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1. Introduction

The importance of evapotranspiration is well-established in various disciplines such
as hydrology, agronomy, climatology, and other geosciences. Reliable estimates of evapo-
transpiration are also vital to develop criteria for in-season irrigation management, water
resource allocation, long-term estimates of water supply, demand and use, design and
management of water resources infrastructure, and evaluation of the effect of land use and
management changes on the water balance.

The objective of the Special Issue “Advances in Evaporation and Evaporative Demand”
was to define and discuss several related terms, including potential, reference, and actual
evapotranspiration, and to present a wide spectrum of innovative research papers and
case studies.

In this Special Issue there were eleven contributions that tackled the aforementioned goals.

2. Contributed Papers

The articles in this Special Issue address a wide variety of topics reflecting the chal-
lenges mentioned above ranging from urban hydrology to global evapotranspiration
modelling:

The paper “Determinants of Evapotranspiration in Urban Rain Gardens: A Case
Study with Lysimeters under Temperate Climate” [1] by Ahmeda Assann Ouédraogo,
Emmanuel Berthier, Brigitte Durand and Marie-Christine Gromaire explores ET in urban
rain gardens, a topic receiving more and more attention from both rain garden designers for
a better consideration of ET in their designs and hydrology researchers for a more accurate
description of the flux in the urban context. The city of Paris has instrumented eight rain
garden lysimeters to obtain a better understanding and prediction of their hydrological
behavior. In order to extrapolate on real situations, experimental rain gardens of reduced
size and well-known structures were designed. Monitoring was carried out with lysimeters,
i.e., mechanisms that enable the water balance components (exfiltration, water storage, etc.)
to be observed, with measurements made by weighing variations in water content of the
lysimeter. The aim was also to test different vegetation configurations and internal storage
options, and to implement replicas in order to test the validity of the measurements. Thehe
purpose of this study consists of three main points: estimating the actual evapotranspiration
(ET) of these rain gardens at daily steps; assessing the impact of different configurations
on ET fluxes; and comparing the actual ETs obtained from the lysimeters with reference
to ET values, such as evaporation, from a pan evaporimeter and some models taken from
the literature. The seasonal dynamics and the relative significance of each determinant of
ET in the rain gardens were highlighted and the results could be used to investigate the
modelling of hydrological processes in urban rain gardens.

The paper “Stochastic Analysis of Hourly to Monthly Potential Evapotranspira-
tion with a Focus on the Long-Range Dependence and Application with Reanalysis
and Ground-Station Data” [2] by Panayiotis Dimitriadis, Aristoteles Tegos and Demetris
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Koutsoyiannis, explores the stochastic structure of the potential evapotranspiration process,
ranging from hourly to climatic scales, in terms of Hurst–Kolmogorov (HK) dynamics,
which describes all the processes exhibiting the Hurst phenomenon (i.e., with a power-law
autocorrelation function at large scales). They focused on the marginal structure of the PE
process as fitted through the Pareto–Burr–Feller distribution. Both marginal and second-
order dependence structures of the HK dynamics were estimated and compared to the ones
identified from global-scale analyses in other key hydrometeorological processes that form
the hydrological-cycle path driven by atmospheric turbulence, such as temperature, wind,
solar radiation, and relative humidity. It was found that both the marginal probability dis-
tributions of PEV and PET are lighttailed when estimated through the Pareto–Burr–Feller
distribution function. Additionally, the long-range dependence of both the PEV and PET
was found to be of moderate strength, quantified through a Hurst parameter of 0.64 and
0.69, respectively. Both PET and PEV can be placed between the stochastic structures of
temperature, relative humidity, solar radiation, and wind speed (i.e., strong LRD and light-
to medium-tail) and the precipitation’s structures (i.e., weak LRD and heavy tail).

The paper “Precipitation and Potential Evapotranspiration Temporal Variability
and Their Relationship in Two Forest Ecosystems in Greece” [3] by Stefanos Stefanidis
and Vasileios Alexandridis, aimed to investigate temporal variability and detect trends in
drought conditions in two different types of forest ecosystems using long–term timeseries
meteorological data from mountainous meteorological stations. For this purpose, the
ratio of precipitation to potential evapotranspiration was used as a proxy indicator for the
evaluation of drought conditions at different timescales (annual/seasonal). The Mann–
Kendal and Sen’s slope methods were applied in order to evaluate the significance and
magnitude of the tendency, and to identify the time of abrupt changes. The results indicated
that humid conditions prevail in both forest areas and that dry conditions occur in summer.
The examined parameters present significant variability between seasons, following the
Mediterranean climate pattern. The trend analysis showed that the reported upward
and downward trends in Aridity Index are, in general, statistically insignificant, and the
magnitude of the trend is considered negligible.

The paper “Evaluation of Evaporation from Water Reservoirs in Local Conditions
at Czech Republic” [4] by Eva Melišová, Adam Vizina, Martin Hanel, Petr Pavlík and
Petra Šuhájková, aimed to explore the relationships for the calculation of evaporation from
water surface in the Czech Republic using reanalyzed climate data and the constructed
linear models (LM) and random forest models (RFM) for the calculation of evaporation.
The main objective of the evaporation estimation from the water surface was to derive
a universal relationship for the whole territory of the Czech Republic. The derivation
of the relationship for evaporation was based on the multiple linear regression method,
where the values of the dependent variable (evaporation) were sought, based on two or
more variables (predictors: air temperature, surface temperature, wind speed, surface net
solar radiation, dew point, surface pressure, dew point, altitude, latitude, longitude and
calculated humidity). The construction of the models was performed (i) manually, where
the evaluation was perfomed using the AIC parameter and the quantile–quantile was used
for visual diagnostics, (ii) using stepwise regression, where the predictorswere entered
sequentially and models from one to X-selected variables were generated. Random forest
regression was used to account for non-linear relationships. Linear and random forest
regression models were cross-validated and evaluated using criterion functions (R2, RMSE,
MAE and RERR). Finally, 3(+1) LM models and 3 RF models were selected. It turned out
that geomorphological information (elevation and location) appeared more in the manually
derived models than in the to models constructed using the stepwise regression method.
In the comparison between linear models (LM) and random forest models (RFM), LM was
found to have much more variability in the outcome compared to the RFM. Among the
best models that were evaluated by linear regression, models LM1 from the manual linear
regression group and LM12 from the stepwise regression group were used. Model LM1
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was selected as the best model among the six predictors. The LM1 model can be replaced by
an alternative model LM12 which also performed satisfactorily in terms of four predictors.

The paper “Integrating Drone Technology into an Innovative Agrometeorological
Methodology for the Precise and Real-Time Estimation of Crop Water Requirements” [5]
by Stavros Alexandris, Emmanouil Psomiadis, Nikolaos Proutsos, Panos Philippopoulos,
Ioannis Charalampopoulos, George Kakaletris, Eleni-Magda Papoutsi, Stylianos Vassilakis
and Antonios Paraskevopoulos, aimed to present a new methodology and the equipment
used in the assessment of crop water stress by spatial measurements of canopy temperature,
air temperature, and relative humidity from sensors incorporated into an unmanned aerial
vehicle (UAV) from a pilot implementation in a potato cultivation field. The functionality of
the proposed system was certified (accuracy of the UAV path and flight altitude, reliability
of the aerial data acquisition system, communication stability between UAVs and ground
base). Their findings indicated that the canopy temperatures derived from the ground
meteorological station, the onboard aerial micrometeorological system, and the portable
IRT radiometers produced a suitable thermal image from the surface of the crop. The
subsystems can be useful for supporting applications that are significant for irrigation
water management and programming, such as irrigation alerting and scheduling, crop
surveillance, and irrigation water management. However, the authors state that more
efforts are necessary to make these technologies more user-friendly and available for all
end users, covering different advantages for a precise crop water stress evaluation.

The paper “Estimation of Daily Potential Evapotranspiration in Real-Time from
GK2A/AMI Data Using Artificial Neural Network for the Korean Peninsula” [6] by Jae-
Cheol Jang, Eun-Ha Sohn, Ki-Hong Park and Soobong Lee, developed a model that esti-
mates the daily PET based on ANN using the GEOstationary Korea Multi-Purpose SATellite
2A (GEO-KOMPSAT 2A, GK2A). The objective was to retrieve real-time daily ET with a
spatial resolution of 1 km for hydrological resource monitoring on the Korean Peninsula.
To reflect the complex relationships and nonlinearity between the GK2A-derived data and
ET, the precipitation and digital elevation data were used as input for the ANN. Daily
PET from KMA were used as reference data for the ANN model training. The accuracy
of the model was verified by comparing the modeled data with the ET from in-situ mea-
surements of the KMA and National Institute of Forest Science (NIFoS). In comparison
with the station-derived PM-ET, the ANN-based derived PET showed high accuracy, while
validating the spatial distribution and the ANN model-estimated daily PET showed high
accuracy at all KMA stations. Additionally, the derived PET models performed particularly
better than the Terra/MODIS PET product for the eastern coastal region of the Korean
Peninsula, where the elevation changes dramatically.

The paper “Simplified Interception/Evaporation Model” [7] by Giorgio Baiamonte,
explored the rainfall partitioning in net rainfall and evaporation losses by the canopy, using
a very simplified sketch of the interception process, which combines a modified exponential
equation from the literature (Merrian model), accounting for the antecedent volume stored
on the canopy, and a simple power-law equation to compute the evaporation by the wet
canopy. Even though the considered approach is far from the physically based approaches,
the latter may require many parameters that are not easy to determine. It is shown that the
simplified parsimonious approach may lead to a reasonable quantification of this important
component of the hydrologic cycle, which can be useful when a rough estimate is required,
in the absence of a detailed characterization of the canopy and of the climate conditions.
It is also shown that the Merrian model can be derived by considering a simple linear
storage model. The application of the suggested procedure was performed for faba bean
cover crop, which was described according to the general lengths of four distinct growth
stages considered in FAO56, whereas LAI and interception capacity were obtained from
the literature. Since few are parameters required, this simple approach could be applied at
large scale when a rough estimate of evaporation loss by wet canopy is necessary, in the
absence of a detailed characterization of canopy and climate.
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The paper “Sensitivity of the Evapotranspiration Deficit Index to Its Parameters
and Different Temporal Scales” [8] by Frank Joseph Wambura, investigated the sensitivity
of the evapotranspiration deficit index (ETDI) to its parameters, and to data at different
temporal scales. The parameter sensitivity test revealed that ETDI is less sensitive when
the (a, b)-parameters range from (0.1, 1.8) to (0.5, 1.0) inclusive, and more sensitive when
they approach (0.9, 0.2). Since the ETDI is sensitive to different parameter combinations,
the selection of an optimal parameter combination might rely on information from specific
locations. Moreover, an optimal parameter combination can also be obtained when ETDI
is calibrated against other drought indices or durations of historically severe drought
events. The temporal scale sensitivity test at the twelve points in the river basin showed
that the number of drought events, the total drought durations, and durations per event
decrease as the temporal scale increases. Therefore, small temporal scale ET data are highly
recommended to increase the accuracy of ETDI-based drought characteristics.

The paper “Estimation of Reference Evapotranspiration Using Spatial and Tempo-
ral Machine Learning Approaches” [9] by Ali Rashid Niaghi, Oveis Hassanijalilian and
Jalal Shiri, investigated the effect of different input combinations of meteorological data on
the accuracy of daily ETo estimation in subhumid climate using gene expression program-
ming (GEP), support vector machine (SVM), multiple linear regression (LR), and random
forest (RF) methods. They compared the spatial and local prediction capabilities of the
different machine learning (ML) techniques in ETo estimation and evaluated the perfor-
mance of the models based on the various study years and meteorological stations. The
comparison of the performance accuracy of the applied models revealed that the RF model
was, in general, the best for all combinations among the four defined models, in general.
The LR, GEP, and SVM models were improved when a local approach was used, except
for the RF model, which was less accurate with a local approach. The radiation-based
combination was the most accurate predictor among all models tested. The results showed
that due to the flat topography of the study area with high wind speeds during the growing
season, the inclusion of the wind used as a parameter to build the model architecture and
estimate the ETo could increase the accuracy of the prediction. In addition, it might be
more practical to apply the spatial RF model for stations with missing meteorological data
without the need for local training. The recommended application of spatial RF using
radiation combination allows for a more reliable estimate of ETo to fill the missing values
for more precise water management purposes.

The paper “Evapotranspiration Trends and Interactions in Light of the Anthro-
pogenic Footprint and the Climate Crisis: A Review” [10] by Stavroula Dimitriadou and
Konstantinos G. Nikolakopoulos, reviewed emerging ET trends over the latest decades in
areas with different environmental conditions in the context of the ongoing climate change.
Additionally, they focused on critical components such as the anthropogenic impact on ET
and, the mechanisms in which ET participates in forest land-cover and wildfires, croplands
(irrigation and cultivation practices), groundwater (quantity and quality), and ambient
air. Five broad conclusions were deducted: First, Mediterranean climate regions (MCRs)
appear to be vulnerable to the impacts of the ongoing increase in ET, especially during
summertime, due to the ongoing precipitation shifting in winter and the air temperature
warming (especially the rise in the minimum air temperature values) which is expected to
be more severe in MCRs such as Southern Europe, in the summertime. Air temperature is
considered a proxy of the energy state of the system. In water-limited areas, evaporative
fractions can serve as a water-stress indicator. Second, the ET in tropical forests plays a
rather beneficial role since it moderates the flooding risk during the wet season resulting in
a net cooling effect. Third, in semi-arid to arid areas, an increase in ET and especially of
evaporation constitutes an important problem due to sustained baseflow recessions which
exacerbate the limited water availability. In these drought-prone areas, ET exacerbates soil
salinization. Fourth, the relationship between ET and wildfires is of major importance.
The impacts are site-specific and climate, and fire-severity-dependent. The hydrological
processes may be altered if a critical amount of canopy loss occurs (e.g., 20% for semi-arid
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regions, 45% for tropical forests) occurs. Concurrently, the Reference evapotranspiration
could serve as a fuel aridity measure to assess forest fire risk. Fifth, along with climate
change, the consequences of human activity such as air pollution (aerosols, CO2 emissions),
land use/land cover shifting to agricultural uses with intensive productivity practices,
large reforestation implementation, and large constructions (e.g., dams, dense and high
urban buildings) have substantially changed the actual evapotranspiration rates during
recent decades. Via the human footprint, the interpretation of the evaporation paradox has
been made plausible.

Finally, Aristoteles Tegos, Nikolaos Malamos and Demetris Koutsoyiannis in their
paper “RASPOTION—A New Global PET Dataset by Means of Remote Monthly Tem-
perature Data and Parametric Modelling” [11], introduced a new monthly global PET
dataset, named RASPOTION, by implementing the Parametric model with remote sensing
data of mean air temperature, provided by a recent remote mean temperature dataset from
2003 to 2016. The dataset was validated with in situ samples (USA, Germany, Spain, Ireland,
Greece, Australia, China) and by using spatial Penman–Monteith estimates in England.
Overall, for the majority of the Earth’s surface, RASPOTION constitutes a reliable monthly
PET dataset, freely available to scientists across different research disciplines in order to
assist scientific studies into the global hydrological cycle and decisions for both short- and
long-term hydro-climatic policy actions.

3. Conclusions

Since we have been conducting research in the field of evaporation assessment for
more than a decade and considering the remaining challenges within evaporation assess-
ment research, this SI was a great opportunity to discover and promote new trends in
evaporation analysis.

The state-of- the art review study research presented by MchMahon et al. [12] identifies
six areas for further research which are: (i) hard-wired potential evaporation estimates; (ii)
estimating evaporation without wind data; (iii) estimating evaporation without at-site data;
(iv) dealing with an environment undergoing climate: increasing annual air temperature
but decreasing pan evaporation rates; (v) daily meteorological data averaging over 24 h or
day-light hours only; and (vi) finally, uncertainty in evaporation estimates. In addition to
the above key research topics advanced remote sensing techniques can be further support
the water engineering and scientific community and some featured papers with modern
views have been presented in our SI along with the key outstanding issues presented above.

As Guest Editors, we are sharing our enthusiasm with the successful completion of
the SI and we trust that the selected research papers will be a valuable contribution to the
domain of geosciences in the years to come.
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Determinants of Evapotranspiration in Urban Rain Gardens:
A Case Study with Lysimeters under Temperate Climate
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Abstract: Accurate evaluation of evapotranspiration (ET) flux is an important issue in sustainable
urban drainage systems that target not only flow rate limitations, but also aim at the restoration of
natural water balances. This is especially true in context where infiltration possibilities are limited.
However, its assessment suffers from insufficient understanding. In this study, ET in 1 m3 pilot rain
gardens were studied from eight lysimeters monitored for three years in Paris (France). Daily ET was
calculated for each lysimeter based on a mass balance approach and the related uncertainties were
assessed at ±0.42 to 0.58 mm. Results showed that for these lysimeters, ET is the major term in water
budget (61 to 90% of the precipitations) with maximum values reaching 8–12 mm. Furthermore, the
major determinants of ET are the existence or not of an internal water storage and the atmospheric
factors. The vegetation type is a secondary determinant, with little difference between herbaceous and
shrub configurations, maximum ET for spontaneous vegetation, and minimal values when vegetation
was regularly removed. Shading of lysimeters by surroundings buildings is also important, leading to
lower values. Finally, ET of lysimeters is higher than tested reference values (evaporimeter, FAO-56,
and local Météo-France equations).

Keywords: evapotranspiration estimation; urban rain gardens; lysimeters; evapotranspiration models

1. Introduction

Urbanization has a great impact on cities’ hydrological cycle: runoff is increased to
the detriment of infiltration and evapotranspiration (ET), leading to an increase in risks
linked to flooding and deterioration of the receiving environments. Urban stormwater
management policies have been developed in recent years that favour runoff management
in green infrastructure systems (GIS) in order to store the water before to infiltrate, evapo-
rate and transpirate it. These sustainable urban drainage systems (SUDS) are considered
as a viable mechanism that can substitute or complete the traditional sewerage system
(canalisation, underground basins, pipes, etc.) and also provide environmental benefits
apart from hydraulic services [1–4]. SUDS uses a set of GIS, such as green roofs, rain
gardens, infiltration basins, rain trees, etc.

Rain gardens are recognised as one of the best stormwater management practices
in countries such as Northern Europe, the United States, Canada, Japan, and Australia,
since in addition to reducing the runoff, they also allow for water treatment and promote
biodiversity in the urban environment [5,6]. Rain gardens are, by definition, a local structure
with a shallow depression that receives rainwater from upstream can infiltrate, evaporate,
transpire, or treat this water [7,8]. Significant hydrological processes in a rain garden
include the exfiltration to the underlying soil or by drainage system, the evapotranspiration
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and the interception from vegetation. These processes “should work together” for being
able to control large flows and reduce the total volume of small storms [9].

Jennings et al. [10], in a study on the efficiency of residential rain gardens in terms
of runoff reduction, in Ohio, temperate climate in the USA, attribute a major role to the
exfiltration process and a minor role to the evapotranspiration as regards their contribu-
tions of 85% and 0.32% respectively, in reducing runoff volumes. However, more recent
experimental studies [11–16] have shown a greater importance of ET in GIS. In rain gardens,
daily ET rates are generally low, around 1–5 mm per day, a rate that is sufficient to restore
the retention capacity of the structure between two rain events [17]. Studies estimated the
ET between 43 and 70% [8] and sometimes up to 78% of the collected rainfall [13].

The ET is known as a dynamic process and it depends on meteorological factors
(e.g., precipitation characteristics, air relative humidity and temperature and wind speed),
GIS properties (e.g., drainage system, soil, etc.), and vegetation [15]. While the ET process
has been investigated widely in agriculture, it remains relatively unknown in urban areas,
and particularly in SUDS. Even though progress has been made in the study of ET in urban
areas, in particular with the development of approaches based on remote sensing, the
current models are still imprecise and do not always account for all the specificities (spatial
heterogeneity, microclimatic variability, etc.) associated with the urban environment [18–21].

In the hydrological modelling aspect of these GIS structures, the representation of the
water transfer processes in the soil (infiltration of water in the soil, exfiltration, etc.) have
been prioritized in the preliminary studies. A review of 11 urban hydrological models used
for modelling in SUDS, including rain gardens, by Kaykhosravi et al. [19] also noted that
despite recent improvements in existing models, their ability to model multi-layered soil
systems, trees or vegetation processes (interception, absorption, and evapotranspiration),
snowmelt, and runoff at different spatial scales is limited and further research are needed.
In these hydrological models, the ET is usually estimated and represented by predictive
equations based on physical approaches that require significant input data (Penman–
Monteith [22] model is a reference and its variants of Fao-56 [23] or ASCE [24] methods) or
other more conceptual approaches that use less data (Hargreaves and Allen [25], Priesley–
Taylor [26]). These predictive equations have been evaluated with the estimated ET in pilot
rain gardens lysimeters in the literature [12–14,27]. The findings of these research show that
the classical equations for ET are not always satisfactory with either underestimations or
overestimations of the observed ET data. Another method proposed by Hess et al. [17], and
based on water content measurements at different soil depths seems to be less expensive in
terms of input data, and provides comparable results to the classical assessment methods
of Penman–Monteith [22] and Hargreaves and Allen [25]. The main limitation of using
water content profiles can be their non-representativeness of the spatial variation in water
content in gardens due to its important heterogeneity.

For urban rain gardens, recent research has shown the significance of ET, but there
are not enough case studies estimating the flux and the factors involved. Note that this
lack is particularly related to the difficulty in measuring the flux on the one hand and, on
the other hand, the fact that some preliminary studies have minimised its importance [15].
Thus, to the challenges of stormwater management and also urban heat islands, ET in rain
gardens is a topic receiving more and more attention from both rain garden designers for
a better consideration of ET in the design and hydrology researchers for a more accurate
description of the flux in the urban context.

In some countries, such as Australia and the United States, legislation is already
taking form to include ET in the design of rain gardens [17]. In France, the Paris Council
with its “ParisPluie” plan seeks to develop the rain garden method [28,29]. The city has
instrumented eight rain garden lysimeters for a better understanding and prediction of
their hydrological behaviour. In order to extrapolate on real situations, experimental rain
gardens of reduced size and well-known structures were designed. Monitoring was carried
out with lysimeters, i.e., mechanisms that enable the water balance components (exfiltration,
water storage, etc.) to be observed, with measurements by weighing the variations in water

8



Hydrology 2022, 9, 42

content of the lysimeter. The aim was also to test different vegetation configurations and
internal storage options, and to implement replicas in order to test the validity of the
measurements. In this study, the purpose consists of three main points: estimate the actual
evapotranspiration (ET) of these rain gardens at daily steps; assess the impact of different
configurations on ET fluxes; and compare the actual ETs obtained from the lysimeters with
reference to ET values, such as evaporation, from a pan evaporimeter and some models
taken from the literature.

2. Materials and Methods
2.1. General Context of the Study Area

The site is located at 43 rue Buffon in Paris, France, within the Museum National
d’Histoire Naturelle (MNHN) (Figure 1). In the Paris region, there is no strong topographi-
cal contrast and the agglomeration of Paris is very dense, with an estimated population
of nearly two million people and 9 million in the 1500 cities and villages that constitute
its suburbs [29]. Paris has a fairly temperate climate, with moderately warm summers
(average temperature of 19 ◦C in July) and moderately cold winters (average temperature
of 3 ◦C in January), with rare snow. The urban dominance leads to urban heat islands
(UHIs), characterised by night-time temperatures that are about 2.5 ◦C higher (annual
average) compared to rural areas [30]. The average annual rainfall of 650 mm is evenly
distributed over the year and the annual potential ET is in average around 850 mm with
higher values in summer and limited values in winter (data from Météo-France, The French
Meteorological Service).

Figure 1. Situation of the study area (a red point) in the city of Paris (France), with the coordinate
system of RGF93, Lambert 93. Topographic data source is from the site urs.earthdata.nasa.gov
accessed on 24 February 2022.

2.2. Experimental Set Up, Data Acquisition, and Validation
2.2.1. Experimental Set Up

A concrete slab of about 35 m2 supports eight lysimeters, each one made up of a
1 m3 pilot rain garden (1 m × 1 m × 1 m) and a cone to increase the impluvium to 4 m2

(Figure 2). Near the lysimeters, a meteorological station (Figure 2a), which consists of a
pyranometer, an anemometer placed at a height of 2 m from the surface, a temperature
sensor, and a hygrometer provides climatic data (global radiation, wind speed and direction,
air temperature and humidity, and atmospheric pressure).

As the lysimeters are above the soil and therefore not insulated thermally compared to
a situation in the ground, a 10 cm of expanded polystyrene insulation was added to all the
vertical walls of lysimeters. At the bottom of each lysimeter, a 0.2 m layer of a manufactured
alveolar product is installed to store rainwater (Nidaplast® product with a void index of
0.95) and a piezometer is installed to measure the water level in the internal water storage
(IWS). The soil, with a thickness of 0.8 m in each lysimeter represents a natural silty-clay soil
used in the city’s parks and gardens of Paris region; it contains little limestone, 18 to 25%
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of clay, with a neutral to basic pH (7.5–8). Weighing cells and a tipping bucket allow the
measurement of mass variation and exfiltration at the bottom of each lysimeter respectively
(see Figure 3). A pan evaporimeter with a diameter of 1.2 m was also installed to control
the quantity of water evaporated.

Figure 2. A top and panoramic views of the site in figures (a) (Source: google earth) and (b), respectively.
The figure (c) illustrates the positions and the scientific names of vegetation in each lysimeter.

Figure 3. Schematical representation of water fluxes on lysimeters (a) and evaporimeter with an
overflow of 21.4 cm (b). IWS refers to the internal water storage.
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The configurations of the lysimeters are numbered from 1 to 8—they differ by the
vegetation type and the drainage conditions (presence or not of IWS) (Figure 2c):

• The reference configuration (lysimeters 1 and 6) includes the internal water storage
(IWS; i.e., the drainage at the bottom of the lysimeter, which is located just above
the alveolar product), with an herbaceous stratum (6 plants of Carex sylvatica and
Deschampsia cespitosa, which are native to the Paris region). This configuration is
considered as the reference because of the Paris subsoil context (heterogeneous and
sensitive areas of gypsum or former mines, etc.), and the importance to anticipate the
impact of waterproof systems on climate change;

• Lysimeters 2 and 7 differ from the reference by a modification of the vegetation with a
shrub layer (3 Cotoneaster lacteus plants per lysimeter). These plants are from China
and are often used in Paris plantations;

• Lysimeters 3 and 4 differ from the reference by the lack of IWS, i.e., the water is evacuated
at the bottom of the alveolar product;

• Lysimeter 8 is similar to the reference but without vegetation (spontaneous vegetation
is removed twice a year);

• Lysimeter 5 is similar to the reference but with spontaneous vegetation.

2.2.2. Data Acquisition and Validation

The data (Tables 1 and 2) were collected at two-minute time step for a period of about
3 years (24 November 2016 to 26 December 2019). The analysis and the validation of data
were carried out at daily steps. For all variables, the maintenance days were removed,
whereas maintenance used to be three times a month. The variables involved in the water
balance were analysed in the following way. First, for very rainy days, rainfall values were
compared with the measurement from a nearby rain gauge of Météo-France (the French
meteorological service, situated at 1 km); if our rain gauge data were very different from
the reference data of Météo-France, they were considered as non-valid. In addition, the
exfiltration data of the lysimeters with reserve were compared with the data of the water
level measurement in this reserve. The idea was to have zero exfiltration when the storage
is not filled (<20 cm) for lysimeters with IWS.

Table 1. Details of materials used for measurement on each lysimeter (the accuracy is expressed in
equivalent mm of water in a lysimeter).

Materials Variables Accuracy (mm)

Bucket flow meter
(PRÉCIS-MECANIQUE, 3029/2) Cumulative exfiltration (l) 0.008

Piezometric sensor
(PARATRONIC, EN61000-6-2) Water level (mm) in the IWS 1 mm

Load cells
(SKAIM, FT-SK30X-FEG-0603) Lysimeter’s mass (kg) 0.36 mm

After removing the false, the aberrant, and the missing values, over the 1096 days
that represented the three years, the percentage of validated data for the precipitation, the
exfiltration and the mass variation were, respectively, 82%, 70–83%, and 66–76% (Table A1).

For the pan evaporimeter, in winter days, during rainy periods, the water level
measurement (L) frequently reaches its maximum; therefore, an overflow occurs and the
level variation is then set to zero. In these periods, the condition is that the water level (L)
added to the rainfall should be less than the threshold of the measurement (Lmax) that has
been defined as equal to 170 mm; a maximum value that varied due to the fluctuation of
the sensor during maintenance.
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Table 2. Details of materials used for measuring meteorological data.

Materials Variables

Temperature and humidity sensor
(LSI-LASTEM, DMA672) Temperature (◦C) and Air humidity (HR en %)

Rain gauge
(LSI-LASTEM, DQA131.1) Rain (mm)

Evaporimeter
(Pan, LSI-LASTEM, DYI010) Water level (mm)

Global radiometer iso cl-2
(LSI-LASTEM, DPA053) Global incoming solar radiation (Watt/m2)

Anemometer
(LSI-LASTEM, DNA202) Wind speed (m/s)

Barometer
(LSI-LASTEM, DQA24) Atmospheric pressure (hPa)

2.3. Methods
2.3.1. Water Balance

Daily ET is calculated for each lysimeter based on the following equation:

ET = 4∗P− Exf − ∆S (1)

with ET the evapotranspiration (mm), P the cumulative rainfall measured with the rain
gauge (mm), Exf the cumulative exfiltration (mm), and ∆S the mass variation (mm) of the
considered lysimeter.

For the daily evaporation (E, mm) from the pan evaporimeter, it is expressed as the
difference between the daily cumulated rainfall (P, mm) and the daily water level variation
(∆L, mm):

E = P− ∆L (2)

2.3.2. Evaluation of Measurement Uncertainty

The assessment of the uncertainties associated with the ET estimations is based on the
law of the propagation of uncertainties [31]:
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By applying the Equation (3) to the balance equation (Equation (1)), it gives:
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To solve the Equation (4), the first hypothesis is that the standard uncertainties as-
sociated with the rainfall and exfiltration measurements are at the maximum of a bucket
tilt of 0.2 mm and 0.008 mm, respectively. The second assumption was to assume that the
uncertainties of rainfall and exfiltration follow uniform laws, which permit their standard
uncertainties to be re-estimated by 0.2/

√
3 (0.115 mm) and 0.008/

√
3 (0.00462 mm), re-

spectively [31]. The standard uncertainty associated with the mass measurement for each
lysimeter is 0.36 mm, a value obtained from the manufacturer [32]. The standard uncer-
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tainty of the cumulative values is assessed by:
√

n∗u(ET) and the estimated uncertainties
are given as a 95% confidence interval.

2.3.3. Comparison Tools

Different statistical tools are used to make comparisons between the different replicates
or to compare the observed and modelled data. The non-parametric Wilcoxon rank test
for paired samples was performed to compare the significance of differences between
replicates and lysimeter configurations. The null hypothesis H0 of this test suggests the
same population for the distributions, while the alternative hypothesis H1 assumes different
distributions. The assumed risk α is taken at 5%. Simple regression models were also used
to compare the observed replicas. Cumulations were also made by considering common
days with valid data for lysimeters to be compared. Finally, to show the influence of the
meteorological variables on ET, the partial least squares (PSL) analysis is performed. The
variable important in the projection (VIP, see Appendix A for more details) that resumes the
influence of each independent variable in a PSL model was used [33–35]. Indeed, a given
variable will have a high importance for VIP > 1, a medium importance for VIP > 0.8, and
a low importance for VIP < 0.8 [33,34,36].

2.3.4. Evapotranspiration Formulas

The predictive equations of ET tested here are summarized in Table 3. The two
Penman–Monteith models applied on references vegetation (Fao-56 and Météo-France), the
Penman and the Priestley–Taylor models will be compared with the estimated ETs from
the lysimeters and the evaporation from the evaporimeter.

Table 3. Evapotranspiration (ET)’s formulations used in this study. The FAO and Météo-France
formulations are two ways of setting parameters for Penman-Monteith (PM) equation.

Name Formulas Hypotheses

Penman [37] ETP =
∆(Q∗−QG)+Eaγ

Le(∆+γ)
Ea = 0.35(es − ea)(0.5 + 0.01u)

PM (FAO-56) [23]
ETPM−FAO−56 =

0.408∆(Q∗−QG)+
900

T+273 γ(es−ea)

∆+γ(1+0.34 u)

Well-watered vegetation with a height of 0.12 m, a
surface resistance of 70 m/s, a surface emissivity of 1

and an albedo of 0.23.

PM (Météo-France) [38]
ETPM−MF =

0.408 ∆(Q∗−QG)+
(γ)(1297.8+1038.2u)(es−ea)

T+273
∆+(γ)(1.42+0.336u)

Well-watered meadow with a surface resistance of
60 m/s, a surface emissivity of 0.95 and an albedo

of 0.2.

Priestley and Taylor [26] ETPT = αPT
∆

∆+γ
Q∗
Le

Defined for saturated soils, the advection coefficient
αPT is set to 1.26 [26].

In these equations, terms are defined as follows: Q∗ is the net radiation (MJ/d), QG
the heat flux conducted in the soil (MJ/d), Le the latent heat of vaporization (KJ/kg), es the
saturation vapour pressure of air at surface temperature (KPa), ea the partial vapour pres-
sure of atmosphere (KPa), and u is the wind speed (m.s−1) at a reference level (2 m), ∆ the
slope of the saturation vapour curve, αPT is the advection coefficient, γ is the psychometric
constant, and T refers to the temperature (◦K).

3. Results
3.1. Estimated Evapotranspiration

In Figure 4, the meteorological variables measured at the site are presented. All variables
are expressed as a daily average, except for exfiltration and rainfall, which are daily
cumulated values. Seasonal dynamics specific to the temperate climate are observed for
these variables. Global solar radiation (RG) is higher in summer (up to 265 w/m2) than
in winter (max, 20 w/m2). The net radiation (Figure 4a) assessed according to Allen
et al. [21] is more significant in summer (up to 151 w/m2) than in winter (max, 49.8 w/m2).
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Temperatures (T) reach the maximum at 34 ◦C in summer and are sometimes below 0 ◦C in
winter. In contrast to the temperature, the air humidity (HR, 29–96%) is higher in winter
and lower in summer. The air pressure (Patm) shows the same trend as the air humidity but
less marked and varying between 980 and 1040 hPa. The wind speed (u) is between 0.1
and 1.6 m/s, higher in winter and lower in summer.

Figure 4. Meteorological variables: (a) daily incoming solar radiation and net radiation, (b) mean air
temperature measured at 2 m, (c) relative air humidity, (d) wind speed, and (e) rainfall, (f) exfiltration,
lysimeter daily (g) mass changes, (h) water level variation from the reference lysimeter 1 are added
(mm), and (i) evaporation estimated from the evaporimeter.

For the variables specific to lysimeters (mass, water level in the IWS, and exfiltration),
the reference configuration, i.e., lysimeter 1, is shown in Figure 4f–h. In addition, the
Figure 4i gives the estimated evaporation from the evaporimeter with an average of
2.1 mm/d, high values in summer (max, 8.6 mm), and low values in winter.

Validated ET data after processing for the three years (1096 days) vary from 53%
to 68% depending on the lysimeter (Table A1). In Figure 5, the validated ET for each
lysimeter is presented. The annual dynamics of ET are shown with high daily values that
can exceed 10 mm between spring and summer and small values in winter and autumn.
These seasonality patterns can be linked to the atmospheric factors described above. The
main atmospheric factors affecting ET in these systems are discussed later in Section 3.3.

Daily standard uncertainties and uncertainties at a 95% confidence interval are evalu-
ated for all lysimeters (Table 4). The results uncertainties are in the range±0.42 to±0.58 mm
for daily ET depending on the lysimeter.

Table 4. Associated daily ET uncertainties for each lysimeter in mm. u(ET) values refer to the
standard uncertainty and 1.96 u(ET) the uncertainty for a 95% confidence interval.

ET 1 ET 2 ET 3 ET 4 ET 5 ET 6 ET 7 ET 8

u(ET) 0.28 0.24 0.24 0.21 0.28 0.29 0.28 0.23

1.96 u(ET) 0.54 0.47 0.47 0.42 0.55 0.58 0.54 0.45
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Figure 5. Daily evapotranspiration (ET) validated for all lysimeters.

3.1.1. Comparison of the Replicas

Three pairs of lysimeters (lysimeters 1 and 6, lysimeters 3 and 4, and lysimeters
2 and 7) have the same characteristics: vegetation, presence of storage or not, and the same
maintenance planned during the experiment. The aim here is to compare their consistency
knowing that they should be similar in term of performance. However, if a major difference
is observed, this means that, for identical systems, an external variable, to be identified,
is at the origin of this difference.

Based on the regression models and cumulates presented in Figure 6 for each couple
of replicas, it is noted that for both lysimeters 2 and 7, if the regression model shows an
acceptable fit between the two data sets r2 = 0.55, ET of lysimeter 7 is clearly lower than
lysimeter 2 in terms of global trend and cumulative amounts (ET2 = 1967 ± 11 mm and
ET7 = 1662 ± 13 mm). Lysimeters 1 and 6 have similar trends, and cumulative amounts
(ET1 = 1334 ± 11 mm, ET6 = 1330 ± 12 mm), even though the determination coefficient is
low r2 = 0.42 due to the underestimation and overestimation of lysimeter 6 from 01/2018
to 05/2018 and from 10/2018 to 07/2019, respectively.

For the couple lysimeters 3 and 4, it presents a coefficient of determination r2 = 0.57,
similar trends and a slight underestimation of lysimeter 4 in terms of cumulative data
(ET3 = 1544 ± 12 mm, ET4 = 1449 ± 10 mm).

Another way of comparing these pairs is to perform statistical tests. In Table A2, results
of the Wilcoxon rank test are presented. When the test is performed on the whole validated
data set (3 years), only lysimeter 1 (the reference) and lysimeter 6 have similar distributions.
If the test is performed by season (fall, winter, spring, and summer), different results are
obtained. In all seasons, pair 1 and 6 do not show statistically different distributions,
lysimeter 3 and 4 show statically different distributions in autumn and winter only while
lysimeters 2 and 7 are statistically different except in spring.

It is difficult to conclude that for each replica, both lysimeters evaporated and tran-
spired perfectly in the same way. In addition, the estimated uncertainties on ET for each
lysimeter are small compared to the differences between the replicas (Figure 6a–c). How-
ever, in view of the above results, it can be said that the couples ET1/ET6 and ET3/ET4
configurations represent an acceptable replica and, the shrub configurations ET2/ET7
cannot be considered as a replica. For lysimeters 2 and 7, the only variable that differs from
the two is the exposure to the buildings surrounding the installation.
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Figure 6. Regressions (a–c) and cumulatives (d–f) plots comparing the three replicas ET1/ET6
(data = 445), ET3/ET4 (data = 600) and ET2/ET7 (data = 583) for the three years (1096 days). The red
line refers to the regression line and the blue line represents the y = x surrounded by the confidence
interval (at 95%) that corresponds to the square root of the sums of the squares of the lysimeter
uncertainties for each replica (0.79 mm, 0.63 mm, and 0.71 mm, respectively for ET1/ET6, ET3/ET3,
and ET2/ET7).

3.1.2. Comparison between Different Configurations

The comparison of all configurations was conducted with the validated common
days for the eight lysimeters from November 2016 to November 2019. These days start in
mid-spring (83 days), continue throughout the summer (132 days), and end in mid-autumn
(65 days). In winter, there are only 25 valid days because of the greater measurement
uncertainty during the cold and rainy periods. Table 5 gives the cumulative exfiltration,
mass variation, and evapotranspiration based on this common period for lysimeters.

Table 5. Cumulative water balance components (Cwb) in mm over the 305 common validated days,
for the 8 lysimeters. Cumulated rain (4P) is 679 ± 6 mm.

Lysimeters 1 2 3 4 5 6 7 8

Exf
Cwb(Exf) 162 86 438 568 204 199 191 250
% o f 4P 24% 13% 65% 84% 30% 29% 28% 37%

∆S
Cwb(∆S) −543 −486 −492 −633 −675 −577 −471 −427
% o f 4P −80% −72% −72% −93% −99% −85% −69% −63%

ET
Cwb(ET) 1066 ± 7 1082 ± 6 740 ± 8 750 ± 7 1152 ± 8 1060 ± 7 962 ±8 864 ± 8
% o f 4P 157% 159% 109% 110% 170% 156% 142% 127%

The exfiltration varies between 13% (lysimeter 2) and 84% (lysimeter 4) of the input
rainfall. Free drainage configurations (lysimeter 3 and 4) naturally exfiltrated the most water
compared to the others set up with IWS and account for about three times (438 mm and
568 mm) of the standard configurations (lysimeter 1 and 6, 162 and 199 mm respectively).
Furthermore, the herbaceous configurations (1 and 6) exfiltrated more than the shrub
configurations (2 and 7); although, for lysimeters 6 and 7, this difference is reduced. Finally,
the exfiltration capacity of the configuration with regularly removed vegetation (lysimeter
8, 250 mm) is higher compared to the other lysimeters with IWS and that could imply a
contribution of the vegetation to the decrease in seepage.

For stock changes (∆S), the eight settings always have negative values between −633
and −425 mm. Indeed, most of the validated common days are spring and summer days
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with low rainfall, which are favourable periods for ET. Therefore, for a given day, the
mass change is negative meaning that the system (lysimeter) loses water. This explains the
negative cumulative ∆S observed here.

3.2. Determinants of ET in Lysimeters

To carry out the analysis in this section, common data of lysimeters were considered in
pairs, in order to increase the number of samples and the representativeness of all seasonal
periods. These numbers are noted in the text or in the Table A2. It is also important to
remind that the experimental set-up was installed to test the impact of three main factors on
the water balance in rain gardens. These factors are lysimeter storage (absence or presence
of IWS), vegetation type and management, and local meteorological variables.

• Impact of the storage in the lysimeter structure.

Installing an IWS is globally favourable to the ET, and to the reduction in the exfil-
tration (Table 5). These differences are notable in all seasons. Indeed, the Wilcoxon test
between lysimeter 1 and lysimeters 3 and 4 show that the distributions of estimated ET
data are different in all seasons and over the whole three years (Table A2). In addition,
from Table 5 or Table A7, considering the percentage of ET sum to the collected rainfall
(4P), the ET of lysimeter 1 is more compared to the other two lysimeters. Compared to
lysimeters 3 and 4, in autumn, winter, spring, and summer, lysimeter 1 evaporates more
on average +18%, +37%, +18%, and +87%, respectively. For the three years, it is estimated
that more than +31% of ET occurs from a system with IWS compared to those without IWS
(3 and 4). These differences are more noticeable in summer, when the water stored in the
IWS allows higher soil moisture during dry and hot periods to be maintained.

In Figure 7, the ET in lysimeters 3 or 4 is lower than the references (1 and 6) during a
summer period (24 June to 3 July). A same dynamic and quantity can be observed between
the water lost from the storage (dH) and the ET in standard lysimeters. In terms of cumulus
of ET and water changes (dH) for these 10 days are ET1 = 47 ± 2 mm, ET6 = 68 ± 2 mm,
ET3 = 27 ± 1 mm, ET4 = 31.4 ± 1mm, dH1 = −41± 2 mm, and dH6 = −58 ± 2 mm. In this
dry period without rain and exfiltration, for standard lysimeters 1 and 6, the water in the
IWS contributes to evapotranspiration by 87 ± 7% and 85 ± 5%, respectively. However,
in lysimeter 3, ET does not occur at the potential rate and is therefore limited by the
water availability.

• The effect of vegetation

Figure 7. Evapotranspirations (ETs) and water level variations (dH) in the internal water storage for
lysimeters 1, 3, and 4 (a) and lysimeters 6, 3, and 4 (b) during a summer period (24 June to 3 July 2018).
(c,d) show cumulative values for ETs and |dH|, respectively, for lysimeters 1, 3, 4, and lysimeters 6, 3,
and 4.
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Four types of vegetation (herbaceous, shrubs, spontaneous, and removed vegetation)
were tested. A comparison of herbaceous plants (1, 6) with shrubs (2, 7) was problematic
because while the former can be considered as acceptable replicas, the latter cannot. A priori,
it might be possible to compare them according to their closeness. For example, lysimeters
1 vs. 2, and lysimeters 6 vs. 7 are couples that can be used to identify potential differences
between herbs and shrubs. Statistically with the Wilcoxon test, on the whole data, there is
no difference between lysimeter 1 and 2 distributions except for the fall season (Table A2).
For lysimeter 6 and 7, their distributions differ statically for the whole data set. The role of
the herbaceous/shrubby vegetation type seems to be difficult to show based on the whole
data for the three years.

In terms of cumulative amounts during all period, the spontaneous vegetation (lysime-
ter 5) produced a lower ET of 4% than the references (difference not significant according
to the Wilcoxon test except for fall and winter). However, if we compare quantitatively by
season (Tables 5 and A6), the spontaneous vegetation evaporates more than the references
in Summer and Spring even if its maximum values are lower than those of lysimeter 1.
That is why in the previous comparison in Table 5 (where spring and summer data were
dominant) spontaneous vegetation was more important in terms of cumulated ET. Another
term to be taken into account in this comparison is the evolution of vegetation. In the
first year, for all seasons, lysimeter 1 (reference) shows a higher evaporation while, in the
other two drier years (2017–2018 and 2018–2019), the lysimeter 5 (spontaneous vegetation)
evaporates more in spring and summer. This could be explained by the fact that spon-
taneous vegetation adapts more in these periods of water limitations compared to other
vegetation. Moreover, the spontaneous vegetation was not well established at the beginning
of the experiment and it developed strongly later (Figures A1 and A2). Table A6, which
compares the common days between the three years, shows this point. For the summer
period 2018 (23 June–4 July), a higher evapotranspiration of spontaneous vegetation is
observed confirming the above results (Figure 8a).

Figure 8. Cumulative curves during a summer period (24 June to 3 July 2018) for evapotranspirations
(ET) and water level variations (dH) in the internal water storage (IWS). The herbaceous lysime-ters
(1 and 6) are compared with the spontaneous vegetation lysimeter (5) (a) and, the regularly removed
vegetation one (lysimeter 8) (b). Note that for this period, the data for shrubs (2, 7) are not valid.

Finally, the regularly removed vegetation (lysimeter 8) produced a lower evapotran-
spiration of about −17% than lysimeter 1. Statistically, this difference exists globally and
would be more pronounced in autumn, spring, and summer. In the summer of 2018,
as the vegetation was removed on 21 June, the difference (ET, dH) is more significant
(Figures 8b, A1 and A2) and showing that the plants need to develop sufficiently to be able
to properly use the water stored in the IWS.

• Meteorological factors
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Apart from the factors related to gardens properties, ET is also subject to meteorological
factors. In Table 6, the Pearson coefficients (ratio of covariance to the product of the standard
deviations) give an overview of the linear correlation between each estimated daily ET and
the measured atmospheric variables.

Table 6. Linear correlation coefficients (Pearson) between estimated evapotranspiration (ET) and
measured meteorological variables.

Lysimeters ET1 ET2 ET3 ET4 ET5 ET6 ET7 ET8

RG (MJ/d) 0.44 0.30 0.42 0.59 0.68 0.59 0.37 0.42

T (◦C) 0.38 0.39 0.29 0.41 0.50 0.48 0.42 0.38

HR (%) −0.25 −0.12 −0.21 −0.36 −0.46 −0.36 −0.21 −0.3

uw(m/s) 0.05 0.08 −0.08 −0.2 −0.06 0.05 0.09 0.02

Patm(hPa) −0.17 −0.23 −0.08 −0.03 −0.08 −0.13 −0.19 −0.16

A positive correlation between ET and the variables of global solar radiation (0.30 to
0.68) and mean air temperature (0.29 to 0.48) is observed. However, this correlation is of
the same order but negative for air humidity (−0.46 to −0.25), and weak for wind speed
(−0.06 to 0.08) and atmospheric pressure (−0.23 to 0.08).

A more detailed analysis with PSL models confirms that for all measuring devices
(lysimeters and evaporimeter), air temperature and global radiation are the most important
variables influencing evapotranspiration with a VIP score greater than one (Figure 9). More-
over, air humidity has a moderate influence on ET in rain gardens (VIP between 0.8 and 1),
but for the evaporimeter, it appears as an important determinant for the process (VIP > 1).
As previously, wind speed and atmospheric pressure seem to be of low importance. In
synthesis, the main atmospheric factors that impact the ET process in these devices are
global radiation, air temperature, and air humidity.

• The impact of shading

Figure 9. Variable importance in projection (VIP) plots according to partial least squares analysis for
lysimeters and evaporimeter. The red and green dashed lines refer respectively to the values of VIP
larger than 0.8 and 1. Analysis is conducted based on common data between the explained variables
and the evaporation (E) or the lysimeter evapotranspiration (ET).
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Another factor that needs to be addressed is the exposure of each lysimeter. The
«Rain», which is used to estimate the ET, is susceptible to be impacted by the lysimeter
exposition. The closeness and height of the south wall could act as a barrier to rain during
a windy period. In such conditions, certain lysimeters could receive less rain than others
and so does the rain gauge. Thus, the rainfall measurements from lysimeter 7 and 8 are less
consistent with the rain gauge measurements (Figure A3). As a result, the further away
from the rain gauge the less important the determination coefficient of the regression model
is (Figure A3). Some of other atmospheric conditions can be different between lysimeters,
in particular due to the buildings and more precisely the wall in the south, which is close
to lysimeters 7 and 8 (less than 1 m). Two main variables can be mentioned:

• The global incident radiation is modified by the evolution of the shading. The shading
is variable on the lysimeters, both during the day and seasonally. Shading effect is
clearly visible in summer around mid-afternoon on the global radiation measurement
with strong decrease in the value (Figure A4);

• The Wind: the linear correlation between wind speed and ET is found to be weak
(Table 6). However, the wind could impact the distribution of rainfall on the lysimeters.

These potential modifications would reduce the ET on the southern lysimeters (7 and
8), compared to those to the north. This impact is difficult to assess quantitatively as it would
require specific measurements (e.g., 3D site geometry) or extended replicas. Regarding the
shrub configuration, it could be suggested that the exposition effect is responsible for the
great differences observed between the replicas (lysimeters 2 and 7) that are opposite to
each other. Therefore, this difference is estimated on the cumulative ETs (+11%) and also
on the scatterplot of the daily ETs (Figure 6c).

3.3. Evapotranspiration Predictive Equations, ETs Estimated from the Evaporimeter,
and the Lysimeters

The objective of this section is to compare ET estimated by water budget on lysimeters
to two types of reference values: (i) evaporation measured on an open water surface with
the pan evaporimeter (Figure 4i) and (ii) ET estimated with potential formulations. In order
to increase the amount of available data, the numbers of lysimeters were reduced to the
different configurations (1, 2, 3, 5, and 8) and the common validated data over the whole
period of study are for 281 days (Table 7).

Table 7. Comparative totals and averages (in mm) of evaporation (E) and evapotranspiration (ET)
estimated, respectively, with the evaporimeter and the lysimeters (data = 281).

Seasons
(Data) ET1 ET2 ET3 ET5 ET8 E

Fall (53) 93 ± 4 137 ± 3 62 ± 3 100.0 ± 4 64 ± 3 40.1

Winter (14) 34.3 ± 2 28 ± 2 24 ± 2 14 ± 2 16 ± 2 13

Spring (81) 311 ± 5 294 ± 4 290 ± 4 330 ± 5 27 ± 4 180

Summer (133) 551 ± 6 570 ± 5 370 ± 5 637 ± 6.3 476 ± 5 382.4

Cumulus (281) 988 ± 9 1029 ± 8 746 ± 8 1081 ± 9 836 ± 8 585

Mean 3.5 3.6 2.6 3.8 2.9 2.1

Cumulative ETs indicate that evaporation from the water surface is 585 mm (average
2.1 mm/d), while ET from the lysimeters varies from 746 to 988 mm (average 2.6 and
3.5 mm/d). Compared to the lysimeter 1, this represents a difference of −41%. At the daily
step, the E of the evaporimeter is almost systematically lower than the ET of the lysimeters;
this is also the case for high values (>8 mm). Compared to the non-IWS configuration
(lysimeter 3), the trend is much less marked mainly in summer (when the evaporimeter
evaporates more, 382 vs. 370 mm).
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Here, the results indicate that the evaporation of the free water surface near the
lysimeters is low compared to the ET for rain gardens. This result is not intuitive because
the open water surface is always supplied with water and does not offer theoretically
a resistance to the ET flux. One hypothesis is that the development of the plants in the
lysimeters leads to a larger evapotranspiration surface than what is theoretically perceived,
i.e., 1 m2. Indeed, the surface for evaporation and transpiration for lysimeters is larger
than the evaporimeter, so that under certain conditions with no hydric limitations, ET in
lysimeters is more important. However, in summer, where the lysimeter 3 does not have
IWS, the quantity of evapotranspiration is reduced compared to the evaporimeter. If a short
dry period is considered (as mentioned above, 24 June–3 July 2018), the evaporated water
from the evaporimeter is slightly higher than the lysimeter 1, which has an IWS (in terms of
accumulation 50 ± 2 and 47 mm, respectively, for evaporimeter and lysimeter 1 Figure 10c).

Figure 10. Evapotranspirations (ET) from the lysimeter 1(with internal water storage), the lysimeter
3 (without internal water storage), the evaporimeter, and the potential ET models: (a–c) compare the
Penman (P) and Priestley–Taylor (PT) potential ETs to ET1 and ET3 (data = 346) and respectively
present the cumulative ET values, the boxplots, and the ET dynamics for a dry period (24 June to
3 July 2018); (d–f) refer to the ET1, ET3, Potential ET of FAO-56, and Meteo-France models (data = 453)
and show, respectively, cumulative ET values, boxplots, and ET dynamics for a dry period (24 June to
3 July 2018). PM and Pm refer respectively to Penman–Monteith and Paris-Montsouris.

The reference (lysimeter 1, with IWS), as well as the lysimeter 3 without IWS are
used in comparison with the models because of their closeness to the weather station
and the interest in observing the validity of models regarding to the storage presence or
not. PT, P, PM (Fao-56), and PM (MF-local.) are potential ETs evaluated with the local
meteorological data while PM (MF-Pm) is estimated from the Météo-France equation at
the Paris-Montsouris (Pm) station, approximately 2.5 km from the site (Figure 10; Table 8).
At Paris-Montsouris, the station is clear and far from the obstacles that can affect the
meteorological measurements.

Over the whole study period, ET on the Paris-Montsouris station PM (MF-Pm) is more
important in terms of trend and cumulative amount (1639 mm) than the ET estimated
locally (1066 mm) with the same Météo-France formulation (Table 8 and Figure 10c–e). This
observation illustrates the impacts of the microclimatic variabilities on the assessment of
potential ET in urban area. These variations are mainly due to the global incident radiation
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variable, which over the three years is on average 135 and 80 w/m2, respectively, at Paris-
Montsouris and at the study site. Compared to lysimeters (1, 3) and other models, PM
(MF-Pm) is more important particularly in summer and spring.

Table 8. Cumulatives and averages (in mm) evapotranspirations (ET) obtained with the lysimeters
(ET1 and ET3) and the potential ET models. P, PT, PM (Fao-56), PM (MF-local.) are Penman, Priestley–
Taylor, Fao-56, and Météo-France potential ETs evaluated with the local meteorological data while
PM (MF-Pm) is the potential ET evaluated with the Paris-Montsouris station data.

Seasons
(Data) ET1 ET3 P PT PM

(FAO-56)
PM

(MF-local)
PM

(MF-Pm)

Fall (109) 240 ± 6 154 ± 5 78 89 93 141 199

Winter (55) 130 ± 4 65 ± 3 32 36 39 58 75

Spring (134) 543 ± 6 475 ± 5 260 312 283 353 536

Summer (155) 646 ± 7 414 ± 6 364 437 396 515 829

Cumulus (453) 1559 ± 11 1107 ± 10 734 874 811 1066 1639

mean 3.4 2.4 1.6 2 1.8 2.4 3.6

For local potential evapotranspirations, i.e., PM (FAO-56), PM (MF-local), P, and PT,
a general underestimation (systematically in fall and winter) of lysimeters (1, 3) ETs is
observed over the whole simulation period (Figure 10). However, PM (MF-local) seems to
be a reasonably good predictor of the ET when IWS is absent (Table 8).

For the June 24 to 3 July 2018 dry period, potential ETs are superior to lysimeter 3 and
lower than lysimeter 1, which evaporates and transpires at a considerable rate (Figure 10c,f).

The evaporimeter data (346 observations) were also be compared with potential ET
values from Penman and Priestley–Taylor equations. In general, the Priestley–Taylor model
(749 mm) overestimates the evaporimeter measurement (686 mm), and the Penman model
(627 mm) underestimates it. While the maximum values are significant for the evaporimeter,
in terms of average, the three estimates are close (1.9 mm, 1.8 mm, and 2.1 mm, respectively,
for E, P and PT). The sensitivity of the Priestley–Taylor equation to the value αPT [39]
suggests that modelling ET or E from this equation requires a sensitivity study that would
lead to a specific αPT value (and that is not the objective here).

4. Discussion

In this study, the estimated ETs in the pilot rain gardens account for 61–90% of the
collected rainfall (Table A3). They are on average 2.4 to 3.78 mm/d, depending on the
vegetation maintenance, the presence (3–3.78 mm/d) of an IWS or not (2.4–2.5 mm/d).
The uncertainties of ETs are ±0.42 to ±0.58 mm. A similar experiment conducted at the
Villanova University in Pennsylvania (USA) by Wadzuk et al. [13] showed ET means of 6.1
and 3.1 mm/d, respectively, for IWS or no IWS lysimeters from April to November in 2010
and 2011. The high value of the lysimeter with an IWS compared to what is found here
could be explained by the focalised summer period, by the size of the IWS, which is larger
in the Wadzuk case (36 cm), by the evaporative demand, and also the inputs (precipitations)
to the lysimeter. However, our values are in the same range as those estimated by Hess
et al. [12] (4.3 and 2.7–2.9 mm/d, respectively, for IWS or no IWS lysimeters). These two
studies showed the importance of ET in the rain gardens and estimate it between 43 and
78% of the collected rainfall.

The impact of the vegetation type (herbaceous and shrubs) was not addressed here
because the replicas of shrubs (lysimeters 2 and 7) showed distributions that were statisti-
cally significant and there were large differences in terms of cumulative amounts. It has
been suggested that this situation is probably due to the shading, which has a great impact
on lysimeter 7 by significantly reducing its ET. However, a comparison of the closely re-
lated lysimeters 1 and 2 shows a higher evapotranspiration of shrubs configuration (+6%
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globally and more significant in autumn based on the Wilcoxon test), which suggests that
the vegetation type may be a factor to be considered. Indeed, Nocco et al. [14] investigated
the impact of vegetation and vegetation type (grassland, shrubs, turf, and bare soil) in
the hydrological performance of free-draining rain gardens in the Midwest of the USA.
Their studies were conducted in three months (July, August, and September) and they first
found that the effect of vegetation is significant when evaporative demand is also high. In
addition, the configuration with grassland showed a higher ET than the others with an
average of 9 and 7 mm/d in August and July, respectively. The ET of the bare soil system
was lower (4 and 3 mm/d in August and July, respectively), and the ET of the shrubs,
in contrast to the other systems that had ETs that decreased as the evaporative demand
decreased, had a relatively constant ET around 6 mm/d for the months of July and August.
It can be seen that the type of plant not only significantly impacts the ET dynamics, but
also the ET cumulative values.

Another factor that was not tested in this study is the effect of soil type. Hess et al. [12]
estimated average ETs of 2.9 and 2.7 mm/d, respectively, for free-draining lysimeters with
local sandy loam and sandy soil (three-year data). In terms of water balance, the ET with
the local soil accounted for 47% and the other 43% of the water balance. These differences
show that finer soils are more favourable to ET as they retain much more water than coarse
textured soils [15]. However, the issue of soil impact is best addressed in conjunction with
the type of vegetation, as vegetation through its development may affect the hydraulic
properties of the soil, which are able to affect the ET. Johnston’s [40,41] and Le Coustumer
et al. [42] illustrate the link between soil and vegetation evolution [14]. The first showed
that grassland and shrub rain gardens (without IWS) have significantly lower volumetric
soil water content at depths of 0–0.15 and 0.30–0.45 m (3–4 and 10% lower, respectively)
compared to turf rain gardens prior to storms, suggesting that vegetation type can impact
on the storage capacity of rain gardens. The second one indicated that the type of vegetation
through the growth and the morphology of their roots impact the hydraulic conductivity of
the soil (with average hydraulic conductivity decreasing by a factor of 3.6 over the 72 weeks
of testing) that influences mainly the drainage and the water availability in the garden.
For example, Le Coustumer et al. [42] observed that a species with thick roots significantly
maintained the permeability of the soil over time. This issue of the link between plants,
and soil in these systems, is not limited to the sustainable hydrological services but may
well extend to the sustainability of other ecological services (e.g., removal of pollutants, see
Glaister et al. [43]) in SUDS.

Until now, it can be argued that if the aim of rain garden design is to maximise ET,
it needs to provide an underlying water storage, and select a balanced choice between the
vegetation type and the soil type. Further factors to consider are atmospheric factors as
shown in the PSL approach, global radiation, air temperature, and humidity impact on the
estimated ET of lysimeters. Such factors are responsible for the seasonal variations in ET
flux. Similar to the other GIS (e.g., green roofs with Feng et al. [36]), these three variables
are known to affect ET and are generally input variables for the models used to simulate ET.
Understanding the impacts of atmospheric variables on rain garden ET requires suitable
hydrological simulation tools.

Finally, for a better efficiency of hydrological models, the ET process should be well
represented. In fact, the ET prediction equations used in these models are based on the
concept of potential ET, which account for evaporative demand. These ET models are then
coupled with specificities related to vegetation, water availability, and/or local microcli-
matic conditions (FAO methods [23], WUCOLS [44], and LIMP [45] methods). However,
these methods have remained impractical [15,17,27,46–48] as they require measurements of
multiple parameters, are derived from the agricultural context, and are less suitable for the
urban context. Hess et al. [27] tested the validity of the ASCE-Penman–Monteith [24] and
Hargreaves equations in rain garden systems (one system with storage and two systems
without storage with free drainage). Without including crop coefficients (estimated ET
divided by potential ET) and soil moisture extraction functions, these equations provided
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an adequate estimate of rain garden ET for all systems on a storm scale. The use of crop
coefficients and soil moisture extraction functions in both equations reduced the errors
in the ET estimates and increased the predictive power of the equations for all types of
weighing lysimeters at the daily scale. In this study, it is found that with potential ETs (FAO
and Météo-France) evaluated with local atmospheric variables, lysimeters (one with IWS
and three without IWS) were underestimated by the models. Furthermore, if the input data
(atmospheric variables) are not local, as shown in Figure 10, then there are issues of urban
micrometeorological variability [47] to take into account. However, at a seasonal scale,
the PM (MF-local) equation seems to be a good approximation of the ET of the lysimeter
without reserve. Monitoring properties that describe the dynamics of the vegetation canopy
(stomatal resistance, LAI, roots expansion, etc.) and soil water content would enable more
accurate assessment of the impact on plants and the comparison of lysimeters to evaporate
and transpire [19].

5. Conclusions

The process of evapotranspiration should be included in the design of green infras-
tructure systems (GIS) in order to optimise their hydrological functions of stormwater
management and their ability to cool the urban area in hot periods. In this study, a compar-
ison of the evapotranspiration capacity between different pilot rain garden configurations,
with an impluvium equal to four times the vegetated surface, was carried out, based on
data covering a three-year period in Paris (temperate climate, France) that has undergone
rigorous validation. The validated periods are less rainy and represent more the summer
and spring seasons. It was found that the evapotranspiration flux from rain gardens is sig-
nificant, with values that can exceed 8 to 12 mm/d in summer period for several days, and
is characterized by a marked seasonality with very low values in winter (≤2 mm/d). The
installation of an internal water storage at the base is the most favourable determinant to
enhance the flux and reduce exfiltration (+28 to 30% if the reference lysimeter with an IWS
and those without IWS are compared). The vegetation, here, is a secondary determinant,
and less marked (+6% for shrubs compared the reference herbaceous). The spontaneous
flora gives more ET than the reference configuration in summer (+8%) and all configura-
tions evaporate and transpire more than the regularly removed vegetation configuration.
The positioning of the lysimeters between them (close to or far from buildings) also seems
to be a determining factor and, in particular, the shading, which has a reducing effect on
ET (the replica that is less exposed to the shade evaporates 15% more than the shaded one).

The experimental set-up used in this work was pertinent, and allowed the observation
of water balance components and the assessment of the multi-annual daily ET with admis-
sible uncertainties (±0.42 to 0.58 mm). Therefore, the seasonal dynamics and the relative
significance of each determinant of ET in the rain gardens were highlighted. A possible
counterintuitive result in the seasonal analysis was also that the ET values observed on
the rain gardens, and particularly for those with an IWS, are higher than the ET from an
evaporimeter. Based on the potential ET from a reference station located at 2.4 km from the
site, the ET is under-estimated for the setup with an IWS during the winter and fall seasons.

Future studies need to include some aspects in the experimental setup for still better
understanding the ET process in rain gardens. First, the location of the experiment should
be selected in such a way that local microclimatic factors and especially shading effects are
taken into account. Second, monitoring some properties, which describe the dynamics of
the vegetation canopy (stomatal resistance, LAI, roots expansion, etc.) [19], and a lysimeter
without vegetation could be added to experimentally compare the contribution of plant
transpiration and soil evaporation. Finally, these results of ET could be used to investigate
the modelling of hydrological processes and more especially on the ET process in urban rain
gardens. The use of detailed and physically based hydro-climatic models (as SisPAT [49] et
Teb-hydro [50]) should make it possible to better understand and reproduce the process.
Nevertheless, the use of this type of models requires a large data set for the parametrization
and evaluation steps.
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Appendix A. Assessment of VIP Score from a Partial Least Square (PLS) Model

By resuming the influence of individual X variables on the PLS model, the VIP scores
are assessed as the weighted sum of squares of the PLS weights, w, which take into account
the amount of explained y variance in each extracted latent variable [33,34]. The VIP score
for a given variable jth is given according to Farrès et al. [33]:

VIPj =

√
∑F

f−1 w2
j f SSYf J

SSYtotal . F
(A1)

where wj f is the weight value for j variable and f component, SSYf is the sum of squares
of explained variance for the fth component and J number of X variables, SSYtotal is the
total sum of squares explained of the dependent variable, and F is the total number of
components. The w2

j f gives the importance of the jth variable in each fth component, and
VIPj is a measure of the global contribution of j variable in the complete PLS model.

SSYf = b2
t t′f t f SSYtotal = b2T′T. (A2)

where T is the X scores matrix and b is the PLS inner relation vector of coefficients.

Appendix B. Figures

Figure A1. The vegetation in the eight lysimeters on 21 June 2018 (Source: DPE-STEA, Paris council).
It can be observed that the spontaneous vegetation (lysimeter 5) is more developed compared to the
other settings and that today the vegetation in lysimeter 8 has been removed. Moreover, the shrub
configurations (2,7) are not well developed compared to the other configurations.
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Figure A2. The vegetation in the eight lysimeters on 20 September 2018 (Source: DPE-STEA, Paris
council). It can be observed particularly a development of the shrubs (lysimeter 2 and 7) and a
revegetation of lysimeter 8 three months after all the plants have been removed.

Figure A3. Comparison of the rain measurements resulting from the rain gauge data and by the
mass variation in the system (rainfall are estimated as any increase in the total mass (lysimeter
mass + exfiltration) of the lysimeter). The rainfall estimated from the lysimeter masses is lower
compared to the rain gauge. Figure (a–h) represent, respectively, lysimeters 2, 4, 6, 8, 1, 3, 5, and 7.

Figure A4. Global incident radiation (w/m2) of 14 June 2018 measured at a time step of 2 min.
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Appendix C. Tables

Table A1. Validated data after processing for the three years (2016–2019). The numbers and the
symbol “E” refer respectively to lysimeters and evaporimeter. For season, it was considered fall
(22 September to 21 December), winter (21 December to 20 March), spring (20 March to 21 June), and
summer (21 June to 22 September). The total data are for 1096 days.

Parameter Seasons 1 2 3 4 5 6 7 8 E Rain

ET

Fall 151 197 181 186 166 161 163 207 126 239

Spring 145 145 169 169 151 131 154 173 143 198

Summer 161 198 203 198 192 192 199 214 185 246

Winter 124 152 101 111 138 146 150 151 74 224

Total 581
(53%)

692
(63%)

654
(59%)

664
(60.6%)

647
(59%)

630
(57.5%)

666
(60.8%)

745
(68%)

528
(48.2%)

907
(82.7%)

Exf

Fall 197 231 215 215 183 200 218 231 -

Spring 213 207 229 221 200 161 192 217 -

Summer 195 232 246 249 230 235 251 251 -

Winter 174 196 149 161 163 202 196 209 -

Total 779
(71%)

866
(79%)

839
(76.6%)

846
(77.2%)

776
(71%)

798
(73%)

857
(78.2%)

908
(83%) -

ds

Fall 196 208 205 192 213 202 182 217 -

Spring 186 195 193 193 195 197 200 197 -

Summer 214 215 213 203 217 211 204 221 -

Winter 190 202 190 143 209 180 189 181 -

Total 786
(71.8%)

820
(75%)

801
(73%)

731
(66.7%)

834
(76%)

790
(72%)

775
(70%)

816
(74%) -

dL

Fall 197 193 - - 215 197 196 212 -

Spring 198 188 - - 164 191 188 196 -

Summer 200 204 - - 204 174 214 205 -

Winter 175 182 - - 213 209 189 202 -

Total 770
(70.2%)

767
(70%) - - 796

(72.6%)
771

(70.3%)
787

(71.8%)
815

(74.4%) -
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Table A2. A Wilcoxon test (wt) results comparing lysimeters replicas and different configurations
to the reference one the lysimeter 1. The test is performed based on the whole validated data and
seasons. For the seasons, it is considered fall (22 September to 21 December), winter (21 December
to 20 March), spring (20 March to 21 June), and summer (21 June to 22 September). Note that the
coloured boxes represent p-values, which are superior to 5%.

Lysimeters
Validated

Data

Seasonal Comparison

Fall
(273 Days)

Winter
(272 Days)

Spring
(276 Days)

Summer
(276 Days)

pv pv pv pv pv

Comparison
of the

Replicas

1, 6
wt 0.87 0.35 0.333 0.42 0.511

n (445) (112/273) (82/272) (106/276) (145/276)

3, 4
wt 0.007 0.007 0.004 0.05 0.26

n (600) (160/273) (87/272) (166/276) (187/276)

2, 7
wt 2 × 10−16 8.45 × 10−7 1.72 × 10−6 0.08 1.2 × 10−06

n (583) (154/273) (116/272) (127/276) (186/276)

Different
settings

compared to
the reference

(1 or 6)

1, 3
wt 1.16 × 10−20 4.5 × 10−7 0.0001 0.01 5 × 10−12

n (464) (113/273) (58/272) (135/276) (186/276)

1, 4
wt 1.15 × 10−62 4.14 × 10−20 1.04 × 10−15 3.98 × 10−12 1.01 × 10−19

n (460) (117/273) (57/272) (133/272) (153/272)

1, 5
(data)

wt 0.1 0.0061 1.78 × 10−6 0.15 0.17

n (475) (121/273) (86/272) (118/276) (150/276)

1, 2
wt 0.098 0.046 0.3844 0.81 0.36

n (503) (136/273) (89/272) (121/276) (157/276)

1, 8
wt 2 × 10−8 8 × 10−5 0.134 2 × 10−4 0.01

n (515) (136/273) (86/272) (134/276) (159/276)

6, 7
wt 0.001 0.59 0.288 5 × 10−6 0.97

n (538) (125/273) (111/272) (123/276) (179/276)

6, 5
wt 0.08 0.06 0.0037 0.89 0.34

n (506) (122/273) (94/272) (122/276) (168/276)

Table A3. Proportions of evapotranspiration (ET) to the rainfall (4P) received in each lysimeter.
The number of data (n) refers to the common validated data between the rainfall and the considered
ET of the lysimeter (on a total of 1096 days).

Lysimeter (n) 1 (557) 2 (674) 3 (636) 4 (630) 5 (624) 6 (601) 7 (656) 8 (718)

ET (mm) 1705.7 2295.9 1605.3 1491.5 1846.3 1846 1919.9 1924.6

P (mm) 502 637.6 643.8 613.8 650.6 614.8 556.6 752.4

4P (mm) 2008 2550.4 2575.2 2455.2 2602.4 2459.2 2226.4 3009.6

%ET 85% 90% 62% 61% 71% 75% 86% 64%
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Table A4. Cumulative ET in mm for the lysimeters in common validated days (305/1098).

Year Seasons Days ET1 ET2 ET3 ET4 ET5 ET6 ET7 ET8

2016
to

2017

Fall 12 28.9 ± 1.8 45.2 ± 1.6 21.8 ± 1.6 27.01 ± 1.4 12.7 ± 1.9 21.6 ± 2 25.9 ± 1.9 20.6 ± 1.5

Winter 0 0 0 0 0 0 0 0 0

Spring 27 93.1 ± 2.8 118.8 ± 2.4 82 ± 2.4 87 ± 2.2 79.7 ± 2.8 104 ± 3 83.1 ± 2.8 91.7 ± 2.3

Summer 15 76.1 ± 2 97.7 ± 1.8 60.2 ± 1.8 61.8 ± 1.6 47.6 ± 2.1 70.5 ± 2.2 79.5 ± 2.1 58.6 ± 1.7

2017
to

2018

Fall 39 82.8 ± 3.4 80.9 ± 2.9 41.1 ± 2.9 36.8 ± 2.6 89.2 ± 3.4 70 ± 3.6 55 ± 3.4 44.3 ± 2.8

Winter 15 45.8 ± 2 39.7 ± 1.8 23.4 ± 1.8 15.2 ± 1.6 10.1 ± 2.1 14.5 ± 2.2 22.8 ± 2.1 22.8 ± 1.7

Spring 25 108.2 ± 2.7 88.6 ± 2.3 88 ± 2.3 90.1 ± 2.1 137 ± 2.7 135.9 ± 2.9 83.2 ± 2.7 110 ± 2.2

Summer 70 234.8 ± 4.5 229.9 ± 3.9 169 ± 3.9 160 ± 3.5 321.3 ± 4.6 300 ± 4.8 205.7 ± 4.6 184.9 ± 3.7

2017
to

2018

Fall 14 44.7 ± 2 48.6 ± 1.7 22.7 ± 1.7 25.9 ± 1.5 35 ± 2 53.9 ± 2.1 45.7 ± 2 35.26 ± 1.7

Winter 10 22.07 14.3 ± 1.7 10.9 ± 1.5 9.03 ± 1.5 19.09 ± 1.7 24.8 ± 1.8 20.63 ± 1.7 9.5 ± 1.4

Spring 31 122.14 ± 3 99 ± 2.6 103.9 ± 2.6 89.44 ± 2.3 127.7 ± 3 114.5 ± 3.2 117.5 ± 3 53.5 ± 2.5

Summer 47 207.3 ± 3.7 218.8 ± 3.2 116 ± 3.2 147.7 ± 2.8 271.4 ± 3.7 150.3 ± 3.9 222.3 ± 3.7 232.2 ± 3.1

Table A5. Cumulative ET and P in mm for the lysimeters in common validated days for reference
(herbaceous) and shrubs configurations. The couples’ lysimeter 1 vs. lysimeter 2 and lysimeter 1 vs.
lysimeter 7 are presented.

Year Seasons Days
(1 vs. 2) Rain (P) ET1 ET2 Days

(1 vs. 7) Rain (P) ET1 ET7

2016–2017

Fall 40 25.8 71.17 103.98 42 23.4 67.61 65.57

Winter 38 28.8 37.36 74.68 49 55 57.31 34.00

Spring 57 59.8 212.24 274.06 51 87 209.13 189.99

Summer 36 37.8 193.27 216.7 34 39.2 155.91 158.99

2017–2018

Fall 61 58.4 110.44 125 50 26.6 97.09 70.02

Winter 33 41.6 87.6 80 29 39.6 82.01 38.02

Spring 26 20.4 112.76 90 31 23.6 129.87 100.30

Summer 72 17.6 240 232 72 17.6 239.94 208.93

2018–2019

Fall 33 54 80.15 78.89 28 52.4 68.71 96.95

Winter 18 5.4 33.53 22.21 24 10.2 37.74 36.18

Spring 38 19.8 157.63 129.17 41 15.4 179.63 175.68

Summer 49 17.2 217.12 230.57 49 17.2 217.12 230.03

2016–2018

Fall 136 138.8 264.47 315.93 121 103 233.96 234.83

Winter 89 75.8 158.5 176.89 102 104.8 177.06 108.21

Spring 121 100 482.64 493.24 123 126 518.63 465.97

Summer 157 72.6 650.33 679.27 155 74 612.97 597.95

Total 503 387.2 1555.95 1665.34 501 407.8 1542.63 1406.97
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Table A6. Cumulative ET and P in mm for the lysimeters in common validated days for reference
(lysimeter 1), spontaneous (lysimeter 5), and regularly removed (lysimeter 8) vegetation configurations.

Year Seasons Days
(1 vs. 5) P ET1 ET5 Days

(1 vs. 8) P ET1 ET8

2016–2017

Fall 45 42 81.0 35.8 39 25.8 69.9 51.7

Winter 38 51.6 43.7 18.1 33 23.6 28.2 43.8

Spring 45 66.4 187.4 162.1 60 66.8 227.3 224.2

Summer 30 22.2 163.3 88.4 38 39.2 205.7 156.0

2017–2018

Fall 61 60.2 112.4 113.6 61 50.8 114.5 72.5

Winter 34 44.8 89.1 22.8 30 36.8 84.8 55.0

Spring 32 23.6 134.4 165.8 32 23.6 134.4 139.3

Summer 72 17.6 239.9 323.8 72 17.6 239.9 189.4

2018–2019

Fall 15 35 48.4 35.9 35 56.4 79.3 70.8

Winter 14 9.2 29.1 24.7 23 7.2 36.8 18.8

Spring 41 20.6 179.4 197.8 42 20.6 184.5 82.3

Summer 48 13 212.7 275.3 49 17.2 217.1 234.9

2016–2018

Fall 121 137.2 241.9 185.3 136 133.6 264.2 195.0
(14.5%)

Winter 86 105.6 161.9 65.6 86 67.6 149.8 117.6

Spring 118 110.6 501.3 525.7 134 111 546.1 445.7

Summer 150 52.8 616.0 687.5 159 746 662.7 580.3

Total 475 406.2 1521.0 1464.2 515 386.2 1622.9 1338.6

Table A7. Cumulative ET and P in mm for the lysimeters in common validated days for reference
(lysimeter 1) and non-internal water storage configurations (lysimeters 3 and 4).

Year Seasons Days
(1 vs. 3) P ET1 ET3 Days

(1 vs. 4) P ET1 ET4

2016–2017

Fall 26 47.6 64.9 59.0 26 37 59.1 54

Winter 13 17.6 22.4 11.7 14 17.6 25.9 13

Spring 64 87 242.0 215.5 62 73.4 236.8 207.6

Summer 38 39.2 205.7 143.6 36 26.4 205.5 161.3

2017–2018

Fall 53 47.6 105.3 56.4 59 48.4 113.6 46

Winter 24 30.6 73.4 34.9 21 21 59.5 21.3

Spring 31 22.6 133.7 110.6 31 22.6 133.7 104.3

Summer 72 17.6 239.9 169.5 70 9.2 234.8 160.1

2018–2019

Fall 32 50 75.1 44.1 30 49 72.2 35.7

Winter 21 5 36.5 19.3 22 5.2 36.5 12.8

Spring 40 20.6 169.5 151.8 40 20.6 169.5 124.2

Summer 48 13 212.7 117.7 47 13 207.3 147.7

2016–2018

Fall 113 145.8 248.0 162.4 117 135 247.5 135.9

Winter 58 53.2 132.3 65.9 57 43.8 122 47.2

Spring 135 130.2 545.2 477.9 113 116.6 540 436.2

Summer 158 69.8 658.3 430.8 153 48.6 647.6 469.2

Total 464 399 1583.9 1137.0 460 344 1557.1 1088.4
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Abstract: Regional estimations of Potential Evapotranspiration (PET) are of key interest for a number
of geosciences, particularly those that are water-related (hydrology, agrometeorology). Therefore,
several models have been developed for the consistent quantification of different time scales (hourly,
daily, monthly, annual). During the last few decades, remote sensing techniques have continued
to grow rapidly with the simultaneous development of new local and regional evapotranspiration
datasets. Here, we develop a novel set T maps over the globe, namely RASPOTION, for the period
2003 to 2016, by integrating: (a) mean climatic data at 4088 stations, extracted by the FAO-CLIMWAT
database; (b) mean monthly PET estimates by the Penman–Monteith method, at the aforementioned
locations; (c) mean monthly PET estimates by a recently proposed parametric model, calibrated
against local Penman–Monteith data; (d) spatially interpolated parameters of the Parametric PET
model over the globe, using the Inverse Distance Weighting technique; and (e) remote sensing mean
monthly air temperature data. The RASPOTION dataset was validated with in situ samples (USA,
Germany, Spain, Ireland, Greece, Australia, China) and by using a spatial Penman–Monteith estimates
in England. The results in both cases are satisfactory. The main objective is to demonstrate the practical
usefulness of these PET map products across different research disciplines and spatiotemporal scales,
towards assisting decision making for both short- and long-term hydro-climatic policy actions.

Keywords: RASPOTION; potential evapotranspiration; parametric model; remote sensing; hydrolog-
ical calibration

1. Introduction

Evapotranspiration (ET) is a crucial element of the hydrological cycle relevant in a wide
range of geosciences, since it represents the combined water losses from soil surface and
vegetation. It is influenced by several meteorological variables such as air temperature, solar
radiation, wind speed, and relative humidity. The literature proposes several approaches
to quantify the process in terms of actual evapotranspiration, potential evapotranspiration
(PET) or reference evapotranspiration. By definition, PET refers to “the rate at which
evapotranspiration would occur from a large area completely and uniformly covered with
growing vegetation, which has access to an unlimited supply of soil water, and without
advection or heating effects” [1]. PET is different from the actual evapotranspiration, which
also depends on the actual soil water supply, mainly driven by the precipitation regime.
In recent decades, advanced methods have been introduced for ET and PET estimation,
the most recent being the remote sensing technique, incorporating aerial and satellite
imagery [2–5]. Generally, the classification of remote sensing for ET assessment includes
four groups referred to as empirical, direct, residual, inference and deterministic models [6].
The most well-known approach for the actual evapotranspiration estimation for daily
and monthly time step is the modified surface energy balance algorithm for land (SEBAL)
model [7]. A limited number of studies have focused on the global PET assessment utilizing

33



Hydrology 2022, 9, 32

remote sensing tools. Specifically, the global distribution of potential evaporation has been
calculated from the Penman–Monteith equation using satellite and assimilated data for a
24-month period, i.e., January 1987 to December 1988 [8].

The Parametric model is a temperature-based model that requires only temperature
data and utilizes a parsimonious expression for the potential evapotranspiration (PET)
estimation [9]. It replaces some of the variables and constants that are used in the standard
Penman–Monteith model by regionally varying parameters, which are estimated through
calibration [10–12]. The large-scale Parametric model application was satisfactory, and it
outperformed the efficiency of several simplified models such as Hargreaves, Thornthwaite,
Oudin, and Jensen–Haise.

In this study, a new global PET monthly dataset is introduced by applying the Paramet-
ric model using the remote sensing data (LANDSAT) of mean air temperature, provided by
a recent remote mean temperature dataset from 2003 to 2016. As most global applications
refer to the actual evapotranspiration assessment [2–5], this dataset may contribute to
hydrological balance modelling and agrometeorological applications.

2. Materials and Methods

The Parametric model employs physically consistent parameters distributed over
the globe, overcoming the main weakness of the Penman–Monteith model, which is the
necessity of simultaneous observations of four meteorological variables [10–14].

The modified Parametric model implements two instead of three parameters, namely
parameter a′ in the numerator and parameter c′ in the denominator of the formula:

PET =
a′Ra

1− c′T
(1)

where PET is the potential evapotranspiration (mm), Ra (kJ m−2) is the extra-terrestrial
radiation, a′ (kg kJ−1), and c′ (◦C−1) are the calibrated parameters and T (◦C) is the monthly
mean air temperature. As already stated in Tegos et al. [12], the parameters have some
physical correspondence to the Penman–Monteith equation, since the product a′Ra rep-
resents the overall energy term (i.e., incoming minus outgoing solar radiation), while the
quantity 1− c′T approximates the denominator term of the Penman–Monteith formula.
More information about the parameters a′ and c′ and their spatial patterns across the globe
can be found in [12].

The model was applied globally using the values of parameters a′ and c′ at the loca-
tions of 4088 stations of the FAO-CLIMWAT database, which presented positive efficiency
according to the Nash–Sutcliffe criterion during calibration (Figure 1). These values were
interpolated over the globe using the inverse distance weighting (IDW) technique into a
geographical information system (GIS) [12].
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Figure 1. CLIMWAT meteorological stations network and distribution of efficiency (from [12]).

The extra-terrestrial radiation (Ra) monthly raster datasets were derived from the
respective daily values using an analytical mathematical expression [12], from −90◦ to
+90◦ of latitude with a step of 0.05◦ for normal and leap years (Figure 2), taking into
consideration the polar daylight and polar night periods [15].

Figure 2. Mean monthly extra-terrestrial radiation (Ra) for latitudes −90◦ to +90◦.

The mean air temperature values, covering a period from 2003 to 2016, were acquired
as raster datasets from the recent analysis presented in [16]. Figure 3 shows the spatial
temperature variation across the globe in June 2011.
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Figure 3. Monthly air temperature in June 2011.

All three layers of information were embedded in GIS and constituted a framework that
permitted quality control screening by application of reasonable thresholds to exclude the
outliers in the PET values. The maps obtained using the parametric method were produced in
a GIS environment by applying Equation (1) with the required raster datasets, i.e., parameters
a′ and c′, extra-terrestrial radiation Ra, and monthly mean air temperature T.

3. Results
3.1. PET Global Mapping

Following the above presented methodology, a monthly PET global dataset was
acquired covering the period 2003–2016. Figure 4, visualizes the PET distribution for a
representative month (August 2011) globally.

Figure 4. Global PET map (mm/month) for August 2011.

In Eurasia, where PET monthly values range from 19 to 239 mm, PET increases from
north to south. The latter is well explained from the similar variation of temperature and
extra-terrestrial radiation. The highest values were observed in the Middle East, where
extremely arid climatic conditions occur. A pattern similar to Eurasia was observed in
North America, with the highest values at regions near the equator (e.g., Mexico) and
lowest in Canada, Alaska and Greenland. In South America, PET decreases from north to
south. Some inconsistencies in the area of Amazon and some peculiarly low values in the
area of equator can be explained from the limitations of the Parametric model to represent
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the combined effect on PET estimation of relative humidity and wind speed, which are key
drivers of the evapotranspiration processes across these areas, influencing the net incoming
solar radiation and the evaporation demand, as detailed in Tegos et al. [12].

High monthly PET values were acquired in the equatorial zone for Africa, mainly
in the lower Congo, where the hydro-meteorological observations were limited in the
Parametric model calibration. The decreasing trend from north to south in Oceania follows
the pattern of radiation and air temperature variation.

3.2. Validation

The RASPOTION remote sensing dataset has been compared against the Penman–
Monteith timeseries, estimated at 26 meteorological stations across the globe, listed in
Table 1. The validation was carried out for long-term monthly Penman–Monteith sam-
ples by examining the coefficient of efficiency (CE) due to Nash and Sutcliffe [17] in
different countries, namely, the USA, Germany, Spain, Ireland, Greece, Australia, and
China, and with different climatic regimes. Penman–Monteith timeseries were retrieved
by different databases such as CIMIS network (https://cimis.water.ca.gov/), European
Climate Assessment data set (http://eca.knmi.nl/), Australian Bureau of Meteorology
(http://www.bom.gov.au/watl/eto/, accessed on 1 February 2022), the Irish Meteorologi-
cal Service—Met Éireann (https://www.met.ie/)—and a previously published paper [18].
The new RASPOTION dataset shows an excellent performance across different climatic
regimes. Only two stations (Shanxi, Sydney Airport) demonstrate a moderate performance;
however, the coefficient of efficiency was above a threshold that can safely allow its further
operational use.

Table 1. Validation dataset.

Station Country Period CE

Kostakioi Greece 04/2008–07/2013 89
Mace Head Ireland 10/2010–11/2016 90.9
Zaragoza Spain 01/2003–11/2009 92.8
Alicante Spain 01/2003–10/2009 92.4

Munchen Germany 01/2003–06/2013 90.0
Karshue Germany 01/2003–08/2009 89.2

Hamburg Germany 01/2003–06/2013 93.7
Frankfurt Germany 01/2003–06/2013 96.7

Dusseldorf Germany 01/2003–06/2013 94.7
Dresden Germany 01/2003–06/2013 92.9
Bremen Germany 01/2003–06/2013 94.9

Angermunde Germany 01/2003–06/2013 95.2
Aachen Germany 01/2003–11/2005 91.5
Tulelake USA 01/2003–11/2005 79.2

Meloland USA 01/2003–06/2013 89.0
Manteca USA 01/2003–06/2013 93.1
Temecula USA 01/2003–06/2013 84.5

Buntigville USA 01/2003–06/2013 89.6
Mc Arthur USA 01/2003–06/2013 89.5

Davis USA 01/2003–06/2013 93.1
Tunnack Firestation Australia 01/2009–12/2014 90.5

Adelaide airport Australia 01/2009–12/2014 83.2
Sydney Airport Australia 01/2009–12/2014 43.2
Alice Springs Australia 01/2009–12/2014 84.1

Albany airport Australia 01/2009–12/2014 90.6
Shanxi China 01/2003–12/2014 22.3

Following RASPOTION’s evaluation performance at a point basis across the globe, an
advanced comparison is presented here that demonstrates its performance against spatial
PET monthly maps provided by the Environmental Agency throughout England. The latter
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dataset has been developed using the daily FAO-56 PET method in an extensive gauge
meteorological network across England, and spatial mapping with the use IDW method. A
free data access is provided by DEFRA Data Services Platform. Figure 5 shows the PET
monthly variation across England. PET ranges from 25 mm/month to 135 mm/month and
increases from North to Southeast.

Figure 5. PET monthly map (DEFRA- June 2011 PET in mm/month).

By comparing RASPOTION’s June 2011 raster map with the DEFRA PET map a
very good performance is achieved, as the actual difference for the majority of England
(around 80%) is up to ±9 mm/month (Figure 6), corresponding to a range of up to 12% of
overestimation and 9% underestimation of actual PET, respectively (Figure 7).

Figure 6. Spatial difference RASPOTION against DEFRA PET (mm/month).
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Figure 7. Ratio difference RASPOTION against DEFRA PET.

4. Discussion

In previous studies, extended discussion has shown that the Parametric PET frame-
work provides satisfactory results with some limitations [12], also outlined here. In some
areas with high values of relative humidity and wind speed, the existing PET parametric
approach fails to efficiently reproduce the PET characteristics and further improvements to
the parametric approach are recommended locally. Those areas are located in sub-Saharan
Africa (Kongo, Zimbabwe, Rwanda and Uganda) and South America, adjacent to the
Amazon River catchment (Brazil). It should be noted that the FAO-CLIMWAT data were
scarce and poor in Sub-Saharan and South American territories. In these territories the
calibrated parameters a′ and c′ are indicative and we recommend further calibration should
take place. The missing hydrometeorological variables and the lack of calibration was also
shown in a recent study by dos Santos et al. [19], where the parametric model displayed a
moderate performance in subtropical areas. Long-term measurements of relative humidity,
wind speed, temperature and radiation in conjunction with a new calibration of a revised
parametric formula would lead to substantial improvements in the existing parametric
estimates. The work should be accompanied and supported by a thorough statistical
investigation between the climatic factors (i.e., radiation, wind speed, relative humidity) to
identify the dependence of PET with any other variable except temperature.

Nonetheless, hydrologists, agronomists and other scientists with potential interest in
this dataset could make efficient use of it, in about 80% of the earth’s territory based on our
previous studies [12]. Taking into account the fact that other global PET datasets are not
available, the potential benefits of our new dataset may include the following:

(1) In the applications of physically based hydrological models which use PET as an
input in catchment modelling. This acquires higher usefulness as we are moving
forward toward global scale hydrological models. It is already highlighted by several
researchers that the use of accurate PET estimates is of great importance for the
reproduction of physically based hydrological responses [20] and its use in calibrating
complex physically based hydrological models [21,22].

(2) In the crop-water demand assessment. The integration of the monthly PET and
the cropping pattern quantifies the monthly water needs according to vegetation.
Accurate PET estimates with fewer demands of meteorological data, combined with
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modern techniques such as the use of a drone for micro-farming data gathering [23]
greatly support the food–water nexus.

(3) In climatological studies and drought assessment. The use of reliable PET models
greatly influences several well-known indexes such as Palmer Drought Severity
Index [24], aridity index [9] and Surface Wetness Index [25].

(4) In building and evaluating environmental resilience indexes for developing and
defining new multi-dimensional approaches. Such approaches would ensure an
accurate decision-making basis for sustainable ecosystem management [26].

5. Conclusions

As part of the PET Parametric model, a new global PET monthly dataset based
on remote-sensing temperature data is introduced, covering the period 2003–2016. This
global dataset was produced using the Parametric formula which uses as input vari-
ables extra-terrestrial radiation and mean air temperature. The remote temperature data
have been taken from a freely available dataset provided by Hooker et al. [16]. Previ-
ous analyses with this approach showed satisfying performance through validation un-
der several climatic regimes and different validation procedures. In regions where the
available hydro-meteorological information was scarce or insufficient, the modelling re-
sults were weak in terms of PET’s physical interpretation. In these areas the RASPO-
TION dataset should be used with caution. The dataset is open and freely accessible from
http://www.itia.ntua.gr/2167/ (accessed on 1 February 2022), where a total number of
168 monthly global raster files (GeoTIFF) are stored. Overall, for the majority of the Earth’s
surface, a reliable monthly PET dataset is compiled and made available to scientists across
different research disciplines in order to assist scientific studies into the global hydrological
cycle and decisions for both short- and long-term hydro-climatic policy actions. Future
research, consisting of exploration of model parameters and their clustering across the
globe, will provide area specific parameters, thereby excluding the need for local calibration
and further enabling the use of the Parametric framework.

Author Contributions: A.T.; methodology, data mining, draft reporting N.M.; draft reviewing Ra
modelling, D.K.; founding the parametric method, draft reviewing/editing, supervision. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The dataset is open and freely accessible from http://www.itia.ntua.
gr/2167/ (accessed on 1 February 2022), where a total number of 168 monthly global raster files
(GeoTIFF) are stored.

Acknowledgments: The manuscript is an invited paper as part of the Special Issue “Advances
in Evaporation and Evaporative Demand” organized by Hydrology journal. We are grateful to
Scientific Editor for handling it and Assistant Editor for inviting us to submit our work. We are also
thankful to two anonymous reviewers for the constructive comments which helped us to improve
our manuscript substantially. We, finally, thank Brendan Larkin for his final English proofreading
and suggested corrections.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dingman, S.L. Physical Hydrology; MacMillan Publishing Company: New York, NY, USA, 1994.
2. Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ.

2011, 115, 1781–1800. [CrossRef]
3. Ghilain, N.; Gellens-Meulenberghs, F. Assessing the impact of land cover map resolution and geolocation accuracy on evapotran-

spiration simulations by a land surface model. Remote Sens. Lett. 2014, 5, 491–499. [CrossRef]
4. Vinukollu, R.K.; Wood, E.F.; Ferguson, C.R.; Fisher, J.B. Global estimates of evapotranspiration for climate studies using multi-

sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ. 2011, 115, 801–823. [CrossRef]

40



Hydrology 2022, 9, 32

5. Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.-M.; Chen, J.; Davis, K.J.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.; Rossi, F.; et al. Global
estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens.
Environ. 2010, 114, 1416–1431. [CrossRef]

6. Nouri, H.; Beecham, S.; Kazemi, F.; Hassanli, A.M.; Anderson, S. Remote sensing techniques for predicting evapo-transpiration
from mixed vegetated surfaces. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 3897–3925.

7. Bhattarai, N.; Dougherty, M.; Marzen, L.J.; Kalin, L. Validation of evaporation estimates from a modified surface energy balance
algorithm for land (SEBAL) model in the south-eastern United States. Remote Sens. Lett. 2012, 3, 511–519. [CrossRef]

8. Choudhury, B.J. Global pattern of potential evaporation calculated from the Penman-Monteith equation using satel-lite and
assimilated data. Remote Sens. Environ. 1997, 61, 64–81. [CrossRef]

9. Stefanidis, S.; Alexandridis, V. Precipitation and Potential Evapotranspiration Temporal Variability and Their Relationship in Two
Forest Ecosystems in Greece. Hydrology 2021, 8, 160. [CrossRef]

10. Tegos, A.; Efstratiadis, A.; Koutsoyiannis, D. A Parametric Model for Potential Evapotranspiration Estimation Based on a
Simplified Formulation of the Penman-Monteith Equation. Evapotranspiration Overv. 2013, 143–165. [CrossRef]

11. Tegos, A.; Malamos, N.; Koutsoyiannis, D. A parsimonious regional parametric evapotranspiration model based on a simplifica-
tion of the Penman–Monteith formula. J. Hydrol. 2015, 524, 708–717. [CrossRef]

12. Tegos, A.; Efstratiadis, A.; Malamos, N.; Mamassis, N.; Koutsoyiannis, D. Evaluation of a Parametric Approach for Estimating
Potential Evapotranspiration Across Different Climates. Agric. Agric. Sci. Procedia 2015, 4, 2–9. [CrossRef]

13. Tegos, A.; Malamos, N.; Efstratiadis, A.; Tsoukalas, I.; Karanasios, A.; Koutsoyiannis, D. Parametric Modelling of Potential
Evapotranspiration: A Global Survey. Water 2017, 9, 795. [CrossRef]

14. Tegos, A.; Mamassis, N.; Koutsoyiannis, D. Estimation of potential evapotranspiration with minimal data dependence. In EGU
General Assembly Conference Abstracts; European Geosciences Union: Vienna, Austria, 2009; Volume 11. [CrossRef]

15. Whiteman, C.D.; Allwine, K.J. Extraterrestrial solar radiation on inclined surfaces. Environ. Softw. 1986, 1, 164–169. [CrossRef]
16. Hooker, J.; Duveiller, G.; Cescatti, A. A global dataset of air temperature derived from satellite remote sensing and weather

stations. Sci. Data 2018, 5, 180246. [CrossRef] [PubMed]
17. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970,

10, 282–290. [CrossRef]
18. Yuanyuan, W.; Jun, Z.; Yanqiang, W. Spatiotemporal variation characteristics of surface evapotranspiration in Shanxi Province

based on MOD16. Prog. Geogr. 2020, 39, 255–264.
19. dos Santos, A.A.; Moretti de Souza, J.L.; Rosa, S.L.K. Evapotranspiration with the Moretti-Jerszurki-Silva model for the Brazilian

subtropical climate. Hydrol. Sci. J. 2021, 66, 2267–2279. [CrossRef]
20. Seiller, G.; Anctil, F. How do potential evapotranspiration formulas influence hydrological projections? Hydrol. Sci. J. 2016,

61, 2249–2266. [CrossRef]
21. Immerzeel, W.A.; Droogers, P. Calibration of a distributed hydrological model based on satellite evapotranspiration. J. Hydrol.

2008, 349, 411–424. [CrossRef]
22. López López, P.; Sutanudjaja, E.H.; Schellekens, J.; Sterk, G.; Bierkens, M.F. Calibration of a large-scale hydrological model using

satellite-based soil moisture and evapotranspiration products. Hydrol. Earth Syst. Sci. 2017, 21, 3125–3144. [CrossRef]
23. Alexandris, S.; Psomiadis, E.; Proutsos, N.; Philippopoulos, P.; Charalampopoulos, I.; Kakaletris, G.; Papoutsi, E.-M.; Vassilakis, S.;

Paraskevopoulos, A. Integrating Drone Technology into an Innovative Agrometeorological Methodology for the Precise and
Real-Time Estimation of Crop Water Requirements. Hydrology 2021, 8, 131. [CrossRef]

24. van der Schrier, G.; Jones, P.D.; Briffa, K.R. The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameteriza-
tions for potential evapotranspiration. J. Geophys. Res. Earth Surf. 2011, 116. [CrossRef]

25. Yang, Q.; Ma, Z.; Zheng, Z.; Duan, Y. Sensitivity of potential evapotranspiration estimation to the Thornthwaite and Penman–
Monteith methods in the study of global drylands. Adv. Atmos. Sci. 2017, 34, 1381–1394. [CrossRef]

26. Fan, X.; Hao, X.; Hao, H.; Zhang, J.; Li, Y. Comprehensive Assessment Indicator of Ecosystem Resilience in Central Asia. Water
2021, 13, 124. [CrossRef]

41





hydrology

Article

Stochastic Analysis of Hourly to Monthly Potential
Evapotranspiration with a Focus on the Long-Range
Dependence and Application with Reanalysis and
Ground-Station Data

Panayiotis Dimitriadis , Aristoteles Tegos * and Demetris Koutsoyiannis

Citation: Dimitriadis, P.; Tegos, A.;

Koutsoyiannis, D. Stochastic Analysis

of Hourly to Monthly Potential

Evapotranspiration with a Focus on

the Long-Range Dependence and

Application with Reanalysis and

Ground-Station Data. Hydrology 2021,

8, 177. https://doi.org/10.3390/

hydrology8040177

Academic Editor: Andrea Petroselli

Received: 1 November 2021

Accepted: 29 November 2021

Published: 1 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Water Resources and Environmental Engineering, School of Civil Engineering,
National Technical University of Athens, Heroon Polytechneiou 5, 15880 Zographou, Greece;
pandim@itia.ntua.gr (P.D.); dk@itia.ntua.gr (D.K.)
* Correspondence: tegosaris@yahoo.gr

Abstract: The stochastic structures of potential evaporation and evapotranspiration (PEV and PET or
ETo) are analyzed using the ERA5 hourly reanalysis data and the Penman–Monteith model applied to
the well-known CIMIS network. The latter includes high-quality ground meteorological samples with
long lengths and simultaneous measurements of monthly incoming shortwave radiation, temperature,
relative humidity, and wind speed. It is found that both the PEV and PET processes exhibit a
moderate long-range dependence structure with a Hurst parameter of 0.64 and 0.69, respectively.
Additionally, it is noted that their marginal structures are found to be light-tailed when estimated
through the Pareto–Burr–Feller distribution function. Both results are consistent with the global-
scale hydrological-cycle path, determined by all the above variables and rainfall, in terms of the
marginal and dependence structures. Finally, it is discussed how the existence of, even moderate,
long-range dependence can increase the variability and uncertainty of both processes and, thus, limit
their predictability.

Keywords: potential evapotranspiration; stochastic simulation; marginal structure; long-range
dependence; Hurst–Kolmogorov dynamics

1. Introduction

Evapotranspiration is a paramount element in hydrology, with relevance in many
aspects of the geosciences. From hydrological and agronomic perspectives, the potential
evapotranspiration (PET) and (potential) evaporation (PEV) are key for water balance
estimation, the assessment of crop water demand, and integrated rainfall-runoff modelling.
PET [1] is defined as “the amount of water transpired in a given time by a short green
crop, completely shading the ground, of uniform height and with adequate water status in
the soil profile”. A particular (reference) case thereof is the reference evapotranspiration
(ETo), which refers to “the rate of evapotranspiration from a hypothetical reference crop
with an assumed crop height of 0.12 m, a fixed surface resistance of 70 s/m, and an albedo
of 0.23, closely resembling the evapotranspiration from an extensive surface of green
(cool season) grass of uniform height, actively growing, well-watered, and completely
shading the ground” [2]. Evaporation is the physical process by which liquid water
enters the atmosphere as water vapor. In what follows, when we refer to all of the above
processes, we use the acronym PE. We also note that PE may be different from the actual
evapo(transpi)ration (in cases where there is not adequate water availability).

For the PE assessment, historically, many models have been developed highlighting
the Penman–Monteith model as the most suitable [3]. One of the main shortcomings of
estimating PE with the Penman–Monteith model is the requirement of a significant number
of meteorological inputs such as, without distinction, temperature, radiation, relative
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humidity, and wind speed [4–6]. In the case that we require a synthetic PE timeseries for risk
management (e.g., in a Monte Carlo simulation framework), when the above meteorological
inputs are not available for the requested period, then one may use a stochastic model
that preserves the important statistical attributes of PE. Additionally, due to the physical
complexity of assessing the PE, stochastic modelling provides a solid scientific ground
for further consideration in several fields of PE assessment, and the stochastic analysis
can contribute to the PE physical interpretation along with other hydrometeorological
processes because stochastics is proven as a collection of mathematical tools able to give
physical explanations [7]. As highlighted in the aforementioned work [7], the role of
stochastics is crucial: (a) to infer dynamics (laws) from past data; (b) to formulate the
complex natural system equations; (c) to estimate the involved parameters; and (d) to test
any hypothesis regarding the dynamics. There are only limited works providing a thorough
stochastic analysis in PE timeseries, even though the necessity of stochastic modelling is of
paramount importance. Based on the published literature, a seasonal ARIMA model and
Winters’ exponential smoothing model [8] have been investigated for their applicability
for forecasting weekly reference crop ETo [9]. Both models demonstrated satisfactory
results compared to a simple PE model. Pandey et al. [10] provided a stochastic analysis
in assessing black gram evapotranspiration regimes using a long-term pan-evaporation
dataset of 23 years in Udaipur, India. Black gram is an important crop of the Udaipur region,
and the lack of long-term crop demand assessment led to the need for stochastic analysis
using pan-evaporation gauges to predict daily black gram evapotranspiration. As noted
by the authors, the new stochastic model for black gram evapotranspiration was found
to predict daily black gram evapotranspiration with high accuracy (R2 = 0.94). Dynamic
stochastic modelling, with a focus on the marginal probability distribution function (known
as cumulative distribution function), has been also used for quantifying the PE uncertainty
associated with irrigation scheduling [11–13]. Recently, an application of vine copulas with
a focus on the short-term structure of the daily evaporation process has been presented [14].
Rainfall-runoff approaches have been presented using stochastic inputs of precipitation and
PE to overcome the lack of Penman–Monteith estimates and long-term gauge inputs [15,16].

A substantial amount of previous works have focused on the trend PE assessment [17,18]
in conjunction with the well-known term, evaporation paradox [19,20]. The later has been
defined as the assumption that, under warming climate and higher temperatures, increased
PE rates are expected; however, gauge data show the opposite because observations across the
U.S. and the globe show a decreasing trend in pan evaporation. Recent studies recommend
the revision of common trend tests through re-evaluation of the statistical significance of an
observed trend in a timeseries by assuming a model exhibiting the scaling hypothesis [21],
which is shown to be apparent in most key hydrological-cycle processes [22] and provides a
more accurate modelling framework than a trend-based approach [23].

The stochastic structure of the PE process, ranging from hourly to climatic scales, is
studied here in terms of Hurst–Kolmogorov (HK) dynamics, which describes all processes
exhibiting the Hurst phenomenon (i.e., with a power-law autocorrelation function at large
scales). Additionally, we focus on the marginal structure of the PE process as fitted through
the Pareto–Burr–Feller (PBF) distribution function [24], which includes a large variety of
tail-behaviors [25]. Both marginal and second-order dependence structures of the HK
dynamics are estimated and compared to the ones identified from global-scale analyses
in other key hydrometeorological processes that form the hydrological-cycle path driven
by atmospheric turbulence [26], such as temperature, wind, solar radiation, and relative
humidity [22,27–29].

Because observations for the PE process are usually found on monthly or daily res-
olutions, here we use two datasets. The first dataset comprises PET timeseries with
monthly resolution extracted from the California Irrigation Management Information Sys-
tem (CIMIS) network in California, comprising 41 ground stations. For the second dataset,
we extracted gridded reanalysis PEV data of hourly resolution. In particular, we retrieved
the reanalysis data for the grid points in the same area of the network of the ground stations,
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so that we could compare its stochastic structures to the PET records, with a focus on the
long-range dependence (LRD) behavior.

In Section 2, we introduce the methodology on the estimation of the marginal and
second-order dependence structures, while in Section 3, we present the statistical char-
acteristics of the selected stations as well as the results obtained from the analysis, with
a focus on the marginal and the dependence structures. Finally, in Sections 4 and 5, we
summarize our findings, and we discuss how the results may be consistent with the ones
obtained from the hydrological-cycle path under HK dynamics, expanding from Gaussian
to Pareto-type tail behavior, and from fractal and intermittent behavior at small scales to
LRD behavior at large scales.

2. Metrics of Marginal and Dependence Structures

The estimators and models applied for both the marginal and the second-order depen-
dence structures are part of the stochastic framework of the HK dynamics, with a focus on
the LRD behavior [30–35], and they have been applied to turbulent and key hydrological-
cycle processes of global networks with resolutions spanning from small scales (relevant to
the fractal behavior) to climatic scales (for a review, see [26]).

It has been shown that a flexible probability distribution function, which seems to fit
well a great variety of key hydrological-cycle processes [25,26], with tail-behaviors ranging
from Gaussian to Pareto, is the PBF distribution function [24,36–38], i.e.:

F(x) = P{x ≤ x} = 1−
(

1 + ζξ

(
x− d

λ

)ζ
)− 1

ξζ

(1)

where x > d, d is a location parameter (in units of x), ζ and ξ are dimensionless shape pa-
rameters, and λ is a scale parameter (in units of x). It is noted that here the Dutch convention
is adopted, where underlined symbols denote random variables and stochastic processes.

The estimation of the parameters of the PBF distribution function for the identification
of the marginal structure of the PE process is based on the first four statistical moments,
and particularly on the central moments and coefficients (i.e., mean, variance, skewness,
and kurtosis). It is stressed that, although the estimation from the classical moments of high
order are unknowable, especially in the presence of heavy tails and LRD [25], the hourly
PEV and the monthly PET processes are expected to be close to a light-tail behavior and,
therefore, the estimation of skewness and kurtosis coefficients could be, in approximation,
reliably estimated from data.

For the dependence structure of the PE processes, we select the climacogram metric,
which is defined as the variance of the averaged process at the scale domain [7]. i.e.:

γ(k) := Var
[∫ k

0
x(y)dy

]
/k2 (2)

where k is the scale (in units of x). (See discussion on the origins of the name, mathematical
definitions, etc., in [26,39])

It has been shown that the climacogram estimator at the scale domain is a more
powerful estimator than the autocovariance function at the lag domain or the power-
spectrum at the frequency domain [34], while its classical estimator adjusted for bias is
defined as [40]:

γ̂(κ∆) =
1

bn/κc
bn/κc
∑
i=1

(
x(κ)i − µ̂

)2
+ γ(bn/κcκ∆) (3)
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where κ = k/∆ is the dimensionless scale, ∆ is the time resolution of the process, µ̂ is the

mean of the process, bn/κc is the integer part of n/κ, and x(κ)i is the i-th element of the
averaged sample of the process at scale κ, i.e.:

x(κ)i =
1
κ

iκ

∑
j=(i−1)κ+1

xj (4)

For the climacogram model, contained in the above estimator, we select a generaliza-
tion of the HK model (for details and more sophisticated models, see [25,26]), which has
been shown to well simulate processes from sub-hourly to over-annual resolutions, and
from short- to long-term scales associated with fractal and LRD behaviors that exclude the
drop of variance at the intermediate scales:

γ(k) =
a

(
1 + (k/q)2M )(1−H)/M

(5)

where a is the variance of the process, q is a scale parameter (in units of the scale k),
M is the fractal parameter, and H is the Hurst parameter indicative of the LRD of the
process, i.e., for 0.5 < H < 1 the process exhibits LRD behavior, while for 0 < H < 0.5
it exhibits an anti-persistent behavior, and for H = 0.5 a white-noise behavior. Here, the
standardized climacogram is used, i.e., γ̂(k)/γ̂(1), because the effect of the sample variance
is already accounted for through the marginal fitting. We also note that a Gaussian process
with q→ 0 and M = 0.5 coincides with the well-known fractional Gaussian noise model
(e.g., [41]).

3. Data Extraction and Processing

For the analysis of the hourly PEV process, we use the reanalysis ensemble data
extracted (access date at 29/10/2021; with coordinates S32-N42 and W115-E125)
from the ERA5 [42] of the Centre for Medium-Range Weather Forecasts (ECMWF;
https://cds.climate.copernicus.eu/ accessed on 1 October 2021) across California (Figure 1)
and for the period 1979–today (Table 1).
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Table 1. Information on the selected stations and the reanalysis data.

Sequence
Number Name Process Temporal

Resolution Time Period Number of
Data Values Mean (mm) Standard

Deviation (mm)
Skewness
Coefficient

1 Five Points PET monthly 1982–2013 363 131.5 73.7 0.0

2 Davis PET monthly 1982–2013 372 120.6 68.7 0.0

3 Firebaugh Teles PET monthly 1982–2013 370 118.1 68.9 0.1

4 Gerber PET monthly 1982–2013 370 117.3 67.9 0.1

5 Durham PET monthly 1982–2013 369 107.8 61.7 0.1

6 Carmino PET monthly 1982–2013 369 116.8 68.8 0.3

7 Stratford PET monthly 1982–2013 369 128.2 75.4 0.0

8 Castorville PET monthly 1982–2013 368 79.9 32.0 0.1

9 Kettleman PET monthly 1982–2013 368 130.4 73.9 0.0

10 Bishop PET monthly 1983–2013 363 125.5 60.9 0.0

11 Parlier PET monthly 1983–2013 362 112.5 66.0 0.1

12 Calipatria PET monthly 1983–2013 360 151.2 65.2 −0.1

13 Mc_Arthur PET monthly 1983–2013 357 101.2 66.2 0.2

14 UC_Riverside PET monthly 1985–2013 337 121.9 47.0 0.1

15 Brentwood PET monthly 1985–2013 327 115.8 68.1 0.1

16 San_Luis_Obispo PET monthly 1986–2013 327 107.5 39.5 −0.1

17 Blackwells_corner PET monthly 1987–2013 321 128.9 73.1 0.2

18 Los Banos PET monthly 1988–2013 301 119.8 70.4 0.1

19 Buntigville PET monthly 1986–2013 325 112.9 67.8 0.1

20 Temecula PET monthly 1986–2013 320 113.5 39.9 0.0

21 Santa_Ynez PET monthly 1986–2013 320 105.1 46.3 0.0

22 Seeley PET monthly 1987–2013 314 159.7 69.1 −0.1

23 Manteca PET monthly 1987–2013 308 109.7 64.7 0.1

24 Modesto PET monthly 1987–2013 312 110.7 64.9 0.1

25 Irvine PET monthly 1987–2013 309 105.0 39.4 0.1

26 Oakville PET monthly 1989–2013 292 103.8 55.5 0.0

27 Pomona PET monthly 1989–2013 291 103.4 44.7 0.1

28 Frenso_State PET monthly 1988–2013 297 117.7 71.2 0.1

29 Santa_Rosa PET monthly 1990–2013 282 93.9 50.9 0.0

30 Browns_Valley PET monthly 1989–2013 291 112.2 65.4 0.1

31 Lindcove PET monthly 1989–2013 290 110.4 65.9 0.1

32 Meloland PET monthly 1989–2013 283 153.3 66.5 −0.1

33 Alturas PET monthly 1989–2013 291 97.0 60.7 0.3

34 Cuyama PET monthly 1989–2013 289 128.4 61.4 0.1

35 Tulelake PET monthly 1990–2013 291 96.4 60.6 0.2

36 Goleta_foothills * PET monthly 1990–2013 197 99.1 34.8 0.0

37 Windsor PET monthly 1990–2013 266 96.4 53.6 0.1

38 De_Laveaga PET monthly 1990–2013 274 88.6 39.4 −0.1

39 Westlands PET monthly 1992–2013 255 131.2 76.0 0.0

40 Sanel_Valley PET monthly 1990–2013 269 107.2 62.8 0.1

41 Santa_Monica PET monthly 1993–2013 246 99.1 34.9 0.0

42 CIMIS (overall) PET monthly 1983–2013 12985 114.4 63.5 0.2

44 ERA5 PEV hourly 1979–2021 0.93 × 106 0.08 0.11 1.5

* There is a large gap in timeseries from 1995–2001.
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Observations for the PE processes are usually available in monthly or daily resolutions
and usually only for short periods, while a global gridded dataset based on the ERA5 data
has been recently released [43]. Here, we use two datasets and compare the marginal and
dependence structures of the reanalysis PEV timeseries with the PET timeseries of coarser
monthly resolution, extracted from a network of 41 ground stations (see details in Table 1
and Figures 2 and 3). Particularly, the monthly Penman–Monteith dataset of the CIMIS
network is used, in which reference evapotranspiration and potential evapotranspiration
coincide due to local surface and vegetation conditions. The samples of 41 meteorological
stations (https://cimis.water.ca.gov/, accessed on 1 October 2021) are well-distributed
across California (Figure 1) for the period 1983–2013 (Table 1), which corresponds to a
maximum of 372 monthly values. The meteorological network has been developed in co-
operation with Davis University, and the local environment of the meteorological stations
allow accurate estimation of the PET.
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Figure 2. Total recorded and missing values of the PET timeseries for each station.
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Figure 3. Minimum and maximum values of the PET timeseries for each station.

To account for the impact of the double periodicity (diurnal and seasonal) of the PE
processes on the dependence structure, we simulate the transformed process by applying
a double standardization on the original timeseries. Particularly, we subtract the hourly
and monthly means (Figures 4 and 5) and then we divide with the hourly and monthly
standard deviations (Figures 6 and 7). Other transformation methods could be applied that
take into consideration higher moments (e.g., [26]) such as skewness (Figure 8) and kurtosis
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(Figure 9) coefficients, or even more sophisticated ones [44]; however, as can be derived
from Table 1 and Figures 6 and 7, the PE processes (especially the aggregated PET process)
is close to a light-tail distribution, and therefore we do not expect any significant differences
by applying those methods. After the double standardization, we de-standardize each
timeseries based on the total mean and standard deviation of the original timeseries
(Table 1 and Figure 10). Finally, we fit the marginal and dependence models described
in the previous section to each transformed timeseries, and the results are depicted and
described in the next section.
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Figure 4. Monthly means of the PET timeseries for each station.
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Figure 5. Hourly means of the PEV timeseries for each month.
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Figure 6. Monthly standard deviations of the PET timeseries for each station.
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Figure 7. Hourly standard deviations of the PEV timeseries for each month.
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Figure 8. Monthly skewness coefficients of the PET timeseries for each station.
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Figure 9. Skewness and kurtosis coefficients of the PET timeseries for all stations.
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Figure 10. Observed and transformed PET timeseries at the Davis station.

4. Results

The PBF marginal distribution function is fitted to each transformed timeseries
(e.g., Figure 11), and the parameters for all transformed timeseries can be seen in Table 2.
Note that the fit of the PBF to all timeseries is exceptionally good. From Table 2, it can be
observed that the transformed PEV and PET processes exhibit a light-tail behavior. The average
values of the shape parameters are estimated as ξ ≈ 0.04 and ζ ≈ 5.7 for the CIMIS dataset,
and ξ = 0.08 and ζ = 7.6 for the ERA5 transformed timeseries. It has been shown [25] that the
tail index, ξ, does not depend on the averaging scale. Therefore, the slight differences in the
estimated values are either due to statistical uncertainty or to differences in the nature of the data.
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Figure 11. Observed and theoretical results of the PBF marginal distribution function of the PET
transformed timeseries at the Davis station.
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Table 2. Parameters of the marginal probability distribution function for all transformed timeseries
of each station (note that the squared correlation coefficient is R2 > 0.99 for all models). The symbols
ξ, ζ, λ, and d correspond to Equation (1).

Sequence Number Name ξ ζ λ (mm) d (mm)

1 Five Points 0.100 4.5 240.0 –105.0

2 Davis 0.094 9.2 355.1 –236.0

3 Firebaugh Teles 0.071 8.0 353.2 –227.5

4 Gerber 0.078 8.2 349.6 –227.9

5 Durham 0.063 6.3 285.2 –167.6

6 Carmino 0.034 5.8 326.1 –191.1

7 Stratford 0.054 8.0 427.1 –286.5

8 Castorville 0.049 5.4 132.7 –45.7

9 Kettleman 0.018 4.7 308.4 –154.0

10 Bishop 0.067 10.4 304.9 –171.3

11 Parlier 0.042 6.4 326.8 –199.4

12 Calipatria 0.093 7.7 285.2 –131.2

13 Mc_Arthur 0.038 6.8 340.7 –223.3

14 UC_Riverside 0.071 4.2 145.7 –14.8

15 Brentwood 0.072 7.4 344.0 –221.1

16 San_Luis_Obispo 0.077 4.6 138.0 –25.1

17 Blackwells_corner 0.001 5.1 352.9 –196.8

18 Los Banos 0.056 7.2 367.4 –235.1

19 Buntigville 0.025 6.0 327.6 –193.9

20 Temecula 0.074 5.1 145.7 –26.0

21 Santa_Ynez 0.012 5.1 199.9 –78.5

22 Seeley 0.085 7.7 285.3 –116.6

23 Manteca 0.046 4.3 233.0 –107.6

24 Modesto 0.013 3.7 231.3 –100.0

25 Irvine 0.031 4.1 132.3 –15.5

26 Oakville 0.002 3.5 188.2 –65.3

27 Pomona 0.025 6.0 208.3 –91.1

28 Frenso_State 0.031 3.3 210.4 –72.4

29 Santa_Rosa 0.026 3.6 169.3 –61.1

30 Browns_Valley 0.004 4.4 279.5 –143.7

31 Lindcove 0.045 6.2 315.7 –190.4

32 Meloland 0.029 5.2 268.0 –94.7

33 Alturas 0.019 5.0 259.4 –142.3

34 Cuyama 0.030 6.8 343.4 –197.5

35 Tulelake 0.022 5.2 262.2 –146.8

36 Goleta_foothills 0.017 4.7 129.3 –18.5

37 Windsor 0.001 3.1 166.1 –51.4

38 De_Laveaga 0.001 5.5 195.3 –90.9

39 Westlands 0.018 3.2 230.2 –76.6

40 Sanel_Valley 0.001 6.6 385.2 –252.7

41 Santa_Monica 0.016 4.7 144.3 –33.4

42 CIMIS (meanl) 0.040 5.7 260.8 –132.4

43 ERA5-PEV 0.076 7.6 0.63 –0.54
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Additionally, the combined climacogram from all the empirical ones for the CIMIS
transformed timeseries is depicted in Figure 12 and compared to the one from the ERA5
transformed timeseries depicted in Figure 13. It can be observed that a Hurst–Kolmogorov
behavior is detected in both data sources, with a Hurst parameter of approximately 0.65.
Specifically, the estimated parameters for the CIMIS dataset are H = 0.64 and q = 1.17 months
(M is assumed to be 0.5 because the empirical climacogram is very close to an fGn process),
and for the ERA5 timeseries they are H = 0.69, q = 19.7 h, and M = 0.8.
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Figure 12. Observed and theoretical climacograms through the HK model for all the available PET 
transformed timeseries adjusted for bias, with the 25% and 75% quantiles (note that the coefficient 
of determination for the model is R2 = 0.993). 
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Figure 12. Observed and theoretical climacograms through the HK model for all the available PET
transformed timeseries adjusted for bias, with the 25% and 75% quantiles (note that the coefficient of
determination for the model is R2 = 0.993).
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Figure 13. Observed and theoretical climacograms through the HK model for the ERA5 transformed
timeseries adjusted for bias (note that the coefficient of determination for the model is R2 = 0.997).

5. Discussion

Here we discuss how the above results can contribute to the existing literature relating
to the potential evaporation and evapotranspiration from the point of view of stochastics
and, in particular, of the HK dynamics.

The stochastic analysis of the potential evaporation (PEV) and potential evapotranspi-
ration (PET) presented is useful (a) to highlight the stochastic similarities between them,
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(b) to quantify the variability and uncertainty of these processes, and (c) to develop a
stochastic model capable of simulating important stochastic characteristics, for purposes
such as forecasting and risk management. The PEV timeseries is extracted in hourly res-
olution as a reanalysis ensemble over California and through the ERA5 network, while
for the PET, the high-quality CIMIS dataset with 41 stations is used over the same area
for comparison.

The analysis of the above three tasks is performed based on the stochastic metrics
and Hurst–Kolmgorov (HK) dynamics. Moreover, the marginal structures and second-
order dependence structures are compared to the structures of each other and of other
key hydrological-cycle processes such as temperature, relative humidity, wind speed,
streamflow, and precipitation, as analyzed from a global network of stations in [25].

In particular, and similar to the global analysis, it is illustrated how the Pareto–Burr–
Feller (PBF) probability distribution function may well describe the marginal structure of
both the hourly PEV and monthly PET. Additionally, both processes are shown to exhibit a
light-tail behavior. However, it is noted that the shape parameters of the PBF (i.e., ξ and ζ),
which characterize the type of the tail, are slightly smaller in the CIMIS data (i.e., overall
mean from stations 0.04 and 5.7, respectively) as compared to the reanalysis data (i.e., 0.08
and 7.6, respectively), indicating a heavier tail for the latter.

Additionally, it is found that, similarly to the other key hydrological-cycle processes
mentioned above, both PEV and PET processes exhibit long-range dependence, with a
Hurst parameter of medium strength. In particularly, H is estimated as 0.65 and 0.68 for
the PET and PEV processes, respectively, which is weaker than the ones for temperature,
relative humidity, solar radiation, and wind speed (0.80–0.85 [25]) and stronger than the
one for precipitation (i.e., 0.61 [25]) for the examined range of scales spanning from the
hourly resolution to the climatic scales. This can be interpreted as an indication that the
PET and PEV processes have a wider predictability time window than precipitation’s, and
narrower than the rest (i.e., entailing a higher degree of long-term unpredictability).

As a final remark, the need to apply a suitable stochastic model to reproduce important
characteristics, such as LRD behavior, is stressed. The work shows the robust use of a
stochastic framework to simulate the variability and uncertainty of a hydrometeorological
process in emerging new practices and challenges:

• Stochastic modelling of evapotranspiration at a fine time scale (e.g., hourly) is con-
sidered to be useful for numerous agronomist applications because it is strongly
connected to the forecast of the plant water demands. In recent years of micro-farm
techniques, the stochastic modelling of evapotranspiration, with sound physical-
interpretation, has tracked the attention of the scientific community in order to simu-
late more accurately the water-food-energy nexus.

• A proper stochastic model for the simulation of the evapotranspiration should be
based at a wide range of spatio-temporal scales and meteorological conditions; thus, a
global-scale analysis is important in order to identify stochastic similarities so as to
improve the simulation techniques.

• Stochastic simulation of the error analysis between the modelled and the measured
Penman–Monteith assessment could highly contribute to improving potential evapo-
transpiration estimates.

• Stochastic PET modeling could offer a solid probabilistic frame for identifying the
long-term trend of hydrometeorological components in horizons greater than the
available records and thus is of potential interest for climatological studies.

6. Conclusions

A stochastic model is presented for hourly potential evaporation (PEV) and monthly
potential evapotranspiration (PET) based on the ERA5 hourly reanalysis data and the
Penman–Monteith model applied to the well-known CIMIS network.

It was found that both the marginal probability distributions of PEV and PET are light-
tailed when estimated through the Pareto–Burr–Feller distribution function. Additionally,
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the long-range dependence of both the PEV and PET is found to be of moderate strength,
quantified through a Hurst parameter of 0.64 and 0.69, respectively.

The above results reveal the stochastic similarities between the ground and reanalysis
data series. Additionally, the results are shown to be consistent to the hydrological-path of
the marginal and dependence structures of Hurst–Kolmogorov dynamics. In particular,
both PET and PEV can be placed between the stochastic structures of temperature, relative
humidity, solar radiation, and wind speed (i.e., strong LRD and light- to medium-tail) and
the precipitation’s structures (i.e., weak LRD and heavy tail). Finally, it is discussed how
the existence of, even moderate, long-range dependence and tail distribution increase the
variability and uncertainty of both processes, and thus limit their predictability.
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Abstract: Evapotranspiration (ET) is a parameter of major importance participating in both hydro-
logical cycle and surface energy balance. Trends of ET are discussed along with the dependence of
evaporation to key environmental variables. The evaporation paradox can be approached via natural
phenomena aggravated by anthropogenic impact. ET appears as one of the most affected parameters
by human activities. Complex hydrological processes are governed by local environmental conditions
thus generalizations are difficult. However, in some settings, common hydrological interactions
could be detected. Mediterranean climate regions (MCRs) appear vulnerability to the foreseen
increase in ET, aggravated by precipitation shifting and air temperature warming, whereas in tropical
forests its role is rather beneficial. ET determines groundwater level and quality. Groundwater level
appeared to be a robust predictor of annual ET for peatlands in Southeast Asia. In semi-arid to
arid areas, increases in ET have implications on water availability and soil salinization. ET-changes
after a wildfire can be substantial for groundwater recharge if a canopy-loss threshold is surpassed.
Those consequences are site-specific. Post-fire ET rebound seems climate and fire-severity-dependent.
Overall, this qualitative structured review sets the foundations for interdisciplinary researchers
and water managers to deploy ET as a means to address challenging environmental issues such as
water availability.

Keywords: actual evapotranspiration; potential evapotranspiration; reference evapotranspiration;
evaporation; evaporation paradox; global dimming; wind stilling; forest fires; groundwater

1. Introduction

The importance of evapotranspiration (ET) is demonstrated by its participation in
the hydrological cycle (as a hydrological process) and in the surface energy balance (as a
flux) [1]. Taking into account that a high percentage of the precipitated water is evaporated
and transpired (e.g., 65% Ireland [2]; 62% Greece [3]) it is obvious that water budgets are
dictated by the fluctuations of ET and subsequently by the dependency of ET on several
environmental parameters [4–6]. ET according to researchers is a component that is not
perfectly understood yet. Thus, it should be thoroughly studied as a major key parameter
involving numerous mechanisms, mediating fluctuations of other variables, and controlling
processes or causing considerable problems after intense disturbances by human activity
or climate change.

1.1. Types of ET

Actual evapotranspiration (AET), which constitutes the actual water amount evap-
orated and transpired under the existing environmental conditions of a specific area,
is challenging to measure. Thus, many studies attempt to obtain potential evapotranspira-
tion (PET), pan evaporation (PE), or reference evapotranspiration (RET) values depending
on their specific methodological approaches and research objectives. PET determines the
evaporative demand of the atmosphere [7]. It can be defined as the amount of water (in
mm of water depth) that can be evaporated by the soil of a land surface and transpired
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by the plants of the specific area, under the occurring conditions, providing that water
supply is not a limitation. Usually, PET constitutes the upper limit of AET. As Lv et al.
(2019) [8] underline, PET is higher than precipitation in arid areas, thus AET is close to
the latter, whereas precipitation is higher than PET in humid areas, therefore, PET is close
to AET. Pan evaporation (PE), meaning the depth of the water evaporated from the wet
surface of an evaporation pan, can serve according to Sun et al. (2018) [9] as a proxy of
PET since, besides their differences, they both quantify the evaporative demand. The usual
types of pans are the following: class-A evaporation pan (d = 120.1 cm), Colorado sunken
pan (area equal to 0.846 m2), Φ20 evaporation pan (d = 20 cm), large-pans (area equal
to 20 m2), and floating evaporation pans [9–11]. The latter two are preferentially used
to estimate the evaporation from free waterbodies such as lakes and dam reservoirs [12].
PE measurements have been used in several studies as reference or “truth data” [13,14].
Reference evapotranspiration (RET) is defined as the evaporation rate from a reference
surface of grass with a height of 0.12 m, surface resistance of 70 m/s, and an albedo value of
0.23 [10]. In addition, alfalfa is another reference surface used by the Food and Agriculture
Organization (FAO) http://www.fao.org/3/x0490e/x0490e0b.htm#alfalfa%20based%20
crop%20coefficients (accessed on 6 October 2021), [15]. According to Jiang et al. (2019) [16],
variations in RET is the resultant of the integrated effect of climatic variables, thus RET
in several cases reflects the impact of climate change on meteorological and hydrological
cycles (e.g., increase in RET of water fed crops in arid or semi-arid areas indicates a high risk
of drought). AET values for crops are determined from RET values using an appropriate
crop coefficient [10]. RET and AET depend, among other variables, on air temperature
which is in turn dictated to a large degree by the incoming solar radiation, thus RET
and AET are prone to be affected by the ongoing rise in air temperature compared to the
pre-industrial era, a phenomenon known as global warming. The former is supported by
the findings of several studies which indicate that RET has been increased during the last
50 years in numerous regions of the globe [17].

1.2. Parameters Affecting ET

There are several parameters affecting ET such as climatological-meteorological,
hydrogeological, topographical, and physiological. The parameters mainly affecting ET
as a climate variable (i.e., PET, RET types) are solar radiation, air temperature, humidity,
and wind speed, whereas AET mainly depends on water availability [10].

Sensitivity analysis regarding ET is the procedure that investigates the change in ET
values caused by the change of a specific variable in the employed models. In other words,
it identifies the parameters which dictate ET variability and the order (i.e., the ascending
degree) the former affects ET [18]. Research on the sensitivity of PET to climatological-
meteorological factors is of major importance since it aims to explain the hydrological cycle
at different regions [7]. RET is considered as an integrated measure of four key climatological-
meteorological variables: radiation, wind speed, air temperature, and atmospheric humid-
ity [19]. Differentiations are detected among studies concerning the variables which employ
parameters such as air temperature (T), radiation (net radiation, sunshine hours, or sunlight
duration), and atmospheric humidity (relative humidity, vapor pressure, vapor pressure
deficit) [7,19]. The vapor pressure deficit (VPD) is defined as the difference between the
saturation and actual vapor pressure for a specific period of time [10]. Relative humidity
represents the degree of saturation of the air as a ratio of the actual to the saturated vapor
pressure at the same temperature [10].

1.3. Developments in ET Measurement and Estimation

As the relevant research continued over decades more sophisticated interpretations
were presented, incorporating the mediating factors of PET sensitivity, such as topographic
parameters (e.g., shading) and characteristics (e.g., complex terrain), climatic conditions
(e.g., different climatic zones), and the timing of certain weather episodes. Furthermore,
partitioning ET into components in complex land covers such as forests refined the assess-
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ment of the accuracy of several methods which have been developed to estimate forest ET
types (AET, PET). The latter is of great importance since forest contribution to global climate
responses to disturbances is critical [20]. Tie et al. (2018) [21] asserted that forest ET can be
divided into three components: understory ET (soil evaporation and transpiration from
understory vegetation), transpiration, and “interception loss from the overstory canopy”
(i.e., the evaporation of the water intercepted by the overstory canopy).

The spatial scale of forest ET estimation and the observation height can differentiate
the estimated contributions by each component depending on the geological parameters of
the study area. Amongst the most frequently used methods, the catchment water balance
method (annual or longer temporal scale) might overestimate forest ET by underestimating
subsurface runoff if fractured bedrock occurs [21], suggesting the role of lithology, tectonics,
and also of erosion (related to climate change) to ET estimation. Upscaled sap flow methods
estimate transpiration and demonstrate diurnal lag for actual ecosystem transpiration
compared to the eddy covariance method. Soil water budget methods give point-scale
estimations of understory ET and overstory transpiration and reflect the general trend and
dynamics of forest ET [21].

The inclusion of canopy evaporation or interception loss in the late years refined
hydrological modeling. Interception expresses the difference between gross rainfall and
rain passing through the crowns [22]. According to the literature, canopy evaporation
alters the microclimate of the field by reducing VPD which in turn reduces the evaporative
demand. Transpiration is suppressed during sprinkler irrigation and this is a reason why a
number of researchers assert that intersection loss does not constitute a loss, since, in the
case of a dry canopy, transpiration would occur instead [5]. Canopy storage is the amount
of water held on the canopy. Bart and Tague (2017) [23] suggested that reduced postfire ET
values in catchments across California were due to the reduced canopy interception, as a
result of canopy removal. Bulcock and Jewitt (2012) [4] after investigating interception in a
humid forest in the Seven Oaks area in South Africa consisting of pinus, acacia, and euca-
lyptus species, found that the former parameter, often neglected in estimations, accounted
for 40% of the gross precipitation loss. Interception includes the water evaporated both
during and after a rainfall or an irrigation event, over a certain period [4,5]. Interception is
divided into canopy interception and litter interception which have been reported to reach
26.6% and 13.4% of the total evapotranspiration, respectively [4]. The latter is primarily
dependent on the storage capacity which in turn varies with rainfall intensity, constituting a
parameter that should be taken into consideration in modeling for improving the accuracy
of the results, since intensity variation is a common denominator of rainfall events in the
frame of climate change. Canopy interception depends on PET, rainfall intensity, duration,
and storage capacity. Moreover, it has been documented that broad leaves are associated
with high litter interception [4]. On the other hand, in some cases, the plant species with
the highest leaf area index (LAI) had the lowest canopy interception because of the angle
and the smooth surface of their leaves, which both reduced water retention. LAI is defined
as the cumulative one-sided area of leaves per unit area [4]. Rainfall is also intercepted in
urban areas by building walls and roofs and urban trees [24].

Isotope technics are useful tools to detect hydrological processes and useful alterna-
tives to upscaling methods in the partitioning of evaporation and transpiration in arid and
semi-arid areas [25]. Recent implementations over the arid Upper Yellow River and Qilian
Mountains in China showed that the stable isotopes 18O and 2H can reflect the characteris-
tics of water sources and evaporation [26,27]. Given that the light-isotope evaporation rate
is high compared to heavy-isotope evaporation, evaporation in lakes and surface water
bodies can be easily detected since the condensed water is enriched in heavy isotopes
whereas precipitation water is depleted (of heavy isotopes) [21]. In the same direction, the
depth of the soil where evaporation takes place between rainfall or irrigation events could
be identified by the stable-isotope vertical profile of soil [26].

ET is a part of complex mechanisms, thus both its measurement and estimation are
challenging. Measurement techniques include lysimeters and micrometeorological meth-
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ods for fluxes such as Bowen Ratio and Eddy Covariance often used as reference estimates
for remote sensing-based algorithms validation [5,28]. Empirical equations have been
developed, adapted, and widely used over the decades. However, climate change has
fueled the need for empirical formulae to be tested in terms of accuracy and recalibrate
at each area of application due to ongoing alterations in climatic variables and shifts in
climatic patterns. Valipour et al. (2017) [29] tested 15 empirical models widely used in
the literature for RET estimation and deducted that the radiation−based formulae were
adapted to climate change better than the temperature-based ones in Iran. Specifically,
radiation-based formulae appeared to be more accurate in arid, semi-arid, and Mediter-
ranean areas, whereas temperature-based formulae outperformed the rest in very humid
areas [29]. Besides direct measurement and the employment of well-established empirical
formulae and empirical models (e.g., Stephens–Stewart’s model, Griffith’s model) based on
meteorological data from stations, ET has been obtained via remote sensing data (MODIS,
Landsat, etc.) either as remote sensing derived-products (e.g., MODIS products) [30], or can
be estimated by surface energy balance models, employing satellite and ground-based
data, such as ALEXI, METRIC, SEBAL, SEBS, STSEB models [31–36] or via empirical and
physical-based methods [37–42]. ET time-series are used to calibrate hydrological mod-
els such as Sacramento, SWAT, and CropPwat [10,43,44]. Models employing complex
algorithms such as general circulation models (GCMs) have also been used for long-term
projections of evaporation, although questions for their reliability for future projections of
ET had been raised [45]. Zhao et al. (2019) [46] developed a method for post-processing
seasonal GCM outputs to predict monthly and seasonal RET. Several models on heuristic
and fuzzy-logic science for estimations of PE and RET and machine learning algorithms
such as combined neural networks, genetic algorithm model, linear genetic programming,
fuzzy genetic, adaptive neuro-fuzzy inference system, artificial neural networks, multi-
layer perceptron neural network, co-active neuro-fuzzy inference system, radial basis
neural network and self-organizing map neural network showed high accuracy in different
climate zones [15,47–51].

1.4. Objectives of the Review

What are the latest trends in ET globally? In what ways do climate change and
anthropogenic footprint (e.g., air pollution, land use/ land cover (LU/LC) changes) affect
ET? What are the interactions reported between ET and the main hydrological components
(e.g., groundwater, streamflow)? How do wildfires affect ET and how do ET pre-fire values
lead to forest fire risk identification? The objective of the present study is the attempt to
respond to the aforementioned scientific questions by combining reported findings by
eligible studies in a holistic way and underline any potential conflicts. In other words,
the aim of the present study is twofold: First to qualitatively review the footprint emerging
from ET trends over the latest decades in areas with different environmental conditions in
the context of the ongoing climate change. Second, to focus on critical components such as
the anthropogenic impact on ET, the mechanisms in which ET participates regarding forest
land-cover and wildfires, croplands (irrigation and cultivation practices), groundwater
(quantity and quality), and ambient air. Studies on climate change and water cycle usually
address ET as a secondary component whereas studies concerning ET are focused on very
specific objectives (i.e., measurement or estimation or sensitivity analysis of one form of ET
under specific spatiotemporal conditions, development of a specific model, or testing an
algorithm) thus, they do not combine different aspects and roles of ET. Acknowledging
the contribution of the former types of research on ET, this is an attempt to compare,
link, and synthesize findings around the world and extract useful conclusions on the
role of ET. To the authors’ knowledge, such an integrated and holistic synthesis of ET
mechanisms, complex interactions, services, and impacts based on the latest research
findings and conclusions does not yet exist. This qualitative review aims to constitute a
useful background for interdisciplinary scientists and a reference point for water managers.
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2. Materials and Methods

The methodology which has been followed was based on the criteria of a system-
atic review as developed by Boaz et al. (2002) [52] usually followed in environmental
sciences [53], adapted to the qualitatively synthesizing character of the present review.
Those criteria are elaborated as follows:

i Procedure based on protocols: The collecting of literature was based on two combined
criteria: the most recent bibliography would be analyzed, from reliable repositories
(e.g., Scopus (https://www.scopus.com/ (accessed on 10 May 2021); PubMed https:
//www.ncbi.nlm.nih.gov/pmc/ (accessed on 10 May 2021); and Science Direct
https://www.sciencedirect.com/ (accessed on 10 May 2021)) and scientific reports
(https://www.ipcc.ch/ (accessed on 12 May 2021); https://iahs.info/Publications-
News.do; http://www.fao.org/ (accessed on 13 May 2021))). Studies were scrutinized,
similarities and differences among them were marked, and elaborating literature was
sought to verify every piece of information before an association to be made or a
conclusion to be reached. All the references of the articles were checked to validate the
background of every study before employing them. Some of the cited articles were
selected in a scheme of snowball collection of studies and added to the references
after following the same procedure. In the process, several studies were neglected if
the aforementioned criteria were not met.

ii Since this review has a holistic approach, a number of research questions were posed
in order to serve as axons of the review. The question that constituted the common
denominator of all stages of the review was “Is there quantifiable evidence that a
relationship occurs between ET and a specific meteorological factor or process”?

iii Identification of relevant research: 141 research articles of trustworthy peer-reviewed
scientific journals obtained from literature repositories were employed in an iterating
way already described.

iv Validation of the quality of the used research: Cross-referencing of every study
was carried out and multiple studies with similar findings were sought to aim to
strengthen the validity of the conclusions.

v Synthesis of the findings of the employed studies: findings were synthesized in a
deductive way, where reported cases with similar climate conditions, vegetation,
and type of disturbance were examined to find out if the same relationship between
ET and one other party (meteorological factor or process) occurs (e.g., relationship
between the number of the years for ET to reach pre-fire levels and fire severity for
eucalyptus forests in Mediterranean climate regions (MCRs)).

vi Objectivity was reached by comparing corresponding methodologies and results and
seeking verification from multiple sources (e.g., PE trends for the same region for
overlapping time periods).

vii Updated information: the conclusions of the review can be easily updated as ET trends
are presented in tables and the relationships and interactions are clearly thematically
presented in paragraphs (e.g., ET and wildfires, ET affects groundwater recharge, etc.).

The used methodology is schematically presented in Figure 1.
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3. The Conflict of Increasing and Decreasing Trends of ET Types

The Evaporation paradox is the reported decreasing trends in PE (or RET) until the
mid-1980s (or mid-1990s for regions in USA and Australia; Table 1) which contradicted
the anticipated long-term increasing trends in the atmospheric evaporative demand, in a
concurrently warming atmosphere [54,55]. The latter phenomenon is important since PE
is considered “a clue to the direction of the change in AET” [56]. There is a considerable
number of studies on ET trends over the last decades reporting decreasing or increasing
trends or ET rebound after a critical period of time [9,16,57–87], (Table 1). These tem-
poral breakpoints have been associated with anthropogenic impacts on regional climate
(e.g., air pollution due to industrialization) and global phenomena (e.g., wind stilling,
global dimming, and brightening) (see Figure S1). In the direction to investigate the
reasons for which some trends seem conflicting at first sight, sensitivity analysis of ET
(PE, RET) on key meteorological factors has been applied by researchers to determine the
governing factors in each case (Table 1).
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Table 1. Trends in ET (i.e., RET, PE, and LE) categorized as decreasing, increasing, of insignificant variability (no trend),
and of high variability (both increasing and decreasing trends—no pattern), and the dominant climate variable affecting ET
for each area, as obtained by the latest studies.

ET Type Period of Analysis Study Area Dominant Climate Variable
Affecting the Trend Reference

Decreasing trends
LE 1950–2000 Southern Canadian Prairies Wind speed Burn and Hesch, 2007 [57]

RET 1982–2013
NW China (Gobi Desert) Wind speed Wang et al., 2017 [19]

SE China Sunlight duration Wang et al., 2017 [19]
PE 1960–1991 China Wind speed + solar radiation Liu et al., 2011 [61]

RET 1961–1996

SW Chin (Western-Sichuan
Plateau, Sichuan Basin,

Yunnan-Guizhou Plateau, and
Guangxi Basin

Sunshine hours + wind speed Jiang et al., 2019 [16]

RET Until early 1980s Greece Global dimming Papaioannou et al., 2011 [64]
PE Until 1979 Nigeria (4 climate zones) n.d. Ogolo, 2011 [66]

RET 1979–2000 India (NW, whole) Net radiation + wind speed Jhajharia et al., 2009 [62]
RET 1965–2005 C. Iran Wind speed Dinpashoh et al., 2011 [76]
PE 1961–2010 Mexico Wind speed + solar radiation Breña-Naranjo et al., 2017 [72]
PE after 1970 Thailand Wind speed Limjirakan & Limsakul, 2012 [78]
PE 1975–1999 Australia (whole) Wind speed Johnson and Sharma, 2010 [46]

PE 1975–1994 Southern and Western
Australia Wind speed Stephens et al., 2018 [87]

PE 1990–2016 Central, Northern Australia Wind speed Stephens et al., 2018 [87]
Increasing trends

LE 1950–2000 Northern Canadian Prairies VPD Burn and Hesch, 2007 [57]

RET 1975–2006 Turkey Air temperature + relative
humidity Dadaser-Celik et al., 2016 [68]

RET 1961–2016 Slovenia (2 mountainous sites) Solar radiation Maček et al., 2018 [63]
RET After late 1980s Greece Global warming + brightening Papaioannou et al., 2011 [64]
PE After 1979 Nigeria (4 climate zones) n.d. Ogolo, 2011 [66]

RET 1986–2007 NW Iran n.d. Azizzadeh and Javan, 2015 [75]
RET 1965–2005 Iran (NW, NE) Wind speed Dinpashoh et al., 2011 [76]
E, ET 1992–2009 S. Florida USA Air humidity Abtew et al., 2011 [79]
RET 1961–1982 NW China (Gobi Desert) Wind speed Wang et al. (2017) [19]
PE 1992–2007 China Air temperature Liu et al. (2011) [61]

RET 1997–2016

SW China (Western Sichuan
Plateau, Sichuan Basin,

Yunnan-Guizhou Plateau, and
Guangxi Basin)

Air temperature + relative
humidity Jiang et al., 2019 [16]

RET 1951–2020 China, Upper Yangtze River
Basin Relative humidity Wang et al. (2021) [59]

PE 2008–2014 China (Lower Yellow River) Heat waves and droughts Sun et al., 2018 [9]
PET 1 2020–2080 Ireland (Shannon River Basin) n.d. Gharbia et al., 2018 [2]

PET 1 2071–2100 Italy (High Plain Veneto and
Friuli) n.d. Baruffi et al., 2015 [88]

PE 1975–2002 Australia (whole) Solar radiation Roderick & Farquhar, 2004 [85]
PE 1975–2004 Australia (whole) Wind speed Rayner, 2007 [86]
PE 1975–1990 Central, Northern Australia Wind speed Stephens et al., 2018 [87]

PE 1994–2016 Southern and Western
Australia Air temperature Stephens et al., 2018 [87]

Insignificant variability
PE 1964–1998 Israel Global dimming Cohen et al., 2002 [67]

PE 1975–2000 W. Turkey (Buyuk Menderes
Basin) n.d. Yeşilırmak, 2013 [69]

PE 1973–2014 Uruguay n.d. Vicente-Serrano et al., 2018 [71]
High variability 2

PE 1950–2002 Conterminous U.S. Radiation + advection Hobbins et al., 2004 [54]

PE 1980–2009 Conterminous U.S. 1 of 4 variables 3 depending
on season

Hobbins, 2012 [82]

PE 2030, 2050, 2070 1 Australia (whole) Radiation + advection Johnson and Sharma, 2010 [46]

Note: 1 Projected PET values (GCMs). 2 Both increasing and decreasing trends. 3 Air Temperature, Specific Humidity, Downwelling
Shortwave Radiation and Wind Speed. “n.d.” stands for “not defined”.
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4. ET Affects Groundwater Recharge

Climatic change is defined, as any change in climatic conditions, as a result of natural
or anthropogenic causes [89]. By altering ET and groundwater-recharge rates climate
change has the potential to affect both the quantity and the quality of groundwater [89].
Precipitation, snow thaw, interactions with surface water bodies (e.g., rivers, lakes, and wetlands)
are the main sources of groundwater recharge [89]. Thus, alterations in precipitation
patterns, ET, and air temperature affect groundwater recharge. An increase in precipitation
frequency and intensity would contribute to runoff and global warming would rise ET
rates [89]. Although there are projections that the overall water recharge could potentially
increase as a result of climate change (e.g., due to snow-packs thaw), it is rather that
changes in water supplies, storage, and baseflow depend on regional conditions [89].
There are arid or semi-arid regions where recharge rates are low and water demand is
high [90]. Groundwater recharge would potentially increase over regions where snow
thaw occurs (depending on infiltration, lateral recharge, etc) [90]. Furthermore, as soon as
snowpack thaws soil temperature rises, both photosynthesis and water use by vegetation
increase [91]. Soil humidity serves as a mediating factor. However, even if the amount
of water increases, water availability will still be limited due to the expected increase in
evaporation [89]. In addition, precipitation in arid regions is anticipated to be even more
scarce in the future [92].

Future implications in groundwater recharge are critical not only for arid or semi-arid
regions. As Gharbia et al. (2018) [2] indicated, 65% of gross precipitation over Shannon
River Basin, Ireland, is annually evaporated or transpired. The projected PET values reflect
an increasing trend of 0.9–1.3% by 2020 and up to 13.5% by 2080 with serious implications
on water availability [2]. Baruffi et al. (2015) [88] projected evaporation of High Plain
Veneto and Friuli in Italy (300–600 m altitude) for 2071–2100 and found a 25% increase
in PET during winter, 15% during summer, and more than 20% during fall. Although
projected gross precipitation is 20% higher compared to the reference period (1971–2000),
summertime rainfall is expected to be lower by 15%. As a result, runoff is expected to
increase by 60% in winter and decrease up to 45% in summer [88]. Groundwater storage is
projected to be reduced by 70% in the former area [88]. According to Lionello and Scarascia
(2018) [70], winter precipitation in South Mediterranean areas is predicted to decrease,
thus, aquifer recharge during the hydrological year, along with the increasing evaporative
demand, is expected to aggravate.

Forests can enhance both ET and infiltration rates, thereby reducing surface runoff
and enhancing groundwater recharge [8]. It has been documented that in tropical forests
soil moisture in the top 1–1.5 m layer is lower than 34 mm, hence deeper soil moisture
and groundwater contribute to the transpiration demand of vegetation during the dry
season [93]. Moreover, in tropical forests the rapid soil saturation during the rainy season
which follows vegetation removals greater than 45% due to disturbances such as wildfires
causes post-fire floods, deteriorating the high water deficit during the dry season [94]. ET in
tropical forests is a beneficial process since it reduces excess humidity, (indirectly) enhances
infiltration during rainfalls, and moderates flood peaks during the rainy season [93,94].

5. ET and Wildfires
5.1. AET Rates after Wildfires

Wildfires differentiate the hydrological cycle and the surface energy fluxes by altering
the microclimate of the subject area along with the soil structure and soil properties [95].
Latent heat flux (λE) represents the energy flux that is directly converted into AET in the
atmosphere. λE is the form in which evaporation participates in the surface energy balance.
This component varies between burnt and control (unburnt) sites [95]. As a rule, after a
fire event, AET decreases due to the removal of tree crowns and understory (thus the rise
of albedo value). Häusler et al. (2018) [95] studied the difference of ET between fire-subject
sites and control sites of eucalyptus forest cover in NC Portugal. They reported that the
post-fire disturbances in the water cycle constituted by limited water vapor and higher
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water demand. Not only AET but also the λE ratio from the canopy and soil dramatically
changed post-fire. Specifically, 80% from canopy and 20% from soil (pre-fire) became 30%
and 70%, respectively, shortly after the fire [95]. Fire severity has been associated with
AET differences. Pre-fire ET levels of eucalyptus forest of MCRs were reached 2 years
after the fire for low-to-moderate fire severity [95], after 5–8 years for moderate severity,
and after 8–12 years for high severity [96]. The observed paradox for certain plant species
such as eucalyptus is that 2–3 years after the wildfire AET was 29% higher than in unburnt
sites in South Australia [96], and 2% higher after 4 years in Portugal. This paradox has
been attributed to the epicormic regrowth and the partial regrowth of foliage (temporarily
higher LAI) which increased water demand. Unlike eucalyptus forest, the AET of burnt
sites of pine forest cover in SE Spain remained lower than the corresponding AET of the
control sites for 11 years after the fire [97].

Liu et al. (2019) [20], after studying the global fire-climate response for the wildfires of
2003–2014, suggested that the positive warming response accounted for a decrease in ET,
which lasted for 5 years post fire and the consecutive increase in albedo resulted in lowering
the cooling effect. Tropical forests exhibit a net cooling effect as a result of their high ET
rates. However, after undergoing extended wildfires, tropical areas exhibit lower but
persistent positive surface warming response, driven by reduced evaporative cooling [20].
Dynamic interactions between ET and albedo at different ecosystems worldwide govern
the surface warming and the radiative budget response after fires. According to the authors,
the severity and frequency of fires will result in considerable changes in climate and the
adiative budget especially for high latitudes [20]. Albedo values’ offset between snow and
non-snow periods allow the decreasing ET during the vegetation growth period to dictate
the surface energy balance, resulting in warming over boreal forest areas which lasted for
5 years post fire. This positive feedback is a result of canopy loss. Liu et al. (2019) [20]
deduced that these alterations in biophysical processes are not satisfactorily captured by
satellite observations of burned areas.

High latitude biomes are found to be more sensitive to climatic change [20]. Wang et al.
(2018) [98] put forward a mechanism potentially implemented to temperature-limited high
latitude forests when there is a high diffuse of photosynthetic active radiation (PAR),
given that increased longwave radiation is emitted from clouds. Successively, canopy tem-
perature increases enhancing gross primary productivity and transpiration. Thus, diffuse
solar radiation is another parameter considered to be critical regarding ET variations [52].
Moreover, this mechanism might be a reason that top-down models using remote sens-
ing data to estimate ET are often biased towards clear sky conditions [98]. Hirano et al.
(2015) [99] reported that the less-vegetated part of the burnt ex-peat swamp site was stud-
ded with open water which resulted in lower albedo in 2004–2005, while in 2006 El Niño
drought dried off the burnt surface increasing the areal albedo. The latter parameter is
critical especially for models employing satellite retrieved data.

The combined effects which LU/LC change along with climate change triggers on
AET should be thoroughly studied since they cause alterations to variables such as albedo,
LAI, and root depth which in turn lead to different ET rates [8]. Abatzoglou and Williams
(2016) [100] after analyzing the consequences of several fire events in Western continental
US forests over 1984–2015, found that anthropogenic climate change is responsible for
2/3 of the increase in RET which, along with VPD, is the most affected parameter by
anthropogenic climate change. Therefore, they put forward RET as a metric of fuel aridity,
interannually related to the burnt area. Häusler et al. (2019) [101] showed that using AET
values acquired by remote sensing in drought indices would enhance the identification of
fire risk areas by providing higher resolution. The main interactions between albedo and
ET are displayed in Figure 2.
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5.2. Post-Fire ET and Groundwater

Poon and Kinoshita (2018) [102] underline the usefulness of evaporation time series,
since pre-fire and post-fire biogeological processes would potentially substantially change
due to fire disturbances. Alterations in vegetation and soil properties could create a water
repellent topsoil layer which would increase surface runoff [102]. Thus, wildfires increase
water repellency (or hydrophobicity) of soils, an attribute that substantially affects ET and
water infiltration [23]. Johnk and Mays (2021) [103] reported a two-year post-fire reduction
of groundwater level in Beaver County, Utah, USA, attributed to the wildfire of 1996.
Bart and Tague (2017) [23] examined catchments in California (MCRs), where PET showed a
statistically significant impact on baseflow recessions. An increase in the baseflow recession
of 33.5% per mm of daily PET increasement has been predicted for eight catchments [23].
Hirano et al. (2015) [99] examined three sites of tropical peat swamp forest in SE Asia.
Their results verified that in some settings ET appears strong relationship to groundwater
level since the minimum mean value of monthly groundwater level appeared to be a robust
predictor of annual ET for peatlands, showing statistically significant positive linearity for
all sites despite their different disturbances (i.e., slight drainage, heavy drainage, fire) [99].
Specifically, according to the authors, a drawdown of 10 cm indicates decreases in annual
ET between 19–33 mm for the three studied sites [99]. Kurylyk et al. (2015) [104] concluded
that the decrease in ET due to canopy loss results in energy excess which warms the land
surface. This warming can lead to successive warming of soil water and shallow aquifer
water [104], thus ET may indirectly affect groundwater temperature.

These findings are in accordance with the research conducted by Menberg et al.
(2014) [105] who underlined the vulnerability of shallow groundwater temperature to
disturbances related to climate change.

5.3. Post-Fire ET and Streamflow

Wine and Cadol (2016) [106] suggested that there is a pattern between burn severity magni-
tude and overland flow in large catchments. Kinoshita and Hogue (2011, 2015) [107,108] found
that reduced basin transpiration and infiltration after the wildfire in 2003 in California led
to an increase in annual low flow by 118–1090%, which could potentially recharge water
supplies in semi-arid areas (Figure 3). On the other hand, elevated flows deliver high loads
of sediments. Streamflow increases are reported to sustain for longer than 7 years after
the fire depending on the percentage of the burnt area and precipitation, and the types of
vegetation loss and reestablishment [107]. Bart (2016) [109] attributed the intense fire effect
during the first post-fire year in California to the larger effect on ET which is caused by
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postfire reductions in shrubland and other vegetation types of the watershed, compared
to corresponding post-fire increases in herbaceous vegetation. Since both magnitude and
sustainability of post-fire flow depend on scale, Wine and Cadol (2016) [106] highlighted
that in large catchments, there is a threshold of 20% affected vegetation of the watershed in
order for alterations in hydrogeological processes to have a measurable impact, a finding
in line with Bosch and Hewlett’s (1982) [110] research on catchment-scale post-fire ET and
water yield.
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6. The Anthropogenic Footprint
6.1. Anthropogenic Impacts on ET

The effect of human activities on ET is twofold. One component is atmospheric
pollution. The second component is LU/LC change. Global warming has decreased the
differences between tropical and polar air temperatures leading to weak global atmospheric
circulation, therefore, to a decrease in evaporative demand during past decades [16].
McVicar et al. (2012) [58] suggested that the elevated carbon dioxide concentrations in
ambient air during past decades have enhanced vegetation growth. On the other hand,
elevated carbon dioxide concentrations lead to a decrease in ET and an increase in soil
moisture [111], a finding that may have partially offset the expected increases in ET [77].
Stomatal conductance, which constitutes a direct indicator of plant stress [112], is lower
in elevated carbon dioxide environments, thereby decreasing transpiration sometimes
by more than 20% [96]. As Liu et al. (2019) [20] demonstrated, an important service of
forests is sequestering the carbon of the Earth’s atmosphere. On the other hand, wildfires
contribute to carbon dioxide and aerosol accumulation in the atmosphere [20]. However,
aerosol is another factor that human activities are primarily accounted for. Wang and
Yang (2014) [113] attributed the observed decrease in solar radiation, also referred to as
dimming, at North China Plains to aerosols. They also suggested that the decreasing
trend in PE in China (evaporation paradox) could be interpreted via surface solar radiation
decrease (sunshine hours serve as a proxy of surface solar radiation) [113]. Sun et al.
(2018) [9] attributed the decreasing trend in large-pan evaporation during 1985–2008 in
North China Plain to the decrease in sunshine hours and VPD. The increasing trend
during 2008–2014 was due to the increase in sunshine hours, VPD, and air temperature
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via heat waves and droughts during summer and spring [9]. Aerosols affect surface
energy balance by absorbing and scattering solar radiation. Hallar et al. (2017) [114] refer
that organic aerosol increases the optical depth of the atmosphere inhibiting radiation
to reach the Earth’s surface. Wildfires constitute significant sources of organic aerosols
and are projected to increase optical depth in West US during summertime by 40% until
2050 [114]. As a result, net radiation is reduced by aerosol accumulation from anthropogenic
emissions [17]. Jiang et al. (2019) [16] interpreted the larger magnitude of increase in
minimum air temperature compared to maximum air temperature (also reported in Central
Italy [115]) by the action of aerosols which absorb a part of solar radiation and emit
longwave radiation at night. Industrialization of the recent decades in several regions in
East Asia led to a significant increase in aerosol aggregation. However, in contradiction
to East Asia, Central Mediterranean and NE America exhibited downward trends of
aerosol optical depth in the 2000s as a result of the enforcement of emission-decreasing
policies [116]. Urbanization density has been correlated with aerosol accumulation by Zhao et al.
(2014) [117] in China, while it is asserted that high buildings in big cities inhibit aerosol
diffuse by blocking wind flow, thus contributing to a decrease in solar radiation [17].

Human activities such as LU/LC change over the past decades account for ET vari-
ations by several researchers. Lv et al. (2019) [8] analyzed AET between 1986–2016 in
the Yellow River basin. They found that the extended LU/LC change including conver-
sion of the sloped terrain into terraced fields, dam constructions, forest, and vegetation
implementation led to an increase in AET. They concluded that 90% of the AET increase
was due to human activities and only 10% due to precipitation shift [8]. They attributed
the former ratio for the thirty-year period to the reduction in surface runoff and to the
increase in vegetation which increased the AET. The LU/LC changes affect the values of
the physical parameter called “surface roughness”. Human activities often increase the
surface roughness. Even McVicar et al. (2012) [58] asserted that vegetation cover was
due to agricultural abandonment of lands, surface roughness was shown to be increased
due to agricultural land expansion [16]. The latter can be explained by the intensifica-
tion of crop yielding the years following the former study, especially across specific areas
(e.g., California). For example, Mueller et al. (2017) [77] referred that cropland expansion
could affect climate by changing, among other parameters, the surface roughness. It seems
that vegetation greenness along with agricultural land expansion affect AET variations by
increasing surface roughness [8]. McVicar et al. (2012) [58], after analyzing numerous stud-
ies, concluded that terrestrial (wind) stilling has been observed in many regions globally
during the last 30 years and led to a decline in evaporative demand reflected on PE and
RET measurements.

6.2. Agricultural Practices Affect ET

The impacts of agricultural plantations on ET variations have attracted the interest
of researchers especially at regions with high rates of crop yield and financial interest.
Mueller et al. (2017) asserted that intensification of productivity, which incorporates
extended irrigation, influences climate via increasing ET [77]. This fact results in regional
cooling effect in accordance with the globally documented cooling trend in intensified
croplands over the last decades, compared to adjacent regions. This could be attributed to
the mediating role of vegetation in land–atmosphere coupling through controlling surface
energy fluxes such as ET [118]. Irrigation directly affects the hydrological cycle of an area
and the extra water on the soil enhances AET rates [1,119]. Uddin et al. (2016) studied
the case of a cotton crop in Queensland, Australia (subtropical climate), during irrigation
events, concluding that irrigation also changes the albedo value of the (wet) canopy [5].
They found that both during and following an irrigation event a considerable amount of
the intercepted water evaporates: 11% of the applied water evaporates in highly advective
conditions, while 8% in non-advective conditions [5]. Irrigation of croplands has been
reported to increase ET in several regions globally such as the U.S., Asia, and Sudan [77].
The implementation of specific practices, such as multi-cropping, enhanced seasonal variation
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of ET at Brazilian Cerrado and North China Plain [77]. In addition, the availability of nitrogen
at croplands (e.g., via land application of fertilizers, amendments, and biosolids [120]) has been
correlated with an increase in ET since nitrogen availability is a limiting factor that governs
plant biochemical processes (stomatal conductance, water uptake, photosynthesis) [121].
García-Llamas et al. (2019) underlined that PET is associated with the theoretical limit of
the process of photosynthesis of plants [122]. French et al. (2016) asserted that a measure of
relative ET such as the evaporative fraction (EF), which is a key factor in energy balance
algorithms (equal to the ratio of latent heat flux to available land surface energy; [123])
could serve as a water stress indicator [124].

Irrigation decision making relies on the accuracy of ET estimations which in cases of
remote sensing approaches depends on the overpass frequencies. Remote sensing is the
usual approach for district-scale (regional) estimation, often used for fields too (local scale).
French et al. (2016) [124] found significant benefit in ET accuracy when 8-day satellite
ET products were used instead of 16-day products. The differences of seasonal water use
estimation between 8-day and 16-day overpassing were up to 20%, suggesting considerable
implications in regional water management in the second case.

6.3. ET Potentially Aggravates Soil Water and Groundwater Pollution

Nitrogen stress constitutes a control on ET rates by hindering the stomatal conduc-
tance, the leaf area, and the root development [77]. Post-fire ash is enriched in nutrients
but is easily erodible and transported by wind and foremost by runoff. After intense
rainfall events, nutrients are eluted from the topsoil layer. Recurrences of fires over the
same site deteriorate soil deprivation in nutrients [125], jeopardizing stream water quality
and, potentially, shallow aquifer or karst aquifer water quality which are vulnerable to
pollution [126,127]. Tsypkin and Brevdo (1999) [128] after studying the evaporation impacts
on groundwater quality, indicated a mechanism of pollutant deposition in groundwater
caused by ET. They found that evaporation produces a gradient of the solute concentration
with a vertical upward direction. For certain substances, such as NaCl, the maximum
concentration at the evaporation front was greater than solubility, the latter defined as the
critical concentration above which pollutant deposition begins [128]. Gran et al. (2009) [129]
explained that the evaporation front divides soil into the upper dry area with salt content
and the one below the front where salinity is low, suggesting that evaporation could serve
as a moderating control on soil salinization since at least half of irrigated lands in arid and
semi-arid regimes are subject to some degree of salinization). The salinization of soil has
been correlated to erosion and desertification [130] and also to the salinization of rainfall
that reaches the soil [131]. Considerable salt load is transported to freshwater ecosystems
via runoff with potential salinization risk for shallow aquifers [131]. This conclusion be-
comes of major importance in the ongoing climate crisis. Chen et al. (2015) [132] reported
that there has been a global increase in drought land since the late 1990s, with those in
humid areas being the most concerning. They found that the ongoing air temperature
rise accounts for 5% (humid areas) up to 45% (arid areas) of droughts in China [132].
On the other hand, high ET rates inhibit the infiltration of dissolved pollutants towards
the aquifers. The evaporation enrichment concerns croplands’ irrigation applied during
periods when the evaporative demand is high, hence salt enrichment is considerable [133].
This water enriched in salts could potentially reach the aquifer triggering a cycle of succes-
sive enrichment if the enriched groundwater is pumped and used for irrigation, depending
on the depth of the unsaturated zone, water fluxes in the saturated zone, and the evapo-
ration rate [133]. The former process could lead to enhanced enrichment in cases where
reclaimed water with high salt content is used for irrigation [134], a practice that has gained
popularity not only for croplands but also for forests [135,136].
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7. Discussion

This review has been carried out following the appropriate steps of a structured
review [52,53,137] as shown in Figure 1, analyzing 141 studies, the majority of which were
published during the last decade. The main findings are presented below:

ET is beneficial to tropical forests since it reduces excess humidity, moderating flood
peaks [93] (see Figure 3). Moreover, ET could serve as a salinization control for regions
endangered by desertification (see Figure 2).

A decrease in AET was found to be responsible for post-fire warming at a global scale
after the extended wildfires during 2003–2014 [20]. The latter resulted in an increase in
albedo which consequently reduced the net cooling effect [20]. The cooling effect is typical
across tropical forests due to the high AET rates. However, the vegetation loss in tropical
forests reduced the evaporative cooling resulting in a rise in the air temperature [20].

Moreover, droughts often increase albedo whereas studded open water after wildfires
results in decreased albedo [99]. Overall, interactions between ET and albedo in different
ecosystems govern surface warming and radiation budget responses [20] (see Figure 2).
LE contributions of soil and canopy can be almost interchanged shortly after the fire [95].

Fire severity has been associated with AET differences in MCRs (see Figure 3) and
with the number of years needed for AET to rebound to pre-fire levels [95–97].

ET rates affect groundwater recharge (see Figure 3). Projections for years 2071–2100
in Italy showed an increase in ET by 25% in winter, at least by 20% in fall, and by 15% in
summer. This projection along with the anticipated alterations in precipitation patterns
led to predicted groundwater recharge critically reduced in South Mediterranean [88].
However, this is not the case only for the endangered of high warming and drought in
Southern Europe [60,138], which as a rule exhibits different precipitation patterns to North
Europe. According to projections of ET for 2020 and 2080 in Ireland, North Europe is also
anticipated to be critically affected [2]. Canopy removal reduces transpiration and can lead
to increases in low baseflow and streamflow by 118–1090%. These alterations can sustain
more than 7 years as reported in California (MCRs) [107,108]. This fact could be beneficial
for groundwater recharge in semi-arid areas. The sustaining increases in low flow were
also linked to the severity of the fire. Researchers concluded that 20% canopy removal from
a catchment could be considered as a threshold above which alterations in hydrological
processes occur [106,110]. Across MCRs, PET appeared statistically significant impact on
baseflow recessions, quantified as a 33.5% increase in baseflow recession per 1 mm of daily
PET increasement [23]. Furthermore, the minimum mean value of monthly groundwater
level appeared to be a predictor of annual ET across tropical peat swamp forests in SE
Asia, despite the different regional disturbances (see Figure 3). This relationship appears
linearity: drawdown of 10 cm led to a decrease in annual ET by 19–33 mm [99].

Anthropogenic climate change has been accounted for 2/3 of the increase in RET [94].
The latter, along with VPD, appeared to be the most affected meteorological parameters,
thus Abatzoglou and Williams (2016) [100] put forward RET as a metric of fuel aridity. It has
been also shown by Häusler et al. (2019) [101] that AET values in fire risk indices would
enhance spatial fire risk identification. Moreover, RET estimates constitute an indicator of
water stress in areas prone to drought [139].

Wind stilling is the phenomenon responsible for the majority of decreasing ET trends
during past decades on a global scale [58]. Wind stilling has been associated with the
observed increase in surface roughness and led to a decrease in evaporative demand and
successively to a decline of PE and RET values during past decades [8,58] (see Figure S1 on
evaporation paradox in Supplementary Materials). According to McVicar et al. (2012) [58],
the aforementioned drivers could explain the Evaporation paradox reported in several
countries of the globe (see Figure S1 in Supplementary Materials). Roderick and Farquhar
(2004) [85] shared the same opinion. However, in numerous countries, a rebound of PE
occurred during the decades of 1980 and 1990. According to ET trends, benchmarks of
ET rebound have been reported in the early to middle 1980s for Greece [64], Iran [1],
and Nigeria [66], and in the 1990s for China [16,20] and Australia [87], while South Florida
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also exhibited an increasing trend at least since 1992 [79]. Air pollution is likely to affect ET
rates: elevated carbon dioxide concentrations in the ambient air can decrease transpiration
in some cases by more than 20% [77]. The latter may have offset the anticipated increase
in ET trends [77]. Another phenomenon that has been accounted for decreasing trends
in ET is global dimming, attributed to aerosol accumulation over past decades linked to
industrialization and urbanization (see Figure S1). Global dimming was followed by global
brightening [65,140,141]. The observed increase in solar and thermal radiative heating after
the mid-1980s facilitated the intensification of the hydrological cycle and scattered aerosol
loads [140,141]. For instance, the delay of ET rebound in China compared to Greece as
reported above [9,64], is in line with the findings by Zerefos et al. (2009) [142] regarding
the periods when the rebound in aerosol optical depth (brightening) was observed in
those countries.

Several researchers have examined ET variations in light of the anthropogenic foot-
print. Lv et al. (2019) [8] deducted that 90% of the reported increase in AET was due to
human activities and only 10% due to shifted and altered precipitation patterns which
are associated with the climate crisis. AET was increased as a result of LU/LC shift to-
wards large constructions such as dams, vegetation implementation (e.g., agriculture),
and implemented reforestation. In addition, intensification of agricultural productivity
involving extended irrigation and no-till and fallow practices increased ET via albedo,
resulting in some cases (e.g., USA) in regional net cooling effect [8,77] (see Figure 2).
Nitrogen availability has been also associated with elevated transpiration rates since nutri-
ents constitute a limiting factor for plants’ biophysiological processes. Nutrient sources
are chemical fertilizers, amendments, raw sludge, or biosolids from wastewater treat-
ment plants, and wastewater overflows which end up in natural receivers. In addition,
some amount of nutrients also becomes available by the usage of fire retardants during fire
distinguishing, since their composition resembles that of fertilizers [126,127] (see Figure 2).

It is apparent that the anthropogenic footprint in LU/LC, ambient air, and climate
change have affected ET rates globally. Even if the evaporation paradox can be approached,
the changeable climate patterns along with the significance of ET impacts on ecosystems,
water supplies, and sustainability call for systematic research on PET, RET, PE, and AET
to many more countries with different environmental conditions, aiming to quantify the
relations between them [46,87,143]. Moreover, the mechanisms in which ET participates are
related to cropland irrigation and practices, forest implementation, LU/LC management,
fire management (preventing and mitigating), and water management (surface waterbodies
and aquifers). Thus, it is recommended that stakeholders (scientists, engineers, water man-
agers, and policymakers) consider the integrated role of ET in the elaborated mechanisms.

8. Conclusions

Climate change along with LU/LC change have aggravated or even triggered al-
terations to climatic variables and disturbances such as frequent droughts and extended
wildfires which enlarge the effects of ET in the hydrological cycle and the surface energy
balance. Thus, ET constitutes a major control of the prementioned processes. The specific
hydrogeological, physical, and topographical characteristics along with the dynamics of
regional climate conditions in the frame of the ongoing climate change practically turn each
study area into a case study. Complex interactions and dynamics of several combinations
of meteorological, lithological, hydrogeological, and physiological components with ET
cannot lead to the formation of a general pattern of ET behavior or be reproduced, due to
the nature of those relationships and the fact that numerous interfering factors such as
weather conditions appearing temporal variability or even stochasticity govern the out-
comes of the hydrological processes. Moreover, the review has a qualitative character and
the deducted conclusions cannot be quantified. Consequently, the limitations of the present
study are the impracticability of quantification and broad generalization. The latter could
result in overgeneralization and oversimplification of mechanisms and interactions with
many degrees of freedom. Furthermore, although all the main climate zones are covered,
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the review focuses on areas with considerable water-stress and desertification issues as the
latter constitute severe impacts of climate change, bearing socio-economic consequences.

However, in some climate zones, some common behaviors of hydrological interactions
could be detected, still need thorough future investigation aiming patterns to be extracted.
This study does not aspire to discuss all possible interactions and impacts of ET in the
environment. Instead, this study aims at setting the foundation for future research which
addresses the integrated picture of ET as a major controlling factor of climate and sustain-
ability. It provides a general overview of the main mechanisms in which ET participates,
by pointing out the main interactions between ET, key environmental variables, and distur-
bances in different settings. Overall, since useful literature-based connections were made
for specific areas under specific environmental conditions the former limitations are not
considered critical for the validity of the conclusions.

Five broad conclusions can be deducted: First, MCRs appear to be vulnerable to the
impacts of the ongoing increase in ET, especially during summertime, due to the ongoing
precipitation shifting in winter and the air temperature warming (especially the rise of
minimum air temperature values) which is expected to be more severe in MCRs such
as Southern Europe, in the summertime. Air temperature is considered as a proxy of
the energy state of the system. In water-limited areas, EF could serve as a water-stress
indicator. Second, ET in tropical forests plays a rather beneficial role since it moderates the
flooding risk during the wet season resulting in a net cooling effect. Third, in semi-arid to
arid areas, an increase in ET and especially of evaporation constitutes an important prob-
lem due to sustained baseflow recessions which aggravate the limited water availability.
In those drought-prone areas, ET exacerbates soil salinization. Fourth, the relationship
between ET and wildfires is of major importance. The impacts are site-specific, climate,
and fire-severity-dependent. The hydrological processes may be altered if a critical amount
of canopy loss (e.g., 20% for semi-arid regions, 45% for tropical forests) occurs. Concur-
rently, RET could serve as a fuel aridity measure to assess forest fire risk. The case of
Australia, with high rates of evaporation reported, may be a verification of the former deduction.
Fifth, along with climate change, human activity consequences such as air pollution (aerosols,
CO2 emissions), LU/LC shifting to agricultural uses with intensive productivity practices,
large reforestation implementation, and large constructions (e.g., dams, dense and high
urban buildings) have substantially changed AET rates during last decades. Via the human
footprint, the interpretation of the evaporation paradox has been made plausible.

In this context, future research is proposed to be designed towards two complementary
axons. First, more refined, sophisticated ET modeling for global, regional, and local scales
employing remote sensing techniques can be supported by eddy covariance, lysimeter,
or pan evaporation measurements. Second, investigations that assess and quantify the
dynamic anthropogenic impact on ET variability, aiming scientists, engineers as well as
water managers to consider ET as a means to address the challenging environmental issues
in two axons; either by finding methods to control it or by using it as an index of fire risk
or water stress to help prevent or mediate the climate change impacts on water availability.

Supplementary Materials: The figure showing the evaporation paradox is available online at
https://www.mdpi.com/article/10.3390/hydrology8040163/s1, Figure S1: Anthropogenic derived
concepts which contribute to the interpretation of the evaporation paradox.
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Abstract: The assessment of drought conditions is important in forestry because it affects forest
growth and species diversity. In this study, temporal variability and trends of precipitation (P),
potential evapotranspiration (PET), and their relationship (P/PET) were examined in two selected
forest ecosystems that present different climatic conditions and vegetation types due to their location
and hypsometric zone. The study area includes the forests of Pertouli and Taxiarchis, which are
managed by the Aristotle University Forest Administration and Management Fund. The Pertouli is
a coniferous forest in Central Greece with a maximum elevation of 2073 m a.s.l, and Taxiarchis is a
broadleaved forest in Northern Greece with a maximum elevation of 1200 m a.s.l. To accomplish
the goals of the current research, long–term (1974–2016) monthly precipitation and air temperature
data from two mountainous meteorological were collected and processed. The PET was estimated
using a parametric model based on simplified formulation of the Penman–Monteith equation rather
than the commonly used Thornthwaite approach. Seasonal and annual precipitation, potential
evapotranspiration (PET), and their ratio (P/PET) values were subjected to Mann–Kendall tests to
assess the possible upward or downward trends, and Sen’s slope method was used to estimate the
trends magnitude. The results indicated that the examined climatic variables vary greatly between
seasons. In general, negative trends were detected for the precipitation time series of Pertouli,
whereas positive trends were found in Taxiarchis; both were statistically insignificant. In contrast,
statistically significant positive trends were reported for PET in both forest ecosystems. These
circumstances led to different drought conditions between the two forests due to the differences of
their elevation. Regarding Pertouli, drought trend analysis indicated downward trends for annual,
winter, spring, and summer values, whereas autumn showed a slight upward trend. In addition,
the average magnitude trend per decade was approximately −2.5%, −3.5%, +4.8%, −0.8%, and
+3.3% for annual, winter, autumn, spring, and summer seasons, respectively. On the contrary, the
drought trend and the associated magnitude per decade for the Taxiarchis forest were found to be
as follows: annual (+2.2%), winter (+6.2%), autumn (+9.2%), spring (+1.0%), and summer (−5.0%).
The performed statistical test showed that the reported trend was statistically insignificant at a 5%
significance level. These results may be a useful tool as a forest management practice and can enhance
the adaptation and resilience of forest ecosystems to climate change.

Keywords: precipitation; evapotranspiration; drought; Mann–Kendall; trend analysis

1. Introduction

Global warming has increasingly raised the concerns of both governments and the
scientific community in recent decades. The Mediterranean basin has been identified as one
of the most sensitive regions to climate change, with future warming potentially exceeding
the global average [1,2]. According to the Intergovernmental Panel on Climate Change
(IPCC) Fifth Assessment Report, the Mediterranean is facing the possibility of experiencing
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warmer and drier conditions in the near future [3]. Therefore, most countries in the south-
eastern Mediterranean region are likely to address water scarcity issues [4–6]. It is widely
acknowledged that the ongoing changing patterns of precipitation and temperature have re-
vealed an increased frequency of drought and the growing impact of aridity severity [7–9].
The aforementioned climatic conditions have profound effects on streamflow [10,11], lake
levels [12], crop production [13], desertification [14], and forest growth [5,15,16].

There is a fundamental difference in terminology between aridity and drought, as
noted by the World Meteorological Organization (WMO) [17]. Aridity is a long–term
(climatic) phenomenon and concerns a period of at least 30 years. It is usually defined
by low–average precipitation, available water, or humidity, and is a permanent climatic
feature. Drought, by comparison, is a short–term (meteorological) phenomenon, which
can vary from year to year. Assessing and monitoring the drought and aridity conditions
prevailing in a certain area is a key element in climate research and provide important
information for sustainable ecosystem management.

Numerous indices have been proposed to quantify the degree of dryness in a particular
location [18,19]. The most common indicators are defined by the ratio of precipitation (P)
to potential evapotranspiration (PET). Thereby, the indices express the water availability
concept in a single number. The Thornthwaite method is the easiest way of calculating
PET in data–scarce areas [20]. However, PET is preferably estimated, in terms of accuracy,
using the Penman formula [21].

There has been a large amount of research on the trends and fluctuations of precipita-
tion in Europe and the Mediterranean regions. Regarding annual precipitation in Europe, a
positive trend in the north and a negative trend in the south have been noticed throughout
the last century [22]. These findings revealed a remarkable negative tendency in eastern
Mediterranean, whereas a positive trend was detected in central and northern Europe [23].
Similar results have been demonstrated for western Europe, indicating a downward trend
in annual precipitation, prolongation of the dry period, and increase in the number of
rainy days [24]. Moreover, the negative trend of annual precipitation was found to be
statistically significant (95% confidence level) for the majority of Mediterranean regions,
except north Africa, southern Italy, and western Iberian Peninsula, where a slight positive
trend was recorded [25]. Concerning the Greek territory, a decrease in precipitation was
recorded at the end of the 19th century, followed by a positive trend in the first three
decades of the 20th century, then a smaller fluctuation, before returning to a decreasing
trend [26–28]. In terms of PET tendency, fewer studies have been undertaken compared
to those examining precipitation [29]. In Greece, trend analysis of weekly time series of
PET shows an increasing trend in spring, and particularly in summer, no trend in winter
(almost stable), and downward trends in winter; annual trends are also increasing [30].
Finally, in a survey conducted by Myronidis and Theophanous [31], the trend analysis of
the P/PET ratio in the South Aegean shows insignificant negative trends, indicating that
drought phenomena have slightly intensified [32].

Valuable Mediterranean–type ecosystems, which have remarkable forest species biodi-
versity, will be highly influenced by drought conditions. Moreover, the uneven precipitation
and temperature distribution makes the assessment of climate tendency and variability
a necessity for dealing with water scarcity problems. This is particularly important con-
sidering that dry conditions will continue to dominate and intensify in the forthcoming
period [33,34]. Additionally, the spatial and temporal trends of precipitation and temper-
ature conditions have been identified as the main factor affecting tree growth [16,35,36].
Thus, it is crucial to evaluate trends in the climatic variables in mountainous forested areas.
Seasonal patterns can be identified and recorded to improve forest and water management.
To the best of the author’s knowledge, there are limited studies in Greece analyzing the sea-
sonal trend of precipitation (P) and potential evapotranspiration (PET) based on long–term
time series from mountainous meteorological stations [5,37,38]. In addition, these studies
examine a short period of meteorological records. This is due to the difficulties of installa-
tion and maintenance of meteorological instruments, especially at the high elevations of
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the mountainous regions. In most cases, studies of the Greek territory take into account
stations, including those in the network of The Hellenic National Meteorologic Service,
which are usually installed at elevations less than 100 m a.s.l. Thus, the results cannot be
exploited for high–elevation forestland and for areas with complex terrain.

The object of this study was to investigate temporal variability and detect trends
in drought conditions in two different types of forest ecosystems using long–term time
series meteorological data from mountainous meteorological stations. For this purpose,
the P/PET ratio was used as a proxy indicator for the evaluation of drought conditions at
different timescales (annual/seasonal). The Mann–Kendal and Sen’s slope methods were
applied in order to evaluate the significance and magnitude of the tendency, and to identify
the time of abrupt changes.

2. Materials and Methods
2.1. Study Area

The study was conducted in two selected forest ecosystems in Greece with different
forest types (broadleaved, coniferous) and climatic conditions (Figure 1). These are the
university forests of Taxiarchis and Pertouli. The management rights of these two forests
have been assigned to the Aristotle University of Thessaloniki since 1934 for research and
educational purposes.

Figure 1. Location map of the selected forest ecosystems.

The Pertouli University Forest is located in the mountainous range of Pindus (Trikala
Prefecture, Central Greece) and covers an area of 3290 ha. It consists mainly of pure fir
stands (Abies borisii regis) and the elevation ranges between 1100 and 2073 m above sea
level (a.s.l). The climate is transitional, Mediterranean–Mid–European, with cold, rainy
winters and warm, dry summers. The average annual precipitation is 1542.2 mm and the
average mean annual air temperature is 8.9 ◦C according to the existing meteorological
station (1180 m a.s.l), which has operated since 1961 and is located at latitude 39◦32′35.8′′

and longitude 21◦28′8.5′′. Specifically, the total precipitation was found to be 525.7 mm in
winter, 432.6 mm in autumn, 337.9 mm in spring, and 128.1 mm in summer. The average
air temperature was found to be 0.8 ◦C in winter, 9.9 ◦C in autumn, 7.7 ◦C in spring, and

81



Hydrology 2021, 8, 160

17.9 ◦C in summer. Furthermore, the region is a member of the European environmental
protection network, Natura 2000, and is particularly designated as a Site of Community
Importance (SCI) with the code GR1440002, namely: “Kerketio Oros (Koziakas)”.

The Taxiarchis University Forest is located in the mountainous range of Cholomontas
(Chalkidiki Prefecture, Northern Greece) and covers an area of approximately 5800 ha. The
area is a coppice oak forest (Quercus frainetto Ten.) and the elevation ranges from 320 to
1200 m a.s.l. The climate is characterized as sub–humid Mediterranean, expressed by short
periods of drought, hot summers, and mild winters. A meteorological station (860 m a.s.l)
has operated in the area since 1974, and is located at latitude 40◦25′54.7′′ and longitude
23◦30′20.1′′. According to the station long–term data the average annual precipitation
is 808.3 mm and the average mean annual air temperature is 11.5 ◦C. Precipitation and
temperature data show significant seasonal variations. Specifically, the total precipitation
was found to be 242.9 mm in winter, 206.7 mm in autumn, 196.4 mm in spring, and
162.3 mm in summer. The average air temperature was found to be 2.7 ◦C in winter, 12.3 ◦C
in autumn, 10.3 ◦C in spring, and 20.7 ◦C in summer. The area is also a part of the Natura
2000 network, including the SCI site with code GR1270001 known as “Oros Cholomontas”.

Monthly precipitation and temperature data, for the common operating period (1974–
2016) of the two meteorological stations, were collected and processed. These stations are
operated by the Aristotle University Forest Administration and Management Fund. The
data series are complete without missing values. Moreover, the equipment and observation
techniques were common and remained consistent throughout the examined period. The
stations’ data were checked for homogeneity on a monthly time step using the double
mass method and two parametric statistical tests (Student’s t–test and chi–squared test),
as detailed by WMO [39]. The results verified that the data are homogeneous and can be
further processed.

2.2. Potential Evapotranspiration (PET)

In the current approach, a parsimonious regional parametric evapotranspiration model
(PET) based on a simplification of the Penman–Monteith formula [29,30] was applied, as
proposed by Tegos et al. [40,41]:

PET =
αRa + b
1− cT

(1)

where Ra (kJ m−2) is the extraterrestrial shortwave radiation calculated without measure-
ments and T (◦C) is the air temperature. The model has three additional parameters a
(kg kJ−1), b (kg m−2), and c (◦C) that should be inferred from either measurement or
modeled calibration. The a, b, and c factors were set equal to 0.0000976, 0.83, and 0.02,
respectively, in the case of the Pertouli area. Respectively, in the case of Taxiarchis, the
values of 0.0000485, −0.19, and 0.03 was given for the parameters a, b, and c.

It should be noted that the aforementioned parameterizations have some physical
similarities with the original Penman–Monteith approach. This is because the overall
energy term (incoming minus outgoing solar radiation) is represented by αRa, the missing
aerodynamic term is represented by b, and (1–cT) is a rough approximation of the formula’s
denominator term. This approach is characterized as a radiation–based method because
it uses two explanatory variables: extraterrestrial radiation, Ra; and temperature, T. The
model variables are highly connected with location characteristics and can be predicted
from global spatial interpolation maps [42].

2.3. Trend Analysis

The non–parametric Mann–Kendall (M–K) test was applied in order to analyze the
aridity tendency in the study areas and investigate the statistical significance of the tracked
trends at the 95% confidence level. This is the most commonly used trend analysis test
in climatological time series, and better fits non–normally distributed data with extreme
and missing values, which are frequently encountered in environmental time series [43].
The M–K test was conducted as proposed by Sneyers [44] in order to investigate both
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annual and seasonal trends, and to detect the turning point using the data series at different
timescales. Therefore, for each xi (i = 1 . . . , n) of the time series, the number ni of lower
elements xj (xj < xi) preceding it (j < i) was calculated, and the test statistic t was given by:

t = ∑ini (2)

In the absence of any trend (null hypothesis), t is asymptotically normal and indepen-
dent from the distribution function of the data:

u(t) =
(t− t)√

var(t)
(3)

and has a standard normal distribution, with t and var(t) given by:

t =
n(n− 1)

4
(4)

var(t) =
n(n− 1)(2n + 5)

72
(5)

Therefore, the null hypothesis can be rejected for high values of |u(t)|, with the
probability α1 of rejecting the null hypothesis when it is derived by a standard normal
distribution table:

α1 = P(|u| > |u(t)|) (6)

The Mann–Kendall test in its sequential form was also utilized for a progressive study
of the series. This consists of applying the test to all of the series, beginning with the first
term and concluding with the ith term (and the reverse).

In the absence of a trend, the graphical depiction of the direct (ut) and backward
(ut’) series created curves that overlapped multiple times. Nevertheless, in the case of a
significant trend (5% level |ut| > 1.96), the intersection of the curves made it possible to
approximately detect the time of occurrence [44].

Although the M–K test is a useful nonparametric test for temporal trend, it is premised
on the assumption that observations are independent. This is due to the fact that a positive
or negative autocorrelation may led to overestimation or underestimation of the trend’s
significance. Thus, before applying the M–K test, all datasets have to be checked for
the presence of autocorrelation. Herein, the lag–1 autocorrelation coefficient (r1) at a
5% significance level was calculated.

Additionally, trend magnitudes were calculated using the Theil–Sen technique (TSA)
[45,46]. This method is based on slope and is often referred to as Sen’s slope. It is preferred
to linear regression because it minimizes the influence of outliers on the slope [47].

3. Results

The precipitation and potential evapotranspiration present great inter–annual and
intra–annual variability in the selected forest ecosystems of the study areas. The lag–1
autocorrelation coefficient was computed for the examined variables and it was found that
the r1 value does not exceed the confidence interval bounds. Thus, the latter variables are
considered to be serially independent and therefore the M–K test can be applied.

Trend analysis of the annual and seasonal precipitations indicated negative trends in
Pertouli, except during autumn, whereas positive trends were identified in Taxiarchis in
each examined period. However, these trends were found to be statistically insignificant
(at the 0.05 significance level). The trend magnitudes were −12.7, −15.8, +11.6, −3.6,
and −2.9 mm per decade for annual, winter, autumn, spring, and summer precipitation,
respectively, of the Pertouli station. In contrast, the positive trends in Taxiarchis were
found to be 45.9, 16.8, 27.2, 1.4, and 0.9 mm for annual, winter, autumn, spring, and
summer precipitations, respectively. The graphical representations of the M–K test for the
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precipitation time series of the Pertouli and Taxiarchis forests are shown in Figures 2 and 3,
respectively.

Figure 2. Graphical representation of the series u(t) and the retrograde series u’(t) of the sequential
version of the Mann–Kendall test for (a) annual, (b) winter, (c) autumn, (d) spring, and (e) summer
precipitations in the University Forest of Pertouli.

Figure 3. Graphical representation of the series u(t) and the retrograde series u’(t) of the sequential
version of the Mann–Kendall test for (a) annual, (b) winter, (c) autumn, (d) spring, and (e) summer
precipitations in the University Forest of Taxiarchis.
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Regarding the potential evapotranspiration (PET), upward trends were detected in
Pertouli. These trends were found to be statistically significant (at the 0.05 significance
level), except in winter and autumn. The timing of this abrupt change was identified as
1992 for the annual and summer time series, and 1997 for summer. Moreover, the increase
per decade was 6.8 mm (annual), 0.3 mm (winter), 0.8 mm (autumn), 1.7 mm (spring), and
3.9 mm (summer). The same pattern was also found in Taxiarchis. The trend analysis shows
statistically significant trends (at the 0.05 significance level) in all seasons. The abrupt
change was identified in 1997 for the annual and summer precipitation, 1996 for winter,
2005 for autumn, and 1999 for spring. The graphs representing the results of the M–K test
for the potential evapotranspiration (PET) in the study areas are shown in Figures 4 and 5.
Furthermore, the magnitude of the increase in PET in Taxiarchis was higher than that in
Pertouli; specifically, it was estimated to be 24.2, 1.3, 2.4, 2.5, and 17.8 mm per decade for
annual, winter, autumn, spring, and summer precipitations, respectively. Subsequently,
in order to track the effect of precipitation (P) and potential evapotranspiration (PET) on
drought conditions, the same analysis was performed for the P/PET ratio.

The results of annual and seasonal ratio P/PET estimation indicate that excess water
is available (P > PET) in most cases, with the exception of summer and the annual values in
the Taxiarchis forest. This is typical for mountainous areas with complex topography, and
uneven precipitation and temperature regime [5,36]. The analytical results of the average
P/PET values for the reference period (1974–2016) are presented in Table 1.

Table 1. Analysis of the P/PET ratio for the selected forest ecosystems.

Study Area Annual Winter Autumn Spring Summer

Pertouli 1.6 7.5 2.7 1.3 0.3
Taxiarchis 0.9 2.6 1.2 1.0 0.4

Seasonal variability shows winter as the most humid season in the two forest ecosys-
tems, followed by autumn and spring. The variation in P/PET values in the two forests
ecosystems can be justified by the difference in their elevation.

Results of the graphical representation of the M–K test for the Pertouli forest are
illustrated in Figure 6. It is shown that an insignificant downward trend was exhibited for
annual, winter, spring, and summer drought conditions, whereas autumn showed a slight
upward trend.

The results from the application of the M–K test based on the data of Taxiarchis forest
are presented in Figure 7. In contrast to the Pertouli forest, insignificant positive trends
were noted in all seasons, except summer, where a slight downward trend was found. The
timing of the abrupt change related to drought was not a consideration for either forest,
because the upward and downward trends were not found to be statistically significant [32].

Additionally, concerning the output of the Sen’s slope estimation, the magnitude
of the trends was determined. In Pertouli, the magnitudes of the P/PET values were
equal to −0.04, −0.236, +0.13, −0.013, and −0.01 per decade for annual, winter, autumn,
spring, and summer, respectively. On the contrary, the magnitudes of the P/PET values
per decade were +0.02 for annual, +0.15 in winter, +0.11 in autumn, +0.01 in spring, and
+0.02 in summer for the Taxiarchis forest. These trends are considered negligible, because
the increase was found to be greater than 5% per decade compared to the corresponding
average AI value for winter and autumn. Moreover, a shift in the climate zone classification
did not occur in any of the seasons. The detailed results from the implemented method,
showing the percentage of influence on the average annual and seasonal AI, are presented
in Table 2.
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Figure 4. Graphical representation of the series u(t) and the retrograde series u’(t) of the sequential
version of the Mann–Kendall test for (a) annual, (b) winter, (c) autumn, (d) spring, and (e) summer
PET in the University Forest of Pertouli.

Figure 5. Graphical representation of the series u(t) and the retrograde series u’(t) of the sequential
version of the Mann–Kendall test for (a) annual, (b) winter, (c) autumn, (d) spring, and (e) summer
PET in the University Forest of Taxiarchis.
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Figure 6. Graphical representation of the series u(t) and the retrograde series u’(t) of the sequential
version of the Mann–Kendall test for (a) annual, (b) winter, (c) autumn, (d) spring, and (e) summer
P/PET in the University Forest of Pertouli.

Figure 7. Graphical representation of the series u(t) and the retrograde series u’(t) of the sequential
version of the Mann–Kendall test for (a) annual, (b) winter, (c) autumn, (d) spring, and (e) summer
P/PET in the University Forest of Taxiarchis.

87



Hydrology 2021, 8, 160

Table 2. Sen slope β values and trend magnitude (%) per decade for the P/PET ratio.

Pertouli Taxiarchis

Temporal
Coverage

Slope
β

% Magnitude
per Decade

Slope
β

% Magnitude
per Decade

Annual −0.004 −2.5 0.002 +2.2
Winter −0.026 −3.5 0.016 +6.2

Autumn 0.013 +4.8 0.011 +9.2
Spring −0.001 −0.8 0.001 +1.0

Summer −0.001 +3.3 −0.002 −5.0

4. Discussion

In recent decades, concerns have increased about climate variability and changes.
Therefore, in the context of climate crisis, the tendency in climatic variables has been
examined in many studies. However, in the majority of these cases, data from lowland
meteorological stations have been analyzed. In forest research, the usage of these meteoro-
logical data does not fulfill the conditions for studying the weather and climate conditions
in mountainous areas of forest growth.

Reviewing the results of related studies in Europe and Greece revealed both similarities
and differences. Caloiero et al. [23] evaluated the tendency of precipitation in continental
Europe and the Mediterranean basin for the period 1901–2009 using gridded reanalysis
data. The results for annual precipitation demonstrated a negative trend of about −20 mm
per decade in eastern Mediterranean (including Greece), −16 mm per decade in North
Africa, and a positive trend (+20 mm per decade) in central and north Europe. Moreover,
focusing on the results of the aforementioned study [23] for the seasonal precipitation
in the Mediterranean, the magnitudes of the negative trends were approximately −10,
−6, −4, and −2 mm per decade for winter, autumn, spring, and summer, respectively.
Additionally, Philandras et al. [25] highlighted statistically significant negative trends
in the Mediterranean region concerning annual precipitation data from stations for the
period 1951–2010. Specifically, the magnitude of the trend was found to be 36.1 mm
per decade for West Mediterranean, 30.1 mm per decade for central Mediterranean, and
15 mm per decade in east Mediterranean. The results of these two studies [23,25] showed a
relative convergence. Several authors mentioned that the reported trends are related to the
teleconnection pattern, which has been extensively described in the literature [47,48]. In
comparison with our results, it seems that Pertouli station followed the general negative
trend in the Mediterranean region, except during winter, whereas Taxiarchis showed an
increase in all seasons. Nevertheless, the percentage decrease in precipitation is negligible
because the study area is considered one of the rainiest regions in Greece.

Precipitation in Greece has undergone significant changes over the last century, as
represented in a national study taking into account stations with different conditions [5].
An average increase of about 4% was reported by comparing the periods 1900–1929 and
1930–1960. On the contrary, a considerable decrease (−15%) was found between the periods
1961–1997 and 1900–1929 [5]. Moreover, in the previous referenced work [5], the findings
indicated that the respective average changes in PET were negligible. Furthermore, another
study [49] showed a decreasing trend in PET in annual and warm periods (1979–1999)
based on data from low–elevation stations. However, in the present study, the trends in PET
were found to be statistically significant (95% confidence level). Despite the differences in
PET among the examined forest ecosystems, the variability and fluctuation of drought are
considered to be almost stable at different timescales. A more recent study [30] analyzed
meteorological and hydrological variables from 17 stations located across Greece during
1961–2006. The results generally indicated statistically significant downward trends for
seasonal and hydrological year precipitation. Regarding PET, negative trends were found
only in winter.

The assessment of aridity and drought is challenging and may have a profound ef-
fect in forest ecosystems. A large–scale survey conducted for the entire Greek territory
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mentioned a progressive shift from the humid aridity class, which previously character-
ized the wider area of Greece, towards the sub–humid and semi–arid class, especially in
southeastern Greece [50]. It should be noted, however, that for a number of areas, mostly
located in the western coastal region, the AI class (humid) remains unchanged [5]. In addi-
tion, the drought conditions were evaluated and a tool was presented for water resource
management [36] and recently linked to drinking water availability [32].

Although aridity is important in forests, custom modification of the basic indices has
been undertaken [51,52]. It has also been stated that the climate variability affects forest
growth, species adjustability [16], and shifts in the tree line [53]. Nevertheless, trends in AI
values and drought in mountainous ecosystems have not been extensively examined.

5. Conclusions

In the present study, the precipitation and potential evapotranspiration, and their
relationship, were analyzed in two forest ecosystems with different climate conditions
and forest types. Variability and trend analysis of these parameters was performed at
seasonal and annual timescales using the M–K and Sen’s slope statistical tests. Poten-
tial evapotranspiration (PET) is a key parameter in the hydrological cycle and, related
to precipitation, has been used as a proxy indicator of drought. In contrast to several
studies that commonly used Thornthwaite’s PET method, a parametric model for PET
based on a simplified formulation of the Penman–Monteith equation was applied in the
proposed approach.

The results indicated that humid conditions prevail in both forest areas and that
dry conditions occur in summer. The examined parameters present significant variabil-
ity between seasons, following the Mediterranean climate pattern. The trend analysis
showed that the reported upward and downward trends in AI are, in general, statistically
insignificant, and the magnitude of the trend is considered negligible.

Southern Europe will be significantly affected by climate changes due to an increase in
temperature, a decrease in precipitation, and more frequent extreme weather events. These
changes will have an impact on vegetation phenology and the flowering season, in addition
to the growth rate and productivity of forest ecosystems. Forest species will face increased
competition, whereas those species more resistant to dry–thermal conditions will survive.
These conditions are expected to impact the regeneration potential and diversity of forests.
The monitoring of precipitation and potential evapotranspiration is recommended for
forest ecosystems to contribute to adaptive and resilient forest management in the context
of climate change.

A target of future research can be the evaluation of different evapotranspiration meth-
ods in forest environments, because PET is considered the most important component of
the hydrologic cycle. Moreover, the drought conditions under future climate conditions
and different emission scenarios can be evaluated with the use of high–resolution regional
climate models (RCMs). The evaluation of the aridity index (AI) and investigating variabil-
ity by dividing the time series into two climatic periods in the two forests is a particularly
interesting subject of study.
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Abstract: Evaporation is an important factor in the overall hydrological balance. It is usually derived
as the difference between runoff, precipitation and the change in water storage in a catchment.
The magnitude of actual evaporation is determined by the quantity of available water and heavily
influenced by climatic and meteorological factors. Currently, there are statistical methods such as
linear regression, random forest regression or machine learning methods to calculate evaporation.
However, in order to derive these relationships, it is necessary to have observations of evaporation
from evaporation stations. In the present study, the statistical methods of linear regression and
random forest regression were used to calculate evaporation, with part of the models being designed
manually and the other part using stepwise regression. Observed data from 24 evaporation stations
and ERA5-Land climate reanalysis data were used to create the regression models. The proposed
regression formulas were tested on 33 water reservoirs. The results show that manual regression is
a more appropriate method for calculating evaporation than stepwise regression, with the caveat
that it is more time consuming. The difference between linear and random forest regression is the
variance of the data; random forest regression is better able to fit the observed data. On the other
hand, the interpretation of the result for linear regression is simpler. The study introduced that the
use of reanalyzed data, ERA5-Land products using the random forest regression method is suitable
for the calculation of evaporation from water reservoirs in the conditions of the Czech Republic.

Keywords: evaporation; water reservoir; regression; observed data; ERA5-Land data; R language

1. Introduction

Water management, changes in natural water regime and sustainable landscape be-
came an important topic of social discussions and policies not only in the Czech Republic,
but also around the world [1]. It is clear that global and local climatic conditions are chang-
ing and will have an impact on the water management sector and therefore they should be
given the highest attention. The evaporation in the Czech Republic also changes [2].

However, not only the climatic conditions change, but also the technology and knowl-
edge that can be used in water management and specifically in hydrology. With the rapid
development of remote sensing tools through recent decades an onset of easy-to-use high
quality products supplied both professionals and public in water resources.

In recent years, there has been a significant development in the supply of information
from remote sensing of the Earth utilizable in water management, not only for the profes-
sional public [3–5]. Another option is, for example, the use of globally available climate
reanalyses or other available data sources. Despite the development of data availability
and modelling tools, a question arises: How significant is the impact of the ongoing cli-
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mate change on hydrological balance components and the consequent impact on water
management [6]?

The hydrological balance is tied to rainfall-runoff processes, which are driven by
climatic, geographical and geomorphological factors. The climatic factors include meteoro-
logical factors affecting the evaporation and evapotranspiration from the catchment, such
as: precipitation, humidity, soil moisture, evaporation, air temperature, wind speed and
direction and atmospheric pressure [7].

Recently, a number of studies pointed out that evapotranspiration significantly affects
the hydrological balance. The key role of evapotranspiration in hydrological balance was
the subject of many recent studies, e.g., [8–11]. And it is nowadays widely recognized, that
on the most of the Earth’s surface evaporation plays crucial role in the hydrological cycle.

The study [12] illustrates the impacts of climate change on the water cycle, which
may impact from total evaporation, precipitation, atmospheric humidity and horizontal
moisture transport at the global scale.

There are many methods to calculate evaporation, which can be calculated from free
water, from the soil surface or from vegetation over a period of time. The evaluation of
evaporation can be done by direct methods namely measurement or by indirect methods:
empirical methods, remote sensing of the Earth on regional or global scales [13,14], the use
of models that are classified as fully physically-based combination models, semi-physically
based models or black-box models [15].

The total evaporation can be divided into actual, potential or reference evapotran-
spiration. The potential evaporation can be determined by empirical relationships or
by measurement, the empirical relationships may differ in the input data or in the time
step [8,16]. The calculation of the reference evapotranspiration is defined according to the
FAO methodology, with the reference area being devided in [17].

The studies [18,19] evaluated evapotranspiration calculated on the base of empirical
equations, which were divided into categories: mass-transfer, radiation based method and
temperature-based method. The best equations from each category were then selected and
compared based on the FAO and Penman–Monteith equations [20].

The estimation of reference evapotranspiration was used in the study [21], where the
Penman–Monteith temperature-based equation achieved the best rating for the evaluation
of reference evapotranspiration because it preserves the physical philosophy of the Penman–
Monteith equation method. The method was applied at a global scale using the Köppen
climate classification system with respect to the world dataset under different climate
conditions. Calculation of reference evapotranspiration based on indirect methods can
provide acceptable results when direct measurements of are not available [15].

Since most of the empirical formulas are based on geographical location, it is straight-
forward that the empirical calculation of evapotranspiration is not the same for different
regions, due to the different climatic conditions [17]. National standards, legislation
and expertise also takes place resulting that different methods are preferred in different
countries, e.g., Netherlands—Makkink’s method [22], Slovakia—Budyko’s method [23],
Bulgaria—Delibaltov–Hristov–Tsonev method [24].

The Penman–Monteith method is considered the sole standard for calculating refer-
ence evapotranspiration. The inputs to the equation are climatic data, solar radiation, air
temperature, humidity and wind speed. It allows the calculation of evapotranspiration at
different times of the year and in different regions, yet a precise measurement at a given
location can easily replace the simplified Penman–Monteith equation [17].

Other methods of calculating evapotranspiration include the use of empirical rela-
tionships, e.g., the relationship between observed evaporation from evaporation stations
and meteorological quantities, these relationships can be calculated either linearly or non-
linearly [25,26] using machine learning algorithms [27,28] linear regression or random
forest regression.

The assessment of long-term climate variables can be based on time series. The time
series is a sequence of measurements recorded over time, that can be analysed using,
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e.g., Least-Squares Spectral Analysis, Least-Squares Wavelet Analysis, Least-Squares Cross
Wavelet Analysis [29].

Other methods for evaluation may include parametric and non-parametric trend tests,
which are used in machine learning [30,31]. The parametric method (logistic regression,
linear discriminant analysis and simple neural network) use a fixed number of parameters
to build models, require fewer variables and the result may be affected by outliers. The non-
paramtric method (the Mann–Kendall, Spearman’s Rho and k-Nearest neighbors) use a
flexible number of parameters, both variable and attribute can be used in the models,
the result is not affected by outliers.

In this paper, we explore the relationships for the calculation of evaporation from
water surface in the Czech Republic using reanalyzed climate data and the constructed
linear models (LM) and random forest models (RFM) for the calculation of evaporation.
Evaporation estimated from the derived models was compared with observed evaporation
from evaporation stations. Finally, the derived relationships were applied to the selected
water reservoirs.

Specifically, we aim to answer the following questions: Which statistical method for
calculating evaporation achieves better linear regression or random forest regression? How
many variables are important for determining the formula for calculating evaporation?
How important is the geomorphological information (elevation and location) for calculating
evaporation using linear and non-linear models? The main objective of the evaporation
estimation from water surface was to derive a universal relationship for the whole territory
of the Czech Republic.

This paper is structured as follows: Section 2 introduces the area of interest and input
data. The statistical method for evaluation evaporation with respect to goodness-of-fit
(GOF) is evaluated in the R environment [32] and described Section 3. The results and
discussion are in Section 4 along with a detailed evaluation of the goodness-of-fit (GOF)
regression for evaporation stations and subsequently for water reservoirs. The paper is
concluded in Section 5.

2. Study Area and Data

The study area is defined by the state border of the Czech Republic. Within the region
(51◦03′ N to 48◦33′ N latitude and 12◦05′ E to E 18◦ 51′ longitude) the long–term (1981–2010)
mean annual precipitation totals at 709.5 mm, mean annual air temperature is 7.9 ◦C, mean
runoff is 205.5 mm [33] and long-term runoff coefficient is thus 0.29 (29% of precipitation
totals runs off).

Figure 1 describe long-term temperature, evaporation trend at evaporation station
Hlasivo. The Hlasivo evaporation measuring station provides a consistent time series
of 58 years, the evaporation values are measured by a 20 [m−2] benchmark evaporator.
Other observed variables are: air temperature at 2 m [°C], water surface temperature in the
evaporimeter [°C], relative humidity [%], global solar radiation [W·m−2] and wind speed
at 2 m [m·s−1] [34].

Figure 2 shows the selected 24 evaporation stations and 33 water reservoirs. The evap-
oration stations were assigned to water reservoirs based on the Quitt classification and
the elevation [35]. The elevation differences between the evaporation stations and water
reservoirs do not exceed 100 m a.s.l. The Quitt classification divides the Czech Republic
into three climatic regions (cold, moderately warm and warm regions), with an evaporation
station in the same climatic region always assigned to a reservoir. The observed evapora-
tion from the evaporation station was recorded between 1957 and 2019 (most evaporation
station was recorded from 2005).
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Figure 1. Mean monthly temperature (green lines), water temperature (blue line) and evaporation
(red line) at Hlasivo evaporation station for period 1957–2019.

Figure 2. Study area: Czech Republic with climatic regions [35], blue color: water reservoirs with
altitude of dam and red color: evaporation stations with altitude.

The data from the evaporimeter (EWM) were provided by the Czech Hydrometeoro-
logical Institute, Palivový kombinát Ústí, state-owned enterprise. The T. G. Masaryk Water
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Research Institute, public research institution (TGM WRI, p.r.i.) provided data from the
floating evaporator and data from the evaporation station Hlasivo.

Observed data from evaporation stations were aggregated into monthly step which
were then used to evaluate evaporation from water reservoir surface, because the measured
daily values are affected by random error [36]. The observed evaporation (may–october) is
from 459 [mm·year−1] (Pec pod Sněžkou) to 760 [mm·year−1] (Holešov), mean evaporation
(from evaporation stations) 627 [mm·year−1], minimum mean daily rate (1.38 [mm·year−1])
is in October and maximum mean daily rate is in July (4.53 [mm·year−1]), with maximum
in June 2017 (5 stations exceeded 6.5 [mm·year−1]).

The relationships for calculating evaporation from the water surface were developed
using linear and nonlinear regression. Measured evaporation from evaporation stations
serves as the dependent variable. ERA5-Land climate reanalysis data were used for the
non-dependent variables from 1981 to 2019.

Climate Reanalysis

The purpose of the reanalysis is to provide an estimate of quantities describing at-
mospheric, climatic and hydropedological processes and behavior of oceans with global
coverage and relatively high spatiotemporal resolution.

The reanalyses are outputs of various models, usually including a hydrological, at-
mospheric and ocean model and a model of the Earth’s surface. The advantage is the
provision of multidimensional spatially complete and coherent information about the
global circulation and hydroclimatic quantities. Climate reanalyses are generated in a
similar manner as in numerical weather forecasts, where the prediction models based on
the development of the climate system from the initial state are used to predict the future
state of the atmosphere. The initial state of the climate is a key input into the forecast
determining the future development of the model simulation. Data assimilation is used
to estimate the initial state that best matches the available data, while taking into account
model errors. The climate reanalysis is performed as the only version of data assimilation
that includes the use of the prediction model [37].

The reanalysis uses a combination of modeled data and observed data with emphasis
on the laws of physics. The data are stored in the ECMWF archive and copied to the
COPERNICUS Climate Data Store archive, from where they are freely downloadable using
the CDS catalog or the CDS API application in the GRIB or NetCDF format.

The data was downloaded in NetCDF, which is a common format in drought or flood
forecasting [38]. The spatial resolution is 0.1◦ × 0.1◦, which represents approximately a
grid of 9 km × 9 km.

The data set consisting of 2 m temperature [K], skin temperature [K], 2 m dew-point
temperature [K], 10 m v-component of wind [m·s−1], surface pressure [Pa], surface net solar
radiation [J·m−2] was selected to calculate evaporation from water reservoir. Temperature
units [K] were converted to [°C] and energy units from [J·m−2] were converted to [W·m−2],
values divided by the accumulation time expressed in seconds. Relative humidity [%] was
calculated using the August–Roche–Magnus approximation [39], where the input data
were dew point and temperature.

In the final dataset preparation, evaporation data from evaporation stations and
geomorphological variables (elevation, latitude and longitude) were added to the reana-
lyzed data.

3. Methods

Statistical methods of linear and non-linear regression (random forest regression) were
used to evaluate evaporation from the water reservoir. In this case, the main objective of the
regression is to determine the best fit between the observed values from the evaporation
stations and the variables from the ERA5-Land project. The resulting linear and non-
linear models were evaluated based on cross validation and goodness-of-fit (GOF): mean
absolute error (MAE), root mean squared error (RMSE), coefficient of determination (R2)

97



Hydrology 2021, 8, 153

and relative error (RERR). This section introduced building linear and non-linear models
and their evaluating.

3.1. Linear Regression

Linear regression attempts to explain the values of a dependent variable through
other quantities. In our case, an attempt was made to explain the dependent variable
(evaporation value or evaporation rate from evaporimeter stations and evaporimeters
EWM) using other variables (air temperature, surface temperature, wind, surface net solar
radiation, dew point, pressure, latitude and altitude, evaporation type distribution) using
18 linear models created by sequential testing manually (8 models) and on the basis of
stepwise regression (10 models).

The first set of models (built manually) was evaluated based on the Akaike Information
Criterion (AIC) [40] value and the QQ plot was used for visual diagnostics [41]. The value
of AIC is the sum of two terms, the first is proportional to the logarithm of the residual
sum of squares, the second term is proportional to the complexity of the model (number of
its members). When building the LM models, it can often happen that more independent
variables reduce the sum of residues (improves the fit of the model with the observed
data), however, this can result in an overfitted LM. The part of the AIC that penalizes the
complexity of the model should prevent overfitting. When verifying the assumptions of the
model (normality of residues), the QQ plot of residues can help. In the QQ plot of residues,
two quantiles are plotted against each other—the theoretical quantile from distribution
and the quantile with the actual residues of the model.

The second part of the linear models was developed using stepwise regression. R-
packages caret, leaps, MASS [42] were used for this regression. The R-package caret uses
the principle of machine learning and the R-package leaps are used to calculate the stepwise
regression. The R-package caret has a function train(), which allows the implementation
of a sequential selection of predictors, where the linear regression selection is selected:

• leapBackward,
• leapForward,
• leapSeq.

In this work, a method with backward selection was selected. The hyperparameter
nvmax corresponds to the maximum number of predictors that are included in the model.
In this work, 11 predictors were used. Furthermore, it is also possible to set the parameters
of the validation method, in this work it was cross validation with 500 iterations.

3.2. Random Forest Regression

Random forest (RF) is a combined learning method for classification and regression
that creates multiple decision trees during learning and then outputs the modus (most
frequent value) of the classes returned by each tree to form a regression forest. The resulting
regression function is defined as a weighted average of the regression functions of multiple
trees. Regression forests belong to the so-called committee or ensemble methods, the main
idea of which is to combine several separate models into a single ensemble. Thus, it uses
the so-called collective decision [26,43]. A random forest consists of a set of trees T1,. . . ,TN
whose classification or regression functions can be expressed as follows:

h(X, O1), . . . , h(X, ON), (1)

where h is a function, X is a predictor and O1,. . . ,ON are independent equally distributed
random vectors. For the Random forests method, binary trees of type CART [44] are used.
Similar to the creation of individual trees or other calibrations, a split into test and training
sets is used. The R-package randomforest [27] was used in this work.

Random forest is an approach to build predictive models for both classification and
regression tasks. It is a way to combine poorer performing baseline models to obtain better
predictive models. Due to their simple nature, low assumptions and high performance,
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RF models have been widely used in machine learning. The term “forest” refers to a set
of decision trees that are themselves “weak” classifiers. A regression forest does not have
the same predictive power as a stand-alone regression tree. If a single tree splits into a
single criterion, it is very sensitive to changes. RF models classify variables based on their
importance to achieve the best RF model [45].

3.3. Evaluation of Regression

Cross validation is used to improve the quality of regression models [46]. Depending
on the method chosen, cross-validation is divided into k-fold cross validation, k-fold cross
validation and leave-one-out. In our experiment, the method selected was leave-one-out
validation. The dataset was split into training and test data, with one subset of data
removed for the training data. The dataset consisted of the selected stations and in the
training data the subset consisted of one sampled station, for a total of 24 stations, resulting
in 24 iterations. Goodness-of-fit (GOF) criteria were used for further evaluation.

3.4. Evaluation of Regression by Goodness-of-Fit (GOF)

The linear regression and random forest regression set were evaluated based on their
GOF (R2 [47], RMSE [48], MAE [48] and RERR [49]). This means that we would like to
identify the best model which is the most suitable for the calculation of evaporation in the
Czech Republic.

(i) The R2 is given by:

R2 = 1− RSS
TSS

, (2)

where RSS is the residual sum of squares and TSS the total sum of squares from
predicted evaporation values Ep and of tested data of cross validation Et.

• R2 indicates a measure of the quality of the regression model and explains the
proportion of variability in the dependent variable of the model R2, it may
attain maximum value of 1, which means perfect prediction of the dependent
variable. Conversely, value of 0 means that the model provides no information
for understanding the dependent variable and is useless.

(ii) RMSE is given by:

RMSE =

√
(

1
n
)

n

∑
i=1

(Epi − Eti)2, (3)

where Epi is predicted evaporation values i-th case, Eti tested data from cross valida-
tion and N is the total number of simulated values.

• It was used as the standard statistical metric providing a relatively high weight
to large errors.

(iii) MAE is given by:

MAE =
1
n

n

∑
i=1
|Epi − Eti|, (4)

The mean absolute error (MAE) is calculated as the average of the absolute differences
between the predicted evaporation values Epi and tested data from cross valida-
tion Eti.

• MAE is used to measure how close the predictions or forecasts are to the final
results. ’Absolute’ means that negative values are converted to positive values.
The error is less sensitive to occasional very large errors because it does not
amplify calculation errors.

(iv) RERR is given by:

δ =
|Ep− Et|

Et
. (5)
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is the ratio of the absolute error between Ep-predicted evaporation values and Et-
tested data to the true of the value Ep-predicted evaporation values.

• It is a dimensionless quantity and can be given in percentages, it may attain both
positive and negative values. Relative error can be used to compare quantities
with different dimensions.

3.5. Final Evaluation of Regression Models

The last step of the evaluation was to create a scoring matrix and consecutively remove
the models from the end (order of removal was from the worst models to the best). In order
for the removal to occur, the individual models had to be ranked (from best to worst) or
standardized using a GOF. Based on this procedure, the final evaluation was performed.

4. Results and Discussion

In this section, a detailed evaluation of linear and random forest regression with
respect to GOF (R2, RMSE, MAE and RERR) is presented. After evaluating all GOFs, RMSE
was selected. Then, the best evaporation formulas are selected from the group of linear
models (LM) and random forest models (RFM). Selected models were used to calculate
evaporation from the water reservoirs.

4.1. Evaluation of Regression Models

Regression models LM and RFM were evaluated by cross-validation. The cross-
validation procedure was as follows:

(i) In the training data, one station out of 24 stations was selected and validation of the
inferred patterns from 23 stations was performed for this station.

(ii) Validation was carried out successively for all stations and models.
(iii) For validations, the goodness-of-fit R2, RMSE, MAE and RERR were calculated.
(iv) Based on the RMSE, the function of R [32] rank() was used, which lists the order

of individual values corresponding in an ascending order to the sorted vector. Af-
ter creating a unique identifier, a matrix was created where the models were on the
x-axis and on the stations on the y-axis were. Based on this matrix, the best models
were selected.

The models were evaluated and compared using GOF (see Figure 3). The results show
that RF models can fit the data better than LM models. RF models are more consistent than
LM models for all criterion functions. It can also be seen from the graph and results that
for some stations the models do not achieve a good fit.

Outliers (the worst 10% GOF values) are present in all LM models, which also happens
in RF models, but on a smaller scale. The outliers corresponded to 70% of the maximum
value, thus setting the limit value for selected GOF. Table 1 shows evaporative stations that
have exceeded the limit values for the selected GOF.

Table 1. Evaluation of evaporation stations based on GOF.

Goodness-of-Fit Limit Values Station above the Limit Value

R2 <0.2 Hlasivo, reservoir Most
RMSE <1.5 Hlasivo, reservoir Most, Praha Podbaba

MAE <1 Hlasivo, reservoir Most, Praha Podbaba, Praha Libuš,
Dukovany

RERR <1.3 Hlasivo, reservoir Most, Praha Podbaba, Praha Libuš
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Figure 3. Model evaluation using GOF (R2, RMSE, MAE, RERR). The lines in the plot represent the
LM and RFM models. Part (a) linear regression models (18 models) is divided into two parts: orange
line: models created manually (8 models), grey part: stepwise regression was used (10 models). Part
(b) random forest regression models (15 models).

By the method of sorting, using the R function rank(), 3 linear and 3 random forest
models (RFM) were selected. The selected regression models with average values of GOF
are presented in Table 2.

Table 2. Average values of goodness-of-fit of selected models.

ID R2 RMSE MAE RERR

LM1 0.85 0.58 0.47 1.04
LM7 0.84 0.56 0.45 1.01
LM8 0.84 0.56 0.46 1.02

RFM4 0.86 0.51 0.42 1.02
RFM5 0.86 0.51 0.42 1.02
RFM15 0.86 0.51 0.42 1.01

The top 3 linear models according to all criterion functions are LM1, LM7 and LM8
and the top 3 RFM are RFM4, RFM5 and RFM15. The selected models are shown in
Figure 4, green line represents linear models and blue line represents random forest models.
The average value of RMSE for the selected linear models is 0.57, the minimum value
is 0.22. The selected RFM had an average RMSE value of 0.51 and a minimum value of
0.18. The models that were designed based on stepwise regression achieved worse results
than the models that were built manually based on data analysis. Models designed using
manual regression achieved better results; however, some models designed using stepwise
regression achieved good results in some cases, with less demanding inputs. The linear
models were further supplemented with LM12, which also showed good results and the
derived equation is more useful for practice due to its simplicity. All regression models are
presented in the Sect. Appendix A in Table A1.
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Figure 4. Evaluation of models using GOF, where the best models are selected. Part (a) linear
regression models, green lines are LM1, LM7 and LM8. Part (b) random forest regression models,
blue lines are RFM4, RFM5 and RFM15.

Selected regression formulas based on linear models:

LM1 = 45.84 + (0.173T · (−0.004R))0.0008 − 0.183D− 0.0002P− 0.0002asl − 0.475Y + 0.063X, (6)

LM7 = 16.97 + 0.082W + (0.235T · (−0.263D))0.007 + 0.008R− 0.0003asl − 0.368Y + 0.063X, (7)

LM8 = 17.33 + 0.055X− 0.367Y− 0.0003asl + (0.2134T ∗ (−0.277D))0.009 + 0.008R, (8)

LM12 = 19.82 + 0.302ST + 0.006R− 0.170D− 0.419Y. (9)

Selected variables for best random forest regression models:

RFM4 : W, (T ∗ D), R, asl, Y, X, (10)

RFM5 : X, Y, asl, (T ∗ D), R, (11)

RFM15 : W, T, ST, R, D, P, H, asl, Y, X. (12)

where:
• LM1, LM7, LM8, LM12, RFM4, RFM5, RFM15 are formula identifiers for evaporation,
• T . . . temperature (2 m) [°C],
• ST . . . surface temperature [°C],
• P . . . surface pressure [Pa],
• W . . . wind speed [m·s−1],
• R . . . surface net solar radiation [W·m−2],
• D . . . dew point [°C],
• H . . . relative humidity [%],
• asl . . . elevation above sea level [m],
• X . . . longitude,
• Y . . . latitude.

4.2. Model Application to Water Reservoirs

For testing, the best LM models (LM1, LM7, LM8 and LM12), RF models (RFM4,
RFM5, RFM15) already described above were applied to selected reservoirs in the Czech
Republic for the period May–October. The selection of the May–October period is because
the evaporation from the observed data in the winter months is not measured due to
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freezing. The calculated evaporation values for the water reservoirs are introduced in the
Sect. Appendix A in Table A2.

The difference and seasonality in evaporation between the water reservoirs is de-
scribed in Figure 5 where green lines represent linear models (LM), blue lines random
forest models (RFM) and red lines introduce observed data. The average across all data
is represented by the bold lines. The mean value from LM models and RFM models over
the period (1981–2020) for reservoirs for May–October is 546.54 [mm·year−1] and for RFM
is 546.02 [mm·year−1]. The mean value of the evaporation stations (2005–2019) is 497.26
[mm·year−1]. The highest increase in evaporation is observed in the month of July, how-
ever, in the summer months (June–August) a significant increase in evaporation can be
observed for all models.

Figure 5. Monthly evaporation for the water reservoirs throughout 1981–2019 (green lines represent
linear regression, blue lines represent random forest regression and red lines observed data) and
from evaporation stations throughout 2005–2019. Bold lines represent means for water reservoirs
and evaporation’s stations.

Top models LM1 and RFM12 are compared with elevation for the whole water reser-
voir. The following Figure 6 shows the relationship between elevation and evaporation,
where the green line represents linear regression model and blue line represents random
forest model. The elevation of water reservoirs is 170.54–781.91 m a.s.l. The evaporation
decreases with the elevation above sea level. Both models are influenced by local conditions
because both models have input geographic coordinates and elevation.
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Figure 6. The lines (a) and (b) represent the relationship between yearly total evaporation and
elevation based on the derived formulas. The points represent yearly evaporation and altitude for
both models.

The results of the study will be implemented to the hydrological model Bilan [50,51]
and for assessing climate change studies in the Czech Republic [52].

5. Concluding Remarks

The main objective of the estimation of evaporation from the water reservoirs was to
derive a universal relationship for the whole territory of the Czech Republic.

The estimation of evaporation from water reservoirs is complicated because a large
number of water reservoirs do not have observed evaporation data. In this work, Quitt’s
climate classification was used to assign a evaporimeter station that is not near a reservoir
to a given reservoir based on climate region and elevation. Within the Czech Republic,
the evaporation value from water reservoirs is determined on the basis of a handling order,
which is established according to a Czech technical standard which is based on old climatic
data and does not deal with climate change. For this reason, the determination of the
evaporation from water reservoirs is based on estimation using statistical methods rather
than exact measurement.

The ERA5-Land climate reanalysis data were used for derivation and were chosen
for their comprehensiveness, availability, high spatial resolution, long time series and
advantageous management. Relative humidity was included into the results based on
the calculated August–Roche–Magnus approximation. The climate reanalysis data were
exported for stations and water reservoirs.

The derivation of the relationship for evaporation was based on the multiple linear
regression method, where the values of the dependent variable (evaporation) were sought,
based on two or more variables (predictors: air temperature, surface temperature, wind
speed, surface net solar radiation, dew point, surface pressure, dew point, altitude, latitude,
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longitude and calculated humidity). The construction of the models was done (i) manually,
where the evaluation was done using the AIC parameter and the quantile–quantile (plot-
QQ) was used for visual diagnostics, this method was time consuming, (ii) using stepwise
regression, where the predictors are entered sequentially and models from one to X-selected
variables were generated, this method is not time consuming. Random forest regression
was used to account for non-linear relationships. Linear and random forest regression
models were cross-validated and evaluated using criterion functions (R2, RMSE, MAE and
RERR). Finally, 3(+1) LM models and 3 RF models were selected. The models contained a
large number of independent variables (6–7), possibly leading to model overfitting and
therefore another model was selected which performed best for the RMSE criterion function
and is based only on 4 independent variables and is therefore more user friendly.

It turned out that geomorphological information (elevation, location) appeared more
in the manually derived models as opposed to models constructed using the stepwise
regression method. When comparing linear models (LM) and random forest models
(RFM), LM was found to have much more variability in the outcome compared to the RFM.
The advantage of RFM is their adaptability, but the subsequent interpretation of the results
can be a problem. This has been shown in the design of LM and RFM as well as when
applying the proposed models to water reservoirs.

Evaporation values for the period 1981–2019 were calculated for the selected water
reservoirs and selected formulas based on ERA5-Land climate reanalysis data.

For the evaluation of evaporation, models from LM and RFM models were used.
Among the best models that were evaluated by linear regression, models LM1 from the
manual linear regression group and LM12 from the stepwise regression group were used.
Model LM1 was selected as the best model among the six predictors. The LM1 model can
be replaced by an alternative model LM12 with which also performed satisfactorily with
four predictors.
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Abbreviations
The following abbreviations are used in this manuscript:

LM Linear Model
RFM Random forest Model
GOF goodness-of-fit
EWM evaporimeter
ERA5-Land climate reanalysis product
ECMWF European Centre for Medium-Range Weather Forecasts
COPERNICUS European Union’s Earth Observation Programme
CDS Climate Data Store
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API Application Program Interfaces
GRIB General Regularly-distributed Information in Binary form
NetCDF Network Common Data Form
MAE Mean Absolute Error
RMSE Root Mean Squared Error
R2 Coefficient of Determination
RERR Relative Error
AIC Akaike Information Criterion
QQ Quantile-Quantile Plot

Appendix A

Table A1. Review of linear models and random forest models, where evaporation E [mm·month−1],
temperature T (2 m) [°C], surface temperature ST [°C], wind speed W [m·s−1], surface net solar
radiation R [W·m−2], dew point D [°C], relative humidity H [%], surface pressure P [Pa], elevation
above sea level asl [m], longitude X, latitude Y.

ID Manual Linear Regression

LM1 E ~ (T * R) + D + P + asl + Y
LM2 E ~ T + (ST2) + R + Y
LM3 E ~ H + W + T + ST + asl
LM4 E ~ W + T + asl + (X * Y)
LM5 E ~ W + T + (X * Y) + asl
LM6 E ~ W + T + R + (X * Y) + asl
LM7 E ~ W + (T * D) + R + asl + Y + X
LM8 E ~ X + Y + asl + (T * D) + R)

ID Stepwise regression

LM9 E ~ ST
LM10 E ~ ST + R
LM11 E ~ ST + R + Y
LM12 E ~ ST + R + D + Y
LM13 E ~ ST + R + D + asl + Y
LM14 E ~ ST + R + D + P + asl + Y
LM15 E ~ ST + R + D + P + asl + Y + X
LM16 E ~ W + ST + R + D + P + asl + Y + X
LM17 E ~ W + T + ST + R + D + P + asl + Y + X
LM18 E ~ W + T + ST + R + D + P + H + asl + Y + X

ID Random forest regression

RFM1 E ~ (T * R) + D + P + asl + Y
RFM2 E ~ H + W + T + ST + asl
RFM3 E ~ W + T + asl + (X * Y)
RFM4 E ~ W + (T * D) + R + asl + Y + X)
RFM5 E ~ X + Y + asl + (T * D) + R
RFM6 E ~ ST
RFM7 E ~ ST + R
RFM8 E ~ ST + R + Y
RFM9 E ~ ST + R + D + Y
RFM10 E ~ ST + R + D + asl + Y
RFM11 E ~ ST + R + D + P + asl + Y
RFM12 E ~ ST + R + D + P + asl + Y + X
RFM13 E ~ W + ST + R + D + P + asl + Y + X
RFM14 E ~ W + T + ST + R + D + P + asl + Y + X
RFM15 E ~ W + T + ST + R + D + P + H + asl + Y + X
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Table A2. Average year evaporation [mm·year−1] values for selected reservoirs by model.

Water Reservoir LM 1 LM 7 LM 8 LM 12 RF 4 RF 5 RF 15

1 Mariánské Lázně 456.57 406.37 407.53 460.76 448.25 441.19 440.32
2 Medard 517.42 419.89 420.58 445.50 464.99 461.08 452.22
3 Nesyt 734.47 738.63 738.35 720.95 693.63 694.18 693.05
4 Rožmberk 621.84 577.57 579.15 581.44 581.58 576.09 555.99
5 Staňkovský pond 629.94 570.13 570.85 586.79 566.87 562.56 550.49
6 Bezdrev 629.52 568.50 568.80 564.59 571.94 567.83 564.59
7 jezero Most 507.42 470.84 468.07 449.22 540.34 546.20 510.86
8 Bedřichov 302.96 379.47 381.93 398.94 442.42 435.92 442.27
9 Brno 612.95 625.37 626.29 606.97 627.63 625.78 609.18

10 Dalešice 617.56 606.14 606.28 607.93 608.56 607.86 597.58
11 Harcov 437.17 405.10 408.10 404.30 452.33 447.10 445.74
12 Hněvkovice 616.43 565.34 566.31 570.69 569.44 565.61 546.01
13 Nové Mlýny dolní 715.26 723.92 724.69 703.13 690.91 692.57 689.31
14 Nové Mlýny horní 716.69 718.96 719.29 696.68 684.96 685.64 682.96
15 Nové Mlýny střed 719.17 718.65 719.25 693.89 685.19 685.79 682.40
16 Orlík 566.86 536.74 536.87 551.54 557.05 557.89 539.68
17 Přísečnice 392.88 364.87 363.56 404.01 448.05 445.16 429.48
18 Rozkoš 483.40 480.53 481.91 453.28 514.23 513.06 489.23
19 Skalka 485.34 421.82 425.00 460.64 472.03 467.27 459.67
20 Slezská Harta 455.25 487.71 483.71 463.05 507.73 511.28 480.48
21 Stráž pod Ralskem 447.56 439.12 441.68 430.19 464.72 459.26 462.60
22 Těrlicko 510.93 547.67 546.09 492.15 538.75 537.80 507.56
23 Vranov 646.21 617.51 616.28 621.22 602.25 599.90 590.68
24 Vrané 547.91 543.23 540.54 543.30 512.07 509.25 520.30
25 Vír I 521.65 513.87 512.16 510.30 528.49 531.97 504.17
26 Hracholusky 543.98 491.44 490.70 513.37 500.41 497.08 491.13
27 Jesenice 507.08 421.91 424.18 456.80 468.90 464.60 456.41
28 Kružberk 508.67 503.72 499.90 480.90 512.99 515.47 489.92
29 Lipno I 586.06 508.19 510.88 541.07 516.80 512.38 476.28
30 Nechranice 493.24 479.92 476.84 465.56 502.13 500.34 490.44
31 Římov 625.90 558.38 559.47 564.04 560.89 557.42 524.97
32 Švihov 546.86 527.77 526.51 533.85 513.68 512.63 506.66
33 Žehuňský pond 536.57 564.87 563.07 548.24 543.89 539.64 551.57
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Abstract: Precision agriculture has been at the cutting edge of research during the recent decade,
aiming to reduce water consumption and ensure sustainability in agriculture. The proposed method-
ology was based on the crop water stress index (CWSI) and was applied in Greece within the ongoing
research project GreenWaterDrone. The innovative approach combines real spatial data, such as
infrared canopy temperature, air temperature, air relative humidity, and thermal infrared image
data, taken above the crop field using an aerial micrometeorological station (AMMS) and a thermal
(IR) camera installed on an unmanned aerial vehicle (UAV). Following an initial calibration phase,
where the ground micrometeorological station (GMMS) was installed in the crop, no equipment
needed to be maintained in the field. Aerial and ground measurements were transferred in real time
to sophisticated databases and applications over existing mobile networks for further processing and
estimation of the actual water requirements of a specific crop at the field level, dynamically alert-
ing/informing local farmers/agronomists of the irrigation necessity and additionally for potential
risks concerning their fields. The supported services address farmers’, agricultural scientists’, and
local stakeholders’ needs to conform to regional water management and sustainable agriculture poli-
cies. As preliminary results of this study, we present indicative original illustrations and data from
applying the methodology to assess UAV functionality while aiming to evaluate and standardize all
system processes.

Keywords: CWSI; UAV; remote sensing; micrometeorological data; spatial IRT measurements; crop
irrigation scheduling and management; infrared radiometer sensors; real-time data analysis

1. Introduction

As a result of the environmental impact factors and the growing demands on food
production and consumption, combined with the global market demand to keep merchan-
dise prices low, the modern agricultural industry faces a major challenge [1,2]. There is
greater urgency than ever before for producers, farmers, and agronomists around the world
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to improve the management of their agricultural practices on farms in response to the
reduction in their budgets through the optimization in water-saving and farm inputs and,
at the same time, maintain high product quality [3]. Future water requirements, combined
with limited or bad quality water resources and requirements to adequately meet a growing
population’s increasing nutritional needs, require improved crop yields and productivity
and increased irrigated land, even in the planet’s arid areas.

Globally irrigated agriculture delivers 40% of the food production and consumes
70% of the available water [1,4]. Therefore, irrigation scheduling is an important tool
for improving the efficient use of irrigation water. Recently, several new sensors and
emerging technologies, such as the Internet of things (IoT), have been developed and
applied in precision agriculture for the management of available water resources and the
biometeorological monitoring of plants and soil [2,5]. These provide significant potential
in precision agriculture (PA) and smart farming since it has a direct impact on improving
the management of irrigation systems and enabling a long-term increase in productiv-
ity [6]. Nowadays, the scientific community focuses not only on estimating the duration of
irrigation but also on the accurate calculation of actual needs (actual evapotranspiration
(Eta)) regarding the water required by each crop [7]. This trend is contrary to the general
tendency of determining the maximum rate of evapotranspiration of the crop (ETC) in
large estimation time steps. Additionally, the effect of the vegetation surface (temperature,
physical characteristics, etc.) on the precise estimation of actual evapotranspiration values
is also one of the main issues of research [7].

Earth observation data with variations in spectral, spatial, and temporal characteristics
have been widely used for vegetation mapping and crop water stress monitoring [8–11].
Traditional remote sensing methods place remote sensors over crop fields or use aircraft
and satellites where the appropriate fixed position or the temporal and spatial resolution
significantly bounds their utility for PA [12–14]. However, freely available optical-sensors-
based imagery is often unsuitable for monitoring crop water stress at the farm level due
to the poor revisiting times and coarse spatial resolutions. At the same time, the higher
accuracy data are too expensive [15,16]. Furthermore, these data are typically unavailable
or not useful on cloudy days [2,17]. Nevertheless, for decades, a lot of studies were under-
taken to monitor the crop water stress index using satellite- and aerial-based instruments
in several crops, such as those of Rud et al. [18] and Cucho-Padin et al. [19] in potato
fields, Veysi et al. [20] and Lebourgeois et al. [21] regarding sugarcane, da Silva et al. [22]
regarding melon, Sepulcre-Cantó et al. [23] in olive orchards, and Gutiérrez et al. [24]
regarding vineyards.

The synergistic utilization of innovative UAV advanced high-precision thermal cam-
eras and other infrared sensors have enhanced the usefulness of these systems to monitor
water statuses [25,26]. As a result, numerous studies have researched several different
crops to evaluate the crop water stress conditions, such as those of Zhang et al. [16,27],
Yang et al. [28], Gago et al. [12], Gonzalo-Dugo et al. [29], Bellvert et al. [30], Berni et al. [31],
Matese et al. [32], and Santesteban et al. [33]. However, the process of calibrating and
processing thermal images takes a long time to give the final decision on whether to irri-
gate. In addition, this process involves more empiricism. Therefore, even a high-precision
thermal camera could not be described as a useful tool for everyday use on extensive
arable land. The CWSI can be determined using at least two different methodologies: the
theoretical model proposed by Jackson et al. [34], which is based on meteorological models,
and the empirical model proposed by Idso et al. [35], which has achieved considerably
more popularity due to the limited data requirements [8,16]. Due to its simplicity and
requiring only three variables to be measured, this practical approach has received much
attention in the literature. However, it received criticism concerning its inability to account
for temperature changes due to radiation and wind speed [36]. The theoretical method
is more complicated because it requires these two additional variables to be measured
to evaluate the aerodynamic resistance. Moreover, given the assumed net radiation and
wind speed, the theoretical approach to calculating the CWSI promises to improve the
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estimation of plant water trends [36]. Considering the above, the methodology for estimat-
ing the CWSI coefficients is based mainly on the theoretical approach. For this purpose,
all the necessary sensor equipment was installed for the CWSI calibration stage for three
crops independently.

The GreenWaterDrone (GWD) project proposed a pilot implementation of an inno-
vative and autonomous system (onboard micrometeorological station) that identifies a
farmer’s real-time irrigation needs through the CWSI to estimate each crop’s water status.
The direct estimation of the CWSI is based on spatial data that is remote and directly from
the field and is based mainly on the infrared temperature of the crop canopy. Even in the
recent (2021) literature, but also in previous years, the calculation of the CWSI with direct
spatial measurements of the temperature of the crop canopy has never been proposed or
adapted [37–43]. Such measurements are constantly achieved indirectly through thermal
images. The raw data and thermal images from the infrared camera were also used for
comparison and calibration purposes. The use of the spatial measurements of canopy
temperature, air temperature, and relative humidity from sensors incorporated into an
unmanned aerial vehicle (UAV) may be a global novelty. This study aimed to present
the new methodology and the equipment used in the assessment of crop water stress by
presenting preliminary results from the initial stages of a pilot implementation in a potato
cultivation field at the farm scale.

2. Description of the GWD Concept
2.1. CWSI—Empirical and Theoretical Approaches

CWSI is a measure of the relative transpiration rate that occurs from a crop and
is found by using the canopy temperature and the vapor pressure deficit as relevant
variables. The latter measure is related to the atmospheric dryness over the crop. The CWSI
approach [34] utilizes the energy balance theory that separates the net radiation over the
canopy from the sensible heat (thermal content of the air) and latent heat that is consumed
for transpiration. The energy balance considerations show how the difference between the
canopy and air temperatures (Tc − Ta) is related to the vapor pressure deficit (VPD), and
the flux density of the net radiation (Rnet) presents a theoretical basis for the CWSI.

When the plant canopy is fully transpiring, the leaf temperature is some degrees
below the overlying air layer temperature and the CWSI is equal to 0 (stomata are closed).
Conversely, as the transpiration decreases, the leaf temperature rises and can reach some
degrees above the overlying air temperature. When the canopy is no longer transpiring, the
CWSI is equal to 1. Because of the scatter in the measured canopy minus air temperature
vs. the vapor pressure deficit, the crop does not need to be watered until the CWSI reaches
0.1 to 0.15. For example, for eggplant crops, it could be possible to use values of CWSI
between 0.18–0.20 for high and good quality yields. Irmak et al.’s [44] work showed that
when the CWSI value exceeds more than 0.22, this resulted in a decreased corn grain yield.
Determining the temperature upper line (maximum stress) is not a simple process for any
crop. However, this empirical approach has attracted much interest due to its simplicity.
It requires measuring the canopy temperature (Tc), air temperature (Ta), and the vapor
pressure of the atmosphere’s deficit (VPD).

After the empirical approach suggested by Idso et al. [35], a theoretical method for
calculating the CWSI was presented. The index’s practical estimation is calculated by
determining the relative distance between the lower baseline representing the soil water
adequacy conditions in the rhizosphere (no stress) and the upper baseline representing the
crop’s maximum water stress (no transpiration by plants; Figure 1).
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Figure 1. A schematic representation of the CWSI, which equals the relative distance of the measure-
ment between the lower and the upper baselines.

The two lines (blue and red) presented in Figure 1 are suitable for assessing a crop’s
water status during the warm seasons of the year when irrigation is required. These lines
are the result of local calibration and concern the specific crop that is studied each time. The
lower baseline is determined for the crop by plotting (Tc − Ta) against the local VPD after
a significant watering. A sufficient number of measurements (10 min time step) around
midday were taken for the precise estimation of the canopy temperature (Tc). The canopy’s
temperature sampling must be repeated several times, including measurements under dry
and wet atmospheric conditions. This results in a full range of measures representing the
lower regression line for a wide range of value pairs (Tc − Ta vs. VPD). The upper baseline
could be determined after cutting the plant and taking the canopy temperature the next
day, as the plant no longer transpires. The theoretical procedure requires a measurement of
the net flux density of the radiation (Rn) and an aerodynamic resistance factor, in addition
to the air temperature and relative humidity of the air that is required by the empirical
approach [36].

The theoretical development of the CWSI is based on the well-known equation of
energy balance of the surface (Rn − G = H + λE), where Rn: net radiation, G: soil heat
flux, H: sensible heat flux, and λE: latent heat flux of evaporation. All the terms are in
Wm−2. The terms H and λE are expressed in Equations (1) and (2), which are based on
two assumptions (see [36,45–47]):

H = ρCp(Tc − Ta)/ra (1)

λE =
[
ρCp(es − ea)

]
/[γ(ra + rc)] (2)

where ρ : density of air (kg m−3), Cp: specific heat moist air (1.013 kJ kg−1 ◦C−1), Tc :
canopy temperature (◦C), Ta: air temperature (◦C), es: saturated vapor pressure (kPa),
ea: actual vapor pressure (kPa), γ : psychrometric constant (kPa ◦C−1), ra: aerodynamic
resistance (sm−1), and rc: bulk surface resistance (s m−1).

Clothier et al. [48] showed that the soil heat flux estimation can be calculated from Rn
measurements with reasonable accuracy. The ratio G/Rn for full canopies (more than 45 cm)
is nearly constant at 0.1. Thus, the soil heat flux does not contribute significantly to the
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energy balance above the canopy. Taking G = 0.1Rnet the equation becomes IcRn = H +λE,
where Ic = 0.9 is an interception coefficient.

Tc − Ta =
ra IcRn

ρCp
· γ∗

∆ + γ∗
− VPD

∆ + γ∗
(3)

where γ* (kPa ◦C−1) is the modified psychrometric constant and VPD is the vapor pressure
deficit.

Equation (4) represents the slope of the saturated vapor pressure relation:

∆ = (esC − es)/(Tc − Ta) (4)

where esC and es represent the saturated vapor pressure of the canopy temperature and the
air temperature, respectively.

The upper limit Tc − Ta is determined when the canopy resistance tends to infinity
(Tc − Ta → ∞) and Equation (3) becomes

[Tc − Ta]ul =
ra IcuRn

ρCp
(5)

The lower limit, determined by setting the bulk surface resistance rc = 0, is

Tc − Ta =
ra Icl Rn

ρCp
· γ

∆ + γ
− VPD

∆ + γ
(6)

Thom and Oliver [49] proposed an effective aerodynamic resistance rae that represents
a semi-empirical equation for ra:

rae = 4.72l{ln[(z− d)/zo]}2/(1 + 0.54u) (7)

The crop water stress index can be estimated using the equation below:

CWSI =
(Tc − Ta)− (Tc − Ta)ll
(Tc − Ta)ul − (Tc − Ta)ll

(8)

2.2. Structure and Architecture of the GWD Project

The GreenWaterDrone system is functionally and physically divided into four subsys-
tems, as follows (Figure 2):

• The ground measurements subsystem (MMS), which is applied only during the calibra-
tion phase, consists of micrometeorological stations and their integrated/peripheral
sensors, which are required to collect microclimatic and soil measurements of the crop
field. Data collected from a station is used to calibrate and approximate the CWSI of a
specific crop under the local climatic regime for one growing season. Data is commu-
nicated to the system over available mobile WAN infrastructures (2/3/4 G, IoT).

• The aerial measurement subsystem (UAS) consists of two types of UAVs. A quadcopter
platform UAS1 uses an autonomous microstation to collect raw spatial data from
the crop foliage and environment (infrared temperature, air temperature, relative
humidity, accurate coordinates, and elevations). A fixed-wing platform UAS2 is
required to collect thermal, multispectral, and photogrammetry images over large
crop areas. Field data collected by the UAS is communicated to the system over
available mobile WAN infrastructures (2/3/4 G, IoT). Both scheduled (e.g., during
calibration and normal operation) and emergency (e.g., extreme weather conditions)
flights are managed by the GWD System Administrator via the FlightPR interface.

• The service support information system (BackEnd) implements the crop data man-
agement necessary for the storage, classification, management, and updating of field
measurements, empirical irrigation data, spatial and crop quality data, field status
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multimedia, end-user preferences, and interfaces with external services (satellite im-
agery, photogrammetry applications). In addition, it interconnects and supports all
other subsystems and is responsible for providing the services of the system (alerting
and multimedia content) to all types of supported end users.

• The service provision I/Fs (FrontEnd) includes appropriate web interfaces of the
system to predefined types of GWD users, such as plain (farmers/agronomists), group
(partnerships), and strategic (local/regional authorities) end users, with graded access
to the three supported applications through different devices (PCs, smartphones, etc.)
and relevant GUIs.
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and subsystems.

The GWD system supports the following applications to provide a comprehensive
irrigation management and field surveillance framework to both the plain and strategic
end users that are targeted:

1. Irrigation alerting and scheduling (IRRas): The plain end user (farmer/agronomist/
farmer partnership) receives alerts in near real time regarding the short-term need
to irrigate (or not) a specific crop based on CWSI calculations and empirical irriga-
tion scheduling.

2. Crop surveillance (CS): The plain end user (farmer/agronomist/farmer partner-
ship) can view on-demand, multimedia content (e.g., photos/video relating to crop
condition) of a field or receive alerts in near real time regarding the availability of
synchronous video/photos of his crop in the case of a natural disaster or a security
issue triggering an emergency drone flight.

3. Irrigation water management (IRRmgt): The strategic user (agricultural institute,
local/regional authorities) may select zones (clusters) on a graphical interface with
a map of the area covered by the GWD system (effectively calibrated crops in the
area) and obtain irrigation requirements for specific crop patterns and periods, thus
enabling the implementation of scenarios for future irrigation water policies.
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3. Case Study—Materials and Methodology
3.1. Study Area

The study area was situated in the prefecture of Messinia (western Peloponnese), close
to the city of Kyparissia in the Municipality of Trifilia (Figure 3). Based on long-term data
obtained from the nearby station of Kalamata (37.07◦ N, 22.10◦ E, alt. 8 m a.s.l.) over the
last century, the broader area has a humid climate according to Thornthwaite’s climate
classification system (UNEP 1992), which has, however, become drier nowadays compared
to the past, as seen via the decreasing aridity index [50] values from 0.88–0.89 in the
previous climatic periods (1900–1930 and 1930–1960) to 0.85 in the period 1960–1997 [51].
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Figure 3. Location of the GWD project’s experimental fields in Trifilia.

The experimentation was conducted in three fields with three different crops that are
representative of the area, i.e., potato, watermelon, and tomato, which were utilized for
the validation procedure of the GWD project methodology (Figure 3). Indicatively, in this
work, potato field 2 (Solanum tuberosum; 1.25 hectares; 37◦13′20.65′′ N, 21◦36′41.51′′ E, alt.
1 m a.s.l.) was used throughout the next sections for demonstrating the preliminary results
of the different imaging used in the project and GWD methodology validation during
the 2019 growing season. The potato crop was selected by considering its relatively high
water requirements, with its maximum in the hot and dry summer period, and the critical
susceptibility of potato plants to water stress, which is attributed mainly to their relatively
shallow root system (Figure 4a) [18]. The field had a small slope of 0–3% and a clay loam
surface soil layer (0–20 cm depth), becoming sandy clay loam further down (20–60 cm
depth; Figure 4b).
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Department of Agriculture).

3.2. Ground Micrometeorological Station

Three automatic micrometeorological stations were installed in the middle of the fields
(Figure 5) for observations of the upper atmospheric layer of the crops and measurements
within the soil profile (at the root zone). This was an indispensable condition for the
accurate estimations of CWSI and the determination of all the biophysical attributes of
the cultivations during all stages of the growing season. This ground-based measuring
system composed the core of the calibration for estimating the CWSI of each crop, which
was the basis for determining the real-time irrigation needs according to the methodology
proposed by the GWD project.
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Figure 5. Three stations were installed in the middle of the experimental fields: (a) the first station in
field 1, with early watermelon cultivation with a plastic cover for protection against the spring frost;
(b) the second station in field 2 with the cultivation of spring potato in the middle growing stage;
(c) the third station installed in field 3 with young tomato plants.
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3.2.1. Measurements above Crops

The three ground micrometeorological stations (GMMS) were equipped with the
following sensors:

i. A high-precision miniature air temperature (T) and relative humidity (RH) sen-
sor model EE08 (Elektronik Ges.m.b.H, Austria) working over a wide range was
installed at a 2 m level.

ii. The LPPYRA02 fitted on stations 2 and 3 is a spectrally first-class pyranometer that
measures the shortwave (Rs) solar radiation flux density on a flat surface (in Wm−2;
global irradiance, sum of direct and diffuse radiation).

iii. A pyranometer following ISO 9060:2018 with the criteria of the WMO “Guide to Me-
teorological Instruments and Methods of Observation.” An albedometer LP PYRA
05 (Delta OHM, Italy) was fitted on station 1 and measured the global radiation
(in Wm−2) and the albedo of any surface. It was manufactured incorporating two
LPPYRA02 pyranometers into only one body.

iv. Net radiation pyranometer (RNET LP NET 07 Delta OHM, Italy) for the net flux
density measurement (Rn) passing through a surface across the near-ultraviolet
and the far-infrared spectral ranges.

v. Photosynthetically active radiation sensor PAR (QUANTUM SENSOR Model SQ-100-
SS APOGEE, Italy) that measured the total radiation across the range of 400–700 nm
expressed as photosynthetic photon flux density (in µmol m−2 s, equal to µE m−2 s).

vi. Two tipping bucket rain gauges, model HD2015 and model HD2015 (Delta OHM,
Italy), for precipitation measurements in millimeters (Pre) were installed on stations
1 and 3. It should be noted the distance between meteostations 2 and 3 was 15 km
along the north–south axis, while the distance between meteostations 1 and 2
was 1 km.

vii. Cup anemometers for horizontal wind speed (WS) measurement (in m/s; model
4.3519.00.167 Thies GmbH & Co, Germany) and wind direction (WS) sensor (in
degrees; model 4.3140.51.010 Thies) were installed on the mast at a height of 3.4 m
for the three meteostations.

Given the importance of measuring the temperature of the plant foliage (canopy)
remotely, reliable infrared radiometer sensors were crucial for achieving the program’s ob-
jectives. The model SI-111-SS (Apogee, Berkeley, CA, USA), which is an unamplified analog
sensor with a standard field of view, was selected to measure the canopy temperature. The
response time of the sensor is 0.6 s, with a measurement repeatability of less than 0.05 ◦C,
and the calibration uncertainty is 0.2 ◦C. The spectral range of the measurement is between
8 and 14 µm, that is, the atmospheric window. The sensor has a 22◦ half-angle field of view.
The placement height and the angle formed between the mast with the longitudinal axis
of the infrared thermometer determine the elliptical area of measurement (in m2) of the
surface of the dense canopy.

Moreover, portable infrared thermometers (Model MI-210 Apogee, USA) were used
for conducting spatial measurements in all fields’ canopies during the flights of the UAV
for calibration and comparative data analysis.

3.2.2. Measurements in the Root Zone

The soil moisture (SMois) (v/v%) and soil temperature (Tsoil) were measured continu-
ously at six soil layers (from 0–10 cm to 50–60 cm in 10 cm intervals) using the Drill and
Drop probe (model 00620 Sentek Technologies, Australia). In this way, the actual changes
in soil moisture were constantly obtained throughout the depth of the root zone at any time.
Furthermore, a soil heat flux plate (HFP01 Hukseflux Thermal Sensor, Netherlands) was
installed in the topsoil layer (at a 5 cm depth). Figure 6 graphically shows the soil moisture
profile estimated using a geostatistical gridding method (Kriging), which was proven to
be useful in many fields. The Kriging method estimates the surface at successive nodes in
the grid using only a selection of the nearly closed data points and produces surfaces from
irregularly spaced data.
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Figure 6. Soil water content isolines (%) in the irrigated spring potato crop (field 2) for 10 May–9 July
2019 (DOY: 130–181).

The method efficiently and naturally incorporates anisotropy and underlying trends
from a data set by specifying the appropriate variogram model. To create this graph, 1080
daily soil moisture measurements were used from six depths that were monitored in the
potato cultivation field for 51 days.

For the detailed fluctuations of the soil moisture of the potato field at depths of 0–10
and 10–20 cm (the two most variable layers), we used 17,284 average values of ten-minute
continuous soil moisture measurements. These measurements are shown in Figure 6 and
refer to the interval from 10 May to 9 July. The smooth, continuous, and detailed data-
collection process, which took place throughout the growing season in the soil profiles,
allowed us to accurately estimate the actual evapotranspiration (ETa) from the soil moisture
profile in hourly time steps. Moreover, from the observations and characteristics of the
plants in all stages (height, LAI, aerodynamic, and surface resistance), in combination with
the micrometeorological observations just above the crop (Rs, Rn, albedo, soil heat flux, T,
RH), we estimated the crop potential evapotranspiration (ETc) with satisfactory accuracy.
All the above estimates contributed to estimating the crop water stress index (CWSI), both
practically and theoretically.

3.2.3. Data Acquisition System and Telemetry

The telemetry unit (model A753 addWAVE GPRS RTU, ADCON (Business Unit of
OTT HydroMet GmbH)) provided the possibility of local storage in EPROM Memory for at
least half a million measurements. The telemetry unit has an internal rechargeable battery
that is charged using a solar panel, which is independent of the one used for the energy
needs of the sensors. The duration of operation in normal operation is up to 14 days.
According to the GSM standard, the frequency band is 850/900/1800/1900 MHz, and the
maximum transmission distance is 36 km. To achieve the maximum accuracy (connecting
sensors to a central station unit), especially in the connection of thermocouple sensors
(pyranometers, soil heat flux plate) to a central station a unit HD978TR3 (Delta OHM),
signal amplifiers were used.

The time step for storing the average data values for each sensor is ten minutes for all
stations (144 average values per 24 h). From the ten-minute average values, we obtained
and recorded hourly and daily average values for all sensors. All average values from
each sensor were found using 4320 reads per 24 h. This means that almost all sensors
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were automatically excited to give a reading sample every 20 s (3 readings per minute). Of
course, this programming considers the response time of each sensor, i.e., the ability of the
sensor to respond to two different successive values in time.

3.3. Experimental Design—Unmanned Aerial Vehicle, Cameras, and IR-TH

In the present study, the quadcopter DJI Matrice 200 (DJI Technology Co., Ltd., Shen-
zhen, China) was used for the measurements of the multispectral and IR-TH data, and
the fixed-wing Q100 Datahawk was employed for the photogrammetric mapping of the
fields. The quadcopter was selected due to the compatibility of incorporating both multi-
spectral and thermal cameras, and because the flights with infrared sensors require a low
flight altitude, low-speed navigation, and high stability, which cannot be achieved with a
fixed-wing platform [52]. The accuracy of the system is 10 cm in the vertical and 30 cm in
the horizontal, which is considered suitable for PA applications, while at the same time,
it offers the possibilities of low, slow, and stable flight. It has significant autonomy and
a maximum take-off mass with a large payload (6.14 and 1.61 kg, respectively) and can
withstand strong winds (up to 12 m/s), which ensures its smooth operation in demanding
flight environments. In addition, the system incorporates an advanced obstacle recogni-
tion and avoidance subsystem, which consists of a combination of optical, infrared, and
ultrasonic sensors, making the platform one of the safest for flight operations in existence,
and incorporates inertial measurement units (IMU) sensors, supporting both automatic,
semi-automatic, and manual flights.

The flight planning of the photogrammetric, multispectral, and thermal cameras was
conducted with the ground control station software, GS PRO (for the IR), Pix4D (for the
thermal camera), Field Agent (for the multispectral camera), and the SkyCircuits Plan and
Flight (for the photogrammetric camera), which allow the user to generate a route over
a grid path as a function of the field of view of the sensor, flight altitude, flight speed,
direction, degree of overlap between images, and ground resolution.

3.3.1. UAV for IR Spatial Row Data Measurements

The DJI Matrice quadcopter was selected to install an autonomous aerial micrometeo-
rological system (MicroStation) consisting of a high-performance data logger (Symetron
type Stylitis-12), as well as four sensors: IR radiometer (SI-111-SS Apogee), miniature
Thermo-Hygrometer EE08, and an accurate GPS (Figure 7). Through the “Opton 4”
Symetron software, the data logger operation was managed and controlled. Furthermore,
all the appropriate equations and precalibrated factors for any crop were incorporated into
the CWSI estimation software.

The radiation shield plates (which protected the temperature and RH sensors), the
watertight box (which protected the data logger), and all the sensors’ mounts were made
from lightweight synthetic materials. All these components were designed in a 3D CAD
program and printed using a 3D printer in the lab. Particular attention was paid to the
placement of the thermo-hygrometer so that it was not affected by the flow of the drone
propellers (Figure 7). The vertical positioning of the radiation shield on top of the UAV
ensured mild air vortexing and mixing, avoiding the violent airflow from the downside of
the drone due to the propellers.

One of the most important parts of the IR instrument sampling workflow was the
calculation and design of the most suitable flight planning in order to have the best point
samples coverage and complementarity to ideally cover the whole cultivated area. The
flight height depends on the sensor type and the characteristics of the crop. For a specific
IRT sensor, the visible surface area is a function of height. For the sensor SI-111 that was
placed on the UAV in such a way to be vertical to the foliage for a flight height of 4 m (h),
the surface area was estimated to be 8.2 m2 (E), and the diameter of the circular surface
was about 3.2 m (Figure 8).
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Figure 8. Graphic illustration of the measurement process with an infrared radiometer adapted to a
UAV over dense cultivation foliage under a clear sky. The flight height depends on the sensor type
and the characteristics of the crop. For a specific IRT sensor, the visible surface area is a function of
height. For the sensor SI-111 that was placed vertically to the foliage with a height of flight h = 4 m,
the surface area was E = 8.2 m2, and the diameter of the circular surface was about 3.2 m.
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3.3.2. UAVs for Photogrammetric, Multispectral, and Thermal Measurements

The photogrammetric camera that was used for the present study was the SONY rx
100, with a 20.2 megapixels CMOS lens that has a ground resolution of 3.2 cm/pixel. The
camera was adjusted on a fixed-wing Q100 Datahawk UAV (Figure 9a). By processing
the images that were produced, an accurate description of the canopy height and a digital
surface model (DSM) were created. This information is significant in endeavoring to
explore the surface slope inclination and, indirectly, the conditions of drainage and water
flow in the soil, as well as the growth conditions of the crop (canopy height and density).
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Figure 9. (a) The fixed-wing Q100 Datahawk; (b) the multispectral Sentera camera; (c) the thermal
infrared camera Zenmuse XT2.

The DSM from UAV image stereo pairs used the structure from motion (SfM) algo-
rithm, which is a photogrammetric technique that was initially developed for archaeological
sites [53–55]. The algorithm assesses the unknown camera orientations through a com-
parison of multiple detected image feature points in multiple images. It subsequently
produces the 3D structural model of a scene from the overlapping two-dimensional (2D)
image sequences that are taken from various spots and orientations [56].

The multispectral camera that was used in the present study was the Sentera AGX710
(12.3 megapixels) multi-spectral sensor with five bands (Sentera Inc., Minneapolis, MN,
USA), which cover the blue, green, red, red edge, and near-infrared parts of the electro-
magnetic spectrum (Figure 9b). Their central wavelengths are 446 nm, 548 nm, 650 nm,
720 nm, and 840 nm, respectively. A 15 cm × 15 cm white reference panel (MicaSense Inc.,
Seattle, DC, USA) with a 60% nominal reflectance was used for the radiometric correction.
UAV imaging was conducted in sunny weather and the period between 11 a.m. and
12 p.m. was chosen for imaging to minimize sunshade. To certify correct image acquisition
during the flight, the FieldAgent Mobile App from Sentera was used to plan the flight path
and automate the operation of the UAV. A constant flight height was maintained at 30 m
and the flight speed was set to 3 m/s. The ground sample distance of the imagery was
approximately 1 cm/pixel and a 90% overlap between two images both for side-lap and
front-lap was implemented. In total, about 820 images were taken for the experimental
field and stacked into a single image for analysis.

Agisoft Metashape Professional (v 1.5.5) was preferred as the Structure for Motion Multi-
View Stereo (SfM-MVS) processing software to generate the digital surface model (DSM) and
the correspondent normalized difference red-edge index (NDRE) vegetation index.
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NDRE is a narrowband greenness VI that was designed to provide a measure of the
overall amount and quality of photosynthetic material in vegetation, which is essential for
understanding the state of vegetation (photosynthetic capacity and canopy chlorophyll
content, structure, and plant health status). NDRE (Equation (9)) was measured by using
the NIR and red-edge band (RE; 705 nm), where RE replaces the red band in the widely
used normalized difference vegetation index (NDVI) equation. Compared with the NDVI,
the NDRE index as a widely used red-edge-based VI was shown to be more resistant to
the saturation problem and is more sensitive than the NDVI to chlorophyll content in
vegetation [57].

NDRE =

(
BNIR − BRedEdge

)

(
BNIR + BRedEdge

) (9)

The final image nominal spatial resolution, expressed as a ground sample distance
(GSD), was about 1.2 cm [58].

The final NDRE image ideally demonstrates the plant health status and the existing
gaps in the canopy cover and along the cultivation lines, which are important to distinguish
and exclude since the reflection from the soil significantly affects the calculation results
of the CWSI. Thus, the results of the NDRE image were used to create a binary mask of
the soil. Sunlit soil parts were extracted from the image by utilizing a threshold value on
a local spatial statistic that characterized the illumination levels [18,59]. This final mask
was applied on the co-registered TIR image to produce the thermal product with pixels
belonging only to sunlit leaves.

The thermal camera used in the present study was the DJI Zenmuse XT2 (12 MP),
which incorporates a high-resolution forward-looking infrared FLIR Tau 2 thermal sensor
(FLIR Systems, Wilsonville, OR, USA; resolution 640 × 512 pixels, lens 9 mm; thermal
sensitivity of <50 mK) and a 4 K visual camera (1/1.7” active-pixel CMOS) with a leading
stabilization and machine intelligence technology (Figure 9c) [60]. In general, the Zenmuse
XT2 camera used in the present study is a very high technological and sophisticated camera
that performs radiometric calibration of the acquired thermal images through its advanced
digital system, which records the absolute temperature. The calibration of the FLIR camera
was performed annually according to the factory specifications, which is carried out by
the official supplier by measuring targets with known temperatures and comparing the
known and the measured temperatures (e.g., boiling water and melting ice) [16,61]. The
thermal lens has a focal length of 19 mm, which avoids previous deformations and obtains
rectilinear images. The second lens has a focal length of 8 mm and it also retrieves high-
resolution RGB images [62]. The ground sample distance of the imagery was approximately
2 cm/pixel and an 85% overlap between two images for both side-lap and front-lap was
implemented. In total, about 382 images were acquired for the experimental field and
stacked into a single image for analysis.

UAV thermal imaging was performed in sunny weather from 12:00 to 1:00 p.m. to
minimize sunshade and because it has general unique image-acquiring conditions since
the maximum temperature differences occur between the soil and vegetation [63,64].

The thermal images acquired by UAV were mosaicked using Pix4D mapper (version
4.5 from PIX4D, Prilly, Switzerland). This software offers an automated SfM procedure,
taking a set of images as input and routinely going through the steps of feature identifica-
tion, matching, and bundle adjustment. The process aligned the images that were acquired
by the thermal camera. A polygon mesh was calculated from the dense 3D point, and the
pixel values of each image were then projected onto the mesh to create an orthomosaic.
When combined with the GPS locations, this procedure allowed for the establishment of a
high-resolution orthophoto and a digital elevation model (DEM) of the crop field [33,65].

The final steps considered the exclusion of the soil cover and the gaps among the
canopy by using the very high resolution multispectral and true color orthomosaic. Then,
the interpolation of the selected points for the selected area comprised the most homoge-
neous and appropriate parts of the canopy for the following measurements.

124



Hydrology 2021, 8, 131

For the better calibration of the thermal image and IR data derived from the UAV, field
samples and continuous measurements of the meteorological station using the same IR
instrument were utilized and evaluated (Figure 10).
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Figure 10. The field measurements that were taken using the IR sensors on (a) the meteorological
station and (b) a portable device.

The information on GPS locations for each image was obtained from the UAV during
collection; however, to achieve higher accuracy, eight rectangular aluminum plates were
used as ground control points (GCPs), which were equally spread around the potato field
and were surveyed using an RTK GNSS with a range of <1 cm in the horizontal plane and
1.7 cm in the vertical axis (Figure 11).
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Figure 11. (a) The RTK GNSS that was used for the collection of the GCPs; (b) the rectangular
aluminum plates that were used as ground control points on the field.

Finally, for the temperature calibration, a linear regression model for the precise acqui-
sition height (30 m) of the UAV thermal data was applied since the temperature obtained
using the IR sensors considerably decreased with increasing flight height [28,66,67]. Thus,
a linear regression model using ground truth temperatures (measured with the handheld
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IR) and those obtained from the UAV was formed following analogous results that were in
the recent literature, which found that the linear regression model based on data acquired
at a 1 m height had a slope of 1.0, while that based on data acquired at a 50 m height had a
slope of 1.4 [16].

4. Preliminary Results and Discussion

The results listed below came from flights that took place over an autumn potato field
(25 October 2019). The pilot flights were conducted around midday. The meteorological
conditions prevailing during the day were characterized by a clear sky with maximum
global solar and net radiation flux densities of 670 and 395 Wm−2, respectively, at 13:00
(Figure 12a). The air temperature attributes were normal for the season with a daily
Tavg = 19.1 ◦C, Tmax = 24.8 ◦C, and Tmin = 14.4 ◦C (Figure 12b). The VPD, ETc, and wind
speed hourly averages depicted in Figure 12c indicate that during the flights, the wind
speed was about 1.5 m/s and the ETc maximum rate was 0.43 mm/h. For the specific day,
the total ETc reached 2.7 mm/day. The relatively low crop evapotranspiration rate was in
line with the small changes in the soil moisture profile presented in Figure 12d.
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4.1. Photogrammetry—Multispectral and Thermal Imagery

The photogrammetric analysis provided very high-resolution information about the
canopy conditions by creating the RGB true-color imagery of the field (Figure 13a), which
revealed all the aspects of the canopy attributes and its surrounding area.
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Figure 13. (a) The very high-resolution true color orthomosaic and (b) the very high-resolution digital surface model of
field 2.

The DSM indicated a gentle inclination of the field, which was ideal for the appropriate
drainage of the field and avoiding overlogging situations, where the elevation varied
from 1.1 m at the south-southeastern part to 0.4 m at the north-northwestern part of the
field (Figure 13b).

The result of the NDRE equation provided an image with continuum pixel values
that ranged from −1 to 1, where negative values corresponded to non-vegetated surfaces,
in this case, soil cover, while positive values corresponded to the vegetation reflectance
(Figure 14). The values between 0.25 and 0.64 were related to healthy photosynthetic
vegetation of potato canopy, while lower values, especially those <0.2, were related to
stressed vegetation or bare soil. Values higher than 0.64 represented the dense tree cover
in the northwestern and southeastern parts of the field. As it was mentioned before, the
NDRE image was utilized to mask the soil cover from the co-registered TIR image (XT2)
and the interpolation image derived from the IR sensor point values to produce the thermal
products with pixels belonging only to sunlit leaves.

The thermal image (Figure 15) that was taken by the Zenmuse XT2 on the UAV was
used to calculate the canopy temperature (Tc) of the experimental field. The image was
classified (using custom classification), keeping only the pixels of the crop canopy area to
separate and present the reliable foliage temperature values. The canopy temperatures
(from the thermal image) ranged between approximately 21.2 and 24.3 ◦C (range of about
3 ◦C), which was very close to the station average IRT temperature (23.9 ◦C) and the
average spatial IRT (21.8 ◦C), respectively. These measurements were taken during a day
with clear sky conditions and relatively low temperatures. The crop was in the middle
stage of growth (almost full canopy cover), where the soil and atmospheric conditions are
presented in the following charts.
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Figure 15. Thermal image acquired by the Zenmuse XT2 camera showing only the crop vegetation’s
temperature values by masking all the non-vegetation pixels.

Although thermal RS has various potential advantages in crop monitoring, there are
several practical difficulties in its use, including atmospheric attenuation and absorption,
calibration, climatic conditions, crop growth stages, and complex soil and plant interaction
that have to be adequately addressed.
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The high-resolution multispectral and thermal imagery acquired using the UAV
platform ideally enables the extraction and identification of crop conditions (vegetation
vigor, spatial distribution, canopy cover, and bare ground gaps) and the temperature of the
canopy. Furthermore, they demonstrate great capability for the recognition and monitoring
of drought stress and were used in several different crops, such as potato, cotton, soybean,
cotton, maize, vineyards, and orchards, over the last two decades [16,18,26,27,68–71].
Additionally, several studies showed that cloud cover and other haze or dew conditions
can influence the quality of the thermal data obtained (due to lower contrast and poor
radiometric resolution) [72–74]. Hence, these variables, along with relative humidity,
altitude, and viewing angle, should be thoroughly examined while acquiring thermal
data [71,73]. Moreover, the acquisition time during midday was demonstrated by several
scientists that were the optimal time for thermal image acquisition [75].

4.2. Direct Canopy IRT Measurements and Spatial CWSI Estimation

The first pilot flight with the UAV that brought the aMMS (aerial micrometeorological
system) equipment took place on 25 October 2019 over field 2 during late potato cultivation.
It was essentially the first comprehensive process for estimating the CWSI spatial mapping.
In the same field, during the early cultivation of potatoes in May 2019, a previous estimation
of CWSI calibration coefficients from specific days with ideal weather conditions was
undertaken. We used all ground station data and parameters to determine the lower and
upper baselines using theoretical and practical approaches. The day of the UAV flight
was a clear sunny day with relatively low temperature levels, as the period was in the
middle of autumn. The crop was in the middle stage of development. The UAV flight
for the spatial measurements of the canopy temperature, air temperature, and relative
humidity started at 12:14 p.m., which corresponded to the local solar time of the ground
station (lat. 37.222194 N, long. 21.611806 E in degrees). The flight duration was 21 min,
and 217 primary spatial measurements of infrared temperature from the crop canopy, air
temperature, and relative humidity were collected from a height of 4 m above the ground
(about 3.5 m from the top of the foliage). The flight was autonomous and scheduled
following the standard flight plan described in Section 3.3.1 (Figure 8). The speed of the
quadcopter was 1 m/s, and the excitation of the sensors for measurement was every 6 s
(measurement every 6 m along the flight line). All microclimatic data obtained from the
ground station (GMMS) above the crop, as well as the mean spatial values (N = 217) from
the sensors of the aerial micrometeorological system, are shown in Table 1.

Table 1. Ten-minute average climatic data from the ground micrometeorological station (GMMS) from field 2 and the
averages values from 217 measurements of the air temperature, canopy infrared temperature, and relative humidity from
the aerial micrometeorological system (AMMS).

Solar Time
Tair IRT RH Wind Direction Wind Speed Solar Radiation Net Radiation

(◦C) (%) (◦) (ms−1) (Wm−2)

12:15 23.9 23.4 66.6 314 1.6 675 399
12:25 24.0 24.0 64.1 320 1.5 667 394
12:35 24.1 24.2 62.2 320 1.2 665 393

GMMS * 24.0 23.9 64.3 318 1.4 669 395
AMMS * 24.3 21.8 56.0

* Mean values of measurements.

Moreover, Table 2 presents the moisture conditions in the six layers (from 0–60 cm
with 10 cm intervals), and the soil heat flux density at a depth of 8 cm. As shown in
Figure 16, the surface layer (0–10 cm) had lost 67% of its moisture from the total height of
the available water between two irrigation events. Usually, the irrigation frequency for this
period was every 3–4 days, as shown in Figure 16 for the last three irrigation events (16, 20,
and 23 October 19).
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Table 2. Soil water moisture (vol%) for the depth of 60 cm of the soil profile in the potato field.

Volumetric Soil Water Content (%)
of the Soil Layer (in cm)

Soil Heat
Flux

Time 0–10 10–20 20–30 30–40 40–50 50–60 (Wm−2)

12:30 p.m. 4.7 8.6 25.4 39.2 39.1 21.3 23.7
12:40 p.m. 4.7 8.6 25.3 39.2 39.1 21.3 23.5
12:50 p.m. 4.7 8.5 25.2 39.2 39.1 21.3 23.2
Average 4.7 8.6 25.3 39.2 39.1 21.3 23.5Hydrology 2021, 8, x FOR PEER REVIEW 22 of 28 
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Figure 16. The fluctuation of the soil moisture in the surface layer of the soil (0–10 cm) after three consecutive irrigations.

Figure 17 presents the isothermal lines from a spatial-observation-derived analysis
(N = 217) using the geostatistical gridding Kriging method, which produces maps from
atypical, spaced data.

The method is very flexible and produces an accurate data grid by a smoothing
interpolator depending on the user-specified parameters. The spacing nodes grid size used
86 rows × 100 columns (total nodes: 8600). Some univariate grid statistics for the canopy
IR temperature for the grid data (in ◦C) were min: 21.603, max: 22.133, mean: 21.886, root
mean square: 21.8869, standard deviation: 0.1486, average abs. deviation: 0.1252, and
relative mean diff.: 0.0078.

The exact area (enclosed area by the boundary line) of field 2 was 9940.3 m2. Each
observation was taken from about 4 m above the crop and corresponded to the mean value
of the infrared temperature of the circular surface of the cone base radius (target) of about
3 m (Figure 8).

The evaluation of the CWSI index during the clear sky and dry hours of the day offered
a real and more direct method to determine the ideal time for irrigation, as it effectively
found and normalized the short-term microclimatic changes of the environment in which
the crop grew up and responded reliably to maintaining the optimal water content of the
soil porosity into the rhizosphere zone. This significantly improved the irrigation efficiency
and water-saving at all stages of plant growth. The spatial estimates of the CWSI are shown
in Figure 18.
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The calibration resulting from the spring potato cultivation (non-stressed lower base-
line: Tc − Ta = −1.74 × VPD − 1.23, stressed upper baseline Tc − Ta = 2.32 ◦C) was used
in the first pilot approach of the spatial CWSI in the autumn potato cultivation. The high
relative humidity that prevailed during the calibration season, in combination with the
low temperatures, gave a limited range of vapor pressure deficit of the atmosphere (VPD),
leading to a high slope of the lower non-stressed baseline bottom line with a relatively high
dispersion of the observed measurements (r2 = 0.613). However, this calibration provided
satisfactory values for the spatial CWSI estimates in conjunction with the actual water loss
from the ground profile just before the next irrigation (Figure 16 and Table 2).

5. Conclusions

The integration of new, improved methods and tools in modern agriculture, combined
with the limitations of the water availability for irrigation, pushes research into new and
smart approaches. A major advantage in this context is that, nowadays, it is both feasible
and affordable to use proven and reliable methods that required expensive instruments
and high installation costs in the past. Furthermore, in agricultural production, the involve-
ment of irrigation water is crucial in maintaining the quality and conservation of it as a
natural resource.

Nowadays, the use of UAVs in agriculture is universal. The continuous evolution of
UAV technology with lighter materials and the evolution of battery technology allows for
long flight periods with heavier equipment loads. However, spatial data from crops are
mostly acquired only through multispectral and thermal cameras to date.

Taking advantage of the UAV evolution, GreenWaterDrone (GWD) proposes an inno-
vative system, integrating aerial measurements of canopy temperatures for the near-real-
time calculation of crop irrigation needs (crop water stress detection) and dynamic crop
surveillance, achieving measurements with high temporal and spatial resolution, while
at the same time, minimizing the intervention in crop activities and system maintenance
costs. The GWD solution is especially suited for relatively small fields with increased crop
diversity that cannot be efficiently addressed by satellite remote sensing. An onboard aerial
micrometeorological system (AMMS) allows for calculating the known CWSI (crop water
stress index) in spatial estimation for many crops in the area. Using the thermal images in
parallel with spatial measurements by the infrared radiometers is an advantage that allows
us to compare and calibrate the methodology at an accurate level. Furthermore, it must
be noted that the estimation of the CWSI at the implementation level is achieved by the
spatial estimates of the infrared thermometers from UAVs (AMMS). Moreover, it must be
mentioned that the multispectral and photogrammetric cameras significantly assist the
results by providing information concerning the canopy cover and field conditions useful
for crop surveillance.

In this work, we present the GWD methodology, along with the equipment specifica-
tions used. All processes at all steps of applying the methodology on a pilot potato field are
described, and preliminary results from the application are presented. From the pilot study,
the functionality of the proposed system (GWD) was certified (accuracy of the UAV path
and flight altitude, reliability of the aerial data acquisition system, communication stability
between UAVs and ground base). Our findings indicated that the canopy temperatures
derived from the ground meteorological station (GMMS), the AMMS, and the portable IRT
radiometers produced a suitable thermal image from the surface of the crop. However, it
should be noted that the scheduled flight took place in the middle of the autumn season
when the crop evapotranspiration rate was very low (ETc was 2.7 mm/d and the soil
moisture profile remained almost unchanged).

The project subsystems can be useful for supporting applications that are signifi-
cant for irrigation water management and programming, such as irrigation alerting and
scheduling, crop surveillance, and irrigation water management. However, more efforts
are necessary to make these technologies more user-friendly and available for all end users,
covering different advantages for a precise crop water stress evaluation. Still, the stake-
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holders, farmers, and industry responded positively to this effort’s augmented interest.
Furthermore, similar pilot campaigns need to be conducted in other regions on different
crops to enhance the applicability of the GWD system. There is ongoing work by the
authors to collect data for calibrating the methodology for other crops.
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Abstract: Evapotranspiration (ET) is a fundamental factor in energy and hydrologic cycles. Although
highly precise in-situ ET monitoring is possible, such data are not always available due to the high
spatiotemporal variability in ET. This study estimates daily potential ET (PET) in real-time for the
Korean Peninsula, via an artificial neural network (ANN), using data from the GEO-KOMPSAT
2A satellite, which is equipped with an Advanced Meteorological Imager (GK2A/AMI). We also
used passive microwave data, numerical weather prediction (NWP) model data, and static data.
The ANN-based PET model was trained using data for the period 25 July 2019 to 24 July 2020,
and was tested by comparing with in-situ PET for the period 25 July 2020 to 31 July 2021. In
terms of accuracy, the PET model performed well, with root-mean-square error (RMSE), bias, and
Pearson’s correlation coefficient (R) of 0.649 mm day−1, −0.134 mm day−1, and 0.954, respectively.
To examine the efficiency of the GK2A/AMI-derived PET data, we compared it with in-situ ET
measured at flux towers and with MODIS PET data. The accuracy of the GK2A/AMI-derived
PET, in comparison with the flux tower-measured ET, showed RMSE, bias, and Pearson’s R of
1.730 mm day−1, 1.212 mm day−1, and 0.809, respectively. In comparison with the in-situ PET, the
ANN model produced more accurate estimates than the MODIS data, indicating that it is more locally
optimized for the Korean Peninsula than MODIS. This study advances the field by applying an ANN
approach using GK2A/AMI data and could play an important role in examining hydrologic energy
for air-land interactions.

Keywords: evapotranspiration; GK2A/AMI; artificial neural network; Korean Peninsula

1. Introduction

Evapotranspiration (ET) reflects fundamental components of hydrologic and energy
cycles of the Earth and is a key element in hydrological resource management [1]. As
climate change has progressed, trends in drought and flood have shown different spatial
variability, and the importance of hydrological system monitoring has been emphasized [2].
Accordingly, it is fundamental to quantify and monitor ET. However, since water resources
are directly affected by regional hydrologic systems and meteorology, ET shows high
spatial and temporal variability [3].

A major application of ET is drought monitoring. Climate change has altered drought
trends, increasing the intensity, frequency, and extent of droughts [4]. Thereafter, nu-
merous indices for drought monitoring have been developed, with several, such as the
standardized precipitation evapotranspiration index [5], precipitation evapotranspiration
difference condition index [6], reconnaissance drought index [7], and combined terrestrial
evapotranspiration index [8], directly associated with ET. Based on these drought indices,
many studies were conducted to investigate the long-term variability of water budget
under specific climate change conditions [9], effects of climate elasticity of ET on water
balance [10], spatiotemporal variability of drought characteristics [11], and impacts of
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drought events on agricultural production [12]. In addition to various applications of ET,
the methods to estimate ET with higher accuracy and spatiotemporal resolution have also
been studied.

ET can be classified depending on the soil moisture condition. Potential ET (PET) is
defined as the water vapor transpired and evaporated from vegetation and soil in unlimited
soil moisture conditions [13]. Actual ET (AET) represents the water vapor transferred from
a surface under limited soil moisture conditions. Weighing lysimeters are the most accurate
AET measuring instruments [14]. Although they measure AET directly, the available
AET data are substantially limited for end-users [15]. To ensure the versatility of ET data,
various ET estimating models have been developed that can be broadly classified into
three types [16]: (1) fully physical combination models that deal with mass and energy
transfer principles [17,18]; (2) semi-physical models that account for mass or energy transfer
principles and are based on temperature and radiation [19,20]; and (3) black-box models
that are based on empirical relationship, artificial neural networks (ANN), fuzzy, and
genetic algorithm. Although there are various ET estimating models, the most widely
used method is the Penman–Monteith (PM) method [21,22]. The PM method is a fully
physical model developed by Penman [17] and later modified by Monteith [18]. This
model is recommended as the global reference model for ET monitoring by the Food and
Agriculture Organization of the United Nations (FAO).

Although in-situ ET measurements are highly precise, the spatial variability of ET is
high, and the availability of in-situ ET measurements is limited [23]. Remotely sensed data
have been used to address this problem. Satellite data have broad spatial coverage with
high temporal resolution and produce reliable products [24]. MODerate resolution Imaging
Spectroradiometer (MODIS) derives the operative ET products with 500 m spatial and 8-
days temporal resolution [25]. Several studies have estimated the spatial distribution of ET
using low Earth orbit (LEO) satellites with optical-infrared and microwave sensors [26,27].
When calculating ET using LEO satellites, external input data, such as meteorological
data, are generally necessary [28]. In particular, because LEO satellites observe the Earth’s
surface at specific local times, it is difficult for the instantaneous observation to monitor the
environmental conditions all day and all weather [29]. Therefore, due to the high temporal
variability of ET, LEO satellite-derived ET has inevitable limitations for routine monitoring
of daily ET and surface energy fluxes [11,30]. In addition, since LEO satellites apply the
physical-based model or energy conservation-based model for estimating ET, there exist
uncertainties of external input data for applying the model [25–27]. Using geostationary
orbit (GEO) satellites data can compensate for the limitations associated with the temporal
resolution of LEO satellite data. However, it is difficult to resolve the uncertainties of
external input data and the data contaminated by weather conditions, including clouds
and aerosols [29].

The Korean Peninsula is located on the margin of Northeast Asia, bordering the
northwest Pacific Ocean (Figure 1a). Since it is located in a monsoon region, where meteo-
rological droughts occur during the summer monsoon, the droughts tend to propagate into
agricultural or hydrological droughts [31]. In particular, the Korean Peninsula land cover
type showed complex spatial distribution comprising of diverse vegetation cover types
(Figure 1b). Furthermore, in the Korean Peninsula, the drought frequency has increased,
and drought trends and characteristics vary regionally [32]. The Korean Peninsula has
various land cover types and specific terrain properties; these factors make it particularly
difficult to monitor daily ET even employing both in-situ measurement and remotely
sensed data. Due to frequent cloud cover and rainfall, it is challenging to observe the land
surface using optical-infrared satellites in the summer monsoon season [33]. Therefore,
to overcome this limitation, numerical model data and ancillary data have been used to
retrieve ET [34,35].
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Figure 1. MODIS land cover from the Annual International Geosphere-Biosphere Programme over (a) Northeast Asia and
(b) the Korean Peninsula in 2019.

In order to manage hydrological resources over the Korean Peninsula, Korea Meteoro-
logical Administration (KMA) monitors the ET in real-time using in-situ measurements
and numerical model data. In-situ measurements exhibit good performance with high
temporal resolution every hour; however, its availability is limited due to the point ob-
servation. For complementing the limitation of in-situ measurements, KMA calculates
the spatial distribution of ET using numerical model data based on geophysical models.
Numerical model data-derived ET is suitable for analyzing droughts with a large time
scale. In contrast, the accuracy of the ET changes depending on the numerical model data,
and it is difficult to calculate the ET that reflects various topographical characteristics of
the Korean Peninsula due to the sparse spatial resolution of the numerical model data.

Although physical-based models show good performance, due to numerous associ-
ated meteorological parameters, it is difficult to estimate accurate ET, especially in remote
sensing applications. Then, over the last few decades, many researchers have identified that
machine learning (ML) approaches were an effective method to overcome the complexity
of ET estimation [29]. Because ML techniques solve the non-linear relationship between
input and output variables, a lot of ML techniques have been proposed to estimate ET
for hydrological applications [36], such as k-nearest neighbors [37], support vector ma-
chine [38], random forest [37], and artificial neural network (ANN) [39]. Previously, most
studies applied ML approaches to in-situ measurements; however, many recent studies
have also applied ML approaches to remote sensing data [40–42].

In this study, considering the spatiotemporal variability in ET, we developed a model
that estimates daily PET based on ANN using the GEOstationary Korea Multi-Purpose
SATellite 2A (GEO-KOMPSAT 2A, GK2A). The objective was to retrieve real-time daily
ET with a spatial resolution of 1 km for hydrological resource monitoring on the Korean
Peninsula. To reflect the complex relationships and nonlinearity between the GK2A-derived
data and ET, we used precipitation data and the digital elevation data as input data for
the ANN. Daily PET from KMA was used as reference data for ANN model training.
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The accuracy of the model was verified by comparing modeled data with ET from in-situ
measurements of the KMA and National Institute of Forest Science (NIFoS) for the period
excluding the period of training data.

2. Data and Methods
2.1. Remote Sensing Data
2.1.1. GEO-KOMPSAT 2A (GK2A)

GK2A, launched on 4 December 2018 and operated by the KMA National Meteoro-
logical Satellite Center (NMSC), is equipped with the Advanced Meteorological Imager
(AMI). AMI is the optical-infrared sensor with 16 channels and its spatial resolution ranges
from 0.5 to 2.0 km depending on wavelength (Table 1). Since GK2A/AMI observes the
Earth with a high spatiotemporal resolution, it is more capable of monitoring the Earth’s
hydrological system than previous GEO satellite (Communication, Ocean and Meteoro-
logical Satellite, COMS) operated by KMA NMSC and other LEO satellites [43]. We used
seven GK2A/AMI operational products: Reflected Shortwave Radiation (RSR), Downward
Shortwave Radiation (DSR), Absorbed Shortwave Radiation (ASR), Outgoing Longwave
Radiation (OLR), Downward Longwave Radiation (DLR), Upward Longwave Radiation
(ULR), and Normalized Difference Vegetation Index (NDVI).

Table 1. Specifications of the GEO-KOMPSAT 2A Advanced Meteorological Imager (GK2A/AMI)
spectral channels.

Channel No. Channel Name Wavelength Range (µm) Resolution (km)

1 VIS004 0.431–0.479 1.0 × 1.0
2 VIS005 0.5025–0.5175 1.0 × 1.0
3 VIS006 0.625–0.66 0.5 × 0.5
4 VIS008 0.8495–0.8705 1.0 × 1.0
5 NR013 1.373–1.383 2.0 × 2.0
6 NR016 1.601–1.619 2.0 × 2.0
7 SW038 3.74–3.96 2.0 × 2.0
8 WV063 6.061–6.425 2.0 × 2.0
9 WV069 6.89–7.01 2.0 × 2.0
10 WV073 7.258–7.433 2.0 × 2.0
11 IR087 8.44–8.76 2.0 × 2.0
12 IR096 9.543–9.717 2.0 × 2.0
13 IR105 10.25–10.61 2.0 × 2.0
14 IR112 11.08–11.32 2.0 × 2.0
15 IR123 12.15–12.45 2.0 × 2.0
16 IR133 13.21–13.39 2.0 × 2.0

2.1.2. Precipitation Data

Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG)
version 6 were used to calculate ET, even for areas for which precipitation data were not
available. The IMERG precipitation products are derived from the global precipitation
measurement constellation comprising the various passive microwave sensors including
the meteorological operational satellite series, polar operational environmental satellite
series, and global change observation mission 1st-water satellite [44]. The data from various
passive microwave satellites are merged into 0.1◦ × 0.1◦ resolution every 30 min. We used
the standardized precipitation index for six months (SPI6), derived from the precipitation
product of IMERG, rather than daily precipitation data.

2.2. Numerical Model and Elevation Data

Since 2010, the KMA has used numerical weather prediction (NWP) systems from the
Unified Model (UM). NWP model data from UM systems, operated by KMA in real-time,
could be classified depending on spatial coverage and boundary conditions, and we used
Local Data Assimilation and Prediction System (LDAPS) over the Korean Peninsula in this
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study. LDAPS is based on boundary conditions derived by three-dimensional variational
data assimilation and its spatial resolution of 1.5 km [45]. LDAPS has 70 vertical layers and
provides 36-h predictions (at every 00, 06, 12, and 18 UTC), and additional 3-h predictions
(at every 03, 09, 15, and 21 UTC). We used four meteorological parameters—air temperature
(Ta), surface temperature (Ts), relative humidity (RH), and wind speed (WS)—from LDAPS
version 10.1. Furthermore, Shuttle Radar Topography Mission (SRTM) digital elevation
model (DEM) data were used to reflect the effect of elevation on ET, and its spatial resolution
was an arc-second, approximately 30 m [46].

2.3. In-Situ Measurements

PM equation calculates the PET using micrometeorological data, and the eddy covari-
ance (EC) systems estimate the AET based on energy flux observations [47]. PET derived
from the PM method was used for model training and validation. On the other hand, since
the AET derived from EC systems was different from PET, we only used the AET data for
testing the availability of the PET model.

Since the Korean Peninsula has specific geographic characteristics, each region shows
different weather conditions and climate properties. KMA operates 81 Automated Surface
Observing System (ASOS) stations in real-time. In this study, we used 42 of these that
monitor ETo based on the PM equation (we hereafter refer to ET obtained using the PM
equation as PM-ET) (Figure 2a). ASOS stations observe the following meteorological
parameters every hour: Ta, Ts, RH, WS, soil temperature, precipitation, surface pressure,
and net solar radiation (https://data.kma.go.kr/cmmn/main.do, accessed on 13 July 2021).

Hydrology 2021, 8, x FOR PEER REVIEW 5 of 22 
 

 

in this study. LDAPS is based on boundary conditions derived by three-dimensional var-

iational data assimilation and its spatial resolution of 1.5 km [45]. LDAPS has 70 vertical 

layers and provides 36-h predictions (at every 00, 06, 12, and 18 UTC), and additional 3-h 

predictions (at every 03, 09, 15, and 21 UTC). We used four meteorological parameters—

air temperature (Ta), surface temperature (Ts), relative humidity (RH), and wind speed 

(WS)—from LDAPS version 10.1. Furthermore, Shuttle Radar Topography Mission 

(SRTM) digital elevation model (DEM) data were used to reflect the effect of elevation on 

ET, and its spatial resolution was an arc-second, approximately 30 m [46]. 

2.3. In-Situ Measurements 

PM equation calculates the PET using micrometeorological data, and the eddy covar-

iance (EC) systems estimate the AET based on energy flux observations [47]. PET derived 

from the PM method was used for model training and validation. On the other hand, since 

the AET derived from EC systems was different from PET, we only used the AET data for 

testing the availability of the PET model. 

Since the Korean Peninsula has specific geographic characteristics, each region shows 

different weather conditions and climate properties. KMA operates 81 Automated Surface 

Observing System (ASOS) stations in real-time. In this study, we used 42 of these that 

monitor 𝐸𝑇𝑜 based on the PM equation (we hereafter refer to ET obtained using the PM 

equation as PM-ET) (Figure 2a). ASOS stations observe the following meteorological pa-

rameters every hour: Ta, Ts, RH, WS, soil temperature, precipitation, surface pressure, 

and net solar radiation (https://data.kma.go.kr/cmmn/main.do, accessed on 26 August 

2021). 

 

Figure 2. Distribution of the digital elevation model (DEM), where the red squares and stars indi-

cate the (a) Automated Surface Observing System (ASOS) stations and (b) flux towers, respec-

tively. 

To evaluate the ANN model-derived ET, we used ET calculated using the EC 

method. The NIFoS operates six flux towers to monitor ET on the Korean Peninsula (Fig-

ure 2b). These flux towers observe meteorological parameters every 30 min 

(http://know.nifos.go.kr/know/service/flux/fluxIntro.do, accessed on 26 August 2021). Us-
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To evaluate the ANN model-derived ET, we used ET calculated using the EC method.
The NIFoS operates six flux towers to monitor ET on the Korean Peninsula (Figure 2b).
These flux towers observe meteorological parameters every 30 min (http://know.nifos.
go.kr/know/service/flux/fluxIntro.do, accessed on 13 July 2021). Using these direct
observations of vertical flux and meteorological data, it is possible to calculate ET via the

141



Hydrology 2021, 8, 129

EC method. From the ASOS stations and flux towers, we selected only those variables
observed for full 24-h periods.

2.4. Processing

Figure 3 illustrates the process used here to estimate and evaluate daily ET using
GK2A/AMI data. We preprocessed the input data; the preprocessed data were then
subsampled (at 1 km resolution) around the Korean Peninsula. We constructed matchups
between the subsampled data and PM-ET, and classified them into two datasets (training
and testing) depending on the acquisition date. For the ANN model training, we used
five-fold cross-validation; 80% of the data were used to optimize the weights and biases of
the model, and 20% were used to verify the accuracy and monitor the loss function of the
model, to minimize overfitting. To enable the ANN model to reflect seasonal variation, we
set the training period for the training data to 1 year (25 July 2019 to 24 July 2020). ANN
model performance was assessed using PM-ET and EC-ET data for the period 25 July 2019
to 31 July 2021.
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Figure 3. Flowchart illustrating the construction and assessment of the evapotranspiration (ET) retrieval artificial neural
network (ANN) model.

To estimate daily ET via GK2A/AMI data, we used 22 parameters as input variables of
the ANN model (Table 2). The GK2A/AMI operational products include the preprocessed
daily means of six radiation variables (RSR, DSR, ASR, OLR, DLR, and ULR) and the
16 days maximum NDVI. The GPM IMERG precipitation product was preprocessed to
generate SPI6. We used four UM LDAPS variables (Ta, Ts, RH, and WS) affecting ET. To
take into account diurnal variation in ET, we preprocessed NWP variables to daily mean,
daily minimum, and daily maximum. As static data, we used extraterrestrial solar radiation
(ESR) and a DEM to account for seasonal variation and the terrain effect, respectively.
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Table 2. Spatial and temporal resolution, processing method, and input data source for the artificial
neural network (ANN) model, where Mean, Max, Min, and Sum indicate average, maximum,
minimum, and cumulative values, respectively.

Data Variables Spatial Resolution
(Temporal Resolution) Processing Source

GK2A/AMI

RSR

2 km × 2 km (10 min) Mean1day KMA NMSC

DSR
ASR
OLR
DLR
ULR

NDVI 2 km × 2 km (1 day) Max16days

GPM IMERG SPI6 10 km × 10 km (1 day) Sum6months NASA

UM LDAPS

Ta

1.5 km × 1.5 km (3 h)
Mean1day,
Max1day,
Min1day

Met Office
Ts

RH
WS

Static data
ESR – – –

DEM 30 m × 30 m – NASA

2.4.1. Extraterrestrial Solar Radiation (ESR)

ESR indicates solar radiation incident outside the Earth from the Sun. ESR is a key
parameter for estimating ET, and can be calculated using the latitude and the day of the
year as follows [21,48]:

Ra =
24× 60

π
GSCdr(ωS sin ϕ sin δ + cos ϕ cos δ sin ωS), (1)

where Ra refers to ESR; GSC denotes the solar constant; dr represents the inverse of the
relative distance between the Earth and the Sun; ωS indicates the Sun and sunset hour
angle; ϕ and δ refer to latitude and solar declination, respectively.

2.4.2. Penman–Monteith Evapotranspiration (PM-ET)

We calculated hourly PM-ET from in-situ KMA ASOS station measurements. To
account for diurnal variability in ET, we also derived daily PM-ET from hourly PM-ET. It is
possible to estimate hourly PM-ET as follows [21]:

ETo =
0.408∆(Rn − G) + γ 37

Thr+273 u2(eo(Thr)− ea)

∆ + γ(1 + 0.34u2)
, (2)

where ETo indicates hourly ET; Thr and u2 represents hourly mean air temperature and
hourly mean wind speed, respectively; ∆ denotes the saturation slope vapor pressure
at Thr; γ and Rn denote the psychrometric constant and the net radiation at the surface,
respectively; G and eo refer to the soil heat flux density and the saturation vapor pressure
at Thr, respectively; ea indicates hourly mean actual vapor pressure. KMA ASOS station
calculated hourly PM-ET every hour, and the cumulative PM-ET over 24 h was used as the
daily PM-ET.

2.4.3. Standardization of Input Variables

In an ANN model, when the input variables are linearly related, it is not necessary
to standardize or normalize them. However, when the input variables show a non-linear
relationship in the ANN model, before using input variables, it is important to standardize
or normalize them [49]. When using the variables without standardization or normalization,
large values of the input variables would cause very small weighting factors, and small
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values of the input variables would result in very large weighting factors, which could
cause some problems during training and optimizing process [50]; Using extremely small
weights would cause the uncertainties of floating-point calculations on computer; not
using extremely small initial weights would make the improvement of the model by
the backpropagation algorithm insignificantly small [51]. There are no fixed methods of
standardization that should be used in specific applications; in this study, standardization
was applied to input variables as follows:

V′ =
(V −Vmean)

Vstd
, (3)

where V′ and V indicate the standardized input variable and unstandardized input vari-
able, respectively; Vmean represents the mean of input variable; Vstd denotes the standard
deviation of the input variable.

2.5. ANN Model
2.5.1. Model Structure

We used a multilayer perceptron (MLP), ANN, to estimate daily ET. MLP involves
feedforward backpropagation networks with a simple structure and high performance;
they have therefore been used for diverse applications using satellite data [52,53]. These
neurons are interconnected, with weights and biases that enable repetitive learning. Each
hidden layer has an activation function computing the neuronal weights and biases. An
optimizer algorithm trains the network and minimizes the error, by correcting the weights
and biases via a backpropagation process [54]. We developed a five-layer MLP model
with hidden layers of 200 neurons. In MLP model training, input values of neurons in the
previous layer transfer to a neuron in the current layer, and a neuron combines the input
values with weights and biases as follows [51]:

nj = ∑ xiwij − bj, (4)

where nj represent the net of the weighted input for the jth neuron; xi indicate the input
transferred from the ith neuron; wij refers to the weight connected from the ith neuron to
the jth neuron; bj means the bias of the jth neuron. In nj, for being a final output for passing
to the next layer, it should be activated by the activation function [49]. The activation
function can be a diverse discrete or continuous function; we used the exponential linear
unit (ELU), showing fine performance with a fast learning rate and significantly better
generalization as follows [55]:

f(x) =

{
x i f x > 0

α(exp(x)− 1) i f x ≤ 0
(5)

where α represents the hyperparmeter controlling the value where an ELU saturates for
negative nj; x denotes the input value and indicates the nj.

For improving and accelerating the convergence, we used the batch normalization
(BN) layer between each hidden layer [56]. The normalization is calculated based on the
dimension of the batch and BN ensures that the input of each hidden layer is distributed in
the same way. Their performance dramatically depends on the batch size, and setting a
larger batch size generally yields better performance [57]. We used a method for stochastic
optimization (ADAM) as the optimizer algorithm [58]. The parameters and hyperparame-
ters of the MLP model are summarized in Table 3. To train and run the MLP model, we
used Keras with the TensorFlow back-end in Python.
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Table 3. Parameters and hyperparameters of the multilayer perceptron (MLP) model.

Parameter Hyperparameter

Activation ELU Alpha 1

Optimizer ADAM

Learning rate 10−4

Beta1 0.9
Beta2 0.999

Epsilon 10−7

Loss function RMSE
Epochs 100

Batch size 500

2.5.2. Mean Decrease Accuracy (MDA)

In a black-box model such as an ANN model, it is difficult to analyze the information
and structure of the model in detail. However, it is possible to rank the importance that
each input variable occupies in the model. In this study, in order to analyze the trained
MLP model, we conducted a permutation test of each input variable. This test randomly
permutes the list of a variable and measures the decrease of model accuracy; this process
was conducted repeatedly with each variable; finally, the Mean Decrease Accuracy (MDA;
also known as the permutation importance) was calculated with each variable [59]. A
variable with a larger MDA is interpreted as an important variable in the model because
the accuracy of the variable greatly affects the accuracy of the model. We used the MDA in
terms of the increase in RMSE when each variable was randomly permutated.

2.6. Statistical Analysis

Daily ET, estimated via MLP, was compared with PM-ET and EC-ET. To quantita-
tively evaluate the MLP-derived daily ET, we used the bias [60], root-mean-square error
(RMSE) [36], mean absolute error (MAE) [36], standard deviation (STD) [60], normalized
RMSE (nRMSE) [61], Pearson’s correlation coefficient (R) [36], and the Index of Agreement
(IOA) [62]. The detailed equations are as follows:

Bias =
1
N

N

∑
i=1

(Ei −Oi), (6)

RMSE =

√
∑N

i=1(Ei −Oi)
2

N
, (7)

MAE =
1
N

N

∑
i=1
|Ei −Oi|, (8)

STD =

√
∑N

i=1(Ei −Oi − Bias)2

N
, (9)

nRMSE =

√
∑N

i=1(Ei−Oi)
2

N
∑N

i=1 Oi
N

, (10)

R =
∑N

i=1
(
Ei − E

)(
Oi −O

)
√

∑N
i=1
(
Ei − E

)2
√

∑N
i=1
(
Oi −O

)2
, (11)

IOA = 1− ∑N
i=1(Ei −Oi)

2

∑N
i=1
(∣∣Ei −O

∣∣+
∣∣Oi −O

∣∣)2 , (12)
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where Ei and Oi represent the estimated ET and observed ET, respectively; the subscript i
denotes the ith data point; N refers to the number of data; E and O represent the mean of
the estimated ET and observed ET, respectively.

3. Results
3.1. Input Data Correlation

Figure 4 describes the correlations between the input variables used in estimating daily
ET, and ET from the KMA ASOS stations, for the Korean Peninsula. Fifteen of the variables
(ESR, DSR, ASR, DLR, OLR, ULR, NDVI, Tamean, Tamin, Tamax, Tsmean, Tsmin, Tsmax, WSmean,
and WSmax) were positively correlated with daily ET from the KMA ASOS stations. As
the radiation incident on the surface and the temperature increases, evaporation increases,
because sufficient energy to convert water into water vapor is provided, and transpiration
increases because vegetation activity accelerates [63]. Seven variables (i.e., RSR, SPI6,
RHmean, RHmin, RHmax, WSmin, and DEM) were negatively correlated with daily ET from
the KMA ASOS stations. As higher RH is associated with less water vapor transported
from the water surface, RH was negatively correlated with ET. Since precipitation increases
surface water content and inhibits evaporation, SPI6 was negatively correlated to ET. As
RSR increases, the radiation incident on the surface decreases, reducing both evaporation
and transpiration. The mean, maximum, and minimum WS showed different correlations
with ET; this could be because the complex topography of the Korean Peninsula, in terms
of spatiotemporal variability in WS, causes uncertainty of the LDAPS model WS estimates.
Overall, the positive correlations were stronger than the negative correlations. Relative to
ET, DSR had the strongest positive correlation (0.86), and RHmean had the largest negative
correlation (−0.45).
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Figure 4. Correlation coefficient between the input variables in the matchups from 25 July 2019 to 24
July 2020.

3.2. MLP Model

Figure 5 describes the MLP model training history. Training the MLP model involves
minimizing RMSE (the loss function) by optimizing neuronal bias and weight. Up to
training epoch 50, RMSE and MAE decreased rapidly, but after epoch 70, the accuracy
slightly improved. By training epoch 100, the change in RMSE and MAE of both the
training and validation datasets were almost negligible.
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Figure 5. Changes in RMSE and MAE with respect to the training epochs of the ANN model training
epochs, where Red and black lines indicate validation and training data sets, respectively; Dotted
and solid lines represent RMSE and MAE, respectively.

Figure 6 shows the MDA of 22 input variables in the ANN model. ESR and RSR
showed high MDA (>1.5 mm day−1), which means that ET is predominantly affected by
radiation energy. ESR, which is used directly in the PM equation, showed an MDA of
1.63 mm day−1. RSR, which measures the shortwave radiation that emits outside the Earth,
is principally controlled by clouds and surface albedo. These land and meteorological
conditions directly affect the parameters in the PM equation, which explains the high MDA
values of RSR and DSR, at 1.56 and 0.72 mm day−1, respectively.
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Figure 6. Mean Decrease Accuracy (MDA), expressed as the increase in RMSE, of ET derived from the ANN model.

Ta, Ts, and RH are directly related to ET estimation, via the PM equation. However,
since they are derived from numerical model data with uncertainty, they showed relatively
low MDAs, from 0.99 to 0.19 mm day−1. The variables describing WS, which are used
directly in the PM-ET estimation, showed lower MDAs (<0.45 mm day−1) than the other
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meteorological variables. This reflects the fact that it is difficult to simulate transient
changes in wind caused by sudden gusts or topography using numerical model-based
wind data. PET reflects the rate of ET when sufficient soil moisture is available; hence it
does not account for vegetation and terrain characteristics. As a result, NDVI and DEM
showed lower MDA values (<0.18 mm day−1).

3.3. Evaluation against KMA Stations

We compared GK2A-derived daily ET for the Korean Peninsula with PM-ET derived
from KMA ASOS stations for the period 25 July 2020 to 31 July 2021 (Figure 7). KMA
ASOS-derived PM-ET (mm day−1) ranged from 0.28 to 14.41, and GK2A/AMI-derived
PET (mm day−1) ranged from 0.00 to 11.10. In comparison with PM-ET derived from KMA
ASOS stations, the total number of matchup data was 15,414, and GK2A/AMI-derived PET
showed accuracy (mm day−1) of 0.649 (RMSE), 0.488 (MAE), 0.636 (STD), and −0.134 (bias)
with nRMSE of 0.168, indicating the MLP model tended to underestimate relative to the
in-situ PM-ET overall. In particular, at PET values less than 2.0 mm day−1, the tendency
of underestimation of the MLP model was remarkable. Although the MLP model shows
the tendency to underestimate, its underestimation was slight overall and it shows good
performance estimating PM-ET from the KMA ASOS stations; Pearson’s R was 0.954, and
IOA was 0.975.

Hydrology 2021, 8, x FOR PEER REVIEW 12 of 22 
 

 

wind data. PET reflects the rate of ET when sufficient soil moisture is available; hence it 

does not account for vegetation and terrain characteristics. As a result, NDVI and DEM 

showed lower MDA values (<0.18 mm day−1). 

3.3. Evaluation against KMA Stations 

We compared GK2A-derived daily ET for the Korean Peninsula with PM-ET derived 

from KMA ASOS stations for the period 25 July 2020 to 31 July 2021 (Figure 7). KMA 

ASOS-derived PM-ET (mm day−1) ranged from 0.28 to 14.41, and GK2A/AMI-derived PET 

(mm day−1) ranged from 0.00 to 11.10. In comparison with PM-ET derived from KMA 

ASOS stations, the total number of matchup data was 15,414, and GK2A/AMI-derived 

PET showed accuracy (mm day−1) of 0.649 (RMSE), 0.488 (MAE), 0.636 (STD), and −0.134 

(bias) with nRMSE of 0.168, indicating the MLP model tended to underestimate relative 

to the in-situ PM-ET overall. In particular, at PET values less than 2.0 mm day−1, the ten-

dency of underestimation of the MLP model was remarkable. Although the MLP model 

shows the tendency to underestimate, its underestimation was slight overall and it shows 

good performance estimating PM-ET from the KMA ASOS stations; Pearson’s R was 

0.954, and IOA was 0.975. 

 

Figure 7. Comparison between GK2A/AMI satellite-derived PET estimates and PM-ET from ASOS 

stations operated by KMA, for the period 25 July 2020 to 31 July 2021. The color represents the pro-

portion of the data relative to the total number of matchups. 

From 25 July 2020 to 31 July 2021, we verified the accuracy of PET derived from 

GK2A/AMI by comparing them with the PM-ET from the KMA ASOS stations (Figure 8). 

RMSE (mm day−1) ranged from 0.449 (at station 136) to 0.871 (at station 185), nRMSE 

ranged from 0.117 (at station 159) to 0.237 (at station 169), and STD (mm day−1) ranged 

from 0.449 (at station 136) to 0.861 (at station 185) (Figure 8a–c). Bias (mm day−1) ranged 

from −0.568 (at station 172) to 0.215 (at station 108) (Figure 8d). Pearson’s R ranged from 

0.891 (at station 181) to 0.979 (at station 136), and IOA ranged from 0.939 (at station 185) 

to 0.988 (at station 136). Overall, the PET estimated from GK2A/AMI using the MLP model 

were accurate relative to the PM-ET from KMA ASSOS stations (Figure 8e,f). 

Figure 7. Comparison between GK2A/AMI satellite-derived PET estimates and PM-ET from ASOS
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proportion of the data relative to the total number of matchups.

From 25 July 2020 to 31 July 2021, we verified the accuracy of PET derived from
GK2A/AMI by comparing them with the PM-ET from the KMA ASOS stations (Figure 8).
RMSE (mm day−1) ranged from 0.449 (at station 136) to 0.871 (at station 185), nRMSE
ranged from 0.117 (at station 159) to 0.237 (at station 169), and STD (mm day−1) ranged
from 0.449 (at station 136) to 0.861 (at station 185) (Figure 8a–c). Bias (mm day−1) ranged
from −0.568 (at station 172) to 0.215 (at station 108) (Figure 8d). Pearson’s R ranged from
0.891 (at station 181) to 0.979 (at station 136), and IOA ranged from 0.939 (at station 185) to
0.988 (at station 136). Overall, the PET estimated from GK2A/AMI using the MLP model
were accurate relative to the PM-ET from KMA ASSOS stations (Figure 8e,f).
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(d) bias, (e) Pearson’s R, and (f) IOA.

We examined the seasonal characteristics of GK2A/AMI-derived PET. We simply
classified the seasons into two classes; we hereafter referred to the period when monthly
mean value of observed PET was less than 3 mm day−1 as cold seasons (November to
February), and the period when monthly mean value of observed PET was more than
3 mm day−1 as warm seasons (March to October). In the cold seasons, KMA ASOS-derived
PM-ET and GK2A/AMI-estimated PET both had lower values than in the warm seasons
(Table 4). In cold seasons, RMSE (mm day−1) ranged from 0.399 to 0.671, Pearson’s R
ranged from 0.881 to 0.908, and nRMSE ranged from 0.193 to 0.244 (Table 5). On the other
hand, in warm seasons, RMSE (mm day−1) ranged from 0.585 to 0.804, Pearson’s R ranged
from 0.901 to 0.960, and nRMSE ranged from 0.116 to 0.207. Regardless of seasons, the
model was found to show low RMSE less than 0.81 mm day−1 and high Pearson’s R more
than 0.88, indicating that the model simulates the in-situ PET with high accuracy.

When compared to the warm seasons, the cold seasons show good performance in
terms of RMSE, MAE, and STD, but poor performance in terms of nRMSE, Pearson’s R,
and IOA. These seasonal differences are caused by the seasonal variation of PET. As shown
in Table 4, the lower the temperature, the lower the water vapor evaporated from soil
and transpired by vegetation; the variation of PET in the warm seasons is higher than in
the cold seasons [64,65]. Therefore, the low variation of PET in the cold seasons causes
low RMSE, MAE, and STD; however, due to the small magnitude of PET in cold seasons,
even a small error substantially affects the ratio-dependent accuracy score such as nRMSE,
Pearson’s R, and IOA.
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Table 4. Comparison of observed PET and GK2A/AMI satellite-derived PET estimates.

Month
Observed PET (mm day−1) Estimated PET (mm day−1)

Minimum Maximum Mean Minimum Maximum Mean

August 2020 0.52 9.74 4.29 0.18 8.32 4.09
September 2020 0.69 8.66 3.78 0.00 8.25 3.27

October 2020 0.79 9.44 3.90 0.00 7.88 3.37
November 2020 0.39 6.96 2.76 0.00 5.98 2.52
December 2020 0.34 5.06 2.06 0.06 4.47 2.09

January 2021 0.30 6.52 1.87 0.00 4.76 1.84
February 2021 0.50 10.16 2.97 0.00 7.61 2.83

March 2021 0.28 9.04 3.67 0.08 8.72 3.59
April 2021 0.66 12.28 5.44 0.42 10.59 5.48
May 2021 0.54 14.41 5.14 0.65 11.10 5.27
June 2021 0.40 11.30 5.25 0.94 10.32 5.32
July 2021 0.52 10.22 5.50 0.92 9.47 5.31

Table 5. Accuracy (in terms of bias, RMSE, MAE, STD, nRMSE, R, and IOA), of the GK2A/AMI satellite-derived estimated
PET, with respect to the month.

Month No. Bias
(mm day−1)

RMSE
(mm day−1)

MAE
(mm day−1)

STD
(mm day−1) nRMSE R IOA

August 2020 1260 −0.208 0.671 0.510 0.638 0.156 0.949 0.968
September 2020 1234 −0.506 0.782 0.645 0.597 0.207 0.931 0.940

October 2020 1286 −0.529 0.804 0.651 0.605 0.206 0.901 0.913
November 2020 1241 −0.237 0.575 0.446 0.524 0.208 0.908 0.941
December 2020 1289 0.027 0.399 0.304 0.398 0.193 0.881 0.937

January 2021 1291 −0.028 0.456 0.353 0.455 0.244 0.883 0.932
February 2021 1170 −0.142 0.671 0.466 0.625 0.216 0.885 0.936

March 2021 1294 −0.073 0.585 0.448 0.581 0.160 0.954 0.974
April 2021 1250 0.035 0.763 0.582 0.762 0.140 0.928 0.963
May 2021 1293 0.131 0.704 0.512 0.692 0.137 0.960 0.979
June 2021 1249 0.067 0.609 0.457 0.605 0.116 0.955 0.977
July 2021 1275 −0.186 0.710 0.530 0.685 0.129 0.940 0.965

4. Discussions
4.1. NIFoS Flux Towers

Because the ANN-based daily ET model was trained using the PM-ET data from the
KMA ASOS stations, we examined the availability of the GK2A/AMI-derived PET by
comparing it with EC-ET data. We compared daily PET derived from GK2A/AMI for the
Korean Peninsula with EC-ET derived from NIFoS flux tower, for the period 25 July 2020
to 31 July 2021 (Figure 9). NIFoS flux tower-derived EC-ET (mm day−1) ranged from
0.02 to 9.82, and GK2A/AMI-derived PET (mm day−1) ranged from 0.00 to 10.06. In
comparison with EC-ET derived from NIFoS flux tower, the total number of matchup data
was 654, and GK2A/AMI-derived PET showed the accuracy (mm day−1) of 1.730 (RMSE),
1.409 (MAE), 1.235 (STD), and 1.212 (bias) with nRMSE of 0.525, indicating the PET derived
from GK2A/AMI using the MLP model tended to overestimate relative to the EC-ET
derived from NIFoS flux tower overall. The model performed in following the trend in the
EC-ET data; Pearson’s R was 0.809, and IOA was 0.822.

In theoretical conditions, the PET derived from the PM method was not expected
to match with the AET derived from the EC method. Although the differences depend
on the environmental conditions and PET retrieval methods, the PM method generally
overestimated ET compared with EC-ET in both hourly and daily time scales [47]. However,
the comparison result shows a high correlation with both variables and between the input
parameters for both variables, which indicates that PM-ET and EC-ET are affected by the
same factors [66,67]. Because the PM method quantifies water vapor loss in sufficient soil
moisture conditions, it overestimates ET relative to EC-ET under the dry conditions [67].
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However, in sufficient soil moisture conditions on rainy days, the PM method nonetheless
overestimated ET relative to EC-ET [49,68]. Furthermore, the differences between PM-ET
and EC-ET depend on the environmental conditions, the tendency to overestimate ET was
strong with intense net radiation and water vapor deficit [67,69]. Another possible reason
for the overestimation is that PM-ET does not consider the complicated structure of the
forest. The comparison result between PM-ET and EC-ET depended on the reference level,
and the accuracy of PM-ET increased with the reference level of measurement [47]. The
PM method assumes that the vegetation is a single big leaf, and ET occurs on a surface
with zero plane displacement. However, vegetation conditions vary depending on the
spatiotemporal environment, and ET occurs in the forest floor to the top of vegetation. On
the other hand, during the vegetation growing season with low leaf area index, surface and
underground ET take a substantial part of the water vapor cycle. Because of that, PM-ET
could underestimate ET at a small leaf area index, compared with EC-ET [47]. Another
possible reason for overestimation is that the PM method cannot accurately include the
resistance due to the surface canopy or soil conditions [69]. Since PM-ET data depend highly
on surface conductance; its overestimation could cause the overestimation of ET [47,70].
Although the PM model overestimated ET, it showed a high correlation with the EC-ET
data. Since the model accounts for radiative and aerodynamic conditions, it might produce
more reliable estimates of AET than other PET models [71].
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Figure 9. Comparison between GK2A/AMI satellite-derived and NIFoS flux tower-derived ET from
25 July 2020 to 31 July 2021.

4.2. Comparison with MODIS

To validate the GK2A/AMI-derived daily PET data, we compared it with the
Terra/MODIS PET product. Because Terra/MODIS produces an 8-days PET compos-
ite, we produced 8-days aggregates of daily PET data from the GK2A/AMI satellite and
from the KMA ASOS stations. In the KMA ASOS stations, when the number of daily PET
data for 8-days was less than 8, it was excluded from the validation data. We then compared
the Terra/MODIS PET data with the KMA ASOS station and GK2A/AMI satellite PET
data, for the period 27 July 2020 to 27 July 2021(Figure 10).
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In comparison with the KMA ASOS station PET data, the Terra/MODIS PET data
showed accuracy (mm 8 day−1) of 5.993 (RMSE), 4.679 (MAE), 5.825 (STD), and −1.412
(bias) with an nRMSE of 0.205; Pearson’s R was 0.914 and IOA was 0.947, indicating the
Terra/MODIS PET data tended to underestimate PET relative to KMA ASOS (Figure 10a).
The underestimation of the Terra/MODIS PET data was remarkably shown in the PET
of less than 20 mm 8 day−1. In previous studies, the MODIS-based PET product was
converted to daily PET and compared with PM-ET. The assessment of MODIS-based PET
product varied on the land cover and showed Pearson’s R of 0.71 to 0.94 [72,73]. Although
the previous studies and this study used the verification with a daily and 8-day product,
respectively, the high Pearson’s R means that MODIS-based PET product is useful for
ET monitoring on the Korean Peninsula. In comparison with the GK2A/AMI-derived
PET data, the Terra/MODIS PET data showed accuracy (mm 8 day−1) of 6.094 (RMSE),
4.705 (MAE), 6.076 (STD), and−0.471 (bias) with an nRMSE of 0.236; Pearson’s R was 0.887
and IOA was 0.939, indicating the Terra/MODIS PET data tended to underestimate PET
relative to GK2A/AMI (Figure 10b). The underestimation of the Terra/MODIS PET data
was remarkably shown in the PET of less than 20 mm 8 day−1, indicating the comparing
result of GK2A was consistent with that of KMA ASOS.

For the assessment of the spatial distribution of GK2A/AMI-derived PET, we verified
the accuracy of Terra/MODIS PET relative to the PET data for each KMA ASOS station
and GK2A/AMI coordinate for the period 27 July 2020 to 27 July 2021 (Figure 11). In
comparison with the KMA ASOS station data, RMSE (mm 8 day−1) ranged from 3.056 (at
station 119) to 10.061 (at station 105); bias (mm 8 day−1) ranged from −5.692 (at station
105) to 1.075 (at station 177); and Pearson’s R ranged from 0.748 (at station 185) to 0.981 (at
station 119) (Figure 11a–c). Relative to the GK2A/AMI-derived PET, RMSE (mm 8 day−1)
ranged from 1.445 to 17.039, bias (mm 8 day−1) from −14.549 to 13.627, and Pearson’s R
from 0.305 to 0.991 (Figure 11d–f). In Terra/MODIS PET, the result compared with KMA
ASOS PET (Figure 11a–c) was consistent with that of GK2A/AMI-PET (Figure 11d–f). In
particular, in the eastern region of the Korean Peninsula, it showed high RMSE, negative
bias, and low Pearson’s R compared with the other area in the Korean Peninsula.
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ASOS stations operated by KMA, and (d–f) the coordinates of the GK2A/AMI satellite. The accuracy
is represented by (a,d) RMSE, (b,e) bias, and (c,f) Pearson’s R.

The KMA ASOS station-derived PM-ET data showed a Pearson correlation of 0.914
with Terra/MODIS PET (Figure 10a), and 0.954 with GK2A/AMI-derived PET (Figure 7).
While the Terra/MODIS PET algorithm is optimized for global coverage, our MLP model
was locally optimized for the Korean Peninsula. Furthermore, since our MLP model used
daily remotely sensed and numerical model product not related to cloud, the GK2A-derived
PET shows fine temporal resolution and has no masked value due to cloud relative to
Terra/MODIS product. Therefore, the GK2A/AMI-derived PET performed better than
Terra/MODIS for estimating PET on the Korean Peninsula. Relative to the GK2A/AMI-
derived PET and in-situ PM-ET data, the consistency of the Terra/MODIS PET data
decreased remarkably for the eastern region of the Korean Peninsula (Figure 11). In the
eastern coastal area of the Korean Peninsula, elevation decreases dramatically (Figure 2).
In contrast to the lack of consistency with the Terra/MODIS PET data, the GK2A/AMI-
derived PET and in-situ PM-ET were highly correlated (Pearson’s R > 0.879), regardless of
the topography (Figure 8). This result indicates that Terra/MODIS did not reflect the local
terrain characteristics of the Korean Peninsula, due to its global optimization. Thus, for ET
monitoring with high spatiotemporal variability on the Korean Peninsula, the real-time
daily GK2A/AMI-derived PET was more suitable (due to local optimization) than the
8-days Terra/MODIS PET product.

4.3. Previous Studies on the Korean Peninsula

The Korean Peninsula comprises various vegetation cover types and shows specific
agrometeorological characteristics, and it is able to perform agrometeorological analysis
using ET data. When investigating the ensemble model of virtual water content based on
ET, it was found that the ensemble virtual water content and production of rice and maize
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decreased in future projections, which affected future water consumption on the Korean
Peninsula [74]. Birhanu et al. [75], when constructing hydrological models, investigated the
effect of model complexity and ET calculation methods on model performance based on the
in-situ measurement. Um et al. [76] estimated the spatial distribution of ET based on in-situ
measurements using the hybrid Kriging method and revealed various ET characteristics
depending on the distance from the coast and elevation level above the ground surface.
Jung et al. [77] developed the physiological modules to simulate the canopy photosyn-
thesis and ET process and established the relationship of photosynthesis and ET with
crop production based on satellite data and in-situ measurements. Similar to this study,
Kim et al. [41] developed the ML model estimating daily PET for the Korean Peninsula
using satellite data and NWP data. MODIS-based monthly vegetation index data, multi-
microwave satellite-derived precipitation data, and LDAPS data were used as input data
of the random forest model. The model showed accuracy (mm day−1) of 1.038 (RMSE),
0.790 (MAE), and 0.007 (bias) with Pearson’s R of 0.870. The model developed in this study
not only has better accuracy but also has the advantage of retrieval in real-time.

5. Conclusions

This paper presents an ANN model that retrieves daily PET in real-time for the Korean
Peninsula, using GK2A/AMI-derived data, microwave composite data, and NWP data. We
used the data from 25 July 2019 to 24 July 2020 for model training, and 25 July 2020, to 31
July 2021 for model testing. In comparison with the KMA ASOS station-derived PM-ET, the
ANN-based GK2A-derived PET showed high accuracy (mm day−1) of 0.649 (RMSE) and
−0.134 (bias); Pearson’s R of 0.954; and IOA of 0.975. In validating the spatial distribution,
the ANN model-estimated daily PET showed high accuracy at all KMA ASOS stations.
To assess the efficiency of the GK2A/AMI-derived PET, we verified it using NIFoS flux
tower-derived EC-ET, which showed that GK2A/AMI-derived PET overestimated ET.
Furthermore, we assessed the performance of our ANN model by comparing it with
operational Terra/MODIS PET products with 8-days temporal resolution. Because it was
locally optimized, our ANN model outperformed Terra/MODIS PET over the Korean
Peninsula. GK2A/AMI-derived PET performed particularly better than the Terra/MODIS
PET product for the eastern coastal region of the Korean Peninsula, where elevation
changes dramatically.

Although GK2A/AMI-derived PET showed high accuracy, it is necessary to extend
its spatial coverage for overcoming its local optimization. When applying the additional
in-situ measurements on other areas to the model, it is possible to improve the model
in terms of spatial coverage. Furthermore, in order to develop the model estimating ET,
we used and optimized the MLP model, but it is able to apply diverse ANN methods
such as recurrent neural network, convolutional neural network, and long short-term
memory. When applying and validating various ANN methods, it is possible to improve
the accuracy of the model estimating ET.

ET is a key indicator to investigate the effects of the meteorological drought on
vegetation activities. GK2A/AMI-derived 2-dimensional ET is thought to be a useful
tool in examining the drought affecting the Korean Peninsula. In further studies, we will
attempt to investigate drought on the Korean Peninsula by examining the relationship
of GK2A/AMI-derived ET and precipitation data with vegetation information. This
study contributes to understanding air-land interactions, and the development of ANN
approaches using satellite and NWP data.
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Abbreviations

ADAM A Method for Stochastic Optimization
AET Actual Evapotranspiration
AMI Advanced Meteorological Imager
ANN Artificial Neural Networks
ASR Absorbed Shortwave Radiation
BN Batch Normalization
COMS Communication, Ocean and Meteorological Satellite
DEM Digital Elevation Model
DLR Downward Longwave Radiation
DSR Downward Shortwave Radiation
EC Eddy Covariance
ELU Exponential Linear Unit
ESR Extraterrestrial Solar Radiation
ET Evapotranspiration
FAO Food and Agriculture Organization of the United Nations
GEO Geostationary Orbit
GK2A GEOstationary Korea Multi-Purpose SATellite 2A
IMERG Integrated Multi-satellitE Retrievals for Global Precipitation Measurement
KMA Korea Meteorological Administration
LDAPS Local Data Assimilation and Prediction System
LEO Low Earth Orbit
MDA Mean Decrease Accuracy
ML Machine Learning
MLP Multilayer Perceptron
MODIS Moderate Resolution Imaging Spectroradiometer
NDVI Normalized Difference Vegetation Index
NIFoS National Institute of Forest Science
NMSC National Meteorological Satellite Center
NWP Numerical Weather Prediction
OLR Outgoing Longwave Radiation
PET Potential Evapotranspiration
PM Penman-Monteith
RSR Reflected Shortwave Radiation
SPI6 Standardized Precipitation Index for Six Months
SRTM Shuttle Radar Topography Mission
ULR Upward Longwave Radiation
UM Unified Model
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Abstract: It is known that at the event scale, evaporation losses of rainfall intercepted by canopy
are a few millimeters, which is often not much in comparison to other stocks in the water balance.
Nevertheless, at yearly scale, the number of times that the canopy is filled by rainfall and then
depleted can be so large that the interception flux may become an important fraction of rainfall.
Many accurate interception models and models that describe evaporation by wet canopy have
been proposed. However, they often require parameters that are difficult to obtain, especially for
large-scale applications. In this paper, a simplified interception/evaporation model is proposed,
which considers a modified Merrian model to compute interception during wet spells, and a simple
power-law equation to model evaporation by wet canopy during dry spells. Thus, the model can
be applied for continuous simulation, according to the sub hourly rainfall data that is appropriate
to study both processes. It is shown that the Merrian model can be derived according to a simple
linear storage model, also accounting for the antecedent intercepted stored volume, which is useful
to consider for the suggested simplified approach. For faba bean cover crop, an application of the
suggested procedure, providing reasonable results, is performed and discussed.

Keywords: interception; linear storage model; evaporation; cover crop; water balance; faba bean

1. Introduction

According to Brutsaert [1], the interception process is determined by the rainfall
fraction that moistens vegetation and that is temporarily stored on it, before evaporating.
When the vegetation cover is fully saturated, the interception storage capacity is achieved.
In practice, the interception storage capacity is denoted as rainfall left on the canopy at
the end of the rainfall after all drip has ceased [2]. The water stored on the canopy may
evaporate soon after, thus short-circuiting the hydrologic cycle.

Although most surfaces can store only a few millimeters of rainfall, which is often not
much in comparison to other stocks in the water balance, interception is generally a signifi-
cant process and its impact becomes evident at longer time scales [3]. Thus, interception
storage is generally small, but the number of times that the storage is filled and depleted
can be so large that the evaporation losses by wet canopy may become of the same order of
magnitude as the transpiration flux [4].

Evaporation flux by canopy exerts a negative effect on plant water consumption by
preventing water from reaching the soil surface, thus the plant roots [2,3]. In contrast, the
remaining rainfall (i.e., the net rainfall) reaches the soil surface either as throughfall or
by flowing down branches and stems as stemflow. Throughfall is the fraction of water
that reaches the soil surface directly through the canopy gaps without hitting the canopy
surfaces, or indirectly through dripping from the leaves and branches [5].

The interception may also exert important effects on surface runoff [6], providing
a certain delay compared with the time of the beginning of the rain. For the Dunnian mech-
anism of runoff generation, Baiamonte [7] showed the effect induced by the interception
process on the delay time, and emphasized that the effect is more frequent for well-drained
soils [8,9] in humid regions, for low rainfall intensities and high groundwater table, when
infiltration capacity exceeds the rainfall intensity. Indeed, the latter conditions also occurs
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for high density of cover crops or forest soils that are reach in organic carbon and are very
structured [10].

The proportion of the precipitation that does not reach the ground, i.e., the intercep-
tion loss, depends on the type of vegetation (forest, tree, or grassland), its age, density of
planting and the season of the year. The interception loss also depends on rainfall regime,
thus on climate. For example, in tall dense forest vegetation at temperate latitudes intercep-
tion loss as large as 30–40% of the gross precipitation has been observed [11], whereas in
tropical forest with high rainfall intensity was of the order 10–15% [12] and in heather and
shrub also 10–15% [13]. In arid and semi-arid areas, where there is little vegetation, the
interception loss is negligible.

Since interception is an important component of the water balance, a comprehensive
evaluation of interception loss by prediction tools has been considered of great value in
the study of hydrological processes, and different formulations, at hourly and event scale,
have been introduced in the hydrologic literature. Muzylo et al. [14] wrote an interesting
review paper, where the principal models proposed in the literature are described, and
their characteristics reported (input temporal scale, output variable, number of parameters,
layers, spatial scale).

Linsley et al. [15] modified the very simple interception model first introduced by
Horton [16], which did not account for the amount of gross rainfall, since it assumed that
the rainfall in each storm completely filled the interception storage. Linsley et al. [15]
assumed that the interception loss approached exponentially to the interception capacity
as the amount of rainfall increased [17]. Then, this simple sketch was applied and tested by
Merrian [18], who studied the effect of fog intensity and leaf shape on water storage on
leaves, by using a simple fog wind tunnel and leaves of aluminum and plastic. Merrian [18]
found that drip measurements were reasonably close to values predicted, by using an
exponential equation based on fog flow and leaf storage capacity.

Rutter et al. [19,20] were the first to model forest rainfall interception recognizing that
the process was primarily driven by evaporation from the wetted canopy. The conceptual
model developed by Rutter et al. [19,20] describes the interception loss in terms of both the
structure of the forest and the climate in which it is growing. The model is physically
based, thus it has potential for application in all areas, where there are suitable data. In
Rutter et al. [20], the model’s definitive version was developed by adding a stemflow
module, in which a fraction of the rainfall input is diverted to a compartment comprising
the trunks. Early applications of Rutter-type models were made by Calder [21] and Gash
and Morton [22].

The rate of evaporation increases with solar radiation and temperature. The process
also depends on the air humidity and the wind speed. The greater the humidity, the less
the evaporation. Wind carries moist air away from the ground surface, so wind decreases
the local humidity and allows more water to evaporate. Therefore, in the Rutter model,
the evaporation flux was calculated from the form of the Monteith–Penman equation [23].
Later, Gash [24] provided a simplification of the data-demanding Rutter model. Although
some of the assumptions of the Gash model may not be suitable, the model has been shown
to work well under a variety of forest types, including different species and sites [11,25–27].

For agricultural crops and for grassland, where interception loss is of the order 13–19% [28],
Von Hoyningen-Hüne [29] and Braden [30], proposed a general formula, which was used in
the SWAP model [31] that however can be applied only at daily scale.

By the experimental point of view, the interception evaporation process requires mon-
itoring intercepted mass and interception loss with high accuracy and time resolution,
to provide accurate estimates. Net precipitation techniques, in which interception evap-
oration is determined from the difference between gross precipitation and throughfall,
fulfill many of the requirements but usually have too-low accuracy and time resolution for
process studies. Furthermore, for grassland, these techniques are unsuitable.

In this paper, we explored the rainfall partitioning in net rainfall and evaporation
losses by canopy, by using a very simplified sketch of the interception process, which
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combines a modified exponential equation applied and tested by Merrian [18], accounting
for the antecedent volume stored on the canopy, and a simple power-law equation to
compute evaporation by wet canopy. We are aware that the considered approach is far
from the sophisticated physically based developments that were performed to quantify
interception and evaporations losses. However, the latter may require many parameters
that are not easy to determine. It is shown that the simplified parsimonious approach
may lead to a reasonable quantification of this important component of the hydrologic
cycle, which can be useful when a rough estimate is required, in absence of a detailed
characterization of the canopy and of the climate conditions. It is also shown that the
Merrian model can be derived by considering a simple linear storage model. For faba bean
cover crop, an application of the suggested procedure is performed and discussed.

2. Rainfall Data Set, Wet and Dry Spells

Rainfall time series were analyzed according to Agnese et al. [32], who applied the
discrete three-parameter Lerch distribution to model the frequency distribution of interar-
rival times, IT, derived from daily precipitation time-series, for the Sicily region, in Italy.
Agnese et al. [32] showed a good fitting of the Lerch distribution, thus evidencing the wide
applicability of this kind of distribution [33], also allowing us to jointly model dry spells,
DS, and wet spells, WS.

Since this work aimed at modelling by continuous rainfall data series the interception
losses, during the WS and the evaporation losses during DS, only the frequency distribu-
tion of the two latter were considered, which are defined in the following, according to
Agnese et al. [32].

For any rainfall data series, the ten minutes temporal scale, τ, which is appropriate
to model both interception and evaporation processes, could be considered in order to
describe clustering and intermittency characters of continuous rainfall data series.

Let H = {h1, h2, . . . , hn}, a time-series of rainfall data of size n, spaced at uniform
time-scale τ. The sub-series of H can be defined as the event series, E {t1, t2, . . . , tnE}, where
nE (0 < nE < n) is the size of E, which is an integer multiple of time-scale τ. The succession
constituted by the times elapsed between each element of the E series, with exception of
the first one and the immediately preceding one, is defined as the inter-arrival time-series,
IT {T1, T2, . . . , TnE}, with size nE−1 (Figure 1). It can be observed the sequence of dry spells,
DS, can be derived from IT dataset by using the relationship {DSk} = {Tk} − 1 for any Tk > 1.

Hydrology 2021, 8, x FOR PEER REVIEW 3 of 16 
 

 

In this paper, we explored the rainfall partitioning in net rainfall and evaporation 

losses by canopy, by using a very simplified sketch of the interception process, which 

combines a modified exponential equation applied and tested by Merrian [18], accounting 

for the antecedent volume stored on the canopy, and a simple power-law equation to 

compute evaporation by wet canopy. We are aware that the considered approach is far 

from the sophisticated physically based developments that were performed to quantify 

interception and evaporations losses. However, the latter may require many parameters 

that are not easy to determine. It is shown that the simplified parsimonious approach may 

lead to a reasonable quantification of this important component of the hydrologic cycle, 

which can be useful when a rough estimate is required, in absence of a detailed character-

ization of the canopy and of the climate conditions. It is also shown that the Merrian model 

can be derived by considering a simple linear storage model. For faba bean cover crop, an 

application of the suggested procedure is performed and discussed. 

2. Rainfall Data Set, Wet and Dry Spells 

Rainfall time series were analyzed according to Agnese et al. [32], who applied the 

discrete three-parameter Lerch distribution to model the frequency distribution of inter-

arrival times, IT, derived from daily precipitation time-series, for the Sicily region, in Italy. 

Agnese et al. [32] showed a good fitting of the Lerch distribution, thus evidencing the 

wide applicability of this kind of distribution [33], also allowing us to jointly model dry 

spells, DS, and wet spells, WS. 

Since this work aimed at modelling by continuous rainfall data series the interception 

losses, during the WS and the evaporation losses during DS, only the frequency distribu-

tion of the two latter were considered, which are defined in the following, according to 

Agnese et al. [32]. 

For any rainfall data series, the ten minutes temporal scale, τ, which is appropriate to 

model both interception and evaporation processes, could be considered in order to de-

scribe clustering and intermittency characters of continuous rainfall data series. 

Let H = {h1, h2, …, hn}, a time-series of rainfall data of size n, spaced at uniform time-

scale τ. The sub-series of H can be defined as the event series, E {t1, t2, …, tnE}, where nE (0 

< nE < n) is the size of E, which is an integer multiple of time-scale τ. The succession con-

stituted by the times elapsed between each element of the E series, with exception of the 

first one and the immediately preceding one, is defined as the inter-arrival time-series, IT 

{T1, T2, …, TnE}, with size nE−1 (Figure 1). It can be observed the sequence of dry spells, DS, 

can be derived from IT dataset by using the relationship {DSk} = {Tk} − 1 for any Tk > 1. 

 

Figure 1. Sketch of inter-arrival times (IT), dry spells (DS) and wet spells (WS). Reprinted with 

permission from ref. [32], Copyright 2014, Elsevier (Amsterdam, The Netherlands). 

Figure 1 shows an example of a sequence of wet and dry spells. In the context of this 

work, which aims at modelling the interception process during WS and the evaporation 

process from the canopy, as previously observed, only the frequency distribution of wet 

spells (WS) and dry spells (DS) were derived. 

For the 2009 rainfall data series of Fontanasalsa station (Trapani, 37°56′37″ N, 

12°33′12″ E, western Sicily, Italy), which will be considered for an example application, 

Figure 2 shows the complete characteristics of the rainfall regime. In particular, Figure 2a 
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Copyright 2014, Elsevier (Amsterdam, The Netherlands).

Figure 1 shows an example of a sequence of wet and dry spells. In the context of this
work, which aims at modelling the interception process during WS and the evaporation
process from the canopy, as previously observed, only the frequency distribution of wet
spells (WS) and dry spells (DS) were derived.

For the 2009 rainfall data series of Fontanasalsa station (Trapani, 37◦56′37′′ N, 12◦33′12′′ E,
western Sicily, Italy), which will be considered for an example application, Figure 2 shows
the complete characteristics of the rainfall regime. In particular, Figure 2a describes the DS
distribution of frequency, F, whereas Figure 2b plots the WS distribution associated with the
cumulated rainfall depth collected with 10 min time resolution. Both figures also illustrate
the frequency of non-exceedance, corresponding the selected time resolution (τ = 1 = 10 min)
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that equals 0.189 for DS and much higher for WS (0.596), indicating that a high fraction of
rainfall with WS = 1 occurs, which could play an important role in the interception process.
Figure 2b also plots the rainfall depth distribution corresponding to WS, where the frequency
is calculated with respect to the yearly rainfall depth, hyear, which equals 885.2 mm. Therefore,
in Figure 2b, to WS = 1 (F1 = 0.115) corresponds a rainfall depth equals to 101.6 mm that, if
associated with subsequent large enough DS, may potentially evaporate from the canopy.
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Figure 2. For the investigated year (2009), distributions of frequency, F, (a) of dry spells (DS), and (b) of wet spells (WS) and
of the rainfall depth (hτ) corresponding to WS.

3. Interception Rate and Stored Volumes during Wet Spells

The interception Merrian [18]’s model states that:

ICS = S
[

1− exp
(
−R

S

)]
(1)

where S (mm) is the interception capacity of the canopy, and ICS (mm) is the interception
storage volume corresponding to the cumulated rainfall volume R (mm). Equation (1) can
be applied for dry initial condition, i.e., when the no water volume is stored on the canopy
at the beginning of the rainfall.

However, it is demonstrated here that the Merrian model can be derived by consider-
ing a simple linear stored model, also used in other hydrological contexts [34], which made
it possible to also account for the antecedent interception volume. The latter is useful for
the applications, when in between two consecutive WSs, DS is not long enough to result in
full evaporation of the rainfall volume intercepted by the canopy starting from the end of
a WS. Thus, a residual water volume, ICS0, is still stored on the canopy at the beginning
of the subsequent WS, and it needs to be considered as initial condition. Therefore, for
the purpose of this study, which aims at estimating interception losses during WS and DS
sequences of different amount and duration, Equation (1) needs to be extended to different
antecedent water interception storage volume, ICS0 (mm), before a new WS takes place,
after a DS when evaporation process ceases.

Consider a simple linear reservoir, miming the interception storage volume (Figure 3).
A stationary rainfall of intensity r (mm h−1) uniformly distributed over the canopy, is
applied to the reservoir. In the time dt, the interception storage, ICS (mm), stored in the
canopy equals dICS. The interception capacity, i.e., the maximum rainfall volume that
can be stored on the canopy, is denoted as S (mm). The duration of rainfall that needs to
achieve the saturation of the canopy, without dripping out from the reservoir, ts (h), can be
expressed as:

ts =
S
r

(2)
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Figure 3. Sketch of the linear water tank describing the interception process, for a maximum water
volume stored on the canopy, S (mm), corresponding to the interception capacity.

From a physical point of view, ts is not very meaningful since it describes the dura-
tion of rainfall that is required for the canopy saturation, for dry antecedent conditions
(ICS0 = 0), and with no losses from the reservoir, e.g., no dripping and no net rainfall inten-
sity pn (mm h−1), which actually occurs (Figure 3). However, ts represents a characteristic
time of the interception process that it is useful to introduce for the following derivations.

By assuming that the water volume stored in the reservoir linearly varies with the
output net rainfall intensity, pn, according to the time ts (Equation (2)), the balance of the
water volumes can be expressed as:

r dt− pn dt = dICS = ts dpn (3)

Separation of variables may be used to solve the ordinary differential equation:

dt =
ts

r− pn
dpn (4)

By assuming as initial conditions:

t = t0 pn = pn0 (5)

Integration of Equation (4) provides:

∫ t

t0

dt =
∫ pn

pn0

ts

r− pn
dpn (6)

Solving Equation (6) yields:

t = t0 + ts log
r− pn0

r− pn
(7)

Equation (7) can be made explicit to derive the net rainfall intensity, pn:

pn = r− (r− pn0) exp
(
− t− t0

ts

)
(8)

Of course, knowledge of Equation (8) makes it possible to determine the interception
intensity, ics (mm/h):

ics = r− pn = (r− pn0) exp
(
− t− t0

ts

)
(9)
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Due to the assumption of a linear storage model, the antecedent net rainfall intensity,
pn0, in Equations (8) and (9), is linked to the antecedent interception volume, ICS0, by:

pn0 =
ICS0

ts
= r

ICS0

S
(10)

For a compacted graphical illustration, a constant rainfall intensity, r, and a zero time
antecedent condition t0 = 0 can be assumed. Thus, Equations (8) and (9) normalized with
respect to r can be expressed as:

pn

r
= 1−

(
1− ICS0

S

)
exp
(
−R

S

)
(11)

ics
r

=

(
1− ICS0

S

)
exp
(
−R

S

)
(12)

where in Equations (8) and (9) ts was substituted by Equation (2), and r by R t, with R
(mm) the cumulated rainfall depth. Equations (11) and (12) are graphed in Figure 4a,b,
respectively. For any fixed S, and for a fixed antecedent interception storage volume, ICS0,
Figure 4a shows that, at increasing R, the net rainfall intensity, pn, attains the gross rainfall
intensity r (pn/r ~ 1), and that, at increasing ICS0, the r achievement is slower and slower,
as it could be expected. Of course, the normalized interception intensity ics/r plotted in
Figure 4b provides complementary curves.
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volume, ICS/S, corresponding the normalized net rainfall intensity, pn/r, and (b) normalized interception intensity, ics/r,
versus the normalized rainfall volume, R/S.

In order to determine the interception volume, ICS (mm), as a function of its antecedent
amount, ICS0 (mm), because of the assumption of a linear storage model (Equation (10)), it
can be easily observed that Equation (11) also matches the interception storage volume,
ICS, normalized with respect to the infiltration capacity, S:

ICS
S

= 1−
(

1− ICS0

S

)
exp
(
−R

S

)
(13)

as displayed in the vertical axis label of Figure 4a. Therefore, Equation (13) is formally
equivalent to Equation (11), but with a different meaning of the output parameters.

It is noteworthy to observe that, for dry antecedent condition (ICS0 = 0), Equation (13)
matches the interception storage model (Equation (1)) proposed by Merrian [18], which
was developed only for dry initial conditions, as previously observed.

Equation (13) could also be derived analytically, with a lesser extend from a physical
point of view, than that provided by the simple linear stored model previously described.
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Indeed, denoting R0 the antecedent rainfall volume corresponding to ICS0, the Merrian’s
model (Equation (1)) yields:

ICS = S
[

1− exp
(
−R

S
− R0

S

)]
(14)

The antecedent rainfall volume, R0, can be expressed as a function of ICS0 by using
Equation (1):

R0 = −S log
(

1− ICS0

S

)
(15)

Substituting Equation (15) into Equation (14), and normalizing ICS with respect to S,
provides Equation (13), which was to be demonstrated.

As an example, for S = 0.5 mm and ICS0 = 0, and for a constant rainfall intensity
r = 1.75 mm/h, Figure 5 graphs ICS vs. the cumulated rainfall R (solid black line). For
R0 = 0.7 mm, corresponding to ICS0 = 0.377 mm, Equation (14) is plotted in Figure 5 (red
line), which of course is not physical meaningful for R < 0 (dashed line).
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Figure 5. Relationship between the interception storage, ICS (mm), and the rainfall depth, R (mm),
for dry antecedent condition, ICS0 = 0, according to Merrian [18], and for a wet antecedent condition
(ICS0 = 0.377 mm).

For ICS0 = 0.377 mm, Equation (13) is also plotted in Figure 5 (round circles) showing
that Equation (13) matches Equation (14). Equation (13) will be used in the following to
calculate the interception storage volume starting from any ICS0 value.

4. Evaporation by Wet Canopy during Dry Spells

During a dry spell, DS, starting from an antecedent storage volume, ICS0 > 0, the
evaporation process from the wet canopy takes place. When the canopy is wetted by rain,
evaporation of intercepted rainfall is largely a physical process that does not depend on the
functioning of stomata. According to a realistic description of evaporation from canopies
the Penman–Monteith equation [23,35] could be used, by imposing zero the surface (or
canopy) resistance.

However, a different approach is used here, which is based on the physical circumstance
highlighted well by Babu et al. [36] that evaporation by wet canopy comprises two stages.
First, the drying process involves removal of unbound (free) moisture from the surface, and
second it involves removal bound moisture from the interior of the leaf till a defined limit,
corresponding to a critical moisture content. Apart from the second stage, which refers to
water consumption by the canopy, and thus it is beyond the purpose of this study, the first
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stage comprises (i) a “preheat period”, where the drying speed quickly increases, and then
(ii) a “constant rate period”, where evaporation takes place at the outside surface for the
removal of unbound moisture (free water) from the surface of the leaf [36].

The evaporation mechanism by wet canopy of the first stage could be also described
by the physical equations requiring the knowledge of climatic parameters and structure
parameters of the canopy. However, in agreement with the simple sketch also considered
for the interception process, in this simplified study the first stage evaporation mechanism
is described by a simple power-law, according to two parameters. A similar power-law
equation was also considered by Black et al. [37] to model the cumulative evaporation
of an initially wet, deep soil. For the same power-law equation, Ritchie [38] reports the
experimental parameters obtained by other researchers for different soils.

One limited experimental campaign, described in the next section for the faba bean,
supported this choice and revealed that for fixed outdoor air temperature, Tex (◦C) the
cumulated evaporation volume, per unit leaf surface area, E (mm), could be actually
described by the power-law equation:

E = m tn for a fixed Tex (
◦C) (16)

where t (h) is the time spent after the canopy interception capacity, S, is achieved, m is a scale
parameter and n a shape parameter to be determined by experimental measurements.

In order to upscale Equation (16) to any values of air temperature, a regional equation
developed for the Sicily region was considered [39]:

Em = 0.38 T1.93
m (17)

where Em (mm) is the monthly evaporation depth and Tm (◦C) is the monthly temperature.
By scaling Equation (16) with Equation (17), provides:

E = LAI m tn
(

Tm

Tex

)1.93
(18)

where the leaf area index, LAI, was introduced, accounting for the actual leaf surface
from which the water evaporates. Of course, Equation (18) gives the same experimental
evaporation amount derived by Equation (17), when the experimental air temperature, Tex,
is equal to Tm.

It should be noted that Equation (18) does not account for wind speed, thus evapora-
tion losses are linked to the wind experimental conditions for which m and n parameters
are determined, otherwise losses are underestimated or overestimated for wind speeds
lower and higher than the experimental ones, respectively. Moreover, application of this
procedure in regions different from Sicily would require modifying Equations (17) and (18).

For LAI = 2 and Tex = 18 ◦C, and for fixed experimental values of m and n parameters,
Figure 6 shows evaporation losses, E, during the time, with the air temperature, Tm, as
a parameter.

In order to apply the suggested procedure, according to the discrete nature of rainfall,
the cumulated evaporation volume (Equation (18)) needs to be expressed in discrete terms
by accounting, as per the interception model, for the antecedent conditions, at the aim to
determine the E fraction, ∆E, which occurs during the dry spells, DS, starting from t0:

∆E = LAI m
(

Tm

Tex

)1.93 (
(DS + t0)

n − tn
0
)

(19)

where the antecedent initial condition, t0, refers to the end of the wet spell, WS, when the
evaporation process starts. Thus, t0 needs to be calculated by Equation (19), by assuming
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that the evaporation initial condition, E0, equals the interception capacity minus the water
stored in the canopy as interception, S − ICS:

t0 =

((
Tex

Tm

)1.93 S− ICS
LAI m

)1/n

(20)
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Figure 6. For LAI = 2 and an experimental temperature, Tex = 18 ◦C, evaporation losses by canopy
per unit surface leaf, E (mm), during the time t (h), starting from the interception capacity (E = 0,
t = 0), with air temperature, Tm (◦C), as a parameter. For Tm = 22 ◦C and DS = 3 h, the figure also
illustrates the evaporation loss, ∆E (mm), corresponding to the segment B–C, starting from an initial
condition A = (t0, E0) drier than saturation.

By using Equations (18) and (20), an example of ∆E calculation (Equation (19)), which
is useful for the applications that will be shown, is performed here. Let assume m = 0.047,
n = 0.657, Tex = 22 ◦C (Figure 6), and an evaporation loss ∆E for a mean temperature of
Tm = 22 ◦C needs to be determined. The interception capacity S equals 1.5 mm, and the
interception volume stored in the canopy ICS when the evaporation process takes place
equals 0.8 mm, thus the difference S − ICS = 0.7 mm mimics the amount water loss due to
a virtual evaporation till E0 (Figure 6). The corresponding initial condition t0, calculated by
Equation (20) provides 12 h. The pair (t0, E0) is illustrated in Figure 6 (point A).

Assuming that ∆E needs to be calculated after a DS = 3 h, Equation (19) yields
∆E = 0.111 mm, which corresponds to the segment B–C in Figure 6, also indicating an evap-
oration loss E = E0 + ∆E = 0.816 mm (point C).

In order to consider that ∆E computation is limited by the antecedent volume stored
water on the canopy, ICS, actually available to evaporate, the following condition was
imposed, and a corrected ∆E, denoted as ∆E∗ evaluated:

∆E∗ = ICS i f ∆E > ICS
∆E∗ = ∆E otherwise

(21)

In both interception and evaporation models previously introduced, neither the
canopy actually covering the field (cover fraction), nor the proportion of rain which falls
through the canopy without striking a surface (throughfall), were taken into account. In the
next section, the latter issues are considered and then the water mass balance is analyzed.
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5. Water Mass Balance

The fraction of ground covered by the canopy [40] plays a fundamental role in esti-
mating interception losses, as well as the proportion of rain that falls through the canopy
without striking any surface. In the following, in order to analyze the water mass balance,
CF denotes the fraction of ground covered by the canopy and p is the free throughfall coeffi-
cient [19,20]. Assuming p = 0, meaning that the canopy fully covers the ground at the plant
scale, Figure 7 shows two very different conditions in terms of LAI and CF, which could
provide similar evaporation losses, since high CF (Figure 7a) could be counterbalanced by
low LAI (Figure 7b), and vice versa.
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Figure 7. For faba bean, two different attributions of the parameters LAI, throughfall index, p, and fraction of ground
covered by the canopy, CF.

By considering both CF and p, as weighting factors, for a gross rainfall depth R (mm),
the water mass balance is described by the following relationship:

R = R f + Rc + Rt = R (1− CF) + R CF (1− p) + R CF p (22)

where Rf (mm) is the portion of R that freely achieves the ground in between the plants, Rc
(mm) is the fraction of R that achieves the canopy, and Rt (mm) is the throughfall.

Thus, depending on the plant species, both p and CF affect Rc and could be simply de-
termined by using RGB images [41,42]. According to Equation (22), to evaluate interception
losses, in Equation (13) R has to be replaced by Rc.

By assuming CF = 1 and p = 0 (R = Rc), for dry initial condition, ICS0 = 0, for fixed
parameters S = 0.8 mm, LAI = 4, m = 0.047, n = 0.657, Tex = 12 ◦C, and for three sequences
of WS and DS, a simple application of the procedure is illustrated in Figure 8, where
the denoted variables are also indicated. For simplicity, in the figure linear ICS and ∆E
variations were assumed.

Figure 8 shows that for the third DS a high air temperature (Tm = 20 ◦C) provides
the condition ∆E > ICS, and only the available water stored on the canopy may evaporate
(∆E∗). Moreover, for this step, according to the initial condition (t0, E0), the evaporation
flux (i.e., the slope) is higher than those corresponding to the lower air temperatures.

For fixed Tm = 12 ◦C, the evaporation flux is greater for the second DS step that
starts from a higher ICS0, which is near to the saturation compared to that of the first DS
step. Similarly, for the second WS step, although the higher rainfall depth (R = 2 mm)
with respect to the first WS step, ICS increases as in the first WS step, because of a higher
initial condition ICS0, agreeing with the dynamic flux of the both considered intercep-
tion/evaporation models.
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Figure 8. For a simple sequence of three WSs and DSs, interception loss during WS, and evaporation
loss, ∆E, during DS, with E0 = S − ICS as initial condition. For the third DS, the condition described
by Equation (21) occurs (∆E > ICS) and ∆E∗ = ICS.

The flow chart displayed in Figure 9 describes the suggested procedure to calculate
the interception/evaporation water losses, which will be used in the following application,
where the condition to be imposed (Equation (21)) is also indicated.
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Figure 9. Schematic flowchart of the proposed methodology to calculate ICS during WS, and ∆E (or
∆E∗) during DS.

The water mass balance applied to the fraction of rainfall intercepted by the canopy,
can be tested by checking the balance of the inflowing volumes as interception during the i
WSs and the outflowing volumes, as evaporation from the canopy, during the j DSs, where
of course the antecedent stored volumes ICS0 are involved:

∑i
WS=1(ICS− ICS0) = ∑j

DS=1 ∆E∗ (23)

Once evaporation losses are calculated, the net rainfall Rn (mm) can be evaluated:

Rn = R−∑j
DS=1 ∆E∗ (24)

6. Interception Capacity LAI and Evaporation Measurements for Faba Bean

In order to show the results that can be obtained by the application of the simplified
procedure, the 2019 rainfall (Figure 2) and temperature data series of Fontanasalsa station
were considered, and the required empirical parameters of Equation (19) were obtained by
experimental measurements carried out for faba bean. Faba bean is a species of flowering
plant in the pea and bean family Fabaceae, originated in the continent of Africa, which is
widely cultivated as a crop for human consumption and also used as a cover crop.

169



Hydrology 2021, 8, 99

For a single plant, planted in mid-November, and sampled after 95 days, the temporal
variation of water loss by evaporation starting from the interception capacity, the number
of leaves, # Leaves, and the corresponding surface area were measured. Saturation of
the canopy was achieved by using sprinkler irrigation, for a fixed outdoor temperature,
Tex = 12 ◦C.

Starting from the interception capacity condition, after dripping has ceased, water
loss by evaporation was measured by weighing during the time. The # Leaves (45), and
the corresponding surface area (0.043 m2), made it possible to calculate the cumulative
evaporation volume, per unit leaf surface area, E (mm).

Figure 10a plots the cumulate experimental E values during the time. This made
it possible to calculate by a simple linear regression of the corresponding logarithmic
values, the m and n parameters that are required to apply Equation (16). According to
Babu et al. [36], Figure 10a shows that in a first stage evaporation rate is high, and then the
evaporation rate decreases remaining almost constant in the time, for approximately t = 1 h
(at least for this case), the behavior of which can be described by the power-law well.
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Figure 10. For Field bean, (a) relationship between experimental evaporation losses per unit LAI, E/LAI, during the time t
(h), starting from the interception capacity, S (mm), and (b) assumed temporal variation of LAI and S (mm), from the day of
planting (mid-November), considered for the application (Figure 11).
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Figure 11. For the year 2009, evaporation loss ∆E∗, interception loss, ICS, antecedent volume stored on the canopy, ICS0.
The figure also illustrate the water mass balance (red line) that was checked by using Equation (23), and the gross and net
rainfall depth, R and Rn (Equation (24)), respectively (secondary axis).

Of course, it should be noted that there are other secondary factors not considered in
the present approach, such as the plant structure, the leaf angle and the light interception,
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although not easy to consider, which may affect the considered parameters [43], especially
when upscaling is needed.

For the purpose of the present investigation, the relationship between the interception
capacity and LAI was considered in order to extend to 2009, the corresponding relationships
displayed in Figure 10a, which are related to the limited experimental LAI value. To
consider the LAI temporal variations, some data for faba bean available in the literature
were considered.

For faba bean planted in mid-November, as in this study, in El-Bosaily farm in the
Northern coast of Egypt, Hegab et al. [44] measured a maximum LAI value equal to
5.5. This value was assumed for the mid-season stage according to FAO56 [35], which
provides general lengths for four distinct growth stages, initial (ini.), crop development
(crop dev.), mid-season (mid. s.) and late season (late), for various, crops, types of climates
and locations.

For faba bean, FAO56 [35] reports ini. = 90, crop dev. = 45, mid.s. = 40, late s. = 0 days,
thus no late season was considered since it was assumed that after the mid-season the
faba bean was fully removed from the field. For the four growth stages, Figure 10b shows
the LAI variations versus the days from planting that made it possible the applications
described in the next section to be performed. In Figure 10b can be observed that it was
assumed that the crop development stage, after 90 days from planting, starts with LAI = 0.5.

According to Brisson et al. [45], the interception capacity was assumed S = 0.2 LAI.
Thus, with increasing LAI during crop growth and decreasing LAI during senescence, S will
increase and decrease, respectively. More recently, this relationship between S and LAI was
also considered by Kozak et al. [46]. Figure 10b also graphs the S variation during the days
from planting. The interception capacity in the day of sampling (cross symbol), i.e., after
95 days from the day of planting, was equal to 0.202, not too far from that experimentally
measured (0.156).

It should be noted that other S vs. LAI relationships could be used in the presented
methodology, and that specific methods, as that proposed by Aston [47] who also found
a linear S vs. LAI relation, could be applied in order to experimentally determine such
relationships that depend on the considered crops.

7. Example of Application

For the considered crop described in the previous section (Figure 10a,b), for CF = 1 and
p = 0, and for the 2019 rainfall data series, interception and evaporation losses were calculated
according to the described procedure. Figure 11 plots the detailed results of the involved
cumulative water balance components, i.e., the rainfall depth, R (mm), the interception depth
at the end of each wet spell, ICS, and the evaporation losses, ∆E∗. The latter made it possible
to evaluate the antecedent stored volume before each WS, ICS0 = ICS − ∆E∗.

The figure also illustrate the volume water mass balance (red line) that was checked
by using Equation (23). Of course, the interception process mostly occurs during the
growing season when it rains. For the considered year, 2009, the evaporation loss by
canopy achieved 37.6 mm. Figure 11 also plots the net rainfall (dashed line), calculated
according to Equation (24).

It is interesting to observe that the rainiest periods (1–110 and 250–365 Julian day) are
not associated with the periods with the highest evaporation losses (1–110 Julian day). Of
course, this is explained by the rainfall distribution, which has to be analyzed with respect
to the growing period of the considered crop, playing a fundamental role in detecting
evaporation losses by the rainfall intercepted by the canopy. Evaporation losses for the
considered cover crop are 4.5% with respect to the yearly rainfall, and are thus lower than
the minimum found in other studies [28], despite different cover crops being considered,
whereas interception losses are of course higher and equal to 10.58%.

However, this author is of the opinion that comparison of these values with those
obtained in other studies is not very meaningful, due to the high interactions between
climate variability, rainfall distribution, and cover crop management (growing season, date
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of planting, etc.) that should be analyzed to explain the impact of inter-annual variability
of interception/evaporation losses [48]. In this sense, the procedure described in this work
could be useful to study in deep these interactions, also accounting for the other parameters
as the cover fraction, the date of planting [42], the throughfall index and different rainfall
regimes and their changes [33,49] that were not considered in this work.

8. Conclusions

In order to derive the evaporation losses by wet canopy, the suggested procedure
combines a modified interception model proposed by Merrian, which is applied during
rainfall wet spells, and a simple power-law equation to model evaporation during the dry
spells. This simple approach makes it possible to estimate the evaporation losses during
continuous simulations, and requires few parameters that consolidate climate and crop
conditions. Moreover, it is shown that the Merrian model can be derived by considering
a simple linear storage model that makes it possible to account of the antecedent intercepted
volume, which is useful for applications. The crop considered in the application is the
faba bean that was described according to the general lengths of four distinct growth
stages considered in FAO56, whereas LAI and interception capacity were obtained from
literature. Since the required parameters are few, this simple approach could be applied
when a rough estimate of evaporation loss by wet canopy is necessary, in the absence of
a detailed characterization of canopy and climate. Due to simplified schemes, the procedure
can be easily applied at large scale, in order to study the important role of rainfall regime
and crop growing stages, on this important component of the hydrologic cycle, and it could
be suitable to be implemented according to a probabilistic line of approach.
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Abstract: Evapotranspiration (ET) is widely employed to measure amounts of total water loss
between land and atmosphere due to its major contribution to water balance on both regional and
global scales. Considering challenges to quantifying nonlinear ET processes, machine learning
(ML) techniques have been increasingly utilized to estimate ET due to their powerful advantage of
capturing complex nonlinear structures and characteristics. However, limited studies have been
conducted in subhumid climates to simulate local and spatial ETo using common ML methods.
The current study aims to present a methodology that exempts local data in ETo simulation. The
present study, therefore, seeks to estimate and compare reference ET (ETo) using four common
ML methods with local and spatial approaches based on continuous 17-year daily climate data
from six weather stations across the Red River Valley with subhumid climate. The four ML models
have included Gene Expression Programming (GEP), Support Vector Machine (SVM), Multiple
Linear Regression (LR), and Random Forest (RF) with three input combinations of maximum and
minimum air temperature-based (Tmax, Tmin), mass transfer-based (Tmax, Tmin, U: wind speed),
and radiation-based (Rs: solar radiation, Tmax, Tmin) measurements. The estimates yielded by the
four ML models were compared against each other by considering spatial and local approaches
and four statistical indicators; namely, the root means square error (RMSE), the mean absolute error
(MAE), correlation coefficient (r2), and scatter index (SI), which were used to assess the ML model’s
performance. The comparison between combinations showed the lowest SI and RMSE values for
the RF model with the radiation-based combination. Furthermore, the RF model showed the best
performance for all combinations among the four defined models either spatially or locally. In general,
the LR, GEP, and SVM models were improved when a local approach was used. The results showed
the best performance for the radiation-based combination and the RF model with higher accuracy for
all stations either locally or spatially, and the spatial SVM and GEP illustrated the lowest performance
among the models and approaches.

Keywords: evapotranspiration; machine learning; local; spatial; subhumid climate

1. Introduction

Evapotranspiration (ET) is a combination of two separate processes that transfer huge
volumes of water and energy from the soil (evaporation) and vegetation (transpiration)
to the atmosphere [1,2]. ET is the second greatest component of hydrological cycle and
a major component of the Earth’s surface energy balance. ET closely relates to plant
growth, droughts, gas efflux, and production. Since ET plays a crucial role in watershed
and agricultural water management, accurate spatial and local estimation of crop water
requirements (ETa) at the scale of human influence is a critical need for a wide range
of applications [3]. Quantifying ETa from agricultural lands is vital to the management
of water resources. Measurement methods of ETa are available through water vapor
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transfer methods (e.g., Bowen ratio, eddy covariance) [4–6], water budget measurements
(e.g., soil water balance, weighting lysimeters) [7–9], or remote sensing techniques [10–12].
However, the application of field scale methods is limited due to cost, complexity, and
maintenance. Estimating ETa using remote sensing models has developed in recent years,
but cloud existence in many areas during the satellite passing dates limits the imagery’s
usefulness. Therefore, due to difficulties in acquiring direct ETa measurements, ETa
can be estimated using by multiplying the calculated reference ET (ETo), using different
calculation methods and meteorological data, with the crop coefficient (Kc). However,
the required meteorological data for ETo calculation methods are not readily available
for many locations, and methods with fewer variables must be considered when basic
meteorological data are available [13]. However, the simplified and basic models are suited
to estimating ETo on a weekly or monthly basis instead of a daily basis [14].

The ETo calculation is a complex process due to a large number of associated mete-
orological variables, and it is hard to develop an accurate empirical model to overcome
all the complexities of the process [15]. Over the last few decades, machine learning
(ML) techniques have attracted the interest of streams of researchers around the globe to
overcome the ETa estimation complexity. These methods are evolutionary computation
techniques that can achieve the best relationship in a system with a data driving tool.
Due to the capability of the ML methods in tackling the nonlinear relationship between
dependent and independent variables [16], numerous ML techniques have been applied
and proposed to predict ETo for agricultural purposes including genetic programming
(GP) [17,18]; kernel-based algorithms, e.g., support vector machine (SVM) [19,20]; artificial
neural network [21–23]; wavelet neural network [14,24]; random forest (RF) [24,25]; and
multiple linear regression (LR) [26,27].

Several authors have applied ML methods to detect ETo values with minimum vari-
ation from the observed values [16,21,28]. Among these models, Gene Expression Pro-
gramming (GEP) and SVM illustrated better estimation than other models [29,30]. Gene
Expression Programming (GEP) is comparable to GP and both involve different sizes and
shapes of computer programs encoded in linear chromosomes of fixed length [16]. The
SVM method is a regression procedure that has been used successfully in the hydrology
context [30–32] and agro-hydrology for ETo modeling [19,33]. GEP has several advantages
compared to GP such as generating valid structures, its multigenic nature, and the ability to
surpasses the old GP system. Shiri et al. [17] evaluated GEP to estimate daily evaporation
through spatial and local data scanning Kişi and Çimen [34] studied the potential of the
SVM model in ETo prediction and observed that the SVM model could be useful for ETo
estimation and hydrological modeling studies. Shiri and Kişi [35] compared the GEP
and Adaptive neuro-fuzzy inference system (ANFIS) techniques for predicting short and
long-term river flows. They also used a similar comparison to predict groundwater table
fluctuations.

The LR model is one of the commonly used ML methods in hydrology [28,36]. It
has been used to cover the study of the relationship between two or more hydrological
variables and investigate the dependence and relationship between the successive values
of hydrologic data. Some researchers have used the LR method to estimate the ETo rate
for different regions due to the simplicity of the method compared to other numerical
methods [37,38]. Tabari et al. [27] compared the LR and SVM models’ performance for the
semi-arid region and found that the SVM model was superior to empirical and LR models.

Due to the high computational costs and complexity of the ML models, the tree-
based ensemble models attract people by their simplicity and estimation power. The RF
model as an ML tree-based model can produce a great result compared to the other ML
models [25,39]. This model is known for its simplicity and the ability to perform both
classification and regression tasks. The RF method is also widely used to predict the ET rate
of different climate regions [40]. Feng et al. [26] applied the RF model for ETo estimation
daily for southwest China and indicated that the RF model performed slightly better than
the general regression neural network model. Shiri [41] evaluated the coupled RF with
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wavelet algorithm to estimate ETo for the southern part of Iran and obtained results stating
that the coupled RF model showed a great improvement compared to the conventional RF
and empirical models. To our knowledge, this model has not been applied in the Northern
US for ETo studies.

According to the literature, GEP and SVM models have been frequently applied across
the world in various climate conditions for ETo estimation, while the LR and RF models’
applications were minimal. Besides, these models have not been compared with commonly
used SVM and GEP models for subhumid climate conditions. Since the limited studies have
been conducted to evaluate ML models for the Northern part of the US (which experiences
a high variability of weather conditions and a huge amount of agricultural production), the
objectives of this study were to (1) investigate the effect of different input combinations of
meteorological data on the accuracy of daily ETo estimation in subhumid climate using the
GEP, SVM, LR, and RF methods, (2) compare the spatial and local prediction capabilities of
the different ML models in ETo estimation, and (3) evaluate the performance of the models
based on the various study years and meteorological stations.

2. Materials and Methods
2.1. Study Area Climate and Reference Evapotranspiration (ETo)

The weather data for the current study were obtained from the North Dakota (ND)
Agricultural Weather Stations [42] located at Prosper (ND), Galesburg (ND), Leonard
(ND), Sabin (MN: Minnesota), Perley (MN), and Fargo (ND) for 17 study years (January
2003–December 2016). Geographical location of the study stations is shown in Figure 1.
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To calculate the daily reference evapotranspiration (ETo) for each study station, the
ASCE standardized reference evapotranspiration equation (ASCE-EWRI) was used for the
alfalfa reference crop [43]. This equation provides a standardized calculation of ETo de-
mand that can be used in developing Kc and comparing it with other methods. Equation (1)
presents the form of the standardized ETo equation for all hourly and daily calculation
time steps.

ETo =
0.408 ∆ (Rn − G) + γ Cn

T+273 u2(es − ea)

∆ + γ(1 + Cdu2)
(1)

where ETo is reference evapotranspiration rate (mm d−1), Rn is net solar radiation
(MJ m−2 d−1), G is soil heat flux (MJ m−2 d−1), γ is psychrometric constant (KPa ◦C−1), T
is the mean daily air temperature, U2 is the average wind speed at 2 m height (m s−1), es
is saturation vapor pressure (KPa), ea is actual vapor pressure (KPa), ∆ is the slope of the
saturation vapor pressure–temperature relationship (KPa ◦C−1), Cn and Cd are coefficients
which are related to the crop and time step. The value for the constants Cn and Cd are
1600 and 0.38 for the alfalfa reference crop. Table 1 summarized weather parameters of the
study locations for the study period.
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Table 1. Statistical summary of the weather data for the study locations for the study period.

Station Parameter Unit Xmax Xmin Xmean SX CV CSX

Prosper, ND

Tmax
◦C 37.9 24.3 11.3 14.3 1.27 −0.37

Tmin
◦C −29.8 −38.1 −0.8 13.0 −16.73 −0.28

WS m s−1 14.2 0.9 4.2 1.8 0.43 0.55
Rh % 100 13.8 68.6 15.6 0.23 −0.14
RS MJ m−2 31.1 0.3 13.2 7.9 0.60 0.51
ETo mm 11.4 0 2.4 2.03 0.84 0.92

Galesburg, ND

Tmax
◦C 36.8 23.6 10.9 14.2 1.30 −0.33

Tmin
◦C −28.9 −37.3 −1.0 12.7 −12.41 −0.28

WS m s−1 12.8 0.7 3.9 1.6 0.41 0.45
Rh % 100 18.8 68.1 15.2 0.22 −0.09
RS MJ m−2 30.7 0.2 12.8 7.9 0.61 0.51
ETo mm 10.6 0 2.3 1.97 0.85 1.03

Leonard, ND

Tmax
◦C 38.3 23.6 11.5 14.2 1.23 −0.39

Tmin
◦C −28.6 −37.7 −0.6 12.9 −21.05 −0.28

WS m s−1 13.2 0.9 4.2 1.7 0.42 0.50
Rh % 100 17.85 67.40 15.3 0.23 −0.02
RS MJ m−2 31.6 8.1 13.6 8.1 0.60 0.51
ETo mm 10.6 0 2.5 2.09 0.85 0.77

Sabin, MN

Tmax
◦C 37.8 24.3 11.2 14.1 1.26 −0.33

Tmin
◦C −30.2 −38.5 −0.2 13.0 −73.34 −0.24

WS m s−1 12.7 0.5 4.0 1.7 0.42 0.46
Rh % 100 18.70 68.80 14.9 0.22 −0.08
RS MJ m−2 31.6 0.4 13.0 7.9 0.61 0.51
ETo mm 10.1 0 2.4 2.02 0.86 0.85

Perley, MN

Tmax
◦C 37.3 24.1 10.9 14.3 1.31 −0.36

Tmin
◦C −30.5 −40.7 −0.7 13.1 −18.07 −0.30

WS m s−1 11.8 0.8 4.1 1.7 0.41 0.48
Rh % 100 17.22 69.10 14.9 0.22 −0.08
RS MJ m−2 31.3 0.4 12.8 7.9 0.61 0.51
ETo mm 10.9 0 2.3 2.02 0.84 1.12

Fargo, ND

Tmax
◦C 39.6 25.6 11.4 14.2 1.24 −0.36

Tmin
◦C −29.5 −36.8 0.6 13.0 21.89 −0.23

WS m s−1 11.3 0.8 3.8 1.5 0.39 0.40
Rh % 100 15.55 66.19 14.9 0.23 −0.05
RS MJ m−2 31.0 0.1 12.8 7.9 0.61 0.52
ETo mm 10.5 0 2.5 2.07 0.84 0.92

2.2. Models Structure and Application

To process the GEP and SVM algorithm, we used the GeneXpro program in Matlab,
and to process the LR and RF models, a scikit-learn module embedded in the Python 3.2 pro-
gramming language was used. GEP is an extension of GP [44] developed by Ferreira [45]
that creates a computer program to investigate a relationship between input and output
variables. GEP was developed to find a better solution for solving a particular problem
relating to the understudied phenomena [46].

The application of GEP requires several steps. GEP is, like GAs and GP, a genetic
algorithm, as it uses populations of individuals, selects them according to fitness, and intro-
duces genetic variation using one or more genetic operators. The procedure to model daily
evapotranspiration (as a dependent variable) by using weather variables (as independent
variables) is as follows: 1. Selection of fitness function; 2. Choosing the set of terminals
T and the set of functions F to create the chromosomes; 3. Choosing the chromosomal
architecture; 4., Choosing the linking function; 5. Choosing the genetic operators.

The fitness function must be determined in the first step with a random generation
of chromosomes of a certain program (initial population) and evaluated against a set of
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fitness cases [47]. Using weather station data as input variables (terminals) to model daily
ETo involves the next general step. The selection of fitness functions (i.e., absolute error,
relative error, and correlation coefficient) depends on the experience and intuition of the
user. The GEP model in the current study was developed based on the recommended
functions by Shiri et al. [17]. In the third step, the chromosomal architecture can be defined
by having the weather variables as terminal and function set as chromosomes. The fourth
step was to select a linking function that relates genes to each other in addition to linking
the parse trees [17]. Finally, genetic operators’ corresponding rates were chosen. Table 2
summarizes the commonly used parameters for each run.

Table 2. Parameters used per run of gene expression programming (GEP).

Number of
Chromosomes 30 One-Point

Recombination Rate 0.3

Head of the size 8 Two-point
recombination rate 0.3

Number of genes 3 Gene recombination rate 0.1
Linking function Addition Gene transposition rate 0.1

Fitness function error type RMSE Insertion sequence
transposition rate 0.1

Mutation rate 0.044 Root insertion sequence
transposition 0.1

Inversion rate 0.1 Penalizing tool parsimony pressure

The SVM was developed by Cortes and Vapnik [48] and is known as the classification
and regression method [34] to solve problems by applying a flexible representation of the
class boundaries and implementing an automatic complexity control to reduce overfitting.
In SVM, the dependency of the dependent variable to a set of independent variables is
evaluated. In regression estimation with Support Vector Regression (SVR), which is used
to define SVMs in the literature, a functional dependency f (x) between a set of sampled
input points X = {x1, x2, x3, . . . , xl} (here, input sampled refer to meteorological variables)
taken from Rn (input vector of n dimension) and target values Y = {y1, y2, y3, . . . , yl} (ETo
as target values) with yi ∈ Rn. More detail on SVM can be found in Vapnik [49].

The LR is a statistical method used to describe a quantitative relationship between a
dependent variable and one or more independent variables [27,50]. In LR, the function is a
linear equation and is expressed as:

Yi = bo + b1 × 1 + . . . . + bkxk (2)

where bo–bk are the fitting constants, yi is the dependent variable, and x1–xk are the
independent variables for this system.

The RF method combines a group of decision trees for either classification or regression
purposes. Although each decision tree may not be capable of learning well, the combination
of the decision trees results in a strong learner. Each decision tree predicts the outcome
individually, and RF votes among the outcomes for classification or averages the outcomes
for regression. Each decision tree is trained on a different subset of samples by a bagging
extension of the RF model to reduce the risk of overfitting. Moreover, a different subset of
input variables can be used in each tree to make it more useful in prediction for datasets
with higher dimensions [51]. For this study, a small subset of data was used to find a good
combination of parameters for the RF model. As a result, there were several trees in the
forest and the minimum number of samples required for the leaf nodes were 50 and 35,
respectively. The mean square error criteria are used as a procedure for estimation.

The calculated daily ETo was used to feed the GEP, SVM, LR, and RF models. Three
treatments including temperature, radiation, and mass transfer-based combinations were
used as input to feed the models, and each model of the combinations was assessed for
spatial and local approaches. Different statistical analysis was performed to evaluate the
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accuracy and performance of the different combinations and approaches for each studied
station. The combinations were as follows:

(i) Tmin, Tmax: temperature based (GEP1, SVM1, LR1, RF1)
(ii) Tmin, Tmax, Rs: radiation-based (GEP2, SVM2, LR2, RF2)
(iii) Tmin, Tmax, W: mass transfer based (GEP3, SVM3, LR3, RF3).

2.3. K-Fold Cross-Validation

Splitting the data into the sets of data for testing and training is a usual procedure for
assessing the ML techniques. Using 10–30% of the complete dataset as a single test set is
a common method for GEP evaluation. Therefore, the K-fold cross-validation technique
was used to increase the evaluation performance and set of data for either training or
testing purposes. Using K-fold cross-validation, the dataset was divided into K subsets,
and the training process was repeated K times leaving each time a distinct set of patterns
for testing until a complete testing scan for the dataset was fulfilled. Computation cost
defines the minimum assembly size of the test set. Here, the minimum test size was fixed
as one year for local modeling and one station for spatial modeling. Consequently, at a
local scale, one year was held out each time for testing while the models were trained
using the remaining 16 years; hence, a total of 612 models (17 years × 6 stations × 3 input
combinations × 2 models) were established for the local k-fold testing. At the spatial scale,
one station was considered as a test block each time and the models were trained using the
patterns from the remaining stations; hence, a total number of 36 models (6 stations × 3
input combinations × 2 models) were constructed. The local and spatial approaches were
noted with T and S in the figures.

2.4. Evaluation Criteria

To investigate the performance of the models for each combination and approaches,
four statistical indicators were used, namely, the root mean square error (RMSE), the mean
absolute error (MAE), correlation coefficient (r2), and scatter index (SI), defined as follows:

RMSE =

√
1
n

n

∑
i=1

(ETe − ETo)
2 (3)

MAE =
∑n

i=1|ETe − ETo|
n

(4)

r2 = (
∑n

i=1
(
ETo − ETo

)(
ETe − ETe

)
√

∑n
i=1
(
ETo − ETo

)2
∑n

i=1 (ETe − ETe)
2
)

2

(5)

SI =
RMSE

Eo
(6)

where ETe and ETo are simulated and calculated reference evapotranspiration at the i-th
time step, respectively, n is a number of time steps, ETe and ETo are mean values of
simulated and calculated ETo, respectively.

The RMSE describes the average magnitude of errors and can take on values from 0 to
∞ indicate perfect and worst fit, respectively, and the MAE scores the error magnitudes
without any specific weight to larger/smaller errors. Therefore, the lower value of the
RMSE and MAE is desirable. The r2 values around 1 indicate a perfect linear relationship
between estimated and calculated values, where the closer a value is to zero, the more it
demonstrates the poor relationship between simulation and calculation. Finally, SI is a
dimensionless index of RMSE that gives a good insight to compare the performance of
different models.
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3. Results and Discussions

The local and spatial analysis of four models for six studied stations is shown in
Table 3. According to the three combinations’ performance, the radiation-based method
illustrated the highest accuracy for either local or spatial approaches compared to the
other combinations. The mass-transfer-based combination was the next most accurate
combination. The results showed that the local trained models surpassed the spatially
trained models because of using the same patterns for both training and testing models.
However, the spatial models gave comparable results compared to the local model in some
cases, especially for radiation-based combinations. Differences in temperature among
the stations have dramatically affected the performance of both the temperature-based
and the mass transfer-based models. In all cases, the minimum differences between the
performance accuracy of the local and spatial models belonged to the LR model. This can
be inferred to the mathematical structure of this technique, where only linear relationships
can be supposed between the input and target parameters with a lower degree of flexibility
compared to heuristic data driven models.

Table 3. Global average performance indicators of the gene expression programming (GEP), support vector machine (SVM),
multiple linear regression (LR), and random forest (RF) methods for three input combinations of local (T) and spatial (S) approaches.

Evaluation
Criteria

Input Combination

1 (Temperature-Based) 2 (Radiation-Based) 3 (Mass-transfer-based)

Approach GEP SVM LR RF GEP SVM LR RF GEP SVM LR RF

R2 T
S

0.75
0.78

0.80
0.75

0.77
0.77

0.85
0.84

0.85
0.87

0.91
0.85

0.88
0.88

0.92
0.93

0.77
0.77

0.86
0.77

0.78
0.78

0.86
0.88

RMSE
(mm/day)

T
S

0.90
1.07

0.97
1.13

0.97
0.98

0.82
0.80

0.71
0.76

0.72
0.77

0.68
0.69

0.57
0.55

0.72
0.91

0.73
0.93

0.94
0.95

0.73
0.69

MAE
(mm/day)

T
S

0.64
0.84

0.71
0.82

0.76
0.77

0.58
0.57

0.50
0.57

0.54
0.61

0.51
0.52

0.38
0.36

0.64
0.69

0.62
0.67

0.75
0.76

0.53
0.49

SI T
S

0.38
0.44

0.41
0.46

0.40
0.40

0.34
0.33

0.29
0.32

0.30
0.33

0.28
0.29

0.24
0.23

0.35
0.38

0.33
0.36

0.39
0.39

0.30
0.28

Among four models with three input combinations, the models relying on radiation,
mass-transfer, and temperature-based combinations showed the lowest RMSE and MAE,
respectively (Table 3). Comparing the GEP, SVM, LR, and RF models, the RF model
illustrated the lowest rate of RMSE and MAE with the best performance for radiation-
based approaches. However, the RF model improved 4.37, 5.76, and 1.49 percent from local
to spatial approaches for temperature, radiation, and mass-transfer-based combinations,
respectively, which was in contrast with the improvement’s direction in the other models.
Considering the models based on radiation combination, the spatial RF model exhibited the
highest linear relationship (r2 = 0.927) between calculated and estimated ETo in comparison
with the other models. The local RF method was the next accurate approach to estimate ETo
based on radiation-based data. This observation illustrated the ability of the RF algorithms
to estimate ETo using data from local stations for training. Furthermore, the LR model
had significant improvement for RMSE and MAE from spatial to local approaches for all
three types of input combinations. For the LR model, the r2 value was not changed for
radiation-based and temperature-based combination from spatial to local approaches and
the change was 0.13 percent for the mass-transfer-based model. Therefore, the LR model
illustrated almost similar results for both spatial and local approaches among all models.

The GEP and SVM models illustrated the great improvement rate for all three input
combinations from spatial to local condition with the highest improvement of 21 percent
for mass-transfer-based combination. Specifically, the GEP model showed an improvement
from spatial to local approach, however, the percentage of improvement was 2.3, 3.9, and
0.13 for radiation, temperature, and mass-transfer-based combinations, respectively. In
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term of obtained improvement for RMSE and MAE from spatial to local approaches, both
of the GEP and SVM models gained similar results. The correlation coefficient of the SVM
model decreased from spatial to local approaches for about 6.3, 6.5, and 10.9 percent for
radiation, temperature, and mass-transfer-based combinations, respectively. By using
local radiation data for training the models, the SI indicator for the GEP and SVM models
showed an improvement of 8.2 and 10 percent from spatial to local approach, respectively.
This improvement was about 6.6 and 8.7 percent for mass-transfer-based and 15 and
10.9 percent for temperature-based combinations, respectively.

Statistical analysis revealed the similar performance of the local GEP and SVM models.
For RMSE and MAE statistical variables, GEP and SVM models showed a greater improve-
ment in performance for mass-transfer and temperature-based combinations, respectively.
By considering correlation coefficient values, it can be concluded that the improvement in
accuracy of either GEP or SVM approaches was not significant and all illustrated the ability
to estimate with acceptable accuracy. Therefore, if temperature data are not available at
a particular station, but they are for other stations, the GEP and SVM approaches can be
useful to estimate ETo. However, due to the higher mapping ability of the GEP models,
using either local or spatial GEP are preferable.

The models relying on the mass-transfer combination had slightly higher accuracy
than the temperature-based approach, but lower accuracy compared to the radiation-
based combination. All of the local and spatial GEP and SVM methods illustrated lower
improvement compared to that for the temperature-based approach. This showed that
wind speed can have a significant effect on the accurate estimation of spatial and local
ETo. Due to the flat topography of the study area and being faced with lots of high-speed
winds during the growing season and almost all other seasons, including the wind as a
parameter to build the model architecture and estimating the ETo can increase the accuracy
of the approach.

Overall, the RF and the LR models illustrated the best performance among the four
models, and comparing the GEP and SVM models, the GEP model showed better perfor-
mance than the SVM model for all three input combinations.

A breakdown of the models’ performance accuracy at each station is shown in Figures 2–4
for all of the three input combinations, respectively. In the case of the temperature-based
combination (Figure 2), the local GEP and SVM models (shown as TGEP and TSVM) gave
more accurate results than the spatial (shown as SGEP and SSVM) models. For the LR and
RF models, the difference in accuracy between local (TLR and TRF) and spatial approaches
(SLR and SRF) was not significant and both showed better performance than GEP and
SVM models since they relied on the patterns of the same location used for training and
testing the models. According to Table 2, station 6 (Fargo) had the highest, and station 2
(Galesburg) had the lowest range of recorded temperature among the study stations. This
range may be caused to have the lowest performance for station 2; however, it was difficult
to evaluate the model’s performance in the climate context of each station due to the
few number of study stations. The RF model showed the best performance with higher
accuracy for all stations either locally or spatially, and the spatial SVM and GEP illustrated
the lowest performance among other models and approaches.
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The RF and LR methods showed the lowest range of SI compared to the spatial and
local GEP and SVM methods. For temperature-based combinations, the spatial and local LR
approaches had minimum SI ranges of 0.018 and 0.020, respectively, and the spatial SVM
and GEP methods illustrated the highest SI ranges of 0.113 and 0.119, respectively. The
spatial RF approaches with an average of 0.333, and spatial SVM, with an average of 0.457,
showed the lowest and highest SI rate, respectively. Therefore, spatial RF approaches may
be the most practical way to estimate the missing meteorological data of the study stations.

Figure 3 shows the evaluation result of the radiation-based combination for the four
models with spatial and local approaches. The amount of received radiation for all study
stations was similar. According to the global performance of the defined models, the
radiation-based combination gained the best performance among the three input combi-
nations. Besides, the radiation-based combination had the lowest rate of RMSE, MAE,
and SI, and the highest rate of r2 for each of the study stations. Among the spatial and
local scenarios, the local approach had a better performance than the spatial approach.
For the radiation-based combination, the spatial RF and local RF models had an accurate
estimation of ETo, respectively. For stations 3 and 4 (Leonard and Sabin) either spatial or
local approaches of GEP and SVM models gained lower performance than the other sta-
tions. This could be due to the slightly higher magnitude and variations of solar radiation
(Table 2) among the other stations during the study period.

Among the study stations comparison, the SI range of the spatial RF was 0.018, which
showed the best performance compared to the other applied methods. As obtained from
the temperature-based combination, the LR method performed well in the radiation-based
combination too, with an SI indicator range of 0.021 and 0.024 for local and spatial LR
approaches, respectively. The worst performance was observed for spatial GEP and SVM
approaches, with SI indicator of 0.128 and 0.140, respectively. According to the GEP and
SVM models, the local GEP performed well compared to other approaches of the SVM and
GEP models. The statistical indicators were in agreement with the spatial RF performance
in which they showed the lowest rate of RMSE and MAE and the highest value of r2.
However, comparing the MAE might not be a valid indicator due to taking into account the
local order of magnitude of the target variable. The ranking of the SI indicators showed that
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spatial RF and LR could overcome the lack of meteorological data for the station. On the
other hand, the averages of the SI values for all six study stations showed that the spatial
RF and local RF had the lowest and the spatial GEP and spatial SVM had the highest rate
of SI indicators. Therefore, either spatial or local RF methods could be useful to estimate
the missing values for any of the stations.

Figure 4 shows the statistical indices of the mass-transfer-based combination. Similar
to the previous combinations, the spatial and local RF gave a more accurate estimation than
other methods. On the other hand, the local SVM approach showed better estimation than
the spatial SVM and GEP methods for all stations except station 2, which had the lowest
range of temperature variation. The fluctuations of the indices among the stations were
higher than the radiation-based combination and lower than that for temperature-based
combination, which showed mediocre accuracy compared to the other combinations.

By having wind speed and temperature data as the input variable for the mass transfer-
based combination, the spatial RF approach gained the lowest SI and highest r2 values for
ETo estimation compared to all other methods. The minimum and maximum SI values
for mass transfer-based combination were obtained for the spatial RF and spatial SVM
approaches, which were 0.011 and 0.120, respectively. According to the performance
ranking of the models based on the SI indicator, spatial LR, local LR, and local RF showed
better performance after spatial RF with SI values of 0.015, 0.018, and 0.018, respectively.
The local SVM, local GEP, and spatial GEP had the SI values of 0.087, 0.10, and 0.119,
respectively. The average of SI for all study stations showed that the spatial and local LR
had the highest and spatial and local RF had the lowest SI values, respectively. Therefore,
by having the lowest range of SI and lowest value of SI for the spatial RF approach, it
might be more practical to apply the spatial RF for other stations without training a specific
model for each station. Accordingly, no local dataset would be needed to train the local
models. This could be helpful to estimate the ETo for stations with partial or missing
meteorological data.

To understand the yearly performance of the applied models based at each of the
study stations, the models were assessed per test year. Figure 5 illustrates the SI values
obtained from the three input combinations for each study year of the study stations. The
SI values of the models fluctuated considerably for almost all stations during the test years.

As shown in Figure 5, the SI values fluctuated considerably within test years for all
input combinations and approaches. Among the study stations, Prosper and Sabin stations
showed the average maximum range for the SI values. The minimum average of the SI
value 0.223 was observed for the RF radiation-based combination for the Fargo station, and
the maximum average of the SI was obtained for the SVM temperature-based combination
(SVM1) for the Galesburg station. The Galesburg station had the lowest temperature range
among the study stations. According to Figure 4, the RF2 (radiation-based combination)
model showed the lowest fluctuation compared to the other approaches with a similar trend
among the study stations. For all of the study stations, test years, and input combinations,
the RF models gave the best performance with the lowest SI values compared to the other
models and combinations. The SVM and GEP models showed the worst SI averages for the
temperature-based combinations. In this case, the order of the accuracy of the models was
similar to that obtained from the station-based analysis. The radiation-based combination
gave the most accurate results and estimation in comparison with the temperature or
mass-transfer-based combination models.

Comparing the performance of the models relying on each of the combination methods,
it can be observed that the performance of the approaches is similar. However, the range
of the SI indicator for different approaches was different depending on the test years. For
example, 2011, 2012, and 2013 were the dry, normal, and wet years among the study years,
respectively. The result of SI per test years showed that 2012 had lower SI than 2011 and
2013 for all of the three input combinations, and the SI values of the various methods
and approaches were close together. On the other hand, for the 2013 test year, some of
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the approaches illustrated a huge jump for the obtained SI from 2012 to 2013 due to the
weakness of the model performance.
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Due to the variability in the meteorological data and the climate pattern, the variability
in performance accuracy at each station was expected. Similar variability in performance
of the ML approaches was observed by Shiri et al. [17]. Selection of the training set and
testing set plays an important role in model performance. The existence of any abnormal
year in the test years in comparison with training datasets causes it to have an inaccurate
estimation [19]. By lowering the number of the input values, the validity of the training
set for estimation of test years decreases. Because of the lower input values, the variable
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rate would be low, and this type of input would only be valid for periods with very
specific trends. This explanation may clarify the performance of spatial approaches, where
the relationship encountered might be site-specific. Other researchers illustrated the site-
specific performance of spatial approaches for the different study regions and climate
conditions [34,35].

The comparison of the three input combinations showed that the performance of some
approaches was similar for some years while the performance of methods for some years
were far from each other. For example, the SVM model showed the most improvement
from temperature to mass-transfer-based combination, which became like the RF method.
However, depending on the station and test year, this similarity becomes even closer. All
the test years and stations showed an improvement from temperature to radiation or
mass-transfer-based combination except for the Prosper station, which is in agreement
with the findings of Adnan et al. [15]. On the other hand, the Prosper station showed
the best improvement for the SVM model for radiation-based approaches. Considering
that all of the input combinations rely on the temperature and another variable (solar
radiation or wind speed), it might be thought that the performance differences could be
due to the effect of the second variable in the estimation of the output. Besides, when the
performance of the models is similar, the impact of the secondary variable might be less
than the primary variable (temperature). However, when the gap between the performance
of the SI indicator increases, it proves the crucial impact of the second variable on the model
performance for the specific test year or station. A similar conclusion could be drawn
for the comparison between the input combinations. If each of the combinations shows a
better performance than the other combination method for a specific year and station, the
second variable effect should be important and might have a significant influence in the
explanation of the output for that test year.

4. Conclusions

This paper aimed to evaluate the different ML methods including GEP, SVM, LR, and
RF to estimate ETo in the Red River Valley. The external approach exempts using local
data like spatial approaches in the current paper for simulating ETo values in a decisive
way when local data is not available, reliable, or sufficient. Global comparison of the
performance accuracy of the applied models revealed that the RF model was the best for all
combinations among the four defined models. Furthermore, the RF model illustrated the
best performance for spatial and local conditions for all input combinations. In general, the
LR, GEP, and SVM models were improved when a local approach was used, except for the
RF model, which was less accurate with a local approach. The radiation-based combination
was the most accurate predictor among all models tested. As a result, this combination
showed the lowest rate of improvement due to better performance in the first step.

The results showed that due to the flat topography of the study area with high
wind speeds during the growing season, including the wind as a parameter to build
the model architecture and estimate the ETo can increase the accuracy of the prediction.
Besides, it might be more practical to apply the spatial RF model for stations with missing
meteorological data without the need for local training. The recommended application
of spatial RF using radiation combination allows for a more reliable estimate of ETo to
fill the missing values for more precision water management purposes. Further research
should confirm the current results in other geographical locations and for the various input
combination methods.
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Abstract: Sound estimates of drought characteristics are very important for planning intervention
measures in drought-prone areas. Due to data scarcity, many studies are increasingly using less
data-intensive approaches, such as the evapotranspiration deficit index (ETDI), in estimations of
agricultural droughts. However, little is known about the sensitivity of this specific ETDI formula
to its parameters, and to data at different temporal scales. In this study, a general ETDI formula,
homologous to the specific ETDI formula, was introduced and used to test the sensitivity of the ETDI
to its parameters and to data at different temporal scales. The tests used time series of remotely
sensed evapotranspiration data in the Ruvu River basin in Tanzania. The parameter sensitivity tests
revealed that ETDI is sensitive to its parameters, and different parameter combinations resulted in
different drought characteristics. The temporal scale sensitivity test showed that drought charac-
teristics, such as the number of drought events and the total drought durations, decreased as the
temporal scale increased. Thus, an inappropriate temporal scale may lead to the misrepresentation
of drought characteristics. To reduce uncertainty and increase the accuracy of ETDI-based agricul-
tural drought characteristics, ETDI requires parameter calibration and the use of data with small
temporal scales, respectively. These findings are useful for improving estimations of ETDI-based
agricultural droughts.

Keywords: agricultural drought; drought characteristics; evapotranspiration deficit index; parameter
sensitivity; temporal scale sensitivity; water stress anomaly

1. Introduction

Drought is an environmental disaster that brings severe social, economic, and envi-
ronmental impacts around the world. Thus, drought is usually categorized into four main
operation-based types, namely, meteorological drought, hydrological drought, agricultural
drought, and socio-economic drought [1–5]. Since drought is often caused by a decrease
of precipitation below the normal amount, agricultural productivity is usually the most
affected due to its direct dependence on water resources, especially soil moisture. Drought
begins when the soil moisture available to plants drops to a level that adversely affects
the crop yield and, consequently, agricultural production [6,7]. The decline of agricultural
production indirectly causes critical issues such as food insecurity, which may eventually
lead to socio-economic consequences. For this reason, understanding agricultural drought
is vital for planning mitigation and adaptation measures in areas susceptible to drought.

Several indices have been developed to estimate agricultural drought using various
water balance parameters. Most of these indices use precipitation, temperature, actual
evapotranspiration (ET), and potential evapotranspiration (PET) data, and crop charac-
teristics, crop management practices, etc. [8–11]. One of the prominent drought indices
is the evapotranspiration deficit index (ETDI) [12]. The ETDI uses ET and PET data for
estimating short-term agricultural drought [12]. ETDI can be scaled between −2 and +2
to compare with the standardized precipitation index [13–17], or between −4 and +4 to
compare with the Palmer drought severity index [18]. Details about other drought indices
are found in the studies by Sivakumar, et al. [19] and Zargar, et al. [20].
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ETDI has been widely used to estimate drought in many parts of the world. Narasimhan
and Srinivasan [12] used ETDI for monitoring the agricultural drought of six watersheds
located in major river basins across Texas, United States. Trambauer, et al. [17] used ETDI
to analyze hydrological drought in the Limpopo River basin, southern Africa. Esfahanian,
et al. [21] used ETDI and other drought indices to develop a comprehensive drought
index in the Saginaw watershed in Michigan, United States. Bayissa, et al. [2] used ETDI
in comparisons of drought indices in the Upper Blue Nile Basin, Ethiopia. Wambura
and Dietrich [22] used ETDI to analyze spatio-temporal drought in the Kilombero catch-
ment, Tanzania. In all these studies, ETDI was computed using the specific ETDI formula.
Thus, the sensitivity of ETDI to its parameters and to data at different temporal scales is
hardly known.

Therefore, the objective of this study was to investigate the sensitivity of ETDI (1) to
its parameters, and (2) to data at different temporal scales. First, a general ETDI formula
homologous to the specific ETDI formula was introduced. Then the general ETDI formula
was used to test the sensitivity of ETDI to its different parameter combinations. Finally, the
sensitivity of ETDI to remotely sensed ET and PET data at different temporal scales (i.e.,
8-day, 16-day, and 1-month) was also tested under a constant parameter combination.

2. Materials and Methods
2.1. Case Study

The study area was the Ruvu River basin located between 6◦18′ S–7◦46′ S and 37◦15′

E–38◦58′ E in eastern Tanzania (Figure 1). Its headwaters originate on the eastern slopes of
the Uluguru Mountains and descend northeast towards the coast in a swampy estuary at
the Indian Ocean. The basin area is approximately 17,693 km2, and its elevation ranges
between 4 and 2636 m above sea level (Figure 1) [23].
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Figure 1. The Ruvu River basin showing elevation [23] and the points (P1 to P12) used to extract the
time series of evapotranspiration and potential evapotranspiration from remote sensing images.

The average air temperature in the basin is between 18 ◦C in August and 32 ◦C in
February, whereas the mean annual rainfall ranges from 800 mm to 2000 mm [24]. This
region of coastal Tanzania is also known to have frequent and intense drought episodes [25].
Thus, the river basin has a very dynamic weather system. The Ruvu River basin was
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selected because of these dynamic weather systems, which are often very sensitive to even
small changes in the western Indian Ocean sea surface temperature.

2.2. Main Datasets Used

Due to data scarcity in this region, ET and PET data used in this study were obtained
from the Moderate Resolution Imaging Spectroradiometer (MODIS) imagery program [26].
The remotely sensed ET and PET products from the MODIS program were MOD16A2-v5
(from now on MODIS ET), and were available at a spatial resolution of 1 km and tem-
poral resolution of 8 days and 1 month. The first dataset consisting of 690 images of
8-day MODIS ET covering the Ruvu River basin was downloaded from the MODIS repos-
itory (http://files.ntsg.umt.edu/data/NTSG_Products/, accessed on 15 October 2017).
Another dataset consisting of 180 images of 1 month MODIS ET covering the river basin
was also downloaded from the same repository (accessed on 10 July 2019). The two MODIS
ET datasets spanned between the years 2000 and 2014.

Each of the twelve points (P1 to P12) spatially distributed in the Ruvu River basin
(Figure 1) was used to extract two pairs of time series from the MODIS ET datasets. First,
the twelve points extracted ET and PET time series from the 8-day MODIS ET dataset.
Then the 8-day time series of ET and PET were aggregated to form a 16-day time series.
The conversion to a 16-day timestep was necessary because MODIS ET products are
only available at 8-day and 1-month timesteps. Finally, the twelve points were also used
to extract monthly ET and PET time series from the monthly MODIS ET dataset. For
illustration purposes, Figure 2a–c shows the 8-day, 16-day, and monthly ET and PET at
point P1.

2.3. Evapotranspiration Deficit Index Approach

The ETDI approach involves three steps, first, the estimation of water stress (WS),
then, the estimation of the water stress anomaly (WSA), and finally, the estimation of ETDI.
The estimation of WS at a point uses Equation (1) [2,12].

WSi,j =
PETi,j − ETi,j

PETi,j
(1)

where i represents a period (e.g., month i) in a given year, j. The years range between
2000 and 2014 with a timestep of one year. WS ranges from 0 (ET is the same as PET) to 1
(no ET).

The estimation of WSA at a point uses Equation (2) [12]. Equation (2) removes the
seasonality inherent in the time series of WS.

WSAi,j =





med WSi − WSi,j
med WSi − min WSi

i f WSi,j ≤ med WSi
med WSi − WSi,j

max WSi − med WSi
i f WSi,j > med WSi

(2)

where min WS, med WS, and max WS are long-term minimum, median, and maximum
WS values at time i from all years in the time series. WSA ranges from −1 to +1 indicating
extremely dry to extremely wet conditions, respectively.

The estimation of ETDI at a point uses a cumulating procedure similar to that of the
soil moisture deficit index [12]. In analogy to the original formulation of the soil moisture
deficit index, the change in ETDI is equal to the difference between two consecutive ETDIs
(Equation (3)) [12].

∆ETDIt = ETDIt − ETDIt−1 (3)

where ∆ETDI represents a change in ETDI. The subscripts t and t− 1 represent consecu-
tive periods (e.g., month t and month t− 1, respectively) continuously ranging from the
beginning to the end of the record.
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Figure 2. Typical Moderate Resolution Imaging Spectroradiometer (MODIS) evapotranspiration (ET) and potential evap-
otranspiration (PET) time series at (a) 8-day, (b) 16-day, and (c) 1-month temporal scales [26] at point P1 in the Ruvu
River basin.

On the basis of the contribution of the previous drought severity, the change of the
current ETDI depends on a weighted contribution of the previous ETDI, and the full
contribution of the current WSA (Equation (4)) [12].

∆ETDIt = c ETDIt−1 +
WSAt

50
(4)

where c controls the contribution of the previous ETDI. In Equation (4), Narasimhan and
Srinivasan [12] scaled WSA between −100 and +100 (percentages). Thus, the value of 50
in this equation reduces WSA from ±100 to ±2, so that the ETDI of consecutive extreme
drought events lies between −4 and +4.

By combining Equations (3) and (4), Narasimhan and Srinivasan [12] created the spe-
cific ETDI formula which states that the current ETDI is the sum of half of the previous ETDI
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and the current WSA (Equations (A1) and (A2) in Appendix A). The specific ETDI formula
is a linear equation, and the coefficient of WSA was assumed to be one. Moreover, a resid-
ual term was also not addressed by the specific ETDI formula (Equations (A1) and (A2) in
Appendix A).

From Equation (4) it is apparent that the importance of the previous ETDI or drought
memory with respect to WSA cannot always be the same at different land cover types or
climatic regions [27–30]. Therefore, this study modified Equation (4) to include a coefficient
β to the WSA term, in order to facilitate the calibration of both drought memory and WSA
at different places (Equation (5)). With regard to Equation (2), here WSA was considered
to range between −1 and +1, so that the ETDI of consecutive extreme drought events
does not exceed −2 and +2 [2,17]. In addition, a residual term, γ, was introduced because
Equation (4) resembles a linear equation (Equation (5)).

∆ETDIt = c ETDIt−1 + β WSAt + γ (5)

By combining Equations (3) and (5), this study obtained the ETDI formula that incorpo-
rates weighted contributions of both the previous ETDI and the current WSA (Equation (6)).

ETDIt = (1 + c) ETDIt−1 + β WSAt + γ (6)

The general ETDI formula (Equation (7)) was obtained by replacing (1 + c) in Equa-
tion (6) with an α. The general ETDI formula has three variables and three unknown
coefficients, including the constant term. The general ETDI formula is homologous to the
specific ETDI formula. Therefore, the specific ETDI formula (Equation (A2) in Appendix A)
is a special case of the general ETDI formula (Equation (7)).

ETDIt = α ETDIt−1 + β WSAt + γ (7)

where α modulates the long-term memory of ETDI.
At an extremely dry boundary condition, consecutive dry periods have WSAt equal

to −1, and ETDIt and ETDIt−1 equal to −2. Likewise, at an extremely wet boundary
condition, consecutive wet periods have WSAt equal to +1, and ETDIt and ETDIt−1 equal
to +2. By substituting these two boundary conditions in Equation (7), the γ-parameter
becomes 0. Therefore, the general ETDI formula (Equation (7)) becomes Equation (8).

ETDIt = α ETDIt−1 + β WSAt (8)

Again, by substituting either of the two boundary conditions (i.e., extremely dry or
extremely wet), Equation (8) turns into a parameter equation that governs the relationship
between α and β parameters (Equation (9)). Figure 3 shows the straight line of Equation (9).

β = − 2α + 2 (9)

Equation (9) indicates the presence of a large number of parameter combinations along
the straight line. Table 1 shows the ranges of those parameter combinations at consecutive
extremely dry and wet boundary conditions. Thus, for values of ETDI in Equation (8) to
span between −2 and +2, values of α should range between 0 and 1, and values of β should
range between 0 and 2 (Equation (9), Figure 3, Table 1). Therefore, the estimation of the
ETDI time series at a point should use Equation (8), where parameters are governed by
Equation (9), and at an initial condition, ETDI equals zero. In this study, an ETDI time
series derived using (α, β)-parameters is hereafter referred to as an ETDI(α, β) time series
or curve.
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coefficients of the previous evapotranspiration deficit index and the current water stress anomaly,
respectively.

Table 1. Evapotranspiration deficit index (ETDI) of a point in time (t) at consecutive extremely dry and wet boundary
conditions for three different ranges of (α,β)-parameter combinations. WSA represents water stress anomaly.

Extreme ETDIt−1 WSAt ETDIt at (α < 0, β > 2) ETDIt at (0 ≤ α ≤ 1, 2 ≥ β ≥ 0) ETDIt at (α > 1, β < 0)

Dry–Dry −2 −1 −2 −2 −2
Wet–Wet +2 +1 +2 +2 +2
Dry–Wet −2 +1 >+2 −2 to +2 <−2
Wet–Dry +2 −1 <−2 −2 to +2 >+2

2.3.1. Parameter Sensitivity Test

The parameter sensitivity test used 8-day ET and PET data at point P1 in the Ruvu
River basin (Figures 1 and 2). Prior to the parameter sensitivity test, Equations (1) and (2)
were used to estimate WS and WSA, respectively. Since the parameter sensitivity test
intended to investigate how ETDI values from Equation (8) change relative to various
α and β parameter combinations, a sample of eleven α-parameters from 0.0 to 1.0 at an
interval of 0.1 was selected and used to obtain corresponding β values using Equation (9).
Then by using Equation (8), WSA values at point P1 were used to generate an ETDI curve
for each parameter combination.

ETDI curves for all parameter combinations at point P1 were finally used in a correla-
tion analysis in order to investigate parameter combinations that have more or less similar
ETDI curves. Estimations of drought events and total drought durations from ETDI curves
at point P1 were also conducted in order to compare ETDI curves of different parameter
combinations in terms of drought characteristics. A drought event was identified by the
start and the end of a drought. The start of a drought event was the time when the ETDI was
less or equal to −1.00 for at least eight consecutive, 8-day periods (approx. 2 months) [31].
The end of a drought event was the time when the ETDI returns to zero [32]. Total drought
durations were the sum of all periods from all drought events in a time series.

2.3.2. Temporal Scale Sensitivity Test

The sensitivity of the ETDI to data at different temporal scales used 8-day, 16-day, 1-
month ET, and PET data at all twelve points in the Ruvu River basin (Figure 1). Equations (1)
and (2) were used to estimate WSs and WSAs at the points, respectively. Prior to the
temporal scale sensitivity test, values of α and β equal to 0.5 and 1, respectively, were
selected as the appropriate constant parameter combination, because they are in the middle
of both parameter ranges. Moreover, this parameter combination is also commonly used in
estimations of ETDI [2,12]. By using the constant parameter combination in Equation (8),
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the sensitivity of the ETDI to the three different temporal scales was investigated by
estimating ETDI curves of 8-day, 16-day, and 1-month timesteps at each of the twelve
points (P1 to P12) in the river basin.

Then drought events and total drought durations at each point were computed in order
to compare ETDI curves at different temporal scales in terms of drought characteristics.
Here, drought events for 8-day, 16-day, and 1-month timesteps had at least eight consecutive
8-day periods, four consecutive 16-day periods, and two consecutive months, respectively.

3. Results and Discussion
3.1. Parameter Sensitivity

In the parameter sensitivity test, eleven parameter combinations resulted in eleven
ETDI(α,β) time series. For illustration purposes, Figure 4 shows only five of the eleven
ETDI(α,β) time series. The ETDI(0.0,2.0) curve was the widest in both dry (negative ETDI)
and wet (positive ETDI) axes. The peaks of ETDI(0.1,1.8) and ETDI(0.5,1.0) curves were
smaller than those of the ETDI(0.0,2.0) curve. However, these three curves had similar
patterns. On the other hand, the ETDI(0.9,0.2) curve was very different from other curves
due to its shorter and smoother peaks (Figure 4). This is because the β-parameter of the
curve was very small (β = 0.2), therefore, it diminished the influence of WSAt (Equation (8)).
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Figure 4. The 8-day evapotranspiration deficit index (ETDI) for five different (α,β)-parameter combinations at point P1 in
the Ruvu River basin.

Unlike the curves of other parameter combinations, the ETDI(1.0,0.0) time series had
zero values throughout the record length, thus coinciding with the time axis (Figure 4). Zero
values occurred because WSAt was nullified by the β-parameter, which was equal to 0.0,
thus the ETDI(1.0,0.0) time series depended only on ETDIt−1, which was initially assumed
to be zero. In that case the ETDI(1.0,0.0) time series was excluded in both correlation analysis
and drought characterization.

The ETDI(0.0,2.0) curve correlated highly with the ETDI(0.1,1.8) curve (Figure 5), they
both show the highest number of drought events, and the lowest duration per event
(4 months per event, Table 2). This means that the small α-parameters of these two curves
reduced the influence of ETDIt−1, while large β-parameters allowed the dominance of
WSAt (Equation (8)). This is inversely demonstrated by the ETDI(0.9,0.2) curve which had
the lowest number of drought events and the highest duration per event (10 months per
event, Table 2). Here, a large α-parameter allowed the dominance of ETDIt−1, but the
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small β-parameter had already smoothened peaks of WSAt (Equation (8)), thus causing
wide, but few, peaks (cf. Figure 4).
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Figure 5. Pearson correlation coefficients between evapotranspiration deficit indices (ETDIs) at point P1 for various (α,
β)-parameter combinations.

Table 2. Drought events, total drought durations, and duration per event at point P1 for various
(α,β)-parameter combinations.

Parameter Events Total Duration (Month) Duration per Event (Month)

ETDI(0.0,2.0) 11 42 4
ETDI(0.1,1.8) 10 38 4
ETDI(0.2,1.6) 8 39 5
ETDI(0.3,1.4) 8 41 5
ETDI(0.4,1.2) 10 47 5
ETDI(0.5,1.0) 10 51 5
ETDI(0.6,0.8) 10 51 5
ETDI(0.7,0.6) 9 50 6
ETDI(0.8,0.4) 9 54 6
ETDI(0.9,0.2) 4 40 10

In addition, the ETDI(0.9,0.2) and ETDI(0.8,0.4) curves highly correlated (Figure 5), but
they had a substantially different number of drought events and total drought durations
(Table 2). A high correlation between the two curves was due to the similarity of their
patterns, which were not affected by minor parameter differences. However, the differences
in drought characteristics were mainly due to the β-parameter, because it substantially
reduced the WSAt of the ETDI(0.9,0.2) curve more than that of the ETDI(0.8,0.4) curve. The
ETDI(0.4,1.2), and ETDI(0.6,0.8) curves also highly correlated with the ETDI(0.5,1.0) curve,
and had an equal number of drought events (Figure 5, Table 2); this is because the influence
of their ETDIt−1 and WSAt were reduced to almost half by α-parameters, and were almost
fully allowed by β-parameters (Equation (8)), respectively.

Generally, as the (α, β)-parameters deviated from the midpoint (0.5, 1.0) towards the
endpoint (0.0, 2.0), ETDIt depended mostly on WSAt, while ETDIt−1 became substan-

198



Hydrology 2021, 8, 26

tially diminished (Equation (8)). However, when (α, β)-parameters equaled (0.0, 2.0), the
ETDI(0.0,2.0) curve did not substantially differ from the ETDI curve of the mid-point. That
is why the correlation coefficient between the ETDI(0.0,2.0) curve and the ETDI curve of the
mid-point was still very high (94%, Figure 5), and drought durations per event had minor
differences (Table 2). As (α, β)-parameters approached (0.9, 0.2), the ETDI(0.9, 0.2) curve
deviated substantially from the ETDI curve of the mid-point. That is why their correlation
coefficient was very small, (66%, Figure 5) and drought durations per event differed by
5 months (Table 2). This deviation was caused by diminishing WSAt due to a declining
β-parameter (Equation (8)). Thus the β-parameter is more influential than the α-parameter
because it controls strong signals from WSAt, whereas the latter modulates the long-term
memory of ETDIt−1.

Therefore, an arbitrary choice of parameter combination has drastic effects on drought
characteristics. As a result, information about drought frequency, severity, and intensity can
be misrepresented, leading to inappropriate intervention measures for mitigation or adap-
tation to drought. This uncertainty in the selection of an optimal parameter combination is
enormous, because the range between the endpoints (see Figure 3) can be sub-divided into
many parameter combinations depending on the required level of accuracy, i.e., decimal
places. Despite its wide application, the mid-point is still not a universal parameter combi-
nation, because the contributions of ETDIt−1 and WSAt might vary from place to place.
On the other hand, the endpoints, i.e., (0.0, 2.0) and (1.0, 0.0) are also not realistic because
they neglect the contributions of ETDIt−1 and WSAt, respectively.

Like coefficients of the Palmer drought severity index, parameters of the ETDI might
also be derived from local crop characteristics or land cover types in an area [19,33,34].
Apart from this, comparisons of ETDIs with other drought information could also be used
to locally calibrate ETDI parameters [18]. This would involve testing of different parameter
combinations to identify a pair that gives a satisfactory match between the time series of
the ETDI and other drought indices, or between durations of the ETDI and historically
severe drought events in an area. Locally calibrated ETDIs from different areas can be
compared as long as they are scaled using the same range [35,36].

3.2. Temporal Scale Sensitivity

For illustration purposes, only ETDI curves of points P1 to P6 are graphically presented
(Figures 6 and 7), the rest of the points are summarized in Table 3. The 8-day, 16-day, and
1-month temporal scales caused substantially different ETDI curves at the points in the
Ruvu River basin.

Figures 6 and 7 show that 8-day ETDI curves were the widest in both dry (negative
ETDI) and wet (positive ETDI) axes. Thus, 16-day ETDI curves were enclosed by 8-day
ETDI curves throughout the time series. Similarly, monthly ETDI curves were also enclosed
by both 8-day ETDI and 16-day ETDI curves. These ETDI curves showed that the effects
of the aggregation of ET and PET from small to large temporal scales were propagated to
ETDI values (cf. Figures 2, 6 and 7).

Table 3 shows that at all twelve points in the river basin, the number of drought events
decreased as the size of the temporal scale increased. The difference in the number of
drought events between consecutive temporal scales was mainly between 1 and 2, except
at points P4 and P11, where the differences between 16-day and 1-month temporal scales
were relatively large (about 5 drought events). The large differences in the number of
drought events at these two points could be attributed to local effects, because they are
both found in the northern part of the river basin (cf. Figure 1).
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Figure 6. Evapotranspiration deficit index (ETDI) at 8-day, 16-day, and 1-month temporal scales at points P1 to P3 in the
Ruvu River basin.

Although differences between the numbers of drought events at many points in the
river basin were not large, their corresponding total drought durations differed by many
months (Table 3). The total drought durations of 8-day ETDI curves were almost twice
and thrice those of 16-day ETDI curves and monthly ETDI curves, respectively. Thus, total
drought durations also decreased as the temporal scale increased. Moreover, almost all
points in the river basin had durations per event ranging from 5 months for 8-day ETDI
curves, to 2 months for monthly ETDI curves (Table 3).
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Figure 7. Evapotranspiration deficit index (ETDI) at 8-day, 16-day, and 1-month temporal scales at points P4 to P6 in the
Ruvu River basin.

Since different numbers of drought events and drought durations usually lead to
different drought severities and drought intensities [8,25,31], therefore, different temporal
scales of ET and PET data lead to different ETDIs, and consequently different drought
characteristics. By using the standardized precipitation index and effective drought index,
Jain, et al. [37] also found that drought characteristics vary greatly with different temporal
scales. Moreover, Ntale and Gan [27] argued that there are no objective rules for selecting an
appropriate temporal scale. However, the largest number of drought events being captured
by the 8-day temporal scale in this study (Table 3) indicates that small temporal scales can
be useful because a region suffering from drought can return to a normal condition with
only a few days’ rainfall [27,38].
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Table 3. Drought events, total drought durations, and duration per event at points P1 to P12 at 8-day,
16-day, and 1-month temporal scales in the Ruvu River basin.

Point Time Series Events Total Duration (Months) Duration per Event (Months)

P1
8-day 10 51 5

16-day 9 29 3
1-month 8 17 2

P2
8-day 7 33 5

16-day 5 16 3
1-month 5 9 2

P3
8-day 10 59 6

16-day 9 31 3
1-month 8 16 2

P4
8-day 7 51 7

16-day 7 31 4
1-month 2 15 7

P5
8-day 9 46 5

16-day 10 29 3
1-month 9 15 2

P6
8-day 11 54 5

16-day 11 29 3
1-month 8 12 2

P7
8-day 11 59 5

16-day 9 30 3
1-month 7 13 2

P8
8-day 9 59 7

16-day 7 30 4
1-month 6 15 3

P9
8-day 8 63 8

16-day 8 30 4
1-month 5 14 3

P10
8-day 9 54 6

16-day 7 26 4
1-month 8 14 2

P11
8-day 14 52 4

16-day 12 30 3
1-month 7 17 2

P12
8-day 15 54 4

16-day 11 32 3
1-month 9 17 2

4. Conclusions

This study used the general ETDI formula to test the sensitivity of the ETDI to its
parameters and to data at different temporal scales. Data used were the MODIS ET time
series for twelve points spatially distributed in the Ruvu River basin, Tanzania. The
parameter sensitivity test revealed that ETDI is less sensitive when the (α, β)-parameters
range from (0.1, 1.8) to (0.5, 1.0) inclusive, and more sensitive when they approach (0.9, 0.2).
Since the ETDI is sensitive to different parameter combinations, the selection of an optimal
parameter combination might rely on information from specific locations. Moreover, an
optimal parameter combination can also be obtained when ETDI is calibrated against other
drought indices or durations of historically severe drought events. The temporal scale
sensitivity test at the twelve points in the river basin showed that the number of drought
events, the total drought durations, and durations per event decreases as the temporal
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scale increases. Therefore, small temporal scale ET data are highly recommended in order
to increase the accuracy of ETDI-based drought characteristics.
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Appendix A

The specific evapotranspiration deficit index (ETDI) formula derived by Narasimhan
and Srinivasan [12] is given by Equation (A1) below.

ETDIt = (1 + c) ETDIt−1 + WSAt (A1)

where a subscript, t, represents a continuous timestep. c controls the amount of ETDIt−1
that contributes to ETDIt. WSAt is scaled between −1 and +1.

At a boundary condition (i.e., extremely dry condition), WSAt equals −1, and ETDIt
and ETDIt−1 equal−2. By substituting WSA and ETDI values in Equation (A1), c becomes
equal to −0.5. Therefore, the final specific ETDI formula is shown in Equation (A2).

ETDIt = 0.5 ETDIt−1 + WSAt (A2)

The endpoints of the ETDI range, i.e., −2 and +2 indicate extremely dry and wet
conditions, respectively.
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