . . }, D
( j)
Q denotes the set of all (x1, . . . , xn) ∈ Q, such that for any

i ∈ {1, . . . , n}, either
xi ∈

[
ai + ki2− j	(Q), ai + (ki + 1)2− j	(Q)

)
for some ki ∈ {0, 1, . . . , 2 j − 2} or

xi ∈
[
ai + (1− 2− j)	(Q), ai + 	(Q)

]
.

Proposition 5. Let f ∈ bmo (X) and c0 ∈ (0, 	(X)). Then, there exist positive constants C5 and
C6, such that for any given cube Q ⊂ X and any t ∈ (0,∞),

∣∣∣∣{x ∈ Q : | f (x) − fQ,c0 | > t
}∣∣∣∣ ≤ C5e

− C6
‖ f ‖ bmo (X) t|Q|. (21)

Proof. Indeed, this proof is a slight modification of the proof of [1] (Lemma 1) or [42]
(Theorem 6.11). We give some details here, again for the sake of completeness.
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Let f ∈ bmo (X). Then, from Proposition 4, we deduce that f ∈ BMO (X) with
‖ f ‖BMO (X) ≤ 2‖ f ‖ bmo (X), which further implies that for any cube Q ⊂ X with 	(Q) < c0
and any t ∈ (0,∞),

D
(

f − fQ,c0 ; Q
)
(t) = D

(
f − fQ; Q

)
(t) ≤ C1e

− C2
‖ f ‖BMO (X) t|Q|

≤ C1e
− C2

2‖ f ‖ bmo (X) t|Q|,
where C1 and C2 are as in (4), and the distribution functionD is defined as in (3). Therefore,
to show (21), it remains to prove that for any given cube Q with 	(Q) ≥ c0, and any
t ∈ (0,∞),

∣∣∣{x ∈ Q : | f (x)| > t
}∣∣∣ ≤ C5e

− C6
‖ f ‖ bmo (X) t|Q|.

Notice that, in this case, there exists a unique m0 ∈ Z+ such that 2−(m0+1)	(Q) < c0 ≤
2−m0	(Q). Moreover, since inequality (21) is not altered when we multiply both f and
t by the same constant, without loss of generality, we may assume that ‖ f ‖ bmo (X) = 1.

Let Q0 be any given dyadic subcube of Q with level m0, namely Q0 ∈ D
(m0)
Q . Then,

by c0 ≤ 2−m0	(Q) = 	(Q0) and the definition of ‖ f ‖ bmo (X), we have

�
Q0

| f (x)| dx ≤ ‖ f ‖ bmo (X) = 1. (22)

From the Calderón–Zygmund decomposition (namely Theorem 1) of f with height
λ := 2, we deduce that there exists a family {Q1, j} j ⊂ D

(1)
Q0

, such that for any j,

2 <
�

Q1, j

| f (x)| dx ≤ 2n+1

and | f (x)| ≤ 2 when x ∈ Q \⋃ j Q1, j. By this and (22), we conclude that

∑
j

∣∣∣Q1, j
∣∣∣ ≤ 1

2

∑
j

∫
Q1, j

| f (x)| dx ≤ 1
2

∫
Q0

| f (x)| dx ≤ 1
2
|Q0|

and, for any j, ∣∣∣∣ fQ1, j

∣∣∣∣ ≤
∣∣∣∣∣∣∣
�

Q1, j

f (x) dx

∣∣∣∣∣∣∣ ≤ 2n+1.

Moreover, for any j, from the Calderón–Zygmund decomposition of f − fQ1, j with

height 2, we deduce that there exists a family {Q1, j,k}k ⊂ D
(1)
Q1, j

, such that for any k,

2 <
�

Q1, j,k

| f (x) − fQ1, j | dx ≤ 2n+1

and | f (x) − fQ1, j | ≤ 2 when x ∈ Q \⋃k Q1, j,k. Meanwhile, by the construction of {Q1, j} j, we

know that 	(Q1, j) =
1
2	(Q0) = 2−(m0+1)	(Q), which, combined with the facts ‖ f ‖ bmo (X) = 1

and 2−(m0+1)	(Q) < c0, further implies that
�

Q1, j

∣∣∣∣ f (x) − fQ1, j

∣∣∣∣ dx ≤ ‖ f ‖ bmo (X) = 1.
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Thus, we obtain, for any j,

∑
k

∣∣∣Q1, j,k
∣∣∣ ≤ 1

2

∑
j

∫
Q1, j,k

| f (x) − fQ1, j | dx

≤ 1
2

∫
Q1, j

| f (x) − fQ1, j | dx ≤ 1
2
|Q1, j|

and, for any k, ∣∣∣∣ fQ1, j,k − fQ1, j

∣∣∣∣ ≤ �
Q1, j,k

| f (x) − fQ1, j | dx ≤ 2n+1.

Rewrite
⋃

j,k{Q1, j,k} =:
⋃

j{Q2, j}. Then, we have

∑
j

∣∣∣Q2, j
∣∣∣ ≤ 1

2

∑
j

∣∣∣Q1, j
∣∣∣ ≤ 1

4
|Q0|

and, for any x ∈ Q \⋃ j Q2, j,

| f (x)| ≤
∣∣∣∣ f (x) − fQ1, j

∣∣∣∣+ ∣∣∣∣ fQ1, j

∣∣∣∣ ≤ 2 + 2n+1 ≤ 2 · 2n+1.

Repeating this process, then, for any T ∈ N, we obtain a family {QT, j} j ⊂ DQ0 of disjoint
dyadic cubes, such that ∑

j

∣∣∣QT, j
∣∣∣ ≤ 2−T |Q0|

and, for any x ∈ Q0 \⋃ j QT, j,
| f (x)| ≤ T2n+1.

Notice that, for any t ∈ [2n+1,∞), there exists a unique T ∈ N, such that T2n+1 ≤ t <
(T + 1)2n+1 ≤ T2n+2. Therefore, we obtain

|{x ∈ Q0 : | f (x)| > t}| ≤
∑

j

∣∣∣QT, j
∣∣∣ ≤ 2−T |Q0|

= e−T log 2|Q0| ≤ e−C6t|Q0|, (23)

where C6 := 2−(n+2) log 2. Furthermore, observe that if t ∈ (0, 2n+1), then C6t < 2−1 log 2
and hence

|{x ∈ Q0 : | f (x)| > t}| ≤ |Q0| ≤ e2−1 log 2−C6t|Q0| = C5e−C6t|Q0|,
where C5 :=

√
2. By this, (23), and the arbitrariness of Q0 ∈ D

(m0)
Q , we conclude that for any

t ∈ (0,∞),

|{x ∈ Q : | f (x)| > t}| =
∑

Q0∈D (m0)
Q

|{x ∈ Q0 : | f (x)| > t}|

≤ C5e−C6t
∑

Q0∈D (m0)
Q

|Q0| = C5e−C6t|Q|

and hence (21) holds true. This finishes the proof of Proposition 5. �

As a corollary of Proposition 5, we have the following result: namely, ‖ · ‖bmo1(X) in (18)
and ‖ · ‖bmo2(X) in (19) are equivalent norms of bmo (X). The proof of Corollary 1 is just a
repetition of the proof of Proposition 3 with (4) replaced by (21); we omit the details here.
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Corollary 1. The following three statements are mutually equivalent:

(i) f ∈ bmo (X);
(ii) f ∈ L1

loc (X) and ‖ f ‖bmo1(X) < ∞;
(iii) f ∈ L1

loc (X) and ‖ f ‖bmo2(X) < ∞.

Moreover, ‖ · ‖ bmo (X) ∼ ‖ · ‖bmo1(X) ∼ ‖ · ‖bmo2(X).

2.2. John–Nirenberg Space JNp

Although there exist many fruitful studies of the space BMO in recent years, as was
mentioned before, the structure of JNp is largely a mystery, and there still exist many
unsolved problems on JNp. The first well-known property of JNp is the following John–
Nirenberg inequality obtained in [1] (Lemma 3), which says that JNp(Q0) is embedded into
the weak Lebesgue space Lp,∞(Q0) (see Definition 1).

Theorem 2 (John–Nirenberg). Let p ∈ (1,∞) and Q0 be a given cube of Rn. If f ∈ JNp(Q0),
then f − fQ0 ∈ Lp,∞(Q0), and there exists a positive constant C(n,p), depending only on n and p,
but independent of f , such that∥∥∥ f − fQ0

∥∥∥
Lp,∞(Q0)

≤ C(n,p)‖ f ‖JNp(Q0).

It should be mentioned that the proof of Theorem 2 relies on the Calderón–Zygmund
decomposition (namely Theorem 1) as well. Moreover, as an application of Theorem 2,
Dafni et al. recently showed in [31] (Proposition 5.1) that for any given p ∈ (1,∞) and
q ∈ [1, p), f ∈ JNp(Q0) if and only if f ∈ L1(Q0) and

‖ f ‖JNp,q(Q0) := sup

⎡⎢⎢⎢⎢⎢⎣∑
i

|Qi|
(�

Qi

∣∣∣ f (x) − fQi

∣∣∣q dx
) p

q
⎤⎥⎥⎥⎥⎥⎦

1
p

< ∞,

where the supremum is taken in the same way as in (1); meanwhile, ‖ · ‖JNp(Q0) ∼ ‖ · ‖JNp,q(Q0).
Furthermore, in [31] (Proposition 5.1), Dafni et al. also showed that for any given p ∈ (1,∞)
and q ∈ [p,∞), the spaces JNp,q(Q0) and Lq(Q0) coincide as sets.

Remark 2.

(i) As a counterpart of Proposition 2, for any given p ∈ (1,∞) and any given cube Q0 of Rn, we
have

Lp(Q0) � JNp(Q0) � Lp,∞(Q0).

Indeed, Lp(Q0) ⊂ JNp(Q0) is obvious from their definitions; JNp(Q0) ⊂ Lp,∞(Q0) is just
Theorem 2; JNp(Q0) � Lp,∞(Q0) was shown in [30] (Example 3.5); and the desired function
is just x−1/p on [0, 2]. However, the fact Lp(Q0) � JNp(Q0) is extremely non-trivial and
was obtained in [31] (Proposition 3.2 and Corollary 4.2) via constructing a nice fractal
function based on skillful dyadic techniques. Moreover, in [31] (Theorem 1.1 and Remark 2.4),
Dafni et al. showed that for any given p ∈ (1,∞) and any given interval I0 ⊂ R, no matter
whether bounded or not, monotone functions are in JNp(I0) if and only if they are also in
Lp(I0). Thus, JNp(X) may be very “close” to Lp(X) for any given p ∈ (1,∞).

(ii) JN1(Q0) coincides with L1(Q0). To be precise, let Q0 be any given cube of Rn, and

JN1(Q0) :=
{

f ∈ L1(Q0) : ‖ f ‖JN1(Q0) < ∞
}
,

where ‖ f ‖JN1(Q0) is defined as in (1) with p replaced by 1. Then, we claim that JN1(Q0) =

[L1(Q0)/C] with equivalent norms. Indeed, for any f ∈ JN1(Q0), by the definition of
‖ f ‖JN1(Q0), we have

‖ f ‖JN1(Q0) ≥
∥∥∥ f − fQ0

∥∥∥
L1(Q0)

≥ inf
c∈C ‖ f + c‖L1(Q0)

=: ‖ f ‖L1(Q0)/C.
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Conversely, for any given f ∈ L1(Q0) and any c ∈ C, we have

‖ f ‖JN1(Q0) = sup
∑

i

∫
Qi

∣∣∣ f (x) − fQi

∣∣∣ dx

≤ 2 sup
∑

i

∫
Qi

∣∣∣ f (x) + c
∣∣∣ dx

≤ 2‖ f + c‖L1(Q0)
,

which implies that ‖ f ‖JN1(Q0) ≤ ‖ f ‖L1(Q0)/C and hence the above claim holds true. Moreover,
the relation between JN1(R) and L1(R) was studied in [33] (Proposition 2).

(iii) Garsia and Rodemich in [55] (Theorem 7.4) showed that for any given p ∈ (1,∞), f ∈ Lp,∞(Q0)

if and only if f ∈ L1(Q0) and

‖ f ‖GaRop(Q0) := sup
1

(
∑

i |Qi|)1/p′
∑

i

1
|Qi|

∫
Qi

∫
Qi

∣∣∣ f (x) − f (y)
∣∣∣ dx dy < ∞,

where the supremum is taken in the same way as in (1); meanwhile,

‖ · ‖Lp,∞(Q0) ∼ ‖ · ‖GaRop(Q0);

(see also [35], Theorem 5(ii), for this equivalence). Moreover, in [35] (Theorem 5(i)), Milman
showed that ‖ · ‖GaRop(Q0) ≤ 2‖ · ‖JNp(Q0).

Recall that the predual space of BMO (X) is the Hardy space H1(X) (see, for
instance, [5], Theorem B). Similar to this duality, Dafni et al. [31] also obtained the predual
space of JNp(Q0) for any given p ∈ (1,∞), which is denoted by the Hardy kind space
HKp′(Q0), here and thereafter 1/p + 1/p′ = 1. Later, these properties, including equivalent
norms and duality, were further studied on several John–Nirenberg-type spaces, such as
John–Nirenberg–Campanato spaces, localized John–Nirenberg–Campanato spaces, congru-
ent John–Nirenberg–Campanato spaces (see Section 3 for more details), and Riesz-type
spaces (see Section 4 for more details).

Finally, let us briefly recall some other related studies concerning the John–Nirenberg
space JNp, which will not be stated in detail in this survey, although all of them are
quite instructive:

• Stampacchia [56] introduced the space N(p,λ), which coincides with JN(p,1,0)α(Q0) in
Definitions 3 if we write λ = pαwith p ∈ (1,∞) and α ∈ (−∞,∞), and applied them
to the context of interpolation of operators.

• Campanato [57] also used the John–Nirenberg spaces to study the interpolation
of operators.

• In the context of doubling metric spaces, JNp and median-type JNp were studied,
respectively, by Aalto et al. in [30] and Myyryläinen in [58].

• Hurri-Syrjänen et al. [34] established a local-to-global result for the space JNp(Ω) on
an open subset Ω of Rn. More precisely, it was proved that the norm ‖ · ‖JNp(Ω) is
dominated by its local version ‖ · ‖JNp,τ(Ω) modulus constants; here, τ ∈ [1,∞); for any
open subset Ω of Rn, the related “norm” ‖ · ‖JNp(Ω) is defined in the same way as
‖ · ‖JNp(Q0) in (1) with Q0 replaced by Ω; and ‖ · ‖JNp,τ(Ω) is defined in the same way
as ‖ · ‖JNp(Ω) with an additional requirement τQ ⊂ Ω for all chosen cubes Q in the
definition of ‖ · ‖JNp(Ω).

• Marola and Saari [40] studied the corresponding results of Hurri-Syrjänen et al. [34] on
metric measure spaces and obtained the equivalence between the local and the global
JNp norms. Moreover, in both articles [34,40], a global John–Nirenberg inequality for
JNp(Ω) was established.
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• Berkovits et al. [32] applied the dyadic variant of JNp(Q0) in the study of self-improving
properties of some Poincaré-type inequalities. Later, the dyadic JNp(Q0) was further
studied by Kinnunen and Myyryläinen in [59].

• A. Brudnyi and Y. Brudnyi [60] introduced a class of function spaces Vκ([0, 1]n) which
coincides with JN(p,q,s)α([0, 1]n), defined below for suitable range of indices (see [61],
Proposition 2.9, for more details). Very recently, Domínguez and Milman [62] further
introduced and studied sparse Brudnyi and John–Nirenberg spaces.

• Blasco and Espinoza-Villalva [33] computed the concrete value of ‖1A‖JNp(R) for any
given p ∈ [1,∞] and any measurable set A ⊂ R of positive and finite Lebesgue measure,
where JN∞(R) := BMO (R).

• The JNp(Q0)-type norm ‖ · ‖GaRop(Q0) in Remark 2(iii) was further generalized and
studied in Astashkin and Milman [63] via the Strömberg–Jawerth–Torchinsky local
maximal operator.

3. John–Nirenberg–Campanato Space

The main target of this section is to summarize the main results of John–Nirenberg–
Campanato spaces, localized John–Nirenberg–Campanato spaces, and congruent John–
Nirenberg–Campanato spaces obtained, respectively, in [36,61,64]. Moreover, at the end of
each part, we list some open questions which are still unsolved so far. Now, we first recall
some definitions of some basic function spaces.

• For any s ∈ Z+ (the set of all non-negative integers), let Ps(Q) denote the set of all

polynomials of degree not greater than s on the cube Q, and P(s)
Q ( f ) denote the unique

polynomial of degree not greater than s, such that∫
Q

[
f (x) − P(s)

Q ( f )(x)
]
xγ dx = 0, ∀ |γ| ≤ s, (24)

where γ := (γ1, . . . ,γn) ∈ Zn
+ := (Z+)n, |γ| := γ1 + · · ·+ γn, and xγ := xγ1

1 · · · x
γn
n for

any x := (x1, . . . , xn) ∈ Rn.
• Let q ∈ [1,∞] and Q0 be a given cube of Rn. For any measurable function f , let

‖ f ‖Lq(Q0,|Q0 |−1dx) :=
[�

Q0

| f (x)|q dx
] 1

q

.

• Let q ∈ (1,∞), s ∈ Z+, and Q0 be a given cube ofRn. The space Lq(Q0, |Q0|−1dx)/Ps(Q0)
is defined by setting

Lq(Q0, |Q0|−1dx)/Ps(Q0) :=
{

f ∈ Lq(Q0) : ‖ f ‖Lq(Q0,|Q0 |−1dx)/Ps(Q0)
< ∞

}
,

where
‖ f ‖Lq(Q0,|Q0 |−1dx)/Ps(Q0)

:= inf
m∈Ps(Q0)

‖ f + m‖Lq(Q0,|Q0 |−1dx).

• For any given v ∈ [1,∞] and s ∈ Z+, and any measurable subset E ⊂ Rn, let

Lv
s (E) :=

{
f ∈ Lv(E) :

∫
E

f (x)xγ dx = 0, ∀γ ∈ Zn
+, |γ| ≤ s

}
.

Let Q be any given cube of Rn. It is well known that P(0)
Q ( f ) = fQ, and for any s ∈ Z+,

there exists a constant C(s) ∈ [1,∞), independent of f and Q, such that

∣∣∣∣P(s)
Q ( f )(x)

∣∣∣∣ ≤ C(s)

�
Q
| f (x)| dx, ∀ x ∈ Q. (25)

54



Mathematics 2021, 9, 2264

Indeed, let {ϕ(γ)Q : γ ∈ Zn
+, |γ| ≤ s} denote the Gram–Schmidt orthonormalization of

{xγ : γ ∈ Zn
+, |γ| ≤ s} on the cube Q with respect to the weight 1/|Q|, namely for any γ, ν,

μ ∈ Zn
+ with |γ| ≤ s, |ν| ≤ s, and |μ| ≤ s, ϕ(γ)Q ∈ Ps(Q) and

〈ϕ(ν)Q ,ϕ(μ)Q 〉 :=
1
|Q|

∫
Q
ϕ
(ν)
Q (x)ϕ(μ)Q (x) dx =

⎧⎪⎪⎨⎪⎪⎩1, ν = μ,
0, ν � μ.

Then,
P(s)

Q ( f )(x) :=
∑

{γ∈Zn
+ : |γ|≤s}

〈ϕ(γ)Q , f 〉ϕ(γ)Q (x), ∀ x ∈ Q,

and we can choose C(s) :=
∑
{γ∈Zn

+ : |γ|≤s} ‖ϕ(γ)Q ‖2L∞(Q)
satisfying (25) (see [65], p. 83, and [66],

p. 54, Lemma 4.1, for more details).

3.1. John–Nirenberg–Campanato Spaces

In this subsection, we first recall the definitions of Campanato spaces, John–Nirenberg–
Campanato spaces (for short, JNC spaces), and Hardy-type spaces, respectively, in
Definitions 2, 3, and 6 below. Moreover, we review some properties of JNC spaces and
Hardy-type spaces, including their limit spaces (Proposition 6 and Corollary 2 below),
relations with the Lebesgue space (Propositions 7 and 8 below), the dual result (The-
orem 3 below), the monotonicity over the first sub-index (Proposition 9 below), the
John–Nirenberg-type inequality (Theorem 4 below), and the equivalence over the second
sub-index (Propositions 10 and 11 below).

A general dual result for Hardy spaces was given by Coifman and Weiss [5] who
proved that for any given p ∈ (0, 1] and q ∈ [1,∞], and s being a non-negative integer not
smaller than n( 1

p − 1), the dual space of the Hardy space Hp(Rn) is the Campanato space
C 1

p−1, q, s(R
n), which was introduced by Campanato [67] and coincides with BMO (Rn)

when p = 1.

Definition 2. Let α ∈ [0,∞), q ∈ [1,∞), and s ∈ Z+.

(i) The Campanato space Cα,q,s(X) is defined by setting

Cα,q,s(X) :=
{

f ∈ Lq
loc (X) : ‖ f ‖Cα,q,s(X) < ∞

}
,

where

‖ f ‖Cα,q,s(X) := sup |Q|−α
[�

Q

∣∣∣∣ f − P(s)
Q ( f )

∣∣∣∣q
] 1

q

and the supremum is taken over all cubes Q of X. In addition, the “norm” ‖ · ‖Cα,q,s(X) of
polynomials is zero, and for simplicity, the space Cα,q,s(X) is regarded as the quotient space
Cα,q,s(X)/Ps(X).

(ii) The dual space (Cα,q,s(X))∗ of Cα,q,s(X) is defined to be the set of all continuous linear
functionals on Cα,q,s(X) equipped with the weak-∗ topology.

In what follows, for any 	 ∈ (0,∞), Q(0, 	) denotes the cube centered at the origin 0

with side length 	.

Remark 3. Let 0 < q ≤ p ≤ ∞. The Morrey space Mp
q(Rn), introduced by Morrey in [68], is

defined by setting

Mp
q(R

n) :=
{

f ∈ Lq
loc (R

n) : ‖ f ‖Mp
q(Rn) < ∞

}
,
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where, for any f ∈ Lq
loc (R

n),

‖ f ‖Mp
q(Rn) := sup

cube Q⊂Rn
|Q| 1p

[�
Q
| f (y)|q dy

] 1
q

.

From Campanato ([67], Theorem 6.II), it follows that for any given q ∈ [1,∞) and α ∈ [− 1
q , 0),

and any f ∈ Cq,α,0(X),

‖ f ‖Cq,α,0(X) ∼
∥∥∥ f − σ( f )

∥∥∥
M−1/α

q (X), (26)

where the positive equivalence constants are independent of f , and

σ( f ) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
lim
	→∞

1
|Q(0, 	)|

∫
Q(0,	)

f (x) dx if X = Rn,

1
|Q0|

∫
Q0

f (x) dx if X = Q0;

see also Nakai [16], Theorem 2.1 and Corollary 2.3, for this conclusion on spaces of homogeneous
type. In addition, a surprising result says that in the definition of supremum ‖ · ‖Mp

q(Rn), if “cubes”
were changed into “measurable sets”, then the Morrey norm ‖ · ‖Mp

q(Rn) becomes an equivalent
norm of the weak Lebesgue space (see Definition 1). To be precise, for any given 0 < q < p < ∞,
f ∈ Lp,∞(Rn) if and only if f ∈ Lq

loc (R
n) and

‖ f ‖
M̃p

q(Rn)
:= sup

A⊂Rn, |A|∈(0,∞)

|A| 1p
[�

A
| f (y)|q dy

] 1
q

< ∞;

moreover,

‖ · ‖Lp,∞(Rn) ≤ ‖ · ‖M̃p
q(Rn)

≤
(

p
p− q

) 1
q

‖ · ‖Lp,∞(Rn);

see, for instance, [69], p. 485, Lemma 2.8. Another interesting JNp-type equivalent norm of the
weak Lebesgue space was presented in Remark 2(iii).

Inspired by the relation between BMO and the Campanato space, as well as the relation
between BMO and JNp, Tao et al. [61] introduced a Campanato-type space JN(p,q,s)α(X) in
the spirit of the John–Nirenberg space JNp(Q0), which contains JNp(Q0) as a special case.
This John–Nirenberg–Campanato space is defined not only on any cube Q0 but also on the
whole space Rn.

Definition 3. Let p, q ∈ [1,∞), s ∈ Z+, and α ∈ R.

(i) The John–Nirenberg–Campanato space (for short, JNC space) JN(p,q,s)α(X) is defined by
setting

JN(p,q,s)α(X) :=
{

f ∈ Lq
loc (X) : ‖ f ‖JN(p,q,s)α (X) < ∞

}
,

where

‖ f ‖JN(p,q,s)α (X) := sup

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

i

|Qi|
⎡⎢⎢⎢⎢⎢⎣|Qi|−α

{�
Qi

∣∣∣∣ f (x) − P(s)
Qi
( f )(x)

∣∣∣∣q dx
} 1

q
⎤⎥⎥⎥⎥⎥⎦

p⎫⎪⎪⎪⎬⎪⎪⎪⎭
1
p

,

P(s)
Qi
( f ) for any i is as in (24) with Q replaced by Qi, and the supremum is taken over all

collections of interior pairwise disjoint cubes {Qi}i ofX. Furthermore, the “norm” ‖ · ‖JN(p,q,s)α (X)
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of polynomials is zero, and for simplicity, the space JN(p,q,s)α(X) is regarded as the quotient
space JN(p,q,s)α(X)/Ps(X).

(ii) The dual space (JN(p,q,s)α(X))∗ of JN(p,q,s)α(X) is defined to be the set of all continuous
linear functionals on JN(p,q,s)α(X) equipped with the weak-∗ topology.

Remark 4. In [61], the JNC space was introduced only for any given α ∈ [0,∞) to study its
relation with the Campanato space in Definition 2, and for any given p ∈ (1,∞) due to Remark 2(ii).
However, many results in [61] also hold true when α ∈ R and p = 1, just with some slight
modifications of their proofs. Thus, in this survey, we introduce the JNC space for any given α ∈ R
and p ∈ [1,∞) and naturally extend some related results with some identical proofs omitted.

The following proposition, which is just [61] (Proposition 2.6), means that the classical
Campanato space serves as a limit space of JN(p,q,s)α(X), similar to the Lebesgue spaces
L∞(X) and Lp(X) when p→∞.

Proposition 6. Let α ∈ [0,∞), q ∈ [1,∞), and s ∈ Z+. Then,

lim
p→∞ JN(p,q,s)α(X) = Cα,q,s(X)

in the following sense: for any f ∈ ⋃
r∈[1,∞)

⋂
p∈[r,∞) JN(p,q,s)α(X),

lim
p→∞‖ f ‖JN(p,q,s)α (X) = ‖ f ‖Cα,q,s(X).

In Proposition 6, if we take X = Q0, we then have the following corollary, which is
just [61] (Corollary 2.8).

Corollary 2. Let q ∈ [1,∞), α ∈ [0,∞), s ∈ Z+, and Q0 be a given cube of Rn. Then,

Cα,q,s(Q0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ f ∈
⋂

p∈[1,∞)

JN(p,q,s)α(Q0) : lim
p→∞‖ f ‖JN(p,q,s)α (Q0) < ∞

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and for any f ∈ Cα,q,s(Q0),

‖ f ‖Cα,q,s(Q0) = lim
p→∞‖ f ‖JN(p,q,s)α (Q0).

Remark 5.

(i) Let p ∈ (1,∞) and Q0 be a given cube of Rn. It is easy to show that

BMO (Q0) ⊂ JNp(Q0).

However, we claim that
BMO (Rn) � JNp(Rn).

Indeed, for the simplicity of the presentation, without loss of generality, we may show this claim
only in R. Let g(x) := log(|x|) for any x ∈ R \ {0}, and g(0) := 0. Then, g ∈ BMO (R)
due to [46] (Example 3.1.3), and hence it suffices to prove that g � JNp(R) for any given
p ∈ (1,∞). To do this, let It := (0, t) for any t ∈ (0,∞). Then, by some simple calculations,
we obtain

gIt =

�
It

g(x) dx =
1
t

∫ t

0
log(x) dx = log(t) − 1

and hence ∣∣∣∣∣{x ∈ It :
∣∣∣g(x) − gIt

∣∣∣ > 1
2

}∣∣∣∣∣
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=

∣∣∣∣∣{x ∈ (0, t) :
∣∣∣log(x) − [log(t) − 1]

∣∣∣ > 1
2

}∣∣∣∣∣
≥ t− te− 1

2 = t
(
1− e− 1

2

)
→∞

as t → ∞. However, the John–Nirenberg inequality of JNp(It) in Theorem 2 implies that
for any t ∈ (0,∞),

∣∣∣∣∣{x ∈ It :
∣∣∣g(x) − gIt

∣∣∣ > 1
2

}∣∣∣∣∣ �
⎡⎢⎢⎢⎢⎣‖g‖JNp(It)

1
2

⎤⎥⎥⎥⎥⎦
p

� ‖g‖p
JNp(R)

with the implicit positive constants depending only on p. Thus, g � JNp(R), and hence the
above claim holds true.

(ii) The predual counterpart of Corollary 2 is still unclear so far (see Question 2 below for more
details).

Obviously, JN(p,q,0)0
(Q0) is just JNp,q(Q0). From this and [31] (Proposition 5.1), we

deduce that when p ∈ (1,∞) and q ∈ [1, p), JN(p,q,0)0
(Q0) coincides with JNp(Q0) in the

sense of equivalent norms, and when p ∈ (1,∞) and q ∈ [p,∞), JN(p,q,0)0
(Q0) and Lq(Q0)

coincide as sets. Moreover, by adding a particular weight of |Q0|, the authors of this article
showed that the aforementioned coincidence (as sets) can be modified into equivalent norms
(see Proposition 7 below, which is just [61], Proposition 2.5). In what follows, for any given
positive constant A and any given function space (X, ‖ · ‖X), we write AX := {A f : f ∈ X}
with its norm defined by setting, for any A f ∈ AX, ‖A f ‖AX := A‖ f ‖X.

Proposition 7. Let p ∈ [1,∞), q ∈ [p,∞), s ∈ Z+, α = 0, and Q0 be a given cube of Rn. Then,[
|Q0|−

1
p JN(p,q,s)α(Q0)

]
=

[
Lq(Q0, |Q0|−1dx)/Ps(Q0)

]
with equivalent norms, namely

‖ f ‖Lq(Q0,|Q0 |−1dx)/Ps(Q0)
≤ |Q0|−

1
p ‖ f ‖JN(p,q,s)0

(Q0)

≤ 2p− p
q
[
1 + C(s)

] p
q ‖ f ‖Lq(Q0,|Q0 |−1dx)/Ps(Q0)

,

where C(s) is as in (25).

It is a very interesting open question to find a counterpart of Proposition 7 when
α ∈ R \ {0} (see Question 1 below for more details).

Now, we review the predual of the John–Nirenberg–Campanato space via introducing
atoms, polymers, and Hardy-type spaces in order, which coincide with the same notation
as in [31] when u ∈ (1,∞), v ∈ (u,∞], and α = 0 = s (see [61], Remarks 3.4 and 3.8, for
more details). In particular, when α = 0, the (u, v, s)0-atom below is just the classic atom of
the Hardy space (see [61], Remark 3.2).

Definition 4. Let u, v ∈ [1,∞], s ∈ Z+, and α ∈ R. A function a is called a (u, v, s)α-atom on a
cube Q if

(i) supp (a) := {x ∈ Rn : a(x) � 0} ⊂ Q;

(ii) ‖a‖Lv(Q) ≤ |Q| 1v− 1
u−α;

(iii)
∫

Q a(x)xγ dx = 0 for any γ ∈ Zn
+ with |γ| ≤ s.
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In what follows, for any u ∈ [1,∞], let u′ denote its conjugate index, namely 1/u+ 1/u′ =
1, and for any {λ j} j ⊂ C, let

∥∥∥{λ j} j
∥∥∥
	u

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝
∑

j

|λ j|u
⎞⎟⎟⎟⎟⎟⎟⎠

1
u

when u ∈ [1,∞),

sup
j
|λ j| when u = ∞.

(27)

Definition 5. Let u, v ∈ [1,∞], s ∈ Z+, and α ∈ R. The space of (u, v, s)α-polymers, denoted
by H̃K(u,v,s)α(X), is defined to be the set of all g ∈ (JN(u′,v′,s)α(X))∗ satisfying that there exist
(u, v, s)α-atoms {aj} j supported, respectively, in interior pairwise disjoint cubes {Qj} j of X, and
{λ j} j ⊂ C with |λ j|u < ∞, such that

g =
∑

j

λ jaj

in (JN(u′,v′,s)α(X))∗. Moreover, any g ∈ H̃K(u,v,s)α(X) is called a (u, v, s)α-polymer with its norm
‖g‖H̃K(u,v,s)α (X) defined by setting

‖g‖H̃K(u,v,s)α (X) := inf
∥∥∥{λ j} j

∥∥∥
	u

,

where the infimum is taken over all decompositions of g as above.

Definition 6. Let u, v ∈ [1,∞], s ∈ Z+, and α ∈ R. The Hardy-type space HK(u,v,s)α(X) is
defined by setting

HK(u,v,s)α(X) :=

⎧⎪⎪⎨⎪⎪⎩g ∈ (JN(u′,v′,s)α(X))∗ : g =
∑

i

gi in (JN(u′,v′,s)α(X))∗,

{gi}i ⊂ H̃K(u,v,s)α(X), and
∑

i

∥∥∥gi
∥∥∥

H̃K(u,v,s)α (X)
< ∞

⎫⎪⎪⎬⎪⎪⎭
and for any g ∈ HK(u,v,s)α(X), let

‖g‖HK(u,v,s)α (X) := inf
∑

i

‖gi‖H̃K(u,v,s)α (X),

where the infimum is taken over all decompositions of g as above. Moreover, the finite atomic
Hardy-type space HKfin

(u,v,s)α
(X) is defined to be the set of all finite summations

∑M
m=1 λmam,

where M ∈ N, {λm}Mm=1 ⊂ C, and {am}Mm=1 are (u, v, s)α-atoms.

The significant dual relation between JN(p,q,s)α(X) and HK(p′,q′,s)α(X) reads as follows,
which is just [61] (Theorem 3.9) with α ∈ [0,∞) replaced by α ∈ R (this makes sense because
the crucial lemma ([61], Lemma 3.12) still holds true with the corresponding replacement).

Theorem 3. Let p, q ∈ (1,∞), 1/p = 1/p′ = 1 = 1/q + 1/q′, s ∈ Z+, and α ∈ R. Then,
(HK(p′,q′,s)α(X))∗ = JN(p,q,s)α(X) in the following sense:

(i) If f ∈ JN(p,q,s)α(X), then f induces a linear functional L f on HK(p′,q′,s)α(X) and

‖L f ‖(HK(p′ ,q′ ,s)α (X))∗ ≤ C‖ f ‖JN(p,q,s)α (X),

where C is a positive constant independent of f .
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(ii) If L ∈ (HK(p′,q′,s)α(X))∗, then there exists an f ∈ JN(p,q,s)α(X), such that for any g ∈
HKfin

(p′,q′,s)α
(X),

L(g) =
∫
X

f (x)g(x) dx,

and
‖L‖(HK(p′ ,q′ ,s)α (X))∗ ∼ ‖ f ‖JN(p,q,s)α (X)

with the positive equivalence constants independent of f .

When X := Q0, α = 0 = s, and q ∈ [1, p), by [61] (Remark 3.10 and Proposition 10), we
know that Theorem 3 in this case coincides with [31] (Theorem 6.6). As an application of
Theorem 3, the authors obtained the following atomic characterization of Lq′

s (Q0) for any
given q′ ∈ (1,∞) and s ∈ Z+, which is just [61] (Corollary 3.13).

Proposition 8. Let p ∈ (1,∞), q ∈ [p,∞), 1/p = 1/p′ = 1 = 1/q + 1/q′, s ∈ Z+, and Q0 be a
given cube of Rn. Then,

Lq′
s (Q0, |Q0|q′−1dx) = |Q0|

1
p HK(p′,q′,s)0

(Q0)

with equivalent norms.

From Theorem 2 and [47] (p. 14, Exercise 1.1.11), we deduce that for any 1 < p1 < p2 < ∞,

JNp2(Q0) ⊂ Lp2,∞(Q0) ⊂ Lp1(Q0) ⊂ JNp1(Q0).

Moreover, it is easy to show the following monotonicity over the first sub-index of
both JN(p,q,s)α(Q0) and HK(u,v,s)α(Q0).

Proposition 9. Let s ∈ Z+ and Q0 be a given cube of Rn.

(i) Let 1 < u1 < u2 < ∞. If v ∈ (1,∞) and α ∈ R, or v = ∞ and α ∈ [0,∞), then

HK(u2,v,s)α(Q0) ⊂ HK(u1,v,s)α(Q0)

and
‖ · ‖HK(u1,v,s)α (Q0) ≤ |Q0|

1
u1
− 1

u2 ‖ · ‖HK(u2,v,s)α (Q0).

(ii) Let 1 < p1 < p2 < ∞. If q ∈ (1,∞) and α ∈ R, or q = 1 and α ∈ [0,∞), then

JN(p2,q,s)α(Q0) ⊂ JN(p1,q,s)α(Q0)

and there exists some positive constant C, such that

‖ · ‖JN(p1,q,s)α (Q0) ≤ C|Q0|
1

p1
− 1

p2 ‖ · ‖JN(p2,q,s)α (Q0).

Proof. (i) is a direct corollary of the fact that for any (u2, v, s)α-atom a on the cube Q,

|Q| 1
v2
− 1

v1 a

is a (u1, v, s)α-atom (see [36], Remark 5.5, for more details).
(ii) is a direct consequence of the Jensen inequality (see, for instance, [61], Remark 4.2(ii)).

This finishes the proof of Proposition 9. �

Now, we consider the independence over the second sub-index, which strongly relies
on the John–Nirenberg inequality as in the BMO case. The following John–Nirenberg-type
inequality is just [61] (Theorem 4.3), which coincides with Theorem 2 when α = 0 = s.
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Theorem 4. Let p ∈ (1,∞), s ∈ Z+,α ∈ [0,∞), and Q0 be a given cube ofRn. If f ∈ JN(p,1,s)α(Q0),

then f − P(s)
Q0
( f ) ∈ Lp,∞(Q0), and there exists a positive constant C(n,p,s), depending only on n, p,

and s, but independent of f , such that∥∥∥∥ f − P(s)
Q0
( f )

∥∥∥∥
Lp,∞(Q0)

≤ C(n,p,s)|Q0|α‖ f ‖JN(p,1,s)α (Q0).

It should be mentioned that the main tool used in the proof of Theorem 4 is the
following good-λ inequality (namely, Lemma 2 below), which is just [61] (Lemma 4.6) (see
also [30], Lemma 4.5, when s = 0). Recall that for any given cube Q0 of Rn, the dyadic
maximal operatorM(d)

Q0
is defined by setting, for any given g ∈ L1(Q0) and any x ∈ Q0,

M(d)
Q0

(g)(x) := sup
Q∈DQ0 , Q�x

1
|Q|

∫
Q
|g(x)| dx,

whereDQ0 is as in (20) with Q replaced by Q0, and the supremum is taken over all dyadic
cubes Q ∈ DQ0 and Q � x.

Lemma 2. Let p ∈ (1,∞), s ∈ Z+, C(s) ∈ [1,∞) be as in (25), θ ∈ (0, 2−nC−1
(s)), Q0 be a given

cube of Rn, and f ∈ JN(p,1,s)0
(Q0). Then, for any real number λ > 1

θ

�
Q0
| f − P(s)

Q0
( f )|,

∣∣∣∣∣{x ∈ Q0 : M(d)
Q0

(
f − P(s)

Q0
( f )

)
(x) > λ

}∣∣∣∣∣
≤
‖ f ‖JN(p,1,s)0

(Q0)

[1− 2nθC(s)]λ

∣∣∣∣∣{x ∈ Q0 : M(d)
Q0

(
f − P(s)

Q0
( f )

)
(x) > θλ

}∣∣∣∣∣
1
p′

.

Moreover, based on Theorem 4 in [61] (Proposition 4.1), Tao et al. further obtained the
following independence over the second sub-index of JN(p,q,s)α(X).

Proposition 10. Let 1 ≤ q < p < ∞, s ∈ Z+, and α ∈ [0,∞). Then,

JN(p,q,s)α(X) = JN(p,1,s)α(X)
with equivalent norms.

Furthermore, the following independence over the second sub-index of HK(u,v,s)α(X)
is just [61] (Proposition 4.7), whose proof is based on Theorem 3 and Proposition 10.

Proposition 11. Let 1 < u < v ≤ ∞, s ∈ Z+, and α ∈ [0,∞). Then,

HK(u,v,s)α(X) = HK(u,∞,s)α(X)
with equivalent norms.

In particular, when α = 0 = s, Propositions 10 and 11 were obtained, respectively,
in [31] (Propositions 5.1 and 6.4).

Combining Theorem 3 and Propositions 10 and 11, we immediately have the following
corollary; we omit the details here.

Corollary 3. Let p ∈ (1,∞), s ∈ Z+, and α ∈ [0,∞). Then, (HK(p′,∞,s)α(X))∗ = JN(p,1,s)α(X).

Finally, we list some open questions.
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Question 1. For any given cube Q0 of Rn, by [61] (Remark 4.2(ii)) with slight modifications, we
know that

(i) for any given p ∈ [1,∞) and s ∈ Z+,

JN(p,q,s)0
(Q0) =

⎧⎪⎪⎨⎪⎪⎩JN(p,1,s)0
(Q0), q ∈ [1, p),

JN(q,q,s)0
(Q0), q ∈ [p,∞);

(ii) for any given p ∈ [1,∞), q ∈ [p,∞), s ∈ Z+, and α ∈ R,

JN(q,q,s)α(Q0) ⊂ JN(p,q,s)α(Q0)

and [
|Q0|−

1
p ‖ f ‖JN(p,q,s)α (Q0)

]
≤

[
|Q0|−

1
q ‖ f ‖JN(q,q,s)α (Q0)

]
;

(iii) for any given p ∈ [1,∞), q ∈ [p,∞), s ∈ Z+, and α ∈ ( s+1
n ,∞),

JN(q,q,s)α(Q0) = Ps(Q0) = JN(p,q,s)α(Q0).

However, letting RMp,q,α(X) denote the Riesz–Morrey space in Definition 14, it is still unknown
whether or not

(i) for any given p ∈ [1,∞), q ∈ [p,∞), s ∈ Z+, and α ∈ (−∞, s+1
n ] \ {0},

JN(p,q,s)α(Q0) = JN(q,q,s)α(Q0) or JN(p,q,s)α(Q0) =
[
RMp,q,α(Q0)/Ps(Q0)

]
holds true;

(ii) for any given p ∈ [1,∞), q ∈ [p,∞), s ∈ Z+, and α ∈ R,

JN(p,q,s)α(R
n) = JN(q,q,s)α(R

n) or JN(p,q,s)α(R
n) =

[
RMp,q,α(Rn)/Ps(Rn)

]
holds true, where Ps(Rn) denotes the set of all polynomials of degree not greater than s on Rn.

Question 2. Let 1 < u1 < u2 < ∞, v ∈ (1,∞], s ∈ Z+, and Q0 be a given cube of Rn. From
Proposition 9(i), we deduce that

HK(u2,v,s)0
(Q0) ⊂ HK(u1,v,s)0

(Q0)

and
‖ · ‖HK(u1,v,s)0

(Q0) ≤
[
|Q0|

1
u1
− 1

u2 ‖ · ‖HK(u2,v,s)0
(Q0)

]
.

Moreover, by [61] (Remark 4.2(iii)) and [36] (Proposition 5.7), we find that for any u ∈ [1,∞),

HK(u,v,s)0
(Q0) ⊂ H1,v,s

at (Q0)

and for any g ∈ ⋃
u∈[1,∞) HK(u,v,s)0

(Q0),

‖g‖H1,v,s
at (Q0)

≤ lim inf
u→1+

‖g‖HK(u,v,s)0
(Q0),

where H1,v,s
at (X) denotes the atomic Hardy space (see Coifman and Weiss [5], and also [61],

Remark 3.2(ii), for its definition). Here and thereafter, u → 1+ means u ∈ (1,∞) and u → 1.
However, for any given v ∈ (1,∞], s ∈ Z+, α ∈ [0,∞), and any given cube Q0 of Rn,

(i) it is still unknown whether or not for any g ∈ ⋃
u∈[1,∞) HK(u,v,s)α(Q0),

‖g‖
H

1
α+1 ,v,s
at (Q0)

= lim
u→1+

‖g‖HK(u,v,s)α (Q0)
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holds true;

(ii) it is interesting to clarify the relation between
⋃

u∈[1,∞) HK(u,v,s)α(Q0) and H
1
α+1 ,v,s
at (Q0).

The last question in this subsection is on an interpolation result in [56]. We first recall
some notation in [56]. Let p ∈ (1,∞), λ ∈ R, and Q0 be a given cube of Rn. The space
N(p,λ)(Q0) is defined by setting

N(p,λ)(Q0) :=
{
u ∈ L1(Q0) : [u]N(p,λ)(Q0)

< ∞
}
,

where

[u]N(p,λ) (Q0) := sup

⎧⎪⎪⎨⎪⎪⎩
∑

i

∣∣∣∣∣∣
∫

Qi

|u(x) − uQi | dx

∣∣∣∣∣∣
p

|Qi|1−p−λ
⎫⎪⎪⎬⎪⎪⎭

1/p

and the supremum is taken over all collections of interior pairwise disjoint cubes {Qi}i
of Q0, and uQi is the mean of u over Qi for any i. Let F (Q0) denote the set of all simple
functions on Q0.

Definition 7 ([56], Definition 3.1). A linear operator T defined on F (Q0) is said to be of strong
type N[p, (q,μ)] if there exists a positive constant K, such that for any u ∈ F (Q0),

[Tu]N(q,μ)(Q0)
≤ K‖u‖Lp(Q0);

the smallest of the constant K for which the above inequality holds true is called the strong
N[p, (q,μ)]-norm.

Theorem 5 ([56], Theorem 3.1). Let [pi, qi,μi] be real numbers, such that pi, qi ∈ [1,∞) for
any i ∈ {1, 2}. If T is a linear operator which is simultaneously of strong type N[pi, (qi,μi)] with
respective norms Ki (i ∈ {1, 2}), then T is of strong type N[pt, (qt,μ)], where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
pt

:=
1− t
p1

+
t

p2
,

1
qt

:=
1− t
q1

+
t

q2
μ

q
= (1− t)

μ1

q1
for t ∈ [0, 1].

Moreover, for any t ∈ [0, 1],

[Tu]N[pt,(qt,μ)] ≤ K1−t
1 Kt

2‖u‖Lp(Q0).

The theorem also holds true in the limit case p1 = ∞ and 1
q1

= μ1 = 0.

Question 3. In the proof of Theorem 5, lines 1–3 of [56] (p. 454), the author applied [56] (Lemma 2.3)
with

F[u, v, S] :=
∑

i

∫
Qi

[
u(y) − uQi

]
v dy|Qi|−λ/pt

replaced by

Φ(S, t) :=
∑

i

∫
Qi

[
T(ũ(y, t)) − (Tũ)Qi

]
ṽ(y, t) dy|Qi|−μ(t)β(t).

Therefore, by the proof of [56] (Lemma 2.3), we need to choose a function ṽ satisfying that
for any i, there exists some constant ci, such that

ṽ(y, t) = ci
{
sign

[
T(ũ(y, t)) − (Tũ)Qi

]}
(28)
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in Qi. Meanwhile, from the definition of ṽ (see line 3 of [56], p. 452), it follows that

ṽ(y, t) = |v(y)|[1−β(t)]q′t eiargv(y) (29)

for some simple function v ∈ F (Q0), where 1/qt + 1/q′t = 1. To summarize, we need to find a
simple function v, such that both (28) and (29) hold true, which seems unreasonable because Tũ
may behave so badly even though both u and ũ are simple functions. Thus, the proof of Theorem 5
in [56] seems problematic. It is interesting to check whether or not Theorem 5 is really true.

3.2. Localized John–Nirenberg–Campanato Spaces

As a combination of the JNC space and the localized BMO space in Section 2.1,
Sun et al. [36] studied the localized John–Nirenberg–Campanato space, which is new even
in a special case: localized John–Nirenberg spaces. Now, we recall the definition of the
localized Campanato space, which was first introduced by Goldberg in [50] (Theorem 5).
In what follows, for any s ∈ Z+ and c0 ∈ (0, 	(X)), let

P(s)
Q,c0

( f ) :=

⎧⎪⎪⎨⎪⎪⎩P(s)
Q ( f ), 	(Q) < c0,

0, 	(Q) ≥ c0,

where P(s)
Q ( f ) is as in (24).

Definition 8. Let q ∈ [1,∞), s ∈ Z+, and α ∈ [0,∞). Fix c0 ∈ (0, 	(X)). The local Campanato
space Λ(α,q,s)(X) is defined to be the set of all functions f ∈ Lq

loc (X), such that

‖ f ‖Λ(α,q,s)(X) := sup|Q|−α
[�

Q

∣∣∣∣ f (x) − P(s)
Q,c0

( f )(x)
∣∣∣∣q dx

] 1
q

< ∞,

where the supremum is taken over all cubes Q of X.

Fix the constant c0 ∈ (0, 	(X)). In Definition 3, if P(s)
Qj
( f )were replaced by P(s)

Qj,c0
( f ), then

we obtain the following localized John–Nirenberg–Campanato space. As was mentioned in
Remark 4, we naturally extend the ranges of α and p, similar to Section 3.1; we omit some
identical proofs.

Definition 9. Let p, q ∈ [1,∞), s ∈ Z+, and α ∈ R. Fix the constant c0 ∈ (0, 	(X)). The
local John–Nirenberg–Campanato space jn(p,q,s)α,c0

(X) is defined to be the set of all functions

f ∈ Lq
loc (X), such that

‖ f ‖ jn(p,q,s)α,c0
(X) := sup

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑
j∈N

∣∣∣Qj
∣∣∣
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣Qj

∣∣∣−α⎡⎢⎢⎢⎢⎣
�

Qj

∣∣∣∣∣ f (x) − P(s)
Qj,c0

( f )(x)
∣∣∣∣∣q dx

⎤⎥⎥⎥⎥⎦
1
q

⎫⎪⎪⎪⎬⎪⎪⎪⎭
p⎤⎥⎥⎥⎥⎥⎥⎥⎦

1
p

is finite, where the supremum is taken over all collections of interior pairwise disjoint cubes {Qj} j∈N
of X. Moreover, the dual space ( jn(p,q,s)α,c0

(X))∗ of jn(p,q,s)α,c0
(X) is defined to be the set of all

continuous linear functionals on jn(p,q,s)α,c0
(X) equipped with the weak-∗ topology.

Remark 6. Notice that the Campanato space and the John–Nirenberg–Campanato space are quotient
spaces, while their localized versions are not.

Furthermore, in [36] (Proposition 2.5), Sun et al. showed that jn(p,q,s)α,c0
(X) in

Definition 9 is independent of the choice of the positive constant c0. Therefore, in what
follows, we write

jn(p,q,s)α(X) := jn(p,q,s)α,c0
(X).

64



Mathematics 2021, 9, 2264

In particular, if q = 1 and s = 0 = α, then jn(p,q,s)α(X) becomes the local John–Nirenberg space

jnp(X) := jn(p,1,0)0
(X).

The following Banach structure of jn(p,q,s)α(X) is just [36] (Proposition 2.7).

Proposition 12. Let p, q ∈ [1,∞), s ∈ Z+, and α ∈ R. Then, jn(p,q,s)α(X) is a Banach space.

In what follows, the space jn(p,q,s)α(Q0)/Ps(Q0) is defined by setting

jn(p,q,s)α(Q0)/Ps(Q0) :=
{

f ∈ jn(p,q,s)α(Q0) : ‖ f ‖ jn(p,q,s)α (Q0)/Ps(Q0) < ∞
}
,

where
‖ f ‖ jn(p,q,s)α (Q0)/Ps(Q0) := inf

a∈Ps(Q0)
‖ f + a‖ jn(p,q,s)α (Q0);

the space JN(p,q,s)α(X) ∩ Lp(X) is defined by setting

JN(p,q,s)α(X) ∩ Lp(X) :=
{

f ∈ L1
loc (X) : ‖ f ‖JN(p,q,s)α (X)∩Lp(X) < ∞

}
,

where
‖ f ‖JN(p,q,s)α (X)∩Lp(X) := max

{
‖ f ‖JN(p,q,s)α (X), ‖ f ‖Lp(X)

}
.

Moreover, the relations between jn(p,q,s)α(X) and JN(p,q,s)α(X), namely the following
Propositions 13 and 14, are just [36] (Propositions 2.9 and 2.10), respectively.

Proposition 13. Let p, q ∈ [1,∞), s ∈ Z+, and α ∈ R. Then,

(i) jn(p,q,s)α(X) ⊂ JN(p,q,s)α(X);
(ii) if Q0 is a given cube of Rn, then JN(p,q,s)α(Q0) = jn(p,q,s)α(Q0)/Ps(Q0) with equivalent

norms;
(iii) Lp(R) � jnp(R) � JNp(R) if p ∈ (1,∞).

Proposition 14. Let p ∈ [1,∞), q ∈ [1, p], s ∈ Z+, and α ∈ (0,∞). Then,

jn(p,q,s)α(X) =
[
JN(p,q,s)α(X) ∩ Lp(X)

]
(30)

with equivalent norms.

Furthermore, observe that Proposition 14 is the counterpart of [51] (Theorem 4.1),
which says that for any α ∈ (0,∞), q ∈ [1,∞), and s ∈ Z+,

Λ(α,q,s)(X) =
[
C(α,q,s)(X) ∩ L∞(X)

]
.

However, the case q ∈ [p,∞) in Proposition 14 is unclear so far (see Question 5 below).
As an application of Propositions 13(ii) and 14, we have the following result.

Proposition 15. Let p ∈ [1,∞), q ∈ [1, p], s ∈ Z+, α ∈ (0,∞), and Q0 be a given cube of Rn.
Then,

JN(p,q,s)α(Q0) ⊂ [Lp(Q0)/Ps(Q0)].

Proof. Let p, q, s, α, and Q0 be as in this proposition. Then, by Propositions 13(ii) and 14,
we obtain

JN(p,q,s)α(Q0) =
[
jn(p,q,s)α(Q0)/Ps(Q0)

]
=

{
JN(p,q,s)α(Q0) ∩ [Lp(Q0)/Ps(Q0)]

}
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and

‖ · ‖JN(p,q,s)α (Q0) ∼ inf
a∈Ps(Q0)

‖ ·+a‖ jn(p,q,s)α (Q0)

∼ max
{
‖ · ‖JN(p,q,s)α (Q0), inf

a∈Ps(Q0)
‖ ·+a‖Lp(Q0)

}
.

This implies that JN(p,q,s)α(Q0) ⊂ [Lp(Q0)/Ps(Q0)] with

inf
a∈Ps(Q0)

‖ ·+a‖Lp(Q0) � ‖ · ‖JN(p,q,s)α (Q0),

which completes the proof of Proposition 15. �

Propositions 16 and 17 below are just, respectively, [36] (Propositions 2.12 and 2.13),
which show that the localized Campanato space is the limit of the localized John–Nirenberg–
Campanato space.

Proposition 16. Let q ∈ [1,∞), s ∈ Z+, α ∈ [0,∞), and Q0 be a given cube of Rn. Then, for any
f ∈ L1(Q0),

‖ f ‖Λ(α,q,s)(Q0) = lim
p→∞‖ f ‖ jn(p,q,s)α (Q0).

Moreover,

Λ(α,q,s)(Q0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ f ∈
⋂

p∈[1,∞)

jn(p,q,s)α(Q0) : lim
p→∞‖ f ‖ jn(p,q,s)α (Q0) < ∞

⎫⎪⎪⎪⎬⎪⎪⎪⎭.

Proposition 17. Let q ∈ [1,∞), s ∈ Z+, and α ∈ [0,∞). Then,

lim
p→∞ jn(p,q,s)α(R

n) = Λ(α,q,s)(R
n)

in the following sense: if f ∈ jn(p,q,s)α(R
n) ∩Λ(α,q,s)(Rn), then

f ∈
⋂

r∈[p,∞)

jn(r,q,s)α(R
n)

and
‖ f ‖Λ(α,q,s)(Rn) = lim

r→∞‖ f ‖ jn(r,q,s)α (R
n).

As in Proposition 10, the following invariance of jn(p,q,s)α(X) on its indices in the
appropriate range is just [36] (Proposition 3.1).

Proposition 18. Let p ∈ (1,∞), q ∈ [1, p), s ∈ Z+, and α ∈ [0,∞). Then,

jn(p,q,s)α(X) = jn(p,1,s)α(X)
with equivalent norms.

In other ranges of indices, namely q ≥ p, the following relation between jn(p,q,s)α(X)
and the Lebesgue space is just [36] (Proposition 3.4).

Proposition 19. Let s ∈ Z+ and Q0 be a given cube of Rn.

(i) If 1 ≤ p ≤ q < ∞, then [|Q0|
1
q− 1

p jn(p,q,s)0
(Q0)] = Lq(Q0) with equivalent norms.

(ii) If p ∈ [1,∞), then jn(p,p,s)0
(Rn) = Lp(Rn) with equivalent norms.

(iii) If p, q ∈ [1,∞), α ∈ (−∞, 1
p − 1

q ), and f ∈ jn(p,q,s)α(R
n), then f = 0 almost everywhere.
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Using the localized atom, Sun et al. [36] introduced the localized Hardy-type space
and showed that this space is the predual of the localized John–Nirenberg–Campanato
space. First, recall the definitions of localized atoms, localized polymers, and localized
Hardy-type spaces in order as follows.

Definition 10. Let v, w ∈ [1,∞], s ∈ Z+, and α ∈ R. Fix c0 ∈ (0, 	(X)), and let Q denote a cube
of Rn. Then, a function a on Rn is called a local (v, w, s)α,c0 -atom supported in Q if

(i) supp (a) := {x ∈ Rn : a(x) � 0} ⊂ Q;

(ii) ‖a‖Lw(Q) ≤ |Q| 1w− 1
v−α;

(iii) when 	(Q) < c0,
∫

Q a(x)xβdx = 0 for any β ∈ Zn
+ and |β| ≤ s.

Definition 11. Let v, w ∈ [1,∞], s ∈ Z+, α ∈ R, and c0 ∈ (0, 	(X)). The space h̃k(v,w,s)α,c0
(X)

is defined to be the set of all g ∈ ( jn(v′,w′,s)α,c0
(X))∗, such that

g =
∑
j∈N
λ jaj

in ( jn(v′,w′,s)α,c0
(X))∗, where 1/v + 1/v′ = 1 = 1/w + 1/w′, {aj} j∈N are local (v, w, s)α,c0 -atoms

supported, respectively, in interior pairwise disjoint subcubes {Qj} j∈N of X, and {λ j} j∈N ⊂ C with
‖{λ j} j∈N‖	v < ∞ (see (27) for the definition of ‖ · ‖	v ). Any g ∈ h̃k(v,w,s)α,c0

(X) is called a local
(v, w, s)α,c0 -polymer on X, and let

‖g‖h̃k(v,w,s)α,c0
(X) := inf

∥∥∥{λ j} j∈N
∥∥∥
	v

,

where the infimum is taken over all decompositions of g as above.

Definition 12. Let v, w ∈ [1,∞], s ∈ Z+, α ∈ R, and c0 ∈ (0, 	(X)). The local Hardy-type
space hk(v,w,s)α,c0

(X) is defined to be the set of all g ∈ ( jn(v′,w′,s)α,c0
(X))∗, such that there exists a

sequence {gi}i∈N ⊂ h̃k(v,w,s)α,c0
(X) satisfying that

∑
i∈N ‖gi‖h̃k(v,w,s)α,c0

(X) < ∞ and

g =
∑
i∈N

gi (31)

in ( jn(v′,w′,s)α,c0
(X))∗. For any g ∈ hk(v,w,s)α,c0

(X), let

‖g‖hk(v,w,s)α,c0
(X) := inf

∑
i∈N
‖gi‖h̃k(v,w,s)α,c0

(X),

where the infimum is taken over all decompositions of g as in (31).

Correspondingly, hk(v,w,s)α,c0
(X) is independent of the choice of the positive constant

c0 as well, which is just [36] (Proposition 4.7).

Proposition 20. Let v ∈ (1,∞), w ∈ (1,∞], s ∈ Z+, α ∈ R, and 0 < c1 < c2 < 	(X). Then,
hk(v,w,s)α,c1

(X) = hk(v,w,s)α,c2
(X) with equivalent norms.

Henceforth, we simply write

local (v, w, s)α,c0−atoms, h̃k(v,w,s)α,c0
(X), and hk(v,w,s)α,c0

(X),

respectively, as

local (v, w, s)α−atoms, h̃k(v,w,s)α(X), and hk(v,w,s)α(X).
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The corresponding dual theorem (namely Theorem 6 below) is just [36] (Theorem 4.11).
In what follows, the space hkfin

(v,w,s)α
(X) is defined to be the set of all finite linear combinations

of local (v, w, s)α-atoms supported, respectively, in cubes of X.

Theorem 6. Let v, w ∈ (1,∞), 1/v + 1/v′ = 1 = 1/w + 1/w′ = 1, s ∈ Z+, and α ∈ R. Then,
jn(v′,w′,s)α(X) = (hk(v,w,s)α(X))∗ in the following sense:

(i) For any given f ∈ jn(v′,w′,s)α(X), the linear functional

L f : g �−→
〈
L f , g

〉
:=

∫
X

f (x)g(x) dx, ∀ g ∈ hkfin
(v,w,s)α

(X)

can be extended to a bounded linear functional on hk(v,w,s)α(X). Moreover, it holds true that
‖L f ‖(hk(v,w,s)α (X))∗ ≤ ‖ f ‖ jn(v′ ,w′ ,s)α (X).

(ii) Any bounded linear functional L on hk(v,w,s)α(X) can be represented by a function f ∈
jn(v′,w′,s)α(X) in the following sense:

〈L, g
〉
=

∫
X

f (x)g(x) dx, ∀ g ∈ hkfin
(v,w,s)α

(X).

Moreover, there exists a positive constant C, depending only on s, such that ‖ f ‖ jn(v′ ,w′ ,s)α (X) ≤
C‖L‖(hk(v,w,s)α (X))∗ .

As a corollary of Theorem 6, as well as a counterpart of Proposition 18, for any admis-
sible (v, s,α), Proposition 21, which is just [36] (Proposition 5.1), shows that hk(v,w,s)α(X) is
invariant on w ∈ (v,∞].

Proposition 21. Let v ∈ (1,∞), w ∈ (v,∞], s ∈ Z+, and α ∈ [0,∞). Then,

hk(v,w,s)α(X) = hk(v,∞,s)α(X)
with equivalent norms.

The following proposition, which is just [36] (Proposition 5.6), might be viewed as a
counterpart of Proposition 19.

Proposition 22. Let v ∈ (1,∞) and s ∈ Z+.

(i) If w ∈ (1, v], and Q0 is a given cube of Rn, then hk(v,w,s)0
(Q0) = |Q0| 1v− 1

w Lw(Q0) with
equivalent norms.

(ii) Lv(Rn) = hk(v,v,s)0
(Rn) with equivalent norms.

Finally, the following relation between hk(v,w,s)α(X) and the atomic localized Hardy
space is just [36] (Proposition 5.7).

Proposition 23. Let w ∈ (1,∞] and Q0 be a given cube of Rn. Then,⋃
v∈[1,∞)

hk(v,w,0)0
(Q0) ⊂ h1,w

at (Q0).

Moreover, if g ∈ ⋃
v∈[1,∞) hk(v,w,0)0

(Q0), then

‖g‖h1,w
at (Q0)

≤ lim inf
v→1+

‖g‖hk(v,w,0)0
(Q0),

where v→ 1+ means that v ∈ (1,∞) and v→ 1.
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We also list some open questions at the end of this subsection.

Question 4. There still exists something unclear in Proposition 13(iii). Precisely, let p ∈ (1,∞),

jnp(R)/C :=
{

f ∈ L1
loc (R) : ‖ f ‖ jnp(R)/C := inf

c∈C ‖ f + c‖ jnp(R) < ∞
}

and
Lp(R)/C :=

{
f ∈ L1

loc (R) : ‖ f ‖Lp(R)/C := inf
c∈C ‖ f + c‖Lp(R) < ∞

}
.

Then, it is still unknown whether or not[
jnp(R)/C

]
� JNp(R)

holds true; namely, it is still unknown whether or not there exists some non-constant function h,
such that h ∈ JNp(R) but h � jnp(R). Moreover, it is still unknown whether or not

[Lp(Rn)/C] �
[
jnp(Rn)/C

]
� JNp(Rn)

holds true.

The following question is on the case q > p corresponding to Proposition 14.

Question 5. Let p ∈ [1,∞), q ∈ (p,∞), s ∈ Z+, and α ∈ (0,∞). Then, it is still unknown
whether or not

jn(p,q,s)α(X) =
[
JN(p,q,s)α(X) ∩ Lp(X)

]
still holds true.

Furthermore, the corresponding localized cases of Questions 1 and 2 are listed as
follows. The following Question 6 is a modification of [36] (Remark 3.5), and Question 7 is
just [36] (Remark 5.8).

Question 6. Let p ∈ [1,∞), q ∈ [1,∞), s ∈ Z+, and α ∈ [ 1
p − 1

q ,∞). Then, the relation between
jn(p,q,s)α(R

n) and the Riesz–Morrey space RMp,q,α(Rn) (see Section 4.1 for its definition) is still
unclear, except the identity

jn(p,p,s)0
(Rn) = Lp(Rn) = RMp,p,0(Rn)

due to Proposition 19(ii) and Theorem 8(ii), and the inclusion

jn(p,q,s)α(R
n) ⊃ RMp,q,α(Rn) with ‖ · ‖ jn(p,q,s)α (R

n) � ‖ · ‖RMp,q,α(Rn)

due to (25) and their definitions, where the implicit positive constant is independent of the functions
under consideration.

Question 7. Let v ∈ (1,∞), w ∈ (1,∞], and Q0 be a given cube of Rn.

(i) It is interesting to clarify the relation between
⋃

v∈(1,∞) hk(v,w,0)0
(Q0) and h1,w

at (Q0), and to
find the condition on g, such that ‖g‖h1,w

at (Q0)
= limv→1+ ‖g‖hk(v,w,0)0

(Q0).

(ii) Let α ∈ (0,∞) and s ∈ Z+. As v→ 1+, the relation between the localized atomic Hardy space
(see [50] for the definition) and hk(v,w,s)α(Q0) is still unknown.

3.3. Congruent John–Nirenberg–Campanato Spaces

Inspired by the JNC space (see Section 3.1) and the spaceB (introduced and studied by
Bourgain et al. [70]), Jia et al. [64] introduced the special John–Nirenberg–Campanato spaces
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via congruent cubes, which are of some amalgam features. This subsection is devoted to
the main properties and some applications of congruent JNC spaces.

In what follows, for any m ∈ Z,Dm(Rn) denotes the set of all subcubes of Rn with side
length 2−m,Dm(Q0) the set of all subcubes of Q0 with side length 2−m	(Q0) for any given
m ∈ Z+, andDm(Q0) := ∅ for any given m ∈ Z \Z+; here and thereafter, 	(Q0) denotes the
side length of Q0.

Definition 13. Let p, q ∈ [1,∞), s ∈ Z+, and α ∈ R. The special John–Nirenberg–Campanato
space via congruent cubes (for short, congruent JNC space) JNcon

(p,q,s)α
(X) is defined to be the

set of all f ∈ L1
loc(X), such that

‖ f ‖JNcon
(p,q,s)α

(X) := sup
m∈Z

{
[ f ](m)

(p,q,s)α,X
}
< ∞,

where, for any m ∈ Z, [ f ](m)

(p,q,s)α,X is defined to be

sup
{Qj} j⊂Dm(X)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

j

∣∣∣Qj
∣∣∣
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣Qj

∣∣∣−α⎡⎢⎢⎢⎢⎣
�

Qj

∣∣∣∣∣ f (x) − P(s)
Qj
( f )(x)

∣∣∣∣∣q dx

⎤⎥⎥⎥⎥⎦
1
q

⎫⎪⎪⎪⎬⎪⎪⎪⎭
p⎤⎥⎥⎥⎥⎥⎥⎥⎦

1
p

with P(s)
Qj
( f ) for any j as in (24) via Q replaced by Qj and the supremum taken over all collections

of interior pairwise disjoint cubes {Qj} j ⊂ Dm(X). In particular, let

JNcon
p,q (X) := JNcon

(p,q,0)0
(X).

Remark 7. Let p, q ∈ [1,∞), s ∈ Z+, and α ∈ R. There exist some useful equivalent norms on
JNcon

(p,q,s)α
(X) as follows.

(i) (non-dyadic side length) f ∈ JNcon
(p,q,s)α

(X) if and only if f ∈ L1
loc (X) and

‖ f ‖ J̃Ncon
(p,q,s)α (X)

:= sup

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

j

∣∣∣Qj
∣∣∣
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣Qj

∣∣∣−α⎡⎢⎢⎢⎢⎣
�

Qj

∣∣∣∣∣ f (x) − P(s)
Qj
( f )(x)

∣∣∣∣∣q dx

⎤⎥⎥⎥⎥⎦
1
q

⎫⎪⎪⎪⎬⎪⎪⎪⎭
p⎤⎥⎥⎥⎥⎥⎥⎥⎦

1
p

< ∞

if and only if f ∈ L1
loc (X) and

‖ f ‖
ĴN

con
(p,q,s)α (X)

:= sup

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

j

∣∣∣Qj
∣∣∣
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣Qj

∣∣∣−α inf
P∈Ps(Qj)

⎡⎢⎢⎢⎢⎣
�

Qj

∣∣∣ f (x) − P(x)
∣∣∣q dx

⎤⎥⎥⎥⎥⎦
1
q

⎫⎪⎪⎪⎬⎪⎪⎪⎭
p⎤⎥⎥⎥⎥⎥⎥⎥⎦

1
p

< ∞, (32)

where the suprema are taken over all collections of interior pairwise disjoint cubes {Qj} j of
X with the same side length; moreover, ‖ · ‖JNcon

(p,q,s)α
(X) ∼ ‖ · ‖J̃Ncon

(p,q,s)α (X)
∼ ‖ · ‖

ĴN
con
(p,q,s)α (X)

;

see [64] (Remark 1.6(ii) and Propositions 2.6 and 2.7).
(ii) (integral representation) In what follows, for any y ∈ Rn and r ∈ (0,∞), let

B(y, r) := {x ∈ Rn : |x− y| < r}.
Then f ∈ JNcon

(p,q,s)α
(Rn) if and only if f ∈ L1

loc (R
n) and

‖ f ‖∗ := sup
r∈(0,∞)

⎡⎢⎢⎢⎢⎢⎢⎣
∫
Rn

⎧⎪⎪⎨⎪⎪⎩|B(y, r)|−α
[�

B(y,r)

∣∣∣∣ f (x) − P(s)
B(y,r)

( f )(x)
∣∣∣∣q dx

] 1
q
⎫⎪⎪⎬⎪⎪⎭

p

dy

⎤⎥⎥⎥⎥⎥⎥⎦
1
p

< ∞;
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moreover, ‖ · ‖JNcon
(p,q,s)α

(Rn) ∼ ‖ · ‖∗; see [64] (Proposition 2.2) for this equivalence, which plays

an essential role when establishing the boundedness of operators on congruent JNC spaces
(see [71–73] for more details).

The following proposition is just [64] (Proposition 2.10).

Proposition 24. Let s ∈ Z+, α ∈ R, and Q0 be a given cube of Rn.

(i) For any given p ∈ [1,∞) and q ∈ [1,∞),

JNcon
(p,q,s)α

(Q0) ⊂
[
|Q0|

1
p− 1

q−αLq(Q0)/Ps(Q0)
]
.

Moreover, for any f ∈ JNcon
(p,q,s)α

(Q0),

‖ f ‖
|Q0 |

1
p− 1

q −αLq(Q0)/Ps(Q0)
≤ ‖ f ‖JNcon

(p,q,s)α
(Q0).

(ii) If α ∈ (−∞, 0], then, for any given p ∈ [1,∞) and q ∈ [p,∞),

JNcon
(p,q,s)α

(Q0) =
[
|Q0|

1
p− 1

q−αLq(Q0)/Ps(Q0)
]

with equivalent norms.
(iii) If q ∈ [1,∞) and 1 ≤ p1 ≤ p2 < ∞, then JNcon

(p2,q,s)α
(Q0) ⊂ JNcon

(p1,q,s)α
(Q0). Moreover,

for any f ∈ JNcon
(p2,q,s)α

(Q0),

|Q0|−
1

p1 ‖ f ‖JNcon
(p1,q,s)α

(Q0) ≤ |Q0|−
1

p2 ‖ f ‖JNcon
(p2,q,s)α

(Q0).

(iv) If p ∈ [1,∞) and 1 ≤ q1 ≤ q2 < ∞, then JNcon
(p,q2,s)α

(X) ⊂ JNcon
(p,q1,s)α

(X). Moreover, for any

f ∈ JNcon
(p,q2,s)α

(X),
‖ f ‖JNcon

(p,q1,s)α
(X) ≤ ‖ f ‖JNcon

(p,q2,s)α
(X).

The relation of congruent JNC spaces and Campanato spaces is similar to Proposition 6
and Corollary 2, and hence we omit the statement here; see [64] (Proposition 2.11) for details.
The relation of congruent JNC spaces and the space Bwas discussed in [64] (Proposition
2.20 and Remark 2.21). Recall that the local Sobolev space W1,p

loc(R
n) is defined by setting

W1,p
loc(R

n) :=
{

f ∈ Lp
loc(R

n) : |∇ f | ∈ Lp
loc(R

n)
}
,

here and thereafter, ∇ f := (∂1 f , . . . , ∂n f ), where for any i ∈ {1, . . . , n}, ∂i f denotes the weak
derivative of f , namely a locally integrable function on Rn, such that for any ϕ ∈ C∞c (Rn)
(the set of all infinitely differentiable functions on Rn with compact support),∫

Rn
f (x)∂iϕ(x) dx = −

∫
Rn
ϕ(x)∂i f (x) dx.

The following proposition is just [64] (Proposition 2.13).

Proposition 25. Let p ∈ (1,∞) and f ∈ Lp
loc(R

n). Then, |∇ f | ∈ Lp(Rn) if and only if

lim inf
m→∞ [ f ](m)

(p,p,0)1/n,Rn < ∞,
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where [ f ](m)

(p,p,0)1/n,Rn is as in Definition 13. Moreover, for any given p ∈ [1,∞), there exists a

constant C(n,p) ∈ [1,∞), such that for any f ∈W1,p
loc(R

n),

1
C(n,p)

[∫
Rn
|∇ f (x)|p dx

] 1
p

≤ lim inf
m→∞ [ f ](m)

(p,p,0)1/n,Rn ≤ C(n,p)

[∫
Rn
|∇ f (x)|p dx

] 1
p

.

Remark 8. Fusco et al. studied BMO-type seminorms and Sobolev functions in [74]. Indeed,
in [74] (Theorem 2.2), Fusco et al. showed that Proposition 25 still holds true with cubes {Qj} j, in

the supremum of [ f ](m)

(p,p,0)1/n,Rn , having the same side length but an arbitrary orientation. Later,
the main results of [74] were further extended by Di Fratta and Fiorenza in [75], via replacing a
family of open cubes by a broader class of tessellations (from pentagonal and hexagonal tilings to
space-filling polyhedrons and creative tessellations).

The following nontriviality is just [64] (Propositions 2.16 and 2.19).

Proposition 26. Let p ∈ (1,∞) and q ∈ [1, p).

(i) Let I0 be a given bounded interval of R. Then,

JNp,q(I0) � JNcon
p,q (I0) and JNp,q(R) � JNcon

p,q (R).

(ii) Let Q0 be a given cube of Rn. Then,

JNp,q(Q0) � JNcon
p,q (Q0).

Similar to Theorem 3, the following dual result is just [64] (Theorem 4.10). Recall
that the congruent Hardy-type space HKcon

(u,v,s)α
(X) is defined as in Definition 6 with the

additional condition that all cubes of the polymer have the same side length (see [64],
Definition 4.7, for more details).

Theorem 7. Let p, q ∈ (1,∞), 1/p = 1/p′ = 1 = 1/q + 1/q′, s ∈ Z+, and α ∈ R. If
JNcon

(p,q,s)α
(X) is equipped with the norm ‖ · ‖

ĴN
con
(p,q,s)α (X)

in (32), then

(
HKcon

(p′,q′,s)α(X)
)∗
= JNcon

(p,q,s)α
(X)

with equivalent norms in the following sense:

(i) Any f ∈ JNcon
(p,q,s)α

(X) induces a linear functional L f which is given by setting, for any

g ∈ HKcon
(p′,q′,s)α

(X) and {gi}i ⊂ H̃K
con
(p′,q′,s)α(X) with g =

∑
i gi in (JNcon

(p,q,s)α
(X))∗,

L f (g) := 〈g, f 〉 =
∑

i

〈gi, f 〉.

Moreover, for any g ∈ HKcon−fin
(p′,q′,s)α

(X),

L(g) =
∫
X

f (x)g(x) dx and
∥∥∥L f

∥∥∥
(HKcon

(p′ ,q′ ,s)α (X))∗
≤ ‖ f ‖

ĴN
con
(p,q,s)α (X)

.

(ii) Conversely, for any continuous linear functional L on HKcon
(p′,q′,s)α

(X), there exists a unique

f ∈ JNcon
(p,q,s)α

(X), such that for any g ∈ HKcon−fin
(p′,q′,s)α

(X),

L(g) =
∫
X

f (x)g(x) dx and ‖ f ‖
ĴN

con
(p,q,s)α (X)

≤ ‖L‖(HKcon
(p′ ,q′ ,s)α (X))∗ .

72



Mathematics 2021, 9, 2264

Moreover, when X = Q0, we further have the VMO-H1-type duality for the congruent
Hardy-type space (see Theorem 25 below).

Recall that Essén et al. [76] introduced and studied the Q space onRn, which generalizes
the space BMO (Rn). Later, the Q space proved very useful in harmonic analysis, potential
analysis, partial differential equations, and closely related fields (see, for instance, [77–79]).
Thus, it is natural to consider some “new Q space” corresponding to the John–Nirenberg
space JNp. Based on Remark 7(ii), Tao et al. [80] introduced and studied the John–Nirenberg-
Q space on Rn via congruent cubes, which contains the congruent John–Nirenberg space on
Rn as special cases and also sheds some light on the mysterious John–Nirenberg space.

4. Riesz-Type Space

Observe that if we partially subtract integral means (or polynomials for high order
cases) in ‖ f ‖JN(p,q,s)α (X), namely dropping P(s)

Qi
( f ) in

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

i

|Qi|
⎡⎢⎢⎢⎢⎢⎣|Qi|−α

{�
Qi

∣∣∣∣ f (x) − P(s)
Qi
( f )(x)

∣∣∣∣q dx
} 1

q
⎤⎥⎥⎥⎥⎥⎦

p⎫⎪⎪⎪⎬⎪⎪⎪⎭
1
p

for any i satisfying 	(Qi) ≥ c0, then we obtain the localized JNC space as in Definition 9.
Thus, a natural question arises: what if we thoroughly drop all {P(s)

Qi
( f )}i in ‖ f ‖JN(p,q,s)α (X)?

In this section, we study the space with such a norm (subtracting all {P(s)
Qi
( f )}i in the norm

of the JNC space). As a bridge connecting Lebesgue and Morrey spaces via Riesz norms, it
is called the “Riesz–Morrey space”. For more studies on the well-known Morrey space,
we refer the reader to, for instance, [81–84] and, in particular, the recent monographs by
Sawano et al. [85,86].

4.1. Riesz–Morrey Spaces

As a suitable substitute of L∞(X), the space BMO (X) proves very useful in harmonic
analysis and partial differential equations. Recall that

‖ f ‖BMO (X) := sup
cube Q⊂X

�
Q

∣∣∣ f (x) − fQ
∣∣∣ dx.

Indeed, the only difference between them exists in subtracting integral means, which is just
the following proposition. In what follows, for any q ∈ (0,∞) and any measurable function
f , let

‖ f ‖Lq
∗ (X) := sup

cube Q⊂X

[�
Q
| f (x)|q dx

] 1
q

.

Proposition 27. Let q ∈ (0,∞). Then, f ∈ L∞(X) if and only if f ∈ Lq
loc (X) and ‖ f ‖Lq

∗ (X) < ∞.
Moreover,

‖ · ‖L∞(X) = ‖ · ‖Lq
∗ (X).
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Proof. For the simplicity of the presentation, we only consider the case q = 1. On the one
hand, for any f ∈ L∞(X), it is easy to see that f ∈ L1

loc (X) and

‖ f ‖L1∗ (X) = sup
Q⊂X

�
Q
| f (x)| dx ≤ sup

Q⊂X
‖ f ‖L∞(X) = ‖ f ‖L∞(X).

On the other hand, for any f ∈ L1
loc (X) and ‖ f ‖L1∗ (X) < ∞, let x be any Lebesgue point

of f . Then, from the Lebesgue differentiation theorem, we deduce that

| f (x)| = lim
|Q|→0+ , Q�x

�
Q
| f (y)| dy ≤ sup

Q⊂X

�
Q
| f (y)| dy = ‖ f ‖L1∗ (X),

which, together with the Lebesgue differentiation theorem again, further implies that

‖ f ‖L∞(X) ≤ ‖ f ‖L1∗ (X)

and hence f ∈ L∞(X). Moreover, we have ‖ · ‖L∞(X) = ‖ · ‖L1∗ (X). This finishes the proof of
Proposition 27. �

Furthermore, if we remove integral means in the JNp(Q0)-norm

‖ f ‖JNp(Q0) = sup

⎡⎢⎢⎢⎢⎢⎣∑
i

|Qi|
(�

Qi

∣∣∣ f (x) − fQi

∣∣∣ dx
)p

⎤⎥⎥⎥⎥⎥⎦
1
p

,

where the supremum is taken over all collections of cubes {Qi}i of Q0 with pairwise disjoint
interiors, then we obtain

sup

⎡⎢⎢⎢⎢⎢⎣∑
i

|Qi|
(�

Qi

∣∣∣ f (x)∣∣∣ dx
)p

⎤⎥⎥⎥⎥⎥⎦
1
p

=: ‖ f ‖Rp(Q0)

which coincides with ‖ f ‖Lp(Q0) due to Riesz [41]. Corresponding to the JNC space, the
following triple index Riesz-type space Rp,q,α(X), called the Riesz–Morrey space, was
introduced and studied in [37] and, independently, by Fofana et al. [87] when X = Rn.

Definition 14. Let p ∈ [1,∞], q ∈ [1,∞], and α ∈ R. The Riesz–Morrey space RMp,q,α(X) is
defined by setting

RMp,q,α(X) :=
{

f ∈ Lq
loc (X) : ‖ f ‖RMp,q,α(X) < ∞

}
,

where

‖ f ‖RMp,q,α(X) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
sup

⎡⎢⎢⎢⎢⎢⎣∑
i

|Qi|1−pα− p
q ‖ f ‖p

Lq(Qi)

⎤⎥⎥⎥⎥⎥⎦
1
p

if p ∈ [1,∞), q ∈ [1,∞],

sup sup
i
|Qi|−α−

1
q ‖ f ‖Lq(Qi)

if p = ∞, q ∈ [1,∞]

and the suprema are taken over all collections of subcubes {Qi}i of X with pairwise disjoint interiors.
In addition, Rp,q,0(X) =: Rp,q(X).

Observe that the Riesz–Morrey norm ‖ · ‖RMp,q,α(X) is different from the JNC norm
‖ · ‖JN(p,q,s)α (X) with s = 0, only in subtracting mean oscillations (see [37], Remark 2, for more
details). It is easy to see that ‖ · ‖Rp,1,0(Q0) = ‖ · ‖Rp(Q0), and, as a generalization of the above
equivalence in Riesz [41], the following proposition is just [37] (Proposition 1).
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Proposition 28. Let p ∈ [1,∞] and q ∈ [1, p]. Then, f ∈ Lp(X) if and only if f ∈ Rp,q(X).
Moreover, Lp(X) = Rp,q(X) with equivalent norms, namely, for any f ∈ Lq

loc (X), ‖ f ‖Lp(X) =
‖ f ‖Rp,q(X).

As for the case 1 ≤ p < q ≤ ∞, by [37] (Remark 2.3), we know that

Rp,q(Rn) = {0} � Lq(Rn) = Rq,q(Rn),

and [
|Q0|−

1
p Rp,q(Q0)

]
=

[
|Q0|−

1
q Lq(Q0)

]
=

[
|Q0|−

1
q Rq,q(Q0)

]
with equivalent norms.

Moreover, it is shown in [37] (Theorem 1 and Corollary 1) that the endpoint spaces
of Riesz–Morrey spaces are Lebesgue spaces or Morrey spaces. In this sense, we regard
the Riesz–Morrey space as a bridge connecting the Lebesgue space and the Morrey space.
Thus, a natural question arises: whether or not Riesz–Morrey spaces are truly new spaces
different from Lebesgue spaces or Morrey spaces. Very recently, Zeng et al. [88] gave an
affirmative answer to this question via constructing two nontrivial functions over Rn and any
given cube Q of Rn. It should be pointed out that the nontrivial function on the cube Q is
geometrically similar to the striking function constructed by Dafni et al. in the proof of [31]
(Proposition 3.2). Furthermore, we have the following classifications of Riesz–Morrey
spaces, which are just [88] (Corollary 3.7).

Theorem 8.

(i) Let p ∈ (1,∞] and q ∈ [1, p). Then,

RMp,q,α(Rn)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

= Lq(Rn) if α = 1
p − 1

q ,

� L
p

1−pα (Rn) if α ∈
(

1
p − 1

q , 0
)
,

= Lp(Rn) if α = 0,
= {0} if α ∈

(
−∞, 1

p − 1
q

)
∪ (0,∞).

In particular, if α ∈ (− 1
q , 0), then RM∞,q,α(Rn) = M−1/α

q (Rn), which is just the Morrey
space defined in Remark 3.

(ii) Let p ∈ [1,∞] and q ∈ [p,∞]. Then,

RMp,q,α(Rn)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
= Lq(Rn) if α = 1

p − 1
q = 0,

= {0} if α = 1
p − 1

q � 0,

= {0} if α ∈ R \
{

1
p − 1

q

}
.

(iii) Let p ∈ (1,∞], q ∈ [1, p), and Q0 be a given cube of Rn. Then,

RMp,q,α(Q0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

= Lq(Q0) if α =
(
−∞, 1

p − 1
q

]
,

� L
p

1−pα (Q0) if α ∈
(

1
p − 1

q , 0
)
,

= Lp(Q0) if α = 0,
= {0} if α ∈ (0,∞).

In particular, RM∞,q,α(Q0) = M−1/α
q (Q0) if α ∈ (− 1

q , 0).
(iv) Let p ∈ [1,∞], q ∈ [p,∞], and Q0 be a given cube of Rn. Then,

RMp,q,α(Q0)

⎧⎪⎪⎨⎪⎪⎩= Lq(Q0) if α ∈ (−∞, 0],
= {0} if α ∈ (0,∞).
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Recall that by [89] (Theorem 1), the predual space of the Morrey space is the so-called
block space. Combining this with the duality of John–Nirenberg–Campanato spaces
in [61] (Theorem 3.9), the authors in [37] introduced the block-type space which proves the
predual of the Riesz–Morrey space. Observe that every (∞, v,α)-block in Definition 15(i) is
exactly a (v, αn )-block introduced in [89].

Definition 15. Let u, v ∈ [1,∞], 1
u + 1

u′ = 1 = 1
v + 1

v′ , and α ∈ R. Let (RMu′,v′,α(X))∗ be the
dual space of RMu′,v′,α(X) equipped with the weak-∗ topology.

(i) A function b is called a (u, v,α)-block if

supp (b) :=
{
x ∈ X : b(x) � 0

} ⊂ Q and ‖b‖Lv(Q) ≤ |Q|
1
v− 1

u−α.

(ii) The space of (u, v,α)-chains, B̃u,v,α(X), is defined by setting

B̃u,v,α(X) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩h ∈ (RMu′,v′,α(X))∗ : h =
∑

j

λ jbj and
∥∥∥∥∥{λ j

}
j

∥∥∥∥∥
	u
< ∞

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

where {bj} j are (u, v,α)-blocks supported, respectively, in subcubes {Qj} of X with pairwise
disjoint interiors, and {λ j} j ⊂ C with ‖{λ j} j‖	u < ∞ (see (27) for the definition of ‖ · ‖	u).
Moreover, any h ∈ B̃u,v,α(X) is called a (u, v,α)-chain, and its norm is defined by setting

‖h‖B̃u,v,α(X) := inf
∥∥∥∥∥{λ j

}
j

∥∥∥∥∥
	u

,

where the infimum is taken over all decompositions of h as above.
(iii) The block-type space Bu,v,α(X) is defined by setting

Bu,v,α(X) :=

⎧⎪⎪⎨⎪⎪⎩g ∈ (RMu′,v′,α(X))∗ : g =
∑

i

hi and
∑

i

∥∥∥hj
∥∥∥

B̃u,v,α(X) < ∞
⎫⎪⎪⎬⎪⎪⎭,

where {hi}i are (u, v,α)-chains. Moreover, for any g ∈ Bu,v,α(X),

‖g‖Bu,v,α(X) := inf
∑

i

∥∥∥hj
∥∥∥

B̃u,v,α(X),

where the infimum is taken over all decompositions of g as above.
(iv) The finite block-type space Bfin

u,v,α(X) is defined to be the set of all finite summations

M∑
m=1

λmbm,

where M ∈ N, {λm}Mm=1 ⊂ C, and {bm}Mm=1 are (u, v,α)-blocks.

The following dual theorem is just [37] (Theorem 2).

Theorem 9. Let p, q ∈ (1,∞), 1/p+ 1/p′ = 1 = 1/q+ 1/q′, andα ∈ R. Then, (Bp′,q′,α(X))∗ =
RMp,q,α(X) in the following sense:

(i) If f ∈ RMp,q,α(X), then f induces a linear functional L f on Bp′,q′,α(X) with

‖L f ‖(Bp′ ,q′ ,α(X))∗ ≤ C‖ f ‖RMp,q,α(X),

where C is a positive constant independent of f .
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(ii) IfL ∈ (Bp′,q′,α(X))∗, then there exists some f ∈ RMp,q,α(X), such that for any g ∈ Bfin
p′,q′,α(X),

L(g) =
∫
X

f (x)g(x) dx,

and
‖L‖(Bp′ ,q′ ,α(X))∗ ∼ ‖ f ‖RMp,q,α(X)

with the positive equivalence constants independent of f .

Furthermore, for the Riesz–Morrey space, there exist three open questions unsolved
so far. The first question is on the relation between the Riesz–Morrey space and the weak
Lebesgue space.

Question 8. Let p ∈ (1,∞), q ∈ [1, p), and α ∈ ( 1
p − 1

q , 0). Then, Zeng et al. ([88], Remark 3.4)
showed that

RMp,q,α(Rn) � L
p

1−pα ,∞
(Rn) � RMp,q,α(Rn),

which implies that on Rn, the Riesz–Morrey space and the weak Lebesgue space do not cover each
other. Furthermore, for a given cube Q0 of Rn, Zeng et al. ([88], Remark 3.6) showed that

L
p

1−pα ,∞
(Q0) � RMp,q,α(Q0).

However, it is still unknown whether or not

RMp,q,α(Q0) � L
p

1−pα ,∞
(Q0)

still holds true. This question was posed in [88] (Remark 3.6), and is still unclear.

The following Questions 9 and 10 are just [37] (Remarks 4 and 5), respectively.

Question 9. As a counterpart of (26), for any given p ∈ [1,∞), q ∈ [1, p), s ∈ Z+, and α ∈
[ 1

p − 1
q , 0), it is interesting to ask whether or not

JN(p,q,s)α(X) =
[
RMp,q,α(X)/Ps(X)

]
and, for any f ∈ JN(p,q,s)α(X),

‖ f ‖JN(p,q,s)α (X) ∼
∥∥∥ f − σ( f )

∥∥∥
RMp,q,α(X),

with the positive equivalence constants independent of f , still hold true. This is still unclear.

Question 10. Recall that for any given f ∈ L1
loc (X) and any x ∈ X, the Hardy–Littlewood

maximal functionM( f )(x) is defined by setting

M( f )(x) := sup
Q�x

�
Q
| f (y)| dy, (33)

where the supremum is taken over all cubes Q containing x. Meanwhile,M is called the Hardy–
Littlewood maximal operator. It is well known that M is bounded on Lq(X) for any given
q ∈ (1,∞] (see, for instance, [42], p. 31, Theorem 2.5). Moreover,M is also bounded on M−1/α

q (X)
for any given q ∈ (1,∞] and α ∈ [− 1

q , 0] (see, for instance, [90], Theorem 1). To summarize,
the boundedness ofM on endpoint spaces of Riesz–Morrey spaces (Lebesgue spaces and Morrey
spaces) has already been obtained. Therefore, it is very interesting to ask whether or not M is
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bounded on the Riesz–Morrey space RMp,q,α(X) with p ∈ (1,∞], q ∈ [1, p), and α ∈ ( 1
p − 1

q , 0).
This is a challenging and important problem which is still open.

4.2. Congruent Riesz–Morrey Spaces

To obtain the boundedness of several important operators, we next consider a special
Riesz–Morrey space via congruent cubes, denoted by RMp,q,α(Rn), as in Section 3.3. In this
subsection, we first recall the definition of RMcon

p,q,α(Rn), and then review the boundedness
of the Hardy–Littlewood maximal operator on this space.

Definition 16. Let p, q ∈ [1,∞], and α ∈ R. The special Riesz–Morrey space via congruent
cubes (for short, congruent Riesz–Morrey space) RMcon

p,q,α(Rn) is defined to be the set of all
locally integrable functions f on Rn, such that

‖ f ‖RMcon
p,q,α(Rn) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
sup

⎡⎢⎢⎢⎢⎢⎢⎣
∑

j

|Qj|1−pα− p
q ‖ f ‖p

Lq(Qi)

⎤⎥⎥⎥⎥⎥⎥⎦
1
p

, p ∈ [1,∞),

sup
cube Q⊂Rn

|Q|−α− 1
q ‖ f ‖Lq(Q), p = ∞

is finite, where the first supremum is taken over all collections of interior pairwise disjoint cubes
{Qj} j of Rn with the same side length.

Remark 9.

(i) If we do not require that {Qj} j has the same size in the definition of congruent Riesz–Morrey
spaces, then it is just the Riesz–Morrey space RMp,q,α(Rn) in Section 4.1.

(ii) If p = ∞, q ∈ (0,∞), and α ∈ [− 1
q , 0), then RMcon

p,q,α(Rn) in Definition 16 coincides with the

Morrey space M−1/α
q (Rn) in Remark 3.

(iii) Similar to Remark 7, for any given p, q ∈ [1,∞), and α ∈ R, f ∈ RMcon
p,q,α(Rn) if and only if

f ∈ L1
loc (R

n) and

‖ f ‖R̃M
con
p,q,α(Rn)

:= sup
r∈(0,∞)

⎡⎢⎢⎢⎢⎢⎢⎣
∫
Rn

⎧⎪⎪⎨⎪⎪⎩|B(y, r)|−α
[�

B(y,r)

∣∣∣ f (x)∣∣∣qdx
] 1

q
⎫⎪⎪⎬⎪⎪⎭

p

dy

⎤⎥⎥⎥⎥⎥⎥⎦
1
p

is finite; moreover,
‖ · ‖RMcon

p,q,α(Rn) ∼ ‖ · ‖R̃M
con
p,q,α(Rn)

;

see [71] for more details. Recall that for any y ∈ Rn and r ∈ (0,∞),

B(y, r) := {x ∈ Rn : |x− y| < r}.
(iv) If 1 ≤ q < α < p ≤ ∞, then the space RMcon

p,q,α(Rn) coincides with the amalgam space

(Lq, 	p)
p

1−pα (Rn), which was introduced by Fofana [91]. (See [87,92–96] for more studies on
the amalgam space.)

The following boundedness of the Hardy–Littlewood maximal operator on congruent
Riesz–Morrey spaces was obtained in [71].

Theorem 10. Let p, q ∈ (1,∞), α ∈ R, andM be the Hardy–Littlewood maximal operator as
in (33). ThenM is bounded on RMcon

p,q,α(Rn).

Moreover, via Theorem 10, Jia et al. [71] also established the boundedness of Calderón–
Zygmund operators on congruent Riesz–Morrey spaces.
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Finally, since a congruent Riesz–Morrey space is a ball Banach function space, we
refer the reader to [49] for the equivalent characterizations of the boundedness and the
compactness of Calderón–Zygmund commutators on ball Banach function spaces. It
should be mentioned that a crucial assumption in [49] is the boundedness ofM, and hence
Theorem 10 provides an essential tool when studying the boundedness of operators on
congruent Riesz–Morrey spaces.

5. Vanishing Subspace

In this section, we focus on several vanishing subspaces of aforementioned John–
Nirenberg-type spaces. In what follows, C∞(Rn)denotes the set of all infinitely differentiable
functions on Rn; 0 denotes the origin of Rn; for any α := (α1, . . . ,αn) ∈ Zn

+ := (Z+)n, let
∂α := ( ∂∂x1

)α1 · · · ( ∂∂xn
)αn ; for any given normed linear spaceY and any given its subset X,

XY denotes the closure of the set X inY in terms of the topology ofY; and ifY = Rn, we

then denote XY simply by X.

5.1. Vanishing BMO Spaces

We now recall several vanishing subspaces of the space BMO (Rn).

• VMO (Rn), introduced by Sarason [6], is defined by setting

VMO (Rn) := Cu(Rn) ∩ BMO (Rn)
BMO (Rn)

,

where Cu(Rn) denotes the set of all uniformly continuous functions on Rn.
• CMO (Rn), announced in Neri [97], is defined by setting

CMO (Rn) := C∞c (Rn)
BMO (Rn)

,

where C∞c (Rn) denotes the set of all infinitely differentiable functions on Rn with
compact support. In addition, by approximations of the identity, it is easy to find that

CMO (Rn) = Cc(Rn)
BMO (Rn)

= C0(Rn)
BMO (Rn)

, (34)

where Cc(Rn) denotes the set of all functions on Rn with compact support, and C0(Rn)
denotes the set of all continuous functions on Rn which vanish at the infinity.

• MMO (Rn), introduced by Torres and Xue [98], is defined by setting

MMO (Rn) := A∞(Rn)
BMO (Rn)

,

where

A∞(Rn) :=
{

b ∈ C∞(Rn) ∩ L∞(Rn) : ∀ α ∈ Zn
+ \ {0}, lim|x|→∞ ∂

αb(x) = 0
}

.

• XMO (Rn), introduced by Torres and Xue [98], is defined by setting

XMO (Rn) := B∞(Rn)
BMO (Rn)

,

where

B∞(Rn) :=
{

b ∈ C∞(Rn) ∩ BMO (Rn) : ∀ α ∈ Zn
+ \ {0}, lim|x|→∞ ∂

αb(x) = 0
}

.
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• X1MO (Rn), introduced by Tao et al. [99], is defined by setting

X1MO (Rn) := B1(Rn)
BMO (Rn)

,

where

B1(Rn) :=
{

b ∈ C1(Rn) ∩ BMO (Rn) : lim|x|→∞ |∇b(x)| = 0
}

with C1(Rn) being the set of all functions f on Rn whose gradients∇ f := (
∂ f
∂x1

, . . . , ∂ f
∂xn

)
are continuous.

The relation of these vanishing subspaces reads as follows.

Proposition 29. CMO (Rn) � MMO (Rn) � XMO (Rn) = X1MO (Rn) � VMO (Rn).

Indeed,
CMO (Rn) � MMO (Rn) � XMO (Rn)

was obtained in [98] (p. 5). Moreover,

XMO (Rn) = X1MO (Rn) � VMO (Rn)

was obtained in [99] (Corollary 1.3), which completely answered the open question proposed
in [98] (p. 6).

Next, we investigate the mean oscillation characterizations of these vanishing sub-
spaces. Recall that, for any cube Q of Rn, and any f ∈ L1

loc (R
n), the mean oscillation O( f ; Q)

is defined by setting

O( f ; Q) :=
�

Q

∣∣∣ f (x) − fQ
∣∣∣ dx =

1
|Q|

∫
Q

∣∣∣∣∣∣ f (x) − 1
|Q|

∫
Q

f (y) dy

∣∣∣∣∣∣ dx.

The earliest results of VMO (Rn) were obtained by Sarason in [6], and Theorem 11
below is a part of [6] (Theorem 1). In what follows, a→ 0+ means a ∈ (0,∞) and a→ 0.

Theorem 11. f ∈ VMO (Rn) if and only if f ∈ BMO (Rn) and

lim
a→0+

sup
|Q|=a

O( f ; Q) = 0.

The following equivalent characterization of CMO (Rn) is just Uchiyama ([7], p. 166).

Theorem 12. f ∈ CMO (Rn) if and only if f ∈ BMO (Rn) and satisfies the following three con-
ditions:

(i) lim
a→0+

sup
|Q|=a

O( f ; Q) = 0;

(ii) for any cube Q of Rn, lim|x|→∞O( f ; Q + x) = 0;

(iii) lim
a→∞ sup

|Q|=a
O( f ; Q) = 0.

Very recently, Tao et al. obtained the following equivalent characterization of
XMO (Rn) and X1MO (Rn), which is just [99] (Theorem 1.2).

Theorem 13. The following statements are mutually equivalent:

(i) f ∈ X1MO (Rn);
(ii) f ∈ BMO (Rn) and enjoys the properties that

a) lim
a→0+

sup
|Q|=a

O( f ; Q) = 0;
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b) for any cube Q of Rn, lim|x|→∞O( f ; Q + x) = 0.

(iii) f ∈ XMO (Rn).

Remark 10. Proposition 12(ii) can be replaced by

(ii’) lim
M→∞ sup

Q∩Q(0,M)=∅
O( f ; Q) = 0,

where Q(0, M) denotes the cube centered at 0 with the side length M. However, (ii)2 of Theorem 13(ii)
can not be replaced by (ii’) (see [99], Proposition 2.5, for more details).

However, the equivalent characterization of MMO (Rn) is still unknown (see [99],
Proposition 2.5 and Remark 2.6, for more details on the following open question.)

Question 11. It is interesting to find the equivalent characterization of MMO (Rn), as well as its
localized counterpart (see Question 14), via the mean oscillations.

As for the applications of these vanishing subspaces, we know that the commutator
[b, T], generated by b ∈ BMO (Rn) and the Calderón–Zygmund operator T, plays an
important role in harmonic analysis, complex analysis, partial differential equations,
and other fields in mathematics. Here, we only list several typical bilinear results; other
linear and multi-linear results can be found, for instance, in [22,100,101] and their references.

In what follows, let Z3n
+ := (Z+)3n and L∞c (Rn) denote the set of all functions

f ∈ L∞(Rn) with compact support. We now consider the following particular type of
bilinear Calderón–Zygmund operator T, whose kernel K satisfies

(i) The standard size and regularity conditions: for any multi-indexα := (α1, . . . ,α3n) ∈ Z3n
+

with |α| := α1 + · · ·+ α3n ≤ 1, there exists a positive constant C(α), depending on α,
such that for any x, y, z ∈ Rn with x � y or x � z,

|∂αK(x, y, z)| ≤ C(α)(|x− y|+ |x− z|)−2n−|α|. (35)

Here and thereafter, ∂α := ( ∂∂x1
)α1 · · · ( ∂∂x3n

)α3n .
(ii) The additional decay condition: there exist positive constants C and δ, such that for

any x, y, z ∈ Rn with |x− y|+ |x− z| > 1,

|K(x, y, z)| ≤ C(|x− y|+ |x− z|)−2n−2−δ, (36)

and for any f , g ∈ L∞c (Rn) and x � supp ( f )∩ supp (g), T is supposed to have the following
usual representation:

T( f , g)(x) =
∫
R2n

K(x, y, z) f (y)g(z) dy dz,

here and thereafter, supp ( f ) := {x ∈ Rn : f (x) � 0}. Notice that the (inhomogeneous)
Coifman–Meyer bilinear Fourier multipliers and the bilinear pseudodifferential operators
with certain symbols satisfy the above two conditions (see, for instance, [98] and references
therein).

Recall that, usually, a non-negative measurable function w on Rn is called a weight on
Rn. For any given p := (p1, p2) ∈ (1,∞) × (1,∞), let p satisfy 1

p = 1
p1

+ 1
p2

. Following [10],
we call w := (w1, w2) a vector Ap(Rn) weight, denoted by w := (w1, w2) ∈ Ap(Rn), if

[w]Ap(Rn) := sup
Q

[
1
|Q|

∫
Q

w(x) dx
]{

1
|Q|

∫
Q
[w1(x)]

1−p′1 dx
} p

p′1

×
{

1
|Q|

∫
Q
[w2(x)]

1−p′2 dx
} p

p′2 < ∞,
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where w := wp/p1
1 wp/p2

2 , 1/p1 + 1/p′1 = 1 = 1/p2 + 1/p′2, and the supremum is taken over
all cubes Q of Rn. In what follows, for any given weight w on Rn and any measurable
subset E � Rn, the symbol Lp

w(E), with p ∈ (0,∞), denotes the set of all measurable functions
f on E, such that

‖ f ‖Lp
w(E)

:=
[∫

E
| f (x)|pw(x) dx

] 1
p

< ∞,

and, when w ≡ 1, we write Lp
w(E) =: Lp(E). Furthermore, ‖ · ‖L∞(E) represents the essential

supremum on E.
In addition, recall that the bilinear commutators [b, T]1 and [b, T]2 are defined, respectively,

by setting, for any f , g ∈ L∞c (Rn) and x � supp ( f ) ∩ supp (g),

[b, T]1( f , g)(x) := (bT( f , g) − T(b f , g))(x)

=

∫
R2n

[b(x) − b(y)]K(x, y, z) f (y)g(z) dy dz (37)

and

[b, T]2( f , g)(x) := (bT( f , g) − T( f , bg))(x)

=

∫
R2n

[b(x) − b(z)]K(x, y, z) f (y)g(z) dy dz. (38)

The following theorem, obtained in [11] (Theorem 1) for any given p ∈ (1,∞) and
in [102] (Theorem 1) for any given p ∈ ( 1

2 , 1], showed that the bilinear commutators
{[b, T]i}i=1,2 are compact for b ∈ CMO (Rn).

Theorem 14. Let (p1, p2) ∈ (1,∞) × (1,∞), p ∈ ( 1
2 ,∞) with 1

p = 1
p1

+ 1
p2

, b ∈ CMO (Rn),
and T be a bilinear Calderón–Zygmund operator whose kernel satisfies (35). Then, for any i ∈ {1, 2},
the bilinear commutator [b, T]i as in (37) or (38) is compact from Lp1(Rn) × Lp2(Rn) to Lp(Rn).

If we require an extra additional decay (36) for the Calderón–Zygmund kernel in Theo-
rem 14, we can then replace CMO (Rn) by XMO (Rn), that is, delete condition (iii) in Theo-
rem 12 of CMO (Rn). This new compactness result was first obtained in [98] (Theorem 1.1)
and then generalized into the weighted case, namely the following Theorem 15, which is
just [99] (Theorem 1.4).

Theorem 15. Let p := (p1, p2) ∈ (1,∞) × (1,∞), p ∈ ( 1
2 ,∞) with 1

p = 1
p1

+ 1
p2

, w :=

(w1, w2) ∈ Ap(Rn), w := wp/p1
1 wp/p2

2 , b ∈ XMO (Rn), and T be a bilinear Calderón–Zygmund
operator whose kernel satisfies (35) and (36). Then, for any i ∈ {1, 2}, the bilinear commutator [b, T]i
as in (37) or (38) is compact from Lp1

w1
(Rn) × Lp2

w2
(Rn) to Lp

w(Rn).

On the other hand, if the kernel behaves “good”, such as the Riesz transforms {R j}nj=1:

R j( f )(x) := p. v.π−
n+1

2 Γ
(n + 1

2

) ∫
Rn

yj

|y|n+1
f (x− y) dy,

then the reverse of Theorem 14 holds true as well (see, for instance, the following Theorem 16,
which is just [103], Theorem 3.1). Moreover, it should be mentioned that the linear case of
Theorem 16 was obtained by Uchiyama ([7], Theorem 2).

Theorem 16. Let (p1, p2) ∈ (1,∞) × (1,∞) and p ∈ ( 1
2 ,∞) with 1

p = 1
p1

+ 1
p2

. Then, for any
i ∈ {1, 2} and j ∈ {1, . . . , n}, the bilinear commutator [b,R j]i is compact from Lp1(Rn) × Lp2(Rn) to
Lp(Rn) if and only if b ∈ CMO (Rn).
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However, the corresponding equivalent characterization of XMO (Rn) is still unknown.
For simplicity, we state this question in the unweighted case.

Question 12. Let (p1, p2) ∈ (1,∞) × (1,∞), and p ∈ ( 1
2 ,∞) be such that 1

p = 1
p1

+ 1
p2

. Then,
it is interesting to find some bilinear Calderón–Zygmund operator T, such that for any i ∈ {1, 2},
the bilinear commutator [b, T]i is compact from Lp1(Rn) × Lp2(Rn) to Lp(Rn) if and only if
b ∈ XMO (Rn).

Next, recall the Riesz transform characterizations of BMO (Rn) and its vanishing
subspaces.

Theorem 17. Let f ∈ L1
loc (R

n). Then,

(i) ([2], Theorem 3) f ∈ BMO (Rn) if and only if there exist functions { f j}nj=0 ⊂ L∞(Rn), such
that

f = f0 +
n∑

j=1

R j( f j)

and

C−1‖ f ‖BMO (Rn) ≤
n∑

j=0

∥∥∥ f j
∥∥∥

L∞(Rn)
≤ C‖ f ‖BMO (Rn) (39)

for some positive constant C independent of f and { f j}nj=0.

(ii) ([6], Theorem 1) f ∈ VMO (Rn) if and only if there exist functions { f j}nj=0 ⊂ [Cu(Rn) ∩
L∞(Rn)], such that

f = f0 +
n∑

j=1

R j( f j)

and (39) holds true in this case.
(iii) ([97], p. 185) f ∈ CMO (Rn) if and only if there exist functions { f j}nj=0 ⊂ C0(Rn), such that

f = f0 +
n∑

j=1

R j( f j)

and (39) holds true in this case.

Question 13. Since the Riesz transform is well defined on L∞(Rn), it is interesting to find
the counterpart of Theorem 17 when f ∈ MMO (Rn). Moreover, since the Riesz transform
characterization is useful when proving the duality of the CMO-H1 type, it is also interesting to
find the dual spaces of MMO (Rn) and XMO (Rn).

When Rn is replaced by some cube Q0 with finite side length, we then have
VMO (Q0) = CMO (Q0) (see [104] for more details). Moreover, the vanishing sub-
space on the spaces of homogeneous type, denoted by X, was studied in Coifman et al. [5],
and they proved (VMO(X))∗ = H1(X), whereVMO(X) denotes the closure in BMO (X)
of continuous functions on X with compact support. Notice that when X = Rn, by (34), we
haveVMO(X) = VMO(Rn) = CMO (Rn).

Finally, we consider the localized version of these vanishing subspaces. The following
characterization of local VMO (Rn) is a part of [105] (Theorem 1).
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Proposition 30. Let vmo (Rn) be the closure of Cu(Rn) ∩ bmo (Rn) in bmo (Rn). Then,
f ∈ vmo (Rn) if and only if f ∈ bmo (Rn) and

lim
a→0+

sup
|Q|=a

O( f ; Q) = 0.

Moreover, the following localized result of CMO (Rn) is just Dafni ([104], Theorem 6)
(see also [105], Theorem 3).

Theorem 18. Let cmo (Rn) be the closure of C0(Rn) in bmo (Rn). Then, f ∈ cmo (Rn) if and
only if f ∈ bmo (Rn) and

lim
a→0+

sup
|Q|=a

O( f ; Q) = 0 = lim
M→∞ sup

|Q|>1, Q∩Q(0,M)=∅

�
Q
| f |.

In addition, the localized version of Theorem 17 can be found in [50] (Corollary 1) for
bmo (Rn), and in [105] (Theorems 1 and 3) for vmo (Rn) and cmo (Rn), respectively.

Question 14. Let mmo (Rn), xmo (Rn), and x1mo (Rn) be, respectively, the closure in bmo (Rn)
of A∞(Rn), B∞(Rn), and B1(Rn). It is interesting to find the counterparts of

(i) Theorem 18 with cmo (Rn) replaced by xmo (Rn);
(ii) Theorem 13 with XMO (Rn) and X1MO (Rn) replaced, respectively, by xmo (Rn) and

x1mo (Rn);
(iii) Question 13 with MMO (Rn) replaced by mmo (Rn);
(iv) The dual result ( cmo (Rn))∗ = h1(Rn), in ([104], Theorem 9), with cmo (Rn) replaced by

mmo (Rn) or xmo (Rn), where h1(Rn) is the localized Hardy space;
(v) The equivalent characterizations for mmo (Rn) and xmo (Rn) via localized Riesz trans-

forms.

Remark 11. For the studies of vanishing Morrey spaces, we refer the reader to [106–109].

5.2. Vanishing John–Nirenberg–Campanato Spaces

Very recently, the vanishing subspaces of John–Nirenberg spaces were also studied
in [60,110]. Indeed, as a counterpart of Section 5.1, the vanishing subspaces of JNC spaces
enjoy similar characterizations, which are summarized in this subsection.

Definition 17. Let p ∈ (1,∞), q ∈ [1,∞), s ∈ Z+, and α ∈ R. The vanishing subspace
VJN(p,q,s)α(X) is defined by setting

VJN(p,q,s)α(X) :=
⎧⎪⎨⎪⎩ f ∈ JN(p,q,s)α(X) : lim sup

a→0+
sup

size≤a
Õ(p,q,s)α( f ; {Qi}i) = 0

⎫⎪⎬⎪⎭,

where

Õ(p,q,s)α( f ; {Qi}i) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

i

|Qi|
⎡⎢⎢⎢⎢⎢⎣|Qi|−α

{�
Qi

∣∣∣∣ f (x) − P(s)
Qi
( f )(x)

∣∣∣∣q dx
} 1

q
⎤⎥⎥⎥⎥⎥⎦

p⎫⎪⎪⎪⎬⎪⎪⎪⎭
1
p

and the supremum is taken over all collections of interior pairwise disjoint cubes {Qi}i of X with
side lengths no more than a. To simplify the notation, write VJNp,q(X) := VJN(p,q,0)0

(X) and
VJNp(X) := VJNp,1(X).

On the unit cube [0, 1]n, the space VJN(p,q,s)α([0, 1]n) was studied by A. Brudnyi and Y.
Brudnyi in [60] with different symbols. The following characterization (Theorem 19) and
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duality (Theorem 20) are just, respectively, [60] (Theorem 3.14 and 3.7). Notice that when
α ≥ s+1

n , from [60] (Lemma 4.1), we deduce that JN(p,q,s)α([0, 1]n) = Ps([0, 1]n) is trivial.

Theorem 19. Let p, q ∈ [1,∞), s ∈ Z+, and α ∈ (−∞, s+1
n ). Then,

VJN(p,q,s)α([0, 1]n) = C∞([0, 1]n) ∩ JN(p,q,s)α([0, 1]n)
JN(p,q,s)α ([0,1]n)

,

where C∞([0, 1]n) := C∞(Rn)|[0,1]n denotes the restriction of infinitely differentiable functions
from Rn to [0, 1]n.

Theorem 20. Let p, q ∈ (1,∞), s ∈ Z+, and α ∈ (−∞, s+1
n ). Then,(

VJN(p,q,s)α([0, 1]n)
)∗
= HK(p′,q′,s)α([0, 1]n),

where 1
p + 1

p′ = 1 = 1
q +

1
q′ .

It is obvious that Theorems 19 and 20 hold true with [0, 1]n replaced by a given cube
Q0 of Rn. As an application of the duality, Tao et al. ([110], Proposition 5.7) showed that for
any p ∈ (1,∞) and any given cube Q0 of Rn,

[Lp(Q0)/C] � VJNp(Q0)

which proves the nontriviality of VJNp(Q0), here and thereafter,

Lp(X)/C :=
{

f ∈ L1
loc (X) : ‖ f ‖Lp(X)/C < ∞

}
with

‖ f ‖Lp(X)/C := inf
c∈C ‖ f + c‖Lp(X).

Remark 12. There exists a gap in the proof of [110] (Proposition 5.7): we cannot deduce(
VJNp(Q0)

)∗∗
= JNp(Q0), (40)

namely [110] (5.2), directly from Theorems 20 and 3 because, in the statements of these dual
theorems, q cannot equal 1. Indeed, (40) still holds true due to the equivalence of JNp,q(Q0) with
q ∈ [1, p). Precisely, let p ∈ (1,∞) and q ∈ (1, p). By Theorems 20 and 3, we obtain(

VJNp,q(Q0)
)∗∗

= JNp,q(Q0),

which, together with Theorems 10 and 21 below, further implies that(
VJNp(Q0)

)∗∗
=

(
VJNp,q(Q0)

)∗∗
= JNp,q(Q0) = JNp(Q0),

and hence (40) holds true. This fixes the gap in the proof of [110] (5.2).

Next, we consider the case X = Rn. The following proposition indicates that the
convolution is a suitable tool when approximating functions in JNp(Rn), which is a
counterpart of [6] (Lemma 1). Indeed, the approximate functions in the proofs of both
Theorems 21 and 22 are constructed via the convolution (see [110] for more details).

Proposition 31. Let p ∈ (1,∞) and ϕ ∈ L1(Rn) with compact support. If f ∈ JNp(Rn), then
f ∗ϕ ∈ JNp(Rn) and

‖ f ∗ϕ‖JNp(Rn) ≤ 2‖ϕ‖L1(Rn)‖ f ‖JNp(Rn).
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Proof. Let p, ϕ, and f be as in this lemma. Then, for any cube Q of Rn, by the Fubini
theorem, we have

O( f ∗ϕ; Q) =

�
Q

∣∣∣ f ∗ϕ(x) − ( f ∗ϕ)Q
∣∣∣ dx

=

�
Q

∣∣∣∣∣∣
�

Q

∫
Rn
ϕ(z)[ f (x− z) − f (y− z)] dz dy

∣∣∣∣∣∣ dx

≤
∫
Rn

�
Q

�
Q
|ϕ(z)|

∣∣∣ f (x− z) − f (y− z)
∣∣∣ dy dx dz

=

∫
Rn
|ϕ(z)|

�
Q−z

�
Q−z

∣∣∣ f (x) − f (y)
∣∣∣ dy dx dz

≤ 2
∫
Rn
|ϕ(z)|O( f ; Q− z) dz, (41)

where Q− z := {w− z : w ∈ Q}. Therefore, for any interior pairwise disjoint subcubes {Qi}i
of Rn, by (41) and the generalized Minkowski integral inequality, we conclude that

⎧⎪⎪⎨⎪⎪⎩
∑

i

|Qi|[O( f ∗ϕ; Qi)]
p

⎫⎪⎪⎬⎪⎪⎭
1
p

≤ 2

⎧⎪⎪⎨⎪⎪⎩
∑

i

|Qi|
[∫

Rn
|ϕ(z)|O( f ; Q− z) dz

]p
⎫⎪⎪⎬⎪⎪⎭

1
p

= 2

⎧⎪⎪⎨⎪⎪⎩
∑

i

[∫
Rn
|Qi|

1
p |ϕ(z)|O( f ; Qi − z) dz

]p
⎫⎪⎪⎬⎪⎪⎭

1
p

≤ 2
∫
Rn

⎧⎪⎪⎨⎪⎪⎩
∑

i

[
|Qi|

1
p |ϕ(z)|O( f ; Qi − z)

]p
⎫⎪⎪⎬⎪⎪⎭

1
p

dz

= 2
∫
Rn
|ϕ(z)|

⎧⎪⎪⎨⎪⎪⎩
∑

i

|Qi − z|[O( f ; Qi − z)]p
⎫⎪⎪⎬⎪⎪⎭

1
p

dz

≤ 2‖ϕ‖L1(Rn)‖ f ‖JNp(Rn),

where Qi − z := {w− z : w ∈ Qi} for any i. This further implies that

‖ f ∗ϕ‖JNp(Rn) ≤ 2‖ϕ‖L1(Rn)‖ f ‖JNp(Rn)

and hence finishes the proof of Proposition 31. �

The following equivalent characterization is just [110] (Theorem 3.2).

Theorem 21. Let p ∈ (1,∞). Then, the following three statements are mutually equivalent:

(i) f ∈ Dp(Rn) ∩ JNp(Rn)
JNp(Rn)

=: VJNp(Rn), where

Dp(Rn) :=
{
f ∈ C∞(Rn) : |∇ f | ∈ Lp(Rn)

}
and ∇ f denotes the gradient of f ;

(ii) f ∈ JNp(Rn) and, for any given q ∈ [1, p),

lim
a→0+

sup
{{Qi}i : 	(Qi)≤a, ∀ i}

⎧⎪⎪⎨⎪⎪⎩
∑

i

|Qi|
[�

Qi

∣∣∣ f (x) − fQi

∣∣∣q dx
] p

q
⎫⎪⎪⎬⎪⎪⎭

1
p

= 0,
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where the supremum is taken over all collections {Qi}i of interior pairwise disjoint subcubes of
Rn with side lengths no more than a;

(iii) f ∈ JNp(Rn) and

lim
a→0+

sup
{{Qi}i : 	(Qi)≤a, ∀ i}

⎧⎪⎪⎨⎪⎪⎩
∑

i

|Qi|
[�

Qi

∣∣∣ f (x) − fQi

∣∣∣ dx
]p

⎫⎪⎪⎬⎪⎪⎭
1
p

= 0,

where the supremum is taken over all collections {Qi}i of interior pairwise disjoint subcubes of
Rn with side lengths no more than a.

Now, we recall another vanishing subspace of JNp(Rn) introduced in [110], which is
of the CMO type.

Definition 18. Let p ∈ (1,∞). The vanishing subspace CJNp(Rn) of JNp(Rn) is defined by
setting

CJNp(Rn) := C∞c (Rn)
JNp(Rn)

,

where C∞c (Rn) denotes the set of all infinitely differentiable functions on Rn with compact support.

The following theorem is just [110] (Theorem 4.3).

Theorem 22. Let p ∈ (1,∞). Then, f ∈ CJNp(Rn) if and only if f ∈ JNp(Rn), and f satisfies the
following two conditions:

(i)

lim
a→0+

sup
{{Qi}i : 	(Qi)≤a, ∀ i}

⎧⎪⎪⎨⎪⎪⎩
∑

i

|Qi|
[�

Qi

∣∣∣ f (x) − fQi

∣∣∣ dx
]p

⎫⎪⎪⎬⎪⎪⎭
1
p

= 0,

where the supremum is taken over all collections {Qi}i of interior pairwise disjoint subcubes of
Rn with side lengths {	(Qi)}i no more than a;

(ii)

lim
a→∞ sup

{Q⊂Rn : 	(Q)≥a}
|Q|1/p

�
Q

∣∣∣ f (x) − fQ
∣∣∣ dx = 0,

where the supremum is taken over all cubes Q of Rn with side lengths 	(Q) no less than a.

Moreover, Tao et al. ([110], Theorem 4.4) showed that Theorem 22(ii) can be replaced
by the following statement:

lim
a→∞ sup

{{Qi}i : 	(Qi)≥a, ∀ i}

⎧⎪⎪⎨⎪⎪⎩
∑

i

|Qi|
[�

Qi

∣∣∣ f (x) − fQi

∣∣∣ dx
]p

⎫⎪⎪⎬⎪⎪⎭
1
p

= 0,

where the supremum is taken over all collections {Qi}i of interior pairwise disjoint subcubes
of Rn with side lengths {	(Qi)}i greater than a.

Furthermore, Tao et al. ([110], Corollary 4.5) showed that Theorem 22 holds true with
�

Q

∣∣∣ f (x) − fQ
∣∣∣ dx and

�
Qi

∣∣∣ f (x) − fQi

∣∣∣ dx

in (i) and (ii) replaced, respectively, by

[�
Q

∣∣∣ f (x) − fQ
∣∣∣q dx

] 1
q

and
[�

Qi

∣∣∣ f (x) − fQi

∣∣∣q dx
] 1

q

for any q ∈ [1, p).
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However, there still exist some unsolved questions on the vanishing John–Nirenberg
space. The first question is on the case p = 1.

Question 15. The proof of [110] (Theorem 3.2) indicates that (i) and (iii) of Theorem 21 are
equivalent when p = 1. However, the corresponding equivalent characterization of CJN1(Rn) is
still unclear.

The following question is just [110] (Question 5.5).

Question 16.

(i) It is still unknown whether or not Theorems 21 and 22 hold true with JNp(Rn) replaced by
JN(p,q,s)α(R

n) when p, q ∈ [1,∞), s ∈ Z+, and α ∈ R \ {0}.
(ii) It is interesting to ask whether or not for any given p ∈ (1,∞), q ∈ [1,∞), s ∈ Z+, and α ∈ R,(

CJN(p,q,s)α(R
n)

)∗
= HK(p′,q′,s)α(R

n) or
(
CJN(p,q,s)α(R

n)
)∗∗

= JN(p,q,s)α(R
n)

still holds true, where 1/p + 1/p′ = 1 = 1/q + 1/q′, CJN(p,q,s)α(R
n) denotes the closure

of C∞c (Rn) in JN(p,q,s)α(R
n), and HK(p′,q′,s)α(R

n) the Hardy-type space introduced in [61]
(Definition 3.6).

Obviously, [Lp(Rn)/C] ⊂ CJNp(Rn) ⊂ VJNp(Rn) ⊂ JNp(Rn). Then, the last question
naturally arises, which is just [110] (Questions 5.6 and 5.8).

Question 17. Let p ∈ (1,∞). It is interesting to ask whether or not

[Lp(Rn)/C] � CJNp(Rn) � VJNp(Rn) � JNp(Rn)

holds true. This is still unclear.

5.3. Vanishing Congruent John–Nirenberg–Campanato Spaces

As a counterpart of Section 5.2, the vanishing subspace of congruent John–Nirenberg–
Campanato spaces VJNcon

(p,q,s)α
(X) was studied in [64].

Definition 19. Let p, q ∈ [1,∞), s ∈ Z+, and α ∈ R. The space VJNcon
(p,q,s)α

(X) is defined by
setting

VJNcon
(p,q,s)α

(X) := Dp(X) ∩ JNcon
(p,q,s)α

(X)JNcon
(p,q,s)α

(X)
,

where
Dp(X) :=

{
f ∈ C∞(X) : |∇ f | ∈ Lp(X)}.

Furthermore, simply write VJNcon
p,q (X) := VJNcon

(p,q,0)0
(X) and VJNcon

p (X) := VJNcon
p,1 (X).

Remark 13. Let p, q ∈ [1,∞), s ∈ Z+, α ∈ R, and Q0 be a given cube of Rn. Then, the observation
Dp(Q0) = C∞(Q0) implies that

VJNcon
(p,q,s)α

(Q0) = C∞(Q0) ∩ JNcon
(p,q,s)α

(Q0)
JNcon

(p,q,s)α
(Q0)

.

Recall that Dm(X) with m ∈ Z is defined in the beginning of Section 3.3. The
following characterizations, namely Theorems 23 and 24, are just [64] (Theorems 3.5 and
3.9, respectively).

88



Mathematics 2021, 9, 2264

Theorem 23. Let p, q ∈ [1,∞), s ∈ Z+, α ∈ (−∞, s+1
n ), and Q0 be a given cube of Rn. Then,

f ∈ VJNcon
(p,q,s)α

(Q0) if and only if f ∈ Lq(Q0) and

lim sup
m→∞

sup
{Qj} j⊂Dm(Q0)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

j

∣∣∣Qj
∣∣∣
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣Qj

∣∣∣−α⎡⎢⎢⎢⎢⎣
�

Qj

∣∣∣∣∣ f − P(s)
Qj
( f )

∣∣∣∣∣q
⎤⎥⎥⎥⎥⎦

1
q

⎫⎪⎪⎪⎬⎪⎪⎪⎭
p⎤⎥⎥⎥⎥⎥⎥⎥⎦

1
p

= 0, (42)

where the second supremum is taken over all collections of interior pairwise disjoint cubes {Qj} j ⊂
Dm(Q0) for any m ∈ Z.

Corollary 4. Let p = 1, q ∈ [1,∞), s ∈ Z+, α = 0, and Q0 be a given cube of Rn. Then, (42)
holds true for any f ∈ Lq(Q0).

Proof. By Proposition 24(ii) and the definition of VJNcon
(p,q,s)α

(Q0), we have

[Lq(Q0)/Ps(Q0)] = VJNcon
(p,q,s)α

(Q0) = JNcon
(p,q,s)α

(Q0),

which, combined with Theorem 23, then completes the proof of Corollary 4. �

Theorem 24. Let p ∈ [1,∞) and q ∈ [1, p]. Then, f ∈ VJNcon
p,q (Rn) if and only if f ∈ JNcon

p,q (Rn)
and

lim sup
m→∞

sup
{Qj} j⊂Dm(Rn)

⎡⎢⎢⎢⎢⎢⎢⎣
∑

j

|Qj|
⎛⎜⎜⎜⎜⎝
�

Qj

∣∣∣∣ f − fQj

∣∣∣∣q
⎞⎟⎟⎟⎟⎠

p
q
⎤⎥⎥⎥⎥⎥⎥⎦

1
p

= 0,

where the second supremum is taken over all collections of interior pairwise disjoint cubes {Qj} j ⊂
Dm(Rn) for any m ∈ Z.

We can partially answer Question 17 in the congruent JNC space as follows.

Proposition 32. Let I0 be a given bounded interval of R, and Q0 a given cube of Rn.

(i) ([64], Proposition 3.11) If p ∈ (1,∞) and q ∈ [1, p), then [Lp(R)/C] � VJNcon
p,q (R).

(ii) ([64], Proposition 3.12) If p ∈ (1,∞) and q ∈ [1, p), then VJNcon
p,q (R) � JNcon

p,q (R) and
VJNcon

p,q (I0) � JNcon
p,q (I0).

(iii) ([64], Proposition 4.40) If p ∈ (1,∞) and q ∈ (1, p), then [Lp(Q0)/C] � VJNcon
p,q (Q0).

Furthermore, it is easy to show that [L1(Q0)/C] = VJNcon
1 (Q0) = JNcon

1 (Q0) (see
Remark 2(ii)).

The following VMO-H1-type duality is just [64] (Theorem 4.39).

Theorem 25. Let p, q ∈ (1,∞), s ∈ Z+, 1
p +

1
p′ = 1 = 1

q +
1
q′ , α ∈ (−∞, s+1

n ), and Q0 be a given
cube of Rn. Then, (

VJNcon
(p,q,s)α

(Q0)
)∗
= HKcon

(p′,q′,s)α(Q0)

in the following sense: there exists an isometric isomorphism

K : HKcon
(p′,q′,s)α(Q0) −→

(
VJNcon

(p,q,s)α
(Q0)

)∗
such that for any g ∈ HKcon

(p′,q′,s)α
(Q0) and f ∈ VJNcon

(p,q,s)α
(Q0),

〈Kg, f 〉 = 〈g, f 〉.

Similar to Question 16(ii), the following question, posed in [64] (Remark 4.41), is still
unsolved.
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Question 18. For any given p, q ∈ (1,∞), s ∈ Z+, and α ∈ (−∞, s+1
n ), it is interesting to ask

whether or not(
CJNcon

(p,q,s)α
(Rn)

)∗
= HKcon

(p′,q′,s)α(R
n) and

(
CJNcon

(p,q,s)α
(Rn)

)∗∗
= JNcon

(p,q,s)α
(Rn)

hold true, where CJNcon
(p,q,s)α

(Rn) denotes the closure of C∞c (Rn) in JNcon
(p,q,s)α

(Rn) and 1
p + 1

p′ =

1 = 1
q +

1
q′ . This is still unclear.
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1. Introduction and Main Results

Suppose H is a nilpotent Lie group, which has the multiplication, inverse, expansion
and norm configurations (x, y) �→ xy, x �→ x−1, (t, x) �→ t ◦ x, x �→ ρ(x) for x, y ∈ H, t > 0,
respectively, then we call H being a homogeneous group (see [1] or [2]). The multiplication
and inverse operations are polynomials and t-action is an automorphism of the group
structure, where t is of the form

t ◦ (x1, . . . , xn) = (tβ1 x1, . . . , tβn xn)

for some constants 0 < β1 ≤ β2 ≤ . . . ≤ βn. Besides, ρ(x) := max
1≤j≤n

{|xj|1/β j} is a norm

linked to the expansion configuration. We call the value N= ∑n
j=1 β j the dimensionality of

H. In addition to the Euclidean structure, H is equipped with a homogeneous nilpotent Lie
group structure, where Lebesgue measure is a bi-invariant Haar measure, the identity is
the origin 0, x−1 = −x and multiplication xy, x, y ∈ H, satisfies

(1) (ax)(bx) = ax + bx, x ∈ H, a, b ∈ R;
(2) t ◦ (xy) = (t ◦ x)(t ◦ y), x, y ∈ H, t > 0;
(3) if z = xy, then zk = Pk(x, y), where P1(x, y) = x1 + y1 and Pk(x, y) = xk + yk +

Pk(x, y) for k ≥ 2 with a polynomial Pk(x, y) depending only on x1, · · · , xk−1, y1, · · · , yk−1.
Finally, the Heisenberg group on R3 is an example of a homogeneous group. If we

define the multiplication

(x, y, u)(x′, y′, u′) = (x + x′, y + y′, u + u′ + (xy′ − yx′)/2),

(x, y, u)(x′, y′, u′) ∈ R3, the R3 with this group law is the Heisenberg group H1; a dilation
is defined by t ◦ (x, y, u) = (tx, ty, t2u), that is the parameters β1 = 1, β2 = 1, β3 = 2.

Definition 1. Let w(x) is a function on H, which is non-negative locally integrable. For 1 < p <
∞, we call that w is an Ap weight, denoted by w ∈ Ap, if

[w]Ap := sup
B

( 1
|B|
∫

B
w(x)dx

)( 1
|B|
∫

B

( 1
w
) 1

p−1 dx
)p−1

< ∞,

The supremum here is taken over of all balls B ⊂ H. We call that the quantity [w]Ap is the Ap
constant of w. For p = 1, if M(w)(x) ≤ cw(x) for a.e.x ∈ H, then we say that w is an A1 weight,
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denoted by w ∈ A1, where M represents the Hardy-Littlewood maximal function. In addition, let
A∞ := ∪1≤p≤∞ Ap, then we have

[w]A∞ := sup
B

( 1
|B|
∫

B
wdx

)
exp

( 1
|B|
∫

B
log
( 1

w
)dx
)
< ∞.

Definition 2. Let x ∈ H, and w(x) be a non-negative locally integrable function. For 1 < p <
q < ∞, w ∈ Ap,q if

[w]Ap,q := sup
B

( 1
|B|
∫

B
wq
)( 1
|B|
∫

B
w−p′

) q
p′ < ∞,

where p′ is the conjugate exponent of p, that is 1
p + 1

p′ = 1.

Definition 3. Suppose w ∈ A∞. Let b ∈ L1
loc(H), then b(x) ∈ BMOw(H) if

‖b‖BMOw(H) := sup
B

1
w(B)

∫
B
|b(x)− bB|dx < ∞,

where bB := 1
|B|
∫

B b(x)dx and the supremum is taken over of all balls B ⊂ H.

We now review the definition of Riesz potential on homogeneous group. For 0 < α <N,

Iα f (x) :=
∫
H

f (y)
ρ(xy−1)N−α

dy,

and the corresponding associated maximal function Mα by

Mα f (x) = sup
x∈B

1

|B|1− α
N

∫
B
| f (y)|dy.

The reason why we study the weighted estimates for these operators is because they
have a wide range of applications in partial differential equations, Sobolev embeddings or
quantum mechanics (see [3] or [4]).

Muckenhoupt and Wheeden [5] are the first scholars to study the Riesz potential.
When H is an isotropic Euclidean space, Muckenhoupt and Wheeden [5] show that Iα is
bounded from Lp(wp) to Lq(wq) for 1 < p < n

α , 1
q = 1

p − α
n , w ∈ Ap,q. Moreover, the sharp

constant in this inequality was given in [6]:

‖Iα‖Lp(wp)→Lq(wq) ≤ C[w]
(1− α

n )max(1, p′
q )

Ap,q
.

Definition 4. Suppose b ∈ L1
loc(H), f ∈ Lp(H). Let [b, Iα] be the commutator defined by

[b, Iα] f (x) := b(x)Iα( f )(x)− Iα(b f )(x).

The iterative commutators (Iα)m
b , m ∈ N, are defined naturally by

(Iα)
m
b f (x) := [b, (Iα)

m−1
b ] f (x), (Iα)

1
b f (x) := [b, Iα] f (x).

In 2016, Holmes, Rahm and Spencer [7] prove that

[b, Iα] : Lp
wp(Rn)→ Lq

λq(Rn)⇔ b ∈ BMOμ(Rn),
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where 1 < p < n
α , 1

q = 1
p − α

n , w, λ ∈ Ap,q, μ = w
λ . Later, the quantitative estimates for

iterated commutators of fractional integrals was obtained by N. Accomazzo, J. C. Martínez-
Perales and I. P. Rivera-Ríos [8].

In 2013, Sato [9] gave the estimates for singular integrals on homogeneous groups.
In [10], X. T. Duong, H. Q. Li and J. Li established the Bloom-type two weight estimates
for the commutator of Riesz transform on stratified Lie groups. Moreover, Z. Fan and
J. Li [11] obtained the quantitative weighted estimates for rough singular integrals on
homogeneous groups.

Motivated by the above estimates, we investigate the quantitative weighted estimation
for the higher order commutators of fractional integral operators on homogeneous groups.

In this paper, our main result is the follow theorem.

Theorem 1. Let 0 < α < N and 1 < p < N
α , q defined by 1

q +
α
N = 1

p , and m is a positive integer.
Assume that μ, λ ∈ Ap,q and that ν = μ

λ .

1. If b ∈ BMOν1/m(H), then

‖(Iα)
m
b f ‖Lq

λq (H) ≤ Cm,N,α,p‖b‖m
BMO

ν1/m (H)κm‖ f ‖Lp
μp (H), (1)

where

κm =
m

∑
k=0

(
m
k

)(
[λ]

k
m
Ap,q

[μ]
m−k

m
Ap,q

)(1− α
N )max{1, p′

q }
A(m, k)B(m, k)

and

A(m, k) ≤
(
[λq]

m+k+1
2

Aq
[μq]

m−k−1
2

Aq

)m−k
m max{1, 1

q−1 }
,

B(m, k) ≤
(
[λp]

k−1
2

Ap
[μp]

m− k−1
2

Ap

) k
m max{1, 1

p−1 }
.

2. For every b ∈ L1
loc(H), if (Iα)m

b is bounded from Lp
μp(H) to Lq

λq(H), then b ∈ BMOν1/m(H)

with

‖b‖m
BMO

ν1/m (H) � ‖(Iα)
m
b ‖Lp

μp (H)→Lq
λq (H).

2. Domination of the Iterated Commutators by Sparse Operators

2.1. A System of Dyadic Cubes

We define a left-unchanged analogous-distance d on H by d(x, y) = ρ(x−1y), which
signifies that there has a constant A0 ≥ 1 such that for any x, y, z ∈ H,

d(x, y) ≤ A0[d(x, z) + d(z, y)].

Next, let B(x, r) := {y ∈ H : d(x, y) < r} be the open ball which is centered on x ∈ H
and r > 0 is the radius.

Let Ak be k-th denumerable index set. A denumerable class D := ∪k∈ZDk,Dk :=
{Qk

β : β ∈ Ak}, of Borel sets Qk
β ⊆ H is known as a set of dyadic cubes with arguments

δ ∈ (0, 1) and 0 < a1 ≤ A1 < ∞ if it has the characteristics below:
(1) H = ∪β∈Ak

Qk
β (disjoint union) for all k ∈ Z;

(2) If � ≥ k, then either Q�
γ ⊆ Qk

β or Qk
β ∩Q�

γ = ∅;

(3) For arbitrary (k, β) and for any � ≤ k, there is a exclusive γ such that Qk
β ⊆ Q�

γ;
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(4) For arbitrary (k, β) there exists no more that M (a settled geometric constant) γ
such that Qk+1

γ ⊆ Qk
β, and Qk

β = ∪Q∈Dk+1,Q⊆Qk
β
Q;

(5) B(xk
β, a1δk) ⊆ Qk

β ⊆ B(xk
β, A1δk) =: B(Qk

β);

(6) If � ≥ k and Q�
γ ⊆ Qk

β, then B(Q�
γ) ⊆ B(Qk

β). The set Qk
β is called a dyadic cube of

generation k with centre xk
β ∈ Qk

β and side length �(Qk
β) = δk.

From the natures of the dyadic system above, for any Qk
β, Qk+1

γ and Qk+1
γ ⊂ Qk

β, we

get that there is a constant Ã0 > 0 such that:

|Qk+1
γ | ≤ |Qk

β| ≤ Ã0|Qk+1
γ |.

2.2. Adjacent Systems of Dyadic Cubes

Let {Dt : t = 1, 2, . . . , T } be a limited set of the dyadic families, then we call that it is a
collection of neighbor systems of dyadic cubes with arguments δ ∈ (0, 1), 0 < a1 ≤ A1 < ∞
and 1 ≤ Cadj < ∞ if it has the following two characteristics:

(1) For any t ∈ {1, 2, . . . , T }, Dt is a system of dyadic cubes with arguments δ ∈ (0, 1)
and 0 < a1 ≤ A1 < ∞;

(2) For any ball B(x, r) ⊆ H with δk+3 < r ≤ δk+2, k ∈ Z, there have t ∈ {1, 2, . . . , T }
and Q ∈ Dt of generation k which is centered on txk

β such that d(x, txk
β) < 2A0δk and

B(x, r) ⊆ Q ⊆ B(x, Cadjr). (2)

2.3. Sparse Operators

We review the concept of sparse family given in [12] on ordinary spaces of homoge-
neous description in the sense of Coifman and Weiss [13], which is also suitable in the case
of homogeneous groups.

Definition 5. Let 0 < η < 1, for every Q ∈ S , we call that the collection S ⊂ D of dyadic cubes
be a η-sparse, if there exists a measurable subset EQ ⊂ Q such that |EQ| ≥ η|Q| and the sets
{EQ}Q∈S have only limited overlap.

Definition 6. Given a sparse family, the sparse operator AS is defined by

AS ( f )(x) = ∑
Q∈S

〈 f 〉QχQ(x),

where 〈 f 〉Q = 1
|Q|
∫

Q f (x)dx.

In this subfraction, the primary target is to reveal the following quantitative edition of
Lacey’s pointwise domination inequality.

Proposition 1. Let 0 < α < N. Let m be a nonnegative integer. For every f ∈ C∞
c (H) and

b ∈ Lm
loc(H), there exits T dyadic systems Dt, t = 1, 2, . . . , T and η-sparse families St ⊂ Dt such

that for a.e.x ∈ H,

|(Iα)
m
b f | ≤ CN,m,α

T
∑
t=1

m

∑
k=0

(
m
k

)
Am,k

α,St
(b, f )(x), a.e.x ∈ H, (3)

where for a sparse family S , Am,k
α,S (b, ·) is the sparse operator given by

Am,k
α,S (b, f )(x) = ∑

Q∈S
|b(x)− bQ|m−k|Q| α

N 〈 f (b− bQ)
k〉QχQ(x).
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To show the Proposition 1, we need some auxiliary maximal operators. To begin with,
let j̃0 be the smallest integer such that

2 j̃0 > max{3A0, 2A0Cadj} (4)

and let Cj̃0
:= 2 j̃0+2 A0.

Next we define the grand maximal truncated operatorMIα as follows:

MIα f (x) = sup
x∈B

ess sup
ξ∈B

|Iα( f χH\Cj̃0
B)(ξ)|,

where the first supremum is taken over of all balls B ⊂ H satisfying x ∈ B. We can know
that this operator is of vital importance in the following proof, Given a ball B0 ⊂ H, for
x ∈ B0 we also define a local edition ofMIα by

MIα ,B0 f (x) = sup
x∈B⊂B0

ess sup
ξ∈B

|Iα( f χCj̃0
B0\Cj̃0

B)(ξ)|.

Now, we claim that the following lemma is true.

Lemma 1. Let 0 < α < N. The following pointwise estimates holds:

1. For a.e.x ∈ B0,

|Iα( f χCj̃0
B0)(x)| ≤ MIα ,B0 f (x).

2. There exists a constant CN,α > 0 such that for a.e.x ∈ H,

MIα f (x) ≤ CN,α

(
Mα f (x) + Iα| f |(x)

)
.

Using the results of Lemma 1, we then prove the Proposition 1.

Proof of Proposition 1. In order to proof the Proposition 1, we refer to the thinking in [8]
for this domination, which is adapted to our situation of homogeneous groups.

Firstly, we suppose that f is supported in a ball B0 := B(x0, r) ⊂ H, next we disinte-
grate H which respect to this ball B0. We can do it as follows. We start define the annuli
Uj := 2j+1B0 \ 2jB0, j ≥ 0 and select the minimum integer j0 such that

j0 > j̃0 and 2j0 > 4A0 (5)

Next, for any Uj, we select the balls

{B̃j,�}
Lj
�−1, (6)

centred in Uj and with radius 2j− j̃0 r to cover Uj. From the doubling property [13], we obtain

sup
j

Lj ≤ CA0, j̃0
, (7)

where CA0, j̃0
is an positive constant that only relates on A0 and j̃0.

We now go over the characters of these B̃j,�. Denote B̃j,� := B(xj,�, 2j− j̃0 r), where j̃0
is defines as in (4). Then we have CadjB̃j,� := B(xj,�, Cadj2j− j̃0 r), which was shown in the
proof of Theorem 3.7 in [12] that

CadjB̃j,� ∩Uj+j0 = ∅, ∀j ≥ 0 and ∀� = 1, 2, . . . , Lj; (8)
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and

CadjB̃j,� ∩Uj−j0 = ∅, ∀j ≥ j0 and ∀� = 1, 2, . . . , Lj. (9)

Now, because of the Equation (8) and (9), we see that each CadjB̃j,�, at most overlap
with 2j0 + 1 annuli Uj’s. Moreover, for every j and �, Cj̃0

B̃j,� covers B0.

Next by observing the (2), there is an integer t0 ∈ {1, 2, . . . , T } and Q0 ∈ Dt0 such that
B0 ⊆ Q0 ⊆ CadjB0. Additionally, for this Q0, as in Section 2.1 the ball that includes Q0 and
has comparable measure to Q0 is represented by B(Q0). Consequently, B0 is overwritten
by B(Q0) and |B(Q0)| � |B0|, where the implicit constant relates only to Cadj and A1.

Now we claim that there exists a 1
2 -sparse family F t0 ⊂ Dt0(Q0), the set of all dyadic

cubes in t0-th dyadic system that are contained in Q0, such that for a.e. x ∈ B0,

|(Iα)
m
b ( f χCj̃0

B(Q0)
)(x)| ≤ CN,m,α

m

∑
k=0

(
m
k

)
Bm,k

α,F t0
(b, f )(x), (10)

where

Bm,k
α,F t0

(b, f )(x) = ∑
Q∈F t0

|b(x)− bRQ |m−k|Cj̃0
B(Q)| α

N 〈 f (b− bRQ)
k〉Cj̃0

B(Q)χQ(x).

Here, RQ is the dyadic cube in D t for some t ∈ {1, 2, . . . , T } such that Cj̃0
B(Q) ⊂

RQ ⊂ Cadj · Cj̃0
B(Q), where B(Q) is defined as in Section 2.1, j0 defined as in (5) and j̃0

defined as in (4).
Assume that we have already proven the assertion (10). Let us take a partition of H

as follows:

H =
∞⋃

j=0

2jB0.

We next consider the annuli Uj := 2j+1B0 \ 2jB0 for j ≥ 0 and the covering {B̃j,�}
Lj
�=1

of Uj as in (6). We note that for each B̃j,�, there exist tj,� ∈ {1, 2, . . . , T } and Q̃j,� ∈ Dtj,� such
that B̃j,� ⊆ Q̃j,� ⊆ CadjB̃j,�. Therefore, we acquire that for each such B̃j,�, the enlargement
Cj̃0

B(Q̃j,l) covers B0 since Cj̃0
B̃j,� covers B0.

Next, we utilize (10) to each B̃j,�, then we acquire a 1
2 -sparse family F̃j,� ⊂ Dtj,�(Q̃j,�)

such that (10) can be established for a.e. x ∈ B̃j,�.
Now, set F := ∪j,�F̃j,�. Then we observe that the balls CadjB̃j,� are overlapping not

more than CA0, j̃0
(2j0 + 1) times, where CA0, j̃0

is the constant in (7). Then, we can obtain

that F is a 1
2CA0, j̃0

(2j0+1) -sparse family and for a.e. c ∈ H,

|(Iα)
m
b ( f )(x)|

≤ CN,m,α

m

∑
k=0

(
m
k

)
∑

Q∈F

(
|b(x)− bRQ |m−k|Cj̃0

B(Q)| α
N 〈 f (b− bRQ)

k〉Cj̃0
B(Q)

)
χQ(x).

Since Cj̃0
B(Q) ⊂ RQ, and it is clear that |RQ| ≤ C|Cj̃0

B(Q)| (C depends only on

Cadj), we obtain that 〈 f 〉Cj̃0
B(Q) ≤ C〈 f 〉RQ . Now, we set St := {RQ ∈ Dt : Q ∈ F}, t ∈

{1, 2, . . . , T }, then since the fact that F is 1
2CA0, j̃0

(2j0+1) -sparse, we can acquire that each

family St is 1
2CA0, j̃0

(2j0+1)c -sparse.
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Now, we let

η :=
1

2CA0, j̃0
(2j0 + 1)c

,

where c is a constant relating only on C, Cj̃0
. Then it follows that (3) holds, which finishes

the proof.

Proof of the Assertion (10). To demonstrate the assertion it suffice to attest the following
recursive computation: there exist the cubes Pj ∈ Dt0(Q0) that does not intersect each other
such that ∑j |Pj| ≤ 1

2 |Q0| and for a.e. x ∈ B0,

|(Iα)
m
b ( f χCj̃0

B(Q0)
)(x)|χQ0(x)

≤ CN,m,α

m

∑
k=0

(
m
k

)
|b(x)− bRQ0

|m−k|Cj̃0
B(Q0)|

α
N 〈 f (b− bRQ0

)k〉Cj̃0
B(Q0)

χQ0(x)

+ ∑
j
|(Iα)

m
b ( f χCj̃0

B(Pj)
)(x)|χPj(x).

Iterating this estimate, we acquire (10) withF t0 being the union of all the families {Pk
j },

where {P0
j } = {Q0}, {P1

j } = {Pj} as mentioned above, and {Pk
j } are the cubes acquired

at the k-th stage of the iterative approach. Clearly F t0 is a 1
2 -sparse family, since let

EPk
j
= Pk

j \ ∪jPk+1
j .

Now we prove the recursive estimate. For any countable family {Pj}j of disjoint cubes
Pj ⊂ Dt0(Q0), we have that

|(Iα)
m
b ( f χCj̃0

B(Q0)
)(x)χQ0(x)

≤ |(Iα)
m
b ( f χCj̃0

B(Q0)
)(x)χQ0\∪jPj

(x) + ∑
j
|(Iα)

m
b ( f χCj̃0

B(Q0)
)(x)χPj(x)

≤ |(Iα)
m
b ( f χCj̃0

B(Q0)
)(x)χQ0\∪jPj

(x) + ∑
j
|(Iα)

m
b ( f χCj̃0

B(Q0)\Cj̃0
B(Pj)

)(x)χPj(x)

+ ∑
j
|(Iα)

m
b ( f χCj̃0

B(Pj)
)(x)χPj(x)

So we just have to reveal that we can opt for a family of pairwise disjoint cubes
{Pj} ⊂ Dt0(Q0) such that ∑j |Pj| ≤ 1

2 |Q0| and that for a.e. x ∈ B0,

|(Iα)
m
b ( f χCj̃0

B(Q0)
)(x)|χQ0\∪jPj

(x) + ∑
j
|(Iα)

m
b ( f χCj̃0

B(Q0)\Cj̃0
B(Pj)

)(x)|χPj(x)

≤ CN,m,α

m

∑
k=0

(
m
k

)
|b(x)− bRQ0

|m−k|Cj̃0
B(Q0)|

α
N 〈 f (b− bRQ0

)k〉Cj̃0
B(Q0)

χQ0(x).

Using that (Iα)m
b f = (Iα)m

b−c f for any c ∈ R, and also that

(Iα)
m
b−c f =

m

∑
k=0

(−1)k
(

m
k

)
Iα

(
(b− c)k f

)
(b− c)m−k,
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it follows that

|(Iα)
m
b ( f χCj̃0

B(Q0)
)(x)|χQ0\∪jPj(x) + ∑

j
|(Iα)

m
b ( f χCj̃0

B(Q0)\Cj̃0
B(Pj)

)(x)|χPj(x)

≤
m

∑
k=0

(
m
k

)
|b(x)− bRQ0

|m−k|Iα

(
(b− bRQ0

)k f χCj̃0
B(Q0)

)
(x)|χQ0\∪jPj

(x)

+
m

∑
k=0

(
m
k

)
|b(x)− bRQ0

|m−k ∑
j
|Iα

(
(b− bRQ0

)k f χCj̃0
B(Q0)\Cj̃0

B(Pj)

)
(x)|χPj(x)

=: W1 + W2.

Now we define the set E = ∪m
k=0Ek, where

Ek = {x ∈ B0 : MIα ,B0

(
(b− bRQ0

)k f
)
(x) > CN,m,α|Cj̃0

B(Q0)|
α
N
〈
(b− bRQ0

)k f
〉

Cj̃0
B(Q0)

},

with CN,m,α being a positive number to be chosen.
From [8], we can choose CN,m,α big enough (depending on Cj̃0

, Cadj, and A1) such that

|E| ≤ 1

4Ã0
|B0|,

where Ã0 is defined in Section 2.1. We now utilize the Calderón-Zygmund decomposition
to the function χE on B0 at the height λ := 1

2Ã0
, to acquire pairwise disjoint cubes {Pj} ⊂

Dt0(Q0) such that

1

2Ã0
|Pj| ≤ |Pj ∩ E| ≤ 1

2
|Pj|

and |E \ ∪jPj| = 0. This implies that

∑
j
|Pj| ≤

1
2
|B0| and Pj ∩ Ec �= ∅.

Fix some j. Since we have Pj ∩ Ec �= ∅, we observe that

MIα ,B0

(
(b− bRQ0

)k f
)
(x) ≤ CN,m,α|Cj̃0

B(Q0)|
α
N
〈
(b− bRQ0

)k f
〉

Cj̃0
B(Q0)

,

which allows us to control the summation in W2 by considering the cube Pj.
Now by (i) in Lemma 1, we know that

|Iα

(
(b− bRQ0

)k f χCj̃0
B(Q0)

)
(x)| ≤ MIα ,B0

(
(b− bRQ0

)k f
)
(x), for a.e. x ∈ B0.

Since |E \ ∪jPj| = 0, we have that

MIα ,B0

(
(b− bRQ0

)k f
)
(x)

≤ CN,m,α|Cj̃0
B(Q0)|

α
N
〈
(b− bRQ0

)k f
〉

Cj̃0
B(Q0)

, for a.e. x ∈ B0 \ ∪jPj.

Consequently,

|Iα

(
(b− bRQ0

)k f χCj̃0
B(Q0)

)
(x)|

≤ CN,m,α|Cj̃0
B(Q0)|

α
N
〈
(b− bRQ0

)k f
〉

Cj̃0
B(Q0)

, for a.e. x ∈ B0 \ ∪jPj.
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These estimates allow us to control the remaining terms in W1, so we are done.

Proof of Lemma 1. Now we give the proof process of Lemma 1.
The result in the Euclidean space case can be referred to as [8]. Now, we can adapt the

proof in [8] to our setting of homogeneous groups.
(i) Let r is close enough to 0 such that B(x, r) ⊂ B0. Then,

|Iα( f χCj̃0
B0)(x)| ≤ |Iα( f χCj̃0

B(x,r))(x)|+ |Iα( f χCj̃0
B0\Cj̃0

B(x,r))(x)|

≤ |Iα( f χCj̃0
B(x,r))(x)|+MIα ,B0 f (x),

the estimate for the first term follows by standard computations involving a dyadic annuli-
type decomposition of the B(x, r).

|Iα( f χCj̃0
B(x,r))(x)| =

∣∣∣∣ ∫H
f (y)χCj̃0

B(x,r)

d(x, y)N−α
dy
∣∣∣∣

≤
∫

B(x,Cj̃0
r)

| f (y)|
d(x, y)N−α

dy

=
1

∑
i=−∞

∫
B(x,Cj̃0

ir)\B(x,Cj̃0
i−1r)

| f (y)|
d(x, y)N−α

dy

≤
1

∑
i=−∞

(Cj̃0
i−1r)α−N

∫
B(x,Cj̃0

ir)
| f (y)|dy

=
1

∑
i=−∞

( 1
Cj̃0

)α−N
(Cj̃0

ir)α 1
(Cj̃0

ir)N

∫
B(x,Cj̃0

ir)
| f (y)|dy

≤ CN,α,Cj̃0
rα M f (x).

Then,

|Iα( f χCj̃0
B0)(x)| ≤ CN,α,Cj̃0

rα M f (x) +MIα ,B0 f (x), (11)

the estimate in (i) is settled letting r → 0 in (11).
(ii) Let x, ξ ∈ B := B(x0, r). Let Bx be the closed ball with radius 4(A0 + Cj̃0

)r, which
centered at x. Then Cj̃0

B ⊂ Bx, and we acquire

|Iα( f χH\Cj̃0
B)(ξ)| = |Iα( f χH\Bx )(ξ) + Iα( f χBx\Cj̃0

B)(ξ)|

≤ |Iα( f χH\Bx )(ξ)− Iα( f χH\Bx )(x)|
+ |Iα( f χBx\Cj̃0

B)(ξ)|+ |Iα( f χH\Bx )(x)|

For the first term, since ρ is homogeneous of degree α− N, and by using the Proposi-
tion 1.7 in [1], we get
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|Iα( f χH\Bx )(ξ)− Iα( f χH\Bx )(x)|

≤
∫
H\Bx

| f (y)|
∣∣∣∣ 1
d(y, ξ)N−α

− 1
d(x, y)N−α

∣∣∣∣dy

≤ CN,α

∫
H\Bx

2r
d(x, y)N−α+1 | f (y)|dy

= CN,α

∞

∑
i=1

∫
2i Bx\2i−1Bx

2r
d(x, y)N−α+1 | f (y)|dy

≤ CN,α

∞

∑
i=1

2r(
2i−1|Bx|

1
N

)N−α+1

∫
2i Bx

| f (y)|dy

= CN,α

∞

∑
i=1

2r(
2i−122r(A0 + Cj̃0

)
)N−α+1

∫
2i Bx

| f (y)|dy

= CN,α

∞

∑
i=1

2r
2i+1r(A0 + Cj̃0

)
· 1(

2i+1r(A0 + Cj̃0
)
)N−α

∫
2i Bx

| f (y)|dy

≤ CN,α Mα f (x).

Next, for ξ ∈ B, y ∈ Bx \ Cj̃0
B, we have d(y, ξ) > 2 j̃0 r. Then we have

|Iα( f χBx\Cj̃0
B)(ξ)| ≤

∫
Bx\Cj̃0

B

1
d(y, ξ)N−α

| f (y)|dy

≤ 1

|2 j̃0 r|N−α

∫
Bx
| f (y)|dy

= CN,α
1

|4(A0 + Cj̃0
)r|N−α

∫
Bx
| f (y)|dy

≤ CN,α Mα f (x).

Finally, we observe that

|Iα( f χH\Bx )(x)| = |
∫
H\Bx

f (y)
d(x, y)N−α

dx|

≤
∫
H

| f (y)|
d(x, y)N−α

dx

= Iα| f |(x),

which finishes the proof of (ii).

Next, we review that the dyadic weighted BMO space associated with the system Dt

is defined as

BMOη,Dt(H) := {b ∈ L1
loc(H) : ‖b‖BMOη,Dt < ∞},

where ‖b‖BMOη,Dt = sup
Q∈Dt

1
η(Q)

∫
Q |b(x)− bQ|dx. Then according to the dyadic structure

theorem studies in [14], one has

BMOη(H) =
T⋂

t=1

BMOη,Dt(H).
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Now, to verify a function b is in BMOη(H), it suffices to verify it belongs to each
weighted dyadic BMO space BMOη,Dt(H). Given a dyadic cube Q ∈ Dt with t =
1, 2, . . . , T , and a measurable function f on H, we define the local mean oscillation of
f on Q by

ωλ( f ; Q) = inf
c∈R

(
( f − c)χQ

)∗
(λ|Q|), 0 < λ < 1,

where (
( f − c)χQ

)∗
(λ|Q|) = sup

E⊂Q,|E|=λ|Q|
inf
x∈E
|( f − c)(x)|.

With these notation and dyadic structure theorem above, following the same proof
in [10], we also acquire that for any weight η ∈ A2, we have

‖b‖BMOη(H) ≤ C
T
∑
t=1

sup
Q∈Dt

ωλ(b; Q)
|Q|

η(Q)
, 0 < λ ≤ 2N+1, (12)

where C depends on η.

Proposition 2. Suppose that H is a homogeneous group with dimension N, b ∈ L1
loc(H). Then

for any cube Q ⊂ H, there exist measurable set Fi ⊂ Q with i = 1, 2, such that

ω
2

1
N+2

(b; Q) ≤ b(x)− b(y), ∀(x, y) ∈ F1 × F2.

Proof. We take ideas from N. Accomazzo, J. C. Martínez-Perales and I. P. Rivera-Ríos [8].
In [8], for any cube Q ∈ Dt with t = 1, 2, . . . , T , there exists a subset E ⊂ Q with |E| =

1
2N+2 |Q| such that for every x ∈ E,

ω
2

1
N+2

(b; Q) ≤ |b(x)−mb(Q)|,

where mb(Q) is a not necessarily unique number that satisfies

max
{
|{x ∈ Q : b(x) > mb(Q)}|, |{x ∈ Q : b(x) < mb(Q)}|

}
≤ |Q|

2
.

Let E1 ⊂ Q with |E| = 1
2 |Q| and such that b(x) ≥ mb(Q) for every x ∈ E1. Further let

E2 = Q \ E1, then |E2| = 1
2 |Q| and for every x ∈ E2, b(x) ≤ mb(Q).

We obtain that at least half of the set E is contained either in E1 or in E2 since Q is the
disjoint union of E1 and E2. Without loss of generality, we assume that half of E is in E1,
then we let F1 = E ∩ E1, F2 = E2 ∩ (E ∩ E1)

c, we have

|F1| = |E| − |E ∩ (E ∩ E1)
C| ≥ |E| − |E|

2
=

|Q|
2N+3 ,

and

|F2| = |E2| − |E2 ∩ (E ∩ E1)| ≥
1
2
|Q| − 1

2N+3 |Q| = (
1
2
− 1

2N+3 )|Q|.

Then if x ∈ F1 and y ∈ F2, we have that

ω
2

1
N+2

(b; Q) ≤ b(x)−mb(Q) ≤ b(x)− b(y),

which shows that Proposition 2 holds.
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Given a dyadic grid D, define the dyadic Riesz potential operator

IDα f (x) = ∑
Q∈D

1

|Q|1− α
N

∫
Q
| f (y)|dyχQ(x).

Proposition 3. Given 0 < α < N, then for any dyadic grid D,

IDα f (x) � Iα f (x). (13)

Proof. The result in the Euclidean setting is from the Proposition 2.1 in [15]. Here, we can
adapt the proof in [15] to our setting of spaces of homogeneous type.

3. Proof of Theorem 1

To proof (i), we are following the ideas in [16] or [8].
Let D be a dyadic system in H and let S be a sparse family from D. We know

Am,k
α,S (b, f )(x) = ∑

Q∈S
|b(x)− bQ|m−k|Q| α

N
〈
(b− bQ)

k f
〉

QχQ(x),

by duality, we have that

‖Am,k
α,S (b, f )(x)‖Lq

λq (H) ≤ sup
g:‖g‖

Lq′
λq′ (H)

=1
∑

Q∈S

( ∫
Q
|g(x)λq||b(x)− bQ|m−kdx

)
|Q| α

N

×
(

1
|Q|

∫
Q
|b(x)− bQ|k| f (x)|dx

)
.

By Lemma 3.5 in [12], there exists a sparse family S̃ ⊂ D such that S ⊂ S̃ and for
every cube Q ∈ S̃ , for a.e. x ∈ Q,

|b(x)− bQ| ≤ CN ∑
P∈S̃ ,P⊂Q

Ω(b, P)χP(x),

where Ω(b, P) = 1
|P|
∫

P |b(x)− bP|dx
Assume that b ∈ BMOη(H) with η to be chosen, then we have for a.e. x ∈ Q,

|b(x)− bQ| ≤ CN ∑
P∈S̃ ,P⊂Q

1
η(P)

∫
P
|b(x)− bP|dx · η(P)

|P| χP(x)

≤ CN‖b‖BMOη
(H) ∑

P∈S̃ ,P⊂Q

η(P)
|P| χP(x).

Then, we further have

‖Am,k
α,S (b, f )(x)‖Lq

λq (H)

≤ CN‖b‖m
BMOη(H) sup

g:‖g‖
Lq′

λq′ (H)
=1

∑
Q∈S

(
1
|Q|

∫
Q
|g(x)λq|

(
∑

P∈S̃ ,P⊂Q

η(P)
|P| χP(x)

)m−k
dx
)

×
(

1
|Q|

∫
Q

(
∑

P∈S̃ ,P⊂Q

η(P)
|P| χP(x)

)k
| f (x)|dx

)
· |Q| · |Q| α

N .
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Next, note that for each � ∈ N, from [12], for an arbitrary function h, we have∫
Q
|h(x)|

(
∑

Q∈S̃ ,P⊂Q

η(P)
|P| χP(x)

)�
dx

�
∫

Q
A�
S̃ ,η

(|h|)(x)dx,

where AS̃ ,η(|h|)(x) := AS̃ (|h|)η, AS̃ (h) := ∑
Q∈S̃

hQχQ and A�
S̃ ,η

f stands for the �-th

iteration of AS̃ ,η .
Then we have

‖Am,k
α,S (b, f )(x)‖Lq

λq (H)

≤ CN‖b‖m
BMOη(H) sup

g:‖g‖
Lq′

λq′ (H)
=1

∑
Q∈S

( ∫
Q
Am−k
S̃ ,η

(|g|λq)
)
· 1

|Q|1− α
N

( ∫
Q
Ak
S̃ ,η

(| f |)
)

≤ CN‖b‖m
BMOη(H) sup

g:‖g‖
Lq′

λq′ (H)
=1

∫
H

∑
Q∈S

1

|Q|1− α
N

( ∫
Q
Ak
S̃ ,η

(| f |)χQ(x)
)
· Am−k

S̃ ,η
(|g|λq)

= CN‖b‖m
BMOη(H) sup

g:‖g‖
Lq′

λq′ (H)
=1

∫
H

Iα
S
(
Ak
S̃ ,η

(| f |)
)
(x)
(
Am−k
S̃ ,η

(|g|λq)
)
(x)dx,

where Iα
S ,η f := Iα

S ( f )η and Iα
S f (x) = ∑

Q∈S
1

|Q|1−
α
N

∫
Q | f |χQ(x).

From (13) and the boundedness of Iα f , if p, q, α are as in the hypothesis of Theorem
1.1 and w ∈ Ap,q,S ⊂ D, then

‖Iα
S‖Lp

wp (H)→Lq
wq (H) ≤ CN,p,q,α[w]

(1− α
N )max{1, p′

q }
Ap,q

. (14)

Observe that AS̃ is self-adjoint, then∫
H

Iα
S
(
Ak
S̃ ,η

(| f |)
)(
Am−k
S̃ ,η

(|g|λq)
)
=
∫
H
AS̃A

m−k−1
S̃ ,η

[
Iα
S ,η

(
AK
S̃ ,η

(| f |)
)]
|g|λq.

By Hölder inequality, we have that

‖Am,k
α,S (b, f )(x)‖Lq

λq (H) ≤ CN‖b‖m
BMOη(H)‖AS̃A

m−k−1
S̃ ,η

Iα
S ,ηAk

S̃ ,η
(| f |)‖Lq

λq (H).

Applying that ‖AS̃‖Lp
w(H) ≤ CN,p[w]

max{1, 1
p−1 }

Ap
(see, e.g., [17] ),

‖AS̃A
m−k−1
S̃ ,η

Iα
S ,ηAk

S̃ ,η
(| f |)‖Lq

λq (H)

≤ CN,p[λ
q]

max{1, 1
q−1 }

Aq
‖AS̃A

m−k−2
S̃ ,η

Iα
S ,ηAk

S̃ ,η
(| f |)‖Lq

λqηq (H)

≤ CN,p[λ
q]

max{1, 1
q−1 }

Aq
[λqηq]

max{1, 1
q−1 }

Aq
‖Am−k−2

S̃ ,η
Iα
S ,ηAk

S̃ ,η
(| f |)‖Lq

λqηq (H)

≤ CN,p

( m−k−1

∏
i=0

[λqηiq]Aq

)max{1, 1
q−1 }‖Iα

S ,ηAk
S̃ ,η

(| f |)‖Lq

λqη(m−k−1)q (H).
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Using (14), we have that

‖Iα
S ,ηAk

S̃ ,η
(| f |)‖Lq

λqη(m−k−1)q (H) = ‖Iα
SAk

S̃ ,η
(| f |)‖Lq

λqη(m−k)q (H)

≤ CN,p,α[ληm−k]
(1− α

N )max{1, p′
q }

Ap,q
‖Ak

S̃ ,η
(| f |)‖Lp

λpη(m−k)p (H),

and applying again ‖AS̃‖Lp
w(H) ≤ CN,p[w]

max{1, 1
p−1 }

Ap
,

‖Ak
S̃ ,η

(| f |)‖Lp

λpη(m−k)p (H) ≤ CN,p

( m

∏
i=m−k+1

[λpηip]Ap

)max{1, 1
p−1 }‖ f ‖Lp

λpηmp (H),

which, along with the previous estimate, yields

‖Am,k
α,S (b, f )(x)‖Lq

λq (H)

≤ CN,p,α‖b‖m
BMOη(H)A(m, k)B(m, k)[ληm−k]

(1− α
N )max{1, p′

q }‖ f ‖Lp
λpηmp (H),

where

A(m, k) =
( m−k−1

∏
i=0

[λqηiq]Aq

)max{1, 1
q−1 }

,

and

B(m, k) =
( ∞

∏
i=m−k+1

[λpηip]Ap

)max{1, 1
p−1 }

.

Hence, setting η = ν1/m, where ν = ( μ
λ )

1/p, it reading follows from Hölder’s inequality

[λsνs i
m ]As ≤ [λs]

m−i
m

As
[μs]

i
m
As

, s = p, q.

Thus, we acquire that

A(m, k) ≤
( m−k−1

∏
i=0

[λq]
m−i

m
Aq

[μq]
i
m
Aq

)max{1, 1
q−1 } ≤

(
[λq]

m+k+1
2

Aq
[μq]

m−k−1
2

Aq

) m−k
m max{1, 1

q−1 }
,

and

B(m, k) ≤
( m

∏
i=m−k+1

[λp]
m−i

m
Ap

[μp]
i
m
Ap

)max{1, 1
p−1 } ≤

(
[λp]

k−1
2

Ap
[μp]

m− k−1
2

Ap

) k
m max{1, 1

p−1 }
.

Combining all the preceding estimates obtains (i).
To proof (ii), we are going to follow ideas in [10]. Based on (12), it suffices to show that

there exists a positive constant C such that for all dyadic cubes Q ∈ Dt,

ω
2

1
N+2

(b; Q)m ≤ C
(

ν1/m(Q)

|Q|

)m

‖(Iα)
m
b ‖Lp

μp (H)→Lq
λq (H) (15)
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Using Proposition 2 and Hölder inequality implies that

ω
2

1
N+2

(b; Q)m|F1||F2| ≤
∫

F1

∫
F2

(
b(x)− b(y)

)m
dxdy

≤ dima(Q)N−α
∫

F1

∫
F2

(
b(x)− b(y)

)m

d(x, y)N−α
dxdy

= dima(Q)N−α
∫

F1

(Iα)
m
b (χF2)(x)dx

≤ C|Q|1− α
N

( ∫
Q

λ−q′
) 1

q′
·
( ∫

H
[(Iα)

m
b (χF2)]

qλqdx
) 1

q

≤ C|Q|1− α
N

( ∫
Q

λ−q′
) 1

q′
·
( ∫

Q
μp
) 1

p

‖(Iα)
m
b ‖Lp

μp (H)→Lq
λq (H)

= C|Q|2
(

1
|Q|

∫
Q

λ−q′
) 1

q′
·
(

1
|Q|

∫
Q

μp
) 1

p

‖(Iα)
m
b ‖Lp

μp (H)→Lq
λq (H),

where we used that 1
q +

α
N = 1

p .
Further, this yields

ω
2

1
N+2

(b; Q)m ≤ C
(

1
|Q|

∫
Q

λ−q′
) 1

q′
·
(

1
|Q|

∫
Q

μp
) 1

p

‖(Iα)
m
b ‖Lp

μp (H)→Lq
λq (H).

Then from [8], we have(
1
|Q|

∫
Q

μp
) 1

p

≤ C
(

1
|Q|

∫
Q

ν1/m
)m( 1

|Q|
∫

Q
λp
) 1

p

,

so the

ω
2

1
N+2

(b; Q)m

≤ C
(

1
|Q|

∫
Q

ν1/m
)m( 1

|Q|
∫

Q
λ−q′

) 1
q′
(

1
|Q|

∫
Q

λp
) 1

p

‖(Iα)
m
b ‖Lp

μp (H)→Lq
λq (H).

Now we observe that since q > p then by Hölder inequality,

(
1
|Q|

∫
Q

λp
) 1

p

≤
(

1
|Q|

∫
Q

λq
) 1

q

and
(

1
|Q|

∫
Q

λ−q′
) 1

q′
≤
(

1
|Q|

∫
Q

λ−p′
) 1

p′
,

then (
1
|Q|

∫
Q

λ−q′
) 1

q′
(

1
|Q|

∫
Q

λp
) 1

p

≤
[(

1
|Q|

∫
Q

λq
) 1

q
(

1
|Q|

∫
Q

λ−p′
) q

p′
] 1

q

.

Consequently, since λ ∈ Ap,q, we finally get

ω
2

1
N+2

(b; Q)m ≤ C
(

1
|Q|

∫
Q

ν1/m
)m

‖(Iα)
m
b ‖Lp

μp (H)→Lq
λq (H).

Thus, (15) holds and hence, the proof of (ii) is complete.
Therefore, we complete the proof of Theorem 1.
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Abstract: Let (X , d, μ) be a space of homogeneous type in the sense of Coifman and Weiss. In this
article, the author develops a partial theory of paraproducts {Πj}3

j=1 defined via approximations
of the identity with exponential decay (and integration 1), which are extensions of paraproducts
defined via regular wavelets. Precisely, the author first obtains the boundedness of Π3 on Hardy
spaces and then, via the methods of interpolation and the well-known T(1) theorem, establishes
the endpoint estimates for {Πj}3

j=1. The main novelty of this paper is the application of the Abel

summation formula to the establishment of some relations among the boundedness of {Πj}3
j=1,

which has independent interests. It is also remarked that, throughout this article, μ is not assumed to
satisfy the reverse doubling condition.

Keywords: space of homogeneous type; paraproduct; T(1) theorem; hardy space; bilinear estimate

1. Introduction

Classical paraproducts defined via convolutions are kinds of non-commutative bi-
linear operators, which are useful tools in the decompositions of products of functions.
The prototypes of paraproducts can be found, for examples, in the work of Fujita and
Kato [1] and Kato [2] on the study of mild solutions of Navier–Stokes equations and in the
investigation of pseudo-differential operators and para-differential operators by Meyer and
Coifman [3–5]. The formal notion of paraproducts has been introduced in 1981 by Bony for
the study of the nonlinear hyperbolic partial differential equations in [6]. Since then the
theory of papraproducts has been developed rapidly, which plays an essential role in both
harmonic analysis and partial differential equations. For applications of paraproducts in
harmonic analysis, we refer the reader to [7–16]. See also [17,18] for more applications of
paraproducts in mathematical physics. The paraproducts defined via wavelets was first
investigated by Grafakos and Torres [19] and then studied by Bonami et al. [20], which
play crucial roles in both the bilinear decompositions of products of functions in [20,21],
the (sub-)bilinear decompositions of commutators and the endpoint estimates of commuta-
tors in [22,23]. See the survey [24] and the monographs [25,26] for more information.

In 1970s, Coifman and Weiss [27,28] introduced the notion of the space of homoge-
neous type which has been proven to be a natural background for extensions of many
classical results on Euclidean spaces. Recall that a quasi-metric space (X , d) is a non-empty
set X equipped with a quasi-metric d such that, for any x, y, z ∈ X ,

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) the quasi-triangle inequality d(x, y) ≤ A0[d(x, z) + d(z, y)] holds true, where A0 ∈

[1, ∞) is called the quasi-triangle constant which is independent of x, y and z.

The triple (X , d, μ) is called a space of homogeneous type if μ is a non-negative measure
satisfying the following doubling condition: there exists a positive constant C(X ) ∈ [1, ∞),
depending on X , such that, for any r ∈ (0, ∞) and x ∈ X ,

μ(B(x, 2r)) ≤ C(X ) μ(B(x, r))
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or, equivalently, there exists a positive constant C such that, for any λ ∈ [1, ∞), r ∈ (0, ∞)
and x ∈ X ,

μ(B(x, λr)) ≤ Cλnμ(B(x, r)), (1)

where B(x, r) := {y ∈ X : d(y, x) < r} and n := log 2C(X ) represents the “upper
dimension” of X .

As in ([29], Section 1) (see also ([30], Section 1)), throughout the whole article, we
always assume that (X , d, μ) is a space of homogeneous type satisfying the following
additional assumptions:

(i) Suppose that, for any given x ∈ X , the sequence of balls, {B(x, r)}r∈(0,∞), in X is a
basis of open neighborhoods around x.

(ii) Assume that μ satisfies that all the open sets are measurable and, for any measurable
set A ⊂ X , there exists a Borel set E ⊃ A such that μ(A) = μ(E), which is called
Borel regular.

(iii) Suppose that, for any x ∈ X and r ∈ (0, ∞), μ(B(x, r)) ∈ (0, ∞).
(iv) For the sake of the presentation simplicity, without loss of generality, we always

assume that diam (X ) := sup{d(x, y) : x, y ∈ X} = ∞ and (X , d, μ) is non-atomic,
that is, for any x ∈ X , μ({x}) = 0.

It was shown in ([31], Lemma 5.1) or ([32], Lemma 8.1) (see also ([30], Section 1)) that,
under the above assumptions, diam (X ) = ∞ if and only if μ(X ) = ∞.

A space of homogeneous type, (X , d, μ), is called an RD-space introduced by Han
et al. [33] (see also [34]) if μ further satisfies the following reverse doubling condition (or,
for brevity, RD-condition): there exist positive constants a0, C̃(X ) ∈ (1, ∞), depending on X ,
such that, for any x ∈ X and r ∈ (0, diam (X )/a0),

μ(B(x, a0r)) ≥ C̃(X )μ(B(x, r)). (2)

Notice that the harmonic analysis on spaces of homogeneous type has a long history;
see, for example, [27,28,35,36]. We refer the reader to [33,34,37–46] for the real-variable
theory of some function spaces and Calderón–Zygmund operators on RD-spaces. Further-
more, for some recent developments on the real-variable theory of function spaces and its
applications on spaces of homogeneous type, please see [29,47–61].

Some progress is also made on the boundedness of paraproducts on metric measure
spaces. Let (X , d, μ) be an RD-space. Han et al. ([33], Theorem 5.56) extended the cele-
brated T(1)-theorem of David and Journé [11] to the RD-space via paraproducts. Later,
Grafakos et al. [43] introduced a kind of paraproducts on X , which extends the correspond-
ing notion of paraproducts in ([33], Theorem 5.56), and investigated their boundedness
from Hp(X )× Hq(X ) into Hr(X ) by (in)homogeneous Calderón reproducing formulae,
which also generalizes a classical result on Euclidean spaces obtained by Grafakos and
Kalton [14]. Grafakos et al. [43] also studied the endpoint estimates of paraproducts on
X via the theory of Calderón–Zygmund operators. Moreover, via the off-diagonal es-
timates of integral kernels, Grafakos et al. [42] showed that a kind of bilinear discrete
paraproducts on X via the theory of multilinear Calderón–Zygmund operators established
in [42], are bounded on weighted Lebesgue spaces, Triebel–Lizorkin spaces and Besov
spaces. Recently, Chang et al. [30,62] showed that the aforementioned boundedness of
paraproducts on RD-spaces remains true on spaces of homogeneous type, namely, without
having recourse to the RD-condition (2).

A space of homogeneous type, (X , d, μ), is called a metric measure space of homogeneous
type if the quasi-triangle constant A0 = 1. In this setting, Fu et al. [48] proved that f × g
of f ∈ H1

at(X ) and g ∈ BMO(X ) can be written into a sum of three bilinear operators
{Πj}3

j=1, which are also called paraproducts. These paraproducts play important roles in
the study on the endpoint boundedness of the (sub-)linear commutator [b, T] of a (sub-
)linear operator T and b ∈ BMO (X ) on (local) Hardy spaces in [29,57,58]; see also the
survey [63] for more details. A natural question is whether there exists a relatively complete

112



Mathematics 2021, 9, 2591

boundedness theory for paraproducts {Πj}3
j=1 in [48] which enjoy the same boundedness

as the paraproducts in [30,62].
In this article, we give a partial affirmative answer to this question with the para-

products {Πj}3
j=1 in [48] replaced by more general forms via the exp-ATIs and 1-exp-ATIs

from [53]. We obtained the boundedness of Π3 on Hardy spaces and its endpoint estimates,
and the endpoint estimates for Π1 and Π2. The boundedness of Π1 and Π2 on Hardy
spaces may need different approaches and was left as an unsolved question.

In what follows, we always assume that (X , d, μ) is a space of homogeneous type. The
remainder of this article is organized as follows.

Section 2 is devoted to some preliminary notions and results which are needed to the
proof of the main results Theorems 2–4 below. In particular, we recall the T(1) theorem
from ([32], Section 12) (see Lemma 3 below), and use the Abel summation formula to build
some relations among the boundedness of {Πj}3

j=1 (see Theorem 1 below).
In Section 3, we prove Theorems 2–4 below. In precise, Theorem 2 is an easy conse-

quence of the Hölder inequality and the definition of Hp(X ). To show (i)–(iv) of Theorem 3,
we first fix an f ∈ BMO (X ) and express the paraproduct Π3 by an integral operator K(3)

f .
Then, via the methods of interpolation and the crucial estimates (11) and (12), we show
that K(3)

f has the weak boundedness property WBP(η) with η as in Lemma 2 below. Next

we prove that the kernel of K(3)
f is an η-Calderón–Zygmund kernel, which also relies

on estimates (11) and (12). Moreover, we point out that K(3)
f (1), (K(3)

f )∗(1) ∈ BMO (X ),
which, together with the T(1) theorem from ([32], Theorem 12.2) and the boundedness of
Calderón–Zygmund operators, we finally finish the proof of (i)-(iv) of Theorem 3. In order
to prove (v) and (vi) of Theorem 3, we first fix g ∈ L∞(X ) and write Π3 as an integral
operator K(3)

g . By the fact that L∞(X ) ⊂ BMO (X ) and some arguments used in the proof
of (i)–(iv) of Theorem 3, we obtain the desired results and finish the proof of Theorem 3.
The proof of (i)–(iv) of Theorem 4 is a consequence of the arguments and ideas from the
proof of (i)–(iv) of Theorem 3. The main novelty of this paper lies in the proof of (v)–
(vi) of Theorem 4, where we use the Abel summation formula to build some relations
among the boundedness of {Πj}3

j=1 and then transform the same boundedness of Π1 from

L2(X )× L∞(X ) into L2(X ) into the same boundedness of Π2 and Π3. We also remark that,
throughout this article, μ is not assumed to satisfy the reverse doubling condition (2).

Finally, we list some notation used throughout this article. Let N := {1, 2, . . .} and
Z+ := {0} ∪N. We use C or c to denote a positive constant which may be different from
line to line, but is independent of main parameters. In addition, we also use C(ρ, α, ...)
or c(ρ, α, ...) to denote a positive constant depending on the indicated parameters ρ, α, . . ..
For any two real functions f and g, we write f � g when f ≤ Cg and f ∼ g when
f � g � f . For any subset E of X , denote by 1E its characteristic function. For any x, y ∈ X ,
r, ρ ∈ (0, ∞) and ball B := B(x, r) := {y ∈ X : d(y, x) < r}, define ρB := B(x, ρr),
V(x, r) := μ(B(x, r)) =: Vr(x), and V(x, y) := μ(B(x, d(x, y))). For any p ∈ [1, ∞], let p′

denote its conjugate index, namely, 1/p + 1/p′ = 1. For any a, b ∈ R, let a ∧ b := min{a, b}
and a ∨ b := max{a, b}. Finally, for any linear integral operator T, we keep the notation T
for its integral kernel.

2. Preliminary Notions and Results

In this section, we mainly state some preliminary notions and results which are needed
to the proof of the main results Theorems 2–4 below. In particular, we investigate some
relations among the boundedness of {Πj}3

j=1.
We first recall the notions of some function spaces. Let q ∈ (0, ∞]. The Lebesgue space

Lq(X ) is defined to be the set of all μ-measurable functions f on X such that, if q ∈ (0, ∞),

‖ f ‖Lq(X ) :=
[∫
X
| f (x)|q dμ(x)

]1/q
< ∞;
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if q = ∞, ‖ f ‖L∞(X ) := ess sup
x∈X

| f (x)| < ∞, where ess sup
x∈X

| f (x)| denotes the essential

supremum of | f | on X . Denote by L1
loc (X ) the space of all locally integrable functions.

Let s ∈ (0, 1] and denote by C(X ) the space of all continuous functions on X . Then the
homogeneous and inhomogeneous spaces Cs(X ) and Ċs(X ) of s-Hölder continuous functions on
X are, respectively, defined by setting

Cs(X ) :=
{

f ∈ C(X ) : ‖ f ‖Cs(X ) < ∞
}

and Ċs(X ) :=
{

f ∈ C(X ) : ‖ f ‖Ċs(X ) < ∞
}

with

‖ f ‖Cs(X ) := ‖ f ‖L∞(X ) + ‖ f ‖Ċs(X ) and ‖ f ‖Ċs(X ) := sup
{(x, y)∈X×X : x �=y}

| f (x)− f (y)|
[d(x, y)]s

.

Moreover, the space Cs
b(X ) of all s-Hölder continuous functions with bounded support on

X is defined by setting

Cs
b(X ) := { f ∈ Cs(X ) : f has bounded support},

where we equip Cs
b(X ) with the usual strict inductive limit topology (see, for instance, ([36],

p. 273) and ([33], p. 23)). A useful subspace C̊s
b(X ) of Cs

b(X ) is defined by setting C̊s
b(X ) :=

{ f ∈ Cs
b(X ) :

∫
X f (x) dμ(x) = 0}. Moreover, the dual space (Cs

b(X ))′ [resp., (C̊s
b(X ))′]

of Cs
b(X ) [resp., C̊s

b(X )] is defined to be the set of all linear functionals on Cs
b(X ) [resp.,

on C̊s
b(X )] equipped with the weak-∗ topology.

Definition 1 ([27,32,35]). Let s ∈ (0, 1]. A function K : (X ×X ) \ {(x, x) : x ∈ X} → C is
called an s-Calderón–Zygmund kernel if there exists a positive constant C(K), depending on K,
such that

(i) for any x, y ∈ X with x �= y,

|K(x, y)| ≤ C(K)
1

V(x, y)
; (3)

(ii) for any x, x̃, y ∈ X satisfying d(x, x̃) ≤ (2A0)
−1d(x, y) with x �= y,

|K(x, y)− K(x̃, y)| ≤ C(K)

[
d(x, x̃)
d(x, y)

]s 1
V(x, y)

(4)

and

|K(y, x)− K(y, x̃)| ≤ C(K)

[
d(x, x̃)
d(x, y)

]s 1
V(x, y)

. (5)

A linear operator T : Cs
b(X )→ (Cs

b(X ))′ is called an s-Calderón–Zygmund operator if T
can be extended to a bounded linear operator on L2(X ) and if there exists an s-Calderón–Zygmund
kernel K such that, for any f ∈ Cs

b(X ) and x /∈ supp f , T f (x) :=
∫
X K(x, y) f (y) dμ(y).

Definition 2 ([28]). Let p ∈ (0, 1] and q ∈ [1, ∞] ∩ (p, ∞]. A function a on X is called a
(p, q)-atom supported on a ball B if (i) supp a ⊂ B; (ii) ‖a‖Lq(X ) ≤ [μ(B)]1/q−1/p; (iii)∫
X a(x) dμ(x) = 0, here and thereafter, for any measurable function f , supp f := {x ∈ X :

f (x) �= 0}.
A function f ∈ (Lip1/p−1(X ))′ when p ∈ (0, 1), or f ∈ L1(X ) when p = 1, is said

to belong to the atomic Hardy space Hp, q
at (X ) if there exist (p, q)-atoms {aj}∞

j=1 and numbers
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{λj}∞
j=1 ⊂ C such that ∑∞

j=1 |λj|p < ∞ and f = ∑∞
j=1 λjaj in (Lip1/p−1(X ))′ when p ∈ (0, 1),

or in L1(X ) when p = 1. Moreover, the quasi-norm of f in Hp, q
at (X ) is defined by setting

‖ f ‖Hp, q
at (X ) := inf

⎧⎨⎩
[

∞

∑
j=1
|λj|p

]1/p
⎫⎬⎭,

where the infimum is taken over all decompositions of f as above.

Let p ∈ (0, 1]. It was shown in ([28], Theorem A) that Hp,q
at (X ) is independent of the

choice of q ∈ [1, ∞] ∩ (p, ∞] and hence simply denoted by Hp
at(X ).

Definition 3 (([34], Definition 2.2) and ([33], Definition 2.8)). Let x1 ∈ X be fixed, r, ϑ ∈
(0, ∞) and κ ∈ (0, 1]. The space G(x1, r, κ, ϑ) of test functions is defined to be the set of all
measurable functions f on X such that there exists a positive constant C such that

(T1) for any x ∈ X ,

| f (x)| ≤ C
1

μ(B(x1, r)) + V(x1, x)

[
r

r + d(x1, x)

]ϑ

;

(T2) for any x, y ∈ X with d(x, y) ≤ [r + d(x1, x)]/(2A0),

| f (x)− f (y)| ≤ C
[

d(x, y)
r + d(x1, x)

]κ 1
μ(B(x1, r)) + V(x1, x)

[
r

r + d(x1, x)

]ϑ

.

Moreover, the norm of f in G(x1, r, κ, ϑ) is defined by setting

‖ f ‖G(x1, r, κ, ϑ) := inf{C : C satisfies (T1) and (T2)}.

It was shown in ([33], pp. 18–20) that, for any x ∈ X and r ∈ (0, ∞),

G(x, r, κ, ϑ) = G(x1, 1, κ, ϑ)

with equivalent norms, but the positive equivalence constants may depend on x and r and that
G(x1, 1, κ, ϑ) is a Banach space. In what follows, for short, we write G(κ, ϑ) := G(x1, 1, κ, ϑ) and
let G̊(κ, ϑ) := { f ∈ G(κ, ϑ) :

∫
X f (x) dμ(x) = 0}.

Let ε ∈ (0, 1], κ, ϑ ∈ (0, ε] and Gε
0(κ, ϑ) [resp., G̊ε

0(κ, ϑ)] be the completion of the space
G(ε, ε) [resp., G̊(ε, ε)] in the G(κ, ϑ) norm. Moreover, if f ∈ Gε

0(κ, ϑ), we then let

‖ f ‖Gε
0(κ,ϑ) := ‖ f ‖G(κ,ϑ).

The dual space (Gε
0(κ, ϑ))′ [resp., (G̊ε

0(κ, ϑ))′] is defined to be the set of all continuous linear
functionals on Gε

0(κ, ϑ) [resp., G̊ε
0(κ, ϑ)] and equipped with the weak-∗ topology.

We then recall the following system of dyadic cubes given in ([64], Theorem 2.2),
which was formulated in ([53], Lemma 2.3).

Lemma 1. Fix constants c0, C0 and δ such that 0 < c0 ≤ C0 < ∞, δ ∈ (0, 1), and 12A3
0C0δ ≤ c0.

Assume that a set of points, {zk
α : k ∈ Z, α ∈ Ak} ⊂ X with

Ak being a countable set of indices for any k ∈ Z, (6)

satisfies the following properties: for any k ∈ Z, (i) d(zk
α, zk

β) ≥ c0δk when α �= β; (ii) for any

x ∈ X , minα∈Ak
d(x, zk

α) ≤ C0δk.
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Then there exists a family of sets, {Qk
α : k ∈ Z, α ∈ Ak}, which is called the system of

half-open dyadic cubes, satisfying

(iii) X =
⋃

α∈Ak
Qk

α with {Qk
α : α ∈ Ak} mutually disjoint;

(iv) if � ≥ k, α ∈ Ak and β ∈ A�, then either Q�
β ⊂ Qk

α or Qk
α ∩Q�

β = ∅ holds true;

(v) for any α ∈ Ak, B(zk
α, c�δk) ⊂ Qk

α ⊂ B(zk
α, C�δk) with c� := (3A2

0)
−1c0, C� := 2A0C0 and

zk
α being called the “center" of Qk

α.

In what follows, for any k ∈ Z, let

X k := {zk
α}α∈Ak

, Gk := Ak+1 \Ak, Y k := X k+1 \ X k =: {yk
β}β∈Gk

, (7)

and, for any y ∈ X , let d(y,Y k) := infz∈Y k d(y, z).
Based on the set {zk

α}k∈Z, α∈Ak
[with Ak as in (6)] of points as in Lemma 1 and its

related dyadic cubes, Auscher and Hytönen ([32], Theorem 7.1) constructed the following
notable system {ψk

β}k∈Z, β∈Gk
of regular wavelets on X , which is an orthonormal basis of

L2(X ).

Lemma 2. There exist constants C, ν ∈ (0, ∞), a ∈ (0, 1], η ∈ (0, 1), and regular wavelets
{ψk

β}k∈Z, β∈Gk
, with Gk as in (7), satisfying

(i) for any k ∈ Z, β ∈ Gk and x ∈ X ,

∣∣∣ψk
β(x)

∣∣∣ ≤ C
1√

Vδk (yk
β)

exp

⎧⎨⎩−ν

[
d(yk

β, x)

δk

]a
⎫⎬⎭;

(ii) for any k ∈ Z, β ∈ Gk and x, y ∈ X with d(x, y) ≤ δk,

∣∣∣ψk
β(x)− ψk

β(y)
∣∣∣ ≤ C

[
d(x, y)

δk

]η 1√
Vδk (yk

β)
exp

⎧⎨⎩−ν

[
d(yk

β, x)

δk

]a
⎫⎬⎭;

(iii) for any k ∈ Z and β ∈ Gk,
∫
X ψk

β(x) dμ(x) = 0 with {yk
β}k∈Z, β∈Gk

as in (7).

Moreover, the system of regular wavelets {ψk
β}k∈Z, β∈Gk

is both an orthonormal basis of L2(X )

and an unconditional basis of Lp(X ) for any given p ∈ (1, ∞).

Definition 4 (([54], Definition 2.7), ([53], Definition 2.4) and ([30], Definition 2.3)). A se-
quence {Qk}k∈Z of bounded linear integral operators on L2(X ) is called an approximation of
the identity with exponential decay (for short, exp-ATI) if there exist constants C, ν ∈ (0, ∞),
a ∈ (0, 1] and η ∈ (0, 1) such that, for any k ∈ Z, the kernel of the operator Qk, which is still
denoted by Qk, satisfies

(i) (the identity condition) ∑∞
k=−∞ Qk = I in L2(X ), where I denotes the identity operator

on L2(X );
(ii) (the size condition) for any x, y ∈ X ,

|Qk(x, y)| ≤ CRk(x, y)

with

Rk(x, y) : =
1√

Vδk (x)Vδk (y)
exp
{
−ν

[
d(x, y)

δk

]a}

× exp

{
−ν

[
max {d(x,Y k), d(y,Y k)}

δk

]a}
;
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(iii) (the regularity condition) for any x, x̃, y ∈ X with d(x, x̃) ≤ δk,

|Qk(x, y)−Qk(x̃, y)|+ |Qk(y, x)−Qk(y, x̃)| ≤ C
[

d(x, x̃)
δk

]η

Rk(x, y);

(iv) (the second difference regularity condition) for any x, x̃, y, ỹ ∈ X with d(x, x̃) ≤ δk and
d(y, ỹ) ≤ δk,

|[Qk(x, y)−Qk(x̃, y)]− [Qk(x, ỹ)−Qk(x̃, ỹ)]| ≤ C
[

d(x, x̃)
δk

]η[d(y, ỹ)
δk

]η

Rk(x, y);

(v) (the cancellation condition) for any x, y ∈ X ,
∫
X Qk(x, y) dμ(y) = 0 =

∫
X Qk(x, y) dμ(x).

Remark 1. Let {ψk
β}k∈Z, β∈Gk

be as in Lemma 2. For any k ∈ Z and x, y ∈ X , let

Dk(x, y) := ∑
β∈Gk

ψk
β(x)ψk

β(y).

It was shown in ([54], p. 291) that the sequence {Dk}k∈Z of linear integral operators associated
with kernels {Dk(·, ·)}k∈Z satisfies all conditions (i)–(v) of Definition 4.

Definition 5 ([53], Definition 2.8). A sequence {Pk}k∈Z of bounded linear integral operators on
L2(X ) is called an approximation of the identity with exponential decay and integration 1
(for short, 1-exp-ATI) if {Pk}k∈Z has the following properties:

(i) for any k ∈ Z, Pk satisfies (ii), (iii), and (iv) of Definition 4, but without the exponential decay
factor

exp

{
−ν

[
max {d(x,Y k), d(y,Y k)}

δk

]a}

with Y k as in (7);
(ii)

∫
X Pk(x, y) dμ(y) = 1 =

∫
X Pk(y, x) dμ(y) for any k ∈ Z and x ∈ X ;

(iii) Let Qk := Pk − Pk−1 for any k ∈ Z. Then {Qk}k∈Z is an exp-ATI.

Remark 2.

(i) The existence of the 1-exp-ATI is ensured by ([32], Lemma 10.1) (see also ([53], Remark 2.9)).
(ii) For any given p ∈ [1, ∞], Pk and hence Qk are bounded on Lp(X ) uniformly in k ∈ Z; see,

for instance, ([54], Proposition 2.2(iii)).
(iii) It was shown that limk→∞ Pk = I on L2(X ); see, for example, ([53], Remark 2.9).

Definition 6 (([53], Section 3 and Theorem 5.10) and ([62], Definition 1.1)). Let κ, ϑ ∈ (0, η)
with η as in Lemma 2, {Pk}k∈Z be a 1-exp-ATI and Qk := Pk − Pk−1 for any k ∈ Z. Then, for any
f ∈ (Gη

0 (κ, ϑ))′, the non-tangential maximal functionMρ( f ) of f , with aperture ρ ∈ (0, ∞),
is defined by setting, for any x ∈ X ,

Mρ( f )(x) := sup
k∈Z

sup
y∈B(x,ρδk)

|Pk f (y)|.

Moreover, for any f ∈ (G̊η
0 (κ, ϑ))′, the Littlewood–Paley g-function g( f ) of f is defined by

setting, for any x ∈ X ,

g( f )(x) :=

[
∑
k∈Z
|Qk f (x)|2

]1/2

.
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Let p ∈ (0, ∞] and ρ ∈ (0, ∞). Then the Hardy spaces Hp
ρ (X ) and Hp(X ) are defined,

respectively, by setting

Hp
ρ (X ) :=

{
f ∈
(
Gη

0 (κ, ϑ)
)′

: ‖ f ‖Hp
ρ (X ) := ‖Mρ( f )‖Lp(X ) < ∞

}
and

Hp(X ) :=
{

f ∈
(
G̊η

0 (κ, ϑ)
)′

: ‖ f ‖Hp(X ) := ‖g( f )‖Lp(X ) < ∞
}

.

Remark 3. Let ρ ∈ (0, ∞), p ∈ (n/(n + η), 1] and κ, ϑ ∈ (n(1/p − 1), η). It was shown
in ([62], Remark 1.2) and ([60], Theorem 6.1) that

(i) Hp
ρ (X ) and Hp

at(X ) coincide with equivalent quasi-norms;
(ii) Hp(X ) = Hp

at(X ) with equivalent quasi-norms as subspaces of (G̊η
0 (κ, ϑ))′;

(ii) for any given p ∈ (1, ∞), Hp
ρ (X ) = Lp(X ) = Hp(X ) with equivalent norms.

We now introduce the following notion of paraproducts on X adapted from ([48], (3.2)).

Definition 7. Let κ, ϑ ∈ (0, η) with η as in Lemma 2. Let {Pj}j∈Z be a 1-exp-ATI and Qj :=
Pj − Pj−1 for any j ∈ Z. Then the paraproduct Π3 is formally defined by setting, for any

f ∈
(
G̊η

0 (κ, ϑ)
)′

, g ∈
(
G̊η

0 (κ, ϑ)
)′

and x ∈ X ,

Π3( f , g)(x) := ∑
j∈Z

Qj( f )(x)Qj(g)(x),

where the series converges in
(
Gη

0 (κ, ϑ)
)′

.

Remark 4. In Theorems 2 and 3 below, we prove that Π3( f , g) in Definition 7 is well defined for
any ( f , g) ∈ Hp(X )× Hq(X ) with p, q ∈ (0, ∞) and any ( f , g) ∈ BMO (X )× Cη

b (X ).

Definition 8. Let κ, ϑ ∈ (0, η) with η be as in Lemma 2. Let {Pj}j∈Z be a 1-exp-ATI and
Qj := Pj − Pj−1 for any j ∈ Z. Then the paraproducts Π1 and Π2 are formally defined,
respectively, by setting

(i) for any f ∈ (G̊η
0 (κ, ϑ))′, g ∈ (Gη

0 (κ, ϑ))′ and x ∈ X ,

Π1( f , g)(x) := ∑
j∈Z

Qj( f )(x)Pj(g)(x);

(ii) for any f ∈ (Gη
0 (κ, ϑ))′, g ∈ (G̊η

0 (κ, ϑ))′ and x ∈ X ,

Π2( f , g)(x) := ∑
j∈Z

Pj( f )(x)Qj(g)(x),

where the above two series converge in
(
Gη

0 (κ, ϑ)
)′

.

Remark 5.

(i) In Theorem 4 below, we show that Π1( f , g) in Definition 8 is well defined for any ( f , g) ∈
L∞(X )× Cη

b (X ).
(ii) Due to the fact that Π2( f , g) = Π1(g, f ) for any proper functions f and g , we conclude that

Π2 shares corresponding boundedness to Π1 as in Theorem 4 below.

To prove Theorem 3 below, we need to recall the T(1) theorem from ([32], Section 12).
Let σ ∈ (0, 1) and s ∈ (0, σ]. A linear continuous operator T : Cs

b(X ) → (Cs
b(X ))′ is
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said to have weak boundedness property WBP(σ) if there exists a positive constant C1such
that, for any f , g ∈ Cσ

b (X ) normalized by ‖ f ‖L∞(X ) + rσ‖ f ‖Ċσ(X ) ≤ 1 and ‖g‖L∞(X ) +

rσ‖g‖Ċσ(X ) ≤ 1, with support in some ball B(x, r) (x ∈ X and r ∈ (0, ∞)),

|(T f , g)| ≤ C1V(x, r).

As for T(1) with T associated with the s-Calderón–Zygmund kernel, it is defined as a
continuous linear functional on C̊s

b(X ) by setting

〈T(1), f 〉 := 〈T(g), f 〉+
∫
X
(1− g(x))T∗( f )(x) dμ(x), (8)

where g : X → R satisfies that there exists a ball B(x0, r) ⊃ supp f such that, for any
x ∈ X , 1B(x0,r)(x) ≤ g(x) ≤ 1B(x0,2A0r)(x). It is not difficult to show that both of the two
terms in the right hand side of (8) are well defined.

Lemma 3. Let σ ∈ (0, 1), s ∈ (0, σ], (X , d, μ) be any space of homogeneous type and T be
associated to an s-Calderón–Zygmund kernel. Then T can be extended to a bounded operator on
L2(X ) if and only if T has WBP(s) and T(1), T∗(1) ∈ BMO (X ).

At the end of this section, we use the Abel summation formula to make some links
among the boundedness of Π1, Π2 and Π3 in some sense, which plays an important role
in the proof of Theorem 4 below. In what follows, for any N ∈ Z and suitable functions f
and g,

Π(N)
1 ( f , g) :=

N

∑
j=−N

Pj( f )Qj(g), Π(N)
2 ( f , g) :=

N

∑
j=−N

Qj( f )Pj(g)

and Π(N)
3 ( f , g) := ∑N

j=−N Qj( f )Qj(g).

Theorem 1. Assume that there exists a positive constant C such that, for any N ∈ N, f ∈ L2(X )
and g ∈ L∞(X ),∥∥∥Π(N)

2 ( f , g)
∥∥∥

L2(X )
+
∥∥∥Π(N)

3 ( f , g)
∥∥∥

L2(X )
≤ C‖ f ‖L2(X )‖g‖L∞(X ). (9)

Then Π1 defined as in Definition 8 is bounded from L2(X )× L∞(X ) into L2(X ).

Proof. Let f ∈ L2(X ) and g ∈ L∞(X ). For any N ∈ N, by the Abel summation formula,
we know that

Π(N)
1 ( f , g) =

N

∑
j=−N

Pj( f )Qj(g) =
N

∑
j=−N

Pj( f )
[
Pj(g)− Pj−1(g)

]
=

N

∑
j=−N

Pj( f )Pj(g)−
N

∑
j=−N

Pj( f )Pj−1(g)

=
N

∑
j=−N

Pj( f )Pj(g)−
N−1

∑
j=−N−1

Pj+1( f )Pj(g)

= PN+1( f )PN(g)− P−N( f )P−N−1(g)

+
N

∑
j=−N

[
Pj( f )− Pj+1( f )

]
Pj(g)

= PN+1( f )PN(g)− P−N( f )P−N−1(g)
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−
N

∑
j=−N

Qj+1( f )Pj(g)

= PN+1( f )PN(g)− P−N( f )P−N−1(g)

−
N

∑
j=−N

Qj+1( f )Pj+1(g) +
N

∑
j=−N

Qj+1( f )
[
Pj+1(g)− Pj(g)

]
= PN+1( f )PN(g)− P−N( f )P−N−1(g)

−
N

∑
j=−N

Qj+1( f )Pj+1(g) +
N

∑
j=−N

Qj+1( f )Qj+1(g)

= PN+1( f )PN(g)− P−N( f )P−N−1(g)

−
N+1

∑
j=−N+1

Qj( f )Pj(g) +
N+1

∑
j=−N+1

Qj( f )Qj(g)

= PN+1( f )PN(g)− P−N( f )P−N−1(g) + Q−N( f )P−N(g)

−QN+1( f )PN+1(g) + QN+1( f )QN+1(g)−Q−N( f )Q−N(g)

−Π(N)
2 ( f , g) + Π(N)

3 ( f , g).

From this, (9) and Remark 2(ii), we deduce that∥∥∥Π(N)
1 ( f , g)

∥∥∥
L2(X )

≤ ‖PN+1( f )PN(g)‖L2(X ) + ‖P−N( f )P−N−1(g)‖L2(X )

+ ‖Q−N( f )P−N(g)‖L2(X ) + ‖QN+1( f )PN+1(g)‖L2(X )

+ ‖QN+1( f )QN+1(g)‖L2(X ) + ‖Q−N( f )Q−N(g)‖L2(X )

+
∥∥∥Π(N)

2 ( f , g)
∥∥∥

L2(X )
+
∥∥∥Π(N)

3 ( f , g)
∥∥∥

L2(X )

� ‖ f ‖L2(X )‖g‖L∞(X ),

which, combined with the Fatou lemma, implies that

‖Π1( f , g)‖L2(X ) ≤ lim sup
N→∞

∥∥∥Π(N)
1 ( f , g)

∥∥∥
L2(X )

� ‖ f ‖L2(X )‖g‖L∞(X ).

This completes the proof of Theorem 1.

3. Boundedness of Paraproducts {Πj}3
j=1

This section is devoted to the proofs of the main results of this article on the bounded-
ness of paraproducts {Πj}3

j=1.
We now state the first main result of this article as follows.

Theorem 2. Let η be as in Lemma 2, p, q, r ∈ (n/(n + η), ∞) with 1/r = 1/p + 1/q, and
κ, ϑ ∈ (max{0, n(1/r− 1)}, η). Then the paraproduct Π3 as in Definition 7 is a bounded bilinear
operator from Hp(X )× Hq(X ) into Lr(X ).

Remark 6.

(i) Theorem 2 is an extension of ([48], Lemma 3.3).
(ii) It is still unclear whether Π1 and Π2 can be extended to bounded operators from Hp(X )×

Hq(X ) into Hr(X ) or not.

The following result is an easy consequence of Theorem 2, we omit the details here.

Corollary 1. Let q ∈ (1, ∞) and q′ := q/(q− 1). Then the paraproduct Π3 as in Definition 7 is
a bounded bilinear operator from Lq(X )× Lq′(X ) into L1(X ).
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Now, we are ready to prove Theorem 2.

Proof of Theorem 2. Let p, q, r, η, κ, ϑ, and Π3 be as in Theorem 2. For any ( f , g) ∈
Hp(X )× Hq(X ), we know that f , g ∈

(
G̊η

0 (κ, ϑ)
)′

. By the Hölder inequality, we immedi-
ately have

‖Π3( f , g)‖Lr(X ) ≤
∥∥∥∥∥∑

j∈Z
|Qj( f )Qj(g)|

∥∥∥∥∥
Lr(X )

≤

∥∥∥∥∥∥
[

∑
j∈Z
|Qj( f )|2

]1/2[
∑
j∈Z
|Qj(g)|2

]1/2
∥∥∥∥∥∥

Lr(X )

≤

∥∥∥∥∥∥
[

∑
j∈Z
|Qj( f )|2

]1/2
∥∥∥∥∥∥

Lp(X )

∥∥∥∥∥∥
[

∑
j∈Z
|Qj(g)|2

]1/2
∥∥∥∥∥∥

Lq(X )

= ‖ f ‖Hp(X )‖g‖Hq(X ),

which completes the proof of Theorem 2.

Then we state other two main results of this article, which give various endpoint
estimates of Π3 and Π1. In what follows, the weak Lebesgue space L1,∞(X ) is defined to be
the set of all μ-measurable functions f on X such that

‖ f ‖L1,∞(X ) := sup
λ∈(0,∞)

[λμ({x ∈ X : | f (x)| > λ})] < ∞,

and the space BMO (X ) the set of all locally integrable functions f on X such that

‖ f ‖BMO (X ) := sup
B⊂X

1
μ(B)

∫
B
| f (x)−mB( f )| dμ(x) < ∞,

where the supremum is taken over all balls of X and, here and thereafter, for any locally
integrable function f and a ball B ⊂ X , mB( f ) := 1

μ(B)

∫
B f (y) dμ(y).

Theorem 3. Let η be as in Lemma 2, q ∈ (1, ∞), κ, ϑ ∈ (max{0, n(1/q− 1)}, η), and Π3 be as
in Definition 7. Assume that the exp-ATI, {Qj}j∈Z, further satisfies

(a) Q∗j = Qj and Q2
j = Qj on L2(X ) for any j ∈ Z, namely, {Qj}j∈Z are projection operators

on L2(X ).
(b) ∑j∈Z Qj = I in H1

at(X ).

Then Π3 can be extended to a bounded bilinear operator

(i) from BMO (X )× Lq(X ) into Lq(X );
(ii) from BMO (X )× H1

at(X ) into L1(X );
(iii) from BMO (X )× L∞(X ) into BMO (X );
(iv) from BMO (X )× L1(X ) into L1,∞(X );
(v) from Lq(X )× L∞(X ) into Lq(X );
(vi) from L1(X )× L∞(X ) into L1,∞(X ).

Remark 7. From ([32], Section 10) and ([65], Theorem 3.10), it follows that the sequence {Dk}k∈Z
in Remark 1 still satisfies all the assumptions in Theorem 3. Thus, Theorem 3(ii) is an extension
of ([48], Theorem 4.9).

The following result is a variant of ([62], Theorem 7).
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Theorem 4. Let η be as in Lemma 2, q ∈ (1, ∞), p ∈ ( n
n+η , ∞), κ, ϑ ∈ (max{0, n(1/p −

1)}, η), and Π1 be as in Definition 8. Assume that the exp-ATI, {Qj}j∈Z, further satisfies, for any
f ∈ L∞(X ) and (1, 2)-atom h supported on some ball B0,∫

X
Π1( f , h)(x) dμ(x) = 0. (10)

Then Π1 can be extended to a bounded bilinear operator

(i) from L∞(X )× Hp(X ) into Hp(X );
(ii) from L∞(X )× H1

at(X ) into L1(X );
(iii) from L∞(X )× L∞(X ) into BMO (X );
(iv) from L∞(X )× L1(X ) into L1,∞(X ).
(v) from Lq(X )× L∞(X ) into Lq(X );
(vi) from L1(X )× L∞(X ) into L1,∞(X ).

Remark 8.

(i) Let f ∈ L∞(X ) ⊂ BMO (X ), h be a (1, 2)-atom and Qk := Dk (k ∈ Z) be as in Remark 1.
By ([48], p. 985, lines 1–3 from the bottom), we have Π1( f , h) = H + hmB0( f ) with H ∈
H1

at(X ), which, together with the fact that, for any G ∈ H1
at(X ),

∫
X G(x) dμ(x) = 0, further

implies that
∫
X Π1( f , h)(x) dμ(x) = 0. Therefore, the sequence {Dk}k∈Z in Remark 1 still

satisfies all the assumptions in Theorem 4.
(ii) It is still unknown what happens if we replace f ∈ L∞(X ) (resp., g ∈ L∞(X )) by f ∈

BMO (X ) (resp., g ∈ BMO (X )) in Theorem 4.

As in ([30], Remark 3.3) or ([62], Remark 1.8), the following estimates are important to
escape the dependence on the RD-condition (2). For any given a, c ∈ (0, ∞), and, for any
r ∈ (0, ∞) and x ∈ X ,

∑
{k∈Z: δk≥r}

1
Vδk (x)

exp

{
−c

[
d(x,Y k)

δk

]a}
� 1

Vr(x)
(11)

(see ([32], Lemma 8.3)) and, for any x, y ∈ X with x �= y,

∑
k∈Z

1
Vδk (x)

exp
{
−c
[

d(x, y)
δk

]a}
exp

{
−c

[
d(x,Y k)

δk

]a}
� 1

V(x, y)
, (12)

where the implicit positive constant is independent of x and y (see ([54], Lemma 4.9)), which
essentially connect the geometrical properties of X expressed via its equipped quasi-metric
d, dyadic reference points and dyadic cubes.

Now, we are ready to prove Theorem 3.

Proof of Theorem 3. Without loss of generality, we may assume that the sum ∑j∈Z in
Π3( f , g) is a finite sum ∑N

j=−N for any fixed N ∈ N, see ([66], pp. 302–305) for some details.
We first prove (i)–(iv) of this theorem. To this end, we temporarily fix an f ∈ BMO (X ).

For any x ∈ X , we write

Π3( f , g)(x) = ∑
j∈Z

Qj( f )(x)Qj(g)(x) =
∫
X

[
∑
j∈Z

Qj(x, y)Qj( f )(x)

]
g(y) dμ(y)

=:
∫
X

K(3)
f (x, y)g(y) dμ(y) =: K(3)

f (g)(x),
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where K(3)
f is an integral operator associated with the kernel defined by setting, for any

x, y ∈ X ,

K(3)
f (x, y) := ∑

j∈Z
Qj(x, y)Qj( f )(x).

To prove (i)–(iv) of this theorem, the key point is the proof of the boundedness of K(3)
f

on L2(X ), where we need some ideas from ([67], Remark 4.4.5).
We first claim that K(3)

f has WBP(η) and hence maps from Cη
b (X ) into (Cη

b (X ))′.

Indeed, let g, h ∈ Cη
b (X ), supported on some ball B(x0, r0) with x0 ∈ X and r0 ∈ (0, ∞),

be normalized by

‖g‖L∞(X ) + rη
0‖g‖Ċη

b (X ) ≤ 1 and ‖h‖L∞(X ) + rη
0‖h‖Ċη

b (X ) ≤ 1.

Then, by the fact from ([62], (2.3)) that

sup
j∈Z

‖Qj( f )‖L∞(X ) � ‖ f ‖BMO (X ) (13)

and the Hölder inequality, we conclude that∣∣∣〈K(3)
f (g), h

〉∣∣∣ = |〈Π3( f , g), h〉| =
∣∣∣∣∫X Π3( f , g)(x)h(x) dμ(x)

∣∣∣∣
≤ ∑

j∈Z

∫
X

∣∣Qj( f )(x)
∣∣∣∣Qj(g)(x)

∣∣|h(x)| dμ(x)

� ‖ f ‖BMO (X ) ∑
j∈Z

∫
X

∣∣Qj(g)(x)
∣∣|h(x)| dμ(x)

� ‖ f ‖BMO (X ) ∑
j∈Z
‖Qj(g)‖L2(X )‖h‖L2(X )

� ‖ f ‖BMO (X )[V(x0, r0)]
1/2 ∑

j∈Z
‖Qj(g)‖L2(X ).

Thus, to prove the above claim, it suffices to show that

∑
j∈Z
‖Qj(g)‖L2(X ) � [V(x0, r0)]

1/2. (14)

We further consider the following two cases.
(Case 1) δj ≥ r0. Choose a fixed x1 ∈ B(x0, 2r0) \ B(x0, r0). Then, by (v) and (ii) of

Definition 4 and (1), we have∣∣Qj(g)(x)
∣∣ (15)

=

∣∣∣∣∫B(x0,r0)
Qj(x, y)[g(y)− g(x1)] dμ(y)

∣∣∣∣
≤
∫

B(x0,r0)

∣∣Qj(x, y)
∥∥|g(y)− g(x1)| dμ(y)

�
∫

B(x0,r0)

1
Vδj(x)

exp
{
−ν

2

[
d(x, y)

δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}
[d(y, x1)]

η‖g‖Ċη
b (X ) dμ(y)

� rη
0‖g‖Ċη

b (X )

∫
B(x0,r0)

1
Vδj(x)

exp
{
−ν

2

[
d(x, y)

δj

]a}
exp
{
−ν

2

[
d(y, x0)

δj

]a}
× exp

{
−ν

[
d(y,Y j)

δj

]a}
exp
{
−ν

[
d(y, x0)

δj

]a}
dμ(y)
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�
∫

B(x0,r0)

1
Vδj(x)

exp
{
−ν

2

[
d(x, x0)

A0δj

]a}
exp

{
−ν

[
d(x0,Y j)

A0δj

]a}
dμ(y)

� V(x0, r0)

Vδj(x0)
exp
{
−ν

4

[
d(x, x0)

A0δj

]a}
exp

{
−ν

[
d(x0,Y j)

A0δj

]a}
,

which implies that

‖Qj(g)‖L∞(X ) �
V(x0, r0)

Vδj(x0)
exp

{
−ν

[
d(x0,Y j)

A0δj

]a}
.

On the other hand, from (15), we deduce that

‖Qj(g)‖L1(X ) � V(x0, r0)
∫
X

1
Vδj(x0)

exp
{
−ν

4

[
d(x, x0)

A0δj

]a}
dμ(x) exp

{
−ν

[
d(x0,Y j)

A0δj

]a}

� V(x0, r0) exp

{
−ν

[
d(x0,Y j)

A0δj

]a}
.

Thus,

‖Qj(g)‖L2(X ) ≤ ‖Qj(g)‖1/2
L∞(X )

‖Qj(g)‖1/2
L1(X )

� V(x0, r0)
1√

Vδj(x0)
exp

{
−ν

[
d(x0,Y j)

A0δj

]a}
,

which, combined with (11), further implies that

∑
{j∈Z:δj≥r0}

‖Qj(g)‖L2(X ) � V(x0, r0) ∑
{j∈Z:δj≥r0}

1√
Vδj(x0)

exp

{
−ν

[
d(x0,Y j)

A0δj

]a}
(16)

�
√

V(x0, r0).

(Case 2) δj < r0. In this case, for a fixed x ∈ X , by Definition 4(v), we first write

|Qj(g)(x)| ≤
∫
X
|Qj(x, y)||g(y)− g(x)| dμ(y)

=
∫

B(x,δj)
|Qj(x, y)||g(y)− g(x)| dμ(y) +

∫
X\B(x,δj)

· · · := I1 + I2.

Indeed, by Definition 4(ii) and (1), we have

I1 �
∫

B(x,δj)

1
Vδj(x)

exp
{
−ν

2

[
d(x, y)

δj

]a}
[d(y, x)]η‖g‖Ċη

b (X ) dμ(y)

�
(

δj

r0

)η ∫
B(x,δj)

1
Vδj(x)

exp
{
−ν

2

[
d(x, y)

δj

]a}
dμ(y) �

(
δj

r0

)η

.

and

I2 �
∞

∑
k=1

∫
B(x,2kδj)\B(x,2k−1δj)

1
Vδj(x)

exp
{
−ν

2

[
d(x, y)

δj

]a}
[d(y, x)]η‖g‖Ċη

b (X ) dμ(y)

�
∞

∑
k=1

2kη

(
δj

r0

)η

exp
{
−ν

4
2(k−1)a

} ∫
B(x,2kδj)

1
Vδj(x)

exp
{
−ν

4

[
d(x, y)

δj

]a}
dμ(y)

�
∞

∑
k=1

2kη exp
{
−ν

4
2(k−1)a

}( δj

r0

)η

�
(

δj

r0

)η

.
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Combining the estimates of I1 and I2, we obtain

‖Qj(g)‖L∞(X ) �
(

δj

r0

)η

. (17)

Now we estimate ‖Qj(g)‖L1(X ). Indeed, we know that

|Qj(g)(x)| ≤
∫

B(x0,r0)
|Qj(x, y)||g(y)| dμ(y) ≤ ‖g‖L∞(X )

∫
B(x0,r0)

|Qj(x, y)| dμ(y)

≤
∫

B(x0,r0)
|Qj(x, y)| dμ(y).

For any fixed x ∈ X , we further consider the following two cases.
Case 1 d(x, x0) < 2A0r0. Observe that, by Definition 4(ii) and (1),

|Qj(g)(x)| � 1.

Case 2 d(x, x0) ≥ 2A0r0. In this case, we observe that, for any y ∈ B(x0, r0),

d(x, y) ≥ d(x, x0)

A0
− d(y, x0) ≥

d(x, x0)

2A0

and hence, by Definition 4(ii) and (1),

|Qj(g)(x)| �
∫

B(x0,r0)

1
Vδj(x)

exp
{
−ν

2

[
d(x, y)

δj

]a}
dμ(y)

�
∫

B(x0,r0)

1
Vδj(x)

exp
{
−ν

2

[
d(x, x0))

2A0δj

]a}
dμ(y)

� V(x0, r0)

Vδj(x0)
exp
{
−ν

4

[
d(x, x0))

2A0δj

]a}
.

Combining Cases 1 and 2, we find that, for any x ∈ X ,

|Qj(g)(x)| � 1B(x0,2A0r0)
(x) + 1X\B(x0,2A0r0)

(x)
V(x0, r0)

Vδj(x0)
exp
{
−ν

4

[
d(x, x0))

2A0δj

]a}
,

which implies that

‖Qj(g)‖L1(X ) � V(x0, r0).

From this and and (17), it follows that

‖Qj(g)‖L2(X ) ≤ ‖Qj(g)‖1/2
L∞(X )

‖Qj(g)‖1/2
L1(X )

�
(

δj

r0

)η/2√
V(x0, r0),

which further implies that

∑
{j∈Z: δj<r0}

‖Qj(g)‖L2(X ) � r−η/2
0 ∑

{j∈Z: δj<r0}
δjη/2

√
V(x0, r0) �

√
V(x0, r0).

By this and (16), we conclude that

∑
j∈Z
‖Qj(g)‖L2(X ) �

√
V(x0, r0),

which further completes the proof of the above claim.
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Now we begin to show that K(3)
f (·, ·) satisfies (3) through (5). To achieve this, by (13),

Definition 4(ii), (1) and (12), we find that, for any x, y ∈ X with x �= y,∣∣∣K(3)
f (x, y)

∣∣∣ ≤ ∑
j∈Z
|Qj(x, y)||Qj( f )(x)| � ‖ f ‖BMO (X ) ∑

j∈Z
|Qj(x, y)| (18)

� ‖ f ‖BMO (X ) ∑
j∈Z

1
Vδj(x)

exp
{
−ν

2

[
d(x, y)

δj

]a}
exp

{
−ν

2

[
d(x,Y j)

δj

]a}

� ‖ f ‖BMO (X )
1

V(x, y)
.

This shows that K(3)
f (·, ·) satisfies (3).

Then we prove that K(3)
f (·, ·) satisfies (4). Indeed, let x, x̃, y ∈ X with d(x, x̃) ≤

1
2A0

d(x, y) and x �= y. We observe that

d(x̃, y) ≥ d(x, y)
A0

− d(x, x̃) ≥ d(x, y)
2A0

. (19)

From (13), it follows that∣∣∣K(3)
f (x, y)− K(3)

f (x̃, y)
∣∣∣ ≤ ∑

j∈Z
|Qj( f )(y)||Qj(x, y)−Qj(x̃, y)|

� ‖ f ‖BMO (X ) ∑
j∈Z
|Qj(x, y)−Qj(x̃, y)|.

We further consider the following two cases.
Case (1) d(x, x̃) ≤ δj. In this case, by Definition 4(iii) and (1), we have

|Qj(x, y)−Qj(x̃, y)| �
[

d(x, x̃)
δj

]η 1
Vδj(x)

exp
{
−ν

2

[
d(x, y)

δj

]a}
exp

{
−ν

[
d(x,Y j)

δj

]a}

�
[

d(x, x̃)
d(x, y)

]η 1
Vδj(x)

exp
{
−ν

4

[
d(x, y)

δj

]a}
exp

{
−ν

4

[
d(x,Y j)

δj

]a}
,

which, together with (12), implies that

∑
{j∈Z: δj≥d(x,x̃)}

|Qj(x, y)−Qj(x̃, y)| �
[

d(x, x̃)
d(x, y)

]η

∑
{j∈Z: δj≥d(x,x̃)}

1
Vδj(x)

exp
{
−ν

4

[
d(x, y)

δj

]a}

× exp

{
−ν

4

[
d(x,Y j)

δj

]a}

�
[

d(x, x̃)
d(x, y)

]η 1
V(x, y)

.

Case (2) d(x, x̃) > δj. In this case, from Definition 4(ii), (1) and (19), we deduce that

|Qj(x, y)−Qj(x̃, y)| ≤ |Qj(x, y)|+ |Qj(x̃, y)|

� 1
Vδj(y)

exp
{
−ν

2

[
d(x, y)

δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}

+
1

Vδj(y)
exp
{
−ν

2

[
d(x̃, y)

δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}
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� 1
Vδj(y)

exp
{
−ν

2

[
d(x, y)
2A0δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}

�
[

d(x, x̃)
δj

]η 1
Vδj(y)

exp
{
−ν

2

[
d(x, y)
2A0δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}

�
[

d(x, x̃)
d(x, y)

]η 1
Vδj(y)

exp
{
−ν

4

[
d(x, y)
2A0δj

]a}
exp

{
−ν

4

[
d(y,Y j)

2A0δj

]a}
.

Thus, by (12), we obtain

∑
{j∈Z: δj<d(x,x̃)}

|Qj(x, y)−Qj(x̃, y)|

�
[

d(x, x̃)
d(x, y)

]a

∑
{j∈Z: δj<d(x,x̃)}

1
Vδj(y)

exp
{
−ν

4

[
d(x, y)
2A0δj

]a}
exp

{
−ν

4

[
d(y,Y j)

2A0δj

]a}

�
[

d(x, x̃)
d(x, y)

]η 1
V(x, y)

.

Combining the Cases (1) and (2), we have

∑
j∈Z
|Qj(x, y)−Qj(x̃, y)| �

[
d(x, x̃)
d(x, y)

]η 1
V(x, y)

, (20)

which further proves that K(3)
f (·, ·) satisfies (4). By the arguments similar to those used in

the proof of (20), we conclude that

∑
{j∈Z}

|Qj(y, x)−Qj(y, x̃)| �
[

d(x, x̃)
d(x, y)

]η 1
V(x, y)

. (21)

We further show that K(3)
f (·, ·) satisfies (5). Indeed, let x, x̃, y ∈ X with d(x, x̃) ≤

1
2A0

d(x, y) and x �= y. From (13), Definition 4(v), (1) and (21), we deduce that∣∣∣K(3)
f (y, x)− K(3)

f (y, x̃)
∣∣∣

≤ ∑
j∈Z

∣∣Qj(y, x)Qj( f )(x)−Qj(y, x̃)Qj( f )(x̃)
∣∣

≤ ∑
j∈Z

∣∣Qj(y, x)−Qj(y, x̃)
∣∣|Qj( f )(x)|+ ∑

j∈Z
|Qj(y, x̃)|

∣∣Qj( f )(x)−Qj( f )(x̃)
∣∣

� ‖ f ‖BMO (X ) ∑
j∈Z

∣∣Qj(y, x)−Qj(y, x̃)
∣∣

+ ∑
j∈Z
|Qj(y, x̃)|

∫
X

∣∣Qj(x, z)−Qj(x̃, z)
∣∣∣∣∣ f (z)−mB(x,δj)( f )

∣∣∣ dμ(z)

� ‖ f ‖BMO (X )

[
d(x, x̃)
d(y, x)

]η 1
V(x, y)

+ A,

where

A := ∑
j∈Z
|Qj(y, x̃)|

∫
X

∣∣Qj(x, z)−Qj(x̃, z)
∣∣∣∣∣ f (z)−mB(x,δj)( f )

∣∣∣ dμ(z).

To estimate A, we deal with the following two cases.

127



Mathematics 2021, 9, 2591

Case (i) d(x, x̃) ≤ δj. By (ii) and (iii) of Definition 4, (1), (19), some arguments similar
to those used in the proof of ([62], (2.3)) and (12), we conclude that

A � ∑
j∈Z

1
Vδj(y)

exp
{
−ν

2

[
d(x̃, y)

δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}

×
∫
X

[
d(x, x̃)

δj

]η 1√
Vδj(x)Vδj(x̃)

exp
{
−ν

4

[
d(x, z)

δj

]a}
exp
{
−ν

4

[
d(x̃, z)

δj

]a}

×
∣∣∣ f (z)−mB(x,δj)( f )

∣∣∣ dμ(z)

� ∑
j∈Z

1
Vδj(y)

exp
{
−ν

2

[
d(x, y)
2A0δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}

×
∫
X

[
d(x, x̃)

δj

]η 1√
Vδj(x)Vδj(x̃)

exp
{
−ν

8

[
d(x, z)

δj

]a}
exp
{
−ν

8

[
d(x, x̃)
A0δj

]a}

×
∣∣∣ f (z)−mB(x,δj)( f )

∣∣∣ dμ(z)

� ∑
j∈Z

1
Vδj(y)

exp
{
−ν

4

[
d(x, y)
2A0δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}

×
∫
X

[
d(x, x̃)
d(x, y)

]η 1
Vδj(x)

exp
{
−ν

8

[
d(x, z)

δj

]a}∣∣∣ f (z)−mB(x,δj)( f )
∣∣∣ dμ(z)

� ‖ f ‖BMO (X )

[
d(x, x̃)
d(x, y)

]η

∑
j∈Z

1
Vδj(y)

exp
{
−ν

4

[
d(x, y)
2A0δj

]a}
exp

{
−ν

4

[
d(y,Y j)

2A0δj

]a}

� ‖ f ‖BMO (X )

[
d(x, x̃)
d(y, x)

]η 1
V(x, y)

.

Case (ii) d(x, x̃) > δj. From Definition 4(ii), (1), (19), some arguments similar to those
used in the proof of ([62], (2.3)) and (12), we deduce that

A � ∑
j∈Z

1
Vδj(y)

exp
{
−ν

2

[
d(x̃, y)

δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}
(22)

×
∫
X

[
d(x, x̃)

δj

]η[ 1
Vδj(x)

exp
{
−ν

2

[
d(x, z)

δj

]a}
+

1
Vδj(z)

exp
{
−ν

2

[
d(x̃, z)

δj

]a}]
×
∣∣∣ f (z)−mB(x,δj)( f )

∣∣∣ dμ(z)

� ∑
j∈Z

1
Vδj(y)

exp
{
−ν

4

[
d(x̃, y)

δj

]a}
exp
{
−ν

4

[
d(x, y)
2A0δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}

×
∫
X

[
d(x, x̃)

δj

]η[ 1
Vδj(x)

exp
{
−ν

2

[
d(x, z)

δj

]a}
+

1
Vδj(z)

exp
{
−ν

2

[
d(x̃, z)

δj

]a}]
×
∣∣∣ f (z)−mB(x,δj)( f )

∣∣∣ dμ(z)

�
[

d(x, x̃)
d(y, x)

]η

∑
j∈Z

1
Vδj(y)

exp
{
−ν

8

[
d(x, y)
2A0δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}

×
∫
X

1
Vδj(x)

exp
{
−ν

2

[
d(x, z)

δj

]a}∣∣∣ f (z)−mB(x,δj)( f )
∣∣∣ dμ(z)

+

[
d(x, x̃)
d(y, x)

]η

∑
j∈Z

1
Vδj(y)

exp
{
− ν

16

[
d(x, y)
2A0δj

]a}
exp

{
−ν

[
d(y,Y j)

δj

]a}
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×
∫
X

1
Vδj(z)

exp

{
− ν

16

[
d(x, z)
2A2

0δj

]a}∣∣∣ f (z)−mB(x,δj)( f )
∣∣∣ dμ(z)

� ‖ f ‖BMO (X )

[
d(x, x̃)
d(x, y)

]η

∑
j∈Z

1
Vδj(y)

exp
{
−ν

8

[
d(x, y)
2A0δj

]a}
exp

{
−ν

8

[
d(y,Y j)

2A0δj

]a}

� ‖ f ‖BMO (X )

[
d(x, x̃)
d(y, x)

]η 1
V(x, y)

.

Combining Cases (i) and (ii), we know that K(3)
f (·, ·) satisfies (5). These complete the

proof of (3) through (5) for K(3)
f (·, ·).

Next we show that K(3)
f (1), (K(3)

f )∗(1) ∈ BMO (X ). Obviously, K(3)
f (1) = 0 ∈

BMO (X ). Now we prove that (K(3)
f )∗(1) ∈ BMO (X ). It is easy to see that(

K(3)
f

)∗
(x, y) = K(3)

f (y, x) = ∑
j∈Z

Qj(y, x)Qj( f )(y).

For any h ∈ C̊η
b (X ) with supp h ⊂ B(x0, r0) and any N ∈ N, choose ηN ∈ Cη

b (X )
with ηN ≡ 1 on B(x0, 2A0Nr0), supp (ηN) ⊂ B(x0, 4A0Nr0), and 0 ≤ ηN ≤ 1. We write〈(

K(3)
f

)∗
(1), h

〉
=
〈(

K(3)
f

)∗
(ηN), h

〉
+
∫
X
[1− ηN(x)]K(3)

f (h)(x) dμ(x) =: IN + IIN .

By
∫
X h(y) dμ(y) = 0, we conclude that

IIN =
∫
X
[1− ηN(x)]

∫
X

K(3)
f (x, y)h(y) dμ(y)dμ(x)

=
∫
X

∫
B(x0,r0)

K(3)
f (x, y)[1− ηN(x)]h(y) dμ(y)dμ(x)

=
∫
X

∫
B(x0,r0)

[
K(3)

f (x, y)− K(3)
f (x, x0)

]
[1− ηN(x)]h(y) dμ(y)dμ(x).

We observe that if d(y, x0) < r0 and d(x, x0) ≥ 2A0Nr0, then d(x, x0) ≥ 2A0Nr0 ≥
2A0d(y, x0), which implies that

|IIN | ≤
∫
X\B(x0,2A0 Nr0)

∫
B(x0,r0)

∣∣∣K(3)
f (x, y)− K(3)

f (x, x0)
∣∣∣|1− ηN(x)||h(y)| dμ(y)dμ(x)

� ‖h‖L∞(X )

∫
X\B(x0,2A0 Nr0)

∫
B(x0,r0)

[
d(y, x0)

d(x, x0)

]η 1
V(x, x0)

dμ(y)dμ(x)

� ‖h‖L∞(X )r
η
0 V(x0, r0)

∫
X\B(x0,2A0 Nr0)

[
1

d(x, x0)

]η 1
V(x, x0)

dμ(x)→ 0, as N → ∞.

Then we need to prove limN→∞ IN = 〈 f , h〉. Indeed, for any h ∈ C̊η
b (X ), observe that,

by ([29], Corollary 3.14) and the boundedness of Qj on L2(X ), we know that Qj( f )ηN ∈
L2(X ), which, combined with the assumptions (a) and (b) in Theorem 3, the fact that h
is a multiple of a (1, 2)-atom, and the Lebesgue dominated convergence theorem, further
implies that

lim
N→∞

〈(
K(3)

f

)∗
(ηN), h

〉
= lim

N→∞
∑
j∈Z

〈
Q∗j (Qj( f )ηN), h

〉
= lim

N→∞
∑
j∈Z

〈
Qj( f )ηN , Qj(h)

〉
= lim

N→∞
∑
j∈Z

〈
ηN , Qj( f )Qj(h)

〉
= lim

N→∞

〈
ηN , ∑

j∈Z
Qj( f )Qj(h)

〉

129



Mathematics 2021, 9, 2591

=

〈
1, ∑

j∈Z
Qj( f )Qj(h)

〉
= ∑

j∈Z

〈
Qj( f ), Qj(h)

〉
= ∑

j∈Z

〈
f , Q∗j Qj(h)

〉
=

〈
f , ∑

j∈Z
Qj(h)

〉
= 〈 f , h〉,

where in the fifth inequality of this equation, we need to show that the series ∑j∈Z Qj( f )Qj(h)
absolutely converges in L1(X ). Indeed, from (13), ([62], (2.4)) and the fact that Cη

b (X ) ⊂
G(x1, r, η, ϑ) for any given x1 ∈ X and r, ϑ ∈ (0, ∞) (see ([33], p. 19)), it follows that∥∥∥∥∥∑

j∈Z
|Qj( f )Qj(h)|

∥∥∥∥∥
L1(X )

≤ ∑
j∈Z

∥∥Qj( f )Qj(h)
∥∥

L1(X )
≤ ∑

j∈Z

∥∥Qj( f )
∥∥

L∞(X )

∥∥Qj(h)
∥∥

L1(X )

� ‖ f ‖BMO (X ) ∑
j∈Z

∥∥Qj(h)
∥∥

L1(X )
� ‖ f ‖BMO (X )‖h‖G(x1,r,η,ϑ) < ∞,

which proves the desired result. This shows limN→∞ IN = 〈 f , h〉, which, together with
the estimate of IIN , implies that (K(3)

f )∗(1) = f on (Cη
b (X ))′ and hence (K(3)

f )∗(1) = f ∈
BMO (X ).

Moreover, from the T(1) theorem (see Lemma 3) ([32], Theorem 12.2), we deduce that
K(3)

f is bounded on L2(X ). Then, by the boundedness of the Calderón–Zygmund operator
(see, for example, ([27], Theorem 2.4 in Chapter III), ([28], p. 599), ([35], Theorem 1.12),
and ([58], Theorem 3.4)), we find that (i)–(iv) of Theorem 3 hold true.

Now we begin to show (v) and (vi) of Theorem 3. To this end, we temporarily fix a
g ∈ L∞(X ). From the fact that g ∈ L∞(X ) ⊂ BMO (X ), and the arguments used in the
proof of (i)–(iv) of Theorem 3, it follows that the kernel of the operator K(3)

g (·) := Π(·, g),
defined by setting, for any (x, y) ∈ X ×X ,

K(3)
g (x, y) := ∑

j∈Z
Qj(x, y)Qj(g)(y)

satisfies (3) through (5) and WBP(η) with ‖ f ‖BMO (X ) replaced by ‖g‖L∞(X ), K(3)
g (1) = 0 ∈

BMO (X ), (K(3)
g )∗(1) = g ∈ L∞(X ) ⊂ BMO (X ) and K(3)

g is bounded on L2(X ).

Thus, K(3)
g is an η-Calderón–Zygmund operator, which, combined with the fact that

(K(3)
g )∗(1) = g ∈ L∞(X ) ⊂ BMO (X ) and the T(1) theorem (see Lemma 3) and ([27],

Theorem 2.4 in Chapter III), further completes the proof of (v) and (vi) of Theorem 3 and
hence of Theorem 3.

Proof of Theorem 4. Similar to the proof of Theorem 3, without loss of generality, we may
assume that the sum ∑j∈Z in Π1( f , g) is a finite sum ∑N

j=−N for any fixed N ∈ N.
We first prove (i) through (iv) of Theorem 4. Fix f ∈ L∞(X ), we consider the operator

K(1)
f and its kernel, which is still denoted by K(1)

f , defined by setting, for any x ∈ X ,

K(1)
f (g)(x) := Π1( f , g)(x) = ∑

j∈Z
Pj( f )(x)Qj(g)(x) =

∫
X

K(1)
f (x, y)g(y) dμ(y),

where K(1)
f (x, y) = ∑j∈Z Qj(x, y)Pj( f )(x).
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Now we show that K(1)
f (·, ·) satisfies (3) through (5). To this end, we first prove that

K(1)
f (·, ·) satisfies (3). From Remark 2(ii), it follows that there exists a positive constant C

such that, for any f ∈ L∞(X ),

sup
j∈Z

‖Pj( f )‖L∞(X ) ≤ C‖ f ‖L∞(X ), (23)

which, together with (13) and some arguments used in the proof of (18), further implies
that, for any x, y ∈ X ,∣∣∣K(1)

f (x, y)
∣∣∣ ≤ ∑

j∈Z
|Qj(x, y)||Pj( f )(x)| � ‖ f ‖L∞(X ) ∑

j∈Z
|Qj(x, y)| � ‖ f ‖L∞(X )

1
V(x, y)

,

which completes the proof of (3) for K(1)
f (·, ·).

Then we prove that K(1)
f (·, ·) satisfies (4). Let x, x̃, y ∈ X , d(x, x̃) ≤ 1

2A0
d(x, y) with

x �= y. We write∣∣∣K(1)
f (x, y)− K(1)

f (x̃, y)
∣∣∣ ≤ ∑

j∈Z

∣∣Qj(x, y)−Qj(x̃, y)
∣∣|Pj( f )(x)|

+ ∑
j∈Z

∣∣Qj(x̃, y)
∣∣∣∣Pj( f )(x)− Pj( f )(x̃)

∣∣
=: A1 + A2.

From (20) and (23), we deduce that

A1 � ‖ f ‖L∞(X ) ∑
j∈Z

∣∣Qj(x, y)−Qj(x̃, y)
∣∣ � ‖ f ‖L∞(X )

[
d(x, x̃)
d(x, y)

]η 1
V(x, y)

.

Moreover, by the fact that L∞(X ) ⊂ BMO (X ) and some arguments similar to those
used in the proof of (22), we know that

A2 � ∑
j∈Z

∣∣Qj(x̃, y)
∣∣ ∫
X

∣∣Pj(x, z)− Pj(x̃, z)
∣∣∣∣∣ f (z)−mB(x,δj)( f )

∣∣∣ dμ(z)

� ‖ f ‖BMO (X )

[
d(x, x̃)
d(y, x)

]η 1
V(x, y)

� ‖ f ‖L∞(X )

[
d(x, x̃)
d(y, x)

]η 1
V(x, y)

,

which completes the proof of (4) for K(1)
f (·, ·).

Now we prove that K(1)
f (·, ·) satisfies (5). Let x, x̃, y ∈ X , d(x, x̃) ≤ 1

2A0
d(x, y) with

x �= y. From (18) and (21), it follows that∣∣∣K(1)
f (y, x)− K(1)

f (y, x̃)
∣∣∣ ≤ ∑

j∈Z

∣∣Qj(y, x)−Qj(y, x̃)
∣∣|Pj( f )(y)|

� ‖ f ‖L∞(X ) ∑
j∈Z

∣∣Qj(y, x)−Qj(y, x̃)
∣∣

� ‖ f ‖L∞(X )

[
d(x, x̃)
d(y, x)

]η 1
V(x, y)

,

which completes the proof of (5) for K(1)
f (·, ·). This completes the proof of (3) through (5)

for K(1)
f (·, ·).
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Then we claim that K(1)
f has WBP(η) and hence maps from Cη

b (X ) into (Cη
b (X ))′.

Indeed, let g, h ∈ Cη
b (X ), supported on some ball B(x0, r0) with x0 ∈ X and r0 ∈ (0, ∞),

normalized by

‖g‖L∞(X ) + rη
0‖g‖Ċη

b (X ) ≤ 1 and ‖h‖L∞(X ) + rη
0‖h‖Ċη

b (X ) ≤ 1.

Then, by (23), the Hölder inequality and (14), we conclude that∣∣∣〈K(1)
f (g), h

〉∣∣∣ = |〈Π1( f , g), h〉| =
∣∣∣∣∫X Π1( f , g)(x)h(x) dμ(x)

∣∣∣∣
≤ ∑

j∈Z

∫
X

∣∣Pj( f )(x)
∣∣∣∣Qj(g)(x)

∣∣|h(x)| dμ(x)

� ‖ f ‖L∞(X ) ∑
j∈Z

∫
X

∣∣Qj(g)(x)
∣∣|h(x)| dμ(x)

� ‖ f ‖L∞(X ) ∑
j∈Z
‖Qj(g)‖L2(X )‖h‖L2(X )

� ‖ f ‖L∞(X )[V(x0, r0)]
1/2 ∑

j∈Z
‖Qj(g)‖L2(X ) � ‖ f ‖L∞(X )V(x0, r0).

Next we show that K(1)
f (1), (K(1)

f )∗(1) ∈ BMO (X ). Obviously, K(1)
f (1) = 0 ∈

BMO (X ). Now we prove that (K(1)
f )∗(1) = 0 ∈ BMO (X ). It is easy to see that(

K(1)
f

)∗
(x, y) = K(1)

f (y, x) = ∑
j∈Z

Qj(y, x)Pj( f )(y).

For any h ∈ C̊η
b (X ) with supp h ⊂ B(x0, r0) and any N ∈ N, choose ηN ∈ Cη

b (X )
with ηN ≡ 1 on B(x0, 2A0Nr0), supp (ηN) ⊂ B(x0, 4A0Nr0) and 0 ≤ ηN ≤ 1. We write〈(

K(1)
f

)∗
(1), h

〉
=
〈(

K(1)
f

)∗
(ηN), h

〉
+
∫
X
[1− ηN(x)]K(1)

f (h) dμ(x) =: IN + IIN .

By the same arguments used in the proof of (K(3)
f )∗(1) ∈ BMO (X ), we conclude

that limN→∞ IIN = 0. Then we show that limN→∞ IN = 0. Indeed, for any h ∈ C̊η
b (X ),

observe that, by ([29], Corollary 3.14) and the boundedness of Pj on L2(X ), we know that
Pj( f )ηN ∈ L2(X ), which, combined with the assumption (10), and the Lebesgue dominated
convergence theorem, further implies that

lim
N→∞

〈(
K(1)

f

)∗
(ηN), h

〉
= lim

N→∞
∑
j∈Z

〈
Q∗j (Pj( f )ηN), h

〉
= lim

N→∞
∑
j∈Z

〈
Pj( f )ηN , Qj(h)

〉
= lim

N→∞
∑
j∈Z

〈
ηN , Pj( f )Qj(h)

〉
= lim

N→∞

〈
ηN , ∑

j∈Z
Pj( f )Qj(h)

〉

=

〈
1, ∑

j∈Z
Pj( f )Qj(h)

〉
= 〈1, Π1( f , h)〉 = 0,

where in the third to the last inequality of this equation, we have used the fact that
the series ∑j∈Z Pj( f )Qj(h) absolutely converges in L1(X ), which is similar to that of
∑j∈Z Qj( f )Qj(h).

This shows limN→∞ IN = 0, which, together with the estimate of IIN , implies that
(K(1)

f )∗(1) = 0 on (Cη
b (X ))′ and hence (K(1)

f )∗(1) = 0 ∈ BMO (X ).
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Moreover, from the T(1) theorem (see Lemma 3), we deduce that K(1)
f is bounded on

L2(X ). Then, by the boundedness of the Calderón–Zygmund operator (see, for instance, ([27],
Theorem 2.4 in Chapter III)), we find that (i) through (iv) of Theorem 4 hold true.

Now we begin to prove (v) and (vi) of Theorem 4. To this end, we temporarily fix a
g ∈ L∞(X ). By the fact that L∞(X ) ⊂ BMO (X ) and checking the proofs of Theorem 3
and (i) and (ii) of Theorem 4 carefully, we conclude that there exists a positive constant C
such that, for any f ∈ L∞(X ), g ∈ L2(X ), and N ∈ N,∥∥∥Π(N)

1 ( f , g)
∥∥∥

L2(X )
+
∥∥∥Π(N)

3 ( f , g)
∥∥∥

L2(X )
≤ C‖ f ‖L∞(X )‖g‖L2(X ),

which, further implies that, for any g ∈ L∞(X ) and f ∈ L2(X ),∥∥∥Π(N)
2 ( f , g)

∥∥∥
L2(X )

+
∥∥∥Π(N)

3 ( f , g)
∥∥∥

L2(X )
=
∥∥∥Π(N)

1 (g, f )
∥∥∥

L2(X )
+
∥∥∥Π(N)

3 (g, f )
∥∥∥

L2(X )

� ‖g‖L∞(X )‖ f ‖L2(X ).

From this and Theorem 1, we deduce that Π1( f , g) is bounded from L2(X )× L∞(X )
into L2(X ), which, combined with the fact that L∞(X ) ⊂ BMO (X ) and some arguments
used in the proof of (i) through (iv) of Theorem 3, implies that the kernel of the operator
K(1)

g (·) := Π1(·, g), defined by setting, for any (x, y) ∈ X ×X ,

K(1)
g (x, y) := ∑

j∈Z
Pj(x, y)Qj(g)(x)

satisfies (3) through (5), and hence K(1)
g is an η-Calderón–Zygmund operator which is

bounded on L2(X ). By these and the boundedness of Calderón–Zygmund operators (see,
for example, ([27], Theorem 2.4 in Chapter III)), we finish the proof of (v) and (vi) of
Theorem 4 and hence of Theorem 4.

Remark 9. We observe that the proofs of Theorems 3 and 4 do not use the second difference
regularity condition of {Qj}j∈Z in Definition 4. Thus, the results in Theorems 3 and 4 hold true for
more general approximations of identity.

Author Contributions: Conceptualization, X.F.; methodology, X.F.; software, X.F.; validation, X.F.;
formal analysis, X.F.; investigation, X.F.; resources, X.F.; data curation, X.F.; writing—original draft
preparation, X.F.; writing—review and editing, X.F.; visualization, X.F.; supervision, X.F.; project
administration, X.F.; funding acquisition, X.F. The author has read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
Nos. 11701160 and 11871100).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to express our deep thanks to the anonymous referees for their
valuable comments, which improve the presentation of this paper.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Fujita, H.; Kato, T. On the Navier–Stokes initial value problem. I. Arch. Rational Mech. Anal. 1964, 16, 269–315. [CrossRef]
2. Kato, T. Strong Lp-solutions of the Navier–Stokes equation in Rm, with applications to weak solutions. Math. Z. 1984, 187,

471–480. [CrossRef]

133



Mathematics 2021, 9, 2591

3. Meyer, Y.; Coifman, R.R. Opérateurs pseudo-différentiels et théorème de Calderón. In (French) Séminaire d’Analyse Harmonique
(1976–1977); Publ. Math. Orsay, No. 77-77; Dépt. Math., Univ. Paris-Sud: Orsay, France, 1977; pp. 28–40.

4. Meyer, Y.; Coifman, R.R. Au Delà des Opérateurs Pseudo-différentiels, (French) [Beyond Pseudodifferential Operators] With an English
Summary, Astérisque 57; Société Mathématique de France: Paris, France, 1978.

5. Meyer, Y.; Coifman, R.R. Wavelets. In Calderón–Zygmund and Multilinear Operators, Translated from the 1990 and 1991 French
Originals by David Salinger, Cambridge Studies in Advanced Mathematics 48; Cambridge University Press: Cambridge, UK, 1997.

6. Bony, J.-M. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, (French)
[Symbolic calculus and propagation of singularities for nonlinear partial differential equations]. Ann. Sci. École Norm. Sup. 1981,
14, 209–246. [CrossRef]

7. Bényi, Á.; Maldonado, D.; Nahmod, A.R.; Torres, R.H. Bilinear paraproducts revisited. Math. Nachr. 2010, 283, 1257–1276.
[CrossRef]

8. Bernicot, F. Uniform estimates for paraproducts and related multilinear multipliers. Rev. Mat. Iberoam. 2009, 25, 1055–1088.
[CrossRef]

9. Bernicot, F. A T(1)-theorem in relation to a semigroup of operators and applications to new paraproducts. Trans. Am. Math. Soc.
2012, 364, 6071–6108. [CrossRef]

10. Bernicot, F. Fiber-wise Calderón–Zygmund decomposition and application to a bi-dimen-sional paraproduct. Ill. J. Math. 2012,
56, 415–422.

11. David, G.; Journé, J.-L. A boundedness criterion for generalized Calderón–Zygmund operators. Ann. Math. 1984, 120, 371–397.
[CrossRef]

12. Gilbert, J.E.; Nahmod, A.R. Bilinear operators with non-smooth symbol. I. J. Fourier Anal. Appl. 2001, 7, 435–467. [CrossRef]
13. Gilbert, J.E.; Nahmod, A.R. Lp-boundedness for time-frequency paraproducts. II. J. Fourier Anal. Appl. 2002, 8, 109–172. [CrossRef]
14. Grafakos, L.; Kalton, N.J. The Marcinkiewicz multiplier condition for bilinear operators. Studia Math. 2001, 146, 115–156.

[CrossRef]
15. Muscalu, C.; Pipher, J.; Tao, T.; Thiele, C. Bi-parameter paraproducts. Acta Math. 2004, 193, 269–296. [CrossRef]
16. Muscalu, C.; Tao, T.; Thiele, C. Uniform estimates on multi-linear operators with modulation symmetry. Dedicated to the memory

of Tom Wolff. J. Anal. Math. 2002, 88, 255–309. [CrossRef]
17. Germain, P.; Masmoudi, N.; Shatah, J. Global solutions for the gravity water waves equation in dimension 3. Ann. Math. 2012,

175, 691–754. [CrossRef]
18. Germain, P.; Masmoudi, N.; Shatah, J. Global solutions for 2D quadratic Schrödinger equations. J. Math. Pures Appl. 2012, 97,

505–543. [CrossRef]
19. Grafakos, L.; Torres, R.H. Discrete decompositions for bilinear operators and almost diagonal conditions. Trans. Am. Math. Soc.

2002, 354, 1153–1176. [CrossRef]
20. Bonami, A.; Grellier, S.; Ky, L.D. Paraproducts and products of functions in BMO(Rn) and H1(Rn) through wavelets. J. Math.

Pures Appl. 2012, 97, 230–241. [CrossRef]
21. Ky, L.D. Bilinear decompositions for the product space H1

L × BMOL. Math. Nachr. 2014, 287, 1288–1297. [CrossRef]
22. Ky, L.D. Bilinear decompositions and commutators of singular integral operators. Trans. Am. Math. Soc. 2013, 365, 2931–2958.

[CrossRef]
23. Ky, L.D. Endpoint estimates for commutators of singular integrals related to Schrödinger operators. Rev. Mat. Iberoam. 2015, 31,

1333–1373.
24. Bényi, Á.; Maldonado, D.; Naibo, V. What is ... a paraproduct? Notices Am. Math. Soc. 2010, 57, 858–860.
25. Muscalu, C.; Schlag, W. Classical and Multilinear Harmonic Analysis, Volume II; Cambridge Studies in Advanced Mathematics 138;

Cambridge University Press: Cambridge, UK, 2013.
26. Yang, D.; Liang, Y.; Ky, L.D. Real-Variable Theory of Musielak—Orlicz Hardy Spaces; Lecture Notes in Mathematics 2182; Springer:

Cham, Switzerland, 2017.
27. Coifman, R.R.; Weiss, G. Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, (French) Étude de Certaines Intégrales

Singulières; Lecture Notes in Mathematics 242; Springer: Berlin, Germany; New York, NY, USA, 1971.
28. Coifman, R.R.; Weiss, G. Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 1977, 83, 569–645. [CrossRef]
29. Fu, X.; Yang, D.; Yang, S. Endpoint boundedness of linear commutators on local Hardy spaces over metric measure spaces of

homogeneous type. J. Geom. Anal. 2020, 31, 4092–4164. [CrossRef]
30. Chang, D.-C.; Fu, X.; Yang, D. Boundedness of paraproducts on spaces of homogeneous type I. Appl. Anal. 2020. [CrossRef]
31. Nakai, E.; Yabuta, K. Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type.

Math. Japon. 1997, 46, 15–28.
32. Auscher, P.; Hytönen, T. Orthonormal bases of regular wavelets in spaces of homogeneous type. Appl. Comput. Harmon. Anal.

2013, 34, 266–296. [CrossRef]
33. Han, Y.; Müller, D.; Yang, D. A theory of Besov and Triebel—Lizorkin spaces on metric measure spaces modeled on Carnot—

Carathéodory spaces. Abstr. Appl. Anal. 2008, 2008, 893409. [CrossRef]
34. Han, Y.; Müller, D.; Yang, D. Littlewood—Paley characterizations for Hardy spaces on spaces of homogeneous type. Math. Nachr.

2006, 279, 1505–1537. [CrossRef]

134



Mathematics 2021, 9, 2591

35. Deng, D.; Han, Y. Harmonic Analysis on Spaces of Homogeneous Type; Lecture Notes in Mathematics 1966; Springer: Berlin, Germany,
2009.

36. Macías, R.A.; Segovia, C. A decomposition into atoms of distributions on spaces of homogeneous type. Adv. Math. 1979, 33,
271–309. [CrossRef]

37. Bui, H.-Q.; Bui, T.A.; Duong, X.T. Weighted Besov and Triebel—Lizorkin spaces associated to operators and applications. Forum
Math. Sigma 2020, 8, e11. [CrossRef]

38. Bui, T.A.; Duong, X.T. Sharp weighted estimates for square functions associated to operators on spaces of homogeneous type. J.
Geom. Anal. 2020, 30, 874–900. [CrossRef]

39. Bui, T.A.; Duong, X.T.; Ky, L.D. Hardy spaces associated to critical functions and applications to T1 theorems. J. Fourier Anal.
Appl. 2020, 26, 27. [CrossRef]

40. Bui, T.A.; Duong, X.T.; Ly, F.K. Maximal function characterizations for new local Hardy type spaces on spaces of homogeneous
type. Trans. Am. Math. Soc. 2018, 370, 7229–7292. [CrossRef]

41. Bui, T.A.; Duong, X.T.; Ly, F.K. Maximal function characterizations for Hardy spaces on spaces of homogeneous type with finite
measure and applications. J. Funct. Anal. 2020, 278, 108423. [CrossRef]

42. Grafakos, L.; Liu, L.; Maldonado, D.; Yang, D. Multilinear analysis on metric spaces. Diss. Math. 2014, 497, 1–121. [CrossRef]
43. Grafakos, L.; Liu, L.; Yang, D. Boundedness of paraproduct operators on RD-spaces. Sci. China Math. 2010, 53, 2097–2114.

[CrossRef]
44. Hu, G.; Yang, D.; Zhou, Y. Boundedness of singular integrals in Hardy spaces on spaces of homogeneous type. Taiwan. J. Math.

2009, 13, 91–135. [CrossRef]
45. Yang, D.; Zhou, Y. Radial maximal function characterizations of Hardy spaces on RD-spaces and their applications. Math. Ann.

2010, 346, 307–333. [CrossRef]
46. Yang, D.; Zhou, Y. New properties of Besov and Triebel—Lizorkin spaces on RD-spaces. Manuscripta Math. 2011, 134, 59–90.

[CrossRef]
47. Fu, X.; Ma, T.; Yang, D. Real-variable characterizations of Musielak—Orlicz Hardy spaces on spaces of homogeneous type. Ann.

Acad. Sci. Fenn. Math. 2020, 45, 343–410. [CrossRef]
48. Fu, X.; Yang, D.; Liang, Y. Products of functions in BMO(X ) and H1

at(X ) via wavelets over spaces of homogeneous type. J. Fourier
Anal. Appl. 2017, 23, 919–990. [CrossRef]

49. Han, Y.; Han, Y.; He, Z.; Li, J.; Pereyra, C. Geometric characteriztions of embedding theorems—For Sobolev, Besov and Triebel—
Lizorkin spaces on spaces of homogeneous type—Via orthonormal wavelets. J. Geom. Anal. 2021, 31, 8947–8978. [CrossRef]

50. Han, Y.; Han, Y.; Li, J. Criterion of the boundedness of singular integrals on spaces of homogeneous type. J. Funct. Anal. 2016, 271,
3423–3464. [CrossRef]

51. Han, Y.; Han, Y.; Li, J. Geometry and Hardy spaces on spaces of homogeneous type in the sense of Coifman and Weiss. Sci. China
Math. 2017, 60, 2199–2218. [CrossRef]

52. Han, Y.; Li, J.; Ward, L.A. Hardy space theory on spaces of homogeneous type via orthonormal wavelet bases. Appl. Comput.
Harmon. Anal. 2018, 45, 120–169. [CrossRef]

53. He, Z.; Han, Y.; Li, J.; Liu, L.; Yang, D.; Yuan, W. A complete real-variable theory of Hardy spaces on spaces of homogeneous type.
J. Fourier Anal. Appl. 2019, 25, 2197–2267. [CrossRef]

54. He, Z.; Liu, L.; Yang, D.; Yuan, W. New Calderón reproducing formulae with exponential decay on spaces of homogeneous type.
Sci. China Math. 2019, 62, 283–350. [CrossRef]

55. He, Z.; Wang, F.; Yang, D.; Yuan, W. Wavelet characterizations of Besov and Triebel—Lizorkin spaces on spaces of homogeneous
type and their applications. Appl. Comput. Harmon. Anal. 2021, 54, 176–226. [CrossRef]

56. He, Z.; Yang, D.; Yuan, W. Real-variable characterizations of local Hardy spaces on spaces of homogeneous type. Math. Nachr.
2021, 294, 900–955. [CrossRef]

57. Liu, L.; Chang, D.-C.; Fu, X.; Yang, D. Endpoint boundedness of commutators on spaces of homogeneous type. Appl. Anal. 2017,
96, 2408–2433. [CrossRef]

58. Liu, L.; Chang, D.-C.; Fu, X.; Yang, D. Endpoint estimates of linear commutators on Hardy spaces over spaces of homogeneous
type. Math. Meth. Appl. Sci. 2018, 41, 5951–5984. [CrossRef]

59. Liu, L.; Yang, D.; Yuan, W. Bilinear decompositions for products of Hardy and Lipschitz spaces on spaces of homogeneous type.
Diss. Math. (Rozpr. Mat.) 2018, 533, 1–93. [CrossRef]

60. Wang, F.; Han, Y.; He, Z.; Yang, D. Besov spaces and Triebel—Lizorkin spaces on spaces of homogeneous type with their
applications to a boundedness of Calderón–Zygmund operators. arXiv 2020, arXiv:2012.13035.

61. Zhou, X.; He, Z.; Yang, D. Real-variable characterizations of Hardy—Lorentz spaces on spaces of homogeneous type with
applications to real interpolation and boundedness of Calderón–Zygmund operators. Anal. Geom. Metr. Spaces 2020, 8, 182–260.
[CrossRef]

62. Chang, D.-C.; Fu, X.; Yang, D. Boundedness of paraproducts on spaces of homogeneous type II. Appl. Anal. 2020. [CrossRef]
63. Fu, X.; Chang, D.-C.; Yang, D. Recent progress in bilinear decompositions. Appl. Anal. Optim. 2017, 1, 153–210.
64. Hytönen, T.; Kairema, A. Systems of dyadic cubes in a doubling metric space. Colloq. Math. 2012, 126, 1–33. [CrossRef]
65. Fu, X.; Yang, D. Wavelet characterizations of the atomic Hardy space H1 on spaces of homogeneous type. Appl. Comput. Harmon.

Anal. 2018, 44, 1–37. [CrossRef]

135



Mathematics 2021, 9, 2591

66. Stein, E.M. Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals; Princeton University Press: Princeton,
NJ, USA, 1993.

67. Grafakos, L. Modern Fourier Analysis, 3rd ed.; Graduate Texts in Mathematics 250; Springer: New York, NY, USA, 2014.

136



mathematics

Article

Lebesgue Points of Besov and Triebel–Lizorkin Spaces with
Generalized Smoothness

Ziwei Li, Dachun Yang and Wen Yuan *

Citation: Li, Z.; Yang, D.; Yuan, W.

Lebesgue Points of Besov and

Triebel–Lizorkin Spaces with

Generalized Smoothness. Mathematics

2021, 9, 2724. https://doi.org/

10.3390/math9212724

Academic Editor: Andrea Scapellato

Received: 22 September 2021

Accepted: 22 October 2021

Published: 27 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Laboratory of Mathematics and Complex Systems (Ministry of Education of China),
School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China;
zwli@mail.bnu.edu.cn (Z.L.); dcyang@bnu.edu.cn (D.Y.)
* Correspondence: wenyuan@bnu.edu.cn

Abstract: In this article, the authors study the Lebesgue point of functions from Hajłasz–Sobolev,
Besov, and Triebel–Lizorkin spaces with generalized smoothness on doubling metric measure spaces
and prove that the exceptional sets of their Lebesgue points have zero capacity via the capacities
related to these spaces. In case these functions are not locally integrable, the authors also consider
their generalized Lebesgue points defined via the γ-medians instead of the classical ball integral
averages and establish the corresponding zero-capacity property of the exceptional sets.

Keywords: Hajłasz–Sobolev space; Hajłasz–Besov space; Hajłasz–Triebel–Lizorkin space; generalized
smoothness; Lebesgue point; capacity

1. Introduction

The study of function spaces on the Euclidean space Rn and its subsets with gener-
alized smoothness started from the middle of the 1970s (see, for instance, [1–4]), and has
found various applications in interpolations, embedding properties of function spaces [5–8],
fractal analysis ([9], Chapters 18–23), and many other fields such as probability theory and
stochastic processes [10,11]. Recall that, in [11], Farkas and Leopold studied the generalized
Besov spaces B(σ,N)

p,q (Rn) and Triebel–Lizorkin spaces F(σ,N)
p,q (Rn) for the full range of param-

eters, in which the smoothness, instead of the classical smoothness sequence {2 js} j≥0, was
given via a weight sequence σ := {σ j} j≥0 of positive numbers. Intensive investigations on
generalized Besov and Triebel–Lizorkin spaces also exist in which smoothness is described
by a parameter function; see, for instance [6,12–16]. In recent years, a lot of attention has
been paid to Besov and Triebel–Lizorkin spaces on Rn with logarithmic smoothness; see,
for instance [17–27].

Recently, using Hajłasz gradient sequences, the authors [28] introduced Hajłasz–Besov
and Hajłasz–Triebel–Lizorkin spaces with generalized smoothness on a given metric space
X with a doubling measure and, when X = Rn, proved their coincidence with the classical
Besov and Triebel–Lizorkin spaces with generalized smoothness. Recall that the Hajłasz
gradients were originally introduced by Hajłasz [29] and have been an important tool
used to develop Sobolev spaces on metric measure spaces (see, for instance [30–34]). The
fractional Hajłasz gradients were introduced independently by Hu [35] and Yang [36] in
2003. In 2011, Koskela et al. [37] introduced the notion of sequences of Hajłasz gradients and
characterized Besov and Triebel–Lizorkin spaces via some pointwise inequalities involving
these Hajłasz gradient sequences; as an application, this pointwise characterization has
been used in [37] to show the invariance of quasi-conformal mappings on some Triebel–
Lizorkin spaces.

It is well known, by the Lebesgue differentiation theorem, that almost every point
is a Lebesgue point of a locally integrable function. Then, it is very natural to expect a
smaller exceptional set when the function has higher regularity. In [38], Kinnunen and
Latvala considered the Lebesgue point of functions in the Hajłasz–Sobolev space M1,p(X)
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on a given metric measure space X and proved that, when the measure doubles and
p ∈ (1, Q], a Hajłasz–Sobolev function has Lebesgue points outside a set of zero Hajłasz–
Sobolev capacity, where Q represents the doubling dimension of X. This result leads to a
series of related work on many other function spaces such as fractional Hajłasz–Sobolev
spaces [39], Orlicz–Sobolev spaces [40], as well as Hajłasz–Besov and Hajłasz–Triebel–
Lizorkin spaces [41]. We also refer the reader to [42,43] for a related study on variable
function spaces.

Inspired by these works, in this article, we study the Lebesgue point of functions
from the Hajłasz–Sobolev space Mφ,p(X), the Hajłasz–Besov space Nφ

p,q(X), and the Hajłasz–
Triebel–Lizorkin space Mφ

p,q(X) with generalized smoothness on a given doubling measure
space X, via measuring the related exceptional sets of Lebeguse points. Note that functions
in the Hajłasz–Besov or Hajłasz–Triebel–Lizorkin spaces with generalized smoothness
might fail to be locally integrable when their index p or q is close to zero. To overcome
this obstacle, similar to [41,44,45], we also consider a class of generalized Lebesgue points,
which are defined via the γ-medians introduced in [46,47], instead of the classical integrals.
As the main results of this article, we prove that the exceptional sets of (generalized)
Lebesgue points of functions from the above spaces have zero capacity, where those
capacities are defined by related spaces. These results can apply to a wide class of function
spaces due to the generality of the smoothness factor φ. In particular, the logarithmic
Hajłasz–Sobolev space is an admissible function space for our main results.

The structure of this article is as follows.
In Section 2, we state some basic notions and assumptions on the smoothness function

φ. We also introduce the inhomogeneous Hajłasz–Sobolev space Mφ,p(X), the inhomo-
geneous Hajłasz–Besov space Nφ

p,q(X), and the inhomogeneous Hajłasz–Triebel–Lizorkin
space Mφ

p,q(X) with generalized smoothness and establish their coincidence with those
classical Besov and Triebel–Lizorkin spaces with generalized smoothness when X = Rn.

Section 3 is devoted to studying the Lebesgue point of functions from Nφ
p,q(X) and

Mφ
p,q(X) and, in particular, Mφ,p(X) = Mφ

p,∞(X), via the capacities Cap Nφ
p,q(X) and Cap Mφ

p,q(X)
related to the spaces Nφ

p,q(X) and Mφ
p,q(X), respectively. To this end, via establishing some

Poincaré-type inequalities and estimates related to Hajłasz-type spaces with generalized
smoothness, we first prove the convergence of discrete convolution approximations in
Nφ

p,q(X) and Mφ
p,q(X) when p, q < ∞, and a dense subset in Mφ,p(X) = Mφ

p,∞(X) exists when
p < ∞, which consists of continuous functions. Recall that, when s ∈ (0, 1] and p ∈ (0,∞),
the class of all s-Hölder continuous functions is dense in the classical Hajłasz–Sobolev
space Ms,p(X) (see, for instance, ([48], Theorem 5.19)), which was proved via an extension
argument together with the inequality

[d(x, y)]s ≤ [d(x, z)]s + [d(z, y)]s

for any x, y, z ∈ X. However, this inequality may not be true if one replaces [d(·, ·)]s by
φ(d(·, ·)) due to the generality of φ. To overcome the difficulties caused by this, we borrow
the notion of the modulus of continuity and, for certain φ that satisfies such assumptions,
find a dense subset of Mφ,p(X) consisting of generalized Lipschitz functions. Applying
these dense properties, we obtain the boundedness of discrete maximal operators on
these Hajłasz-type spaces and then a weak-type capacitary estimate for restricted maximal
functions, which is further used to prove that the exceptional sets of Lebesgue points
of functions from Mφ,p(X), Nφ

p,q(X), and Mφ
p,q(X) have zero Cap Mφ,p(X), Cap Nφ

p,q(X), and
Cap Mφ

p,q(X) capacities, respectively.
In Section 4, we deal with the generalized Lebesgue point of functions from the spaces

Mφ,p(X), Nφ
p,q(X), and Mφ

p,q(X), which are defined via the γ-medians instead of the classical
ball integral averages. Following a procedure similar to that of Section 3, we also prove
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that the exceptional sets of generalized Lebesgue points of functions from F have zero
Cap F -capacity with

F ∈
{
Nφ

p,q(X), Mφ
p,q(X), Mφ,p(X)

}
.

Finally, we compare the capacity Cap F with some Netrusov–Hausdorff contents
and prove that they have the same null sets. This enables us to also use some Netrusov–
Hausdorff contents to measure the exceptional set of Lebesgue points of functions from
these Hajłasz-type spaces.

2. Hajłasz–Besov and Hajłasz–Triebel–Lizorkin Spaces with Generalized Smoothness

In this section, we recall some basic notation and notions as well as the definitions
of the function spaces used in this article. Let Z be the collection of all integers, N be
the collection of all positive integers, and Z+ := N ∪ {0}. We write A � B if there exists
a positive constant C that is independent of the main parameters such that A ≤ CB and
write A ∼ B if A � B � A. We also denote by C(a1,a2,...) a positive constant depending on the
parameters a1, a2, . . ..

A triple (X, d, μ) is called a metric measure space if X is a non-empty set, d is a metric on
X, and μ is a regular Borel measure on X such that all of the balls defined by d have finite
and positive measures. Recall that (see [48], [Convention 1.4]) a measure μ on X is called
a regular Borel measure if open sets are μ-measurable and every set is contained in a Borel
set with the same measure. Additionally, the measure μ is said to double if there exists a
positive constant Cμ ∈ [1,∞) such that, for any ball B ⊂ X,

μ(2B) ≤ Cμμ(B).

Here and thereafter, for any λ ∈ (0,∞), λB denotes the ball with the same center as B
but λ-times radius of B. The doubling property of μ implies that, for any ball B ⊂ X and
any λ ∈ [1,∞),

μ(λB) ≤ Cμλ
Dμ(B), (1)

where D := log2 Cμ. Here and thereafter, we assume that Cμ is the smallest positive constant
such that (1) holds true. Clearly, when X = Rn, D = n. Throughout this article, we always
let(X, d, μ) be a metric space with a doubling measure (for short, a doubling metric measure space).
For any subset E ⊂ X, we denote by 1E the characteristic function of E.

Let L0(X) be the collection of all measurable functions on X that are finite almost
everywhere and L1

loc (X) be the collection of all measurable functions on X satisfying that,
for any x0 ∈ X, there exists an r0 ∈ (0,∞) such that f 1B(x0,r0) ∈ L1(X). For any p, q ∈ (0,∞],
let Lp(X, lq) and lq(X, Lp) be, respectively, the collections of all sequences {uk}k∈Z ⊂ L0(X)
such that

‖{uk}k∈Z‖Lp(X,lq) :=

∥∥∥∥∥∥∥∥
⎛⎜⎜⎜⎜⎜⎜⎝∑

k∈Z
|uk |q

⎞⎟⎟⎟⎟⎟⎟⎠
1/q

∥∥∥∥∥∥∥∥
Lp(X)

< ∞

and

‖{uk}k∈Z‖lq(X,Lp) :=

⎡⎢⎢⎢⎢⎢⎢⎣∑
k∈Z
‖uk‖qLp(X)

⎤⎥⎥⎥⎥⎥⎥⎦
1/q

< ∞

with the usual modifications made when p = ∞ or q = ∞.
For any u ∈ L0(X) and E ⊂ Xwith μ(E) ∈ (0,∞), let

uE :=
�

E
u dμ :=

1
μ(E)

∫
E

u dμ :=
1

μ(E)

∫
E

u(x) dμ(x). (2)

For any L ∈ (0,∞), a function f is said to be L-Lipschitz if it satisfies∣∣∣ f (x) − f (y)
∣∣∣ ≤ L d(x, y), ∀ x, y ∈ X.
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For a Lipschitz function f , the smallest constant L satisfying the above inequality is
called the Lipschitz constant of f and denoted by Lip f .

We also frequently use the following inequality: if q ∈ (0, 1], then, for any {ai}i∈Z ⊂ C,⎛⎜⎜⎜⎜⎜⎜⎝∑
i∈Z
|ai|

⎞⎟⎟⎟⎟⎟⎟⎠
q

≤
∑
i∈Z
|ai|q. (3)

We now recall the definition and some basic properties of weight functions used to
describe the smoothness of function spaces under consideration. We begin with a classical
notion of admissible sequences; see, for instance [11,49].

Definition 1. Let E ∈ {Z,Z+}. A sequence of positive numbers, {σ j} j∈E , is said to be admissible
if there exist two positive constants d0 and d1 such that, for any j ∈ E, d0σ j ≤ σ j+1 ≤ d1σ j.

Several examples of admissible sequences can be found in [11], which illustrate the
flexibility of this assumption.

Definition 2. A continuous function φ : [0,∞) → [0,∞) is said to be of admissible growth if
{φ(2 j)} j∈Z is an admissible sequence and φ(t) ∼ φ(2k) for any k ∈ Z and t ∈ [2k, 2k+1) with the
positive equivalence constants independent of both t and k.

We point out that, for any given admissible sequence σ := {σ j} j∈Z, there exists a
continuous function φ of admissible growth such that, for any j ∈ Z, φ(2− j) = 1/σ j.
Indeed, the function

φσ(t) := 2 j+1
(

1
σ j
− 1
σ j+1

)
(t − 2− j−1) +

1
σ j+1

, ∀ t ∈ [2− j−1, 2− j), ∀ j ∈ Z, (4)

suits this job; see ([28] [Proposition 2.4]) or ([14] [Example 2.3]). Throughout this article, for
any given admissible sequence σ := {σ j} j∈Z, we always let φσ be as in (4).

For any given sequence σ := {σk}k∈Z of positive numbers or any given function
φ : [0,∞) → [0,∞), let

ασ := max{α−σ,α+σ } := max
{

lim sup
k→−∞

σk

σk+1
, lim sup

k→∞
σk

σk+1

}
,

βσ := max{β−σ, β+σ } := max
{

lim sup
k→−∞

σk+1

σk
, lim sup

k→∞
σk+1

σk

}
,

αφ := max{α−φ ,α+φ } := max
{

lim sup
k→−∞

φ(2k)

φ(2k+1)
, lim sup

k→∞
φ(2k)

φ(2k+1)

}
,

and

βφ := max{β−φ , β+φ } := max
{

lim sup
k→−∞

φ(2k+1)

φ(2k)
, lim sup

k→∞
φ(2k+1)

φ(2k)

}
.

Since, for any j ∈ Z, φσ(2− j) = 1/σ j, then α−φσ = α+σ , α+φσ = α−σ, β−φσ = β+σ , and
β+φσ = β−σ, which means that αφσ = ασ and βφσ = βσ. By an obvious observation that
1/α−σ ≤ β−σ and 1/α+σ ≤ β+σ , it is also easy to show that 1/ασ ≤ βσ; furthermore, αφ < 1
implies βφ > 1, and βφ < 2 implies αφ > 1/2.

Observe that, if α−φ ∈ (0, 1) (resp., α+φ ∈ (0, 1)), then there exists a δ1 ∈ (0,∞) such that
α−φ + δ1 < 1 (resp., α+φ + δ1 < 1). Let K0 be a given integer. By the definition of α−φ (resp.,α+φ ),
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we find that there exists an integer K1 (resp., K2) such that, for any k ∈ (−∞, min{K1, K0}]
(resp., k ∈ [max{K2, K0},∞)),

φ(2k)

φ(2k+1)
< α−φ + δ1

(
resp.,

φ(2k)

φ(2k+1)
< α−φ + δ1

)

and hence, for any i, j ∈ (−∞, min{K1, K0}] (resp., i, j ∈ [max{K2, K0},∞)) with i ≤ j,

φ(2i)

φ(2 j)
< (α−φ + δ1)

j−i
(
resp.,

φ(2i)

φ(2 j)
< (α+φ + δ1)

j−i
)
. (5)

Since φ(2k)/φ(2k+1) is bounded on [min{K1, K0}, K0] (resp., k ∈ [K0, max{K2, K0}]), then,
from (5), we deduce that there exists a positive constant C, depending only on K0, φ, and
δ1, such that, for any i, j ∈ (−∞, K0] ∩Z (resp., i, j ∈ [K0,∞) ∩Z) with i ≤ j,

φ(2i)

φ(2 j)
≤ C(α−φ + δ1)

j−i
(
resp.,

φ(2i)

φ(2 j)
≤ C(α+φ + δ1)

j−i
)
. (6)

By this, we further obtain, for any k0 ∈ (−∞, K0] ∩ Z (resp., k0 ∈ [K0,∞) ∩ Z) and
r ∈ (0,∞],

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
k≤k0

[
φ(2k)

]r⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/r

= φ(2k0)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
k≤k0

[
φ(2k)

φ(2k0)

]r⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/r

� φ(2k0)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
k≤k0

(α−φ + δ1)
(k0−k)r

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/r

� φ(2k0)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝resp.,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
k≥k0

[
1

φ(2k)

]r⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/r

≤ 1
φ(2k0)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
k≥k0

(α+φ + δ1)
(k−k0)r

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/r

�
1

φ(2k0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
where the implicit positive constants depend only on K0, φ, and δ1.

If β−φ ∈ (0, 2) (resp., β+φ ∈ (0, 2)), by an argument similar to the above, we conclude
that there exist a δ2 ∈ (0,∞) such that β−φ + δ2 < 2 (resp., β+φ + δ2 < 2) and a positive
constant C, depending only on K0, φ, and δ2, such that, for any i, j ∈ (−∞, K0] ∩Z (resp.,
i, j ∈ [K0,∞) ∩Z) with i ≤ j,

2i− j φ(2
j)

φ(2i)
≤ C

⎛⎜⎜⎜⎜⎜⎝β
−
φ + δ2

2

⎞⎟⎟⎟⎟⎟⎠
j−i ⎛⎜⎜⎜⎜⎜⎜⎜⎝resp., 2i− j φ(2

j)

φ(2i)
≤ C

⎛⎜⎜⎜⎜⎜⎜⎝β
+
φ + δ2

2

⎞⎟⎟⎟⎟⎟⎟⎠
j−i⎞⎟⎟⎟⎟⎟⎟⎟⎠. (7)

Furthermore, for any k0 ∈ (−∞, K0]∩Z (resp., k0 ∈ [K0,∞)∩Z) and r ∈ (0,∞], we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
k≤k0

[
2k

φ(2k)

]r⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/r

=
2k0

φ(2k0)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
k≤k0

[
2k−k0

φ(2k0)

φ(2k)

]r⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/r

�
2k0

φ(2k0)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
k≤k0

⎛⎜⎜⎜⎜⎜⎝β
−
φ + δ2

2

⎞⎟⎟⎟⎟⎟⎠
(k0−k)r

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/r

�
2k0

φ(2k0)
(8)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝resp.,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
k≥k0

[
2−kφ(2k)

]r⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/r

� 2−k0φ(2k0)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑
k≥k0

⎛⎜⎜⎜⎜⎜⎜⎝β
+
φ + δ2

2

⎞⎟⎟⎟⎟⎟⎟⎠
(k−k0)r

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
1/r

� 2−k0φ(2k0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
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If αφ ∈ (0, 1) (resp., βφ ∈ (0, 2)), then α−φ ∈ (0, 1) and α+φ ∈ (0, 1) (resp., β−φ ∈ (0, 2) and
β+φ ∈ (0, 2)). Thus, by (6) and (7), we obtain, for any i, j ∈ Z with i ≤ j,

φ(2i)

φ(2 j)
� (αφ + δ1)

j−i

⎛⎜⎜⎜⎜⎜⎝resp., 2i− j φ(2
j)

φ(2i)
�
(
βφ + δ2

2

) j−i⎞⎟⎟⎟⎟⎟⎠,
where δ1 (resp., δ2) is any given positive constant such that αφ + δ1 < 1 (resp., βφ + δ2 < 2),
and the implicit positive constants depend only on φ and δ1 (resp., δ2). By this, we conclude
that, for any r ∈ (0,∞] and k0 ∈ Z,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
k≤k0

[
φ(2k)

]r⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/r

� φ(2k0) and

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
k≥k0

[
1

φ(2k)

]r⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/r

�
1

φ(2k0)
(9)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝resp.,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
k≤k0

[
2k

φ(2k)

]r⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/r

�
2k0

φ(2k0)
and

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
k≥k0

[
2−kφ(2k)

]⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/r

� 2−k0φ(2k0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (10)

Here, the implicit positive constants depend only on φ.
The following lemma is just ([28] [Lemma 2.5]).

Lemma 1. Let φ : [0,∞) → [0,∞) satisfy αφ ∈ (0, 1), ε ∈ (0,− log2 αφ), and δ ∈ (log2 βφ,∞).
Then,

(i) there exist positive constants C1 and C2, depending on φ, such that, for any k ∈ Z,

∑
j≥k

2 jε

φ(2 j)
≤ C1

2kε

φ(2k)
and

∑
j≤k

2− jε φ(2 j) ≤ C2 2−kεφ(2k);

(ii) there exist positive constants c1 and c2, depending on φ, such that, for any i, j ∈ Z with i ≤ j,

2( j−i)ε φ(2
i)

φ(2 j)
≤ c1 and 2(i− j)δ φ(2

j)

φ(2i)
≤ c2.

We recall another widely used notion (see, for instance, [50], Section 2.2.1) to describe
the smoothness function as follows.

Definition 3. A function f : [0,∞) → [0,∞) is said to be almost increasing (resp., decreasing)
if there exists a positive constant C ∈ [1,∞) such that, for any t1, t2 ∈ [0,∞) with t1 ≤ t2 (resp.,
t1 ≥ t2), f (t1) ≤ C f (t2).

Throughout this article, for simplicity, we always denote byA the class of all continuous
and almost increasing functions φ : [0,∞) → [0,∞) satisfying that φ(0) = 0, φ(1) = 1, and
{φ(2 j)} j∈Z is admissible.

Let A∞ be the set of all functions φ ∈ A satisfying that the function φ̃, defined by
setting, for any t ∈ [0,∞), φ̃(t) := φ(t)/t, almost decreases.

For any r ∈ (0,∞), let Ar be the set of all functions φ ∈ A∞ satisfying that φ is of
admissible growth and that there exist a k0 ∈ Z and two positive constants Xk0 and Yk0 ,
depending on k0 and r, such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
j≥k0

[
φ(2 j)

]−r

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/r

≤ Xk0 and

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
j≥k0

2− jr
[
φ(2− j)

]−r

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/r

≤ Yk0 . (11)
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We claim that if, for some k0 ∈ Z, there exist positive constants Xk0 and Yk0 such
that (11) holds true, then, for any k ∈ Z, there exist positive constants Xk and Yk, depending
on k and r, such that (11) holds true with k0 replaced by k. Indeed, this claim is trivial
when k ≥ k0, while when k < k0, it easily follows from the fact that

∑k0−1
j=k [φ(2

j)]−r and∑k0−1
j=k 2− jr[φ(2− j)]−r are always finite. This proves the above claim.

Clearly, by (3), Ar1 ⊂ Ar2 ⊂ A∞ for any r1, r2 ∈ (0,∞) with r1 ≤ r2. For instance, for
any b ∈ (0,∞) and r ∈ (1/b,∞], the function

φ(t) :=

⎧⎪⎪⎨⎪⎪⎩[log2(1 + t)]b, t ∈ (0, 1),

(1 + log2 t)b, t ∈ [1,∞) (12)

belongs toAr.
If φ is of admissible growth, then αφ ∈ (0, 1) implies φ ∈ A; furthermore, αφ ∈ (0, 1),

together with β−φ ∈ (0, 2), implies that, for any r ∈ (0,∞], φ ∈ Ar. In view of these, we
let A0 be the class of all functions φ satisfying that αφ ∈ (0, 1), β−φ ∈ (0, 2), and φ is of
admissible growth.

Now, we state the notions of generalized Hajłasz gradients and the related Hajłasz-
type spaces with respect to the smoothness function φ ∈ A.

Definition 4. Let φ ∈ A and u ∈ L0(X).
(i) A nonnegative measurable function g is called a φ-Hajłasz gradient of u if there exists a set

E ⊂ X with μ(E) = 0 such that, for any x, y ∈ X \ E,∣∣∣u(x) − u(y)
∣∣∣ ≤ φ(d(x, y))[g(x) + g(y)]. (13)

Denote byDφ(u) the collection of all φ-Hajłasz gradients of u.
(ii) A sequence of nonnegative measurable functions, 
g := {gk}k∈Z, is called a φ-Hajłasz gradient

sequence of u if, for any k ∈ Z, there exists a set Ek ⊂ X with μ(Ek) = 0 such that, for any
x, y ∈ X \ Ek with 2−k−1 ≤ d(x, y) < 2−k,∣∣∣u(x) − u(y)

∣∣∣ ≤ φ(d(x, y))[gk(x) + gk(y)].

Denote by Dφ(u) the collection of all φ-Hajłasz gradient sequences of u.

The following are basic properties of these generalized gradients, which can be proved
by an argument similar to those about classical Hajłasz gradients (see, for instance, ([51]
[Lemma 2.4]), ([38] [Lemma 2.6]), ([41] [Lemmas 2.3 and 2.4]), and ([45][Lemmas 4 and 5]));
we omit the details.

Lemma 2. (i) Let u, v ∈ L0(X), {gk}k∈Z ∈ Dφ(u), and {hk}k∈Z ∈ Dφ(v). Then,

{max(gk, hk)}k∈Z ∈ Dφ(max{u, v}) and {max(gk, hk)}k∈Z ∈ Dφ(min{u, v}).

(ii) Let {ui}i∈N ⊂ L0(X) and, for any i ∈ N, let {g(i)k }k∈Z ∈ Dφ(ui). Let u := supi∈N ui and

{gk}k∈Z := {supi∈N g(i)k }k∈Z. If u ∈ L0(X), then {gk}k∈Z ∈ Dφ(u).

Using these generalized gradients, we introduced the following homogeneous φ-
Hajłasz–Triebel–Lizorkin and φ-Hajłasz–Besov spaces in [28].

Definition 5. Let φ ∈ A and p, q ∈ (0,∞].
(i) The homogeneous φ-Hajłasz–Triebel–Lizorkin space Ṁφ

p,q(X) is defined to be the set of all
u ∈ L0(X) such that

‖u‖Ṁφ
p,q(X) := inf


g∈Dφ(u)
‖
g‖Lp(X,lq) < ∞
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when p ∈ (0,∞) and q ∈ (0,∞], or p = q = ∞, and

‖u‖Ṁφ
∞,q(X) := inf


g∈Dφ(u)
sup
k∈Z

sup
x∈X

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
j≥k

�
B (x,2−k)

[g j(y)]
q dμ(y)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1
q

< ∞

when p = ∞ and q ∈ (0,∞).
(ii) The homogeneous φ-Hajłasz–Besov space Ṅφ

p,q(X) is defined to be the set of all u ∈ L0(X)
such that

‖u‖Ṅφ
p,q(X) := inf


g∈Dφ(u)
‖
g‖lq(X,Lp) < ∞.

In [28], we proved that, when X = Rn, for any given admissible sequence σ :=
{σ j} j∈Z with ασ ∈ (0, 1) and βσ ∈ (0, 2), Ṁφσ

p,q(Rn) = Ḟσ
p,q(Rn) for any given p, q ∈

(n/[n − log2 ασ],∞], and Ṅφσ
p,q(Rn) = Ḃσp,q(Rn) for any given p ∈ (n/[n − log2 ασ],∞] and

q ∈ (0,∞], where Ḃσp,q(Rn) and Ḟσ
p,q(Rn) are, respectively, the classical generalized Besov

and Triebel–Lizorkin spaces in which smoothness is described by an admissible sequence
σ (see Definition 7 below). In this sense, the spaces Ṁφ

p,q(X) and Ṅφ
p,q(X) serve as natural

generalizations of classical Besov and Triebel–Lizorkin spaces with generalized smoothness
on metric measure spaces.

In this article, we also consider the inhomogeneous version of the above spaces.

Definition 6. Let φ ∈ A and p, q ∈ (0,∞].
(i) The inhomogeneous φ-Hajłasz–Triebel–Lizorkin space Mφ

p,q(X) is defined as the set Lp(X) ∩
Ṁφ

p,q(X). Moreover, for any u ∈ Mφ
p,q(X), let

‖u‖Mφ
p,q(X) := ‖u‖Lp(X) + ‖u‖Ṁφ

p,q(X).

(ii) The inhomogeneous φ-Hajłasz–Besov space Nφ
p,q(X) is defined as the set Lp(X) ∩ Ṅφ

p,q(X).
Moreover, for any u ∈ Mφ

p,q(X), let

‖u‖Mφ
p,q(X) := ‖u‖Lp(X) + ‖u‖Ṅφ

p,q(X).

Remark 1. (i) Recall that, for any given p ∈ (0,∞], Ṁφ
p,∞(X) = Ṁφ,p(X) (see [28], [Remark

3.4(i)]), where Ṁφ,p(X) denotes the homogeneous Hajłasz–Sobolev space with respect to φ,
which consists of all u ∈ L0(X) such that

‖u‖Ṁφ,p(X) := inf
g∈Dφ(u)

‖g‖Lp(X) < ∞.

Consequently, if the inhomogeneous Hajłasz–Sobolev space Mφ,p(X) is defined as the set
Lp(X) ∩ Ṁφ,p(X), then Mφ

p,∞(X) = Mφ,p(X). In particular, when φ is as in (12), the related
spaces are called the logarithmic Hajłasz–Sobolev spaces.

(ii) Let φ ∈ A, k0 ∈ Z, and u ∈ L0(X). Let Dφ
k0
(u) be the set of all sequences 
h := {hk}k∈Z, defined

by setting hk := h̃k when k ≥ k0 and hk ≡ 0 when k < k0, where h̃ := {̃hk}k∈Z is a φ-Hajłasz
gradient sequence of u. Naturally, Dφ

k0
(u) denotes the set of all functions g such that, for

almost every x, y ∈ X with d(x, y) < 2−k0 , (13) holds true. Then, for any given p ∈ (0,∞],
q = ∞, and φ ∈ A or for any given p ∈ (0,∞], q ∈ (0,∞), and φ ∈ A with α+φ ∈ (0, 1),

|||u|||Nφ
p,q(X) := ‖u‖Lp(X) + inf


h∈Dφ
k0
(u)
‖
h‖lq(X,Lp), ∀ u ∈ Nφ

p,q(X),
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is an equivalent quasi-norm of Nφ
p,q(X) with the positive equivalence constants depending on

k0. Indeed, for any u ∈ L0(X), |||u|||Nφ
p,q(X) ≤ ‖u‖Nφ

p,q(X) obviously holds true. Conversely, let

q ∈ (0,∞) and u ∈ L0(X). Notice that, for any k ∈ Z and x, y ∈ X,

∣∣∣u(x) − u(y)
∣∣∣ ≤ φ(2−k)

[ |u(x)|
φ(2−k)

+
|u(y)|
φ(2−k)

]
.

Then, { |u|
φ(2−k)

}k∈Z is a φ-Hajłasz gradient sequence of u modulo some uniform constant, which

implies that, for any 
h := {hk}k∈Z ∈ Dφ
k0
(u), the sequence 
g := {gk}k∈Z, defined by setting,

for any k ≥ k0, gk := hk and, for any k < k0, gk := |u|
φ(2−k)

is an element of Dφ
k0
(u). By

α+φ ∈ (0, 1), we can choose a δ1 ∈ (0,∞) such that α+φ + δ1 < 1. Then, there exists a K ∈ Z
such that, for any integer k ≤ K, φ(2−k)/φ(2−k+1) < a+φ + δ1. Notice that φ(2−k)/φ(2−k+1)

is bounded when k ∈ [K, k0]. We then have

∑
k≤k0

[φ(2−k)]−q = [φ(2−k0)]−q
∑
k≤k0

[
φ(2−k−1)

φ(2−k)

φ(2−k−2)

φ(2−k−1)
· · · φ(2−k0)

φ(2−k0+1)

]q

�
∑
k≤k0

(α+φ + δ1)
(k0−k)q � 1,

where the implicit positive constants depend only on φ, q, and k0. This implies that

‖u‖Nφ
p,q(X) ≤ ‖
g‖lq(X,Lp) + ‖u‖Lp(X) � ‖
h‖lq(X,Lp) + ‖u‖Lp(X) � |||u|||Nφ

p,q(X).

The proof for the case q = ∞ is similar, and we omit the details here.
Similarly, for any φ ∈ A with α+φ ∈ (0, 1), p ∈ (0,∞], and q ∈ (0,∞) or any φ ∈ A
with p ∈ (0,∞] and q = ∞, |||u|||Mφ

p,q(X), defined by replacing 
g ∈ Dφ(u) in ‖u‖Mφ
p,q(X) by


h ∈ Dφ
k0
(u), is also an equivalent quasi-norm of Mφ

p,q(X).

As was mentioned above, the spaces Ṁφσ
p,q(Rn) and Ṅφσ

p,q(Rn) coincide, respectively,
with the Triebel–Lizorkin space Ḟσ

p,q(Rn) and the Besov space Ḃσp,q(Rn) with generalized
smoothness; see [28]. It is natural to expect to obtain their inhomogeneous counterparts.
To this end, we let S(Rn) be the collection of all Schwartz functions on Rn, in which the
topology is determined by a family of norms, {‖ · ‖Sk,m(Rn)}k,m∈Z+ , where, for any k, m ∈ Z+

and any ϕ ∈ S(Rn),

‖ϕ‖Sk,m(Rn) := sup
α∈Zn

+ ,|α|≤k
sup
x∈Rn

(1 + |x|)m∣∣∣∂αϕ(x)
∣∣∣

with α := (α1, . . . ,αn) ∈ Zn
+, |α| := α1 + · · ·+ αn, and ∂α := ( ∂

∂x1
)α1 · · · ( ∂

∂xn
)αn . Additionally,

let S′(Rn) be the space of all tempered distributions on Rn equipped with the weak-∗
topology. Define

S∞(Rn) :=
{
ϕ ∈ S(Rn) :

∫
Rn
ϕ(x) xγ dx = 0 for all multi-indices γ ∈ Zn

+

}
,

and let S′∞(Rn) be the topological dual of S′∞(Rn) equipped with the weak-∗ topology.
For any f ∈ S′∞(Rn), we use f̂ to denote its Fourier transform in the sense of S′∞(Rn); in
particular, for any f ∈ L1(Rn) and ξ ∈ Rn, f̂ (ξ) :=

∫
Rn f (x) e−2πix·ξ dx. For any t ∈ (0,∞) and

x ∈ Rn, let ϕt(x) := t−nϕ(x/t).
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Definition 7. Let σ := {σ j} j∈Z be an admissible sequence. Let p, q ∈ (0,∞] and ϕ, Φ ∈ S(Rn)
be such that

supp ϕ̂ ⊂ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2
}
, and |̂ϕ(ξ)| ≥ C1 if 3/5 ≤ |ξ| ≤ 5/3

and
supp Φ̂ ⊂ {ξ ∈ Rn : |ξ| ≤ 2

}
, and |Φ̂(ξ)| ≥ C2 if |ξ| ≤ 5/3,

where C1, C2 are two positive constants.

(i) The homogeneous Triebel–Lizorkin space Ḟσ
p,q(Rn) with generalized smoothness is

defined as the set of all u ∈ S′∞(Rn) such that ‖u‖Ḟσp,q(Rn) < ∞, where, when p < ∞,

‖u‖Ḟσp,q(Rn) := ‖{σk ϕ2−k ∗ u}k∈Z‖Lp(Rn,lq) :=

∥∥∥∥∥∥∥∥
⎛⎜⎜⎜⎜⎜⎜⎝∑

k∈Z
σ

q
k

∣∣∣ϕ2−k ∗ u
∣∣∣q
⎞⎟⎟⎟⎟⎟⎟⎠

1/q
∥∥∥∥∥∥∥∥

Lp(Rn)

with the usual modification made if q = ∞ and, when p = ∞,

‖u‖Ḟσ∞,q(Rn) := sup
x∈Rn

sup
l∈Z

⎧⎪⎪⎨⎪⎪⎩
�

B(x,2−l)

∑
k≥l

σ
q
k

∣∣∣ϕ2−k ∗ u(y)
∣∣∣q dy

⎫⎪⎪⎬⎪⎪⎭
1/q

with the usual modification made if q = ∞.
(ii) The homogeneous Besov space Ḃσp,q(Rn) with generalized smoothness is defined as the

set of all u ∈ S′∞(Rn) such that

‖u‖Ḃσp,q(Rn) := ‖{σk ϕ2−k ∗ u}k∈Z‖lq(Rn,Lp) :=

⎡⎢⎢⎢⎢⎢⎢⎣∑
k∈Z

σ
q
k

∥∥∥ϕ2−k ∗ u
∥∥∥q

Lp(Rn)

⎤⎥⎥⎥⎥⎥⎥⎦
1/q

< ∞

with the usual modification made if q = ∞.
(iii) The inhomogeneous Triebel–Lizorkin space Fσ

p,q(Rn) with generalized smoothness is
defined as the set of all u ∈ S′(Rn) such that ‖u‖Fσp,q(Rn) is finite, where ‖u‖Fσp,q(Rn) is defined
as ‖u‖Ḟσp,q(Rn) with {σk ϕ2−k ∗ u}k∈Z and ϕ1 replaced, respectively, by {σk ϕ2−k ∗ u}k∈Z+ and Φ.

(iv) The inhomogeneous Besov space Bσp,q(Rn) with generalized smoothness is defined
as the set of all u ∈ S′(Rn) such that ‖u‖Bσp,q(Rn) is finite, where ‖u‖Bσp,q(Rn) is defined as
‖u‖Ḃσp,q(Rn) with {σk ϕ2−k ∗ u}k∈Z and ϕ1 replaced, respectively, by {σk ϕ2−k ∗ u}k∈Z+ and Φ.

We then have the following relation between homogeneous and inhomogeneous spaces.

Proposition 1. Let p ∈ [1,∞], q ∈ (0,∞], and σ := {σ j} j∈Z+ be admissible sequences with
α+σ ∈ (0, 1). Then, for A ∈ {B, F}, Aσp,q(Rn) = [Lp(Rn) ∩ Ȧσ̃p,q(Rn)], where σ̃ := {σ̃ j} j∈Z is any
given admissible sequence satisfying that, for any j ∈ Z+ and α−

σ̃
∈ (0, 1), σ̃ j = σ j.

Proof. By similarity, we only consider the Triebel–Lizorkin case.
First, we show Fσ

p,q(Rn) ⊂ [Lp(Rn) ∩ Ḟσ̃
p,q(Rn)]. From p ∈ [1,∞], α+σ < 1, ([14] [Corol-

lary 3.18]), or ([52] [Theorem 4.1]), we deduce that Bσp,max{p,q}(R
n) ⊂ Lp(Rn), which, together

with the trivial embedding Fσ
p,q(Rn) ⊂ Bσp,max{p,q}(R

n), implies that Fσ
p,q(Rn) ⊂ Lp(Rn) and,

for any u ∈ Fσ
p,q(Rn), ‖u‖Lp(Rn) � ‖u‖Fσp,q(Rn). Moreover, if p ∈ [1,∞), applying (3) when

p/q ≤ 1, the Minkowski inequality when p/q > 1, or the Minkowski integral inequality,
we conclude that, for any u ∈ Fσ

p,q(Rn),

∥∥∥∥∥∥∥∥
⎛⎜⎜⎜⎜⎜⎜⎝∑

k≤0

σ̃
q
k

∣∣∣ϕ2−k ∗ u
∣∣∣q
⎞⎟⎟⎟⎟⎟⎟⎠

1/q
∥∥∥∥∥∥∥∥

Lp(Rn)

≤
⎡⎢⎢⎢⎢⎢⎢⎣∑

k≤0

σ̃
min{p,q}
k ‖ϕ2−k ∗ u‖min{p,q}

Lp(Rn)

⎤⎥⎥⎥⎥⎥⎥⎦
1/ min{p,q}
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�

⎡⎢⎢⎢⎢⎢⎢⎣∑
k≤0

σ̃
min{p,q}
k

⎤⎥⎥⎥⎥⎥⎥⎦
1/ min{p,q}

‖u‖Lp(Rn).

By α−
σ̃
∈ (0, 1), we know that there exists a δ1 ∈ (0,∞) small enough such that

α−
σ̃
+ δ1 < 1. Then we have, for any k ≤ 0 and r ∈ (0,∞],

∑
k≤0

σ̃r
k � (α−σ̃ + δ1)

kr,

where the implicit positive constant only depends on σ̃ and δ1. Therefore, we obtain∥∥∥∥∥∥∥∥
⎛⎜⎜⎜⎜⎜⎜⎝∑

k≤0

σ̃
q
k

∣∣∣ϕ2−k ∗ u
∣∣∣q
⎞⎟⎟⎟⎟⎟⎟⎠

1/q
∥∥∥∥∥∥∥∥

Lp(Rn)

�

⎡⎢⎢⎢⎢⎢⎢⎣∑
k≤0

(α−σ̃ + δ1)
k min{p,q}

⎤⎥⎥⎥⎥⎥⎥⎦
1/ min{p,q}

‖u‖Lp(Rn) � ‖u‖Lp(Rn),

which implies that ‖u‖Ḟσ̃p,q(Rn) � ‖u‖Lp(Rn) + ‖u‖Fσ̃p,q(Rn). Similar estimates also holds true for

the case p = ∞. Altogether, we obtain the embedding Fσ
p,q(Rn) ⊂ [Lp(Rn) ∩ Ḟσ̃

p,q(Rn)].
Conversely, let u ∈ [Lp(Rn) ∩ Ḟσ̃

p,q(Rn)]. By the Minkowski integral inequality, we
know that, for any given p ∈ [1,∞], ‖Φ ∗ u‖Lp(Rn) � ‖u‖Lp(Rn). This, combined with the
obvious fact that ‖{σk |ϕ2−k ∗ u|}k≥1‖Lp(Rn,lq) ≤ ‖u‖Ḟσ̃p,q(Rn), implies the embedding [Lp(Rn) ∩
Ḟσ̃

p,q(Rn)] ⊂ Fσ
p,q(Rn). This finishes the proof of Proposition 1. �

As an application of Proposition 1 and ([28], Theorem 3.10), we immediately obtain
the following conclusion; we omit the details.

Corollary 1. Let p ∈ [1,∞], and σ := {σ j} j∈Z+ be an admissible sequence with α+σ ∈ (0, 1)
and β+σ ∈ (0, 2). Then, Fσ

p,q(Rn) = Mφσ̃
p,q(Rn) for any q ∈ (n/[n − log2 α

+
σ ],∞] and Bσp,q(Rn) =

Nφσ̃
p,q(Rn) for any q ∈ (0,∞], where σ̃ := {σ̃ j} j∈Z is any given admissible sequence satisfying

σ̃ j = σ j for any j ∈ Z+, α−
σ̃
∈ (0, 1), and β−

σ̃
∈ (0, 2).

3. Lebesgue Points of φ-Hajłasz-Type Functions

Let u be a function on the metric measure space (X, d, μ). A point x ∈ X is called a
Lebesgue point of u if it satisfies

lim
r→0+

�
B(x,r)

∣∣∣u(y) − u(x)
∣∣∣ dμ(y) = 0.

For such an x,

u(x) = lim
r→0+

�
B(x,r)

u(y) dμ(y).

Here and thereafter, t → 0+ means t ∈ (0,∞) and t → 0. The classical Lebesgue
differentiation theorem states that almost every point is a Lebegsue point of a locally
integrable function on Rn. If the function has higher regularity, one could expect a smaller
exceptional set. In 2002, Kinnunen and Latvala [38] studied the Lebesgue point of functions
of Hajłasz–Sobolev spaces on doubling metric measure spaces, which has led to a lot of
related works; see, for instance [39–44].

In this section, we study the Lebesgue point of φ-Hajłasz–Besov and φ-Hajłasz–Triebel–
Lizorkin functions on a given doubling metric measure space (X, d, μ). To this end, one key
tool is the maximal operators. Let R ∈ (0,∞]. The restricted maximal operatorMR is defined
by setting, for any u ∈ L0(X) and x ∈ X,

MRu(x) := sup
Br�x, r∈(0,R)

�
Br

|u| dμ, (14)
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where the supremum is taken over all balls Br in X containing x with the radius r ∈ (0, R).
Obviously,M :=M∞ is just the classical Hardy–Littlewood maximal operator, which is
known to be bounded on Lp(X) for any given p ∈ (1,∞] when X is a doubling measure
space; see, for instance ([53], Theorem 14.13). We also need the discrete Hardy–Littlewood-
type maximal operator defined via discrete convolutions (see, for instance [38,41,54]). To
recall this, we first need the notion of the partition of unity.

Definition 8. Let r ∈ (0,∞), J ⊂ N be an index set, and balls {Bj} j∈J be a covering of X with
the radius r such that

∑
j∈J 12Bj � 1, where the implicit positive constant is some positive absolute

constant. A sequence {ϕ j} j∈J of functions is called a partition of unity with respect to the above
ball covering {Bj} j∈J if, for any j ∈ J , ϕ j is a Lipschitz function with the Lipschitz constant cr−1,
ϕ j ≥ C > 0 on Bj, suppϕ j ⊂ 2Bj, 0 ≤ ϕ j ≤ 1, and

∑
j∈J ϕ j ≡ 1, where c and C are two positive

constants depending only on the doubling constant.

The existence of the partition of unity in Definition 8 with respect to any given ball
covering of X can be seen, for instance, in ([38], p. 690).

Definition 9. (i) Let u ∈ L0(X). The discrete convolution of u at the scale r ∈ (0,∞) is
defined by setting

ur :=
∑
j∈J

uBj ϕ j,

where {Bj} j∈J is a ball covering of X with the radius r and {ϕ j} j∈J a partition of unity with
respect to {Bj} j∈J as in Definition 8.

(ii) The discrete maximal operatorM∗ is defined by setting, for any u ∈ L0(X),

M∗u := sup
k∈Z
|u|2−k ,

where |u|2−k is the discrete convolution of |u| at the scale 2−k.
(iii) Let R ∈ (0,∞]. The restricted discrete maximal operatorM∗R is defined by setting, for any

u ∈ L0(X),
M∗Ru := sup

{k∈Z: 2−k<R}
|u|2−k ,

where |u|2−k is the discrete convolution of |u| at the scale 2−k.

Obviously,M∗∞ =M∗. Now, we present two Poincaré-type inequalities with respect
to φ as below. The first one is easy to prove using the definition of Hajłasz gradients, and
the other is provided in ([28], Lemma 3.7).

Lemma 3. Let φ ∈ A. Then, there exists a positive constant C = C(φ,Cμ) such that, for any
x ∈ X, k ∈ Z, u ∈ L0(B(x, 2−k)), and g ∈ Dφ(u),

inf
c∈R

�
B (x,2−k)

|u(y) − c| dμ(y) ≤ C φ(2−k)

�
B (x,2−k)

g(y) dμ(y),

where Cμ is as in (1).

Proof. Let x ∈ X, k ∈ Z, u ∈ L0(B(x, 2−k)) and g ∈ Dφ(u). Then,

inf
c∈R

�
B (x,2−k)

|u(y) − c| dμ(y) ≤
�

B (x,2−k)
|u(y) − uB(x,2−k)| dμ(y)

≤
�

B (x,2−k)

�
B (x,2−k)

|u(y) − u(z)| dμ(z) dμ(y)

≤
�

B (x,2−k)

�
B (x,2−k)

φ(2−k+1)[g(y) + g(z)] dμ(z) dμ(y)
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� φ(2−k)

�
B (x,2−k)

g(y) dμ(y).

This finishes the proof of Lemma 3. �

Lemma 4. Let φ ∈ A with αφ ∈ (0, 1). Then, for any ε, ε′ ∈ (0,− log2 αφ) with ε < ε′ and
p ∈ (0, D/ε), there exists a positive constant C = C(φ,p,ε′,Cμ) such that, for any x ∈ X, k ∈ Z, u ∈
L0(B(x, 2−k+1)) and 
g := {g j} j∈Z ∈ Dφ(u),

inf
c∈R

[�
B (x,2−k)

|u(y) − c| Dp
D−εp dμ(y)

] D−εp
np

≤ C 2−kε′
∑

j≥k−2

2 jε′φ(2− j)

{�
B (x,2−k+1)

[g j(y)]
p dμ(y)

}1/p

, (15)

where D and Cμ are as in (1).

Remark 2. Let D and Cμ be as in (1).

(i) Let φ, ε, and p be as in Lemma 4. By taking, for any k ∈ Z, x ∈ X, u ∈ L0(B(x, 2−k+1)), and
g ∈ Dφ(u), ε′ := (ε − log2 αφ)/2 and 
g := {g j := g} j∈Z in (15), we obtain

inf
c∈R

[�
B (x,2−k)

|u(y) − c| Dp
D−εp dμ(y)

] D−εp
Dp

� φ(2−k)

{�
B (x,2−k+1)

[g(y)]p dμ(y)
}1/p

, (16)

where the implicit positive constant depends only on φ, p, ε, and Cμ.
(ii) Notice that, if Dp/(D − εp) = 1, then p = D/(D + ε). In this case, (15) and (16) become,

respectively,

inf
c∈R

�
B (x,2−k)

|u(y) − c| dμ(y)

≤ C(φ,p,ε′,Cμ) 2−kε′
∑

j≥k−2

2 jε′φ(2− j)

{�
B (x,2−k+1)

[g j(y)]
D

D+ε dμ(y)
} D+ε

D

(17)

and

inf
c∈R

�
B (x,2−k)

|u(y) − c| dμ(y)

≤ C(φ,p,ε,Cμ) φ(2
−k)

{�
B (x,2−k+1)

[g(y)]
D

D+ε dμ(y)
} D+ε

D

. (18)

Applying these Poincaré-type inequalities, we obtain the following estimates.

Lemma 5. Let φ ∈ A, D, and Cμ be as in (1) andM be the Hardy–Littlewood maximal operator.

(i) Then, there exists a positive constant C = C(φ,Cμ) such that, for any u ∈ L1
loc (X), g ∈ Dφ(u),

i ∈ Z, y ∈ X with uB(y,2−i) < ∞, and almost every x ∈ B (y, 2−i+1),

∣∣∣∣u(x) − uB(y,2−i)

∣∣∣∣ ≤ C φ(2−i)M(g)(x).

(ii) Let αφ ∈ (0, 1). Then, for any λ ∈ (D/[D − log2 αφ],∞), there exists a positive constant
C = C(φ,λ,Cμ) such that, for any u ∈ L1

loc (X), g ∈ Dφ(u), i ∈ Z, y ∈ X with uB(y,2−i) < ∞,
and almost every x ∈ B (y, 2−i+1),

∣∣∣∣u(x) − uB(y,2−i)

∣∣∣∣ ≤ C φ(2−i)
[
M
(
gλ
)
(x)

]1/λ
. (19)
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(iii) Let αφ ∈ (0, 1). Then, for any λ ∈ (D/[D − log2 αφ],∞), there exist an ε ∈ (0,− log2 αφ)
depending on λ, and a positive constant C = C(φ,λ,Cμ) such that, for any u ∈ L1

loc (X),

g := {gl}l∈Z ∈ Dφ(u), i ∈ Z, y ∈ X with uB(y,2−i) < ∞, and almost every x ∈ B (y, 2−i+1),

∣∣∣∣u(x) − uB(y,2−i)

∣∣∣∣ ≤ C
∑

l≥i−4

2(l−i)εφ(2−l)
[
M
(
gλl
)
(x)

]1/λ
. (20)

Proof. Let u, g, i, y, and x be as in the present lemma. By the definition of Hajłasz gradients,
the doubling property of μ, the geometrical observation that, for any x ∈ B(y, 2−i+1),
B(y, 2−i+1) ⊂ B(x, 2−i+2) and, for almost every x ∈ X, g(x) ≤ M(g)(x), we have, for almost
every x ∈ B(y, 2−i+1),

∣∣∣∣u(x) − uB(y,2−i)

∣∣∣∣ ≤ �
B(y,2−i)

|u(x) − u(z)| dμ(z)

� φ(2−i)

�
B(y,2−i)

[g(x) + g(z)] dμ(z)

� φ(2−i)

[
g(x) +

�
B(x,2−i+2)

g(z) dμ(z)
]

� φ(2−i)M(g)(x),

which proves (i) of the present lemma.
To complete the proof of the present lemma, we observe that, for any i ∈ Z, y ∈ X and

x ∈ B (y, 2−i+1), B (y, 2−i) ⊂ B (x, 2−i+2). Thus, by the Lebesgue differentiation theorem and
the doubling property of μ, we find that, for almost every x ∈ B (y, 2−i+1),∣∣∣∣u(x) − uB(y,2−i)

∣∣∣∣ ≤ ∣∣∣∣u(x) − uB(x,2−i+2)

∣∣∣∣+ ∣∣∣∣uB(x,2−i+2) − uB(y,2−i)

∣∣∣∣
�

∑
k≥i−2

�
B(x,2−k)

∣∣∣∣u(z) − uB(x,2−k)

∣∣∣∣ dμ(z)
+

�
B(x,2−i+2)

∣∣∣∣u(z) − uB(x,2−i+2)

∣∣∣∣ dμ(z) (21)

�
∑

k≥i−2

�
B(x,2−k)

∣∣∣∣u(z) − uB(x,2−k)

∣∣∣∣ dμ(z)
�

∑
k≥i−2

inf
c∈R

�
B(x,2−k)

∣∣∣u(z) − c
∣∣∣ dμ(z).

If λ ∈ (D/[D − log2 αφ], 1), choose ω ∈ (0,− log2 αφ) such that λ = D/(D + ω). By
αφ ∈ (0, 1), (21), and the definition ofM, we conclude that (19) and (20) follow from (18)
and (17) with ε = ω therein, respectively.

If λ ∈ [1,∞), then, for any ε ∈ (0,− log2 αφ), by the Hölder inequality, we also obtain the
same estimate as the case λ ∈ (D/[D − log2 αφ], 1). This finishes the proof of Lemma 5. �

Remark 3. (i) Let φ ∈ A with αφ ∈ (0, 1). Recall that, for any p ∈ (D/(D − log2 αφ),∞], q ∈
(0,∞], and u ∈ [Ṁφ

p,q(X) ∪ Ṅφ
p,q(X)], the integral of u on any ball in X is finite (see [28],

Remark 3.8), where D is as in (1).
(ii) Let φ ∈ A. For any u ∈ Ḟ , the integral of |u|p on any ball B := B(x, 2−k) in X with k ∈ Z is

also finite, where

Ḟ ∈
{
Ṁφ,p(X) : p ∈ [1,∞)

}
∪
{
Ṁφ,p(X) : p ∈ (0, 1), αφ ∈ (0, 1)

}
∪
{
Ṁφ

p,q(X), Ṅφ
p,q(X) : p, q ∈ (0,∞], αφ ∈ (0, 1)

}
.
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To see this, by similarity, we only prove the case Ḟ = Ṁφ
p,q(X) with p, q ∈ (0,∞] and

αφ ∈ (0, 1). Indeed, by (15), the Hölder inequality, Lemma 1(i), and the definition ofA, we
find that

inf
c∈R

[�
B
|u(y) − c|p dμ(y)

]1/p

� 2−kε′
∑

j≥k−2

2 jε′φ(2− j)

{�
2B
[g j(y)]

p dμ(y)
}1/p

� 2−kε′
∑

j≥k−2

2 jε′φ(2− j)[μ(2B)]−1/p∥∥∥{g j} j∈Z
∥∥∥

Lp(2B,lq)

� φ(2−k)[μ(2B)]−1/p∥∥∥{g j} j∈Z
∥∥∥

Lp(X,lq) < ∞,

where ε′ ∈ (0,− log2 αφ) and {g j} j∈Z ∈ Dφ(u) ∩ Lp(X, lq). Let c0 ∈ R be such that
�

B
|u(y) − c0|p dμ(y) < ∞.

Then, ∫
B
|u(y)|p dμ(y) � μ(B)

�
B
|u(y) − c0|p dμ(y) + μ(B)cp

0 < ∞.

Thus, the above claim holds true.

Due to Remark 3(i), the classical Lebesgue differentiation theorem implies that almost
every point is a Lebesgue point of u. As u has certain regularity, one would expect a
smaller exceptional set than that of usual locally integrable functions. Inspired by [41,45],
we introduce capacities related, respectively, to Mφ

p,q(X) and Nφ
p,q(X) to measure such

exceptional sets.
Below, for simplicity, we use F to denote either Mφ

p,q(X) or Nφ
p,q(X), or Ḟ to denote

either Ṁφ
p,q(X) or Ṅφ

p,q(X).

Definition 10. Let E be a subset of X. Recall that a set U is called a neighborhood of E if it is
open and E ⊂ U. Let F ∈ {Mφ

p,q(X), Nφ
p,q(X)} with φ ∈ A and p, q ∈ (0,∞], and

GF (E) :=
{
u ∈ F : u ≥ 1 on a neighborhood of E

}
.

The F -capacity Cap F (E) of E is defined by setting

Cap F (E) := inf
{
‖u‖pF : u ∈ GF (E)

}
.

Remark 4. Let E, E1, E2 ⊂ X and F ∈ {Mφ
p,q(X), Nφ

p,q(X)} with φ ∈ A and p, q ∈ (0,∞].
(i) Let G′F (E) := {u ∈ GF (E) : 0 ≤ u ≤ 1}. By Lemma 2(i), ‖max{min{u, 1}, 0}‖F ≤ ‖u‖F , and

an argument similar to that used in ([55], Remark 3.2), we have

Cap F (E) = inf
{
‖u‖pF : u ∈ G′F (E)

}
.

(ii) If Cap F (E) = 0 with p ∈ (0,∞), then μ(E) = 0. Indeed, for any ε ∈ (0,∞), there always
exists a neighborhood Uε of E such that ‖1Uε ‖F < ε, which implies that

[μ(E)]1/p = ‖1E‖Lp(X) ≤ ‖1E‖F ≤ ε.

Letting ε → 0+, we obtain μ(E) = 0.
(iii) If E1 ⊂ E2, then GF (E2) ⊂ GF (E1), which means that Cap F (E1) ≤ Cap F (E2).

The following lemma provides a basic property of the capacity which is a slight
generalization of ([41], Lemma 6.4); we omit the details.
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Lemma 6. Let F ∈ {Mφ
p,q(X), Nφ

p,q(X)} with φ ∈ A and p ∈ (0,∞) and q ∈ (0,∞]. Let
θ := min{1, q/p}. Then, there exists a positive constant C = C(p,q) ∈ [1,∞) such that, for any
sequence {Ei}i∈N of subsets of X,

⎡⎢⎢⎢⎢⎢⎢⎣Cap F

⎛⎜⎜⎜⎜⎜⎜⎝⋃
i∈N

Ei

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦
θ

≤ C
∑
i∈N

[Cap F (Ei)]
θ.

Via F -capacities, we introduce the F -quasi-continuity as follows.

Definition 11. Let F ∈ {Mφ
p,q(X), Nφ

p,q(X)} with φ ∈ A and p, q ∈ (0,∞]. A function u is said
to be F -quasi-continuous if, for any ε ∈ (0,∞), there exists a set Uε such that Cap F (Uε) < ε

and the restriction u|X\Uε of u on X \Uε is continuous.

The following theorem shows the convergence of discrete convolution approximations
in F , which generalizes ([41], Theorem 5.1).

Theorem 1. Let φ ∈ A0, p ∈ (D/(D − log2 αφ),∞), F = Mφ
p,q(X) [resp., Ḟ = Ṁφ

p,q(X)] with
q ∈ (D/(D − log2 αφ),∞), or F = Nφ

p,q(X) [resp., Ḟ = Ṅφ
p,q(X)] with q ∈ (0,∞), and u ∈ Ḟ .

Then, ‖u− u2−i‖F → 0 as i→ ∞, where {u2−i }i∈Z+ are the discrete convolutions as in Definition 9(i).

To prove Theorem 1, we need the following lemma, which generalizes ([41], Lemma 3.1)
(see also [47], Lemma 3.10).

Lemma 7. Let E ⊂ X be a measurable set, L ∈ (0,∞), ϕ be a bounded L-Lipschitz function
supported in E, u ∈ L0(X), and φ ∈ A∞.

(i) If {gk}k∈Z ∈ Dφ(u), then, for any i ∈ Z, the sequence {hk}k∈Z, defined by setting

hk :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{
2−k

[
φ(2−k)

]−1
L |u|+ ‖ϕ‖L∞(X) gk

}
1E , k > i,

‖ϕ‖L∞(X)
[
φ(2−k)

]−1 |u| 1E , k ≤ i,
(22)

is an element of Dφ(uϕ) modulo a positive constant that is independent of i and L.
(ii) If g ∈ Dφ(u), then

h :=
{
‖ϕ‖L∞(X) g +

[
‖ϕ‖L∞(X) + 1

][
φ(L−1)

]−1|u|
}
1E

is an element ofDφ(uϕ) modulo a positive constant that is independent of L.

Proof. We first prove (i). Let ϕ be a bounded L-Lipschitz function supported in E, u ∈ L0(X),
and {gk}k∈Z ∈ Dφ(u). For any k ∈ Z and x, y ∈ Xwith d(x, y) ∈ [2−k−1, 2−k), we have

d(x, y)/φ(d(x, y)) � 2−k/φ(2−k) and [φ(d(x, y))]−1 � [φ(2−k)]−1.

Then, from the Lipschitz continuity of ϕ and the definition of Dφ(u), it follows that,
for any k ∈ Z and almost every x, y ∈ E with d(x, y) ∈ [2−k−1, 2−k),∣∣∣u(x)ϕ(x) − u(y)ϕ(y)

∣∣∣ ≤ |u(x)|∣∣∣ϕ(x) − ϕ(y)∣∣∣+ ‖ϕ‖L∞ ∣∣∣u(x) − u(y)
∣∣∣

≤ φ(d(x, y))
{

Ld(x, y)|u(x)|
φ(d(x, y))

+ ‖ϕ‖L∞(X)[gk(x) + gk(y)]
}

� φ(d(x, y))
{

L2−k |u(x)|
φ(2−k)

+ ‖ϕ‖L∞(X)[gk(x) + gk(y)]
}
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and ∣∣∣u(x)ϕ(x) − u(y)ϕ(y)
∣∣∣ � |u(x)|‖ϕ‖L∞(X) + ‖ϕ‖L∞(|u(x)|+ |u(y)|)

� φ(d(x, y))
‖ϕ‖L∞(X)(|u(x)|+ |u(y)|)

φ(d(x, y))

� φ(d(x, y))
‖ϕ‖L∞(X)(|u(x)|+ |u(y)|)

φ(2−k)
.

For any k ∈ Z and almost every x ∈ E and y ∈ X \ E with d(x, y) ∈ [2−k−1, 2−k),
we have ∣∣∣u(x)ϕ(x) − u(y)ϕ(y)

∣∣∣ ≤ |u(x)|∣∣∣ϕ(x) − ϕ(y)∣∣∣
≤ φ(d(x, y))

Ld(x, y)|u(x)|
φ(d(x, y))

� φ(d(x, y))
L2−k |u(x)|
φ(2−k)

and

∣∣∣u(x)ϕ(x) − u(y)ϕ(y)
∣∣∣ ≤ ‖ϕ‖L∞(X)|u(x)| � φ(d(x, y))

‖ϕ‖L∞(X)|u(x)|
φ(2−k)

.

Similarly, for any k ∈ Z and almost every x ∈ E and y ∈ X \ E with d(x, y) ∈ [2−k−1, 2−k),
we have

∣∣∣u(x)ϕ(x) − u(y)ϕ(y)
∣∣∣ � φ(d(x, y))

L2−k |u(y)|
φ(2−k)

and

∣∣∣u(x)ϕ(x) − u(y)ϕ(y)
∣∣∣ � φ(d(x, y))

‖ϕ‖L∞(X)|u(y)|
φ(2−k)

.

From these estimates, we deduce that {hk}k∈Z as in (22) is a positive constant multiple
of an element inDφ(uϕ), with the positive constant independent of i and L. This proves (i).

The item (ii) is easy to show using the result in (i) and choosing h := supk∈Z hk and
i ∈ Z such that L ∈ [2i, 2i+1). This finishes the proof of Lemma 7. �

We now state some corollaries of Lemma 7 as follows.

Corollary 2. Let E ⊂ X be a measurable set, L ∈ [1/2,∞), ϕ be a bounded L-Lipschitz function
supported in E and p ∈ (0,∞). Let F ∈ {Mφ

p,q(X), Nφ
p,q(X)} with q ∈ (0,∞) and φ ∈ Aq,

or F ∈ {Mφ
p,∞(X) = Mφ,p(X), Nφ

p,∞(X)} with φ ∈ A∞. Then, for any u ∈ F , uϕ ∈ F with
‖uϕ‖F � ‖u‖F , where the implicit positive constant is independent of u.

Proof. By similarity, we only consider F = Mφ
p,q(X) with p, q ∈ (0,∞) and φ ∈ Aq. Let i ∈

Z+ be such that 2i−1 ≤ L < 2i, u ∈ L0(X), {gk}k∈Z ∈ Dφ(u) satisfy ‖{gk}k∈Z‖Lp(X,lq) � ‖u‖Ṁφ
p,q(X),

and {hk}k∈Z be as in (22). By the definition ofAq, we have

∑
k≤i

1
[φ(2−k)]q

� Xq
L and

∑
k>i

2−kq

[φ(2−k)]q
� Yq

L,

where XL and YL are two positive constants independent of φ. From this, we deduce that

‖{hk}k∈Z‖Lp(X,lq) �

⎧⎪⎪⎨⎪⎪⎩
∑
k>i

(
2−k

[
φ(2−k)

]−1
)q⎫⎪⎪⎬⎪⎪⎭

1/q

L‖u1E‖Lp(X)
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+ ‖ϕ‖L∞(X)‖{gk}k∈Z‖Lp(E,lq)

+

⎧⎪⎪⎨⎪⎪⎩
∑
k≤i

([
φ(2−k)

]−1
)q⎫⎪⎪⎬⎪⎪⎭

1/q

‖ϕ‖L∞(X)‖u1E‖Lp(X) (23)

� ‖ϕ‖L∞(X) ‖{gk}k∈Z‖Lp(E,lq)

+
[
XL ‖ϕ‖L∞(X) + YL L

]
‖u‖Lp(E),

which, combined with Lemma 7 and ‖uϕ‖Lp(X) ≤ ‖u‖Lp(X)‖ϕ‖L∞(X), implies that

‖uϕ‖Mφ
p,q(X) � ‖uϕ‖Lp(X) + ‖{hk}k∈Z‖Lp(X,lq)

�
[
(XL + 1)‖ϕ‖L∞(X) + YLL

]
‖u‖Mφ

p,q(X),

where the implicit positive constants are independent of L, ϕ, and u. This finishes the proof
of Corollary 2. �

Corollary 3. With the same assumptions as in Corollary 2, if the set E is bounded, then, for any
u ∈ Ḟ , uϕ ∈ F .

Proof. Again, by similarity, we only consider F = Mφ
p,q(X) with p, q ∈ (0,∞) and φ ∈ Aq.

Let i ∈ Z+ be such that 2i−1 ≤ L < 2i, u ∈ L0(X), and {gk}k∈Z ∈ Dφ(u) be such that
‖{gk}k∈Z‖Lp(X,lq) � ‖u‖Ṁφ

p,q(X). Since E is bounded, we can find a ball B containing E. Then,
by Remark 3(ii), we conclude that ‖u‖Lp(E) ≤ ‖u‖Lp(B) < ∞. Let {hk}k∈Z be as in (22).
Then, from (23), we deduce that ‖{hk}k∈Z‖Lp(X,lq) < ∞, which, combined with Lemma 7,
implies that ‖uϕ‖Ṁφ

p,q(X) < ∞. Notice that ‖uϕ‖Lp(X) = ‖u‖Lp(E)‖ϕ‖L∞(X) < ∞. We then obtain
‖uϕ‖Mφ

p,q(X) < ∞, which completes the proof of Corollary 3. �

Corollary 4. Let E ⊂ X be a measurable set with μ(E) ∈ (0,∞); L ∈ (0,∞); ϕ be a bounded
L-Lipschitz function supported in E; and F ∈ {Mφ

p,q(X), Nφ
p,q(X)} with p, q ∈ (0,∞), αφ ∈ (0, 1),

and βφ ∈ (0, 2) or F ∈ {Mφ
p,∞(X) = Mφ,p(X), Nφ

p,∞(X)}with p ∈ (0,∞), φ ∈ A∞, and u ∈ L0(X).
Then,

‖ϕ‖F �
[
1 + ‖ϕ‖L∞(X)

]{
1 +

[
φ(L−1)

]−1
}
[μ(E)]1/p (24)

with the implicit positive constant independent of L, ϕ, and E.

Proof. We first consider F = Mφ
p,q(X) with p, q ∈ (0,∞), αφ ∈ (0, 1), and βφ ∈ (0, 2). Let

{hk}k∈Z be as in (22). From Lemma 7(i) and choosing u ≡ 1, gk ≡ 0 for any k ∈ Z, and i ∈ Z
such that 2i ≤ L < 2i+1 in (22), we deduce that

‖ϕ‖Ṁφ
p,q(X) � ‖{hk}k∈Z‖Lp(X,lq)

�

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎧⎪⎪⎨⎪⎪⎩
∑
k>i

(
2−k

[
φ(2−k)

]−1
)q⎫⎪⎪⎬⎪⎪⎭

1/q

L

+

⎧⎪⎪⎨⎪⎪⎩
∑
k≤i

([
φ(2−k)

]−1
)q⎫⎪⎪⎬⎪⎪⎭

1/q

‖ϕ‖L∞(X)
⎤⎥⎥⎥⎥⎥⎥⎥⎦‖1E‖Lp(X)

�
{[
φ(L−1)

]−1
+
[
φ(L−1)

]−1‖ϕ‖L∞(X)
}
[μ(E)]1/p,

where, in the last inequality, we used (9) and (8). This, combined with the fact that

‖ϕ‖Lp(X) ≤ ‖ϕ‖L∞(X)[μ(E)]1/p,

implies (24) with F = Mφ
p,q(X).
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By choosing u ≡ 1 and g ≡ 0 in Lemma 7(ii), the case

F ∈
{
Mφ

p,∞(X) = Mφ,p(X), Nφ
p,∞(X)

}
with p ∈ (0,∞) and φ ∈ A∞ can be similarly proved. This finishes the proof of Corollary 4. �

Now, we prove Theorem 1.

Proof of Theorem 1. By similarity, we only consider the case F = Mφ
p,q(X). Let p, q,

and φ be as in the present theorem; Cμ be as in (1); i ∈ Z+; u ∈ Ṁφ
p,q(X); and {gk}k∈Z ∈

Dφ(u) ∩ Lp(X, lq). Let {Bj} j∈J be any given ball covering of X with the radius 2−i such that∑
j∈J 12Bj � 1 and {ϕ j} j∈J , consisting of a sequence of c2i-Lipschitz functions, be a partition

of unity with respect to {Bj} j∈J as in Definition 8, where c is a positive constant depending
only on Cμ. For any j ∈ J , let uBj be as in (2). By ([28], Remark 3.8), we have, for any j ∈ J ,
|uBj | < ∞. Let u2−i be as in Definition 9(i). Thus, by the properties of {ϕ j} j∈J , we obtain

u − u2−i =
∑
j∈J

(
u − uBj

)
ϕ j. (25)

Noticing that ϕ j is a c2i-Lipschitz function and ‖ϕ j‖L∞(X) ≤ 1, from Lemma 7 with u

and L replaced, respectively, by u− uBj and c2i, we deduce that, for any j ∈ J , 
h j := {hk, j}k∈Z,
defined by setting, for any k ∈ Z,

hk, j :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{
2i−k

[
φ(2−k)

]−1|u − uBj |+ gk

}
12Bj , k > i,[

φ(2−k)
]−1 ∣∣∣u − uBj

∣∣∣ 12Bj , k ≤ i,

is a positive constant multiple of an element of Dφ([u−uBj ]ϕ j). By this, (25), and
∑

j∈J 12Bj �
1, we conclude that, for almost every x, y ∈ Xwith d(x, y) ∈ [2−k−1, 2−k),∣∣∣(u − u2−i)(x) − (u − u2−i)(y)

∣∣∣
=

∑
j∈J

(
u(x) − uBj

)
ϕ j(x) −

∑
j∈J

(
u(y) − uBj

)
ϕ j(y)

≤
∑

j∈J , 2Bj∩{x,y}�∅

∣∣∣∣(u(x) − uBj

)
ϕ j(x) −

(
u(y) − uBj

)
ϕ j(y)

∣∣∣∣
� φ(d(x, y))

∑
j∈J , 2Bj∩{x,y}�∅

[hk, j(x) + hk, j(y)]. (26)

For any given ε ∈ (0,− log2 αφ) and λ ∈ (n/[n− log2 αφ],∞), by Lemma 5(iii), we obtain,
for any j ∈ J and almost every x ∈ 2Bj,

∣∣∣u(x) − uBj

∣∣∣ � ∑
l≥i−4

2(l−i)εφ(2−l)
[
M
(
gλl
)
(x)

]1/λ
.

Then,

hk, j ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩2i−k
[
φ(2−k)

]−1 ∑
l≥i−4

2(l−i)εφ(2−l)
[
M
(
gλl
)]1/λ

+ gk

⎫⎪⎪⎬⎪⎪⎭ 12Bj , k > i,

[
φ(2−k)

]−1 ∑
l≥i−4

2(l−i)εφ(2−l)
[
M
(
gλl
)]1/λ

12Bj , k ≤ i
(27)

=: h̃k, j.
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Define the sequence {hk}k∈Z by setting, for any k ∈ Z,

hk :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
2i−k 2−iε

[
φ(2−k)

]−1 ∑
l≥i−4

2lεφ(2−l)
[
M
(
gλl
)]1/λ

+ gk, k > i,

2−iε
[
φ(2−k)

]−1 ∑
l≥i−4

2lεφ(2−l)
[
M
(
gλl
)]1/λ

, k ≤ i.
(28)

Then, by (26), (27), and
∑

j∈J 12Bj � 1, we conclude that, for almost every x, y ∈ X,

∣∣∣(u − u2−i)(x) − (u − u2−i)(y)
∣∣∣ � φ(d(x, y))

∑
j∈J , 2Bj∩{x,y}�∅

[
h̃k, j(x) + h̃k, j(y)

]
� φ(d(x, y))[hk(x) + hk(y)],

which implies that {hk}k∈Z is a positive constant multiple of an element in Dφ(u − u2−i).
Let λ ∈ (n/[n − log2 αφ], min{p, q}). Using the Hölder inequality, the fact that αφ < 2−ε ,

and Lemma 1, we have

∑
l≥i−4

2lεφ(2−l)
[
M
(
gλl
)]1/λ

�
[
2iεφ(2−i)

](q−1)/q
⎧⎪⎪⎨⎪⎪⎩
∑

l≥i−4

2lεφ(2−l)
[
M
(
gλl
)]q/λ

⎫⎪⎪⎬⎪⎪⎭
1/q

(29)

with the implicit positive constant independent of i. Notice that, by (10) and β−φ < 2,

⎧⎪⎪⎨⎪⎪⎩
∑
k>i

{
2i−k 2−iε

[
φ(2−k)

]−1
}q
⎫⎪⎪⎬⎪⎪⎭

1/q

= 2−i(ε−1)

⎧⎪⎪⎨⎪⎪⎩
∑
k>i

[
2−k

φ(2−k)

]q⎫⎪⎪⎬⎪⎪⎭
1/q

�
2−iε

φ(2−i)
(30)

and, by (9) and αφ < 1, ⎧⎪⎪⎨⎪⎪⎩
∑
k≤i

{
2−iε

[
φ(2−k)

]−1
}q
⎫⎪⎪⎬⎪⎪⎭

1/q

�
2−iε

φ(2−i)
. (31)

Thus, by (29)–(31), Lemma 1, and the Fefferman–Stein vector-valued maximal inequal-
ity in Lp/λ(X, lq/λ) (see ([56], Theorem 1.2) or ([57], Theorem 1.3)), we obtain

‖{hk}k∈Z‖Lp(X,lq) �

∥∥∥∥∥∥∥∥
⎧⎪⎪⎨⎪⎪⎩
∑

l≥i−4

2(l−i)ε φ(2
−l)

φ(2−i)

[
M(gλl )

]q/λ
⎫⎪⎪⎬⎪⎪⎭

1/q
∥∥∥∥∥∥∥∥

Lp(X)
+

∥∥∥∥∥∥∥∥
⎛⎜⎜⎜⎜⎜⎜⎝∑

k>i

gq
k

⎞⎟⎟⎟⎟⎟⎟⎠
1/q

∥∥∥∥∥∥∥∥
Lp(X)

�

∥∥∥∥∥∥∥∥
⎧⎪⎪⎨⎪⎪⎩
∑

l≥i−4

[
M(gλl )

]q/λ
⎫⎪⎪⎬⎪⎪⎭

1/q
∥∥∥∥∥∥∥∥

Lp(X)
+

∥∥∥∥∥∥∥∥
⎛⎜⎜⎜⎜⎜⎜⎝∑

k>i

gq
k

⎞⎟⎟⎟⎟⎟⎟⎠
1/q

∥∥∥∥∥∥∥∥
Lp(X)

(32)

�

∥∥∥∥∥∥∥∥
⎛⎜⎜⎜⎜⎜⎜⎝∑

l≥i−4

gq
l

⎞⎟⎟⎟⎟⎟⎟⎠
1/q

∥∥∥∥∥∥∥∥
Lp(X)

+

∥∥∥∥∥∥∥∥
⎛⎜⎜⎜⎜⎜⎜⎝∑

k>i

gq
k

⎞⎟⎟⎟⎟⎟⎟⎠
1/q

∥∥∥∥∥∥∥∥
Lp(X)

�

∥∥∥∥∥∥∥∥
⎛⎜⎜⎜⎜⎜⎜⎝ ∑

k≥i−4

gq
k

⎞⎟⎟⎟⎟⎟⎟⎠
1/q

∥∥∥∥∥∥∥∥
Lp(X)

,

which, combined with ‖{gk}k∈Z‖Lp(X,lq) < ∞, implies that

∥∥∥u − u2−i

∥∥∥
Ṁφ

p,q(X) �

∥∥∥∥∥∥∥∥
⎛⎜⎜⎜⎜⎜⎜⎝ ∑

k≥i−4

gq
k

⎞⎟⎟⎟⎟⎟⎟⎠
1/q

∥∥∥∥∥∥∥∥
Lp(X)

→ 0 as i→ ∞.
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On the other hand, from (25), Lemmas 5(iii), and 1(ii) with ε ∈ (0,− log2 αφ), the
properties of {ϕ j} j∈J , the Fefferman–Stein vector-valued maximal inequality, and φ(0) = 0,
it follows that

∥∥∥u − u2−i

∥∥∥
Lp(X) =

∥∥∥∥∥∥∥∥
∑
j∈J

(
u − uBj

)
ϕ j

∥∥∥∥∥∥∥∥
Lp(X)

�

∥∥∥∥∥∥∥∥
∑
j∈J

⎧⎪⎪⎨⎪⎪⎩
∑

l≥i−4

2(l−i)εφ(2−l)
[
M
(
gλl
)]1/λ

⎫⎪⎪⎬⎪⎪⎭ϕ j

∥∥∥∥∥∥∥∥
Lp(X)

� φ(2−i)

∥∥∥∥∥∥∥
∑

l≥i−4

2(l−i)ε φ(2
−l)

φ(2−i)

[
M(gλl )

]1/λ
∥∥∥∥∥∥∥

Lp(X)

� φ(2−i)

∥∥∥∥∥∥∥
∑

l≥i−4

[
M(gλl )

]1/λ
∥∥∥∥∥∥∥

Lp(X)

� φ(2−i)

∥∥∥∥∥∥∥∥
⎛⎜⎜⎜⎜⎜⎜⎝∑

l≥i−4

gq
l

⎞⎟⎟⎟⎟⎟⎟⎠
1/q

∥∥∥∥∥∥∥∥
Lp(X)

→ 0 as i→ ∞. (33)

This finishes the proof of Theorem 1. �

Recall that, when q = ∞, Mφ
p,∞(X) = Mφ,p(X) (see Remark 1(i)). Even in the classical

case φ(t) := t for any t ∈ [0,∞), Theorem 1 is not true for q = ∞; we refer the reader to ([41],
Example 3.5) with mγ

u(Bj) therein replaced by uBj for any j ∈ N for a counterexample.
For any given Hajłasz–Sobolev function, to find a convergent sequence consisting of
continuous functions to this given Hajłasz–Sobolev function in Hajłasz–Sobolev spaces,
instead of Theorem 1, we turn to find a dense subspace of Mφ

p,∞(X), which consists of some
generalized Lipschitz continuous functions.

Definition 12. Let φ ∈ A. A function u on X is said to be in the φ-Lipschitz class Lip φ(X) if
there exists a positive constant C such that, for any x, y ∈ X,∣∣∣u(x) − u(y)

∣∣∣ ≤ C φ(d(x, y)).

Observe that Lip φ(X) is just the classical Hölder space of order s ∈ (0, 1] when
φ(t) := ts for any t ∈ [0,∞).

Recall that a function φ : [0,∞) → [0,∞) is called a modulus of continuity if it is
increasing, the function φ̃, defined by setting, for any t ∈ [0,∞), φ̃(t) := φ(t)/t, is decreasing,
φ(0) = 0, and, for any t ∈ (0,∞), φ(t) > 0; see [58]. Obviously, the collection of all moduli
of continuity is contained inA∞. It is well known that, if φ is a modulus of continuity, then,
for any x, y ∈ [0,∞),

φ(x + y) ≤ φ(x) + φ(y).

Borrowing some ideas similar to that used in the proof of ([48], Theorem 5.19) (see
also ([59], Proposition 4.5)), we can prove the following conclusion.

Theorem 2. Let φ be a modulus of continuity, and p ∈ (0,∞). Then Lip φ(X) ∩ Mφ,p(X) is a
dense subspace of Mφ,p(X).

Proof. Let p ∈ (0,∞), u ∈ Mφ,p(X), g ∈ Dφ(u) ∩ Lp(X), and E be the exceptional zero-
measure set such that (13) holds true. For any λ ∈ (0,∞), let

Eλ :=
{
x ∈ X \ E : g(x) ≤ λ, |u(x)| ≤ λ}. (34)

157



Mathematics 2021, 9, 2724

Then, the facts that u ∈ Lp(X) and g ∈ Lp(X) imply that, for any λ ∈ (0,∞),

μ(X \ Eλ) < ∞. (35)

Moreover, by the definitions ofDφ(u) and Eλ, we know that, for any x, y ∈ Eλ,

|u(x) − u(y)| ≤ φ(d(x, y))[g(x) + g(y)] ≤ 2λφ(d(x, y)).

Thus, u|Eλ is φ-Lipschitz continuous on Eλ. By ([60], Theorem 2) with the function ω

therein replaced by 2λφ, we find that uλ, defined by setting, for any x ∈ X,

uλ(x) := sup
{
u(y) − 2λφ(d(x, y)) : y ∈ Eλ

}
,

is a φ-Lipschitz continuous extension of u|Eλ from Eλ to X and, furthermore, for any x1, x2 ∈ X,∣∣∣uλ(x1) − uλ(x2)
∣∣∣ ≤ 2λφ(d(x1, x2)). (36)

Define vλ := sgn (uλ)min{|uλ|, λ}. By uλ|Eλ = u|Eλ , (34), and the definition of vλ, we
find that

vλ|Eλ = uλ|Eλ = u|Eλ . (37)

By the definition of vλ and (36), we find that, for any x, y ∈ X,∣∣∣vλ(x) − vλ(y)
∣∣∣ ≤ |uλ(x) − uλ(y)| ≤ 2λφ(d(x, y)), (38)

which means that vλ is still φ-Lipschitz continuous on X.
We now show vλ ∈ Mφ,p(X). If x, y ∈ Eλ, then, by (37) and the definition of Dφ(u),

we have

|vλ(x) − vλ(y)| = |u(x) − u(y)|
≤ φ(d(x, y))[g(x) + g(y)]. (39)

Otherwise, if at least one of x and y lies in X \ Eλ, then, by (38), we find that∣∣∣vλ(x) − vλ(y)
∣∣∣ ≤ 2λφ(d(x, y)),

which, combined with (39) and the definition ofDφ(vλ), implies that

gλ := g 1Eλ + 2λ 1X\Eλ ∈ Dφ(vλ).

By the definitions of vλ and gλ, (37), |vλ| ≤ λ, and (35), we conclude that

‖vλ‖Lp(X) � ‖vλ1Eλ‖Lp(X) + ‖vλ1X\Eλ‖Lp(X)
� ‖u‖Lp(X) + λ[μ(X \ Eλ)]

1/p
< ∞

and
‖gλ‖Lp(X) � ‖g‖Lp(X) + 2λ[μ(X \ Eλ)]

1/p
< ∞,

which, combined with the definition of ‖ · ‖Mφ,p(X), implies that vλ ∈ Mφ,p(X).
Now, we consider vλ − u. Let x, y ∈ X \ E. If x, y ∈ Eλ, then, by (37), it is obvious that∣∣∣(vλ − u)(x) − (vλ − u)(y)

∣∣∣ = 0.

If x, y ∈ X \ (Eλ ∪ E), then, by (38) and the definition ofDφ(u), we obtain∣∣∣(vλ − u)(x) − (vλ − u)(y)
∣∣∣ ≤ ∣∣∣vλ(x) − vλ(y)

∣∣∣+ ∣∣∣u(x) − u(y)
∣∣∣

≤ φ(d(x, y))[2λ+ g(x) + g(y)].
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If x ∈ Eλ and y ∈ X \ (Eλ ∪ E), then, by (38) and the definitions of Dφ(u) and Eλ, we
conclude that ∣∣∣(vλ − u)(x) − (vλ − u)(y)

∣∣∣ ≤ ∣∣∣vλ(x) − vλ(y)
∣∣∣+ ∣∣∣u(x) − u(y)

∣∣∣
≤ φ(d(x, y))[2λ+ g(x) + g(y)]

≤ φ(d(x, y))[3λ+ g(y)]

and, similarly, if x ∈ X \ (Eλ ∪ E) and y ∈ Eλ, by (38) and the definitions of Dφ(u) and Eλ
again, we find that ∣∣∣(vλ − u)(x) − (vλ − u)(y)

∣∣∣ ≤ φ(d(x, y))[3λ+ g(x)].

Altogether, from the definition ofDφ(vλ − u) and μ(E) = 0, we deduce that

g̃λ := (3λ+ g) 1X\Eλ ∈ Dφ(vλ − u).

Moreover, by |vλ| ≤ λ and the definitions of g̃λ and Eλ, we have∥∥∥(vλ − u)1X\Eλ
∥∥∥

Lp(X) �
∥∥∥(g + u)1X\Eλ

∥∥∥
Lp(X)

� ‖g‖Lp(X) + ‖u‖Lp(X) < ∞

and ∥∥∥̃gλ1X\Eλ
∥∥∥

Lp(X) �
∥∥∥(3λ+ g)1X\Eλ

∥∥∥
Lp(X)

� ‖u‖Lp(X) + ‖g‖Lp(X) < ∞.

Then, using this, (37), the dominated convergence theorem with respect to μ, and
μ(X \ Eλ) → 0 as λ→ ∞, we conclude that

lim
λ→∞‖vλ − u‖Lp(X) = lim

λ→∞
∥∥∥(vλ − u)1X\Eλ

∥∥∥
Lp(X) = 0

and
lim
λ→∞‖̃gλ‖Lp(X) = lim

λ→∞
∥∥∥̃gλ1X\Eλ

∥∥∥
Lp(X) = 0,

which imply limλ→∞ ‖vλ − u‖Mφ,p(X) = 0. This finishes the proof of Theorem 2. �

Now, we state the main result of this section, which generalizes ([41], Theorem 8.1)
from fractional Hajłasz-type spaces to those with generalized smoothness.

Theorem 3. Let φ ∈ A and F be one of the following cases:

(i) F = Mφ
p,∞(X) = Mφ,p(X) with φ being a modulus of continuity and p ∈ (1,∞);

(ii) F = Mφ
p,∞(X) = Mφ,p(X) with φ being a modulus of continuity, αφ ∈ (0, 1), and p ∈

(D/(D − log2 αφ), 1];
(iii) F = Mφ

p,q(X) with αφ ∈ (0, 1), βφ ∈ (0, 2), and p, q ∈ (D/(D − log2 αφ),∞);
(iv) F = Nφ

p,q(X) with αφ ∈ (0, 1), βφ ∈ (0, 2), p ∈ (D/(D − log2 αφ),∞), and q ∈ (0,∞),
where D is as in (1). If u ∈ Ḟ , then there exist a set E with Cap F (E) = 0 and an F -quasi-
continuous function u∗ on X such that, for any x ∈ X \ E,

u∗(x) = lim
r→0+

uB(x,r). (40)

To prove Theorem 3, we need a weak-type estimate of the F -capacity. To this end, we
need several technical lemmas. The first one is on the Hajłasz gradient ofM∗u for any u in
which the integral on any ball is finite. Recall that, for any u ∈ L1

loc (X), eitherM∗u ≡ ∞ or
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M∗u < ∞ almost everywhere (see ([54], (3.1) and Lemma 4.8) or ([61], Remark 2.2)), where
M∗ is as in Definition 9(ii).

Lemma 8. (i) Let φ ∈ A∞. Then, for any u ∈ L1
loc (X) satisfying that its integral on any ball of

X is finite andM∗u � ∞ and for any g ∈ Dφ(u),M(g) is an element ofDφ(M∗u) modulo a
positive constant independent of u and g, whereM is the classical Hardy–Littlewood maximal
operator andM∗ as in Definition 9(ii).

(ii) Let φ ∈ A∞ with αφ ∈ (0, 1). Then, for any λ ∈ (D/[D − log2 αφ],∞), any u ∈ L1
loc (X)

satisfying that its integral on any ball of X is finite andM∗u � ∞, and for any g ∈ Dφ(u),
[M(gλ)]1/λ is an element ofDφ(M∗u) modulo a positive constant independent of u and g.

Proof. Due to similarity, we only prove (ii). For any given r ∈ (0,∞), let {Bj} j∈J be any
given sequence of balls as in the definition of M∗ with the radius r, and {ϕ j} j∈J be a
partition of unity with respect to {Bj} j∈J as in Definition 8, where J is an index set. Let
u and g be as in the present lemma. From the definition ofM∗ and the observation that
Dφ(u) ⊂ Dφ(|u|), without loss of generality, we may assume that u ≥ 0.

Let ur be as in Definition 9(i). By
∑

j∈J ϕ j ≡ 1, we have

ur = u +
∑
j∈J

(
uBj − u

)
ϕ j. (41)

Therefore, for any j ∈ J , using Lemma 7(ii) with u, E, and L−1 therein replaced,
respectively, by u − uBj , 2Bj, and r, and the properties of ϕ j, we find that, for any j ∈ J ,

g̃( j) :=
{
g + [φ(r)]−1∣∣∣u − uBj

∣∣∣}12Bj

is a positive constant multiple of an element inDφ([u− uBj ]ϕ j), where the positive constant
is independent of r, u, and g. Let λ ∈ (D/[D − log2 αφ],∞). Notice that, for any j ∈ J , by
Lemma 5(ii) with B(y, 2−i) and 2−i therein replaced, respectively, by Bj and r, we have, for
any x ∈ 2Bj, ∣∣∣u(x) − uBj

∣∣∣ � φ(r)[M(
gλ
)
(x)

]1/λ

with the implicit positive constant independent of u, g, x, j, and r. From this; the proven

conclusion that, for any j ∈ J , g̃( j) is a positive constant multiple of an element inDφ([u −
uBj ]ϕ j); the definition of g̃( j),

∑
j∈J 12Bj � 1; and g ≤ [M(gλ)]1/λ, we deduce that, for almost

every x, y ∈ X,∣∣∣∣∣∣∣∣
∑
j∈J

[
uBj − u(x)

]
ϕ j(x) −

∑
j∈J

[
uBj − u(y)

]
ϕ j(y)

∣∣∣∣∣∣∣∣
� φ(d(x, y))

∑
j∈J

[
g̃( j)(x) + g̃( j)(y)

]

� φ(d(x, y))
∑
j∈J

[{
g(x) +

[
M
(
gλ
)
(x)

]1/λ
}
12Bj(x) +

{
g(y) +

[
M
(
gλ
)
(y)

]1/λ
}
12Bj(y)

]

� φ(d(x, y))
{
g(x) +

[
M
(
gλ
)
(x)

]1/λ
+ g(y) +

[
M
(
gλ
)
(y)

]1/λ
}

� φ(d(x, y))
{[
M
(
gλ
)
(x)

]1/λ
+
[
M
(
gλ
)
(y)

]1/λ
}
,

which implies that [M(gλ)]1/λ is a positive constant multiple of an element ofDφ(
∑

j∈J [uBj −
u]ϕ j). By this, (41), the definition of Dφ(ur), g ∈ Dφ(u), and g ≤ [M(gλ)]1/λ, we further
conclude that [M(gλ)]1/λ is a positive constant multiple of an element inDφ(ur) with the
positive constant independent of u, g, and r. Moreover, ifM∗u � ∞, then by the definition
ofM∗ and Lemma 2(ii), we conclude that [M(gλ)]1/λ is an element of Dφ(M∗u) modulo

160



Mathematics 2021, 9, 2724

a positive constant independent of u and g. This finishes the proof of (ii) and hence of
Lemma 8. �

Borrowing some ideas from the proof of ([41], Lemma 7.1), we can prove the following
lemma on the Hajłasz gradient sequence ofM∗u for any u ∈ L1

loc (X) with its integral on
any ball being finite.

Lemma 9. Let φ ∈ A0 with β+φ ∈ (0, 2), ε ∈ (0,− log2 αφ), and

δ ∈
(
0, min

{
1 − log2 βφ,− log2 αφ − ε

})
.

Then, for any λ ∈ (D/[D + ε],∞), any u ∈ L1
loc (X) such that its integral on any ball in X is

finite andM∗u � ∞, and any 
g := {gk}k∈Z ∈ Dφ(u), the sequence {g̃k}k∈Z of functions, defined by
setting, for any k ∈ Z,

g̃k :=
∑
l∈Z

2−|l−k|δ [M(
gλl
)]1/λ

, (42)

is a positive constant multiple of an element in Dφ(M∗u), where the positive constant is independent
of u and 
g, D as in (1), andM∗ as in Definition 9(ii).

Proof. Let all of the symbols be as in the present lemma. By the definition ofM∗u and the
observation that Dφ(u) ⊂ Dφ(|u|), without loss of generality, we may assume that u ≥ 0.
Moreover, by Lemma 2 and the definition ofM∗, to prove the present lemma, it suffices to
show that, for any i ∈ Z, {g̃k}k∈Z is a positive constant multiple of an element in Dφ(u2−i)
with the positive constant independent of i, where u2−i is as in Definition 9(i).

To this end, we first recall that, in the proof of Theorem 1, we have shown that, for any
i ∈ Z, {hk}k∈Z, defined as in (28), is a positive constant multiple of an element in Dφ(u− u2−i).
From this, 
g ∈ Dφ(u), the definitions of Dφ(u) and Dφ(u − u2−i), and, for any x, y ∈ X,∣∣∣u2−i(x) − u2−i(y)

∣∣∣
≤ |u(x) − u(y)|+ ∣∣∣(u − u2−i)(x) − (u − u2−i)(y)

∣∣∣,
it follows that, for any i ∈ Z, {gk + hk}k∈Z is a positive constant multiple of an element in
Dφ(u2−i), where the positive constant is independent of i, u, and 
g. Thus, to prove that
{g̃k}k∈Z is a positive constant multiple of an element in Dφ(u2−i) for any i ∈ Z, it suffices to
show that

gk + hk � g̃k, ∀ k ∈ Z. (43)

Indeed, by the definition of g̃k and the fact that, for almost every x ∈ X, gk(x) ≤
[M(gλk )(x)]1/λ, we have gk ≤ g̃k for any k ∈ Z almost everywhere. Then, to show (43), it
suffices to prove that, for any k ∈ Z, hk � g̃k almost everywhere. Let ε and δ be as in the
present lemma. By 1 − δ > log2 βφ, ε + δ < − log2 αφ, and Lemma 1(ii) with δ and ε therein
replaced, respectively, by 1 − δ and ε + δ, we find that, for any k, l ∈ Z with l ≤ k,

2l−kφ(2−l)
[
φ(2−k)

]−1
� 2(l−k)δ (44)

and, for any k, l ∈ Z with l ≥ k − 4,

2(l−k)εφ(2−l)
[
φ(2−k)

]−1
� 2−(l−k)δ. (45)

Let i ∈ Z. Observe that, for any l ≥ i − 4, 2(i−l)(1−ε) � 1 and, for any k ≤ i, 2(k−i)ε � 1. By
this, (44) and (45), we obtain, for any x ∈ X and k > i,

2i−k 2−iε

φ(2−k)

∑
i−4≤l≤k

2lεφ(2−l)
[
M
(
[gl(x)]λ

)]1/λ
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�
∑

i−4≤l≤k

2(i−l)(1−ε)2(l−k)δ
[
M
(
[gl(x)]λ

)]1/λ

�
∑

i−4≤l≤k

2(l−k)δ
[
M
(
[gl(x)]λ

)]1/λ

and

2i−k 2−iε

φ(2−k)

∑
l>k

2lεφ(2−l)
[
M
(
[gl(x)]λ

)]1/λ

�
∑
l>k

2(i−k)(1−ε)2−(l−k)δ
[
M
(
[gl(x)]λ

)]1/λ

�
∑
l>k

2−(l−k)δ
[
M
(
[gl(x)]λ

)]1/λ

and, for any x ∈ X and k ≤ i,

2−iε

φ(2−k)

∑
l≥i−4

2lεφ(2−l)
[
M
(
[gl(x)]λ

)]1/λ

�
∑

l≥i−4

2(k−i)ε2−(l−k)δ
[
M
(
[gl(x)]λ

)]1/λ

�
∑

l≥i−4

2−(l−k)δ
[
M
(
[gl(x)]λ

)]1/λ
,

which, combined with the proved conclusion that, for any k ∈ Z, gk ≤ g̃k almost everywhere,
implies that, for any k ∈ Z, hk � g̃k almost everywhere. Thus, for any k ∈ Z, gk + hk � g̃k
almost everywhere. Furthermore, noticing that {gk + hk}k∈Z is a positive constant multiple
of an element in Dφ(u2−i), from the definition of Dφ(u2−i), we deduce that {g̃k}k∈Z is also
a positive constant multiple of an element in Dφ(u2−i), where the positive constant is
independent of u, 
g, and i. Thus, by Lemma 2 and the definition ofM∗, we conclude that
{g̃k}k∈Z is a positive constant multiple of an element in Dφ(M∗u), which completes the proof
of Lemma 9. �

The next two lemmas are used to show the boundedness of the discrete maximal
operator M∗ on φ-Hajłasz-type spaces, which is a generalization of ([61], Theorem 4.7)
and ([41], Lemma 8.3), respectively.

Lemma 10. With the assumptions same as in Theorem 3, there exists a positive constant C,
independent of u, such that, for any u ∈ Ḟ withM∗u � ∞,∥∥∥M∗u∥∥∥Ḟ ≤ C‖u‖Ḟ , (46)

whereM∗ is as in Definition 9(ii).

Proof. If F belongs to the case (i) of Theorem 3, then (46) follows from Lemma 8(i) and the
boundedness of the Hardy–Littlewood maximal operator on Lp(X).

If F belongs to the case (ii) of Theorem 3, then (46) follows from Lemma 8(ii) and
the boundedness of the classical Hardy–Littlewood maximal operatorM on Lp/λ(X) with
λ ∈ (D/[D − log2 αφ], p).

Now, let F belong to the case (iii) of Theorem 3. Let u ∈ Ṁφ
p,q(X), {gk}k∈Z ∈ Dφ(u) with

‖{gk}k∈Z‖Lp(X,lq) � ‖u‖Ṁφ
p,q(X), and r := min{p, q}. Let D be as in (1), λ ∈ (D/[D − log2 αφ], r),

and ε′ ∈ (0,− log2 αφ) be such that λ = D/(D + ε′). We also choose ε := (ε′ − log2 αφ)/2.
From αφ < 1, it follows that 0 < ε′ < ε < − log2 αφ and hence λ ∈ (D/[D + ε], r).
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Let {g̃k}k∈Z be as in (42) with δ ∈ (0, min{1 − log2 βφ,− log2 αφ − ε}). Then, by the defi-
nition of {g̃k}k∈Z and the Fefferman–Stein vector-valued maximal inequality on L

p
λ (X, l

q
λ )

(see ([56], Theorem 1.2) or ([57], Theorem 1.3)), we have

∥∥∥{g̃k}k∈Z
∥∥∥

Lp(X,lq) ≤
∥∥∥∥∥{[M(

gλk
)]1/λ

}
k∈Z

∥∥∥∥∥
Lp(X,lq)

�
∥∥∥{gk}k∈Z

∥∥∥
Lp(X,lq).

Thus, using this, the definition of ‖ · ‖Ṁφ
p,q(X), Lemma 9, and ‖{gk}k∈Z‖Lp(X,lq) � ‖u‖Ṁφ

p,q(X),
we obtain ∥∥∥M∗u∥∥∥Ṁφ

p,q(X) �
∥∥∥{g̃k}k∈Z

∥∥∥
Lp(X,lq) �

∥∥∥{gk}k∈Z
∥∥∥

Lp(X,lq) � ‖u‖Ṁφ
p,q(X).

This finishes the proof of Lemma 10. �

Lemma 11. Let x0 ∈ X, r ∈ (0,∞), B0 := B(x0, r), φ ∈ A, and

F ∈
{
Mφ

p,q(X), Nφ
p,q(X) : p, q ∈ (0,∞]

}
.

If {y ∈ X : d(x0, y) = τr} for some τ ∈ (2,∞) is not empty, then there exists a positive
constant C, depending only on τ, φ, and Cμ, such that, for any u ∈ Ḟ supported in B0,

‖u‖F ≤ C[1 + φ(r)]‖u‖Ḟ ,

where Cμ is as in (1).

Proof. By similarity, we only prove the case F = Mφ
p,q(X). Let B0 := B(x0, r); τ, Cμ, and

u be as in the present lemma; E be the exceptional zero-measure set such that (13) holds
true; and {gk}k∈Z ∈ Dφ(u) with ‖{gk}k∈Z‖Lp(X,lq) � ‖u‖Ṁφ

p,q(X). Notice that, for any x ∈ B0 and

y ∈ 2τB0 \ 2B0, we have d(x, y) ∈ (r, [1 + 2τ]r). From this, the fact that u|2τB0\2B0 ≡ 0, and the
definitions of bothA and Dφ(u), we deduce that, for any x ∈ B0 \ E,∣∣∣u(x)

∣∣∣ = inf
y∈2τB0\(2B0∪E)

∣∣∣u(x) − u(y)
∣∣∣

� φ([1 + 2τ]r)
[
g(x) + inf

y∈2τB0\(2B0∪E)
g(y)

]
, (47)

where g := sup{k: r≤2−k≤(1+2τ)r} gk and g ≥ 0.
Let z ∈ X be such that d(x0, z) = τr. Then, by a geometrical observation, we have

B0 ⊂ B(z, [1 + τ]r) and B(z, [τ − 2]r/2) ⊂ (2τB0 \ 2B0),

which, together with the doubling property of μ, implies that

μ(B0) ≤ μ(B(z, [1 + τ]r)) � μ(B(z, [τ − 2]r/2)) � μ(2τB0 \ 2B0), (48)

where the implicit positive constants depend only on τ and Cμ. Thus, from uX\B0 ≡ 0,
μ(E) = 0, (47), (48), and the definitions of g andA, we deduce that

‖u‖Lp(X) = ‖u‖Lp(B0)

� φ([1 + 2τ]r)
{
‖g‖Lp(B0) + [μ(B0)]

1/p inf
y∈2τB0\(2B0∪E)

g(y)
}

� φ([1 + 2τ]r)
{
‖g‖Lp(B0) + [μ(2τB0 \ 2B0)]

1/p inf
y∈2τB0\(2B0∪E)

g(y)
}

� φ([1 + 2τ]r)‖g‖Lp(2τB0) � φ(r)‖{gk}‖Lp(X,lq)
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with the usual modification made when p = ∞, which, together with the assumption of
{gk}k∈Z, implies that

‖u‖Mφ
p,q(X) ≤ ‖u‖Lp(X) + ‖{gk}k∈Z‖Lp(X,lq)

� φ(r)‖{gk}‖Lp(X,lq) + ‖u‖Ṁφ
p,q(X)

� [1 + φ(r)]‖u‖Ṁφ
p,q(X).

This finishes the proof of Lemma 11. �

Based on the above lemmas, we can obtain the following localized weak-type capaci-
tary estimate for the restricted maximal operatorMR, where R ∈ (0,∞]. Recall that there
exists a positive constant c, depending only on Cμ, such that, for any u ∈ L0(X),

c−1MR/cu ≤ M∗Ru ≤ cMcRu (49)

(see, for instance, [41], [(8.1)]), whereMR is as in (14),M∗R as in Definition 9(iii), and Cμ as
in (1).

Lemma 12. With the same assumptions as in Theorem 3, let x0 ∈ X, R ∈ (0,∞), and B :=
B(x0, R). If τB \ 10B for some τ ∈ (10,∞) is not empty, then there exist positive constants
c = c(Cμ) and C = C(F ,R,τ,Cμ) such that, for any u ∈ F and κ ∈ (0,∞),

Cap F
({

x ∈ B : MR/cu(x) > κ
})
≤ Cκ−p‖u‖pF ,

whereMR is as in (14) and Cμ as in (1).

Proof. Let all of the symbols be as in the present lemma,M∗R as in Definition 9(iii), and
u ∈ F . Let ϕ be a Lipschitz function supported in 4B such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 on
3B. By the definition ofM∗R and the assumption of ϕ, we haveM∗Ru =M∗R(uϕ) on B and
M∗R(uϕ) ≡ 0 on X \ 5B. Then, from (49), we deduce that

{
x ∈ B : MR/cu(x) > κ

}
⊂
{
x ∈ B : cM∗Ru(x) > κ

}
⊂
{
x ∈ X : cM∗R(uϕ)(x) > κ

}
=
{
x ∈ X : cκ−1M∗R(uϕ)(x) > 1

}
=: Q, (50)

where c = c(Cμ) is just the positive constant as in (49).
By the lower semi-continuity ofM∗R(uϕ) (see [54], p. 376), we conclude that, for any

x ∈ Q, there exists a δx ∈ (0, 1) such that, for any y ∈ B(x, δx), cκ−1M∗R(uϕ)(y) > 1. Thus,
Q′ :=

⋃
x∈Q B(x, δx) is a neighborhood of Q and cκ−1M∗R(uϕ) > 1 on Q′. By this; (50);

Remark 4(iii); Definition 10; Lemma 11 with u and B0 therein replaced, respectively, by
M∗R(uϕ) and 5B; Lemma 10; and Corollary 2, we obtain

Cap F
({

x ∈ B : MR/cu(x) > κ
})
≤ Cap F (Q)

≤ ∥∥∥cκ−1M∗R(uϕ)
∥∥∥p
F � κ

−p
∥∥∥M∗R(uϕ)∥∥∥p

Ḟ
� κ−p

∥∥∥M∗(uϕ)∥∥∥p
Ḟ � κ

−p‖uϕ‖pḞ
� κ−p‖u‖pF ,

where the implicit positive constants depend on F , R, τ, and Cμ. This finishes the proof of
Lemma 12. �

Now, we show Theorem 3.
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Proof of Theorem 3. Again, by similarity, we only consider the caseF = Mφ
p,q(X). Without

loss of generality, we may assume that X contains at least two points. By this, we easily
know that there exist balls {B(xl, rl)}l∈I with I ⊂ N being an index set such that X ⊂⋃

l∈I B(xl, rl) and, for any l ∈ I, 5B(xl, rl) \ 4B(xl, rl) is not empty.
Let F be any given function space as in (i), (ii), or (iii) of the present theorem, and

u ∈ F . Then, from Theorem 2 when F is as in either (i) or (ii), or from Theorem 1 when
F is as in case (iii), we deduce that there exists a sequence {vi}i∈N of continuous functions
such that, for any i ∈ N,

‖u − vi‖pF < 2−i(1+p). (51)

Let {B(xl, rl)}l∈I be a ball covering of X as above and c = c(Cμ) the positive constant
as in Lemma 12. For any l ∈ I, any i, j ∈ N, and any u ∈ F , let

Al,i :=
{
x ∈ B(xl, rl) : Mrl/c(u − vi)(x) > 2−i

}
and

Bl, j :=
⋃
i≥ j

Al,i.

Then, by Lemma 12 and (51), we have

Cap F (Al,i) � 2ip‖u − vi‖pF � 2−i

and, furthermore, by Lemma 6, we obtain

Cap F (Bl, j) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
i≥ j

[Cap F (Al,i)]
θ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/θ

� 2− j,

where θ := min{1, q/p}. Thus, the set Fl :=
⋂

j∈N Bl, j is of zero F -capacity.
Let l ∈ I. For any i ∈ N, using the continuity of vi and the Lebesgue differentiation

theorem, we conclude that, for any x ∈ X,

lim
r→0+

�
B(x,r)

∣∣∣vi(y) − vi(x)
∣∣∣ dμ(y) = 0. (52)

Since u is locally integrable (see Remark 3(i)), then, for any i ∈ N, from (52) and the
definition of Al,i, we deduce that, for any x ∈ B(xl, rl) \ Al,i,

lim sup
r→0+

∣∣∣∣vi(x) − uB(x,r)

∣∣∣∣ ≤ lim sup
r→0+

�
B(x,r)

∣∣∣vi(x) − u(y)
∣∣∣ dμ(y)

≤ lim sup
r→0+

�
B(x,r)

∣∣∣vi(y) − u(y)
∣∣∣ dμ(y) (53)

≤ Mrl/c(u − vi)(x) ≤ 2−i.

Therefore, by (53), we find that, for any j ∈ N, i1, i2 ∈ N with i1, i2 ≥ j and
x ∈ B(xl, rl) \ Bl, j =

⋂
i≥ j[B(xl, rl) \ Al,i],∣∣∣vi1(x) − vi2(x)

∣∣∣ ≤ lim sup
r→0+

∣∣∣∣vi1(x) − uB(x,r)

∣∣∣∣+ lim sup
r→0+

∣∣∣∣vi2(x) − uB(x,r)

∣∣∣∣
≤ 2−i1 + 2−i2 ,

which means that, for any given j ∈ N, {vi|B(xl,rl)\Bl, j
}i∈N is a Cauchy sequence uniformly in

B(xl, rl) \ Bl, j. Thus, for any j ∈ N, {vi|B(xl,rl)\Bl, j
}i∈N converge to some continuous function
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vl, j uniformly in B(xl, rl) \ Bl, j as i→ ∞. Due to the observation that B(xl, rl) \ Bl, j increases
on j and the uniqueness of the limit, we conclude that, for any j1, j2 ∈ N with j1 ≤ j2,

vl, j2 |B(xl,rl)\Bl, j1
= vl, j1 .

Therefore, the function v∗l , defined by setting, for any x ∈ B(xl, rl) \ Fl,

v∗l (x) := lim
j→∞ vl, j(x),

exists and, for any given j ∈ N, v∗l |B(xl,rl)\Bl, j
= vl, j. Since vl, j is continuous in B(xl, rl) \ Bl, j,

we deduce that, for any given j ∈ N, v∗l is continuous in B(xl, rl) \ Bl, j. By the definitions of
v∗l and vl, j, and (53) with i→ ∞, we conclude that, for any x ∈ B(xl, rl) \ Fl =

⋃
j∈N[B(xl, rl) \

Bl, j] =
⋃

j∈N
⋂

i≥ j[B(xl, rl) \ Al,i],

v∗l (x) = lim
j→∞ vl, j(x) = lim

j→∞ lim
i→∞ vi|B(xl,rl)\Bl, j

(x) = lim
r→0+

uB(x,r).

Altogether, we find a function v∗l and a set Fl with Cap F (Fl) = 0 such that

v∗l (·) = lim
r→0+

uB(·,r)

in B(xl, rl) \ Fl and, for any ε ∈ (0,∞), there exist a j ∈ N and a set Bl, j with Cap F (Bl, j) < ε
such that v∗l is continuous in B(xl, rl) \ Bl, j.

Next, let u ∈ Ḟ . For any given x̃ ∈ X and k ∈ N, let ϕk be a Lipschitz function
such that ϕk1B(x̃,2k) = 1 and ϕk1X\B(x̃,3k) = 0. By the boundedness of the support of ϕk
and Corollary 3, we find that uϕk ∈ F . Thus, from the conclusion proved in the above
paragraph, we deduce that, for any k ∈ N, there exist a set El,k with Cap F (El,k) = 0 and a
function ul,k defined on B(xl, rl) \ El,k such that, for any x ∈ B(xl, rl) \ El,k,

ul,k(x) = lim
r→0+

(uϕk)B(x,r)

and, for any ε ∈ (0,∞), there exists a set Ul,k with Cap F (Ul,k) < 2−k−lε such that ul,k is
continuous in B(xl, rl) \Ul,k.

Define El :=
⋃

k∈N El,k and Ul :=
⋃

k∈N Ul,k. Then, by Lemma 6, we have Cap F (El) = 0
and, for the above given ε ∈ (0,∞), Cap F (Ul) ≤ 2−lε and, moreover, Cap F (El ∪Ul) ≤ 2−lε.
For any x ∈ B(xl, rl) \ El =

⋂
k∈N B(xl, rl) \ El,k and any kx ∈ N big enough such that

x ∈ B(x̃, kx), since, for any r ∈ (0, kx], we have B(x, r) ⊂ B(x̃, 2kx), then, from the fact that
ϕkx 1B(x̃,2kx) = 1, we deduce that

lim
r→0+

(uϕkx)B(x,r) = lim
r→0+ , r∈(0,kx]

�
B(x,r)

uϕkx dμ

= lim
r→0+ , r∈(0,kx]

�
B(x,r)

u dμ (54)

= lim
r→0+

uB(x,r).

Define ul by setting, for any x ∈ B(xl, rl) \ El, ul(x) := limr→0+ uB(x,r). Then, by (54) and
the definition of ul,k, we conclude that, for any k ∈ N, ul = ul,k in [B(xl, rl) ∩ B(x̃, k)] \ El.
From this, the fact that ul,k is continuous in B(xl, rl) \ Ul,k, and the definition of Ul, we
deduce that, for any k ∈ N, ul is continuous in [B(xl, rl) ∩ B(x̃, k)] \ (El ∪Ul). Therefore, ul is
continuous in B(xl, rl) \ (El ∪Ul).

Finally, we turn to the whole space X using the covering X ⊂ ⋃l∈I B(xl, rl). Let u ∈ Ḟ .
On the one hand, we have shown that, for any l ∈ I, there exists a set El with Cap F (El) = 0
such that ul(·) := limr→0+ uB(·,r) exists on B(xl, rl) \ El. Define E :=

⋃
l∈I El and, for any

x ∈ X \ E, ũ(x) := limr→0+ uB(x,r). Then, for any l ∈ I, ũ = ul in B(xl, rl) \ E.
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On the other hand, by the above proof, we conclude that, for any given ε ∈ (0,∞)
and any l ∈ I, there exists a set Ũl with Cap F (Ũl) ≤ 2−lε such that ul is continuous in
B(xl, rl) \ Ũl. Define U :=

⋃
l∈I Ũl. Then, for any l ∈ I, ul is continuous in B(xl, rl) \U. From

this and the fact that, for any l ∈ I, ũ = ul in B(xl, rl) \ E, we deduce that ũ is continuous in
B(xl, rl) \ (E ∪U) for any l ∈ I and hence in X \ (E ∪U).

By Lemma 6, we have Cap F (E) = 0 and Cap F (U) ≤ ε and, furthermore,

Cap F (E ∪U) ≤ ε.

Let u∗ be any function defined in X such that u∗ = ũ in X \ E. Then, u∗ is continuous
in X \ (E ∪U). Thus, u∗ is one of the desired F -quasi-continuous functions on X, which
completes the proof of Theorem 3. �

Remark 5. With the same assumptions as in Theorem 3, by (40), the local integrability of u
(see [28], Remark 3.8), Remark 4(ii), and the Lebesgue differentiation theorem, we have the following
two obvious observations:

(i) u∗ = u almost everywhere;
(ii) every point outside E is a Lebesgue point of u∗.

In this sense, u∗ is called an F -quasi-continuous representative of u. Furthermore, from
the conclusion in (ii) of the present remark and ([45], Lemma 17), we deduce that, for any given
F -quasi-continuous function u in F , there exists a set of zero F -capacity such that all the outside
points are Lebesgue points of u. Observe that, by Remark 4(ii), any set of zero F -capacity is of
zero measure. This implies that, for any F -quasi-continuous function, compared with only locally
integrable functions, there exist more Lebesgue points.

4. Generalized Lebesgue Points of φ-Hajłasz-Type Functions

If a function fails to be locally integrable, which may happen, for instance, when the
index p of the φ-Hajłasz-type space is close to zero, the γ-median serves as a reasonable
substitute of the integral average (see, for instance [41,45,46]). That is because the γ-median
is defined, instead of integrals, only by the distribution sets of functions and their measures,
which removes the necessity for the local integrability of functions. Due to the similarity
between the behavior of the γ-median and that of the integral average, the Lebesgue point
can naturally be generalized to the γ-median case; see (56). In this section, we still use
the capacity to measure the set of such generalized Lebesgue points of φ-Hajłasz-type
functions. We first recall the notion of the γ-median and some of its basic properties;
see ([41], Section 2.4) (see also ([46], Section 1) for a different definition).

Definition 13. Let u ∈ L0(X) and γ ∈ (0, 1/2]. The γ-median mγ
u(E) of u over a set E ⊂ X of

finite measure is defined by setting

mγ
u(E) := inf

{
λ ∈ R : μ({x ∈ E : u(x) > λ}) < γμ(E)}.

Observe that, if E ⊂ X, μ(E) ∈ (0,∞) and u ∈ L0(E), then mγ
u(E) is finite.

Lemma 13. Let E, E1, E2 ⊂ X be sets of finite measure, γ, γ1, γ2 ∈ (0, 1/2], and u, v ∈ L0(X).
The following statements hold true:

(i) If γ1 ≤ γ2, then mγ1
u (E) ≥ mγ2

u (E).
(ii) If u ≤ v almost everywhere, then mγ

u(E) ≤ mγ
v (E).

(iii) If E1 ⊂ E2 and, for some positive constant c, μ(E2) ≤ cμ(E1), then

mγ
u(E1) ≤ mγ/c

u (E2).

(iv) For any c ∈ R, mγ
u(E) + c = mγ

u+c(E).
(v) For any c ∈ (0,∞), mγ

cu(E) = cmγ
u(E).
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(vi)
∣∣∣mγ

u(E)
∣∣∣ ≤ mγ

|u|(E).
(vii) mγ

u+v(E) ≤ mγ/2
u (E) + mγ/2

v (E).
(viii) For any t ∈ (0,∞),

mγ
|u|(E) ≤

(
γ−1
�

E
|u|t dμ

)1/t

. (55)

The following lemma (see, for instance, ([46], Theorem 2.1)) implies that the γ-median
over small balls can behave similar to the classical integral average of locally integrable
functions at Lebesgue points and becomes a reasonable substitute of the classical Lebesgue
differentiation theorem when the function fails to be locally integrable.

Lemma 14. Let u ∈ L0(X). Then, there exists a set E ⊂ X with μ(E) = 0 such that, for any
γ ∈ (0, 1/2] and x ∈ X \ E,

lim
r→0+

mγ
u(B(x, r)) = u(x). (56)

In particular, (56) holds true at every continuous point x of u.

Let u ∈ L0(X). Recall that a point x ∈ X is called a generalized Lebesgue point of u if (56)
holds true for x and any γ ∈ (0, 1/2]; see, for instance [41,44,45]. If u is locally integrable,
as was pointed by ([46], p. 231), any Lebesgue point of u is a generalized Lebesgue point
of u. This means that the generalized Lebesgue point is a more extensive notion than the
Lebesgue point.

Next, we recall the variants of both M and M∗ in the γ-median version (see, for
instance [41,45]), whereM =M∞ is as in (14), andM∗ as in Definition 9(ii).

Definition 14. Let γ ∈ (0, 1/2] and u ∈ L0(X). The γ-median maximal functionMγ(u) of u is
defined by setting, for any x ∈ X,

Mγ(u)(x) := sup
r∈(0,∞)

mγ
|u|(B(x, r)).

Definition 15. Let γ ∈ (0, 1/2] and u ∈ L0(X).
(i) The discrete γ-median convolution uγr of u at scale r ∈ (0,∞) is defined by setting, for any

x ∈ X,
uγr (x) :=

∑
j∈J

mγ
u(Bj) ϕ j(x),

whereJ is an index set, {Bj} j∈J is a ball covering ofXwith the radius r such that
∑

j∈J 12Bj �
1, and {ϕ j} j∈J is a partition of unity with respect to {Bj} j∈J as in Definition 8.

(ii) The discrete γ-median maximal functionMγ,∗u of u is defined by setting, for any x ∈ X,

Mγ,∗u(x) := sup
k∈Z
|u|γ

2−k (x),

where |u|γ
2−k is as in (i) with u and r replaced, respectively, by |u| and 2−k.

Remark 6. LetMγ andMγ,∗ be as in Definitions 14 and 15. Recall that there exists a positive
constant c such that, for any u ∈ L0(X),

Mγu ≤ cMγ/c,∗u ≤ c2Mγ/c2
u; (57)

see ([41], (2.10)). Additionally, recall that eitherMγu ≡ ∞ orMγu < ∞ almost everywhere in
X and either Mγ,∗u ≡ ∞ or Mγ,∗u < ∞ almost everywhere in X; see ([41], (2.10)) and ([41],
Remark 2.11).
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The following two lemmas are the variants of Poincaré-type inequalities, respectively,
in Lemma 3, (18), and (17), where the second lemma is a generalization of ([41], Lemma 3.2).

Lemma 15. Let γ ∈ (0, 1/2], φ ∈ A, and Cμ be as in (1).

(i) Then, there exists a positive constant C = C(φ,Cμ) such that, for any k ∈ Z, u ∈ L0(X),
g ∈ Dφ(u), and x ∈ X,

inf
c∈R

mγ
|u−c|(B(x, 2−k)) ≤ Cγ−1φ(2−k)

�
B (x,2−k)

g(y) dμ(y).

(ii) If αφ ∈ (0, 1), then, for any given λ ∈ (0,∞), there exists a positive constant C = C(γ,λ,φ,Cμ)

such that, for any k ∈ Z, u ∈ L0(X), g ∈ Dφ(u), and x ∈ X,

inf
c∈R

mγ
|u−c|(B(x, 2−k)) ≤ Cφ(2−k)

{�
B (x,2−k+1)

[g(y)]λ dμ(y)
}1/λ

.

Proof. We first prove (i). For any k ∈ Z, u ∈ L0(X), g ∈ Dφ(u), x ∈ X, and c ∈ R, from (55)
with t = 1, and E and u therein replaced, respectively, by B(x, 2−k) and u− c, we deduce that

mγ
|u−c|(B(x, 2−k)) ≤ γ−1

�
B (x,2−k)

|u(y) − c| dμ(y). (58)

Taking the infimum of c ∈ R in (58), and using Lemma 3, we obtain (i) of the
present lemma.

Now we prove (ii). By αφ < 1, we choose ε := −(log2 αφ)/2 > 0. For any k ∈ Z, λ ∈
(0, D/ε), u ∈ L0(X), g ∈ Dφ(u), x ∈ X, and c ∈ R, applying (55) with t = (Dλ)/(D − ελ) ∈
(0,∞), and E and u therein replaced, respectively, by B(x, 2−k) and u − c, we conclude that

mγ
|u−c|(B(x, 2−k))

≤
{
γ−1
�

B (x,2−k)
[u(y) − c](Dλ)/(D−ελ) dμ(y)

}(D−ελ)/(Dλ)
. (59)

Taking the infimum of c ∈ R in (59) and using (16) with p = λ, we obtain the
conclusion of (ii) when λ ∈ (0, D/ε). From this and the Hölder inequality, we deduce that
the conclusion of (ii) also holds true when λ ∈ [D/ε,∞), which completes the proof of
Lemma 15. �

Lemma 16. Let γ ∈ (0, 1/2], φ ∈ A with αφ ∈ (0, 1), and Cμ be as in (1). Then, for any given
λ ∈ (0,∞) and ε ∈ (0,− log2 αφ), there exists a positive constant C = C(γ,φ,ε,λ,Cμ) such that, for
any k ∈ Z, u ∈ L0(X), {gk}k∈Z ∈ Dφ(u), and x ∈ X,

inf
c∈R

mγ
|u−c|(B(x, 2−k))

≤ C2−kε
∑

l≥k−2

2lεφ(2−l)

{�
B(x,2−k+1)

[gl(y)]
λ dμ(y)

}1/λ

. (60)

Proof. Let λ ∈ (0,∞) and ν ∈ (0, ε), where ε is given as in Lemma 16. When λ ∈ (0, D/ν),
(60) follows from (55) with t = (Dλ)/(D − νλ) ∈ (0,∞), E and u therein replaced, respec-
tively, by B(x, 2−k) and u − c for arbitrary c ∈ R, and from Lemma 4 with p and ε′ therein
replaced, respectively, by λ and ε. This, combined with the Hölder inequality, further
implies (60) when λ ∈ [D/ν,∞). This finishes the proof of Lemma 16. �

The following lemma is a variant of Lemma 5 in the γ-median version.
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Lemma 17. Let γ ∈ (0, 1/2], φ ∈ A, Cμ be as in (1), and M the classical Hardy–Littlewood
maximal operator.

(i) Then, there exists a positive constant C = C(φ,Cμ) such that, for any k ∈ Z, u ∈ L0(X), g ∈
Dφ(u), y ∈ X, and almost every x ∈ B (y, 2−k+1),∣∣∣u(x) −mγ

u(B(y, 2−k))
∣∣∣ ≤ Cγ−1φ(2−k)M(g)(x).

(ii) Let αφ ∈ (0, 1). Then, for any given λ ∈ (0,∞), there exists a positive constant C = C(γ,φ,λ,Cμ)

such that, for any k ∈ Z, u ∈ L0(X), g ∈ Dφ(u), y ∈ X, and any generalized Lebesgue point
x ∈ B (y, 2−k+1),

∣∣∣u(x) −mγ
u(B(y, 2−k))

∣∣∣ ≤ Cφ(2−k)
[
M
(
gλ
)
(x)

]1/λ
.

(iii) Let αφ ∈ (0, 1). Then, for any given λ ∈ (0,∞) and ε ∈ (0,− log2 αφ), there exists a positive
constant C = C(γ,φ,λ,ε,Cμ) such that, for any k ∈ Z, u ∈ L0(X), {gl}l∈Z ∈ Dφ(u), y ∈ X, and
any generalized Lebesgue point x ∈ B(y, 2−k+1),

∣∣∣u(x) −mγ
u(B(y, 2−k))

∣∣∣ ≤ C2−kε
∑

l≥k−4

2lεφ(2−l)
[
M
(
gλl
)
(x)

]1/λ
.

Proof. Let all of the symbols be as in the present lemma. We first prove (i). For any
k ∈ Z, y ∈ X and almost every x ∈ B (y, 2−k+1), by (iv) and (vi) of Lemma 13; (55) with
t = 1; and E and u therein replaced, respectively, by B(y, 2−k) and u − u(x); the geometric
observation that, for any x ∈ B(y, 2−k+1), B(y, 2−k) ⊂ B(x, 2−k+2); the doubling property of
μ; the definitions ofDφ(u) andA; and g ≤ M(g) almost everywhere, we have, for almost
every x ∈ B(y, 2−k+1) \ E,∣∣∣u(x) −mγ

u(B(y, 2−k))
∣∣∣

=
∣∣∣∣mγ

u−u(x)
(B(y, 2−k))

∣∣∣∣ ≤ mγ

|u−u(x)|(B(y, 2−k))

≤ γ−1
�

B(y,2−k)
|u(z) − u(x)| dμ(z) � γ−1

�
B(x,2−k+2)

|u(z) − u(x)| dμ(z)

� γ−1φ(2−k)

[
g(x) +

�
B(x,2−k+2)

g(z) dμ(z)
]
� γ−1φ(2−k)M(g)(x),

which completes the proof of (i).
Now, we prove (ii) and (iii). Let λ and ε be as in (ii) and (iii) of the present lemma.

Similar to ([41] (3.3)), by (ii), (iv), and (vi) of Lemma 13, we have, for any γ, γ′ ∈ (0, 1/2]
and any ball B,

mγ′
|u−mγ

u(B)|(B) ≤ inf
c∈R

mγ′
|u−c|+|c−mγ

u(B)|(B)

= inf
c∈R

[
mγ′
|u−c|(B) + |c −mγ

u(B)|
]

≤ inf
c∈R

[
mγ′
|u−c|(B) + mγ

|u−c|(B)
]
. (61)

Moreover, by the geometrical observation that, for any k ∈ Z, y ∈ X, and x ∈ B(y, 2−k+1);
B(x, 2−k) ⊂ B (y, 2−k+2); and the doubling property of μ, we obtain

μ
(
B(x, 2−k+2)

)
≤ C2

μμ
(
B(x, 2−k)

)
≤ C2

μμ
(
B(y, 2−k+2)

)
≤ C4

μμ
(
B(y, 2−k)

)
.
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Therefore, from this, the definition of generalized Lebesgue points; the doubling
property of μ; (i), (iii), (iv), and (vi) of Lemma 13; Cμ ∈ [1,∞); and (61) with γ′ = γ/C4

μ and
B replaced by B(x, 2− j), we deduce that, for any generalized Lebesgue point x ∈ B(y, 2−k+1),∣∣∣u(x) −mγ

u(B(y, 2−k))
∣∣∣

≤ ∣∣∣u(x) −mγ
u(B(x, 2−k+2))

∣∣∣+ ∣∣∣mγ
u(B(x, 2−k+2)) −mγ

u(B(y, 2−k))
∣∣∣

≤
∑

j≥k−2

∣∣∣mγ
u(B(x, 2− j−1)) −mγ

u(B(x, 2− j))
∣∣∣+ ∣∣∣mγ

u(B(y, 2−k)) −mγ
u(B(x, 2−k+2))

∣∣∣
≤

∑
j≥k−2

mγ

|u−mγ
u(B(x,2− j))|(B(x, 2− j−1)) + mγ

|u−mγ
u(B(x,2−k+2))|(B(y, 2−k)) (62)

≤
∑

j≥k−2

mγ/Cμ

|u−mγ
u(B(x,2− j))|(B(x, 2− j)) + m

γ/C4
μ

|u−mγ
u(B(x,2−k+2))|(B(x, 2−k+2))

�
∑

j≥k−2

m
γ/C4

μ

|u−mγ
u(B(x,2− j))|(B(x, 2− j))

�
∑

j≥k−2

inf
c∈R

[
m
γ/C4

μ

|u−c| (B(x, 2− j)) + mγ
|u−c|(B(x, 2− j))

]
.

On the one hand, (62), combined with Lemma 15(ii) with k therein replaced by j, (9)
with k and k0 therein replaced, respectively, by − j and −k + 2 and the definitions ofM and
A, implies (ii) of the present lemma. On the other hand, (62), combined with Lemma 16, the
definition ofM, and

∑
j≥k−2 2− jε � 2−kε , implies (iii) of the present lemma, which completes

the proof of Lemma 17. �

We now establish the convergence of approximations by discrete γ-median convolu-
tions as below, which is a generalization of ([41], Theorem 1.1) from fractional Hajłasz-type
spaces to those with generalized smoothness.

Theorem 4. Let γ ∈ (0, 1/2], F ∈ {Mφ
p,q(X), Nφ

p,q(X)} with φ ∈ A0 and p, q ∈ (0,∞), and
u ∈ Ḟ . Then, ‖u − uγ

2−i‖F → 0 as i→ ∞, where {uγ
2−i }i≥0 are the discrete γ-median convolutions as

in Definition 15(i).

Proof. By similarity, we only consider the case F = Mφ
p,q(X). Let γ ∈ (0, 1/2], i ∈ Z+, uγ

2−i

be as in Definition 15(i), u ∈ Ṁφ
p,q(X), and {gk}k∈Z ∈ Dφ(u) ∩ Lp(X, lq).

Let λ ∈ (0, min(p, q)), ε ∈ (0,− log2 αφ), {Bj} j∈J be any given ball covering of X with
the radius 2−i such that

∑
j∈J 12Bj � 1, and {ϕ j} j∈J , consisting of a sequence of c2i-Lipschitz

functions, a partition of unity with respect to {Bj} j∈J as in Definition 8. For any j ∈ J , let
mγ

u(Bj) be as in Definition 13. Then, by the properties of {ϕ j} j∈J , we have

u − uγ
2−i =

∑
j∈J

(
u −mγ

u(Bj)
)
ϕ j. (63)

Using Lemma 7 with u and L−1 therein replaced, respectively, by u −mγ
u(Bj) and c2i,

we conclude that, for any j ∈ J , {h∗k, j}k∈Z, defined by setting, for any k ∈ Z,

h∗k, j :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{
2i−k

[
φ(2−k)

]−1∣∣∣u −mγ
u(Bj)

∣∣∣+ gk

}
12Bj , k > i,[

φ(2−k)
]−1∣∣∣u −mγ

u(Bj)
∣∣∣ 12Bj , k ≤ i,

is a positive constant multiple of an element of Dφ([u − mγ
u(Bj)]ϕ j). From this, (63), an

argument similar to that used in the estimation of (26) with u2−i , uBj , and hk, j therein
replaced, respectively, by uγ

2−i , mγ
u(Bj), and h∗k, j, Lemma 17(iii), (27), and

∑
j∈J 12Bj � 1, we
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deduce that {hk}k∈Z, defined as in (28) with the above λ and ε, is also a positive constant
multiple of an element in Dφ(u − uγ

2−i). By this, (32),

∥∥∥∥∥∥∥∥
⎛⎜⎜⎜⎜⎜⎜⎝ ∑

k≥i−4

gq
k

⎞⎟⎟⎟⎟⎟⎟⎠
1/q

∥∥∥∥∥∥∥∥
Lp(X)

≤ ‖{gk}k∈Z‖Lp(X,lq) < ∞

with i ∈ Z+, and the dominated convergence theorem with respect to μ, we obtain

∥∥∥∥u − uγ
2−i

∥∥∥∥
Ṁφ

p,q(X)
� ‖hk‖Lp(X,lq) �

∥∥∥∥∥∥∥∥
⎛⎜⎜⎜⎜⎜⎜⎝ ∑

k≥i−4

gq
k

⎞⎟⎟⎟⎟⎟⎟⎠
1/q

∥∥∥∥∥∥∥∥
Lp(X)

→ 0

as i→ ∞. Then, using (63), Lemma 17(iii) instead of Lemma 5(iii), the properties of {ϕ j} j∈J ,
Lemma 1(ii) with ε ∈ (0,− log2 αφ), the Fefferman–Stein vector-valued maximal inequality
on Lp/λ(X, lq/λ) (see ([56], Theorem 1.2) or ([57], Theorem 1.3)), φ(0) = 0, and an argument
similar to that used in the estimation of (33), we conclude that

∥∥∥∥u − uγ
2−i

∥∥∥∥
Lp(X) � φ(2

−i)

∥∥∥∥∥∥∥∥
⎛⎜⎜⎜⎜⎜⎜⎝∑

l≥i−4

gq
l

⎞⎟⎟⎟⎟⎟⎟⎠
1/q

∥∥∥∥∥∥∥∥
Lp(X)

→ 0

as i→ ∞. This finishes the proof of Theorem 4. �

Now, we state the following variant of Theorem 3 for γ-medians.

Theorem 5. Let γ ∈ (0, 1/2], φ ∈ A, and F be one of the following cases:

(i) F = Mφ
p,∞(X) = Mφ,p(X) with φ being a modulus of continuity and p ∈ (1,∞);

(ii) F = Mφ
p,∞(X) = Mφ,p(X) with φ being a modulus of continuity, αφ ∈ (0, 1), and p ∈ (0, 1];

(iii) F ∈ {Mφ
p,q(X), Nφ

p,q(X)} with αφ ∈ (0, 1), βφ ∈ (0, 2), and p, q ∈ (0,∞).
Then, for any u ∈ Ḟ , there exists a set E with Cap F (E) = 0 satisfying that, for any

γ ∈ (0, 1/2], there exists an F -quasi-continuous function u∗ on X such that, for any x ∈ X \ E,

u∗(x) = lim
r→0

mγ
u(B(x, r)). (64)

To show Theorem 5, similar to the proof of Theorem 3, we need a weak-type capacitary
estimate with respect toMγ. To this end, we first prove an auxiliary lemma as below, which is
about the boundedness ofMγ,∗ in φ-Hajłasz-type spaces and generalizes ([41], Theorem 7.6).
Here and thereafter,Mγ andMγ,∗ are as in Definitions 14 and 15(ii), respectively.

Lemma 18. With the same assumptions as in Theorem 5, there exists a positive constant C =
C(F ,γ,Cμ) such that, for any u ∈ F ,

∥∥∥Mγ,∗u
∥∥∥F ≤ C‖u‖F , (65)

whereMγ,∗ is as in Definition 15.

Proof. Let all of the symbols be as in the present lemma. Without loss of generality, by the
definition ofMγ,∗,Dφ(u) ⊂ Dφ(|u|), and Dφ(u) ⊂ Dφ(|u|), we may assume that u ≥ 0.

Let i ∈ Z, {Bj} j∈J be any given ball covering of Xwith the radius 2−i such that∑
j∈J

12Bj � 1,
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{ϕ j} j∈J be a partition of unity with respect to {Bj} j∈J as in Definition 8, uγ
2−i be as in

Definition 15, andMγ be as in Definition 14. Then, by (57) and ([41], (2.7)), we have, for
any given p ∈ (0,∞),

∥∥∥Mγ,∗u
∥∥∥

Lp(X) �
∥∥∥∥Mγ/cu

∥∥∥∥
Lp(X) � ‖u‖Lp(X) < ∞, (66)

where c is the same positive constant as in (57). From this and Remark 6, we deduce that
Mγ,∗u < ∞ almost everywhere.

Let F = Mφ,p(X) and g ∈ Dφ(u). Using (i) and (ii) of Lemma 17 instead of (i) and (ii)
of Lemma 5, andMγ,∗u < ∞ almost everywhere, from an argument similar to that used in
the proof of Lemma 8 with {uBj } j∈J and u2−i therein replaced, respectively, by {mγ

u(Bj)} j∈J
and uγ

2−i , we deduce thatM(g) is a positive constant multiple of an element inDφ(Mγ,∗u)
and, if αφ ∈ (0, 1), then for any λ ∈ (0,∞), [M(gλ)]1/λ is a positive constant multiple of an
element in Dφ(Mγ,∗u), where both of the positive constants are independent of u and g.
Below, we let λ ∈ (0, min(p, q)). Thus, by the boundedness ofM on Lp(X) when p ∈ (1,∞),
and on Lp/λ(X) with λ ∈ (0, p) when p ∈ (0, 1], we obtain, when p ∈ (1,∞),∥∥∥Mγ,∗u

∥∥∥
Ṁφ,p(X) �

∥∥∥M(g)
∥∥∥

Lp(X) � ‖g‖Lp(X)

and, when αφ ∈ (0, 1) and p ∈ (0, 1],

∥∥∥Mγ,∗u
∥∥∥

Ṁφ,p(X) �
∥∥∥∥[M(gλ)]1/λ

∥∥∥∥
Lp(X) � ‖g‖Lp(X).

This, combined with (66), proves (65) when F belongs to either (i) or (ii) of the
assumptions of Theorem 5.

Next, we prove (65) when F belongs to the case (iii) of Theorem 5. By similarity, we
only consider the case F = Mφ

p,q(X) with αφ ∈ (0, 1), βφ ∈ (0, 2), and p, q ∈ (0,∞). To
prove (65), by (66), it suffices to show∥∥∥Mγ,∗u

∥∥∥
Ṁφ

p,q(X) � ‖u‖Ṁφ
p,q(X).

Let {gk}k∈Z ∈ Dφ(u) be such that ‖{gk}k∈Z‖Lp(X,lq) � ‖u‖Ṁφ
p,q(X), and ε ∈ (0,− log2 αφ).

Recall that we have proved in the proof of Theorem 4 that {hk}k∈Z, defined as in (28) with
the above λ and ε, is a positive constant multiple of an element in Dφ(u − uγ

2−i). Thus, by
{gk}k∈Z ∈ Dφ(u), we conclude that {gk + hk}k∈Z is a positive constant multiple of an element
in Dφ(uγ

2−i).
Let δ ∈ (0, min{1 − log2 βφ,− log2 αφ − ε}) and {g̃k}k∈Z be as in (42) with the above λ

and δ. Similar to the proof of Lemma 9, we know that, for any k ∈ Z, gk + hk � g̃k
almost everywhere. By this and the proved conclusion that {gk + hk}k∈Z is a positive
constant multiple of an element in Dφ(uγ

2−i), we conclude that {g̃k}k∈Z is also a positive
constant multiple of an element in Dφ(uγ

2−i) with the positive constant independent of
i. Furthermore, using the fact thatMγ,∗u < ∞ almost everywhere and Lemma 2(ii), we
find that {g̃k}k∈Z is a positive constant multiple of an element in Dφ(Mγ,∗u). From this, the
Fefferman–Stein vector-valued maximal inequality on Lp/λ(X, lq/λ) (see ([56], Theorem 1.2)
or ([57], Theorem 1.3)), and the choice of {gk}k∈Z, we deduce that∥∥∥Mγ,∗u

∥∥∥
Ṁφ

p,q(X) � ‖{g̃k}k∈Z‖Lp(X,lq)

�

∥∥∥∥∥∥∥∥
⎧⎪⎪⎨⎪⎪⎩
∑
l∈Z

[
M(gλl )

]q/λ
⎫⎪⎪⎬⎪⎪⎭
λ/q

∥∥∥∥∥∥∥∥
1/λ

Lp/λ(X)
� ‖{gl}l∈Z‖Lp(X,lq) � ‖u‖Ṁφ

p,q(X).
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Thus, by (66), we conclude that (65) holds true for F = Mφ
p,q(X) with αφ ∈ (0, 1),

βφ ∈ (0, 2), and p, q ∈ (0,∞). This finishes the proof of Lemma 18. �

The following weak-type capacitary estimate plays a crucial role in the proof of
Theorem 5. Since it is just a generalization of ([41], Theorem 7.7), and a straight corollary
of both Lemma 18 and the lower semi-continuity of Mγ,∗u for any u ∈ L0(X), we omit
its proof.

Lemma 19. With the assumptions same as in Theorem 5, there exists a positive constant C,
depending only on F , γ, and Cμ, such that, for any u ∈ F and κ ∈ (0,∞),

Cap F (
{
x ∈ X : Mγu(x) > κ

}
) ≤ Cκ−p‖u‖pF ,

whereMγ is as in Definition 14 and Cμ as in (1).

Now, we turn to prove Theorem 5. Since the proof of Theorem 5 is quite similar to
that of Theorem 3, we only sketch the main steps.

Proof of Theorem 5. Let F be any given function space as in (i), (ii), or (iii) of the present
theorem, and p ∈ (0,∞). We first let u ∈ F . By Theorems 2 and 4, we find that, in any case
as above, there always exists a sequence {ui}i∈N of continuous functions such that, for any
i ∈ N,

‖u − ui‖pF < 2−i(1+p).

For any k, i ∈ N, define

Ak,i :=
{
x ∈ X : M1/(2k)(u − ui)(x) > 2−i

}
and

E :=
⋃
k≥2

Ek :=
⋃
k≥2

⋂
j∈N

Bk, j :=
⋃
k≥2

⋂
j∈N

⋃
i≥ j

Ak,i.

Then, by Lemma 19, we have, for any given k ∈ N, Cap F (Ak,i) � 2−i and, by Lemma 6,
for any j ∈ N, Cap F (Bk, j) � 2− j, which implies that, for any given k ∈ N, Cap F (Ek) = 0
and hence Cap F (E) = 0.

For any given k ∈ N \ {1} and any i ∈ N, by the continuity of ui and (55) with t = 1, we
find that, for any x ∈ X,

lim sup
r→0+

m1/k
|ui−ui(x)|(B(x, r)) ≤ k lim

r→0+

�
B(x,r)

∣∣∣u(y) − u(x)
∣∣∣dy

= 0.

From this, (i), (iv), (vi), and (vii) of Lemma 13 and the definitions ofM1/(2k) and Ak,i,
we deduce that, for any given k ∈ N \ {1}, any γ ∈ [1/k, 1/2], i ∈ N, and x ∈ X \ Ak,i,

lim sup
r→0+

∣∣∣ui(x) −mγ
u(B(x, r))

∣∣∣ ≤ lim sup
r→0+

mγ

|u−ui(x)|(B(x, r))

≤ lim sup
r→0+

[
m1/(2k)
|u−ui | (B(x, r)) + m1/(2k)

|ui−ui(x)|(B(x, r))
]

(67)

≤ M1/(2k)(u − ui)(x) ≤ 2−i.

By an argument similar to that used in the proof of Theorem 3, with (53) replaced
by (67), we conclude that, for any given k ∈ N \ {1}, there exists a function vk on X \ Ek such
that, for any γ ∈ [1/k, 1/2] and x ∈ X \ Ek,

vk(x) = lim
r→0+

mγ
u(B(x, r))
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and, moreover, for any j ∈ N, vk is continuous on X \ Bk, j.
For any given γ ∈ (0, 1/2], define v∗γ by setting, for any x ∈ X \ E,

v∗γ(x) := lim
r→0+

mγ
u(B(x, r)).

Then, for any k ∈ N with k ≥ 2, v∗γ = vk in X \ E and hence v∗γ is continuous in
X \ (E ∪ Bk, j) for any j ∈ N. Notice that, by Lemma 6, for any j ∈ N,

Cap F (E ∪ Bk, j) � 2− j.

By choosing j big enough, we conclude that any function u∗ satisfying u∗ = v∗γ in X \ E
is F -quasi-continuous in X and hence the desired function in the present theorem.

Similar to the proof of Theorem 3, by Corollary 3, the proved conclusion for the case
u ∈ F , and Lemma 6, via choosing a sequence of Lipschitz continuous functions supported
in balls, we obtain the desired conclusion of the present theorem when u ∈ Ḟ . This finishes
the proof of Theorem 5. �

Remark 7. With the same assumptions as in Theorem 5, by Lemma 14, (64), and Remark 4(ii), we
have the following two observations:

(i) u∗ = u almost everywhere;
(ii) every point outside E is a generalized Lebesgue point of u.

From (ii) and ([45], Lemma 17), we further deduce that, if u ∈ F is F -quasi-continuous, then there
exists a set E with Cap F (E) = 0 such that every point outside E is a generalized Lebesgue point of
u. This means that F -quasi-continuous functions may have more Lebesgue points, compared with
the functions that are only locally integrable.

In the following, we consider another technical tool, the generalized Hausdorff mea-
sure, which can also be applied to measure the exceptional set of (generalized) Lebesgue
points. To see this, we study the comparison between the capacity and the above gen-
eralized Hausdorff measure. We refer the reader to [55,62,63] for more studies on the
comparison between the capacity and the generalized Hausdorff measure, and to [64] for a
study on measuring the exceptional set of Lebesgue points via the generalized Hausdorff
measure straightly.

Let h ∈ A, θ ∈ (0, 1], and R ∈ (0,∞]. The Netrusov–Hausdorff cocontentHh,θ
R , related to h,

θ, and R, is defined by setting, for any E ⊂ X,

Hh,θ
R (E) := inf

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎢⎣∑

i∈I

{
μ(B(xi, ri))

h(ri)

}θ⎤⎥⎥⎥⎥⎥⎥⎦
1/θ

: E ⊂
⋃
i∈I

B(xi, ri), ri ≤ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (68)

where the infimum is taken over all coverings {B(xi, ri)}i∈I of E, and I ⊂ N an index set.
Then, the generalized Hausdorff measureHh,θ(E), related to h and θ, is defined by setting, for
any E ⊂ X,

Hh,θ(E) := lim sup
R→0+

Hh,θ
R (E). (69)

Recall that the Netrusov–Hausdorff content on Rn defined via the powers of the radius
was first considered by Netrusov [65] and generalized to metric spaces via an increasing
function h by Nuutinen ([55], Definition 5.1).

Observe that some lower bound and upper bound estimates for the Ns
p,q-capacity

and the Ms
p,q-capacity with p, q ∈ (0,∞), in terms of the related Netrusov–Hausdorff

contents, have been established, respectively, in ([55], Theorems 5.4 and 5.5) and ([63],
Theorems 3.6 and 3.7) where Ns

p,q and Ms
p,q denote the classical fractional Hajłasz–Besov

and Hajłasz–Triebel–Lizorkin spaces, respectively. By some arguments similar to those
used in the proofs of ([55], Theorems 5.4 and 5.5) and ([63], Theorems 3.6 and 3.7), we
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have the following conclusions (Theorems 6 and 7) on the generalized spaces Mφ
p,q(X) and

Nφ
p,q(X); we omit the details of their proofs.

Theorem 6. Let φ ∈ A0, p ∈ (0,∞), q ∈ (0,∞], θ := min{1, q/p}, F ∈ {Mφ
p,q(X), Nφ

p,q(X)}, and
Cμ be as in (1). Then, there exists a positive constant C = C(F ) such that, for any E ⊂ X and
R ∈ (0,∞),

Cap F (E) ≤ CHh,θ
R (E), (70)

whereHh,θ
R is as in (68).

Remark 8. Let φ(r) := rs with s ∈ (0, 1) for any r ∈ [0,∞). In this case, (70) with F = Nφ
p,q(X)

becomes
Cap Nφ

p,q(X)(E) � H
h,θ
R (E)

with the implicit positive constant independent of E, which is just ([55] Theorem 5.4); moreover,
taking F = Mφ

p,q(X) and letting R→ 0+ in (70), we obtain

Cap Mφ
p,q(X)(E) � H

h,θ(E)

with the implicit positive constant independent of E, which is just ([63] Theorem 3.6), whereHh,θ

is as in (69).

Theorem 7. Let φ ∈ A0 , p, q ∈ (0,∞) , F ∈ {Mφ
p,q(X), Nφ

p,q(X)} , ω be any given function of
admissible growth such that, for any L ∈ Z+,

∑
k≥L

1
ω(2−k)

< ∞;

and Cμ as in (1). Let x0 ∈ X, R ∈ (0, 1), and B0 := B(x0, R). If there exist two positive constants
κ1 ∈ (2,∞) and κ2 ∈ (κ1,∞) such that κ2B0 \ κ1B0 � ∅, then there exist two positive constants τ
and C = C(κ1,κ2,R,ω,F ,Cμ) such that, for any compact set E ⊂ B0,

Hhω,1
τR (E) ≤ C Cap F (E),

where, for any r ∈ (0, R], hω(r) := [φ(r)ω(r)]p, andHhε ,1
τR (E) is as in (68) with θ = 1.

Remark 9. Let φ(r) := rs with s ∈ (0, 1) for any r ∈ [0,∞). When F = Nφ
p,q(X), if hω, as in

Theorem 7, satisfies that, for any N ∈ Z,

∫ 2N

0
[hω(t)]

−1/pts−1 dt < ∞

(which is just the assumption in ([55], Theorem 5.5)), then, for any L ∈ Z+,

∑
k≥L

1
ω(2−k)

∼
∑
k≥L

∫ 2−k

2−k−1
[ω(t)]−1t−1 dt

∼
∫ 2−L

0
[ω(t)]−1t−1 dt

∼
∫ 2−L

0
[hω(t)]

−1/pts−1 dt < ∞.

Thus, Theorem 7 implies ([55], Theorem 5.5) with κ1 = 4 and κ2 = 8.
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When F = Nφ
p,q(X), for any given ε ∈ (0,∞), let ω(r) := [log(1/r)]−1−ε/p for any

r ∈ [0,∞). Obviously, we have ∑
k≥L

[log(2k)]−1−ε/p < ∞.

Moreover, if Cap F (E) = 0, then, by (71), we obtain Hhω,1∞ (E) = 0, which implies ([63],
Theorem 3.7) with κ1 = 4 and κ2 = 8, whereHhω,1∞ (E) is as in (68) with R = ∞.

Finally, we concentrate on the space Mφ,p(X) with αφ ∈ (0, 1) and p ∈ (D/(− log2 αφ),∞),
where D is as in (1). We point out that, similarly to ([55], Theorems 5.4 and 5.5) and ([63],
Theorems 3.6 and 3.7), the proofs of Theorems 6 and 7 rely on some equivalent character-
izations of the related capacities Cap Nφ

p,q(X) and Cap Mφ
p,q(X), in which the counterpart for

the capacity Cap Mφ,p(X) is unknown. Instead, we use Lemma 14 and the doubling property
of the measure to obtain the following result.

Theorem 8. Let F = Mφ
p,∞(X) = Mφ,p(X) with φ ∈ A∞, αφ ∈ (0, 1), p ∈ (D/(− log2 αφ),∞),

and D and Cμ be as in (1). Let B0 be a ball with the radius R̃0 ∈ (0,∞). If there exist an R0 ∈ (0, R̃0]
and a τ ∈ (2,∞) such that, for any ball B ⊂ 2B0 with the radius no more than R0, τB \ 2B � ∅,
then, for any compact set E ⊂ B0,

Cap F (E) = 0 ⇐⇒ Hh,1(E) = 0, (71)

where, for any r ∈ (0, R0], h(r) := [φ(r)]p, andHh,1(E) is as in (69) with θ = 1.

Proof. Let all the symbols be as in the present theorem and L ∈ Z such that R0 ∈ (2L−1, 2L].
We first proveHh,1(E) = 0 =⇒ Cap F (E) = 0. To this end, let R ∈ (0, min{1, R0}] and

{B(xi, ri) : ri ≤ R}i∈I be a ball covering of E, where I is an index set. For any i ∈ I, we let ϕi
be an r−1

i -Lipschitz function supported in 2B(xi, ri) such that 0 ≤ ϕi ≤ 1 and ϕi|B(xi,ri) ≡ 1.
The existence of such {ϕi}i∈I can be found in the proof of ([63], Theorem 3.6). For any
i ∈ I, by Definition 10; the continuity of ϕi; Corollary 4 with L−1 and E therein replaced,
respectively, by ri and 2B(xi, ri); the doubling property of μ; the definition ofA; and ri ≤ 1,
we have

Cap F (B(xi, ri)) ≤ ‖2ϕ‖pF
�
{
1 + [φ(ri)]

−1}p
μ(2B(xi, ri))

� [φ(ri)]
−p
μ(B(xi, ri))

with the implicit positive constants independent of xi and ri. From this, Remark 4(iii), and
Lemma 6 with θ = 1 and Ei replaced by B(xi, ri), we deduce that

Cap F (E) ≤ Cap F

⎛⎜⎜⎜⎜⎜⎜⎝⋃
i∈I

B(xi, ri)

⎞⎟⎟⎟⎟⎟⎟⎠ �∑
i∈I

μ(B(xi, ri))

[φ(ri)]
p ∼

∑
i∈I

μ(B(xi, ri))

h(ri)
,

which, combined with (68) with θ = 1, implies that Cap F (E) � Hh,1
R (E) with the implicit

positive constant independent of R and E. Letting R→ 0+, we obtain Cap F (E) � Hh,1(E),
which implies that, ifHh,1(E) = 0, then Cap F (E) = 0.

Conversely, if Cap F (E) = 0, then by the definition of Cap F (E), we find that, for any
given ε ∈ (0,∞), there exists a function v such that v ≥ 1 in a neighborhood of E and

‖v‖p
Mφ,p(X) < Cap F (E) + ε = ε. (72)

For any given generalized Lebesgue point x ∈ E and any given k ∈ Z with k ≥ −L + 1,
take B := B(x, 2−k). Then B ⊂ 2B0, which together with the assumption of the present
theorem, means that τB \ 2B � ∅. Let ϕ be a Lipschitz function such that ϕ|B ≡ 1 and
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ϕ|X\2B ≡ 0. Define u := vϕ. Then, by Lemma 7(ii) with E and u therein replaced, respectively,
by 2B and v, we conclude that there exists a g ∈ Dφ(u), supported in 2B, such that

‖g‖Lp(X) � ‖v‖Mφ,p(2B), (73)

where the implicit positive constant depends only on φ, p, and K.
Since τB \ 2B � ∅, it follows that there always exists a point z ∈ τB \ 2B. Observe that,

for any y ∈ 2B, we have d(y, z) < (τ+ 2)2−k, u(z) = 0, and g(z) = 0. Then, by the definition
ofDφ(u) and φ ∈ A, we conclude that, for almost every y ∈ 2B,∣∣∣u(y)∣∣∣ = inf

z∈τB\2B

∣∣∣u(y) − u(z)
∣∣∣ ≤ inf

z∈τB\2B
φ(d(y, z))[g(y) + g(z)] � φ(2−k)g(y),

which combined with (ii), (v), and (vi) of Lemma 13 and the doubling property of μ, implies
that ∣∣∣mγ

u(B)
∣∣∣ ≤ mγ

|u|(B) � φ(2−k)mγ
g(B).

From this; the definition of the generalized Lebesgue point; the doubling property of
μ; (iii), (iv), and (vi) of Lemma 13; (61); Lemma 15(ii) with λ = p; and (55) with t = p and
E = B, we deduce that, for the above given x,∣∣∣u(x)

∣∣∣ ≤ ∣∣∣u(x) −mγ
u(B)

∣∣∣+ ∣∣∣mγ
u(B)

∣∣∣
≤

∑
j≥k−2

∣∣∣mγ
u(B(x, 2− j−1)) −mγ

u(B(x, 2− j))
∣∣∣+ ∣∣∣mγ

u(B)
∣∣∣

≤
∑

j≥k−2

mγ/Cμ

|u−mγ
u(B(x,2− j))|(B(x, 2− j)) +

∣∣∣mγ
u(B)

∣∣∣
�

∑
j≥k−2

inf
c∈R

[
mγ/Cμ

|u−c| (B(x, 2− j)) + mγ
|u−c|(B(x, 2− j))

]
+ φ(2−K)mγ

g(B)

�
∑

j≥k−2

φ(2− j)

{�
B(x,2− j+1)

[g(y)]p dμ(y)
}1/p

+ φ(2−K)

{�
B
[g(y)]p dμ(y)

}1/p

�
∑

j≥k−2

φ(2− j)

{�
B(x,2− j+1)

[g(y)]p dμ(y)
}1/p

∼
∑

j≥k−2

φ(2− j)
[
μ(B(x, 2− j+1))

]−1/p‖g‖Lp(B(x,2− j+1)).

Using this and u|E∩B ≥ 1, we conclude that, for this x,

1 �
∑

j≥k−2

φ(2− j)
[
μ(B(x, 2− j+1))

]−1/p‖g‖Lp(B(x,2− j+1)), (74)

where the implicit positive constant is independent of x and k. Moreover, by the doubling
property of μ, we find that, for any j ≥ k − 2,

[
μ
(
B(x, 2− j+1)

)]−1
� 2( j−k)D

[
μ
(
B(x, 2−k+2)

)]−1
,

where the implicit positive constant depends only on Cμ. From this, (74), the fact that g is
supported in 2B, the doubling property of μ, p ∈ (D/(− log2 αφ),∞), and Lemma 1(i) with
ε = D/p, it follows that, for x and k as above,

1 �
∑

j≥k−2

2( j−k)D/pφ(2− j)
[
μ(B(x, 2−k+2))

]−1/p‖g‖Lp(B(x,2−k+1))
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� φ(2−k)
[
μ(B(x, 2−k))

]−1/p‖g‖Lp(B(x,2−k+1)), (75)

where the implicit positive constant is independent of x and k. By (73), (75), and the
definition of h, we conclude that, for any given k ∈ Z with k ≥ −L + 1 and any generalized
Lebesgue point x ∈ E,

μ(B(x, 2−k))

h(2−k)
�

[φ(2−k)]p

h(2−k)
‖g‖p

Lp(B(x,2−k+1))

�
[φ(2−k)]p

h(2−k)
‖v‖p

Mφ,p(B(x,2−k+1))

∼ ‖v‖p
Mφ,p(B(x,2−k+1))

, (76)

where the implicit positive constants depend only on k, γ, φ, p, and Cμ.
Recall that, for any ball B′ with the radius r ∈ (0,∞), μ(B′) ∈ (0,∞). Then, by

Lemma 14, we have that, for any k ∈ Z with k ≥ −L + 1 and x′ ∈ E, there always exists a
generalized Lebesgue point y in B(x′, 2−k). Thus, B(x′, 2−k) ⊂ B(y, 2−k+1) and B(y, 2−k) ⊂
B(x′, 2−k+1). Using this, (76) with x therein replaced by y, the definition of h, φ ∈ A, and the
doubling property of μ, we further conclude that, for any given k ∈ Z with k ≥ −L + 1 and
any x′ ∈ E,

μ(B(x′, 2−k))

h(2−k)
≤ μ(B(y, 2−k+1))

h(2−k)

�
μ(B(y, 2−k−1))

h(2−k−1)
� ‖v‖p

Mφ,p(B(y,2−k))
� ‖v‖p

Mφ,p(B(x′,2−k+1))
. (77)

For any given R ∈ (0, 2L−1], let k0 ∈ Z be such that 2−k0 ≤ R < 2−k0+1. Obviously,
{B(x, 2−k0) : x ∈ E} is a covering, consisting of balls with uniformly bounded diameter,
of E. Thus, by a covering lemma for doubling metric spaces (see, for instance, ([66],
Theorem 3.1.3) and ([67], Lemma 2.9)), we obtain a countable subfamily {B(xi, 2−k0) : xi ∈
E, i ∈ I} of disjoint balls with the radius no more than R such that

E ⊂
⋃
i∈I

5B(xi, 2−k0),

where I is an index set. From this, (68) with θ = 1 and R replaced by 5R, the doubling
property of μ, φ ∈ A, (77) with k = k0 + 1, the property of {B(xi, 2−k0) : xi ∈ E, i ∈ I},
and (72), we deduce that

Hh,1
5R (E) ≤

∑
i∈I

μ(5B(xi, 2−k0))

h(5 · 2−k0)

�
∑
i∈I

μ(B(xi, 2−k0−1))

h(2−k0−1)
�
∑
i∈I
‖v‖p

Mφ,p(B(xi,2−k0 ))
� ‖v‖p

Mφ,p(X) � ε,

where the implicit positive constants depend only on φ, p, Cμ, and R. Letting ε→ 0+, we
then conclude that, for any R ∈ (0, 2L−1],Hh,1

5R (E) = 0, which further implies that

Hh,1(E) = lim sup
R→0+

Hh,1
5R (E) = 0.

This finishes the proof of Theorem 8. �
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Remark 10. Let F and h be as in Theorem 8, and D and Cμ be as in (1). We point out that, by the
proof of Theorem 8, the implication

Cap F (E) = 0 =⇒ Hh,1(E) = 0

holds true for any set E ⊂ X.
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1. Introduction

The aim of this note is to consider spaces of pointwise multipliers on Morrey spaces
and weak Morrey spaces. Our results supplement the ones in [1–4]. We state our main
results in Section 2. Section 1 is devoted to the formulation of the results.

We denote by L0(Rn) the space of all measurable functions from Rn to R or C. Let
E1, E2 ⊂ L0(Rn) be linear subspaces. We say that a function g ∈ L0(Rn) is a pointwise
multiplier from E1 to E2, if the pointwise multiplication f · g is in E2 for any f ∈ E1. We
denote by PWM(E1, E2) the set of all pointwise multipliers from E1 to E2. We abbreviate
this as PWM(E, E) to PWM(E).

For p ∈ (0, ∞], Lp(Rn) denotes the usual Lebesgue space equipped with the norm
‖ · ‖Lp . It is well known by Hölder’s inequality that:

‖ f · g‖Lp2 ≤ ‖ f ‖Lp1 ‖g‖Lp3 ( f ∈ Lp1(Rn), g ∈ Lp3(Rn))

for 1/p2 = 1/p1 + 1/p3 with pj ∈ (0, ∞], j = 1, 2, 3, so that p1 ≥ p2. This shows that:

PWM(Lp1(Rn), Lp2(Rn)) ⊃ Lp3(Rn).

Conversely, we can show the reverse inclusion by using the uniform boundedness theorem
or the closed graph theorem, that is,

PWM(Lp1(Rn), Lp2(Rn)) = Lp3(Rn). (1)

In particular, if p1 = p2 = p, then:

PWM(Lp(Rn)) = L∞(Rn). (2)

Meanwhile, if p1 < p2, then:
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PWM(Lp1(Rn), Lp2(Rn)) = {0} (3)

since Lp1
loc(R

n) is not included in Lp2
loc(R

n). Proofs of (1) and (2) can be found in the work
of Maligranda and Persson [5], Proposition 3 and Theorem 1. See also [4]. We do not
prove (3) directly in this paper, but we mention that (3) is a direct consequence in Section 2.
The goal of this note is to generalize this observation to Morrey spaces motivated by the
works [2–4,6]. For p ∈ (0, ∞) and λ ∈ [0, n], the (classical/strong) Morrey space Lp,λ(Rn)
is defined as the space of f ∈ L0(Rn) such that:

‖ f ‖Lp,λ = sup
Q∈Q

(
1

|Q| λ
n

∫
Q
| f (y)|p dy

)1/p

< ∞, (4)

where Q stands for the set of all cubes in Rn whose edges are parallel to the coordinate
axes. The parameter p serves to describe the local integrability of functions, while λ
describes the growth of

∫
Q
| f (y)|pdy in comparison with |Q|. It is easy to see that Lp,λ(Rn)

is a quasi-Banach space, which is subject to the scaling law ‖ f (t·)‖Lp,λ = t−
n−λ

p ‖ f ‖Lp,λ for
all f ∈ Lp,λ(Rn) and t > 0. The notation Lp,λ(Rn) was used, for instance, by Peetre [7].
The weak Morrey space wLp,λ(Rn) is defined by a routine procedure: The weak Morrey
space wLp,λ(Rn) is the set of all measurable functions f ∈ L0(Rn) for which ‖ f ‖wLp,λ =
sup
λ>0

λ‖χ(λ,∞](| f |)‖Lp,λ is finite, where χA stands for the characteristic function of the set A.

To describe various properties of functions in Lp,λ(Rn), it is sometimes convenient to
use the notation Mp

q (Rn). Let 0 < q ≤ p ≤ ∞. Recall that for an Lq
loc(R

n)-function f , its
Morrey norm ‖ f ‖Mp

q
is defined by:

‖ f ‖Mp
q
≡ sup

Q∈Q
|Q|

1
p− 1

q

(∫
Q
| f (y)|qdy

) 1
q
. (5)

The Morrey spaceMp
q (Rn) is the set of all Lq(Rn)-locally integrable functions f for which

the norm ‖ f ‖Mp
q

is finite. Once again, by the routine procedure, we define the weak

Morrey space wMp
q (Rn) as the set of all measurable functions f ∈ L0(Rn) for which

‖ f ‖wMp
q
= sup

λ>0
λ‖χ(λ,∞](| f |)‖Mp

q
is finite. The parameter q describes the local integrability

of functions. As is seen from the scaling law ‖ f (t·)‖Mp
q
= t−

n
p ‖ f ‖Mp

q
for all f ∈ Mp

q (Rn)

and t > 0, the parameter p in the Morrey spaceMp
q (Rn) describes the global integrability.

We remark that some authors swap the role of p and q; see [6] for example.
By (4) and (5), we have:

Lq,λ(Rn) =Mp
q (Rn), if λ = n(1− q/p) or equivalently p =

qn
n− λ

.

Let 0 < p < ∞. It is noteworthy that Lp,0(Rn) = Mp
p(Rn) = Lp(Rn) and that

Lp,n(Rn) =M∞
p (Rn) = L∞(Rn), so that Morrey spaces generalize Lebesgue spaces.

Let 0 < qi ≤ pi < ∞, i = 1, 2. We consider the space of pointwise multipliers from
Mp1

q1 (R
n) to Mp2

q2 (R
n). A direct consequence of the closed graph theorem is that there

exists a constant M > 0 such that, for f ∈ Mp1
q1 (R

n) and g ∈ PWM(Mp1
q1 (R

n),Mp2
q2 (R

n)),

‖ f · g‖Mp2
q2
≤ M‖ f ‖Mp1

q1
. (6)

One naturally defines a norm on PWM(Mp1
q1 (R

n),Mp2
q2 (R

n)) by:

‖g‖PWM(Mp1
q1 ,Mp2

q2 )
≡ inf{M > 0 : (6) holds for all f ∈ Mp1

q1 (R
n)}
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for g ∈ PWM(Mp1
q1 (R

n),Mp2
q2 (R

n)). In the following, unless otherwise stated, the equality:

PWM(E1, E2) = E3

tacitly means the norm equivalence, that is a function g ∈ L0(Rn) belongs to E3 if and only
if g ∈ PWM(E1, E2), and in this case:

‖g‖PWM(E1,E2)
∼ ‖g‖E3 ,

where the implicit constants in ∼ do not depend on g. It follows from the scaling law of
Morrey spaces that:

‖g(t·)‖PWM(Mp1
q1 ,Mp2

q2 )
= t−

n
p2
+ n

p1 ‖g‖PWM(Mp1
q1 ,Mp2

q2 )

for all g ∈ PWM(Mp1
q1 (R

n),Mp2
q2 (R

n)).
An easy consequence of Hölder’s inequality is that:

‖ f · g‖Lp2,λ2 ≤ ‖ f ‖Lp1,λ1 ‖g‖Lp3,λ3 ,

if pj ∈ (0, ∞) and λj ∈ [0, n], j = 1, 2, 3 satisfy 1/p2 = 1/p1 + 1/p3 and λ2/p2 = λ1/p1 +
λ3/p3. This shows that:

PWM(Lp1,λ1(Rn), Lp2,λ2(Rn)) ⊃ Lp3,λ3(Rn). (7)

Therefore, the aim of this note is to investigate the difference between the two spaces above.
It is important to note that the scaling laws considered above force the parameters p1, p2, p3
to satisfy λ2/p2 = λ1/p1 + λ3/p3.

In this paper, we describe PWM(Lp1,λ1(Rn), Lp2,λ2(Rn)) for all parameters pj ∈ (0, ∞)
and λj ∈ [0, n), j = 1, 2. Of interest is the case where λ2 < λ1, since we already specified
PWM(Lp1,λ1(Rn), Lp2,λ2(Rn)) in the case λ1 ≤ λ2 in our earlier paper [3].

Theorem 1 ([3], Corollary 2.4). Let pi ∈ (0, ∞) and λi ∈ [0, n), i = 1, 2. Then:

PWM(Lp1,λ1(Rn), Lp2,λ2(Rn))⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

= {0}, p1 < p2 or n + (λ1 − n) p2
p1

< λ2,

= L∞(Rn), p2 ≤ p1 and λ2 = n + (λ1 − n) p2
p1

,

= Lp3,λ3(Rn), p2 < p1 and λ1 ≤ λ2 < n + (λ1 − n) p2
p1

,

� Lp3,λ3(Rn), p2 < p1 and 0 < λ1
p2
p1
≤ λ2 < λ1,

� {0}, p2 ≤ p1 and 0 ≤ λ2 < λ1
p2
p1

,

where p3 = p1 p2/(p1 − p2) and λ3 = (p1λ2 − p2λ1)/(p1 − p2).

Let pi ∈ (0, ∞), i = 1, 2. As the endpoint cases of λ1 = n or/and λ2 = n, we have:

PWM(Lp1,λ1(Rn), Lp2,λ2(Rn))

{
= {0}, 0 ≤ λ1 < λ2 = n,
= Lp2,λ2(Rn), 0 ≤ λ2 ≤ λ1 = n.

We rephrase Theorem 1 as follows:
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Theorem 2. Let 0 < qi ≤ pi < ∞, i = 1, 2. Then:

PWM(Mp1
q1 (R

n), Mp2
q2 (R

n))⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

= {0}, q1 < q2 or p1 < p2,
= L∞(Rn), q2 ≤ q1 and p1 = p2,
=Mp3

q3 (R
n), q2 < q1 and p1q2/q1 ≤ p2 < p1,

�Mp3
q3 (R

n), q2 < q1 < p1 and 1/(1/p1 + 1/q2 − 1/q1) ≤ p2 < p1q2/q1,
� {0}, q2 ≤ q1 < p1 and p2 < 1/(1/p1 + 1/q2 − 1/q1),

where q3 = q1q2/(q1 − q2) and p3 = p1 p2/(p1 − p2).

We have notation for the scale Lp,λ(Rn) analogous to the scale Mp
q (Rn). We may

also replace Mp1
q1 (R

n) and/or Mp2
q2 (R

n) by wMp1
q1 (R

n) and/or wMp2
q2 (R

n) to define the
corresponding multiplier spaces. According to [1], we have a counterpart of Theorem 1 to
weak Morrey spaces: we can replace Lpi ,λi (Rn) by wLpi ,λi (Rn) in Theorem 1 andMpi

qi (R
n)

by wMpi
qi (R

n) in Theorem 2. As for weak Morrey spaces, the following results were
obtained in [1].

Theorem 3 ([8], Corollary 3). The same conclusion as Theorem 1 remains valid if we replace
Lpk ,λk (Rn) by wLpk ,λk (Rn) for k = 1, 2, 3. As a result, the same conclusion as Theorem 2 remains
valid if we replaceMpk

qk (R
n) by wMpk

qk (R
n) for k = 1, 2, 3.

It is interesting to compare these results with the following endpoint cases:

PWM(L∞(Rn),Mp
q (Rn)) =Mp

q (Rn),

PWM(L∞(Rn), wMp
q (Rn)) = wMp

q (Rn),

PWM(Mp
q (Rn), L∞(Rn)) = PWM(wMp

q (Rn), L∞(Rn)) = {0}

for all 0 < q ≤ p < ∞.
The goal of this note is to give complete characterizations of:

PWM(Mp1
q1 (R

n),Mp2
q2 (R

n))

including
PWM(wMp1

q1 (R
n),Mp2

q2 (R
n)),

PWM(Mp1
q1 (R

n), wMp2
q2 (R

n))

and:
PWM(wMp1

q1 (R
n), wMp2

q2 (R
n)).

Here are tables of the characterization of these spaces. For example, in Table 1, we
deal with the case of p1 > p2 and q1 > q2 in Theorem 4 to follow.

Table 1. PWM(Mp1
q1 (R

n),Mp2
q2 (R

n)).

p1 < p2 p1 = p2 p1 > p2

q1 < q2 Theorem 2 Theorem 2 Theorem 2
q1 = q2 Theorem 2 Theorem 2 Theorem 4
q1 > q2 Theorem 2 Theorem 2 Theorem 4

The remaining part of this paper is organized as follows: In Section 2, we present our
main results summarized as Tables 1–4. Section 3 deals with preliminary and general facts
of the multiplier spaces. Section 4 is devoted to the proof of the results summarized in the
tables above.
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Table 2. PWM(wMp1
q1 (R

n),Mp2
q2 (R

n)).

p1 < p2 p1 = p2 p1 > p2

q1 < q2 Proposition 1, 1 and 2. Proposition 1, 2. Proposition 1, 2.
q1 = q2 Proposition 1, 1. Propositions 1, 3. Theorem 6
q1 > q2 Proposition 1, 1. Proposition 2 Theorem 6

Table 3. PWM(Mp1
q1 (R

n), wMp2
q2 (R

n)).

p1 < p2 p1 = p2 p1 > p2

q1 < q2 Proposition 3, 1. Proposition 3, 1. Proposition 3, 1.
q1 = q2 Proposition 3, 1. Proposition 3, 2. Theorem 7
q1 > q2 Proposition 3, 1. Proposition 3, 2. Theorem 7

Table 4. PWM(wMp1
q1 (R

n), wMp2
q2 (R

n)).

p1 < p2 p1 = p2 p1 > p2

q1 < q2 Theorem 3 Theorem 3 Theorem 3
q1 = q2 Theorem 3 Theorem 3 Theorem 8
q1 > q2 Theorem 3 Theorem 3 Theorem 8

2. Main Results

2.1. Characterization of PWM(Mp1
q1 (R

n),Mp2
q2 (R

n))

To characterize the pointwise multiplier space PWM(Mp1
q1 (R

n),Mp2
q2 (R

n)), we recall
a couple of notions in [9,10].

A quasi-Banach (resp. Banach) lattice on Rn is a nonzero quasi-Banach (resp. Banach)
space (E, ‖ · ‖) contained in L0(Rn) such that ‖ f ‖E ≤ ‖g‖E holds for all f , g ∈ E such
that | f | ≤ |g|. Let u ∈ (0, ∞). For a quasi-Banach lattice E ⊂ L0(Rn), we define its
u-convexification Eu by:

Eu ≡ { f : | f |u ∈ E}, ‖ f ‖Eu ≡ (‖| f |u‖E)
1/u.

For example, (L1(Rn))p = Lp(Rn).
We next recall the notion of block spaces introduced by Long [10].

Definition 1. Let 1 ≤ q ≤ p < ∞. A function A ∈ L0(Rn) is a (p, q)-block if there exists a cube
Q that supports A and:

‖A‖Lq′ ≤ |Q|
1
q′ −

1
p′ , (8)

where p′ and q′ stand for the conjugate exponent of p and q, respectively. If we need to specify Q,
then we say that b is a (p, q)-block supported on Q. Let 1 ≤ q ≤ p < ∞, and define the block

spaceHp′

q′ (R
n) as the set of all f ∈ Lp′(Rn) for which f is realized as the sum f =

∞

∑
j=1

τj Aj with

some {τj}∞
j=1 ∈ �1(N) and some sequence {Aj}∞

j=1 of (p, q)-blocks. Define the norm ‖ f ‖
Hp′

q′
for

f ∈ Hp′

q′ (R
n) as:

‖ f ‖
Hp′

q′
≡ inf

τ
‖τ‖�1 , (9)

where τ = {τj}∞
j=1 runs over all admissible expressions as above.
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Finally, to state our result, we recall the definition of vector-valued Morrey spaces
proposed by Ho [9]. Let E(Rn) ⊂ L0(Rn) be a quasi-Banach lattice, and let p > 0. Then,
the E-based vector-valued Morrey spaceMp

E(R
n) is the set of all f ∈ L0(Rn) for which:

‖ f ‖Mp
E
≡ sup

Q∈Q
|Q|

1
p
‖χQ f ‖E

‖χQ‖E

is finite.
Recall that a quasi-Banach lattice E enjoys the Fatou property if sup

j∈N
f j ∈ E and

lim
j→∞

‖ f j‖E =

∥∥∥∥lim
j∈N

f j

∥∥∥∥ for any sequence { f j}∞
j=1 in E satisfying 0 ≤ f1 ≤ f2 ≤ · · · . We make

a brief remark on the relation among these notions introduced above.

Remark 1. If ‖χQ‖E = |Q|
1
p for all cubes Q and if E has the Fatou property, then a simple observa-

tion showsMp
E(R

n) = E(Rn) with the equivalence of norms. In particular, If E(Rn) = Hp′

q′ (R
n),

thenMp′
E (Rn) = E(Rn).

We provide a complete picture of the description of PWM(Mp1
q1 (R

n),Mp2
q2 (R

n)).

Theorem 4. Let 0 < qi ≤ pi < ∞, i = 1, 2:

1. If q1 < q2 or p1 < p2, then PWM(Mp1
q1 (R

n),Mp2
q2 (R

n)) = {0};
2. If q1 ≥ q2 and p1 = p2, then PWM(Mp1

q1 (R
n),Mp2

q2 (R
n)) = L∞(Rn);

3. If q1 ≥ q2 and p1 > p2, then PWM(Mp1
q1 (R

n),Mp2
q2 (R

n)) =Mp3
Xq2 (R

n), where p3 and X
are given by:

p3 =
p1 p2

p1 − p2
, X = H

(
p1
q2

)′
(

q1
q2

)′ (Rn).

In particular,
PWM(Mp1

q1 (R
n),Mp2

1 (Rn)) =Mp3

Hp′1
q′1

(Rn),

where p3 is defined by p3 = p1 p2
p1−p2

.

It is significant that Theorem 4 does not require q1
p1
≥ q2

p2
, unlike Theorem 2. We give

an equivalent form using the scale Lp,λ(Rn).

Theorem 5. Let pi ∈ (0, ∞) and λi ∈ [0, n), i = 1, 2:

1. If p1 < p2 or p1
n−λ1

< p2
n−λ2

, then PWM(Lp1,λ1(Rn), Lp2,λ2(Rn)) = {0};
2. If p1 ≥ p2 and p1

n−λ1
= p2

n−λ2
, then PWM(Lp1,λ1(Rn), Lp2,λ2(Rn)) = L∞(Rn);

3. If p1 ≥ p2 and p1
n−λ1

> p2
n−λ2

, then PWM(Lp1,λ1(Rn), Lp2,λ2(Rn)) =Mv3
Xp2 (R

n), where
v3 and X are given by:

n− λ1

p1n
+

1
v3

=
n− λ2

p2n
, X(Rn) = H

(
p1n

p2(n−λ1)

)′
(

p1
p2
)′

(Rn).

We prove Theorem 4 in Section 4.1.
We combine Theorems 2 and 4 to have a nontrivial coincidence of function spaces.

Corollary 1. Let qi ∈ (0, ∞) and pi ∈ [qi, ∞), i = 1, 2. Assume that q1 > q2 and p1 > p2. Write

q3 = q1q2
q1−q2

, p3 = p1 p2
p1−p2

and X(Rn) = H
(

p1
q2

)′
(

q1
q2

)′ (Rn). If q1
p1
≥ q2

p2
, thenMp3

q3 (R
n) =Mp3

Xq2 (R
n).

188



Mathematics 2021, 9, 2754

A remark about Corollary 1 may be in order.

Remark 2. Let X(Rn) be as in Corollary 1, and let Y(Rn) = Lq3(Rn). Corollary 1 reveals that
Mp3

Y (Rn) =Mp3
Xq2 (R

n), although X(Rn)q2 �= Y(Rn).

2.2. Characterization of PWM(wMp1
q1 (R

n),Mp2
q2 (R

n))

Once we prove Theorem 4, we can pass the results above fromMp1
q1 (R

n) to wMp1
q1 (R

n)

with ease if 0 < q2 < q1 < ∞. To describe the multiplier space PWM(wMp1
q1 (R

n),Mp2
q2 (R

n)),
we will recall the definition given in [11,12]:

Definition 2. 1. ([11], Definition 1.4.1) Let f : Rn → C be a measurable function. Then,
define its decreasing rearrangement f ∗ by:

f ∗(t) = inf{λ > 0 : |{| f | > λ}| ≤ t};

2. ([11], Definition 1.4.6) Let 1 < p, q < ∞. The Lorentz space Lp,q is the set of all measurable
functions f : Rn → C for which:

‖ f ‖Lp,q =

(∫ ∞

0
(t

1
p f ∗(t))q dt

t

) 1
q

is finite;
3. ([12], Definition 2.3) Let 1 < q ≤ p < ∞. A measurable function b is said to be a

(p′; q′, 1)-block if there exists a cube Q such that:

supp(b) ⊂ Q, ‖b‖Lq′ ,1 ≤ |Q|
1
p− 1

q ; (10)

4. ([12], Definition 2.3) Let 1 < q ≤ p < ∞. The space Hp′

q′ ,1(R
n) is the set of all Lp(Rn)-

functions f for which there exist a sequence {λj}∞
j=1 ∈ �1(N) and a sequence {bj}∞

j=1 of
(p′; q′, 1)-blocks for which:

f =
∞

∑
j=1

λjbj (11)

in Lp(Rn). For f ∈ Hp′

q′ ,1(R
n), one defines:

‖ f ‖
Hp′

q′ ,1
= inf

∞

∑
j=1
|λj|,

where inf is over all possible decompositions in (11).

Concerning Lorentz spaces, a couple of remarks may be in order:

Remark 3. Let 0 < p, p1, p2, q, q1, q2 ≤ ∞:

1. Let G be a measurable set in Rn. Then:

‖χG‖Lp,q =

(
p
q

) 1
q
|G|

1
p ,

where we understand (p/q)1/q = 1 for q = ∞. See [11], Example 1.4.8;
2. Assume that:

1
p
=

1
p1

+
1
p2

,
1
q
=

1
q1

+
1
q2

.

Then:
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‖ f · g‖Lp,q ≤ e
1
p ‖ f ‖Lp1,q1 ‖g‖Lp2,q2

for all f ∈ Lp1,q1(Rn) and g ∈ Lp2,q2(Rn), or equivalently:

‖g‖PWM(Lp1,q1 ,Lp,q) ≤ e
1
p ‖g‖Lp2,q2

for all g ∈ Lp2,q2(Rn). See [8], p. 6, Corollary 3, for the precise constant;
3. We have an equivalent expression if p > 1: For all f ∈ L0(Rn),

‖ f ‖wLp = ‖ f ‖Lp,∞ (12)

∼ sup
{
|E|

1
p−1‖ f ‖L1(E) : E is a measurable set with |E| ∈ (0, ∞)

}
.

See [11], Exercise 1.1.12.

Theorem 6. Let 0 < qi ≤ pi < ∞, i = 1, 2. If p1 > p2 and q1 ≥ q2, then:

PWM(wMp1
q1 (R

n),Mp2
q2 (R

n)) =Mp3
Xq2 (R

n),

where p3 and X are given by:

p3 =
p1 p2

p1 − p2
, X = H

(
p1
q2

)′
(

q1
q2

)′
,1
(Rn).

We prove Theorem 6 in Section 4.2.
The special case of p1 = q1 > p2 = q2 deserves attention.

Corollary 2. In addition to the assumption in Theorem 6, we let p1 = q1 > p2 = q2. Then:

PWM(wLp1(Rn), Lp2(Rn)) =Mp3
Xp2 (R

n),

where p3 and X are given by:

p3 =
p1 p2

p1 − p2
, X = H

(
p1
p2

)′
(

p1
p2

)′
,1
(Rn).

We complement Corollary 2.

Proposition 1. Let 0 < qi ≤ pi < ∞, i = 1, 2. If either one of the following conditions
holds, then:

PWM(wMp1
q1 (R

n),Mp2
q2 (R

n)) = {0} :

1. p1 < p2;
2. q1 < q2;
3. p1 = p2 and q1 = q2.

We prove Proposition 1 in Section 4.3.
If p1 = p2 and q1 > q2, then we have something similar to the case of classical

Morrey spaces.

Proposition 2. Let 0 < qi ≤ pi < ∞, i = 1, 2. Assume p1 = p2 and q1 > q2. Then:

PWM(wMp1
q1 (R

n),Mp2
q2 (R

n)) = L∞(Rn).

We prove Proposition 2 in Section 4.4.
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2.3. Characterization of PWM(Mp1
q1 (R

n), wMp2
q2 (R

n))

Next, we pass fromMp2
q2 (R

n) to wMp2
q2 (R

n).
Theorem 4 allows us to characterize PWM(Mp1

q1 (R
n), wMp2

q2 (R
n)).

Theorem 7. Let 0 < qi ≤ pi < ∞, i = 1, 2, satisfy p1 > p2 and q1 ≥ q2. Define p3 by:

1
p3

=
1
p2

+
1
q′2
− 1

p1
.

Then. a function h ∈ L0(Rn) belongs to PWM(Mp1
q1 (R

n), wMp2
q2 (R

n)) if and only if χEh ∈
Mp3

Hp′1
q′1

(Rn) for all measurable sets E with |E| ∈ (0, ∞) and:

sup{|E|
1

q2
−1‖χEh‖Mp3

H
p′1
q′1

: E is a measurable set with |E| ∈ (0, ∞)} < ∞.

In this case,

‖h‖PWM(Mp1
q1 ,wMp2

q2 )
∼ sup{|E|

1
q2
−1‖χEh‖Mp3

H
p′1
q′1

: E is a measurable set with |E| ∈ (0, ∞)}.

We prove Theorem 7 in Section 4.5.
We supplement Theorem 7 by considering the case of p1 ≤ p2.

Proposition 3. Let 0 < qi ≤ pi < ∞, i = 1, 2:

1. Assume p1 < p2 or q1 < q2. Then:

PWM(Mp1
q1 (R

n), wMp2
q2 (R

n)) = {0};

2. Assume p1 = p2 and q1 ≥ q2. Then:

PWM(Mp1
q1 (R

n), wMp2
q2 (R

n)) = L∞(Rn).

We prove Proposition 3 in Section 4.6.

2.4. Characterization of PWM(wMp1
q1 (R

n), wMp2
q2 (R

n))

Finally, we pass bothMp1
q1 (R

n) andMp2
q2 (R

n) to wMp1
q1 (R

n) and wMp2
q2 (R

n), respec-
tively. The proof is a mere combination of Theorems 6 and 7. Therefore, we omit the
detail again.

Theorem 8. Let 0 < qi ≤ pi < ∞, i = 1, 2, satisfy p1 > p2 and q1 ≥ q2. Define p3 by:

1
p3

=
1
p2

+
1
q′2
− 1

p1
.

Then h ∈ L0(Rn) belongs to PWM(wMp1
q1 (R

n), wMp2
q2 (R

n)) if and only if χEh ∈ Mp3

Hp′1
q′1,1

(Rn)

for all measurable sets E with |E| ∈ (0, ∞) and:

sup{|E|
1

q2
−1‖χEh‖Mp3

H
p′1
q′1,1

: E is a measurable set with |E| ∈ (0, ∞)} < ∞

and in this case:
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‖h‖PWM(wMp1
q1 ,wMp2

q2 )
∼ sup{|E|

1
q2
−1‖χEh‖Mp3

H
p′1
q′1,1

: E is a measurable set with |E| ∈ (0, ∞)}.

In particular, h ∈ L0(Rn) belongs to PWM(wLp1(Rn), wLp2(Rn)) if and only if, for all measur-

able sets E with |E| ∈ (0, ∞), χEh ∈ Mp′1

Hp′1
p′1,1

(Rn) and

sup{|E|
1

p2
−1‖χEh‖

Mp′1

H
p′1
p′1,1

: E is a measurable set with |E| ∈ (0, ∞)} < ∞

and in this case:

‖h‖PWM(wLp1 ,wLp2 ) ∼ sup{|E|
1

p2
−1‖χEh‖

Mp′1

H
p′1
p′1,1

: E is a measurable set with |E| ∈ (0, ∞)}.

In the above, the implicit constants do not depend on h.

In Theorem 8, the case of p1 ≤ p2 is covered in Theorem 3.
It seems to make sense to compare Theorems 7 and 8 with an existing result. Let

p1 = q1 and p2 = q2 in Theorems 7 and 8.

Corollary 3. Let 0 < p2 < p1 < ∞. Then:

PWM(Lp1(Rn), wLp2(Rn)) = PWM(wLp1(Rn), wLp2(Rn)) = wL
p1 p2

p1−p2 (Rn). (13)

In [8], Corollary 3, the first author showed the second equality in (13). We reprove
Corollary 3 by the use of Theorems 7 and 8 in Section 4.7.

3. Preliminaries

For the proof of the theorems in the present paper, we use a scaling property. Arith-
metic shows that the following scaling property holds:

Lemma 1. ([5], (g) p. 326) Let E1 and E2 be quasi-Banach lattices, and let u > 0. Then:

PWM(Eu
1 , Eu

2 ) = PWM(E1, E2)
u.

We move on to the convexification of E-based Morrey spaces. Actually, as the next
lemma shows, E-based Morrey spaces are closed under the convexification of quasi-
Banach lattices.

Lemma 2. Let E ⊂ L0(Rn) be a quasi-Banach lattice and p, u > 0. Then: (M
p
u
E (R

n))u =

Mp
Eu(Rn).

Proof. For f ∈ L0(Rn), a direct computation shows:

‖ f ‖Mp
Eu

= sup
Q∈Q

|Q|
1
p
‖χQ f ‖Eu

‖χQ‖Eu
= sup

Q∈Q

(
|Q|

u
p
‖χQ| f |u‖E

‖χQ‖E

) 1
u

=

(
‖| f |u‖

M
p
u
E

) 1
u
= ‖ f ‖

(M
p
u
E )u

.

We also investigate howMp
E(R

n) inherits the dilation property from E.
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Lemma 3. We have ‖ f (t·)‖Mp
E
= t−

n
p ‖ f ‖Mp

E
for all f ∈ Mp

E(R
n) and t > 0 as long as E is

subject to the scaling law ‖g(t·)‖E = t−
n
u ‖g‖E for some u > 0 and for all g ∈ E and t > 0.

Proof. The proof is straightforward, and we omit the detail.

Remark that Lemma 3 is not used for the proof of the main results in the present
paper. However, Lemma 3 allows us to compare the scaling laws in the function spaces
in question.

In Section 2, we introduced block spaces together with some of their variants. We
recall that these spaces can be identified with the Köthe dual of Morrey spaces.

If E is a Banach lattice, then recall that its “Köthe dual” E′ is defined in L0(Rn) by the
set of all g ∈ L0(Rn) such that:

‖g‖E′ ≡ sup
{
‖ f · g‖L1 : f ∈ L0(Rn), ‖ f ‖E ≤ 1

}
< ∞. (14)

We can specify the Köthe dual of Morrey spaces as follows:

Lemma 4. 1. Let 1 ≤ q ≤ p < ∞. Then, the Köthe dual of Mp
q (Rn) is Hp′

q′ (R
n) with the

coincidence of norms;
2. Let 1 < q ≤ p < ∞. Then, the Köthe dual of wMp

q (Rn) is isomorphic to Hp′

q′ ,1(R
n) with

the equivalence of norms.

Lemma 4 is a culmination of what we proved in various papers. See [13], Theorem 3.1,
for 1. with q = 1, and see [14], Theorem 4.1, for example, for 1. with 1 < q < ∞, while 2.
was proven in [12], Theorem 2.7.

A direct consequence of Lemma 4 is that we have:

‖χQ‖Hp′
q′
= |Q|

1
p′ (15)

for all cubes Q.
When E1 and E2 are both homogeneous in the sense that the translation operator

induces isomorphism, we can mollify PWM(E1, E2). Furthermore, in this case, by the next
lemma, we see that the functions in PWM(E1, E2) do not increase the local integrability
of the functions.

Lemma 5. Let E1, E2 be Banach lattices, which are translation invariant in the sense that ‖h(· −
y)‖Ej = ‖h‖Ej for all h ∈ Ej, j = 1, 2. Assume that E1 and E2 enjoy the Fatou property and that
E2 ⊂ Lu

loc(R
n) for some u ∈ (0, ∞):

1. χ[0,1]n ∈ E1 ∩ E2.
2. The space PWM(E1, E2) is a translation-invariant Banach lattice, and any element in

PWM(E1, E2) is almost everywhere finite;
3. If f ∈ L1(Rn) and g ∈ PWM(E1, E2), then f ∗ g ∈ PWM(E1, E2) and:

‖ f ∗ g‖PWM(E1,E2)
≤ ‖ f ‖L1‖g‖PWM(E1,E2)

. (16)

In particular, for almost all x ∈ Rn,∫
Rn
|g(x− y) f (y)|dy < ∞. (17)

4. If PWM(E1, E2) �= {0}, then χ[−1,1]n ∈ PWM(E1, E2).
5. PWM(E1, E2) ⊂ Lu

loc(R
n).

6. If there exists a function f ∈ E1 \ Lu
loc(R

n), then PWM(E1, E2) = {0}.
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Proof. 1. We concentrate on E1; E2 can be dealt with similarly. Let f ∈ E1 be a nonzero
function. By truncation, the linearity of E1, and the lattice property of E1, we may
assume that f = χF for some bounded measurable set F. Notice that:

gN :=
1

Nn

N

∑
k1=1

N

∑
k2=1

· · ·
N

∑
kn=1

f
(
· − (k1, k2, . . . , kn)

N

)
∈ E1

satisfies ‖gN‖E1 ≤ ‖ f ‖E1 due to the translation invariance and the triangle inequality.
Since gN → χ[0,1]n ∗ f in the topology of L1(Rn) as N → ∞, by the Fatou property
of E1, χ[0,1]n ∗ f ∈ E1. Since ‖χ[0,1]n ∗ f ‖L1 = |F| > 0, it follows that χ[0,1]n ∗ f is a
nonzero continuous function. By the translation invariance and the lattice property of
E1, it follows that χ[0,1]n ∈ E1;

2. Let g ∈ PWM(E1, E2) and y ∈ Rn. Then:

‖g(· − y) f ‖E2 = ‖ f (·+ y)g‖E2 ≤ ‖g‖PWM(E1,E2)
‖ f (·+ y)‖E1 = ‖g‖PWM(E1,E2)

‖ f ‖E1

for all f ∈ E1. Thus, we see that g(· − y) ∈ PWM(E1, E2) and that:

‖g(· − y)‖PWM(E1,E2)
≤ ‖g‖PWM(E1,E2)

.

Likewise, if we swap the role of g and g(· − y), then we have:

‖g‖PWM(E1,E2)
≤ ‖g(· − y)‖PWM(E1,E2)

.

Thus, PWM(E1, E2) is translation invariant. Since E2 is a Banach lattice, we see that
PWM(E1, E2) is a Banach lattice. To check that any element g ∈ PWM(E1, E2) is finite
almost everywhere, we only need to show that gχ[−1,1]n is finite almost everywhere.
Assume otherwise; F := {x ∈ [−1, 1]n : |g(x)| = ∞} has a positive measure. Then,
χF ∈ PWM(E1, E2) since χF ≤ |g| ∈ PWM(E1, E2). Thus, χF = χF · χ[−1,1]n ∈ E2.
This implies that ‖χF‖E2 ∈ (0, ∞). However, this is a contradiction since ∞ >
‖gχ[−1,1]n‖E2 ≥ ‖∞χF‖E2 = ∞;

3. We prove:

| f | ∗ |g| ∈ PWM(E1, E2) and ‖ | f | ∗ |g| ‖PWM(E1,E2)
≤ ‖ f ‖L1‖g‖PWM(E1,E2)

,

which is slightly stronger than (16). For h ∈ E1, we have:

‖h · | f | ∗ |g|‖E2
≤
∫
Rn
‖h(·)g(· − y) f (y)‖E2

dy

=
∫
Rn
‖h(·+ y)g(·) f (y)‖E2

dy

≤ ‖g‖PWM(E1,E2)

∫
Rn
‖h(·+ y) f (y)‖E1

dy

= ‖g‖PWM(E1,E2)

∫
Rn
‖h(·+ y)‖E1

| f (y)|dy

= ‖g‖PWM(E1,E2)

∫
Rn
‖h‖E1

| f (y)|dy

= ‖g‖PWM(E1,E2)
‖ f ‖L1‖h‖E1 .

Finally, (17) is a consequence of 2. and the fact that:∫
Rn
| f (· − y)g(y)|dy = | f | ∗ |g| ∈ PWM(E1, E2);
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4. If PWM(E1, E2) �= {0}, then by the lattice property of PWM(E1, E2), there exists a
nonzero and non-negative function g ∈ PWM(E1, E2). By 1., χ[−R,R]n ∗ g ∈
PWM(E1, E2) \ {0}. If we choose R ≥ 1 large enough, then χ[−R,R]n ∗ g ≥ κχ[−1,1]n

for some κ > 0. Due to the lattice property of PWM(E1, E2), we obtain χ[−1,1]n ∈
PWM(E1, E2);

5. By 2., the lattice property, and the translation invariance of E1, χK ∈ E1 for all compact
sets K. Thus, if f ∈ PWM(E1, E2), then χK f ∈ E2 ⊂ Lu

loc(R
n);

6. Assume PWM(E1, E2) �= {0}. By translation, we may assume f χ[−1,1]n /∈ Lu
loc(R

n).
Meanwhile, by 3., | f χ[−1,1]n | ∈ E2 ⊂ Lu

loc(R
n). This is a contradiction.

4. Proof of the Main Results

4.1. Proof of Theorem 4

The proof of Theorem 4 is not so long. Furthermore, the statements in Theorem 4, 1.
and 2. are already included in Theorem 2. Therefore, we consider 3. solely. First, assume
that p2 = q2 = 1. In this case, we need to find a description of PWM(Mp1

q1 (R
n), L1(Rn)).

According to [5], this is nothing but the Köthe dual ofMp1
q1 (R

n). In this case, it remains to

note thatHp′1
q′1
(Rn) =Mp′1

Hp′1
q′1

(Rn) thanks to Remark 1 and that p′1 = p3
q2

= p3.

Next, we assume that p2 > q2 = 1. Then by the definition of Mp2
1 (Rn), g ∈

L0(Rn) belongs to PWM(Mp1
q1 (R

n),Mp2
q2 (R

n)) = PWM(Mp1
q1 (R

n),Mp2
1 (Rn)) if and only

if |Q|
1

p2
−1

χQg ∈ PWM(Mp1
q1 (R

n), L1(Rn)) for each Q ∈ Q and fulfills:

sup
Q∈Q

|Q|
1

p2
−1‖χQg‖PWM(Mp1

q1 ,L1)
< ∞.

According to the previous paragraph, this is equivalent to |Q|
1

p2
−1

χQg ∈ Hp′1
q′1
(Rn) for each

Q ∈ Q and sup
Q∈Q

|Q|
1

p2
−1‖χQg‖

Hp′1
q′1

= sup
Q∈Q

|Q|
1

p3

‖χQg‖
H

p′1
q′1

‖χQ‖
H

p′1
q′1

< ∞, i.e., g ∈ Mp3

Hp′1
q′1

(Rn).

We handle the general case. Let L > 0. According to Lemma 1,

g ∈ PWM(MLp1
Lq1

(Rn),MLp2
Lq2

(Rn))

if and only if |g|L ∈ PWM(Mp1
q1 (R

n),Mp2
q2 (R

n)). Therefore, from Lemma 2 and what we
proved in the previous paragraph, we deduce:

PWM(Mp1
q1 (R

n),Mp2
q2 (R

n)) =

(
PWM(M

p1
q2
q1
q2

(Rn),M
p2
q2
1 (Rn))

)q2

=

(
M

p3
q2
X (Rn)

)q2

=Mp3
Xq2 (R

n).

The proof is therefore complete.

4.2. Proof of Theorem 6

In the proof of Theorem 4, we may replaceMp1
q1 (R

n) by wMp1
q1 (R

n). Then, accordingly,

we have to replaceH
(

p1
q2

)′
(

q1
q2

)′ (Rn) byH
(

p1
q2

)′
(

q1
q2

)′
,1
(Rn). Thus, the proof is similar to Theorem 4.
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4.3. Proof of Proposition 1

We may assume q1, q2 > 1 by the scaling argument by Lemma 1:

1. Since q1, q2 > 1, we may regard wMp1
q1 (R

n) and Mp2
q2 (R

n) as Banach spaces as
in (12). Assume:

PWM(wMp1
q1 (R

n),Mp2
q2 (R

n)) �= {0}.

Then, χ[−1,1]n ∈ PWM(wMp1
q1 (R

n),Mp2
q2 (R

n)) by virtue of Lemma 5, 4.. This im-
plies ‖ f · χ[−1,1]n‖Mp2

q2
≤ ‖g‖PWM(wMp1

q1 ,Mp2
q2 )
‖ f ‖wMp1

q1
for all f ∈ wMp1

q1 (R
n). If

we substitute f (t·) instead of f into this condition, we obtain ‖ f · χ[−t,t]n‖Mp2
q2
≤

t
n
p2
− n

p1 ‖g‖PWM(wMp1
q1 ,Mp2

q2 )
‖ f ‖wMp1

q1
. Since p2 > p1, if we let t → ∞, then we have

‖ f ‖Mp2
q2

= 0 for all f ∈ wMp1
q1 (R

n). This is a contradiction;

2. Let r ∈ (q1, q2). According to [15], p. 67 (see also [3], Theorem 2.2 and Remark 2.3,
and [16], Theorem 4.9), there exists f ∈ Mp1

r (Rn) \ Lq2(Rn) such that supp( f ) ⊂
[0, 1]n. Thus, we are in the position of using Lemma 5, 6. to have the conclusion;

3. By virtue of Lemma 5, 4., if:

PWM(wMp1
q1 (R

n),Mp2
q2 (R

n)) = PWM(wMp1
q1 (R

n),Mp1
q1 (R

n)) �= {0},

then χ[−1,1]n ∈ PWM(wMp1
q1 (R

n),Mp1
q1 (R

n)). Then, for f ∈ wMp1
q1 (R

n) and r > 0,

‖χ[−r,r]n f ‖Mp1
q1

= r
n
p1 ‖χ[−1,1]n f (r·)‖Mp1

q1

≤ ‖χ[−1,1]n‖PWM(wMp1
q1 ,Mp1

q1 )
r

n
p1 ‖ f (r·)‖wMp1

q1

= ‖χ[−1,1]n‖PWM(wMp1
q1 ,Mp1

q1 )
‖ f ‖wMp1

q1
.

Letting r → ∞, we obtain:

‖ f ‖Mp1
q1
≤ ‖χ[−1,1]n‖PWM(wMp1

q1 ,Mp1
q1 )
‖ f ‖wMp1

q1
.

This implies wMp1
q1 (R

n) ⊂ Mp1
q1 (R

n). This is impossible; see [16,17] as well as [18],
Section 4.

4.4. Proof of Proposition 2

Thanks to Theorem 2 and the embedding:

Mp1
q1 (R

n) ⊂ wMp1
q1 (R

n) ⊂Mp1
q2 (R

n),

we have:

L∞(Rn) = PWM(Mp1
q2 (R

n),Mp2
q2 (R

n))

⊂ PWM(wMp1
q1 (R

n),Mp2
q2 (R

n))

⊂ PWM(Mp1
q1 (R

n),Mp2
q2 (R

n))

= L∞(Rn).

4.5. Proof of Theorem 7

We may assume q1, q2 > 1 by Lemma 1. The proof of Theorem 7 is a direct combination
of Theorem 4 and Lemma 6 below.
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Lemma 6. Let 1 < qi ≤ pi < ∞, i = 1, 2. Assume p1 > p2 and q1 ≥ q2. Define r > 0 by:

1
r
=

1
p2
− 1

q2
+ 1.

Then, f ∈ L0(Rn) belongs to PWM(Mp1
q1 (R

n), wMp2
q2 (R

n)) if and only if, for all measurable sets
E with |E| ∈ (0, ∞), χE f ∈ PWM(Mp1

q1 (R
n),Mr

1(R
n)) and:

sup{|E|
1

q2
−1‖χE f ‖PWM(Mp1

q1 ,Mr
1)

: E is a measurable set with |E| ∈ (0, ∞)} < ∞.

In this case,

‖ f ‖PWM(Mp1
q1 ,wMp2

q2 )

∼ sup{|E|
1

q2
−1‖χE f ‖PWM(Mp1

q1 ,Mr
1)

: E is a measurable set with |E| ∈ (0, ∞)}.

Once Lemma 6 is established, Theorem 4 immediately gives the proof of Theorem 7.
Therefore, we concentrate on Lemma 6.

Proof of Lemma 6. Let h ∈ L0(Rn). Thanks to (12), h ∈ wMp2
q2 (R

n) if and only if χEh ∈
Mp2

1 (Rn) for all measurable sets E with |E| ∈ (0, ∞) and:

sup
Q

sup
E
|Q|

1
p2
− 1

q2 |E|
1

q2
−1‖χE∩Qh‖L1 = sup

E
|E|

1
q2
−1‖χEh‖Mr

1
< ∞,

where E moves over all measurable sets with 0 < |E| < ∞. Therefore, supposing that E
moves over all measurable sets with |E| ∈ (0, ∞), we obtain:

‖ f ‖PWM(Mp1
q1 ,wMp2

q2 )
= sup{‖ f · g‖wMp2

q2
: g ∈ Mp1

q1 (R
n), ‖g‖Mp1

q1
= 1}

∼ sup
E

sup{|E|
1

q2
−1‖ f · g · χE‖Mr

1
: g ∈ Mp1

q1 (R
n), ‖g‖Mp1

q1
= 1}

= sup
E
|E|

1
q2
−1‖ f χE‖PWM(Mp1

q1 ,Mr
1)

,

as required.

4.6. Proof of Proposition 3

1. Suppose p1 < p2. We can go through the same argument as Proposition 1, 2. to
conclude that by using the function:

χB(x0,r)| · −x0|−
n(p1+p2)

2p1 p2 ∈ Mp1
q1 (R

n) \wMp2
q2 (R

n)

for some x0 ∈ Rn and r > 0. If q1 < q2, then we take r1, r2 so that q1 < r1 < r2 < q2.
Then, we have:

PWM(Mp1
q1 (R

n), wMp2
q2 (R

n)) ⊂ PWM(wMp1
r1 (R

n),Mp2
r2 (R

n)) = {0}

thanks to Proposition 1, 2.;
2. It is clear that:

L∞(Rn) ⊂ PWM(Mp1
q1 (R

n), wMp2
q2 (R

n)).

Thus, it suffices to show that:

PWM(Mp1
q1 (R

n), wMp2
q2 (R

n)) ⊂ L∞(Rn).
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To this end, let g ∈ PWM(Mp1
q1 (R

n), wMp2
q2 (R

n)). Then:

|Q|
1

p2
− 1

q2 ‖gχQ‖wLq2 ≤ ‖g‖PWM(Mp1
q1 ,wMp2

q2 )
|Q|

1
p1 = ‖g‖PWM(Mp1

q1 ,wMp2
q2 )
|Q|

1
p2 .

Thus, by the Lebesgue differentiation theorem, we obtain:

‖g‖L∞ ≤ ‖g‖PWM(Mp1
q1 ,wMp2

q2 )
,

as required.

4.7. Proof of Corollary 3

Theorems 7 and 8 can be shown to recover this result as follows:

1. Thanks to the fact that ‖χQ‖Hp′1
p′1

= ‖χQ‖Lp′1
and the Fatou property ofHp′1

p′1
(Rn) estab-

lished in [14], Mp′1

Hp′1
p′1

(Rn) coincides with Lp′1(Rn). Thus, according to [11], Exercise

1.4.14, we see that PWM(Lp1(Rn), wLp2(Rn)) = wL
p1 p2

p1−p2 (Rn);
2. Using Lemma 4, we deduce:

sup{|E|
1

p2
−1‖χEh‖

Hp′1
p′1,1

: E is a measurable set with |E| ∈ (0, ∞)}

� sup{|E|
1

p2
−1‖χEh‖

Lp′1
: E is a measurable set with |E| ∈ (0, ∞)}

∼ ‖h‖
wL

p1 p2
p1−p2

.

Let r1 be a number slightly less than p1, so that r′1 is slightly larger than p′1. Define
v1 by:

1
p′1

=
1
v1

+
1
r′1

.

Thanks to Remark 3,

‖χEh‖
Lp′1,1 � ‖χE‖Lv1,1‖h‖

wLr′1
∼ |E|

1
v1 ‖h‖

wLr′1

for all h ∈ wLp1(Rn). Using this estimate and Remark 1, we have:

‖χEh‖
Mp′1

H
p′1
p′1,1

∼ ‖χEh‖
Hp′1

p′1,1

∼ sup{‖χEgh‖L1 : g ∈ wMp1
p1(R

n), ‖g‖wMp1
p1
≤ 1}

= sup{‖χEgh‖L1 : g ∈ wLp1(Rn), ‖g‖wLp1 ≤ 1}
� ‖χEh‖

wLp′1

� |E|
1

v1 ‖χEh‖
wLr′1

.
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Thus, it follows from the embedding Lr′1(Rn) ↪→ wLr′1(Rn) that:

sup{|E|
1

p2
−1‖χEh‖

Hp′1
p′1,1

: E is a measurable set with |E| ∈ (0, ∞)}

� sup{|E|
1

p2
+ 1

v1
−1‖χEh‖

Lr′1
: E is a measurable set with |E| ∈ (0, ∞)}

= sup{|E|
p1−p2
p1 p2

− 1
r′1 ‖χEh‖

Lr′1
: E is a measurable set with |E| ∈ (0, ∞)}.

Invoking [11], Exercise 1.4.14, once again, one obtains:

sup{|E|
1

p2
−1‖χEh‖

Hp′1
p′1,1

: E is a measurable set with |E| ∈ (0, ∞)} � ‖h‖
wL

p1 p2
p1−p2

.

Thus, Theorems 7 and 8 can recover the result in [8].
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Abstract: In this paper, we establish the boundedness of the Calderón operator on local Morrey
spaces with variable exponents. We obtain our result by extending the extrapolation theory of
Rubio de Francia to the local Morrey spaces with variable exponents. The exponent functions of
the local Morrey spaces with the exponent functions are only required to satisfy the log-Hölder
continuity assumption at the origin and infinity only. As special cases of the main result, we have
Hardy’s inequalities, the Hilbert inequalities and the boundedness of the Riemann–Liouville and
Weyl averaging operators on local Morrey spaces with variable exponents.

Keywords: Calderón operator; Hardy’s inequality; variable Lebesgue space; local Morrey space;
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1. Introduction

The main theme of this paper is the boundedness of the Calderón operator on local
Morrey spaces with variable exponents.

The Calderón operator is one of the important operators in harmonic analysis and
theory of function spaces. The Calderón operator is related with the Hardy’ inequality, the
Stieltjes transformation, the Riemann–Liouville and Weyl averaging operators. It also gives
an estimate for the maximal Hilbert transform ([1], Chapter 3, Theorem 4.7). Moreover,
the boundedness of the Calderón operator is also related with the convergence of Fourier
series on rearrangement-invariant Banach function spaces ([1], Chapter 3, Theorem 6.10).

The boundedness of the Calderón operator on Lebesgue spaces is a well known
result [2]. Recently, the boundedness property has been extended to the weighted Lebesgue
spaces [3] and the weighted Lebesgue spaces with variable exponents [4]. In this paper,
we further extend the boundedness of the Calderón operator to local Morrey spaces with
variable exponents.

The local Morrey spaces with variable exponents are extensions of the classical Morrey
spaces introduced and studied by Morrey [5] and the Lebesgue spaces with variable
exponents [6,7]. The mapping properties of singular integral operators, the fractional
integral operators, the geometric maximal operators and the spherical maximal functions
were obtained in [8–14].

In this paper, we obtain our main results by extending the techniques from the ex-
trapolation theory introduced by Rubio de Francia [15–17] to local Morrey spaces with
variable exponents. An extrapolation theory for local Morrey spaces with variable expo-
nents was obtained in [14], while the extrapolation theory given in [14] is based on the
Hardy–Littlewood maximal function. In this paper, we use another maximal function
from [3] which is defined via the basis {(0, r) : r > 0}. Similar to the results in [4], by using
this maximal function, the exponent functions for the local Morrey spaces with variable
exponents is not required to be globally log-Hölder continuous function. The exponent
function is just required to be log-Hölder continuous at origin and infinity.

This paper is organized as follows. The definition and the boundedness of the Calderón
operator on weighted Lebesgue spaces were presented in Section 2. The definitions of local
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Morrey spaces with variable exponents and local block spaces with variable exponents are
given in Section 3. The local block spaces with variable exponents are pre-duals of local
Morrey spaces with variable exponents, and the boundedness of the maximal function
associated with the the basis {(0, r) : r > 0} on the local block spaces with variable
exponents is obtained in Section 3. This boundedness result is one of the crucial results
for the boundedness of the Calderón operator obtained in Section 4. As applications of
our main results, we obtain the Hardy’ inequalities, the boundedness of the Stieltjes
transformation, the Riemann–Liouville and Weyl averaging operators on local Morrey
spaces with variable exponents.

2. Definitions and Preliminaries

LetM be the class of Lebesgue measurable functions on (0, ∞).
For any non-negative function f on (0, ∞), the Calderón operator is defined as

S f (x) =
1
x

∫ x

0
f (y)dy +

∫ ∞

x

f (y)
y

dy, x ∈ (0, ∞).

For any non-negative function f on (0, ∞), the Hardy operator is defined as

H f (x) =
1
x

∫ x

0
f (y)dy, x ∈ (0, ∞).

We see that the adjoint operator ofH is given by

H∗ f (x) =
∫ ∞

x

f (y)
y

dy, x ∈ (0, ∞).

The boundedness ofH andH∗ on Lebesgue spaces is called the Hardy’s inequalities.
We see that S = H+H∗. Thus, the boundedness of the Calderón operator on Lebesgue
spaces follow from the Hardy’s inequalities. The reader is referred to [2,18,19] for the
studies of Hardy’s inequalities.

Let α ≥ 0; the Stieltjes transformation, the Riemann–Liouville and Weyl averaging
operators are defined as

H f (x) =
∫ ∞

0

f (y)
x + y

dy

Iα f (x) =
α + 1
xα+1

∫ x

0
(x− y)α f (y)dy,

Jα f (x) = (α + 1)
∫ ∞

x

(y− x)α

yα+1 f (y)dy.

For any non-negative function f , we have H f (x) ≤ S f (x), Iα f (x) ≤ S f (x) and
Jα f (x) ≤ S f (x). The reader is referred to [20–22] for the studies of the Stieltjes transforma-
tion and its application on the Hilbert’s double series.

We recall the following maximal operator and the Muckenhoupt type classes of weight
functions for S. They were introduced in [3]. For any locally integrable function f , define

N f (x) = sup
b>x

1
b

∫ b

0
| f (y)|dy, x > 0.

The operator N is the maximal operator on (0, ∞) with the basis {(0, r) : r > 0}.
Notice that for any non-negative function f , we have N f ≤ S f .

We recall the following class of weighted functions from ([3], (1.2)).
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Definition 1. Let p ∈ (1, ∞). We say that a Lebesgue measurable function ω : (0, ∞)→ [0, ∞)
belongs to Ap,0 if

sup
b>0

(
1
b

∫ b

0
ω(x)dx

)(
1
b

∫ b

0
ω(x)1−p′dx

)p−1

< ∞

where p′ is the conjugate of p.
The class A1,0 consists of all Lebesgue measurable function ω : (0, ∞)→ [0, ∞) satisfying

Nω(x) ≤ Cω(x), x ∈ (0, ∞)

and [w]A1,0 denotes the smallest constant for which the above inequality holds.

In view of ([3], Theorem 1.1), we have the following weighted norm inequalities for
N.

Theorem 1. Let p ∈ (1, ∞). We have a constant C > 0 such that∫ ∞

0
|N f (x)|pω(x)dx ≤ C

∫ ∞

0
| f (x)|pω(x)dx

if and only if ω ∈ Ap,0.

When p ∈ (1, ∞), the class Ap,0 coincides with the class Cp introduced in [23]; see ([3],
Theorem 1.2). In addition, as a special case of ([3], Theorem 1.2), we have the weighted
norm inequalities for the Calderón operator.

Theorem 2. Let p ∈ (1, ∞). We have a constant C > 0 such that∫ ∞

0
|S f (x)|pω(x)dx ≤ C

∫ ∞

0
| f (x)|pω(x)dx (1)

if and only if ω ∈ Ap,0.

3. Local Morrey Spaces with Variable Exponents

In this section, we recall the definition of local Morrey space with variable exponent
and study a pre-dual of this space, namely, the local block space with variable exponent. As
a crucial supporting result for our main result, we obtain the boundedness of the maximal
function N on local block spaces with variable exponents at the end of this section.

We recall the definition of Lebesgue spaces with variable exponents.

Definition 2. Let p(·) : (0, ∞) → [1, ∞) be a Lebesgue measurable function. The Lebesgue
space with variable exponent Lp(·) consists of all Lebesgue measurable functions f : (0, ∞)→ C
satisfying

‖ f ‖Lp(·) = inf
{

λ > 0 : ρp(·)( f /λ) ≤ 1
}
< ∞

where
ρp(·)( f ) =

∫ ∞

0
| f (x)|p(x)dx.

We call p(x) the exponent function of Lp(·).

Let p′(x) be the conjugate function of p(x). That is, they satisfy 1
p(x) +

1
p′(x) = 1,

x ∈ (0, ∞). Let p− = ess infx∈(0,∞) p(x) and p+ = ess supx∈(0,∞) p(x).
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Definition 3. A continuous function g on (0, ∞) is log-Hölder continuous at the origin if there
exist clog > 0 and g0 such that

|g(x)− g0| ≤
clog

− log(x)
, ∀x ∈ (0, 1/2). (2)

A continuous function is log-Hölder continuous at infinity if there exist g∞ ∈ R and c∞ > 0
so that

|g(x)− g∞| ≤
c∞

log(e + |x|) , ∀x ∈ (0, ∞). (3)

We write g ∈ Clog if g is log-Hölder continuous at origin and log-Hölder continuous at infinity.

The above classes of log-Hölder continuous functions are used in [24–26] for the
studies of Herz spaces with variable exponents.

We have the boundedness of the maximal operator N on Lp(·) whenever p(·) ∈ Clog

with 1 < p− ≤ p+ < ∞.

Theorem 3. Let p(·) ∈ Clog. If 1 < p− ≤ p+ < ∞, then there exists a constant C > 0 such that

‖N f ‖Lp(·) ≤ C‖ f ‖Lp(·) .

For the proof of the above theorem, the reader is referred to ([4], Theorem 1.6 and
Section 3).

We now give the definitions of local Morrey spaces with variable exponents from [14].

Definition 4. Let p(·) : (0, ∞) → (1, ∞) and u : (0, ∞) → (0, ∞) be Lebesgue measurable
functions. The local Morrey space with variable exponent LMp(·)

u consists of all f ∈ M satisfying

‖ f ‖
LMp(·)

u
= sup

r>0

1
u(r)

‖χ(0,r) f ‖Lp(·) < ∞.

When p(·) = p, 1 ≤ p < ∞, the local Morrey space with variable exponent becomes
the local Morrey space LMp

u . For the studies of local Morrey spaces, the reader is referred
to [9–13]. For the mapping properties of the Carleson operator, the local sharp maximal
functions, the geometrical maximal functions and the rough maximal functions on LMp(·)

u ,
see [14,27].

The local Morrey spaces with variable exponents are ball Banach function spaces
defined and studied in [28,29]; see the discussion after ([27], Theorem 2.3).

We recall a class of weight functions for the studies of the local Morrey spaces with
variable exponents defined in ([14], Definition 2.5).

Definition 5. Let q0 ∈ (0, ∞), p(·) : (0, ∞) → [1, ∞]. We say that a Lebesgue measurable
function, u(r) : (0, ∞)→ (0, ∞), belongs to LWq0

p(·) if there exists a constant C > 0 such that for
any r > 0, u fulfills

C ≤ u(r), ∀r ≥ 1, (4)

‖χ(0,r)‖Lp(·) ≤ Cu(r), ∀r < 1, (5)
∞

∑
j=0

‖χ(0,r)‖Lp(·)/q0

‖χ(0,2j+1r)‖Lp(·)/q0

(u(2j+1r))q0 < C(u(r))q0 (6)

for all r > 0.

204



Mathematics 2021, 9, 2977

When q0 = 1, we write LWp(·) = LW1
p(·). Let 0 ≤ θ < 1 and uθ(r) = ‖χB(0,r)‖θ

Lp(·) .
The discussion at the end of ([30], Section 2) shows that uθ ∈ LWp(·). Particularly, u ≡ 1 is
a member of LWp(·).

Next, we recall a pre-dual of the local Morrey space with variable exponent from ([14],
Definition 3.1).

Definition 6. Let p(·) : (0, ∞) → (0, ∞) and u(r) : (0, ∞) → (0, ∞) be Lebesgue measurable
functions. A b ∈ M is a local (u, Lp(·))-block if it is supported in (0, r), r > 0 and

‖b‖Lp(·) ≤
1

u(r)
. (7)

We write b ∈ lbu,Lp(·) if b is a local (u, Lp(·))-block.
Define LBu,p(·) by

LBu,p(·) =
{ ∞

∑
k=1

λkbk :
∞

∑
k=1
|λk| < ∞ and bk is a local (u, Lp(·))-block

}
. (8)

The space LBu,p(·) is endowed with the norm

‖ f ‖LBu,p(·) = inf
{ ∞

∑
k=1
|λk| such that f =

∞

∑
k=1

λkbk a.e.
}

. (9)

We call LBu,p(·) the local block space with variable exponent.

In view of ([14], Theorem 3.3), LBu,p(·) is a Banach space and LBu,p(·) ⊂ L1
loc. In addi-

tion, whenever f , g ∈ M satisfying | f | ≤ |g| and g ∈ LBu,p(·), we have f ∈ LBu,p(·) ([14],
Proposition 3.2).

We present the following results for the block spaces with variable exponent from ([14],
Section 3). Notice that the results in [14] are for local Morrey spaces with variable exponents
on Rn, while with some simple modifications, the results and the proofs in [14] can be
extended to local Morrey spaces with variable exponents on (0, ∞).

Theorem 4. Let p(·) : (0, ∞) → (1, ∞) and u : (0, ∞) → (0, ∞) be Lebesgue measurable
functions. We have

LB∗u,p(·) = LMp′(·)
u

where LB∗u,p(·) denotes the dual space of LBu,p(·).

The reader is referred to ([14], Theorem 3.1) for the proof of the above results. Further-

more, the proof of ([14], Theorem 3.1) gives the Hölder inequalities for f ∈ LMp′(·)
u and

g ∈ LBu,p(·) ∫ ∞

0
| f (x)g(x)|dx ≤ C‖g‖LBu,p(·)‖ f ‖

LMp′(·)
u

(10)

for some C > 0.
Moreover, in the proof of ([14], Theorem 3.1), we also have the norm conjugate formula

C0‖ f ‖
LMp(·)

u
≤ sup

h∈lbu,p(·)

∫ ∞

0
| f (x)h(x)|dx ≤ C1‖ f ‖

LMp(·)
u

(11)

for some C0, C1 > 0.

Proposition 1. Let p(·) : (0, ∞) → (1, ∞), u : (0, ∞) → (0, ∞) be Lebesgue measurable
functions and f ∈ LBu,p(·). If g ∈ M satisfying |g| ≤ | f |, then g ∈ LBu,p(·).
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The proof of the preceding proposition is given in ([14], Proposition 3.2.). We establish
a supporting lemma in the following paragraphs.

Lemma 1. Let p(·) ∈ Clog with 1 < p− ≤ p+ < ∞. We have constants C0, C1 > 0 such that
for any r > 0, we have

C0r ≤ ‖χ(0,r)‖Lp′(·)‖χ(0,r)‖Lp(·) ≤ C1r. (12)

Proof. The first inequality in (12) follows from the Hölder inequality for Lebesgue spaces
with variable exponents.

For any r > 0 and locally integrable function f , define

Pr f (y) =
(

1
r

∫ r

0
f (x)dx

)
χ(0,r)(y).

The definition of N guarantees that |Pr f | ≤ N f . Therefore, we have ‖Pr‖Lp(·)→Lp(·) ≤
‖N‖Lp(·)→Lp(·) . According to ([7], Corollary 3.2.14), we have

‖χ(0,r)‖Lp′(·)‖χ(0,r)‖Lp(·) = sup
{∣∣∣∣∫ r

0
g(x)dx

∣∣∣∣‖χ(0,r)‖Lp(·) : ‖g‖Lp(·) ≤ 1
}

.

Theorem 3 yields a constant C1 > 0 such that for any r > 0, we have

‖χ(0,r)‖Lp′(·)‖χ(0,r)‖Lp(·) ≤ sup
{

r‖Prg‖Lp(·) : ‖g‖Lp(·) ≤ 1
}

≤ sup
{

r‖Ng‖Lp(·) : ‖g‖Lp(·) ≤ 1
}
≤ C1r.

Therefore, the second inequality in (12) holds.

We are now ready to obtain the boundedness of the maximal function N on LBu,p(·).

Theorem 5. Let p(·) : (0, ∞) → (1, ∞) and u : (0, ∞) → (0, ∞) be Lebesgue measurable
functions. If p(·) ∈ Clog with 1 < p− ≤ p+ < ∞ and u ∈ LWp′(·), then the maximal operator
N is bounded on LBu,p(·).

Proof. In view of ([14], Theorem 3.3), we have LBu,p(·) ⊂ L1
loc; therefore, the maximal

operator N is well defined on LBu,p(·).
Let b ∈ lbu,Lp(·) with support (0, r), r > 0. For any k ∈ N, write Bk = (0, 2kr). Define

nk = χBk+1\Bk
Nb, k ∈ N\{0} and n0 = χ(0,2r)Nb. We have supp nk ⊆ Bk+1\Bk and

Nb = ∑∞
k=0 nk.

As p(·) ∈ Clog with 1 < p− ≤ p+ < ∞, Theorem 3 guarantees that

‖n0‖Lp(·) ≤ C‖Nb‖Lp(·) ≤
C

u(r)
≤ C

u(2r)

for some constant C > 0 independent r. The last inequality holds since (6) asserts that
‖χB(0,r)‖Lp(·)

‖χB(0,2r)‖Lp(·)
u(2r) ≤ Cu(r) and ([4], Lemma 2.3) yields ‖χB(0,2r)‖Lp(·) ≤ C‖χB(0,r)‖Lp(·)

for some C > 0 independent of r > 0. As a result of the above inequalities, n0 is a
constant-multiple of a local (u, Lp(·))-block.

The Hölder inequality for Lp(·) yields

nk = χBk+1\Bk
Nb ≤

χBk+1\Bk

2kr

∫ r

0
|b(x)|dx

≤ CχBk+1\Bk

1
2kr
‖b‖Lp(·)‖χ(0,r)‖Lp′(·)

for some C > 0 independent of k.
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Consequently, (12) gives

‖nk‖Lp(·) ≤
‖χBk+1\Bk

‖Lp(·)

2kr
‖b‖Lp(·)‖χB(0,r)‖Lp′(·)

≤ C
‖χ(0,r)‖Lp′(·)

‖χBk+1‖Lp′(·)

u(2k+1r)
u(r)

1
u(2k+1r)

.

Write nk = σkdk, where

σk =
‖χ(0,r)‖Lp′(·)

‖χBk+1‖Lp′(·)

u(2k+1r)
u(r)

.

We find that dk is a constant-multiple of a local (u, Lp(·))-block, and this constant does
not depend on k. As u ∈ LWp′(·), we have

∞

∑
j=0

‖χ(0,r)‖Lp′(·)

‖χ(0,2j+1r)‖Lp′(·)
u(2j+1r) ≤ Cu(r).

We have ∑∞
k=0 σk < C for some C > 0. Hence, Nb ∈ LBu,p(·). Moreover, there exists a

constant C0 > 0 so that for any local (u, Lp(·))-block b,

‖Nb‖LBu,p(·) < C0.

Let f ∈ LBu,p(·). The definition of LBu,p(·) yields a family of local (u, Lp(·))-blocks
{ck}∞

k=1 and a sequence Λ = {λk}∞
k=1 ∈ l1 such that f = ∑∞

k=1 λkck with ‖Λ‖l1 ≤
2‖ f ‖LBu,p(·) . Since N is sublinear, we find that∥∥∥∥ ∞

∑
k=1

λk Nck

∥∥∥∥
LBu,p(·)

≤
∞

∑
k=1
|λk|‖Nck‖LBu,p(·)

≤ C0

∞

∑
k=1
|λk| ≤ 2C0‖ f ‖LBu,p(·) .

As N f ≤ ∑∞
k=1 |λk|Nck, Proposition 1 guarantees that N f ∈ LBu,p(·) and ‖N f ‖LBu,p(·)

≤ C‖ f ‖LBu,p(·) for some C > 0.

4. Calderón Operator

The boundedness of the Calderón operator on local Morrey spaces with variable
exponents is established in this section. As applications of our main result, we obtain
the Hardy’s inequalities and the Hilbert inequalities on local Morrey spaces with variable
exponents.

We use the techniques from the extrapolation theory. We first recall an operator from
the Rubio de Francia algorithm. Let p0 ∈ (0, ∞) and p(·) ∈ Clog with p0 < p− ≤ p+ < ∞.
The operatorR is defined by

Rh =
∞

∑
k=0

Nkh
2k‖Nk‖LBup0 ,(p(·)/p0)

′→LBup0 ,(p(·)/p0)
′
, h ∈ L1

loc,

where Nk is the k iterations of the operator N and N0h = |h|. The following are the
boundedness of N andR on the local block spaces with variable exponents.
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Proposition 2. Let p0 ∈ (0, ∞) and p(·) ∈ Clog with p0 < p− ≤ p+ < ∞. If u ∈ LWp0
p(·),

then the operatorR is well defined on LBup0 ,(p(·)/p0)′ and there is a constant C > 0 such that for
any h ∈ LBup0 ,(p(·)/p0)′ ,

|h(x)| ≤ Rh(x) (13)

‖Rh‖LBup0 ,(p(·)/p0)
′ ≤ 2‖h‖LBup0 ,(p(·)/p0)

′ (14)

[Rh]A1,0 ≤ C‖N‖LBup0 ,(p(·)/p0)
′→LBup0 ,(p(·)/p0)

′ . (15)

Proof. As u ∈ LWp0
p(·) implies up0 ∈ LWp(·)/p0

, Theorem 5 guarantees that the maximal
operator N is bounded on LBup0 ,(p(·)/p0)′ . Consequently, the operator R is well defined
in LBup0 ,(p(·)/p0)′ , and the definition of R yields (13) and (14). In addition, since N is a
sublinear operator, for any h ∈ LBup0 ,(p(·)/p0)′ , we obtain

NRh ≤
∞

∑
k=0

Nk+1h
2k‖Nk‖LBup0 ,(p(·)/p0)

′→LBup0 ,(p(·)/p0)
′

≤ 2‖N‖LBup0 ,(p(·)/p0)
′→LBup0 ,(p(·)/p0)

′ Rh.

According to Definition 1,Rh ∈ A1,0, and hence, (15) holds.

Theorem 6. Let p(·) ∈ Clog with 1 < p− ≤ p+ < ∞. If there exists a p0 ∈ (0, p−) such that
u ∈ LWp0

p(·), then the Calderón operator S is bounded on LMp(·)
u .

Proof. Let f ∈ LMp(·)
u . For any h ∈ LBup0 ,(p(·)/p0)′ , (10) and (14) yield

∫ ∞

0
| f (x)|p0Rh(x)dx ≤ C‖| f |p0‖

LM
p(·)/p0
up0

‖Rh‖LBup0 ,(p(·)/p0)
′

≤ ‖ f ‖
LMp(·)

u
‖h‖LBup0 ,(p(·)/p0)

′ .

Thus, we have
LMp(·)

u ↪→
⋂

h∈LBup0 ,(p(·)/p0)
′

Lp0(Rh). (16)

Theorem 4 guarantees

‖S f ‖p0

LMp(·)
u

= ‖|S f |p0‖
LM

p(·)/p0
up0

≤ C sup
{∫ ∞

0
|S f (x)|p0 |h(x)|dx : ‖h‖LBup0 ,(p(·)/p0)

′ ≤ 1
}

(17)

for some C > 0.
In view of (15),Rh ∈ A1,0. Furthermore, the embedding (16) guarantees that (1) holds

for all f ∈ LMp(·)
u . Consequently, by applying ω = Rh on (1) and using (13), we find that∫ ∞

0
|S f (x)|p0 h(x)dx ≤

∫ ∞

0
|S f (x)|p0Rh(x)dx

≤ C
∫ ∞

0
| f (x)|p0Rh(x)dx.
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Consequently, (10) and (14) give∫ ∞

0
|S f (x)|p0 h(x)dx ≤ C‖| f |p0‖

LM
p(·)/p0
up0

‖Rh‖LBup0 ,(p(·)/p0)
′

≤ C‖ f ‖
LMp(·)

u
‖h‖LBup0 ,(p(·)/p0)

′ ≤ C‖ f ‖p0

LMp(·)
u

. (18)

By taking supremum over all h ∈ LBup0 ,(p(·)/p0)′ with ‖h‖LBup0 ,(p(·)/p0)
′ ≤ 1, Theorem 4,

(17) and (18) yield the boundedness of the Calderón operator S on LMp(·)
u .

We also use the technique from the extrapolation theory to study the mapping proper-
ties of the local sharp maximal functions, the geometrical maximal functions and the rough
maximal functions on local Morrey spaces with variable exponents in [14]. The results
in [14] rely on the boundedness of the Hardy–Littlewood maximal operator. Therefore, the
results obtained in [14] are valid for local Morrey spaces with variable exponents with the
exponent functions being globally log-Hölder continuous. Our results use the maximal
function N. Therefore, in view of Theorems 1 and 3, we just require p(·) to be log-Hölder
continuous at origin and infinity for the boundedness of the Calderón operator on LMp(·)

u .
We give a concrete example for the weight function u that satisfies the conditions in

Theorem 6. Let p(·) ∈ Clog with 1 < p− ≤ p+ < ∞. Let 0 ≤ θ < 1 and uθ(r) = ‖χB(0,r)‖θ
Lp(·) .

The discussion at the end of ([30], Section 2) shows that uθ ∈ LWp(·). For any p0 ∈ (1, p−),
we have

uθ(r)p0 = ‖χB(0,r)‖
p0θ

Lp(·) = ‖χB(0,r)‖θ
Lp(·)/p0

.

The discussion at the end of ([30], Section 2) asserts that uθ(r)p0 ∈ LWp(·)/p0
. There-

fore, the conditions in Theorem 6 are fulfilled, and the Calderón operator S is bounded
on LMp(·)

uθ
.

As |H f | ≤ H| f | ≤ S| f | and |H∗ f | ≤ H∗| f | ≤ S| f |, Theorem 6 yields the Hardy’s
inequalities on LMp(·)

u .

Theorem 7. Let p(·) ∈ Clog with 1 < p− ≤ p+ < ∞. If there exists a p0 ∈ (0, p−) such that
u ∈ LWp0

p(·), then there exists a constant C > 0 such that for any f ∈ LMp(·)
u

‖H f ‖
LMp(·)

u
≤ C‖ f ‖

LMp(·)
u

,

‖H∗ f ‖
LMp(·)

u
≤ C‖ f ‖

LMp(·)
u

.

In particular, when p(·) = p, 1 < p < ∞ is a constant function, we have the Hardy’s
inequality on the local Morrey space LMp

u . In addition, when u ≡ 1, the above results
become the Hardy’s inequalities on Lebesgue spaces with variable exponents, which
recover the results in [31].

The reader is referred to [2,18,19] for the history and applications of the Hardy’ in-
equalities. For the Hardy’s inequalities on the Hardy type spaces, the Lebesgue spaces
with variable exponents and the Herz–Morrey spaces, the reader may consult [31–37].

Theorem 6 also yields the boundedness of the Stieltjes transformation, the Riemann–
Liouville and Weyl averaging operators on LMp(·)

u .
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Theorem 8. Let p(·) ∈ Clog with 1 < p− ≤ p+ < ∞. If there exists a p0 ∈ (0, p−) such that
u ∈ LWp0

p(·), then there exists a constant C > 0 such that for any f ∈ LMp(·)
u

‖H f ‖
LMp(·)

u
≤ C‖ f ‖

LMp(·)
u

,

‖Iα f ‖
LMp(·)

u
≤ C‖ f ‖

LMp(·)
u

,

‖Jα f ‖
LMp(·)

u
≤ C‖ f ‖

LMp(·)
u

.

The boundedness of the Stieltjes transformation on Lebesgue space is called as the
Hilbert inequality. Therefore, as special cases of the preceding theorem, we also have
the Hilbert inequality and the boundedness of the Riemann–Liouville and Weyl averag-
ing operators on the local Morrey spaces LMp

u and the Lebesgue spaces with variable
exponents Lp(·).

5. Discussion

We establish the boundedness of the Calderón operator on local Morrey spaces with
variable exponents by extending the extrapolation theory. The exponent functions used in
the local Morrey spaces with variable exponents are required to be log-Hölder continuous
at the origin and infinity only. We need to refine the extrapolation theory for the maximal
operator N and the class of weight functions Ap,0. In addition, in order to get rid of the
approximation argument, we need to establish the embedding (16).

As applications of the main result, we have Hardy’s inequalities, the Hilbert inequali-
ties and the boundedness of the Riemann–Liouville and Weyl averaging operators on local
Morrey spaces with variable exponents.

Moreover, we see that whenever we can establish the weighted norm inequalities with
the class of weight function Ap,0 for an operator T, even if T is nonlinear, we can apply
our extrapolation theory to obtain the boundedness of T on the local Morrey spaces with
variable exponents where the exponent function is log-Hölder continuous at 0 and infinity.

6. Conclusions

We extend the extrapolation theory to the local Morrey spaces with variable exponents
with the exponent functions being log-Hölder continuous at the origin and infinity only.
With this refined extrapolation theory, we obtain Hardy’s inequalities and the Hilbert
inequalities on the local Morrey spaces with variable exponents. Furthermore, the bound-
edness of the Calderón operator, the Riemann–Liouville operators and the Weyl averaging
operators has been extended to the local Morrey spaces with variable exponents.

In particular, we have the Hardy’s inequalities, the Hilbert inequalities on local Morrey
spaces and the boundedness of the Calderón operator, the Riemann–Liouville averaging
operators and the Weyl averaging operators on local Morrey spaces.

In conclusion, the results obtained in this paper generalize the existing results on the
studies of local Morrey spaces with variable exponent, the Hardy’s inequalities, the Hilbert
inequalities on local Morrey spaces and the boundedness of the Calderón operator, the
Riemann–Liouville averaging operators and the Weyl averaging operators.
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Abstract: In 2011, Dekel et al. developed highly geometric Hardy spaces Hp(Θ), for the full range
0 < p ≤ 1, which were constructed by continuous multi-level ellipsoid covers Θ of Rn with high
anisotropy in the sense that the ellipsoids can rapidly change shape from point to point and from
level to level. In this article, when the ellipsoids in Θ rapidly change shape from level to level,
the authors further obtain some real-variable characterizations of Hp(Θ) in terms of the radial, the
non-tangential, and the tangential maximal functions, which generalize the known results on the
anisotropic Hardy spaces of Bownik.

Keywords: anisotropy; Hardy space; continuous ellipsoid cover; maximal function

1. Introduction

As a generalization of the classical isotropic Hardy spaces Hp(Rn) [1], anisotropic
Hardy spaces Hp

A(R
n) were introduced and investigated by Bownik [2] in 2003. These

spaces were defined on Rn, associated with a fixed expansive matrix, which acts on
an ellipsoid instead of Euclidean balls. In [3–8], many authors also studied Bownik’s
anisotropic Hardy spaces. In 2011, Dekel et al. [9] further generalized Bownik’s spaces
by constructing Hardy spaces with pointwise variable anisotropy Hp(Θ), 0 < p ≤ 1,
associated with an ellipsoid cover Θ. The anisotropy in Bownik’s Hardy spaces is the same
one at each point in Rn, while the anisotropy in Hp(Θ) can change rapidly from point to
point and from level to level. Moreover, the ellipsoid cover Θ is a very general setting that
includes the classical isotropic setting, non-isotropic setting of Calderón and Torchinsky
[10], and the anisotropic setting of Bownik [2] as special cases; see more details in ([2],
pp. 2–3) and ([11], p. 157).

On the other hand, maximal function characterizations are very fundamental charac-
terizations of Hardy spaces, and they are crucial to conveniently apply the real-variable
theory of Hardy spaces Hp(Rn) with p ∈ (0, 1]. Maximal function characterizations were
first shown for the classical isotropic Hardy spaces Hp(Rn) by Fefferman and Stein in their
fundamental work [1], ([12], Chapter III). Analogous results were shown by Calderón and
Torchinsky [10,13] for parabolic Hp spaces and Uchiyama [14] for Hp on a homogeneous-
type space. In 2003, Bownik ([2], p. 42) obtained the maximal function characterizations
of the anisotropic Hardy space Hp

A(R
n). This was further extended to anisotropic Hardy

spaces of the Musielak–Orlicz type in [15], to anisotropic Hardy–Lorentz spaces in [16],
to variable anisotropic Hardy spaces in [17], and to anisotropic mixed-norm Hardy spaces
in [18].

Motivated by the abovementioned facts, a natural question arises: Do the maximal
function characterizations still hold for Hardy spaces Hp(Θ) with variable anisotropy?
In this article, we answer this question affirmatively in the sense that the ellipsoids in Θ
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can change shape rapidly from level to level, which is a variable anisotropic extension of
Bownik’s [2].

This article is organized as follows.
In Section 2, we recall some notation and definitions concerning anisotropic continuous

ellipsoid cover Θ, several maximal functions, and anisotropic Hardy spaces Hp(Θ) defined
via the grand radial maximal function. We also give some propositions about Hp(Θ),
several classes of variable anisotropic maximal functions, and Schwartz functions since
they provide tools for further work. In Section 3, we first state the main result: if the
ellipsoids in Θ can rapidly change shape from level to level (see Definition 1), denoted as
Θt, we may obtain some real-variable characterizations of Hp(Θt) in terms of the radial, the
non-tangential, and the tangential maximal functions (see Theorem 1). Then, we present
several lemmas that are isotropic extensions in the setting of variable anisotropy, and finally,
we show the proof for the main result.

In the process of proving the main result, we used the methods from Stein [1] and
Bownik [2]. However, it is worth pointing out that these ellipsoids of Bownik were images
of the unit ball by powers of a fixed expansive matrix, whereas in our case, the ellipsoids of
Dekel are images of the unit ball by powers of a group of matrices satisfying some “shape
condition”. This makes the proof complicated and needs many subtle estimates such as
Propositions 5 and 6, and Lemma 1.

However, this article left an open question: if the maximal function characterizations
of Hp(Θ) still hold true in the sense that the ellipsoids of Θ change rapidly from level to
level and from point to point?

Finally, we note some conventions on notation. Let N0 := {0, 1, 2, . . .} and �t� be the
smallest integer no less than t. For any α := (α1, . . . , αn) ∈ Nn

0 , |α| := α1 + · · ·+ αn and
∂α := ( ∂

∂x1
)α1 · · · ( ∂

∂xn
)αn . Throughout the whole paper, we denote by C a positive constant

that is independent on the main parameters but may vary from line to line. For any sets
E, F ⊂ Rn, we use E� to denote the set Rn \ E. If there are no special instructions, any space
X (Rn) is denoted simply by X . Denote by S the space of all Schwartz functions and S′
the space of all tempered distributions.

2. Preliminary and Some Basic Propositions

In this section, we first recall the notion of continuous ellipsoid covers Θ and we
introduce the pointwise continuity for Θ. An ellipsoid ξ in Rn is an image of the Euclidean
unit ball Bn := {x ∈ Rn : |x| < 1} under an affine transform, i.e.,

ξ := Mξ(Bn) + cξ ,

where Mξ is a non-singular matrix and cξ ∈ Rn is the center.
Let us begin with the definition of continuous ellipsoid covers, which was introduced

in ([11], Definition 2.4).

Definition 1. We say that
Θ := {θ(x, t) : x ∈ Rn, t ∈ R}

is a continuous ellipsoid cover of Rn or, in short, an ellipsoid cover if there exist positive constants
p(Θ) := {a1, . . . , a6} such that

(i) For every x ∈ Rn and t ∈ R, there exists an ellipsoid θ(x, t) := Mx, t(Bn) + x satisfying

a12−t ≤ |θ(x, t)| ≤ a22−t. (1)

(ii) Intersecting ellipsoids from Θ satisfy a “shape condition”, i.e., for any x, y ∈ Rn, t ∈ R and
s ≥ 0, if θ(x, t) ∩ θ(y, t + s) �= ∅, then

a32−a4s ≤ 1
‖(My, t+s)−1Mx, t‖

≤ ‖(Mx, t)
−1My, t+s‖ ≤ a52−a6s. (2)
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where ‖ · ‖ is the matrix norm given by ‖M‖ := max|x|=1 |Mx| for an n× n real matrix M.
Particularly, for any θ(x, t) ∈ Θ, when the related matrix function Mx,t of x ∈ Rn and t ∈ R

is reduced to the matrix function Mt of t ∈ R, we call a cover Θ a t-continuous ellipsoid cover,
denoted as Θt.

The word continuous refers to the fact that ellipsoids θx, t are defined for all values of x ∈ Rn

and t ∈ R, and we say that a continuous ellipsoid cover Θ is pointwise continuous if, for every
t ∈ R, the matrix valued function x �→ Mx,t is continuous:

‖Mx′ ,t −Mx,t‖ → 0 as x′ → x. (3)

Remark 1. By ([19], Theorem 2.2), we know that the pointwise continuous assumption is not
necessary since it is always possible to construct an equivalent ellipsoid cover

Ξ := {ζx, t : x ∈ Rn, t ∈ R}

such that Ξ is pointwise continuous and Ξ is equivalent to Θ. Here, we say that two ellipsoid covers
Θ and Ξ are equivalent if there exists a constant C > 0 such that, for any x ∈ Rn and t ∈ R,
we have

1
C

ζx, t ⊂ θx, t ⊂ Cζx, t.

Taking My, t+s = Mx, t in (2), we have

a3 ≤ 1 and a5 ≥ 1. (4)

For more properties about ellipsoid covers, see [9,11].
For any N, Ñ ∈ N0 with N ≤ Ñ, let

SN, Ñ :=

{
ψ ∈ S : ‖ψ‖SN, Ñ

:= max
α∈Nn

0 , |α|≤N
sup
y∈Rn

(1 + |y|)Ñ |∂αψ(y)| ≤ 1

}
.

For any ϕ ∈ S , x ∈ Rn, t ∈ R and θ(x, t) = Mx, t(Bn) + x, denote

ϕx, t(y) :=
∣∣∣det(M−1

x,t )
∣∣∣ϕ(M−1

x, ty), y ∈ Rn.

Particularly, when the matrix Mx, t is reduced to Mt, ϕx, t(y) is simply denoted as
ϕt(y).

Now, we give the notions of anisotropic variants of the non-tangential, the grand
non-tangential, the radial, the grand radial, and the tangential maximal functions.

Definition 2. Let f ∈ S′, ϕ ∈ S and N, Ñ ∈ N0 with N ≤ Ñ. We define the non-tangential,
the grand non-tangential, the radial, the rand radial, and the tangential maximal functions, respec-
tively as

Mϕ f (x) := sup
t∈R

sup
y∈θ(x, t)

| f ∗ ϕx, t(y)|, x ∈ Rn,

MN, Ñ f (x) := sup
ϕ∈SN, Ñ

Mϕ f (x), x ∈ Rn,

M0
ϕ f (x) := sup

t∈R
| f ∗ ϕx, t(x)|, x ∈ Rn,

M0
N, Ñ

f (x) := sup
ϕ∈SN, Ñ

M◦
ϕ f (x), x ∈ Rn,

TN
ϕ f (x) := sup

t∈R
sup
y∈Rn

| f ∗ ϕx, t(y)|
(

1 +
∣∣∣M−1

x, t(x− y)
∣∣∣)−N

, x ∈ Rn.
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Here and hereafter, the symbol "∗" always represents a convolution.

Remark 2. We immediately have the following pointwise estimate among the radial, the non-
tangential, and the tangential maximal functions:

M0
ϕ f (x) ≤ Mϕ f (x) ≤ 2N TN

ϕ f (x), x ∈ Rn.

Next, we recall the definition of Hardy spaces with pointwise variable anisotropy ([9],
Definition 3.6) via the grand radial maximal function.

Let Θ be an ellipsoid cover of Rn with parameters p(Θ) = {a1, · · · , a6} and 0 < p ≤ 1.
We define Np(Θ) as the minimal integer satisfying

Np := Np(Θ) >
max(1, a4)n + 1

a6 p
, (5)

and then Ñp(Θ) as the minimal integer satisfying

Ñp := Ñp(Θ) >
a4Np(Θ) + 1

a6
. (6)

Definition 3. Let Θ be a continuous ellipsoid cover and 0 < p ≤ 1. Define M0 := M0
Np ,Ñp

, and

the anisotropic Hardy space is defined as

Hp
Np , Ñp

(Θ) := { f ∈ S′ : M0 f ∈ Lp}

with the (quasi-)norm ‖ f ‖Hp(Θ) := ‖M0 f ‖Lp .

Remark 3. By Remark 1, we know that, for every continuous ellipsoid cover Θ, there exists
an equivalent pointwise continuous ellipsoid cover Ξ. This implies that their corresponding
(quasi-)norms ρΘ(·, ·) and ρΞ(·, ·) are also equivalent, and hence, the corresponding Hardy spaces
Hp(Θ) = Hp(Ξ)(0 < p ≤ 1) with equivalent (quasi-)norms (see ([9], Theorem 5.8)). Therefore,
here and hereafter, we always consider Θ of Hp(Θ) to be a pointwise continuous ellipsoid cover.

Proposition 1. Let Θ be an ellipsoid cover, 0 < p ≤ 1 ≤ q ≤ ∞, p < q and l ≥ Np with Np as
in (5). If N ≥ Np and Ñ ≥ (a4N + 1)/a6, then

Hp
Np , Ñp

(Θ) = Hp
q, l(Θ) = Hp

N, Ñ
(Θ)

with equivalent (quasi-)norms, where Hp
q, l(Θ) denotes the atomic Hardy space with pointwise

variable anisotropy; see ([9], Definition 4.2).

Proof. This proposition is a corollary of ([9], Theorems 4.4 and 4.19). Indeed, by Definition 3,
we obtain that, for any N ≥ Np and Ñ ≥ (a4N + 1)/a6,

Hp
Np , Ñp

(Θ) ⊆ Hp
N, Ñ

(Θ).

Combining this and Hp
q, l(Θ) ⊆ Hp

Np , Ñp
(Θ) (see ([9], Theorem 4.4)), we obtain

Hp
q, l(Θ) ⊆ Hp

N, Ñ
(Θ). (7)

By checking the definition of anisotropic (p, q, l)-atom (see ([9], Definition 4.1)), we know
that every (p, ∞, l)-atom is also a (p, q, l)-atom and hence

Hp
∞, l(Θ) ⊆ Hp

q, l(Θ).
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Let l′ ≥ max(l, N). By a similar argument to the proof of ([9], Theorem 4.19), we obtain

Hp
N, Ñ

(Θ) ⊆ Hp
∞, l′(Θ),

where N ≥ Np and Ñ ≥ (a4N + 1)/a6. Thus,

Hp
N, Ñ

(Θ) ⊆ Hp
∞, l′(Θ) ⊆ Hp

∞, l(Θ) ⊆ Hp
q, l(Θ). (8)

Combining (7) and (8), we conclude that

Hp
Np , Ñp

(Θ) = Hp
q, l(Θ) = Hp

N, Ñ
(Θ)

with equivalent (quasi-)norms.

Remark 4. From Proposition 1, we deduce that, for any integers N ≥ Np and Ñ ≥ (a4N + 1)/a6,
the definition of Hp

N, Ñ
(Θ) is independent of N and Ñ. Therefore, from now on, we denote Hp

N, Ñ
(Θ)

with N ≥ Np and Ñ ≥ (a4N + 1)/a6 simply by Hp(Θ).

Proposition 2 ([9], Lemma 2.3). Let Θ be an ellipsoid cover. Then, there exists a constant
J := J(p(Θ)) ≥ 1 such that, for any x ∈ Rn and t ∈ R,

2Mx, t(B) + x ⊂ θ(x, t− J).

Here and hereafter, let J always be as in Proposition 2.

Definition 4 ([9], Definition 3.1). Let Θ be an ellipsoid cover. For any locally integrable function
f , the maximal function of the Hardy–Littlewood type of f is defined by

MΘ f (x) := sup
t∈R

1
|θ(x, t)|

∫
θ(x,t)

| f (y)| dy, x ∈ Rn.

Proposition 3 ([9], Theorem 3.3). Let Θ be an ellipsoid cover. Then,

(i) There exists a constant C depending only on p(Θ) and n such that for all f ∈ L1 and α > 0,

|{x : MΘ f (x) > α}| ≤ Cα−1‖ f ‖L1 ; (9)

(ii) For 1 < p < ∞, there exists a constant Cp depending only on C and p such that, for all
f ∈ Lp,

‖MΘ f ‖Lp ≤ Cp‖ f ‖Lp . (10)

We give some useful results about variable anisotropic maximal functions with differ-
ent apertures. They also play important roles in obtaining the maximal function characteri-
zations of Hp(Θ). For any given x ∈ Rn, suppose that F : Rn ×R→ (0, ∞) is a Lebesgue
measurable function. Let Θ be an ellipsoid cover. For fixed l ∈ Z and t0 < 0, define the
maximal function of F with aperture l as

F∗ t0
l (x) := sup

t≥t0

sup
y∈θ(x, t−l J)

F(y, t). (11)

Proposition 4. For any l ∈ Z and t0 < 0, let F∗ t0
l be as in (11). If the ellipsoid cover Θ is

pointwise continuous, then F∗ t0
l : Rn → (0, ∞] is lower semi-continuous, i.e.,

{x ∈ Rn : F∗ t0
l (x) > λ} is open for any λ > 0.
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Proof. If F∗ t0
l (x) > λ for some x ∈ Rn, then there exist t ≥ t0 and y ∈ θ(x, t− l J) such

that F(y, t) > λ. Since θ(x, t) is continuous for variable x (see Remark 1), there exists δ1 > 0
such that, for any x′ ∈ U(x, δ) := {z ∈ Rn : |z − x| < δ}, y ∈ θ(x′, t − l J) and hence
F∗ t0

l (x′) > λ.

By Proposition 4, we obtain that {x ∈ Rn : F∗ t0
l (x) > λ} is Lebesgue measurable.

Based on this and inspired by ([2], Lemma 7.2), the following Proposition 5 shows some
estimates for maximal function F∗ t0

l .

Proposition 5. Let Θ be an ellipsoid cover, F∗ t0
l and F∗ t0

l′ as in (11) with integers l > l′ and
t0 < 0. Then, there exists a constant C > 0 that depends on parameters p(Θ) such that, for any
functions F∗ t0

l , F∗ t0
l′ and λ > 0, we have∣∣∣{x ∈ Rn : F∗ t0

l (x) > λ
}∣∣∣ ≤ C2(l−l′)J

∣∣∣{x ∈ Rn : F∗ t0
l′ (x) > λ

}∣∣∣ (12)

and ∫
Rn

F∗ t0
l (x) dx ≤ C2(l−l′)J

∫
Rn

F∗ t0
l′ (x) dx. (13)

Proof. Let Ω := {x ∈ Rn : F∗ t0
l′ (x) > λ}. We claim that{

x ∈ Rn : F∗ t0
l (x) > λ

}
⊂
{

x ∈ Rn : MΘ(χΩ)(x) ≥ C12(l
′−l)J

}
, (14)

where C1 is a positive constant to be fixed later. Assuming that the claim holds for the
moment, from this and a weak type (1,1) of MΘ (see (9)), we deduce∣∣∣{x ∈ Rn : F∗ t0

l (x) > λ
}∣∣∣ ≤ ∣∣∣{x ∈ Rn : MΘ(χΩ)(x) ≥ C12(l

′−l)J
}∣∣∣

≤ C−1
1 2(l−l′)J‖χΩ‖L1 ≤ C2(l−l′)J |Ω|

and hence (12) holds true, where C := 1/C1. Furthermore, integrating (12) on (0, ∞) with
respect to λ yields (13). Therefore, (14) remains to be shown.

Suppose F∗ t0
l (x) > λ for some x ∈ Rn. Then, there exist t with t ≥ t0 and y ∈

θ(x, t − l J) such that F(y, t) > λ. For any l, l′ ∈ Z and l ≥ l′, we first prove that the
following holds true:

a5
−1 θ(y, t− l′ J) ⊆ θ(x, t− (l + 1)J) ∩Ω. (15)

For any z ∈ a5
−1 θ(y, t− l′ J), by (4), we have z ∈ θ(y, t− l′ J) and hence

θ(z, t− l′ J) ∩ θ(y, t− l′ J) �= ∅.

Thus, by (2), we have ∥∥∥M−1
z, t−l′ J My, t−l′ J

∥∥∥ ≤ a5.

From this, it follows that

a5
−1M−1

z, t−l′ J My, t−l′ J(B
n) ⊆ Bn

and hence

a5
−1 My, t−l′ J(B

n) ⊆ Mz, t−l′ J(B
n).
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By this and y ∈ a−1
5 My, t−l′ J(Bn) + z, we obtain y ∈ θ(z, t − l′ J). From this and

F(y, t) > λ with t ≥ t0, we deduce that F∗ t0
l′ (z) > λ, and hence, z ∈ Ω, which implies

a−1
5 θ(y, t− l′ J) ⊆ Ω. (16)

Moreover, by y ∈ θ(x, t− l J), (2), and l ≥ l′, we have∥∥∥M−1
x, t−l J My, t−l′ J

∥∥∥ ≤ a52−a6(l−l′)J ≤ a5.

From this, it follows that

a5
−1M−1

x, t−l J My, t−l′ J(B
n) ⊆ Bn

and hence

a5
−1 My, t−l′ J(B

n) ⊆ Mx, t−l J(Bn).

By this, (4), y ∈ θ(x, t− l J), and Proposition 2, we obtain

a5
−1My, t−l′ J(B

n) + y ⊆ 2Mx, t−l J(Bn) + x ⊆ θ(x, t− (l + 1)J).

From this and (16), we deduce that (15) holds true.
Next, let us prove (14). By (15) and (1), we obtain

|θ(x, t− (l + 1)J) ∩Ω| ≥ (a5)
−n|θ(y, t− l′ J)| (17)

≥ a1

(a5)n 2l′ J−t.

Taking b0 := t− (l + 1)J, by (1) and (17), we have

1
|θ(x, b0)|

∫
θ(x, b0)

|χΩ(y)|dy ≥ a2
−12b0 |θ(x, b0) ∩Ω| ≥ a1

(a5)na2
2(l

′−l−1)J ,

which implies MΘ(χΩ)(x) ≥ C12(l
′−l)J and hence (14) holds true, where C1 := 2−J a1/[(a5)

n

a2].

The following result enables us to pass from one function in S to the sum of dilates
of another function in S with nonzero mean, which is a variable anisotropic extension of
([12], p. 93, Lemma 2) of Stein and ([2], Lemma 7.3) of Bownik.

Proposition 6. Let Θ be an ellipsoid cover of Rn and ϕ ∈ S , with
∫
Rn ϕ(x) dx �= 0. Then, for

any ψ ∈ S , x ∈ Rn, and t ∈ R, there exists a sequence {ηk}∞
k=0 and ηk ∈ S , such that

ψ =
∞

∑
k=0

ηk ∗ ϕk (18)

converges in S , where

ϕk := |det(M−1
x, t+kJ Mx,t)|ϕ(M−1

x, t+kJ Mx,t·), k > 0,

where J > 0 is as in Proposition 2.
Furthermore, for any positive integers N, Ñ and L, there exists a constant C > 0 depending

on ϕ, L, N, Ñ, and p(Θ) but not ψ, such that

‖ηk‖SN, Ñ
≤ C2−kL‖ψ‖SN+n+1+�L/(a6 J)�, Ñ+n+1

. (19)
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Proof. The following simplified proof is accomplished by Dekel. By scaling ϕ, we can
assume that

∫
Rn ϕ(x)dx = 1 and |ϕ̂(ξ)| ≥ 1/2, for |ξ| ≤ 2. This assumption only impacts

the constant in (19). Let ζ ∈ S such that 0 ≤ ζ ≤ 1 on Bn and supp (ζ) ⊂ 2Bn. We fix
x ∈ Rn and t ∈ R, denote Mk := Mx, t+kJ , and define the sequence of functions {ζk}∞

k=0,
where ζ0 := ζ, and

ζk := ζ

((
M−1

x, t Mk

)T
·
)
− ζ

((
M−1

x, t Mk−1

)T
·
)

, k ≥ 1,

where MT denotes the transpose of a matrix M. We claim that

supp(ζk) ⊂
{

ξ ∈ Rn : a−1
5 2−a6 J2a6kJ ≤ |ξ| ≤ 2a−1

3 2a4kJ
}

. (20)

Indeed, by the properties of ζ, Proposition 2 and (2),

ξ ∈ supp(ζk)⇒
(

M−1
x, t Mk

)T
(ξ) ∈ 2Bn ∨

(
M−1

x, t Mk−1

)T
(ξ) ∈ 2Bn

⇒ ξ ∈ 2
(

M−1
k Mx, t

)T
(Bn) ∨ ξ ∈ 2

(
M−1

k−1Mx, t

)T
(Bn)

⇒ ξ ∈ 2a−1
3 2a4kJBn.

In the other direction, Proposition 2 and the properties of ζ yield

ξ ∈
(

M−1
k−1Mx, t

)T
(Bn)⇒

(
M−1

x, t Mk

)T
(ξ) ∈ Bn,

(
M−1

x, t Mk−1

)T
(ξ) ∈ Bn

⇒ ζk(ξ) = 0.

Applying (2), we have

ξ /∈
(

M−1
k−1Mx, t

)T
(Bn)⇒ |ξ| ≥ 2a−1

5 2a6(k−1)J .

This proves (20). Additionally, by (2), for any ξ ∈ Rn,∣∣∣∣(M−1
x, t Mk

)T
ξ

∣∣∣∣ ≤ ∥∥∥M−1
x, t Mk

∥∥∥|ξ| ≤ a52−a6kJ |ξ| → 0, k → ∞.

From this, we deduce that, for any ξ ∈ Rn, for a large enough k, (M−1
x, t Mk)

Tξ ∈ Bn. This
implies that

∞

∑
k=0

ζk(ξ) = 1, ∀ξ ∈ Rn.

Thus, formally, a Fourier transform of (18) is given by

ψ̂ =
∞

∑
k=0

η̂k ϕ̂

((
M−1

x, t Mk

)T
·
)

, η̂k :=
ζk

ϕ̂

((
M−1

x, t Mk

)T
·
) ψ̂.

Observe that ηk is well defined and in S . Indeed, η̂k is well defined with 0/0 := 0, since by
our assumption on ϕ,

ξ ∈ supp(ζk)⇒ ξ ∈ 2
(

M−1
k Mx, t

)T
(Bn)

⇒
∣∣∣∣(M−1

x, t Mk

)T
ξ

∣∣∣∣ ≤ 2

⇒ ϕ̂

((
M−1

x, t Mk

)T
ξ

)
≥ 1

2
.
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From this, it is obvious that η̂k ∈ S , and therefore, ηk ∈ S . We now proceed to prove (19).
First, observe that, for any η ∈ S , N, Ñ ∈ N,

‖η‖SN, Ñ
≤ C(N, Ñ, n)‖η̂‖SÑ, N+n+1

. (21)

Next, we claim that, for any K ∈ N,

max
|α|≤K

∥∥∥∥∂α

(
ζk/ϕ̂

((
M−1

k Mx, t

)T
·
))∥∥∥∥

∞
≤ C(K, n, ϕ). (22)

Indeed, on its support, any partial derivative of ζk/ϕ̂((M−1
x, t Mk)

T ·) has a denominator
with its absolute value bounded from below and a numerator that is a superposition
of compositions of partial derivatives of η and ϕ with contractive matrices of the type
(M−1

x, t Mk)
T . Using (20)–(22), we obtain∥∥∥ηk

∥∥∥
SN, Ñ

≤ C
∥∥∥η̂k
∥∥∥
SÑ, N+n+1

≤ C sup
|ξ|≥a−1

5 2−a6 J2a6kJ
max
|α|≤Ñ

∣∣∣∂αη̂k(ξ)
∣∣∣(1 + |ξ|)N+n+1

≤ C sup
|ξ|≥a−1

5 2−a6 J2a6kJ
max
|α|≤Ñ

∣∣∂αψ̂(ξ)
∣∣(1 + |ξ|)N+n+1

≤ C sup
|ξ|≥a−1

5 2−a6 J2a6kJ
max
|α|≤Ñ

∣∣∂αψ̂(ξ)
∣∣(1 + |ξ|)N+n+1+�L/(a6 J)�

× (1 + |ξ|)−�L/(a6 J)�

≤ C2−kL∥∥ψ̂
∥∥
SÑ, N+n+1+�L/(a6 J)�

≤ C2−kL‖ψ‖SN+n+1+�L/(a6 J)�, Ñ+n+1
.

3. Maximal Function Characterizations of H p(Θt)

In this section, we show the maximal function characterizations of Hp(Θt) using the
radial, the non-tangential, and the tangential maximal functions of a single test function
ϕ ∈ S .

Theorem 1. Let Θt be a t-continuous ellipsoid cover, 0 < p ≤ 1, and ϕ ∈ S satisfy
∫
Rn ϕ(x) dx �=

0. Then, for any f ∈ S′, the following are mutually equivalent:

f ∈ Hp(Θt); (23)

Mϕ f ∈ Lp; (24)

M0
ϕ f ∈ Lp; (25)

TN
ϕ f ∈ Lp, N >

1
a6 p

. (26)

In this case,

‖ f ‖Hp(Θt) =
∥∥∥M0 f

∥∥∥
Lp
≤ C1

∥∥∥TN
ϕ f
∥∥∥

Lp
≤ C2

∥∥Mϕ f
∥∥

Lp ≤ C3

∥∥∥M0
ϕ f
∥∥∥

Lp
≤ C4‖ f ‖Hp(Θt),

where the positive constants C1, C2, C3 and C4 are independent of f .
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The framework to prove Theorem 1 is motivated by Fefferman and Stein [1], ([12],
Chapter III), and Bownik ([2], p. 42, Theorem 7.1).

Inspired by Fefferman and Stein ([12], p. 97), and Bownik ([2], p. 47), we now start
with maximal functions obtained from truncation with an additional extra decay term.
Namely, for t0 < 0 representing the truncation level and real number L ≥ 0 representing
the decay level, we define the radial, the non-tangential, the tangential, the grand radial, and
the grand non-tangential maximal functions, respectively, as

M0 (t0, L)
ϕ f (x) := sup

t≥t0

|( f ∗ ϕx, t)(x)|
(

1 +
∣∣∣M−1

x, t0
x
∣∣∣)−L(

1 + 2t+t0
)−L,

M(t0, L)
ϕ f (x) := sup

t≥t0

sup
y∈θ(x, t)

|( f ∗ ϕx, t)(y)|
(

1 +
∣∣∣M−1

x, t0
y
∣∣∣)−L(

1 + 2t+t0
)−L,

TN (t0, L)
ϕ f (x) := sup

t≥t0

sup
y∈Rn

|( f ∗ ϕx, t)(y)|[
1 +
∣∣∣M−1

x, t (x− y)
∣∣∣]N

1

(1 + 2t+t0)L
(

1 +
∣∣∣M−1

x, t0
y
∣∣∣)L ,

M0 (t0, L)
N, Ñ

f (x) := sup
ϕ∈SN, Ñ

M0 (t0, L)
ϕ f (x)

and

M(t0, L)
N, Ñ

f (x) := sup
ϕ∈SN, Ñ

M(t0, L)
ϕ f (x).

The following Lemma 1 guarantees control of the tangential by the non-tangential
maximal function in Lp(Rn) independent of t0 and L.

Lemma 1. Let Θt be a t-continuous ellipsoid cover. Suppose p > 0, N > 1/(a6 p), and ϕ ∈ S .
Then, there exists a positive constant C such that, for any t0 < 0, L ≥ 0 and f ∈ S′,∥∥∥TN (t0, L)

ϕ f
∥∥∥

Lp
≤ C

∥∥∥M(t0, L)
ϕ f

∥∥∥
Lp

.

Proof. Consider the function F : Rn ×R −→ [0, ∞) given by

F(y, t) := |( f ∗ ϕt)(y)|p
(

1 +
∣∣∣M−1

t0
y
∣∣∣)−pL

(1 + 2t+t0)−pL.

Let F∗ t0
l be as in (11) with l = 0. When y ∈ θ(x, t), we have M−1

t (x− y) ∈ Bn and hence
|M−1

t (x− y)| < 1. If t ≥ t0, then

F(y, t)
[
1 +
∣∣∣M−1

t (x− y)
∣∣∣]−pN

≤ F∗ t0
0 (x).

When y ∈ θ(x, t− kJ)\θ(x, t− (k− 1)J) for some k ≥ 1, we have

M−1
t (x− y) /∈ M−1

t Mt−(k−1)J (B
n). (27)

By (2), we obtain ∥∥∥M−1
t−(k−1)J Mt

∥∥∥ ≤ a52−a6(k−1)J

and hence,
M−1

t−(k−1)J Mt(Bn) ⊆ a52−a6(k−1)JBn,

which implies
(2a6(k−1)J/a5)Bn ⊆ M−1

t Mt−(k−1)J(B
n).
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From this and (27), it follows that |M−1
t (x − y)| ≥ 2a6(k−1)J/a5. Thus, for any t ≥ t0,

we have
F(y, t)

[
1 +
∣∣∣M−1

t (x− y)
∣∣∣]−pN

≤ a5
pN2−pNa6(k−1)J F∗ t0

k (x).

By taking the supremum over all y ∈ Rn and t ≥ t0, we know that

[
TN (t0, L)

ϕ f (x)
]p
≤ a5

pN
∞

∑
k=0

2−pNa6(k−1)J F∗ t0
k (x).

Therefore, using this and Proposition 5, we obtain∥∥∥TN (t0, L)
ϕ f

∥∥∥p

Lp(Rn)
≤ a5

pN
∞

∑
k=0

2−pNa6(k−1)J
∫
Rn

F∗ t0
k (x)dx

≤ Ca5
pN

∞

∑
k=0

2−pNa6(k−1)J2kJ
∫
Rn

F∗ t0
0 (x)dx

= C′
∥∥∥M(t0, L)

ϕ f
∥∥∥p

Lp(Rn)
,

where C′ := Ca5
pN2pNa6 J ∑∞

k=0 2(1−pNa6)kJ = Ca5
pN2J/(1− 2(1−pNa6)J).

The following Lemma 2 gives the pointwise majorization of the grand radial maximal
function by the tangential one, which is a variable anisotropic extension of ([2], Lemma 7.5).

Lemma 2. Let Θ be an ellipsoid cover of Rn, ϕ ∈ S ,
∫
Rn ϕ(x) dx �= 0, and f ∈ S′. For any given

positive integers N and L, there exist integers 0 < U ≤ Ũ, U ≥ Np, and Ũ ≥ Ñp that are large
enough and constant C > 0 such that, for any t0 < 0,

M0 (t0, L)
U, Ũ

f (x) ≤ CTN (t0, L)
ϕ f (x), ∀x ∈ Rn.

Proof. The simplified proof of this final version is from Dekel (Lemma 6.20). By Proposition 6,
for any ψ ∈ S , x ∈ Rn, t ∈ R, there exists a sequence {ηk}∞

k=0, ηk ∈ S that satisfies

ψ =
∞

∑
k=0

ηk ∗ ϕk

converging in S , where

ϕk := |det(M−1
x, t+kJ Mx,t)|ϕ(M−1

x, t+kJ Mx,t·), k ≥ 0.

Furthermore, for any positive integers U, Ũ and V,

‖ηk‖SU, Ũ
≤ C2−kV‖ψ‖SU+n+1+�V/(a6 J)�, Ũ+n+1

. (28)

where the constant depends on ϕ, U, Ũ, V, p(Θ) but not ψ. Denoting Mk := Mx,t+kJ ,
for t ≥ t0, implies
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|( f ∗ ψx, t)(x)| =
∣∣∣∣∣
[

f ∗
∞

∑
k=0

(
ηk ∗ ϕk

)
x, t

]
(x)

∣∣∣∣∣
≤ C

∣∣∣∣∣
[

f ∗
∞

∑
k=0

∣∣∣det
(

M−1
k

)∣∣∣ ∫
Rn

ηk(y) ϕ
(

M−1
k (· −Mx,ty)

)
dy

]
(x)

∣∣∣∣∣
= C

∣∣∣∣∣
[

f ∗
∞

∑
k=0

∣∣∣det
(

M−1
k M−1

x,t

)∣∣∣ ∫
Rn

ηk
(

M−1
x,t y
)

ϕ
(

M−1
k (· − y)

)
dy

]
(x)

∣∣∣∣∣
≤ C

∞

∑
k=0

∣∣∣∣[ f ∗
(

ηk
)

x, t
∗ ϕx, t+kJ

]
(x)
∣∣∣∣

≤ C
∞

∑
k=0

∫
Rn

∣∣ f ∗ ϕx, t+kJ(x− y)
∣∣∣∣∣∣(ηk

)
x, t

(y)
∣∣∣∣dy

≤ CTN (t0, L)
ϕ f (x)

∞

∑
k=0

∫
Rn

(
1 +
∣∣∣M−1

k y
∣∣∣)N

×
(

1 +
∣∣∣M−1

x, t0
(x− y)

∣∣∣)L(
1 + 2t+t0+kJ

)L
∣∣∣∣(ηk

)
x, t

(y)
∣∣∣∣dy.

Therefore,

M0 (t0, L)
ψ f (x) ≤ TN (t0, L)

ϕ f (x) sup
t≥t0

∞

∑
k=0

∫
Rn

(
1 +
∣∣∣M−1

k y
∣∣∣)N

(29)

×

(
1 +
∣∣∣M−1

x, t0
(x− y)

∣∣∣)L(
1 + 2t+t0+kJ

)L

(
1 +
∣∣∣M−1

x, t0
x
∣∣∣)L

(1 + 2t+t0)L

∣∣∣∣(ηk
)

x, t
(y)
∣∣∣∣dy

=: TN (t0, L)
ϕ f (x) sup

t≥t0

∞

∑
k=0

It, k.

Let us now estimate It, k for t ≥ t0, k ≥ 0. We begin with the simple observations that

1 + 2t+t0+kJ

1 + 2t+t0
=

2kJ(2−kJ + 2t+t0)

1 + 2t+t0
≤ C2kJ

and

1 + |x + y| ≤ 1 + |x|+ |y| ≤ (1 + |x|)(1 + |y|), x, y ∈ Rn. (30)

Therefore, we may obtain

It, k ≤ C2t+kJL
∫
Rn

(
1 +
∣∣∣M−1

k y
∣∣∣)N(

1 +
∣∣∣M−1

x, t0
y
∣∣∣)L∣∣∣ηk

(
M−1

x, ty
)∣∣∣dy

≤ C2kJL
∫
Rn

(
1 +
∥∥∥M−1

k Mx, t

∥∥∥ |y|)N(
1 +
∥∥∥M−1

x, t0
Mx, t

∥∥∥ |y|)L∣∣∣ηk(y)
∣∣∣dy,

which, together with

‖M−1
k Mx, t‖ ≤ a32a4kJ and ‖M−1

x, t0
Mx, t‖ ≤ a52−a6(t−t0) ≤ a5 (by t ≥ t0 and (2)),
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further implies that

It, k ≤ C2kJ(L+a4 N)
∫
Rn
(1 + |y|)N+L

∣∣∣ηk(y)
∣∣∣dy (31)

≤ C2kJ(L+a4 N)
∥∥∥ηk
∥∥∥
S0, Ñ+n+L

.

We now apply (28) with V := �J(L + a4N)�+ 1 , which gives

It, k ≤ C2−kV‖ψ‖Sn+1+�V/(a6 J)�, N+L+2n+2
. (32)

This yields for any ψ ∈ SU, Ũ , U := max(Np, n + 1 + �V/(a6 J)�), Ũ := max(Ñp, N + L +

2n + 2)

M0 (t0, L)
U,Ũ

f (x) = sup
ψ∈SU,Ũ

M0 (t0, L)
ψ f (x) ≤ C TN (t0, L)

ϕ f (x).

This finishes the proof of Lemma 2.

The following Lemma 3 shows that the radial and the grand non-tangential maxi-
mal functions are pointwise equivalent, which is a variable anisotropic extension of ([2],
Proposition 3.10).

Lemma 3 ([19], Theorem 3.4). For any N, Ñ ∈ N with N ≤ Ñ, there exists a positive constant
C := C(Ñ) such that, for any f ∈ S′,

M0
N,Ñ

f (x) ≤ MN,Ñ f (x) ≤ CM0
N,Ñ

f (x), x ∈ Rn.

The following Lemma 4 is a variable anisotropic extension of ([2], p. 46, Lemma 7.6).

Lemma 4. Let Θt be a t-continuous ellipsoid cover, ϕ ∈ S , and f ∈ S′. Then, for every M > 0
and t0 < 0, there exist L > 0 and N′ > 0 large enough such that

M(t0, L)
ϕ f (x) ≤ C2−t0(2a4 N′+2L+a4L)(1 + |x|)−M, x ∈ Rn, (33)

where C is a positive constant dependent on p(Θ), N′, f , and ϕ.

Proof. For any ϕ ∈ S , there exist an integer N > 0 and positive constant C := C(ϕ) such
that, for any N′ ≥ N and y ∈ Rn,

| f ∗ ϕ(y)| ≤ C‖ϕ‖SN, N′ (1 + |y|)
N′ . (34)

Therefore, for any t0 < 0, t ≥ t0 and x ∈ Rn, by (34), we have

|( f ∗ ϕt)(y)|
(

1 +
∣∣∣M−1

t0
y
∣∣∣)−L(

1 + 2t+t0
)−L (35)

≤ C2−L(t+t0)‖ϕt‖SN, N′ (1 + |y|)
N′
(

1 +
∣∣∣M−1

t0
y
∣∣∣)−L

.
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Let us first estimate ‖ϕt‖SN, N′ . By the chain rule and (1), we have

‖ϕt‖SN, N′ = |detM−1
t | sup

z∈Rn
sup
|α|≤N

(1 + |z|)N′
∣∣∣∂α
(

ϕ
(

M−1
t ·
))

(z)
∣∣∣

≤ C2t sup
z∈Rn

sup
|α|≤N

(1 + |z|)N′
∥∥∥M−1

t

∥∥∥|α|∣∣∣(∂α ϕ)
(

M−1
t z
)∣∣∣

≤ C2t sup
z∈Rn

sup
|α|≤N

(1 + |Mtz|)N′
∥∥∥M−1

t

∥∥∥|α||∂α ϕ(z)|. (36)

Now, let us further estimate (36) in the following two cases.
Case 1: t ≥ 0. By (2), we have∥∥∥M−1

t

∥∥∥ = ∥∥∥M−1
t M0M−1

0

∥∥∥ ≤ ∥∥∥M−1
t M0

∥∥∥∥∥∥M−1
0

∥∥∥ ≤ ∥∥∥M−1
0

∥∥∥a−1
3 2a4t = C2a4t

and

|Mtz| =
∣∣∣M0M−1

0 Mtz
∣∣∣ ≤ ‖M0‖

∣∣∣M−1
0 Mtz

∣∣∣ ≤ ‖M0‖
∥∥∥M−1

0 Mt

∥∥∥|z|
≤ ‖M0‖a52−a6t|z| ≤ C|z|.

Inserting the above two estimates into (36) with t ≥ 0, we know that

‖ϕt‖SN, N′ ≤ C2t sup
z∈Rn

sup
|α|≤N

(1 + |Mtz|)N′
∥∥∥M−1

t

∥∥∥|α||∂α ϕ(z)| (37)

≤ C2t2a4tN‖ϕ‖SN, N′ .

Case 2: t0 ≤ t < 0. By (2), we have∥∥∥M−1
t

∥∥∥ = ∥∥∥M−1
t M0M−1

0

∥∥∥ ≤ ∥∥∥M−1
t M0

∥∥∥∥∥∥M−1
0

∥∥∥ ≤ ∥∥∥M−1
0

∥∥∥a52a6t ≤ C

and

|Mtz| =
∣∣∣M0M−1

0 Mtz
∣∣∣ ≤ ‖M0‖

∣∣∣M−1
0 Mtz

∣∣∣ ≤ ‖M0‖
∥∥∥M−1

0 Mt

∥∥∥|z|
≤ ‖M0‖a−1

3 2−a4t|z| = C2−a4t0 |z|.

Inserting the above two estimates into (36) with t0 ≤ t < 0, we know that

‖ϕt‖SN, N′ ≤ C2t sup
z∈Rn

sup
|α|≤N

(1 + |Mtz|)N′
∥∥∥M−1

t

∥∥∥|α||∂α ϕ(z)| (38)

≤ C2−a4t0 N′ ‖ϕ‖SN, N′ .

For any M > 0, let L := M + N′. For any t0 < 0, t ≥ t0 and taking some integer
N′ > 0 large enough, by (37) and (38), we obtain

2−L(t+t0)‖ϕt‖SN, N′ ≤ C2−t0(a4 N′+2L)‖ϕ‖SN, N′ . (39)

Inserting (39) into (35), we further obtain

|( f ∗ ϕt)(y)|
(

1 +
∣∣∣M−1

t0
y
∣∣∣)−L(

1 + 2t+t0
)−L (40)

≤ C2−t0(a4 N′+2L)‖ϕ‖SN, N′ (1 + |y|)
N′
(

1 +
∣∣∣M−1

t0
y
∣∣∣)−L

.
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For any y ∈ θ(x, t), there exists z ∈ Bn such that y = x + Mtz. By (30), we have

1 + |y| = 1 + |x + Mtz| ≤ (1 + |x|)(1 + |Mtz|). (41)

If t ≥ 0, by (2), then

|Mtz| =
∣∣∣M0M−1

0 Mtz
∣∣∣ ≤ ‖M0‖

∣∣∣M−1
0 Mtz

∣∣∣ ≤ ‖M0‖
∥∥∥M−1

0 Mt

∥∥∥|z|
≤ ‖M0‖a52−a6t|z| ≤ C.

If t0 ≤ t < 0, by (2), then

|Mtz| =
∣∣∣M0M−1

0 Mtz
∣∣∣ ≤ ‖M0‖

∣∣∣M−1
0 Mtz

∣∣∣ ≤ ‖M0‖
∥∥∥M−1

0 Mt

∥∥∥|z|
≤ ‖M0‖a−1

3 2−a4t|z| = C2−a4t0 .

Therefore, for any t ≥ t0, by using the above two estimates, we have

|Mtz| ≤ C2−a4t0 .

From this and (41), it follows that

(1 + |y|) ≤ C2−a4t0(1 + |x|). (42)

Moreover, for any t0 < 0, by (2), we have

1 + |x| ≤ 1 + ‖M0‖
∥∥∥M−1

0 Mt0

∥∥∥∣∣∣M−1
t0

x
∣∣∣ ≤ C2−a4t0

(
1 +
∣∣∣M−1

t0
x
∣∣∣).

Furthermore, for any y ∈ θ(x, t), we have x ∈ Mt(Bn) + y. Thus, there exists z ∈ Bn such
that x = Mtz + y. Hence, for any t ≥ t0, by (30) and (2), we obtain(

1 +
∣∣∣M−1

t0
x
∣∣∣) =

(
1 +
∣∣∣M−1

t0
(y + Mtz)

∣∣∣) ≤ (1 +
∣∣∣M−1

t0
y
∣∣∣)(1 +

∥∥∥M−1
t0

Mt

∥∥∥|z|)
≤
(

1 +
∣∣∣M−1

t0
y
∣∣∣)(1 + a52−a6(t−t0)|z|

)
≤ C

(
1 +
∣∣∣M−1

t0
y
∣∣∣).

Combining with the above two inequalities, we have

(1 + |M−1
t0

y|) ≥ C2a4t0(1 + |x|). (43)

Thus, for any t ≥ t0 and y ∈ θ(x, t), inserting (42) and (43) into (40) with L = M + N′,
we obtain

|( f ∗ ϕt)(y)|
(

1 +
∣∣∣M−1

t0
y
∣∣∣)−L(

1 + 2t+t0
)−L ≤ C2−t0(2a4 N′+2L+a4L)(1 + |x|)−M,

which implies that (33) holds true and hence completes the proof of Lemma 4.

Note that the above argument gives the same estimate for the truncated grand maximal
function M0 (t0, L)

N, Ñ
f (x). As a consequence of Lemma 4, we obtain that, for any choice of

t0 < 0 and any f ∈ S′, we can find an appropriate L > 0 so that the maximal function,
say M(t0, L)

ϕ f , is bounded and belongs to Lp(Rn). This becomes crucial in the proof of
Theorem 1, where we work with truncated maximal functions, The complexity of the
preceding argument stems from the fact that, a priori, we do not know whether M0

ϕ f ∈ Lp

implies Mϕ f ∈ Lp. Instead, we must work with variants of maximal functions for which
this is satisfied.
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Proof of Theorem 1. Suppose that Θt is a t-continuous ellipsoid cover and ϕ ∈ S satis-
fying

∫
Rn ϕ(x) dx �= 0. From Remark 2 and the definition of the grand radial maximal

function, it follows that
(26) ⇒ (24) ⇒ (25)

and
(23) ⇒ (25).

By Lemma 1 applied for L = 0, we have∥∥∥TN(t0, 0)
ϕ f

∥∥∥
Lp
≤ C

∥∥∥M(t0, 0)
ϕ f

∥∥∥
Lp

for any f ∈ S′ and t0 < 0.

As t0 → −∞, by the monotone convergence theorem, we obtain∥∥∥TN
ϕ f
∥∥∥

Lp
≤ C

∥∥Mϕ f
∥∥

Lp ,

which shows (24) ⇒ (26).
Combining Lemma 2 applied for N > 1/(a6 p) and L = 0 and Lemma 1 applied for

L = 0, we conclude that there exist integers 0 < U ≤ Ũ, U > Np, Ũ ≥ Ñp that are large
enough and a positive constant C such that∥∥∥M0(t0, 0)

U, Ũ
f
∥∥∥

Lp
≤ C

∥∥∥M(t0, 0)
ϕ f

∥∥∥
Lp

for any f ∈ S′ and t0 < 0.

As t0 → −∞, by the monotone convergence theorem, we obtain∥∥∥M0
U, Ũ

f
∥∥∥

Lp
≤ C

∥∥Mϕ f
∥∥

Lp .

From this and Proposition 1, we deduce that

‖ f ‖Hp(Θt) =

∥∥∥∥M0
Np , Ñp

f
∥∥∥∥

Lp
≤ C

∥∥∥M0
U, Ũ

f
∥∥∥

Lp
≤ C

∥∥Mϕ f
∥∥

Lp

and hence (24) ⇒ (23). (25) ⇒ (24) remain to be shown.
Suppose now M◦

ϕ f ∈ Lp. By Lemma 4, we can find a L > 0 large enough such that

(33) holds true, which implies M(t0, L)
ϕ f ∈ Lp for all t0 < 0. Combining Lemmas 1 and 2,

we obtain that there exist 0 < U ≤ Ũ, U > Np, and Ũ ≥ Ñp large enough such that∥∥∥M0(t0, L)
U, Ũ

f
∥∥∥

p
≤ C1

∥∥∥M(t0, L)
ϕ f

∥∥∥
p
, (44)

where constant C1 is independent of t0 < 0. For a given t0 < 0, let

Ωt0 :=
{

x ∈ Rn : M0 (t0, L)
U, Ũ

f (x) ≤ C2M(t0, L)
ϕ f (x)

}
, (45)

where C2 := 21/pC1. We claim that∫
Rn

[
M(t0, L)

ϕ f (x)
]p

dx ≤ 2
∫

Ωt0

[
M(t0, L)

ϕ f (x)
]p

dx. (46)

Indeed, this follows from (44), M(t0, L)
ϕ f ∈ Lp and∫

Ωc
t0

[
M(t0, L)

ϕ f (x)
]p

dx ≤ C−p
2

∫
Ωc

t0

[
M0 (t0, L)

U, Ũ
f (x)

]p
dx ≤ (C1/C2)

p
∫
Rn

[
M(t0, L)

ϕ f (x)
]p

dx,

where (C1/C2)
p = 1/2.
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We also claim that, for 0 < q < p, there exists a constant C3 > 0 such that, for any
t0 < 0,

M(t0, L)
ϕ f (x) ≤ C3

[
MΘ

(
M0 (t0, L)

ϕ f
)q

(x)
]1/q

, (47)

where MΘ is as in Definition 4. Indeed, let t ≥ t0, y ∈ θ(x, t) and

F(y, t) := |( f ∗ ϕt)(y)| (1 + |M−1
t0

y|)−L(1 + 2t+t0)−L.

Suppose that x ∈ Ωt0 and let F∗ t0
l (x) be as in (11) with l = 0. Then, there exist t′ ∈ R with

t′ ≥ t0 and y′ ∈ θ(x, t′) such that

F(y′, t′) ≥ F∗ t0
0 (x)/2 = M(t0, L)

ϕ f (x)/2. (48)

Consider x′ ∈ y′ + Mt′+l J(Bn) for some integer l ≥ 1 to be specified later. Let Φ(z) :=

ϕ
(

z + M−1
t′ (x′ − y′)

)
− ϕ(z). Obviously, we have

f ∗ ϕt′(x′)− f ∗ ϕt′(y
′) = f ∗Φt′(y

′). (49)

Let us first estimate ‖Φ‖SU, Ũ
. From x′ ∈ y′ + Mt′+l J(Bn), we deduce that

M−1
t′ (x′ − y′) ∈ M−1

t′ Mt′+l J(B
n).

By this and the mean value theorem, we obtain

‖Φ‖SU, Ũ
≤ sup

h∈M−1
t′ Mt′+l J(B

n)

‖ϕ(·+ h)− ϕ(·)‖SU, Ũ
(50)

= sup
h∈M−1

t′ Mt′+l J(B
n)

sup
z∈Rn

sup
|α|≤U

(1 + |z|)Ũ |(∂α ϕ)(z + h)− ∂α ϕ(z)|

≤ C sup
h∈M−1

t′ Mt′+l J(B
n)

sup
z∈Rn

sup
|α|≤U+1

(1 + |z|)Ũ |(∂α ϕ)(z + h)|

× sup
h∈M−1

t′ Mt′+l J(B
n)

|h|.

From (2), we deduce
‖M−1

t′ Mt′+l J‖ ≤ a52−a6l J ,

which implies
M−1

t′ Mt′+l J(B
n) ⊂ a52−a6l JBn.

By this and h ∈ M−1
t′ Mt′+l J(Bn), we have |h| ≤ a52−a6l J . From this and (30), we deduce

that

1 + |z| ≤ (1 + |z + h|)(1 + |h|) ≤ C(1 + |z + h|), z ∈ Rn.

Applying this and |h| ≤ a52−a6l J in (50), we obtain

‖Φ‖SU, Ũ
≤ C sup

h∈M−1
t′ Mt′+l J(B

n)

sup
z∈Rn

sup
|α|≤U+1

(1 + |z + h|)Ũ |(∂α ϕ)(z + h)| (51)

× sup
h∈M−1

t′ Mt′+l J(B
n)

|h| ≤ C‖ϕ‖SU+1, Ũ
a52−a6l J ≤ C42−a6l J ,

where a positive constant C4 does not depend on L.
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Moreover, notice that, for any x′ ∈ Mt′+l J(Bn) + y′, there exists z ∈ Bn such that
x′ = Mt′+l Jz + y′. By (30), (2), and t′ ≥ t0, we have(

1 +
∣∣∣M−1

t0
x′
∣∣∣) ≤ (1 +

∣∣∣M−1
t0

y′
∣∣∣)(1 +

∥∥∥M−1
t0

Mt′+l J

∥∥∥|z|) (52)

≤
(

1 +
∣∣∣M−1

t0
y′
∣∣∣)(1 + a52−a6(t′−t0+l J)|z|

)
≤ 2a5

(
1 +
∣∣∣M−1

t0
y′
∣∣∣).

Thus, for any x ∈ Ωt0 , from (49), (52), (48), (51), Lemma 3, and (45), it follows that

2LaL
5 F(x′, t′) = 2LaL

5

[
|( f ∗ ϕt′)(x′)| (1 + |M−1

t0
x′|)−L(1 + 2t′+t0)−L

]
≥ [| f ∗ ϕt′(y

′)| − | f ∗Φt′(y
′)|]
(

1 +
∣∣∣M−1

t0
y′
∣∣∣)−L(

1 + 2t′+t0
)−L

≥ F(y′, t′)−M(t0, L)
U, Ũ

f (x)‖Φ‖SU, Ũ

≥ M(t0, L)
ϕ f (x)/2− C42−a6l JCM0 (t0, L)

U, Ũ
f (x)

≥ M(t0, L)
ϕ f (x)/2− C4C2C2−a6l J M(t0, L)

ϕ f (x).

We choose an integer l ≥ 1 large enough such that C4C2C2−a6l J ≤ 1/4. Therefore, for any
x ∈ Ωt0 and x′ ∈ Mt′+l J(Bn) + y′, we further have

2LaL
5 F(x′, t′) ≥ M(t0, L)

ϕ f (x)/2− C4C2C2−a6l J M(t0, L)
ϕ f (x) ≥ M(t0, L)

ϕ f (x)/4. (53)

Moreover, by y′ ∈ θ(x, t′) and Proposition 2, we have

Mt′+l J(B
n) + y′ ⊆ Mt′+l J(B

n) + Mt′(B
n) + x (54)

⊆ 2Mt′(B
n) + x ⊆ θ(x, t′ − J).

Thus, for any x ∈ Ωt0 and t ≥ t0, by (53) and (54), we obtain

[
M(t0, L)

ϕ f (x)
]q
≤ 4q2LqaLq

5
|Mt′+l J(Bn)|

∫
y′+Mt′+l J(B

n)
[F(z, t′)]qdz

≤ C4q2LqaLq
5

2(l+1)J

|θ(x, t′ − J)|
∫

θ(x, t′−J)

[
M0 (t0, L)

ϕ f (z)
]q

dz

≤ C3MΘ

((
M0 (t0, L)

ϕ f
)q)

(x),

which shows the above claim (47).
Consequently, by (46), (47), and Proposition 3 with p/q > 1, we have∫

Rn

[
M(t0, L)

ϕ f (x)
]p

dx ≤ 2
∫

Ωt0

[
M(t0, L)

ϕ f (x)
]p

dx (55)

≤ 2C3
p
∫

Ωt0

[
MΘ

((
M0(t0, L)

ϕ f
)q)

(x)
]p/q

dx

≤ C5

∫
Rn

[
M0(t0, L)

ϕ f (x)
]p

dx,

where the constant C5 depends on p/q > 1, L ≥ 0 and p(Θ) but is independent of t0 < 0.
This inequality is crucial as it gives a bound of the non-tangential by the radial maximal
function in Lp. The rest of the proof is immediate.
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For any x ∈ Rn, y ∈ Rn and t < 0, by (2), we obtain∣∣∣M−1
t y
∣∣∣ = ∣∣∣M−1

t M0M−1
0 y
∣∣∣ ≤ ∥∥∥M−1

t M0

∥∥∥∥∥∥M−1
0

∥∥∥|y|
≤ a52a6t

∥∥∥M−1
0

∥∥∥|y| → 0 as t → −∞.

Hence, we obtain that M(t0, L)
ϕ f (x) converges pointwise and monotonically to Mϕ f (x)

for all x ∈ Rn as t0 → −∞, which together with (55) and the monotone convergence
theorem, further implies that Mϕ f ∈ Lp. Therefore, we can now choose L = 0, and
again, by (55) and the monotone convergence theorem, we have ‖Mϕ f ‖p

p ≤ C5‖M0
ϕ f ‖p

p,
where C5 corresponds to L = 0 and is independent of f ∈ S′. This finishes the proof of
Theorem 1.
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An Optimal Estimate for the Anisotropic Logarithmic Potential

Shaoxiong Hou
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Abstract: This paper introduces the new annulus body to establish the optimal lower bound for the
anisotropic logarithmic potential as the complement to the theory of its upper bound estimate which
has already been investigated. The connections with convex geometry analysis and some metric
properties are also established. For the application, a polynomial dual log-mixed volume difference
law is deduced from the optimal estimate.

Keywords: anisotropic log-potential; optimal polynomial inequality; annulus body; dual log-mixed
volume

1. Backgrounds

The Riesz potential Iα(α > 0) operator is defined by

Iα f (x) =
∫
Rn

f (y)
|x− y|α dy,

where f is a measurable function. It has been widely developed in harmonic analy-
sis including function spaces, mathematical physics and partial differential equations
(see [1–4]).

For the endpoint case α = 0, it is trivial to study the limitation

lim
α→0

|x− y|−α = 1 as x �= y.

Instead, the convolution kernel is usually changed in such a derivative way

∂

∂α
|x− y|−α

∣∣∣∣
α=0

=
log |x− y|−1

|x− y|α
∣∣∣∣
α=0

= log |x− y|−1 as x �= y.

This logarithmic kernel produces a corresponding logarithmic potential operator,
which represents a the better complement for the endpoint case of Riesz potential operator
by virtue of effective properties and applications. For example, |x|2−n(n ≥ 3) is harmonic
on Rn \ o, while for teh lower dimension n = 2, log |x| is studied since it is harmonic on
Rn \ o (see [5,6]).

Recently, both Riesz potential and logarithmic potential have been studied in an
anisotropic way, which is closely related with convex geometry analysis and mathematical
physics (see [7–11]). Here we first recall some basic concepts and results in convex geometry.

If the intersection of each line through the origin with a set K � Rn is a compact line
segment, K is called star-shaped with respect to the origin. Let

ρK(x) = max{λ ≥ 0 : λx ∈ K} for x ∈ Rn \ o,

where o is the origin, be the radial function of the star-shaped set K. K is called a star body
with respect to the origin, if ρK is positive and continuous. We assume that K is a star body
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with respect to the origin and E is a bounded measurable set in this paper. Note that the
radial function ρK is positively homogeneous with degree −1, i.e.,

ρA(sx) = s−1ρA(x) for all s > 0.

Let V(E) and Ec denote, respectively, the n-dimensional volume of E and the complement
of E. We assume V(E) �= 0 in this paper, since when V(E) = 0, some trivial result follows
directly. Let dS(·) denote the natural spherical measure on the boundary Sn−1 of the unit
ball Bn

2 centered at the origin. Then

V(K) =
1
n

∫
Sn−1

ρn
K(u) dS(u).

Let ‖ · ‖K denote by the Minkowski functional of K:

‖x‖K = inf{s > 0 : x ∈ sK} for all x ∈ Rn (1)

where
sK = {sy : y ∈ K}.

Note that ρ−1
K (x) = ‖x‖K and ‖ · ‖Bn

2
= | · |, where | · | denotes the Euclidean norm. We

refer to [12,13] for more information on convex geometry.
Let y ∈ Rn, a > 1 and denote by

RK
a (y) = {x ∈ Rn :

1
a
≤ ‖x− y‖K ≤ a}

the K-annulus body centered at y with outer radius a and inner radius 1
a . Then, by the

definition of the Minkowski functional, it follows that

V(RK
a (y)) =

(
an −

(
1
a

)n)
V(K).

Several anisotropic Riesz potentials are introduced and their optimal extreme values
estimates are systematically studied in [10]. We omit the details here for the brevity of this
paper. Let

Plog,m(K, E; y) =
∫

E

(
log

1
‖x− y‖K

)m
dx

be the anisotropic m-log-potential of measurable set E at y ∈ Rn with respect to K, and

Vlog,m(K, E) = sup
y∈Rn

Plog,m(K, E; y)

be the mixed volume of K and E. We refer to [11] for these definitions and [14,15] for their
relations with engineering and mathematical physics.

Note that Vlog,m(K, E) is obviously an extreme value of the anisotropic m-log-potential.
It is also closely related to convex geometry analysis. In [11], when m is an odd number,
the optimal estimate for Vlog,m(K, E) is established as follows:

Vlog,m(K, E) ≤

⎧⎨⎩V(E)
nm ∑m

i=0
m!

(m−i)!

(
log V(K)

V(E)

)m−i
f or V(E) > 0,

0 f or V(E) = 0.
(2)

When V(E) > 0, the equality in (2) holds if and only if E is a K-ball introduced in [11] up
to the difference of a measure zero set.
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For the application of the sharp estimate in (2), the dual polynomial log-Minkowski
inequality is established in [11]:

m

∑
i=0

nm−im!
(m− i)!

∫
Sn−1

(
log

ρK(u)
ρL(u)

)m−i
dVL(u) ≤

m

∑
i=0

m!
(m− i)!

(
log

V(K)
V(L)

)m−i
(3)

where m is an odd number, K, L are two star bodies and dVL(·) is the normalized cone-
volume measure

dVL(·) =
(

ρn
L(·)

nV(L)

)
dS(·). (4)

The equality in (3) holds if and only if there exists s > 0 such that K = sL.
Note that (3) generalizes the dual log-Minkowski inequality for a mixed volume

of two star bodies (see [12,16]) and produces the polynomial dual for the conjectured
log-Minkowski inequality (see [17]).

In this paper, we study the other extreme value of the anisotropic m-log-potential:

Definition 1. For m ∈ N, define

Wlog,m(K, E) = inf
y∈Rn

Plog,m(K, E; y).

Note that because log ‖x− y‖−1
K may be negative, Wlog,m(K, E) is defined for integer m.

In Section 2, some fundamental properties of Wlog,m(K, E) are established. Then, in
Section 3, we are able to introduce the new annulus body to solve the problem of optimal
estimate for Wlog,m(K, E) in a precise analytic way. For the application, a polynomial dual
log-mixed volume difference law is induced from the optimal estimate.

2. Fundamental Properties

First we recall a metric property in [11] for the Minkowski functional of a star body
with respect to the origin.

Proposition 1. Let Bn
2 be the unit ball and{

IK = sup{r̃ ≥ 0 : r̃Bn
2 ⊆ K},

OK = inf{r̃ ≥ 0 : K ⊆ r̃Bn
2}.

(5)

Then
O−1

K |x| ≤ ‖x‖K ≤ I−1
K |x| for all x ∈ Rn, (6)

and a quasi-triangle inequality holds for ‖ · ‖K

‖x + y‖K ≤ I−1
K OK(‖x‖K + ‖y‖K) for all x, y ∈ Rn.

If m is an even number, the supremum of the anisotropic m-log-potential Vlog,m(K, E) ≡
+∞ (see [11]). For the infimum of the anisotropic m-log-potential Wlog,m(K, E), it follows

Proposition 2. Wlog,m(K, E) ≡ −∞ for m as an odd number.

Proof. Note that K is a star body with respect to the origin and E is a bounded mea-

surable set. Then supx∈E |x| < +∞. For all C > 0, let C1 = e
(

C
V(E)

) 1
m

> 1, |y| >
max

{
2OKC1, 2 supx∈E |x|

}
, where OK is defined in (5). Hence, for all x ∈ E,

‖x− y‖K ≥ OK
−1|x− y| ≥ OK

−1(|y| − |x|) > OK
−1 |y|

2
> C1 > 1.
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Since m is odd, it follows that

Plog,m(K, E; y) =
∫

E

(
log

1
‖x− y‖K

)m
dx

<
∫

E

(
log C−1

1

)m
dx

=
∫

E

(
log e

(
−C

V(E)

) 1
m
)m

dx

= −C,

which implies
Wlog,m(K, E) = −∞ via W = inf

y∈Rn
Plog,m(K, E; y).

Wlog,m(K, E) has the following metric properties for the nontrivial case (m is an even
number).

Proposition 3. Let m be an even number.

(i) Monotonicity: let E1 and E2 are bounded measurable sets and E1 ⊆ E2. Then Wlog,m(K, E1) ≤
Wlog,m(K, E2).

(ii) Translation-invariance: for all z ∈ Rn, let z + E = {z + y : y ∈ E}. Then Wlog,m(K, z +
E) = Wlog,m(K, E).

(iii) Homogeneity: for all s > 0, Wlog,m(sK, sE) = snWlog,m(K, E).

Proof. (i) Since E1 ⊆ E2, then for all y ∈ Rn,∫
E1

(
log

1
‖x− y‖K

)m
dx �

∫
E2

(
log

1
‖x− y‖K

)m
dx.

Hence,

Wlog,m(K, E1) = inf
y∈Rn

∫
E1

(
log

1
‖x− y‖K

)m
dx

� inf
y∈Rn

∫
E2

(
log

1
‖x− y‖K

)m
dx = Wlog,m(K, E2).

(ii) For all z ∈ Rn, by changing the variables x = z + x1 and y = z + y1, it follows

Wlog,m(K, z + E) = inf
y∈Rn

∫
z+E

(
log

1
‖x− y‖K

)m
dx

= inf
y∈Rn

∫
E

(
log

1
‖x1 + z− y‖K

)m
dx1

= inf
y1∈Rn

∫
E

(
log

1
‖x1 − y1‖K

)m
dx1

= Wlog,m(K, E).
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(iii) For all ∀ s > 0, by changing the variables x = sx̃ and y = sỹ and the definition of
Minkowski functional in (1), it follows that

Wlog,m(sK, sE) = inf
y∈Rn

∫
sE

(
log

1
‖x− y‖sK

)m
dx

= inf
sỹ∈Rn

∫
E

(
log

1
‖sx̃− sỹ‖sK

)m
dsx̃

= inf
ỹ∈Rn

∫
E

(
log

1
‖x̃− ỹ‖K

)m
dsx̃

= snWlog,m(K, E).

The continuity of the anisotropic m-log-potential Plog,m(K, E; ·) has already been
proven in [11]. From this, it follows that

Lemma 1. Let m be an even number. The infimum in

Wlog,m(K, E) = inf
y∈Rn

Plog,m(K, E; y)

is achieved at some y ∈ Rn.

Proof. We first conclude that

lim
|y|→+∞

Plog,m(K, E; y) = +∞. (7)

Actually, note that E is a bounded measurable set, then supx∈E |x| < +∞. For all M1 > 0, let

|y| ≥ max

{
2 sup

x∈E
|x|, 2OKe

(
M1

V(E)

) 1
m
}

,

where OK is defined in (5). It follows from m being an even number and (6) that

Plog,m(K, E; y) =
∫

E

(
log

1
‖x− y‖K

)m
dx

=
∫

E
(log ‖x− y‖K)

m dx

≥
∫

E

(
log |OK|−1|x− y|

)m
dx

≥
∫

E

(
log |OK|−1(|y| − |x|)

)m
dx

≥
∫

E

(
log(2|OK|)−1|y|

)m
dx

≥
∫

E

(
log e

(
M1

V(E)

) 1
m
)m

dx

≥ M1,

which implies that (7) holds.
In the following, we will show that Plog,m(K, E; ·) �≡ +∞. As a matter of fact, for

z ∈ Rn and |z| ≥ supx∈E |x|,
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Plog,m(K, E; z) =
∫

E

(
log

1
‖x− z‖K

)m
dx

=
∫

E
(log ‖x− z‖K)

m dx

≤
∫

E

(
log I−1

K |x− z|
)m

dx

≤
∫

E

(
log I−1

K (|z|+ |x|)
)m

dx

≤
∫

E

(
log 2I−1

K |z|
)m

dx

=
(

log 2I−1
K |z|

)m
V(E)

< +∞,

where IK is in (5). Let M2 =
(

log 2I−1
K |z|

)m
V(E). Because of (7), there exists D1 ≥ 0 such

that for all y ∈ {y ∈ Rn : |y| > D1}, Plog,m(K, E; y) > M2, which implies that

z ∈ D = {y ∈ Rn : |y| ≤ D1}.

Since Plog,m(K, E; ·) is continuous and D is compact, it can attain its minimum at a
point y0. Then

Plog,m(K, E; y0) = inf
y∈D

Plog,m(K, E; y) ≤ Plog,m(K, E; z) ≤ M2 ≤ inf
y∈Dc

Plog,m(K, E; y),

which implies
Plog,m(K, E; y0) = inf

y∈Rn
Plog,m(K, E; y).

3. Optimal Estimate and Application

Now we are ready to establish the optimal estimate for the infimum of the anisotropic
m-log-potential.

Theorem 1. Let m be an even number. Then

Wlog,m(K, E) ≥ m!V(K)
nm

m

∑
i=0

1
(m− i)!

⎡⎣log

⎛⎝(( V(E)
2V(K)

)2

+ 1

) 1
2

+
V(E)

2V(K)

⎞⎠⎤⎦m−i

(8)

×

⎡⎣((−1)i − 1
)(( V(E)

2V(K)

)2

+ 1

) 1
2

+
(
(−1)i + 1

) V(E)
2V(K)

⎤⎦,

where the equality holds if and only if E is a K-annulus body with outer radius a and inner radius 1
a

up to a difference of a measure zero set, namely there exists y ∈ Rn such that

V
(

E ∩
(

RK
a (y)

)c
)
= V

(
RK

a (y) ∩ Ec
)
= 0

where a =

(((
V(E)

2V(K)

)2
+ 1
) 1

2
+ V(E)

2V(K)

) 1
n

.
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Proof. Let y ∈ Rn be fixed, and note that a =

(((
V(E)

2V(K)

)2
+ 1
) 1

2
+ V(E)

2V(K)

) 1
n

> 1 and

0 <
1
a
=

⎛⎝(( V(E)
2V(K)

)2

+ 1

) 1
2

− V(E)
2V(K)

⎞⎠
1
n

< 1,

which imply

V
(

RK
a (y)

)
=

[
an −

(
1
a

)n]
V(K) = V(E).

Note that

V
(

E ∩
(

RK
a (y)

)c
)
= V

(
E \ RK

a (y)
)

= V(E)−V
(

RK
a (y) ∩ E

)
= V

(
RK

a (y)
)
−V

(
RK

a (y) ∩ E
)

= V
(

RK
a (y) \ E

)
= V

(
RK

a (y) ∩ Ec
)

,

which, together with the following elementary computations⎧⎨⎩‖x− y‖K > a(or < 1
a ) and (log a)m < (log ‖x− y‖K)

m for all x ∈ E ∩
(

RK
a (y)

)c,
1
a � ‖x− y‖K ≤ a and 0 � (log ‖x− y‖K)

m � (log a)m for all x ∈ RK
a (y) ∩ Ec,

implies ∫
RK

a (y)∩Ec
(log ‖x− y‖K)

m dx � (log a)mV
(

RK
a (y) ∩ Ec

)
(9)

= (log a)mV
(

E ∩
(

RK
a (y)

)c
)

�
∫

E∩
(

RK
a (y)
)c (log ‖x− y‖K)

m dx.

Note that m is an even number, then

Plog,m(K, E; y) (10)

=
∫

E

(
log

1
‖x− y‖K

)m
dx

=
∫

E
(log ‖x− y‖K)

m dx

=
∫(

RK
a (y)
)c
∩E

(log ‖x− y‖K)
m dx +

∫
RK

a (y)∩E
(log ‖x− y‖K)

m dx

≥
∫

RK
a (y)∩Ec

(log ‖x− y‖K)
m dx +

∫
RK

a (y)∩E
(log ‖x− y‖K)

m dx

=
∫

RK
a (y)

(log ‖x− y‖K)
m dx.

= m
∫
{x: 1

a≤‖x−y‖K≤a}

∫ ‖x−y‖K

1
s−1(log s)m−1 ds dx

= m
∫
{x:1≤‖x−y‖K≤a}

∫ ‖x−y‖K

1
s−1(log s)m−1 ds dx

−m
∫
{x: 1

a≤‖x−y‖K≤1}

∫ 1

‖x−y‖K

s−1(log s)m−1 ds dx

:= I1 + I2.
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By Fubini’s theorem, it follows

I1 = m
∫ a

1
s−1(log s)m−1

∫
{x:s≤‖x−y‖K≤a}

dx ds

= m
∫ a

1
s−1(log s)m−1(an − sn)V(K) ds

= mV(K)an
∫ a

1
s−1(log s)m−1 ds−mV(K)

∫ a

1
sn−1(log s)m−1 ds,

and

I2 = −m
∫ 1

1
a

s−1(log s)m−1
∫
{x: 1

a≤‖x−y‖K≤s}
dx ds

= −m
∫ 1

1
a

s−1(log s)m−1
(

sn − 1
an

)
V(K) ds

= −mV(K)
∫ 1

1
a

sn−1(log s)m−1 ds +
mV(K)

an

∫ 1

1
a

s−1(log s)m−1 ds.

Then, by integration by parts, it follows

I1 + I2 (11)

= mV(K)
[

1
an

∫ 1

1
a

s−1(log s)m−1 ds + an
∫ a

1
s−1(log s)m−1 ds

−
∫ a

1
a

sn−1(log s)m−1 ds
]

= mV(K)
[

1
man (log s)m|11

a
+

an

m
(log s)m|a1

−(m− 1)!sn
m

∑
i=1

(−1)i−1(log s)m−i

ni(m− i)!

∣∣∣∣∣
a

1
a

⎤⎦
= m!V(K)

m

∑
i=0

1
ni(m− i)!

(log a)m−i
[
−
(

1
a

)n
− (−1)i−1an

]

=
m!V(K)

nm

m

∑
i=0

1
(m− i)!

⎡⎣log

⎛⎝(( V(E)
2V(K)

)2

+ 1

) 1
2

+
V(E)

2V(K)

⎞⎠⎤⎦m−i

×

⎡⎣((−1)i − 1
)(( V(E)

2V(K)

)2

+ 1

) 1
2

+
(
(−1)i + 1

) V(E)
2V(K)

⎤⎦.
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Hence, by (10) and (11), it follows that

Wlog,m(K, E) = inf
y∈Rn

Plog,m(K, E; y)

= inf
y∈Rn

∫
E

(
log

1
‖x− y‖K

)m
dx

= inf
y∈Rn

∫
E
(log ‖x− y‖K)

m dx

≥ inf
y∈Rn

∫
RK

a (y)
(log ‖x− y‖K)

m dx

=
m!V(K)

nm

m

∑
i=0

1
(m− i)!

⎡⎣log

⎛⎝(( V(E)
2V(K)

)2

+ 1

) 1
2

+
V(E)

2V(K)

⎞⎠⎤⎦m−i

×

⎡⎣((−1)i − 1
)(( V(E)

2V(K)

)2

+ 1

) 1
2

+
(
(−1)i + 1

) V(E)
2V(K)

⎤⎦.

To prove the equality in (8) , if E is almost a K-annulus body up to a difference of a
measure zero set, which means there exists z1 ∈ Rn and a such that

V
(

E ∩
(

RK
a (z1)

)c
)
= V

(
RK

a (z1) ∩ Ec
)
= 0,

which, together with (9), implies∫
RK

a (z1)∩Ec
(log ‖x− z1‖K)

m dx =
∫

E∩
(

RK
a (z1)

)c(log ‖x− z1‖K)
m dx = 0,

and hence ∫
E

(
log

1
‖x− z1‖K

)m
dx =

∫
RK

a (z1)

(
log

1
‖x− z1‖K

)m
dx, (12)

from (10).
By (10)–(12), it follows

Plog,m(K, E; z1) =
∫

RK
a (z1)

(
log

1
‖x− z1‖K

)m
dx

=
m!V(K)

nm

m

∑
i=0

1
(m− i)!

⎡⎣log

⎛⎝(( V(E)
2V(K)

)2

+ 1

) 1
2

+
V(E)

2V(K)

⎞⎠⎤⎦m−i

×

⎡⎣((−1)i − 1
)(( V(E)

2V(K)

)2

+ 1

) 1
2

+
(
(−1)i + 1

) V(E)
2V(K)

⎤⎦,

which means the equality in (8) holds.
On the other hand, by Lemma 1, there exists z2 ∈ Rn, Wlog,m(K, E) = Plog,m(K, E; z2).

If E is not a K-annulus body up to a difference of a measure zero set, it follows

V
(

E ∩ RK
a (z2)

c
)
�= 0 and V

(
RK

a (z2) ∩ Ec
)
�= 0.

Then the following strict inequality holds from (9):∫
RK

a (z2)∩Ec
(log ‖x− z2‖K)

m dx <
∫

E∩
(

RK
a (z2)

)c(log ‖x− z2‖K)
m dx,

241



Mathematics 2022, 10, 261

which implies the inequality in (10) is also strict, and hence

Wlog,m(K, E)

= Plog,m(K, E; z2)

=
∫

E

(
log

1
‖x− z2‖K

)m
dx

=
∫

E
(log ‖x− z2‖K)

m dx

>
∫

RK
a (z2)

(log ‖x− z2‖K)
m dx

=
m!V(K)

nm

m

∑
i=0

1
(m− i)!

⎡⎣log

⎛⎝(( V(E)
2V(K)

)2

+ 1

) 1
2

+
V(E)

2V(K)

⎞⎠⎤⎦m−i

×

⎡⎣((−1)i − 1
)(( V(E)

2V(K)

)2

+ 1

) 1
2

+
(
(−1)i + 1

) V(E)
2V(K)

⎤⎦,

which means, if the equality in (8) holds, E must be almost a K-annulus body up to a
difference of a measure zero set.

Remark 1. We claim that there is no such upper bound for Wlog,m(K, E) by using V(K) and V(E)
as in Theorem 1 when m is an even number.

Proof. Actually, let V(E) be fixed. For all M > 0, let E = E1
⋃

E2, where V(E1) = V(E2) =
2−1V(E) and

dist{E1, E2} = inf{|x1 − x2||x1 ∈ E1, x2 ∈ E2} > 2OKe
(

2M
V(E)

) 1
m

.

Then, for all y ∈ Rn, dist{{y}, E1} > OKe
(

2M
V(E)

) 1
m

or dist{{y}, E2} > OKe
(

2M
V(E)

) 1
m

. Without

loss of generality, suppose dist{{y}, E1} > OKe
(

2M
V(E)

) 1
m

, then, by (6), it follows

Plog,m(K, E; y) =
∫

E

(
log

1
‖x− y‖K

)m
dx,

=
∫

E
(log ‖x− y‖K)

m dx

≥
∫

E

(
log O−1

K |x− y|
)m

dx

>
∫

E1

(
log O−1

K |x− y|
)m

dx

> M,

which implies
Wlog,m(K, E) = inf

y∈Rn
Plog,m(K, E; y) ≥ M.

This completes the proof of the remark.

The infimum of the anisotropic m-log-potential is closely related with the convex
geometry analysis. For this, a polynomial dual log-mixed volume difference law can be
deduced from the optimal estimate for Wlog,m(K, E) in Theorem 1.
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Theorem 2. Let m be an even number, L1, L2, K be star bodies with respect to the origin, L1 ⊆ L2,
and dVL1(u), dVL2(u) be the normalized cone-volume measures defined in (4), then

V(L2)
∫
Sn−1

m

∑
i=0

m!
ni(m− i)!

log
(

ρK(u)
ρL2(u)

)m−i
dVL2(u) (13)

−V(L1)
∫
Sn−1

m

∑
i=0

m!
ni(m− i)!

log
(

ρK(u)
ρL1(u)

)m−i
dVL1(u) ≥

m!V(K)
nm

m

∑
i=0

1
(m− i)!

⎡⎣log

⎛⎝((V(L2)−V(L1)

2V(K)

)2

+ 1

) 1
2

+
V(L2)−V(L1)

2V(K)

⎞⎠⎤⎦m−i

×

⎡⎣((−1)i − 1
)((V(L2)−V(L1)

2V(K)

)2

+ 1

) 1
2

+
(
(−1)i + 1

)V(L2)−V(L1)

2V(K)

⎤⎦,

where the equality holds if and only if L2 \ L1 is a K-annulus body centered at origin with outer
radius a and inner radius 1

a (a > 0) up to a difference of a measure zero set.

Proof. Note that ρ−1
K (·) = ‖ · ‖K, then, by changing to the polar coordinates and integration

by parts, it follows that

Plog,m(K, L2 \ L1; 0) (14)

=
∫

L2\L1

(
log

1
‖x‖K

)m
dx

=
∫

L2

(
log

1
‖x‖K

)m
dx−

∫
L1

(
log

1
‖x‖K

)m
dx

=
∫

L2

(log ρK(x))m dx−
∫

L1

(log ρK(x))m dx

=
∫
Sn−1

∫ ρL2 (u)

0
sn−1(log ρK(su))m dsdu

−
∫
Sn−1

∫ ρL1 (u)

0
sn−1(log ρK(su))m dsdu

= n−1
∫
Sn−1

∫ ρL2 (u)

0

(
log
(

s−1ρK(u)
))m

dsndu

− n−1
∫
Sn−1

∫ ρL1 (u)

0

(
log
(

s−1ρK(u)
))m

dsndu

= n−1
∫
Sn−1

ρL2(u)
n
(

log
ρK(u)
ρL(u)

)m
du

+ n−1m
∫
Sn−1

∫ ρL2 (u)

0
sn−1

(
log
(

s−1ρK(u)
))m−1

dsdu

− n−1
∫
Sn−1

ρL1(u)
n
(

log
ρK(u)
ρL(u)

)m
du

− n−1m
∫
Sn−1

∫ ρL1 (u)

0
sn−1

(
log
(

s−1ρK(u)
))m−1

dsdu

...

= V(L2)
∫
Sn−1

m

∑
i=0

m!
ni(m− i)!

log
(

ρK(u)
ρL2(u)

)m−i
dVL2(u)

−V(L1)
∫
Sn−1

m

∑
i=0

m!
ni(m− i)!

log
(

ρK(u)
ρL1(u)

)m−i
dVL1(u),
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where dVL1 and dVL2 are defined as in (4).
By Theorem 1, it follows that

Plog,m(K, L2 \ L1; 0)

=
∫

L2\L1

(
log

1
‖x‖K

)m
dx

≥ inf
y∈Rn

∫
L2\L1

(
log

1
‖x− y‖K

)m
dx

≥ m!V(K)
nm

m

∑
i=0

1
(m− i)!

⎡⎣log

⎛⎝((V(L2 \ L1)

2V(K)

)2

+ 1

) 1
2

+
V(L2 \ L1)

2V(K)

⎞⎠⎤⎦m−i

×

⎡⎣((−1)i − 1
)((V(L2 \ L1)

2V(K)

)2

+ 1

) 1
2

+
(
(−1)i + 1

)V(L2 \ L1)

2V(K)

⎤⎦
=

m!V(K)
nm

m

∑
i=0

1
(m− i)!

⎡⎣log

⎛⎝((V(L2)−V(L1)

2V(K)

)2

+ 1

) 1
2

+
V(L2)−V(L1)

2V(K)

⎞⎠⎤⎦m−i

×

⎡⎣((−1)i − 1
)((V(L2)−V(L1)

2V(K)

)2

+ 1

) 1
2

+
(
(−1)i + 1

)V(L2)−V(L1)

2V(K)

⎤⎦,

which, together with (14), implies (13) holds with the equality holds if and only if L2 \ L1 is
a K-annulus body centered at origin with outer radius a and inner radius 1

a (a > 0) up to a
difference of a measure zero set.

4. Conclusions

Theorem 1 and its Remark 1 complete the systematic study of the optimal upper
and lower bounds of the extreme value of the anisotropic m-log-potential on a bounded
measurable set (for the part of its supremum, we refer to [11]). Note that the anisotropic
m-log-potential extends the classical logarithmic potential two-fold in anisotropic and
higher order of m ways. By virtue of the wide development of Riesz potential with
its better complement logarithmic potential for the end point case in harmonic analy-
sis including function spaces, mathematical physics and partial differential equations
(see [1–6]), these optimal estimates can be further applied to these related topics.

On the other hand, Brunn–Minkowski inequality and Minkowski inequality includ-
ing their dual versions and generalizations are main topics in convex geometry analysis
(see [12,13,16,17] and their references). The dual log-Minkowski inequality deals with
the optimal estimate for mixed volume of two star bodies (see [12,16]), which exists as
the dual version for the conjectured log-Minkowski inequality (see [17]). The polynomial
dual log-mixed volume difference law in Theorem 2 deduced from the optimal estimate in
Theorem 1, deals with the optimal estimate for the difference of mixed volumes of two star
bodies, which is totally new and contributes to these theories.
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Abstract: In this manuscript, we present a coherent rigorous overview of the main properties of
Sobolev-Slobodeckij spaces of sections of vector bundles on compact manifolds; results of this type
are scattered through the literature and can be difficult to find. A special emphasis has been put
on spaces with noninteger smoothness order, and a special attention has been paid to the peculiar
fact that for a general nonsmooth domain Ω in Rn, 0 < t < 1, and 1 < p < ∞, it is not necessarily
true that W1,p(Ω) ↪→ Wt,p(Ω). This has dire consequences in the multiplication properties of
Sobolev-Slobodeckij spaces and subsequently in the study of Sobolev spaces on manifolds. We focus
on establishing certain fundamental properties of Sobolev-Slobodeckij spaces that are particularly
useful in better understanding the behavior of elliptic differential operators on compact manifolds.
In particular, by introducing notions such as “geometrically Lipschitz atlases” we build a general
framework for developing multiplication theorems, embedding results, etc. for Sobolev-Slobodeckij
spaces on compact manifolds. To the authors’ knowledge, some of the proofs, especially those that
are pertinent to the properties of Sobolev-Slobodeckij spaces of sections of general vector bundles,
cannot be found in the literature in the generality appearing here.

Keywords: Sobolev spaces; compact manifolds; tensor bundles; differential operators

1. Introduction

Suppose s ∈ R and p ∈ (1, ∞). With each nonempty open set Ω in Rn we can associate
a complete normed function space denoted by Ws,p(Ω) called the Sobolev-Slobodeckij
space with smoothness degree s and integrability degree p. Similarly, given a compact
smooth manifold M and a vector bundle E over M, there are several ways to define the
normed spaces Ws,p(M) and more generally Ws,p(E). The main goal of this manuscript is
to review these various definitions and rigorously study the key properties of these spaces.
Some of the properties that we are interested in are as follows:

• Density of smooth functions
• Completeness, separability, reflexivity
• Embedding properties
• Behavior under differentiation
• Being closed under multiplication by smooth functions:

u ∈ Ws,p, ϕ is smooth ?
=⇒ ϕu ∈ Ws,p

• Invariance under change of coordinates:

u ∈ Ws,p, T is a diffeomorphism ?
=⇒ u ◦ T ∈ Ws,p

• Invariance under composition by a smooth function:

Mathematics 2022, 10, 522. https://doi.org/10.3390/math10030522 https://www.mdpi.com/journal/mathematics
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u ∈ Ws,p, F is smooth ?
=⇒ F(u) ∈ Ws,p

As we shall see, there are several ways to define Ws,p(E). In particular, ‖u‖Ws,p(E) can
be defined using the components of the local representations of u with respect to a fixed
augmented total trivialization atlas Λ, or it can be defined using the notion of connection in
E. Here are some of the questions that we have studied in this paper regarding this issue:

• Are the different characterizations that exist in the literature equivalent? If not, what is
the relationship between the various characterizations of Sobolev-Slobodeckij spaces
on M?

• In particular, does the corresponding space depend on the chosen atlas (more precisely
the chosen augmented total trivialization atlas) used in the definition?

• Suppose f ∈ Ws,p(M). Does this imply that the local representation of f with respect
to each chart (Uα, ϕα) is in Ws,p(ϕα(Uα))? If g is a metric on M and g ∈ Ws,p, can we
conclude that gij ◦ ϕ−1

α ∈ Ws,p(ϕα(Uα))?
• Suppose that P : C∞(M) → C∞(M) is a linear differential operator. Is it possible

to gain information about the mapping properties of P by studying the mapping
properties of its local representations with respect to charts in a given atlas? For
example, suppose that the local representations of P with respect to each chart (Uα, ϕα)
in an atlas is continuous from Ws,p(ϕα(Uα)) to Ws̃,p̃(ϕα(Uα)). Is it possible to extend
P to a continuous linear map from Ws,p(M) to Ws̃,p̃(M)?

To further motivate the questions that are studied in this paper and the study of the
key properties mentioned above, let us consider a concrete example. For any two sets
A and B, let Func(A, B) denote the collection of all functions from A to B. Consider the
differential operator

divg : C∞(TM)→ Func(M,R), divg X = (tr ◦ sharpg ◦ ∇ ◦ flatg)X ,

on a compact Riemannian manifold (M, g) with g ∈ Ws,p. Let {(Uα, ϕα)} be a smooth atlas
for M. It can be shown that for each α

(divgX) ◦ ϕ−1
α =

n

∑
j=1

1√
det gα

∂

∂xj

[
(
√

det gα)(Xj ◦ ϕ−1
α )
]

,

where gα(x) is the matrix whose (i, j)-entry is (gij ◦ ϕ−1
α )(x). As it will be discussed in

detail in Section 10, we call Qα : C∞(ϕα(Uα),Rn)→ Func(ϕα(Uα),R) defined by

Qα(Y) =
n

∑
j=1

1√
det gα

∂

∂xj

[
(
√

det gα)(Yj)
]

︸ ︷︷ ︸
Qα

j (Y
j)

the local representation of divg with respect to the local chart (Uα, ϕα). Let us say we can
prove that for each α and j, Qα

j maps We,q
0 (ϕα(Uα)) to We−1,q(ϕα(Uα)). Can we conclude

that divg maps We,q(TM) to We−1,q(M)? Furthermore, how can we find exponents e and q
such that

Qα
j : We,q

0 (ϕα(Uα))→ We−1,q(ϕα(Uα))

is a well-defined continuous map? We will see how the properties we mentioned above
play a key role in answering these questions.

Since W0,p(Ω) = Lp(Ω), Sobolev-Slobodeckij spaces can be viewed as a generalization
of classical Lebesgue spaces. Of course, unlike Lebesgue spaces, some of the key properties
of Ws,p(Ω) (for s �= 0) depend on the geometry of the boundary of Ω. Indeed, to thoroughly
study the properties of Ws,p(Ω) one should consider the following cases independently:

(1) Ω = Rn
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(2) Ω is an arbitrary open subset of Rn

{
2a) bounded
2b) unbounded

(3) Ω is an open subset of Rn with smooth boundary

{
3a) bounded
3b) unbounded

Let us mention here four facts to highlight the dependence on domain and some
atypical behaviors of certain fractional Sobolev spaces. Let s ∈ (0, ∞) and p ∈ (1, ∞).

• Fact 1:

∀ j
∂

∂xj : Ws,p(Rn)→ Ws−1,p(Rn)

is a well-defined bounded linear operator.
• Fact 2: If we further assume that s �= 1

p and Ω has smooth boundary then

∀ j
∂

∂xj : Ws,p(Ω)→ Ws−1,p(Ω)

is a well-defined bounded linear operator.
• Fact 3: If s̃ ≤ s, then

Ws,p(Rn) ↪→ Ws̃,p(Rn) .

• Fact 4: If Ω does NOT have Lipschitz boundary, then it is NOT necessarily true that

W1,p(Ω) ↪→ Ws̃,p(Ω)

for 0 < s̃ < 1.

Let M be an n-dimensional compact smooth manifold and let {(Uα, ϕα)} be a smooth
atlas for M. As we will see, the properties of Sobolev-Slobodeckij spaces of sections of
vector bundles on M are closely related to the properties of spaces of locally Sobolev-
Slobodeckij functions on domains in Rn. Primarily we will be interested in the prop-
erties of Ws,p(ϕα(Uα)) and Ws,p

loc (ϕα(Uα)). Furthermore, when we want to patch things
together consistently and move from “local” to “global”, we will need to consider spaces
Ws,p(ϕα(Uα ∩Uβ)) and Ws,p(ϕβ(Uα ∩Uβ)). However, as we pointed out earlier, some of
the properties of Ws,p(Ω) depend heavily on the geometry of the boundary of Ω. Consider-
ing that the intersection of two Lipschitz domains is not necessarily a Lipschitz domain, we
need to consider the following question:

• Is it possible to find an atlas such that the image of each coordinate domain in the atlas
(and the image of the intersection of any two coordinate domains in the atlas) under
the corresponding coordinate map is either the entire Rn or a nonempty bounded set
with smooth boundary? Furthermore, if we define the Sobolev spaces using such an
atlas, will the results be independent of the chosen atlas?

This manuscript is an attempt to collect some results concerning these questions and
certain other fundamental questions similar to the ones stated above, and we pay special
attention to spaces with noninteger smoothness order and to general sections of vector
bundles. There are a number of standard sources for properties of integer order Sobolev
spaces of functions and related elliptic operators on domains in Rn (cf. [1–3]), real order
Sobolev spaces of functions [4–8], Sobolev spaces of functions on manifolds [9–12], and
Sobolev spaces of sections of vector bundles on manifolds [13,14]. However, most of these
works focus on spaces of functions rather than general sections, and in many cases the
focus is on integer order spaces. This paper should be viewed as a part of our efforts to
build a more complete foundation for the study and use of Sobolev-Slobodeckij spaces on
manifolds through a sequence of related manuscripts [15–18].

249



Mathematics 2022, 10, 522

Outline of Paper. In Section 2, we summarize some of the basic notation and con-
ventions used throughout the paper. In Section 3, we will review a number of basic
constructions in linear algebra that are essential in the study of function spaces of gen-
eralized sections of vector bundles. In Section 4 we will recall some useful tools from
analysis and topology. In particular, a concise overview of some of the main properties
of topological vector spaces is presented in this section. Section 5 deals with reviewing
some results we need from differential geometry. The main purpose of this section is to
set the notation, definitions, and conventions straight. This section also includes some less
well-known facts about topics such as higher order covariant derivatives in the context
of vector bundles. In Section 6 we collect the results that we need from the theory of
generalized functions on Euclidean spaces and vector bundles. Section 7 is concerned
with various definitions and properties of Sobolev spaces that are needed for developing
a coherent theory of such spaces on the vector bundles. In Sections 8 and 9 we introduce
Lebesgue spaces and Sobolev–Slobodeckij spaces of sections of vector bundles and we
present a rigorous account of their various properties. Finally in Section 10 we study the
continuity of certain differential operators between Sobolev spaces of sections of vector
bundles. Although the purpose of Section 3 through Section 7 is to give a quick overview
of the prerequisites that are needed to understand the proofs of the results in later sections
and set the notation straight, as it was pointed out earlier, several theorems and proofs that
appear in these sections cannot be found elsewhere in the generality that are stated here.

2. Notation and Conventions

Throughout this paper, R denotes the set of real numbers, N denotes the set of positive
integers, and N0 denotes the set of nonnegative integers. For any nonnegative real number
s, the integer part of s is denoted by 
s�. The letter n is a positive integer and stands for the
dimension of the space.

Ω is a nonempty open set in Rn. The collection of all compact subsets of Ω will be
denoted by K(Ω). Lipschitz domain in Rn refers to a nonempty bounded open set in Rn

with Lipschitz continuous boundary.
Each element of Nn

0 is called a multi-index. For a multi-index α = (α1, . . . , αn) ∈ Nn
0 ,

we let

• |α| := α1 + . . . + αn;
• α! := α1! . . . αn!.

If α, β ∈ Nn
0 , we say β ≤ α provided that βi ≤ αi for all 1 ≤ i ≤ n. If β ≤ α, we let(

α

β

)
:=

α!
β!(α− β)!

=

(
α1

β1

)
. . .
(

αn

βn

)
.

Suppose that α ∈ Nn
0 . For sufficiently smooth functions u : Ω → R (or for any

distribution u) we define the αth order partial derivative of u as follows:

∂αu :=
∂|α|u

∂xα1
1 . . . ∂xαn

n
.

We use the notation A � B to mean A ≤ cB, where c is a positive constant that does
not depend on the non-fixed parameters appearing in A and B. We write A  B if A � B
and B � A.

For any nonempty set X and r ∈ N, X×r stands for X× . . .× X︸ ︷︷ ︸
r times

.

For any two nonempty sets X and Y, Func(X, Y) denotes the collection of all functions
from X to Y.

We write L(X, Y) for the space of all continuous linear maps from the normed space X
to the normed space Y. L(X,R) is called the (topological) dual of X and is denoted by X∗.
We use the notation X ↪→ Y to mean X ⊆ Y and the inclusion map is continuous.
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GL(n,R) is the set of all n× n invertible matrices with real entries. Note that GL(n,R)
can be identified with an open subset of Rn2

and so it can be viewed as a smooth manifold
(more precisely, GL(n,R) is a Lie group).

Throughout this manuscript, all manifolds are assumed to be smooth, Hausdorff, and
second-countable.

Let M be an n-dimensional compact smooth manifold. The tangent space of the
manifold M at point p ∈ M is denoted by Tp M, and the cotangent space by T∗p M. If (U, ϕ =

(xi)) is a local coordinate chart and p ∈ U, we denote the corresponding coordinate basis
for Tp M by ∂i|p while ∂

∂xi |x denotes the basis for the tangent space to Rn at x = ϕ(p) ∈ Rn;
that is,

ϕ∗∂i =
∂

∂xi .

Note that for any smooth function f : M → R we have

(∂i f ) ◦ ϕ−1 =
∂

∂xi ( f ◦ ϕ−1) .

The vector space of all k-covariant, l-contravariant tensors on Tp M is denoted by
Tk

l (Tp M). So, each element of Tk
l (Tp M) is a multilinear map of the form

F : T∗p M× · · · × T∗p M︸ ︷︷ ︸
l copies

× Tp M× · · · × Tp M︸ ︷︷ ︸
k copies

→ R .

We are primarily interested in the vector bundle of (k
l)-tensors on M whose total space is

Tk
l (M) =

⊔
p∈M

Tk
l (Tp M) .

A section of this bundle is called a (k
l)-tensor field. We set Tk M := Tk

0 (M). TM denotes the
tangent bundle of M and T∗M is the cotangent bundle of M. We set

τk
l (M) = C∞(M, Tk

l (M)) = collection of smooth (kl )-tensor fields on M

and
χ(M) = C∞(M, TM) = the collection of smooth vector fields on M .

A symmetric positive definite section of T2M is called a Riemannian metric on M. If
M is equipped with a Riemannian metric g, the combination (M, g) will be referred to as a
Riemannian manifold. If there is no possibility of confusion, we may write 〈X, Y〉 instead
of g(X, Y). The norm induced by g on each tangent space will be denoted by ‖.‖g. We say
that g is smooth (or the Riemannian manifold is smooth) if g ∈ C∞(M, T2M).

d denotes the exterior derivative and grad : C∞(M) → C∞(M, TM) denotes the
gradient operator which is defined by g(grad f , X) = d f (X) for all f ∈ C∞(M) and
X ∈ C∞(M, TM).

Given a metric g on M, one can define the musical isomorphisms as follows:

flatg : Tp M → T∗p M

X �→ X� := g(X, · ) ,

sharpg : T∗p M → Tp M

ψ �→ ψ� := flat−1
g (ψ) .

Using sharpg we can define the (0
2)-tensor field g−1 (which is called the inverse metric

tensor) as follows
g−1(ψ1, ψ2) := g(sharpg(ψ1), sharpg(ψ2)) .
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Let {Ei} be a local frame on an open subset U ⊂ M and {ηi} be the corresponding dual
coframe. So we can write X = XiEi and ψ = ψiη

i. It is standard practice to denote the ith
component of flatgX by Xi and the ith component of sharpg(ψ) by ψi:

flatgX = Xiη
i , sharpgψ = ψiEi .

It is easy to show that
Xi = gijXj , ψi = gijψj ,

where gij = g(Ei, Ej) and gij = g−1(ηi, η j). It is said that flatgX is obtained from X by
lowering an index and sharpgψ is obtained from ψ by raising an index.

3. Review of Some Results from Linear Algebra

In this section, we summarize a collection of definitions and results from linear algebra
that play an important role in our study of function spaces and differential operators
on manifolds.

There are several ways to construct new vector spaces from old ones: subspaces,
products, direct sums, quotients, etc. The ones that are particularly important for the
study of Sobolev spaces of sections of vector bundles are the vector space of linear maps
between two given vector spaces, the tensor product of vector spaces, and the vector space
of all densities on a given vector space which we briefly review here in order to set the
notation straight.

• Let V and W be two vector spaces. The collection of all linear maps from V to W is a
new vector space which we denote by Hom(V, W). In particular, Hom(V,R) is the
(algebraic) dual of V. If V and W are finite-dimensional, then Hom(V, W) is a vector
space whose dimension is equal to the product of dimensions of V and W. Indeed, if
we choose a basis for V and a basis for W, then Hom(V, W) is isomorphic with the
space of matrices with dim W rows and dim V columns.

• Let U and V be two vector spaces. Roughly speaking, the tensor product of U and V
(denoted by U ⊗V) is the unique vector space (up to isomorphism of vector spaces)
such that for any vector space W, Hom(U ⊗V, W) is isomorphic to the collection of
bilinear maps from U×V to W. Informally, U⊗V consists of finite linear combinations
of symbols u⊗ v, where u ∈ U and v ∈ V. It is assumed that these symbols satisfy the
following identities:

(u1 + u2)⊗ v− u1 ⊗ v− u2 ⊗ v = 0 ,

u⊗ (v1 + v2)− u⊗ v1 − u⊗ v2 = 0 ,

α(u⊗ v)− (αu)⊗ v = 0 ,

α(u⊗ v)− u⊗ (αv) = 0 ,

for all u, u1, u2 ∈ U, v, v1, v2 ∈ V and α ∈ R. These identities simply say that the map

⊗ : U ×V → U ⊗V, (u, v) �→ u⊗ v ,

is a bilinear map. The image of this map spans U ⊗V.

Definition 1. Let U and V be two vector spaces. Tensor product is a vector space U ⊗ V
together with a bilinear map ⊗ : U × V → U ⊗ V, (u, v) �→ u⊗ v such that given any
vector space W and any bilinear map b : U × V → W, there is a unique linear map
b̄ : U ⊗V → W with b̄(u⊗ v) = b(u, v). That is, the following diagram commutes:

U ⊗V

U ×V W

b̄

b

⊗
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For us, the most useful property of the tensor product of finite dimensional vector
spaces is the following property:

Hom(V, W) ∼= V∗ ⊗W .

Indeed, the following map is an isomorphism of vector spaces:

F : V∗ ⊗W → Hom(V, W), F(v∗ ⊗ w)︸ ︷︷ ︸
an element of Hom(V, W)

(v) = [v∗(v)]︸ ︷︷ ︸
a real number

w .

It is useful to obtain an expression for the inverse of F too. That is, given T ∈
Hom(V, W), we want to find an expression for the corresponding element of V∗ ⊗W.
To this end, let {ei}1≤i≤n be a basis for V and {ei}1≤i≤n denote the corresponding dual
basis. Let {sa}1≤a≤r be a basis for W. Then {ei ⊗ sb} is a basis for V∗ ⊗W. Suppose
∑i,a Ra

i ei ⊗ sa is the element of V∗ ⊗W that corresponds to T. We have

F(∑
i,a

Ra
i ei ⊗ sa) = T =⇒ ∀ u ∈ V ∑

i,a
Ra

i F[ei ⊗ sa](u) = T(u)

=⇒ ∀ u ∈ V ∑
i,a

Ra
i ei(u)sa = T(u) .

In particular, for all 1 ≤ j ≤ n,

T(ej) = ∑
i,a

Ra
i ei(ej)︸ ︷︷ ︸

δi
j

sa = ∑
a

Ra
j sa .

That is, Ra
i is the entry in the ath row and ith column of the matrix of the linear

transformation T.
• Let V be an n-dimensional vector space. A density on V is a function μ : V × . . .×V︸ ︷︷ ︸

n copies

→

R with the property that

μ(Tv1, . . . , Tvn) = |detT|μ(v1, . . . , vn) ,

for all T ∈ Hom(V, V).
We denote the collection of all densities on V by D(V). It can be shown that D(V) is a
one dimensional vector space under the obvious vector space operations. Indeed, if
(e1, . . . , en) is a basis for V, then each element μ ∈ D(V) is uniquely determined by
its value at (e1, . . . , en) because for any (v1, . . . , vn) ∈ V×n, we have μ(v1, . . . , vn) =
|detT|μ(e1, . . . , en) where T : V → V is the linear transformation defined by T(ei) = vi
for all 1 ≤ i ≤ n. Thus

F : D(V)→ R, F(μ) = μ(e1, . . . , en) ,

will be an isomorphism of vector spaces.
Moreover, if ω ∈ Λn(V) where Λn(V) is the collection of all alternating covariant
n-tensors, then |ω| belongs to D(V). Thus, if ω is any nonzero element of Λn(V), then
{|ω|} will be a basis for D(V) ([19], p. 428).

4. Review of Some Results from Analysis and Topology

4.1. Euclidean Space

Let Ω be a nonempty open set in Rn and m ∈ N0. Here is a list of several useful
function spaces on Ω:
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C(Ω) = { f : Ω → R : f is continuous}
Cm(Ω) = { f : Ω → R : ∀ |α| ≤ m ∂α f ∈ C(Ω)} (C0(Ω) = C(Ω))

BC(Ω) = { f : Ω → R : f is continuous and bounded on Ω}
BCm(Ω) = { f ∈ Cm(Ω) : ∀ |α| ≤ m ∂α f is bounded on Ω}
BC(Ω̄) = { f : Ω → R : f ∈ BC(Ω) and f is uniformly continuous on Ω}
BCm(Ω̄) = { f : Ω → R : f ∈ BCm(Ω), ∀ |α| ≤ m ∂α f is uniformly continuous on Ω}
C∞(Ω) =

⋂
m∈N0

Cm(Ω), BC∞(Ω) =
⋂

m∈N0

BCm(Ω), BC∞(Ω̄) =
⋂

m∈N0

BCm(Ω̄)

Remark 1 ([1]). If g : Ω → R is in BC(Ω̄), then it possesses a unique, bounded, continuous
extension to the closure Ω̄ of Ω.

Notation: Let Ω be a nonempty open set in Rn. The collection of all compact sets in Ω is
denoted by K(Ω). If f : Ω → R is a function, the support of f is denoted by supp f . Notice
that, in some references supp f is defined as the closure of {x ∈ Ω : f (x) �= 0} in Ω, while
in certain other references it is defined as the closure of {x ∈ Ω : f (x) �= 0} in Rn. Of
course, if we are concerned with functions whose support is inside an element of K(Ω),
then the two definitions agree. For the sake of definiteness, in this manuscript we always
use the former interpretation of support. Furthermore, support of a distribution will be
discussed in Section 6.

Remark 2. IfF (Ω) is any function space on Ω and K ∈ K(Ω), thenFK(Ω) denotes the collection
of elements in F (Ω) whose support is inside K. Furthermore,

Fc(Ω) = Fcomp(Ω) =
⋃

K∈K(Ω)

FK(Ω) .

Let 0 < λ ≤ 1. A function F : Ω ⊆ Rn → Rk is called λ-Holder continuous if there
exists a constant L such that

|F(x)− F(y)| ≤ L|x− y|λ ∀ x, y ∈ Ω .

Clearly, a λ-Holder continuous function on Ω is uniformly continuous on Ω. 1-Holder
continuous functions are also called Lipschitz continuous functions or simply Lipschitz
functions. We define

BCm,λ(Ω) = { f : Ω → R : ∀ |α| ≤ m ∂α f is λ-Holder continuous and bounded}
= { f ∈ BCm(Ω) : ∀ |α| ≤ m ∂α f is λ-Holder continuous}
= { f ∈ BCm(Ω̄) : ∀ |α| ≤ m ∂α f is λ-Holder continuous}

and BC∞,λ(Ω) :=
⋂

m∈N0
BCm,λ(Ω).

Remark 3. Let F : Ω ⊆ Rn → Rk (F = (F1, · · · , Fk)). Then

F is Lipschitz ⇐⇒ ∀ 1 ≤ i ≤ k Fi is Lipschitz .

Indeed, for each i

|Fi(x)− Fi(y)| ≤

√√√√ k

∑
j=1
|Fj(x)− Fj(y)|2 = |F(x)− F(y)| ≤ L|x− y| ,
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which shows that if F is Lipschitz so will be its components. Furthermore, if for each i, there exists
Li such that

|Fi(x)− Fi(y)| ≤ Li|x− y| ,
then

k

∑
j=1
|Fj(x)− Fj(y)|2 ≤ nL2|x− y|2 ,

where L = max {L1, · · · , Lk}. This proves that if each component of F is Lipschitz so is F itself.

Theorem 1 ([20]). Let Ω be a nonempty open set in Rn and let K ∈ K(Ω). There is a function
ψ ∈ C∞

c (Ω) taking values in [0, 1] such that ψ = 1 on a neighborhood of K.

Theorem 2 (Exhaustion by Compact Sets [20]). Let Ω be a nonempty open subset of Rn. There
exists a sequence of compact subsets (Kj)j∈N such that ∪j∈NK̊j = Ω and

K1 ⊆ K̊2 ⊆ K2 ⊆ · · · ⊆ K̊j ⊆ Kj ⊆ · · · .

Moreover, as a direct consequence, if K is any compact subset of the open set Ω, then there exists an
open set V such that K ⊆ V ⊆ V̄ ⊆ Ω.

Theorem 3 ([20]). Let Ω be a nonempty open subset of Rn. Let {Kj}j∈N be an exhaustion of Ω by
compact sets. Define

V0 = K̊4, ∀ j ∈ N Vj = K̊j+4 \ Kj .

Then

(1) Each Vj is an open bounded set and Ω = ∪jVj;
(2) The cover {Vj}j∈N0 is locally finite in Ω, that is, each compact subset of Ω has nonempty

intersection with only a finite number of the Vj’s;
(3) There is a family of functions ψj ∈ C∞

c (Ω) taking values in [0, 1] such that supp ψj ⊆ Vj and

∑
j∈N0

ψj(x) = 1 for all x ∈ Ω .

Theorem 4 ([21], p. 74). Suppose Ω is an open set in Rn and G : Ω → G(Ω) ⊆ Rn is a
C1-diffeomorphism (i.e., G and G−1 are both C1 maps). If f is a Lebesgue measurable function on
G(Ω), then f ◦ G is Lebesgue measurable on Ω. If f ≥ 0 or f ∈ L1(G(Ω)), then∫

G(Ω)
f (x)dx =

∫
Ω

f ◦ G(x)|detG′(x)|dx .

Theorem 5 ([21], p. 79). If f is a nonnegative measurable function on Rn such that f (x) = g(|x|)
for some function g on (0, ∞), then∫

f (x)dx = σ(Sn−1)
∫ ∞

0
g(r)rn−1dr ,

where σ(Sn−1) is the surface area of (n− 1)-sphere.

Theorem 6 ([22], Section 12.11). Suppose U is an open set in Rn and f : U → R is differentiable.
Let x and y be two points in U and suppose the line segment joining x and y is contained in U.
Then there exists a point z on the line joining x to y such that

f (y)− f (x) = ∇ f (z).(y− x) .

As a consequence, if U is convex and all first order partial derivatives of f are bounded, then f is
Lipschitz on U.
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Warning: Suppose f ∈ BC∞(U). By the above item, if U is convex, then f is Lipschitz.
However, if U is not convex, then f is not necessarily Lipschitz. For example, let U =
∪∞

n=0(n, n + 1) and define

f : U → R, f (x) = (−1)n, ∀ x ∈ (n, n + 1) .

Clearly, all derivatives of U are equal to zero, so f ∈ BC∞(U). However, f is not uniformly
continuous and thus it is not Lipschitz. Indeed, for any 1 > δ > 0, we can let x = 2− δ/4
and y = 2 + δ/4. Clearly |x− y| < δ, however, | f (x)− f (y)| = 2.

Of course, if f ∈ C1
c (U), then f can be extended by zero to a function in C1

c (Rn). Since
Rn is convex, we may conclude that the extension by zero of f is Lipschitz which implies
that f : U → R is Lipschitz. As a consequence, C1

c (U) ⊆ BC0,1(U) and C∞
c (U) ⊆ BC∞,1(U).

Furthermore, Theorem 60 and the following theorem provide useful information regarding
this issue.

Theorem 7. Let U ⊆ Rn and V ⊆ Rk be two nonempty open sets and let T : U → V (T =
(T1, . . . , Tk)) be a C1 map (that is, for each 1 ≤ i ≤ k, Ti ∈ C1(U)). Suppose B ⊆ U is a bounded
set such that B ⊆ B̄ ⊆ U. Then T : B → V is Lipschitz.

Proof. By Remark 3 it is enough to show that each Ti is Lipschitz on B. Fix a function
ϕ ∈ C∞

c (Rn) such that ϕ = 1 on B̄ and ϕ = 0 on Rn \U. Then ϕTi can be viewed as an
element of C1

c (Rn). Therefore, it is Lipschitz (Rn is convex) and there exists a constant L,
which may depend on ϕ, B and Ti, such that

|ϕTi(x)− ϕTi(y)| ≤ L|x− y| ∀ x, y ∈ Rn .

Since ϕ = 1 on B̄, it follows that

|Ti(x)− Ti(y)| ≤ L|x− y| ∀ x, y ∈ B .

4.2. Normed Spaces

Theorem 8. Let X and Y be normed spaces. Let A be a dense subspace of X and B be a dense
subspace of Y. Then

• A× B is dense in X×Y;
• If T : A× B → R is a continuous bilinear map, then T has a unique extension to a continuous

bilinear operator T̃ : X×Y → R.

Theorem 9 ([1]). Let X be a normed space and let M be a closed vector subspace of X.

(1) If X is reflexive, then X is a Banach space.
(2) X is reflexive if and only if X∗ is reflexive.
(3) If X∗ is separable, then X is separable.
(4) If X is reflexive and separable, then so is X∗.
(5) If X is a reflexive Banach space, then so is M.
(6) If X is a separable Banach space, then so is M.

Moreover, if X1, . . . , Xr are reflexive Banach spaces, then X1 × . . .× Xr equipped with the norm

‖(x1, . . . , xr)‖ = ‖x1‖X1 + . . . + ‖xr‖Xr

is also a reflexive Banach space.
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4.3. Topological Vector Spaces

There are different, generally nonequivalent, ways to define topological vector spaces.
The conventions in this section mainly follow Rudin’s functional analysis [23]. Statements
in this section are either taken from Rudin’s functional analysis, Grubb’s distributions and
operators [20], excellent presentation of Reus [24], and Treves’ topological vector spaces [25]
or are direct consequences of statements in the aforementioned references. Therefore we
will not give the proofs.

Definition 2. A topological vector space is a vector space X together with a topology τ with the
following properties:

(i) For all x ∈ X, the singleton {x} is a closed set.
(ii) The maps

(x, y) �→ x + y (from X× X into X) ,

(λ, x) �→ λx (from R× X into X) ,

are continuous where X× X and R× X are equipped with the product topology.

Definition 3. Suppose (X, τ) is a topological vector space and Y ⊆ X.

• Y is said to be convex if for all y1, y2 ∈ Y and t ∈ (0, 1) it is true that ty1 + (1− t)y2 ∈ Y.
• Y is said to be balanced if for all y ∈ Y and |λ| ≤ 1 it holds that λy ∈ Y. In particular, any

balanced set contains the origin.
• We say Y is bounded if for any neighborhood U of the origin (i.e., any open set containing the

origin), there exits t > 0 such that Y ⊆ tU.

Theorem 10 (Important Properties of Topological Vector Spaces).

• Every topological vector space is Hausdorff.
• If (X, τ) is a topological vector space, then

(1) For all a ∈ X: E ∈ τ ⇐⇒ a + E ∈ τ (that is, τ is translation invariant);
(2) For all λ ∈ R \ {0}: E ∈ τ ⇐⇒ λE ∈ τ (that is, τ is scale invariant);
(3) If A ⊆ X is convex and x ∈ X, then so is A + x;
(4) If {Ai}i∈I is a family of convex subsets of X, then ∩i∈I Ai is convex.

Note: Some authors do not include condition (i) in the definition of topological vector
spaces. In that case, a topological vector space will not necessarily be Hausdorff.

Definition 4. Let (X, τ) be a topological space.

• A collection B ⊆ τ is said to be a basis for τ, if every element of τ is a union of elements in B.
• Let p ∈ X. If γ ⊆ τ is such that each element of γ contains p and every neighborhood of p

(i.e., every open set containing p) contains at least one element of γ, then we say γ is a local

base at p. If X is a vector space, then the local base γ is said to be convex if each element of γ
is a convex set.

• (X, τ) is called first-countable if each point has a countable local base.
• (X, τ) is called second-countable if there is a countable basis for τ.

Theorem 11. Let (X, τ) be a topological space and suppose for all x ∈ X, γx is a local base at x.
Then B = ∪x∈Xγx is a basis for τ.

Theorem 12. Let X be a vector space and suppose τ is a translation invariant topology on X. Then
for all x1, x2 ∈ X, the collection γx1 is a local base at x1 if and only if the collection {A + (x2 −
x1)}A∈γx1

is a local base at x2.
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Remark 4. Let X be a vector space and suppose τ is a translation invariant topology on X. As a
direct consequence of the previous theorems the topology τ is uniquely determined by giving a local
base γx0 at some point x0 ∈ X.

Definition 5. Let (X, τ) be a topological vector space. X is said to be metrizable if there exists a
metric d : X × X → [0, ∞) whose induced topology is τ. In this case we say that the metric d is
compatible with the topology τ.

Theorem 13. Let (X, τ) be a topological vector space.

• X is metrizable ⇐⇒ there exists a metric d on X such that for all x ∈ X, {B(x, 1
n )}n∈N is a

local base at x.
• A metric d on X is compatible with τ ⇐⇒ for all x ∈ X, {B(x, 1

n )}n∈N is a local base at x.

(B(x, 1
n ) is the open ball of radius 1

n centered at x).

Definition 6. Let X be a vector space and d be a metric on X. d is said to be translation invariant
provided that

∀ x, y, a ∈ X d(x + a, y + a) = d(x, y) .

Remark 5. Let (X, τ) be a topological vector space and suppose d is a translation invariant metric
on X. Then the following statements are equivalent:

(1) For all x ∈ X, {B(x, 1
n )}n∈N is a local base at x.

(2) There exists x0 ∈ X such that {B(x0, 1
n )}n∈N is a local base at x0.

Therefore, d is compatible with τ if and only if {B(0, 1
n )}n∈N is a local base at the origin.

Theorem 14. Let (X, τ) be a topological vector space. Then (X, τ) is metrizable if and only if
it has a countable local base at the origin. Moreover, if (X, τ) is metrizable, then one can find a
translation invariant metric that is compatible with τ.

Definition 7. Let (X, τ) be a topological vector space and let {xn} be a sequence in X.

• We say that {xn} converges to a point x ∈ X provided that

∀U ∈ τ, x ∈ U ∃N ∀ n ≥ N xn ∈ U .

• We say that {xn} is a Cauchy sequence provided that

∀U ∈ τ, 0 ∈ U ∃N ∀m, n ≥ N xn − xm ∈ U .

Theorem 15. Let (X, τ) be a topological vector space, {xn} be a sequence in X, and x, y ∈ X.
Additionally, suppose γ is a local base at the origin. The following statements are equivalent:

(1) xn → x;
(2) (xn − x)→ 0;
(3) xn + y → x + y;
(4) ∀V ∈ γ ∃N ∀ n ≥ N xn − x ∈ V.

Moreover, {xn} is a Cauchy sequence if and only if

∀V ∈ γ ∃N ∀ n, m ≥ N xn − xm ∈ V .

Remark 6. In contrast with properties like continuity of a function and convergence of a sequence
which depend only on the topology of the space, the property of being a Cauchy sequence is not a
topological property. Indeed, it is easy to construct examples of two metrics d1 and d2 on a vector
space X that induce the same topology (i.e., the metrics are equivalent) but have different collection
of Cauchy sequences. However, it can be shown that if d1 and d2 are two translation invariant
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metrics that induce the same topology on X, then the Cauchy sequences of (X, d1) will be exactly
the same as the Cauchy sequences of (X, d2).

Theorem 16. Let (X, τ) be a metrizable topological vector space and d be a translation invariant
metric on X that is compatible with τ. Let {xn} be a sequence in X. The following statements are
equivalent:

(1) {xn} is a Cauchy sequence in the topological vector space (X, τ).
(2) {xn} is a Cauchy sequence in the metric space (X, d).

Definition 8. Let (X, τ) be a topological vector space. We say (X, τ) is locally convex if it has a
convex local base at the origin.

Note that, as a consequence of Theorems 10 and 12, the following statements are
equivalent:

(1) (X, τ) is a locally convex topological vector space.
(2) There exists p ∈ X with a convex local base at p.
(3) For every p ∈ X there exists a convex local base at p.

Definition 9. Let (X, τ) be a metrizable locally convex topological vector space. Let d be a
translation invariant metric on X that is compatible with τ. We say that X is complete if and
only if the metric space (X, d) is a complete metric space. A complete metrizable locally convex
topological vector space is called a Frechet space.

Remark 7. Our previous remark about Cauchy sequences shows that the above definition of
completeness is independent of the chosen translation invariant metric d. Indeed one can show that
the locally convex topological vector space (X, τ) is complete in the above sense if and only if every
Cauchy net in (X, τ) is convergent.

Theorem 17 ([26], p. 63). A linear continuous bijective mapping of a Frechet space X onto a
Frechet space Y has a continuous linear inverse.

Definition 10. A seminorm on a vector space X is a real-valued function p : X → R such that

(i) ∀ x, y ∈ X p(x + y) ≤ p(x) + p(y)
(ii) ∀ x ∈ X ∀ α ∈ R p(αx) = |α|p(x)

If P is a family of seminorms on X, then we say P is separating provided that for all x �= 0 there
exists at least one p ∈ P such that p(x) �= 0 (that is, if p(x) = 0 for all p ∈ P , then x = 0).

Remark 8. It follows from conditions (i) and (ii) that if p : X → R is a seminorm, then p(x) ≥ 0
for all x ∈ X.

Theorem 18. Suppose P is a separating family of seminorms on a vector space X. For all p ∈ P
and n ∈ N let

V(p, n) := {x ∈ X : p(x) <
1
n
} .

Furthermore, let γ be the collection of all finite intersections of V(p, n)’s. That is,

A ∈ γ ⇐⇒ ∃k ∈ N, ∃p1, . . . , pk ∈ P , ∃n1, . . . , nk ∈ N such that A = ∩k
i=1V(pi, ni)

Then each element of γ is a convex balanced subset of X. Moreover, there exists a unique topology τ
on X that satisfies both of the following properties:

(1) τ is translation invariant (that is, if U ∈ τ and a ∈ X, then a + U ∈ τ).
(2) γ is a local base at the origin for τ.

This unique topology is called the natural topology induced by the family of seminorms P .
Furthermore, if X is equipped with the natural topology τ, then
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(i) (X, τ) is a locally convex topological vector space,
(ii) every p ∈ P is a continuous function from X to R.

Theorem 19. Suppose P is a separating family of seminorms on a vector space X. Let τ be the
natural topology induced by P . Then

(1) τ is the smallest topology on X that is translation invariant and with respect to which every
p ∈ P is continuous,

(2) τ is the smallest topology on X with respect to which addition is continuous and every p ∈ P
is continuous.

Theorem 20. Let X and Y be two vector spaces and suppose P and Q are two separating families
of seminorms on X and Y, respectively. Equip X and Y with the corresponding natural topologies.

(1) A sequence xn converges to x in X if and only if for all p ∈ P , p(xn − x)→ 0.
(2) A linear operator T : X → Y is continuous if and only if

∀ q ∈ Q ∃ c > 0, k ∈ N, p1, . . . , pk ∈ P such that ∀ x ∈ X |q ◦ T(x)| ≤ c max
1≤i≤k

pi(x) .

(3) A linear operator T : X → R is continuous if and only if

∃ c > 0, k ∈ N, p1, . . . , pk ∈ P such that ∀ x ∈ X |T(x)| ≤ c max
1≤i≤k

pi(x) .

Theorem 21. Let X be a Frechet space and let Y be a topological vector space. When T is a linear
map of X into Y, the following two properties are equivalent:

(1) T is continuous.
(2) xn → 0 in X =⇒ Txn → 0 in Y.

Theorem 22. Let P = {pk}k∈N be a countable separating family of seminorms on a vector space
X. Let τ be the corresponding natural topology. Then the locally convex topological vector space
(X, τ) is metrizable and the following translation invariant metric on X is compatible with τ:

d(x, y) =
∞

∑
k=1

1
2k

pk(x− y)
1 + pk(x− y)

.

Let (X, τ) be a locally convex topological vector space. Consider the topological dual
of X,

X∗ := { f : X → R : f is linear and continuous} .

There are several ways to topologize X∗: the weak∗ topology, the topology of convex
compact convergence, the topology of compact convergence, and the strong topology
(see [25], Chapter 19). Here we describe the weak∗ topology and the strong topology on X∗.

Definition 11. Let (X, τ) be a locally convex topological vector space.

• The weak∗ topology on X∗ is the natural topology induced by the separating family of
seminorms {px}x∈X where

∀ x ∈ X px : X∗ → R, px( f ) := | f (x)| .

A sequence { fm} converges to f in X∗ with respect to the weak∗ topology if and only if
fm(x)→ f (x) in R for all x ∈ X.

• The strong topology on X∗ is the natural topology induced by the separating family of
seminorms {pB}B⊆Xbounded where for any bounded subset B of X

pB : X∗ → R pB( f ) := sup{| f (x)| : x ∈ B} .
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(It can be shown that for any bounded subset B of X and f ∈ X∗, f (B) is a bounded subset
of R.)

Remark 9.

(1) If X is a normed space, then the topology induced by the norm

∀ f ∈ X∗ ‖ f ‖op = sup
‖x‖X=1

| f (x)|

on X∗ is the same as the strong topology on X∗ ([25], p. 198).
(2) In this manuscript, we always consider the topological dual of a locally convex topological

vector space with the strong topology. Of course, it is worth mentioning that for many of
the spaces that we will consider (including X = E(Ω) or X = D(Ω) where Ω is an open
subset of Rn) a sequence in X∗ converges with respect to the weak∗ topology if and only if it
converges with respect to the strong topology (for more details on this see the definition and
properties of Montel spaces in Section 34.4, page 356 of [25]).

The following theorem, which is easy to prove, will later be used in the proof of
completeness of Sobolev spaces of sections of vector bundles.

Theorem 23 ([24], p. 160). If X and Y are topological vector spaces and I : X → Y and
P : Y → X are continuous linear maps such that P ◦ I = idX, then I : X → I(X) ⊆ Y is a linear
topological isomorphism and I(X) is closed in Y.

Now we briefly review the relationship between the dual of a product of topological
vector spaces and the product of the dual spaces. This will play an important role in our
discussion of local representations of distributions in vector bundles in later sections.

Let X1, . . . , Xr be topological vector spaces. Recall that the product topology on
X1 × . . .× Xr is the smallest topology such that the projection maps

πk : X1 × . . .× Xr → Xk, πk(x1, . . . , xr) = xk ,

are continuous for all 1 ≤ k ≤ r. It can be shown that if each Xk is a locally convex
topological vector space whose topology is induced by a family of seminorms Pk, then
X1 × . . .× Xr equipped with the product topology is a locally convex topological vector
space whose topology is induced by the following family of seminorms

{p1 ◦ π1 + . . . + pr ◦ πr : pk ∈ Pk ∀ 1 ≤ k ≤ r} .

Theorem 24 ([24], p. 164). Let X1, . . . , Xr be locally convex topological vector spaces. Equip
X1 × . . .× Xr and X∗1 × . . .× X∗r with the product topology. The mapping L̃ : X∗1 × . . .× X∗r →
(X1 × . . .× Xr)∗ defined by

L̃(u1, . . . , ur) = u1 ◦ π1 + . . . + ur ◦ πr

is a linear topological isomorphism. Its inverse is

L(v) = (v ◦ i1, . . . , v ◦ ir) ,

where for all 1 ≤ k ≤ r, ik : Xk → X1 × . . .× Xr is defined by

ik(z) = (0, . . . , 0, z︸︷︷︸
kth position

, 0, . . . , 0) .

The notion of adjoint operator, which frequently appears in the future sections, is
introduced in the following theorem.
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Theorem 25 ([24], p. 163). Let X and Y be locally convex topological vector spaces and suppose
T : X → Y is a continuous linear map. Then

(1) The map
T∗ : Y∗ → X∗ 〈T∗y, x〉X∗×X = 〈y, Tx〉Y∗×Y ,

is well-defined, linear, and continuous. (T∗ is called the adjoint of T).
(2) If T(X) is dense in Y, then T∗ : Y∗ → X∗ is injective.

Remark 10. In the subsequent sections we will focus heavily on certain function spaces on domains
Ω in the Euclidean space. For approximation purposes, it is always desirable to have D(Ω)(=
C∞

c (Ω)) as a dense subspace of our function spaces. However, there is another, may be more
profound, reason for being interested in having D(Ω) as a dense subspace. It is important to
note that we would like to use the term “function spaces” for topological vector spaces that can be
continuously embedded in D′(Ω) (see Section 6 for the definition of D′(Ω)) so that concepts such
as differentiation will be meaningful for the elements of our function spaces. Given a function space
A(Ω) it is usually helpful to consider its dual too. In order to be able to view the dual of A(Ω) as a
function space we need to ensure that [A(Ω)]∗ can be viewed as a subspace of D′(Ω). To this end,
according to the above theorem, it is enough to ensure that the identity map from D(Ω) to A(Ω) is
continuous with dense image in A(Ω).

Let us consider more closely two special cases of Theorem 25.

(1) Suppose Y is a normed space and H is a dense subspace of Y. Clearly, the identity
map i : H → Y is continuous with dense image. Therefore, i∗ : Y∗ → H∗ (F �→ F|H) is
continuous and injective. Furthermore, by the Hahn–Banach theorem for all ϕ ∈ H∗

there exists F ∈ Y∗ such that F|H = ϕ and ‖F‖Y∗ = ‖ϕ‖H∗ . So the above map
is indeed bijective and Y∗ and H∗ are isometrically isomorphic. As an important
example, let Ω be a nonempty open set in Rn, s ≥ 0, and 1 < p < ∞. Consider
the space Ws,p

0 (Ω) (see Section 7 for the definition of Ws,p
0 (Ω)). C∞

c (Ω) is a dense
subspace of Ws,p

0 (Ω). Therefore, W−s,p′(Ω) := [Ws,p
0 (Ω)]∗ is isometrically isomorphic

to [(C∞
c (Ω), ‖.‖s,p)]∗. In particular, if F ∈ W−s,p′(Ω), then

‖F‖W−s,p′ (Ω)
= sup

0 �≡ψ∈C∞
c (Ω)

|F(ψ)|
‖ψ‖s,p

.

(2) Suppose (Y, ‖.‖Y) is a normed space, (X, τ) is a locally convex topological vector
space, X ⊆ Y, and the identity map i : (X, τ) → (Y, ‖.‖Y) is continuous with dense
image. So i∗ : Y∗ → X∗ (F �→ F|X) is continuous and injective and can be used to
identify Y∗ with a subspace of X∗.

• Question: Exactly what elements of X∗ are in the image of i∗? That is, which
elements of X∗ “belong to” Y∗?

• Answer: ϕ ∈ X∗ belongs to the image of i∗ if and only if ϕ : (X, ‖.‖Y) →
R is continuous, that is, ϕ ∈ X∗ belongs to the image of i∗ if and only if
supx∈X\{0}

|ϕ(x)|
‖x‖Y

< ∞.

So, an element ϕ ∈ X∗ can be considered as an element of Y∗ if and only if

sup
x∈X\{0}

|ϕ(x)|
‖x‖Y

< ∞ .

Furthermore, if we denote the unique corresponding element in Y∗ by ϕ̃ (normally
we identify ϕ and ϕ̃ and we use the same notation for both) then since X is dense in Y

‖ϕ̃‖Y∗ = sup
y∈Y\{0}

|ϕ̃(y)|
‖y‖Y

= sup
x∈X\{0}

|ϕ(x)|
‖x‖Y

< ∞ .
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Remark 11. To sum up, given an element ϕ ∈ X∗ in order to show that ϕ can be considered
as an element of Y∗ we just need to show that supx∈X\{0}

|ϕ(x)|
‖x‖Y

< ∞ and in that case,

norm of ϕ as an element of Y∗ is supx∈X\{0}
|ϕ(x)|
‖x‖Y

. However, it is important to notice that
if F : Y → R is a linear map, X is a dense subspace of Y, and F|X : (X, ‖.‖Y) → R is
bounded, that does NOT imply that F ∈ Y∗. It just shows that there exists G ∈ Y∗ such that
G|X = F|X.

We conclude this section by a quick review of the inductive limit topology.

Definition 12. Let X be a vector space and let {Xα}α∈I be a family of vector subspaces of X with
the property that

• For each α ∈ I, Xα is equipped with a topology that makes it a locally convex topological vector
space, and

•
⋃

α∈I Xα = X.

The inductive limit topology on X with respect to the family {Xα}α∈I is defined to be the largest
topology with respect to which

(1) X is a locally convex topological vector space;
(2) All the inclusions Xα ⊆ X are continuous.

Theorem 26 ([24], p. 161). Let X be a vector space equipped with the inductive limit topology
with respect to {Xα} as described above. If Y is a locally convex vector space, then a linear map
T : X → Y is continuous if and only if T|Xα : Xα → Y is continuous for all α ∈ I.

Theorem 27 ([24], p. 162). Let X be a vector space equipped with the inductive limit topology
with respect to {Xα} as described above. A convex subset W of X is a neighborhood of the origin
(i.e., an open set containing the origin) in X if and only if for all α, the set W ∩ Xα is a neighborhood
of the origin in Xα.

Theorem 28 ([24], p. 165). Let X be a vector space and let {Xj}j∈N0 be a nested family of vector
subspaces of X:

X0 � X1 � . . . � Xj � . . . .

Suppose each Xj is equipped with a topology that makes it a locally convex topological vector space.
Equip X with the inductive limit topology with respect to {Xj}. Then the following topologies on
X×r are equivalent (=they are the same):

(1) The product topology;
(2) The inductive limit topology with respect to the family {X×r

j } (For each j, X×r
j is equipped

with the product topology).

As a consequence, if Y is a locally convex vector space, then a linear map T : X×r → Y is continuous
if and only if T|X×r

j
: X×r

j → Y is continuous for all j ∈ N0.

5. Review of Some Results from Differential Geometry

The main purpose of this section is to set the notation and terminology straight. To
this end we cite the definitions of several basic terms and a number of basic properties that
we will frequently use. The main reference for the majority of the definitions is one of the
invaluable books by John M. Lee [19].

5.1. Smooth Manifolds

Suppose M is a topological space. We say that M is a topological manifold of dimen-
sion n if it is Hausdorff, second-countable, and locally Euclidean in the sense that each
point of M has a neighborhood that is homeomorphic to an open subset of Rn. It is easy to
see that the following statements are equivalent ([19], p. 3):
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(1) Each point of M has a neighborhood that is homeomorphic to an open subset of Rn.
(2) Each point of M has a neighborhood that is homeomorphic to an open ball in Rn.
(3) Each point of M has a neighborhood that is homeomorphic to Rn.

By a coordinate chart (or just chart) on M we mean a pair (U, ϕ), where U is an open
subset of M and ϕ : U → Û is a homeomorphism from U to an open subset Û = ϕ(U) ⊆ Rn.
U is called a coordinate domain or a coordinate neighborhood of each of its points and ϕ
is called a coordinate map. An atlas for M is a collection of charts whose domains cover
M. Two charts (U, ϕ) and (V, ψ) are said to be smoothly compatible if either U ∩V = ∅
or the transition map ψ ◦ ϕ−1 is a C∞-diffeomorphism. An atlas A is called a smooth

atlas if any two charts in A are smoothly compatible with each other. A smooth atlas
A on M is maximal if it is not properly contained in any larger smooth atlas. A smooth

structure on M is a maximal smooth atlas. A smooth manifold is a pair (M,A), where M
is a topological manifold and A is a smooth structure on M. Any chart (U, ϕ) contained
in the given maximal smooth atlas is called a smooth chart. If M and N are two smooth
manifolds, a map F : M → N is said to be a smooth (C∞) map if for every p ∈ M, there
exist smooth charts (U, ϕ) containing p and (V, ψ) containing F(p) such that F(U) ⊆ V
and ψ ◦ F ◦ ϕ−1 ∈ C∞(ϕ(U)). It can be shown that if F is smooth, then its restriction to
every open subset of M is smooth. Furthermore, if every p ∈ M has a neighborhood U
such that F|U is smooth, then F is smooth.

Remark 12.

• Sometimes we use the shorthand notation Mn to indicate that M is n-dimensional.
• Clearly, if (U, ϕ) is a chart in a maximal smooth atlas and V is an open subset of U, then

(V, ψ) where ψ = ϕ|V is also a smooth chart (i.e., it belongs to the same maximal atlas).
• Every smooth atlasA for M is contained in a unique maximal smooth atlas, called the smooth

structure determined by A.
• If M is a compact smooth manifold, then there exists a smooth atlas with finitely many

elements that determines the smooth structure of M (this is immediate from the definition of
compactness).

Definition 13.

• We say that a smooth atlas for a smooth manifold M is a geometrically Lipschitz (GL)
smooth atlas if the image of each coordinate domain in the atlas under the corresponding
coordinate map is a nonempty bounded open set with Lipschitz boundary.

• We say that a smooth atlas for a smooth manifold Mn is a generalized geometrically
Lipschitz (GGL) smooth atlas if the image of each coordinate domain in the atlas under
the corresponding coordinate map is the entire Rn or a nonempty bounded open set with
Lipschitz boundary.

• We say that a smooth atlas for a smooth manifold Mn is a nice smooth atlas if the image of
each coordinate domain in the atlas under the corresponding coordinate map is a ball in Rn.

• We say that a smooth atlas for a smooth manifold Mn is a super nice smooth atlas if the image
of each coordinate domain in the atlas under the corresponding coordinate map is the entire Rn.

• We say that two smooth atlases {(Uα, ϕα)}α∈I and {(Ũβ, ϕ̃β)}β∈J for a smooth manifold
Mn are geometrically Lipschitz compatible (GLC) smooth atlases provided that each atlas
is GGL and moreover for all α ∈ I and β ∈ J with Uα ∩ Ũβ �= ∅, ϕα(Uα ∩ Ũβ) and
ϕ̃β(Uα ∩ Ũβ) are nonempty bounded open sets with Lipschitz boundary or the entire Rn.

Clearly, every super nice smooth atlas is also a GGL smooth atlas; every nice smooth
atlas is also a GL smooth atlas, and every GL smooth atlas is also a GGL smooth atlas.
Furthermore, note that two arbitrary GL smooth atlases are not necessarily GLC smooth
atlases because the intersection of two Lipschitz domains is not necessarily Lipschitz (see,
e.g., [27], pp. 115–117).

Given a smooth atlas {(Uα, ϕα)} for a compact smooth manifold M, it is not necessarily
possible to construct a new atlas {(Uα, ϕ̃α)} such that this new atlas is nice; for instance if
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Uα is not connected we cannot find ϕ̃α such that ϕ̃α(Uα) = Rn (or any ball in Rn). However,
as the following lemma states, it is always possible to find a refinement that is nice.

Lemma 1. Suppose {(Uα, ϕα)}1≤α≤N is a smooth atlas for a compact smooth manifold M. Then
there exists a finite open cover {Vβ}1≤β≤L of M such that

∀ β ∃1 ≤ α(β) ≤ N s.t. Vβ ⊆ Uα(β), ϕα(β)(Vβ) is a ball in Rn .

Therefore, {(Vβ, ϕα(β)|Vβ
)}1≤β≤L is a nice smooth atlas.

Proof. For each 1 ≤ α ≤ N and p ∈ Uα, there exists rαp > 0 such that Brαp(ϕα(p)) ⊆
ϕα(Uα). Let Vαp := ϕ−1

α (Brαp(ϕα(p))).
⋃

1≤α≤N
⋃

p∈Uα
Vαp is an open cover of M and so it

has a finite subcover {Vα1 p1 , . . . , VαL pL}. Let Vβ = Vαβ pβ
. Clearly, Vβ ⊆ Uαβ

and ϕαβ
(Vβ) is

a ball in Rn.

Remark 13. Every open ball in Rn is C∞-diffeomorphic to Rn. Furthermore, compositions of
diffeomorphisms is a diffeomorphism. Therefore, existence of a finite nice smooth atlas on a compact
smooth manifold, which is guaranteed by the above lemma, implies the existence of a finite super
nice smooth atlas.

Lemma 2. Let M be a compact smooth manifold. Let {Uα}1≤α≤N be an open cover of M. Suppose
C is a closed set in M (so C is compact) which is contained in Uβ for some 1 ≤ β ≤ N. Then there
exists an open cover {Aα}1≤α≤N of M such that C ⊆ Aβ ⊆ Āβ ⊆ Uβ and Aα ⊆ Āα ⊆ Uα for all
α �= β.

Proof. Without loss of generality we may assume that β = 1. For each 1 ≤ α ≤ N and
p ∈ Uα, there exists rαp > 0 such that B2rαp(ϕα(p)) ⊆ ϕα(Uα). Let Vαp := ϕ−1

α (Brαp(ϕα(p))).
Clearly, p ∈ Vαp ⊆ V̄αp ⊆ Uα. Since M is compact, the open cover

⋃
1≤α≤N

⋃
p∈Uα

Vαp of M
has a finite subcover A. For each 1 ≤ α ≤ N let Eα = {p ∈ Uα : Vαp ∈ A} and

I1 = {α : Eα �= ∅} .

If α ∈ I1, we let Wα =
⋃

p∈Eα
Vαp. For α �∈ I1 choose one point p ∈ Uα and let Wα = Vαp.

C is compact so ϕ1(C) is a compact set inside the open set ϕ1(U1). Therefore, there exists
an open set B such that

ϕ1(C) ⊆ B ⊆ B̄ ⊆ ϕ1(U1) .

Let W = ϕ−1
1 (B). Clearly, C ⊆ W ⊆ W̄ ⊆ Uα. Now Let

A1 = W
⋃

W1 ,

Aα = Wα ∀α > 1 .

Clearly, A1 contains W which contains C. Furthermore, union of Aα’s contains⋃N
α=1

⋃
p∈Eα

Vαp which is equal to M. Closure of a union of sets is a subset of the union of
closures of those sets. Therefore, for each α, Āα ⊆ Uα.

Theorem 29 (Exhaustion by Compact Sets for Manifolds). Let M be a smooth manifold. There
exists a sequence of compact subsets (Kj)j∈N such that ∪j∈NK̊j = M, K̊j+1 \ Kj �= ∅ for all j and

K1 ⊆ K̊2 ⊆ K2 ⊆ . . . ⊆ K̊j ⊆ Kj ⊆ . . . .

Definition 14. A C∞ partition of unity on a smooth manifold is a collection of nonnegative C∞

functions {ψα : M → R}α∈A such that

(i) The collection of supports, {supp ψα}α∈A is locally finite in the sense that every point in M
has a neighborhood that intersects only finitely many of the sets in {supp ψα}α∈A.

265



Mathematics 2022, 10, 522

(ii) ∑α∈A ψα = 1.

Given an open cover {Uα}α∈A of M, we say that a partition of unity {ψα}α∈A is subordinate to the
open cover {Uα}α∈A if supp ψα ⊆ Uα for every α ∈ A.

Theorem 30 ([28], p. 146). Let M be a compact smooth manifold and {Uα}α∈A an open cover of
M. There exists a C∞ partition of unity {ψα}α∈A subordinate to {Uα}α∈A (notice that the index
sets are the same).

Theorem 31 ([28], p. 347). Let {Uα}α∈A be an open cover of a smooth manifold M.

(i) There is a C∞ partition of unity {ϕk}∞
k=1 with every ϕk having compact support such that

for each k, supp ϕk ⊆ Uα for some α ∈ A.
(ii) If we do not require compact support, then there is a C∞ partition of unity {ψα}α∈A subordi-

nate to {Uα}α∈A.

Remark 14. Let M be a compact smooth manifold. Suppose {Uα}α∈A is an open cover of M and
{ψα}α∈A is a partition of unity subordiante to {Uα}α∈A.

◦ For all m ∈ N, {ψ̃α = ψm
α

∑α∈A ψm
α
} is another partition of unity subordinate to {Uα}α∈A.

◦ If {Vβ}β∈B is an open cover of M and {ξβ} is a partition of unity subordinate to
{Vβ}β∈B, then {ψαξβ}(α,β)∈A×B is a partition of unity subordinate to the open cover
{Uα ∩Vβ}(α,β)∈A×B.

Lemma 3. Let M be a compact smooth manifold. Suppose {Uα}1≤α≤N is an open cover of M.
Suppose C is a closed set in M (so C is compact) which is contained in Uβ for some 1 ≤ β ≤ N.
Then there exists a partition of unity {ψα}1≤α≤N subordinate to {Uα}1≤α≤N such that ψβ = 1
on C.

Proof. We follow the argument in [29]. Without loss of generality we may assume β = 1.
We can construct a partition of unity with the desired property as follows: Let Aα be a
collection of open sets that covers M and such that C ⊆ A1 ⊆ Ā1 ⊆ U1 and for α > 1,
Aα ⊆ Āα ⊆ Uα (see Lemma 2). Let ηα ∈ C∞

c (Uα) be such that 0 ≤ ηα ≤ 1 and ηα = 1
on a neighborhood of Āα. Of course ∑N

α=1 ηα is not necessarily equal to 1 for all x ∈ M.
However, if we define ψ1 = η1 and for α > 1

ψα = ηα(1− η1) . . . (1− ηα−1) ,

by induction one can easily show that for 1 ≤ l ≤ N

1−
l

∑
α=1

ψα = (1− η1) . . . (1− ηl) .

In particular,

1−
N

∑
α=1

ψα = (1− η1) . . . (1− ηN) = 0 ,

since for each x ∈ M there exists α such that x ∈ Aα and so ηα(x) = 1. Consequently,
∑N

α=1 ψα = 1.

5.2. Vector Bundles, Basic Definitions

Let M be a smooth manifold. A (smooth real) vector bundle of rank r over M is a
smooth manifold E together with a surjective smooth map π : E → M such that

(1) For each x ∈ M, Ex = π−1(x) is an r-dimensional (real) vector space;
(2) For each x ∈ M, there exists a neighborhood U of x in M and a smooth map ρ =

(ρ1, . . . , ρr) from E|U := π−1(U) onto Rr such that
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• For every x ∈ U, ρ|Ex : Ex → Rr is an isomorphism of vector spaces,
• Φ = (π|EU , ρ) : EU → U ×Rr is a diffeomorphism.

We denote the projection onto the last r components by π′. So π′ ◦ Φ = ρ. The
expressions “E is a vector bundle over M”, or “E → M is a vector bundle”, or “π : E → M
is a vector bundle” are all considered to be equivalent in this manuscript.

If π : E → M is a vector bundle of rank r, U is an open set in M, ρ : EU = π−1(U)→
Rr and Φ = (π|EU , ρ) : EU → U ×Rr satisfy the properties stated in item (2), then we refer
to both Φ : EU → U ×Rr and ρ : EU → Rr as a (smooth) local trivialization of E over U
(it will be clear from the context which one we are referring to). We say that E|U is trivial.
The pair (U, ρ) (or (U, Φ)) is sometimes called a vector bundle chart. It is easy to see that
if (U, ρ) is a vector bundle chart and ∅ �= V ⊆ U is open, then (V, ρ|EV ) is also a vector
bundle chart for E. Moreover, if V is any nonempty open subset of M, then EV is a vector
bundle over the manifold V. We say that a triple (U, ϕ, ρ) is a total trivialization triple

of the vector bundle π : E → M provided that (U, ϕ) is a smooth coordinate chart and
ρ = (ρ1, · · · , ρr) : EU → Rr is a trivialization of E over U. A collection {(Uα, ϕα, ρα)} is
called a total trivialization atlas for the vector bundle E → M provided that for each α,
(Uα, ϕα, ρα) is a total trivialization triple and {(Uα, ϕα)} is a smooth atlas for M.

Lemma 4 ([19], p. 252). Let π : E → M be a smooth vector bundle of rank r over M. Suppose
Φ : π−1(U)→ U×Rr and Ψ : π−1(V)→ V ×Rr are two smooth local trivializations of E with
U ∩V �= ∅. There exists a smooth map τ : U ∩V → GL(r,R) such that the composition

Φ ◦Ψ−1 : (U ∩V)×Rr → (U ∩V)×Rr

has the form
Φ ◦Ψ−1(p, v) = (p, τ(p)v) .

Remark 15. Let E be a vector bundle over an n-dimensional smooth manifold M. Suppose
{(Uα, ϕα, ρα)}α∈I is a total trivialization atlas for the vector bundle π : E → M. Then for each
α ∈ I, the mapping

EUα = π−1(Uα)→ ϕα(Uα)×Rr ⊆ Rn+r, s �→
(

ϕα(π(s)), ρα(s)
)

will be a coordinate map for the manifold E over the coordinate domain EUα . The collection
{
(
EUα , (ϕα ◦ π, ρα)

)
}α∈I will be a smooth atlas for the manifold E.

The following statements show that any vector bundle has a total trivialization atlas.

Lemma 5 ([30], p. 77). Let E be a vector bundle over an n-dimensional smooth manifold M (M
does not need to be compact). Then M can be covered by n + 1 open sets V0, . . . , Vn where the
restriction E|Vi is trivial.

Theorem 32. Let E be a vector bundle of rank r over an n-dimensional smooth manifold M. Then
E → M has a total trivialization atlas. In particular, if M is compact, then it has a total trivialization
atlas that consists of only finitely many total trivialization triples.

Proof. Let V0, . . . , Vn be an open cover of M such that E is trivial over Vβ with the mapping
ρβ : EVβ

→ Rr. Let {(Uα, ϕα)}α∈I be a smooth atlas for M (if M is compact, the index
set I can be chosen to be finite). For all α ∈ I and 0 ≤ β ≤ n let Wαβ = Uα ∩ Vβ.
Let J = {(α, β) : Wαβ �= ∅}. Clearly, {(Wαβ, ϕαβ, ραβ)}(α,β)∈J where ϕαβ = ϕα|Wαβ

and
ραβ = ρβ|π−1(Wαβ)

is a total trivialization atlas for E → M.
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Definition 15.

• We say that a total trivialization triple (U, ϕ, ρ) is geometrically Lipschitz (GL) provided
that ϕ(U) is a nonempty bounded open set with Lipschitz boundary. A total trivialization
atlas is called geometrically Lipschitz if each of its total trivialization triples is GL.

• We say that a total trivialization triple (U, ϕ, ρ) is nice provided that ϕ(U) is equal to a ball
in Rn. A total trivialization atlas is called nice if each of its total trivialization triples is nice.

• We say that a total trivialization triple (U, ϕ, ρ) is super nice provided that ϕ(U) is equal to
Rn. A total trivialization atlas is called super nice if each of its total trivialization triples is
super nice.

• A total trivialization atlas is called generalized geometrically Lipschitz (GGL) if each of
its total trivialization triples is GL or super nice.

• We say that two total trivialization atlases {(Uα, ϕα, ρα)}α∈I and {(Ũβ, ϕ̃β, ρ̃β)}β∈J are
geometrically Lipschitz compatible (GLC) if the corresponding atlases {(Uα, ϕα)}α∈I
and {(Ũβ, ϕ̃β)}β∈J are GLC.

Theorem 33. Let E be a vector bundle of rank r over an n-dimensional compact smooth manifold
M. Then E has a nice total trivialization atlas (and a super nice total trivialization atlas) that
consists of only finitely many total trivialization triples.

Proof. By Theorem 32, E → M has a finite total trivialization atlas {(Uα, ϕα, ρα)}. By
Lemma 1 (and Remark 13) there exists a finite open cover {Vβ}1≤β≤L of M such that

∀ β ∃1 ≤ α(β) ≤ N s.t. Vβ ⊆ Uα(β), ϕα(β)(Vβ) is a ball in Rn

(or ∀ β ∃1 ≤ α(β) ≤ N s.t. Vβ ⊆ Uα(β), ϕα(β)(Vβ) = Rn) ,

and thus {(Vβ, ϕα(β)|Vβ
)}1≤β≤L is a nice (resp. super nice) smooth atlas. Now, clearly,

{(Vβ, ϕα(β)|Vβ
, ρα(β)|EVβ

)}1≤β≤L is a nice (resp. super nice) total trivialization atlas.

Theorem 34. Let E be a vector bundle of rank r over an n-dimensional compact smooth manifold
M. Then E admits a finite total trivialization atlas that is GL compatible with itself. In fact, there
exists a total trivialization atlas {(Uα, ϕα, ρα)}1≤α≤N such that

• For all 1 ≤ α ≤ N, ϕα(Uα) is bounded with Lipschitz continuous boundary;
• For all 1 ≤ α, β ≤ N, Uα ∩Uβ is either empty or else ϕα(Uα ∩Uβ) and ϕβ(Uα ∩Uβ) are

bounded with Lipschitz continuous boundary.

Proof. The proof of this theorem is based on the argument presented in the proof of
Lemma 3.1 in [31]. Equip M with a smooth Riemannian metric g. Let rinj denote the
injectivity radius of M which is strictly positive because M is compact. Let V0, . . . , Vn be
an open cover of M such that E is trivial over Vβ with the mapping ρβ : EVβ

→ Rr. For
every x ∈ M choose 0 ≤ i(x) ≤ n such that x ∈ Vi(x). For all x ∈ M let rx be a positive

number less than
rinj
2 such that expx(Brx ) ⊆ Vi(x) where Brx denotes the open ball in Tx M

of radius rx (with respect to the inner product induced by the Riemannian metric g) and
expx : Tx M → M denotes the exponential map at x. For every x ∈ M define the normal
coordinate chart centered at x , (Ux, ϕx), as follows:

Ux = expx(Brx ), ϕx := λ−1
x ◦ exp−1

x : Ux → Rn,

where λx : Rn → Tx M is an isomorphism defined by λx(y1, . . . , yn) = yiEix; Here {Eix}n
i=1

is a an arbitrary but fixed orthonormal basis for Tx M. It is well-known that (see, e.g., [32])

• ϕx(x) = (0, . . . , 0);
• gij(x) = δij where gij denotes the components of the metric with respect to the normal

coordinate chart (Ux, ϕx);
• Eix = ∂i|x where {∂i}1≤i≤n is the coordinate basis induced by (Ux, ϕx).
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As a consequence of the previous items, it is easy to show that if X ∈ Tx M (X = Xi∂i|x),
then the Euclidean norm of X will be equal to the norm of X with respect to the metric g,
that is, |X|g = |X|ḡ where

|X|ḡ =
√
(X1)2 + . . . + (Xn)2 |X|g =

√
g(X, X) .

Consequently, for every x ∈ M, ϕx(Ux) will be a ball in the Euclidean space, in particular,
{(Ux, ϕx)}x∈M is a GL atlas. The proof of Lemma 3.1 in [31] in part shows that the atlas
{(Ux, ϕx)}x∈M is GL compatible with itself. Since M is compact there exists x1, . . . , xN ∈ M
such that {Uxj}1≤j≤N also covers M.
Now, clearly, {(Uxj , ϕxj , ρi(xj)

|Uxj
)}1≤j≤N is a total trivialization atlas for E that is GL com-

patible with itself.

Corollary 1. Let E be a vector bundle of rank r over an n-dimensional compact smooth manifold
M. Then E admits a finite super nice total trivialization atlas that is GL compatible with itself.

Proof. Let {(Uα, ϕα, ρα)}1≤α≤N be the total trivialization atlas that was constructed above.
For each α, ϕα(Uα) is a ball in the Euclidean space and so it is diffeomorphic to Rn; let
ξα : ϕα(Uα) → Rn be such a diffeomorphism. We let ϕ̃α := ξα ◦ ϕα : Uα → Rn. A
composition of diffeomorphisms is a diffeomorphism, so for all 1 ≤ α, β ≤ N, ϕ̃α ◦ ϕ̃−1

β :
ϕ̃β(Uα ∩ Uβ) → ϕ̃α(Uα ∩ Uβ) is a diffeomorphism. So {(Uα, ϕ̃α, ρα)}1≤α≤N is clearly a
smooth super nice total trivialization atlas. Moreover, if 1 ≤ α, β ≤ N are such that Uα ∩Uβ

is nonempty, then ϕ̃α(Uα ∩Uβ) is Rn or a bounded open set with Lipschitz continuous
boundary. The reason is that ϕ̃α = ξα ◦ ϕα, and ϕα(Uα ∩Uβ) is Rn or Lipschitz, ξα is a
diffeomorphism and being equal to Rn or Lipschitz is a property that is preserved under
diffeomorphisms. Therefore, {(Uα, ϕ̃α, ρα)}1≤α≤N is a finite super nice total trivialization
atlas that is GL compatible with itself.

A section of E is a map u : M → E such that π ◦ u = IdM. The collection of all sections
of E is denoted by Γ(M, E). A section u ∈ Γ(M, E) is said to be smooth if it is smooth
as a map from the smooth manifold M to the smooth manifold E. The collection of all
smooth sections of E → M is denoted by C∞(M, E). Note that if {(Uα, ϕα, ρα)}α∈I is a total
trivialization atlas for the vector bundle π : E → M of rank r, then for u ∈ Γ(M, E) we
have u ∈ C∞(M, E) if and only if for all α ∈ I, the local representation of u with respect to
the coordinate charts (Uα, ϕα) and

(
EUα , (ϕα ◦ π, ρα)

)
is smooth, that is,

u ∈ C∞(M, E)⇐⇒ ∀ α ∈ I x �→
(

ϕα ◦ π ◦ u ◦ ϕ−1
α , ρα ◦ u ◦ ϕ−1

α

)
is smooth

⇐⇒ ∀ α ∈ I x �→
(
x, ρα ◦ u ◦ ϕ−1

α

)
is smooth

⇐⇒ ∀ α ∈ I x �→ ρα ◦ u ◦ ϕ−1
α is smooth

⇐⇒ ∀ α ∈ I, ∀1 ≤ l ≤ r ρl
α ◦ u ◦ ϕ−1

α ∈ C∞(ϕα(Uα)) .

A local section of E over an open set U ⊆ M is a map u : U → E where u has the
property that π ◦ u = IdU (that is, u is a section of the vector bundle EU → U). We denote
the collection of all local sections on U by Γ(U, E) or Γ(U, EU).

Remark 16. As a consequence of ρ|Ex : Ex → Rr being an isomorphism, if u is a section of
E|U → U and f : U → R is a function, then ρ( f u) = f ρ(u). In particular, ρ(0) = 0.

Given a total trivialization triple (U, ϕ, ρ) we have the following commutative dia-
gram:
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E|U ϕ(U)×R

U ϕ(U) ⊆ Rn

(ϕ◦π,ρj)

π π̃

ϕ

If s is a section of E|U → U, then by definition the pushforward of s by ρj (the jth
component of ρ) is a section of ϕ(U)×R→ ϕ(U) which is defined by

ρ
j
∗(s) = ρj ◦ s ◦ ϕ−1 (i.e., z ∈ ϕ(U) �→ (z, ρj ◦ s ◦ ϕ−1(z))) .

Let E → M be a vector bundle of rank r and U ⊆ M be an open set. A (smooth) local

frame for E over U is an ordered r-tuple (s1, . . . , sr) of (smooth) local sections over U such
that for each x ∈ U, (s1(x), . . . , sr(x)) is a basis for Ex. Given any vector bundle chart (V, ρ),
we can define the associated (smooth) local frame on V as follows:

∀ 1 ≤ l ≤ r ∀ x ∈ V sl(x) = ρ|−1
Ex

(el) ,

where (e1, · · · , er) is the standard basis of Rr. The following theorem states the converse of
this observation is also true.

Theorem 35 ([19], p. 258). Let E → M be a vector bundle of rank r and let (s1, . . . , sr) be a
smooth local frame over an open set U ⊆ M. Then (U, ρ) is a vector bundle chart where the map
ρ : EU → Rr is defined by

∀ x ∈ U, ∀u ∈ Ex ρ(u) = u1e1 + . . . + urer ,

where u = u1s1(x) + . . . + ursr(x).

Theorem 36 ([19], p. 260). Let E → M be a vector bundle of rank r and let (s1, . . . , sr) be a
smooth local frame over an open set U ⊆ M. If f ∈ Γ(M, E), then f is smooth on U if and only if
its component functions with respect to (s1, . . . , sr) are smooth.

A (smooth) fiber metric on a vector bundle E is a (smooth) function which assigns to
each x ∈ M an inner product

〈., .〉E : Ex × Ex → R .

Note that the smoothness of the fiber metric means that for all u, v ∈ C∞(M, E) the mapping

M → R, x �→ 〈u(x), v(x)〉E

is smooth. One can show that every (smooth) vector bundle can be equipped with a
(smooth) fiber metric ([33], p. 72).

Remark 17. If (M, g) is a Riemannian manifold, then g can be viewed as a fiber metric on the
tangent bundle. The metric g induces fiber metrics on all tensor bundles; it can be shown that ([32])
if (M, g) is a Riemannian manifold, then there exists a unique inner product on each fiber of Tk

l (M)

with the property that for all x ∈ M, if {ei} is an orthonormal basis of Tx M with dual basis {ηi},
then the corresponding basis of Tk

l (Tx M) is orthonormal. We denote this inner product by 〈., .〉F
and the corresponding norm by |.|F. If A and B are two tensor fields, then with respect to any local
coordinate system

〈A, B〉F = gi1r1 . . . gikrk gj1s1 . . . gjl sl Aj1...jl
i1...ik

Bs1...sl
r1...rk .

Theorem 37. Let π : E → M be a vector bundle with rank r equipped with a fiber metric 〈., .〉E.
Then given any total trivialization triple (U, ϕ, ρ), there exists a smooth map ρ̃ : EU → Rr such
that with respect to the new total trivialization triple (U, ϕ, ρ̃) the fiber metric trivializes on U,
that is,
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∀ x ∈ U ∀ u, v ∈ Ex 〈u, v〉E = u1v1 + . . . + urvr ,

where for each 1 ≤ l ≤ r, ul and vl denote the lth components of u and v, respectively, (with respect
to the local frame associated with the bundle chart (U, ρ̃)).

Proof. Let (t1, . . . , tr) be the local frame on U associated with the vector bundle chart (U, ρ).
That is,

∀ x ∈ U, ∀1 ≤ l ≤ r tl(x) = ρ|−1
Ex

(el) .

Now, we apply the Gram–Schmidt algorithm to the local frame (t1, . . . , tr) to construct an
orthonormal frame (s1, . . . , sr) where

∀ 1 ≤ l ≤ r sl =
tl −∑l−1

j=1〈tl , sj〉Esj

|tl −∑l−1
j=1〈tl , sj〉Esj|

.

sl : U → E is smooth because

(1) Smooth local sections over U form a module over the ring C∞(U);
(2) The function x �→ 〈tl(x), sj(x)〉E from U to R is smooth;
(3) Since Span{s1, . . . , sl−1} = Span{t1, . . . , tl−1}, tl −∑l−1

j=1〈tl , sj〉Esj is nonzero on U and

x �→ |tl(x)−∑l−1
j=1〈tl(x), sj(x)〉Esj(x)| as a function from U to R is nonzero on U and

it is a composition of smooth functions.

Thus, for each l, sl is a linear combination of elements of the C∞(U)-module of smooth
local sections over U, and so it is a smooth local section over U. Now, we let (U, ρ̃) be the
associated vector bundle chart described in Theorem 35. For all x ∈ U and for all u, v ∈ Ex
we have

〈u, v〉E = 〈ulsl , vjsj〉E = ulvj〈sl , sj〉E = ulvjδl j = u1v1 + . . . + urvr .

Corollary 2. As a consequence of Theorem 37, Theorem 34, and Theorem 33 every vector bundle
on a compact manifold equipped with a fiber metric admits a nice finite total trivialization atlas (and
a super nice finite total trivialization atlas and a finite total trivialization atlas that is GL compatible
with itself) such that the fiber metric is trivialized with respect to each total trivialization triple in
the atlas.

5.3. Standard Total Trivialization Triples

Let Mn be a smooth manifold and π : E → M be a vector bundle of rank r. For certain
vector bundles there are standard methods to associate with any given smooth coordinate
chart (U, ϕ = (xi)) a total trivialization triple (U, ϕ, ρ). We call such a total trivialization
triple the standard total trivialization associated with (U, ϕ). Usually this is done by first
associating with (U, ϕ) a local frame for EU and then applying Theorem 35 to construct a
total trivialization triple.

• E = Tk
l (M): The collection of the following tensor fields on U forms a local frame for

EU associated with (U, ϕ = (xi)).

∂

∂xi1
⊗ . . .⊗ ∂

∂xil
⊗ dxj1 ⊗ . . .⊗ dxjk .

So, given any atlas {(Uα, ϕα)} of a manifold Mn, there is a corresponding total trivial-
ization atlas for the tensor bundle Tk

l (M), namely {(Uα, ϕα, ρα)} where for each α, ρα

has nk+l components which we denote by (ρα)
j1...jl
i1...ik

. For all F ∈ Γ(M, Tk
l (M)), we have
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(ρα)
j1...jl
i1...ik

(F) = (Fα)
j1...jl
i1...ik

.

Here (Fα)
j1...jl
i1...ik

denotes the components of F with respect to the standard frame for

Tk
l Uα described above. When there is no possibility of confusion, we may write Fj1...jl

i1...ik

instead of (Fα)
j1...jl
i1...ik

.

• E = Λk(M): This is the bundle whose fiber over each x ∈ M consists of alternating
covariant tensors of order k. The collection of the following forms on U form a local
frame for EU associated with (U, ϕ = (xi))

dxj1 ∧ . . . ∧ dxjk ((j1, . . . , jk) is increasing).

• E = D(M) (the density bundle): The density bundle over M is the vector bundle
whose fiber over each x ∈ M is D(Tx M). More precisely, if we let

D(M) = �
x∈M

D(Tx M) ,

then D(M) is a smooth vector bundle of rank 1 over M ([19], p. 429). Indeed, for
every smooth chart (U, ϕ = (xi)), |dx1 ∧ . . . ∧ dxn| on U is a local frame for D(M)|U .
We denote the corresponding trivialization by ρD,ϕ, that is, given μ ∈ D(Ty M), there
exists a number a such that

μ = a(|dx1 ∧ . . . ∧ dxn|y)

and ρD,ϕ sends μ to a. Sometimes we write D instead of D(M) if M is clear from
the context. Furthermore, when there is no possibility of confusion we may write ρD
instead of ρD,ϕ.

Remark 18 (Integration of densities on manifolds). Elements of Cc(M,D) can be integrated
over M. Indeed, for μ ∈ Cc(M,D) we may consider two cases

• Case 1: There exists a smooth chart (U, ϕ) such that suppμ ⊆ U.∫
M

μ :=
∫

ϕ(U)
ρD,ϕ ◦ μ ◦ ϕ−1 dV .

• Case 2: If μ is an arbitrary element of Cc(M,D), then we consider a smooth atlas
{(Uα, ϕα)}α∈I and a partition of unity {ψα}α∈I subordinate to {Uα} and we let∫

M
μ := ∑

α∈I

∫
M

ψαμ .

It can be shown that the above definitions are independent of the choices (charts and partition of
unity) involved ([19], pp. 431–432).

5.4. Constructing New Bundles from Old Ones
5.4.1. Hom Bundle, Dual Bundle, Functional Dual Bundle

• The construction Hom(., .) can be applied fiberwise to a pair of vector bundles E and
Ẽ over a manifold M to give a new vector bundle denoted by Hom(E, Ẽ). The fiber
of Hom(E, Ẽ) at any given point p ∈ M is the vector space Hom(Ep, Ẽp). Clearly, if
rank E = r and rank Ẽ = r̃, then rank Hom(E, Ẽ) = rr̃.
If {(Uα, ϕα, ρα)} and {(Uα, ϕα, ρ̃α)} are total trivialization atlases for the vector bundles
π : E → M and π̃ : Ẽ → M, respectively, then {Uα, ϕα, ρ̂α} will be a total trivialization
atlas for πHom : Hom(E, Ẽ) → M where ρ̂α : π−1

Hom(Uα) → Hom(Rr,Rr̃) ∼= Rrr̃ is
defined as follows: for p ∈ Uα, Ap ∈ Hom(Ep, Ẽp) is mapped to [ρ̃α|Ẽp

] ◦ A ◦ [ρα|Ep ]
−1.
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• Let π : E → M be a vector bundle. The dual bundle E∗ is defined by E∗ =
Hom(E, Ẽ = M×R).

• Let π : E → M be a vector bundle and let D denote the density bundle of M.
The functional dual bundle E∨ is defined by E∨ = Hom(E,D) (see [24]). Let us
describe explicitly what the standard total trivialization triples of this bundle are. Let
(U, ϕ, ρ) be a total trivialization triple for E. We can associate with this triple the total
trivialization triple (U, ϕ, ρ∨) for E∨ where ρ∨ : E∨U → Rr is defined as follows: for
p ∈ U, Lp ∈ Hom(Ep,Dp) is mapped to ρD,ϕ ◦ Lp ◦ (ρ|Ep)

−1 ∈ (Rr)∗  Rr. Note that
(Rr)∗  Rr under the following isomorphism

(Rr)∗ → Rr, u �→ u(e1)e1 + . . . + u(er)er .

That is, u as an element of Rr is the vector whose components are (u(e1), . . . , u(er)).
In particular, if z = z1e1 + . . . + zrer is an arbitrary vector in Rr, then

u(z) = u(z1e1 + . . . + zrer) = z1u(e1) + . . . + zru(er) = z · u ,

where on the LHS u is viewed as an element of (Rr)∗ and on the RHS u is viewed as
an element of Rr.
In short, ρ∨ : E∨U → Rr is given by

∀ 1 ≤ l ≤ r (ρ∨)l(Lp) =
(
ρD,ϕ ◦ Lp ◦ (ρ|Ep)

−1)(el) .

5.4.2. Tensor Product of Bundles

Let π : E → M and π̃ : Ẽ → M be two vector bundles. Then E⊗ Ẽ is a new vector
bundle whose fiber at p ∈ M is Ep ⊗ Ẽp. If {(Uα, ϕα, ρα)} and {(Uα, ϕα, ρ̃α)} are total
trivialization atlases for the vector bundles π : E → M and π̃ : Ẽ → M, respectively,
then {(Uα, ϕα, ρ̂α))} will be a total trivialization atlas for πtensor : E ⊗ Ẽ → M where
ρ̂α : π−1

tensor(Uα)→ (Rr ⊗Rr̃) ∼= Rrr̃ is defined as follows: for p ∈ Uα, ap ⊗ ãp ∈ Ep ⊗ Ẽp is
mapped to ρα|Ep(ap)⊗ ρ̃α|Ẽp

(ãp).

It can be shown that Hom(E, Ẽ) ∼= E∗ ⊗ Ẽ (isomorphism of vector bundles over M).

Remark 19 (Fiber Metric on Tensor Product). Consider the inner product spaces (U, 〈., .〉U)
and (V, 〈., .〉V). We can turn the tensor product of U and V, U ⊗V into an inner product space
by defining

〈u1 ⊗ v1, u2 ⊗ v2〉U⊗V = 〈u1, u2〉U〈v1, v2〉V ,

and extending by linearity. As a consequence, if E is a vector bundle (on a Riemannian manifold
(M, g)) equipped with a fiber metric 〈., .〉E, then there is a natural fiber metric on the bundle
(T∗M)⊗k and subsequently on the bundle (T∗M)⊗k ⊗ E. If F = Fa

i1...ik
dxi1 ⊗ . . .⊗ dxik ⊗ sa and

G = Gb
j1...jk

dxj1 ⊗ . . .⊗ dxjk ⊗ sb are two local sections of this bundle on a domain U of a total
trivialization triple, then at any point in U we have

〈F, G〉(T∗M)⊗k⊗E = Fa
i1···ik Gb

j1...jk 〈dxi1 , dxj1〉T∗M . . . 〈dxik , dxjk 〉T∗M〈sa, sb〉E
= gi1 j1 . . . gik jk habFa

i1...ik Gb
j1...jk ,

where hab := 〈sa, sb〉E (here {sa = ρ−1(ea)}1≤a≤r is a local frame for E over U.{ea}1≤a≤r is the
standard basis for Rr where r = rank E).

5.5. Connection on Vector Bundles, Covariant Derivative
5.5.1. Basic Definitions

Let π : E → M be a vector bundle.

Definition 16. A connection in E is a map
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∇ : C∞(M, TM)× C∞(M, E)→ C∞(M, E), (X, u) �→ ∇Xu

satisfying the following properties:

(1) ∇Xu is linear over C∞(M) in X

∀ f , g ∈ C∞(M) ∇ f X1+gX2 u = f∇X1 u + g∇X2 u .

(2) ∇Xu is linear over R in u:

∀ a, b ∈ R ∇X(au1 + bu2) = a∇Xu1 + b∇Xu2 .

(3) ∇ satisfies the following product rule

∀ f ∈ C∞(M) ∇X( f u) = f∇Xu + (X f )u .

A metric connection in a real vector bundle E with a fiber metric is a connection ∇ such that

∀X ∈ C∞(M, TM), ∀ u, v ∈ C∞(M, E) X〈u, v〉E = 〈∇Xu, v〉E + 〈u,∇Xv〉E .

Here is a list of useful facts about connections:

• ([34], p. 183) Using a partition of unity, one can show that any real vector bundle with
a smooth fiber metric admits a metric connection;

• ([19], p. 50) If ∇ is a connection in a bundle E, X ∈ C∞(M, TM), u ∈ C∞(M, E), and
p ∈ M, then ∇Xu|p depends only on the values of u in a neighborhood of p and the
value of X at p. More precisely, if u = ũ on a neighborhood of p and Xp = X̃p, then
∇Xu|p = ∇X̃ ũ|p;

• ([19], p. 53) If ∇ is a connection in TM, then there exists a unique connection in
each tensor bundle Tk

l (M), also denoted by ∇, such that the following conditions
are satisfied:

(1) On the tangent bundle, ∇ agrees with the given connection.
(2) On T0(M), ∇ is given by ordinary differentiation of functions, that is, for all

real-valued smooth functions f : M → R: ∇X f = X f .
(3) ∇X(F⊗ G) = (∇X F)⊗ G + F⊗ (∇XG).
(4) If tr denotes the trace on any pair of indices, then ∇X(trF) = tr(∇X F).

This connection satisfies the following additional property: for any T ∈ C∞(M, Tk
l (M)),

vector fields Yi, and differential 1-forms ω j,

(∇XT)(ω1, . . . ,ωl , Y1, . . . , Yk) = X(T(ω1, . . . , ωl , Y1, . . . , Yk))

−
l

∑
j=1

T(ω1, . . . ,∇Xω j, . . . , ωl , Y1, . . . , Yk)

−
k

∑
i=1

T(ω1, . . . , ωl , Y1, . . . ,∇XYi, . . . , Yk) .

Definition 17. Let ∇ be a connection in π : E → M. We define the corresponding covariant
derivative on E, also denoted ∇, as follows

∇ : C∞(M, E)→ C∞(M, Hom(TM, E)) ∼= C∞(M, T∗M⊗ E), u �→ ∇u

where for all p ∈ M, ∇u(p) : Tp M → Ep is defined by

Xp �→ ∇Xu|p ,

where X on the RHS is any smooth vector field whose value at p is Xp.
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Remark 20. Let ∇ be a connection in TM. As it was discussed ∇ induces a connection in any
tensor bundle E = Tk

l (M), also denoted by ∇. Some authors (including Lee in [19], p. 53) define
the corresponding covariant derivative on E = Tk

l (M) as follows:

∇ : C∞(M, Tk
l (M))→ C∞(M, Tk+1

l (M)), F �→ ∇F

where
∇F(ω1, . . . , ωl , Y1, . . . , Yk, X) = (∇X F)(ω1, . . . , ωl , Y1, . . . , Yk) .

This definition agrees with the previous definition of covariant derivative that we had for general
vector bundles because

T∗M⊗ Tk
l M ∼= T∗M⊗ T∗M⊗ . . .⊗ T∗M︸ ︷︷ ︸

k factors

⊗ TM⊗ . . .⊗ TM︸ ︷︷ ︸
l factors

∼= Tk+1
l M .

Therefore,

C∞(M, Hom(TM, Tk
l M)) ∼= C∞(M, T∗M⊗ Tk

l M) ∼= C∞(M, Tk+1
l M) .

More concretely, we have the following one-to-one correspondence between
C∞(M, Hom(TM, Tk

l M)) and C∞(M, Tk+1
l M):

(1) Given u ∈ C∞(M, Tk+1
l M), the corresponding element ũ ∈ C∞(M, Hom(TM, Tk

l M)) is given by

∀ p ∈ M ũ(p) : Tp M → Tk
l (Tp M), X �→ u(p)(. . . , . . . , X) .

(2) Given ũ ∈ C∞(M, Hom(TM, Tk
l M)), the corresponding element u ∈ C∞(M, Tk+1

l M) is
given by

∀ p ∈ M u(p)(ω1, . . . , ωl , Y1, . . . , Yk, X) = [ũ(p)(X)](ω1, . . . , ωl , Y1, . . . , Yk) .

5.5.2. Covariant Derivative on Tensor Product of Bundles

If E an Ẽ are vector bundles over M with covariant derivatives ∇E : C∞(M, E) →
C∞(M, T∗M ⊗ E) and ∇Ẽ : C∞(M, Ẽ) → C∞(M, T∗M ⊗ Ẽ), respectively, then there is a
uniquely determined covariant derivative ([14], p. 87)

∇E⊗Ẽ : C∞(M, E⊗ Ẽ)→ C∞(M, T∗M⊗ E⊗ Ẽ)

such that
∇E⊗Ẽ(u⊗ ũ) = ∇Eu⊗ ũ +∇Ẽũ⊗ u .

The above sum makes sense because of the following isomorphisms:

(T∗M⊗ E)⊗ Ẽ ∼= T∗M⊗ E⊗ Ẽ ∼= T∗M⊗ Ẽ⊗ E ∼= (T∗M⊗ Ẽ)⊗ E .

Remark 21. Recall that for tensor fields covariant derivative can be considered as a map from
C∞(M, Tk

l M) → C∞(M, Tk+1
l M). Using this, we can give a second description of covariant

derivative on E⊗ Ẽ when E = Tk
l M. In this new description we have

∇Tk
l M⊗Ẽ : C∞(M, Tk

l M⊗ Ẽ)→ C∞(M, Tk+1
l M⊗ Ẽ) .

Indeed, for F ∈ C∞(M, Tk
l M) and u ∈ C∞(M, Ẽ)

∇Tk
l M⊗Ẽ(F⊗ u) = (∇Tk

l MF)︸ ︷︷ ︸
Tk+1

l M

⊗u + F︸︷︷︸
Tk

l M

⊗ ∇Ẽu︸︷︷︸
T∗M⊗Ẽ︸ ︷︷ ︸

Tk+1
l M⊗Ẽ

.
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In particular, if f ∈ C∞(M) and u ∈ C∞(M, E) we have ∇E( f u) ∈ C∞(M, T∗M⊗ E) and it is
equal to

∇E( f u) = d f ⊗ u + f∇Eu .

5.5.3. Higher Order Covariant Derivatives

Let π : E → M be a vector bundle. Let∇E be a connection in E and∇ be a connection
in TM which induces a connection in T∗M. We have the following chain

C∞(M, E) ∇E
−→ C∞(M, T∗M⊗ E) ∇T∗M⊗E

−−−−→ C∞(M, (T∗M)⊗2 ⊗ E) ∇(T∗M)⊗2⊗E
−−−−−−→

· · · ∇
(T∗M)⊗(k−1)⊗E

−−−−−−−−→ C∞(M, (T∗M)⊗k ⊗ E) ∇(T∗M)⊗k⊗E
−−−−−−→ · · · .

In what follows we denote all the maps in the above chain by ∇E. That is, for any
k ∈ N0 we consider ∇E as a map from C∞(M, (T∗M)⊗k ⊗ E) to C∞(M, (T∗M)⊗(k+1) ⊗ E).
So,

(∇E)k : C∞(M, E)→ C∞(M, (T∗M)⊗k ⊗ E) .

As an example, let us consider (∇E)k( f u) where f ∈ C∞(M) and u ∈ C∞(M, E).
We have

∇E( f u) = d f ⊗ u + f∇Eu .

(∇E)2( f u) = ∇T∗M⊗E[d f ⊗ u + f∇Eu
]

= [∇T∗M(d f )⊗ u + d f ⊗∇Eu] + [d f ⊗∇Eu + f (∇E)2u]

=
2

∑
j=0

(
2
j

)
(∇T∗M)j f ⊗ (∇E)2−ju .

In general, we can show by induction that

(∇E)k( f u) =
k

∑
j=0

(
k
j

)
(∇T∗M)j f ⊗ (∇E)k−ju .

where (∇T∗M)0 = Id. Here (∇T∗M)j f should be interpreted as applying ∇ (in the sense
described in Remark 20) j times; so (∇T∗M)j f at each point is an element of Tj

0M =
(T∗M)⊗j.

5.5.4. Three Useful Rules, Two Important Observations

Let π : E → M and π̃ : Ẽ → M be two vector bundles over M with ranks r and r̃,
respectively. Let ∇ be a connection in TM (which automatically induces a connection in all
tensor bundles), ∇E be a connection in E and ∇Ẽ be a connection in Ẽ. Let (U, ϕ, ρ) be a
total trivialization triple for E.

(1) {∂i = ϕ−1
∗

∂
∂xi }1≤i≤n is a coordinate frame for TM over U.

(2) {sa = ρ−1(ea)}1≤a≤r is a local frame for E over U ({ea}1≤a≤r is the standard basis for
Rr where r = rank E).

(3) Christoffel Symbols for ∇ on (U, ϕ, ρ): ∇∂i
∂j = Γk

ij∂k.

(4) Christoffel Symbols for ∇E on (U, ϕ, ρ): ∇∂i
sa = (ΓE)

b
iasb.

Furthermore, recall that for any 1-form ω,

∇Xω = (Xi∂iωk − XiωjΓ
j
ik)dxk .

Therefore,
∇∂i

dxj = −Γj
ikdxk .
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• Rule 1: For all u ∈ C∞(M, E)

∇Eu = dxi ⊗∇E
∂i

u on U .

The reason is as follows: Recall that for all p ∈ M, ∇Eu(p) ∈ T∗M ⊗ E. Since
{dxi ⊗ sa} is a local frame for T∗M⊗ E on U we have

∇Eu = Ra
i dxi ⊗ sa = dxi ⊗ (Ra

i sa) .

According to what was discussed in the study of the isomorphism Hom(V, W) ∼=
V∗ ⊗W in Section 3 we know that at any point p ∈ M, Ra

i is the element in column i
and row a of the matrix of ∇Eu(p) as an element of Hom(Tp M, Ep). Therefore,

∇E
∂i

u = Ra
i sa .

Consequently, we have ∇Eu = dxi ⊗ (Ra
i sa) = dxi ⊗∇E

∂i
u.

• Rule 2: For all v1 ∈ C∞(M, E) and v2 ∈ C∞(M, Ẽ)

∇E⊗Ẽ
∂j

(v1 ⊗ v2) = (∇E
∂j

v1)⊗ v2 + v1 ⊗ (∇Ẽ
∂j

v2) .

• Rule 3: For all u ∈ C∞(M, E) and f ∈ C∞(M)

∇E( f u) = f∇Eu + d f ⊗ u .

The following two examples are taken from [35].

• Example 1: Let u ∈ C∞(M, E). On U we may write u = uasa. We have

∇Eu = ∇E(uasa)
Rule 3
= ua∇Esa + dua ⊗ sa = ua∇Esa + (∂iuadxi)⊗ sa

Rule 1
= uadxi ⊗∇E

∂i
sa + (∂iuadxi)⊗ sa

= uadxi ⊗
(
(ΓE)

b
iasb
)
+ (∂iuadxi)⊗ sa = dxi ⊗

(
ua(ΓE)

b
iasb
)
+ dxi ⊗ (∂iuasa)

= dxi ⊗
(
ub(ΓE)

a
ibsa
)
+ dxi ⊗ (∂iuasa)

= [∂iua + (ΓE)
a
ibub]dxi ⊗ sa .

That is, ∇Eu = (∇Eu)a
i dxi ⊗ sa where

(∇Eu)a
i = ∂iua + (ΓE)

a
ibub .

• Example 2: Let u ∈ C∞(M, E). On U we may write u = uasa. We have
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(∇E)2u = ∇T∗M⊗E([∂iua + (ΓE)
a
ibub]dxi ⊗ sa

)
Rule 3
= [∂iua + (ΓE)

a
ibub]∇T∗M⊗E(dxi ⊗ sa) + d[∂iua + (ΓE)

a
ibub]⊗ (dxi ⊗ sa)

Rule 1
= [∂iua + (ΓE)

a
ibub]dxj ⊗∇T∗M⊗E

∂j
(dxi ⊗ sa) + d[∂iua + (ΓE)

a
ibub]⊗ (dxi ⊗ sa)

Def. of d
= [∂iua + (ΓE)

a
ibub]dxj ⊗∇T∗M⊗E

∂j
(dxi ⊗ sa) + ∂j[∂iua + (ΓE)

a
ibub]dxj ⊗ dxi ⊗ sa

Rule 2
= [∂iua + (ΓE)

a
ibub]dxj ⊗

[
∇T∗M

∂j
dxi ⊗ sa + dxi ⊗∇E

∂j
sa
]
+ ∂j[∂iua + (ΓE)

a
ibub]dxj ⊗ dxi ⊗ sa

= [∂iua + (ΓE)
a
ibub]dxj ⊗

[
− Γi

jkdxk ⊗ sa + dxi ⊗ (ΓE)
c
jasc
]
+ ∂j[∂iua + (ΓE)

a
ibub]dxj ⊗ dxi ⊗ sa

i ↔ k in the first summand
= [∂kua + (ΓE)

a
kbub]dxj ⊗

[
− Γk

jidxi ⊗ sa + dxk ⊗ (ΓE)
c
jasc
]
+ ∂j[∂iua + (ΓE)

a
ibub]dxj ⊗ dxi ⊗ sa

= {∂j[∂iua + (ΓE)
a
ibub]− Γk

ji[∂kua + (ΓE)
a
kbub]}dxj ⊗ dxi ⊗ sa + [∂kua + (ΓE)

a
kbub](ΓE)

c
jadxj ⊗ dxk ⊗ sc

i ↔ k in the last summand
= {∂j[∂iua + (ΓE)

a
ibub]− Γk

ji[∂kua + (ΓE)
a
kbub]}dxj ⊗ dxi ⊗ sa

+ [∂iua + (ΓE)
a
ibub](ΓE)

c
jadxj ⊗ dxi ⊗ sc

c ↔ a in the last summand
= {∂j[∂iua + (ΓE)

a
ibub]− Γk

ji[∂kua + (ΓE)
a
kbub]}dxj ⊗ dxi ⊗ sa

+ [∂iuc + (ΓE)
c
ibub](ΓE)

a
jcdxj ⊗ dxi ⊗ sa .

Considering the above examples we make the following two useful observations that can
be proved by induction.

• Observation 1: In general (∇E)ku =
(
(∇E)ku

)a
i1...ik

dxi1 ⊗ . . . ⊗ dxik ⊗ sa (1 ≤ a ≤
r, 1 ≤ i1, . . . , ik ≤ n) where ((∇E)ku

)a
i1...ik

◦ ϕ−1 is a linear combination of u1 ◦
ϕ−1, . . . , ur ◦ ϕ−1 and their partial derivatives up to order k and the coefficients are
polynomials in terms of Christoffel symbols (of the linear connection on M and connec-
tion in E) and their derivatives (on a compact manifold these coefficients are uniformly
bounded provided that the metric and the fiber metric are smooth). That is,

((∇E)ku
)a

i1...ik
◦ ϕ−1 = ∑

|η|≤k

r

∑
l=1

Cηl∂
η(ul ◦ ϕ−1) ,

where for each η and l, Cηl is a polynomial in terms of Christoffel symbols (of the
linear connection on M and connection in E) and their derivatives.

• Observation 2: The highest order term in ((∇E)ku
)a

i1...ik
◦ ϕ−1 is ∂

xi1
. . . ∂

xik
(ua ◦ ϕ−1);

that is,

((∇E)ku
)a

i1...ik
◦ ϕ−1 =

∂

∂xi1
. . .

∂

∂xik
(ua ◦ ϕ−1) + . . .

where extra terms contain derivatives of order at most k− 1 of ul ◦ ϕ−1 (1 ≤ l ≤ r):

((∇E)ku
)a

i1...ik
◦ ϕ−1 =

∂k

∂xi1 . . . ∂xik
(ua ◦ ϕ−1) + ∑

|η|<k

r

∑
l=1

Cηl∂
η(ul ◦ ϕ−1) .

6. Some Results from the Theory of Generalized Functions

In this section, we collect some results from the theory of distributions that will be
needed for our definition of function spaces on manifolds. Our main reference for this part
is the exquisite exposition by Marcel De Reus [24].

6.1. Distributions on Domains in Euclidean Space

Let Ω be a nonempty open set in Rn.

(1) Recall that
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• K(Ω) is the collection of all compact subsets of Ω.
• C∞(Ω) = the collection of all infinitely differentiable (real-valued) functions on Ω.
• For all K ∈ K(Ω), C∞

K (Ω) = {ϕ ∈ C∞(Ω) : supp ϕ ⊆ K}.
• C∞

c (Ω) =
⋃

K∈K(Ω) C∞
K (Ω) = {ϕ ∈ C∞(Ω) : supp ϕ is compact in Ω}.

(2) For all ϕ ∈ C∞(Ω), j ∈ N and K ∈ K(Ω) we define

‖ϕ‖j,K := sup{|∂α ϕ(x)| : |α| ≤ j, x ∈ K} .

(3) For all j ∈ N and K ∈ K(Ω), ‖.‖j,K is a seminorm on C∞(Ω). We define E(Ω) to
be C∞(Ω) equipped with the natural topology induced by the separating family of
seminorms {‖.‖j,K}j∈N,K∈K(Ω). It can be shown that E(Ω) is a Frechet space.

(4) For all K ∈ K(Ω) we define EK(Ω) to be C∞
K (Ω) equipped with the subspace topology.

This subspace topology on C∞
K (Ω) is the natural topology induced by the separating

family of seminorms {‖.‖j,K}j∈N. Since C∞
K (Ω) is a closed subset of the Frechet space

E(Ω), EK(Ω) is also a Frechet space.
(5) We define D(Ω) =

⋃
K∈K(Ω) EK(Ω) equipped with the inductive limit topology with

respect to the family of vector subspaces {EK(Ω)}K∈K(Ω). It can be shown that if
{Kj}j∈N0 is an exhaustion by compacts sets of Ω, then the inductive limit topology on
D(Ω) with respect to the family {EKj}j∈N0 is exactly the same as the inductive limit
topology with respect to {EK(Ω)}K∈K(Ω).

Remark 22. Let us mention a trivial but extremely useful consequence of the above description
of the inductive limit topology on D(Ω). Suppose Y is a topological space and the mapping
T : Y → D(Ω) is such that T(Y) ⊆ EK(Ω) for some K ∈ K(Ω). Since EK(Ω) ↪→ D(Ω), if
T : Y → EK(Ω) is continuous, then T : Y → D(Ω) will be continuous.

Theorem 38 (Convergence and Continuity for E(Ω)). Let Ω be a nonempty open set in Rn.
Let Y be a topological vector space whose topology is induced by a separating family of seminormsQ.

(1) A sequence {ϕm} converges to ϕ in E(Ω) if and only if ‖ϕm − ϕ‖j,K → 0 for all j ∈ N and
K ∈ K(Ω).

(2) Suppose T : E(Ω)→ Y is a linear map. Then the following is equivalent

• T is continuous.
• For every q ∈ Q, there exist j ∈ N and K ∈ K(Ω), and C > 0 such that

∀ ϕ ∈ E(Ω) q(T(ϕ)) ≤ C‖ϕ‖j,K .

• If ϕm → 0 in E(Ω), then T(ϕm)→ 0 in Y.

(3) In particular, a linear map T : E(Ω)→ R is continuous if and only if there exist j ∈ N and
K ∈ K(Ω), and C > 0 such that

∀ ϕ ∈ E(Ω) |T(ϕ)| ≤ C‖ϕ‖j,K .

(4) A linear map T : Y → E(Ω) is continuous if and only if

∀ j ∈ N, ∀K ∈ K(Ω) ∃C > 0, k ∈ N , q1, . . . , qk ∈ Q such that ∀ y ‖T(y)‖j,K ≤ C max
1≤i≤k

qi(y) .

Theorem 39 (Convergence and Continuity for EK(Ω)). Let Ω be a nonempty open set in Rn

and K ∈ K(Ω). Let Y be a topological vector space whose topology is induced by a separating
family of seminorms Q.

(1) A sequence {ϕm} converges to ϕ in EK(Ω) if and only if ‖ϕm − ϕ‖j,K → 0 for all j ∈ N.
(2) Suppose T : EK(Ω)→ Y is a linear map. Then the following is equivalent:

• T is continuous.
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• For every q ∈ Q, there exists j ∈ N and C > 0 such that

∀ ϕ ∈ EK(Ω) q(T(ϕ)) ≤ C‖ϕ‖j,K .

• If ϕm → 0 in EK(Ω), then T(ϕm)→ 0 in Y.

Theorem 40 (Convergence and Continuity for D(Ω)). Let Ω be a nonempty open set in Rn.
Let Y be a topological vector space whose topology is induced by a separating family of seminormsQ.

(1) A sequence {ϕm} converges to ϕ in D(Ω) if and only if there is a K ∈ K(Ω) such that
suppϕm ⊆ K and ϕm → ϕ in EK(Ω).

(2) Suppose T : D(Ω)→ Y is a linear map. Then the following is equivalent

• T is continuous.
• For all K ∈ K(Ω), T : EK(Ω)→ Y is continuous.
• For every q ∈ Q and K ∈ K(Ω), there exists j ∈ N and C > 0 such that

∀ ϕ ∈ EK(Ω) q(T(ϕ)) ≤ C‖ϕ‖j,K .

• If ϕm → 0 in D(Ω), then T(ϕm)→ 0 in Y.

(3) In particular, a linear map T : D(Ω)→ R is continuous if and only if for every K ∈ K(Ω),
there exists j ∈ N and C > 0 such that

∀ ϕ ∈ EK(Ω) |T(ϕ)| ≤ C‖ϕ‖j,K .

Remark 23. Let Ω be a nonempty open set in Rn. Here are two immediate consequences of the
previous theorems and remark:

(1) The identity map
iD,E : D(Ω)→ E(Ω)

is continuous (that is, D(Ω) ↪→ E(Ω) ).
(2) If T : E(Ω) → E(Ω) is a continuous linear map such that supp(Tϕ) ⊆ suppϕ for all

ϕ ∈ E(Ω) (i.e., T is a local continuous linear map), then T restricts to a continuous
linear map from D(Ω) to D(Ω). Indeed, the assumption supp(Tϕ) ⊆ suppϕ implies
that T(D(Ω)) ⊆ D(Ω). Moreover, T : D(Ω) → D(Ω) is continuous if and only if for
K ∈ K(Ω) T : EK(Ω) → D(Ω) is continuous. Since T(EK(Ω)) ⊆ EK(Ω), this map is
continuous if and only if T : EK(Ω)→ EK(Ω) is continuous (see Remark 22). However, since
the topology of EK(Ω) is the induced topology from E(Ω), the continuity of the preceding
map follows from the continuity of T : E(Ω)→ E(Ω).

Theorem 41. Let Ω be a nonempty open set in Rn. Let Y be a topological vector space whose
topology is induced by a separating family of seminorms Q. Suppose T : [D(Ω)]×r → Y is a linear
map. The following are equivalent: (product spaces are equipped with the product topology)

(1) T : [D(Ω)]×r → Y is continuous.
(2) For all K ∈ K(Ω), T : [EK(Ω)]×r → Y is continuous.
(3) For all q ∈ Q and K ∈ K(Ω), there exists j1, . . . , jl ∈ N such that

∀ (ϕ1, . . . , ϕr) ∈ [EK(Ω)]×r |q ◦ T(ϕ1, . . . , ϕr)| ≤ C(‖ϕ1‖j1,K + . . . + ‖ϕr‖jr ,K) .

Theorem 42. Let Ω be a nonempty open set in Rn.

(1) A set B ⊆ D(Ω) is bounded if and only if there exists K ∈ K(Ω) such that B is a bounded
subset of EK(Ω) which is in turn equivalent to the following statement:

∀ j ∈ N ∃rj ≥ 0 such that ∀ ϕ ∈ B ‖ϕ‖j,K ≤ rj .

(2) If {ϕm} is a Cauchy sequence in D(Ω), then it converges to a function ϕ ∈ D(Ω). We say
D(Ω) is sequentially complete.
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Remark 24. Topological spaces whose topology is determined by knowing the convergent sequences
and their limits exhibit nice properties and are of particular interest. Let us recall a number of useful
definitions related to this topic:

• Let X be a topological space and let E ⊆ X. The sequential closure of E, denoted scl(E) is
defined as follows:

scl(E) = {x ∈ X : there is a sequence {xn} in E such that xn → x} .

Clearly, scl(E) is contained in the closure if E.
• A topological space X is called a Frechet-Urysohn space if for every E ⊆ X the sequential

closure of E is equal to the closure of E.
• A subset E of a topological space X is said to be sequentially closed if E = scl(E).
• A topological space X is said to be sequential if for every E ⊆ X, E is closed if and only if

E is sequentially closed. If X is a sequential topological space and Y is any topological space,
then a map f : X → Y is continuous if and only if

lim
n→∞

f (xn) = f ( lim
n→∞

xn)

for each convergent sequence {xn} in X.

The following implications hold for a topological space X:

X is metrizable → X is first-countable → X is Frechet-Urysohn → X is sequential

As it was stated, E and EK (For all K ∈ K(Ω)) are Frechet and subsequently they are
metrizable. However, it can be shown that D(Ω) is not first-countable and subsequently it is not
metrizable. In fact, although according to Theorem 40, the elements of the dual of D(Ω) can be
determined by knowing the convergent sequences in D(Ω), it can be proved that D(Ω) is not
sequential.

Definition 18. Let Ω be a nonempty open set in Rn. The topological dual of D(Ω), denoted D′(Ω)
(D′(Ω) = [D(Ω)]∗), is called the space of distributions on Ω. Each element of D′(Ω) is called
a distribution on Ω.

Remark 25. Every function f ∈ L1
loc(Ω) defines a distribution u f ∈ D′(Ω) as follows:

∀ ϕ ∈ D(Ω) u f (ϕ) :=
∫

Ω
f ϕdx . (1)

In particular, every function ϕ ∈ E(Ω) defines a distribution uϕ. It can be shown that the map
j : E(Ω) → D′(Ω) which sends ϕ to uϕ is an injective linear continuous map ([24], p. 11).
Therefore, we can identify E(Ω) with a subspace of D′(Ω).

Remark 26. Let Ω ⊆ Rn be a nonempty open set. Recall that f : Ω → R is locally integrable
( f ∈ L1

loc(Ω)) if it satisfies any of the following equivalent conditions:

(1) f ∈ L1(K) for all K ∈ K(Ω).
(2) For all ϕ ∈ C∞

c (Ω), f ϕ ∈ L1(Ω).
(3) For every nonempty open set V ⊆ Ω such that V̄ is compact and contained in Ω, f ∈ L1(V).

(It can be shown that every locally integrable function is measurable ([36], p. 70)).
As a consequence, if we define Funcreg(Ω) to be the set

{ f : Ω → R : u f : D(Ω)→ R defined by Equation (1) is well-defined and continuous} ,

then Funcreg(Ω) = L1
loc(Ω).
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Definition 19 (Calculus Rules for Distributions). Let Ω be a nonempty open set in Rn. Let
u ∈ D′(Ω).

• For all ϕ ∈ C∞(Ω), ϕu is defined by

∀ψ ∈ C∞
c (Ω) [ϕu](ψ) := u(ϕψ) .

It can be shown that ϕu ∈ D′(Ω).
• For all multiindices α, ∂αu is defined by

∀ψ ∈ C∞
c (Ω) [∂αu](ψ) = (−1)|α|u(∂αψ) .

It can be shown that ∂αu ∈ D′(Ω).

Furthermore, it is possible to make sense of “change of coordinates” for distributions.
Let Ω and Ω′ be two open sets in Rn. Suppose T : Ω → Ω′ is a C∞ diffeomorphism. T can
be used to move any function on Ω to a function on Ω′ and vice versa.

T∗ : Func(Ω′,R)→ Func(Ω,R), T∗( f ) = f ◦ T ,

T∗ : Func(Ω,R)→ Func(Ω′,R), T∗( f ) = f ◦ T−1 .

T∗ f is called the pullback of the function f under the mapping T and T∗ f is called
the pushforward of the function f under the mapping T. Clearly, T∗ and T∗ are inverses of
each other and T∗ = (T−1)∗. One can show that T∗ sends functions in L1

loc(Ω) to L1
loc(Ω

′)
and furthermore T∗ restricts to linear topological isomorphisms T∗ : E(Ω) → E(Ω′) and
T∗ : D(Ω)→ D(Ω′). Note that for all f ∈ L1

loc(Ω) and ϕ ∈ C∞
c (Ω′)

< uT∗ f , ϕ >D′(Ω′)×D(Ω′) =
∫

Ω′
(T∗ f )(y)ϕ(y)dy =

∫
Ω′
( f ◦ T−1)(y)ϕ(y)dy

x=T−1(y)
=

∫
Ω

f (x)ϕ(T(x))|detT′(x)|dx

=< u f , |detT′(x)|ϕ(T(x)) >D′(Ω)×D(Ω) .

The above observation motivates us to define the pushforward of any distribution
u ∈ D′(Ω) as follows:

∀ϕ ∈ D(Ω′) 〈T∗u, ϕ〉D′(Ω′)×D(Ω′) := 〈u, |detT′(x)|ϕ(T(x))〉D′(Ω)×D(Ω) .

It can be shown that T∗u : D(Ω′) → R is continuous and so it is in fact an element of
D′(Ω′). Similarly, the pullback T∗ : D′(Ω′)→ D′(Ω) is defined by

∀ϕ ∈ D(Ω) 〈T∗u, ϕ〉D′(Ω)×D(Ω) := 〈u, |det(T−1)′(y)|ϕ(T−1(y))〉D′(Ω′)×D(Ω′) .

It can be shown that T∗u : D(Ω)→ R is continuous and so it is in fact an element of D′(Ω).

Definition 20 (Extension by Zero of a Function). Let Ω be an open subset of Rn and V be an
open susbset of Ω. We define the linear map ext0

V,Ω : Func(V,R)→ Func(Ω,R) as follows:

ext0
V,Ω( f )(x) =

{
f (x) if x ∈ V
0 if x ∈ Ω \V

.

ext0
V,Ω restricts to a continuous linear map D(V)→ D(Ω).
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Definition 21 (Restriction of a Distribution). Let Ω be an open subset of Rn and V be an open
susbset of Ω. We define the restriction map resΩ,V : D′(Ω)→ D′(V) as follows:

〈resΩ,Vu, ϕ〉D′(V)×D(V) := 〈u, ext0
V,Ω ϕ〉D′(Ω)×D(Ω) .

This is well-defined; indeed, resΩ,V : D′(Ω) → D′(V) is a continuous linear map as it is the
adjoint of the continuous map ext0

V,Ω : D(V) → D(Ω). Given u ∈ D′(Ω), we sometimes write
u|V instead of resΩ,Vu.

Remark 27. It is easy to see that the restriction of the map resΩ,V : D′(Ω) → D′(V) to E(Ω)
agrees with the usual restriction of smooth functions.

Definition 22 (Support of a Distribution). Let Ω be a nonempty open set in Rn. Let u ∈ D′(Ω).

• We say u is equal to zero on some open subset V of Ω if u|V = 0.
• Let {Vi}i∈I be the collection of all open subsets of Ω such that u is equal to zero on Vi. Let

V =
⋃

i∈I Vi. The support of u is defined as follows:

supp u := Ω \V .

Note that suppu is closed in Ω but it is not necessarily closed in Rn.

Theorem 43 (Properties of the Support [20,23,24]). Let Ω and Ω′ be nonempty open sets in Rn.

• If f ∈ L1
loc(Ω), then supp f = supp u f .

• For all u ∈ D′(Ω), u = 0 on Ω \ supp u.
• Let u ∈ D′(Ω). If ϕ ∈ D(Ω) vanishes on an open neighborhood of supp u, then u(ϕ) = 0.
• For every closed subset A of Ω and every u ∈ D′(Ω), we have supp u ⊆ A if and only if

u(ϕ) = 0 for every ϕ ∈ D(Ω) with supp ϕ ⊆ Ω \ A.
• For every u ∈ D′(Ω) and ψ ∈ E(Ω), supp(ψu) ⊆ supp(ψ) ∩ supp(u).
• Let u, v ∈ D′(Ω). If there exists a nonempty open subset U of Ω such that supp u ⊆ U and

supp v ⊆ U and

〈u|U , ϕ〉D′(U)×D(U) = 〈v|U , ϕ〉D′(U)×D(U) ∀ ϕ ∈ C∞
c (U) ,

then u = v as elements of D′(Ω).
• Let u, v ∈ D′(Ω). Then supp(u + v) ⊆ supp u ∪ supp v.
• Let {ui} be a sequence in D′(Ω), u ∈ D(Ω), and K ∈ K(Ω) such that ui → u in D′(Ω)

and supp ui ⊆ K for all i. Then also supp u ⊆ K.
• For every u ∈ D′(Ω) and α ∈ Nn

0 , supp(∂αu) ⊆ supp(u).
• If T : Ω → Ω′ is a diffeomorphism, then supp(T∗u) = T(supp u). In particular, if u has

compact support, then so has T∗u.

Considering the eighth item in the above theorem, an interesting question that one
may ask is the following: Let {ui} be a sequence in D(Ω) such that ui → u in D′(Ω),
and suppose there exists K ∈ K(Ω) such that supp u ⊆ K. Does the fact that the limiting
distribution has compact support imply that there exists a compact set K̃ such that supp ui ⊆
K̃ for all i? The answer is negative. For example, for each i ∈ N let ui ∈ D(R) be a
nonnegative function such that ui = 0 outside the interval (i, i + 1) and

∫ i+1
i ui dx = 1

i .
Clearly, ui → 0 in L1(R) and so ui → 0 in D′(R). However, there is no compact set K̃ such
that supp ui ⊆ K̃ for all i.

Theorem 44 ([24], pp. 10 and 20). Let Ω be a nonempty open set in Rn. Let E′(Ω) denote the
topological dual of E(Ω) equipped with the strong topology. Then

• The map that sends u ∈ E′(Ω) to u|D(Ω) is an injective continuous linear map from E ′(Ω)
into D′(Ω).

• The image of the above map consists precisely of those u ∈ D′(Ω) for which supp u is compact.
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Due to the above theorem we may identify E′(Ω) with distributions on Ω with compact
support.

Definition 23 (Extension by Zero of Distributions With Compact Support). Let Ω be a
nonempty open set in Rn and V be a nonempty open subset of Ω. We define the linear map
ext0

V,Ω : E′(V) → E′(Ω) as the adjoint of the continuous linear map resΩ,V : E(Ω) → E(V);
that is,

〈ext0
V,Ωu, ϕ〉E ′(Ω)×E(Ω) := 〈u, ϕ|V〉E ′(V)×E(V) .

Suppose Ω′ and Ω are two nonempty open sets in Rn such that Ω′ ⊆ Ω and K ∈ K(Ω′).
One can easily show that:

• For all u ∈ EK(Ω′), resRn ,Ω ◦ ext0
Ω′ ,Rn u = ext0

Ω′ ,Ωu.
• For all u ∈ EK(Ω′), ext0

Ω,Rn ◦ ext0
Ω′ ,Ωu = ext0

Ω′ ,Rn u.
• For all u ∈ EK(Ω), ext0

Ω′ ,Ω ◦ resΩ,Ω′u = u.

We summarize the important topological properties of the spaces of test functions and
distributions in Table 1 below.

Table 1. Topological properties of the spaces of test functions.

D(Ω) E(Ω)
D′(Ω)
Strong

E′(Ω)
Strong

D′(Ω)
Weak

E′(Ω)
Weak

Sequential No Yes No No No No

First-Countable No Yes No No No No

Metrizable No Yes No No No No

Second-Countable No Yes No No No No

Sequentially Complete Yes Yes Yes Yes Yes Yes

Complete Yes Yes Yes Yes No No

6.2. Distributions on Vector Bundles
6.2.1. Basic Definitions, Notation

Let Mn be a smooth manifold (M is not necessarily compact). Let π : E → M be a
vector bundle of rank r.

(1) E(M, E) is defined as C∞(M, E) equipped with the locally convex topology induced
by the following family of seminorms: let {(Uα, ϕα, ρα)}α∈I be a total trivialization
atlas. Then for every α ∈ I, 1 ≤ l ≤ r, and f ∈ C∞(M, E), f̃ l

α := ρl
α ◦ f ◦ ϕ−1

α is an
element of C∞(ϕα(Uα)). For every 4-tuple (l, α, j, K) with 1 ≤ l ≤ r, α ∈ I, j ∈ N, K a
compact subset of Uα (i.e., K ∈ K(Uα)) we define

‖.‖l,α,j,K : C∞(M, E)→ R, f �→ ‖ρl
α ◦ f ◦ ϕ−1

α ‖j,ϕα(K) .

It is easy to check that ‖.‖l,α,j,K is a seminorm on C∞(M, E) and the locally convex
topology induced by the above family of seminorms does not depend on the choice of
the total trivialization atlas. Sometimes we may write ‖.‖l,ϕα ,j,K instead of ‖.‖l,α,j,K.

(2) For any compact subset K ⊆ M we define

EK(M, E) := { f ∈ E(M, E) : supp f ⊆ K}

equipped with the subspace topology.
(3) D(M, E) := C∞

c (M, E) = ∪K∈K(M)EK(M, E) (union over all compact subsets
of M) equipped with the inductive limit topology with respect to the family
{EK(M, E)}K∈K(M). Clearly, if M is compact, then D(M, E) = E(M, E) (as topological
vector spaces).
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Remark 28.

• If for each α ∈ I, {Kα
m}m∈N is an exhaustion by compact sets of Uα, then the topology induced

by the family of seminorms

{‖.‖l,α,j,Kα
m : 1 ≤ l ≤ r, α ∈ I, j ∈ N, m ∈ N}

on C∞(M, E) is the same as the topology of E(M, E). This together with the fact that every
manifold has a countable total trivialization atlas shows that the topology of E(M, E) is
induced by a countable family of seminorms. So E(M, E) is metrizable.

• If {Kj}j∈N is an exhuastion by compact sets of M, then the inductive limit topology on
C∞

c (M, E) with respect to the family {EKj(M, E)} is the same as the topology on D(M, E).

Definition 24. The space of distributions on the vector bundle E, denoted D′(M, E), is defined as
the topological dual of D(M, E∨). That is,

D′(M, E) = [D(M, E∨)]∗ .

As usual we equip the dual space with the strong topology. Recall that E∨ denotes the bundle
Hom(E,D(M)) where D(M) is the density bundle of M.

Remark 29. The reason that space of distributions on the vector bundle E is defined as the dual of
D(M, E∨) rather than the dual of the seemingly natural choice D(M, E) is well explained in [24,37].
Of course, there are other nonequivalent ways to make sense of distributions on vector bundles
(see [37] for a detailed discussion). Furthermore, see Lemma 13 where it is proved that Riemannian
density can be used to identify D′(M, E) with [D(M, E)]∗.

Remark 30. Let U and V be nonempty open sets in M with V ⊆ U.

• As in the Euclidean case, the linear map ext0
V,U : Γ(V, E∨V)→ Γ(U, E∨U) defined by

ext0
V,U f (x) =

{
f (x) x ∈ V
0 x ∈ U \V

restricts to a continuous linear map from D(V, E∨V) to D(U, E∨U).
• As in the Euclidean case, the restriction map resU,V : D′(U, EU)→ D′(V, EV) is defined as

the adjoint of ext0
V,U:

〈resU,Vu, ϕ〉D′(V,EV )×D(V,E∨V )
= 〈u, ext0

V,U ϕ〉D′(U,EU)×D(U,E∨U) .

• Support of a distribution u ∈ D′(M, E) is defined in the exact same way as for distributions
in the Euclidean space. It can be shown that

(1) ([24], p. 105) If u ∈ D′(M, E) and ϕ ∈ D(M, E∨) vanishes on an open neighborhood
of suppu, then u(ϕ) = 0.

(2) ([24], p. 104) For every closed subset A of M and every u ∈ D′(M, E), we have
suppu ⊆ A if and only if u(ϕ) = 0 for every ϕ ∈ D(M, E∨) with suppϕ ⊆ M \ A.

The strength of the theory of distributions in the Euclidean case is largely due to the
fact that it is possible to identify a huge class of ordinary functions with distributions. A
question that arises is that whether there is a natural way to identify regular sections of
E (i.e., elements of Γ(M, E)) with distributions. The following theorem provides a partial
answer to this question. Recall that compactly supported continuous sections of the density
bundle can be integrated over M.
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Theorem 45. Every f ∈ E(M, E) defines the following continuous map:

u f : D(M, E∨)→ R, ψ �→
∫

M
[ψ, f ] , (2)

where the pairing [ψ, f ] defines a compactly supported continuous section of the density bundle:

∀ x ∈ M [ψ, f ](x) := [ψ(x)][ f (x)] (ψ(x) ∈ Hom(Ex,Dx) evaluated at f (x) ∈ Ex) .

In general, we define Γreg(M, E) as the set

{ f ∈ Γ(M, E) : u f defined by Equation (2) is well-defined and continuous} .

Compare this with the definition of Funcreg(Ω) in Remark 26. Theorem 45 tells us that
E(M, E) is contained in Γreg(M, E). If u ∈ D′(M, E) is such that u = u f for some f ∈
Γreg(M, E), then we say that u is a regular distribution.

Now, let (U, ϕ, ρ) be a total trivialization triple for E and let (U, ϕ, ρD) and (U, ϕ, ρ∨)
be the corresponding standard total trivialization triples for D(M) and E∨, respectively.
The local representation of the pairing [ψ, f ] has a very simple expression in terms of the
local representations of f and ψ:

f ∈ Γreg(M, E) =⇒ ( f̃ 1, . . . , f̃ r) := ( f 1 ◦ ϕ−1, . . . , f r ◦ ϕ−1) := ρ ◦ f ◦ ϕ−1 ∈ [Func(ϕ(U),R)]×r

( f̃ 1, . . . , f̃ r) is the local representation of f .

ψ ∈ D(M, E∨) =⇒ (ψ̃1, . . . , ψ̃r) := (ψ1 ◦ ϕ−1, . . . , ψr ◦ ϕ−1) := ρ∨ ◦ ψ ◦ ϕ−1 ∈ [Func(ϕ(U),R)]×r

(ψ̃1, . . . , ψ̃r) is the local representation of ψ .

Our claim is that the local representation of [ψ, f ] (that is, ρD ◦ [ψ, f ] ◦ ϕ−1) is equal to the
Euclidean dot product of the local representations of f and ψ:

ρD ◦ [ψ, f ] ◦ ϕ−1 = ∑
i

f̃ iψ̃i .

The reason is as follows: Let y ∈ ϕ(U) and x = ϕ−1(y)

[ρD ◦ [ψ, f ] ◦ ϕ−1](y) = ρD
(
[ψ(x)][ f (x)]

)
= ρD

(
[ψ(x)][(ρ|Ex )

−1( f̃ 1(y), . . . , f̃ r(y))]
)

= [ρD ◦ ψ(x) ◦ (ρ|Ex )
−1]( f̃ 1(y), . . . , f̃ r(y))

= [ρ∨(ψ(x))][( f̃ 1(y), . . . , f̃ r(y))] the left bracket is applied to the right bracket

= ρ∨(ψ(x)) · ( f̃ 1(y), . . . , f̃ r(y)) dot product! ρ∨(ψ(x)) viewed as an element of Rr

= (ψ̃1(y), . . . , ψ̃r(y)) · ( f̃ 1(y), . . . , f̃ r(y)) .

6.2.2. Local Representation of Distributions

Let (U, ϕ, ρ) be a total trivialization triple for π : E → M. We know that each
f ∈ Γ(M, E) can locally be represented by r components f̃ 1, . . . , f̃ r defined by

∀ 1 ≤ l ≤ r f̃ l : ϕ(U)→ R, f̃ l = ρl ◦ f ◦ ϕ−1 .

These components play a crucial role in our study of Sobolev spaces. Now the question is
that whether we can similarly use the total trivialization triple (U, ϕ, ρ) to locally associate
with each distribution u ∈ D′(M, E), r components ũ1, . . . , ũr belonging to D′(ϕ(U)). That
is, we want to see whether we can define a nice map

D′(U, EU) = [D(U, E∨U)]
∗ → D′(ϕ(U))× . . .× D′(ϕ(U))︸ ︷︷ ︸

r times

.
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(Note that according to Remark 30, if u ∈ D′(M, E), then u|U ∈ D′(U, EU).) Such a map, in
particular, will be important when we want to make sense of Sobolev spaces with negative
exponents of sections of vector bundles. Furthermore, it would be desirable to ensure
that if u is a regular distribution then the components of u as a distribution agree with the
components obtained when u is viewed as an element of Γ(M, E).

We begin with the following map at the level of compactly supported smooth func-
tions:

T̃E∨ ,U,ϕ : D(U, E∨U)→ [D(ϕ(U))]×r, ξ → ρ∨ ◦ ξ ◦ ϕ−1 = ((ρ∨)1 ◦ ξ ◦ ϕ−1, . . . , (ρ∨)r ◦ ξ ◦ ϕ−1) .

Note that T̃E∨ ,U,ϕ has the property that for all ψ ∈ C∞(U) and ξ ∈ D(U, E∨U)

T̃E∨ ,U,ϕ(ψξ) = (ψ ◦ ϕ−1)T̃E∨ ,U,ϕ(ξ) .

Theorem 46. The map T̃E∨ ,U,ϕ : D(U, E∨U)→ [D(ϕ(U))]×r is a linear topological isomorphism
([D(ϕ(U))]×r is equipped with the product topology).

Proof. Clearly, T̃E∨ ,U,ϕ is linear. Furthermore, the map T̃E∨ ,U,ϕ is bijective. Indeed, the
inverse of T̃E∨ ,U,ϕ (which we denote by TE∨ ,U,ϕ) is given by

TE∨ ,U,ϕ : [D(ϕ(U))]×r → D(U, E∨U)

∀ x ∈ U TE∨ ,U,ϕ(ξ1, . . . , ξr)(x) =
(
ρ∨|E∨x

)−1 ◦ (ξ1, . . . , ξr) ◦ ϕ(x) .

Now, we show that T̃E∨ ,U,ϕ : D(U, E∨U) → [D(ϕ(U))]×r is continuous. To this end, it is
enough to prove that for each 1 ≤ l ≤ r the map

πl ◦ T̃E∨ ,U,ϕ : D(U, E∨U)→ D(ϕ(U)), ξ �→ (ρ∨)l ◦ ξ ◦ ϕ−1

is continuous. The topology on D(U, E∨U) is the inductive limit topology with respect
to {EK(U, E∨U)}K∈K(U), so it is enough to show that for each K ∈ K(U), πl ◦ T̃E∨ ,U,ϕ :
EK(U, E∨U) → D(ϕ(U)) is continuous. Note that πl ◦ T̃E∨ ,U,ϕ[EK(U, E∨U)] ⊆ Eϕ(K)(ϕ(U)).
Considering that Eϕ(K)(ϕ(U)) ↪→ D(ϕ(U)), it is enough to show that

πl ◦ T̃E∨ ,U,ϕ : EK(U, E∨U)→ Eϕ(K)(ϕ(U))

is continuous. For all ξ ∈ EK(U, E∨U) and j ∈ N we have

‖πl ◦ T̃E∨ ,U,ϕ(ξ)‖j,ϕ(K) = ‖(ρ∨)l ◦ ξ ◦ ϕ−1‖j,ϕ(K) = ‖ξ‖l,ϕ,j,K ,

which implies the continuity (note that even an inequality in place of the last equality would
have been enough to prove the continuity). It remains to prove the continuity of TE∨ ,U,ϕ :
[D(ϕ(U))]×r → D(U, E∨U). By Theorem 41 it is enough to show that for all K ∈ K(ϕ(U)),
TE∨ ,U,ϕ : [EK(ϕ(U))]×r → D(U, E∨U) is continuous. It is clear that TE∨ ,U,ϕ([EK(ϕ(U))]×r) ⊆
Eϕ−1(K)(U, E∨U). Since Eϕ−1(K)(U, E∨U) ↪→ D(U, E∨U), it is sufficient to show that TE∨ ,U,ϕ :
[EK(ϕ(U))]×r → Eϕ−1(K)(U, E∨U) is continuous. To this end, by Theorem 41, we just need to
show that for all j ∈ N and 1 ≤ l ≤ r there exists j1, . . . , jr such that

‖TE∨ ,U,ϕ(ξ1, . . . , ξr)‖l,ϕ,j,ϕ−1(K) ≤ C(‖ξ1‖j1,K + . . . ‖ξr‖jr ,K) .

However, this obviously holds because

‖TE∨ ,U,ϕ(ξ1, . . . , ξr)‖l,ϕ,j,ϕ−1(K) = ‖ξl‖j,K .
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The adjoint of TE∨ ,U,ϕ is

T∗E∨ ,U,ϕ : [D(U, E∨U)]
∗ →

(
[D(ϕ(U))]×r)∗

〈T∗E∨ ,U,ϕu, (ξ1, . . . , ξr)〉 = 〈u, TE∨ ,U,ϕ(ξ1, . . . , ξr)〉 .

Note that, since TE∨ ,U,ϕ is a linear topological isomorphism, T∗E∨ ,U,ϕ is also a linear topolog-
ical isomorphism (and in particular it is bijective). For every u ∈ [D(U, E∨U)]

∗, T∗E∨ ,U,ϕu is

in
(
[D(ϕ(U))]×r)∗; we can combine this with the bijective map

L :
(
[D(ϕ(U))]×r)∗ → [D′(ϕ(U))]×r, L(v) = (v ◦ i1, . . . , v ◦ ir)

(see Theorem 24) to send u ∈ [D(U, E∨U)]
∗ into an element of [D′(ϕ(U))]×r:

L(T∗E∨ ,U,ϕu) = ((T∗E∨ ,U,ϕu) ◦ i1, . . . , (T∗E∨ ,U,ϕu) ◦ ir) ,

where for all 1 ≤ l ≤ r, (T∗E∨ ,U,ϕu) ◦ il ∈ D′(ϕ(U)) is given by

((T∗E∨ ,U,ϕu) ◦ il)(ξ) = (T∗E∨ ,U,ϕu)(il(ξ)) = (T∗E∨ ,U,ϕu)(0, . . . , 0, ξ︸︷︷︸
lth position

, 0, · · · , 0)

= 〈u, TE∨ ,U,ϕ(0, . . . , 0, ξ︸︷︷︸
lth position

, 0, . . . , 0)〉 .

If we define gl,ξ,U,ϕ ∈ D(U, E∨U) by

gl,ξ,U,ϕ(x) = TE∨ ,U,ϕ(0, . . . , 0, ξ︸︷︷︸
lth position

, 0, . . . , 0)(x)

=
(
ρ∨|E∨x

)−1 ◦ (0, . . . , 0, ξ︸︷︷︸
lth position

, 0, · · · , 0) ◦ ϕ(x) ,

then we may write

〈(T∗E∨ ,U,ϕu) ◦ il , ξ〉D′(ϕ(U))×D(ϕ(U)) = 〈u, gl,ξ,U,ϕ〉[D(U,E∨U)]∗×D(U,E∨U) .

Summary: We can associate with u ∈ D′(U, EU) = (D(U, E∨U))
∗ the following r distribu-

tions in D′(ϕ(U)):
∀ 1 ≤ l ≤ r ũl = T∗E∨ ,U,ϕu ◦ il ,

that is,
∀ ξ ∈ D(ϕ(U)) 〈ũl , ξ〉 = 〈u, gl,ξ,U,ϕ〉 ,

where gl,ξ,U,ϕ ∈ D(U, E∨U) is defined by

(
ρ∨|E∨x

)−1 ◦ (0, . . . , 0, ξ︸︷︷︸
lth position

, 0, . . . , 0) ◦ ϕ(x) .

In particular,
ρ∨ ◦ gl,ξ,U,ϕ ◦ ϕ−1 = (0, . . . , 0, ξ︸︷︷︸

lth position

, 0, . . . , 0) ,

and so (ρ∨ ◦ gl,ξ,U,ϕ ◦ ϕ−1)l = ξ.
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Let us give a name to the composition of L with T∗E∨ ,U,ϕ that we used above. We set
HE∨ ,U,ϕ := L ◦ T∗E∨ ,U,ϕ:

HE∨ ,U,ϕ : [D(U, E∨U)]
∗ → (D′(ϕ(U)))×r, u �→ L(T∗E∨ ,U,ϕu) = (ũ1, . . . , ũr) .

Remark 31. Here we make three observations about the mapping HE∨ ,U,ϕ.

(1) For every u ∈ [D(U, E∨U)]
∗

supp[HE∨ ,U,ϕ u]l = suppũl ⊆ ϕ(supp u) .

Indeed, let A = ϕ(suppu). By Theorem 43, it is enough to show that if η ∈ D(ϕ(U)) is such
that suppη ⊆ ϕ(U) \ A, then ũl(η) = 0. Note that

〈ũl , η〉 = 〈u, gl,η,U,ϕ〉 .

So, by Remark 30 we just need to show that gl,η,U,ϕ = 0 on an open neighborhood of suppu.
Let K = suppη. Clearly, U \ ϕ−1(K) is an open neighborhood of suppu. We will show that
gl,η,U,ϕ vanishes on this open neighborhood. Note that

gl,η,U,ϕ(x) = (ρ∨|E∨x )
−1(0, . . . , 0, η ◦ ϕ(x)︸ ︷︷ ︸

lth position

, 0, . . . , 0) .

Since ρ∨|E∨x is an isomorphism and η = 0 on ϕ(U) \ K, we conclude that gl,η,U,ϕ = 0 on
ϕ−1(ϕ(U) \ K) = U \ ϕ−1(K).

(2) Clearly, HE∨ ,U,ϕ : D′(U, EU) → [D′(ϕ(U))]×r preserves addition. Moreover, if f ∈
C∞(U) and u ∈ D′(U, EU), then HE∨ ,U,ϕ( f u) = ( f ◦ ϕ−1)HE∨ ,U,ϕ(u). Recall that H =
L ◦ T∗E∨ ,U,ϕ.

〈T∗E∨ ,U,ϕ( f u), (ξ1, . . . , ξr)〉 = 〈 f u, TE∨ ,U,ϕ(ξ1, . . . , ξr)〉
= 〈u, f TE∨ ,U,ϕ(ξ1, . . . , ξr)〉
= 〈u, TE∨ ,U,ϕ[( f ◦ ϕ−1)(ξ1, . . . , ξr)]〉
= 〈T∗E∨ ,U,ϕu, ( f ◦ ϕ−1)(ξ1, . . . , ξr)〉
= 〈( f ◦ ϕ−1)T∗E∨ ,U,ϕu, (ξ1, . . . , ξr)〉

(The third equality follows directly from the definition of TE∨ ,U,ϕ.) Therefore,

T∗E∨ ,U,ϕ( f u) = ( f ◦ ϕ−1)T∗E∨ ,U,ϕu .

The fact that L(( f ◦ ϕ−1)T∗E∨ ,U,ϕu) = ( f ◦ ϕ−1)L(T∗E∨ ,U,ϕu) is an immediate consequence
of the definition of L.

(3) Since TE∨ ,U,ϕ and L are both linear topological isomorphisms, H−1
E∨ ,U,ϕ = (L ◦ T∗E∨ ,U,ϕ)

−1 :
(D′(ϕ(U)))×r → D∗(U, E∨U) is also a linear topological isomorphism. It is useful for our
later considerations to find an explicit formula for this map. Note that

H−1
E∨ ,U,ϕ = (L ◦ T∗E∨ ,U,ϕ)

−1 = (T∗E∨ ,U,ϕ)
−1 ◦ L−1 = (T−1

E∨ ,U,ϕ)
∗ ◦ L−1

= (T̃E∨ ,U,ϕ)
∗ ◦ L−1 = (T̃E∨ ,U,ϕ)

∗ ◦ L̃ .

Recall that

L̃ : [D∗(ϕ(U))]×r → [(D(ϕ(U)))×r]∗, (v1, . . . , vr) �→ v1 ◦ π1 + . . . + vr ◦ πr ,

T̃∗E∨ ,U,ϕ : [(D(ϕ(U)))×r]∗ → D∗(U, E∨U) .
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Therefore, for all ξ ∈ D(U, E∨U)

H−1
E∨ ,U,ϕ(v

1, . . . , vr)(ξ) = 〈T̃∗E∨ ,U,ϕ(v
1 ◦ π1 + . . . + vr ◦ πr), ξ〉

= 〈(v1 ◦ π1 + . . . + vr ◦ πr), T̃ξ〉
= 〈(v1 ◦ π1 + . . . + vr ◦ πr), ((ρ∨)1 ◦ ξ ◦ ϕ−1, . . . , (ρ∨)r ◦ ξ ◦ ϕ−1)〉
= ∑

i
vi[(ρ∨)i ◦ ξ ◦ ϕ−1] .

Remark 32. Suppose u ∈ D′(M, E) is a regular distribution, that is, u = u f where f ∈
Γreg(M, E). We want to see whether the local components of such a distribution agree with
its components as an element of Γ(M, E). With respect to the total trivialization triple (U, ϕ, ρ)
we have

(1) f �→ ( f̃ 1, . . . , f̃ r), f̃ l = ρl ◦ f ◦ ϕ−1,
(2) u f �→ (ũ f

1, . . . , ũ f
l).

The question is whether u f̃ l = ũ f
l? Here we will show that the answer is positive. Indeed, for all

ξ ∈ D(ϕ(U)) we have

〈ũ f
l , ξ〉 = 〈u f , gl,ξ,U,ϕ〉 =

∫
M
[gl,ξ,U,ϕ, f ] =

∫
ϕ(U)

∑
i
(g̃l,ξ,U,ϕ)

i f̃ idV =
∫

ϕ(U)
(g̃l,ξ,U,ϕ)

l f̃ ldV

=
∫

ϕ(U)
f̃ lξdV = 〈u f̃ l , ξ〉 .

Note that the above calculation in fact shows that the restriction of HE∨ ,U,ϕ to D(U, EU) is T̃E,U,ϕ.

7. Spaces of Sobolev and Locally Sobolev Functions in Rn

In this section, we present a brief overview of the basic definitions and properties
related to Sobolev spaces on Euclidean spaces.

7.1. Basic Definitions

Definition 25. Let s ≥ 0 and p ∈ [1, ∞]. The Sobolev–Slobodeckij space Ws,p(Rn) is defined
as follows:

• If s = k ∈ N0, p ∈ [1, ∞],

Wk,p(Rn) = {u ∈ Lp(Rn) : ‖u‖Wk,p(Rn) := ∑
|ν|≤k

‖∂νu‖p < ∞} .

• If s = θ ∈ (0, 1), p ∈ [1, ∞),

Wθ,p(Rn) = {u ∈ Lp(Rn) : |u|Wθ,p(Rn) :=
( ∫ ∫

Rn×Rn

|u(x)− u(y)|p
|x− y|n+θp dxdy

) 1
p < ∞} .

• If s = θ ∈ (0, 1), p = ∞,

Wθ,∞(Rn) = {u ∈ L∞(Rn) : |u|Wθ,∞(Rn) := ess sup
x,y∈Rn ,x �=y

|u(x)− u(y)|
|x− y|θ < ∞} .

• If s = k + θ, k ∈ N0, θ ∈ (0, 1), p ∈ [1, ∞],

Ws,p(Rn) = {u ∈ Wk,p(Rn) : ‖u‖Ws,p(Rn) := ‖u‖Wk,p(Rn) + ∑
|ν|=k

|∂νu|Wθ,p(Rn) < ∞} .
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Remark 33. Clearly, for all s ≥ 0, Ws,p(Rn) ⊆ Lp(Rn). Recall that Lp(Rn) ⊆ L1
loc(R

n) ⊆
D′(Rn). So, we may consider elements of Ws,p(Rn) as distributions in D′(Rn). Indeed, for s ≥ 0,
p ∈ (1, ∞), and u ∈ D′(Rn) we define{

‖u‖Ws,p(Rn) := ‖ f ‖Ws,p(Rn) if u = u f for some f ∈ Lp(Rn)

‖u‖Ws,p(Rn) := ∞ otherwise
.

As a consequence, we may write

Ws,p(Rn) = {u ∈ D′(Rn) : ‖u‖Ws,p(Rn) < ∞} .

Remark 34. Let us make some observations that will be helpful in the proof of a number of important
theorems. Let A be a nonempty measurable set in Rn.

(1) We may write:

∫ ∫
Rn×Rn

|∂νu(x)− ∂νu(y)|p
|x− y|n+θp dxdy

=
∫ ∫

A×A
. . . dxdy +

∫
A

∫
Rn\A

. . . dxdy +
∫
Rn\A

∫
A

. . . dxdy +
∫
Rn\A

∫
Rn\A

. . . dxdy .

In particular, if suppu ⊆ A, then the last integral vanishes and the sum of the two middle
integrals will be equal to 2

∫
A

∫
Rn\A

|∂νu(x)|p
|x−y|n+θp dydx. Therefore, in this case

∫ ∫
Rn×Rn

|∂νu(x)− ∂νu(y)|p
|x− y|n+θp dxdy =∫ ∫

A×A

|∂νu(x)− ∂νu(y)|p
|x− y|n+θp dxdy + 2

∫
A

∫
Rn\A

|∂νu(x)|p
|x− y|n+θp dydx .

(2) If A is open, K ⊆ A is compact and α > n, then there exists a number C such that for all
x ∈ K we have ∫

Rn\A

1
|x− y|α dy ≤ C .

(C may depend on A, K, n, and α but is independent of x.) The reason is as follows: Let
R = 1

2 dist(K, Ac) > 0. Clearly, for all x ∈ K, the ball BR(x) is inside A. Therefore, for all
x ∈ K, Rn \ A ⊆ Rn \ BR(x) which implies that for all x ∈ K
∫
Rn\A

1
|x− y|α dy ≤

∫
Rn\BR(x)

1
|x− y|α dy

z=y−x
=

∫
Rn\BR(0)

1
|z|α dz = σ(Sn−1)

∫ ∞

R

1
rα

rn−1dr ,

which converges because α > n. We can let C = σ(Sn−1)
∫ ∞

R
1
rα rn−1dr.

(3) If A is bounded and α < n, then there exists a number C such that for all x ∈ A∫
A

1
|x− y|α dy ≤ C .

(C depends on A, n, and α but is independent of x.) The reason is as follows: Since A is
bounded there exists R > 0 such that for all x, y ∈ A we have |x− y| < R. So, for all x ∈ A∫

A

1
|x− y|α dy ≤ σ(Sn−1)

∫ R

0

1
rα

rn−1dr ,

which converges because α < n.

Theorem 47. Let s ≥ 0 and p ∈ (1, ∞). C∞
c (Rn) is dense in Ws,p(Rn). In fact, the identity map

iD,W : D(Rn)→ Ws,p(Rn) is a linear continuous map with dense image.
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Proof. The fact that C∞
c (Rn) is dense in Ws,p(Rn) follows from Theorem 7.38 and

Lemma 7.44 in [38] combined with Remark 39. Linearity of iD,W is obvious. It remains to
prove that this map is continuous. By Theorem 40 it is enough to show that

∀K ∈ K(Rn), ∀ ϕ ∈ EK(Rn) ∃j ∈ N s.t. ‖ϕ‖Ws,p(Rn) � ‖ϕ‖j,K .

Let s = m + θ where m ∈ N0 and θ ∈ [0, 1). If θ �= 0, by definition ‖ϕ‖Ws,p(Rn) =
‖ϕ‖Wm,p(Rn) + ∑|ν|=m |∂ν ϕ|Wθ,p(Rn). It is enough to show that each summand can be
bounded by a constant multiple of ‖ϕ‖j,K for some j.

• Step 1: If θ = 0,

‖ϕ‖Wm,p(Rn) = ∑
|ν|≤m

‖∂ν ϕ‖Lp(Rn) = ∑
|ν|≤m

‖∂ν ϕ‖Lp(K)

= ∑
|ν|≤m

(‖ϕ‖m,K|K|
1
p ) � ‖ϕ‖m,K ,

where the implicit constant depends on m, p, and K but is independent of ϕ.
• Step 2: Let A be an open ball that contains K (in particular, A is bounded). As it was

pointed out in Remark 34 we may write∫ ∫
Rn×Rn

|∂ν ϕ(x)− ∂ν ϕ(y)|p
|x− y|n+θp dxdy =∫ ∫

A×A

|∂ν ϕ(x)− ∂ν ϕ(y)|p
|x− y|n+θp dxdy + 2

∫
A

∫
Rn\A

|∂ν ϕ(x)|p
|x− y|n+θp dydx .

First note that Rn is a convex open set; so by Theorem 6 every function f ∈ EK(Rn) is
Lipschitz; indeed, for all x, y ∈ Rn we have | f (x)− f (y)| � ‖ f ‖1,K‖x− y‖. Hence∫ ∫

A×A

|∂ν ϕ(x)− ∂ν ϕ(y)|p
|x− y|n+θp dxdy ≤

∫
A
‖∂ν ϕ‖p

1,K

∫
A

|x− y|p
|x− y|n+θp dydx

=
∫

A
‖∂ν ϕ‖p

1,K

∫
A

1
|x− y|n+(θ−1)p

dydx .

By part 3 of Remark 34
∫

A
1

|x−y|n+(θ−1)p dy is bounded by a constant independent of x;

also, clearly, ‖∂ν ϕ‖1,K ≤ ‖ϕ‖m+1,K. Considering that |A| is finite we get∫ ∫
A×A

|∂ν ϕ(x)− ∂ν ϕ(y)|p
|x− y|n+θp dxdy � ‖ϕ‖p

m+1,K .

Finally, for the remaining integral we have∫
A

∫
Rn\A

|∂ν ϕ(x)|p
|x− y|n+θp dydx =

∫
K

∫
Rn\A

|∂ν ϕ(x)|p
|x− y|n+θp dydx ,

because the inner integral is zero for x �∈ K. Now, we can write∫
K

∫
Rn\A

|∂ν ϕ(x)|p
|x− y|n+θp dydx �

∫
K
‖ϕ‖p

m,K

∫
Rn\A

1
|x− y|n+θp dydx .

By part 2 of Remark 34 for all x ∈ K, the inner integral is bounded by a constant. Since
|K| is finite we conclude that∫

A

∫
Rn\A

|∂ν ϕ(x)|p
|x− y|n+θp dydx � ‖ϕ‖p

m,K .
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Hence
‖u‖Ws,p(Rn) � ‖ϕ‖m+1,K .

Definition 26. Let s > 0 and p ∈ (1, ∞). We define

W−s,p′(Rn) = (Ws,p(Rn))∗ (
1
p
+

1
p′

= 1).

Remark 35. Note that since the identity map from D(Rn) to Ws,p(Rn) is continuous with dense
image, the dual space W−s,p′(Rn) can be viewed as a subspace of D′(Rn). Indeed, by Theorem 25
the adjoint of the identity map, i∗D,W : W−s,p′(Rn) → D′(Rn) is an injective linear continuous
map and we can use this map to identify W−s,p′(Rn) with a subspace of D′(Rn). It is a direct
consequence of the definition of adjoint that for all u ∈ W−s,p′(Rn), i∗D,Wu = u|D(Rn). So, by
identifying u : Ws,p(Rn) → R with u|D(Rn) : D(Rn) → R, we can view W−s,p′(Rn) as a
subspace of D′(Rn).

Remark 36.

• It is a direct consequence of the contents of pp. 88 and 178 of [8] that for m ∈ Z and
1 < p < ∞

Wm,p(Rn) = Hm
p (R

n) = Fm
p,2(R

n) .

• It is a direct consequence of the contents of pp. 38, 51, 90 and 178 of [8] that for s �∈ Z and
1 < p < ∞

Ws,p(Rn) = Bs
p,p(R

n) .

Theorem 48. For all s ∈ R and 1 < p < ∞, Ws,p(Rn) is reflexive.

Proof. See the proof of Theorem 64. Additionally, see [39], Section 2.6, p. 198.

Note that by definition for all s > 0 we have [Ws,p(Rn)]∗ = W−s,p′(Rn). Now, since
Ws,p(Rn) is reflexive, [W−s,p′(Rn)]∗ is isometrically isomorphic to Ws,p(Rn) and so they
can be identified with one another. Thus, for all s ∈ R and 1 < p < ∞ we may write

[Ws,p(Rn)]∗ = W−s,p′(Rn) .

Let s ≥ 0 and p ∈ (1, ∞). Every function ϕ ∈ C∞
c (Rn) defines a linear functional

Lϕ : Ws,p(Rn)→ R defined by

Lϕ(u) =
∫
Rn

uϕdx .

Lϕ is continuous because by Holder’s inequality

|Lϕ(u)| = |
∫
Rn

uϕdx| ≤ ‖u‖Lp(Rn)‖ϕ‖Lp′ (Rn)
≤ ‖ϕ‖Lp′ (Rn)

‖u‖Ws,p(Rn) .

Furthermore, the map L : C∞
c (Rn)→ W−s,p′(Rn) which maps ϕ to Lϕ is injective because

Lϕ = Lψ → ∀ u ∈ Ws,p(Rn)
∫
Rn

u(ϕ− ψ)dx = 0 →
∫
Rn
|ϕ− ψ|2dx = 0 → ϕ = ψ .

Thus, we may identify ϕ with Lϕ and consider C∞
c (Rn) as a subspace of W−s,p′(Rn).

Theorem 49. For all s > 0 and p ∈ (1, ∞), C∞
c (Rn) is dense in W−s,p′(Rn).
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Proof. The proof given in p. 65 of [1] for the density of Lp′ in the integer order Sobolev
space W−m,p′ , which is based on reflexivity of Sobolev spaces, works equally well for
establishing the density of C∞

c (Rn) in W−s,p′(Rn).

Remark 37. As a consequence of the above theorems, for all s ∈ R and p ∈ (1, ∞), Ws,p(Rn) can
be considered as a subspace of D′(Rn). See Theorem 25 and the discussion thereafter for further
insights. Additionally, see Remark 45.

Next we list several definitions pertinent to Sobolev spaces on open subsets of Rn.

Definition 27. Let Ω be a nonempty open set in Rn. Let s ∈ R and p ∈ (1, ∞).

(1) • If s = k ∈ N0,

Wk,p(Ω) = {u ∈ Lp(Ω) : ‖u‖Wk,p(Ω) := ∑
|ν|≤k

‖∂νu‖Lp(Ω) < ∞} .

• If s = θ ∈ (0, 1),

Wθ,p(Ω) = {u ∈ Lp(Ω) : |u|Wθ,p(Ω) :=
( ∫ ∫

Ω×Ω

|u(x)− u(y)|p
|x− y|n+θp dxdy

) 1
p < ∞} .

• If s = k + θ, k ∈ N0, θ ∈ (0, 1),

Ws,p(Ω) = {u ∈ Wk,p(Ω) : ‖u‖Ws,p(Ω) := ‖u‖Wk,p(Ω) + ∑
|ν|=k

|∂νu|Wθ,p(Ω) < ∞} .

• If s < 0,

Ws,p(Ω) = (W−s,p′
0 (Ω))∗ (

1
p
+

1
p′

= 1),

where for all e ≥ 0 and 1 < q < ∞, We,q
0 (Ω) is defined as the closure of C∞

c (Ω) in
We,q(Ω).

(2) Ws,p(Ω̄) is defined as the restriction of Ws,p(Rn) to Ω. That is, Ws,p(Ω̄) is the collection
of all u ∈ D′(Ω) such that there is a v ∈ Ws,p(Rn) with v|Ω = u. Here v|Ω should be
interpreted as the restriction of a distribution in D′(Rn) to a distribution in D′(Ω). Ws,p(Ω̄)
is equipped with the following norm:

‖u‖Ws,p(Ω̄) = inf
v∈Ws,p(Rn),v|Ω=u

‖v‖Ws,p(Rn).

(3)
W̃s,p(Ω̄) = {u ∈ Ws,p(Rn) : supp u ⊆ Ω̄} .

W̃s,p(Ω̄) is equipped with the norm ‖u‖W̃s,p(Ω̄) = ‖u‖Ws,p(Rn).
(4)

W̃s,p(Ω) = {u = v|Ω, v ∈ W̃s,p(Ω̄)} . (3)

Again v|Ω should be interpreted as the restriction of an element in D′(Rn) to D′(Ω).
So W̃s,p(Ω) is a subspace of D′(Ω). This space is equipped with the norm ‖u‖W̃s,p =
inf ‖v‖Ws,p(Rn) where the infimum is taken over all v that satisfy the equality in Equation (3).
Note that two elements v1 and v2 of W̃s,p(Ω̄) restrict to the same element in D′(Ω) if and
only if supp(v1 − v2) ⊆ ∂Ω. Therefore,

W̃s,p(Ω) =
W̃s,p(Ω̄)

{v ∈ Ws,p(Rn) : supp v ⊆ ∂Ω} .
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(5) For s ≥ 0 we define

Ws,p
00 (Ω) = {u ∈ Ws,p(Ω) : ext0

Ω,Rn u ∈ Ws,p(Rn)} .

We equip this space with the norm

‖u‖Ws,p
00 (Ω) := ‖ext0

Ω,Rn u‖Ws,p(Rn) .

Note that previously we defined the operator ext0
Ω,Rn only for distributions with compact

support and functions; this is why the values of s are restricted to be nonnegative in this
definition.

(6) For all K ∈ K(Ω) we define

Ws,p
K (Ω) = {u ∈ Ws,p(Ω) : supp u ⊆ K} ,

with ‖u‖Ws,p
K (Ω) := ‖u‖Ws,p(Ω).

(7)
Ws,p

comp(Ω) =
⋃

K∈K(Ω)

Ws,p
K (Ω) .

This space is normally equipped with the inductive limit topology with respect to the fam-
ily {Ws,p

K (Ω)}K∈K(Ω). However, in these notes we always consider Ws,p
comp(Ω) as a

normed space equipped with the norm induced from Ws,p(Ω).

Remark 38. Each of these definitions has its advantages and disadvantages. For example, the
way we defined the spaces Ws,p(Ω) is well suited for using duality arguments while proving the
usual embedding theorems for these spaces on an arbitrary open set Ω is not trivial; on the other
hand, duality arguments do not work as well for spaces Ws,p(Ω̄) but the embedding results for
these spaces on an arbitrary open set Ω automatically follow from the corresponding results on Rn.
Various authors adopt different definitions for Sobolev spaces on domains based on the applications
in which they are interested. Unfortunately, the notation used in the literature for the various spaces
introduced above are not uniform. First note that it is a direct consequence of Remark 36 and the
definitions of Bs

p,q(Ω), Hs
p(Ω) and Fs

p,q(Ω) in [39] p. 310 and [40] that

Ws,p(Ω̄) =

{
Fs

p,2(Ω) = Hs
p(Ω) if s ∈ Z

Bs
p,p(Ω) if s �∈ Z

.

With this in mind, we have Table 2 which displays the connection between the notation used in this
work with the notation in a number of well-known references.

Table 2. Connection to notation employed in previous literature

This Manuscript Triebel [39] Triebel [40] Grisvard [5] Bhattacharyya [4]

Ws,p(Ω) Ws
p(Ω) Ws,p(Ω)

Ws,p(Ω̄) Ws
p(Ω) Ws

p(Ω) Ws
p(Ω̄) Ws,p(Ω̄)

W̃s,p(Ω̄) W̃s
p(Ω) W̃s

p(Ω̄)

W̃s,p(Ω) W̃s
p(Ω)

Ws,p
00 (Ω) W̃s

p(Ω) Ws,p
00 (Ω)
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Remark 39.

• Note that

‖u‖Wk,p(Ω) + ∑
|ν|=k

|∂νu|Wθ,p(Ω) ≤ ‖u‖Wk,p(Ω) + ∑
|ν|=k

‖∂νu‖Wθ,p(Ω)

= ‖u‖Wk,p(Ω) + ∑
|ν|=k

(
‖∂νu‖Lp(Ω) + |∂νu|Wθ,p(Ω)

)
� ‖u‖Wk,p(Ω) + ∑

|ν|=k
|∂νu|Wθ,p(Ω) (since ∑

|ν|=k
‖∂νu‖Lp(Ω) ≤ ‖u‖Wk,p(Ω)) .

Therefore, the following is an equivalent norm on Ws,p(Ω)

‖u‖Ws,p(Ω) := ‖u‖Wk,p(Ω) + ∑
|α|=k

‖∂αu‖Wθ,p(Ω) .

• For p ∈ (1, ∞) and a, b > 0 we have (ap + bp)
1
p  a + b; indeed,

ap + bp ≤ (a + b)p ≤ (2 max{a, b})p ≤ 2p(ap + bp) .

More generally, if a1, . . . , am are nonnegative numbers, then (ap
1 + . . .+ ap

m)
1
p  a1 + . . .+ am.

Therefore, for any nonempty open set Ω in Rn, s > 0, the following expressions are both
equivalent to the original norm on Ws,p(Ω)

‖u‖Ws,p(Ω) :=
[
‖u‖p

Wk,p(Ω)
+ ∑
|ν|=k

|∂νu|p
Wθ,p(Ω)

] 1
p ,

‖u‖Ws,p(Ω) :=
[
‖u‖p

Wk,p(Ω)
+ ∑
|ν|=k

‖∂νu‖p
Wθ,p(Ω)

] 1
p ,

where s = k + θ, k ∈ N0, θ ∈ (0, 1).

7.2. Properties of Sobolev Spaces on the Whole Space Rn

Theorem 50 (Embedding Theorem I, [39], Section 2.8.1). Suppose 1 < p ≤ q < ∞ and
−∞ < t ≤ s < ∞ satisfy s − n

p ≥ t − n
q . Then Ws,p(Rn) ↪→ Wt,q(Rn). In particular,

Ws,p(Rn) ↪→ Wt,p(Rn).

Theorem 51 (Multiplication by smooth functions, [12], p. 203). Let s ∈ R, 1 < p < ∞, and
ϕ ∈ BC∞(Rn). Then the linear map

mϕ : Ws,p(Rn)→ Ws,p(Rn), u �→ ϕu

is well-defined and bounded.

A detailed study of the following multiplication theorems can be found in [18].

Theorem 52. Let si, s and 1 ≤ p, pi < ∞ (i = 1, 2) be real numbers satisfying

(i) si ≥ s ≥ 0,
(ii) s ∈ N0,

(iii) si − s ≥ n(
1
pi
− 1

p
),

(iv) s1 + s2 − s > n(
1
p1

+
1
p2
− 1

p
) ≥ 0,

where the strictness of the inequalities in items (iii) and (iv) can be interchanged.
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If u ∈ Ws1,p1(Rn) and v ∈ Ws2,p2(Rn), then uv ∈ Ws,p(Rn) and moreover the pointwise
multiplication of functions is a continuous bilinear map

Ws1,p1(Rn)×Ws2,p2(Rn)→ Ws,p(Rn).

Theorem 53 (Multiplication theorem for Sobolev spaces on the whole space, nonnegative
exponents). Assume si, s and 1 ≤ pi ≤ p < ∞ (i = 1, 2) are real numbers satisfying

(i) si ≥ s,
(ii) s ≥ 0,

(iii) si − s ≥ n(
1
pi
− 1

p
),

(iv) s1 + s2 − s > n(
1
p1

+
1
p2
− 1

p
).

If u ∈ Ws1,p1(Rn) and v ∈ Ws2,p2(Rn), then uv ∈ Ws,p(Rn) and moreover the pointwise
multiplication of functions is a continuous bilinear map

Ws1,p1(Rn)×Ws2,p2(Rn)→ Ws,p(Rn).

Theorem 54 (Multiplication theorem for Sobolev spaces on the whole space, negative
exponents I). Assume si, s and 1 < pi ≤ p < ∞ (i = 1, 2) are real numbers satisfying

(i) si ≥ s,
(ii) min{s1, s2} < 0,

(iii) si − s ≥ n(
1
pi
− 1

p
),

(iv) s1 + s2 − s > n(
1
p1

+
1
p2
− 1

p
),

(v) s1 + s2 ≥ n(
1
p1

+
1
p2
− 1) ≥ 0.

Then the pointwise multiplication of smooth functions extends uniquely to a continuous bilinear
map

Ws1,p1(Rn)×Ws2,p2(Rn)→ Ws,p(Rn).

Theorem 55 (Multiplication theorem for Sobolev spaces on the whole space, negative
exponents II). Assume si, s and 1 < p, pi < ∞ (i = 1, 2) are real numbers satisfying

(i) si ≥ s,
(ii) min{s1, s2} ≥ 0 and s < 0,

(iii) si − s ≥ n(
1
pi
− 1

p
),

(iv) s1 + s2 − s > n(
1
p1

+
1
p2
− 1

p
) ≥ 0,

(v) s1 + s2 > n(
1
p1

+
1
p2
− 1) (the inequality is strict).

Then the pointwise multiplication of smooth functions extends uniquely to a continuous bilinear
map

Ws1,p1(Rn)×Ws2,p2(Rn)→ Ws,p(Rn).

Remark 40. Let us discuss further how we should interpret multiplication in the case where
negative exponents are involved. Suppose for instance s1 < 0 (s2 may be positive or negative). A
moment’s thought shows that the relation

Ws1,p1(Rn)×Ws2,p2(Rn) ↪→ Ws,p(Rn)

in the above theorems can be interpreted as follows: for all u ∈ Ws1,p1(Rn) and v ∈ Ws2,p2(Rn), if
{ϕi} in C∞(Rn) ∩Ws1,p1(Rn) is any sequence such that ϕi → u in Ws1,p1(Rn), then
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(1) For all i, ϕiv ∈ Ws,p(Rn) (multiplication of a smooth function and a distribution);
(2) ϕiv converges to some element g in Ws,p(Rn) as i → ∞;
(3) ‖g‖Ws,p(Rn) � ‖u‖Ws1,p1 (Rn)‖v‖Ws2,p2 (Rn) where the implicit constant does not depend on u

and v;
(4) g ∈ Ws,p(Rn) is independent of the sequence {ϕi} and can be regarded as the product of u

and v.

In particular, ϕiv → uv in D′(Rn) and for all ψ ∈ C∞
c (Rn)

〈uv, ψ〉D′(Rn)×D(Rn) = lim
i→∞

〈ϕiv, ψ〉D′(Rn)×D(Rn) = 〈v, ϕiψ〉D′(Rn)×D(Rn) .

7.3. Properties of Sobolev Spaces on Smooth Bounded Domains

In this section, we assume that Ω is an open bounded set in Rn with smooth bound-
ary unless a weaker assumption is stated. First we list some facts that can be useful in
understanding the relationship between various definitions of Sobolev spaces on domains.

• ([4], p. 584) [Theorem 8.10.13 and its proof] Suppose s > 0 and 1 < p < ∞. Then
Ws,p(Ω) = Ws,p(Ω̄) in the sense of equivalent normed spaces.

• ([40], pp. 481 and 494) For s > 1
p − 1, W̃s,p(Ω̄) = W̃s,p(Ω). That is, for s > 1

p − 1

{v ∈ Ws,p(Rn) : supp v ⊆ ∂Ω} = {0} .

• Let s > 0 and 1 < p < ∞. Then for s �= 1
p , 1 + 1

p , 2 + 1
p , . . . (that is, when the fractional

part of s is not equal to 1
p ) we have

(1) ([4], p. 592) [Theorem 8.10.20] Ws,p
00 (Ω) = Ws,p

0 (Ω) in the sense of equivalent
normed spaces.

(2)
ext0

Ω,Rn :
(
C∞

c (Ω), ‖.‖s,p
)
→ Ws,p(Rn)

is a well-defined bounded linear operator.
(3)

resRn ,Ω : W−s,p′(Rn)→ W−s,p′(Ω) u �→ u|Ω
is a well-defined bounded linear operator.

Note that the connection between items (2) and (3) above can be seen as follows:
Let u ∈ W−s,p′(Rn). resRn ,Ωu ∈ W−s,p′(Ω) if and only if u|Ω : (D(Ω), ‖.‖s,p) → R is
continuous, that is, if

sup
0 �=ϕ∈D(Ω)

|〈u|Ω, ϕ〉D′(Ω)×D(Ω)|
‖ϕ‖Ws,p(Ω)

< ∞ .

We have

|〈u|Ω, ϕ〉D′(Ω)×D(Ω)| = |〈u, ext0
Ω,Rn ϕ〉D′(Rn)×D(Rn)| = |〈u, ext0

Ω,Rn ϕ〉W−s,p′ (Rn)×Ws,p
0 (Rn)

|

� ‖u‖W−s,p′ (Rn)
‖ext0

Ω,Rn ϕ‖Ws,p
0 (Rn) .

So, the desired inequality holds if one can show that for all ϕ ∈ D(Ω),
‖ext0

Ω,Rn ϕ‖Ws,p
0 (Rn) � ‖ϕ‖Ws,p(Ω).

Next we recall some facts about extension operators and embedding properties of
Sobolev spaces. The existence of extension operator can be helpful in transferring known
results for Sobolev spaces defined on Rn to Sobolev spaces defined on bounded domains.

Theorem 56 (Extension Property I [4], p. 584). Let Ω ⊂ Rn be a bounded open set with
Lipschitz continuous boundary. Then for all s > 0 and for 1 ≤ p < ∞, there exists a continuous
linear extension operator P : Ws,p(Ω) ↪→ Ws,p(Rn) such that (Pu)|Ω = u and ‖Pu‖Ws,p(Rn) ≤
C‖u‖Ws,p(Ω) for some constant C that may depend on s, p, and Ω but is independent of u.
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The next theorem states that the claim of Theorem 56 holds for all values of s (positive
and negative) if we replace Ws,p(Ω) with Ws,p(Ω̄).

Theorem 57 (Extension Property II [40], p. 487, [8], p. 201). Let Ω ⊂ Rn be a bounded open set
with Lipschitz continuous boundary, p ∈ (1, ∞) and s ∈ R. Let R : Ws,p(Rn)→ Ws,p(Ω̄) be the
restriction operator (R(u) = u|Ω). Then there exists a continuous linear operator S : Ws,p(Ω̄)→
Ws,p(Rn) such that R ◦ S = Id.

Corollary 3. One can easily show that the results of Sobolev multiplication theorems in the
previous section (Theorems 52–55) hold also for Sobolev spaces on any Lipschitz domain as long as
all the Sobolev spaces involved satisfy We,q(Ω) = We,q(Ω̄) (and so, in particular, existence of an
extension operator is guaranteed). Indeed, if P1 : Ws1,p1(Ω)→ Ws1,p1(Rn) and P2 : Ws2,p2(Ω)→
Ws2,p2(Rn) are extension operators, then (P1u)(P2v)|Ω = uv and therefore,

‖uv‖Ws,p(Ω) = ‖uv‖Ws,p(Ω̄) ≤ ‖(P1u)(P2v)‖Ws,p(Rn) � ‖P1u‖Ws1,p1 (Rn)‖P2v‖Ws2,p2 (Rn)

� ‖u‖Ws1,p1 (Ω)‖v‖Ws2,p2 (Ω) .

Remark 41. In the above Corollary, we presumed that (P1u)(P2v)|Ω = uv. Clearly, if s1 and
s2 are both nonnegative, the equality holds. However, what if at least one of the exponents, say
s1, is negative? In order to prove this equality, we may proceed as follows: let {ϕi} be a sequence
in C∞(Rn) ∩Ws1,p1(Rn) such that ϕi → P1u in Ws1,p1(Rn). By assumption Ws1,p1(Ω) =
Ws1,p1(Ω̄), therefore the restriction operator is continuous and {ϕi|Ω} is a sequence in C∞(Ω) ∩
Ws1,p1(Ω) that converges to u in Ws1,p1(Ω). For all ψ ∈ C∞

c (Ω) we have

〈[(P1u)(P2v)]|Ω, ψ〉D′(Ω)×D(Ω) = 〈(P1u)(P2v), ext0
Ω,Rn ψ〉D′(Rn)×D(Rn)

Remark 40
= lim

i→∞
〈ϕi(P2v), ext0

Ω,Rn ψ〉D′(Rn)×D(Rn)

= lim
i→∞

〈(P2v), ϕiext0
Ω,Rn ψ〉D′(Rn)×D(Rn)

= lim
i→∞

〈(P2v), ext0
Ω,Rn (ϕi|Ωψ)〉D′(Rn)×D(Rn)

= lim
i→∞

〈(P2v)|Ω, ϕi|Ωψ〉D′(Ω)×D(Ω)

= lim
i→∞

〈ϕi|Ωv, ψ〉D′(Ω)×D(Ω)

= 〈uv, ψ〉D′(Ω)×D(Ω) .

Theorem 58 (Embedding Theorem II [5]). Let Ω be a nonempty bounded open subset of Rn

with Lipschitz continuous boundary or Ω = Rn. If sp > n, then Ws,p(Ω) ↪→ L∞(Ω) ∩ C0(Ω)
and Ws,p(Ω) is a Banach algebra.

Theorem 59 (Embedding Theorem III [18]). Let Ω be a nonempty bounded open subset of Rn

with Lipschitz continuous boundary. Suppose 1 ≤ p, q < ∞ (p does NOT need to be less than or
equal to q) and 0 ≤ t ≤ s satisfy s− n

p ≥ t− n
q . If s �∈ N0, additionally assume that s �= t. Then

Ws,p(Ω) ↪→ Wt,q(Ω). In particular, Ws,p(Ω) ↪→ Wt,p(Ω).

Theorem 60. Let Ω be a nonempty bounded open subset of Rn with Lipschitz continuous boundary.
Then u : Ω → R is Lipschitz continuous if and only if u ∈ W1,∞(Ω). In particular, every function
in BC1(Ω) is Lipschitz continuous.

Proof. The above theorem is proved in Chapter 5 of [2] for open sets with C1 boundary.
The exact same proof works for open sets with Lipschitz continuous boundary.

The following theorem (and its corollary) will play an important role in our study of
Sobolev spaces on manifolds.
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Theorem 61 (Multiplication by smooth functions). Let Ω be a nonempty bounded open set in
Rn with Lipschitz continuous boundary.

(1) Let k ∈ N0 and 1 < p < ∞. If ϕ ∈ BCk(Ω), then the linear map Wk,p(Ω) → Wk,p(Ω)
defined by u �→ ϕu is well-defined and bounded.

(2) Let s ∈ (0, ∞) and 1 < p < ∞. If ϕ ∈ BC
s�,1(Ω) (all partial derivatives of ϕ up to and
including order 
s� exist and are bounded and Lipschitz continuous), then the linear map
Ws,p(Ω)→ Ws,p(Ω) defined by u �→ ϕu is well-defined and bounded.

(3) Let s ∈ (−∞, 0) and 1 < p < ∞. If ϕ ∈ BC∞,1(Ω), then the linear map Ws,p(Ω) →
Ws,p(Ω) defined by u �→ ϕu is well-defined and bounded.

Note: According to Theorem 60, when Ω is an open bounded set with Lipschitz continuous
boundary, every function in BC1(Ω) is Lipschitz continuous. As a consequence, BC∞,1(Ω) =
BC∞(Ω). Of course, as it was discussed after Theorem 6, for a general bounded open set Ω whose
boundary is not Lipschitz, functions in BC∞(Ω) are not necessarily Lipschitz.

Proof.

• Step 1: s = k ∈ N0. The claim is proved in ([29], p. 995).
• Step 2: 0 < s < 1. The proof in p. 194 of [41], with obvious modifications, shows the

validity of the claim for the case where s ∈ (0, 1).
• Step 3: 1 < s �∈ N. In this case we can proceed as follows: Let k = 
s�, θ = s− k.

‖ϕu‖s,p
Remark 39

= ‖ϕu‖k,p + ∑
|ν|=k

‖∂ν(ϕu)‖θ,p

� ‖ϕu‖k,p + ∑
|ν|=k

∑
β≤ν

‖∂ν−β ϕ∂βu‖θ,p

� ‖u‖k,p + ∑
|ν|=k

∑
β≤ν

‖∂βu‖θ,p (by steps 1 and 2; the implicit constant may depend on ϕ)

= ‖u‖s,p + ∑
|ν|=k

∑
β<ν

‖∂βu‖θ,p

� ‖u‖s,p + ∑
|ν|=k

∑
β<ν

‖u‖θ+|β|,p (∂β : Wθ+|β|,p(Ω)→ Wθ,p(Ω)is continuous)

� ‖u‖s,p + ∑
|ν|=k

∑
β<ν

‖u‖s,p (θ + |β| < s ⇒ Ws,p(Ω) ↪→ Wθ+|β|,p(Ω))

� ‖u‖s,p.

Note that the embedding Ws,p(Ω) ↪→ Wθ+|β|,p(Ω) is valid due to the extra assump-
tion that Ω is bounded with Lipschitz continuous boundary (see Theorem 68 and
Remark 42).

• Step 4: s < 0. For this case we use a duality argument. Note that since ϕ ∈ C∞(Ω), ϕu
is defined as an element of D′(Ω). Furthermore, recall that Ws,p(Ω) is isometrically
isomorphic to [C∞

c (Ω), ‖.‖−s,p′ ]
∗ (see the discussion after Remark 10). So, in order

to prove the claim, it is enough to show that multiplication by ϕ is a well-defined
continuous operator from Ws,p(Ω) to A = [C∞

c (Ω), ‖.‖−s,p′ ]
∗. We have

‖ϕu‖A = sup
v∈C∞

c \{0}

|〈ϕu, v〉D′(Ω)×D(Ω)|
‖v‖−s,p′

= sup
v∈C∞

c \{0}

|〈u, ϕv〉D′(Ω)×D(Ω)|
‖v‖−s,p′

Remark 45
= sup

v∈C∞
c \{0}

|〈u, ϕv〉
Ws,p(Ω)×W−s,p′

0 (Ω)
|

‖v‖−s,p′

≤ sup
v∈C∞

c \{0}

‖u‖s,p‖ϕv‖−s,p′

‖v‖−s,p′
� sup

v∈C∞
c \{0}

‖u‖s,p‖v‖−s,p′

‖v‖−s,p′
= ‖u‖s,p.
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Corollary 4. Let Ω be a nonempty bounded open set in Rn with Lipschitz continuous boundary.
Let K ∈ K(Ω). Suppose s ∈ R and p ∈ (1, ∞). If ϕ ∈ C∞(Ω), then the linear map Ws,p

K (Ω)→
Ws,p

K (Ω) defined by u �→ ϕu is well-defined and bounded.

Proof. Let U be an open set such that K ⊂ U ⊆ Ū ⊆ Ω. Let ψ ∈ C∞
c (Ω) be such that

ψ = 1 on K and ψ = 0 outside U. Clearly ψϕ ∈ C∞
c (Ω) and thus ψϕ ∈ BC∞,1(Ω) (see the

paragraph above Theorem 7). So, it follows from Theorem 61 that ‖ψϕu‖s,p � ‖u‖s,p where
the implicit constant in particular may depend on ϕ and ψ. Now the claim follows from
the obvious observation that for all u ∈ Ws,p

K (Ω), we have ψϕu = ϕu.

Theorem 62. Let Ω = Rn or Ω be a nonempty bounded open set in Rn with Lipschitz continuous
boundary. Let K ⊆ Ω be compact, s ∈ R and p ∈ (1, ∞). Then

(1) Ws,p
K (Ω) ⊆ Ws,p

0 (Ω). That is, every element of Ws,p
K (Ω) is a limit of a sequence in C∞

c (Ω);
(2) if K ⊆ V ⊆ K′ ⊆ Ω where and K′ is compact and V is open, then for every u ∈ Ws,p

K (Ω),
there exists a sequence in C∞

K′(Ω) that converges to u in Ws,p(Ω).

Proof.

(1) Let u ∈ Ws,p
K (Ω). By Theorems 65 and 66, there exists a sequence {ϕi} in C∞(Ω)

such that ϕi → u in Ws,p(Ω). Let ψ ∈ C∞
c (Ω) be such that ψ = 1 on K. Since

C∞
c (Ω) ⊆ BC∞,1(Ω), it follows from Theorems 51 and 61 that ψϕi → ψu in Ws,p(Ω).

This proves the claim because ψϕi ∈ C∞
c (Ω) and ψu = u.

(2) In the above argument, choose ψ ∈ C∞
c (Ω) such that ψ = 1 on K and ψ = 0 outside V.

Theorem 63 (([40], p. 496), ([39], pp. 317, 330, and 332)). Let Ω be a bounded Lipschitz
domain in Rn. Suppose 1 < p < ∞, 0 ≤ s < 1

p . Then C∞
c (Ω) is dense in Ws,p(Ω) (thus

Ws,p(Ω) = Ws,p
0 (Ω)).

7.4. Properties of Sobolev Spaces on General Domains

In this section, Ω and Ω′ are arbitrary nonempty open sets in Rn. We begin with some
facts about the relationship between various Sobolev spaces defined on bounded domains.

• Suppose s ≥ 0 and Ω′ ⊆ Ω. Then for all u ∈ Ws,p(Ω), we have resΩ,Ω′u ∈ Ws,p(Ω′).
Moreover, ‖resΩ,Ω′u‖Ws,p(Ω′) ≤ ‖u‖Ws,p(Ω). Indeed, if we let s = k + θ

‖u‖Ws,p(Ω′) = ‖u‖Wk,p(Ω′) + ∑
|ν|=k

( ∫ ∫
Ω′×Ω′

|∂νu(x)− ∂νu(y)|p
|x− y|n+θp dxdy

) 1
p

= ∑
|α|≤k

‖∂αu‖Lp(Ω′) + ∑
|ν|=k

( ∫ ∫
Ω′×Ω′

|∂νu(x)− ∂νu(y)|p
|x− y|n+θp dxdy

) 1
p

≤ ∑
|α|≤k

‖∂αu‖Lp(Ω) + ∑
|ν|=k

( ∫ ∫
Ω×Ω

|∂νu(x)− ∂νu(y)|p
|x− y|n+θp dxdy

) 1
p = ‖u‖Ws,p(Ω) .

So, resΩ,Ω′ : Ws,p(Ω) → Ws,p(Ω′) is a continuous linear map. Furthermore, as a
consequence, for every real number s ≥ 0

Ws,p(Ω̄) ↪→ Ws,p(Ω) .

Indeed, if u ∈ Ws,p(Ω̄), then there exists v ∈ Ws,p(Rn) such that resRn ,Ωv = u and
thus u ∈ Ws,p(Ω). Moreover, for every such v, ‖u‖Ws,p(Ω) = ‖resRn ,Ωv‖Ws,p(Ω) ≤
‖v‖Ws,p(Rn). This implies that

‖u‖Ws,p(Ω) ≤ inf
v∈Ws,p(Rn),v|Ω=u

‖v‖Ws,p(Rn) = ‖u‖Ws,p(Ω̄) .
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• Clearly, for all s ≥ 0
Ws,p

00 (Ω) ↪→ Ws,p(Ω̄) .

• For every integer m > 0 ([5], p. 18)

Wm,p
0 (Ω) ⊆ Wm,p

00 (Ω) ⊆ Wm,p(Ω̄) ⊆ Wm,p(Ω) .

• Suppose s ≥ 0. Clearly, the restriction map resRn ,Ω : Ws,p(Rn) → Ws,p(Ω̄) is a
continuous linear map. This combined with the fact that C∞

c (Rn) is dense in Ws,p(Rn)
implies that C∞

c (Ω̄) := resRn ,Ω(C∞
c (Rn)) is dense in Ws,p(Ω̄) for all s ≥ 0.

• W̃s,p(Ω̄) is a closed subspace of Ws,p(Rn). Closed subspaces of reflexive spaces are
reflexive, hence W̃s,p(Ω̄) is a reflexive space.

Theorem 64. Let Ω be a nonempty open set in Rn and 1 < p < ∞.

(1) For all s ≥ 0, Ws,p(Ω) is reflexive.
(2) For all s ≥ 0, Ws,p

0 (Ω) is reflexive.
(3) For all s < 0, Ws,p(Ω) is reflexive.

Proof.

(1) The proof for s ∈ N0 can be found in [1]. Let s = k + θ where k ∈ N0 and 0 < θ < 1.
Let

r = card{ν ∈ Nn
0 : |ν| = k} .

Define P : Ws,p(Ω)→ Wk,p(Ω)× [Lp(Ω×Ω)]×r by

P(u) = (u,
( |∂νu(x)− ∂νu(y)|

|x− y|
n
p +θ

)
|ν|=k

) .

The space Wk,p(Ω)× [Lp(Ω×Ω)]×r equipped with the norm

‖( f , v1, . . . , vr)‖ := ‖ f ‖Wk,p(Ω) + ‖v1‖Lp(Ω×Ω) + . . . + ‖vr‖Lp(Ω×Ω)

is a product of reflexive spaces and so it is reflexive (see Theorem 9). Clearly, the
operator P is an isometry from Ws,p(Ω) to Wk,p(Ω)× [Lp(Ω×Ω)]×r. Since Ws,p(Ω)
is a Banach space, P(Ws,p(Ω)) is a closed subspace of the reflexive space Wk,p(Ω)×
[Lp(Ω×Ω)]×r and thus it is reflexive. Hence Ws,p(Ω) itself is reflexive.

(2) Ws,p
0 (Ω) is the closure of C∞

c (Ω) in Ws,p(Ω). Closed subspaces of reflexive spaces are
reflexive. Therefore, Ws,p

0 (Ω) is reflexive.
(3) A normed space X is reflexive if and only if X∗ is reflexive (see Theorem 9). Since for

s < 0 we have Ws,p(Ω) = [W−s,p′
0 (Ω)]∗, the reflexivity of Ws,p(Ω) follows from the

reflexivity of W−s,p′
0 (Ω).

Theorem 65. For all s < 0 and 1 < p < ∞, C∞
c (Ω) is dense in Ws,p(Ω).

Proof. The proof of the density of Lp in Wm,p in p. 65 of [1] for integer order Sobolev

spaces, which is based on the reflexivity of W−m,p′
0 (Ω), works in the exact same way for

establishing the density of C∞
c (Ω) in Ws,p(Ω).

Theorem 66 (Meyers-Serrin). For all s ≥ 0 and p ∈ (1, ∞), C∞(Ω) ∩Ws,p(Ω) is dense in
Ws,p(Ω).

Next we consider extension by zero and its properties.
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Lemma 6 ([4], p. 201). Let Ω be a nonempty open set in Rn and u ∈ Wm,p
0 (Ω) where m ∈ N0

and 1 < p < ∞. Then

(1) ∀ |α| ≤ m, ∂αũ = (̃∂αu) as elements of D′(Rn),
(2) ũ ∈ Wm,p(Rn) with ‖ũ‖Wm,p(Rn) = ‖u‖Wm,p(Ω).

Here, ũ := ext0
Ω,Rn u and (̃∂αu) := ext0

Ω,Rn(∂αu).

Lemma 7 ([6], p. 546). Let Ω be a nonempty open set in Rn, K ∈ K(Ω), u ∈ Ws,p
K (Ω) where

s ∈ (0, 1) and 1 < p < ∞. Then ext0
Ω,Rn u ∈ Ws,p(Rn) and

‖ext0
Ω,Rn‖Ws,p(Rn) � ‖u‖Ws,p(Ω) ,

where the implicit constant depends on n, p, s, K and Ω.

Theorem 67 (Extension by Zero). Let s ≥ 0 and p ∈ (1, ∞). Let Ω be a nonempty open set in
Rn and let K ∈ K(Ω). Suppose u ∈ Ws,p

K (Ω). Then

(1) ext0
Ω,Rn u ∈ Ws,p(Rn). Indeed, ‖ext0

Ω,Rn u‖Ws,p(Rn) � ‖u‖Ws,p(Ω) where the implicit con-
stant may depend on s, p, n, K, Ω but it is independent of u ∈ Ws,p

K (Ω).
(2) Moreover,

‖ext0
Ω,Rn u‖Ws,p(Rn) ≥ ‖u‖Ws,p(Ω) .

In short, ‖ext0
Ω,Rn u‖Ws,p(Rn)  ‖u‖Ws,p(Ω).

Proof. Let ũ = ext0
Ω,Rn u. If s ∈ N0, then both items follow from Lemma 6. So, let s = m + θ

where m ∈ N0 and θ ∈ (0, 1). We have

‖ũ‖Ws,p(Rn) = ‖ũ‖Wm,p(Rn) + ∑
|ν|=m

|∂νũ|Wθ,p(Rn)

Lemma 6
= ‖u‖Wm,p(Ω) + ∑

|ν|=m
|∂̃νu|Wθ,p(Rn)

Lemma 7
� ‖u‖Wm,p(Ω) + ∑

|ν|=m
‖∂νu‖Wθ,p(Ω)

� ‖u‖Ws,p(Ω) .

The fact that ‖ũ‖Ws,p(Rn) ≥ ‖u‖Ws,p(Ω) is a direct consequence of the decomposition stated
in item 1 of Remark 34.

Corollary 5. Let s ≥ 0 and p ∈ (1, ∞). Let Ω and Ω′ be nonempty open sets in Rn with Ω′ ⊆ Ω
and let K ∈ K(Ω′). Suppose u ∈ Ws,p

K (Ω′). Then

(1) ext0
Ω′ ,Ωu ∈ Ws,p(Ω),

(2) ‖ext0
Ω′ ,Ωu‖Ws,p(Ω)  ‖u‖Ws,p(Ω′).

Proof.

u ∈ Ws,p
K (Ω′) =⇒ ext0

Ω′ ,Rn u ∈ Ws,p(Rn) =⇒ ext0
Ω′ ,Rn u|Ω ∈ Ws,p(Ω̄) .

As we know, Ws,p(Ω̄) ↪→ Ws,p(Ω). Furthermore, it is easy to see that ext0
Ω′ ,Rn u|Ω =

ext0
Ω′ ,Ωu. Therefore, ext0

Ω′ ,Ωu ∈ Ws,p(Ω). Moreover,

‖ext0
Ω′ ,Ωu‖Ws,p(Ω)  ‖ext0

Ω,Rn ◦ ext0
Ω′ ,Ωu‖Ws,p(Rn) = ‖ext0

Ω′ ,Rn u‖Ws,p(Rn)  ‖u‖Ws,p(Ω′) .
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Extension by zero for Sobolev spaces with negative exponents will be discussed in
Theorem 71.

Theorem 68 (Embedding Theorem IV). Let Ω ⊆ Rn be an arbitrary nonempty open set.

(1) Suppose 1 ≤ p ≤ q < ∞ and 0 ≤ t ≤ s satisfy s− n
p ≥ t− n

q . Then Ws,p(Ω̄) ↪→ Wt,q(Ω̄).

(2) Suppose 1 ≤ p ≤ q < ∞ and 0 ≤ t ≤ s satisfy s− n
p ≥ t− n

q . Then Ws,p
K (Ω) ↪→ Wt,q

K (Ω)

for all K ∈ K(Ω).
(3) For all k1, k2 ∈ N0 with k1 ≤ k2 and 1 < p < ∞, Wk2,p(Ω) ↪→ Wk1,p(Ω).
(4) If 0 ≤ t ≤ s < 1 and 1 < p < ∞, then Ws,p(Ω) ↪→ Wt,p(Ω).
(5) If 0 ≤ t ≤ s < ∞ are such that 
s� = 
t� and 1 < p < ∞, then Ws,p(Ω) ↪→ Wt,p(Ω).
(6) If 0 ≤ t ≤ s < ∞, t ∈ N0, and 1 < p < ∞, then Ws,p(Ω) ↪→ Wt,p(Ω).

Proof.

(1) This item can be found in ([39], Section 4.6.1).
(2) For all u ∈ Ws,p

K (Ω) we have

‖u‖Wt,q(Ω)  ‖ext0
Ω,Rn u‖Wt,q(Rn) � ‖ext0

Ω,Rn u‖Ws,p(Rn)  ‖u‖Ws,p(Ω) .

(3) This item is a direct consequence of the definition of integer order Sobolev spaces.
(4) Proof can be found in [6], p. 524.
(5) This is a direct consequence of the previous two items.
(6) This is true because Ws,p(Ω) ↪→ W
s�,p(Ω) ↪→ Wt,p(Ω).

Remark 42. For an arbitrary open set Ω in Rn and 0 < t < 1, the embedding W1,p(Ω) ↪→
Wt,p(Ω) does NOT necessarily hold (see, e.g., [6], Section 9). Of course, as it was discussed,
under the extra assumption that Ω is Lipschitz, the latter embedding holds true. So, if 
s� �= 
t�
and t �∈ N0, then in order to ensure that Ws,p(Ω) ↪→ Wt,p(Ω) we need to assume some sort of
regularity for the domain Ω (for instance it is enough to assume Ω is Lipschitz).

Theorem 69 (Multiplication by smooth functions). Let Ω be any nonempty open set in Rn. Let
p ∈ (1, ∞).

(1) If 0 ≤ s < 1 and ϕ ∈ BC0,1(Ω) (that is, ϕ is bounded and ϕ is Lipschitz), then

mϕ : Ws,p(Ω)→ Ws,p(Ω), u �→ ϕu

is a well-defined bounded linear map.
(2) If k ∈ N0 and ϕ ∈ BCk(Ω), then

mϕ : Wk,p(Ω)→ Wk,p(Ω), u �→ ϕu

is a well-defined bounded linear map.
(3) If −1 < s < 0 and ϕ ∈ BC∞,1(Ω) or s ∈ Z− and ϕ ∈ BC∞(Ω), then

mϕ : Ws,p(Ω)→ Ws,p(Ω), u �→ ϕu

is a well-defined bounded linear map (ϕu is interpreted as the product of a smooth function
and a distribution).

Proof.

(1) Proof can be found in [6], p. 547.
(2) Proof can be found in [29], p. 995.
(3) The duality argument in Step 4 of the proof of Theorem 61 works for this item too.
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Remark 43. Suppose ϕ ∈ BC∞,1(Ω). Note that the above theorem says nothing about the
boundedness of the mapping mϕ : Ws,p(Ω) → Ws,p(Ω) in the case where s is noninteger such
that |s| > 1. Of course, if we assume Ω is Lipschitz, then the continuity of mϕ follows from
Theorem 61. It is important to note that the proof of that theorem for the case s > 1 (noninteger)
uses the embedding Wk+θ,p(Ω) ↪→ Wk′+θ,p(Ω) with k′ < k which as we discussed does not hold
for an arbitrary open set Ω. The proof for the case s < −1 (noninteger) uses duality to transfer the
problem to s > 1 and thus again we need the extra assumption of regularity of the boundary of Ω.

Theorem 70. Let Ω be a nonempty open set in Rn, K ∈ K(Ω), p ∈ (1, ∞), and −1 < s < 0 or
s ∈ Z− or s ∈ [0, ∞). If ϕ ∈ C∞(Ω), then the linear map

Ws,p
K (Ω)→ Ws,p

K (Ω), u �→ ϕu

is well-defined and bounded.

Proof. There exists ψ ∈ C∞
c (Ω) such that ψ = 1 on K. Clearly ψϕ ∈ C∞

c (Ω) and if u ∈
Ws,p

K (Ω), ψϕu = ϕu on Ω. Thus without loss of generality we may assume that ϕ ∈ C∞
c (Ω).

Since C∞
c (Ω) ⊆ BC∞(Ω) and C∞

c (Ω) ⊆ BC∞,1(Ω), the cases where −1 < s < 0 or s ∈ Z−

follow from Theorem 69. For s ≥ 0, the proof of Theorem 61 works for this theorem as
well. The only place in that proof that the regularity of the boundary of Ω was used was
for the validity of the embedding Ws,p(Ω) ↪→ Wθ+|β|,p(Ω). However, as we know (see
Theorem 68), this embedding holds for Sobolev spaces with support in a fixed compact set
inside Ω for a general open set Ω, that is, for Ws,p

K (Ω) ↪→ Wθ+|β|,p
K (Ω) to be true we do not

need to assume Ω is Lipschitz.

Remark 44. Note that our proofs for s < 0 are based on duality. As a result, it seems that for the
case where s is a noninteger less than −1 we cannot have a multiplication by smooth functions
result for Ws,p

K (Ω) similar to the one stated in the above theorem (note that there is no fixed compact
set K such that every v ∈ C∞

c (Ω) has compact support in K. Thus, the technique used in Step 4 of
the proof of Theorem 61 does not work in this case).

Theorem 71. Let s < 0 and p ∈ (1, ∞). Let Ω and Ω′ be nonempty open sets in Rn with Ω′ ⊆ Ω
and let K ∈ K(Ω′). Suppose u ∈ Ws,p

K (Ω′). Then

(1) If ext0
Ω′ ,Ωu ∈ Ws,p(Ω), then ‖u‖Ws,p(Ω′) � ‖ext0

Ω′ ,Ωu‖Ws,p(Ω) (the implicit constant may
depend on K).

(2) If s ∈ (−∞,−1] ∩ Z or −1 < s < 0, then ext0
Ω′ ,Ωu ∈ Ws,p(Ω) and ‖ext0

Ω′ ,Ωu‖Ws,p(Ω)  
‖u‖Ws,p(Ω′). This result holds for all s < 0 if we further assume that Ω is Lipschitz or
Ω = Rn.

Proof. To be completely rigorous, let iD,W : D(Ω′)→ W−s,p′
0 (Ω′) be the identity map and

let i∗D,W : Ws,p(Ω′)→ D′(Ω′) be its dual with which we identify Ws,p(Ω′) with a subspace
of D′(Ω′). Previously we defined ext0

Ω′ ,Ω for distributions with compact support in Ω′. For
any u ∈ Ws,p

K (Ω′) we let
ext0

Ω′ ,Ωu := ext0
Ω′ ,Ω ◦ i∗D,Wu ,

which by definition will be an element of D′(Ω). Note that (see Remark 45 and the
discussion right after Remark 10)

‖ext0
Ω′ ,Ωu‖Ws,p(Ω) = sup

0 �=ψ∈D(Ω)

|〈ext0
Ω′ ,Ωu, ψ〉D′(Ω)×D(Ω)|
‖ψ‖W−s,p′ (Ω)

‖u‖Ws,p(Ω′) = sup
0 �=ϕ∈D(Ω′)

|〈u, ϕ〉D′(Ω′)×D(Ω′)|
‖ϕ‖W−s,p′ (Ω′)

.

305



Mathematics 2022, 10, 522

So, in order to prove the first item we just need to show that

∀ 0 �= ϕ ∈ D(Ω′) ∃ψ ∈ D(Ω) s.t.
|〈u, ϕ〉D′(Ω′)×D(Ω′)|
‖ϕ‖W−s,p′ (Ω′)

�
|〈ext0

Ω′ ,Ωu, ψ〉D′(Ω)×D(Ω)|
‖ψ‖W−s,p′ (Ω)

.

Let ϕ ∈ D(Ω′). Define ψ = ext0
Ω′ ,Ω ϕ. Clearly, ψ ∈ D(Ω) and ψ = ϕ on Ω′. Therefore,

〈ext0
Ω′ ,Ωu, ψ〉D′(Ω)×D(Ω) = 〈u, ψ|Ω′ 〉D′(Ω′)×D(Ω′) = 〈u, ϕ〉D′(Ω′)×D(Ω′) .

Moreover, since −s > 0

‖ψ‖W−s,p′ (Ω)
= ‖ext0

Ω′ ,Ω ϕ‖W−s,p′ (Ω)
� ‖ϕ‖W−s,p′ (Ω′) .

This completes the proof of the first item. For the second item we just need to prove that
under the given hypotheses

∀ 0 �= ψ ∈ D(Ω) ∃ ϕ ∈ D(Ω′) s.t.
|〈ext0

Ω′ ,Ωu, ψ〉D′(Ω)×D(Ω)|
‖ψ‖W−s,p′ (Ω)

�
|〈u, ϕ〉D′(Ω′)×D(Ω′)|
‖ϕ‖W−s,p′ (Ω′)

.

To this end suppose ψ ∈ D(Ω). Choose a compact set K̃ such that K ⊂ ˚̃K ⊂ K̃ ⊂ Ω′. Fix
χ ∈ D(Ω) such that χ = 1 on K̃ and supp χ ⊂ Ω′. Clearly, ψ = χψ on a neighborhood of K
and if we set ϕ = χψ|Ω′ , then ϕ ∈ D(Ω′). Therefore,

〈ext0
Ω′ ,Ωu, ψ〉D′(Ω)×D(Ω) = 〈ext0

Ω′ ,Ωu, χψ〉D′(Ω)×D(Ω) = 〈u, χψ|Ω′ 〉D′(Ω′)×D(Ω′) = 〈u, ϕ〉D′(Ω′)×D(Ω′) .

Furthermore, since −s > 0, we have

‖ϕ‖W−s,p′ (Ω′) ≤ ‖ext0
Ω′ ,Ω ϕ‖W−s,p′ (Ω)

= ‖χψ‖W−s,p′ (Ω)
� ‖ψ‖W−s,p′ (Ω)

.

The latter inequality is the place where we used the assumption that s ∈ (−∞,−1] ∩Z or
−1 < s < 0 or Ω is Lipschitz or Ω = Rn. This completes the proof of the second item.

Corollary 6. Let p ∈ (1, ∞). Let Ω and Ω′ be nonempty open sets in Rn with Ω′ ⊆ Ω and let
K ∈ K(Ω′). Suppose u ∈ Ws,p

K (Ω). It follows from Corollary 5 and Theorem 71 that

• If s ∈ R is not a noninteger less than −1, then

‖u‖Ws,p(Ω)  ‖u‖Ws,p(Ω′) ,

• If Ω is Lipschitz or Ω = Rn, then for all s ∈ R

‖u‖Ws,p(Ω)  ‖u‖Ws,p(Ω′) .

Note that on the right hand sides of the above expressions, u stands for resΩ,Ω′u. Clearly, ext0
Ω′ ,Ω ◦

resΩ,Ω′u = u.

Theorem 72. Let Ω be any nonempty open set in Rn, K ⊆ Ω be compact, s > 0, and p ∈ (1, ∞).
Then the following norms on Ws,p

K (Ω) are equivalent:

‖u‖Ws,p(Ω) := ‖u‖Wk,p(Ω) + ∑
|ν|=k

|∂νu|Wθ,p(Ω) ,

[u]Ws,p(Ω) := ‖u‖Wk,p(Ω) + ∑
1≤|ν|≤k

|∂νu|Wθ,p(Ω) ,

where s = k + θ, k ∈ N0, θ ∈ (0, 1). Moreover, if we further assume Ω is Lipschitz, then the above
norms are equivalent on Ws,p(Ω).
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Proof. Clearly, for all u ∈ Ws,p(Ω), ‖u‖Ws,p(Ω) ≤ [u]Ws,p(Ω). So, it is enough to show that
there is a constant C > 0 such that for all u ∈ Ws,p

K (Ω) (or u ∈ Ws,p(Ω) if Ω is Lipschitz)

[u]Ws,p(Ω) ≤ C‖u‖Ws,p(Ω) .

For each 1 ≤ i ≤ k we have

∑
|ν|=i

|∂νu|Wθ,p(Ω) = ‖u‖Wi+θ,p(Ω) − ‖u‖Wi,p(Ω) .

Thus

[u]Ws,p(Ω) = ‖u‖Ws,p(Ω) + ∑
1≤i<k

∑
|ν|=i

|∂νu|Wθ,p(Ω)

= ‖u‖Ws,p(Ω) + ∑
1≤i<k

(
‖u‖Wi+θ,p(Ω) − ‖u‖Wi,p(Ω)

)
.

Therefore, it is enough to show that there exists a constant C ≥ 1 such that

∑
1≤i<k

‖u‖Wi+θ,p(Ω) ≤ (C− 1)‖u‖Ws,p(Ω) + ∑
1≤i<k

‖u‖Wi,p(Ω) .

By Theorem 68, for each 1 ≤ i < k, Ws,p
K (Ω) ↪→ Wi+θ,p

K (Ω) (also, we have Ws,p(Ω) ↪→
Wi+θ,p(Ω) with the extra assumption that Ω is Lipschitz); so there is a constant Ci such
that ‖u‖Wi+θ,p(Ω) ≤ Ci‖u‖Ws,p(Ω). Clearly with C = 1 + ∑k−1

i=1 Ci the desired inequality
holds.

Remark 45. Let s ≥ 0 and 1 < p < ∞. Here we summarize the connection between Sobolev
spaces and space of distributions.

(1) Question 1: What does it mean to say u ∈ D′(Ω) belongs to W−s,p′(Ω)?
Answer:

u ∈ D′(Ω) is in W−s,p′(Ω)⇐⇒ u : (D(Ω), ‖.‖s,p)→ R is continuous

⇐⇒ u : D(Ω)→ R has a unique continuous extension to û : Ws,p
0 (Ω)→ R

(2) Question 2: How should we interpret W−s,p′(Ω) ⊆ D′(Ω)?
Answer: i : D(Ω)→ Ws,p

0 (Ω) is continuous with dense image. Therefore, i∗ : W−s,p′(Ω)→
D′(Ω) is an injective continuous linear map. If u ∈ W−s,p′(Ω), then i∗u ∈ D′(Ω) and

〈i∗u, ϕ〉D′(Ω)×D(Ω) = 〈u, iϕ〉W−s,p′ (Ω)×Ws,p
0 (Ω)

= 〈u, ϕ〉W−s,p′ (Ω)×Ws,p
0 (Ω)

.

So, i∗u = u|D(Ω) and if we identify with i∗u with u we can write

〈u, ϕ〉D′(Ω)×D(Ω) = 〈u, ϕ〉W−s,p′ (Ω)×Ws,p
0 (Ω)

, ‖u‖W−s,p′ (Ω)
= sup

0 �=ϕ∈C∞
c (Ω)

|〈u, ϕ〉D′(Ω)×D(Ω)|
‖ϕ‖Ws,p(Ω)

.

(3) Question 3: How should we interpret Ws,p(Ω) ⊆ D′(Ω)?
Answer: It is a direct consequence of the definition of Ws,p(Ω) that Ws,p(Ω) ↪→ Lp(Ω)
for any open set Ω. So, any f ∈ Ws,p(Ω) can be identified with the regular distribution
u f ∈ D′(Ω) where

〈u f , ϕ〉 =
∫

f ϕ ∀ ϕ ∈ D(Ω) .

(4) Question 4: What does it mean to say u ∈ D′(Ω) belongs to Ws,p(Ω)?
Answer: It means there exists f ∈ Ws,p(Ω) such that u = u f .
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Remark 46. Let Ω be a nonempty open set in Rn and f , g ∈ C∞
c (Ω). Suppose s ∈ R and

p ∈ (1, ∞).

• If s ≥ 0, then

‖ f ‖W−s,p′ (Ω)
= sup

0 �=ϕ∈C∞
c (Ω)

|〈 f , ϕ〉D′(Ω)×D(Ω)|
‖ϕ‖Ws,p(Ω)

= sup
0 �=ϕ∈C∞

c (Ω)

|
∫

Ω f ϕ dx|
‖ϕ‖Ws,p(Ω)

.

So, for all ϕ ∈ C∞
c (Ω)

|
∫

Ω
f ϕ dx| ≤ ‖ f ‖W−s,p′ (Ω)

‖ϕ‖Ws,p(Ω) .

In particular, for g, we have

|
∫

Ω
f g dx| ≤ ‖ f ‖W−s,p′ (Ω)

‖g‖Ws,p(Ω) .

• If s < 0, we may replace the roles of f and g, and also (s, p) and (−s, p′) in the above
argument to get the exact same inequality: |

∫
Ω f g dx| ≤ ‖ f ‖W−s,p′ (Ω)

‖g‖Ws,p(Ω).

7.5. Invariance Under Change of Coordinates, Composition

Theorem 73 ([12], Section 4.3). Let s ∈ R and 1 < p < ∞. Suppose that T : Rn → Rn is a
C∞-diffeomorphism (i.e., T is bijective and T and T−1 are C∞) with the property that the partial
derivatives (of any order) of the components of T are bounded on Rn (the bound may depend on the
order of the partial derivative) and infRn |det T′| > 0. Then the linear map

Ws,p(Rn)→ Ws,p(Rn), u �→ u ◦ T

is well-defined and is bounded.

Now, let U and V be two nonempty open sets in Rn. Suppose T : U → V is a bijective
map. Similar to [1] we say T is k-smooth if all the components of T belong to BCk(U) and
all the components of T−1 belong to BCk(V).

Remark 47. It is useful to note that if T is 1-smooth, then

inf
U
|det T′| > 0 and inf

V
|det (T−1)′| > 0 .

Indeed, since the first order partial derivatives of the components of T and T−1 are bounded, there
exist postive numbers M and M̃ such that for all x ∈ U and y ∈ V

|det T′(x)| < M, |det (T−1)′(y)| < M̃ .

Since |det T′(x)| × |det (T−1)′(T(x))| = 1, we can conclude that for all x ∈ U and y ∈ V

|det T′(x)| > 1
M̃

, |det (T−1)′(y)| > 1
M

,

which proves the claim.

Remark 48. Furthermore, it is interesting to note that, as a consequence of the inverse function
theorem, if T : U → V is a bijective map that is Ck (k ∈ N) with the property that det T′(x) �= 0
for all x ∈ U, then the inverse of T will be Ck as well, that is, T will automatically be a Ck-
diffeomorphism (see, e.g., Appendix C in [19] for more details).

308



Mathematics 2022, 10, 522

Remark 49. Note that since we do not assume that U and V are necessarily convex or Lipschitz,
the continuity and boundedness of the partial derivatives of the components of T do not imply that
the components of T are Lipschitz. (see the “Warning” immediately after Theorem 6).

Theorem 74 (([29], p. 1003), ([1], pp. 77–78 )). Let p ∈ (1, ∞) and k ∈ N. Suppose that U and
V are nonempty open subsets of Rn.

(1) If T : U → V is a 1-smooth map, then the map

Lp(V)→ Lp(U), u �→ u ◦ T

is well-defined and is bounded.
(2) If T : U → V is a k-smooth map, then the map

Wk,p(V)→ Wk,p(U), u �→ u ◦ T

is well-defined and is bounded.

Theorem 75. Let p ∈ (1, ∞) and k ∈ Z− (k is a negative integer). Suppose that U and V are
nonempty open subsets of Rn, and T : U → V is ∞-smooth. Then the map

Wk,p(V)→ Wk,p(U), u �→ u ◦ T

is well-defined and is bounded.

Proof. By definition we have (T∗u denotes the pullback of u by T)

‖T∗u‖Wk,p(U) = sup
ϕ∈C∞

c (U)

|〈T∗u, ϕ〉D′(U)×D(U)|
‖ϕ‖W−k,p′ (U)

= sup
ϕ∈C∞

c (U)

|〈u, |det(T−1)′|ϕ ◦ T−1〉D′(V)×D(V)|
‖ϕ‖W−k,p′ (U)

� sup
ϕ∈C∞

c (U)

‖u‖Wk,p(V)‖|det(T−1)′|ϕ ◦ T−1‖W−k,p′ (V)

‖ϕ‖W−k,p′ (U)

|det(T−1)′ |∈BC∞

� sup
ϕ∈C∞

c (U)

‖u‖Wk,p(V)‖ϕ ◦ T−1‖W−k,p′ (V)

‖ϕ‖W−k,p′ (U)

.

Since −k is a positive integer, by Theorem 74 we have ‖ϕ ◦ T−1‖W−k,p′ (V)
� ‖ϕ‖W−k,p′ (U)

.
Consequently,

‖T∗u‖Wk,p(U) � ‖u‖Wk,p(V) .

Theorem 76. Let p ∈ (1, ∞) and 0 < s < 1. Suppose that U and V are nonempty open subsets of
Rn, T : U → V is 1-smooth, and T is Lipschitz continuous on U. Then the map

Ws,p(V)→ Ws,p(U), u �→ u ◦ T

is well-defined and is bounded.

Proof. Note that

‖u ◦ T‖Ws,p(U) = ‖u ◦ T‖Lp(U) + |u ◦ T|Ws,p(U)

Theorem 74
� ‖u‖Lp(V) + |u ◦ T|Ws,p(U) .
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So, it is enough to show that |u ◦ T|Ws,p(U) � |u|Ws,p(V).

|u ◦ T|Ws,p(U) =
( ∫ ∫

U×U

|(u ◦ T)(x)− (u ◦ T)(y)|p
|x− y|n+sp dxdy

) 1
p

z=T(x)
w=T(y)
�

( ∫ ∫
V×V

|u(z)− u(w)|p
|T−1(z)− T−1(w)|n+sp

1
|detT′(x)|

1
|detT′(y)|dzdw

) 1
p

�
( ∫ ∫

V×V

|u(z)− u(w)|p
|T−1(z)− T−1(w)|n+sp dzdw

) 1
p .

T is Lipschitz continuous on U; so, there exists a constant C > 0 such that

|T(x)− T(y)| ≤ C|x− y| =⇒ |z− w| ≤ C|T−1(z)− T−1(w)| .

Therefore,

|u ◦ T|Ws,p(U) �
( ∫ ∫

V×V

|u(z)− u(w)|p
|z− w|n+sp dzdw

) 1
p = |u|Ws,p(V) .

Theorem 77. Let p ∈ (1, ∞) and −1 < s < 0. Suppose that U and V are nonempty open subsets
of Rn, T : U → V is ∞-smooth, T−1 is Lipschitz continuous on V, and |det(T−1)′| is in BC0,1(V).
Then the map

Ws,p(V)→ Ws,p(U), u �→ u ◦ T

is well-defined and is bounded.

Proof. The proof of Theorem 75, with obvious modifications, shows the validity of the
above claim.

Remark 50. In the previous theorem, by assumption, the first order partial derivatives of the
components of T−1 are continuous and bounded. Furthermore, it is true that absolute value of a
Lipschitz continuous function and the sum and product of bounded Lipschitz continuous functions
will be Lipschitz continuous. Consequently, in order to ensure that |det(T−1)′| is in BC0,1(V), it
is enough to make sure that the first order partial derivatives of the components of T−1 are bounded
and Lipschitz continuous.

Theorem 78. Let s = k + θ where k ∈ N, θ ∈ (0, 1), and let p ∈ (1, ∞). Suppose that U and V
are two nonempty open sets in Rn. Let T : U → V be a Lipschitz continuous k-smooth map on U
such that the partial derivatives up to and including order k of all the components of T are Lipschitz
continuous on U as well. Then

(1) For each K ∈ K(V) the linear map

T∗ : Ws,p
K (V)→ Ws,p

T−1(K)(U), u �→ u ◦ T

is well-defined and is bounded.
(2) If we further assume that V is Lipschitz (and so U is Lipschitz), the linear map

T∗ : Ws,p(V)→ Ws,p(U), u �→ u ◦ T

is well-defined and is bounded.
Note: When U is a Lipschitz domain, the fact that T is k-smooth automatically implies that
all the partial derivatives of the components of T up to and including order k− 1 are Lipschitz
continuous (see Theorem 60). So in this case, the only extra assumption, in addition to T
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being k-smooth, is that the partial derivatives of the components of T of order k are Lipschitz
continuous on U.

Proof. Recall that C∞(V) ∩Ws,p(V) is dense in Ws,p(V). Our proof consists of two steps:
in the first step we addditionally assume that u ∈ C∞(V). Then in the second step we
prove the validity of the claim for u ∈ Ws,p

K (V) (or u ∈ Ws,p(V) with the assumption that
V is Lipschitz).

• Step 1: We have

‖u ◦ T‖Ws,p(U) = ‖u ◦ T‖Wk,p(U) + ∑
|ν|=k

|∂ν(u ◦ T)|Wθ,p(U)

Theorem 74
� ‖u‖Wk,p(V) + ∑

|ν|=k
|∂ν(u ◦ T)|Wθ,p(U) .

Since u and T are both Ck, it can be proved by induction that (see, e.g., [1])

∂ν(u ◦ T)(x) = ∑
β≤ν,1≤|β|

Mνβ(x)[(∂βu) ◦ T](x) ,

where Mνβ(x) are polynomials of degree at most |β| in derivatives of order at most |ν|
of the components of T. In particular, Mνβ ∈ BC0,1(U) . Therefore,

|∂ν(u ◦ T)|Wθ,p(U) ≤ ‖∂ν(u ◦ T)‖Wθ,p(U) = ‖ ∑
β≤ν,1≤|β|

Mνβ(x)[(∂βu) ◦ T](x)‖Wθ,p(U)

Theorem 69
� ∑

β≤ν,1≤|β|
‖(∂βu) ◦ T‖Wθ,p(U) = ∑

β≤ν,1≤|β|
‖(∂βu) ◦ T‖Lp(U) + |(∂βu) ◦ T|Wθ,p(U)

Theorems 74 and 76
� ∑

β≤ν,1≤|β|
‖∂βu‖Lp(V) + |∂βu|Wθ,p(V) ≤ ‖u‖Wk,p(V) + ∑

β≤ν,1≤|β|
|∂βu|Wθ,p(V) .

(The fact that ∂βu belongs to Wθ,p(V) ↪→ Lp(V) is a consequence of the definition of
the Slobodeckij norm combined with our embedding theorems for Sobolev spaces of
functions with fixed compact support in an arbitrary domain or embedding theorems
for Sobolev spaces of functions on a Lipschitz domain). Hence

‖u ◦ T‖Ws,p(U) � ‖u‖Wk,p(V) + ∑
1≤|ν|≤k

∑
β≤ν,1≤|β|

|∂βu|Wθ,p(V)

� ‖u‖Wk,p(V) + ∑
1≤|α|≤k

|∂αu|Wθ,p(V)

Theorem 72 ‖u‖Ws,p(V) .

Note that the last equivalence is due to the assumption that u ∈ Ws,p
K (V) ( or u ∈

Ws,p(V) with V being Lipschitz).
• Step 2: Now suppose u is an arbitrary element of Ws,p

K (V) (or Ws,p(V) with V being
Lipschitz). There exists a sequence {um}m≥1 in C∞(V) such that um → u in Ws,p(V).
In particular, {um} is Cauchy. By the previous steps we have

‖T∗um − T∗ul‖Ws,p(U) � ‖um − ul‖Ws,p(V) → 0 (as m, l → ∞) .

Therefore, {T∗um} is a Cauchy sequence in the Banach space Ws,p(U) and subse-
quently there exists v ∈ Ws,p(U) such that T∗um → v as m → ∞. It remains to show
that v = T∗u as elements of Ws,p(U). As a direct consequence of the definition of
Ws,p-norm (s ≥ 0) we have
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‖T∗um − v‖Lp(U) ≤ ‖T∗um − v‖Ws,p(U) → 0 ,

‖um − u‖Lp(V) ≤ ‖um − u‖Ws,p(V) → 0 .

Note that by Theorem 74, um → u in Lp(V) implies that T∗um → T∗u in Lp(U). Thus
T∗u = v as elements of Lp(U) and hence as elements of Ws,p(U).

Theorem 79. Let p ∈ (1, ∞) and s < −1 be a noninteger number. Suppose that U and V are
two nonempty Lipschitz open sets in Rn and T : U → V is a ∞-smooth map. Then the linear map

T∗ : Ws,p(V)→ Ws,p(U), u �→ u ◦ T

is well-defined and is bounded.
Note: Since V is a Lipschitz domain, the fact that T is ∞-smooth automatically implies that T−1

and all the partial derivatives of the components of T−1 are Lipschitz continuous (see Theorem 60).

Proof. The proof is completely analogous to the proof of Theorem 75. We have

‖T∗u‖Ws,p(U) = sup
ϕ∈C∞

c (U)

|〈T∗u, ϕ〉D′(U)×D(U)|
‖ϕ‖W−s,p′ (U)

= sup
ϕ∈C∞

c (U)

|〈u, |det(T−1)′|ϕ ◦ T−1〉D′(V)×D(V)|
‖ϕ‖W−s,p′ (U)

�
‖u‖Ws,p(V)‖|det(T−1)′|ϕ ◦ T−1‖W−s,p′ (V)

‖ϕ‖W−s,p′ (U)

|det(T−1)′ |∈BC∞(V)
�

‖u‖Ws,p(V)‖ϕ ◦ T−1‖W−s,p′ (V)

‖ϕ‖W−s,p′ (U)

.

Since −s > 0, it follows from the hypotheses of this theorem and the result of Theorem 78
that ‖ϕ ◦ T−1‖W−s,p′ (V)

� ‖ϕ‖W−s,p′ (U)
. Consequently,

‖T∗u‖Ws,p(U) � ‖u‖Ws,p(V) .

Lemma 8. Let U and V be two nonempty open sets in Rn. Suppose T : U → V (T =
(T1, . . . , Tn)) is a Ck+1-diffeomorphism for some k ∈ N0 and let B ⊆ U be a nonempty bounded
open set such that B ⊆ B̄ ⊆ U. Then

(1) T : B → T(B) is a (k + 1)-smooth map.
(2) T : B → T(B) and T−1 : T(B)→ B are Lipschitz (the Lipschitz constant may depend on B).
(3) For all 1 ≤ i ≤ n and |α| ≤ k, ∂αTi ∈ BCk,1(B) and ∂α(T−1)i ∈ BCk,1(T(B)).

Proof. Item 1 is true because B̄ is compact and so T(B̄) is compact and continuous functions
are bounded on compact sets. Items 2 and 3 are direct consequences of Theorem 7.

Theorem 80. Let s ∈ R and p ∈ (1, ∞). Suppose that U and V are two nonempty open sets
in Rn and T : U → V is a C∞-diffeomorphism (if s ≥ 0 it is enough to assume T is a C
s�+1-
diffeomorphism). Let B ⊆ U be a nonempty bounded open set such that B ⊆ B̄ ⊆ U. Let
u ∈ Ws,p(V) be such that suppu ⊆ T(B) (note that if suppu is compact in V, then such a B exists).
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(1) If s is NOT a noninteger less than −1, then

‖u ◦ T‖Ws,p(U) � ‖u‖Ws,p(V) .

(The implicit constant may depend on B but otherwise is independent of u.)
(2) If U and V are Lipschitz or Rn, then the above result holds for all s ∈ R.

Proof. If s is an integer or −1 < s < 1, or if U and V are Lipschitz or Rn and s ∈ R then as
a consequence of the above lemma and the preceding theorems we may write

‖u ◦ T‖Ws,p(U)

Corollary 6
 ‖u ◦ T‖Ws,p(B) � ‖u‖Ws,p(T(B))

Corollary 6
 ‖u‖Ws,p(V) .

For general U and V, if s = k + θ, we let B̂ be an open set such that ¯̂B is a compact subset of
U and B̄ ⊆ B̂. We can apply the previous lemma to B̂ and write

‖u ◦ T‖Ws,p(U)

Corollary 6
 ‖u ◦ T‖Ws,p

B̄ (B̂)

Theorem 78
� ‖u‖Ws,p

T(B̄)(T(B̂))
Corollary 6
 ‖u‖Ws,p(V) .

Theorem 81 ([42]). Let s ∈ [1, ∞), 1 < p < ∞, and let

m =

{
s, if s is an integer

s�+ 1, otherwise

.

If F ∈ Cm(R) is such that F(0) = 0 and F, F′, . . . , F(m) ∈ L∞(R) (in particular, note that every
F ∈ C∞

c (R) with F(0) = 0 satisfies these conditions), then the map u �→ F(u) is well-defined and
continuous from Ws,p(Rn) ∩W1,sp(Rn) into Ws,p(Rn).

Corollary 7. Let s, p, and F be as in the previous theorem. Moreover, suppose sp > n. Then the
map u �→ F(u) is well-defined and continuous from Ws,p(Rn) into Ws,p(Rn). The reason is that
when sp > n, we have Ws,p(Rn) ↪→ W1,sp(Rn).

7.6. Differentiation

Theorem 82 (([4], pp. 598–605), ([5], Section 1.4)). Let s ∈ R, 1 < p < ∞, and α ∈ Nn
0 .

Suppose Ω is a nonempty open set in Rn. Then

(1) The linear operator ∂α : Ws,p(Rn)→ Ws−|α|,p(Rn) is well-defined and bounded.
(2) For s < 0, the linear operator ∂α : Ws,p(Ω)→ Ws−|α|,p(Ω) is well-defined and bounded.
(3) For s ≥ 0 and |α| ≤ s, the linear operator ∂α : Ws,p(Ω)→ Ws−|α|,p(Ω) is well-defined and

bounded.
(4) If Ω is bounded with Lipschitz continuous boundary, and if s ≥ 0, s− 1

p �= integer (i.e., the

fractional part of s is not equal to 1
p ), then the linear operator ∂α : Ws,p(Ω)→ Ws−|α|,p(Ω)

for |α| > s is well-defined and bounded.

Remark 51. Comparing the first and last items of the previous theorem, we see that not all the
properties of Sobolev–Slobodeckij spaces on Rn are fully inherited by Sobolev–Slobodeckij spaces on
bounded domains even when the domain has Lipschitz continuous boundary (note that the above
difference is related to the more fundamental fact that for s > 0, even when Ω is Lipschitz, C∞

c (Ω)

is not necessarily dense in Ws,p(Ω) and subsequently W−s,p′(Ω) is defined as the dual of Ws,p
0 (Ω)

rather than the dual of Ws,p(Ω) itself). For this reason, when working with Sobolev spaces on
manifolds, we prefer super nice atlases (i.e., we prefer to work with coordinate charts whose image
under the coordinate map is the entire Rn). The next best choice would be GGL or GL atlases.
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7.7. Spaces of Locally Sobolev Functions

Material of this section are taken from our manuscript on the properties of locally
Sobolev-Slobodeckij functions [17].

Definition 28. Let s ∈ R, 1 < p < ∞. Let Ω be a nonempty open set in Rn. We define

Ws,p
loc (Ω) := {u ∈ D′(Ω) : ∀ϕ ∈ C∞

c (Ω) ϕu ∈ Ws,p(Ω)} .

Ws,p
loc (Ω) is equipped with the natural topology induced by the separating family of seminorms

{|.|ϕ}ϕ∈C∞
c (Ω)} where

∀ u ∈ Ws,p
loc (Ω) ϕ ∈ C∞

c (Ω) |u|ϕ := ‖ϕu‖Ws,p(Ω) .

Theorem 83. Let s ∈ R, 1 < p < ∞, and α ∈ Nn
0 . Suppose Ω is a nonempty bounded open set in

Rn with Lipschitz continuous boundary. Then

(1) The linear operator ∂α : Ws,p
loc (R

n)→ Ws−|α|,p
loc (Rn) is well-defined and continuous.

(2) For s < 0, the linear operator ∂α : Ws,p
loc (Ω)→ Ws−|α|,p

loc (Ω) is well-defined and continuous.

(3) For s ≥ 0 and |α| ≤ s, the linear operator ∂α : Ws,p
loc (Ω)→ Ws−|α|,p

loc (Ω) is well-defined and
continuous.

(4) If s ≥ 0, s − 1
p �= integer (i.e., the fractional part of s is not equal to 1

p ), then the linear

operator ∂α : Ws,p
loc (Ω)→ Ws−|α|,p

loc (Ω) for |α| > s is well-defined and continuous.

The following statements play a key role in our study of Sobolev spaces on Riemannian
manifolds with rough metrics.

Theorem 84. Let Ω be a nonempty bounded open set in Rn with Lipschitz continuous boundary
or Ω = Rn. Suppose u ∈ Ws,p

loc (Ω) where sp > n. Then u has a continuous version.

Lemma 9. Let Ω = Rn or Ω be a bounded open set in Rn with Lipschitz continuous boundary.
Suppose s1, s2, s ∈ R and 1 < p1, p2, p < ∞ are such that

Ws1,p1(Ω)×Ws2,p2(Ω) ↪→ Ws,p(Ω) .

Then

(1) Ws1,p1
loc (Ω)×Ws2,p2

loc (Ω) ↪→ Ws,p
loc (Ω),

(2) For all K ∈ K(Ω), Ws1,p1
loc (Ω)×Ws2,p2

K (Ω) ↪→ Ws,p(Ω). In particular, if f ∈ Ws1,p1
loc (Ω),

then the mapping u �→ f u is a well-defined continuous linear map from Ws2,p2
K (Ω) to

Ws,p(Ω).

Remark 52. It can be shown that the locally Sobolev spaces on Ω are metrizable, so the continuity
of the mapping

Ws1,p1
loc (Ω)×Ws2,p2

loc (Ω)→ Ws,p
loc (Ω), (u, v) �→ uv

in the above lemma can be interpreted as follows: if ui → u in Ws1,p1
loc (Ω) and vi → v in Ws2,p2

loc (Ω),
then uivi → uv in Ws,p

loc (Ω). Furthermore, since Ws2,p2
K (Ω) is considered as a normed subspace of

Ws2,p2(Ω), we have a similar interpretation of the continuity of the mapping in item 2.

Lemma 10. Let Ω = Rn or let Ω be a nonempty bounded open set in Rn with Lipschitz continuous
boundary. Let s ∈ R and p ∈ (1, ∞) be such that sp > n. Let B : Ω → GL(k,R). Suppose for all
x ∈ Ω and 1 ≤ i, j ≤ k, Bij(x) ∈ Ws,p

loc (Ω). Then

(1) det B ∈ Ws,p
loc (Ω).

(2) Moreover, if for each m ∈ N Bm : Ω → GL(k,R) and for all 1 ≤ i, j ≤ k (Bm)ij → Bij in
Ws,p

loc (Ω), then det Bm → det B in Ws,p
loc (Ω).
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Theorem 85. Let Ω = Rn or let Ω be a nonempty bounded open set in Rn with Lipschitz
continuous boundary. Let s ≥ 1 and p ∈ (1, ∞) be such that sp > n.

(1) Suppose that u ∈ Ws,p
loc (Ω) and that u(x) ∈ I for all x ∈ Ω where I is some interval in R. If

F : I → R is a smooth function, then F(u) ∈ Ws,p
loc (Ω).

(2) Suppose that um → u in Ws,p
loc (Ω) and that for all m ≥ 1 and x ∈ Ω, um(x), u(x) ∈ I where

I is some open interval in R. If F : I → R is a smooth function, then F(um) → F(u) in
Ws,p

loc (Ω).
(3) If F : R→ R is a smooth function, then the map taking u to F(u) is continuous from Ws,p

loc (Ω)

to Ws,p
loc (Ω).

8. Lebesgue Spaces on Compact Manifolds

Let Mn be a compact smooth manifold and E → M be a smooth vector bundle of
rank r.

Definition 29. A collection {(Uα, ϕα, ρα, ψα)}1≤α≤N of 4-tuples is called an augmented total
trivialization atlas for E → M provided that {(Uα, ϕα, ρα)}1≤α≤N is a total trivialization atlas
for E → M and {ψα} is a partition of unity subordinate to the open cover {Uα}.

Let {(Uα, ϕα, ρα, ψα)}1≤α≤N be an augmented total trivialization atlas for E → M. Let
g be a continuous Riemannian metric on M and 〈., .〉E be a fiber metric on E (we denote the
corresponding norm by |.|E). Suppose 1 ≤ q < ∞.

(1) Definition A: The space Lq(M, E) is the completion of C∞(M, E) with respect to the
following norm:

‖u‖Lq(M,E) :=
N

∑
α=1

r

∑
l=1
‖ρl

α ◦ (ψαu) ◦ ϕ−1
α ‖Lq(ϕα(Uα)) .

Note that for this definition to make sense it is not necessary to have metric on M or
fiber metric on E.

(2) Definition B: The space Lq(M, E) is the completion of C∞(M, E) with respect to the
following norm:

|u|Lq(M,E) :=
( ∫

M
|u|qEdVg

) 1
q

.

(3) Definition C: The metric g defines a measure on M. Define the following equivalence
relation on Γ(M, E):

u ∼ v ⇐⇒ u = v a.e.

We define

Lq(M, E) :=
{u ∈ Γ(M, E) : ‖u‖q

Lq(M,E) :=
∫

M |u|
q
EdVg < ∞}

∼ .

For q = ∞ we define

L∞(M, E) :=
{u ∈ Γ(M, E) : ‖u‖L∞(M,E) := esssup|u|E < ∞}

∼ .

Note: We may define negligible sets (sets of measure zero) on a compact manifold using
charts (see Chapter 6 in [43]); it can be shown that this definition is independent of the
charts and equivalent to the one that is obtained using the metric g. So, it is meaningful to
write u = v a.e even without using a metric.

Theorem 86. Definition A is equivalent to Definition B (i.e., the norms are equivalent).
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Proof. Our proof consists of four steps:

• Step 1: In the next section it will be proved that different total trivialization atlases and
partitions of unity result in equivalent norms (note that Lq = W0,q). Therefore, without
loss of generality we may assume that {(Uα, ϕα, ρα)}1≤α≤N is a total trivialization atlas
that trivializes the fiber metric 〈., .〉E (see Theorem 37 and Corollary 2). So, on any
bundle chart (U, ϕ, ρ) and for any section u we have

|u|2E ◦ ϕ−1 = 〈u, u〉E ◦ ϕ−1 =
r

∑
l=1

(ρl ◦ u ◦ ϕ−1)2 .

• Step 2: In this step we show that if there is 1 ≤ β ≤ N such that suppu ⊆ Uβ, then

|u|qLq(M,E) =
∫

M
|u|qEdVg  

r

∑
l=1
‖ρl

β ◦ u ◦ ϕ−1
β ‖

q
Lq(ϕβ(Uβ))

.

We have∫
M
|u|qEdVg =

∫
ϕβ(Uβ)

(|u|E ◦ ϕ−1
β )q

√
det(gij ◦ ϕ−1

β )(x) dx1 . . . dxn

 
∫

ϕβ(Uβ)
(|u|E ◦ ϕ−1

β )q dx1 . . . dxn (
√

det(gij ◦ ϕ−1
β )(x) is bounded by positive constants)

=
∫

ϕβ(Uβ)

(√ r

∑
l=1

(ρl
β ◦ u ◦ ϕ−1

β )2
)q

dx1 . . . dxn

 
∫

ϕβ(Uβ)
[

r

∑
l=1
|ρl

β ◦ u ◦ ϕ−1
β |]q dx1 . . . dxn (

√
∑ a2

l  ∑ |al |)

 
∫

ϕβ(Uβ)

r

∑
l=1
|ρl

β ◦ u ◦ ϕ−1
β |q dx1 . . . dxn ((∑ al)

q  ∑ aq
l )

=
r

∑
l=1

∫
ϕβ(Uβ)

|ρl
β ◦ u ◦ ϕ−1

β |q dx1 . . . dxn =
r

∑
l=1
‖ρl

β ◦ u ◦ ϕ−1
β ‖

q
Lq(ϕβ(Uβ))

.

• Step 3: In this step we will prove that for all u ∈ C∞(M, E)

|u|qLq(M,E)  ∑
α

|ψαu|qLq(M,E) .

We have

|u|qLq(M,E) =
∫

M
|u|qEdVg = ∑

α

∫
M

ψ
q
α

∑β ψ
q
β

|u|qEdVg ({ ψ
q
α

∑β ψ
q
β

} is a partition of unity subordinate to {Uα})

 ∑
α

∫
Uα

ψ
q
α|u|qEdVg (

1

∑β ψ
q
β

is bounded by positive constants)

= ∑
α

∫
Uα

|ψαu|qEdVg = ∑
α

∫
M
|ψαu|qEdVg

= ∑
α

|ψαu|qLq(M,E) .

• Step 4: Let u be an arbitrary element of C∞(M, E). We have

|u|qLq(M,E)

Step 3
 ∑

α

|ψαu|qLq(M,E)

Step 2
 ∑

α
∑

l
‖ρl

α ◦ (ψαu) ◦ ϕ−1
α ‖q

Lq(ϕα(Uα))
 ‖u‖q

Lq(M,E) .
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9. Sobolev Spaces on Compact Manifolds and Alternative Characterizations

9.1. The Definition

Let Mn be a compact smooth manifold. Let π : E → M be a smooth vector bundle
of rank r. Let Λ = {(Uα, ϕα, ρα, ψα)}1≤α≤N be an augmented total trivialization atlas for
E → M. For each 1 ≤ α ≤ N, let Hα denote the map HE∨ ,Uα ,ϕα

which was introduced in
Section 6.

Definition 30.

We,q(M, E; Λ) = {u ∈ D′(M, E) : ‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
l=1
‖[Hα(ψαu)]l‖We,q(ϕα(Uα)) < ∞} .

Remark 53.

(1) If u ∈ We,q(M, E; Λ) is a regular distribution, it follows from Remark 32 that

‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
l=1
‖(ρα)

l ◦ (ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) .

(2) It is clear that the collection of functions from M to R can be identified with sections of the
vector bundle E = M×R. For this reason We,q(M; Λ) is defined as We,q(M, M×R; Λ).
Note that in this case, for each α, ρα is the identity map. So, we may consider an augmented
total trivialization atlas Λ as a collection of 3-tuples {(Uα, ϕα, ψα)}1≤α≤N. In particular, if
u ∈ We,q(M; Λ) is a regular distribution, then

‖u‖We,q(M;Λ) =
N

∑
α=1
‖(ψαu) ◦ ϕ−1

α ‖We,q(ϕα(Uα)) .

(3) Sometimes, when the underlying manifold M and the augmented total trivialization atlas
are clear from the context (or when they are irrelevant), we may write We,q(E) instead
of We,q(M, E; Λ). In particular, for tensor bundles, we may write We,q(Tk

l M) instead of
We,q(M, Tk

l M; Λ).

Remark 54. Here is a list of some alternative, not necessarily equivalent, characterizations of
Sobolev spaces.

(1) Suppose e ≥ 0.

We,q(M, E; Λ) = {u ∈ Lq(M, E) : ‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
l=1
‖(ρα)

l ◦ (ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) < ∞} .

(2)

We,q(M, E; Λ) = {u ∈ D′(M, E) : ‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
l=1
‖ext0

ϕα(Uα),Rn [Hα(ψαu)]l‖We,q(Rn) < ∞} .

(3)

We,q(M, E; Λ) = {u ∈ D′(M, E) : [Hα(u|Uα)]
l ∈ We,q

loc(ϕα(Uα)), ∀ 1 ≤ α ≤ N, ∀ 1 ≤ l ≤ r} .

(4) We,q(M, E; Λ) is the completion of C∞(M, E) with respect to the norm

‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
l=1
‖(ρα)

l ◦ (ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) .
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(5) • Let g be a smooth Riemannian metric (i.e., a fiber metric on TM). So, g−1 is a fiber
metric on T∗M.

• Let 〈., .〉E be a smooth fiber metric on E.
• Let ∇E be a metric connection in the vector bundle π : E → M.
For k ∈ N0, Wk,q(M, E; g,∇E) is the completion of C∞(M, E) with respect to the following
norm:

‖u‖Wk,q(M,E;g,∇E) =
( k

∑
i=0
|(∇E)iu|qLq

) 1
q =

( k

∑
i=0

∫
M
| ∇E . . .∇E︸ ︷︷ ︸

i times

u|q
(T∗M)⊗i⊗EdVg

) 1
q .

In particular, if we denote the Levi Civita connection corresponding to the smooth Riemannian
metric g by ∇, then Wk,q(M; g) is the completion of C∞(M) with respect to the follow-
ing norm

‖u‖Wk,q(M;g) =
( k

∑
i=0
|∇iu|qLq

) 1
q =

( k

∑
i=0

∫
M
| ∇ . . .∇︸ ︷︷ ︸

i times

u|qTi MdVg
) 1

q .

In the subsequent discussions we will study the relation between each of these alternative descriptions
of Sobolev spaces and Definition 30.

Remark 55. As it is discussed for example in [18], Sobolev-Slobodeckij spaces on Rn with non-
integer smoothness degree can be defined using real interpolation. Indeed, for s ∈ R \ Z and
θ = s− 
s�,

Ws,p(Rn) =
(
W
s�,p(Rn), W
s�+1,p(Rn)

)
θ,p .

One may use any of the previously mentioned descriptions to define Wk,q(M, E) for k ∈ Z, and
then use real interpolation to define We,q(M, E) for e �∈ Z. We postpone the study of this approach
to an independent manuscript with focus on the role of interpolation theory in investigation of Bessel
potential spaces and Sobolev–Slobodeckij spaces on compact manifolds.

An important question is whether our definition of Sobolev spaces (as topological
spaces) depends on the augmented total trivialization atlas Λ. We will answer this question
at 3 levels. Although each level can be considered as a generalization of the preceding
level, the proofs will be independent of each other. The following theorems show that at
least when e is not a noninteger less than −1, the space We,q(M, E; Λ) and its topology are
independent of the choice of augmented total trivialization atlas.

Remark 56. In the following theorems, by the equivalence of two norms ‖.‖1 and ‖.‖2 we mean
there exist constants C1 and C2 such that

C1‖.‖1 ≤ ‖.‖2 ≤ C2‖.‖1 ,

where C1 and C2 may depend on

n, e, q, ϕα, Uα, ϕ̃β, Ũβ, ψα, ψ̃β .

Theorem 87 (Equivalence of norms for functions). Let e ∈ R and q ∈ (1, ∞). Let Λ =
{(Uα, ϕα, ψα)}1≤α≤N and Υ = {(Ũβ, ϕ̃β, ψ̃β)}1≤β≤Ñ be two augmented total trivialization at-
lases for the trivial bundle M×R→ M. Furthermore, letW be any vector subspace of We,q(M; Υ)
whose elements are regular distributions (e.g., C∞(M)).

(1) If e is not a noninteger less than −1, then W is a subspace of We,q(M; Λ) as well, and the
norms produced by Λ and Υ are equivalent onW .
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(2) If e is a noninteger less than −1, further assume that the total trivialization atlases corre-
sponding to Λ and Υ are GLC. Then W is a subspace of We,q(M; Λ) as well, and the norms
produced by Λ and Υ are equivalent onW .

Proof. Let u ∈ Γreg(M). Our goal is to show that the following expressions are comparable:

N

∑
α=1
‖(ψαu) ◦ ϕ−1

α ‖We,q(ϕα(Uα)) ,

Ñ

∑
β=1
‖(ψ̃βu) ◦ ϕ̃−1

β ‖We,q(ϕ̃β(Ũβ))
.

To this end it suffices to show that for each 1 ≤ α ≤ N

‖(ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) �

Ñ

∑
β=1
‖(ψ̃βu) ◦ ϕ̃−1

β ‖We,q(ϕ̃β(Ũβ))
.

We have

‖(ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) = ‖

Ñ

∑
β=1

ψ̃β(ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα))

≤
Ñ

∑
β=1
‖ψ̃β(ψαu) ◦ ϕ−1

α ‖We,q(ϕα(Uα))

 
Ñ

∑
β=1
‖(ψ̃βψαu) ◦ ϕ−1

α ‖We,q(ϕα(Uα∩Ũβ))
.

The last equality follows from Corollary 6 because (ψ̃βψαu) ◦ ϕ−1
α has support in the

compact set ϕα(supp ψα ∩ supp ψ̃β) ⊆ ϕα(Uα ∩ Ũβ). Note that here we used the assumption
that if e is a noninteger less than −1, then ϕα(Uα) is Lipschitz or the entire Rn. Clearly,

Ñ

∑
β=1
‖(ψ̃βψαu) ◦ ϕ−1

α ‖We,q(ϕα(Uα∩Ũβ))
=

Ñ

∑
β=1
‖(ψ̃βψαu) ◦ ϕ̃−1

β ◦ ϕ̃β ◦ ϕ−1
α ‖We,q(ϕα(Uα∩Ũβ))

.

Since ϕ̃β ◦ ϕ−1
α : ϕα(Uα ∩ Ũβ)→ ϕ̃β(Uα ∩ Ũβ) is a C∞-diffeomorphism and (ψ̃βψαu) ◦ ϕ̃−1

β

has compact support in the compact set ϕ̃β(supp ψα ∩ supp ψ̃β) ⊆ ϕ̃β(Uα ∩ Ũβ), it follows
from Theorem 80 that

Ñ

∑
β=1
‖(ψ̃βψαu) ◦ ϕ̃−1

β ◦ ϕ̃β ◦ ϕ−1
α ‖We,q(ϕα(Uα∩Ũβ))

�
Ñ

∑
β=1
‖(ψ̃βψαu) ◦ ϕ̃−1

β ‖We,q(ϕ̃β(Uα∩Ũβ))
.

Note that here we used the assumption that if e is a noninteger less than −1, then the two
total trivialization atlases are GL compatible. As a direct consequence of Corollary 5 and
Theorem 71 we have

‖(ψ̃βψαu) ◦ ϕ̃−1
β ‖We,q(ϕ̃β(Uα∩Ũβ))

 ‖(ψ̃βψαu) ◦ ϕ̃−1
β ‖We,q(ϕ̃β(Ũβ))

= ‖(ψα ◦ ϕ̃−1
β )[(ψ̃βu) ◦ ϕ̃−1

β ]‖We,q(ϕ̃β(Ũβ))
.
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Now, note that ψα ◦ ϕ̃−1
β ∈ C∞(ϕ̃β(Ũβ)) and (ψ̃βu) ◦ ϕ̃−1

β has support in the compact set
ϕ̃β(supp ψ̃β). Therefore, by Theorem 70 (for the case where e is not a noninteger less than
−1) and Corollary 4 (for the case where e is a noninteger less than −1) we have

‖(ψα ◦ ϕ̃−1
β )[(ψ̃βu) ◦ ϕ̃−1

β ]‖We,q(ϕ̃β(Ũβ))
� ‖(ψ̃βu) ◦ ϕ̃−1

β ‖We,q(ϕ̃β(Ũβ))
.

Hence

‖(ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) �

Ñ

∑
β=1
‖(ψ̃βu) ◦ ϕ̃−1

β ‖We,q(ϕ̃β(Ũβ))
.

Theorem 88 (Equivalence of norms for regular sections). Let e ∈ R and q ∈ (1, ∞). Let
Λ = {(Uα, ϕα, ρα, ψα)}1≤α≤N and Υ = {(Ũβ, ϕ̃β, ρ̃β, ψ̃β)}1≤β≤Ñ be two augmented total triv-
ialization atlases for the vector bundle E → M. Furthermore, let W be any vector subspace of
We,q(M, E; Υ) whose elements are regular distributions (e.g., C∞(M, E)).

(1) If e is not a noninteger less than −1, then W is a subspace of We,q(M, E; Λ) as well, and the
norms produced by Λ and Υ are equivalent onW .

(2) If e is a noninteger less than −1, further assume that the total trivialization atlases corre-
sponding to Λ and Υ are GLC. Then W is a subspace of We,q(M, E; Λ) as well, and the norms
produced by Λ and Υ are equivalent onW .

Proof. Let u ∈ Γreg(M, E). Our goal is to show that the following expressions are compara-
ble:

N

∑
α=1

r

∑
l=1
‖ρl

α ◦ (ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) ,

Ñ

∑
β=1

r

∑
l=1
‖ρ̃l

β ◦ (ψ̃βu) ◦ ϕ̃−1
β ‖We,q(ϕ̃β(Ũβ))

.

To this end, it is enough to show that for each 1 ≤ α ≤ N and 1 ≤ l ≤ r

‖ρl
α ◦ (ψαu) ◦ ϕ−1

α ‖We,q(ϕα(Uα)) �
Ñ

∑
β=1

r

∑
t=1
‖ρ̃t

β ◦ (ψ̃βu) ◦ ϕ̃−1
β ‖We,q(ϕ̃β(Ũβ))

.

We have

‖ρl
α ◦ (ψαu) ◦ ϕ−1

α ‖We,q(ϕα(Uα)) = ‖ρl
α ◦ (

Ñ

∑
β=1

ψ̃βψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα))

≤
Ñ

∑
β=1
‖ρl

α ◦ (ψ̃βψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα))

 
Ñ

∑
β=1
‖ρl

α ◦ (ψ̃βψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα∩Ũβ))

.

The last equality follows from Corollary 6 because ρl
α ◦ (ψ̃βψαu) ◦ ϕ−1

α has support in the
compact set ϕα(supp ψα ∩ supp ψ̃β) ⊆ ϕα(Uα ∩ Ũβ). Note that here we used the assumption
that if e is a noninteger less than −1, then ϕα(Uα) is either Lipschitz or equal to the entire
Rn. Note that
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Ñ

∑
β=1
‖ρl

α ◦ (ψ̃βψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα∩Ũβ))

=
Ñ

∑
β=1
‖ρl

α ◦ (ψ̃βψαu) ◦ ϕ̃−1
β ◦ ϕ̃β ◦ ϕ−1

α ‖We,q(ϕα(Uα∩Ũβ))

Theorem 80
�

Ñ

∑
β=1
‖ρl

α ◦ (ψ̃βψαu) ◦ ϕ̃−1
β ‖We,q(ϕ̃β(Uα∩Ũβ))

=
Ñ

∑
β=1
‖(ψα ◦ ϕ̃−1

β )[ρl
α ◦ (ψ̃βu) ◦ ϕ̃−1

β ]‖We,q(ϕ̃β(Uα∩Ũβ))

=
Ñ

∑
β=1
‖(ψα ◦ ϕ̃−1

β )
[
πl ◦ π′ ◦Φα︸ ︷︷ ︸

ρα

◦(ψ̃βu) ◦ ϕ̃−1
β

]
‖We,q(ϕ̃β(Uα∩Ũβ))

=
Ñ

∑
β=1
‖(ψα ◦ ϕ̃−1

β )
[
πl ◦ π′ ◦Φα ◦Φ−1

β ◦Φβ ◦ (ψ̃βu) ◦ ϕ̃−1
β

]
‖We,q(ϕ̃β(Uα∩Ũβ))

.

Let vβ : ϕ̃β(Ũβ) → E be defined by vβ(x) = (ψ̃βu) ◦ ϕ̃−1
β . Clearly π(vβ(x)) = ϕ̃−1

β (x).
Therefore,

Φβ(vβ(x)) =
(
π(vβ(x)), ρ̃β(vβ(x))

)
=
(

ϕ̃−1
β (x), ρ̃β(vβ(x))

)
.

For all x ∈ ϕ̃β(Uα ∩ Ũβ) we have

π′ ◦Φα ◦Φ−1
β

(
Φβ(vβ(x))

)
= π′ ◦Φα ◦Φ−1

β

(
ϕ̃−1

β (x), ρ̃β(vβ(x))
)

Lemma 4
= π′ ◦

(
ϕ̃−1

β (x), ταβ(ϕ̃−1
β (x))ρ̃β(vβ(x))

)
= ταβ(ϕ̃−1

β (x))︸ ︷︷ ︸
an r× r matrix

ρ̃β(vβ(x)) .

Let Aαβ = ταβ ◦ ϕ̃−1
β on ϕ̃β(Uα ∩ Ũβ). So, we can write

‖ρl
α ◦ (ψαu) ◦ ϕ−1

α ‖We,q(ϕ̃β(Uα∩Ũβ))

�
Ñ

∑
β=1
‖(ψα ◦ ϕ̃−1

β )(x)
[
πl ◦ Aαβ(x)ρ̃β(vβ(x))

]
‖We,q(ϕ̃β(Uα∩Ũβ))

=
Ñ

∑
β=1
‖(ψα ◦ ϕ̃−1

β )(x)
[ r

∑
t=1

(Aαβ(x))ltρ̃
t
β(vβ(x))

]
‖We,q(ϕ̃β(Uα∩Ũβ))

≤
Ñ

∑
β=1

r

∑
t=1
‖(ψα ◦ ϕ̃−1

β )(x)(Aαβ(x))ltρ̃
t
β(vβ(x))‖We,q(ϕ̃β(Uα∩Ũβ))

.

Now, note that (Aαβ(x))lt are in C∞(ϕ̃β(Uα ∩ Ũβ)) and (ψα ◦ ϕ̃−1
β )(x)ρ̃t

β(vβ(x)) has support
inside the compact set ϕ̃β(supp ψ̃β ∩ supp ψα). Therefore, by Theorem 70 (for the case where
e is not a noninteger less than −1) and Corollary 4 (for the case where e is a noninteger less
than −1), we have

r

∑
t=1
‖(ψα ◦ ϕ̃−1

β )(x)(Aαβ(x))ltρ̃
t
β(vβ(x))‖We,q(ϕ̃β(Uα∩Ũβ))

�
r

∑
t=1
‖(ψα ◦ ϕ̃−1

β )(x)ρ̃t
β(vβ(x))‖We,q(ϕ̃β(Uα∩Ũβ))

.
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Therefore,

‖ρl
α ◦ (ψαu) ◦ ϕ−1

α ‖We,q(ϕα(Uα))

�
Ñ

∑
β=1

r

∑
t=1
‖(ψα ◦ ϕ̃−1

β )(x)ρ̃t
β(vβ(x))‖We,q(ϕ̃β(Uα∩Ũβ))

 
Ñ

∑
β=1

r

∑
t=1
‖(ψα ◦ ϕ̃−1

β )(x)ρ̃t
β(vβ(x))‖We,q(ϕ̃β(Ũβ))

(Here we used Corollary 5 and Theorem 71)

�
Ñ

∑
β=1

r

∑
t=1
‖ρ̃t

β(vβ(x))‖We,q(ϕ̃β(Ũβ))

(Here we used Theorem 70 and Corollary 4)

=
Ñ

∑
β=1

r

∑
t=1
‖ρ̃t

β ◦ (ψ̃βu) ◦ ϕ̃−1
β ‖We,q(ϕ̃β(Ũβ))

.

Theorem 89 (Equivalence of norms for distributional sections). Let e ∈ R and q ∈ (1, ∞).
Let Λ = {(Uα, ϕα, ρα, ψα)}1≤α≤N and Υ = {(Ũβ, ϕ̃β, ρ̃β, ψ̃β)}1≤β≤Ñ be two augmented total
trivialization atlases for the vector bundle E → M.

(1) If e is not a noninteger less than −1, then We,q(M, E; Λ) and We,q(M, E; Υ) are equivalent
normed spaces.

(2) If e is a noninteger less than−1, further assume that the total trivialization atlases correspond-
ing to Λ and Υ are GLC. Then We,q(M, E; Λ) and We,q(M, E; Υ) are equivalent normed
spaces.

Proof. Let u ∈ D′(M, E). We want to show the following expressions are comparable:

N

∑
α=1

r

∑
l=1
‖[Hα(ψαu)]l‖We,q(ϕα(Uα)) ,

Ñ

∑
β=1

r

∑
i=1
‖[H̃β(ψ̃βu)]i‖We,q(ϕ̃β(Ũβ))

.

To this end it is enough to show that for each 1 ≤ α ≤ N and 1 ≤ l ≤ r

‖[Hα(ψαu)]l‖We,q(ϕα(Uα)) �
Ñ

∑
β=1

r

∑
i=1
‖[H̃β(ψ̃βu)]i‖We,q(ϕ̃β(Ũβ))

.

We have

[Hα(ψαu)]l = [Hα(
Ñ

∑
β=1

ψ̃βψαu)]l Remark 31
=

Ñ

∑
β=1

[Hα(ψ̃βψαu)]l .

In what follows we will prove that

[Hα(ψ̃βψαu)]l =
r

∑
i=1

(
(Aαβ)il [H̃β(ψ̃βψαu)]i

)
◦ ϕ̃β ◦ ϕ−1

α , (4)

for some functions (Aαβ)il , (1 ≤ i ≤ r) in C∞(ϕ̃β(Uα ∩ Ũβ)). For now let us assume the
validity of Equation (4) to prove the claim.

322



Mathematics 2022, 10, 522

‖[Hα(ψαu)]l‖We,q(ϕα(Uα)) = ‖
Ñ

∑
β=1

[Hα(ψ̃βψαu)]l‖We,q(ϕα(Uα))

≤
Ñ

∑
β=1
‖[Hα(ψ̃βψαu)]l‖We,q(ϕα(Uα))

Corollary 6
 

Ñ

∑
β=1
‖[Hα(ψ̃βψαu)]l‖We,q(ϕα(Uα∩Ũβ))

(note that by Remark 31 [Hα(ψ̃βψαu)]l has support in the compact set ϕα(supp ψα ∩ supp ψ̃β))

=
Ñ

∑
β=1
‖

r

∑
i=1

(
(Aαβ)il [H̃β(ψ̃βψαu)]i

)
◦ ϕ̃β ◦ ϕ−1

α ‖We,q(ϕα(Uα∩Ũβ))

≤
Ñ

∑
β=1

r

∑
i=1
‖
(
(Aαβ)il [H̃β(ψ̃βψαu)]i

)
◦ ϕ̃β ◦ ϕ−1

α ‖We,q(ϕα(Uα∩Ũβ))

Theorem 80
�

Ñ

∑
β=1

r

∑
i=1
‖(Aαβ)il [H̃β(ψ̃βψαu)]i‖We,q(ϕ̃β(Uα∩Ũβ))

=
Ñ

∑
β=1

r

∑
i=1
‖(Aαβ)il(ψα ◦ ϕ̃−1

β )[H̃β(ψ̃βu)]i‖We,q(ϕ̃β(Uα∩Ũβ))

�
Ñ

∑
β=1

r

∑
i=1
‖(ψα ◦ ϕ̃−1

β )[H̃β(ψ̃βu)]i‖We,q(ϕ̃β(Uα∩Ũβ))

 
Ñ

∑
β=1

r

∑
i=1
‖(ψα ◦ ϕ̃−1

β )[H̃β(ψ̃βu)]i‖We,q(ϕ̃β(Ũβ))

(Here we used Corollary 5 and Theorem 71)

�
Ñ

∑
β=1

r

∑
i=1
‖[H̃β(ψ̃βu)]i‖We,q(ϕ̃β(Ũβ))

(Here we used Theorem 70 and Corollary 4) .

So, it remains to prove Equation (4). Since supp[Hα(ψ̃βψαu)]l is inside the compact set
ϕα(suppψα ∩ suppψ̃β) ⊆ ϕα(Uα ∩ Ũβ), it is enough to consider the action of [Hα(ψ̃βψαu)]l

on elements of C∞
c (ϕα(Uα ∩ Ũβ)). ϕ̃β ◦ ϕ−1

α : ϕα(Uα ∩ Ũβ) → ϕ̃β(Uα ∩ Ũβ) is a C∞-
diffeomorphism. Therefore, the map

C∞
c [ϕ̃β(Uα ∩ Ũβ)]→ C∞

c [ϕα(Uα ∩ Ũβ)], η �→ η ◦ ϕ̃β ◦ ϕ−1
α

is bijective. In particular, an arbitrary element of C∞
c [ϕα(Uα ∩ Ũβ)] has the form η ◦ ϕ̃β ◦ ϕ−1

α

where η is an element of C∞
c [ϕ̃β(Uα ∩ Ũβ)].

For all η ∈ C∞
c [ϕ̃β(Uα ∩ Ũβ)] we have (see Section 6.2.2)

〈[Hα(ψ̃βψαu)]l , η ◦ ϕ̃β ◦ ϕ−1
α 〉 = 〈ψ̃βψαu, gα

l,η◦ϕ̃β◦ϕ−1
α
〉 , (5)

where gα
l,η◦ϕ̃β◦ϕ−1

α
stands for gl,η◦ϕ̃β◦ϕ−1

α ,Uα ,ϕα
.
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For all y ∈ ϕα(Uα ∩ Ũβ) we have (x = ϕ−1
α (y))

ρ∨α |E∨x ◦ gα
l,η◦ϕ̃β◦ϕ−1

α
◦ ϕ−1

α (y)︸ ︷︷ ︸
x

= (0, . . . , 0, η ◦ ϕ̃β ◦ ϕ−1
α (y)︸ ︷︷ ︸

lth position

, 0, . . . , 0) ,

ρ̃∨β ◦ g̃β
l,η ◦ ϕ̃−1

β (ϕ̃β ◦ ϕ−1
α (y))︸ ︷︷ ︸

x

= (0, . . . , 0, η ◦ ϕ̃β ◦ ϕ−1
α (y)︸ ︷︷ ︸

lth position

, 0, . . . , 0) .

Therefore, for all y ∈ ϕα(Uα ∩ Ũβ)

ρ∨α |E∨x ◦ gα
l,η◦ϕ̃β◦ϕ−1

α
◦ ϕ−1

α (y) = ρ̃∨β ◦ g̃β
l,η ◦ ϕ−1

α (y) ,

which implies that on Uα ∩ Ũβ

gα
l,η◦ϕ̃β◦ϕ−1

α
= [ρ∨α |E∨x ]

−1 ◦ [ρ̃∨β |E∨x ] ◦ g̃β
l,η . (6)

It follows from Lemma 4 that for all a ∈ E∨x

[ρ̃∨β |E∨x ] ◦ [ρ
∨
α |E∨x ]

−1 ◦ [ρ̃∨β |E∨x ](a) = τβ̃α(x)︸ ︷︷ ︸
r×r

(ρ̃∨β |E∨x (a)) .

That is,
[ρ∨α |E∨x ]

−1 ◦ [ρ̃∨β |E∨x ](a) = [ρ̃∨β |E∨x ]
−1[τβ̃α(x)(ρ̃∨β |E∨x (a))] .

For a = g̃β
l,η(x) we have

ρ̃∨β |E∨x (a) = ρ̃∨β |E∨x (g̃β
l,η(x)) = (0, . . . , 0, η ◦ ϕ̃β(x)︸ ︷︷ ︸

lth position

, 0, . . . , 0) .

So,

[ρ∨α |E∨x ]
−1 ◦ [ρ̃∨β |E∨x ] ◦ g̃β

l,η = [ρ̃∨β |E∨x ]
−1[τβ̃α(x)(ρ̃∨β |E∨x (g̃β

l,η(x)))] = [ρ̃∨β |E∨x ]
−1((η ◦ ϕ̃β)

⎡⎢⎢⎣
τ

β̃α
1l
...

τ
β̃α
rl

⎤⎥⎥⎦)

= [ρ̃∨β |E∨x ]
−1(
⎡⎢⎢⎢⎢⎣
(η ◦ ϕ̃β)τ

β̃α
1l

0
...
0

⎤⎥⎥⎥⎥⎦+ · · ·+

⎡⎢⎢⎢⎢⎣
0
...
0

(η ◦ ϕ̃β)τ
β̃α
rl

⎤⎥⎥⎥⎥⎦)

= g̃β

1,(τβ̃α
1l ◦ϕ̃−1

β )η
+ · · ·+ g̃β

r,(τβ̃α
rl ◦ϕ̃−1

β )η
. (7)
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It follows from (5)–(7) that for all η ∈ C∞
c [ϕ̃β(Uα ∩ Ũβ)]

〈[Hα(ψ̃βψαu)]l , η ◦ ϕ̃β ◦ ϕ−1
α 〉 = 〈ψ̃βψαu, [ρ∨α |E∨x ]

−1 ◦ [ρ̃∨β |E∨x ] ◦ g̃β
l,η〉

= 〈ψ̃βψαu,
r

∑
i=1

g̃β

i,(τβ̃α
il ◦ϕ̃−1

β )η
〉

=
r

∑
i=1
〈[H̃β(ψ̃βψαu)]i, (τβ̃α

il ◦ ϕ̃−1
β )η〉

=
r

∑
i=1
〈(τβ̃α

il ◦ ϕ̃−1
β )[H̃β(ψ̃βψαu)]i, η〉

=
r

∑
i=1
〈(τβ̃α

il ◦ ϕ̃−1
β )[H̃β(ψ̃βψαu)]i, η ◦ ϕ̃β ◦ ϕ−1

α ◦ (ϕα ◦ ϕ̃−1
β )〉

=
r

∑
i=1
〈 1

det(ϕα ◦ ϕ̃−1
β )

(τ
β̃α
il ◦ ϕ̃−1

β )[H̃β(ψ̃βψαu)]i ◦ ϕ̃β ◦ ϕ−1
α , η ◦ ϕ̃β ◦ ϕ−1

α 〉 .

For the last equality we used the following identity

〈 1
detT−1 (u ◦ T), ϕ〉 = 〈u, ϕ ◦ T−1〉 .

Hence

[Hα(ψ̃βψαu)]l =
r

∑
i=1

1
det(ϕα ◦ ϕ̃−1

β )
(τ

β̃α
il ◦ ϕ̃−1

β )[H̃β(ψ̃βψαu)]i ◦ ϕ̃β ◦ ϕ−1
α ,

and consequently letting

(Aαβ)il =
1

det(ϕα ◦ ϕ̃−1
β )

(τ
β̃α
il ◦ ϕ̃−1

β )

leads to (4).

Remark 57. Note that the above theorems establish the full independence of We,q(M, E; Λ) from Λ
at least when e is not a noninteger less than −1. So, it is justified to write We,q(M, E) instead of
We,q(M, E; Λ) at least when e is not a noninteger less than −1. Additionally, see Remark 61.

9.2. The Properties
9.2.1. Multiplication Properties

Theorem 90. Let Mn be a compact smooth manifold and E → M be a vector bundle with rank
r. Let Λ = {(Uα, ϕα, ρα, ψα)}1≤α≤N be an augmented total trivialization atlas for E. Suppose
e ∈ R, q ∈ (1, ∞), η ∈ C∞(M). If e is a noninteger less than −1, further assume that the total
trivialization atlas of Λ is GGL. Then the linear map

mη : We,q(M, E; Λ)→ We,q(M, E; Λ), u �→ ηu

is well-defined and bounded.
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Proof.

‖ηu‖We,q(M,E;Λ) : =
N

∑
α=1

r

∑
l=1
‖(Hα(ψαηu))l‖We,q(ϕα(Uα))

Remark 31
=

N

∑
α=1

r

∑
l=1
‖(η ◦ ϕ−1

α )(Hα(ψαu))l‖We,q(ϕα(Uα))

�
N

∑
α=1

r

∑
l=1
‖(Hα(ψαu))l‖We,q(ϕα(Uα)) = ‖u‖We,q(M,E;Λ) .

For the case where e is not a noninteger less than −1, the last inequality follows from
Theorem 70. If e is a noninteger less than −1, then by assumption ϕα(Uα) is either entire
Rn or is Lipschitz, and the last inequality is due to Theorem 51 and Corollary 4.

Theorem 91. Let Mn be a compact smooth manifold and E → M be a vector bundle with rank r.
Let Λ be an augmented total trivialization atlas for E. Let s1, s2, s ∈ R and p1, p2, p ∈ (1, ∞). If
any of s1, s2, or s is a noninteger less than −1, further assume that the total trivialization atlas of Λ
is GL compatible with itself.

(1) If s1, s2, and s are not nonintegers less than −1, and if Ws1,p1(Rn) ×Ws2,p2(Rn) ↪→
Ws,p(Rn), then

Ws1,p1(M; Λ)×Ws2,p2(M, E; Λ) ↪→ Ws,p(M, E; Λ) .

(2) If s1, s2, and s are not nonintegers less than−1, and if Ws1,p1(Ω)×Ws2,p2(Ω) ↪→ Ws,p(Ω),
for any open ball Ω, then

Ws1,p1(M; Λ)×Ws2,p2(M, E; Λ) ↪→ Ws,p(M, E; Λ) .

(3) If any of s1, s2, or s is a noninteger less than−1, and if Ws1,p1(Ω)×Ws2,p2(Ω) ↪→ Ws,p(Ω)
for Ω = Rn and for any bounded open set Ω with Lipschitz continuous boundary, then

Ws1,p1(M; Λ)×Ws2,p2(M, E; Λ) ↪→ Ws,p(M, E; Λ) .

Proof.

(1) Let Λ1 = {(Uα, ϕα, ρα, ψα)}1≤α≤N be any augmented total trivialization atlas which
is super nice. Let Λ2 = {(Uα, ϕα, ρα, ψ̃α)}1≤α≤N where for each 1 ≤ α ≤ N, ψ̃α =

ψ2
α

∑N
β=1 ψ2

β

. Note that 1
∑N

β=1 ψ2
β

◦ ϕ−1
α ∈ BC∞(ϕα(Uα)). For f ∈ Ws1,p1(M; Λ) and u ∈

Ws2,p2(M, E; Λ) we have

‖ f u‖Ws,p(M,E;Λ)  ‖ f u‖Ws,p(M,E;Λ2)
=

N

∑
α=1

r

∑
j=1
‖[Hα(ψ̃α( f u))]j‖Ws,p(ϕα(Uα))

�
N

∑
α=1

r

∑
j=1
‖((ψα f ) ◦ ϕ−1

α )[Hα(ψαu)]j‖Ws,p(ϕα(Uα))

�
( N

∑
α=1
‖(ψα f ) ◦ ϕ−1

α ‖Ws1,p1 (ϕα(Uα))

)( N

∑
α=1

r

∑
j=1
‖[Hα(ψαu)]j‖Ws2,p2 (ϕα(Uα))

)
= ‖ f ‖Ws1,p1 (M;Λ1)

‖u‖Ws2,p2 (M,E;Λ1)
 ‖ f ‖Ws1,p1 (M;Λ)‖u‖Ws2,p2 (M,E;Λ) .

(2) We can use the exact same argument as item 1. Just choose Λ1 to be “nice” instead of
“super nice”.
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(3) The exact same argument as item 1 works. Just choose Λ1 = Λ. (The equality
‖ f u‖Ws,p(M,E;Λ)  ‖ f u‖Ws,p(M,E;Λ2)

holds due to the assumption that Λ = Λ1 is GL
compatible with itself.)

Remark 58. Suppose e is a noninteger less than −1 and q ∈ (1, ∞). We will prove that if Λ and
Λ̃ are two augmented total trivialization atlases and each of Λ and Λ̃ is GL compatible with itself,
then We,q(M, E; Λ) = We,q(M, E; Λ̃) (see Remark 61). Considering this and the fact that we can
choose Λ1 to be super nice (or nice) and GL compatible with itself (see Theorem 34 and Corollary 1),
we can remove the assumption “s1, s2, and s are not nonintegers less than −1” from part 1 and part
2 of the preceding theorem.

9.2.2. Embedding Properties

Theorem 92. Let Mn be a compact smooth manifold. Let π : E → M be a smooth vector bundle
of rank r over M. Let Λ be an augmented total trivialization atlas for E. Let e1, e2 ∈ R and
q1, q2 ∈ (1, ∞). If any of e1 or e2 is a noninteger less than −1, further assume that the total
trivialization atlas in Λ is GGL.

(1) If e1 and e2 are not nonintegers less than −1 and if We1,q1(Rn) ↪→ We2,q2(Rn), then
We1,q1(M, E; Λ) ↪→ We2,q2(M, E; Λ).

(2) If e1 and e2 are not nonintegers less than −1 and if We1,q1(Ω) ↪→ We2,q2(Ω) for all open
balls Ω ⊆ Rn, then We1,q1(M, E; Λ) ↪→ We2,q2(M, E; Λ).

(3) If any of e1 or e2 is a noninteger less than −1 and if We1,q1(Ω) ↪→ We2,q2(Ω) for Ω =
Rn and for any bounded domain Ω ⊆ Rn with Lipschitz continuous boundary, then
We1,q1(M, E; Λ) ↪→ We2,q2(M, E; Λ).

Proof.

(1) Let Λ1 = {(Uα, ϕα, ρα, ψα)}1≤α≤N be any augmented total trivialization atlas for E
which is super nice. We have

‖u‖We2,q2 (M,E;Λ)  ‖u‖We2,q2 (M,E;Λ1)
=

N

∑
α=1

r

∑
l=1
‖[Hα(ψαu)]l‖We2,q2 (ϕα(Uα))

�
N

∑
α=1

r

∑
l=1
‖[Hα(ψαu)]l‖We1,q1 (ϕα(Uα))

= ‖u‖We1,q1 (M,E;Λ1)
 ‖u‖We1,q1 (M,E;Λ) .

(2) We can use the exact same argument as item 1. Just choose Λ1 to be “nice” instead of
“super nice”.

(3) The exact same argument as item 1 works. Just choose Λ1 = Λ.

Remark 59. If we further assume that Λ is GL compatible with itself, then we can remove the
assumption “e1 and e2 are not nonintegers less than −1” from part 1 and part 2 of the preceding
theorem. (see the explanation in Remark 58).

Theorem 93. Let Mn be a compact smooth manifold. Let π : E → M be a smooth vector bundle
of rank r over M equipped with fiber metric 〈., .〉E (so it is meaningful to talk about L∞(M, E)).
Suppose s ∈ R and p ∈ (1, ∞) are such that sp > n. Then Ws,p(M, E) ↪→ L∞(M, E). Moreover,
every element u in Ws,p(M, E) has a continuous version (note that since s is not a noninteger less
than −1, the choice of the augmented total trivialization atlas is immaterial).
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Proof. Let {(Uα, ϕα, ρα)}1≤α≤N be a nice total trivialization atlas for E → M that trivializes
the fiber metric. Let {ψα}1≤α≤N be a partition of unity subordinate to {Uα}. We need to
show that for every u ∈ Ws,p(M, E)

|u|L∞(M,E) � ‖u‖Ws,p(M,E) .

Note that since s > 0, Ws,p(M, E) ↪→ Lp(M, E) and we can treat u as an ordinary section of
E. We prove the above inequality in two steps:

• Step 1: Suppose there exists 1 ≤ β ≤ N such that suppu ⊆ Uβ. We have

|u|L∞(M,E) = ess sup
x∈M

|u|E = ess sup
x∈Uβ

|u|E

= ess sup
y∈ϕβ(Uβ)

√
r

∑
l=1
|ρl

β ◦ u ◦ ϕ−1
β |2 (by assumption the triples trivialize the metric)

≤ ess sup
y∈ϕβ(Uβ)

r

∑
l=1
|ρl

β ◦ u ◦ ϕ−1
β | ≤

r

∑
l=1

ess sup
y∈ϕβ(Uβ)

|ρl
β ◦ u ◦ ϕ−1

β |

=
r

∑
l=1
‖ρl

β ◦ u ◦ ϕ−1
β ‖L∞(ϕβ(Uβ))

�
r

∑
l=1
‖ρl

β ◦ u ◦ ϕ−1
β ‖Ws,p(ϕβ(Uβ))

(sp > n so Ws,p(ϕβ(Uβ)) ↪→ L∞(ϕβ(Uβ))) .

• Step 2: Now, suppose u is an arbitrary element of Ws,p(M, E). We have

|u|L∞(M,E) = |
N

∑
α=1

ψαu|L∞(M,E) ≤
N

∑
α=1
|ψαu|L∞(M,E)

Step 1
�

N

∑
α=1

r

∑
l=1
‖ρl

α ◦ ψαu ◦ ϕ−1
α ‖Ws,p(ϕα(Uα))  ‖u‖Ws,p(M,E) .

Next we prove that every element u of Ws,p(M, E) has a continuous version. Note that for
all x ∈ Uα

ψαu(x) = Φ−1
α (x, ρ1

α ◦ ψαu, . . . , ρr
α ◦ ψαu) .

Furthermore, for all 1 ≤ l ≤ r and 1 ≤ α ≤ N we have

ρl
α ◦ ψαu ◦ ϕ−1

α ∈ Ws,p(ϕα(Uα)) .

Therefore, ρl
α ◦ ψαu ◦ ϕ−1

α has a continuous version which we denote by vl
α. Suppose Al

α is
the set of measure zero on which vl

α �= ρl
α ◦ ψαu ◦ ϕ−1

α . Let Aα = ∪1≤l≤r Al
α. Clearly, Aα is

a set of measure zero. Since ϕα : Uα → ϕα(Uα) is a diffeomorphism, Bα := ϕ−1
α (Aα) is a

set of measure zero in Uα (In general, if M and N are smooth n-manifolds, F : M → N is a
smooth map, and A ⊆ M is a subset of measure zero, then F(A) has measure zero in N.
See p. 128 in [19]).
Clearly,

(x, v1
α ◦ ϕα, . . . , vr

α ◦ ϕα) = (x, ρ1
α ◦ ψαu, . . . , ρr

α ◦ ψαu) .

on Uα \ Bα. So,

wα := Φ−1
α (x, v1

α ◦ ϕα, . . . , vr
α ◦ ϕα) = Φ−1

α (x, ρ1
α ◦ ψαu, . . . , ρr

α ◦ ψαu) = ψαu

on Uα \ Bα. Note that wα : Uα → E is a composition of continuous functions and so it is
continuous on Uα. Let ξα ∈ C∞

c (Uα) be such that ξα = 1 on suppψα. So ξαwα = ψαu on
M \ Bα. Consequently, if we let w = ∑N

α=1 ξαwα, then w is a continuous function that agrees
with u = ∑N

α=1 ψαu on M \ B where B = ∪1≤α≤N Bα.
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9.2.3. Observations Concerning the Local Representation of Sobolev Functions

Let Mn be a compact smooth manifold. Let E → M be a smooth vector bundle of rank
r over M. As it was discussed in Section 6, given a total trivialization triple (Uα, ϕα, ρα), we
can associate with every u ∈ D′(M, E) and every f ∈ Γ(M, E), a local representation with
respect to (Uα, ϕα, ρα):

u �→ (ũ1, . . . , ũr) ∈ [D′(ϕα(Uα))]
×r, ũl = [Hα(u|Uα)]

l ,

f �→ ( f̃ 1, . . . , f̃ r) ∈ [Func(ϕα(Uα),R)]×r, f̃ l = ρl
α ◦ ( f |Uα) ◦ ϕ−1

α ,

and of course, as it was pointed out in Remark 32, the two representations agree when
u is a regular distribution. The goal of this section is to list some useful facts about the
local representations of elements of Sobolev spaces. In what follows, when there is no
possibility of confusion, we may write Hα(u) instead of Hα(u|Uα), or ρl

α ◦ f ◦ ϕ−1
α instead

of ρl
α ◦ ( f |Uα) ◦ ϕ−1

α .

Theorem 94. Let Mn be a compact smooth manifold and E → M be a vector bundle of rank r.
Suppose Λ = {(Uα, ϕα, ρα, ψα)}N

α=1 is an augmented total trivialization atlas for E → M. Let
u ∈ D′(M, E), e ∈ R, and q ∈ (1, ∞). If for all 1 ≤ α ≤ N and 1 ≤ j ≤ r, [Hα(u)]j ∈
We,q

loc(ϕα(Uα)), then u ∈ We,q(M, E; Λ).

Proof.

‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
j=1
‖[Hα(ψαu)]j‖We,q(ϕα(Uα))

=
N

∑
α=1

r

∑
j=1
‖(ψα ◦ ϕ−1

α ) · ([Hα(u)]j)‖We,q(ϕα(Uα)) .

Now, note that ψα ◦ ϕ−1
α : ϕα(Uα)→ R is smooth with compact support (its support is in

the compact set ϕα(supp ψα)). Therefore, it follows from the assumption that each term on
the right hand side of the above equality is finite.

Remark 60. Note that, as opposed to what is claimed in some references, it is NOT true in general
that if u ∈ We,q(M, E; Λ), then the components of the local representations of u will be in the
corresponding Euclidean Sobolev space; that is, u ∈ We,q(M, E; Λ) does not imply that for all
1 ≤ α ≤ N and 1 ≤ j ≤ r, [Hα(u)]j ∈ We,q(ϕα(Uα)). Consider the following example:
M = S1, e = 0, q = 1, and f : M → R defined by f ≡ 1. Clearly f ∈ W0,1(M) = L1(S1). Now,
consider the atlas A = {(U1, ϕ1), (U2, ϕ2)} where

U1 = S1 \ {(0, 1)}, ϕ1(x, y) =
x

1− y
,

U2 = S1 \ {(0,−1)}, ϕ2(x, y) =
x

1 + y
(stereographic projection) .

Clearly, f ◦ ϕ−1
1 = f ◦ ϕ−1

2 = 1 and ϕ1(U1) = ϕ2(U2) = R. So, f ◦ ϕ−1
1 and f ◦ ϕ−1

2 do not
belong to L1(ϕ1(U1)) or L1(ϕ2(U2)).

However, the following theorem holds true.

Theorem 95. Let Mn be a compact smooth manifold and E → M be a vector bundle of rank r. Let
e ∈ R and q ∈ (1, ∞). Suppose Λ = {(Uα, ϕα, ρα, ψα)}N

α=1 is an augmented total trivialization
atlas for E → M. If e is a noninteger less than −1 further assume that Λ is GL compatible with
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itself. Let u ∈ We,q(M, E; Λ) be such that supp u ⊆ V ⊆ V̄ ⊆ Uβ for some open set V and some
1 ≤ β ≤ N. Then for all 1 ≤ i ≤ r, [Hβ(u)]i ∈ We,q(ϕβ(Uβ)). Indeed,

‖[Hβ(u)]i‖We,q(ϕβ(Uβ))
≤ ‖u‖We,q(M,E;Λ) .

Proof. Let Λ1 = {(Uα, ϕα, ρα, ψ̃α)}N
α=1 where {ψ̃α}1≤α≤N is a partition of unity subordinate

to the cover {Uα}1≤α≤N such that ψ̃β = 1 on a neighborhood of V̄ (see Lemma 3). We have

‖[Hβ(u)]i‖We,q(ϕβ(Uβ))
= ‖[Hβ(ψ̃βu)]i‖We,q(ϕβ(Uβ))

≤
N

∑
α=1

r

∑
j=1
‖[Hα(ψ̃αu)]j‖We,q(ϕα(Uα))

= ‖u‖We,q(M,E;Λ1)
 ‖u‖We,q(M,E;Λ) .

Corollary 8. Let Mn be a compact smooth manifold and E → M be a vector bundle of rank r. Let
e ∈ R and q ∈ (1, ∞). Suppose Λ = {(Uα, ϕα, ρα, ψα)}N

α=1 is an augmented total trivialization
atlas for E → M. If e is a noninteger less than −1 further assume that Λ is GL compatible with
itself. If u ∈ We,q(M, E; Λ), then for all 1 ≤ α ≤ N and 1 ≤ i ≤ r, [Hα(u)]i (i.e., each component
of the local representation of u with respect to (Uα, ϕα, ρα)) belongs to We,q

loc(ϕα(Uα)). Moreover, if
ξ ∈ C∞

c (ϕα(Uα)), then

‖ξ[Hα(u)]i‖We,q(ϕα(Uα)) � ‖u‖We,q(M,E;Λ) ,

where the implicit constant may depend on ξ.

Proof. Define G : M → R by

G(p) =

{
ξ ◦ ϕα if p ∈ Uα

0 if p �∈ Uα
.

Clearly, G ∈ C∞(M). So, by Theorem 90, Gu ∈ We,q(M, E; Λ). Furthermore, since ξ ∈
C∞

c (ϕα(Uα)), there exists a compact set K such that

supp ξ ⊆ K̊ ⊆ K ⊆ ϕα(Uα) .

Consequently, there exists an open set Vα (e.g., Vα = ϕ−1
α (K̊)) such that

supp (Gu) ⊆ supp(ξ ◦ ϕα) ⊆ Vα ⊆ V̄α ⊆ Uα .

So, by Theorem 95, [Hα(Gu)]i ∈ We,q(ϕα(Uα)) and

‖[Hα(Gu)]i‖We,q(ϕα(Uα)) � ‖Gu‖We,q(M,E;Λ) � ‖u‖We,q(M,E;Λ) .

Now, we just need to notice that on ϕα(Uα),

[Hα(Gu)]i = (G ◦ ϕ−1
α )[Hα(u)]i = ξ[Hα(u)]i .

9.2.4. Observations Concerning the Riemannian Metric

The Sobolev spaces that appear in this section all have nonnegative smoothness
exponents; therefore, the choice of the augmented total trivialization atlas is immaterial
and will not appear in the notation.
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Corollary 9. Let (Mn, g) be a compact Riemannian manifold with g ∈ Ws,p(T2M), sp > n. Let
{(Uα, ϕα, ρα)}1≤α≤N be a standard total trivialization atlas for T2M → M. Fix some α and denote
the components of the metric with respect to (Uα, ϕα, ρα) by gij : Uα → R (gij = (ρα)ij ◦ g). As
an immediate consequence of Corollary 8 we have

gij ◦ ϕ−1
α ∈ Ws,p

loc (ϕα(Uα)) .

Theorem 96. Let (Mn, g) be a compact Riemannian manifold with g ∈ Ws,p(T2M), sp > n,
s ≥ 1. Let {(Uα, ϕα, ρα)}1≤α≤N be a GGL standard total trivialization atlas for T2M → M. Fix
some α and denote the components of the metric with respect to (Uα, ϕα, ρα) by gij : Uα → R
(gij = (ρα)ij ◦ g). Then

(1) det gα ∈ Ws,p
loc (ϕα(Uα)) where gα(x) is the matrix whose (i, j)-entry is gij ◦ ϕ−1

α ,
(2)

√
det g ◦ ϕ−1

α =
√

det gα ∈ Ws,p
loc (ϕα(Uα)),

(3) 1√
det g◦ϕ−1

α
∈ Ws,p

loc (ϕα(Uα)).

Proof.

(1) By Corollary 8, gij ◦ ϕ−1
α is in Ws,p

loc (ϕα(Uα)). So, it follows from Lemma 10 that
det gα ∈ Ws,p

loc (ϕα(Uα)).
(2) This is a direct consequence of item 1 and Theorem 85.
(3) This is a direct consequence of item 1 and Theorem 85.

Theorem 97. Let (Mn, g) be a compact Riemannian manifold with g ∈ Ws,p(T2M), sp > n,
s ≥ 1. Then the inverse metric tensor g−1 (which is a (0

2) tensor field) is in Ws,p(T2M).

Proof. Let {(Uα, ϕα, ρα)}1≤α≤N be a GGL standard total trivialization atlas for T2M → M.
Let {ψα}1≤α≤N be a partition of unity subordinate to {Uα}1≤α≤N . We have

‖g−1‖Ws,p(T2 M) =
N

∑
α=1

∑
i,j
‖ψαgij ◦ ϕ−1

α ‖Ws,p(ϕα(Uα)) .

So, it is enough to show that for all i, j and α, gij ◦ ϕ−1
α is in Ws,p

loc (ϕα(Uα)). Let B = (Bij)

where Bij = gij ◦ ϕ−1
α . By assumption, g ∈ Ws,p(T2M); it follows from Corollary 8 that Bij ∈

Ws,p
loc (ϕα(Uα)). Our goal is to show that the entries of the inverse of B are in Ws,p

loc (ϕα(Uα)).
Recall that

(B−1)ij =
(−1)i+j

det B
Mij ,

where Mij is the determinant of the (n − 1) × (n − 1) matrix formed by removing the
jth row and ith column of B. Since the entries of B are in Ws,p

loc (ϕα(Uα)), it follows from
Lemma 10 and Theorem 85 that 1

det B and Mij are in Ws,p
loc (ϕα(Uα)). Furthermore, sp > n, so

Ws,p
loc (ϕα(Uα)) is closed under multiplication. Consequently, (B−1)ij is in Ws,p

loc (ϕα(Uα)).

Corollary 10. Let (Mn, g) be a compact Riemannian manifold with g ∈ Ws,p(T2M), sp > n,
s ≥ 1. {(Uα, ϕα)}1≤α≤N be a GGL smooth atlas for M. Denote the standard components of
the inverse metric with respect to this chart by gij : Uα → R. As an immediate consequence of
Theorem 97 and Corollary 8 we have

gij ◦ ϕ−1
α ∈ Ws,p

loc (ϕα(Uα)) .

Furthermore, since

Γk
ij ◦ ϕ−1

α =
1
2

gkl(∂igjl + ∂jgil − ∂l gij) ◦ ϕ−1
α ,
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it follows from Corollary 9, Lemma 9, Theorem 83, and the fact that
Ws,p(ϕα(Uα))×Ws−1,p(ϕα(Uα)) ↪→ Ws−1,p(ϕα(Uα)) that

Γk
ij ◦ ϕ−1

α ∈ Ws−1,p
loc (ϕα(Uα)) .

9.2.5. A Useful Isomorphism

Let Mn be a compact smooth manifold and E → M be a vector bundle of rank r. Let e ∈
R and q ∈ (1, ∞). Suppose Λ = {(Uα, ϕα, ρα, ψα)}N

α=1 is an augmented total trivialization
atlas for E → M. Given a closed subset A ⊆ M, We,q

A (M, E; Λ) is defined to be the subspace
of We,q(M, E; Λ) consisting of u ∈ We,q(M, E; Λ) with suppu ⊆ A. Fix 1 ≤ β ≤ N and
suppose K ⊆ Uβ is compact. Then each element of We,q

K (M, E; Λ) can be identified with an
element of D′(Uβ, EUβ

) under the injective map u ∈ We,q
K (M, E; Λ) ⊆ D′(M, E) �→ u|U ∈

D′(Uβ, EUβ
). So, we can restrict the domain of Hβ : [D(Uβ, E∨Uβ

)]∗ → (D′(ϕβ(Uβ)))
×r to

We,q
K (M, E; Λ) which associates with each element u ∈ We,q

K (M, E; Λ), the r components of
Hβ(u) = (ũ1

β, · · · , ũr
β) (here Hβ stands for HE∨ ,Uβ ,ϕβ

).

Lemma 11. Consider the above setting and further assume that if e is a noninteger less than −1,
then the total trivialization atlas in Λ is GL compatible with itself. Then the linear topological
isomorphism Hβ : [D(Uβ, E∨Uβ

)]∗ = D′(Uβ, EUβ
) → (D′(ϕβ(Uβ)))

×r restricts to a linear
topological isomorphism

Ĥβ : We,q
K (M, E; Λ)→ [We,q

ϕβ(K)
(ϕβ(Uβ))]

×r .

Proof. In order to simplify the notation we will use (U, ϕ, ρ), H, Ĥ, and ũl instead of
(Uβ, ϕβ, ρβ), Hβ, Ĥβ, and ũl

β. In order to prove this claim, we proceed as follows:

(1) First we show that suppũl ⊆ ϕ(K).
(2) Next we show that if u ∈ We,q

K (M, E; Λ), then ‖u‖We,q(M,E;Λ)  ∑r
l=1 ‖ũl‖We,q(ϕ(U))

which proves that:

(i) ũl is indeed an element of We,q(ϕ(U));
(ii) Ĥ is continuous.

Note that (i) together with the fact that suppũl ⊆ ϕ(K) shows that ũl is indeed an
element of We,q

ϕ(K)(ϕ(U)) so Ĥ is well-defined.

(3) We prove that Ĥ is injective.
(4) In order to prove that Ĥ is surjective we use our explicit formula for H−1 (see

Remark 31).

Note that the fact that Ĥ is bijective combined with the equality
‖u‖We,q(M,E;Λ)  ∑r

l=1 ‖ũl‖We,q(ϕ(U)) implies that Ĥ−1 is continuous as well.
Here are the proofs:

(1) This item is a direct consequence of item 1 in Remark 31.
(2) Define the augmented total trivialization atlas Λ1 by Λ1 = {(Uα, ϕα, ρα, ψ̃α)}N

α=1
where {ψ̃α}1≤α≤N is a partition of unity subordinate to {Uα}1≤α≤N such that ψ̃β = 1
on a neighborhood of K. Note that for each α, ψ̃α ≥ 0 and ∑N

α=1 ψ̃α = 1. Thus, the
assumption ψ̃β = 1 on K implies that ψ̃α = 0 on K for all α �= β. We have

‖u‖We,q(M,E;Λ)  ‖u‖We,q(M,E;Λ1)
 

N

∑
α=1

r

∑
l=1
‖(Hα(ψ̃αu))l‖We,q(ϕα(Uα))

=
r

∑
l=1
‖(H(ψ̃βu))l‖We,q(ϕα(Uα)) =

r

∑
l=1
‖[H(u)]l‖We,q(ϕα(Uα)) .
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Note that suppu ⊆ K and ψ̃β = 1 on K, so ψ̃βu = u|U as elements of D′(U, EU).
Therefore, H(ψ̃βu) = H(u) = (ũ1, . . . , ũr).

(3) Ĥ is injective because it is a restriction of the injective map H.
(4) Let (v1, . . . , vr) ∈ [We,q

ϕ(K)(ϕ(U))]×r. Our goal is to show that H−1(v1, . . . , vr) ∈
We,q

K (M, E; Λ)  We,q
K (M, E; Λ1) (this implies that Ĥ is surjective). By Remark 31,

for all ξ ∈ D(U, E∨U)

H−1(v1, . . . , vr)(ξ) = ∑
i

vi[(ρ∨)i ◦ ξ ◦ ϕ−1] .

First note it follows from Remark 30 that suppH−1(v1, . . . , vr) ⊆ K; indeed, if suppξ ⊆
U \K, then ξ ◦ ϕ−1 = 0 on ϕ(K). So, (ρ∨)i ◦ ξ ◦ ϕ−1 = 0 on ϕ(K). That is, supp[(ρ∨)i ◦
ξ ◦ ϕ−1] ⊆ ϕ(U) \ ϕ(K). Thus, for all i, vi[(ρ∨)i ◦ ξ ◦ ϕ−1] = 0 (because, by assumption,
suppvi ⊆ ϕ(K)). This shows that if suppξ ⊆ U \ K, then H−1(v1, . . . , vr)(ξ) = 0.
Consequently, suppH−1(v1, . . . , vr) ⊆ K.
Furthermore, we have

‖H−1(v1, . . . , vr)‖We,q(M,E;Λ1)
 

r

∑
l=1
‖vl‖We,q(ϕ(U)) < ∞ .

So, H−1(v1, · · · , vr) ∈ We,q(M, E; Λ).

It is clear that u ∈ We,q(M, E; Λ) if and only if for all α, ψαu ∈ We,q
Kα
(M, E; Λ) where

Kα can be taken as any compact set such that suppψα ⊆ Kα ⊆ Uα. In fact as a direct
consequence of the definition of Sobolev spaces and the above mentioned isomorphism
we have

u ∈ We,q(M, E; Λ)⇐⇒ ∀ 1 ≤ α ≤ N Hα(ψαu) ∈ [We,q
ϕα(suppψα)

(ϕα(Uα))]
×r

⇐⇒ ∀ 1 ≤ α ≤ N ψαu ∈ We,q
suppψα

(M, E; Λ)

9.2.6. Completeness; Density of Smooth Functions

Our proofs for completeness of Sobolev spaces and density of smooth functions are
based on the ideas presented in [24].

Lemma 12. Let Mn be a compact smooth manifold and E → M be a vector bundle of rank
r. Let e ∈ R and q ∈ (1, ∞). Suppose Λ = {(Uα, ϕα, ρα, ψα)}N

α=1 is an augmented total
trivialization atlas for E → M. If e is a noninteger less than −1 further assume that Λ is GL
compatible with itself. Let Kα be a compact subset of Uα that contains the support of ψα. Let
S : We,q(M, E; Λ)→ ∏N

α=1 We,q
Kα
(M, E; Λ) be the linear map defined by S(u) = (ψ1u, . . . , ψNu).

Then S : We,q(M, E; Λ) → S(We,q(M, E; Λ)) ⊆ ∏N
α=1 We,q

Kα
(M, E; Λ) is a linear topological

isomorphism. Moreover, S(We,q(M, E; Λ)) is closed in ∏N
α=1 We,q

Kα
(M, E; Λ).

Proof. Each component of S is continuous (see Theorem 90), therefore S is continuous.
Define P : ∏N

α=1 We,q
Kα
(M, E)→ We,q(M, E) by

P(v1, . . . , vN) = ∑
i

vi .

Clearly, P is continuous. Furthermore, P ◦ S = id. Now the claim follows from
Theorem 23.

Theorem 98. Let Mn be a compact smooth manifold and E → M be a vector bundle of rank r. Let
e ∈ R and q ∈ (1, ∞). Suppose Λ = {(Uα, ϕα, ρα, ψα)}N

α=1 is an augmented total trivialization
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atlas for E → M. If e is a noninteger less than −1 further assume that Λ is GL compatible with
itself. Then We,q(M, E; Λ) is a Banach space.

Proof. According to Lemma 11, for each 1 ≤ α ≤ N, We,q
Kα
(M, E; Λ) is isomorphic to the

Banach space [We,q
ϕα(Kα)

(ϕα(Uα))]×r. So ∏N
α=1 We,q

Kα
(M, E; Λ) is a Banach space. A closed

subspace of a Banach space is Banach. Therefore, S(We,q(M, E; Λ)) is a Banach space.
Since S is a linear topological isomorphism onto its image, We,q(M, E; Λ) is also a Banach
space.

Theorem 99. Let Mn be a compact smooth manifold and E → M be a vector bundle of rank r. Let
e ∈ R and q ∈ (1, ∞). Suppose Λ = {(Uα, ϕα, ρα, ψα)}N

α=1 is an augmented total trivialization
atlas for E → M. If e is a noninteger less than −1 further assume that Λ is GL compatible with
itself. Then D(M, E) is dense in We,q(M, E; Λ).

Proof. Let Kα = suppψα. For each 1 ≤ α ≤ N, let Vα be an open set such that

Kα ⊆ Vα ⊆ V̄α ⊆ Uα .

Suppose u ∈ We,q(M, E; Λ) and let uα = ψαu. Clearly, suppuα ⊆ Kα. Furthermore,
according to Lemma 11, for each α there exists a linear topological isomorphism

Ĥα : We,q
V̄α
(M, E)→ [We,q

ϕα(V̄α)
(ϕα(Uα))]

×r .

Note that Ĥα(uα) ∈ [We,q
ϕα(Kα)

(ϕα(Uα))]×r. Therefore, by Lemma 62 there exists a sequence

{(ηα)i} in [C∞
ϕα(V̄α)

(ϕα(Uα))]×r (of course we view each component of (ηα)i as a distribu-

tion) that converges to Ĥα(uα) in We,q norm as i → ∞. Since Ĥα is a linear topological
isomorphism, we can conclude that

Ĥ−1
α ((ηα)i)→ uα, (in We,q

V̄α
(M, E; Λ) as i → ∞) .

(Note that if a sequence converges in We,q
A (M, E; Λ) where A is a closed subset of M, it also

obviously converges in We,q(M, E; Λ).) Let ξi = ∑N
α=1 Ĥ−1

α ((ηα)i). This sum makes sense
because, as we will shortly prove, each summand is in C∞

c (Uα, Eα) and so by extension by
zero can be viewed as an element of C∞(M, E). Clearly ξi → ∑α uα = u in We,q(M, E; Λ).
It remains to show that for each i, ξi is in C∞(M, E). To this end, it suffices to show
that if χ = (χ1, . . . , χr) ∈ [C∞

c (ϕα(Uα))]×r, then Ĥ−1
α (χ) is in C∞

c (Uα, Eα) and so can
be considered as an element of C∞(M, E) (by extension by zero). Note that Ĥ−1

α (χ) is
compactly supported in Uα because by definition of Ĥα any distribution in the codomain of
Ĥ−1

α has compact support in V̄α. So, we just need to prove the smoothness of Ĥ−1
α (χ). That

is, we need to show that there is a smooth section f ∈ C∞(Uα, EUα) such that u f = Ĥ−1
α (χ).

It seems that the natural candidate for f (x) should be (ρα|Ex )
−1 ◦ χ ◦ ϕα(x). In fact, if we

define f by this formula, then Ĥα(u f ) = Hα(u f ) and by Remark 32 Hα(u f ) is a distribution
that corresponds to the regular function ( f̃ 1, . . . , f̃ r) = ρα ◦ f ◦ ϕ−1

α . Obviously,

ρα ◦ f ◦ ϕ−1
α |ϕα(x) = ρα ◦ (ρα|Ex )

−1 ◦ χ ◦ ϕα ◦ ϕ−1
α |ϕα(x) = χ|ϕα(x) .

So, the regular section f (x) = ρα|−1
Ex
◦ χ ◦ ϕα(x) corresponds to Ĥ−1

α (χ) and we just need to
show that f is smooth; this is true because f is a composition of smooth functions. Indeed,

f (x) = ρα|−1
Ex
◦ χ ◦ ϕα(x) = Φ−1

α (x, χ ◦ ϕα(x)) =⇒ f = Φ−1
α ◦ (Id, χ ◦ ϕα) ,

and all the maps involved in the above expression are smooth.
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9.2.7. Dual of Sobolev Spaces

Lemma 13. Let Mn be a compact smooth manifold and let π : E → M be a vector bundle of rank r
equipped with a fiber metric 〈., .〉E. Let e ∈ R and q ∈ (1, ∞). Suppose Λ = {(Uα, ϕα, ρα, ψα)}N

α=1
is an augmented total trivialization atlas for E → M which trivializes the fiber metric. If e is a
noninteger less than −1 further assume that the total trivialization atlas in Λ is GGL.
Fix a positive smooth density μ on M (for instance we can equip M with a smooth Riemannian
metric and consider the corresponding Riemannian density). Let T : D(M, E)→ D(M, E∨) be the
map that sends ξ to Tξ where Tξ is defined by

∀ x ∈ M Tξ(x) : Ex → Dx, a �→ 〈a, ξ(x)〉E μ(x) .

Then T is a linear bijective continuous map. Moreover, T : (C∞(M, E), ‖.‖We,q(M,E;Λ)) →
(C∞(M, E∨), ‖.‖We,q(M,E∨ ;Λ∨)) is a topological isomorphism.

Note: Since M is compact, D(M, E) and D(M, E∨) are Frechet spaces. So, by
Theorem 17, the continuity of the bijective linear map T : D(M, E) → D(M, E∨) implies
the continuity of its inverse. That is, T : D(M, E) → D(M, E∨) is a linear topological
isomorphism. As a consequence, the adjoint of T is a well-defined bijective continuous
map that can be used to identify D′(M, E) = [D(M, E∨)]∗ with [D(M, E)]∗.

Proof. The fact that T is linear is obvious.

• T is one-to-one: Suppose ξ ∈ D(M, E) is such that Tξ = 0. Then

∀ x ∈ M Tξ(x) = 0 =⇒ ∀ x ∈ M, ∀ a ∈ Ex [Tξ(x)](a) = 0

=⇒ ∀ x ∈ M, ∀ a ∈ Ex 〈a, ξ(x)〉E = 0

=⇒ ∀ x ∈ M 〈ξ(x), ξ(x)〉E = 0 =⇒ ∀ x ∈ M ξ(x) = 0 .

• T is onto: Let u ∈ D(M, E∨). Our goal is to show that there exists ξ ∈ D(M, E) such
that u = Tξ . Note that

∀ x ∈ M u(x) = Tξ(x)⇐⇒ ∀ x ∈ M ∀ a ∈ Ex 〈a, ξ(x)〉E μ(x) = [u(x)](a) .

Since Dx is 1-dimensional and both μ(x) (which is a positive smooth density) and
[u(x)][a] belong to Dx,, there exists a number b(x, a) such that

[u(x)](a) = b(x, a)μ(x) .

So, we need to show that there exists ξ ∈ D(M, E) such that

∀ x ∈ M ∀ a ∈ Ex 〈a, ξ(x)〉E = b(x, a) .

The above equality uniquely defines a functional on Ex which gives us a unique
element ξ(x) ∈ Ex by the Riesz representation theorem. It remains to prove that ξ is
smooth. To this end, we will show that for each α, ξ|Uα is smooth. Let (s1, . . . , sr) be a
smooth orthonormal frame for EUα .

∀ x ∈ Uα ξ(x) = ξ1(x)s1(x) + . . . + ξr(x)sr(x) .

It suffices to show that ξ1, . . . , ξr are smooth functions (see Theorem 36). We have

ξ i(x) = 〈ξ(x), si(x)〉E .

It follows from the definition of ξ(x) that

[u(x)][si(x)] = 〈si(x), ξ(x)〉E μ(x) .
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Therefore, ξ i(x) satisfies the following equality

[u(x)][si(x)] = ξ i(x)μ(x) .

That is, if we define a section of D → Uα by

[u, si] : Uα → D, x �→ [u(x)][si(x)] ,

then ξ i is the component of this section with respect to the smooth frame {μ(x)} on
Uα. The smoothness of ξ i follows from the fact that if N is any manifold, E → N is a
vector bundle and u and v are in E(N, E∨) and E(N, E), respectively, then [u, v] is in
E(N,D); indeed, the local representation of [u, v] is ∑l ũl ṽl which is a smooth function
because ũl and ṽl are smooth functions.

• T : D(M, E)→ D(M, E∨) is continuous:

We make use of Theorem 20. Recall that

(1) The topology on D(M, E) is induced by the seminorms:

∀ 1 ≤ l ≤ r, ∀ 1 ≤ α ≤ N, ∀ k ∈ N, ∀K ⊆ Uα(compact) pl,α,k,K(ξ) = ‖ρl
α ◦ ξ ◦ ϕ−1

α ‖ϕα(K),k .

(2) The topology on D(M, E∨) is induced by the seminorms:

∀ 1 ≤ l ≤ r, ∀ 1 ≤ α ≤ N, ∀ k ∈ N, ∀K ⊆ Uα(compact) ql,α,k,K(η) = ‖(ρ∨α )l ◦ η ◦ ϕ−1
α ‖ϕα(K),k .

For all ξ ∈ D(M, E) we have

ql,α,k,K(Tξ) = ‖(ρ∨α )l ◦ Tξ ◦ ϕ−1
α ‖ϕα(K),k = ‖(ρD,ϕα

) ◦ (Tξ ◦ ϕ−1
α ) ◦ (ρα|Ex )

−1(el)︸ ︷︷ ︸
sl(x)

‖ϕα(K),k ,

where (e1, . . . , er) is the standard basis for Rr. Let y = ϕα(x). Note that

[Tξ(ϕ−1
α (y))][sl(x)] = 〈sl(x), ξ(x)〉E μ(x) .

Therefore, if we define the smooth function fα on Uα by μ(x) = fα(x)|dx1 ∧ . . . ∧ dxn|,
then

(ρD,ϕα
) ◦ (Tξ ◦ ϕ−1

α ) ◦ sl(x) = 〈sl(x), ξ(x)〉E fα(x) = ξ l(x) fα(x) = (ρl
α ◦ ξ ◦ ϕ−1

α (y))( fα ◦ ϕ−1
α (y)) . (8)

So, if we let
C = max

y∈ϕα(K),|β|≤k
|∂β( fα ◦ ϕ−1

α (y))| ,

then

ql,α,k,K(Tξ) = ‖(ρl
α ◦ ξ ◦ ϕ−1

α (y))( fα ◦ ϕ−1
α (y))‖ϕα(K),k ≤ C‖ρl

α ◦ ξ ◦ ϕ−1
α (y))‖ϕα(K),k = C pl,α,k,K(ξ) .

• T : (C∞(M, E), ‖.‖e,q)→ (C∞(M, E∨), ‖.‖e,q) is a topological isomorphism:

‖ξ‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
l=1
‖ρl

α ◦ ψαξ ◦ ϕ−1
α ‖We,q(ϕα(Uα)) ,

‖Tξ‖We,q(M,E∨ ;Λ∨) =
N

∑
α=1

r

∑
l=1
‖(ρ∨α )l ◦ ψαTξ ◦ ϕ−1

α ‖We,q(ϕα(Uα)) .

By Equation (8), we have

(ρ∨α )
l ◦ ψαTξ ◦ ϕ−1

α = ρD,ϕα
◦ (ψαTξ ◦ ϕ−1

α ) ◦ sl(x) = (ρl
α ◦ ψαξ ◦ ϕ−1

α )( fα ◦ ϕ−1
α ) .

336



Mathematics 2022, 10, 522

Therefore,

‖Tξ‖We,q(M,E∨ ;Λ∨) =
N

∑
α=1

r

∑
l=1
‖(ρl

α ◦ ψαξ ◦ ϕ−1
α )( fα ◦ ϕ−1

α )‖We,q(ϕα(Uα)) .

Now, we just need to notice that fα ◦ ϕ−1
α is a positive function and belongs to

C∞(ϕα(Uα)) (so 1
fα◦ϕ−1

α
is also smooth) and ρl

α ◦ ψαξ ◦ ϕ−1
α has support in the compact

set ϕα(supp(ψα)) to conclude that

‖ξ‖We,q(M,E;Λ)  ‖Tξ‖We,q(M,E∨ ;Λ∨) .

Lemma 14. Let Mn be a compact smooth manifold and let π : E → M be a vector bundle of rank r
equipped with a fiber metric 〈., .〉E. Let e ∈ R and q ∈ (1, ∞). Suppose Λ = {(Uα, ϕα, ρα, ψα)}N

α=1
is an augmented total trivialization atlas for E → M. If e is a noninteger less than−1 further assume
that the total trivialization atlas in Λ is GGL. Then D(M, E) ↪→ We,q(M, E) ↪→ D′(M, E).

Proof. We refer to [24] for discussion about the case where e ∈ Z. For e ∈ R \Z we have

We,q(M, E; Λ) ↪→ W
e�,q(M, E; Λ) ↪→ D′(M, E) ,

D(M, E) ↪→ W
e�+1,q(M, E; Λ) ↪→ We,q(M, E; Λ) .

Theorem 100. Let Mn be a compact smooth manifold and let π : E → M be a vector bun-
dle of rank r equipped with a fiber metric 〈., .〉E. Let e ∈ R and q ∈ (1, ∞). Suppose Λ =
{(Uα, ϕα, ρα, ψα)}N

α=1 is an augmented total trivialization atlas for E → M which trivializes the
fiber metric. If e is a noninteger whose magnitude is greater than 1 further assume that the total
trivialization atlas in Λ is GL compatible with itself. Fix a positive smooth density μ on M.
Consider the L2 inner product on D(M, E) defined by

〈u, v〉2 =
∫

M
〈u, v〉Eμ .

Then

(i) 〈., .〉2 extends uniquely to a continuous bilinear pairing
〈., .〉2 : W−e,q′(M, E; Λ) ×We,q(M, E; Λ) → R (We are using the same notation (i.e.,
〈., .〉2) for the extended bilinear map!)

(ii) The map S : W−e,q′(M, E; Λ)→ [We,q(M, E; Λ)]∗ defined by S(u) = lu where

lu : We,q(M, E; Λ)→ R, lu(v) = 〈u, v〉2

is a well-defined topological isomorphism.

In particular, [We,q(M, E; Λ)]∗ can be identified with W−e,q′(M, E; Λ).

Proof.

(1) By Theorem 8, in order to prove (i) it is enough to show that

〈., .〉2 : (C∞(M, E), ‖.‖−e,q′)× (C∞(M, E), ‖.‖e,q)→ R

is a continuous bilinear map. Denote the corresponding standard trivialization map
for the density bundle D → M by ρD,ϕα

. Let Λ1 = {(Uα, ϕα, ρα, ψ̃α)}N
α=1 be an

augmented total trivialization atlas for E where ψ̃α = ψ3
α

∑N
β=1 ψ3

β

. Note that 1
∑N

β=1 ψ3
β

◦
ϕ−1

α ∈ BC∞(ϕα(Uα)). Let Kα = suppψα. Recall that on Uα we may write μ =
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hα|dx1 ∧ · · · ∧ dxn| where hα = ρD,ϕα
◦ μ is smooth. Moreover, for any continuous

function f : M → R,

∫
M

f μ =
N

∑
α=1

∫
M

ψ̃α f μ

=
N

∑
α=1

∫
ϕα(Uα)

(ϕ−1
α )∗(ψ̃α f μ)

=
N

∑
α=1

∫
ϕα(Uα)

(ψ̃α f ◦ ϕ−1
α )(ϕ−1

α )∗μ

=
N

∑
α=1

∫
ϕα(Uα)

(ψ̃α f ◦ ϕ−1
α )(hα ◦ ϕ−1

α ) dV

�
N

∑
α=1

∫
ϕα(Uα)

(ψ2
α f ◦ ϕ−1

α )(ψαhα ◦ ϕ−1
α ) dV (

1

∑N
β=1 ψ3

β

◦ ϕ−1
α ∈ BC∞(ϕα(Uα))) .

Therefore, we have

|
∫

M
〈u, v〉Eμ| = |

N

∑
α=1

∫
M

ψ̃α〈u, v〉Eμ|

� |
N

∑
α=1

∫
ϕα(Uα)

(ψ2
α〈u, v〉E ◦ ϕ−1

α )(ψαhα ◦ ϕ−1
α )dV| .

Since by assumption the total trivialization atlas in Λ trivializes the metric, we get

|
∫

M
〈u, v〉Eμ| �

N

∑
α=1

r

∑
i=1
|
∫

ϕα(Uα)
(ψα ◦ ϕ−1

α ũi)(ψα ◦ ϕ−1
α ṽi)(ψαhα ◦ ϕ−1

α )dV|

Remark 46
�

N

∑
α=1

r

∑
i=1
‖(ψα ◦ ϕ−1

α ũi)‖W−e,q′ (ϕα(Uα))
‖(ψα ◦ ϕ−1

α ṽi)(ψαhα ◦ ϕ−1
α )‖We,q(ϕα(Uα))

�
N

∑
α=1

r

∑
i=1
‖(ψα ◦ ϕ−1

α ũi)‖W−e,q′ (ϕα(Uα))
‖(ψα ◦ ϕ−1

α ṽi)‖We,q(ϕα(Uα))

�
[ N

∑
α=1

r

∑
i=1
‖(ψα ◦ ϕ−1

α ũi)‖W−e,q′ (ϕα(Uα))

][ N

∑
α=1

r

∑
i=1
‖(ψα ◦ ϕ−1

α ṽi)‖We,q(ϕα(Uα))

]
= ‖u‖W−e,q′ (M,E;Λ)

‖v‖We,q(M,E;Λ) .

(2) For each u ∈ W−e,q′(M, E; Λ), lu is continuous because 〈., .〉2 is continuous. So, S is
well-defined.

(3) S is a continuous linear map because

∀ u ∈ W−e,q′(M, E; Λ) ‖S(u)‖(We,q(M,E;Λ))∗ = sup
0 �=v∈We,q(M,E;Λ)

|S(u)v|
‖v‖We,q(M,E;Λ)

= sup
0 �=v∈We,q(M,E;Λ)

|〈u, v〉2|
‖v‖We,q(M,E;Λ)

≤ C‖u‖W−e,q′ (M,E;Λ)
,

where C is the norm of the continuous bilinear form 〈., .〉2.
(4) S is injective: suppose u ∈ W−e,q′(M, E; Λ) is such that S(u) = 0, then

∀ v ∈ We,q(M, E; Λ) lu(v) = 〈u, v〉2 = 0 .

We need to show that u = 0.
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• Step 1: For ξ and η in D(M, E) we have

〈ξ, η〉2 = 〈uξ , Tη〉[D(M,E∨)]∗×D(M,E∨) ,

where T is the map introduced in Lemma 13 (note that if we identify D(M, E)
with a subset of [D(M, E∨)]∗, then we may write ξ instead of uξ on the right
hand side of the above equality). The reason is as follows:

〈uξ , Tη〉[D(M,E∨)]∗×D(M,E∨) =
∫

M
[Tη(x)][ξ(x)] (by definition of uξ).

Recall that by definition of Tη we have

∀ x ∈ M ∀a ∈ Ex [Tη(x)][a] = 〈a, η(x)〉E μ .

In particular,
[Tη(x)][ξ(x)] = 〈ξ(x), η(x)〉E μ .

Therefore,

〈uξ , Tη〉[D(M,E∨)]∗×D(M,E∨) =
∫

M
〈ξ(x), η(x)〉Eμ = 〈ξ, η〉2 .

• Step 2: For w ∈ W−e,q′(M, E; Λ) and η ∈ D(M, E) ⊆ We,q(M, E; Λ) we have

〈w, η〉2 = 〈w, Tη〉[D(M,E∨)]∗×D(M,E∨) .

Indeed, let {ξm} be a sequence in D(M, E) that converges to w in W−e,q′ (M, E; Λ).
Note that W−e,q′(M, E; Λ) ↪→ [D(M, E∨)]∗, so the sequence converges to w in
[D(M, E∨)]∗ as well. By what was proved in the first step, for all m

〈ξm, η〉2 = 〈ξm, Tη〉[D(M,E∨)]∗×D(M,E∨) .

Taking the limit as m → ∞ proves the claim.
• Step 3: Finally note that for all v ∈ D(M, E) ⊆ We,q(M, E; Λ)

〈T∗u, v〉[D(M,E)]∗×D(M,E) = 〈u, Tv〉[D(M,E∨)]∗×D(M,E∨) = 〈u, v〉2 = 0 .

Therefore, T∗u = 0 as an element of [D(M, E)]∗. T is a continuous bijective map,
so T∗ is injective. It follows that u = 0 as an element of [D(M, E∨)]∗ and so u = 0
as an element of W−e,q′(M, E; Λ).

(5) S is surjective. Let F ∈ [We,q(M, E; Λ)]∗. We need to show that there is an element
u ∈ W−e,q′(M, E; Λ) such that S(u) = F. Since D(M, E) is dense in We,q(M, E; Λ), it
is enough to show that there exists an element u ∈ W−e,q′ (M, E; Λ) with the property that

∀ ξ ∈ D(M, E) F(ξ) = 〈u, ξ〉2 .

Note that, according to what was proved in Step 2,

〈u, ξ〉2 = 〈u, Tξ〉[D(M,E∨)]∗×D(M,E∨) = 〈T∗u, ξ〉[D(M,E)]∗×D(M,E) .

So, we need to show that there exists an element u ∈ W−e,q′(M, E; Λ) such that

∀ ξ ∈ D(M, E) F(ξ) = 〈T∗u, ξ〉[D(M,E)]∗×D(M,E) .

Since D(M, E) ↪→ We,q(M, E; Λ), F|D(M,E) is an element of [D(M, E)]∗. We let

u := [T−1]∗(F|D(M,E)) ∈ [D(M, E∨)]∗ .
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Clearly, u satisfies the desired equality (note that [T−1]∗ = [T∗]−1). So, we just need
to show that u is indeed an element of W−e,q′(M, E; Λ). Note that

u ∈ W−e,q′(M, E; Λ)⇐⇒ ∀ 1 ≤ α ≤ N Hα(ψαu) ∈ [W−e,q′

ϕα(suppψα)
(ϕα(Uα))]

×r .

Since supp(ψαu) ⊆ suppψα, it follows from Remark 31 that

∀ 1 ≤ l ≤ r supp([Hα(ψαu)]l) ⊂ ϕα(suppψα) .

It remains to prove that [Hα(ψαu)]l ∈ W−e,q′(ϕα(Uα)). Note that

for e ≥ 0 [We,q
0 (ϕα(Uα))]

∗ = W−e,q′(ϕα(Uα)) ,

for e < 0 [We,q
0 (ϕα(Uα))]

∗ = [We,q(ϕα(Uα))]
∗ = W−e,q′

0 (ϕα(Uα)) ⊆ W−e,q′(ϕα(Uα)) .

Consequently, for all e

[We,q
0 (ϕα(Uα))]

∗ ⊆ W−e,q′(ϕα(Uα)) .

Therefore, it is enough to show that

[Hα(ψαu)]l ∈ [We,q
0 (ϕα(Uα))]

∗ .

To this end, we need to prove that

[Hα(ψαu)]l : (C∞
c (ϕα(Uα)), ‖.‖e,q)→ R

is continuous. For all ξ ∈ C∞
c (ϕα(Uα)) we have

[Hα(ψαu)]l(ξ) = 〈ψαu, gl,ξ,Uα ,ϕα
〉[D(Uα ,E∨Uα

)]∗×D(Uα ,E∨Uα
) = 〈u, ψαgl,ξ,Uα ,ϕα

〉[D(M,E∨)]∗×D(M,E∨)

= 〈[T−1]∗F|D(M,E), ψαgl,ξ,Uα ,ϕα
〉[D(M,E∨)]∗×D(M,E∨)

= 〈F|D(M,E), T−1(ψαgl,ξ,Uα ,ϕα
)〉D∗(M,E)×D(M,E) = F(T−1(ψαgl,ξ,Uα ,ϕα

)) .

Thus, [Hα(ψαu)]l is the composition of the following maps:

(C∞
c (ϕα(Uα)), ‖.‖e,q)→ [We,q

ϕα(suppψα)
(ϕα(Uα))]

×r ∩ [C∞
c (ϕα(Uα))]

×r → We,q
suppψα

(M, E∨; Λ∨) ∩ C∞(M, E∨)

→ (C∞(M, E), ‖‖e,q)→ R

ξ �→ (0, · · · , 0, (ψα ◦ ϕ−1
α )ξ︸ ︷︷ ︸

lth position

, 0, . . . , 0) �→ H−1
E∨ ,Uα ,ϕα

(0, . . . , 0, (ψα ◦ ϕ−1
α )ξ, 0, · · · , 0) = ψαgl,ξ,Uα ,ϕα

�→ T−1(ψαgl,ξ,Uα ,ϕα
) �→ F(T−1(ψαgl,ξ,Uα ,ϕα

)) ,

which is a composition of continuous maps.
(6) S : W−e,q′(M, E; Λ) → [We,q(M, E; Λ)]∗ is a continuous bijective map, so by the

Banach isomorphism theorem, it is a topological isomorphism.

Remark 61.

(1) The result of Theorem 100 remains valid even if Λ = {(Uα, ϕα, ρα, ψα)} does not trivialize
the fiber metric. Indeed, if e is not a noninteger whose magnitude is greater than 1, then the
Sobolev spaces We,q and W−e,q′ are independent of the choice of augmented total trivialization
atlas. If e is a noninteger whose magnitude is greater than 1, then by Theorem 37 there exists
an augmented total trivialization atlas Λ̃ = {(Uα, ϕα, ρ̃α, ψα)} that trivializes the metric and
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has the same base atlas as Λ (so it is GL compatible with Λ because by assumption Λ is GL
compatible with itself). So, we can replace Λ by Λ̃.

(2) Let Λ be an augmented total trivialization atlas that is GL compatible with itself. Let e
be a noninteger less than −1 and q ∈ (1, ∞). By Theorem 100 and the above observa-
tion, We,q(M, E; Λ) is topologically isomorphic to [W−e,q′(M, E; Λ)]∗. However, the space
W−e,q′(M, E; Λ) is independent of Λ. So, we may conclude that even when e is a noninteger
less than −1, the space We,q(M, E; Λ) is independent of the choice of the augmented total
trivialization atlas as long as the corresponding total trivialization atlas is GL compatible
with itself.

9.3. On the Relationship between Various Characterizations

Here we discuss the relationship between the characterizations of Sobolev spaces
given in Remark 54 and our original definition (Definition 30).

(1) Suppose e ≥ 0.

We,q(M, E; Λ) = {u ∈ Lq(M, E) : ‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
l=1
‖(ρα)

l ◦ (ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) < ∞} .

As a direct consequence of Theorem 92, for e ≥ 0, We,q(M, E; Λ) ↪→ Lq(M, E) with
the original definition of We,q(M, E; Λ). Therefore, the above characterization is
completely consistent with the original definition.

(2)

We,q(M, E; Λ) = {u ∈ D′(M, E) : ‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
l=1
‖ext0

ϕα(Uα),Rn [Hα(ψαu)]l‖We,q(Rn) < ∞} .

It follows from Corollary 6 that

• If e is not a noninteger less than −1, then

‖[Hα(ψαu)]l‖We,q(ϕα(Uα))  ‖ext0
ϕα(Uα),Rn [Hα(ψαu)]l‖We,q(Rn) ,

• If e is a noninteger less than −1 and ϕα(Uα) is Rn or a bounded open set with
Lipschitz continuous boundary, then again the above equality holds.

Therefore, when e is not a noninteger less than −1, the above characterization com-
pletely agrees with the original definition. If e is a noninteger less than −1 and the
total trivialization atlas corresponding to Λ is GGL, then again the two definitions
agree.

(3)

We,q(M, E; Λ) = {u ∈ D′(M, E) : [Hα(u|Uα)]
l ∈ We,q

loc(ϕα(Uα)), ∀ 1 ≤ α ≤ N, ∀ 1 ≤ l ≤ r} .

It follows immediately from Theorem 94 and Corollary 8 that the above character-
ization of the set of Sobolev functions is equivalent to the set given in the original
definition provided we assume that if e is a noninteger less than −1, then Λ is GL
compatible with itself.

(4) We,q(M, E; Λ) is the completion of C∞(M, E) with respect to the norm

‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
l=1
‖(ρα)

l ◦ (ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα)) .

It follows from Theorem 99 that if e is not a noninteger less than −1 the above charac-
terization of Sobolev spaces is equivalent to the original definition. Furthermore, if e is
a noninteger less than−1 and Λ is GL compatible with itself, the two characterizations
are equivalent.
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Now, we will focus on proving the equivalence of the original definition and the fifth
characterization of Sobolev spaces. In what follows instead of ‖.‖Wk,q(M,E;g,∇E) we just
write |.|Wk,q(M,E). Furthermore, note that since k is a nonnegative integer, the choice of the
augmented total trivialization atlas in Definition 30 is immaterial. Our proof follows the
argument presented in [44] and is based on the following five facts:

• Fact 1: Let u ∈ C∞(M, E) be such that suppu ⊆ Uβ for some 1 ≤ β ≤ N. Then

|u|qLq(M,E) =
∫

M
|u|qEdVg  ∑

l
‖ ρl

β ◦ u︸ ︷︷ ︸
ul

◦ϕ−1
β ‖

q
Lq(ϕβ(Uβ))

.

• Fact 2: Let u ∈ C∞(M, E) be such that suppu ⊆ Uβ for some 1 ≤ β ≤ N. Then

|u|q
Wk,q(M,E)

 
k

∑
s=0

r

∑
a=1

∑
1≤j1,...,js≤n

‖
(
(∇E)su

)a
j1...js

◦ ϕ−1
β ‖

q
Lq(ϕβ(Uβ))

.

Proof.

|u|q
Wk,q(M,E)

 
k

∑
s=0
|(∇E)su|qLq(M,(T∗M)⊗i⊗E)

Fact 1 
k

∑
s=0

r

∑
a=1

∑
1≤j1,...,js≤n

‖
(
(∇E)su

)a
j1...js︸ ︷︷ ︸

components w.r.t (Uβ , ϕβ , ρβ)

◦ϕ−1
β ‖

q
Lq(ϕβ(Uβ))

.

• Fact 3: Let u ∈ C∞(M, E) be such that supp u ⊆ Uβ for some 1 ≤ β ≤ N. Then

‖u‖We,q(M,E)  
r

∑
l=1
‖ρl

β ◦ u ◦ ϕ−1
β ‖We,q(ϕβ(Uβ))

.

Proof. Let {ψα} be a partition of unity such that ψβ = 1 on supp u (note that since
elements of a partition of unity are nonnegative and their sum is equal to 1, we can
conclude that if α �= β then ψα = 0 on supp u). We have

‖u‖We,q(M,E)  
N

∑
α=1

r

∑
l=1
‖ρl

α ◦ (ψαu) ◦ ϕ−1
α ‖We,q(ϕα(Uα))

=
r

∑
l=1
‖ρl

β ◦ (ψβu) ◦ ϕ−1
β ‖We,q(ϕβ(Uβ))

=
r

∑
l=1
‖ρl

β ◦ u ◦ ϕ−1
β ‖We,q(ϕβ(Uβ))

.

• Fact 4: Let u ∈ C∞(M, E). Then for any multi-index γ and all 1 ≤ l ≤ r we have (on
any total trivialization triple (U, ϕ, ρ)):

|∂γ[ρl ◦ u ◦ ϕ−1]| � ∑
s≤|γ|

r

∑
a=1

∑
1≤j1,··· ,js≤n︸ ︷︷ ︸

sum over all components of (∇E)su

|
(
(∇E)su

)a
j1···js ◦ ϕ−1| .

Proof. For any multi-index γ = (γ1, . . . , γn) we define seq γ to be the following list
of numbers:

seq γ = 1 . . . 1︸ ︷︷ ︸
γ1 times

2 · · · 2︸ ︷︷ ︸
γ2 times

. . . n . . . n︸ ︷︷ ︸
γn times

.
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Note that there are exactly |γ| = γ1 + . . . + γn numbers in seq γ. By Observation 2 in
Section 5.5.4 we have

(
(∇E)|γ|u

)l
seq γ

◦ ϕ−1 = ∂γ[ρl ◦ u ◦ ϕ−1] +
r

∑
a=1

∑
α:|α|<|γ|

Cαa∂α[ρa ◦ u ◦ ϕ−1] .

Thus

∂γ[ρl ◦ u ◦ ϕ−1] =
(
(∇E)|γ|u

)l
seq γ

◦ ϕ−1 −
r

∑
a=1

∑
α:|α|<|γ|

Cαa∂α[ρa ◦ u ◦ ϕ−1] ,

∂α[ρa ◦ u ◦ ϕ−1] =
(
(∇E)|α|u

)a
seq α

◦ ϕ−1 −
r

∑
b=1

∑
β:|β|<|α|

Cβb∂β[ρb ◦ u ◦ ϕ−1] ,

...

where the coefficients Cαa, Cβb, etc. are polynomials in terms of christoffel symbols
and the metric and so they are all bounded on the compact manifold M. Consequently,

|∂γ[ρl ◦ u ◦ ϕ−1]| � ∑
s≤|γ|

r

∑
a=1

∑
1≤j1,··· ,js≤n︸ ︷︷ ︸

sum over all components of (∇E)su

|
(
(∇E)su

)a
j1...js

◦ ϕ−1
β | .

• Fact 5: Let f ∈ C∞(M, E) and u ∈ Wk,q(M, Ẽ) where Ẽ is another vector bundle over
M. Then

‖ f ⊗ u‖Wk,q(M,E⊗Ẽ) � ‖u‖Wk,q(M,Ẽ) ,

where the implicit constant may depend on f but it does not depend on u.

Proof. Let {(Uα, ϕα, ρα)}1≤α≤N and {(Uα, ϕα, ρ̃α)}1≤α≤N be total trivialization at-
lases for E and Ẽ, respectively. Let {sα,a = ρ−1

α (ea)}r
a=1 be the corresponding local

frame for E on Uα and {tα,b = ρ̃−1
α (eb)}r̃

b=1 be the corresponding local frame for Ẽ
on Uα. Let G : {1, . . . , r} × {1, . . . , r̃} → {1, . . . , rr̃} be an arbitrary but fixed bijective
function. Then {(Uα, ϕα, ρ̂α)} is a total trivialization atlas for E⊗ Ẽ where

ρ̂α(sα,a ⊗ tα,b) = eG(a,b) (as an element of Rrr̃) ,

and it is extended by linearity to the E⊗ Ẽ|Uα . Now we have

‖ f ⊗ u‖Wk,q(M,E⊗Ẽ) =
N

∑
α=1

r

∑
a=1

r̃

∑
b=1
‖ρ̂a,b

α ◦ (ψα f ⊗ u) ◦ ϕ−1
α ‖Wk,q(ϕα(Uα))

=
N

∑
α=1

r

∑
a=1

r̃

∑
b=1
‖(ψα ◦ ϕ−1

α )( f a
α ◦ ϕ−1

α )(ub
α ◦ ϕ−1

α )‖Wk,q(ϕα(Uα))
,

where f = f a
α sα,a and u = ub

αtα,b on Uα. Clearly f a
α ◦ ϕ−1

α ∈ C∞(ϕα(Uα)). Therefore,

‖ f ⊗ u‖Wk,q(M,E⊗Ẽ) �
N

∑
α=1

r̃

∑
b=1
‖(ψα ◦ ϕ−1

α )(ub
α ◦ ϕ−1

α )‖Wk,q(ϕα(Uα))
 ‖u‖Wk,q(M,Ẽ) .

• Part I: First we prove that ‖u‖Wk,q(M,E) � |u|Wk,q(M,E).

(1) Case 1: Suppose there exists 1 ≤ β ≤ N such that supp u ⊆ Uβ. We have
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‖u‖q
Wk,q(M,E)

Fact 3 
r

∑
l=1
‖ρl

β ◦ u ◦ ϕ−1
β ‖

q
Wk,q(ϕβ(Uβ))

 
r

∑
l=1

∑
|γ|≤k

‖∂γ(ρl
β ◦ u ◦ ϕ−1

β )‖q
Lq(ϕβ(Uβ))

Fact 4
�

r

∑
l=1

∑
|γ|≤k

∑
s≤|γ|

r

∑
a=1

∑
1≤j1,...,js≤n

‖
(
(∇E)su

)a
j1...js

◦ ϕ−1
β ‖

q
Lq(ϕβ(Uβ))

�
k

∑
s=0

r

∑
a=1

∑
1≤j1,...,js≤n

‖
(
(∇E)su

)a
j1...js

◦ ϕ−1
β ‖

q
Lq(ϕβ(Uβ))

Fact 2 |u|q
Wk,q(M,E)

.

(2) Case 2: Now let u be an arbitrary element of C∞(M, E). We have

‖u‖Wk,q(M,E) = ‖
N

∑
α=1

ψαu‖Wk,q(M,E) ≤
N

∑
α=1
‖ψαu‖Wk,q(M,E)

�
N

∑
α=1
|ψαu|Wk,q(M,E) (by what was proved in Case 1)

�
N

∑
α=1
|u|Wk,q(M,E)  |u|Wk,q(M,E) .

We note that the last inequality holds because

|ψαu|q
Wk,q(M,E)

=
k

∑
i=0
‖(∇E)i(ψαu)‖q

Lq(M,(T∗M)⊗i⊗E)

=
k

∑
i=0
‖

i

∑
j=0

(
i
j

)
∇jψα ⊗ (∇E)i−ju‖q

Lq(M,(T∗M)⊗i⊗E)

Fact 5
�

k

∑
i=0

i

∑
j=0
‖(∇E)i−ju‖q

Lq(M,(T∗M)⊗(i−j)⊗E)

�
k

∑
s=0
‖(∇E)su‖q

Lq(M,(T∗M)⊗s⊗E)  |u|
q
Wk,q(M,E)

.

• Part II: Now we show that |u|Wk,q(M,E) � ‖u‖Wk,q(M,E).

(1) Case 1: Suppose there exists 1 ≤ β ≤ N such that suppu ⊆ Uβ.

|u|q
Wk,q(M,E)

Fact 2 
k

∑
s=0

r

∑
a=1

∑
1≤j1,...,js≤n

‖
(
(∇E)su

)a
j1...js

◦ ϕ−1
β ‖

q
Lq(ϕβ(Uβ))

Observation 1 in 5.5.4
=

k

∑
s=0

r

∑
a=1

∑
1≤j1,...,js≤n

‖ ∑
|η|≤s

r

∑
l=1

(Cηl)
a
j1...js ∂η( ul︸︷︷︸

ρl
β◦u

◦ϕ−1
β )‖q

Lq(ϕβ(Uβ))

�
r

∑
l=1

∑
|η|≤k

‖∂η(ul ◦ ϕ−1
β )‖q

Lq(ϕβ(Uβ))
=

r

∑
l=1
‖ul ◦ ϕ−1

β ‖
q
Wk,q(ϕβ(Uβ))

 ‖u‖q
Wk,q(M,E)

.
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(2) Case 2: Now let u be an arbitrary element of C∞(M, E).

|u|Wk,q(M,E) = |
N

∑
α=1

ψαu|Wk,q(M,E) ≤
N

∑
α=1
|ψαu|Wk,q(M,E)

Case 1
�

N

∑
α=1
‖ψαu‖Wk,q(M,E)

Fact 3 
N

∑
α=1

r

∑
l=1
‖ρl

α ◦ (ψαu) ◦ ϕ−1
α ‖Wk,q(ϕα(Uα))

 ‖u‖Wk,q(M,E) .

10. Some Results on Differential Operators

Let Mn be a compact smooth manifold. Let E and Ẽ be two vector bundles over M of
ranks r and r̃, respectively. A linear operator P : C∞(M, E)→ Γ(M, Ẽ) is called local if

∀ u ∈ C∞(M, E) supp Pu ⊆ supp u .

If P is a local operator, then it is possible to have a well-defined notion of restriction of P to
open sets U ⊆ M, that is, if P : C∞(M, E)→ Γ(M, Ẽ) is local and U ⊆ M is open, then we
can define a map

P|U : C∞(U, EU)→ Γ(U, ẼU)

with the property that

∀ u ∈ C∞(M, E) (Pu)|U = P|U(u|U) .

Indeed, suppose u, ũ ∈ C∞(M, E) agree on U, then as a result of P being local we have

supp (Pu− Pũ) ⊆ supp (u− ũ) ⊆ M \U .

Therefore, if u|U = ũ|U , then (Pu)|U = (Pũ)|U . Thus, if v ∈ C∞(U, EU) and x ∈ U,
we can define (P|U)(v)(x) as follows: choose any u ∈ C∞(M, E) such that u = v on a
neighborhood of x and then let (P|U)(v)(x) = (Pu)(x).

Recall that for any nonempty set V, Func(V,Rt) denotes the vector space of all
functions from V to Rt. By the local representation of P with respect to the total triv-
ialization triples (U, ϕ, ρ) of E and (U, ϕ, ρ̃) of Ẽ we mean the linear transformation
Q : C∞(ϕ(U),Rr)→ Func(ϕ(U),Rr̃) defined by

Q( f ) = ρ̃ ◦ P(ρ−1 ◦ f ◦ ϕ) ◦ ϕ−1 .

Note that ρ−1 ◦ f ◦ ϕ is a section of EU → U. Furthermore, note that for all u ∈ C∞(M, E)

ρ̃ ◦ (P(u|U)) ◦ ϕ−1 = Q(ρ ◦ (u|U) ◦ ϕ−1) . (9)

Let us denote the components of f ∈ C∞(ϕ(U),Rr) by ( f 1, . . . , f r). Then we can write
Q( f 1, · · · , f r) = (h1, . . . , hr̃) where for all 1 ≤ k ≤ r̃

hk = πk ◦Q( f 1, . . . , f r)
Q is linear

= πk ◦Q( f 1, 0, . . . , 0) + . . . + πk ◦Q(0, . . . , 0, f r) .

So, if for each 1 ≤ k ≤ r̃ and 1 ≤ i ≤ r we define Qki : C∞(ϕ(U),R)→ Func(ϕ(U),R) by

Qki(g) = πk ◦Q(0, . . . , 0, g︸︷︷︸
ith position

, 0, . . . , 0) ,

then we have

Q( f 1, . . . , f r) = (
r

∑
i=1

Q1i( f i), . . . ,
r

∑
i=1

Qr̃i( f i)) .
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In particular, note that the sth component of ρ̃ ◦ Pu ◦ ϕ−1, that is ρ̃s ◦ Pu ◦ ϕ−1, is equal to
the sth component of Q(ρ1 ◦ u ◦ ϕ−1, · · · , ρr ◦ u ◦ ϕ−1) (see Equation (9)) which is equal to

r

∑
i=1

Qsi(ρ
i ◦ u ◦ ϕ−1) .

Theorem 101. Let Mn be a compact smooth manifold. Let P : C∞(M, E) → Γ(M, Ẽ) be a
local operator. Let Λ = {(Uα, ϕα, ρα, ψα)}1≤α≤N and Λ̃ = {(Uα, ϕα, ρ̃α, ψα)}1≤α≤N be two
augmented total trivialization atlases for E and Ẽ, respectively. Suppose the atlas {(Uα, ϕα)}1≤α≤N
is GL compatible with itself. For each 1 ≤ α ≤ N, let Qα denote the local representation of P
with respect to the total trivialization triples (Uα, ϕα, ρα) and (Uα, ϕα, ρ̃α) of E and Ẽ, respectively.
Suppose e, ẽ ∈ R, 1 < q, q̃ < ∞, and for each 1 ≤ α ≤ N, 1 ≤ i ≤ r̃, and 1 ≤ j ≤ r,

Qα
ij : (C∞

c (ϕα(Uα)), ‖.‖e,q)→ Wẽ,q̃
loc(ϕα(Uα))

is well-defined and continuous and does not increase support. Then

• P(C∞(M, E)) ⊆ Wẽ,q̃(M, Ẽ; Λ̃),
• P : (C∞(M, E), ‖.‖e,q) → Wẽ,q̃(M, Ẽ; Λ̃) is continuous and so it can be extended to a

continuous linear map P : We,q(M, E; Λ)→ Wẽ,q̃(M, Ẽ; Λ̃).

Proof. First note that

‖Pu‖Wẽ,q̃(M,Ẽ;Λ̃) =
N

∑
α=1

r̃

∑
i=1
‖ρ̃i

α ◦ (ψα(Pu)) ◦ ϕ−1
α ‖Wẽ,q̃(ϕα(Uα))

,

‖u‖We,q(M,E;Λ) =
N

∑
α=1

r

∑
j=1
‖ρ

j
α ◦ (ψαu) ◦ ϕ−1

α ‖We,q(ϕα(Uα)) .

It is enough to show that for all 1 ≤ α ≤ N, 1 ≤ i ≤ r̃

‖ρ̃i
α ◦ (ψα(Pu)) ◦ ϕ−1

α ‖Wẽ,q̃(ϕα(Uα))
�

N

∑
β=1

r

∑
j=1
‖ρ

j
β ◦ (ψβu) ◦ ϕ−1

β ‖We,q(ϕβ(Uβ))
.

We have

‖ρ̃i
α ◦ (ψα(Pu)) ◦ ϕ−1

α ‖Wẽ,q̃(ϕα(Uα))
= ‖(ψα ◦ ϕ−1

α ) · (ρ̃i
α ◦ (Pu) ◦ ϕ−1

α )‖Wẽ,q̃(ϕα(Uα))

≤
r

∑
j=1
‖(ψα ◦ ϕ−1

α ) ·Qα
ij(ρ

j
α ◦ (

N

∑
β=1

ψβu) ◦ ϕ−1
α )‖Wẽ,q̃(ϕα(Uα))

(see the paragraph above Theorem 101)

≤
N

∑
β=1

r

∑
j=1
‖(ψα ◦ ϕ−1

α ) ·Qα
ij(ρ

j
α ◦ (ψβu) ◦ ϕ−1

α )‖Wẽ,q̃(ϕα(Uα))

=
N

∑
β=1

r

∑
j=1
‖(ψα ◦ ϕ−1

α ) ·Qα
ij(ρ

j
α ◦ (ξψβu) ◦ ϕ−1

α )‖Wẽ,q̃(ϕα(Uα))
,

where ξ ∈ C∞
c (Uα) is a fixed function such that ξ = 1 on supp ψα. Using the assumption

that Qα
ij : (C∞

c (ϕα(Uα)), ‖.‖e,q)→ Wẽ,q̃
loc(ϕα(Uα)) is continuous we get

‖ρ̃i
α ◦ (ψα(Pu)) ◦ ϕ−1

α ‖Wẽ,q̃(ϕα(Uα))
�

N

∑
β=1

r

∑
j=1
‖ρ

j
α ◦ (ξψβu) ◦ ϕ−1

α ‖We,q(ϕα(Uα)) .

Note that ρ
j
α ◦ (ξψβu) ◦ ϕ−1

α = (ξψβ ◦ ϕ−1
α )(ρ

j
α ◦ u ◦ ϕ−1

α ) has compact support in ϕα(Uα ∩
Uβ). So, it follows from Corollary 6 that
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‖ρ
j
α ◦ (ξψβu) ◦ ϕ−1

α ‖We,q(ϕα(Uα))  ‖ρ
j
α ◦ (ξψβu) ◦ ϕ−1

α ‖We,q(ϕα(Uα∩Uβ))
.

Therefore,

‖ρ̃i
α ◦ (ψα(Pu)) ◦ ϕ−1

α ‖Wẽ,q̃(ϕα(Uα))

�
N

∑
β=1

r

∑
j=1
‖ρ

j
α ◦ (ξψβu) ◦ ϕ−1

α ‖We,q(ϕα(Uα∩Uβ))

=
N

∑
β=1

r

∑
j=1
‖ρ

j
α ◦ (ξψβu) ◦ ϕ−1

β ◦ ϕβ ◦ ϕ−1
α ‖We,q(ϕα(Uα∩Uβ))

Theorem 80
�

N

∑
β=1

r

∑
j=1
‖ρ

j
α ◦ (ξψβu) ◦ ϕ−1

β ‖We,q(ϕβ(Uα∩Uβ))
.

So, it is enough to prove that ‖ρ
j
α ◦ (ξψβu) ◦ ϕ−1

β ‖We,q(ϕβ(Uα∩Uβ))
can be bounded by

∑N
β=1 ∑r

j=1 ‖ρ
j
β ◦ (ψβu) ◦ ϕ−1

β ‖We,q(ϕβ(Uβ))
. Since this can be done in the exact same way

as the proof of Theorem 88, we do not repeat the argument here.

Here we will discuss one simple application of the above theorem. Let (Mn, g) be
a compact Riemannian manifold with g ∈ Ws,p(M, T2M), sp > n, and s ≥ 1. Consider
d : C∞(M) → C∞(T∗M). The local representations are all assumed to be with respect to
charts in a super nice total trivialization atlas that is GL compatible with itself. The local
representation of d is Q : C∞(ϕ(U))→ C∞(ϕ(U),Rn) which is defined by

Q( f )(a) = ρ̃ ◦ d(ρ−1 ◦ f ◦ ϕ) ◦ ϕ−1(a)

= ρ̃ ◦ ( ∂ f
∂xi |ϕ(ϕ−1(a))dxi|ϕ−1(a))

= (
∂ f
∂x1 |a, . . . ,

∂ f
∂xn |a) .

Here we used ρ = Id and the fact that if g : M → R is smooth, then

(dg)(p) =
∂(g ◦ ϕ−1)

∂xi |ϕ(p)dxi|p .

Clearly, each component of Q is a continuous operator from (C∞
c (ϕ(U)), ‖.‖e,q) to

We−1,q(ϕ(U)) ↪→ We−1,q
loc (ϕ(U)) (see Theorem 82; note that ϕ(U) = Rn). Hence d can

be viewed as a continuous operator from We,q(M) to We−1,q(T∗M).
Several other interesting applications of Theorem 101 can be found in [16].

11. Conclusions

Sobolev-Slobodeckij spaces play a key role in the study of elliptic differential operators
in nonsmooth setting. In this manuscript, we focused on establishing certain fundamental
properties of Sobolev-Slobodeckij spaces that are particularly useful in better understanding
the behavior of elliptic differential operators on compact manifolds. In particular, we built
a general framework for developing multiplication theorems, embedding results, etc. for
Sobolev–Slobodeckij spaces on compact manifolds. We paid special attention to spaces with
noninteger smoothness order and to general sections of vector bundles. We established in
particular that, as long as 1 < q < ∞ and e ≥ 0 or e ∈ Z,

• Various common standard characterizations of We,q (as discussed in Section 9) are
equivalent;

• The local charts definition of We,q is independent of the chosen atlas;
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• Nice properties of We,q for smooth domains in Rn (such as embedding properties and
multiplication properties) will carry over to We,q of sections of vector bundles.

Furthermore, we noticed that the local representations of elements of We,q (for functions on
M or, more generally, sections of vector bundles) will not necessarily be in the corresponding
Euclidean Sobolev-Slobodeckij space; they should be viewed as elements of locally Sobolev-
Slobodeckij spaces on the Euclidean space (we have devoted a separate manuscript [17] to
the study of the properties of locally Sobolev-Slobodeckij spaces on the Euclidean space).
In the same spirit, in Section 10 we observed that locally Sobolev-Slobodeckij spaces can
be considered as the appropriate target spaces in the study of the local representations of
differential operators between Sobolev–Slobodeckij spaces of sections of vector bundles.
For the case where e < −1 is noninteger, we were not able to prove the validity of these
properties in a general setting; however, by introducing notions such as “geometrically
Lipschitz atlases”, we found sufficient conditions that guarantee the validity of similar
results as those we have for the case where e ∈ Z.
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Abstract: The interrelations of Triebel–Lizorkin spaces on smooth domains of Euclidean space Rn

are well-established, whereas only partial results are known for the non-smooth domains. In this
paper, Ω is a non-smooth domain of Rn that is bounded and uniform. Suppose p, q ∈ [1, ∞) and
s ∈ (n( 1

p − 1
q )+, 1) with n( 1

p − 1
q )+ := max{n( 1

p − 1
q ), 0}. The authors show that three typical types

of fractional Triebel–Lizorkin spaces, on Ω: Fs
p,q(Ω), F̊s

p,q(Ω) and F̃s
p,q(Ω), defined via the restriction,

completion and supporting conditions, respectively, are identical if Ω is E-thick and supports some
Hardy inequalities. Moreover, the authors show the condition that Ω is E-thick can be removed
when considering only the density property Fs

p,q(Ω) = F̊s
p,q(Ω), and the condition that Ω supports

Hardy inequalities can be characterized by some Triebel–Lizorkin capacities in the special case of
1 ≤ p ≤ q < ∞.

Keywords: Triebel–Lizorkin space; Hardy inequality; uniform domain; fractional Laplacian

1. Introduction

The Triebel–Lizorkin spaces Fs
p,q(Rn) on the Euclidean space Rn, with parameters

s ∈ R and p, q ∈ (0, ∞], were introduced in 1970s (see [1–3]). They provide a unified treat-
ment of various kinds of classical concrete function spaces, such as Sobolev spaces, Hölder-
Zygmund spaces, Bessel-potential spaces, Hardy spaces and BMO spaces. Nowadays,
the theory of Fs

p,q(Rn) is well-established in the literature as has numerous applications
(see [4–10] and their references).

When trying to extend the theory of Triebel–Lizorkin space from Rn to a domain Ω of
Rn, one usually meets the fundamental problem of identifying the interrelations among a
number of related spaces that are defined from distinct perspectives. In particular, there are
three typical ways of defining Triebel–Lizorkin spaces on Ω (see, e.g., [10]). To be precise,
let D(Ω) = C∞

0 (Ω) be the collection of all infinitely differentiable functions in Rn with
compact supports in Ω and D′(Ω) the dual space of D(Ω). For any s ∈ R and p, q ∈ (0, ∞],
recall that

(I) Fs
p,q(Ω) := { f ∈ D′(Ω) : there is a g ∈ Fs

p,q(Rn) with g|Ω = f } being the restriction
Triebel–Lizorkin space endowed with the quasi-norm

‖ f ‖Fs
p,q(Ω) := inf ‖g‖Fs

p,q(Rn), (1)

where the infimum is taken over all g ∈ Fs
p,q(Rn) satisfying g|Ω = f . Here, for any

g ∈ S′(Rn), g|Ω is the restriction of g to Ω, defined as a distribution in Ω such that for
any ϕ ∈ D(Ω),

(g|Ω)(ϕ) := g(ϕ);

(II) F̊s
p,q(Ω) := D(Ω)

‖·‖Fs
p,q(Ω) is the completion Triebel–Lizorkin space that is defined as the

completion of D(Ω) in Fs
p,q(Ω) with respect to the quasi-norm ‖ · ‖Fs

p,q(Ω), as in (1);
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(III) F̃s
p,q(Ω) := { f ∈ D′(Ω) : there is a g ∈ Fs

p,q(Rn) with g|Ω = f and supp g ⊂ Ω}
being the supporting Triebel–Lizorkin space endowed with the quasi-norm

‖ f ‖F̃s
p,q(Ω) = inf ‖g‖Fs

p,q(Rn),

where the infimum is taken over all g ∈ Fs
p,q(Rn) satisfying g|Ω = f and supp g ⊂ Ω.

Note that if Ω = Rn is the Euclidean space, it follows easily from their definitions and
the density property of Fs

p,q(Rn) that the aforementioned three kinds of Triebel–Lizorkin
spaces are identical (see, e.g., [4]). However, if Ω �= Rn, the situation becomes much
more complex, since in this case the above density property and many other important
properties, including the availability of restriction, trace and extension operators may
fail (see, e.g., [6,8]). Indeed, it turns out that the interrelations of the aforementioned
three kinds of Triebel–Lizorkin spaces depend heavily on the geometry of domain Ω and
parameters s, p and q. Let us review some of the known results on this subject.

If Ω is a bounded C∞-domain, it is known that the following results are almost sharp
(see ([8], Chapter 5)).

(A) Fs
p,q(Ω) = F̊s

p,q(Ω), if and only if, one of the following two conditions is satisfied:

(a1) 0 < p < ∞, −∞ < s < 1
p and 0 < q < ∞;

(a2) 1 < p < ∞, s = 1
p and 0 < q < ∞.

(B) F̊s
p,q(Ω) = F̃s

p,q(Ω), if 0 < p < ∞, 0 < q < ∞, s > σp := n( 1
p − 1)+ and s− 1

p /∈ Z+.

(C) Fs
p,q(Ω) = F̃s

p,q(Ω), if 0 < p ≤ ∞, 0 < q ≤ ∞ and max{ 1
p − 1, n( 1

p − 1)} < s < 1
p .

A combination of (A), (B) and (C) immediately implies the following identities.

Fs
p,q(Ω) = F̊s

p,q(Ω) = F̃s
p,q(Ω), (2)

if 0 < p < ∞, 0 < q < ∞ and max{ 1
p − 1, n( 1

p − 1)} < s < 1
p .

Note the restriction that s < 1
p in the above identities can be relaxed if Ω supports

some Hardy inequalities. In particular, it is known that

F̃s
p,q(Ω) = Fs

p,q(Ω) ∩ Lp(Ω, d(·, ∂Ω)−s), (3)

if 0 < p < ∞, 0 < q < ∞ and

s > σp,q := n
(

1
min{p, q} − 1

)
+

,

where for any x ∈ Ω, d(x, ∂Ω) denotes the distance from x to the boundary ∂Ω of Ω and

Lp(Ω, d(·, ∂Ω)−s) :=

{
f : ‖ f ‖Lp(Ω,d(·,∂Ω)−s) =

(∫
Ω

| f (x)|p
d(x, ∂Ω)sp dx

)1/p
< ∞

}

denotes the weighted Lebesgue space on Ω. The identity (3) together with (A) and (B)

shows that if Ω supports the Hardy condition Fs
p,q(Ω) ⊂ Lp(Ω, d(·, ∂Ω)−s), then identities

(2) hold for all

1 < p < ∞, 1 ≤ q < ∞ and 0 < s < ∞. (4)

Recall that on the smooth domain, the Hardy inequalities

‖ f ‖Lp(Ω,d(·,∂Ω)−s) ≤ C‖ f ‖F̃s
p,q(Ω)

hold for any f ∈ F̃s
p,q(Ω) with 0 < p ≤ ∞, 0 < q ≤ ∞ and s > σp with σp as in (B).
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If Ω is a non-smooth domain, there is no comprehensive treatment compared with
what is available for smooth domains. Moreover, in the former case we meet much more
complicated situations influenced by the geometry of Ω. Let us mention some of the
related results.

(i) If Ω ⊂ Rn is a bounded domain such that its boundary ∂Ω is porous and has upper
Minkowski dimension D ∈ (0, n], Caetano ([11], Proposition 2.5) proved the following identity.

(A’) Fs
p,q(Ω) = F̊s

p,q(Ω), if 0 < p < ∞, 0 < q < ∞ and −∞ < s < (n− D)/p.

Note that for an arbitrary bounded domain Ω, it holds that D ∈ [n − 1, n], and if
D = n− 1, then the range of s in (A’) equal to that in (a1).

(ii) If Ω ⊂ Rn is a domain whose closure Ω is a n-set, and ∂Ω is a d-set with n− 1 <
d < n, Ihnatsyeva et al. ([12], Theorem 4.3) obtained the following inclusion.

(B’) F̊s
p,q(Ω) ⊂ F̃s

p,q(Ω), if 1 < p < ∞, 1 ≤ q < ∞ and (n− d)/p < s < ∞.

Note that if ∂Ω is a d-set with d < n, then ∂Ω is porous (see ([10], Chapter 3)) and has
upper Minkowski dimension d (see ([7], Chapter 1)).

(iii) If Ω ⊂ Rn is an arbitrary domain, Triebel ([10], Chapter 2) proved the follow-
ing identity.

(C’) F0
p,2(Ω) = F̃0

p,2(Ω), if 1 < p < ∞.

Moreover, if Ω is a bounded Lipschitz domain, then it is proved in ([9], Proposition
3.1) that identity (2) holds true for all

0 < p < ∞, min{p, 1} < q < ∞ and max
{

1
p
− 1, n

(
1
p
− 1
)}

< s <
1
p

. (5)

Motivated by the aforementioned results, it is natural to ask the following.

Main question: Let Ω be a bounded non-smooth domain. Is it possible to extend identity
(2) for parameters from (5) to the general fractional case s ∈ (0, 1)?

In this paper, we give an affirmative answer to the above question in the setting that
Ω is a bounded uniform domain, which contains a bounded Lipschitz domain as a special
case. Recall that a domain Ω ⊂ Rn is called a uniform domain (see [13,14]), if there exist
constants c1 and c2 > 0 such that each pair of points x, y ∈ Ω can be connected by a
rectifiable curve Γ ⊂ Ω for which{

L(Γ) ≤ c1|x− y|,
min{|x− z|, |y− z|} ≤ c2d(z, ∂Ω), for any z ∈ Γ,

where L(Γ) denotes the length of Γ.
A closely related notion of uniform domain is the so-called E-thick domain. Recall

in [10] that a domain Ω ⊂ Rn is said to be E-thick, if there exists j0 ∈ N such that for any
interior cube Qi ⊂ Q satisfying

l(Qi) ∼ 2−j and d(Qi, ∂Ω) ∼ 2−j for some j ≥ j0 ∈ N,

one finds a complementary exterior cube Qe ⊂ Ωc = Rn \Ω satisfying

l(Qe) ∼ 2−j and d(Qe, ∂Ω) ∼ d(Qi, Qe) ∼ 2−j,

where the implicit constants are independent of Qi, Qe and j. It is known that any bounded
Lipschitz domain is E-thick and uniform; and if a domain Ω is uniform, then Ω c is E-thick.
Moreover, there exists domain in Rn that is E-thick but not uniform (see ([10], Remark 3.7)).
Note that if Ω is E-thick, then ∂Ω is a d-set with d ∈ [n− 1, n) (see ([10], Proposition 3.18)).

We also need the following Hardy condition.
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(H)s,p,q-condition. Let 1 ≤ p, q < ∞, s ∈ (0, 1) and Ω ⊂ Rn be a domain satisfying Ω �= Rn.
Ω is said to satisfy the (H)s,p,q-condition if

∫
Rn

∣∣∣∣ f (x)
d(x, ∂Ω)s

∣∣∣∣p dx < ∞

holds for all f ∈ Fs
p,q(Ω) as in (I).

The main result of the paper is as follows.

Theorem 1. Let p, q ∈ [1, ∞) and s ∈ (n( 1
p − 1

q )+, 1). Assume that Ω is a bounded E-thick
uniform domain satisfying the (H)s,p,q-condition. Then it holds that

Fs
p,q(Ω) = F̊s

p,q(Ω) = F̃s
p,q(Ω) (6)

with equivalent norms.

We make some remarks on Theorem 1.

Remark 1. (i) Theorem 1 gives an affirmative answer to the main question. It extends by necessity
the identities (2) for parameter s from the range s ∈ (max{ 1

p − 1, n( 1
p − 1)}, 1

p ) as in (5) to

s ∈ (n( 1
p − 1

q )+, 1) and for domain Ω from bounded Lipschitz to bounded uniform, E-thick and
supporting the (H)s,p,q-condition. Moreover, in the proof of Theorem 1, we establish the following
two identities:

(A”) Fs
p,q(Ω) = F̊s

p,q(Ω), if 1 ≤ p, q < ∞, n( 1
p − 1

q )+ < s < 1 and Ω is bounded uniform;

(C”) Fs
p,q(Ω) = F̃s

p,q(Ω), if 1 ≤ p, q < ∞, n( 1
p − 1

q )+ < s < 1 and Ω is bounded E-thick,

which extends by necessity the corresponding identities (A’) and (C’).
(ii) As in the Sobolev case (see, e.g., [15,16]), the proof of Theorem 1 relies on an intrinsic

norm characterization of the restriction space Fs
p,q(Ω) as in (I). This characterization is established

in [17] under the condition s ∈ (n( 1
p − 1

q )+, 1), which is shown to be sharp therein. It seems a

new method is needed if one considers the case s ≤ n( 1
p − 1

q )+; see Proposition 1, where a density
property is established for a variant of Triebel–Lizorkin space in the full range s ∈ (0, 1). Note that
if 1 ≤ q ≤ p < ∞, then n( 1

p − 1
q )+ = 0. In this case, Theorem 1 gives identities (2) for the full

range s ∈ (0, 1). We also point out that it is possible to consider the case s ≥ 1 by using higher
order difference. We do not pursue this in the present paper.

We point out that the most technical part of the proof of Theorem 1 is to prove the
first identity

Fs
p,q(Ω) = F̊s

p,q(Ω), (7)

which is also called the density property of Fs
p,q(Ω) and has close relations with other

properties, such as zero trace characterization and regularity of the Dirichlet energy integral
minimizer (see [18]). As far as we know, if Ω is a non-smooth domain, this density property
is only known for some Sobolev spaces, or the case when s is small (see [9,11,15,16,19]).
In this paper, we show that the density property (7) holds for bounded uniform domains
without the assumption of E-thickness. More precisely, the following result is true.

Theorem 2. Let p, q ∈ [1, ∞) and s ∈
(

n( 1
p − 1

q )+, 1
)

. Assume Ω is a bounded uniform domain
satisfying the (H)s,p,q-condition. Then the density property (7) holds.

A few remarks on Theorem 2 are in order.
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Remark 2. (i) Theorem 2 extends by necessity the corresponding density property of Fs
p,q(Ω) by

relaxing the restriction s < (n− D)/p as in (A’). In particular, if 1 ≤ p = q < ∞ and s ∈ (0, 1),
since in this case Fs

p,p = Ws,p becomes the fractional Sobolev space, Theorem 2 implies the the
following zero trace characterization of fractional Sobolev space: for any p ∈ [1, ∞) and s ∈ (0, 1),
if Ω is a bounded uniform domain supporting the (H)s,p,p-condition, then

Ws,p(Ω) = W̊s,p(Ω).

Recall that the corresponding characterization at the endpoint case s = 1 is a well-known
result (see, e.g., [15,16]; see also [19] for a very recent result on the fractional case reached using a
different method).

(ii) The proofs of Theorems 1 and 2 are based on a localization technique of Whitney decom-
position (see Section 2 below). Since this technique has been extended to the more general setting
of volume doubling metric measure space (see, e.g., [20]), it is straightforward to establish our
results to this setting, once the corresponding intrinsic norm characterization of the restriction space
Fs

p,q(Ω) is established.

Finally, we present further discussion on the Hardy (H)s,p,q-condition appearing in
Theorems 1 and 2. As announced earlier, we prove Theorems 1 and 2 by using a localization
technique of Whitney decomposition, together with a smooth partition of unity. This allows
us to decompose each f ∈ Fs

p,q(Ω) into two parts: the interior part vε and boundary part
wε. It is the estimates of the latter part that need the Hardy (H)s,p,q-condition. Note that
the (H)s,p,q-condition is satisfied once we prove the following Hardy’s inequality:∥∥∥∥ f

d(·, ∂Ω)s

∥∥∥∥
Lp(Ω)

� ‖ f ‖Fs
p,q(Ω), (8)

for any f ∈ Cc(Ω). Unfortunately, it is known that (8) may not hold in the uniform
domains (see [21]). Thus, a characterization of (8) in this setting is necessary. In this paper,
we establish a characterization of (8) in terms of capacities, under the additional condition
1 ≤ q ≤ p < ∞. To be precise, for any 1 ≤ q ≤ p < ∞ and s ∈ (0, 1), let Ω be a uniform
domain on Rn and K ⊂ Ω be its compact subset. Define the capacity caps,p,q(K, Ω) of K
by setting

caps,p,q(K, Ω) := inf | f |pF s
p,q(Ω)

, (9)

where the infimum is taken over all real-valued functions f ∈ Cc(Ω) such that f ≥ 1 on
K and

| f |F s
p,q(Ω) :=

[∫
Ω

(∫
Ω

| f (x)− f (y)|q
|x− y|n+sq dy

) p
q

dx

] 1
p

. (10)

The following result gives the capacity characterization of (8) in the setting of a
uniform domain.

Theorem 3. Let 1 ≤ q ≤ p < ∞ and s ∈ (0, 1). Assume that Ω is a uniform domain. The
following are equiavalent.

(i) There is a constant C1 > 0 such that∥∥∥∥ f
d(·, ∂Ω)s

∥∥∥∥
LP(Ω)

≤ C1| f |F s
p,q(Ω),

for any f ∈ Cc(Ω).
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(ii) There is a constant C2 > 0 such that∫
K

1
d(x, ∂Ω)sp dx ≤ C2caps,p,q(K, Ω), (Cap)s,p,q

for every compact K ⊂ Ω.

Based on Theorems 1–3, we immediately obtain the following corollary.

Corollary 1. Let 1 ≤ p ≤ q < ∞ and s ∈ (n( 1
p − 1

q )+, 1). Assume that Ω is a bounded uniform
domain satisfying the capacity condition (Cap)s,p,q. Then the following two assertions hold.

(i) Fs
p,q(Ω) = F̊s

p,q(Ω) with equivalent norms.
(ii) If, in addition, Ω is E-thick, then Fs

p,q(Ω) = F̊s
p,q(Ω) = F̃s

p,q(Ω) with equivalent norms.

We now make some remarks on Theorem 3 and Corollary 1.

Remark 3.

(i) Theorem 3 is the extension of the corresponding result in [22], where the authors considered
the capacity characterization of Hardy’s inequalities in the fractional order Sobolev space.
Recall that if Ω is domain with ∂Ω being a d-set satisfying n− 1 < d < n, then it is proved
in [12] that Hardy’s inequalities (8) hold for any f ∈ Cc(Ω) with p ∈ [1, ∞), q ∈ [1, ∞] and
s > ( n−d

p , 1). Note that the proof of [12] uses the technique of restriction-extension, whereas
the proof of Theorem 3 depends only on the intrinsic norm characterization of Fs

p,q(Ω) defined
as in (10).

(ii) The restriction p ≤ q seems technical, which is needed in the proof of Theorem 3 in order
to give a dual representation of the capacity in (9). Moreover, since the capacity condition
(Cap)s,p,q is difficult to verify, it would be interesting to characterize it in terms of some
geometric conditions, which is left for a further study.

This paper is organized as follows. In Section 2, we collect some necessary technical
properties of the Whitney decomposition of the domain Ω that are used out throughout
this paper. Section 3.1 is devoted to the proof of Theorem 2. We prove Theorems 1 and 3 in
Sections 3.2 and 3.3, respectively.

Notation. Let N := {1, 2, . . .} and Z+ := N ∪ {0}. For any s ∈ R, let s+ := max{s, 0}.
For any subset E ⊂ Rn, 1E denotes its characteristic function. We use C to denote a positive
constant that is independent of the main parameters involved, whose value may differ from
line to line. Constants with subscripts, such as C1, do not change in different occurrences.
For any qualities f , g and h, if f ≤ Cg, we write f � g, and if f � g � f , we then write
f ∼ g. We also use the following convention: if f ≤ Cg and g = h or g ≤ h, we write
f � g ∼ h or f � g � h, rather than f � g = h or f � g ≤ h. Throughout this article,
we denote Q = Q(x, l) be the cube with center x and sidelength l whose side parallel to
coordinate axes.

2. Preliminaries on Whitney Decomposition

In this section, we collect some basic properties of the Whitney decomposition of
domain Ω, with emphasis on those Whitney cubes that are close to the boundary. These
properties play an important role in the proofs of our main results. To begin with, we recall
the classical form of Whitney decomposition from [23].

Lemma 1 ([23]). Let Ω � Rn be a domain. There exists a family of cubes {Qj}∞
j=1 with sides

parallel to the coordinate axes and satisfying

(i) Qo
j
⋂

Qo
k = ∅, if j �= k, where Qo

j denotes the interior of Qj;
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(ii) For any j ∈ N, diam Qj ≤ d(Qj, ∂Ω) ≤ 4 diam Qj, where diam Qj denotes the diameter
of Qj;

(iii) Ω =
∞⋃

j=1
Q∗j , where Q∗j = (1 + μ)Qj is the concentric cube of Qj with sidelength (1 + μ)lj

and μ ∈ [0, 1
4 );

(iv) Each x ∈ Ω is contained in at most 12n cubes Q∗j ;
(v) If Qi and Qj touch, namely, Qi ∩Qj �= ∅ and Qo

i
⋂

Qo
j = ∅, then

1
4

diam Qi ≤ diam Qj ≤ 4 diam Qi.

Throughout this section, for any δ > 0, let Ωδ be the boundary layer in Ω with length
δ defined by setting

Ωδ := {x ∈ Ω : d(x, ∂Ω) < δ}. (11)

Let ε > 0 and {Qj}∞
j=1 be the Whitney decomposition of Ω as in Lemma 1. The

following classes of index sets represent three subgroups of {Qj}∞
j=1 that are closely related

to the boundary layer in Ω.

Λ1 :=
{

j ∈ N : d(Qj, ∂Ω) ≥ ε
}

, Λ2 :=
{

j ∈ N : d(Qj, ∂Ω) < ε
}

and

Λ3 :=
{

j ∈ N : Qj ∩ (Ω \Ω14ε) �= ∅
}

(12)

with Ω14ε as in (11).
The following lemma says that a small dilation of the first subgroup {Qj}j∈Λ1 of

Whitney cubes is contained in the interior of Ω with a positive distance to the boundary ∂Ω.

Lemma 2. Let ε > 0 and Λ1 be the index set as in (12). For any j ∈ Λ1, let Q∗j := (1 + μ̃)Qj be

the concentric cube of Qj with sidelength (1 + μ̃)lj and μ̃ ∈ (0, 1
16 ). Then it holds that

⋃
j∈Λ1

Q∗j ⊆
{

x ∈ Ω : d(x, ∂Ω) >
3μ̃ε

8
√

n

}
. (13)

Proof. For any x ∈ ⋃
j∈Λ1

Q∗j , there exists j ∈ Λ1 such that x ∈ Q∗j ⊆ Ω. By Lemma 1(iii)

and the assumption 0 < μ̃ < 1
16 , we obtain Q∗j ⊆ (1 + 4μ̃)Qj ⊆ Ω. This, together with

Lemma 1(ii) and the definition of Λ1, implies

d(x, ∂Ω) ≥ d
(

Q∗j , ∂Ω
)
≥ d
(

Q∗j , (1 + 4μ̃)Qj

)
=

3
2

μ̃lj ≥
3μ̃ε

8
√

n
,

which proves (13).

Our next lemma shows that a small dilation of the second subgroup {Qj}j∈Λ2 of
Whitney cubes is contained in a boundary layer of Ω.

Lemma 3. Let ε > 0 and Λ2 be the index set as in (12). For any j ∈ Λ2, let Q∗∗j := (1 + 2μ̃)Qj

be the concentric cube of Qj with sidelength (1 + 2μ̃)lj and μ̃ ∈ (0, 1
16 ). Then it holds that⋃

j∈Λ2

Q∗∗j ⊆ Ω3ε (14)

with Ω3ε as in (11).
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Proof. Let x ∈ ⋃
j∈Λ2

Q∗∗j . By (12), Lemma 1(ii), the assumption 0 < μ̃ < 1
16 and the

definition of Λ2, we have

d(x, ∂Ω) ≤ d(Qj, ∂Ω) + (1 + 2μ̃)lj
√

n ≤ (2 + 2μ̃)d(Qj, ∂Ω) < 3ε,

which implies (14).

The following lemma gives a few interesting properties of the third subgroup {Qj}j∈Λ3
of Whitney cubes.

Lemma 4. Let ε > 0 and Λ3 be the index set as in (12). Then the following assertions hold.

(i) Ω \Ω14ε ⊆
⋃

j∈Λ3

Q∗j ;

(ii) For any j ∈ Λ3, it holds Qj ∩Ω7ε = ∅ and d(Qj, ∂Ω) ≥ 7ε;
(iii) For any k ∈ Λ2, let Q∗∗k := (1 + 2μ̃)Qk be the concentric cube of Qk with sidelength

(1 + 2μ̃)lk and μ̃ ∈ (0, 1
16 ). Then for any j ∈ Λ3 and any x ∈ Q∗∗k , and y ∈ Qj, it holds that

|x− y| ∼ D(Qj, Qk), (15)

where D(Qj, Qk) := d(Qj, Qk) + lj + lk and the implicit constants are independent of ε, j, k,
x and y.

Proof. The assertion (i) follows immediately from the definition of the index set Λ3. To
prove (ii), we first show Qj ∩Ω7ε = ∅ for any j ∈ Λ3. If not, namely, Qj ∩Ω7ε �= ∅, then
by Lemma 1(ii), we have

diam Qj ≤ d(Qj, ∂Ω) < 7ε.

This implies Qj ∩ (Ω \Ω14ε) = ∅, which contradicts the definition of Λ3. Thus, for
any j ∈ Λ3, Qj ∩Ω7ε = ∅, namely, d(Qj, ∂Ω) ≥ 7ε, which implies (ii).

We now prove (iii). For any k ∈ Λ2, by Lemma 3, we have Q∗∗k ⊆ Ω3ε. Let

Γ3ε := {x ∈ Ω : d(x, ∂Ω) = 3ε}.

From (ii), it follows that for each j ∈ Λ3, it holds that Qj ∩ Γ3ε = ∅ and

d(Qj, Q∗∗k ) ≥ 4ε.

Now let xj ∈ Qj and xk ∈ Q∗∗k such that

d(Qj, Q∗∗k ) = d(xj, xk).

Let xk̃ be the intersection point of the segment xjxk and Γ3ε. Denote by Qk̃ the Whitney
cube that contains xk̃. It is easy to see that

d(Qj, Q∗∗k ) > d(Qj, Qk̃). (16)

By the definitions of Λ1, Λ2 and Lemma 1(iii), it is clear that k̃ ∈ Λ1. This, together
with Lemma 1(iii) implies that

ε

4
≤ diam Qk̃ ≤ 3ε. (17)
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Moreover, since Qk̃ ∩Ω3ε �= ∅, by Lemma 1(ii) again, it follows that Qk̃ ⊆ Ω6ε; from
(ii), it follows that Qj ∩ Ω7ε = ∅. This means that Qj and Qk̃ are not touched, and by
Lemma 1(v), it holds that

d(Qj, Qk̃) ≥
1
4

lj. (18)

Thus, for any x ∈ Q∗∗k and y ∈ Qj, we have

|x− y| ≤ diam (Q∗∗k ) + d(Qj, Qk) + diam Qj

� lk + d(Qj, Qk) + lj ∼ D(Qj, Qk). (19)

On the other hand, by lk ≤ ε � lj, (16) and (18), it follows that

|x− y| ≥ d(Qj, Q∗∗k ) ≥ d(Qj, Qk̃) ≥
1
4

lj � lj + lk

and by (17), we know that

d(Qj, Qk) ≤ d(Qj, Q∗∗k ) + diam (Q∗∗k ) � |x− y|. (20)

By combing (19) and (20), we obtain (iii), which completes the proof of Lemma 4.

The following lemma on the summation of D as in (15) needs the assumption that Ω
is bounded and uniform.

Lemma 5 ([17]). Let Ω be a bounded uniform domain and {Qj}∞
j=1 be the Whitney decomposition

of Ω as in Lemma 1. Then there exists a positive constant C such that for any η > 0 and j0 ∈ N,
it holds that

∞

∑
j=1

l(Qj)
n

D(Qj, Qj0)
n+η ≤

C
l(Qj0)

η

We end this section by giving properties of two subgroups of Whitney cubes from Λ2
as in (12). To this end, for any i ∈ Λ2, we make a subdivision of Λ2 by setting

Λ21(i) := {k ∈ Λ2 : Q∗∗k ∩Q∗i �= ∅} and Λ22(i) := {k ∈ Λ2 : Q∗∗k ∩Q∗i = ∅}, (21)

where Q∗i = (1 + μ̃)Qi and Q∗∗k = (1 + 2μ̃)Qk with μ̃ ∈ (0, 1/16). For any i ∈ Λ2 and
k ∈ Λ21(i), let

Λ23(i, k) :=
{

j ∈ Λ2 : Q∗j ∩Q∗i �= ∅ or Q∗j ∩Q∗∗k �= ∅
}

. (22)

Lemma 6. Let Ω be a bounded domain, ε > 0 and Λ2 be as in (12). Then the following two
assertions hold.

(i) For any i ∈ Λ2, let Λ21(i) be the index set as in (21). Then it holds that for any x ∈ Q∗i ,⋃
k∈Λ21(i)

Q∗∗k ⊆ B(x, 7ε),

where Q∗∗k = (1 + 2μ̃)Qk with μ̃ ∈ (0, 1/(16
√

n));
(ii) For any i ∈ Λ2 and k ∈ Λ21(i), let Λ23(i, k) be the index set as in (22). It holds that there

exists a number N ∈ N, independs of i and k, such that

Card (Λ23(i, k)) ≤ N. (23)
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Moreover, for any j ∈ Λ23(i, k), the sidelengths lj and li of Qj and Qi are comparable, namely,

li ∼ lj (24)

with implicit constants are independent on i and j.

Proof. We first prove (i). For any x ∈ Q∗i and y ∈ ⋃
k∈Λ21(i)

Q∗∗k , there exists k ∈ Λ21(i) such

that y ∈ Q∗∗k and

|x− y| ≤ (1 + μ̃)
√

nli + (1 + 2μ̃)
√

nlk.

By Lemma 3, it holds that d(x, ∂Ω) < 3ε and d(y, ∂Ω) < 3ε, which combined with Lemma
1(ii) show that li, lk < 3ε√

n . Thus, using the assumption 0 < μ̃ < 1
16
√

n , we know

|x− y| ≤ 6(1 + 2μ̃)ε ≤ 7ε.

This implies
⋃

k∈Λ21(i)
Q∗∗k ⊆ B(x, 7ε) and hence verifies (i).

We now prove (ii). To this end, we first claim that for any two Whitney cubes Qj and
Qk, Q∗∗j ∩Q∗∗k �= ∅ if and only if Qj and Qk touch. Indeed, it suffices to show that Qj and
Qk touch when Q∗∗j ∩Q∗∗k �= ∅. Otherwise, if Q∗∗j ∩Q∗∗k �= ∅ and Qj and Qk do not touch,
then by Lemma 1(v), we have

d(Qj, Qk) ≥
1
4

max{lj, lk}.

This, together with the assumption μ̃ ∈ (0, 1/(16
√

n)), implies that

d(Q∗∗j , Q∗∗k ) ≥ d(Qj, Qk)− μ̃
√

n(lj + lk) ≥
1
8

max{lj, lk} > 0,

which contradicts the assumption Q∗∗j ∩Q∗∗k �= ∅ and hence verifies the claim. By this and
Lemma 1(iv), we know (23) holds with N = 2(12)n. Moreover, the above claim implies
that for each i ∈ Λ2, k ∈ Λ21(i) and j ∈ Λ23(i, k), it holds that either Qj and Qi touch; or Qj
and Qk, and Qi and Qk, touch. By Lemma 1(v), we conclude that (24) holds true, which
completes the proof of (ii) and hence Lemma 6.

3. Proofs of Main Results

This section is devoted to the proofs of main results of this paper. We first prove
Theorem 2 in Section 3.1; then we prove Theorem 1 in Section 3.2. Finally, Section 3.3 is
devoted to the proof of Theorem 3.

3.1. Proof of Theorem 2

In this subsection, we prove the density property of Triebel–Lizorkin space Fs
p,q(Ω)

(see Theorem 2) via the intrinsic characterization of Fs
p,q(Ω). To this end, we recall the

following definitions of intrinsic Triebel–Lizorkin space F s
p,q(Ω) from [17].

Definition 1. Let Ω be a bounded domain in Rn. For any p, q ∈ [1, ∞) and s ∈ (0, 1). The
intrinsic Triebel–Lizorkin space is defined by

F s
p,q(Ω) := { f ∈ Lp(Ω) : ‖ f ‖F s

p,q(Ω) < ∞},
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where

‖ f ‖F s
p,q(Ω) := ‖ f ‖LP(Ω) +

[∫
Ω

(∫
Ω

| f (x)− f (y)|q
|x− y|n+sq dy

) p
q

dx

] 1
p

(25)

=: ‖ f ‖LP(Ω) + | f |F s
p,q(Ω) < ∞.

Let F̊ s
p,q(Ω) be the completion of D(Ω) in F s

p,q(Ω) with respect to the norm ‖ · ‖F s
p,q(Ω) as in (25).

Remark 4. For any p, q ∈ [1, ∞) and s ∈ (n( 1
p − 1

q )+, 1), let Fs
p,q(Ω) be the Triebel–Lizorkin

space defined as in (I) of Introduction. If, in addition, Ω is a bounded uniform domain, then it is
proved in ([17], Corollary 3.11) that

F s
p,q(Ω) = Fs

p,q(Ω) (26)

with equivalent norms.
On the other hand, let F̊s

p,q(Ω) be the Triebel–Lizorkin space defined as in (II) of Introduction.
By (26), we know that for any p, q ∈ [1, ∞) and s ∈ (n( 1

p − 1
q )+, 1), it holds that

F̊ s
p,q(Ω) = F̊s

p,q(Ω)

with equivalent norms.

Note that Theorem 2 is an immediate consequence of Remark 4 and the following
density property fo intrinsic Triebel–Lizorkin spaces F s

p,q(Ω).

Proposition 1. Let p, q ∈ [1, ∞) and s ∈ (0, 1). Assume Ω is a bounded uniform domain
satisfying the (H)s,p,q-condition for all f ∈ F s

p,q(Ω). Then it holds that

F s
p,q(Ω) = F̊ s

p,q(Ω)

with equivalent norms, where F s
p,q(Ω) and F̊ s

p,q(Ω) are defined as in Definition 1.

Proof. Since Ω is bounded, by an elementary calculation, we know D(Ω) ⊆ F s
p,q(Ω).

This immediately implies F̊ s
p,q(Ω) ⊂ F s

p,q(Ω). Thus, we only need to prove the converse
inclusion F s

p,q(Ω) ⊂ F̊ s
p,q(Ω). Since the proof is quite long, we divide it into several steps.

Step 1. Let {Qj}∞
j=1 be the Whitney decomposition of Ω as in Lemma 1 and {ψj}∞

j=1 ⊂
C∞

0 (Rn) the corresponding partition of unity satisfying the following properties:

(i) ψj ≡ 1 on Qj and supp ψj ⊂ Q∗j , where Q∗j := (1 + 2μ̃)Q is the concentric cube of Qj

with sidelength (1 + 2μ̃)lj and μ̃ ∈ (0, 1/(16n));
(ii) For any x ∈ Ω, it holds that

∞

∑
j=1

ψj(x) = 1 (27)

(iii) There exists a positive constant C such that for all x ∈ Rn and j ∈ N,

|∇ψj(x)| ≤ C
diam Qj

. (28)

Now let f ∈ F s
p,q(Ω). For any ε > 0 and x ∈ Ω, by (27) and the definitions of the

index sets Λ1, Λ2 as in (12), we write
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f (x) = ∑
d(Qj ,∂Ω)≥ε

ψj(x) f (x) + ∑
d(Qj ,∂Ω)<ε

ψj(x) f (x) = ∑
j∈Λ1

ψj(x) f (x) + ∑
j∈Λ2

ψj(x) f (x) (29)

=: vε(x) + wε(x)

with vε and wε being the interior and boundary parts, respectively.
Step 2. We first consider the interior part vε by claiming

vε ∈ F s
p,q(Ω). (30)

Indeed, let ψ := ∑j∈Λ1
ψj(x). By the property (i) and (13), it holds that ψ ∈ C∞

0 (Ω), which
together with the fact that vε = ψ f implies

‖νε‖Lp(Ω) = ‖ψ f ‖Lp(Ω) ≤ ‖ψ‖L∞(Ω)‖ f ‖Lp(Ω) < ∞, (31)

which implies vε ∈ Lp(Ω). On the other hand, by (25), we have

|ψ f |F s
p,q(Ω) =

[∫
Ω

(∫
Ω

|ψ(x) f (x)− ψ(y) f (y)|q
|x− y|n+sq dy

) p
q

dx

] 1
p

=: A.

Write

A ≤
[∫

Ω

(∫
Ω

| f (x)|q|ψ(x)− ψ(y)|q
|x− y|n+sq dy

) p
q

dx

] 1
p

+

[∫
Ω

(∫
Ω

| f (x)− f (y)|q|ψ(y)|q
|x− y|n+sq dy

) p
q

dx

] 1
p

=: A1 + A2.

We first estimate A1. Since ψ ∈ C∞
0 (Ω), it follows that

A1 ≤
[∫

Ω
| f (x)|p

(∫
Ω
‖∇ψ(x)‖q

L∞(Ω)
|x− y|q(1−s)−n dy

) p
q

dx

] 1
p

.

Moreover, by the assumption that Ω is bounded, we have

A1 �
[∫

Ω
| f (x)|p

(∫ diam Ω

0
ρq(1−s)−1 dρ

) p
q

dx

] 1
p

� ‖ f ‖Lp(Ω) < ∞.

To bound A2, it is easy to see that

A2 ≤
[∫

Ω

(∫
Ω

| f (x)− f (y)|q
|x− y|n+sq dy

) p
q

dx

] 1
p

‖ψ‖L∞(Ω) � | f |F s
p,q(Ω) < ∞.

Combining the estimates of A1 and A2, we conclude that A < ∞. This, together with
vε ∈ Lp(Ω), implies vε ∈ F s

p,q(Ω), and hence verifies the claim (30).
Step 3. Next we prove vε ∈ F̊ s

p,q(Ω). Let η ∈ C∞
0 (Rn) satisfying η ≥ 0 in Rn,

supp η ⊆ B(0, 1) and
∫

B(0,1) η(x) dx = 1. Let 0 < δ < 3μ̃ε

16
√

n and η(δ) be the mollifier
defined by

η(δ)(x) := δ−nη(x/δ)
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for any x ∈ Rn. It is easy to see η(δ) ∗ vε ∈ D(Ω), and by the property of the approximations
of identity, we have ∥∥∥(η(δ) ∗ vε

)
− vε

∥∥∥
Lp(Ω)

→ 0

as δ → 0. Then to prove vε ∈ F̊ s
p,q(Ω), it suffices to show

∣∣∣(η(δ) ∗ vε

)
− vε

∣∣∣
F s

p,q(Ω)
→ 0 as

δ → 0. From (25), we deduce∣∣∣(η(δ) ∗ vε

)
− vε

∣∣∣
F s

p,q(Ω)
(32)

=

⎡⎢⎢⎣∫Ω

⎛⎜⎝∫
Ω

∣∣∣(η(δ) ∗ vε

)
(x)− vε(x)−

(
η(δ) ∗ vε

)
(y) + vε(y)

∣∣∣q
|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

=

⎡⎢⎢⎣∫Ω

⎛⎜⎝∫
Ω

∣∣∣δ−n ∫
B(0,δ)[vε(x− z)− vε(y− z)]η(z/δ) dz− vε(x) + vε(y)

∣∣∣q
|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

=

⎡⎣∫
Ω

(∫
Ω

∫
B(0,1)|[vε(x− δz̃)− vε(y− δz̃)− vε(x) + vε(y)]η(z̃) dz̃|q

|x− y|n+sq dy

) p
q

dx

⎤⎦
1
p

≤
∫

B(0,1)

⎡⎣∫
Ω

(∫
Ω

|vε(x− δz̃)− vε(y− δz̃)− vε(x) + vε(y)|q
|x− y|n+sq dy

) p
q

dx

⎤⎦ 1
p

η(z̃) dz̃.

Now, let

G(x, y) :=
vε(x)− vε(y)

|x− y|
n
q +s

.

It is easy to see

G(x− δz̃, y− δz̃)− G(x, y) =
vε(x− δz̃)− vε(y− δz̃)− vε(x) + vε(y)

|x− y|
n
q +s

.

Since

‖G(x, y)‖Lp
x(Lq

y)(Ω×Ω) :=

[∫
Ω

(∫
Ω
|G(x, y)|q dy

) p
q

dx

] 1
p

is a mixed Lebegue norm. By the continuity of translation (see ([24], Theorem 2)), we get

lim
δ→0
‖G(x− δz̃, y− δz̃)− G(x, y)‖Lp

x(Lq
y)(Ω×Ω) = 0 (33)

for any z̃ ∈ B(0, 1). Now let

ψε,δ(z̃) :=

⎡⎣∫
Ω

(∫
Ω

|vε(x− δz̃)− vε(y− δz̃)− vε(x) + vε(y)|q
|x− y|n+sq dy

) p
q

dx

⎤⎦ 1
p

η(z̃),
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for any z̃ ∈ B(0, 1). By (13), the assumption 0 < δ < 3μ̃ε

16
√

n and the change of variables,
we obtain

ψε,δ(z̃) �
[∫

Ω

(∫
Ω

|vε(x− δz̃)− vε(y− δz̃)|q
|x− y|n+sq dy +

∫
Ω

|vε(x)− vε(y)|q
|x− y|n+sq dy

) p
q

dx

] 1
p

η(z̃)

�

⎡⎢⎣(∫
Ω

(∫
Ω

|vε(x− δz̃)− vε(y− δz̃)|q
|x− y|n+sq dy

) p
q
dx

) 1
p

+

(∫
Ω

(∫
Ω

|vε(x)− vε(y)|q
|x− y|n+sq dy

) p
q
dx

) 1
p

⎤⎥⎦η(z̃)

�
(∫

Ω

(∫
Ω

|vε(x)− vε(y)|q
|x− y|n+sq dy

) p
q

dx

) 1
p

η(z̃).

This, together with (25) and (30), shows ψε,δ ∈ L∞(B(0, 1)). Now, using (32), (33) and the
dominated convergence theorem, we get

lim
δ→0

∣∣∣(η(δ) ∗ vε)− vε

∣∣∣
F s

p,q(Ω)
= lim

δ→0

∫
B(0,1)

‖G(x− δz̃, y− δz̃)− G(x, y)‖Lp
x(Lq

y)(Ω×Ω)η(z̃) dz̃ (34)

=
∫

B(0,1)
lim
δ→0

ψε,δ(z̃) dz̃ = 0,

which implies vε ∈ F̊ s
p,q(Ω).

Step 4. We still need to verify the boundary part wε ∈ F̊ s
p,q(Ω). To this end, it suffices

to prove that

lim
ε→0

‖wε‖Lp(Ω) = 0 (35)

and

lim
ε→0

|wε|F s
p,q(Ω) = 0. (36)

By Lemma 3, we obtain∫
Ω
|wε(x)|p dx =

∫
Ω3ε

|wε(x)|p dx

≤
∫

Ω3ε

∣∣∣∣∣ f (x)
∞

∑
j=1

ψj(x)

∣∣∣∣∣
p

dx =
∫

Ω3ε

| f (x)|p dx,

which tends to 0 as ε → 0 and hence implies (35).
Step 5. We now prove (36). By (29) and the fact that supp ψj ⊆ Q∗j , we write
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|wε|F s
p,q(Ω) =

⎡⎢⎢⎣∫Ω

⎛⎜⎝∫
Ω

∣∣∣ f (x)∑j∈Λ2
ψj(x)− f (y)∑j∈Λ2

ψj(y)
∣∣∣q

|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

(37)

=

⎧⎪⎨⎪⎩
⎡⎢⎣∫ ⋃

i∈Λ2
Q∗i

+
∫

Ω14ε\
⋃

i∈Λ2
Q∗i

+
∫

Ω\Ω14ε

⎤⎥⎦(∫
Ω

. . . dy
) p

q
dx

⎫⎪⎬⎪⎭
1
p

=

⎧⎪⎪⎨⎪⎪⎩
∫
⋃

i∈Λ2
Q∗i

⎡⎢⎣
⎛⎜⎝∫ ⋃

k∈Λ2
Q∗∗k

+
∫

Ω\Ω14ε

⎞⎟⎠ . . . dy

⎤⎥⎦
p
q

dx +
∫

Ω14ε\
⋃

i∈Λ2
Q∗i

⎛⎜⎝∫ ⋃
k∈Λ2

Q∗k
. . . dy

⎞⎟⎠
p
q

dx

+
∫

Ω\Ω14ε

⎛⎜⎝∫ ⋃
k∈Λ2

Q∗k
. . . dy

⎞⎟⎠
p
q

dx

⎫⎪⎪⎬⎪⎪⎭
1
p

�

⎡⎢⎢⎣∫ ⋃
i∈Λ2

Q∗i

⎛⎜⎝∫ ⋃
k∈Λ2

Q∗∗k

∣∣∣ f (x)∑j∈Λ2
ψj(x)− f (y)∑j∈Λ2

ψj(y)
∣∣∣q

|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

+

⎡⎢⎢⎣∫ ⋃
i∈Λ2

Q∗i

⎛⎜⎝∫
Ω\ ⋃

k∈Λ2
Q∗∗k

∣∣∣ f (x)∑j∈Λ2
ψj(x)

∣∣∣q
|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

+

⎡⎢⎢⎣∫Ω14ε\
⋃

i∈Λ2
Q∗i

⎛⎜⎝∫ ⋃
k∈Λ2

Q∗k

∣∣∣ f (x)∑j∈Λ2
ψj(x)− f (y)∑j∈Λ2

ψj(y)
∣∣∣q

|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

+

⎡⎢⎢⎣∫Ω\Ω14ε

⎛⎜⎝∫ ⋃
k∈Λ2

Q∗k

∣∣∣ f (y)∑j∈Λ2
ψj(y)

∣∣∣q
|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

=: I1 + I2 + II + III.

Step 6. We estimate the above terms in the order of I2, III, I1 and II. To estimate I2, we
first write

I2 ≤

⎡⎢⎢⎣ ∑
i∈Λ2

∫
Q∗i
| f (x)|p

⎛⎜⎝∫
Ω\ ⋃

k∈Λ2
Q∗∗k

1
|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

.

From the definitions of Q∗i and Q∗∗i , it follows that for any x ∈ Q∗i and y ∈ Ω \ ⋃
i∈Λ2

Q∗∗i ,

|x− y| ≥ μ̃li
2 , where li denotes the sidelength of Qi. Thus, we have

I2 �
[

∑
i∈Λ2

∫
Q∗i
| f (x)|p

(∫ ∞

μ̃li
2

ρ−sq−1 dρ

) p
q

dx

] 1
p

�
[

∑
i∈Λ2

∫
Q∗i
| f (x)|p

(
μ̃li
2

)−sp
dx

] 1
p

.
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Using the properties (ii) and (iv) of Lemma 1, (14) and the (H)s,p,q-condition, we obtain

I2 �
[

∑
i∈Λ2

∫
Q∗i

| f (x)|p
d(x, ∂Ω)sp dx

] 1
p

�

⎡⎢⎣∫ ⋃
i∈Λ2

Q∗i

| f (x)|p
d(x, ∂Ω)sp dx

⎤⎥⎦
1
p

�
∥∥∥∥ f

d(·, ∂Ω)s

∥∥∥∥
Lp(Ω3ε)

→ 0 (38)

as ε → 0, which is desired. That is

lim
ε→0

I2 = 0. (39)

Step 7. To bound III, it is easy to see that

III �

⎡⎢⎢⎣∫Ω\Ω14ε

⎛⎜⎝∫ ⋃
k∈Λ2

Q∗∗k

| f (x)− f (y)|q
|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

+

⎡⎢⎢⎣∫Ω\Ω14ε

⎛⎜⎝∫ ⋃
k∈Λ2

Q∗∗k

| f (x)|q
|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

=: III1 + III2.

Using the fact that f ∈ F s
p,q(Ω), (14) and (25), we have

III1 ≤
[∫

Ω

(∫
Ω14ε

| f (x)− f (y)|q
|x− y|n+sq dy

) p
q

dx

] 1
p

→ 0 (40)

as ε → 0.
Now we estimate III2. For any x, y ∈ Ω, let

F(x, y) :=
f (x)

|x− y|
n
q +s

1 ⋃
k∈Λ2

Q∗∗k
(y)1Ω\Ω14ε

(x). (41)

It is obvious that

III2 =

[∫
Ω

(∫
Ω
|F(x, y)|q dy

) p
q

dx

] 1
p

= ‖F(x, y)‖Lp
x(Lq

y)(Ω×Ω)

≤ sup
‖V‖

Lp′
x (Lq′

y )(Ω×Ω)
≤1

[∫
Ω

(∫
Ω

F(x, y)V(x, y) dy
)

dx
]

.

Let

B(F, V) :=
[∫

Ω

(∫
Ω

F(x, y)V(x, y) dy
)

dx
]

.

By the definition of F in (41), it holds

B(F, V) ≤

⎡⎢⎣∫
Ω\Ω14ε

| f (x)|

⎛⎜⎝∫ ⋃
k∈Λ2

Q∗∗k

|V(x, y)|
|x− y|

n
q +s

dy

⎞⎟⎠ dx

⎤⎥⎦. (42)

366



Mathematics 2022, 10, 637

Moreover, since ‖V‖
Lp′

x (Lq′
y )(Ω×Ω)

≤ 1, we deduce

lim
ε→0

⎡⎣∫
Ω

(∫
Ω3ε

|V(x, y)|q′ dy
) p′

q′
dx

⎤⎦
1
p′

= 0. (43)

Using (42), Lemma 3 and Hölder’s inequality, we obtain

B(F, V) � ∑
i∈Λ3

∫
Qi

| f (x)|
(

∑
k∈Λ2

∫
Q∗

k

|V(x, y)|q′ dy

) 1
q′
(

∑
k∈Λ2

∫
Q∗

k

(
1

|x− y|n+sq dy
) 1

q
)

dx

� ∑
i∈Λ3

∫
Qi

| f (x)|
(

∑
k∈Λ2

∫
Q∗

k

|V(x, y)|q′ dy

) 1
q′
(

∑
k∈Λ2

l(Qk)
n

D(Qi, Qk)
n+sq

) 1
q

dx,

which, together with Lemmas 4(iv) and 5, implies

B(F, V) � ∑
i∈Λ3

∫
Qi

| f (x)|
(

∑
k∈Λ2

∫
Q∗

k

|V(x, y)|q′ dy

) 1
q′ 1

l(Qi)s dx

� ∑
i∈Λ3

∫
Qi

| f (x)|
d(x, ∂Ω)s

(∫
Ω3ε

|V(x, y)|q′ dy
) 1

q′
dx

∼
∫

Ω

| f (x)|
d(x, ∂Ω)s

(∫
Ω3ε

|V(x, y)|q′ dy
) 1

q′
dx

�
(∫

Ω

| f (x)|p
d(x, ∂Ω)sp

) 1
p

⎡⎣∫
Ω

(∫
Ω3ε

|V(x, y)|q′ dy
) p′

q′
dx

⎤⎦
1
p′

.

Combining the former with (43), we get

B(F, V)→ 0

as ε → 0. By this and (40), we conclude that

lim
ε→0

III = 0. (44)

Step 8. Next we consider I1. Next,

I1 ≤

⎡⎢⎣∫ ⋃
i∈Λ2

Q∗
i

⎛⎜⎝∫ ⋃
k∈Λ2

Q∗∗
k

| f (x)− f (y)|q
∣∣∣∑j∈Λ2

ψj(y)
∣∣∣q

|x− y|n+sq dy

+
∫
⋃

k∈Λ2

Q∗∗
k

| f (x)|q
∣∣∣∑j∈Λ2

ψj(x)−∑j∈Λ2
ψj(y)

∣∣∣q
|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

�

⎡⎢⎢⎣∫ ⋃
i∈Λ2

Q∗
i

⎛⎜⎝∫ ⋃
k∈Λ2

Q∗∗
k

| f (x)− f (y)|q
∣∣∣∑j∈Λ2

ψj(y)
∣∣∣q

|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

+

⎡⎢⎢⎣∫ ⋃
i∈Λ2

Q∗
i

⎛⎜⎝∫ ⋃
k∈Λ2

Q∗∗
k

| f (x)|q
∣∣∣∑j∈Λ2

ψj(x)−∑j∈Λ2
ψj(y)

∣∣∣q
|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

=: I11 + I12.
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For I11, by (25) and Lemma 3, we know that

I12 ≤

⎡⎢⎢⎣∫ ⋃
i∈Λ2

Q∗i

⎛⎜⎝∫ ⋃
k∈Λ2

Q∗∗k

| f (x)− f (y)|q
|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

(45)

≤
[∫

Ω3ε

(∫
Ω3ε

| f (x)− f (y)|q
|x− y|n+sq dy

) p
q

dx

] 1
p

,

which turns to 0 as ε → 0.
To bound I12, by the definitions of the index sets Λ21(i) and Λ22(i) as in (21), we have

I12 ≤

⎡⎢⎢⎣ ∑
i∈Λ2

∫
Q∗i

⎛⎜⎝∫ ⋃
k∈Λ2

Q∗∗k

| f (x)|q
∣∣∣∑j∈Λ2

ψj(x)−∑j∈Λ2
ψj(y)

∣∣∣q
|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

(46)

�

⎡⎢⎢⎣ ∑
i∈Λ2

∫
Q∗i

⎛⎜⎝∫ ⋃
k∈Λ21

Q∗∗k

| f (x)|q
∣∣∣∑j∈Λ2

ψj(x)−∑j∈Λ2
ψj(y)

∣∣∣q
|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

+

⎡⎢⎢⎣ ∑
i∈Λ2

∫
Q∗i

⎛⎜⎝∫ ⋃
k∈Λ22

Q∗∗k

| f (x)|q
∣∣∣∑j∈Λ2

ψj(x)−∑j∈Λ2
ψj(y)

∣∣∣q
|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

=: I1
12 + I2

12.

By (28); the definition of the index set Λ23 as in (22); Lemmas 5 and 6; and an argument
similar to that used in the proof of (38), we obtain

I1
12 ≤

⎡⎢⎢⎣ ∑
i∈Λ2

∫
Q∗i
| f (x)|p

⎛⎜⎝ ∑
k∈Λ21

∫
Q∗∗k

∣∣∣∑j∈Λ23
ψj(x)−∑j∈Λ23

ψj(y)
∣∣∣q

|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

(47)

�

⎡⎣ ∑
i∈Λ2

∫
Q∗i
| f (x)|p

(
∑

k∈Λ21

∫
Q∗∗k

(
sup
j∈Λ23

‖∇ψj‖
)q

L∞

|x− y|q(1−s)−n dy

) p
q

dx

⎤⎦
1
p

�
[

∑
i∈Λ2

∫
Q∗i
| f (x)|p

(∫ 7ε

0
l−q
i ρq(1−s)−1 dρ

) p
q

dx

] 1
p

�
[

∑
i∈Λ2

∫
Q∗i
| f (x)|p

(∫ 7ε

0
d(x, ∂Ω)−qρq(1−s)−1 dρ

) p
q

dx

] 1
p

�
[

∑
i∈Λ2

∫
Q∗i
| f (x)|pd(x, ∂Ω)−pεp(1−s) dx

] 1
p

�

⎡⎢⎣∫ ⋃
i∈Λ2

Q∗i

| f (x)|p
d(x, ∂Ω)sp dx

⎤⎥⎦
1
p

≤
∥∥∥∥ f

d(·, ∂Ω)s

∥∥∥∥
Lp(Ω3ε)

→ 0

as ε → 0.
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On the other hand, by (21), we know that if k ∈ Λ22(i), then Q∗∗k
⋂

Q∗i = ∅. For any
x ∈ Q∗i and y ∈ Q∗∗k , there exists a positive constant c such that |x − y| ≥ cli—that is,⋃
k∈Λ22

Q∗∗k ⊆ [B(x, Cli)]�. This yields that

I2
12 �

⎡⎢⎢⎣ ∑
i∈Λ2

∫
Q∗i

⎛⎜⎝∫ ⋃
k∈Λ22

Q∗∗k

| f (x)|q
|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

(48)

�
[

∑
i∈Λ2

∫
Q∗i
| f (x)|p

(∫ +∞

cli
ρ−sq−1 dρ

) p
q

dx

] 1
p

�
[

∑
i∈Λ2

∫
Q∗i
| f (x)|pl−sp

i dx

] 1
p

�

⎡⎢⎣∫ ⋃
i∈Λ2

Q∗i

| f (x)|p
d(x, ∂Ω)sp dx

⎤⎥⎦
1
p

�
∥∥∥∥ f

d(·, ∂Ω)s

∥∥∥∥
Lp(Ω3ε)

→ 0

as ε → 0.
Combing (45), (47) and (48), we conclude that

lim
ε→0

I1 = 0. (49)

Step 9. Finally, we estimate II. Write

II ≤

⎡⎢⎢⎣∫Ω14ε

⎛⎜⎝∫ ⋃
k∈Λ2

Q∗k

∣∣∣ f (x)∑j∈Λ2
ψj(x)− f (y)∑j∈Λ2

ψj(y)
∣∣∣q

|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

�

⎡⎢⎢⎣∫Ω14ε

⎛⎜⎝∫ ⋃
k∈Λ2

Q∗k

| f (x)|q
∣∣∣∑j∈Λ2

ψj(x)−∑j∈Λ2
ψj(y)

∣∣∣q
|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

+

⎡⎢⎢⎣∫Ω14ε

⎛⎜⎝∫ ⋃
k∈Λ2

Q∗k

| f (x)− f (y)|q
∣∣∣∑j∈Λ2

ψj(y)
∣∣∣q

|x− y|n+sq dy

⎞⎟⎠
p
q

dx

⎤⎥⎥⎦
1
p

=: II1 + II2.

By an argument similar to that of I1, it is easy to see that

lim
ε→0

II = 0. (50)

Combining (37), (39), (44), (49) and (50), we obtain lim
ε→0

|wε|F s
p,q(Ω) = 0, which proves (36).

This, together with (34) and (35) shows f ∈ F̊ s
p,q(Ω) and hence finishes the proof of

Proposition 1.

3.2. Proof of Theorem 1

In this subsection, we prove Theorem 1. To this end, we first recall the following defi-
nition of refined localisation Triebel–Lizorkin spaces Fs,rloc

p,q (Ω) from ([10], Definition 2.14).
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Definition 2 ([10]). Let Ω be a bounded domain in Rn. Let {Qj}∞
j=1 be the Whitney decomposition

of Ω as in Lemma 1, and {ψj}∞
j=1 be the corresponding partition of unity as in (27) and (28). For

any p, q ∈ [1, ∞] and s ∈ (0, ∞), the refined localisation Triebel–Lizorkin space Fs,rloc
p,q (Ω) is

defined by setting

Fs,rloc
p,q (Ω) :=

⎧⎨⎩ f ∈ D′(Ω) : ‖ f ‖Fs,rloc
p,q (Ω)

:=

(
∞

∑
j=0

∥∥ψj f
∥∥p

Fs
p,q(Rn)

) 1
p

< ∞

⎫⎬⎭,

where ‖·‖Fs
p,q(Rn) denotes the classical Triebel–Lizorkin norm on Rn.

Remark 5.

(i) Let Ω be a bounded domain. For any p, q ∈ [1, ∞] and s ∈ (0, ∞), it is well-known that the
space Fs,rloc

p,q (Ω) is independent of the choice of the partition of unity {ψ}∞
j=1

(see ([10], Theorem 2.16)).
(ii) Let Ω be a bounded domain. For any p, q ∈ [1, ∞] and s ∈ (0, 1), it is proved in

([10], Theorem 2.18) (see also ([8], Corollary 5.15)) that Fs,rloc
p,q (Ω) can be characterized by the

following intrinsic norm:∥∥∥∥ f
d(·, ∂Ω)

∥∥∥∥
Lp(Ω)

+

∥∥∥∥∥
[∫ cd(·,∂Ω)

0
t−sq(dt,u f )q dt

t

]1/q
∥∥∥∥∥

Lp(Ω)

(51)

for some c ∈ (0, 1), where for any u ∈ (0, 1), t ∈ (0, ∞) and x ∈ Rn,

dt,u f (x) :=
[

1
tn

∫
|h|≤t

| f (x + h)− f (x)|u dh
]1/u

.

(iii) Suppose that Ω is a bounded E-thick domain. Let F̃s
p,q(Ω) be the Triebel–Lizorkin space defined

as in (III) of Introduction. It is known (see ([10], Proposition 3.10)) that for any p, q ∈ [1, ∞]
and s ∈ (0, ∞),

F̃s
p,q(Ω) = Fs,rloc

p,q (Ω)

with equivalent norms.

With the help of Remark 5 and Theorem 2, we now turn to the proof of Theorem 1.

Proof of Theorem 1. Let p, q ∈ [1, ∞) and s ∈
(

n( 1
p − 1

q )+, 1
)

. Since Ω is bounded and
uniform, it follows from Remark 4 that

F s
p,q(Ω) = Fs

p,q(Ω) and F̊ s
p,q(Ω) = F̊s

p,q(Ω) (52)

with equivalent norms. Moreover, by (H)s,p,q-condition and Proposition 1, we know

F s
p,q(Ω) = F̊ s

p,q(Ω).

This together with (52) implies that

Fs
p,q(Ω) = F̊s

p,q(Ω) (53)

holds for any p, q ∈ [1, ∞) and s ∈
(

n( 1
p − 1

q )+, 1
)

.
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On the other hand, since Ω is an E-thick domain, we deduce from Remark 5(iii) that
for any p, q ∈ [1, ∞] and s ∈ (0, 1),

F̃s
p,q(Ω) = Fs,rloc

p,q (Ω). (54)

Moreover, it is proved in ([25], Theorem 3) that the Triebel–Lizorkin space Fs
p,q(Ω), as

in (I) of Introduction, can also be characterized by the same intrinsic norm of (51). This,
combined with Remark 5(ii), implies that for any p, q ∈ [1, ∞] and s ∈ (0, 1),

Fs,rloc
p,q (Ω) = Fs

p,q(Ω). (55)

Taking (53)–(55) together, we conclude that for any p, q ∈ [1, ∞) and s ∈
(

n( 1
p − 1

q )+, 1
)

,
it holds

Fs
p,q(Ω) = F̊s

p,q(Ω) = F̃s
p,q(Ω),

which completes the proof of Theorem 1.

3.3. Proof of Theorem 3

In this subsection, we prove Theorem 3.

Proof of Theorem 3. We first prove the implication (i) ⇒ (ii). Assume (i) holds. Let
f ∈ Cc(Ω) satisfy f (x) ≥ 1 for any x ∈ K. By (i), we know

∫
K

1
d(x, ∂Ω)sp dx ≤

∫
Ω

| f (x)|p
d(x, ∂Ω)sp dx ≤ Cp

1

[∫
Ω

(∫
Ω

| f (x)− f (y)|q
|x− y|n+sq dy

) p
q

dx

]
.

Taking the infinum over all such functions f and using (9), we obtain∫
K

1
d(x, ∂Ω)sp dx ≤ Cp

1 caps,p,q(K, Ω),

which implies (ii) with C2 = Cp
1 .

Now we prove the converse implication that (ii)⇒ (i). Suppose (ii) holds. Then, for
any k ∈ Z, let

Ek := {x ∈ Ω : | f (x)| > 2k} and Ak := Ek \ Ek+1.

Observe

Ω = {x ∈ Ω : 0 ≤ | f (x)| < ∞} = F ∪
⋃

k∈Z
Ak (56)

with

F := {x ∈ Ω : f (x) = 0}. (57)

Hence, by (ii) we obtain∫
Ω

| f (x)|p
d(x, ∂Ω)sp dx ≤ ∑

k∈Z
2(k+2)p

∫
Ak+1

1
d(x, ∂Ω)sp dx ≤ C222p ∑

k∈Z
2kpcaps,p,q(Āk+1, Ω). (58)
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Define the function fk : Ω → [0, 1] by

fk(x) :=

⎧⎪⎨⎪⎩
1, | f (x)| ≥ 2k+1,
| f (x)|

2k − 1, 2k < | f (x)| < 2k+1,
0, | f (x)| ≤ 2k.

(59)

It is easy to see fk ∈ Cc(Ω), and it satisfies fk = 1 on Ēk+1 ⊃ Āk+1. Hence, we can take fk
as a test function for the capacity. By (9), we have

caps,p,q(Āk+1, Ω) ≤
∫

Ω

(∫
Ω

| fk(x)− fk(y)|q
|x− y|n+sq dy

) p
q

dx (60)

≤ sup
‖h‖

L(p/q)′ (Ω)
≤1

[∫
Ω

(∫
Ω

| fk(x)− fk(y)|q
|x− y|n+sq dy

)
h(x) dx

] p
q
.

Using (56) and (57), we get

∫
Ω

(∫
Ω

| fk(x)− fk(y)|q
|x− y|n+sq dy

)
h(x) dx (61)

=
∫

F∪ ⋃
i∈Z

Ai

∫
F∪ ⋃

j∈Z
Aj

| fk(x)− fk(y)|q
|x− y|n+sq h(x) dy dx

=

⎛⎝∫ ⋃
i∈Z

Ai

∫
⋃

j∈Z
Aj

+
∫

F

∫
⋃

j∈Z
Aj

+
∫
⋃

i∈Z
Ai

∫
F

⎞⎠ | fk(x)− fk(y)|q
|x− y|n+sq h(x) dy dx

=

(
∑
i≥k

∑
j≥k

∫
Ai

∫
Aj

+ ∑
i≥k

∑
j<k

∫
Ai

∫
Aj

+ ∑
i<k

∑
j≥k

∫
Ai

∫
Aj

+ ∑
i<k

∑
j<k

∫
Ai

∫
Aj

+ ∑
j<k

∫
F

∫
Aj

+ ∑
i<k

∫
Ai

∫
F
+ ∑

j≥k

∫
F

∫
Aj

+ ∑
i≥k

∫
Ai

∫
F

)
| fk(x)− fk(y)|q
|x− y|n+sq h(x) dy dx.

Now for any x ∈ Ai = Ei \ Ei+1, by the fact that 2i < | f (x)| ≤ 2i+1 and the definition of fk
as in (59), we claim that the following assertions hold true.

(i) If i < k, then | f (x)| ≤ 2i+1 ≤ 2k, this implies fk(x) = 0;

(ii) If i = k, then fk(x) = | f (x)|
2k − 1;

(iii) If i > k, then | f (x)| > 2i ≥ 2k+1, which implies fk(x) = 1;
(iv) If i ≤ k ≤ j, for any x ∈ Ai and y ∈ Aj, it holds that

| fk(x)− fk(y)| ≤ 2 · 2−j| f (x)− f (y)|. (62)

We only need to verify (iv). Indeed, let i ≤ k ≤ j, x ∈ Ai and y ∈ Aj. We consider four
cases based on the sizes of i, j and k.

If i = j, then by (ii), it is easy to see that

| fk(x)− fk(y)| = 0. (63)

If j = i + 1 and k = i, then by (ii), (iii) and the assumptions x ∈ Ai, y ∈ Aj, we have

| fk(x)− fk(y)| =
∣∣∣∣1−( | f (x)|

2k − 1
)∣∣∣∣ = ∣∣∣∣2− | f (x)|

2k

∣∣∣∣ = 2−k
∣∣∣2k+1 − | f (x)|

∣∣∣.
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Moreover, by the assumption y ∈ Ak+1, we know | f (y)| > 2k+1. This implies that the
above term is bound by

2−k|| f (y)| − | f (x)|| ≤ 2−k| f (x)− f (y)| = 2 · 2−j| f (x)− f (y)| (64)

If j = i + 1 and k = j, then by a similar argument, we know

| fk(x)− fk(y)| =
∣∣∣∣ | f (y)|2k − 1

∣∣∣∣ = 2−k
∣∣∣| f (y)| − 2k

∣∣∣.
By the assumption y ∈ Ak−1, it holds that | f (y)| ≤ 2k, so we obtain

2−k|| f (y)| − | f (x)|| ≤ 2−k| f (x)− f (y)| = 2−j| f (x)− f (y)|. (65)

Finally, if j ≥ i + 2, it holds that

| f (x)− f (y)| ≥ | f (x)| − | f (y)| ≥ 2j−1.

By the definition of fk, we have

| fk(x)− fk(y)| ≤ 1 ≤ 2 · 2−j| f (x)− f (y)|. (66)

Combining the estimates (63)–(66), we conclude that (62) holds true and hence verifies the
claim (iv).

Now by and (i) through (iv), we know that some of the sums in (61) vanish. This,
together with (60), implies that

caps,p,q(Āk+1, Ω) ≤ sup
‖h‖

L(p/q)′ ≤1

[(
∑
i≤k

∑
j≥k

∫
Ai

∫
Aj

+ ∑
i≥k

∑
j≤k

∫
Ai

∫
Aj

+ ∑
j≥k

∫
F

∫
Aj

+ ∑
i≥k

∫
Ai

∫
F

)
| fk(x)− fk(y)|q
|x− y|n+sq h(x) dy dx

] p
q

=: sup
‖h‖

L(p/q)′ ≤1
(I1 + I2 + I3 + I4)

p
q .

By this and (58), we know that∫
Ω

| f (x)|p
d(x, ∂Ω)sp dx ≤ CC2 ∑

k∈Z
2kpcaps,p,q(Āk+1, Ω)

≤ CC2 ∑
k∈Z

2kp sup
‖h‖

L(p/q)′ ≤1

(
I1

p
q + I2

p
q + I3

p
q + I4

p
q
)

.
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We first estimate the sum corresponding to I1. By the properties (i)–(iv) again, we can
show that

CC2 ∑
k∈Z

2kp sup
‖h‖

L(p/q)′ ≤1
I1

p
q

≤ CC2 ∑
k∈Z

2kp sup
‖h‖

L(p/q)′ ≤1

[
2q ∑

i≤k
∑
j≥k

∫
Ai

∫
Aj

2−jq | f (x)− f (y)|q
|x− y|n+sq h(x) dy dx

] p
q

= CC2 sup
‖h‖

L(p/q)′ ≤1

[
∑
k∈Z

2kq ∑
i≤k

∑
j≥k

∫
Ai

∫
Aj

2−jq | f (x)− f (y)|q
|x− y|n+sq h(x) dy dx

] p
q

= CC2 sup
‖h‖

L(p/q)′ ≤1

[
∑
i∈Z

∑
j≥i

j

∑
k=i

∫
Ai

∫
Aj

2(k−j)q | f (x)− f (y)|q
|x− y|n+sq h(x) dy dx

] p
q

Since
j

∑
k=i

2(k−j)q <
j

∑
k=−∞

2(k−j)q ≤ 1
1−2−q and by q ≥ 1, it is obvious that 1

1−2−q ≤ 2. Thus,

CC2 ∑
k∈Z

2kp sup
‖h‖

L(p/q)′ ≤1
I1

p
q

≤ CC2

(
1

1− 2−q

) p
q

sup
‖h‖

L(p/q)′ ≤1

[∫
Ω

(∫
Ω

| f (x)− f (y)|q
|x− y|n+sq dy

)
h(x) dx

] p
q

≤ CC2 sup
‖h‖

L(p/q)′ ≤1

[∫
Ω

(∫
Ω

| f (x)− f (y)|q
|x− y|n+sq dy

) p
q

dx

][∫
Ω

h(x)(p/q)′ dx
] p/q

(p/q)′

≤ CC2| f |pF s
p,q
(Ω),

which is desired. The estimates corresponding to I2, I3 and I4 are similar, the details being
omitted. Thus, we conclude that∫

Ω

| f (x)|p
d(x, ∂Ω)sp dx ≤ CC2| f |pF s

p,q
(Ω),

which implies (i) by letting C1 = CC2 and hence completes the proof of Theorem 3.
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Abstract: Assume that (X, d, μ) is a metric measure space that satisfies a Q-doubling condition with
Q > 1 and supports an L2-Poincaré inequality. Let L be a nonnegative operator generalized by a
Dirichlet form E and V be a Muckenhoupt weight belonging to a reverse Hölder class RHq(X) for
some q ≥ (Q + 1)/2. In this paper, we consider the Dirichlet problem for the Schrödinger equation
−∂2

t u + Lu + Vu = 0 on the upper half-space X×R+, which has f as its the boundary value on X.
We show that a solution u of the Schrödinger equation satisfies the Carleson type condition if and
only if there exists a square Morrey function f such that u can be expressed by the Poisson integral of
f . This extends the results of Song-Tian-Yan [Acta Math. Sin. (Engl. Ser.) 34 (2018), 787-800] from
the Euclidean space RQ to the metric measure space X and improves the reverse Hölder index from
q ≥ Q to q ≥ (Q + 1)/2.

Keywords: Schrödinger equation; Morrey space; Dirichlet problem; metric measure space

MSC: 35J10; 42B35

1. Introduction

The Dirichlet problem was originally posed for the Laplace equation. In such a case,
the problem can be stated as follows. Assume that Ω ⊂ Rn is a domain and f is a continuous
map on ∂Ω. Let us find a continuous function u satisfying{

−Δu(x) = 0, x ∈ Ω,
u(x) = f (x), x ∈ ∂Ω.

We call f as the boundary value of u. Here, −Δu = 0 means that
ˆ

Ω
∇u · ∇φdx = 0

holds for every smooth function φ on Rn with compact support in Ω, where ∇u is the
distributional gradient of u. For the upper half-space case, the study of the harmonic
extension of a function has become one of the elementary tools of harmonic analysis ever
since the seminar work of Stein-Weiss [1]. As we know, for any function f ∈ Lp(Rn) with
1 ≤ p < ∞, its Poisson extension u(x, t) = e−t

√
−Δ f (x), (x, t) ∈ Rn+1

+ , which satisfies{
−∂2

t u− Δu = 0, (x, t) ∈ Rn+1
+ ,

u(x) = f (x), x ∈ Rn.

In the study of singular integrals, a natural substitution of the end-point space
L∞(Rn) is the space of functions of bounded mean oscillation (BMO). Fefferman-Stein [2]
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proved that a function f belongs to BMO(Rn) if and only if its harmonic extension
u(x, t) = e−t

√
−Δ f (x) satisfies the following Carleson condition

sup
xB ,rB

ˆ rB

0

 
B(xB ,rB)

|t∇u(x, t)|2dx
dt
t
< ∞, (1)

where  
B(xB ,rB)

:=
1

|B(xB, rB)|

ˆ
B(xB ,rB)

.

Later, Fabes-Johnson-Neri [3] found that the Carleson condition (1) actually charac-
terizes all harmonic functions u(x, t) on Rn+1

+ with BMO traces. Since then, the research
on this topic has been widely extended to various settings, including heat equations [4],
elliptic equations and systems with complex coefficients [5], degenerate elliptic equations
and systems [6], as well as Schrödinger equations [7,8]. We refer the reader to [9–13] and
the references therein for more information about this topic.

In this paper, we consider a metric measure space X, which satisfies a Q-doubling
condition with Q > 1, and supports an L2-Poincaré inequality. Let L = L + V be a
Schrödinger operator, where L is a nonnegative operator generalized by a Dirichlet form E ,
and the nonnegative potential V is a Muckenhoupt weight belonging to the reverse Hölder
class. We study the boundary behavior of Schrödinger harmonic function on X × R+.
Roughly speaking, we derive that a solution u to the Schrödinger equation

−∂2
t u(x, t) +L u(x, t) = −∂2

t u(x, t) + Lu(x, t) + V(x)u(x, t) = 0

satisfies the Carleson type condition analogous to (1) if and only if there exists a square
Morrey function f such that u = e−t

√
L f holds, where the square Morrey spaces L2,α(X)

with −1/2 < α < 0 are defined by

L2,α(X) =

{
f ∈ L2

loc(X) : sup
B⊂X

1
[μ(B)]α

( 
B
| f |2dμ

)1/2
< ∞

}
.

We refer the reader to Section 2 for more about the Dirichlet metric measure space,
the reverse Hölder classes, the Muckenhoupt weight and the main result. We would like to
mention that, when X = Rn, if V ∈ RHq(Rn) for some q ≥ n, Song-Tian-Yan [8] studied
the boundary behavior of Schrödinger harmonic functions. Our result covers more general
spaces, such as the Riemannian metric measure space, sub-Riemannian manifold; see [14]
(Section 7) for more details.

Regarding their proof, the condition V ∈ RHq(Rn) for some q ≥ n is to assure that
there exists a pointwise upper bound for the gradient of the Schrödinger Poisson kernel.
However, even without the potential V, such bounds are not valid in general metric space
unless a group structure or strong nonnegative curvature condition is assumed (see [15,16]).
Indeed, for uniformly elliptic operators, the pointwise upper bound of the gradient of heat
kernel has already failed; see [14,17] for instance.

To overcome this difficulty, we adopt a Caccioppoli inequality for the Schrödinger
Poisson semigroup in a tent domain B(xB, rB)× (0, rB) from [18], and hence the reverse
Hölder index can be improved to q ≥ (n + 1)/2 in the case of Euclidean space setting. At
this moment, combined with more delicate analysis, we can remove the C1-regularity of the
Schrödinger harmonic function. Moreover, based on some new observations, we establish
a new Calderón reproducing formula, which plays a crucial role in our proof; see Lemma 6
for more details.

The paper is organized as follows. In Section 2, we begin with a brief overview of our
settings, i.e., the metric measure space with a Dirichlet form. Next, we recall the definition
of the reverse Hölder class and the Muckenhoupt weight and finally state the main result
of this paper. In Section 3, we establish some properties for the Schrödinger harmonic

378



Mathematics 2022, 10, 1112

functions, which satisfy Carleson-type conditions. In the last two sections, we prove the
main result.

Throughout the paper, we denote by the letter C (or c) a positive constant that is
independent of the essential parameters but may vary from line to line.

2. Main Result

Before stating the main result, we first briefly describe our Dirichlet metric measure
space settings; see [19–22] for more details. Suppose that X is a separable, connected,
locally compact and metrisable space. Let μ be a Borel measure that is strictly positive
on non-empty open sets and finite on compact sets. We consider a regular and strongly
local Dirichlet form E on L2(X, μ) with dense domain D ⊂ L2(X, μ) (see [20] or [21] for
an accurate definition). Suppose that E admits a “carré du champ”, which means that,
for all f , g ∈ D , Γ( f , g) is absolutely continuous with respect to the measure μ. Hereafter,
for simplicity of notation, let 〈∇x f ,∇xg〉 denote the energy density dΓ( f ,g)

dμ and |∇x f |
denote the square root of dΓ( f , f )

dμ . Assume the space (X, μ, E ) is endowed with the intrinsic
(pseudo-)distance on X related to E , which is defined by setting

d(x, y) := sup{ f (x)− f (y) : f ∈ Dloc ∩ C(X), |∇x f | ≤ 1 a.e.},

where C(X) is the space of continuous functions on X. Suppose d is indeed a distance and
induces a topology equivalent to the original topology on X. As a summary of the above
situation, we will say that (X, d, μ, E ) is a complete Dirichlet metric measure space.

Let the domain D be equipped with the norm (‖ f ‖2
2 + E ( f , f ))1/2. We can easily

see that it is a Hilbert space and denote it by W1,2(X). Given an open set U ⊂ X, we
define the Sobolev spaces W1,p(U) and W1,p

0 (U) in the usual sense (see [22–24]). With
respect to the Dirichlet form, there exists an operator L with dense domain D(L) in
L2(X, μ), D(L) ⊂ W1,2(X), such that

ˆ
X
L f (x)g(x)dμ(x) = E ( f , g),

for all f ∈ D(L) and each g ∈ W1,2(X).
We denote by B(x, r) the open ball with center x and radius r and set λB(x, r) :=

B(x, λr). We suppose that μ is doubling, i.e., there exists a constant Cd > 0 such that, for
every ball B(x, r) ⊂ X,

μ(B(x, 2r)) ≤ Cdμ(B(x, r)) < ∞. (2)

Note that μ is doubling implies there exists Q > 1 such that, for any 0 < r < R < ∞
and x ∈ X,

μ(B(x, R)) ≤ Cd

(
R
r

)Q
μ(B(x, r)),

and the reverse doubling property holds on a connected space (cf. [25] Remark 8.1.15 or [26]
Proposition 5.2), i.e., there exist constants 0 < n ≤ Q and 0 < c < 1 such that, for any
0 < r < R < ∞ and x ∈ X,

μ(B(x, r)) ≤ C
( r

R

)n
μ(B(x, R)). (3)

There also exist constants C > 0 and 0 ≤ N ≤ Q such that

μ(B(y, r)) ≤ C
(

1 +
d(x, y)

r

)N
μ(B(x, r)) (4)

uniformly for all x, y ∈ X and r > 0. Indeed, property (4) with N = Q is a direct
consequence of the doubling property (2) and the triangle inequality of the metric d. It is
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worth pointing out that N can be chosen to be zero in the cases of Euclidean space, the Lie
group of polynomial growth and metric space with a uniformly distributed measure.

Suppose that (X, d, μ, E ) admits an L2-Poincaré inequality, namely, there exists a
constant CP > 0 such that( 

B
| f − fB|2dμ

)1/2
≤ CPrB

( 
B
|∇x f |2dμ

)1/2
, (5)

for all balls B = B(xB, rB) and W1,2(B) functions f , where fB denotes the mean (or average)
of f over B.

We suppose that V is a non-trivial potential satisfying 0 ≤ V ∈ A∞(X) ∩ RHq(X),
where the Muckenhoupt weight class A∞(X) and the reverse Hölder class RHq(X) are
defined as follows (cf. [27,28]).

Definition 1.

(i) We say that a nonnegative function V on X belongs to the Muckenhoupt weight class A∞(X),
if there exists a constant C > 0 such that

sup
B

 
B

Vdμ

(
inf
x∈B

V
)−1

≤ C,

where the infimum is understood as the essential infimum or there exists constant 1 < p < ∞
and C > 0 such that

sup
B

 
B

Vdμ

( 
B

V
1

1−p dμ

)p−1
≤ C.

(ii) For any 1 < q ≤ ∞, we say that a nonnegative function V on X belongs to the reverse Hölder
class RHq(X), if there exists a constant C > 0 such that( 

B
Vqdμ

)1/q
≤ C

 
B

Vdμ,

for any ball B ⊂ X, with the usual modification when q = ∞.

When X = Rn, it is well known that A∞(Rn) =
⋃

1<q≤∞ RHq(Rn). However, in gen-
eral metric measure space X, this relationship between the reverse Hölder classes and the
Muckenhoupt weight may not hold; see [28] (Chapter 1). We point out that, if the measure
μ on X is doubling and the potential V belongs to A∞(X), then the induced measure Vdμ
is also doubling (cf. [28] Chapter 1).

Let us recall the definition of the critical function ρ(x) associated with the potential V
(see [29] Definition 1.3). For all x ∈ X, let

ρ(x) := sup

{
r > 0 : r2

 
B(x,r)

Vdμ ≤ 1

}
.

Since the potential V is non-trivial, it holds that 0 < ρ(x) < ∞ for every x ∈ X.
Additionally, by the results of Yang-Zhou [30] (Lemma 2.1 & Proposition 2.1), the critical
function satisfies the following property. If V ∈ A∞(X) ∩ RHq(X) with q > max{1, Q/2},
then there exist constants k0 ≥ 1 and C > 0 such that, for all x, y ∈ X,

C−1ρ(x)
(

1 +
d(x, y)
ρ(x)

)−k0

≤ ρ(y) ≤ Cρ(x)
(

1 +
d(x, y)
ρ(x)

)k0/(k0+1)

. (6)

In this paper, we consider the Schrödinger operator

L = L+ V.
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Throughout this paper, we denote, by Pt = e−t
√

L , the Schrödinger Poisson semi-
group associated with L and, by pv

t (x, y), the kernel of Pt = e−t
√

L . Due to the perturba-
tion of V, the Schrödinger Poisson kernel and its time derivatives admit the Poisson upper
bound with an additional polynomial decay (see [18])—namely, for any k ∈ {0} ∪N and
K > 0, there exists a constant C = C(k, K) > 0 such that

|tk∂k
t pv

t (x, y)| ≤ C
t

t + d(x, y)
1

μ(B(x, t + d(x, y)))

(
1 +

t + d(x, y)
ρ(x)

)−K
.

For more results about the Schrödinger operator and their applications, we refer the
reader to [31–44].

Let us recall the definition of L+-harmonic functions on the upper half-space. A
function u ∈ W1,2(X×R+) is said to be an L+-harmonic function on X×R+, if, for every
Lipschitz function φ with compact support in X×R+, it holds that

ˆ ∞

0

ˆ
X

∂tu∂tφdμdt +
ˆ ∞

0

ˆ
X
〈∇xu,∇xφ〉dμdt +

ˆ ∞

0

ˆ
X

Vuφdμdt = 0.

Suppose −1/2 < α < 0. We define HL2,α√
L
(X×R+) as the class of all L+-harmonic

functions u satisfying

‖u‖HL2,α√
L

:= sup
xB ,rB

1
[μ(B(xB, rB))]α

(ˆ rB

0

 
B(xB ,rB)

|t∇u(x, t)|2dμ(x)
dt
t

)1/2

< ∞.

The definition of the Morrey spaces refers to [8,42,45]. For every −1/2 < α < 0,
the square Morrey space L2,α(X) is defined as

L2,α(X) :=

{
f ∈ L2

loc(X) : sup
B⊂X

1
[μ(B)]2α

 
B
| f (x)|2dμ(x) < ∞

}
.

This is a Banach space with respect to the norm

‖ f ‖L2,α := sup
B⊂X

1
[μ(B)]α

( 
B
| f (x)|2dμ(x)

)1/2
.

The following theorem is the main result of this paper.

Theorem 1. Assume that (X, d, μ, E ) is a complete Dirichlet metric measure space that satisfies
the doubling condition (2) with Q > 1, and admits an L2-Poincaré inequality (5). Let 0 ≤ V ∈
A∞(X) ∩ RHq(X) with q ≥ (Q + 1)/2, and −1/2 < α < 0.

(i) If f ∈ L2,α(X), then u(x, t) = Pt f (x) ∈ HL2,α√
L
(X × R+), and there exists a constant

C > 0, independent of f , such that

‖u‖HL2,α√
L

≤ C‖ f ‖L2,α .

(ii) Further assume that max{−1/2,−1/2N} < α < 0. If u ∈ HL2,α√
L
(X ×R+), then there

exists a function f ∈ L2,α(X) such that u(x, t) = Pt f (x). Moreover, there exists a constant
C > 0, independent of u, such that

‖ f ‖L2,α ≤ C‖u‖HL2,α√
L

.
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Remark 1.

(i) In Theorem 1, we assume that the reverse Hölder index q is not less than (Q + 1)/2. However,
the observant readers might notice that, in [29], Shen assumed that the nonnegative potential
V belongs to RHq(RQ) for some q ≥ Q/2. However, we consider the boundary value problem
of the Schrödinger equation

−∂2
t u + Lu + Vu = 0

on the upper half-space X × R+. In order to make sure the above Schrödinger harmonic
function is Hölder continuous on X×R+, the critical reverse Hölder index (Q + 1)/2 seems
to be the least condition via the natural extension V(·, t) := V(·) for all t > 0. One might
wonder if there is any possibility of relaxing the requirement q ≥ (Q + 1)/2 in Theorem 1
to q > 1 together with q ≥ Q/2. From the initial value to the solution, this is ensured by
the Caccioppoli inequality for the Schrödinger Poisson semigroup; see Proposition 3 for more
details. To the contrary, from the solution to the initial value, this is an interesting problem to
be solved.

(ii) The range of α in Theorem 1 (ii) is slightly different from that in (i). This assumption
−1/2N < α < 0 first appears in Lemma 3 below, which is caused by the time regularity of
HL2,α√

L
-function

|t∂tu(x, t)| ≤ C[μ(B(x, t))]α‖u‖HL2,α√
L

.

Since the pointwise upper bound of the time regularity of HL2,α√
L

-function has to do with
the measure of some ball to the α power, the condition 2αN + 1 > 0 ensures the series in
Lemma 3 is convergent. In fact, for metric measure space X, the nonnegative parameter N
arises automatically if we want to calculate the ratio of the volumes of two balls with different
centers. However, this would not occur in the cases of Euclidean space, the Lie group of
polynomial growth and metric space with a uniformly distributed measure. We remark that
N can be chosen to be 0 under these settings, and hence the assumption −1/2N < α < 0 is
superfluous.

3. Schrödinger Harmonic Functions Satisfying Carleson

In this section, we will establish some properties of HL2,α√
L

-function.

Lemma 1. Assume the Dirichlet metric measure space (X, d, μ, E ) satisfies (2) and (5). Let
V ∈ A∞(X) ∩ RHq(X) for some q > max{1, Q/2}. If L u = Lu + Vu = 0 holds in a bounded
domain Ω ⊂ X, then there exists a constant C > 0 such that, for any ball B = B(xB, rB) with
2B ⊂ Ω,

‖u‖L∞(B) ≤ C
 

2B
|u|dμ.

Furthermore, u is locally Hölder continuous in Ω, and there exists a constant
θ ∈ (0, min{1, 2−Q/q}) such that, for any x, y ∈ 1

2 B,

|u(x)− u(y)| ≤ C
(

d(x, y)
rB

)θ

‖u‖L∞(B)

(
1 + r2

B

 
B

Vdμ

)
.

Proof. For the proof, we refer to [18] (Proposition 2.12).

Let us extend the potential V to the upper half-space by defining V(x, t) := V(x) for
all t ∈ R. We can easily find that V(x, t) ∈ A∞(X×R) ∩ RHq(X×R) with q > (Q + 1)/2,
if 0 ≤ V(x) ∈ A∞(X) ∩ RHq(X) with q > (Q + 1)/2. Therefore, it follows from Lemma 1
that L+-harmonic functions are locally Hölder continuous on X×R+.
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Lemma 2. Suppose the complete Dirichlet metric measure space (X, d, μ, E ) satisfies (2) and
(5). Let 0 ≤ V ∈ A∞(X) ∩ RHq(X) with q > (Q + 1)/2. If u ∈ HL2,α√

L
(X × R+) with

−1/2 < α < 0, then there exists a constant C > 0 such that, for all x ∈ X and t > 0,

|t∂tu(x, t)| ≤ C[μ(B(x, t))]α‖u‖HL2,α√
L

.

Proof. Let ε > 0. Given −ε < h < ε, for any x ∈ X and t > ε, set

u(x, t; h) :=
u(x, t + h)− u(x, t)

h
.

It follows that u(·, ·; h) is an L+-harmonic function on X× (ε, ∞); see the proof of [18]
(Lemma 4.1).

Then, by the mean value property in Lemma 1, we conclude that, for any t > 2ε,

|u(x, t; h)| ≤ C

( 
B(x,t/2)

 3t/2

t/2
|u(y, s; h)|2dsdμ(y)

)1/2

, (7)

which, combined with the argument in the proof of Jiang-Li [18] (Lemma 4.1), yields, for
each t > 3ε, that

|tu(x, t; h)| ≤ C

( 
B(x,2t)

ˆ 2t

0
|s∂su(y, s)|2 ds

s
dμ(y)

)1/2

.

This implies that, for each t > 3ε,

|t∂tu(x, t)| ≤ C[μ(B(x, t))]α‖u‖HL2,α√
L

.

Letting ε → 0 indicates that the above estimate holds for every t > 0.

Lemma 3. Assume the complete Dirichlet metric measure space (X, d, μ, E ) satisfies (2) and (5).
Suppose 0 ≤ V ∈ A∞(X) ∩ RHq(X) with q > (Q + 1)/2, and max{−1/2,−1/2N} < α < 0.
If u ∈ HL2,α√

L
(X×R+), then there exists a constant C > 0 such that, for any x ∈ X and t, ε > 0,

ˆ
X

|u(y, ε)|2
(t + d(x, y))μ(B(x, t + d(x, y)))

dμ(y)

≤ C(1 + t−1)‖u(·, ε)‖2
L∞(B(x,2)) + C([μ(B(x, 1))]2α + ε2Nα[μ(B(x, ε))]2α)‖u‖2

HL2,α√
L

.

Proof. By Lemma 1, u(·, ·) is locally bounded and locally Hölder continuous in X ×R+.
The integral is split into B(x, 1) and X\B(x, 1). For the local part B(x, 1), it holds that

ˆ
B(x,1)

|u(y, ε)|2
(t + d(x, y))μ(B(x, t + d(x, y)))

dμ(y) ≤ C
t
‖u(·, ε)‖2

L∞(B(x,1)).

For the global part X\B(x, 1), by the annulus argument, we have

ˆ
X\B(x,1)

|u(y, ε)|2
(t + d(x, y))μ(B(x, t + d(x, y)))

dμ(y)

≤ C
∞

∑
j=1

2−j
 2j

2j−1

 
B(x,2j)

|u(y, ε)|2dμ(y)d s

≤ C
∞

∑
j=1

2−j
 

Ej

|u(y, ε)− u(y, s)|2dμ(y)d s
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+ C
∞

∑
j=1

2−j
 

Ej

|u(y, s)− uEj |2dμ(y)ds + C
∞

∑
j=1

2−j|uEj |2

=: C(I1 + I2 + I3),

where we denote the cylinder B(x, 2j)× [2j−1, 2j) by Ej for simplicity.
For the term I1, it holds by Lemma 2 and −1/2N < α that

I1 =
∞

∑
j=1

2−j
 

Ej

∣∣∣∣ˆ s

ε
∂ru(y, r)dr

∣∣∣∣2dμ(y)d s

≤ C‖u‖2
HL2,α√

L

∞

∑
j=1

2−j
 

Ej

(ˆ s

ε
[μ(B(y, r))]α

dr
r

)2
dμ(y)d s

≤ C‖u‖2
HL2,α√

L

∞

∑
j=1

2−j

{
[μ(B(x, 1))]2α +

(
2j

ε

)−2Nα

[μ(B(x, ε))]2α

}

≤ C
(
[μ(B(x, 1))]2α + ε2Nα[μ(B(x, ε))]2α

)
‖u‖2

HL2,α√
L

.

Above, in the second inequality, we used the fact that
ˆ s

ε
[μ(B(y, r))]α

dr
r

≤
ˆ s

ε
[μ(B(y, r))]α

dr
r

(
χ(0,2j−1)(ε) + χ(2j−1,∞)(ε)

)
≤
ˆ ∞

ε
[μ(B(y, r))]α

dr
r

χ(0,2j−1)(ε) +

ˆ ∞

2j−1
[μ(B(y, r))]α

dr
r

≤ C
{ˆ ∞

ε

( r
ε

)nα
[μ(B(y, ε))]α

dr
r

χ(0,2j−1)(ε) +

ˆ ∞

2j−1

(
r

2j−1

)nα

[μ(B(y, 2j−1))]α
dr
r

}
≤ C

{(
1 +

d(x, y)
ε

)−Nα

[μ(B(x, ε))]αχ(0,2j−1)(ε) +

(
1 +

d(x, y)
2j−1

)−Nα

[μ(B(x, 2j))]α
}

≤ C

{
[μ(B(x, 1))]α +

(
2j

ε

)−Nα

[μ(B(x, ε))]α
}

.

Now, we put us(·) := u(·, s). For the term I2, we use the Poincaré inequality to
deduce that

I2 ≤ 2
∞

∑
j=1

2−j

( 2j

2j−1

 
B(x,2j)

∣∣∣u(y, s)− (us)B(x,2j)

∣∣∣2dμ(y)ds +
 2j

2j−1

∣∣∣(us)B(x,2j) − uEj

∣∣∣2ds

)

≤ C
∞

∑
j=1

2−j

(
22j

 2j

2j−1

 
B(x,2j)

∣∣∇yu(y, s)
∣∣2dμ(y)ds +

 2j

2j−1

∣∣∣(us)B(x,2j) − uEj

∣∣∣2ds

)
. (8)

By the Hölder inequality and the Poincaré inequality, it holds that

 2j

2j−1

∣∣∣(us)B(x,2j) − uEj

∣∣∣2d s

=

 2j

2j−1

∣∣∣∣∣
 

B(x,2j)
u(y, s)dμ(y)−

 2j

2j−1

 
B(x,2j)

u(y, r)dμ(y)dr

∣∣∣∣∣
2

d s

=

 2j

2j−1

∣∣∣∣∣
 2j

2j−1

 
B(x,2j)

u(y, s)− u(y, r)dμ(y)dr

∣∣∣∣∣
2

d s
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≤
 

B(x,2j)

 2j

2j−1

 2j

2j−1
|u(y, s)− u(y, r)|2drdsdμ(y)

≤ C22j
 

B(x,2j)

 2j

2j−1
|∂su(y, s)|2dsdμ(y).

This, together with (8), gives that

I2 ≤ C
∞

∑
j=1

2−j22j
 2j

2j−1

 
B(x,2j)

|∇u(y, s)|2dμ(y)d s

≤ C
∞

∑
j=1

2−j
ˆ 2j

0

 
B(x,2j)

|s∇u(y, s)|2dμ(y)
ds
s

≤ C
∞

∑
j=1

2−j[μ(B(x, 2j))]2α‖u‖2
HL2,α√

L

≤ C[μ(B(x, 1))]2α‖u‖2
HL2,α√

L

.

As Ej = B(x, 2j)× [2j−1, 2j), it holds Ej, Ej+1 ⊂ B(x, 2j+1)× [2j−1, 2j+1) =: Fj+1. For
the term I3, one writes

I3 ≤
∞

∑
j=1

2−j

(∣∣uE1

∣∣+ j

∑
i=2

∣∣uEi − uEi−1

∣∣)2

≤
∞

∑
j=1

2−j

(∣∣(u− u(·, ε))E1

∣∣+ ‖u(·, ε)‖L∞(B(x,2)) +
j

∑
i=2

(
|uEi − uFi |+ |uFi − uEi−1 |

))2

.

It follows from the Poincaré inequality that

|uEi − uFi |+ |uFi − uEi−1 | ≤ C

( 2i

2i−2

 
B(x,2i)

∣∣u(y, s)− uFi

∣∣2dμ(y)ds

)1/2

≤ C

( 2i

2i−2

 
B(x,2i)

∣∣∣u(y, s)− (us)B(x,2i)

∣∣∣2dμ(y)ds

)1/2

+ C

( 2i

2i−2

∣∣∣(us)B(x,2i) − uFi

∣∣∣2ds

)1/2

≤ C2i

( 2i

2i−2

 
B(x,2i)

|∇u(y, s)|2dμ(y)ds

)1/2

≤ C

(ˆ 2i

0

 
B(x,2i)

|s∇u(y, s)|2dμ(y)
ds
s

)1/2

≤ C[μ(B(x, 2i))]α‖u‖HL2,α√
L

≤ C[μ(B(x, 1))]α‖u‖HL2,α√
L

, (9)

and from Lemma 2 that∣∣(u− u(·, ε))E1

∣∣ ≤  
B(x,2)×[1,2)

|u(y, s)− u(y, ε)|dμ(y)ds

≤
 

B(x,2)×[1,2)

∣∣∣∣ˆ s

ε
∂ru(y, r)dr

∣∣∣∣dμ(y)ds
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≤ C‖u‖HL2,α√
L

 
B(x,2)×[1,2)

∣∣∣∣ˆ s

ε
[μ(B(y, r))]α

dr
r

∣∣∣∣dμ(y)ds

≤ C([μ(B(x, 1))]α + εNα[μ(B(x, ε))]α)‖u‖HL2,α√
L

. (10)

Here, we used the fact that∣∣∣∣ˆ s

ε
[μ(B(y, r))]α

dr
r

∣∣∣∣ ≤ C
(ˆ ∞

ε
[μ(B(y, r))]α

dr
r
+

ˆ ∞

1
[μ(B(y, r))]α

dr
r

)
≤ C

(ˆ ∞

ε

( r
ε

)nα
[μ(B(y, ε))]α

dr
r
+

ˆ ∞

1
rnα[μ(B(y, 1))]α

dr
r

)
≤ C(εNα[μ(B(x, ε))]α + [μ(B(x, 1))]α).

The above two estimates (9) and (10) yield that

I3 ≤ C
∞

∑
j=1

2−j‖u(·, ε)‖2
L∞(B(x,2))

+ C
∞

∑
j=1

2−j
(
[μ(B(x, 1))]α‖u‖HL2,α√

L

+ εNα[μ(B(x, ε))]α‖u‖HL2,α√
L

)2

≤ C
(
‖u(·, ε)‖2

L∞(B(x,2)) + [μ(B(x, 1))]2α‖u‖2
HL2,α√

L

+ ε2Nα[μ(B(x, ε))]2α‖u‖2
HL2,α√

L

)
.

In combination with the estimates of I1, I2 and I3, we obtain the required conclusion.

Lemma 4. Suppose the complete Dirichlet metric measure space (X, d, μ, E ) satisfies (2) with
Q > 1 and admits (5). Let 0 ≤ V ∈ A∞(X) ∩ RHq(X) with q > (Q + 1)/2. Assume that w is a
solution to (−∂2

t +L )w = 0 on X×R. If there exists m > 0 such that

ˆ
R

ˆ
X

|w(y, t)|2
(1 + t + d(x, y))m+1μ(B(x, 1 + t + d(x, y)))

dμ(y)dt < ∞,

then w ≡ 0.

Proof. For the proof, we refer to [18] (Corollary 4.5).

Proposition 1. Suppose the complete Dirichlet metric measure space (X, d, μ, E ) satisfies (2) with
Q > 1 and admits (5). Let 0 ≤ V ∈ A∞(X) ∩ RHq(X) with q > (Q + 1)/2. Assume that
u ∈ HL2,α√

L
(X×R+) with max{−1/2,−1/2N} < α < 0. For any x ∈ X and s, t > 0, it holds

that
u(x, t + s) = Pt(u(·, s))(x).

Proof. For each t > 0, let

v(x, t) := u(x, t + s)−Pt(u(·, s))(x).

As u(·, ·+ s) is Hölder continuous on X× (−s, ∞) and u(·, s) is Hölder continuous on
X, we see that

v(x, 0) := lim
t→0+

v(x, t) = lim
t→0+

{u(x, t + s)−Pt(u(·, s))(x)} = 0.
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We extend v(x, t) to X×R as

w(x, t) :=

⎧⎪⎨⎪⎩
v(x, t), t > 0;
0, t = 0;
−v(x,−t), t < 0.

Then, w is a solution to the Schrödinger equation (−∂2
t +L )w = 0 on X×R. We fix

a point y0 ∈ X. By Lemma 4 and the fact that w is odd with respect to t, it is sufficient to
show that there exists m > 0 such that

ˆ ∞

0

ˆ
X

|w(x, t)|2
(1 + t + d(x, y0))m+1μ(B(y0, 1 + t + d(x, y0)))

dμ(x)dt < ∞.

By Lemma 3, we have

ˆ ∞

0

ˆ
X

|u(x, s + t)|2
(1 + t + d(x, y0))m+1μ(B(y0, 1 + t + d(x, y0)))

dμ(x)d t

≤
ˆ ∞

0

1
(1 + t)m

ˆ
X

|u(x, s + t)|2
(1 + d(x, y0))μ(B(y0, 1 + d(x, y0)))

dμ(x)d t

≤ C
ˆ ∞

0

1
(1 + t)m ‖u(·, s + t)‖2

L∞(B(y0,2))d t

+ C
ˆ ∞

0

1
(1 + t)m

{(
[μ(B(y0, 1))]2α + (s + t)2Nα[μ(B(y0, s + t))]2α

)
‖u‖2

HL2,α√
L

}
d t

≤ C
ˆ ∞

0

1
(1 + t)m ‖u(·, s + t)‖2

L∞(B(y0,2))dt

+ C
ˆ ∞

0

1
(1 + t)m

{(
[μ(B(y0, 1))]2α + s2Nα[μ(B(y0, s))]2α

)
‖u‖2

HL2,α√
L

}
dt.

It follows from Lemma 2 that

‖u(·, s + t)‖L∞(B(y0,2)) ≤ ‖u(·, s + t)− u(·, s)‖L∞(B(y0,2)) + ‖u(·, s)‖L∞(B(y0,2))

≤
∥∥∥∥ˆ s+t

s
|∂ru(·, r)|dr

∥∥∥∥
L∞(B(y0,2))

+ ‖u(·, s)‖L∞(B(y0,2))

≤ C
(

1 +
2
s

)−Nα

[μ(B(y0, s))]α‖u‖HL2,α√
L

+ ‖u(·, s)‖L∞(B(y0,2))

= C(α, N, y0, s, ‖u‖HL2,α√
L

, ‖u(·, s)‖L∞(B(y0,2))).

Above, we used the fact that

sup
x∈B(y0,2)

ˆ s+t

s
|∂ru(x, r)|dr ≤ C sup

x∈B(y0,2)

ˆ s+t

s
[μ(B(x, r))]α‖u‖HL2,α√

L

dr
r

≤ C sup
x∈B(y0,2)

ˆ ∞

s

( r
s

)nα
[μ(B(x, s))]α‖u‖HL2,α√

L

dr
r

≤ C
(

1 +
2
s

)−Nα

[μ(B(y0, s))]α‖u‖HL2,α√
L

.

Therefore, one has
ˆ ∞

0

ˆ
X

|u(x, s + t)|2
(1 + t + d(x, y0))m+1μ(B(y0, 1 + t + d(x, y0)))

dμ(x)dt

≤ C(α, N, y0, s, ‖u‖HL2,α√
L

, ‖u(·, s)‖L∞(B(y0,2)))

ˆ ∞

0

dt
(1 + t)m
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≤ C(α, N, y0, s, ‖u‖HL2,α√
L

, ‖u(·, s)‖L∞(B(y0,2))) < ∞, (11)

provided m > 1.
For the remaining term, we need to prove that

I :=
ˆ ∞

0

ˆ
X

|Pt(u(·, s))(x)|2
(1 + t + d(x, y0))m+1μ(B(y0, 1 + t + d(x, y0)))

dμ(x)dt < ∞.

By the Poisson upper bound and the Hölder inequality, it holds that, for all t > 0

|Pt(u(·, s))(x)|2 ≤ C|Pt(1)(x)|
ˆ

X

t|u(y, s)|2
(t + d(x, y))μ(B(x, t + d(x, y)))

dμ(y)

≤ C
ˆ

X

t|u(y, s)|2
(t + d(x, y))μ(B(x, t + d(x, y)))

dμ(y).

Hence, we have

I ≤ C
ˆ ∞

0

ˆ
X

ˆ
X

1
(1 + t + d(x, y0))m+1μ(B(y0, 1 + t + d(x, y0)))

× t|u(y, s)|2
(t + d(x, y))μ(B(x, t + d(x, y)))

dμ(x)dμ(y)dt

≤ C

{ˆ ∞

0

ˆ
X

ˆ
B(y0,d(y,y0)/2)

+

ˆ ∞

0

ˆ
X

ˆ
B(y0,d(y,y0)/2)�

}
· · · dμ(x)dμ(y)dt

=: I1 + I2.

For any x ∈ B(y0, d(y, y0)/2), we have d(x, y) > d(y, y0) − d(x, y0) > d(y, y0)/2.
Hence, by (4) and Lemma 3, we have

I1 ≤ C
ˆ ∞

0

1
(1 + t)m dt

ˆ
X

t|u(y, s)|2
(t + d(y, y0))μ(B(y0, t + d(y, y0)))

dμ(y)

×
ˆ

X

dμ(x)
(1 + d(x, y0))μ(B(y0, 1 + d(x, y0)))

≤ C
ˆ ∞

0

1
(1 + t)m dt

ˆ
X

t|u(y, s)|2
(t + d(y, y0))μ(B(y0, t + d(y, y0)))

dμ(y)

≤ C
ˆ ∞

0

(1 + t)‖u(·, s)‖2
L∞(B(y0,2))

(1 + t)m dt

+ C
ˆ ∞

0

t[μ(B(y0, 1))]2α‖u‖2
HL2,α√

L

+ ts2Nα[μ(B(y0, s))]2α‖u‖2
HL2,α√

L

(1 + t)m dt

≤ C(α, N, y0, s, ‖u‖HL2,α√
L

, ‖u(·, s)‖L∞(B(y0,2))) < ∞,

provided m > 2. For any x ∈ B(y0, d(y, y0)/2)�, we have d(x, y0) > d(y, y0)/2. This,
together with Lemma 3, yields that

I2 ≤ C
ˆ ∞

0

dt
(1 + t)m

ˆ
X

|u(y, s)|2dμ(y)
(1 + d(y, y0))μ(B(y0, 1 + d(y, y0)))

×
ˆ

B(y0,d(y,y0)/2)�

tdμ(x)
(t + d(x, y))μ(B(x, t + d(x, y)))

≤ C
ˆ ∞

0

1
(1 + t)m dt

ˆ
X

|u(y, s)|2
(1 + d(y, y0))μ(B(y0, 1 + d(y, y0)))

dμ(y)
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≤ C
ˆ ∞

0

‖u(·, s)‖2
L∞(B(y0,2)) + {[μ(B(y0, 1))]2α + s2Nα[μ(B(y0, s))]2α}‖u‖2

HL2,α√
L

(1 + t)m dt

≤ C(α, N, y0, s, ‖u‖HL2,α√
L

, ‖u(·, s)‖L∞(B(y0,2))) < ∞,

provided m > 1. Therefore, it holds that

ˆ ∞

0

ˆ
X

|Pt(u(·, s))(x)|2
(1 + t + d(x, y0))m+1μ(B(y0, 1 + t + d(x, y0)))

dμ(x)dt < ∞,

which, together with (11), yields that

ˆ ∞

0

ˆ
X

|w(x, t)|2
(1 + t + d(x, y0))m+1μ(B(y0, 1 + t + d(x, y0)))

dμ(x)dt < ∞,

provided m > 2. The Liouville theorem (Lemma 4) then implies w(x, t) ≡ 0, which means
u(x, t + s) ≡ Pt(u(·, s))(x) and thus finishes the proof.

Next, for every u ∈ HL2,α√
L
(X×R+), we will show that us(·) = u(·, s) is bounded in

L2,α(X) uniformly for all s > 0. To this end, we introduce a notation

|||μ∇t , f |||α := sup
B⊂X

1
[μ(B)]α

(ˆ rB

0

 
B
|t∂tPt f (x)|2dμ(x)

dt
t

)1/2
,

for any

f ∈ M2 :=
⋃

x0∈X

⋃
0<β≤1

L2(X, (1 + d(x, x0))
−βμ(B(x0, 1 + d(x, x0)))

−1dμ(x)),

and establish Lemmas 5–7 as follows.

Lemma 5. Assume the complete Dirichlet metric measure space (X, d, μ, E ) satisfies (2) with
Q > 1 and admits (5). Given a ball B = B(xB, rB), a function f ∈ M2 and an L2-function g
supported on B, set

F(x, t) := t∂tPt f (x) and G(x, t) := t∂tPtg(x),

for any (x, t) ∈ X×R+. If |||μ∇t , f |||α < ∞, then there exists a constant C > 0 such that

ˆ ∞

0

ˆ
X
|F(x, t)G(x, t)|dμ(x)

dt
t
≤ C[μ(B)]1/2+α|||μ∇t , f |||α‖g‖L2(B).

Proof. Let us consider the square function G(h) given by

G(h)(x) :=
(ˆ ∞

0
|t∂tPth(x)|2 dt

t

)1/2
.

By the spectral theory, the function G(h) is bounded on L2(X). Let

T(B) := {(x, t) ∈ X×R+ : x ∈ B, 0 < t < rB} = B× (0, rB),

and write
ˆ ∞

0

ˆ
X
|F(x, t)G(x, t)|dμ(x)

dt
t

=

ˆ
T(2B)

|F(x, t)G(x, t)|dμ(x)
dt
t
+

∞

∑
k=2

ˆ
T(2k B)\T(2k−1B)

|F(x, t)G(x, t)|dμ(x)
dt
t
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=: A1 +
∞

∑
k=2

Ak.

Using the Hölder inequality and the L2-boundedness of G, we obtain

A1 ≤
(ˆ 2rB

0

ˆ
2B
|t∂tPt f (x)|2dμ(x)

dt
t

)1/2

‖G(g)‖L2 ≤ C[μ(B)]1/2+α|||μ∇t , f |||α‖g‖L2(B).

Let us estimate Ak for k = 2, 3, . . . . Note that, for any (x, t) ∈ T(2kB)\T(2k−1B) and
y ∈ B, we have t + d(x, y) ≥ 2k−2rB. It holds

|G(x, t)| =
∣∣∣∣ˆ

X
t∂t pv

t (x, y)g(y)dμ(y)
∣∣∣∣

≤ C
ˆ

X

t
t + d(x, y)

|g(y)|
μ(B(x, t + d(x, y)))

dμ(y)

≤ C
ˆ

X

t
2krB

|g(y)|
μ(B(x, 2krB))

dμ(y)

≤ C
t

2krB

‖g‖L1(B)

μ(2kB)
,

which, together with the Hölder inequality and (3), implies that
ˆ

T(2k B)\T(2k−1B)
|F(x, t)G(x, t)|dμ(x)

dt
t

≤ C

(ˆ 2krB

0

 
2k B
|t∂tPt f (x)|2dμ(x)

dt
t

)1/2

‖g‖L1(B)

≤ C[μ(2kB)]α|||μ∇t , f |||α‖g‖L1(B)

≤ C2knα[μ(B)]1/2+α|||μ∇t , f |||α‖g‖L2(B).

Summing over k leads to

ˆ ∞

0

ˆ
X
|F(x, t)G(x, t)|dμ(x)

dt
t
=

∞

∑
k=1

Ak ≤ C[μ(B)]1/2+α|||μ∇t , f |||α‖g‖L2(B).

This completes the proof of Lemma 5.

Lemma 6. Assume the complete Dirichlet metric measure space (X, d, μ, E ) satisfies (2) with
Q > 1 and admits (5). Suppose B, f , g, F, G are defined as in Lemma 5. If |||μ∇t , f |||α < ∞, then we
have the equality:

ˆ
X

f (x)g(x)dμ(x) = 4
ˆ ∞

0

ˆ
X

F(x, t)G(x, t)dμ(x)
dt
t

.

Proof. From Lemma 5, we find that
ˆ ∞

0

ˆ
X
|F(x, t)G(x, t)|dμ(x)

dt
t
< ∞.

By the dominated convergence theorem, the following integral converges absolutely
and satisfies

ˆ ∞

0

ˆ
X

F(x, t)G(x, t)dμ(x)
dt
t
= lim

δ→0

ˆ 1/δ

δ

ˆ
X

F(x, t)G(x, t)dμ(x)
dt
t

.
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Next, by the commutative property of the semigroup {Pt}t>0, we have
ˆ

X
F(x, t)G(x, t)dμ(x) =

ˆ
X

f (x)t2L P2tg(x)dμ(x).

This, together with Fubini’s theorem, gives

ˆ ∞

0

ˆ
X

F(x, t)G(x, t)dμ(x)
dt
t
= lim

δ→0

ˆ 1/δ

δ

ˆ
X

f (x)t2L P2tg(x)dμ(x)
dt
t

= lim
δ→0

ˆ
X

f (x)
ˆ 1/δ

δ
t2L P2tg(x)

dt
t

dμ(x)

= lim
δ→0

ˆ
X

f1(x)
ˆ 1/δ

δ
t2L P2tg(x)

dt
t

dμ(x)

+ lim
δ→0

ˆ
X

f2(x)
ˆ 1/δ

δ
t2L P2tg(x)

dt
t

dμ(x)

=: I1 + I2,

where f1(x) := f χ4B(x) and f2(x) := f χ(4B)�(x).
We first consider the term I1. It follows from the spectral theory that

g(x) = 4 lim
δ→0

ˆ 1/δ

δ
t2L P2tg(x)

dt
t

in L2(X). Hence, it holds

I1 = lim
δ→0

ˆ
X

f1(x)
ˆ 1/δ

δ
t2L P2tg(x)

dt
t

dμ(x) =
1
4

ˆ
X

f1(x)g(x)dμ(x).

In order to estimate the term I2, we need to show that, for any x ∈ (4B)�, there exists a
constant C = C(xB, rB) > 0 such that

sup
δ>0

∣∣∣∣∣
ˆ 1/δ

δ
t2L P2tg(x)

dt
t

∣∣∣∣∣ ≤ C
‖g‖L2(B)

(1 + d(x, xB))μ(B(xB, 1 + d(x, xB)))
. (12)

Recall that supp g ⊂ B. For any x ∈ X\4B and y ∈ B, we have

3d(x, xB)/4 ≤ d(x, y) ≤ 5d(x, xB)/4.

Hence, it follows from the Poisson upper bound and (6) that, for any t > 0,∣∣∣t2L P2tg(x)
∣∣∣

≤ C
ˆ

B

2t
(2t + d(x, y))

1
μ(B(x, 2t + d(x, y)))

(
2t + d(x, y)

ρ(y)

)−2

|g(y)|dμ(y)

≤ C
ˆ

B

t
(t + d(x, xB))

1
μ(B(x, t + d(x, xB)))

⎛⎜⎝ρ(xB)
(

1 + rB
ρ(xB)

)k0/(k0+1)

t + d(x, xB)

⎞⎟⎠
2

|g(y)|dμ(y)

≤ C(xB, rB)
t

(t + d(x, xB))3μ(B(xB, t + d(x, xB)))
‖g‖L1(B)

≤ C(xB, rB)
‖g‖L2(B)

(1 + d(x, xB))μ(B(xB, 1 + d(x, xB)))

t
(t + d(x, xB))2 .
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The above estimate, together with the fact
ˆ ∞

0

t
(t + d(x, xB))2

dt
t
≤
ˆ ∞

0

dt
(t + rB)2 ≤ C(rB) < ∞

yields that∣∣∣∣∣
ˆ 1/δ

δ
t2L P2tg(x)

dt
t

∣∣∣∣∣ ≤
ˆ ∞

0

∣∣∣t2L P2tg(x)
∣∣∣dt

t

≤ C(xB, rB)
‖g‖L2(B)

(1 + d(x, xB))μ(B(xB, 1 + d(x, xB)))
.

Accordingly, (12) follows readily. Now, we estimate the term I2. Since f ∈ M2,
the estimate (12) yields that

sup
δ>0

ˆ
X

∣∣∣∣∣ f2(x)
ˆ 1/δ

δ
t2L P2tg(x)

dt
t

∣∣∣∣∣dμ(x) ≤ C(g, xB, rB) < ∞.

This allows us to pass the limit inside the integral of I2. Hence, we conclude

I2 = lim
δ→0

ˆ
X

f2(x)
ˆ 1/δ

δ
t2L P2tg(x)

dt
t

dμ(x) =
1
4

ˆ
X

f2(x)g(x)dμ(x).

Combining the previous formulas for I1 and I2, we complete the proof.

Recall that we set us(·) = u(·, s) for any s > 0.

Lemma 7. Suppose the complete Dirichlet metric measure space (X, d, μ, E ) satisfies (2) with
Q > 1 and admits (5). Let 0 ≤ V ∈ A∞(X) ∩ RHq(X) with q > (Q + 1)/2. Assume that u ∈
HL2,α√

L
(X×R+) with max{−1/2,−1/2N} < α < 0.

Then, there exists a positive constant C such that, for every s > 0,

|||μ∇t ,us |||α ≤ C‖u‖HL2,α√
L

.

Proof. Let B = B(xB, rB). It holds by Proposition 1 that

1
[μ(B)]α

(ˆ rB

0

 
B
|t∂tPtus|2dμ

dt
t

)1/2
=

1
[μ(B)]α

(ˆ rB

0

 
B
|t∂tu(y, t + s)|2dμ(y)

dt
t

)1/2
.

If rB > s, by the doubling property (2), we have that

1
[μ(B)]α

(ˆ rB

0

 
B
|t∂tPtus|2dμ

dt
t

)1/2

≤ 1
[μ(B)]α

(
1

μ(B)

ˆ rB+s

0

ˆ
B(xB ,rB+s)

|t∂tu(y, t)|2dμ(y)
dt
t

)1/2

≤ C
[μ(2B)]α

(ˆ 2rB

0

 
2B
|t∂tu(y, t)|2dμ(y)

dt
t

)1/2

≤ C‖u‖HL2,α√
L

.
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Otherwise, rB ≤ s, Lemma 2 together with elementary integration implies that there
exists a positive constant C independent of rB and s such that

1
[μ(B)]α

(ˆ rB

0

 
B
|t∂tPtus|2dμ

dt
t

)1/2

≤ C
[μ(B)]α

(ˆ rB

0

 
B

t2

(t + s)2 [μ(B(y, t + s))]2α‖u‖2
HL2,α√

L

dμ(y)
dt
t

)1/2

≤ C
[μ(B)]α

(ˆ rB

0

 
B

(
t

rB

)2
[μ(B(y, rB))]

2α‖u‖2
HL2,α√

L

dμ(y)
dt
t

)1/2

≤ C‖u‖HL2,α√
L

,

which, together with the case rB > s, means that

|||μ∇t ,us |||α ≤ C‖u‖HL2,α√
L

,

which thus finishes the proof.

Proposition 2. Suppose the complete Dirichlet metric measure space (X, d, μ, E ) satisfies (2) with
Q > 1 and admits (5). Let 0 ≤ V ∈ A∞(X) ∩ RHq(X) with q > (Q + 1)/2. Assume that
u ∈ HL2,α√

L
(X × R+) with max{−1/2,−1/2N} < α < 0. Then, for any s > 0, we have

us ∈ L2,α(X) and there exists a constant C > 0, independent of s, such that

‖us‖L2,α ≤ C‖u‖HL2,α√
L

.

Proof. Since u ∈ HL2,α√
L
(X ×R+), it follows from Lemma 3 that us ∈ M2. Given a ball

B ⊂ X, for any L2 function g supported on B, it follows from Lemmas 5, 6 and 7 that∣∣∣∣ˆ
X

usgdμ

∣∣∣∣ = 4
∣∣∣∣ˆ ∞

0

ˆ
X

t∂tPtust∂tPtgdμ
dt
t

∣∣∣∣
≤ C[μ(B)]1/2+α|||μ∇t ,us |||α‖g‖L2(B)

≤ C[μ(B)]1/2+α‖u‖HL2,α√
L

‖g‖L2(B).

This together with the L2-duality argument shows that

1
[μ(B)]α

( 
B
|us|2dμ

)1/2
=

1
[μ(B)]1/2+α

sup
‖g‖L2(B)≤1

∣∣∣∣ˆ
X

usgdμ

∣∣∣∣
≤ C sup

‖g‖L2(B)≤1
‖u‖HL2,α√

L

‖g‖L2(B) ≤ C‖u‖HL2,α√
L

.

Then, by taking the supremum over all the ball B, it holds that

‖us‖L2,α ≤ C‖u‖HL2,α√
L

,

which completes the proof.

4. From Initial Value to Solution

In this section, we will show that every Morrey function f induces a Carleson type
measure t|∇Pt f |2dμdt. In order to estimate the space derivation part t|∇xPt f |2dμdt,
we introduce a result of Jiang-Li [18] (Proposition 5.2), which establishes a Caccioppoli
inequality for the Schrödinger Poisson semigroup in a tent domain B(xB, rB)× (0, rB).
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Proposition 3. Suppose the complete Dirichlet metric measure space (X, d, μ, E ) satisfies (2) with
Q > 1 and admits (5). Let 0 ≤ V ∈ A∞(X) ∩ RHq(X) with q > max{1, Q/2}. Assume that g
satisfies for some y ∈ X that

ˆ
X

|g(x)|
(1 + d(x, y))μ(B(y, 1 + d(x, y)))

dμ(x) < ∞.

Then, for any ball B = B(xB, rB), it holds that

ˆ rB

0

ˆ
B
|t∇xPtg|2dμ

dt
t
≤ C

ˆ 2rB

0

ˆ
2B

(
|t2∂2

t Ptg||Ptg|+ |Ptg|2
)

dμ
dt
t

.

Theorem 2. Assume the complete Dirichlet metric measure space (X, d, μ, E ) satisfies (2) with
Q > 1 and admits (5). Let V ∈ A∞(X) ∩ RHq(X) with q ≥ max{1, Q/2}. If f ∈ L2,α(X) with
−1/2 < α < 0, then u(x, t) = Pt f (x) ∈ HL2,α√

L
(X ×R+). Moreover, there exists a constant

C > 0 such that
‖u‖HL2,α√

L

≤ C‖ f ‖L2,α .

Proof. For any ball B = B(xB, rB), it holds that(ˆ rB

0

 
B
|t∇Pt f |2dμ

dt
t

)1/2
≤

∞

∑
k=1

(ˆ rB

0

 
B
|t∇Pt fk|2dμ

dt
t

)1/2
=:

∞

∑
k=1

Jk,

where f1 := f χ4B and fk := f χ2k+1B\2k B for k ∈ {2, 3, 4, . . . }.
For the term J1, we apply the L2-boundedness of the Riesz operator∇xL −1/2 to obtain

that (ˆ rB

0

 
B
|t∇Pt f1|2dμ

dt
t

)1/2
≤
(

1
μ(B)

ˆ ∞

0

ˆ
X
|t∇Pt f1|2dμ

dt
t

)1/2

≤ C
(

1
μ(B)

ˆ ∞

0

ˆ
X
|t
√

L Pt f1|2dμ
dt
t

)1/2

≤ C
(

1
μ(B)

ˆ
X
| f1|2dμ

)1/2

≤ C[μ(B)]α‖ f ‖L2,α .

Since fk ∈ L2,α(X), it is easy to see fk ∈ M2. Hence, fk satisfies the requirement in
Proposition 3, which implies that, for any k ∈ {2, 3, 4, . . . },

Jk ≤ C

(ˆ 2rB

0

 
2B

(
|t∂tPt fk|2 + |t2∂2

t Pt fk||Pt fk|+ |Pt fk|2
)dμdt

t

)1/2

.

Then, for any x ∈ 2B, we apply the Poisson upper bound to obtain

|Pt fk(x)|+ |t∂tPt fk(x)|+ |t2∂2
t Pt fk(x)|

≤ C
ˆ

2k+1B\2k B

t
(t + d(x, y))

| f (y)|
μ(B(x, t + d(x, y)))

dμ(y)

≤ C2−k t
rB

 
2k+1B

| f (y)|dμ(y)

≤ C2−k t
rB

[μ(2k+1B)]α‖ f ‖L2,α

≤ C2−k t
rB

[μ(B)]α‖ f ‖L2,α ,
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which yields
Jk ≤ C2−k[μ(B)]α‖ f ‖L2,α .

Hence, it follows that

‖Pt f ‖HL2,α√
L

= sup
B⊂X

1
[μ(B)]α

(ˆ rB

0

 
B
|t∇Pt f |2dμ

dt
t

)1/2
≤

∞

∑
k=1

Jk ≤ C‖ f ‖L2,α .

This completes the proof.

5. From Solution to Initial Value

In this section, we will show that, for every function u ∈ HL2,α√
L
(X×R+), there is a

function f ∈ L2,α(X) such that u(x, t) = Pt f (x) with the desired norm control.

Theorem 3. Suppose the complete Dirichlet metric measure space (X, d, μ, E ) satisfies (2) with
Q > 1 and admits (5). Assume 0 ≤ V ∈ A∞(X) ∩ RHq(X) with q ≥ (Q + 1)/2, and
max{−1/2,−1/2N} < α < 0. If u ∈ HL2,α√

L
(X × R+), then there exists a function f ∈

L2,α(X) such that u(x, t) = Pt f (x). Moreover, there exists a constant C > 0, independent of u,
such that

‖ f ‖L2,α ≤ C‖u‖HL2,α√
L

.

Proof. Without loss of generality, we may assume q > (Q + 1)/2 because of the self
improvement of the RHq(X) class. Suppose u ∈ HL2,α√

L
(X × R+). For any 0 < ε < 1,

by Proposition 2, we have
‖uε‖L2,α ≤ C‖u‖HL2,α√

L

. (13)

Next, we will fix a point x0 and look for a function f ∈ L2,α(X) through L2(B(x0, 2j))-
boundedness of {uε} for each j ∈ N. Indeed, for every j ∈ N, we use (13) to obtain

ˆ
B(x0,2j)

|uε(x)|2dμ(x) ≤ C[μ(B(x0, 2j))]1+2α‖u‖2
HL2,α√

L

,

which implies that the family {uε(·)}0<ε<1 is uniformly bounded in L2(B(x0, 2j)). Then, the
Eberlein–Šmulian theorem and the diagonal method imply that there exists a sequence εk →
0 (k → ∞) and a function gj ∈ L2(B(x0, 2j)) such that uεk → gj weakly in L2(B(x0, 2j)),
for any j ∈ N. Now, we define a function f (x) by

f (x) = gj(x),

if x ∈ B(x0, 2j), j = 1, 2, . . . . It is easy to see that f is well defined on X =
⋃∞

j=1 B(x0, 2j).
We can check that, for any ball B ⊂ X,

ˆ
B
| f (x)|2dμ(x) ≤ C[μ(B)]1+2α‖u‖2

HL2,α√
L

,

which implies that
‖ f ‖L2,α ≤ C‖u‖HL2,α√

L

.

Finally, we will show that u(x, t) = Pt f (x). By Lemma 1, we know that u(x, ·) is
continuous on R+. This together with Proposition 1 yields that

u(x, t) = lim
k→+∞

u(x, t + εk) = lim
k→+∞

Ptuεk (x).

395



Mathematics 2022, 10, 1112

This reduces to verify that

lim
k→+∞

Ptuεk (x) = Pt f (x). (14)

Indeed, we recall that pv
t (x, y) is the kernel of Pt, and for any � ∈ N, we write

Ptuεk (x) =
ˆ

B(x,2�t)
pv

t (x, y)uεk (y)dμ(y) +
ˆ

X\B(x,2�t)
pv

t (x, y)uεk (y)dμ(y).

Using the Poisson upper bound, the Hölder inequality and (13), we obtain∣∣∣∣∣
ˆ

X\B(x,2�t)
pv

t (x, y)uεk (y)dμ(y)

∣∣∣∣∣ ≤ C
∞

∑
i=�

2−i
 

B(x,2i+1t)
|uεk (y)|dμ(y)

≤ C
∞

∑
i=�

2−i[μ(B(x, 2it))]α‖uεk‖L2,α

≤ C2−�[μ(B(x, t))]α‖u‖HL2,α√
L

,

where C is a positive constant independent of k. One has

0 ≤ lim
�→+∞

lim
k→+∞

∣∣∣∣∣
ˆ

X\B(x,2�t)
pv

t (x, y)uεk (y)dμ(y)

∣∣∣∣∣
≤ lim

�→+∞
C2−�[μ(B(x, t))]α‖u‖HL2,α√

L

= 0.

Therefore, it holds that

lim
k→+∞

Ptuεk (x) = lim
�→+∞

lim
k→+∞

ˆ
B(x,2�t)

pv
t (x, y)uεk (y)dμ(y) = Pt f (x),

which yields (14) readily. Then, we show that

u(x, t) = Pt f (x).

The proof of Theorem 3 is complete.

6. Conclusions

In this article, we solved the Dirichelt problem for the Schrödinger equation on the
metric measure space. We obtained that a Schrödinger harmonic function satisfies the
Carleson type condition if and only if it is the Poisson extension of a Morrey function. This
continues the line of research on the Dirichlet problem with boundary value in Lp space
and BMO space, extends the result in Song-Tian-Yan [8] from the Euclidean space to the
metric measure space and improves the reverse Hölder index from q ≥ n to q ≥ (n + 1)/2.
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