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Preface to “"Recent Developments of Function Spaces
and Their Applications I”

As one of the central topics of modern harmonic analysis, the theory of function spaces has found
wide applications in various branches of mathematics, such as harmonic analysis, partial differential
equations, geometric analysis, and potential analysis, and has, for a long time, received a lot of
attention. The development of various function spaces on different underlying spaces provides many
new working spaces and research tools for the study of other related analysis fields.

This book contains 13 papers from the Special Issue “Recent Developments in Function Spaces
and Their Applications I”, including 12 research articles and 1 survey article. These papers concern
some of the recent progress in the theory of various function spaces, such as Morrey and weak Morrey
spaces, Hardy-type spaces, John—-Nirenberg spaces, Sobolev spaces,and Besov and Triebel-Lizorkin
spaces, as well as their applications in harmonic analysis, the boundedness of operators, potential
analysis, and partial differential equations.

As the guest editors of the Special Issue, we hope that this book will be interesting and useful to

researchers and graduate students in harmonic analysis, function spaces, and related areas.

Dachun Yang and Wen Yuan
Editors

vii
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Abstract: Let j € (0,00)" be an exponent vector and A be a general expansive matrix on R".
Let H' f\ (R") be the anisotropic mixed-norm Hardy spaces associated with A defined via the non-
tangential grand maximal function. In this article, using the known atomic characterization of
Hi (R™), the authors characterize this Hardy space via molecules with the best possible known decay.
As an application, the authors establish a criterion on the boundedness of linear operators from
H f; (R™) to itself, which is used to explore the boundedness of anisotropic Calder6n-Zygmund oper-
ators on H' i (R™). In addition, the boundedness of anisotropic Calder6n-Zygmund operators from
HZ (R") to the mixed-norm Lebesgue space L? (R") is also presented. The obtained boundedness of
these operators positively answers a question mentioned by Cleanthous et al. All of these results are
new, even for isotropic mixed-norm Hardy spaces on R".

Keywords: expansive matrix; (mixed-norm) Hardy space; molecule; Calderén-Zygmund operator

1. Introduction
This article is devoted to exploring the molecular characterization of the anisotropic

mixed-norm Hardy space H), (R") from [1], where 7 € (0, 0)" is an exponent vector and A
is a general expansive matrix on R” (see Definition 1 below). Recall that, as a generalization
of the classical Lebesgue space L?(R"), the mixed-norm Lebesgue space L¥(R"), in which
the constant exponent p is replaced by an exponent vector j € [1,]", was studied by
Benedek and Panzone [2] in 1961, which can be traced back to Hérmander [3]. Moreover,
based on the mixed-norm Lebesgue space, the real-variable theory of various mixed-norm
function spaces has rapidly developed over the last two decades; as can be seen, for instance,
in ref. [4] on mixed-norm a-modulation spaces, in ref. [5] on mixed-norm Morrey spaces, in
refs. [1,6-12] on mixed-norm Hardy spaces, as well as in [13-17] on mixed-norm Besov
spaces and mixed-norm Triebel-Lizorkin spaces. For more details on the progress made
with regard to the theory of mixed-norm function spaces, we refer the reader to [18-27]
as well as to the survey article [28]. In particular, Cleanthous et al. [6] first introduced

the anisotropic mixed-norm Hardy space Hg (R") associated with an anisotropic quasi-
homogeneous norm | - |z, where @ € [1,00)" and p € (0, c0)", via the non-tangential grand
maximal function, and then established its various maximal function charagterizations.
Later on, Huang et al. [10,11] further completed the real-variable theory of Hg (R™).

On the other hand, motivated by the important role of discrete groups of dilations in
wavelet theory, Bownik [29] originally introduced the anisotropic Hardy space Hf‘ (R™),
where p € (0,c0). Nowadays, the anisotropic setting has proved useful not only in
developing the function spaces arising in harmonic analysis, but also in some other areas
such as the wavelet theory (see, for instance [29-32]) and partial differential equations

Mathematics 2021, 9, 2216. https:/ /doi.org/10.3390/math9182216
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(see, for instance [33,34]). Very recently, inspired by the previous works on both the
Hardy spaces Hg (R") and HY (R"), Huang et al. [1] introduced the anisotropic mixed-

norm Hardy space HZ(R") associated with A, via the non-tangential grand maximal
function, and established its various real-variable characterizations, respectively, by means
of the radial or the non-tangential maximal functions, atoms, finite atoms, the Lusin area
function, the Littlewood-Paley g-function or g%-function. The space H (R") includes the
aforementioned Hardy space Hg (R") as a special case; see Remark 1(i) below.

However, the molecular characterization of H Z (R™), which can be conveniently used
to study the boundedness of many important operators (for instance, Calderén-Zygmund

operators) on the space H i (R"), is still missing. Thus, to further complete the real-variable
theory of anisotropic mixed-norm Hardy spaces H Z (R™), in this article, we characterize

the space H f‘ (R") via molecules, in which the range of the decay index ¢ is in a sense the
best possible known decay (see Remark 1(iv) below). As an application, we then obtain a

criterion on the boundedness of linear operators on Hf‘ (R") (see Theorem 3 below), which
is used to prove the boundedness of anisotropic Calder6n-Zygmund operators on Hf‘ (R™).

In addition, the boundedness of anisotropic Calder6n-Zygmund operators from H Z (R™)
to the mixed-norm Lebesgue space L (R") is also presented. When A is as in (6) below,
the obtained boundedness of these Calderén—-Zygmund operators positively answers a
question mentioned by Cleanthous et al. in [6] (p. 2760); see [1,10] and Remark 2(iv) for
more details. All these results are new, even for the isotropic mixed-norm Hardy spaces
on R". Here, we should point out that a molecular characterization of HZ(R”) has also
been independently established in [35], in which the range of the decay index ¢ is just a
proper subset of that from the present article. In this sense, the molecular characterization
obtained in [35] is covered by the corresponding result of the present article.

The remainder of this article is organized as follows.

In Section 2, we present some notions on expansive matrices, homogeneous quasi-
norms, the mixed-norm Lebesgue space L¥(R") and the anisotropic mixed-norm Hardy
space H f‘ (R™) (see Definitions 3 and 5 below).

Section 3 is devoted to characterizing the space H' f‘ (R") via molecules (see Theorem 1
below). To do this, we first give the notion of the anisotropic mixed-norm molecular Hardy

space HZ”’S’S(R") (see Definition 7 below). Then, by the known atomic characterization of

H Z(R") from [1] (Theorem 4.7) (see also Lemma 2 below), we have H Z(R") C Hf"r’s’e(]R”)
with continuous inclusion. Therefore, to complete the proof of Theorem 1, we only need to
show Hf"r’s’g(R”) C HZ (R") and the inclusion is continuous. Observe that, to obtain the
inclusion of this type, the general method is to decompose a molecule into an infinite linear
combination of the related atoms (see, for instance [36] (7.4) or [37] (3.23)), which does not
work in the present article since the uniformly upper bound estimate of the dual-bases of
the natural projection of each molecule on the infinite annuli of a dilated ball (see [36] (7.2)
or [37] (3.18)) is still unclear due to its anisotropic structure. To overcome this difficulty,
the main idea is to directly estimate the non-tangential maximal function of a molecule on
the infinite annuli of a dilated ball (see (16) below), in which we need fully use the integral
size condition of a molecule (see Definition 6(i) below). Then, we prove that H f" r5E (R™) is

continuously embedded into H, (R"), which completes the proof of Theorem 1.

As applications, in Section 4, we present the boundedness of anisotropic Calderén—
Zygmund operators from H f‘ (R") to the mixed-norm Lebesgue space L? (R") (see Theorem 2
below) or to itself (see Theorem 3 below). For this purpose, by the known finite atomic char-
acterization of H f‘ (R™), we first give the proof of Theorem 2. To prove Theorem 3, we then
obtain a technical lemma, which shows that, if T is an anisotropic Calderén-Zygmund oper-
ator of order / as in Definition 11, then, for any (7, r, £)-atom @, T () is a harmless constant
multiple of a (J, g, so, €)-molecule with sy and ¢, respectively, as in Definition 11 and (24)

2
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below; see Lemma 8 below. In addition, the density of H) (* (R") N C(R") in HZ(R”) is
also presented in Lemma 9 below. Using this density and the molecular characterization
of H Z(R”) from Section 3, we establish a useful criterion on the boundedness of linear
operators on H’; (R") (see Theorem 4 below), which shows that, if a linear operator T maps
each atom to a related molecule, then T has a unique bounded linear extension on H' Z (R™).
Applying this criterion and Lemma 8, we then prove Theorem 3.

Finally, we make some conventions on notations. Let 0 be the origin of R”, N := {1,2,...}
and Z, := {0} UN. We always use C to denote a positive constant which is independent
of the main parameters, but may vary from line to line. The notation f < ¢ means f < Cg
andif f < ¢ < f, then we write f ~ g. We also use the following convention: if f < Cg and
g=horg <h thenwewrite f Sg~horf g hratherthan f Sg=hor f Sg<h.
For each multi-index B := (B1,...,Bu) € (Z)" = Z'},let |B| := By +-- -+ B and

#o (DY (2
T \ox ox, )

For each r € [1,00], we denote by r’ its conjugate index, namely 1/r+1/r" = 1.
Moreover, if 7 := (rq,...,74) € [1,00]", we denote by 7 := (], ..., r},) its conjugate index.
In addition, for each set QO C R", we denote by QF the set R” \ Q, by 1, its characteristic
function, and by |Q)| its n-dimensional Lebesgue measure. For any s € R, we denote by [s]
the largest integer not greater than s. Throughout this article, the symbol C*®(R") denotes
the set of all infinitely differentiable functions on R".

2. Preliminaries

In this section, we present some notions on expansive matrices, mixed-norm Lebesgue
spaces and anisotropic mixed-norm Hardy spaces (see, for instance [1,2,29]).
We begin with recalling the notion of expansive matrices from [29] (p. 5, Definition 2.1).

Definition 1. An expansive matrix, i.e., a dilation, is a real n x n matrix A satisfying:

min [A| > 1,
Aea(A)

and here and thereafter, 0(A) denotes the set of all eigenvalues of A.

Let b := | det A|. Then, by [29] (p. 6, (2.7)), it is easy to see that b € (1, c0). By [29] (p.5,
Lemma 2.2), we know that there exists an open ellipsoid A, with [A| =1, and 7 € (1,0)
such that A C rA C AA. This further implies that, for any j € Z, B; := AJA is open,
B; C rBj C Bj,1and |Bj| = bl. For each x € R" and j € Z, an ellipsoid x + B, is called
a dilated ball. Hereinafter, we always use B to denote the collection of all such dilated
balls, namely:

%:z{x+Bj:x€R”andj€Z} 1)

and:
w::inf{ieZ: ri22}. @)
The following notion of the homogeneous quasi-norm is just [29] (p. 6, Definition 2.3).

Definition 2. For any given dilation A, a homogeneous quasi-norm, with respect to A, is a
measurable mapping p : R" — [0, co) satisfying:

(i) Ifx #0,then p(x) € (0,00);

(i) Foranyx € R", p(Ax) = bp(x);

(iii) There exists some R € [1,00) such that, for any x, y € R", p(x +y) < R[p(x) + p(y)].

3
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Throughout this article, for a fixed dilation A, by [29] (p. 6, Lemma 2.4), we can use
the following step homogeneous quasi-norm p defined by setting for any x € R":

p(x) =Y bflng\Bj(x) when x # 0, orelse p(0):=0 (3)
jez
for both simplicity and convenience.
Forany p:= (p1,...,pn) € (0,00)", let:
p— :=min{py,...,pu}, p+:=max{py,...,ps} and pE (0,min{p_,1}). (4
The following definition of mixed-norm Lebesgue spaces is from [2].

Definition 3. Let # := (p1,...,pu) € (0,00]". The mixed-norm Lebesgue space LF(R") is
defined to be the set of all measurable functions f on R" such that:

P2 pn
P
1l sy = {/R {/R f(xr, x| dxl} ' --~dx,,} <o

with the usual modifications made when p; = oo for somei € {1,...,n}.

n times
Obviously, when p := (m) with some p € (0,00], the space LP(R") is just the
classical Lebesgue space L¥ (R").
Recall that a Schwartz function is a C*°(R") function ¢ satisfying that, for any v € Z
and multi-index y € Z",

[@llv == sup [o(x)]"[07p(x)]| < co.
xeR"

Denote by S(R") the collection of all Schwartz functions as above, equipped with the
topology determined by {|| - [|1,v}yez" vez, , and S'(R") its dual space, equipped with the
weak-# topology. For any N € Z_, denote by Sy (R") the following set:

{(p €SR"): [lgllgy@ny = sup  sup [\mq)(xnmax{l, [p(x)}NH < 1}.
YeZ, |y|<N x€R"

Hereinafter, for any ¢ € S(R") and j € Z, let: ¢j(-) :== b @(A7").
Let A_, Ay € (1,00) be two numbers such that:

A <min{|A|: A € 0(A)} <max{[A|: A €c(A)} <AL
We should point out that if A is diagonalizable over C, then we can let:
A_:=min{|A|: A €0(A)} and Ay :=max{|A|: A € c(A)}.

Otherwise, we may choose them sufficiently close to these equalities in accordance
with what we need in our arguments.

Definition 4. For any fixed N € N, the non-tangential grand maximal function My (f) of
f € 8'(R") is defined by setting, for any x € R":

MnN(f)(x):= sup sup |fxg;(y)l-
pESN(R") yex+B), jEZ
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We now recall the notion of anisotropic mixed-norm Hardy spaces as follows; see [1]
(Definition 2.5).

Definition 5. Let f € (0,00)" and N € NN [|(

m — 1)1111“)\[1] + 2, 00) with p_ as in (4).
The anisotropic mixed-norm Hardy space H f‘ (R™) is defined as the set of all f € S'(R") such that
Mn(f) € LP(R™). Moreover, for any f € HY (R"), let:

W7 oy = 1MN ()7 ey

Observe that, by [1] (Theorem 4.7), we know that the Hardy space H Z (R™) is indepen-
dent of the choice of N as in Definition 5.

3. Molecular Characterization of H ﬁ (R™)

In this section, we characterize H f" (R") via molecules. Recall that, for any r € (0, 0|
and measurable set ) C R", the Lebesgue space L' (E) is defined as the set of all measurable
functions g on Q) such that, when r € (0, ),

1/r
sl = | [ lsr ax| <o

and
gllLe () == esssup [g(x)] < co.
xeQ)

We now introduce the notion of anisotropic mixed-norm (g, 7, s, €)-molecules as follows.

Definition 6. Let j € (0,00)", r € (1,00]:

1 Inb
<[l

and ¢ € (0,00), where p_ is as in (4). An anisotropic mixed-norm (P, r, s, €)-molecule, associated

with some dilated ball B := xo + By, € B with xo € R”, ko € Z and B as in (1), is a measurable

function m satisfying the following two conditions:

(i)  Foranyk € Zy, [|m|| -y, (8)) < b*k€|B\1/’H13HZ;(Rn), where Uy(B) := B and, for any
k€N,

U (B) = U(xo + By,) := xo + (A*By,) \ (AF1By);
(i) For any multi-index <y € Z'L with |y| <'s, [p, m(x)x¥dx = 0.

Henceforth, we call an anisotropic mixed-norm (7, r, s, €)-molecule simply by a (7, 1, s, €)-
molecule. Via (7, , s, €)-molecules, we give the following notion of anisotropic mixed-norm
molecular Hardy spaces HY"**(R").

Definition 7. Let § € (0,00)", 7 € (1,00], s be as in (5) and ¢ € (0,00). The anisotropic mixed-
norm molecular Hardy space HY"™* (R") is defined to be the set of all f € S'(R") satisfying that
there exists a sequence {Ay }reny C C and a sequence of (P, r, s, €)-molecules, {my }xc, associated,
respectively, with {BX) },cyy C B such that:

f=Y Amy in S'(R").
keN
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Moreover, for any f € HZ’r’s/g(]R”), let:

1/
Y Mgw  ]2UF
rte | g Il 5wy

;= inf

’

Uj(]R”)

”f“ HZV'S/S(R")

where the infimum is taken over all decompositions of f as above and p as in (4).

The main result of this section is the subsequent Theorem 1.

Theorem 1. Let f € (0,00)", 7 € (max{p4,1}, co] with p. as in (4), s be as in (5):

1 Inb . .
NeNnN H(min{l,p,} 71> 1n/LJ +2,oo> with p_ asin (4),

and e € ((s+1)logy, (Ay/A_),00). Then, HZ (R") = HZ’T’S’s(R") with equivalent quasi-norms.

Remark 1. (i)  When:

(ii)

(iii)

(iv)

2110 0
0 2% 0
A= . X . (6)
0O 0 ... 2Mm

withd := (ay,...,a,) € [1,00)", the Hardy space Hi(R”) and the anisotropic mixed-norm
Hardy space H; (R™) from [6] coincide with equivalent quasi-norms; see [1] (Remark 2(iv)).
In this case, Theorem 1 is new. Moreover, if A := d1,,x, for some d € R with |d| € (1, 00),
here and thereafter, 1, denotes the n X n unit matrix, then HZ(R") becomes the classical
isotropic mixed-norm Hardy space from [7] which is just a special case of H; (R") from [6];
see [10] Remark 4.4(i) for more details. Even in this case, Theorem 1 is still new;

Let ¢ : R" X [0,00) — [0,00) be an anisotropic growth function (see, for instance, ref. [38]
(Definition 2.5)). Recall that, in [38] (Theorem 3.12), the authors established a molecular
characterization of the anisotropic Musielak-Orlicz Hardy space HY (R™); see also [37,39] for
the special cases. It follows from [40] (Remark 2.5(iii)), that the anisotropic Musielak—Orlicz

Hardy space HY (R") and anisotropic mixed-norm Hardy space Hf‘ (R™) in this article cannot
cover each other, and hence neither do [38] (Theorem 3.12) and Theorem 1;

Let p(-) : R"™ — (0, 00] be a variable exponent function satisfying the so-called globally
log-Holder continuous condition (see [40] (2.5) and (2.6))). Very recently, the molecular
characterization of the variable anisotropic Hardy space HZ(') (R™) was established by Liu [41]
(Theorem 3.1) and, independently, by Wang et al. [42] (Theorem 2.9) with some stronger
assumptions on the decay of molecules. As pointed out in [1] (Introduction), the variable
anisotropic Hardy space Hf‘(‘) (R™) in [41] or [42] and the anisotropic mixed-norm Hardy

space HZ(R”) in this article cannot cover each other. Thus, Theorem 1 cannot be covered
by [41] (Theorem 3.1) or [42] (Theorem 2.9);

n times

When A = dl,xp for some d € R with |d| € (1,00) and p := (p,...,p) with some

p € (0,00), the space H i(R”) becomes the classical isotropic Hardy space HP (R") and
logy, (A4 /A_) = 0. In this case, Theoren 1 gives a molecular characterization of HP (R™)
with the best possible known decay of molecules, namely, € € (0, c0).

To show Theorem 1, we need several technical lemmas. First, Lemma 1 is just [1]

(Lemma 4.5).
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Lemma 1. Let j € (0,00)",i € Z and r € [1,00] N (p, 00| with p as in (4). Assume that
{tx}reny C C, {B(k)}keN = {x + By }ken C B and {ag}ren C L (R") satisfy that, for any
ke N, supp ay C x; + AiB(k:

B(k)|1/r
Nkl r ey < 1‘ -
H B(‘C)HU’(R")
and: y
|4 P
3 [txl1gey |~
(11500 Il 15 R =
ket | 111po Il L (m) -

where pisasin (4). Then:

1/p th py1/p
Z|tk‘1k‘£ <cC Z | k‘ B(k) ,
keN keN ||1B(k)||Lf’(]R")

LP(Rm) LF(R")
where C is a positive constant independent of {t; }ren, {BY Yren and {ax}ren.

The following notions of anisotropic mixed-norm (p,r,s)-atoms and anisotropic
mixed-norm atomic Hardy spaces H f" "*(R") are from [1].

Definition 8. Let j € (0,00)", r € (1, 00] and s be as in (5).
(i) A measurable function a on R" is called an anisotropic mixed-norm (p, r, s )-atom if:

(i) supp a C B with some B € B, where B is as in (1);

- o< B
()2 llall. (R7) = HlBHLﬁ(Rn),

()3 Foranya € Z" with |a| <'s, [, a(x)x*dx = 0.

(i) The anisotropic mixed-norm atomic Hardy space Hf"y’s(lR”) is defined to be the set of all
f € 8'(R") satisfying that there exists a sequence { A }xeny C C and a sequence of (P, r,s)-
atoms, {ay }ren, supported, respectively, in {B%)}ren C B such that:

f = Z /\kak in S/(R”).
keN

Furthermore, for any f € Hi’r’s(]R”), let:
py1p
. Aeltge 7]
W= o '
keN B (R™) LF(RY)
where the infimum is taken over all decompositions of f as above.
We also need the atomic characterization of H f‘ (R") obtained in [1] (Theorem 4.7).
Lemma 2. Let , 1, s and N be as in Theorem 1. Then:
HA (R") = HY™ (R")
with equivalent quasi-norms.

In addition, by [29] (p. 8, (2.11), p.5, (2.1) and (2.2) and p. 17, Proposition 3.10), we
have the following conclusions.
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Lemma 3. Let A be some fixed dilation. Then:
(i) Foranyie Z:
Bi+B;CBirw and Bi+(Biw) C (B,

where w is as in (2);
(i) There exists a positive constant C such that, for any x € R", when k € Z:

SOl < |45 < Ca )
and, when k € Z\ Z.:
SOl < JAk] < CO )
(ili) For any given N € N, there exists a constant C(yy € (0,00), depending on N, such that,
forany f € S'(R") and x € R",
MR (F)(x) < M () (x) < Cony MY (f) (%),

where MY, (f) denotes the radial grand maximal function of f € S'(R") defined by setting,
forany x € R”,

MY (f)(x) == sup sup|fxgi(x)|
@eSN(R") keZ

Denote by LI _(IR") the set of all locally integrable functions on R”. Recall that the

loc
anisotropic Hardy-Littlewood maximal function My (f) of f € LL (R") is defined by

loc
setting, for any x € R™:

1
Mu(F)() i=sup sup oo [ (f@)dz= sup o [ IFE)dz @)
keZ y6x+Bk‘ k| Jy+By vepess |Bl /B

where B is as in (1).
The two following lemmas are, respectively, from [1] (Lemma 4.4) and [16] (p. 188).

Lemma 4. Let € (1,00)" and u € (1,00]. Then, there exists a positive constant C such that,
for any sequence { fi } ren of measurable functions:
1/u
(2 |fk|“>
keN

with the usual modification made when u = co, where My, denotes the Hardy-Littlewood maximal
operator as in (7).

<C
LP(R")

1/u
{Z [MHL(fk)]u}

keN

LP(R")

Lemma 5. Let § € (0,00]". Then, for any t € (0,00) and f € LF(R"):
I1£1

In addition, for any p € C, t € [0,min{p_,1}] and f, ¢ € LP(R"), HnyLﬁ(Rn) =
L ey ot

LP(R") — ”thL’ﬁ(]R")’

“f+g‘|2ﬁ(Rtx) < Hf'liﬁ(]]@n) + HgHtLﬁ(Rn)

We now prove Theorem 1.
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Proof of Theorem 1. Let j € (0,00)", r € (max{p4,1}, 0] with py asin (4) and s be as
in (5). Then, by the fact thata (7, ,s)-atomisa (g, r, s, €)-molecule for any ¢ € (0, 00), as well
as the notions of both Hy"”(R") and Hy""*(R"), it is easy to see thatﬁH B (R c HY™ (R
with continuous inclusion. In addition, by Lemma 2, we have H Z (R") =H Z’r’s (R™) with

equivalent quasi-norms. Therefore, H', (R") ¢ H""**(R") and this inclusion is continuous.
Thus, to complete the proof of Theorem 1, it suffices to prove that:

HY™*(R")  Hf (R") ®)

holds true with continuous inclusion. For this purpose, without loss of generality, for

any f € Hi’r’s’g(R”), we may assume that f is not the zero element of Hi’r’s’g(R”). Then,
by Definition 7, we find that there exists a sequence {A;}reny C C and a sequence of
(P,r,5,€)-molecules {1 }reny, associated, respectively, to {B®) };cxy C 9B such that:

f=Y Amy in S'(RY), ©)
keN

ry VP
v Ael1pe |
i | g | ey
with p as in (4). Take two sequences {xi }ren C R" and {it}ren C Z such that, for any
k € N, x + B;, = B®). From (9), we deduce that, forany N € NN [L(% —1)8l | +2,00)
and x € R™: B
My(F)(x) < X M () (00 L, () + 32 A M) (91 g, 5)
keN keN k
=T+ 1)

and:

(10)

”fHHi'r'S’E(lR") ~
LP(R™)

where w is an integer as in (2).

For the term J;, by the boundedness of My on L1(R") with g € (1,00] (see [43]
(Remark 2.10)) and the definition of (7, r, s, €)-molecules, we conclude that, for any ¢ €
((s+1)log, (A+/A_),c0) and k € N:

”MN(mk)HU(]R”) S HmkHU(]R”) s Z HmkHU(uf(Bw)))
Lely
- Z b*k ‘B(k)‘l/r N ‘B(k)|l/r
~“E pwllpey 1w llsEn

where Uy(B®)) := B(*) and, for each ¢ € N:
Uy (B®) = Uy(xy + By,) := x + (A'By) \ (A"71B,).

This, together with the well-known inequality that, for any {a; }xey € Cand t € (0,1]:

{2 "‘k@t <Y e

keN keN
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as well as Lemma 1 and (10), implies thatL

Illp gy

) 1/p
{ ) [|)\kMN(mk)1xk+AWBik]}

keN

1/p
Y Meltgey ]P1°
rte | 1w [l sy

~ Hf”HZ’"S’E(]R”)'

LP(Rm)

~

Lﬁ(lR”)
(12)

Then, we deal with J,. To this end, we assume that Q is a polynomial with a degree not
greater than s. Then, from Definition 6 and the Holder inequality, it follows that, for any
NeN geSy(R"),veZand x € (x; + Bik+w)c with k € N:

| (i % o) (%)

= b7\ [ m(2)p(a™ (x —2) dz

Sb*l/ / me(z A*inz 7QA7Vx7Z iz
=n uf(xH’Bik) k( )[(P( ( )) ( ( ))]

<y sup lp(z) —Q(z)|/ iy (2)| dz
leLy ZGA*V(xf.‘(k)+At‘Bik7V u, (xk+Bik)

S b/ Y ! sup l9(2) = Q@) el e, (5, )

(T zeAGow)HAB
. . o
5 bV lxk+Bik P(Rn 2 b(l/i’ —e)l sup ‘(P(Z) — Q(Z)| (13)
LP®R") ye7, 2EA Y (x—x)+AB; _,

Forany k € Nand x € (x; + Bik+w)E, it is easy to see that there exists some j € Z
suchthatx € [x + (Bj,1wtj1 \ Biy+w+j)]- Then, forany v € Zand ¢ € Z-, by Lemma 3(i),
we have:

AV (x —x) + A'By -y C AT (B yoii1 \ Bipyawts) + A'Byy
_ Aik—v+Z([Bw+j+1 \Bw+j] +By) C Aik*VJr[(B]»)E. (14)

When i, > v, we pick Q = 0. Then, by (14), the fact that ¢ € Sy(R") and (3), we find
that, forany N € Nand ¢ € Z:

sup lpz)-Q@E)I < sup  min{L, p(z)7V}
ZE€ATV (x—x)+A By _, ng’k"’*’f'(B])E

< b—N(ik—V+f+j). (15)
When i, < v, we let Q be the Taylor expansion of ¢ at the point A™"(x — x;) with

order s. Then, from the Taylor remainder theorem, Lemma 3(ii) and (14), we deduce that,
forany Ne NN [s+1,00) and € Z:

10
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sup lp(z) — Q(2)]
zEA*"(x—xk)+AéB,'k,V
s ()Ur)[(s*l)()\7)(5+1)(ik*V) sup min{l, p(Z)iN}

z€A~Y(x—x;)+AB;

i —v

s b/(s+1)logb(}\+)(Ai)(SJrl)(ikﬂ/) sup min{l, p(z)iN}
2e AV (B))E

< pl(s+1)Togy (A+) (L)(sﬂ)(iry) min{l, p—Nik—v++)) }

This, combined with Lemma 3(iii), (13) and (15), further implies that, for any k € N,
NeNnNfs+1,00)and x € [xg + (B yewrji1 \ Birwyj)] with some j € Z.:

My () (x)

~ sup sup|(m* ¢y)(x)]
9eSN(R") vEZ

-1 . . .

S ‘ lxk+B' H ) b(l/r’fs)é max sup blkfl/beOk*l/‘Fé‘F]),
i || L (mm) D ,
(ely veZ,v<iy

sup bikfvb/,(SJrl) logy, (A+) ()\7)(5+1)(ik7v) min{l, be(ikﬂ/JrH]')} .
VEZL, v>ik

Notice that the supremum over v < i, has the largest value when v = ;. Without
loss of generality, we can take s = [(1/min{l,p_} —1)Inb/InA_] and N = s+2,
which implies that bA*! < pN and the above supremum over v > i is attained when
iy —v+4 {4 j = 0. By this and the fact that e € ((s + 1) log;, (A4 /A ), ), we conclude that:

M () (x) < -

lxk+Bik HL?(]R")

x Z {bffs + p—tle=(s+1)log, (A+/A-)] } max{biNj, {b(A,)S+li| 7]}
Lely
S

a-r]”

b*ib*(sﬂ)j%

-1
lxk+Bik HL??(]R“)

~

1xk+B,-k

-1
Lﬁ(R")

pikl5+1) 5 1] = (i) [(s+1) g +1]

S

1xk+B,-k )

-1 |Xk+Bjk|(7
(®) [o(x — x¢)]7

L®Y) {MHL (lkarBik) (x)] ’

~ (100 | ey ML (100) ()], (16)

SJ lxk+Bi

k

lxk+B,-k ‘

S

where:

([ Inb fsa1 InA_ - 1
7% \na_ ° Inb 7 min{l,p_}"

11
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By this and Lemmas 4 and

2l gy

A

keN H13<k) HLﬁ(Rn)
~Iy Al
keN HIB(/() HL?(R”)

keN ng(k) HLﬁ(Rn)

AR
<y Aellpe |~
~ keN ng(k) HLﬁ(RH)

5, we obtain:

M g (1400))°

LP(R")

1/0
[MHL(lg(k))}g}

o

Lvﬁ(Rn)
A0

L ’(R")

Lﬁ(R”)

~ g gy

This, together with (11), (12) and Lemma 5 again, implies that:

HfHHZ(R")

= IMN () ey S 1 ggose oy

which completes the proof of (8) and hence of Theorem 1. [

4. Some Applications

In this section, as applications, we establish a criterion on the boundedness of linear
operators on HZ(R”), which further implies the boundedness of anisotropic Calderén—
Zygmund operators on HZ(]R”). Moreover, the boundedness of these operators from

Hf; (R") to the mixed-norm Lebesgue space LP (R") is also obtained.

We begin with the definition the notion of anisotropic Calderén-Zygmund operators

from [29] (p. 60, Definition 9.1).

Definition 9. An anisotropic Calderén—-Zygmund standard kernel is a locally integrable function
x # y} satisfying that there exist two positive constants C and T

KonE:={(x,y) e R" xR":

such that, for any (x1, y1), (x1, y2), (x2, y1) € E:

[ (x1,y1) = K(x1,y2)| £ C
and:

IK(x1,51) = K2, y1)| < C

Hereinafter, for each ¢ €
whose derivatives with order

12

le(y1 —y)I”

[o(x1 —y1)1HT

with w as in (2). Moreover, an anisotropic Calderén—Zygmund operator is a linear operator
T satisfying that it is bounded on L?(R") and there exists an anisotropic Calderén—Zygmund
standard kernel IKC such that, for any f € L*(R") with compact support and x ¢ supp f,

T(F)(x) = [

C

K(x1, < —
| (xl yl)' P(xl*]/])

[o(x1 —y1)|1+T

[o(x1 — x)]"

K(x,z)f(z)dz.
o K21

N, let C/(R") be the collection of all functions on R”
not greater than ¢ are continuous. The following no-

when p(x1 —y1) > b*p(y1 — 2),

when p(x; —y1) > b*p(x1 — x2),
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tion of anisotropic Calderén-Zygmund operator of order ¢ originates from [29] (p.61,
Definition 9.2).

Definition 10. Let ¢ € N. An anisotropic Calderon—Zygmund operator of order { is an anisotropic
Calderén-Zygmund operator T whose kernel K is a C*(R") function with respect to the second
variable y and satisfying that there exists a positive constant C such that, for any v € Z't with
1< |y| <4 t€Zand(x,y) € Ewith p(x —y) ~ bt:

03K (x, 47'y)| < Clo(x )] ~ Cb™, a7)

where the implicit equivalent positive constants are independent of x, y, t and, for any x, y € R"
with x # Aly, K(x,y) := K(x, A'y).

Then, we first have the boundedness of anisotropic Calderén—Zygmund operators of
order ¢ from H (R") to LF (R").

Theorem 2. Let j € (0,00)" and T be an anisotropic Calderén—Zygmund operator of order £ with
£ € [sp+1,00), wheresy := |(1/p— —1)Inb/InA_| and p_ is as in (4). Then, there exists a
positive constant C such that, for any f € H (R"):

1T sy < CFll g gy 1)

To prove this theorem, we need the finite atomic characterization of anisotropic mixed-
norm Hardy spaces HZ’;’;(R") ; see [1] (Theorem 5.3). Denote by C(R") the set of all
continuous functions on R".

Lemma 6. Let f € (0,00)" and s be as in (5):

(i) Ifr € (max{p+,1},00) with p; as in (4), then | - HHﬁ,,,s (&™) and || - are two
A, fin

HHZ(]R”)

equivalent quasi-norms on H Z’rgn(R”) ;

@) - HHf;"’;’."‘(]R") and || - HHf‘ () T two equivalent quasi-norms on Hi’f;ﬁ(R”) NC(R").

Here and thereafter, H f"/rg“ (R™) denotes the anisotropic mixed-norm finite atomic Hardy space,

namely the set of all f € S'(R") satisfying that there exists K € N, {Ag}rep xjon € Canda

finite sequence of (P, r,s)-atoms, {ax} e k), Supported, respectively, in {B(k)}ke[l,K]ﬂN CcB
such that:

K
f: Z/\kllk in S,(R”).
k=1

Moreover, for any f € Hﬁ”;(R”), let:

py /P
i [Akl1ge |~
= | 1w 5w

where p is as in (4) and the infimum is taken over all decompositions of f as above.

.= inf

’

||fHHf§,,yf'|Sn (R”) A( )
LP(R"

13
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In addition, let § € (1,00)" and i € Z... Then, by Lemma 4 and the fact that, for any
dilated ball B € B and e € (0,p), Lup < be [MHL(IB)] ¢, we know that there exists a
positive constant C such that, for any sequence {B®) }; .y C B:

< Cbs
LF(R")

Y Lapm0

keN

Y 10

keN

(19)

LP(R")
Now, we show Theorem 2.

Proof of Theorem 2. Let j, r and s be as in Lemma 6(i). We next prove this theorem in
two steps.

Step (1). In this step, we prove that (18) holds true for any f € Hf"ygn(R”). For this
pr.s

purpose, for any f € H) i (R"), by Lemma 6, we can find some K € N, three finite
sequences {At}repkjy C € {Xttrepxoy € R and {ix}rep iy € Z, and a finite
sequence of (7, 7,s)-atoms, {a }xe[1,knn, supported, respectively, in {xx + By, bref1,xjnn C
B such that f = Zszl Aga in 8’ (R™) and:

1
K |/\k|1xk+Bik P /E
1 Wgpns gy ~ D ([ — (20)
: k=1 | 112+ By [l LF () L@
From the linearity of T and Lemma 5, we obtain:
K K
ITN sy < Z Al T(a) L 48, Z A T(@) Ly 5, 0
k=1 () llk=1 e
=:Ji+]2 (1)

We first deal with J,. To do this, by a similar argument to that used in the proof of [44]
(4.13), we conclude that, for each k € [1, K] NNand x € (x; + Bik+w)cz

T(a)(x) 5 |

u
Ly, [MHL (1xk+B,k> (x)] ,

LP (]R” )
where:

v (0 )
ANV Inb " p’

This, together with Lemmas 5 and 4, and (20), implies that:

[Ax]

u
k=1 W {MHL (1xk+Bik )]

||]2||Lﬁ(]Rn) 5

LP(R")

1/u
~ {ki S [MHL(lxk+Bik)} u}

—1 “11’k+31k H[ﬁ(R")

u

Lup
K |Ak|1Xk+Bik

i 1Ly ey

A

LP(R")
4

1/
i |)\k‘1xk+8ik E
=i “1xk+Bik H[ﬁ(R") Lﬁ(R”)

~ HfHHin‘ (R (22)

A

14
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ForJy, take g € L#/ey (R") such that ||g|| @) () < <1land:

K
Y Ikl (@0) P s, .,
k=1

Lﬁ/E(R")
K

= [ 3 T (@) ()P, ()3()
k=1

From this, Lemma 5 and the Holder inequality, it follows that, for any q € (1,c0)
satisfying p4 < qp <r:

K
(D2 S | Y IR IT (@) P,

k=1

Lﬁ'/g(]Rn)

K
~ Joo K P @O i, ()30 .

K
SX MleH[T(ukHElx“BikW L‘i(Rr’)‘ 1x’<+Bik+ngm’(R")
k=1
K » 1/q
5 kZ: ‘/\kl HT(uk)”Lr R") 1Xk+3;k+w L’/("’@(R") 1xk+Blk+wg ‘M/(R").

This, combined with the boundedness of T on L/(R") for any t € (1,00) (see [29]
(p. 60)), Definition 8(i) and the Holder inequality again, further implies that:

K

P
(JI)ES 1; Mk‘g‘ 1xk+Bz H F;R" |Bik| /Y|Blk+w| o/ q’ 1xk+3ik+wg ‘L’?'(R")
K p ) 1/q
et ] £ B / 74
kg:l L By || r | zk+w| |:|Blk+w 4By [8(x)] x:l
K P / 1/q
S 0 |, [ o Tty ) M (s7) )]
k=1
K -p ’ ]/LI(
P 4 q
S5 [1ce, 1 (o) 5 B P/ (R HMHL ()] L0/ ()

Note that p./p € (0,4), we know that (7/p)" € (q',00]. By this, (19), the bounded-
ness of My, on LY (R") with & € (1,c0]" (see [10] (Lemma 3.5)), Lemma 5, the fact that

HgHL(ﬁ/E)'(R") <1 and (20), we conclude that:

1/

-r 1/p
Pll1, .5 H L
X+ i P(IR”) xk+, Lp/p( H ”L(p/p
1/
f A, 1207F
- k=1 ||1xk+Bik||Lﬁ(Rn) L (Rm)

~ g oy

From this, (22), (21) and Lemma 6(i), we deduce that (18) holds true for any f €
H z rfsn(]R”) which completes the proof of Step (1).

15
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Step (2). This step aims to show that (18) holds true for any fe H, "4 (R"). To this end,
forany f € H ; " (R"), by the obvious density of H f‘ yﬁsn(R”) in HY, " (R™), with respect to the
quasi-norm || - || we find that there exists a Cauchy sequence {f;}ieny C H f‘ rffn(R”)

such that

H, (R1)’

llg’l;”fl - f”HZ(]R") =0.

By this and the linearity of T, it is easy to see that, as i, 1 — co:

ITCE) = TG gy = 1T = £

S Fllyg oy = O

Therefore, {T(f;)}icn is also a Cauchy sequence in H Z (R™). By this and the complete-
ness of H, (R"), we know that there exists some 1 € HY (R") such that h = lim; ., T(f;)
in HY (R"). Let T(f) := h. Then, for any f € H/ (R"):

IT A g gy S lim sup | ITCF) = TC g7 gy + 1T g

1—00

~ S T g € B il gy ~ I g @)

1—00
This finishes the proof of Step (2) and hence of Theorem 2. [J

Motivated by [29] (p. 64, Definition 9.4), we introduce the vanishing moment condition
as follows.

Definition 11. Let j € (0,00)", £ € N satisfy:

2
1 1< (InA_)

- mbmmé

and sy := | (1/p— —1)Inb/InA_ |, where p_ is as in (4). An anisotropic Calderén—Zygmund
operator T of order { is said to satisfy T*(x7) = 0 for any v € Z" with |y| < sg if, for any
g€ LZ(R”) with compact support und sutisfying that, for each p € 7' with |B| < ¢,
fR" x)xPdx = 0, the equality [g, T(g)(x)x" dx = 0 holds true for each v € Z'. satisfy-
L

We have the following boundedness of anisotropic Calderén-Zygmund operators on
HE(RM).
Theorem 3. Let fj, £, sy be as in Definition 11. Assume that T is an anisotropic Calderén—

Zygmund operator of order £ and satisfies T*(x7) = 0 for any v € Z"_ with |7y| < so. Then, there
exists a positive constant C such that, for any f € H f‘ (R™),

1T gy < gt g

By [1] (Lemma 6.8) and [45] (Lemma 2.3), we easily obtain the succeeding Lemma 7;
the details are omitted.

Lemma 7. Assume that E C R", F € B with B as in (1), E C F and there exists a constant
co € (0,1] such that |E| > co|F|. Then, for any g € (0, c0)", there exists a positive constant C,
independent of E and F, such that:

I1E L5 ey
el pgey

16
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To prove Theorem 3, we need the following technical lemma, which is motivated
by [44] (Lemma 4.10) and [39] (Lemma 4.13).

Lemma 8. Let J, {, s be as in Definition 11. Assume that r € (1,00] and T is an anisotropic
Calderén—Zygmund operator of order { satisfying T*(x7) = 0 for any v € Z' with |y| < so.
Then, there exists a positive constant C such that, for any (p,r,()-atom @ supported in some
dilated ball xo + B;, € B with xo € R", iy € Z and B as in (1), %T(ﬁ) isa (P, r,so,€)-molecule
associated with xo + Bj, 4, where:

e:=llog,(A_)+1/7 (24)
and w is as in (2).
Proof. Let T be an anisotropic Calderén-Zygmund operator of order / satisfying:
T*(x7) = 0 for any 7 € Z'} with |y| < so.

For any (p, r, £)-atom @ supported in some dilated ball xy 4 B;, € B, without losing
generality, we may assume that xo = 0. Then, by the vanishing moments of @ and
Definition 11, we find that T(a) has vanishing moments up to an order of s.

Let Uy(Bj,) := Bj, 4« and, for any k € N:

Uk(Biy) = (A*Bjy ) \ (A" By 10)-

To show that T(a) is a harmless constant multiple of a (7, 7, so, €)-molecule associated
with Bj ., it suffices to prove that, for any k € Z

¥ By

~ , (25)
) ||1Bi0+w||Lﬁ(1Rﬂ)

T @) r s,

where ¢ is as in (24).
Indeed, from the boundedness of T on L, the fact that supp @ C B
of @ and Lemma 7, it follows that:

iy, the size condition

Biy|'" _ IBigrwl”

o)~ s @ ~ M5y 0lli@n

|‘T(a)|‘LV(Uk(BiO)) Sl s,

and hence (25) holds true for k = 0.

On another hand, for any (7, r, £)-atom @, k € N, x € Uy(B;,) and y € B;;, by Lemma 3(i),
we know that x — y € Bj, 142w \ Biy+k—1, which implies that p(x — y) ~ b0tk From this
and (17), we deduce that, for any v € Z' with1 < |y| < £:

oy i, 4] (x, ARy | S ol — ) SH0 K, (26)
Note that supp @ C B;,. Then, we have:

T@)(x) = [ Keyaedy = [ K(xA 0 y)at)dy, @)

JB;, /B,

where K(x,y) := K(x, Av™ky) for any x, y € R" with x # Ak Moreover, by Taylor
expansion theorem for the variable y at the point (x, 0), we easily obtain:

.y K (x,0
Fep= ¥ 2900 k), 8)
YELY, |y|<l-1 i

17
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where i := A~0=ky for any y € Bj,. This, combined with (26), further implies that:

[R¢(7)| < sup sup ‘871C x,t) ‘\y|[ < piok sup \t|[
tEB g y€Z,|y|=L €B_

By the fact that, for any t € B_y, p(t) < b~* < 1 and [29] (p-11, Lemma 3.2), we
conclude that, for any ¢ € N as in Definition 11,

InA_
sup [t|* < sup [o(+)] w5 < bR B (),
teB_y teB_y

Thus, we have:
R(7)] b H om0,

From this, (27), (28), the vanishing moments of atoms and the Holder inequality, it
follows that, for any (f,,{)-atom a, k € Nand x € U(B;, ):

@< [, [RiA- )] dy
<b ip— kb kllog, (A / |Il |dy
<b ip—. kb—kélogb ‘B |1/r Hu“LV
~ pkl1+L1og,(A)]p— IO/r””HL’(B )

io

This, together with the size condition of 4, (24) and Lemma 7, imply that, for any
keN:

IT@) s, < bk Clogy (A p=io/™ 17|, . |Bzo+k+w‘l/r
B, | /r

< bfk[lJr[logb(/\,)]bk/r
~ HIB,‘OHLﬁ(]R")

b4 By
~ HlBi0+w H[ﬁ(R") ’
which completes the proof of (25) for k € N and hence of Lemma 8. [
In addition, we also need the subsequent density of Hi (R™).

Lemma9. Let j € (0,00)". Then:

@) HY W(R") N CEP(R™) is dense in HY 'y (R"); here and thereafter, C°(R") denotes the set of all
znﬁnltely differentiable functions wzth compact support on R";
(i) Forany s asin (5), HZL’Z;(R”) N C(R") is dense in Hp (R™).

Proof. To prove (i), we first show that, for any ¢ € S(R") with [, ¢(x)dx # 0 and
fe HZ(]R"), as k — —oo,

fxer— f in Hi(R”). (29)

For this purpose, we first assume that f € H f‘ (R™) N L2(R"). In this case, to prove (29),
we only need to show that, for almost every x € R", as k — —oo:

MN(f* @ — f)(x) = 0 foralmost every x € R" ask — —o0 (30)
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where N := Nj + 2 with Nj := L(W - 1)1111“/\%] + 2. Indeed, note that, for any
k €7, f+gp— f € L2(R"). Then, by [29] (p. 13, Theorem 3.6), we know that, for any
k € Z, MN(f * ¢ — f) € L>(R"). From this, ref. [29] (p.39, Lemma 6.6), (30) and the
Lebesgue-dominated convergence theorem, it follows that, (29) holds true for any f €
HY (R™) N L2(R™).

Subsequently, we prove (30). To this end, let g be a continuous function with compact
support. Then, g is uniformly continuous on R". Thus, for any é € (0, o), there exists
some 7 € (0, 00) such that, for any y € R" satisfying p(y) < 1 and x € R",

0

x—y)—9x)| < 57—
8(x —y) —g(x)] 2ol e

Without loss of generality, we can assume that [, ¢(x)dx = 1. Then, for any k € Z
and x € R", we have:

g ~s@ls [

<3+ 2glmmy |
5 Slir=(rr) o(y)=b—*y

lg(x —y) —g()llpx(y)| dy + /p(y)ZV -
lp(y)| dy. e

By the integrability of ¢, we can find a K € Z such that, for any k € (—oo, K] N Z:

1)
2 (R / dy < =.
181l (R A lo(y)ldy < 3
From this and (31), we deduce that, for any x € R":

klim |g* pr(x) — g(x)] =0 holds true uniformly.
——00

Therefore, ||g * px — gl @n) — 0as k — —co. This, together with [29] (p. 13, Theo-
rem 3.6), again implies that:

IMN (8 * @k — &)l o (mry S 1§ * 9k — llLown) — 0 ask — —oo. (32)

For any given € € (0, ), there exists a continuous function ¢ with compact support
such that:
”f - g”%Z(RH) <€
By (32) and [29] (p. 39, Lemma 6.6), we again know that there exists a positive constant
x such that, for any x € R":

limsup My (f * ¢x — f)(x)

k——o0
< iugMN((f —8)* ) (x) + likmfup My (g* ¢r — g)(x) + Mn(g — f)(x)

< KMy, (g — f)(%):

Thus, for any A € (0,00), we have:

{x e R": limsup Mn(f * ¢ — f)(x) > /\}

k——o0

/\H _ If = 8llZ2 @) _

€
SHXGR”: MNﬁ(g—f)(x)>; < 2 FVE
This implies that, for any f € Hf‘(R”) N L2(R"), (30) holds true.
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When f € H f‘ (R"), by an argument similar to that used in [43] (p. 1700), it is easy to
see that (29) also holds true.
Moreover, if f € H’”g (R") and ¢ € C®(R") with [, ¢(x)dx # 0, then, for any
kez, B
fx g€ CE(R") N H,(RY)

and, by (29),
fxep— f in Hf‘(R") as k— —oo.

This, combined with the density of the set HZ Vf:n(R”) in HY, 'y (R"), further implies that

C®(R")NH ;Z (R™) is dense in H f‘ (R™), which completes the proof of (i).
We now prove (ii). By (i) and the proof of [43] (Theorem 6.13 (ii)) with some slight

modifications, we conclude that H', pieoss in (R") N C(R") is dense in H' A (R™). This finishes the
proof of (i) and hence of Lemma 9 D

Applying Lemmas 6, 7 and 9 as well as Theorem 1, we obtain a criterion on the

boundedness of linear operators on H i (R") as follows, which plays a key role in the proof
of Theorem 3.

Theorem 4. Let T be a linear operator defined on the set of all measurable functions. Assume
that p € (0,00)", r € (max{p+,1},c0] with py as in (4) and § is as in (5) with s replaced by
5. If there exists some iy € Z and a positive constant C such that, for any (p(-),r M) -atom @
supported in some dilated ball xo + By, € B with xg € R", ko € Z and B as in ), L cT(a)isa
(p(-),7,5,€)-molecule associated with xq + By, i, where s and ¢ are as in Theorem 1, then T has a

unique bounded linear extension on HY, (R").
Proof. Let j € (0,00)", r € (max{p+,1}, 0] and

([t

with p_ as in (4). We next show Theorem 4 by considering two cases.
Case (1). r € (max{py,1},00). For this case, let f € Hzrhsn(R”) Then, by the notion

of Hzrffn(R") in Lemma 6, we find that there exists some K € N, three finite sequences

{MIkepxinn € € {xidkepxnn € R™ and {ix}rep,xnn € Z, and a finite sequence of
(P, r,5)-atoms, {ax}rep1, k), supported, respectively, in {xg + B brep,xjnn C B such that:

K
f=Y Ma in S'(R") (33)
k=1
and:
/p
K |Ak|1xk+3 4 Ve
A W g gy ~ {2 |:|1+B| : G4
,fin — X i n .
= k+Bip ILP (R1) LF(RY)

This, together with (33) and the linearity of T, implies that T(f) = ZkK:1 MeT (ag) in
S'(R"), where, for any k € [1, K] NN, L T(a;) with C being a positive constant independent
of k is a (7, 7,s,¢)-molecule associated with x + B 4;, with s, ¢ and iy as in Theorem 4.
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From this, Theorem 1, Definition 7, as well as Lemmas 7, 4 and 5, (34) and Lemma 6, we
further deduce that, for any f € Hzrﬁsn(]R”)

HT(f)IIHi(R,,) ~ IIT(f)HHms(R,,)

py1/p
i ‘/\k|1xk+B,k+,0 - -
k=1 ||1xk+B,k+La HLP (R™)

~

LP(R")

1/T\ P /p
< pol f Akl IMi (118, )]
k=1 Hlxk+B,k HLP (R™)
LP(RM)
1/t
/T /P
il f A" MiL (148, ) T2°
k=1 HleJrB,k HZﬁ(R”)
LWT(]R")
1/
f ‘/\k|lxk+B,‘k P 4
~“l= ||lxk+Bik||Lf’(R") L@
~ ~ Py 35
||f‘|Hfal,éjn(Rn> Hf”HZ(R") ( )

where 7 € (0, p) is a constant.

Moreover, by the obvious density of H A< 2 o a (R")in H ; ', (R") with respect to the quasi-

norm || - || and a proof similar to the estimation of (23), we conclude that, for any

HP (Rm)
feH Z (R™), (35) also holds true. This finishes the proof of Theorem 4 in Case (1).

poos

Case (2). r = co. In this case, by Lemma 9(ii), we know that H}, s (R") N C(R") is

dense in H fx (R™). From this, repeating the proof of Case (1) with some slight modifications,
it follows that Theorem 4 also holds true when r = oo, which completes the proof of
Theorem 4. [

We now prove Theorem 3.

Proof of Theorem 3. Indeed, Theorem 3 is an immediate corollary of Theorem 4 and
Lemma 8. This finishes the proof of Theorem 3. [

Remark 2. (i)  Assume that { € N, p € (0,1] and:

1 (InA_)?
5_13 1nb1nAf' (36)
n times
When p := (p,.. ,p) with some p € (0,00), the spaces H” W(R") and LP(R™) are just,
respectively, the anisotropic Hardy space HY, '+ (R") of Bownik [ 29] and the Lebesgue space
LP(R™). In this case, Theorems 2 and 3 implies that, for any ¢ € Nand p € (0,1] as in (36),
the anisotropic Calderén—Zygmund operator of order ¢ (see Definition 10) is bounded from
HY (R™) to LP(R™) (or to itself), which are just, respectively, ref. [29] (p. 69, Theorem 9.9
and p. 68, Theorem 9 8). Moreover, let A := d 1,y for some d € Rwith |d| € (1,00), £ = 1.
Then, lilbln )L 0= 1and H "\ (R") becomes the classical isotropic Hardy space HP (R"). In
this case, by Theorems 2 and 3 and [37] ((i) and (ii) of Remark 4.4), we further know that,
forany p € (47, 1], the classical Calderén-Zygmund operator is bounded from HP (R™) to
LP(R™) (or to itself), which is a well-known result (see, for instance [46]).
(i) When A := dl,x, for some d € R with |d| € (1,00), the space HY (R") becomes the

mixed-norm Hardy space HP (R™) (see [7]). In this case, Theorems 2 and 3 are new.
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References

(ili) Very recently, Bownik et al. [47] introduced a kind of more general anisotropic Calderén—
Zygmund operators (see [47] (Definition 5.4)) and established the boundedness of these
operators from the anisotropic Hardy space HP (©) to the Lebesgue space LP (R™) or to itself
(see, respectively, ref. [47] (Theorems 5.12 and 5.11)), where ® is a continuous multi-level
ellipsoid cover of R" (see [47] (Definition 2.1)). Here, we should point out that the space
HY (R"), in this article, is not covered by the space H (@), since the exponent p in HP (®) is
only a constant. Thus, Theorems 2 and 3 are covered by neither [47] (Theorems 5.12 or 5.11).

(iv) Recall that Huang et al. also introduced another sort of anisotropic non-convolutional B-order
Calderén—Zygmund operators (see [1] (Definition 8.3)) and obtained the boundedness of these

Calderén—Zygmund operators from Hf‘ (R™) to the mixed-norm Lebesgue space LP (R™) (or
to itself), where B € (0,00) and p € (0,2)" with:

c Inb Inb
P=S\Inb+pmA_ b+ ([B]—1)InA_)’

where the symbol [P denotes the least integer not less than p; see [1] (Theorem 8.5). Observe
that the Calderén—Zygmund operator in [1] (Definition 8.3) is different from the one used
in the present article (see Definition 10) and ref. [1] (Theorem 8.5) requires the integrable
exponent p which belongs to (0,2)"; however, this restriction is removed in Theorems 2 and 3.
Thus, Theorems 2 and 3 cannot be covered by [1] (Theorem 8.5).

5. Conclusions

In this article, we characterize the anisotropic mixed-norm Hardy space H ﬁ (R") via
molecules, in which the range of the decay index ¢ is the known best possible in some sense.
As an application, we then obtain a criterion on the boundedness of linear operators on
HZ (R™), which is used to prove the boundedness of the anisotropic Calder6n-Zygmund
operators on H’ (R"). In addition, the boundedness of anisotropic Calderén-Zygmund
operators from H/, (R") to the mixed-norm Lebesgue space L7 (R") is also presented. When
A is as in (6), the obtained boundedness of these Calderén-Zygmund operators positively
answers a question formulated by Cleanthous et al. in [6] (p.2760). All these results are
new, even for the isotropic mixed-norm Hardy spaces on R".
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Abstract: In view of the importance of Besov space in harmonic analysis, differential equations,
and other fields, Jaak Peetre proposed to find a precise description of (B, ™, B};"" ) ,. In this paper,
we come to consider this problem by wavelets. We apply Meyer wavelets to characterize the real
interpolation of homogeneous Besov spaces for the crucial index p and obtain a precise description

of (B}, By!)e,r-

Keywords: real interpolation; besov space; meyer wavelet

1. Introduction

Since the middle of 20th century, the study of interpolation space has greatly promoted
the development of function space, operator theory, and developed a set of perfect mathe-
matical theories. It greatly enriches the theory of harmonic analysis, see [1-4]. However,
for a long time, only the real interpolation spaces of Lebesgue spaces have been studied
thoroughly, their forms are known as Lorentz spaces, and there are a lot of literature about
Lorentz spaces, see [2,5-9].

For the real interpolation of Besov spaces, we can refer to [9-16]. When the index
p is fixed, it has been shown that (B;O’qo, B;l A )o,r are still Besov spaces, see [4,9,16]. The
interpolation for the index p is very different to which for the indices s and q. If py # p1,
then (BZ’:J7 , B;’f )o,» will fall outside of the scale of Besov spaces. J. Peetre proposed to
consider the real interpolation of Besov spaces in [4]. For more than forty years, due to
some inherent difficulties, little progress has been made in this regard.

In this paper, we consider the interpolation problem introduced in [4] for the crucial
index p. Wavelets have localization of both frequency and spatial position, which provides
a powerful tool for the study of the interpolation of Besov spaces. In this paper, we obtain
a precise description of (Bi,’g , B;’f )o,r by Meyer wavelets. Further, as g = r, we prove that
(Bf,’(? , B;’f )o,q can fall into the Besov-Lorentz spaces in [17].

For Besov and Triebel-Lizorkin spaces, we use the characterization based on the
Littlewood-Paley decomposition, see [9,18,19]. Given a function ¢, such that its Fourier
transform ¢(&) € C5°(R") and satisfies

supp § C {§ € R":[g] <2} and ¢(8) =1, if [¢] < %

For u € Z, we define ¢, by

(Pu(x) _ 2n(u+1)q)(2u+1x) _ znu(p(zux).
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These functions { ¢, (x)},cz satisfy

supp ¢u C {¢ €R", % <27Mgl <2);

1
[¢u ()] = C >0, if 5 <G L2 LG <
19k, (5)] < G2, for all k € N*;

Y ¢u(&) =1, forany & € R".

U=—o0o0

Denote the space of all Schwartz functions on R” by S(R"). The dual space of
S(R™), namely, the space of all tempered distributions on R", equipped with the weak-x
topology, is denoted by S’(R"). Denote the space of all polynomials on R"” by P(R").
Let f € 8'(R")\P(R"). Define f, = ¢,  f, the f, is called the u-th dyadic block of the
Littlewood—Paley decomposition of f. We recall the definition of B;’q and F;’q.

Definition 1. Givens € R,0 < g < coand u € Z. For f € S'(R")\P(R"), we define
1

. - . q

(i) For0<p<oo feB), if (;Wﬂlfu(x)l\‘b) < 0.

(i) For0<p<oco, feE7if < 0.

As q = oo, it should be replaced by the supremum norm.

The definition of the above two spaces are independent of the selection of the functions
@, see [9].
Then, we recall some notations of Meyer wavelets. Let ¥0 be an even function in
C&([—%, %)) satisfying
0<¥@) <1
¥O(g) = 1, for |&] < 27”

Let

a@) = /)2 - ()2

Then, Q(¢) is an even function in C§°([— &, 87]). It is easy to get

0(8) =0, for g < 2
QX&) + Q*2¢) =1 = QX&) + Q%2 — ¢), for %” <E< .
Denote ¥1(&) := Q(g)e*% Foralle = (e1,--- ,€en) € {0,1}", define
°(g) = _Ul‘l’e"(éi)

Furthermore, I' := {(¢,k),e € {0,1}" \ {(0,..,0)},k € Z"} and
A= {(ejk): e €{0,1}"\{(0,..,0)},j € Z,k € Z"}.

For (€,j,k) € A, denote

@, (x) == 27 & (2x — k).
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For f € &', let a]e.,k = (f, <I>]€., ) The following results are well-known, see [17,18,20].

Lemma 1. The Meyer wavelets {(D;k}(e,]‘,k)EA form an orthogonal basis in L>(R™), hence, for all
f € L2(R™), the following wavelet decomposition holds in L? sense,

f= Z ”f,kq’f,k

(e,jk)eA

In this paper, we first give some precise descriptions of (B;,’(? , B;’f )o,r with wavelets.

Let x(x) be the characteristic function on the unit cube [0,1)". For Borel set F in R", denote

|F| the Lebesgue measure of F. Suppose that j,u € Z,1 < py < p; < c0 and % = % — %,

denote

¢jn(T) ::inf{/\: {xeR”: Y. aik|)((27xk)>2n7j)\} <T},
(

ek)elr

ua L >
. 7o 0 4
it = ([ (nomar) " w2 ([ gamnrae) ™.

Theorem 1. Given 6 € (0,1),s € R, 1< pp < p1 <oo,0<q,r§ooand% zlp;ongp%. For

f= (ej%e\ a]?/kdkv]-,k, we have

(i) fe (B’;’Oq, B&)g , if, and only if,

) L)
Z—urG stq 210 . P o .
Z Z b (C]/Vl (T))Podt < 005
u i

(i) f € Byl By)e, ifand only if
i

Yy ourd { Y2 o] [’} < .
u ]

The above wavelet characterization is slightly complicated. Yang-Cheng-Peng [17]
introduced Besov-Lorentz spaces. Further, when g = r, we can prove that (B;/(? , B;{f )o,q are
just the Besov—Lorentz spaces defined in [17]. We have

Theorem 2. Let@e(0,1),56R,0<q§oo,1<p0<p1<00,l:1p;09+%,u62und

P
f= Xx a]? k@j « Then the following conditions are equivalent.
(ejkyen 7 7

(i) f e (Bpl, By, if and only if,

1
P
Yy orrey 2w xeR | Y a5 DS (x) | > 2" < co.
7 I (ek)er
(i) fe (B;’Oq, B;’f)grq if, and only if,

, v
Yy 21 [ Y 2u {xeR”:ﬁ y a;k|x(21xk)>2“} < co.
]' u

(ek)er
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Although the above main results still not solve the problem proposed by J. Peetre [4]
thoroughly, we obtain a precise description of (B;’g , B;’f )o,r by Meyer wavelets. The wavelet
characterization of real interpolation spaces of Besov spaces provides people with an
effective means to study the continuity of linear operators and bilinear operators on such
spaces. We are using this point to study the well-posedness of non-linear fluid equations.

The plan of this paper is the following. In Section 2, we recall the general background
of the real interpolation method and Lorentz spaces. Then we review wavelet characteriza-
tion of B;q and F;/q. In Section 3, we give the proof of Theorem 1. Finally, in Section 4 we
prove Theorem 2.

In this paper, A < B means the estimation of the form A < CB with some constant C
independent of the main parameters, C may vary from line to line. A ~ B means A < B
and B < A.

2. Preliminaries on Real Interpolation and Wavelets

In this section, we present some preliminaries on real interpolation and wavelets.

2.1. K-Functional and Real Interpolation

The K-functional was introduced by J. Peetre in the process of dealing with real
interpolation spaces, see [1,4]. If (Ag, A1) is a pair of quasi-normed spaces which are
continuously embedded in a Hausdorff space X, then the K-functional

K(t, f,Ap,Ay) := inf +t
(t, f, Ao, A1) f:f0+f1{||f0||Ao 114}
is defined for all f = fy + f1, where fy € A, f1 € A;.

Definition 2. Let 0 < 6 < 1and 0 < g < co. We define

(Ao, Ao gk =
0,0 qa\ 1 @
f:fe A0+A1er||(AO,A1)9,q,K = {fo [£7OK(t, f, Ao, A1)] T} < oo
Further, we define
(Ao, A1)g ok =t
_ 2
{f F € A0t A1 Il ag Ay = SUPEK(E S, Ao, Ar) < oo}. @

Bergh-Lofstrom [1] has shown that the norms of the spaces (Ag, A1)g,4,k in (1) and (2)
have the following discrete representation.

Lemma?2. Let 0 < 6 < 1. Then,

1
) ) q
{Z 2K, f, Ay, A1)T| 0 < g < oo
I N
suPZf]gK(zllf/AO'Al)’ q=c

jEZ

In the following part, we always use this form. For x € R" and function f(x), the
distribution function 0¢(A) and rearrangement function f*(7) are defined in the follow-
ing way

op(A) = [{x: [f(x)| > A} and f*(7) = inf{A : 0f(A) < T}

We review some results about K-functional, see [3].
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Lemma 3. Suppose that 0 < p < coand f € LV + L*. Then

1

ke g, ~ [ [ rar

Lemma 4. If0 < pg < p1 <ooand%:%—pll,then

« oo

K(t, f,LP0, LP1) ~ UO (f*(r))podr}”loﬂ[/ta (f*(r))pldr}ﬁ

For 0 < p < oo, K-functional can be replaced to K, functional, see [21]. Define K,
functional by

— _ P Py
Kp = Kp(t, f, Ao, A1) 7f:1f13£f1(Hf0HAo+tpr1HA1)p’

and
1
9

© dt
I aungsy = | [ Kt 5, A0 a0 ]
We recall an important lemma about K, (, f, Ao, Aq), see [21].
Lemma 5. Let (A, A1) be a couple of quasi-normed spaces. For any 0 < p < oo, we have
1104006 ~ 110,40 a0,

2.2. Lorentz Spaces and Lebesgue Spaces

In this subsection, we present first the definition of Lorentz spaces which are the
generalization of Lebesgue spaces and then some relative lemmas.

Definition 3. For 1 < p < coand 0 < r < oo, the Lorentz spaces LP" are defined as follows
1 "d 7
ro[ef 1 T\
v =S f et = |5 (@) S :
£l =[5 [C (@) ) <

1= = {F5 1l = sup (1) < .

Forr = oo,

It is easy to see that LP? = LP. Further, LP"* corresponds to the weak L spaces.
The above definition depends on the rearrangement function f*(7). These spaces can be
characterized by distribution function c(A) also, see [2].

Lemma 6. Let 1 < p < coand 0 < r < co. Then, for any f € LP”, one has

0 1 r aA % 1
s~ |7 7 (3] ) G| and 1l ~ supre) ),
The above continuous integral can be written as the following discrete form, see [17].

Lemma 7. Suppose that1 < p < coand 0 < r < oo. Then f € LP7, if
1

<Ezm|{x ER": |f(x)] > zu}fa> < oo,
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as v = oo, the L"-norm should be replaced by the L*-norm.
The above Lorentz spaces are in fact real interpolation of Lebesgue spaces L?, see [1].
Lemma 8. Assume that 0 < pg < p1 <00,0<r <o00,0<6< 1und% = 1’];09+%‘ Then

1-6 6
po P

1
(LPo, L)y, = LP", with "

By Lemma 8, we get another characterization of LV as below.

Corollary 1. Let all parameters be as defined in Lemma 8. Then,

pr ~ [/Ooo (K, f, L, 17 ))rﬁ

2.3. Wavelet Characterization of By and F,/"

1
r

IIf

For any function f(x) in B;’q or F;’q in Definition 1, the following wavelet decomposi-
tion holds in the sense of distribution,

f= ) a5

(ejk)eA

We recall the wavelet characterization of B, and F;” in this subsection, see [16-18,20].
Foranys € Rand 0 < g < co, denote

Ssaf(x)i= | L 2V Baf T (2x—k)
(ejk)en
When s = 0 and q = 2, we denote Sf := S 4 f.

Lemma?9. Lets € Rand 0 < g < co.
(i) For0<p < oo, feF (R")if, and only if,

[1Ss.afllLr < oo

(ii) ForO<p<oeo, fe B;’q(R”) if, and only if,

) DELAE B DTN < oo,
jEZ (ek)eT

It is easy to see that F';,)'z = L?. In[17], Yang-Cheng-Peng proved the wavelet charac-
terization of Lorentz spaces LP".

Lemma 10. Suppose that 1 < p < 00,0 <r < coand u € Z. Then f € LP", if

1

(Zz’“ux €R": [Sf(x)| >2“}?>' <o,

as v = oo, the L"-norm should be replaced by the L*-norm.
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Remark 1. f and Sf can control each other by using good—A inequality. When the Fourier
transform of f is supported on a ring, f and Sf can control each other. The distribution function
0f(A) and rearrangement function f*(t) can be replaced by oss(A) and (Sf)*(t), see [17].
Without affecting the proof, these notations are not strictly distinguished in this paper.

3. Proof of Theorem 1

In this section, we characterize (B p’g ,B%)g,, and (B pg ,B ’q)g/, with wavelets. Now we
come to prove Theorem 1.

Proof. Denote

£y = W fllees 11l cag 4100, =
For any function f in B;’q, the following wavelet decomposition holds in the sense

of distribution,
f= Y ;%
(e,jk)en

Hf”(Ao,Al)s,q,K'

From Lemma 9, it follows that

y y S— 7+
Ko(t, ) == Ko (t, f, Byl By = 22” POREIE

(ek)er

jq(s—F-+7) € €
+t1) 20 Yo laf— x5 ”
7 (eR)er

Denote

=3 xfrkfbik(x), =Y a;ktbik(x).
(e,k)er (ek)er

By Lemma 9, we deduce that

n

wy
j(— L4
1%l py = 2" 70 2){ <2X§k|2>
k €
H n n %
~ Rt Z \xf,k|p° ,
(ek)er
oy
Y (G ) 2
llaj = xjllp, =27 2{ ;\ﬂik—x], )
{(
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Hence,
1
jsq 5 q g\ |’
Ky(t,a)) ~ [Zz}squ(xjm +tf/|aj—xj|pl)}
j
1
o g’
~ {ZZ’bq[lnf(IX,‘pothla;lelpl)] }
j
1
X q
= {22/5'7[K(t,aj,LF’O,LV1)}‘7} )
j
Consequently,

”fH "lBsq {/ [t qu t a }
~ '/0°° [t9{22].5‘7[K(t,uj’Lpl)’Lpl)]q}q:| ? | .

]
If1 < pg < p1 < oo, then LV = F'g(')z and LP1 = Fg]’z. Applying Remark 1, we have

(Sf)(7) := (So2f) (1) = inf{A : [{x € R" : Sppf (x) > A} < 7).

Foraj= L ”]ch]k( x), we have
(ek)er

b
Saj(x) := Soaaj(x) = (( Y 22]'(0+%)‘a]$’k|2X(2]'x — k))

ek)er

1
2
( D zf"|a;,k2x<zfx—k>)
(e,k)er’

—222<Za |2> (2/x — k)
~28 Y e x@x - k).
(e,k)er
Thus,
in
Saj(x) =22 Z 1€l x ( 2/x —k). (%)
ek)e
By (5), we deduce that

(S%a;)(t) = inf{A: [{x € R": Sa;(x) > A} < 7}

—inf{)\: {XGRYIZZI; Yy |a;k)((2jxk)>/\} gr}
(

ek)el
—inf{A' {xER”' Yo laS (ijk)>2j;/\} <t
: : Slx <
(

ek)er
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V)

(i)

Denote

Cju(T) = inf{/\ :

{xeR”: Y lalx@x— k) >2j2n/\}

(e,k)er

Hence,

(5%aj)() = ¢ju(T): @)

Let us prove the theorem in two cases.

For p; = oo, by Remark 1 and Lemma 3, we have

1

Po

ka1, 1) ~ [ [ agnmar] [ [ 5w 0) e
By (6) and (7), we get
o

tPo
K(t,a;,LF,L%) ~ {/0 (cj,n(r))podr} . 8)

Applying (4), (8) and the discrete representation of the spaces (Ao, A1)g,q,x Which is
described in Remark 3, we obtain

IR
) 2Upg 70
—urf . o
Hf”ZB;'g,BZg%,, ~ ;2 v {;275[’ {/0 (¢jn(T)) d’r} } .
For1 < po < p1 < oo, by Lemma 4, similar as we did in (i), we have

K(t,aj, LPo, LP1) ~ {/Ota (Cj,n(T))pOdT} " +t {/:(cjrn(r))pldf} ﬁ, 9)

1_1_ 1
where = TR Denote

ZXIDC i i
Po © p
o= () (atnmar) ™ 2 ([ aoprar) .

Combining (4) with (9) and using the discrete representation of the spaces (Ao, A1 )grq,K
which is described in Remark 3, we know that

r
q
roo ~ —urf jsq [ Po’pl] q
A1 (BB e, ;2 {;2 b]/n’” .

The proof of Theorem 1 is complete. []

4. Proof of Theorem 2

Now we come to prove Theorem 2.

Proof. Applying Lemma 5, the same as we did in the proof of Theorem 1, we can also get

1

197 T
Y] . q dat
-0
sy s, ~ [t {ZZ’W[KMU’%L’”ﬂq} } T
’ ]
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where f = ) a <I>]k, Y /kq>]k As 1 = q, we can write

(ejk)en (E,k)
1
* i )’
S 1S ~ —0q jsq Crpo 7p1y]a]| 4t
||fH(B%g,Bﬁ)qu {/0 [t ;2 [K(t,u],L o[, 1)] } . }

N {Zzigq {/Ow 00 [K(t,u]v,L”‘J,Lpl)}q?} }é

]

- {;21'5'4([/0& =0 [K(t,a]-,LPo,Lm)Vﬁ ;>q}q

1
q
j q
~ {ZZJSﬂ'aj'I(LPO’Lpl)"ﬂ } .
]

Thus,

1
q
541119
sz 509, ~ {ZWW||aj||(Lp0,Lp1)M} : (10)

j
We will prove the theorem in two cases.

(i) Fora; = o Z ae <I> «(x) and % = 110;09 + %, using Lemma 7, we have

=

(ek)er

- q
laill wro,erny,, = lajllpg = § 324 {x eER":| ) a5 P (x)| > 2“} - (11
u

From (10) and (11), it follows that

u ek)el’

Hf”q BB, ~ 2215'7 22"'7 {x eR": Z a]kCD 2“}
(
(i) Applying Lemma 10, we obtain another equivalent form of ||a ; lp.q/

1
g\
llaill e ey Yo = llajllpq = <22’”{x € R" 1 [Sa;(x)| > 2"}|ﬂ>

(ek)er

- q
. r
={Y 2m {xewzz”z’ y a;k|x(2fx—k)>2“} . (12
u

Applying (10) and (12), we obtain that

1
, g
HquGchq NZZJS" Y 2m {xeR”:ZnZJ Y |a;k)((2jx—k)>2“}
(

u ek)el’

We finish the proof of Theorem 2. [
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Abstract: In this systematic review, the authors give a survey on the recent developments of both the
John-Nirenberg space /N, and the space BMO as well as their vanishing subspaces such as VMO,
XMO, CMO, V]Np, and CJN,, on R" or a given cube Qy € R" with finite side length. In addition,
some related open questions are also presented.
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1. Introduction

In this article, a cube Q means that it has finite side length and all its sides parallel to
the coordinate axes, but Q is not necessarily open or closed. Moreover, we always let X be
R" or a given cube of R". Recall that the Lebesgue space L7(X) with g € [1, 0] is defined to
be the set of all measurable functions f on X such that

[ wnen e i)

esssup |f (x)]
xeX

||f||m(,\/) =

when g =0

is finite. In what follows, we use 1f to denote the characteristic function of a set E C R", and
for any given g € [1, o), quoc (X) to denote the set of all measurable functions f on X such
that f1r € L7(X) for any bounded measurable set E C X.

It is well known that L (X)) with p € [1, o] plays a leading role in the modern analysis
of mathematics. In particular, when p € (1, ), the space L (X) enjoys some elegant
properties, such as the reflexivity and the separability, which no longer hold true in L®(X).
Thus, many studies related to L (X) need some modifications when p = co: for instance,
the boundedness of Calderén-Zygmund operators. Recall that the Calderén-Zygmund
operator T is bounded on LP(R") for any given p € (1, ), but not bounded on L (R").
Indeed, T maps L*(R") into the space BMO (R") which was introduced by John and
Nirenberg [1] in 1961 to study the functions of bounded mean oscillation; here and thereafter,

sup

BMO (X) := {f €Ll (X): IflIBMmo (x) := cubchXJgV(X) ~ foldx < 00}

with

fo= Jgf(y)dy::f@f(gf(y)dy

and the supremum taken over all cubes Q of X. This implies that BMO (X)) is a fine substitute
of L®(X). Furthermore, it should be mentioned that, in the sense modulo constants,
BMO (X) is a Banach space, but, for simplicity, we regard f € BMO (X)) as a function rather
than an equivalent class f + C := {f + ¢ : ¢ € C} if there exists no confusion. Moreover,
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the space BMO (X) and its numerous variants as well as their vanishing subspaces have
attracted a lot of attention since 1961. For instance, Fefferman and Stein [2] proved that
the dual space of the Hardy space H!(R") is BMO (R"); Coifman et al. [3] showed an
equivalent characterization of the boundedness of Calderén-Zygmund commutators via
BMO (R"); Coifman and Weiss [4,5] introduced the space of homogeneous type and studied
the Hardy space and the BMO space in this context; Sarason [6] obtained the equivalent
characterization of VMO (R"), the closure in BMO (R") of uniformly continuous functions,
and used it to study stationary stochastic processes satisfying the strong mixing condition
and the algebra H* + C; Uchiyama [7] established an equivalent characterization of the
compactness of Calder6n—Zygmund commutators via CMO (R") which is defined to be
the closure in BMO (R") of infinitely differentiable functions on R" with compact support;
Nakai and Yabuta [8] studied pointwise multipliers for functions on R” of bounded mean
oscillation; and Iwaniec [9] used the compactness theorem in Uchiyama [7] to study
linear complex Beltrami equations and the LP(C) theory of quasiregular mappings. All
these classical results have wide generalizations as well as applications and have inspired
a myriad of further studies in recent years: see, for instance, the References [10-13]
for their applications in singular integral operators as well as their commutators, the
References [14-19] for their applications in pointwise multipliers, the References [20-22]
for their applications in partial differential equations, and the References [23-28] for more
variants and properties of BMO (R"). In particular, we refer the reader to Chang and
Sadosky [29] for an instructive survey on functions of bounded mean oscillation and also
Chang et al. [25] for BMO spaces on the Lipschitz domain of R".

Naturally, BMO (X) extends L*(X), in the sense that L*(X) & BMO (X) and, more-
over, || lgmo (x) < 2l Iz~ (x)- Similarly, such extension exists for any L/ (X) with p € (1, c0).
Indeed, John and Nirenberg [1] also introduced a generalized version of the BMO condition
which was subsequently used to define the so-called John-Nirenberg space JN,(Qo) with
exponent p € (1, 00) and Qg being any given cube of R". Recall that for any given p € (1,0)
and any given cube Qg of R", the John—Nirenberg space JN,(Qo) is defined to be the set of all
f € L(Qp) such that

Pl
||f||]N,,(Q0) = Suplz |Qi|{fgv|f(x) —fQ[|dx} ] < o0, 1)

where the supremum is taken over all collections of interior pairwise disjoint cubes {Q;}; of Qp.
Itis easy to see that the limit of JN,(Qp) when p — oo is just BMO (Qy) (see also Corollary 2
below). Moreover, the John—-Nirenberg space is closely related to the Lebesgue space LP(Qo)
and the weak Lebesgue space LP"*°(Qp) which is defined in Definition 1 below. Precisely, let
p € (1,00). On the one hand, the inequality obtained in ([1], Lemma 3) (see also Theorem 2
below) implies that JN,(Qo) € L'**(Qp); additionally, by ([30], Example 3.5), we further
know that JN,(Qo) & L”*(Qo). On the other hand, it is obvious that LV (Qo) € JN»(Qo)
with || - | IN,(Qo) < 21l llzr(@,)- but the striking nontriviality was shown very recently by
Dafni et al. ([31], Proposition 3.2 and Corollary 4.2), who say that LP(Qp) g JNp(Qo).
Combining these facts, we conclude that

LP(Qo) & INp(Qo) G LP™(Qo). o)

Therefore, John—-Nirenberg spaces are new spaces between Lebesgue spaces and weak
Lebesgue spaces, which motivates us to study the properties of [N,. Furthermore, various
John—-Nirenberg-type spaces have also attracted a lot of attention in recent years (see,
for instance, [31-37] for the Euclidean space case and [30,38—40] for the metric measure
space case).

It should be mentioned that the mean oscillation truly makes a difference in both
BMO and JNp; for instance,
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(i)  Via the characterization of distribution functions, we know that BMO is closely
related to the space Lexp whose definition (see (6) below) is similar to an equivalent
expression of BMO but with f — fo replaced by f (see Proposition 3 below);

(i) There exists an interesting observation presented by Riesz [41], which says that in (1),
if we replace f — fg, by f, then JN,(Qop) turns to be LF (Qo). Moreover, this conclusion
also holds true when Q is replaced by R" (see Proposition 28 below).

The main purpose of this article is to give a survey on some recent developments of
both the John-Nirenberg space N, and the space BMO, including their several generalized
(or related) spaces and some vanishing subspaces. We begin in Section 2 by recalling
some definitions and basic properties of BMO and JN,. Section 3 summarizes some recent
developments of the John—-Nirenberg-Campanato space, the localized John-Nirenberg—
Campanato space, and the special John—-Nirenberg-Campanato space via congruent cubes.
Section 4 focuses on the Riesz-type space, which differs from the John-Nirenberg space in
subtracting integral means, and its congruent counterpart. In Section 5, we pay attention
to some vanishing subspaces of the aforementioned John-Nirenberg-type spaces, such as
VMO, XMO, CMO, V]Np, and C/N, on R" or any given cube Qg of R". In addition, several
related open questions are also summarized in this survey.

More precisely, the remainder of this survey is organized as follows.

Section 2 is split into two subsections. In Section 2.1, via recalling the definitions of
distribution functions and some related function spaces (including the weak Lebesgue
space, the Morrey space, and the space Lexp), we present the relation

LOO(QO) ; BMO (QO) ; Lexp(QO)

in Proposition 2 below, which is a counterpart of (2) above, and also show two equivalent
Orlicz-type norms on BMO (R") in Proposition 3 below; moreover, the corresponding
results for the localized BMO space are also obtained in Corollary 1 below. Section 2.2 is
devoted to some significant results of JN;, including the famous John-Nirenberg inequality
(see Theorem 2 below), and the accurate relations of JN, and L7 as well as LP'™ (see
Remark 2 below). Furthermore, some recent progress of [N, is also briefly listed at the end
of this subsection.

Section 3 is split into three subsections. In Section 3.1, we first recall the notions of the
John-Nirenberg-Campanato space (for short, INC space), the corresponding Hardy-type
space, and their basic properties, which include the limit results and the relations with
other classical spaces. Then we review the dual theorem between these two spaces and the
independence over the second sub-index of JNC spaces and Hardy-type spaces. Section 3.2
is devoted to the localized counterpart of Section 3.1. The aim of Section 3.3 is the summary
of the special JNC space defined via congruent cubes (for short, congruent JNC space),
including their basic properties corresponding to those in Section 3.1. Furthermore, some
applications about the boundedness of operators on congruent spaces are mentioned
as well.

In Section 4, via subtracting integral means in the JNC space, we first give the
definition of the Riesz-type space appearing in [37] and then present some basic facts
about this space in Section 4.1. Moreover, the predual space (namely, the block-type space)
and the corresponding dual theorem of the Riesz-type space are also displayed in this
subsection. Section 4.2 is devoted to the congruent counterpart of the Riesz-type space and
the boundedness of some important operators.

Section 5 is split into three subsections. Section 5.1 is devoted to several vanish-
ing subspaces of BMO (R"), including VMO (R"), CMO (R"), MMO (R"), XMO (R"),
and X;MO (R"). We first recall their definitions and then review their (except MMO (R"))
mean oscillation characterizations, respectively, in Theorems 11-13 below. Meanwhile,
an open question on the corresponding equivalent characterization of MMO (R") is
also listed in Question 11 below. Then, we further review the compactness theorems
of the Calderén-Zygmund commutators [b, T], where b belongs to the vanishing sub-
spaces CMO (R") as well as XMO (R"), and propose an open question on [b, T] with
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b € XMO (R"). Moreover, the characterizations via Riesz transforms of BMO (R"),
VMO (R"), and CMO (R"), as well as the localized results of these vanishing subspaces,
are presented. Furthermore, some open questions are listed in this subsection. Section 5.2
devotes to the vanishing subspaces of JNC spaces. We first recall the definition of the van-
ishing JNC space on cubes in Definition 17 and then review its equivalent characterization
as well as its dual result, respectively, in Theorems 19 and 20. Moreover, for the case of R",
we review the corresponding results for VN, (R") and C/N,(R"), which are, respectively,
counterparts of VMO (R") and CMO (R") (see Theorems 21 and 22 below). As before,
some open questions are also listed at the end of this subsection. Section 5.3 is devoted to
the congruent counterpart of Section 5.2, and some similar conclusions are listed in this
subsection; meanwhile, some open questions on the JNC space have affirmative answers in
the congruent setting (see Proposition 32 below).

Finally, we make some conventions on notation. Let N := {1,2,...}, Z, := NU{0},
and 7! := (Z+)". We always denote by C and c positive constants which are independent
of the main parameters, but they may vary from line to line. Moreover, we use C(,, g )
to denote a positive constant depending on the indicated parameters y, f,... Constants
with subscripts, such as Cy and A;, do not change in different occurrences. Moreover,
the symbol f < g represents that f < Cg for some positive constant C. If f < gand g < f,
we then write f ~ ¢. If f <Cgand g = hor g <h we thenwrite f S g~hor f<g<h,
rather than f < g =hor f < g <h. For any p € [1, )], let p’ be its conjugate index, that is, p’
satisfies 1/p +1/p’ = 1. We use 1 to denote the characteristic function of a set E C R", |E| to
denote the Lebesgue measure when E C R" is measurable, and 0 to denote the origin of R".
For any function f on R”, let supp (f) := {x e R" : f(x) # 0}. Let X be a normed linear
space. We use (X)* to denote its dual space.

2. BMO and JN,

It is well known that the space BMO has played an important role in harmonic analysis,
partial differential equations, and other mathematical fields since it was introduced by
John and Nirenberg in their celebrated article [1]. However, in the same article [1], another
mysterious space appeared as well, which is now called the John-Nirenberg space JN,,.
Indeed, BMO can be viewed as the limit space of [N, as p — oo (see Proposition 6 and
Corollary 2 below with & := 0). To establish the relations of BMO and JN,, and also to
summarize some recent works of John-Nirenberg-type spaces, we first recall some basic
properties of BMO and JN,, in this section.

This section is devoted to some well-known results of BMO (X) and JN,(X), respec-
tively, in Sections 2.1 and 2.2. In addition, it is trivial to find that all the results in Section 2.1
also hold true with the cube Q replaced by the ball By of R".

2.1. (Localized) BMO and Lexp

This subsection is devoted to several equivalent norms of the spaces BMO and localized
BMO. To this end, we begin with the distribution function

D(f:X)(1) =Mxe X |f(x)|>t}], @)

where f € LlIOC (X) and t € (0, ). Recall that the distribution function is closely related to
the following weak Lebesgue space.

Definition 1. Let p € (0,00). The weak Lebesgue space LP**(X) is defined by setting
P> (X) := {f is measurable on X : ||f||Lp,oo(X) < oo},

where, for any measurable function f on X,

Illpe(xy := sup [tl{x eX: If(x)> t}|%],

te(0,00)
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Moreover, the distribution function also features BMO (X), which is exactly the famous
result obtained by John and Nirenberg ([1], Lemma 1’): there exist positive constants C;
and Cp, depending only on the dimension #, such that, for any given f € BMO (X), any
given cube Q C X, and any ¢ € (0, ),

freQ: Iftx)~ fol > ] < Cre” oo @

The main tool used in the proof of (4) is the following well-known Calderén—Zygmund
decomposition (see, for instance, [42], p. 34, Theorem 2.11, and also [43], p. 150, Lemma 1).

Theorem 1. For a given function f which is integrable and non-negative on X, and a given positive
number A, there exists a sequence {Q}}; of disjoint dyadic cubes of X such that

(i) f(x) <A foralmost every x € X\ U; Qy;
() 1U;Qjl < %Al x)
(iii) A < JCQ x)dx < 2”

As an apphcation of (4), we find that for any given g € (1, ), f € BMO (R") if and
onlyif fe Ll (R")and

loc

I/ llBmo, (R == [JC |£(x) fQ|q dx] < 0.
cube QC]R”

Meanwhile, || - [l gmo wr) ~ II- ”BMO[](RH ) (see, for instance, [42], p. 125, Corollary 6.12).
Recently, Bényi et al. [44] gave a comprehensive approach for the boundedness of
weighted commutators via a new equivalent Orlicz-type norm

Ifllsmo) == sup NIf = follLe (@ ©®)
cube QcX

This equivalence is proved in Proposition 3 below. Here and thereafter, for any given
cube Q of R" and any measurable function g, the locally normalized Orlicz norm |8l (q) is

defined by setting
I8l (@) = inf{/\ € (0,00) : f[ew - 1]dx < 1}. ©)
Q

Moreover, for any given cube Q of R", the space Lexp (Q) is defined by setting

el
Lexp(Q) := {f is measurable on Q : I A € (0, ) such that JC efT dx < oo}.
Q

The space Lexp (Q) was studied in the interpolation of operators (see, for instance, [45],
p-243), and it is closely related to the space BMO (Q) (see Proposition 3 below).
On the Orlicz function in (6), we have the following properties.

Lemma 1. Foranyt € [0,c0), let ®(t) := ¢! — 1. Then,
(i) Pisof lower type 1, namely for any s € (0,1) and t € (0, 00),
D(st) < sP(1);

(ii) P is of critical lower type 1, namely there exists no p € (1, 00), such that for any s € (0,1)
and t € (0, ),
P(st) < CFP(t)

holds true for some constant C € [1,00) independent of s and t.
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Proof. We first show (i). For any s € (0,1) and t € (0, ), let
(s, t) := D(st) —sD(t) = e =1 —s(e - 1).

Then,
d
gh(s,t) =sest —sel = s(e —et).

From this and s € (0,1), we deduce that for any ¢ € (0, o), %h(s, t) < 0, and hence
h(s,t) < h(s,0) = 0, which shows that @ is of lower type 1 and hence completes the proof
of (i).

Next, we show that @ is of critical lower type 1. Suppose that there exista p € (1, o)
and a constant C € [1, ), such that for any s € (0,1) and t € (0,00), ®(st) < CsPP(t),
namely

eS—1<CsPef - 1). )
From p € (1, 00) and the L'Hospital rule, we deduce that

D(st) . et -1 . test
im ———= = lim = lim = 0
s—0t SPO(t) 50t sP(ef=1) 50+ psPi(ef - 1)

’

which contradicts (7), and hence @ is of critical lower type 1. Here and thereafter, s — 0"
means s € (0,1) and s — 0. This finishes the proof of (ii) and hence of Lemma 1. O

Before showing the equivalent Orlicz-type norms of BMO (X), we first prove the
following equivalent characterizations of BMO (X). These characterizations might be well
known. However, to the best of our knowledge, we did not find a complete proof. For the
convenience of the reader, we present the details here.

Proposition 1. The following three statements are mutually equivalent:
(i) fe BMO(X);
(i) fe L%OC (X) and there exist positive constants Cz and Cy, such that for any cube Q C X and

any t € (0, c0),

[[xeQ: I1F(x) - fol > 1)| < CaeCHiiQ;
(i) fe Llloc (X) and there exists a A € (0, 0), such that
If@)-fol
sup e” T dx<oo.
cube QcX VQ

Proof. We prove this proposition via showing (i) = (ii) = (iii)) = (i).

First, the implication (i) = (ii) was proved by John and Nirenberg in [1], Lemma 1’
(see (4) above).

Next, we show the implication (ii) = (iii). Suppose that f satisfies (ii). Then, there
exist positive constants C3 and Cy, such that for any cube Q € X and any ¢ € (0, ),

[fxeQ: 1f(x) - fol > ]| < Cae 10

and hence

JC o R 0)-fol gy
Q

1 0 Cy
_1 cO: eHF@fol t}‘dt
|Q|fo freq: e g
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{x €Q: eCT4|f(X)’fQ| > t}‘dt

“lh +f)
<1+ linf]w“xe Q: If(x) - fol > 2C; log | dr

<1+ i C3€_C42C11 logtlQldt

1l Jy
:1+C3f t2dt =14Cs, ®)
1
which implies that f satisfies (iii). This shows the implication (ii) = (iii).
Finally, we show the implication (iii) == (i). Suppose that f satisfies (iii). Then, there

exists a A € (0, ), such that
) -fol
supfe T dx < oo.
QcX JQ

From this and the basic inequality x < e* — 1 for any x € R, we deduce that

sup Jc|f(x)—fQ'de A sup JC
cube QcX JQ cube QcX JQ

which implies that f satisfies (i), and hence the implication (iii) = (i) holds true. This
finishes the proof of Proposition 1. O

Ifx)-fgl
e~ & —1|dx<oo,

In what follows, for any normed space Y (X), equipped with the norm || - [ly(x), whose
elements are measurable functions on X, let

Y(X)/C:= {f is measurable on X : [|flly(x),c :== igéller cllyxy < oo}.

Proposition 2. Let Qg be a given cube of R". Then,
[L=(Q0)/C] & BMO (Q0) & [Lexp(Q0)/C]J.

Proof. Indeed, on the one hand, from

Jgif(x) — foldx < 2Jg|f(x) + o dx < 20| + cllpo(gy)

for any ¢ € C, we deduce that [L*(Qp)/C] ¢ BMO (Qp). Moreover, let g(-) := log|- —col,
where ¢y is the center of Qp. Then, g € BMO (Qp) \ [L*(Qo)/C] (see [46], Example 3.1.3,
for this fact).

On the other hand, by Proposition 1(iii), we easily find that BMO (Qp) C [Lexp(Qo)/C].
Moreover, without loss of generality, we may assume that Qp := (—1,1) and let

—log(—x), xe€(-1,0),
g(x) :=10, x=0,
log(x), x e (0,1).

We claim that g € [Lexp(Qo)/C]\ BMO (Qp). Indeed, forany e € (0,1), let e := (~¢,€).

Then,
f |s(x) - g1

1 1
dx = ﬁ'log x| dx = e flog(x) dx =1-log(e) — oo
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as € — 0, which implies that g ¢ BMO (Qq). However,

1 1
f 3R gy — 2f e3108(%) gy — 2f xhdyv=4d< o0,
Qo 0 0

which implies that g € Lexp(Qo). Therefore, BMO (Qo) & [Lexp(Qo)/C], which completes
the proof of Proposition 2. O

Now, we show that the two Orlicz-type norms, (5) and

”f”L:p(r\’) = 1nf{/\ €(0,00): Cu:;gacx :

forany f € Llloc (X), are equivalent norms of BMO (X).

Proposition 3. The following three statements are mutually equivalent:
(i) fe BMO(X);

(i) feLj (X)andlfllgpmox) < oo

(iii) feLl (X)and ”f”LeTp<x> < 0.

loc

Moreover, || -llgmo (x) ~ I llsmox) ~ 11l (x)-

Proof. To prove this proposition, we only need to prove that for any f € LllOC (X),

Ifllsmo (x) ~ Ifllsmorx) ~ I (x)-

We first show that for any f € L! (X)), lfllBmo (x) < lIfllapmoxy and llfllpmo (x) <

loc

”f”LTxp(X)‘ To this end, let f € LllOC (X). Forany cube Q ¢ Xand any A € (0,00), by t < e -1

for any t € (0, ), we have

For-sdis <2 F15 e,

Jg ()~ fal dx < If  folloy o)

which implies that

and hence
IflBmo (x) < Ifllsmox)-

Moreover, to show ||fllpmo (x) < ”f”LTxp(X)' it suffices to assume that f € L:(;(X);
otherwise, ||f]| foo(X) = % and hence the desired inequality automatically holds true. Then,
oxp

byt <ef —1foranyt € (0,00), we conclude that for any 1 € N and any cube Q € X,
y y y y

&gl
— Al — L
fde SJC M) 1 | g ©
Q“f”i;o()()_'_ﬁ Q

From the definition of || - || oo (x) We deduce that for any n € N, there exists a
exp

1
An € (||f||[e;,()()'”f"[§,(z\’) + ;)
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such that
If()-fol
sup e M - 1] dx < 1.
cube QcX YQ
By this, (9), and the monotonicity of el) - 1, we conclude that, for any n € N and any
cube Q C X,
P >—fQ|1 et
Q Al (x) + u
and hence

£, 170~ ol < Wl +

Letting n — oo, we then obtain

Iflsmo(x) = sup f If (x) = foldx < IIfll ()

cube QcX

To summarize, we have, for any f € Lloc (X),
Ifllenvo (x) < IIfllsmox) and lifllemo (x) < Ifll - (10)
Next, we show that the reverse inequalities hold true for any f € L! (X), respectively.
In fact, we may assume that f € BMO (X) because, otherwise, the desired inequalities

automatically hold true. Now, let f € BMO (X). Then, for any cube Q ¢ X and any
Ae (C;lllfll BMO () ©), by (4) and the calculation of (8), we obtain

IF-fol
JC e~ dx

1+@f |er fQ|>Alogt}‘
1 il Alogt
<15 | Y e P 10l dt

A

:1+C1f t Mevow) df =1+ Cy
1

\f() fol
J([e —1]dx<C1,
Q

where Cy € (1,) is as in (4). From this and Lemma 1(i) with s replaced by 1/C;, we

deduce that
If(x)-fol 1 If(x)-fol
er _1dxs_fe/—\_1 dx<1. (1)
Q G Jo

On the one hand, by (11) and

and hence

C
C—;nanMom <ACy < e,

we conclude that

~ If(x)-fol
If = follLep (@ = inf{/\ >0: Jc[e T - 1]dx < l}
Q
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G
< &, Mllsvo )

and hence

C
Ifllsmow) = sup IIf = follLy, Q) < C_lllf”BMO (X)- (12)
cube QcX 2

On the other hand, by (11), we conclude that

V)-fol
e & —1ldx<1.

sup JC
cube QcX JQ
From this and c
1
C_2||f||BMO(X) <ACy <o,

we deduce that

C
< _l”f”BMO(X)'

Combining this with (12), we have, for any f € BMO (X)),

C] C]
IAllspow) = & Illsmo @) and Al ) = & Ifllevo (x)-
This, together with (10), then finishes the proof of Proposition 3. O

Remark 1. There exists another norm on Lexp (Qo), defined by the distribution functions as follows.

Let f be a measurable function on Qp. The decreasing rearrangement f* of f is defined by setting,
forany u € [0, ),

f*(u) :==inf{t € (0,00) : [{x € Qo : |f(x)l>#}] < u}.

Moreover, for any v € (0, 00), let

1 U
=y [
0
Then, f € Lexp(Qo) if and only if f is measurable on Qg and

11l (00 :=  sup LU\)Q\<OO'
? ve(0)Qol) 1 +log ()

Meanwhile, || - ”szp(Qo) is a norm of Lexp(Qo) (see [45], p. 246, Theorem 6.4, for more
details). Furthermore, from [45] (p. 7, Corollary 1.9), we deduce that || - ”Léxp(Qo) and || - ||Lexp(Q0) are

equivalent. Notice that f* and f** are fundamental tools in the theory of Lorentz spaces (see [47],
p. 48, for more details).

Recently, Izuki et al. [48] obtained both the John-Nirenberg inequality and the
equivalent characterization of BMO (R") on the ball Banach function space which contains
Morrey spaces, (weighted, mixed-norm, variable) Lebesgue spaces, and Orlicz-slice spaces
as special cases (see [48], Definition 2.8, and also [49], for the related definitions). Precisely,
let X be a ball Banach function space satisfying the additional assumption that the Hardy—
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Littlewood maximal operator M is bounded on X’ (the associated space of X; see [48],
Definition 2.9, for its definition), and for any b € L}OC (R™),

1
bl = sup m””" ba[1g|,.,

where the supremum is taken over all balls B of R". It is obvious that || - || gm0 Han =
I llBmo (rr)- Moreover, in [48] (Theorem 1.2), Izuki et al. showed that under the above

assumption of X, b € BMO (R") if and only if b € Llloc (R™) and |Ibllgmo < ©0; meanwhile,

II-IBmo i ~ I lBmO ()

Furthermore, the John-Nirenberg inequality on X was also obtained in [48] (Theorem 3.1),
which shows that there exists some positive constant C, such that for any ball B ¢ R"” and
any 7 € [0, ),

where [[M||x/—x’ denotes the operator norm of M on X’. Later, these results were applied
in [49] to establish the compactness characterization of commutators on ball Banach
function spaces.

Now, we come to the localized counterpart. The local space BMO (R"), denoted by
bmo (R"), was originally introduced by Goldberg [50]. In the same article, Goldberg also
introduced the localized Campanato space Aq(R") with a € (0, 00), which proves the dual
space of the localized Hardy space. Later, Jonsson et al. [51] constructed the localized Hardy
space and the localized Campanato space on the subset of R"; Chang [52] studied the
localized Campanato space on bounded Lipschitz domains; Chang et al. [20] studied the
localized Hardy space and its dual space on smooth domains as well as their applications to
boundary value problems; and Dafni and Liflyand [53] characterized the localized Hardy
space in the sense of Goldberg, respectively, by means of the localized Hilbert transform
and localized molecules. In what follows, for any cube Q of R", we use £(Q) to denote its
side length, and let £(R") := co. Recall that

P, SR
< C2 e |1y,

LixeB: 1b(x)-bpl>2 2l ygo ()} ‘x

bmo (X) 1= {f € L . (X) & |fllomo(x) < ),
where

11l bmo (x) = supf’f(x) ~ foc|dx
Q JQ
with

| fo if€(Q) € (0,c),
faw = {O if £(Q) € [co, €(X)) "

for some given ¢y € (0, £(X)), and the supremum taken over all cubes Q of X. Furthermore,
a well-known fact is that bmo (X) is independent of the choice of ¢y (see, for instance, [54],
Lemma 6.1).

Proposition 4. Let X be R" or a cube Qg of R". Then,
[L*(X)/C] c [bmo (X)/C] c BMO (X) (14)
and

” . ”BMO (X) < 2;2(5 || . +C”bm0 (X) < 4;2@ || . +C||L°°(X)' (15)
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Moreover,
[L*(R")/C] & [bmo (R")/C] & BMO (R") (16)
and, for any cube Qg of R",
[L*(Q0)/C] & [bmo (Qo)/C] = BMO (Qo) & [Lexp(Q0)/C] (17)
with

I IBmo (Qo) < Zcigcf Il +cllbmo (Qg) < 4l IIBMO (Qp)-

Proof. First, we prove (15). To this end, let f € LllOC (X). Then, for any c € C and any cube
Qof X,

fQ I£(x) — foldx = ]2 () + ] - (F + )l dx
< 2J2|f(x) +d|dx < 2llf +ll (o).

From this and the definitions of || - [ gymo (X) and || - [l pmo (X)r it follows that (15) holds
true, which further implies (14).
We now show (16). Indeed, let

 (log(i) ifxe R\ (o},
g1¥) = {o ifx =0

From [46] (Example 3.1.3), we deduce that g € BMO (R"). However, g; ¢ bmo (R")
because, for any M > max{co, 1}, by the sphere coordinate changing method, we have

JC |log(|x|)| dx ~ log(M),
B(0,M)

which tends to infinity as M — oo. Thus, g1 € BMO (R") \ [bmo (R")/C], and hence we
have [bmo (R")/C] & BMO (R"). Moreover, define

_|log(Ixl) if x| € (0,1),
2(x) == {O e 01Ul eo),

Notice that g» ¢ L*(R") and g» = max{g1,0} € BMO (R"). Then, for any cube Q c R”,
if £(Q) € (0,¢p), then

Jg 192(¢) — (82)o] dx < lIg2ll a0 (o

if £(Q) € [co, ), then
f|g2(x)|dx < JC log(Ixl) dx ~ llgallpy gny ~ 1.
Q B(0,1)

To summarize, [Ig2llpmo (r7) S 1+ lIg2llBMo (Rr), Which implies that g» € bmo (R")
and hence L*(R") & bmo (R"). This shows (16).

We next prove (17). By the above example g», we conclude that L®(Qp) & bmo (Qo).
Meanwhile, BMO (Qo) & [Lexp(Qo)/C] was obtained in Proposition 2. Moreover, for any
given f € BMO (Qp), we have f € L'(Qp) and hence

Infllf = cllbmo (o)
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£ - fol e <Wflmoiqy  H0Q) € 0.0)
inf Jg If (x) = cldx < 2l fllgmo (gy)  if €(Q) € [co, €(Qo)),

ceC
< 2/lfllBmo (Qy)-

Combining this with the observations that [bmo (Qp)/C] ¢ BMO (Qp) and that,
forany ce C,

IfllBmo (o) = IIf + cllBmo (Qy) < 2NIf + cllbmo (Qp)-
we find that [bmo (Qp)/C] = BMO (Qp) and

Ifllem0 (@) = ZInfIlf + cllbmo (@p) = 4l MO (Qo)-

To summarize, we obtain (17). This finishes the proof of Proposition 4. O

Let f € Llloc (X). Similar to Proposition 3, let

A1l = su -fo (18)
fllomoy(x) = st gcfo fllLeg (o)
and
9)-fae
[l lomo, (x) := inf{ A € (0,00) = sup JC [— —1] dx <13, (19)
cube QcX JQ

where ¢g € (0,£(X)), and fg, is as in (13). To show that they are equivalent norms of
bmo (X)), we first establish the following John-Nirenberg inequality for bmo (X), namely
Proposition 5 below. In what follows, for any given cube Q of R”, (a1, ...,4,) denotes
the left and lower vertex of Q, which means that for any (x1,...,%1) € Q, x; > a; for any
i €({1,...,n}. Recall that for any given cube Q of R", the dyadic system Zg of Q is defined by
setting

79:=\J2Y, (20)
=0

where, forany j € {0,1,...}, @g ) denotes the set of all (x1,...,x,) € Q, such that for any
ie{l,...,n}, either ‘ _
x; € [+ k2776(Q), a; + (ki +1)277¢(Q))

for some k; € {0,1,...,2/ =2} or
xi € ai+ (1-27)0(Q), 4+ £(Q)]:

Proposition 5. Let f € bmo (X) and cy € (0,€(X)). Then, there exist positive constants Cs and
Ce, such that for any given cube Q C X and any t € (0, o),
Ce

fre @+ 1£(x) = foul > t]] < Cse om0} @1

Proof. Indeed, this proof is a slight modification of the proof of [1] (Lemma 1) or [42]
(Theorem 6.11). We give some details here, again for the sake of completeness.
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Let f € bmo (X). Then, from Proposition 4, we deduce that f € BMO (X) with
lfIlBMmo (x) < 2l fllbmo (x), Which further implies that for any cube Q ¢ X with £(Q) < co
and any f e (0, 00),

Cy

I}(f_erCo; )( )= (f fQ, )( ) < Cqe Hf”BMo,‘( |Q|
<G T,

where C1 and C; are as in (4), and the distribution function D is defined as in (3). Therefore,
to show (21), it remains to prove that for any given cube Q with £(Q) > ¢p, and any
€ (0,00),

_ C6 t
lixeQ: If(x)>t)] < Cse MMomov) Q).

Notice that, in this case, there exists a unique mg € Z, such that 2~(mo+1)p (Q)<co <
27"0¢(Q). Moreover, since inequality (21) is not altered when we multiply both f and
t by the same constant, without loss of generality, we may assume that ||f ||bmo x) = 1.

Let Qp be any given dyadic subcube of Q with level my, namely Qp € 9 mO). Then,
by co < 27"0¢(Q) = £(Qo) and the definition of || fll pmo (x), We have

f 1 < Tl ) = 1 @)
Qo

From the Calderén—-Zygmund decomposition (namely Theorem 1) of f with height

Ul

A =2, we deduce that there exists a family {Qy ;}; C @Qo , such that for any j,

2< f If (x)] dx < 2"
Q

1j

and |f(x)| <2 when x € Q\ J; Q1;. By this and (22), we conclude that

ZlQu Zf |dx<—f|f )dx < 310l

Jg, f(x)dx

Moreover, for any j, from the Calder6n-Zygmund decomposition of f — fo, ; with

height 2, we deduce that there exists a family {Qq jx}x C @83
j

and, for any j,

< 2n+1‘

|fQ1,7‘ <

, such that for any k,

2< If (x) = fo, ldx < 2"+
Qu,jk ’

and |f(x) - fo,,l £2whenx e Q\ Uk Q1,j k- Meanwhile, by the construction of {Qy ;};, we
know that £(Qy,j) = $£(Qo) = 27"+ £(Q), which, combined with the facts || fllpmo (x) = 1
and 2~ ¢(Q) < cp, further implies that

ng 'f(x) —fQLj'dx < M fllbmo (x) = 1-
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Thus, we obtain, for any j,

1
o =3Y, I, )= fay

1 1
< EfQ f(x) = fo, ldx < 51Qu, 1

1,j

and, for any k,

o= fo] < £, 10 fo e <21

Rewrite U]-’k{erj/k} =: Uj{QZ,j}~ Then, we have

2] < 2 Y| < L1l
- 2 L 4
] ]

and, forany x € Q\ U; Qz,j,

If(x)] < ‘f(x) - fo, |+ ‘wi.| <24t <. gl

Repeating this process, then, for any T € N, we obtain a family {Qr ;}; C g, of disjoint
dyadic cubes, such that

Z|QT,]‘| <2771Ql
j

and, forany x € Qo \ U; Qr,j,
If(x)] < T2

Notice that, for any t € [2”“, c0), there exists a unique T € N, such that 2"+l <t <
(T +1)2"+1 < T2"+2, Therefore, we obtain

lxe Qo IF(1>HI< Y |Qr| <27T1Qul

]
= e T1082|0| < eS|y, (23)

where Cg := 2-(n+2) log2. Furthermore, observe that if t € (0, 2"“), then Cgt < 271 log2
and hence .
lix e Qo IfF(x)] > Hl < IQol < & 182 el |Qg] = Cse™¥'|Qy|,

where Cs := V2. By this, (23), and the arbitrariness of Qg € @gm), we conclude that for any
te (0,0),

reQ: If@I>t= Y lxeQo: If(x)>H]

Qoeg)émm
<Cse Gt Y 1Qpl = Cse™ Q)
Qoegémo)

and hence (21) holds true. This finishes the proof of Proposition 5. O

As a corollary of Proposition 5, we have the following result: namely, || - ||bm01< X) in (18)
and || “ [lpmo, (x) in (19) are equivalent norms of bmo (X). The proof of Corollary 1 is just a
repetition of the proof of Proposition 3 with (4) replaced by (21); we omit the details here.
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Corollary 1. The following three statements are mutually equivalent:
(i) f e bmo(X);

(i) feLl (X)and||fllpmo,x) < o

(iii) f €L} (X) and || fllomo,(x) < -

loc

Moreover, || llbmo (x) ~ I lbmoy (X) ~ I lbmoy (X)-

2.2. John—Nirenberg Space [N,

Although there exist many fruitful studies of the space BMO in recent years, as was
mentioned before, the structure of N, is largely a mystery, and there still exist many
unsolved problems on JN,,. The first well-known property of /N, is the following John—
Nirenberg inequality obtained in [1] (Lemma 3), which says that JN,(Qp) is embedded into
the weak Lebesgue space LV (Qp) (see Definition 1).

Theorem 2 (John-Nirenberg). Let p € (1,00) and Qq be a given cube of R". If f € [N,(Qo),
then f — fo, € L (Qo), and there exists a positive constant Cyy, ), depending only on n and p,
but independent of f, such that

17 = faulluse(ay) < Conml Al o)-

It should be mentioned that the proof of Theorem 2 relies on the Calderén-Zygmund
decomposition (namely Theorem 1) as well. Moreover, as an application of Theorem 2,
Dafni et al. recently showed in [31] (Proposition 5.1) that for any given p € (1, c0) and
q€[Lp), f € INy(Qo) if and only if f € L}(Qp) and

||f||]Np/q(Q0> = sup[z |Ql|(f(;|f(x) _fQilq dx)q] < oo,

where the supremum is taken in the same way as in (1); meanwhile, || - || INp(Qo) ™ -1l INpg(Qo)*
Furthermore, in [31] (Proposition 5.1), Dafni et al. also showed that for any given p € (1, )
and g € [p, o), the spaces JN,4(Qo) and L7(Qp) coincide as sets.

Remark 2.
(i) As a counterpart of Proposition 2, for any given p € (1, 00) and any given cube Qq of R", we
have

LP(Qo) & JNp(Qo) S LP(Qo).
Indeed, LV (Qo) € JN,(Qo) is obvious from their definitions; JN,(Qo) C LP®(Qp) is just
Theorem 2; [Ny(Qo) G LV (Qo) was shown in [30] (Example 3.5); and the desired function
is just x™/P on [0,2]. However, the fact LP(Qo) S INp(Qo) is extremely non-trivial and
was obtained in [31] (Proposition 3.2 and Corollary 4.2) via constructing a nice fractal
function based on skillful dyadic techniques. Moreover, in [31] (Theorem 1.1 and Remark 2.4),
Dafni et al. showed that for any given p € (1, c0) and any given interval Iy C R, no matter
whether bounded or not, monotone functions are in JN,(Iy) if and only if they are also in
LP(Ip). Thus, [N,(X) may be very “close” to LV (X) for any given p € (1, o).
(i) JN1(Qo) coincides with L1(Qy). To be precise, let Qp be any given cube of R", and

IN1(Qo) = {£ € LH(Qo) : Ifllpvy (o) < ),

where ||f||]N1(Q0) is defined as in (1) with p replaced by 1. Then, we claim that JN1(Qp) =
[LY(Qo)/C] with equivalent norms. Indeed, for any f € JN1(Qq), by the definition of
11, (o) we have

s o) 2 (1 = faulls gy 2 IE NS + cllis gy =2 Iflir gy -
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Conversely, for any given f € L1(Qo) and any c € C, we have
11y Qo) = SUPZ L|f(x) _fQildx

SZSupi|f(x)+c|dx
T JQi
<20lf +cllrgy)

which implies that ||f||/N] Q) = ||f||L1(Q0>/C and hence the above claim holds true. Moreover,
the relation between JN1(R) and L' (R) was studied in [33] (Proposition 2).

(iii) Garsiaand Rodemich in [55] (Theorem 7.4) showed that for any givenp € (1, 00), f € LP°(Qp)

if and only if f € L'(Qo) and

1fllGaro, (Qp) *= SUP =77 . IQI G |Q1|f f |f (y)|dxdy < oo,

where the supremum is taken in the same way as in (1); meanwhile,

- llpes (o) ~ I lgakoy (Q0):

(see also [35], Theorem 5(ii), for this equivalence). Moreover, in [35] (Theorem 5(i)), Milman
showed that || - ||GaRo,,(Q0) <2|- II]Np(QD)'

Recall that the predual space of BMO (X) is the Hardy space H'(X) (see, for

instance, [5], Theorem B). Similar to this duality, Dafni et al. [31] also obtained the predual
space of JN,(Qo) for any given p € (1,00), which is denoted by the Hardy kind space
HK} (Qo), here and thereafter 1/p +1/p" = 1. Later, these properties, including equivalent
norms and duality, were further studied on several John-Nirenberg-type spaces, such as
John-Nirenberg—Campanato spaces, localized John-Nirenberg-Campanato spaces, congru-
ent John-Nirenberg-Campanato spaces (see Section 3 for more details), and Riesz-type
spaces (see Section 4 for more details).

Finally, let us briefly recall some other related studies concerning the John-Nirenberg

space JNy, which will not be stated in detail in this survey, although all of them are
quite instructive:

Stampacchia [56] introduced the space N*!), which coincides with JN; (p,1,0). (Qo) in
Definitions 3 if we write A = pa with p € (1,) and a € (-0, ), and applied them
to the context of interpolation of operators.

Campanato [57] also used the John-Nirenberg spaces to study the interpolation
of operators.

In the context of doubling metric spaces, JN, and median-type JN), were studied,
respectively, by Aalto et al. in [30] and Myyryldinen in [58].

Hurri-Syrjanen et al. [34] established a local-to-global result for the space JN,(Q) on
an open subset Q) of R". More precisely, it was proved that the norm || - [ljn, () is
dominated by its local version || - || N, Q) modulus constants; here, 7 € [1, c0); for any
open subset () of R", the related “norm” || - || N, (Q) is defined in the same way as
Il N, (Qo) ) in (1) with Qg replaced by (); and || - || Ny (Q) is defined in the same way
as |||l INy(Q) with an additional requirement 7Q c Q) for all chosen cubes Q in the
definition of || - || N, ()

Marola and Saari [40] studied the corresponding results of Hurri-Syrjanen et al. [34] on
metric measure spaces and obtained the equivalence between the local and the global
JNp norms. Moreover, in both articles [34,40], a global John-Nirenberg inequality for
JNp(Q2) was established.
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Berkovits etal. [32] applied the dyadic variant of JN, (Qp) in the study of self-improving
properties of some Poincaré-type inequalities. Later, the dyadic JN,(Qo) was further
studied by Kinnunen and Myyryldinen in [59].

A. Brudnyi and Y. Brudnyi [60] introduced a class of function spaces V([0,1]") which
coincides with [N, ,5), ([0,1]"), defined below for suitable range of indices (see [61],
Proposition 2.9, for more details). Very recently, Dominguez and Milman [62] further
introduced and studied sparse Brudnyi and John-Nirenberg spaces.

Blasco and Espinoza-Villalva [33] computed the concrete value of ||14]| N, (R for any
givenp € [1, 0] and any measurable set A C R of positive and finite Lebesgue measure,
where [N (R) := BMO (R).

The JN,(Qo)-type norm || - llGaRro, (Qp) IN Remark 2(iii) was further generalized and
studied in Astashkin and Milman [63] via the Stromberg-Jawerth-Torchinsky local
maximal operator.

3. John-Nirenberg—Campanato Space

The main target of this section is to summarize the main results of John—-Nirenberg—

Campanato spaces, localized John—-Nirenberg-Campanato spaces, and congruent John—
Nirenberg-Campanato spaces obtained, respectively, in [36,61,64]. Moreover, at the end of
each part, we list some open questions which are still unsolved so far. Now, we first recall
some definitions of some basic function spaces.

For any s € Z, (the set of all non-negative integers), let s(Q) denote the set of all

polynomials of degree not greater than s on the cube Q, and Pg (f) denote the unique
polynomial of degree not greater than s, such that

fQ [f-PY N ar =0, viiss, 24)

where y 1= (y1,...,yn) € zh = (Z), Iyl :==y1+ -+ yn and ¥V = x)l/l . }”

any x := (x1,...,%,) € R™.
Let g € [1, 0] and Q be a given cube of R". For any measurable function f, let

for

11z (Qo,IQol-1dv) = [JC 1) lqu].

Letq € (1,00),s € Z,and Qg be a given cube of R". The space L1(Qo, |Qol " dx) /Ps(Qo)
is defined by setting

L9(Qu, IQol™"dx) /P(Qo) := {f € L(Q0) : Iflluaigyiqi-ta) muio) < )

where

U les Quiqi-tay /P 3= | J0E, IF + il (o oi-ta)-

For any given v € [1, 0] and s € Z,, and any measurable subset E C R", let
LY(E) := {f €L(E): ff(x)x7’dx =0,VyeZl, Iyl < s}.
E

Let Q be any given cube of R". Tt is well known that P ( f) = fo,and forany s € Z,

there exists a constant C(;) € [1, ), independent of f and Q such that

PNW|=ce £ i vreQ 25)
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Indeed, let {(pg) 1y €Z", |yl < s} denote the Gram-Schmidt orthonormalization of
{x¥: y €Z", |yl < s} on the cube Q with respect to the weight 1/|Q|, namely for any y, v,

peZ with|y| <s, v <s, and |u| <, (pg) € P:(Q) and

1, v=uy,
, x)dx =
@Q (PQ e f (pQ {0, vE L

Then,
PYNH@ = Y, @) ned ), vxeQ

(yEZ” s |yl<s)

and we can choose Ces) Z{yezn Iylss) ||g0Q ||2 @ satisfying (25) (see [65], p. 83, and [66],
p-54, Lemma 4.1, for more details).

3.1. John—-Nirenberg—Campanato Spaces

In this subsection, we first recall the definitions of Campanato spaces, John-Nirenberg—
Campanato spaces (for short, JNC spaces), and Hardy-type spaces, respectively, in
Definitions 2, 3, and 6 below. Moreover, we review some properties of JNC spaces and
Hardy-type spaces, including their limit spaces (Proposition 6 and Corollary 2 below),
relations with the Lebesgue space (Propositions 7 and 8 below), the dual result (The-
orem 3 below), the monotonicity over the first sub-index (Proposition 9 below), the
John-Nirenberg-type inequality (Theorem 4 below), and the equivalence over the second
sub-index (Propositions 10 and 11 below).

A general dual result for Hardy spaces was given by Coifman and Weiss [5] who
proved that for any given p € (0,1] and g € [1, o], and s being a non-negative integer not
smaller than n(% — 1), the dual space of the Hardy space H” (R") is the Campanato space
C 1, M(]R"), which was introduced by Campanato [67] and coincides with BMO (R")

whenp = 1.

Definition 2. Let a € [0,0), g€ [1,00), and s € Z.
(i) The Campanato space Cy,q,s(X) is defined by setting

Cags(X) = {f € L] _(X): Iflle,,.(x) <}

Ifll,,,.(x) := sup |Q|fa| Jg [ (f)‘q]é

and the supremum is taken over all cubes Q of X. In addition, the “norm” | -lic,,, (x) of
polynomials is zero, and for simplicity, the space Cy,q,5(X) is regarded as the quotient space

Cags(X)/Ps(X).
(ii) The dual space (Ca,qs(X))* of Caqs(X) is defined to be the set of all continuous linear
functionals on Co,q,s(X) equipped with the weak-+ topology.

where

In what follows, for any ¢ € (0, ), Q(0,¢) denotes the cube centered at the origin 0
with side length ¢.

Remark 3. Let 0 < g < p < co. The Morrey space M’[;(R"), introduced by Morrey in [68], is
defined by setting

M (R") = {feLlOC (R"): fllyg ) < oo},
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where, for any f € quc (R"),

1
1 q
gy = sup_ 101 [ £ i dy] .
T cube QcR" Q
From Campanato ([67], Theorem 6.11), it follows that for any given q € [1,c0) and a € [—%,O),
and any f € Cyao(X),

Wy~ 1= oy e

where the positive equivalence constants are independent of f, and

1
lim ——— dx if X =R",
5 1Q(0,0)] L(o,[)f () dxif

a(f) = 1 ]
o [ e X = Qo
1Qol Jo,
see also Nakai [16], Theorem 2.1 and Corollary 2.3, for this conclusion on spaces of homogeneous
type. In addition, a surprising result says that in the definition of supremum || - ”M”(R")' if “cubes”
q
were changed into “measurable sets”, then the Morrey norm || - ||,» (®") becomes an equivalent
1
norm of the weak Lebesgue space (see Definition 1). To be precise, for any given 0 < g < p < oo,
felP™®R") ifand only if f € LT (R") and

loc

1
Pl = s |A|v[f It Wdy] <o

AcCR",|Ale(0,00)

moreover,

< P % ;
II- ||Lpo0 R™) <l ||Mp (R?) ~ qu ||‘||U%°°(]Rn>,

see, for instance, [69], p. 485, Lemma 2.8. Another interesting [Ny-type equivalent norm of the
weak Lebesque space was presented in Remark 2(iii).

Inspired by the relation between BMO and the Campanato space, as well as the relation
between BMO and N, Tao et al. [61] introduced a Campanato-type space JN( (1.,5) (X ) in
the spirit of the John-Nirenberg space N, (Qp), which contains [N,(Qo) as a spec1al case.
This John-Nirenberg-Campanato space is defined not only on any cube Qg but also on the
whole space R".

Definition 3. Letp, g € [1,00),s € Z, and « € R.

(i)  The John-Nirenberg-Campanato space (for short, INC space) [N
setting

(p.g,5)a (X) is defined by

] (P.49,5)a (X) _{feLloc( ) ||f||]NP'75 <00},

where

1) 7
AN () = sup{z IQfl[lQilé‘{Jg‘f(x) —Pgi) (f) (x)'”’ dx}”] } ,

PS) (f) for any i is as in (24) with Q replaced by Q;, and the supremum is taken over all

collections of interior pairwise disjoint cubes {Q;}; of X. Furthermore, the “norm” || - ||IN(p e X)
5 )a
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of polynomials is zero, and for simplicity, the space [N, ), (X) is regarded as the quotient
space IN (p.g,5)a ( )/PS( )
(ii) The dual space (JN(p,s),(X))* of IN(pq5), (X) is defined to be the set of all continuous

linear functionals on [N, 4 o). (X) equipped with the weak-+ topology.

Remark 4. In [61], the JNC space was introduced only for any given a € [0,00) to study its
relation with the Campanato space in Definition 2, and for any given p € (1, co) due to Remark 2(ii).
However, many results in [61] also hold true when a € R and p = 1, just with some slight
modifications of their proofs. Thus, in this survey, we introduce the INC space for any given o € R
and p € [1, 00) and naturally extend some related results with some identical proofs omitted.

The following proposition, which is just [61] (Proposition 2.6), means that the classical
Campanato space serves as a limit space of JN(, , ), (X), similar to the Lebesgue spaces
L®(X) and LP(X) when p — oo.

Proposition 6. Let a € [0,00), g € [1,00), and s € Z.. Then,

lim ]Npqs (X) = Ca,q,s(x)

p—?OO
in the following sense: for any f € Uye(1,00) MNpefr,00) IN(pg,5)0 (X,

Tim Ifly 00,00 = 1,000

(Pa.5)a

In Proposition 6, if we take X = Qg, we then have the following corollary, which is
just [61] (Corollary 2.8).

Corollary 2. Let g € [1,00), & € [0,00), s € Z, and Qg be a given cube of R". Then,

Cus(Qo) = {fe () WNipgs, ()2 m Ifly,,.0 () <

pefl,e0)
and for any f € Cy,q5(Qo),
£, g(00) = hm 0 AN (o)

Remark 5.
(i) Letp € (1,00) and Qg be a given cube of R". It is easy to show that

BMO (Qo) € JNy(Qo)-

However, we claim that
BMO (R") £ JN, (R").

Indeed, for the simplicity of the presentation, without loss of generality, we may show this claim
only in R. Let g(x) := log(|x|) for any x € R\ {0}, and g(0) := 0. Then, g € BMO (R)
due to [46] (Example 3.1.3), and hence it suffices to prove that g ¢ JN,(R) for any given
p € (1,c0). Todo this, let I; := (0,t) for any t € (0, 00). Then, by some simple calculations,
we obtain ,
gL = J{g(x) dx = %fo log(x) dx = log(t) —
t

and hence

{x ely: |g(x) —g1,| > %}|
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{x € (0,1) : [log(x) - [log(t) - 1]| > %}'
> Foted = t(l —E_%) — ®

as t — oo. However, the John—-Nirenberg inequality of [N, (I;) in Theorem 2 implies that
forany t € (0, c0),

gl 1) |
1
2

{xEIt : |g(x) —g,,l > %}| <

4
S gl e

with the implicit positive constants depending only on p. Thus, g ¢ JN,(R), and hence the
above claim holds true.

(i) The predual counterpart of Corollary 2 is still unclear so far (see Question 2 below for more
details).

Obviously, N, 4.0),(Qo) is just ]Npq(Qo) From this and [31] (Proposition 5.1), we
deduce that when p € (1 ) and q € [1,p), IN(,,40),(Qo) coincides with JN,(Qo) in the
sense of equivalent norms, and when p € (1, %) and 9 € [p, ), IN(p,40),(Qo) and L7(Qo)
coincide as sets. Moreover, by adding a particular weight of |Qy|, the authors of this article
showed that the aforementioned coincidence (as sets) can be modified into equivalent norms
(see Proposition 7 below, which is just [61], Proposition 2.5). In what follows, for any given
positive constant A and any given function space (X, || - lx), we write AX :={Af : fe X}
with its norm defined by setting, for any Af € AX, [|Afllax := Allfllx.

Proposition 7. Letp € [1,00), g € [p,»),s € Zy, a« = 0, and Qg be a given cube of R™. Then,

(101 N1, (Q0)] = [£9(Q0, 1ol ) /P:(Q0)]

with equivalent norms, namely

_1
“f”M(Qg,\Qo\’]dX)/Ps(QO < 1Qol p”f”]Npq: (Qo)

<2 "[1+C ] 11129 (Qo, 1ol dx) /2 (Qo)

where Ces) is as in (25).

It is a very interesting open question to find a counterpart of Proposition 7 when
a € R\ {0} (see Question 1 below for more details).

Now, we review the predual of the John-Nirenberg-Campanato space via introducing
atoms, polymers, and Hardy-type spaces in order, which coincide with the same notation
asin [31] when u € (1,0), v € (4,00}, and @ = 0 = s (see [61], Remarks 3.4 and 3.8, for
more details). In particular, when a = 0, the (1, v, s)p-atom below is just the classic atom of
the Hardy space (see [61], Remark 3.2).

Definition 4. Let u, v € [1,00],s € Z, and a € R. A function a is called a (1,0, s)-atom on a
cube Q if

Q) supp(a):={xeR": a(x)#0}cQ;

(i) lallpog) < IQIs=u~e;

(iii) an( x7 dx = 0 forany y € 7!} with|y| <s.
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Inwhatfollows, forany u € [1, o], letu’ denote its conjugate index, namely 1/u+1/u" =
1, and for any {A}; C C, let

1
[Z I/\jI“] when u € [1, ),
j

sup Al when u = oo.
j

Al == (27)

Definition 5. Let 1, v € [1,0], s € Z, and o« € R. The space of (i, v, s),-polymers, denoted
by HK(y5,5), (X), is defined to be the set of all g € (N o o), (X))* satisfying that there exist
(u,v,8)q-atoms {a;}; supported, respectively, in interior pairwise disjoint cubes {Qj}; of X, and
{Aj}j € Cwith |Aj|* < oo, such that
g= Y Ajaj
i

in (]N(u’,v’,s)a (X))*. Moreover, any g € I?IZ(M,U,S)Q (X) is called a (1, v, s) o-polymer with its norm
”g”ﬁf((ms) (x) defined by setting

= inflliA;);

”g”;ﬁ((uﬂns)a (X o

where the infimum is taken over all decompositions of g as above.

Definition 6. Let u, v € [1,00], s € Z, and a € R. The Hardy-type space HK,, ;). (X) is
defined by setting

HK(u,v,s)a (X) {g € (]N(u’,v',s)w (X))* 8= Zgl in (]N(u’,v’,s)a (X))*,
i

{gi}i C IF—I‘I?(MMS)“(X), and Z“Sﬁ”ﬁ(uw) (X) < oo}
l. US )

and for any g € HK(,, . 4, (X), let

1115, = B0F Y il
1

where the infimum is taken over all decompositions of g as above. Moreover, the finite atomic

Hardy-type space HK?;U,S)“ (X) is defined to be the set of all finite summations Zf\le Amilim,

where M € N, {/\m}%l:1 c C,and {am}i\’/lj:1 are (u,0,8)q-atoms.

The significant dual relation between JN(, , ), (X) and HK,y o ), (X) reads as follows,
which is just [61] (Theorem 3.9) with a € [0, o) replaced by a € R (this makes sense because
the crucial lemma ([61], Lemma 3.12) still holds true with the corresponding replacement).

Theorem 3. Letp, g€ (1,00), 1/p =1/p' =1 =1/9+1/q,s € Zy, and o € R. Then,
(HK (g ,6)a (X)) = IN(p,q.6), (X) in the following sense:

(i) Iff € IN(gs), (X), then f induces a linear functional L on HK )a (X) and

pha's
”Lf”(HK(p’,q',s)a(X))* < C||f||]N(p,q'5)a (X)s

where C is a positive constant independent of f.
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(i) If £ € (HKy ), (X)), then there exists an f € Ny, (X), such that for any g €

HKfm (X),
— [ f)g) s
X

(V' 5)a
and
1L 51K 1, 0~ Il

(Pa5)a

with the positive equivalence constants mdependent of f.

When X := Qp, @ = 0 =s,and q € [1,p), by [61] (Remark 3.10 and Proposition 10), we
know that Theorem 3 in this case coincides with [31] (Theorem 6.6). As an application of

Theorem 3, the authors obtained the following atomic characterization of LZ' (Qo) for any
given g’ € (1,00) and s € Z4, which is just [61] (Corollary 3.13).

Proposition 8. Letp e (1,0), g€ [p, ), 1/p=1/p' =1=1/q+1/q',s € Zy,and Qo bea
given cube of R". Then,
/ , 1
LT (Qo,1Qol” ~'dx) = IQol" HK 4 5), (Q0)

with equivalent norms.

From Theorem 2 and [47] (p. 14, Exercise 1.1.11), we deduce that forany 1 < p; < p < oo,

JNp, (Qo) € LP>*(Qo) € L' (Qo) € JNp, (Qo)-

Moreover, it is easy to show the following monotonicity over the first sub-index of
both ]N (P0,5)a (Qo) and HK (1,0,5) H(Qo)

Proposition 9. Let s € Z. and Qg be a given cube of R™.
(i) Letl<uy<up<oo Ifve(l,00)andaeR, orv=ocoandacel0,00),then

HK (u2,0,8)a (QO) c HK (u1,0,3) w(QO)

and

Nk, Qo) < |Q0|”1 ”2|| lEK ) 0000 (Q0)-
(i) Letl<pi<pa<oo. Ifge(l,00)andaeR,orq=1anda € |0,00), then
]N (P2,9,5)a (QO) < ]N (p1,9,5) H(QO)

and there exists some positive constant C, such that

1 _1
Mg, e (o) = CIQI™ P21l 1 (Q0)-

Proof. (i) is a direct corollary of the fact that for any (i, v,5),-atom a on the cube Q,

11
Q2 *1a

isa (u1,0,8)-atom (see [36], Remark 5.5, for more details).
(ii) is a direct consequence of the Jensen inequality (see, for instance, [61], Remark 4.2(ii)).
This finishes the proof of Proposition 9. O

Now, we consider the independence over the second sub-index, which strongly relies
on the John-Nirenberg inequality as in the BMO case. The following John-Nirenberg-type
inequality is just [61] (Theorem 4.3), which coincides with Theorem 2 when & = 0 = s.
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Theorem4. Letp € (1,00),5 € Zy, a € [0, 00), and Qo beagiven cube of R". If f € [N, 15),(Qo),
then f — ng (f) € LP°(Qo), and there exists a positive constant C
and s, but independent of f, such that

np,s) depending only on n, p,

(s)
=250 e ) = Corn QIS 0
It should be mentioned that the main tool used in the proof of Theorem 4 is the
following good-A inequality (namely, Lemma 2 below), which is just [61] (Lemma 4.6) (see
also [30], Lemma 4.5, when s = 0). Recall that for any given cube Qg of R", the dyadic
(d)

% is defined by setting, for any given g € L!(Qp) and any x € Qy,

maximal operator M

1
My (@@ = sup o f 1g(x)ldx,
QeDg,, Qax Q

where Dy, is as in (20) with Q replaced by Qp, and the supremum is taken over all dyadic
cubes Q € Dg, and Q > x.
Lemma 2. Let p € (1,00), 5 € Z, C) € [1,00) be as in (25), 0 € (0,2’”C(’51>), Qo be a given

cube of R", and f € [N, 16),(Qo)- Then, for any real number A > i JEQO If — sz .

freqo: MS(F-PSNN)0) > A}‘

”f”]N(p,l,S)O(QO)
[ —Z”QC(S)]/\

1
v

{x €Qo: Mgio)(f—ng(f))(x) > 6/\}

Moreover, based on Theorem 4 in [61] (Proposition 4.1), Tao et al. further obtained the
following independence over the second sub-index of [N, 4 ¢, (X).

Proposition 10. Let 1 < g <p < oo,s € Zy, and a € [0,00). Then,
]N(p,q,s)(Y (X) = ]N(p,l,s)(,, (X)
with equivalent norms.

Furthermore, the following independence over the second sub-index of HK(,, 5, (X)
is just [61] (Proposition 4.7), whose proof is based on Theorem 3 and Proposition 10.

Proposition 11. Let 1 <u <v < o0o,5 € Z,and a € [0,0). Then,
HK(u,v,s)a (X) = HK(u,oo,s)a (X)
with equivalent norms.
In particular, when a = 0 = s, Propositions 10 and 11 were obtained, respectively,
in [31] (Propositions 5.1 and 6.4).
Combining Theorem 3 and Propositions 10 and 11, we immediately have the following
corollary; we omit the details here.

Corollary 3. Letp € (1,00),s € Z, and a € [0,00). Then, (HK(yy 005, (X))* = [N(p 1,6, (X)-

Finally, we list some open questions.
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Question 1. For any given cube Qo of R", by [61] (Remark 4.2(ii)) with slight modifications, we
know that

(i) forany givenp e [1,00) ands € Z,

]Npls O(QO)/ qe [Lp)f

IN (4,5, (Qo) =
(Paelo ]quSO(QO)r qG[P,OO
(ii) forany givenp € [1,00),q€ [p,),s€ Z;,and a € R,

]N(q,q,s)“ (QO) C ]N(p,q,s)LY (QO)

and

_1 1
[lQOl pllf”]N(p,q,S)a(QU)] < [lQOl q”f”]N(q,q,s)u(QO):I;
(iil) for any given p € [1,00),q € [p, ), s € Z, and a € (52, 00),

] (9.95)a (QO)_PS(QO)_]N(pqs (QO)

However, letting RMp,q.4(X) denote the Riesz—Morrey space in Definition 14, it is still unknown
whether or not

(i) forany givenp € [1,00),q € [p,0), s € Zy, and a € (—oo, 1]\ {0},

]N(p,q,s)n(QO) = ]N (9,9,5)a (QO) or ]N (p.g,5)a (QO) [RMp,q,a(QO)/PS(QO)]

holds true;
(ii) forany givenp € [1,0),q4 € [p,0),s € Z4,and a € R,

]N(p,q,s) (Rn) = ]N (9,9,5)a ( ) or ]N (p.g,5)a (Rn) = [RMp,q,a(Rn)/Ps(Rn)]
holds true, where Ps(R™) denotes the set of all polynomials of degree not greater than s on R".

Question 2. Let 1 < 17 < up < o0, v € (1,00], s € Z, and Qq be a given cube of R". From
Proposition 9(i), we deduce that

HK (u2,0,8)0 (QO) c HK (u1,0,5)0 (QO)

and L
K, (o) = [1Qol™ 211 ||H1<(“2/7)/S>D(Q0)]-
Moreover, by [61] (Remark 4.2(iii)) and [36] (Proposition 5.7), we find that for any u € [1, ),

uvs (QO) H;QU/S(QO)
andforunyg € Uue[loo HK (u,0,8)0 (QO)

8lls ) < M infligli, , (o)

where Hlatv #(X) denotes the atomic Hardy space (see Coifman and Weiss [5], and also [61],
Remark 3.2(ii), for its definition). Here and thereafter, u — 1% means u € (1,00) and u — 1.
However, for any given v € (1,00], s € Zy, a € [0,00), and any given cube Qp of R",

(i) it is still unknown whether or not for any g € Uyen,c0) HK(10,5), (Qo),

I8l

at

- = M llgl,, ., (o)
0
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holds true;
1
(i) it is interesting to clarify the relation between Uy e[1,00) HK (105, (Qo) and H;‘t“'D'S(QO).
The last question in this subsection is on an interpolation result in [56]. We first recall

some notation in [56]. Letp € (1,00), A € R, and Qp be a given cube of R". The space
NP (Qy) is defined by setting

NP Qo) := {u € L'(Qo) : [l gy < ),

14 1/p
[u]npa (Qo) = SUP{Z‘fQ‘ lu(x) = ug,| dx |Qi|1PA}

and the supremum is taken over all collections of interior pairwise disjoint cubes {Q;};
of Qu, and ug, is the mean of u over Q; for any i. Let 7 (Qgp) denote the set of all simple
functions on Qy.

where

Definition 7 ([56], Definition 3.1). A linear operator T defined on ¥ (Qy) is said to be of strong
type N(p, (g, )] if there exists a positive constant K, such that for any u € F (Qo),

[T”]N<q,m(Q0) < Killullpp @y

the smallest of the constant K for which the above inequality holds true is called the strong
Nlp, (g, u)]-norm.

Theorem 5 ([56], Theorem 3.1). Let [p;, qi, 1] be real numbers, such that p;, q; € [1,00) for
any i € {1,2}. If T is a linear operator which is simultaneously of strong type N|p;, (q;, ;)] with
respective norms K; (i € {1,2}), then T is of strong type N(py, (q¢, )], where

1-t¢ t 1 1-t t

1
o p @ @ @
u
q

~

- = (1—t)% for tel0,1].
1

Moreover, for any t € [0,1],
(Tl o) < K1~ Kallillr -
The theorem also holds true in the limit case py = oo and ql] =1 =0.

Question 3. In the proof of Theorem 5, lines 1-3 of [56] (p. 454), the author applied [56] (Lemma 2.3)

with
F[M, 0, S] = f ll(y) - MQ‘. Udyl(?l‘l_}\/‘m

replaced by
®(S,1) =) fQ [Ty, 1) = (Ti)g, [o(y, ) dyiQii + PO,

Therefore, by the proof of [56] (Lemma 2.3), we need to choose a function v satisfying that
for any i, there exists some constant c;, such that

B(y,t) = cifsign|T(u(y, 1)) - (Ti), |} (28)
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in Qi. Meanwhile, from the definition of O (see line 3 of [56], p. 452), it follows that
By, t) = [o(y) |10 glargo(y) 29)

for some simple function v € F(Qq), where 1/q; +1/q; = 1. To summarize, we need to find a
simple function v, such that both (28) and (29) hold true, which seems unreasonable because Tu
may behave so badly even though both u and u are simple functions. Thus, the proof of Theorem 5
in [56] seems problematic. It is interesting to check whether or not Theorem 5 is really true.

3.2. Localized John—Nirenberg—Campanato Spaces

As a combination of the JNC space and the localized BMO space in Section 2.1,
Sun et al. [36] studied the localized John-Nirenberg—Campanato space, which is new even
in a special case: localized John-Nirenberg spaces. Now, we recall the definition of the
localized Campanato space, which was first introduced by Goldberg in [50] (Theorem 5).
In what follows, for any s € Z and ¢j € (0, £(X)), let

where PS) (f) is as in (24).

Definition 8. Let g € [1,00),5 € Zy, and « € [0, 00). Fix ¢y € (0,£(X)). The local Campanato
space A(q ) (X) is defined to be the set of all functions f € quc (X), such that

1
- s q q
1A ) = SUPIQ) [ Jg () = PS) (F) ) dx] <w,
where the supremum is taken over all cubes Q of X.

Fix the constant ¢y € (0, £(X)). In Definition 3, if PS) (f) werereplaced by PS> o (f), then

j ji
we obtain the following localized John-Nirenberg—Campanato space. As was mentioned in
Remark 4, we naturally extend the ranges of a and p, similar to Section 3.1; we omit some

identical proofs.

Definition 9. Let p, g € [1,0), s € Z4, and a € R. Fix the constant ¢y € (0,((X)). The
local John-Nirenberg-Campanato space jn(p,q/s)wo (X) is defined to be the set of all functions

fe quc (X), such that

1
P

X) 1= sup

1flln,

Tlokiol|f,

PAS)acy ( P
j€

1\P
3 (s) q q
f(x) =Py, (N)(x)] dx

is finite, where the supremum is taken over all collections of interior pairwise disjoint cubes {Qj}jen
of X. Moreover, the dual space ( jn(p,q,S)w,pU (X)) of jn(p,q/s)wo (X) is defined to be the set of all
continuous linear functionals on jn(p,q,s)w (X) equipped with the weak-* topology.

Remark 6. Notice that the Campanato space and the John—Nirenberg—Campanato space are quotient
spaces, while their localized versions are not.

Furthermore, in [36] (Proposition 2.5), Sun et al. showed that jn(p,qrs)m (X) in
Definition 9 is independent of the choice of the positive constant ¢y. Therefore, in what
follows, we write

10,900 (X) 3= 11 (pg.5)0 (X)-
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In particular, if = 1and s = 0 = @, then jn(,, ), (X) becomes the local John-Nirenberg space

jnp(X) = jn(p,l,O)g (X).
The following Banach structure of jn, ), (X) is just [36] (Proposition 2.7).

Proposition 12. Letp, q € [1,00), s € Zy, and e € R. Then, jn, ) (X) is a Banach space.

pAas

In what follows, the space jn, ), (Qo) /Ps(Qo) is defined by setting

(Pa5)a

o1 (Q0)/Pe(Q0) 1= {F € (0, (Q0) : Wl ., ccursman) <)y

where
||f||j"(p,z7,s)L:(Qo)/Ps(Qo) = 7%( ”era”]”w:)a (Qo)’
the space JN(, 45), (X) N LP(X) is defined by setting
IN(pg,5)0 (X) NLF(X) = {f €Ll (X): IIf 1N 90 (X)OLP(X) < 00},
where

X)nLP(X) = max{llfllIN

(Pas)a (Pas)a

1Al Il
)a (X) and N

Moreover, the relations between jn(, ), (p.4,5)a (X), namely the following
Propositions 13 and 14, are just [36] (Propositions 2.9 and 2.10), respectively.

Proposition 13. Letp, g € [1,0),s € Z4, and a € R. Then,

() jn(pqs)a( ) C]Npqsa("\’);
(i) if Qo is a given cube of R", then N, 4, (Q0) = jn(p,qs).(Q0)/Ps(Qo) with equivalent
norms;

(iii) LP(R) & jnp(R) & INp(R) if p € (1,00).
Proposition 14. Letp € [1,00),g € [1,p], s € Z4, and o € (0,0). Then,

]‘n(p/q,s) ( ) []Npqs (X)QLV(X)] (30)

with equivalent norms.

Furthermore, observe that Proposition 14 is the counterpart of [51] (Theorem 4.1),
which says that for any a € (0,),g € [1,00),and s € Z,

Aags)(X) = [Clage) (X) NL=(X)].

However, the case g € [p, 00) in Proposition 14 is unclear so far (see Question 5 below).
As an application of Propositions 13(ii) and 14, we have the following result.

Proposition 15. Let p € [1,00), g € [1,p], s € Z4, a € (0,00), and Qq be a given cube of R".
Then,
]N(p,q,s)w(QO) c [U](QO)/PS(QO)]-

Proof. Letp, g, s, a, and Qq be as in this proposition. Then, by Propositions 13(ii) and 14,
we obtain

NG90 (Q0) = [, (Q0) /P5(Q0)]
= {IN (g5, (Q0) N [L(Q0) /P5(Qo)]}
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and

11 0~ 4l 00

< max{ I it 1l
This implies that JN(, , ), (Qo) € [LP(Qo)/%s(Qo)] with

inf || “Fallr Qo) S 1N, Qo)

aePs(Qo
which completes the proof of Proposition 15. O

Propositions 16 and 17 below are just, respectively, [36] (Propositions 2.12 and 2.13),
which show that the localized Campanato space is the limit of the localized John—Nirenberg—
Campanato space.

Proposition 16. Let g € [1,0),s € Z;, a € [0,00), and Qg be a given cube of R". Then, for any

feLl'(Qo),
”f”Aaqs (Qo) — hm ”f”]n (Pas)a (Qo)*

Moreover,

aqs (QO fG ﬂ ]71 (p.9,5)a QO) li_)n;”f”jn(plqys)d(Qo) <.

pefl,e0)
Proposition 17. Let g € [1,00),s € Z, and a € [0, o). Then,

lim ]71( 0,8) o (Rn) = A(a,q,s)(Rn)

p—oo
in the following sense: if f € jn,qq) (R") N Ay 6 (R"), then
f € m jn(r/q,s)a (R )
refp,e0)

and
Uflln ) = B 1f G

aqc

As in Proposition 10, the following invariance of jn(, ), (X) on its indices in the
appropriate range is just [36] (Proposition 3.1).

Proposition 18. Letp € (1,0),g € [1,p), s € Zy, and a € [0, c0). Then,
Mpas)a(X) = 1(p15), (X)
with equivalent norms.

In other ranges of indices, namely g > p, the following relation between jn(, ; ), (X)
and the Lebesgue space is just [36] (Proposition 3.4).
Proposition 19. Let s € Z and Qg be a given cube of R".

(i) If1<p<g<oo,then [IQOI%W%]n (.0,5)0 )(Qo)] = L1(Qo) with equivalent norms.
(ii) Ifp € [1,00), then jn,,q,(R") = LF (R") with equivalent norms.
(iii) Ifp, g €[l,0), a€ (—oo, % - }7), and f € jng, o) (R"), then f = 0 almost everywhere.
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Using the localized atom, Sun et al. [36] introduced the localized Hardy-type space
and showed that this space is the predual of the localized John-Nirenberg-Campanato
space. First, recall the definitions of localized atoms, localized polymers, and localized
Hardy-type spaces in order as follows.

Definition 10. Let v, w € [1,0],5s € Z, and a € R. Fix ¢y € (0,€(X)), and let Q denote a cube
of R™. Then, a function a on R" is called a local (v, W, $)q,c,-atom supported in Q if

(l) supp (ﬂ) = {x cR": ﬂ(x) % 0} c Q/
(i) ”ﬂ”Lw(Q) < |Q|%-%—a/_
(iii) when €(Q) < co, an(x)xﬁdx — Oforany p e Z and |l <.

Definition 11. Let v, w € [1,00],s € Z4, & € R, and ¢y € (0,£(X)). The space Pﬁc(v/w)
is defined to be the set of all g € (jn(y v s, (X))*, such that

X)

acq (
{l,CO
§= M
jeN

in (jn(v/,w,,s)wo (X)), where 1/v+1/v" =1 =1/w+1/w’, {aj}jer are local (v, w, s)a,cy-atoms
supported, respectively, in interior pairwise disjoint subcubes {Q}jen of X, and {A}jen € C with
{2} jenllee < o (see (27) for the definition of || - llee). Any g € hk(y s (X) is called a local
(v, W, 8) aco-polymer on X, and let

a,cq

Il

gy 0 1= 1A e

[U/
where the infimum is taken over all decompositions of g as above.

Definition 12. Let v, w € [1,00], s € Z4, a € R, and ¢g € (0,£(X)). The local Hardy-type
space fk(o,u,5),.., (X) is defined to be the set of all g € ( T 0 5) g (X))*, such that there exists a
sequence {gitien C hk(v,w,s)a,fO (X) satisfying that }en ||gi||ﬁc(_ o (X) < oo and
V0,5 )a,cq)
g=).si (31)
ieN
in (jn(v’,lv’,S)A,co (X))*. Forany g € hk(v,w,s)a,fo (X), let
18105, 20 = I ) LT
ieN

where the infimum is taken over all decompositions of g as in (31).

Correspondingly, hk@,w,s)a,c0 (X) is independent of the choice of the positive constant
co as well, which is just [36] (Proposition 4.7).

Proposition 20. Let v € (1,00), w € (1,00],s € Zy, @ € R, and 0 < ¢1 < ¢ < {(X). Then,
hk(v,w,S)u,cl (X) = hk(vlw/s)w2 (X) with equivalent norms.

Henceforth, we simply write

local (v, w, §)a,c,—atoms, %ﬁc( (X), and hk (X),

V,W,5)acq V,W,5)acy

respectively, as

local (v, w, s),—atoms, Iﬁc(v,w,s)u(x)r and hk(y, ), (X).
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The corresponding dual theorem (namely Theorem 6 below) is just [36] (Theorem 4.11).

In what follows, the space hk?z‘)“w 9 (X) is defined to be the set of all finite linear combinations

of local (v, w, s) ,-atoms supported, respectively, in cubes of X.

Theorem 6. Letv, we (1,0),1/v+1/v =1=1/w+1/w =1,s € Zy,and a € R. Then,
(0 5)a (X) = (ko) (X))" in the following sense:

(i) Forany given f € jn(y v 4),(X), the linear functional

L g— (Lyg) ff x)dx,  Vgehky o (X)

can be extended to a bounded linear functional on hk, s, (X). Moreover, it holds true that
LA Gt 0 < Wi )

(i) Any bounded lznear functional L on k), (X) can be represented by a function f €
T ), (X) i the following sense:

(L g = ff (x)g(x)dx, Vgehk{‘;wb) (X).

Moreover, there exists a positive constant C, depending only on s, such that | f|l, (o e (X) S
CIlLll¢ (K (00,5)0 (X))

As a corollary of Theorem 6, as well as a counterpart of Proposition 18, for any admis-
sible (v, s, @), Proposition 21, which is just [36] (Proposition 5.1), shows that ik, 4, ), (X) is
invariant on w € (v, ©].

Proposition 21. Letv e (1,00), w € (v,00], s € Zy, and a € [0, c0). Then,
hk(v,w,s)w (X) = hk(z],oo,sLY (X)

with equivalent norms.

The following proposition, which is just [36] (Proposition 5.6), might be viewed as a
counterpart of Proposition 19.

Proposition 22. Letv e (1,00) ands € Z.

(i) Ifwe (1,9], and Qo is a given cube of R", then hk(yz,),(Qo) = |QO|%’1]7LW(Q0) with
equivalent norms.
(ii) LY(R") = hky ), (R") with equivalent norms.

Finally, the following relation between Ik, 1, s, (X) and the atomic localized Hardy
space is just [36] (Proposition 5.7).

Proposition 23. Let w € (1, 0] and Qo be a given cube of R". Then,

U hk(v/w,o)g (QO) C h;;w(QO)

vE[1,00)
Moreover, if § € Use[1,00) 1K (0,00,0),(Qo), then

||g||h1 w(Qg) S hm mfllgllhk o0 (Q0)

where v — 17 means that v € (1,00) and v — 1.
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We also list some open questions at the end of this subsection.

Question 4. There still exists something unclear in Proposition 13(iii). Precisely, let p € (1,0),

Jip(R) /€ 1= { £ € Llge (R) & Wfl, )/ i= i I + clljn ) < oo}

and
P(R)/C = {f € Ly (R) ¢ fllyqayc = inff +clygey < o).

Then, it is still unknown whether or not

[f”p(R)/(C] S INy(R)

holds true; namely, it is still unknown whether or not there exists some non-constant function h,
such that h € JNp(R) but h ¢ jn,(R). Moreover, it is still unknown whether or not

PR/ & [jnp(R")/C] & INo(R)
holds true.
The following question is on the case q > p corresponding to Proposition 14.

Question 5. Let p € [1,0), g € (p,), s € Zy, and a € (0,00). Then, it is still unknown
whether or not

Mp48)a (X) = []Npqs (X) ﬁLp(-/\’)]
still holds true.

Furthermore, the corresponding localized cases of Questions 1 and 2 are listed as
follows. The following Question 6 is a modification of [36] (Remark 3.5), and Question 7 is
just [36] (Remark 5.8).

Question 6. Letp € [1,00), g€ [1,00),s € Zy,and o € [% - %, o). Then, the relation between

J(pq,5). (R") and the Riesz—Morrey space RMyq,o(R") (see Section 4.1 for its definition) is still
unclear, except the identity

in(pps)o(R") = LP(R") = RM,,0(R")

due to Proposition 19(ii) and Theorem 8(ii), and the inclusion
JMpa5). R") > RMpg.0(R") - wvith -l @) S 11 Iragy 0 (Br)

due to (25) and their definitions, where the implicit positive constant is independent of the functions
under consideration.

Question 7. Let v € (1,00), w € (1, 00|, and Qg be a given cube of R".

(i) It is interesting to clarify the relation between Uoye(1,00) MK (0,01, (Qo) and h;;w(Qo), and to
find the condition on g, such that IIgIIhLW Q) = = lim,_,+ ||g||hk<v/w,0 o (Qo)

(i) Leta € (0,00)ands € Zy. Asv — 17, the relation between the localized atomic Hardy space
(see [50] for the definition) and hk (yq, ¢, (Qo) is still unknown.

3.3. Congruent John—Nirenberg—Campanato Spaces

Inspired by the JNC space (see Section 3.1) and the space 8 (introduced and studied by
Bourgain et al. [70]), Jia et al. [64] introduced the special John-Nirenberg-Campanato spaces

69



Mathematics 2021, 9, 2264

via congruent cubes, which are of some amalgam features. This subsection is devoted to
the main properties and some applications of congruent JNC spaces.

In what follows, for any m € Z, D,,(R") denotes the set of all subcubes of R" with side
length 27", D,,(Qp) the set of all subcubes of Q with side length 27"¢(Qy) for any given
m € Zy, and Dy, (Qo) := 0 for any given m € Z \ Z.; here and thereafter, £(Qp) denotes the
side length of Q.

Definition 13. Letp, g € [1,0), s € Z, and a € R. The special John-Nirenberg-Campanato
space via congruent cubes (for short, congruent JNC space) ]N‘(f;’rl; 9 (X) is defined to be the

setofall f € L} (X)), such that

"f”]NE;"{‘m“( )= SuP{[f](MS o x} < oo,

meZ

where, for any m € Z, | f} m) 5 defined to be

sup
[Qj)/CDm(X)

~Pg(H()

Z|Qf|{|o,fr“[ i

with P( ( f) for any j as in (24) via Q replaced by Q; and the supremum taken over all collections
ofmterwr pairwise disjoint cubes {Q;}; C Dy (X). In particular, let

NS X) = N (X).

Remark 7. Let p, g € [1,00), s € Zy, and a € R. There exist some useful equivalent norms on

]NEon e (X) as follows.

(i)  (non-dyadic side length) f € ]NCOrl ( ) if and only if f € L1 (X) and

||f||~c<m LX) = SUP

1\P15
Ikl ™ f(X)—P(s?(f)(x)qu T <o
Q Qi
j i

ifand only if f € Llloc (X) and

ST

||f||Acon (X) = Sup

1\P
ZIQJI{IQJ sl f [f(x) = P(x I”dx]qH <w, (32)

where the suprema are taken over all collections of interior pairwise disjoint cubes {Q}}; of
X with the same side length; moreover, || - ||jycon Xx) ~ e ||~con ~ -l
(Pas)a IN(pg9)c

see [64] (Remark 1.6(ii) and Propositions 2.6 and 2.7).
(ii) (integral representation) In what follows, for any y € R" and r € (0, 0), let

Nipas)aX)

B(y,r):={xeR": [x—y| <1}

Then f € ]NCon (R“) ifand only if f € L1 - (R") and

ne o1
[ n{'B(y' ol £, -0 (x)\qu]”} dy} <o
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moreover, || - || INen () II - II+; see [64] (Proposition 2.2) for this equivalence, which plays
Pas)a

an essential role when establishing the boundedness of operators on congruent [NC spaces
(see [71-73] for more details).

The following proposition is just [64] (Proposition 2.10).

Proposition 24. Lets € Z, a € R, and Qg be a given cube of R".
(i)  Forany given p € [1,00) and q € [1,00),

N (Qo) < [10ul 7170 /2.(00)|

(P.4,5)a
Moreover, for any f € ]NC;’?IS (Qo).
171 1 ||f||]N°"“ L (Qo)-

QP 19(Q0) /P5(Q

(i) Ifa € (—oo,0), then, for any given p € [1,00) and q € [p, )

INER (Qo) =107 L1(Q0) /P

with equivalent norms.
(i) Ifg e [1,00)and 1 < p; < pa < oo, then ]NCOn (Qo) c ]NCO“

(P24,5)a (P1,4,5)a
forany f € ]NC;):% (Qo),

(Qo). Moreover,

_1 _1
P1 con < P2 con .
1Qol ||f||]N<p1,q/S>a<Q0) 1Qol ”f”]l\](ﬂz/q/s)a(QO)

(iv) Ifpe(l,00)and1 < qq < gy < oo, then ]NC;I; e (X) c ]NC;I‘;1 e (X). Moreover, for any
FE IV, )

B .
Al ) < Wfllpzen )

The relation of congruent JNC spaces and Campanato spaces is similar to Proposition 6
and Corollary 2, and hence we omit the statement here; see [64] (Proposition 2.11) for details.
The relation of congruent JNC spaces and the space 8 was discussed in [64] (Proposition

2.20 and Remark 2.21). Recall that the local Sobolev space W (]R”) is defined by setting

Wl (RY) = {feLll (R"): |VfleL] (R"),

loc

here and thereafter, Vf := (d1f,...,dnf), where forany i € {1,...,n}, d;f denotes the weak
derivative of f, namely a locally integrable function on R”, such that for any ¢ € CZ(R")
(the set of all infinitely differentiable functions on R" with compact support),

[ waewax=- [ o2

The following proposition is just [64] (Proposition 2.13).
Proposition 25. Letp € (1,00) and f € Lfoc(]R”). Then, |V f| € LP(R") if and only if

hmmf[ﬂ e 0 o <0
1n
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where | f] pp 0}y R is as in Definition 13. Moreover, for any given p € [1,00), there exists a

constant C, ) € [1 o), such that for any f € Wlp(R”)

1
Clnp)

[ N |Vf(x)|de]l’ <liminf (7)< (”’”UR" |Vf(x)|de]‘1".

Remark 8. Fusco et al. studied BMO-type seminorms and Sobolev functions in [74]. Indeed,
in [74] (Theorem 2. 2) Fusco et al. showed that Proposition 25 still holds true with cubes {Q}};, in

the supremum of [f ] having the same side length but an arbitrary orientation. Later,

(22 p 0)1/n,R"

the main results of [74] were further extended by Di Fratta and Fiorenza in [75], via replacing a
family of open cubes by a broader class of tessellations (from pentagonal and hexagonal tilings to
space-filling polyhedrons and creative tessellations).

The following nontriviality is just [64] (Propositions 2.16 and 2.19).

Proposition 26. Letp € (1,00) and q € [1,p).
(i)  Let Iy be a given bounded interval of R. Then,

]Np,q(IO) S ]NCOH(IO) and  JNpq(R) C] con( )-
(i) Let Qo be a given cube of R". Then,
INpg(Qo) G INp (Qo)-

Similar to Theorem 3, the following dual result is just [64] (Theorem 4.10). Recall

that the congruent Hardy-type space H. E"';] ) (X) is defined as in Definition 6 with the
additional condition that all cubes of the polymer have the same side length (see [64],

Definition 4.7, for more details).

Theorem 7. Let p, g € (1,00), 1/p = 1/p' =1 =1/q+1/q, s € Z+, and a € R. If

con M b ; ||=—con s
JN/ P95 (X) is equipped with the norm || - || AL () in (32), then

(s, . (O = g, (0

v a's (45)a

with equivalent norms in the following sense:
(i Anyfel] f"“ (X) induces a linear functional Ly which is given by setting, for any

g KSR (X) and gl € HR ), (X) with g = X5 N2 (X))"

Li(g) = (8. f) = Z<gi,f>.

Moreover, for any g € HKEan f;r; (X),

ff x)dx and HLf” (HKR, (X <||f||Acon LX)

(ii) Conversely, for any continuous linear functional L on HK® = (X)), there exists a unique

(V' 4’ 5)a
£ € INER (X), such that for any g € HKE2=0 (X),

f g dx and Ifigen o <Ll o
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Moreover, when X = Qq, we further have the VMO-H!-type duality for the congruent
Hardy-type space (see Theorem 25 below).

Recall that Essén et al. [76] introduced and studied the Q space on R", which generalizes
the space BMO (R"). Later, the Q space proved very useful in harmonic analysis, potential
analysis, partial differential equations, and closely related fields (see, for instance, [77-79]).
Thus, it is natural to consider some “new Q space” corresponding to the John—Nirenberg
space JN;. Based on Remark 7(ii), Tao et al. [80] introduced and studied the John—Nirenberg-
Q space on R" via congruent cubes, which contains the congruent John-Nirenberg space on
R" as special cases and also sheds some light on the mysterious John-Nirenberg space.

4. Riesz-Type Space
Observe that if we partially subtract integral means (or polynomials for high order
cases) in ||f||]N(pqs) (x), namely dropping Pg) (f)in

i

1
1P\ p

Zi: IQ,-I[IQ,-I'“{ fQ i|f (- Pg (N d’“}q

for any i satisfying £(Q;) > ¢y, then we obtain the localized JNC space as in Definition 9.

Thus, a natural question arises: what if we thoroughly drop all {Pg> (A in £l Ny g x)?

In this section, we study the space with such a norm (subtracting all {PS? (f)}i in the norm
of the JNC space). As a bridge connecting Lebesgue and Morrey spaces via Riesz norms, it
is called the “Riesz-Morrey space”. For more studies on the well-known Morrey space,
we refer the reader to, for instance, [81-84] and, in particular, the recent monographs by
Sawano et al. [85,86].

4.1. Riesz—Morrey Spaces

As a suitable substitute of L®(X), the space BMO (X) proves very useful in harmonic
analysis and partial differential equations. Recall that

IfllBmo (x) :=  sup Jg|f(x)—fQ|dx~

cube QcX

Indeed, the only difference between them exists in subtracting integral means, which is just
the following proposition. In what follows, for any g € (0, o) and any measurable function

£, let :
Jg )P dx]ﬁ.

Proposition 27. Let g € (0,00). Then, f € L®(X) ifand only if f € LT (X) and ”f”L"(X) < 0.

loc

Wfllpax) := sup
cube QcX

Moreover,
Il ry = 1l
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Proof. For the simplicity of the presentation, we only consider the case § = 1. On the one
hand, for any f € L®(X), it is easy to see that f € L%OC (X) and

WAl ) = SuPJ[ If(x)ldx < sup | fllzeo(x) = I fllLeo(x)
QcXJQ QcX

On the other hand, for any f € LloC (X) and [|fll 2 (x) <, let x be any Lebesgue point
of f. Then, from the Lebesgue differentiation theorem, we deduce that

@l = lim f|f |dy<supf|f Jldy = 1Al

Q-0+, Qax
which, together with the Lebesgue differentiation theorem again, further implies that

Al ) < MFlEx

and hence f € L®(X). Moreover, we have || - ||~ x) = |- ”L}( X) This finishes the proof of
Proposition 27. O

Furthermore, if we remove integral means in the JN,(Qo)-norm

1

1flln, 0oy = sup[z |Qi|( Jg I_If(x) —fQ,.|dx)'T,

where the supremum is taken over all collections of cubes {Q;}; of Qg with pairwise disjoint
interiors, then we obtain

sup{z IQ,-I( Jg I_If(x)l dx)pr = 11fllg, (o)

which coincides with ||f]| 17(Qo) due to Riesz [41]. Corresponding to the JNC space, the
following triple index Riesz-type space Rp.4(X), called the Riesz-Morrey space, was
introduced and studied in [37] and, independently, by Fofana et al. [87] when X = R".

Definition 14. Let p € [1,00], g € [1,00], and o € R. The Riesz-Morrey space RMj, g, (X) is
defined by setting

RMp,g,a(X) := {f € Lloc( ) ||f||RMpM(X) < 00},

where

pa-P .
sup| Y IQI A, o) | P e L), g€ 1,00,
1/ llRad, 0 () = 7 '

—_a-1 .
supsup Qi 7| flla (g, ifp = oo, g €1,
1

and the suprema are taken over all collections of subcubes {Q;}; of X with pairwise disjoint interiors.
In addition, Ry q0(X) =: Rp4(X).

Observe that the Riesz—Morrey norm || - [lgy, . (x) is different from the JNC norm

. ) A paa(X)
-1l INGpgs)a (X) with s = 0, only in subtracting mean oscillations (see [37], Remark 2, for more
details). It is easy to see that || - || R,10(Q0) =11 Ry (Qo)” and, as a generalization of the above

equivalence in Riesz [41], the following proposition is just [37] (Proposition 1).
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Proposition 28. Let p € [1,00] and g € [1,p]. Then, f € LP(X) if and only if f € Rp4(X).
Moreover, LF(X) = Ry 4(X) with equivalent norms, namely, for any f € L[{OC (X&), M fllpxy =
1f1Ix,, x)-

As for the case 1 < p < g < o0, by [37] (Remark 2.3), we know that
Ry (R") = {0} # LI(R") = Ryq(R™),

" (100177 Ry(Q0) | = [ 1017 729(Q0)]| = [1Q0l Ry (Q0)

with equivalent norms.

Moreover, it is shown in [37] (Theorem 1 and Corollary 1) that the endpoint spaces
of Riesz—Morrey spaces are Lebesgue spaces or Morrey spaces. In this sense, we regard
the Riesz-Morrey space as a bridge connecting the Lebesgue space and the Morrey space.
Thus, a natural question arises: whether or not Riesz-Morrey spaces are truly new spaces
different from Lebesgue spaces or Morrey spaces. Very recently, Zeng et al. [88] gave an
affirmative answer to this question via constructing two nontrivial functions over R” and any
given cube Q of R". It should be pointed out that the nontrivial function on the cube Q is
geometrically similar to the striking function constructed by Dafni et al. in the proof of [31]
(Proposition 3.2). Furthermore, we have the following classifications of Riesz-Morrey
spaces, which are just [88] (Corollary 3.7).

Theorem 8.
(i) Letpe(1,c0]andgqe[1,p). Then,

—LI®RY ==,
1_1

-1 u(0,).

In particular, if a € (—%,0), then RMeo g,a(R") = M,;”"‘(R”), which is just the Morrey
space defined in Remark 3.
(ii) Letp e [1,00]andq e [p,oo]. Then,

:UI(Rn) if"‘:%—%zﬂ,
RMp,q.(R"){= {0} ifa= %— % #£0,
= {0} iface]R\{%_%},

(iii) Letp € (1,00, q € [1,p), and Qg be a given cube of R". Then,
=L1(Qo)  fa= (_m’%_ 1
e .
R 2L @) e (3 10)
=L"(Qo) ifa=0,
=10 ifa € (0,00).

In particular, RMeo,q,0(Qo) = M,;l/“(Qo) ifae (—%,O).
(iv) Letp € [1,00],q € [p, 0], and Qg be a given cube of R". Then,

= 19(Qu) ifa e (~oo,0,

RMp,q,Ur(QO){_ {0} 1f0( € (O,‘X’)
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Recall that by [89] (Theorem 1), the predual space of the Morrey space is the so-called
block space. Combining this with the duality of John-Nirenberg-Campanato spaces
in [61] (Theorem 3.9), the authors in [37] introduced the block-type space which proves the
predual of the Riesz—-Morrey space. Observe that every (e, v, «)-block in Definition 15(i) is
exactly a (v, & )-block introduced in [89].

Definition 15. Letu, v € [l,o0], 1 + L =1=14 L gnda e R. Let (RMy o o(X))" be the

dual space of RM, v« (X)) equipped with the weak-+ topology.
(i) A function b is called a (u, v, a)-block if

1_1

supp (b) =[x € X: b(x) #0}c Q and |Ibl=(q) < Q1T+

<00y,
f!l

where {bj}; are (u,v, a)-blocks supported, respectively, in subcubes {Q;} of X with pairwise
disjoint interiors, and {A;}; € C with |[{A}ille < oo (see (27) for the definition of || - [lg).
Moreover, any h € Buoa(X) is called a (1,0, )-chain, and its norm is defined by setting

(i) The space of (u,v, a)-chains, EH,U,(,,(X ), is defined by setting

Bupa(X) == {h S (RMu',‘y’,a(X))* ch= Z A]‘b]' and H{/\]‘}j
j

il . x) = ian{/\j}j

where the infimum is taken over all decompositions of h as above.
(iii) The block-type space By, (X) is defined by setting

7
o

Bupa(X) := {g € (RMywa(X))": g= Zhi and Z”h]'”EM(X) < oo},
i i v
where {h;}; are (1,0, a)-chains. Moreovet, for any § € By a(X),

gl (x) = inf Y s
i

§u,v/w (X)’

where the infimum is taken over all decompositions of g as above.
(iv) The finite block-type space Bﬂfz‘,,a (X) is defined to be the set of all finite summations

M
Z Ambm,
m=1

where M € N, {/\m}%:l c C,and {b,)M

i are (u,v,a)-blocks.

The following dual theorem is just [37] (Theorem 2).

Theorem9. Letp, g€ (1,00),1/p+1/p" =1=1/9+1/q ,anda € R. Then, (By y,«(X))" =
RMyp,g,4(X) in the following sense:

(i) If f € RMpga(X), then f induces a linear functional Ly on By g (X)) with

”Lf”(B (X)) < C”f”RMp,q,a(X)’

s

where C is a positive constant independent of f.
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(i) IfL € (Byg,a(X))", then there exists some f € RMp,q4(X), such that forany g € Bg,“q, LX),

£(g) = fx F(x)g(x) dx,

and

1LIls

with the positive equivalence constants independent of f.

p,,q,yﬁ,()())* ~ ”f”RMp,q,a(X)

Furthermore, for the Riesz-Morrey space, there exist three open questions unsolved
so far. The first question is on the relation between the Riesz-Morrey space and the weak
Lebesgue space.

Question 8. Letp € (1,0), g€ [1,p), and a € (% - %,0). Then, Zeng et al. ([88], Remark 3.4)
showed that

P 00
RMpga(R") & L5 (R") & RMp,g.0(R"),

which implies that on R", the Riesz—Morrey space and the weak Lebesgue space do not cover each
other. Furthermore, for a given cube Qg of R", Zeng et al. ([88], Remark 3.6) showed that

Lﬁ’m(QO) SZ RMp,q/a (QO)

However, it is still unknown whether or not

RMp,q,a (QO) ,(Z Lﬁ’m (QO)

still holds true. This question was posed in [88] (Remark 3.6), and is still unclear.
The following Questions 9 and 10 are just [37] (Remarks 4 and 5), respectively.

Question 9. As a counterpart of (26), for any given p € [1,00), q € [1,p), s € Z4, and «a €

% - %, 0), it is interesting to ask whether or not

IN(pg,s),(X) = [RMV,q,a(X)/Ps(X)]
and, for any f € [N, o ), (X),

AN 0 ) ~ 1 = 0 )HRMp,q,n(XY

Pas)a

with the positive equivalence constants independent of f, still hold true. This is still unclear.

Question 10. Recall that for any given f € L%OC (X) and any x € X, the Hardy-Littlewood
maximal function M(f)(x) is defined by setting

M(f)(x) :==sup T If(y)ldy, (33)
Qax JQ

where the supremum is taken over all cubes Q containing x. Meanwhile, M is called the Hardy—
Littlewood maximal operator. It is well known that M is bounded on L1(X) for any given
q € (1, 00| (see, for instance, [42], p. 31, Theorem 2.5). Moreover, M is also bounded on M;l/"‘(X)
for any given q € (1,00] and a € [—%,0] (see, for instance, [90], Theorem 1). To summarize,
the boundedness of M on endpoint spaces of Riesz—Morrey spaces (Lebesgue spaces and Morrey
spaces) has already been obtained. Therefore, it is very interesting to ask whether or not M is
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bounded on the Riesz—Morrey space RMq.4(X) with p € (1,00], g € [1,p), and a € (% - %,0).
This is a challenging and important problem which is still open.

4.2. Congruent Riesz—Morrey Spaces

To obtain the boundedness of several important operators, we next consider a special
Riesz-Morrey space via congruent cubes, denoted by RM, 5« (R"), as in Section 3.3. In this
subsection, we first recall the definition of RM{\, (R"), and then review the boundedness
of the Hardy-Littlewood maximal operator on this space.

Definition 16. Let p, q € [1, 00|, and o« € R. The special Riesz—Morrey space via congruent
cubes (for short, congruent Riesz-Morrey space) RM5, (R") is defined to be the set of all
locally integrable functions f on R", such that

1

—pa-L
ZlQ]P pa q”f”i”(Qt):| , PE [1100)1
j

sup

I1fllRason

P

(]RH) = L
sup QI Iflla(q). p=c0
cube QCR"

is finite, where the first supremum is taken over all collections of interior pairwise disjoint cubes
{Qj}; of R with the same side length.

Remark 9.

()  If we do not require that {Q;}; has the same size in the definition of congruent Riesz—Morrey
spaces, then it is just the Riesz—Morrey space RMy, ;.4 (R™) in Section 4.1.

(i) Ifp=o0,q€(0,00),and o€ [—}], 0), then RMg, (R") in Definition 16 coincides with the
Morrey space Mq_l/ *(R™) in Remark 3.

(iii) Similar to Remark 7, for any given p, q € [1,00), and a € R, f € RM57, (R") if and only if
feli, (R") and

1

N ARY
| ”{u;(y,r)ra[ﬁw|f(x>|qu}”} dy}

Il Raacem, ey ~ I ”RT/I;;(Y(R”)’.

||l = con = su
gz, ) o)

is finite; moreover,

see [71] for more details. Recall that for any y € R" and r € (0, o),
B(y,r):=={xeR": x—yl<r}.

(iv) If1 < qp< a < p < oo, then the space RMy, (R") coincides with the amalgam space
(L7, £P) T=pa (R™), which was introduced by Fofana [91]. (See [87,92-96] for more studies on

the amalgam space.)

The following boundedness of the Hardy-Littlewood maximal operator on congruent
Riesz—Morrey spaces was obtained in [71].

Theorem 10. Let p, q € (1,0), a € R, and M be the Hardy-Littlewood maximal operator as

in (33). Then M is bounded on RMp3, (IR").

Moreover, via Theorem 10, Jia et al. [71] also established the boundedness of Calderén—
Zygmund operators on congruent Riesz-Morrey spaces.
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Finally, since a congruent Riesz-Morrey space is a ball Banach function space, we
refer the reader to [49] for the equivalent characterizations of the boundedness and the
compactness of Calderén-Zygmund commutators on ball Banach function spaces. It
should be mentioned that a crucial assumption in [49] is the boundedness of M, and hence
Theorem 10 provides an essential tool when studying the boundedness of operators on
congruent Riesz-Morrey spaces.

5. Vanishing Subspace

In this section, we focus on several vanishing subspaces of aforementioned John—
Nirenberg-type spaces. In what follows, C* (R") denotes the set of all infinitely differentiable
functions on R"; 0 denotes the origin of R”; for any a := (ay,...,a,) € VARES (Zy)", let

94 = (%)"‘1 e (%)“" ; for any given normed linear space Y and any given its subset X,
X7 denotes the closure of the set X in Y in terms of the topology of V; and if ¥ = R", we
then denote Xy simply by X.

5.1. Vanishing BMO Spaces

We now recall several vanishing subspaces of the space BMO (R").
e VMO (R"), introduced by Sarason [6], is defined by setting

BMO (R")

’

VMO (R") := C,(R") 0 BMO (R")

where C,(R") denotes the set of all uniformly continuous functions on R”.
e  CMO (R"), announced in Neri [97], is defined by setting

—_BMO(R"
MO (R") = C= () O )

’

where C(R") denotes the set of all infinitely differentiable functions on R" with
compact support. In addition, by approximations of the identity, it is easy to find that

CMO (R") = C. (Rn)'BMO(]R ) _ —CO ® BMO (R ), (34)

where C.(R") denotes the set of all functions on R"” with compact support, and Co(R")
denotes the set of all continuous functions on R” which vanish at the infinity.

° MMO (R"), introduced by Torres and Xue [98], is defined by setting

BMO (R")

’

MMO (R") := A (R")

where

Aw(R") := {b € CV(RM) NL(R"): ¥ a € Z\ (0, lim 9°b(x) = 0}.

° XMO (R"), introduced by Torres and Xue [98], is defined by setting

BMO (R")

’

XMO (R") := B (R7)

where

Beo(R") := {b € C®(R") N BMO (R") : YaeZ \ (0}, Jim P*b(x) = o}.
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e XyMO (R"), introduced by Tao et al. [99], is defined by setting

————  BMO (R"
X;MO (R") = By Ry O )

where
Bi(R") := {b e C1(R") n BMO (R") : llim IVb(x)| = 0}

x| =00
with C! (R") being the set of all functions f on R" whose gradients Vf := ((‘;71, ce %)
are continuous.

The relation of these vanishing subspaces reads as follows.
Proposition 29. CMO (R") & MMO (R") G XMO (R") = X;MO (R") & VMO (R").

Indeed,
CMO (R") ;Ct MMO (R") ;Ct XMO (R")

was obtained in [98] (p. 5). Moreover,
XMO (R") = X;MO (R") ; VMO (R")

was obtained in [99] (Corollary 1.3), which completely answered the open question proposed
in [98] (p. 6).

Next, we investigate the mean oscillation characterizations of these vanishing sub-
spaces. Recall that, for any cube Q of R", and any f € Llloc (R™), the mean oscillation O( f; Q)
is defined by setting

0(f;Q) == fg [£6) - foldx = o5 fQ ‘f(x)—lla fQ f(y) dy

The earliest results of VMO (R") were obtained by Sarason in [6], and Theorem 11
below is a part of [6] (Theorem 1). In what follows, a — 0" meansa € (0,0) and a — 0.

dx.

Theorem 11. f € VMO (R") if and only if f € BMO (R") and

lim sup O(f;Q) =0.

a—0+ |Ql=a

The following equivalent characterization of CMO (R") is just Uchiyama ([7], p. 166).
Theorem 12. f € CMO (R") if and only if f € BMO (R") and satisfies the following three con-
ditions:
(i) Lim sup O(f;Q) = 0;

120" Ql=a
(ii) for any cube Q of R", ‘llim O(f;Q+x)=0;

X|—00

(iii) ulim sup O(f;Q) =0.

Q=2

Very recently, Tao et al. obtained the following equivalent characterization of
XMO (R") and X;MO (R"), which is just [99] (Theorem 1.2).

Theorem 13. The following statements are mutually equivalent:
(@) feXMO(R");
(i) fe BMO (R") and enjoys the properties that

a) lim sup O(f;Q) =0;
=07 Q1=
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b) for any cube Q of R", Illim O(f;Q+x) =0.
(iii) fe XMO (R").

Remark 10. Proposition 12(ii) can be replaced by
(i) Lim sup  O(f;Q) =0,
M=% gng(o.m)=o
where Q(0, M) denotes the cube centered at 0 with the side length M. However, (i), of Theorem 13(ii)
can not be replaced by (ii") (see [99], Proposition 2.5, for more details).

However, the equivalent characterization of MMO (R") is still unknown (see [99],
Proposition 2.5 and Remark 2.6, for more details on the following open question.)

Question 11. It is interesting to find the equivalent characterization of MMO (IR"), as well as its
localized counterpart (see Question 14), via the mean oscillations.

As for the applications of these vanishing subspaces, we know that the commutator
[b,T], generated by b € BMO (R") and the Calderén-Zygmund operator T, plays an
important role in harmonic analysis, complex analysis, partial differential equations,
and other fields in mathematics. Here, we only list several typical bilinear results; other
linear and multi-linear results can be found, for instance, in [22,100,101] and their references.

In what follows, let Zi" = (Z4+)% and L¥(R") denote the set of all functions
f € L®(R") with compact support. We now consider the following particular type of
bilinear Calderé6n—-Zygmund operator T, whose kernel K satisfies
(i) Thestandard size and regularity conditions: for any multi-index « := (a,...,a3,) € Zi”

with |a| := a7 +--- + a3, < 1, there exists a positive constant C(a)' depending on «a,

such that for any x, y, z € R" withx # yor x # z,

10K (%, y,2)| < C(a (Ix = yl + [ — 2]) 721 (35)

Here and thereafter, 9% := (%)“1 e (%)“3".
X1 X3n
(ii) The additional decay condition: there exist positive constants C and 0, such that for

any x, y, z € R" with [x =y + [ =2/ > 1,
IK(x, y,2)] < C(lx — yl + |x — z|)‘2”‘2‘5/ 36)

and forany f, ¢ € L¥(R") and x ¢ supp (f) N supp (g), T'is supposed to have the following
usual representation:

TU,9)(0) = [ Ko 2)fws(a) dyd,

here and thereafter, supp (f) := {x € R" : f(x) # 0}. Notice that the (inhomogeneous)
Coifman—Meyer bilinear Fourier multipliers and the bilinear pseudodifferential operators
with certain symbols satisfy the above two conditions (see, for instance, [98] and references
therein).

Recall that, usually, a non-negative measurable function w on R" is called a weight on
R". For any given p := (p1,p2) € (1,00) X (1, 00), let p satisfy % = pll + plz' Following [10],
we call w := (wy, wy) a vector Ap(R") weight, denoted by w := (w1, wy) € Ap(R"), if

P

Wl ::sép[@fgw(x)dX]{f@ fQ fon ()] dx}”i

x{ll@ fQ [t (x)]' 2 d} <,
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where w := wf/plwg/pz, 1/p1+1/p; =1=1/p2 +1/p}, and the supremum is taken over
all cubes Q of R". In what follows, for any given weight w on R" and any measurable
subset E € R", the synbol L!, (E), with p € (0, ), denotes the set of all measurable functions
f on E, such that

Ay () = |L|f(x)|’”w(x) dx]; < o,

and, when w = 1, we write Lf (E) =: LP(E). Furthermore, || - Il (£) represents the essential
supremum on E.

In addition, recall that the bilinear commutators [b, T|; and [b, T|, are defined, respectively,
by setting, for any f, ¢ € L¥(R") and x ¢ supp (f) N supp (g),

b, Th(f, ) (x):=(bT(f,g)—T(bf,g))(x)
- jﬂ;zn [b(x) = b()IK(x, y,2) f(y)§(2) dy dz (37)

and

[b, Tla(f, 8)(x) := (bT(f,8) = T(f,bg))(x)

- R21 [b(x) =b(2)]K(x, y,2) f(y)&(2) dy dz. (38)

The following theorem, obtained in [11] (Theorem 1) for any given p € (1,0) and

in [102] (Theorem 1) for any given p € (%,1}, showed that the bilinear commutators
{[b, T];}i=1,2 are compact for b € CMO (R").

Theorem 14. Let (p1,p2) € (1,00) X (1,00), p € (},00) with } = L+ .1 b e CMO(R"),
and T be a bilinear Calderén—Zygmund operator whose kernel satisfies (35). Then, for any i € {1,2},

the bilinear commutator [b, T); as in (37) or (38) is compact from LP1(R™) x LP2(R") to LP (R™).

If we require an extra additional decay (36) for the Calder6n-Zygmund kernel in Theo-

rem 14, we can then replace CMO (R") by XMO (R"), that is, delete condition (iii) in Theo-
rem 12 of CMO (R"). This new compactness result was first obtained in [98] (Theorem 1.1)
and then generalized into the weighted case, namely the following Theorem 15, which is
just [99] (Theorem 1.4).
Theorem 15. Let p := (p1,p2) € (1,00) x (1, ), p € (%,00) with 11—7 = Vll + plz, w o=
(w1, wy) € Ap(R"), w:= w’;/plwg/pz, b e XMO (R"), and T be a bilinear Calderén—Zygmund
operator whose kernel satisfies (35) and (36). Then, for any i € {1,2}, the bilinear commutator [b, T|;
as in (37) or (38) is compact from Lf,}l (R") x LE2 (R") to L (R™).

Wy

On the other hand, if the kernel behaves “good”, such as the Riesz transforms {R ]'}]’7:1:

_ngi(n+1 Yij
Rf(f)(x) =povmo2 r( 2 )f” |y|n+1f(x_y) dyr

then the reverse of Theorem 14 holds true as well (see, for instance, the following Theorem 16,
which is just [103], Theorem 3.1). Moreover, it should be mentioned that the linear case of
Theorem 16 was obtained by Uchiyama ([7], Theorem 2).

Theorem 16. Let (p1,p2) € (1,00) X (1,00) and p € (1, 00) with ;—J = pll + plz Then, for any
ie{l,2}and je(l,...,n), the bilinear commutator [b,R;]; is compact from LP1 (R") x LP2(R") to
LP(R™) if and only if b € CMO (R").
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However, the corresponding equivalent characterization of XMO (R") is still unknown.
For simplicity, we state this question in the unweighted case.

Question 12. Let (p1,p2) € (1,00) X (1,00), and p € (3, 00) be such that ;1; =14 plz. Then,

P1
it is interesting to find some bilinear Calderon—Zygmund operator T, such that for any i € {1,2},

the bilinear commutator [b,T); is compact from LPL(R") x LP2(R") to LF(R") if and only if
b e XMO (R").

Next, recall the Riesz transform characterizations of BMO (R") and its vanishing
subspaces.

Theorem 17. Let f € LllOC (R™). Then,
(i) (2], Theorem 3) f € BMO (R") if and only if there exist functions { fj}?:o Cc L®(R"), such
that

f=f+ Z Ri(f)
j=1
and

n
Mo 1) = Y il e = CMflnao e 9
j=0

for some positive constant C independent of f and { f]-};.’zo.
(ii) ([6], Theorem 1) f € VMO (R") if and only if there exist functions { fi¥io © [Cu(R") N
L®(R™)], such that

f=f+) Ri(f)
j=1

and (39) holds true in this case.
(ii) ([97],p.185) f € CMO (R") if and only if there exist functions {f]-};.‘:0 c Co(R"), such that

f=f+) Ri(f)
j=1

and (39) holds true in this case.

Question 13. Since the Riesz transform is well defined on L®(R"), it is interesting to find
the counterpart of Theorem 17 when f € MMO (R"). Moreover, since the Riesz transform
characterization is useful when proving the duality of the CMO-H' type, it is also interesting to
find the dual spaces of MMO (R") and XMO (R").

When R" is replaced by some cube Qp with finite side length, we then have
VMO (Qg) = CMO(Qp) (see [104] for more details). Moreover, the vanishing sub-
space on the spaces of homogeneous type, denoted by X, was studied in Coifman et al. [5],
and they proved (VMO(X))* = H'(X), where VMO(X) denotes the closure in BMO (X)
of continuous functions on X with compact support. Notice that when X = R", by (34), we
have YVMO(¥) = VMO(R") = CMO (R").

Finally, we consider the localized version of these vanishing subspaces. The following
characterization of local VMO (R") is a part of [105] (Theorem 1).
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Proposition 30. Let vmo (R") be the closure of Cy(R") N bmo (R") in bmo (R"). Then,
f € vmo (R") if and only if f € bmo (R") and

lim sup O(f;Q) = 0.
a—0* |Ql=a

Moreover, the following localized result of CMO (R") is just Dafni ([104], Theorem 6)
(see also [105], Theorem 3).

Theorem 18. Let cmo (R") be the closure of Co(R") in bmo (R™). Then, f € cmo (R") if and
only if f € bmo (R") and

lim sup O(f;Q) =0= lim sup JC| l.

=0 101 M=e010151,0nQ(0,M) =

In addition, the localized version of Theorem 17 can be found in [50] (Corollary 1) for
bmo (R"), and in [105] (Theorems 1 and 3) for vmo (R"”) and cmo (R"), respectively.

Question14. Letmmo (R"), xmo (R"), and xymo (R") be, respectively, the closurein bmo (R")

of A (R"), Boo(R"), and By (R™). It is interesting to find the counterparts of

(i) Theorem 18 with cmo (R") replaced by xmo (R");

(ii) Theorem 13 with XMO (R") and X;MO (R") replaced, respectively, by xmo (R") and
xymo (R™);

(i) Question 13 with MMO (R") replaced by mmo (R");

(iv) The dual result (cmo (R™))* = h'(R"), in ([104], Theorem 9), with cmo (R") replaced by
mmo (R") or xmo (R"), where h! (R") is the localized Hardy space;

(v) The equivalent characterizations for mmo (R") and xmo (R") via localized Riesz trans-
forms.

Remark 11. For the studies of vanishing Morrey spaces, we refer the reader to [106—-109].

5.2. Vanishing John—Nirenberg—Campanato Spaces

Very recently, the vanishing subspaces of John-Nirenberg spaces were also studied
in [60,110]. Indeed, as a counterpart of Section 5.1, the vanishing subspaces of JNC spaces
enjoy similar characterizations, which are summarized in this subsection.

Definition 17. Let p € (1,), q € [1,»), s € Zy, and « € R. The vanishing subspace

VIN(p,q,) ( ) is defined by setting

VIN(p,q5)0 (X) = {fe]N(p,q,s)a(X) limsup sup Opqs (f:4Qi)) = 0},

a—0t size<a

where

1)
01 (F:1Qi)i) := {Z IQiI[IQiI‘”‘{ Jg \ () =P () (x)|q dx} "} }

and the supremum is taken over all collections of interior pairwise disjoint cubes {Q;}; of X with
side lengths no more than a. To simplify the notation, write V]Np,q(X) := V]IN(, o), (X) and
VIN,(X) := VINp1(X).

(pa.0)o

On the unit cube [0,1]", the space VN, ), ([0,1]") was studied by A. Brudnyi and Y.
Brudnyi in [60] with different symbols. The following characterization (Theorem 19) and
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duality (Theorem 20) are just, respectively, [60] (Theorem 3.14 and 3.7). Notice that when
a> =1 from [60] (Lemma 4.1), we deduce that IN(p4,5). ([0, 1]") = Ps([0,1]") is trivial.

Theorem 19. Let p, g€ [1,00),s € Zy, and a € (—oo, S'*'Tl) Then,

IN(pg,5)0 (10,1]")
VN5, (10,1]") = C=([0,1]%) N [Ny g, ((0,1]7) " ,

where C*([0,1]") := C*(IR")|[g,1» denotes the restriction of infinitely differentiable functions
from R" to [0,1]".

Theorem 20. Let p, g€ (1,00),s € Zy, and o € (—oo, %) Then,

(VNG (0.10) = HK g0, (011",

1,1 1141
whereerp, 1 q+,.

It is obvious that Theorems 19 and 20 hold true with [0, 1}" replaced by a given cube
Qo of R". As an application of the duality, Tao et al. ([110], Proposition 5.7) showed that for
any p € (1, 00) and any given cube Qo of R”,

[L7(Q0)/C] & VINy(Qo)
which proves the nontriviality of VJN,(Qo), here and thereafter,

LP(X) {f € Lloc( ) ”f”LP X)/C < oo}
with
e (xy/c := 1nf||f+c||U,

Remark 12. There exists a gap in the proof of [110] (Proposition 5.7): we cannot deduce

(VIN(Q0)) " = INy(Qo), (40)

namely [110] (5.2), directly from Theorems 20 and 3 because, in the statements of these dual
theorems, q cannot equal 1. Indeed, (40) still holds true due to the equivalence of JN,5(Qo) with
g € [1,p). Precisely, let p € (1,0) and q € (1,p). By Theorems 20 and 3, we obtain

(VIN(Q0)) "™ = INpq(Qo),

which, together with Theorems 10 and 21 below, further implies that

(VING Q)™ = (VINp4(Q0))™ = INpg(Qo) = INo(Qo),
and hence (40) holds true. This fixes the gap in the proof of [110] (5.2).

Next, we consider the case X = R". The following proposition indicates that the
convolution is a suitable tool when approximating functions in JN,(R"), which is a
counterpart of [6] (Lemma 1). Indeed, the approximate functions in the proofs of both
Theorems 21 and 22 are constructed via the convolution (see [110] for more details).

Proposition 31. Let p € (1,00) and ¢ € LY(R") with compact support. If f € [N,(R"), then

f*@ € Ny(R") and
||f*(P||]Np(R") < 2||(P||Ll(Rn)||f||]Np(Rn)~
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Proof. Let p, ¢, and f be as in this lemma. Then, for any cube Q of R", by the Fubini
theorem, we have

f*9;Q f|f*(f’ ) = (f *@)o| dx

- ‘ £ [ o@1ie-2) - -2l dedy
QIJQ JR

< [ £ £ werc=o- -2 ayares

= fR lp(2)l ]gfz Jng (x) = f(y)| dydxdz

<2 fR Ip(I0(f:0-2)dz, (1)

where Q —z := {w—2z: w € Q}. Therefore, for any interior pairwise disjoint subcubes {Q;};
of R", by (41) and the generalized Minkowski integral inequality, we conclude that

{Z IQH[O(f *; Qi)]P}}
P\ ¥
sz{z |Qi|[fR” 9(2)I0(f;Q - 2) dz] }
- 2{2[ [ etwEiorma -2 dz]p}p
SZLH{Zth‘I’l(p(Z)lO(ﬂQi—Z)]p}p dz
= Zjﬂ;n l(P(Z)l{Zi: |Qi—Z|[O(f;QI-_Z)]V}p iz

< 2l g 11l (&)
where Q; —z := {w—-2z: w € Q;} for any i. This further implies that
||f*(P||]Np(]Rn) < 2[lpll1 (Rn)”f”]Np(]Rn)
and hence finishes the proof of Proposition 31. O

The following equivalent characterization is just [110] (Theorem 3.2).

Theorem 21. Let p € (1, 00). Then, the following three statements are mutually equivalent:

) feD,®)AN,&Y "

D,(R") = {f € C*(R") : |Vf] e [P(R"))

=: V]N,(R"), where

and V f denotes the gradient of f;
(ii) f € JNy(R") and, for any given q € [1,p),

1
AN
q
lim sup E |O; [JC f(x) - fo. qu] =0,
a=0" {10));: £(Qi)<a, th{ b |
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where the supremum is taken over all collections {Q;}; of interior pairwise disjoint subcubes of
R™ with side lengths no more than a;
(iii) f € JN,(R")and

lim sup {Zl@:[f ) fQ,-ldx]p};—of

0(Qi)<a, i}

where the supremum is taken over all collections {Q;}; of interior pairwise disjoint subcubes of
R™ with side lengths no more than a.

Now, we recall another vanishing subspace of [N, (R") introduced in [110], which is
of the CMO type.

Definition 18. Let p € (1,00). The vanishing subspace CJN,(R") of [N,(R") is defined by
setting
————N,(R"
CIN,(R") := CO(R") e

where CX (R™) denotes the set of all infinitely differentiable functions on R" with compact support.
The following theorem is just [110] (Theorem 4.3).

Theorem 22. Let p € (1,00). Then, f € CJN,(R") if and only if f € [N,(R"), and f satisfies the
following two conditions:

)
1
| ' PP
lim sup Qi [J[ f(x) = fo dx] =0,
a—>0+[ 0(Qi)<a, v]}{z ! Q
where the supremum is taken over all collections {Q;}; of interior pairwise disjoint subcubes of
R" with side lengths {€(Q;)}; no more than a;
(i)

TGS ORI S

7% QR €(Q)2a)

where the supremum is taken over all cubes Q of R" with side lengths €(Q) no less than a.

Moreover, Tao et al. ([110], Theorem 4.4) showed that Theorem 22(ii) can be replaced
by the following statement:

Jim, | sup {Zlg[f ) fQ;ldx]p};:O'

{Qiki: £(Qi)2a, Vi

where the supremum is taken over all collections {Q;}; of interior pairwise disjoint subcubes
of R" with side lengths {¢(Q;)}; greater than a.
Furthermore, Tao et al. ([110], Corollary 4.5) showed that Theorem 22 holds true with

Jg IF(x) - foldx and fQ 10 fol

in (i) and (ii) replaced, respectively, by
|flro-soll ] ana | £ lr0 - o' ]
Q QX
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However, there still exist some unsolved questions on the vanishing John-Nirenberg
space. The first question is on the case p = 1.

Question 15. The proof of [110] (Theorem 3.2) indicates that (i) and (iii) of Theorem 21 are
equivalent when p = 1. However, the corresponding equivalent characterization of CJN1(R") is
still unclear.

The following question is just [110] (Question 5.5).

Question 16.

() It is still unknown whether or not Theorems 21 and 22 hold true with JN,(R") replaced by
IN(q,5). (R") when p, q € [1,00), s € Zy, and & € R\ {0}.
(ii) It is interesting to ask whether or not for any given p € (1,00), g € [1,00),5s € Zy, and a« € R,

(C]Npqs (:(Rn))* = HK(y ¢),(R") or (C]NMS (Rn)) = = IN(pgs).(R")

still holds true, where 1/p+1/p" =1=1/9+1/¢, C]N
of C&(R") in JN( "), and HK(
(Definition 3.6).

(pgs)a (R") denotes the closure

) (R") the Hardy-type space introduced in [61]

(P,5)a ( pas

Obviously, [LP(R")/C] c CJN,(R") € VIN,(R") C JN,(R"). Then, the last question
naturally arises, which is just [110] (Questions 5.6 and 5.8).
Question 17. Let p € (1, 00). It is interesting to ask whether or not
[LP(R")/C] & CINy(R") S VIN(R") & JNp(R")
holds true. This is still unclear.

5.3. Vanishing Congruent John—Nirenberg—Campanato Spaces

As a counterpart of Section 5.2, the vanishing subspace of congruent John-Nirenberg—
Campanato spaces V] “’“ (X ) was studied in [64].

Definition 19. Let p, q € [1,00), s € Z, and o € R. The space V]. E;’r; 9 (X) is defined by
setting

TNcon (X)
’

V]NCOH (X)’ (P.9.5)a

con . (X) = Dy(X) " JNeom

(Pas)a
where
Dp(X) :={f € C®(X) : |Vfl e F(X)}.
Furthermore, simply write VNt (X) = V]Nf;’?7 0o (X) and VNG (X) = V]NC"“( )-

Remark 13. Letp,q € [1,00),5 € Zy, a € R, and Qg be a given cube of R". Then, the observation
Dp(Qo) = C*(Qo) implies that

Gy @),

V con
I (P95)a

(Qo) = C=(Qo) NN

(P45)a

Recall that Dy, (X) with m € Z is defined in the beginning of Section 3.3. The
following characterizations, namely Theorems 23 and 24, are just [64] (Theorems 3.5 and
3.9, respectively).
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Theorem 23. Letp, g € [1,0),5 € Zy, a € (=00, ﬂ) and Qg be a given cube of R". Then,
f € VIN (Qu) ifand only i f € L1(Qo) and

ZIQ]{IQ/ [f -0 ‘F}T:o, @)

where the second supremum is taken over all collections of interior pairwise disjoint cubes {Q;}; C
D (Qo) for any m € Z.

limsup  sup
M= Qe Dm(Qo)

Corollary 4. Letp =1,g€ [1,00),s € Zy, @ = 0, and Qq be a given cube of R". Then, (42)
holds true for any f € L7(Qp).

Proof. By Proposition 24(ii) and the definition of V ]NE;'; 5 (Qo), we have

IL1(Qo) /P5(Qu)) = VINGL, (Qo) = INGE

(Qo),

which, combined with Theorem 23, then completes the proof of Corollary 4. O

Theorem 24. Let p € [1,00) and q € [1,p]. Then, f € VNG (R") if and only if f € [N5(R")

and
ZIQ] [Jgj\f—fg,-r]q} o,

where the second supremum is taken over all collections of interior pairwise disjoint cubes {Q;}; C
Dy (R") for any m € Z.

limsup  sup
m—oo IQ/I/CDWI ]RH

We can partially answer Question 17 in the congruent JNC space as follows.

Proposition 32. Let Iy be a given bounded interval of R, and Qg a given cube of R".

(i)  ([64], Proposition 3.11) If p € (1,00) and q € [1,p), then [LP(R)/C] G VINg (R).

(ii) ([64], Proposition 3.12) If p € (1,00) and q € [1,p), then V]ch’“( ) G INGM(R) and
VNS (o) S TIN5 (To)-

(iii) ([64], Proposition 4.40) If p € (1,00) and q € (1,p), then [LF(Qo)/C] & V] 5 (Qo)-

Furthermore, it is easy to show that [L'(Qp)/C] = VIN{™(Qo) = JN{*(Qo) (see
Remark 2(ii)).
The following VMO-H'-type duality is just [64] (Theorem 4.39).

Theorem 25. Letp, g€ (1,00),5 € Z, % + }% =1= %] + %, a € (—oo, %) and Qg be a given
cube of R™. Then,

con
(vnqus

(Q0)) = HKS?, ) (Q0)

¥4 5)a

in the following sense: there exists an isometric isomorphism

K: HKS!, o (Qo) — MM“(%»

V' 5)a (pas)

such that for any g € HKE;“q e (Qo) and f € V]Nc;)r;s

(Qo),
(Kg, /) =48 1

Similar to Question 16(ii), the following question, posed in [64] (Remark 4.41), is still
unsolved.
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Question 18. For any given p, g € (1,0), s € Z., and a € (—co, &L, it is interesting to ask
whether or not

(e

(p,q,s)a(Rn))*:HKcon (R") and (C]NCOn

o on (R =N (RY)

(P.95)a

hold true, where CJN"
(P4,5)a

1= % + ql This is still unclear.

(R") denotes the closure of CX(R") in N(C;),I;,S)H (R") and ;17 + }% =
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1. Introduction and Main Results

Suppose H is a nilpotent Lie group, which has the multiplication, inverse, expansion
and norm configurations (x,y) — xy,x — x71, (t,x) —tox,x+— p(x)forx,y € H,t >0,
respectively, then we call H being a homogeneous group (see [1] or [2]). The multiplication
and inverse operations are polynomials and f-action is an automorphism of the group
structure, where t is of the form

to(xy,...,xp) = (tﬁlxl,...,tﬂ"xn)

for some constants 0 < 1 < B < ... < By. Besides, p(x) := ln<1g;1<x{\x]-\1//5f} is a norm
<j<n

linked to the expansion configuration. We call the value N=} ; §; the dimensionality of
H. In addition to the Euclidean structure, H is equipped with a homogeneous nilpotent Lie
group structure, where Lebesgue measure is a bi-invariant Haar measure, the identity is
the origin 0, x 1 =—xand multiplication xy, x,y € H, satisfies

1) (ax)(bx) = ax+bx,x € H,a,b € R;

2)to(xy) = (tox)(toy),x,y € H,t > 0;

(3) if z = xy, then zx = P(x,y), where Py(x,y) = x1 +y; and Pr(x,y) = xx + vy +
Pi(x,y) for k > 2 with a polynomial Py (x, y) depending only on x1, -+, Xx_1,¥1," - , Yk_1-

Finally, the Heisenberg group on R3 is an example of a homogeneous group. If we
define the multiplication

(yu)(yu) = (x+xy+y u+u' + (v —yx')/2),

(x,y,u)(x',y,u') € R, the R® with this group law is the Heisenberg group Hj; a dilation
is defined by t o (x,y,u) = (tx, ty, t?u), that is the parameters 81 = 1, 8, = 1, B3 = 2.

Definition 1. Let w(x) is a function on H, which is non-negative locally integrable. For 1 < p <
oo, we call that w is an Ay, weight, denoted by w € Ap, if

[w]a, = sup (% /B w(x)dx> (‘%' /B (%)ﬁdx)pﬂ o

The supremum here is taken over of all balls B C TH. We call that the quantity [w] 4, is the A
constant of w. For p =1, if M(w)(x) < cw(x) for a.e.x € H, then we say that w is an Aq weight,
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denoted by w € Ay, where M represents the Hardy-Littlewood maximal function. In addition, let
Ao 1= UlgpgooAp/ then we have

1 1 1
[w]a., = s%p (E ./B wdx) exp (E /B log(;)dx) < co.
Definition 2. Let x € H, and w(x) be a non-negative locally integrable function. For 1 < p <
g <oo,we Apyif
q

[@]a,, = sup (ﬁ/}gw'ﬂ (\%/BW*V’) Y < oo,

where p' is the conjugate exponent of p, that is % + % =1

Definition 3. Suppose w € Aco. Let b € L}, (H), then b(x) € BMO,,(H) if
Ib] = su L/ 1b(x) — bg|dx < oo
BMO,,(H) = BP w(B) Jp B ,

where b := ﬁ S b(x)dx and the supremum is taken over of all balls B C H.

We now review the definition of Riesz potential on homogeneous group. For0 < a <N,
fy)
I = d
af(x) /]Hlp(xyil)Nia Y,
and the corresponding associated maximal function M, by
Mof (x) = sup —— [ 7(w)ld
« xeg‘BPi% Js y)lay.

The reason why we study the weighted estimates for these operators is because they
have a wide range of applications in partial differential equations, Sobolev embeddings or
quantum mechanics (see [3] or [4]).

Muckenhoupt and Wheeden [5] are the first scholars to study the Riesz potential.
When H is an isotropic Euclidean space, Muckenhoupt and Wheeden [5] show that I, is

1 o

bounded from L? (w?) to L1(w7) for 1 < p < %,% =3 — /W € Apy. Moreover, the sharp
constant in this inequality was given in [6]:

(17%)max(1,{1)
Iallipwp) Loy < Clwly,, .

Definition 4. Suppose b € L} (H), f € LP(H). Let [b, L] be the commutator defined by
[b, 1] f (x) := b(x) L () (%) = Lu(b) (2)-
The iterative commutators (1)}, m € N, are defined naturally by
L)y f(x) == [b, (L) £ (), (la)pf (x) = [b, Ll f (%)
In 2016, Holmes, Rahm and Spencer [7] prove that

(b, L] : LY, (R") — L, (R") < b € BMO,(R"),
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where 1 < p < g, % = % - %, w,A € Apg = /\ Later, the quantitative estimates for
iterated commutators of fractional integrals was obtained by N. Accomazzo, J. C. Martinez-
Perales and 1. P. Rivera-Rios [8].

In 2013, Sato [9] gave the estimates for singular integrals on homogeneous groups.
In [10], X. T. Duong, H. Q. Li and J. Li established the Bloom-type two weight estimates
for the commutator of Riesz transform on stratified Lie groups. Moreover, Z. Fan and
J. Li [11] obtained the quantitative weighted estimates for rough singular integrals on
homogeneous groups.

Motivated by the above estimates, we investigate the quantitative weighted estimation
for the higher order commutators of fractional integral operators on homogeneous groups.

In this paper, our main result is the follow theorem.

Theorem 1. Let0 < a < Nand1 < p < N g defined by +x=5 and m is a positive integer.
Assume that ji, A € Ay, and that v = .
1. Ifb € BMO,/u(H), then

H(Ia)b fHUI < CmNacprHBMOW,,,(H)anHf”LZp(H), (1)
where
o (m k iy (1= ) max{1,2}
"k (k> <W7‘m [”]A'Z,q> A(m, K)B(m, k)
and
mekt o\ St max{l, g1y}
A < (W g ) ,

1 kel L1 max{l 1}
Bl k) < (W8 1wl =)

P
2. Foreveryb € L} (H), if (I,)!" is bounded from L »(H) to LZL,, (H), then b € BMO, 1/ (H)
with

1150, 21) = ”(I“)Z"”Lﬁ;m H) L, (H)*

A
2. Domination of the Iterated Commutators by Sparse Operators
2.1. A System of Dyadic Cubes

We define a left-unchanged analogous-distance d on H by d(x,y) = o(x~'y), which
signifies that there has a constant Ay > 1 such that for any x,y,z € H,

d(x,y) < Aold(x,2) +d(z,y)].

Next, let B(x,r) := {y € H: d(x,y) < r} be the open ball which is centered on x € H
and r > 0 is the radius.

Let @ be k-th denumerable index set. A denumerable class D := Uicy Dy, Dy :=
{QZ : B € }, of Borel sets Q’é C H is known as a set of dyadic cubes with arguments
6€(0,1)and 0 < a1 < A < o if it has the characteristics below:

(1) H = Upey, Qg (disjoint union) for all k € Z;

(2) If £ > k, then either Q¢ C Qg or Qg Nl =0

(3) For arbitrary (k, ) and for any ¢ < k, there is a exclusive v such that Q’[g C Q4
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(4) For arbitrary (k, B) there exists no more that M (a settled geometric constant) y
such that Q&1 C Qg, and Qg = UQeDMQgQg Q;

(5) B(xk, a10%) C Ql C B(xh, A16%) =: B(QK);

6)If ¢ > kand ny - QZ, then B(Q,[’y) - B(Q]é). The set Q’é is called a dyadic cube of
generation k with centre x’;; € Q]E and side length Z(Q’é) = o

From the natures of the dyadic system above, for any QE, QZ‘Y‘H and Q’fy“ - QE, we

get that there is a constant go > 0 such that:
k+1 k e k+1
‘Q’er ‘ < ‘Qﬁ' SAO‘Q7+ ‘

2.2. Adjacent Systems of Dyadic Cubes

Let {Dt :t=1,2,...,7T} be alimited set of the dyadic families, then we call that itis a
collection of neighbor systems of dyadic cubes with arguments é € (0,1),0 < a; < A; < 0
and 1 < Cyyj < oo if it has the following two characteristics:

(1) Forany t € {1,2,..., T}, D!is a system of dyadic cubes with arguments 6 € (0,1)
and 0 < a1 < Ap < o0

(2) For any ball B(x,r) C H with 653 < r < §¥*2,k € 7, there have t € {1,2,..., T}
and Q € D' of generation k which is centered on tx’é such that d(x, tx’é) < 2A08% and

B(x,r) € Q C B(x, Cagyr). @)

2.3. Sparse Operators

We review the concept of sparse family given in [12] on ordinary spaces of homoge-
neous description in the sense of Coifman and Weiss [13], which is also suitable in the case
of homogeneous groups.

Definition 5. Let 0 < 17 < 1, for every Q € S, we call that the collection S C D of dyadic cubes
be a n-sparse, if there exists a measurable subset Eq C Q such that |Eg| > n|Q| and the sets
{Eq}qes have only limited overlap.

Definition 6. Given a sparse family, the sparse operator Ag is defined by

As(f)(x) = Y (Hoxo(x),

Qes
where (f)o = %Q‘ Jo f(x)dx.

In this subfraction, the primary target is to reveal the following quantitative edition of
Lacey’s pointwise domination inequality.

Proposition 1. Let 0 < & < N. Let m be a nonnegative integer. For every f € C°(H) and

b e Ly (H), there exits T dyadic systems D', t = 1,2,...,T and y-sparse families Sy C D' such
that for a.e.x € H,

T m
008F1 < Cuma 13- () A5 0.0, aex e, @

t=1k=0

where for a sparse family S, A;""s‘ (b, -) is the sparse operator given by

(b, f)(x) = Y [b(x) —bo|" HIQIN (£(b — o)) qxo ()-

Q€S
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__To show the Proposition 1, we need some auxiliary maximal operators. To begin with,
let jy be the smallest integer such that

200 > max{34,240Casj} @

and let C;, := 20042 A,
Next we define the grand maximal truncated operator M, as follows:

M, f(x) = supesssup [Lu(fxmc-) ()],
x€B  ¢€B o

where the first supremum is taken over of all balls B C H satisfying x € B. We can know
that this operator is of vital importance in the following proof, Given a ball By C H, for
x € By we also define a local edition of M, by

Mg f(x) = sup esssup|l(fxc-p,\c-5)(5)
xeBCBy &eB 0 To

Now, we claim that the following lemma is true.

Lemma 1. Let 0 < & < N. The following pointwise estimates holds:
1. Fora.e.x € By,

(e, ) (0)] < Mg ().

2. There exists a constant Cyy, > 0 such that for a.e.x € H,

My, () < Crva(Maf (x) + Ll ().

Using the results of Lemma 1, we then prove the Proposition 1.

Proof of Proposition 1. In order to proof the Proposition 1, we refer to the thinking in [8]
for this domination, which is adapted to our situation of homogeneous groups.

Firstly, we suppose that f is supported in a ball By := B(xo,r) C H, next we disinte-
grate H which respect to this ball By. We can do it as follows. We start define the annuli
Uj:= 2i+1By\ 2/By, j > 0 and select the minimum integer jo such that

jo>jo and 200 > 44, (5)

Next, for any Uj, we select the balls
= 4L
{Bj,é}z_lf (6)
centred in U; and with radius 2~y to cover Uj. From the doubling property [13], we obtain
sup L]- < CAo,]E’ (7)
]
where C Ao is an positive constant that only relates on Ay and j~0.

We now go over the characters of these E]'l(. Denote EM = B(xjy, 2i *fﬂr), where jo

is defines as in (4). Then we have Cadjgj,g = B(xjy, C”dej*jOr), which was shown in the
proof of Theorem 3.7 in [12] that

CaaiBjyNUj1jy =@, ¥j>0 and V(=12,...,L; ®)
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and

Cﬂd]‘B]"[ n u]‘,jo = @, V] Z jo and V/ = 1,2, .. ,L] (9)

Now, because of the Equation (8) and (9), we see that each CudjE j,0, at most overlap
with 2jp + 1 annuli U;’s. Moreover, for every jand /, Cj[] EM covers By.

Next by observing the (2), there is an integer tg € {1,2,...,7 } and Qg € D" such that
By € Qo C CygjBo. Additionally, for this Qp, as in Section 2.1 the ball that includes Qp and
has comparable measure to Qy is represented by B(Qy). Consequently, By is overwritten
by B(Qo) and [B(Qo)| < [Bo|, where the implicit constant relates only to C,4; and Aj.

Now we claim that there exists a ;-sparse family 7' C D' (Qy), the set of all dyadic
cubes in tp-th dyadic system that are contained in Qy, such that for a.e. x € By,

(B8 (Pt < Crme 1 ()80 (10
0 =0 ,
where
B (b f) (x) = sz [b(x) = bro|" ¥ICEBIQ)IF (£ (b = brg))c By ()-
cFto

Here, Rg is the dyadic cube in 2 for some t € {1,2,..., T} such that C].BB (Q) c
Rq C Cugj- C]EB(Q), where B(Q) is defined as in Section 2.1, jj defined as in (5) and Jo
defined as in (4).

Assume that we have already proven the assertion (10). Let us take a partition of H
as follows:

H = | 2B,
j=0

We next consider the annuli Uj:= 2i+1By \ 2/By for j > 0 and the covering {Bjctelq
of U; as in (6). We note that for each B; , there exist t;, € {1,2,..., 7 } and Q;, € D'it such
that EZL 0 C Q/}[ c Cad]-FBVj,g. Thsrefore, we acquire that for each such E//f' the enlargement
C%B(Qj/l) covers By since C i B;; covers B,.

Next, we utilize (10) to each B; ,, then we acquire a 1-sparse family F;, C D' (Q;)
such that (10) can be established for a.e. x € B .0

Now, set F := Uy f']g Then we observe that the balls Cudjgj,k are overlapping not
more than C Ao (2jo + 1) times, where C Aoso is the constant in (7). Then, we can obtain

. %_ .
that Fisa 2,0 oD sparse family and for a.e. c € H,

W)
<ima 1 (1) I, (1660 brg "G BQI (0~ brg iy Jxat)

Since C].BB(Q) C Rg, and it is clear that [Rp| < E|C].~OB(Q)| (C depends only on
Cadj), we obtain that (f)c_p(g) < C(f)r,- Now, weset Sy := {Rg € D': Q€ F}, te
io

{1,2,...,T}, then since the fact that F is W—sparse, we can acquire that each
1

family S; is 3, (T

—-Sparse.
ojp B+ T P
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Now, we let
= S E—
ZCAO i (2jo+ 1)’

where ¢ is a constant relating only on C, Cj~0. Then it follows that (3) holds, which finishes
the proof. [

Proof of the Assertion (10). To demonstrate the assertion it suffice to attest the following
recursive computation: there exist the cubes P; € D (Qp) that does not intersect each other
such that ;| Pj| < 11Qo| and for a.e. x € By,

| (L)' (FXe B(o)) ()Xo (¥)

< Cnme Y (7:) [b(x) — brg, |m_k|Cj;JB(Q0)|% (f(b— bRQO)k>CI.~B(Q0)XQo(x)
k=0 0

+Z|Ia (FXc:B(m)) (X)X, ().

Iterating this estimate, we acquire (10) with F being the union of all the families { P]k 1%
where {P]Q} ={Qo}, {P]l} = {P;} as mentioned above, and {P]lc } are the cubes acquired
at the k-th stage of the iterative approach. Clearly F% is a }-sparse family, since let

EPk _ Pk \ U Pk+1

Now we prove the recursive estimate. For any countable family {P;}; of disjoint cubes
P C D' (Qp), we have that

(I )Z”(f?(c B(Qo)) (X)X, (%)
< L)y (fXC]BB 20)) (X)X g\u;p; (¥ +Z| L)y ch B(Qo)) (%) xp, (%)
< I(Ia)?(fx%B(Qo))(x)xQo\u], +Z| L)y ch B(Q)\C;; B(P, p)) (X)xp, (%)

+ RIIE g (1,0

So we just have to reveal that we can opt for a family of pairwise disjoint cubes
{P;} € D'(Qyp) such that ilpl < %|Q0| and that for a.e. x € By,

|(I!X)Ln(fXC]BB(QO))(x”XQO\U/P +2| L)y’ ch -B(Qu)\C; B(P, p)) (%) [xp; (%)

m

m — &
< Cume 1 () 1) — g I" 1G5 B0 (7 b e o)
Using that (1)} f = (Ix)}.f for any ¢ € R, and also that

I mic _ m _1k m I, b—Ck b_cmfk,
ef = L () (0 - 60
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it follows that

\ (Iﬂé)?(fXCZBB(QO))(x) IX@o\ujpi(x) + Z \ (Ia)?(chjaB(Qo)\cjaB(Pi))(X) |xp;(x)
j
- (m m—k k
<y K |b(x) = brg, "~ |1a((b = bry, ) chij(Qo))(x)|XQo\uf1)j(x)
=0
W

S (m —k k
+ k;O <k> |b(x) = brg, " ;Ua ((b—bry,) fXC]bB(QO)\C]BB(Pj)) (x)|xp;(x)
=: W) + W.
Now we define the set E = UZ’: oEks where

Ex = {x € By : My, (0= brg )*f) (x) > CrvmalC;; B(Qo) ¥ (b — hRQU)kf>%B(QU>},

with Cy . being a positive number to be chosen.
From [8], we can choose Cy ;,  big enough (depending on C/'B’ Cadj, and Aj) such that

1
|E| < —==|Bol,
44,

where Ay is defined in Section 2.1. We now utilize the Calderén-Zygmund decomposition
to the function xg on By at the height A := %, to acquire pairwise disjoint cubes {P;} C
0

D'0(Qy) such that
1 1
—|Pj| < |P,NE| < Z|P;
S5 |BI<IBNE < 7P|
and |E \ U;P;| = 0. This implies that

Z|P]‘ < %‘B(ﬂ and P]'ﬂEC #+ Q.
j

Fix some j. Since we have P; N E€ # @, we observe that
Moo (b = brg, )F) (¥) < Cama G B(Q0) ¥ (b = bro, )F)c_piqy

which allows us to control the summation in W by considering the cube P;.
Now by (i) in Lemma 1, we know that

[Ie((b— bRQg)kfXC}BB(QO))(x)‘ < My, g, ((b— bRQU)kf) (x), for a.e.x € By.
Since |E \ U;P;| = 0, we have that

M, (b= brg )f) (x)
< CN,m,a|CjBB(Q0)|%<(b - bRQO)kf>C/_«B(Q0)f for a.e.x € By \ U]'P]'.
0

Consequently,

1 ((b = brg, )kfXCJBB(QO)) ()]

< CN,m,D(|C]BB(QO)|%<(b — hRQo)kf>CJBB(QO>’ for a.e. x € By \ U]‘pj.
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These estimates allow us to control the remaining terms in W, so we are done. [

Proof of Lemma 1. Now we give the proof process of Lemma 1.

The result in the Euclidean space case can be referred to as [8]. Now, we can adapt the
proof in [8] to our setting of homogeneous groups.

(i) Let r is close enough to 0 such that B(x,r) C By. Then,

‘LX (fXCi[)Bo)(x)‘ < ‘LX (fXCj[)B(x,r))(x” + |Iﬁé(fXC/680\Cjz]B(x,r))(x)l
< [(fxe o)) (O] + Miybo f(2),

the estimate for the first term follows by standard computations involving a dyadic annuli-
type decomposition of the B(x, 7).

XC Bvr
‘Itx(fXC/bB(xr ‘/ d X]/ N o dy'

If ()
= /B<x,c,-5r> d(x,y)N-=
1

/ If ()|
B in\B(x C 1) d(x,y)N-«

dy

i=—oc0

1 .

< C.i-1pya-N / d

S LG e 0y
LI 1

a—N [V '
= L ()G e /B(x%,r) £y

i=—o00
< CN,tx/C]r r"‘Mf(x).
0
Then,

[ (F e, 30) (9] < Civac 1" MF(X) + Mg, f (), an

the estimate in (i) is settled letting r — 0in (11).
(ii) Let x, ¢ € B := B(xq,r). Let By be the closed ball with radius 4(Aq + Cﬁ))r, which
centered at x. Then C]EB C By, and we acquire
| (e 8) (0)] = Ha(Fxm5,) (©) + La(fxBoc5) (2)]
< e (fxe g, ) (€) — Lu(fxmm s, ) (%)
+ |Ia(fXBx\chB)(§)\ + e (fxm8,) (%)

For the first term, since p is homogeneous of degree « — N, and by using the Proposi-
tion 1.7 in [1], we get
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e (fxEn\B,) (6 )—I (f xm\B,) ()]

1
/H\B Y " = Gy Y

2
< =
< CNa /JHI\B d(x y)Nfﬂ#] |f(]/)|d]/

2r
NLYE/ZIB(\ZI 15, W‘f( y)ldy

2r
< CN,O( Z N—a+1 /2in |f(y)|dy

i <2i71‘Bx|%>

> 2r
= Cun Y — s LY
=1 (2122¢(4 + C7)) s
> 2r 1
=Cy, : .
ai:Z] 27+1r(A0+CJ76) <

: e [ F)lay
21+1r(A0+C]_B)> « 2!By

< CN,ocMaf(x)~

Next, for § € B,y € By \ C]'BB’ we have d(y, &) > 2007. Then we have

[ Fxpc, )@ < [, F)ldy

Y\c B d(y, C)N @
< WW J, )

1
= CN,AW /Bx |f(v)ldy
S CN,A,MAf(x).

Finally, we observe that

WGrma) 0l =1 [, 7L

o
< J et
— LIfl(),

dx|

which finishes the proof of (ii). [

Next, we review that the dyadic weighted BMO space associated with the system D!
is defined as

BMO, pi(H) == {b € Lj,(H) : [|bllpmo, < o0},

;]/Dt

where ||b||5 MO, o = Sup f g |b(x) = bgldx. Then according to the dyadic structure
theorem studies in [14], one has

.
BMO, (H) = () BMO, p: (H).
t=1
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Now, to verify a function b is in BMO, (H), it suffices to verify it belongs to each
weighted dyadic BMO space BMO, p(H). Given a dyadic cube Q € D! with t =
1,2,...,7, and a measurable function f on H, we define the local mean oscillation of

fonQby
w@r(£:Q) = inf ((f =)o) (MlQD), 0<A<1,
where

((F-oxe) AlQh = sup inf(f—c)(x).

ECQ,|E[=A|Q| *<F

With these notation and dyadic structure theorem above, following the same proof
in [10], we also acquire that for any weight 7 € A,, we have

Ql

-
161l 87, () < C ) sup wA(b;Q)W—

, 0< A <2oNHL 12)
t=1QeD! (Q)

where C depends on 7.

Proposition 2. Suppose that H is a homogeneous group with dimension N, b € L}OC(]HI). Then
for any cube Q C H, there exist measurable set F; C Q withi = 1,2, such that

wzwlfz (b; Q) < b(x)—b(y), Y(x,y) € F; x F.
Proof. We take ideas from N. Accomazzo, J. C. Martinez-Perales and 1. P. Rivera-Rios [8].

In [8], for any cube Q € D! witht = 1,2,..., T, there exists a subset E C Q with |E| =
2N%|Q| such that for every x € E,

w 1 (6;Q) < [b(x) —my(Q)],

2NT2

where 1, (Q) is a not necessarily unique number that satisfies

max {|{x € Q:b(x) > my(Q)}, [{x € Q: b(x) < my(@)}} < 2.
Let E; C Qwith |E| = 1|Q] and such that b(x) > m;(Q) for every x € E;. Further let
Ey = Q\ Ey, then |E>| = 1|Q| and for every x € Ej, b(x) < mp(Q).
We obtain that at least half of the set E is contained either in E; or in E, since Q is the
disjoint union of E; and E,. Without loss of generality, we assume that half of E is in Eq,
thenwelet F; = ENE|,FLb=EnN (E N El)c, we have

lE| _ Q|

|F1| = |E‘ - |EH(EQE1)C‘ 2 |E‘ T ) T pNt3’

and

1 1 1
2N+3|Q| = (E - 2N+3)|Q"

1
|R| = |E2| = [E2N(ENEy)| > 5]Q| -
Thenif x € F; and y € F,, we have that
w 1y (6:Q) < b(x) —my(Q) < b(x) —b(y),

which shows that Proposition 2 holds. [
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Given a dyadic grid D, define the dyadic Riesz potential operator

1
P = T i [ If0)ldyxo():
' Q;D lQI'~% Jo
Proposition 3. Given 0 < « < N, then for any dyadic grid D,
IRf() S Lf (x). (13)

Proof. The result in the Euclidean setting is from the Proposition 2.1 in [15]. Here, we can
adapt the proof in [15] to our setting of spaces of homogeneous type. [

3. Proof of Theorem 1

To proof (i), we are following the ideas in [16] or [8].
Let D be a dyadic system in H and let S be a sparse family from D. We know

AVS (0, )(x) = 1 [b(x) = bol™ QN ((b = bo) f) pxo (%),

Q€S
by duality, we have that

170Nl < swp T ([ Istonlio) — bol Hax )10l
* gl 5 =1QE8 Q
AT

< (167, 1o6) = bol! £l

By Lemma 3.5 in [12], there exists a sparse family S C D such that S ¢ § and for
every cube Q € S, fora.e. x € Q,

[b(x) —bo| <Cn Y. Q(b,P)xp(x),
PeS,PcQ

where Q(b, P) = ﬁ Jp |b(x) — bpldx
Assume that b € BMO,;;(H) with # to be chosen, then we have for a.e. x € Q,
1 1(P)
b(x) —bo| < C —/ b(x) — bp|dx - T\
| (x) Q‘ = Npeg"zch U(p) Pl (x) P‘ X ‘P| )(p(x)

P
< Cullbllsvo, () ¥ %mx).
PeS,PcQ

Then, we further have
Lk
A48, £) )33,

<Culbluo e | sop | B (g Ll E Hhx)" ax)
)* S

SIIIXHL%’/(H PeS,PCQ
1 1(P) f ) 0%
x (|Q|/(2(P€§CQ She) 1£lax ) -1Ql -1l
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Next, note that for each ¢ € N, from [12], for an arbitrary function /, we have

/ [h(x }7|(TP‘)Xp(x))[dx

QESPCQ
< ¢
< /QAS,,?UhD(x)dx,
where A§,”(|h\)(x) = Ag(lh))y, Ag(h) == ¥ hoxgo and .A/Z f stands for the (-th

QES
iteration of A Sy

Then we have

A (b, ) (x les,

< Culbllgyo e sup AQ%(/QAg’/(\gW))m%%(/Q A5 ()

g:”gHL%]/ =

<Culbluo e sp [T e ([ As, (fxo) - A% H(5A7)

1— &
il =1 Hocs QW
AT

= Cullblguo, )  suP [ 15 (A%, (D) () (A2 H(1gIA7) ) (),

glslyr =

where I3, f := I§(f)y and I§f(x) = L - Q‘ —5 Jolflxalx

From (13) and the boundedness of I,x f,if p, q, « are as in the hypothesis of Theorem
llandw € Ap,y, S C D, then

(1—4) max{1, p’}
||I‘D§HL5’UP(H)_,L7 (H) < CNpqzx[w]qu . (14)

Observe that A is self-adjoint, then
155, 00) (A <glan) = [ AsAz K11, (A5, (1£D)] g0
By Holder inequality, we have that

HAZfi]sc(b/f)(x)HLiq(H) = CN”b”gIMO,,(H)||A§Ag;k711§,w4’§,,7(\f|)H% ()

. }
Applying that [|Agl|;» i) < Cnplw ]A i (see, e.g., [17]),

—k—1 k
A5 AL IgnAgﬂ(|f\)||L7W(H)

max{l }
< CnpM, T A5 sAG, 18 As, (FD s,
} max{l } ke
< CNpW’]A L AT, T 71 ”AE,,]‘ ZIg,qul”(lf\)IILZM(H)
m—k=1 . max{l,%l} '
<Oy Il M, )T A D e
1= 1
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Using (14), we have that
_ k
184, WD = WBAS, 0D
—k (1— N)max{l
< CN,p,vc [)\’7 }AM ”A (‘f‘)HLiP”(mfk)p(H)’
. . ax{1, 517}
and applying again [[Az||;r 4 < C, p[w] ,

m ; }
1A, Dl < Coup( T 7071, )™ i 1A
17

i=m—k+1

which, along with the previous estimate, yields

A2, ) s, s

< CnpalI0vt0, i1y A, K) B, g 1= R mex(y }Hflng,, o ()7
where
k—1 X
<m1_I /\%]Zq >ma {1,71},
i=0
and
) max{l }
(mk)=( TI Wn"a)
i=m—k+1

Hence, setting 7 = v!/™, where v = (%)1/ P, itreading follows from Holder’s inequality

Wovomla, < VL7 015, s = p.a.

Thus, we acquire that

m—k—1 max{l,%l} m+k+1 m—k=1 k 1 1}
)< (I P g ) < (0 e ) i
and
n m—i i max{l,%l} k=1 k=1 L max{l }
B(m, k) < <izﬂ+1mf‘"? WE) T < (A Wl )"

Combining all the preceding estimates obtains (i).
To proof (ii), we are going to follow ideas in [10]. Based on (12), it suffices to show that
there exists a positive constant C such that for all dyadic cubes Q € D!,

1/m m
0, 0" < (@) I, a1, (15)

2
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Using Proposition 2 and Holder inequality implies that

w %(b;Q)"wHHFz\ < ‘/Fl / b(x) fb(y) mdxdy

2N

< dima(Q / / dxdy
RJE d(x, y

< )w ' </H[(Ia)gl(xpz)wdx>é
<clQI¥ </Qﬂ’> - <-/QW’> ’ T3 e, ey 22, e

= 2 1 -7 q/. L 14 r m
=10 (g, o1 o) MO s ),

where we used that % + &=
Further, this yields

1 1
1 N g 1 P
. m i —-q . p m
wziNiz (b/Q) < C(‘Q‘ /QA ) <|Q| /QV ) ”(Iﬂ()b ||sz(H)~>Liq(H)’

=

Then from [8], we have
1 1
r
_ P < C(
(IQ\ for )

w 1 (h;Q)"

2N+2

1 1
1l m m(i —q'>‘7<i p)ﬁ m
—C(\Q\/Q” > a kot Qo) I g -,

Now we observe that since ¢ > p then by Holder inequality,

() < ()" e () < ()
(e ) () < (& )

Consequently, since A € A, 4, we finally get

. m 1 1/m " m
@y 00" < €17 17 ) NE L

Thus, (15) holds and hence, the proof of (ii) is complete.
Therefore, we complete the proof of Theorem 1.

Q|-
S~
-
~
3
N———
2
N
|~
S
>
=
N——
=

so the

=

then

q_1
o

"

BN
[y

(a1 ")’
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Abstract: Let (X, d, i) be a space of homogeneous type in the sense of Coifman and Weiss. In this
article, the author develops a partial theory of paraproducts {I1; }]3:1 defined via approximations
of the identity with exponential decay (and integration 1), which are extensions of paraproducts
defined via regular wavelets. Precisely, the author first obtains the boundedness of I'l3 on Hardy
spaces and then, via the methods of interpolation and the well-known T(1) theorem, establishes
the endpoint estimates for {Hj}?zl. The main novelty of this paper is the application of the Abel
summation formula to the establishment of some relations among the boundedness of {IT; }]3:1,
which has independent interests. It is also remarked that, throughout this article,  is not assumed to
satisfy the reverse doubling condition.

Keywords: space of homogeneous type; paraproduct; T(1) theorem; hardy space; bilinear estimate

1. Introduction

Classical paraproducts defined via convolutions are kinds of non-commutative bi-
linear operators, which are useful tools in the decompositions of products of functions.
The prototypes of paraproducts can be found, for examples, in the work of Fujita and
Kato [1] and Kato [2] on the study of mild solutions of Navier-Stokes equations and in the
investigation of pseudo-differential operators and para-differential operators by Meyer and
Coifman [3-5]. The formal notion of paraproducts has been introduced in 1981 by Bony for
the study of the nonlinear hyperbolic partial differential equations in [6]. Since then the
theory of papraproducts has been developed rapidly, which plays an essential role in both
harmonic analysis and partial differential equations. For applications of paraproducts in
harmonic analysis, we refer the reader to [7-16]. See also [17,18] for more applications of
paraproducts in mathematical physics. The paraproducts defined via wavelets was first
investigated by Grafakos and Torres [19] and then studied by Bonami et al. [20], which
play crucial roles in both the bilinear decompositions of products of functions in [20,21],
the (sub-)bilinear decompositions of commutators and the endpoint estimates of commuta-
tors in [22,23]. See the survey [24] and the monographs [25,26] for more information.

In 1970s, Coifman and Weiss [27,28] introduced the notion of the space of homoge-
neous type which has been proven to be a natural background for extensions of many
classical results on Euclidean spaces. Recall that a quasi-metric space (X ,d) is a non-empty
set X' equipped with a quasi-metric d such that, forany x, y, z € X,

(i) d(x,y)=0ifand onlyif x =y;

() d(xy) =d(yx);
(iii) the quasi-triangle inequality d(x,y) < Aold(x,z)+d(z,y)] holds true, where A €
(1, 00) is called the quasi-triangle constant which is independent of x, y and z.

The triple (X, d, ) is called a space of homogeneous type if y is a non-negative measure
satisfying the following doubling condition: there exists a positive constant C(y) € [1,0),
depending on &X', such that, for any r € (0,00) and x € X,

#(B(x,2r)) < Cx) u(B(x,r))
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or, equivalently, there exists a positive constant C such that, for any A € [1,00), 7 € (0,00)
and x € X,
u(B(x,Ar)) < CA"u(B(x,r)), (1)

where B(x,r) := {y € X : d(y,x) < r}and n := log,C(y) represents the “upper
dimension” of X'.

As in ([29], Section 1) (see also ([30], Section 1)), throughout the whole article, we
always assume that (X, d, ) is a space of homogeneous type satisfying the following
additional assumptions:

(i)  Suppose that, for any given x € X, the sequence of balls, {B(x,7)},¢ (), in X is a
basis of open neighborhoods around x.

(i) Assume that p satisfies that all the open sets are measurable and, for any measurable
set A C X, there exists a Borel set E D A such that u(A) = u(E), which is called
Borel regular.

(iii) Suppose that, for any x € X and r € (0,00), u(B(x,r)) € (0,0).

(iv) For the sake of the presentation simplicity, without loss of generality, we always
assume that diam (X') := sup{d(x,y) : x, y € X} = o0 and (X,d, u) is non-atomic,
thatis, forany x € X, u({x}) = 0.

It was shown in ([31], Lemma 5.1) or ([32], Lemma 8.1) (see also ([30], Section 1)) that,
under the above assumptions, diam (X') = oo if and only if i (X) = co.

A space of homogeneous type, (X,d, i), is called an RD-space introduced by Han
et al. [33] (see also [34]) if u further satisfies the following reverse doubling condition (or,
for brevity, RD-condition): there exist positive constants ag, C (x) € (1,00), depending on X,
such that, for any x € X and r € (0, diam (X) /ag),

#(B(x,a07)) = Cx)p(B(x, 1)) &)

Notice that the harmonic analysis on spaces of homogeneous type has a long history;
see, for example, [27,28,35,36]. We refer the reader to [33,34,37-46] for the real-variable
theory of some function spaces and Calder6n-Zygmund operators on RD-spaces. Further-
more, for some recent developments on the real-variable theory of function spaces and its
applications on spaces of homogeneous type, please see [29,47-61].

Some progress is also made on the boundedness of paraproducts on metric measure
spaces. Let (X, d, i) be an RD-space. Han et al. ([33], Theorem 5.56) extended the cele-
brated T(1)-theorem of David and Journé [11] to the RD-space via paraproducts. Later,
Grafakos et al. [43] introduced a kind of paraproducts on X', which extends the correspond-
ing notion of paraproducts in ([33], Theorem 5.56), and investigated their boundedness
from HP(X) x H1(X) into H"(X) by (in)homogeneous Calderén reproducing formulae,
which also generalizes a classical result on Euclidean spaces obtained by Grafakos and
Kalton [14]. Grafakos et al. [43] also studied the endpoint estimates of paraproducts on
X via the theory of Calderén—-Zygmund operators. Moreover, via the off-diagonal es-
timates of integral kernels, Grafakos et al. [42] showed that a kind of bilinear discrete
paraproducts on & via the theory of multilinear Calderén-Zygmund operators established
in [42], are bounded on weighted Lebesgue spaces, Triebel-Lizorkin spaces and Besov
spaces. Recently, Chang et al. [30,62] showed that the aforementioned boundedness of
paraproducts on RD-spaces remains true on spaces of homogeneous type, namely, without
having recourse to the RD-condition (2).

A space of homogeneous type, (X, d, i), is called a metric measure space of homogeneous
type if the quasi-triangle constant Ay = 1. In this setting, Fu et al. [48] proved that f x g
of f € HL(X) and ¢ € BMO(X) can be written into a sum of three bilinear operators
{114 }]3:1, which are also called paraproducts. These paraproducts play important roles in
the study on the endpoint boundedness of the (sub-)linear commutator [b, T] of a (sub-
)linear operator T and b € BMO (X') on (local) Hardy spaces in [29,57,58]; see also the
survey [63] for more details. A natural question is whether there exists a relatively complete
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boundedness theory for paraproducts {IT /'}]3‘:1 in [48] which enjoy the same boundedness
as the paraproducts in [30,62].

In this article, we give a partial affirmative answer to this question with the para-
products {H]'};.’:1 in [48] replaced by more general forms via the exp-ATIs and 1-exp-ATIs
from [53]. We obtained the boundedness of I3 on Hardy spaces and its endpoint estimates,
and the endpoint estimates for I'ly and Il,. The boundedness of Iy and I1, on Hardy
spaces may need different approaches and was left as an unsolved question.

In what follows, we always assume that (X', d, jt) is a space of homogeneous type. The
remainder of this article is organized as follows.

Section 2 is devoted to some preliminary notions and results which are needed to the
proof of the main results Theorems 2—4 below. In particular, we recall the T(1) theorem
from ([32], Section 12) (see Lemma 3 below), and use the Abel summation formula to build
some relations among the boundedness of {IT j}/S':1 (see Theorem 1 below).

In Section 3, we prove Theorems 2—4 below. In precise, Theorem 2 is an easy conse-
quence of the Holder inequality and the definition of H? (X'). To show (i)—(iv) of Theorem 3,
we first fix an f € BMO (X) and express the paraproduct I3 by an integral operator K)@.
Then, via the methods of interpolation and the crucial estimates (11) and (12), we show
that K}3> has the weak boundedness property WBP(77) with 77 as in Lemma 2 below. Next

we prove that the kernel of KJ(,3)

on estimates (11) and (12). Moreover, we point out that K}a) (1), (Kjf3> )*(1) € BMO (X),
which, together with the T(1) theorem from ([32], Theorem 12.2) and the boundedness of
Calderén-Zygmund operators, we finally finish the proof of (i)-(iv) of Theorem 3. In order
to prove (v) and (vi) of Theorem 3, we first fix g € L®(X) and write IT; as an integral

operator K§3). By the fact that L®(X’) C BMO (X') and some arguments used in the proof
of (i)—(iv) of Theorem 3, we obtain the desired results and finish the proof of Theorem 3.
The proof of (i)—(iv) of Theorem 4 is a consequence of the arguments and ideas from the
proof of (i)-(iv) of Theorem 3. The main novelty of this paper lies in the proof of (v)-
(vi) of Theorem 4, where we use the Abel summation formula to build some relations
among the boundedness of {T1; };’:1 and then transform the same boundedness of I1; from

L?(X) x L®(X) into L?(X) into the same boundedness of IT and IT5. We also remark that,
throughout this article, y is not assumed to satisfy the reverse doubling condition (2).

Finally, we list some notation used throughout this article. Let N := {1,2,...} and
Z. = {0} UN. We use C or ¢ to denote a positive constant which may be different from
line to line, but is independent of main parameters. In addition, we also use C(, , )
OI C(y 4,...) to denote a positive constant depending on the indicated parameters p, «, .. ..
For any two real functions f and g, we write f < ¢ when f < Cg and f ~ g when
f < g < f. Forany subset E of X, denote by 1 its characteristic function. For any x, y € X,
7,0 € (0,00) and ball B := B(x,r) := {y € X : d(y,x) < r}, define pB := B(x,pr),
V(x,r) := u(B(x,r)) =: V;(x), and V(x,y) := u(B(x,d(x,y))). Forany p € [1,00], let p’
denote its conjugate index, namely, 1/p+1/p’ = 1. Forany a, b € R, leta A b := min{a, b}
and a V b := max{a, b}. Finally, for any linear integral operator T, we keep the notation T
for its integral kernel.

is an 77-Calderén—-Zygmund kernel, which also relies

2. Preliminary Notions and Results

In this section, we mainly state some preliminary notions and results which are needed
to the proof of the main results Theorems 2—4 below. In particular, we investigate some
relations among the boundedness of {T1; }]3:1.

We first recall the notions of some function spaces. Let g € (0, co]. The Lebesgue space
L1(X) is defined to be the set of all y-measurable functions f on X such that, if g € (0, 00),

Pl = [ [ 1rmanco] <o
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if ¢ = oo, [|fllpo(xy := esssup [f(x)| < oo, where esssup |f(x)| denotes the essential
xeX xeX
supremum of |f| on X. Denote by L. _(X') the space of all locally integrable functions.
Lets € (0,1] and denote by C(X') the space of all continuous functions on X. Then the
homogeneous and inhomogeneous spaces C3(X') and C5(X) of s-Holder continuous functions on
X are, respectively, defined by setting

C(x) = {f €C): |fllox) <} and C(X):={f € C): [|fllexia) < oo}

with

Iflew = Ml + Ifleq and Iflew = swp  SEeesd
{(x, y)eXxX: x#y}

Moreover, the space C;, (X)) of all s-Holder continuous functions with bounded support on
X is defined by setting

5(X) = {f € C°(X) : fhasbounded support},

where we equip Cj (X’) with the usual strict inductive limit topology (see, for instance, ([36],
p- 273) and ([33], p- 23)) A useful subspace és( ) of C;(X) is defined by setting éZ(X )=
{feCx f)( = 0}. Moreover, the dual space (Cj(X))’ [resp., (C;(X))']
of Cj(X ) [resp CS (X )] is defmed to be the set of all linear functionals on Cj(X) [resp.,
on ég(é\f )] equipped with the weak-* topology.

Definition 1 ([27,32,35]). Lets € (0,1]. A function K: (X x X)\ {(x,x): x € X} = Cis
called an s-Calderén-Zygmund kernel if there exists a positive constant C ), depending on K,
such that

(i) foranyx,y € X withx #y,

K9] < C gy ©
(i) foranyx, %,y € X satisfying d(x, ¥) < (240) 'd(x,y) with x # v,
K(ow) K| < o [ S0 ] b @
and
K~ K7 < o [ J0 0] L ®

A linear operator T : C;(X) — (C; (X))’ is called an s-Calderén-Zygmund operator if T
can be extended to a bounded linear operator on L?(X') and if there exists an 5 Calderén—Zygmund
kernel K such that, for any f € C5(X) and x ¢ supp f, Tf(x) := [ K( y)du(y).

Definition 2 ([28]). Let p € (0,1] and q € [1,00] N (p, c0]. Aﬁmction aon X is called a
(p,q)-atom supported on a ball B if (i) supp a C B; (i) ||a||pax) < [p(B)]V97VP; (iii)
Sy a( = 0, here and thereafter, for any measumblefunctzon f supp f = {x € X :

f(x) # 0}
A function f € (Lipl/pfl(X))’ when p € (0,1), or f € LY(X) when p = 1, is said

to belong to the atomic Hardy space HY"(X) if there exist (p,q)-atoms {a]}"" 1 and numbers
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{)‘j};il C Csuch that 52 1 [Aj|P < coand f = Y24 Ajaj in (Lipl/pfl(X))’ when p € (0,1),
orin LY (X) when p = 1. Moreover, the quasi-norm of f in H.:7(X) is defined by setting

w0 1/p
|v@m¢ﬂmﬂpwﬂ }
=1

where the infimum is taken over all decompositions of f as above.

Let p € (0,1]. It was shown in ([28], Theorem A) that HY;?(X') is independent of the
choice of g € [1, 0] N (p, co] and hence simply denoted by H, t(/Y ).

Definition 3 (([34], Definition 2.2) and ([33], Definition 2.8)). Let x; € X be fixed, r, ¢ €
(0,00) and x € (0,1]. The space G(x1,7,%,0) of test functions is defined to be the set of all
measurable functions f on X such that there exists a positive constant C such that

(T1) forany x € X,

1 r 0.
|f(x)| < Cy( (JC], ))+V(X1, )|:r+d(xlrx):| ’

(T2) forany x, y € X withd(x,y) < [r+d(xq,x)]/(240),

r—+ d(xl,x)ry(B(xhr)) + V(xy,x) {r + dlelx)} 19'

Moreover, the norm of f in G(xq,1,«,8) is defined by setting

\ﬂn—fwnsc[d“”) !

I fllg(x,, r,x, 0) := inf{C : C satisfies (T1) and (T2)}.
It was shown in ([33], pp. 18-20) that, for any x € X and r € (0, c0),
G(x,1,%,08) =G(x1,1,x,09)

with equivalent norms, but the positive equivalence constants may depend on x and r and that
G(x1,1,x,8) is a Banach space. In whatfollows for short, we write G(x,9) := G(x1,1,x, ®) and
let G(x,0) == {f € G(x,0): [y f( x) =0}

Lete € (0,1], x, 9 € (0,¢] and QO(K 9) [resp., QS(K, 9)] be the completion of the space
G(e, €) [resp., G (e, €)] in the G(x, ) norm. Moreover, if f € G§(k, 8), we then let

HngOKﬂ ”ng ,0)"

The dual space (G§(x,9))" [resp., (g°5(x, 0))'] is defined to be the set of all continuous linear
functionals on G (i, 9) [resp., QS(K, 0)] and equipped with the weak-* topology.

We then recall the following system of dyadic cubes given in ([64], Theorem 2.2),
which was formulated in ([53], Lemma 2.3).

Lemma 1. Fix constants ¢y, Co and é such that 0 < ¢y < Cy < 00,8 € (0,1), and 12A8C0z5 < ¢p.
Assume that a set of points, {zX : k € Z, a € 4} C X with

o being a countable set of indices for any k € Z, 6)

satisfies the following properties: for any k € 7Z, (i) d(z’;,z’é) > cod* when o # B; (i) for any
x € X, minge d(x,zK) < Coo*.
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Then there exists a family of sets, {QX : k € Z, « € o7}, which is called the system of
half-open dyadic cubes, satisfying
(ii)) X = Uneoy Qb with {Qk : « € i} mutually disjoint;
(iv) ifl >k a € o and B € o, then either Qg c Qkor QN Qg = @ holds true;
(v)  forany « € o, B(zk, c,0%) C QF  B(zK, C6%) with ¢y := (3A%) " leo, Ct:=2A¢Cp and
2k being called the “center” of QK.

In what follows, for any k € Z, let
xk= {Z’;}aedkr G = Ay1 \ Y, NARED L \ Xk = {ylfg}ﬁe%r (7)

and, for any y € X, let d(y, V¥) := inf,y d(y,z).

Based on the set {Z{;}kezraepjk [with < as in (6)] of points as in Lemma 1 and its
related dyadic cubes, Auscher and Hytonen ([32], Theorem 7.1) constructed the following
notable system { 1[J§ }kez, pew, of regular wavelets on X', which is an orthonormal basis of

L2(X).
Lemma 2. There exist constants C, v € (0,00), a € (0,1], 4 € (0,1), and regular wavelets

{l[)lé}kez/ﬁeg , with % as in (7), satisfying
(i) forunyi €Z,BEGandx € X,

- (N O d(yﬁ,X)r .
ol ze e}

(i) foranyk € Z, p € Gand x, y € X with d(x,y) < 5,

Koy ok dey)” 1) dlyy 0]’ .
it <257 o[ )

(iii) foranyk € Zand p € %, [ z/:’é(x) du(x) = 0 with {ylé}kez,ﬁe%k asin (7).
Moreover, the system of reqular wavelets {I/JE} kez, pe, is both an orthonormal basis of L2(X)
and an unconditional basis of LV (X') for any given p € (1,00).

Definition 4 (([54], Definition 2.7), ([53], Definition 2.4) and ([30], Definition 2.3)). A se-
quence {Qx Ykez, of bounded linear integral operators on L?(X) is called an approximation of
the identity with exponential decay (for short, exp-ATI) if there exist constants C, v € (0,00),
a € (0,1) and y € (0,1) such that, for any k € Z, the kernel of the operator Qy, which is still
denoted by Qy, satisfies

(i) (the identity condition) Y5> Qy = I in L2(X), where I denotes the identity operator

on L2(X);
(ii) ~ (the size condition) for any x, y € X,

|Qk(x, ¥)| < CRi(x,y)

with
o 1 L [dGn]”
8= P )
Xexp{y [max {d(x,);),d(y,yk)}} };
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(iii) (the regularity condition) for any x, ¥, y € X with d(x, %) < &,

d(x,X)
ok

n
1Qk(5,) — Qe 1) + Qv %) — Qely, )| sc[ ] Re(x,y);

(iv) (the second difference regularity condition) for any x, ¥, y, § € X with d(x, %) < & and
d(y,y) <o,

1Qux) — Q] ~ 1Qutx ) - et )| < €[ 10| [ALD oy,

(v)  (the cancellation condition) forany x, y € X, [ Qe(x,y)du(y) =0 = [ Qk(x, y) du(x).

Remark 1. Let {l/’f;}keZ,ﬁe%k be as in Lemma 2. Forany k € Zand x, y € X, let

Di(x,y) i= Y Y5(x)¥E(y)-

BEY

It was shown in ([54], p. 291) that the sequence { Dy }xcy, of linear integral operators associated
with kernels { Dy (-, -) }xez satisfies all conditions (i)—(v) of Definition 4.

Definition 5 ([53], Definition 2.8). A sequence { Py } ez of bounded linear integral operators on

L?(X) is called an approximation of the identity with exponential decay and integration 1

(for short, 1-exp-ATI) if { Py } ez, has the following properties:

(i) forany k € 7Z, Py satisfies (i), (iii), and (iv) of Definition 4, but without the exponential decay
factor

exp{u {max {d(x, );i),d(y,yk)}} }

with Yk as in 7);

(ii) [y Pe(x,y)du(y) =1= [ Py, x)du(y) forany k € Zand x € X;
(iti)  Let Qy := Py — Py_ for any k € Z. Then {Qy }xez is an exp-ATL

Remark 2.

(i) The existence of the 1-exp-ATl is ensured by ([32], Lemma 10.1) (see also ([53], Remark 2.9)).

(ii)  For any given p € [1,00], P and hence Qi are bounded on LP (X') uniformly in k € 7Z; see,
for instance, ([54], Proposition 2.2(iii)).

(iii) It was shown that limy_,., Pr = I on L?(X); see, for example, ([53], Remark 2.9).

Definition 6 (([53], Section 3 and Theorem 5.10) and ([62], Definition 1.1)). Let x, & € (0,7)
with 1y as in Lemma 2, { Py }xey, be a 1-exp-ATLand Qi := Py — Pr_1 for any k € Z. Then, for any
f € (G](x,8))', the non-tangential maximal function M, (f) of f, with aperture p € (0, ),
is defined by setting, for any x € X,

M,(f)(x) :=sup sup |Pcf(y)l.
k€Z yeB(x,00%)

Moreover, for any f € (G (x,8))', the Littlewood-Paley g-function g(f) of f is defined by
setting, for any x € X,

1/2
8(N)(x) = [Z IQkf(x)Z} :

keZ
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Let p € (0,00] and p € (0,00). Then the Hardy spaces Hﬁ(X) and HP (X) are defined,
respectively, by setting

HE) = {5 € (8059 Il = IMa (Dl < o1

and

(@) = { € (300) s Il = I8 < oo}

Remark 3. Let p € (0,00), p € (n/(n+n),1] and x, 8 € (n(1/p —1),n). It was shown
in ([62], Remark 1.2) and ([60], Theorem 6.1) that

(i) Hf; (X) and HE(X) coincide with equivalent quasi-norms;
(i) HP(X) = HL(X) with equivalent quasi-norms as subspaces of (ég(K, 9));
(ii)  for any given p € (1,0c0), Hﬁ(X) = LP(X) = HP(X) with equivalent norms.

We now introduce the following notion of paraproducts on X" adapted from ([48], (3.2)).

Definition 7. Let x, © € (0,1) with i as in Lemma 2. Let {P;} ez, be a 1-exp-ATI and Q; :=
P; — Pj_y for any j € Z. Then the paraproduct 113 is formally defined by setting, for any

fe <gng(’<r19)>/fg € (ég(K, 19)), andx € X,
=Y Qi(AH)Qi(g)(x),

jez.
i i !
where the series converges in (gg (x, 0)) .

Remark 4. In Theorems 2 and 3 below, we prove that T15(f, g) in Definition 7 is well defined for
any (f,g) € HP(X) x H1(X) with p, q € (0,00) and any (f,g) € BMO (X) x CZ(X).

Definition 8. Let x, @ € (0,7) with n be as in Lemma 2. Let {P;}cz be a 1-exp-ATI and
Qj == Pj— Pjy for any j € Z. Then the paraproducts Iy and 11, are formally defined,
respectively, by setting

(i) forany f € (ég(x,ﬂ))’,g € (Gl(x,0)) andx € X,
i (f,8)(x) =} Qi(f)(x)Pi(g) (x);

JEZ
(i) forany f € (GJ(x,0)), g € (Gi(x,9)) and x € X,

)= Y Pi(f)(x)Qj(8)(x),

€z
. i !
where the above two series converge in (gg (x, 19)) .

Remark 5.

(i) In Theorem 4 below, we show that I1y (f, g) in Definition 8 is well defined for any (f, g) €
L®(X) x CJ(X).

(ii)  Due to the fact that T15(f, g) = I11(g, f) for any proper functions f and g , we conclude that
I, shares corresponding boundedness to Iy as in Theorem 4 below.

To prove Theorem 3 below, we need to recall the T(1) theorem from ([32], Section 12).
Let o € (0,1) and s € (0,0]. A linear continuous operator T : C;(X) — (C;(X))' is
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said to have weak boundedness property WBP () if there exists a positive constant Cysuch
that, for any f, ¢ € CJ(X) normalized by [|f||re(x) + [ fller(y < 1 and |[gl|w(x) +
7 1gller(ay < 1, with support in some ball B(x, r) (x e Xandre (O ),

[(Tf.8)| < C1V(x,7).

As for T(1) with T associated with the s-Calderén—Zygmund kernel, it is defined as a
continuous linear functional on C°Z (X) by setting

(T(), ) = (T() )+ [ (1= g T () dn(x), ®)

where ¢ : X — R satisfies that there exists a ball B(xo,r) D supp f such that, for any
X € X, Tp(yy,r (%) < (%) < Ip(yy0a,) (¥)- It is not difficult to show that both of the two
terms in the right hand side of (8) are well defined.

Lemma 3. Let 0 € (0,1), s € (0,0], (X,d, ) be any space of homogeneous type and T be
associated to an s-Calderon—Zygmund kernel. Then T can be extended to a bounded operator on
L2(X) if and only if T has WBP(s) and T(1), T*(1) € BMO (X).

At the end of this section, we use the Abel summation formula to make some links
among the boundedness of I1;, I, and I3 in some sense, which plays an important role

in the proof of Theorem 4 below. In what follows, for any N € Z and suitable functions f
and g,

N
Vif.8) = L P(NGe). Y (f,9) = Y Qi(f)P(g)
=

andH (f g) = Zl'ifN Qj(f)Qj(g)~

Theorem 1. Assume that there exists a positive constant C such that, forany N € N, f € L2(X)
and g € L®(X),

I r.8) LZ(X)+HH§N)(f,g) ix

) < Cllf 2y I8l Loy )
Then 11y defined as in Definition 8 is bounded from L>(X) x L®(X) into L?(X).

Proof. Let f € L?(X) and g € L®(X). For any N € N, by the Abel summation formula,
we know that

N
Y(f,8) = Z Pi(f)Qi(g) = Z Pi(f —Pi1(3)]
N N

Z Pi(A)Pi(g)— Y. Pua(f)Pi(g)
j=—N j=—N-1

= PN+1(f)PN(g) —P_N(f)P-n-1(8)
+ 2 ]+1(f)]pj(g)

= PN+1(f)PN(g) = P_n(f)P-n-1(8)
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N
- Y Qn(fHPi(g)
=N
:PN+1(f)PN(g)—P— (f)P-N-1(8)
- E Q]+1 ]+1 E Q]+1 ]+1( ) — P](g)]
= PN+1(f)PN(g) - P—N(f)PfN—l(g)
N N
- Y QAP+ Y, Q(NQj1(g)
=N =N

= Pny1(f)Pn(g) — P-n(f)P-n-1(g)

Nil Ntl
- Y QHEE+ Y Qi(NHQi®)
=N+ =N+

= Pny1(f)Pn(g) — P-Nn(f)P-Nn-1(g) + Q-n(f)P-N(8)
- QN+1 (f)Pns1(g ) +Qn+1(f)On+1(8) — Q-n(f)Q-n(8)

Yif.8) + 5V (f,9).

From this, (9) and Remark 2(ii), we deduce that

[,y < WP (PPN @2y + 1PN (FIPna (@)l 2

FI1Q-N()P-N(&) 2 () + 1QN+1(f) Pr+1(&) 22
+1QN+1(F)Qn+1(8) 122 +||Q N(HQ-N)2x)

[V 8] 5, + 187 590,
S Hf||L2(X)HgHL°° X)

which, combined with the Fatou lemma, implies that

I (f,8) 20y < limsup T (£,0)]| % 20y gl
N—oo L2(x)

This completes the proof of Theorem 1. [

3. Boundedness of Paraproducts {IT; }},"=1

This section is devoted to the proofs of the main results of this article on the bounded-
ness of paraproducts {T1; }]3:1
We now state the first main result of this article as follows.

Theorem 2. Let 1 be as in Lemma 2, p, q, v € (n/(n+1n),0) with1/r = 1/p+1/q, and
i, 9 € (max{0,n(1/r —1)},n). Then the paraproduct I3 as in Definition 7 is a bounded bilinear
operator from HP (X') x HI(X) into L"(X).

Remark 6.

(i) Theorem 2 is an extension of ([48], Lemma 3.3).
(ii) It is still unclear whether Iy and 1, can be extended to bounded operators from HP (X') x
H9(X) into H"(X) or not.

The following result is an easy consequence of Theorem 2, we omit the details here.

Corollary 1. Let q € (1,00) and q' := q/(q — 1). Then the paraproduct 113 as in Definition 7 is
a bounded bilinear operator from L9(X) x LY (X) into L1(X).
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Now, we are ready to prove Theorem 2.

Proof of Theorem 2. Let p, g, , 1, k, 9, and II3 be as in Theorem 2. For any (f,g) €
N ’
HP(X) x H1(X), we know that f,g € (gg (x, 19)) . By the Holder inequality, we immedi-

ately have
ITI3(f, &)l ey < || X2 1Qi(F)Qj(8)
jet L(X)
1/2 1/2
< [ZQf(f)lz} sz,@z}
JEZ €Z ()
1/2 1/2
< {zwﬂ {DQ, }
JEL Lr(x) JEZ LX)

”fHHP(X) Hg”H’I(X)
which completes the proof of Theorem 2. [

Then we state other two main results of this article, which give various endpoint
estimates of I13 and IT;. In what follows, the weak Lebesgue space L1 (X’) is defined to be
the set of all j--measurable functions f on X such that

[fllre(y = sup Ap(f{x € X: [f(x)] > A})] <eo,
Ae(0,00)

and the space BMO (X) the set of all locally integrable functions f on X such that

Ifllsio) = sup s [[173) = m ()l du(x) <

where the supremum is taken over all balls of X and here and thereafter, for any locally
integrable function f and aball B C X, mp(f j s f(y)duly

Theorem 3. Let 1 be as in Lemma 2, g € (1,00), x, 8 € (max{0,n(1/q —1)},n), and I13 be as

in Definition 7. Assume that the exp-ATI, {Q;} ez, further satisfies

(@) Qf = Qjand sz- = Qjon L*(X) for any j € Z, namely, {Q;}jez, are projection operators
on L2(X).

(b)  Yjez Qj = Lin Hy(X).
Then 113 can be extended to a bounded bilinear operator

(i) from BMO (X)) x L1(X) into L1(X);

(ii)  from BMO (X) x HL(X) into L'(X);

(iii) from BMO (X') x L°°(X) into BMO (XX');

(iv) from BMO(X) x LY(X) into LV*°(X);

(v)  from L1(X) x L®(X) into L1(X);

(i) from L1(X) x L®(X) into LV (X).

Remark 7. From ([32], Section 10) and ([65], Theorem 3.10), it follows that the sequence { Dy }xez,

in Remark 1 still satisfies all the assumptions in Theorem 3. Thus, Theorem 3(ii) is an extension

of ([48], Theorem 4.9).

The following result is a variant of ([62], Theorem 7).
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Theorem 4. Let 1 be as in Lemma 2, q € (1,00), p € (W”TW,OO), x, 0 € (max{0,n(1/p —
1)}, 1), and T1; be as in Definition 8. Assume that the exp-ATL, {Q;} jez, further satisfies, for any
f € L®(X) and (1,2)-atom h supported on some ball By,

[ ) dutx) = o. (10

Then Iy can be extended to a bounded bilinear operator
(i) from L®(X) x HP(X) into HF (X);
(ii) from L®(X) x HY(X) into L (X);
(iti) from L®(X) x L®(X) into BMO (X);
(iv) from L®(X) x LY(X) into LV (X).
(v)  from L1(X) x L®(X) into L1(X);
(i) from L1(X) x L®(X) into LV (X).

Remark 8.

(i) Let f € L®(X) C BMO(X), hbea (1,2)-atom and Qy := Dy (k € Z) be as in Remark 1.
By (481, p. 985, lines 1-3 from the bottom), we have Iy (f,h) = H + hmp,(f) with H €
HL.(X), which, together with the fact that, for any G € HL(X), [, G(x) du(x) = 0, further
implies that [, 11y (f,h)(x) du(x) = 0. Therefore, the sequence { Dy }xez, in Remark 1 still
satisfies all the assumptions in Theorem 4.

(i) It is still unknown what happens if we replace f € L®(X) (resp.,g € L®(X)) by f €
BMO (X) (resp., g € BMO (X)) in Theorem 4.

As in ([30], Remark 3.3) or ([62], Remark 1.8), the following estimates are important to
escape the dependence on the RD-condition (2). For any given a, ¢ € (0, 0), and, for any
r€(0,00)and x € X,

! IECACINNE 1
{kEZ;);er} Ve (%) eXp{ C|: ok :| }NV,(x) an

(see ([32], Lemma 8.3)) and, for any x, y € X with x # y,

1 dx,y) 1" d(x, V%) ! 1
kEZZV(sk(x)eXp{ic{ ok } }exp{c[ 5k } }SV(x,y)’ (12)

where the implicit positive constant is independent of x and y (see ([54], Lemma 4.9)), which
essentially connect the geometrical properties of X’ expressed via its equipped quasi-metric
d, dyadic reference points and dyadic cubes.

Now, we are ready to prove Theorem 3.

Proof of Theorem 3. Without loss of generality, we may assume that the sum ZjeZ in
I15(f, ) is a finite sum Zj'ifN for any fixed N € N, see ([66], pp. 302-305) for some details.

We first prove (i)—(iv) of this theorem. To this end, we temporarily fix an f € BMO ().
For any x € X, we write

(£,9)(x) = £ QN () = |

jez. X

=: /X K2 (x,y)g(y) duly) = K (3) (),

LZZ; Q;i(x,y)Q;(f) (X)} g(y)du(y)
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where KJ(?) is an integral operator associated with the kernel defined by setting, for any

x,ye X,

K

Dxy) = ¥ QxnQi(f) ().

jez

To prove (i)—(iv) of this theorem, the key point is the proof of the boundedness of Kf’)
on L2(X), where we need some ideas from ([67], Remark 4.4.5).

We first claim that K}3) has WBP(7) and hence maps from CZ(X) into (CZ(X))’.
Indeed, let g, h € C](X), supported on some ball B(xo, r9) with xg € X and ry € (0,0),

be normalized by
I8llime) +rdl8llencey <1 and [kl ey + 7l crry <1
Then, by the fact from ([62], (2.3)) that
sup [|Q;(A)ll=(x) < I fllBmo () (13)
JEZ
and the Holder inequality, we conclude that

(K51, ) | = (7,001 = |, T127,) (0x) )
= 2//:V‘Qj(f)(x)|!Qj(g)(x)Hh(x)\dy(x)
jeZ

S Iflemo ) 1 /XIQj(g)(X)Hh(X)IdH(x)
jez-

S flemo () 2 1Q5(&) Iz Il 2
jEZ

< Iflemo (o) [V (xo, 7] Y2 11Q1(8) |2 v)-
jez

Thus, to prove the above claim, it suffices to show that

% 1Qi()ll 2y S [V (x0,m0)] 2. (14)
je

We further consider the following two cases.

(Case 1) &/ > ry. Choose a fixed x; € B(xg,2rp) \ B(xo,70). Then, by (v) and (ii) of
Definition 4 and (1), we have

|Q(g)(%)] ,
/B<xo,m> Qj(x,y)[g(y) — g(x1)] du(y)‘

< /;(WO) |Qi(x,y)||1g(y) — g(x1) | dp(y)
* o i {5 oo [ Jeomst s
S M e e e e

x exp{v {”’(y&y’)” exp v {d(y(;jxo)r} an(y)
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<o igerl A2 o[22 Y

which implies that

V(xo, d(x0, YNT"
Qj(g)Lw(X)Smexp{—v{ (2005], )] }

On the other hand, from (15), we deduce that

10,8y < Vo) [, g exe{ =5 [ G52 fanco exp{v[d%;”} }

5 V(XQ,VQ) exp{v |:d(;00,53])]):| }

Thus,

. (A2 10-(e)[1/2 1  [d(xo,IN)]"
1Qi(&) N2y < 1Qj(&) ) 1Qi(&) 1114y SV (x0,70) Vﬁ(xo)eXp{ V{ Ad ,

which, combined with (11), further implies that

1 d(x, YN 1"
1) 120 S V(x0,70) exp{—v[ . H 16)
) (@) ll2x) 0,70 {jezgzm} o) Aol

{j€Z:67>ro}
</ Vi(xo,70)-

(Case 2) 6/ < ro. In this case, for a fixed x € X, by Definition 4(v), we first write

Q)| < [ 1Q)(x»llgy) - ()] dn(w)

_ (x, — d =1 4 1h.
‘/BW.) 1Qj(x 1)l1g(y) — g(x) dn(y) +/X\Bw) 1+
Indeed, by Definition 4(ii) and (1), we have
1 v[d(x,y)]"
< _Y Mol
b /Bu,w Vsi (1) e"p{ 2 { o } 4y, D1 ley e 4pv)

< <%>W /B(x,m ngl(x) EXP{7% {d(i;i;y)r} W) = (%)ﬂ'

and

5
A
e

1 v d(x,y)r} ol
/B(x,zké/')\B(x/zkfl(si) Vi (x) exp{ 2{ i [y, x)] HgHCf,’(X) du(y)
AW Vo (k- 1 v[d(x,y)]"
bt _ Yo(k=1)a v Y
(%) ool s o5 55 o

i\ i\
2k exp{fEZ(kfl)“} (f—]> < <f—]> .
0 0
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Combining the estimates of I; and I,, we obtain

S\
\\Qj(g)l\Lw<x>§< ) . a7)

o

Now we estimate [|Q;(g)l|.1(x)- Indeed, we know that

Q@< [ 10z k) < lghow [, 10yl duty)

< vy QW ()

For any fixed x € X, we further consider the following two cases.
Case 1d(x,xp) < 2Aorg. Observe that, by Definition 4(ii) and (1),

Qi) 1.

Case 2 d(x,xp) > 2Aoro. In this case, we observe that, for any y € B(xo, 19),

d(x,xp) d(x, x0)
> 2270/ >
dlx,y) 2 =5 = —d(y,x0) = =7
and hence, by Definition 4(ii) and (1),
1 v d(x,y)r
< —= g d
Q&))< / o) V() exp{ 5 { 5 1(y)
v

</ wo iy ? 5[ ] pa
< Mexp{,z{dwo»r},

~ Vi(xo) 4| 24000

Combining Cases 1 and 2, we find that, for any x € X,

V(xo, d(x,%0)) 1"
Q81 S Tatayzmun) () + Latay i () G o exp{ 5 | S,

which implies that

1Q(&) I (x) S V(x0,70)-

From this and and (17), it follows that

5i n/2
1Q1(8) 22 < NQHS 2 1Q(IZ N(—) V(o).

0

which further implies that

Y I@lew s L 872 Vixer) S Vi),

{jeZ: 6l <ry} {jez: si<ry}

By this and (16), we conclude that

Y 11Qi(®) 2y < 4/ V(x0,70),

jez.

which further completes the proof of the above claim.
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Now we begin to show that Kj((s) (-, ) satisfies (3) through (5). To achieve this, by (13),
Definition 4(ii), (1) and (12), we find that, for any x, y € X with x # y,

’K](f’)(x,y)‘ < %\Q,—(x,y)HQj(f)(x)\ S fllsmo (x) Z%\Qj(x,yﬂ (18
j€ J€
1 v[d(x,y)]" v d(x,yf) !
SHf”BMO(X)]gWeXP{—E{ 5 } }exp{_z{ 5 } }
< Wlwo g3 37

This shows that Kj((s) (-, ) satisfies (3).
Then we prove that K](,3> (+,) satisfies (4). Indeed, let x, X, y € X with d(x,X) <
ziAod(x,y) and x # y. We observe that

d(xy) = W) gz > 45D 19)

From (13), it follows that

K ()~ KP @ )| < L10NWIIQ (. y) — Q& )|

JEZ
< ifllemo () Y 1Qj(x,y) — Qi(Z, y)l.
jEZ

We further consider the following two cases.
Case (1) d(x,X) < ¢/. In this case, by Definition 4(iii) and (1), we have

ot -atmns [52] wiger{ 452 Yool 45|

i(
] e Yool 5[ }

which, together with (12), implies that

A

<

Ll -o@uls [52)
’ {

{jez: 57>d(x7)} icz: iy Vo (%)

copf 5[40}
< {d(x,a?)r (0
d(x,y) ] V(xy)

Case (2) d(x,%) > &/. In this case, from Definition 4(ii), (1) and (19), we deduce that

1Qj(x,y) — Qi(%,y)| < Qj(x,y)| +1Q;(X,y)|

: stfl(y) exp{_% {d(ﬂg}y)]” exp{_y{d(y(;jyj)r}

el 515 Yo 1207 )
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A

O gee ] e[ )
] el el 5 )
Thus, by (12), we obtain

{jez: oi<d(x,%)}
d(x,f)r 1 { v[d(x,y)]”} v[d(y,yf)r
< _v ) v
- {d(x’y) {fEZ:égd(x,J?)} Vily) P 424007 | J TP\ T2 2400
{d(x,y)r 1
~ldy) ] Viny)

Combining the Cases (1) and (2), we have

A

¥ 10i(vy) - Q] £ 5

JjEZ

r ! (20)

which further proves that K}S) (-, -) satisfies (4). By the arguments similar to those used in
the proof of (20), we conclude that

_ d(x,x)1" 1
Q' ;X 7Q' X S |: :| . (21)
{]2} 1Qj(y, x) — Q;(y, %) iy Vg

We further show that K}S)(~, -) satisfies (5). Indeed, let x, X,y € X with d(x,¥) <
leod(x,y) and x # y. From (13), Definition 4(v), (1) and (21), we deduce that

K ) = K 0, 9)|
< %|Qj(]/rx)Qj(f)(x) - Qi(y, MHQ;(f(X)
j€
< %|Qj(y/ Q} Yy, x HQ] x)| + Z |Q] yfﬂHQ] Q](f)( )|
j€

S 1 fllemo (v ):‘Q] y,x) — Q(y, X)|

+Z@%|/@MZ Qi(%,2)||f(2) = g ()| dn(2)
jEL
dlx, )17 1
S I flsmo (x) dgy,x” V5 y) +A,

where
A—Z@%IﬂQM)Q%Hf — g 1) ()] dp(2).

To estimate A, we deal with the following two cases.
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Case (i) d(x,X) < d/. By (ii) and (iii) of Definition 4, (1), (19), some arguments similar
to those used in the proof of ([62], (2.3)) and (12), we conclude that

ssLagoe{ a5 Foof o [422] )
S e e
x| f(2) = my ) ()] dn(2)

< S ogor ()] es [ 22 )
W e Y 1)
x| £(2) =m0y ()] dn(2)

Bt 2]

St v

o
d(x, %) 1 v[d(xy) v[dy, V)
S 1 fllsvo () d(x j)] ]ZZV(;j(y)e p{_Z{ZAON'} } { 4{ 2A000 } }
e

Case (ii) d(x, ¥) > &/. From Definition 4(ii), (1), (19), some arguments similar to those
used in the proof of ([62], (2.3)) and (12), we deduce that

AS ngyﬁexp{*% {d(i}wr} exp{v{d(yéjyj)r} (22)
L5 el b mmer{ 5T ]
x| £(2) =m0 ()| dn(z) |
szrmeel 5] e fer 157 ]
X/X{d(;c]f) ’7{ 1 d %

werlal5 e (B
)
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. /X Vé,ﬂl(z) eXp{Vé ﬂ}‘f(z) - mB(x,J/)(f)‘ dp(z)

1

i) Ermeelslie] eel 55 |
d(x,z)r 1
d(y,x)] V(xy)

< [ fllBmo (x)

S I llsmo ()

Combining Cases (i) and (ii), we know that K}S) (-, -) satisfies (5). These complete the
proof of (3) through (5) for K}3) ().

Next we show that K)(?) (1), (K}3>)*(1) € BMO (X). Obviously, K}3)(1) =0 ¢
BMO (X'). Now we prove that (K}3))* (1) € BMO (X). It is easy to see that

(Kf’))*(x, y) =K (y,x) = %Qj(y/x)Qj(f) ).
JE

For any h € COZ(X) with supp I C B(xg,79) and any N € N, choose yjy € CZ(X)
with 7y = 1 on B(x,2A¢Nry), supp (1n) C B(xp,4A9Nrp), and 0 < iy < 1. We write

(<) @) = (K9 o)+ [ 1= i (Ol 00 () () =Ty + Ty
By [ h(y)du(y) = 0, we conclude that
My = [ 1= (0] [, KV e )h(o) dnty)ants)
= Lo S K o= i ()Tt dp)d)
= i e (K Co) = K2 G0 [ [ = (o)) eyt )

We observe that if d(y, xp) < rg and d(x,x9) > 2AgNry, then d(x,x9) > 2AoNrg >
2Apd(y, xo), which implies that

Iy | < / /
X\B(x0,2A0Nr0) / B(x0,10)

T
S Ml |, / [ y"‘o] du(y)d
S MWl [ o 2aonnn Jotan) Vi xg) HW)ANE)

1 U 1
S Wl oV (o, o) | {7} — 0, as N— oo
” ”L O (XO 7’0) X\B(X(),ZA[)N?‘O) d(x,xo) V(X,XO) ]/t(x) - as — 00

K (e y) = K, x0) |11 = n () 1 (w)| ey (o)

Then we need to prove limy_;o Iy = (f, /). Indeed, for any h € éZ (X), observe that,
by ([29], Corollary 3.14) and the boundedness of Q; on L?(X'), we know that Qi(f)nn €
L%(X), which, combined with the assumptions (a) and (b) in Theorem 3, the fact that /1
is a multiple of a (1,2)-atom, and the Lebesgue dominated convergence theorem, further
implies that

dim ((K7) O i) = Jim 32 (Q7(Q(/ ). ) = lim UCIGULIL)
j€

= lim Y (v, Qi(H)Qj(h)) = Jim <’lNr 2 Qi(f )>
% ez

jEZ
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= <1, ZZ:Qj(f)Q/(h)> Z<Q](f)er(h)>
j€

jez
=Y (£.Q0m) = <f, )3 Qj(h>> = {f.h),
JEZ JEZ

where in the fifth inequality of this equation, we need to show that the series };cz Q;(f)Q;(h)

absolutely converges in L' (X'). Indeed, from (13), ([62], (2.4)) and the fact that CZ (X) C
G(xy,7,1,0) for any given x; € X and r, 9 € (0, c0) (see ([33], p. 19)), it follows that

Y 1Qi(H)Qj(m)]

jez.

< sz||Qf(f)Qf(h)|‘L1(X) < %HQ]‘(f)HLw(X)”QJ’(}’)HU(X)
€ €

S ”fHBMO ZHQ] )HLI < Hf”BMO HhHg (x9,7,11,9) <
j€Z

LY(x)

which proves the desired result. This shows limy_.. Iy = (f, ), which, together with
the estimate of IIy;, implies that (KJ([S))*(l) = fon (CZ(X))’ and hence (KJ([S))*(l) =fe
BMO (X).

Moreover, from the T(1) theorem (see Lemma 3) ([32], Theorem 12.2), we deduce that
KJ(,S) is bounded on L?(X). Then, by the boundedness of the Calderén-Zygmund operator
(see, for example, ([27], Theorem 2.4 in Chapter III), ([28], p. 599), ([35], Theorem 1.12),
and ([58], Theorem 3.4)), we find that (i)—(iv) of Theorem 3 hold true.

Now we begin to show (v) and (vi) of Theorem 3. To this end, we temporarily fix a
g € L®(X). From the fact that g € L®(X) C BMO (X), and the arguments used in the

proof of (i)—(iv) of Theorem 3, it follows that the kernel of the operator K§,3> () :==T1I(-, 9),
defined by setting, for any (x,y) € X x X,

3
K (o) = T Qv )Qi(8)®)
JEZ
satisfies (3) through (5) and WBP (1) with || f[|gyio (.v) replaced by [|g]| vy, Kf’)(l) =0¢
BMO (X), (K{)*(1) = g € L®(X) C BMO (X) and K is bounded on L3(X).
Thus, Kés) is an 17-Calderén-Zygmund operator, which, combined with the fact that

(K§3))*(1) =g € L®(X) € BMO (X) and the T(1) theorem (see Lemma 3) and ([27],
Theorem 2.4 in Chapter III), further completes the proof of (v) and (vi) of Theorem 3 and
hence of Theorem 3. [

Proof of Theorem 4. Similar to the proof of Theorem 3, without loss of generality, we may
assume that the sum Y;c7 in T (f, g) is a finite sum Zjli_N for any fixed N € N.

We first prove (i) through (iv) of Theorem 4. Fix f € L*(X’), we consider the operator
K ¥ and its kernel, which is still denoted by K}l), defined by setting, for any x € &,

K (9)(x) = I(£,8)(x) = T A(N@Q()(x) = [ KV (x,v)3(w) du(w),

jezZ

where K (x, Y) = Liez Qj(x, ) P;(f)(x).
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Now we show that K}l) (+,-) satisfies (3) through (5). To this end, we first prove that

K (1) (-, ) satisfies (3). From Remark 2(ii), it follows that there exists a positive constant C

f
such that, for any f € L®(X),

sup [|Pi(f)ll () < ClIfllo(x (23)
jEZ

which, together with (13) and some arguments used in the proof of (18), further implies
that, forany x, y € X,

K ()| < LIQEDIBNEL £ 1flmw LIQED] S Wi

which completes the proof of (3) for K}l) ().
Then we prove that K}l)( ) satisfies (4). Let x, X,y € X, d(x, %) < 51-d(x,y) with

x # y. We write

K (e y) - KV ()| < L10i(xy) - QE NP
je

+ %IQj(f/y)\ |Pi(f)(x) = Pi()(®)]
jE
= Al + Az.

From (20) and (23), we deduce that

_ d(x,x)1" 1
A Wl T01) = 050 £ Wl e v

Moreover, by the fact that L®(X') C BMO (X) and some arguments similar to those
used in the proof of (22), we know that

A2 5 ) QiR )| /lei(x'z) (%2 ”f G xJ])(f)‘ dp(z)
jEL k

d(x,%)]" dx, )" 1
d(y,xﬂ Ty ~ Ml {d(y,w] Vny)

< Ifllvio () [

which completes the proof of (4) for K}U ().

Now we prove that KJ((])(-, -) satisfies (5). Letx, X,y € X, d(x,X) < leOd(x,y) with
x # y. From (18) and (21), it follows that

K0 - K (,%)] < L] Q%) — Qi(w,®)|IB(H (W)
JEZ
Sl ) Y21Qj(y, x) — Qj(y, X))

jez
d(x, )17 1
S e {d(y,x)} V(x,y)’

which completes the proof of (5) for Kj(cl) (+,-)- This completes the proof of (3) through (5)

for K}l)(~,-).
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Then we claim that K}l) has WBP(7) and hence maps from C//(X) into (C/(X))".

Indeed, let g, h € CZ(X ), supported on some ball B(x, ) with xg € X and ry € (0, 00),
normalized by

I8y +75lIgllen ey <1 and sy + gkl cn gy < 1.

Then, by (23), the Holder inequality and (14), we conclude that

(K01, ) | = (7,001 =, 1) ) )
< Z/ 1B1(F) () 1Q1(8) ()| 1) ()
Slflseo T /X Q&) ()Ih(x)| du(x)
< Wl ,EZZ 195z 1z
S WllespnlV o)l B 191z S bV o

Next we show that Km(l), (K(l)) (1) € BMO(X). Obviously, K(l)(l) =0 €

f f f
BMO (X'). Now we prove that (Kj(,l))*( ) =0 € BMO (X). Itis easy to see that
1 *
(K) oy = KV %) = ¥ 0w 00B () ).

j€Z

For any h € C](X) with supp i C B(xo,79) and any N € N, choose 7y € C/(X)
with 7y =1 on B(xp,2A¢Nry), supp (7n) C B(xp,4A9Nrp) and 0 < iy < 1. We write

(&) ) = (K)o k) + [ 1= iKY () dpax) =: Ly + T,

By the same arguments used in the proof of (Kj([a))*(l) € BMO (X), we conclude

that limy_,. IIy = 0. Then we show that limy_,o Iy = 0. Indeed, for any /1 € ég(é\,’),
observe that, by ([29], Corollary 3.14) and the boundedness of Pjon 12 (X), we know that
Pi(f)yn € L?(X), which, combined with the assumption (10), and the Lebesgue dominated
convergence theorem, further implies that

dm (K ) ) = Jim T () i1 ) ) = fim TR Q5 (0)
= lim Y (v, Pi(F)Qi(h)) = Iggnw<m )y Pj<f>Qj<h>>
jezZ JjEZ
= <1, ij(f)Qj(h)> = (LIL(f, h)) =

jEZ

where in the third to the last inequality of this equation, we have used the fact that
the series };cz P;(f)Q;(h) absolutely converges in LY(X), which is similar to that of
Ljez Qi(f)Q;(h).

This shows limy_,« Iy = 0, which, together with the estimate of Ily, implies that

(KY)*(1) = 0on (CJ ()" and hence (K})*(1) = 0 € BMO ().
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(1)

Moreover, from the T(1) theorem (see Lemma 3), we deduce that K f is bounded on

L?(X). Then, by the boundedness of the Calderén-Zygmund operator (see, for instance, ([27],
Theorem 2.4 in Chapter III)), we find that (i) through (iv) of Theorem 4 hold true.

Now we begin to prove (v) and (vi) of Theorem 4. To this end, we temporarily fix a
g € L®(X). By the fact that L*(X) C BMO (X) and checking the proofs of Theorem 3
and (i) and (ii) of Theorem 4 carefully, we conclude that there exists a positive constant C
such that, for any f € L®(X), g € L>(X),and N € N,

M)

(N)
sy T VD) oy < W lim gz

L2(

which, further implies that, for any ¢ € L* (&) and f € L2(X),

I s,9)|

r@ " HHgN)(f,g)‘ 2(x) HH%N) (g,f)‘ w0 T Hl"lgN)(g,f)‘

S gl 1 2y

2 12(X)

From this and Theorem 1, we deduce that IT; (f, g) is bounded from L?(X’) x L®(X)
into L2(X'), which, combined with the fact that L®(X') € BMO (X') and some arguments
used in the proof of (i) through (iv) of Theorem 3, implies that the kernel of the operator

Kél)(‘) =11 (-, g), defined by setting, for any (x,y) € X x X,

K (x,y) == Y Pi(x,)Qj(8) (%)

ez

satisfies (3) through (5), and hence Kél) is an -Calderén-Zygmund operator which is
bounded on L2 (X). By these and the boundedness of Calderén-Zygmund operators (see,
for example, ([27], Theorem 2.4 in Chapter III)), we finish the proof of (v) and (vi) of
Theorem 4 and hence of Theorem 4. [

Remark 9. We observe that the proofs of Theorems 3 and 4 do not use the second difference
regularity condition of {Q;} jez in Definition 4. Thus, the results in Theorems 3 and 4 hold true for
more general approximations of identity.
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Abstract: In this article, the authors study the Lebesgue point of functions from Hajtasz-Sobolev,
Besov, and Triebel-Lizorkin spaces with generalized smoothness on doubling metric measure spaces
and prove that the exceptional sets of their Lebesgue points have zero capacity via the capacities
related to these spaces. In case these functions are not locally integrable, the authors also consider
their generalized Lebesgue points defined via the y-medians instead of the classical ball integral
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1. Introduction

The study of function spaces on the Euclidean space R" and its subsets with gener-
alized smoothness started from the middle of the 1970s (see, for instance, [1-4]), and has
found various applications in interpolations, embedding properties of function spaces [5-8],
fractal analysis ([9], Chapters 18-23), and many other fields such as probability theory and
stochastic processes [10,11]. Recall that, in [11], Farkas and Leopold studied the generalized
Besov spaces BE,(:I’N) (R") and Triebel-Lizorkin spaces F EZI’N) (R") for the full range of param-
eters, in which the smoothness, instead of the classical smoothness sequence {2/%} ;»o, was
given via a weight sequence o := {07} ;>0 of positive numbers. Intensive investigations on
generalized Besov and Triebel-Lizorkin spaces also exist in which smoothness is described
by a parameter function; see, for instance [6,12-16]. In recent years, a lot of attention has
been paid to Besov and Triebel-Lizorkin spaces on R” with logarithmic smoothness; see,
for instance [17-27].

Recently, using Hajtasz gradient sequences, the authors [28] introduced Hajtasz-Besov
and Hajtasz-Triebel-Lizorkin spaces with generalized smoothness on a given metric space
X with a doubling measure and, when X = R", proved their coincidence with the classical
Besov and Triebel-Lizorkin spaces with generalized smoothness. Recall that the Hajtasz
gradients were originally introduced by Hajtasz [29] and have been an important tool
used to develop Sobolev spaces on metric measure spaces (see, for instance [30-34]). The
fractional Hajlasz gradients were introduced independently by Hu [35] and Yang [36] in
2003. In 2011, Koskela et al. [37] introduced the notion of sequences of Hajtasz gradients and
characterized Besov and Triebel-Lizorkin spaces via some pointwise inequalities involving
these Hajlasz gradient sequences; as an application, this pointwise characterization has
been used in [37] to show the invariance of quasi-conformal mappings on some Triebel—
Lizorkin spaces.

It is well known, by the Lebesgue differentiation theorem, that almost every point
is a Lebesgue point of a locally integrable function. Then, it is very natural to expect a
smaller exceptional set when the function has higher regularity. In [38], Kinnunen and
Latvala considered the Lebesgue point of functions in the Hajtasz-Sobolev space M'?(X)
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on a given metric measure space X and proved that, when the measure doubles and
p € (1, 0], a Hajtasz—Sobolev function has Lebesgue points outside a set of zero Hajtasz—
Sobolev capacity, where Q represents the doubling dimension of X. This result leads to a
series of related work on many other function spaces such as fractional Hajtasz—Sobolev
spaces [39], Orlicz-Sobolev spaces [40], as well as Hajlasz—Besov and Hajtasz-Triebel—-
Lizorkin spaces [41]. We also refer the reader to [42,43] for a related study on variable
function spaces.

Inspired by these works, in this article, we study the Lebesgue point of functions
from the Hajtasz-Sobolev space M?”(X), the Hajtasz-Besov space N]q,iq (X), and the Hajtasz—
Triebel-Lizorkin space Mﬁ,q(z\’ ) with generalized smoothness on a given doubling measure
space X, via measuring the related exceptional sets of Lebeguse points. Note that functions
in the Hajtasz—Besov or Hajtasz—Triebel-Lizorkin spaces with generalized smoothness
might fail to be locally integrable when their index p or ¢ is close to zero. To overcome
this obstacle, similar to [41,44,45], we also consider a class of generalized Lebesgue points,
which are defined via the y-medians introduced in [46,47], instead of the classical integrals.
As the main results of this article, we prove that the exceptional sets of (generalized)
Lebesgue points of functions from the above spaces have zero capacity, where those
capacities are defined by related spaces. These results can apply to a wide class of function
spaces due to the generality of the smoothness factor ¢. In particular, the logarithmic
Hajtasz—Sobolev space is an admissible function space for our main results.

The structure of this article is as follows.

In Section 2, we state some basic notions and assumptions on the smoothness function
¢. We also introduce the inhomogeneous Hajtasz-Sobolev space M%?(X), the inhomo-
geneous Hajtasz-Besov space Nﬁ’q(z\’ ), and the inhomogeneous Hajtasz-Triebel-Lizorkin
space Mﬁ’q(X ) with generalized smoothness and establish their coincidence with those
classical Besov and Triebel-Lizorkin spaces with generalized smoothness when X = R”".

Section 3 is devoted to studying the Lebesgue point of functions from Nﬁ.q(-’\’ ) and

M[‘/,’,q(X ) and, in particular, M#P(X) = Mﬁ’m(X ), via the capacities Cap N, and Cap e (

(X) X)
related to the spaces Nﬁ,q((\’ ) and Mﬁ,q(X ), respectively. To this end, via establishing some
Poincaré-type inequalities and estimates related to Hajtasz-type spaces with generalized
smoothness, we first prove the convergence of discrete convolution approximations in
Nf,’yq()() and Mﬁ’q(X) when p, ¢ < 0, and a dense subset in M#?(X) = Mﬁ,m()() exists when
p < oo, which consists of continuous functions. Recall that, when s € (0,1] and p € (0, o),
the class of all s-Holder continuous functions is dense in the classical Hajtasz—Sobolev
space M*P(X) (see, for instance, ([48], Theorem 5.19)), which was proved via an extension
argument together with the inequality

[d(x,y)]" < [d(x,2)]" + [d(z,y)]°

for any x, y, z € X. However, this inequality may not be true if one replaces [d(-,-)]* by
#(d(-,-)) due to the generality of ¢. To overcome the difficulties caused by this, we borrow
the notion of the modulus of continuity and, for certain ¢ that satisfies such assumptions,
find a dense subset of M?”(X) consisting of generalized Lipschitz functions. Applying
these dense properties, we obtain the boundedness of discrete maximal operators on
these Hajtasz-type spaces and then a weak-type capacitary estimate for restricted maximal
functions, which is further used to prove that the exceptional sets of Lebesgue points

of functions from M*7(X), Nﬁ’q(z\’), and Mﬁ,q(z\’) have zero Cap yor(x), Cap yo X’ and
P4
Cap ¢ @) capacities, respectively.
P
In Section 4, we deal with the generalized Lebesgue point of functions from the spaces
M*P(X), fo,q(X ), and Mﬁ,q((\’ ), which are defined via the y-medians instead of the classical
ball integral averages. Following a procedure similar to that of Section 3, we also prove
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that the exceptional sets of generalized Lebesgue points of functions from # have zero
Cap #-capacity with
F € (Np o (X), Mp o (X), M7 (X)}.

Finally, we compare the capacity Capg with some Netrusov—Hausdorff contents
and prove that they have the same null sets. This enables us to also use some Netrusov—
Hausdorff contents to measure the exceptional set of Lebesgue points of functions from
these Hajlasz-type spaces.

2. Hajlasz-Besov and Hajlasz-Triebel-Lizorkin Spaces with Generalized Smoothness

In this section, we recall some basic notation and notions as well as the definitions
of the function spaces used in this article. Let Z be the collection of all integers, N be
the collection of all positive integers, and Z, := N U {0}. We write A < B if there exists
a positive constant C that is independent of the main parameters such that A < CB and
write A ~ Bif A < B < A. We also denote by C a positive constant depending on the
parameters ay, as,.. ..

A triple (X, d, ) is called a metric measure space if X is a non-empty set, d is a metric on
X, and p is a regular Borel measure on X such that all of the balls defined by d have finite
and positive measures. Recall that (see [48], [Convention 1.4]) a measure u on X is called
a regular Borel measure if open sets are y-measurable and every set is contained in a Borel
set with the same measure. Additionally, the measure y is said to double if there exists a
positive constant C,, € [1, o) such that, for any ball B c X,

apay,...)

4(2B) < Cuu(B).

Here and thereafter, for any A € (0, ©), AB denotes the ball with the same center as B
but A-times radius of B. The doubling property of u implies that, for any ball B ¢ X and
any A € [1, ),

u(AB) < C,APu(B), 1)

where D := log, C,,. Here and thereafter, we assume that C,, is the smallest positive constant
such that (1) holds true. Clearly, when X = R", D = n. Throughout this article, we always
let(X, d, u) be a metric space with a doubling measure (for short, a doubling metric measure space).
For any subset E C X, we denote by 1 the characteristic function of E.

Let L°(X) be the collection of all measurable functions on X that are finite almost
everywhere and L} (X) be the collection of all measurable functions on X satisfying that,
for any xo € X, there exists an ry € (0, o) such that fl(, ) € L'(X). For any p, g € (0, 00|,
let LP(X,19) and 4(X, L?) be, respectively, the collections of all sequences {u}zcz € L°(X)

such that
1/q
[Z W]

keZ

{urdkezllLr (x 10y := <o

LP(X)

and
1/q

< oo

otkhaezllnx o) = [};Znuknzp(x)

with the usual modifications made when p = « or ¢ = .
Forany u € L°(X) and E c X with u(E) € (0, ), let

1 1
e = £ ud - [ - L waut @

For any L € (0, o), a function f is said to be L-Lipschitz if it satisfies

lF(x) = fO0)| < Ld(xy),  VYx yeX
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For a Lipschitz function f, the smallest constant L satisfying the above inequality is
called the Lipschitz constant of f and denoted by Lip f.
We also frequently use the following inequality: if ¢ € (0, 1], then, for any {a;};ez, € C,

{Z |a,-|}q < lail’ ®

i€ i€

We now recall the definition and some basic properties of weight functions used to
describe the smoothness of function spaces under consideration. We begin with a classical
notion of admissible sequences; see, for instance [11,49].

Definition 1. Let E € {Z, 7 }. A sequence of positive numbers, {0 ) jcg, is said to be admissible
if there exist two positive constants dy and dy such that, for any j € E, dyoj < 0jy1 < dy0j.

Several examples of admissible sequences can be found in [11], which illustrate the
flexibility of this assumption.

Definition 2. A continuous function ¢ : [0, 00) — [0, ) is said to be of admissible growth if
{6(2/)} jez is an admissible sequence and ¢(t) ~ ¢(2*) for any k € Z and t € [2%, 2871 with the
positive equivalence constants independent of both t and k.

We point out that, for any given admissible sequence o := {0} ez, there exists a
continuous function ¢ of admissible growth such that, for any j € Z, #2277 = 1/ -
Indeed, the function

bo (1) == 2f'+1(i - L) (r=27"h + L vie 272y, vjez, (4)
gj Oj+1 Tj+1
suits this job; see ([28] [Proposition 2.4]) or ([14] [Example 2.3]). Throughout this article, for
any given admissible sequence o := {0} jez, we always let ¢, be as in (4).
For any given sequence o := {oy}ez Of positive numbers or any given function
¢: [0,00) > [0,00), let

— S : Tk 4 Tk
ay = max{a,, @, } := maxq lim sup , limsup s
k—o—c0 Ok+1 k—oo  Ok+1

- . Ok+1 . Ok+1
Bo = max{ﬂo,ﬁj} = max{l]m sup + , limsup a },
k——-c0 Ok k—o0 Tk

~ ) 2k ) ¢ 2k
ap = max{a(p,a/;} = max{hkrgfzp % kﬁ‘m ¢(2(k+)l ) }

and

ﬁ¢ : ¢(2k+l) ) ¢(2k+l)}.

max{B,, 85} := max{lim sup , lim sup
»"e k——co ¢(2k) k—co0 ¢(2k)

Since, for any j € Z, ¢-(27/) = 1/, then a; = ag, o, = ag, B; = Py, and
ﬁ;r = B, which means that ¢y, = @, and By, = B-. By an obvious observation that
1/a; < B; and 1/a}f < BF, itis also easy to show that 1/a, < B,; furthermore, ay < 1
implies B4 > 1, and B4 < 2 implies ay > 1/2.

Observe that, if @ € (0, 1) (resp., a;r € (0, 1)), then there exists a 6; € (0, o) such that

@y +61 < 1 (resp., a; +61 < 1). Let Ko be a given integer. By the definition of a;; (resp., a;)),
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we find that there exists an integer K (resp., K») such that, for any k € (—co, min{K, Ko}]
(resp., k € [max{K», Ko}, )),

#(2h) - $(2") -
W <LY¢ + 01 (resp,,m<a¢ +51)
and hence, for any i, j € (—co, min{K}, Ko}] (resp., i, j € [max{K>, Ko}, o)) withi < j,
#2) _ i $(2) . o i
o) < (ay +61)! (resp., 52 < (ay +0o1) ) (5)

Since ¢(2F) /¢(25+1) is bounded on [min{K1, Ko}, Ko| (resp., k € [Ko, max{K2, Ko}]), then,
from (5), we deduce that there exists a positive constant C, depending only on Ky, ¢, and
61, such that, for any i, j € (—o0, Ko| N Z (resp., i, j € [Ko, o) NZ) withi < j,

$(2) - i ( #(2') + i
o) < Clay +61) resp., o) < Clay +61)™"). (6)
By this, we further obtain, for any kg € (-0, Ko] N Z (resp., ko € [Ko, ) NZ) and

re (0,00],

1/r 1/r
ol ok s |
{Z[tﬁ(z )] } =92 ){Z[(b(zko)] }

k<ko k<ko

1/r
< ¢(2"°>{Z (o +61)(k°">’} <9(2%)

k<ko

1/r 1/r
T L ' < ; at (k=ko)r < ;
[eSP., [k>k0[¢(2k)] ] = ¢(2k0){k>zk0( [ +61) } ~ ¢(2kO)J7

where the implicit positive constants depend only on Ky, ¢, and 6.

If ,8; € (0,2) (resp., ﬂ:; € (0,2)), by an argument similar to the above, we conclude
that there exist a 6, € (0,00) such that B, + 62 < 2 (resp., ,B; + 6, < 2) and a positive
constant C, depending only on Ky, ¢, and 63, such that, for any i, j € (o0, Ko] N Z (resp.,
i, j € [Ko,0)NZ)withi < j,

b2 e Y (2 Y

$(27) 2 $(20) 2

Furthermore, for any kg € (—co, Ko] NZ (resp., ko € [Ko, ) NZ)and r € (0, o], we have
, 1/r T
sl )
Zalom s\ &l e

2kn ﬁ‘;+52 (ko—k)r v 2k0
S o2 Z( 2 ) e ®

k<kq

(k=ko)r) /7

By + 62
¢ <27 hog(2k0) |,

1/r
resp.,{Z[Z"kqb(Zk)]r} < 27Fog(2k0) Z

k>ko k>ko
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If ay € (0, 1) (resp., By € (0,2)), then a; € (0,1) and a; € (0,1) (resp.,B; € (0,2) and
ﬁ;’ € (0,2)). Thus, by (6) and (7), we obtain, for any i, j € Z withi < j,

¢(2) ~\ 2

where §; (resp.,d7) is any given positive constant such that ay + 61 < 1 (resp., By + 62 < 2),
and the implicit positive constants depend only on ¢ and ¢; (resp., 6,). By this, we conclude
that, for any r € (0,0] and ko € Z,

J i
< (ag +61)7 [resp., 2[—,‘@ < (M) ],

/r

1/r !
{lek)l’} <9(2) and {Z[M%H < 3 .

k<ko k>ko

1/r 1/r
2 2% - —ko 0
resp., {Z[m] } < M and {2[2 k¢(2k)]} <2 ki ¢(2k )] (10)

k<ko k>ko

Here, the implicit positive constants depend only on ¢.
The following lemma is just ([28] [Lemma 2.5]).

Lemma 1. Let ¢ : [0,00) — [0, 00) satisfy ag € (0,1), & € (0,—log, ay), and § € (log, By, o).
Then,
(i)  there exist positive constants C and C», depending on ¢, such that, for any k € Z,

2 je ke

2 o
—ow <Cio and ) 27 ¢(2)) < €279 (2°);
;W-’) eny M ,ZS; $(27) < G270 p(2")

(ii)  there exist positive constants c| and co, depending on ¢, such that, for any i, j € Z withi < j,

(e ¢(2)

(s $(2)
5(2) T =

¢(2)

We recall another widely used notion (see, for instance, [50], Section 2.2.1) to describe
the smoothness function as follows.

<cy and 2

Definition 3. A function f : [0,00) — [0, o) is said to be almost increasing (resp., decreasing)
if there exists a positive constant C € [1, 00) such that, for any 1, t; € [0,00) with t; < 1, (resp.,
H=>n), f(tl) < Cf(l‘z).

Throughout this article, for simplicity, we always denote by A the class of all continuous
and almost increasing functions ¢ : [0, ) — [0, o) satisfying that ¢(0) = 0, ¢(1) = 1, and
{¢(27)} jez is admissible.

Let A be the set of all functions ¢ € A satisfying that the function ¢, defined by
setting, for any 7 € [0, o), ¢(r) := ¢(t) /1, almost decreases.

For any r € (0,), let A, be the set of all functions ¢ € Ay satisfying that ¢ is of
admissible growth and that there exist a kyp € Z and two positive constants X;, and Yy,
depending on kg and r, such that

1/r 1/r
{2[45(21‘)]"} <X, and {Zz-ff[¢(2-f)]"} <Yy, (11)

J=ko J=ko
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We claim that if, for some kg € Z, there exist positive constants X, and Yj, such
that (11) holds true, then, for any k € Z, there exist positive constants X; and Y}, depending
on k and r, such that (11) holds true with kg replaced by k. Indeed, this claim is trivial
when k > ko, while when k < ko, it easily follows from the fact that le‘.“:_kl [¢(27)]7" and
Z;‘.”;kl 277" [¢(277)]7" are always finite. This proves the above claim.

Clearly, by (3), A, € A, C A for any ry, rp € (0,00) with r; < r,. For instance, for
any b € (0,00) and r € (1/b, «], the function

log,(1+0)]", 1€ (0,1),
o) o (1019 (0.1) W
(1+1logy1)”, 1€ [l,00)

belongs to A,

If ¢ is of admissible growth, then ay € (0,1) implies ¢ € A; furthermore, ay € (0,1),
together with By € (0,2), implies that, for any r € (0,c0], ¢ € A,. In view of these, we
let A be the class of all functions ¢ satisfying that ay € (0,1), By € (0,2), and ¢ is of
admissible growth.

Now, we state the notions of generalized Hajtasz gradients and the related Hajtasz-
type spaces with respect to the smoothness function ¢ € A.

Definition 4. Let ¢ € Aand u e L°(X).

(i) A nonnegative measurable function g is called a ¢-Hajtasz gradient of u if there exists a set
E c X with u(E) = 0 such that, for any x, y € X\ E,

Ju(x) = u(y)] < ¢(d(x.3)) [8(x) + 8()]. (13)

Denote by D?(u) the collection of all g-Hajlasz gradients of u.

(ii) A sequence of nonnegative measurable functions, § := {gx ez, is called a ¢-Hajtasz gradient
sequence of u if, for any k € Z, there exists a set Ey C X with u(Ey) = 0 such that, for any
x, ye X\ Eywith27%1 < d(x,y) < 27k

Ju(x) = u(y)| < ¢(d(x.y))[gk(x) + gk(y)].

Denote by D (u) the collection of all ¢-Hajlasz gradient sequences of u.

The following are basic properties of these generalized gradients, which can be proved
by an argument similar to those about classical Hajtasz gradients (see, for instance, ([51]
[Lemma 2.4]), ([38] [Lemma 2.6]), ([41] [Lemmas 2.3 and 2.4]), and ([45][Lemmas 4 and 5]));
we omit the details.

Lemma2. (i) Letu, ve L%(X), {gilrez € D?(u), and {hi)ez € D?(v). Then,
{max(gr, ) Ykez € D? (max{u, v}) and  {max(gx, i) ez € D? (minfu, v}).

(i) Let {uilien € LO(X) and, forany i € N, let {g,(f) ez € D?(u;). Let u := sup;y u; and
{8khez = {sUpseny g/((’)}keZ' Ifue L%(X), then {gilrez € D? (u).

Using these generalized gradients, we introduced the following homogeneous ¢-
Hajtasz-Triebel-Lizorkin and ¢-Hajtasz-Besov spaces in [28].

Definition 5. Let ¢ € Aand p, g € (0, )].

(i)  The homogeneous ¢-Hajlasz—Triebel-Lizorkin space Mﬁ’q(X ) is defined to be the set of all
u € LO(X) such that
= inf ||§||Lp(,\’,1q) <00

Ul| yr0 . i
I ”MM(X) geD? (u)
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when p € (0,00) and g € (0, 0], or p = g = oo, and

1

7
”””Mﬂ’o,q(X) = inf supsup{;ﬁ(ﬂk)[gj(y)]qdll(y)} <o

§eD?(u) keZ xeX =

when p = oo and g € (0, 00).
(i) The homogeneous ¢-Hajtasz—Besov space Nﬁq(z\’ ) is defined to be the set of all u € L°(X)

such that

”u”qu(X) = .f;’»E]lDl)géu) ”(é”lq(X,L/’) =

In [28], we proved that, when X = R”, for any given admissible sequence o :=
{0} jez, with @y € (0,1) and B» € (0,2), MﬁZ(R”) = F;q(R") for any given p, g €
(n/[n —log, ac], 0], and Nﬁ‘;(R”) = BJ ,(R") for any given p € (n/[n—log, ay], ] and
q € (0,00], where B]  (R") and Fy ,(R") are, respectively, the classical generalized Besov
and Triebel-Lizorkin spaces in which smoothness is described by an admissible sequence
o (see Definition 7 below). In this sense, the spaces Mﬁ’q(X ) and Ngq(X ) serve as natural
generalizations of classical Besov and Triebel-Lizorkin spaces with generalized smoothness
on metric measure spaces.

In this article, we also consider the inhomogeneous version of the above spaces.

Definition 6. Let ¢ € Aand p, g € (0, ).
(i)  The inhomogeneous ¢-Hajtasz—Triebel-Lizorkin space Mﬁ,q(X ) is defined as the set L (X) N

Mﬁq(z\’) Moreover, for any u € Mﬁ,q(./\’), let

ellygs ey = Wellaey + o -

(i) The inhomogeneous ¢-Hajtasz—Besov space Nﬁq((\’ ) is defined as the set LP(X) N Nﬁq()( ).
Moreover, for any u € M‘ﬁ,q()( ), let

Wellygs ey = Ny + g .

Remark 1. (i)  Recall that, for any given p € (0, ], Mf,’,w(/\’) = M?P(X) (see [28], [Remark
3.4(i)]), where M%P(X) denotes the homogeneous Hajlasz—Sobolev space with respect to ¢,
which consists of all u € L°(X) such that

||u||M‘7”I’(X) = gegl¢f(u) IIglle<,\») < oo.

Consequently, if the inhomogeneous Hajlasz—Sobolev space M%P (X)) is defined as the set
LP(X) 0 M (X), then MYy o (X) = M%P(X). In particular, when ¢ is as in (12), the related
spaces are called the logarithmic Hajlasz-Sobolev spaces.

(i) Let¢ e A koeZ andue LO(X). Let ]D)fo () be the set of all sequences i := {hy}ez, defined
by setting hy := Zk when k > ko and hy, = 0 when k < kg, where h 1= {Ek}kgz is a ¢-Hajlasz
gradient sequence of u. Naturally, DZ)(M) denotes the set of all functions g such that, for
almost every x, y € X with d(x,y) < 270, (13) holds true. Then, for any given p € (0, o],
q = oo, and ¢ € A or for any given p € (0,0], g € (0,0), and ¢ € A with a;' € (0,1),

Ml ) := Wlloog = inf Whllugeor). Y€ Npg(X),

he]]])ko(u)

144



Mathematics 2021, 9, 2724

is an equivalent quasi-norm of Ngq(z\’ ) with the positive equivalence constants depending on
ko. Indeed, for any u € L°(X), Mleelllyo x) < el o ) obviously holds true. Conversely, let
Pq Pq

q € (0,00) and u € L°(X). Notice that, for any k € Z and x, y € X,

)] < ook HDL | 140
Ju(x) = w0 < 07| Sm + 5wy |

Then, {%}kez is a ¢-Hajtasz gradient sequence of u modulo some uniform constant, which

implies that, for any hi= {hidrez € Dfo(u), the sequence g := (g )rez, defined by setting,
Jul
6(27)
€ (0, 1), we can choose a &, € (0, c0) such that a; 461 < 1. Then, there existsa K € Z
such that, for any integer k < K, $(27%) /p(275+1) < a;r + &1. Notice that ¢(27%) /p(27%+1)
is bounded when k € [K, ko|. We then have

for any k > ko, gk := hy and, for any k < ko, gk 1=

is an element of ]D)ZO(u). By

: ¢ @ Ne@*?) e |
2 -q __
T = e 3o S
SZ(Q;+51)(ko )"sl,
k<ko

where the implicit positive constants depend only on ¢, q, and ko. This implies that
”“”N;?,,(X) <&l (x,ry + el () S ||fl||1q(x,Lp) +llullzr(xy < ”l”l”Nﬁ_q(X)

The proof for the case g = oo is similar, and we omit the details here.

Similarly, for any ¢ € A with a;' € (0,1), p € (0,00], and q € (0,00) or any ¢ € A

with p € (0,0 and g = oo, llullys (, defined by replacing § € D% (u) in llullyyo () by
g g

he ]D)fo (u), is also an equivalent quasi-norm of ng((\' ).

oy (R") and N¢” 7(R") coincide, respectively,
with the Triebel-Lizorkin space £, (R") and the Besov space B9 ,(R") with generalized
smoothness; see [28]. It is natural to expect to obtain their inhomogeneous counterparts.
To this end, we let S(R") be the collection of all Schwartz functions on R”, in which the
topology is determined by a family of norms, {ll- lls, , (r#) }kmez, , Where, for any k, m € Z
and any ¢ € S(R"),

As was mentioned above, the spaces Ml

llglls, ,(mmy = sup sup (1 + [x)"[0"¢(x)|

an’jr Ja|<k xeR”

witha := (a1,...,a,) € 7t lal == a1+ +ay,and 9% = (%)”' (6‘37”)"" Additionally,

let 8’(R") be the space of all tempered distributions on R” equipped with the weak-*
topology. Define

Seo(R") := {90 e S(R") : fn ¢(x) x¥ dx = 0 for all multi-indices y € Zi},

and let S.,(R") be the topological dual of S, (R") equipped with the weak-* topology.
For any f € S,,(R"), we use 7 to denote its Fourier transform in the sense of S,,(R"); in
particular, for any f € L' (R") and ¢ € R", f( i= Jou f(x) e72™*¢ dx. Forany 1 € (0, 00) and
x € R", let ¢, (x) :=r"p(x/1).
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Definition 7. Let o := {0} jez be an admissible sequence. Let p, g € (0, 0] and ¢, ® € S(R")
be such that

suppp C{£ e R": 1/2 <1 <2}, and [p(é)l=Cy if 3/5<1¢<5/3

and
supp® C (€€ R": £ <2}, and [D(&) = Cy if 1€1<5/3,
where Cy, Cy are two positive constants.

(i)  The homogeneous Triebel-Lizorkin space F9 ,(R") with generalized smoothness is
defined as the set of all u € S, (R") such that ltllg () < 00, where, when p < oo,

1/q
[Z LA “|q]

keZ

||u||15‘;7rlq(]Rn) = ok @p-k * ubgezll Lo (rr g0y =

LP(R")

with the usual modification made if ¢ = co and, when p = o,

1/q
llull por (Rny 2= sup su f o oyr xu(y)|? dy
£, (Rr) *= SUp Sup B(M,)E ?lerixu(y)]

xeR" [€Z k=1

with the usual modification made if g = oo.
(i) The homogeneous Besov space B ,(R") with generalized smoothness is defined as the
set of all u € S, (R") such that

1/q
— q
il (R = WOk ot * ezl ey = | ) ot lpr-s+ u”Ll’(]R")} <
keZ
with the usual modification made if g = co.

(iii) The inhomogeneous Triebel-Lizorkin space Fy, ,(R") with generalized smoothness is
defined as the se.t ofall u € 8'(R") such that ||u||F§q(Rn) isﬁnite, where ||u||F$q<R,l> is defined
as ||ul| o (Rn) wWith {0k @y« * ulrez, and ¢ replaced, respectively, by {0 -k * ulez,, and ®.

(iv) The inhomogeneous Besov space Bj, ,(R") with generalized smoothness is defined
as the set of all u € S'(R") such that ||u||B(r (R7) is finite, where ”M”B(r (R7) is defined as
||u||Ba () With {Tg @3- * ulkez, and @) replaced respectzvely, by {ok or-« P u}keZ+ and O.

We then have the following relation between homogeneous and inhomogeneous spaces.

Proposition 1. Let p € [1,00], g € (0,00, and o := {07j}jez, be admissible sequences with
at € (0,1). Then, for A € {B.F}, AS (R") = [LP(R") mAff,q(]R")], where & := (T} jez, is any
given admissible sequence satisfying that, for any j € Z and o € (0,1),0; = 7.

Proof. By similarity, we only consider the Triebel-Lizorkin case.

First, we show Fy  (R") c [LP(R") ﬂF" ,(RM)]. From p € [1, 0], af < 1, ([14] [Corol-
lary 3.18]), or ([52] [Theorem 4.1]), we deduce that BT S maxip.q) (]R”) c L?(R"), which, together
with the trivial embedding F§ ,(R") c BY axipa) (R ), implies that F§ (R") c LP(R") and,
for any u € F;q(R”), ||u||L,>(Rn < ||u||F;qu (rn)- Moreover, if p € [1, ), applying (3) when
p/q < 1, the Minkowski inequality when p/q > 1, or the Minkowski integral inequality,
we conclude that, for any u € Fj  (R"),

1/q
[Z PSS ”|q]
L

k<0

1/ min{p,q}
{Z A
(R") k<0
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]1/ min{p,q}

~min{p,q}
< {Z CH

k<0

lell (-

By a7 € (0,1), we know that there exists a 6 € (0,c0) small enough such that
az+6 <1 Then we have, for any k < 0 and r € (0, ],

D15 5 (az +6)",
k<0
where the implicit positive constant only depends on o and 6;. Therefore, we obtain

1/q
[Z T leo-i % ”|q]

k<0

1/ min{p.q}
] lletll o () < Mlutll o ey

< {Z(a; +61)kmin(p,q)

k<0

Lr(R?)

which implies that [|ul| ;= (') S lletll o () + Nl (Rn)- Similar estimates also holds true for
Pq P4 —~

the case p = co. Altogether, we obtain the embedding F4 ,(R") c [LP(R") n F (R")].
Conversely, let u € [LP(R") N Fiq(R")}. By the Minkowski integral inequality, we

know that, for any given p € [1, ], ||® * ullpp ey S lullpp ey This, combined with the

obvious fact that [[{olgs—+ * ul}i>1 ||LF(RHJ(]) < llull gz (Rn)/ implies the embedding [L”(R") N

— r4q
Fo(R")] € Fg,(R"). This finishes the proof of Proposition 1. 0

As an application of Proposition 1 and ([28], Theorem 3.10), we immediately obtain
the following conclusion; we omit the details.

Corollary 1. Let p € [1,00], and o := {0}} ez, be an admissible sequence with oy € (0,1)
and 5 € (0,2). Then, F§,(R") = My7(R") for any q € (n/[n —log, aF], o] and BY,(R") =
N%(R”) for any g € (0,c0], where & := {0} jez, is any given admissible sequence satisfying
oj=0jforany j€Z+, oz € (0,1),and g= € (0,2).

3. Lebesgue Points of ¢-Hajlasz-Type Functions

Let u be a function on the metric measure space (X,d,u). A point x € X is called a
Lebesgue point of u if it satisfies

lim Jg(”)|u(y) - u(x)| du(y) = 0.

r—0+t

For such an x,

u(x) = lim u(y) dp(y).
r=0" JB(x,r)

Here and thereafter, 1 —» 0" means ¢ € (0,00) and + — 0. The classical Lebesgue
differentiation theorem states that almost every point is a Lebegsue point of a locally
integrable function on R”. If the function has higher regularity, one could expect a smaller
exceptional set. In 2002, Kinnunen and Latvala [38] studied the Lebesgue point of functions
of Hajtasz-Sobolev spaces on doubling metric measure spaces, which has led to a lot of
related works; see, for instance [39-44].

In this section, we study the Lebesgue point of ¢-Hajlasz-Besov and ¢-Hajtasz—Triebel-
Lizorkin functions on a given doubling metric measure space (X, d, u). To this end, one key
tool is the maximal operators. Let R € (0, co]. The restricted maximal operator Mg is defined
by setting, for any u € L%(X) and x € X,

Mgu(x):==  sup u| du, (14)
B3x, re(O,R) By
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where the supremum is taken over all balls B, in X containing x with the radius r € (0,R).
Obviously, M := M., is just the classical Hardy-Littlewood maximal operator, which is
known to be bounded on L”(X) for any given p € (1, o] when X is a doubling measure
space; see, for instance ([53], Theorem 14.13). We also need the discrete Hardy-Littlewood-
type maximal operator defined via discrete convolutions (see, for instance [38,41,54]). To
recall this, we first need the notion of the partition of unity.

Definition 8. Let r € (0,00), J c N be an index set, and balls {B}} jey be a covering of X with
the radius r such that 3, jc 7 1o, < 1, where the implicit positive constant is some positive absolute
constant. A sequence {¢;} g of functions is called a partition of unity with respect to the above
ball covering {B}} je if, for any j € J, @; is a Lipschitz function with the Lipschitz constant cr™!,
¢j>C>0o0nBj, suppy; C 2_Bj, 0<¢j<1,and ¥ jcq ;= 1, where c and C are two positive
constants depending only on the doubling constant.

The existence of the partition of unity in Definition 8 with respect to any given ball
covering of X can be seen, for instance, in ([38], p. 690).

Definition 9. (i) Let u € L°(X). The discrete convolution of u at the scale r € (0, o) is
defined by setting
Uy i= Z MBj gaj,

jeg
where {Bj} jeq is a ball covering of X with the radius r and {¢;} je a partition of unity with
respect to {Bj} je as in Definition 8.
(i) The discrete maximal operator M* is defined by setting, for any u € L°(X),

M u = sup luly-+,
keZ

where |uly-« is the discrete convolution of lu| at the scale 27k,
(ili) Let Roe( (0, co]. The restricted discrete maximal operator Mj, is defined by setting, for any
uel’(X),

et i= sup  |ulyx,
{keZ: 27k <R}

where |uly-« is the discrete convolution of lu| at the scale 27k,

Obviously, M;, = M*. Now, we present two Poincaré-type inequalities with respect
to ¢ as below. The first one is easy to prove using the definition of Hajtasz gradients, and
the other is provided in ([28], Lemma 3.7).

Lemma 3. Let ¢ € A. Then, there exists a positive constant C = C(4c,) such that, for any
xeX, keZ, uel’(B(x,27%)),and g € D?(u),

inf £ ) -ddu) <o) £ ) duy).
ceR JB (x27%) B (x,27K)
where C, is as in (1).

Proof. Let x€ X, k€ Z, u € L°(B(x,27%)) and g € D?(u). Then,

inf f lu(y) = cldu(y) < JC lu(y) = up(x o)l dpe(y)
B (x2%) 24)

ceR

B (x
< B(x27%) Jg(x,Z*k) |u(}’) - M(Z)|d/l(z) d#(y)
= JC JC 627 ) [2(y) + 2(2)] du(z) d(y)
B (x,27%) JB (x27F)
8
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<o £ gO)auly)
B (x27%)
This finishes the proof of Lemma 3. O
Lemma 4. Let ¢ € A with ay € (0,1). Then, for any e, & € (0,—1log, ay) with € < & and

p € (0,D/¢), there exists a positive constant C = C(y , o ¢,,) such that, forany x € X, k € Z, u €
LO(B(x, 2_1‘“)) and g := {gj}jez € D¢ (u),

D-ep
_ Dy i
inf| £ () -7 du(y)}
ceR B(x,Z‘k)
, - . /p
ccrt Yoo f  lola) as)
o2 B(x27kH1)

where D and C, are as in (1).

Remark 2. Let D and Cy, be as in (1).

(i) Let ¢, & and p be as in Lemma 4. By taking, for any k € Z, x € X, u € L°(B(x,27%+1)), and
g€ D%(u), & = (e—logyay)/2and § := (gj := g} jez, in (15), we obtain

Dp 01;7;;” 1/p
inf Ji (X’H)Iu(y)—d”’isf’ du(y)] S ¢(2"‘){ Ji (x’szﬂ)[g(y)]”d#(y)} . (16)

where the implicit positive constant depends only on ¢, p, €, and C,,.
(i) Notice that, if Dp/(D —ep) = 1, then p = D/ (D + ). In this case, (15) and (16) become,
respectively,

inf JC lu(y) - cld
S S u(y) —cldu(y)
D+e

< Cloperc) 27 ), 2f8’¢(2‘f){ Jg (xw)[g,.(y)]o% dﬂ(y)} (17)

j2k=2

and

inf f lu(y) = cldu(y)
B (x,27k)

ceR

D+e
D

< Clopacy 0O, | OV} (18)

Applying these Poincaré-type inequalities, we obtain the following estimates.

Lemma 5. Let ¢ € A, D, and C, be as in (1) and M be the Hardy—Littlewood maximal operator.
(i)  Then, there exists a positive constant C = C 4 c,) such that,fqr anyue L} (X), g€ D (u),
i€Z,ye Xwith ug(ya-iy < 0, and almost every x € B (y, 2-itl ),

lu(x) = p(y000)| < CHRTIM(g) ().

(i) Let ay € (0,1). Then, for any A € (D/[D —log, ay), ), there exists a positive constant
C = Cyrc,) such that, for any u € L' (X),geD?u),icZ ye Xwith Up(yoi) < 0,

loc
and almost every x € B (y, o-itl )

Ju(x) =] < o M) 0]
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(iii) Let ay € (0,1). Then, for any A € (D/[D —log, ay), ), there exist an € € (0,-1log, ag)
depending on A, and a positive constant C = C(, ¢, such that, for any u € L (X),

loc

g:=ghez € D?(u), i € Z, y € X with ug -1y < 0o, and almost every x € B (y, 27,

Ju(x) ~ g0 < € 3 2002 M (g (0] (20)
1>i-4

Proof. Letu, g, i, y,and xbe as in the present lemma. By the definition of Hajtasz gradients,
the doubling property of u, the geometrical observation that, for any x € B(y,27*1),
B(y,271) ¢ B(x,272) and, for almost every x € X, g(x) < M(g)(x), we have, for almost
every x € B(y,27'*1),

o) o] < f, )~ (1o
<o) f 160 + 5] dutd)

<o) + s dul2)
B( X272 )
S (27 )M(g) (x),
which proves (i) of the present lemma.
To complete the proof of the present lemma, we observe that, for any i € Z, y € X and
x € B(y,27*), B(y,27") ¢ B(x,272). Thus, by the Lebesgue differentiation theorem and
the doubling property of x4, we find that, for almost every x € B (y,27"+1),

‘u(x) - uB(y.27i>‘ < |Ll(x) - MB(X,27i+2)| + 'MB(XJ—HZ) - uB(y’z—i)‘

. Z JLI;():,T")

k>i-2

o
B(x2712)

: kzzi—:2 Jg(x,sz)‘u(z) - uB(x,z—k)'dy(z)

< Xt Jg o i) el

k>i-2

u(z) - Up(x2-k) ' du(z)

u(z) = up(p-iv2) | dp(z) (21)

If 2 € (D/[D -1log, ay), 1), choose w € (0,—-log, ay) such that A = D/(D + w). By
@y € (0,1), (21), and the definition of M, we conclude that (19) and (20) follow from (18)
and (17) with &€ = w therein, respectively.

If 1 € [1,0), then, for any € € (0, - log, eg), by the Holder inequality, we also obtain the
same estimate as the case A € (D/[D —log, ey, 1). This finishes the proof of Lemma 5. O

Remark 3. (i) Let ¢ € Awith ag € (0,1). Recall that, for any p € (D/(D - log, ay), ], q €

(0,00), and u € [Mj,(X) UN), (X)), the integral of u on any ball in X is finite (see [28],
Remark 3.8), where D is as in (1).

(i) Let ¢ € A. Forany u € F, the integral of u|” on any ball B := B(x,27%) in X with k € Z is
also finite, where

F e {MP(X): pe(l,00)|U{M*P(X): pe(0,1), ag e (0,1)}
U{M(X). Njpg(X) : p. g€ (0,00, ag € (0,1)}.
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To see this, by similarity, we only prove the case ¥ = Mﬁ’q(X) with p, q € (0,00] and
ag € (0,1). Indeed, by (15), the Holder inequality, Lemma 1(i), and the definition of A, we
find that

3211‘;[](3 Iu(y)—clpdu(y)]l/p <2k 2f5’¢(2"){£3[g,-(y)]”du(y)}l/p

jzk=2

s27% 30 270 2B) g ezl ony
o2

< 9Bzl e <

where & € (0,—log, o) and (g} jez, € D?(u) N LP (X, 19). Let ¢ € R be such that

fBlu(y) = col” dp(y) < co.

Then,

flu(y)l"du(y) S#(B)fW(Y) = col” du(y) + u(B)cg < co.
B B

Thus, the above claim holds true.

Due to Remark 3(i), the classical Lebesgue differentiation theorem implies that almost
every point is a Lebesgue point of u. As u has certain regularity, one would expect a
smaller exceptional set than that of usual locally integrable functions. Inspired by [41,45],
we introduce capacities related, respectively, to M}f’q(z\’ ) and Nﬁq(){ ) to measure such
exceptional sets.

Below, for simplicity, we use ¥ to denote either M

pq(X) or NZ’yq(X), or ¥ to denote
either Mﬁq()() or Nﬁq(z\’).

Definition 10. Let E be a subset of X. Recall that a set U is called a neighborhood of E if it is
open and E C U. Let F € {Mﬁ’q(X),N;f,q(X)} with ¢ € Aand p, q € (0, 0], and

GF(E) :={ueF : u>1onaneighborhood of E}.
The F-capacity Cap & (E) of E is defined by setting
Cap 7 (E) := inf{llull}- : ue Gy (E)}.

Remark 4. Let E, E1, Ey ¢ X and F € (M} ,(X), N, (X)) with ¢ € Aand p, g € (0, c0].

(i) Let Q%(E) ={ueGgr(E): 0<u<l1}). By Lemma 2(i), || max{min{u, 1}, 0}l < llullF, and
an argument similar to that used in ([55], Remark 3.2), we have

Capy(E) = inf{llull?. : u e G (E)}.

(i) If Cap#(E) = O with p € (0,00), then u(E) = 0. Indeed, for any € € (0, ), there always
exists a neighborhood U, of E such that |1y _|lF < €, which implies that

(E)"? = el x) < el < €.

Letting € — 07, we obtain u(E) = 0.
(iii) If E\ C Ey, then G (E>) € Gy (Eq), which means that Cap &(E;) < Cap & (E»).

The following lemma provides a basic property of the capacity which is a slight
generalization of ([41], Lemma 6.4); we omit the details.
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Lemma 6. Let ¥ € {M;f’q(X),Nﬁ,q(X)} with ¢ € Aand p € (0,00) and g € (0,00]. Let
6 := min{l,q/p}. Then, there exists a positive constant C = C(,, o) € [1,0) such that, for any
sequence {E;};en of subsets of X,

Cap T[U E,»]

ieN

0

<C Y [Capy(E)]".
ieN

Via ¥ -capacities, we introduce the 7 -quasi-continuity as follows.

Definition 11. Let F € {Mﬁ’q(X),N[‘f,q(X)} with ¢ € Aand p, q € (0,0]. A function u is said
to be F-quasi-continuous if, for any & € (0, ), there exists a set U, such that Cap &(U,) < &
and the restriction ulx\y, of uon X \ Uy is continuous.

The following theorem shows the convergence of discrete convolution approximations
in 7, which generalizes ([41], Theorem 5.1).

Theorem 1. Let ¢ € Ay, p € (D/(D—logy ay), ), F = Mﬁ!q(X) [resp., F = Mﬁ,q((\’)] with
q € (D/(D—logyay),), or F = Nﬁ,q()() [resp., F = Nﬁ,q()()] with g € (0,00), and u € F.
Then, |lu— uy-illFg — 0as i — oo, where {uy-i}icz,, are the discrete convolutions as in Definition 9(i).

To prove Theorem 1, we need the following lemma, which generalizes ([41], Lemma 3.1)
(see also [47], Lemma 3.10).

Lemma 7. Let E C X be a measurable set, L € (0,c0), ¢ be a bounded L-Lipschitz function
supported in E, u € L°(X), and ¢ € A

() Iflgxhiez € D?(u), then, for any i € Z, the sequence {hy )iz, defined by setting

hy = { {Z’k[¢(2’k)]7' Llul + llellzo (x) gk}lE’ k>i, -

-1
lpllzes () [#(27)] " ul 1, k<i,

is an element of D? (ug) modulo a positive constant that is independent of i and L.
(i) Ifge D?(u), then

1yt
o= (el oy 8+ [lelo gy + 10D s
is an element of D% (up) modulo a positive constant that is independent of L.

Proof. We first prove (i). Let ¢ be a bounded L-Lipschitz function supported in E, u € L°(X),
and {gi}scz € D?(u). Forany k € Z and x, y € X with d(x,y) € [27%71,27), we have

d(xy)/¢(d(xy)) s27/6(27%) and [g(d(x.y))]"" 5 [6(27)] "

Then, from the Lipschitz continuity of ¢ and the definition of D?(u), it follows that,
for any k € Z and almost every x, y € E with d(x,y) € [27%1,27F),

[u(x)e(x) = u()e(y)] < lu(x)le(x) = @(3)] + lllze|ue(x) = u(y)|

< ¢(d(x,y)){% + el o () 85 (x) + gk(y)}}

L)l llellzes (x) [gx (%) + g"(y)]}

s ot =05
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and

|u(x)e(x) = u(¥)e ()] < ()l () + Nepllze (ju(x)] + lue(y)])
llpll oo () (e (x)| =+ lea(y)]
e
llell e (x) (e ()1 + T (9)1)
¢(27)

For any k € Z and almost every x € E and y € X \ E with d(x,y) € [27%71,27%),
we have

< ¢(d(x.y))

lu(x)e(x) = u(@)e()] < ()l (x) - ()]

< ¢(d(x,y))%

< o(d(x L2 Hu(x)|
< o(d( ,y))—¢(2,,{)

and

lpll () e ()1
$(275)

Similarly, for any k € Z and almost every x € E and y € X \ E with d(x,y) € [2751,27F),
we have

|(x) e (x) = u(¥)p ()] < llpo (o) lu(x)] < B(d(x,))

L27u(y)|

[u(x)e(x) = u(y)e(v)] s $(d(x.)) )

and

llell oo )l ()]
¢(27)

From these estimates, we deduce that {/;}ez as in (22) is a positive constant multiple
of an element in D?(u¢p), with the positive constant independent of i and L. This proves (i).

The item (ii) is easy to show using the result in (i) and choosing % := sup;.; hx and
i € Z such that L € [2/,2/F1). This finishes the proof of Lemma 7. O

|u(x)e(x) = u()e(y)] < ¢(d(x.y))

We now state some corollaries of Lemma 7 as follows.

Corollary 2. Let E ¢ X be a measurable set, L € [1/2,0), ¢ be a bounded L-Lipschitz function
supported in E and p € (0,00). Let F € {Mﬁ,q(z\’),Nﬁq( )} with g € (0,00) and ¢ € A,
or F € {Mﬁ,m(X) = M""P(X),Nf,’,m(X)} with ¢ € Aw. Then, for any u € F, up € F with
llugllF < llulle, where the implicit positive constant is independent of u.

Proof. By similarity, we only consider 7 = M%,(X) with p, g € (0,c0) and ¢ € A,. Leti €
7 be such that 217! < L < 27, u € L0(X), {gk)rez € D? (1) satisfy eidkezllir (x.00) S “”“ijq(x)’
and {hi}rez be as in (22). By the definition of A,, we have

1
Z—[tp(z—k)]qs ; and Z zk]qs L,

k<i k>i

where X; and Y; are two positive constants independent of ¢. From this, we deduce that

1/q
hdrezllr ) < {Z(z"[ﬂz")]’l)q} Lt el )

k>i
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+ llell e (x) 188k kezll Lo (£.,09)

1/q
+{Z([¢(2‘k)]‘)q} el oLl ) 23)

k<i
< Nl ) I8k kezll Lo (£.09)
+ [Xe gl ) + Vi Lllllz ()

which, combined with Lemma 7 and ||ug|| ) < [[ue]| Lo X)||<P|| L2(X)r implies that

Illgo ) < Neler ey + Ihideezlln e

< [(XL + Dl ) + YLL]”””M;’,AX)’

where the implicit positive constants are independent of L, ¢, and u. This finishes the proof
of Corollary 2. O

Corollary 3. With the same assumptions as in Corollary 2, if the set E is bounded, then, for any
ueF, up € F.

Proof. Again, by similarity, we only consider ¥ = Mﬁq(/\’ ) with p, g € (0,00) and ¢ € A,.

Let i € Zy be such that 27! < L < 2/, u € L%(X), and {gi}rez € D?(u) be such that

”{gk}keZ”U’(X,llI) < ”””M"’ X Since E is bounded, we can find a ball B containing E. Then,
X

by Remark 3(ii), we conclude that ||u||L,,<E) < ||”||u7(3) < oo. Let {It}yez, be as in (22).

Then, from (23), we deduce that |[{}rezll L (Xg) < 0, which, combined with Lemma 7,

implies that llueell (x) < Notice that lullze (x) = llullze (g)llellze (x) < o0 We then obtain
P9

llugllyye () < oo, which completes the proof of Corollary 3. o
12

Corollary 4. Let E c X be a measurable set with u(E) € (0,00); L € (0,0); ¢ be a bounded
L-Lipschitz function supported in E; and F € {Mi,q (X),Nzyq()()} with p, q € (0,0), ay € (0,1),
and By € (0,2) or F € (Moo (X) = M (X), N} (X)) with p € (0,00), ¢ € Ao, and u € LO(X).
Then,

il < [1+ el o J{ 1+ [0 (2] J )] (24)

with the implicit positive constant independent of L, ¢, and E.

Proof. We first consider ¥ = Mﬁyq()() with p, g € (0,), @y € (0,1), and By € (0,2). Let
{hi}rez, be as in (22). From Lemma 7(i) and choosingu =1, gy =0 forany k€ Z,and i € Z
such that 2/ < L < 21 in (22), we deduce that

lell e (x) S Whidkezller (x )

(St ) e

k>i

+ {Z([(p(z"‘)]l)q}l/qllsollm(x)

k<i

<

el L (x)

<{lo@] ™+ [ )] el Ha (B 7,
where, in the last inequality, we used (9) and (8). This, combined with the fact that
llellzr () < el ) [ (E)] 2,
implies (24) with 7 = M? , (X).
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By choosing u = 1 and g = 0 in Lemma 7(ii), the case
F € {Mpoo(X) = MPP(X), Nj oo (X))
with p € (0, 00) and ¢ € A can be similarly proved. This finishes the proof of Corollary 4. O

Now, we prove Theorem 1.

Proof of Theorem 1. By similarity, we only consider the case ¥ = Mﬁyq((\’ ). Let p, g,
and ¢ be as in the present theorem; C,, be asin (1); i € Z; u € Mﬁq()(); and {gilrez €
D?(u) NLP(X,17). Let {B;} ey be any given ball covering of X with the radius 27/ such that
2jeg 123_,. < land {¢}} e g, consisting of a sequence of c2'-Lipschitz functions, be a partition
of unity with respect to {B} s as in Definition 8, where c is a positive constant depending
only on C,. For any j € 7, let ug; be as in (2). By ([28], Remark 3.8), we have, for any j € 7,
up;| < co. Let uy-i be as in Definition 9(i). Thus, by the properties of {¢;} jcs, we obtain

U—Uy-i = Z(u—ugj)ij. (25)
jeT

Noticing that ¢; is a c2/-Lipschitz function and |l¢ sy < 1, from Lemma 7 with u

and L replaced, respectively, by u — up; and 2!, we deduce that, forany j € 7, h i = {hjlkez,
defined by setting, for any k € Z,

B e { {zi—k[¢(2—k)]_]|u — qu| —+ gk} 123/, k>1i,
J [¢(2‘k)]_1 |M—MBj|12B‘,, k<i,

is a positive constant multiple of an element of D? ([u - ug;]@;)- By this, (25), and ¥ je s 12g; <
1, we conclude that, for almost every x, y € X with d(x,y) € [2"“1, 2"‘),

(= 3-1) () = (1= i) ()]
= > (u(x) = up, )i (x) = 3" (u(y) = u, s ()
Jj€T j€T
< () = s () = () = ) 0]

JET 22BNy} #0

Sodxy) D [ +he ). (26)

JET 2B jN{x,y}#0

For any given € € (0, - log, ag) and A € (n/[n—log, ay|, =), by Lemma 5(iii), we obtain,
for any j € J and almost every x € 2B},

Ju(x) = ug,| < Z 2(1—i)e¢(2—l)[M(g;l)(x)]l//l.
1>i—-4
Then,
{2f"‘[¢(2‘k)]_] X 200 m(eh)] m} o ki
hk,j < » lzi—fl /1 (27)
o] 3 2o )]
1>i-4
=: Iy
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Define the sequence {/}cz, by setting, for any k € Z,

e ] Y 2 M) e k>

By = I5i-4 -
CT o] Y 20 M) T

I>i—4
Then, by (26), (27), and ¥ je 5 128 I 1, we conclude that, for almost every x, y € X,

(=) () = (=) W) S (@) D, [ag(x) + By ()]

JET 2B jN{x,y}#0
< ¢(d(x,)) [ (%) + i ()],
which implies that {}4e7, is a positive constant multiple of an element in D? (u — u,-).

Let A € (n/[n —log, ay), min{p, ¢}). Using the Holder inequality, the fact that ay < 27¢,
and Lemma 1, we have

1/q
3 20 [M(e)] " s [sz¢<2">1<"”“’{ 3 24p(27) [M(gf)r“} @
I>i—4 I>i—4

with the implicit positive constant independent of i. Notice that, by (10) and g < 2,

{Z{Zf—k 2-t‘f[¢(2"‘)]1}q}”q i) {Z[%r}”q

k>i k>i
Z*iE
$(277)

(30)

and, by (9) and ay < 1,

Ziel i et e
{Z{z [6(279)] }} et 31)

k<i

Thus, by (29)-(31), Lemma 1, and the Fefferman-Stein vector-valued maximal inequal-
ity in LP/4(X, 19/1) (see ([56], Theorem 1.2) or ([57], Theorem 1.3)), we obtain

e 07 o] .
K kezllir (x.00) S {Z Z(I_I)EW[M(&A)] } + [Z 82]
1>i-4 LP(X) k>i Lr(X)
P 1/q 1/q
< { > meh) } + [Zgz] (32)
1>i-4 Lr(X) k>i L2(X)
1/q 1/q
2] e
1>i-4 Lr(X) k>i LP(X)
1/q
Nz
k>i—-4 LP(X)

which, combined with |[{gi}kezllz» (X.a) < ©, implies that

1/q
0.(X) S [Z 82]

||u—u2_;||M¢ —0 asi— oco.
k2i-4

Lr(X)
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On the other hand, from (25), Lemmas 5(iii), and 1(ii) with € € (0,—-log, ay), the
properties of {¢}} jeq, the Fefferman-Stein vector-valued maximal inequality, and ¢(0) = 0,
it follows that

Z(” - MB/’)"Dj

o - ”2"'”1}()() =

JjeT LP(X)
< Z{Z 2(l—i)e¢(2—l)[M(gzl)]'//l}(pj
Jjeg \Uzi-4 L2(X)
-1
S¢(2_i) 2(/—i)e ¢(2—i) M( /l) 1/4
1;4 ¢(2 )[ o ] LP(X)
—i INRE
<o) > [M(e)]
1>i-4 LP(X)
1/q
< ¢(27) [Z g;’] —0 asi— oo. (33)
12i—-4 LP(X)

This finishes the proof of Theorem 1. O

Recall that, when ¢ = oo, M;”m((\’ ) = M%P(X) (see Remark 1(i)). Even in the classical
case ¢(1) := t for any 7 € [0, ), Theorem 1 is not true for ¢ = oo; we refer the reader to ([41],
Example 3.5) with m];(B;) therein replaced by up, for any j € N for a counterexample.
For any given Hajtasz-Sobolev function, to find a convergent sequence consisting of
continuous functions to this given Hajtasz—Sobolev function in Hajtasz-Sobolev spaces,
instead of Theorem 1, we turn to find a dense subspace of MZ’,W(X ), which consists of some
generalized Lipschitz continuous functions.

Definition 12. Let ¢ € A. A function u on X is said to be in the ¢-Lipschitz class Lip 4(X) if
there exists a positive constant C such that, for any x, y € X,

lu(x) = u(y)| < Co(d(x.y)).

Observe that Lip 4(X) is just the classical Holder space of order s € (0,1] when
¢(1) :=¢* for any 7 € [0, o).

Recall that a function ¢ : [0,00) — [0,0) is called a modulus of continuity if it is
increasing, the function ¢, defined by setting, for any 7 € [0, ), ¢(1) := ¢(1) /1, is decreasing,
#(0) =0, and, for any 7 € (0, ), ¢(r) > 0; see [58]. Obviously, the collection of all moduli
of continuity is contained in Aw. It is well known that, if ¢ is a modulus of continuity, then,
for any x, y € [0, ),

P(x+y) <o(x) +o(y).

Borrowing some ideas similar to that used in the proof of ([48], Theorem 5.19) (see
also ([59], Proposition 4.5)), we can prove the following conclusion.

Theorem 2. Let ¢ be a modulus of continuity, and p € (0,00). Then Lip 4(X) N M*P(X) is a
dense subspace of MP (X).

Proof. Let p € (0,0), u € M?P(X), g € D?(u) NLP(X), and E be the exceptional zero-
measure set such that (13) holds true. For any 1 € (0, ), let

Ey:={xeX\E: g(x) <4, Ju(x)| < 4}. (34)
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Then, the facts that u € LP(X) and g € L?(X) imply that, for any 1 € (0, c0),
u(X\ Ey) < co. (35)
Moreover, by the definitions of D¢(u) and E,, we know that, for any x, y € E,,
lu(x) —u(y)l < ¢(d(x.y))[g(x) + &(»)] < 24¢(d(x,)).

Thus, ulg, is ¢-Lipschitz continuous on E,. By ([60], Theorem 2) with the function w
therein replaced by 21¢, we find that u,, defined by setting, for any x € X,

uy(x) := supfu(y) —24¢(d(x,y)) : y € Eal,

is a ¢-Lipschitz continuous extension of ulg, from E, to X and, furthermore, for any x;, x; € X,

|u4(x1) —uA(X2)| <2¢(d(x1,x2)). (36)

Define v; := sgn (u3) min{luyl, A}. By ualg, = ulg,, (34), and the definition of v;, we
find that

Valg, = walg, = ulg,. (37)

By the definition of v; and (36), we find that, for any x, y € X,

a(x) =va(y)] < lua(x) —ua(y)l < 24¢(d(x, y)), (38)

which means that v, is still ¢-Lipschitz continuous on X.
We now show v; € M?*P(X). If x, y € E,, then, by (37) and the definition of D?(u),
we have

Wa(x) =va(y)l = lu(x) —u(y)l
< ¢(d(x.y))[g(x) +g(y)]- 9

Otherwise, if at least one of x and y lies in X'\ E,, then, by (38), we find that
va(x) =va(v)] < 226(d(x.y)).
which, combined with (39) and the definition of D?(v,), implies that
g1:=glg, + 21y, € D’ (va).
By the definitions of v; and g,, (37), [val < 4, and (35), we conclude that
vallze (xy < Valglize (xy + IvaLlae, llze x)
< Ml ) + Au(X N\ E)]MP < o0

and
lgallzr ()  Igllzn(x) + 24[n(X \ E2)]7 < oo,

which, combined with the definition of || - [|ys6.» (X)r implies that v; € M#P(X).
Now, we consider vy —u. Let x, y € X\ E. If x, y € E,, then, by (37), it is obvious that

|(va =) (x) = (va—w) ()| = 0.
If x, y € X\ (E1 UE), then, by (38) and the definition of D?(u), we obtain
|(va=u) (x) = (va =) ()] < a(x) =va()] + [u(x) = u(y)]

< p(d(x,y)) 24+ g(x) +g()].

158



Mathematics 2021, 9, 2724

If x€ Eyand y € X\ (E; UE), then, by (38) and the definitions of D?(u) and E,, we
conclude that

|(va=u) (x) = (va =) (y)] < [palx) =va()] + |u(x) = u(y)|
< p(d(x,y))[20 + g(x) + g()]
<¢(d(x,y)[31+g(y)]

and, similarly, if x € X\ (E; UE) and y € E,, by (38) and the definitions of D?(u) and E,
again, we find that

|(va=u)(x) = (va=w)(y)] < $(d(x,))[32 + g(x)].
Altogether, from the definition of D? (v, —u) and u(E) = 0, we deduce that

1= (314+¢)1xg, € D‘f)(v/l —u).

Moreover, by |v;| < A and the definitions of g; and E,;, we have

([CORR PPN AP (C ) VG v
< llgllzoxy + lullpr(x) < o0
and
||§/11X\Eﬂ||Ll’(X) S ”(3/1 + g)lf\’\ExHLﬂ(X)
< Nleell o (xy + 18lle (x) < 0.

Then, using this, (37), the dominated convergence theorem with respect to y, and
#(X\Ey) - 0as A — oo, we conclude that

}Lnolo”” —ullr(x) = }E{‘””(Vﬂ - ”)IX\EAHLP(X) =0

and
Ali—>nojc”§1||m()() = }LIEJ'?EIIX\EA”LP(X) -

which imply limj—e [[va = #llpz6.0 x) =0. This finishes the proof of Theorem 2. O

Now, we state the main result of this section, which generalizes ([41], Theorem 8.1)
from fractional Hajtasz-type spaces to those with generalized smoothness.

Theorem 3. Let ¢ € Aand F be one of the following cases:

i F= Mﬁ,m(r\’) = M?P(X) with ¢ being a modulus of continuity and p € (1,);

i F = Mﬁm(z\’) = M%P(X) with ¢ being a modulus of continuity, ay € (0,1), and p €
(D/(D—logy ay), 1];

(i) F = M), (X) withay € (0,1), By € (0,2), and p, g € (D/ (D ~log, ay), );

(iv) F = Nj,(X) withay € (0.1), 5 € (0.2), p € (D/ (D ~logy ay). ), and g € (0,),

where D is as in (1). Ifu € F, then there exist a set E with Cap#(E) = 0 and an F-quasi-

continuous function u* on X such that, for any x € X\ E,

u'(x) = lim upy,). (40)

r—0+

To prove Theorem 3, we need a weak-type estimate of the 7 -capacity. To this end, we
need several technical lemmas. The first one is on the Hajtasz gradient of M*u for any u in
which the integral on any ball is finite. Recall that, for any u € Llloc (X), either M*u = co or
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M*u < oo almost everywhere (see ([54], (3.1) and Lemma 4.8) or ([61], Remark 2.2)), where
M is as in Definition 9(ii).

Lemma8. (i) Let ¢ € A. Then, for any u € L} _(X) satisfying that its integral on any ball of
X is finite and M*u # co and for any g € D?(u), M(g) is an element of D*(M*u) modulo a
positive constant independent of u and g, where M is the classical Hardy—Littlewood maximal
operator and M* as in Definition 9(ii).

(i) Let ¢ € A with ay € (0,1). Then, for any A € (D/[D - log, ay], ), any u € L} (X)
satisfying that its integral on any ball of X is finite and M*u % oo, and for any g € D?(u),
[M(gY)]/ 4 is an element of D?(M*u) modulo a positive constant independent of u and g.

Proof. Due to similarity, we only prove (ii). For any given r € (0, ), let {B;} s be any
given sequence of balls as in the definition of M* with the radius r, and {¢;};c7 be a
partition of unity with respect to {B}} jcs as in Definition 8, where .7 is an index set. Let
u and g be as in the present lemma. From the definition of M* and the observation that
D¢ (u) ¢ D?(lul), without loss of generality, we may assume that u > 0.

Let u, be as in Definition 9(i). By X je5 ¢; = 1, we have

U = u-+ Z(MB-f - Ll)(pj. (41)
jeT

Therefore, for any j € J, using Lemma 7(ii) with u, E, and L! therein replaced,
respectively, by u —up;, 2Bj, and r, and the properties of ¢;, we find that, for any j € 7,

g0 1= {g+ [0(0)] i~ un |1,

is a positive constant multiple of an element in D?([u — up;]¢;), where the positive constant
is independent of r, u, and g. Let A € (D/[D —log, ay), ). Notice that, for any j € J, by
Lemma 5(ii) with B(y,27") and 27 therein replaced, respectively, by B; and r, we have, for
any x € 2B,
1/2
Ju(x) = up;| < ¢(r)[M(g")(x)]

with the implicit positive constant independent of u, g, x, j, and r. From this; the proven
conclusion that, for any j € J, g(/) is a positive constant multiple of an element in D¢ ([u -
ug;|g;); the definition of g, Yjeq lop; s 1;and g < [M(gY)]"/4, we deduce that, for almost
every x,y € X,

D us; = u(0)]ei(x) = 3 [us, —u(m)]e; ()

= i
$(d(x2) Y [0 () +50 )|
=)
S ¢(d(x.y)) Z[{g(X) + [M(g‘)(X)]W}lzB, (x) + {g(y) + [M(g‘)(y)]w}lzg, (y)]
i
S ¢(d(x,y)){g(X) + [M(g‘)(X)]W +e(y) + [M(g”)(y)]l//{}

< a(ale){[ME)] " + M) )

which implies that [M(g?)]'/4is a positive constant multiple of an element of D? (Y ;. [up i
ulg;). By this, (41), the definition of D%(u,), g € D?(u), and g < [M(g")]'/4, we further
conclude that [M(g!)]'/* is a positive constant multiple of an element in D?(u,) with the
positive constant independent of u, g, and r. Moreover, if M*u # co, then by the definition
of M* and Lemma 2(ii), we conclude that [M(g)]'/ is an element of D?( M*u) modulo
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a positive constant independent of u and g. This finishes the proof of (ii) and hence of
Lemma8. O

Borrowing some ideas from the proof of ([41], Lemma 7.1), we can prove the following
lemma on the Hajlasz gradient sequence of M*u for any u € L'IOC (X) with its integral on
any ball being finite.

Lemma 9. Let ¢ € Ao with B; € (0,2), € € (0,~log; ay), and

€ (O, min{l —log, B4, — log, ay — e})

Then, for any A € (D/[D + €], c0), any u € L} (X) such that its integral on any ball in X is
finite and M*u # oo, and any g = {gihez € D? (u), the sequence {gi ez, of functions, defined by

setting, for any k € 7,
&= Zz—ll—klé [M(gf)]l//l’ 2)
leZ

is a positive constant multiple of an element in D (M*u), where the positive constant is independent
of uand g, D as in (1), and M* as in Definition 9(ii).

Proof. Let all of the symbols be as in the present lemma. By the definition of M*u and the
observation that D¢ () c D?(Ju|), without loss of generality, we may assume that u > 0.
Moreover, by Lemma 2 and the definition of M, to prove the present lemma, it suffices to
show that, for any i € Z, {gk}1ez is a positive constant multiple of an element in D? (u,-)
with the positive constant independent of i, where u,-; is as in Definition 9(i).

To this end, we first recall that, in the proof of Theorem 1, we have shown that, for any
i € Z, {hi}rez, defined as in (28), is a positive constant multiple of an element in D¢ (u — u,-i).
From this, g € D?(u), the definitions of D?(u) and D? (u — u,-), and, for any x, y € X,

|'42ff (x) = up-i (y)|
< (o) = u(W) + [(u = up1) (%) = (= 1) ()

B

it follows that, for any i € Z, {gx + h}rez is a positive constant multiple of an element in
D?(u,-i), where the positive constant is independent of i, u, and g. Thus, to prove that
{8k ez is a positive constant multiple of an element in D¢ (u,-;) for any i € Z, it suffices to
show that

g+ he s gk VkeZ. (43)

Indeed, by the definition of g; and the fact that, for almost every x € X, gi(x) <
(M(gh(x)] 174, we have g, < g for any k € Z almost everywhere. Then, to show (43), it
suffices to prove that, for any k € Z, h; < g almost everywhere. Let € and 6 be as in the
present lemma. By 1 -6 > log, By, € + 6 < —log, g, and Lemma 1(ii) with 6 and € therein
replaced, respectively, by 1 — ¢ and € + 6, we find that, for any &, / € Z with [ < k,

21—k¢(2—1)[¢(2—k)]_1 < 2=k (44)
and, for any k, l € Z with [ > k-4,
20 Reg(27)[g(27) | g 27K, (45)

Let i € Z. Observe that, for any [ > i — 4, 2(i=D(1-€) < 1 and, for any k < i, 2(k=i)e < 1. By
this, (44) and (45), we obtain, for any x € X and k > i,

272 S teg oty [ M)

$(27) i
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S 261612000 p [ ()] )]

<2, 2009 M [y (1)

and

1/a

i—k n—ie
T 2@ M)
1>k

< Z 2(1—k)(l—6)2—("k)5[M([gl(x)]A)]IM
I>k

< Z 2—(1—k)§[M([gl(x)]A)]l//1

I>k

and, forany x € Xand k < i,

ﬁ S 2ep) [ M{[ai0))]
>4
< Z 2(k—i)52—(l—k)6 [M([g/(x)}/l)]
>4

. Z 7-(1-k)5 [M([g/(x)}/l)]l/l’

1>i-4

1/

1/

which, combined with the proved conclusion that, for any k € Z, g, < g; almost everywhere,
implies that, for any k € Z, h; < g almost everywhere. Thus, for any k € Z, gk + i < g
almost everywhere. Furthermore, noticing that {gx + /}ez is a positive constant multiple
of an element in D?(u,-;), from the definition of D?(u,-), we deduce that {gi}scz is also
a positive constant multiple of an element in D?(u,;), where the positive constant is
independent of u, g, and i. Thus, by Lemma 2 and the definition of M*, we conclude that
{8k ez is a positive constant multiple of an element in D (M*u), which completes the proof
of Lemma9. O

The next two lemmas are used to show the boundedness of the discrete maximal
operator M* on ¢-Hajlasz-type spaces, which is a generalization of ([61], Theorem 4.7)
and ([41], Lemma 8.3), respectively.

Lemma 10. With the assumptions same as in Theorem 3, there exists a positive constant C,
independent of u, such that, for any u € ¥ with Mu # oo,

[Meully < Cllullg, (46)
where M* is as in Definition 9(ii).

Proof. If ¥ belongs to the case (i) of Theorem 3, then (46) follows from Lemma 8(i) and the
boundedness of the Hardy-Littlewood maximal operator on L” (X).

If 7 belongs to the case (ii) of Theorem 3, then (46) follows from Lemma 8(ii) and
the boundedness of the classical Hardy-Littlewood maximal operator M on L?/4(X) with
A€ (D/]D~logy agl.p).

Now, let 7 belong to the case (iii) of Theorem 3. Let u € Mﬁ,q(f\’ ), {8idrez € D? (1) with
Mgklkezler ey < sy, and 7 i= minip.q). Let Dbeasin (1), A € (D/[D - logy agl.1),
and € € (0,-1log, ) be such that 2 = D/ (D + ¢’). We also choose € := (€ —log, ay)/2.
From ey < 1, it follows that 0 < €’ < € < —log, @y and hence A € (D/[D + €], r).
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Let {gi}kez be as in (42) with 6 € (0, min{1 —log, B4, — log, ag — €}). Then, by the defi-
nition of {g;};cz and the Fefferman-Stein vector-valued maximal inequality on Lk (X1 %)
(see ([56], Theorem 1.2) or ([57], Theorem 1.3)), we have

@zl = {400,

Thus, using this, the definition of || - ||Mﬁq((\,>, Lemma 9, and ||{gk}rezll1r (X)) S ”””Mf,’q(x)'

b < gkhez

|Ll’ (X,19)"

we obtain

Ml

4 4(X) S ||{g~k}k€Z||lj)(X’lq) S ||{gk}kEZ||Lp(X’]q) < ”u”Mﬁq(z\’)'

This finishes the proof of Lemma 10. O
Lemma 11. Let xg € X, r € (0,0), By := B(x0,7), ¢ € A, and

F e {M}’f’q

(X), Npg(X) : p, g€ (0,00]).

If{y € X : d(xo,y) = 7r} for some T € (2,00) is not empty, then there exists a positive
constant C, depending only on 7, ¢, and C,,, such that, for any u € & supported in By,

llll= < C[1+ ¢ (r)]llully-,

where C, is as in (1).

Proof. By similarity, we only prove the case ¥ = M‘ﬁ,q()( ). Let By := B(xp,r); 7, Cy,, and

u be as in the present lemma; E be the exceptional zero-measure set such that (13) holds

true; and {glrez € D¢ (u) with {grtezllir(x 0y < llutll o X Notice that, for any x € By and
Pq

y € 2tBy \ 2By, we have d(x,y) € (r, [1 + 27]r). From this, the fact that uly.,\25, = 0, and the

definitions of both A and D’ (u), we deduce that, for any x € By \ E,

- inf -
O = g0 40
Sot+2dn)|e()+ it 58] (47)

where g := supy.,<o-k<(142r)) 8k and g > 0.
Let z € X be such that d(xo,z) = 7r. Then, by a geometrical observation, we have

By C B(z,[1+7]r) and B(z [r—-2]r/2) c (2tBy\2By),
which, together with the doubling property of , implies that
u(Bo) < u(B(z [1+7r)) < p(B(z [t =2r/2)) < p(27By \ 2By), (48)

where the implicit positive constants depend only on 7 and C,. Thus, from ux\g, = 0,
H(E) =0, (47), (48), and the definitions of g and A, we deduce that

||M||L/7(X) = ”””L/’(Bo)

$¢([1+27]r){||gllu(30)+[/l(30)]1/p inf g(y)}

y€27By\(2ByUE)
1+2 , 2tBy\2Bo)]'?  inf
<oll1-+ 201 Il + WC2emo\ 28077 e el

< B([1 + 201 lgllp(2eg) < AP HgiMlen (a0
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with the usual modification made when p = co, which, together with the assumption of
{8k} kez, implies that
”“”M}’,’_q(x) < lellze (x) + grtkezllLr (xa)
< o(MNgMer(xiey + llullyze (x)
< [1+00)ulyg

This finishes the proof of Lemma 11. O

Based on the above lemmas, we can obtain the following localized weak-type capaci-
tary estimate for the restricted maximal operator Mg, where R € (0, oo]. Recall that there
exists a positive constant ¢, depending only on C,, such that, for any u € L(X),

I Mgy < My < cMegu (49)

(see, for instance, [41], [(8.1)]), where M is as in (14), My, as in Definition 9(iii), and C, as
in (1).

Lemma 12. With the same assumptions as in Theorem 3, let xo € X, R € (0,00), and B :=
B(x0,R). If B\ 10B for some T € (10,00) is not empty, then there exist positive constants
¢ = c(c,) and C = C(g prc,) such that, for any u € 7 and k € (0,00),

Capy({xe B: Myseu(x) > «f) < CxPllullr,
where Mg is as in (14) and Cy, as in (1).

Proof. Let all of the symbols be as in the present lemma, Mj, as in Definition 9(iii), and
u € F. Let ¢ be a Lipschitz function supported in 4B such that 0 < ¢ < 1 and ¢ = 1 on
3B. By the definition of M}, and the assumption of ¢, we have Myu = Mj(ug) on B and
Mg (ug) = 0 on X\ 5B. Then, from (49), we deduce that
{x €B: Mgyeu(x) > K] c {x € B: cMpyu(x) > K}

c [x e X cMy(up)(x) > K}

= {x € X ek M (up) (x) > 1} =:Q, (50)
where ¢ = ¢(¢,) is just the positive constant as in (49).

By the lower semi-continuity of My (ug) (see [54], p.376), we conclude that, for any

x € Q, there exists a 6, € (0,1) such that, for any y € B(x,6,), ck ' M (ug)(y) > 1. Thus,
Q" := Uyeg B(x.6) is a neighborhood of Q and CK‘IM;}(mp) > 1 on Q'. By this; (50);
Remark 4(iii); Definition 10; Lemma 11 with « and By therein replaced, respectively, by
M, (up) and 5B; Lemma 10; and Corollary 2, we obtain

Cap,F({x €B: Mgyou(x) > K}) < Cap#(Q)
< fle™ M) < M ()1
< KPIM ()13 < k7Pl
< K Plull?,

where the implicit positive constants depend on 7, R, 7, and C,,. This finishes the proof of
Lemma 12. O

Now, we show Theorem 3.
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Proof of Theorem 3. Again, by similarity, we only consider the case ¥ = Mﬁ,q(x ). Without
loss of generality, we may assume that X contains at least two points. By this, we easily
know that there exist balls {B(x;, r;)}er with 7 c N being an index set such that X c
Uler B(x;, ;) and, for any [ € T, 5B(xz, r7) \ 4B(x;, r;) is not empty.
Let 7 be any given function space as in (i), (ii), or (iii) of the present theorem, and
u € ¥. Then, from Theorem 2 when ¥ is as in either (i) or (ii), or from Theorem 1 when
¥ is as in case (iii), we deduce that there exists a sequence {v;};cy of continuous functions
such that, for any i € N,
Nl = vill? < 2710147 (51)

Let {B(x;, 1) }jer be a ball covering of X as above and ¢ = ¢(Cy) the positive constant
as in Lemma 12. Forany /€ 7, any i, j € N, and any u € 7, let

Al,i = [x (S B(xl, r[) : M,[/C(u - V,')(x) > 2_i]

31,]' = U A[,,'.

i>j

and

Then, by Lemma 12 and (51), we have
Cap & (A1) < 2Pllu—vill- < 27
and, furthermore, by Lemma 6, we obtain
1/6
Capy(Byj) < {Z[Capf(f‘l.i)}g} <27,
izj

where 6 := min{1, ¢/ p}. Thus, the set F; := () je By,; is of zero F-capacity.
Letl e I. For any i € N, using the continuity of v; and the Lebesgue differentiation
theorem, we conclude that, for any x € X,

r—0+t

lim Jg(x’r>|v,-(y) - v,-(x)| du(y) = 0. (52)

Since u is locally integrable (see Remark 3(i)), then, for any i € N, from (52) and the
definition of A;;, we deduce that, for any x € B(x;, 1) \ A,

g () | < imoup £ ) )]ty
r—0* r—0t B(xr)
stimsup £ [n(y) =) () (5)
r—0t B(x,r)

<M,y e(u=vi)(x) <27

Therefore, by (53), we find that, for any j € N, i, i, € N with ij, i > jand
x € B(x,ri) \ Bj = Nizj[B(xi, 1) VALl

+ lim sup

Viy (X) - uB(x,r)
r—0+

|v,'] (x) = v, (x)| < lim s1+1p’v,'] (x) - Up(xr)
r—0
<27 o7,

which means that, for any given j € N, {vj| B(xr)\ B,,}ieN is a Cauchy sequence uniformly in

Xpr
B(x;, ;)\ By, j- Thus, for any j e N, {vj| Blxir)\ B,j}ieN converge to some continuous function
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vy, j uniformly in B(x;, r;) \ By j as i — co. Due to the observation that B(x;, 1) \ By j increases
on j and the uniqueness of the limit, we conclude that, for any j;, j» € Nwith j; < jp,

Vil B(xn)\BLy, = Vit
Therefore, the function v}, defined by setting, for any x € B(x,r) \ Fy,
vy (x) := lim vy j(x),
Jjooo

exists and, for any given j € N, v/|g(y,,)\ By = Vij- Since vy j is continuous in B(x;, 1) \ By j,
we deduce that, for any given j € N, v} is continuous in B (x1,r1) \ By j. By the definitions of
*

v and vy j, and (53) with i — co, we conclude that, for any x € B(x1, 1) \ F1 = Ujen[B(x1, 1) \
Byl = Ujen Nizj[B(x1,71) \ ALl

v;‘(x) = lim V]Vj(x) = lim lim VilB(x,,r,)\BLj ()C) = lim “B(x,r)'

Jj—oo Joo0 i—eo r—0+

Altogether, we find a function v} and a set F; with Cap #(F;) = 0such that

vi() = lim ug
in B(x;,r;) \ F; and, for any € € (0, o), there exist a j € N and a set By ; with Cap +(B;;) < €
such that v; is continpous in B(x;, ) \ By j.

Next, let u € . For any given X € X and k € N, let ¢ be a Lipschitz function
such that ¢xlpzor) = 1 and gxlx\prar) = 0. By the boundedness of the support of ¢
and Corollary 3, we find that ug; € ¥. Thus, from the conclusion proved in the above
paragraph, we deduce that, for any k € N, there exist a set Ej with Cap 4 (E;x) = 0and a
function u;x defined on B(x;, r;) \ Ej such that, for any x € B(x;, ;) \ Ej,

uri(x) = rl_iig(Wk)B(x,r)

and, for any € € (0, ), there exists a set U;x with Cap#(U;x) < 27%"e such that uyy is
continuous in B(x;, r7) \ Ujg.

Define E; := Ugen Erk and U; := Uygen Uik Then, by Lemma 6, we have Cap &(E;) =0
and, for the above given € € (0, ), Cap #(U;) < 27'e and, moreover, Cap #(E; U U;) <27'e.
For any x € B(x;,r1) \ E; = (en B(x1,11) \ Ei and any k, € N big enough such that
x € B(X, ky), since, for any r € (0, k,], we have B(x,r) C B(X, 2k,), then, from the fact that
ek 1pxok,) = 1, we deduce that

lim = lim d
r—0+ (kax )B(x,r) r—0%, re(0,ky] JCB():J) ok 1
= lim JC udu (54)
r—0%, re(0,ky] B(x.r)
- Jim s

Define u; by setting, for any x € B(x;, ;) \ E, uy(x) := lim, g+ u B(x,)- Then, by (54) and
the definition of u;x, we conclude that, for any k € N, ; = uyy in [B(x;, ;) N B(%, k)] \ E;.
From this, the fact that u; is continuous in B(x;, ;) \ Ujx, and the definition of U;, we
deduce that, for any k € N, y; is continuous in [B(x;, r;) N B(x, k)] \ (E; U U;). Therefore, u; is
continuous in B(x;, 1) \ (E; U Uj).

Finally, we turn to the whole space X using the covering X ¢ Uer B(x, 7). Letu € 7.
On the one hand, we have shown that, for any / € 7, there exists a set E; with Cap #(E;) =0
such that u(-) := lim,_o+ ug(. ) exists on B(x;, ;) \ E;. Define E := {Jjes E; and, for any
x € X\ E, u(x) := lim,_+ up(y,)- Then, forany /€ 7,u = uin B(x;, 1) \ E.

X,
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On the other hand, by the above proof, we conclude that, for any given € € (0, o)
and any I € T, there exists a set U; with Cap#(U;) < 27%e such that i is continuous in
B(x;,r7) \ U;. Define U := ,e7 U;. Then, for any [ € 7, u; is continuous in B(x;, ;) \ U. From
this and the fact that, for any / € 7, u = u; in B(x;, r;) \ E, we deduce that % is continuous in
B(x;, 1)\ (EUU) forany [ € 7 and hencein X\ (EU U).

By Lemma 6, we have Cap4(E) = 0and Cap#(U) < € and, furthermore,

Caps(EUU) <e

Let u* be any function defined in X such that u* = uwin X'\ E. Then, u* is continuous
in X\ (EUU). Thus, u* is one of the desired ¥ -quasi-continuous functions on X, which
completes the proof of Theorem 3. O

Remark 5. With the same assumptions as in Theorem 3, by (40), the local integrability of u
(see [28], Remark 3.8), Remark 4(ii), and the Lebesque differentiation theorem, we have the following
two obvious observations:

(i) u* = ualmost everywhere;
(ii) every point outside E is a Lebesgue point of u*.

In this sense, u* is called an F-quasi-continuous representative of u. Furthermore, from
the conclusion in (ii) of the present remark and ([45], Lemma 17), we deduce that, for any given
F -quasi-continuous function u in ¥, there exists a set of zero ¥ -capacity such that all the outside
points are Lebesgue points of u. Observe that, by Remark 4(ii), any set of zero F-capacity is of
zero measure. This implies that, for any F-quasi-continuous function, compared with only locally
integrable functions, there exist more Lebesgue points.

4. Generalized Lebesgue Points of ¢-Hajlasz-Type Functions

If a function fails to be locally integrable, which may happen, for instance, when the
index p of the ¢-Hajtasz-type space is close to zero, the y-median serves as a reasonable
substitute of the integral average (see, for instance [41,45,46]). That is because the y-median
is defined, instead of integrals, only by the distribution sets of functions and their measures,
which removes the necessity for the local integrability of functions. Due to the similarity
between the behavior of the y-median and that of the integral average, the Lebesgue point
can naturally be generalized to the y-median case; see (56). In this section, we still use
the capacity to measure the set of such generalized Lebesgue points of ¢-Hajtasz-type
functions. We first recall the notion of the y-median and some of its basic properties;
see ([41], Section 2.4) (see also ([46], Section 1) for a different definition).

Definition 13. Let u € L°(X) and y € (0,1/2]. The y-median m},(E) of u over a set E ¢ X of
finite measure is defined by setting

my(E) :=infle R: u({x e E:u(x) > ) < yu(E)}.
Observe that, if E ¢ X, u(E) € (0,00) and u € L°(E), then m},(E) is finite.

Lemma 13. Let E, E, Ey C X be sets of finite measure, y, yi1, y2 € (0,1/2], and u, v € LO(X).
The following statements hold true:

(i) Ifyi <y, thenm]! (E) > m}* (E).

(i) Ifu < valmost everywhere, then m},(E) < m)(E).

(ili) If Ey C E; and, for some positive constant ¢, u(E,) < cu(Ey), then

m}(Ey) <m}/*(Ex).

(iv) ForanyceR, mj(E)+c=ml, (E).

(v) Foranyc € (0,0), m,(E) = cm},(E).
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(vi) |ml(E)|< m‘tl(E)
(i) m?, (E) <m/*(E) +m"*(E).
(viii) For any t € (0, ),

1/t
Y ~1 t . 55
m‘ul(E) < (7 ﬁlul d,u) (55)

The following lemma (see, for instance, ([46], Theorem 2.1)) implies that the y-median
over small balls can behave similar to the classical integral average of locally integrable
functions at Lebesgue points and becomes a reasonable substitute of the classical Lebesgue
differentiation theorem when the function fails to be locally integrable.

Lemma 14. Let u € L%(X). Then, there exists a set E ¢ X with u(E) = 0 such that, for any
vye(0,1/2]and x e X\ E,
lim m}(B(x,r)) = u(x). (56)

r—07t

In particular, (56) holds true at every continuous point x of u.

Let u € L9(X). Recall that a point x € X is called a generalized Lebesgue point of u if (56)
holds true for x and any y € (0, 1/2]; see, for instance [41,44,45]. If u is locally integrable,
as was pointed by ([46], p.231), any Lebesgue point of u is a generalized Lebesgue point
of u. This means that the generalized Lebesgue point is a more extensive notion than the
Lebesgue point.

Next, we recall the variants of both M and M* in the y-median version (see, for
instance [41,45]), where M = M, is as in (14), and M* as in Definition 9(ii).

Definition 14. Let y € (0,1/2] and u € L°(X). The y-median maximal function M (1) of u is
defined by setting, for any x € X,

M (u)(x) := sup m‘yu‘(B(x,r)).
re(0,00)

Definition 15. Lety € (0,1/2] and u € L°(X).
(i)  The discrete y-median convolution u} of u at scale r € (0, ) is defined by setting, for any

xeX,
ul (x) = Z my(B;) ¢;j(x),
jeg
where [J is an index set, {B}} je.y is a ball covering of X with the radius r such that 2jeT 123]. <
1, and {@}} jeg is a partition of unity with respect to {B}} jcy as in Definition 8.
(ii) The discrete y-median maximal function MY*u of u is defined by setting, for any x € X,

M u(x) = suplul)_, (x),
keZ,

where |u|;,k is as in (i) with u and r replaced, respectively, by |u| and 27F.

Remark 6. Let MY and M”* be as in Definitions 14 and 15. Recall that there exists a positive
constant c such that, for any u € L°(X),

My <My < cZMV/"Zu; (57)
see ([41], (2.10)). Additionally, recall that either MYu = co or MYu < oo almost everywhere in

X and either M u = oo or M¥*u < oo almost everywhere in X; see ([41], (2.10)) and ([41],
Remark 2.11).
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The following two lemmas are the variants of Poincaré-type inequalities, respectively,
in Lemma 3, (18), and (17), where the second lemma is a generalization of ([41], Lemma 3.2).

Lemma 15. Lety € (0,1/2], ¢ € A, and C,, be as in (1).
(i)  Then, there exists a positive constant C = Cyc,) such that, for any k € Z, u € L9(X),
g€ D%u),and x € X,

inf (B 29) <o) g0 duly).
ceR B (x,Z"‘)

(i) Ifay € (0,1), then, for any given A € (0, 00), there exists a positive constant C = C(y 14.c,)
such that, for any k € Z, u € L°(X), g € D% (u), and x € X,

1/A
inf m?_(B(x,27")) < c¢(2*"){ Ji s du(y)} .

ceR (x,27k+1)

Proof. We first prove (i). Forany k € Z, u € L°(X), g € D*(u), x € X, and ¢ € R, from (55)
with t = 1, and E and u therein replaced, respectively, by B(x,27%) and u — ¢, we deduce that

m_(B(x,279)) Sy‘lf lu(y) = cldu(y). (58)
B (x,27%)
Taking the infimum of ¢ € R in (58), and using Lemma 3, we obtain (i) of the
present lemma.
Now we prove (ii). By ay < 1, we choose ¢ := —(log, ag)/2 > 0. Forany k € Z, 1 €
(0,D/¢), ue L%(X), g € D*(u), x € X, and ¢ € R, applying (55) with t = (DA)/(D - ed) €
(0,00), and E and u therein replaced, respectively, by B(x, 27%) and u - ¢, we conclude that

m\yu—d (B(x,27%))
S )= gy
B (x,27%)

Taking the infimum of ¢ € R in (59) and using (16) with p = 1, we obtain the
conclusion of (ii) when 1 € (0, D/¢). From this and the Holder inequality, we deduce that
the conclusion of (ii) also holds true when A € [D/g, o), which completes the proof of
Lemma 15. O

(D-£1)/ (D)
} (59)

Lemma 16. Lety € (0,1/2], ¢ € Awith ay € (0,1), and C,, be as in (1). Then, for any given
A € (0,00) and € € (0, - log, ay), there exists a positive constant C = C(, 4 c c,) Stich that, for
any k€ Z, u € L°(X), {gihkez € D¢ (u), and x € X,

inf m” (B(x, 2_k))

ceR  lu=cl

1/
sert o) {f oo} (60

1>k=2

Proof. Let A € (0,c0) and v € (0, €), where € is given as in Lemma 16. When 1 € (0,D/v),
(60) follows from (55) with t = (D1)/(D —vA) € (0,), E and u therein replaced, respec-
tively, by B(x,27%) and u - ¢ for arbitrary ¢ € R, and from Lemma 4 with p and & therein
replaced, respectively, by 1 and e. This, combined with the Holder inequality, further
implies (60) when A € [D/v, ). This finishes the proof of Lemma 16. O

The following lemma is a variant of Lemma 5 in the y-median version.
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Lemma 17. Let y € (0,1/2], ¢ € A, Cy be as in (1), and M the classical Hardy-Littlewood

maximal operator.

(i)  Then, there exists a positive constant C = C((p,Cu) such that, forany k € Z, u € LO(X), g€
D?(u), y € X, and almost every x € B (y,275+1),

Ju(x) = mii(B(3.27)) < Cy~'(27) M(g) (x).

(ii) Letay € (0,1). Then, forany given A € (0, ), there exists a positive constant C = Cy 4, 1C)
such that, forany k € Z, u € L9(X), ge D?*(u), ye X, and any generalized Lebesgue point
x € B(y, 271,

() -l (B(v.27))] < Co(27) [ M(") ()] "

(iii) Let g € (0, 1). Then, for any given A € (0,0) and € € (0, —1log, ay), there exists a positive
constant C = C(, . 1.c,) Stch that, for any k € Z, u € L9(X), {gthiez, € D?(u), y € X, and
any generalized Lebesgue point x € B(y,27*+1),

- ke € i 1/2
Ju(x) = miy (B(y,27))] < c27% 3" 20 (27) [M(g])(x)] .
I>k—4

Proof. Let all of the symbols be as in the present lemma. We first prove (i). For any
k € Z,y € X and almost every x € B (y,27%*1), by (iv) and (vi) of Lemma 13; (55) with
t = 1; and E and u therein replaced, respectively, by B(y, 27k ) and u — u(x); the geometric
observation that, for any x € B(y, 2751, B(y,27%) € B(x,27%2); the doubling property of
; the definitions of D¢(u) and #A; and g < M(g) almost everywhere, we have, for almost
every x € B(y,2 )\ E,

Jux) = (B(,274))|
o (BO27) < ml L (B(v27)

u—u = u-u

<y u(z) —u(x <y ! ulz) — ulx
<y fs(y,z—k)l (2) —u(x)ldu(z) s ¥ Ji(x,z—kﬂ)l (2) = u(x)ldp(2)

sy 'e(27h)

(4 L Qw5 e M),

which completes the proof of (i).

Now, we prove (ii) and (iii). Let A and € be as in (ii) and (iii) of the present lemma.
Similar to ([41] (3.3)), by (ii), (iv), and (vi) of Lemma 13, we have, for any y, ¥ € (0,1/2]
and any ball B,

Y i Y
mlu—m;/(B“ (B) < clgﬂg m|u*L'\+|C*’"Z(B)‘ (B)
= nffrlo(2) +1e -2

< inf[my/ (B) +m, _C‘(B)]. 1)

ceR| el

Moreover, by the geometrical observation that, forany k € Z,y € X, and x € B(y, 2-k+1 );
B(x,27%) ¢ B(y,27%¥2); and the doubling property of x, we obtain

pu(B(x,27%2)) < Cou(B(x,27%)) < Chu(B(y,27572)) < Cap(B(r,275)).
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Therefore, from this, the definition of generalized Lebesgue points; the doubling
property of y; (i), (iii), (iv), and (vi) of Lemma 13; C,, € [1, »); and (61) withy’ = y/ Cﬁ and
Breplaced by B(x,27/), we deduce that, for any generalized Lebesgue point x € B(y,27¥1),

Ju(x) = mi (B(y.27))|
< Ju(x) = m (B(x,2752))| + |m} (B(x,2752)) = m} (B(y.27"))]
< D |l B 277h) = ml (B 270)) |+ [l (B(r,27)) = ml (B(x, 272))|

J=k=2

y 7 zmlyufmz<za<x,sz>>|(3(x’TH)) I (B2 (B(»,27)) (62)
=

- ];zm;;/’c:“ B(x27 )|(B(x72_j)) +m\7u/lcf:u(3(xz A+2))|(B(x’2_k+2))

: j;zm'y”/'c"i(f?(ﬂ (B 27))

: Zk: ggﬂg[ M- (B 27) - my,_ (B 27) |

On the one hand, (62), combined with Lemma 15(ii) with & therein replaced by j, (9)
with k and kg therein replaced, respectively, by —j and —k + 2 and the definitions of M and
A, implies (ii) of the present lemma. On the other hand, (62), combined with Lemma 16, the
definition of M, and . j>x_» 27J€ < 27%€ implies (iii) of the present lemma, which completes
the proof of Lemma 17. O

We now establish the convergence of approximations by discrete y-median convolu-
tions as below, which is a generalization of ([41], Theorem 1.1) from fractional Hajtasz-type
spaces to those with generalized smoothness.

Theorem 4. Let y € (0,1/2], F € (M}, (X), Ny, (X)} with ¢ € Ay and p, g € (0,0), and
ueF. Then, |lu— u;,ll;: — 0as i — oo, where {M;/,,»}izo are the discrete y-median convolutions as
in Definition 15(i).

Proof. By similarity, we only consider the case 7 = M), ,,(X ). Lety e (0,1/2],i€ Z+,
be as in Definition 15(i), u € M9 ,(X), and {glez € D (u) N L7 (X, 19).

Let 2 € (0,min(p,q)), € € (0,—1log, y), {B)}jeg be any given ball covering of X with
the radius 27" such that ¥ jc s Lg; <1, and {¢;} jes, consisting of a sequence of ¢2'-Lipschitz
functions, a partition of unity with respect to {B;} jc s as in Definition 8. For any j € 7, let
m}(B ;) be as in Definition 13. Then, by the properties of {¢;} jcs, we have

u—u;i = Z(u—mZ(Bj))goj. (63)

JeT

—i

Using Lemma 7 with u and L™! therein replaced, respectively, by u — m}(B;) and c2/,
we conclude that, for any j € 7, {hy j}keZ/ defined by setting, for any & € Z,

; -1
T {Zl_k["’ 27| fu=mi(8)) |+gk} Lp,  k>i,
kj - .
[¢(2 ] |u mu |123,a k<i,
is a positive constant multiple of an element of D?([u — m},(B;)]¢;). From this, (63), an

argument similar to that used in the estimation of (26) with u,-i, up;, and iy ; therein
replaced, respectively, by u2 i m,,( j), and h* , Lemma 17(iii), (27), and }, e 123/ <1, we
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deduce that {}ez, defined as in (28) with the above 1 and ¢, is also a positive constant
multiple of an element in D?(u —u)_,). By this, (32),

—i

[Z gz]l/q

k>i-4

< IHgrlkezllLr (x 10y <
Lr(X)

with i € Z, and the dominated convergence theorem with respect to u, we obtain

[ Z gz]l/q

k=i—4

—_ . < h < :
Hu uzszM"’J(X) <l k”Lp(X,[LI)

Lr(X)

as i — oo. Then, using (63), Lemma 17(iii) instead of Lemma 5(iii), the properties of {¢;} jc7,
Lemma 1(ii) with € € (0, —log, @), the Fefferman-Stein vector-valued maximal inequality
on LP/4(X,19/1) (see ([56], Theorem 1.2) or ([57], Theorem 1.3)), $(0) = 0, and an argument
similar to that used in the estimation of (33), we conclude that

(Z g;]]l/q

1>i-4

-0
Lr(X)

b=y < 427

LP

as i — co. This finishes the proof of Theorem 4. O

Now, we state the following variant of Theorem 3 for y-medians.

Theorem 5. Lety € (0,1/2], ¢ € A, and F be one of the following cases:
(i) F = M) (X) = MPP(X) with ¢ being a modulus of continuity and p € (1,);
(i) ¥ = Mﬁ,w()() = M?P(X) with ¢ being a modulus of continuity, ay € (0, 1), and p € (0,1];
(i) F € {M,(X), N}, (X)) with ay € (0,1), By € (0,2), and p, q € (0,0).

Then, for any u € F, there exists a set E with Capy(E) = 0 satisfying that, for any
v € (0,1/2], there exists an F -quasi-continuous function u* on X such that, for any x € X \ E,

u* (x) = limm) (B(x,r)). (64)

r—0

To show Theorem 5, similar to the proof of Theorem 3, we need a weak-type capacitary
estimate with respect to M”. To this end, we first prove an auxiliary lemma as below, which is
about the boundedness of M”* in ¢-Hajtasz-type spaces and generalizes ([41], Theorem 7.6).
Here and thereafter, M? and M”* are as in Definitions 14 and 15(ii), respectively.

Lemma 18. With the same assumptions as in Theorem 5, there exists a positive constant C =
C(sy.c,) such that, for any u € 7,

M7 ull- < Cllullg, (65)
where MY* is as in Definition 15.

Proof. Let all of the symbols be as in the present lemma. Without loss of generality, by the
definition of M"*, D¢(u) c D?(|ul), and D?(u) c D?(Jul), we may assume that u > 0.

Let i € Z, {Bj} jeg be any given ball covering of X with the radius 27 such that

Z 1p; <1,

jeT
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{¢;}jeg be a partition of unity with respect to {B}}cs as in Definition 8, u;i be as in
Definition 15, and M” be as in Definition 14. Then, by (57) and ([41], (2.7)), we have, for
any given p € (0, ),

M0l ) 5 07

Loy S Wlr ) < oo, (66)
where ¢ is the same positive constant as in (57). From this and Remark 6, we deduce that
M¥*u < oo almost everywhere.

Let 7 = M%P(X) and g € D?(u). Using (i) and (ii) of Lemma 17 instead of (i) and (ii)
of Lemma 5, and M”*u < co almost everywhere, from an argument similar to that used in
the proof of Lemma 8 with {up e and up-i therein replaced, respectively, by {m} (B )Y e
and u}_, we deduce that M(g) is a positive constant multiple of an element in D% (M”*u)
and, if a4 € (0, 1), then for any A € (0, o), [M(g")]'/? is a positive constant multiple of an
element in D?(M?*u), where both of the positive constants are independent of u and g.
Below, we let A € (0, min(p, ¢)). Thus, by the boundedness of M on L?(X) when p € (1, ),
and on LP/*(X) with 1 € (0, p) when p € (0, 1], we obtain, when p € (1,0),

1Al ) < M@)o < Nl
and, when ¢y € (0,1) and p € (0, 1],

M gy < M)

|y S 1lr e
This, combined with (66), proves (65) when ¥ belongs to either (i) or (ii) of the
assumptions of Theorem 5.
Next, we prove (65) when 7 belongs to the case (iii) of Theorem 5. By similarity, we
only consider the case ¥ = Mﬁ,q(x) with ¢y € (0,1), By € (0,2), and p, g € (0,00). To
prove (65), by (66), it suffices to show

v “”M;;,,(x) S llellyge x)-

Let {gk}rez. € D?(u) be such that Kgxtkezllir(x.ia) < ”u”MZq(/\')’ and € € (0,-log, ay).
Recall that we have proved in the proof of Theorem 4 that {hk}kez, defined as in (28) with
the above 4 and ¢, is a positive constant multiple of an element in D?(u —u} ). Thus, by
{8klkez € D?(u), we conclude that {gi + ez is a positive constant multiple of an element
in D’ (u] ).

Let 6 € (0, min{l —log, By, —10g, @y — €}) and {gkliez be as in (42) with the above A
and 6. Similar to the proof of Lemma 9, we know that, for any k € Z, g + hx < gk
almost everywhere. By this and the proved conclusion that {gi + hliez is a positive
constant multiple of an element in ]D)‘?’(u;‘.), we conclude that {g;}ez is also a positive
constant multiple of an element in ]D)q’(u;,.) with the positive constant independent of
i. Furthermore, using the fact that M”*u < co almost everywhere and Lemma 2(ii), we
find that {gx}scz is a positive constant multiple of an element in D¢ (M”*u). From this, the
Fefferman-Stein vector-valued maximal inequality on LP/4(X, [4/1) (see ([56], Theorem 1.2)
or ([57], Theorem 1.3)), and the choice of {gi}iecz, we deduce that

||M7’*M||Mﬁq()(> S ||{g~k}keZ||Ln(x,]f/)

{wawﬂw

1eZ

1/4

Lr/A(X)

< Mihezllr e < llgs -
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Thus, by (66), we conclude that (65) holds true for ¥ = Mﬁ’q(x ) with ag € (0,1),
Bg €(0,2), and p, g € (0, ). This finishes the proof of Lemma 18. 0

The following weak-type capacitary estimate plays a crucial role in the proof of
Theorem 5. Since it is just a generalization of ([41], Theorem 7.7), and a straight corollary
of both Lemma 18 and the lower semi-continuity of M”*u for any u € L°(X), we omit
its proof.

Lemma 19. With the assumptions same as in Theorem 5, there exists a positive constant C,
depending only on ¥, y, and Cy, such that, for any u € ¥ and « € (0,0),

Capr({xe X Mu(x) >«}) < CxP|\ull”,
where MY is as in Definition 14 and C,, as in (1).

Now, we turn to prove Theorem 5. Since the proof of Theorem 5 is quite similar to
that of Theorem 3, we only sketch the main steps.

Proof of Theorem 5. Let 7 be any given function space as in (i), (ii), or (iii) of the present
theorem, and p € (0, o). We first let u € ¥. By Theorems 2 and 4, we find that, in any case
as above, there always exists a sequence {u;};en of continuous functions such that, for any
ieN, ‘

e = il < 274),

For any k, i € N, define

Agi = {x eX: MYCR (- ) (x) > 2"}

5= = o= YN Ues

k=2 k=2 jeN k=2 jeN izj

and

Then, by Lemma 19, we have, for any given k € N, Cap+(Ax;) < 27" and, by Lemma 6,
for any j € N, Cap#(By;) < 27/, which implies that, for any given k € N, Cap#(E;) = 0
and hence Cap #(E) = 0.

For any given k € N'\ {1} and any i € N, by the continuity of u; and (55) witht = 1, we
find that, for any x € X,

limsupm' /¥ (x)l(B(x, r)) <k lim Ji(» )lu(y)—u(x)ldy

PR r—0t

=0.

From this, (i), (iv), (vi), and (vii) of Lemma 13 and the definitions of M'/ (%) and A,
we deduce that, for any given k € N\ {1}, any y € [1/k,1/2],i € N,and x € X\ A,

lim sup|u; (x) — m}, (B(x,r))| < limsupm” _ (B(x,r))
r—0t r—0+t i ()l
. 1/(2k 1/(2k
< hzzlip m‘ui(u[‘ ) (B(x,r)) + m|l‘i£”i()x)|(B(x’ r)) (67)

< MY () (x) <27,
By an argument similar to that used in the proof of Theorem 3, with (53) replaced
by (67), we conclude that, for any given k € N\ {1}, there exists a function v on X \ E; such

that, forany y € [1/k,1/2] and x € X \ Ey,

ve(x) = lim+ m}(B(x,r))

r—0
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and, moreover, for any j € N, v; is continuous on X \ By .
For any given y € (0, 1/2], define v; by setting, for any x € X\ E,

5(x) = lim i (B(x.r).
Then, for any k € N with k > 2, vy, = w in X\ E and hence vy is continuous in
X\ (EU By ) for any j € N. Notice that, by Lemma 6, for any j € N,

Capy#(EUBy;) s27.

By choosing j big enough, we conclude that any function u* satisfying u* = v:‘/ inX\E
is ¥ -quasi-continuous in X and hence the desired function in the present theorem.

Similar to the proof of Theorem 3, by Corollary 3, the proved conclusion for the case
u € ¥, and Lemma 6, via choosing a sequence of Lipschitz continuous functions supported
in balls, we obtain the desired conclusion of the present theorem when u € # . This finishes
the proof of Theorem 5. O

Remark 7. With the same assumptions as in Theorem 5, by Lemma 14, (64), and Remark 4(ii), we
have the following two observations:

(i) u* = ualmost everywhere;
(ii) every point outside E is a generalized Lebesgue point of u.

From (ii) and ([45], Lemma 17), we further deduce that, if u € F is F-quasi-continuous, then there
exists a set E with Cap & (E) = 0 such that every point outside E is a generalized Lebesgue point of
u. This means that F-quasi-continuous functions may have more Lebesgue points, compared with
the functions that are only locally integrable.

In the following, we consider another technical tool, the generalized Hausdorff mea-
sure, which can also be applied to measure the exceptional set of (generalized) Lebesgue
points. To see this, we study the comparison between the capacity and the above gen-
eralized Hausdorff measure. We refer the reader to [55,62,63] for more studies on the
comparison between the capacity and the generalized Hausdorff measure, and to [64] for a
study on measuring the exceptional set of Lebesgue points via the generalized Hausdorff
measure straightly.

Lethe A, 0 < (0,1],and R € (0, o|. The Netrusov—Hausdorff cocontent ‘Hﬁ’g, related to &,
6, and R, is defined by setting, for any E C X,

el
Hy(E) = inf{ {Z{%} ] cEc UB(x,',rt), r < R}, (68)

iel iel

where the infimum is taken over all coverings {B(x;,r;)}icr of E, and 7 c N an index set.
Then, the generalized Hausdorff measure H"?(E), related to h and 6, is defined by setting, for
any E C X,
H"(E) := lim sup Wz’g(E). (69)
R—0F
Recall that the Netrusov—-Hausdorff content on R" defined via the powers of the radius
was first considered by Netrusov [65] and generalized to metric spaces via an increasing
function i by Nuutinen ([55], Definition 5.1).
Observe that some lower bound and upper bound estimates for the N} -capacity

and the M]S,’q—capacity with p, ¢ € (0,0), in terms of the related Netrusovfi‘zlausdorff
contents, have been established, respectively, in ([55], Theorems 5.4 and 5.5) and ([63],
Theorems 3.6 and 3.7) where N} , and M}, , denote the classical fractional Hajtasz-Besov
and Hajtasz-Triebel-Lizorkin spaces, respectively. By some arguments similar to those

used in the proofs of ([55], Theorems 5.4 and 5.5) and ([63], Theorems 3.6 and 3.7), we
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have the following conclusions (Theorems 6 and 7) on the generalized spaces Mﬁ,q((\’ ) and
Nﬁq(X ); we omit the details of their proofs.

Theorem 6. Let ¢ € A, p € (0,), g € (0,00], 0 := min{l,q/p}, F € {Mﬁyq(X),Nﬁ,q(X)}, and
Cy be as in (1). Then, there exists a positive constant C = C g such that, for any E C X and

€ (0,0),
Cap 7 (E) < CHM(E), (70)

where Wg'g is as in (68).

Remark 8. Let ¢(r) := r® with s € (0,1) for any r € [0, o). In this case, (70) with ¥ = Nﬁyq (X)
becomes
Cap o () (E) s Hy"(E)

with the implicit positive constant independent of E, which is just ([55] Theorem 5.4); moreover,
taking & = M}’iq()() and letting R — 0% in (70), we obtain

Cap o (1) (E) < H(E)

with the implicit positive constant independent of E, which is just ([63] Theorem 3.6), where H"Y
is as in (69).

Theorem 7. Let ¢ € A, p, g € (0,00) , F € (Mh,(X),Nj,(X)}, w be any given function of
admissible growth such that, forany L€ 7,

1
Zm<oo;

k=L
and C,, as in (1). Let xo € X, R € (0, 1), and By := B(xo, R). If there exist two positive constants
K1 € (2,00) and Ky € (ky,00) such that kyBo \ k1 By # 0, then there exist two positive constants T
and C = C(y, s w5 .c,) SUch that, for any compact set E C By,
heos
He (E) < CCaps(E),
where, for any r € (0,R], hy,(r) := [¢p(r)w(r)]?, and (Hfl;’l (E) is as in (68) with § = 1.

Remark 9. Let ¢(r) := r* with s € (0,1) for any r € [0,00). When ¥ = Nﬁq(X), if hy,, as in
Theorem 7, satisfies that, for any N € Z,

N

2’
f (o (1)]"/765 dt < oo
0

(which is just the assumption in ([55], Theorem 5.5)), then, for any L € Z.,

2A Zfzkl (O

~f (w(n)] " dr

0
sz

~f [ho(1)]"/7#5V di < o,
0

Thus, Theorem 7 implies ([55], Theorem 5.5) with ky = 4 and k, = 8.

k>L
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When ¥ = Nﬁ’q(X), for any given & € (0,00), let w(r) := [log(1/r)]~'=¢/? for any
r € [0, o). Obviously, we have
D llog(2)] 777 < oo,

k=L

Moreover, if Cap¢(E) = 0, then, by (71), we obtain ‘Hfo“"l (E) = 0, which implies ([63],
Theorem 3.7) with k; = 4 and ko = 8, where H!"! (E) is as in (68) with R = .

Finally, we concentrate on the space M%7 (X) withay € (0,1) and p € (D/(-1log, ay), ),
where D is as in (1). We point out that, similarly to ([55], Theorems 5.4 and 5.5) and ([63],
Theorems 3.6 and 3.7), the proofs of Theorems 6 and 7 rely on some equivalent character-
izations of the related capacities Cap N (X) and Cap M (X)7 in which the counterpart for
the capacity Cap yo, () is unknown. Instead, we use Lemma 14 and the doubling property
of the measure to obtain the following result.

Theorem 8. Let ¥ = Mﬁm({\’) = M%P(X) with ¢ € Aw, ay € (0,1), p € (D/(-1log, ay), ),
and D and C,, be as in (1). Let By be a ball with the radius Ry € (0, 0o). If there exist an Ry € (0, Ro)
and a t € (2, c0) such that, for any ball B C 2By with the radius no more than Ry, TB\ 2B # 0,
then, for any compact set E C By,

Cap(E) =0 = H"(E) =0, (71)
where, for any r € (0, Ro], h(r) := [¢(r)]?, and H""' (E) is as in (69) with 6 = 1.

Proof. Let all the symbols be as in the present theorem and L € Z such that Ry € (2/71,2%].

We first prove H!(E) = 0 = Cap4(E) = 0. To this end, let R € (0, min{1, Ro}] and
{B(xi,ri) : ri < R}y be a ball covering of E, where I is an index set. For any i € 7, we let ¢;
be an r; !-Lipschitz function supported in 2B(x;, r;) such that 0 < ¢; < 1 and ¢jl Blxr) = 1
The existence of such {¢;};cr can be found in the proof of ([63], Theorem 3.6). For any
i € I, by Definition 10; the continuity of ¢;; Corollary 4 with L~! and E therein replaced,
respectively, by r; and 2B(x;, r;); the doubling property of 4; the definition of A; and r; < 1,
we have

Cap #(B(xi,ri)) < ||2<P||p¢
i+ [¢(ri)]71]pll(23(xi7ri))
< [o(ri)]Pu(B(xi, 11))

with the implicit positive constants independent of x; and r;. From this, Remark 4(iii), and
Lemma 6 with 6 = 1 and E; replaced by B(x;, r;), we deduce that

Cap 4 (E) < CapT(U B(x,-,r,«)] < Z ﬂ([(IZExi,ri)) - Z #(Bh((xri;)ri))’

NP
iel i€l r’)] iel

which, combined with (68) with § = 1, implies that Cap +(E) < ‘Hg’l (E) with the implicit
positive constant independent of R and E. Letting R — 0T, we obtain Cap & (E) s H"!(E),
which implies that, if H"!(E) = 0, then Cap #(E) = 0.
Conversely, if Cap#(E) = 0, then by the definition of Cap & (E), we find that, for any
given ¢ € (0, ), there exists a function v such that v > 1 in a neighborhood of E and
IIVIIZN_,,(X) < Capg(E)+e=c¢ (72)
For any given generalized Lebesgue point x € E and any given k € Z withk > -L + 1,
take B := B(x,27%). Then B c 2By, which together with the assumption of the present
theorem, means that 7B\ 2B # 0. Let ¢ be a Lipschitz function such that ¢|p = 1 and
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¢lx\2p = 0. Define u := vp. Then, by Lemma 7(ii) with £ and u therein replaced, respectively,
by 2B and v, we conclude that there exists a g € D¢(u), supported in 2B, such that

llgllzr(x) < IVl (2)s (73)

where the implicit positive constant depends only on ¢, p, and K.

Since 7B\ 2B # 0, it follows that there always exists a point z € 7B\ 2B. Observe that,
for any y € 2B, we have d(y,z) < (7 +2)27%, u(z) = 0, and g(z) = 0. Then, by the definition
of D?(u) and ¢ € A, we conclude that, for almost every y € 2B,

_ —k
) = _inf JuG) -u(x)| < _inf ¢(d(r.2))[e0) +5(2)] < ¢(27)s(v).
which combined with (ii), (v), and (vi) of Lemma 13 and the doubling property of u, implies
that
|m | < mlu‘( ) < ¢(27%) m}(B).

From this; the definition of the generalized Lebesgue point; the doubling property of
w; (iii), (iv), and (vi) of Lemma 13; (61); Lemma 15(ii) with 1 = p; and (55) with r = p and
E = B, we deduce that, for the above given x,

()] < fule) = m (B)] + mi ()]
< 3 (B, 277Y) = mi(B(x,27))| + [ (B)|
J=k-2
/€, —j
) j»szlyu-r:z<s<xm>|(B (6277)) + i B)
< 00 i 5B 27) + (B 27|+ 0027 ()
k=

s . e(27) {f . M)[g(y)}”d#(y)}l/p

)
o{f [g(y)]ﬂdum}w

<) ¢(2"){J€;<X’2w)[g(y)}”du(y)}l/p

j2k=2

-1/
~ Y s £ 2N gl (gan-iy)-

J=k=2
Using this and u|enp > 1, we conclude that, for this x,
i _j -1/
1 Y o[BI llgll (o) (74)
jzk=2

where the implicit positive constant is independent of x and k. Moreover, by the doubling
property of u, we find that, for any j > k-2,

|u(B(x, 2"'“))]_1 < 20792 (B(x, 27442

where the implicit positive constant depends only on C,,. From this, (74), the fact that g is
supported in 2B, the doubling property of 1, p € (D/(—1og, ay), ), and Lemma 1(i) with
& = D/ p, it follows that, for x and k as above,
- . _ 71/
Ly 2020 u(B(x, 272N llglly (g
k=2
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<62 u(B0 2N Il 75)

where the implicit positive constant is independent of x and k. By (73), (75), and the
definition of /1, we conclude that, for any given k € Z with k > —L + 1 and any generalized
Lebesgue point x € E,

/.t(B(x,Z [¢ ] le I
h(2’k) * h(27k) LP(B(x274H1))
Paieadlid

< ) Mhssagea-ton)

~ ||V||M¢,,,(B(X,2-k+l))’ (76)
where the implicit positive constants depend only on &, y, ¢, p, and Cy.

Recall that, for any ball B” with the radius r € (0,0), u(B’) € (0,c0). Then, by
Lemma 14, we have that, for any k € Z with k > —-L + 1 and x’ € E, there always exists a
generalized Lebesgue point y in B(x’,27%). Thus, B(x',27%) c B(y,27%*!) and B(y,27*) c
B(x',27¥1). Using this, (76) with x therein replaced by y, the definition of /, ¢ € A, and the
doubling property of i, we further conclude that, for any given k € Z with k > -L + 1 and
any x’ € E,

p(B(x.271) _u(B(y.27"))
k

h(2%) = (2
u(B(y.271))
s W s ||V||M¢,, (B(r2k)) S ||V||M,,,p (B(w 2kH1))" (77)

For any given R € (0,257!], let kg € Z be such that 27%0 < R < 27%+!. Obviously,
{B(x,27%) : x € E} is a covering, consisting of balls with uniformly bounded diameter,
of E. Thus, by a covering lemma for doubling metric spaces (see, for instance, ([66],
Theorem 3.1.3) and ([67], Lemma 2.9)), we obtain a countable subfamily {B(x;, 2"‘0) DX €
E, i € I} of disjoint balls with the radius no more than R such that

Ec| J5B(x27™),
iel

where I is an index set. From this, (68) with § = 1 and R replaced by 5R, the doubling
property of u, ¢ € A, (77) with k = ko + 1, the property of {B(x;,27%0) : x; € E, i € I},
and (72), we deduce that

—ki
I Z/J (5B(x;,27))
ko
iel 5 z
/1 xl’
> Z h(27k-1y 7 Z ”v”MM w2ty S ||v”M‘l’l’ x) =&
iel il

where the implicit positive constants depend only on ¢, p, C,,, and R. Letting &£ — 0T, we
then conclude that, for any R € (0,2571], (H;’I’; (E) = 0, which further implies that

HM(E) = lim sup?‘{gl’;(E) =0.
R—0T

This finishes the proof of Theorem 8. O
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Remark 10. Let F and h be as in Theorem 8, and D and C,, be as in (1). We point out that, by the
proof of Theorem 8, the implication

Capy(E) =0= H"'(E) =0
holds true for any set E C X.
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1. Introduction

The aim of this note is to consider spaces of pointwise multipliers on Morrey spaces
and weak Morrey spaces. Our results supplement the ones in [1-4]. We state our main
results in Section 2. Section 1 is devoted to the formulation of the results.

We denote by LO(IR") the space of all measurable functions from R” to R or C. Let
E1,E; C L%(R") be linear subspaces. We say that a function ¢ € L°(R") is a pointwise
multiplier from E; to Ey, if the pointwise multiplication f - g is in E; for any f € E;. We
denote by PWM(E;, E,) the set of all pointwise multipliers from E; to E,. We abbreviate
this as PWM(E, E) to PWM(E).

For p € (0, 00|, LP(R") denotes the usual Lebesgue space equipped with the norm
|- [|Lr- It is well known by Holder’s inequality that:

If-gllrz < Ifllzrligllers  (f € LP1(R™), g € LP3(R™))
for 1/pa = 1/p1 +1/p3 with p; € (0,00], j = 1,2,3, so that p; > p,. This shows that:
PWM(LM (R"), LP?(R")) > L (R").

Conversely, we can show the reverse inclusion by using the uniform boundedness theorem
or the closed graph theorem, that is,

PWM(LY! (R"), LP2(R")) = P (R"). M
In particular, if py = pp = p, then:
PWM(LP(R")) = L®(R"). (2)

Meanwhile, if p; < p,, then:
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PWM(LP (R"), L2 (R")) = {0} ©)

since L{! (R") is not included in Lfozc(]R"). Proofs of (1) and (2) can be found in the work
of Maligranda and Persson [5], Proposition 3 and Theorem 1. See also [4]. We do not
prove (3) directly in this paper, but we mention that (3) is a direct consequence in Section 2.
The goal of this note is to generalize this observation to Morrey spaces motivated by the
works [2-4,6]. For p € (0,00) and A € [0, 1], the (classical /strong) Morrey space LPA (R")
is defined as the space of f € LO(R") such that:

1/p
O ,,d> o s
£l ppa S§%<|Q|3 /Q [f(y)IP dy < oo, (4)

where Q stands for the set of all cubes in R" whose edges are parallel to the coordinate

axes. The parameter p serves to describe the local integrability of functions, while A

describes the growth of [ |f(y)|Pdy in comparison with |Q|. It is easy to see that LA (R")
Q

is a quasi-Banach space, which is subject to the scaling law || f ()| 0 = e |l o for
all f € LPA(R") and t > 0. The notation LP*(R") was used, for instance, by Peetre [7].
The weak Morrey space wLP* (R") is defined by a routine procedure: The weak Morrey
space wLP(R") is the set of all measurable functions f € LO(R") for which ||f|,,;p1 =
sup Al|x(x,00 (IfD) |l s finite, where x 4 stands for the characteristic function of the set A.
A>0

To describe various properties of functions in LP*(R"), it is sometimes convenient to
use the notation Mg (R"). Let 0 < g < p < 0. Recall that for an LfOC(R”)—function f,its
Morrey norm ||f|] M is defined by:

1
q

Il = s9p 10174 ([, 15wy ®)

The Morrey space ./\/lf; (R") is the set of all L7(IR")-locally integrable functions f for which
the norm |[|f| » is finite. Once again, by the routine procedure, we define the weak
7

Morrey space w/\/l;7 (R™) as the set of all measurable functions f € LO(R") for which
£l aer = sup AllX(a,00) (L) || v is finite. The parameter g describes the local integrability
A0 ' 1

of functions. As is seen from the scaling law Hf(t)||M§ =t Hf”Mﬁ,’ forall f € M,’;(R”)

and t > 0, the parameter p in the Morrey space Mf; (R") describes the global integrability.
We remark that some authors swap the role of p and g; see [6] for example.

By (4) and (5), we have:

LIMR") = Mg(IR{”), if A=mn(l—g/p) orequivalently p= %

Let 0 < p < co. It is noteworthy that LPO(R") = M} (R") = LP(R") and that
LPM(R") = MP(R") = L*(R"), so that Morrey spaces generalize Lebesgue spaces.

Let0 < g; < p; < 0,1 = 1,2. We consider the space of pointwise multipliers from
MUE(RT) to ME2(R™). A direct consequence of the closed graph theorem is that there
exists a constant M > 0 such that, for f € M}!(R") and g € PWM(M}!(R"), ME2(R™)),

-8l < MIFI e (6)
92 1
One naturally defines a norm on PWM(M}! (R"), MJ2(R")) by:

||g|\PWM(M511/M%) =inf{M > 0 : (6) holds for all f € M}!(R")}
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forg € PWM(M;} (R™"), M f;zz (R™)). In the following, unless otherwise stated, the equality:
PWM(E;, E>) = E3

tacitly means the norm equivalence, that is a function ¢ € LO(R") belongs to E3 if and only
if g € PWM(Ey, E), and in this case:
HgHPWM(EI,EZ) ~ gl

where the implicit constants in ~ do not depend on g. It follows from the scaling law of
Morrey spaces that:

e
”g(t')HPWM(Mgll,M,’;ZZ) =t nrnn ”gHPWM(M;’ll,M’,g)

forall g € PWM(ME! (R™), MEZ(R™)).
An easy consequence of Holder’s inequality is that:
Hf ) g”U’z:)\z < ”fHLP]rM HgHLﬂsr)tsr

if pj € (0,00) and /\j €[0,n],j=1,2,3satisfy 1/po =1/p1 +1/psand Ay/pr = A /p1 +
A3/ p3. This shows that:

PWM(LPM (R™), LP>2 (R™)) D LP3A3(R™). ?)

Therefore, the aim of this note is to investigate the difference between the two spaces above.
It is important to note that the scaling laws considered above force the parameters p1, p2, p3
to Satisfy Ao/ p2 = M/p1+ A3/ ps.

In this paper, we describe PWM(LP1M1 (R™), LP2A2(R™)) for all parameters p i€ (0,00)
and A; € [0,1), j = 1,2. Of interest is the case where A, < A1, since we already specified
PWM(LPrA1 (R™), LP2A2(R™)) in the case A; < A, in our earlier paper [3].

Theorem 1 ([3], Corollary 2.4). Let p; € (0,00) and A; € [0,n),i =1,2. Then:
PWM(LP1M (R™), LP222 (R™))
= {0}, p1 < pa2 or 71+()L17n)%<)L2,
= L®(R"), p2 < p1 and ?\z=n+(/\1—n)%,
= LP3,/\3(R”), pr<pp and Ay <Ay <n+ (A — n) 22

P’
2 LP3M(R™), po < py and 0 < )\1% <Ay <Ay,
2 {0}, p2<p1p and 0 <Ay < M%/

where p3 = p1p2/(p1 — p2) and A3 = (p1Aa — pat1)/ (p1 — p2)-

Let p; € (0,00),i =1,2. As the endpoint cases of A\; = n or/and A, = 1, we have:

= < =
PWM(LPI’)\I (R"), Lpz,)\z (Rn)) {O}:\ 0< A <Ay =m,
:LPZ/Z(R”), 0§)\2§)\1:1’l.

We rephrase Theorem 1 as follows:
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Theorem 2. Let 0 < g; < p; < 00,1 =1,2. Then:

PWM(M} (R"), ME2(R"))
= {0}, q1 < g2 or p1 < pa,
=L®R"), q2<q1 and p; = py,
= MB®R"), g2 <q and p1g2/q1 < p2 < p1,
2MPRY), g <q<prand 1/(1/p1+1/42-1/q1) < pa < p142/ 1,
2 {0}, G2 <qu<p1and pp <1/(1/p1+1/q2—1/q1),

where g3 = q192/(q1 — q2) and p3 = p1p2/ (p1 — p2)-

We have notation for the scale LP*(R") analogous to the scale Ms (R™). We may
also replace M}! (R") and/or M52(R") by wM?! (R") and/or wM?2(R") to define the
corresponding multiplier spaces. According to [1], we have a counterpart of Theorem 1 to
weak Morrey spaces: we can replace LFi"i (R") by wLPi'i(R") in Theorem 1 and MZ; (R™)
by wa;j (R") in Theorem 2. As for weak Morrey spaces, the following results were
obtained in [1].

Theorem 3 ([8], Corollary 3). The same conclusion as Theorem 1 remains valid if we replace
LPe (R™) by wLPeM (R™) for k = 1,2,3. As a result, the same conclusion as Theorem 2 remains
valid if we replace MJ¥(R™) by wMUEF(R) for k = 1,2,3.

k k
It is interesting to compare these results with the following endpoint cases:
PWM(L™(R"), M (R")) = M[(R"),
PWM(L®(R"), wM}(R")) = wME(R"),
PWM (M} (R™), L®(R")) = PWM(wM] (R"), L®(R")) = {0}

forall0 < g <p < oo.
The goal of this note is to give complete characterizations of:

PWM(MJ!(R"), ME2(R"))

including
PWM (wMP! (R), ME2 (R™)),
PWM (M} (R"), wM (R"))

and:
PWM(wM]! (R"), wME2(R™)).

Here are tables of the characterization of these spaces. For example, in Table 1, we
deal with the case of p; > pp and q; > g, in Theorem 4 to follow.

Table 1. PWM(M}] (R"), ME2(R")).

P1<p2 P1=1p2 P1>p2
71 < q2 Theorem 2 Theorem 2 Theorem 2
7 =1q2 Theorem 2 Theorem 2 Theorem 4
a1 > q2 Theorem 2 Theorem 2 Theorem 4

The remaining part of this paper is organized as follows: In Section 2, we present our
main results summarized as Tables 1-4. Section 3 deals with preliminary and general facts
of the multiplier spaces. Section 4 is devoted to the proof of the results summarized in the
tables above.
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Table 2. PWM(wME! (R™), M2 (R")).

r1<p2 p1=p2 p1> p2
7 <q2 Proposition 1, 1 and 2. Proposition 1, 2. Proposition 1, 2.
7 =q Proposition 1, 1. Propositions 1, 3. Theorem 6
qa > q2 Proposition 1, 1. Proposition 2 Theorem 6

Table 3. PWM(M}! (R"), wM? (R™)).

r1<p2 p1=1p2 P1>p2
n <q2 Proposition 3, 1. Proposition 3, 1. Proposition 3, 1.
n=1q Proposition 3, 1. Proposition 3, 2. Theorem 7
a1 > q2 Proposition 3, 1. Proposition 3, 2. Theorem 7

Table 4. PWM(w M/ (R"), wMp2 (R™)).

P1<p2 P1=p2 P1>p2
7 < q2 Theorem 3 Theorem 3 Theorem 3
7 =192 Theorem 3 Theorem 3 Theorem 8
a1 > q2 Theorem 3 Theorem 3 Theorem 8

2. Main Results
2.1. Characterization of PWM (MU (R"), ME2 (R™))

To characterize the pointwise multiplier space PWM (M gll (R™), M,’;zz (R™)), we recall
a couple of notions in [9,10].

A quasi-Banach (resp. Banach) lattice on R" is a nonzero quasi-Banach (resp. Banach)
space (E, || - ||) contained in LO(R") such that ||f|g < |/g|lg holds for all f,g € E such
that [f| < |g|- Let u € (0,00). For a quasi-Banach lattice E C L%(R"), we define its
u-convexification E* by:

E'={f:1fI"€E}, |fle = (IIF"Ie)™

For example, (L' (R"))P = LP(R").
We next recall the notion of block spaces introduced by Long [10].

Definition 1. Let 1 < g < p < o0. A function A € LO(R") is a (p, q)-block if there exists a cube
Q that supports A and:

=
3=

llAll,y <1QI7 7, (8)

where p' and q' stand for the conjugate exponent of p and g, respectively. If we need to specify Q,
then we say that b is a (p, q)-block supported on Q. Let 1 < g < p < oo, and define the block

space 7-[5,/ (R") as the set of all f € LV (R") for which f is realized as the sum f = Y T A; with
j=1
some {T}7, € (Y(N) and some sequence {Aj}i21 of (p,q)-blocks. Define the norm HfHHPI for
ql

f €M (R as:
11 = infllTla )
q

where T = {Tj}]?'il runs over all admissible expressions as above.
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Finally, to state our result, we recall the definition of vector-valued Morrey spaces
proposed by Ho [9]. Let E(R") C LY(R") be a quasi-Banach lattice, and let p > 0. Then,
the E-based vector-valued Morrey space M&(R") is the set of all f € LO(R") for which:

L xofllE
xolle

Il ey = SuP Q¥

is finite.
Recall that a quasi-Banach lattice E enjoys the Fatou property if sup f; € E and
jeN

]hm Hf]HE = ‘hmf]

a brief remark on the relation among these notions introduced above.

for any sequence { fj} ° 1 in E satisfying 0 < f1 < fo < ---. We make

Remark 1. If || xq|lr = |Q] v for all cubes Q and if E has the Fatou property, then a simple observa-
tion shows Mb(R") = E(R") with the equivalence of norms. In particular, If E(R") = 7—[5,/ (R"),
then MY (R) = E(R").

We provide a complete picture of the description of PWM(M/! (R"), M}2(R™)).

Theorem 4. Let0 < gq; < p; <co,i=1,2:
1. Ifqi < qorp1 < p, then PNM(ME(R™), ME2(R™)) = {0};
2. Ifq > qaand py = py, then PNM(MF! (R ”),Mgzz(]R”)) = L®(R");
3. Ifqn > qaand py > p, then PWM(/\/lf;ll (R"), MB2(R™)) = ML, (R™), where ps and X
are given by:
ps = pP1p2 X:H<%):(Rn)
o XM

In particular,
PWM(MJ! (), MI2(R")) = M (R"),
H 1

Pip2

where p3 is defined by p3 = Pri—pa”

It is significant that Theorem 4 does not require Zi > ZZ , unlike Theorem 2. We give
an equivalent form using the scale LP (R").
Theorem 5. Let p; € (0 o) and A; € [0,n),i=1,2:
L Ifpr <ppor ;- < n”ZA , then PWM(LP1M (RM), LP222(R™)) = {0};
2. Ifpr > ppand ;P = 2P then PWM(LPM (R, LP222(R™)) = L®(R™);
3. Ifpr > prand H- > - pz , then PWM(LP1M1 (R?), LP2A2(R™)) = M, (R"), where
vz and X are gwen hy

_ _ ILUNRY
L/\l + i — n )\2’ X(R”) — H(;lz(':*/"l)) (R").
pin U3 pan (5)

We prove Theorem 4 in Section 4.1.
We combine Theorems 2 and 4 to have a nontrivial coincidence of function spaces.

Corollary 1. Let g; € (0,00) and p; € [q;,00),i = 1,2. Assume that g1 > qo and py > p,. Write

n
— D92 p1p2 andX(R”):H( )/( ) If'h > llz thenMp3(R”) MP

B=q-0P3= pi—p (ﬂ) X”Z(Rn)'
2
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A remark about Corollary 1 may be in order.

Remark 2. Let X(R") be as in Corollary 1, and let Y (R™) = L9 (R™"). Corollary 1 reveals that
MEP (R = MB, (R™), although X (R")%2 # Y(R").

2.2. Characterization of PWM(wMb! (R™), ME2(R™))

Once we prove Theorem 4, we can pass the results above from Mgll (R") towM 511 (R™)
witheaseif 0 < g, < g1 < 0. To describe the multiplier space PWM(w.M qpf (R"), M,’;zz (R™)),
we will recall the definition given in [11,12]:

Definition 2. 1. ([11], Definition 1.4.1) Let f : R" — C be a measurable function. Then,
define its decreasing rearrangement f* by:

fr(#) =inf{A >0 : [{[f| > A} < t};

2. ([11], Definition 1.4.6) Let 1 < p,q < co. The Lorentz space LP'1 is the set of all measurable
functions f : R* — C for which:

Hf”Lm = (/(;m(t%f*(t))q?>%

is finite;
3. ([12], Definition 2.3) Let 1 < g < p < co. A measurable function b is said to be a
(p';q',1)-block if there exists a cube Q such that:

1

1_
supp(b) € Q, (Il ps < Q[P 7 (10)

4. ([12], Definition 2.3) Let 1 < q < p < co. The space HZ,,l(R”) is the set of all L (R")-
functions f for which there exist a sequence {A;}3°; € (Y(N) and a sequence {032 of
(p';q',1)-blocks for which:

=Y Ajb; (11
j=1
in LV (R™). For f € "H;},/J (R™), one defines:

171

q'1

= inf Z ‘/\]‘,
j=1
where inf is over all possible decompositions in (11).

Concerning Lorentz spaces, a couple of remarks may be in order:

Remark 3. Let 0 < p, p1,p2,9,91,92 < oo:
1.  Let G be a measurable set in R". Then:

1
q 1
lxcllips = (g) GI7,

where we understand (p/q)'/1 = 1 for g = co. See [11], Example 1.4.8;

2. Assume that:
1 1 1 1 1 1

, + —.
p Pt P2 9 41 92
Then:
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1
If-8lliea < e? [ fllLma [1gllLr2m
forall f € LPVIL(R") and g € LP>72(R"), or equivalently:

1
lgllpwmrrian, oy < e?lIg]lraa

forall g € LP272(R"). See [8], p. 6, Corollary 3, for the precise constant;
3. We have an equivalent expression if p > 1: For all f € LO(R"),

I fllwer = [IfllLre (12)
~ sup{\Eﬁ*leHLl(E) : E is a measurable set with |E| € (0,00)}.

See [11], Exercise 1.1.12.
Theorem 6. Let 0 < g; < p; < 00,i=1,2. If py > po and q1 > qo, then:
PWM(wMG (R"), M3 (R") = MY, (RY),
where p3 and X are given by:

_omn g (B
1

P T )

We prove Theorem 6 in Section 4.2.
The special case of p1 = g1 > p» = g2 deserves attention.

Corollary 2. In addition to the assumption in Theorem 6, we let p1 = g1 > pp = qo. Then:
PWM(wLPI(R"), LP2(R")) = M, (R"),

where p3 and X are given by:

_omm ()
TR (1)

We complement Corollary 2.

Proposition 1. Let 0 < q; < p; < oo, i = 1,2. If either one of the following conditions
holds, then:
PWM(wM/! (R"), M2 (R")) = {0} :
1. p<py
1 <2/
3. pP1=p2 and q1 = q2-

N

We prove Proposition 1 in Section 4.3.
If p1 = pr and q1 > g, then we have something similar to the case of classical
Morrey spaces.
Proposition 2. Let 0 < q; < p; < oo, i =1,2. Assume py = po and q1 > qo. Then:
PWM(wM]! (R"), MP2(R")) = L®(R").

We prove Proposition 2 in Section 4.4.
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2.3. Characterization of PWM (MU (R"), wME2(R™))
Next, we pass from M}2(R") to wMJ2(R").
Theorem 4 allows us to characterize PWM (M 511 (R™), w/\/lf;z2 (R™)).

Theorem 7. Let 0 < g; < p; < 00,1 = 1,2, satisfy p1 > pa and q1 > qo. Define p3 by:
1 1 1 1

s P2 @ P

Then. a function h € LO(R") belongs to PWM(M’;; (R"),w/\/tgzz(]R”)) if and only if xgh €
Mp“p, (R™) for all measurable sets E with |E| € (0, 00) and:
M}
a

1
sup{|E| % 1||)(Eh\|Mp3 : E is a measurable set with |E| € (0,00)} < oo.
HP,,l
a1

In this case,

L1 . .
”hHPWM(M,’f wMiz) ™ sup{|E| 7 H)(Eh||Mp3/ : E is a measurable set with |E| € (0,00)}.
1’ 12}
H !
T

We prove Theorem 7 in Section 4.5.
We supplement Theorem 7 by considering the case of p; < p».

Proposition 3. Let 0 < q; < p; <oco,i=1,2:
1. Assume py < pporqy < qp. Then:
PWM(MJ! (R"), wME2(R")) = {0};
2. Assume py = ppand q1 > qo. Then:
PWM(M!;;(R”),WM%Z (R")) = L*(R").
We prove Proposition 3 in Section 4.6.

2.4. Characterization of PWM(wM}! (R"), w M2 (R™))

Finally, we pass both M/! (R") and M}2(R") to wM}! (R") and wM}2(R"), respec-
tively. The proof is a mere combination of Theorems 6 and 7. Therefore, we omit the
detail again.

Theorem 8. Let 0 < g; < p; < 00,1 = 1,2, satisfy p1 > pa and q1 > qo. Define p3 by:
1 1 1 1

s P2 B P
Then h € LO(R") belongs to PWM(wMb! (R™), wME2(R™)) if and only if xgh € ./\/lpsp, (R™)
H 1

7

for all measurable sets E with |E| € (0,00) and:

1_
sup{|E| % 1\\7(5]1”/\4”3, : E is a measurable set with |E| € (0,00)} < o0
H:}l
L

and in this case:
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1 _4q . .
HhHPWM(wa,’ll,wM;’ZZ) ~ sup{|E| % ||XEhHMp3/ : E is a measurable set with |E| € (0,00)}.

P
"
7l

In particular, h € LO(R") belongs to PWM(wLF1(R"), wLP2(IR")) if and only if, for all measur-
able sets E with |E| € (0,00), xgh € ./\/lplp, (R™) and
1

Pyl
1
sup{|E| 2 1HXEh”M*’€ : E is a measurable set with |E| € (0,00)} < o0
W'l
iz
and in this case:
E
7 lpwawrrs wirey ~ sup{|E|72 1HXEh”M”i : E is a measurable set with |E| € (0,00)}.
pl
Hpil/l

In the above, the implicit constants do not depend on h.

In Theorem 8, the case of p; < p; is covered in Theorem 3.
It seems to make sense to compare Theorems 7 and 8 with an existing result. Let
p1 = q1 and py = g7 in Theorems 7 and 8.

Corollary 3. Let 0 < pp < p1 < 0. Then:
P1P:
PWM(LP (R"), wLP? (R")) = PWM(wLP (R"), wLP2(R")) = wLit (R").  (13)

In [8], Corollary 3, the first author showed the second equality in (13). We reprove
Corollary 3 by the use of Theorems 7 and 8 in Section 4.7.

3. Preliminaries

For the proof of the theorems in the present paper, we use a scaling property. Arith-
metic shows that the following scaling property holds:

Lemma 1. ([5], (g) p. 326) Let Ey and E; be quasi-Banach lattices, and let u > 0. Then:
PWM(EY, E¥) = PWM(Ey, Ep)".

We move on to the convexification of E-based Morrey spaces. Actually, as the next
lemma shows, E-based Morrey spaces are closed under the convexification of quasi-
Banach lattices.

i
Lemma 2. Let E C LY(R") be a quasi-Banach lattice and p,u > 0. Then: (Mp(R"))* =
M (RM).

Proof. For f € LO(R"), a direct computation shows:

=

1 1
1 llxofllEe ( 1 IIXQIfI”HEy ( u )’7
= y = g = -
11l e, (S;ZIQI sup ( |Q| A 5 IIfH(M

Ixollen — geo lxalle E "y

m

O

We also investigate how M£ (R") inherits the dilation property from E.
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Lemma 3. We have ||f(t-)[| .0 = tiﬁHf”Mp forall f € ML(R") and t > 0 as long as E is
E E
subject to the scaling law ||g(t-)|| g = ¢~ v ||g|| £ for some u > 0 and forall g € E and t > 0.

Proof. The proof is straightforward, and we omit the detail. [

Remark that Lemma 3 is not used for the proof of the main results in the present
paper. However, Lemma 3 allows us to compare the scaling laws in the function spaces
in question.

In Section 2, we introduced block spaces together with some of their variants. We
recall that these spaces can be identified with the Kéthe dual of Morrey spaces.

If E is a Banach lattice, then recall that its “Kothe dual” E’ is defined in LO(R") by the
setof all g € LO(R") such that:

gl = sup{ILf gl : f € LORY), £l < 1} < oo. (14)

We can specify the Kéthe dual of Morrey spaces as follows:

Lemmad. 1. Let1 < q < p < oo. Then, the Kothe dual of M} (R") is Hf;,l (R") with the
coincidence of norms;

2. Let1l < q < p < co. Then, the Kothe dual ofw./\/ls(]R”) is isomorphic to H;”,l (R") with
the equivalence of norms.

Lemma 4 is a culmination of what we proved in various papers. See [13], Theorem 3.1,
for 1. with g = 1, and see [14], Theorem 4.1, for example, for 1. with 1 < g < oo, while 2.
was proven in [12], Theorem 2.7.

A direct consequence of Lemma 4 is that we have:

4
7

el = IQF (15)
for all cubes Q.

When E; and E; are both homogeneous in the sense that the translation operator
induces isomorphism, we can mollify PWM(E;, Ey). Furthermore, in this case, by the next
lemma, we see that the functions in PWM(Ey, E;) do not increase the local integrability
of the functions.

Lemma 5. Let Ey, E; be Banach lattices, which are translation invariant in the sense that ||h(- —

Y, = |hllg; forall h € Ej, j =1,2. Assume that Ey and E; enjoy the Fatou property and that

E, C LfOC(R”)for some u € (0,00):

1. X0 € E1NE,.

2. The space PNM(E;, Ep) is a translation-invariant Banach lattice, and any element in
PWM(Ey, Ep) is almost everywhere finite;

3. Iff € LN(R")and g € PWM(Ey, Ey), then f x ¢ € PWM(Ey, E») and:

I * gllewmce, ) < IF I lIglowme, Ey)- (16)

In particular, for almost all x € R",

I 18— f(w)ldy < e a7)

4. IfPWM(El, Ez) 7& {0}, then X[fl,l]" S PWM(El, Ez).
PWM(Ey, Ep) C L} (R").
6. If there exists a function f € Ey \ L}

loc

S

(R"), then PNM(E;, Ey) = {0}.
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Proof. 1.  We concentrate on Ey; E; can be dealt with similarly. Let f € E; be a nonzero
function. By truncation, the linearity of E;, and the lattice property of E;, we may
assume that f = xr for some bounded measurable set F. Notice that:

1 NN N (k1, ko, ... kn)
poi= e 51 L (- Bt e

1 kn=1

satisfies ||gn ||, < ||fl|g, due to the translation invariance and the triangle inequality.
Since g — X[o,1)» * f in the topology of LY(R") as N — oo, by the Fatou property
of Ey, Xjo)» * f € E1. Since |[xpo1)» * fll;n = [F| > 0, it follows that x[gq» * f is a
nonzero continuous function. By the translation invariance and the lattice property of
Ey, it follows that x(o1n € E1;

2. Letg € PWM(Ey, Ey) and y € R"™. Then:

I8C =) flle, = I (- +¥)8llEx < N8llowmcey, e 1 (- +WllEy = g lowmce, £ If 11 s
for all f € E;. Thus, we see that g(- — y) € PWM(Ey, Ey) and that:

g = ) llpwmce, £ < I8Ipwm(E, E)-

Likewise, if we swap the role of g and g(- — y), then we have:

lgllpwnce, £ < I8¢ = ¥) lpwm(E, Es)-

Thus, PWM(E;, E,) is translation invariant. Since E; is a Banach lattice, we see that
PWM(E;, Ep) is a Banach lattice. To check that any element ¢ € PWM(Ej, E;) is finite
almost everywhere, we only need to show that gx_1 1 is finite almost everywhere.
Assume otherwise; F := {x € [-1,1]" : |g(x)| = oo} has a positive measure. Then,
XF € PWM(El, E2) since xr < |g| € PWM(El, Ez). Thus, xr = Xr - X[=1,1) € Ep.
This implies that ||xr||g, € (0,00). However, this is a contradiction since co >
llgx (1,12 lE, = [leoxFl[E, = oo;

3. We prove:

[f1*|g] € PWM(Ey, E2) and || [ f] * |g| lpwmce &) < IFItlIgllowme, Ey)-
which is slightly stronger than (16). For i € E;, we have:
1711+ IglllE, < ./H%‘”Hh(')g(' = fWllg,dy
= [ I +98Of @),y
< [Igllpwm(E, E») R”Hh(‘ + ) fW)|lg,dy
= lI8llpwm(Ey Ey) /]Rth(' + 9)lg, [f(w)ldy

= lgllvwme, ) [, Ile, |£()ldy
= Hg”PWM(El,Ez)”fHLlHh||E1~

Finally, (17) is a consequence of 2. and the fact that:

[ IFC= g )ldy = I£] 3] € PWM(E, Ea);
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4.  If PWM(Ey, Ey) # {0}, then by the lattice property of PWM(E;, E,), there exists a
nonzero and non-negative function ¢ € PWM(Ey, E2). By 1., x{_ggp *§ €
PWM(Ey, Ez) \ {0}. If we choose R > 1 large enough, then x[_g rj» * § > KX[-1,1]"
for some x > 0. Due to the lattice property of PWM(Ey, E;), we obtain x(_11» €
PWM(E;, Ey);

5. By2, the lattice property, and the translation invariance of Eq, xx € E; for all compact
sets K. Thus, if f € PWM(Ey, Ey), then xx f € Ex C Lif (R");

6.  Assume PWM(Ey, Ep) # {0}. By translation, we may assume fx[_11» & Lf (R").

Meanwhile, by 3., | fx{_1,1:| € E2 C Lig.(R"). This is a contradiction.

O

loc

4. Proof of the Main Results
4.1. Proof of Theorem 4

The proof of Theorem 4 is not so long. Furthermore, the statements in Theorem 4, 1.
and 2. are already included in Theorem 2. Therefore, we consider 3. solely. First, assume
that p = g» = 1. In this case, we need to find a description of PWM(M?; (R™), LY(R™)).

According to [5], this is nothing but the Kéthe dual of M 511 (R"). In this case, it remains to
note that 7—[5 HR™) = Mplp, (R™) thanks to Remark 1 and that p} = % = p3.
1 H ,l
7
Next, we assume that p» > g, = 1. Then by the definition of M/*(R"), ¢ €
LO(R") belongs to PWM(ME! (R"), ME2(R")) = PWM(ME! (R"), ME?(R")) if and only

if \Q\%’szl;(Qg S PWM(/\/lf;ll (R™), LY(R")) for each Q € Q and fulfills:

1
su; P2 < 0.
QGE|Q| ”XQgHPWM(Mf;},Ll)

1 /
According to the previous paragraph, this is equivalent to |Q|72 ! Xo8 € 7-[5,1 (R") for each
1

HKQSHH,,fl
19 L ! .
Qe Qand sup |Q|72 |[xpgll , = sup |Q|" Teal N <o, ie, g€ MP, (R,
QeQ Ht o QeQ xel m W
1

q
We handle the general case. Let L > 0. Accorclingl to Lemma 1,
L L
§ € PWM(MEP! (R"), ME2 ("))

if and only if |g|* € PWM(MJ! (R"), M}2(R")). Therefore, from Lemma 2 and what we
proved in the previous paragraph, we deduce:

4 P2 2
PWM(MGH(R"), MGZ(R")) = <PWM(M3j (R"), My (R”))>

a2
P3 92
~ (mg@n)
= Mb (R").
The proof is therefore complete.

4.2. Proof of Theorem 6
In the proof of Theorem 4, we may replace Mgl] (R") by wM 1}771] (R"). Then, accordingly,

ﬂ ! ﬂ ’
we have to replace "H<Zf ) (R") by ’H(Zf ), (R™). Thus, the proof is similar to Theorem 4.

(%) (%)
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4.3. Proof of Proposition 1
We may assume 41,4, > 1 by the scaling argument by Lemma 1:

1. Since q1,q2 > 1, we may regard wM}!(R") and M}?(R") as Banach spaces as
in (12). Assume:

PWM(wMJ! (R™), MB2(R")) # {0}.
Then, x[_11» € PWM(W./\/l’,;l1 (]R”),./\/lqu2 (R™)) by virtue of Lemma 5, 4.. This im-
plies 1 X1l < 18lwniwndzt vz [ Flungs for all £ € wi &), 1
we substitute f(t-) instead of f into this condition, we obtain ||f - x(_gul y2 <
! 72
B ot ey ni-
Il o = Oforall f € wMP!(R™). This is a contradiction;
92

2. Letr € (q1,42). According to [15], p. 67 (see also [3], Theorem 2.2 and Remark 2.3,
and [16], Theorem 4.9), there exists f € MP'(R") \ L92(R") such that supp(f) C
[0,1]". Thus, we are in the position of using Lemma 5, 6. to have the conclusion;

3. By virtue of Lemma 5, 4., if:

Since po > p, if we let t — oo, then we have

PWM(wM!(R"), ME2(R")) = PWM(wML! (R"), M1 (R")) # {0},

then x[_1n € PWM(wMJ! (R"), MF!(R™)). Then, for f € wMJ! (R") and r > 0,

n
=y fllaggy = P 1y f )l g
n
< IR Dowaauers ey TP IF ) g
= HX[fl,l]”||PWM(WM§]1,M5]1)“fHWM511.
Letting r — oo, we obtain:
Az < a0 lpwanw s a1 gz

This implies wMJ! (R") € MJ!(R"). This is impossible; see [16,17] as well as [18],
Section 4.

4.4. Proof of Proposition 2
Thanks to Theorem 2 and the embedding;:

Myl (R") © WMy (R") € M (RY),
we have:

L®(R") = PWM

( ), M3 (R"))
C PWM(w.
(

"), Mi; (R"))

nR
"), Mgz (R™))

MR

M
C PWM(M}! (R
= L®(R").

4.5. Proof of Theorem 7

We may assume q1,4, > 1by Lemma 1. The proof of Theorem 7 is a direct combination
of Theorem 4 and Lemma 6 below.
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Lemma 6. Let 1 < g; < p; < oo, 1 =1,2. Assume py > pp and q1 > qa. Define r > 0 by:

1 1 1
S= - 41

”:PZ q2

Then, f € LO(R") belongs to PWM(./'\/I,’;]1 (]R"),w./\/lgzZ (R™)) if and only if, for all measurable sets
E with |E| € (0,00), xgf € PNM(MF!(R™), M} (R")) and:

1
sup{|E| % ) ¢ Eis a measurable set with |E| € (0,00)} < o0.

-1
HXEf”PWM(M(’;ll,Mg

In this case,

Hf”PWM(Mﬁll,wM;’ZZ)

1_
~ sup{|E|%” 1||XEf||pWM(M§11,M’1') : E is a measurable set with |E| € (0,00)}.

Once Lemma 6 is established, Theorem 4 immediately gives the proof of Theorem 7.

Therefore, we concentrate on Lemma 6.

Proof of Lemma 6. Let 1 € LO(R"). Thanks to (12), k € w,/\/l’,;lz2 (R") if and only if xgh €
MP2(R") for all measurable sets E with |E| € (0,00) and:

1_1 11 1 _9q
supsup [Q[72 % [E[2 " |xenghlln = sup [E[%=[lxehlag < oo,
Q0 E E

where E moves over all measurable sets with 0 < |E| < co. Therefore, supposing that E
moves over all measurable sets with |E| € (0,00), we obtain:

I evnacaazt ez = ST 8llagzs 8 € ME R, gl =1}
L
~ supsup{|E[% If - g Xl 8 € M (R, 11l g =1}
E|!
= 2 2
S]';P| ‘ HfXEHPWM(thl,M{)/

as required. [

4.6. Proof of Proposition 3

1. Suppose p; < pp. We can go through the same argument as Proposition 1, 2. to
conclude that by using the function:

n(

7;17“2 P1 n P2 n
XB(xO,r)‘ : —XOl nre e M'h (R ) \Wqu (R )

for some xp € R” and r > 0. If g1 < g, then we take rq,7; so that q; <713 <71y < qo.
Then, we have:

PWM(Mp/ (R"), wMGZ(R")) € PWM(wME!(R"), MPZ(R")) = {0}

thanks to Proposition 1, 2.;
2. Itisclear that:
L®(R") C PWM(M!(R"), wME2(R™)).

Thus, it suffices to show that:

PWM(MLH(R™), wME2(R")) C L*®(R").
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To thisend, let g € PWM(M,F;} (R"),WM;;(R”)). Then:

1_1 1 1
Q172" ligxollwrr < l8lpwaatzs watzz) | Q1 = 18 llpwanaazt waezz) Q172
Thus, by the Lebesgue differentiation theorem, we obtain:

Hg”L"" < ||gHPWM(M511,WM§22),
as required.

4.7. Proof of Corollary 3
Theorems 7 and 8 can be shown to recover this result as follows:
pl
1. Thanks to the fact that || x| i Ixoll , and the Fatou property of Hpﬁl (R") estab-
41
lished in [14], Mmp, (R™) coincides with LM (R™). Thus, according to [11], Exercise
1
"
P1p2
1.4.14, we see that PWM(LPL(R"), wLP2(R")) = wLP1 72 (R");
2. Using Lemma 4, we deduce:

1
sup{|E|72 1||XEhHHpq : E is a measurable set with |E| € (0,00)}
Py
1
2 sup{|E| 1HXEh||Lp§ : E is a measurable set with |E| € (0,00)}

~ Bl
wLP17P2

Let 1 be a number slightly less than p, so that | is slightly larger than p). Define

v by:
11 1

7 7
P1 U1 "

Thanks to Remark 3,
1
el g < el sl ~ EIT [
for all 1 € wLP1(R"). Using this estimate and Remark 1, we have:

h ~ h
”XE HMp’lp/ ”XE HH:é X
Hl v
P

~ sup{||xeghllp = g € wMpi(R"), I8y papr =1}

= sup{|[xeghllpr : § € WLPH(R"), ||gllwrm <1}
llxeh]|

A

!
wLP1

1
SIE[Ixeh]l -
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Thus, it follows from the embedding L1 (R") < wL'i (R") that:

1
sup{|E| 72 1HXEh|| y + Eisameasurable set with |E| € (0,00)}
pia
141
< sup{|E\Pz+v1 1HXEh||Lr’1 : E is a measurable set with |E| € (0,00)}

P1=P2 1
P2 7

= sup{|E| ”XEhHL’i : E is a measurable set with |E| € (0,00)}.

Invoking [11], Exercise 1.4.14, once again, one obtains:

1
sup{|E| 72 1”)(5]1“ y; ¢ Eisameasurable set with |[E| € (0,00)} S ||H|l  paro -
/ LP1-P2
Pyl w

Thus, Theorems 7 and 8 can recover the result in [8].
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Abstract: In this paper, we establish the boundedness of the Calderén operator on local Morrey
spaces with variable exponents. We obtain our result by extending the extrapolation theory of
Rubio de Francia to the local Morrey spaces with variable exponents. The exponent functions of
the local Morrey spaces with the exponent functions are only required to satisfy the log-Holder
continuity assumption at the origin and infinity only. As special cases of the main result, we have
Hardy’s inequalities, the Hilbert inequalities and the boundedness of the Riemann-Liouville and
Weyl averaging operators on local Morrey spaces with variable exponents.

Keywords: Calderén operator; Hardy’s inequality; variable Lebesgue space; local Morrey space;
local block space; extrapolation

1. Introduction

The main theme of this paper is the boundedness of the Calderén operator on local
Morrey spaces with variable exponents.

The Calderén operator is one of the important operators in harmonic analysis and
theory of function spaces. The Calderé6n operator is related with the Hardy” inequality, the
Stieltjes transformation, the Riemann-Liouville and Weyl averaging operators. It also gives
an estimate for the maximal Hilbert transform ([1], Chapter 3, Theorem 4.7). Moreover,
the boundedness of the Calderén operator is also related with the convergence of Fourier
series on rearrangement-invariant Banach function spaces ([1], Chapter 3, Theorem 6.10).

The boundedness of the Calderén operator on Lebesgue spaces is a well known
result [2]. Recently, the boundedness property has been extended to the weighted Lebesgue
spaces [3] and the weighted Lebesgue spaces with variable exponents [4]. In this paper,
we further extend the boundedness of the Calderén operator to local Morrey spaces with
variable exponents.

The local Morrey spaces with variable exponents are extensions of the classical Morrey
spaces introduced and studied by Morrey [5] and the Lebesgue spaces with variable
exponents [6,7]. The mapping properties of singular integral operators, the fractional
integral operators, the geometric maximal operators and the spherical maximal functions
were obtained in [8-14].

In this paper, we obtain our main results by extending the techniques from the ex-
trapolation theory introduced by Rubio de Francia [15-17] to local Morrey spaces with
variable exponents. An extrapolation theory for local Morrey spaces with variable expo-
nents was obtained in [14], while the extrapolation theory given in [14] is based on the
Hardy-Littlewood maximal function. In this paper, we use another maximal function
from [3] which is defined via the basis {(0,7) : r > 0}. Similar to the results in [4], by using
this maximal function, the exponent functions for the local Morrey spaces with variable
exponents is not required to be globally log-Holder continuous function. The exponent
function is just required to be log-Holder continuous at origin and infinity.

This paper is organized as follows. The definition and the boundedness of the Calderén
operator on weighted Lebesgue spaces were presented in Section 2. The definitions of local
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Morrey spaces with variable exponents and local block spaces with variable exponents are
given in Section 3. The local block spaces with variable exponents are pre-duals of local
Morrey spaces with variable exponents, and the boundedness of the maximal function
associated with the the basis {(0,7) : r > 0} on the local block spaces with variable
exponents is obtained in Section 3. This boundedness result is one of the crucial results
for the boundedness of the Calderén operator obtained in Section 4. As applications of
our main results, we obtain the Hardy’ inequalities, the boundedness of the Stieltjes
transformation, the Riemann-Liouville and Weyl averaging operators on local Morrey
spaces with variable exponents.

2. Definitions and Preliminaries

Let M be the class of Lebesgue measurable functions on (0, c0).
For any non-negative function f on (0, o), the Calderén operator is defined as

1 /¥ b
sr) = [ fway+ [T Way, xe 0,00,
0 x y
For any non-negative function f on (0, c0), the Hardy operator is defined as

Hf(x) = %/Oxf(y)dy, x € (0,00).

We see that the adjoint operator of # is given by

H*f(x) = /:o %dy, x € (0,00).

The boundedness of H and H* on Lebesgue spaces is called the Hardy’s inequalities.
We see that S = H + H*. Thus, the boundedness of the Calderén operator on Lebesgue
spaces follow from the Hardy’s inequalities. The reader is referred to [2,18,19] for the
studies of Hardy’s inequalities.

Let & > 0; the Stieltjes transformation, the Riemann-Liouville and Weyl averaging
operators are defined as

are) = [ L8y

Lf@ = [ =y,

Jef) = 1) [~ 2 )y

For any non-negative function f, we have Hf(x) < Sf(x), Iyf(x) < Sf(x) and
Jof (x) < Sf(x). The reader is referred to [20-22] for the studies of the Stieltjes transforma-
tion and its application on the Hilbert’s double series.

We recall the following maximal operator and the Muckenhoupt type classes of weight
functions for S. They were introduced in [3]. For any locally integrable function f, define

1 b
Nf(x) =sup | |f(y)ldy, x>0.
b>x b Jo

The operator N is the maximal operator on (0,c0) with the basis {(0,7) : r > 0}.
Notice that for any non-negative function f, we have Nf < Sf.
We recall the following class of weighted functions from ([3], (1.2)).
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Definition 1. Let p € (1,00). We say that a Lebesgue measurable function w : (0,00) — [0, c0)

belongs to Ay if
Lo (L i v g Pl
Sblilg(?/o w(x) x) (5/0 w(x) x) < o0

where p' is the conjugate of p.
The class Ay o consists of all Lebesgue measurable function w : (0,00) — [0, 00) satisfying

Nw(x) < Cw(x), x € (0,00)
and [w] 4, , denotes the smallest constant for which the above inequality holds.

In view of ([3], Theorem 1.1), we have the following weighted norm inequalities for
N.

Theorem 1. Let p € (1,00). We have a constant C > 0 such that

[N Peix < ¢ [T IfPotdr
ifand only if w € App.

When p € (1,00), the class Ay, coincides with the class Cp, introduced in [23]; see ([3],
Theorem 1.2). In addition, as a special case of ([3], Theorem 1.2), we have the weighted
norm inequalities for the Calderén operator.

Theorem 2. Let p € (1,00). We have a constant C > 0 such that

/O ISF(x)[Pw(x x<C/ )|Peo(x)dx )
ifand only if w € Ay ).

3. Local Morrey Spaces with Variable Exponents

In this section, we recall the definition of local Morrey space with variable exponent
and study a pre-dual of this space, namely, the local block space with variable exponent. As
a crucial supporting result for our main result, we obtain the boundedness of the maximal
function N on local block spaces with variable exponents at the end of this section.

We recall the definition of Lebesgue spaces with variable exponents.

Definition 2. Let p(-) : (0,00) — [1,00) be a Lebesgue measurable function. The Lebesgue
space with variable exponent LP\) consists of all Lebesgue measurable functions f : (0,00) — C

satisfying
A llpper = inf{)\ >0: 0,0 (f/A) < 1} < o0
where

o (P = [ 7P

We call p(x) the exponent function of LP(")

Let p’(x) be the conjugate function of p(x). That is, they satisfy ﬁ + /%X) =1,
x € (0,00). Let p— = essinfyc(g0) p(x) and p+ = esssup. ¢ g ) P(¥)-
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Definition 3. A continuous function g on (0,00) is log-Holder continuous at the origin if there
exist Clog > 0 and go such that

CO
mm—mg:ﬁéﬁ vx € (0,1/2). @

A continuous function is log-Holder continuous at infinity if there exist goo € R and ceo > 0

so that
c

e < —2 ,00).
18(x) gl = ooy X € (O) @)
We write g € C'°8 if g is log-Holder continuous at origin and log-Holder continuous at infinity.

The above classes of log-Holder continuous functions are used in [24-26] for the
studies of Herz spaces with variable exponents.

We have the boundedness of the maximal operator N on LP() whenever p(-) € C'8
withl <p_ <p, <oco.

Theorem 3. Let p(-) € Cl°8. If 1 < p_ < p. < oo, then there exists a constant C > 0 such that

HNf”UJ(-) < CHf”U?(-)'

For the proof of the above theorem, the reader is referred to ([4], Theorem 1.6 and
Section 3).
We now give the definitions of local Morrey spaces with variable exponents from [14].

Definition 4. Let p(-) : (0,00) — (1,00) and u : (0,00) — (0,00) be Lebesgue measurable
functions. The local Morrey space with variable exponent LM}, ) consists of all f € M satisfying

1
p(-) = SUp ——~ ) < oo,
AN U ) X0 fllLpe

When p(-) = p, 1 < p < oo, the local Morrey space with variable exponent becomes
the local Morrey space LM}, For the studies of local Morrey spaces, the reader is referred
to [9-13]. For the mapping properties of the Carleson operator, the local sharp maximal
functions, the geometrical maximal functions and the rough maximal functions on LM,f7 ('),
see [14,27].

The local Morrey spaces with variable exponents are ball Banach function spaces
defined and studied in [28,29]; see the discussion after ([27], Theorem 2.3).

We recall a class of weight functions for the studies of the local Morrey spaces with
variable exponents defined in ([14], Definition 2.5).

Definition 5. Let g € (0,00), p(+) : (0,00) — [1,00]. We say that a Lebesgue measurable
function, u(r) : (0,00) — (0, 00), belongs to ]LWZ‘E_> if there exists a constant C > 0 such that for

any r > 0, u fulfills

C<u(r), V=1, @)
X0 et < Cu(r), Vr<1, ©)
5> Wonllirom i3 < cpugrym (©)

=0 HX(O,QJHV) HLP(‘)/‘IO

forallr > 0.
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When g9 = 1, we write LW, ) = ILW;(‘). Let0 < 6 < 1and uy(r) = HXB«L’)”ZP(')'
The discussion at the end of ([30], Section 2) shows that uy € LW .. Particularly, u = 1is
a member of LW, ).

Next, we recall a pre-dual of the local Morrey space with variable exponent from ([14],
Definition 3.1).

Definition 6. Let p(-) : (0,00) — (0,00) and u(r) : (0,00) — (0, 00) be Lebesgue measurable
functions. Ab € M is a local (u, LPV))-block if it is supported in (0,7), r > 0 and

1
1Bl o) < Mok @)
We write b € 1b, ;) if bis alocal (u, LPO)-block.
Define £%8,, ,(.) by

LB, ) = { Y Ak o Y [Ag] < oo and by is a local (1, L”(‘>)—block}. (8)
k=1 k=1
The space £B, ,,(. is endowed with the norm

Hf||£q;”/p(') = inf{ Y [Axl such that f = Y Agby a.e.}. 9)
k=1 k

=1

We call £B,, ..y the local block space with variable exponent.

In view of ([14], Theorem 3.3), £, ) is a Banach space and £, () C Llloc. In addi-
tion, whenever f, ¢ € M satisfying |f| < || and g € £B,, (), we have f € £B, ) ([14],
Proposition 3.2).

We present the following results for the block spaces with variable exponent from ([14],
Section 3). Notice that the results in [14] are for local Morrey spaces with variable exponents
on R", while with some simple modifications, the results and the proofs in [14] can be
extended to local Morrey spaces with variable exponents on (0, c0).

Theorem 4. Let p(-) : (0,00) — (1,00) and u : (0,00) — (0,00) be Lebesgue measurable

functions. We have
I ()
£B; ) = LM}
where 2%’;4)(.) denotes the dual space of £B,, ).

The reader is referred to ([14], Theorem 3.1) for the proof of the above results. Further-
more, the proof of ([14], Theorem 3.1) gives the Holder inequalities for f € LME 0 and
gELB, py

| 1F)g@ldx < Cllgllam, i, 11,50 (10)

for some C > 0.
Moreover, in the proof of ([14], Theorem 3.1), we also have the norm conjugate formula

Coll g < sup [ F RGN < Colf (a1
u e u

1u,p()
for some Cp, C; > 0.

Proposition 1. Let p(-) : (0,00) — (1,00), u : (0,00) — (0,00) be Lebesgue measurable

functions and f € £B, ). If g € M satisfying |g| < |f], then g € £B

up(- up(-)

205



Mathematics 2021, 9, 2977

The proof of the preceding proposition is given in ([14], Proposition 3.2.). We establish
a supporting lemma in the following paragraphs.

Lemma 1. Let p(-) € Cl%8 with 1 < p_ < p < co. We have constants Co, C; > 0 such that
forany r > 0, we have

Cor < [Ixon Il o) X0 1o < Car (12)

Proof. The first inequality in (12) follows from the Holder inequality for Lebesgue spaces
with variable exponents.
For any r > 0 and locally integrable function f, define

P = (3 ) 10 )00 )

The definition of N guarantees that |P, f| < Nf. Therefore, we have || P;
NIl p()_1p0)- According to ([7], Corollary 3.2.14), we have

HLV(')-)LV(') <

o uolixonlo = supf | [ st lxion o < Isllo <1}

Theorem 3 yields a constant C; > 0 such that for any » > 0, we have

X0 o X e < sup{rlIPrgll e : Igllpe <1}
< sup{r|[Ngllpe) : gl <1} < Cir.

Therefore, the second inequality in (12) holds. [

We are now ready to obtain the boundedness of the maximal function N on £B,, ().
Theorem 5. Let p(-) : (0,00) — (1,00) and u : (0,00) — (0,00) be Lebesgue measurable
functions. If p(-) € Cl8 with1 < p_ < py < coand u € LW,/ (.y, then the maximal operator
N is bounded on £B,, ().
Proof. In view of ([14], Theorem 3.3), we have E%u,p(-)
operator N is well defined on £B,, ().
Letb € [b, ;) with support (0,r), 7 > 0. For any k € N, write By = (0, 2kr). Define
= XB,.,\8,Nb, k € N\{0} and n9 = x(02,)Nb. We have suppny C Byy1\By and
Nb = Zk 0 .
Asp(+) € Cl8 with 1 < p_ < py < oo, Theorem 3 guarantees that

lo ., therefore, the maximal

C C

3 < C|INb|,p) < —= <

[0l pper < CINDl ey < ur) = uen)

for some constant C > 0 independent r. The last inequality holds since (6) asserts that
lxBeo, ey

u(2r) < Cu(r) and ([4], Lemma 2.3) yields [|xg021) [l 500 < Cllxson ll1p0
HXB(O,2r> l Lrt)
for some C > 0 independent of » > 0. As a result of the above inequalities, ng is a
constant-multiple of a local (, LP(*))-block.

The Holder inequality for LP() yields
XBr\By [T
e = X, 15, Nb < %\k /0 Ib(x)|dx

1
< CXBM\BkEHb”m(-) X0 e

for some C > 0 independent of k.
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Consequently, (12) gives

X8, 1 \Be I Lr0)

el e < 1511 ooy 1o | )

2ky
<c X0 L) u(21r) kl .
Xy [y ulr)  u(24r)

Write ny = oydy, where

_ X0 o) u(2kttr)
HXB;CH ”Lp’(~) u(r)

Ok

We find that dy is a constant-multiple of a local (u, LP())-block, and this constant does
not depend on k. As u € LW (), we have

HX(O,r) HL;?’(')

L (214 ) < Cu(r).
=0 HX(o,szr) o

We have } ;2 0 < C for some C > 0. Hence, Nb € Q%W(_)A Moreover, there exists a
constant Cy > 0 so that for any local (u, LP ) )-block b,

INb|les, ., < Co-

Let f € £B, (). The definition of £8,, (. yields a family of local (u, L? ())-blocks
{cc}$2, and a sequence A = {A(}2, € I such that f = Y2, Agcy with ||Al]p <
211£I e, (- Since N is sublinear, we find that

(o]
< ) [MellINeel e
k=1

Z )\kNCk
k=1

11,;7(')

S(Bu,p(-)

<Gy Z ‘/\k| < 2C0||fH2%M,(.)‘
k=1

As Nf < Y2 |Ax|Ncy, Proposition 1 guarantees that Nf € £8
< CHfH):%W(.) forsome C > 0. [

yand [|Nf] e

”rp<' u,p(-)

4. Calder6n Operator

The boundedness of the Calderén operator on local Morrey spaces with variable
exponents is established in this section. As applications of our main result, we obtain
the Hardy’s inequalities and the Hilbert inequalities on local Morrey spaces with variable
exponents.

We use the techniques from the extrapolation theory. We first recall an operator from
the Rubio de Francia algorithm. Let pg € (0,00) and p(-) € C'°8 with pg < p— < p4 < co.
The operator R is defined by

o Nk

Rh = , hell,
L N o oc

WP (p() /) 7 BuP0,(p() /o)

where NF is the k iterations of the operator N and N°% = |h|. The following are the
boundedness of N and R on the local block spaces with variable exponents.
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Proposition 2. Let pg € (0,00) and p(-) € C'8 with py < p— < py < co. Ifu € LW?%)’
then the operator R is well defined on £B,p (p(./p,) and there is a constant C > 0 such that for
any h € L‘%upo,(p(.)/po)r,
[h(x)] < Rh(x) (13)
IRAle8 5 )0y < (14)
[Rh]a,, < ClIN|l e (15)

ZHh H LBy (p()/po)

uP0,(p()/pg) S BP0, (p() /o)

Proof. Asu € ILWZ?A) implies u”> € LW, (.,
operator N is bounded on £%B 1) (,(.)/p,)- Consequently, the operator R is well defined
in 2‘311,;0'(;,(_) /po)'s and the definition of R yields (13) and (14). In addition, since N is a

sublinear operator, for any 1 € 2%11;:0,(;,(,) /po)'s We obtain

Theorem 5 guarantees that the maximal

o Nk+1h
NRh <
- ; 2| NF|| e

WP0,(p() /o) BP0 p() 1)
<
2Nl 28 1,115 2B 00,3150
According to Definition 1, Rh € A;, and hence, (15) holds. [
Theorem 6. Let p(-) € C°%8 with 1 < p_ < py < co. If there exists a pg € (0, p—) such that

ue ]LWZ ‘()_), then the Calderdn operator S is bounded on LMgw.

Proof. Let f € LMﬁ(‘). Forany h € £B r(,(,) , (10) and (14) yield

/po)’

/0 I RR)x < CULEP i IREe2, )

< Al Il g e

Thus, we have
DY ARNEN N LV (Rh). (16)

RELB 110 (1) /py)

Theorem 4 guarantees

1717 o = NS

< h Po . <

< Csup{ [ SO hCx) i hlam, 0 <1} 7)
for some C > 0.

In view of (15), Rh € A;p. Furthermore, the embedding (16) guarantees that (1) holds
forall f € LMﬁ“. Consequently, by applying w = Rk on (1) and using (13), we find that

L isre o < [T 570 PoRCod
< c/ )P RA(x)dx
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Consequently, (10) and (14) give

J)1S£ PRI < CIAPON o R 3,,

70 ()/ro)’
" Po
< Il g 1Ml <CIAI e 09
By taking supremum overallh € £B 1 ((.)/p,) With HhHS%uPo/@(.)/poy <1, Theorem 4,

(17) and (18) yield the boundedness of the Calderén operator S on LM}, O o

We also use the technique from the extrapolation theory to study the mapping proper-
ties of the local sharp maximal functions, the geometrical maximal functions and the rough
maximal functions on local Morrey spaces with variable exponents in [14]. The results
in [14] rely on the boundedness of the Hardy-Littlewood maximal operator. Therefore, the
results obtained in [14] are valid for local Morrey spaces with variable exponents with the
exponent functions being globally log-Holder continuous. Our results use the maximal
function N. Therefore, in view of Theorems 1 and 3, we just require p(-) to be log-Holder
continuous at origin and infinity for the boundedness of the Calderén operator on LM}, )

We give a concrete example for the weight function u that satisfies the conditions in
Theorem 6. Let p(+) € C'%8 with1 < p_ < p; < co. Let0 < 6 < land uy(r) = H)(B(O’,)Hip(_).
The discussion at the end of ([30], Section 2) shows that uy € ]LWP(A). Forany pg € (1,p-),
we have

p(r)" = (x50 1750 = X80 1510

The discussion at the end of ([30], Section 2) asserts that uy(r)P° € ILWP(,) /po° There-
fore, the conditions in Theorem 6 are fulfilled, and the Calderén operator S is bounded
on LMﬁ(').

As |Hf| < H|f| < S|f] and |H*f] < H*|f| < S|f]|, Theorem 6 yields the Hardy’s
inequalities on YA

Theorem 7. Let p(-) € C%8 with 1 < p_ < py < co. If there exists a pg € (0, p—) such that

ue ]LWZ(_), then there exists a constant C > 0 such that for any f € LMZZ(')

) <C by
AN e < CIAN
Al s < CUAN -

In particular, when p(-) = p, 1 < p < oo is a constant function, we have the Hardy’s
inequality on the local Morrey space LM. In addition, when u = 1, the above results
become the Hardy’s inequalities on Lebesgue spaces with variable exponents, which
recover the results in [31].

The reader is referred to [2,18,19] for the history and applications of the Hardy’ in-
equalities. For the Hardy’s inequalities on the Hardy type spaces, the Lebesgue spaces
with variable exponents and the Herz-Morrey spaces, the reader may consult [31-37].

Theorem 6 also yields the boundedness of the Stieltjes transformation, the Riemann—

Liouville and Weyl averaging operators on LM}, 0,
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Theorem 8. Let p(-) € C°%8 with 1 < p_ < py < co. If there exists a pg € (0, p—) such that

u e ]LW?()'), then there exists a constant C > 0 such that for any f € LMg(')

IEFI e < CIANl oo
I fll s < CIAN oo

e fll per < CIFNpgo-

The boundedness of the Stieltjes transformation on Lebesgue space is called as the
Hilbert inequality. Therefore, as special cases of the preceding theorem, we also have
the Hilbert inequality and the boundedness of the Riemann-Liouville and Weyl averag-
ing operators on the local Morrey spaces LM/ and the Lebesgue spaces with variable
exponents LP().

5. Discussion

We establish the boundedness of the Calderén operator on local Morrey spaces with
variable exponents by extending the extrapolation theory. The exponent functions used in
the local Morrey spaces with variable exponents are required to be log-Holder continuous
at the origin and infinity only. We need to refine the extrapolation theory for the maximal
operator N and the class of weight functions A, . In addition, in order to get rid of the
approximation argument, we need to establish the embedding (16).

As applications of the main result, we have Hardy’s inequalities, the Hilbert inequali-
ties and the boundedness of the Riemann-Liouville and Weyl averaging operators on local
Morrey spaces with variable exponents.

Moreover, we see that whenever we can establish the weighted norm inequalities with
the class of weight function Ap,o for an operator T, even if T is nonlinear, we can apply
our extrapolation theory to obtain the boundedness of T on the local Morrey spaces with
variable exponents where the exponent function is log-Holder continuous at 0 and infinity.

6. Conclusions

We extend the extrapolation theory to the local Morrey spaces with variable exponents
with the exponent functions being log-Holder continuous at the origin and infinity only.
With this refined extrapolation theory, we obtain Hardy’s inequalities and the Hilbert
inequalities on the local Morrey spaces with variable exponents. Furthermore, the bound-
edness of the Calderén operator, the Riemann-Liouville operators and the Weyl averaging
operators has been extended to the local Morrey spaces with variable exponents.

In particular, we have the Hardy’s inequalities, the Hilbert inequalities on local Morrey
spaces and the boundedness of the Calderén operator, the Riemann-Liouville averaging
operators and the Weyl averaging operators on local Morrey spaces.

In conclusion, the results obtained in this paper generalize the existing results on the
studies of local Morrey spaces with variable exponent, the Hardy’s inequalities, the Hilbert
inequalities on local Morrey spaces and the boundedness of the Calderén operator, the
Riemann-Liouville averaging operators and the Weyl averaging operators.
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Abstract: In 2011, Dekel et al. developed highly geometric Hardy spaces H? (®), for the full range
0 < p < 1, which were constructed by continuous multi-level ellipsoid covers © of R" with high
anisotropy in the sense that the ellipsoids can rapidly change shape from point to point and from
level to level. In this article, when the ellipsoids in @ rapidly change shape from level to level,
the authors further obtain some real-variable characterizations of H? (®) in terms of the radial, the
non-tangential, and the tangential maximal functions, which generalize the known results on the
anisotropic Hardy spaces of Bownik.

Keywords: anisotropy; Hardy space; continuous ellipsoid cover; maximal function

1. Introduction

As a generalization of the classical isotropic Hardy spaces HF (R") [1], anisotropic
Hardy spaces H' (R") were introduced and investigated by Bownik [2] in 2003. These
spaces were defined on R", associated with a fixed expansive matrix, which acts on
an ellipsoid instead of Euclidean balls. In [3-8], many authors also studied Bownik’s
anisotropic Hardy spaces. In 2011, Dekel et al. [9] further generalized Bownik’s spaces
by constructing Hardy spaces with pointwise variable anisotropy HP(©),0 < p < 1,
associated with an ellipsoid cover ®. The anisotropy in Bownik’s Hardy spaces is the same
one at each point in R”, while the anisotropy in H” (®) can change rapidly from point to
point and from level to level. Moreover, the ellipsoid cover © is a very general setting that
includes the classical isotropic setting, non-isotropic setting of Calderén and Torchinsky
[10], and the anisotropic setting of Bownik [2] as special cases; see more details in ([2],
pp- 2-3) and ([11], p. 157).

On the other hand, maximal function characterizations are very fundamental charac-
terizations of Hardy spaces, and they are crucial to conveniently apply the real-variable
theory of Hardy spaces H? (R") with p € (0, 1]. Maximal function characterizations were
first shown for the classical isotropic Hardy spaces H? (R") by Fefferman and Stein in their
fundamental work [1], ([12], Chapter III). Analogous results were shown by Calderén and
Torchinsky [10,13] for parabolic H? spaces and Uchiyama [14] for H? on a homogeneous-
type space. In 2003, Bownik ([2], p. 42) obtained the maximal function characterizations
of the anisotropic Hardy space H' Z (R™). This was further extended to anisotropic Hardy
spaces of the Musielak-Orlicz type in [15], to anisotropic Hardy-Lorentz spaces in [16],
to variable anisotropic Hardy spaces in [17], and to anisotropic mixed-norm Hardy spaces
in [18].

Motivated by the abovementioned facts, a natural question arises: Do the maximal
function characterizations still hold for Hardy spaces H? (©) with variable anisotropy?
In this article, we answer this question affirmatively in the sense that the ellipsoids in ©®
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can change shape rapidly from level to level, which is a variable anisotropic extension of
Bownik’s [2].

This article is organized as follows.

In Section 2, we recall some notation and definitions concerning anisotropic continuous
ellipsoid cover ©, several maximal functions, and anisotropic Hardy spaces H (©) defined
via the grand radial maximal function. We also give some propositions about H? (®),
several classes of variable anisotropic maximal functions, and Schwartz functions since
they provide tools for further work. In Section 3, we first state the main result: if the
ellipsoids in @ can rapidly change shape from level to level (see Definition 1), denoted as
©;, we may obtain some real-variable characterizations of H” (®;) in terms of the radial, the
non-tangential, and the tangential maximal functions (see Theorem 1). Then, we present
several lemmas that are isotropic extensions in the setting of variable anisotropy, and finally,
we show the proof for the main result.

In the process of proving the main result, we used the methods from Stein [1] and
Bownik [2]. However, it is worth pointing out that these ellipsoids of Bownik were images
of the unit ball by powers of a fixed expansive matrix, whereas in our case, the ellipsoids of
Dekel are images of the unit ball by powers of a group of matrices satisfying some “shape
condition”. This makes the proof complicated and needs many subtle estimates such as
Propositions 5 and 6, and Lemma 1.

However, this article left an open question: if the maximal function characterizations
of HP(®) still hold true in the sense that the ellipsoids of ® change rapidly from level to
level and from point to point?

Finally, we note some conventions on notation. Let Ny := {0, 1, 2, ...} and [t] be the

smallest integer no less than t. For any « := (ay,...,a,) € Njj, |a| := a1 +--- +a, and
o = (%)"‘1 e (%)“". Throughout the whole paper, we denote by C a positive constant

that is independent on the main parameters but may vary from line to line. For any sets
E, F C R", we use EC to denote the set R" \ E. If there are no special instructions, any space
X (R") is denoted simply by X. Denote by S the space of all Schwartz functions and &’
the space of all tempered distributions.

2. Preliminary and Some Basic Propositions

In this section, we first recall the notion of continuous ellipsoid covers ® and we
introduce the pointwise continuity for ©. An ellipsoid ¢ in R" is an image of the Euclidean
unit ball B" := {x € R" : |x| < 1} under an affine transform, i.e.,

¢ = Mg(BH) +cg,

where M is a non-singular matrix and ¢z € R" is the center.
Let us begin with the definition of continuous ellipsoid covers, which was introduced
in ([11], Definition 2.4).

Definition 1. We say that
O:={0(x, t):x eR",teR}

is a continuous ellipsoid cover of R" or, in short, an ellipsoid cover if there exist positive constants
p(©) :={ay,..., a6} such that

(i) Forevery x € R" and t € R, there exists an ellipsoid 6(x, t) := My, (B") + x satisfying
27 < |0(x, 1) < a2, 1)

(ii)  Intersecting ellipsoids from © satisfy a “shape condition”, i.e., for any x, y € R", t € R and
s>0,if0(x, t)NO(y, t+5) # D, then

az2” ™8 <

1 - —
= [(My, t45) " TMx ]| < (1M ) lMy,H—sH < a527%". @)
Yy, t+s X,
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where || - || is the matrix norm given by || M|| := max 1 |Mx| for an n x n real matrix M.
Particularly, for any 6(x,t) € ©, when the related matrix function My of x € R" and t € R
is reduced to the matrix function M; of t € R, we call a cover ® a t-continuous ellipsoid cover,
denoted as ©y.
The word continuous refers to the fact that ellipsoids 0x, t are defined for all values of x € R"
and t € R, and we say that a continuous ellipsoid cover ® is pointwise continuous if, for every
t € R, the matrix valued function x — My is continuous:

[Myf — Myt]| = 0 as x" — x. 3)

Remark 1. By ([19], Theorem 2.2), we know that the pointwise continuous assumption is not
necessary since it is always possible to construct an equivalent ellipsoid cover

Z:={{xt:x €R",t € R}

such that B is pointwise continuous and & is equivalent to ©. Here, we say that two ellipsoid covers
©® and E are equivalent if there exists a constant C > 0 such that, for any x € R" and t € R,
we have

%é’x,t C Ox,t C Clx,t.

Taking My, s = My, in (2), we have
a3 <1 and a5 > 1. (4)

For more properties about ellipsoid covers, see [9,11].
Forany N, N € Ny with N < N, let

— . o N
Snn = {lP €St lyls, ;= aeN?TJTgN;‘;E,(l + 1y o p(y)| < 1}-

Forany ¢ € S,x € R",t € Rand 0(x, t) = My, ;(B") + x, denote

9u(y) = |det(M; )| @(My ly), v € R".

Particularly, when the matrix M, ; is reduced to M;, ¢x,¢(y) is simply denoted as
Pt(y)-

Now, we give the notions of anisotropic variants of the non-tangential, the grand
non-tangential, the radial, the grand radial, and the tangential maximal functions.

Definition 2. Let f € §', ¢ € Sand N, N € Ny with N < N. We define the non-tangential,
the grand non-tangential, the radial, the rand radial, and the tangential maximal functions, respec-
tively as

Mof(x) :=sup sup |f*@xt(y)l, x€R",
teR yeb(x,t)

My jf(x):= sup Myf(x), x€R",
PESN, N

Mgf(x) = suﬂ}; |f* @xi(x)], x€R",
te

M?\],Nf(x) = sup Myf(x), xeR"
PEON, N

N -1 -N n
TYf(x) = sup sup |f % @ 1) (1+ | My h(x—y)|) , xeR™
teR yeR"
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Here and hereafter, the symbol "+ " always represents a convolution.

Remark 2. We immediately have the following pointwise estimate among the radial, the non-
tangential, and the tangential maximal functions:

Myf(x) < Mpf(x) <2V TR f(x), xeR™

Next, we recall the definition of Hardy spaces with pointwise variable anisotropy ([9],
Definition 3.6) via the grand radial maximal function.

Let © be an ellipsoid cover of R" with parameters p(®) = {a, -+ ,a6} and 0 < p < 1.
We define Nj(®) as the minimal integer satisfying

1, 1
- max(1,aq)n +

Ny := Ny(®) pors , 5)
and then N, (®) as the minimal integer satisfying
~ ~ 114N @ + 1
Np := Np(©) > % (6)

Definition 3. Let © be a continuous ellipsoid cover and 0 < p < 1. Define M? := M?\] N and
pNp

the anisotropic Hardy space is defined as

Hl’:[pﬁp(@) ={fes: MfelLPr}

with the (quasi-Jnorm || f || (@) = [ MOF|lLp.

Remark 3. By Remark 1, we know that, for every continuous ellipsoid cover ©, there exists
an equivalent pointwise continuous ellipsoid cover E. This implies that their corresponding
(quasi-)norms pg (-, -) and pz (-, -) are also equivalent, and hence, the corresponding Hardy spaces
HP(®) = HP(E)(0 < p < 1) with equivalent (quasi-)norms (see ([9], Theorem 5.8)). Therefore,
here and hereafter, we always consider © of HP (©) to be a pointwise continuous ellipsoid cover.

Proposition 1. Let © be an ellipsoid cover,0 < p <1< g < oo, p <qandl > Np with Ny as
in (5). If N > N and N > (a4N +1)/ag, then

4 _ P _ gb
H o (©)=H},(0) = H] ,(6)

with equivalent (quasi-)norms, where Hf; 1(®) denotes the atomic Hardy space with pointwise
variable anisotropy; see ([9], Definition 4.2).

Proof. This proposition is a corollary gf ([9], Theorems 4.4 and 4.19). Indeed, by Definition 3,
we obtain that, for any N > Ny and N > (a4N +1)/ag,

P P
H, < (©) CH, ((0).

Combining this and H; (0) C H;:[ W (©) (see ([9], Theorem 4.4)), we obtain
’ - Np

H!,(©) C H}, ((©). @)

P
N,N(

By checking the definition of anisotropic (p, g,1)-atom (see ([9], Definition 4.1)), we know
that every (p, co, I)-atom is also a (p, g, I)-atom and hence

H, ,(©) C H; (©).
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Let!” > max(l, N). By a similar argument to the proof of ([9], Theorem 4.19), we obtain
p 4
HN/K](®) C Hm,l,(G)),
where N > N, and N > (agN +1)/ae. Thus,
H, (@) C H, ,(©) C H, ,(©) C H] /(O). ®

Combining (7) and (8), we conclude that

H' _ ()= H;,((a) =H’

Ny, N, (@)

with equivalent (quasi-)norms. [J

Remark 4. From Proposition 1, we deduce that, for any integers N > Ny and N > (agN +1)/ag,
the definition of H I’; N(®) is independent of N and N. Therefore, from now on, we denote H I’i] N(®)

with N > N, and N > (ag4N +1)/ag simply by HP(©).

Proposition 2 ([9], Lemma 2.3). Let ® be an ellipsoid cover. Then, there exists a constant
J:=J(p(©)) > 1 such that, forany x € R" and t € R,

2M,, 1 (B) +x C 0(x, t —]).
Here and hereafter, let | always be as in Proposition 2.

Definition 4 ([9], Definition 3.1). Let ® be an ellipsoid cover. For any locally integrable function
f, the maximal function of the Hardy—Littlewood type of f is defined by

1
Mef(x) :=sup —— dy, xeR".
of (1) 1= sup oy [ VW)l dy

Proposition 3 ([9], Theorem 3.3). Let © be an ellipsoid cover. Then,
(i) There exists a constant C depending only on p(®) and n such that for all f € L' and « > 0,

{x: Mof(x) > a}| < Ca™ V£l )

(ii) For1 < p < oo, there exists a constant Cp, depending only on C and p such that, for all
fell

[Mofllr < CpllfllLr- (10)

We give some useful results about variable anisotropic maximal functions with differ-
ent apertures. They also play important roles in obtaining the maximal function characteri-
zations of H?(®). For any given x € R”, suppose that F : R"” x R — (0, c0) is a Lebesgue
measurable function. Let © be an ellipsoid cover. For fixed | € Z and ty < 0, define the
maximal function of F with aperture / as

I “(x):=sup sup F(yt). (11)
t>to yeb(x, t—1])

Proposition 4. For any | € Z and ty < 0, let Fl* " pe as in (11). If the ellipsoid cover © is
pointwise continuous, then FZ* . mr (0, 00| is lower semi-continuous, i.e.,

{x € R": F"(x) > A} is open forany A > 0.
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Proof. If F (x) > A for some x € R", then there exist t > tg and y € 6(x, t — I]) such
that F(y, t) > A. Since 0(x, t) is continuous for variable x (see Remark 1), there exists &, > 0
such that, for any x’ € U(x,6) := {z € R" : |z — x| < §}, y € (x, t —]) and hence
Fh(x)>A O

By Proposition 4, we obtain that {x € R" : F/ (x) > A} is Lebesgue measurable.
Based on this and inspired by ([2], Lemma 7.2), the following Proposition 5 shows some
estimates for maximal function Fl* fo,

Proposition 5. Let © be an ellipsoid cover, F; " and F; " gs in (11) with integers | > 1" and
to < 0. Then, there exists a constant C > 0 that depends on parameters p(©®) such that, for any
functions F; fo, F; 0 and A > 0, we have

Hx ER":E(x) > )\H < C2(H’)]Hx eR":Fh(x) > AH (12)
and

/ B dx < 207 [ () ax (13)

Proof. Let ) := {x € R" : F, "0(x) > A}. We claim that
{veR": E@) > A} € {x e R": Mo(xa)(x) = c2 T}, (14)

where C; is a positive constant to be fixed later. Assuming that the claim holds for the
moment, from this and a weak type (1,1) of Mg (see (9)), we deduce

HX e R" ZF]*tO(x) > AH < ‘{x € R": Mo(xa)(x) > C12(l,*1)]}‘
< C1*12(lfl’)IHXQ”L1 < Cz(lfl’)]‘ol

and hence (12) holds true, where C := 1/C;. Furthermore, integrating (12) on (0, co) with
respect to A yields (13). Therefore, (14) remains to be shown.

Suppose F/ “(x) > A for some x € R". Then, there exist t with t > tyand y €
0(x, t —1]) such that F(y, t) > A. Forany [, I’ € Z and | > I’, we first prove that the
following holds true:

as 10y, t—1I']) CO(x, t—(I+1)])NQ. (15)
Foranyz € as 16(y, t —I']), by (4), we have z € 0(y, t — I']) and hence

0z t=1U')N0O(y, t—1']) # 2.

Thus, by (2), we have
—1
HMz,t—l’]M%f_l'] < as.
From this, it follows that
a5~ M}y My,yy(B") C B
and hence
as ' My pj(B") € M, _pj(B").
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By this and y € agl M, _yj(B") + 2z, we obtain y € 6(z, t —I']). From this and
F(y,t) > A with t > t), we deduce that Flf fo (z) > A, and hence, z € Q), which implies

Yoy, t—1I'T) C Q. (16)

Moreover, by y € 8(x, t —1]), (2),and | > I’, we have

HMX 1] My,tfl’/ < a52’“6(1*l )] < as.
From this, it follows that
a5*1M;L,] My’t,l/](Bn) C B"

and hence
a5~ My, ;_py(B") € My, j(B").
By this, (4), y € 6(x, t —]), and Proposition 2, we obtain
a5 "My, _pp(B") +y C2My ;1 (B") +x CO(x, t— (1 +1)]).

From this and (16), we deduce that (15) holds true.
Next, let us prove (14). By (15) and (1), we obtain
0(x, t = (1+1)])N Q[ > (as) "|6(y, t —I'])] 17)
A At
> 2 .
~ (as)"

Taking by := t — (I +1)], by (1) and (17), we have

Ydy > ay1220)6(x, by) N QY > —L_o('=1-1)],
B ] oy Oy = 027120000, ) 0] >

which implies Mg (xa ) (x) > C12('~DJ and hence (14) holds true, where Cy := 2~ Ta; /[(as)"
112]. |

The following result enables us to pass from one function in S to the sum of dilates
of another function in S with nonzero mean, which is a variable anisotropic extension of
([12], p. 93, Lemma 2) of Stein and ([2], Lemma 7.3) of Bownik.

Proposition 6. Let ® be an ellipsoid cover of R" and ¢ € S, with fR,, x)dx # 0. Then, for
any p € S, x € R", and t € R, there exists a sequence {n*}2 , and n* € S such that

[ee]
p=y i o (18)
k=0
converges in S, where
= |det(M;§+k]Mx,t)|¢( . Hk,Mﬂ ), k>0,
where | > 0 is as in Proposition 2. _
Furthermore, for any positive integers N, N and L, there exists a constant C > 0 depending

on¢g,L, N, N, and p(®) but not ¢, such that

I7*lsy, 5 < C27 19 ls N (19)

N+n+14[L/ (ag])], N+n+1
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Proof. The following simplified proof is accomplished by Dekel. By scaling ¢, we can
assume that [, ¢(x)dx = 1and |¢(¢)| > 1/2, for |¢| < 2. This assumption only impacts
the constant in (19). Let { € S such that0 < ¢ < 1 on B" and supp ({) C 2B". We fix
x € R"and t € R, denote My := M, ;4j, and define the sequence of functions {;}7°,
where {p := ¢, and

T T
Gomt((Mdm)) - o((Mdmea) ), k=1
where MT denotes the transpose of a matrix M. We claim that
supp(lx) C {(j eR" :ag12*“572“6k] <g < 211512“4”}. (20)
Indeed, by the properties of {, Proposition 2 and (2),
-1 T n -1 T n
¢ € supp(¢) = (M5 }My) () € 2B" v (M 1My 1) (2) € 2B
T T
=g e2(M"My) (B)VE € 2(M M) (BY)
= & € 205 124K ",
In the other direction, Proposition 2 and the properties of { yield
-1 T n -1 T n -1 T n
¢ e (M M) (B") = (M;1M) (2) € B, (MM 1) (§) €B
= (g =0.
Applying (2), we have
T k-1
E¢ (M;}lMx,t) (B") = |&] > 2a5 12%(k=1)],
This proves (20). Additionally, by (2), for any ¢ € R",

‘(M;}Mk)TC' < [[mgim1g] < as2 g = 0, k- .

From this, we deduce that, for any ¢ € R", for a large enough k, (M; 1th)ch, € B". This
implies that

Y k(@) =1, V¢eR"
k=0

Thus, formally, a Fourier transform of (18) is given by

&~ B T ~ .
1P:I;7lkfp<<Mx}Mk> ) k= $¢.
=0

@((ME}‘MOT')

Observe that 7 is well defined and in S. Indeed, 1?‘ is well defined with 0/0 := 0, since by
our assumption on @,

¢ e supp() = £ e 2(M; M) (B)
s

= @((M;}Mk) T«:) > %

<2
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From this, it is obvious that ;?‘ € S, and therefore, i7* € S. We now proceed to prove (19).
First, observe that, foranyy € S, N, N € N,

Ills,, 5 < CON, N, m)[7llsg ., e 1)
Next, we claim that, for any K € N,
max||9" (gk/ga((M—lMx t)T>>H < C(K, n, ¢). (22)
la| <K ko o

Indeed, on its support, any partial derivative of (j/ @((M;%Mk)T) has a denominator
with its absolute value bounded from below and a numerator that is a superposition
of compositions of partial derivatives of # and ¢ with contractive matrices of the type
(M, 1Mk)T . Using (20)-(22), we obtain

I, , =<l

N, N+n+1

<C sup max
|&|>az 2%/ 216k] |a[<N

<C sup max\a”‘ §)\(1+|§|)N+”+l
\€\>ﬂ712 ag) pagkl || <N

<C sup max [0 (&)[ (1 + |g)NHrHiIL/ ()]
|&|>a5 2% 2%6K] |a|<N

X (1))~ I/l
< 2 gl

o) |(1+ gV

N, N+n+1+[L/(ag])]

<2yl

N-+n+14[L/ (ag))], Nn+1

|

3. Maximal Function Characterizations of H” (©;)

In this section, we show the maximal function characterizations of H? (©;) using the
radial, the non-tangential, and the tangential maximal functions of a single test function
peS.

Theorem 1. Let ©; be a t-continuous ellipsoid cover,0 < p < 1,and ¢ € S satisfy f]R" x)dx #
0. Then, for any f € &', the following are mutually equivalent:
e H(O)); 23)
Myf € LP; (24)
Myf € L; (25)
TNfelLb N> L. (26)
? ’ asp

In this case,

Ifliey = |MOF|,, < | TF], < CallMofllir < Col|MYF| |, < Cull o

where the positive constants Cq, Co, C3 and Cy are independent of f.
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The framework to prove Theorem 1 is motivated by Fefferman and Stein [1], ([12],
Chapter III), and Bownik ([2], p. 42, Theorem 7.1).

Inspired by Fefferman and Stein ([12], p. 97), and Bownik ([2], p. 47), we now start
with maximal functions obtained from truncation with an additional extra decay term.
Namely, for ty < 0 representing the truncation level and real number L > 0 representing
the decay level, we define the radial, the non-tangential, the tangential, the grand radial, and
the grand non-tangential maximal functions, respectively, as

_ -L —L
My D f(x) = sup (f g ) (0)] (1M} 2] ) (1+2040) 7,

t>tg

_ -L —L
Mg}fo,L)f(x) =sup sup |(f*¢x)(y)] <1 + ‘MxﬁoyD (1421+0) 7
t>tg yeb(x,t)

1

N (o, L) oy [(f * @x,t) (y)]
Ty 7 f(x): Sup sup {l+‘M;} (xfy)HN(1+2’+t°)L(1+‘MZ}OyDL’

M?\;%Uf(x) = sup Mg,(tU’L)f(x)
! zpeSN',;]

and

M;O’Ié)f(x) = sup prt“’L)f(x).
! PESy §

The following Lemma 1 guarantees control of the tangential by the non-tangential
maximal function in L? (R") independent of ¢y and L.

Lemma 1. Let ®; be a t-continuous ellipsoid cover. Suppose p >0, N > 1/(agp), and ¢ € S.
Then, there exists a positive constant C such that, for any tg < 0, L > 0and f € &',

“T‘?](to’L)f)‘LP = CHM‘(”tO’L)fHLV'
Proof. Consider the function F : R” x R — [0, oo) given by
Flu 0 =10 2ol (14 Myl y]) " a2ty

Let F/ " be asin (11) with I = 0. When y € 6(x, t), we have M; ! (x —y) € B" and hence
M (x —y)| < 1.If t > to, then

7 <k,

(v, O[1+| M (x =)

Wheny € 0(x, t —kJ)\0(x, t — (k —1)]) for some k > 1, we have

M (x—y) & My My ) (BY). (27)
By (2), we obtain
—1 —ag(k—1
[y | < a2t
and hence,
My Mi(B") C as2 DB,

which implies
(2011 /a5)B" € My My _ (1) (B").
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From this and (27), it follows that \M;l (x—y)| > 2%(k=1)] /g5 Thus, for any t > fy,
we have N
—-P

F(y, H[1+ ‘M;l (x — y)H < agPNo PNos(k= DI prho (),

By taking the supremum over all y € R" and t > t), we know that
[T(I;f (fo/L)f(x)] 4 < agPN Z Q*PNae(kfl)fF; to (x).
k=0

Therefore, using this and Proposition 5, we obtain

HT (to, L fH pNZZ pNag(k—1)] F*f()( )dx

LP(R") R"

< Ca5”N22 PNag(k=1)] ok F*tO( Ydx
k 0 RH

i

Ly R"
where C' := CasPN2vNas] y00  o(1=pNagk] — CqopN2J /(1 — 2(1-PNae)]y [

The following Lemma 2 gives the pointwise majorization of the grand radial maximal
function by the tangential one, which is a variable anisotropic extension of ([2], Lemma 7.5).

Lemma 2. Let © be an ellipsoid cover of R", ¢ € S, [ ¢(x) dx # 0, and f € S'. For any given
positive integers N and L, there exist integers 0 < U < u, U > Ny, and u> Np that are large
enough and constant C > 0 such that, for any ty <0,

0(tg, L N (to, L
Muffg Jf(x) < Ty P f(x), vx e R™

Proof. The simplified proof of this final version is from Dekel (Lemma 6.20). By Proposition 6,
forany p € S, x € R", t € R, there exists a sequence {;* o 17* € S that satisfies
S k
=3 19
k=0
converging in S, where
= [det(M}, M)l @(ML ) M), k> 0.

Furthermore, for any positive integers U, Uand V,

I lls,, 5 < €27l (28)

Utn+1+[V/(ag))], Utnt1”

where the constant depends on ¢, U, U, V, p(®) but not . Denoting My := My k),
for t > ty, implies

223



Mathematics 2021, 9, 3246

[ * 9o (2] Hf*é(ﬂ"*(ﬂ")x’t}(@

<cC {f*ﬁ)]det ‘/ Mxty))dy} (x)

||+ Efas (01 /ﬂ‘v flk(M;}y)QJ(M‘ )]

< C}; {f* <Uk>x,: * (Px,t-%—k]} (x)

SCi/nlf*%,tm(x—y)!‘ () (y)‘dy

<cr) 2/ 1+’Mk y‘)

x<l+\M;¢o - o2 ), ol

Therefore,
M) < T r sup 3 [ (1 [t y]) @
L o L
ey
(14 Mz x| ) (1 200y ot

= Té\](tO'L)f(x) sup ilt,k.

t>tg k=0

Let us now estimate I; ; for t > tg, k > 0. We begin with the simple observations that

t+to+k] k] (9—k] t+to
1+2 _ 292 M +2 )gczkf
1 + 2t+to 1+ Qt+to

and
T+x+yl ST+ x|+ lyl < (0+[xDA+yl), xyeR: (30)

Therefore, we may obtain

<2 [ (14 M y])™ (1 [ ) ot (k)

<t [ (14| M My, ) (1 MM 1) o ) e

which, together with

M Mo i < 232 and || M} My ]| < as2~6(™10) < a5 (by t > tgand (2)),
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further implies that

I < LN [ (1 [y N[t )|y 31

Rn

< CoKI(L+aN) an

SOVN+)X+L

We now apply (28) with V := [J(L +a4N)] + 1, which gives

I < C27 |yl

n+1+[V/(ag])], N+L+2n+2"

(32)

This yields for any ¢ € S}, 7, U := max(Np, n +1+ [V /(as])]), U := max(Np, N+ L+
2n +2)

MOD f(x) = sup My“ P f(x) < TP f(x).
! YES, i

This finishes the proof of Lemma 2. [

The following Lemma 3 shows that the radial and the grand non-tangential maxi-
mal functions are pointwise equivalent, which is a variable anisotropic extension of ([2],
Proposition 3.10).

Lemma 3 ([19], Theorem 3.4). For any N, N e Nwith N < N, there exists a positive constant

C := C(N) such that, forany f € ',
M?\]’Nf(x) <My f(x) < CM?\,lﬁf(x), x € R
The following Lemma 4 is a variable anisotropic extension of ([2], p. 46, Lemma 7.6).

Lemma 4. Let O be a t-continuous ellipsoid cover, ¢ € S, and f € S'. Then, for every M > 0
and ty < 0, there exist L > 0 and N’ > 0 large enough such that

MggmlL)f(x) < C27t0(2a4N’+2L+a4L)(1 + |x|)’M, x € R", (33)
where C is a positive constant dependent on p(©), N’, f, and ¢.

Proof. Forany ¢ € S, there exist an integer N > 0 and positive constant C := C(¢) such
that, forany N’ > N and y € R",

F* @) < Cliglls,, (1 +ly)Y" (34)
Therefore, for any t) < 0,t > ty and x € R", by (34), we have
_ ~L -L

(Fron)l (1+ | Myly]) (1240 (35)

< b g, (1 DY (1+ a1 y])
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Let us first estimate || ¢¢||s,, ,,- By the chain rule and (1), we have

[ (o (1)) )

< 2" sup sup (1= [0 [ig) ()|
z€R" |a|<N

Itlls,, v = |detM; | sup sup (1+z)"
Z€R™ |a| <N

¢ N g1 e
< 2! sup sup (1+ |Miz|) HMt H 10%(2)|. (36)

z€R" |a|<N

Now, let us further estimate (36) in the following two cases.
Case1: t > 0. By (2), we have

o = o < o o] < o 2 = e
and
[Miz| = [MoMg*Miz| < [ Moll Mg Miz| < | Moll|[ M5 M1
< [|Mollas2~"¢'|z| < Clz|.

Inserting the above two estimates into (36) with t > 0, we know that

1 _ o
ltlls,, v < C2'sup sup (1+ [Miz)V | M| 0% (2)] 37)
! Z€R" |a|<N
< Cc22N|g|s, -
Case2:t) <t < 0. By (2), we have
[ = ot aona | < ] | < [ty szt < €
and

|Myz| = ‘MOMo’lMtz

< (1Mol [ Mg Miz| < Mol | Mg M |21
< [ Mollaz 1274']z] = C2-%4h}z].

Inserting the above two estimates into (36) with ty < t < 0, we know that

gl
lpills,, v < 2" sup sup (14 |Miz)N || M1 |7 0 (2)] (38)

zER™ |a| <N

—agtgN’
< crmNglls, .

Forany M > 0,let L := M+ N'. For any fy < 0, t > tj and taking some integer
N’ > 0 large enough, by (37) and (38), we obtain

27 gy s, < CaTOENTD gl (39)
Inserting (39) into (35), we further obtain
_ -L -L
(Fro)l (1+|Mgly]) (1 +240) (40)

! 1 _ -L
< ComhlN 2L glg (1 DY (14 M y])
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For any y € 6(x, t), there exists z € B" such that y = x + M;z. By (30), we have
1+ y| =14 [x + Mez| < (14 |x[)(1+ [Mz]). (41)
If t > 0, by (2), then
[Miz| = |MoMg ' Miz| < [ Mo [ M5 Miz| < || Moll | M5 M 21
< [[Mollas2™"'|z| < C.
If to <t < 0,by (2), then

|Myz| = ‘MoMalMtz

< ([ Mol [ Mg Miz| < Mol | Mg M |21
< ||Mo|az 127!z = c274o,
Therefore, for any t > ty, by using the above two estimates, we have
|Miz| < C2774to,
From this and (41), it follows that
(1+[y]) < C2740 (1 + |x]). (42)

Moreover, for any ty < 0, by (2), we have
T+4]x| <1+ HMOHHMO’lMtOH‘M[O]x‘ < camin (14 ’M[le‘).

Furthermore, for any y € 6(x, t), we have x € M;(B") + y. Thus, there exists z € B" such
that x = M;z + y. Hence, for any t > ty, by (30) and (2), we obtain

(14 [Mg!]) = (1 Mt + Miz)) < (1 Mg o)) (1 1)
< (14 myly]) (14 as27 000 2)) < € (1+ [ty ).
Combining with the above two inequalities, we have
(14 My 'yl) = C2%0 (1 + [x]). (43)

Thus, for any t > ty and y € 6(x, t), inserting (42) and (43) into (40) with L = M + N/,
we obtain

—L _ ,
I(f * 1) ()] (1+ ‘M;UWD (1+2t+to) L < C2 (204N +2L+a4L)(1+ x[)~M,

which implies that (33) holds true and hence completes the proof of Lemma 4. [

Note that the above argument gives the same estimate for the truncated grand maximal
function M?\;t[%’ D f(x). As a consequence of Lemma 4, we obtain that, for any choice of

ty < 0and any f € &', we can find an appropriate L > 0 so that the maximal function,
say MS,,’O/ b £, is bounded and belongs to LP(R"). This becomes crucial in the proof of
Theorem 1, where we work with truncated maximal functions, The complexity of the
preceding argument stems from the fact that, a priori, we do not know whether Mg, felLr
implies My f € LP. Instead, we must work with variants of maximal functions for which
this is satisfied.
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Proof of Theorem 1. Suppose that ©; is a t-continuous ellipsoid cover and ¢ € S satis-
fying [n ¢(x)dx # 0. From Remark 2 and the definition of the grand radial maximal
function, it follows that

(26) = (24) = (25)

and
(23) = (25).

By Lemma 1 applied for L = 0, we have
HTQIUO’O)J(HLF <C HMEJO'O)fHU’ forany f € &’ and t) < 0.

As tg — —co, by the monotone convergence theorem, we obtain

HT(I,?]fHM = CHM‘I’fHLw

which shows (24) = (26).

Combining Lemma 2 applied for N > 1/(a¢ p) and L = 0 and Lemma 1 applied for
L = 0, we conclude that there exist integers 0 < U < fl, U > Ny, u> va that are large
enough and a positive constant C such that

gl <clos], w75 <o

As ty) — —oo, by the monotone convergence theorem, we obtain

HM?LﬁfHLP < CHM%"fHLP'

From this and Proposition 1, we deduce that

s = M, 5], <l ar],, < lvtorty

and hence (24) = (23). (25) = (24) remain to be shown.

Suppose now M; f € LP. By Lemma 4, we can find a L > 0 large enough such that
(33) holds true, which implies MEPtU'L) f € L? for all ty < 0. Combining Lemmas 1 and 2,
we obtain that there exist 0 < U < ﬁ, U > Np, and u > 1\7,, large enough such that

0(to, L) (to, L)
[t < cal|mgty] (44)
where constant C; is independent of fy < 0. For a given ty < 0, let
O = {x e R MWD () < CZME,}O'”f(x)}, (45)
where C, := 21/PC;. We claim that
/ Mg )] ax <2 /Q Myt g (46)
to
Indeed, this follows from (44), Mgo’L) f€LPand
(to, L) p -p 0 (to, L) P p/ (to, L) P
/O (Mg re) ax <7 [ Myt p)"ax < sy [ Mg £,

C C
to Q‘o

where (C1/Cy)P =1/2.
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We also claim that, for 0 < g < p, there exists a constant C3 > 0 such that, for any
tg <0,

q ]1/9

MG P F(x) < Co[Mo (My V) ()] 7)

where Mg is as in Definition 4. Indeed, let t > ty, y € 6(x,t) and
F(y, £) = |(f * o) ()| (1 + [Mg " y)~H(1 + 2+ 10)~E,

Suppose that x € Q) and let F/(x) be as in (11) with | = 0. Then, there exist ' € R with
¥ >tpandy’ € 0(x, t') such that

F(/, ) > 0 (x)/2 = My M f(x) /2. (48)

Consider x’ € y' + My ;(B") for some integer [ > 1 to be specified later. Let ®(z) :=
@ (z + M, - y’)> — ¢(z). Obviously, we have

frou() = fron(y) = f+Pu(y). 49)
Let us first estimate || ®||s, . From x’ € y' + My ;(B"), we deduce that
M (' —y) € My My (B).
By this and the mean value theorem, we obtain

I@ls, , < sup lgC+m)—9()ls, (50)
' heM, My, (B") ’

= sup sup sup (1+ 2)7](@%9)(z + ) — 3%9(2))|
heM, "My, (B") ZER [a|<U

=C sup sup sup (1+ |z|)a|(a‘*(p)(z +h)|
}ZGM;71M:'+1, (Bn) z€R" |a|<U+1

X sup |7|.
heM;]Mw,(Bn)
From (2), we deduce
1My M| < as2,
which implies
M, "My, (B") C as2~"s//B".

By this and & € M;lMtrH](B”), we have || < a52%!/. From this and (30), we deduce
that

1+z| <A+ z+h])A+|h]) <CA+|z+h]), ze R
Applying this and |l1] < a52=%! in (50), we obtain

|@ls,, <C  sup  sup sup (1+|z+h)U|@ Q)M (B
' heM ' My, (B7) 2€R" [a] <U+1

_a527 %l < ¢, 2%l
u+1,0 - ’

x sup [n] < Cllglls
heM;,lMM,(Bn)

where a positive constant C4 does not depend on L.
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Moreover, notice that, for any x' € My ;;(B") +y/, there exists z € B" such that
x' = Myyyz+y'. By (30), (2), and ' > to, we have

) < (1+ Mgty

< (1+ )Mto y

(1 T ‘Mfolx/

)+ o) -
) (14 as2 st z)) < 205 (1+ My ).

Thus, for any x € O, from (49), (52), (48), (51), Lemma 3, and (45), it follows that
2RabF(x, ') = 2Rk [|(f @) (¥)] (14 M /)71 4+2740) 7L
> [If e (y)] ~ F* @) (14 Mgty |) " (142700)
> F(y, t) = M F()ll@lls,
> MgV f(x) /2 - comll CMufth’L)f (v)

> MU P f£(x) /2 — CuCoC2 6 MU £ ().

We choose an integer [ > 1 large enough such that C4C,C27 %! < 1/4. Therefore, for any
x € Oy and x' € My ;(B") 4 v/, we further have

2LalF(x, ) > MY £(x) /2 — CuCC2 I MU P f(x) > MU f(x) /4. (53)
Moreover, by i’ € 6(x, ') and Proposition 2, we have
My (B") +y" € My ;(B") + My (B") +x (54)
C2My(B") +x CO(x, t' — ).
Thus, for any x € (), and t > ty, by (53) and (54), we obtain

Lg,La
q 4925,

(to, L)
M x —_ 2
My 5] < =, S

[F(z,t)]%dz

(1+1)]
< C4’72L'M5 ‘9 il / to L>f(z)]qdz
0(x, t'—

< c3M@((M¢““'”f)q) (),

which shows the above claim (47).
Consequently, by (46), (47), and Proposition 3 with p/q > 1, we have

/{ Mo dx<2/ ]dx (55)

/Q, ol

0

<Cs [ (Mt pn) i,

where the constant Cs depends on p/g > 1, L > 0 and p(®) but is independent of 9 < 0.
This inequality is crucial as it gives a bound of the non-tangential by the radial maximal
function in L. The rest of the proof is immediate.
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Forany x € R",y € R" and t < 0, by (2), we obtain
e Y I

< u52”6t

M51H|y| — 0 as t — —oo.

Hence, we obtain that M((pt oL) f(x) converges pointwise and monotonically to M f(x)
for all x € R" as t) — —oo, which together with (55) and the monotone convergence
theorem, further implies that M,f € LP. Therefore, we can now choose L = 0, and
again, by (55) and the monotone convergence theorem, we have || M, f H; < Cs HM(J, f ||,’Z,
where Cs corresponds to L = 0 and is independent of f € &’. This finishes the proof of
Theorem 1. O

Author Contributions: Formal analysis, W.W.; Writing—original draft, A.W. and B.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research is supported by the National Natural Science Foundation of China (No. 11861062)
and the Xinjiang Training of Innovative Personnel of China (No. 2020D01C048).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fefferman, C.; Stein, E. H? spaces of several variables. Acta Math. 1972, 129, 137-193. [CrossRef]

2. Bownik, M. Anisotropic Hardy spaces and wavelets. Mem. Am. Math. Soc. 2003, 164, 1-122. [CrossRef]

3. Barrios, B.; Betancor, ]. Anisotropic weak Hardy spaces and wavelets. J. Funct. Spaces Appl. 2012, 17, 809121. [CrossRef]

4. Betancor, J.; Damian, W. Anisotropic local Hardy spaces. ]. Fourier Anal. Appl. 2010, 16, 658-675. [CrossRef]

5. Bownik, M.; Li, B.; Yang, D.; Zhou, Y. Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear
operators. Indiana Univ. Math. |. 2008, 57, 3065-3100.

6. Hu, G. Littlewood-Paley characterization of weighted anisotropic Hardy spaces. Taiwan. ]. Math. 2013, 17, 675-700. [CrossRef]

7. Wang, L.-A. Multiplier Theorems on Anisotropic Hardy Spaces; ProQuest LLC: Ann Arbor, MI, USA, 2012.

8. Zhao, K;; Li, L. Molecular decomposition of weighted anisotropic Hardy spaces. Taiwan. ]. Math. 2013, 17, 583-599. [CrossRef]

9. Dekel, S.; Petrushev, P.; Weissblat, T. Hardy spaces on R" with pointwise variable anisotropy. J. Fourier Anal. Appl. 2011, 17,
1066-1107. [CrossRef]

10. Calderén, A.-P.; Torchinsky, A. Parabolic maximal functions associated with a distribution. Adv. Math. 1975, 16, 1-64. [CrossRef]

11. Dahmen, W.; Dekel, S.; Petrushev, P. Two-level-split decomposition of anisotropic Besov spaces. Constr. Approx. 2010, 31, 149-194.
[CrossRef]

12.  Stein, E. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatintegrals; Princeton Mathematical Series, no. 43;
Princeton University Press: Princeton, NJ, USA, 1993.

13. Calderén, A.-P; Torchinsky, A. Parabolic maximal functions associated with a distribution II. Adv. Math. 1977, 25, 216-225.
[CrossRef]

14. Uchiyama, A. A maximal function characterization of H? on the space of homogeneous type. Trans. Am. Math. Soc. 1980, 262,
579-592.

15. Li, B;; Yang, D.; Yuan, W. Anisotropic Hardy spaces of Musielak-Orlicz type with applications to boundedness of sublinear
operators. Sci. World ]. 2014, 2014, 306214. [CrossRef] [PubMed]

16. Liu, J.; Yang, D.; Yuan, W. Anisotropic Hardy-Lorentz spaces and their applications. Sci. China Math. 2016, 59, 1669-1720.
[CrossRef]

17.  Liu, J.; Weisz, E; Yang, D.; Yuan W. Variable anisotropic Hardy spaces and their applications. Taiwan. |. Math. 2018, 22, 1173-1216.
[CrossRef]

18. Huang, L.; Liu, J.; Yang, D.; Yuan, W. Real-variable characterizations of new anisotropic mixed-norm Hardy spaces. Comim. Pure
Appl. Anal. 2020, 19, 3033-3082. [CrossRef]

19. Bownik, M.; Li, B.; Li, J. Variable anisotropic singular integral operators. arXiv 2004, arXiv:2004.09707.

231






. mathematics

Article

An Optimal Estimate for the Anisotropic Logarithmic Potential

Shaoxiong Hou

Citation: Hou, S. . Mathematics 2022,
10,261. https://doi.org/
10.3390/math10020261

Academic Editor: Juan Benigno

Seoane-Septlveda

Received: 28 December 2021
Accepted: 7 January 2022
Published: 15 January 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

© 2022 by the author.

Licensee MDPI, Basel, Switzerland.

Copyright:

This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Key Laboratory of Computational Mathematics and Applications of Hebei Province, College of Mathematical
Science, Hebei Normal University, Shijiazhuang 050024, China; sxhou@mail hebtu.edu.cn

Abstract: This paper introduces the new annulus body to establish the optimal lower bound for the
anisotropic logarithmic potential as the complement to the theory of its upper bound estimate which
has already been investigated. The connections with convex geometry analysis and some metric
properties are also established. For the application, a polynomial dual log-mixed volume difference
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1. Backgrounds
The Riesz potential I (x > 0) operator is defined by

szf(x) = / ) dy,

R |x -y

where f is a measurable function. It has been widely developed in harmonic analy-
sis including function spaces, mathematical physics and partial differential equations
(see [1-4]).

For the endpoint case « = 0, it is trivial to study the limitation

li -y =1 .
tim [ — | as x£y
Instead, the convolution kernel is usually changed in such a derivative way

] _ loglx—y| !

Ly -y
Y |x7y|'x a=0

_ e
" . =log |x — y| as  x #y.

This logarithmic kernel produces a corresponding logarithmic potential operator,
which represents a the better complement for the endpoint case of Riesz potential operator
by virtue of effective properties and applications. For example, |x|>~"(n > 3) is harmonic
on R"\ o, while for teh lower dimension n = 2, log |x| is studied since it is harmonic on
R™\ o (see [5,6]).

Recently, both Riesz potential and logarithmic potential have been studied in an
anisotropic way, which is closely related with convex geometry analysis and mathematical
physics (see [7-11]). Here we first recall some basic concepts and results in convex geometry.

If the intersection of each line through the origin with a set K G R" is a compact line
segment, K is called star-shaped with respect to the origin. Let

px(x) =max{A >0:Ax € K} for xeR"\o,

where o is the origin, be the radial function of the star-shaped set K. K is called a star body
with respect to the origin, if pg is positive and continuous. We assume that K is a star body
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with respect to the origin and E is a bounded measurable set in this paper. Note that the
radial function pg is positively homogeneous with degree —1, i.e.,

pa(sx) =s1pa(x) forall s > 0.

Let V(E) and E° denote, respectively, the n-dimensional volume of E and the complement
of E. We assume V(E) # 0 in this paper, since when V(E) = 0, some trivial result follows
directly. Let dS(-) denote the natural spherical measure on the boundary S"~! of the unit
ball BY centered at the origin. Then

Let || - ||x denote by the Minkowski functional of K:

|||k = inf{s > 0:x € sK} forall x € R" (1)
where
sK={sy:y e K}
Note that o' (x) = ||x||x and | - By = |- |, where | - | denotes the Euclidean norm. We

refer to [12,13] for more information on convex geometry.
Lety € R", a > 1 and denote by

1
Ri(y) =f{xeR":

<x—vylk <a}

the K-annulus body centered at y with outer radius a and inner radius % Then, by the
definition of the Minkowski functional, it follows that

VIREW) = (o" - (%)")vuo.

Several anisotropic Riesz potentials are introduced and their optimal extreme values
estimates are systematically studied in [10]. We omit the details here for the brevity of this

paper. Let
1 m
P K,E; :/l — | d
log/m( ]/) ; E(Og ||x*yHK> x

be the anisotropic m-log-potential of measurable set E at y € R” with respect to K, and

Vlog/m (Kr E) = sup plog/m (Kr E; ]/)
yeR?

be the mixed volume of K and E. We refer to [11] for these definitions and [14,15] for their
relations with engineering and mathematical physics.

Note that Viog i (K, E) is obviously an extreme value of the anisotropic m-log-potential.
It is also closely related to convex geometry analysis. In [11], when m is an odd number,
the optimal estimate for Viog (K, E) is established as follows:

(m—1)! V(E)
0 for V(E)

TR T it (1o vl )" for v(E) >0, @
=0.

Vlog,m(K/ E) < {

When V(E) > 0, the equality in (2) holds if and only if E is a K-ball introduced in [11] up
to the difference of a measure zero set.
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For the application of the sharp estimate in (2), the dual polynomial log-Minkowski
inequality is established in [11]:

=i ok ()" LN V(K)\"!
Ltk (b)) wsLatmlevg) o

i=0 i=0

where m is an odd number, K, L are two star bodies and dV, (-) is the normalized cone-

volume measure "
dvi() = (f&&)dsc)- @)

The equality in (3) holds if and only if there exists s > 0 such that K = sL.

Note that (3) generalizes the dual log-Minkowski inequality for a mixed volume
of two star bodies (see [12,16]) and produces the polynomial dual for the conjectured
log-Minkowski inequality (see [17]).

In this paper, we study the other extreme value of the anisotropic m-log-potential:

Definition 1. For m € N, define

Wlog,m (Kr E) = yi€n]1{" Plog,m (K/ E; y)

Note that because log || x — y|| ;! may be negative, Wiog,m (K, E) is defined for integer .

In Section 2, some fundamental properties of Wiog,m (K, E) are established. Then, in
Section 3, we are able to introduce the new annulus body to solve the problem of optimal
estimate for Wi (K, E) in a precise analytic way. For the application, a polynomial dual
log-mixed volume difference law is induced from the optimal estimate.

2. Fundamental Properties

First we recall a metric property in [11] for the Minkowski functional of a star body
with respect to the origin.

Proposition 1. Let Bj be the unit ball and

Ix = sup{7 > 0:7Bj C K}, 5)
Ok =inf{F > 0: K C 7B}}.
Then
Ogltlx| < |Ixllx < It|x| forall x € R", (6)

and a quasi-triangle inequality holds for || - || x
Il +yllk < IO (llxllx + llyll) forall x,y € R".

If m is an even number, the supremum of the anisotropic m-log-potential Viog,m (K,E) =
+00 (see [11]). For the infimum of the anisotropic m-log-potential Wlog,m (K, E), it follows

Proposition 2. Wiy, (K, E) = —oo for m as an odd number.

Proof. Note that K is a star body with respect to the origin and E is a bounded mea-

e\
surable set. Then sup,.p|x| < +co. Forall C > 0, let C; = e(‘/<5>) > 1, ly| >
max{20xCy,2sup, . |x| }, where Ok is defined in (5). Hence, for all x € E,

= yllx > Ok —yl > O (lyl — xh) > 0 5 > 1
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Since m is odd, it follows that

1 m
Plogm(K, E;y) = /E <log m) dx

< /E(longl)mdx

1 m
—/<loge(‘/<g>) ) dx
E
=-C,

which implies
Wiogm(K,E) = —co via W = inf Piog (K Ey).
. yeR? g

|

Wiog,m (K, E) has the following metric properties for the nontrivial case (11 is an even
number).

Proposition 3. Let m be an even number.

(i) Monotonicity: let Ey and Ep are bounded measurable sets and Ey C Ep. Then Wigg (K, E1) <
Wlog,m (Kr EZ)'

(ii)  Translation-invariance: forall z € R", let z+ E = {z+y : y € E}. Then Wipg (K, z +
E) = Wlog,m(K/E)‘

(iii) Homogeneity: for all s > 0, Wigg 1 (K, SE) = s"Wigg (K, E).

Proof. (i) Since E; C Ej, then for all y € R",

m

1 " 1
log —— dxg/ (10 7> dx.
/El< gux—ynK) B\ 8 Tyl

Hence,

1 m
W K,E{) = inf log— | dx
logom (K, E1) yewfl( gnxfyHK)

1 m
< inf log——— | dx=W, K,Ej).
yemgz< gnxfyHK) logan (K, E2)

(i) For all z € R", by changing the variables x = z + x1 and y = z + v, it follows

1 m
Wi K,z+ E) = inf (lo 7> dx
log,m( ) yeR" Jo4E g ”x *yHK

= inf <10g7> dxq
yeR JE\P v +z - ylk

1 m
= inf <10g7> dxq
R JE 1 = yllx

236



Mathematics 2022, 10, 261

(iii) For all ¥'s > 0, by changing the variables x = s% and y = s and the definition of
Minkowski functional in (1), it follows that

1 m
Wiog,m (sK,sE) = inf (log m) dx
S

yeRr?
1 m
= inf (log f> dsx
syeRn JE |s% — s7sk
1 m
= inf <log f> dsx
ger JE 1% =7l
= Snwlog,m(K/ E)

O

The continuity of the anisotropic m-log-potential Piog (K, E;-) has already been
proven in [11]. From this, it follows that

Lemma 1. Let m be an even number. The infimum in
Wlog,m (K/ E) = yiéan“ Plog,m (K/ E}y)
is achieved at some y € R".

Proof. We first conclude that

lim Plog, m(K E;y) = +oo. @)
Iy —+o0

Actually, note that E is a bounded measurable set, then sup . [x| < +co. For all M; > 0, let

i

()"
ly| > maxy{ 2sup |x|,20ge\V(E) ,
x€E
where Ok is defined in (5). It follows from m being an even number and (6) that
1 m
Pogm (K E;y) = / <10 7> dx
log,m( y) E g Hx*y”K
= [ (tog lx =" dx

> /E<log|OK|’1\xfy|>mdx

> [ (loglox| (Il — [x1)) " dx
-
/ <loge v "1’> dx
My,

m\

[\

log(2/0x ) Iyl) " dx

Y
i~

Y

which implies that (7) holds.
In the following, we will show that Pk,g,m(K, E;-) # +oco. As a matter of fact, for
z € R"and |z| > sup,p ||,
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Plog,m (K/ E; Z)

1 m
(bg == ) i
<lognx—zuK> dx
(logZI l\z|)

log21;![z]) "V (E)

[ee]

IA
rn\rn\rn\m\m\

logI 1|x—z\) dx

IN

(log I (J2] + |x)) " dx

IN

I
—

A
+

’

where Ig is in (5). Let M = (logZIEl |z|)mV(E). Because of (7), there exists D; > 0 such
that forally € {y € R" : |y| > D1}, Pogm(K, E;y) > Mp, which implies that

zeD={yeR": |y| <D}

Since Plog,m(K, E;-) is continuous and D is compact, it can attain its minimum at a
point yo. Then

Plog,m(Kr E; yO) = ylgg Plog,m(Kf E;y) < P]og,m (Kr E;Z) <M; < yienlgf Plog,m(Kr E?y)/
which implies
Plog,m(K: E; ]/0) = yglﬂ{” Plog,m(K: E;]/)'
O

3. Optimal Estimate and Application
Now we are ready to establish the optimal estimate for the infimum of the anisotropic
m-log-potential.

Theorem 1. Let m be an even number. Then
m'V i
Wlog m (K E E

) % m—i
L log<<<2“//(5<))> +1> + 2‘(}(%)] ®)
* {«Ui -1) ((z‘x//((?)>2“> g ((1)i+1)2“//((1:;<))]

where the equality holds if and only if E is a K-annulus body with outer radius a and inner radius %
up to a difference of a measure zero set, namely there exists y € R" such that

V(EN (RK(y)) = v(REW) NE) =0

1

1 n
V(E) \? 2 V(E
where a = (((2‘,((1())) + 1) + —ZV( K))> .
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which imply

Note that
V(EN (REW)) = V(E\REW))
= V(E) - V(RK(y) NE)
= V(RE(y)) - v (RE() NE)
= V(RE(W)\E)
=V(REw)nE),

which, together with the following elementary computations

[x —yllx >alor < 1) and (loga)™ < (log||x — y|[x)" forall x € EN (RK(y))",
L<lx—yllxk <a and 0< (log ||x — y||x)" < (loga)™ for all x € RK(y) N ES,
implies
' 1 _ m < (1 m RK E°
Jrs g 108 15 = vll)™ dx < (oga)™v (RE ) N )
= (loga)"V (EN (RE(1))°)
< (1 - " dx.
Jons iy 10811 =l

Note that m is an even number, then

Plog,m (K, E; y)
1 m
= log —— dx
/< gux—yuK>
= [ tog lx —yllx)" dx

= Jrasiy e 1B vl s [ (o =yl dx

\%

Jsor logux—y||K'"dx+/ (log [lx = yll)" d
= [ B I =yl

lx=yllx
/ / s (logs)" dsdx
{x1<lx—yle<a} S

lx=ylx 1
m/ / s~ (logs)™" " dsdx
Jxls|x—yllk<a} 1

1
7m/ / s (logs)" dsdx
{ml<v—ylx<1} Je-ylx

= Il + Ip.
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By Fubini’s theorem, it follows

L= B! dxd

! m/ (logs)™ /{x:ssux—ynm} e

*m/ L(logs)"(a" —s")V(K) ds

— m—1 _ “ n—1 m—1
=mV(K)a" /1 Hlogs)™ tds — mV(K) /1 s" " (logs)™ " ds,

and

= fm/ H(logs)™~ 1/ dxds
{xi<lx—ylk<s}

fm/ H(logs)™~ 1<s 7%) (K)ds

7mV(K)1 “I(logs)™~ lalermv(K) /l “I(logs)™ Lds.

Then, by integration by parts, it follows
L+1D (11)

1 a
=mV(K) {ai" /l s !(logs)" Vds +a" /1 s (logs)" 1ds

a
— /l s"(logs)" ! ds}

a

1
= mV(K) [ma” (logs)m|1 + — logs)" 4
m m i
i1
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Hence, by (10) and (11), it follows that

Wlog,m (K/ E) = yiEI}RRf” plog,m (K/ E; ]/)

= inf (logi) dx
ek JE\ [lx — vk

— inf [ (log|lx—yll)"d
o, | (log [lx —yllx)" dx

> inf [ (loglx —ylk)"dx

~ yeR" JRK(y) ‘
V(E) \* : V(E) o
1°g(<<2vu<)> “) *mmﬂ

g [«Di -1) ((2“//((?»2 " 1) g (1) 2‘\//((?)

To prove the equality in (8) , if E is almost a K-annulus body up to a difference of a
measure zero set, which means there exists z; € R"” and a such that

_ mV(K) 1

nm = (m —i)!

V(EN (RK(z0)") = V(REG) N E) =0,

which, together with (9), implies

S 0B 1 = 210" dx = ((log x = z1 )" dx = 0,
a \#1

/Eﬁ(Rf(Zl))

1 m l m
log ————— dx:/ <10 7> dx, 12
/E< guxleuK) Jrgen '8 Te =zl 12
from (10).

By (10)—(12), it follows

1 m
Plogm (K, E;z1) = /Rg(m<log m) dx
2 % m—i
10g<<<2“//(5<))) +1> +2‘1//(5<))>]
[ern (@) )

which means the equality in (8) holds.
On the other hand, by Lemma 1, there exists zy € R", Wiyg (K, E) = Piogm (K, E; 22).
If E is not a K-annulus body up to a difference of a measure zero set, it follows

and hence

mV(K) & 1
- n"E )i;:)(m—i)!

V(EﬁRf(zﬁ“) £0 and V(RﬂK(zz) ﬁE”) £0.

Then the following strict inequality holds from (9):

(log||x — za|| k)™ dx < /

. 1 _ md :
i (108 = 220"

./Rff(zz)ﬂEf
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which implies the inequality in (10) is also strict, and hence

Wlog,m (K/ E)
= Plog,m (K/ E; ZZ)

1 m
= log———— dx
/E( gHX*ZZHK>
~ [ (g |lx — z2ll)" dx

m
> [ oy 1081 = 220"

Il
3
=
3 X
=
I
3
| —
-~ —
Qo
aQ
//
I/
- N0
< =
T R
N
N
+
—
~
e
+
N
<=
==
~
—_
3
|

which means, if the equality in (8) holds, E must be almost a K-annulus body up to a
difference of a measure zero set. [

Remark 1. We claim that there is no such upper bound for Wiog 1, (K, E) by using V(K) and V (E)
as in Theorem 1 when m is an even number.

Proof. Actually, let V(E) be fixed. For all M > 0, let E = E; | Ep, where V(E;) = V(E) =
2-'V(E) and

1
2M ™
diSt{El, Ez} = inf{|x1 - XQ||X1 € E,x € Ez} > ZOKE(V(E>) .

BN

1
oM )T PR
Then, for ally € R”, dist{{y}, E1 } > OKe(V(E)) ordist{{y}, E2} > OKe(V(E)) . Without
1

2M

loss of generality, suppose dist{{y}, E1} > OKe(W) , then, by (6), it follows

1 m
P K,E;y) = / (10 7> dx,
log,m( y) E g ”x*]/HK
= [ (log l}x = yllx)" dx
m
> e —
> /E<logOK |x y\) dx
1, m
> /E1 (logOK |x y\) dx
> M,
which implies
Wiogm (K, E) = inf Piog (K, Ey) > M.
yeR"
This completes the proof of the remark. [

The infimum of the anisotropic m-log-potential is closely related with the convex
geometry analysis. For this, a polynomial dual log-mixed volume difference law can be
deduced from the optimal estimate for Wiy, (K, E) in Theorem 1.
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Theorem 2. Let m be an even number, Ly, Ly, K be star bodies with respect to the origin, Ly C Ly,
and dVy, (u), dVy, (1) be the normalized cone-volume measures defined in (4), then

. m 1 u m—i
viL2) /Sn—l 1;) ni(nT— i 1°g<§£((u))) AV, () (13)
. m m! 0 (u) m—i
— VL) /Sn—l ,;) i (m — )] 10g<p1i(u)> AV, (u) 2

Vit - vV Vv v\
i 1°8<<< A 1> “) ) 1)]

= (m—i)!

X {((Ui - 1) ((W)erl) ' + ((—1)"+1>%

where the equality holds if and only if Ly \ Ly is a K-annulus body centered at origin with outer
radius a and inner radius %(a > 0) up to a difference of a measure zero set.

’

Proof. Note that pi'(-) = || - ||x, then, by changing to the polar coordinates and integration
by parts, it follows that

Plog m (K Ly \ Ll;o) (14)

1 m
= lo —) dx
Lz\u( & Txllx
1 mn 1 mn
= (log—— dx—/ (10 7) dx
/L< ganK) L\ 8 Tl

| (logp(x))" dx— [ (1ogpx(x)" dx

_ / oL, (1) o
S

“1log pk (su))™ dsdu

o /é"*l /:Ll N (tog(spx(w)) ) " dsdu
o i)
s ,/opLZ(u) 5" (log(

—n! /S,H pr, (1)" (log f)IL(EZ;)m du
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where dVy, and dV7, are defined as in (4).
By Theorem 1, it follows that

Plog,m(Kr Ly \ Ly; 0)

:/ <log—> dx
Ly\Ly llxllx
l m
> inf / <log7> dx
yeR" JLo\Ly llx = yllx
1 m—i

mV(K) &1 V(Lo \ L1)\? V(I \ Ly)
Z T M= |18 (( zxf(1<)1> “) T w

Jer () ) - o) g

m—i

mV(K) &1 V(Ly) — V(L1)\? : V(Ly) — V(Ly)
D 7 [108 (( 22V(1<) 1) H) * 22V(I<) :

1
i V(Lp) — V(L) ’ i V(Lz) — V(L1)
_ r__ _\NTa)] AN _ 1 _\Nma)] AN
MG 1)<< e +1) +((-1'+1) |
which, together with (14), implies (13) holds with the equality holds if and only if L, \ Ly is
a K-annulus body centered at origin with outer radius a and inner radius %(a >0)uptoa
difference of a measure zero set. [J

4. Conclusions

Theorem 1 and its Remark 1 complete the systematic study of the optimal upper
and lower bounds of the extreme value of the anisotropic m-log-potential on a bounded
measurable set (for the part of its supremum, we refer to [11]). Note that the anisotropic
m-log-potential extends the classical logarithmic potential two-fold in anisotropic and
higher order of m ways. By virtue of the wide development of Riesz potential with
its better complement logarithmic potential for the end point case in harmonic analy-
sis including function spaces, mathematical physics and partial differential equations
(see [1-6]), these optimal estimates can be further applied to these related topics.

On the other hand, Brunn—-Minkowski inequality and Minkowski inequality includ-
ing their dual versions and generalizations are main topics in convex geometry analysis
(see [12,13,16,17] and their references). The dual log-Minkowski inequality deals with
the optimal estimate for mixed volume of two star bodies (see [12,16]), which exists as
the dual version for the conjectured log-Minkowski inequality (see [17]). The polynomial
dual log-mixed volume difference law in Theorem 2 deduced from the optimal estimate in
Theorem 1, deals with the optimal estimate for the difference of mixed volumes of two star
bodies, which is totally new and contributes to these theories.
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Abstract: In this manuscript, we present a coherent rigorous overview of the main properties of
Sobolev-Slobodeckij spaces of sections of vector bundles on compact manifolds; results of this type
are scattered through the literature and can be difficult to find. A special emphasis has been put
on spaces with noninteger smoothness order, and a special attention has been paid to the peculiar
fact that for a general nonsmooth domain Qin R”,0 <t < 1,and 1 < p < o, it is not necessarily
true that W7 (Q) < W4 (Q). This has dire consequences in the multiplication properties of
Sobolev-Slobodeckij spaces and subsequently in the study of Sobolev spaces on manifolds. We focus
on establishing certain fundamental properties of Sobolev-Slobodeckij spaces that are particularly
useful in better understanding the behavior of elliptic differential operators on compact manifolds.
In particular, by introducing notions such as “geometrically Lipschitz atlases” we build a general
framework for developing multiplication theorems, embedding results, etc. for Sobolev-Slobodeckij
spaces on compact manifolds. To the authors’” knowledge, some of the proofs, especially those that
are pertinent to the properties of Sobolev-Slobodeckij spaces of sections of general vector bundles,
cannot be found in the literature in the generality appearing here.

Keywords: Sobolev spaces; compact manifolds; tensor bundles; differential operators

1. Introduction

Suppose s € Rand p € (1,00). With each nonempty open set () in R” we can associate
a complete normed function space denoted by W*(Q) called the Sobolev-Slobodeckij
space with smoothness degree s and integrability degree p. Similarly, given a compact
smooth manifold M and a vector bundle E over M, there are several ways to define the
normed spaces W*? (M) and more generally W*F (E). The main goal of this manuscript is
to review these various definitions and rigorously study the key properties of these spaces.
Some of the properties that we are interested in are as follows:

¢ Density of smooth functions

e Completeness, separability, reflexivity

e Embedding properties

e Behavior under differentiation

*  Being closed under multiplication by smooth functions:

o ?
ue€ W, ¢issmooth = gu € W*"

e Invariance under change of coordinates:

u e W%, Tisa diffeomorphism L uoT e W

e Invariance under composition by a smooth function:
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u € WS, Fissmooth = F(u) € WP

As we shall see, there are several ways to define W*(E). In particular, ||u||yysp ) can
be defined using the components of the local representations of 1 with respect to a fixed
augmented total trivialization atlas A, or it can be defined using the notion of connection in
E. Here are some of the questions that we have studied in this paper regarding this issue:

e Are the different characterizations that exist in the literature equivalent? If not, what is
the relationship between the various characterizations of Sobolev-Slobodeckij spaces
on M?

e Inparticular, does the corresponding space depend on the chosen atlas (more precisely
the chosen augmented total trivialization atlas) used in the definition?

®  Suppose f € WP(M). Does this imply that the local representation of f with respect
to each chart (Uy, @) is in WP (¢, (U, ))? If g is a metricon M and g € W%, can we
conclude that g;j o ot € WP (@, (Uy))?

e  Suppose that P : C®(M) — C®(M) is a linear differential operator. Is it possible
to gain information about the mapping properties of P by studying the mapping
properties of its local representations with respect to charts in a given atlas? For
example, suppose that the local representations of P with respect to each chart (Uy, ¢x)
in an atlas is continuous from W% (@, (Uy)) to WP (@, (Uy)). Is it possible to extend
P to a continuous linear map from W5 (M) to W57 (M)?

To further motivate the questions that are studied in this paper and the study of the
key properties mentioned above, let us consider a concrete example. For any two sets
A and B, let Func(A, B) denote the collection of all functions from A to B. Consider the
differential operator

divg : C*(TM) — Func(M,R), divg X = (tro sharp, o V o flatg) X

on a compact Riemannian manifold (M, g) with g € W**. Let {(Uy, ¢a) } be a smooth atlas
for M. It can be shown that for each a

[(V/detga) (X 0 9, 1)],

(divgX) o o

Z \ /detga ax/

where g, (x) is the matrix whose (i, j)-entry is (gij o ¢, 1)(x). As it will be discussed in
detail in Section 10, we call Q* : C® (¢, (Uy), R") — Func(¢a(Uy), R) defined by

QM =L e o (VA ()

QYN

the local representation of divy with respect to the local chart (Uy, ¢a). Let us say we can
prove that for each « and j, Q;?‘ maps wg"’(%(ua)) to We=4 (@, (U,)). Can we conclude
that divy maps W%(TM) to W= (M)? Furthermore, how can we find exponents e and g
such that

Q}* : WS’q(%(Ua)) = WM (gu(Ua))

is a well-defined continuous map? We will see how the properties we mentioned above
play a key role in answering these questions.

Since W% (Q) = LP(Q), Sobolev-Slobodeckij spaces can be viewed as a generalization
of classical Lebesgue spaces. Of course, unlike Lebesgue spaces, some of the key properties
of WS (Q)) (for s # 0) depend on the geometry of the boundary of (). Indeed, to thoroughly
study the properties of W37 (Q)) one should consider the following cases independently:

1) Q=R"
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2a) bounded

2b) unbounded

3a) bounded
3b) unbounded

Let us mention here four facts to highlight the dependence on domain and some
atypical behaviors of certain fractional Sobolev spaces. Let s € (0,00) and p € (1,c0).

e Factl:

(2) Qs an arbitrary open subset of R" {

(3) Qis an open subset of R"” with smooth boundary {

9
Vi == i WSP(RY) —» WP (R
I 5 (R") (R")
is a well-defined bounded linear operator.
e Fact2: If we further assume that s # % and () has smooth boundary then

Vj 9. WP (Q) — WP (Q)
ox/
is a well-defined bounded linear operator.
e Fact3: If3 <s, then

WP (R™) < WEP(R™).
e TFact4: If O does NOT have Lipschitz boundary, then it is NOT necessarily true that
WP (Q) — WP (Q)

for0 <5< 1.

Let M be an n-dimensional compact smooth manifold and let { (U, ¢«)} be a smooth
atlas for M. As we will see, the properties of Sobolev-Slobodeckij spaces of sections of
vector bundles on M are closely related to the properties of spaces of locally Sobolev-
Slobodeckij functions on domains in R”. Primarily we will be interested in the prop-
erties of W37 (¢,(Uy)) and WIS Of (¢a(Uy)). Furthermore, when we want to patch things
together consistently and move from “local” to “global”, we will need to consider spaces
WP (o (Uy NUg)) and WP (@g(Uy N Ug)). However, as we pointed out earlier, some of
the properties of W37 (Q2) depend heavily on the geometry of the boundary of Q. Consider-
ing that the intersection of two Lipschitz domains is not necessarily a Lipschitz domain, we
need to consider the following question:

e Isitpossible to find an atlas such that the image of each coordinate domain in the atlas
(and the image of the intersection of any two coordinate domains in the atlas) under
the corresponding coordinate map is either the entire R" or a nonempty bounded set
with smooth boundary? Furthermore, if we define the Sobolev spaces using such an
atlas, will the results be independent of the chosen atlas?

This manuscript is an attempt to collect some results concerning these questions and
certain other fundamental questions similar to the ones stated above, and we pay special
attention to spaces with noninteger smoothness order and to general sections of vector
bundles. There are a number of standard sources for properties of integer order Sobolev
spaces of functions and related elliptic operators on domains in R" (cf. [1-3]), real order
Sobolev spaces of functions [4-8], Sobolev spaces of functions on manifolds [9-12], and
Sobolev spaces of sections of vector bundles on manifolds [13,14]. However, most of these
works focus on spaces of functions rather than general sections, and in many cases the
focus is on integer order spaces. This paper should be viewed as a part of our efforts to
build a more complete foundation for the study and use of Sobolev-Slobodeckij spaces on
manifolds through a sequence of related manuscripts [15-18].
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Outline of Paper. In Section 2, we summarize some of the basic notation and con-
ventions used throughout the paper. In Section 3, we will review a number of basic
constructions in linear algebra that are essential in the study of function spaces of gen-
eralized sections of vector bundles. In Section 4 we will recall some useful tools from
analysis and topology. In particular, a concise overview of some of the main properties
of topological vector spaces is presented in this section. Section 5 deals with reviewing
some results we need from differential geometry. The main purpose of this section is to
set the notation, definitions, and conventions straight. This section also includes some less
well-known facts about topics such as higher order covariant derivatives in the context
of vector bundles. In Section 6 we collect the results that we need from the theory of
generalized functions on Euclidean spaces and vector bundles. Section 7 is concerned
with various definitions and properties of Sobolev spaces that are needed for developing
a coherent theory of such spaces on the vector bundles. In Sections 8 and 9 we introduce
Lebesgue spaces and Sobolev-Slobodeckij spaces of sections of vector bundles and we
present a rigorous account of their various properties. Finally in Section 10 we study the
continuity of certain differential operators between Sobolev spaces of sections of vector
bundles. Although the purpose of Section 3 through Section 7 is to give a quick overview
of the prerequisites that are needed to understand the proofs of the results in later sections
and set the notation straight, as it was pointed out earlier, several theorems and proofs that
appear in these sections cannot be found elsewhere in the generality that are stated here.

2. Notation and Conventions

Throughout this paper, R denotes the set of real numbers, N denotes the set of positive
integers, and Ny denotes the set of nonnegative integers. For any nonnegative real number
s, the integer part of s is denoted by |s]. The letter n is a positive integer and stands for the
dimension of the space.

Q) is a nonempty open set in R”. The collection of all compact subsets of Q) will be
denoted by K (). Lipschitz domain in R” refers to a nonempty bounded open set in R”
with Lipschitz continuous boundary.

Each element of Nj is called a multi-index. For a multi-index a = (aq,...,ay) € NE,
we let
o a|i=ag 4. tay
. al =l gl

If a, B € Njj, we say B < a provided that B; < a; forall 1 <i < n.If B < a, welet

() = p=p = () ()

Suppose that « € Nj. For sufficiently smooth functions u : 3 — R (or for any
distribution u) we define the wth order partial derivative of u as follows:

olal

0%y = Miuﬂ.
dx;'...oxy"

We use the notation A < B to mean A < c¢B, where c is a positive constant that does
not depend on the non-fixed parameters appearing in A and B. We write A ~ Bif A < B
and B < A.

For any nonempty set X and r € N, X*" stands for X x ... x X.

——
r times

For any two nonempty sets X and Y, Func(X, Y) denotes the collection of all functions
from X to Y.

We write L(X,Y) for the space of all continuous linear maps from the normed space X
to the normed space Y. L(X, R) is called the (topological) dual of X and is denoted by X*.
We use the notation X — Y to mean X C Y and the inclusion map is continuous.
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GL(n,R) is the set of all n x n invertible matrices with real entries. Note that GL(n, R)
can be identified with an open subset of R and so it can be viewed as a smooth manifold
(more precisely, GL(n, R) is a Lie group).

Throughout this manuscript, all manifolds are assumed to be smooth, Hausdorff, and
second-countable.

Let M be an n-dimensional compact smooth manifold. The tangent space of the
manifold M at point p € M is denoted by T, M, and the cotangent space by T; M. If (U, ¢ =
(x')) is a local coordinate chart and p € U, we denote the corresponding coordinate basis
for T, M by 9;|, while % |x denotes the basis for the tangent space to R" at x = ¢(p) € R";

that is,
d

oxi’
Note that for any smooth function f : M — R we have

P+0; =

_9
T ooxd

(9if) oo (feo™).

The vector space of all k-covariant, I-contravariant tensors on T,M is denoted by
TF(T,M). So, each element of Tf(T, M) is a multilinear map of the form

F:T;MX”-XT;MXTPMX~~~><TPM—>R.

I copies k copies
We are primarily interested in the vector bundle of (][‘)-tensors on M whose total space is

THM) = | | THT,M).
peEM

A section of this bundle is called a (’;)—tensor field. We set TFM := T(’)‘ (M). TM denotes the
tangent bundle of M and T*M is the cotangent bundle of M. We set

F(M) = C*(M, TF(M)) = collection of smooth (If)—tensor fields on M

and
x(M) = C®(M, TM) = the collection of smooth vector fields on M.

A symmetric positive definite section of T>M is called a Riemannian metric on M. If
M is equipped with a Riemannian metric g, the combination (M, g) will be referred to as a
Riemannian manifold. If there is no possibility of confusion, we may write (X, Y) instead
of ¢(X,Y). The norm induced by g on each tangent space will be denoted by ||.||. We say
that g is smooth (or the Riemannian manifold is smooth) if g € C®°(M, T2M).

d denotes the exterior derivative and grad : C®(M) — C*(M,TM) denotes the
gradient operator which is defined by g(grad f, X) = d f(X) for all f € C®(M) and
X € C®(M, TM).

Given a metric g on M, one can define the musical isomorphisms as follows:

flaty : T,M — TiM
X X =g(X, ),
sharp, : T,M — T,M
> pf = flaty ().

Using sharp, we can define the (3)-tensor field g~! (which is called the inverse metric
tensor) as follows

§ (91, 92) = glsharp,(y1), sharp, (12))
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Let {E;} be a local frame on an open subset U C M and {7’} be the corresponding dual
coframe. So we can write X = X'E; and ¢ = ¢;". It is standard practice to denote the ith
component of flaty X by X; and the ith component of sharp g(l/J) by ¢*:

flatg X = X', sharpng =y'E;.

It is easy to show that ) ) B
Xi=giiX', 9 =g"y;,
where g;; = g(E;, Ej) and g7 = ¢~ (', /). It is said that flat, X is obtained from X by
lowering an index and sharp, ) is obtained from by raising an index.

3. Review of Some Results from Linear Algebra

In this section, we summarize a collection of definitions and results from linear algebra
that play an important role in our study of function spaces and differential operators
on manifolds.

There are several ways to construct new vector spaces from old ones: subspaces,
products, direct sums, quotients, etc. The ones that are particularly important for the
study of Sobolev spaces of sections of vector bundles are the vector space of linear maps
between two given vector spaces, the tensor product of vector spaces, and the vector space
of all densities on a given vector space which we briefly review here in order to set the
notation straight.

e Let Vand W be two vector spaces. The collection of all linear maps from V to W is a
new vector space which we denote by Hom(V, W). In particular, Hom(V, R) is the
(algebraic) dual of V. If V and W are finite-dimensional, then Hom(V, W) is a vector
space whose dimension is equal to the product of dimensions of V and W. Indeed, if
we choose a basis for V and a basis for W, then Hom(V, W) is isomorphic with the
space of matrices with dim W rows and dim V' columns.

e LetUand V be two vector spaces. Roughly speaking, the tensor product of U and V'
(denoted by U ® V) is the unique vector space (up to isomorphism of vector spaces)
such that for any vector space W, Hom(U ® V, W) is isomorphic to the collection of
bilinear maps from U x V to W. Informally, U @ V consists of finite linear combinations
of symbols u ® v, where u € U and v € V. It is assumed that these symbols satisfy the
following identities:

(m+u) Q-1 Qv —up ®v =0,
U (v1+0v) —uRv —uRuvy =0,
a(u®v)— (au) v =0,
a(u®@v) —u® (av) =0,
forall u,u1,uy € U, v,v1,v2 € V and « € R. These identities simply say that the map
@:UxV-URV, (uv)—uuv,

is a bilinear map. The image of this map spans U ® V.

Definition 1. Let U and V be two vector spaces. Tensor product is a vector space U @ V
together with a bilinear map @ : UxV — UV, (u,v) — u ® v such that given any
vector space W and any bilinear map b : U x V. — W, there is a unique linear map
b:U®V — Wwithb(u®v) = b(u,v). That is, the following diagram commutes:

uoVv
®

b)
Uuxv —»Ww

b
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For us, the most useful property of the tensor product of finite dimensional vector
spaces is the following property:

Hom(V,W) XV @ W.

Indeed, the following map is an isomorphism of vector spaces:

F:V*®W — Hom(V,W), F(v* @ w) (v) = [*(v)] w.
an element of Hom(V, W) a real number

It is useful to obtain an expression for the inverse of F too. That is, given T €
Hom(V, W), we want to find an expression for the corresponding element of V* @ W.
To this end, let {e;}1<;<, be a basis for V and {e'};<;<, denote the corresponding dual
basis. Let {s,}1<q<, be a basis for W. Then {¢’ @ s, } is a basis for V* ® W. Suppose
Yia R?ei ® sq is the element of V* ® W that corresponds to T. We have

F(Y Rle'@s,) =T=VYueV Y ROF[e'®s,|(u)=T(u)
ia ia
=VueV Y Rle(u)s,=T(u).

ia
In particular, forall1 <j <n,

T(ej) = Y Rie'(ej)sa = Y Risq.

ia e a

5

j

That is, R'f is the entry in the ath row and ith column of the matrix of the linear

transformation T.

Let V be an n-dimensional vector space. A density on Visa functionp: V x ... x V —
e —

n copies

R with the property that
w(Toy, ..., To,) = |detT|pu(vy, ..., v4),

forall T € Hom(V, V).

We denote the collection of all densities on V by D(V). It can be shown that D(V) is a
one dimensional vector space under the obvious vector space operations. Indeed, if
(e1,...,en) is a basis for V, then each element y € D(V) is uniquely determined by
its value at (ey, ..., e,) because for any (vy,...,v,) € V*", we have u(vy,...,v,) =
|detT|pu(eq, ..., en) where T : V — V is the linear transformation defined by T'(e;) = v;
foralll <i < n. Thus

F:D(V) >R, F(u)=pler,...,en),

will be an isomorphism of vector spaces.

Moreover, if w € A"(V) where A"(V) is the collection of all alternating covariant
n-tensors, then |w| belongs to D(V). Thus, if w is any nonzero element of A" (V), then
{|w|} will be a basis for D(V) ([19], p. 428).

4. Review of Some Results from Analysis and Topology
4.1. Euclidean Space

Let () be a nonempty open set in R"” and m € Nj. Here is a list of several useful

function spaces on ():
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C(Q) ={f:Q— R: fis continuous}

CNO) = {f: QR Ve <m Ffec)}  (CUQ) = C(@))
BC(Q)) ={f:Q — R: fis continuous and bounded on O}
BC™"(Q) ={feC™(Q):V]a] <m 0"fisbounded on O}
BC(Q)) ={f: Q2 = R: f € BC(Q) and f is uniformly continuous on Q}
Cm(fl) ={f:QO—-R:fe BC"’(Q) Vel <m B“f is uniformly continuous on O}
Q)= () C"(Q), BC®(Q)= () BC"(Q), BC®(Q)= () BC"(Q
meNy meNy meNy

Remark 1 ([1]). If g : QO — Ris in BC(Q)), then it possesses a unique, bounded, continuous
extension to the closure Q) of Q.

Notation: Let Q) be a nonempty open set in R". The collection of all compact sets in () is
denoted by K£(Q). If f : O — R is a function, the support of f is denoted by supp f. Notice
that, in some references supp f is defined as the closure of {x € O : f(x ) # 0} in O, while
in certain other references it is defined as the closure of {x € O : f(x) # 0} in R". Of
course, if we are concerned with functions whose support is inside an element of /C(Q)),
then the two definitions agree. For the sake of definiteness, in this manuscript we always
use the former interpretation of support. Furthermore, support of a distribution will be
discussed in Section 6.

Remark 2. If F(Q) is any function space on Q and K € K(Q)), then Fx (Q) denotes the collection
of elements in JF (QY) whose support is inside K. Furthermore,

]:c(Q) = ]:comp(Q) = U }—K(Q)
Kek(Q)

Let0 < A < 1. A function F : QO C R" — Rk is called A-Holder continuous if there
exists a constant L such that

[F(x) — F@)| < Llx—y|* ¥YxyeQ.

Clearly, a A-Holder continuous function on Q) is uniformly continuous on Q. 1-Holder
continuous functions are also called Lipschitz continuous functions or simply Lipschitz
functions. We define

BC"MQ) ={f: Q= R:V|a| <m d"fis A-Holder continuous and bounded}
={feBC"(Q):V|a| <m 9“fis A-Holder continuous}
={f € BC"(Q) :V|a| <m 09"f is A-Holder continuous}

and BC®(Q)) := Nuen, BC"(Q).
Remark 3. Let F: Q C R" — R¥ (F = (Fl,--- ,Fk)). Then
Fis Lipschitz <= V1 <i <k F'is Lipschitz.

Indeed, for each i

[F'(x) = Fi(y)] < \| Y |F/(x) = Fi(y)|? = [F(x) = F(y)| < Llx—yl,
=1
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which shows that if F is Lipschitz so will be its components. Furthermore, if for each i, there exists
L; such that ) ‘
[F'(x) = F'(y)| < Lilx —yl,

then .
Y IF(x) = Fl(y)|* < nL?|x —y|?,
j=1

where L = max{Ly,- -, L}. This proves that if each component of F is Lipschitz so is F itself.

Theorem 1 ([20]). Let Q) be a nonempty open set in R" and let K € K(Q). There is a function
P € CX(Q) taking values in [0,1] such that = 1 on a neighborhood of K.

Theorem 2 (Exhaustion by Compact Sets [20]). Let Q) be a nonempty open subset of R". There
exists a sequence of compact subsets (K;)jen such that U jeNI%]- = Qand

KiCKCKC- CKCKC .

Moreover, as a direct consequence, if K is any compact subset of the open set Q), then there exists an
open set V such that KCV C V C Q.

Theorem 3 ([20]). Let Q) be a nonempty open subset of R". Let {K;};cn be an exhaustion of Q) by
compact sets. Define

Vo = Ky, V]EN V]‘:K]‘+4\KJ‘.
Then

(1) Each V] is an open bounded set and Q) = U]vV-;

(2)  The cover {V;}jcn, is locally finite in Q), that is, each compact subset of Q) has nonempty
intersection with only a finite number of the V;'s;

(3)  Thereis a family of functions ; € CZ°(Q) taking values in [0,1] such that suppp; C V; and

Y Pi(x) =1 forallx € Q.

j€Ng
Theorem 4 ([21], p. 74). Suppose Q) is an open set in R" and G : Q — G(Q) C R"isa

C-diffeomorphism (i.e., G and G~ are both C' maps). If f is a Lebesgue measurable function on
G(Q), then f o G is Lebesgue measurable on Q. If f > 0 or f € L}(G(Q)), then

/;(Q)f(x)dx = /Qf o G(x)|detG' (x)|dx.

Theorem 5 ([21], p. 79). If f is a nonnegative measurable function on R such that f(x) = g(|x|)
for some function g on (0,00), then

/f(x)dx =o(s" Y / g(ryrdr,
0
where o(S"~1) is the surface area of (n — 1)-sphere.
Theorem 6 ([22], Section 12.11). Suppose U is an open set in R" and f : U — R is differentiable.

Let x and y be two points in U and suppose the line segment joining x and y is contained in U.
Then there exists a point z on the line joining x to y such that

fy) = f(x) = Vf(2)-(y —x).

As a consequence, if U is convex and all first order partial derivatives of f are bounded, then f is
Lipschitz on U.
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Warning: Suppose f € BC®(U). By the above item, if U is convex, then f is Lipschitz.
However, if U is not convex, then f is not necessarily Lipschitz. For example, let U =
U o(n,n+ 1) and define

f:uU—R, flx)=(-1)" Vxe(nn+1).

Clearly, all derivatives of U are equal to zero, so f € BC®(U). However, f is not uniformly
continuous and thus it is not Lipschitz. Indeed, forany 1 > 6 > 0, we canletx =2 — /4
andy = 2+ 6/4. Clearly |x —y| < 6, however, |f(x) — f(y)| = 2.

Of course, if f € CL(U), then f can be extended by zero to a function in C}(R"). Since
R" is convex, we may conclude that the extension by zero of f is Lipschitz which implies
that f : U — Ris Lipschitz. As a consequence, C}(U) C BC%!(U) and C(U) C BC™!(U).
Furthermore, Theorem 60 and the following theorem provide useful information regarding
this issue.

Theorem 7. Let U C R" and V C R¥ be two nonempty open sets and let T : U — V (T =
(TY,...,T%)) bea C' map (that is, foreach 1 < i <k, T' € C1(U)). Suppose B C U is a bounded
set suchthat BC BC U. Then T: B — V is Lipschitz.

Proof. By Remark 3 it is enough to show that each T’ is Lipschitz on B. Fix a function
¢ € CP(R") such that ¢ = 1 on Band ¢ = 0 on R"\ U. Then ¢T' can be viewed as an
element of C!(R"). Therefore, it is Lipschitz (R" is convex) and there exists a constant L,
which may depend on ¢, B and T', such that

lpT'(x) = 9T'(y)| < LIx—y| Vx,y€eR".
Since ¢ = 1 on B, it follows that
T'(x) = T'(y)| < Llx —y| Vx,y€B.
O

4.2. Normed Spaces
Theorem 8. Let X and Y be normed spaces. Let A be a dense subspace of X and B be a dense
subspace of Y. Then

e AXxBisdensein X xY;
e IfT:Ax B — Risacontinuous bilinear map, then T has a unique extension to a continuous
bilinear operator T : X x Y — R.

Theorem 9 ([1]). Let X be a normed space and let M be a closed vector subspace of X.

(1) If X is reflexive, then X is a Banach space.

(2) X is reflexive if and only if X* is reflexive.

(3)  If X* is separable, then X is separable.

(4)  If X is reflexive and separable, then so is X*.
(5)  If X is a reflexive Banach space, then so is M.
(6) If X is a separable Banach space, then so is M.

Moreover, if X1, ..., X, are reflexive Banach spaces, then X1 x ... x X, equipped with the norm
1Ger, o xn) [l = Nl + o+l

is also a reflexive Banach space.
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4.3. Topological Vector Spaces

There are different, generally nonequivalent, ways to define topological vector spaces.
The conventions in this section mainly follow Rudin’s functional analysis [23]. Statements
in this section are either taken from Rudin’s functional analysis, Grubb'’s distributions and
operators [20], excellent presentation of Reus [24], and Treves’ topological vector spaces [25]
or are direct consequences of statements in the aforementioned references. Therefore we
will not give the proofs.

Definition 2. A topological vector space is a vector space X together with a topology T with the
following properties:

(i) Forall x € X, the singleton {x} is a closed set.
(ii)  The maps

(v, y) = x+y (from X x X into X)),
(A, x) = Ax  (from R x X into X),

are continuous where X x X and R x X are equipped with the product topology.

Definition 3. Suppose (X, T) is a topological vector space and Y C X.

e Yissaid to be convex if for all y1,yo € Y and t € (0,1) it is true that ty; + (1 — )y, € Y.

e Yissaid to be balanced if for all y € Y and |A| < 1 it holds that Ay € Y. In particular, any
balanced set contains the origin.

e Wesay Y is bounded if for any neighborhood U of the origin (i.e., any open set containing the
origin), there exits t > 0 such that Y C tU.

Theorem 10 (Important Properties of Topological Vector Spaces).

e Every topological vector space is Hausdorff.

e If(X,7) is a topological vector space, then
(1) Foralla € X: E € T<= a+ E € T (that is, T is translation invariant);
(2) Forall A € R\ {0}: E € T <= AE € 7 (that is, T is scale invariant);
(3) IfAC Xisconvexand x € X, then sois A + x;
(4)  If {Ai}icy is a family of convex subsets of X, then Nic1A; is convex.

Note: Some authors do not include condition (i) in the definition of topological vector
spaces. In that case, a topological vector space will not necessarily be Hausdorff.

Definition 4. Let (X, T) be a topological space.

e Acollection B C T is said to be a basis for T, if every element of T is a union of elements in .

e Letp e X. Ify C 7issuch that each element of -y contains p and every neighborhood of p
(i.e., every open set containing p) contains at least one element of vy, then we say <y is a local
base at p. If X is a vector space, then the local base vy is said to be convex if each element of «y
is a convex set.
(X, T) is called first-countable if each point has a countable local base.

e (X, 1) is called second-countable if there is a countable basis for T.

Theorem 11. Let (X, T) be a topological space and suppose for all x € X, v is a local base at x.
Then B = Uyexx is a basis for .

Theorem 12. Let X be a vector space and suppose T is a translation invariant topology on X. Then

forall x1,x, € X, the collection vy, is a local base at xy if and only if the collection {A + (x; —
x1)} e, i a local base at x;.
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Remark 4. Let X be a vector space and suppose T is a translation invariant topology on X. As a
direct consequence of the previous theorems the topology T is uniquely determined by giving a local
base 7y, at some point xog € X.

Definition 5. Let (X, T) be a topological vector space. X is said to be metrizable if there exists a
metricd : X x X — [0, co) whose induced topology is T. In this case we say that the metric d is
compatible with the topology T.

Theorem 13. Let (X, T) be a topological vector space.

o X ismetrizable <=> there exists a metric d on X such that forall x € X, {B(x, 1) },enisa
local base at x.
o Ametricd on X is compatible with T <=> forall x € X, {B(x, 1)} ,en is a local base at x.

(B(x, L) is the open ball of radius L centered at x).

Definition 6. Let X be a vector space and d be a metric on X. d is said to be translation invariant
provided that
Vx,y,a€X dx+a,y+a)=d(x,y).

Remark 5. Let (X, T) be a topological vector space and suppose d is a translation invariant metric
on X. Then the following statements are equivalent:

(1) Forall x € X, {B(x, 1)} sen is a local base at x.
(2)  There exists xo € X such that {B(xo, %)}nEN is a local base at x.

Therefore, d is compatible with T if and only if {B(0, 1)}, is a local base at the origin.

Theorem 14. Let (X, T) be a topological vector space. Then (X, T) is metrizable if and only if
it has a countable local base at the origin. Moreover, if (X, T) is metrizable, then one can find a
translation invariant metric that is compatible with T.

Definition 7. Let (X, T) be a topological vector space and let {x, } be a sequence in X.
e Wesay that {x,} converges to a point x € X provided that

VuUet,xeld dN Vn>N x,eclU.
e Wesay that {x,} is a Cauchy sequence provided that

VUet,0eU IN Vmn>N x,—x, € U.

Theorem 15. Let (X, T) be a topological vector space, {x,} be a sequence in X, and x,y € X.
Additionally, suppose vy is a local base at the origin. The following statements are equivalent:

@ xp—=x;

(2) (xp—x)—=0;

3) xp+ty—x+y

(49) YVegy IN Vn>N x,—x€eV.

Moreover, {x, } is a Cauchy sequence if and only if
YVegy AN Vum>N x,—x, €V.

Remark 6. In contrast with properties like continuity of a function and convergence of a sequence
which depend only on the topology of the space, the property of being a Cauchy sequence is not a
topological property. Indeed, it is easy to construct examples of two metrics dy and dy on a vector
space X that induce the same topology (i.e., the metrics are equivalent) but have different collection
of Cauchy sequences. However, it can be shown that if dy and dy are two translation invariant
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metrics that induce the same topology on X, then the Cauchy sequences of (X, dq) will be exactly
the same as the Cauchy sequences of (X, da).

Theorem 16. Let (X, T) be a metrizable topological vector space and d be a translation invariant
metric on X that is compatible with T. Let {x,} be a sequence in X. The following statements are
equivalent:

(1) {xn} is a Cauchy sequence in the topological vector space (X, T).

(2)  {xn} is a Cauchy sequence in the metric space (X, d).

Definition 8. Let (X, T) be a topological vector space. We say (X, T) is locally convex if it has a
convex local base at the origin.

Note that, as a consequence of Theorems 10 and 12, the following statements are
equivalent:
(1) (X, 7)1is alocally convex topological vector space.
(2) There exists p € X with a convex local base at p.
(8) Forevery p € X there exists a convex local base at p.

Definition 9. Let (X, T) be a metrizable locally convex topological vector space. Let d be a
translation invariant metric on X that is compatible with T. We say that X is complete if and
only if the metric space (X, d) is a complete metric space. A complete metrizable locally convex
topological vector space is called a Frechet space.

Remark 7. Our previous remark about Cauchy sequences shows that the above definition of
completeness is independent of the chosen translation invariant metric d. Indeed one can show that
the locally convex topological vector space (X, T) is complete in the above sense if and only if every
Cauchy net in (X, T) is convergent.

Theorem 17 ([26], p. 63). A linear continuous bijective mapping of a Frechet space X onto a
Frechet space Y has a continuous linear inverse.

Definition 10. A seminorm on a vector space X is a real-valued function p : X — R such that
() VxyeX  plxty)<p)+ply)

(i) VxeXVaeR  plax) = |a|p(x)

If P is a family of seminorms on X, then we say P is separating provided that for all x # 0 there
exists at least one p € P such that p(x) # 0 (that is, if p(x) = 0 for all p € P, then x = 0).

Remark 8. It follows from conditions (i) and (ii) that if p : X — R is a seminorm, then p(x) > 0
forall x € X.

Theorem 18. Suppose P is a separating family of seminorms on a vector space X. Forall p € P
andn € N let

1
Vipn)={xeX:px) < E}
Furthermore, let vy be the collection of all finite intersections of V(p, n)’s. That is,
Aey<<JkeN, dpy,...,pr € P, Iny, ..., ng € N such that A = ﬂleV(pi,ni)

Then each element of -y is a convex balanced subset of X. Moreover, there exists a unique topology T
on X that satisfies both of the following properties:

(1) 7 is translation invariant (that is, if U € Tand a € X, thena+ U € T).
(2) v isalocal base at the origin for T.

This unique topology is called the natural topology induced by the family of seminorms P.
Furthermore, if X is equipped with the natural topology T, then
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(i) (X, 1) is a locally convex topological vector space,
(ii)  every p € P is a continuous function from X to R.

Theorem 19. Suppose P is a separating family of seminorms on a vector space X. Let T be the
natural topology induced by P. Then

(1) 7 is the smallest topology on X that is translation invariant and with respect to which every
p € P is continuous,

(2) 7 is the smallest topology on X with respect to which addition is continuous and every p € P
is continuous.

Theorem 20. Let X and Y be two vector spaces and suppose P and Q are two separating families
of seminorms on X and Y, respectively. Equip X and Y with the corresponding natural topologies.

(1) A sequence x,, converges to x in X if and only if for all p € P, p(x,, — x) — 0.
(2)  Alinear operator T : X — Y is continuous if and only if

Vge Q Fc>0,keN, py,...,pr € P suchthat Vxe X |go0T(x)| < c]rgazkpi(x).
SIS
(3)  Alinear operator T : X — R is continuous if and only if

Jc>0,keN, py,...,px € P suchthat Vxe X |T ()\<c1maxkp,()
<i<

Theorem 21. Let X be a Frechet space and let Y be a topological vector space. When T is a linear
map of X into Y, the following two properties are equivalent:

(1) T is continuous.
2) xp—>0inX=—Tx, —0inY.

Theorem 22. Let P = {py }ren be a countable separating family of seminorms on a vector space
X. Let T be the corresponding natural topology. Then the locally convex topological vector space
(X, ) is metrizable and the following translation invariant metric on X is compatible with T:

o 1 px—y)
; X 1+pe(x—y)

Let (X, T) be a locally convex topological vector space. Consider the topological dual
of X,
X*:={f:X = R: fislinear and continuous} .

There are several ways to topologize X*: the weak™ topology, the topology of convex
compact convergence, the topology of compact convergence, and the strong topology
(see [25], Chapter 19). Here we describe the weak™* topology and the strong topology on X*.

Definition 11. Let (X, T) be a locally convex topological vector space.

e The weak™ topology on X* is the natural topology induced by the separating family of
seminorms {px }rex where

VxeX  pe: X' =R pu(f) = If(x)].

A sequence {f} converges to f in X* with respect to the weak™ topology if and only if
fm(x) = f(x)inR forall x € X.

e The strong topology on X* is the natural topology induced by the separating family of
seminorms {pp} pc xpounded Where for any bounded subset B of X

pp: X" = R pp(f) = sup{|f(x)] : x € B}.
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(It can be shown that for any bounded subset B of X and f € X*, f(B) is a bounded subset
of R.)

Remark 9.
(1)  If X is a normed space, then the topology induced by the norm

VfeX” [fllop = sup [f(x)]

[lxllx=1

on X* is the same as the strong topology on X* ([25], p. 198).

(2)  In this manuscript, we always consider the topological dual of a locally convex topological
vector space with the strong topology. Of course, it is worth mentioning that for many of
the spaces that we will consider (including X = £(Q) or X = D(Q) where ) is an open
subset of R") a sequence in X* converges with respect to the weak™ topology if and only if it
converges with respect to the strong topology (for more details on this see the definition and
properties of Montel spaces in Section 34.4, page 356 of [25]).

The following theorem, which is easy to prove, will later be used in the proof of
completeness of Sobolev spaces of sections of vector bundles.

Theorem 23 ([24], p. 160). If X and Y are topological vector spaces and 1 : X — Y and
P:Y — X are continuous linear maps such that Po I = idy, then I : X — I(X) C Y is a linear
topological isomorphism and 1(X) is closed in Y.

Now we briefly review the relationship between the dual of a product of topological
vector spaces and the product of the dual spaces. This will play an important role in our
discussion of local representations of distributions in vector bundles in later sections.

Let Xj,..., X; be topological vector spaces. Recall that the product topology on
Xy x ... x X, is the smallest topology such that the projection maps

e Xy X oo x X — X, (X1, .o, X)) = xp,

are continuous for all 1 < k < r. It can be shown that if each X} is a locally convex
topological vector space whose topology is induced by a family of seminorms P, then
Xy x ... x X; equipped with the product topology is a locally convex topological vector
space whose topology is induced by the following family of seminorms

{prom+...+prom:pre P V1<k<r}.

Theorem 24 ([24], p. 164). Let Xq,..., X, be locally convex topological vector spaces. Equip
X1 X ... x Xpand X; x ... x X} with the product topology. The mapping L : X3 x ... x X} —
(X1 % ... x X;)* defined by

i(ulf---/ur) =Upom +...+u oy
is a linear topological isomorphism. Its inverse is
L(v) = (voiy,...,v0i),

where forall1 <k <r, iy : X = X3 X ... x X, is defined by

k" position

The notion of adjoint operator, which frequently appears in the future sections, is
introduced in the following theorem.
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Theorem 25 ([24], p. 163). Let X and Y be locally convex topological vector spaces and suppose
T : X — Y is a continuous linear map. Then

(1) The map
T :Y* — X* <T*y,x)X*><X = <y, Tx)y*xy,

is well-defined, linear, and continuous. (T* is called the adjoint of T).
(2) IfT(X)isdenseinY, then T* : Y* — X* is injective.

Remark 10. In the subsequent sections we will focus heavily on certain function spaces on domains
Q in the Euclidean space. For approximation purposes, it is always desirable to have D(Q)(=
C®(Q)) as a dense subspace of our function spaces. However, there is another, may be more
profound, reason for being interested in having D(QY) as a dense subspace. It is important to
note that we would like to use the term “function spaces” for topological vector spaces that can be
continuously embedded in D’ (Q)) (see Section 6 for the definition of D'(Y)) so that concepts such
as differentiation will be meaningful for the elements of our function spaces. Given a function space
A(Q) it is usually helpful to consider its dual too. In order to be able to view the dual of A(Q) as a
function space we need to ensure that [A(Q)]* can be viewed as a subspace of D'(QY). To this end,
according to the above theorem, it is enough to ensure that the identity map from D(Q) to A(Q)) is
continuous with dense image in A(Q).

Let us consider more closely two special cases of Theorem 25.

(1) Suppose Y is a normed space and H is a dense subspace of Y. Clearly, the identity
map i : H — Y is continuous with dense image. Therefore, i* : Y* — H* (F — F|p) is
continuous and injective. Furthermore, by the Hahn-Banach theorem for all ¢ € H*
there exists F € Y* such that F|g = ¢ and ||F||y» = ||¢||g=. So the above map
is indeed bijective and Y* and H* are isometrically isomorphic. As an important
example, let ) be a nonempty open set in R”, s > 0, and 1 < p < co. Consider
the space W,;" (Q)) (see Section 7 for the definition of W, (Q2)). C=(Q) is a dense
subspace of W, (2). Therefore, Wt (Q) == [W,7 (Q)]* is isometrically isomorphic
to [(C2(Q), [||ls,p)]*. In particular, if F € W57 (Q), then

[F(y)]
Fllo o = su :
Wl = S ol

(2) Suppose (Y, |.|ly) is a normed space, (X, T) is a locally convex topological vector
space, X C Y, and the identity map i : (X, 1) — (Y, ||.||y) is continuous with dense
image. So i* : Y* — X* (F — F|x) is continuous and injective and can be used to
identify Y* with a subspace of X*.

®  Question: Exactly what elements of X* are in the image of i*? That is, which
elements of X* “belong to” Y*?

e Answer: ¢ € X* belongs to the image of i* if and only if ¢ : (X, |.|y) —
R is continuous, that is, ¢ € X* belongs to the image of i* if and only if

Supex\ o} Ty <

So, an element ¢ € X* can be considered as an element of Y* if and only if

wp 120 _
xex\{0} [lx]|y

Furthermore, if we denote the unique corresponding element in Y* by ¢ (normally
we identify ¢ and ¢ and we use the same notation for both) then since X is dense in Y

(ol = sup 120 _ o lo()
yeY\{0} Iylly xex\{0} llxlly
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Remark 11. To sum up, given an element ¢ € X* in order to show that ¢ can be considered

as an element of Y* we just need to show that sup...x\ (o} ”ﬁg—lﬁl < oo and in that case,

norm of ¢ as an element of Y™ is sup...x\ (o ‘ﬁéﬁi‘. However, it is important to notice that
if F: Y — Ris a linear map, X is a dense subspace of Y, and F|x : (X, ||.||y) — Ris
bounded, that does NOT imply that F € Y*. It just shows that there exists G € Y™ such that

G‘ x=F ‘ X-
We conclude this section by a quick review of the inductive limit topology.

Definition 12. Let X be a vector space and let { X, } 4 be a family of vector subspaces of X with
the property that

e Foreachw € I, X, is equipped with a topology that makes it a locally convex topological vector
space, and

o Uper Xu =X

The inductive limit topology on X with respect to the family {Xa }ye is defined to be the largest

topology with respect to which

(1) X s alocally convex topological vector space;
(2)  All the inclusions X, C X are continuous.

Theorem 26 ([24], p. 161). Let X be a vector space equipped with the inductive limit topology
with respect to { Xy} as described above. If Y is a locally convex vector space, then a linear map
T : X — Y is continuous if and only if T|x, : Xo — Y is continuous for all & € I.

Theorem 27 ([24], p. 162). Let X be a vector space equipped with the inductive limit topology
with respect to { X, } as described above. A convex subset W of X is a neighborhood of the origin
(i.e., an open set containing the origin) in X if and only if for all «, the set W N X, is a neighborhood
of the origin in X,.

Theorem 28 ([24], p. 165). Let X be a vector space and let {X;} jc, be a nested family of vector
subspaces of X:
XCXC...CXC....

Suppose each X; is equipped with a topology that makes it a locally convex topological vector space.
Equip X with the inductive limit topology with respect to { X;}. Then the following topologies on
X*" are equivalent (=they are the same):
(1) The product topology;
(2)  The inductive limit topology with respect to the family {X]*r} (For each j, XjX’ is equipped

with the product topology).
As a consequence, if Y is a locally convex vector space, then a linear map T : X*" — Y is continuous
if and only if T|yr : X[ — Y'is continuous for all j € No.

]

5. Review of Some Results from Differential Geometry

The main purpose of this section is to set the notation and terminology straight. To
this end we cite the definitions of several basic terms and a number of basic properties that
we will frequently use. The main reference for the majority of the definitions is one of the
invaluable books by John M. Lee [19].

5.1. Smooth Manifolds

Suppose M is a topological space. We say that M is a topological manifold of dimen-
sion n if it is Hausdorff, second-countable, and locally Euclidean in the sense that each
point of M has a neighborhood that is homeomorphic to an open subset of R". It is easy to
see that the following statements are equivalent ([19], p. 3):
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(1)  Each point of M has a neighborhood that is homeomorphic to an open subset of R".
(2)  Each point of M has a neighborhood that is homeomorphic to an open ball in R".
(3) Each point of M has a neighborhood that is homeomorphic to R".

By a coordinate chart (or just chart) on M we mean a pair (U, ¢), where U is an open
subset of Mand ¢ : U — U is a homeomorphism from U to an open subset U = ¢(U) C R".
U is called a coordinate domain or a coordinate neighborhood of each of its points and ¢
is called a coordinate map. An atlas for M is a collection of charts whose domains cover
M. Two charts (U, ¢) and (V, ) are said to be smoothly compatible if either UNV = @
or the transition map o ¢~ ! is a C®-diffeomorphism. An atlas A is called a smooth
atlas if any two charts in A are smoothly compatible with each other. A smooth atlas
A on M is maximal if it is not properly contained in any larger smooth atlas. A smooth
structure on M is a maximal smooth atlas. A smooth manifold is a pair (M, A), where M
is a topological manifold and A is a smooth structure on M. Any chart (U, ¢) contained
in the given maximal smooth atlas is called a smooth chart. If M and N are two smooth
manifolds, amap F : M — N is said to be a smooth (C*) map if for every p € M, there
exist smooth charts (U, ¢) containing p and (V, ) containing F(p) such that F(U) C V
and o Fo g~ € C®(@(U)). It can be shown that if F is smooth, then its restriction to
every open subset of M is smooth. Furthermore, if every p € M has a neighborhood U
such that F|{; is smooth, then F is smooth.

Remark 12.

®  Sometimes we use the shorthand notation M" to indicate that M is n-dimensional.

o Clearly, if (U, @) is a chart in a maximal smooth atlas and V is an open subset of U, then
(V, ) where = ¢|v is also a smooth chart (i.e., it belongs to the same maximal atlas).

®  Every smooth atlas A for M is contained in a unique maximal smooth atlas, called the smooth
structure determined by A.

e If M is a compact smooth manifold, then there exists a smooth atlas with finitely many
elements that determines the smooth structure of M (this is immediate from the definition of
compactness).

Definition 13.

e We say that a smooth atlas for a smooth manifold M is a geometrically Lipschitz (GL)
smooth atlas if the image of each coordinate domain in the atlas under the corresponding
coordinate map is a nonempty bounded open set with Lipschitz boundary.

e We say that a smooth atlas for a smooth manifold M" is a generalized geometrically
Lipschitz (GGL) smooth atlas if the image of each coordinate domain in the atlas under
the corresponding coordinate map is the entire R" or a nonempty bounded open set with
Lipschitz boundary.

®  Wesay that a smooth atlas for a smooth manifold M" is a nice smooth atlas if the image of
each coordinate domain in the atlas under the corresponding coordinate map is a ball in R".

o Wesay that a smooth atlas for a smooth manifold M" is a super nice smooth atlas if the image
of each coordinate domain in the atlas under the corresponding coordinate map is the entire R".

o We say that two smooth atlases {(Uy, ¢u) }act and {(Ug, §p)} ey for a smooth manifold
M" are geometrically Lipschitz compatible (GLC) smooth atlases provided that each atlas
is GGL and moreover for all x € I and B € J with Uy, N Cl}g # @, ou(Uy N Ug) and
Pp(Ua N Ug) are nonempty bounded open sets with Lipschitz boundary or the entire R".

Clearly, every super nice smooth atlas is also a GGL smooth atlas; every nice smooth
atlas is also a GL smooth atlas, and every GL smooth atlas is also a GGL smooth atlas.
Furthermore, note that two arbitrary GL smooth atlases are not necessarily GLC smooth
atlases because the intersection of two Lipschitz domains is not necessarily Lipschitz (see,
e.g., [27], pp. 115-117).

Given a smooth atlas {(Uy, ¢a) } for a compact smooth manifold M, it is not necessarily
possible to construct a new atlas { (U, @)} such that this new atlas is nice; for instance if
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Uy is not connected we cannot find @, such that @, (U,) = R" (or any ball in R"). However,
as the following lemma states, it is always possible to find a refinement that is nice.

Lemma 1. Suppose {(Uy, ¢a) }1<a<n is a smooth atlas for a compact smooth manifold M. Then
there exists a finite open cover { Vg }1<p<r of M such that

VB 1 <a(B) <Nst. Vg CUyp), Pup)(Vp)isaballinR".
Therefore, {(Vg, Pu(p)| Vﬁ)}léﬂSL is a nice smooth atlas.

Proof. For each 1 < « < N and p € U,, there exists ryp > 0 such that By, (¢a(p)) C
Pa(Us). Let Vap := 95 1(Br, (92 (p)))- Ur<a<n Upeu, Vap is an open cover of M and so it
has a finite subcover { Vi py, ..., Vayp, }- Let Vg = Vagpy- Clearly, Vg C Uy, and q)aﬁ(Vﬁ) is
aballinR". O

Remark 13. Every open ball in R" is C*°-diffeomorphic to R". Furthermore, compositions of
diffeomorphisms is a diffeomorphism. Therefore, existence of a finite nice smooth atlas on a compact
smooth manifold, which is guaranteed by the above lemma, implies the existence of a finite super
nice smooth atlas.

Lemma 2. Let M be a compact smooth manifold. Let { Uy }1<<N be an open cover of M. Suppose
C is a closed set in M (so C is compact) which is contained in Uﬁ forsome1 < B < N. Then there
exists an open cover { Ay }1<a<n of M such that C € Ag C Aﬁ C Ugand Ay C Ay C Uy forall
« # .

Proof. Without loss of generality we may assume that § = 1. Foreach 1 < a < N and
p € Uy, there exists ryp > 0 such that By, (¢« (p)) € ¢a(Un). Let Vo 1= (pl,jl(B,W((pa(p))).
Clearly, p € Vap © Vap C U,. Since M is compact, the open cover UISQSN UpGUﬂ‘ Vap of M
has a finite subcover A. For each1 <& < Nlet E, = {p € Uy : Vop € A} and

L ={a:E, #0}.

Ifacl,welet W, = Upek, Vap- Fora ¢ I choose one point p € U, and let Wy = V.
C is compact so ¢1(C) is a compact set inside the open set ¢1 (Uj). Therefore, there exists
an open set B such that

#1(C) SBC BC gi(Uh).

Let W = ¢ '(B). Clearly, C C W C W C U,. Now Let
Ar=wWUw,
Ay =W, Va>1.

Clearly, A; contains W which contains C. Furthermore, union of A,’s contains
U, u ek, Vap which is equal to M. Closure of a union of sets is a subset of the union of
closures of those sets. Therefore, for each v, A, C U,. O

Theorem 29 (Exhaustion by Compact Sets for Manifolds). Let M be a smooth manifold. There
exists a sequence of compact subsets (K;)jen such that UjeNf(j =M, I%Hl \ K; # @ for all j and

KiCKRCKC...CKCKC....

Definition 14. A C® partition of unity on a smooth manifold is a collection of nonnegative C*
functions {y : M — R} e 4 such that

(i) The collection of supports, {supp P }ac a is locally finite in the sense that every point in M
has a neighborhood that intersects only finitely many of the sets in {supp Pu faeca-
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(i) Ypenthe = 1.
Given an open cover {Uy }ye 4 of M, we say that a partition of unity {{x }ae 4 is subordinate to the
open cover {Uy }pea if supp o C Uy for every a € A.

Theorem 30 ([28], p. 146). Let M be a compact smooth manifold and {Uy }ye 4 an open cover of
M. There exists a C® partition of unity {(s }ne 4 subordinate to {Uy }pc 4 (notice that the index
sets are the same).

Theorem 31 ([28], p. 347). Let {Uy }4ca be an open cover of a smooth manifold M.

(i) Thereis a C® partition of unity { ¢y} 2, with every ¢y having compact support such that
for each k, supp ¢y C Uy for some « € A.

(ii)  If we do not require compact support, then there is a C* partition of unity {u }yea subordi-
nate to {Uy }xca-

Remark 14. Let M be a compact smooth manifold. Suppose {Uy } e a is an open cover of M and
{Wa tuca is a partition of unity subordiante to {Uy }ye a-

o Forallm €N, {{ = Znip::\nllik" } is another partition of unity subordinate to {Uy }yea.
o If {Vg}pep is an open cover of M and {Gg} is a partition of unity subordinate to
{Vs}pen, then {lﬁagﬁ}(%ﬁ)equg is a partition of unity subordinate to the open cover

{Ua NV} (apjeaxs

Lemma 3. Let M be a compact smooth manifold. Suppose {Uy}1<4<N is an open cover of M.
Suppose C is a closed set in M (so C is compact) which is contained in Ug for some 1 < < N.
Then there exists a partition of unity {a}1<a<n subordinate to {Uy }1<a<n such that Y =1
on C.

Proof. We follow the argument in [29]. Without loss of generality we may assume = 1.
We can construct a partition of unity with the desired property as follows: Let A, be a
collection of open sets that covers M and such that C C Ay C A; C U; and fora > 1,
Ay C Ay C U, (see Lemma 2). Let 7, € C®(U,) be such that 0 < 7, < land 7, = 1
on a neighborhood of A,. Of course Y'N_, 17, is not necessarily equal to 1 for all x € M.
However, if we define ¢; = #; and fora > 1

Yo = a(l—n1) .. (1= 1a1),

by induction one can easily show thatfor 1 </ < N

1
1*;1#«:(17171)..-(1*111)-

In particular,
N
1= ) gu=0=m)...(1-nn) =0,
a=1

since for each x € M there exists a such that x € A, and so 7,(x) = 1. Consequently,
YN =1 0O

5.2. Vector Bundles, Basic Definitions

Let M be a smooth manifold. A (smooth real) vector bundle of rank r over M is a
smooth manifold E together with a surjective smooth map 77 : E — M such that
(1) Foreach x € M, Ex = 7~ (x) is an r-dimensional (real) vector space;
(2) For each x € M, there exists a neighborhood U of x in M and a smooth map p =
(p',...,0") from E|y; := 7w~ (U) onto R” such that
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e Foreveryx € U, p|g, : Ex = R" is an isomorphism of vector spaces,
e ®=(n|g,,p): Eu = U xR"is a diffeomorphism.

We denote the projection onto the last » components by 7’. So 7’ o ® = p. The
expressions “E is a vector bundle over M”, or “E — M is a vector bundle”, or “r : E - M
is a vector bundle” are all considered to be equivalent in this manuscript.

If 7t : E — M is a vector bundle of rank r, U is an open set in M, p : Eyy = 7~ 1(U) —
R" and ® = (7|, p) : Euy — U x R” satisfy the properties stated in item (2), then we refer
toboth®: Ey — U x R"and p : Ey — R” as a (smooth) local trivialization of E over U
(it will be clear from the context which one we are referring to). We say that E|; is trivial.
The pair (U, p) (or (U, P)) is sometimes called a vector bundle chart. It is easy to see that
if (U, p) is a vector bundle chart and @ # V C U is open, then (V,p|g, ) is also a vector
bundle chart for E. Moreover, if V is any nonempty open subset of M, then Ey is a vector
bundle over the manifold V. We say that a triple (U, ¢, p) is a total trivialization triple
of the vector bundle 77 : E — M provided that (U, ¢) is a smooth coordinate chart and
o= (p', - ,0") : Ey — R is a trivialization of E over U. A collection {(Uy, ¢, 0x)} is
called a total trivialization atlas for the vector bundle E — M provided that for each «a,
(Uy, @u, pa) is a total trivialization triple and {(Ue, ¢x)} is a smooth atlas for M.

Lemma 4 ([19], p. 252). Let 7w : E — M be a smooth vector bundle of rank r over M. Suppose
O N (U) - UxR and ¥ : m= (V) — V x R" are two smooth local trivializations of E with
UNV # Q. There exists a smooth map T : UNV — GL(r,R) such that the composition

oY (UNV)XxR = (UNV) xR

has the form
Q0¥ !(p,0) = (p,7(p)0).

Remark 15. Let E be a vector bundle over an n-dimensional smooth manifold M. Suppose
{(Un, 9u, pa) Yucr is a total trivialization atlas for the vector bundle 7t : E — M. Then for each
« € I, the mapping

Ey, = (Uy) = @u(Ua) x R CR™ 55 (9u(71(5)), 0a(s))
will be a coordinate map for the manifold E over the coordinate domain Eyj,. The collection
{(Eu,, (¢a © 71, 0a)) Yac1 will be a smooth atlas for the manifold E.

The following statements show that any vector bundle has a total trivialization atlas.

Lemma 5 ([30], p. 77). Let E be a vector bundle over an n-dimensional smooth manifold M (M
does not need to be compact). Then M can be covered by n + 1 open sets Vy, ..., V;, where the
restriction Ely, is trivial.

Theorem 32. Let E be a vector bundle of rank r over an n-dimensional smooth manifold M. Then
E — M has a total trivialization atlas. In particular, if M is compact, then it has a total trivialization
atlas that consists of only finitely many total trivialization triples.

Proof. Let V), ...,V be an open cover of M such that E is trivial over Vﬂ with the mapping
pp : Ev, = R’ Let {(Uy, ¢x) }ac1 be a smooth atlas for M (if M is compact, the index
set I can be chosen to be finite). Foralla € I and 0 < B < n let Wyp = Ux N Vp.
Let ] = {(«,B) : Wyp # @}. Clearly, {(Wap, Pup, Pap) }(a,p)c) Where ¢op = (Pﬂc|Wa;; and
Pup = Pﬁ|r1(wmﬁ) is a total trivialization atlas for E - M. O
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Definition 15.

e Wesay that a total trivialization triple (U, ¢, p) is geometrically Lipschitz (GL) provided
that ¢(U) is a nonempty bounded open set with Lipschitz boundary. A total trivialization
atlas is called geometrically Lipschitz if each of its total trivialization triples is GL.

o Wesay that a total trivialization triple (U, ¢, p) is nice provided that ¢(U) is equal to a ball
in R". A total trivialization atlas is called nice if each of its total trivialization triples is nice.

o We say that a total trivialization triple (U, ¢, p) is super nice provided that ¢(U) is equal to
R™. A total trivialization atlas is called super nice if each of its total trivialization triples is
super nice.

o A total trivialization atlas is called generalized geometrically Lipschitz (GGL) if each of
its total trivialization triples is GL or super nice.

o We say that two total trivialization atlases {(Uy, @, pu) }act and {(Ug, g, p)}pe; are
geometrically Lipschitz compatible (GLC) if the corresponding atlases {(Ux, Pu) }acl
and {(Ug, ¢p)}pej are GLC.

Theorem 33. Let E be a vector bundle of rank r over an n-dimensional compact smooth manifold
M. Then E has a nice total trivialization atlas (and a super nice total trivialization atlas) that
consists of only finitely many total trivialization triples.

Proof. By Theorem 32, E — M has a finite total trivialization atlas {(Ux, ¢a,px)}. By
Lemma 1 (and Remark 13) there exists a finite open cover {Vj}1<p<1 of M such that

VB 1 <a(f) < Nst. Vg CUyp), @arp)(Vp)isaballinR"
(01‘ Vﬁ J1 < Dé(ﬁ) < N s.t. Vﬁ C ua(m, (Pa(/S)(Vﬂ) = Rn),

and thus {(Vg, ¢4(s)|v,) 1<p<L is a nice (resp. super nice) smooth atlas. Now, clearly,
{(Ve, pu(p) |V5/Pa(/5) |Evﬁ)}1§ﬂ§L is a nice (resp. super nice) total trivialization atlas. [

Theorem 34. Let E be a vector bundle of rank r over an n-dimensional compact smooth manifold
M. Then E admits a finite total trivialization atlas that is GL compatible with itself. In fact, there
exists a total trivialization atlas {(Uy, ¢u, Pa) }1<a<N Stch that

e Foralll <a < N, ¢u(Uy) is bounded with Lipschitz continuous boundary;
e Foralll <&, B <N, Uy NUg is either empty or else go(Uy N Upg) and ¢p(Uy N Ug) are
bounded with Lipschitz continuous boundary.

Proof. The proof of this theorem is based on the argument presented in the proof of
Lemma 3.1 in [31]. Equip M with a smooth Riemannian metric g. Let ;,; denote the
injectivity radius of M which is strictly positive because M is compact. Let Vy, ...,V be
an open cover of M such that E is trivial over Vg with the mapping pg : Ey; — R". For
every x € M choose 0 < i(x) < n such that x € Vj(,y. Forall x € M let r, be a positive
number less than % such that exp, (By,) C Vj() where By, denotes the open ball in T, M
of radius ry (with respect to the inner product induced by the Riemannian metric g) and
exp, : TxM — M denotes the exponential map at x. For every x € M define the normal
coordinate chart centered at x , (Uy, ¢x), as follows:

Uy = exp,(Br,), ¢x:= )\;1 oexp;1 U, — R,

where Ay : R" — T M is an isomorphism defined by Ax(yl,. Lyt = yiEfx; Here {E,-x}?:1

is a an arbitrary but fixed orthonormal basis for T M. It is well-known that (see, e.g., [32])

e ¢x(x)=1(0,...,0);

e gij(x) = J;; where g;; denotes the components of the metric with respect to the normal
coordinate chart (Uy, ¢x);

e Ej, = 9i|x where {0;}1<<, is the coordinate basis induced by (Uy, ¢ ).
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As a consequence of the previous items, it is easy to show thatif X € TyM (X = Xiai\x),
then the Euclidean norm of X will be equal to the norm of X with respect to the metric g,
that is, |X|; = | X|g where

IXlg = /(X1 4.+ (X2 [X[g = /g(X,X).

Consequently, for every x € M, ¢, (U,) will be a ball in the Euclidean space, in particular,
{(Uy, ¢x) }xem is a GL atlas. The proof of Lemma 3.1 in [31] in part shows that the atlas
{(Uy, ¢x) }xem is GL compatible with itself. Since M is compact there exists x1,...,xy € M
such that {Uy; }1<j<y also covers M.

Now, clearly, {(Ux;, ¢x;, Pi(x;) |ij ) }1<j<n is a total trivialization atlas for E that is GL com-

patible with itself. [J

Corollary 1. Let E be a vector bundle of rank r over an n-dimensional compact smooth manifold
M. Then E admits a finite super nice total trivialization atlas that is GL compatible with itself.

Proof. Let {(Uy, ¢u, pa) }1<a<n be the total trivialization atlas that was constructed above.
For each a, ¢, (Uy) is a ball in the Euclidean space and so it is diffeomorphic to R”; let
Co ¢ @a(Uy) — R” be such a diffeomorphism. We let ¢, = o0 @y : Uy — R". A
composition of diffeomorphisms is a diffeomorphism, so forall1 < a, < N, §, 0 q")/gl :
¢p(Us NUg) — Pa(Ua N Up) is a diffeomorphism. So {(Uy, Pu, o) 1<a<n is clearly a
smooth super nice total trivialization atlas. Moreover, if 1 < &, 8 < N are such that U, N Ulg
is nonempty, then @, (U, N Ug) is R" or a bounded open set with Lipschitz continuous
boundary. The reason is that $, = ¢z 0 @u, and @ (Ux N U/g) is R" or Lipschitz, ¢, is a
diffeomorphism and being equal to R" or Lipschitz is a property that is preserved under
diffeomorphisms. Therefore, {(Uy, $a, Pu) }1<a<n is a finite super nice total trivialization
atlas that is GL compatible with itself. [J

A section of Eisamap u : M — E such that 71 o u = Id . The collection of all sections
of E is denoted by I'(M, E). A section u € I'(M, E) is said to be smooth if it is smooth
as a map from the smooth manifold M to the smooth manifold E. The collection of all
smooth sections of E — M is denoted by C®(M, E). Note that if {(Uy, ¢u, p«) }aer is a total
trivialization atlas for the vector bundle 7w : E — M of rank r, then for u € I'(M, E) we
have u € C*(M, E) if and only if for all « € I, the local representation of 1 with respect to
the coordinate charts (Uy, ¢x) and (Ey,, (¢a © 7T, py)) is smooth, that is,

uEC®(ME)<=Vael xw (puomouocgy’,psouogy!)issmooth
= Vael xm (x,paouo¢;1)issmooth
—Vaecl x— pyouo@y issmooth
= VaeLlVI<I<r plouogrt e C®(gu(Uy)).
A local section of E over an open set U C M is a map u : U — E where u has the

property that 7 o u = Idy; (that is, u is a section of the vector bundle E;; — U). We denote
the collection of all local sections on U by T'(U, E) or I'(U, E;).

Remark 16. As a consequence of p|g, : Ex — R’ being an isomorphism, if u is a section of
Ely — Uand f : U — Ris a function, then p(fu) = fp(u). In particular, p(0) = 0.

Given a total trivialization triple (U, ¢, p) we have the following commutative dia-
gram:
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Ely ) o(u) x R

ln lﬁ
u—>— g(u) cr
If 5 is a section of E|;; — U, then by definition the pushforward of s by o/ (the jth
component of p) is a section of ¢(U) x R — ¢(U) which is defined by

pls) =plosop (ie,z€ p(l) = (0l 0s0971(2))).

Let E — M be a vector bundle of rank 7 and U C M be an open set. A (smooth) local
frame for E over U is an ordered r-tuple (s1,...,sr) of (smooth) local sections over U such
that for each x € U, (s1(x),...,s,(x)) is a basis for E,. Given any vector bundle chart (V, p),
we can define the associated (smooth) local frame on V as follows:

V1<I<rVxeV sl(x):p|gxl(e,),

where (ey, - - - , ¢,) is the standard basis of R". The following theorem states the converse of
this observation is also true.

Theorem 35 ([19], p. 258). Let E — M be a vector bundle of rank r and let (s1,...,s,) be a
smooth local frame over an open set U C M. Then (U, p) is a vector bundle chart where the map
o : Ey — R is defined by

VxeU,Vu € Ey p(u):ulel—&-...—&-u’e,,
where u = ulsy (x) + ...+ u"sy(x).

Theorem 36 ([19], p. 260). Let E — M be a vector bundle of rank r and let (s, ...,s,) be a
smooth local frame over an open set U C M. If f € T(M, E), then f is smooth on U if and only if
its component functions with respect to (sy, ... ,s,) are smooth.

A (smooth) fiber metric on a vector bundle E is a (smooth) function which assigns to
each x € M an inner product
<.,.>E cEx X Ex — R.

Note that the smoothness of the fiber metric means that for all 1, v € C*(M, E) the mapping
M—=R, x> (u(x),0(x))e

is smooth. One can show that every (smooth) vector bundle can be equipped with a
(smooth) fiber metric ([33], p. 72).

Remark 17. If (M, g) is a Riemannian manifold, then g can be viewed as a fiber metric on the
tangent bundle. The metric g induces fiber metrics on all tensor bundles; it can be shown that ([32])
if (M, §) is a Riemannian manifold, then there exists a unique inner product on each fiber of T} (M)
with the property that for all x € M, i {e;} is an orthonormal basis of Ty M with dual basis {n'},
then the corresponding basis of Tf (T::M) is orthonormal. We denote this inner product by (., .)r
and the corresponding norm by |.|p. If A and B are two tensor fields, then with respect to any local
coordinate system

(A B)p =g ... g"¥gjis, . sy AL R B
Theorem 37. Let 7t : E — M be a vector bundle with rank r equipped with a fiber metric {.,.)g.
Then given any total trivialization triple (U, ¢, p), there exists a smooth map f : Eyy — R” such
that with respect to the new total trivialization triple (U, ¢, p) the fiber metric trivializes on U,
that is,
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VxeUVYu,veE;, <u,v)5:ulvl+.‘.+urvr,

where for each 1 < 1 < r, u! and o' denote the Ith components of u and v, respectively, (with respect
to the local frame associated with the bundle chart (U, p)).

Proof. Let (t1,...,t,) be the local frame on U associated with the vector bundle chart (U, p).
That is,
Vxel,vVi<I<r tl(x):p\gxl(el).

Now, we apply the Gram-Schmidt algorithm to the local frame (t1,...,t;) to construct an
orthonormal frame (s, ...,s,) where

t— Z};Rtlrsj)Esj

Vi<I<r Sl=——
Ity — 221 (t, 5 eS|

s; : U — E is smooth because

(1) Smooth local sections over U form a module over the ring C*(U);

(2)  The function x ~ (f)(x),s;(x)) from U to R is smooth;

(3) SinceSpan{sy,...,s;_1} =Span{ty,..., t;_1},t — Z;;% (t1,5j) s} is nonzero on U and
x = | (x) — Z};% (t1(x),sj(x))Eesj(x)| as a function from U to R is nonzero on U and
it is a composition of smooth functions.

Thus, for each ], s is a linear combination of elements of the C*(U)-module of smooth

local sections over U, and so it is a smooth local section over U. Now, we let (U, §) be the

associated vector bundle chart described in Theorem 35. For all x € U and for all u,v € E,
we have

(u,v)g = <ulsl,vjs]')5 = ulvj(sl,sj>g = ulvszZ]- =ulol +.. +uo.
|

Corollary 2. As a consequence of Theorem 37, Theorem 34, and Theorem 33 every vector bundle
on a compact manifold equipped with a fiber metric admits a nice finite total trivialization atlas (and
a super nice finite total trivialization atlas and a finite total trivialization atlas that is GL compatible
with itself) such that the fiber metric is trivialized with respect to each total trivialization triple in
the atlas.

5.3. Standard Total Trivialization Triples

Let M" be a smooth manifold and 77 : E — M be a vector bundle of rank r. For certain
vector bundles there are standard methods to associate with any given smooth coordinate
chart (U, ¢ = (x)) a total trivialization triple (U, ¢, p). We call such a total trivialization
triple the standard total trivialization associated with (U, ¢). Usually this is done by first
associating with (U, ¢) a local frame for Ej; and then applying Theorem 35 to construct a
total trivialization triple.

e E= le (M): The collection of the following tensor fields on U forms a local frame for
Ey associated with (U, ¢ = (x')).

9

: Qdx @ ... dxk.
oxh

®...Q

oxi

So, given any atlas {(Uy, ¢«)} of a manifold M", there is a corresponding total trivial-
ization atlas for the tensor bundle T} (M), namely {(Us, ¢«, pu)} where for each a, p,

has 7! components which we denote by (pa)ﬁ{i Forall F € T(M, le (M)), we have
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(el () = (B

Here (F,X)]:l"']-" denotes the components of F with respect to the standard frame for

Tk U, described above. When there is no possibility of confusion, we may write F/ r ] !

ol

g

e E = AX(M): This is the bundle whose fiber over each x € M consists of alternating
covariant tensors of order k. The collection of the following forms on U form a local
frame for Ey; associated with (U, ¢ = (x'))

instead of (F,

dxl AL ndxie ((jy, ..., i) is increasing).

e E = D(M) (the density bundle): The density bundle over M is the vector bundle
whose fiber over each x € M is D(TxM). More precisely, if we let

=[] (1M
xeM
then D(M) is a smooth vector bundle of rank 1 over M ([19], p. 429). Indeed, for
every smooth chart (U, ¢ = (x)), |dx' A... Adx"| on U is a local frame for D(M)|y;.
We denote the corresponding trivialization by pp 4, that is, given u € D(T, M), there
exists a number a such that

i = a(]dx! Ao Adx"]y)

and pp,, sends y to a. Sometimes we write D instead of D(M) if M is clear from
the context. Furthermore, when there is no possibility of confusion we may write pp
instead of pp .

Remark 18 (Integration of densities on manifolds). Elements of Cc(M, D) can be integrated
over M. Indeed, for y € C.(M, D) we may consider two cases

e Case 1: There exists a smooth chart (U, ¢) such that suppy C U.

= “1av
./My /zp(u)pD"”OyO(p

e Case 2: If y is an arbitrary element of C.(M, D), then we consider a smooth atlas
{(Un, ¢) Yuc1 and a partition of unity {ia }acy subordinate to { Uy} and we let

Jp=X [ v

acl

It can be shown that the above definitions are independent of the choices (charts and partition of
unity) involved ([19], pp. 431-432).

5.4. Constructing New Bundles from Old Ones
5.4.1. Hom Bundle, Dual Bundle, Functional Dual Bundle

e The construction Hom(.,.) can be applied fiberwise to a pair of vector bundles E and
E over a manifold M to give a new vector bundle denoted by Hom(E, E). The fiber
of Hom(E, E) at any given point p € M is the vector space Hom(Ep, Ep). Clearly, if
rank E = r and rank E = 7, then rank Hom(E, E) = 7.

If {(Uy, pu, pa) } and { (U, @a, fa) } are total trivialization atlases for the vector bundles
7:E— Mand 7t : E — M, respectively, then {U,, <p,x, Oa } will be a total trivialization
atlas for mom : Hom(E,E) — M where g, : 7yl (Uy) — Hom(R",R7) = R is
defined as follows: for p € Uy, A, € Hom(Ep, E,) is mapped to [g, |E,,} o Ao oy \EF]*l.
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e Letmw : E - M be a vector bundle. The dual bundle E* is defined by E* =
Hom(E, E = M x R).

e Letm: E — M be a vector bundle and let D denote the density bundle of M.
The functional dual bundle EV is defined by EY = Hom(E, D) (see [24]). Let us
describe explicitly what the standard total trivialization triples of this bundle are. Let
(U, ¢, p) be a total trivialization triple for E. We can associate with this triple the total
trivialization triple (U, ¢,p") for EV where p¥ : Ej; — R’ is defined as follows: for
p €U, L, € Hom(E), D) is mapped to pp,, 0 Ly o (p|g,) ' € (R")* ~ R". Note that
(R")* ~ R" under the following isomorphism

(R - R, u—ulep)er + ...+ u(eer.

That is, u as an element of R" is the vector whose components are (u(e1), ..., u(er)).
In particular, if z = zje; + ... + z,¢, is an arbitrary vector in R, then

u(z) = u(zier + ... +zrer) = zyuley) + ...+ zyuler) =z-u,

where on the LHS u is viewed as an element of (R")* and on the RHS u is viewed as
an element of R".
In short, p¥ : E); — R" is given by

vi<i<r  (0")(Lp) = (v o Lpo(ple,) ") (er).

5.4.2. Tensor Product of Bundles

Let 7: E — Mand 7t : E — M be two vector bundles. Then E ® E is a new vector
bundle whose fiber at p € M is E, ® E"p. If {(Uy, ¢a,pa)} and {(Us, ¢a, fa)} are total
trivialization atlases for the vector bundles 77 : E — M and 7 : E — M, respectively,
then {(Ua, ¢, 0a))} will be a total trivialization atlas for 7trensor : E® E — M where
P * Tinsor(Un) = (R” @ RT) = R is defined as follows: for p € Uy, ap ® iy € E, ® E is
mapped to p«|E, (ap) @ fa |E,, (p).

It can be shown that Hom(E, E) & E* ® E (isomorphism of vector bundles over M).

Remark 19 (Fiber Metric on Tensor Product). Consider the inner product spaces (U, {.,.)y1)
and (V, (.,.)y). We can turn the tensor product of U and V, U ® V into an inner product space
by defining

(u1 ® 01,12 @ V2)ugy = (1, U2)ulv1,v2)v,
and extending by linearity. As a consequence, if E is a vector bundle (on a Riemannian manifold

(M, 8)) equipped with a fiber metric {.,.)g, then there is a natural fiber metric on the bundle
(T*M)®* and subsequently on the bundle (T*M)®* @ E. If F = Ff dx1 ® ... @dx'* @ sq and

G = Gﬁ.,.jkd"h ® ... ®@dxk ® sy, are two local sections of this bundle on a domain U of a total
trivialization triple, then at any point in U we have

<FrG>(T*M)®k®E = FgmikG,l?lek<dxi1,dle>T*M o Adx™, A g (Sa, 80 )
— gilh » _gfkfkh”bpﬁ Gb

SR P VI 4

where hyy, == (34,5p) £ (here {sq = p~(eq) }1<a<y is a local frame for E over U.{eq }1<q<, is the
standard basis for R" where r = rank E).

5.5. Connection on Vector Bundles, Covariant Derivative
5.5.1. Basic Definitions

Let r : E — M be a vector bundle.

Definition 16. A connection in E is a map
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V:C®(M, TM) x C*(M,E) — C*(M,E), (X,u)w— Vxu
satisfying the following properties:
(1) Vxuis linear over C*°(M) in X

Vg €CO(M)  Vixigxi = fVxu+gVx,u.
(2)  Vxuis linear over R in u:
Va,beR Vx(auy + bup) = aVxuy + bVxuy.
(3)  V satisfies the following product rule
VfeC®(M) Vx(fu) = fVxu+ (Xfu.
A metric connection in a real vector bundle E with a fiber metric is a connection V such that
VX eC®M,TM),Yu,ve C°(M,E) X(u,v)p = (Vxu,v)g + (1, Vx0)E .

Here is a list of useful facts about connections:

e ([34], p. 183) Using a partition of unity, one can show that any real vector bundle with
a smooth fiber metric admits a metric connection;

e ([19], p. 50) If V is a connection in a bundle E, X € C®°(M, TM), u € C*(M, E), and
p € M, then Vxu|, depends only on the values of u in a neighborhood of p and the
value of X at p. More precisely, if u = i on a neighborhood of p and Xy =Xy, then
qu‘p = V)'(ﬁ|P;

e ([19], p. 53) If V is a connection in TM, then there exists a unique connection in
each tensor bundle T,k (M), also denoted by V, such that the following conditions
are satisfied:

(1)  On the tangent bundle, V agrees with the given connection.

(2) On T%(M), V is given by ordinary differentiation of functions, that is, for all
real-valued smooth functions f : M — R: Vxf = Xf.

3) Vx(F®G)=(VxF)®G+F® (VxG).

(4) If tr denotes the trace on any pair of indices, then Vx(trF) = tr(VxF).

This connection satisfies the following additional property: forany T € C*(M, Tf(M)),

vector fields Y;, and differential 1-forms w/,

(VxT) (', ... ' Yq,...,Y) = X(T(,...,d", Yq,..., %))

(wl,...,waf,...,wl,Yl,,..,Yk)

|
-
b\]

T(w',..., @, Y1,..., VXY, %)

on

i=1

Definition 17. Let V be a connection in 7t : E — M. We define the corresponding covariant
derivative on E, also denoted V, as follows

V :C*(M,E) — C*(M,Hom(TM,E)) = C*(M,T"M®E), u— Vu
where for all p € M, Vu(p) : TyM — E, is defined by
Xp = Vxulp,
where X on the RHS is any smooth vector field whose value at p is Xp.
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Remark 20. Let V be a connection in TM. As it was discussed V induces a connection in any
tensor bundle E = TZk(M), also denoted by V. Some authors (including Lee in [19], p. 53) define
the corresponding covariant derivative on E = T,k(M ) as follows:

Vi C®(M, Tf(M)) — C®(M, TF*Y(M)),  F+~ VF

where

VE(W!,...,'\Y1,..., Y, X) = (VxF) (!, ..., o', Y1,..., ).
This definition agrees with the previous definition of covariant derivative that we had for general
vector bundles because

T'MRTIMET'MRT'M®... T'TM@TM®...9 TM = T/ TIM.

k factors 1 factors

Therefore,
C®(M, Hom(TM, TfM)) = C®(M, T*"M @ TfM) = C*(M, T} ' M) .

More  concretely, —we have the following one-to-one correspondence  between
C* (M, Hom(TM, TFM)) and C*(M, T} ™' M):

(1)  Givenu € C®(M, TZ"HM), the corresponding element it € C*(M, Hom(TM, Tf M)) is given by
YpeM  i(p): T,M— THT,M), X u(p)(...,...,X).

(2)  Given ii € C®(M,Hom(TM, Tl"M)), the corresponding element u € C®(M, TFH1M) is
given by

VpeM u(p)(wl,,..,wl,Yl,.,.,Yk,X) = [ﬁ(p)(X)](wl,...,wZ,Yl,,..,Yk).

5.5.2. Covariant Derivative on Tensor Product of Bundles

If E an E are vector bundles over M with covariant derivatives VE : C®°(M,E) —
C®*(M, T*"M ® E) and vE . C®(M,E) — C®°(M, T*M ® E), respectively, then there is a
uniquely determined covariant derivative ([14], p. 87)

VECE . C®(M,E® E) — C®°(M, T"M® E® E)

such that - .
VEEuon) =Viuei+Viiou.

The above sum makes sense because of the following isomorphisms:
(T"MRE) @ EXT"MEQE2T"MRE®E~ (T"M®E)®E.
Remark 21. Recall that for tensor fields covariant derivative can be considered as a map from

C®(M, TZkM) — C®(M, le“M). Using this, we can give a second description of covariant
derivative on E ® E when E = leM. In this new description we have

VIMEE . co(M, TIM ® E) — C®(M, TF "M ® E) .

Indeed, for F € C®(M, TFM) and u € C*(M, E)

TfM®E (p — (VIfME F £
\Y% (Fou)=(V ) Qu + ® Viu .
T M TFM  T*M®E
N——’

THIME
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In particular, if f € C*®(M) and u € C®(M, E) we have VE(fu) € C*(M, T*M ® E) and it is
equal to
VE(fu) =df @ u+ fVEtu.
5.5.3. Higher Order Covariant Derivatives
Let 71 : E — M be a vector bundle. Let V£ be a connection in E and V be a connection

in TM which induces a connection in T* M. We have the following chain

(T*M)#20E

VE T MSE o v
C®(M,E) 5 C®(M, T*"M ® E) ~——— C®(M, (T*M)*?® E) ~———

v mPEeE v(T*M)ZkgE

co(m, (T M) e ) T L

In what follows we denote all the maps in the above chain by VE. That is, for any
k € Ny we consider VE as a map from C®(M, (T*M)®k @ E) to C®(M, (T*M)®*+1) @ E).
So,
(VEY: C®(M,E) — C®(M, (T*M)** Q E) .

As an example, let us consider (VE)¥(fu) where f € C®°(M) and u € C*®(M,E).
We have

VE(fu) =df @ u+ fVtu.
(VEP(fu) = VIMEE[df @ u+ fVFu]
= [VI'Mdf)y@u+df @ VEu] + [df @ VEu 4 f(VE)?u)

2 /o L )
=) () (VI'MYif @ (VEY2u.
=0\
In general, we can show by induction that

k
k N i
(78t = 1 () (97 Mg (95
i=0
where (VT'"M)0 = Id. Here (VT M)/ f should be interpreted as applying V (in the sense
described in Remark 20) j times; so (VI"M)if at each point is an element of TéM =
(T*M)®i.

5.5.4. Three Useful Rules, Two Important Observations

Let 7 : E — Mand 7 : E — M be two vector bundles over M with ranks r and 7,
respectively. Let V be a connection in TM (which automatically induces a connection in all
tensor bundles), VE be a connection in E and V£ be a connection in E. Let (U, ¢,p) bea
total trivialization triple for E.

1 {9 =it %}19‘9 is a coordinate frame for TM over U.
2)  {sa = p~'(eq) }1<a< is a local frame for E over U ({eq }1<4</ is the standard basis for

R" where r = rank E).

(3)  Christoffel Symbols for V on (U, ¢, p): V5,0; = Fi-‘jak.

(4) Christoffel Symbols for VE on (U, 9,p): V80 = (FE)?ash.
Furthermore, recall that for any 1-form w,

wa = (Xia,‘wk - Xiwjl‘;k)dxk .

Therefore, . )
Vo, dx! = —F;kdxk.
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e Rulel:Forallu € C®°(M,E)
VEu:dxi®V(§ilt onU.

The reason is as follows: Recall that for all p € M, VEu(p) € T"M ® E. Since
{dx' ®s,} is alocal frame for T*M ® E on U we have

VEu = RIdx' @ s, = dx’' @ (Rs,).
According to what was discussed in the study of the isomorphism Hom(V, W) ==
V* ® W in Section 3 we know that at any point p € M, R{ is the element in column i
and row a of the matrix of VEu(p) as an element of Hom(T, M, E;,). Therefore,

E
Va,-” = Rfs;.

Consequently, we have VEu = dx' @ (R%s,) = dx' ® Vgl_u.
e Rule2: Forallvy; € C®°(M,E) and v € C*(M,E)

V‘;@E(vl Rvy) = (ngvl) ®Rvy 40 ® (ngvz) .
e Rule3: Forallu € C*(M,E) and f € C*(M)
VE(fu) = fVEu+df ou.

The following two examples are taken from [35].

e Example 1: Let u € C®(M, E). On U we may write u = u”s,. We have

VEy = VE(u”sﬂ) Rutle 3 u'VEs, + du® @ s, = u*Vvks, + (aiu“dxi) ® s,
Rule1 udxt @ Vgisa + (aiu”dxi) ® Sa
= udx' ® ((Tg)lsp) + (Qudx’) @ s, = dx' @ (u"(T)Ysp) + dx’ @ (9u”s,)
=dx' @ (ub(Tg)%sq) +dx' @ (9;u”s,)
= [0 + (Tg)%ul)dx’ @ s, .
That is, VEu = (VEu)fdxi ® s, where
(VEu)f = au” + (Tg)fyu” .

e Example 2: Let u € C®(M, E). On U we may write u = u”s,. We have
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(VE)ZM _ vT*M@E([a_ua

RuleS [
ngel [

Def. of d

+ (Tp)4,ub)dx’ @ s,)

Qi + ()4 ul ] VT MOE (dx @ 5,) + d[;u® + (Tp)%ub] @ (dx' @ s,0)
o;u’ 4 (Tg)fu ]dx]®VT*M‘XE(dx ®5q) +d[oju’ + (T'g) bu] ® (dx' @ s,)

[0;u® + (Tp)%ub)dx @ VT MEE (4! @ 5) + 0[0;u” + (Tp)%u’)dx) © dx’ @ s,

e [0u" + (Tg)%,ub)dx! & [V Maxl @ s, +dx' @ Va sa) +9j[0;u" + ( (TE)%ul)dy @ dx' @ s,

= [ou” + (Te)f,

i < kin the first summand

= {9j[0u" + (Tp)gu’] —

i <+ k in the last summand {a [

¢ <+ a in the last summand

ubldx @ [ - szdx ®@sa+dx' @ (Te)Sese] + 9j0u" + (Tp)jpu Mdxl @ dx' © s,
[0 + (Te)fyuldx] @ [ — Thdx! @ sq + dx* @ (Te)S,sc] +9j{0;u” + (Te)fuldx! @ dx' @ s,
T 9gu” + (Tp)fpu’]}dx) @ dx’ @ sq + [0 + (Te)fyu’) () Gud @ do* @ sc

[0 + (Tg)fyu’] — D[R + (Tp)fu’ 1} @ dx' @ s

+ [ + (T)§u’|(TE)5,dx) @ dx' @ s

{Bj[a,-u“ + (FE)?bub] — F;{l [E)ku“ + (Tg)ﬂthb]}dxf ® dxi & Sq

+ [0;uf + (Fg)fbub](l“g)?cdxj Qdx' ®s,.

Considering the above examples we make the following two useful observations that can
be proved by induction.

Observation 1: In general (VE)fu = ((VE)Fy )':1 dxh® ... @dyik®s, (1 <a<
1,1 < iy,...i < n) where ((VE) ) 3 © ¢~ ! is a linear combination of u! o

¢~ 1,...,u" 0 ¢! and their partial derivatlves up to order k and the coefficients are

polynomials in terms of Christoffel symbols (of the linear connection on M and connec-
tion in E) and their derivatives (on a compact manifold these coefficients are uniformly
bounded provided that the metric and the fiber metric are smooth). That is,

.
(VEYu)l oot =2 Y Cua’(ulogp™),
[n|<kl=1

where for each 77 and I, C;; is a polynomial in terms of Christoffel symbols (of the
linear connection on M and connection in E) and their derivatives

Observation 2: The highest order term in ((VE)ku)le ogT 1s < ... —x‘?k (w0~ 1);
that is,
d d
Eyk, -1 _ ag -1
(V%) )“ PR wr ﬁ(u 0T ) +...

where extra terms contain derivatives of order at most k — 1 of u! 0 =1 (1 <1 < r):

ak

r
((VE) )11 i qul _ m(uuo(P*l)+‘|Z:klZ%C,718’7(ulo(P*]).
HI<ki=

6. Some Results from the Theory of Generalized Functions

In this section, we collect some results from the theory of distributions that will be

needed for our definition of function spaces on manifolds. Our main reference for this part
is the exquisite exposition by Marcel De Reus [24].

6.1. Distributions on Domains in Euclidean Space

M

Let () be a nonempty open set in R".
Recall that
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@

®G)

)

K(Q) is the collection of all compact subsets of Q).

C*®(Q) = the collection of all infinitely differentiable (real-valued) functions on Q).
Forall K € K(Q), CR(Q) = {9 € C®(Q) : supp ¢ C K}.

C2(Q) = Ukek(n) CR(Q) = {9 € C®(Q) : supp @is compact in Q}.

Forall ¢ € C®(Q),j € Nand K € £(Q) we define

ol := sup{|a®@(x)| : |a| < j,x € K}.

Forall j € Nand K € K(Q), |.||;x is a seminorm on C*(Q2). We define £(Q) to
be C®(Q)) equipped with the natural topology induced by the separating family of
seminorms {||.||; x } jen kex(q)- It can be shown that £((2) is a Frechet space.

Forall K € K(Q) we define £k (Q) to be CY (Q) equipped with the subspace topology.
This subspace topology on Cg(Q)) is the natural topology induced by the separating
family of seminorms {|.||; k }jen- Since Cg’(Q2) is a closed subset of the Frechet space
E(Q), Ek(Q) is also a Frechet space.

We define D(Q) = Ukcek () Ex(Q) equipped with the inductive limit topology with
respect to the family of vector subspaces {£k(Q)}xex(q)- It can be shown that if
{K;j} jen, is an exhaustion by compacts sets of (3, then the inductive limit topology on
D(Q) with respect to the family {& K; }jen, is exactly the same as the inductive limit
topology with respect to {Ex(Q) } ek (q)-

Remark 22. Let us mention a trivial but extremely useful consequence of the above description
of the inductive limit topology on D(Q). Suppose Y is a topological space and the mapping
T:Y — D(Q) is such that T(Y) C Ex(Q) for some K € K(Q). Since Ex(Q) — D(Q), if
T:Y — Ek(Q) is continuous, then T : Y — D(QY) will be continuous.

Theorem 38 (Convergence and Continuity for £(Q)). Let Q be a nonempty open set in R™.
Let Y be a topological vector space whose topology is induced by a separating family of seminorms Q.

(1)

(2)

(3)

4)

A sequence { @y } converges to ¢ in £(Q) if and only if ||om — ¢l|;x — 0forall j € Nand
Ke K(Q).
Suppose T : E(Q) — Y is a linear map. Then the following is equivalent

e T is continuous.
e Foreveryq € Q, there exist j € Nand K € KC(Q)), and C > 0 such that

Vee&(Q) q(T(9) <Cllollk-

o Ifeu—0in&(Q), then T(py) — 0inY.
In particular, a linear map T : £(Q) — R is continuous if and only if there exist j € N and
K e K(Q), and C > 0 such that

Vee () T(9)l < Cllgljx-
Alinear map T : Y — E(Q) is continuous if and only if

VieN, VKe K(Q) 3C>0,keN,q,..., qx € Q  such thatVy ”T(y)H/’KSCfEa?kqi(y)'
SIS

Theorem 39 (Convergence and Continuity for Ex(Q)). Let Q) be a nonempty open set in R"
and K € K(Q). Let Y be a topological vector space whose topology is induced by a separating
family of seminorms Q.

(1)
(2)

A sequence { @ } converges to ¢ in Ex(Q) if and only if || om — ¢lljx — 0 forall j € N.
Suppose T : Ex(Q) — Y is a linear map. Then the following is equivalent:
e T iscontinuous.
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e Foreveryq € Q, there exists j € Nand C > 0 such that

Voe&k(Q)  q(T(g)) < Cliglljk-
o Ifou — 0inEx(Q), then T(¢p) — 0in Y.

Theorem 40 (Convergence and Continuity for D(Q)). Let Q be a nonempty open set in R".
Let Y be a topological vector space whose topology is induced by a separating family of seminorms Q.
(1) A sequence {@n} converges to ¢ in D(Q) if and only if there is a K € K(Q) such that
supppm C Kand ¢ — ¢ in Eg(Q).
(2)  Suppose T : D(Q) — Y is a linear map. Then the following is equivalent
e T iscontinuous.
ForallK € K(Q)), T : Ex(Q) — Y is continuous.
e Foreveryq € Qand K € K(Q)), there exists j € N and C > 0 such that

Vo cék(Q)  q(T(e) <Cllolljk-

o Ifom — 0in D(QY), then T(¢p) — 0in Y.

(3)  In particular, a linear map T : D(Q)) — R is continuous if and only if for every K € K(Q)),
there exists j € N and C > 0 such that

Vee&k(Q)  [T(e)l <Cllgljk-

Remark 23. Let Q) be a nonempty open set in R". Here are two immediate consequences of the
previous theorems and remark:
(1) The identity map

ipe:D(Q) = £(Q)

is continuous (that is, D(Q)) — £(Q) ).

(2) IfT: E(Q) — £(Q) is a continuous linear map such that supp(Te) C suppe for all
¢ € £(Q) (ie, T is a local continuous linear map), then T restricts to a continuous
linear map from D(Q) to D(QY). Indeed, the assumption supp(Te) C suppe implies
that T(D(Q)) C D(Q). Moreover, T : D(Q) — D(Q) is continuous if and only if for
Ke K(Q)T: E(Q) — D(Q) is continuous. Since T(Ex(Q)) C Ex(Q), this map is
continuous if and only if T : Eg(QU) — Ex (Q) is continuous (see Remark 22). However, since
the topology of Ex (QY) is the induced topology from E(QY), the continuity of the preceding
map follows from the continuity of T : £(Q) — £(Q).

Theorem 41. Let Q) be a nonempty open set in R". Let Y be a topological vector space whose
topology is induced by a separating family of seminorms Q. Suppose T : [D(Q)]*" — Y is a linear
map. The following are equivalent: (product spaces are equipped with the product topology)

(1) T:[D(Q)]*" — Y is continuous.
(2)  ForallK € K(Q), T: [Ex(QY)]*" — Y is continuous.
(3) Forallq € Qand K € K(Q)), there exists jy,...,j; € N such that

V(L ... ) € [E( )] NgoT(r,..., ¢0) < Clllorlljx + -+ lorllj k) -

Theorem 42. Let () be a nonempty open set in R".

(1) Aset BC D(Q) is bounded if and only if there exists K € K(Q) such that B is a bounded
subset of Ex(Q) which is in turn equivalent to the following statement:

VjeN3r; >0 suchthat Yo B |olix<7.

(2)  If{@m} is a Cauchy sequence in D(Q)), then it converges to a function ¢ € D(Q). We say
D(Q)) is sequentially complete.
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Remark 24. Topological spaces whose topology is determined by knowing the convergent sequences

and their limits exhibit nice properties and are of particular interest. Let us recall a number of useful

definitions related to this topic:

e Let X be a topological space and let E C X. The sequential closure of E, denoted scl(E) is
defined as follows:

scl(E) = {x € X : there is a sequence {x, } in E such that x, — x}.

Clearly, scl(E) is contained in the closure if E.

e A topological space X is called a Frechet-Urysohn space if for every E C X the sequential
closure of E is equal to the closure of E.

e Asubset E of a topological space X is said to be sequentially closed if E = scl(E).

e A topological space X is said to be sequential if for every E C X, E is closed if and only if
E is sequentially closed. If X is a sequential topological space and Y is any topological space,
then a map f : X — Y is continuous if and only if

Tim f () = £(lim %)

for each convergent sequence {x, } in X.
The following implications hold for a topological space X:

X is metrizable — X is first-countable — X is Frechet-Urysohn — X is sequential

As it was stated, € and Eg (For all K € K(C))) are Frechet and subsequently they are
metrizable. However, it can be shown that D(Q) is not first-countable and subsequently it is not
metrizable. In fact, although according to Theorem 40, the elements of the dual of D(Q)) can be
determined by knowing the convergent sequences in D(Q)), it can be proved that D(Q)) is not
sequential.

Definition 18. Let Q) be a nonempty open set in R". The topological dual of D(QY), denoted D'(()
(D'(Q) = [D(Q)]*), is called the space of distributions on Q). Each element of D' (QY) is called
a distribution on Q).

Remark 25. Every function f € L}, (Q)) defines a distribution uy € D'(Q) as follows:

loc

VoD ulp)i= [ fodx. M

In particular, every function ¢ € £(Q) defines a distribution 1. It can be shown that the map
j: £(Q) — D'(Q) which sends ¢ to uy is an injective linear continuous map ([24], p. 11).
Therefore, we can identify £(Q) with a subspace of D' (Q)).

Remark 26. Let O C R" be a nonempty open set. Recall that f : Q0 — R is locally integrable
(f € L}, (Q) if it satisfies any of the following equivalent conditions:
(1)  feLYK)forall K € K(Q).
(2) Forall p € C®(Q), fo € LIY(Q).
(3)  For every nonempty open set V- C Q) such that V is compact and contained in Q, f € L1(V).
(It can be shown that every locally integrable function is measurable ([36], p. 70)).
As a consequence, if we define Funceq(Q)) to be the set

{f: Q= R:us: D(Q) — Rdefined by Equation (1) is well-defined and continuous},

then Funcre (Q)) = L}

loc

Q).
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Definition 19 (Calculus Rules for Distributions). Let Q) be a nonempty open set in R". Let
u € D'(Q).
e Forall ¢ € C®(Q), gu is defined by

Ve (@) lpul(p) :=uloyp).

It can be shown that u € D'(Q)).
e For all multiindices a, 0*u is defined by

VpecT(@)  [ul(y) = (-1 u@y).
It can be shown that 0"u € D'(Q)).

Furthermore, it is possible to make sense of “change of coordinates” for distributions.
Let ) and ()’ be two open sets in R”. Suppose T : 3 — (V' is a C* diffeomorphism. T can
be used to move any function on () to a function on ()’ and vice versa.

T* : Func(Q,R) — Func(Q,R), T*(f)=foT,
T. : Func(Q, R) — Func((Y, R), To(f) = foT L.

T*f is called the pullback of the function f under the mapping T and T.f is called
the pushforward of the function f under the mapping T. Clearly, T* and T are inverses of

each other and T, = (T~!)*. One can show that T, sends functions in L}, (Q) to L}, ((Y')

and furthermore T restricts to linear topological isomorphisms T : £(Q) — £(Q') and
T, : D(Q) — D(QY). Note that for all f € L}, (Q) and ¢ € C*(Q)

loc
<urp o >pionoe) = [ TAWeWdy = [ (FoT)wew)dy
TR [ Fp(T()ldett ()] dx
=< uy, |detT' (x)|9(T(x)) >pra)xp(a) -

The above observation motivates us to define the pushforward of any distribution
u € D'(Q) as follows:

Vo € D(Q) (T, ¢)praryxpiar) = (i |detT'(x)[o(T(x))) pr)xp () -

It can be shown that T.u : D()) — R is continuous and so it is in fact an element of
D'(€Y). Similarly, the pullback T* : D'(QY) — D'(Q}) is defined by

Ve D)  (T'w,¢)p(ayxpia) = (# 1det(T™H (1) |o(T () prevyxp(cr) -
It can be shown that T*u : D(Q)) — R is continuous and so it is in fact an element of D' (Q).

Definition 20 (Extension by Zero of a Function). Let Q) be an open subset of R" and V be an
open susbset of Q). We define the linear map ext("//O : Func(V,R) — Func(Q,R) as follows:

_Jfx) fxev
ext(‘)/,g(f)(x){o ifxeQ\V

ext),  restricts to a continuous linear map D(V) — D(Q).
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Definition 21 (Restriction of a Distribution). Let Q) be an open subset of R" and V' be an open
susbset of Q). We define the restriction map resqyy : D'(QY) — D'(V) as follows:

(resq,vit, @) pr(vyxp(v) = (W, exth 0 @) pr(a)xp(0) -

This is well-defined; indeed, resqyy : D'(Q) — D'(V) is a continuous linear map as it is the
adjoint of the continuous map extY, o : D(V) — D(Q). Given u € D'(Q), we sometimes write
uly instead of resqy yu.

Remark 27. It is easy to see that the restriction of the map resqyy : D'(Q)) — D'(V) to £(Q)
agrees with the usual restriction of smooth functions.

Definition 22 (Support of a Distribution). Let Q) be a nonempty open set in R". Let u € D'(Q)).

e Wesay u is equal to zero on some open subset V of Qif u|y = 0.
o Let {V;}ieg be the collection of all open subsets of Q) such that u is equal to zero on V;. Let
V = Uie; Vi. The support of u is defined as follows:

suppu = Q\V.
Note that suppu is closed in Q) but it is not necessarily closed in R".

Theorem 43 (Properties of the Support [20,23,24]). Let Q) and Q) be nonempty open sets in R".

o Iff € L}, (Q), then suppf = suppuy.

e Forallue D'(Q), u=00nQ\suppu.

e Letue D'(Q). If ¢ € D(Q) vanishes on an open neighborhood of supp u, then u(¢) = 0.

e For every closed subset A of Q) and every u € D'(Q), we have suppu C A if and only if
u(¢@) = 0 for every ¢ € D(Q) with supp ¢ C Q\ A.

e Foreveryu € D'(Q)) and ¢ € E(Q), supp(pu) C supp(y) N supp(u).

e Letu,v € D'(Q). If there exists a nonempty open subset U of Q such that suppu C U and
suppv C U and

(ulu, @) pruy<pwy = Clu @)prwyxpwy Yo € CC(U),

then u = v as elements of D' (Q)).

e Letu,v € D'(Q). Then supp(u +v) C supp u Usuppo.

e Let {u;} be a sequence in D'(Q)), u € D(Q), and K € K(Q) such that u; — u in D'(Q)
and supp u; C K for all i. Then also suppu C K.

e Foreveryu € D'(Q)) and « € Nfj, supp(3*u) C supp(u).

e IfT:Q — QO isadiffeomorphism, then supp(T.iu) = T(suppu). In particular, if u has
compact support, then so has Tiu1.

Considering the eighth item in the above theorem, an interesting question that one
may ask is the following: Let {u;} be a sequence in D(Q) such that u; — u in D’(Q)),
and suppose there exists K € IC(Q) such that supp u C K. Does the fact that the limiting
distribution has compact support imply that there exists a compact set K such that supp u; C

K for all i? The answer is negative. For example, for each i € Nlet u; € D(R) be a

nonnegative function such that #; = 0 outside the interval (i,i + 1) and fiH'l updx = }
Clearly, u; — 0in L'(R) and so u; — 0 in D’(R). However, there is no compact set K such

that supp u; C K for all i.

Theorem 44 ([24], pp. 10 and 20). Let Q) be a nonempty open set in R". Let £'(QY) denote the
topological dual of £ (QY) equipped with the strong topology. Then

o The map that sends u € £'(Q) to u|p(q) is an injective continuous linear map from &' (Q1)
into D'(Q)).
e The image of the above map consists precisely of those u € D'(Q) for which supp u is compact.
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Due to the above theorem we may identify £’()) with distributions on () with compact
support.

Definition 23 (Extension by Zero of Distributions With Compact Support). Let Q) be a
nonempty open set in R" and V be a nonempty open subset of Q). We define the linear map
eact(‘)/,Q : EN(V) — &£(Q) as the adjoint of the continuous linear map resqy : £(Q) — E(V);
that is,

(ext att, @)eryxe() = (W @lv)erv)xew) -

Suppose ()’ and ) are two nonempty open sets in R” such that ' C Qand K € K£(QY').
One can easily show that:

e Forallu € E(QY), resgn 0 ext?),/R,,u = ext?),/nu.
e Forallu € &(QY), ext?),R” o ext?),/ﬂu = ext?),’R,,u.
* Forallu € &(Q), ext},  oresg ot = .

We summarize the important topological properties of the spaces of test functions and
distributions in Table 1 below.

Table 1. Topological properties of the spaces of test functions.

D(0) £(Q) D’(2) £'(Q) D’ (Q) £'(Q)

Strong Strong Weak Weak
Sequential No Yes No No No No
First-Countable No Yes No No No No
Metrizable No Yes No No No No
Second-Countable No Yes No No No No
Sequentially Complete Yes Yes Yes Yes Yes Yes
Complete Yes Yes Yes Yes No No

6.2. Distributions on Vector Bundles
6.2.1. Basic Definitions, Notation

Let M" be a smooth manifold (M is not necessarily compact). Let 7 : E — M be a
vector bundle of rank r.

(1) &(M,E) is defined as C®(M, E) equipped with the locally convex topology induced
by the following family of seminorms: let { (U, ¢u, px) }ucr be a total trivialization
atlas. Then foreverya € I,1 <1 < r,and f € C°(M,E), f. := oo fogz'isan
element of C*(¢,(Uy)). For every 4-tuple (I,a,j,K) with1 <! <r,a€l,jeN,Ka
compact subset of Uy (i.e., K € K(Uy)) we define

It is easy to check that [|. |1, is a seminorm on C*(M, E) and the locally convex
topology induced by the above family of seminorms does not depend on the choice of
the total trivialization atlas. Sometimes we may write |.|[; 4, ;,x instead of [|.

Lk i CP(ME) =R, fi ko fopellip ) -

La,j,K-
(2)  For any compact subset K C M we define

Ex(M,E) :=={f € E(M,E) : supp f C K}

equipped with the subspace topology.

B) D(M,E) := CZ(ME) = Ugexmy€k(M, E) (union over all compact subsets
of M) equipped with the inductive limit topology with respect to the family
{€k(M, E) }kex(m)- Clearly, if M is compact, then D(M, E) = £(M, E) (as topological
vector spaces).
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Remark 28.

o Ifforeacha € I, {K§ }nen is an exhaustion by compact sets of Uy, then the topology induced
by the family of seminorms

{||'|‘l,04,j,K§'§, 01 < I} <ruwac€ I,] S N,m S N}

on C®(M, E) is the same as the topology of E(M, E). This together with the fact that every
manifold has a countable total trivialization atlas shows that the topology of £(M, E) is
induced by a countable family of seminorms. So € (M, E) is metrizable.

o If {Kj}jen is an exhuastion by compact sets of M, then the inductive limit topology on
C& (M, E) with respect to the family {Ex;(M, E)} is the same as the topology on D(M, E).

Definition 24. The space of distributions on the vector bundle E, denoted D' (M, E), is defined as
the topological dual of D(M, EY). That is,

D'(M,E) = [D(M,EY)]*.

As usual we equip the dual space with the strong topology. Recall that EV denotes the bundle
Hom(E, D(M)) where D(M) is the density bundle of M.

Remark 29. The reason that space of distributions on the vector bundle E is defined as the dual of
D(M, EV) rather than the dual of the seemingly natural choice D(M, E) is well explained in [24,37].
Of course, there are other nonequivalent ways to make sense of distributions on vector bundles
(see [37] for a detailed discussion). Furthermore, see Lemma 13 where it is proved that Riemannian
density can be used to identify D' (M, E) with [D(M, E)]*.

Remark 30. Let U and V be nonempty open sets in M with V C U.
e Asin the Euclidean case, the linear map ext?/’u :T(V,EY) — T(U, EY)) defined by

flx) xeV

ext) X) =

vuf () {o xeu\v
restricts to a continuous linear map from D(V, Ey) to D(U, EY;).

e Asin the Euclidean case, the restriction map resy v : D'(U, Ey) — D'(V, Ey) is defined as
the adjoint of ext{, :

0
(resu,vu, (P>D/(V,EV)><D(V/E\\§) = <urEXtV,U(P>D/(u,Eu)><D(u,E&)’

e Support of a distribution u € D'(M, E) is defined in the exact same way as for distributions
in the Euclidean space. It can be shown that

(1) ([24],p. 105) Ifu € D'(M,E) and ¢ € D(M, EV) vanishes on an open neighborhood
of suppu, then u(¢@) = 0.

(2)  ([24], p. 104) For every closed subset A of M and every u € D'(M, E), we have
suppu C Aifand only if u(¢) = 0 for every ¢ € D(M, EV) with suppp C M\ A.

The strength of the theory of distributions in the Euclidean case is largely due to the
fact that it is possible to identify a huge class of ordinary functions with distributions. A
question that arises is that whether there is a natural way to identify regular sections of
E (i.e., elements of I'(M, E)) with distributions. The following theorem provides a partial
answer to this question. Recall that compactly supported continuous sections of the density
bundle can be integrated over M.
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Theorem 45. Every f € £(M, E) defines the following continuous map:
up:D(MEY) 5 R, ¢ /M[l,ll,f], @)

where the pairing [, f| defines a compactly supported continuous section of the density bundle:

VxeM [y, fl(x):=[px)][f(x)] (p(x) € Hom(Ey, Dy) evaluated at f(x) € E).

In general, we define T,gg(M, E) as the set
{f € T(M, E) : uy defined by Equation (2) is well-defined and continuous} .

Compare this with the definition of Funcy(Q)) in Remark 26. Theorem 45 tells us that
&(M, E) is contained in Tyeg(M, E). If u € D'(M,E) is such that u = uy for some f €
Treg(M, E), then we say that u is a regular distribution.

Now, let (U, ¢, p) be a total trivialization triple for E and let (U, ¢, pp) and (U, ¢,p0")
be the corresponding standard total trivialization triples for D(M) and E, respectively.
The local representation of the pairing [¢, f] has a very simple expression in terms of the
local representations of f and :

feTng(ME) = (fl,....f1) = (flog™ ..., frop™") :=pofog™! € [Func(p(U),R)*"
(F',..., f") is the local representation of f .

pEDMEY) = (§%,...,¢") == (o™ ... .9 og~l):=p" oot € [Func(p(U),R)]*"
(¢!, ..., ") is the local representation of .

Our claim is that the local representation of [y, f] (that is, pp o [, f] o ¢~ 1) is equal to the
Euclidean dot product of the local representations of f and :

ppolp, flog™! Zf’ ‘

The reason is as follows: Lety € ¢(U) and x = ¢~ (y)

lop o [9, 1097 1(v) = po ([P FX)]) = e ([P )][(ele) T (F )., F(W))])
=lpp o) o (ple) 1 W), F' ()
= [0V (@ Y),..., f(y))] the left bracket is applied to the right bracket
=0 (@) (f' (), ..., f'(y)) dotproduct! p"(¥(x)) viewed as an element of R

=@, W) F W T ).

6.2.2. Local Representation of Distributions

Let (U, ¢,p) be a total trivialization triple for 7 : E — M. We know that each
f € T(M, E) can locally be represented by r components f?, ..., f" defined by

vVi<Ii<r flz(p(ll)—HR, fl:plofO(p71

These components play a crucial role in our study of Sobolev spaces. Now the question is
that whether we can similarly use the total trivialization triple (U, ¢, p) to locally associate
with each distribution u € D’(M, E), r components i, ..., ii" belonging to D’(p(U)). That
is, we want to see whether we can define a nice map

D'(U, Ey) = [D(U, Ey)]" = D'(p(U)) x ... x D'(p(U)) .

r times
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(Note that according to Remark 30, if u € D'(M, E), then u|y; € D'(U, Ey;).) Such a map, in
particular, will be important when we want to make sense of Sobolev spaces with negative
exponents of sections of vector bundles. Furthermore, it would be desirable to ensure
that if u is a regular distribution then the components of u as a distribution agree with the
components obtained when u is viewed as an element of I'(M, E).

We begin with the following map at the level of compactly supported smooth func-
tions:

Tev e : D(UEY) = [D(e(U)]7, & —pYolog™ =((p") 0gog™,...,(p") 0Zogp™).
Note that TEV,u,q) has the property that for all € C*(U) and ¢ € D(U, E}))

Tev u,p(¥8) = (Yo 9 N Tpv u,(8) .

Theorem 46. The map Tgv yy,, - D(U, E}) = [D(@(U))]*" is a linear topological isomorphism
([D(@(U))]*" is equipped with the product topology).

Proof. Clearly, TEV,u,¢ is linear. Furthermore, the map TEV,Ll,go is bijective. Indeed, the
inverse of TE\/,U/KP (which we denote by Tgv y,,) is given by

Tev u,e ¢ [D(@(U)]*" — D(U, EY))
Vxel TEV,U,gu(gl/' o Gr)(x) = (PV|EJ\(/)71 o (&,...,&)op(x).

Now, we show that Tgv 1, : D(U, Ej) — [D(@(U))]*" is continuous. To this end, it is
enough to prove that for each 1 < < r the map

o Tpv e : D(UEY) = D(p(U)), & (p¥) 0Gog™!

is continuous. The topology on D(U, E}}) is the inductive limit topology with respect
to {Ek(U, Eyp) Ykek(u), 80 it is enough to show that for each K € K(U), o Tev e
& (U, EY) — D(g(U)) is continuous. Note that 71! o Tev 1, [Ex (U, EY))] € Eoy (@(U).
Considering that £,k (¢(U)) = D(¢(U)), it is enough to show that

7'[1 o TEV,U,(P : SK(U, El\ﬁ) — 84)(1()(4)(11))
is continuous. For all ¢ € &k (U, EY;) and j € N we have

7' o Tev 1,0 (@) o) = 10 0 &0 0™ o) = €10,k -

which implies the continuity (note that even an inequality in place of the last equality would
have been enough to prove the continuity). It remains to prove the continuity of Tgv 17,
[D(e(U))]*" — D(U, EY}). By Theorem 41 it is enough to show that for all K € K(¢(U)),
Tev,u, ¢ [Ex(e(U))]*" — D(U, Ey}) is continuous. Tt is clear that Tgv iy, ([Ex (¢(U))]*") €
Ep1(x) (U, Eyp). Since €1k (U, Eyy) < D(U, Eyy), it is sufficient to show that Tgv 17, :
[Ex(@(U))]*" — €,-11x) (U, Eyy) is continuous. To this end, by Theorem 41, we just need to
show that for all j € Nand 1 <[ < r there exists jy, . .., j, such that

1Te (Gt 8 g 100 < CUG ik + - 18l1.5)

However, this obviously holds because

ITev (1 8 llp o k) = 1811k -
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The adjoint of Tgv 1,4 is

Tiv e DWW EY) — ([D(e(U)]*")"
<TEV,U,¢pu' (61/ cee 167» = <M, TEV,U,(F(CL s ICV)> .

Note that, since Tgv 7, is a linear topological isomorphism, Ty, 0 is also a linear topolog-
ical isomorphism (and in particular it is bijective). For every u € [D(U, Ej})]*, Tfv gl 1s
in ([D(¢(U))]*")"; we can combine this with the bijective map
L: ([D(p(W)]*")" = [D'(9(U)]*", L(v) = (voit,...,v0i)
(see Theorem 24) to send u € [D(U, E}})]* into an element of [D'(¢(U))]*":
L(Tgv yot) = (Tgv y,gt) 0 i1, -, (Tpv g o4) ©ir)

where forall1 <1<, (TEV/U,(Pu) oi; € D'(p(U)) is given by
(T2 1,0) 0@ = (T 10 (10) = (T 00,002,0, & ,0,0+-,0)

= <ulTEV,U,(p(OI"~/O/ é /0/-~~10)>'

~~
Ith position
If we define g; 17, € D(U, Ey) by

S (¥) = Tpv up(0,...,0, ¢ ,0,...,0)(x)

Ith position

1
= (pY|gy) ©(0,...,0, \5/ ,0,---,0) 0 9(x),

Ith position

then we may write

((Tgvu,pt) © i1, 8) D1 (p(u) xD(p(u)) = (1 &1,2,U,0) D(UEY)]* x D(ULEY) -

Summary: We can associate with u € D'(U, Ey) = (D(U, EY;))* the following r distribu-
tions in D' ((U)):
vi<i<r o= TEV,u,q;“Oilr

that is,
VEe D) (1,8 = (wgzu,e),
where g =17, € D(U, Ey7) is defined by

-1
(©'lgy) ©(0,...,0, & ,0,...,0)09(x).
Ith position

In particular,
p'ogizupoe ' =(0,...,0, & ,0,...,0),
~—~—

Ith position

and so (0" 0 g1zu,p © o =¢
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Let us give a name to the composition of L with Tz, Ue that we used above. We set

Hpvg,p o= Lo Tgy 0

Heomg DU EQ) — (D (p(W) 7, e L(Thy ) = (@, ).

Remark 31. Here we make three observations about the mapping Hev 1y,
(1) Foreveryu € [D(U, EY))]*

supp[Hgv o u]' = suppit’ C p(suppu).

Indeed, let A = @(suppu). By Theorem 43, it is enough to show that if y € D(@(U)) is such
that suppy C @(U) \ A, then @' (17) = 0. Note that

(@,n) = (W, 81yLe) -

So, by Remark 30 we just need to show that g, , i, = 0 on an open neighborhood of suppu.

Let K = suppy. Clearly, U\ ¢~ (K) is an open neighborhood of suppu. We will show that
81,n,U,o vanishes on this open neighborhood. Note that

8y ttp(¥) = (0"]e) (0., 0,70 9(x),0,...,0) .
——

Ith position

Since pV |gy is an isomorphism and 1y = 0 on ¢(U) \ K, we conclude that g, 1,, = 0 on

¢ e(U)\K) =U\ ¢~ !(K).
(2)  Clearly, Hgv 5,4 = D'(U,Ey) — [D'(@(U))]*" preserves addition. Moreover, if f €

C®(U) and u € D'(U, Ey), then Hgv 1 4(fu) = (f o (p’l)HEv/u,(p(u), Recall that H =

LoTEqu,

(Tev o (f1), (1, 8r)) = ¢ (1o, 80))
=, fTev 11,9(G1, -+, Gr))
= (u, Tevupl(fo o) 6]
= (T o, (fo 9 ) (E1 -, 60))
= ((foo NTEv i, (G- rér»

(The third equality follows directly from the definition of Tgv y ,.) Therefore,

fu, TEVU(p

Tvup(f) = (Fo 9 )Tg y -

The fact that L((f o ¢~ 1) T}y g u) = (foo ML(T} BV g u) is an immediate consequence
of the definition of L.

(3)  Since Tgv 1, and L are both linear topological isomorphisms, H E_vl U =(LoT 1.

EV u, (p)
(D'(p(U)))*" — D*(U, EY) is also a linear topological isomorphzsm It is useful for our
later considerations to find an explicit formula for this map. Note that

HEvl,u,q; = (Lo TEv,u,(,,)fl - (TEV,u,(p) oL ! (Tgv uq)) oL !
= (Tpvup) o L7t = (Tpvu,e) o L.
Recall that

L: [D*(o(U)]*" = [(D(eU))")*, (o',...,0"
Tiv e+ [(D(9(U))) ] = D*(U, Eyy) -

Y olom +...+0 oy,
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Therefore, for all & € D(U, E;)

HEvl,u,qu(Ul/- L0 (8) =

Uq7(v omy+...+0 om),E)

(T
(@' 0t +...+ o7, TE)
= 10ﬂ1+ Vo), ((0) 0gog .., (0") 0gog )
s

o[(p¥) ogop].

Remark 32. Suppose u € D'(M,E) is a reqular distribution, that is, u = us where f €
Treg(M, E). We want to see whether the local components of such a distribution agree with
its components as an element of T' (M, E). With respect to the total trivialization triple (U, ¢, p)
we have

@ fe=(ff f), fr=plofoe,
(2) uf — (u}l,...,uNfZ).

The question is whether u 7 = i fl? Here we will show that the answer is positive. Indeed, for all
¢ € D(¢(U)) we have

(15, &) = (up, g15u,9) = / [81.2,u,9- f] / Z Qi) fldv = / (@gue) flav
= [ fedv=(upe).
/<p<u> !
Note that the above calculation in fact shows that the restriction of Hgv yy,, to D(U, Ey) is Tr -

7. Spaces of Sobolev and Locally Sobolev Functions in R”

In this section, we present a brief overview of the basic definitions and properties
related to Sobolev spaces on Euclidean spaces.

7.1. Basic Definitions

Definition 25. Let s > 0 and p € [1,00]. The Sobolev-Slobodeckij space W*? (R") is defined
as follows:

o Ifs=keNypelloo],

WRP(R") = {u € LP(R") : el i ey = Y 0Vullp < oo}
lv|<k

e Ifs=0€(0,1),pel,o),

WOP(RY) = (1€ LR sulyenquny = f [ i dsay)? < ).

e Ifs=0¢€(0,1),p=o0

WO (R") = {u € L®(R") : [1] ooy == esssup M < oo},
x,yeR" x#y ‘x - y‘

o Ifs=k+6,kecNy0c(0,1)pe€lloo]

WoP(RY) = {u € WWP(RY) : [[ullygor ey = [ giogany + X 19" gonny < 0
lv|=k
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Remark 33. Clearly, for all s > 0, Ws#(R") C LP(R"). Recall that LF(R") C L} (R") C
D'(R™). So, we may consider elements of WP (R") as distributions in D' (R™"). Indeed, for s > 0,
p € (1,00), and u € D' (R") we define

Nllwsp@ny = | fllwse@ny  if u = ug for some f € LP(R")
N2t [ e (e 1= o0 otherwise '

As a consequence, we may write
WP (R") = {1 € D'(R") : [[ullyyern) < o0}

Remark 34. Let us make some observations that will be helpful in the proof of a number of important
theorems. Let A be a nonempty measurable set in R".

(1)  We may write:

|0V u(x) — 0"u(y)|”
1wt = )1 4 g
//]R"X]R" x—y \n+9p Y

://AXA...dxdy-&-/A/R”\A...dxdy-&-/Rn\A/A...dxdy-&-/n\A/]Rn\A...dxdy

In particular, if suppu C A, then the lust integml vanishes and the sum of the two middle
)P
\A ‘x y‘n+9p

|0"u( "u(y)|”
L —dxdy =
//R"X]R” |xfy|”+‘9p Y

[0"u( y)IP / / |0"u(x)[P
- —dxdy + 2 ————dydx.
//A><A \xf |”+9P xay + na Jx —y[tor yax

(2) If Ais open, K C A is compact and o > n, then there exists a number C such that for all
x € K we have

integrals will be equal to 2 f A fR,, dydx. Therefore, in this case

1
—— _dy<CcC.
/R"\A ey =

(C may depend on A, K, n, and « but is independent of x.) The reason is as follows: Let

R = 1dzst(I( A®) > 0. Clearly, for all x € K, the ball Br(x) is inside A. Therefore, for all
x € K, R"\ A C R"\ Bg(x) which implies that for all x € K

1 1 z=y—x 1 Ty (1,
—dy < —dy = / ——dz = o(S" / — " dr,
A&”\A =y Y= Jrmpe e —y[r Y Jrr\Br(0) |2]® ( ).R "

which converges because a > n. We can let C = o(S"1) flgo riar”’]dr.
(3) If Ais bounded and a < n, then there exists a number C such that for all x € A

1
———dy < C.
Jur=aw s

(C depends on A, n, and « but is independent of x.) The reason is as follows: Since A is
bounded there exists R > 0 such that for all x,y € A we have |x —y| < R. So, forallx € A

‘R
/;dySU(S”*l)/ lr”*ldr,
Alx—yl* 0o 1

which converges because & < n.

Theorem 47. Lets > 0and p € (1,00). CX(R") is dense in WS (R"). In fact, the identity map
ipw : D(R") — W*P(R") is a linear continuous map with dense image.
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Proof. The fact that CP°(R") is dense in W*?(R") follows from Theorem 7.38 and
Lemma 7.44 in [38] combined with Remark 39. Linearity of ip yy is obvious. It remains to
prove that this map is continuous. By Theorem 40 it is enough to show that

VKeK(R"),Veek(R") FHeN st [lollwsrmy = elljx-

Lets = m + 6 where m € Ngand 6 € [0,1). If & # 0, by definition [ ¢|lysrgr) =
@l wmr @y + Ejvj=m |8V(p\wg,,,(]R,,). It is enough to show that each summand can be
bounded by a constant multiple of ||¢]|; x for some j.

e Stepl:If6 =0,

||(P|\W"W(R"): E HaV(PHL!’(R”): E HaUCPHLP(K)

[v|<m [v|<m
1
= ) UelmxlKI?) = ll@lmk,
[v]<m

where the implicit constant depends on m, p, and K but is independent of ¢.
e  Step 2: Let A be an open ball that contains K (in particular, A is bounded). As it was
pointed out in Remark 34 we may write

0"p(x) — "¢ (y)["
— " dxd
/_/nlen ‘x,y‘n-HJp y=

0V g(x) — g E
//AM |x7 I”*"" dxdy+2/ /n\A - ‘Hepdydx.

First note that R” is a convex open set; so by Theorem 6 every function f € Eg(R") is
Lipschitz; indeed, for all x,y € R"” we have |f(x) — f(y)| < ||flli,xl|x — y||. Hence

090 =260 gy < [ g [
— L T2 dxdy < d d
//AXA |x_y|n+9p xXay = H GDH | ]/|n+9p y X
_/ ¥ o} / |"+9 oy

By part 3 of Remark 34 [, = dy is bounded by a constant independent of x;

also, clearly, ||0"¢|1,x < ||@||m+1,k- Considering that | A| is finite we get

‘n+(~? 1)p

[0V (x) — 0"p(y)”
//AxA |x |"+9P ey S el

Finally, for the remaining integral we have

// 9% ddx—// MCICI] LN
" A \x ‘n+9p yax = " A |x |n+9p yax

because the inner integral is zero for x ¢ K. Now, we can write

// [9"¢( x</|| It / Y
A |x—y\"+ep w Pl Jgon 4 T =y 9

By part 2 of Remark 34 for all x € K, the inner integral is bounded by a constant. Since
|K] is finite we conclude that

0" (x)
Sy fo g et < gl
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Hence
lllwse@ny 2 1 @llmr1k -
O

Definition 26. Lets > 0and p € (1, 00). We define

—s,p’ (o1 s 1y * 1 1

WP (RY) = (WP(ERT)" (-4 =1).
pp

Remark 35. Note that since the identity map from D(R") to WS# (R") is continuous with dense
image, the dual space W= (R") can be viewed as a subspace of D' (R"). Indeed, by Theorem 25
the adjoint of the identity map, if, , : Ws# (R") — D'(R") is an injective linear continuous
map and we can use this map to identify W—S# (R") with a subspace of D'(R"). It is a direct
consequence of the definition of adjoint that for all u € W5V (R"), ihwh = Ulpmn. So, by
identifying u : WoP(R") — R with u|pgs) : D(R") — R, we can view W—s# (R") as a
subspace of D' (R™).

Remark 36.
e It is a direct consequence of the contents of pp. 88 and 178 of [8] that for m € Z and
1<p<oo

WHE(R") = H)'(R") = Fja(R").
e Itisadirect consequence of the contents of pp. 38, 51, 90 and 178 of [8] that for s ¢ Z and
1<p<oo
WoP(R") = B} ,(R").
Theorem 48. Foralls € Rand1 < p < oo, W3 (R") is reflexive.
Proof. See the proof of Theorem 64. Additionally, see [39], Section 2.6, p. 198. [

Note that by definition for all s > 0 we have [WS? (R")]* = WS (R"). Now, since
WSP(R") is reflexive, [W 57 (R")]* is isometrically isomorphic to W*?(R") and so they
can be identified with one another. Thus, for alls € Rand 1 < p < co we may write

(WP (R)]" = WP (R").

Lets > 0and p € (1,00). Every function ¢ € C(R") defines a linear functional
Ly : WP(R") — R defined by

Ly(u) = / uqpdx.

n

Ly is continuous because by Holder’s inequality
L)l =1 [ egax] < luler o191,y < N0l oy ooy
Furthermore, the map L : C®(R") — ws (R") which maps ¢ to Ly is injective because
Ly =Ly = Yuec WY (R") ./R”u(q)ft/))dx:O% ./IR" lp—pPPdx=0— ¢ =.
Thus, we may identify ¢ with L, and consider C°(R") as a subspace of Ws¥' (R").

Theorem 49. Forall's > 0and p € (1,00), CX(R™) is dense in W=7 (R™).
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Proof. The proof given in p. 65 of [1] for the density of L?' in the integer order Sobolev
space WP, which is based on reflexivity of Sobolev spaces, works equally well for
establishing the density of C®°(R") in WS¢ (R"). [

Remark 37. As a consequence of the above theorems, for all s € Rand p € (1,00), WS (R™) can
be considered as a subspace of D' (R™). See Theorem 25 and the discussion thereafter for further
insights. Additionally, see Remark 45.

Next we list several definitions pertinent to Sobolev spaces on open subsets of R".

Definition 27. Let Q) be a nonempty open set in R". Let s € Rand p € (1,00).
(1) o Ifs=keNy,

WEP(Q) = {u € LP(Q) « ullyiriq) = X 10ullra) < oo}

|v|<k

o Ifs=0¢€(0,1),
WeP(Q) = (€ LP(O) s fulyosiy = ([ [ ‘”x ‘Hgg"’dxdy)%@o}.

o Ifs=k+6,kecNy0ec(0,1),

WP (Q) = {u € WP(Q) : ullwsr ey = lltllwesqy + 1 10" ulwonqy < o}

|vI=k
e Ifs<0,
; s 1 1
W) = (We ™7 ()" (S +—=1),
pr
where forall e > 0and 1 < q < oo, Wy?(Q) is defined as the closure of C(Q) in
W (Q).

(2)  WSP(Q) is defined as the restriction of WP (R") to Q. That is, WP (Q)) is the collection
of all u € D'(Q) such that there is a v € WP (R") with v| = u. Here v|q should be
interpreted as the restriction of a distribution in D' (R™) to a distribution in D' (Q)). W (Q))
is equipped with the following norm:

Ilhwsriey = it Ioleocen
(3)
WP (Q) = {u € W (R") : suppu C Q}.
WP (Q)) is equipped with the norm ||u ||w5,, = |l wsr ()
4

W(Q) = {u = vlo,0 € WP (Q)}. ®

Again v|q should be interpreted as the restriction of an element in D'(R") to D'(Q)).
So W¥P(Q) is a subspace of D'(QY). This space is equipped with the norm ||u| s, =
inf |||l s gy where the infimum is taken over all v that satisfy the equality in Equation (3).
Note that two elements vy and vy of WP (Q) restrict to the same element in D'(Q) if and
only if supp(vy — va) C 0Q). Therefore,

WsP(Q)
{v e WsP(R") : suppv C 0Q2}

WP (Q) =
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(5)  Fors > 0 we define
Wod (Q) = {u € WP (Q) : ext%R”u € W¥P(R")}.
We equip this space with the norm
“uHW[;Op(Q) = Hext?)anu||ws,p(Rn) .

Note that previously we defined the operator ext?),R,, only for distributions with compact
support and functions; this is why the values of s are restricted to be nonnegative in this
definition.

(6) Forall K € KC(Q) we define

WP (Q) = {u € W (Q) : suppu C K},

with Hu”W;’F(Q) = ||u||ws,p(0).
(7)
Weomp(Q) = U W"(Q).
KeK(Q)

This space is normally equipped with the inductive limit topology with respect to the fam-
ily {W;p(Q)}KG,C(Q). However, in these notes we always consider Wfé’:np(ﬂ) as a
normed space equipped with the norm induced from W57 (Q)).

Remark 38. Each of these definitions has its advantages and disadvantages. For example, the
way we defined the spaces W (Q)) is well suited for using duality arquments while proving the
usual embedding theorems for these spaces on an arbitrary open set Q) is not trivial; on the other
hand, duality arguments do not work as well for spaces WP (Q)) but the embedding results for
these spaces on an arbitrary open set Q) automatically follow from the corresponding results on R™.
Various authors adopt different definitions for Sobolev spaces on domains based on the applications
in which they are interested. Unfortunately, the notation used in the literature for the various spaces
introduced above are not uniform. First note that it is a direct consequence of Remark 36 and the
definitions of By, ,(Q0), Hy(Q) and F;, ,(QY) in [39] p. 310 and [40] that

WP (Q)) = {ZEZ((%))—;;;QZ) ifse’
Py

With this in mind, we have Table 2 which displays the connection between the notation used in this
work with the notation in a number of well-known references.

Table 2. Connection to notation employed in previous literature

This Manuscript Triebel [39] Triebel [40] Grisvard [5] Bhattacharyya [4]
Wer (@) W3() Wer(Q)
WP (Q) W (Q) W5 (Q) W (Q) WP (Q)
WsP (Q) W5 (Q) W5 (Q)

WP (Q) W5 (Q)
Woi (Q) W5(0) Woi (Q)
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Remark 39.
e Note that

H”HW’W(Q) + HZ: ‘avu|w9w(o) < HuHWW(Q) + ‘Z: HaV”HWM(Q)
v|=k |v|=k

~ lulsrioy + X (1000 + ulorir
[v|=k

= H“Hwkrp(o) + Z ‘avu‘wf’rn(n) (since Z HBV”HLV(O) < H’/‘Hwkrp(g))-
[v]=k [v]=k

Therefore, the following is an equivalent norm on WF (C))

lullwss(y = lelioiey + 5 1%l wor ey
|a|=k

1
e Forpe (1,00)anda,b > 0wehave (a¥ 4+ bP)? =~ a+ b; indeed,
aP +bP < (a+b)P < (2max{a,b})’ < 2P(a? +bF).
1
More generally, if ay, . . ., ay, are nonnegative numbers, then (af +...+ af;)? ~ap+...+ay.

Therefore, for any nonempty open set Q) in R", s > 0, the following expressions are both
equivalent to the original norm on W (Q))

-

lellwsr ey = [lullfyp +HZ 104l yop 07
k

1
leellwer iy = [llullfyp +HZ||3”uIIWg,, ol
v|=k

wheres =k+6,k € Ng, 0 € (0,1).

7.2. Properties of Sobolev Spaces on the Whole Space R"

Theorem 50 (Embedding Theorem I, [39], Section 2.8.1). Suppose 1 < p < q < oo and
—o < t <5 < oo satisfy s f% > t— %. Then WSF(R") — WHI(R"). In particular,

WSP(R) < WHP(R™).

Theorem 51 (Multiplication by smooth functions, [12], p. 203). Lets € R, 1 < p < oo, and
¢ € BC®(R"). Then the linear map

¢t WP (R") — WP (R"), u— Qu
is well-defined and bounded.
A detailed study of the following multiplication theorems can be found in [18].

Theorem 52. Let s;,sand 1 < p,p; < co (i = 1,2) be real numbers satisfying
(i) si>s52>0,

(ii) s €Ny,
1 1
(iii) s;—s>n(— — =),
| (pi q) 1 1
(iv) sg+sy—s>n(—+——=)>0,
pr p2 P

where the strictness of the inequalities in items (iii) and (iv) can be interchanged.
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If u € WP (R") and v € WS2P2(R"), then uv € W*P(R") and moreover the pointwise
multiplication of functions is a continuous bilinear map

WSIPL(R™) x WS2P2(R™) — WSP(R").

Theorem 53 (Multiplication theorem for Sobolev spaces on the whole space, nonnegative
exponents). Assumes;,sand1 < p; < p < oo (i = 1,2) are real numbers satisfying

(i) si>s,
(i) s2>0,
(iii) s;—s Zn(l—l),
pi p
. 1 1
(iv) s1+sy—s>n(—+———).
Pt P2 P

Ifu € WUPL(R") and v € W2P2(R"), then uv € WP (R™) and moreover the pointwise
multiplication of functions is a continuous bilinear map

WELPL(RN) x WP2(R™) — WP (R™),

Theorem 54 (Multiplication theorem for Sobolev spaces on the whole space, negative
exponents I). Assume s;,sand 1 < p; < p < oo (i = 1,2) are real numbers satisfying

(i) sizs,

(ii)  min{sy,s2} <0,

(i) si—s>n(~—21)

i Ti, 1 1
(iv) s1+sp—s>n(—+——->),
1 pll p2 P
@ si+spzn(—+-—-1)=0.
Pt P2

Then the pointwise multiplication of smooth functions extends uniquely to a continuous bilinear
map
WAIPL(R™) x W32P2(R") — WP (R™).

Theorem 55 (Multiplication theorem for Sobolev spaces on the whole space, negative
exponents II). Assume s;,sand1 < p,p; < oo (i = 1,2) are real numbers satisfying
(i) si>s,
(ii)  min{sy, s} > 0ands <0,
1 1
(iii) s;—s>n(——-),
4 1 1 1
(iv) s;+sp;—s>n(—+——=)>0,
1 p1 1 p2 P
(W) s1+sp > n(p— + o 1)  (the inequality is strict).
1 2

Then the pointwise multiplication of smooth functions extends uniquely to a continuous bilinear
map
WELPL(R™) x W2 P2(R") — WSP(R").

Remark 40. Let us discuss further how we should interpret multiplication in the case where
negative exponents are involved. Suppose for instance s; < 0 (sy may be positive or negative). A
moment’s thought shows that the relation

WELPL(RM) x W2P2(R™) s WP (R™)

in the above theorems can be interpreted as follows: for all u € W1P1(R") and v € W2FP2(R"), if
{@i} in C=(R") N WLPL(R") is any sequence such that ¢; — u in WSLPL(R"), then
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(1) Foralli, g;jv € WP (R") (multiplication of a smooth function and a distribution);

(2) ;v converges to some element g in WP (R™) as i — oo;

) lIgllwsr ey = Nullwsre @y 10l wsarz (rry where the implicit constant does not depend on u
and v;

(4) g€ WSP(R") is independent of the sequence {¢;} and can be regarded as the product of u
and v.

In particular, p;0 — uv in D'(R") and for all € CX(R")
{0, ) pr () x ) = HM(9i0, ) pr () Dy = (0, Qi) pr () <D (RY) -

7.3. Properties of Sobolev Spaces on Smooth Bounded Domains

In this section, we assume that () is an open bounded set in R” with smooth bound-
ary unless a weaker assumption is stated. First we list some facts that can be useful in
understanding the relationship between various definitions of Sobolev spaces on domains.
e ([4], p. 584) [Theorem 8.10.13 and its proof] Suppose s > 0 and 1 < p < co. Then

WsP(Q)) = WP (Q)) in the sense of equivalent normed spaces.

*  ([40], pp. 481 and 494) For s >  —1, W37 (Q)) = W*7(Q). That s, fors > | —1

{v e W¥(R") : suppv C 0Q} = {0}.

e Lets>0and1 < p < co. Then for s # %,1 + %,2 + %, ... (that is, when the fractional

part of s is not equal to %) we have

(1)  ([4], p. 592) [Theorem 8.10.20] W,¢ (Q) = W,7(Q) in the sense of equivalent
normed spaces.

2)
eXt?‘),]Rn : (C?(Q), ||vHs,p) — WSP(R")
is a well-defined bounded linear operator.
3

resgn () ws' (R") — W*S’P/(Q) u— ulg
is a well-defined bounded linear operator.

Note that the connection between items (2) and (3) above can be seen as follows:
Let u € W57 (R"). respnqu € W (Q) if and only if u|q : (D(Q), |.|lsp) — Ris
continuous, that is, if
(o, @) pr(q)xD(0)|

sup < oo,
0+£9eD(Q) lollwsr (o)
We have
[(ula, @) pr(ayxpy| = | (1, Xt pn @) pr(wn)x DY) | = |1, exthy g Phw-sr' @)W (& |

= ”“was,p’(Rn) ||eXt(())/D§"q7ng'P(Rn) .

So, the desired inequality holds if one can show that for all ¢ € D(Q),
lext, @l wgr ey = I@llwsr()-

Next we recall some facts about extension operators and embedding properties of
Sobolev spaces. The existence of extension operator can be helpful in transferring known
results for Sobolev spaces defined on R” to Sobolev spaces defined on bounded domains.

Theorem 56 (Extension Property I [4], p. 584). Let O C R" be a bounded open set with
Lipschitz continuous boundary. Then for all s > 0 and for 1 < p < co, there exists a continuous
linear extension operator P : WP (Q0) — WP (R") such that (Pu)|q = u and || Pul|ysp@n) <
Cllullwsr(q) for some constant C that may depend on s, p, and Q) but is independent of u.
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The next theorem states that the claim of Theorem 56 holds for all values of s (positive
and negative) if we replace W7 (Q)) with WP (Q}).

Theorem 57 (Extension Property I1 [40], p. 487, [8], p. 201). Let Q0 C R" be a bounded open set
with Lipschitz continuous boundary, p € (1,00) and s € R. Let R : WP (R") — WP (Q)) be the
restriction operator (R(u) = u|q). Then there exists a continuous linear operator S : WP (Q)) —
WSP(R™) such that Ro S = Id.

Corollary 3. One can easily show that the results of Sobolev multiplication theorems in the
previous section (Theorems 52-55) hold also for Sobolev spaces on any Lipschitz domain as long as
all the Sobolev spaces involved satisfy W1(Q)) = W%1(Q)) (and so, in particular, existence of an
extension operator is guaranteed). Indeed, if Py : WS1P1(Q)) — W1PL(R™) and Py : Wo2F2(Q)) —
We2P2(R™) are extension operators, then (Pyu)(Pyv)|q = uv and therefore,

luvllwse ) = lluvllwsr )y < [[(Pru) (Pao) [[wspny = (1P ullwsien ) [| P20l wsawa (e

2l wsirn (@ 10l wszrz () -

Remark 41. In the above Corollary, we presumed that (Pyu)(Pv)|q = uv. Clearly, if s and
sy are both nonnegative, the equality holds. However, what if at least one of the exponents, say
s1, is negative? In order to prove this equality, we may proceed as follows: let {¢;} be a sequence
in C*(R") N WvPL(R") such that ¢; — Pyu in WvPL(R"). By assumption WP1(Q) =
WSLPL(QY), therefore the restriction operator is continuous and {¢;|q } is a sequence in C*(Q) N
WSLPL(QY) that converges to u in WoP1(QY). Forall € C®(Q)) we have

([(Pyu) (P20)] | ¥) pr(ay x D) = {(Prte) (Pa0), ext) gu ) pr () x p(Rr)
Remnrk4()

Hoo(%(sz)/EXt?),Rn ) DI (R7) x D(R)

= lim ((Py0), iextty g §) pr(mr)xD(RM)

1—00

1—00

)
= lim ((Py0), exty g (9il0¥)) pr (re) x D(R?)
)

= lim ((P0) |0, ¢ila®) () «D(0)

= lim {(¢i|av, ) p(@)xp(0)
= (U0, ) () xD(QY) -

Theorem 58 (Embedding Theorem II [5]). Let Q) be a nonempty bounded open subset of R"
with Lipschitz continuous boundary or Q = R". If sp > n, then WP (Q) — L*(Q) N C%(Q)
and WP (Q)) is a Banach algebra.

Theorem 59 (Embedding Theorem III [18]). Let Q) be a nonempty bounded open subset of R"
with Lipschitz continuous boundary. Suppose 1 < p,q < co(pdoes NOT need to be less than or
equal to q) and 0 < t < s satisfy s — 2 > t— 1. Ifs & No, additionally assume that s # t. Then

WP (Q) — WH(Q). In particular, Wq ”(Q) — WHP(Q).

Theorem 60. Let ) be a nonempty bounded open subset of R" with Lipschitz continuous boundary.
Then u : Q) — R is Lipschitz continuous if and only if u € WV (Q). In particular, every function
in BC1(Q) is Lipschitz continuous.

Proof. The above theorem is proved in Chapter 5 of [2] for open sets with C! boundary.
The exact same proof works for open sets with Lipschitz continuous boundary. [

The following theorem (and its corollary) will play an important role in our study of
Sobolev spaces on manifolds.
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HS"uHs,p

Theorem 61 (Multiplication by smooth functions). Let Q) be a nonempty bounded open set in
R™ with Lipschitz continuous boundary.

(1)

(2)

(3)

Letk € Ngand 1 < p < oo. If ¢ € BCX(Q), then the linear map W*P(Q)) — WEP(Q)
defined by u — @u is well-defined and bounded.

Lets € (0,00) and 1 < p < oo. If ¢ € BCLIA(Q) (all partial derivatives of ¢ up to and
including order |s| exist and are bounded and Lipschitz continuous), then the linear map
WSP(QY) — WP (Q)) defined by u — qu is well-defined and bounded.

Lets € (—00,0) and 1 < p < oo. If ¢ € BC®(Q), then the linear map W (Q) —
WSP(Q) defined by u — @u is well-defined and bounded.

Note: According to Theorem 60, when Q) is an open bounded set with Lipschitz continuous
boundary, every function in BC'(Q) is Lipschitz continuous. As a consequence, BC*(Q) =
BC®(Q)). Of course, as it was discussed after Theorem 6, for a general bounded open set () whose
boundary is not Lipschitz, functions in BC®(Q) are not necessarily Lipschitz.

Proof.

Rem%rk 39 H

Step 1: s = k € N. The claim is proved in ([29], p. 995).

Step 2: 0 < s < 1. The proof in p. 194 of [41], with obvious modifications, shows the
validity of the claim for the case where s € (0,1).

Step 3: 1 < s € N. In this case we can proceed as follows: Letk = [s], 0 =s —k.

pullip + Y 110" (ou)llo,

|v|=Fk

= loulley + 3 Y 10" PpoPullg,

Iv/=k p<v

= ||u ”k,p + Z Z Haﬁu ||9,p (by steps 1 and 2; the implicit constant may depend on ¢)

|v|=k B<v

= ||u||s,p+ Z 2 HaﬁuHe,p

[v|=k B<v

= ullsp+ Y Y llulloy g, @F:wWoHEP(Q) — WPP(Q)is continuous)

[v|=k B<v

Zullsp+ X Y llullsp (64181 <5 = WP (Q) — WP (Q))

= ||“||s,p~

[v|=k p<v

Note that the embedding WP (Q) < WOFIBLP(Q)) is valid due to the extra assump-
tion that () is bounded with Lipschitz continuous boundary (see Theorem 68 and
Remark 42).

Step 4: s < 0. For this case we use a duality argument. Note that since ¢ € C®(Q)), pu
is defined as an element of D’(Q}). Furthermore, recall that W?(Q)) is isometrically
isomorphic to [CZ°(QY), ||.[| s »]* (see the discussion after Remark 10). So, in order
to prove the claim, it is enough to show that multiplication by ¢ is a well-defined
continuous operator from W*?(Q) to A = [CZ(Q), ||.|| s ]*- We have

louls= sup LPeOD@ep@l o 0@ pm)
veC@\{0} ”v”—s,p/ 0eC®\{0} HUH—S,;J/

|(u, go) |

—sp!
Remark 45 WP (Q)x Wy P (Q)

sup
0eC\{0} ||U||7s,p’

[l ll 9ol —s,pr l[lls,plloll—s,pr

<

= H”Hs,p~
0eC\ {0} o]l —s,pr 0eC®\{0} o]l s,
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Corollary 4. Let Q) be a nonempty bounded open set in R"™ with Lipschitz continuous boundary.
Let K € K(Q). Supposes € Rand p € (1,00). If ¢ € C™(Q), then the linear map Wi (Q) —
WP (Q) defined by u — u is well-defined and bounded.

Proof. Let U be an open set such that K € U C U C Q. Let ¢ € C(Q) be such that
¢ =1lonKand ¢ = 0 outside U. Clearly ¢ € C*(Q) and thus p¢ € BC*1(Q) (see the
paragraph above Theorem 7). So, it follows from Theorem 61 that || ¢ul[s p < |u||s,, where
the implicit constant in particular may depend on ¢ and ). Now the claim follows from
the obvious observation that for all u € W,S(’p (Q)), we have pou = gu. O

Theorem 62. Let ) = R" or Q) be a nonempty bounded open set in R" with Lipschitz continuous

boundary. Let K C Q) be compact, s € Rand p € (1,00). Then

1) WZ(Q) € WyP(Q). That is, every element of Wy (QQ) is a limit of a sequence in CF (Q);

(2) ifKCV CK CQuwhereand K' is compact and V is open, then for every u € W¥ (Q),
there exists a sequence in C3;(Q)) that converges to u in WP (Q)).

Proof.

(1) Letu € Wi’ (Q). By Theorems 65 and 66, there exists a sequence {¢;} in C*(Q)
such that ¢; — u in W¥P(Q)). Let ¢ € CZ(Q)) be such that y = 1 on K. Since
C®(Q) C BC™(Q), it follows from Theorems 51 and 61 that pg; — Pu in WP (Q).
This proves the claim because ¢; € C°(Q) and pu = u.

(2) Inthe above argument, choose ¢ € C®°(Q2) such that = 1 on K and ¢ = 0 outside V.

O

Theorem 63 (([40], p. 496), ([39], pp. 317, 330, and 332)). Let Q) be a bounded Lipschitz
domain in R”. Suppose 1 < p < 00,0 < s < 1. Then C®(Q) is dense in W (Q) (thus

P
WP (Q) = WP (Q)).

7.4. Properties of Sobolev Spaces on General Domains

In this section, Q) and () are arbitrary nonempty open sets in R”. We begin with some
facts about the relationship between various Sobolev spaces defined on bounded domains.

e Supposes > 0and (O C Q). Then for all u € WF(Q)), we have resq u € W37 (QY).
Moreover, ||resq oy ttl|wsr vy < [[tl|wsr()- Indeed, if we lets =k + 6

0 ux) —u(y)l
llbwery = Vs + T (f [, o, B Zg 0 asay)’

|v|=k
0"u 0"u(y)|? L
o , // [%u(x) = w4\ 4 h
Iﬂék” ullLr(ar) +|V‘Zk oy |x_ o xdy)
ou P 1
< |Ek”aau””(0> = //QXQ| g |n+9}(y y)| dx dy)l’ = ||u”ws,p(0>,
w|< v

So, resq oy : W (Q)) — W*P()) is a continuous linear map. Furthermore, as a
consequence, for every real number s > 0

WP (Q)) — W (Q).
Indeed, if u € W5P(()), then there exists v € W*P(R") such that resg: nv = u and
thus u € W*?(Q)). Moreover, for every such v, [lullysriq) = [[resgn qvllwsrq) <

9] ws.r (me)- This implies that

ul|ws, < inf ol ws, = |lul|lwspia) -
[l ﬂ(o)_vewwmrvlﬂ:u\\ e ey = [lullwsr ()
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e  (learly, foralls > 0
Wt (Q) = WP (Q)).

e  For every integer m > 0 ([5], p. 18)
Wy (C2) € Wi () € WP () € WP (Q).

e Suppose s > 0. Clearly, the restriction map resge : WYP(R") — WSP(Q) is a
continuous linear map. This combined with the fact that C°(R") is dense in WP (R")
implies that C°(Q)) := resgn o(CZ(R")) is dense in W5 (Q)) for all s > 0.

e W%P(Q) is a closed subspace of WP (R"). Closed subspaces of reflexive spaces are
reflexive, hence W (Q) is a reflexive space.

Theorem 64. Let ) be a nonempty open set in R" and 1 < p < oo.
(1)  Foralls >0, WP (Q) is reflexive.
(2) Foralls >0, Wg’p(Q) is reflexive.
(3) Foralls <0, WP (Q) is reflexive.

Proof.
(1) The proof for s € Ny can be found in [1]. Lets = k + 0 where k € Nyand 0 < 6 < 1.
Let

r=card{veNj:|v]| =k}.
Define P W#(02) — W#(0Q) x [L/(Q x O)] " by

P(u) = (u, ( |0V (x) — avu(]/)‘ > | I_k) .

e —yl?"
The space WEP(Q) x [LP(Q x Q)]*" equipped with the norm

I(f,o1,...,00)| == Hf”wk/n(n) +lv1llr@axa) +- -+ lorlleaxa)

is a product of reflexive spaces and so it is reflexive (see Theorem 9). Clearly, the
operator P is an isometry from W*?(Q) to W5? (Q) x [LP(Q x Q)]*". Since W5 (Q2)
is a Banach space, P(W*P?(Q)) is a closed subspace of the reflexive space WP (Q) x
[LP(Q x Q)] and thus it is reflexive. Hence W*?(Q)) itself is reflexive.

() WS’V(Q) is the closure of C°(Q)) in W37 (Q)). Closed subspaces of reflexive spaces are
reflexive. Therefore, W," (Q) is reflexive.

(3) A normed space X is reflexive if and only if X* is reflexive (see Theorem 9). Since for
5 < 0 we have WP (Q) = [W, i (Q))]*, the reflexivity of W57 (Q)) follows from the
reflexivity of W, ** / (Q).

O

Theorem 65. Foralls < 0and1 < p < oo, C(Q) is dense in WP (Q)).

Proof. The proof of the density of L? in W™ in p. 65 of [1] for integer order Sobolev

spaces, which is based on the reflexivity of W, iy’ (Q)), works in the exact same way for
establishing the density of C°(Q)) in W57(Q)). O

Theorem 66 (Meyers-Serrin). Forall s > 0and p € (1,00), C®(Q) N W>P(Q) is dense in
WsP(Q).

Next we consider extension by zero and its properties.
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Lemma 6 ([4], p. 201). Let Q be a nonempty open set in R" and u € Wy (Q) where m € Ny
and 1 < p < co. Then

(1) VYl|a| <m, 0% = (8‘"/\;) as elements of D' (R™),
2) RS Wm’p(Rn) with HﬁHW”W’(R”) = HuHWm,p(Q).

Here, ii := ext?)’R,,u and (3%u) := ext%/R,,(a"‘u).

Lemma 7 ([6], p. 546). Let Q) be a nonempty open set in R", K € K(Q), u € WiF (Q) where
s€(0,1)and1 < p < oco. Then ext?)/R,, u € WP (R") and

llextdy g llwse ey = lttllwse ) -

where the implicit constant depends on n, p,s, K and Q).

Theorem 67 (Extension by Zero). Lets > 0and p € (1,00). Let Q) be a nonempty open set in
R" and let K € K(Q). Suppose u € Wi¥ (Q). Then

(1) ext), puu € WHP(R"). Indeed, |lextl puutllwsp@ny = [[1t]lwsr(qr) where the implicit con-

stant may depend on s, p, n, K, Q but it is independent of u € Wy (Q).
(2)  Moreover,

llexty gt lwsp ) > llllwsr(q) -
In short, H@Xt?)’Ry,uuws,p(Rn) =~ [[ulwsr (-

Proof. Letii = ext?mn u. If s € Ny, then both items follow from Lemma 6. So, let s = m + 6
where m € Ny and 6 € (0,1). We have

lllwsrn) = l@llwmpgn + Y 18V wes @)
[v|=m
Lemma 6 S
= ullwme ) + o 10Vl wep gy
v|=m
Lemma 7
2 ullwmriey + X 10 ulyosicr
[v|=m

= ullwsr () -

The fact that ||| ysp@ny > ||tt]lwsr(q) is a direct consequence of the decomposition stated
initem 1 of Remark 34. O

Corollary 5. Lets > 0and p € (1,00). Let Q) and Q) be nonempty open sets in R" with QO C Q)
and let K € K (). Suppose u € WP (QV). Then

(1) extly qu e WP (Q),
@) lexty qullwsr ) = llullwsr ()

Proof.
u € WP (Q) = extdy guu € WP (R") = ext{y patt|q € WP (Q).

As we know, W*#(€Q)) < WSP(Q). Furthermore, it is easy to see that ext), p,ulq =
ext), u. Therefore, ext)), ju € W¥P(Q). Moreover,

llextey aullwsr(q) = llextdygn o extdy qullwsr@n) = llextey gottllwsrmn = l[llwsr () -

|
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Extension by zero for Sobolev spaces with negative exponents will be discussed in
Theorem 71.

Theorem 68 (Embedding Theorem IV). Let (O C R" be an arbitrary nonempty open set.

(1) Suppose1 < p <q <coand0 <t < ssatisfys— >t — . Then WsP(Q)) < WH(Q)).

(2)  Supposel < p < g <ocoand0 <t <ssatisfys — % >t — g Then Wi (Q) — Wltgq(())
forall K € K(Q).

(3)  Forallky,ky € Nowithk; < kpand 1 < p < co, WP (Q) < Wk (Q).

(4) If0<t<s<land1l<p < oo, then WP (Q) — WHP(Q).

(5) If0<t<s<ocoaresuchthat |s] = [t| and 1 < p < oo, then W (Q) — W'P(Q)).

(6) IfO<t<s<ootecNyandl<p < co,then WP (Q) — WHP(Q).

Proof.

(1) This item can be found in ([39], Section 4.6.1).
(2) Forallu € Wi¥(Q) we have

l[llweaar) = llexteypattllweagny < lext gottllwsr ey = [[ullwse() -

(3) This item is a direct consequence of the definition of integer order Sobolev spaces.
(4) Proof can be found in [6], p. 524.
(5) This is a direct consequence of the previous two items.
(6) This is true because W57 (Q) < WlslP(Q) — WhP(Q).
O

Remark 42. For an arbitrary open set Q in R" and 0 < t < 1, the embedding WP (Q) —
wtp (Q)) does NOT necessarily hold (see, e.g., [6], Section 9). Of course, as it was discussed,
under the extra assumption that Q) is Lipschitz, the latter embedding holds true. So, if |s] # [t]
and t ¢ Ny, then in order to ensure that WP (Q) — WP (Q)) we need to assume some sort of
reqularity for the domain Q) (for instance it is enough to assume Q) is Lipschitz).

Theorem 69 (Multiplication by smooth functions). Let Q) be any nonempty open set in R". Let
p e (1)
(1) If0<s<1land ¢ € BCOL(Q) (that is, ¢ is bounded and ¢ is Lipschitz), then

ny : W (Q)) — WP (Q)), U u

is a well-defined bounded linear map.
(2) Ifk € Ngand ¢ € BCK(Q), then

e : WEP(Q) — WrP(Q)), u— Qu

is a well-defined bounded linear map.
(3) If-1<s<0and e BC>(Q)orseZ and ¢ € BC®(Q), then

my : WP (Q) — W3 (Q)), U Qu

is a well-defined bounded linear map (@u is interpreted as the product of a smooth function
and a distribution).

Proof.

(1)  Proof can be found in [6], p. 547.

(2)  Proof can be found in [29], p. 995.

(3) The duality argument in Step 4 of the proof of Theorem 61 works for this item too.
O
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Remark 43. Suppose ¢ € BC™'(Q). Note that the above theorem says nothing about the
boundedness of the mapping my : WP (Q)) — W*P(Q)) in the case where s is noninteger such
that |s| > 1. Of course, if we assume Q) is Lipschitz, then the continuity of m, follows from
Theorem 61. It is important to note that the proof of that theorem for the case s > 1 (noninteger)
uses the embedding W02 (Q0) — WKT0P(Q)) with k' < k which as we discussed does not hold
for an arbitrary open set Q). The proof for the case s < —1 (noninteger) uses duality to transfer the
problem to s > 1 and thus again we need the extra assumption of regularity of the boundary of Q).

Theorem 70. Let Q) be a nonempty open set in R", K € (Q)), p € (1,00),and —1 <s < 0or
s€Z ors € [0,00). If p € C®(Q), then the linear map

W (Q) = WP(Q),  urs gu
is well-defined and bounded.

Proof. There exists ¢ € CZ°(Q)) such that y = 1 on K. Clearly p¢ € C®(Q)) and if u €
W;’p (Q), pou = @u on Q. Thus without loss of generality we may assume that ¢ € C*(Q).
Since C®(Q) C BC®(Q) and CZ(Q) C BC™!(Q), the cases where —1 < s <0 ors € Z~
follow from Theorem 69. For s > 0, the proof of Theorem 61 works for this theorem as
well. The only place in that proof that the regularity of the boundary of () was used was
for the validity of the embedding W5?(Q) — W?HIFlP(Q)). However, as we know (see
Theorem 68), this embedding holds for Sobolev spaces with support in a fixed compact set
inside Q2 for a general open set Q, that is, for Wy" (Q) — Wliﬂﬁ o (Q)) to be true we do not
need to assume () is Lipschitz. [J

Remark 44. Note that our proofs for s < 0 are based on duality. As a result, it seems that for the
case where s is a noninteger less than —1 we cannot have a multiplication by smooth functions
result for Wp¥ (Q) similar to the one stated in the above theorem (note that there is no fixed compact
set K such that every v € C°(Q) has compact support in K. Thus, the technique used in Step 4 of
the proof of Theorem 61 does not work in this case).

Theorem 71. Lets < Qand p € (1,00). Let Q) and Q' be nonempty open sets in R" with O/ C Q)

and let K € K(Q). Suppose u € WP (QY). Then

(1) Ifextdy, qu € WWP(Q), then |[ullysp(cyy = llextd ullwsr(qy (the implicit constant may
depend on K).

(2) Ifse(—oo,—1NZor —1 <s <0, then ext%,/nu € WP (Q) and “ext%/,nu||ws,p(n) o~
lullwse ). This result holds for all s < 0 if we further assume that Q) is Lipschitz or
Q=R"

Proof. To be completely rigorous, let ip 1y : D(Q') — W, ** /(Q/ ) be the identity map and
let ify y : WP(QY') — D'(€Y') be its dual with which we identify W*?(Q)') with a subspace
of D'((Y). Previously we defined ext?),,Q for distributions with compact support in Q’. For
any u € WP (Q') we let

ext?),/nu = ext?),,Q o il*D’Wu ,
which by definition will be an element of D’(QQ). Note that (see Remark 45 and the
discussion right after Remark 10)

| (ext?),/nu, ) pr()xD()]

HeXt((J)’,QuHWS:P(O) = sup
0£ypeD(Q) Hll"HW—s,p’(Q)
_ [{t, ) pr(ry < D)
lullwspy = sup —————m
0#£peD((Y) Hq)was,p’(Q/)
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So, in order to prove the first item we just need to show that

(1, @) pr(aryxpiary | [(extdy qit, ) by«

V0#¢eD(Q) JypeDQ)st =
”(PHW*S,PI(Q/) HIIJHW*S,P/(Q)

Let ¢ € D(CY). Define ¢ = ext),, ¢. Clearly, ) € D(Q) and ¢ = ¢ on (. Therefore,
(extdy ot ) pr(ayxp(ey) = (1 ¥lar) Dy xpey) = (1 @) preryxD(cy) -
Moreover, since —s > 0
”lP”wfs,p’(Q) = HeXtO ’,Q(P”Wﬂ,p’((n = H(P”Wﬂ,ﬁ’(gf) .

This completes the proof of the first item. For the second item we just need to prove that
under the given hypotheses

V04 peD(Q) JgeD@) st [(extdy o1, ) oy x| {1 @) priary x|

||l/]||w,5'p!<0) - H(Pwas,p’(Qr)

To this end suppose 3 € D(Q). Choose a compact set K such that K C K c K C Q. Fix
X € D(Q) such that x = 1 on K and supp x C €'. Clearly, = x4 on a neighborhood of K
and if we set ¢ = x|y, then ¢ € D(QY'). Therefore,

<eXt?)/,Qurll’>D/(n)xD(Q) = (eXt?)/,QurX¢>D’(O)><D(Q) = (1, x¢lov) pr(v)xD(y) = (U @)D/ ()< D(CY) -

Furthermore, since —s > 0, we have

”(P”W—s,p’(ﬂ/) < ”ex@]’,ﬂgunwfs,p’(g) = HXI/JHW*S,F/(Q) = ”lp”wfs,p’(g) .

The latter inequality is the place where we used the assumption thats € (—oo, —1] N Z or
—1 < s < 0or Qis Lipschitz or ) = R". This completes the proof of the second item. [J

Corollary 6. Let p € (1,00). Let Q) and Q) be nonempty open sets in R" with O C Q and let
K € K(QY). Suppose u € Wi¥ (Q). It follows from Corollary 5 and Theorem 71 that

e Ifs € Risnot a noninteger less than —1, then

||”||wsrﬂ(o) = H”wa(o/)r
e IfQis Lipschitz or Q) = R", then for all s € R

||”||wsrﬁ(o) = HMHWW(Q’)-

Note that on the right hand sides of the above expressions, u stands for resqy oyu. Clearly, ext‘?),l0 o
resq oy = u.

Theorem 72. Let Q) be any nonempty open set in R", K C Q) be compact, s > 0, and p € (1, 00).
Then the following norms on W;’p (QY) are equivalent:

l[ullwsr () = ||”||wk,ﬁ(n) + Z |avu‘w9,v(0)/
lv|=k
[ulwsp () = lullwirq) + Y. 10" ulwap () -
1<|v|<k

wheres = k+6, k € Ny, 6 € (0,1). Moreover, if we further assume Q) is Lipschitz, then the above
norms are equivalent on W (Q)).
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Proof. Clearly, for allu € W¥P(Q), [[ullwsr(q) < [ulwsr(q)- So, it is enough to show that
there is a constant C > 0 such that for all u € Wi"(Q) (or u € WP (Q) if Q) is Lipschitz)

[ulwsr(q) < Cllullwsr ()

Foreach1 <i < k we have

2 ‘av”|w9m(n) = H”HWHM(Q) - H””wi,v(oy

lv|=i
Thus

[wsr ) = llullwsra) + Yo Y 10 ulyerq
(Q)

1<i<k [v]=i

= Ity + T (Ilhweencey = Iilhonce) -

1<i<k

Therefore, it is enough to show that there exists a constant C > 1 such that

Y Mullyiveriqy < (€= Dlullwsry + 3 Nullwinq)

1<i<k 1<i<k

By Theorem 68, for each 1 < i < k, W/(Q) — W}:w (Q)) (also, we have W57 (Q)) —
Wit0P (Q)) with the extra assumption that Q) is Lipschitz); so there is a constant C; such
that [[ul|yyisep o) < Cillullwsr(q). Clearly with C = 1+ Z 1 C; the desired inequality
holds. [

Remark 45. Let s > 0and 1 < p < co. Here we summarize the connection between Sobolev
spaces and space of distributions.

(1) Question 1: What does it mean to say u € D'(Q)) belongs to W5 (Q0)?
Answer:
u€D'(Q)isin W*s’p,(ﬂ) —u:(D(Q), ||~Hs,p) — R is continuous
<= u: D(Q) — R has a unique continuous extension to il : Wy¥ (Q2) — R

(2)  Question 2: How should we interpret W—5F (Q) C D'(Q))?
Answer: i : D(Q) — Wy (Q) is continuous with dense i image. Therefore, i* : W—5F'(Q)) —
D'(Q) is an injective continuous linear map. If u € W57 (Q), then i*u € D'(Q) and

{1, @) () D) = (AP s ()i () = (0 Ohwsr' (@)ewi? (@) -
So, i*u = u|pq) and if we identify with i*u with u we can write

(1, @) S lullyg oy = sup M
+$/D'(Q)xD(Q) FCIw=sv' () xwy* (Q)” w-st' (Q) 0peCE(Q) [l |l ws (Q
(3)  Question 3: How should we interpret WS (Q)) C D'(Q)?
Answer: It is a direct consequence of the definition of WP (Q) that WP (Q) — LP(Q)
for any open set Q. So, any f € WP (Q) can be identified with the regular distribution
uy € D'(Q) where

(ur, @ /f(p Ve eD(Q).

(4)  Question 4: What does it mean to say u € D' (Q) belongs to WP (Q))?
Answer: It means there exists f € WP (Q) such that u = uy.
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Remark 46. Let Q) be a nonempty open set in R" and f,g € C&(Q). Suppose s € R and
p € (100
e Ifs>0,then

ooy = sup  (LPo@oa@l o Lo fedx]
W) o pecmi) N9llwer(a) 0pecmicy 19lwer oy

So, for all ¢ € C&(Q)

| [ Fodxl < 1y o I@llnsricn -

In particular, for g, we have

| [ fgded < Iflly-oor oy 8w oy

e Ifs < 0, we may replace the roles of f and g, and also (s, p) and (—s,p') in the above
argument to get the exact same inequality: | [ fgdx| < Hf”W,s'p/(Q)ngws,p(g).

7.5. Invariance Under Change of Coordinates, Composition

Theorem 73 ([12], Section 4.3). Let s € Rand 1 < p < co. Suppose that T : R" — R" isa
C®-diffeomorphism (i.e., T is bijective and T and T~ are C®) with the property that the partial
derivatives (of any order) of the components of T are bounded on R" (the bound may depend on the
order of the partial derivative) and infgn |det T'| > 0. Then the linear map

WSP(R") — W*P(R"), ur—uoT
is well-defined and is bounded.

Now, let U and V be two nonempty open sets in R". Suppose T : U — V is a bijective
map. Similar to [1] we say T is k-smooth if all the components of T belong to BCK(UI) and
all the components of T~! belong to BCk(V/).

Remark 47. It is useful to note that if T is 1-smooth, then

iﬂf|det T >0 and ir‘}f|det(T’])’| >0.

Indeed, since the first order partial derivatives of the components of T and T~ are bounded, there
exist postive numbers M and M such that forall x € Uand y € V

|det T'(x)| < M, |det (T™1Y (y)| < M.

Since |det T'(x)| x |det (T~1)'(T(x))| = 1, we can conclude that forall x € Uand y € V

[~

_ 1
e X =, e Yy v
|det T' (x)| > |det (T~1)' (y)| > i

£

which proves the claim.

Remark 48. Furthermore, it is interesting to note that, as a consequence of the inverse function
theorem, if T : U — V is a bijective map that is CK (k € N) with the property that det T'(x) # 0
for all x € U, then the inverse of T will be CX as well, that is, T will automatically be a C*-
diffeomorphism (see, e.g., Appendix C in [19] for more details).
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Remark 49. Note that since we do not assume that U and V are necessarily convex or Lipschitz,
the continuity and boundedness of the partial derivatives of the components of T do not imply that
the components of T are Lipschitz. (see the “Warning” immediately after Theorem 6).

Theorem 74 (([29], p. 1003), ([1], pp. 77-78)). Let p € (1,00) and k € N. Suppose that U and
V are nonempty open subsets of R".

(1) IfT:U — V isal-smooth map, then the map
LP(V) — LP(U), u—uoT

is well-defined and is bounded.
(2) IfT:U — V isak-smooth map, then the map

WhP(V) = WEP(U),  ursuoT
is well-defined and is bounded.

Theorem 75. Let p € (1,00) and k € Z~ (k is a negative integer). Suppose that U and V are
nonempty open subsets of R", and T : U — V is co-smooth. Then the map

WRP(V) — WEP(U),  ursuoT
is well-defined and is bounded.
Proof. By definition we have (T*u denotes the pullback of u by T)

KT u, ¢) pr(uy < D(W)|

(Tl . = sup
WP ecrwy Tellwrr )
= sup [(,|det(T~1)' |9 o T ") pr(v)xp(v)|
pece(U) [E -

l[llwer ) 1At (T @ 0 Ty

 gecrU) Ielly—er )

|det(T~1)’|eBC™ ||”||wk«P(V) @oT1 HW”"V’(V)

= sup
geCe () [

Since —k is a positive integer, by Theorem 74 we have ||¢ o T~1 Hw,k,,,/(v) = ||(pr,k,pr(u).
Consequently,
||T*”||wkzﬁ(u) = Hunk/v(m .
O

Theorem 76. Let p € (1,00) and 0 < s < 1. Suppose that U and V are nonempty open subsets of
R", T :U — V is 1-smooth, and T is Lipschitz continuous on U. Then the map

WP (V) — WP (U), ursuoT
is well-defined and is bounded.

Proof. Note that

Theorem 74
lwo Tllwsry = lluo Tl +luo Tlwsrwy = Nullre) + 1o Tlwsey -
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So, it is enough to show that 120 T|ysp(r) = [ulwsr(v)-

(o T)(x) — (wo T)(y)|? 1
[uo Tlwsry = (//UXU =y y dxdy)?
z=T(x)
w= T(.’/ ) u(w)‘p 1 1 .
ya. |T )T ()7 et ()] et )] )
\“ — u(w)l|? 1
/-K/XV |T 1 1(w)|n+spd2dw)p

T is Lipschitz continuous on U; so, there exists a constant C > 0 such that
IT(x) = T(y)| < Clx —y| = [z —w| < C[T~(2) = T~ (w)] .

Therefore,

(w)[P i
e Tlwsru //\/xv |z—w\"+5p a e zdw) " = Jutlwer(y) -
O

Theorem 77. Let p € (1,00) and —1 < s < 0. Suppose that U and V are nonempty open subsets
of R", T : U — V is co-smooth, T~V is Lipschitz continuous on V, and |det(T~1)"| is in BCO1(V).
Then the map

WP (V) — WP (U), u—uoT

is well-defined and is bounded.

Proof. The proof of Theorem 75, with obvious modifications, shows the validity of the
above claim. [

Remark 50. In the previous theorem, by assumption, the first order partial derivatives of the
components of T~ are continuous and bounded. Furthermore, it is true that absolute value of a
Lipschitz continuous function and the sum and product of bounded Lipschitz continuous functions
will be Lipschitz continuous. Consequently, in order to ensure that |det(T~1)'| is in BCOV(V), it
is enough to make sure that the first order partial derivatives of the components of T~ are bounded
and Lipschitz continuous.

Theorem 78. Lets = k+ 0 wherek € N, 0 € (0,1), and let p € (1, c0). Suppose that U and V
are two nonempty open sets in R". Let T : U — V be a Lipschitz continuous k-smooth map on U
such that the partial derivatives up to and including order k of all the components of T are Lipschitz
continuous on U as well. Then

(1) Foreach K € K(V) the linear map

T W (V) — w;'f’l(K)(u), s uoT
is well-defined and is bounded.
(2)  If we further assume that V is Lipschitz (and so U is Lipschitz), the linear map

T WSP(V) — WSP(U), uw>uoT

is well-defined and is bounded.

Note: When U is a Lipschitz domain, the fact that T is k-smooth automatically implies that
all the partial derivatives of the components of T up to and including order k — 1 are Lipschitz
continuous (see Theorem 60). So in this case, the only extra assumption, in addition to T
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being k-smooth, is that the partial derivatives of the components of T of order k are Lipschitz
continuous on U.

Proof. Recall that C®(V) N W?%P(V) is dense in W*? (V). Our proof consists of two steps:
in the first step we addditionally assume that u € C®(V). Then in the second step we
prove the validity of the claim for u € W7 (V) (or u € WP (V) with the assumption that
V is Lipschitz).

e  Step 1: We have

l[teo Tllwspry = llue T”wkm(u) + ) [9(uo T)‘wf’,v(u)
|v|=k
Theorem 74 v
H”||Wk4’(v) + Z 0" (uo T)‘Wsrv(u)-
|vI=Fk

Since u and T are both C¥, it can be proved by induction that (see, e.g., [1])

FuoT)(x)= Y, My(x)[(@°u)oT)(x),
B<v1<|p|

where M, 4(x) are polynomials of degree at most | 8] in derivatives of order at most |v|
of the components of T. In particular, M, 5 € BCO1(U) . Therefore,

19 (10 Dlory < 1970 Doy = | X Mup®) @) o T lgar
p=v,1<|B]
Theorem 69 2
= Z H(E)Pu) o T”w‘hﬁ(u) = Z H(aﬁ”) o T”LP(U) + |(aﬁ“) © T‘w‘w(u)
p=v,1<|B] p<v,1<|B]

Theorems 74 and 76
= Z ”aﬂ”HLP(V) + ‘aﬁulw"/p(v) < H””Wk.p(v) + Z ‘aﬁulww(v) .
p<v,1<|p| pvi<|p|

(The fact that 9Pu belongs to W7 (V) < LP(V) is a consequence of the definition of
the Slobodeckij norm combined with our embedding theorems for Sobolev spaces of
functions with fixed compact support in an arbitrary domain or embedding theorems
for Sobolev spaces of functions on a Lipschitz domain). Hence

o Tllwspy = Nullwrery + 2o ) \Bﬁu\wa,p(v)
1<|v|<k p<v,1<|f|

’ Theorem 72
= Hunkrﬂ(v) + % ; ‘aau‘wf’rv(v) ~ 7 ullwsr vy -
1<|a| <

Note that the last equivalence is due to the assumption that u € W;’P(V) (oru e
WeP(V) with V being Lipschitz).

*  Step 2: Now suppose u is an arbitrary element of Wi¥ (V) (or WS (V) with V being
Lipschitz). There exists a sequence {u, },,>1 in C® (V) such that u,, — u in WP(V).
In particular, {u,,} is Cauchy. By the previous steps we have

T wm — T urllwsruy =2 Mt — willwsr vy — 0 (asm,] — o).

Therefore, {T*u,,} is a Cauchy sequence in the Banach space W%?(U) and subse-
quently there exists v € W*F (U) such that T*u,, — v as m — oo. It remains to show
that v = T*u as elements of W3 (U). As a direct consequence of the definition of
WSP-norm (s > 0) we have
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T wm — ol py < NT um —0llwsry = 0,
llotm — ullLp vy < Nlwm — ullwsr vy = 0.

Note that by Theorem 74, u,, — u in LP (V) implies that T*u,, — T*u in LP(U). Thus
T*u = v as elements of LP(U) and hence as elements of W* (U).
|

Theorem 79. Let p € (1,00) and s < —1 be a noninteger number. Suppose that U and V are
two nonempty Lipschitz open sets in R" and T : U — V is a co-smooth map. Then the linear map

T*: WP (V) = W (U), uwsuoT
is well-defined and is bounded.
Note: Since V is a Lipschitz domain, the fact that T is co-smooth automatically implies that T~
and all the partial derivatives of the components of T~1 are Lipschitz continuous (see Theorem 60).

Proof. The proof is completely analogous to the proof of Theorem 75. We have

T*u, ¢) prury< Dyl

HT*MHWS/I’(L[) = sup
peCe(U) H QUHWfs,p/ (u)
_ |(u, |det(T~) |9 0 T~ pr ) ()|
= sup
pece(u) lollyy-sr 1)

HHHWW(V) ” |det(T71)/|§0 oT™! ”Wfs,p’(‘/)
H(IJ”W*W/(U)

EBC®(V) ||”||wsrﬂ(v) goT? Hw—sm’(v)

|det(T—1)

IA=

I (P”w—s,p’(u)

Since —s > 0, it follows from the hypotheses of this theorem and the result of Theorem 78
that 9o T .y, = 9]y Consequently,

T ullwsewry = lullwse vy -
O

Lemma 8. Let U and V be two nonempty open sets in R". Suppose T : U — V (T =
(T',...,T") is a C¥*-diffeomorphism for some k € No and let B C U be a nonempty bounded
open set such that B C B C U. Then

(1) T:B— T(B)isa (k+1)-smooth map.

(2) T:B— T(B)and T~': T(B) — B are Lipschitz (the Lipschitz constant may depend on B).
(3) Foralll<i<mnand|x| <k d*T' € BC*'(B)and 3*(T~1)" € BCK'(T(B)).

Proof. Item 1is true because B is compact and so T(B) is compact and continuous functions
are bounded on compact sets. Items 2 and 3 are direct consequences of Theorem 7. [

Theorem 80. Let s € Rand p € (1,00). Suppose that U and V are two nonempty open sets
inR" and T : U — V is a C®-diffeomorphism (if s > 0 it is enough to assume T is a C151+1-
diffeomorphism). Let B C U be a nonempty bounded open set such that B C B C U. Let
u € WSP(V) be such that suppu C T(B) (note that if suppu is compact in V, then such a B exists).
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(1)  Ifsis NOT a noninteger less than —1, then

”u © T”WW(LI) = HuHW“"’(V) .

(The implicit constant may depend on B but otherwise is independent of u.)
(2) IfUand V are Lipschitz or R", then the above result holds for all s € R.

Proof. If s is an integer or —1 < s < 1, or if U and V are Lipschitz or R” and s € R then as
a consequence of the above lemma and the preceding theorems we may write

Corollary 6 Corollary 6
luoTllwsrary =" NuoTlwsry = Nullwsrermy =" lullwseory-

For general U and V, if s = k 4+ 6, we let Bbean open set such that Bisa compact subset of
U and B C B. We can apply the previous lemma to B and write

Corollary 6 Theorem 78 Corollary 6
lwoTlhweray =" luoTlysray = lullwer oy = lullwer) -

|

Theorem 81 ([42]). Lets € [1,00), 1 < p < oo, and let

e s, ifsisan integer
B Is| +1, otherwise

IfF € C™(R) is such that F(0) = Oand F,F/,...,F") € L*(R) (in particular, note that every
F € CZ(R) with F(0) = 0 satisfies these conditions), then the map u — F(u) is well-defined and
continuous from WP (R") N WP (R") into WP (R™).

Corollary 7. Let s, p, and F be as in the previous theorem. Moreover, suppose sp > n. Then the
map u — F(u) is well-defined and continuous from WP (R") into WP (R"). The reason is that
when sp > n, we have WP (R") «— WLP(R™).

7.6. Differentiation

Theorem 82 (([4], pp. 598-605), ([5], Section 1.4)). Lets € R, 1 < p < oo, and x € Nj.

Suppose () is a nonempty open set in R". Then

(1) The linear operator 3* : WP (R™) — W5~1€bP(R") is well-defined and bounded.

(2)  Fors < 0, the linear operator 3 : WP (Q)) — W3~ 18P (Q)) is well-defined and bounded.

(3)  Fors > 0and || <s, the linear operator 3* : WP (Q)) — W5~1bP (Q) is well-defined and
bounded.

(4)  If ) is bounded with Lipschitz continuous boundary, and ifs > 0, s — % # integer (i.e., the
fractional part of s is not equal to %), then the linear operator 3% : WP (Q2) — W3~ lelr(Q)
for |a| > s is well-defined and bounded.

Remark 51. Comparing the first and last items of the previous theorem, we see that not all the
properties of Sobolev-Slobodeckij spaces on R™ are fully inherited by Sobolev-Slobodeckij spaces on
bounded domains even when the domain has Lipschitz continuous boundary (note that the above
difference is related to the more fundamental fact that for s > 0, even when Q) is Lipschitz, C®(Q))
is not necessarily dense in WP (Q)) and subsequently W—S#'(Q)) is defined as the dual of Wy (Q)
rather than the dual of WP (Q)) itself). For this reason, when working with Sobolev spaces on
manifolds, we prefer super nice atlases (i.e., we prefer to work with coordinate charts whose image
under the coordinate map is the entire R"). The next best choice would be GGL or GL atlases.
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7.7. Spaces of Locally Sobolev Functions

Material of this section are taken from our manuscript on the properties of locally
Sobolev-Slobodeckij functions [17].

Definition 28. Lets € R, 1 < p < co. Let Q) be a nonempty open set in R". We define

WP (Q):={ueD'(Q):Yp c C*(Q) ¢uc WPQ)}.

loc

WP (Q) is equipped with the natural topology induced by the separating family of seminorms

loc
{llp}pec=()  where

Vue WLQ) 9 CRQ)  fulp = lgullwera).
Theorem 83. Lets € R, 1 < p < oo, and & € Njj. Suppose Q) is a nonempty bounded open set in
R™ with Lipschitz continuous boundary. Then

(1) The linear operator 3% : W, (R") — W, U;\WW (R™) is well-defined and continuous.

loc

(2)  Fors <0, the linear operator 0% : Wfof(ﬂ) — W[So:‘“"p(ﬂ) is well-defined and continuous.

(3)  Fors > 0and |a| < s, the linear operator 0* : Wlsof(()) — WIS’;M"P(Q) is well-defined and
continuous.
(4) Ifs>0,s— % # integer (i.e., the fractional part of s is not equal to %), then the linear

operator 0% : Wfa’f(Q) — Wfazla"p(())for |a| > s is well-defined and continuous.

The following statements play a key role in our study of Sobolev spaces on Riemannian
manifolds with rough metrics.

Theorem 84. Let Q) be a nonempty bounded open set in R™ with Lipschitz continuous boundary

or Q) = R"™. Suppose u € Wlsc;f(()) where sp > n. Then u has a continuous version.

Lemma 9. Let QO = R" or Q) be a bounded open set in R" with Lipschitz continuous boundary.
Suppose s1,52,5 € Rand 1 < py, po, p < co are such that

WSIPL(Q) x W2P2(Q) — WP (Q).

Then

(@ W™ (Q) x Wi (9) = Wi(Q),

(2)  Forall K € K(Q), WX (Q) x WP (Q)) < WSP(Q). In particular, if f € W, (Q),
then the mapping u — fu is a well-defined continuous linear map from Wlsf’pz(()) to
WSP(Q).

Remark 52. It can be shown that the locally Sobolev spaces on ) are metrizable, so the continuity
of the mapping )
WIPHQ) x W22 (Q) — WP (Q),  (u,0) — uo

loc loc loc
in the above lemma can be interpreted as follows: if u; — u in W, 7' (Q) and v; — v in W2 (Q),

then u;v; — uv in Wféf(Q)‘ Furthermore, since W (Q) is considered as a normed subspace of
We2P2(Q)), we have a similar interpretation of the continuity of the mapping in item 2.

Lemma 10. Let Q) = R" or let Q) be a nonempty bounded open set in R" with Lipschitz continuous
boundary. Let s € Rand p € (1,00) be such that sp > n. Let B : O — GL(k,R). Suppose for all
x € Qand1<i,j<k Bij(x) € W(Q). Then

loc

(1) detB e W, (Q).

(2)  Moreover, if for each m € N By, : @ — GL(k,R) and forall 1 <i,j <k (Bm)i]- — Byj in
WS’V(Q), then det B,, — det B in Ws/p(Q).

loc loc
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Theorem 85. Let QO = R" or let Q) be a nonempty bounded open set in R" with Lipschitz
continuous boundary. Let s > 1 and p € (1, 00) be such that sp > n.

(1) Suppose that u € W,."(Q)) and that u(x) € I for all x € Q where I is some interval in R. If

F:I1—Risa smooifl;chunction, then F(u) € Wfof(O)

(2)  Suppose that uy, — u in Wlsof(()) and that forallm > 1and x € Q, u,(x), u(x) € I where
I is some open interval in R. If F : I — R is a smooth function, then F(uy) — F(u) in
WP (Q).

(3) IfF: R — Risasmooth function, then the map taking u to F(u) is continuous from ,af(Q)
to WP (Q).

loc

8. Lebesgue Spaces on Compact Manifolds

Let M" be a compact smooth manifold and E — M be a smooth vector bundle of
rank r.

Definition 29. A collection {(Uy, ¢u, P, Pu) F<a<N Of 4-tuples is called an augmented total
trivialization atlas for E — M provided that {(Us, ¢, pa) 11<a<N is a total trivialization atlas
for E — M and {4, } is a partition of unity subordinate to the open cover {U,}.

Let {(Ua, @a, Par Pa) }1<a<n be an augmented total trivialization atlas for E — M. Let
g be a continuous Riemannian metric on M and (.,.)f be a fiber metric on E (we denote the
corresponding norm by |.|g). Suppose 1 < g < oo.

(1) Definition A: The space L7(M, E) is the completion of C* (M, E) with respect to the
following norm:

N r
llwll oo ) ZIZ”Pa ($att) 0 @ HL‘l (pa(Uy))
—1i=1

Note that for this definition to make sense it is not necessary to have metric on M or
fiber metric on E.
(2) Definition B: The space L7(M, E) is the completion of C*(M, E) with respect to the

following norm:
1
|ula(a ) (/ \u\EdVg>

(3) Definition C: The metric g defines a measure on M. Define the following equivalence
relation on T'(M, E):
U~ D<= U=7ad.e.

We define

{u e T(M,E): ||u|\m ME) = = [y lultdv, < oo}

~

LY(M,E) :=

For g = oo we define

uel(ME Ul e 1= esssup|u|p < o
poio, ) o B ETOLE) il = esssuplule < eo}
Note: We may define negligible sets (sets of measure zero) on a compact manifold using
charts (see Chapter 6 in [43]); it can be shown that this definition is independent of the
charts and equivalent to the one that is obtained using the metric g. So, it is meaningful to
write u = v a.e even without using a metric.

Theorem 86. Definition A is equivalent to Definition B (i.e., the norms are equivalent).
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Proof. Our proof consists of four steps:

e Step 1: In the next section it will be proved that different total trivialization atlases and
partitions of unity result in equivalent norms (note that L1 = W04). Therefore, without
loss of generality we may assume that { (Us, ¢a, 0a) }1<a<n 1S a total trivialization atlas
that trivializes the fiber metric (.,.)g (see Theorem 37 and Corollary 2). So, on any
bundle chart (U, ¢, p) and for any section u we have

;
[u|2 097" = (u,u)g Zpouoq)
*  Step 2: In this step we show that if there is 1 < < N such that suppu C Up, then
q q ’ ) 149
|u|L'7(M,E) = /M |u|pdVy ~ Z; llogouo ?g HL‘I(W(U/;))'

We have

u)%dv, :/ ulg o @711, /det(giio @7 1) (x) dx! ... dx"
Jlutkave= [ (uleo 0!y det(gs o 95 (0

2/ u )(‘M|E0q)gl)q dxl.‘.dx” ( det(g,v,owﬁl)(x)isbnur\dedbypositiveconstants)
Pp\Hp
. 1 1 I 1
— —1y2 n
_ %(uﬁ)( Liehouces) ) dx' ... dx

3'W(uﬂ)[];U’ﬁ;ouocplgl\]”dxl...dx" (@ZZMD

:'/W(UNI;|P150u0(p/;1\qu1..,dx” ((Zal)qua?)

= l;/w(uﬁ) |Pl,5 ouo @El\q dxt. . dx" = ]; HPIIS ouo (p;lH'Zq(%(uﬁ)) .

e Step 3: In this step we will prove that for all u € C®(M, E)
|u|z"(M,E) = ; W”‘”‘ZW(M,E) :

We have

q — q
[l ey = [ IV = T

is a partition of unity subordinate to {U, })

14v, v
M T W'”' ¢ gy

~y / Yalu|ldV, (ﬁ is bounded by positive constants)
a JUx B Vg

- E/W |pott|LdV, = E/M |pate|LdVy
= ;W“u‘qLﬂ(M,E)'

e Step 4: Let u be an arbitrary element of C*(M, E). We have

Step3
Z\%um M,E) ZZHPA (part) O‘PalHLq (pa(U)) = ”u”Zfl(M,E)'

‘u‘m M,E)
|
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9. Sobolev Spaces on Compact Manifolds and Alternative Characterizations
9.1. The Definition

Let M" be a compact smooth manifold. Let 77 : E — M be a smooth vector bundle
of rank r. Let A = {(Ua, ¢a, pa, Pu) 1<a<N be an augmented total trivialization atlas for
E — M. Foreach1 < a < N, let Hy denote the map HEv,UA,% which was introduced in
Section 6.

Definition 30.

N r
WM, E;A) = {u € D'(ME) : [ullweampn) = Y. 3 I [Ha(wats)] [ wea( (pa(Uy)) < ®F-
a=11=1

Remark 53.
(1) Ifu € W (M, E; A) is a reqular distribution, it follows from Remark 32 that

N r
e llwea a,E;n) = 2 2 ) o @i Hlwea(gu () -
o

(2) 1t is clear that the collection of functions from M to R can be identified with sections of the
vector bundle E = M x R. For this reason W1(M; A) is defined as W1 (M, M x R; A).
Note that in this case, for each «, py is the identity map. So, we may consider an augmented
total trivialization atlas A as a collection of 3-tuples {(Ua, ¢u, Yu) }1<a<n- In particular, if
u € W (M; A) is a regular distribution, then

N
”””W‘W(MA Z )oPu Hw“a (9u(Uy)) -

(3)  Sometimes, when the underlying manifold M and the augmented total trivialization atlas
are clear from the context (or when they are irrelevant), we may write W*1(E) instead
of Wl(M, E; A). In particular, for tensor bundles, we may write W1 (TFM) instead of
We(M, TFM; A).

Remark 54. Here is a list of some alternative, not necessarily equivalent, characterizations of
Sobolev spaces.

(1) Suppose e > 0.

N r
WM, E; A) = {u € LYM,E) : ullweaen) = 3 3 I1(0a)" o ($ate) © @3 lwea gy (uy)) < 003
a=11=1
(2)
N

r
W (M, E;A) = {u € D'(M,E) : l[ullweaqen) = Yo Yo llexty, (g, gor [Hae ()] lwea oy < 00}

a=11=1

(3)

W (M, E;A) = {u € D'(M,E): [H,x(u|ua)]l ,Oc(qoa(u,x)), V1<a<N,VI<I<r}.

(4)  WI(M, E; A) is the completion of C® (M, E) with respect to the norm

HuHWW(M,EA Z E [I( Pa o (Patt) o ¢y Hw” (@a(Uy)) -
a=11=
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(5) o Let g be a smooth Riemannian metric (i.e., a fiber metric on TM). So, g~ ' is a fiber
metric on T* M.
e Let (.,.)g bea smooth fiber metric on E.
o Let VE be a metric connection in the vector bundle 7t : E — M.
For k € Ny, WK(M, E; g, V) is the completion of C® (M, E) with respect to the following
norm:

k . 1 k . 1
HMHW’W(M,E;g,VE) = (Z(:)'(VE)ZM“Zq)q = (l;)/M ‘ VE...VE u‘?T*M)‘S‘"X)EdVg)q .

= i times
In particular, if we denote the Levi Civita connection corresponding to the smooth Riemannian
metric g by V, then WX (M; g) is the completion of C*(M) with respect to the follow-
ing norm

k . 1 k 1
— 9Vq — q q
llhwracug) = (5 1Vulls) ¥ = (,-;)/M | Y Tull, V)T

i times

In the subsequent discussions we will study the relation between each of these alternative descriptions
of Sobolev spaces and Definition 30.

Remark 55. As it is discussed for example in [18], Sobolev-Slobodeckij spaces on R" with non-
integer smoothness degree can be defined using real interpolation. Indeed, for s € R\ Z and
0=s—1s],
’ _ , s)+1,

WP (R") = (WLsJ P(R"), W] p(Rn))O,p'
One may use any of the previously mentioned descriptions to define WX (M, E) for k € Z, and
then use real interpolation to define W*1(M, E) for e & Z. We postpone the study of this approach
to an independent manuscript with focus on the role of interpolation theory in investigation of Bessel
potential spaces and Sobolev—Slobodeckij spaces on compact manifolds.

An important question is whether our definition of Sobolev spaces (as topological
spaces) depends on the augmented total trivialization atlas A. We will answer this question
at 3 levels. Although each level can be considered as a generalization of the preceding
level, the proofs will be independent of each other. The following theorems show that at
least when e is not a noninteger less than —1, the space W%1(M, E; A) and its topology are
independent of the choice of augmented total trivialization atlas.

Remark 56. In the following theorems, by the equivalence of two norms ||.||; and ||.||» we mean
there exist constants Cy and C, such that

Glllh < Iz < Gl

where C1 and Cy may depend on

n,e, q, P, uou @ﬁr aﬁr lpm lINJ‘B .

Theorem 87 (Equivalence of norms for functions). Let e € Rand g € (1,00). Let A =
{(Us, 9us Ya) y1<asn and Y = {(Up, (f)ﬁ,lflﬁ)}lgﬁgﬂl be two augmented total trivialization at-
lases for the trivial bundle M x R — M. Furthermore, let VW be any vector subspace of W1 (M;Y)
whose elements are regular distributions (e.g., C®°(M)).

(1) If e is not a noninteger less than —1, then W is a subspace of W1 (M; A) as well, and the
norms produced by A and Y are equivalent on W.
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(2)  If e is a noninteger less than —1, further assume that the total trivialization atlases corre-
sponding to A and Y are GLC. Then W is a subspace of W7 (M; A) as well, and the norms
produced by A and Y are equivalent on VV.

Proof. Letu € l"mg(M ). Our goal is to show that the following expressions are comparable:
H(% ) o @ lwea (g () -

”(U’/S”)O‘Pﬁ HW“I (Up)) -

T™= iM1=

To this end it suffices to show that foreach1 < a < N

N
Il (ate) © @i Hlwea (g, (uy)) = Z (Ppu) o ¢ e (@p(Tp)) -

We have

1=
<

[ (att) © @ lwea(go () = B(Watt) © @ lwea (gu (u))

T
X

IA
1=

Hl/’ﬁ(l/)au) ° Py ||weq (pa(Uy))

T

12
=

| (Pptpare) o ¢;1||wefq(%(umaﬁ)) :

T
L

The last equality follows from Corollary 6 because (giputi) © @y ! has support in the
compact set ¢ (supp 9 Nsupp Pg) C @a(Us N Upg). Note that here we used the assumption
that if e is a noninteger less than —1, then ¢, (Uy) is Lipschitz or the entire R". Clearly,

N N
Z 4’[3% o Py ”W‘ (pa(UaNig)) Z l/’ﬁ% OfP,s °Ppo Py cha (pa(UnNg)) *

Since ¢ 0 @, ' @o(Ua NUg) — §p(Uy N Up) is a C*-diffeomorphism and (Pgpatt) o (])El
has compact support in the compact set ¢g(supp ¢« Nsupp ) C Gg(Us N Up), it follows
from Theorem 80 that

M=

N
||(1P/31!’u”)°4’ﬁ ©Pp O Py wa (ga (UsNT5)) ) = E (Pppart) °@g ||wer1 (§5(UNTTp)) -

B=1

Note that here we used the assumption that if e is a noninteger less than —1, then the two
total trivialization atlases are GL compatible. As a direct consequence of Corollary 5 and
Theorem 71 we have

1(pwate) © G5 lwen(yuantiy)) = 1 (Bptatt) © 5 lwea(g,c1,))
= ||(%°@El)[(¢ﬁl‘)04’ﬁ H‘weq (Tip)) -

319



Mathematics 2022, 10, 522

Now, note that ¢, o (pgl € C®(¢p(lg)) and (hpu) o (pgl has support in the compact set
@p(supp ). Therefore, by Theorem 70 (for the case where e is not a noninteger less than
—1) and Corollary 4 (for the case where e is a noninteger less than —1) we have

a0 @5 ) [(Fp0) © G5 Vllwen gy i) = 11 Bg10) © @5 llwen gyt
Hence

N
[[(ate) © @i Hlwea (g, (uy)) = Z (Ppu) o ¢ Hlyea (@p(Tp)) -
0

Theorem 88 (Equivalence of norms for regular sections). Let e € R and g € (1,00). Let

A = {(Uy, P, o, Ya) hr<a<n and Y = {(Ug, pg, fp, gﬁﬁ)}lgﬁgﬂ, be two augmented total triv-

ialization atlases for the vector bundle E — M. Furthermore, let VW be any vector subspace of

We4 (M, E; Y) whose elements are regular distributions (e.g., C*°(M, E)).

(1) Ifeis not a noninteger less than —1, then W is a subspace of W1(M, E; A) as well, and the
norms produced by A and Y are equivalent on W.

(2)  If e is a noninteger less than —1, further assume that the total trivialization atlases corre-
sponding to A and Y are GLC. Then W is a subspace of We1(M, E; A) as well, and the norms
produced by A and Y are equivalent on V.

Proof. Letu € Iyeg(M, E). Our goal is to show that the following expressions are compara-
ble:

=z
-

llok © (art) gt lwea (g (i) -

=
Il
—
I

—

g

Z ||Pﬁ (Ppu) o ¢ Hwen (§5()) -

=
I
-

To this end, it is enough to show that foreach1 <a < Nand1 <[ <r
N r
llok o (att) © @ Hw”l (pa(Uy)) Z Z, HPﬁ (ppu) o N kuz (Pp(Tp)) -
We have

N
ok © (au) o fPZIHW&fI(%(u“)) = [|o o ( Z Ppatt) © @y wa (pa(Uy))

IA
MZ‘

ok © (Pptatt) 0 @y Mlwea gu(un)

=
Il
—

R
M=

HPa (1/3/3%”) o 4’;1 wa(%(uunaﬁ)) :

=
I

The last equality follows from Corollary 6 because o}, o (Pppau) o @5 ! has support in the
compact set ¢ (supp  Nsupp ) C @a(Ux NUp). Note that here we used the assumption
that if ¢ is a noninteger less than —1, then ¢, (U, ) is either Lipschitz or equal to the entire
R". Note that
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N
Y llok o ($pwan) (P;l”W"ﬂ((p“(UD{ﬂaﬁ))
p=1

I
0=

% 0 (Pptpart) 0 (Pgl °gpo (P;1||we,4(%(uamaﬂ))

=
[u

Theorem 80

Z llok © (Fpwpant )O(P/s llwea (§5(UxNlg))

||(1Pa o ¢ loe o (Ppu) © @5 iwea g, )

M= T=

~—1 / 7 ~—1
[l (o o P )70 ody o(ppu) o Pg ] “W"rﬁ((pﬁ(u“m[]ﬁ))
P

=
l

I
0=

| (o 0 (pgl) [0 o®y0 d)/;l o ®go (hpu) o gbgl} HWW%(UWEI;;)) .

T
X

Let vg : ¢p(Ug) — E be defined by vg(x) = (pgu) o 51 Clearly 7(vp(x)) = (i)gl(x).
Therefore,

Pp(05(x)) = (7(05(x)), p(0p())) = (75" () Fp(op(x)))
Forall x € ¢g(Uy N Ug) we have
' ody o0 tbﬁ (Pp(vp(x)))
= o @y 0@y (¢ (x), pp(0p(x)))
L 7 o (5 (), Tap (85 (4))0p (0p(x)))
— (95 (1)) Pp(0p (1))
2

an r X r matrix

Let Ayg = Top 0 (/351 on §ig(U, N Ug). So, we can write

llok © (att) 0 ot wa(%(umtlﬁ))

IA

|| (o 0 ¢51) (x) [11 0 Aap(x)Pp (05 (0))] llwea g (w1

r

(a0 g5 )( ;1 2))ie0p (08 (X)) lwea g5 (i)

Il
M= TD=

T
X

IN
I le

il 10 @) () (Aap () (00l wen gy iy -

Now, note that (Ag(x));; are in C® (¢ (Uy NUpg)) and (i o (Z)El)(x)ﬁfg(vﬁ(x)) has support
inside the compact set §g(supp g Nsupp ¢, ). Therefore, by Theorem 70 (for the case where

e is not a noninteger less than —1) and Corollary 4 (for the case where ¢ is a noninteger less
than —1), we have

3 10 0 25 ")3) (Aap () 25 ) gyt % 10 1 0 @5 )P (230 gy -
t=1 =
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Therefore,

0% © ($att) © @3 I wea(gu (u))

IA
>

112 0558255 s g0

12
D= T
M- I

19 0 @) ()P (05 (X)) llwea 1)

=
I

—_
Il

—_

(Here we used Corollary 5 and Theorem 71)

N r
=Y Y 1B (0p(x)) [lyea (¢5(Up))

(Here we used Theorem 70 and Corollary 4)

=
I

—
||

—

N r
=) ldgo (dpu)o ¢/§1||we,q(¢ﬂ(aﬂ>) .
O

Theorem 89 (Equivalence of norms for distributional sections). Let e € Rand q € (1,00).

Let A = {(Us, Pa, Par Yu) h1<a<n and Y = {(Ug, PpPp, Pp) b1<p<r be two augmented total

trivialization atlases for the vector bundle E — M.

(1) If e is not a noninteger less than —1, then W*1(M, E; A) and W1 (M, E; Y ) are equivalent
normed spaces.

(2)  Ifeis a noninteger less than —1, further assume that the total trivialization atlases correspond-
ing to A and Y are GLC. Then We1(M, E; A) and W%1(M, E;Y) are equivalent normed
spaces.

Proof. Let u € D'(M, E). We want to show the following expressions are comparable:

M=
-

[ Ha ($et0) ) wes (g 1))

=
Il
-
Il

-

D=
M\

I[Ep(Pp10)] [lygen (p(Up)) -

Il
A
Il
—-

To this end it is enough to show that foreach1 <a < Nand1 <[ <r

N r
||[Ha(ll’a“)]lnwfrfl(%(um)) = 5;11:21 ”[Hﬁ Ppu)] ”WHI (p(Up)) -

We have

1 N - | Remark 31 N - 1
[Ha($au)]” = [Ha( Z ¢ﬁ¢a”)} = Z [Ha(qjﬁl/’au)] .
B=1 B=1
In what follows we will prove that

r

[Ha(Ppypart)] = Y ((Aap)u[Fp(Pppart)]’) o gpo o ", 4)
i=1

for some functions (Aupg)i, (1 < i < 1) in C®(@g(Uy N Ug)). For now let us assume the
validity of Equation (4) to prove the claim.
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1THa (a1)] lwes (g (1)) = |l Z[Hu Pptutt)]llwen (g (uy)

N
Zumww Mweagu(un))

Corollary 6
znmwwanmmwwww

(note that by Remark 31 [Hy (Pgtpaut ] has support in the compact set g, (supp ¥ N supp Pg))

>

r

= Z 1Y ((Aup)i[Fp(Pptpart)]’) © g0 @ Hwea(t,,,l(umuﬁ))
= i=1

N r
< Y Y I ((Aup)alH (@p9ait))') © §p 0 @ lwea (ga(UaN))

N r .
Y Y NI (Aup)it[Ap(Pptputo)] lwea gy (uonitiy)

Il
M=
r:q-k

(Anp)it(Pa o n )[Hﬁ(lljﬁu)} ||w~1 (§5(UaNTTp))

™
[
_
I
—

PN
M=

H (a0 @p )[Hﬁ(lﬁﬁl‘)]iwa«pﬁ(umaﬁ))

[
= T
™M= I~

H(%O% ) Hp (@) llen(p 5(U5))

=™
[
—_
I

(Here we used Corollary 5 and Theorem 71)

N r
= Y Y A @) llwea gy c15))
(Here we used Theorem 70 and Corollary 4).

So, it remains to prove Equation (4). Since supp[Ha(lﬁ/gl[Juu)}l is inside the compact set
@a (suppipa NsuppPpg) C @u(Us N Up), it is enough to consider the action of [Hy (Pgipaut)]!
on elements of CZ°(¢a(Us NUg)). Gpo gzt + gu(Ua NUg) — Gp(Uy N Up) is a C-
diffeomorphism. Therefore, the map

Cgo[ﬁbﬁ(uaﬂaﬁ)} _>C§O[(Pa(uaﬂaﬁ)}r 77’_”70‘7’;304’;1

is bijective. In particular, an arbitrary element of C[¢q (Uy N flﬁ)] has the form 7 o ¢g o ot
where 77 is an element of C2°[@g (U, N Ug)].
For all 7 € C2[¢p(U, N Upg)] we have (see Section 6.2.2)

<[Ha(1/~’ﬁ¢a”)}lr77 o@pgo 4’;1> = <‘/7ﬁlpﬁcurgi,,0¢ﬁoq,;1 ), ®)

o
where gl,r,o%ogu,;l stands for 81popsopi Ung’
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Forally € (U, N Ug) we have (x = o (y))

\ —1 _ ~ —1
PalEy ©8) ogpoprt © P W)= (0,00 P 090" (1),0,....,0),

x Ith position

P o8l 005 (@0 pa (1) = (0., 0,110 550 9. (v),0,...,0).
N— —_—

x Ith position

Therefore, for all y € @, (Uy N Uﬁ)
P 1y © 8} ogponst © Pa W) = 081y 0 90 (),
which implies that on U, N Upg
Shyoapost = O3 lex] o 10F1e¢] 0 81 ©
It follows from Lemma 4 that for alla € EY

B8 1ey] o Lo [ey] o [} |y ) (a) = T (x) (6§ |y (a) -

rXr
That is, .
lox1e¢1 ™" © 178 ey 1 (@) = [ ey] " 177 () (B8 | gy ()]
Fora = gﬁﬁ(x) we have
59|y (a) = pYpv (8P =(0,...,0,70¢3(x),0,...,0
O ley 0p ey (8),(x)) = (0,...,0,77 0 §p(x),0,...,0).
————
Ith position
So,
p B p Tﬁ“
lox e )™ o 1981y 0 &7,y = [0 ey] 177 (0) (B8 1y (81, O] = 185 1) (o @) | |)
Bu
) T
(o gp)rl’ 0
- 0 :
=wiled (| D el oD
0 (nogp)T)"
5P 5P
. dexd )
Sl og5 ") & og5 )
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It follows from (5)—(7) that for all 7 € CZ[@g(Us N Up)]
([Ha (Bppa)])', 10 G0 9 ) = (Bppars, [0} |~ 0 [0 |1 0 8T,

ﬁl/),xll Eg Ba 1 >

i=1 Ty o@g

(A pputd)], (15 © §51))

Il
M*

||
—
™

((th" o

Il
™-

Il
-

o5 ) [Hp(Ppypun)]’, )

(" o @ ) Hp (a1 0 @0 @i o (pao 95 1)

Il
™~

I
—_

1 P i -1 - -1
(T 0} VHg(Pphaur)] o Ggo oyt modgopyt).
det(gx 0 95" T o 9p ) Hp(pputt)] 0 Gpo @il o ppo g t)

Il
[\jx

Il
—_

For the last equality we used the following identity

1 _
<W(uoT),(p) = (u,poT 1y,
Hence
T 1 ,B

H, (¢gths ! . —
[Ha(ppan)] = i- 1det(%°4’/5 )(T

i 095 ) Hp(@sypart)) 0 g o9y,

and consequently letting
1 Ba 1
—_— (T
( txﬁ) det((p,xo% )( il O(P/g )
leads to (4). [

Remark 57. Note that the above theorems establish the full independence of We1(M, E; A) from A
at least when e is not a noninteger less than —1. So, it is justified to write W1 (M, E) instead of
We4(M, E; A) at least when e is not a noninteger less than —1. Additionally, see Remark 61.

9.2. The Properties
9.2.1. Multiplication Properties

Theorem 90. Let M" be a compact smooth manifold and E — M be a vector bundle with rank
r. Let A = {(Un, @u, Par Pa) F<a<n be an augmented total trivialization atlas for E. Suppose
e€R, g€ (1,0),n € C®M). Ifeis anoninteger less than —1, further assume that the total
trivialization atlas of A is GGL. Then the linear map

my : WO (M, E; A) — WOT(M,E; A), uw— nu

is well-defined and bounded.
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Proof.

N r
72l wes (a5 - ZZ | (Ha ($aryu)) waﬂ(qaa(uu))

For the case where ¢ is not a noninteger less than —1, the last inequality follows from
Theorem 70. If e is a noninteger less than —1, then by assumption ¢, (U, ) is either entire
R" or is Lipschitz, and the last inequality is due to Theorem 51 and Corollary 4. [

Theorem 91. Let M" be a compact smooth manifold and E — M be a vector bundle with rank r.
Let A be an augmented total trivialization atlas for E. Let 1,55, € Rand p1, pa, p € (1,00). If
any of s1, sp, or s is a noninteger less than —1, further assume that the total trivialization atlas of A
is GL compatible with itself.

(1) If s1, sp, and s are not nonintegers less than —1, and if WS1P1(R") x Wo2P2(R") —
WSP(R™), then

WSUPL(M; A) x W2P2(M, E; A) < WP (M, E; A) .

(2)  If 51, sy, and s are not nonintegers less than —1, and if Ws1P1(Q)) x W2P2(Q)) — WP (Q)),
for any open ball ), then

WSIPL(M; A) x W22 (M, E; A) — W (M, E; A) .

(3)  Ifanyof s1, sy, or s is a noninteger less than —1, and if Ws1P1(Q)) x W2P2(Q)) — WP (Q))
for Q = R" and for any bounded open set Q) with Lipschitz continuous boundary, then

WSUPL(M; A) x W92 (M, E; A) < WP (M, E; A) .

Proof.

(1) Let Ay = {(Ux, ¢u, P, Pa) }1<a<n be any augmented total trivialization atlas which
is super nice. Let Az = {(Uy, Pu, pa, Pu) }1<a<n Where for each 1 < & < N, ¢, =

7l ’llfz Note that ): 7 o @yl € BC®(gu(Uy)). For f € WUPL(M;A) and u €
B p=1¥

Ws2 P2(M, E; A) we have

HquWW(M,EA [l fuellwsr (ME;A) = E E (| [Ha (9 f”))]ijw (9a(Ua))
a=1j=1

L‘MZ

Z (e f) © 92 D Ha(utt)V llwer (g (u1))

N r
[(af) © oz llwsrm (g () Z Y- I He (a1 llwezra (g un)))

1 a=1j=1

Mz

= (

14

= [ fllwsrm (M;Al)H“HWSZ/”Z(M,E;Al) = Hf”WSl'pl(M;A)H HWSZ"’Z(M,E;A)'

(2)  We can use the exact same argument as item 1. Just choose A; to be “nice” instead of
“super nice”.
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(3) The exact same argument as item 1 works. Just choose Ay = A. (The equality
I fuellwsr (m, ) = [l fttllwsr (a,E;n,) holds due to the assumption that A = Aq is GL
compatible with itself.)

O

Remark 58. Suppose e is a noninteger less than —1 and q € (1,00). We will prove that if A and
A are two augmented total trivialization atlases and each of A and A is GL compatible with itself,
then We1(M, E; A) = W%1(M, E; A) (see Remark 61). Considering this and the fact that we can
choose A1 to be super nice (or nice) and GL compatible with itself (see Theorem 34 and Corollary 1),
we can remove the assumption “sq, sy, and s are not nonintegers less than —1” from part 1 and part
2 of the preceding theorem.

9.2.2. Embedding Properties

Theorem 92. Let M" be a compact smooth manifold. Let 7t : E — M be a smooth vector bundle

of rank r over M. Let A be an augmented total trivialization atlas for E. Let ej,e; € R and

q1,q2 € (1,00). If any of ey or ey is a noninteger less than —1, further assume that the total

trivialization atlas in A is GGL.

(1) If e; and ey are not nonintegers less than —1 and if WeN (R") — W2 (R"), then
Wera (M, E; A) — W92 (M, E; A).

(2)  If eq and ey are not nonintegers less than —1 and if WerT (Q)) — W242(Q)) for all open
balls O C R", then WeT (M, E; A) — W92 (M, E; A).

(3)  If any of ey or ey is a noninteger less than —1 and if W (Q)) — W22(Q) for QO =
R" and for any bounded domain Q) C R™ with Lipschitz continuous boundary, then
Wed1 (M, E; A) — W2 (M, E; A).

Proof.

(1) Let A1 = {(Ux, @arpar Pa) F1<a<n be any augmented total trivialization atlas for E
which is super nice. We have

N r
HuHWLNZ(MEA = H”HWLZ’IZ (M,E;A) 2 | [Ha (part ] Hwezqz (@a(Uy))

M=
1=

= H[Ha«(%u)}lHw'fv‘n(mua)>

Il
—
I
—

o

= ||l weran (ME;A) = ll2e ]l e (M,E;A) -

(2)  We can use the exact same argument as item 1. Just choose A; to be “nice” instead of
“super nice”.
(3) The exact same argument as item 1 works. Just choose A; = A.
O

Remark 59. If we further assume that A is GL compatible with itself, then we can remove the
assumption “eq and ep are not nonintegers less than —1” from part 1 and part 2 of the preceding
theorem. (see the explanation in Remark 58).

Theorem 93. Let M" be a compact smooth manifold. Let 7t : E — M be a smooth vector bundle
of rank r over M equipped with fiber metric {.,.)g (so it is meaningful to talk about L™ (M, E)).
Suppose s € Rand p € (1, 00) are such that sp > n. Then W (M, E) < L®(M, E). Moreover,
every element u in WP (M, E) has a continuous version (note that since s is not a noninteger less
than —1, the choice of the augmented total trivialization atlas is immaterial).
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Proof. Let {(Ua, ¢a, pa) }1<a<N be a nice total trivialization atlas for E — M that trivializes
the fiber metric. Let {{ }1<,<n be a partition of unity subordinate to {U, }. We need to
show that for every u € W% (M, E)

[l oo (amey = Ntllwsr(m) -

Note that since s > 0, WP (M, E) — LP(M, E) and we can treat u as an ordinary section of
E. We prove the above inequality in two steps:

®  Step 1: Suppose there exists 1 < < N such that suppu C Ug. We have

[1t] oo (a,E) = esssup |u|p = esssup [u|g
xeM

xelp

T
JY plﬁ ouo q)gl |2 (by assumption the triples trivialize the metric)
yegp(Up) V I=1

= esssup

T r
< esssup ) \pfﬁouO(plgH < Y esssup |p’ﬁou0(pl§1\

yegp(Up) I=1 I=1y€qpp(Up)

T
= l; ||P;5 ouo (PglnL“’(zp/}(u/}))

r
<Y lohouo g5 weniguuyy (P> 150 W (gs(Up)) < L™ (gp(Up)) .
1=1

e Step 2: Now, suppose u is an arbitrary element of W5 (M, E). We have

N N
[ulioaey = | Y Yattliomey < Y [$uttl o)

a=1 a=1

N r
=Y Y Mok o et 0 9y Mlwss (g (1)) = Nllwse(anr) -

Next we prove that every element 1 of W9 (M, E) has a continuous version. Note that for
all x € U,

Yot (x) = D (x, 05 0 Pulh, -, 0} © Pait) .
Furthermore, forall1 <] <rand1 < a < N we have

plZX o att 0 gyt € W (y(Us))

Therefore, p} o 41 0 ¢, ! has a continuous version which we denote by v}. Suppose A} is
the set of measure zero on which v} # pl o Y 0 ¢3!, Let Ay = Uj<j<, AL. Clearly, A, is
a set of measure zero. Since ¢, : Uy — @q(Uy) is a diffeomorphism, By := @7 1(A,) isa
set of measure zero in U, (In general, if M and N are smooth n-manifolds, F : M — N isa
smooth map, and A C M is a subset of measure zero, then F(A) has measure zero in N.
See p. 128 in [19]).

Clearly,

(x,v}‘ O QPuyeve, VpOQy) = (x,pi O Pall, ..., P4 0 Polt).

on U, \ Be. So,
Wy 1= <I>;1(x,v}é O Quyev., Uy OPy) = @gl(x,p}‘ O Pally ..., Pk O Pall) = Puut

on U, \ By. Note that w, : U, — E is a composition of continuous functions and so it is
continuous on U,. Let &, € C®(U,) be such that &, = 1 on suppy,. So {awa = Pau on
M\ B. Consequently, if we let w = ):21:1 CaWq, then w is a continuous function that agrees
with # = YN | o1 on M\ B where B = Uy<g<nBy. [
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9.2.3. Observations Concerning the Local Representation of Sobolev Functions

Let M" be a compact smooth manifold. Let E — M be a smooth vector bundle of rank
r over M. As it was discussed in Section 6, given a total trivialization triple (Uy, @a, pa), We
can associate with every u € D’(M, E) and every f € I'(M, E), a local representation with
respect to (U, ¢a, 0n):

wes (@, @) € [D'(@u(Ua)]", ' = [Ha(ulu,)]',
fr (F s J) € [Func(gu(Ua), R, fr=pho (flu) o s

and of course, as it was pointed out in Remark 32, the two representations agree when
u is a regular distribution. The goal of this section is to list some useful facts about the
local representations of elements of Sobolev spaces. In what follows, when there is no
possibility of confusion, we may write H, (1) instead of Hy (u|y1,), or ol o f o ¢! instead

of pg o (flu,) o ¢i"-

Theorem 94. Let M" be a compact smooth manifold and E — M be a vector bundle of rank r.
Suppose A = {(Un, Pu, Pu, Pa) YNy is an augmented total trivialization atlas for E — M. Let
u e D'(M,E),e € R, and q € (1,00). Ifforall1 < a < Nand1 < j < r, [Hy(u)) €
W (@ (Uy)), then u € WT(M, E; A).

loc

Proof.

[l wea a,E:n)

T
Z 11Ha (att) llwea g, un))

M= HMZ
i™M- T

92 9") - (He ) -

I
—

o

Now, note that ¢, 0 ¢3! : ¢ (Uy) — R is smooth with compact support (its support is in
the compact set ¢, (supp . )). Therefore, it follows from the assumption that each term on
the right hand side of the above equality is finite. [

Remark 60. Note that, as opposed to what is claimed in some references, it is NOT true in general
that if u € W%1(M, E; A), then the components of the local representations of u will be in the
corresponding Euclidean Sobolev space; that is, u € W1 (M, E; ) does not imply that for all
1<a<Nandl<j<r, [Hy(u)l € W (u(Uy)). Consider the following example:
M=S'e=0,q=1,and f : M — R defined by f = 1. Clearly f € WO(M) = L1(S!). Now,
consider the atlas A = {(Uy, ¢1), (Up, ¢2) } where

=S\ {0} ey = =,

R <

U, = s*\ {(0,-1)}, ¢2(x,y) = Tty (stereographic projection) .

Clearly, f o (Pfl =fo ‘P;l = Land ¢1(Uh) = ¢2(Uz) = R. So, fo q);l and f o q)gl do not
belong to LY (g1 (L)) or LY (@2 (U)).

However, the following theorem holds true.

Theorem 95. Let M" be a compact smooth manifold and E — M be a vector bundle of rank r. Let
e € Rand q € (1,00). Suppose A = {(Uy, Pu, Pus Pu) Iy is an augmented total trivialization
atlas for E — M. If e is a noninteger less than —1 further assume that A\ is GL compatible with
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itself. Let u € W%1(M, E; A) be such that suppu C V C V C U for some open set V and some
1<B<N.Thenforalll <i<r, [Hﬂ(u)]i € We(pp(Upg)). Indeed,

||[H,B(u)]iHW“7(q7ﬁ(Uﬁ)) < Jullwea(mg:n) -

Proof. Let Ay = {(Uy, Pa, pu, Pu) }1_; where {a }1<4<n is a partition of unity subordinate
to the cover {Uy }1<a<n such that g3 = 1 on a neighborhood of V (see Lemma 3). We have

sy

ITHp ()] lweagg(ugy) = | Hp (@) lwen (g

N 7 i
< Y L I Ha(@at)Vllwea gu(uio))

a=1j=1

ullwea(agsng) = Nllwea(am,E:n) -

O

Corollary 8. Let M" be a compact smooth manifold and E — M be a vector bundle of rank r. Let
e € Rand q € (1,00). Suppose A = {(Uy, P, Pu, Pu) }1_; is an augmented total trivialization

atlas for E — M. If e is a noninteger less than —1furthgr pllssume that A is GL compatible with
itself. If u € W4 (M, E; A), then forall1 < a < Nand 1 < i < r, [Hy(u)]! (i.e., each component
of the local representation of u with respect to (Uy, @a, pa)) belongs to W, (pw (Uy)). Moreover, if
& € C=(pu(Uy)), then

HC[Htx(u)]iHwelq(%(ua)) = ullwes ag,Esn) -
where the implicit constant may depend on ¢.

Proof. Define G : M — R by

0 if p & Uy

Clearly, G € C®(M). So, by Theorem 90, Gu € W%1(M, E; A). Furthermore, since { €
C®(@a(Uy)), there exists a compact set K such that

supp& C K C K C ga(Ua).

Consequently, there exists an open set V, (e.g., Va = @5 ' (K)) such that

supp (Gu) € supp(& o ¢a) C Vi © Vo C Uy
So, by Theorem 95, [H, (Gu)] € W9 (g, (U,)) and

||[Ha(Gu)]inw(%(uﬁ)) 2 Gullweam,en) = Nllwes aa,e5n) -

Now, we just need to notice that on ¢, (Uy),

[Ha(Gu)]" = (G o @) [Hae(w))' = E[Ha(w)]'

|

9.2.4. Observations Concerning the Riemannian Metric

The Sobolev spaces that appear in this section all have nonnegative smoothness
exponents; therefore, the choice of the augmented total trivialization atlas is immaterial
and will not appear in the notation.
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Corollary 9. Let (M",g) be a compact Riemannian manifold with ¢ € WS (T>M), sp > n. Let
{(Us, a, 0a) }1<a<n be a standard total trivialization atlas for T2M — M. Fix some « and denote
the components of the metric with respect to (Uy, ¢u, 0a) by &ij : Ux — R (gjj = (pa)ij© §)- As
an immediate consequence of Corollary 8 we have

ijo9x ' € W (gu(Ua)) .

Theorem 96. Let (M",g) be a compact Riemannian manifold with g € WP(T2M), sp > n,
s > 1. Let {(Ua, @u, pu) }1<a<N be a GGL standard total trivialization atlas for T>M — M. Fix
some « and denote the components of the metric with respect to (Uy, ¢u, o) by gij u, - R
(8ij = (ou)ij© &). Then

(1) detgy € WP (9o (Uy)) where g4 (x) is the matrix whose (i, j)-entry is gij© oL

loc

(2) @o ot ZSW IS Wls‘f(%(u“)),
) g € Wiae (9u(Un)):
Proof.

(1) By Corollary 8, gjjo ¢, ' is in W;¥ (¢ (Uy)). So, it follows from Lemma 10 that
detgn € Wzsurf(({’zx(uu))~

(2) This is a direct consequence of item 1 and Theorem 85.

(3) This is a direct consequence of item 1 and Theorem 85.

O

Theorem 97. Let (M",g) be a compact Riemannian manifold with § € W (T2M), sp > n,
s > 1. Then the inverse metric tensor g~ ' (which is a (g) tensor field) is in W*¥ (T, M).

Proof. Let {(Uy, ¢, pz) }1<a<n be a GGL standard total trivialization atlas for T2M — M.
Let {1a }1<4<N be a partition of unity subordinate to {Uy }1<4<n. We have

N L.
I8 Mwsr(momy = X 3 19a8” © @2 M llwsr (gu(u1o)) -

a=1ij

So, it is enough to show that for all i,j and &, g/ o ¢3! is in an'f((pa(ua)), Let B = (Bjj)
where Bjj = gjjo @y \. By assumption, g € WP (T?M); it follows from Corollary 8 that Bjj €
W,? (9x(Uy)). Our goal is to show that the entries of the inverse of B are in W," (¢« (Ux)).
Recall that »
Sy (=D
(B = detB

where M;; is the determinant of the (1 — 1) x (n — 1) matrix formed by removing the

Mij,

jth row and ith column of B. Since the entries of B are in WIS Of (¢a(Uy)), it follows from

Lemma 10 and Theorem 85 that ﬁ and M;; are in WP (9o (Uy)). Furthermore, sp > 1, s0

loc

WP (9o (Uy)) is closed under multiplication. Consequently, (B*1)~j isin WP (gu(Uy)). O

loc loc

Corollary 10. Let (M",g) be a compact Riemannian manifold with ¢ € W (T?M), sp > n,
s > 1. {(Ux, ¢u)}1<a<n be a GGL smooth atlas for M. Denote the standard components of
the inverse metric with respect to this chart by ¢ : U, — R. As an immediate consequence of
Theorem 97 and Corollary 8 we have

gjj ° 471;1 € Wi;f((Pnc(ua)) .
Furthermore, since
_ 1 _
rf]‘ ol = Egkl(aigjl +9gi1 — 018 © P ',
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it follows from Corollary 9, Lemma 9, Theorem 83, and the fact that
W (@a(Ua)) x W (90 (Un)) = WP (9o (Us)) that

O(Pa 105 (%(Ua))

9.2.5. A Useful Isomorphism

Let M" be a compact smooth manifold and E — M be a vector bundle of rank r. Lete €
R and g € (1,00). Suppose A = {(Uy, @u, P, Pu) }2_; is an augmented total trivialization
atlas for E — M. Given a closed subset A C M, We q(M E; A) is defined to be the subspace
of We1(M, E; A) consisting of u € W*1(M, E;A) with suppu C A. Fix1 < g < N and
suppose K C Ug is compact. Then each element of W,e('q(M, E; A) can be identified with an
element of D'(Upg, Eu,) under the injective map u € W (M,E; A) € D'(M,E) — u|y €
D'(Upg, Euy). So, we can restrict the domain of Hg : [D(Up, E,Y,ﬂ)]* — (D'(¢p(Ug)))*" to
WIe(’q (M, E; A) which associates with each element u € W;’q (M, E; A), the r components of
Hg(u) = (ﬁk, e ,ﬁ%) (here Hy stands for HEV,U;;,(/);;)'

Lemma 11. Consider the above setting and further assume that if e is a noninteger less than —1,
then the total trivialization atlas in A is GL compatible with itself. Then the linear topological
isomorphism Hg : [D(Ug, Eﬁﬁ)]* = D'(Up, Euy) — (D'(pp(Up)))*" restricts to a linear
topological isomorphism

A WY (M, E; A) = W (9p(Ug))

Proof. In order to simplify the notation we will use (U, ¢,p), H, H, and @ instead of
(Uﬁ, Pp, p;;), Hyg, A 5, and ﬁlﬁ. In order to prove this claim, we proceed as follows:

(1)  First we show that suppit! C @(K).

(2) Next we show that if u € WZT(M, E; A), then leellwesaen) = Yiey Hﬁ]HWW((p(U))
which proves that:

@) it is indeed an element of W7 (@ (U));

(i) A is continuous.

Note that (i) together with the fact that suppii’ C ¢(K) shows that i’ is indeed an
element of W;’E’K) (p(U)) so H is well-defined.

(3) We prove that H is injective.

(4) 1In order to prove that H is surjective we use our explicit formula for H™! (see
Remark 31).

Note that the fact that H is bijective combined with the equality

ol weaan,e:0) == Xiea | wea(p(u)) implies that A~ is continuous as well.

Here are the proofs:

(1) This item is a direct consequence of item 1 in Remark 31.

(2) Define the augmented total trivialization atlas Ay by A1 = {(Us, ¢u, P, l/J,x)} A}
where {1, }1<.<n is a partition of unity subordinate to {Us }1<«<n such that g =1
on a neighborhood of K. Note that for each «, Py > 0and Eazl Py = 1. Thus, the
assumption g = 1 on K implies that §, = 0 on K for all « # B. We have

N r
Nllweaan,sm) = 1t llwes (o 5ny) = Z [ (Ha(Fa)) lwea (g (1))

r
Z H(pgu)) HW‘ (9a(Un)) ZH ]||w¢ (g (Uy)) *
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Note that suppu C K and ¢ = 1 on K, so Pgu = ulyy as elements of D'(U, Ey).
Therefore, H(gu) = H(u) = (a',...,a").
(3) His injective because it is a restriction of the injective map H.

(@) Let (v%,...,v") € [W;’ZK)(go(U))]X’. Our goal is to show that H~1(!,...,0") €

Wf(’q(M, E;N) ~ Wf(/q(M, E; A1) (this implies that His surjective). By Remark 31,
forallZ € D(U, EY))

H'(0!,..., ) () = Lo'l(0") o gog'].

First note it follows from Remark 30 that suppH 1 (v',...,v") C K; indeed, if supp¢ C
U\ K, then o ¢! = 00n ¢(K). So, (0") o &op~! = 00on ¢(K). Thatis, supp[(p") o
Fog~1] C o(U)\ ¢(K). Thus, forall i, v'[(pV) o o ¢~ 1] = 0 (because, by assumption,
suppv’ C @(K)). This shows that if suppé C U \ K, then H~(0},...,0")(g) = 0.
Consequently, suppH ' (v1,...,0") C K.

Furthermore, we have

.
IH (@ o) lweamgiag) = 3 10 lwea(puy) < oo
i=1

So, H (0!, ---,v") € WI(M, E; A).
O

It is clear that u € W%7(M, E; A) if and only if for all &, Pu € W;’Z(M, E; A) where
K, can be taken as any compact set such that suppypy C Ky C U,. In fact as a direct
consequence of the definition of Sobolev spaces and the above mentioned isomorphism
we have

ueWAM,EA) <=VY1<a<N Hy(pu)€ [W;j(supp%)((pa(ua))]”

= VI<a<N pucWol (MEA)

suppyn
9.2.6. Completeness; Density of Smooth Functions

Our proofs for completeness of Sobolev spaces and density of smooth functions are
based on the ideas presented in [24].

Lemma 12. Let M" be a compact smooth manifold and E — M be a vector bundle of rank
r. Lete € Rand q € (1,00). Suppose A = {(Uy, Pu, pu, Pu) } N, is an augmented total
trivialization atlas for E — M. If e is a noninteger less than —1 further assume that A is GL
compatible with itself. Let K, be a compact subset of Uy, that contains the support of . Let
S:WeI(M,E;A) — [TV, WIZ( (M, E; A) be the linear map defined by S(u) = (P1u, ..., pNu).
Then S : We1(M,E;A) — S(W*1(M,E;A)) C TV, WIZ (M, E; A) is a linear topological

isomorphism. Moreover, S(W*1(M, E; A)) is closed in TTY_; W;Z(M, E;A).

Proof. Each component of S is continuous (see Theorem 90), therefore S is continuous.
Define P : [T, WiT(M, E) — W%1(M, E) by

P(Ul,...,’UN) = ZU,'.
i

Clearly, P is continuous. Furthermore, Po S = id. Now the claim follows from
Theorem 23. O

Theorem 98. Let M" be a compact smooth manifold and E — M be a vector bundle of rank r. Let
e € Rand q € (1,00). Suppose A = {(Uy, u, pu, Pu )}, is an augmented total trivialization

a=1
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atlas for E — M. If e is a noninteger less than —1 further assume that A\ is GL compatible with
itself. Then W1 (M, E; A\) is a Banach space.

Proof. According to Lemma 11, foreach1 < a < N, W;’Z(M, E; A) is isomorphic to the
Banach space [W;’f( Ka)((pa(ua))] < So [T, W,i’m (M, E; A) is a Banach space. A closed
subspace of a Banach space is Banach. Therefore, S(W*7(M, E; A)) is a Banach space.
Since S is a linear topological isomorphism onto its image, W*7(M, E; A) is also a Banach
space. [J

Theorem 99. Let M" be a compact smooth manifold and E — M be a vector bundle of rank r. Let
e € Rand g € (1,00). Suppose A = {(Uy, Pu, pa, Ya) 1N, is an augmented total trivialization
atlas for E — M. If e is a noninteger less than —1 further assume that A\ is GL compatible with

itself. Then D(M, E) is dense in W1(M, E; A).
Proof. Let K, = suppi,. For each 1 < a < N, let V; be an open set such that
Kv(gvzxgvagua~

Suppose u € W% (M,E;A) and let u, = pyu. Clearly, suppu, C K,. Furthermore,
according to Lemma 11, for each a there exists a linear topological isomorphism

Hy : Wy (M, E) — [Wj{f(va)(%(ua))]”.
Note that H, (i1,) € [WZ,'Z( ) (¢a(Uy))])*". Therefore, by Lemma 62 there exists a sequence
{(1)i} in [C;’A(m (¢a(Ux))]*" (of course we view each component of (77, ); as a distribu-

tion) that converges to Hy(u,) in W& norm as i — oo. Since H, is a linear topological
isomorphism, we can conclude that

N ((a)i) = e, (in WiT(M,E;A) asi — o).

(Note that if a sequence converges in WZ"(M, E; A) where A is a closed subset of M, it also
obviously converges in W*4(M, E; A).) Let & = YN, Ay ((17);)- This sum makes sense
because, as we will shortly prove, each summand is in C°(U,, E,) and so by extension by
zero can be viewed as an element of C®°(M, E). Clearly ¢; — Y, uy = u in W1(M, E; A).
It remains to show that for each i, ; is in C®(M, E). To this end, it suffices to show
thatif x = (x1,...,x") € [C®(@u(Uy))]*", then Hy1(x) is in C(Uy, Ey) and so can
be considered as an element of C*(M, E) (by extension by zero). Note that A () is
compactly supported in U, because by definition of H any distribution in the codomain of
A1 has compact support in V. So, we just need to prove the smoothness of H; ! (x). That
is, we need to show that there is a smooth section f € C*(Uy, Ey, ) such that uy = a1 (x).
It seems that the natural candidate for f(x) should be (p4|g,) ™! 0 x © @4 (x). In fact, if we
define f by this formula, then Ay (u £) = Ha(uf) and by Remark 32 Hy (1) is a distribution
that corresponds to the regular function (1, ..., f") = pa o f o p; 1. Obviously,

02 © f 0 @ gu(v) = Pa © (alE) 0 X 0 Pu 0 P () = Xlgux) -

So, the regular section f(x) = pq |'§¥1 0 x 0 a(x) corresponds to ! (x) and we just need to
show that f is smooth; this is true because f is a composition of smooth functions. Indeed,

F(x) = palg) o x 0 @ul(x) = @ (x, x 0 9u(x)) = f =@, o (Id, x 0 9a),

and all the maps involved in the above expression are smooth. [
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9.2.7. Dual of Sobolev Spaces

Lemma 13. Let M" be a compact smooth manifold and let 7r : E — M be a vector bundle of rank r
equipped with a fiber metric {.,.)g. Lete € Rand q € (1,00). Suppose A = { (U, ¢a, P, Yur) 1N,
is an augmented total trivialization atlas for E — M which trivializes the fiber metric. If e is a
noninteger less than —1 further assume that the total trivialization atlas in A is GGL.

Fix a positive smooth density y on M (for instance we can equip M with a smooth Riemannian
metric and consider the corresponding Riemannian density). Let T : D(M, E) — D(M, EV) be the
map that sends & to Tg where Tg is defined by

VxeM Tz(x):Ex— Dx, ar (a,&(x))p(x).

Then T is a linear bijective continuous map. Moreover, T : (C%®(M,E), ||-[lwea(a g:0)) —
(C®(M, EY), ||-[lwea(as,ev;av)) is a topological isomorphism.

Note: Since M is compact, D(M,E) and D(M,EY) are Frechet spaces. So, by
Theorem 17, the continuity of the bijective linear map T : D(M, E) — D(M, EV) implies
the continuity of its inverse. Thatis, T : D(M,E) — D(M,E") is a linear topological
isomorphism. As a consequence, the adjoint of T is a well-defined bijective continuous
map that can be used to identify D’(M, E) = [D(M, EV)]* with [D(M, E)]*.

Proof. The fact that T is linear is obvious.
e Tis one-to-one: Suppose { € D(M, E) is such that T = 0. Then

VxeM Tg(x)=0=VxeM,VacE [Tg(x)](a)=
= VxeM,Va€E (ai(x)g=
=VxeM (&(x), (x)>E—O=>Vx€M &(x) =

¢ Tisonto: Letu € D(M,E"). Our goal is to show that there exists & € D(M, E) such
that u = T;. Note that

VyeM u(x)=T(x) <= VxeMVacE, (a,¢(x))pu(x)=[u(x)](a).

Since Dy is 1-dimensional and both y(x) (which is a positive smooth density) and
[u(x)][a] belong to Dy, there exists a number b(x, a) such that

[u(x)](a) = b(x,a)pu(x) .
So, we need to show that there exists { € D(M, E) such that
Vx € MVa € Eyx (a,&(x))g = b(x,a).

The above equality uniquely defines a functional on E, which gives us a unique
element {(x) € E, by the Riesz representation theorem. It remains to prove that & is
smooth. To this end, we will show that for each «, |y, is smooth. Let (sy,...,s,) bea
smooth orthonormal frame for Eyg, .

Vxel, &x)=2(x)si(x)+...+&(x)sr(x).

It suffices to show that Cl, ..., ¢" are smooth functions (see Theorem 36). We have
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Therefore, ¢ (x) satisfies the following equality
[(2)][si(x)] = &' (x)p(x).
That is, if we define a section of D — U, by

[u,s]) : Uy = D, x— [u(x)][si(x)],

then & is the component of this section with respect to the smooth frame {(x)} on
U,. The smoothness of éi follows from the fact that if N is any manifold, E — N is a
vector bundle and u and v are in £(N,EY) and (N, E ) respectively, then [u, 7] is in
E(N,D); 1ndeed the local representation of [1,v] is Y; 73’ which is a smooth function
because ii' and 3! are smooth functions.

e T:D(M,E)— D(M,E") is continuous:
We make use of Theorem 20. Recall that
(1) The topology on D(M, E) is induced by the seminorms:

¥1<1<r¥1<a<N,VkeNVKC Ulcompact)  praik(@) = llok &0 @x ik
(2) The topology on D(M, EV) is induced by the seminorms:
V1<1<r¥1<a<N,VkeNVKC Ulcompact)  qiak(n) = [l(0x) 010 @ o)
Forall ¢ € D(M, E) we have
Dok (Te) = 1(0d) © Tz 0 03 gk = 1(0D,00) © (Tz 0 92 ) 0 (palE,) ™ (e1) [l (10
si1(x)
where (ey, ..., ¢) is the standard basis for R". Let y = ¢q(x). Note that
[Te (g (v)][s1(x)] = (s1(x), 6 (x))e p(x) -

Therefore, if we define the smooth function f, on Uy by p(x) = fo(x)|dxt A ... Adx"|,
then

(0D,p) © (T 0 @) 0 51(x) = (51(x), &(x))Efa(x) = & (%) fu(x) = (k0 &0 92 (1)) (fa© @2 () 8)
So, if we let

C= max P (fyo ;1 ,
ye%(K),\ﬁ\Sk‘ (fuopa ()]

then

ek k (Te) = 10k 0 € 0 92 (1)) (fa © @2 W)l gu i)k < Cllok & © 92 W)l gu i)k = C Pk (&) -

o T:(C®(M,E),|lleg) = (C®(M,EY),]|.||egq) is a topological isomorphism:

N r
Ellweaaeny = Y Y 1ok 0 $ad © @2 lwea(gu (ua)) -
a=11=

[

1=
Mﬂ

I Tellweaan,ev,av) = () © 9Tz © @2 lwea(gu (1)) -

a=1I[=1

By Equation (8), we have
(o) o aTe 0 93" = pp g, © (YaTz 0 @i ") 051(x) = (ph o a0 pu ) (fuo 9y ).
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Therefore,

N r
I Tellwea(m,pvsavy = 3 Z (o 0 PaZ 0 @ 1) (fa © @2 ) llwea (gu(un)) -
a=11=1

Now, we just need to notice that f, o ;! is a positive function and belongs to

C®(pa(Uy)) (s0 oo qu] is also smooth) and p!, o ¢, & o ;! has support in the compact

set g (supp(¥n)) to conclude that

ISl weacm,esn) = 1Tz llwea (v, ev;avy -
O

Lemma 14. Let M" be a compact smooth manifold and let 7r : E — M be a vector bundle of rank r
equipped with a fiber metric (.,.)p. Lete € Rand q € (1,00). Suppose A = {(Us, @u, P Pu) 12,
is an augmented total trivialization atlas for E — M. If e is a noninteger less than —1 further assume
that the total trivialization atlas in A is GGL. Then D(M, E) < W®1(M,E) — D'(M,E).

Proof. We refer to [24] for discussion about the case where e € Z. For e € R\ Z we have

We(M, E; A) — WA (M, E; A) < D' (M, E),
D(M,E) — WAL (M, E; A) < W(M,E; A) .

O

Theorem 100. Let M" be a compact smooth manifold and let = : E — M be a vector bun-
dle of rank r equipped with a fiber metric (.,.)g. Let e € Rand q € (1,00). Suppose A =
{(Us, P, 0ar o) I ey is an augmented total trivialization atlas for E — M which trivializes the
fiber metric. If e is a noninteger whose magnitude is greater than 1 further assume that the total
trivialization atlas in A is GL compatible with itself. Fix a positive smooth density y on M.
Consider the L? inner product on D(M, E) defined by

(u,0)7 = '/M<u,v>gy.

Then
@ () extends uniquely to a continuous bilinear pairing
()2« W' (M,E;A) x WeI(M,E; A) — R (We are using the same notation (i.e.,
(., )z)for the extended bilinear map!)

(i) Themap S : W4 (M, E; A) — [We1(M, E; A)]* defined by S(u) = 1,, where
Lo : WA(M,E;A) = R, 1,(v) = (u,0)2
is a well-defined topological isomorphism.

In particular, W4 (M, E; A)]* can be identified with W=7 (M, E; A).

Proof.
(1) By Theorem 8, in order to prove (i) it is enough to show that

()22 (CTM,E), || —eq) > (C¥(M,E), |I-lleq) — R

is a continuous bilinear map. Denote the corresponding standard trivialization map
for the density bundle D — M by pp,q,. Let Ay = {(Ua,%,pa,%)}a 1 be an
augmented total trivialization atlas for E where ¢, = Note that ———

):,5 1 11’/5 ):ﬁ 1 1/’;3
o' € BC®(py(Uy)). Let Ky = suppy,. Recall that on U, we may write u =
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hg|dx! A -+ A dx"| where hy, = 0D,g, © ¥ is smooth. Moreover, for any continuous
function f : M — R,

N ~
./Mf”:a;./M%f”
_ N —1\* /.7,
= L [, ) 06 s

. 7 -1 —1y*
L[, o oo o)

N

= Do f o @) (hy o @ t)dV
) e o0 o 9

=

z

_ 1 _ o
= Z /A ) (lpzxfo(l)a )(lpahaO(Pal)dV (mo(pal € BC (?a(uac)))-

Therefore, we have

N
[ wedenl =12 [ Bl
<\Z/ (¥3 (1,006 0 @) (a0 93 AV

Since by assumption the total trivialization atlas in A trivializes the metric, we get

N r
[ fodenl 2 N[ (o0 ) (a0 900 (e 0 91NV

a=1i=1 o (Un)
N r 1 1
= Z Z [ (¢u © (Pa )waf/q’(%(u‘l)) | (Yu 0 @g ;) (Yahia © @ )wa(guu(ua))

N r
2L L W0 9 )y g ) 1 © @390 e g

N N r
= [Z Z ||(l/’1x © % )HW t’q (9a(Uy)) Z Z H 1/’% O(pa ”W“l %(ua))}

a=1i=1

=
Il
-

= Hunfe,q’(M,E;A) HUHWW(M,E;A) :

(2) Foreachu € W’”f/(M, E; A), 1, is continuous because (., .); is continuous. So, S is
well-defined.
(8) Sisacontinuous linear map because

—eg S(u
Vue WU MEA) S lgesmeny = sup o0l
0F£0eWe (M,E;A) l[ollwea(aE;n)
oy okl

< Cllull e’ k.
0£0€WeT (M,E;A) HUHWW(M,E;A) W (MEA) !

where C is the norm of the continuous bilinear form (., .),.
(4) Sis injective: suppose u € W41 (M, E; A) is such that S(1) = 0, then

Voe WHA(M,E;A) 1,(v) = (u,0), =0.
We need to show that u = 0.
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®)

Step 1: For ¢ and # in D(M, E) we have

(&2 = (uz, TH) D(MEV) xD(MEY)

where T is the map introduced in Lemma 13 (note that if we identify D(M, E)
with a subset of [D(M, EY)]*, then we may write ¢ instead of ug on the right
hand side of the above equality). The reason is as follows:

<M§, Ti’]) [D(M,EV)]*xD(M,EV) = /M[Tn (XH [C(x)} (by definition of ng).
Recall that by definition of T, we have
VxeM Va€E, [Ty (x)][a] = (a,n(x))Ep.

In particular,
[Ty )G x)] = (S (x),m(x))e p-

Therefore,
(g, TH) [ D(M,EV)]* xD(MEY) = /M@(x)ﬂ?(x))Eﬂ ={&n)2-
Step 2: Forw € W44 (M, E; A) and 7 € D(M, E) C W%(M, E; A) we have

(w,11)2 = (w, T"/>[D(M,EV)]*><D(M/EV) .

Indeed, let {¢,,} be a sequence in D(M, E) that converges to w in W=7 (M, E; A).
Note that W24 (M, E; A) < [D(M, EY)]*, so the sequence converges to w in
[D(M, EV)]* as well. By what was proved in the first step, for all m

(Ems )2 = (s TH) [D(M,EV)]* x D(MEV) -

Taking the limit as m — oo proves the claim.
Step 3: Finally note that forallv € D(M,E) C W% (M, E; A)

(T"u,0) p(mE) xD(M,E) = (4 TO) D(M,EV)] xD(M,EV) = {#,V)2 =0,

Therefore, T*u = 0 as an element of [D(M, E)|*. T is a continuous bijective map,
so T* is injective. It follows that # = 0 as an element of [D(M, EV)]* and sou = 0
as an element of W= (M, E; A).

S is surjective. Let F € [W%7(M, E; A)]*. We need to show that there is an element
u € We4' (M, E; A) such that S(u) = F. Since D(M, E) is dense in W4 (M, E; A), it
is enough to show that there exists an element u € W=7 (M, E; A) with the property that

V¢ e DME) F(G) = (u,8)a-

Note that, according to what was proved in Step 2,

(u,8)2 = (U, TS p(mEv) xDMEY) = (T, C) D(M,E)]* x D(M,E) -

So, we need to show that there exists an element 1 € W44 (M, E; A) such that

V¢ e D(ME) F(&) = (T u,¢)p(ME)*xD(ME) -

Since D(M, E) < W*1(M, E; A), F|p(p,E) is an element of [D(M, E)]*. We let

= [T']*(Flpe) € [D(M,EV)]".
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Clearly, u satisfies the desired equality (note that [T~1]* = [T*]1). So, we just need
to show that u is indeed an element of W=%7 (M, E; A). Note that

weW T (MEA) <= V1<a <N Hy(puu) € W, %00 (9u(Ua)]
Since supp(yaut) C suppyy, it follows from Remark 31 that
V1<I<r supp([He(au)]') C pu(suppy).
Tt remains to prove that [Hy (pa1t)]' € W44 (¢, (Uy)). Note that
fore >0 W5 (@a(Ua))]” = W4 (gua(U),
fore <0 (W (ga(Un))]" = W(@a(Un))]" = Wy 7 (a(Un)) S W7 (g (Un))
Consequently, for all e

W (@a (Ua))]* € W™ (9 (i) -
Therefore, it is enough to show that

[Ha ()] € [Wo (9a(Ua))]* -

To this end, we need to prove that

[Ha(ll’a”)]’ H(CE (@u(Un)), H-”e,q) - R

is continuous. For all { € C®(¢.(Uy)) we have

[Ha(at0)]'(8) = (Patt) 818U i) [D(U B ) x DU EY,) = (s 281 Uupa) [D(MEY)]* x D(MEY)
= ([T F|p(,E) $a812,Un g ) [D(ME)]* x D(M,EY)

= (Flpmey T~ ($a81.2,ung0)) D (ME) < DME) = F(T ™ ($a81.2 Uy gn)) -
Thus, [Hy (a1)]" is the composition of the following maps:

(C2(9ulUa)), [Hleg) = WETL o (L)) N CE (U)X — WElLy, (M, EY; AY) 1 C™ (M, EY)
= (CUME), [[eq) = R

é = (Or' -0, (1/J¢x © ¢;1)§/0r' . .,0) — HE_vllum% (0,. -0, (lpa © 90;1)6101' o 10) = 1/]0cgl,§,u,x/¢p,1
———

Ith position
= T (a8 Ung0) — F(T 7 ($a8ietnge))

which is a composition of continuous maps.
(6) S : W el (ME;A) — [W%(M,E;A)]* is a continuous bijective map, so by the
Banach isomorphism theorem, it is a topological isomorphism.
|

Remark 61.

(1) The result of Theorem 100 remains valid even if A = {(Us, ¢a, Pa, Pu) } does not trivialize
the fiber metric. Indeed, if e is not a noninteger whose magnitude is greater than 1, then the
Sobolev spaces W4 and W24 are independent of the choice of augmented total trivialization
atlas. If e is a noninteger whose magnitude is greater than 1, then by Theorem 37 there exists
an augmented total trivialization atlas A= {(Un, Pa, Pu, ) } that trivializes the metric and

340



Mathematics 2022, 10, 522

(2)

has the same base atlas as A (so it is GL compatible with A because by assumption A is GL
compatible with itself). So, we can replace A by A.

Let A be an augmented total trivialization atlas that is GL compatible with itself. Let e
be a noninteger less than —1 and q € (1,00). By Theorem 100 and the above observa-
tion, We1(M, E; A) is topologically isomorphic to [W’“’l (M, E; A)]*. However, the space
w-ed (M, E; A) is independent of A. So, we may conclude that even when e is a noninteger
less than —1, the space W*1(M, E; A) is independent of the choice of the augmented total
trivialization atlas as long as the corresponding total trivialization atlas is GL compatible
with itself.

9.3. On the Relationship between Various Characterizations

Here we discuss the relationship between the characterizations of Sobolev spaces

given in Remark 54 and our original definition (Definition 30).

(1) Supposee > 0.
N r
WM, E;A) = {u € LY (M, E) : ullwesm,g:n) = Z Z o (Patt) © @ lwea (g (uy)) < ) -
a=11=1
As a direct consequence of Theorem 92, for e > 0, W%7(M, E; A) — L1(M, E) with
the original definition of W%1(M, E; A). Therefore, the above characterization is
completely consistent with the original definition.
)

N r
WO (M, E;A) = {u € D'(ME) : ullweaiazn) = 3 3 lextS, 1.y ()] lgeain) < o0}
a=11=1

©)

It follows from Corollary 6 that
. If e is not a noninteger less than —1, then

||[H:x(ll’:x”)]l||wfr‘l(%(ua)) =~ HeXt?,,a(ua),Rn [Ha(ll’a”)}lew(Rﬂ) ’

e If e is a noninteger less than —1 and ¢, (U,) is R” or a bounded open set with
Lipschitz continuous boundary, then again the above equality holds.

Therefore, when e is not a noninteger less than —1, the above characterization com-

pletely agrees with the original definition. If e is a noninteger less than —1 and the

total trivialization atlas corresponding to A is GGL, then again the two definitions

agree.

We(M,E; A) = {u € D'(M,E) : [Ha(uly,)]' € W (go(Uy)), Y1 <a <N, ¥1<I1<r}.

)

loc

It follows immediately from Theorem 94 and Corollary 8 that the above character-
ization of the set of Sobolev functions is equivalent to the set given in the original
definition provided we assume that if e is a noninteger less than —1, then A is GL
compatible with itself.

We4(M, E; A) is the completion of C*(M, E) with respect to the norm

N r
e llwea a,E;n) = 2 Z o (Patt) o @y wa (oa(Uy)) -
am1i=1

It follows from Theorem 99 that if e is not a noninteger less than —1 the above charac-
terization of Sobolev spaces is equivalent to the original definition. Furthermore, if ¢ is
anoninteger less than —1 and A is GL compatible with itself, the two characterizations
are equivalent.
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Now, we will focus on proving the equivalence of the original definition and the fifth
characterization of Sobolev spaces. In what follows instead of H‘wa( M,Eg vE) We just
write \.\Wk,q( m,g)- Furthermore, note that since k is a nonnegative integer, the choice of the
augmented total trivialization atlas in Definition 30 is immaterial. Our proof follows the
argument presented in [44] and is based on the following five facts:

e Factl: Letu € C*(M, E) be such that suppu C Ug for some 1 < < N. Then

q — T4V, ~ ! —1y9 ]
|M|LW(M,E) /M|”|E g ;HpﬂouO(pﬂ Hm((pﬁ(uﬁ))

ul

e Fact2: Letu € C*(M, E) be such that suppu C Ug for some 1 < < N. Then
k

\u\&mM,E) =YY X I(Vu )h s ° 98 HL” (gp(Up)) "

=0a=11<jy,mjs<n

o

Proof.

k
q ~ E q
‘M‘Wk"l(M,E) - qZ(J'(v )SM‘U(M,(T*M)@“@E)

Fact 1 r . .
S50 30 DD S I (0 IR Ty
a=11<j1,...js<n # p (pp(Up))
components w.r.t (Ug, ¢g, 0p)

O

e Fact3: Letu € C*(M, E) be such that supp u C Ug for some 1 < g < N. Then

r
[l llwea ) = 1; ||P;; ouo fP?”wsrﬁ(q;ﬂ(uﬂ)) .

Proof.  Let {is} be a partition of unity such that ¢)g = 1 on supp u (note that since
elements of a partition of unity are nonnegative and their sum is equal to 1, we can
conclude that if & # B then ¢, = 0 on supp u). We have

(Il wea(a ey = ZZ”% (Patt) © @y wa((pa(uA
a=11=1

T Mﬂ

r
HP;; (1) 0 9 lwea( (95(Up)) Z log oo (P}Elew(pﬁ(uﬁ)) .

O

e Fact4: Letu € C®°(M,E). Then for any multi-index y and all 1 </ < r we have (on

any total trivialization triple (U, ¢, p)):

r

Pouop =Y, Y X (TEPu)  op .
s<|y| a=11<jy,- js<n
—_————

sum over all components of (VE)su

Proof.  For any multi-index v = (1, ..., 7») we define seq 7 to be the following list
of numbers:

seqy=1...12---2...n...n .

Y1 times 7y, times Yn times
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Note that there are exactly |y| = 1 + ... + 7, numbers in seq y. By Observation 2 in
Section 5.5.4 we have

! _ _ z _
((VE)mu)seqvoq) 1 :a7[p’ou0(p l]+z Z Cuad*[p" 010 @ 1.
a=1 ilal<7]

Thus

.
"l cuoce = ((VE)ML{);‘HO e =Y Y Cudpouce’l],

a=1a:|a|<|y|

*[p"ouo (p’l] = ((VE)“"‘u):eq“ o (p’l — Z Z Cﬁbaﬁ[pb ouo qfl} ,
b=1g:|p|<|a]

where the coefficients Cy,, Cﬁb, etc. are polynomials in terms of christoffel symbols
and the metric and so they are all bounded on the compact manifold M. Consequently,

r
|a7[pl ouog 1| < Z Z Z |((VE)SM)?1...]‘S o ‘P51|~
s<[v] a=11<jy, js<n
S—

sum over all components of (VE)su

O
e Fact5: Let f € C®°(M,E) and u € W5(M, E) where E is another vector bundle over
M. Then
Hf®unqu(M£®E) = Hun’w(M,E)'
where the implicit constant may depend on f but it does not depend on u.
Proof. Let {(Ux, ¢u, Pa) h<a<n and {(Ua, ¢a, Pa) 11<a<n be total trivialization at-
lases for E and E, respectively. Let {sqq = p;'(es)}"_; be the corresponding local
frame for E on U, and {t,;, = p; '(ey)},_, be the corresponding local frame for E

onU,. LetG:{1,...,r} x{1,...,7} = {1,...,r7} be an arbitrary but fixed bijective
function. Then {(Uy, ¢a, Pu) } is a total trivialization atlas for E ® E where

Pa(Saa ® tap) = €G(ayp) (as an element of R'"),

and it is extended by linearity to the E @ E|y;,. Now we have

M™M=z
-
™~

If® ”Hwk,q(M,E@E) = 195" o (paf @ u)o (Polewm(%(uA))

=
Il
—_
S
Il
—_
S
I
—

I
M=
1=
™~

19 0 @) (2 0 00 ) (g 0 9 ) Iyt gy () -

=
Il
—_
Y
I
=
<
I
—

where f = fls,, and u = ult, , on Uy. Clearly f o g ' € C®(pu(Uy)). Therefore,

7

b; (a0 @) (g 0 (P;l)Hwqu(%(um)) =~ [l yyra(an ) -

M=

If® “Hwqu(M,Egé) =

=
I
-

|

e Part I: First we prove that ||u HW’W(M,E) = |u|ka‘1(M,E)'

(1) Case 1: Suppose there exists 1 < < N such that suppu C Ug. We have
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Fact 3

':Z Z flo7( pﬁouoq)ﬁ )Hm (¢p(Ug))

I=1|y|<k

\ Z

Hunkq (M,E) HP‘BOuO(pﬁ Hwkq (Pﬁ uﬁ

=
Fact4 I r
£33 oil v S i (G0 PR R

1|vy|<ks<|y| a=11<]y, .. js<n

=D 30 DD D (LA Y e [
$=0a=11<jy,js<n fide ~ VB LA op(Up))

Fath

| |qu ME

(2) Case 2: Now let u be an arbitrary element of C®(M, E). We have

Hunk/q(M,E)

N N
=) lpﬂcunk/q(M,E) <) Hl/’/xu”wk,q(M,E)
a=1 a=1

N
= Z |lIJaM|Wk,,,( M,E) (by what was proved in Case 1)

=
Z
-

<) |u|Wkr‘l(M,E) = ‘M‘W"r’i(M,E)'
a=1

We note that the last inequality holds because

|lplxu‘z\/k,q(M E Z H VE l/’tx”)H T*M /1@]5)

—znz()w © (VEY Tl 1 ropyoiot

act
j

I M»

i
E\i
Z‘ (V%) ]u”L‘l M,(T*M)2(=QE)
< E H VE u“ T*M 665@5 |u|wkq ME)

e Part II: Now we show that ‘”‘Wkrfl(M,E) = ||u||wkr'I(M,E)'
(1) Case 1: Suppose there exists 1 < < N such that suppu C Up.

Fact 2 ko
o~ 22 2 H((VE) )h i 47;; Hm (pp(Up))

‘M‘Z\/kﬂ(M E)
’ s=0a=11<jy,... js<n

k r r
Observation 1in 5.5.4 i
- Z ): Z l Z Z(Cnl)ﬁujga”(\”/_,o‘P,g )”m (95(Up))

s=0a=11<j;,..s<n  |y|<sl=1 p%ou

r r
1 — _ 1 —149
= Z 07 (u' o Soﬁl)Hqu(%(uﬁ)) = le [|u °Pp Hwk,q(q)ﬁ(uﬁ))
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(2) Case 2: Now let u be an arbitrary element of C*(M, E).

N N
lulwraaey = | o $attlwraae) < X2 [attlwia ()
a=1 a=1
Case 1 Fact N
=< Z lttlsany = Y Y- Nk o ($ate) © 0 lgsapu

a=11=1
= Hunqu(M,E)'

10. Some Results on Differential Operators

Let M" be a compact smooth manifold. Let E and E be two vector bundles over M of
ranks r and 7, respectively. A linear operator P : C*°(M, E) — I'(M, E) is called local if

Yu e C*®(M,E) supp Pu C supp .

If P is a local operator, then it is possible to have a well-defined notion of restriction of P to
opensets U C M, thatis, if P: C®°(M,E) — T'(M, E)islocaland U C M is open, then we
can define a map

P‘u : C°°(U, Eu) — F(U, Eu)

with the property that
VueC®(ME)  (Pu)lu = Plu(ulu).

Indeed, suppose 1,7 € C*(M, E) agree on U, then as a result of P being local we have
supp (Pu — Pii) C supp (u—i) C M\ U.

Therefore, if u|y = ii|y, then (Pu)|y = (Pi)|y. Thus, if v € C®°(U,Ey) and x € U,
we can define (P|7)(v)(x) as follows: choose any u € C®(M, E) such that u = v on a
neighborhood of x and then let (P|y;)(v)(x) = (Pu)(x).

Recall that for any nonempty set V, Func(V,R!) denotes the vector space of all
functions from V to R’. By the local representation of P with respect to the total triv-
ialization triples (U, ¢,p) of E and (U, ¢,p) of E we mean the linear transformation
Q: C®(p(U),R") — Func(¢(U),R") defined by

Q(f)=poP(p'ofop)ogp™

Note that p~! o f o ¢ is a section of E;; — U. Furthermore, note that for all u € C*(M, E)

o (P(ulu)) o9~ = Qpo (ulu)og™). ©)
Let us denote the components of f € C®(p(U),R") by (f',..., f"). Then we can write
QUfY, -+, )= (h,..., W) whereforall1 <k <7

Qis linear

W=moQ(f',....f) Q(f1,0,...,0) ...+ m o Q(0,...,0, 7).
So, if foreach1 < k < Fand 1 <i < r we define Qy; : C*(¢(U),R) — Func(¢(U),R) by
Qri(g) = m.0Q(O,...,0, g ,0,...,0),
~—
ith position

then we have
,

QfY, ... Z Qui(f),.... Y Qs

i=1
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In particular, note that the sth component of § o Puo ¢!, that is §° o Puo ¢, is equal to
the sth component of Q(pl ouo@=1,---,p" ouo ¢~1) (see Equation (9)) which is equal to

r .
Y. Qsilploucg™).
ia

Theorem 101. Let M" be a compact smooth manifold. Let P : C®°(M,E) — T'(M,E) be a
local operator. Let A = {(Un, P, Pa, Pu) h1<a<N and A = {(Uy, ¢, o, o) }1<a<n be two
augmented total trivialization atlases for E and E, respectively. Suppose the atlas { (U, ¢u) F1<a<n
is GL compatible with itself. For each 1 < a < N, let Q* denote the local representation of P
with respect to the total trivialization triples (Uy, @a, pa) and (Ux, @u, fa) of E and E, respectively.
Supposee,é € R, 1 < gq,§ < oo,andforeachl <a <N,1<i<Fandl1<j<r,

b (C2(a(Un)), -lleg) = Wil (gu(Ua))

is well-defined and continuous and does not increase support. Then

e P(C®(M,E)) C W¥(M,E;A),

e P (CO(M,E),|lleq) — WH(M,E; ) is continuous and so it can be extended to a
continuous linear map P : We1(M, E; A) — W& (M, E; A).

Proof. First note that

N 7
IPullwesneia) = X Zlnp;o $a(Pu)) 0 @ lwoa (g (u)) -
a=1i=

N r
lutllweaameny = 3 2 ||sz ($att) 0 @ Hw“l (pa(Uy)) -
a=1j=1

—_

It is enough to show that forall1 <a < N,1 <i <7

N r
||P.x (IPIX(PH)) 0% HW‘W (¢a(Uy)) j Z Z Hp/j l/)ﬁll ° 90/3 ”W"‘l q)ﬁ Uﬁ))

We have

17 © ($u(Pu)) 0 g wa%(u,l = [1($u 0 @) - (P © (Pur) © 9 ) lwei gy (u1)
N

< 2”(117110(%7 ) Qz] le’ﬁ“ O Py )”WW (pa(Ua))
j=1
(see the paragraph above Theorem 101)

N
< Z Z lpl’é 0Py ) Qz]( (lpﬁu) 0@y )HW"‘I (pa(Ua))
p=1j=1

(e 0 @) - Qi (ok © (Ep1) © 9 lwe (g (u))

M=z I
- T

B

I
—-
-
I
_

where ¢ € C°(Uy) is a fixed function such that ¢ = 1 on supp ¢,. Using the assumption
that Q?} (CE(@alU)), I lleq) — Weq(%(lla)) is continuous we get

loc
N r
Hsz (lPN(Pu)) o (Pa ||W“1 (pa(Ua)) Z Z ”pﬂt 51/7/314 o (Pa ”WW (¢a(Ua)) -

Note that p{x o (Eppu) o gt = (Eypgo q)afl)(p{; ou 0 @y 1) has compact support in ¢, (U N
U,B)~ So, it follows from Corollary 6 that

346



Mathematics 2022, 10, 522

o o (Eppu) o g, lwea (g (1)) ~ ||pk o (CIIJ;S“)O(PllHWfrq(qm(umuﬁ))-

Therefore,
1165 © (¥a(P1)) © @3 llwea (g ()

N r .
=) Z llok o (Eppu) o q’Zluww(%(umuﬂ))

So, it is enough to prove that Hp{x o (§ppu) o (pgl\|wu/q(%(umuﬁ)> can be bounded by

ngzl Z}:l HP;; o (ppu) o (plgl Hwe,q(q)ﬁ(uﬂ)). Since this can be done in the exact same way
as the proof of Theorem 88, we do not repeat the argument here. [

Here we will discuss one simple application of the above theorem. Let (M", g) be
a compact Riemannian manifold with ¢ € W% (M, T?M), sp > n, and s > 1. Consider
d: C®(M) — C®(T*M). The local representations are all assumed to be with respect to
charts in a super nice total trivialization atlas that is GL compatible with itself. The local
representation of d is Q : C*°(¢@(U)) — C*(¢(U),R") which is defined by

Q(f)(a) =pod(p~ ofog)ogp ' (a)
of

=00 (5lote( 1)
of of
= (gptlor-- gyl

Here we used p = Id and the fact that if g : M — R is smooth, then

B o -1 i
(dg)(p) = 282X

Clearly, each component of Q is a continuous operator from (C(@(U)),||.leq) to
Wel(p(U)) < W, _ 1q( (U)) (see Theorem 82; note that ¢(U) = R"). Hence d can

loc
be viewed as a continuous operator from W% (M) to We=14(T*M).

Several other interesting applications of Theorem 101 can be found in [16].

11. Conclusions

Sobolev-Slobodeckij spaces play a key role in the study of elliptic differential operators
in nonsmooth setting. In this manuscript, we focused on establishing certain fundamental
properties of Sobolev-Slobodeckij spaces that are particularly useful in better understanding
the behavior of elliptic differential operators on compact manifolds. In particular, we built
a general framework for developing multiplication theorems, embedding results, etc. for
Sobolev-Slobodeckij spaces on compact manifolds. We paid special attention to spaces with
noninteger smoothness order and to general sections of vector bundles. We established in
particular that, aslongas1 < g < occande > 0ore € Z,

e  Various common standard characterizations of W% (as discussed in Section 9) are
equivalent;
e Thelocal charts definition of W7 is independent of the chosen atlas;
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*  Nice properties of W7 for smooth domains in R" (such as embedding properties and
multiplication properties) will carry over to W7 of sections of vector bundles.

Furthermore, we noticed that the local representations of elements of W1 (for functions on
M or, more generally, sections of vector bundles) will not necessarily be in the corresponding
Euclidean Sobolev-Slobodeckij space; they should be viewed as elements of locally Sobolev-
Slobodeckij spaces on the Euclidean space (we have devoted a separate manuscript [17] to
the study of the properties of locally Sobolev-Slobodeckij spaces on the Euclidean space).
In the same spirit, in Section 10 we observed that locally Sobolev-Slobodeckij spaces can
be considered as the appropriate target spaces in the study of the local representations of
differential operators between Sobolev-Slobodeckij spaces of sections of vector bundles.
For the case where e < —1 is noninteger, we were not able to prove the validity of these
properties in a general setting; however, by introducing notions such as “geometrically
Lipschitz atlases”, we found sufficient conditions that guarantee the validity of similar
results as those we have for the case where e € Z.
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Abstract: The interrelations of Triebel-Lizorkin spaces on smooth domains of Euclidean space R"
are well-established, whereas only partial results are known for the non-smooth domains. In this
paper, Q) is a non-smooth domain of R” that is bounded and uniform. Suppose p, g € [1,00) and
s € (n(— — —)+, ) with n(— — —)+ = max{n(— — —) 0}. The authors show that three typical types
p,q(Q) and F,
completion and supporting conditions, respectively, are identical if () is E-thick and supports some
Hardy inequalities. Moreover, the authors show the condition that Q) is E-thick can be removed
when considering only the density property F; ,(Q?) = Ii“;,lq(()), and the condition that Q supports
Hardy inequalities can be characterized by some Triebel-Lizorkin capacities in the special case of
1<p<g<eco.

of fractional Triebel-Lizorkin spaces, on Q: F; ; (Q2), 5,q(QY), defined via the restriction,

Keywords: Triebel-Lizorkin space; Hardy inequality; uniform domain; fractional Laplacian

1. Introduction

The Triebel-Lizorkin spaces F3 q(R") on the Euclidean space R", with parameters
se€Rand p, g € (0, 00], were 1ntr0duced in 1970s (see [1-3]). They provide a unified treat-
ment of various kinds of classical concrete function spaces, such as Sobolev spaces, Holder-
Zygmund spaces, Bessel-potential spaces, Hardy spaces and BMO spaces. Nowadays,
the theory of F;  (R") is well-established in the literature as has numerous applications
(see [4-10] and their references).

When trying to extend the theory of Triebel-Lizorkin space from R" to a domain () of
R", one usually meets the fundamental problem of identifying the interrelations among a
number of related spaces that are defined from distinct perspectives. In particular, there are
three typical ways of defining Triebel-Lizorkin spaces on () (see, e.g., [10]). To be precise,
let D(Q)) = CF(Q) be the collection of all infinitely differentiable functions in R" with
compact supports in () and D’(Q)) the dual space of D(Q)). Forany s € Rand p,q € (0, 0],
recall that

M F,(Q):={fe€D(Q):thereisa g € F,,(R") with g|o = f} being the restriction
Triebel-Lizorkin space endowed with the quasi-norm

I £1ls ) := inf lI8ll5 , (rn)., 6y

where the infimum is taken over all g € F;,(R") satisfying g|n = f. Here, for any
g € §'(R"), gl is the restriction of g to (), defined as a distribution in Q) such that for
any ¢ € D(Q),

(8lo)(#) = gle);

m F;,(Q):=D(O) 1lg500 s the completion Triebel-Lizorkin space that is defined as the
completion of D(Q) in F; ,(€)) with respect to the quasi-norm || - || Fp,(00), @SN 1);
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(I11) f;/q(()) = {f € D'(Q) : thereisa g € F;,(R") with glo = f and suppg C a}
being the supporting Triebel-Lizorkin space endowed with the quasi-norm

Hf”f;yq(o) = inf [l (®n),

where the infimum is taken over all g € F; ,(R") satisfying g|n = f and suppg C Q.

Note that if ) = R” is the Euclidean space, it follows easily from their definitions and
the density property of F; ;(R") that the aforementioned three kinds of Triebel-Lizorkin
spaces are identical (see, e.g., [4]). However, if QO # R”", the situation becomes much
more complex, since in this case the above density property and many other important
properties, including the availability of restriction, trace and extension operators may
fail (see, e.g., [6,8]). Indeed, it turns out that the interrelations of the aforementioned
three kinds of Triebel-Lizorkin spaces depend heavily on the geometry of domain () and
parameters s, p and g. Let us review some of the known results on this subject.

If () is a bounded C*-domain, it is known that the following results are almost sharp
(see ([8], Chapter 5)).

A) F,(Q)= I%;,/q (Q)), if and only if, one of the following two conditions is satisfied:

(a1)0<p<00,700<s<%and0<q<oo;
(a2)1<p<oo,s:%and0<q<oo.

(B) ﬁ;,q((l) = Es,,q(Q),ifO <p<,0<g<oo,s5>0,:= n(% —1)yands — % ¢ 7.
© F,(Q)=F,Q),if0<p<e,0<g<c0and max{% - l,n(% -1} <s< %.

A combination of (A), (B) and (C) immediately implies the following identities.
Fpq(Q) = F0(Q) = F,(Q), @)

if0<p<c>o,0<q<ooandmax{%71,n(%fl)}<s<%.

Note the restriction that s < 1 in the above identities can be relaxed if Q supports
some Hardy inequalities. In particular, it is known that

F,(Q) = F,(Q)NLP(Q,d(-,00) ), ®)

if0<p<oo,0<g<coand

§$>0pg:=n ¥—1
P \minfp,qt )

where for any x € ), d(x,9Q)) denotes the distance from x to the boundary 9Q) of Q and

1/p
L0, d(,00) ) = {f: lloacanr = ( [, ogm @) < oo}

denotes the weighted Lebesgue space on (). The identity (3) together with (A) and (B)
shows that if Q) supports the Hardy condition F} ;(Q2) C LP(Q,d(-,0Q2) %), then identities
(2) hold for all
1<p<oo,1<g<oo and 0<s <oo. 4)
Recall that on the smooth domain, the Hardy inequalities
11l a0 < CHf”ﬁ;'q(g)

hold for any f € l?;’q(Q) with0 < p < 0,0 < g < c0and s > 0, with 0 as in (B).
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If O is a non-smooth domain, there is no comprehensive treatment compared with
what is available for smooth domains. Moreover, in the former case we meet much more
complicated situations influenced by the geometry of (2. Let us mention some of the
related results.

(i) If Q C R" is a bounded domain such that its boundary 0Q) is porous and has upper
Minkowski dimension D € (0, 1], Caetano ([11], Proposition 2.5) proved the following identity.

(A) F;,(Q) =F5,(Q),if0 < p<o0,0<g<ooand —co <5< (n—D)/p.

Note that for an arbitrary bounded domain (), it holds that D € [n —1,#|, and if
D = n —1, then the range of s in (A’) equal to that in (al).

(ii) If Q C R" is a domain whose closure Q is a n-set, and 9Q) is a d-set with n — 1 <
d < n, Ihnatsyeva et al. ([12], Theorem 4.3) obtained the following inclusion.
®) F;,(Q) CF,(0),ifl<p<o,1<g<ocoand (n—d)/p<s< oo

Note that if 0 is a d-set with d < n, then 0Q) is porous (see ([10], Chapter 3)) and has
upper Minkowski dimension d (see ([7], Chapter 1)).

(iii) If QO C R" is an arbitrary domain, Triebel ([10], Chapter 2) proved the follow-
ing identity.
(©) F,(Q) = F),(Q),if 1 < p < co.

Moreover, if Q) is a bounded Lipschitz domain, then it is proved in ([9], Proposition
3.1) that identity (2) holds true for all

0<p<oo, min{p,1} <q<oo and max{%—l,n(%—l)} <s< % 5)

Motivated by the aforementioned results, it is natural to ask the following.

Main question: Let () be a bounded non-smooth domain. Is it possible to extend identity
(2) for parameters from (5) to the general fractional case s € (0,1)?

In this paper, we give an affirmative answer to the above question in the setting that
) is a bounded uniform domain, which contains a bounded Lipschitz domain as a special
case. Recall that a domain Q) C R" is called a uniform domain (see [13,14]), if there exist
constants ¢; and ¢, > 0 such that each pair of points x,y € () can be connected by a
rectifiable curve I' C Q) for which

{ur) <clx—yl,

min{|x —z|, |y — z|} < c2d(2,0Q), foranyzeT,

where L(T') denotes the length of T.

A closely related notion of uniform domain is the so-called E-thick domain. Recall
in [10] that a domain Q) C R" is said to be E-thick, if there exists jo € N such that for any
interior cube Q' C Q satisfying

Q) ~271 and d(Q,0Q)~27/ forsomej>jy €N,
one finds a complementary exterior cube Q° C Q) = R" \ ) satisfying
Q%) ~277 and d(Q%00) ~d(Q',Q°) ~ 27,

where the implicit constants are independent of Qf, Q° and j. It is known that any bounded

Lipschitz domain is E-thick and uniform; and if a domain () is uniform, then (3~ is E-thick.

Moreover, there exists domain in R” that is E-thick but not uniform (see ([10], Remark 3.7)).

Note that if () is E-thick, then 9Q) is a d-set with d € [n — 1, 1) (see ([10], Proposition 3.18)).
We also need the following Hardy condition.
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(H)s,p,q-condition. Let1 < p, g < 0,5 € (0,1) and Q C R" be a domain satisfying Q # R”".
Q) is said to satisfy the (H)s,p,4-condition if

/ f(x)
Jrr

d(x,00)s
holds for all f € F; ,(Q2) asin (I).
The main result of the paper is as follows.

p
dx < oo

Theorem 1. Let p, q € [1,00) and s € (n(% - %)+,1). Assume that Q) is a bounded E-thick

uniform domain satisfying the (H)s p q-condition. Then it holds that
F;,q(n) = ﬁ;,q(ﬂ) = F;,q(n) (6)
with equivalent norms.
We make some remarks on Theorem 1.

Remark 1. (i) Theorem 1 gives an affirmative answer to the main question. It extends by necessity
the identities (2) for parameter s from the range s € (max{% - 1,n(% -1}, %) as in (5) to

s € (n(% - %)+, 1) and for domain Q) from bounded Lipschitz to bounded uniform, E-thick and

supporting the (H)s p q-condition. Moreover, in the proof of Theorem 1, we establish the following
two identities:

(A") F;,(Q) = ﬁ;rq(ﬂ), if1<p,q<oo, n(% - %)Jr <'s < 1and Q) is bounded uniform;

(€ F,(Q) = f;,q(ﬂ)/ if1<p, q<eoo n(% - %)Jr <'s < land Q) is bounded E-thick,

which extends by necessity the corresponding identities (A’) and (C’).
(ii) As in the Sobolev case (see, e.g., [15,16]), the proof of Theorem 1 relies on an intrinsic
norm characterization of the restriction space Fj, ,(Q) as in (1). This characterization is established

in [17] under the condition s (n(% — %)+, 1), which is shown to be sharp therein. It seems a

new method is needed if one considers the case s < n(% — %)+ ; see Proposition 1, where a density
property is established for a variant of Triebel-Lizorkin space in the full range s € (0,1). Note that
ifl <q<p<oo,then n(% - %)+ = 0. In this case, Theorem 1 gives identities (2) for the full
range s € (0,1). We also point out that it is possible to consider the case s > 1 by using higher

order difference. We do not pursue this in the present paper.

We point out that the most technical part of the proof of Theorem 1 is to prove the
first identity

F,(Q) =F,(Q), @)

which is also called the density property of Fj; () and has close relations with other
properties, such as zero trace characterization and regularity of the Dirichlet energy integral
minimizer (see [18]). As far as we know, if (2 is a non-smooth domain, this density property
is only known for some Sobolev spaces, or the case when s is small (see [9,11,15,16,19]).
In this paper, we show that the density property (7) holds for bounded uniform domains
without the assumption of E-thickness. More precisely, the following result is true.

Theorem 2. Let p, g € [1,00) and s € (n(% - %)+, 1). Assume Q) is a bounded uniform domain

satisfying the (H)s p,q-condition. Then the density property (7) holds.

A few remarks on Theorem 2 are in order.
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Remark 2. (i) Theorem 2 extends by necessity the corresponding density property of F; ,(Q)) by
relaxing the restriction s < (n — D)/ p as in (A). In particular, if 1 < p =q < coand s € (0,1),
since in this case F; , = W*P becomes the fractional Sobolev space, Theorem 2 implies the the
following zero trace characterization of fractional Sobolev space: for any p € [1,00) and s € (0,1),
if Q) is a bounded uniform domain supporting the (H)s p p,-condition, then

WSP(Q)) = WP (Q).

Recall that the corresponding characterization at the endpoint case s = 1 is a well-known
result (see, e.g., [15,16]; see also [19] for a very recent result on the fractional case reached using a
different method).

(ii) The proofs of Theorems 1 and 2 are based on a localization technique of Whitney decom-
position (see Section 2 below). Since this technique has been extended to the more general setting
of volume doubling metric measure space (see, e.g., [20]), it is straightforward to establish our
results to this setting, once the corresponding intrinsic norm characterization of the restriction space
F; ,(Q) is established.

Finally, we present further discussion on the Hardy (H)s p,4-condition appearing in
Theorems 1 and 2. As announced earlier, we prove Theorems 1 and 2 by using a localization
technique of Whitney decomposition, together with a smooth partition of unity. This allows
us to decompose each f € F} ,(Q) into two parts: the interior part v; and boundary part
we. It is the estimates of the latter part that need the Hardy (H)s p,4-condition. Note that
the (H)s,p 4-condition is satisfied once we prove the following Hardy’s inequality:

oo

d(-,00)°

< s , 8
ey S Ml ®)

for any f € C.(Q). Unfortunately, it is known that (8) may not hold in the uniform
domains (see [21]). Thus, a characterization of (8) in this setting is necessary. In this paper,
we establish a characterization of (8) in terms of capacities, under the additional condition
1< g < p < oo. Tobe precise, forany 1 < g < p < o0 and s € (0,1), let Q) be a uniform
domain on R" and K C Q) be its compact subset. Define the capacity capsrp,q(K, Q) of K
by setting

caps/p,q(K,Q) = inf |f|fr§,q(0), )

where the infimum is taken over all real-valued functions f € C.(Q) such that f > 1 on

K and
flFs, o) = [/Q(/QWdy)”dx] ) (10)

The following result gives the capacity characterization of (8) in the setting of a
uniform domain.

Theorem 3. Let 1 < g < p < coand s € (0,1). Assume that Q) is a uniform domain. The
following are equiavalent.

(i)  There is a constant Cy > 0 such that

Jac5

aC, a0) < Glflz, @)y

LP(0)

forany f € Cc(Q).
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(ii)  There is a constant Cy > 0 such that

1
/K 0,00y X = Ceap (K, Q), (Cap),

for every compact K C Q.

Based on Theorems 1-3, we immediately obtain the following corollary.
Corollary 1. Let 1 < p < g < coand s € (n(L — %)+,l). Assume that Q) is a bounded uniform

P
domain satisfying the capacity condition (Cap) s,pq Then the following two assertions hold.

(i) F,Q)= ﬁ;/q(Q) with equivalent norms.
(i) If, in addition, Q) is E-thick, then F} ,(Q}) = ozlq(Q) = F;yq(()) with equivalent norms.

We now make some remarks on Theorem 3 and Corollary 1.

Remark 3.

(i) Theorem 3 is the extension of the corresponding result in [22], where the authors considered
the capacity characterization of Hardy’s inequalities in the fractional order Sobolev space.
Recall that if () is domain with 0C) being a d-set satisfying n — 1 < d < n, then it is proved
in [12] that Hardy'’s inequalities (8) hold for any f € Cc(QY) with p € [1,00), q € [1,00] and
s> (”—;"I, 1). Note that the proof of [12] uses the technique of restriction-extension, whereas
the proof of Theorem 3 depends only on the intrinsic norm characterization of F; ,(Q) defined
as in (10).

(ii)  The restriction p < q seems technical, which is needed in the proof of Theorem 3 in order
to give a dual representation of the capacity in (9). Moreover, since the capacity condition
(Cap)slw is difficult to verify, it would be interesting to characterize it in terms of some
geometric conditions, which is left for a further study.

This paper is organized as follows. In Section 2, we collect some necessary technical
properties of the Whitney decomposition of the domain () that are used out throughout
this paper. Section 3.1 is devoted to the proof of Theorem 2. We prove Theorems 1 and 3 in
Sections 3.2 and 3.3, respectively.

Notation. Let N := {1,2,...} and Z; := NU {0}. For any s € R, let s := max{s,0}.
For any subset E C R", 1¢ denotes its characteristic function. We use C to denote a positive
constant that is independent of the main parameters involved, whose value may differ from
line to line. Constants with subscripts, such as C;, do not change in different occurrences.
For any qualities f, g and k, if f < Cg, we write f < g, and if f < g < f, we then write
f ~ g. We also use the following convention: if f < Cgand g = hor g < I, we write
fSg~horf < g S h rather than f S ¢ = hor f S ¢ < h. Throughout this article,
we denote Q = Q(x,1) be the cube with center x and sidelength I whose side parallel to
coordinate axes.

2. Preliminaries on Whitney Decomposition

In this section, we collect some basic properties of the Whitney decomposition of
domain (), with emphasis on those Whitney cubes that are close to the boundary. These
properties play an important role in the proofs of our main results. To begin with, we recall
the classical form of Whitney decomposition from [23].

Lemma 1 ([23]). Let Q C R" be a domain. There exists a family of cubes {Q]- }";1 with sides
parallel to the coordinate axes and satisfying

(1) Q;-’ NQg = 9, if j # k, where Q;-’ denotes the interior of Qj;
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(i) Foranyj €N, diam Q; < d(Q;,9Q) < 4diam Q;, where diam Q; denotes the diameter
of Qj;
(iii) Q= jgl Q;, where Qf = (1+ )Q; is the concentric cube of Q; with sidelength (1 + p)l;

and p € [0, %);
(iv) Each x € Q) is contained in at most 12" cubes Q7;

(v) If Q; and Qj touch, namely, Q; N @j # @ and Q) N Q) = @, then
i diam Q; < diam Q; < 4diam Q;.

Throughout this section, for any ¢ > 0, let ()5 be the boundary layer in () with length
o0 defined by setting

Qs = {x € Q:d(x,00) < 5}. 11

Let ¢ > 0 and {Q;}$2 be the Whitney decomposition of () as in Lemma 1. The
following classes of index sets represent three subgroups of {Q; ;?‘;1 that are closely related
to the boundary layer in Q).

Ay :={jeN:d(Q;,d0) > e}, Ay:={j eN:d(Q,00) <e} and
As = (€ N: QN () Oue) # 0} o

with Q4 asin (11).
The following lemma says that a small dilation of the first subgroup {Q;};ca, of
Whitney cubes is contained in the interior of () with a positive distance to the boundary 0Q2.

Lemma 2. Let ¢ > 0 and Aq be the index set as in (12). For any j € Ay, let Q]’f = (1+71)Q; be
the concentric cube of Q; with sidelength (1 + fi)l; and i € (0, ). Then it holds that

" . 3jie
jEL/J\le g{xeﬂ.d(x,aﬂ)>8ﬁ}. (13)

Proof. Forany x € U ]’f, there exists j € Aj such that x € Q]’f C Q. By Lemma 1(iii)
JEM

and the assumption 0 < i < 11—6, we obtain Q]”f c @1+ 4;2)Q]- C Q. This, together with

Lemma 1(ii) and the definition of Aj, implies

* * ~ 3 - 3iie
4(x,00) > d(Q},00) = d(Q), (1 +40)Q)) = Sal; > #
which proves (13). O

Our next lemma shows that a small dilation of the second subgroup {Q;};ca, of
Whitney cubes is contained in a boundary layer of ().

Lemma 3. Let & > 0 and A; be the index set as in (12). For any j € Ay, let Q]’f* = (1+27)Q;
be the concentric cube of Q; with sidelength (1 + 2i)l; and fi € (0, {5). Then it holds that

U Q€ (19)

jeM,

with Qg as in (11).
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Proof. Let x € eL/J\ Qj’f*. By (12), Lemma 1(ii), the assumption 0 < i < % and the
JEA2
definition of A,, we have

d(x,0) < d(Q;,00) + (1+20)1/n < (2+271)d(Q;,30) < 3e,
which implies (14). O

The following lemma gives a few interesting properties of the third subgroup {Q;}ca,
of Whitney cubes.

Lemma 4. Let ¢ > 0 and Az be the index set as in (12). Then the following assertions hold.

i) Q\Que C U QF
JEAs

(i) Foranyj € As, it holds Q; N Q7. = @ and d(Q;,0Q0) > 7¢;
(iii) For any k € Ay, let Qi := (1 + 2fi)Qy be the concentric cube of Qi with sidelength
(1+2f0)l and fi € (0, {5). Then for any j € Az and any x € Qi*, and y € Qj, it holds that

lx =yl ~ D(Qj, Q). (15)

where D(Qj, Qx) := d(Qj, Qx) + I + Iy and the implicit constants are independent of ¢, j, k,
xand y.

Proof. The assertion (i) follows immediately from the definition of the index set A3. To
prove (ii), we first show Q; N Q7. = @ for any j € As. If not, namely, Q; N Q7 #+ &, then
by Lemma 1(ii), we have

diam Q; < d(Qj, 00) < 7e.
This implies Q; N (Q\ Q14¢) = @, which contradicts the definition of Az. Thus, for
any j € Ag, Q]- N Q7. = &, namely, d(Qj, Q) > 7¢, which implies (ii).
We now prove (iii). For any k € Az, by Lemma 3, we have Q;* C Q3. Let
I3e:={x € Q: d(x,00) = 3¢}.
From (ii), it follows that for each j € A3, it holds that Q; N I3 = @ and
d(Qj, Q;") > 4e.
Now let x; € Qj and x; € QZ* such that
d(Qj, Q") = d(xj, xi)-

Let x; be the intersection point of the segment x Xk and I'3¢. Denote by Q; the Whitney
cube that contains x;. It is easy to see that

d(Q;, Qi) > d(Q), Qp)- (16)

By the definitions of A, Ay and Lemma 1(iii), it is clear that k € Aq. This, together
with Lemma 1(iii) implies that

< diam Q; < 3e. (17)

NS
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Moreover, since Q; N Q3¢ # &, by Lemma 1(ii) again, it follows that Q; C Qg; from
(ii), it follows that Q; N Q7. = &. This means that Q; and Qy are not touched, and by
Lemma 1(v), it holds that

1
d(Q;, Qp) > il (18)
Thus, for any x € Q;* and y € Q;, we have
|x —y| < diam (QF") +d(Q;j, Qx) + diam Q;
S h+d(Q), Q) +1j ~ D(Q), Qx)- (19)

On the other hand, by Iy <& < I, (16) and (18), it follows that

kK 1
[x—y| > d(Q), Q¢") = d(Q;,Qz) > 2R+
and by (17), we know that

d(Qj, Q) < d(Qj, Qr") + diam (Qf") < [x —yl- (20)
By combing (19) and (20), we obtain (iii), which completes the proof of Lemma 4. [

The following lemma on the summation of D as in (15) needs the assumption that ()
is bounded and uniform.

Lemma 5 ([17]). Let Q) be a bounded uniform domain and {Q; }].0:1 be the Whitney decomposition
of Q as in Lemma 1. Then there exists a positive constant C such that for any n > 0 and jy € N,
it holds that

00 )n C
; Q]/Q] ) + = I(Qjo)n

We end this section by giving properties of two subgroups of Whitney cubes from A,
as in (12). To this end, for any i € A, we make a subdivision of A; by setting

Api (i) :={k €Ay : Q" NQ; #D} and Ap(i):={k€A:Q;"NQ; =0}, (21)

where QFf = (1+ j1)Q; and Q;* = (1 +21)Qx with i € (0,1/16). For any i € A; and
ke Azl(i), let

Axaik) = {j € A2: QN Qf # @ or QI NQ;* # D). 22)

Lemma 6. Let Q) be a bounded domain, e > 0 and Ay be as in (12). Then the following two
assertions hold.

(i) Foranyi € Ay, let Ay (i) be the index set as in (21). Then it holds that for any x € Qj,

U Qi CB(x7),

keAy (i)

where Q¢ = (14 21) Qg with ji € (0,1/(16+/n));
(ii) Foranyi € Ay andk € Ay (i), let Ays(i, k) be the index set as in (22). It holds that there
exists a number N € N, independs of i and k, such that

Card (A3(i, k)) < N. (23)
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Moreover, for any j € Ao3(i, k), the sidelengths 1 and I; of Q; and Q; are comparable, namely,
i~ (24)
with implicit constants are independent on i and j.

Proof. We first prove (i). Forany x € Qf andy € U  Q;¥, there exists k € Ay (i) such
keAg (i)
that y € Q" and

lx =yl < (1 + ) vnli + (1+2f)V/nl.

By Lemma 3, it holds that d(x,0Q)) < 3e and d(y,0Q) < 3¢, which combined with Lemma
1(ii) show that I;, [ < % Thus, using the assumption 0 < ji < ﬁ, we know

[x —y| < 6(1+2fi)e < 7e.

This implies  |J Q" € B(x,7¢) and hence verifies (i).
keAa (i)
We now prove (ii). To this end, we first claim that for any two Whitney cubes Q; and
Qk, Q;‘* N Q" # @if and only if Q; and Qy touch. Indeed, it suffices to show that Q; and
Qg touch when Q]“f* NQ;* # @. Otherwise, if Q;‘* NQ;* # @ and Qj and Q do not touch,
then by Lemma 1(v), we have

1
d(Qj, Qi) = g max{lj, I}

This, together with the assumption i € (0,1/(16/n)), implies that

d(Q;_k*, Qlt*) > d(Qj, Qi) — ﬁ\/ﬁ(l] +1) > %max{lj, I} >0,

which contradicts the assumption Q;‘* N Qg # @ and hence verifies the claim. By this and
Lemma 1(iv), we know (23) holds with N = 2(12)". Moreover, the above claim implies
that for each i € Az, k € A2 (i) and j € A3 (i, k), it holds that either Q; and Q; touch; or Q;
and Qi, and Q; and Q, touch. By Lemma 1(v), we conclude that (24) holds true, which
completes the proof of (ii) and hence Lemma 6. O

3. Proofs of Main Results

This section is devoted to the proofs of main results of this paper. We first prove
Theorem 2 in Section 3.1; then we prove Theorem 1 in Section 3.2. Finally, Section 3.3 is
devoted to the proof of Theorem 3.

3.1. Proof of Theorem 2
In this subsection, we prove the density property of Triebel-Lizorkin space F; ,(€})

(see Theorem 2) via the intrinsic characterization of F;,q(()). To this end, we recall the

following definitions of intrinsic Triebel-Lizorkin space F;,q (Q)) from [17].

Definition 1. Let Q) be a bounded domain in R". For any p, q € [1,00) and s € (0,1). The
intrinsic Triebel-Lizorkin space is defined by

F5alQ) = {f € L7() : [[fl 75,00 < ),
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where

| 1k
L e A= dx} 23)

= fllLe) + |fl75,0) < oo

Let F 5.4 (Q2) be the completion of D(Q) in F}, ,(QY) with respect to the norm || - | Fig() 88 in (25).

Remark 4. Forany p, q € [1,00) and s € (n(% - %)Jﬂ 1), let F; ,(Q) be the Triebel-Lizorkin
space defined as in (I) of Introduction. If, in addition, ) is a bounded uniform domain, then it is
proved in ([17], Corollary 3.11) that

Fpa(Q) = F4(Q) (26)

with equivalent norms.
On the other hand, let Fuf,’q (Q)) be the Triebel-Lizorkin space defined as in (II) of Introduction.

By (26), we know that for any p, q € [1,00) and s € (n(% - %)+, 1), it holds that

F3q(0) = E5 1(0)
with equivalent norms.

Note that Theorem 2 is an immediate consequence of Remark 4 and the following
density property fo intrinsic Triebel-Lizorkin spaces 7} ,(€0).

Proposition 1. Let p, g € [1,00) and s € (0,1). Assume Q) is a bounded uniform domain
satisfying the (H)sp q-condition for all f € F, ,(Q). Then it holds that

F50(Q) = F5,(Q)
with equivalent norms, where F; , (Q) and ﬁ;,q (Q) are defined as in Definition 1.

Proof. Since () is bounded, by an elementary calculation, we know D(Q)) C ]-';,’q(Q).

This immediately implies ﬁ;/q(Q) C F},,(Q). Thus, we only need to prove the converse

inclusion 73, (Q) C ﬁ;,q (Q)). Since the proof is quite long, we divide it into several steps.
Step 1. Let {Q]'}}’il be the Whitney decomposition of ) as in Lemma 1 and {zpj};-";l C

C§° (R™) the corresponding partition of unity satisfying the following properties:

(i) j=1onQ;and suppp; C Q]’-‘, where Q]’f := (1+2p)Q is the concentric cube of Q;
with sidelength (1 +2i)l; and fi € (0,1/(16n));

(i) Forany x € (), it holds that

i Pi(x) =1 ©27)

(ili) There exists a positive constant C such that for all x € R" and j € N,

C
[Vipj(x)] < dam Q;° (28)

Now let f € F} ,(Q). Forany ¢ > 0 and x € (), by (27) and the definitions of the
index sets A1, Ay as in (12), we write
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f)= Y ¢@f@)+ Y e0f) =Y ¢(x)f(x)+ Y ¢ix) (29)

d(0;,00) > d(Qa0)<¢ €A j€Ra
=: 0g(x) 4+ we(x)

with v, and w, being the interior and boundary parts, respectively.
Step 2. We first consider the interior part v; by claiming

ve € F3,(Q). (30)

Indeed, let ¢ := Y ;c o, j(x). By the property (i) and (13), it holds that ¢ € C5°(Q}), which
together with the fact that v, = ¢ f implies

lvellr )y = 1¥fllrq) < 1¥lls@)ll fllir ) < o (31)
which implies v, € LP(Q2). On the other hand, by (25), we have

9150 = { [,(f rr-sror,)

1

P
dx} =: A.

P
q

Write

1

V </ Ji "”ﬂ“ﬁyw( Ol dy> ix /(/ If(x |xf<§/|n‘i‘$( Al dy>—dxr

=: A1 + Ap.

We first estimate A;. Since i € C{°(Q)), it follows that

FEP( ] IV9E) gy lx = w1709 dy 5 dx
Q Q

Moreover, by the assumption that () is bounded, we have

s [ [ yeor([©"m0a0)’ dx]

< Hf”U’ ) < 0o

=i

1
r

To bound A,, it is easy to see that

e NG TP
LS ) dx} 190y S fl ) < oo

Combining the estimates of A; and A, we conclude that A < co. This, together with
ve € LP(Q), implies ve € F ,(Q), and hence verifies the claim (30).

Step 3. Next we prove v; € ]-'cf,,q(Q), Let 7 € CF(R") satisfying 7 > 0 in R”,
suppr € B(0,1) and [,y 7(x)dx = 1. Let0 < & < 12’% and 77() be the mollifier
defined by

Ay <

7 (x) = 67" (x/9)
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9+5) =

forany x € R". Itis easy to see 1j(®) x v, € D(Q), and by the property of the approximations
of identity, we have

—0

H (’7(5) ¥ vg> %l o)

Fs i i (9) _
as & — 0. Then to prove v, € J5 ,(Q), it suffices to show ‘ (;7 * vg> Ve Fa@ — 0as
6 — 0. From (25), we deduce
32
Fpa(Q) ©2)
~ ‘ NI
|19 5 0) () = oelx) = (19) 0) (1) + 0elw)]|
/ / dy | dx
0 x =yt
1
q oY
677 fi el = 2) = vely = 2)Jy(2/8) dz = vel) + 0e(y)|
/Q / dy | dx

|x —y|"+=a

1

[ [ve(x — 62) — v %) — ve(x) + e z)dz|7 i r
/</Ofs 62) — ve(y — 62) — ve(x) + <y>m<)d|dy> dx}

=y

1

|0 (x — 62) — ve(y — 62) — ve(x) + ve(y)|? £ v o
S/B |:/Q / [x —y|r+sa dy) dx:| 7(2) dz.

Now, let

cwgrzfﬁ%iggﬂ

It is easy to see

Oe(x — 02) — 0e(y — 02) — ve(x) +ve(y)
e —y|?™

G(x—6z,y—92) — G(x,y) =
Since

1
by
q
16 G gy ey = [ ([ st ay) dx}

is a mixed Lebegue norm. By the continuity of translation (see ([24], Theorem 2)), we get
i |G (x =62,y = 02) = G(x,Y)ll 19y x0r) = O 33)

forany z € B(0,1). Now let

A
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for any Z € B(0,1). By (13), the assumption 0 < § < 3”\/87 and the change of variables,

we obtain

3 1
) 0, xféz -, 5z)| ve(x) — v q P
Wao Z / (/ ‘ E y‘nisyq d +/ | : y‘nis!] dy) dx:| W(Z)

{(/ (/ \vgxf‘izi;lzﬁ(z s2)|f )E )? </ (/ \vi‘; ;;fm dy)ih)ﬂﬂ(z)
(=) )

This, together with (25) and (30), shows 9.5 € L®(B(0,1)). Now, using (32), (33) and the
dominated convergence theorem, we get

. ) _ s s sey L N s
tim 01 <00~ }13%/ o 106 = 82,y = 82) = (o) gy a1 2) 82 (34)
_/Ol %g%l)b&ts :0/

which implies v € ﬁ;,q(ﬂ)'
Step 4. We still need to verify the boundary part w; € f;q(Q) To this end, it suffices
to prove that
lim [|wel|1p(q) = 0 (35)
e—0
and

1‘ S = U.
EI_I;% |w5|}-p/q(0) 0 (36)

By Lemma 3, we obtain

/Q |we(x)|P dx = /038 (e (x)|P dx
() L v

P

dx = /035 |f(x)|P dx,

QS&

which tends to 0 as ¢ — 0 and hence implies (35).
Step 5. We now prove (36). By (29) and the fact that supp ¢; C Qf, we write
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==
==

q
w%@/‘/v me>fua%%wadx

|x—y\"+s‘7

<l

P

/ +/ +/ </...dy>qu
U QF Oue\ U Qf O\Oyye Q
i€hy ichy

P

q

/ / +/ cody| dx+ / ..ody | dx
U Qr U JO\Oue Qm\ U Q; uUQ
€Ay kehy

ke,

B

==

+ / / c.ody | dx
O\Oyye U Q
ke,

, a1
q 7 P
|F() Tjen, #(0) = F0) Tien, 00| )
< / / s dy | dx
uQ o [x —y|tsa
i€Ay ke,
_ p 1t
q q
1 @ B ] "
P men N
yo\Jovyor Ry Y
i€Ay ke,

1

i / WMMM%MmWﬂ”
Oue\ U Q U Q [x —y|+sa Y

q
Ly pw g '
[T =i T M
oo | Ju g x =yl Y
ke,

=L+ + I+

(37)

Step 6. We estimate the above terms in the order of I, III, I; and II. To estimate I, we

first write

RSTE

4
q

1
< - -
bk / /n\ U oy g ¥
ke,

i€y

From the definitions of Q} and Q}*, it follows that for any x € Qf and y € Q \

[x —y| > %, where [; denotes the sidelength of Q;. Thus, we have

sz Lo (fra) e <

365

i€y
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Using the properties (ii) and (iv) of Lemma 1, (14) and the (H)s,j 4-condition, we obtain

—0
LP(Qze)

wr Vol f
{E Q! d (x, aa)’ﬁ dx ] R /u Qr d(x,00)% ax] 3 Hd(~,aﬂ)5

€A i€Ay
as ¢ — 0, which is desired. That is
limI, = 0.
e—0

Step 7. To bound II], it is easy to see that

wel[ (f  ue-pwr,
o0 U o |x_ |n+5q
k€A

I—l
==
==

Cf
d
/Q\Qm /U Qr x — y["+a 4 *

= 1II; + II,.

Using the fact that f € 7} ,(Q0), (14) and (25), we have

1

1 < { /Q ( /Qm 7‘f|(xx)_;,§(ﬁ§'q dy) % dX} ' =0
ase — 0.

Now we estimate III,. For any x,y € ), let

Fow) = — U 0 Wai0, ()
[x —yla

It is obvious that

1

. z P
q
1, = {/Q (/Q |E(x, )| dy) dx} - ||F(x,y)||L¥(Lz>(QXQ)
< sup [/ (/ F(x,y)V(x,y) dy) dx}.
Wiy g <1L/a\/a
Y wlHoxa

Let

B(F, V) := {/Q </(.)F(x,y)V(x,y) dy) dx}.

By the definition of F in (41), it holds

' [V (x,y)l
BF,Vg/ x / VW g ax.
EN2 | Lo VN Jy o et

A2
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Moreover, since ||V|| <1, we deduce

' @wyaxa) =

1
7

K/ P
i [/o (fveeortar) dX] )

Using (42), Lemma 3 and Holder’s inequality, we obtain

DY / £ ()] (k;\z/ [V (x,y)|” dy) (kZ:AZ/ < S y>}7) dx

i€N;

x X, ’7 v 71((21‘)” >; X
IGZAJ/ |f( (kgz/ |V y | d]/) (kez/\z D(Qi/Qk)n+sq d ’

which, together with Lemmas 4(iv) and 5, implies

A
SO / If(x (k%/ (xy)|7 dy) oy &

i€As

SX d(‘J{,(gf))‘)s </0z |

I€EA;”

1
7

V(x,y)|" dy) dx

1
7

- /o % </Q V(x| dy) dx

(bt | )

Combining the former with (43), we get

RS
<

dx}

B(F,V) =0
as ¢ — 0. By this and (40), we conclude that

Hm I = 0. (44)
e—0

Step 8. Next we consider I;. Next,

q
) = F )| Een, 9 0)]
L < / / nts dy
uaot/uaor lx —y|" 1
ichy keny
q i !
y O Sjen i) - Tiem )| "
X
U Qo |x —y|m+sa
keAy
N AR
q
F() = F0) 17| jen, 91 )|
S / / n+s d]/ dx
Juaor\/u o |x —y|"esa
i€y keAy
q ro1r
q
G| Ejen, $5(6) — Ejen, $50)|
ool o dy | dx
uaol/ug lx =yl
ieAy keAy
= 111 + I]z.
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For 113, by (25) and Lemma 3, we know that

==
==

&) = fl
I < /U o /U o Tx— gl dy | dx (45)

i€hy keAy

<[ (L )

which turns to 0 as e — 0.
To bound Iy, by the definitions of the index sets A1 (i) and Ay (i) as in (21), we have

1

, a1
q q ,
|F()19|Sjen, () — i, #1)]
I d dx 46
12 lgz/* /U Q;X |X7y‘"+s‘7 Yy ( )
1
, 1
q = 4
Ay / / O |Lien, $0) ~ Tiens i) )"
~ * ok — n+si ]/ x
ey kegm Q% |x y| +q
1
, o
q = 4
de il FO1|Eien, 95 - Ben i )"
NS y X
€Ay * kCL/{ZZ Qlt* |x _y‘ o
=T}, + 1.

By (28); the definition of the index set A3 as in (22); Lemmas 5 and 6; and an argument
similar to that used in the proof of (38), we obtain

- P

q
h< |y / @ x . ‘ZJEAM - Tena b N ol

‘n+sq
i€y keAy

]

q H ’
< z/ ( S (sup ||w]> xyw“”"dy) dx
1EA2 h keAy JEN23 L
1
Loy
<[5 Lo (e
LieAy * 0
p
< Z/ </ d(x,00)~ qpq(l s)= 1dp> dx}
LieAy
1
P
< 2/ x)|Pd(x,00)~ ps’““S)dx}
Li€A,

1

/u @ d(‘f:(a())‘;sp )= HW

ieAy

A

—0
LP(Qze)

ase — 0.
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On the other hand, by (21), we know that if k € A (i), then Q;* N Q; = @. For any
x € Qf and y € Q;¥, there exists a positive constant ¢ such that \x —y| > cli—that is,
U Q C[B(x, czi)]ﬁ. This yields that

ke
R
q
S 2/* [y il | o (18)
i€hy ke% Q
Loy
<[ fyror(ra)'o]
Lic Ay ; i
1
P
<|x Jy, @ S”dx}
LicAy
1
NI
< / dx| < Hi =0
IEL/J\2 Q; d(x,0Q)°% d(-,00Q)s LP(Q3,)
ase — 0.
Combing (45), (47) and (48), we conclude that
liﬁ{% I} =0. (49)
Step 9. Finally, we estimate II. Write
1
z [

i q
w< 1/, o [£6) Bjens 910~ F0) Tyen i)

=y V)

- P

=

_ e 910~ B 0]
/Qm /U Qr

<
- s "
q i !
[y @ —fFSen v '
x
o |/ U [x =yt Y
=: 11} + 1.
By an argument similar to that of I, it is easy to see that
lim T = 0. (50)

e—0
Combining (37), (39), (44), (49) and (50), we obtain liné |we| Fig(Q) = 0, which proves (36).
e— G

This, together with (34) and (35) shows f & f;q(ﬂ) and hence finishes the proof of
Proposition 1. [

3.2. Proof of Theorem 1

In this subsection, we prove Theorem 1. To this end, we first recall the following defi-
nition of refined localisation Triebel-Lizorkin spaces F;:qu’c (Q) from ([10], Definition 2.14).
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Definition 2 ([10]). Let Q) be a bounded domain in R". Let {Q; }].0:1 be the Whitney decomposition
of Qas in Lemma 1, and {1p; }7":1 be the corresponding partition of unity as in (27) and (28). For

any p,q € [1,00] and s € (0,00), the refined localisation Triebel-Lizorkin space F;jgk’“(ﬂ) is

defined by setting
1
4 !
FMR#)) < °°}'

Fyi(Q) := {f € D'(Q) : |l e ) = (i}l!%f
=

where ||-|| s () denotes the classical Triebel—Lizorkin norm on R".

Remark 5.

(i) Let Q be a bounded domain. For any p,q € [1,00] and s € (0, 00), it is well-known that the
space F;jrqloc(ﬂ) is independent of the choice of the partition of unity {y}2,
(see ([10], Theorem 2.16)).

(ii) Let O be a bounded domain. For any p,q € [1,00] and s € (0,1), it is proved in
([10], Theorem 2.18) (see also ([8], Corollary 5.15)) that Ff,;flloc(ﬂ) can be characterized by the
following intrinsic norm:

Jae

a1t
a(,90)

cd(-,000)
+ E(deu f)T
Lr(Q) H {/0 eaf)

for some ¢ € (0,1), where for any u € (0,1), t € (0,00) and x € R",

()

LP(Q)

ot = [ [t s an]

(iii) Suppose that Q) is a bounded E-thick domain. Let F5 5.q(Q) be the Triebel-Lizorkin space defined
as in (III) of Introduction. It is known (see ([10], Proposztlon 3.10)) that for any p,q € [1, 0]
and s € (0,00),

Fal0) = Fi(@)
with equivalent norms.
With the help of Remark 5 and Theorem 2, we now turn to the proof of Theorem 1.

Proof of Theorem 1. Let p, g € [1,00) and s € (n(% - %)+, 1>. Since () is bounded and
uniform, it follows from Remark 4 that

Fa(Q) =F,(Q) and F5,(Q)=F;,(Q) (52)
with equivalent norms. Moreover, by (H)s p,4-condition and Proposition 1, we know
Fpa(Q) = F5 (Q).
This together with (52) implies that

F;,Q(Q) = ﬁ;,q(ﬂ) (53)

holds for any p, q € [1,00) and s € (n(% - %)+,1).
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On the other hand, since Q) is an E-thick domain, we deduce from Remark 5(iii) that
forany p, g € [1,00] and s € (0,1),

F,(Q) = Fyio(Q). (54)

Moreover, it is proved in ([25], Theorem 3) that the Triebel-Lizorkin space F; ,(Q), as
in (I) of Introduction, can also be characterized by the same intrinsic norm of (51). This,
combined with Remark 5(ii), implies that for any p, g € [1,00] and s € (0,1),

FyHo(Q) = Fy 4(Q). (55)

Taking (53)—(55) together, we conclude that for any p, g € [1,00) and s € <n(% - %)+, 1),
it holds
Fq.(Q) = ﬁ;’q(Q) = ?;,q(()),
which completes the proof of Theorem 1. [

3.3. Proof of Theorem 3

In this subsection, we prove Theorem 3.

Proof of Theorem 3. We first prove the implication (i) = (ii). Assume (i) holds. Let
f € Cc(Q) satisfy f(x) > 1 for any x € K. By (i), we know

1 C|f)P () = fIT N
Aﬂmmw”<kammwh<quxn|pwmq@)”}

Taking the infinum over all such functions f and using (9), we obtain

1 I4
S gy 4 < Cheaps,, (K0,

which implies (ii) with C; = Cf .
Now we prove the converse implication that (ii) = (i). Suppose (ii) holds. Then, for
any k € Z, let
Ep:={xeQ:|f(x)] >2*} and Ag:= E;\ Egs1.

Observe

Q={xeQ:0<|f(x)| <o} =FU ] As (56)
kez

with
F:={xeQ: f(x)=0}. (57)

Hence, by (ii) we obtain

Lf ()P
/o (x, 007 X = Yy 2(k+2)p /

A 5 dx < C27 Y 2%eap, , (Ari1, Q). (58)
keZ k+1

1
d(x,0Q)¢ =
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Define the function fi : Q — [0,1] by

1, |f(x)] > 244,
filx) = L1, 2k < £ ()] < 2441, (59)
0, lf(x)] <25,

It is easy to see f € C.(Q)), and it satisfies fy = 1 on Exq D Ay, 1. Hence, we can take f;
as a test function for the capacity. By (9), we have

14
— q
Caps,p,q(AkJrl’ - / (/ lfk‘x _ y|n+sq ‘ y> dx (60)

/(/‘ﬁx_|ww‘ @hum4§

<
el

Using (56) and (57), we get

/(/ [filx I”“"‘ y>h(x)dx 1)

1f(x) = rl) |7
7/FUUA /FUUA |x_ [tsa h(x)dy dx

(/XEZA/EA //UA /UA/)|fk ‘n+sq)‘ h(x) dy dx
(2h BBl L BE L L EEL
+J§// +§/ /*Ek// ;/ /)ka_ |n+bq)‘ h(x) dy dx.

Now for any x € A; = E; \ E;;1, by the fact that 2 < |f(x)| < 2! and the definition of f;
as in (59), we claim that the following assertions hold true.

(i) TIfi <k, then |f(x)| <2i+! < 2K this implies fi(x) = 0;
(i)) Ifi =k, then fi(x) = LDl —1;
(it) Ifi > k, then |f(x)| > 2! > 281, which implies fi(x) = 1;
(iv) Ifi <k <j forany x € A;and y € Aj, it holds that
[fie(x) = fi)| < 2277 (x) = F (). (62)

We only need to verify (iv). Indeed, leti < k < j, x € A;and y € A;. We consider four
cases based on the sizes of i, j and k.
If i = j, then by (ii), it is easy to see that

|fi(x) = fi(y)| = 0. (63)

If j=i+1and k =i, then by (ii), (iii) and the assumptions x € A;, y € A;, we have

i) = £l = 1= (L =1 =2 = L oo - |
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Moreover, by the assumption y € Ay 1, we know |f(y)| > 2f+1. This implies that the
above term is bound by

2HF) = f @I < 279£(x) = F@)l = 2277 f(x) = f(v)] (64)

If j =i +1and k = j, then by a similar argument, we know

i) = il = [ 1] =2 H 1 - 2,
By the assumption y € A;_1, it holds that | f(y)| < 2¥, so we obtain

27HI W = 1F Il <278 f(x) = Fy)] = 2771 f (%) = F(y)l- (65)
Finally, if j > i 4 2, it holds that

[F@) = fWI = 1f () = 1f ) > 2

By the definition of f;, we have

filx) = @)l <1< 2-277|f(x) = f(y)l- (66)

Combining the estimates (63)-(66), we conclude that (62) holds true and hence verifies the
claim (iv).

Now by and (i) through (iv), we know that some of the sums in (61) vanish. This,
together with (60), implies that

Caps,p,q(AkH/Q) < " sup/<1 |:<1<k]>k/ / E 2/ /

i>kj<k
+J;<// z>k/ /)|ka— \"*Sq)‘ ()dydx]q

= sup (I +Iz+13+14)7,
Hh‘ll(},/q)/ <1

By this and (58), we know that

kp A
/ T 30 ao 7 < CC: ¥ 27cap, (A, )

14 P P 14
<CG Y 2% sup 114+12a+13q+144).
K2 e <1
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We first estimate the sum corresponding to I;. By the properties (i)-(iv) again, we can
show that

s

CC Y. 2% sup T
KeZ  IIhll gy <1

BB, ]

i<kj>k*

<CG Y. 2k sup {
keZ HhHL(P/ﬂ)/Sl

=CC,  sup {Z / / 2-iq ‘f {;qu dydx}
||hH /<1 keZ i<kj>k I

P

q

L/
q
=CC, sup |: / / 2(k=))q |f J:Ers:);‘ h(x )dydx]
||}1H (/4 )/<1 i€Z j>i k=i ‘
Since 2 2(k=j)g < Z 2(k=j)q < 171274 and by g > 1, it is obvious that 1712,[, < 2. Thus,
k=i k=—c0
C, Y 2% sup L7
kez Mkl gpyqy <1
v p
1\« 1) = F)I7 7
§CC2< _> [/ (/ dy | h(x)dx
1-27 nhu >r<1 |"+”
p/q

P
‘l q ’ p/q)
<CC,  sup {/ (/ 1f(x) = fw)17 HS y)| dy)q dx} U h(x)(P/9) dx} w/a)
T | ! o
< CCz\fl;;,q( ),

which is desired. The estimates corresponding to I, I3 and I4 are similar, the details being
omitted. Thus, we conclude that

f(x)]” P
sy dx < 5 ,
o 70, a0y o < CCalf s, ()
which implies (i) by letting C; = CC, and hence completes the proof of Theorem 3. [
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Abstract: Assume that (X, d, j) is a metric measure space that satisfies a Q-doubling condition with
Q > 1 and supports an L2-Poincaré inequality. Let £ be a nonnegative operator generalized by a
Dirichlet form & and V be a Muckenhoupt weight belonging to a reverse Holder class RH;(X) for
some q > (Q +1)/2. In this paper, we consider the Dirichlet problem for the Schrédinger equation
—0%u + Lu + Vi = 0 on the upper half-space X x R, which has f as its the boundary value on X.
We show that a solution u of the Schrodinger equation satisfies the Carleson type condition if and
only if there exists a square Morrey function f such that u can be expressed by the Poisson integral of
f. This extends the results of Song-Tian-Yan [Acta Math. Sin. (Engl. Ser.) 34 (2018), 787-800] from
the Euclidean space R€ to the metric measure space X and improves the reverse Holder index from
7>2Qtog>(Q+1)/2.

Keywords: Schrodinger equation; Morrey space; Dirichlet problem; metric measure space

MSC: 35]10; 42B35

1. Introduction

The Dirichlet problem was originally posed for the Laplace equation. In such a case,
the problem can be stated as follows. Assume that () C R" is a domain and f is a continuous
map on 9€). Let us find a continuous function u satisfying

—Au(x) =0, xeQ,
u(x) = f(x), x € 0Q).

We call f as the boundary value of u. Here, —Au = 0 means that

/Vu~V¢dx:O
Q

holds for every smooth function ¢ on R" with compact support in (), where Vu is the
distributional gradient of u. For the upper half-space case, the study of the harmonic
extension of a function has become one of the elementary tools of harmonic analysis ever
since the seminar work of Stein-Weiss [1]. As we know, for any function f € L?(R") with
1 < p < o, its Poisson extension u(x, t) = VA f(x), (x,t) € R:’_H, which satisfies

1
(x,t) € R"H1,

fagu —Au=0,
x € R

u(x) = f(x),

In the study of singular integrals, a natural substitution of the end-point space
L*®(IR") is the space of functions of bounded mean oscillation (BMO). Fefferman-Stein [2]
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proved that a function f belongs to BMO(R") if and only if its harmonic extension
u(x, t) = e~V=Af(x) satisfies the following Carleson condition

i dat
su u(x, x— < oo,
p[Tf  hvunp 0
0 JB(xprs) f

XB/I'B

o 1 /
7{;(3(3,3)' |B(xB,78)| JB(xprp)

Later, Fabes-Johnson-Neri [3] found that the Carleson condition (1) actually charac-
terizes all harmonic functions u(x, ) on anl with BMO traces. Since then, the research
on this topic has been widely extended to various settings, including heat equations [4],
elliptic equations and systems with complex coefficients [5], degenerate elliptic equations
and systems [6], as well as Schrodinger equations [7,8]. We refer the reader to [9-13] and
the references therein for more information about this topic.

In this paper, we consider a metric measure space X, which satisfies a Q-doubling
condition with Q > 1, and supports an L2-Poincaré inequality. Let ¥ = L+ V be a
Schrodinger operator, where £ is a nonnegative operator generalized by a Dirichlet form &,
and the nonnegative potential V is a Muckenhoupt weight belonging to the reverse Holder
class. We study the boundary behavior of Schrodinger harmonic function on X x R.
Roughly speaking, we derive that a solution u to the Schrodinger equation

where

—2u(x, t) + Lulx, t) = —3%u(x,t) + Lu(x,t) + V(x)u(x,t) = 0

satisfies the Carleson type condition analogous to (1) if and only if there exists a square

Morrey function f such that u = etV f holds, where the square Morrey spaces L>*(X)
with —1/2 < a < 0 are defined by

205y 2 ) 1 s VP o
L <x>—{feqoc(x>-;g§ () < }

We refer the reader to Section 2 for more about the Dirichlet metric measure space,
the reverse Holder classes, the Muckenhoupt weight and the main result. We would like to
mention that, when X = R",if V € RHq(R”) for some q > n, Song-Tian-Yan [8] studied
the boundary behavior of Schrodinger harmonic functions. Our result covers more general
spaces, such as the Riemannian metric measure space, sub-Riemannian manifold; see [14]
(Section 7) for more details.

Regarding their proof, the condition V' € RHy(R") for some g > n is to assure that
there exists a pointwise upper bound for the gradient of the Schrodinger Poisson kernel.
However, even without the potential V, such bounds are not valid in general metric space
unless a group structure or strong nonnegative curvature condition is assumed (see [15,16]).
Indeed, for uniformly elliptic operators, the pointwise upper bound of the gradient of heat
kernel has already failed; see [14,17] for instance.

To overcome this difficulty, we adopt a Caccioppoli inequality for the Schrodinger
Poisson semigroup in a tent domain B(xp,75) x (0,7p) from [18], and hence the reverse
Holder index can be improved to g > (1 + 1) /2 in the case of Euclidean space setting. At
this moment, combined with more delicate analysis, we can remove the C 1-regulari’(y of the
Schrodinger harmonic function. Moreover, based on some new observations, we establish
a new Calderén reproducing formula, which plays a crucial role in our proof; see Lemma 6
for more details.

The paper is organized as follows. In Section 2, we begin with a brief overview of our
settings, i.e., the metric measure space with a Dirichlet form. Next, we recall the definition
of the reverse Holder class and the Muckenhoupt weight and finally state the main result
of this paper. In Section 3, we establish some properties for the Schrodinger harmonic
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functions, which satisfy Carleson-type conditions. In the last two sections, we prove the
main result.

Throughout the paper, we denote by the letter C (or ¢) a positive constant that is
independent of the essential parameters but may vary from line to line.

2. Main Result

Before stating the main result, we first briefly describe our Dirichlet metric measure
space settings; see [19-22] for more details. Suppose that X is a separable, connected,
locally compact and metrisable space. Let i be a Borel measure that is strictly positive
on non-empty open sets and finite on compact sets. We consider a regular and strongly
local Dirichlet form & on L?(X, 1) with dense domain 2 C L2(X, i) (see [20] or [21] for
an accurate definition). Suppose that & admits a “carré du champ”, which means that,
forall f,g € 2,T(f,g) is absolutely continuous with respect to the measure . Hereafter,
for simplicity of notation, let (V.f, V,g) denote the energy density % and |V.f|

denote the square root of %. Assume the space (X, i, &) is endowed with the intrinsic

(pseudo-)distance on X related to &, which is defined by setting

d(x,y) == sup{f(x) — f(¥) : f € Zhoe NC(X), [Vef| < 1ae},

where C(X) is the space of continuous functions on X. Suppose d is indeed a distance and
induces a topology equivalent to the original topology on X. As a summary of the above
situation, we will say that (X, d, u, &) is a complete Dirichlet metric measure space.

Let the domain 2 be equipped with the norm (||f||3 + &(f, f))!/?. We can easily
see that it is a Hilbert space and denote it by W?(X). Given an open set U C X, we
define the Sobolev spaces W*(U) and Wé’p (U) in the usual sense (see [22-24]). With
respect to the Dirichlet form, there exists an operator £ with dense domain Z(L£) in
L2(X,p1), 2(L) € WY(X), such that

/X LF(x)3(x)du(x) = £(f.g),

forall f € 2(L) and each g € W2(X).

We denote by B(x,r) the open ball with center x and radius r and set AB(x,r) :=
B(x, Ar). We suppose that y is doubling, i.e., there exists a constant C; > 0 such that, for
every ball B(x,7) C X,

H(B(x,2r)) < Cap(B(x,7)) < . @

Note that y is doubling implies there exists Q > 1 such that, forany 0 <7 < R < o0
and x € X,

Q
H(B G R) < o) (B,

and the reverse doubling property holds on a connected space (cf. [25] Remark 8.1.15 or [26]
Proposition 5.2), i.e., there exist constants 0 < n < Q and 0 < ¢ < 1 such that, for any
0<r<R<oandx € X,

r\n
u(B(x,1) < (%) n(B(xR)). ®)
There also exist constants C > 0 and 0 < N < Q such that

N
u(en) < (14 22 ) (i) @

uniformly for all x,y € X and r > 0. Indeed, property (4) with N = Q is a direct
consequence of the doubling property (2) and the triangle inequality of the metric d. It is
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worth pointing out that N can be chosen to be zero in the cases of Euclidean space, the Lie
group of polynomial growth and metric space with a uniformly distributed measure.

Suppose that (X,d, u, &) admits an L2-Poincaré inequality, namely, there exists a
constant Cp > 0 such that

(fir —fB|2dy)1/2 <con(f |vxf\2du)1/z, )

for all balls B = B(xg,rg) and W'2(B) functions f, where fg denotes the mean (or average)
of f over B.

We suppose that V is a non-trivial potential satisfying 0 < V € A (X) N RH,(X),
where the Muckenhoupt weight class A« (X) and the reverse Holder class RH;(X) are
defined as follows (cf. [27,28]).

Definition 1.
(i)  We say that a nonnegative function V on X belongs to the Muckenhoupt weight class Aso(X),
if there exists a constant C > 0 such that

-1
Vdu| inf V <cC
Slép]i : (ire‘s ) =

where the infimum is understood as the essential infimum or there exists constant 1 < p < oo

and C > 0 such that .
n n p7
Sup][ Vi (][ Vﬁdy> <C
B JB B

(i) Foranyl < q < oo, we say that a nonnegative function V on X belongs to the reverse Holder
class RHy(X), if there exists a constant C > 0 such that

. 1/q
(f qu}l) < C][ Vdyu,
B B

for any ball B C X, with the usual modification when q = .

When X = R", it is well known that Ac(R") = Ui<4<co RHy(R"). However, in gen-
eral metric measure space X, this relationship between the reverse Holder classes and the
Muckenhoupt weight may not hold; see [28] (Chapter 1). We point out that, if the measure
p on X is doubling and the potential V belongs to A (X), then the induced measure Vdu
is also doubling (cf. [28] Chapter 1).

Let us recall the definition of the critical function p(x) associated with the potential V
(see [29] Definition 1.3). For all x € X, let

o(x) := sup{r>0:r2][ Vdﬂ§1}~
B(x,r)

Since the potential V is non-trivial, it holds that 0 < p(x) < co for every x € X.
Additionally, by the results of Yang-Zhou [30] (Lemma 2.1 & Proposition 2.1), the critical
function satisfies the following property. If V € A« (X) N RHy(X) with 4 > max{1,Q/2},
then there exist constants kg > 1 and C > 0 such that, for all x,y € X,

1 d(x,y)\ 7 (1 46y
e o) (14 550 ) < pty) < o) (1440

ko/(ko+1)
> . (6)

In this paper, we consider the Schrédinger operator
L =L+V.
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Throughout this paper, we denote, by & = e VY the Schrodinger Poisson semi-
group associated with . and, by p?(x,y), the kernel of 2, = etV Due to the perturba-
tion of V, the Schrodinger Poisson kernel and its time derivatives admit the Poisson upper
bound with an additional polynomial decay (see [18])—namely, for any k € {0} UN and
K > 0, there exists a constant C = C(k, K) > 0 such that

t 1 t+d(x,y) K
t+d<x,y)u<3<x,t+d<x,y)>>(” o) ) '

o pf (x,y)| < C

For more results about the Schrodinger operator and their applications, we refer the
reader to [31-44].

Let us recall the definition of .Z; -harmonic functions on the upper half-space. A
function u € W2(X x R, ) is said to be an .#; -harmonic function on X x R, if, for every
Lipschitz function ¢ with compact support in X x R, it holds that

/ /3;uat¢d]/tdt+/ /(qu,vx¢>dydt+/ / Vugpdudt = 0.
0 X 0 X 0 X

Suppose —1/2 < a < 0. We define HL@%(X x Ry ) as the class of all %} -harmonic

functions u satisfying

dt
u o 1= Su tNVu(x, t 24 < oo.
lullze = SUp poopre (/ fo o 19D Pa) )

The definition of the Morrey spaces refers to [8,42,45]. For every —1/2 < a < 0,
the square Morrey space L>¥(X) is defined as

124 (x) o= {feLﬁ,c( ) sup e £ Pans ><oo}

This is a Banach space with respect to the norm

Il 1= s0p e < (f1rePants )”2,

The following theorem is the main result of this paper.

Theorem 1. Assume that (X, d, i, &) is a complete Dirichlet metric measure space that satisfies

the doubling condition (2) with Q > 1, and admits an L2-Poincaré inequality (5). Let 0 <V €

Aco(X) N RHy(X) withq > (Q+1)/2,and —=1/2 < & < 0.

() If f € L2%(X), then u(x,t) = Zif(x) € HL> (X x R.), and there exists a constant
C > 0, independent of f, such that

Ul 2« <C 2.
l ||HL@ A1

(ii) Further assume that max{—1/2,—1/2N} < a < 0. Ifu € HLfZ‘?(X x Ry ), then there

exists a function f € L>*(X) such that u(x,t) = 2 f(x). Moreover, there exists a constant
C > 0, independent of u, such that

20 < Cllut|| gy 20 -
1L [ ”HL\/E
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Remark 1.
(i)  In Theorem 1, we assume that the reverse Holder index q is not less than (Q + 1) /2. However,
the observant readers might notice that, in [29], Shen assumed that the nonnegative potential
V belongs to RHy (RR) for some q > Q/2. However, we consider the boundary value problem
of the Schrodinger equation
—u+Lu+Vu=0

on the upper half-space X x Ry. In order to make sure the above Schrodinger harmonic
Sfunction is Holder continuous on X x R, the critical reverse Holder index (Q + 1) /2 seems
to be the least condition via the natural extension V (-, t) := V(-) forall t > 0. One might
wonder if there is any possibility of relaxing the requirement q > (Q + 1) /2 in Theorem 1
to q > 1 together with ¢ > Q/2. From the initial value to the solution, this is ensured by
the Caccioppoli inequality for the Schrodinger Poisson semigroup; see Proposition 3 for more
details. To the contrary, from the solution to the initial value, this is an interesting problem to
be solved.

(i) The range of « in Theorem 1 (ii) is slightly different from that in (i). This assumption
—1/2N < a < 0 first appears in Lemma 3 below, which is caused by the time regularity of

HL%Z‘?-ﬁmction

[00u(x, )| < Clu(B(x, 1)) [[ullyy 20 -

vVZ
Since the pointwise upper bound of the time regularity of HL%Z‘?—function has to do with
the measure of some ball to the a power, the condition 2aN + 1 > 0 ensures the series in
Lemma 3 is convergent. In fact, for metric measure space X, the nonnegative parameter N
arises automatically if we want to calculate the ratio of the volumes of two balls with different
centers. However, this would not occur in the cases of Euclidean space, the Lie group of
polynomial growth and metric space with a uniformly distributed measure. We remark that
N can be chosen to be O under these settings, and hence the assumption —1/2N < a < 01is
superfluous.

3. Schréodinger Harmonic Functions Satisfying Carleson

In this section, we will establish some properties of HLf’/%-function.

Lemma 1. Assume the Dirichlet metric measure space (X,d,u, &) satisfies (2) and (5). Let
V € A (X) N RHy(X) for some g > max{1,Q/2}. If Lu = Lu + Vu = 0 holds in a bounded
domain Q) C X, then there exists a constant C > 0 such that, for any ball B = B(xp,rg) with
2B C Q,

i < € £ luldn
2B

Furthermore, u is locally Holder continuous in (), and there exists a constant
0 € (0,min{1,2 — Q/q}) such that, for any x,y € %B,

d(x, 0
) = uw)] = (Y ooy (1473 f v ).
Proof. For the proof, we refer to [18] (Proposition 2.12). [

Let us extend the potential V to the upper half-space by defining V(x,t) := V(x) for
all t € R. We can easily find that V(x,t) € Ae(X x R) N RHy(X x R) withg > (Q+1)/2,
if 0 < V(x) € Aw(X) N RHy(X) with g > (Q + 1) /2. Therefore, it follows from Lemma 1
that .2 -harmonic functions are locally Holder continuous on X x R .
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Lemma 2. Suppose the complete Dirichlet metric measure space (X, d, u,&) satisfies (2) and

(5). Let 0 < V € Aw(X) N RHy(X) with g > (Q+1)/2. Ifu € HLY (X x Ry) with

—1/2 < & <0, then there exists a constant C > 0 such that, for all x € X and t > 0,
[tosu(x,t)] < Clu(B(x,£))]"[[ullyg 20 -
VZ

Proof. Lete > 0. Given —e < h < ¢, forany x € X and t > ¢, set

u(x, t+h) —u(x, t)

u(x, t;h) == A

It follows that u(-, -; i) is an £ -harmonic function on X X (€, 0); see the proof of [18]
(Lemma 4.1).
Then, by the mean value property in Lemma 1, we conclude that, for any t > 2¢,

3t/2 1/2
lu(x,;h)| < C ][ ][ u(y, s; h)|*dsdu(y) , )
B(x,t/2)

which, combined with the argument in the proof of Jiang-Li [18] (Lemma 4.1), yields, for
each t > 3¢, that

2t 172
zds

|tu(x, t;h)| < c(f [ssu(y, s)] d;t(y)> .
JB(x2t) Jo s

This implies that, for each t > 3¢,
83¢u(x, )] < Clu(B(x, )] [l
vz

Letting € — 0 indicates that the above estimate holds for every t > 0. [

Lemma 3. Assume the complete Dirichlet metric measure space (X, d, u, &) satisfies (2) and (5).
Suppose 0 <V € Aw(X) N RHy(X) with g > (Q +1)/2,and max{—-1/2,-1/2N} <« <O0.

Ifue HLZ\Z‘?(X x R, then there exists a constant C > 0 such that, for any x € X and t,e > 0,

Ju(y, )2
RS TR S L)

<C(+ til)Hu('re)||2w(3(x,2)) +C([u(B(x, 1)1 + N [u(B(x,€)))? )HHHHLf/L

Proof. By Lemma 1, u(+, -) is locally bounded and locally Holder continuous in X x R.
The integral is split into B(x,1) and X\B(x,1). For the local part B(x, 1), it holds that

ey, ) c
./B<x,1> T A RB G, T E d gy ) < GO maien

For the global part X\B(x, 1), by the annulus argument, we have

/ u(y,€)?
x\B(x,1) (E+d(x,y))u(B(x,t +d(x,y

co 2
C 2_f7[ 7[ u(y, e)|*d ds
Z Ay LRI )

< CZZ 17[ lu(y,€) —u(y,s)[*du(y)d s
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+CY 277 4 lulys) g Pap(ds + € Y27 ug P
=1 Ej j=1
=Ch+L+1),

where we denote the cylinder B(x,2/) x [2/~1,2/) by E; for simplicity.
For the term I, it holds by Lemma 2 and —1/2N < « that

1 s 2
/ oru(y,r)dr
Ejl/e

< Clullyze 27 ([l ) s

j=1 j
<l o S 2 B 1))]2“+(21)
- HL\}?]':] €

< C([u(B(x, )2 + 2N [u(B(x,e))|*) i1z

du(y)d s

ol .
L=) 27
=1

—2Nu

[V(B(xle))]”}

Above, in the second inequality, we used the fact that
/S[V(B(y,r))]“—

< [ B (xi0z(€) + X )
< [ B Lo + [ BT

€

SC{/:o<£>n“[H(B(y/6))]a7rxm,2,;1)(e)+/2: (%)M[y(l;(ylzj—l))]a?}

—Na —Na
sc{(ud("e’”) (B ) gy e)+ (14 75 [y(B(x,zfm“}

2/-1
oj —Nu
< c{wB(x,l))]“ +(%) [y(B(x,e)n“}.

Now, we put us(-) := u(-,s). For the term I, we use the Poincaré inequality to
deduce that

2 2
I, <2Zz 1<][ 1][)(2] ,5) — () (e, ‘ duly ds+][ | @982 — 15| ds)

2 2 2
< CZZ i 2% ][ [Vyu(y,s | du(y ds—i—f ‘(us)B(x,Z,) —uE,‘ ds|.  (8)
2i=1 JB(x,2)) 1

By the Holder inequality and the Poincaré inequality, it holds that

2/ 2
]ﬁ (MS)B(X,Z/') - qu) ds

-1
2 | p 2,

~ £ s £ uw i
2j-1 B(x,ZJ) 2/=1 JB(x,2)

2

Fof s —unintar| ds

21 JB(x,2))

2
ds

]il
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S][ . 7[ 7[ ) — uly, r)|drdsdu(y)
B(x,2/) J2i=1 J2i
< CZZJ]L ][ |9s1(y, 5) stdy(y).

x2!

This, together with (8), gives that

12<c22 1221][

2/1][ [Vu(y,s)[Pdu(y)d s

2
<cy 2t [ f sVl Paun
=1 Jo  JB(x2) S

<C Z’f[u(B(x,Zf))]z“Hu\lfﬂzﬂ
j=1 vz

< CluBG, )P ul? 5 -

< Clu(B(x, 1))1*| ”HL3§

As Ej = B(x,2/) x [2/71,2/),itholds Ej, Ej4q C B(x,2/™1) x [2/71,2/"1) =: F; ;. For

the term I3, one writes

. 2
00 X ]
b < $529{ue + K~
=1 i—2

. 2
) . ]
<) 27 <|(u —u(-, ), |+ lu( €)llop)) + Y (Iug, — ur| + lug, — uE,-l)> .
j=1

i=2

It follows from the Poincaré inequality that

. 1/2
lug, —up| + |ug, —ug,_,| < C(]ﬁ;z ]i(x,zi)}u(yls) - ”Fizdﬂ(y)d5>
2i
< C(fz,-z ]ﬁ(x/zi))u(y/S) = (Us) p(x27)
i 5 1/2
+C <]§_2 (1) p(x,2i) — upi’ ds>
172
<c (75 ]‘ IVu(y,s)] dﬂ(y)d5>

2 2 ds 12
< c( [ A dﬂ(y)s>

< C[H(B(X,Zi))}“\lullHszag

< C[ﬂ(B(xfl))]“\\u\lHL%,

and from Lemma 2 that
= u(ee| < u(y,5) — u(y, ) dp(y)ds
B(x,2

)x[L2)
/ oru(y,r)dr

<,
B(x,.2)x[1,2)
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S

LAr
< Cllllgze 1. (B I ()
VZ JB(x2)x[1,2) | /e r

C([u(B(x, 1))]* +eN*[u(B(x, e))]“)llul\Hszj (10)

Here, we used the fact that

’/ [n(B(y,7) ’g (/j[ﬂ(B(y,r))]“?Jr/lw[y( " d:)
([ O wewerT + ["rweenry)

< C(eM[u(B(x,€))]* + [u(B(x, 1))]").

The above two estimates (9) and (10) yield that

IN

L<C ZZ’fIIu(vé)H%w(B(x/z))
j=1

) . 2
e Zz-f([u(B(m))J“HuHH% (B ) 2 )

j=1
2 2 2 2N« 20 2
< C(11,€) B agezy + (Bx, 1) e+ (B )P el ).
In combination with the estimates of I}, I and I3, we obtain the required conclusion. [
Lemma 4. Suppose the complete Dirichlet metric measure space (X,d, u, &) satisfies (2) with

Q > land admits (5). Let 0 <V € Aoo(X) N RHy(X) with q > (Q +1)/2. Assume that wis a
solution to (—97 +.£)w = 0 on X x R. If there exists m > 0 such that

lw(y, t)[*
/ / 1+t+d x y))m+l ( (xllther(x’y)))dﬂ(y)df<°°,

then w = 0.
Proof. For the proof, we refer to [18] (Corollary 4.5). [

Proposition 1. Suppose the complete Dirichlet metric measure space (X, d, u, &) satisfies (2) with
Q > 1and admits (5). Let 0 <V € Awo(X) N RHy(X) with q > (Q +1)/2. Assume that

ue HL%/’L(X x Ry ) with max{—1/2,—1/2N} < a < 0. Forany x € X and s,t > 0, it holds
that
u(x, t+s) = Z¢(u(-,s))(x).
Proof. Foreacht > 0, let
o(x,t) == u(x, t+s) — P(u(-,s))(x).

As u(-, - +s) is Holder continuous on X x (—s,00) and u(+,s) is Holder continuous on
X, we see that

v(x,0) := tl_i}rgh v(x, t) = tlﬁi%‘i{u(x,tJrs) — P(u(-s))(x)} =0.
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We extend v(x, t) to X x R as

o(x,t), t>0;
0, t=0;
—ov(x,—t), t<O0.

w(x, t) :

Then, w is a solution to the Schrodinger equation (—9? +.%)w = 0 on X x R. We fix
a point yp € X. By Lemma 4 and the fact that w is odd with respect to t, it is sufficient to
show that there exists m > 0 such that

|w(x, )2 .
/0 /x T+t +d(x,y0))" T u(B(yo, 1+t + d(x,yo)))du(x)dt < o0,

By Lemma 3, we have

lu(x,s +t)]?

/0 /X(1+t+d(x,y0))m+1‘u(3(y0,1+t+d(x/y0)))dy(x)dt

1 [u(x,s +t)|?
- /0 1+ /x (T 40, 30)(Blyo, 1 + dCx,yo))) !
SC/o ﬁ””("s”)H%m(B(yo/zndf

00 1 . ) )

€ [ g (B0 P+ G5 0N (B, s+ 12)||u||HL3L}dt
<<}, W“”( 5+ )l )

0 [ ] (1B t0, )P + (B0 ) Il

It follows from Lemma 2 that

l[urs + )l (Byo2)) < (s +8) = ul )l n

s+t
/ 1By (-, )| dr
s L (B(y02))

2 —Nu«
<14 2) B0 P ulze + ) oo
= C(a, N, yo,s, ||u « o
(08,05, gz, 0G5 02

B(yo2)) T 1110 8) [l (B (y,2))
<

+ [ (- 5) Lo (Byo.2))

Above, we used the fact that

s+t s+t

dr
sup [0u(x,r)|dr < C  sup (B, ) | g2 —
x€B(yp2) /5 x€B(yo2) /s vz’
® sy na dr
<C sup ((Bx, )" lull g2 —
eB(yo2) Is (s) HLU = r

—Na
<c(1+2) B0 luliz,

Therefore, one has

|u(x,s + )|
/0 /x (4 E a0, y0)) ™ (Blyo, 1+ £+ (e, yo))) 0%

©dt
< ., w -
<O N5 [l gz I, lemoo) |y
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C(a, N,vyo,s, ||u & o < oo, 11
(a,N,yo,s, || HHLz@ (-, 8)1 (B (yo,2))) (11)

provided m > 1.
For the remaining term, we need to prove that

=" |22 (u(-,s))(x)? .
I.—/O /X (1+t+d(x,y0))m+1]4(3(yo,l+t+d(x,y0)))dy(x)dt< .

By the Poisson upper bound and the Holder inequality, it holds that, for all f > 0

tu(y,s)?
2NN < clz ‘/ (t+d(x,y))u(B(x,t+d(x,y )))dy(y)
Hu(y,s)?
- C/x (f+d(x,y))u(B(x,t+d(x,y)))d”(y)-

Hence, we have

i 1
= C/o /X/x A+ t+d0%,y0) " H(Blyo, 1 + £ +d(x0)))

y Hlu(y, )
(t+d(x,y)pu(B(x, t+d(x,y

{/ ///odyyo /2) / //yodjyo /2)t } - dp(x)dp(y)dt

=11 + .

% dp(x)du(y)dt

For any x € B(yo,d(y,y0)/2), we have d(x,y) > d(y,vo) — d(x,y0) > d(y,v0)/2.
Hence, by (4) and Lemma 3, we have

w Hu(y, s) 2
R A el R e e i s L)
X/ dp(x)
(05 o Bl 5057
Hu(y, )2
<C/ Ll e s e e L)
<c/ ”ul+t‘)|§l°° (v02)) g4
(B D)l 2 + PN (B (o, s)) 2 ]2 o,
el o e

< C(a,N,yo,s, ||u o S < o0,
< C(a, N,yo,s, || HHLz@ [l1C ) [l Lo (B(yo,2))

provided m > 2. For any x € B(yo,d(y,v0)/2), we have d(x,yo) > d(y,o)/2. This,
together with Lemma 3, yields that

|u(y,s)[*du(y)
Izgc/o (1 +t)m / (1+d(y,yo))ﬂ(3(yo,1+d(y1yo)))
X (x

/B<yo,d<y,yo>/2)D (f+d(x,y)) (B(x,t+d(x,y)))

p— Ju(y, )P
<€ |, o T s o
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2z + LB, DI + N (B, )P Hlul?
=€ / A+nm e

< C(a, N, yo,s, o, o < 0o,
< C(a,N,yo,s, ||u HHLz@ 1 s) e (Byo.2)))

provided m > 1. Therefore, it holds that

|24 (u(,5)) (x)*
du(x)dt < oo,
J a1 g O <
which, together with (11), yields that

|w(x, )2 .
/0 /X(1+t‘*‘d(xzyo))"’“;t(B(yo,l+t+d(x,y0)))dy(x)dt< ,

provided m > 2. The Liouville theorem (Lemma 4) then implies w(x, t) = 0, which means
u(x, t+s) = P2(u(-,s))(x) and thus finishes the proof. [

Next, for every u € HL%’/%(X x Ry ), we will show that us(-) = u(-,s) is bounded in

L>*(X) uniformly for all s > 0. To this end, we introduce a notation

dar\'?
gl = sop e ([ f s Pao )
for any

feMo= ) U LAX (1+d(x,x0)) Pu(B(xo,1+d(x,x0))) 'du(x)),

XpEX 0<B<1

and establish Lemmas 5-7 as follows.
Lemma 5. Assume the complete Dirichlet metric measure space (X,d, u, &) satisfies (2) with
Q > 1 and admits (5). Given a ball B = B(xp,rp), a function f € My and an L2-function g
supported on B, set

F(x,t) :=t0: 2 f(x) and G(x,t) = t9;2g(x),

forany (x,t) € X x Ry I [luw, £, < oo, then there exists a constant C > 0 such that

i dt
| [ G 0G G DT < B gl gl iz

Proof. Let us consider the square function G(h) given by

Gh)(x) = (/O'oo\tat%h(x) 2%”2.

By the spectral theory, the function G (k) is bounded on L?(X). Let
T(B):=={(x,t) e XxRy: x€B,0<t<rg}=Bx(0,rp),

and write
°° dt
| [ Fncenia §
0 X

dt
- /T(zB) [F(x, )G (x, B)ldp(x) - + 5

/ dt
k=2/ T(2"B)\T(2*'B)

[E(x, )G (x, £)ldp(x) 5
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= A] =+ 2 Ak~
k=2

Using the Holder inequality and the L?-boundedness of G, we obtain

1/2
2rp At
A < (/0 /ZBtar%f(X)lzdﬂ(x)t> IG()llz2 < Clu(BI > lluw, 1l gl 2(5)

Let us estimate Ay for k = 2,3,.... Note that, for any (x,t) € T(2XB)\T(2*"!B) and
y € B,we have t +d(x,y) > 2k=2pp Tt holds

1G6x, 1)1 = | [ rp? 5, )50) ()|

t o
< [ ity ey )
t 1g(y)l
<€ [ s 1B 2 )
t HgHLl(B)
2rg u(2B)

which, together with the Holder inequality and (3), implies that
/ P0G )l d(x) ]
T(2kB)\T(2k-1B)

ZkrB 2 At 1/2
<c( [ maf@PwmT) sl
0 2kB

< Clu@B)* v, 18l sy
< 2 [u(B)]V 2 [l £l 18l 2 sy

Summing over k leads to

dt

/ / PG DI § = 1 A < Bl 1, I8l

This completes the proof of Lemma 5. [

Lemma 6. Assume the complete Dirichlet metric measure space (X,d, u, &) satisfies (2) with
Q > Land admits (5). Suppose B, f, g, F, G are defined as in Lemma 5. If [|[uv, ¢, < oo, then we

have the equality:
/f x)dp(x —4/ / (x, £)G(x, t)dp(x )dt

Proof. From Lemma 5, we find that

/OOO/X|F(x,t)G(x,t)|dy(x)? < oo,

By the dominated convergence theorem, the following integral converges absolutely
and satisfies

1/6
/ /F(x, (x, £)dp(x )ﬂ_mn 5 /Xp(x,t)c(x,t)dy(x)#
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Next, by the commutative property of the semigroup { % }+~o, we have

J FenGE ) = [ F0)P2 Zugin(x)
This, together with Fubini’s theorem, gives

dt

00 dr ) 1/6 o 2
/O /XF(x,t)c(x,odu(x)T: oy /Xf<x>t 2 Pug(x)dn(x)

1/6
—tim [ f(x) /5 tzg%tg(x)?dy(x)

=0 Jx
) s, dt
= hm/ fl(x)/ 2L Pog(x) —du(x)
0—0Jx 5 t
e, dt
+ lim / f2(x) / 2L Pog(x)—du(x)
=0 Jx ) t
=11+,

where f1(x) := fxap(x) and fo(x) := fX(4B>C(X).
We first consider the term I;. It follows from the spectral theory that

1/e dt
g(x) =4lim PYLPyg(x)—
6—0J5 t

in L2(X). Hence, it holds

1/0 .
b= tim [ A [ A2 zugoTdut) = § [ AGstdnc)

0—0

In order to estimate the term I, we need to show that, for any x € (4B)E, there exists a
constant C = C(xp,rp) > 0 such that

<cC ||g||L2(B)

s = (Ut d(x,xp))pu(Bxp, 1+ d(x,x5)))’

6>0

v, dt
: trf,@ﬂg(x)T (12)

Recall that supp g C B. For any x € X\4B and y € B, we have
3d(x,xp)/4 < d(x,y) <5d(x,xp)/4
Hence, it follows from the Poisson upper bound and (6) that, for any ¢ > 0,

‘t2$§”2tg(x)’

2t 1 2t +d(x,y)\
R e o] G

2

; ko/(ko+1)
1 p(xs) (1 * P(’Za))

t
SC/B (5, x5)) (B, [+ (%, %)) Fd(x,xp) 8()ldp(y)

t
£+ d0x, x5) Pu(Blxp, £+ d(x, 2p))) 1 S111(®)
8125 t
(1+d(x,xp))u(B(xp, 1 +d(x,xp))) (t+d(x,xp))?

< C(x,7B)

< C(xp,rB)
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The above estimate, together with the fact

* t dt I
T de a2 = ————— < C(rg) <
/0 (t+d(x,xp))? t _/0 (t+rp)? = (rp) < oo

yields that

dt

e 2 ¢ dt “ 2 g
: tf<@2fg(x)7 < A ‘t f;@ﬂg(x)‘T

||8HL2(B)

= OO 4 a, 0) ) (B, 1+ A, 35)))

Accordingly, (12) follows readily. Now, we estimate the term I,. Since f € My,
the estimate (12) yields that

sup
6>0

1/0
| [ tzwmgmdf'du(x) < Clgxnra) < o0

This allows us to pass the limit inside the integral of I,. Hence, we conclude

btim [ 200 [ R2pag %t = L [ poswan.

Combining the previous formulas for I; and I, we complete the proof. [

Recall that we set us(-) = u(-,s) for any s > 0.

Lemma 7. Suppose the complete Dirichlet metric measure space (X,d, u, &) satisfies (2) with
Q > 1and admits (5). Let 0 <V € Aw(X) N RHy(X) with g > (Q 4 1)/2. Assume that u €

HLf/"L(X x Ry) withmax{—1/2,—-1/2N} < a <O0.

Then, there exists a positive constant C such that, for every s > 0,

v uslll, < Cllul\Hszj

Proof. Let B = B(xp,7p). It holds by Proposition 1 that

R </ JACE, d”dt)m:ﬁw 7[“*’”‘y't+5)‘2d”‘y)dt)1/2'

If rg > s, by the doubling property (2), we have that

[% ([ frorapat)”
< /+/+ |tvu(y, ) Pdu(y) )
- [u(zCB)]</2 1, oty o auty )"”)

< C|lu 2 -
H HHL\/”‘?

/2
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Otherwise, rp < s, Lemma 2 together with elementary integration implies that there
exists a positive constant C independent of 73 and s such that

[;4(%(/7B 7[|tatgms|zdy?)1/z
,[y (/ 7[ DAY y,t+s))]2a”uHHLu it >1/2

< s ([ ) ot wt)

< Cllu|lig20
” HHL\/%

which, together with the case rg > s, means that
”WV:,LIS H'a < C”u”HLf}%f
which thus finishes the proof. [

Proposition 2. Suppose the complete Dirichlet metric measure space (X, d, u, &) satisfies (2) with
Q > 1and admits (5). Let 0 <V € Aco(X) N RHy(X) with q > (Q+1)/2. Assume that

u e HL%/‘L(X x Ry) with max{—1/2,—-1/2N} < a < 0. Then, for any s > 0, we have
us € L>*(X) and there exists a constant C > 0, independent of s, such that

Us|lp20 < Cllul|iyr2a -
llsl[ 20 < C| HHL;?

Proof. Since u € HLf/”L(X x R), it follows from Lemma 3 that us € M;. Given a ball
B C X, for any L? function g supported on B, it follows from Lemmas 5, 6 and 7 that

‘/ usgdy‘ —4‘/ / 10 Pl tat,}’tgdyd

< CluBN > 11wl 181 12(5)
<C 1/24« .
< Clu(B)] 7 ||HL2¢§H8HL2(B)

This together with the L2-duality argument shows that

g () = e e[

HgHLZ(B)Sl

<C sup lullg2e ligllizs) < Cllullg2e -
Igl25)< HLY (B) HLY

Then, by taking the supremum over all the ball B, it holds that
Us|| 20 < Cllut][ 524
lsllze < Cllllgg2s

which completes the proof. [

4. From Initial Value to Solution

In this section, we will show that every Morrey function f induces a Carleson type
measure |V, f|?dudt. In order to estimate the space derivation part t|V 2 f|?dudt,
we introduce a result of Jiang-Li [18] (Proposition 5.2), which establishes a Caccioppoli
inequality for the Schrodinger Poisson semigroup in a tent domain B(xp, rg) X (0,7p).
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Proposition 3. Suppose the complete Dirichlet metric measure space (X, d, u, &) satisfies (2) with
Q > land admits (5). Let 0 < V € Aeo(X) N RH,(X) with q > max{1, Q/2}. Assume that g
satisfies for some y € X that

/ g (x)]
x (1 +d(x,y))u(B(y, 1+d(x,y)))

Then, for any ball B = B(xp, rg), it holds that

dp(x) < co.

B dt 2rp ) dt
[ [vzsPan <c [ [ (18ggl|zig+ | 2P )anT

Theorem 2. Assume the complete Dirichlet metric measure space (X, d, u, &) satisfies (2) with
Q > 1and admits (5). Let V € Aoo(X) N RH,(X) with q > max{1, Q/2}. If f € L2*(X) with
—1/2 <a <O, then u(x,t) = P f(x) € HLZ\Z‘?(X x Ry ). Moreover, there exists a constant
C > 0 such that

HM”H]%;\§ < C”fHLZ'“'

Proof. For any ball B = B(xg, rp), it holds that

B ) dt 1/2 ) g dt 1/2 )
([*frvosead) < ([ frvzatad) = L
0 JB k=1 \JO JB k=1

where f1 := fxap and fi 1= fxprp g fork € {2,3,4,... 1.
For the term J;, we apply the L>-boundedness of the Riesz operator V.2 ~1/2 to obtain

that
i dr\ /2 1 [ , dr\/?
IV 2P 7) < (—/ / VP fi7d 7)
(/0 ]i' il " #(B) Jo Xl il "
L e N PP 172
< (227 =
<<y | [ vZrAras)

1/2
< c(ﬁ / \fwu)
< Clu(B)* e

Since f; € L>*(X), it is easy to see f; € M,. Hence, f; satisfies the requirement in
Proposition 3, which implies that, for any k € {2,3,4,...},

1/2
el dudt
Jk<C</O ]ﬁB(ltat%ko\tza%gz,fkn%m+|%fk\2)‘yt ) '

Then, for any x € 2B, we apply the Poisson upper bound to obtain

|21 fi(0)] + [0 e fi(x)| + |20 P fi (%)

‘ )
=€ Jcrpas (E+d(xy)) 1(Bx, £+ d(x,y)))

<crti ) ) ldnt)
¥YB Jok+lp

Yy
<2 kE[V(Zk“B)}“IIfHLM

< CT%[V(B)]“HfIIsz

du(y)
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which yields
Te < C27F[u(B)]*|fl 2a-

Hence, it follows that

1 B ,, d\V? &
% o = SUp —— / ][ tV 2 fled —) < <C .
12z, = s0p e ([ f v sPan) < S < il

BCX
This completes the proof. [

5. From Solution to Initial Value
In this section, we will show that, for every function u € HL%’/”‘?(X x R.), thereis a
function f € L**(X) such that u(x,t) = 2 f(x) with the desired norm control.

Theorem 3. Suppose the complete Dirichlet metric measure space (X, d, i, &) satisfies (2) with
Q > 1 and admits (5). Assume 0 < V € Ax(X) N RHy(X) with ¢ > (Q+1)/2, and
max{—1/2,-1/2N} < a« < 0. Ifu € HL%Z‘?(X x Ry), then there exists a function f €
L**(X) such that u(x,t) = P f(x). Moreover, there exists a constant C > 0, independent of u,
such that
o < Cllu -
1122 lllgaeze

Proof. Without loss of generality, we may assume g > (Q + 1)/2 because of the self
improvement of the RH,(X) class. Suppose u & HL%Z‘?(X xRy). Forany 0 < € < 1,

by Proposition 2, we have
u 2,0 S Cllu 20 . 13
” E”L H HHL = ( )

Next, we will fix a point xg and look for a function f € L?*(X) through L2(B(xo,2/))-
boundedness of {u} for each j € N. Indeed, for every j € N, we use (13) to obtain

[ JueoPdn(e) < Clu(Bxo, 212l
B(x0,2)) vz

which implies that the family {u¢(+) }o<e<1 is uniformly bounded in L?(B(xg,2/)). Then, the
Eberlein-Smulian theorem and the diagonal method imply that there exists a sequence e, —
0 (k — o) and a function g; € L?(B(x0,2/)) such that ue, — gj weakly in L2(B(xo,2/)),
for any j € N. Now, we define a function f(x) by

f(x) =gj(x),

if x € B(xg,2/),j = 1,2,.... Itis easy to see that f is well defined on X = Ua B(xp,2/).
We can check that, for any ball B C X,

[ 1) Panc) < ClB >l

which implies that
20 < Cllu 20 .
HfHL o H HHL o

Finally, we will show that u(x,t) = 2 f(x). By Lemma 1, we know that u(x,-) is
continuous on R ;. This together with Proposition 1 yields that

u(x,t) = kgrfw u(x,t+ex) = kEToo P, (x).
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This reduces to verify that

Im Pue, (x) = Pif(x). (14)

k—+o0

Indeed, we recall that py (x, y) is the kernel of #, and for any ¢ € N, we write

Pty (x) = / PPy (9) () + / P2 (%, )ik, (1) Ap(y).
B(x,2¢t) X\B(x,2(t)

Using the Poisson upper bound, the Holder inequality and (13), we obtain

I L)
X\B(x,20t)

x,2i+1t)

<c i;z*’ ]ZB( lite, (1) (y)

<C 52*"[;4(3(3(, 2'1))]* ey | 2
= CT&[M(B(%t))]“I\MHHsz?,

where C is a positive constant independent of k. One has

0< lim lim

[ e i)
X\B(x,20t)

{—+00 k—+o0
< lim C2 “u(B(x, 1))]* . =0.
< lim €2 [u(Bx, D))"z
Therefore, it holds that
lim £ =1 li ?(x, d = ,
Jm Pue (x) = Lm | lim b(e2t) pi (x,y)ue (y)du(y) = Z:f (x)

which yields (14) readily. Then, we show that
u(x, t) = P f(x).
The proof of Theorem 3 is complete. []

6. Conclusions

In this article, we solved the Dirichelt problem for the Schrédinger equation on the
metric measure space. We obtained that a Schrédinger harmonic function satisfies the
Carleson type condition if and only if it is the Poisson extension of a Morrey function. This
continues the line of research on the Dirichlet problem with boundary value in L space
and BMO space, extends the result in Song-Tian-Yan [8] from the Euclidean space to the
metric measure space and improves the reverse Holder index fromg > ntog > (n+1)/2.
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