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For many decades researchers have been trying to make computer analysis of images as effective
as the human vision system is. For this purpose many algorithms and systems have been proposed
so far. The whole process covers various stages including image processing, representation and
recognition. The results of this work find many applications in computer-assisted areas of everyday
life. They improve particular activities, give handy tools, sometimes only for entertainment, but quite
often significantly increasing our safety. In fact, the practical implementation of image processing
algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer
efficiency has allowed for the development of more sophisticated and effective algorithms and tools.
Although significant progress has been made so far, many issues still remain open, resulting in the
need for the development of novel approaches.

The aim of this Special Issue on “Advances in Image Processing, Analysis and Recognition
Technology” was to give the researchers the opportunity to provide new trends, latest achievements
and research directions as well as present their current work on the important problem of image
processing, analysis and recognition. The Special Issue includes 22 papers devoted to various aspects
of digital image processing, analysis and recognition, of which there are 21 research articles and one
review paper.

In [1] CIELab, a color-based component substitution pan sharpening algorithm is proposed for pan
sharpening of the Pleiades Very High Resolution images. The proposed approach obtained promising
results and improved the spectral and spatial information preservation. The pan sharpening was also
the subject of [2]. In the latter, a method for pan sharpening by focusing on a compressed sensing
technique was proposed.

The paper [3] provides a proposition of a texture description method with a set of multifractal
descriptors for the identification of different macerals. The proposed method is based on the multifractal
spectrum calculated from the method of multifractal detrended fluctuation analysis (MF-DFA).

A lightweight solution for the estimation of affine parameters in affine motion compensation is
proposed in [4]. It tries to speed up the process by means of evaluating affine prediction when it is
likely to bring no encoding efficiency benefit as well as estimating better initial values for the iteration
process. The optical flow between the reference image and the current image is applied in order to
estimate the best encoding mode and achieve a better initial estimation.

In paper [5] an image registration algorithm based on convolutional neural network (CNN) and
local homography transformation is proposed. It applies firstly a novel sample and label generation
method based on Moving Direct Linear Transformation (MDLT). Later, the local homography matrices
between the two images are estimated by means of the MDLT and finally the image registration can
be realized.

The Authors of [6] proposed a pre-classified deep-learning algorithm (MGEP-SRCNN) applying a
Multi-label Gene Expression Programming (MGEP), which screens out a sample sub-bank with high
relevance to the target image before image block extraction, pre-classifies samples in a multi-label
framework, and then performs nonlinear mapping and image reconstruction.

Appl. Sci. 2020, 10, 7582; doi:10.3390/app10217582 www.mdpi.com/journal/applsci1
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The detection of suspicious behavior using video sequences in a CCTV video stream is the subject
of [7]. The proposed method detected suspicious behavior with a temporal saliency map by combining
the moving reactivity features of motion magnitude and gradient extracted by optical flow.

The paper [8] is devoted to the problem of haze removal from a single image in real-time. For this
purpose, a normalized pixel-wise dark-channel prior is applied. In order to solve some problems with
computational cost normalized pixel-wise haze estimation without losing the detailed structure of,
the transmission map is used. The Authors additionally proposed robust atmospheric-light estimation
using a coarse-to-fine search strategy and down-sampled haze estimation.

In [9] a stable sparse model with a non-tight frame (SSM-NTF) is proposed and a dictionary pair
learning model to stably recover the signals is formulated. The approach is applied on various image
restoration tasks such as denoising, super resolution and inpainting.

The paper [10] provides a proposition of a stronger adaptive local dimming method with details
preservation. The approach, combining the advantages of some existing methods and introducing the
combination of the subjective and objective evaluation, obtains a stronger adaptation. Additionally,
in the paper the bi-histogram equalization algorithm is developed and a new pixel compensation
method is proposed.

In [11] the Authors use image quality metrics to evaluate the performance of several image fusion
techniques to assess the spectral and spatial quality of pan-sharpened images. They evaluated twelve
pan-sharpening algorithms, and experimentally proved that the Local Mean and Variance Matching
(IMVM) algorithm was the best in terms of spectral consistency and synthesis.

The Authors of [12] propose a data-driven redundant transform based on Parseval frames (DRTPF)
by applying the frame and its dual frame as the backward and forward transform operators, respectively.
The proposed model combines a synthesis and an analysis sparse systems.

In [13] the problem of bilingual scene text reading is considered. For this purpose, an octave
convolution (OctConv) feature extractor and a time-restricted attention encoder–decoder module for
end-to-end scene text reading are proposed and experimentally investigated.

The next contribution describes ideas of automatic cell segmentation and counting, which is
an important problem in the analysis of microscopic images [14]. For this purpose fundamental yet
effective image processing algorithms were applied.

In [15] the automatic recognition of leaf images is considered. The applied approach is based
on a Dual-output pulse-coupled neural network and Bag of features. Additionally, Bag of contour
fragments was applied for shape feature extraction. Finally, Linear Discriminant Analysis was used for
feature dimensionality reduction, and a Linear Support Vector Machine for classification. The proposed
approaches were experimentally investigated using several leaf image datasets.

The application of machine learning for the extraction of information from historical documents
was the subject of works described in [16]. Because of the character of the data being investigated,
(numerals were written in red) firstly a red color filter was applied in order to separate numerals from
documents, and then a CNN-based segmentation method for spotting these numerals.

The Authors of [17] used a fine-tuning method for image classification of large-scale remote
sensing datasets. The approach applies feature extraction from the fine-tuned neural networks,
and remote sensing image classification with a Support Vector Machine model with linear and Radial
Basis Function kernels.

In [18] a hybrid network based on an attention mechanism for stereoscopic salient object detection
was proposed. It was combined with an encoder–decoder network. The described novel attention
model is based on the fusion of RGB and depth attention maps.

The problem of small objects and objects with large scale variants detection was analyzed in [19].
For solving this problem, an approach based on multi-scale balanced sampling was proposed.

The submission [20] discusses the problems connected with the segmentation of similar phases in
different ironmaking feedstock materials by means of automated optical image analysis and provides
the description of the algorithms designed for textural identification.
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In [21] the idea of applying simple shape features for action recognition based on binary silhouettes
was proposed. It was shown that basic shape features can discriminate between short, primitive actions
performed by a single person.

The last paper [22] provides a review of the approaches applied for dental images. The goal of the
Authors was the description of the state of the art of artificial intelligence in dental applications, such as
the detection of teeth, caries, filled teeth, crown, prosthesis, dental implants and endodontic treatment.

The above brief description of the contributions provides the conclusion that the possibilities
of applying image processing, analysis and recognition techniques for various problems are wide.
In the papers accepted for publication in the Special Issue the analysis of high resolution satellite [1,11],
aerial [17], microscopic [3,14], optical [20] and dental [22] images was provided. Image registration [5],
restoration [6,9], fusion [11], and denoising [12] were also taken into account as well as the haze
removal from images [8], backlight extraction [10], pan sharpening [1,2] and object detection [18,19].
Some specific applications were also considered—text detection and recognition from natural
images [13], leaf image recognition [15] and historical document analysis [16]. Finally, not only
still images were processed. Video coding [4] and the analysis of video sequences for suspicious
behavior detection [7] and action recognition [21] were analyzed as well.

Acknowledgments: The Guest Editor is thankful for the valuable contributions from the authors, and significant
help of reviewers, the editor team of Applied Sciences, and especially Sharon Wang (Section Managing Editor).

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Neural networks are increasingly being used in the field of dentistry. The aim of this
literature review was to visualize the state of the art of artificial intelligence in dental applications,
such as the detection of teeth, caries, filled teeth, crown, prosthesis, dental implants and endodontic
treatment. A search was conducted in PubMed, the Institute of Electrical and Electronics Engineers
(IEEE) Xplore and arXiv.org. Data extraction was performed independently by two reviewers.
Eighteen studies were included. The variable teeth was the most analyzed (n = 9), followed by
caries (n = 7). No studies detecting dental implants and filled teeth were found. Only two studies
investigated endodontic applications. Panoramic radiographies were the most common image
employed (n = 5), followed by periapical images (n = 3). Near-infrared light transillumination images
were employed in two studies and bitewing and computed tomography (CT) were employed in one
study. The included articles used a wide variety of neuronal networks to detect the described variables.
In addition, the database used also had a great heterogeneity in the number of images. A standardized
methodology should be used in order to increase the compatibility and robustness between studies
because of the heterogeneity in the image database, type, neural architecture and results.

Keywords: artificial intelligence; dental application; images; detection

1. Introduction

Medical imaging techniques, such as computed tomography (CT) or X-ray among others, have been
used in recent decades for the detection, diagnosis and treatment of different diseases [1].

A new and emerging field in dentistry is dental informatics, because of the possibility it offers to
improve treatment and diagnosis [2], in addition to saving time and reducing stress and fatigue during
daily practice [3]. Medical practice in general, and dentistry in particular, generates massive data from
sources such as high-resolution medical imaging, biosensors with continuous output and electronic
medical records [4]. The use of computer programs can help dental professionals in making decisions
related to prevention, diagnosis or treatment planning, among others [5].

At present, one of the artificial intelligence methods employed in clinical fields is called deep
learning [6]. Artificial intelligence is the term used to describe the algorithms designed for problem
solving and reasoning [7]. The success of deep learning is mainly due to the progress in the computer
capacity, the huge amount of data available and the development of algorithms [1]. This method
has been proven and is used effectively in image-based diagnosis in several fields [8]. Convolutional
neural networks (CNNs) are commonly used in applications relying on deep learning, which have
been developed extremely quickly during the last decade [9], mainly as a choice for analyzing medical

Appl. Sci. 2020, 10, 2856; doi:10.3390/app10082856 www.mdpi.com/journal/applsci5
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images. CNNs have been successfully employed in medicine, primarily in cancer, for the automated
assessment of breast cancer in mammograms, skin cancer in clinical skin screenings, or diabetic
retinopathy in eye examinations [10].

CNNs have been recently applied in dentistry to detect periodontal bone loss [11,12], caries on
bitewing radiographs [13], apical lesions [14], or for medical image classification [12]. These kinds
of neural networks can be used to detect structures, such as teeth or caries, to classify them and to
segment them [15]. Neural networks need to be trained and optimized, and for that an image database
is necessary.

There are several image techniques in the dentistry field depending on their use. Periapical images
are employed to capture intact teeth, including front and posterior, as well as their surrounding bone;
therefore, periapical images are very helpful to visualize the potential caries, periodontal bone loss and
periapical diseases [16]. Bitewing images can only visualize the crowns of posterior teeth with simple
layouts and considerably less overlaps [17]. Panoramic radiographies are very common in dentistry,
because they allow for the screening of a broad anatomical region and at the same time, require a
relatively low radiation dose [18].

The objective of this review of the literature was to visualize the state of the art of artificial
intelligence in various dental applications, such as the detection of teeth, caries, filled teeth,
or endodontic treatment, among others.

2. Materials and Methods

2.1. Review Questions

(1) What are the neural networks used to detect teeth, filled teeth, caries, dental implants and
endodontic teeth?

(2) How is the database used in the construction of these networks?
(3) What are the outcome metrics and its values obtained by those neural networks?

2.2. Search Strategy

An electronic search was performed in MEDLINE/PubMed, the Institute of Electrical and
Electronics Engineers (IEEE) Xplore and arXiv.org databases, up until 17 March, 2020. Most journal
manuscripts in the medical field were published in MEDLINE/Pubmed. IEEE Xplore publishes articles
related to computer science, electrical engineering and electronics (https://ieeexplore.ieee.org/Xplore/
home.jsp). Among others, arXiv.org is an electronic archive for scientific manuscripts in the field of
physics, computer science, and mathematics.

The search strategy used is detailed in Table 1.

6
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Table 1. Search strategy.

Database Search Strategy Search Data

MEDLINE/PubMed

(deep learning OR artificial intelligence OR neural network
*) AND (dentistry OR dental) AND (teeth OR tooth OR
caries OR filling OR dental implant OR endodontic OR

root treatment) AND detect NOT (review)

17 March, 2020

IEEE Xplore

(((((((((“Full Text Only”: deep learning) OR “Full Text
Only”: artificial intelligence) OR “Full Text Only”: neural

network) AND “Full Text Only”: teeth) OR “Full Text
Only”: endodontic) OR “Full Text Only”: caries) OR “Full
Text Only”: filling) OR “Full Text Only”: dental implant)

AND “Document Title”: detect)

17 March, 2020

arXiv.org

(deep learning OR artificial intelligence OR neural network
*) AND (dentistry OR dental) AND (teeth OR tooth OR
caries OR filling OR dental implant OR endodontic OR

root treatment) AND detect

17 March, 2020

* This is a method to search in pubmed.

2.3. Study Selection

M.P.-P. and J.G.-V. performed the bibliography search and selected the articles that fulfilled the
inclusion criteria. Both authors extracted independently the results. The references of the articles
included in this study were manually reviewed.

2.4. Inclusion and Exclusion Criteria

The inclusion criteria were full manuscripts including conference proceedings that reported the
use of neural network on detecting teeth, caries, filled teeth, dental implants and endodontic treatments.
There were no restrictions on the language or the date of publication. Exclusion criteria were reviews,
no dental application and no neural network employed.

3. Results

3.1. Study Selection

Figure 1 details a flowchart of the study selection. All of the electronic search strategies resulted
in 387 potential manuscripts. A total of 378 studies were excluded because they did not meet the
inclusion criteria. Additionally, a manual search was carried out to analyze the references cited in nine
of the articles that were included in this work. Finally, nine more articles were incorporated from the
manual search. At the end, a total of eighteen studies were analyzed.
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Figure 1. Flowchart.

3.2. Relevant Data of Included Studies

All of the included manuscripts were published between 2013 and 2020. Table 2 details the main
characteristics of those included in the manuscript.

According to Table 2, the number of studies published increased each year and most of them were
published in 2019. Selected works were published across seven countries, most of them in the United
States (n = 5) and England (n = 5).

Regarding the variables detected by the included studies, the variable of teeth was the most
analyzed (n = 9) followed by variable caries (n = 7). No studies detecting variables of dental implants
and filled teeth were found. Only two studies investigated endodontic applications.

The total image database varied from 52 to 9812 images, with a mean of 1379 images. Panoramic
radiographies were the most common image employed (n = 7) followed by periapical images (n = 3).
Near-infrared light transillumination images were employed in two studies and bitewing and CT and
radiovisiography were each employed in one study. No image type was detailed in two of the studies.
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3.3. Tooth Detection

A deep convolutional neural network (DCNN) with an AlexNet architecture was employed by
Miki et al. for classifying tooth types on dental cone-beam computed tomography (CT) images. In
that study, the authors employed forty-two images to train the network and ten images to test it and
obtained a relatively high accuracy (above 80%) [24].

A mask region-based convolutional neural network (Mask R-CNN) was employed by Jader et
al. to obtain the profile of each tool, employing 1500 panoramic X-ray radiographies. The outcome
metrics employed in this study were accuracy, F1-score, precision, recall and specificity, with values of
0.98, 0.88, 0.94, 0.84, and 0.99, respectively [23].

Faster regions with convolutional neural network features (faster R-CNN) in the TensorFlow tool
package were used by Chen et al. to detect and number the teeth in dental periapical films [16]. Here,
800 images were employed as the training dataset, 200 as the test dataset and 250 as the validation
dataset. The outcome metrics were recall and precision, which obtained 0.728 and 0.771, respectively.
Chen et al. also employed a neural network to predict the missing teeth number.

Periapical images with faster-RCNN and region-based fully convolutional networks (R-FCN)
were employed by Zhang et al. Here, 700 images were employed to train the network, 200 were
employed to test and 100 to validate the network. The method proposed by Zhang et al. achieved a
high precision close to 95.8% and a recall of 0.961 [20].

The efficiencies of a radial basis function neural network (RBFNN) and of a GAME neural network
in predicting the age of the Czech population between three and 17 years were compared by Velemínská
et al. This study employed a panoramic X-ray of 1393 individuals aged from three to 17 years. In this
case, standard deviation was measured [25].

A total of 1352 panoramic images were employed by Tuzoff et al. to detect teeth using a Faster
R-CNN architecture [3]. This study obtained a sensitivity of 0.9941 and a precision of 0.9945.

By employing a CNN architecture and the PyBrain library, Raith et al. classified teeth and obtained
a performance of 0.93 [21].

One hundred dental panoramic radiographs were employed by Muramatsu et al. for an object
detection network using a four-fold cross-validation method. The tooth detection sensitivity was 96.4%
and the accuracy was 93.2% [28].

A database of 100 panoramic radiographs with an AlexNet architecture was employed by Oktay
to detect teeth with an accuracy of over 0.92, depending on the type of tooth (molar, incisor, and
premolars) [30].

3.4. Caries Detection

Two deep convolutional neural networks (CNNs), Resnet18 and Restext50, were applied by
Schwendicke et al. to detect caries lesions in near-infrared light transillumination (NILT) images [10].
In this study, 226 extracted permanent human teeth (113 premolars and 113 molars) were employed.
According to their results, the two models performed similarly in predicting the caries on tooth
segments of the NILT images. The area under the curve (AUC), sensitivity and the specificity were
evaluated with results of 0.74, 0.59, and 0.76, respectively.

A deep learning model was employed by Casalengo et al. for the automated detection and
localization of dental lesions in 217 near-infrared transillumination images of upper and lower molars
and premolars. Here, 185 images were used to train the network and 32 images were used to validate
it. The results concluded an area under curve (AUC) of 85.6% for proximal lesions and an AUC of
83.6% for occlusal lesions [26].

A total of 3000 periapical radiographies were employed by Lee et al. to detect dental caries [13].
From the total dataset, 25.9% of the images were maxillary premolars, 25.6% were maxillary molars,
24.1% were mandibular premolars and 24.4% were mandibular molars. The authors implemented
deep CNN algorithm weight factors. A pre-trained GoogleNet Inception v3 CNN network was
used for preprocessing and the datasets were trained using transfer learning. For detecting caries,
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this study obtained an accuracy of 89%, 88% and 82% in premolar, molar and premolar-molar,
respectively, and for AUC, values of 0.917, 0.89, and 0.845 were obtained for premolar, molar and
premolar-molar, respectively.

Caries from given socioeconomic and dietary factors were analyzed by Zanella-Calzada et al.
employing an ANN to determine the state of health [27]. An ANN designed with seven layers, four
dense layers and three dropout layers, was used in this study. A total of 9812 subjects were employed,
70% of them were used for training and the remaining 30% for testing. The results obtained an accuracy
of approximately 0.69 and an AUC of 0.75.

A total of 3000 bitewings images were employed by Srivasta et al. to detect dental caries with a
deep fully convolutional neural network. The results of this study were a recall of 0.805, a precision of
0.615 and a F1-score of 0.7 [22].

A total of 251 radiovisiography images were employed by Prajapati et al. to detect caries with a
convolutional neural network, which achieved an accuracy of 0.875 [29].

A back-propagation neural network with a database of 105 intra-oral images was employed by
Geetha et al. to detect caries. This architecture achieved an accuracy of 0.971 and a precision recall
curve (PRC) area of 0.987 [31].

3.5. Dental Implant and Filled Teeth Detection

Implant treatment is a common practice in different clinical situations for replacing teeth. However,
no studies were found that used artificial intelligence and neural networks to detect implants on
radiographs. The same is true for filled teeth detection.

3.6. Endodontic Treatment Detection

A convolutional neural network (CNN) system was employed by Fukuda et al. for detecting
vertical root fractures (VRFs) in panoramic radiographies [19]. Three hundred images were used as an
image dataset, of which 240 images were assigned to a training set and 60 images were assigned to
a test set. This study constructed a CNN-based deep learning model using DetectNet with DIGITS
version 5.0 (city and country), and obtained a recall of 0.75, a mean precision of 0.93 and a F measure
of 0.83.

Deep convolutional neural networks (CNNs) based in Keras were applied by Ekert et al. to detect
apical lesions on panoramic dental radiographs [14]. A total of 85 images were employed, which
obtained an AUC of 0.89 in molars and 0.85 in other teeth and a sensitivity of 0.74 and 0.65 in molars
and other teeth.

4. Discussion

The goal of this literature review was to visualize the state of the art of artificial intelligence in
detecting different dental situations, such as the detection of teeth, caries, filled teeth, endodontic
treatments and dental implants.

Neural networks can have single or multiple layers, with nodes or neurons interconnected
that allows signals to travel through the network. ANNs are typically divided into three layers of
neurons, namely: input (receives the information), hidden (extracts patterns and performs the internal
processing), and output (presents the final network output) [32,33]. Training is the process to optimize
parameters [34]. Figure 2 details the architecture for teeth detection.

More and more industries are using artificial intelligence to make increasingly complex decisions,
and many alternatives are available to them [32]. However, in view of our results, there is a paucity of
guidance on selecting the appropriate methods tailored to the health-care industry.
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Figure 2. System architecture for teeth detection.

The benefit of neural networks in medicine and dentistry is related to their ability to process large
amounts of data for analyzing, diagnosing and disease monitoring. Deep learning has become a great
ally in the field of medicine in general and is beginning to be one in dentistry. According to the year
of publication of the studies included in this review, 2019 was the year in which the most articles
were published.

The results provided by artificial intelligence have a great dependence on the data with which
they learn and are trained, that is, on the input data and the image employed to detect each variable.
All of the studies included in this review employed radiographs, mainly panoramic radiographies. In
this sense, it would be interesting to apply neural networks and artificial intelligence in other types
of radiological studies such as cone beam computed tomography (CBCT) or cephalometry, which
allow clinicians to make a complete anatomical examination. Lee et al. evaluated the detection and
diagnosis of different lesions employing CBCT and a deep convolutional neural network [35]. Before
being possible to detect the variables analyzed in this review, teeth must be detected. Panoramic
radiography is the most common technique in general dentistry, which captures the entire mouth in a
single 2D image [36,37], and it is common to use artificial intelligence to detect the presence or absence
of a tooth. The main advantages of these types of images are: the patient comfort compared with other
techniques, such as intraoral images (bitewing and periapical); the low radiation exposure; and the
ability to evaluate a larger area of the maxilla and mandible [37].

Panoramic radiographies are useful to evaluate endodontic treatments, periapical lesions and
disorders in bones, among others [38]. This type of image has obtained the best results in tooth
detection if we compare it with the study that used periapical images to detect this variable. In addition,
the results obtained by the studies that detected teeth were superior to the rest of the variables analyzed,
regardless of the network or type of image used.

Caries is one of the most common chronic diseases in the oral field, with a great impact on a
patient’s health [39]. Clinical examination is the main method for caries detection, with radiographic
examination being a complementary diagnostic tool [40]. According to experience and scientific
literature, intraoral bitewing images are the most effective in detecting caries lesions [41]. However,
only one study included in this review employed bitewings to detect caries. Two studies used
near-infrared transillumination images and one employed periapical images. The best results were
obtained in the study where periapical images were used to detect caries.

A variety of CNN architectures were found in the studies included in this literature review.
Convolutional networks are designed to process data that come in the form of multiple arrays and
that are structured in a series of stages [42]. In recent decades, CNNs have been applied with success
for the detection, segmentation and recognition of objects in images. In this review, convolutional
networks applied to the detection of dental variables were used.

Faster regions with convolutional neural network features (Faster R-CNN) are composed of two
modules. The first module is a deep fully convolutional network that suggests regions and the second
module is the Fast R-CNN detector [43]. ResNets are residual networks, which is a CNN designed to
allow for thousands of convolutional layers. Deep Neural Network for Object Detection (DetectNet)
outputs the XY coordinates of a detected object. This kind of neural network has been applied in
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different medical fields [19,44]. Keras is a library of open source neural networks written in Python.
PyBrain is a machine-learning library for Python, whose objective is to provide flexible, easy-to-use and
powerful algorithms for machine-learning tasks [45]. Mask R-CNN is an extension of Faster R-CNN,
by adding a branch for predicting segmentation masks on each region of interest (ROI) [46]. AlexNet
was introduced in 2012 and employs an eight-layer convolutional neural network as follows: five
convolutional layers, two fully connected hidden layers, and one fully connected output layer [47].

In addition to the wide variety of neural network architectures, the studies included in this work
also presented a great variety in terms of the number of images used. The manuscripts included in this
review published in 2017 and 2018 are those that show a larger database compared with the articles
published in 2019 and 2020. However, there is no relationship between the database used and the
results obtained, nor between the database and the variables detected.

The possible and future clinical applications of artificial intelligence and neural networks is the
prediction of a phenomenon. Probabilistic neural networks can be used in dentistry to predict fractures,
as Johari et al. indicated, where a probabilistic neural network was designed to diagnose a fracture in
endodontically treated teeth [48].

In view of the results shown in this review and the included studies, the authors suggest the use
of neural networks that are capable of predicting possible diseases or possible treatment failures for
future clinical applications in the field of dentistry.

5. Conclusions

Because of the great heterogeneity in terms of the image database and the type, results and
architectures of neural networks, a standardized methodology is needed in order to increase the
compatibility and robustness between studies.
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Abstract: Recent very high spatial resolution (VHR) remote sensing satellites provide high spatial
resolution panchromatic (Pan) images in addition to multispectral (MS) images. The pan sharpening
process has a critical role in image processing tasks and geospatial information extraction from satellite
images. In this research, CIELab color based component substitution Pan sharpening algorithm was
proposed for Pan sharpening of the Pleiades VHR images. The proposed method was compared
with the state-of-the-art Pan sharpening methods, such as IHS, EHLERS, NNDiffuse and GIHS.
The selected study region included ten test sites, each of them representing complex landscapes
with various land categories, to evaluate the performance of Pan sharpening methods in varying
land surface characteristics. The spatial and spectral performance of the Pan sharpening methods
were evaluated by eleven accuracy metrics and visual interpretation. The results of the evaluation
indicated that proposed CIELab color-based method reached promising results and improved the
spectral and spatial information preservation.

Keywords: CIELab; component Substitution; Pan sharpening; Pléiades VHR Image

1. Introduction

The earth observation satellites with very high resolution (VHR) optical sensors provide a
multispectral (MS) image and a panchromatic (Pan) image that are acquired simultaneously in order
to provide essential accommodation between spectral and spatial resolution, which is an important
consideration for optical satellite sensors due to their physical limitations [1,2]. Spectral diversity is
important for modeling the spectral characteristics of different land cover/use classes and identifying
them; on the other hand, spatial information is very crucial for identifying spatial details and geometric
characteristics. The Pan image provides high spatial resolution with a single, wide range spectral band,
whereas the MS image provides several spectral bands in different sections of the electromagnetic
spectrum with low spatial resolution in order to meet the abovementioned requirements.

The fusion of Pan and MS images that are acquired over the same area from the single or
multiple satellite system is referred to as Pan sharpening. The main aim of Pan sharpening is to
create a high-resolution MS image, having the spatial resolution of Pan but preserving the spectral
characteristics of MS [3]. Unlike the challenging problem of multi-sensor data fusion, single sensor Pan
sharpening does not need image-to-image registration, as the Pan and MS sensors are mounted on the
same platform and the images are acquired simultaneously with well-matching viewing geometry [4].
Several earth observation satellites, such as Geo-Eye, OrbView, QuickBird, WorldView, Pléiades and
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Spot, have this capability, and bundle (PAN+MS) products from these systems can be used directly as
the input for Pan sharpening.

An ideal Pan sharpening algorithm leads to the best performance in spatial and spectral domains
by keeping the spatial resolution of a Pan image and preserving the spectral characteristics of an
MS image. Launching of VHR sensors led to the appearance of diverse Pan sharpening methods in
recent decades [5–7]. In addition, Pan sharpening is a primary image enhancement step for many
remote sensing applications, such as object detection [8], change detection [9], image segmentation and
clustering [10,11], scene interpretation and visual image analysis [12]. Commonly, image fusion can be
classified into three levels—pixel level, feature level and decision or knowledge level—while the Pan
sharpening is categorized as a sub-pixel level process [13,14].

Pan sharpening algorithms can be divided into four groups: (1) rationing methods;
(2) injection-based methods; (3) model-based methods; and (4) component substitution (CS) methods.
Of these methods, CS algorithms are more practical because of their calculation speed and performance
compatibility. The CS methods can be categorized into four classes according to the transform matrix
used in the algorithm; which are principle component analysis (PCA) [15,16], intensity-hue-saturation
(IHS) [7,17], Gram–Schmidt (GS) [18,19] and generalized component substitution (GCS) [5,20].
The common and general limitation of all CS-based methods is the distortion in spectral characteristics
when compared to original MS image [21,22].

This research proposes a robust CS method for Pan sharpening the Pleiades VHR satellite images
with the aim of enhanced spatial resolution and reduced spectral distortion. The principle of the
proposed method is similar to the IHS method, where a uniform CIELab color space based on human
eye spectral response is used instead of IHS color space [23]. The CIELab color space has been used
for different image processing tasks. Wirth and Nikitenko, 2010 [24], investigated the performance
of CIELab color space on the application of unsharp masking and fuzzy morphological sharpening
algorithms. In the study of [25], the experiments of the content-based image retrieval (CBIR) were used
to evaluate the performance of CIELab and the other three color spaces (RGB, CIELuv and HSV) on an
image retrieval process. In addition, CIELab color space was used to help different image segmentation
tasks [26,27]. In a previous Pan sharpening research, color normalization-based on CIELab color space
aided the image fusion algorithm with sharpening a Hyperion hyperspectral image with an Ikonos
Pan image using the spectral mixing-based color preservation model [28]. In another study, a remote
sensing image fusion technique using CIELab color space was proposed by Jin et al. [29]. In that study,
the authors improved the performance of image fusion techniques by combining non-subsampled
shearlet transform and pulse coupled neural network. However, this approach is computationally
complicated and there is lack of a specific satellite dataset.

Although the CIELab method is used in different image processing tasks applied on natural
and satellite images, evaluation of its performance on the Pan sharpening process is limited and
there is no detailed evaluation of this method on VHR image Pan sharpening by considering the
different landscape characteristics and with use of spatial and spectral metrics in addition to visual
interpretation yet, to our knowledge. This research focused on proposing a robust, CIELab-based
Pan sharpening approach and aimed to fill the abovementioned gap in detailed investigation and
accuracy assessment of CIELab-based Pan sharpening in the literature. In this research, results from
the proposed method were compared with the results from the six well-known methods, which are
Ehlers, Generalized IHS, IHS, Gram-Schmitt, HCS and NNDiffuse methods. Pleiades satellite images
of ten different test sites having different landscape characteristics were comparatively evaluated to
check the spatial and spectral performance of the proposed method with quantitative accuracy metrics.
In addition, visual interpretation-based analyses were performed on the results in order to discuss the
performances of methods. The results illustrated advantages of using uniform color space for the aim
of the Pan sharpening application.
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2. State of Art

A brief review of the state of the art methods that used for comparative analysis with respect to
the proposed method are presented in Table 1.

Table 1. The brief review of state of the art Pan sharpening methods.

Method Description References

IHS Method

In this system, the total amount of the brightness in one color is
represented through intensity channel. The wavelength

property of the color and the purity of the color are represented
by hue and saturation respectively.

[30,31]

EHLERS (FFT-Enhanced
IHS Transform) Method

The fundamental idea of this method is modifying the Pan
image in the way that it looks more similar to the intensity

component of MS image. This method uses FFT (fast fourier
transform) filtering for partial replacement instead of entire

replacement of the intensity component.

[32]

NNDiffuse
(Nearest-neighbor

diffusion-based) Method

This method, considers each pixel spectrum as a weighted linear
combination of spectra of its sideward neighboring super pixels
in the Pan sharpened image. Algorithm uses various factors like
intensity smoothness (σ), spatial smoothness (σ_s) and pixel size

ratio for conducting the Pan sharpening

[33,34]

GIHS (Generalized IHS)
Method

Directly applying of IHS method needs many multiplication and
addition operations, which makes the Pan sharpening operation

computationally inefficient. GIHS method develops a
computationally efficient Pan sharpening method, which does

not require coordinate transformation

[35]

Gram-Schmidt Method

This method uses the Gram-Schmidt orthogonalization for
converting the original low-resolution MS bands, which are

linearly independent vectors, into a set of orthogonal vectors.
The first vector in the orthogonal space is considered as

simulated Pan image, which produced by weighted aggregation
of the consecutive original MS bands.

[21,22]

Hyperspherical Color
Sharpening Method

The Hyperspherical Color Sharpening method (HCS) is a Pan
sharpening method designed for WorldView-2 sensor imagery
and can be applied to any MS data containing 3bands or more.
HCS approach is based on transforming original color space to

hyperspherical color space.

[36,37]

3. Methodology and Accuracy Assessment

This research proposes a new Pan sharpening method that relies on the CIELab transform,
which modifies the color components of images to be used for Pan sharpening of VHR satellite images.
The flowchart of the proposed method is given in Figure 1, and the details of the proposed method are
described in the sub sections.

3.1. Multispectral Image Transform to CIELab Color System

The RGB color system was designed in such a way that it includes nearly all primary colors and
can be comprehended by human vision. Nevertheless, it is a tough task to deal with RGB color due to
strong correlation between its components [29]. In this study, a uniform and complete color model, the
CIELab color system, was used. In this uniform color system, a variation in the coordinates of the color
component provides the same amount of variation in the luminance and saturation components [10].
Besides, this color space is projected to draw human vision, unlike the RGB and CMYK (cyan, magenta,
yellow, black) color spaces [38]. The CIELab color system was used in the proposed Pan sharpening
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approach in order to reduce the spectral distortion, while maintaining the color perception of human
vision [39].

 

Figure 1. CIELab image Pan sharpening flowchart.

The design of the CIELab color system is based on Hering’s theory, which indicates that only
red (R), green (G), blue (B) and yellow (Y) are unique among the thousands of colors that are
used to characterize the hue component [40]. Although, other colors can be produced using these
unique colors (for example it is possible to obtain orange by mixing red and yellow), they (R, G, B
and Y) can be described only with their own name. R, G, B and Y, with black (B) and white (W),
constitutes a color system with six basic color properties and three opponent pairs: R/G, Y/B and B/W.
The opponency idea rises from observation upon colors attributes, which proves no color could be
characterized using both blue and yellow or red and green together [41]. A blue shade of yellow
does not exist. These three opponent pairs are represented in the form of a three-dimensional color
space, as illustrated in Figure 2. In this figure, the vertical axis L* represents the luminance, in which
perfect black is represented by 0 and perfect white is represented by 100. The a* and the b* are the
axes that are perpendicular to luminance indicated chromaticity, and stand for redness/greenness and
yellowness/blueness, respectively. Positive values represent redness (for a* component) and yellowness
(for b* component), whereas greenness and blueness are denoted with negative values.

Figure 2. CIELab color space [41].

The L*, a* and b* values are computed using XYZ values. The XYZ system that was based on the
RGB color space was presented by the International Commission on Illumination, CIE (Commission
international de l’éclairage), in the 1920s and patented in 1931. The difference of RGB and XYZ lies in
the light sources. The R, G and B elements are real light sources of known characteristics, whereas the
X, Y and Z elements are three theoretical sources, which are selected in a way that all visible colors can
be defined as a density of just-positive units of the three primary sources [10].

Occasionally, the colorimetric calculations with the use of color matching functions produce
negative lobs. This problem can be solved by transforming the real light sources to these theoretical
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sources. In this color space, red, green and blue colors are more saturated than any spectral RGB. X,
Y and Z components, represent red, green and blue colors respectively. RGB to XYZ and its reverse
transformations can be performed by following equations:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

X
Y
Z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.4124564 0.3575761 0.1804375
0.2126729 0.7151522 0.0721750
0.0193339 0.1191920 0.9503041

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦•
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

R
G
B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
R
G
B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.2404542 −1.5371385 −0.4985314
−0.9692660 1.8760108 0.0415560
0.0556434 −0.2040259 1.0572252

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦•
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

X
Y
Z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (2)

Lab system is calculated by the following equations [23]:

L = 116 FY − 16 (3)

a = 500 [F X − FY] (4)

b = 200[F Y − FZ] (5)

Where FX= (
X
Xn

)
1
3 if (

X
Xn

)>(
24
116

)3 (6)

And FX= (
841
108

)(
X
Xn

)+
16

116
if (

X
Xn

) ≤ (
24

116
)

3
, (7)

where Xn is the tristimulus value of a perfect white object color stimulus, which the light reflected from
a perfect diffuser under the chosen illuminant. FY and FZ values are calculated in the same way as FX.

3.2. Pan-Sharpening

In the Pan sharpening procedure, the MS image should be resampled to the same pixel size of
the Pan image before converting it to CIELab color space. In this research, the bicubic interpolation
method was used to resample 2 m resolution Pleiades MS images into 50 cm resolution to match the
pixel size of Pleiades Pan image. This resampled dataset is used in all Pan sharpening methods used
in this research, including the proposed one. After converting the MS image from RGB to CIELab
space, the Pan sharpening process continues with replacing the Pan image with the L* component.
Unlike the proposed method in [29] study, there is no need for color space conversion of Pan image
in the proposed method, which leads to low computation and less data distortion. Before replacing
the L* band of MS with the Pan image, there is a histogram matching step that could be considered
as preprocessing step. After resampling the MS image to the same size of Pan image and converting
the MS image color space, the histogram of Pan image has to be matched with the histogram of L*
component in order to minimize the spectral differences [42]. For performing histogram matching task,
mean and standard deviation normalizations were used [43]:

PanHM = (Pan− μPan)
σI

σPan
+ μI, (8)

where PanHM stands for histogram matched Pan image, μ stands for mean and σ represents standad
deviation. After these preprocessing steps, the L* component is replaced with a Pan image. The Pan
sharpened image is then produced by implementing inverse conversion of CIELab color system on the
Pan*a*b* image and results in a new MS image with high spatial resolution.

3.3. Accuracy Assessment

Several metrics were proposed to assess the accuracy of Pan-sharpened images that use the precise,
high-resolution MS image as a reference image. In this research, the first seven metrics provided
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in Table 2 were used for the spectral quality assessment, while the later four metrics were used for
spatial quality assessment of the results. Although metrics provide important quantitative insights
about the algorithm performance, qualitative assessment of the color preservation quality and spatial
improvements in object representation is required. Thus, results obtained from the Pan sharpening
algorithms were also evaluated with visual inspection.

Table 2. The description of all accuracy indices (definition of terms provided in List A1).

Quality
Metric

Description Formula
What Value
to Look for

(Higher/Lower)
Reference

RMSE

Root Mean Square Error (RMSE) is used to
calculate the variation in DN values for checking
the difference between the Pan sharpened and

reference image.

RMSE =√
1

MN

M∑
i=1

N∑
j=1

(MS(i, j) − PS(i, j))2
Lower

(near to zero) [45]

ERGAS

Relative dimensionless global error synthesis
(ERGAS) is used to calculate the accuracy of Pan

sharpened image considering normalized
average error of each band of the result image.

ERGAS = 100 dh
dl

√
1
n

n∑
i=1

(
RMSE(i)
Mean(i) )

2 Lower
(near to zero) [45]

SAM

Spectral Angle Mapper (SAM) represents the
spectral similarity between the Pan sharpened

and reference MS image using the average
spectral angle

Lower
(near to zero) [36]

RASE
Relative average spectral error (RASE) is an error
index to calculate average performance of Pan

sharpening algorithm into spectral bands.
RASE = 100

μ

√
1
b

b∑
i=1

RMSE
Lower

(near to zero) [46]

PSNR
Peak signal-to-noise ratio is widely used metric
for comparison of distorted (Pan sharpened) and

original (reference) image.

PSNR =

20 log10

[
L2

1
MN
∑M

i=1
∑N

i=1 (Ir(i,j)−Ip(i,j))
2

]
Higher Value [47]

QAVG

The Average Quality index based on quality
index is used to model the difference between

reference and Pan sharpened images as a
combination of three different factors: loss of

correlation, luminance distortions and contrast
distortion. As QI can only be applied to one

band, the average value of three or more bands
(QAVG) is used for calculating a global spectral

quality index for multiband images.

QI =
4σxyxy

(σ2
x+σ

2
y)[(x)

2+(y)2]

Higher Value
(Close to 1) [48]

SSIM

Structural Similarity index (SSIM) is a method for
measuring the structural similarity between
reference and Pan sharpened images. This

method compares the local patterns (luminance,
contrast and structure) using means and

standard deviations of two images.

SSIM =
(2μIrμIp+C1)(2σIrIp+C2)

(μ2Ir+μ
2Ip+C1)(σ2Ir+σ

2 Ip+C2)
Higher Value [2]

CC

To assess the spatial quality of Pan sharpened
images, the correlation coefficient between the
Pan image and the intensity component of the

Pan sharpened image is used.

CC =
2Cr f

Cr+Cf

Higher Value
(Close to 1) [49]

ZHOU
index

Zhou’s spatial index uses a high frequency
Laplacian filter for extracting high frequency

information from both Pan and Pan sharpened
images. Correlation coefficient is then calculated
between filtered Pan image and each band of Pan
sharpened image. The average of calculated cc is

considered as spatial quality index.

Laplacian Kernel =⎡⎢⎢⎢⎢⎢⎢⎣ −1 −1 −1
−1 8 −1
−1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎦
Higher Value
(Close to 1) [50]

SRMSE

Sobel based RMSE (SRMSE) is an index for
spatial accuracy assessment that uses absolute

edge magnitude difference of Pan and Pan
sharpened image. This index utilizes 3 × 3

vertical and horizontal Sobel filter kernels for
calculating the gradient of edge intensities.

RMSE then calculated between Pan and Pan
sharpened edge magnitude images.

M =
√

M2
x + M2

y

Where Mx =

⎡⎢⎢⎢⎢⎢⎢⎣ −1 0 1
−2 0 2
−1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦× image

And My =

⎡⎢⎢⎢⎢⎢⎢⎣ −1 −2 −1
0 0 0
1 2 1

⎤⎥⎥⎥⎥⎥⎥⎦ × image

Lower
(near to zero) [51]

Sp-ERGAS

Spatial ERGAS (Sp-ERGAS) is an index for
spatial quality assessment of Pan sharpened

image, which uses spatial RMSE for assessment
procedure

Spatial ERGAS =

100 dh
dl

√
1
n

n∑
i=1

(
Spatial_RMSE(i)

Pan(i) )
2

Lower
(near to zero) [52]
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4. Experimental Results

4.1. Dataset

The primary product of Pléiades satellite images were used for performing experimental analysis
of the proposed method. The Pléiades program, which was launched by CNES (the French space
agency), is the optical Earth imaging component of French–Italian ORFEO (Optical and Radar Federated
Earth Observation). The Pléiades constellation consists of two satellites with VHR optical sensors.
The Pléiades 1A launched on 17.12.2011 and Pléiades 1B launched on 2.12.2012. Both of the satellites
provide 0.5 m spatial resolution for the Pan sensor and 2 m for MS sensor with 20 km swath width and
12 bit radiometric resolution [44].

The dataset used in this research consists of three Pleiades image scenes, which cover different
landscape characteristics (Table 3). The locations of scenes are provided in Figure 3. Ten different sub
frames were selected from these image scenes, in order to evaluate the performance of Pan sharpening
methods for varying landscape characteristics and seasonal conditions (Table 4).

 
Figure 3. The locations of the Pléiades image scenes overlaid on Google Earth©.

Table 3. The description of three datasets.

No Location Acquisition Data Platform

D1 Istanbul 2017-04-09 PHR 1A
D2 Izmir 2015-12-04 PHR 1B
D3 Aydin 2018-04-10 PHR 1B
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Table 4. The description of ten selected data frames.

Image Location Type Objects

F1 Istanbul Rural Trees, Vegetation, Bare roads, Bare soil
F2 Istanbul Urban Buildings, Roads, Squares, Trees, Bare soil
F3 Istanbul Suburban Vegetation, Roads and highways, Buildings, Bare soil, Industry buildings, Green fields.
F4 Izmir Urban Buildings, Roads, Vegetation, Bare soil
F5 Izmir Rural Agricultural fields, Bare roads
F6 Izmir Rural Trees, Mountain, Bare roads
F7 Izmir Suburban Industry buildings, Agricultural fields, Roads, Bare soil
F8 Aydin Suburban Agricultural fields, Roads, Bare roads, Trees, Buildings, Bare soil
F9 Aydin Urban Buildings, Roads, Trees, Bare soil, Green fields

F10 Aydin Rural Trees, vegetation, agricultural fields, buildings, roads, Bare roads

Four sub frames cover rural areas that contain forests with different types of trees with varying
heights and barren roads between them, and mountains and agricultural fields. Three sub frames
cover urban areas that include complex buildings, roads and highways. Finally, three sub frames cover
sub-urban areas that include all the complex buildings, factories, vegetation, roads, trees and bare soil
parts to perform a precise survey on effects of the proposed method in Pan sharpening of vegetation,
impervious and soil surfaces simultaneously.

4.2. Performing the Algorithm and Accuracy Assessment

To measure the performance of Pan sharpening results using the metrics that were presented
in Section 3.3, the Wald protocol was used, due to lack of reference a high-resolution MS image [53].
According to Wald protocol, all Pan sharpening experiments were done using degraded datasets,
which are produced by decreasing spatial resolution of the original dataset (reduce MS and Pan,
respectively, to 8 m and 2 m). The Pan sharpening results obtained that way, can be compared with
the original MS images for an accuracy assessment procedure. In this paper, six Pan sharpening
methods and eleven accuracy indexes are evaluated to perform a comparative accuracy assessment of
the proposed method. The numerical results of the accuracy indexes are presented in Tables A1–A6.
The visuals belonging to Pan sharpening results of ten frames are presented in Figures A1–A10. In each
figure, parts a and b are the original Pléiades MS and Pan images, respectively. Parts c, d and e are
the Pan sharpened results from the CIElab, GIHS and GS methods, respectively. The Pan sharpened
images from the HCS, IHS, NNDiffuse and Ehlers methods are shown in parts f–i, respectively.

4.3. Experimental Results from Rural Areas

Figures A1–A4 belongs the Pan sharpening results of the rural test sites (frame F1 from D1 dataset,
frames F5 and F6 from D2 and Frame F10 from D3 datasets). Each figure belongs to a representative
part from the whole image focusing on rural areas and presents visual comparison different Pan
sharpening techniques.

The visual comparison of the Pan sharpening methods reveals that spatial resolution of MS images
improved significantly in all methods. As for spectral information, parts c, e and h show that the
CIELab GS and NNDiffuse methods protect the spectral characteristics better; specifically, for the
bands belonging to the visible region. The color-based visual interpretation in vegetated and forest
areas in Figures A2–A4 inform us that the Pan-sharpened and original MS images are very similar to
each other for GS and CIELab methods. Similar comments can be made on NNDiffuse and CIELab
methods in Figure A1. On the other hand, visual comparison of part a with parts d, f, g and i reveals
that the remaining four methods were not able to preserve the spectral characteristics of vegetated
and forest areas. Particularly, IHS, Ehlers and HCS methods inherited the high frequency impact
over vegetated area and could not preserve original spectral/color information for the first test site.
In addition, the result of the HCS method is more blurred than the others. The GIHS and—in some
cases—the NNDiffuse methods, preserved the color information better than the IHS, Ehlers and HCS;
nevertheless, observable spectral distortion is apparent in their resulting products. The GS method has
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good performance in the case of vegetation except Figure A1 part e, while results are not satisfactory in
pathways and their surroundings. In addition, obvious distortions are apparent in the shadowed areas.
Detailed investigation on Figure A3 (e) reveals that there is an obvious distortion in snowy parts of the
frame almost in all methods except the proposed CIELab, which resulted in a nearly blue color instead
of white snow color. However, CIELab method could be able to preserve the texture and keep the
small variances in the color when compared to original MS image. Besides, visual interpretation of the
CIELab Pan sharpening results (part c in all figures) demonstrated that use of this color space for Pan
sharpening could help to distinguish different tree types and vegetation from each other in the absence
of NIR band.

The seven quality metrics, which were presented in Table 2, were used for spectral quality
assessment of the Pan sharpening results. Numerical results from these metrics for the rural frames (F1,
F5, F6 and F10) are presented in Table A1. The metric values were calculated band by band, and the
average values of three bands were used for the accuracy assessment procedure. Numerical results
of ERGAS, RASE, RMSE and SAM metrics indicated that the proposed CIELab method produced
better results than the remaining methods and was followed by the GS method for most of the metrics.
Metric-based results were in line with the visual interpretation. The CIELab method also provided
the highest accuracies according to the QAVG and PSNR metrics. In addition, the proposed method
provides the value 1 for the SSIM metric, which is the best possible value. Moreover, the IHS method
provides worst results for all quality indexes, with respect to Table A1. Lastly, Ehlers, GIHS and
HCS methods provide lower accuracies in some cases. This unstable manner of these methods across
different scenes is another problem that should be considered.

To assess the spatial quality of Pan sharpened images, the CC, the Zhou index, Sobel RMSE
and spatial ERGAS indexes that are presented in Section 3.3, were calculated by comparing the Pan
image and the intensity component of the Pan sharpened images. Numerical results of these metrics
are presented in Table A2. According to comparative evaluation, the Pan sharpened image from the
proposed CIELab method provided the highest spatial CC and Zhou values and lowest SRMSE and
SP ERGAS values. These results indicate that the proposed method has the best spatial performance
among all methods tested. Ehlers, HIS and HCS methods provided the lowest spatial performances
according to the values presented in Table A2.

As a result, the proposed CIELab method provided the best performance for the rural scenes
based on the visual interpretation and spectral and spatial quality metrics results.

4.4. Experimental Results from Urban Areas

Figure A5 through Figure A7 belongs to the Pan sharpening results of the urban test sites (frames F2,
F4 and F9 from D1, D2 and D3 datasets respectively). Each figure belongs to a representative part
from the whole image focusing on the buildings and roads, and presents visual comparison between
different Pan sharpening techniques on the differently sized and oriented buildings and roads in the
urban areas.

Visual comparison results of urban areas revealed that all the Pan sharpened images inherited
the high spatial information from the Pan image, and likewise, the results of rural areas. Roads and
buildings could be better identified in all Pan sharpened images compared to original MS image. As for
spectral information, Figure A5 c,e,h, informed us that CIELab, GS and NNDiffuse methods preserved
the spectral characteristics and color information in urban areas. In particular, the color information
from the buildings with brick rooves are similar to the original MS image. Visual comparison of
Figure A5 part a with parts d, f, g and i illustrated that of IHS, HCS, GIHS and Ehlers methods are not
able to preserve the original spectral characteristics of buildings as well as the other three approaches
did. In particular, Ehlers, HCS and IHS methods provided blurred and smoggy results with faded
and paled colors. Parts g and I from Figures A6 and A7 support that HIS and Ehlers methods provide
worst visual results among all methods tested. Part e in Figures A6 and A7 reveals the weakest side of
GS method; that is, the poor performance in the Pan sharpening of white tones. White colors tend to
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seem blueish in results of this method. It is obvious from part f in Figures A6 and A7 that the HCS
method provided the most blurred result. GIHS and NNDiffuse methods have acceptable results in
comparison with the results from other methods (except CIELab method). Detailed investigation of
Figures A6 and A7, parts d and h, prove that NNDiffuse method produces distortion in the shadowed
areas and GIHS method has poor performance in vegetated areas and trees. Visual interpretation of
Figure A5(c), Figure A6(c) and Figure A7(c) reveal the fact that the proposed CIELab method protected
spectral properties of original MS image more than the other methods.

Numerical results of spectral quality assessment of Pan sharpened images belonging to the urban
test sites (F2, F4 and F9) are presented in Table A3. Metric values demonstrated that the CIELab
method provided the most promising results among all Pan sharpening methods used in this research.
This method presented the lowest values for the ERGAS, RASE, RMSE and SAM metrics and highest
values for QAVG, PSNR and SSIM metrics (again, the highest possible value obtained for SSIM).
HCS and IHS methods provided the worst results for most of the metrics. Once again, the second
performance rank for spectral quality was obtained by GS method in most of the metrics.

Table A4 presents the spatial quality metrics results that were calculated from Pan image and the
intensity component of Pan sharpened images for the urban test sites. Similar to the rural test sites,
the proposed CIELab method provided the highest CC and Zhou values alongside of lowest SRMSE
and SP ERGAS values for urban images, which demonstrated the high spatial quality. In particular,
there is great gap between the numeric results of SRMSE and SP ERGAS indexes presented with
CIELab method and other methods. Ehlers, IHS and HCS methods acted as the worst methods in the
case of spatial indexes, which is consistent with the visual results. Consequently, the proposed CIELab
method provided the best performance for the urban test sites (frames F2, F4 and F9) as well, based on
the visual interpretation and spectral/spatial quality metrics.

4.5. Experimental Results from Suburban Areas

Figures A8–A10 present the representative portions of the original images and Pan sharpening
results of the suburban test sites from F3, F7 and F8 frames respectively.

Similar to the urban and rural areas, visual comparison of original MS and Pan sharpened images
of this category revealed that all the Pan sharpened images produced higher spatial information than
original MS image and benefited from Pan image detail level. However, the visual performance of
suburban areas was variable, unlike the urban and rural areas. Results from frame F3 (Figure A8) show
that all methods had acceptable performance except Ehlers and HIS. Nevertheless, small amount of
distortion in vegetation and shadowed areas is apparent in the results of NNDiffuse and HCS methods.

Figure A9 illustrates the effectiveness of the CIELab method in Pan sharpening process. There is
an obvious color distortion in all methods except proposed Lab method’s result. Parts e, g and i
demonstrate similar distortion in the results of Ehlers, GS and HIS methods with a green dominant
color distortion, while other three methods, which are presented in parts d, f and h, have purple
dominant color distortion. These color distortions are apparent for all surface types including roads,
rooves and other objects. The CIELab was the only method that provided acceptable performance for
this test frame. Ehlers and IHS methods could not provide good performance for the last test frame,
as is observable in parts c and g of the Figure A10. Parts d and f prove that the results of the GIHS
and HCS are blurred and not acceptable. Green and white tones distortion is obvious in the result of
GS (Part e from Figure A10). The CIELab method illustrates the best performance again in this frame.
Regardless of the distortion in shadowed areas, NNDiffuse provided most similar results to original
MS image after the CIELab results.

Numerical results of spectral quality assessment of Pan sharpened images belonging to suburban
areas (frames F3, F7 and F8) are presented in Table A5. Once again, CIELab method provides the
highest values for the QAVG, PSNR and SSIM metrics, while it achieves the lowest values for the
ERGAS, RASE, RMSE and SAM metrics. The GS method has the second place again, similar to the
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urban and rural test sites by achieving better numeric values for most of the metrics. Similar to previous
test site results, the Ehlers and IHS methods have the worst performance between all tested methods.

Spatial quality assessment of Pan sharpening results for the frames F3, F7 and F8 are presented
in Table A6. The proposed CIELab method illustrated an unrivaled performance in the case of the
spatial quality metrics. For the CC and Zhou index, the highest correlation values that indicate high
spatial quality are provided by the CIELab method. Moreover, the lowest SRMSE and SP ERGAS
values achieved by the proposed method are another proof of high spatial quality of this method.
Ehlers, HCS and IHS methods present the lowest CC and Zhou values with the highest SRMSE
and SP ERGAS values, which indicate the poor spatial performances of these methods, like their
spectral performances.

4.6. Thematic Accuracy Evaluation with Spectral Index

The performance of the conventional and proposed Pan sharpening methods were evaluated with
several quality indices and visual interpretation in this research. However, the effects of Pan sharpening
on the information extraction, process such as image classification, segmentation and index-based
analysis is another important concern that requires conservation of spectral properties of the MS image
after Pan sharpening. One of the indirect methods frequently used to evaluate the abovementioned
situation is to apply the spectral index on the MS and Pan sharpened images, and investigate their
consistency. As only visible bands of the images were used in this research, the visible atmospherically
resistant index (VARI) proposed by Gitelson et al., 2002 [54] was used for the evaluation as it uses the
all visible bands for calculation.

VARI =
Green−Red

Green + Red− Blue
. (9)

The test site F3 was selected for this evaluation, as it is one of the most challenging sites in the
dataset due to complex and heterogeneous land cover characteristics. The VARI index was applied
on both the MS and CIELab Pan sharpened images, and a binary classification was performed with
the use of the same threshold to map the manmade and natural lands in the region. According to
results presented in Figure 4, same level of information extraction could be achieved with CIELab Pan
sharpened image and it even provided better thematic representation by providing better geometric
representations of the objects and less of the salt and pepper effect observed in the vegetated areas
located in the north and south parts of the image.

4.7. Overall Comments

When the numerical values from the seven spectral metrics for three different test sites (Tables A1,
A3 and A5) were evaluated, the proposed CIELab had a consistent behavior for different metrics
and for different land categories, and ranked as the first among all methods. On the other hand,
for the other Pan sharpening methods, different metrics provided various accuracies and did not
show a consistent manner for different metrics and even, for different images, the same metric. As
an example, the GS method generally had the second ranking for the ERGAS metric for different test
sites. However, in the case of the RASE metric, the GS method had second ranking just for some
images, while the GIHS method took the second rank for the remaining images. This phenomenon
is similar for the worse results; there is no one method that can be mentioned as the worst for all
test sites and all metrics. All facts about the consistent manner of the proposed method can also be
asserted for the spatial metrics. The CIELab method had the best spatial performance for the all ten
test sites, while second through seventh rankings were variable across different metrics and different
images. As an outcome, it is evident that the proposed method presents the best results considering
spectral and spatial quality metrics and visual interpretation for ten different sites having different
landscape characteristics. Moreover, it provided efficient spectral conservation performance according
to comparative evaluation performed with binary classification of VARI index. An overall ranking
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is provided in Table 5, according to expert judgement by considering the quantitative, metric-based
results and visual interpretation results together for different landscapes across spectral and spatial
domains. Lastly, in order to check the consistency of spectral quality indices through each band of the
images, these indices were calculated band-by-band for the test site F3 (Table A7). According to this
evaluation, the averaged values for each index are in accordance with the band-based calculations and
indices, providing consistent characteristics across image bands in most of the cases.

Figure 4. Comparison of visible atmospherically resistant index (VARI) index results extracted from
multispectral (MS) and CIELab pansharpened images of test site F3. (a) Original MS, (b) threshold
applied VARI of MS, (c) zoomed region from VARI of MS, (d) original CIELab, (e) threshold applied
VARI of CIELab and (f) zoomed region from VARI of CIELab.

Table 5. The overall relative ranking of the methods evaluated.

Method Rural Urban Suburban

Spectral Spatial Spectral Spatial Spectral Spatial

CIELab Good Good Good Good Good Moderate
GIHS Moderate Moderate Moderate Moderate Poor Poor

GS Good Good Moderate Moderate Poor Moderate
HCS Poor Moderate Poor Poor Poor Poor
HIS Poor Poor Poor Poor Moderate Poor

NNDiffuse Moderate Moderate Moderate Poor Poor Moderate
Ehlers Poor Poor Poor Poor Moderate Poor

28



Appl. Sci. 2019, 9, 5234

5. Conclusions

This research proposed an effective, component substitution-based image Pan sharpening method
that uses CIELab color space for Pan sharpening of the VHR Pléiades satellite images. Ten test sites
with different landscape characteristics were selected to evaluate the performance of the proposed
method in conjunction with six common Pan sharpening algorithms; namely, GS, HCS, IHS, EHLERS,
NNDiffuse and GIHS. The comparative evaluation results from Pléiades VHR images supports that
the proposed CS algorithm is powerful and ensures better performance compared to the other Pan
sharpening methods according to the spectral and spatial accuracy assessment procedures and the
visual interpretation. In addition, results indicated that proposed method provided comparatively
consistent results, while the performance of other methods varyied with respect to land surface
characteristics of the region. As an example for RMSE metric, the best values among the all ten
sites were obtained for forest and vegetated areas. Pan sharpening in urban areas resulted in coarser
metric values, which illustrate the impact of different land characteristics on the performance of
Pan sharpening algorithms. Characteristics of unique CIELab color space, led to producing similar
brightness characteristics in Pan sharpened images compared to original MS image. The nature of L*
component of MS image helps to preserve spectral and spatial information of original MS and Pan
images, respectively. Further improvement of the CIELab-based method could be the implementation
of this approach for Pan sharpening of satellite images with more than three bands. In addition,
further studies are planned to evaluate the performance of CIELab in fusions of satellite images from
different sources. Lastly, other accuracy assessment approaches, such as comparisons of classification
and segmentation results of Pan sharpened images, could also help future investigations.
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Appendix A

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure A1. Result and comparison of the proposed Pan sharpening method for the F1 (zoomed) area,
which is represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d) GIHS; (e) GS; (f)
HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure A2. Result and comparison of the proposed Pan sharpening method for the F5 area (zoomed),
which is represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d) GIHS; (e) GS; (f)
HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure A3. Result and comparison of the proposed Pan sharpening method for the F6 area (zoomed),
which is represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d) GIHS; (e) GS; (f)
HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.
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(a) (b) (c) 
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(g) 

 
(h) 

 
(i) 

Figure A4. Result and comparison of the proposed Pan sharpening method for the F6 area (zoomed),
which is represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d) GIHS; (e) GS; (f)
HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.
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Table A1. Numeric results of spectral quality metrics of the Pan-sharpened images produced by
selected algorithms for rural test sites (blue: highest accuracy; red: lowest accuracy).

ERGAS QAVG RASE RMSE SAM PSNR SSIM

F1

Ehlers 8.35973 0.70345 31.03779 0.00169 3.64069 55.45895 0.99423
GS 3.53280 0.72884 12.85721 0.00070 2.17343 63.81712 0.99854

GIHS 9.70735 0.68332 54.94083 0.00299 3.71061 50.49886 0.96170
HCS 3.30104 0.72804 13.12935 0.00071 3.07602 62.93191 0.99913
IHS 10.74394 0.67747 60.82506 0.00331 3.74898 49.61512 0.95743

CIELab 2.07704 0.83561 11.24036 0.00061 1.33832 69.28116 1
NNDiffuse 6.01008 0.68762 29.32491 0.00159 1.68020 55.95203 0.99065

F5

Ehlers 7.62863 0.67932 30.11675 0.00136 2.76553 57.32630 0.99653
GS 3.43803 0.70832 15.06442 0.00069 1.96874 64.58066 0.99909

GIHS 4.68240 0.70403 20.21354 0.00091 1.71451 60.78961 0.99738
HCS 6.04601 0.67023 24.66611 0.00111 1.64450 59.06045 0.98721
IHS 7.58878 0.66419 32.80574 0.00148 2.31403 56.58346 0.98436

CIELab 3.1501 0.81033 12.37956 0.00056 1.25643 75.04835 1
NNDiffuse 6.05444 0.69039 25.02772 0.00117 1.64355 59.53192 0.99658

F6

Ehlers 12.35511 0.68485 44.42476 0.00133 5.60838 57.50393 0.99650
GS 4.95180 0.73240 18.30183 0.00059 2.46646 66.21170 0.99918

GIHS 8.96652 0.71253 36.05239 0.00108 3.84187 59.31775 0.99551
HCS 5.56829 0.71320 22.52386 0.00068 3.70496 63.40357 0.98920
IHS 12.47236 0.68690 50.19509 0.00151 5.41973 56.44320 0.98278

CIELab 4.53026 0.83580 16.05962 0.00048 1.86814 66.34172 1
NNDiffuse 7.74954 0.69166 32.23618 0.00097 2.70472 60.28956 0.99680

F10

Ehlers 9.22107 0.61404 36.48889 0.00316 4.44999 49.99698 0.98567
GS 4.78197 0.63099 18.07030 0.00157 2.86307 56.10088 0.99517

GIHS 6.60284 0.62945 32.99550 0.00286 2.41971 50.87109 0.97682
HCS 9.96965 0.57631 40.17887 0.00348 2.10395 49.16024 0.98781
IHS 9.49649 0.60973 47.55454 0.00412 3.41879 47.69635 0.96361

CIELab 4.3611 0.6478 17.14994 0.00149 1.77264 57.55494 1
NNDiffuse 4.46541 0.63385 17.77395 0.00154 1.50089 56.24451 0.99540

Table A2. Numeric results of spatial quality metrics of the Pan-sharpened images produced by select
algorithms for the rural test sites (blue: highest accuracy; red: lowest accuracy).

CC Zhou’s SP SRMSE SP ERGAS

F1

Ehlers 0.876695 0.939608 0.006527 26.540923
GS 0.970317 0.973490 0.002298 25.222656

GIHS 0.978149 0.979959 0.005213 25.699874
HCS 0.939252 0.963691 0.00293 25.531640
IHS 0.869487 0.929827 0.006592 26.040642

CIELab 0.982436 0.998617 5.19E-08 17.345011
NNDiffuse 0.944022 0.967511 0.003237 24.580730

F5

Ehlers 0.926486 0.92948 0.006241 26.658944
GS 0.989994 0.98932 0.003323 25.503829

GIHS 0.990875 0.989946 0.004153 25.881689
HCS 0.869709 0.914225 0.00467 26.457399
IHS 0.927104 0.989560 0.006261 26.460988

CIELab 0.996861 0.994414 2.22E-08 4.9495726
NNDiffuse 0.971652 0.989410 0.004303 25.740781

F6

Ehlers 0.891415 0.929872 0.006123 29.084361
GS 0.989992 0.989450 0.002473 26.047215

GIHS 0.989997 0.989974 0.004425 28.173902
HCS 0.912241 0.972654 0.002903 26.946861
IHS 0.95928 0.969886 0.006141 29.301514

CIELab 0.997273 0.996194 3.40E-08 11.968807
NNDiffuse 0.969999 0.979946 0.003062 27.901263

F10

Ehlers 0.923442 0.919671 0.014214 28.001920
GS 0.989619 0.989061 0.008828 26.488351

GIHS 0.971429 0.969959 0.008738 26.263696
HCS 0.799403 0.694767 0.012855 28.756548
IHS 0.914264 0.929730 0.014267 27.019798

CIELab 0.997258 0.996956 2.69E-08 8.0781533
NNDiffuse 0.929999 0.929405 0.0067663 26.362095
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Figure A5. Result and comparison of the proposed Pan sharpening method for the F2 test frame,
zoomed areas, which are represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d)
GIHS; (e) GS; (f) HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.
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Figure A6. Result and comparison of the proposed Pan sharpening method for the F4 test frame,
zoomed areas, which are represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d)
GIHS; (e) GS; (f) HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.
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Figure A7. Result and comparison of the proposed Pan sharpening method for the F9 test frame,
zoomed areas, which are represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d)
GIHS; (e) GS; (f) HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.
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Table A3. Numeric results of spectral quality metrics of the Pan-sharpened images produced by select
algorithms for urban test sites (blue: highest accuracy; red: lowest accuracy).

ERGAS QAVG RASE RMSE SAM PSNR SSIM

F2

Ehlers 11.86921 0.53991 47.33854 0.00401 4.71053 47.94083 0.97725
GS 5.23770 0.58263 22.61594 0.00195 2.64855 55.16107 0.99458

GIHS 7.34063 0.57639 33.87054 0.00287 2.46540 50.84869 0.98449
HCS 15.71881 0.48541 62.43752 0.00529 2.73988 45.53622 0.97461
IHS 11.04969 0.54971 51.03739 0.00432 3.46087 47.28736 0.95942

CIELab 4.22351 0.68629 20.75741 0.00176 1.36201 65.10167 1
NNDiffuse 9.43220 0.56867 49.55085 0.00420 3.40818 47.54411 0.96330

F4

Ehlers 22.84143 0.52356 89.68352 0.00405 7.95294 47.84821 0.95598
GS 12.57253 0.42386 65.56001 0.00296 6.13381 50.56968 0.96821

GIHS 15.81385 0.63109 90.10525 0.00407 3.15646 47.80746 0.94837
HCS 23.98628 0.28239 121.71057 0.00550 8.28181 45.19589 0.93994
IHS 19.50133 0.38961 111.13086 0.00502 8.99373 45.98577 0.92838

CIELab 6.86913 0.70144 26.93926 0.00122 1.89738 58.29474 1
NNDiffuse 19.72400 0.63077 98.22609 0.00441 6.13952 50.53176 0.97519

F9

Ehlers 9.89595 0.51189 39.61836 0.00495 4.27519 46.10242 0.97015
GS 4.96528 0.55533 18.29249 0.00256 2.20216 51.30320 0.99273

GIHS 5.40401 0.53562 24.49466 0.00306 1.92496 50.27892 0.98486
HCS 10.02627 0.47659 39.67119 0.00496 2.02550 46.09085 0.93648
IHS 9.55051 0.51220 43.30832 0.00541 3.25101 45.32893 0.92951

CIELab 4.2936 0.6402 17.16686 0.00215 1.12493 54.36654 1
NNDiffuse 8.25412 0.58294 18.91789 0.01112 1.80691 39.08057 0.94984

Table A4. Numeric results of spatial quality metrics of the Pan-sharpened images produced by select
algorithms for urban test sites (blue: highest accuracy; red: lowest accuracy).

CC Zhou’s SP SRMSE SP ERGAS

F2

Ehlers 0.923124 0.939587 0.027718 28.484374
GS 0.985504 0.968697 0.008643 25.816466

GIHS 0.986114 0.989954 0.012513 26.611553
HCS 0.937058 0.949630 0.019802 21.018918
IHS 0.913914 0.929653 0.027772 27.734556

CIELab 0.996129 0.995455 7.17E-08 6.2709053
NNDiffuse 0.960443 0.961942 0.012853 22.490210

F4

Ehlers 0.820014 0.939655 0.017949 31.953533
GS 0.989999 0.989842 0.009369 26.949381

GIHS 0.992001 0.989953 0.012168 28.452035
HCS 0.775576 0.688826 0.018171 33.941348
IHS 0.919941 0.989666 0.018000 31.259808

CIELab 0.997280 0.996187 5.44E-08 5.8158174
NNDiffuse 0.914590 0.888001 0.012253 27.737860

F9

Ehlers 0.924923 0.949622 0.024424 28.179705
GS 0.989237 0.982593 0.014115 26.132656

GIHS 0.978923 0.989960 0.015724 26.434713
HCS 0.860205 0.794738 0.023803 28.880067
IHS 0.912546 0.969662 0.024479 27.533331

CIELab 0.99848 0.998002 5.26E-08 4.4340045
NNDiffuse 0.929067 0.958606 0.021917 25.926934
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Figure A8. Result and comparison of the proposed Pan sharpening method for the F3 test frame,
zoomed areas, which are represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d)
GIHS; (e) GS; (f) HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.
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Figure A9. Result and comparison of the proposed Pan sharpening method for the F7 test frame,
zoomed areas, which are represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d)
GIHS; (e) GS; (f) HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.
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Figure A10. Result and comparison of the proposed Pan sharpening method for the F8 test frame,
zoomed areas, which are represented in a true color (RGB) combination. (a) MS; (b) Pan; (c) Lab; (d)
GIHS; (e) GS; (f) HCS; (g) IHS; (h) NNDiffuse; (i) Ehlers.
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Table A5. Numeric results of spectral quality metrics of the Pan-sharpened images produced by select
algorithms for suburban test sites.

ERGAS QAVG RASE RMSE SAM PSNR SSIM

F3

Ehlers 10.98399 0.63217 43.08140 0.00301 4.48411 50.43809 0.98554
GS 5.51194 0.66128 23.69334 0.00154 2.84298 56.80727 0.99542

GIHS 6.97787 0.65746 33.45619 0.00233 2.40080 52.63436 0.98413
HCS 9.58868 0.62070 38.29194 0.00267 2.67967 51.46174 0.99176
IHS 10.61170 0.63204 50.97203 0.00356 3.52966 48.97725 0.97134

CIELab 4.14506 0.77127 20.06662 0.00140 1.84331 67.07440 1
NNDiffuse 6.93153 0.68589 30.69262 0.00214 2.67079 53.38321 0.99047

F7

Ehlers 9.66602 0.58842 38.60687 0.00252 5.34836 51.98700 0.98848
GS 4.43979 0.64207 28.36296 0.00183 2.15986 58.92781 0.99695

GIHS 4.86275 0.61769 19.90348 0.00130 2.39510 57.74171 0.99608
HCS 6.21293 0.59860 24.68755 0.00161 6.57336 55.87073 0.99479
IHS 9.99170 0.58440 40.96218 0.00267 5.54742 51.47263 0.98461

CIELab 3.3780 0.72134 17.43123 0.00114 1.88890 68.89373 1
NNDiffuse 6.00374 0.60227 28.30174 0.00184 2.87237 54.68403 0.98907

F8

Ehlers 7.61492 0.68151 29.46707 0.00217 3.58878 53.26597 0.99194
GS 4.02694 0.70121 14.48671 0.00107 2.77359 59.43332 0.99737

GIHS 5.76109 0.70009 27.24384 0.00201 2.20337 53.94734 0.98655
HCS 6.82371 0.68186 27.87873 0.00205 1.32168 53.74725 0.99579
IHS 8.13416 0.68201 38.54293 0.00284 2.97812 50.93381 0.97920

CIELab 3.5084 0.7133 13.48278 0.00099 1.20401 60.05712 1
NNDiffuse 5.70992 0.69899 14.95033 0.00110 1.31369 59.15970 0.99740

Table A6. Numeric results of spatial quality metrics of the Pan-sharpened images produced by select
algorithms for suburban test sites.

CC Zhou’s SP SRMSE SP ERGAS

F3

Ehlers 0.922299 0.949657 0.012645 28.478359
GS 0.989999 0.979878 0.007121 26.395064

GIHS 0.988664 0.989955 0.00808 26.561586
HCS 0.942661 0.979506 0.01034 26.580025
IHS 0.920211 0.929723 0.012687 27.542710

CIELab 0.996151 0.996340 3.22E-08 7.7739934
NNDiffuse 0.940385 0.972273 0.00683 26.669404

F7

Ehlers 0.940410 0.929782 0.013524 30.304598
GSc 0.989997 0.989956 0.008056 28.497749

GIHS 0.973639 0.978996 0.008367 29.121990
HCS 0.968484 0.962481 0.009486 29.539885
IHS 0.939801 0.964973 0.013591 30.416119

CIELab 0.998630 0.996223 1.66E-08 3.1299142
NNDiffuse 0.996187 0.989929 0.008685 28.273530

F8

Ehlers 0.918887 0.919399 0.009181 26.935703
GS 0.989998 0.989753 0.005542 25.948199

GIHS 0.972152 0.989942 0.005759 25.943732
HCS 0.800374 0.700073 0.006954 27.084421
IHS 0.921523 0.995543 0.009236 26.447253

CIELab 0.997412 0.997655 2.26E-08 8.2907935
NNDiffuse 0.989999 0.969353 0.004198 26.011647
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Table A7. Band-by-band calculation results of spectral quality metrics belonging to test site F3.

Method Band Ehlers GC GIHS HCS IHS CIELab NNDIF

ERGAS

Band 1 13.23542 6.28494 7.53986 11.51714 14.68644 6.19922 9.43229
Band 2 10.86379 5.49824 6.73039 10.62880 10.07883 4.07797 7.66444
Band 3 6.52447 4.08371 4.97720 5.58341 7.75358 2.07075 2.81246

Average 10.98399 5.51194 6.97787 9.58868 10.6117 4.14506 6.93153

QAVG

Band 1 0.86547 1.02826 0.95928 1.02387 0.87788 1.0607 1.03723
Band 2 0.57607 0.65720 0.69449 0.52406 0.56826 0.70848 0.60802
Band 3 0.48901 0.30277 0.36560 0.31617 0.45130 0.54621 0.41064

Average 0.63217 0.66128 0.65746 0.62070 0.63204 0.77127 0.68589

RASE

Band 1 49.91752 30.04186 39.39898 42.79105 54.69452 25.33830 34.82911
Band 2 46.79656 22.35778 35.26309 37.59033 52.26805 21.10608 31.65890
Band 3 34.19874 18.59234 25.44349 36.19742 45.77826 13.75556 25.58183

Average 43.08140 23.69334 33.45619 38.29194 50.97203 20.06662 30.69262

RMSE

Band 1 0.00833 0.00450 0.00525 0.00625 0.01033 0.00413 0.00525
Band 2 0.00040 0.00010 0.00186 0.00156 0.00042 0.00008 0.00106
Band 3 0.00031 0.00002 0.00001 0.00009 0.00001 0.00001 0.00009

Average 0.00301 0.00154 0.00233 0.00267 0.00356 0.00140 0.00214

SAM

Band 1 4.86237 3.61186 3.40619 3.10669 4.08712 2.22633 3.13166
Band 2 4.42003 2.42682 2.50814 2.87424 3.16997 1.82082 2.55769
Band 3 3.95193 2.35714 1.78239 2.20364 3.05983 1.53200 2.21219

Average 4.48411 2.84298 2.4008 2.67967 3.52966 1.84331 2.67079

PSNR

Band 1 56.42695 60.52591 54.16646 54.15527 51.81649 69.90153 57.27461
Band 2 48.08904 59.45342 51.82179 51.08538 47.59585 67.71639 57.20947
Band 3 47.47481 50.38406 50.63450 49.28219 46.97046 65.36066 45.98168

Average 50.43809 56.80727 52.63436 51.46174 48.97725 67.07440 53.383210

SSIM

Band 1 0.99888 0.99702 0.99417 0.99251 0.98071 1 0.99051
Band 2 0.98443 0.99539 0.98407 0.99175 0.97231 1 0.99048
Band 3 0.97331 0.99385 0.97415 0.99108 0.96142 0.9999 0.99042

Average 0.98554 0.99542 0.98413 0.99176 0.97134 1 0.99047

List A1. Definition of Terms in Table 2

RMSE: MN is the image size, PS(i, j) and MS(i, j) represent pixel digital number (DN) at (i, j) ’th
position of Pan-sharpened and MS image.
ERGAS: dh

dl represents the ratio between the pixel size of high resolution and low resolution images;
e.g., 1

4 for Pléiades data, and n number of bands. The RMSE represents root mean square error of
band i.
SAM: The spectral vector V = {V1, V2, . . . , Vn} stands for reference MS image pixels and
V̂ = {V̂1, V̂2, . . . , V̂n} stands for Pan-sharpened image pixels rep reference and both have L components.
RASE: The μ represnts the mean of bth band; b is the number of bands and RMSE represents root mean
square error.
PSNR: The L represents the number of gray levels in the image; MN is the image size, Ir(i, j) is pixel
value of reference image and Ip(i, j) is the pixel value of Pan-sharpened image. A higher PSNR value
indicates more similarity between the reference MS and Pan-sharpened images.
QAVG: The x and y are the means of reference and Pan-sharpened images, respectively; σxy is the
covariance and σ2

x and σ2
y are variances. As QI can only be applied to one band, the average value of

three or more bands (QAVG) is used for calculating a global spectral quality index for multi-bands
images. QI values range between −1 and 1. A higher value indicates more similarity between reference
and Pan-sharpened image.
SSIM: The μ stands for mean, σ stands for standard deviation; Ir and Ip represent reference and
Pan-sharpened image respectively. The C1 and C2 are two necessary constants to avoid the index from
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a division by zero. These constants depend on the dynamic range of the pixel values. A higher value
of the measured index shows the better quality of Pan-sharpened algorithm.
CC: Cr,f is the cross-correlation between reference and fused images, while Cr and Cf are the correlation
coefficients belonging to reference and fused images respectively.
SRMSE: Edge magnitude (M) is calculated via spectral distance of horizontal and vertical (Mx and
My) edge intensities.
Sp-ERGAS: dh

dl represents the ratio between the pixel size of MS and Pan images, and n is the number
of bands. Spatial RMSE is represented as below:

Spatial RMSE =

√√√√
1

MN

M∑
i=1

N∑
j=1

(Pan(i, j) − PS(i, j))2, (A1)

where MN is the image size, PS(i, j) and Pan(i, j) represents the pixel digital number (DN) at (i, j) ’th
position of Pan-sharpened and Pan image.
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Abstract: Considering the heterogeneous nature and non-stationary property of inertinite components,
we propose a texture description method with a set of multifractal descriptors to identify different
macerals with few but effective features. This method is based on the multifractal spectrum
calculated from the method of multifractal detrended fluctuation analysis (MF-DFA). Additionally,
microscopic images of inertinite macerals were analyzed, which were verified to possess the property
of multifractal. Simultaneously, we made an attempt to assess the influences of noise and blur on
multifractal descriptors; the multifractal analysis was proven to be robust and immune to image
quality. Finally, a classification model with a support vector machine (SVM) was built to distinguish
different inertinite macerals from microscopic images of coal. The performance evaluation proves
that the proposed descriptors based on multifractal spectrum can be successfully applied in the
classification of inertinite macerals. The average classification precision can reach 95.33%, higher than
that of description method with gray level co-occurrence matrix (GLCM; about 7.99%).

Keywords: coal; inertinite macerals; classification; multifractal analysis; support vector machine

1. Introduction

Macerals of coking coal closely relate to its characteristics, such as coke ability, caking ability, and
thermal crushing performance, which directly influence the optical texture component distribution
and quality of the coke [1–3]. Automatic classification and identification of different macerals in coal
are of great significance for the effective evaluation of coal process properties [4]. Inertinite is one of the
main groups in coal, and the classification of its macerals is of theoretical significance and application
value for the efficient cleaning utilization of coal.

In view of the computational complexity, and the heavy workload, along with the subjective
factors of the conventional manual and semi-manual method for maceral analysis, the methods of
image processing and pattern recognition have been employed to analyze the components in coal [5,6].
Besides, based on the advantages of data analysis and processing, the machine learning approach is
widely used in various fields [7]. Edward Lester [8] developed an image analysis technique to separate
the major maceral groups of liptinite, vitrinite, fusinite, and semi-fusinite from the background resin
according to the gray scales of the surface images captured with suitable camera exposure times.
Nonetheless, even though the foregoing technique can work in some situations, it has not been
implemented for a deep identification of macerals. There exists a fact that the characteristics of shape,
color, contour, and texture of the microscopic image are essential for information expression of macerals
in coal. Some related references have been published. To name a few, the authors of [9] completed the
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detection of approximately circular particles in the microscopic image of coal by the contour features,
and the authors of [10] proposed a method to extract the outline of the maceral area by using structural
elements. The texture features of local binary patterns (LBP) and the gray level co-occurrence matrix
(GLCM) were combined to identify three major groups in coal macerals [11]. Grey scale, GLCM,
Tamura, contourlet transform, and supervised locality preserving projections methods were employed
by the authors in the previous work [12–15] to describe features of macerals. However, because the
complex construction of macerals and similar morphological features among some different macerals
exist, these techniques may not characterize them perfectly, especially for the features of texture.

In recent years, the fractal theory, first coined in [16], has been rapidly developed as a powerful
analytical tool, which can reflect the heterogeneity and irregularities of a physical surface. There are
several published techniques for characterizing the surface irregularity of coal with the mono-fractal
method [17–21]. Nevertheless, it can not provide a comprehensive and accurate description of the
details of image changes at different scales owing to the single scale of fractal dimensions. Coal’s
surface is known to be non-stationary and heterogeneous as a consequence of the long-term and
multi-stage effects of geological processes. Some local trends in texture and dramatic changes in gray
value are universal in microscopic images of macerals. Fortunately, a method named multifractal
detrended fluctuation analysis (MF-DFA) can quickly eliminate local trends [22], making itself more
suitable for describing the texture characteristics of the microscopic images of macerals. Given the
superiority in solving non-stationary problems, the MF-DFA method has applications in quite a few
fields [23–26]. Nevertheless, it was the first attempt that the approach was applied for the purpose of
the classification of macerals in coal.

The major goal of our work was to find an artificial intelligence method to distinguish eight
groups of inertinite macerals with few but stable and effective texture features. We analyzed and
verified the multifractal properties of inertinite macerals by the method of MF-DFA. Additionally,
multifractal descriptors of microscopic images were proposed based on the multifractal spectrum.
In order to demonstrate the effectiveness of the multifractal descriptors, a comparison experiment of
stability was implemented. Finally, we built an automatic classification model with support vector
machine (SVM) to identify the inertinite macerals.

2. Materials

According to International Commission for Coal Petrology (ICCP) standard, coal is classified
across three main maceral groups; i.e. vitrinite, liptinite, and inertinite [27]. Macerals of inertinite
mainly come from woody fiber of plant or fungus [28]. The plant cellular structure of fusinite is
relatively complete, and some of them have clear intercellular space and cellular wall. The cells of
the pyrofusinite are crushed and shattered to present the shape of “arc” or “star-like”, while the
oxyfusinite has an unbroken cellular structure that exhibits a sieve shape. Semifusinite, the transitional
maceral between telinite and fusinite, is located in the form of irregular strips. Secretinite is generally
a product of silk carbonization reaction of secretions (tannin, resin, etc.), and few of them are derived
from gelation of humus coal. Besides, the microscopic images are irregularly elliptical. Funginite is
mainly derived from the remains of fungi or the secretions of higher plants, and has a honeycomb-like
or reticulated multicellular structure inside. Additionally, the outer shape is flattened circular or
ring-shaped due to extrusion. The cellular structure of the macrinite has a high protrusion and is
generally an irregular matrix. A fragment of the inertinite group of particles have a particle size
of less than 30 μm, angular or irregular in shape, and has no generally cellular structure. Most of
the micrinites are distributed in asphaltene or mineral asphaltene with minor particle size and often
small, nearly circular particles. Note that for fusinite, the two sub-macerals named pyrofusinite and
oxyfusinite will be analyzed together with other six types of macerals in our work, as the texture
differences are significant and obvious.

From Figure 1, we can observe that there are some morphological differences among different
macerals of inertinite in coal. However, their textures are fairly clear with singularity and conspicuous
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self-similarity. For such non-stationary structures, MF-DFA analysis can characterize them more
effectively and show better processing power. In view of this, this paper performed the method of
MF-DFA on each maceral image. For implementation, we used inertinite image data with 60 grayscale
microscopic images of 227 × 227 pixels in size per group. The size was chosen to ensure that each
image contained only one specific component, which is beneficial for subsequent feature extraction
and classification experiments.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Typical microscopic images of inertinite in coal. (a) Pyrofusinite; (b) oxyfusinite; (c) semifusinit;
(d) secretinite; (e) funginite; (f) macrinite; (g) inertodetrinite; (h) micirinite.

3. Methods

3.1. Multifractal Spectrum Based on MF-DFA

The method of MF-DFA is widely applied in scaling analysis due to its high accuracy and easy
implementation. For grayscale images, it is not appropriate to calculate the multifractal spectrum
with a gray series by the approach of one-dimensional MF-DFA. Generalizing the one-dimensional
method to two-dimensional one can better express the information of the surface with self-similar
properties [29]. Specifically, the process of calculating the multifractal spectrum of the grayscale image
by using the two-dimensional MF-DFA method is determined as follows.

Step 1. Regard a microscopic image as a self-similar surface with a size of M × N, which is
represented by a matrix X(i, j), i = 1, 2, ..., M and j = 1, 2, ..., N. Partition the surface into Ms × Ns

(Ms ≡ [M/s], Ns ≡ [N/s]) none-overlapping square subdomains of equal length s. Each subdomain
is denoted by Xm,n = Xm,n(i, j) with Xm,n(i, j) = X(r + i, t + j) for 1 ≤ i, j ≤ s where r = (m − 1)s,
t = (n − 1)s.

Step 2. For each subdomain Xm,n, the cumulative sum is constructed as follows

Gm,n(i, j) =
i

∑
k1=1

j

∑
k2=1

Xm,n(k1, k2), (1)

where 1 ≤ i, j ≤ s, m = 1, 2, ..., Ms, n = 1, 2, ..., Ns. Note that Gm,n = Gm,n(i, j)(i, j = 1, 2, .., s) is
a surface.

Step 3. The local trend G̃m,n for each surface Gm,n can be obtained by fitting it with a pre-chosen
bivariate polynomial function. In this paper, we adopt the trending function as

G̃m,n(i, j) = ai + bj + c (2)
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where a, b, and c are free parameters to be estimated by the least-squares method. We can determine
the residual matrix ym,n(i, j) with

ym,n(i, j) = Gm,n(i, j)− G̃m,n(i, j). (3)

Step 4. The detrended fluctuation F(m, n, s) for each subdomain Xm,n can be defined via the
variance of ym,n(i, j) as follows

F2(m, n, s) =
1
s2

s

∑
i=1

s

∑
j=1

y2
m,n(i, j). (4)

Step 5. The q − th order fluctuation is obtained by averaging over all the subdomain

Fq(s) = exp

{
1

MsNs

Ms

∑
m=1

Ns

∑
n=1

ln[F(m, n, s)]

}
, q = 0 (5)

Fq(s) = [
1

MsNs

Ms

∑
m=1

Ns

∑
n=1

[F(m, n, s)]q]1/q, q �= 0. (6)

Step 6. The scaling relation of the fluctuation can be determined by analyzing the log-log Fq(s)
versus the s for different values of s ranging from 6 to (M, N) /4, which reads

Fq(s) ∝ sh(q). (7)

The scaling exponent h(q) can be obtained by the linear regression of ln Fq(s) to ln s, which is also
called the generalized Hurst index. For each q, the corresponding traditional scaling exponent as τ(q)

τ(q) = qh(q)− Df . (8)

Note that, Df represents the fractal dimension of the geometric support. For the two-dimensional
microscopic image of this paper, we take the value of Df = 2.

Step 7. The multifractal surface can be characterized by Hölder exponent α(q) and singularity
spectrum f (α), which are given by the Legendre transform [30].

α(q) = τ′(q) = h(q) + qh′(q) (9)

f (α) = qα(q)− τ(q) = q[α − h(q)]+2. (10)

Here, the multifractal singularity spectrum f (α) is a continuous exponential spectrum used to
characterize multiple fractal sets, which provides a complete statistical description of the internal
inconsistencies of fractals.

3.2. Multifractal Analysis and Feature Extraction

We express grayscale images of inertinite macerals as two-dimensional matrices and analyze
them in accordance with the multifractal detrended fluctuation analysis introduced previously. It is
worth mentioning that in the partitioning process, the upper-right and bottom areas are ignored since
the image sizes of M and N are not particular multiples of the small square s. Hence, we can repeat
the partitioning process in the other three directions. Taking the typical microscopic images in Figure 1
as examples, we calculate the scaling exponent h(q) with different values of q in the range from −6 to
6; then, the corresponding function τ(q) can be obtained according to Equation (8). The result τ(q) is
given in Figure 2, and the inset displays the scaling exponent h(q). We can find that the function τ(q)
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is nonlinear with respect to q, which indicates that the exponent τ(q) is dependent on q. Nonlinearity
also confirms that the microscopic images of inertinite do possess multifractal nature.
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Figure 2. Dependence of τ(q) and h(q) on q for the typical microscopic images of inertinite
macerals. (a) Pyrofusinite; (b) oxyfusinite; (c) semifusinit; (d) secretinite; (e) funginite; (f) macrinite;
(g) inertodetrinite; (h) micirinite.

According to Equations (9) and (10), we calculate the multifractal spectra of the macerals of
inertinite, which are displayed in Figure 3. Their graphs are typically barbed, indicating that different
parts with different singularities have different fractal dimensions, confirming the multifractal properties
of our microscopic images. The multifractal singularity spectrum is a single-peak map normally, and
several important multifractal feature parameters can be extracted as the texture descriptors of the
corresponding image, such as the minimum value of the local singularity αmin, the maximum value of
the local singularity αmax, and the maximum value of the spectrum fmax.
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Figure 3. Multifractal spectra of microscopic images of the typical inertinite macerals. (a) Pyrofusinite;
(b) oxyfusinite; (c) semifusinite; (d) secretinite; (e) funginite; (f) macrinite; (g) inertodetrinite;
(h) micirinite.

Additionally, the multifractal descriptors of αmin, αmax, and fmax are used to build a three-
dimensional space to test the distinguishing ability of each of the two groups. We calculated the multifractal
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spectra of 480 grayscale images in the inertinite data set, and their corresponding multifractal
descriptors are plotted in Figure 4, respectively. We can find that it is not difficult to distinguish
different groups due to the fact that the same components are clustered together and different macerals
are separated in the space. It is worth mentioning that a small number of combinations of macerals
have a certain degree of overlap due to a high similarity between their textures. However, the majority
of combinations are separable in our three-dimensional space.
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Figure 4. The three-dimensional space with multifractal descriptors for every pair of groups of
intertinite macerals. (a) inertodetrinite Vs pyrofusinite; (b) oxyfusinite Vs funginite; (c) semifusinite Vs
macrinite; (d) micrinite Vs secretinite.

4. Stability Analysis of Multifractal Feature Descriptors

The feature descriptors (αmin, αmax, fmax) extracted from the multifractal spectrum should be able
to characterize the significant textural information of the inertinite macerals. As is well known, effective
texture features for image recognition are supposed to be robust and not subject to image quality. In
this section, we consider the stability of our multifractal descriptors in terms of noise immunity and
anti-blurring ability, and then illustrate the superiority of multifractal descriptors compared to the
traditional feature descriptors.

4.1. Stability to Image Noise

Textural features of images can be disturbed by noise to a great extent. In this paper, Gaussian
noise, speckle noise, and salt and pepper noise are added to the inertinite microscopic images to
investigate the influence of noise on the multifractal spectrum. Figure 5 gives the images of pyrofusinite
with the addition of Gaussian noise (0-mean and variance of 0.05), speckle noise (variance of 0.05), and
salt and pepper noise (density of 2%), respectively.
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(a) (b) (c)

Figure 5. Typical images of pyrofusinite with different noises. (a) Gaussian noise; (b) speckle noise;
(c) salt and pepper noise.

The multifractal spectra f (α) of the pyrofusinite images with various noises were calculated
and the comparisons with the original image were done. As shown in Figure 6, the spectrum of
pyrofusinite image with speckle noise is almost identical to the original one, which illustrates that
the speckle noise has a slight influence on pyrofusinite image. In addition, we extract and report the
values of multifractal descriptors of eight groups of inertinite macerals with different noises in Table 1.
For comparisons, the statistical features, such as angular second moment (ASM), entropy, moment
of inertia (IM), and correlation based on GLCM, were calculated and listed in Table 2. From Tables 1
and 2, we can find that the multifractal descriptors are relatively stable, while the GLCM-based texture
descriptors are sensitive to noise, and the value of IM fluctuates significantly with different noises.
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Figure 6. Multifractal spectra of the microscopic images of pyrofusinite with different noises.
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Table 1. Multifractal descriptors of typical microscopic images of inertinite with different noises.
Sample labels (a)–(h) are consistent with the labels of typical images in Figure 1.

Sample
Label

Original Image Gaussian Noise Speckle Noise Salt & Pepper Noise

αmin αmax fmax αmin αmax fmax αmin αmax fmax αmin αmax fmax

(a) 1.8717 2.4682 1.9974 1.8776 2.3777 1.9978 1.8731 2.4640 1.9975 1.8760 2.4406 1.9976
(b) 1.9019 2.3411 1.9982 1.9066 2.3093 1.9985 1.9101 2.3239 1.9984 1.9060 2.3163 1.9984
(c) 1.8987 2.5650 1.9985 1.8986 2.2927 1.9987 1.8970 2.5879 1.9985 1.9018 2.3932 1.9987
(d) 1.8810 2.7293 1.9946 1.8879 2.4767 1.9959 1.8869 2.7477 1.9948 1.8825 2.5918 1.9953
(e) 1.9213 2.2807 1.9985 1.9221 2.2545 1.9987 1.9211 2.2808 1.9986 1.9240 2.2550 1.9987
(f) 1.8868 2.7113 1.9948 1.8959 2.4883 1.9961 1.8926 2.7285 1.9952 1.8881 2.6409 1.9954
(g) 1.9615 2.4384 1.9992 1.9607 2.2565 1.9993 1.9635 2.4191 1.9992 1.9608 2.3784 1.9993
(h) 1.8924 2.2427 1.9986 1.9075 2.2099 1.9989 1.9003 2.2446 1.9986 1.9023 2.2149 1.9988

To further clarify that our multifractal descriptors of αmin, αmax and fmax possess better anti-noise
stability than that of GLCM-based texture parameters, the average relative errors of feature descriptors
from typical microscopic images with different noises are calculated and displayed in Figure 7. We can
see that three types of noises all have a great influence on GLCM-based texture parameters, especially
for the moment of inertia, whose relative error is much higher than 100% for each maceral of inertinite.
The parameter of IM of secretinite is highly sensitive to different noise with a relative error close to
400%. Furthermore, the relative errors of the three multifractal texture descriptors are particularly
low among the seven parameters, none of which exceeds 15%, and that of fmax even closes in on zero.
From the results of noise immunity experiment, it is clear that our descriptors of αmin, αmax, and fmax

possess great stability to various noises.
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Figure 7. Relative errors of texture descriptors of typical inertinite microscopic images with different
noises. (a) Gaussian noise; (b) speckle noise; (c) salt and pepper noise.
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4.2. Stability to Image Blurring

Due to the limitations of objective conditions and the interference from human factors, some
inevitable phenomena may occur in the process of microscopic image acquisition, such as motion
blur caused by lens jitter and defocusing blur caused by inaccurate focusing, while stable texture
parameters should have good immunity to these kinds of fuzzy degradation [31].

Taking the image of pyrofusinite as an example, motion blur and defocusing blur degradation are
processed as shown in Figure 8. We plot their multifractal spectra in Figure 9 and compare the spectra
with the original one. As can be seen from the multifractal spectra, after image blurring, the value
of fmax fluctuates slightly between 2 and 2.05, indicating the extracted texture parameter fmax is not
sensitive to blurring.

(a) (b)

Figure 8. Typical images of pyrofusinite with different blurred processing methods. (a) Motion blurred
image; (b) defocus blurred image.
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Figure 9. Multifractal spectra of the microscopic images of pyrofusinite with different blurring.

In order to demonstrate the robustness of the multifractal descriptors to image blurring more
convincingly, we perform motion blur and defocus blur on all microscopic images labeled (a)–(h)
form Figure 1. Then the parameters of αmin, αmax, and fmax are calculated; besides, the GLCM-based
texture features are also calculated for comparison. Figure 10 shows the average error of these texture
features. For eight types of inertinite macerals, the relative error of fmax is close to 0, αmin and αmax are
between 0% and 15%, which indicates that the multifractal features have excellent robustness and are
insensitive to blurring. However, GlCM-based features are susceptible to image blurring. For example,
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the relative error of the second-order moment of the semifusinite with defocus blurring is even higher
than 300%; the parameter of energy is relatively stable in the microscopic images of inertinite macerals,
all of which are less than 40%. The above analysis depicts that the three multifractal descriptors possess
great stability to different kinds of blurring.
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Figure 10. The relative errors of textural descriptors of typical inertinite microscopic images with
different blurring types. (a) Motion blurred image; (b) defocus blurred image.

5. Classification Experiment

5.1. Experiment Design

Considering small samples, SVM is employed to build a classifier for the classification of inertinite
macerals [32]. To address the non-linear and the multi-classes problem in this paper, the input data
are mapped into high-dimensional space with a non-linear mapping, and the relevant classification
function can be expressed as

F(x) = sgn[
n

∑
i=1

aiyiK (xi, x)+b0], (11)

where ai, i = 1, ..., n are Lagrange multipliers, the class to which a sample is assigned is labeled yi, and
K (xi, x) represents a kernel function, which is the radial basis function (RBF) kernel function here.

The classification model for inertinite macerals with the SVM-based classifiers is illustrated in
Figure 11. To implement the multi-classification, we construct a classifier group with 28 RBF-SVM
classifiers to distinguish eight groups of inertinite macerals based on the one-against-one (1A1)
technique and optimize the error parameter (usually designated c) and parameter γ in RBF kernel
function by a grid search [33,34]. Besides, 40 of the microscopic samples per group are used for training,
and the remaining 20 samples for testing and each classifier is used to distinguish two different classes
of inertinite macerals. Then, the remaining testing samples per group are input into the trained
classifiers. The specific testing process is as follows.

Step 1. Calculate the texture descriptors of αmin, αmax and fmax for each image in the testing set.
Step 2. Input the texture data obtained in the previous step into the classifier group in turn.
Step 3. Count the votes in eight groups; the testing image is classified into the group with the best

poll numbers.
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Step 4. Repeat the above steps for the remaining images, and finally, get the category for each
training images.

Figure 11. Classification model for inertinite macerals with the SVM-based classifiers.

5.2. Evaluation Measures

The results of the automatic classification method are quantitatively evaluated by ensemble of
popular measures. The measures used in our work comprise precision, recall, and F-measure.

The class agreement of the predicted labels with the positive labels given by the classifier is estimated
by precision, and the validity of the positive label recognition is measured by recall. The F-measure is
defined as a scaled harmonic mean of precision and recall.

precisioni =
tpi

tpi + f pi
(12)

recalli =
tpi

tpi + f ni
(13)

F-measurei =
2 ∗ precisioni ∗ recalli

precisioni + recalli
, (14)

where tpi, f pi, tni, and f ni denote the values of true positives, false positives, true negatives, and
false negatives for class i, respectively. Using the above measurements, the performance of proposed
classification model can be conducted for comparison purposes. Additionally, for the purpose of
comprehensively evaluating the average performance of eight groups of inertinite macerals, we
consider the average values of precision (macro-precision), the average values of recall (macro-recall),
and macro-F, which is a scaled harmonic mean of macro-precision and macro-recall.

5.3. Experimental Results

Based on the classification model, each RBF-SVM classifier is trained with the training samples
to get specific values of parameters c and γ, as summarized in Table 3. For the testing samples, the
previous evaluation performance of classifying inertinite macerals using multifractal descriptors is
reported in Table 4. For each maceral, the classification result has achieved satisfactory performance in
terms of precision, recall, and F-measure. We notice that the precision performances of oxyfusinite,
secretinite, and funginite are slightly lower than those of the best performances of about 0.1304,
0.9520, and 0.1000, which may be due to their fractal similarity corresponding to the distribution of
multifractal spectra, as shown in Figure 3. Remarkably, the result for macrinite presents the most
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appealing performance with three full marks. This may be attributed to the fact that the MF-DFA
method can effectively eliminate the local trends of non-stationary images and detect their multifractal
features more accurately. These data from the evaluation matrices indicate that our multifractal features
are effective in representing texture information of microscopic images of inertinite macerals.

Table 3. Objects and parameters of different classifiers. (a) Pyrofusinite; (b) oxyfusinite; (c) semifusinite;
(d) secretinite; (e) funginite; (f) macrinitee; (g) inertodetrinite; (h) micirinite.

Classifier Objects c γ Classifier Objects c γ

RBF-SVM1 (a) Vs (b) 0.5000 2.0000 RBF-SVM15 (c) Vs (e) 0.0313 0.0313
RBF-SVM2 (a) Vs (c) 0.0313 0.0313 RBF-SVM16 (c) Vs (f) 0.0313 0.0313
RBF-SVM3 (a) Vs (d) 0.2500 32.0000 RBF-SVM17 (c) Vs (g) 0.0313 0.0313
RBF-SVM4 (a) Vs (e) 4.0000 32.0000 RBF-SVM18 (c) Vs (h) 0.0313 0.0313
RBF-SVM5 (a) Vs (f) 16.0000 32.0000 RBF-SVM19 (d) Vs (e) 2.0000 16.0000
RBF-SVM6 (a) Vs (g) 0.0313 2.0000 RBF-SVM20 (d) Vs (f) 0.0313 0.0313
RBF-SVM7 (a) Vs (h) 1.0000 32.0000 RBF-SVM21 (d) Vs (g) 0.0313 0.5000
RBF-SVM8 (b) Vs (c) 0.0313 0.0313 RBF-SVM22 (d) Vs (h) 0.0313 8.0000
RBF-SVM9 (b) Vs (d) 0.0313 0.0313 RBF-SVM23 (e) Vs (f) 0.0313 32.0000

RBF-SVM10 (b) Vs (e) 0.0625 8.0000 RBF-SVM24 (e) Vs (g) 0.0313 0.0313
RBF-SVM11 (b) Vs (f) 0.0313 0.0313 RBF-SVM25 (e) Vs (h) 16.0000 2.0000
RBF-SVM12 (b) Vs (g) 0.0313 1.0000 RBF-SVM26 (f) Vs (g) 0.0313 0.5000
RBF-SVM13 (b) Vs (h) 0.0313 0.2500 RBF-SVM27 (f) Vs (h) 0.0313 32.0000
RBF-SVM14 (c) Vs (d) 0.0313 0.2500 RBF-SVM28 (g) Vs (h) 0.0313 0.0313

As a comparison, the performance evaluation of the classification of GLCM-based descriptors
is reported in Table 5. It is not surprising to find that the GLCM-based descriptors always lead to
unsatisfactory performance when compared to multifractal descriptors. This may be explained by
the fact that the statistical features based on GLCM are not applicable for describing texture images
with complex and heterogeneous naturals. Especially for the maceral of inertodetrinite, the three
evaluation values are as low as 0.667, 0.5000, and 0.667, nearly half of the corresponding evaluation
values of our method, which are far from satisfying our classification purpose. Overall, we give the
average performance evaluation in Figure 12. The macro-precision of the GLCM-based descriptors
can be improved by means of the proposed multifractal descriptors up to 7.99%. This holds in both
micro-recall and macro-F with improvements of 10.00% and 9.02%, respectively. These data present
report the effectiveness and feasibleness of our proposed method.

Figure 12. Average performance evaluation of different texture descriptors.
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Table 4. Performance of inertinite macerals’ classification with multifractal descriptors.

Pyrofusinite Oxyfusinite Semifusinite Secretinite Funginite Macrinite Inertodetrinite Micinite

precision 1.0000 0.8696 1.0000 0.9048 0.9000 1.0000 0.9524 1.0000
recall 0.8500 1.0000 0.9500 0.9500 0.9000 1.0000 1.0000 0.9500

F-measure 0.9189 0.9302 0.9744 0.9268 0.9000 1.0000 0.9756 0.9744

Table 5. Performance of inertinite macerals’ classification with GLCM-based descriptors.

Pyrofusinite Oxyfusinite Semifusinite Secretinite Funginite Macrinite Inertodetrinite Micinite

precision 0.8182 0.9756 0.9231 0.7368 0.7083 0.9756 0.6667 0.9744
recall 0.9000 1.0000 0.9000 0.7000 0.8500 1.0000 0.5000 0.9500

F-measure 0.8182 0.9756 0.9231 0.7368 0.7083 0.9756 0.6667 0.9744

6. Conclusions

Considering the fact that the petrological properties of coal are complex and widely distributed,
in this paper, the microscopic images with heterogeneous natural have been analyzed by the MF-DFA
method. We verified the multifractal properties of the microscopic image by the function of τ(q)
and h(q). In addition, with the multifractal spectrum, we have proposed three important texture
descriptors for characterizing image information, such as αmin, αmax, and fmax. It is well known that
the texture descriptor of an image should be robust and immune to image quality; thus, the stability
experiments have been implemented and the results have verified the anti-noise ability and anti-blur
capability of the multifractal descriptors.

A classification model with RBF-SVM classifier has been built to distinguish the 160 microscopic
images of inertinite macerals in coal. Our multifractal descriptors have represented the most appealing
results in terms of performance metrics of precision, recall, and F-measure, providing excellent
performance compared with GLCM-based texture descriptors. The successful implementation of our
proposed method in the identification of inertinite materials can assist petrologists to make correct
decisions and reduce the influences of subjective factors in practical scenarios, which is particularly
beneficial to geologists with less experience. In view of the fact that there are some similarities of
structural complicacy and non-linear multi-classification, we will investigate the classification of other
maceral groups with a reference to our proposed method in the future. Simultaneously, in order to be
more suitable for industrial applications, we will also develop a cross platform software for maceral
image recognition and classification in the future work.
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Abstract: This study proposes a lightweight solution to estimate affine parameters in affine
motion compensation. Most of the current approaches start with an initial approximation based
on the standard motion estimation, which only estimates the translation parameters. From there,
iterative methods are used to find the best parameters, but they require a significant amount of time.
The proposed method aims to speed up the process in two ways, first, skip evaluating affine prediction
when it is likely to bring no encoding efficiency benefit, and second, by estimating better initial values
for the iteration process. We use the optical flow between the reference picture and the current picture
to estimate quickly the best encoding mode and get a better initial estimation. We achieve a reduction
in encoding time over the reference of half when compared to the state of the art, with a loss in
efficiency below 1%.

Keywords: block-based coding; video coding; H.265/HEVC; affine motion compensation

1. Introduction

High Efficiency Video Coding (HEVC) [1] is a standard of video coding that is used extensively
for High Definition content. It has provided very large gains in coding efficiency compared to previous
standards like Advanced Video Coding (AVC) [2].

Most of the efficiency in modern video encoding methods comes from exploiting the similarity
between the pictures that form the video sequence, also known as frames. Currently, this works by
dividing the current picture into blocks of various sizes and giving them a motion vector and one
(or two in case of bi-directional prediction) already decoded pictures to use as source data. The error
resulting from prediction, also known as residual, has its entropy further reduced using transforms
and quantization. Quantization introduces errors, making the step non-reversible, but it allows for a
greatly reduced entropy in the result. Various methods are used to code the prediction modes used
and the transformed residual coefficients.

This process works very well when the only changes in the picture can be represented by
translations. However, for complex movements, it requires approximating a higher order motion
with a translation, leading to prediction error. In most cases, the encoder will decide to use smaller
prediction blocks to limit the error for each block, as a larger block would have a more inaccurate
motion vector. On the other hand, the high order transform can represent accurately the motion
even with a large block. So while additional parameters need to be coded, the reduced amount
of blocks means that there are less parameters overall that need to be coded, reducing the cost of
coding the motion parameters. Furthermore, this prediction can be more accurate than the translation
approximation using many small blocks. The potential of higher order motion models for video
coding has been known for a long time, and several papers have demonstrated significant gains, such
as Reference [3]. Using affine prediction, they showed an improvement of 6.3% coding efficiency on
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sequences using non-translational motion, further increased to 7.6% when using larger blocks up to
128 × 128. However, when using smaller blocks, such as 16 × 16 like in the previous standard AVC,
the gain is reduced to 0.1%. This shows that using large blocks is a critical aspect for higher order
motion compensation.

Because affine motion prediction showed very impressive gains on some sequences, it was one
of the tools added in the Joint Exploration Model (JEM) [4]. JEM was an experiment to evaluate
new proposals for a future encoding standard after HEVC. As affine motion compensation proved it
could achieve significant gains, it has been included in the currently being developed future standard
Versatile Video Coding (VVC). Several improvements over the original JEM implementation were
proposed [5]. While the original implementation supported only a 4-parameter model, it is possible to
allow a 6-parameter model as well and let the encoder decide the best model for each block. There
are also possible improvements on the entropy coding, based on better motion vector prediction and
coding of motion vector differences.

However, this improvement, as most improvements in video encoding, comes with a cost. Most
new tools in recent encoding standards work by giving more options to the encoder. For example,
allowing larger blocks in HEVC was the source of many improvements in coding efficiency, but this
also required much more processing on the encoder side, as to find the best possible block sizes,
the encoder needs to try everything. There are 341 possible block partitionings in a given Coding
Tree Unit (CTU) [6], and an optimal encoder would need to test all of them to find the most efficient
partitioning, which is too demanding for fast encoding, so fast estimation methods are desired. In VVC,
the maximum block size is even further increased, increasing even further the amount of possible
block partitionings. Higher order motion compensation, like affine motion compensation, is another
mode that requires to be evaluated. But the additional encoding time cost is even bigger, as unlike the
translation-based motion vectors using two parameters, an affine transform requires six parameters.
Classical block-matching approaches do not scale well with more parameters, making them unpractical
for this case.

To solve the problem of fast parameter estimation, different methods were designed. In the recent
years, the most common implementation for obtaining the parameters is gradient-based. This gradient
process is used in many methods, including the affine motion compensation in JEM [7], and methods
based on HEVC [8,9]. Typically, the process starts with an initial estimation. The most simple initial
estimator is the best translational motion vector, as the motion estimation for translation is performed
before the affine motion compensation. If neighbors are available, it is possible to use their affine
parameters for the initial estimation. To find a better value, a gradient is computed at the current
estimation. The process is repeated either until no improvement is found or a maximum iteration
count has been reached. The process is costly as it requires to solve linear equations at each step, but is
still much faster than block-matching.

Another method is to reduce the number of parameters of the transform to make the traditional
approaches to parameter estimation work in a reasonable time. In Reference [10], the authors have
replaced the 4-parameter (also known as zoom&rotation model) transform by two 3-parameter models
that can be used depending on the movement. As in most cases, the video is mostly either a rotation
or a zoom, it is very common than one of the two parameters is very small or even zero. In those
cases, using a model with fewer parameters allows a similar efficiency, and even more in some cases
as coding becomes easier. The main drawback is that it requires evaluating the parameters twice.
However, this method allows the implementation to use standard block matching techniques that can
reuse existing hardware or already implemented methods in software, while solving linear equations
in the gradient-based approach requires a completely new implementation. They show a similar time
and efficiency compared to Reference [9], but with fewer changes to the existing encoder.

In our proposed method, we decide to use the estimated displacement for each sample in the
picture from optical flow to get a faster encoding than the current methods. The displacement can be
used to estimate transform parameters for a given affine model. We use this estimation and the variance
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of the displacements in a given block to decide what transform model is the most appropriate between
zooming, rotation and skipping affine mode parameter estimation entirely. This saves encoding time as
fewer affine parameter estimations will be performed. In standard encoding, the parameter estimation
for the translation is fast, so optical flow would introduce too much overhead, but the complexity of
the affine transform makes motion estimation much slower. We believe the overhead is smaller than
the time savings it allows.

In the following section, the current state of the art for affine motion compensation and optical
flow will be presented. The methods section will present and explain how our proposed method
works. In the results section, we will evaluate the accuracy of the heuristics of the proposed method
and compare it with the state of the art.

2. Related Works

As mentioned in the introduction, HEVC, by allowing a larger block size compared to AVC, has
made affine motion compensation more usable, allowing for very large efficiency gains in sequences
that present non-translational motion.

We focus on the implementations on top of HEVC as the proposed implementations in JEM in
VVC are not true affine motion compensation, as they compute a standard translational motion vector
for 4 × 4 subblocks.

2.1. Higher Order Motion Prediction Models

In all existing video encoding standards, translation-based prediction is supported. It can be
defined mathematically by the following equation:[
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the motion vector.

Higher order motion prediction models are models that use more than two parameters to represent
motion. While it is possible to define motion models with an arbitrarily high amount of parameters,
in practice two models have been used the most: the affine motion model, that uses six parameters,
defined by Equation (2), and the zoom and rotation model, that uses four parameters, defined by
Equation (3). [
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In these equations, a and b are the affine motion parameters, vx and vy are the translational motion
parameters. By comparing with Equation (1), we can see that they are very similar, with an additional
two or four parameters added.

Tsutake et al. [10] proposed using two 3-parameter models for affine motion compensation to
replace the zoom and rotation model, that are defined as follows:
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The two 3-parameter models are simplifications of the 4-parameter zoom and rotation model.
The first model, described in Equation (4), sets b to 0 and a to 1 + s, as a value of 0 for s represents a
translation. The second model, described in Equation (5), sets b to r and a to 1, so a value of 0 for r
represents a translation.

Because it is common that the movement is either zooming or rotation rather than a combination
of both, it is common that one of the two affine parameters is much smaller than the other. In this
case, reducing the number of parameters will reduce the coding cost of the prediction without losing
much accuracy.

Using this dual model option allows for good efficiency, but it requires doing the parameter
estimation process twice.

2.2. Transform Computation

As seen in the previous equations that represent higher-order motions, they result in a motion
vector that depends on the position within the block. While implementations are very good at
computing predictions with a constant motion vector (and especially for integer motion vectors as
they are simple copy and paste), they are not designed for a constantly changing motion vector.

In the proposed affine motion compensation in JEM [7], this problem is avoided by using
constant motion vectors for blocks of 4 × 4 samples. However, this also means it is not true affine
motion compensation.

In Reference [8,9], the authors suggest doing a 1/16th sample interpolation using a eight-tap filter.
While it is quite slow, as the gradient method converges quickly towards the optimal value, it does not
add too much additional burden to the encoder.

In Reference [10], because the method requires to evaluate more transforms, the interpolation is
faster, using the quarter sample interpolation from HEVC and using bilinear interpolation between
the four surrounding samples. To avoid the need for computing the interpolation many times, the
interpolated samples are stored in a buffer for each reference picture.

2.3. Gradient-Based Parameter Estimation

In Reference [5,7–9], a gradient method is used to estimate the affine motion parameters. This
method is based on the Newton–Raphson method, which is a method that allows finding the root of a
function with an iterative process. The general form is given by the following equation:

x1 = x0 − f (x0)

f ′(x0)
(6)

It is possible to generalize this equation to multi-dimensional problems. With affine motion
compensation, we have the following error function:

E = ∑
(x,y)

(org(x, y)− re f (x′, y′)) (7)

where org(x, y) refers to the original value of the sample at coordinates
[

x y
]t

in the current picture,

re f (x, y) refers to the sample value at coordinates
[

x y
]t

in the reference picture.
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2.4. Block-Matching-Based Estimation

Reference [10] use a different method than the others to find the affine parameters. Because they
use less parameters, the complexity increase is lower. However, even with only three parameters,
the search around neighbors, if using a standard diamond or square pattern, goes from 8 transform
computations to 26, and affine prediction is also more costly to compute.

Their idea is to decouple the search for the parameters. As with other methods, they start with an
initial estimation based on the classical translation-based motion estimation. Then, they try values
in the entire search range, with a step size of 4Δ, where Δ represents the quantization step for the
affine parameter. They use the best value they found during this search for the next iterations. The
first iteration checks the neighbors at a distance of 2Δ, then the second with a distance of Δ. This
will give the best affine parameter for the given translation parameters. But the best translation
parameters might be different in case of affine prediction, so the second step, the parameter refinement,
is performed.

The parameter refinement works by alternating translation parameter refinement and affine
parameter refinement. In both cases, the encoder will look for the closest neighbors, at a quarter
sample distance for the translation and Δ for the affine parameter. The refinement stops when either a
maximum number of iterations or no more improvement happens.

2.5. Motion Parameter Prediction and Entropy Coding

To achieve optimal efficiency when using affine motion prediction, it is important to signal the
affine motion parameters with as few bits as possible. Every method uses the same coding as HEVC
for the translational parameters, making full use of the motion vector prediction coding.

Reference [9] improves the translational motion vector coding by estimating the change in the
translation parameter between blocks. Block-to-block translational shift compensation (BBTSC) corrects
the translational shift, allowing merge mode to be used much more often as there is no need to signal
the motion vector difference. This results in an improvement of 6% in the tested sequences.

Coding the affine motion parameters is difficult, as it is more difficult to predict them from
neighboring blocks. The first limitation is not all blocks are going to use affine prediction, so it may be
often necessary to code them without a prediction, but even in the case where a neighbor uses affine
prediction, it may use a different reference picture, and scaling the motion parameters is challenging,
as simply multiplying every value by the distance ratio does not work. Reference [11] tackles this
problem by allowing motion scaling to work on affine parameters. They propose decomposing the
transform into separate transforms, for example a rotation and a zoom operation, and scale each matrix
appropriately, then combine them again to get the new parameters.

For the quantization, the most common, used in References [3,8,9], is a quantization step of 1/512.
Reference [10] evaluates different quantization step sizes, from 1/16 to 1/512. They find that using
such a fine quantization step gives no coding efficiency benefit, and that 1/256 is enough to get the
best efficiency. As their method is a semi-exhaustive search, reducing the number of possible values is
also good for encoding speed. They also choose to limit the maximum quantized parameter to 16, as
higher values are too rare and seldom used.

2.6. Optical Flow

Estimating the movement between two pictures has been a subject of research for a long time, as it
has numerous applications. For video coding, it is necessary for finding motion vectors, and is often
done through computationally expensive methods that check the error for each possible motion vector,
with more recent methods improving the search algorithms to keep the encoding time reasonable.
In those cases, only the cost for the whole block is considered, so the movement estimation is often not
accurate at a more granular level.
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However, in many applications, the movement for each pixel is desired. This is typically referred
to as optical flow. One of the most famous and popular methods for estimating optical flow is the
Lucas-Kanade method [12]. It has been used a lot and gives satisfying results for simple movements.
It is quite fast, which is one of the reasons for its popularity. Because it is included in the OpenCV
library, it is also very easy to use, while many methods do not release their code, which adds the
additional burden of implementation to potential users.

A recent application that also shows potential for video coding is frame interpolation, where by
computing the movement for each pixel between the two frames, it is possible to estimate the missing
frame with remarkable accuracy, which was demonstrated in EpicFlow [13]. To speed up the process,
it is possible to use the motion vectors that are used for encoding the frames as estimators of the motion
for a given block, then refine the optical flow to a pixel level, as was proposed in HEVC-Epic [14],
which offers a good increase in speed compared to EpicFlow, but is still very slow, taking several
seconds for estimating a single frame.

While the computed interpolated frame could be used in encoding with a new kind of prediction,
it would make decoding too slow. Decoding needs to be possible on inexpensive hardware to see any
large scale adoption.

While the state of the art optical flow methods achieve impressive accuracy, this comes at the
cost of increased computation, and depending on the methods the time required varies depending on
the picture. When considering hardware implementations and real time constraints, as is the case in
encoding, it is important to ensure that the computations will always be bounded as to avoid the need
for additional circuitry that will be used only in few cases. In this paper, the optical flow method from
Ce Liu [15] was considered because the computation cost varies solely on the size of the input picture
and the parameters for the number of iterations.

It also offers very nice properties for hardware implementation, as all the operations are highly
parallel in nature, which makes them very easy to implement in hardware. While the software
implementation is not parallelized, it would be possible to improve the speed relatively easily.

3. Proposed Method

3.1. Optical Flow Estimation

For each picture using inter-picture prediction, optical flow is computed using the current picture
and the first picture in the reference picture list. While computing it for every picture in the reference
picture list leads to better approximations, the required time is much higher, and the proposed method
aims to provide good encoding efficiency with a faster encoding than similar methods. For the
reference picture, the picture before encoding is used. This offers two advantages: first, this allows
optical flow to be computed before the picture is encoded, and second, the motion estimation is more
accurate and follows the real movement better, especially when the quantization parameter is large
and the reconstructed picture is of lower quality.

After obtaining an approximate displacement for each pixel in the current picture, the estimation
is performed for each CTU. As in Reference [3], using smaller blocks improves only slightly the
encoding efficiency, but it would require a lot more time. The estimation is based on resolving the
linear equation for the 4-parameter model transform with two points in the block.

As the translation parameter can be more accurately estimated with the standard motion
estimation technique, only the parameters a and b are considered. Using x and y as the distance
between the input points and x′ and y′ as the distance between the output points, we can estimate a
and b with the following equation:

a = 1 + s =
xx′ + yy′

x2 + y2

b = −r =
x′y − xy′

x2 + y2

(8)

68



Appl. Sci. 2020, 10, 729

To get good results, the points should be far enough apart, so points around the edge of the current
block are used. If the points are too close together, cancellation is likely to occur, as the subpixel motion
estimation through optical flow is imprecise. To remove the risk of bad estimations from outliers,
the values of a and b are estimated for multiple couples of points, and the median value is retained.
When the block is on the edges of the picture and contains pixels outside the reconstructed picture,
we cannot compute optical flow on these samples. This happens when the input size is not a multiple
of the largest coding block size. In this case, we use samples that are within the reconstructed picture
for the computations.

3.2. Fast Mode Selection

In other methods, affine prediction is evaluated for each block, which takes a significant amount of
time. In Reference [10], there are two affine prediction modes, which take even more time. We propose
heuristics to avoid computing all possible modes and save on encoding time.

We decide if affine models should be used over translation first by looking at the variance of the
optical flow in a given block. The variance is computed as in Equation (13).
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N
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√

σ2
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In these equations, f lowx(i, j) and f lowy(i, j) represent the optical flow at the position (i, j).
When the resulting variance σxy is very small, translation for the whole block is likely to be very
accurate, as every pixel has the same displacement. The opposite case, where the variance is very high,
mostly represents large discontinuities in the motion vector we should use to predict the current block.
It is very likely that splitting the block into smaller subblocks is preferable.

We decide on two threshold values for these cases, resulting in the following:

1. translation if σxy < 0.01
2. affine if 0.01 < σxy < 4
3. split block if σxy > 4

To determine the best threshold values, we ran tests on a few sequences. For the lower bound,
0.01 was determined experimentally to avoid skipping the numerous cases where the best parameter
is 1 and the variance would be around 0.05. For the higher bound, we checked the variance of the
sequences and values over 1 correlated heavily with object boundaries, but setting the threshold to 1
made the skipping too eager, so we increased it to 4 to allow for some margin of error.

Then, to see which 3-parameter model would fit best, the absolute values of s and r are compared,
and the model corresponding with the highest value is selected. In case neither is bigger than a
small threshold, set to a tenth of the minimal non-zero value for the affine parameter, affine motion
estimation is skipped for the current block. While in most cases the variance heuristics catch those
blocks, some outliers can affect the variance greatly.
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To predict values for other pictures in the picture reference list, the displacement is scaled
proportionally to the temporal distance between the frames. This approximation is typically accurate
enough when the movement stays similar. For example, if the first reference picture is at a distance of
1 and the second at a distance of 2, the displacement values are doubled.

3.3. Parameter Refinement

We also propose a very fast refinement algorithm inspired by Tsutake et al. [10]. It is very
simplified to reduce the number of iterations. Instead of going over every 4 possible values for the
affine parameter, the proposed method encoder only checks the neighbors with a step size of 2Δ,
refines to Δ and then refines the quarter pixel translation parameter only once. In case the best value
for the affine parameter is zero after the initial neighbor check, the refinement is aborted. In this case,
only four affine prediction estimations had to be performed, much fewer than in Tsutake et al. even in
the cases of an early abort.

3.4. Parallel Processing

The optical flow method requires no encoding information and can be performed while other
frames are being encoded. In a typical situation, while the first frame, which has to be Intra, is being
encoded, there is enough time for the optical flow computation for the second frame, so if enough CPU
cores are available, it can be computed before the need for it arises. If a single frame delay is acceptable,
this method will allow saving a significant amount of time in the main encoding loop, which has to
iterate over all blocks in order. Even in the case where this one frame delay would be unacceptable,
the optical flow method used can be parallelized very well, and as it performs only basic mathematical
operations, can easily run on a GPU or dedicated hardware.

4. Experimental Results

4.1. Testing Conditions

The HEVC reference encoder HM14 [16] is used as the anchor to estimate the Bjøntegaard
Delta Bitrate (BD-R) [17] estimated bitrate savings and relative encoding time to compare the
various methods.

We used the code from Tsutake et al. [10] to compare our proposed method with the existing
state of the art. We also used their implementation of the gradient method from Reference [9] and a
3-parameter variant of the gradient approach that uses the same entropy coding as their method.

We used the same code for the entropy coding and transform calculations. We wrote the parameter
estimation of the proposed method to replace theirs. This allows us to compare the parameter
estimation process without other variables making the comparison difficult.

We compare our method to Reference [10], their implementation of Reference [9], and the
3-parameter variant of the gradient method.

For the encoding settings, the same settings as Reference [10] are used: The encoding mode is set
to Low Delay P, and the quantization parameter (QP) values are 22, 27, 32, 37.

A total of seven sequences that show various motions were encoded with HM14 [16], Tsutake [10],
Heithausen [9], the 3-parameter gradient and the proposed method. The sequences used are from two
datasets, the ITE/ARIB Hi-Vision Test Sequence 2nd Edition [18] and Derf’s collection [19]. Table 1
lists the sequences that were used, with the sequence number for the sequences from Reference [18].
To compute the encoding time, we used the following formula:

ΔT =
Ttarget − THM14

THM14

(14)
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Table 1. Video Sequences.

Sequence Name Motion

Twilight Scene (s215) Zoom
Rotating Disk (s251) Rotation

Fountain (s265) Rotation
Station Zoom

Blue Sky Rotation
Fungus Zoom Zoom

Tractor Rotation + Zoom

In the following tables, the encoding time shown is the average over all QP values.

4.2. Mode Prediction Accuracy Evaluation

To evaluate the accuracy of our mode selection method, we compared the decisions made with
Tsutake [10] with the decision made by the proposed method. We computed how often each affine
transform model was used and how accurately the proposed method estimated the correct model. We
consider the correct model the one that was used in the final coding, so if a given model was found
better than the translation of the full block during the motion estimation phase but was inferior to a
split block with different translation, skipping affine is classified as correct choice. We also evaluated
the accuracy of the early skipping based on the variance that skips evaluating affine prediction entirely.
The results are shown in Table 2.

Table 2. Evaluation of mode prediction accuracy of the proposed method compared to Reference [10].

Sequence Name
Sensitivity Best Block Rate Correct Affine Skip

Rotation[%] Zoom[%] Rotation[%] Zoom[%] Model[%] Bad[%] Missed[%]

Station 14.6 90.8 0.5 33.4 89.7 3.3 70.2
Fountain 71.2 8.0 2.0 0.4 59.8 35.3 59.8

Fungus Zoom 0.0 99.2 0.3 35.6 98.4 0.0 100.0
Rotating Disk 86.9 30.9 21.6 1.3 83.9 4.5 89.7

Blue Sky 92.8 20.4 10.2 0.7 88.2 4.5 93.6
Tractor 27.4 58.6 0.9 16.7 57.0 29.3 48.6

Twilight Scene 30.8 38.6 0.8 1.2 35.5 34.4 83.3

Sensitivity represents how often the proposed method predicted this model correctly compared to
how often this model was the best when evaluating both. It is calculated with the following formula:

sensitivitymodel =
TPmodel

TPmodel + FNmodel
(15)

where TPmodel is the true positives for a given model (prediction said to use the model and the model
was used), and FNmodel the false negatives (prediction said to use the other model or to skip while this
model was correct).

The best block rate is the percentage of encoded blocks that use that model. The correct model
represents how often the proposed method chose the right affine prediction model. It is the weighed
average between the sensitivity values for both models, weighed by the prevalence of each model.
The skip statistics represent how often the proposed method decided to skip evaluating affine
parameters wrongly, and the rate of missed opportunities for skipping affine prediction.

While the accuracy appears to be low for many cases, the accuracy is not weighed with the loss
of coding efficiency. While one could measure the efficiency gains estimated for a single block, it is
not perfect, as the state of the entropy coder influences the coding of the following blocks. However,
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according to our results detailed in the following subsection, the blocks that were predicted incorrectly
offered little benefit.

On some sequences where a type of motion is very dominant, like Fungus Zoom where zooming
is used much more than rotation, the encoder will often predict the most common model even when
it is not the best. This leads to a very low sensitivity for this model, but has a limited effect on the
encoding efficiency since that model is not used much. This can be seen with the correct model value
that is very high in this case. In the opposite case where rotation is dominant, like Blue Sky, the
sensitivity for the zoom models is limited, but it also has a limited effect overall because of the rarity of
the other mode.

For some sequences, especially Twilight Scene, the accuracy when compared to the alternative
trying every possible transform is very low. However, in this case skipping wrongly according to the
reference leads to better results that will be explained in the following subsection. To better investigate
why the mispredictions were so common for some sequences, we recorded the affine parameters that
were used both when our proposed method predicted accurately and when it gave a bad prediction.
The results for the Rotating Disk sequence are presented in Figure 1. It appears that while for all cases
smaller (in absolute value) parameters are more common, the wrong predictions have an even higher
percentage of small values than the accurate prediction. This suggests that in these cases, the transform
brings a smaller gain. As differentiating between the different motions for smaller movements is more
complex, the limited accuracy for mode prediction can be understood.

Figure 1. Distribution of the affine parameter (quantization levels) in the Rotating Disk sequence for
accurately and incorrectly predicted transform models.

4.3. Comparison of Variants of the Proposed Method

We evaluated the encoding time and coding efficiency effects of our proposed model prediction,
affine mode skip and fast parameter estimation. We compare three variants of the proposed method.
The differences between the variants are presented in Table 3.
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Table 3. Overview of proposed method variants.

Method Name
Affine Model

Affine Skip
Fast Parameter

Prediction Refinement

Model prediction � × ×
Model + Skip � � ×

Fast estimation � � �

Table 4 shows the results of the three variants. While the fast estimation variant is able to achieve
the fastest encoding, this comes at the cost of greatly reduced efficiency. If more time is available, on of
the other two methods is preferable, as they are able to achieve a better efficiency for a little more time.
On some more complex sequences like Tractor, while the encoding speed increases significantly with
the fast estimation method, the efficiency is more affected. This sequence is very challenging and the
optical flow scaling fails to work on the wheels because of the fast rotation. While optical flow can
estimate with some accuracy the motion for the first reference picture, the scaling does not work. As
the wheel follows a rotational symmetry, in most cases the correct motion vector does not represent the
real movement of the wheel. It will match a similar part of the wheel that has moved less compared to
the current picture. Figure 2 illustrates this.

Table 4. Comparison of Coding Efficiency and Encoding Speed of the Proposed Method Variants.

Sequence Name
Model Prediction Model + Skip Fast Estimation

BD-R[%] ΔT[%] BD-R[%] ΔT[%] BD-R[%] ΔT[%]

Station −23.75 14.54 −23.68 13.25 −18.03 14.32
Fountain −0.15 7.38 −0.15 5.10 −0.10 5.28

Fungus Zoom −16.18 19.77 −16.42 19.92 −11.38 16.77
Rotating Disk −24.07 10.23 −23.74 10.01 −13.22 6.98

Blue Sky −4.74 8.78 −4.69 8.93 −3.76 5.90
Tractor −3.71 8.44 −3.38 5.79 −1.66 5.79

Twilight Scene −0.26 11.05 −0.42 10.65 −0.27 8.01

Average −10.41 11.46 −10.35 10.52 −6.92 9.01

(a) (b) (c)

Figure 2. Three frames extracted from the Tractor sequence: (a) Current picture (POC N), wheel angle
136; (b) reference picture 0 (POC N-1), wheel angle 132; (c) reference picture 1 (POC N-4), wheel angle
118. While the wheel is in a more distant position in (c) than (b), an acceptable prediction can be done
with (c) using the wheel rotational symmetry

There are two interesting results for the method using variance to skip affine mode, Twilight
Scene and Fungus Zoom, where the efficiency increases with checking the affine mode less often. This
happens because the Rate Distortion Optimization (RDO) process is not perfect. While we do not
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have a certain explanation, we have two hypotheses: First, not using affine coding at a place where it
offered a negligible benefit changed the state of the context in the Context Adaptive Binary Arithmetic
Coding (CABAC) enough to improve the coding of future blocks. Second, the tradeoff between quality
and bitrate using the Lagrange multiplier is fallible, resulting in a better encoding with an apparently
wrong decision. In the present case, for Fungus Zoom, skipping affine resulted in a loss of PSNR of
0.0019dB, for an decrease in bitrate of 0.74% for the quality parameter 27. While the mode accuracy
seemed low in Table 2, it seems that it was actually able to remove affine prediction use when it was
not beneficial. This suggests that the proposed method is accurate at predicting affine prediction when
there is a significant benefit.

On average, the speed is improved by about 1% but in some cases, the required time goes up a
little. Some might be caused by the processing of the variance, but we believe it is likely some is from
measurement error, as variations of a percent are possible when repeating the same experiment and
we only encoded the sequences once for each setting.

Because the efficiency on average decreases only slightly but the encoding time improves, we
decided to use this method to compare to the state of the art, as the faster estimation variant reduces
efficiency too much.

4.4. Comparison with the State of The Art

Table 5 shows how the proposed method compares to Reference [9,10] and the 3-parameter
gradient. Table 6 shows the advantages and disadvantages of each method. Each method is able to
offer significant improvement for sequences that present affine motion. The current three-parameter
model implementations require significant time for encoding, making them difficult to use in practice.
Both the proposed and the gradient approach are able to encode sequences with an acceptable overhead.
For hardware implementation, gradient methods require many changes, including a more precise
sample interpolation scheme, also increasing decoding costs, and a completely different architecture
for motion vector parameters estimation. The former is no longer an issue with VVC that made 1/16
sample interpolation the standard for all prediction. However, gradient estimation will still require
entirely different circuits. Tsutake [10] is able to provide a solution with minimal hardware changes,
but the number of transform evaluations is too important. In our proposed method, there is some
additional processing required for the optical flow, but it is possible to implement it at minimal cost, and
alternatives for the optical flow method are possible. We believe that overall the total implementation
cost is smaller for our proposed method. The last aspect to consider is performance when using content
with mostly translation, like the Fountain sequence. In those cases, the proposed method classifies
the block as requiring translation, which skips the affine parameter estimation, reducing the encoding
speed cost for those sequences where affine prediction offers little encoding efficiency gains. The
gradient method performs better than Tsutake here, as it will compute only one transform before
giving up, while Tsutake will search many different values first.

On average, the proposed method loses less than 1% in BD-R, but the required encoding time goes
down from over 20% in Reference [10] to just over 10%, about half of the time, which is expected from
having to evaluate only one of the two affine prediction models, and also skip evaluating both in some
cases. In sequences that use mostly translation, like Fountain, skipping many affine prediction blocks
reduces the encoding time greatly, from 16.2% overhead to 5.1% with almost no change in efficiency.

However, when comparing with the gradient approach, the encoding time gains are much smaller.
Reference [10] shows that their code offers a similar speed to Reference [9], but our experiments show
that the gradient approach is much faster. Even the 3-parameter gradient variant that needs to perform
the parameter estimation twice is faster than Tsutake. We believe the significant improvement in the
speed of the gradient approach comes from the modern compiler used with many optimizations using
vector instructions, that were for some reason optimized very well, while the block-matching approach
did not get this advantage. However, the block-matching approach still has the advantages described
in Reference [10] for hardware implementations as they can reuse more easily existing parts of encoders.
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While the optimized version using vector instructions is faster in the software implementation, in
hardware it would require a lot more silicon, as there are more operations to perform.

Even with the gradient method being optimized very well for our testing environment, the
proposed method is still slightly faster than the 4-parameter gradient method, and significantly faster
when compared to the 3-parameter variant. We believe it is possible to use the code of the gradient
method to improve our proposed method for both speed and accuracy. On average, the gradient
method, even when restricted to fewer parameters, finds slightly better parameters than the block
matching approach from Reference [10]. When comparing with the proposed method, the gradient
approach offers a better encoding for a limited cost in encoding time but we believe we have a lot of
margin left in optimizations.

Table 5. Comparison of Coding Efficiency and Encoding Speed.

Sequence Name
Proposed Tsutake [10] Gradient [9] Gradient 3-Parameter

BD-R[%] ΔT[%] BD-R[%] ΔT[%] BD-R[%] ΔT[%] BD-R[%] ΔT[%]

Station −23.68 13.25 −24.76 24.60 −25.62 12.81 −24.61 22.22
Fountain −0.15 5.10 −0.16 16.20 −0.24 10.49 −0.17 10.07

Fungus Zoom −16.42 19.92 −16.37 26.70 −15.23 17.35 −16.64 23.15
Rotating Disk −23.74 10.01 −26.77 20.42 −29.28 11.24 −27.28 17.06

Blue Sky −4.69 8.93 −5.13 19.18 −5.52 9.23 −5.78 15.52
Tractor −3.38 5.79 −4.59 15.24 −4.82 7.68 −4.09 11.94

Twilight Scene −0.42 10.65 −0.39 20.48 −0.51 10.15 −0.65 16.43

Average −10.35 10.52 −11.17 20.40 −11.61 11.28 −11.32 16.62

Table 6. Overview of Advantages and Disadvantages of Each Method. © marks when the method is
effective, � when it is acceptable, and × when it is inadequate for this aspect.

Proposed Tsutake [10] Gradient [9] Gradient 3-Parameter

Encoding Efficiency © © © ©
Encoding Speed (affine motion) © × © �
Encoding Speed (translation) © × � �
Hardware implementation � © × ×

On some videos, like Blue Sky and Station the efficiency of the proposed method is very close to
the existing state of the art, with a increase in time halved compared to Tsutake et al. If there are time
constraints, the proposed method can offer superior encoding to HM and close to state of the art while
maintaining the encoding time low.

In two sequences, Fungus Zoom and Twilight scene, the efficiency is higher than Tsutake et al.,
but fails to attain the efficient from the gradient approach using 3 parameters. However, it beats the
gradient approach using 4 parameters in the Fungus Zoom case, as the additional unused parameter
(rotation being almost inexistent) incurs a coding cost overhead.

Two sequences are very challenging for our proposed method. Tractor was previously mentioned
for the limited accuracy for motion estimation, and when compared to the state of the art the effects
of the limited accuracy in model estimation are significant. Figure 2 illustrates only one aspect of the
challenges in encoding this sequence. Rotating wheel is difficult because of the black background,
that optical flow is unable to track, making areas at the edge of the rotating objects hard to estimate.
However, as it is a very artificial sequence that is unlikely to appear in more common sequences, we
do not believe optimizing for this specific sequence to be sensible.

We can see that while the proposed method does not achieve an efficiency as high as the existing
state of the art, it is able to encode in a much faster time, so if time is limited, it could be preferable to
use the proposed method as the best compromise between speed and efficiency.
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5. Conclusions

We presented a solution for the slow encoding when using affine motion compensation by
changing the motion estimation algorithm. We proposed three improvements: a fast affine transform
model estimation, a skip affine prediction and a fast parameter estimation algorithm. The proposed
method is able to predict the correct affine model with good accuracy, and also skip evaluating affine
prediction in some cases, saving significant encoding time. When compared to the state of the art,
the reduction in bitrate according to the BD-R metric is below 1% on average, with a reduction of the
encoding overhead in half compared to Reference [10], and slightly faster than the gradient approach
from Reference [9] with less complexity when it comes to hardware implementations. In future work,
we plan to investigate ways to make the implementation of the transform faster to reduce further the
overhead of affine motion compensation. We also plan to use the optical flow information for block
splitting decisions and stop the costly evaluation of smaller blocks when they would bring no benefit.
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Abstract: In order to overcome the poor robustness of traditional image registration algorithms in
illuminating and solving the problem of low accuracy of a learning-based image homography matrix
estimation algorithm, an image registration algorithm based on convolutional neural network (CNN)
and local homography transformation is proposed. Firstly, to ensure the diversity of samples, a sample
and label generation method based on moving direct linear transformation (MDLT) is designed. The
generated samples and labels can effectively reflect the local characteristics of images and are suitable
for training the CNN model with which multiple pairs of local matching points between two images
to be registered can be calculated. Then, the local homography matrices between the two images are
estimated by using the MDLT and finally the image registration can be realized. The experimental
results show that the proposed image registration algorithm achieves higher accuracy than other
commonly used algorithms such as the SIFT, ORB, ECC, and APAP algorithms, as well as another two
learning-based algorithms, and it has good robustness for different types of illumination imaging.

Keywords: image registration; homography matrix; local homography transformation; convolutional
neural network; moving direct linear transformation

1. Introduction

Image registration is a process of image matching and transformation of two or more different
images. It is widely used in such fields as panoramic image splicing [1,2], high dynamic range
imaging [3], simultaneous localization and mapping (SLAM) [4], and so on.

Traditional image registration algorithms are mainly classified into pixel-based algorithms and
feature-based algorithms [5,6]. In pixel-based image registration algorithms, the original pixel values are
directly used to estimate the transformation relationship between images [7,8]. Firstly, the homography
matrix between a pair of images is initialized. Then, the homography matrix is used to transform the
image, and the errors of pixel values of the transformed image are calculated. Finally, the optimization
technique is used to minimize the error function to achieve image registration. The pixel-based
algorithms usually run slowly and are effective to low-texture scenes, but have poor robustness to
scale, rotation and brightness.

In feature-based image registration algorithms [9,10] such as SIFT [11], ORB [12], etc., feature
points of images are generally extracted first, and the corresponding relationship between feature
points of the two images is established by feature matching, and the optimal homography matrix is
estimated by algorithms such as RANSAC [13], etc. Feature-based image registration algorithms are
generally better and faster than pixel-based image registration, but feature-based algorithms require
that there must be enough matching points between the two images and that the accuracy of matching
points is higher and the location distribution of matching points is uniform. Otherwise, the registration
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accuracy will be greatly reduced. Feature-based image registration algorithms generally have good
robustness to scale and rotation and have robustness to brightness to some extent, but are not suitable
for low-texture images.

Recently, some deep learning-based image registration algorithms have been proposed. DeTone
et al. [14] proposed a homography matrix estimation algorithm with supervised learning. A 128 ×
128 image IA was generated by randomly clipping from an image I, and then random perturbation
values were added to the coordinates of the four corners of the image IA to generate four perturbation
points, so that four pairs of matching points were obtained. The homography matrix corresponding
to the four pairs of points was calculated by using the coordinates of the four corners of image IA
and their corresponding perturbation points. The homography matrix was used to transform image
IA into image IB. Then, the images IA and IB were converted into grayscale images as samples, and
the coordinate differences between the four corner points of IA and their corresponding perturbation
points in IB were used as labels, with which a 10-layer VGG (Visual Geometry Group) network was
trained, and finally a homography matrix estimation model that could be used for image registration
was obtained. The algorithm has better robustness to brightness, scale, rotation, and texture. On the
basis of DeTone’s work, Nguyen et al. [15] proposed a homography matrix estimation algorithm with
unsupervised learning to solve the shortcoming of artificially generated labels in supervised learning,
but this algorithm had weak robustness to illumination. The samples used in these two algorithms
were mainly artificially generated samples. The artificial samples ensured that the accuracy of the
samples and labels was high enough, which was a beneficial exploration for deep learning to solve
the actual image registration problem. However, the artificial samples adopted by these two works
default to no parallax between the images to be registered, so only four pairs of corresponding points
are used to represent the registration relationship between the two images. However, in practice, there
is parallax between the images to be registered, and the relationship between such kinds of images is
often not exact homography transformation.

In image registration, it is necessary to estimate the homography matrix between the target image
and the reference image. The homography matrix is used to transform the target image to achieve
the alignment of the target image and the reference image in spatial coordinates. The transformation
process is called image mapping or image transformation. According to the application scope of the
homography matrix, image transformation can be divided into global homography transformation and
local homography transformation. Global homography transformation [7,11,12,14,16] uses the same
homography matrix to transform the whole image. It requires that the target image and the reference
image contain basically the same image information in the overlapping region. It is only suitable
for images with small or no parallax. When this condition is not satisfied, the accuracy of image
registration will be reduced significantly. Local homography transformation algorithm [17–19] maps
different regions of an image using different transformation matrices, which can better overcome the
shortcomings of the global homography transformation algorithm. As-Projective-As-Possible (APAP)
algorithm [19] is a representative local homography transformation algorithm. It first extracts the
feature matching points between the images and then divides the images into a uniform grid. Moving
direct linear transform (MDLT) is used to estimate the homography matrix of each grid. Finally, the
homography matrix of each grid is used to implement local homography transformation on the image
to be registered. For images that do not satisfy the condition of global homography transformation,
the image registration accuracy achieved by APAP algorithm is higher than that achieved by the global
homography transformation algorithm [20]. APAP algorithm is also a feature-based image registration
algorithm in essence. It also has the characteristics of a feature-based image registration algorithm and
has higher accuracy than the general feature-based image registration algorithm. The general image
registration algorithm based on global homography transformation only uses one homography matrix
estimation and one homography transformation, while APAP algorithm needs multiple homography
matrix estimations and homography transformations, so the speed of the APAP algorithm is slower
than that of the general feature-based image registration algorithm.
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The above two deep learning-based image registration algorithms are both for global homography
transformation, and the used samples cannot be adopted to estimate the local homography matrix.
Therefore, based on the above researches, an image registration algorithm based on deep learning and
local homography transformation is proposed in this paper. An image sample and label generation
method suitable for local homography transformation is designed so as to train the image registration
model with convolutional neural network (CNN) effectively. The resulted image registration model
can effectively reduce the error of image registration and overcome the defects of poor robustness of
traditional image registration algorithms and low accuracy of existing deep learning-based image
registration algorithms.

The main contributions of this paper are as follows: (1) A CNN and local homography
transformation-based algorithm are proposed to solve the problem of image registration, which
is a useful exploration for deep learning to solve the problem of image registration; (2) an image
sample and label generation method suitable for local homography transformation is proposed, and
the generated samples have good diversity and can simulate the actual image registration situation.

The rest of this paper is organized as follows. Section 2 mainly introduces the basic theory of the
proposed algorithm, focusing on the image sample, label generation, CNN model, and loss function.
Section 3 shows the experimental results, which verify the effectiveness of the proposed algorithm.
The conclusion is given in Section 4, which summarizes the main work of this paper and analyses the
shortcomings of the algorithm and possible improvement aspects.

2. Image Registration Algorithm Based on Deep Learning and Local Homography Transformation

In supervised learning-based image registration, sample labeling is required first. However, the
cost of labeling samples manually is too high, and it is usually difficult to ensure the labeling accuracy,
as well as to collect enough diverse images for registration. To solve this problem, an image registration
algorithm based on deep learning and local homography transformation is proposed in this paper.
Firstly, a sample and label generation method for deep learning is designed. In this method, direct
linear transformation (DLT) and moving direct linear transformation (MDLT) are used to automatically
generate more reasonable and effective samples and labels for deep learning, and then supervised
learning is used to train CNN so as to obtain the image registration model, with which the local
homography transformation-based image registration can be achieved.

2.1. Direct Linear Transformation (DLT)

If there is no parallax between the reference and target images, the mapping relationship between
the two images is simple homographic, which can be described by the homography matrix. Suppose
that two points with coordinates x

′
= [x′, y′]T and x = [x, y]T are the corresponding matching points on

the reference image I’ and the target image I respectively, and the corresponding relationship between
these two points can be expressed as

x̃
′
= Hx̃ (1)

where x̃
′

and x̃ are the homogeneous coordinates of the two points respectively, and x̃
′
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
x′′

y′′

z′′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,
x̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
x
y
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, H is the homography matrix between the two images, H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
h11 h12 h13

h21 h22 h23

h31 h32 h33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.
In the non-homogeneous coordinates, the corresponding relationship between matching points x

and x
′

can be expressed as

x′ = x′′

z′′
=

h11x + h12y + h13

h31x + h32y + h33
y′ =

y′′

z′′
=

h21x + h22y + h23

h31x + h32y + h33
(2)
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Transform Equation (1) into the form of 03×1=x̃
′ ×Hx̃ and obtain⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
x y 1
−xy′ −yy′ −y′

−x −y −1
0 0 0

xx′ yx′ x′

xy′ yy′ y′
−xx′ −yx′ −x′

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠h (3)

where h = (h11 h12 h13 h21 h22 h23 h31 h32 h33)
T.

When estimating H, more matching point information can be used to reduce the estimation error.
In Equation (3), only two rows of the 3 × 9 coefficient matrix on the right side of the equation are
independent. By selecting the first two rows to form an independent coefficient matrix Ai, and taking
all matching points into account, a 2N × 9 coefficient matrix A can be formed. By using the least square
method, the solution of h can be expressed as

ĥ = argmin
h

N∑
i=1

‖Aih‖2 = argmin
h

‖Ah‖2 (4)

where ĥ is an estimation of h, ‖Ah‖ denotes the two norms of vector Ah, h is the normalized unit vector,
N denotes the total number of pairs of matching points, and Ai denotes the independent coefficient
matrix corresponding to the ith pair of matching points. Singular value decomposition (SVD) can be
used to calculate ĥ. The right singular vector corresponding to the minimum singular value of A is the
result. The estimation of homography matrix H is obtained by arranging the elements of vector ĥ in a
certain order.

Considering that SVD is time-consuming, which will affect the training speed of the neural
network, Equation (3) is transformed into the form of non-homogeneous linear least squares. Let
h33 = 1, two independent non-homogeneous linear equations can be obtained as

A
′
ih
′
= b

′
i (5)

A
′
i =

(
0
x

0
y

0
1

−x
0

−y
0

−1
0

xy′ yy′
−xx′ −yx′

)
(6)

h
′
= (h11 h12 h13 h21 h22 h23 h31 h32)

T (7)

b
′
i =

( −y′
x′
)

(8)

If all N matching points are included, then Equation (4) can be represented as

ĥ
′
= argmin

h
′

N∑
i=1

‖A′ ih′ − b
′
i‖2 = argmin

h
′
‖A′h′ − b

′ ‖2 (9)

where ĥ
′

is the estimation of h
′
, and A

′
is the coefficient matrix of 2N × 8 obtained by arranging all

coefficient matrices A
′
i in the vertical direction. b

′
is a constant column matrix of 2N × 1 obtained by

arranging all the constant column matrices b
′
i in the vertical direction.

Let E = ‖A′h′ -b′ ‖2; ĥ
′

can be calculated through dE
dh
′ = 0

ĥ
′
=
(
A
′T

A
′)−1

A
′T

b
′

(10)

2.2. Moving Direct Linear Transformation (MDLT)

For an image with a certain parallax, the relationship between the reference and target images is
no longer a simple homography transformation. In this case, the global homography transformation
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cannot ensure the accuracy of image registration, and simple local homography transformation will
cause a blocking effect, which destroys the visual quality of the image. It is a good choice to use
the MDLT algorithm for local homography transformation. The MDLT algorithm not only has high
accuracy of image registration, but also can smooth different image blocks, taking into account the
accuracy of image registration and the overall visual quality of the image.

Firstly, the image to be transformed is divided into several image blocks, and then all matching
points of the two images are taken into account. For each of the image blocks, according to the central
position of the image block, the weights are assigned to all matching points so as to estimate the
homography matrix corresponding to this image block. Accordingly, Equation (4) can be rewritten as

ĥ j = argmin
h j

N∑
i=1

‖ωi j(Aih− b)‖2 = argmin
h j

‖W j
(
A
′
h
′
-b
′)‖2 (11)

where ĥ j represents an estimation of the homography matrix of the jth image block, ωi j is a weight that
changes with the coordinate of the center point of the current image block, and W j is a diagonal matrix
that represents the weights of all matching points, and

W j = diag
([
ω1 j ω1 j · · · ωi j ωi j · · · ωN j ωN j

])
(12)

The weight ωi j is determined by the distance between the ith matching point and the center point
of the jth image block. The smaller the distance, the larger the weight. Zaragoza et al. [19] used
Gaussian function to calculate the weight

ωi j = max

⎛⎜⎜⎜⎜⎜⎜⎝exp

⎛⎜⎜⎜⎜⎜⎜⎝−‖xi − x∗j‖2
σ2

⎞⎟⎟⎟⎟⎟⎟⎠, γ
⎞⎟⎟⎟⎟⎟⎟⎠ (13)

where x∗j represents the coordinate of the center point of the jth image block, xi represents the coordinate
of the ith matching point of the image to be transformed, σ is the scale factor, and γ is the minimum
weight value, which prevents the weight of some matching points far from the current image block
from being too small.

Lin et al. [21] proposed another method of calculating weights, using Student-t distribution
function instead of Gaussian distribution function, which is represented as

ωi j =

⎛⎜⎜⎜⎜⎜⎜⎝1 + ‖xi − x∗j‖2
νσ2

⎞⎟⎟⎟⎟⎟⎟⎠
− ν+1

2

(14)

Because the student t-distribution function is smoother than the Gaussian distribution function, it
is not easy for the block effect caused by local homography transformation to appear, so the student-t
distribution function is adopted in this paper. By using the same analysis method of the DLT algorithm,
the estimation of the local homography matrix is finally calculated as follows:

ĥ j =
(
A
′T

W2
j A
′)−1

A
′T

W2
j b
′

(15)

2.3. Sample and Label Generation Method Based on Local Homography Transformation

In the homography matrix, the rotational and shear components are often much smaller than the
translation components, so it is difficult for a model to converge if the homography matrix is used as a
label directly. Therefore, DeTone et al. proposed a method of substituting four pairs of corresponding
points for the homography matrix [14]. The algorithm uses global homography transformation and is
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only suitable for the registration of an image without parallax. However, the actual images usually
have parallax.

To overcome the shortcomings of DeTone’s method, an improved sample generation method
based on local homography transformation is proposed to generate sample images with parallax, as
illustrated in Figure 1. The sample and label generation process is described in detail as follows:

   

(a) (b) (c) 

   

(d) (e) (f) 

  

(g) (h) 

Figure 1. The process of the proposed sample and label generation method: (a) Generate four pairs
of points and obtain the corresponding homography matrix HAB

4pt; (b) randomly cut out the original
image to generate an M × N uniform grid GA; (c) M × N points G′A transformed from GA by using
HAB

4pt; (d) M × N perturbation points G̃′A generated from G′A; (e) adaptively generate m × n uniform

grid; (f) image IB transformed from IA using local homography matrices HAB
L ; (g) generated alternative

samples; (h) calculation of overlap degree of two sample images.

Step 1: Firstly, add random perturbation values to the coordinates of the four corners {P1, P2, P3,
P4} of the original image IA to obtain four new points {P′1, P′2, P′3, P′4}, where the ranges of the random
perturbation values in horizontal and vertical directions are [−ρx, ρx] and [−ρy, ρy], respectively. The
two points before and after the perturbation form a pair of corresponding points, therefore, a total of
four pairs of corresponding points are obtained, as shown in Figure 1a. Then, calculate the homography
matrix HAB

4pt corresponding to the four pairs of corresponding points.
Step 2: Randomly select a point p in the original image IA, cut out a block I′A with fixed size using

pas the upper left corner of the block, and divide the block into a uniform grid to get M × N grid points
GA, as illustrated in Figure 1b.

Step 3: According to Equations (1) and (2), transform the M × N grid points GA into new
corresponding M × N points G′A by using the homography matrix HAB

4pt, as illustrated in Figure 1c.
Step 4: Add random perturbation values to each of the new corresponding M × N points G′A to

get M × N perturbation points G̃′A, as illustrated in Figure 1d. The ranges of random perturbation
values in horizontal and vertical directions are

[
−ρ′x,ρ′x

]
and
[
−ρ′y,ρ′y

]
, respectively, and ρ′x < ρx/2,

ρ′y < ρy/2, so as to ensure the global consistency of these random perturbation points.
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Step 5: Through the M × N uniform grid points, GA generated in Step 2 and M × N corresponding
perturbation points G̃′A generated in Step 4, the corresponding global homography matrix HAB

g is
calculated by the DLT algorithm. Then transform the M × N uniform grid points GA into new points
G′′A by using HAB

g and calculate the root mean square error (RMSE) between G̃′A and G′′A. After that,
divide the original image IA into an m × n uniform grid according to the RMSE, as shown in Figure 1e.
If the RMSE is large, which means that there is a strong locality between GA and G̃′A, the grid of the
original image should be partitioned smaller to improve the local accuracy; conversely, if the RMSE is
small, it means that the local homography matrixes have strong global character, therefore, the grid of
the original image can be partitioned larger so as to speed up sample generation. The number of rows
and columns of the uniform grid can be determined by

m = int

⎛⎜⎜⎜⎜⎝min

⎛⎜⎜⎜⎜⎝1 + H · yrmse

ρ′yhmin
,

H
hmin

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠, n = int
(
min
(
1 +

W · xrmse

ρ′xwmin
,

W
wmin

))
(16)

where m and n are the number of rows and columns of the uniform grid, W and H are the width and
height of the image IA, xrmse and yrmse represent the RMSE between G̃′A and G′′A in horizontal and
vertical directions, and wmin and hmin represent the minimum width and minimum height of each
image block, respectively. wmin and hmin should not be too small, otherwise, it will cause too many
blocks of some samples, which will affect the speed of sample generation; however, it also should not
be too large, so as to avoid too few blocks of samples, which will result in an unnatural block effect in
the transformed image.

Step 6: Calculate the local homography matrix HAB
j ( j = 1, 2, · · · , m× n) corresponding to each

block of the m × n uniform grid with the MDLT algorithm, in which the M × N pairs of corresponding
points between GA and G̃′A are used as the pairs of matching points, so that the m × n local homography

matrixes HAB
L =

{
HAB

j

∣∣∣∣ j = 1, 2, · · · , m× n
}

are obtained. Then transform the original image IA into a

new image IB with HAB
L and calculate the coordinate of the points GB in image IB corresponding to GA

in IA with HAB
L .

Figure 1f shows the image IB generated from the original image IA shown in Figure 1a after local
homography transformation, and the grid points in Figure 1f represent the new grid points generated
by local homography transformation corresponding to the M × N uniform grid points GA in Figure 1b.

Step 7: For image IB, an image block with the same size and coordinates as that of I′A in image IA
is cropped as I′B. Image I′A and image I′B constitute the alternative sample of the neural network. The
coordinate difference GAB between the points GB in image IB and its corresponding points GA in image
IA forms the alternative label of the neural network.

Figure 1g gives a pair of alternative samples cropped from the images in Figure 1b,f.
Step 8: In the process of generation of image IB, if the overlap degree of two sample images is

too low because of the extreme distribution of perturbation point G̃′A, the samples are regarded to be
invalid and will be discarded.

The calculation of the overlap degree of two sample images is illustrated in Figure 1h. Let I′′A
be the corresponding binary mask of sample image I′A in the original image IA. Transform the mask
image I′′A through the local homography matrix HAB

L so as to obtain the corresponding binary mask
I′′ B in the image IB. Then the binary mask images I′′A and I′′ B are intersected to get the binary mask
image I′′AB, in which the non-zero-pixel region indicates the overlap region of the two sample images,
as shown in Figure 1h. Thus, the overlap degree of two sample images is calculated as

∂ =
SAB
SA

(17)

where ∂ denotes the overlap degree, SA denotes the number of non-zero pixels in I′′A, and SAB denotes
the number of non-zero pixels in I′′AB. If ∂ of two sample images is lower than a threshold, the two
sample images will be discarded.
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2.4. Loss Function and Convolutional Neural Network

RMSE can be used as a loss function of CNN, which is defined by

Ls =

√√√
1
k

k∑
i=1

‖xi − x̂i‖2 (18)

where xi is the label value of the ith pair of matching points, x̂i is the corresponding output value of the
CNN, and k is the total number of pairs of matching points.

General CNN can be used to obtain the image registration model. In this paper, three network
architectures including VGG [22], Googlenet [23] and Xception [24] are compared. The structure of the
VGG network is simple and the depth of the network is easily expanded, but its training speed is slow
and it requires a lot of hardware resources. For simplicity, we adopted a 10-layer VGG network [14]
in the experiments. Googlenet can deepen the depth and width of the neural network, speed up
the training speed, and reduce the hardware resources needed by the network. The convergence
speed of the Xception network is fast, and the hardware resources required are also less. Additionally,
the convergence performance of the Xception network is generally better than that of VGG and
Googlenet networks.

3. Experimental Results and Analysis

To test the performance of the proposed algorithm, it is compared with Scale-Invariant Feature
Transform (SIFT) algorithm [11], Oriented FAST and Rotated BRIEF(ORB) algorithm [12], Error
Checking and Correction (ECC) algorithm [7], APAP [19], the DeTone’s algorithm [14], and the
Nguyen’s algorithm [15]. The experiments are implemented on a computer with Intel i7-6700 CPU,
32 GB memory, one NVIDIA GTX 1080 Ti GPU, and the operating system used is Ubuntu 16.04 LTS.

The performances of different image registration algorithms are compared in terms of accuracy,
running time and robustness. The three algorithms of SIFT, ORB and ECC are implemented by using
Python OpenCV. The RANdom SAmple Consensus (RANSAC) threshold of SIFT and ORB algorithms
is 5. The maximum number of iterations of the ECC algorithm is 1000. The adopted framework of deep
learning is TensorFlow [25]. The APAP, DeTone’s algorithm and Nguyen’s algorithm are implemented
with Python programming language on the same platform.

To facilitate comparison with the DeTone’s and Nguyen’s algorithms, the size of sample images
used in this paper is the same as that of DeTone’s and Nguyen’s algorithms. The used perturbation
values consist of components in horizontal and vertical directions, the range of which should not be too
small or too large. If the perturbation range is too small, the generated perturbation value will be small,
which will reduce the diversity of the samples and weaken the generalization ability of the model.
However, if the perturbation range is too large, it may easily generate some samples with extreme
deformation, which will make the training of the model more difficult and lead to the reduction of
prediction accuracy of the model. The maximum perturbation values ρx or ρy of corner points in Step 1
of the proposed image sample and label generation method should not exceed half of the width or
height of the original image respectively. Generally, taking 1/3~1/10 of the image width or height can
ensure that the generated samples have better diversity and visual quality. Similarly, in Step 4, taking
1/3~1/10 of ρx for ρ′x, 1/3~1/10 of ρy for ρ′y can achieve better results.

The original data sets used in the experiments are MS-COCOCO2014 and MS-COCOCO2017
data sets [26]. Firstly, all images in these two data sets are scaled to 320 × 240, on which the proposed
sample and label generation method is performed to obtain the gray-scale sample images with the size
of 128 × 128. The maximum perturbation values ρx and ρy in horizontal and vertical directions of the
corner points in Step 1 are set to 45, and the number of matching points for each pair of images in
Step 2 is set to 5 × 5. The maximum perturbation values ρ′x and ρ′y in Step 4 are set to 11. In Step 5,
the values of wmin and hmin are both 5. In Step 8, the threshold of overlap degree is 0.3, that is, when
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the overlap degree is lower than 0.3, the sample will be discarded. To increase the robustness of the
model and reduce the possibility of over-fitting, image augmentation technology [27] is also used in the
generation of training samples. The color and brightness of some of the sample images are randomly
changed, and some of the sample images are processed with Gamma transformation. Finally, a total of
500,000 pairs of images are generated as a training set, 10,000 pairs of images as a validation set, and
5000 pairs of images as a test set.

In order to prove the generality of the proposed algorithm, three CNNs, including VGG, Googlenet
and Xception, are used to train and test each of the learning-based image registration algorithms. The
used optimization algorithm is Adam [28], where β1 = 0.9, β2 = 0.999, ε = 10−8. The batch size is 128.
The initial learning rate of the proposed algorithm and supervised learning of DeTone’s algorithm is
0.0005, and that of unsupervised learning of Nguyen’s algorithm is 0.0001. To prevent over-fitting,
dropout [29] is used before the output layer of all neural networks. In the process of training, the
test error of the validation set can be observed. When the test error of the validation set is no longer
reduced, the training is stopped to prevent under-fitting or over-fitting.

When training the network models of the DeTone’s algorithm and Nguyen’s algorithm, the
perturbation values of their samples are also set to 45, the same optimization techniques and image
augmentation techniques as well as the same CNN are adopted. The number of training samples
generated is the same as that of the proposed algorithm, and the training methods and observation
methods are also the same. All algorithms are tested on the test set generated by the proposed method
to ensure the objectivity of the comparison.

3.1. Accuracy of Image Registration

The accuracy of image registration can be measured by RMSE of registration points, which is
defined by

RMSE( f ) =

√√√
1
k

k∑
i=1

‖ f (xi) − x′i‖2 (19)

where xi denotes the coordinates of grid points GA in image IA, and x′i denotes the coordinates
corresponding to xi in image IB; f represents different image registration models, and the proposed
algorithm and APAP algorithm use the local homography matrix, while the other algorithms use the
global homography matrix as their image registration model; f (xi) denotes the coordinates transformed
from xi by using the image registration model f, which is the estimation of x′i; k is the total number of
matching points in the pair of images, and it is set to 25 in the experiments.

Table 1 shows the average RMSE of registration points achieved by several different image
registration algorithms when implemented on the test set generated by the proposed method. To
better present the performance of learning-based image registration algorithms, Table 1 gives in detail
the registration accuracy of several deep learning-based image registration algorithms using VGG,
Googlenet and Xception neural networks, respectively.
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Table 1. RMSE comparison of different image registration algorithms.

Algorithmic Type Algorithm RMSE

Pixel based ECC 18.13

Feature based
SIFT 5.077
ORB 17.751
APAP 4.458

Learning based

DeTone + VGG 11.844
DeTone + Googlenet 10.512
DeTone + Xception 10.011
Nguyen + VGG 10.455
Nguyen + Googlenet 9.936
Nguyen + Xception 9.861
Proposed + VGG 6.113
Proposed +
Googlenet 4.344

Proposed + Xception 2.339

From Table 1, it can be seen that the accuracy of the pixel-based ECC image registration algorithm
is the lowest, and that of the feature-based SIFT image registration algorithm is higher. The APAP
algorithm takes into account the locality of image registration, so it achieves the best result among the
pixel-based and feature-based algorithms. The performance of the learning-based image registration
algorithms is related to the used CNN models, and more advanced CNN models have higher image
registration accuracy. The samples used by the DeTone’s algorithm and Nguyen’s algorithm are
relatively simple, so there is little difference in the accuracy of image registration under different neural
networks. These two algorithms do not fully consider the locality of image registration, resulting in
low accuracy of image registration. Compared with other algorithms, the proposed algorithm achieves
the highest image registration accuracy by using the Xception network model. In addition, from
Table 1, it is seen that the effect of the proposed algorithm under Xception network is better than that
under Googlenet and VGG networks. This is because the samples and labels used in the proposed
algorithm are more complex, and there are obvious differences under different neural networks. When
combined with more advanced CNN models, the proposed algorithm can achieve higher accuracy of
image registration.

3.2. Running Time

To compare the calculation complexity of different image registration algorithms, Table 2 shows
the average running time of each algorithm running for 10 times, where all algorithms are implemented
under a computer with Intel i7-6700 CPU, 32 GB memory and one NVIDIA GTX 1080 Ti GPU. It is seen
that APAP algorithm runs slowest due to the use of the local homography matrix and ORB algorithm
runs fastest among the traditional image registration algorithms. For learning-based image registration
algorithms, Table 2 gives the running time when the algorithms are accelerated with one GPU, as well
as the running time achieved without the GPU. It is seen that GPU can significantly speed up the
learning-based algorithms. The running speed of GPU is much faster than that of CPU, and different
neural network models achieve different running speeds, among which Xception runs the slowest and
Googlenet runs the fastest. Because the DeTone’s and Nguyen’s algorithms are only different in loss
function and the neural network model is basically the same, the running time of the two algorithms
are the same under the same conditions. The proposed algorithm involves the estimation of local
homography matrices, so it runs slower than DeTone’s and Nguyen’s algorithms under the same
neural network.
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Table 2. Running time comparison of different image registration algorithms.

Algorithmic Type Algorithm Running Time of GPU (s) Running Time of CPU (s)

Pixel based ECC - 226

Feature based
SIFT - 99
ORB - 65

APAP - 456

Learning based

DeTone + VGG 36.2 123
DeTone + Googlenet 26.9 57.3
DeTone + Xception 46.2 208

Nguyen + VGG 36.2 123
Nguyen + Googlenet 26.9 57.3
Nguyen + Xception 46.2 208

Proposed + VGG 47.2 138
Proposed + Googlenet 39.7 61
Proposed + Xception 59.6 213

3.3. Robustness to Illumination, Color and Brightness

In order to compare the robustness of different image registration algorithms to illumination,
color, and brightness, the test set in the experiments is augmented, and the used image augmentation
method is the same as that of the training set. After image augmentation, the registration accuracy
and failure rate of each algorithm are compared. We only randomly augmented some of the images
in the test set, but not all of them. The higher the number of augmented images is, the higher the
image augmentation degree of the test set is, and the test set has more diversity in illumination,
color and brightness. The image augmentation degree can be represented by the probability of an
image being augmented in the test set. The test set used in this experiment contains 5000 pairs of test
images. Each algorithm runs 10 times repeatedly, during which the image augmentation is randomly
implemented at a pre-specified image augmentation degree, and the average result of the 10 runs is
taken as the final result of this algorithm with respect to the pre-specified image augmentation degree.
Therefore, the image augmentation degree also represents the degree that the test set is affected by
image augmentation.

The accuracy and failure rate of image registration can be used to measure the robustness of
different image registration algorithms. Since the maximum perturbation values of each grid point in
the sample image in the horizontal and vertical directions are ρx and ρy respectively, when the accuracy

of image registration of a pair of images is greater than
√
ρ2x + ρ2y, the pair can be considered as a

registration failure, and the failure rate of image registration on the test set can further be calculated.
Considering that the RMSE values of test samples failed to be registered may be too large, and these
extreme data may affect the RMSE values of the whole test set greatly, therefore, the RMSE of the whole
test set is defined as

RMSE′i = min(RMSEi,
√
ρ2x + ρ2y)

RMSE = 1
K

K∑
i=1

RMSE′i
(20)

where RMSEi represents the RMSE value of the ith pair of images, and K denotes the total number of
image pairs in the test set.

Figures 2–5 show the failure rate and RMSE achieved by different algorithms under different
image augmentation degrees. The abscissa is the image augmentation degree of the test set, which
changes from 0.0 to 1.0 with a step size of 0.1; the ordinate represents the registration failure rate or
RMSE. Figure 2 shows the robustness comparison of seven image registration algorithms, in which
the CNN model used by DeTone’s and Nguyen’s algorithms is VGG, while the model used by the
proposed algorithm is Xception. As can be seen from Figure 2, the robustness of the traditional image
registration algorithms to illumination, color, and brightness is very poor, and the robustness of the
learning-based algorithms, especially the supervised learning-based algorithm, is better than that of
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the traditional ones. Figures 3–5 further give robustness analysis of the three learning-based image
registration algorithms under three different CNN models. The used three CNN models are VGG,
Googlenet and Xception, respectively. It can be seen that under the same neural network model,
the robustness of Nguyen’s algorithm is inferior to the other two algorithms. Nguyen’s algorithm
uses L1 norm as a loss function in the unsupervised learning algorithm, requiring the same image
augmentation parameters for I′A and I′B in each pair of samples during the training, otherwise, the
model will not converge normally, which results in the poor robustness of the unsupervised learning
image registration algorithm. In contrast, DeTone’s algorithm and the proposed algorithm do not
have this problem, because both of them adopt supervised learning; the label value can supervise the
training of the neural network very well, so the model has better robustness.

  
(a) (b) 

Figure 2. Robustness of seven image registration algorithms under different image augmentation
degrees: (a) Failure rate; (b) RMSE.

  
(a) (b) 

Figure 3. Robustness of DeTone’s algorithm, Nguyen’s algorithm and the proposed algorithm using
VGG: (a) Failure rate; (b) RMSE.
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(a) (b) 

Figure 4. Robustness of DeTone’s algorithm, Nguyen’s algorithm and the proposed algorithm using
Googlenet: (a) Failure rate; (b) RMSE.

  
(a) (b) 

Figure 5. Robustness of DeTone’s algorithm, Nguyen’s algorithm and the proposed algorithm using
Xception: (a) Failure rate; (b) RMSE.

In order to further analyze the influence of different perturbation values on the accuracy of the
proposed algorithm, four maximum perturbation values in Step 1 including 24, 28, 32, and 36 are
tested on test sets with different image augmentation degrees, respectively. The experimental results
are shown in Figure 6, in which the abscissa and ordinate are the image augmentation degree of the
test set and RMSE achieved by different image registration algorithms, respectively. It can be seen that
as the maximum perturbation value ρ decreases, the RMSE of image registration also decreases, that is,
the higher the accuracy of image registration.
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(a) (b) 

  
(c) (d) 

Figure 6. Robustness of the proposed algorithm under different perturbation values and CNNs:
(a) ρ = 36; (b) ρ = 32; (c) ρ = 28; (d) ρ = 24.

Figure 7 gives the visualized homography estimation results. The red boxes in the left images
are mapped to the red boxes in the right images. These red boxes are labels, which are generated
by the proposed method described in Section 2.3. The yellow boxes in the right images indicate the
results of homography estimation. The more the red and yellow boxes in the right images coincide, the
higher the accuracy of feature point matching is. From Figure 7, it is also noticed that the proposed
algorithm with Xception model is superior to the proposed algorithms with Googlenet and VGG neural
network models.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Visualization analysis of the proposed algorithm under different CNNs (The red boxes
indicate the ground truth, and the yellow boxes are the estimation results): (a) accuracy of image
registration under VGG (RMSE = 10.154711); (b) accuracy of image registration under VGG (RMSE
= 2.240815); (c) accuracy of image registration under Googlenet (RMSE = 7.2284245); (d) accuracy of
image registration under Googlenet (RMSE = 1.9681364); (e) accuracy of image registration under
Xception (RMSE = 3.1798978); (f) accuracy of image registration under Xception (RMSE = 1.4085304).
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4. Conclusions

Aiming at the problem of image registration with parallax, an image registration algorithm based
on deep learning and local homography transformation is proposed. A sample and label generation
method suitable for local homography matrix estimation is designed by using DLT and MDLT, so as to
obtain an effective image registration model through supervised learning. The proposed algorithm
overcomes the defect that the existing learning-based image registration algorithm cannot be used
for local homography matrix estimation and improves the weak robustness of traditional image
registration algorithms. Experimental results show that the proposed algorithm achieves high image
registration accuracy; low time complexity; and good robustness to illumination, color, and brightness.
In particular, the combination of the proposed algorithm and a better CNN architecture can significantly
improve the accuracy of image registration.

In this paper, the MDLT algorithm is adopted to generate samples with local matching points.
The perturbation value cannot be set very large, otherwise it will cause unnatural deformation and
dislocation of the image. Therefore, the proposed algorithm is more suitable for the sample with weak
locality. In addition, compared with the traditional algorithms, the proposed algorithm has higher
requirements on hardware and takes a longer time to generate samples and train neural networks; this
will be improved in further work.
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Abstract: Current mainstream super-resolution algorithms based on deep learning use a deep
convolution neural network (CNN) framework to realize end-to-end learning from low-resolution
(LR) image to high-resolution (HR) images, and have achieved good image restoration effects.
However, as the number of layers in the network is increased, better results are not necessarily
obtained, and there will be problems such as slow training convergence, mismatched sample
blocks, and unstable image restoration results. We propose a preclassified deep-learning algorithm
(MGEP-SRCNN) using Multilabel Gene Expression Programming (MGEP), which screens out a
sample sub-bank with high relevance to the target image before image block extraction, preclassifies
samples in a multilabel framework, and then performs nonlinear mapping and image reconstruction.
The algorithm is verified through standard images, and better objective image quality is obtained.
The restoration effect under different magnification conditions is also better.

Keywords: super-resolution (SR); convolution neural network (CNN); Gene Expression Programming
(GEP); deep learning; image preclassification

1. Introduction

Aiming at addressing image degradation during digital image acquisition and processing,
Single-Image Super-Resolution (SISR) technology [1,2] enables high-resolution (HR) images to be
recovered from low-resolution (LR) ones with high-frequency texture details and edge structure
information observations of images to meet people’s image quality needs.

Early reconstruction-based SR methods mainly modeled the acquisition process of low-resolution
observation images, used the regularization method to construct the prior constraints of high-resolution
images, estimated the HR images from the LR observation images, and finally restored the
super-resolution image. The problem turns into an optimization problem of a cost function under
a constraint [3]. Learning-based super-resolution restoration technology was first proposed by
Freeman [4]. This type of algorithm uses the similarity of different images in high-frequency details to
obtain the relationship between the HR and LR images through the algorithm to guide the reconstruction
of the output image. Prior knowledge can be obtained through learning, instead of defining the prior
knowledge in the model-based reconstruction method.

In recent years, deep learning has been a hot topic in the field of machine learning, and its related
theories have attracted widespread attention from researchers. It has been gradually used in the field
of image super-resolution reconstruction and has better effects than shallow learning [5–13]. The
most classic of them is an end-to-end deep learning model, the super-resolution convolution neural
network (SRCNN), constructed by a three-layer convolutional neural network proposed by Dong et
al. [5]. The image is input after Bicubic preprocessing, and it is trained on LR and HR images in pairs.
The gradient descent method continuously adjusts the weights to obtain a mapping from LR to HR.
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Its simple network structure design and excellent image restoration results created a precedent for
deep learning in super-resolution image reconstruction. However, the SRCNN method does not obtain
better results when the number of layers in the network is increased. The training convergence rate is
slow and it is not suitable for multiscale amplification.

Based on the above problems, we propose an improved deep learning algorithm for Gene
Expression Programming (GEP) preclassification. This method uses the GEP multilabeling algorithm
to classify the trained image set and select a subset of samples that are related in color and texture
feature categories, thereby reducing the complexity of the convolutional neural network parameters.
We compare the performance of our approach to that of other state-of-the-art methods and obtain
improved objective image quality.

2. Related Work

In recent years, deep learning and artificial intelligence have been widely used in various
industries, especially in the field of computer vision, and have achieved better results than traditional
methods [14,15]. Using the feed-forward depth network methods of CNN is the mainstream of the
current super-resolution reconstruction field after sparse representation. Such methods focus less on
the reconstruction speed and more on whether the high-resolution map can be better restored at a
large magnification. They have better generalization ability and ability to characterize the high-level
characteristics, compared with traditional shallow learning algorithms.

2.1. SRCNN/Fast SRCNN (FSRCNN)

Dong et al. [5] first proposed the use of a convolutional neural network for image super-resolution
reconstruction. An LR image was first enlarged to the target size using Bicubic interpolation, and then
a nonlinear mapping was performed through a three-layer convolutional network. The obtained
results were output as high-resolution images, and good results were obtained. As shown in Figure 1,
the network structure design of this method is simple. Compared with previous learning algorithms, it
saves a lot of artificial feature extraction steps and post-integration, thus opening up the era of deep
CNN super-resolution image processing problems.

n1 n2  

f f f f

 

Figure 1. Network architecture of the super-resolution convolution neural network (SRCNN).

After that, Dong et al. [6] improved upon the SRCNN, and the fast SRCNN (FSRCNN) was
proposed, which increases the depth of the network and introduces a deconvolution layer to
restore features. The deconvolution layer can realize the conversion from low-resolution space
to high-resolution space. This feature allows the FSRCNN to directly use the low-resolution image
instead of the interpolation result as the network input. Directly using LR images as input can not only
reduce the calculation amount of the model, but also avoid the obvious artificial traces introduced by
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interpolation. FSRCNN offers a great improvement in speed, without any preprocessing, to achieve
end-to-end input and output of the network, but the restoration accuracy is somewhat insufficient.

2.2. Sparse-Coding-Based Network (SCN)

The SCN method [9] firstly obtains the sparse prior information of the image through the feature
extraction layer, then establishes a feed-forward neural network which can implement sparse encoding
and decoding of the image, and finally uses a cascade network to complete the image enlargement.
This method can improve the Peak Signal-to-Noise Ratio (PSNR) at a higher magnification, and the
algorithm running speed is further improved. Moreover, with the correct understanding of each layer’s
physical meaning, the SCN method offers a more principled way to initialize the parameters, which
helps to improve optimization speed and quality.

2.3. Very Deep Convolutional Networks for Image Super-Resolution (VDSR)

The ultra-deep super-resolution network proposed by Kim et al. [8] extended the SRCNN from
a 3-layer shallow network structure to a 20-layer ultra-deep network, and they concluded that the
reconstruction effect will be improved as the number of layers increases. Compared to SRCNN,
which only depends on the image context in a small area, VDSR, by exploring more contextual
information through a larger receptive field, helps to better restore the detailed structure, especially
in super-resolution applications with large magnification factors. In addition, in order to solve the
problem of slow convergence in SRCNN, VDSR residual learning was introduced, which greatly
increased the learning rate.

VDSR accepts image features of different scales by adjusting the size of the filter to produce a fixed
feature output. Although VDSR can achieve specific-scale magnification, it cannot achieve free-scale,
multiscale magnification, and its parameter storage and retrieval also have obvious shortcomings.

3. The Proposed Method

3.1. Multifeature Representation of Images

Image features include color, texture, shape, and spatial relationships. Features can be extracted
from the image after being detected by the computer. The result is called a feature description or
feature vector. In this paper, the Multilabel Gene Expression Programming (MGEP) algorithm mainly
uses image color and texture features for multilabel recognition.

3.1.1. Color Feature

The color feature is a global feature that describes the surface properties of the scene corresponding
to the image or image area, and is also the most direct visual feature in the physical characteristics of
the image. Compared with various other image features, the color feature has two obvious advantages:
one is stability, low sensitivity to various changes in the image such as translation, scaling, rotation,
etc., and strong robustness; the second is that its complicated calculation degree is low. The pixel
values in the image are converted, and the corresponding numerical expression is used to obtain the
image characteristics [16]. Because of the stability and simple calculation, the color feature has become
a widely used image feature.

Shown in Figure 2, the color histogram is widely used in many image retrieval systems. It describes
the proportion of different colors in the entire image, and does not pay attention to the spatial location
of each color; that is, it cannot describe the objects or objects in the image.
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Figure 2. Color histogram of an image (RGB channel).

The color histogram can be defined as the joint probability density function of the three color
channels (RGB) in the image:

hR,G,B(a, b, c) = N•P(R = a, G = b, B = c) (1)

where R, G, and B represent the RGB color channels of the image, N indicates the number of image
pixels, P represents the probability density function, and h represents a histogram function, defined
as a four-dimensional eigenvector H(HR, HG, HB,μ). The first three dimensions HR, HG, and HB

correspond to the three color channels, and the last dimension μ indicates the proportion of the color
in the entire image.

3.1.2. Texture Feature

Texture is a visual feature that reflects homogeneous phenomena in an image, and it reflects the
surface structure organization and arrangement properties of an object surface with slow or periodic
changes. Texture is a pattern produced by the gray or color of the target image in space in a certain
form [17]. From the perspective of texture, the image can be roughly divided into three cases: first,
the gray distribution has a certain periodicity (even if the gray change is random, it also has certain
statistical characteristics, and may be in a larger area repeatedly); second, the basic components that
make up the sequence are regular rather than random; third, the texture of each part in the texture area
shows roughly the same size, structure, and image, and is uniformly distributed as a whole.

The Fourier power spectrum method is used to measure the texture characteristics of the image.
Let the texture image be f(x, y); its Fourier transform can be expressed by Equation (2).

F(u, v) =
∫ ∫ ∞

−∞
f(x, y) exp

{−j2π(ux + vy)
}
dxdy (2)

The definition of the power spectrum of the two-dimensional Fourier transform is shown in
Equation (3):

|F|2 = FF∗ (3)

where F* stands for the conjugate of F. The power spectrum |F|2 reflects the nature of the entire image.
If the Fourier transform is expressed in polar form, i.e., F(r,θ) form, then the energy on the circle r
from the origin is

Φr =

∫ 2π

0
[F(r,θ) ]2dθ. (4)

From research on the energy in the small fan-shaped region in the angle θ direction, the law of
this energy changing with the angle can be obtained by Equation (5):

Φθ =
∫ ∞

0

∣∣∣F(r,θ) |2dr. (5)
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When a texture image runs along θ and there are many lines, edges, etc., in the direction θ+ π
2 , i.e.,

in a right-angle direction to θ, the energy is concentrated. If the texture does not show directionality,
there is no directionality in the power spectrum. Therefore, the |F|2 value reflects the directionality of
the texture.

3.2. GEP Network

Gene Expression Programming (GEP) was proposed by Ferreira in 2001. It is a new evolutionary
model and belongs to the family of genetic algorithms [18,19]. The GEP algorithm, like the Genetic
Algorithm (GA) and Genetic Programming (GP), is a computational model that simulates the
evolutionary process of living things. Because GEP chromosomes are simple, linear, and compact;
make it easy to carry out genetic operations, etc.; and have stronger problem-solving capabilities,
they are 2 to 4 orders of magnitude faster than GA and GP [19]. Because of these advantages, GEP
technology has attracted the attention of many researchers and has been used in machine learning fields
such as function discovery, symbol regression, classification, clustering, and association rule analysis.

(S, F, T) represents a GEP gene as a 3-tuple, of which S is a fixed-length string, F is the set of
calculation functions, and T is the basic terminal set. Sometimes, for convenience, the fixed-length
string S is called a gene. The gene is divided into two parts, the head and the tail. The former symbol
can be taken from F and T, and the latter must be taken from T. GEP gene coding rules ensure that it
can be decoded into an expression tree corresponding to a legal mathematical expression. Suppose its
head length is h, tail length is t, and nmax is the maximum number of parameters of a function in the
function set; then the relationship between h and t can be expressed by Equation (6).

t = h(nmax − 1) + 1 (6)

GEP’s neural network selective integration process is divided into two stages.
Stage 1: Network group generation.
We use existing methods such as Boosting and Bagging to generate network groups. Assume the

output vector of the network population is Y = (y1, y2, . . . , yn), yi ∈ {0, 1}.
Stage 2: Individual network selection and conclusion generation based on GEP.
For input x, there are the following integrated classification results:

y(x) = sign( f (Y′)). (7)

Among them, Y′ ⊆ Y, Y′ =
(
yi1 , yi2 , . . . , yim

)
. That is, the final classification result is synthesized

from some network outputs in the network group in some way. Because GEP has powerful function
discovery and parameter selection functions, it can be discovered using the GEP method f (Y′).

Taking the threshold lamda = 0.5, the integrated classification result y(x) is calculated as follows:

y(x) =

⎧⎪⎪⎨⎪⎪⎩1 f (Y′) ≥ 0.5

0 f (Y′) < 0.5
(8)

3.3. Fitness Function Design

The fitness function is the guideline for the evolution of the GEP algorithm. For feed-forward
neural networks, the topology selection and training of weights can be regarded as an optimization
process. The purpose of optimization is to design the network so that the fitness function value reaches
the maximum value. The performance of the current network for a given training data set is described
by a least squares error function.

We use category-based multilabel evaluation indicators. We first measure the classifier’s
corresponding two-class classification performance on a single class, and then calculate the average
performance of the classifier on all classes as the evaluation index value of the classifier. Suppose we
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have a multilabeled test set with p-many sample data S =
{
(xi, Yi)

∣∣∣1 ≤ i ≤ p
}

for the jth category yj

(1 ≤ j ≤ q). In terms of the multilabel classifier, the two-class classification performance of h(·) in this
category can be described by the four statistics given by Equations (9)–(12).

1. TPj (#true positive instances)

TPj = | {xi | yj ∈ Yi ∧ yj ∈ h(xi), (xi, Yi) ∈ S} | (9)

2. FPj (#false positive instances)

FPj = | {xi | yj � Yi ∧ yj ∈ h(xi), (xi, Yi) ∈ S} | (10)

3. TPj (#true negative instances)

TPj = | {xi | yj � Yi ∧ yj � h(xi), (xi, Yi) ∈ S} | (11)

4. FPj (#false negative instances)

FPj = | {xi | yj ∈ Yi ∧ yj � h(xi), (xi, Yi) ∈ S}| (12)

From Equations (9)–(12), TPj + FPj + TNj + FNj = p is established. Most classification performance
indicators, such as accuracy, precision, and recall, can be derived from the above four statistics—see
Equations (13)–(15).

Accuracy = B
(
TPj, FPj, TNj, FNj

)
=

TPj + TNj

TPj + FPj + TNj + FNj
(13)

Precision = B
(
TPj, FPj, TNj, FNj

)
=

TPj

TPj + FPj
(14)

Recall = B
(
TPj, FPj, TNj, FNj

)
=

TPj

TPj + FNj
(15)

Therefore, combined with category-based multilabel classification evaluation index, we design a
fitness function for the MGEP classification algorithm.

1. Design of fitness function based on macro-averaging:

Fiti =

∣∣∣∣∣∣∣∣R− 100× 1
q

q∑
j=1

B
(
TPj, FPj, TNj, FNj

)∣∣∣∣∣∣∣∣ (16)

2. Design of fitness function based on micro-averaging:

Fiti =

∣∣∣∣∣∣∣∣R− B

⎛⎜⎜⎜⎜⎜⎜⎝
q∑

j=1

TPj,
q∑

j=1

FPj,
q∑

j=1

TNj,
q∑

j=1

FNj

⎞⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣ (17)

In Equations (16) and (17), Fiti is the fitness value of the ith individual to the environment, and R
is the selected bandwidth.

3.4. MGEP Classification before CNN Image Super-Resolution

In the process of image super-resolution reconstruction, the traditional K-means clustering
algorithm [20] is used to classify the trained image set to improve the training effect and reduce the
training time. In the K-means clustering algorithm, the value of K needs to be determined in advance,
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and it cannot be changed during the entire course of the algorithm, which makes it difficult to accurately
estimate the value of K when training high-dimensional data sets.

We used the MGEP classification algorithm instead of the K-means clustering algorithm, and its
preclassification model is shown in Figure 3.

 

Figure 3. The Multilabel Gene Expression Programming (MGEP) preclassification model.

Let p-many sample pattern pairs (xk, yk) constitute the training set, k = 1, 2, . . . , p. According to
the definition of the GEP classifier, for sample k, there are xk = (xk1, xk2, . . . , xkm) and yk = (yk1, yk2, . . . ,
ykn), where xkj is the sample in the attribute Aj (j = 1, 2, . . . , m) and yki is the degree of membership
of the sample to the category Ci (i = 1, 2, . . . , n). The training set constitutes the set of adaptive
instances, and the set of adapted instances of a particular problem forms the adaptive environment
of the MGEP algorithm. Under a certain adaptive environment, starting from the initial population,
selection, replication, and various genetic operations are performed according to individual fitness to
form a new population. This process is repeated until the optimal individual is evolved and decoded
to obtain a GEP multilabel classifier. In the MGEP preclassification learning, we find similar samples
for LR image blocks in terms of color and texture features, thereby shortening the time of the next
precise matching and improving the efficiency and effect of SR image restoration.

In the training of the CNN, the MGEP algorithm is used to classify the trained image set, classify
the approximate images into one category, and reduce the parameter scale of the convolutional neural
network model, which can reduce the training time of the network to a certain extent and improve the
training efficiency of the CNN. The improved algorithm flow based on SRCNN is shown in Figure 4.
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nn

Figure 4. MGEP-SRCNN algorithm flow chart.

The algorithm uses Wiener filtering to construct a deconvolution layer, which is used to implement
multiscale image reconstruction. The deconvolution network part adopts the mirror structure of the
convolution network. The purpose is to reconstruct the shape of the input target, so the multilevel
deconvolution structure can also capture the shape details of different levels like the convolution
network. In the model of the convolutional network, low-level features can describe the rough
information of the entire target, such as target position and approximate shape, while more complex
high-level features have classification characteristics and also contain more detailed target information.

4. Experiments

4.1. Experimental Environment and Parameter Settings

The experimental software environment used was Ubuntu 14.04, Python 2.7, TensorFlow 1.4; the
hardware environment was an Intel Core i7-6700K, RAM 16GB, and the GPU was an NVIDIA GTX1080.

As the training set, we used ImageNet-91 [5], and as the test set, we used Set5 [21], Set14 [22],
BSD100 [23], and Urban100 [24]. We tested on three commonly used scale factors, 2, 3, and 4, and
compared the results with those of the Bicubic, SCN [9], SRCNN [5], VDSR [8], and DRCN [10]
algorithms. Two evaluation indexes, PSNR and Structural Similarity (SSIM), were selected as an
objective reference basis for the superiority of algorithm reconstruction to measure the effect of
image restoration.

4.2. MGEP Preclassification Settings

We used the MGEP algorithm to preclassify the trained image set before deep learning. We selected
a subset of samples that were related in color and texture feature categories. Equation (16) was used
as the fitness function to implement the MGEP classification algorithm, which was then applied to
sample preclassification in the SR image restoration process.

The function set was set to {+, −, ×, /}, the evolution algebra gen was set to 1000, and the population
size N was set to 100. The total number of genes was set to 10, of which there were 7 common genes and
3 homologous genes. The three homologous genes respectively output the color category calculated
according to Equation (1), the texture category calculated according to Equation (18), and the texture
category calculated according to Equation (19) of the input LR image block.

T(j, k) =
j∑

ε=−T

k∑
n=−T

ε2η2C(ε,η, j, k) (18)
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MEAN =
1
m

∑
i

ipΔ(i) (19)

Each gene had a head length of 5 and a chromosome length of 110. The genetic manipulation
probability was set to 0.1.

The MGEP preclassification effect is shown in Figure 4. The training samples “Car”, “Building”,
and “Cobblestone” in ImageNet-91 that have little correlation with the color texture features of the
input image “Flowers” were excluded, thereby improving the training effect and matching accuracy.

4.3. Image Restoration Results

CNN deep learning was performed after MGEP preclassification. All convolutional layer filters
were 3 × 3 in size and the number of filters was 64. We used the method of He et al. [25] to initialize
the convolutional layer. The convolution kernel moved in steps of 1. In order to keep the size of all
feature maps the same as the input of each layer, 0 was filled around the boundary before applying the
convolution. The learning rate of all layers was initialized to 5 × 10−4, and the learning rate dropped
by 2 times every 15 epochs until the learning rate was less than 5 × 10−9.

Tables 1–4 show the PSNR/SSIM values and running times of the six algorithms on the Set5, Set14,
BSD100, and Urban100 test sets when the upscale factors were 2, 3, and 4, respectively.

Table 1. Average Peak Signal-to-Noise Ratio (PSNR)/Structural Similarity (SSIM) values for 2× scale.
Red color indicates the best and the blue color indicates the second-best performance.

Dataset Bicubic SRCNN [5] SCN [9] VDSR [8] DRCN [10] MGEP-SRCNN

Set5 33.66/0.9299 36.66/0.9542 36.93/0.9552 37.53/0.9587 37.63/0.9588 37.78/0.9594
Set14 30.24/0.8688 32.42/0.9063 32.56/0.9074 33.03/0.9124 33.04/0.9118 33.29/0.9135

BSD100 29.56/0.8431 31.36/0.8879 31.40/0.8884 31.90/0.8960 31.85/0.8942 32.01/0.8979
Urban100 26.88/0.8403 29.50/0.8946 29.50/0.8960 30.76/0.9140 30.75/0.9133 31.19/0.9181

Table 2. Average PSNR/SSIM values for 3× scale. Red color indicates the best and the blue color
indicates the second-best performance.

Dataset Bicubic SRCNN [5] SCN [9] VDSR [8] DRCN [10] MGEP-SRCNN

Set5 30.39/0.8682 32.75/0.9090 33.10/0.9144 33.66/0.9213 33.82/0.9226 34.04/0.9250
Set14 27.55/0.7742 29.28/0.8209 29.41/0.8238 29.77/0.8314 29.76/0.8311 29.97/0.8333

BSD100 27.21/0.7385 28.41/0.7863 28.50/0.7885 28.82/0.7976 28.80/0.7963 28.92/0.7972
Urban100 24.46/0.7349 26.24/0.7989 26.21/0.8010 27.14/0.8279 27.15/0.8276 27.24/0.8330

Table 3. Average PSNR/SSIM values for 4× scale. Red color indicates the best and the blue color
indicates the second-best performance.

Dataset Bicubic SRCNN [5] SCN [9] VDSR [8] DRCN [10] MGEP-SRCNN

Set5 28.42/0.8104 30.48/0.8628 30.86/0.8732 31.35/0.8838 31.53/0.8854 31.66/0.8899
Set14 26.00/0.7027 27.49/0.7503 27.64/0.7578 28.01/0.7674 28.02/0.7670 28.19/0.8359

BSD100 25.96/0.6675 26.90/0.7101 27.03/0.7161 27.29/0.7251 27.23/0.7233 27.34/0.7238
Urban100 23.14/0.6577 24.52/0.7221 24.52/0.7250 25.18/0.7524 25.14/0.7510 25.21/0.7837
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Table 4. Comparison of the running times (sec) for scales 2×, 3×, and 4×. Red color indicates the
best performance.

Dataset Scale Bicubic SRCNN [5] SCN [9] VDSR [8] DRCN [10] MGEP-SRCNN

Set5
×2 - 2.191 0.941 0.054 0.735 0.039
×3 - 2.235 1.829 0.062 0.748 0.052
×4 - 2.193 1.245 0.054 0.735 0.044

Set14
×2 - 4.324 1.709 0.113 1.579 0.097
×3 - 4.402 3.611 0.122 1.569 0.113
×4 - 4.397 2.377 0.112 1.526 0.101

BSD100
×2 - 2.517 1.015 0.071 0.983 0.069
×3 - 2.583 2.138 0.071 0.996 0.067
×4 - 2.516 1.290 0.071 0.984 0.061

Urban100
×2 - 22.123 4.779 0.451 5.010 0.401
×3 - 19.358 4.012 0.514 5.054 0.484
×4 - 18.462 3.199 0.448 5.048 0.407

As can be seen from Tables 1–3, the MGEP-SRCNN algorithm achieved the best PSNR effect at
different magnifications on the four test sets. Compared with SRCNN, the PSNR evaluation index
increased by 0.44–1.69 dB, and the improvement effect obtained in the Set5 dataset was the best.
In terms of SSIM indicators, except for the suboptimal data obtained under the 2× and 3× conditions
on the BSD100 dataset, other SSIM indicators were all optimal. Compared with SRCNN, the SSIM
evaluation index improved by about 0.005–0.062, where 4× showed the best improvement. In addition,
from Table 4 we can see that the MGEP-SRCNN algorithm achieved the best performance of running
time on the precondition of accuracy.

Then, we subjectively determined the quality of the output image and compared the performance
of the six SR algorithms by observing the visual effects of the restored image. For comparison, given a
3× upscale factor, the restoration effects of the different SR algorithms used on the Set5, Set14, BSD100,
and Urban100 test sets are shown in Figures 5–8.

(a) (b)  (c) 

(d) (e)   (f) 

(g)

Figure 5. Super-resolution restoration results of the image “Baby” in Set5 [21]. (a) Bicubic; (b) SRCNN [5];
(c) SCN [9]; (d) VDSR [8]; (e) DRCN [10]; (f) MGEP-SRCNN; (g) Ground truth.
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(a)                 (b)               (c) 

(d)                 (e)               (f) 

(g)        

Figure 6. Super-resolution restoration results of the image “Flowers” in Set14 [22]. (a) Bicubic;
(b) SRCNN [5]; (c) SCN [9]; (d) VDSR [8]; (e) DRCN [10]; (f) MGEP-SRCNN; (g) Ground truth.

(a)                 (b)               (c) 

(d)                 (e)               (f) 

(g)        

Figure 7. Super-resolution restoration results of the image “016” in BSD100 [23]. (a) Bicubic;
(b) SRCNN [5]; (c) SCN [9]; (d) VDSR [8]; (e) DRCN [10]; (f) MGEP-SRCNN; (g) Ground truth.

(a)                 (b)               (c)

(d) (e)   (f)

(g) 

Figure 8. Super-resolution restoration results of the image “002” in Urban100 [24]. (a) Bicubic;
(b) SRCNN [5]; (c) SCN [9]; (d) VDSR [8]; (e) DRCN [10]; (f) MGEP-SRCNN; (g) Ground truth.

It can be intuitively seen from the figure that the reconstructed images of both traditional Bicubic
and SRCNN have aliasing, while the restored image provided by our algorithm is clearer and sharper,
and the reconstruction quality is better. In the details, as seen in the baby eye in Figure 5, petal color
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in Figure 6, branch texture in Figure 7, and building glass in Figure 8, MGEP-SRCNN reconstructed
images have clearer features, have no sawtooth texture, and are more in line with the visual needs of
the human eye.

Figure 9 shows the PSNR/SSIM values of the six algorithms on the Set5, Set14, BSD100, and
Urban100 test sets when the upscale factor was 3. The MGEP-SRCNN algorithm achieved the best
PSNR effects in all four datasets. Except for the suboptimal data obtained in BSD100, the SSIM
indicators were all optimal.

  

(a) (b) 

Figure 9. Image restoration results of the six SR algorithms. (a) PSNR; (b) SSIM.

5. Conclusions

In this work, we presented a super-resolution method using Multilabel Gene Expression
Programming. This method uses MGEP to extract a subset of image samples related to color
and texture features in advance, and then performs nonlinear mapping and image reconstruction,
thereby reducing the complexity of the convolutional neural network parameters so as to avoid the SR
problems of slow training convergence and unstable recovery results. It was experimentally verified
that the image restoration effect of this method under different magnifications and on training sets is
better than that of the commonly used deep learning algorithms, and it also performs well in terms of
subjective visual effects.
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Abstract: The topic of suspicious behavior detection has been one of the most emergent research
themes in computer vision, video analysis, and monitoring. Due to the huge number of CCTV
(closed-circuit television) systems, it is not easy for people to manually identify CCTV for suspicious
motion monitoring. This paper is concerned with an automatic suspicious behavior detection method
using a CCTV video stream. Observers generally focus their attention on behaviors that vary in terms
of magnitude or gradient of motion and behave differently in rules of motion with other objects.
Based on these facts, the proposed method detected suspicious behavior with a temporal saliency map
by combining the moving reactivity features of motion magnitude and gradient extracted by optical
flow. It has been tested on various video clips that contain suspicious behavior. The experimental
results show that the performance of the proposed method is good at detecting the six designated
types of suspicious behavior examined: sudden running, colliding, falling, jumping, fighting, and
slipping. The proposed method achieved an average accuracy of 93.89%, a precision of 96.21% and a
recall of 94.90%.

Keywords: suspicious behavior detection; motion; magnitude; gradient; reactivity; saliency

1. Introduction

The vast majority of animals, including humans, get the most information from vision among
various sensory organs and with this vision, they recognize and judge the situation [1]. As such,
visual information is important to judge not only general circumstances but also special situations [2,3].
Although the technology of image processing and the performance of the computer have dramatically
improved, analyzing and judging the situation comprehensively as a human does is still difficult [3].
Today, as various technologies using image processing continue being developed, the scope of intelligent
image security technology in the video security market is rapidly expanding; the market share is
rapidly expanding from hardware to software, such as intelligent image analysis [4]. The technology
used for image security requires suspicious behavior detection technology to prevent public security
issues, incidents, and accidents. Attempting to enter a personal property, entering a subway station
without paying a ticket, kidnapping a child, beating a person, or an act of sudden collapse of a person
who is walking along the road may be examples.

This kind of image analysis technology can cope with security threats to individuals and society at
large from terrorism, crime, and disasters. In the wake of recent terrorist accidents in many countries,
each country has been actively investing in expanding the video security market and securing security
systems for the safety of people all over the world [5,6]. In recent years, the number of CCTV
installations in the public sector, such as transportation and crime prevention CCTV, has increased
to cope with various accidents, such as safety accidents and violent accidents [7]. While the number
of areas being surveilled has increased due to the spread of CCTV, the extent of smart technology
application remains insufficient. CCTV is already installed in many areas and records automatically,
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but the reading and checking of the video still must be done manually by a person. Human evaluation
of CCTV is not ideal, because it is a task that requires high levels of concentration over long periods.
Therefore, an automated monitoring system should be implemented that can automatically recognize
crime such as robbery and violence, as well as other situations that require urgent responses, and then
notify the proper parties. To date, in the field of intelligent CCTV research [4–7], relatively few studies
on behavior recognition or suspicious behavior detection have been carried out in comparison to the
number of studies on the active classification and segmentation of objects. In most cases, CCTV is
used for security reasons. In particular, when constructing a public place such as an airport, a train
station, or a park, ensuring the safety and security of the people using that place is mandatory. If CCTV
can automatically detect people who are acting abnormally rather than simply recording them, it will
greatly aid accident prevention and response.

There are various patterns of suspicious behavior that we want to detect through CCTV, but
the common factor is that the size of the movement is large and the direction is irregular [8–10]. For
example, while violence is being committed, the speed of movement generally increases sharply, and
the direction of movement becomes very irregular. When a person bumps something or falls on
something, the movement at this moment has a different direction of movement than that of a normal
moving person, and the magnitude of motion at that moment becomes irregularly large. Beyond these
cases, running or jumping behaviors that occur indoors, such as in a classroom, can be considered to
be suspicious behaviors, and they have characteristics similar to those described above.

Suspicious behavior detection is one of the most actively studied areas of computer vision, such as
video analysis and surveillance [8–27]. Ordinary behavior refers to actions that do not attract people’s
attention when people perceive some sort of movement [8]. Therefore, surveillance systems detect
suspicious behavior using characteristic patterns for various behaviors, which are generally opposed
to ordinary behaviors. There have been many studies on abnormal behavior detection using different
approaches such as spatio–temporal features [8–16] and machine learning techniques [17–25].

As a high-dimensional feature is essential to better represent the suspicious behavior pattern, many
methods based on spatio–temporal information such as optical flow [8], spatio–temporal gradient [9],
the social force model [10], chaotic invariant [11], and sparse representation [12] have been studied.
It does not require any training learning process, so it has less computation, which can be used in
real-time detection [8]. The method described in [9] extracts moving objects from video sequence first
and then tracks moving objects to detect their overlapping. Once an overlapping area is detected, the
clutter model is built up based on the changes of spatio–temporal features to detect abnormal behavior.
An abnormal pattern detecting method based on spatiotemporal volume has been presented in [13].
It calculated the likelihood by analyzing the area occupying a relatively large part of the periphery
and transformed it into the form of a codebook, thereby reducing the time required for the calculation.
This method is competitive with other methods because it does not require background/foreground
segmentation and tracking calculations. However, it is difficult to use this method in an image in
which various kinds of abnormal conditions may exist, because the threshold value necessary for
detecting abnormal patterns has to be individually calculated and applied experimentally for each
image. The method described in [14] detects abnormal crowd behavior based on a combined approach
of energy model and threshold. It used the optical flow method to estimate displacement vectors of
moving crowd and the computation of crowd motion energy. The crowd motion energy was further
modified by crowd motion intensity. The method described in [15] also extracts the motion vector
using the optical flow from the segmented image with foreground and background; then, the motion
vector with a large change was detected and learned by principal component analysis (PCA). However,
data loss can occur due to noise in the process of separating the foreground and background from
actual images. Abnormal behavior detection using an interest point by simply monitoring the change
of topological structure has been presented in [16]. Two new methods for the analysis of boundary
point structure and the extraction of a critical point from the partial motion fields were introduced and
both methods were used to build the global topological structure of the crowd motion.
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Machine learning techniques for detecting unusual events have been presented in [17–26].
These methods also employ the feature extraction process but use trained data that came out of the
learning process. The method described in [17] detects multiple anomalous activities with key features
such as speed, direction, centroid, and dimensions, and these help to track an object in video frames. It
also employed problem domain knowledge rules in order to distinguish activities and the dominant
behavior of activities. In [18], a video frame is divided into several segments of equal size, and the
features that were extracted from each segment were clustered using unsupervised learning. Then, the
clusters smaller than this were classified as abnormal behavior. In this method, unusual phenomena
that do not follow the general statistics are judged as abnormal behavior. However, when there is only
abnormal behavior, not ordinary behavior, it is highly unlikely that abnormal behavior can be detected.
In order to solve the above-mentioned problems appearing in the method presented in [18,19], Hamid
et al. analyzed the whole structure information using statistical information of behavior class and
then defined and detected abnormal behavior based on the subclass. However, there was a scalability
problem in applying it to various images because of the discontinuous sequence and the fact that
the spatiotemporal patch must be stored in the same form every moment. In addition, since data is
processed in a batch process, it cannot cope with real-time environmental change. A method that
uses violent flows (ViF) feature points for real-time processing has been presented in [20]. After
extracting motion vector, motion vectors whose magnitude value exceeds the threshold value are
studied and learned by support vector machine (SVM) [8]. However, this method is not applicable
to surveillance cameras used in real life because it deals only with images taken from a distance.
Convolutional neural network (CNN)-based algorithms have been presented in [21]. Using fully
convolutional neural networks (FCNs) and temporal data, a pre-trained supervised FCN is transferred
into an unsupervised FCN ensuring the detection of anomalies in scenes. The method described
in [22] considered successive chunks that could be observed in segments made from a database that
contained no suspicious behavior to be ordinary behavior. Then, by using these successive chunks
for learning, the parts for which the magnitude of the feature is small or those who are not included
in the learning are detected as suspicious behavior. However, these methods that use the learning
process show weakness in versatility because they cannot detect behaviors that are not used in learning.
In [23], a unified framework for anomaly detection in video based on the restricted Boltzmann machine
(RBM), a recent powerful method for unsupervised learning and representation learning, has been
introduced. Unsupervised learning techniques also employed in the method described in [24], and
the Bayesian model is employed in the method described in [25]. More significant related work to
abnormal behavior detection is described in the review paper [27].

Such methods of manually applying a threshold value or using a background removal with or
without data loss are not versatile. In addition, methods using the learning process are dependent
on the training data and also require lots of computation, so it is hard to be used as a real-time
surveillance system. In this paper, a new suspicious behavior detection method that can be used in real
life by supplementing these matters is presented. The proposed method can infer suspicious behavior
patterns by solely using simple motion features for real-time anomaly detection. Generally, as humans,
we focus our attention on behaviors that vary in the magnitude or direction of motion and behave
differently in terms of the rules of motion compared to other objects. In this paper, this information was
used in the proposed method. The developed system with the proposed method attempts to detect
significantly different behaviors among other behaviors in order to search for suspicious behaviors. To
this end, motion features are extracted using optical flow, and these features are then integrated to
create temporal saliency. Finally, abnormal behavior can be detected based on temporal saliency.

This paper is organized as follows. In Section 2, the proposed method is presented. A temporal
saliency is made by extracting and combining motion features using optical flow and detects suspicious
behavior based on this. Test datasets used in the proposed method are also described here. In Section 3,
experimental results and discussions were described so as to evaluate the performance of the method.
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Finally, in Section 4, conclusions were drawn with some general observations and recommendations
for ongoing work.

2. Materials and Methods

2.1. Data Aquisition

Various kinds of suspicious behavior video sequences are used as a dataset in the proposed
method. The UMN (University of Minnesota) crowd dataset and Avenue dataset, which are used
in various behavior recognition and detection papers [8,10–12,25,28,29] were collected. The video
sequences in the UMN dataset were each filmed from three different backgrounds—lawn, indoor, and
plaza—featuring scenes where multiple people ran away simultaneously when they heard explosions.
The video sequences in the Avenue dataset were filmed from in front of a building, and in that video, a
few people are running or jumping, while most people are walking. The Walk dataset, which does not
include any suspicious behavior, was also used. The Walk dataset does not contain any suspicious
behaviors and features videos that were just filmed of people walking along the street without any
special features. This video sequence was selected to check for false detection of the proposed method.
As shown in No. 6 to No. 10 in Table 1, various types of YouTube video sequences on the Internet that
contain various kinds of suspicious behaviors that could lead to a real accident were also collected.

Table 1. Dataset and types of suspicious behaviors used in the proposed method.

No Dataset Suspicious Behaviors Description

1 UMN dataset: Lawn Multiple people are running away in multiple
directions simultaneously with an explosion

sound.
2 UMN dataset: Indoor
3 UMN dataset: Plaza

4 Avenue dataset A few people are jumping and running in front of
the building while others are walking.

5 Walk dataset People are walking normally.
There are not any abnormal behaviors.

6 Bump data A man is smashed against an obstacle.

7 Fall down data A man is falling over an obstacle.

8 Water data A man is walking on the road falls into the water.

9 Stairs fall down data The man who came down the stairs is falling
down.

10 CCTV violent robbery data in
South Kensington Two men are assaulting one man.

Table 1 describes what kind of suspicious behavior has been collected as datasets. Actual
suspicious behaviors such as violence, tumbling, falling, jumping, and suddenly running behaviors
that can be detected in CCTVs installed on the street have been designated as ground truth. All of
these behaviors are characterized by large changes in motion or irregular directions of motion.

2.2. Description of Proposed Method

The proposed method has been developed to detect suspicious behavior in real-time using CCTV.
This system is designed to detect instantaneous big changes in the size and direction of motion, such
as collisions, sudden running, falling, and assault, which can all occur frequently in real life.

Figure 1 shows the overall process of the proposed method. After performing preprocessing such
as grayscale image transformation and median filtering, the two kinds of motion vectors, magnitude
(size of motion) and gradient (direction of motion), are extracted by optical flow calculation. Then,
the two kinds of extracted motion vectors are converted into the polar coordinate system, and the
magnitude feature map for the magnitude of the motion vector (Fmag) and the gradient feature map
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for the gradient of the motion vector (Fgrad) are generated. Then, two reactivity maps (Rmag, Rgrad) are
generated using the mean and variance of each feature map and combined into one temporal saliency
map (TS). The temporal saliency map shows the area finally detected as suspicious behavior. This
described in detail below.

 
Figure 1. The overall process of the proposed method.

2.2.1. Preprocessing for Denoising

Various preprocessing methods have been used to enhance the performance or efficiency of the
experiment in most technical research and process fields as well as image processing fields. In our
system, the input image data is converted into a grayscale image, and a median filter is applied to
remove noise.

Since only motion information is needed from the input image, color information is not required.
Therefore, the input color image is converted into a grayscale image to reduce the dimension of the data.
Then, the transformed grayscale image is filtered by a median filter to remove noise. Median filters
are often used to remove signal noise. Unlike other smoothing filters, it also preserves the boundary
values well in the noise removal process. In the case of the CCTV image, there is much noise due to
sunlight or other illumination. Besides, there are many cases where the image quality is low, so it is
necessary to enhance the edge. Using the median filter, we can remove noise and enhance the edge.

2.2.2. Feature Map Generation

(1) Motion Vector Extraction with Optical Flow
Optical flow is used to extract the motion of a moving object. Optical flow is an object movement

pattern between two consecutive frames caused by the movement of an object or a camera [30]. So, with
optical flow, we can obtain important information about how objects are viewed locally and how they
move. In other words, optical flow can be said to be a distribution indicating how the brightness
pattern has moved. Therefore, optical flow is a good method for detecting the motion of objects moving
locally in the continuous frame image [31–33].

Farnebäck [34] proposed a dense optical flow. Unlike sparse optical flow [27], dense optical flow
can get a more accurate motion vector because it calculates from all pixels of the image. Since sparse
optical flow only calculates some pixels of the image locally, only the partial motion feature of the
object is extracted. Therefore, it is less accurate than dense optical flow. For example, suppose that
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two people are walking. In general, when people walk, they move their arms, legs, head, etc. If their
motion information is only calculated from some pixels, it can be misunderstood that one person is
moving but the other is moving. In other words, the motion information is not continuous because
they are extracted from some pixels, and can be misunderstood as movements from different objects.
To get more accurate behavior pattern information, dense optical flow is used in the proposed method.

Figure 2 shows a visualization of the optical flow calculation results. Figure 2 is a scene in which
people are walking in different directions. The magnitude and the gradient of the object’s motion can
be acquired through the optical flow calculation results [30]. Points on the image represent feature
points, and lines represent motion vectors. The magnitude of the motion vector is the length of the
line, and the gradient of the vector in the direction of the line. In this way, the size and direction of the
vector of the object moving through the optical flow can be calculated.

 
Figure 2. Motion detection through optical flow.

(2) Feature Map Generation: Fmag, Fgrad

Since the information extracted by the optical flow in the preprocessed image is expressed by
the magnitude of the movement in the x and y-axes, the extracted information is converted into two
feature maps: magnitude and gradient feature maps. The magnitude and the gradient of the motion
vector can be calculated through the motion vector obtained using the actual optical flow. The motion
vector calculated by the optical flow must be converted into a polar coordinate system to form two
feature maps. The polar coordinate system is a coordinate system in which the position of a point is
defined as a distance (r) and a direction (θ) from a vertex. In the Cartesian coordinate system, the
relationship of the vertices, which are represented in a complicated manner by trigonometric functions,
can be easily expressed in the polar coordinate system.

The two-dimensional vector (x, y) calculated as an optical flow is transformed into a value in the
polar coordinate system as follows.

Fmag =

√
x(t)2 + y(t)2, Fgrad = arctan (y(t), x(t)

[180
π

]
(1)

where Fmag is a feature map of the magnitude of the motion vector converted to the polar coordinate
system, and Fgrad is a feature map of the direction of the motion vector.

Figure 3 shows the visualization image of Fmag (Figure 3b) and Fgrad (Figure 3c) for the input
video (Figure 2). Figure 3b is a visualization image of the magnitude feature of the motion of moving
people, and Figure 3c is a visualization image of the numerical value of the directional feature using
the HSV (Hue-Saturation-Value) color model. Since the direction ranges from 0◦ to 360◦, the size of the
H channel of the HSV color model was used to express the angle in the form of a color. In Figure 3c,
people walking from the front of the building to the right were represented in red, while people moving
to the left were represented in blue.
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(a) 

 
(b) 

 
(c) 

Figure 3. Magnitude and gradient feature map. (a) original frame; (b) Fmag; (c) Fgrad.

2.2.3. Reactivity Map Generation

(1) The distinction between ordinary and suspicious behavior
The statistical value of the magnitude of the motion vector is used to distinguish ordinary motion

from suspicious motion in the feature map represented by the polar coordinate system. The statistical
value in the region where suspicious behavior occurs is different from the statistical value in the region
where ordinary behavior occurs. To determine the statistical value, experiments were performed. Four
video sequences were selected among No. 4, No. 5, No. 7, and No. 9 data, which were mentioned in
Section 2.1 and were edited to include actual suspicious behaviors such as falling, jumping, violence,
and suddenly running behaviors in the 40th frame of each video. Selected video sequences all contain
suspicious behaviors. However, for testing purposes, these suspicious behaviors have been edited to
appear in the 40th frame. Edited videos are 15 s long, and there are about 15 people in the first video,
eight people in the second video, three people in the third video, and about 13 people in the fourth
video. After that, motion vectors were calculated, and the results were analyzed.

Figure 4 shows the graphs that show the statistical values of motion vectors of the four kinds
of videos after editing the image frame to contain suspicious behavior in the 40th frame. A legend
‘value’ shown in Figure 4a means the minimum, maximum, and average value of the motion vector,
and Figure 4b means the standard deviation value of the motion vector. After the motion vector was
extracted from these edited videos, the statistical information of the motion vector was analyzed. As
we can see in Figure 4a, the motion vector value was maximized near 40 frames of each video. This
was because each video contained suspicious behavior (crashes, drowsiness, falls, etc.) near the 40th
frame. Since the sizes of objects showing suspicious behavior are slightly different for each dataset
image, there could be a slight difference in the average value. Figure 4b also shows that there is a
large increase in the standard deviation near 40 frames. As a result of extracting and experimenting
motion vectors for several videos, the average value is different according to the size of the moving
region included in the video, while the value of the standard deviation changes a lot when suspicious
behavior appears. Through these experiments, the standard deviation is selected as the criterion value
for judging the abnormal behavior, and value 1.2 was selected.

 
(a) 

 
(b) 

Figure 4. Statistical value of the motion vector. (a) Maximum, minimum, average; (b) standard deviation.
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(2) Magnitude Reactivity Map Generation: Rmag

The frame was considered that it contains suspicious behavior when a frame with a standard
deviation of the motion vector at the time (t) is greater than 1.2, which was calculated experimentally.
The region where the magnitude of the vector is calculated by optical flow at the point (x, y) is larger
than the summation of the average, and the variance of the whole image was considered to be the
suspicious behavior region. Since the movement is slightly different for each person even when
performing the same ordinary behavior, the region was detected based on the summation of the
average and the variation. Based on these facts, the magnitude reactivity map (Rmag) is calculated
as follows.

Rmag = Fmag(x, y, t) × σ(Fmag(x, y, t)
)

where, σ
(
Fmag(x, y, t)

)
> 1.2 and Fmag(x, y, t) > μ

(
Fmag(x, y, t)

)
+ σ
(
Fmag(x, y, t)

) (2)

Figure 5 shows the magnitude reactivity map generated by the proposed method. Figure 5a shows
the video of people gathered at the center of the park moving in various directions simultaneously
with any signal. In this video, the suspicious behavior is the sudden movement of people. Figure 5b
shows the magnitude feature map in polar coordinates, and with this feature map, we can see the
moving area of people. Figure 5c shows the generated final magnitude reactivity map. We can see that
the area in which people are running away has been properly detected. Figure 5d shows the detection
of anomalous regions based on the magnitude reactivity map. In the scene where several people are
running away, we can see that the motion vector is greatly increased, and all of the suspicious behavior
is detected.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Example result of calculating Rmag. (a) original frame; (b) Fmag; (c) Rmag; (d) result of
the system.

(3) Gradient Reactivity Map Generation: Rgrad

Unlike a group of people who are regularly moving in the same direction, if there is an object
moving in the opposite direction, this can be considered suspicious behavior. To detect this behavior, a
reactivity map for the gradient feature of the motion vector was generated. First, the motion vector
calculated for each pixel is divided into object units to prevent the movement direction of the object
and the part included in the object from being different directions. For example, when a man moves to
the left with his arms and legs shaking up and down, the main movement direction may be misjudged
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because of the movement direction of the arms and legs, although the main direction of the man’s
movement is left direction. Based on these, the gradient reactivity map (Rgrad) is calculated as follows.

Rgrad = grad(x, y, t) + grad(x,y,t)
180

where, i f
∣∣∣∣μ(Fgrad(x, y, t)

)
− Fgrad(x, y, t)

∣∣∣∣ ≤ 180

grad(x, y, t) =
∣∣∣∣μ(Fgrad(x, y, t)

)
− Fgrad(x, y, t)

∣∣∣∣
else

grad(x, y, t) =
∣∣∣∣μ(Fgrad(x, y, t)

)
− Fgrad(x, y, t)

∣∣∣∣− 180

(3)

The region of the object that moves differently from the average direction of movement becomes a
component of the gradient reactivity map.

Figure 6 shows the gradient reactivity map generated by the proposed method. Figure 6a shows
the original video of the people walking around the park, and Figure 6b shows the gradient feature
map of the motion vector. The circle in the middle represents the average of the angles in the entire
image and is displayed on the screen to show the angle of 181◦. The rectangle drawn on the right is the
area detected by applying Equation (3). Figure 6c is the final generated gradient reactivity map. In the
reactivity map, we can see that when the average direction of the people is to the left, weights are
added to the object moving in the opposite direction, and the system has responded to it very strongly.

(a) (b) (c) 

Figure 6. Example result of calculating Rgrad. (a) original frame; (b) Fgrad; (c) Rgrad.

The two reactivity maps described above are incorporated into the temporal saliency map through
weighted combinations. Among the feature values constituting the temporal saliency map, a region
having a high value is a region that includes noticeable suspicious behavior. Therefore, the presence
or absence of suspicious behavior can be determined through the temporal saliency map. The two
reactivity maps are combined as follows.

S(t) = α×Rmag + (1− α) ×Rgrad (4)

The weight value α is applied proportionally to the maximum value of the magnitude. In general,
the anomalous behaviors to detect are always increased in the magnitude of the motion, but the moving
direction is partially applied, so the weight value is calculated proportionally to the magnitude value.
In the final generated temporal saliency map, neighboring pixels are clustered, and the area of 30 pixels
or more is displayed as the final detection area.

Figure 7 shows the final detected suspicious behavior region using the temporal saliency map.
Figure 7a shows the experimental result on a video in which a man is walking to the right and a child
is jumping to the left. Figure 7c,d show the reactivity map for the magnitude and gradient of the
motion vector, respectively, and Figure 7e shows the temporal saliency map finally generated through
weighted combination. At the moment the child jumps, the motion increases greatly, and the reactivity
to the magnitude of the motion increases significantly. Additionally, the reactivity to the direction also
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increased because everyone else moves to the right while the child jumps to the left. Figure 7b shows
the final result of the proposed method. Two reactivity maps were combined and finally, a temporal
saliency map was generated to detect the suspicious behavior regions.

   
(a)                           (b) 

 
(c) 

 
(d)               

 
(e) 

Figure 7. Example result of calculating temporal saliency map. (a) original frame; (b) result of the
system; (c) Rmag; (d) Rgrad; (e) temporal saliency map (TS).

3. Results and Discussion

In order to verify that the proposed method detects suspicious behavior region correctly, the
experiments were conducted on 10 different types of video sequences mentioned in Section 2.1.
In addition, to carry out a quantitative evaluation, the proposed method was compared with the
state-of-art methods with the experiments, which were conducted on two different publicly available
datasets, namely UMN and Avenue. Although some of the compared methods perform evaluations
on videos that are gathered from the Internet, these videos are not available online for comparison.
Therefore, comparison evaluations were conducted on the UMN and Avenue datasets, which are
publicly available.

3.1. Comparison Results from Experiments with UMN Dataset and Avenue Dataset

For the UMN dataset, the method based on optical flow-based features [8], Bayesian model [25],
chaotic invariants [11], the social force model [10], and sparse reconstruction cost [12] were compared
with the proposed method. The UMN dataset contains three crowd escaping scenes in both indoor
and outdoor environments. The normal events depict people wandering in groups, while abnormal
events depict a crowd escaping quickly. The dataset contains 11 video sequences that are captured in
three different backgrounds. Scene 1 and Scene 3 are outdoor scenes (lawn, plaza) and Scene 2 is an
indoor scene. The accuracy was defined to be the percentage of correctly identified frames that are
calculated by comparing with ground truth.

Table 2 demonstrates the accuracy comparison of six methods for three different scenes of the
UMN dataset in identifying escape events.
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Table 2. Accuracy comparison with state-of-the art methods on the UMN dataset.

UMN Dataset Proposed Method [8] [25] [11] [10] [12]

Scene 1: Lawn 99.20% 99.10% 99.03% 90.62% 84.41% 90.52%
Scene 2: Indoor 97.10% 94.85% 95.36% 85.06% 82.35% 78.48%
Scene 3: Plaza 93.20% 97.76% 96.63% 91.58% 90.83% 92.70%

average 96.50% 96.46% 96.40% 87.91% 85.09% 84.70%

The methods in [8,25] were previously tested on the whole UMN dataset, and the provided results
were used to compute the corresponding accuracy. As an evaluation setting, the same evaluation
settings as described in [25] were used. Overall, the proposed method achieves the best accuracy with
an average of 96.50%, which is higher than that of the other methods. Even though the proposed
method did not employ any learning process, the proposed method outperforms the comparison
methods. Such methods using the learning process are dependent on the training dataset and also
require lots of computation, so it is hard to be used as a real-time surveillance system. The proposed
method can be used in real life by supplementing these matters.

Figures 8–10 demonstrate the examples of detection results for abnormality from the UMN dataset
(No. 1 to No. 3) in the proposed method. In these videos, the suspicious behavior is the sudden
movement of people. When people run away in multiple directions at the same time, the direction
of movement appears very irregular and the size of the movement is also dramatically increased.
The proposed method responded appropriately to this kind of motion. The area in which people
are running away has been properly detected. In the scene where several people are running away,
we can see that the motion vector is greatly increased, and all of the suspicious behavior is detected.
The proposed method generated reactivity images using feature information extracted from optical
flow in the video and detected anomalous regions based on temporal saliency obtained through a
weighted combination of them. Feature information using the magnitude and gradient of movement,
which is the most important factor that constitutes a behavior, is extracted, and a strongly reactive
region is detected through a weighting condition formula. The result demonstrates that the suspicious
behavior was reasonably detected.

For the Avenue dataset, the methods described in [21,26,29] were compared with the proposed
method. The Avenue dataset contatins 16 training videos and 21 testing videos. The only normal
behavior in the dataset is people walking in front of the camera, and the abnormal behaviors are unusual
actions such as running and jumping, and walking in the wrong direction. Table 3 demonstrates the
AUC (area under the curve) values of both the proposed method and the state-of-the-art comparison
methods [21,26,29] for the Avenue dataset. The method in [26] was previously tested on the whole
Avenue dataset, and the provided results were used in the comparison. The comparison results of
Table 4 shows that the performance of the proposed method outperforms the comparison methods.

Figure 8. Examples of detection results for abnormality from No. 1 data (UMN Scene 1: Lawn).
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Figure 9. Examples of detection results for abnormality from No. 2 data (UMN Scene 2: Indoor).

Figure 10. Examples of detection results for abnormality from No. 3 data (UMN Scene 3: Plaza).

Table 3. AUC (area under the curve) comparison with state-of-the art methods on the Avenue dataset.

Proposed Method [26] [29] [21]

Avenue dataset 90.18% 87.70% 87.19% 80.30%

Table 4. The overall performance evaluation result of the proposed method.

No. Dataset Accuracy Precision Recall

1 UMN dataset: Lawn 99.2% 99.8% 91.1%
2 UMN dataset: Lobby 97.1% 99.5% 93.7%
3 UMN dataset: Park 93.2% 98.9% 92.5%
4 Avenue dataset 90.1% 93.2% 94.5%
5 Walk dataset 100% 100% 100%
6 Bump data 95.8% 100% 94.4%
7 Fall down data 95% 91.6% 100%
8 Water data 82.7% 79.1% 100%
9 Stairs fall down data 94.4% 100% 84.6%

10 CCTV violent robbery
data in South Kensington 91.4% 100% 90.6%

average 93.89% 96.21% 94.9%

Due to the unpredictability of abnormal events, most previous approaches employ a learning
process, and most of them only learn normal event models in an unsupervised or semi-supervised
manner, and abnormal events are considered to be patterns that significantly deviate from the created
normal event models [29]. The method used in [21] uses spatio–temporal convolutional neural
networks to extract and learn various features, and the method in [29] employs the online dictionary
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learning and sparse reconstruction framework. The method in [26] used both training data and testing
data to make a global grid motion template (GGMT). As mentioned before, even though the proposed
method did not employ any learning process and uses simple motion features, the proposed method
outperforms the comparison methods.

Figure 11 demonstrates the examples of detection results for abnormality from No. 4, which were
chosen from the Avenue dataset in the proposed method. In this video sequence, most people in front
of the building are walking to the right, while a child jumps to the left. The proposed method properly
detected the area where the child jumps. We can see that the percentage of the child occupying the
image has increased, because the distance between the child and the camera is much closer than that
of the other people. Due to this, the average direction was calculated as the left direction, from the
moment the child jumps. Since the child is moving to the left during the jump, the whole direction was
calculated correctly. It is seen that different types of abnormality such as running and jumping can be
accurately detected and localized.

Figure 11. Examples of detection results for abnormality from the No. 4 data (Avenue).

3.2. Analysis of Examples of Detection Results for Abnormalities with 10 Different Types of Video Sequences

Figures 8–17 shows the examples of detection results for abnormalities from 10 different types of
video sequences. The results for the No. 1 to No. 4 data are shown in Figures 8–11 and are explained
in detail in Section 3.1.

 
Figure 12. Examples of detection results for abnormality from the No. 5 data.
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Figure 13. Examples of detection results for abnormality from the No. 6 data.

 

Figure 14. Examples of detection results for abnormality from the No. 7 data.

Figure 15. Examples of detection results for abnormality from the No. 8 data.

 

Figure 16. Examples of detection results for abnormality from the No. 9 data.
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Figure 17. Examples of detection results for abnormality from the No. 10 data.

Figure 12 shows the examples of detection results for abnormality from the No. 5 data. As
mentioned before, this video sequence is a video recording of people in which there are no anomalous
behaviors and all people are moving normally. This experiment is performed to see if the proposed
method responds to ordinary behavior. As a result, it was found it did not react at all to the usual
walking behavior (reaction rate 0%).

Figure 13 shows the examples of detection results for abnormality from No. 6 data in which a
man is walking while looking at his cell phone and after a while, he falls over an obstacle. This video
includes every scene from his usual walking to the falling down. Through the result, we can see that
the system does not react at all to the ordinary walking, but it reacts strongly from the moment when
the man falls over the obstacle.

The video shown in Figure 14 is similar to the video shown in Figure 13. As two men walk
together, the man on the left falls on an obstacle. As a result of the experiment, we can see that the area
of the man on the left is correctly detected from the moment he falls. The man on the right was similar
in size to the fallen man but was not detected.

Figure 15 shows the examples of detection results for abnormality from the No. 8 data, in which a
man is falling into the water. The man falling into the water was correctly detected, but another man’s
foot moving on the left side was erroneously detected. This is because as the distance from the camera
is close to the scene, the magnitude of the motion vector is greatly affected.

Figure 16 shows the examples of detection results for abnormality from the No. 9 data, in which a
man is falling down a stairway. Similarly, as the response to the magnitude and direction of the action
grows, the behavior that a man is falling is detected.

Figure 17 shows the examples of detection results from the No. 10 data. This is a violent robbery
video that happened in South Kensington, which was reported in US news. This video sequence
contains a scene in which two men assault one man. Even though the fact that the video is very low in
intensity and contains lots of noise due to illumination, the proposed system both detects the scene
where one man is running as well as the scene where two men joined together and committed violence
on another man.

3.3. Overall Performance Evaluation Results of 10 Different Types of Video Sequences

The actual results of the proposed method are compared with those of the actual suspicious
behavior region, which is regarded as a ground truth. Frames that successfully detected a region
containing suspicious behaviors are used as a component of a true positive (tp), and frames that
detected a suspicious behavior region even if there were not any suspicious behaviors in the frame
were used as a component of a false positive (fp). Frames that did not detect any regions, even if there
were suspicious behavior in the frame, were used as a component of false negative (fn). The proposed
method achieved a 100% true negative (tn) rate, because nothing was detected as a suspicious behavior
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region in experiments with No. 5 data where no suspicious behavior is included. The accuracy,
precision, recall, and FNR (False Negative Rate) is calculated as follows.

accuracy =
tp+tn

tp+ f p+ f n+tn , precision =
tp

tp+ f p

recall(True Positive Rate) = tp
tp+ f n , FNR(False Negative Rate) = f p

f p+tn

(5)

Table 4 summarizes the overall performance evaluation result of the proposed method.
The reason for the low performance of the No. 9 data was analyzed as follows. In the No. 9 data,

all the motion vectors were not detected and only a part of them was detected because the position of
the walking man is too close to the photographing camera. It was a difficult environment to measure
the motion vector properly. For this reason, false positives have been increased, resulting in lower
performance compared with that of the other data.

As a summary, the proposed system detects various suspicious behaviors captured in various
environments with high performance, and it is also robust to differences in brightness depending on
the weather and time. However, given the results of the No. 9 data, it is necessary to secure a suitable
shooting distance to accurately run the proposed method.

4. Conclusions

In this paper, a new surveillance system for detecting suspicious behavior regions that can be
used in real-time was proposed. The proposed method generated reactivity images using feature
information extracted from optical flow in CCTV video and detected anomalous regions based on
temporal saliency obtained through a weighted combination of them. Feature information using the
magnitude and gradient of movement, which is the most important factor that constitutes a behavior,
is extracted, and a strongly reactive region is detected through a weighting condition formula.

Extensive experiments on different challenging public datasets as well as on eight various types
of video sequences collected online were conducted to demonstrate the effectiveness of the proposed
method. Quantitative and qualitative analyses of the experimental results showed that the proposed
method outperformed the traditional method in suspicious behavior detection and was comparable to
the state-of-the-art methods without using complicated training approaches. In addition, experimental
results showed that the proposed system is suitable for detecting suspicious behaviors such as violent
actions, fallings, jumping, sudden running, and bumps. The proposed method can detect instantaneous
events and accidents.

In the proposed method, two reactivity maps of motion magnitude and motion gradient were
generated, and these two maps were weighted and combined to make a temporal saliency map.
However, to detect more complex behaviors, it is not enough to combine just the two features used
in the proposed method. It is necessary to grasp the relation of existing objects in the video and to
grasp the situation before and after based on the time when the event occurred. However, an essential
motion pattern is indispensable for detecting such a complicated behavioral relationship. The proposed
method is structurally easy to combine with other features. Just adding a new algorithm that extracts
other features to the proposed method is not difficult, and with this extension, it can be used not only
in the field of detecting more various abnormal behavior but also in various other fields.
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Abstract: This study proposes real-time haze removal from a single image using normalised
pixel-wise dark-channel prior (DCP). DCP assumes that at least one RGB colour channel within
most local patches in a haze-free image has a low-intensity value. Since the spatial resolution of the
transmission map depends on the patch size and it loses the detailed structure with large patch sizes,
original work refines the transmission map using an image-matting technique. However, it requires
high computational cost and is not adequate for real-time application. To solve these problems, we use
normalised pixel-wise haze estimation without losing the detailed structure of the transmission map.
This study also proposes robust atmospheric-light estimation using a coarse-to-fine search strategy
and down-sampled haze estimation for acceleration. Experiments with actual and simulated haze
images showed that the proposed method achieves real-time results of visually and quantitatively
acceptable quality compared with other conventional methods of haze removal.

Keywords: haze removal; dark channel; atmospheric-light estimation; coarse-to-fine search strategy

1. Introduction

In recent years, self-driving vehicles, underwater robots, and remote sensing have attracted
attention; such applications employ fast and robust image-recognition techniques. However, images
of outdoor or underwater scenes have poor image quality because of haze (Figure 1a), thus affecting
image recognition. To solve this problem, many haze removal techniques were proposed, and these
techniques can be classified into non-learning-based and learning-based approaches.

Non-learning-based approaches use multiple haze images [1], depth information [2] and prior
knowledge from a single haze image [3–5]. Methods employing prior knowledge maximise contrast
within the local patch [3], assuming that surface shading and transmission are locally uncorrelated [4],
and statistically observe that at least one RGB colour channel within most local patches in a haze-free
image has a low-intensity value [5]. Median and guided-image filters [6,7] are used for accelerating
haze removal; however, these methods could not achieve real-time processing (defined as 20 fps for
our calculations herein). Learning-based approaches employ random forest [8], colour-attenuation
and prior-based brightness-saturation relation [9] and deep learning [10,11]. These methods can
achieve accurate and fast haze removal compared with conventional non-learning-based approaches.
In deep-learning-based methods, large-scale pairs of haze images and corresponding haze-free images
must be prepared and their relation must be trained. Image pairs of haze and haze-free images cannot
be existed simultaneously in actual situation; therefore, haze images are generated from haze-free
images by employing haze-observation model [10] and depth information from the corresponding
haze-free images [11]. The haze-removal accuracy of deep-learning-based methods depends on the
dataset and preparing large datasets is cumbersome. Deep-learning-based methods [10,11] are faster
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than conventional methods [5,6]; however, computational times of 1.5 s [10] and 0.61 s [11] are required
for haze removal of a 640 × 480 image using 3.4 GHz CPU without GPU acceleration; these methods
also could not achieve real-time processing.

This study proposes a real-time haze-removal method using a normalised pixel-wise dark-channel
prior (DCP) to enable real-time application (Figure 1b,c). This paper is an extended version of [12].
Contributions of the proposed method are as follows:

(a) Normalised pixel-wise DCP
Original patch-wise DCP method requires high computational cost to refine the transmission
map using an image-matting technique. In this paper, we propose a normalised pixel-wise DCP
method with no need for refinement of transmission map compared with the patch-wise method.

(b) Accelerating haze removal via down-sampling
We estimate the transmission map and atmospheric light using down-sampled haze image for
acceleration. This idea is inspired by [13].

(c) Robust atmospheric-light estimation
To reduce the computational time and improve robustness, we propose a coarse-to-fine search
strategy for atmospheric-light estimation.

The remainder of this paper is organized as follows. In Section 2, we introduces He et al.’s
method [5] in detail because it forms the basis of the proposed method. Section 3 provides the
description of proposed method. The experimental results and discussion are reported in Section 4,
and conclusion is drawn in Section 5.

Figure 1. Examples of original haze image and proposed haze-removal image and transmission map
(γ = 0.5).

2. Traditional Dark Channel Prior

This section describes DCP [5], which is the basis of the proposed method. The haze-observation
model [1,5] is represented by

I(x) = t(x)J(x) + (1 − t(x))A, (1)

where I(x) is the observed RGB colour vector of haze image at coordinate x, J(x) is the ideal
haze-free image at coordinate x, A is the atmospheric light, t(x) is the value of transmission map
at coordinate x. To solve the haze-removal problem, some prior knowledge such as DCP must be
applied. The transmission map derivation (Section 2.1), atmospheric-light estimation (Section 2.2) and
haze-removal image creation (Section 2.3) are explained as follows.

2.1. Estimation of Transmission Map

Medium transmission t(x) [1,5] is expressed by

t(x) = e−βd(x), (2)

where β is the scattering coefficient of the atmosphere and d(x) is the depth at coordinate x. He
et al. [5] used DCP, indicating that at least one RGB colour channel within most local patch has a
low-intensity value

DC (J(x)) = min
y∈Ω(x)

(
min

c∈{r,g,b}
(Jc(y))

)
, (3)

128



Appl. Sci. 2020, 10, 1165

where Jc(y) is a colour channel of haze-free image J(y) at coordinate y and DC is the dark-channel
operator which extracts a mimimum RGB colour channel in a local patch Ω(x) centered at coordinate
x. From Equations (1) and (3) can be rewritten as

DC
(

I(x)

A

)
= t̃(x)DC

(
J(x)

A

)
+ (1 − t̃(x)) , (4)

where t̃(x) is the coarse transmission map based on patch and the argument I(x)/A and J(x)/A are to
be element-wise division. If Ω(x) is set to large patch size (e.g., 15 × 15), DC(J(x)/A) should tend to
be zero. Finally, the transmission t̃(x) can be estimated by Equation (5).

t̃(x) = 1 − ωDC
(

I(x)

A

)
. (5)

where ω is the haze removal rate which is considered to the human perception for depth scene (0.95 in
the He et al. [5]). Since t̃(x) is calculated by each large patch to satisfy the DCP, t̃(x) is not smooth in
edge region and the spatial resolution is lost. To solve the problem, He et al. [5] refined the transmission
map t̃(x) using image-matting processing [14] as post-processing. However, such processing requires
high computational cost and several tens of seconds to execute the haze-removal method.

2.2. Estimation of Atmospheric Light

Atmospheric light A comprises pixels of the observed image for which t(x) = 0 in Equation (1);
there is no direct light and the distance is infinity in Equation (2). In the outdoor image, this generally
represents the intensity of the sky region. To estimate atmospheric light A, the highest luminance
value is considered in the haze image I [3]. If an image contains a white object, the atmospheric light A

is misestimated, and optimum atmospheric light A is estimated using dark-channel value [5]. Initially
He et al. [5] determined the top 0.1% brightest pixels in the dark-channel image, and chose the highest
intensity pixels from those same pixels in haze image I. Although this approach is useful because it can
estimate atmospheric light A by ignoring small white object, the size is limited below the patch size.

2.3. Estimation of Haze-Removal Image

Haze removal can be calculated by modifying Equation (1) as follows:

J(x) =
I(x)− A

max (t(x), t0)
+ A, (6)

where t(x) is the refined transmission map from patch-based transmission map t̃(x), A is atmospheric
light and t0 is a parameter that is set to 0.1 to avoid division by a small value.

3. Proposed Method

Computer vision tasks, such as self-driving vehicles, under-water robots and remote sensing,
employ real-time haze removal to realise fast and robust image recognition. In this section, a real-time
and highly accurate haze-removal algorithm is proposed.

3.1. Normalized Pixel-Wise Dark Channel Prior

In the DCP, the spatial resolution of the transmission map t(x) worsens along object edges
because of calculating spatial minimisation in a dark-channel image. Therefore, He et al. [5] refined
the transmission map via image-matting processing [14]. However, image-matting processing requires
a high computational cost and is not acceptable for real-time application. Therefore, they proposed a
guided-image filter [7] as a fast image-matting technique. Other researchers also proposed a pixel-wise
DCP [15–17] and a method combining original patch-wise DCP in a flat region and pixel-wise DCP
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around the edge region [18]. Although pixel-wise DCP can estimate the transmission map t(x) without
selecting a minimum value spatially, the result tends to be darker than the haze image (Figure 2b).
The histogram of medium transmission t(x) in Figure 3 shows that the pixel-wise DCP without
normalisation shifts to the left side compared with the histogram of the original patch-wise DCP
(He et al. [5]). This is why the DC(J(x)/A) of Equation (4) cannot be zero by setting the patch size
to 1 × 1 instead of 15 × 15. Therefore, in the proposed method, the DC(J(x)/A) of Equation (4) has a
small value; the value of (DCJ(x)) is defined by multiplying normalised dark channel of haze image I,
which ranges from 0 to 1 and the ratio γ in Equation (8).

DCp

(
I(x)

A

)
= min

c∈{r,g,b}

(
Ic(x)

Ac

)
, (7)

DCJ(x) = γ

min
c∈{r,g,b}

(
Ic(x)

Ac

)
− min

y∈Ω

(
min

c∈{r,g,b}

(
Ic(y)

Ac

))
max
y∈Ω

(
min

c∈{r,g,b}

(
Ic(y)

Ac

))
− min

y∈Ω

(
min

c∈{r,g,b}

(
Ic(y)

Ac

)) , (8)

where DCp is a pixel-wise dark channel operator, Ω is the entire image. The transmission map t(x) of
normalized pixel-wise DCP can be calculated by

t(x) =
1 − ωDCp

(
I(x)

A

)
1 − DCJ(x)

, (9)

The histogram (Figure 3) of the transmission map t(x) derived by the proposed method shifts towards
the right side compared with the histogram of transmission map without normalisation. As a result,
the histogram of the proposed method gets close to the original patch-wise DCP. Here, if γ is set to be
0, Equation (9) corresponds to the pixel-wise DCP without normalisation (Figure 2b). Furthermore,
setting γ to be a small value (e.g., 0.25) results in a dark image within the yellow dotted rectangle
(Figure 2c), but if γ is set to be a large value (e.g., 0.75), the haze-removal effect diminishes within the
dashed red rectangle (Figure 2e).

Figure 2. Differences among haze-removal images with each normalisation parameter γ.
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Figure 3. Histogram of medium transmission with each method.

3.2. Acceleration by Down-Sampling

In the haze-removal method, it is necessary to calculate the transmission map t(x) for each pixel.
Therefore, the calculation time of haze removal depends on the image size, and thus larger image
sizes have higher associated calculation costs. Fortunately, observation of the transmission map t(x)
indicates that it is characterised by a relatively low frequency except edges between objects, particularly
at different depths. Therefore, we reduced the computation time greatly by down-sampling the input
image. It estimated the transmission map t(x) and atmospheric light A using down-sampled image,
and then the haze-removal image J was estimated by the up-sampled transmission map t(x) using
Equation (6). Figure 4 shows the haze-removal results with different down-sampling ratios. The
down-sampling ratio set to 1/4 achieved visually acceptable results, but when it was set to 1/8 or
1/16, halo effects were generated along edges such as along the sides of trees and leaves within the
dashed red rectangles (second row of Figure 4e,f). Also, significant aliasing occurred along edges of
the bench within the yellow dotted rectangle (third row of Figure 4e,f), and uneven colour occurred in
the enhancement results in second row of Figure 4e,f. We therefore set the down-sampling ratio to 1/4
in all further experiments. Also, we used box filtering in down-sampling and bicubic interpolation
in up-sampling. Too, acceleration by the down-sampling approach helps with noise suppression by
spatial smoothing.

Figure 4. Haze image (first row), different haze-removal images (second row), transmission maps
(third row) and corresponding down-sampling ratios.

3.3. Robust Atmospheric Light Estimation

He et al. [5] estimated atmospheric light A using the original patch-wise DCP, which is a
robust method because it ignores small white objects by using a large patch size (e.g., 15 × 15).
In addition, Liu et al.’s method [19] segments the sky region and uses the average value of that region
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as atmospheric light A. In our proposed method, because the dark-channel image is calculated for each
pixel, white regions (represented by the blue ‘+’ mark in Figure 5) are misinterpreted as atmospheric
light A. On the basis of Figure 5, we found that our proposed method cannot use the He et al. [5]
approach directly. In addition, their method requires extra computation time for sorting the top 0.1%
brightest pixels in the dark channel of haze image I. To solve this problem, we propose a method that
robustly estimates atmospheric light A by using a coarse-to-fine search strategy. Figure 6 shows the
flow of the coarse-to-fine search strategy. In this strategy, initially the resolution of the dark-channel
image is reduced step by step and the position of the largest dark-channel value is obtained at the
lowest resolution; next it recalculates the position of the largest dark-channel value in the second-lowest
resolution and continues to recalculate the position of the largest dark-channel value until the original
image size is attained. In Figure 5, the red ‘×’ mark (coarse-to-fine search strategy) is the correctly
estimated atmospheric light A.

Figure 5. Effectiveness of coarse-to-fine search strategy. Blue ‘+’ mark is result of atmospheric-light
estimation by pixel-wise dark-channel image without using coarse-to-fine strategy. Red ‘×’ is result of
pixel-wise dark-channel image using coarse-to-fine strategy.

Figure 6. Flow of coarse-to-fine search strategy for estimting atmospheric light A.

4. Results and Discussion

In this section, we compare our method with Tarel et al.’s method [6], He et al.’s method [5] and
Cai et al.’s method [10] for qualitative visual evaluation and quantitative evaluation. Ref. [10] is used
trained network provided by [20]. We used haze and haze-free images downloaded from the Flickr
website [21] (all collected images are public domain or creative commons zero license) and MATLAB
source codes [20,22,23].

Initially, we generated five uniform and nonuniform haze images (Figures 7b and 8c) from the
haze-free image (Figure 7a) by applying Equation (1). In order to do these simulations, we had to set
the transmission map, for which we experimented with setting to uniform and nonuniform medium
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transmissions. In the uniform medium transmission t, it is set to 0.5 directly. On the other hand, in the
nonuniform medium transmission t(x), we set depth by manually segmenting four to five classes
for the each image (Figure 8b) and then fixing the depth for each class; we determined the medium
transmission t(x) by applying Equation (2).

Figure 7. Comparison of proposed method with conventional method using simulated haze images
generated with uniform transmission map (t = 0.5). (a) Original haze-free image, (b) Simulated haze
image, (c) Tarel et al. [6], (d) He et al. [5], (e) Cai et al. [10], (f) Pixel-wise DCP without normalisation,
(g) Proposed method (γ = 0.9).

In the quantitative evaluation, peak-signal-to-noise-ratio (PSNR) and structural similarity
(SSIM) [24] are calculated

MSE =
1

HWK

H−1

∑
i=0

W−1

∑
j=0

K−1

∑
k=0

(G(i, j, k)− J(i, j, k))2 ,

PSNR = 20 log10

(
MAX√

MSE

)
, (10)

133



Appl. Sci. 2020, 10, 1165

SSIM =
1

HWK

H−1

∑
i=0

W−1

∑
j=0

K−1

∑
k=0

(
2μG(i, j, k)μJ(i, j, k) + C1

)(
μG(i, j, k)2 + μJ(i, j, k)2 + C1

) (
2σGJ(i, j, k) + C2

)(
σG(i, j, k)2 + σJ(i, j, k)2 + C2

) , (11)

where H, W and K are image size as height and width and number of colour channel respectively; G
and J are the ground-truth image and haze-removal result, respectively; MAX is maximum possible
value of ground-truth image; μG and μJ are gaussian weighted averages of G and J, respectively,
within local patch; within local patch, σG and σJ are standard deviations of G and J, respectively, within
local patch; σGJ is a covariance of G and J within local patch; C1 (set to 0.012) and C2 (set to 0.032) are
small constants. Secondly, we compared with proposed method and conventional method to actual
haze image as qualitative visual evaluation. Finally, we show the comparison of computation time by
each method and image size.

In common of qualitative evaluation in results with setting the uniform or the nonuniform
medium transmission, the results of Figures 7 and 8 show that both our proposed method (Figures 7g
and 8h) and He et al.’s method [5] (Figures 7d and 8e) can obtain highly accurate haze-removal
images that are indistinguishable from the original haze-free image. Cai et al.’s method [10] can also
obtain highly accurate haze-removal images in outdoor scene such as cityscape and landscape images
(Figures 7e and 8f). However, Cai et al.’s method [10] cannot remove the haze in underwater scene. The
reason is that underwater images are not included in the training data. The results of pixel-wise DCP
without normalisation (Figures 7f and 8g) are darker than their original haze-free images (Figure 7a).

In the quantitative evaluation with uniform setting in Table 1, it is apparent that our proposed
method can obtain the highest PSNR and SSIM values compared with conventional methods if
the appropriate value for γ is selected. Here, in the case of uniform medium transmission t,
miny∈Ω(minc∈{r,g,b}(Ic(y)/Ac)) is close to 1 − t because miny∈Ω(minc∈{r,g,b}(Jc(y)/Ac)) is close to 0,
and maxy∈Ω(minc∈{r,g,b}(Ic(y)/Ac)) is close to 1 because maxy∈Ω(minc∈{r,g,b}(Jc(y)/Ac)) is close to
1 in Equation (8). As the result, the appropriate value of γ is close to 1 when the ω equals to 1. From
Table 1, the proposed method can obtain the best results when γ is set to a large value. On the other
hand, in the quantitative evaluation with nonuniform setting shown in Table 2, some results from
He et al.’s method [5] achieved better performance than the proposed method. The main reason is
that it is not easy to estimate an appropriate γ in the case of nonuniform medium transmission t(x)
because it depends on the haze scene. How to automatically determine an appropriate value from the
distribution of haze in the scene is our future work.

Table 1. Quantitative evaluation with PSNR and SSIM [24] for simulated haze images generated using
uniform transmission map (t = 0.5). First row is PSNR value, and second row is SSIM value in each cell.

Tarel He Cai
Proposed Method (γ)

et al. [6] et al. [5] et al. [10] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

cityscape 13.60 20.58 24.86 11.31 12.25 13.31 14.52 15.94 17.64 19.76 22.57 26.75 34.77 32.62
0.842 0.918 0.966 0.623 0.685 0.743 0.796 0.844 0.887 0.925 0.956 0.981 0.996 0.997

crab 10.77 27.22 12.19 15.86 16.86 17.99 19.29 20.80 22.59 24.75 27.32 29.85 30.40 25.78
0.651 0.971 0.705 0.853 0.881 0.905 0.926 0.944 0.958 0.968 0.976 0.979 0.979 0.969

coral reef 10.69 22.45 17.89 16.43 17.31 18.28 19.37 20.60 22.01 23.65 25.56 27.68 29.56 27.56
0.661 0.944 0.825 0.817 0.851 0.881 0.907 0.929 0.946 0.960 0.970 0.976 0.979 0.977

landscape1 11.41 26.76 23.54 14.99 16.03 17.21 18.57 20.18 22.13 24.52 27.45 30.27 30.15 25.06
0.613 0.947 0.895 0.802 0.833 0.860 0.883 0.904 0.922 0.937 0.950 0.959 0.962 0.946

landscape2 12.08 23.73 20.24 14.43 15.40 16.50 17.78 19.30 21.14 23.47 26.59 31.06 35.53 27.88
0.718 0.933 0.884 0.805 0.840 0.870 0.897 0.921 0.941 0.959 0.973 0.982 0.986 0.978
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Figure 8. Comparison of proposed method with conventional method using simulated haze image
generated with nonuniform transmission map. (a) Original haze-free image, (b) Manual segmented
image, (c) Simulated haze image, (d) Tarel et al. [6], (e) He et al. [5], (f) Cai et al. [10], (g) Pixel-wise
DCP without normalisation, (h)Proposed method (γ = 0.5).

We used the paired t-test to verify whether any performance differences between the proposed
method and state-of-the-art methods are statistically significant. The test results are summarized in
Table 3. The statistically significant methods (p < 0.05) are indicated by “Yes” and others are indicated
by “No”. As shown in Table 3, the proposed method outperformed Tarel et al.’s method [6] and
pixel-wise DCP (γ = 0) method in both uniform and nonuniform medium transmission cases. On the
other hand, the proposed method outperformed He et al.’s method [5] and Cai et al.’s method [10]
only in the uniform setting and there are no significant difference in the nonuniform setting.
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Table 2. Quantitative evaluation with PSNR and SSIM [24] for simulated haze images generated using
nonuniform transmission map. First row is PSNR value, and second row is SSIM value in each cell.

Tarel He Cai
Proposed Method (γ)

et al. [6] et al. [5] et al. [10] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

cityscape 13.58 22.74 19.88 12.89 14.35 16.08 18.12 20.46 22.66 23.26 21.60 19.20 16.98 15.06
0.774 0.941 0.904 0.723 0.799 0.859 0.903 0.934 0.953 0.958 0.948 0.920 0.868 0.789

crab 12.10 27.19 12.99 15.29 16.28 17.37 18.59 19.95 21.43 22.97 24.32 25.01 24.64 22.64
0.702 0.970 0.743 0.834 0.863 0.889 0.909 0.926 0.938 0.946 0.951 0.951 0.947 0.933

coral reef 11.74 19.78 18.07 16.25 17.22 18.26 19.38 20.53 21.65 22.58 23.11 23.04 22.38 20.83
0.691 0.925 0.837 0.807 0.846 0.877 0.901 0.918 0.929 0.935 0.937 0.934 0.927 0.914

landscape1 14.02 26.47 25.35 15.29 16.63 18.15 19.88 21.74 23.38 24.01 23.14 21.41 19.53 17.60
0.667 0.936 0.937 0.81 0.852 0.882 0.902 0.916 0.923 0.925 0.919 0.904 0.874 0.824

landscape2 14.63 23.60 18.02 15.97 17.23 18.57 19.88 20.90 21.25 20.74 19.61 18.23 16.84 15.54
0.742 0.920 0.848 0.813 0.857 0.885 0.902 0.912 0.914 0.908 0.893 0.865 0.822 0.761

Table 3. Paired t-test results between proposed method and conventional methods. The statistically
significant methods (p < 0.05) are indicated by “Yes” and others are indicated by “No”.

Tarel He Cai pixel-wise DCP
et al. [6] et al. [5] et al. [10] w/o normalisation(γ = 0 )

uniform Proposed PSNR Yes Yes Yes Yes
method(γ = 0.9) SSIM Yes Yes Yes Yes

non-uniform Proposed PSNR Yes No No Yes
method(γ = 0.5) SSIM Yes No No Yes

Figure 9 shows that our haze-removal method produced good results for processing actual haze
images. Closer qualitative evaluation confirms that the images processed by our proposed method
(Figure 9f) are visually similar to those obtained by He et al.’s method [5] (Figure 9c). We can see that
the results of pixel-wise DCP without normalisation (Figure 9e) are also unnaturally darker than those
obtained by He et al.’s method [5] (Figure 9c) and our proposed method (Figure 9f). Furthermore,
although Tarel et al.’s method [6] obtained clearer haze-removal results in the pumpkin, bridge and
townscape images compared with our proposed method results, our evaluation confirmed that the
colours of the park, bridge and townscape images changed from those of the original haze images.
We also noted the occurrence of halo effects in the train image. In addition, Tarel et al.’s method
cannot work well in the underwater image. Cai et al.’s method [10] (Figure 9d) can remove haze more
naturally than other methods. In particular, it can remove haze uniformly in the sky region and the
colour is more natural. On the other hand, it cannot work well in the underwater image.

Figure 10 shows computation time for each image size for each method, assuming a i7-5557U
(3.1 GHz, 2 cores, 4 threads) without GPU acceleration and main memory size is 16 GB. All methods
are implemented in MATLAB. Using conventional methods, it takes several tens of seconds, and they
cannot achieve real-time calculation. However, our proposed method can achieve real-time calculation
until image size exceeds 1024 × 680 pixels.
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Figure 9. Comparison of haze-removal results by our proposed method with conventional methods
applied to actual haze images. (a) Haze image, (b) Tarel et al. [6], (c) He et al. [5], (d) Cai et al. [10],
(e) Pixel-wise DCP without normalisation, (f) Proposed method (γ = 0.5).

Figure 10. Comparison of computation time for each image size and each method.

5. Conclusions

In this paper, we propose a haze-removal method using a normalised pixel-wise DCP method.
We also propose a fast transmission map estimation by down-sampling and robust atmospheric-light
estimation using a coarse-to-fine search strategy. Experimental results show that the proposed method
can achieve haze removal with acceptable accuracy and greater efficiency than can conventional
methods. The advantage of the proposed method is its fast computation with acceptable visual quality
compared with state-of-the-art-methods. On the other hand, its disadvantage is that the user must
set an appropriate γ manually for each different haze scene. How to systematically determine the
appropriate γ value from the distribution of haze in the scene is our future work. In addition, we are
going to apply the method to real applications, such as automatic-driving, underwater-robot and
remotely sensed imaging [25].
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Abstract: Overcomplete representation is attracting interest in image restoration due to its potential
to generate sparse representations of signals. However, the problem of seeking sparse representation
must be unstable in the presence of noise. Restricted Isometry Property (RIP), playing a crucial role
in providing stable sparse representation, has been ignored in the existing sparse models as it is hard
to integrate into the conventional sparse models as a regularizer. In this paper, we propose a stable
sparse model with non-tight frame (SSM-NTF) via applying the corresponding frame condition
to approximate RIP. Our SSM-NTF model takes into account the advantage of the traditional sparse
model, and meanwhile contains RIP and closed-form expression of sparse coefficients which ensure
stable recovery. Moreover, benefitting from the pair-wise of the non-tight frame (the original frame
and its dual frame), our SSM-NTF model combines a synthesis sparse system and an analysis sparse
system. By enforcing the frame bounds and applying a second-order truncated series to approximate
the inverse frame operator, we formulate a dictionary pair (frame pair) learning model along
with a two-phase iterative algorithm. Extensive experimental results on image restoration tasks such
as denoising, super resolution and inpainting show that our proposed SSM-NTF achieves superior
recovery performance in terms of both subjective and objective quality.

Keywords: sparse dictionary; stable recovery; frame; RIP

1. Introduction

Sparse representation of signals in dictionary domains has been widely studied and has
provided promising performance in numerous signal processing tasks such as image denoising [1–5],
super resolution [6–8], inpainting [9,10] and compression [11,12]. It is well known that images
are represented by a linear combination of certain atoms of a dictionary. Overcomplete sparse
representation is the overcomplete system with a sparse constraint. Common overcomplete systems
differ from the traditional bases, such as DCT, DFT and Wavelet, because they offer a wider range
of generating elements; potentially, this wider range allows more flexibility and effectiveness in signal
sparse representation. However, it is a severely under-constrained illposed problem to find the underlying
overcomplete representation due to the redundancy of the systems. When the underlying representation
is sparse and the overcomplete systems have stable properties, the ill-posedness will disappear [13].
Sparse models are generally classified into two categories: Synthesis sparse models and analysis
sparse model [14]. The commonly referred to sparse models are synthesis sparse models. The analysis
ones characterize the signal by multiplying it with an analysis overcomplete dictionary, leading
to a sparse outcome. A variety of effective sparse models have been investigated and established such
as the classical synthesis sparse model [9,15], the classical analysis sparse model [14], the nonlocal
sparse model [16,17] and the 2D sparse model [18]. Unfortunately, these models ignore the stability
recovery property which claims that once a sufficient sparse solution is found, all alternative solutions
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necessarily reside very close to it [9]. Recently, the stable recovery of sparse representation has
drawn attention in signal processing theory. Generally speaking, stable recovery can be guaranteed
by two properties: Sufficient sparsity and a favorable structure of the dictionary [19]. Donoho defines
the concept of mutual incoherence of the dictionary and applies it to prove some possibility of stable
recovery [19]. The authors of [20] proposea sparsity-based orthogonal dictionary learning method
to minimize the mutual incoherence. The authors of [21] propose an incoherent dictionary learning
scheme by integrating a low rank gram matrix of the dictionary into the dictionary learning model.

A more powerful stable recovery guarantee developed by Candes and Tao, termed Restricted
Isometry Property (RIP), makes consequent analysis easy [22]. A matrix Φ is said to satisfy the RIP
of order k if there exists a constant δk ∈ (0, 1) such that

(1 − δk)‖y‖2
2 ≤ ‖Φy‖2

2 ≤ (1 + δk)‖y‖2
2 (1)

holds for all k-sparse vectors y. δk is defined as the smallest constant which satisfies the above
inequalities and is called the restricted isometry constant of Φ.

Most RIP research substantially investigates applying RIP as a stablility analysis
instrument [17,23,24] or finding optimal RIP constant [25,26] which are all theoretical analyses rather
than practical applications. According to the research of [21], the intrinsic property of a dictionary
has a direct influence on its performance. All familiar algorithms are staggeringly unstable with a coherent
or degenerate dictionary [19]. Recognizing the gap between theoretical analyses and practical
applications of RIP, this paper aims to build a stable sparse model satisfying the RIP.

Recently, the frame as a stable overcomplete system has drawn some attention in signal
processing as the given signal can be represented by its canonical expansion in a manner similar
to conventional bases under the frame. Some data-driven approaches are proposed in [1,27–30].
The authors of [27,29,30] utilize redundant tight frame in compressed sensing and [28] applies tight
frame to few-view image reconstruction. Study [1] presents a data-driven method that the dictionary
atoms associated with the tight frame are generated by filters. These approaches achieve much better
image processing performance than previous methods, and meanwhile the tight frame condition
which requires the frame almost-orthogonality will limit the flexibility in sparse representation.
Study [31] derives stable recovery result for l1-analysis minimization in redundant, possibly non-tight
frames. Inspired by this result and the relationship between RIP and frame, we aim to establish a stable
sparse model with RIP based on non-tight frame.

We call a sequence {φi}M
i=1 ∈ H a frame if and only if there exist two positive numbers A and B

such that

A‖x‖2
2 ≤

M

∑
i=1

| < x, φi > |2 ≤ B‖x‖2
2 ∀x ∈ HN (2)

Here, A and B are called the bounds of the frame. We find that every submatrix Φk satisfied
RIP is a non-tight frame with (1 − δk) and (1 + δk) as its frame bounds with a given k.
Obviously, there is an essential connection between the non-tight frame and the RIP.

In this paper we focus on a stable sparse model and more specifically on the development
of an algorithm that would learn a pair of non-tight frame based dictionaries from a set of signal
examples. We propose a stable sparse model via applying the non-tight frame condition to approximate
the RIP. This model shares the favorite overcomplete structures with the common sparse models,
and meanwhile it contains RIP and closed-form sparse coefficient expression which ensure stable
recovery. Recognizing that the optimal framebounds are essentially the maximum and minimum
singular values of the frame, RIP is actually enforced on the dictionary pair (the frame and its dual
frame) by constraining the singular values of them. We also formulate a dictionary pair learning model
via applying the second-order truncated Taylor series to approximate the inverse frame operator.
Then we present an efficient algorithm to learn the dictionary pair via a two-phase iterative approach.
To summarize, this paper makes the following contributions:
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1. We propose a stable sparse model along with a dictionary pair learning model. Non-tight
frame condition is utilized to develop a relaxation of RIP to guarantee stable recovery
of sparse representation. Moreover, the sparse coefficients are also modeled, which leads
to a more stable recovery especially for seriously noisy image.

2. It is nearly impossible to solve the dictionary pair learning model in a straightforward way
since the inverse frame operator is involved. We provide an effective way to modify the model
via applying a second-order truncated Taylor series to approximate the inverse frame operator,
and provide an efficient algorithm for the modified one.

3. We present the stability analysis of the proposed model and demonstrate it on natural
and synthetic image denoising, super resolution and image inpainting. The denoising results show
that the proposed approach outperforms synthesis models such as the KSVD and the data-driven
tight frame based methods for natural image case in terms of average PSNR. Moreover, it also
gains comparable performance to the Analysis KSVD for a piecewise-constant (PWC) image
in terms of average PSNR. The meaningful structures in the trained dictionary pairs for natural
images and a PWC image are observed. The super resolution results show that the SSM-NTF
produces better performance than the Bicubic interpolation method and the method in [32].
The inpainting results show that our model is able to eliminate text of fonts completely.

This paper is organized as follows: Section 2 reviews the related work on frame, synthesis
sparse model and analysis sparse model. Section 3 presents our stable sparse model with non-tight
frame SSM-NTF along with a dictionary pair learning model. Section 4 proposes the corresponding
dictionary pair learning algorithm. Section 5 proposes the image restoration method of our proposed
SSM-NTF model. In Section 6 we analyze the computational complexity of our proposed algorithm.
In Section 7, we demonstrate the the effectiveness of our SSM-NTF model by analyzing the convergence
of the corresponding algorithm, denoising natural and piecewise constant images, super resolution
and image inpainting. Finally, Section 8 concludes this paper.

2. Related Work

In this section, we briefly review the related work on frame, synthesis sparse model and analysis
sparse model.

Frame: A frame Φis called a tight frame if the frame bounds are equal in the Equation (2) [32].
There are two associated operators can be defined between the Hilbert space HN and Square Integrable
Space lM

2 (·) once a frame is defined. One is the analysis operator T defined by

(Tx)i =< x, φi >, ∀x ∈ HN (3)

and the other is its adjoint operator T∗ which is called the synthesis operator

T∗c =
M

∑
i=1

cφi ∀c = (ci)i∈J ∈ lM
2 (T) (4)

then, the frame operator can be defined as the following canonical expansion

Fx = T∗Tx =
M

∑
i=1

< x, φi > φi (5)

In Euclidean space, a given frame Φ can be represent in manner of matrix with its columns
of it as the frame elements. Then one of its adjoint operator can be representated as ψi = F−1φi [32].
Letx ∈ R

N be an arbitrary vector, a reconstruction function can be expressed as the following form

x =
M

∑
i=1

< x, ψi > φi (6)
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Synthesis sparse model: The conventional synthesis sparse model represents a vector x

by the linear combination of a few atoms from a large dictionary Φ, denoted as x = Φy, ‖y‖0 ≤ L,
where L is the sparsity of y. The computational techniques for approximating sparse coefficient y

under a given dictionary Φ and x includes greedy pursuit (e.g., OMP [9]) and convex relaxation
optimization, such as Lasso [33] and FISTA [8]. In order to improve the performance of sparse
representation, some modified models such as the nonlocal sparse model [16], the frame based sparse
model [21], and the MD sparse model [18] are also investigated.

Analysis sparse model: The analysis sparse model is defined as: y = Ωx, ‖y‖0 = p − l where Ω ∈
Rp×d is a linear operator (also called as a dictionary), and l denotes the co-sparsity of the signal x.
The analysis representative vector y is sparse with l zeros. The zeros in y denote the low-dimensional
subspace to which the signal x belongs. The analysis sparse coding [14] and dictionary learning [34]
approach are also been proposed.

However, all these models ignore the stability recovery property which provides stable
reconstruction of the signals in presence of noise.

Dictionary learning methods: The dictionaries include analytical dictionaries, such as DCT, DWT,
curvelets and contourlets and learned dictionaries. Some dictionary learning method are proposed,
such as the classical KSVD [9] algorithm, the efficient sparse coding which convert the original
dictionary learning problem to two least squares problem by applying the Lagrange dual [3],
the non-local sparse model [16] which learns a set of PCA sub-dictionaries by cluster the samples into
K clusters using image nonlocal self-similarity prior and its improved version which using the lq-norm
to instead the l2-norm in order to handle different image contents. With the realization of stability, some
mutual-coherence based methods are proposed. In [20] a sparsity-based orthogonal dictionary learning
method is proposed to minimize the mutual-coherence of the dictionary. The authors of [21] propose
an in coherent dictionary learning scheme by integrating a low rank gram matrix of the dictionary into
the dictionary learning model. However, these methods only concern the capability of the dictionary
without modeling the sparse coefficients which still has some probability of instability.

3. The Proposed SSM-NTF

In this section, we present the stable sparse model with non-tight frame, (Section 3.1), the stability
analysis of the proposed model, (Section 3.2) and the dictionary pair (the frame pair) learning model,
(Section 3.3).

3.1. Stable Sparse Model with Non-Tight Frame

In this section, we derive our stable sparse model with non-tight frame where the non-tight frame
condition serves as an approximation to the RIP.

According to [35], a k-th RIP constant can be express as

δk(Φ) =
Γk(Φ)− 1
Γk(Φ) + 1

(7)

where

Γk(Φ) =
θk

max

θk
min

(8)

θk
max = max

‖y‖0=k

‖Φy‖2
2

‖y‖2
2

, θk
min = min

‖y‖0=k

‖Φy‖2
2

‖y‖2
2

(9)

The Equation (7) provides a new perspective in integrating the RIP to sparse model via applying
θk

max and θk
min instead of the RIP constant δk(Φ). The difficulty in building a stable sparse model

decreases. However, the sparsity k varies with the noise level, and also, in a feasible numerical
calculation method, it is impossible to sweep through all the samples satisfying ‖x‖0 = k to pursue
an unknown dictionary Φ.
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Let x be a signal vector, the frame reconstruction function can be formulated as x = ΦΨTx

where Ψ is a dual frame of Φ. Adding a reasonable sparsity prior to the signal x over Ψ domain,
we can derive

‖Φ(ΨTx)‖2
2

‖ΨTx‖2
2

=
‖x‖2

2
‖ΨTx‖2

2
=

1
‖ΨTx‖2

2
‖x‖2

2

(10)

Denoting the optimal frame bounds of Φ as A and B, the frame condition of Ψ can be formulated

as 1
B ≤ ‖ΨTx‖2

2
‖x‖2

2
≤ 1

A . Then a pair of bounds for Equation (10) can be obtained as A ≤ ‖Φ(ΨTx)‖2
2

‖ΨTx‖2
2

≤ B.

A formula similar to Equation (9) is derived as B = max
x∈J

‖Φ(ΨTx)‖2
2

‖ΨTx‖2
2

, A = min
x∈J

‖Φ(ΨTx)‖2
2

‖ΨTx‖2
2

where J
is the data set. Imitating Equation (7), we can obtain a RIP-like constant expression

δ̂(Φ) =
Γ̂(Φ)− 1
Γ̂(Φ) + 1

(11)

where Γ̂(Φ) = B
A . Obviously, δ̂(Φ) can be regarded as an approximation of the RIP constant

which benefits the computation due to the ignorance on sparsity degree. In a word, the RIP constraint
can be satisfied by constraining the frame bounds. Thus, a stable overcomplete system with a sparsity
prior can be established.

Now we discuss the characteristic of the frame bounds A and B. The Frame Condition (2)
has a more compact form

√
A ≤ ηΦ ≤ √

B where ηΦ denotes any singular value of Φ. More specifically,√
A = ηmin,

√
B = ηmax where ηmax and ηmin denote the maximum and minimum singular values

of Φ, respectively. Then, we can obtain ηmax ≥ θk
max, ηmin ≤ θk

min. It is easy to know that δ̂(Φ) ≥ δk(Φ).
Obviously, δ̂(Φ) is a reasonable relaxation of δk(Φ) as δ̂(Φ) is slightly exceed δk(Φ) but resides very
close to it as long as the data is not seriously degraded. Therefore, the RIP constraint can be enforced
on the frames by limiting the maximum and minimum singular values.

In this paper, we integrate non-frame to traditional sparse model to establish a stable sparse model
with RIP. Let x be a signal vector. Under the assumption of the sparsity prior of ΨTx, we apply a soft
thresholding operator Sλ(·) (which shall be defined in the next subsection) on it such that

x = ΦSλ(Ψ
Tx) (12)

where λ is a vector with elements λi corresponding to ψi , i = 1, 2, . . . , M. Therefore, we propose
the stable sparse model with non-tight frame (SSM-NTF) as follows

y = Sλ(Ψ
Tx), x = Φy, (13)

s.t. ‖y‖0 ≤ s.

Here, the correlation between the frame Φ and its dual frame Ψ is formulated as Ψ = F−1Φ.
The frame operator F is formulated as ΦΦT which is indeed a gram matrix of Φ. The singular values
of Φ are constrained by

√
A ≤ ηΦ ≤ √

B to satisfy the RIP. Actually, by constraining the singular values
of Φ, the elements of the gram matrix are also bounded which meets the theory of mutual coherence.

In order to be consistent with the traditional sparse models, we refer to the frame Φ and its dual
frame Ψ as dictionary and its dual dictionary.

3.2. The Stability Analysis of the Proposed Model

In sparse representation problem, a given noiseless signal x, can be formulated formulated as

(P0) : min
x

‖y‖0 s.t. x = Φy (14)
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where Φ is the sparse representation dictionary and y is the sparse coefficients. While x = Φy is an
underdetermined linear system, the problem (P0) has the unique solution y0 as soon as it satisfies
the uniqueness property which is formulated as

‖ŷ‖0 <
1
2
(1 + 1/μ) (15)

where μ is the mutual-coherence of Φ [9]. However, the signals are usually acquired with noise,
then the problem (P0) should be relaxed to the problem (Pε) which is expressed as

(Pε) : min
x

‖y‖0 s.t. ‖x − Φy‖2
F ≤ ε (16)

where ε is an error-tolerant which exists due to the noise. The problem (Pε) will no longer maintain
the uniqueness of solution as x = Φy + ε is an inequality system. Thus, the notion of Uniqueness
Property (15) is replaced by the notion of stability which claims that all the alternative solutions reside
very close to the ideal solution. Under the stable guarantee, we can yet ensure that the recovery results
of our methods produce meaningful solutions. Assume that y0 is the ideal solution to the problem
(Pε) and ŷ is the candidate one, the traditional sparse model has a stability claim of the form [9]

‖ŷ − y0‖2
2 ≤ 4ε2

1 − (2s0 − 1)μ
, (17)

where μ is the mutual coherence which is formulated as μ = maxi �=j | < φi, φj > |, i, j = 1, 2, · · · , M.
Apparently, the error bound of Equation (17) can only be determined with given sparsity s0

and the mutual coherence μ. However, the mutual coherence of an unknown dictionary is very
difficult to calculate which lead to a result that we can not ensure the stability in the dictionary learning
case. In contrast, we derive a similar stability claim of our proposed SSM-NTF model.

Defining d = ŷ − y0 with y0 as the ideal solution to the model, we have that ‖Φŷ − Φy0‖2 =

‖Φd‖2 ≤ 2ε. From the previous subsection, we have know that the frame Φ satisfies the RIP
with the corresponding parameter δ̂(Φ). Thus, using this property and exploiting the lower-bound
part in Equation (1), we get

(1 − δ̂(Φ))‖d‖2
2 ≤ ‖Φd‖2

2 ≤ 4ε2 (18)

where δ̂(Φ) = Γ̂(Φ)−1
Γ̂(Φ)+1

=
B
A −1
B
A +1

. Thus, we get a stability claim of the form

‖d‖2
2 = ‖ŷ − y0‖2

2 ≤ 4ε2

1 − B
A −1
B
A +1

(19)

Obviously, the error bound of the SSM-NTF is determined by B
A , the ratio of the upper bound

to the lower bound of the frame, rather than the specific values of A and B. Thus, for the convenience
of numerical experiments, we usually set A to a fixed value. A main advantage of standard orthogonal
transformations is that they maintain the energy of the signals in the transform domain as its frame
bounds A and B are equal to 1. However, the standard orthogonal basis is non-redundant that limits
its performance in sparse representation. In order to make a trade off between the represent accuracy
and the degree of redundant, we usually set the lower frame bound A to a value a little smaller
than 1 but not over-small as A is the minimum singular value of Φ which determines the condition
number of Φ. Thus, once the tolerance error is given, the value of B can be easily calculated.
Further, a pair of dictionaries conform to the given error can be obtained using the proposed
SSM-NTF model. On the other hand, if the value of B is given by experience, the error bound
of our model can be measured.
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3.3. Learning Model of Dictionary Pair

Assuming X ∈ R
N×L is the training data with signal vectors xi ∈ R

N , i = 1, 2, . . . , L, as its columns.
The dictionary pair learning model can be written as

min
Φ,Ψ,λ,Y

‖X − ΦY‖2
F + γ1‖Y − Sλ(Ψ

TX)‖2
F + γ2‖Y‖0 + γ3‖Ψ − F−1Φ‖2

F (20)

s.t.
√

A ≤ ηΦ ≤
√

B

However, the Problem (20) is difficult to solve. First, the inverse of the frame operator F

has no closed-form explicit expression. Secondly, the thresholding operator is a highly nonlinear
operator which makes the optimization with respect to λ hard to optimize.

Apparently, the Problem (20) is difficult to solve as the existence of the inverse of F.
Fortunately, the matrix F−1 can be expressed as a convergent series [36] which is formulated as

F−1 =
2

A + B

∞

∑
k=0

(I − 2F

A + B
)k (21)

Here, we truncated the series at k = 1 to make a tradeoff between computational complexity
and approximation accuracy. It is formulated as

F−1 ≈ 2
A + B

+
2

A + B
(I − 2F

A + B
) =

2
A + B

(2I − 2F

A + B
) (22)

In this way, once the frame bounds are given, the inverse of F can be calculated easily.
Then the optimization problem for training RIP-dictionary pair is formulated as

min
Φ,Ψ,λ,Y

‖X − ΦY‖2
F + γ1‖Y − Sλ(Ψ

TX)‖2
F + γ2‖Y‖0 + γ3‖Ψ − 2

A + B
(2I − 2F

A + B
)Φ‖2

F (23)

s.t.
√

A ≤ σΦ ≤
√

B

where Sλ(·) is the elementwise thresholding operator. There are two basic thresholding methods:
The hard thresholding method whose thresholding operator defines as Sλ(·) → max(| · | − λ, 0)
and the soft thresholding whose operator is defined as Sλ(·) → sgn(·)max(| · | − λ, 0). Both of the two
operator are are non-convex and highly discontinuous which lead to big challenges to solve
Problem (23). The mean reason is the fact that the update of the thresholding values λ causing
non-smooth changes to the cost function. To solve this difficulty, we design an alternative direction
method via global search and least square that will be introduce in Section 4.1.

4. Dictionary Pair Learning Algorithm

In this subsection, we propose the two-phase iterative algorithm for dictionary pair learning
by dividing Problem (23) into two subproblems: The sparse coding phase which updates the sparse
coefficients Y and thresholding values λ, and the dictionary pair update phase which computes Φ

and Ψ.

4.1. Sparse coding phase

In this subsection, we discuss how to calculate the sparse coefficients Y and the threshold values
λ with given Φ and Ψ under our SSM-NTF model.

Given a pair of dictionaries Φ and Ψ, calculating Y and λ from X is formulated as:

{Ŷ, λ̂} = min
Y,λ

‖X − ΦY‖2
F + γ1‖Y − Sλ(Ψ

TX)‖2
F + γ2‖Y‖0 (24)
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We pursue the two variables alternatively. Firstly, with fixed λ, we obtain the sparse coefficients Y

by solving Problem (24) through OMP [9] as it can be easily convert to the classical synthesis sparse
expression min ‖Z − DY‖2

F, s.t.‖Y‖0 where Z = [X
√

γ1Sλ(Ψ
TX)] and D = [Φ

√
γ1I].

Secondly, the pursue of λ is equivalent to solving the following problem

λ̂ = arg min
λ

‖Y − Sλ(Ψ
TX)‖2

F (25)

which can be decomposed into M individual optimization problems

λ̂i = arg min
λi

‖yi − Sλi (ψ
T
i X)‖2

2, i = 1, . . . , M. (26)

where ψi is the column of Ψ. From the definition of soft thresholding operator, we can know
that the function of Problem (26) is discrete. By denoting the data indices set that remains intact
after the thresholding as Ji, we split the data X into two parts: XJi and XĴi such that

Sλi (ψ
T
i XJi ) = ψT

i XJi − sgn(ψT
i XJi )λi (27)

Sλi (ψ
T
i XĴi ) = 0. (28)

where Ĵi is a supplementary to the intact indices Ji which turn the all elements to zero. It is clear
to know that the variables Ji and Ĵi are both functions of λi without explicit expressions which leads
to a large challenge in optimization.

In order to solve Problem (26), an intermediate variable μi is necessarily to introduced to separate
the whole problem into two parts: The update of the indices Ji and Ĵi (determined by μi)
and the update of the explicit thresholding value λi. Then Problem (26) can be transformed to another
optimization problem:

{λ̂i, μ̂i} = arg min
λi

‖y
Ĵi
i ‖2

2 + ‖yJi − [ψT
i XJi − sgn(ψT

i XJi )λi]‖2
2 + τ/2‖λi − μi‖2

2 (29)

where Ji and Ĵi are two functions of the intermediate variable μi.
At the k-th step, to obtain μi, we solve Problem (29) with λi fixed and denote the functions

as f (μi) + g(μi) + l(μi) where f (μi) = ‖y
Ĵi
i ‖2

2, g(μi) = ‖yJi − [ψT
i XJi − sgn(ψT

i XJi )λi]‖2
2, l(μi) =

τ/2‖λi − μi‖2
2. Optimizing this expression is obviously non-trivial as the target function is non-convex

and highly discontinuous. Actually, with λi fixed, the minimization of f (μi) + g(μi) can be globally
solved due to its discrete finite nature. In another word, if a series of candidate terms of μi are given,
the global search is guaranteed to succeed.

Once a λi is given, the f (μi) + g(μi) will be a piecewise constant function. It means
that the function values remain unchanged within a series of intervals which are determined
by |ψT

i xi|, i = i1, i2, . . . , il . Therefore, |ψT
i xi|, i = 1, 2, . . . , L can be taken as a portion of candidate

terms of μi. For the function ł(μi), it is clear that it minimizes at μi = λi and monotonically increases
with the increasing distance between ł(μi) and the given ł(λi). So, to minimize ł(μi), we only need
to choose the closest point in the feasible region.

Without loss of generality, we assume that all the |ψT
i xi|, i = 1, 2, . . . , L are ascending

ordered and the corresponding signals are in the same order. We compute all the possible values
of f (μi) + g(μi) by

f (ψT
i Xj+1) = f (ψT

i Xj) + y2
i(j+1)

g(ψT
i Xj+1) = ‖yi − ψT

i X + sgn(ψT
i X)λi‖2

2 − βk+1 (30)
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where βk+1 = βk + [yi(k+1) − ψT
i xk+1 + sgn(ψT

i xk+1)λi]
2, β1 = [yi1 − ψT

i x1 + sgn(ψT
i x1)λi]

2.
Sort |ψT

i xi|, i = 1, 2, . . . , L in descending order of f (μi) + g(μi), and every two adjacent values
form an interval on which the function value remains unchanged. In another word, the objective
function f (μi) + g(μi) + l(μi) is minimized at the point closest to λi in the interval. Thus, compute
all the minimizer values on every interval and the minimum must be the optimal result.

With μi fixed, we solve the following problem in order to pursue λi :

{λ̂i} = arg min
λi

‖yJi − [ψT
i XJi − sgn(ψT

i XJi )λi]‖2
2 + τ/2‖λi − μi‖2

2 (31)

This is a standard continuous convex function that can be easily sovled by least square.
We summarize our sparse coding method in Algorithm 1.

Algorithm 1 Sparse coding algorithm

Input and Initialization:

Training data X ∈ RN×L, iteration number r, initial value λi = 0.
Output:

Sparse coefficients y, and thresholding values λi
1: Compute the sparse coefficients y via Problem (24) according to the OMP algorithm.
2: Sort the columns of X and y in increasing order of |ψi

TX|.
3: For p=1:r

For j=1:L

Compute all the possible values for f (μi) + g(μi) by

f (ψT
i Xj+1) = f (ψT

i Xj) + y2
i(j+1)

g(ψT
i Xj+1) = ‖yi − ψT

i X + sgn(ψT
i X)λi‖2

2 − βk+1

where βk+1 = βk + [yi(k+1) − ψT
i xk+1 + sgn(ψT

i xk+1)λi]
2, β1 = [yi1 − ψT

i x1 + sgn(ψT
i x1)λi]

2.

Denote them as a vector ν.

End for
4: Sort the elements of |ψi

TX| in descending order of ν. Denote the intervals bounded as ξq, q = 1, 2, L − 1.
5: compute every νq + l(μ̂i) where μ̂i is the point closest to λi in ξ j−1.
6: μ̂i = arg minμi νq + l(μi).
7: Compute λi via Problem (31).

End for

4.2. Dictionary Pair Update Phase

To obtain Ψ, we solve the following problem with all other variables fixed:

Ψ̂ = arg min
Ψ

‖Y − Sλ(Ψ
TX)‖2

F +
γ3

γ1
‖Ψ − F−1Φ‖2

F (32)

Such problem is a highly nonlinear optimization due to the definition of Sλ. Here we solve Ψ

columnwisely by updating each column of Ψ.
For each ψi, we solve the following subproblem:

ψ̂i = arg min
ψi

‖yi − Sλi (ψ
T
i X)‖2

2 +
γ3

γ1
‖ψi − F−1φi‖2

2 (33)
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We denote Ji and Ĵi as the indices set as before. Set the elements of yi corresponding to the indices
Ĵi to be zeros and denote the new vector as zi. This operation leads to a consequence that ψT

i XĴi≈0.
Then we solve the following quadratic optimization problem that is easy to solve with least squares.

ψ̂i = arg min
ψi

‖zi − ψT
i X‖2

2 +
γ3

γ1
‖ψi − F−1φi‖2

2 (34)

The optimization problem to pursue Φ is formulated as

Φ̂ = arg min
Φ

‖X − ΦY‖2
F + γ3‖Ψ − F−1Φ‖2

F (35)

s.t.
√

A ≤ δΦ ≤
√

B (36)

where the frame operator F is given by ΦΦT and F−1 is defined as Equation (22). The target function then
becomes

‖X − ΦY‖2
F + η3‖Ψ − 2

A + B
(2I − 2ΦΦT

A + B
)Φ‖2

F (37)

which is denoted by h(Φ). We apply the gradient descent method to unconstraint version
of Problem (35) and then project the solution to the feasible space. The gradient is given by a very
complicated form as follows

∇h(Φ) = (X − ΦY)YT − γ3{ 4
α

h(Φ) +
4
α2 [ΦΦTh(Φ) + Φh(Φ)TΦ + h(Φ)ΦΦT ]}. (38)

In order to reduce the complexity, the gradient can also be computed with the fixed F calculated
in the previous step of the ADM. Then at the k-th iteration, the gradient can be written as

∇h(Φk) = (X − Φk−1Y)YT − γ3F(−1)T
(Ψk − FTΦk−1) (39)

where F = Φk−1Φ(k−1)T
. The descent step length can be obtained by optimizing the problem

min
θ

h(Φ + θ∇h(Φ)) with fixed F, which is given by

θ̂ =
< a, b > +γ3 < c, d >

‖a‖2
F + γ3‖c‖2

F
(40)

where a = ∇h(Φ)Y, b = X − ΦY, c = F−1∇h(Φ), d = Ψ − F−1Φ. For the frame condition
√

A ≤
δΦ ≤ √

B, we apply a SVD decomposition Φ = UΣVT and map the singular values to the interval
[
√

A,
√

B] linearly. We denote the mapped singular matrix as Σ̂ and reconstruct Φ by Φ = UΣ̂VT .
We summarize our algorithm in Algorithm 2.
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Algorithm 2 Dictionary pair learning algorithm

Input and Initialization:

Training data X, frame bound A,B, iteration num, gradient descent iterations r.

Build frame Φ ∈ R
N×Mand Ψ ∈ R

N×M,either by using random entries, or using M randomly

chosen data.
Output:

Frame Φ, Ψ, Sparse coefficients Y, and thresholding values λ

For l=1:num

Sparse Coding Step:

1: Compute the sparse coefficients Y and the thresholding values λ via Algorithm 1.

Frame Update Step:

2: Update Ψ in column-wise. Compute W = S(ΨTX).

For i = 1 : M

Denote Ĵi as the indices of zeros in the i-th column of W. Set ψT
i XĴi = 0. Compute ψi via

Equation (34).

End For
3: Update Φ via Gradient Descent and singular value map.

For k=1:r

Calculate Gradient via Equation (39) and calculate the descent step via Equation (40)

End for
4: Apply SVD decomposition Φ = UΣVT , map Σ to obtain Σ̂ and reconstruct Φ = UΣ̂VT .

End for

5. Restoration

The image restoration aims to reconstruct a high-quality image I from its degraded (e.g., noisy,
blurred and/or downsampled) version L, denoted by L = SHI + n, where H represents a blurring
filter, S the downsampling operator, and n is a noisy signal. For the signal satisfies the SSM-NTF,
the restoration model based on SSM-NTF is formulated as

{Î , Ŷ, λ̂} = min
I ,{yi}N

i=1,λ̂
‖L − SHI‖2

F + γ ∑i ‖RiI − Φyi‖2
F + γ1 ∑i ‖yi − Sλ(Ψ

TRiI)‖2
F + γ2 ∑i ‖yi‖0 (41)

where Ri is an operator that extracts the i-th patch of the image I and yi is the i-th column of Y .
λ denotes a vector [λ1, λ2, · · · , λM] with λj operating on the j-th element of ΨTRiI . On the right side
of Equation (41), the first term is the global force that demands the proximity between the degraded
image L, and its high-quality version I . The rest terms are the local constraints to make sure every
patch at location i satisfies the SSM-NTF.

To solve Problem (41), we apply Algorithm 1 to obtain the sparse coefficients Y and the threshold
values λ. We mainly state the iterative method to obtain I . Assume the sign of ΨTRiIk will not
change much between two steps, we set it in the k-th step by ck = sign(ΨTRiIk−1). where sign
is the sign function. Denote dk = ΨTRiIk−1. We set Ok as an index set that satisfies |dl | ≤ λl , l ∈ Ok.

Set uk ∈ RM as a vector with elements ul =

{
λl l ∈ Ok,

0 otherwise.
Then the non-convex and non-smooth
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threshold can be removed with the substitution that yi − Sλ(Ψ
TRiIk) ≈ yi + ck � u − ΨTRiIk Thus,

in the k-th step, the problem needs to be solved is expressed as

{Îk} = min
Ik−1

‖L − SHIk−1‖2
F + γ ∑

i
‖RiIk−1 − Φyi‖2

F + γ1 ∑
i
‖yi + ck � uk − ΨTRiIk−1‖2

F (42)

where � is point multiplication. This convex problem can be easily solved by gradient descent algorithm.
We summarized the restoration algorithm in Algorithm 3.

Algorithm 3 Restoration algorithm

Input

Training dictionaries Φ, Ψ, iteration number r, a degraded image L, set I0 = L.
Output:

The high quality image Î
1: Compute Y and λ via the method in Algorithm 1.

For k=1:r
2: compute dk = ΨTRiIk−1. Set ck = sign(dk). set Ok as an index set that satisfies |dk

l | ≤ λl , l ∈ Ok.

Set uk
l =

⎧⎪⎨⎪⎩λl l ∈ Ok,

0 otherwise.
.

3: Solving the Problem (42) via gradient descent algorithm.

End for

6. Complexity Analysis

In this section, we discuss the computational complexity of our sparse coding and dictionary pair
learning algorithms with regard to those of conventional sparse model counterparts.

We first analyze complexities of the main components of the sparse coding (SC) and dictionary
updating (DU) algorithms. In terms of SC, given a set of training samples, X ∈ RN×L, the complexity
of BtOMP of calculating Ŷ = min

Y
‖X − ΦY‖2

F + γ1‖Y − Sλ(Ψ
TX)‖2

F + γ2‖Y‖0 is O(K2ML) where K

is the target sparsity and the complexity of threshold of calculating λ̂ = min
λ

‖Y − Sλ(Ψ
TX)‖2

F

is O(NML), which cost most of time in SC step at each iteration. The sparse coefficients Y ∈ N × L
and the the threshold values λ are computed with fixed dictionaries Φ ∈ RN×M and Ψ ∈ RN×M.
Correspondingly, the traditional sparse coefficients B ∈ N × L is sparse approximated by dictionary
D ∈ RN×M and the computational complexity is O(K2ML).

In terms of DU, with the given training samples X ∈ RN×L, we learn a pair of dictionary
Φ ∈ RN×M and Ψ ∈ RN×M. We update Ψ via Problem (34) with a computational complexity
of O(N2L). In order to update Φ. we need to calculate the gradient via Equation (39)
with a computational complexity of O(NML) and the step size via Equation (40) with a computational
complexity of O(rNML) where r is the iteration number of the gradient descent. For the traditional
dictionary learning, the corresponding training set is X ∈ RN×L and the dictionary D ∈ RN×M

is updated by SVD decomposition of rank-1 with a computational complexity of O(KML).

7. Experimental Results

We demonstrate the effectiveness of our SSM-NTF model by first discussing the convergence of our
dictionary pair learning algorithm and then evaluating the performance on natural and piecewise
constant image denoising, super resolution and image inpainting.
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7.1. Convergence Analysis

The convergence of the presented dictionary pair learning algorithm is evaluated in Figure 1.
Here, we train a pair of dictionaries Φ and Ψ of size 100 × 200 from 65,000 patches,
which are of size 10 × 10 randomly sampled from six natural images. We apply the frame
reconstruction function ΦSλ(Ψ

Tx) to reconstruct the patches. The convergence of the presented
dictionary pair learning algorithm is evaluated in Figure 1. The dictionary pair is illustrated in Figure 2.
They exhibit that our dictionary pair learning method is able to capture the feature of the image along
with the convergence property.

Figure 1. Convergence analysis. The X-labels are the iteration number. The Y-labels
are the is the objective function of System (20) (left) and the restoration result (measured by ’PSNR’)
(right). It is shown that our dictionary pair learning algorithm is a convergence one.

Figure 2. The exemplified dictionary pair (Φ, Ψ) in our stable sparse model with non-tight frame
(SSM-NTF) model training by natural images.

7.2. Image Denoising

In this subsection, we evaluate the performance of our proposed SSM-NTF model on image
denoising. Benefitting from the concept of non-tight frame, the proposed SSM-NTF model
contains a pair of dictionaries: The frame and its dual frame. As a result, our proposed SSM-NTF
model contains an analysis system and a synthesis system. The analysis-like system is denoted as

y = Sλ(Ψ
Tx), ‖y‖ ≤ s (43)
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which analyzes the signals in Ψ domain. The synthesis system is denoted as

x = Φy, ‖y‖ ≤ s (44)

which reconstructs the analyzed signals. The two systems share the same sparse coefficients Y.
Therefore, we compare our proposed SSM-NTF with synthesis and analysis models, respectively.

It is well known that the synthesis sparse model has advantage in dealing with the natural
image while the analysis sparse model is mostly used to address the piecewise constant image.
Therefore, we respectively, perform the denoising experiments on natural images and piecewise
images comparing with the most related approaches.

7.2.1. Natural Image Denoising

We now turn to present experimental results on six classical natural images named ’Barbara’,
’Boat’, ’Couple’, ’Hill’, ’Lena’ and ’Man’ which are shown in [1], to evaluate the performance
of the training algorithm. The denoising problem which has been widely studied in sparse
representation is used as the target application. We add Gaussian white noise to these images
at different noise levels σ = 20, 30, 40, 50, 60, 70, 80, 90, 100. Then we use the learned dictionary
pair to denoise the natural images, with overlap of 1 pixel between adjacent patches of size 10 × 10.
The patch denoising stage is followed by weighted averaging the overlapping patch recoveries to obtain
the final clean image. The parameters in our scheme are γ1 = 1.1 and γ3 = 1.2(L/M)2where L and M
are the sample and dictionary size, respectively. We have stated in Section 3.2 that we usually set A
to a positive number around but smaller than 1. In fact, we set A from 0.6 to 1 by a step of 0.03 to test
the denoising performance to determine the specific value of it. Then, with fixed A, we set B from 1
to 4 with a step length of 0.3 to run experiments on every noise level to determine the values of B.
The values of frame bounds A and B are shown in Table 1. For example, when the noise level σ = 40,
A and B are set to be 0.8 and 1.8, respectively.

Table 1. The valuesof A and B.

σ 20 30 40 50 60 70 80 90 100

A 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

B 1.8 1.8 1.8 2.4 3.0 3.3 3.3 3.6 3.6

Table 2 shows the comparison results in terms of PSNR. There are three related image denoising
methods involved, including the classical dictionary learning algorithm KSVD [9], the data-driven
tight frame based denoising method [1] and the incoherent dictionary learning based method [21].
The patch size of KSVD [9] and the method in [21] are 8 × 8 with stripe 1 and the dictionaries
are of size 64 × 256 at their optimal state according to the previous work. We point out that [1] works
on filters of size 16 × 16 instead of image patches and initialized by 64 3-level Harr wavelet filters
in size 16 × 16. All the three compared methods can achieve their best performance with 50 iterations.

Table 2 shows that the incoherent dictionary learning method [21] outperforms the KSVD [9]
in average as the mutual incoherent of dictionary can provide stable recovery. That [1] outperforms [21]
implies that the tight frame is a more stable system. Then our stable sparse model based method
outperforms [1] in average suggests that applying non-tight frame to approximate RIP can provide
even better and more stable reconstruction results. Figure 3 shows two exemplified visual results
on images ’Man’ and ’Couple’ at noise levels σ = 50 and σ = 40, respectively. The proposed method
shows much clearer and better visual results than the other competing methods.
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Figure 3. Visual comparison of reconstruction results by different methods on ’Man’ (σ = 50)
and ’Couple’ (σ = 40). From left to right: original image, noise image, KSVD [9], method of [1],
method of [21] and our proposed method.

Table 2. PSNR (dB) for nature image denoising results.

σ Image Barbara Boat Couple Hill Lena Man Average

20

KSVD [9] 31.01 30.50 30.15 30.27 32.51 30.26 30.78

[21] 31.03 30.45 30.16 30.30 32.52 30.30 30.79

[1] 31.07 30.35 30.20 30.31 32.56 30.07 30.76

SSM-NTF 31.06 30.56 30.32 30.42 32.60 30.33 30.88

30

KSVD [9] 28.75 28.60 28.07 28.51 30.59 28.43 28.83

[21] 28.78 28.63 28.06 28.53 30.60 28.47 28.85

[1] 29.07 28.48 28.22 28.64 30.60 28.26 28.88

SSM-NTF 29.03 28.71 28.32 28.74 30.82 28.59 29.04

40

KSVD [9] 27.03 27.23 26.54 27.23 29.13 27.17 27.39

[21] 27.05 27.18 26.59 27.21 29.10 27.12 27.38

[1] 27.58 27.20 26.87 27.49 29.25 26.99 27.56

SSM-NTF 27.52 27.49 27.07 27.65 29.43 27.41 27.76

50

KSVD [9] 25.71 26.05 25.42 26.29 27.92 26.18 26.26

[21] 25.77 26.08 25.40 26.31 27.87 26.23 26.28

[1] 26.45 26.15 25.84 26.63 28.15 26.09 26.55

SSM-NTF 26.40 26.41 26.04 26.88 28.49 26.49 26.79

60

KSVD [9] 24.45 25.18 24.57 25.69 27.01 25.40 25.38

[21] 24.45 25.20 24.50 25.65 27.03 25.42 25.38

[1] 25.64 25.33 25.04 25.91 27.22 25.38 25.75

SSM-NTF 25.52 25.55 25.22 26.11 27.41 25.74 25.93

70

KSVD [9] 23.40 24.46 23.90 25.10 26.18 24.77 24.63

[21] 23.46 24.46 23.93 25.15 26.19 24.79 24.66

[1] 24.88 24.67 24.36 25.30 26.44 24.78 25.07

SSM-NTF 24.74 25.05 24.60 25.50 26.61 25.06 25.26
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Table 2. Cont.

80

KSVD [9] 22.80 23.85 23.44 24.69 25.34 24.19 24.05

[21] 22.87 23.93 23.47 24.76 25.40 24.27 24.09

[1] 24.18 24.09 23.79 24.77 25.74 24.25 24.47

SSM-NTF 24.11 24.42 24.02 24.91 26.02 24.58 24.68

90

KSVD [9] 22.31 23.34 22.98 24.31 24.96 23.78 23.61

[21] 22.31 23.38 23.01 24.36 24.97 23.84 23.64

[1] 23.50 23.56 23.27 24.30 25.14 23.79 23.93

SSM-NTF 23.41 23.84 23.47 24.58 25.43 24.13 24.14

100

KSVD [9] 21.88 22.92 22.64 23.96 24.44 23.39 23.21

[21] 21.89 22.95 22.67 23.99 24.47 23.43 23.23

[1] 23.01 23.11 22.83 23.86 24.59 23.38 23.46

SSM-NTF 22.90 23.46 23.05 24.16 24.90 23.68 23.69

7.2.2. Piecewise Constant Image Denoising

In this subsection, we demonstrate the analytical property of our SSM-NTF model using a synthetic
image. The denoising problem which has been widely studied in sparse representation is used
as the target application. We start with a piecewise constant of size 256× 256 contaminated by Gaussian
white noise with noise level σ = 5 and extract all possible 5 × 5 image pathes. For the denoising
we apply the dictionary pair learning algorithm with the parameters γ1 = 1.5, γ3 = 1.2 L/M, A = 0.8
and B = 1.8 in parallel with patch denosing with the synthesis KSVD [9] and the analysis KSVD [14].
We apply 100 iterations of the our dictionary learning method on this training set, and learning
dictionary pair of size 25 × 50. The experimental set of the synthesis KSVD [9] and the analysis
KSVD [14] are at their optimal state according to the previous work.

The learned dictionary pair Φ which exhibits much like the synthesis dictionary and Ψ

which exhibits a high resemblance to the analysis dictionary are illustrated in Figure 4. The resulting
PSNRs of the denoised images are 45.32 dB for Analysis KSVD, 43.60 dB for Synthesis KSVD, and 45.17
dB for our proposed algorithm. The figure shows that our dictionary pair learning method is able
to capture the features of the piecewise constant image. Figure 5 shows the absolute difference images
for each of the three methods. Note that these images are displayed in the dynamic range [0, 20]to make
the differences more pronounced. Our proposed approach leads to a much better denoising result than
the synthesis KSVD and is comparable with the analysis KSVD.

Figure 4. The exemplified dictionaries training by the piecewise constant. From left to right: Synthesis
KSVD (25 × 100), our proposed dictionary pair (25 × 50) and analysis KSVD (25 × 50).

156



Appl. Sci. 2020, 10, 1771

Figure 5. Visual quality comparison of denoising results for piecewise constant image.
Images of the absolute errors are displayed in the dynamic range [0,20] (from left to right): Original
image, noise image, analysis KSVD [14], synthesis KSVD [9], our proposed method.

7.3. Super Resolution

We evaluate our SSM-NTF in comparison with two examplar-based scheme [37] for image Super
Resolution (SR) Problem (41) with a bicubic filter. Figure 6 shows the 15 test natural images [18]
with both rich texture and structure. All the schemes are applied to the illumination channel,
where the scale factor is 3, we always use 3 × 3 low-resolution patches with overlap of 1 pixel between
adjacent patches, corresponding to 9 × 9 patches with overlap of 3 pixels for the high-resolution
patches. In these experiments, we have used the following parameters: A = 0.8, B = 1.8, γ1 = 1.1
and γ3 = 1.2 L/M where L and M are the sample and dictionary size, respectively. In our scheme,
dictionary learning is performed between HR and middle-level (MR) images which are the first-,
and second-order derivatives of the upsampled version of one LR image by a factor of 2. The four 1D
filters used to extract the derivatives are:

f1 = [−1, 0, 1], f2 = fT
1

f3 = [1, 0,−2, 0, 1], f4 = fT
3

(45)

We train two pairs of HR/LR dictionaries {Φh, Ψh} and {Φl , Ψl} from 100,000 HR/LR patch
pairs [Xh, Xl ] randomly sampled from the collected natural images which are also used in [37] where Xh
is sampled from the HR images and Xl is sampled from the four feature images. The feature images
are obtained by applying the four filters to the upsampled LR image. Given Φ and Ψ and the four
MR feature images, the sparse coefficients Y and threshold value λ can be calculated by Algorithm 1.
With the theory in [37], the HR image can be recovered via Algorithm 3. In the experiment, our
HR dictionary pair are of size 81 × 450 and MR ones are of size 144 × 450. The dictionary size
of [37] is 81 × 1024 (HR) and 144 × 1024 (MR) at its best performance as stated in the paper. Thus,
the dictionary size of [37] is larger than the sum of our dictionaries. Table 3 shows the objective
evaluation results of our proposed SSM-NTF compared with bicubic interpolation and [37]. On average,
our SSM-NTF presents best in PSNR. Figure 7 presents the corresponding visual comparison
of the illumination SR results of Image 12. We can observe that the result of bicubic interpolation is too
smooth and the result of [37] suffers from obvious ringing artifact and noises. The HR reconstruction
of our SSM-NTF method provides more clear details.

Figure 6. Test images for image super-resolution performance evaluation [18].
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Figure 7. Visual quality comparison of SR results for Image 12 corresponding to Table 3. From left
to right: Original image, result of bicubic interpolation (PSNR = 30.28), [32] (PSNR = 30.62) and our
SSM-NTF method (PSNR = 30.99), respectively.

Table 3. PSNR (dB) for 3× SR reconstructions results.

Image 1 2 3 4 5 6 7 8

Bicubic [37] 32.69 26.32 26.04 28.39 28.70 25.81 37.21 24.40

SC [37] 32.89 26.53 26.16 28.51 29.09 26.25 37.59 24.61

SSM − NTF 33.10 26.75 26.41 28.82 29.31 26.40 37.49 24.77

Image 9 10 11 12 13 14 15 Average

Bicubic [37] 31.40 28.72 33.24 30.28 26.49 28.11 31.90 29.31

SC [37] 31.73 29.35 33.50 30.62 26.75 28.74 32.13 29.63

SSM − NTF 31.90 29.49 33.66 30.99 26.95 29.02 32.19 29.82

7.4. Image Inpainting

To illustrate the potential applicability of our proposed SSM-NTF model on image inpainting,
we apply it to the applications of text removal. In these experiments, we have used the following
parameters: A = 0.8, B = 1.8, γ1 = 1.1 and γ3 = 1.2 L/M where L and M are the sample and dictionary
size, respectively. We operate on the image ’Adar’,’Lena’, ’Couple’, ’Hill’ with super-imposed text
of various fonts.

In this experiment, we applied our SSM-NTF model to image inpainting in a way similar
to the non-blind KSVD inpainting algorithm [9], which requires the knowledge of which pixels
are corrupted and required inpainting. Actually, only the non-corrupted pixels are used to training
the dictionary pair and inpainting the images. We operate our method on pathes of size 10 × 10
that extract from the images with overlap of 1 pixel between adjacent. The trained dictionary pair are of
size 100× 200. The KSVD algorithm in this experiment is dealing with patches of size 8× 8 that extract
from the images with overlap of 1 pixel between adjacent. The dictionary size is 64 × 256 at its best
performance according to [9]. The patch inpainting stage is followed solving Problem (41). Table 4
shows the objective evaluation results of our proposed SSM-NTF compared with DCT and KSVD [9].
The visual comparisons are shown in Figures 8 and 9. We find that the proposed SSM-NTF method
is able to eliminate text of fonts completely while the KSVD is dull. Our SSM-NTF method achieves
better performance in terms of both subjective and objective quality.
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Figure 8. Visual quality comparison of text image inpainting results. From left to right: Original
image, text image, result of DCT (PSNR = 27.11), KSVD (PSNR = 28.01) and our SSM-NTF method
(PSNR = 28.95), respectively.

Figure 9. Visual quality comparison of scratch image inpainting results. From left to right: Original
image, scratch image, result of DCT (PSNR = 30.81), KSVD (PSNR = 31.69), and our SSM-NTF
method (PSNR = 32.02), respectively.

Table 4. PSNR (dB) for image inpainting results.

Image Adar Lena Hill Couple Average

DCT [9] 27.11 31.30 28.53 29.21 29.04

KSVD [9] 28.01 31.69 28.90 29.50 29.53

SSM − NTF 28.95 32.02 29.31 29.87 30.04

8. Conclusions

In this paper, we propose a stable sparse model with non-tight frame (SSM-NTF) and further
formulate a dictionary pair learning model to stably recover the signals. We theoretically analyze
the rationality of the approximation for RIP with the non-tight frame condition. The proposed
SSM-NTF has RIP and the closed-form expression of the sparse coefficients that ensure the stable
recovery especially for seriously noise images. The proposed SSM-NTF contains both a synthesis
sparse and an analysis system which share the common sparse coefficients without taking into account
the thresholding. We also propose an efficient dictionary pair learning algorithm via developing an
explicit analytical expression of the inherent relation between the dictionary pair. The proposed
algorithm is capable of approximating structures of signals via a pair of adaptive dictionaries.
The effectiveness of our proposed SSM-NTF and its corresponding algorithms are demonstrated
in image denoising, image super-resolution and image inpainting. The results of numerical
experiments show that the proposed SSM-NTF achieves superior to the compared methods in objective
and subjective quality on most of the cases.

On the other hand, our proposed SSM-NTF is actually a 1D sparse model. The 1D sparse
model suffers from high memory as well as high computational costs especially when handling high
dimensional data. MD frame can be expressed as the kronecker product of a series of 1D frames.
Benefitting from this good characteristic, in future work, we will extend our stable sparse model
to propose an MD stable sparse model. Moreover, the proposed SSM-NTF is not effective enough
to remove other kinds of noise (e.g., salt and pepper noise) as the loss function of SSM-NTF is gaussian.
We would like to improve the performance of our model by changing the loss function.
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Abstract: Local dimming technology focuses on improving the contrast ratio of the displayed
images for a great visual perception. It consists of backlight extraction and pixel compensation.
Considering a single existing backlight extraction algorithm can hardly adapt to images with diverse
characteristics and rich details, we propose a stronger adaptive local dimming method with details
preservation in this paper. This method, combining the advantages of some existing methods and
introducing the combination of the subjective evaluation and the objective evaluation, obtains a
stronger adaptation compared with others. Besides, to offset the luminance reduction caused in
the backlight extraction process, we improve the bi-histogram equalization algorithm and propose
a new pixel compensation method. To preserve image details, the Retinex theory is adopted to
separate details. Experimental results demonstrate the effect of the proposed method on contrast
ratio improvement and details preservation.

Keywords: local dimming; retinex theory; bi-histogram equalization; contrast ratio;
details preservation

1. Introduction

High Dynamic Range (HDR) display is developed for HDR images and videos that convey vastly
more color shades and nuances than previous standards. However, these devices are expensive for
their complex technology, which limits their promotion. Liquid Crystal Display (LCD) is still the
current technology for most devices such as computers and TVs.

LCD consists of a Liquid Crystal (LC) panel and a backlight panel with arrayed Back-Light Units
(BLUs). The LC panel is light-modulated instead of self-luminous directly. Hence, an image is displayed
by it with the backlight produced by BLUs. In early LCD technology, BLUs are always-on with the
maximum luminance level, leading to high power consumption and low contrast ratio. In addition,
the image quality is deteriorated due to the light leakage problem [1] in the dark state. Local dimming
technology is developed to alleviate these weaknesses. As shown in Figure 1, the technology consists
of the backlight extraction and the pixel compensation, which are, respectively, used in obtaining the
luminance level for each BLU in backlight panel and the compensated image for the LC panel. In the
process of backlight extraction, the luminance of each BLU is controlled dynamically according to the
corresponding image content. The power consumption is reduced while the contrast ratio is improved
effectively. Backlight smoothing is used to simulate the process of light diffusion, which is a solution
to alleviate block artifacts [2,3]. Pixel compensation offsets the luminance reduction caused by the
backlight dimming in the backlight extraction process.
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Figure 1. The flowchart of local dimming technique. The dotted line means optional.

The resolution of the displayed image in LC panel is larger than that of the backlight array in
backlight panel. The diagram of backlight extraction is shown in Figure 2; the luminance of a BLU is
determined by the corresponding block of the input image.

Figure 2. The diagram of backlight extraction: (a) backlight panel; (b) Liquid Crystal (LC) panel; (c) a
Back-Light Unit (BLU); and (d) the corresponding image block of (c).

Many approaches for backlight extraction have been proposed. They determine the luminance
level for BLUs from different characteristics of the image. The early method in [4] explores the
maximum and the average luminance of the corresponding image block to determine the luminance
level of each BLU. The following methods [5–16] extract luminance for BLUs from many other
perspectives, such as image histogram, image details, and image quality. However, each method
can hardly handle images with diverse and complicated contents. It makes sense to broaden the
adaptive scope for a single backlight extraction method. To this end, we propose a method to extract
backlight that adapts to images with diverse contents by combining the advantages of some existing
methods [4,6–8,10–12], to which previous approaches have paid rare attention. Besides, we introduce
subjective evaluation for a better visual perception. Specifically, our method takes three steps to obtain
backlight luminance. First, a target backlight is selected from base backlights generated by existing
methods. Second, we design a group of constraint conditions and adjust the target backlight under
them to obtain several alternative backlights. Finally, the optimal backlight is determined by both the
objective evaluation and the display quality of subjective evaluation.

Luminance overcompensation in pixel compensation process will cause image distortion,
decreasing its contrast ratio and visual perception. Hence, we take both the backlight information and
the luminance information of original image into account to address the overcompensation. Besides,
we propose an Improved Bi-Histogram Equalization (IBHE) to further enhance the image. Specifically,
Bi-Histogram Equalization (BHE) [17] applies a histogram equalization on two sub-images segmented
from one image, obtaining a tradeoff between brightness enhancement and details preservation.
Kim, Y.T. [17] adopted the mean luminance of the image as the breakpoint to make segmentation.
However, the method lacks effectiveness in details preservation as it simply adopts the image mean
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luminance as the breakpoint for segmentation. To this end, we improve the method from the view of
taking more image details in breakpoint selection. We make the IBHE a part of pixel compensation.

Combing the proposed backlight extraction with pixel compensation methods, a stronger adaptive
local dimming method with details preservation is proposed. Our contributions can be summarized as:

• A backlight extraction method is proposed to acquire a stronger adaption in processing images
with diverse contents by combining advantages of several existing methods.

• An IBHE method with Retinex theory is proposed to enhance image quality by preserving
abundant details.

• A pixel compensation method is proposed to alleviate overcompensation by leveraging
information of both the extracted backlight and the original image based on IBHE.

Experimental results demonstrate the effect of the proposed approach in improving contrast ratio,
preserving image details, and enhancing image quality in the real display.

The rest of the paper is structured as follows. Section 2 details the related work of local dimming.
Section 3 documents the specific process of the proposed method elaborately. Section 4 describes the
experiments and results, and analysis of the results is made in this section. Finally, we conclude the
paper in Section 5.

2. Related Work

In this section, existing local dimming approaches are described in detail. For clarity, we organize
this section into backlight extraction and pixel compensation, as they are the two parts of local dimming.

2.1. Backlight Extraction

As an early and fundamental approach, the max method [4] employs the maximum luminance of
an image block to determine the luminance level of the corresponding BLU. It also explores replacing
the maximum luminance with the average luminance. However, the former is sensitive to noise and
suffers from light leakage [1] problem. The latter reduces image luminance and suffers from losing
details in bright areas. To achieve a trade-off between the above two methods, the methods proposed
in [1,5,6] consider both the maximum luminance and the average luminance to improve display quality.
In [1], a decision rule is proposed to determine optimal backlight by comparing the light leakage and
the clipping of image blocks. This method is effective for images with bright objects in a dark area.
In [5,6], the difference between the maximum and the average luminance value of a block is used
to adjust backlight based on the average value. In [7], the global information of the image is used to
extract backlight. It proposes a threshold method using a Cumulative Distribution Function (CDF) to
ensure the distortion of the compensated image within a certain range. Besides, the methods proposed
in [8,9] are effective to reduce power consumption. Based on Otsu [18], Zhang, T.; Wang, Y.F. [10]
introduced a local dimming algorithm to separate foreground and background pixels for backlight
extraction. In [11], the Peak Signal to Noise Ratio (PSNR) = 30 is considered as the lowest standard
to guarantee the image quality. In [12], a Gaussian distribution model is proposed to reduce power
consumption and improve image quality. In Swarm Intelligence (SI), the authors of [13,14] transformed
the local backlight dimming to an optimization problem to preserve the image quality with low power
consumption. A guided firework algorithm proposed in [14] achieves higher performance than the one
in [13]. Although there are other local dimming algorithms [15,16], most of them favor only specific
characteristic of an image. Therefore, we propose a backlight extraction method to adapt to images
with diverse characteristics, acquiring preferable display quality.

2.2. Pixel Compensation

A backlight extraction method is commonly followed with a corresponding pixel compensation
method to offset the luminance reduction. In this section, we document the representative method [5]
and the closest related method [10] to ours for readability. In [5], the compensated luminance is
obtained using the nonlinear relationship between the maximum backlight and the extracted backlight.
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However, image distortion caused by overcompensation in this method decreases the image quality.
In [10], the logarithm function is used to compensate for luminance based on the input image and
the smoothed backlight image. It is effective to prevent overcompensation but less effective for
bright images.

Our pixel compensation method aims to alleviate the overcompensation problem by adjusting the
luminance of the pixel in the input image according to the backlight value. Besides, by the proposed
IBHE, this method is effective for improving the quality of display images.

3. Method

In this section, we document our local dimming method elaborately. We first introduce the holistic
structure of the method. Then, the proposed backlight extraction method and the compensation
method are described, respectively.

The diagram of the proposed method is shown in Figure 3. The whole architecture consists of
two modules: an Adjustable Backlight Extraction (ABE) module and a pixel compensation module.
Furthermore, the ABE module consists of base backlights extraction and optimal backlight selection.

Figure 3. The diagram of the proposed method. It is better to look at it in color: orange block,
adjustable backlight extraction module; white block, backlight smoothing module; and pink block,
pixel compensation module.

To avoid color distortion, most of the existing local dimming algorithms are performed on the
luminance rather than the chroma component. Following this, we separate the luminance information
by converting the color space from RGB into YCbCr [19] before all of the succeeding operations.
The conversion formula is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[Y Cb Cr]T = MsRGB × [R G B]T + [16 128 128]T

MsRGB =

⎡⎢⎣ 0.257 0.564 0.098
−0.148 −0.291 0.439
0.439 −0.368 −0.071

⎤⎥⎦ (1)

According to the Retinex theory [20], which is widely used in image processing [21], an image is
composed of reflectance and illuminance. The former presents the detail information and the latter
determines the dynamic range. This is represented as:

S(x, y) = Rc(x, y)× I(x, y) (2)
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where (x, y) is the coordinate of the pixel in the image, S is the image perceived by human eyes,
Rc is the reflectance, and I is the illuminance. In our method, Y component in YCbCr color space is
considered as S. I is obtained by:

I(x, y) = F(x, y)⊗ Y(x, y) (3)

where F is the Weighted Least Squares (WLS) filter [22], which is known as an edge-preserving filter;
⊗ is the convolution operation; and Y is the Y component in YCbCr color space.

Image edge is the most concentrated part of image information such as the change of gray level
and the mutation of texture structure, which contains rich details. Therefore, the edge information must
be decomposed and kept to improve image quality in image processing. An alternative filter is bilateral
filtering, which has been used in many previous works as a base-detail decomposition technique.
However, WLS filter is chosen in this paper because of its better performance, especially for increased
blur level compared with bilateral filtering. WLS filter is well suited for progressive coarsening of
images and for multi-scale detail extraction. For an input image g, an image u is expected to be as
close to g as possible and be smoother except for some places where the gradient of the edge of g
changes greatly. Formally, the solution to minimize the objective function in Equation (4) is the result
of filtering u.

∑
p

((
up − gp

)2
+ λ

(
ax,p(g)

(
∂u
∂x

)2
+ ay,p(g)

(
∂u
∂y

)2
))

(4)

where the subscript p represents the coordinate of the pixel. The first term
(
up − gp

)2 is used to
measure the similarity between g and u. The second term is a regular term, and λ is a weight coefficient
of the regular term. The larger λ is, the smoother the image will be. The image g is smoothed by
minimizing the partial derivative of u, and the weights of smoothing terms are ax,p(g) and ay,p(g),
respectively. The definitions of ax,p(g) and ay,p(g) are shown in Equation (5).

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ax,p(g) =

(∣∣∣∣ ∂l
∂x

(p)
∣∣∣∣α

+ ε

)−1

ay,p(g) =

(∣∣∣∣ ∂l
∂y

(p)
∣∣∣∣α

+ ε

)−1
(5)

where l is the logarithmic transformation of g, the exponential parameter α is used to determine the
gradient sensitivity, and ε is the offset for avoiding invalid division when ∂l

∂x (p) or ∂l
∂y (p) is zero.

From the above equations, ax,p(g) and ay,p(g) decrease when the gradient of l increases, by which the
edge information is kept and unnecessary details is smoothed.

Backlight extraction and pixel compensation are processed on the illuminance I.
Then, the logarithm of Rc is defined in Equation (6).

r(x, y) = log (Rc (x, y)) = log (Y (x, y))− log (I (x, y)) (6)

where r is the logarithmic result of Rc, and it is used in IBHE in Section 3.2.

3.1. Adjustable Backlight Extraction Module

To respect the image content and avoid drawbacks of a single algorithm, we propose a three-step
backlight extraction method to determine an optimal backlight, making displayed images perceived
vividly. We document the first step in Section 3.1.1 and the second and the third steps in Section 3.1.2.

3.1.1. Base Backlights Extraction

The first step is to extract base backlights. As mentioned above, each single existing backlight
extraction method is not enough to adapt to images with diverse characteristics and contents. However,

167



Appl. Sci. 2020, 10, 1820

their respective strengths are complementary and compatible. Each of them can be a base backlight
from which we absorb advantages. Assuming that N is the number of base backlights, the base
backlights extraction in Figure 3 is defined as follows.

BLt = f t(I) t = 1, 2, · · · , N (7)

where f t is the tth base backlight algorithm and BLt is the tth base backlight.

3.1.2. Optimal Backlight Selection

Optimal backlight constraint conditions are constructed by all of the base backlights extracted
above. One of the base backlights is selected as the target backlight for its ability in reducing power
consumption and improving the contrast ratio.

The second step of our method is to adjust the selected target backlight. Specifically, we adjust it
based on the segmentation method in [23] and the obtained constraint conditions.

Based on our self-developed LCD-LED dual modulation display [10], the optimal backlight
is selected from adjusted backlights by objective evaluation as well as subjective evaluation in the
third step.

• Backlight constraint conditions

We change specific values of the target backlight to obtain several adjusted backlights as
alternations of the optimal backlight. The change needs to be within the effective range of backlight to
prevent the deterioration of image quality. For an image block, we go through all base backlights for
its corresponding maximum and minimum values. The maximum and minimum matrices are denoted
as Pmax and Pmin. This process is defined as:{

Pmax = max
(
BLt(m, n)

)
Pmin = min

(
BLt(m, n)

) (8)

where (m, n) is the coordinate of each backlight value in the backlight image.
Considering that limited backlight extraction algorithms are used to construct backlight constraint

conditions, Pmax is increased by 10% with an upper boundary 255 and Pmin is decreased by 10% with
a lower boundary 0. The adjusted Pmax and Pmin are represented as PAmax and PAmin, and they form
the constraint conditions for obtaining the optimal backlight.

• Backlight adjustment and optimal backlight selection

Just Noticeable Difference (JND) [24] reflects the sensitivity of human vision. As shown in Figure 4,
under different background luminance, JND is different.

Figure 4. JND curve.

In image quality evaluation, if the luminance of details is too close to the neighboring pixels,
that is, the difference is less than JND, then the details of this image are not well-displayed. In real
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display, the background luminance may be changed due to light diffusion between different backlights,
leading to the change of JND. Therefore, the image quality in real display may be degraded. To this
end, we adjust the target backlight to change the background luminance and select the backlight that
presents the details effectively based on display quality as the optimal backlight.

Assume that target backlight is the kth base backlight denoted as BL0.

BL0 = f k(I) k ∈ {1, 2, · · · , N} (9)

where f k is the kth base backlight extraction method. Improving the dynamic range is important in
local dimming. Hence, for BL0, we strengthen the luminance in bright area and weaken it in dark
area to improve its dynamic range. Specifically, the bright and the dark area are selected by mean and
variance of the backlight image. The process is expressed as Equations (10) and (11).⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M =

(
W

∑
m=1

H

∑
n=1

BL0 (m, n)

)
÷ (W × H)

V =

(
W

∑
m=1

H

∑
n=1

(BL0 (m, n)− M)2

)
÷ (W × H)

(10)

{
P1 = M − V

P2 = M + V
(11)

where W, H, M, and V are the width, height, mean, and variance of BL0, respectively. P1 and P2 are
the breakpoints to partition areas of different luminance. The pixel with luminance less than P1 is
considered as dark area and the pixel with luminance larger than P2 is considered as bright area,

Since the backlight value ranges in 0–255, we use the exponent of 2 as the adjustment step to
adjust the target backlight BL0. The process is expressed as Equation (12).⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

BLi (m, n) =

{
BL0 (m, n)− 2i BL0 (m, n) < P1

BL0 (m, n) + 2i BL0 (m, n) > P2

BLi (m, n) =

{
min (PAmax (m, n) , BLi (m, n)) BLi (m, n) > PAmax (m, n)

max (PAmin (m, n) , BLi (m, n)) BLi (m, n) < PAmin (m, n)

(12)

where i = 1, 2, · · · , 8 , BLi means the ith adjusted backlight based on BL0. PAmax and PAmin are used
to prevent the adjusted backlight from making poor display quality.

Contrast Ratio (CR) and Dynamic Range (DR) are two objective indicators of display quality.
Both reflect the change of brightness ranging from dark to bright, and the higher are CR and DR,
the wider is the brightness range. To select the optimal backlight, the display luminance is first
measured under all adjusted backlights. Then, CR and DR of each measured luminance are calculated.
The adjusted backlights with the top three performances based on the results of CR and DR are
selected. Finally, the optimal backlight is selected from the three adjusted backlights by display quality
subjectively. The process is shown in Figure 5.

The subjective evaluation is set as follows. The three selected adjusted backlights are demonstrated
on the display prototype. Observers are asked to vote for the optimal backlight based on visual
perception over details, contrast, and brightness. The backlight with the largest number of votes is
determined to be the optimal backlight. Given that subjective feeling is susceptible to factors such as
gender, age, occupation, and surroundings, the selection was done by 16 observers who are non-experts
in image and video processing field. Their ages range from 22 to 30, with eight males and eight females.
All of them have normal visual ability, that is, none of them have eye problems such as color blindness,
color weakness, shortsighted, etc.
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Figure 5. Process of selecting the optimal backlight: (a) objective evaluation using Contrast Ratio (CR)
and Dynamic Range (DR); and (b) subjective evaluation via voting based on display quality. Ai (i = 1, 2
· · · 8) means adjusted backlight; Sj (j = 1, 2, 3) means backlights with top three objective indicators.

3.2. Pixel Compensation Module

In this work, we compensate luminance according to the optimal backlight described as
BLop and the luminance of the input image. Before the compensation, we use Improved
Blur Mask Approach (IBMA) [10] to smooth optimal backlight to removes the block artifacts.
Specifically, Zhang, T.; Wang, Y.F. [10] divided the points of BLop into three categories. The first
category includes the corner points, the second category includes the peripheral points except for the
cornet points, and the third category includes the internal points of BLop. Different Low Pass Filter
(LPF) templates are used to smooth points of BLop in different categories. IBMA uses the smoothing
process to simulate the light diffusion, and BLop is resized after each smoothing operation. By several
smoothing operations, the smoothed backlight has the same size as the input image. The process is
expressed in Equation (13).

BLsm = IBMA
(
BLop

)
(13)

where BLsm represents the backlight after IBMA and BLop is the optimal backlight. The comparison
results of using or not using IBMA are shown in Figure 6.

(a) (b)

Figure 6. (a) Backlight without Improved Blur Mask Approach; and (b) backlight with Improved Blur
Mask Approach.

Compared with Figure 6a, artifacts are removed obviously in Figure 6b by applying IBMA.
We use a compensation coefficient k to control the compensation degree, which is determined

by the smoothed backlight and the luminance of the input image. The process is formulated as
Equations (14) and (15).

k (x, y) = (BLsm (x, y)÷ I (x, y))γ (14)

Ip (x, y) = k (x, y)× I (x, y) + (1 − k (x, y))× BLsm (x, y) (15)

where γ = 0.125 is selected from multiple experimental results to prevent overcompensation problem
and enhance the overall luminance of the image effectively. IP is the compensated luminance.

Next, IBHE is used to further enhance the compensated luminance. In BHE, an image is
decomposed into two sub-images based on its mean, and then the sub-images are equalized
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independently to improve CR while maintaining the luminance of the image. Different from this,
we rely on the Otsu method and the histogram of r in Equation (6) to obtain two sub-images.
Algorithm 1 is devised to acquire the breakpoint for the image segmentation.

Algorithm 1 Proposed algorithm for breakpoint acquisition.

Input: r, IP;
Output: the breakpoint T;

1: [z1, z2] = size (r);
2: num = 0;
3: Im = IP;
4: for i = 1 to z1 do

5: for j = 1 to z2 do

6: if r (i, j) == 0 then

7: num+ = 1;
8: else

9: Im (i, j) = 0;
10: end if

11: end for

12: end for

13: T1 = (sum (sum (Im)))÷ num;
14: T2 = Otsu ((Im)); the breakpoint obtained by Otsu method
15: T = f loor ((T1 + T2)÷ 2); the average value of T1 and T2
16: return T;

By the breakpoint T, the CDF curves of the two sub-images are obtained to perform BHE [17].
The process is expressed as Equation (16).

Iout (k) =

{ (
T − Ipmin

)× CDF1 (k) + Ipmin 0 < k < T(
Ipmax − T

)× CDF2 (k) + T T + 1 < k < 255
(16)

where Ipmin and Ipmax are the minimum and the maximum of compensated luminance Ip, respectively.
CDF1 and CDF2 are respective CDF curves of the two sub-images.

Finally, Iout and r in Equation (6) are combined to reconstruct final luminance image by
Equation (17), and color transformation from YCbCr to RGB [25] is employed to generate the
final image.

Yout (x, y) = Iout (x, y)× er(x,y) (17)

4. Experiment

In this section, we describe the settings and the results of our experiments. In backlight extraction,
the base backlight extraction methods in our experiment consisted of the max method [4], the average
method [4], LUT method [6], CDF method [7], IMF method [8], the method based on Otsu [10],
PSNR method [11], and Gaussian method [12]. The method based on Otsu in [10] was considered as
the target algorithm, extracted by which the backlight is taken as the target backlight. The sizes of the
input image and the backlight are 1920 × 1080 and 66 × 36, respectively.

4.1. Hardware

A self-designed LED-LCD prototype display [10] was adopted to verify display quality with the
optimal backlight and compensated image that is the output in Figure 3. The display principle of the
prototype is shown in Figure 7a. The measure environment in our experiment was a dark room to
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prevent interference from light. The luminance meter used in our experiment is CX-2B color brightness
meter, for which the luminance ranges in 0.001–200 kcd/m2.

(a) (b)

Figure 7. Hardware support: (a) display principle of LED-LCD prototype; and (b) measurement
environment (the lights were off when we measured the luminance).

4.2. Experiment of Improved Bi-Histogram Equalization

To illustrate the effectiveness of the proposed IBHE method in segmenting image, the breakpoint
by Kim, Y.T. [17] was used to make comparison. The results are shown in Figure 8.

(a) (b) (c)

Figure 8. Segmentation results with different breakpoints: (a) test image; (b) breakpoint by the method
in [17]; and (c) breakpoint by the proposed Improved Bi-Histogram Equalization (IBHE).

As shown in the red square of Figure 8b,c, the segmentation effect is basically the same, while,
in the yellow as well as green squares, the segmentation is more accurate by the proposed IBHE
method than by the method in [17] according to the test image.

4.3. Experiment of Adjustable Backlight Extraction

4.3.1. Subjective Experiment

The comparison of image display quality under the target backlight and the optimal backlight is
shown in Figure 9.

The images were taken by an optical recorder. Obviously, the image recorders can hardly
reproduce the visual perception of eyes. However, we can still distinguish that the visual perception
of the optimal backlight is more vivid than that of the target backlight. For clarity, the detail with
obvious difference is marked. In the above two images in Figure 9, we observe that the dark areas are
enhanced under optimal backlight to improve CR of the displayed image. In the other two images,
the marked areas illustrate a higher color saturation to improve display quality under optimal backlight.
These demonstrate that the proposed backlight extraction method has stronger adaption in an image
with different brightness and rich details in the real display.
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(a) (b)

Figure 9. Display effects with target backlight and optimal backlight: (a) target backlight;
and (b) optimal backlight.

4.3.2. Objective Experiment

Tong, H. [26] defined a group of conditions to separate low/high luminance and low/high CR
images with CDF curve. We selected one image from each category to evaluate the proposed method
according to the conditions. The images chosen for the experiment and their corresponding CDF
curves are illustrated in Figure 10.

(a) (b)

(c) (d) (e)

Figure 10. Images used for objective experiment and corresponding Cumulative Distribution Function
(CDF) curves: (a) low luminance image; (b) high luminance image; (c) low contrast ratio image; (d) high
contrast ratio image; and (e) CDF curves of the images.

Assuming that h denotes the histogram of the measured luminance using luminance meter,
h(x) denotes the number of pixels whose luminance is x. Inspired by the method of calculating CR
in [10], we calculated the average values of luminance that are greater than P90 and lower than P10,
respectively, to calculate CR to reduce the influence of the measurement error. P10 and P90 are the
luminance of which the cumulative numbers account for 10% and 90% of the total pixels, respectively.
Mmax and Mmin are the maximum and minimum of the measured luminance. CR and DR are calculated
as follows.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Avg10 = ∑
x<P10

(h (x)× x)÷ ∑
x<P10

h (x)

Avg90 = ∑
x>P90

(h (x)× x)÷ ∑
x>P90

h (x)

CR = Avg90 ÷ Avg10

DR = Mmax ÷ Mmin

(18)

The objective evaluations are shown in Table 1. We can observe that all CR values of optimal
backlights are better than that of the target backlights. DR values in Images (b) and (d) under optimal
backlights are slightly lower than those under target backlights. The reason lies in that the luminance
of the bright area is almost 255, which cannot be increased. In contrast, the luminance of the dark
area is still decreased, resulting in a reduction in overall luminance. For most cases, the comparisons
confirm the effectiveness of the proposed method.

Table 1. Objective evaluation comparisons of CR and DR. BL0, the target backlight; BLi, the optimal
backlight; (a)–(d), images in Figure 10. The better performance is marked in bold.

Image Backlight CR DR

(a) BL0 11,209.24 1,630,700
BL3 11,284.18 1,631,900

(b) BL0 8.97 2,059,400
BL4 9.14 1,974,200

(c) BL0 3228.41 1,056,333
BL4 3272.41 1,156,091

(d) BL0 1913.71 1,659,500
BL3 5464.29 1,656,385

4.4. Experiment of Simulated Images

4.4.1. Subjective Experiment

The simulated comparisons of the proposed local dimming method with LUT method,
CDF method, and the method based on Otsu [10] are shown in Figure 11.

For Figure 11a, the dark areas in red rectangles of CDF and LUT algorithms are brighter, leading to
a lower CR than the other two methods. In contrast, the method in [10] missed details caused by
reducing luminance. The proposed method is a balance between improving CR and preserving details.

For Figure 11b, the clouds in the red circles of CDF and LUT methods are brighter than Figure 10b,
which should be darker. For the clouds in the red rectangle by the method in [10], the image distortion
is caused by overcompensation. For the image by the proposed method, the image contents in both
the red circle and the red rectangle are well-compensated to improve CR and preserve details.

For Figure 11c, CDF and LUT methods simply improve the overall image luminance but without
improvement of CR and image quality. The method in [10] improved the luminance of bright areas
and decreased that of dark areas, which shows a preferable image. The image of the proposed method
shows a higher CR with a higher saturation. However, the mountain part is slightly unsatisfactory
compared with the image obtained by the method in [10]. This may be because the low luminance is
mapped to smaller by histogram equalization.
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(a) (b) (c) (d)

Figure 11. Simulation results. From left to right: Images (a–d).

For Figure 11d, the images of CDF and LUT methods are bright to show rich details. In contrast,
the image obtained by the method in [10] is distorted. Note that the red rectangle, seen as a high
spatial-frequency part, retains more details by the proposed method compared with the image obtained
by the method in [10].

4.4.2. Objective Experiment

In our experiments, in addition to for CR [10], Peak Signal-to-Noise Ratio (PSNR) [27], Structural
Similarity Index (SSIM) [14], and Color Difference (CD) [28] were further applied to evaluate the
simulated image comprehensively.

CR, used to evaluate the dynamic range of luminance, is an important metrics in image processing.
Generally, an image with a high CR presents vivid and rich colors. Note that the CR used to evaluate
the simulated images is calculated differently compared with the CR in Section 4.3.2. To distinguish
them, the CR calculated by the simulated image is defined as CRSI and obtained by Equation (19).

CRSI = P90/P10 (19)

where P10 and P90 are the luminance of which the cumulative numbers account for 10% and 90% of the
total number of pixels in simulated image, respectively.

PSNR was employed to evaluate the distortion between signal and noise. A higher PSNR indicates
a lower distortion. The definition of PSNR is described in Equation (20).⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

PSNR (C1, C2) = 10 × log
(

2552

MSE (C1, C2)

)
MSE (C1, C2) =

1
w × h

w

∑
i=1

h

∑
j=1

(C1 (i, j)− C2 (i, j))2
(20)

where C1 and C2 are the original image and the simulated image, respectively, while w and h mean the
width and the height of the simulated image.

SSIM is widely used in realizing structural similarity theory. SSIM ranges from 0 to 1 and a better
image quality leads to a higher SSIM. The definition of SSIM is described in Equation (21)

SSIM (C1, C2) =

(
2μC1 μC2 + ε1

) (
2σC1C2 + ε2

)(
μ2

C1
+ μ2

C2
+ ε1

) (
σ2

C1
+ σ2

C2
+ ε2

) (21)
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where μC1 and μC2 are the mean values of C1 and C2 respectively; σC1 and σC2 are the variance of C1

and C2, respectively; σC1C2 is the covariance of C1 and C2; and ε1 and ε2 are two constants to avoid
invalid division.

Besides, from the perspective of color information, we adopted CD to evaluate the color distortion
by applying weighted Euclidean distance in RGB color space. The process to obtain the CD is expressed
in Equation (22). ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ΔC =

√(
2 +

r
256

)
× ΔR2 + 4 × ΔG2 +

(
2 +

255 − r
256

)
× ΔB2

CD =
ΔC

w × h

(22)

where r = (C1,R + C2,R) /2, ΔR = C1,R − C2,R, ΔG = C1,G − C2,G, and ΔB = C1,B − C2,B; C1,R, C1,G,
and C1,B represent the normalized components of original image, respectively; and C2,R, C2,G, and C2,B
represent the normalized components of simulated image; respectively. The comparisons of the above
four metrics are shown in Table 2.

Table 2. Comparisons of algorithmic processing. The best performance is marked in bold.

Image Evaluation Metrics CDF Method LUT Method [10] the Proposed Method

(a)

CRSI 4.88 4.93 7.00 7.50
PSNR 18.40 19.43 24.78 33.19
SSIM 0.87 0.89 0.94 0.97

CD 0.32 0.28 0.15 0.06

(b)

CRSI 4.32 4.28 7.68 8.42
PSNR 24.10 25.49 24.24 27.00
SSIM 0.98 0.99 0.97 0.98

CD 0.13 0.12 0.16 0.12

(c)

CRSI 5.88 5.76 6.08 7.71
PSNR 20.32 21.49 23.44 24.39
SSIM 0.91 0.92 0.93 0.90

CD 0.26 0.23 0.19 0.19

(d)

CRSI 5.69 6.00 6.50 8.00
PSNR 19.81 20.49 25.85 24.80
SSIM 0.83 0.84 0.90 0.93

CD 0.23 0.21 0.13 0.14

In Table 2, CRSI obtained by the proposed method is higher than that of the three other top
algorithms by 7.0%, 10.0%, 26.8%, and 23.1%, respectively. PSNR is improved by 33.9%, 11.4%, 4.1%,
and −4.1%, respectively. PSNR of high contrast ratio image by the proposed method follows the
highest one by the method in [10] closely. For SSIM, the performance of the proposed method is slightly
inferior for low contrast ratio image. However, it is still competitive to other algorithms, especially for
low luminance image. For CD, images processed by the proposed method reduce the distortion of
chroma information effectively, especially for the low luminance image and the high contrast ratio
image. In other words, the objective evaluation values are consistent with the subjective quality of the
simulated images.

5. Conclusions

In this paper, a stronger adaptive local dimming method with details preservation is proposed to
alleviate the disadvantage of a single algorithm. A three-step backlight extraction method is applied to
determine the optimal backlight to improve display quality. In the pixel compensation, we compensate
the luminance of the input image according to the smoothed backlight information. In addition, IBHE is
proposed to enhance the luminance of an image and realize details preservation. Both the objective
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and subjective evaluation results demonstrate the effectiveness of the proposed local dimming method
in keeping chroma information, and improving CR as well as PSNR, SSIM.
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Featured Application: High resolution pansharpened images are used for detailed land use and

land cover mapping.

Abstract: Preservation of spectral and spatial information is an important requirement for most
quantitative remote sensing applications. In this study, we use image quality metrics to evaluate
the performance of several image fusion techniques to assess the spectral and spatial quality of
pansharpened images. We evaluated twelve pansharpening algorithms in this study; the Local Mean
and Variance Matching (IMVM) algorithm was the best in terms of spectral consistency and synthesis
followed by the ratio component substitution (RCS) algorithm. Whereas the IMVM and RCS image
fusion techniques showed better results compared to other pansharpening methods, it is pertinent to
highlight that our study also showed the credibility of other pansharpening algorithms in terms of
spatial and spectral consistency as shown by the high correlation coefficients achieved in all methods.
We noted that the algorithms that ranked higher in terms of spectral consistency and synthesis were
outperformed by other competing algorithms in terms of spatial consistency. The study, therefore,
concludes that the selection of image fusion techniques is driven by the requirements of remote
sensing application and a careful trade-off is necessary to account for the impact of scene radiometry,
image sharpness, spatial and spectral consistency, and computational overhead.

Keywords: pansharpening; image fusion; image quality; Satellite Pour l’Observation de la Terre (SPOT)
6; spectral consistency; spatial consistency; synthesis

1. Introduction

High spatial resolution satellite imagery is increasingly adopted globally to support spatial
planning and monitoring of the built-up environment as evidenced by the proliferation of
high-resolution commercial satellite sensors such as Pleiades, Worldview 1–4, Satellite Pour l’Observation
de la Terre (SPOT) 6 and 7, Superview, and a wide range of high-resolution services and products derived
from these sensors. Most modern satellite sensors carry onboard spectral bands of different spatial
resolutions and spectral frequencies. In most instances, satellite sensors have narrow multispectral
bands of relatively courser spatial resolution and a wide panchromatic band with higher spatial
resolution. To facilitate better image visualization, interpretation, feature extraction, and land cover
classification, an image fusion technique called pansharpening is used to merge the visible multispectral
bands (red, blue, and green bands) and the panchromatic band to produce color images with higher
spatial resolution [1–7]. The panchromatic band has wide spectral coverage in the visible and
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near-infrared wavelength regions. Pansharpening is aimed at producing a synthesized multispectral
image with an enhanced spatial resolution equivalent to that of a panchromatic band [8–13].

Remote sensing using high-resolution satellites is now accepted as a dispensable tool that has the
potential to support decision making in a wide range of social benefit areas, such as infrastructure and
transportation management, sustainable urban development, disaster resilience, sustainable precision
agriculture, and energy and water resources management. The demand for services and products that
require users to discern features at high spatial and spectral precision has led most Earth observation
service providers to develop geospatial products that use pansharpened satellite imagery that emerges
from the fusion of the high spatial resolution panchromatic band and lower resolution multispectral
bands [14–16].

Many studies have proved the value of pansharpened imagery in discerning geometric features
from satellite imagery, cartography, geometric rectification, change detection, and in improving land
cover classification accuracies [17–20]. Many pansharpening techniques have been developed over
time to enable users to fully exploit the spatial and spectral characteristics available on most satellite
systems. Pansharpening techniques aim to simultaneously increase spatial resolution while preserving
the spectral content of the multispectral bands [11,20–22].

Pansharpening methods are classified into three broad categories: component substitution
(CS)-based methods; multiresolution analysis (MRA)-based methods; and variational optimization
(VO)-based methods. A new generation of pansharpening methods based on deep learning has
been evolving in recent years. Component substitution methods rely on the application of a
color decorrelation transform to convert unsampled lower-resolution multispectral bands into a
new color system that differentiates the spatial and spectral details; fusion occurs by partially or
wholly substituting the component that contains the spatial geometry by the panchromatic band and
reversing the transformation [23]. Most studies report that while component substitution methods
produce pansharpened products of good spatial quality the products suffer spectral distortions.
Component substitution is considered more computationally efficient and robust in dealing with
mismatches between the multispectral and panchromatic bands [10,23,24]. Typical examples of
component substitution methods include principal component analysis (PCA) transform, Brovey’s
band-dependent spatial detail (BDSD), partial replacement adaptive CS (PRACS), Gram–Schmidt (GS)
orthonormalization, and intensity-hue-saturation (IHS) transform. Multiresolution analysis-based
methods fuse the high frequencies inherent in the panchromatic band into the unsampled multispectral
components through a multiresolution decomposition [23]. In contrast to component substitution
methods, pansharpened products generated from multiresolution analysis are considered to produce
superior spectral quality but are prone to spatial distortions, particularly when multispectral bands
are misaligned with the panchromatic band [9,10]. This is especially the case in multiresolution
analysis techniques that apply transformations that are not shift-invariant to engender multiresolution
analysis. Examples of multiresolution methods include high-pass modulation (HPM), Laplacian
pyramid, discrete wavelet transform, and contourlet transform [23]. Such a transformation converts
unsampled lower-resolution multispectral bands into a new color system that differentiates the spatial
and spectral details and fusion occurs by partially or wholly substituting the component that contains
the spatial geometry by the panchromatic band and reversing the transformation [23]. In recent
years, a plethora of novel pansharpening methods have been developed to address the deficiencies of
traditional image fusion algorithms. Most of the new pansharpening techniques are broadly clustered
into generic categories such as component substitution (CS), multiresolution analysis (MRA), Bayesian,
model-based optimization (MBO), sparse reconstruction (SR), and variational optimization (VO)-based
methods [8,9,23,25].

The spectral, radiometric, and spatial integrity of pansharpened imagery is critical for several
quantitative remote sensing applications. To ascertain the spectral and spatial quality of pansharpened
images, many quality metrics were developed. Preservation of spectral content is measured by
statistical indicators such as correlation coefficient (CC), root means square error (RMSE), relative-shift
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means (RM), the universal image quality index, structure similarity index (SSIM), and spectral angle
mapper (SAM). A few quantitative measures were also developed to assess the spatial consistency
of pansharpened imagery and these include the spatial correlation coefficient (SCC) and the spatial
RMSE [10].

Pansharpened SPOT 6/7 and SPOT 5 imagery distributed by South Africa National Space
Agency(SANSA) is extensively used by government departments, municipalities, and public entities in
South Africa to support spatial planning, crop, and natural resource monitoring. SANSA has distributed
pansharpened orthobundles and an annual wall-to-wall national 2.5 m mosaic for SPOT 5 from 2005
to 2012 and a biannual 1.5 m SPOT 6/7 mosaic from 2013 up to 2018. While these pansharpened
products were successfully exploited by users, quality assessment of the pansharpened products was
limited to visual inspections of the products. In most cases, users of pansharpened imagery require
pansharpened products that retain the spectral content of the multispectral image and enhance their
spatial detail. The objectives of this study are therefore to compare different pansharpening techniques
by using quantitative image quality metrics and recommend the most ideal method with minimum
spectral and spatial distortions for the operational production of the SPOT 6 mosaic.

2. Materials and Methods

The SPOT 6/7 multispectral and panchromatic dataset over Pretoria, South Africa was used for the
study. SPOT 6 and SPOT 7 are identical sun-synchronous optical satellites launched on 12 September
2012 and 30 June 2014, respectively that co-orbit in the constellation at an altitude of 694 km and are
phased at 180 degrees (Airbus, Toulouse, France, 2018). The spectral configuration of the satellites
consists of blue (450–520 nm), green (530–590 nm), red (625–695 nm) and near-infrared (760–890 nm)
multispectral bands with a spatial resolution of 6 m and a panchromatic (450–745 nm) band with a
spatial resolution of 1.5 m and dynamic range of 12 bits per pixel. SPOT 6/7 are capable of contiguous
image segments of more than 120 km × 120 km or 60 km × 180 km from a single pass along one orbit.

To meet the operational needs of generating a national wall-to-wall mosaic of South Africa,
we selected established pansharpening methods for quantitative quality assessment. The Bayesian
(BAY), Brovey transform (BRO), color normalized spectral (CNS) sharpening, Ehlers fusion technique
(EHLERS), Gram–Schmidt (GRS), local mean and variance matching (LMVM), modified intensity
hue saturation (MIHS), Pansharp algorithm (PANSHARP), principal component analysis (PCA), ratio
component substitution (RCS), and wavelet resolution merge (WAVELET) techniques were evaluated
in the study.

The PANSHARP algorithm available in the PCI Geomatica software is a statistics-based fusion
technique aimed at maximizing spatial detail while minimizing color distortions [26]. It attempts to
preserve the spectral characteristics of the data. Developed by Zhang [27], the algorithm uses the
least-squares method to approximate the grey value relationship between the original multispectral,
panchromatic, and fused images to achieve the best color representation. The modified intensity hue
saturation (MIHS) fusion technique merges high-resolution panchromatic data with lower resolution
multispectral data to produce a pansharpened image that retains sharp spatial detail and a realistic
resemblance of the original multispectral scene colors. This approach assesses the spectral overlap
between each multispectral band and the high-resolution panchromatic band and weighs the merge
based on these relative wavelengths. The MIHS method was developed to address a shortcoming of the
intensity-hue-saturation (IHS) transformation where color distortions occurred due to discrepancies in
spectral characteristics between panchromatic and multispectral bands. The IHS fusion transforms
the RGB (red, green, and blue) space into the IHS color space and subsequently replaces the intensity
band with a high-resolution pan image in the fusion before performing a reverse IHS transformation.
The Ehlers (EHLERS) fusion technique uses an IHS transform coupled with Fourier domain filtering
and aims to maintain the spectral characteristics of the fused image [22]. This is achieved by using the
high-resolution panchromatic image to sharpen the multispectral image while avoiding adding new
grey level information to its spectral components by first separating the color and spatial information.
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The spatial information content is then embedded as an adaptive enhancement to the images using a
combination of color and Fourier transforms [22]. The Brovey transform (BRO) algorithm applies a
ratio algorithm to combine the images. This is done by first multiplying each multispectral band by a
high-resolution pan band and subsequently dividing each product by the sum of the multispectral
bands. It is known to preserve the relative spectral contributions of each pixel but substitutes scene
brightness with the high-resolution panchromatic (PAN) image [28]. The principal component analysis
(PCA) transform converts intercorrelated Multispectral (MS) bands into a new set of uncorrelated
components. The first component that resembles a high-frequency band is replaced by a high-resolution
panchromatic band for the fusion. The panchromatic band is fused into low-resolution multispectral
channels by performing a reverse PCA transform. A high-resolution fused image is generated after
the reverse PCA transformation [29]. The color normalized spectral sharpening (CNS) algorithm
implemented in Environment for Visualizing Images (ENVI) software is employed to simultaneously
sharpen any defined number of bands and retain the characteristics of the original bands in terms
of data type and dynamic range. In this case, the higher resolution bands are used to sharpen the
lower resolution bands and in the ENVI implementation, the lower resolution multispectral bands
are expected to fall in the same spectral range with the high-resolution panchromatic channel [30,31].
The multispectral bands are clustered into spectral segments defined by the spectral range of the
high-resolution panchromatic sharpening band. The pansharpened image is generated by multiplying
the high-resolution panchromatic with each lower resolution multispectral band before normalizing
the computation by dividing the sum of the input spectral channels in each segment.

The wavelet resolution merge (WAVELET) fusion approach sharpens low-resolution multispectral
bands using a matching high-resolution panchromatic band by first decomposing the high-resolution
panchromatic band into a set of low-resolution multispectral bands with corresponding wavelet
coefficients (spatial details) for each level. This is done by infusing the high-resolution spatial into
each of the multispectral bands by performing a reverse wavelet transform on each MS band together
with the corresponding wavelet coefficients. In a sense, wavelet-based processing is akin to Fourier
transform analysis, except fast Fourier transform analysis uses long continuous (sine and cosine) waves,
whereas wavelet transform analysis applies short and discrete wavelets [32–35]. The Gram–Schmidt
(GRS) pansharpening algorithm available in the ENVI fuses the high-resolution panchromatic band to
the lower resolution multispectral bands by simulating the panchromatic band from the multispectral
band by averaging the multispectral bands. A Gram–Schmidt transformation is computed from
the simulated panchromatic band and the multispectral band, whereby the simulated panchromatic
band is used as the first band. Further, the high spatial resolution panchromatic band is substituted
with the first Gram–Schmidt band before applying an inverse Gram–Schmidt transformation to
generate the pansharpened multispectral bands [36,37]. The ratio component substitution (RCS)
pansharpening algorithm implemented in Orfeo ToolBox [38] fuses orthorectified panchromatic (PAN)
and multispectral (XS) images using a low pass sharpening filter as shown in the computation below
(OTB, 2019).

XS
Filtered (PAN)

PAN E (1)

where E is a vector of random errors that is considered to be stochastically independent of Z.
The Bayesian fusion (BAY) applies elementary calculus in the fusion of the panchromatic and

multispectral images to generate a pansharpened image [38]. This fusion approach uses the statistical
relationships amongst the spectral bands and the panchromatic band. Bayesian pansharpening
techniques use three images that include a panchromatic band and a multispectral image resampled
to the same spatial resolution as the panchromatic band. The panchromatic band is weighted
in comparison to the multispectral bands. A thorough mathematical description of the Bayesian
pansharpening algorithm implemented in Orfeo ToolBox is provided by [39]. This pansharpening
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technique is dependent on the notion that the variables of interest, expressed as vector Z, are not
directly observable and related to observable variable Y through an error-like equation.

Y = g(Z) + E (2)

where g(Z) is considered a set of functionals.
The LMVM pansharpening algorithm implemented in OTB software uses an LMVM filter that

applies a normalization function at a local scale within the images to equate the local mean and
variance values of the high spatial resolution panchromatic band with those of the lower resolution
multispectral image [38,40]. The resulting small residual differences are then considered to arise
from the high-resolution panchromatic band [40]. Rubiey [40] further notes that this form of filtering
improves the correlation between the pansharpened image and the original multispectral image. The
LMVM algorithm is highlighted below.

Fi,j =

(
Hi,j −Hi,j

)
·s(L)i,j(w,h)

s(H)i,j(w,h)
E (3)

where Fi,j refers to the fused image, Hi,j and Li,j denote high and low spatial resolution images
respectively at pixel coordinates i,j. (H)i,j(w,h) and (L)i,j(w,h) are local means calculated inside the
window of size (w, h). s denotes the local standard deviation.

Spectral and Spatial Quality Evaluation of Pansharpened Images

Using Ward’s three property criteria, we tested the spectral synthesis and consistency properties
of the pansharpened images using image quality indices. According to Wald [41], the first property
stipulates that the pansharpened image, once degraded from its original resolution, should be as
identical as possible to the original image. Secondly, the pansharpened image should be as identical
as possible to the image that a matching sensor would detect with the highest resolution. Last,
the multispectral pansharpened image should be as identical as possible to the multispectral set of
images that the matching sensor would detect with the highest resolution. For assessment purposes,
these three properties are further condensed into two properties: consistency and synthesis. The
Ward protocol for the quality assessment of pansharpened imagery stipulates that consistency can be
tested by downsampling the merged image from the higher spatial resolution to its original spatial
resolution. The nearest neighbor resampling method was used in the downsampling process to
ensure minimum transformation of the pixel values. To validate the synthesis property, the original
high spatial resolution panchromatic band and the lower spatial resolution multispectral bands were
downsampled to their lower resolutions.

To validate the synthesis property, we first degraded both the multispectral images and the
panchromatic band by a factor of 4. This downsampling procedure meant the spatial resolution of the
multispectral images changed from 6 m to 24 m while the panchromatic band changed from 1.5 m to
6 m. The degraded multispectral and pansharpened images were then fused and the pansharpened
image was then subsequently compared to the original multispectral images for quality assessment.
To verify the consistency property, we first pansharpened the native multispectral and panchromatic
images to create a fused image that we further downsampled by a factor of 4, thus changing its spatial
resolution of the pansharpened image from 1.5 m to 6 m. We subsequently compared the downsampled
pansharpened image to the original 6 m multispectral image. The process was applied for all eight
pansharpening techniques assessed in this paper.

To quantitatively assess the spectral consistency of the pansharpened results the following
statistical measures were used: correlation coefficient (CC), Erreur Relative Global Adimensionnelle de
Synthese (ERGAS), difference in variance (DIV), bias, root mean square error (RMSE), relative average
spectral error (RASE), and universal image quality index (UIQI). The quality of the synthesis in an
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important property in pansharpening and we used the ERGAS indices using the original multispectral
and panchromatic band as a reference to assess the quality of the synthesis. The ERGAS index, when
used in the spatial and spectral dimension, is indicative of the amount of spatial and spectral distortions,
respectively. The spatial consistency of the pansharpened results was assessed using a spatial metric
that computes the spatial correlation coefficient (SCC) between the high-frequency components of
the fusion product and the original PAN. In this case, we used a 3 × 3 Laplacian edge detection
convolution filter to filter the bands of the pansharpened images and the original panchromatic band
before computing the correlation coefficients between them.

The CC is one of the most widely used statistical measures of the strength and direction of the
linear relationship between two images [37]. It is used to determine the amount of preservation of
spectral content in two images. The CC between each band of the reference and the pansharpened
image indicates the spectral integrity of the pansharpened image. The best fusion will have a higher
value close to +1. RMSE measures the similarity between each band of the original and fused image.
It measures the changes in the radiance of the pixel values for each band of the input multispectral
image and pansharpened image. It is a very good indicator of the spectral quality when considered
along homogeneous regions in the image. The best fusion will have a lower value close to zero [42].
RASE characterizes the average performance of a method in the considered spectral bands. The value
is expressed in percentage and tends to decrease as the quality increases. UIQI measures the difference
in spectral information between each band of the merged and reference image to estimate the global
spectral quality of the merged images. It models distortion using three parameters: loss of correlation,
luminance distortion, and contrast. The best fusion will have a higher value close to +1. ERGAS is
indicative of the synthesizing quality of the pansharpened image. It is a global quality index that
is sensitive to mean shifting and dynamic range change. ERGAS measures the amount of spectral
distortion in the image. The best fusion will have a lower value, mostly when less than the number of
bands [43]. Bias reveals the error and spectral accuracy of the pansharpened image. Ideal values are
considered to be close to zero. The difference in variance (DIV) measures the quality of the image fusion
by calculating the mean difference in variances between the pansharpened image and the original
multispectral image. The quality of the pansharpening is considered ideal if the values are closer
to zero.

3. Results and Discussion

The results of this study are presented and discussed in this section. Spatial consistency, spectral
consistency, and spectral synthesis are presented in Tables 1–9.

3.1. Spatial Consistency Quality Assessment

The spatial consistency results are highlighted in Table 1 below.

Table 1. Spatial consistency: correlation coefficient (CC) Laplacian filtering. Abbreviations: Bayesian
fusion (BAY); Brovey transform(BRO); Color Normalized Spectral sharpening (CNS); Ehlers fusion
technique (EHLERS); Gram–Schmidt (GRS); Local Mean and Variance Matching (IMVM), Modified
Intensity Hue Saturation (MIHS), Pansharp algorithm (PANSHARP), Principal component analysis
(PCA); Ratio Component Substitution (RCS); WAVELET, Wavelet Resolution merge fusion (WAVELET).

BAND # BAY BRO CNS EHLERS GRS IMVM MIHS PANSHARP PCA RCS WAVELET

1 0.854 0.761 0.853 0.801 0.853 0.785 0.826 0.845 0.846 0.844 0.542
2 0.854 0.834 0.852 0.801 0.853 0.784 0.825 0.845 0.845 0.845 0.542
3 0.854 0.847 0.851 0.801 0.853 0.783 0.824 0.845 0.837 0.845 0.543

AVERAGE 0.854 0.814 0.852 0.801 0.853 0.784 0.825 0.845 0.843 0.844 0.542

Results are reflective of the correlation between the Laplacian filtered bands of the pan sharpened
image and the Laplacian filtered panchromatic band. The domain value range from −1 to +1 and ideal
values should be close to 1. The ideal value is 1. The results show the best spatial consistency results
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were produced by the Baysian pansharpening method with Gram–Schmidt in second place and CNS
in third place. The wavelet pansharpening technique produced the worst spatial consistency results.

3.2. Spectral Consistency

The results for the spectral consistency evaluation are outlined in Tables 2–8 below.

Table 2. Spectral consistency: correlation coefficient (CC).

BAND # BAY BRO CNS EHLERS GRS IMVM MIHS PANSHARP PCA RCS WAVELET

1 0.655 0.499 0.690 0.714 0.586 0.970 0.721 0.620 0.579 0.913 0.645
2 0.587 0.407 0.560 0.584 0.498 0.969 0.585 0.556 0.533 0.866 0.870
3 0.540 0.546 0.452 0.410 0.509 0.968 0.415 0.512 0.543 0.786 0.907

AVERAGE 0.594 0.484 0.567 0.570 0.531 0.969 0.574 0.562 0.552 0.855 0.808

The CC results are indicative of spectral similarity between the fused image and original
multispectral image. The values range from −1 to +1 and the ideal value is considered to be close to 1.
While this metric is quite popular, one of its disadvantages is that it is insensitive to a constant gain
and bias between two images and is not able to distinguish subtle fusion artifacts. The results indicate
that the IMVM method produced the best results followed by the RCS method. The worst results were
produced by the Brovey method.

Table 3. Spectral consistency: Erreur Relative Global Adimensionnelle de Synthese (ERGAS).

BAND # BAY BRO CNS EHLERS GRS IMVM MIHS PANSHARP PCA RCS WAVELET

1 7.788 27.518 25.830 6.591 7.322 1.332 5.638 6.808 41.299 2.361 12.158
2 6.737 26.775 24.689 10.511 6.204 1.025 5.448 5.744 34.792 2.288 3.406
3 5.089 25.571 23.650 9.370 4.454 0.736 5.239 4.328 24.757 2.220 2.614

AVERAGE 6.647 26.699 24.801 8.993 6.122 1.062 5.457 5.730 34.374 2.296 7.450

The ERGAS results are indicative of the spectral distortions in the fused image. This gives an
indication of the general quality of the fused image at a global level. Lower values are considered
more ideal and the domain values range from zero to infinity. The best results were produced by the
IMVM pansharpening method while RCS was second. The Brovey method performed poorly.

Table 4. Spectral consistency: universal image quality index (UIQI).

BAND # BAY BRO CNS EHLERS GRS IMVM MIHS PANSHARP PCA RCS WAVELET

1 0.610 0.008 0.049 0.719 0.569 0.973 0.721 0.614 0.307 0.921 0.548
2 0.524 0.004 0.046 0.532 0.472 0.972 0.569 0.539 0.278 0.869 0.786
3 0.473 0.009 0.046 0.345 0.475 0.972 0.375 0.491 0.308 0.776 0.866

AVERAGE 0.536 0.007 0.047 0.532 0.505 0.972 0.555 0.548 0.298 0.856 0.733

The UIQI results show the spectral and spatial distortions in the fused image. Results of this
similarity index point to correlation losses as well as distortions in luminance and contrast. The domain
values range from −1 to 1 and values close to 1 are considered ideal. The ideal value for UIQI is 1. The
IMVM pansharpening algorithm produced the best results while the RCS method took second place.
The worst results were produced by the Brovey method.

Table 5. Spectral consistency: relative average spectral error (RASE).

BAND # BAY BRO CNS EHLERS GRS IMVM MIHS PANSHARP PCA RCS WAVELET

1 28.002 96.989 91.462 22.001 26.309 4.681 19.458 24.632 156.307 8.240 52.354
2 24.484 97.909 90.393 38.481 22.539 3.587 19.456 20.789 132.507 8.229 11.533
3 18.752 96.851 89.575 34.914 16.500 2.599 19.432 15.842 94.849 8.214 9.395

AVERAGE 23.918 97.573 90.696 32.745 22.025 3.741 19.515 20.606 129.356 8.239 31.080
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RASE results show the average performance of the fusion algorithm in spectral bands and ideal
values should be as small as possible. The results show that the IMVM fusion method produced the
best results followed by the RCS method. The PCA method produced the worst results.

Table 6. Spectral consistency: root square mean error (RMSE).

BAND # BAY BRO CNS EHLERS GRS IMVM MIHS PANSHARP PCA RCS WAVELET

1 86.162 304.456 285.781 72.925 81.012 14.740 62.375 75.319 456.934 26.118 134.517
2 77.854 309.398 285.298 121.456 71.688 11.840 62.955 66.371 402.044 26.444 39.359
3 58.370 293.318 271.289 107.487 51.095 8.442 60.092 49.640 283.980 25.465 29.982

AVERAGE 74.129 302.390 280.789 100.623 67.932 11.674 61.807 63.776 380.986 26.009 67.953

The RMSE results are reflective of the average spectral distortion arising from the image fusion
and the results are indicative of spectral quality in homogeneous zones in the image. The domain
for RMSE value ranges from zero to infinity and lower values close to zero are considered ideal and
reflective of high quality. The best results were produced by the IMVM method followed by the RCS
method. The worst results were produced by PCA and the Brovey method.

Table 7. Spectral consistency: difference in variance (DIV).

BAND # BAY BRO CNS EHLERS GRS IMVM MIHS PANSHARP PCA RCS WAVELET

1 7.538 1.286 1.475 2.983 6.768 0.676 4.921 5.468 13.377 1.053 7.142
2 6.743 1.120 1.342 2.892 5.500 0.660 4.737 4.612 10.110 1.439 2.243
3 5.604 1.114 1.479 3.438 5.125 0.506 5.371 4.037 9.236 1.319 2.494

AVERAGE 6.629 1.173 1.432 3.104 5.798 0.614 5.010 4.706 10.908 1.270 3.959

The results indicate the fusion quality over the whole image by showing difference in variances
relative to the original one. The metric reveals a decrease or increase of information content as a result
of the pansharpening process. The results are considered ideal positive when the information content
decreases and undesirable when the information content increases. The ideal value should be close to
0. The IMVM pansharpening method produced the best results. The Brovey transform method ranked
second and PCA had the worst performance.

Table 8. Spectral consistency: bias.

BAND # BAY BRO CNS EHLERS GRS IMVM MIHS PANSHARP PCA RCS WAVELET

1 0.108 0.937 0.885 0.131 0.116 0.005 0.086 0.115 1.485 0.006 0.459
2 0.093 0.958 0.884 0.340 0.099 0.004 0.086 0.096 1.259 0.007 0.069
3 0.072 0.956 0.884 0.299 0.073 0.003 0.086 0.072 0.900 0.007 0.058

AVERAGE 0.091 0.950 0.884 0.257 0.096 0.004 0.086 0.094 1.215 0.007 0.195

The results are reflective of difference between the original image and fused image and the ideal
value should be as small as possible. The IMVM method showed the best results followed by the RCS
method. The Brovey transform method showed the worst performance.

3.3. Spectral Synthesis

The spectral synthesis results are shown in Table 9 below.

Table 9. Spectral synthesis: ERGAS.

BAND # BAY BRO CNS EHLERS GRS IMVM MIHS PANSHARP PCA RCS WAVELET

1 7.654 28.079 26.385 7.049 8.553 4.988 8.951 8.655 23.266 6.617 13.176
2 6.432 26.975 24.875 6.819 7.092 3.726 5.808 7.139 19.217 6.113 4.341
3 4.793 25.658 23.720 6.576 5.034 2.649 6.354 5.317 13.579 5.698 4.257

AVERAGE 6.426 27.034 25.122 6.846 7.069 3.921 7.202 7.196 19.177 6.180 8.398
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The best result is indicated by the smallest value. The results indicate that IMVM pansharpening
method produced the best spectral synthesis followed by the RCS method. The Brovey method
produced the worst synthesis.

The best spectral synthesis in IMVM was reflected by ERGAS 3.921, RCS 6.180, BAY 6.426, EHLERS
6.846, and GRS 7.069.

The IMVM algorithm produced the best pansharpening results in terms of spectral consistency
and synthesis as revealed by the CC, bias, DIV, ERGAS, UIQI, RASE, and RMSE results. In terms of
spectral consistency, one of the properties tested under Ward’s criteria, the results of this study also
show that the IMVM pansharpening technique had an average high correlation coefficient of 0.969 in
the visible bands, the highest among the fusion algorithms tested in the study. The performance of
the IMVM algorithm is further shown by the fact that it had the lowest bias and DIV values of 0.004
and 0.616, respectively. The superiority of the IMVM algorithm is further attested to by a very high
UIQI value of 0.972. Such a high UIQI value demonstrates high spectral consistency as it considers
factors such as loss of correlation, luminance, and contrast distortion. The IMVM algorithm had the
best RMSE, RASE, and ERGAS values of 11.674, 3.741, and 1.062, respectively, the lowest amongst
the tested pansharpened methods. The pansharpened image maintains almost the same natural color
as the original multispectral images and the same level of spatial detail as the original panchromatic
images. Results of the assessment also revealed that the IMVM algorithm had the best synthesis as
shown by an ERGAS of 3.921, the lowest in the analysis, indicating that the fused image had minimum
distortions and is quite similar to the reference image.

The RCS algorithm ranked second in the assessment and showed good results in terms of spectral
consistency and synthesis. The ability of the algorithm to retain spectral information is shown by a
correlation coefficient of 0.855, bias of 0.007, DIV of 1.270, ERGAS of 2.296, UIQI of 0.856, RASE of 8.239,
and RMSE of 26.009. The other pansharpening methods that performed comparatively well in terms of
spectral consistency were the wavelet principal components, MIHS, and PANSHARP methods. The
PCA and Brovey methods produced consistently poor results in terms of spectral consistency as shown
by the CC, bias, DIV, ERGAS, UIQI, RASE, and RMSE results.

Spectral synthesis is one of the properties that needs to be analyzed under Ward’s three property
criteria. As pointed out earlier, our results indicate that the IMVM algorithm produces the best spectral
synthesis as shown by a very low ERGAS value of 3.921. Once again, the RCS algorithm ranked second
with an ERGAS value of 6.180. Good spectral synthesis results were also obtained by the BAY, EHLERS,
GRS, PANSHARP, and MIHS fusion techniques. The spectral synthesis results also revealed the poor
performance of the Brovey, CNS, and PCA methods as shown by ERGAS values of 27.034, 25.122, and
19.177, respectively.

The third property evaluated in this study in terms of Ward’s three property criteria related to
spatial consistency. The correlation coefficient results ranked BAY, GRS, CNS, PANSHARP, RCS, PCA,
and MIHS algorithms among the top-performing fusion techniques in terms of spatial consistency.
While the Bayer algorithm was considered the best in terms of spectral consistency, most of the
algorithms showed high spatial correlation with a correlation coefficient above 0.8 and the wavelet
principal component method having the lowest value of 0.542. In contrast to the spectral consistency
and synthesis results, the IMVM algorithm did not feature among the top-performing algorithms
although it still had a high correlation coefficient of 0.784. This result seems to suggest there is a
trade-off between spectral consistency and synthesis with spatial consistency.

While the IMVM and RCS pansharpening methods showed superior performance compared
to the other fusion methods such as the PANSHARP, MIHS, GRS, wavelet transform, Bayesian, and
EHLERS pansharpening techniques, the results of this study clearly show the credibility of these
methods in terms of preservation of spectral and spatial information. When selecting the most ideal
pansharpening method to use for practical applications, a trade-off is required in terms of factors such
as the need for retention of scene radiometry, image sharpness, spatial and spectral consistency, and
computational overhead.
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Color distortion due to pansharpening could be attributed to the broadening of the panchromatic
band into the near-infrared wavelength region in some modern sensors [26]. In the case of SPOT 6/7,
the panchromatic bands have a spectral range of 450 nm to 745 nm, clearly overshooting the bands in
the visible spectrum and encroaching into the near-infrared region that starts from the nominal red
edge at 700 nm. This spectral coverage essentially spans over the visible spectrum that contains the
blue (450–450 nm), green (530–590 nm), and red (625–695 nm) spectral channels. The extension of the
panchromatic band affects the grey values of the panchromatic channel rendering some traditional
pansharpening techniques less effective. The PANSHARP algorithm, for instance, is resilient to this
challenge in that it is a statistics-based technique that uses the least-squares method to determine the
best fit between the grey level values of the spectral bands being merged and adjusts the contribution
of each band to the pansharpening result to minimize color distortions. Zhang [26,27] also highlights
that the statistics-based approach utilized in the PANSHARP algorithm lessens the influence of dataset
discrepancy and automates the pansharpening process. This assertion is supported in this study as
shown by the superior performance of the IMVM, RCS, and Bayer’s fusion techniques. The high
performance of the IMVM image fusion algorithm was confirmed in similar studies. Witharana [44]
reported that the IMVM algorithm produced some of the best fusion results when compared to a
range of pansharpening algorithms when evaluated using CC, RMSE, Deviation Index (DI), SD, and
DIV metrics. Nikolakopoulos and Oikonomidis [43] compared fusion techniques and confirmed
that the LMVM algorithm produced the best spectral consistency and synthesis when applied to
Worldview-2 data. As in our case, other techniques that produced favorable spectral consistency and
synthesis results included PANSHARP, MIHS, EHLERS, GRM, and wavelet principal components
techniques [44,45].

The shortcomings of traditional fusion techniques such as PCA, Brovey transform, and wavelet
fusion are well described by Zhang [26]. To improve the quality of pansharpening results of traditional
pansharpening methods some propositions recommended include stretching the principal components
in PCA pansharpening to give them a spherical distribution. Alternatively, the first principal component
could be cast-off. Modifications of traditional pansharpening techniques are necessary to deal with
some of the limitations confronted in dealing with new satellite sensors. In a general sense, the quality
of image geometric and radiometric rectifications done before the pansharpening directly impacts on
the quality of all pansharpening results for all the image fusion techniques.

Lastly, the spectral integrity of pansharpened images is an important requirement for most
quantitative remote sensing applications. While this study used an array of reference-based metrics
to assess the image quality of various pansharpened images in terms of spectral consistency, spatial
consistency, and image synthesis, the information content within the images was not quantified. The
use of image information metrics such as Shannon entropy and Boltzmann entropy [46–50] enables
the quantification of the average amount of information in the fused images and could be used to
effectively assess the efficacy of various pansharpening methods in terms of the ability to retain or
enhance both spectral and spatial information.

4. Conclusions

Pansharpening in increasingly becoming an important procedure critical in meeting the
ever-increasing demands for high-resolution satellite imagery. Preservation of spectral and spatial
information is an important requirement for most quantitative remote sensing applications. In this
study, image quality metrics were used to evaluate the performance of twelve image fusion techniques.
Twelve pansharpening algorithms were presented in this study and the IMVM algorithm was the best
in terms of spectral consistency and synthesis followed by the RCS algorithm. Although the IMVM and
RCS image fusion techniques showed better results compared to the other pansharpening methods,
it is pertinent to highlight that our study also showed the credibility of the other pansharpening
algorithms in terms of spatial and spectral consistency as shown by the high correlation coefficients
achieved in all methods. The spatial and spectral quality of the pansharpening could, therefore, be
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improved by implementing some modifications to the traditional pansharpening techniques to deal
with the discrepancy that arises due to the broadened panchromatic band that extends to the near-red
region. The use of statistics-based techniques such as the IMVM, PANSHARP, and Bayers algorithms
used in this study could address this shortcoming. In terms of spatial consistency, BAY, GRS, CNS,
PANSHARP, RCS, PCA, and MIHS algorithms showed very good spatial consistency as shown by the
high spatial correlation coefficients. The study noted that the algorithms that ranked higher in terms of
spectral consistency were outperformed by other competing algorithms in terms of spatial consistency.
We, therefore, conclude that the selection of image fusion techniques is driven by the requirements
of remote sensing application and a careful trade-off is necessary to account for the impact of scene
radiometry, image sharpness, spatial and spectral consistency, and computational overhead.
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Abstract: The sparsity of images in a certain transform domain or dictionary has been exploited in
many image processing applications. Both classic transforms and sparsifying transforms reconstruct
images by a linear combination of a small basis of the transform. Both kinds of transform are
non-redundant. However, natural images admit complicated textures and structures, which can
hardly be sparsely represented by square transforms. To solve this issue, we propose a data-driven
redundant transform based on Parseval frames (DRTPF) by applying the frame and its dual frame
as the backward and forward transform operators, respectively. Benefitting from this pairwise use
of frames, the proposed model combines a synthesis sparse system and an analysis sparse system.
By enforcing the frame pair to be Parseval frames, the singular values and condition number of
the learnt redundant frames, which are efficient values for measuring the quality of the learnt
sparsifying transforms, are forced to achieve an optimal state. We formulate a transform pair
(i.e., frame pair) learning model and a two-phase iterative algorithm, analyze the robustness of
the proposed DRTPF and the convergence of the corresponding algorithm, and demonstrate the
effectiveness of our proposed DRTPF by analyzing its robustness against noise and sparsification
errors. Extensive experimental results on image denoising show that our proposed model achieves
superior denoising performance, in terms of subjective and objective quality, compared to traditional
sparse models.

Keywords: parseval frame; transform; sparse representation

1. Introduction

A transform is a classical technique in signal processing, such as compression, classification,
and recognition [1–5]. Traditional transforms, based on analytic orthogonal bases such as DCT,
DFT, and Wavelets [1,6], suffer from two shortcomings: they do not depend on the data, and they
reconstruct each image by approximation in the same subspace spanned by a non-redundant basis of
the transforms, which limits the compact representation of natural signals.

Various models for sparse approximation have appeared in recent decades and play a fundamental
role in modeling natural signals, with applications of denoising [7–10], super-resolution [11–13],
and compression [1]. Such techniques exploit the sparsity of natural signals in analytic transform
domains such as DCT, DFT, and various learning-based dictionaries [14–16].

There are two typical models for sparse representation: synthesis [10,14,15] and analysis [16–19]
models. So far, most sparse models rely on the concept of synthesis, which represents the underlying
signal as a sparse combination of atoms from a given dictionary. Specifically, x = Dα, where x ∈ R

N is
the original signal, D ∈ R

N×M is the given dictionary whose columns are the atoms, and α ∈ R
M is the

sparse coefficient, which is usually measured by the �0-norm ‖ · ‖0. A learning analysis sparse model
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was proposed by Elad [14,19], formulated as ‖Ωx‖0 = r with notation similar to that of the synthesis
one. Instead of reconstructing the signal using a few atoms in dictionary (like in the synthesis model),
an analysis model decomposes a signal in a sparse fashion, based on an assumption that the signal lies
in a sparse subset of the dictionary.

An analysis model can be straightforwardly regarded as a forward transform if its corresponding
backward transform Ω∗ is available. Recent research on transforms [2,4,5,20,21] has demonstrated
the advantages of applying sparse constraints in transform learning. Motivated by this idea,
many studies have been devoted to image denoising [5,20], classification [3,4], and other signal
processing methods [21]. Learning-based transforms with sparse constraints measure the transform
error, called sparsificaiton error, in the analysis or frequency domain, rather than in the temporal
domain. Given training data X ∈ R

N×L with signal vectors xi ∈ R
N , i = 1, . . . , L as its columns,

the problem of training a square sparsifying transform W ∈ R
N×N [21] is formulated as

min
W,Y

‖WX − Y‖2
F + μ‖W‖2

F − λ log det(W) (1)

s.t. ‖yi‖0 ≤ s,

where yi, i = 1, 2, . . . , L are the columns of Y satisfying a sparse constraint and μ‖W‖2
F − λ log det(W)

is a regularizer, which keeps W non-singular.
As we can see, learning-based models effectively reveal the relationship between the transform

and the data. The square transform, which consists of a non-redundant basis, cannot express
complicated images. In 2014, an overcomplete transform learning model called OCTOBOS [20]
was proposed, which consists of a series of square transforms to represent different features of natural
images. However, the number of transforms must be pre-defined, which admits limited flexibility
in applications.

In recent years, frames, as an overcomplete system, have been applied in image processing
such as denoising [22,23], image compressive [24] and high resolution image reconstruction [25].
A frame can be regarded as an extension of an orthogonal basis, as a frame Φ ∈ R

N×M(N < M)

also spans an N-dimensional space. Compared to a general frame, a tight frame (e.g., wavelet tight
frames [26], ridgelets [27], curvelets [28], shearlets [29], and others) can achieve wider use, as the lower
and upper frame bounds are equal. A tight frame inherits the good characteristics of an orthogonal
basis in signal processing, as its rows are orthogonal [30]. In a sparse representation, a redundant
frame serves as an overcomplete dictionary to represent the signal [23]. With the development of
data-driven approaches, learning-based tight frames have recently been researched [31–33]. In [31],
redundant tight frames were used in compressed sensing. In [32], tight frames were applied to
few-view image reconstruction. In [33], a data-driven method was presented, in which the dictionary
atoms associated with a tight frame are generated by filters. In general, these studies model the frame
learning problem in the dictionary learning form with tight frame constraints. These methods focus
on tight frames, as the singular values of a tight frame are equal, which leads to simple optimization.
A tight frame is a Parseval frame if the frame bounds are equal to 1. In fact, a Parseval frame is
a redundant extension of the concept of a standard orthogonal basis. Due to its super-performance in
linear signal representation, it can be well-used in sparse signal representation and optimization.

In this paper, we propose a data-driven redundant transform model based on Parseval frames
(DRTPF for short), and present a model for learning DRTPF as well as a corresponding algorithm for
solving the model. The algorithm consists of a sparse coding phase and a transform learning phase.
The sparse coding phase updates the sparse coefficients and a threshold value using a conventional
Batch Orthogonal Matching Pursuit (BtOMP) and pointwise thresholding. The transform learning
phase performs the update of the frame using Gradient Descent and a relaxation or contraction singular
values mapping, as well as updating the dual frame, in an atom-wise manner, using Least Squares.
The advantages of the proposed DRTPF model (as well as the algorithm) are demonstrated with
natural image denoising. To summarize, this paper makes the following contributions:
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1. We propose the DRTPF method by integrating redundant Parseval frames with sparse constraints.
The DRTPF method consists of a forward transform and a backward transform, which correspond
to a frame and its dual frame, respectively. In other words, DRTPF bridges synthesis and analysis
models by assuming that two models share almost the same sparse coefficients.

2. DRTPF outperforms traditional transforms and frames by learning from data which
exploits the features of natural images, whereas traditional transforms and frames admit
a uniform representation of various images, which tend to fail to characterize the intrinsic
individual-specific features.

3. Traditional transforms are usually orthogonal transforms and the signals remain isometric,
yet they suffer from weak robustness due to their strict properties. In contrast, DRTPF preserves
the signals in a bounded fashion, which admits higher robustness and flexibility.

4. We propose a model for learning DRTPF and compare DRTPF with traditional transforms
and sparse models in robustness analysis and image denoising experiments. Both qualitative
and quantitative results demonstrate that DRTPF outperforms traditional transforms and
sparse models.

The rest of this paper is organized as follows. Section 2 reviews the related work on frames.
Section 3 proposes the framework of DRTPF, including the form of DRTPF (Section 3.1) and the
learning model and corresponding algorithm for DRTPF (Section 3.2). In Section 4, we demonstrate
the effectiveness of our DRTPF model by analyzing the convergence of the corresponding algorithm
and give experimental results on robustness analysis and image denoising, as well as evaluating the
effectiveness of DRTPF compared with traditional transforms and sparse models.

2. Related Work

Let H be an N-dimensional discrete Hilbert space. A sequence {φi}M
i=1 ∈ H is a frame if and only

if there exist two positive numbers A and B such that [30]

A‖x‖2
2 ≤

M

∑
i=1

| < x, φi > |2 ≤ B‖x‖2
2 ∀x ∈ HN . (2)

A and B are called the bound of the frame and we call formula 2 the frame condition, as it is
a termination of frame. Furthermore, {φi}M

i=1 is tight if A = B is possible [30]. In particular, {φi}M
i=1 is

a Parseval frame if A = B = 1 is satisfied. There are two associated operators can be defined between
the Hilbert space HN and a Square integrable Space lM

2 (·) once a frame is defined: One is the analysis
operator, T, defined by

(Tx)i =< x, φi >, ∀x ∈ HN , (3)

and the other is its adjoint operator, T∗, which is called the synthesis operator:

T∗c =
M

∑
i=1

cφi ∀c = (ci)i∈J ∈ lM
2 (T). (4)

Then, the frame operator can be defined by the following canonical expansion

Fx = T∗Tx =
M

∑
i=1

< x, φi > φi. (5)

Let x ∈ R
N be an arbitrary vector in H. A reconstruction function is an expression with the

following form

x =
M

∑
i=1

< x, ψi > φi, ∀x ∈ H, (6)
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where the sequence {ψi}M
i=1 ∈ H is called the dual frame of {φi}M

i=1. Obviously, {ψi}M
i=1 is not unique,

unless {φi}M
i=1 is an orthogonal basis. In fact, for an arbitrary given frame {φi}M

i=1, there is a series of
dual frames corresponding to it. The non-uniqueness of the dual frame allows us to achieve a better
expression of the signal by optimizing the dual frame.

The frame Φ and its dual frame Ψ can be stacked as the matrices Φ = [φ1, φ2, . . . , φM] and
Ψ = [ψ1, ψ2, . . . , ψN ], respectively. The matrices can be regard as sparse representation dictionaries,
transform operators and so on. A frame Φ with the bounds A and B means that the maximum and
minimum singular values of it are equal to A and B respectively. What’ more, the singular values of
tight frame are all equal, particularly, the singular values of Parseval frame are all equal to 1. Thus,
when the frame Φ is applied as sparse representation dictionary or transform operator, its condition
number are determined by B

A . In this way, the model will never provide degenerate dictionary or
transform. In fact, frames are matrices with special structure.

3. Data-Driven Redundant Transform Model Based on Tight Frame

In this section, we present our data-driven redundant transform based on Parseval frames
(DRTPF, Section 3.1) model along with an efficient redundant transform learning algorithm (Section 3.2)
which contains the sparse coding algorithm (Section 3.2.1) and the transform pair update algorithm
(Section 3.2.2).

3.1. Data-Driven Redundant Transform

In this subsection, we first propose a threshold-based reconstruction function, with the assumption
that the signal is sparse in the dual frame domain. Then, we present the data-driven redundant
transform based on Parseval frames model.

Let {φi}M
i=1 be a frame and {ψi}M

i=1 be its dual frame. For convenience, we stack them as the
matrices Φ = [φ1, φ2, . . . , φM] and Ψ = [ψ1, ψ2, . . . , ψN ], respectively. Let x = x̂ + e be a signal
vector, where x̂ is the original noiseless signal and e is a zero-mean white Gaussian noise. The frame
reconstruction function (6) can be formulated as x = ΦΨTx = ΦΨT(x̂ + e). By assuming the sparse
prior of signals over the Ψ domain, we apply a columnwise hard thresholding operator Sλ(·) (which
shall be defined in the next subsection) on ΨT(x̂ + e), such that

x̂ = ΦSλ(Ψ
Tx), (7)

where λ is a vector with elements λi corresponding to ψi, i = 1, 2, . . . , M. Apparently, Sλ(Ψ
Tx) is the

sparse coefficients of x under Ψ in the sense of an analysis model, while it also serves as the sparse
coefficients under Φ in the sense of a synthesis model. In other words, Equation (7) admits that the
synthesis and analysis models share almost the same sparse coefficients.

As we all know, the standard orthogonal basis, which is a significant tool in signal representation
and transformation, is a special kind of frame with frame bounds A = B = 1. In fact,
the standard orthogonal basis is a special case of a Parseval frame. In order to exceed the so-called
perfect reconstruction property of the standard orthogonal basis in signal representation and transform,
we refer to the Parseval frame. Therefore, we propose the data-driven redundant transform based on
Parseval frame (DRTPF), as follows
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y ← Sλ(Ψ
Tx), (8)

x̂ ← Φy, (9)

s.t. ΨΦ = I, (10)

|y‖0 ≤ s,
M

∑
i=1

| < x, φi > |2 = ‖x‖2
2, (11)

where (8) is the forward transform and (9) is the backward transform. The relationship between
Φ and Ψ is formulated as (10), which implies the relationship between the frame and its dual
frame. The forward transform operator Ψ is also a Parseval frame, as it is a dual frame of Φ. Thus,
the projection of the signal x over the Ψ domain can be formulated as

M

∑
i=1

| < x, ψi > |2 = ‖x‖2
2. (12)

Equation (12) indicates that the transform coefficients of the proposed DRTBF are bounded by the
original signal x. This constraint leads to a more robust result than traditional sparse models.

To convert DRTPF into an optimization problem, (11) can be written as the more compact
expression ΦΦT = I, which characterizes Φ in a way that is unrelated to the data.
This property indicates that the rows of the frame Φ are orthogonal, thus satisfying the so-called
perfect reconstruction property which ensures that a given signal can be perfectly represented by its
canonical expansion (in a manner similar to orthogonal bases).

Assuming X ∈ R
N×L is the training data with signal vectors xi ∈ R

N , i = 1, 2, . . . , L as its columns,
an optimization model for training DRTPF can be written as

min
Φ,Ψ,λ,Y

‖X − ΦY‖2
F + η1‖Y − Sλ(Ψ

Tx)‖2
F + η2‖Y‖0 + η3‖ΦΨT − I‖2

F

s.t. ΦΦT = I. (13)

The dual frame condition ΦΨT = I and the Parseval frame condition ΦΦT = I imply that the
difference of Φ and Ψ is in the null space of Φ. Denote [aT

1 , aT
2 , · · · , aT

N ]
T = Φ − Ψ. The vectors

ai, i = 1, 2, · · · , N are orthogonal to Φ. Thus, it is clear that the dual frame Ψ contains two subspaces:
one spanned by Φ and the one spanned by the ai, i = 1, 2, · · · , N.

3.2. Transform Learning for the Drtbf Model

As there are no existing algorithm for solving problem (13), we apply the alternative direction
method (ADM) and divide (13) into two sub-problems: A sparse coding phase, which updates the
sparse coefficients Y and the threshold value λ, (Section 3.2.1); and the transform operator pair update
phase, which computes Φ and Ψ, (Section 3.2.2).

3.2.1. Sparse Coding Phase

This subsection presents the sparse coding method for the proposed DRTBF model, in which the
sparse coefficients of Y are obtained by OMP, and the threshold values λ are obtained by a designed
elementwise method.
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The Y Subproblem

The pursuit of Y is equivalent to solving the following problem with fixed Φ, Ψ, and λ:

Ŷ = arg min
Y

‖X − ΦY‖2
F + η1‖Y − Sλ(Ψ

Tx)‖2
F + η2‖Y‖0, (14)

which can be easily solved by OMP [14,34], as (14) can be easily converted to the classical synthesis
sparse expression min ‖Z − DY‖2

F such that ‖Y‖0, where Z = [X
√

η1Sλ(Ψ
Tx)] and D = [Φ

√
η1I].

The λ Subproblem

With fixed Φ, Ψ, and Y, finding λ is equivalent to solving the following problem

λ̂ = arg min
λ

‖Y − Sλ(Ψ
Tx)‖2

F, (15)

which can be decomposed into M individual optimization problems arg minλi
‖yi − Sλi (ψ

T
i X)‖2

2,
i = 1, . . . , M. By denoting Ji := supp(Sλi (ψ

T
i X)) to be the set of indices of non-zero elements of

Sλi (ψ
T
i X), we have

Sλi (Ψ
Txj) = ΨTxj, ∀j ∈ Ji

Sλi (Ψ
Txj) = 0, ∀j ∈ {1, . . . , L} \ Ji.

As the cardinality of Ji depends on λi, we transform (15) to another optimization problem:

λ̂i = arg min
λi

∑
j∈{1,...,L}\Ji

y2
ij︸ ︷︷ ︸

f (λi)

+ ∑
j∈Ji

(yij − ψT
i xj)

2

︸ ︷︷ ︸
g(λi)

, (16)

where yij denotes the (i, j)th entry of Y and xi denotes the ith column of X. Denote l(λi) as

l(λi) = ∑
j∈1,2,··· ,L\J

(yij − ψT
i xj)

2 (17)

We observe that the function f (λi) is a monotonically increasing function and that g(λi) is
monotonically decreasing. We take ψT

i xi, i = 1, 2, . . . , L as candidates and compute all the values
of f (λi) + g(λi). Then, the optimal λi should lie in an interval determined by ψT

i xk and ψT
i xl ,

which correspond to the smallest and the second smallest values of f (λi) + g(λi), respectively. Then,
any suitable value for λi can be selected. The algorithm for the threshold is summarized as Algorithm 1.

3.2.2. Transform Pair Update Phase

The Ψ Subproblem

With fixed Y and λ, the optimization problem to obtain Ψ is given by

Ψ̂ = arg min
Ψ

‖Y − Sλ(Ψ
TX)‖2

F +
η3

η1
‖ΦΨT − I‖2

F. (18)
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Algorithm 1: Sparse coding algorithm.

Input and Initialization:

Training data X ∈ RN×L, iteration number r, initial value λ = 0.
Output:

Sparse coefficients Y, and threshold values λ

Process:

1: Compute the sparse coefficients Y via (14), according to the OMP algorithm [14,34].
2: Sort the columns of X and y in increasing order of |ψi

TX|.
3: For i=1:r

For j=1:L

Compute all the possible values for f (λi) + g(λi) by f (ψT
i xj) = f (ψT

i xj−1) + (yij)
2 ; l(ψT

i xj)

= l(ψT
i xj−1) + (yij − ψT

i xj)
2; g(ψT

i xj) = ‖ψT
i x‖2

2 − l(ψT
i xj).; Denote them as a vector ν.

End for
4: Sort the elements of |ψi

TX| and the columns of X in descending order of ν. Denote the first

and second samples as xi1 and xi2 . Set λi =
|ψi

Txi1
|+|ψi

Txi2 |
2 .

End for

Such a problem is a highly nonlinear optimization problem, due to the definition of Sλ.
We (columnwise) solve Ψ by updating each column of Ψ while fixing others. The product ΦΨT

can be written as

ΦΨT =
N

∑
p=1

ψpφT
p = ψiφ

T
i − (I −

N

∑
p �=i

ψpφT
p ). (19)

For each ψi, we solve the following subproblem:

min
ψi

‖yi − Sλi (ψ
T
i X)‖2

2 +
η3

η1
‖ψiφi − z‖2

2, (20)

where z = I − ∑N
p �=i ψpφT

p . We denote Ji to be the indices (as before), and then separate the problem
into the two following sub-problems:

ψ̂1
i = arg min

ψi

∑
j∈Ji

(yij − ψT
i xj)

2 +
η1

η3
‖ψiφ

T
i − z‖2

2, (21)

ψ̂2
i = arg min

‖ψi‖2=1
∑

j∈{1,...,L}\Ji

(ψT
i xj)

2, (22)

where yij denotes the (i, j)th entry of Y and xi denotes the ith column of X. Equation (21) is a quadratic
optimization, while Equation (22) has a closed form solution given by the normalized singular vector
corresponding to the smallest singular value of XĴ . Based on the solutions of the two sub-problems,
we give the solution of (20) as the average of the two solutions; that is, ψ̂i = 1

2 (ψ̂
1
i + ‖ψ̂1

i ‖2ψ̂2
i ).

Please note that the second solution is added with the magnitude of the norm of the first solution,
as (21) serves as a dominant term for the Ψ subproblem, while the solution of (22) maintains no energy
but direction.
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The Φ Subproblem

With fixed Y, λ, and Ψ, the model to obtain Φ is given by

min
Φ

‖X − ΦY‖2
F + η3‖ΦΨT − I‖2

F

s.t. ΦΦT = I. (23)

We convert (24) to an optimization problem which is formulated as

min
Φ

‖X − ΦY‖2
F + η3‖Φ(Φ − Ψ)T‖2

F. (24)

We denote the target function (24) by h(Φ) and apply the gradient descent method to the
unconstrained version of (24) and project the solution to the feasible space. The gradient is given by

∇h(Φ) = (ΦY − X)YT + η3[Φ(Φ − Ψ)T(Φ − Ψ) + Φ(Φ − Ψ)TΦ]

= (ΦY − X)YT + η3Φ(Φ − Ψ)T(2Φ − Ψ). (25)

We summarize our overall algorithm in Algorithm 2.

Algorithm 2: Transform pair learning algorithm.

Input and Initialization:

Training data X, frame bound (A, B), iteration num.

Build frames Φ ∈ R
M×N and Ψ ∈ R

M×N , either by using random entries or using N

randomly chosen data.
Output:

Frames Φ, Ψ, Sparse coefficients Y, and thresholding values λ

Process: For l=1:num

Sparse Coding Step:

1: Compute the sparse coefficients Y and the thresholding values λ via Algorithm(1).

Frame Update Step:

2: Update Ψ columnwise. Compute W = Sλ(Ψ
TX).

For i = 1 : M

Denote Ĵi as the indices of zeros in the ith column of W. Set ψT
i XĴi = 0. Compute ψi via

(21) and (22).

End For
3: Update Φ via Gradient Descent, which is given as (25) and the step length is usually set to 0.01.

End for

4. Image Denoising

We introduce a novel problem formulation for signal denoising by applying the data-driven
redundant transform DRTPF. Image denoising aims to reconstruct a high-quality image I from its
noise corrupted version L, which is formulated as L = I + n where n is a noisy signal. For a signal
satisfying the DRTPF, the denoising model based on DRTPF is formulated as
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{Î , Ŷ, λ̂} = min
I ,{yi}N

i=1,λ̂
‖L − I‖2

F + γ ∑i ‖RiI − Φyi‖2
F + γ1 ∑i ‖yi − Sλ(Ψ

TRiI)‖2
F + γ2 ∑i ‖yi‖0, (26)

where Ri is an operator that extracts the ith patch of the image I , yi is the ith column of Y,
and λ denotes a vector [λ1, λ2, · · · , λM] with λj operating on the jth element of ΨTRiI . On the right
side of Equation (26), the first term is the global force, which demands proximity between the degraded
image L and its high-quality version I . The other terms are the local constraints, which ensure that
every patch at location i satisfies the DRTPF. This formulation assumes that the noise image L can be
approximated by a noiseless image Î whose patch extracted by Ri can be sparsely represented by the
given transforms Φ and Ψ.

To solve Problem (26), we apply Algorithm 1 to obtain the sparse coefficients Y and the threshold
values λ. We mainly state the iterative method to obtain I .

Denote dk = ΨTRiIk−1. We set Ok as an index set that satisfies |dk
l | ≤ λl , l ∈ Ok. Set uk ∈ RM

as a vector with elements uk
l =

{
1 l ∈ Ok,

0 otherwise.
Then, the non-convex and non-smooth thresholds

can be removed, with the substitution yi − Sλ(Ψ
TRiIk) ≈ yi − ΨTRiIk � uk Thus, in the kth step,

the problem that needs to be solved can be expressed as

{Îk} = min
Ik−1

‖L − Ik−1‖2
F + γ ∑

i
‖RiIk−1 − Φyi‖2

F + γ1 ∑
i
‖yi − ΨTRiIk−1 � uk‖2

F, (27)

where � is pointwise multiplication. This convex problem can be easily solved by the gradient
descent algorithm.

We summarize the restoration algorithm in Algorithm 3.

Algorithm 3: Denoising algorithm.

Input

Training dictionaries Φ, Ψ, iteration number r, a degraded image L, set I0 = L.
Output:

The high-quality image Î
1: Compute Y and λ via the method in Algorithm 1.

For k=1:r
2: Compute dk = ΨTRiIk−1. Set Ok as an index set that satisfies |dk

l | ≤ λl , l ∈ Ok. Set

uk
l =

⎧⎪⎨⎪⎩1 l ∈ Ok,

0 otherwise.
.

3: Solve Problem (27) via the gradient descent algorithm.

End for

5. Experimental Results

We demonstrate the effectiveness of our proposed data-driven redundant transform based on
Parseval frames (DRTPF) by first analyzing the robustness of the model against Gaussian White Noise.
Then we discuss the convergence of the proposed transform learning algorithm and the ability of the
proposed DRTPF to provide low sparsification errors. Finally, we evaluate the effectiveness of the
proposed DRTPF by applying it to nature image denoising. We use a fixed step size in the transform
update and denoising steps of our algorithms.
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5.1. Robustness Analysis

In this subsection, we illustrate the robustness of DRTPF by training DRTPF using the image
’Barbara’ and testing DRTPF for denoising the same image with Gaussian white noise added. The noise
level (standard deviation) δ ranged from 20 to 60 with a step size of 2. In the experiment, the frames Φ

and Ψ of size 100 × 200 were initialized as 1D overcomplete DCT (ODCT) and 10 × 10 overlapping
mean-subtracted patches were used. The patch size was set as 8× 8 with stripe 1. We set the parameters
η1 = 1.1 and η3 = 1e + 7, and η2 was replaced by the �0 thresholding 0.6σ (i.e., ‖Y‖0 ≤ 0.6σ).
For comparison, our proposed algorithm was compared with K-SVD [14]. The size of dictionary learnt
from K-SVD is 8 × 256 at its optimal state, according to the previous work.

We show the denoising result in Figure 1, from which it is apparent that with higher noise,
our DRTPF method outperformed K-SVD more and more. In other words, our proposed model has
good robustness. In fact, in our model, the sparse coefficients are calculated accurately by the inner
product of the signals and the frame Ψ, and are limited to a certain range. Theoretically, it should be
more robust. The learnt transforms Φ and Ψ are illustrated in Figure 2. These figures show that our
frame learning method can capture the features in both analysis and synthesis ways. Figure 3 shows
two exemplified visual results on the images ’Babara’ at noise level σ = 30 and σ = 50. From Figure 3
we know that our proposed DRTPF can obtain more clearer features than K-SVD [14].

Figure 1. Robustness Analysis. DRTPF is trained and tested using the image ’Barbara’. The X-label
is the noise level δ and the Y-label is the PSNR. It can be seen that DRTPF performs more robustly
than K-SVD.

Figure 2. The learnt operators Φ (left) and Ψ (right) for barbara.
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Figure 3. Reconstruction of barbara using DRTPF (left) and K-SVD [14] (right). Top: σ = 30;
bottom: σ = 50.

5.2. Sparsification of Nature Images

A classic sparsifying transform learning model [21] is formulated as

min
W,Y

‖WX − Y‖2
F − λ log det W + μ‖W‖2

F

s.t. ‖Yi‖0 ≤ s ∀ i, (28)

where X is the training data, Y are the sparse coefficients, and W is the learnt transform. The quality
of the learnt transforms in the experiment [21] was judged based on their condition number and
sparsification error. Similar to the experimental setting in [21], we also evaluated the effectiveness of
the transforms learnt from our DRTPF by their condition number and sparsification error. The l2-norm
condition number of the transform operator Φ is denoted as the ratio of the maximum singular value
to the minimum singular value of Φ; that is,

KΦ =
δmax(Φ)

δmin(Φ)
. (29)

In our case, the condition number KΦ = 1, as the maximum and minimum singular values (which
are determined by the optimal frame bounds) must be equal to 1. Similarly, we can obtain that KΨ = 1.
It is the best case when the transform operators have condition number equal to 1. The sparsification
error of the model (28) is defined as

SE = ‖WX − Y‖2
F. (30)

Similarly, we define the ‘sparsification error’ of the proposed DRTPF, to measure the energy loss
due to sparse representation, which is formulated as

S̃E = ‖Y − Sλ(Ψ
TX)‖2

F. (31)
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The ‘sparsification error’ indicates the compact ability of the transform Ψ with reasonable
ignorance of the thresholding operator Sλ(·).

Figure 4. The test images ‘Barbara’, ‘Lena’, ‘Hill’, ‘Couple’, ‘Boat’, and ‘Man’.

To demonstrate that our model and algorithms are insensitive to the initialized transforms,
we applied the proposed sparse coding and transform operator pair learning algorithms to train a pair
of transforms. The training data are patches of size 10 × 10 extracted from the image ‘Babara’ which
is shown in Figure 4. The trained transform pair are of size 100 × 200. We extracted the patches
with non-overlap and removed the DC values of every sample. We set the parameters η1 = 1.1
and η3 = 1e + 7, and η2 was replaced by the �0 thresholding 0.6σ, as before. The matrices used for
initialization were the 1D DCT matrix, the matrix with random columns sampled from the training
data, and the redundant identity matrix. As the transform for DRTPF is redundant, the redundandt
identity matrix here is formed as [I I] where I is the identity matrix of size 100 × 100.

The convergence curve of the objective function and the ‘sparsification error’ are shown in Figure 5.
From the left sub-figure of Figure 5 we know that our proposed algorithm for DRTPF is converged,
and all the initializations converge to the same result after about 20 iterations which demonstrate
that our proposed DRTPF and the corresponding algorithm are insensitive to different initializations.
The right sub-figure of Figure 5 shows the ‘sparsification error’ of the three initialized methods, the 2D
DCT transform of and the KLT transform. The 2D DCT is formed by the Kronecker product of two 1D
DCT transform, i.e., D = D0 ⊗ D0, where D0 is the 1D DCT transform of size 8 × 8 and ⊗ denotes
the Kronecker product. The KLT transform K of size 64 × 64 is obtained by principle component
analysis (PCA) method. The ‘sparsification error’ of 2D DCT and KLT are calculated via the model
in [21] at iteration zero. This figure shows that the ‘sparsification error’ of the proposed DRTPF
model is also converged and insensitive to the initialization matrices. In fact, the loss function of the
proposed DRTPF mainly contains two partions: ‖X − ΦY‖2

F and ‖Y − Sλ(Ψ
TX)‖2

F. The first partion is
the recovery loss (i.e., the loss in temporal domain) and the second partion is the ‘sparsification error’
(i.e., the loss in frequency domain). Our proposed model aims to achieve low error both in temporal
domain and frequency domain.

To illustrate the behavior of the proposed DRTPF in image representation, we choose six images
shown in Figure 4 to train transforms and recover images. The Figure 6 shows the average sparsity
curve and the recovery PSNR values with the increase of the sparsity. From the left sub-figure we
know that the images are well sparsified along the iterative process. This figure is generated by
setting ‖yi‖0 < 5 and the recovery PSNR is 32.27 dB. For each sample xi vectorized by a 10 × 10 patch,
its correspondinge sparse coefficients yi is of length 200. It is easy to know that the sparsity rate is lower
than 2.5%. Furthermore, less than 5% of the data need to be stored to recover an image with PSNR
larger than 32.27 dB. The right sub-figure of Figure 6 shows the average recovery PSNR values with the
increase of the sparsity which is a main measurement for the quality of the learnt transform. From the
figure we know that in most of the case, our proposed DRTPF can obtain a better image quality in
terms of PSNR with lower sparsity than the compared LST [21] method and the classic DCT transform.
The ransform for LST [21] method and the classic DCT transform are of size 64 × 64. The transform of
LST [21]is trained by 4096 8 × 8 samples extracted from every image shown in Figure 6 with the main
of the patches removed. The experiment is set as them illustrated in the paper [21]. When the total
sparsity of a 512 × 512 image is more than 47,000, the recovery results of the proposed DRTPF and the
LST [21] are nearly the same. The recovery PSNR at sparsity 47,000 is 37.3 dB.
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Figure 5. Convergence Curve and Sparsification Error. Left: The X-label is the iteration number. Right:
The Y-label is the objective function and the sparsification error, respectively. It can be seen that our
DRTPF learning algorithm is convergent and insensitive to initialization.

Figure 6. The average Sparsity and Recovery PSNR. Left: The X-label is the iteration number and the
Y-label is the average sparsity. Right: The X-label is the average sparsity and the Y-label is the average
Recovery PSNR.

5.3. Image Denoising

In this subsection, we evaluate the performance of our DRTPF model using six natural images of
size 512× 512, which are shown in Figure 4. We added Gaussian white noise to these images at different
noise levels (σ = 20, 30, 40, 50, 60). We set the parameters η1 = 1.1 and η3 = 1e+ 7, and η2 was replaced
by the �0 thresholding 0.6σ, as before. We compared DRTPF with the three most related methods of
sparse representation: K-SVD [14], the overcomplete transform (T.KSVD) [3], the learning-based frame
(DTF [33]), the BM3D [35] and WNNM [36]. The BM3D and WNNM are nonlocal-based methods
with the parameters setting as in corresponding paper. We note that DTF works on filters, instead of
image patches. In the experiment, our DRTPF method and K-SVD were the same as in Section 5.1.
All methods were trained iteratively (25 times). The DTF method was initialized by 64 3-level Harr
wavelet filters of size 16 × 16. The operator size of the T.KSVD method was 128 × 64 and the patch
size it worked on was 8 × 8 overlapping mean-subtracted patches. The hard thresholding was s = 30.

Table 1 shows the comparison results, in terms of average PSNR. As shown in Table 1, our DRTPF
method and the DTF method outperformed K-SVD and T.KSVD on most images, i.e., our proposed
DRTPF outperforms K-SVD for 0.47 dB and outperforms T.KSVD for 0.76 dB at noise level σ = 60.
This result implies that methods using frames are more robust against noise. Furthermore, the higher
the noise level, the better the results of DRTPF method and the DTF method than K-SVD and T.KSVD.
We can also see that our DRTPF method outperformed DTF on most of the images, especially when
the noise level was very high. In fact, in our model, the sparse coefficients are calculated accurately
by the inner product of the signals and the frame Ψ, and are limited to a certain range. Theoretically,
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it should perform better than the compared method. Figure 7 shows two exemplified visual results
on the images ‘Boat’ and ‘Man’ at noise level σ = 40. The PSNR of the K-SVD, T.KSVD, DTF, and the
proposed DRTPF are 27.17 dB, 26.14 dB, 26.99 dB, 27.34 dB for ‘Man’ and 27.23 dB, 26.45 dB, 27.20 dB
and 27.39 dB for ‘Boat’. Our proposed DRTPF and the DTF method provide more features and higher
PSNR values of the two images than K-SVD and T.KSVD. Though the DTF provides higher PSNR
values than K-SVD and T.KSVD, and better visual performance, the results of this method suffer from
deformation and margin smoothing as it based on filter. The proposed DRTPF shows much clearer
and better visual results than the other competing methods without any deformation.

Table 1. Average PSNR results of different noise levels on six images.

σ Image Barbara Boat Couple Hill Lena Man Average

20

K-SVD [14] 31.01 30.50 30.15 30.27 32.51 30.26 30.78

T.KSVD [3] 30.02 29.30 29.25 29.21 31.45 29.01 29.71

DTF [33] 31.07 30.35 30.20 30.31 32.56 30.07 30.76

SSM-NTF 31.01 30.47 30.24 30.34 32.50 30.23 30.80

BM3D [35] 32.01 31.02 30.88 30.85 33.19 30.83 31.47

WNNM [36] 32.31 31.09 30.92 30.94 33.18 30.84 31.55

30

K-SVD [14] 28.75 28.60 28.07 28.51 30.59 28.43 28.83

T.KSVD [3] 27.78 27.86 27.46 27.23 29.25 27.13 27.79

DTF [33] 29.07 28.48 28.22 28.64 30.60 28.26 28.88

SSM-NTF 29.00 28.63 28.24 28.66 30.73 28.49 28.96

BM3D [35] 30.12 29.22 28.95 29.23 31.40 29.04 29.66

WNNM [36] 30.32 29.30 29.02 29.33 31.50 29.10 29.76

40

K-SVD [14] 27.03 27.23 26.54 27.23 29.13 27.17 27.39

T.KSVD [3] 26.35 26.45 25.98 26.45 28.20 26.14 26.60

DTF [33] 27.58 27.20 26.87 27.49 29.25 26.99 27.56

SSM-NTF 27.50 27.39 27.00 27.56 29.35 27.34 27.69

BM3D [35] 28.68 27.92 27.58 28.08 30.11 27.83 28.37

WNNM [36] 28.85 27.99 27.64 28.18 30.25 27.90 28.47

50

K-SVD [14] 25.71 26.05 25.42 26.29 27.92 26.18 26.26

T.KSVD [3] 25.10 25.56 25.03 25.89 27.01 25.40 25.67

DTF [33] 26.45 26.15 25.84 26.63 28.15 26.09 26.55

SSM-NTF 26.43 26.32 25.99 26.79 28.40 26.40 26.72

BM3D [35] 27.48 26.89 26.49 27.20 29.06 26.94 27.34

WNNM [36] 27.70 26.97 26.60 27.35 29.23 27.01 27.48

60

K-SVD [14] 24.45 25.18 24.57 25.69 27.01 25.40 25.38

T.KSVD [3] 24.50 24.88 24.36 25.40 26.60 24.78 25.09

DTF [33] 25.64 25.33 25.04 25.91 27.22 25.38 25.75

SSM-NTF 25.50 25.45 25.14 26.03 27.33 25.67 25.85

BM3D [35] 26.36 26.02 25.61 26.44 28.14 26.18 26.46

WNNM [36] 26.59 26.12 25.74 26.60 28.33 26.26 26.61

All the six methods can be classified to two categories (1) without any extra constraint,
e.g., nonlocal similarity, and (2) with additional prior like nonlocal similarity. Our proposed DRTPF
belongs to category (1). We would like to point out that our goal was to establish a redundant transform
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learning method but not focus on image denoising. Our model is plain without applying any extra
prior, besides the basic sparsity characteristics of the signals. The experimental results demonstrate
that our proposed models can achieve better performance than traditional sparse models in image
denoising. However, the methods BM3D and WNNM are based on image nonlocal self-similarity
(NSS). The NSS prior refers to the fact that for a given local patch in a natural image, one can find
many similar patches to it across the image. Intuitively, by stacking nonlocal similar patch vectors into
a matrix, this matrix should be a low-rank matrix and have sparse singular values. The exploitation of
NSS has been used to significantly boost image denoising performance. We have not involved this
prior into our model.

Figure 7. Visual comparison of reconstruction results by different methods on ‘Man’ and ‘Boat’.
From left to right: original, T.KSVD [3], K-SVD [14], DFT [33], and DRTPF.

6. Conclusions

In this paper, we propose a Parseval frame-based data-driven overcomplete transform (DRTPF)
to capture features of images. We also propose the corresponding formulations, as well as algorithms
for calculating the sparse coefficients and DRTPF model learning. We have proposed a general frame
learning method without imposing any structure on the frame. By applying frames to redundant
transforms, we combine the ideas of analysis and synthesis sparse models and let them share almost
identical sparse coefficients. We conducted robustness analysis, sparsification of nature image and
image denoising experiments, which demonstrated that DRTPF can outperform state-of-the-art models,
as it exploits the underlying sparsity of natural signals by the integration of frames and sparse models.

In future work, we shall consider more efficient optimization algorithms for DRTPF,
which facilitate the representation ability and application of the proposed method.
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Featured Application: The potential applications of scene text reading are ordering large pictures

and video databases by their literary substance, such as Bing Maps, Apple Maps, and Google Street

View, as well as supporting visual impaired people.

Abstract: Reading text and unified text detection and recognition from natural images are the most
challenging applications in computer vision and document analysis. Previously proposed end-to-end
scene text reading methods do not consider the frequency of input images at feature extraction,
which slows down the system, requires more memory, and recognizes text inaccurately. In this
paper, we proposed an octave convolution (OctConv) feature extractor and a time-restricted attention
encoder-decoder module for end-to-end scene text reading. The OctConv can extract features by
factorizing the input image based on their frequency. It is a direct replacement of convolutions,
orthogonal and complementary, for reducing redundancies and helps to boost the reading text through
low memory requirements at a faster speed. In the text reading process, features are first extracted
from the input image using Feature Pyramid Network (FPN) with OctConv Residual Network with
depth 50 (ResNet50). Then, a Region Proposal Network (RPN) is applied to predict the location of the
text area by using extracted features. Finally, a time-restricted attention encoder-decoder module
is applied after the Region of Interest (RoI) pooling is performed. A bilingual real and synthetic
scene text dataset is prepared for training and testing the proposed model. Additionally, well-known
datasets including ICDAR2013, ICDAR2015, and Total Text are used for fine-tuning and evaluating
its performance with previously proposed state-of-the-art methods. The proposed model shows
promising results on both regular and irregular or curved text detection and reading tasks.

Keywords: octave convolution; bilingual scene text reading; Ethiopic script; attention

1. Introduction

Currently, reading text from a natural image is one of the hottest research issues in computer
vision and document processing. It has many applications including ordering large pictures and video
databases by their literary substance, such as Bing Maps, Apple Maps, Google Street View, and so on.
Moreover, it allows for image mining, office automation, and support for the visually impaired. Thus,
scene text is highly important for thoughtful and uniform services throughout the world. However,
reading text from natural images poses several challenges, due to the use of different fonts (color, type,
and size) and texts being written on more than one script. Moreover, imperfect image condition causes
distorted text, and complex and inference backgrounds cause unpredictability. As a result, reading or
spotting texts from a natural image becomes a challenging task.

Previously, several considerable research outputs were presented for scene text detection [1–5] and
scene text recognition [6,7] independently, which led to a computational complexity and integration
problem being used as a text-reading task. To improve these, an end-to-end scene text spotting method
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was presented in references [8–10], but it still needs improvement in terms of recognition accuracy,
memory usage, and speed. For instance, in [11,12] a fully conventional network is applied for scene
text detection and recognition by considering the detection and recognition problems independently.
For scene text detection, a convolutional neural network (CNN) was applied to extract feature maps
from the input image, and then different decoders were used to decode and detect the text region
based on the extracted features [5,13,14].

Using the extracted sequences of features at the scene text detection phase, characters/words have
been predicted with sequence prediction models [15,16]. These types of approaches led to heavy time
cost and ignored the correlation in visual cues for images with a number of text regions, whereas both
operations had real integrations. In general, previously proposed scene text detection and recognition
approaches were problematic, especially when texts in the image are written in more than one script,
different text sizes and text shapes are irregular. Furthermore, most research focused on English
language and only a few presented other languages such as Arabic and Chinese. Except our previously
presented scene text recognition method [17], there is no research output for scene text reading as well
as scene text detection for Ethiopic script-based languages. Ethiopic script is used as a writing system
for more than 43 languages, including Amharic, Geez, and Tigrigna.

Amharic is the official language of Ethiopia and the second-largest Semitic language after Arabic [18].
On the other hand, English is used as a teaching medium in secondary schools and higher education. As a
result, English and Amharic languages are being used concurrently for different activities in most areas of
the country. Thus, designing independent applications of scene text detection and scene text recognition
requires multiple networks for solving individual sub-problems, which increases computational complexity
and causes accuracy and integrity problems. Additionally, developing detection and recognition as
independent sub-problems restrains the recognition of rotated and irregular texts. The characteristics
of individual characters for complex languages, for example, Amharic language, in the script, and the
availability of bilingual scripts in natural images make the scene text recognition methods to challenging
when used independently for detection and recognition. Text detection and text recognition are relevant
tasks in most operations and complement each other.

Recently, the proposed multilingual end-to-end scene text spotting system in [9,15,19] had a good
result for several languages except for Ethiopic script-based languages. However, in their proposed
method, they did not consider the frequency of features (high and low) and the effects of word length in
the recognition. In this paper, a bilingual end-to-end trainable scene text reading model is proposed by
extracting features from the input image based on their frequency and a time-restricted self-attention
encoder-decoder module for recognition. Between the feature-extraction and recognition layers, we use
a region proposal network, to detect the text area and predict the bounding boxes.

Figure 1 shows the architecture of the proposed system, which contains feature-extraction,
detection, and recognition layers. In the first layer of our proposed network, we use a feature pyramid
network (FPN) [20] with ResNet-50 to extract features. Inspired by reference [21], the ResNet-50 vanilla
convolutions are replaced by octave convolutions (OctConv), except for the first convolution layer.
The OctConv factorizes feature tensors based on their frequencies (high and low) which helps to
effectively enlarge the receptive field in the original pixel space and improve recognition performance.
Additionally, it optimizes the memory requirement by avoiding redundancy. As stated in [21], OctConv
improves object-recognition performance and shows a state-of-the-art result. In the second layer,
a region proposal network (RPN) is applied for predicting text/non-text regions and recognizing the
bounding boxes of the predicted text region from the input image using the extracted feature at the
first layer. Finally, by applying Region of Interest (RoI) pooling based on the predicted bounding
boxes to the extracted features, word prediction is performed using a time-restricted self-attention
encoder-decoder module. Our proposed bilingual text-reading model is originally presented to read
texts from the natural image in an end-to-end manner. The major contributions of the article are
summarized as follows:
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1. Following [22], we prepare large syntactically generated bilingual (English and Amharic) scene
text datasets. Additionally, we collect real datasets that have different shapes and written using
the two scripts.

2. Our proposed model extracts feature by factorizing based on their frequencies (low and high),
which helps to reduce both storage and computation costs. This also helps each layer gain a larger
receptive field to capture more contextual information.

3. The proposed system can detect and read texts from an image that has arbitrary shapes, containing
oriented, horizontal, and curved text.

4. The performance of the time-restricted attention encoder-decoder module is examined to predict
words based on the extracted and segmented features.

5. Using the prepared dataset and well-known datasets, we perform several experiments and our
model shows promising results.

The rest of the paper is organized as follows. Related works are presented in Section 2. In Section 3,
we discuss the proposed bilingual end-to-end scene text reading methodology. A short description
of the Ethiopic script and datasets that are used for training and evaluating the proposed model
is described in Section 4. The experimental set-up and results are discussed in Section 5. Finally,
a conclusion is drawn in Section 6.

 
Figure 1. The architecture of the proposed bilingual end-to-end scene text reader model.

2. Related Work

Reading text from a natural image is currently an active field of investigation in computer vision
and document analysis. In this section, we introduce related works, including scene text detection,
scene text recognition, and text spotting (combining detection and recognition) techniques.

2.1. Scene Text Detection

Traditional and deep-learning machine-learning methods are used to detect texts from a natural
image. In [1,3,23–25], scene text detection methods have been presented to detect and bind text areas
from a natural image, but this approach has manual computation problems. Lee et al. [25] presented
sliding-window-based methods measured by shifting over the image and determining text proximity
based on local image highlights. In [26,27], a connected component analysis method was presented to
detect scene texts using Stroke Width Transform (SWT) and Maximum Stable Extreme Region (MSER),
respectively. However, these approaches are limited when it comes to detecting text regions from
distorted images.

Recently, deep-learning techniques improved several machine-learning problems, including scene
text detection and recognition problem. Tian et al. [1] presented a Connectionist Text Proposal Network
(CTPN), which uses a vertical anchor mechanism that jointly predicts location and text/no-text scores
of each fixed width. Shi et al. [14] introduced Segment Linking (SegLink), which is an oriented scene
text detection method that segments and then links the text to complete instances using a linkage
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prediction. Ma et al. [28] presented a novel rotation-based framework to detect arbitrarily oriented
texts found in natural images by proposing region proposal network (RPN) and rotation RoI pooling.
A deep direct regression-based method for detecting multi-oriented scene text has been presented
in [29]. Efficient and accuracy scene Text detector (EAST) [5] has been introduced to effectively detect
words or text lines using a single neural network.

2.2. Scene Text Recognition

In the text-reading phases of natural images, text recognition is the second phase after scene text
detection. This method can be implemented independently or after scene text detection phases. In the
scene text recognition phase, the cropped text regions are fed either from the scene text detection phase
or from the prepared input dataset, from which the sequences of labels are decoded. Previous attempts
were made by detecting individual characters and refining misclassified characters. Such methods
require training a strong character detector for accurately detecting and cropping each character out
from the original word. These types of methods are more difficult for Ethiopic scripts due to their
complexities. Apart from the character level methods, word recognition [12], sequence to label [30],
and sequence to sequence [31] methods have been presented. Liu et al. [32] and Shi et al. [15] presented
a spatial attention mechanism to transform a distorted text region from irregular input images into
canonical pose suitable recognition. However, both the detection and recognition task performance are
determined based on the extracted features. Previously proposed scene text detection and recognition
of deep learning-based and conventional machine learning feature extraction methods do not consider
the frequency of the input image. Following [21], in this paper, we propose an OctConv with ResNet-50
feature extractor, which extracts features by factorizing based on their frequencies.

2.3. Scene Text Spotting

Recently, several end-to-end scene text spotting methods have been introduced and have shown
a remarkable result compared to independent scene text detection and recognition approaches.
For instance, Li et al. [10] introduced an end-to-end text spotting technique from natural images using
RPN as a text detector and attention Long Short Term Memory (LSTM) as a text recognizer. Liao et al. [8]
presented an end-to-end scene text-reading method using Single Shot Detector (SSD) [33] and
convolutional recurrent neural network (CRNN) for scene text detection and recognition, respectively.
Liu et al. [34] introduced a unified network to detect and recognize multi-oriented scene texts from
natural images. Lunadren et al. [35] introduced an octave-based fully convolutional neural network
with fewer layers and parameters to precisely detect multilingual scene text. The most recently
proposed scene text-reading models are summarized in Table 1.

Table 1. Summary of recently proposed end-to-end scene text recognition models.

Method Model Detection Recognition Year

Liao et al. [11] TextBoxes SSD-based framework CRNN 2017
Bŭsta et al. [19] Deep TextSpotter Yolo v2 CTC 2017
Liu et al. [34] FOTS EAST with RoI Rotate CTC 2018
Liao et al. [8] TextBoxes++ SSD-based framework CRNN 2018

Liao et al. [9] Mask TextSpotter Mask R-CNN Character segmentation +
Spatial attention module 2019

Improving the feature extraction and recognition network will improve scene text detection,
recognition, and text spotting problems. In [21], an OctConv feature extraction method has been
proposed for object detection and improves its performance. Octave convolution addresses spatial
redundancy, which was not addressed in the previously proposed methods. The OctConv does
not change the connectivity between feature maps and it is different from inception multi-path
designs [36,37]. In our proposed bilingual text-reading method, we replace the ResNet-50 vanilla
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convolution with OctConv, which can operate quickly and produce accurate results in the extraction of
features. As stated in [38], the limitation of Connectionist Temporal Classification (CTC), attention
encoder-decoder, and hybrid (CTC and attention) method is improved using a time-restricted
self-attention method for an automatic speech recognition system. In our proposed method, we integrate
a time-restricted self-attention encoder-decoder module for recognition with feature extraction and
bounding box detection layers.

3. Methodology

In this section, the details of the proposed bilingual scene text-reading model are presented.
The architecture of the model, shown in Figure 1, is trained in an end-to-end manner that concurrently
detects and recognizes words from a natural image.

3.1. Overall View of the Architecture

Our proposed architecture follows the architecture presented in [9,21]. Our proposed architecture
has three functional components, feature-extraction layer, text/non-text detection layer, and recognition
layer. In the feature-extraction layer, features are extracted from input natural images and passed to the
next layer using an FPN [20] with ResNet-50 [39] by replacing the vanilla convolution with an octave
convolution. Then, using the extracted features on the 1st layer as an input, a region proposal network
(RPN) [40] predicts text/non-text area and bounding boxes of each text area. Finally, by applying RoI to
the outputs of the 2nd layer, text segmentation, and word prediction are done using the time-restricted
self-attention encoder-decoder module. Details of each layer are presented below.

3.2. Feature Extraction Layer

Feature extraction is one of the crucial steps in machine learning problems. In the deep learning
era, several automatic feature extraction methods have been proposed, including [40–43]. These feature
extraction methods were applied to several problem domains and produced good results. Recently,
Chen et al. [21], proposed an OctConv method that extracts features based on their frequencies. We use
Chen et al.’s feature extraction method to detect text/non-text regions. Naturally, texts found in
natural images have different properties (i.e., size, orientation, shapes, and color). These cause a
challenge in perfectly detecting the text/non-text region, which directly affects the performance of the
recognition task. To overcome this challenge, we build high-level semantic feature maps using FPN with
ResNet-50. Different from [9], in our proposed feature extraction layer, we replace vanilla convolutions
by OctConv. This factorizes the mixed-feature map tensor into high and low-frequency maps, where
the high-frequency feature map tensors encode with fine details, whereas the low-frequency feature
map tensors encode with global structures. Compared to vanilla convolution, OctConv reduces spatial
redundancy, memory cost, and computation cost.

For given spatial dimensions w and h with the number of feature maps c, the input feature tensor
of a convolution layer will be X ∈ Rc×h×w. In OctConv, the input vector X factorized along channel
dimensions into low feature map (XL) and high feature map (XH) frequencies. As stated in [21],
the factorization of high feature map and low feature map tensors are computed as follows:

XH = X(1−α)c×h×w (1)

XL = Xαc× h
2×w

2 (2)

where the value of α ∈ [0, 1)
In the factorization process, fine details are obtained on high-frequency feature maps, whereas

differences in speed in spatial dimensions with respect to image location were obtained at low-frequency
feature map tensors. This process maps the features that are compacted and replace spatial repetitive
feature maps with different resolution maps. On these feature maps, an octave convolution is applied

215



Appl. Sci. 2020, 10, 4474

where the vanilla convolution does not work, due to different resolutions of high- and low-frequency
feature maps. The octave convolution enables efficient inter-frequency communication and effectively
operates on low- and high-frequency tensors. For the factorized high (XH) and low ( XL) feature tensors,
there is a corresponding output feature tensor YH and YL, respectively. To get each output feature tensor,
inter (YH→L, YL→H) and intra (YL→L, YH→H) frequency convolution update is performed. Each output
feature map at location (p, q) is computed using appropriate kernels (WL and WH), applying regular
convolution for intra-frequency update and removing the need of explicitly computing and sorting on
up/down sampling for inter-frequency communication as follows:

YH
p,q =

∑
i, j∈Nk

(
WH→H

i+ k−1
2 , j+ k−1

2

)T
XH

p+i,q+ j +
∑

i, j∈Nk

(
WL→H

i+ k−1
2 , j+ k−1

2

)T
XL
(

p
2+i),( q

2+ j)
(3)

YL
p,q =

∑
i, j∈Nk

(
WL→L

i+ k−1
2 , j+ k−1

2

)T
XL

p+i,q+ j +
∑

i, j∈Nk

(
WH→L

i+ k−1
2 , j+ k−1

2

)T
XH
(2∗p+0.5+i),(2∗p+0.5+ j) (4)

The recognition performance of the model is improved because OctConv can extract a larger
receptive field for low-frequency feature maps. Most commonly, text found in natural images has low
frequencies. Compared to vanilla convolution, OctConv convolves at a factor of 2 receptive fields.

3.3. Text Region Detection Layer

Using RPN and taking the extracted feature maps as an input, text/non-text regions are detected.
Following [9] and [20], we assign five anchors at different stages {P2, P3, P4, P5, P6} with the area of
anchors {322, 642, 1282, 2562, 5122}, respectively. Besides, to handle different text sizes {0.5, 1, 2} aspect
ratios are implemented at each stage. By doing this, text proposal features are generated. These features
are further extracted using RoI align [41], which preserves a more accurate location compared to RoI
pooling. Finally, the Fast Region (R)-CNN [41] generates precise bounding boxes for the texts found in
the input natural image. Using a soft-Non-maximal suppression (NMS) [42] technique, we select one
bounding box for those texts that have more than one bounding box.

3.4. Segmentation and Recognition Layer

After texts are detected at the detection layer, text segmentation and recognition of words are
performed. Text instance regions are segmented using four consecutive convolution layers with
3× 3 filters and deconvolution layers with 2× 2 filters and strides on the outputs of RoI align feature in
the previous layer, with predicted bounding boxes. Finally, the outputs of the segmented text instance
feature x = (x1, x2, . . . , xT) are fed for a time-restricted self-attention encoder-decoder module.

In [43], a time-restricted (attention window) self-attention encoder-decoder module is presented
for automatic speech recognition, which produces a state-of-the-art result by improving the limitations
of CTC (i.e., hard alignment problem and conditional independence constraints) and the attention
encoder-decoder module. Unlike [9], we use a time-restricted self-attention module using a bidirectional
Gated Recurrent Unit (GRU) as an encoder and a GRU as a decoder. Form the extracted and segmented
features, the bidirectional encoder computes the hidden feature vector ht as follows:

zt = σ(Wxzxt + Uhzht−1 + bz) (5)

rt = σ(Wxrxt + Uhrht−1 + br) (6)
′
ht = tanh(Wxhxt + Urh(rt ⊗ ht−1) + bh) (7)

ht = (1− zt) ⊗ ht−1 + zt ⊗
′
ht) (8)
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where zt, rt,
′
ht, and ht are update gate, reset gate, current memory, and final memory at the current

time step, respectively. W, U, and b are parameter matrices and vector; σ and tanh stand for sigmoid
and hyperbolic tangent function, respectively.

Using the embedding matrix Wemb the hidden vector ht is converted to embedding matrix bt

as follows:
bt = Wembht, t = u− τ, . . . , u + τ (9)

By applying a linear projection on the embedded vector bt query (qt), values (vt), and keys (kt)
vectors are computed as follows:

qt = Qbt, t = u (10)

kt = Kbt, t = u− τ, . . . , u + τ (11)

vt = Vbt, t = u− τ, . . . , u + τ (12)

where Q, K, and V are query, key and value matrices, respectively.
Based on these results, attention weight au and attention result cu are derived as follows:

eut =
qT

u kt√
dk
′ (13)

aut =
exp(eut)∑u+τ

t′ = 1 exp (eut′)
′ (14)

cu =
u+τ∑

t = u−τ
autht (15)

To address the conditional independence assumption in CTC, an attention layer is placed before
the CTC projection layer phu and transforms it to a particular dimension representing the number of
CTC output labels. Then, the attention layer output that carries context information is served as the
input of CTC projection layer at the current time u.

phu = Wprojcu + b (16)

where Wproj and b are the weight matrix and bias of the CTC projection layer, respectively.
Finally, the projected output is optimized as follows:

LCTC = − log
∑

π∈B−1(y)

p(π|phu) (17)

where y denotes the output label sequence. A many-to-one mapping B is defined to determine the
correspondence between a set of paths and the output label sequences. The self-attention layer links
all positions with a constant number of operations that are performed in sequence.

4. Ethiopic Script and Dataset Collection

4.1. Ethiopic Script

Ethiopic script, which is derived from Geez, is one of the most ancient scripts in the world.
It is used as a writing system for more than 43 languages, including Amharic, Geez, and Tigrigna.
The script has largely been used by Geez and Amharic, which are the liturgical and official languages
of Ethiopia, respectively. Amharic language is the second Semitic language after Arabic. The script is
written down in a tabular format in which the first column denotes the base character and the other
columns are vowels derived from the base characters, made by slightly deforming or modifying the

217



Appl. Sci. 2020, 10, 4474

base characters. The script has a total of 466 characters, out of which 20 are digits, 9 are punctuation
marks, and the remaining 437 characters are parts of the alphabet. Developing a scene text recognition
system for Ethiopic script is challenging, due to the visually similar characters, especially between base
characters and the derived vowels, and the number of characters in the script. Furthermore, the lack of
training and testing datasets is another limitation in the development of a scene text reading system
for Ethiopic scripts. In this paper, we propose an end-to-end trainable bilingual scene text reading
model using FPN, RPN, and time-restricted self-attention CTC.

4.2. Dataset Collection

In any machine learning technique, a dataset plays an important role in training and obtaining
a better machine learning model. In particular, deep learning methods are more data-hungry than
traditional machine learning algorithms. However, preparing a large dataset was a challenging task
specifically for under-resourced languages. In this paper, we use a syntactically generated scene
text dataset, and real scene text dataset for training and testing the proposed model, respectively.
Following [12], a bilingual scene text dataset is prepared. A detailed description of synthetic dataset
generation and real scene text dataset preparation is provided in the following sections.

4.2.1. Synthetic Scene Text Dataset

To train the proposed model, we use a bilingual scene text dataset, which is generated by adding
a simple modification to the scene text dataset generation technique presented in [12]. The generated
scene text images are like real scene images. This technique is very important to get more training
data for those scripts that do not have prepared real scene text datasets. As far as we know, there
is no prepared real scene text dataset for Ethiopic script. Moreover, most texts found in natural
images are written in two languages (Amharic and English). Due to this, we prepare 500,000 bilingual
training datasets from 54,735 words (825,080 characters), which were collected from social, political,
and governmental websites that are written in Amharic and English. In the dataset generation process,
72 freely available Ethiopic Unicode fonts, different background images, font size, rotation along the
horizontal line, and skew and thickness parameters are tuned. The sample generated scene image and
statistics of the generated dataset are presented in Figure 2 and Table 2, respectively.

  

Figure 2. Sample of synthetically generated scene text images.

4.2.2. Real Scene Text Dataset

In addition to the synthetic dataset, we collected 1200 benchmark bilingual real scene text images
using photo camera and image search on Google. The images were captured from local markets,
navigation and traffic signs, banners, billboards, and governmental offices. We also incorporated
several office logos, most of which were written both in Amharic and English with curved shapes.
In addition to our prepared dataset, we used the Synthetic [22] dataset to pre-train the proposed
model with our synthetic dataset. To refine the pre-trained model and compare its performance
with a state-of-the-art model, we used ICDAR2013 [44], ICDAR2015 [40], and Total-Text [45] datasets.
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The datasets, we used in the proposed model are summarized in Table 2. Additionally, sample images
from the collected datasets are depicted in Figure 3.

 

Figure 3. Sample of collected real scene text images.

Table 2. Statistics of datasets applied for training and testing the proposed model.

Dataset Language Total Images Training Testing Type

Ours
Real Bilingual 1200 600 600 Irregular

Synthetic Bilingual 500,000 500,000 - Regular
ICDAR2013 [44] English 462 229 233 Regular
ICDAR2015 [40] English 1500 1000 500 Regular

Synthetic [22] English 600,000 - - Regular
Total-Text [45] English 1555 1255 300 Irregular

5. Experiments and Discussions

The effectiveness of the proposed model was evaluated and compared with state-of-the-art
methods by pre-training the proposed model using our synthetically generated dataset and a Synthetic
dataset. Finally, the pre-trained model was refined by merging the above-mentioned datasets.

5.1. Implementation Details

The proposed model was first pre-trained using our synthetically generated bilingual dataset and
Synthetic [22], then fine-tuned using the union of other real-world datasets indicated in Section 4.2.2.
Due to the lack of real sample images in the fine-tuning stage, data augmentation and multi-scale
training were applied by randomly modifying brightness, hue, contrast, the angle of the image between
−30 and 30. Following [9], for multi-scale training, the shorter sides of the input images were randomly
resized to five scales (600, 800, 1000, 1200, 1400). We used Adam [46] (base learning rate = 0.0001,
β1 = 0.9, β2 = 0.999, weight decay = 0) as an optimizer. Following the result of [21], we set the value to
α = 0.25 which denotes the ratio of the low-frequency part.
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The experiment of the proposed bilingual scene text reading model is conducted on the Ubuntu
machine containing Intel Core i7-7700 (3.60 GHz) CPU with 64 GB RAM and GeForce GTX 1080 Ti
11176 MiB GPU. For the implementation, we use Python 3.7 and PyTorch1.2.

5.2. Experiment Results

Throughout our experimental analysis, we evaluated a single model trained in a multilingual
setup as explained in Section 3. To improve the performance of the model, we first pre-trained it
using Synthetic dataset [22] and our synthetically generated bilingual dataset which has a total of
430 characters. Then, we fine-tuned the pre-trained model by combining the above-mentioned real
scene text datasets. The text recognition results were reported in an unconstrained setup, that is,
without using any predefined lexicon (set of words).

The performance of the trained model was verified using our prepared testing dataset and
well-known ICDAR detests. As discussed in Section 4.2, the collected images in our dataset contain
horizontal, arbitrary, and curved texts. Both the detection and recognition results were promising
for horizontal, arbitrary, and curved text. The experiment evaluation for scene text detection on our
prepared real scene text dataset showed 88.3% Precision (P), 82.4% Recall (R), and 85.25% F1-score
(F). On the other hand, the end-to-end scene text-reading experiment showed 80.88% P, 49.01% R,
and 61.04% F. The scene text detection performance of the proposed method for English and Amharic
words do not differ much. However, in the end-to-end scene text reading task, 63.4% of errors occurred
in the recognition of Amharic words. From incorrectly recognized characters, some of them did not
have sufficient samples on the real and Synthetic datasets. Sample detection and recognition results
are depicted in Figure 4. Most of the detection errors in our proposed method occurred from false
detection of non-text areas of backgrounds.

 
Figure 4. Sample detection and recognition result for our prepared dataset.

In addition to our testing dataset, we evaluated the performance of our proposed model using
ICDAR2013, ICDAR2015, and Total-Text testing datasets, which contain only English texts. The model
is fine-tuned for both English and Amharic languages as one model, not for each language. The results
of our proposed method and previously proposed methods are shown in Table 3. The experiment
showed that our proposed method had a better recognition result on ICDAR2013 and Total-Text
datasets. However, the scene text detection result of our proposed method was almost similar to
a recently proposed mask text spotter [9] method. We used their architecture and implementation
code with a little modification on the feature extraction layer and recognition layer. From the
MaskTextSpotter implementation, we modified the ResNet-50 feature extraction by octave based
ResNet-50 feature extraction and the text recognition part is modified by self-attention encoder-decoder
model. Whereas the preprocessing and RPN implementation is taken from MaskTextSpotter. In Table 4,
we compare the scene text detection result of our proposed method with previously proposed methods
using ICDAR2013, ICDAR2015, and Total-Text datasets.
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Table 3. F1-Score experimental results of the proposed unconstrained scene text reading system
compared with previous methods.

Method ICDAR2013 ICDAR2015 Total-Text

TextProposals+DicNet * [47] 68.54% 47.18% -
DeepTextSpotter * [19] 77.0% 47.0% -
FOTS * [34] 84.77% 65.33% -
TextBoxes * [8] 84.65% 51.9% -
E2E-MLT ** [48] - 71.4% -
Mask Text Spotter ** [9] 86.5% 62.4% 65.3%
Ours 86.8% 62.15% 67.6%

* indicates that the model is trained for English language only; ** indicates that the model is trained for multilingual
datasets. Our model is trained for English and Amharic languages, with 430 characters.

Table 4. Scene text detection result of the proposed method compared with previous methods.

Method
ICDAR2013 ICDAR2015 Total-Text

P R F P R F P R F

PSENet [49] 94% 90% 92% 86.2% 84.5% 85.69% 84% 77.9% 80.9%
TextBoxes++ [8] 92% 86% 89% 87.8% 78.5% 82.9% - - -
Mask Text Spotter [9] 94.8% 89.5% 92.1% 86.8% 81.2% 83.4% 81.8% 75.4% 78.5%
Ours 93.91% 88.96% 91.36% 86.02% 80.97% 83.28% 82.3% 73.8% 77.82%

In the experiment, the proposed bilingual scene text reading method had limitations regarding
small font size scene texts and severely distorted images. Furthermore, due to the existence of many
characters and their similarities, and the limited number of training samples for certain Ethiopic
characters, a recognition error occurred at the time of testing. To improve the recognition performance
of the system and the scene text-reading system in general, it is necessary to prepare more training
data that contain enough samples for every character.

6. Conclusions

This paper introduced an end-to-end trainable bilingual (English and Ethiopic) scene text reading
system using octave convolution and time-restricted attention encoder-decoder module. In the
proposed model there were three layers. In the first layer, FPN with ResNet-50 was used as a feature
extractor by replacing vanilla convolution with OctConv. Secondly, bounding box prediction and
detection of texts were performed using RPN. Finally, recognition of text was performed by segmenting
text areas based on the detected bounding boxes on the second layer using a time-restricted attention
encoder-decoder network. To measure the effectiveness of the proposed model, we collect and
syntactically generate a bilingual dataset. Additionally, we use well-known ICDAR2013, ICDAR2015,
and Total Text datasets. Based on the prepared bilingual dataset, the proposed method shows 61.04%
and 85.25% F1-measure on scene text reading and scene text detection, respectively. Compared to
state-of-the-art recognition performance, our proposed model shows promising results. However,
our method shows state-of-the-art results for ICDAR2013 and Total-Text end-to-end text readings.
Furthermore, due to the existence of many characters, their similarities, and the limited number of
training samples for certain Ethiopic characters, a recognition error occurred at the time of testing.
To improve the recognition performance of the system, it is necessary for the future to prepare more
training data that contain enough samples for every character. After the publication of the paper,
the implementation code and the prepared dataset link will be freely available for the researchers on
https://github.com/direselign/amh_eng.
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Abstract: Rhinology studies the anatomy, physiology, and diseases affecting the nasal region—one of
the most modern techniques to diagnose these diseases is nasal cytology, which involves microscopic
analysis of the cells contained in the nasal mucosa. The standard clinical protocol regulates the
compilation of the rhino-cytogram by observing, for each slide, at least 50 fields under an optical
microscope to evaluate the cell population and search for cells important for diagnosis. The time
and effort required for the specialist to analyze a slide are significant. In this paper, we present
a smartphones-based system to support cell segmentation on images acquired directly from the
microscope. Then, the specialist can analyze the cells and the other elements extracted directly or,
alternatively, he can send them to Rhino-cyt, a server system recently presented in the literature,
that also performs the automatic cell classification, giving back the final rhinocytogram. This way he
significantly reduces the time for diagnosing. The system crops cells with sensitivity = 0.96, which is
satisfactory because it shows that cells are not overlooked as false negatives are few, and therefore
largely sufficient to support the specialist effectively. The use of traditional image processing
techniques to preprocess the images also makes the process sustainable from the computational point
of view for medium–low end architectures and is battery-efficient on a mobile phone.

Keywords: nasal cytology; automatic cell segmentation; rhinology; image analysis

1. Introduction

Thanks to the numerous studies in the field of computer vision applied to the medical and
biomedical field, we now have many additional tools to support specialists in their tasks [1–5].
Modern technologies have improved the acquisition, transmission, and analysis of digital images.
A growing benefit is also provided thanks to the spread of fast network connections for smartphones,
allowing for the exchange of large amounts of clinical data also useful for remote diagnosis or
follow-up [6–8].

Segmentation and contour extraction are important steps towards the analysis of digital images in
the medical field, where such images are routinely used in a multitude of different applications [9].
Segmentation algorithms, based on structural analysis, continue to be used, often as an ensemble
of segmentation techniques, especially in critical applications, such as lesion localization [10,11].
Other approaches, based on biased normalized cuts or light techniques, are also devised [12,13].
Many studies have also been conducted in the segmentation and classification of cells from digital
images. Almost all studies are in the field of hematology. An interesting study into the classification
of white blood cells (WBCs) is reported in [14]. In some studies, only segmentation aspects are
discussed [15,16], while a neural network-based classifier of cytotypes in the hematological smear
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of a healthy subject was described in [17]: starting from digital scans of hematological preparations,
it showed over 95% accuracy. Many other papers report interesting results about this last theme [18–20].

One of the fields that can benefit from the above technologies is nasal cytology, a branch of
otolaryngology, which is gaining increasing importance in the diagnosis of nasal diseases due to
the simplicity of the diagnostic examination and its effectiveness. In fact, the global spread of the
nasal diseases is significant: allergic rhinitis is estimated to affect 35% of the world’s population
and the World Health Organization considers it a growing epidemic form as, in a few years, 50% of
children may be allergic. Rhinosinusitis affects 4% of the world’s population, and nasal polyposis 5%.
Non-allergic vasomotor rhinitis affects 15% of people [21].

To the best of our knowledge, to date, there are no public or private laboratories that carry
out the examination of the cell population of the nasal mucosa routinely, as instead it is done for
hematological tests. This is for different reasons: firstly, because diagnostics based on nasal cytology
have grown recently; secondly, because economic interest is still residual; finally, because the spectrum
of diagnosable pathologies is not as extensive as in other fields of medicine. Typically, a rhinocytologist
who wants to benefit from a cytological study must independently arrange a set of personal instruments,
or, more frequently, carry out direct microscopic observation and manual cell counting using a
special rhinocytogram.

Methods and techniques designed for hematology cannot be used directly for nasal cytology;
for example, the WBC appear in almost all cases as isolated from each other, while nasal mucosa cells
often appear amassed in the smear.

The first studies about the automatic extraction and classification of the cells of the nasal mucosa
are reported in [22–24] where a diagnostic support system provides cell counting automatically—it
uses segmentation algorithms to extract cells and a convolutional neural network to classify them.
The sampling process and the diagnosis remain human activities, carried out by the specialist, but the
whole time and effort are reduced considerably, letting the accuracy of the diagnoses remain unchanged
or even be improved. To the best of our knowledge, there are no further contributions in the literature.

The further request of the stakeholders is to considerably reduce the cost of the analysis and of the
instrumentation with the aim of increasing the capillarity of the analysis itself. Therefore, the challenge
we have been given is to carry out the entire evaluation of the cell population on a mass device,
such as a smartphone, fully automatically (as shown in Appendix A). Devices with limited resources
will interact with the surrounding environment and users. Many of these devices will be based on
machine learning models to decode meaning and the behavior behind sensors’ data, to implement
accurate predictions and make decisions [25]. Several research papers have focused on the possibility
of bringing artificial intelligence to devices with limited resources and there have been efforts in
decreasing the model’s inference time on the device. Machine learning developers focus on designing
models with a reduced number of parameters in the Deep Neural Network model, thus reducing
memory and execution latency, while aiming to preserve accuracy, as far as possible. It is evident
that, at the moment, there are several problems to overcome, first among which is the limitation of the
computational capacity of mobile architectures [26–34].

In this paper a novel system based on a smartphone is presented to support rhinocytologists
during cell observation. It carries out cell extraction from the digital image of the microscopic fields.
Once this is done, the specialist can independently evaluate the segmented cells or send them to the
Rhino-cyt platform [2], which will also perform the fully automatic classification, giving back the final
rhinocytogram. This way he significantly reduces the time for diagnosis.
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2. Rhino-Cytology

Nasal cytology is a very useful diagnostic method in rhino-allergology—it allows for the detection
of cellular variations of an epithelium exposed to acute/chronic irritations or inflammations of different
nature and makes it possible to diagnose some nasal pathologies [35,36]. The strengths of this
methodology lie in the simplicity of the diagnostic examination; in fact, it is totally painless, safe,
and fast, as it can be conducted in an outpatient clinic. Starting from the assumption that the nasal
mucosa of the healthy individual consists normally of only four cytotypes, cytological diagnostics is
based on a fundamental axiom that states that, if other cells, such as eosinophils, mastcells, bacteria,
spores, and fungal hyphae, are present in the rhinocytogram, then the individual can be affected by a
nasal pathology. A quantitative analysis of the pathological cells contained in the nasal mucosa and
their state of rest or activation allows for the indication of a targeted therapy to the patient [37].

2.1. A. The Cytodiagnostic Technique

The diagnostic examination is accomplished through the following three main phases:

• Sampling: Consists of collecting a sample of nasal mucosa containing the superficial cells. It is
carried out using a disposable plastic curette, called nasal scraping, or a simple nasal swab is
preferred for smaller patients;

• Processing: The material collected is placed on a slide and dried in the open air. Then, the slide
is stained using the May Grunwald–Giemsa method, which provides the cells with the classic
purple staining and highlights all the cytotypes present in the nasal mucosa. Usually, the complete
staining procedure takes about 20–30 s with rapid staining techniques;

• Microscopic observation: An optical microscope is used, mainly connected to a special camera to
view the cells on a monitor. The diagnostic protocol involves viewing and analyzing 50 digital
images for each slide, called fields, usually at 1000X magnification.

The cell count allows a diagnosis to be made simply by counting the cells present in the 50 analyzed
fields. This process allows the specialists to draw up a diagnostic report.

2.2. B. Types of Cells Involved

Different types of cells are considered in the diagnosis of nasal diseases. Considering the diversity
of the cells present in the nasal mucosa, it is, therefore, appropriate to draw up a classification of the
different cytotypes present both in a healthy individual and in an individual with a pathology. The nasal
mucosa cells belonging to a cytotype show some elements with high similarity; however, each cytotype
appears quite different from all the others. These features allow their automatic classification [23].
A brief description of the appearance of each of the cells located in the nasal mucosa is reported below,
and corresponding sample images are shown in Figure 1:

 
Figure 1. Nasal cells.

Ciliated: Among the most common cytotypes of the nasal mucosa are ciliated cells. They have a
polygonal shape and a nucleus situated at various heights from the basement membrane. The apical
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region, the seat of the ciliary apparatus, is recognized as a well-represented body that includes a large
part of the cytoplasm and the nucleus;

Muciparous (goblet cells): The muciparous cell is in the shape of a cup and is a unicellular gland.
The nucleus is always situated in the basal position (the strengthener of the nuclear chromatin is
typical) while the vacuoles, containing mucinous granules, are located above the nucleus, giving the
mature cell its characteristic chalice shape;

Neutrophil: characterized by a polylobate nucleus, whose lobes are joined by very thin strands of
nuclear material within the cytoplasm, which contains finely colored granules;

Eosinophil: usually has a bilobed nucleus and acidophilous granules that intensely stain with
eosin (hence the name) as an orange-red color;

Mast cell: a granulocyte with an oval nucleus, covered in purple.
The nasal mucosa of a healthy individual normally contains ciliated, mucipara, striated, basal,

and sporadic neutrophils cells. In the nasal epithelium, there can also be different types of inflammatory
cells, where each of them can be a sign of a nasal pathology. They are known as immunophlogosis
cells (eosinophils, mast cell, lymphocyte). Additionally, a significant presence of neutrophils is
interesting—knowing the functions they perform helps motivate different therapeutic strategies [37].
Here, metaplastic cells have been merged into one class (epithelial) with ciliated cells because their
nuclei are similar and this merging does not influence the diagnostic protocol.

3. Image Acquisition and Processing

Thanks to the large number of contexts in which digital image processing has been successfully in
experimentation, its use has also increased in medicine that is becoming highly dependent on it and
represents fundamental pillars of modern diagnosis [38–42].

The images of the smears used in this experimentation, supplied by the Policlinico di Bari,
have been acquired with a Samsung Galaxy S6 Edge smartphone with a 16 Mpixel digital rear camera,
with a photo resolution of 5312 × 2988 pixels and an aperture of F / 1.9. A specific smartphone adapter
was also used, as shown in Figure 2. The system proposed here is based on image enhancement,
segmentation, and morphological processing [43], which allows for the extraction of the cells present
in the photo acquired by the smartphone camera and will be dealt with in this paper shortly.

 
Figure 2. Image acquisition.

3.1. Image Enhancement

There are several definitions of image enhancement in the literature but the one that best fits the
context states that this process allows for the improvement of the quality and information contained in
an original image before it is processed [44–46]. The result of this pre-process represents an improved
image that highlights some features more relevant than others both for the visual and automated
systems, which otherwise would not be visible in the original image; therefore, an image will be easier
to interpret in certain contexts.
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Image enhancement involves several aspects of an image: those that will be dealt with in this
work concern brightness (or luminance), contrast (the difference between the pixel of higher and lower
intensity), and saturation.

In Figure 3, the effects of image enhancement techniques on an image of nasal cells with low
brightness and contrast are evident. The central image appears sharper and this brings many
advantages, as the cells appear more visible and highlighted due to the increased contrast. The image
on the right is too bright and needs the so-called gamma correction.

Figure 3. Image Enhancement. Original image (on the left); image with contrast enhancement (in the
center); image with brightness enhancement (on the right) that needs gamma-correction.

Gamma correction hides brightness defects in an image using a non-linear function based on the
following transformation:

o =
( I

255

)Y
· 255 (1)

where the γ is called gamma and the I and O values indicate the input value of the pixel and the output
value of the non-linear function, respectively. This correction is often used to manipulate contrast
in medical images, especially to highlight specific characteristics in an image with low lighting and
low contrast.

3.2. Image Segmentation

Image segmentation partitions a digital image into a finite number of different regions, where region
means a set of interconnected pixels. A significant number of image segmentation techniques allow
the partitioning of a digital image [12,47], some of which have been considered in this project.

Images from the whole smear were taken and analyzed, as explained above, in smaller regions,
called fields. In terms of pixels, all fields have the same size. Many attempts were made to choose an
optimal dimension of each digital image to speed up processing—ultimately, the fields were resized to
1024 × 768 pixels, which proved to be a fair compromise.

Cell extraction was essentially based on the chromatic characteristics of cells, especially nuclei.
For example, neutrophils show a blue-violet core, eosinophils show pink granules, and lymphocytes
show a very large nucleus of blue color. Mean Shift filtering makes an image with color gradients and
fine-grain texture flattened. In order to set up the system to recognize images of slides prepared with
different techniques in the future, experiments were conducted here using grayscale images for the
segmentation phase based on the Otsu algorithm. Then, morphological operations and the watershed
algorithm were applied, followed by labeling, marking the different “objects” with different shades of
color to facilitate subsequent classification. The Canny algorithm was considered as an alternative in
rare cases when watershed provides unsatisfying results (e.g., split cells). In these cases, giving the
responsibility to the user to manually adjust thresholds, segmentation showed better results than
watershed. Of course, this option is considered a marginal one.
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3.2.1. Mean Shift

The unsupervised learning Mean Shift algorithm is based on clustering and is also applied to
digital images [48–51]. This algorithm, transforms the digital image in Figure 4a, passing through
surface construction, as shown in Figure 4b, and cluster detection, in a multidimensional space, as in
Figure 4c, where the points represent all pixels assigned to a specific cluster.

 
 

(a) (b) (c) 

Figure 4. A cell field (a), surface construction (b), and cluster detection (c).

3.2.2. Otsu Segmentation

The Otsu method is a global threshold algorithm. The result obtained represents a binary
image. To ensure optimal separation between background pixels and object pixels, and thus effective
segmentation, it is necessary to maximize the inter-class variance [52].

3.2.3. Watershed

Watershed performs a digital image partitioning in different regions, especially when there are
image elements that are very close to each other or even connected. The resulting image shows higher
pixel intensities of each object in the center areas.

3.2.4. Canny Edge Detector

The Canny algorithm finds and recognizes the contours of objects. It takes five steps during
which the grayscale input image undergoes several intermediate transformations. The result obtained
represents a binary digital image with only the contours highlighted by strongly marked pixels [53,54].

3.3. Morphological Image Processing

Morphological image processing alters the structure and geometric shape of an object and applies
morphological operations to that portion of the image at each kernel position [55,56]. The morphological
operation used in this work is dilation. It acts mainly near the contours of the cells by adding pixels
and making it thicker. Expansion reduces and eliminates possible holes inside the cells, often due to
binarization defects.

4. Methods

The software we have designed executes the image processing introduced above, allowing for the
identification of cellular elements and their extraction from an RGB digital image, acquired with the
smartphone camera. In particular, the following steps are applied.

4.1. Increase in Brightness and Contrast

A preliminary process of image enhancement improves the quality of the original image.
In particular, both brightness and contrast are increased so as to reduce or eliminate the light color
halos around the cells caused by the staining process of the cytodiagnostic examination, which would
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otherwise have compromised the detection process in the subsequent stages. The transformation
applied to each RGB channel for each pixel (x,y) in the starting image is:

g(x, y) = α · f (x, y) + β (2)

where α and β are the so-called gain and bias, respectively, which are parameters that regulate
brightness and contrast, as shown in Figure 5. They were empirically determined: α = 1.5e, β = 6.

Figure 5. Input image (a), output image of brightness enhancement step (b).

4.2. Gamma and Mean Shift Correction

Image brightness is “gamma-corrected”, further increasing image contrast by making the color
shades of the nuclei more saturated; moreover, the Mean Shift algorithm is applied to make the coloring
of the cell nuclei more homogeneous, as shown in Figure 6.

Figure 6. Output images of gamma correction step (a) and mean shift (b).

4.3. Otsu Binarization

After grayscale conversion, segmentation is made with automatic threshold to separate cells,
as shown in Figure 7. To improve image quality and correct any defects due to Otsu’s binarization,
such as holes in cell nuclei, the process benefits from the use of aperture in combination with dilation.

231



Appl. Sci. 2020, 10, 4567

  
(a) (b) 

Figure 7. Output images of Otsu’s binarization (a) and morphological operations (b).

4.4. Identification of Markers, Watershed

After marker identification (Euclidean Distance Transform and local maxima detection),
the Watershed algorithm is applied, as shown in Figure 8. To improve the performance of the
Watershed algorithm, the bandwidth h was defined by studying the range of variation of the cell size by
means of a micrometer, a high precision gauge with a typical sensitivity of a hundredth of a millimeter.

  
(a) (b) 

Figure 8. Output images of Euclidean Distance Transform (a) and Watershed detected cells (b).

4.5. Cropping

The final step of the proposed system carries on ROI detection basing on their area, in order
to reduce non-cell regions that can be improperly highlighted. In fact, only regions that have an
area included in a specific range (a1, a2) are extracted; range values depend on the image resolution.
As explained above, we resized the original images to 1024 × 768 pixels and then determined the
range experimentally, setting a1 = 80 and a2 = 250. Examples of the cropped cells after applying this
operation are given in Figure 9. Figure 10 shows images of the designed app, and in Figure 11 the
software pipeline related to cell extraction is reported.
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Figure 9. Original image (left) and extracted cells (right).

(a) (b) 

Figure 10. App home page (a), app field gallery (b).

 
Figure 11. Cell extraction pipeline with methods—see “detect()” in Appendix B.

5. Experimental Results

The cell extractor here described has been tested on 75 digital images representing fields,
first performing a standard cell observation and manual counting for each field, and then taking into
consideration the cells detected through the system proposed in this paper.

In Figure 12 a qualitative example of the working system for one of the 75 images is reported.
The result in terms of the detected cells is shown with a blue bounding box around the segmented
objects. The performance of this system is reported in Table 1—all cells and non-cells on the 75 slides
were also manually labeled by domain experts, to obtain the ground truth.

Table 1. Cell detecting performance.

Confusion Matrix

True Condition

Predicted positive negative

Positive 1224 166

Negative 52 113
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Figure 12. Cell detection.

With reference to Table 1, TP represents cells correctly extracted, FN lost cells, FP non-cells
improperly extracted, and TN non-cells discarded.

Starting from these assumptions, the system performances are summarized here:
Accuracy 0.860
Sensitivity (Recall) 0.959
Specificity 0.405
Precision 0.881
F-score 0.918

The measure that must mainly be taken into consideration is certainly sensitivity, which quantifies
the avoidance of false negatives. The value 0.96 is satisfactory because it shows that actual positives are
not overlooked, as false negatives are few. The FN detected refer, for the vast majority, to heavily-massed
cells that the same experts do not consider during the observation. In fact, the manual protocol defined
by the experts is tolerant of the typical presence of clusters and specifies that at least 50 fields must
be taken into account, increasing them during the observation if they find the excessive presence of
clusters or almost empty fields. All of this takes significant effort. In reference to this, and also with the
system we have designed, the specialist can increase the number of fields to be acquired and analyzed,
proving to be flexible. Even the number of false positives does not worry us because the cells and the
other “objects” extracted are classified manually or through the Rhino-cyt platform, which discards the
FP with great accuracy.

A final remark should be given about the execution time. Time to process a set of 50 fields
manually may exceed half an hour or more. It depends largely on the expertise of the specialist and on
the specific field density and cell agglomeration [57].

Time to process a single field automatically may vary depending on how dense the field is.
We observed an elapsed time of 4.2 s to process the field in Figure 4, 4.1 s to process the field in
Figure 5, and 2.1 s for the field in Figure 9. We estimated the average processing time on 10 slides of
differing densities, obtaining 2.9 ± 1.1 s. This result was obtained with a low-end/low-cost smartphone,
Xiaomi Redmi Note 7, but of course, it largely depends on the device hardware. In this phase,
we really focused on demonstrating the feasibility of the proposed approach in terms of segmentation
effectiveness (i.e., the extraction of the cells and getting the approval of specialists about the efficacy
and usefulness of this system). Then, it is worthwhile to invest in research and the development
of technologies, such as those presented in this paper, while software efficiency can be pursued,
but it might not be necessary, given that higher-end smartphones are increasingly more powerful
and cheaper.

6. Conclusions

The advancements in the nasal cytology field and the evolution of smartphone technology have
allowed for the realization of this project. The aim of designing a system that would support the
specialist during the observation phase of the slides has been reached through the development of
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this system, able to acquire an image from the digital microscope and to extract the cellular elements.
The main advantages of this application is that the cell counting activity is faster than the manual
process, together with its ease of use and the possibility of sharing images obtained from the observed
fields. In fact, the cell images extracted can be sent directly to a specific server, which automatically
classifies and counts them, such as the Rhino-Cyt system [23]. A possible use of this system could also
be in combination with a microscope, which allows for the automatic sliding of the slide. The specialist
could manage the sliding and acquire the photo, as necessary. We are now setting ourselves two main
goals. The first is to pursue effective full classification on the board and the second is to integrate other
diagnostic tools, such as the one just published in the literature, which aims to diagnose dyskinesia of
the hair cells of the nasal mucosa [58].
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Appendix A

As we have written in the introduction section, to the best of our knowledge, to date, there are no
public or private laboratories that carry out the examination of the cell population of the nasal mucosa
routinely, as instead it is done for hematological tests. The first studies about the automatic extraction
and classification of the cells of the nasal mucosa were published by some of the authors of this paper.
Now, specialists would prefer to carry out the entire evaluation of the cell population on a personal
device, such as a smartphone, fully automatically, with the aim of increasing the screening and routine
monitoring of nasal disease through cytology.

The use of a smartphone-based system also guarantees the preservation of the privacy and security
of patient information. On the other hand, it makes it possible to send patient data and images
to the Electronic Medical Record [8] to follow-up with the patient or to obtain a “second opinion”,
an increasingly widespread practice. However, this further possibility is reserved for patients who
request it and, for these, a security protocol should be used. When the classification is carried out
completely on the smartphone, nothing must be transferred remotely; however, several problems have
to be overcome first, among all the limitations of the computational capacity of mobile architectures.

Our system is based on well-known algorithms in the literature—not state-of-the-art, but effective
enough for our purpose. These are already sustainable from a computational point of view from
medium–low end architectures, such as the Xiaomi, used for this experimentation. The use of traditional
image processing techniques to preprocess the image is also battery-efficiently on a mobile phone.

At this stage, the system designed and described in this paper is limited to the extraction of
cells from the microscopic field. Once this is done, the specialist can decide to manually evaluate the
segmented cells or to send them to the Rhino-cyt platform for a fast classification. So, the system is
already very useful.

Appendix B

As can be seen from Figure A1, the system presents a modular architecture, composed of several
interacting objects or classes. The structure of the application has been designed to ensure a two-layer
division—the presentation layer and the status of the business logic. The first layer includes the Java
classes that play the role of activities, having the task to show the screens with the GUI and to define
the various behaviors of the application, based on the user interaction with the interfaces. The second
layer belongs to the Java classes that implement the algorithm proposed in the previous paragraphs
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and accesses the file system of the smartphone, playing the role of operating classes for the back-end.
Below are described the main modules and methods.

Figure A1. Software architecture.

MainActivity represents the main class, as well as the activity that is activated by the Android
operating system, invoking the onCreate method. Other methods of MainActivity are fastCapture,
multiCapture, galleryOpen, and infoHowto, invoking other activities that are part of the application,
described below. Additionally, quit and checkPermissions methods are invoked, respectively, to close
the application and to check if permissions have been granted to allow the app to access the device
memory, take pictures, and use the Internet connection.

FastCaptureActivity and Capture are both part of the presentation layer, and represent, respectively,
the function that allows you to take a single photo and immediately extract the cellular elements to
send, and one of its internal classes. FastCaptureActivity, after its invocation with the onCreate method,
uses its inner-class Capture to activate the camera and display the frames captured by the latter,
with which it will be possible to capture the digital images to submit to the extraction function. The first
of the main methods of the Capture class is takePicture that acquires the photo and, after converting
it from Bitmap type to Mat type, it stores it in a variable that will be the input of the algorithm of
detection and extraction.

MultiCaptureActivity and MultiCapture, are similar to the previous classes with the only difference
being that the MultiCaptureActivity class allows you to take any number of photos, acquired thanks to
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the MultiCapture class that temporarily saves them in a data structure (ArrayList) and provides them
all together with the detection and extraction algorithm.

GalleryActivity and FullScreenActivity deal with the visualization of the cells extracted from the
algorithm. In particular, the first deals with the loading of the images extracted, accessing the memory
of the device, and their visualization in a gallery, in which all the previews of the extracted cells that
will be selectable and shareable will be displayed. In particular, the shareImages and deleteImage
methods are used, respectively, to share the selected cells and to delete them from the device memory.
The reloadAdapter method is used to update the gallery screen after sharing or deleting images,
simply reloading the images from the memory. FullScreenActivity is the activity that is invoked by
GalleryActivity every time you press on a preview. This activity allows the full screen display of the
selected cell.

InfoActivity displays a screen with instructions on how to use the application correctly.
WatershedSegmentation and MultiWatershed are the internal classes belonging, respectively,

to FastCaptureActivity and MultiCaptureActivity activities. They are instantiated every time the
process of identification and the extraction of cellular elements from the photo(s) taken are started.
Their most important methods are detected, which represents the process related to the identification
of the cells, proposed in the algorithm described above, the extract method that extracts the elements
identified by the previous method, creating a new image for each of them representing only the region
of interest that circumscribes the cell, the enlargeRoi method that allows the user to enlarge the area of
the region of interest around the cell, and finally the performGammaCorrection method, invoked by
the detect method for the gamma correction. Both classes access the smartphone file system and save
the cells in the /Pictures/Segmentation/Session directory. This path will be created automatically the
first time you launch the application.

Each of the above activities is associated with a layout defined in XML.
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Abstract: Plants are ubiquitous in human life. Recognizing an unknown plant by its leaf image
quickly is a very interesting and challenging research. With the development of image processing
and pattern recognition, plant recognition based on image processing has become possible. Bag of
features (BOF) is one of the most powerful models for classification, which has been used for many
projects and studies. Dual-output pulse-coupled neural network (DPCNN) has shown a good ability
for texture features in image processing such as image segmentation. In this paper, a method based
on BOF and DPCNN (BOF_DP) is proposed for leaf classification. BOF_DP achieved satisfactory
results in many leaf image datasets. As it is hard to get a satisfactory effect on the large dataset by
a single feature, a method (BOF_SC) improved from bag of contour fragments is used for shape
feature extraction. BOF_DP and LDA (linear discriminant analysis) algorithms are, respectively,
employed for textual feature extraction and reducing the feature dimensionality. Finally, both features
are used for classification by a linear support vector machine (SVM), and the proposed method
obtained higher accuracy on several typical leaf datasets than existing methods.

Keywords: feature extraction; shape context; plant recognition; DPCNN; BOF

1. Introduction

The traditional plant classification method is mainly realized by artificial recognition, which has
the disadvantages of being time-consuming, susceptible to subjective judgment, and low recognition
accuracy, far from meeting the requirements for rapid and accurate plant identification. Therefore, the
rapid and accurate identification of plants is very challenging and meaningful. Plant recognition has
been a challenging study since early last century, and plants play an irreplaceable role in human life.
In the last decades, many researchers have studied image processing and pattern recognition as well as
paid extensive attention to plant recognition. They have used images of plant organs (e.g., leaf, flower,
fruit, and bark) for plant recognition.

In fact, although the images of flower, fruit, and bark have been employed for plant recognition,
they have low recognition rates. In addition, these organ images have some limits; for instance,
the flowering period is short and the texture of bark is unstable. Compared with flower, fruit, and
bark, leaf images can be collected easily during the year, and its shape and texture are also stable.
Therefore, the leaf is used as one of the important features for identifying plants. Most methods for
plant recognition based on image processing rely on leaf images. In other words, plant species are
recognized by leaf recognition.

In pattern recognition, using shape, texture, and color features for classification has been widely
used. Soumyabrata et al. [1] proposed an improved text-based classification method to improve
the classification results by integrating color and texture information. In addition, different color
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components and other parameters were compared and evaluated. Kristin et al. [2] introduced pattern
recognition and computer vision as well as the application of texture features and pattern recognition.
However, most leaves have small inter-class color differences, and some leaves have large intra-class
color differences. As illumination may be uneven under natural conditions, the color features will
affect recognition results. Therefore, the proposed method uses shape and texture features, which are
more robust.

Both shape and texture features are used for leaf recognition. In 2012, Kumar et al. designed a
mobile application Leafsnap, where histograms of curvature over scale (HoCS) [3] as a single (shape)
feature was employed for plant identification. Other shape features are also used for leaf recognition,
such as centroid-contour distance (CCD) [4], aspect ratio [5], Hu invariant moments [6], polar Fourier
transform (PFT) [6], inner distance shape context (IDSC) [7], sinuosity coefficients [8], multiscale region
transform (MReT) [9], etc. However, some leaves from different kinds of plants are very similar; the
shapes of those leaves even cannot be differentiated by the naked eye. Hence, it is reasonable to use
both shape feature and texture feature for leaf recognition. The most commonly used texture features
contain entropy sequence (EnS) [10], histogram of gradients (HOG) [11], Zernike moments [12], scale
invariant feature transform (SIFT) [13,14], gray-level co-occurrence matrix (GLCM) [15], and local
binary patterns (LBP) [15]. Fu et al. [16] proposed a hybrid framework for plant recognition with
complicated background. They extracted the block LBP operators as the texture features and calculated
the Fourier descriptors as the shape features. Saleem et al. [17] combined 11 shape features, 7 statistical
features, and 5 vein features for leaf recognition. Chaki et al. [18] used Gabor filter and GLCM to
model texture feature and used a set of curvelet transform coefficients together with invariant moments
to capture shape feature. Shao [19] proposed a new manifold learning method, namely supervised
global-locality preserving projection (SGLP), for plant leaf recognition. Chaki et al. [20] proposed a
novel approach by using the combination of fuzzy-color and edge-texture histogram to recognize
fragmented leaf images. Some features based on Gabor filters [21,22], fractal dimension [23], locality
projection analysis (SLPA) [24], kernel based principal component analysis (KPCA) [25], bag of word
(BOW) [22,26] and convolutional neural networks (CNN) [27] are also used for leaf recognition.

In this paper, a new leaf feature called BOF_DP based on dual-output pulse-coupled neural
network (DPCNN) and BOF is proposed, and an improved shape context called BOF_SC is also used
in our plant image recognition system. The rest of the paper is organized as follows. Section 2 briefly
introduces some related basic theories, including DPCNN and BOF. Section 3 introduces the theories
related to feature extraction. Section 4 introduces the details of our proposed recognition method.
Section 5 presents some comparative experimental results on several representative leaf image datasets.

2. Theory for Plant Recognition

2.1. Dual-Output Pulse-Coupled Neural Network

DPCNN was proposed by Li for geometry-invariant texture retrieval in 2012 [28]. The structure
of DPCNN model is shown in Figure 1.
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Figure 1. Structure of DPCNN.

The mathematical expressions of DPCNN model are as follows:

Fij[n] = f Fij[n− 1] + Sij[n](VF

∑
k,l

MijklYU
kl [n− 1] + γ) (1)

YF
ij[n] =

{
1, Fij[n] > Tij[n]
0, otherwise

(2)

Uij[n] = Fij[n] + VUSij[n]
∑
kd

WijkdYF
kd[n] (3)

YU
ij [n] =

{
1, Uij[n] > Tij[n]
0, otherwise

(4)

Tij[n + 1] = gTij[n] + VEYU
ij [n] (5)

Sij[n + 1] = (1−YU
ij [n] + YF

ij[n])Sij[n] + (YU
ij [n] −YF

ij[n])Aij (6)

where S is the external stimulus, and it changes depending on the current outputs YF and YU. VE, VU,
VF, f , and g are fixed constants between 0 and 1. W and M are the connection weights which the current
neuron communicates with its neighbors. YF is the feeding out and YU is the compensating output.

Each neuron of DPCNN is an active neuron, which can be ignited by the feedback input or internal
activity of the neuron to generate output pulse. First, the feedback input (Fij) changes due to the
influence of external stimuli and external compensation output from neighboring neurons. Once the
value of the feedback input (Fij) exceeds the active value, the neuron generates a feedback output
pulse. Then, the feedback output, feedback input, and external stimulus from the neighboring neurons
work together to change the value of the internal activity (Uij). Once the value of the neuron’s internal
activity item exceeds its activity threshold, a compensation output pulse is generated. Finally, the
activity threshold (Eij) and external excitation (Sij) values are updated.

The pulse sequence generated by pulse-coupled neural network (PCNN) can represent the image
edge and texture information; thus, it can extract effective image features. However, there are still
some limitations in feature extraction. For example, there is only one pulse generator in the entire
neuron model, and the excitation of neurons lacks a compensation mechanism. DPCNN is improved
based on the PCNN model. Compared with PCNN, DPCNN has the following advantages: (1) each
neuron of DPCNN has two chances to be excited; (2) DPCNN can adaptively change the size of the
external excitation of each neuron; and (3) received local stimuli from peripheral neurons are affected
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by the modulation of the input stimulus. In addition, DPCNN also has translation, rotation, scale
invariance, and robustness.

When DPCNN is used for feature extraction, the input image must be a gray image and the
intensity of a pixel should be between 0 and 1. In our tests, the parameters were the same as in Ref. [28],
except the iterations. The output of each iteration is a binary image, which is called pulse image. The
entropy of the pulse image is used as a feature, and, after n times-iteration, the feature EnS, which is a
vector with lengths of n, is obtained.

2.2. Bag of Feature

BOF model represents an image as an orderless collection of local features, and it has been widely
used in pattern recognition. After the efforts of many researchers, the BOF model, which is used
with spatial pyramid matching (SPM) [29] and locality-constrained linear coding (LLC) [30], has good
performance in many studies. The flow chart of the BOF classification model is shown in Figure 2.

Figure 2. BOF classification system.

LLC is a linear coding scheme with local constraints. Local constraint makes coding results
more accurate and acquires spare code, and it improves the speed of training and classification.
The mathematical expression of LLC is as follows:

min
c

M∑
i=1

‖xi − Bci‖2 + λ‖di ⊕ ci‖2 (7)

s.t.·1Tci = 1, ∀i

where X = {x1, x2, . . . , xN} is the feature descriptor set obtained after the origin image blocking; ci is the
coding result of xi; ⊕ denotes the dot product operation; and di is the Euclidean distance between xi
and B.

SPM is an algorithm of image matching, recognition, and classification using spatial pyramid,
and it is a method for obtaining the spatial information of the image by statistically distributing image
feature points on images of different resolutions. Generally, it has two steps:

(1) Extract features from different scales and combine them together.
(2) Convert features of different lengths into fixed-length features.

When BOF works, each image of the dataset is divided into many blocks, and the size of the block
is always 8 × 8. To get a better effect, neighboring blocks are combined as a patch. The collection of
patches can be regarded as a bag of components. Generally, the sizes of the patches of the collection
are too big, and many patches are similar. Thus, it is reasonable to unify similar patches into a
standard component. In fact, the above operation is calculated in feature space such as SIFT space and
HOG space. Patches are expressed by feature extracted from themselves; the collection of standard
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components counted by K-means is called codebook; and the standard component is called code. For
each patch, it is described by its neighborhood (the code in codebook) using a histogram which is
the function of LLC. Finally, the histogram is pooling by SPM, and the sparse and smooth feature
is obtained.

3. Feature Extraction

3.1. Dictionary Learning

As traditional method of learning codebook is based on the unsupervised learning method
K-means, which does not take advantage of training label. When K-means works to find the center of
clustering, it will calculate the distances between a center and all the points; however, there are only a
few parts of points which contribute to the calculation of center. Each cluster center is regarded as
a visual vocabulary in the dictionary. When the dataset is large, it will cost a large amount of time
and computing resource. The cost of clustering is mainly determined by the size of the feature matrix,
and normally the size of the feature matrix is large. The features of the training set are employed to
reduce the number of points while finding effective centers. For each species, D centers are counted;
its typical value is 8. Combine the cluster centers of each class to get a D× n dimensional dictionary,
where n is the number of species. If the value of the clustering center is too small, the features cannot
be accurately clustered, and the error is large. However, if the value of the clustering center is too large,
it will increase the calculation amount and time consumption. Therefore, the cluster center value we
choose can reduce the learning cost and improve the learning speed.

3.2. Shape Feature Extractions

The shape of leaf is a basic feature of leaf image; when people identify an object, its shape comes
to our mind firstly. Similarly, for leaf image recognition, the shape is a simple and fast feature, but
the effect of a feature may be not qualified for leaf recognition by itself, as many kinds of leaf images
have similar shapes. Thus, in our system, shape feature is a minor feature. As shown in Figure 3, after
getting the contour of leaf image, the contour is cut into numerous shape fragments; the middle points
of each fragment are shown in Figure 3C.

Figure 3. SC acquisition.

Then, shape context is used as a descriptor of each fragment. Finally, the BOF model is used for
feature coding and pooling so that we can get a more effective feature. Unlike bag of contour fragments
(BCF), in this paper, uniform sampling method and simple fragments are used to improve the speed
for feature classification.

3.3. Texture Feature Extractions

When DPCNN works, the parameters must be set firstly; the parameters of DPCNN in this paper
are from Ref. [28], except the times of iteration. In our method, the image is divided into many blocks
with 8 × 8 sizes (assuming that the number of patches is N to each kind of leaf images), each block is
regarded as a patch. Then, after the iteration of n times, there will be n entropy images, and the entropy
of each patch in every entropy image will be counted in order, as shown in Figure 4. If the entropy of
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one patch is ei, the entropy vector of the jth patch will be Ej = [e1, e2 . . . . . . en]. To a species, the features
matrix will be ENn, and eight codes (center of clustering) will be counted based on this matrix too.

Figure 4. Flow of getting entropy vector.

The process of extracting leaf image features by BOF_DPCNN combining DPCNN and BOF model
is mainly divided into four stages: preprocessing, acquisition of DPCNN pulse images, low-level
feature extraction, and feature coding. The process of obtaining image features of BOF_DPCNN is
shown in Figures 4 and 5. Since the datasets we used are processed, the preprocessing stage can be
ignored. As shown in Figure 4, the color image is converted to grayscale image firstly, and then the
grayscale image is divided into blocks of the same size. For each small block, the DPCNN model
is iterated to obtain the pulse entropy images. Finally, the entropy vectors are calculated from the
entropy images to obtain low-level features. The BOF model is used to construct the codebook with
low-dimensional features, LLC is used to encode, and SPM is used for pooling, as shown as Figure 5.

Figure 5. Acquisition of image features using BOF_DPCNN: (a) entropy vectors obtained by DPCNN
model; (b) codebook obtained by learning features; (c) the LLC coding; and (d) SPM for pooling.

4. Proposed Recognition Method

Image recognition has a fixed framework. In general, for plant recognition, object images acquired
by special devices (e.g., camera or scanner) are used. In this paper, we select the leaf datasets with clean
background for identification. Some key features which can identify the object are extracted from the
images through various algorithms. The classifier is employed for classification after feature extraction.
Most classifiers need to be trained by samples before classification. Finally, the result is obtained. The
proposed method of leaf image recognition also adopts the above framework. The detailed scheme of
the proposed method is shown in Figure 6. It can be divided into three steps: leaf image preprocessing,
leaf feature extraction, and recognition. These steps are explained in the following.
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Figure 6. Scheme of the proposed method.

4.1. Image Preprocessing

The leaf image is preprocessed to improve image quality. Image preprocessing contains the
following steps.

a. Image denoising: If the leaf image has some background information, the background should
be deleted, which will decrease the calculations of features extraction. Because most leaf image
datasets are built using optical scanners, the background is simple and easy to be removed by an
adaptive threshold segmentation method.

b. Image segmentation: Sometimes the obtained leaf image has a complex background, and it
needs to be separated from the background by segmentation. Since most leaf images contain
some regions without value, the target region is extracted by a morphology method. Then, a
quadrilateral is used to surround the target region. The quadrilateral is obtained from the original
image and rotated to horizontal.

c. Image enhancement: Sometimes it is essential to enhance the contrast and texture of the image.
Histogram equalization and linear stretching are adopted in this method. Then, high-pass filter is
employed to enhance the edge and texture of the leaf image (gray image). Finally, texture feature
is extracted from this gray image.

4.2. Feature Fusion

The feature extraction is introduced in Section 3. In this section, the two features are fused to a
feature vector. Support F and T are the BOF_SC and BOF_DP features, respectively. Firstly, different
weights α and β (support to α + β = 1) are assigned to F and T, thus the feature vector can be expressed
as FV = [αF, βT]. The larger is the weight, the greater is the role of the feature in the fused feature.
Because these weights greatly influence the final recognition result, α and β are usually determined
after many experiments. As F and T are sparse matrices, FV is still a sparse matrix; it might be easy
for classification, but it requires much memory. Thus, a direct linear discriminant analysis (LDA)
algorithm [31] is used for dimensionality reduction. Finally, the final dimensionality of the feature
vector is 1000.

4.3. Classification

There are many classifiers for leaf recognition, such as support vector machine (SVM) [10],
probabilistic neural network (PNN) [5], K nearest neighbor (KNN) [32], and random forests [33].
The most commonly used is SVM for its high accuracy and easy of use. Liblinear [34] and Libsvm [35]
are two popular SVM tools for classification. Although Libsvm and Liblinear can achieve similar results
in linear classification, Liblinear is much more efficient than Libsvm in both training and prediction.
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When the number of samples is large, Liblinear is significantly faster than Libsvm [36]. Thus, we use
Liblinear rather than Libsvm. Given a set of training leaf features Fvi, yi ∈ [1, . . . , N], where N is the
number of leaf species, when Liblinear is used for leaf recognition, the problem can be defined as:

ri = argmaxn∈[1,...,N],n�yi
ωT

n Fvi (8)

min
ω1,...,ωN

⎧⎪⎪⎨⎪⎪⎩ N∑
n=1

‖ωn‖2 + c
∑

i

max(0, 1 +ωT
ri

Fvi −ωT
yi

Fvi)

⎫⎪⎪⎬⎪⎪⎭ (9)

ŷ = argmaxn∈[1,...,N]ω
T
n Fvi (10)

When Liblinear works, it will learn a multi-class space. ri represents the ith class learned from
training data. In Equation (9), the first part is a linear regularization term or linear kernel. c is the
weight of linear kernel. For the testing data, the predicted labels are defined by Equation (10).

5. Experiments and Analysis

5.1. Datasets

As leaf recognition becomes more and more attractive, many open source leaf datasets can be
used for studies, such as Flavia [5], ICL [37], Swedish [38,39], MEW2012 [32], and so on.

Flavia dataset (http://flavia.sourceforge.net/) contains 1907 leaf images of 32 kinds, and it is
the most used dataset for leaf recognition. Most leaves of Flavia dataset, as shown in Figure 7, are
common plants in the Yangtze Delta, China. To each species, there are at least 50 leaves, which is
enough for training and testing. These leaves are single leaves with the petiole removed and without
complex background.

Figure 7. Standard leaf image of Flavia dataset.

The ICL dataset (http://www.intelengine.cn/English/dataset) is collected by the Intelligent
Computing Laboratory of the Chinese Academy of Sciences. The database contains 16,848 leaf
images from 220 plants, with a different number of leaf images for each species. Some examples are
shown in Figure 8.
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Figure 8. Standard leaf image of ICL dataset.

The Swedish leaf dataset (http://www.cvl.isy.liu.se/en/research/datasets/sw) contains leaf images
of 15 species each with 75 samples, for a total of 1125 Swedish leaf images. Figure 9 shows some
example leaf samples of the Swedish dataset.

 

Figure 9. Standard leaf image of Swedish dataset.

The MEW (Middle European Woods) dataset is a large dataset containing 153 species of Central
European woody plants with a total of 9745 samples. Some examples are shown in Figure 10.

 

Figure 10. Standard leaf image of MEW dataset.

5.2. Length of DPCNN

When DPCNN works, the iteration is a significant parameter which would influence the effect of
features. In Ref. [28], the iteration is set at 47. Generally, for most all PCNN models, e.g., ICM and
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SCM, used for feature extraction, iterations are more than 30. To some degree, the iterative process is a
process of feature extraction by using a dynamic threshold, which is the most prominent feature of
PCNN models.

While the iterative process is also essential for BOF_DP, how much times it costs is the key point
of this part. To find the best iteration of DPCNN, the iteration number was changed from 5 to 45 to
find a better iteration below 45. In fact, if the iteration were 45 or more, the time for feature extraction
would be too long, so the maximum of iteration was set at 45. On the other hand, for an image,
the entropy vector is an approximate periodic vector; too many iterations would not be helpful, and,
on the contrary, it would lower the feature’s productivity. Flavia dataset was selected for testing, where
30 sample images were selected for training for each species, and the remaining images were tested.
The average recognition rates are listed in Figure 11. It is clear that the accuracy reaches its peak after a
sharp increase. After the peak, when the iteration is 20, the accuracy shows a noticeable steady fall,
and it never presents a rising trend. Hence, the best iteration number is around 20.

Figure 11. Relationship between Iteration of DPCNN and accuracy.

BOF_DP has the best effect when iteration number is 20 while the traditional DPCNN has the best
feature when the iteration number is 47. The iteration process is reduced obviously. To some extent,
this may be caused by the method of sub-block processing, when images are divided into smaller
pieces. The local feature is more outstanding in each block, but, when the iteration number is oversized,
there would be some unnecessary data that can be regarded as noise. Actually, when the iteration
number is smaller than 20, the redundancy and noise also exist. Hence, an effective method for feature
selection will be helpful for improving the efficiency of the proposed feature.

5.3. Effect and Stability Analysis

The train number of each species (tr_no) was changed from 5 to 30 as shown in Figure 12. To each
training set, SIFT with LLC coding was used for comparison, and the training set and testing set were
kept the same for each feature. All the accuracies are the average of 10 times.
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Figure 12. The relationship between the training number of each species and the recognition accuracy.

It is obvious that, for each feature, the accuracy increases with tr_no. However, we are most
concerned with the proposed feature BOF_DP showing a better effect than BOF_SIFT. Both BOF_SIFT
and BOF_DP are better than BOF_SC, and the combined features of BOF_DP and BOF_SC achieved
the highest recognition accuracy in the Flavia dataset.

To show the results of recognition clearly, recognition rates for each species are shown in Figure 13.
The training number of each class was 30, and the final recognition rate on Flavia dataset was 98.2049%.
Except for Species 11 and 25, the recognition accuracies of other species were ideal.

Figure 13. The recognition accuracy of each species in the Flavia dataset.

5.4. Comparison of Features

Some other features were used for comparison, as shown in Table 1. BOF_DP represents the
proposed feature, BOW + SIFT represents the features in Ref. [14], BOW + SC is also a proposed
method based on SC and BOW in Ref. [14], LLC + SIFT is the original LLC method using SIFT [29],
DBCS is a deformation-based representation space for curved shapes, and the authors of [39] proposed
an adaptation of k-means clustering for shape analysis in DBCS. 2DPCA [40] is the 2D-based method
of principal component analysis (PCA) and uses the bagging classifier with the decision tree as a weak
learner. The recognition accuracies of these features are relatively close. 2DPCA has the lowest accuracy
among these features. The proposed feature BOF_DP obtains the highest accuracy in the comparison.
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Table 1. Comparison of proposed feature with existing features on Flavia dataset.

Method Species Total Images Training/Testing Images Accuracy (%)

BOW + SC [14] 32 1907 945/962 94.76
BOW + SIFT [14] 32 1907 945/962 94.38

DBCS [39] 32 – –/– 94.07
MEW [32] 32 1907 945/962 93.66

LLC + SIFT [29] 32 1907 945/962 95.00
2DPCA [40] 33 – –/– 93.50

BOF_DP 32 1907 945/962 96.34

5.5. Comparison of Different Methods

We also compared the proposed method with other methods on some datasets. To test the
effectiveness and extensibility of the proposed feature and system, leaf datasets Flavia, ICL [37],
Swedish [38,42], and MEW2012 [32] were used for testing.

As ICL contains so many leaf images, most methods always take a part of ICL dataset for testing.
To compare with the MEW method [32], we followed its setting. On each dataset, for each species, half
of leaf images were chosen as training sets, and the rest were the testing set. Supposing the number of
species is p; if p is an even number, the training leaf images number was p/2; otherwise, the training
leaf images number was (p + 1)/2. Finally, the training set and the testing set were roughly equal (in
fact, the testing set was larger than the training set). The detailed data of the four datasets are shown in
Table 2. In the following, all tests were repeated 10 times to get a convincing result.

Table 2. Detail information of the four datasets.

Dataset Swedish Flavia MEW2012 ICL

Total number 1125 1907 9745 16848
Training/testing 555/570 945/962 4839/4906 8397/8451

Species 15 32 153 220

First, we compared these methods on the Flavia dataset. The comparison results with other
methods are shown in Table 3. ZRM [41] is a method based on Zernike moments. Z&H represents the
method of Ref. [11], which is based on Zernike moments and histogram of oriented. VGG16 [42] and
VGG19 [42] are the pre-trained models based on CNN architecture with logistic regression. MLAB
(Margin, lobes, apex and base) [43] is the phenetic features of leaf. MLBP [44] is the method of
extracting texture features based on modified local binary patterns. Muammer Turkoglu and Davut
Hanbay [45] proposed the improved descriptors based on LBP, called region mean-LBP (RM-LBP),
overall mean-LBP (OM-LBP), and ROM-LBP. RIWD (rotation invariant wavelet descriptor) [46] is a
new shape proposed by Ehsan Yousefi et al. GIST [47] is an approach for plant recognition using GIST
texture features. Wang et al. [48] proposed a few-shot learning method based on the Siamese network
framework (S-Inception) to better classify the small sample size (where n is the number of species
used in this experiment and the number of trainings is 20 n). Most of these comparison methods do
not introduce the number of training and test samples. Among the comparative methods, the deep
learning-based method [42,48] does not obtain the best recognition results, but is slightly lower than
other machine learning methods [44–46]. SSV [17] is a fusion feature composed of 11 shape features,
7 statistical features, and 5 vein features. The recognition result of SSV is slightly higher than our
proposed method. As shown in Table 3, the training samples of the experiment are far more than the
test sample images. It can be seen from the method Z&H [11] in Table 4 that, when the number of
training samples increases and the number of test samples decreases, the recognition rate increases.
Further, our method uses more total images than SSV. The total images of SSV were 1600, while our
total images were 1907. More than 300 images were removed in SSV. The Flavia dataset we used is
original and unfiltered. Therefore, it is understandable that the SSV method obtains a slightly better

252



Appl. Sci. 2020, 10, 5177

recognition rate under the very superior experimental conditions. Overall, the proposed method is
superior to most of other existing methods.

Table 3. Comparison of proposed method with existing methods on Flavia dataset.

Method Species Total Images Training/Testing Images Accuracy (%)

ZRM [41] 32 1600 1280/320 93.40
Z&H [11] 32 1600 1280/320 97.18

VGG16 [42] 32 1600 –/– 95.00
VGG19 [42] 32 1600 –/– 96.25
MLAB [43] 32 1907 1280/627 94.76
MLBP [44] 33 1907 –/– 97.55

RM-LBP [45] – – –/– 97.94
OM-LBP [45] – – –/– 97.89

RIWD [46] – – –/– 97.50
GIST [47] 32 1907 –/– 95.50

S-Inception [48] n – 20n/– 95.32
SSV [17] 32 1600 1280/320 98.75

Proposed Method 32 1907 945/962 98.53

Table 4. Comparison of proposed method with existing methods on Swedish dataset.

Method Species Total Images Training/Testing Images Accuracy (%)

SMF [49] 15 1125 375/750 95.82

Z&H [11] 15 1125 375/750 95.86
15 1125 750/375 98.13

MF [50] 15 1125 375/750 97.60
MARCH [51] 15 1125 –/– 96.21

MLBP [44] 15 1125 –/– 96.83
HSCs [52] 15 1125 375/750 96.91
CSD [53] 15 1125 –/– 97.07
MEW [32] 15 1125 555/570 96.53

CBOW [54] 15 1125 –/– 97.23
S-Inception [48] n – 20n/– 91.37

Proposed Method 15 1125 555/570 97.93

Table 4 shows the results of different methods on the Swedish dataset. It contains 1125 sample
images from 15 species, with 75 images per species. The authors of [49] proposed SMF, which utilizes
the area ratio to quantify the convexity/concavity of each contour point at different scales to construct
margin feature, and they used a combination of morphological features as shape feature. Yang et al. [50]
introduced a novel multiscale Fourier descriptor (MF) based on triangular features, which effectively
captures the local and global features of leaf shape. MARCH [51] (multiscale arch height) is a novel
multiscale shape description. Wang et al. [52] proposed a hierarchical string cuts (HSCs) method.
CSD [53] is a counting-based shape descriptor for leaf recognition, which can capture global and local
shape information independently. CBOW is a shape recognition algorithm based on the curvature bag
of words (CBOW) model. Generally, the recognition accuracy is improved with the increase of the
number of training samples. When the training number of the method Z&H [11] is 750, the recognition
result is significantly improved, which is slightly higher than the method we propose. In addition,
compared with the other existing methods, the proposed method is superior. S-Inception [48] obtained
the lowest recognition accuracy, while MEW [32], MF [50] and CSD [53] were close to the accuracy of
the proposed method. The recognition accuracies of the other methods were also very close.

For ICL dataset, some researchers only use part of samples from dataset. Hence, the detailed
comparisons are listed in Table 5. GTCLC [55] is a leaf classification method using multiple descriptors.
Cem Kalyoncu et al. proposed a new local binary pattern (LBP) descriptor, and they combined it with
geometric, shape, texture, and color features for leaf recognition. The authors of [56] used several
different descriptors to extract texture and shape features and proposed a pre-training method based
on the PID to improve the DBNs. DWSRC (discriminant WSRC) [57] is the method proposed by
Zhang et al. for large-scale plant species recognition. The authors of [58] presented the novel relative
sub-image sparse coefficient (RSSC) algorithm for mobile devices. DBNs chose 50 species for training
and testing and it obtained the highest accuracy with 96%, higher than the proposed method; however,
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when the number of species in the experiment was 220, the recognition accuracy dropped to 93.90%.
When 220 species were selected for training and testing, our proposed method achieved the highest
accuracy 94.22%.

Table 5. Comparison of proposed method with existing approaches on ICL dataset.

Method Species Total Images Training/Testing Images Accuracy (%)

SC [14] 220 16,848 8397/8451 53.93
SIFT [14] 220 16,848 8397/8451 72.26

DPCNN[28] 220 16,848 8397/8451 94.07
MEW[32] 220 16,848 8397/8451 84.62

GTCLC[55] 42 – –/– 86.80
SMF[49] 50 1500 750/750 84.32

DBNs[56] 50 – –/– 96.00
220 – –/– 93.90

MARCH[51] 220 5720 2860/2860 86.03
ROM-LBP[45] – – –/– 83.71

DWSRC[57] 220 16,846 15,746/1100 91.12
220 16,846 14,846/2000 90.64

RSSC[58] 220 – –/– 92.94
Proposed Method 220 16,848 8397/8451 94.22

MEW dataset is also a large dataset. We compared our method with some classic methods, as
shown in Table 6. The PCNN proposed by Wang et al. [59], based on pulse-coupled neural network
and SVM, is a novel plant recognition method. PCNN and DPCNN have better performance than the
others. It is obvious that the method we propose is better than the other methods.

Table 6. Comparison of the proposed method with existing approaches on MEW dataset.

Method Species Total Images Training/Testing Images Accuracy (%)

SC [14] 153 9745 4839/4906 60.44
SIFT [14] 153 9745 4839/4906 82.52

DPCNN [28] 153 9745 4839/4906 92.81
MEW [32] 153 9745 4839/4906 84.92
PCNN [59] 153 – –/– 91.20

Proposed Method 153 9745 4839/4906 94.19

6. Conclusions

In this paper, we propose a new feature for plant recognition based on leaf image using DPCNN
and BOF and propose a method combining BOF_SC and BOF_DP. In the proposed method, features
of leaf are adopted, and SVM is taken as the classifier. Firstly, the proposed features BOF_DP were
compared with the existing features on the Flavia dataset. After that, four famous leaf datasets were
used to validate the performance of the proposed system. Experimental results show that BOF_DP has
a better effect than other features, and our method is superior to other methods in recognition accuracy.
However, to the DPCNN model, the parameters may not be optimal. In future work, we will try to
find the best way to set the parameters automatically and improve the recognition accuracy.
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Abstract: Historical manuscripts and archival documentation are handwritten texts which are the
backbone sources for historical inquiry. Recent developments in the digital humanities field and the
need for extracting information from the historical documents have fastened the digitization processes.
Cutting edge machine learning methods are applied to extract meaning from these documents. Page
segmentation (layout analysis), keyword, number and symbol spotting, handwritten text recognition
algorithms are tested on historical documents. For most of the languages, these techniques are
widely studied and high performance techniques are developed. However, the properties of Arabic
scripts (i.e., diacritics, varying script styles, diacritics, and ligatures) create additional problems
for these algorithms and, therefore, the number of research is limited. In this research, we first
automatically spotted the Arabic numerals from the very first series of population registers of the
Ottoman Empire conducted in the mid-nineteenth century and recognized these numbers. They are
important because they held information about the number of households, registered individuals
and ages of individuals. We applied a red color filter to separate numerals from the document by
taking advantage of the structure of the studied registers (numerals are written in red). We first used
a CNN-based segmentation method for spotting these numerals. In the second part, we annotated
a local Arabic handwritten digit dataset from the spotted numerals by selecting uni-digit ones and
tested the Deep Transfer Learning method from large open Arabic handwritten digit datasets for
digit recognition. We achieved promising results for recognizing digits in these historical documents.

Keywords: numeral spotting; historical document analysis; convolutional neural networks; deep
transfer learning; handwritten digit recognition

1. Introduction

Historical documents are valuable sources for analyzing historical, social, and economic
perspectives of the past. In order to provide immediate access to researchers and to the public,
digitization processes of these archives have been carried out in recent decades including non-European
handwritten archival collections [1]. Nevertheless, especially during maintenance periods, access to
these archives could be restricted. Information retrieval and extraction are only possible through the
digitalization processes. Page segmentation, keyword, number and symbol spotting, optical character
recognition (OCR) and handwritten text recognition (HTR) are among the most applied techniques for
these documents [2].

In page segmentation, the document is analyzed by separating the image into different areas such
as graphics, backgrounds, decorations, and texts via page segmentation algorithms [3]. Historical
document layout analysis is more difficult when compared to modern document processing since there
are more issues to be dealt with: degrading documents, digitization errors, and different layout types,
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respectively [4]. Consequently, it is challenging to apply page segmentation on historical documents
by using rule-based or projection-based methods [3]. Page segmentation can be applied before OCR,
HTR and keyword spotting techniques in some cases that is why the page segmentation processes gain
importance for the accurate digitization of historical manuscripts. The errors in the page segmentation
process affect the output of these processes, which are used the digitalize the handwritten or printed
manuscripts [2].

Keyword Spotting (KWS) is another widely used technique for information retrieval from
historical documents. There are a lot of different types of keyword spotting. The keyword can
be a word, symbol, or a numeral. Another widely known distinction is whether the spotting is
done Query-by-Example/Query-by-String [5]. In QbE, the query is provided as a word image
example, whereas, in QbS, it is provided as a character string. Other significant distinctions are
training-based/training-free; i.e., whether the spotting technique requires or not to be trained on
annotated images, and segmentation-based/segmentation-free; i.e., whether the spotting technique
is applied to the whole page images or just to segmented images/parts of the whole page [5].
Usually, a training-based method decodes images and spots the most proper keyword position during
training. Training-based keyword spotting methods are evaluated as more practical and they overcome
multi-writers and multi-fonts issues [6].

Arabic scripts are widely adopted in manuscripts of different countries and cultures, e.g., Ottoman,
Arabic, Urdu, Kurdish and Persian [7]. These scripts can be written in different ways, which complicates
the page segmentation, keyword spotting, HTR and OCR processes. It is a cursive script in which
combined letters form ligatures [7]. Moreover, the Arabic words can consist of dots and diacritics,
which makes it even more difficult to extract information [7]. These properties might not cause
problems for digit recognition since digits are isolated, but, when keyword spotting and handwritten
text recognition algorithms are applied, they will create additional challenges.

Several methods have been proposed, and high identification accuracies are reported for the
English handwritten digits [8,9]. Recently, researchers also proposed numeral spotting [10] and
handwritten digit recognition systems for Arabic scripts on different datasets ([11–13]). These studies
achieved accuracies above 90%. However, the used datasets are created recently, and they do not suffer
from the mentioned problems of the historical documents.

In this study, we first automatically spotted the Arabic numerals from the very first series of
population registers of the Ottoman Empire conducted in the mid-nineteenth century and recognized
these numbers. The household numbers, registered individual ids and ages are written red in the
studied documents. We implemented a red color filter to discriminate numerals from the document
to take advantage of the structure of the registers. We further trained a CNN-based segmentation
scheme for spotting these numerals. Our numeral spotting technique is both training-based and
segmentation-based. In the second part, we formed a small Arabic digit dataset from the spotted
numerals by selecting uni-digit ones and tested the Deep Transfer Learning (DTL) methods from the
models trained in large open datasets for digit recognition. We also compared these results obtained
by training and testing a system by using our dataset. We obtained promising results for recognizing
Arabic digits in these historical documents.

We organized the rest of the paper as follows. The literature on historical document page
segmentation, keyword spotting and Arabic digit recognition will be provided. We described
the structure of the formed databases for spotting numerals and digit recognition in Section 3.
Our numeral spotting technique and digit recognition method are described in Section 4. In Section 5,
the experimental results and discussion are presented. We mention the conclusion and future works of
this research in Section 6.

2. Related Works

Arabic document page segmentation has also been studied by using traditional machine learning
(ML) techniques. Hesham et al. [7] proposed an automatic layout analysis scheme for Arabic
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manuscripts. They further appended a line segmentation support. Text and non-text areas were
differentiated by using the Support Vector Machine (SVM) algorithm. They also identified words
and lines.

Artificial Neural Networks were further tested on Arabic document layout analysis schemes.
Bukhari et al. [14] differentiated the central body and the side manuscript by applying the Multilayer
Perceptron (MLP) classifier. A dataset is created which includes 38 historical document images and
they achieved 95% classification accuracy. Long Short Term Memory (LSTM) and CNN are employed
for document page segmentation of scientific manuscripts written in English in [15,16]. Amer et al.
developed a CNN-based document page segmentation scheme for Arabic newspapers and Arabic
printed manuscripts. They obtained approximately 90% accuracy in detecting text and non-text
areas. CNNs have also been employed for historical document layout analysis [2,3,17]. The page
segmentation algorithms are important because they could be applied prior to keyword spotting, HTR
and OCR techniques in some studies (as in our work) and, therefore, their performance is critical.

There are very few Arabic handwriting keyword spotting studies in the literature [6]. Some QbE
studies ([18–20]) are proposed for the historical Arabic documents and used a matching method
adjusted to the Arabic script. QbS approaches [21,22] used the HMM technique for keyword spotting
in handwritten Arabic manuscripts. They were standard HMM KWS applications without taking the
particular properties of the Arabic script into account. A spotting scheme is developed specifically
for Arabic handwritten digits/symbols achieved an overall precision of 80% and 83.3% recall [10].
Another prominent keyword spotting research conducted on both historical Arabic dataset VML and
George Washington datasets. Barakat et al. [23] applied a convolutional siamese network that uses
two identical convolutional networks to rank the similarity between two word images. In this way,
they developed a system which is more robust against different writing styles and is able to recognize
out of vocabulary words.

After spotting the numerals, Arabic digits should be recognized for information retrieval from
the historical manuscripts. Arabic digit recognition is a well-studied topic in the literature [13]
(see Table 1). Melhaoui et al. proposed an Arabic digit recognition scheme that used multi-layer
perceptron and K-nearest neighbor classifiers [24]. They run tests on the dataset include 600 Arabic
digits with 200 testing images and 400 training images. They achieved 99% recognition accuracy
on this small database. The HODA dataset was used for testing Persian (which is based on Arabic
scripts) handwritten digit recognition systems in the literature [25–27]. Takruri et al. [28] proposed
a three-level classifier that uses Support Vector Machine, Fuzzy C Means, and Unique Pixels for the
classification of handwritten Arabic digits. They achieved 88% accuracy on the dataset containing
3510 images. Sawy et al. also achieved 88% accuracy by using CNN on the public ADBase dataset [13].
Kateeb et al. used the same dataset (ADBase) and applied the Dynamic Bayesian Network technique
for digit recognition. They achieved 85.26% accuracy. Ashiquzzaman et al. achieved 97.3% accuracy
by using MLP with appropriate activation and regularization functions on the public CMATERDB
3.3.1 Arabic handwritten digit dataset [29]. They further improved their system accuracy by using
data augmentation and dropout to 99.4% [12]. However, as mentioned before, these studies were
carried out on modern open datasets, and they did not need to alleviate the low-quality data issues of
historical manuscripts. To the best of our knowledge, our study is the first to develop a CNN-based
Arabic numeral spotting and handwritten digit recognition system for historical documents by using
deep transfer learning methods.
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Table 1. The comparison of our study with the Arabic handwritten digit recognition studies on
different datasets.

Article Dataset Dataset Type Method Accuracy (%)

[13] [2017] ADBase Modern Arabic CNN + LeNet50 88

[25] [2018] HODA Modern Persian CNN + LeNet 97.38

[11] [2014] ADBase Modern Arabic Dynamic Bayesian Network 85.26

[26] [2019] HODA Modern Persian CNN + CapsNet 99.87

[27] [2017] HODA Modern Persian CNN + AlexNet 99.44

[30] [2020] CmaterDb3.3.1 Modern Arabic CNN 99.76

[31] [2017] CmaterDb3.3.1 Modern Arabic Boltzmann Machine + CNN 98.59

[12] [2019] CmaterDb3.3.1 Modern Arabic CNN 99.4

Our Study [2020] HODA Modern Persian CNN 99.47

Our Study [2020] ADBase Modern Arabic CNN 99.34

Our Study [2020] Ottoman Registers 1840s Historical Arabic Scripts
CNN, Deep Transfer Learning
from HODA and ADBase Datasets 80

3. Structure of the Ottoman Registers

In this research, we concentrated on the Nicaea district registers, NFS.d. 1411 and 1452. They are
digitally available at the Turkish Presidency State Archives of the Republic of Turkey—Department of
Ottoman Archives in jpeg format. We strive to implement an automatic reading method for registers
from different precincts of the empire, which are obtained in the mid-nineteenth century. These registers
include comprehensive demographic data on the male population in the households, i.e., names,
occupations, ages and family relations. Females were neither counted nor recorded in these records.
The registers were cataloged and gradually provided for research since 2011. There are approximately
11,000 registers. In this research, we study the generic characteristics of these manuscripts. The size of a
digitized page in the recordings was 2210 × 3000 pixels. The first object type is the symbol marking the
beginning of a populated place. It is seen in most of the registers and can mark the end of a previous
village and start of a new one (see Figure 1). The other objects are individuals or households counted
in the register, and they include demographic information about them. If an individual is the first
person of a household, in the top of the object, there are two numbers (right and left) showing the
number of the household and individual. Otherwise, they put only one number on top of the object
showing the number of the individual inside the populated place. In the last line of all objects, the age
of individuals is written. These registers sometimes updated by drawing a line on the people when
they go to military service or decease. Sometimes the updates mistakenly connect the individual with
a neighboring person, which might result in malfunctions in the information retrieval algorithms [4]
(see Figure 2).

Figure 1. A population start, an individual and a household image samples are demonstrated. In the
top, the populated place starting object, in the right bottom, a household and in the left bottom of the
image, an individual object is shown.
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Figure 2. An example update drawn in red color is shown.

4. Methodology

In this section, we will describe our numeral spotting and handwritten digit recognition
systems separately.

4.1. Automatic Numeral Spotting in Ottoman Registers

4.1.1. Red Color Filtering

As shown in Figure 1, the numerals are written in red color in the majority of these registers.
However, not only the numerals but also the updates are written in red and we have to distinguish
them from the numerals. In order to spot them easily, we applied a red color filter on the documents.
We converted the image from RGB representation to HSV. The upper and lower limits for the red
color used in these historical documents are determined by trial and error. Lower HSV thresholds
were selected as (170;70;50), whereas the upper HSV thresholds were determined as (180,255,255).
An example original image of the register and the filtered one is shown in Figure 3. The mask
background color was chosen as black.

Figure 3. In the left, the original register image is shown. In the right, the resulting image after applying
a red color mask is shown.
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4.1.2. Creating an Annotated Dataset for Numeral Spotting

In order to employ the dhSegment toolbox [17] for page segmentation, we formed a dataset with
annotations. Two classes were created. The first class is the background, which is the area other than
numeral regions. We marked this area as black. The second class is the numeral region, and these
fields were marked with green. We marked 50 pages of registers that belong to the Nicaea district
with the described labels. In those pages, there were approximately 5000 numerals. A sample original
image and marked version are presented in Figure 4.

Figure 4. In the left, the red filtered register image is shown. In the right, the numerals marked and
annotated for training the CNN model.

4.1.3. Creating a 3-Class Annotated Dataset

We also annotated a 3-class dataset. Numerals, register updates and background are the
target classes. We aim to analyze the effect of adding register update class to the numeral spotting
performance. Numerals were colored as green; updates were colored as red. The background is black
which is the same as the 2-class annotation (see Figure 5).

Figure 5. In part (a), the masked figure is shown. In part (b), the 3-class annotated image and in part (c),
the prediction of our model (updates and numerals vs. background) are shown.
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4.1.4. Training a CNN Model for Numeral Spotting

For training a CNN model for numeral spotting, we used the dhSegment toolbox. It trained
a model by using a pretrained Resnet-50 architecture [32]. L2 regularization was employed with
10−6 weight decay [17]. Xavier initialization [33] and Adam optimizer [34] were used. Batch
renormalization [35] was also applied to prevent a lack of diversity problem. The dhSegment toolbox
also downsized pictures and arranged them into 300 × 300 patches for better fitting into the memory
and giving support to batch training. By adding the margins, they prevented the border effects.
By using pre-measured weights in the network, they decreased the training time considerably [17].
The training process employs several on-the-fly data augmentation procedures such as scaling
(coefficient from 0.8 to 1.2), rotation (from −0.2 to 0.2 rad) and mirroring. Lastly, the toolbox outputs
the probabilities of pixels that belong to classified object types. For further details of the toolbox,
the paper explaining this toolbox [17] could be examined. For 2-class, a binary matrix comprises of the
probabilities that a pixel belongs to the class is created. Pixels could be connected, and components
should be created by analyzing this matrix. Connected component analysis tool [17] is applied for
forming objects. We can measure the performance of our system after the objects are created for these
classes. We presented predicted raw binarized image with the original manuscript and masked image
in Figure 6. CPU is used to train the model. It took three hours to train a model for a hundred images.
Testing an image, on the other hand, lasted for approximately 10 s.

Figure 6. The complete processing of numeral spotting is shown. First, a red mask is applied to the
original image. The masked image is shown in the middle. Lastly, a binary prediction image for
spotting numerals is created.
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4.2. Automatic Digit Recognition Using Deep Transfer Learning

For Arabic digit recognition in the historical registers, we first created a small dataset of 50 digits
obtained from the spotted one-digit numerals. The dataset is balanced in terms of digit types. We then
used two large datasets for using deep transfer learning. The first one is HODA dataset [36] which
includes 70,000 images. The second one is AHDBase [37] which is also composed of 70,000 digits
written by 700 participants. Lastly, we presented results obtained by dividing our local dataset (see
Figure 7 for samples) into 80% training and 20% test sets.

Figure 7. All ten-digit samples from our local data. Fifty digits are selected from the output of the
numeral spotting system.

4.2.1. Applying DTL on HODA and AHDBase Datasets

We pretrained two different CNN architectures by using the HODA and AHDBase datasets
and tested on our local numeral dataset. These datasets have both 60,000 training samples and
10,000 test samples. By using the training samples as inputs to the CNN architecture (see Figure 8),
we obtained 128 features (a vector of 128 numbers) in the final Conv2D layer for both datasets. For each
convolutional layer, we applied batch normalization, maxPooling and dropout processes. As the
dropout ratio, we used 0.2. MaxPooling layers used pool size as two. To prepare the model for feature
extraction, we pretrained the model with all layers by using both HODA and AHDBase datasets
and removed the last layers outside the rectangle in Figure 7 which provided the above mentioned
128 features. We then provided our test samples as inputs for this model to predict the 128 features.
After extracting these features of our local dataset by using this pretrained “transferred cropped
model”, we applied different machine learning classifiers (MultiLayer Perceptron (MLP) with one
hidden layer (with 100 nodes), kNN with k = 3, Random Forest with 100 trees (RF), Support Vector
Machine (SVM) with a radial kernel (cost = 1 and kernel degree = 3) and Linear Discriminant Analysis
(LDA)) to them to obtain Arabic handwritten digit recognition results. These classifiers are selected as
representatives of the most commonly applied classifier types. The WEKA toolkit [38] was used for
applying these classifiers. We used the default parameter settings in the WEKA package.

4.2.2. CNN-Based Handwritten Arabic Digit Recognition on the Local Data

We separated the local data into 80% training and 20% test sets. The local dataset is balanced in
terms of digit types. Then, we applied the CNN architecture shown in Figure 8 to train a model for the
local data and tested on the remaining separate test set.
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Figure 8. The CNN architecture is shown. The layers in the green rectangle are used for feature
extraction in DTL. In order to train a model for local data, all layers are used. Conv2D stands for 2D
Convolutional Layer.
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5. Experimental Results and Discussion

5.1. Metrics

In order to evaluate our numeral spotting system performance, five metrics were used. Four of
them are low-level metrics, and the last metric is a high-level one that we defined for our numeral
spotting system. Low-level metrics are pixel-wise precision, recall and f-measure and Intersection over
Union. These are widely employed for detecting objects in different image processing applications [39].
We further defined a high-level counting error metric to assess the performance of our numeral
spotting method.

5.1.1. Pixel-Wise Precision, Recall and F-Measure

We first used the pixel-wise precision, recall and f-measure metrics. They are computed for each
page in the test set and averaged over all pages. They can be calculated as:

Precision =
TruePositive

TruePositive + FalsePositive
(1)

Recall =
TruePositive

TruePositive + FalseNegative
(2)

Fmeasure =
2 × Precision × Recall

Precision + Recall
(3)

5.1.2. Intersection over Union

We further computed the Intersection over Union (IoU) metric. The actual area of the segmented
objects can be called as the ground truth whereas the connected areas are formed by connecting the
adjacent pixel classifications belong to the same class can be called as the prediction area. The IoU can
be computed by dividing the intersection of these two areas into the union of these areas.

5.1.3. High-Level Numeral Spotting Error

This last metric is specific to our application for spotting numerals in registers. It could be defined
as the percentage of mistakenly classified numerals over the count of numerals from the ground truth.
The predicted numeral count is the number of numerals predicted by our model. The ground truth of
numeral count is the actual number of numerals in the dataset counted by our team. This metric is
named as Numeral Spotting Error (NSE).

NSE =|| PredictedNumeralCount − GroundTruthNumeralCount
GroundTruthNumeralCount

|| (4)

5.2. Numeral Spotting Results and Discussion

The registers used in the case study are from the Nicaea district. All 50 pages are divided into
80% training and 20% test. The pixel-wise precision, recall, f-measure, IoU, and high-level numeral
spotting error results are presented in Table 2. Note that the first four metrics are presented for 2-class
classification (background vs. numeral). The last metric is the accuracy of spotting the numerals in the
manuscripts. We successfully spotted the numerals in the documents with 96.06% (1 − NSE = %3.94)
high-level accuracy. Although the IoU metric is relatively low, the performance of the spotting system
shows that the documents are suitable for automatic segmentation processes after the red color mask.
We further tested a 3-class classifier (see Table 3). When we added register update class, we obtained
lower f-measure classes as expected. The lowest performance is achieved when recognizing the register
updates. However, since our main focus is to spot numerals, numeral spotting performance is more
important. We obtained 0.61 f-measure score while recognizing only numerals and 0.67 f-measure
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score while recognizing numerals with updates vs. background which are close to the 2-class f-measure
score 0.72.

Table 2. The performance of our numeral spotting model (numerals vs. background) is presented with
different metrics.

IoU (%) NSE (%) Pixel-Wise Precision Pixel-Wise Recall (%) Pixel-Wise F-Measure (%)

49.82 3.94 0.7089 0.7535 0.7247

Table 3. The performance of our 3-class numeral spotting model (numerals and updates vs. background,
numerals vs. background, updates vs. backgrounds) is presented with different metrics. PW stands
for pixel-wise.

Classification Type PW Precision PW Recall (%) PW F-Measure (%)

Numerals vs. Background 0.4753 0.8704 0.6126

Numerals and Updates vs. Background 0.6164 0.7538 0.6751

Updates vs. Background 0.9009 0.1574 0.2681

5.3. Digit Recognition Results using Deep Transfer Learning

5.3.1. Applying DTL on HODA and AHDBase Datasets

We first trained the CNN model for the training part of the datasets (60,000 images) and tested in
the remaining images (10,000 test image) for validating our model. We obtained above 99% accuracy
for both datasets (99.47% for HODA Dataset and 99.34% for AHDBase dataset respectively). After that,
we applied the DTL method for feature extraction and tested different classifiers with our local dataset.
The digit recognition results by applying different classifiers on the features extracted from the local
datasets are presented in Table 4. The results of AHDBase are always higher than HODA dataset
because their number representation is similar to our dataset. However, since the HODA dataset is
created in Iran, the number representation is different from our dataset (see numbers in Figure 9).
Zero corresponds to our five, six is similar to two in our historical manuscripts, four and five are
totally different in our dataset which is responsible for relatively lower accuracies. A maximum of
72.4% accuracy is achieved by using MLP classifier in AHDBase features. MLP is the most successful
classifier on both datasets. We interpreted this results as the neural network structure helps MLP to
learn CNN extracted features better. RF and kNN are other successful classifiers on these features for
both datasets. We also extracted the same 128 features from our local dataset and tested the accuracies
and area under ROC curve results (see Table 5). The accuracies are higher than the DTL results from
the modern datasets (AHDBase and HODA) which shows that they could not capture the properties
of these historical manuscripts successfully via the DTL method.

Figure 9. HODA representations for Arabic digits are demonstrated [40].
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Table 4. Results obtained by applying different classifiers to extracted features by using deep transfer
learning. DTL from AHDBase and HODA datasets are shown in separate columns.

Method DTL from AHDBase DTL from HODA

LDA 58.6 46.2

RF 62.1 58.6

MLP 72.4 65.5

SVM 57.9 49.0

kNN 64.1 62.1

Table 5. Results obtained by applying different classifiers to extracted features by using deep transfer
learning. Results obtained with applying DTL from the local CNN architecture are shown.

Method Accuracy F-Measure Area under ROC

kNN 84.61 0.829 0.964

RF 89.74 0.897 0.970

MLP 92.31 0.923 0.977

SVM 89.74 0.897 0.944

LDA 92.31 0.923 0.958

5.3.2. CNN-Based Handwritten Arabic Digit Recognition on the Local Data

We tested the CNN architecture on the local test dataset. We observed the accuracies of training
and test set for 100 epochs (see Figures 10 and 11). We obtained 80% accuracy on the separate test
set which is promising and outperformed the DTL accuracies. Both datasets (HODA and AHDBase)
are recorded recently (after the 2000s). Therefore, their quality is higher than manuscripts recorded in
the 1840s. Therefore, when we trained and tested a CNN model in our local dataset, the system also
learns the properties of historical documents. However, when the DTL method is applied from these
modern datasets, they could not capture the properties of these historical manuscripts. That could
explain the relatively lower performance of DTL techniques. These results are also higher than learning
CNN directly from the local data (80%), which shows the advantage of using DTL based feature
extraction in our dataset.

Figure 10. Training and test accuracies of CNN-based handwritten Arabic digit recognition system by
epochs are shown. The local dataset is separated to 80% training and 20% test sets.
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Figure 11. Training and test model loss of CNN-based handwritten Arabic digit recognition system by
epochs are shown. The local dataset is separated to 80% training and 20% test sets.

6. Conclusions

In this study, we implemented an automatic Arabic numeral spotting system to a selection of
the very first series of population registers of the Ottoman Empire conducted in the mid-nineteenth
century. We took advantage of the property of population registers that numerals are written in
red color. After applying a red color mask, we developed a CNN-based numeral spotting system.
We further formed a small Arabic digit dataset from the detected numerals by selecting uni-digit ones
and tested the Deep Transfer Learning (DTL) methods from the models trained in large open datasets
for digit recognition. We also compared these results with the CNN architecture trained and tested on
the local dataset. For numeral spotting, we obtained 96.06% accuracy which shows that numerals in
these historical population registers could be spotted after applying a red filter. After spotting these
numerals, we presented the Arabic handwritten digit recognition results by applying DTL from the
substantial datasets and a trained CNN architecture on the local dataset. The CNN architecture is
trained on the local dataset and tested on the separate test set outperforms DTL methods with the
digit recognition accuracy of 80%. This could be explained by the unique properties and the fact that
the degradation of historical documents could not be detected when DTL from modern datasets is
used. DTL, by using the AHDBase dataset results are always higher than using HODA dataset because
its digits are similar to the digits used in the Ottoman population registers. In fact, four digits of the
HODA dataset are totally different from the digits of historical Ottoman population registers. The best
accuracy obtained by applying DTL with AHDBase is 72% (CNN + MLP) which is lower than CNN
alone in the local dataset.

We believe that the contribution of this article will be useful for researchers studying Arabic
handwritten digit recognition. From these promising results, we plan to increase the size of the local
dataset and carry on further tests. As future works, we plan to develop a keyword spotting system
for handwritten text recognition in these population registers in order to detect further personal
information belonging to registered individuals such as names, family relations within households,
and occupations.
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Featured Application: Satellite image processing for change detection, target recognition,

classification, map application, visual image analysis, etc.

Abstract: Pansharpening (PS) is a process used to generate high-resolution multispectral (MS)
images from high-spatial-resolution panchromatic (PAN) and high-spectral-resolution multispectral
images. In this paper, we propose a method for pansharpening by focusing on a compressed
sensing (CS) technique. The spectral reproducibility of the CS technique is high due to its image
reproducibility, but the reproduced image is blurry. Although methods of complementing this
incomplete reproduction have been proposed, it is known that the existing method may cause ringing
artifacts. On the other hand, component substitution is another technique used for pansharpening.
It is expected that the spatial resolution of the images generated by this technique will be as high as
that of the high-resolution PAN image, because the technique uses the corrected intensity calculated
from the PAN image. Based on these facts, the proposed method fuses the intensity obtained by
the component substitution method and the intensity obtained by the CS technique to move the
spatial resolution of the reproduced image close to that of the PAN image while reducing the spectral
distortion. Experimental results showed that the proposed method can reduce spectral distortion and
maintain spatial resolution better than the existing methods.

Keywords: pansharpening; spectrum correction; intensity correction; compressed sensing; tradeoff
process; IKONOS

1. Introduction

The optical sensors installed in satellites acquire panchromatic (PAN) and multispectral (MS)
region images. PAN sensors observe a wide range of visible and near-infrared (NIR) regions as one
band with a high spatial resolution, and the MS sensor observes multiple bands. Pansharpening
(PS) is a method used to generate a high-resolution MS images from these two types of data. Due to
physical constraints [1], MS sensors are not designed to acquire high-resolution images. In general,
high-resolution MS images are obtained via the pansharpening process. PS techniques are used for
change detection, target recognition, classification, backgrounds for map application, visual image
analysis, etc.

PS has been studied for decades [2,3], and its methodologies can roughly be classified into four types.
The first is methods used to generate a pansharpened image by substituting the intensity component
of the MS images for that of the PAN image via component substitution. The intensity–hue–saturation
(IHS) transform [4], generalized IHS method (GIHS) [5], Brovey transform [6], principal component
analysis [6], and Gram–Schmidt transform [7] belong to this group. The second group contains
methods used to extract high-frequency components of PAN images via multiresolution analysis
(MRA) and then add them to the MS images. To extract high-frequency components, high-pass

Appl. Sci. 2020, 10, 5789; doi:10.3390/app10175789 www.mdpi.com/journal/applsci275



Appl. Sci. 2020, 10, 5789

filter, decimated wavelet transforms [8], a “trous” wavelet transform [9], Laplacian pyramid [10,11],
and non-subsampled contourlet transform [12] methods are used. The third group contains methods
that use machine-learning techniques such as compressed sensing [13] and deep learning [14,15].
The fourth group is the hybrid methods that combine multiple methods described above. The methods
proposed by Vivone et al. [16], Fei et al. [17], and Yin [18] are the ones that combined the component
substitution method and the MRA. The combination of the MRA, convolutional neural network (CNN),
and sparse modeling was proposed by Wang et al. [19], and the combination of the MRA and CNN
was proposed by He et al. [20].

Recently, proposals for hybrid methods using machine-learning techniques have been increasing.
Many methods based on compressed sensing (CS) have been proposed based on the 2006 theory [21].
Since Yang et al. [13] proposed a method for super-resolution, it has been frequently applied to PS. Li et al.
proposed a method using a learning-free dictionary and CS [22], followed by the proposal of a method
using dictionary learning and CS [23]. Although they showed the possibility of using a dictionary
without learning, the feasibility of these methods was low because high-resolution MS images that
were not realistically available were necessary for dictionary construction. Jiang et al. proposed a
method using a high-resolution dictionary generated using a set of pairs of low-resolution MS images
and high-resolution PAN images [24]. They then proposed a method for reconstruction by calculating
sparse representations in two stages using a learning-free dictionary [25]. Zhu et al. constructed
a pair of high-resolution and low-resolution learning-free dictionaries from PAN images [26,27].
Guo et al. proposed a method called online coupled dictionary learning (OCDL) [28], which iteratively
performs dictionary learning and reconstruction processes until the reconstructed image becomes stable,
based on the sparse representation (SR) theory described by Elad [29]. SR theory shows that better
reconstruction results are obtained when the dictionary’s atoms are highly related to the reconstructed
image. Vicinanze et al. proposed the generation of a learning-free dictionary using the high-resolution
and low-resolution dictionaries as the detailed image information [30]. Ghahremani et al. proposed a
learning-free dictionary with low-resolution PAN images and high-resolution detailed information
extracted from by the ripplet transform of the edges and textures of high-resolution PAN images [31].
Zhang et al. introduced non-negative matrix factorization and proposed estimation of a high-resolution
matrix by solving an optimization problem of decomposing the matrix into basis and coefficient
matrices [32]. Ayas et al. created a dictionary of high-resolution MS image features by incorporating
the tradeoff parameter [24,26] and back-projection [13,33]. It was shown that the spectral distortion
was reduced by incorporating back-projection. Yin proposed the cross-resolution projection and the
offset [18]. The cross-resolution projection generates high-resolution MS images by assuming that the
position estimated by CS is the same for high-resolution and low-resolution images. The offset is used
to adjust the reconstructed image.

In these studies, the results of PS depended on the model selection and dictionary selection.
Various studies on the structure and construction of dictionaries, model construction, and optimization
processes have been conducted. In addition, it was pointed out that CS-based reconstruction does not
guarantee the reproduction of the original image [13,29,34], which means that the spatial characteristics
may not be incorporated accurately. The fact that it is not an exact reconstruction should be considered
when the method is used for spectral analysis. The process of back-projection was introduced by
Yang et al. [13] to improve the reconstructed image. This process was also incorporated by Ayas et al. [34]
to reduce the spectral distortion. On the other hand, it is also known that ringing artefacts occur when
back-projection is performed. In the PS process, low spectral distortion is important as well as high
resolution. It is important to consider how to achieve the fidelity of the reproduced image to the ideal
image in terms of the spectral and spatial resolution.

In this paper, we focused on reducing the spectral distortion more effectively than the
back-projection for resolution enhancement of a visible light image. To this end, we propose a
method for pansharpening by combining the CS technique and a component substitution method
that calculates the intensity with high spatial resolution and low spectral distortion to enhance the
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reproducibility. As the component substitution, spectrum correction using modeled panchromatic
image (SCMP) [35] is introduced. The observation band of the PAN sensor of IKONOS, an earth
observation satellite, was 526–929 nm. The red, green, blue, and NIR bands of the MS sensor of
IKONOS were 632–698 nm, 505–595 nm, 445–516 nm, and 757–853 nm, respectively. Therefore, the PAN
sensor covered the observation band of the MS sensor including NIR. The NIR information needs
to be included when generating PS images using component substitution in order to avoid spectral
distortion. The SCMP is a model that can correct this distortion. On the other hand, processing using
the CS is expected to have high data reproducibility and it reflects the characteristics of the input image,
while the resolution is lower than that generated by the SCMP. In order to improve the fidelity of the
reproduced image to the original image, a tradeoff process was applied on the high-resolution intensity
images obtained by the CS and the SCMP. It was found that a spatial resolution equivalent to that of
PAN image was obtained and spectral distortion was reduced by the proposed method.

2. Materials and Methods

2.1. Image Datasets

Table 1 shows the two image datasets used for the experiments. The first was collected in May
2008 and covers the city of Nihonmatsu, Japan. The second was collected in May 2006 and covers
the city of Yokohama, Japan. The two IKONOS images datasets were provided by the Japan Space
Imaging Corporation, Japan. The spatial resolutions of the PAN and the MS images in these datasets
were 1 m and 4 m, respectively. The original dataset contained PAN images with 1024 × 1024 pixels
and MS images with 256 × 256 pixels for Nihonmatsu, and PAN images with 1792 × 1792 pixels and
MS images with 448 × 448 pixels for Yokohama.

Table 1. Characteristics of the original, training, and test images of the image datasets. MS: multispectral,
PAN: panchromatic.

Image Nihonmatsu Yokohama

Original image PAN image 1024 × 1024 1792 × 1792
MS image 256 × 256 448 × 448

Training image PAN image
(for high-resolution dictionary) 256 × 256 448 × 448

Test image PAN image 256 × 256 448 × 448
MS image 64 × 64 112 × 112

The training image datasets had high-resolution PAN images with 256× 256 pixels for Nihonmatsu,
and high-resolution PAN images with 448 × 448 pixels for the Yokohama.

To evaluate the quality of the PS images, we experimented with the test images and original
images according to the Wald protocol [36]. The test images were used to evaluate the numerical image
quality, and the original images were used as reference images for numerical and visual evaluation.
We regarded the original images as ground truth images. The spatial resolution of the test PAN images
was reduced from 1 to 4 m and that of the test MS images was reduced from 4 to 16 m. Hence, the test
image datasets had PAN images with 256 × 256 pixels and MS images with 64 × 64 pixels for the
Nihonmatsu, and PAN images with 448 × 448 pixels and MS images with 112 × 112 pixels for the
Yokohama. The training and test images were downsampled images of the original image with bicubic
spline interpolation.

2.2. Compressed Sensing

Compressed sensing (CS) is a technique used to reconstruct unknown data from a small number
of observed data. In theory, the original data can be estimated when the data is sparse [28].
We considered the problem of reconstructing an image zh ∈ R

n0 with a higher resolution than
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the observed low-resolution image zl ∈ Rm0 (m0 < n0). The relationship between the high-resolution
image and the low-resolution image can be expressed by Equation (1).

zl = SHzh = Lzh,
L = SH,

(1)

where S is a downsampling operator and H is a filter that lowers the resolution. At this time, since the
dimensionality of zl is smaller than that of zh, the solution cannot be uniquely determined.

Based on the compressed sensing theory, the high-resolution image zh is estimated by Equation (2)
from the image element Dh and sparse representation a. The element for reproducing the image is
called atom di ∈ Rn0 , and the set of atoms is called the dictionary Dh ∈ Rn0×Nd .

zh = Dha s.t.‖a‖0 ≤ m0, (2)

Using Equation (2), Equation (1) can be expressed as

zl = Lzh = Dla,
Dl = LDh.

(3)

zh can be reproduced by zl using the sparse representation a obtained from Equation (4), in which
the sparsity constraint is added to Equation (3).

min
a
‖a‖0 s.t. ‖zl − LDha‖22 ≤ ε. (4)

Equation (4) can be solved using optimization methods.

2.3. Proposed Method

Our proposed method combines the advantages of super-resolution based on the theory of
compressed sensing and component substitution. In this method, the high-resolution intensity
obtained by the SCMP and the high-resolution intensity obtained by the CS-based method are linearly
combined using the tradeoff process, and the obtained high-resolution intensity images are fused via
the GIHS method to generate PS images. The flow of the proposed method is shown in Figure 1.

Figure 1. Flow of the proposed method.
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2.4. Notation

In the proposed method, four features are extracted from low-resolution images, and the set of
features is called the feature map. We used the gradient map proposed by Yang et al. [13] as the feature
map. Let xhigh

i ∈ Rp2×1 be a patch of size p× p extracted from a high-resolution image, and xlow
i ∈ R4p2×1

be a set of four patches of size p × p extracted from the feature map. The ith training data patch

xi ∈ R5p2×1 is defined as xi =

⎡⎢⎢⎢⎢⎣ xhigh
i

xlow
i

⎤⎥⎥⎥⎥⎦. X =
{
x1, · · · , xNt

}
∈ R5p2×Nt , Xhigh =

{
xhigh

1 , · · · , xhigh
Nt

}
∈ Rp2×Nt ,

and Xlow =
{
xlow

1 , · · · , xlow
Nt

}
∈ R4p2×Nt represent the set of patches of the training data, high-resolution

training data, and low-resolution training data, respectively, where Nt is the number of training
data. xhigh

i indicates the mean value of the intensity values of the ith training data patch xhigh
i .

D =

[
Dhigh

Dlow

]
=
{
d1, · · · , dNd

}
, D ∈ R5p2×Nd is called a dictionary and di =

⎡⎢⎢⎢⎢⎣ dhigh
i

dlow
i

⎤⎥⎥⎥⎥⎦ is the ith atom of

the dictionary where Nd is the number of atoms. dhigh
i ∈ Rp2×1 is a high-resolution dictionary atom of

size p× p, and dlow
i ∈ R4p2×1 is a low-resolution dictionary atom of size p× p. All the atoms are arranged

in raster scan order. The high-resolution dictionary Dhigh ∈ Rp2×Nd and the low-resolution dictionary
Dlow ∈ R

4p2×Nd are defined as Dhigh =
{
dhigh

1 , · · · , dhigh
Nt

}
and Dlow =

{
dlow

1 , · · · , dlow
Nt

}
, respectively.

Ylow ∈ R
4p2×Npatch indicates the feature map of the low-resolution input image to be reconstructed,

where Npatch is the number of patches of the input image. Isr ∈ Rp2×Npatch represents the reconstructed

high-resolution image. Isr ∈ R
p2×Npatch represents the mean value of the intensity values of the

reconstructed high-resolution image patch. The sparse representations are denoted as α ∈ RNt×Npatch

and β ∈ RNd×Nt , and λ represents the sparsity regularization parameter.

2.5. Estimation of Coefficients for Intensity Correction

The coefficient estimated by SCMP is used for the intensity correction in the proposed method.
It is possible to obtain an intensity correction value with little spectral distortion with SCMP. This
coefficient is calculated by

argmin
c
‖Ac− d‖22 s.t. c ≥ 0, (5)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−MSlow
nir (1) MSlow

blu (1) MSlow
grn(1) MSlow

red (1)
...

...
...

...
−MSlow

nir (k) MSlow
blu (k) MSlow

grn(k) MSlow
red (k)

...
...

...
...

−MSlow
nir (N) MSlow

blu (N) MSlow
grn(N) MSlow

red (N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ RN×4,

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
c1

c2

c3

c4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ R4×1,

d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ilow(1) − PANhigh(1)
...

Ilow(k) − PANhigh(k)
...

Ilow(N) − PANhigh(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ RN×1,

where k indicates the pixel position. N is the number of pixels and PANhigh ∈ RN is the downsampled
PAN test image, of which the size is the same as that of Ilow obtained via the bicubic interpolation.
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The suffixes nir, blu, grn, and red represent the NIR, blue, green, and red color components of the MS
image, respectively. For MSlow

nir , MSlow
blu , MSlow

grn, and MSlow
red , test MS images are used. Ilow is calculated by

Ilow =
MSlow

red + MSlow
grn + MSlow

blu

3
(6)

Note that Equation (6) does not include NIR because it is the intensity of the RGB image.

2.6. Dictionary Learning

The high-resolution dictionary and the low-resolution dictionary were constructed via Equation (7)
using the corresponding pair of training images. These are shown as Equation (8).

Xhigh = Dhighβ,
Xlow = Dlowβ

(7)

X = Dβ, (8)

where β ∈ RNd×Nt represents the sparse representation and X =

[
Xhigh

Xlow

]
, D =

[
Dhigh

Dlow

]
. The dictionary

was obtained by solving the optimization problem of Equation (9), where the regularization conditions
and constraints are added to Equation (8).

argmin
D,β

1
2
‖X −Dβ‖22 + λ‖β‖1 s.t. ‖di‖2 ≤ 1, i = 1, 2, · · · , Nt, (9)

where λ is the normalization parameter.
The training data used for dictionary learning were training PAN images for the high-resolution

dictionary and the feature map obtained from its corresponding low-resolution training PAN image for
the low-resolution dictionary as shown in Table 1. Xhigh and Xlow were obtained from a high-resolution
training PAN image and its corresponding low-resolution training PAN image. Given a high-resolution
training PAN image, it was divided into regions of size p× p. The high-resolution patch xhigh

i was then

obtained for each region by xhigh
i = xhigh

raw,i − xhigh
raw,i, where xhigh

raw,i is the p× p image and xhigh
raw,i is the mean

intensity value of xhigh
raw,i, and Xhigh =

{
xhigh

1 , · · · , xhigh
Nt

}
is obtained. Given the low-resolution training

PAN image, the feature map was calculated with four filters of the first derivative and the second
derivative defined by

F1 = [−1, 0, 1], F2 = FT
1 , F3 = [1, 0,−2, 0, 1], F4 = FT

3 ,

where T indicates transposition. The feature map was divided into patches of p× p, and each patch
was normalized. Since the feature map was calculated from the entire image, each patch contained the
information of its adjacent patch. By arranging the normalized feature map in the raster scan order for

each patch, Xlow =
{
xlow

1 , · · · , xlow
Nt

}
, xlow

i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
F1(i)
F2(i)
F3(i)
F4(i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, i = 1, 2, · · · , Nt was obtained.

The algorithm of the dictionary learning is described as follows.

(1) Obtain Xhigh and Xlow from the training data. Each column of X =

[
Xhigh

Xlow

]
is then normalized.

(2) Set the initial value of the dictionary D. Random numbers that follow the Gaussian distribution
with mean 0 and variance 1 are normalized for each patch region.
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(3) Estimate the sparse representation β by solving the optimization problem of Equation (10) by
fixing the dictionary D.

β = argmin
β

1
2
‖X −Dβ‖22 + λ‖β‖1 (10)

(4) Estimate the dictionary D by solving the optimization problem of Equation (11) by fixing the
sparse representation β.

D = argmin
D
‖X −Dβ‖22 s.t. ‖di‖2 ≤ 1, i = 1, 2, · · · , Nt (11)

(5) Steps (3) and (4) are repeated. (In the experiment, we repeated 40 times.)
(6) The obtained dictionary D is normalized for each patch and used as the final trained dictionary D.

2.7. Reconstruction Process

Assuming that the low-resolution image and the high-resolution image have the same sparse
representation, the sparse representation of the low-resolution image can be obtained. The sparse
representation αwas estimated by solving the optimization problem of Equation (12).

argmin
α

1
2
‖Dlowα−Ylow‖22 + λ‖α‖1 (12)

The reconstruction process is performed as follows. In this study, the resolution of RGB image
was increased.

(1) The low-resolution RGB images are upsampled via bicubic interpolation to the size of the PAN
image. The upsampled low-resolution intensity Ilow

up is calculated using Equation (6) with the
upsampled RGB image.

(2) The feature map Ylow is obtained from the upsampled low-resolution intensity Ilow
up . After applying

the four filters shown in Section 2.6 to Ilow
up , the feature map Ylow ∈ R

4p2×Npatch is obtained,
where the overlap of adjacent patches are p× 1 and 1× p for horizontal and vertical directions.
Ilow
patch ∈ Rp2×Npatch is then obtained from Ilow

up where the overlap of adjacent patches are p× 1 and
1× p for horizontal and vertical directions.

(3) The sparse representation α̂ is calculated using Equation (12).
(4) The high-resolution intensity image Isr is obtained from the sparse representation α̂ and the

high-resolution dictionary Dhigh by Equation (13), and it is normalized for each patch. The average
value of the jth patch, Isr( j), is calculated with the upsampled low-resolution intensity Ilow

patch( j),
and it is added to the patch of the high-resolution intensity Isr( j) using Equation (14).

Isr( j) = Dhighα̂( j),
α̂ ∈ RNd×Npatch

(13)

Îsr( j) = Isr( j) + Isr( j) (14)

(5) Using the patches of the obtained high-resolution intensity Îsr( j), the image is reconstructed.
The mean value of the overlapped pixels is used as the value of the pixel in the adjacent
overlapping patches.

2.8. Tradeoff Process

The intensity of SCMP is calculated using Equation (15) after obtaining the intensity Ilow
up via

Equation (6).
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Iscmp(k) =
Ilow
up (k)

PANlow(k)
PANhigh(k), (15)

where k indicates the pixel position. The low-resolution PAN image, PANlow, is obtained using
Equation (16).

PANlow = Ilow
up + c1MSlow

up,nir − c2MSlow
up,blu − c3MSlow

up,grn − c4MSlow
up,red, (16)

where Ilow
up , MSlow

up,nir, MSlow
up,blu, MSlow

up,grn, and MSlow
up,red are the intensities of the low-resolution RGB image,

NIR, blue, green, and red, respectively, and these are upsampled to the same sizes as those of the
PAN image.

If the PAN image is corrected using the intensity Iscmp obtained via SCMP, there will be little loss
of spatial information. Since the intensity correction is performed appropriately on the image, the
spectral distortion when using SCMP is smaller than that of the other component substitution methods.
Figure 2 shows the intensity of the original RGB image, the intensity image generated by SCMP, and
the intensity image obtained by CS of Nihonmatsu and Yokohama images. From this figure, it can be
seen that the intensity obtained by CS had less spatial information than SCMP. In order to increase the
quality of the intensity reproduced by CS using SCMP, the intensities obtained by the CS and the SCMP
were combined linearly using the tradeoff parameter τ. In the tradeoff process, the high-resolution
intensity images were obtained by SCMP and CS, and these were linearly combined by Equation (17).

Ihigh = τIsr + (1− τ)Iscmp s.t. | τ| ≤ 1 (17)

(i) Original image (ii) SCMP (iii) Compressed sensing
(a)

(i) Original image (ii) SCMP (iii) Compressed sensing
(b)

Figure 2. Intensity of RGB images of (a) Nihonmatsu, (b) Yokohama. (i) Intensity of the original image,
(ii) intensity of SCMP, (iii) intensity obtained via compressed sensing.
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2.9. Generalized IHS Method

For the fusion process, the generalized IHS method (GIHS) [5] proposed by Tu et al. was
used. The intensity was calculated using Equation (6), and Equation (18) was applied to red-, green-,
and blue-band RGB images. ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

MShigh
red

MShigh
grn

MShigh
blu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

MSlow
red + Ihigh − Ilow

MSlow
grn + Ihigh − Ilow

MSlow
blu + Ihigh − Ilow

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (18)

where MShigh
red , MShigh

grn ,MShigh
blu , MSlow

red , MSlow
grn, and MSlow

blu are the intensities of the high-resolution and
low-resolution RGB images.

3. Results

3.1. Experimental Setup

3.1.1. Quality Evaluation

Visual and numerical evaluations were performed according to the Wald protocol [36]. The original
MS image was used as the reference image. Correlation coefficient (CC), universal image quality index
(UIQI) [37], erreur relative global adimensionnelle de synthese (ERGAS) [38], and spectral angle mapper
(SAM) [39] were used for numerical evaluation. These are major evaluation criteria and used in almost
all PS-related research [2]. The CC is given by

CC = 1
|B| ×

∑
b∈B

CCb,

CCb =
∑N

i=1(Ob(i)−Ob)×(PSb(i)−PSb)√∑N
i=1(Ob(i)−Ob)

2×
√∑N

i=1(PSb(i)−PSb)
2
,

(19)

where a value closer to 1.0 implies a smaller loss of the intensity correlation and a better result. N and
|B| are the total number of pixels in the entire image for each band and the number of bands in the PS
image, respectively. Ob(i) and Ob denote the ith pixel value of the b-band reference image and its mean
value, respectively, and PSb(i) and PSb denote the ith pixel value of the b-band PS image and its mean
value, respectively. UIQI is an index for measuring the loss of intensity correlation, intensity distortion,
and contrast distortion and is given by

UIQI = 1
|B| ×

∑
b∈B

UIQIb,

UIQIb =
σOb,PSb
σOb
·σPSb

× 2·Ob·PSb

(Ob)
2
+(PSb)

2 ×
2·σOb

·σPSb
σOb

2+σPSb
2 ,

(20)

where σOb and σPSb are the standard deviation of the reference and PS images in the b-band, respectively,
and σOb,PSb

denotes the covariance of the reference and PS images in the b-band. A value closer to 1.0
implies that these losses are small. The size of the UIQI sliding window was 8× 8.

The ERGAS is given by

ERGAS = 100× h
l ×
√

1
|B| ×

∑
b∈B

(
(RMSEb)

2

(PSb)
2

)
,

RMSEb =

√
1
N ×

N∑
i=1

(Ob(i) − PSb(i))
2,

(21)
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where h and l denote the spatial resolution of the PAN and MS images, respectively. The smaller the
ERGAS value, the better the image quality. The SAM is an index for measuring spectral distortion and
is given by

SAM = 1
N

N∑
i=1

SAM(i),

SAM(i) = cos−1

⎛⎜⎜⎜⎜⎜⎝ ∑
b∈B Ob(i)×PSb(i)√∑

b∈B(Ob(i))
2×
√∑

b∈B(PSb(i))
2

⎞⎟⎟⎟⎟⎟⎠. (22)

If the value is closer to 0.0, the spectrum ratio of each band is closer to the reference image.

3.1.2. Dictionary Learning

We used PAN images from the Nihonmatsu and Yokohama datasets as training images for
dictionary learning. For training image X and dictionary, the number of training times was 40,
the number of atoms of the dictionary D was 1024, and the size of each atom was p = 4. The number
of patches was 6433 (Nihonmatsu) and 10,000 (Yokohama). The training dataset was a set of 1000
patches randomly selected from these patches. As the training image X, a training PAN image for the
high-resolution dictionary was used as the high-resolution data Xhigh, and a training PAN image for
the low-resolution dictionary was used as the low-resolution data Xlow. The low-resolution image was
generated by downsampling and upsampling via bicubic interpolation. The sparsity regularization
parameter was λ = 0.1. The sparse representation β was calculated using Equation (10) by solving the
L1 norm regularized least-squares problem, and the dictionary D was obtained using Equation (11)
by solving the least-squares problem with quadratic constraints. We used the code provided by
Lee et al. [40]. The learned high-resolution dictionaries are shown in Figure 3. For Nihonmatsu images,
the dictionary created using Nihonmatsu images was used. For Yokohama images, the dictionary
created using Yokohama images was used.

(a) (b)

Figure 3. Trained high-resolution dictionaries: (a) Nihonmatsu, (b) Yokohama.

3.1.3. Reconstruction Process

The bicubic interpolation was used to upsample the intensity Ilow of the low-resolution RGB image.
The size of the patch of the input low-resolution data Ylow was p = 4, and the overlapping region of
adjacent patches was p× 1 for the horizontal direction and 1× p for the vertical direction. The filter
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size used for the back-projection process was 5× 5. The sparse representation α was calculated using
Equation (12) by solving the L1 norm regularized least-squares problem. We used the code provided
by Lee et al. [40].

3.1.4. Coefficients for Intensity Correction

The correction coefficients estimated by SCMP are shown in Table 2. These values were used for
the fusion process.

Table 2. The correction coefficient estimated by SCMP.

Coefficient Nihonmatsu Yokohama

c1 (NIR) 0.3857 0.3789
c2 (Blue) 0.2199 0.2549

c3 (Green) 0.1980 0.1123
c4 (Red) 0.0486 0.1099

3.1.5. Tradeoff Parameter

In the tradeoff process, the intensity images obtained by SCMP and CS were combined by Equation
(17) using the tradeoff parameter τ (0 ≤ τ ≤ 1). The tradeoff parameter is a hyperparameter that should
be determined in advance. In general, experimental validation is carried out via cross-validation when
there are hyperparameters. Since we used two kinds of satellite images (Ninohmatsu and Yokohama),
the value of τ was determined using one of these datasets, and the other dataset was processed using
the determined value. In our experiment, the tradeoff parameter was determined using the correlation
coefficient (CC) and ERGAS [38]. The results of applying the tradeoff parameter with a step size of 0.1
for image quality evaluation are shown in Table 3. From this result, it was found that the resolution and
numerical evaluation were improved when the sum of squares of 1-CC and ERGAS was the smallest.
This relationship is shown in Equations (23) and (24).

argmin
τ

S(τ) s.t. 0 ≤ S(τ) ≤ 2 (23)

S(τ) =

⎛⎜⎜⎜⎜⎜⎝ 1−CC(τ)
max(1−CC)

⎞⎟⎟⎟⎟⎟⎠
2

+

⎛⎜⎜⎜⎜⎜⎝ ERGAS(τ)
maxERGAS

⎞⎟⎟⎟⎟⎟⎠
2

(24)

The tradeoff parameter was determined as the value that minimizes Equation (24). Figure 4
displays the results of evaluation of the intensity of RGB images with various tradeoff parameters.
The red line shows Nihonmatsu, the blue line shows Yokohama, the solid line is the result of CC, and the
dotted line is the result of ERGAS. Figure 5 shows three images with some tradeoff parameter values.
The lower the evaluation index S, the better the visual appearance. From these results, the value that
minimized S(τ) was τ = 0.4 for Nihonmatsu and τ = 0.3 for Yokohama. Therefore, in the following
experimetns, τ = 0.3 was used for Nihonmatsu and τ = 0.4 was used for Yokohama.
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Table 3. CC, ERGAS, and the evaluation index S that determines the tradeoff parameter. The best
values are given in bold.

Tradeoff Parameter
Nihonmatsu Yokohama

CC ERGAS S CC ERGAS S

0.0 0.899 2.415 1.186 0.944 2.393 0.405
0.1 0.908 2.250 1.016 0.949 2.148 0.327
0.2 0.915 2.123 0.892 0.952 1.996 0.283
0.3 0.920 2.041 0.815 0.953 1.961 0.274
0.4 0.922 2.008 0.783 0.949 2.050 0.302
0.5 0.921 2.027 0.800 0.941 2.248 0.371
0.6 0.916 2.097 0.873 0.926 2.529 0.491
0.7 0.906 2.213 1.011 0.903 2.870 0.679
0.8 0.891 2.369 1.228 0.871 3.251 0.963
0.9 0.871 2.557 1.550 0.828 3.660 1.385
1.0 0.846 2.769 2.000 0.775 4.088 2.000

Figure 4. The values of CC and ERGAS obtained in the tradeoff process. CC: solid line, ERGAS:
dotted line; Nihonmatsu: blue line, Yokohama: red line.
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a

b

Figure 5. Comparison of intensity of RGB images against the tradeoff parameter. S represents the index
that determines the tradeoff parameter. (a) Nihonmatsu, (b) Yokohama.

3.2. Experimental Results

Table 4 shows the effect of the back-projection (BP). The results of the intensity Isr obtained using
the sparse representation (SR) and the intensity obtained by repeating BP ten times with a size 5 filter
are shown. These were compared by CC, UIQI, and ERGAS, and applying BP was better in all cases.
Table 5 shows the effect of the tradeoff process (TP). The intensity images generated by SCMP, SR,
and TP are shown. TP was the best in all evaluations. Table 6 shows the comparison of BP and TP.
TP was better in every case.

Tables 7 and 8 show numerical evaluations of the existing methods and the proposed method.
The existing methods include fast IHS [5], Gram–Schmidt method (GS) [7], band-dependent spatial
detail (BDSD) [41], weighted least-squares (WLS)-filter-based method (WLS) [42], multiband images
with adaptive spectral-intensity modulation (MDSIm) [43], spectrum correction using modeled
panchromatic image (SCMP) [35], image super-resolution via sparse representation (ISSR) [13] using
natural images (Dict-natural) and corresponding images (Dict-self), the sparse representation of injected
details (SR-D) [30], and the method of sparse representation described by Ayas et al. (SRayas) [34].

Table 4. Numerical evaluation of image intensities with or without the back-projection process of the
intensity obtained via sparse representation. The best values are given in bold.

Method
CC UIQI ERGAS

Nihonmatsu Yokohama Nihonmatsu Yokohama Nihonmatsu Yokohama

Ideal 1.0 1.0 0.0

SR 0.846 0.775 0.807 0.709 2.769 4.088

SR+BP 0.853 0.785 0.822 0.742 2.709 4.009
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Table 5. Numerical evaluation of image intensities obtained by SCMP, SR, and the tradeoff process.
The best values are given in bold.

Method
CC UIQI ERGAS

Nihonmatsu Yokohama Nihonmatsu Yokohama Nihonmatsu Yokohama

Ideal 1.0 1.0 0.0

SCMP 0.899 0.944 0.779 0.915 2.415 2.393

SR 0.846 0.775 0.807 0.709 2.769 4.088

TP 0.920 0.949 0.825 0.926 2.041 2.050

Table 6. Comparison of the back-projection and the tradeoff process. The best values are given in bold.

Method
CC UIQI ERGAS

Nihonmatsu Yokohama Nihonmatsu Yokohama Nihonmatsu Yokohama

Ideal 1.0 1.0 0.0

BP 0.853 0.785 0.822 0.742 2.709 4.009

TP 0.920 0.949 0.825 0.926 2.041 2.050

Table 7. Numerical evaluation of the existing methods and the proposed method by CC and UIQI.
The highest scores are printed in bold, and the second highest scores are underlined.

Method
CC UIQI

Nihonmatsu Yokohama Nihonmatsu Yokohama

ideal 1.0 1.0

fast IHS [5] 0.783 0.914 0.717 0.901

GS [7] 0.508 0.860 0.373 0.838

BDSD [41] 0.860 0.887 0.864 0.851

WLS [42] 0.866 0.884 0.870 0.759

MDSIm [43] 0.791 0.865 0.736 0.823

SCMP [35] 0.883 0.928 0.864 0.910

ISSR (Dict-natural) [13] 0.831 0.765 0.918 0.704

ISSR (Dict-self) [13] 0.831 0.759 0.917 0.701

SR-D 0.845 0.786 0.914 0.710

SRayas [34] 0.787 0.758 0.851 0.703

Proposed 0.906 0.937 0.903 0.918

The size of the local estimation of the distinct block of BDSD was 256× 256 for Nihonmatsu and
448× 448 for Yokohama. For the ISSR settings, the training images for the dictionary included training
PAN images and natural images, the number of training times was 40, the number of atoms in the
dictionary was 1024, the atom size of the dictionary was 4× 4× 5, the sparsity regularization parameter
was 0.1, randomly selected 1000 training image patches were used, the upscale was 4 (ratio of resolution
of PAN images and MS images of IKONOS), overlap pixel of patches in the reconstruction process was
R

1×p in horizontal direction and R
p×1 in vertical direction, the size of the back-projection filter was

5× 5, and the number of iterations was 10. For SR-D, high-resolution and low-resolution dictionaries
were constructed from the original PAN images without training. The atom size of the high-resolution
dictionary was R28×28×4 and the overlapping areas of the adjacent atoms were R

16×p,Rp×16; the atom
size of the low-resolution dictionary was R7×7×4 and and the overlapping area of the adjacent atoms
were R

4×p,Rp×4.For the SRayas setting, the original IKONOS MS images were used as the training
images for the dictionary, the number of training times was 20, the number of atoms in the dictionary
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was 4096, the size of the dictionary atom was 8 × 8 × 4, the sparsity regularization parameter was
λ = 0.15, the number of training image patches was 2000, the upscale was 4 (ratio of resolution of
PAN images and MS images of IKONOS), β = 0.25, the weight of each spectral band of IKONOS
was w = [0.1071, 0.2646, 0.2696, 0.3587], the overlap pixel in the patch of reconstruction process was
0, the back-projection filter size was 3 × 3, and the number of repetitions was 20. These settings of
the existing methods followed those described in the original papers except the distinct block size of
BDSD. The code of Vivone et al. [2] was used for GS and BDSD, and the code of Yang et al. [13] was
used for ISSR.

Table 8. Numerical evaluation of the existing methods and the proposed method by ERGAS and SAM.
The highest scores are printed in bold, and the second highest scores are underlined.

Method
ERGAS SAM

Nihonmatsu Yokohama Nihonmatsu Yokohama

ideal 0.0 0.0

fast IHS [5] 3.471 3.716 1.898 2.367

GS [7] 5.046 3.563 2.748 1.950

BDSD [41] 3.026 3.361 1.925 2.326

WLS [42] 2.815 3.816 1.699 2.123

MDSIm [43] 3.321 3.515 1.658 2.189

SCMP [35] 2.673 2.697 1.753 2.176

ISSR (Dict-natural) [13] 3.118 4.419 1.749 2.324

ISSR (Dict-self) [13] 3.124 4.474 1.750 2.331

SR-D 3.007 4.226 1.897 2.649

SRayas [34] 3.497 4.476 1.765 2.299

Proposed 2.336 2.424 1.688 2.159

0

5

10

15

20

sc
or
e

Score of quality metrics

Nihonmatsu Yokohama

Figure 6. Scores of quality metrics.

In Tables 7 and 8, the highest scores are printed in bold, and the second highest scores are
underlined. GS was generally not good except for the SAM of Yokohama. The results of BDSD were
unremarkable but stable. SCMP was stable and gave good results. In ISSR, differences in training
images had little effect on results. SRayas did not perform as well overall as ISSR and SRayas. Although
some results, such as the CC of SR-D of Table 7, MDSIm of Table 8, and SAM of GS were better in part
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than the proposed method, in many other cases they were less accurate than the proposed method.
The results of the proposed method were generally good, although there are some differences due to
the tradeoff parameter.

Figure 6 shows the ranking of the quality metric of the numerical evaluations of Tables 7 and 8,
except for the proposed method. For each test, the best result was worth three points, the second-best
result was worth two points, and the third-best result was worth one point. The highest score was
24 points. This figure shows that only three methods, WLS, SCMP, and the proposed method, were good
for both of the images, and the proposed method got the highest score.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 7. Reference and pansharpened Nihonmatsu images: (a) original PAN image (reference image),
(b) original RGB image, (c) ground truth RGB image, (d) RGB image upsampled by bicubic interpolation,
(e) fast IHS, (f) GS, (g) BDSD, (h) WLS, (i) MDSIm, (j) SCMP, (k) ISSR (natural images were used
for training), (l) ISSR (Nihonmatsu images were used for training), (m) SR-D, (n) SRayas method,
(o) proposed method (τ = 0.3).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 8. Reference and pansharpened Yokohama images: (a) original PAN image (reference image),
(b) original RGB image, (c) ground truth RGB image, (d) RGB image upsampled by bicubic interpolation,
(e) fast IHS, (f) GS, (g) BDSD, (h) WLS, (i) MDSIm, (j) SCMP, (k) ISSR (natural images were used for
training), (l) ISSR (Yokohama images were used for training), (m) SR-D, (n) SRayas method, (o) proposed
method (τ = 0.4).

Figures 7 and 8 show the reference and PS images from the Nihonmatsu and Yokohama datasets,
respectively. Since the images were small, the enlarged image surrounded by the yellow frame of the
original RGB image (b) is shown in (c)–(o). In Figure 7, in GS (f), the color of green was darker in the
rice field area (indicated by the green arrow), while the forest area was whitish. BDSD (g) was more
blurred than other images. In MDSIm (i), the color of the forest area was also whitish (indicated by the
yellow arrow). In Figure 8, the vegetation area was whitish in GS (f) and MDSIm (i) (indicated by the
red arrow). WLS (h) looked hazy. SR-D (m) had lower resolution than the other methods using sparse
representation with back-projection. In both Figures 7 and 8, the results of ISSR (k) (l) and SRayas (n)
had ringing artefacts. Other images appeared to be reproduced without problems.

4. Discussion

From the results in Table 4, it was found that the back-projection (BP) was effective from the
viewpoint of improving spectral distortion. From the results in Table 5, it was found that the tradeoff
process (TP) is effective in improving spectral distortion. Furthermore, since the TP was better than
the individual methods of sparse representation (SR) and SCMP, it was clarified that these methods
complementarily improve the spectral distortion. From the results in Table 6, it was found that the
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TP improved spectral distortion more than BP. In the results shown in Tables 7 and 8, the method
using GIHS (WLS and SCMP) was better than the existing methods using SR. In addition, it was found
that the proposed method, the linear combination of SR and SCMP, gave better results than SCMP
alone. One of the problems to be solved in PS processing is the independence of the processed image.
In other words, it is important to obtain stable and good results rather than obtaining good results
only on a specific image. Although there are some methods shown in Tables 7 and 8 that gave better
results than the proposed method, comparing the other evaluation results shows that the results were
inconsistent. The reason why the evaluation results were so different could be that these processing
methods depend on the processed image.

As shown in Figures 7 and 8, it was found that the reproduction of vegetation area by the GS was
unstable. Since the image quality differs depending on the size of the local estimation on the distinct
blocks used in BDSD, we evaluated the visibly good images with good numerical values, but the
resolution of the image was low. The WLS gave good numerical results with two images, but the
images were blurred. Both ISSR and SRayas using BP generated ringing artifacts. Other images seemed
to be reproduced without problems in resolution and color. Among them, the proposed method gave
the best results in the numerical evaluation.

In this method, resolution enhancement was achieved by using the visible and NIR regions.
On the other hand, it can be applied only to the resolution enhancement of RGB images, and not
NIR images.

5. Conclusions

In this paper, we proposed a method for pansharpening based on CS theory. In the proposed
method, the intensity obtained from the component substitution method and the intensity obtained via
the method based on CS theory are fused to reproduce the intensity close to the original. We introduced
SCMP as the intensity substitution method and used the tradeoff process for image fusion. Experimental
results showed that the proposed method outperformed existing methods in terms of numerical and
visual evaluation. The proposed method was also effective for satellites with panchromatic sensors
(observed areas are visible and NIR regions) and multispectral sensors (observed areas are red, blue,
green, and NIR bands) like IKONOS.

Generally, the intensity image generated by a CS-based method is blurrier than the intensity
image generated by the component substitution method, because component substitution captures
the intensity of the PAN image. On the other hand, it is expected that the spectral distortion of the
intensity image generated by the CS-based method will be lower than that of the image generated by
the component substitution method. Since complete restoration is not guaranteed, in order to get the
image close to a complete reproduction, back-projection methods can be used. However, they may
cause ringing artifacts. Based on these considerations, our proposed method combines the intensities
generated by the CS-based method and the component-substitution-based method via the tradeoff
process instead of the back-projection to achieve both an improvement of spatial resolution and a
reduction of spectral distortion. Experimental results show that the tradeoff process was more effective
than the back-projection in generating a pansharpened image of which the spatial resolution was
equivalent to that of the PAN image and reducing spectral distortion. Improvement of the accuracy by
parameter tuning is important future work.
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Abstract: Remote Sensing (RS) image classification has recently attracted great attention for its application
in different tasks, including environmental monitoring, battlefield surveillance, and geospatial object
detection. The best practices for these tasks often involve transfer learning from pre-trained Convolutional
Neural Networks (CNNs). A common approach in the literature is employing CNNs for feature extraction,
and subsequently train classifiers exploiting such features. In this paper, we propose the adoption
of transfer learning by fine-tuning pre-trained CNNs for end-to-end aerial image classification. Our
approach performs feature extraction from the fine-tuned neural networks and remote sensing image
classification with a Support Vector Machine (SVM) model with linear and Radial Basis Function (RBF)
kernels. To tune the learning rate hyperparameter, we employ a linear decay learning rate scheduler
as well as cyclical learning rates. Moreover, in order to mitigate the overfitting problem of pre-trained
models, we apply label smoothing regularization. For the fine-tuning and feature extraction process,
we adopt the Inception-v3 and Xception inception-based CNNs, as well the residual-based networks
ResNet50 and DenseNet121. We present extensive experiments on two real-world remote sensing image
datasets: AID and NWPU-RESISC45. The results show that the proposed method exhibits classification
accuracy of up to 98%, outperforming other state-of-the-art methods.

Keywords: remote sensing; convolutional neural network; fine-tuning; learning rate scheduler; cyclical
learning rates; label smoothing; classification accuracy

1. Introduction

One task of computer vision is image classification and it has been thoroughly studied in the literature.
There are many existing algorithms to solve this task. Remote sensing image classification is a more
challenging problem due to the fact that objects are randomly rotated within a scene and the background
texture is complex. The purpose of aerial scene classification techniques is to classify an image in one of
the semantic classes, which are determined upon human interpretation. This problem has been of wide

Appl. Sci. 2020, 10, 5792; doi:10.3390/app10175792 www.mdpi.com/journal/applsci

295



Appl. Sci. 2020, 10, 5792

interest in resent research, due to its importance in a wide range of applications, including the surveillance
of airports and aviation protection, flora monitoring in agriculture, and recognition of earth cover changes
in environmental engineering [1].

RS image classification is possible thanks to the availability of RS images datasets that were collected
from earth observation platforms, such as satellites, aerial systems, and unmanned aerial vehicles.
The problem is complex and relies on the representation of salient image characteristics by means of
high-level features. The latest techniques that include deep learning methods based on Convolutional
Neural Networks (CNNs) have shown remarkable improvement in classification accuracy as compared to
older ones based on handcrafted features [2,3]. The effectiveness of solutions based on CNNs lies in the
possibility to perform knowledge transfer from pre-trained CNNs [4]. The knowledge transfer for image
classification can be conducted in different ways, including feature extraction and fine-tuning [5,6].

There are numerous research studies that show that CNNs trained on one classification problem
(such as ImageNet) can be successfully exploited to extract features from images in different tasks [7].
Excellent classification results were also achieved in aerial scene classification [8–10]. The first case of
adoption of pre-trained CNN schemes for remote sensing image classification was performed by [8],
where the pre-trained CNNs AlexNet and Overfeat [11] were employed for feature extraction, and the
activations from the first fully connected layer of the CNN architectures were used as image representations.
Excellent results with two remote sensing datasets are reported in [8], outperforming several handcrafted
visual descriptors. The most popular approach for feature extraction using CNNs is to employ the
extracted features from the upper convolutional layers, or the last fully connected layer that precedes the
classification layers. However, when the target task of interest significantly differs from the original task,
features extracted from lower convolutional layers appear to be more suitable [6].

The most widely used CNN models for aerial scene classification are CaffeNet, GoogleNet,
and VGGNet [10,12–15]. These neural networks consist of approximately 30 layers and present a huge
number of parameters. The study conducted in [16] evaluated deep features for the classification of
traditional images, whether alone or combined with other features. Authors of [9] utilized extracted
features from two pre-trained CNNs and, in that way, performed classification of high-resolution aerial
scene images. They proposed features that were obtained by fusion of the activations from the mid-level
layers and the last fully connected layers of the CNN schemes. Before feature fusion is performed, feature
coding algorithms are applied to activations from convolutional layers. VGGNet is used for extracting
features from different network layers, and then features are transformed by Discriminant Correlation
Analysis (DCA) [13]. The transformed features are concatenated and, after that, a SVM classifier is applied
for image classification [17]. The rationale of this process is to use convolution as an efficient way to
extract a new compact and effective feature representation from raw data, simplifying the subsequent
classification task. This capability of neural networks has also been fruitfully exploited in order to extract
feature vector representations for predictive tasks also in the context of graph data [18,19] and time series
data [20,21]. Feature fusion can also be found in other articles [22,23].

Two schemes are proposed in the literature. The former uses the original network for feature
extraction from RGB images, while the mapped Local Binary Pattern (LBP) coded network is used for
feature extraction from LBP feature maps. After this step, feature fusion is performed by the concatenation
layer: features go through fully connected layers and they are classified at the end. The latter uses a
saliency coded network instead of a mapped LBP coded network. The study [14] used Recurrent Neural
Networks (RNNs) for remote sensing image classification. RNNs are employed to build the attention
mechanism. In [12] is presented a new loss function, with enforcing metric learning to CNNs features.
A metric learning loss was combined with a standard optimization loss (cross-entropy loss). This approach
resulted in features that belong to images from the same image class to be very close, while features
extracted from images from different classes to be very distant. The approach presented in [24] extracted
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features from different layers of pre-trained CNNs and concatenated them with prior dimensionality
reduction through Principal Component Analysis (PCA). Logistic Regression Classifier (LRC) and SVMs
were applied to the compound features. The classification accuracy of a pre-trained CNNs can be further
improved through fine-tuning of the weights.

Fine-tuning is a transfer learning method that adjusts the parameters of a pre-trained CNN by
resuming the training of the network with a new dataset, that possibly addresses a new task with a
different number of classes than the initial output layer of the initial CNN architecture. Fine tuning trains
the network with small initial learning rate and a reduced number of training epochs, compared to a
complete training process from scratch. During this process, the cost function achieves a better minimum
compared to a case with random weight initialization. Several articles [25,26] in the remote sensing
community have also studied the advantages of fine-tuning pre-trained CNNs. Authors of [26] assessed a
fully-trained CNN in comparison with a fine-tuned one, to discover utility in the context of aerial scene
data. The approach presented in [25] employed the fine-tuning technique to classify hyperspectral images.
Authors of [27] suggested to fine-tune the weights of the convolutional layers of the pre-trained CNN to
extract better image features. The experimental results presented in [9,10] showed that fine tuning CNNs
that are pre-trained on ImageNet gives good classification accuracy on aerial scene datasets.

In order to assess different techniques that exploit deep neural networks, authors of [28] evaluated the
best scheme and training method, both for supervised and unsupervised networks. The study [29]
tried to determine the optimal way to train neural networks, including greedy layer-wise and
unsupervised training.

In this paper, we evaluate four different CNN architectures to solve the problem of high-resolution
aerial scene classification. We adopt CNNs that are pre-trained on the ImageNet dataset with the purpose
of determining their effectiveness in remote sensing image classification tasks. First, we explore the
fine-tuning of the weights on the aerial image dataset. In the process of fine-tuning, we remove the
final layers of each of the pre-trained networks after the average pooling layer (so called “network
surgery”) and construct a new network head. The new network head consists of: a fully connected layer,
dropout, and a softmax layer. Network training is performed on the modified deep neural network.
Subsequently, we exploit fine-tuned CNNs for feature extraction and utilize the extracted features for the
training of SVM classifiers, which have been successfully applied in other image classification and transfer
learning problems [20,24,30]. In this paper, SVMs are implemented in two versions: with linear kernel
and with Radial Basis Function (RBF) kernel. We use a linear decay learning rate schedule and cyclical
learning rates and evaluate their suitability for fine-tuning of pre-trained CNNs for remote sensing image
classification. Moreover, we apply label smoothing [31] as a regularization technique and assess its impact
on the classification accuracy compared with state-of-the-art methods. Figure 1 shows a flowchart of the
proposed method.

The main contributions of this paper are (1) evaluation of modern CNNs models on two remote
sensing image datasets, (2) analysis of the impact of linear learning rate decay schedule and cyclical
learning rates from the aspect of classification accuracy, (3) evaluation of label smoothing on model
generalization compared to state-of-the-art techniques, and (4) assessment of the transferability of the
features obtained from fine-tuned CNNs and their classification with linear and RBF SVMs classifiers.
To the best of our knowledge, the combination of adaptive learning rate and label smoothing was never
studied before in the context of aerial scene classification.

297



Appl. Sci. 2020, 10, 5792

Figure 1. Flowchart of the proposed method.

The remainder of this article is organized, as follows. In Section 2, the methodologies used
for fine-tuning of CNNs are presented, and it is described how they were empirically evaluated.
The experimental results obtained from the examined remote sensing image classification method are
presented in Section 3. Discussion of our method results is given in Section 4. A summary of the results
and conclusion of the paper, as well as directions for future research are presented in Section 5.

2. Methods

2.1. Convolutional Neural Networks (Cnns)

CNNs are suitable for many image-related problems, like image segmentation, classification,
and object detection. CNN models are structures built from various layers concatenated one on
top of the other. Layers consist of neurons that can learn through different optimization algorithms.
In our experiments, we used four different CNN architectures: ResNet50, InceptionV3, Xception,
and DenseNet121.

The main idea behind ResNet [32] was the introduction of residual learning block. Its purpose is
not to learn a non-linear function, but the residual of a function, namely, the difference F(x) between the
output F(x) + x and input x of the block, as shown in Figure 2. There are two versions of a residual block:
basic version and “bottleneck” version. The basic residual block consists of two 3 × 3 convolutional layers.
The “bottleneck” version of the residual learning block additionally contains two 1 × 1 convolutional
layers, and their aim is to reduce the data dimensionality. Dimensionality reduction leads to a decreased
number of network weights, which reduces the computational complexity during network training, thus
allowing very deep architectures, as ResNet-152 [32].
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Figure 2. Residual block (top) and “bottleneck” block (bottom) of ResNet [32].

The intuition behind the inception based networks relies on the fact that the correlation within
image pixels is local. Taking into consideration local correlations allows for decreasing the number of
learning parameters. The first Inception deep CNN was named Inception-v1 [33] and it was introduced as
GoogleNet. GoogleNet solves the issue of decreasing the number of learning parameters by including the
inception modules in the design of CNN architecture, as shown in Figure 3. The inception module consists
of a pooling layer and three convolutional layers with dimensions 1 × 1, 3 × 3, and 5 × 5. Filters with
different dimensions are utilized to cover the larger receptive field of each cluster. Outputs from these
layers are then concatenated and it represents the module output. Bringing up the batch normalization into
the Inception architecture [33,34] resulted in the Inception-v2 model. The third iteration, which was named
as Inception-v3 [35], was obtained by additional factorization procedures. This process resulted in three
different inception modules: Inception module type 1, obtained by factorization into smaller convolutions;
Inception module type 2, reached by factorization into asymmetric convolutions; and, Inception module
type 3, which was also introduced to enhance representations with high dimensions.

Figure 3. The architecture of a basic inception module [33].
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A CNN architecture based on depthwise separable convolution layers is proposed in [36], presuming
that it is a good operation to separate the mapping of cross-channel correlations and spatial correlations in
the feature maps of CNN construction. This thesis is a stronger version of the thesis beneath the Inception
CNN. For this reason, [36] named the CNN architecture Xception, which means “Extreme Inception”.
He proposed improving Inception-based CNNs with the replacement of Inception modules with depthwise
separable convolutions. The idea was to construct models by stacking several depthwise separable
convolutions. A depthwise separable convolution, which is also known as “separable convolution”,
is performed in two steps. The first step is a depthwise convolution, or a spatial convolution implemented
separately on every channel of input. The second step is the pointwise convolution. It is a 1 × 1 convolution
that conveys to a new channel space the output of the channels obtained with depth-wise convolution.

In order to provide the highest data flow between network layers, the approach [37] connects all
CNN layers, with corresponding dimensions of feature maps, straight with each other. The so-called
Dense Convolutional Network (DenseNet), attaches each layer to every other layer in a feed-forward
manner. For every layer, its inputs are the feature maps of all previous layers. Each layer’s feature maps are
conveyed into all succeeding layers, as their input. Figure 4 shows this connectivity pattern schematically.
The arrow lines with different colors have the following meaning: they display the input and output of
the particular network layer. For example for the second network layer (its feature maps are colored in
blue), its inputs are the feature maps of all previous layers and its feature maps are conveyed into all
succeeding layers. In Figure 4, BN-RELU-CONV denotes the process of Batch Normalization - Rectified
Linear Activation—Convolution. As it can be seen from Figure 4, all of the feature maps go through these
operations, and they are concatenated at the end.

When compared to ResNets, the [37] approach does not perform the summation operation on features
to lead them afterward into a subsequent layer. On the contrary, it merges features with concatenation.

As can be seen from the schematic layout, the connectivity pattern is dense, so it resulted in the
name of CNN Dense Convolutional Network (DenseNet). This CNN contains fewer parameters than
other convolutional networks, because the utilization of dense connectivity layout implies that there is no
demand to relearn redundant feature maps.

Figure 4. Densely concatenated convolution pattern [37].

300



Appl. Sci. 2020, 10, 5792

2.2. Linear Learning Rate Decay

The most essential hyperparameters when training a convolutional neural network are the initial
learning rate, the number of training epochs, the learning rate schedule, and the regularization method
(L2, dropout). Most neural networks are trained with the Stochastic Gradient Descent (SGD) algorithm,
which updates the network’s weights W with:

W+ = α · gradient (1)

where α is the learning rate, which parameter determines the size of the gradient step. Keeping the
learning rate constant during network training might be a good choice in some situations, but more often
decreasing the learning rate over time is more advantageous.

When training CNNs, we are trying to find global minima, local minima, or just an area of the loss
function with sufficiently low values. If we have a constant but large learning rate, it will not be possible
to reach the desired loss function values. On the contrary, if we decrease our learning rate, our CNNs will
be able to descend into more optimal areas of the loss function [38]. In a part of our experiments, we use a
linear learning rate decay schedule, which decays our learning rate to zero at the end of the last training
epoch, as shown in Figure 5. The learning rate α in every training epoch is given with:

α = α1 · (1 − E
Emax

) (2)

where α1 is the initial learning rate, E is the number of the current epoch, and Emax is the maximum
number of epochs.

Figure 5. Linear learning rate decay applied to Convolutional Neural Network (CNN) training of
100 epochs.

All of the CNNs used in our experiments for fine-tuning were originally trained on ImageNet with
learning rate schedules: ResNet50 and DenseNet121 with step-based learning rate schedule and Inception
V3 and Xception with exponential learning rate schedule.
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2.3. Cyclical Learning Rates (Clrs)

Cyclical Learning Rates (CLRs) eliminate the need to identify the optimal value of the initial learning
rate and learning rate schedule for CNN training [39]. Despite learning rate schedules, where the learning
rate is being constantly decreased, this technique allows for the learning rate to oscillate between reasonable
limits. CLRs give us the opportunity to have more freedom in the selection of our initial learning rate.
CLRs lead to faster neural network training convergence with fewer hyperparameter updates.

Saddle points are points in the loss function where the gradient is zero, but they do not represent
minima or maxima. The authors in [40] found out that the efficiency of CLR methods lies in the loss
function topology, and showed that saddle points have a worse impact on minimizing the loss function
than poor local minima. One cause for getting stuck in saddle points and global minima can be a learning
rate that is too small. CLR methods help to fix this issue adapting the learning rate between a minimum
value and a maximum value iteratively. Another reason for the efficiency of CLR methods is that the
optimal learning rate is somewhere between the lower and upper bound, so the training is performed
with near-optimal learning rates.

There are three main CLR policies: triangular, as shown in Figure 6, triangular2, and exponential range.
The triangular policy is a triangular cycle: the learning rate starts from a lower limit, increases the value
to the maximum in half a cycle, and then returns to the base value at the end of a cycle. The difference
between triangular and triangular2 policy is that the upper bound of a learning rate is decreased in half
after every cycle. Training with a triangular2 policy provides more stable training. Exponential range policy,
as its name suggests, includes an exponential decay of a maximum learning rate [39].

Figure 6. Cyclical learning rate with triangular policy mode.

2.4. Label Smoothing

Label smoothing is a regularization method that allows for a reduction in overfitting and helps
CNN architectures to improve their generalization capability. Label smoothing was introduced by [35],
and it was shown to boost classification accuracy, adopting a weighted sum of the labels with uniform
distribution instead of evaluating the cross-entropy with the “hard” labels from the dataset. “Hard” label
assignment corresponds to binary labels: positive for one class and negative for all of the other classes.
“Soft” label assignment gives the largest probability to the positive class and very small probability to
other classes. Label smoothing is applied to prevent the neural network from being too confident in
its prediction. By decreasing the model confidence, we prevent the network training from getting in
deep valleys of the loss function [41]. Label smoothing can also be implemented by adding the negative
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entropy of the softmax output to the negative log-likelihood training objective, weighted by an additional
hyperparameter [42–44].

The CNN prediction is a function of the activations in the second to last network layer:

pk =
exTwk

∑L
l=1 exTwl

(3)

where pk is the probability the network classifies to the k-th class, weights and biases of the final network
layer are given with wk, x is a vector of activations of the second-last network layer fused with ‘1’ to
consider the bias. If we train the network with “hard” labels, we intend to minimize the cross-entropy
between the real labels yk and the neural network’s predictions pk, as follows:

H(y, p) =
K

∑
k=1

−yk log(pk) (4)

where yk is ‘1’ for the correct label and ‘0’ for the others. When train network with label smoothing with
parameter α, what we minimize is the cross-entropy between the ‘smoothed’ labels yLS

k and the network
predictions pk, smoothed labels are given with:

yLS
k = yk(1 − α) + α/K (5)

The smoothing technique is used in the proposed method aiming to prevent the neural network from
becoming too confident in its predictions and, therefore, increase its robustness and predictive capabilities.

2.5. Datasets

We evaluate our proposed method on two common large-scale remote sensing image datasets,
the Aerial Image Dataset (AID) [45] and the NWPU-RESISC45 dataset [46]. A detailed description of the
two datasets is given in the following subsections.

AID consists of about 10,000 remote sensing images with dimensions 600 × 600 pixels, assigned to
30 classes [45]. Images are gathered from Google Earth imagery. They are selected from different continents
and countries at different times of the year and weather conditions: mostly from China, Japan, Europe
(Germany, England, Italy, and France), and the United States. Images from the AID dataset have a pixel
resolution of half a meter. Figure 7 presents sample images of each class.
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(v) (w) (x) (y) (z) (aa) (ab)

(ac) (ad)

Figure 7. Image classes in the AID dataset: (a) airport; (b) bare land; (c) baseball field; (d) beach; (e) bridge;
(f) centre; (g) church; (h) commercial; (i) dense residential; (j) desert; (k) farmland; (l) forest; (m) industrial;
(n) meadow; (o) medium residential; (p) mountain; (q) park; (r) parking; (s) playground; (t) pond; (u) port;
(v) railway station; (w) resort; (x) river; (y) school; (z) sparse residential; (aa) square; (ab) stadium;
(ac) storage tanks; (ad) viaduct.

The NWPU-RESISC45 dataset contains images collected from Google Earth imagery. The name of the
dataset comes from its creator Northwestern Polytechnical University (NWPU). It consists of 31,500 aerial
images split into 45 classes. Each class has 700 images with dimensions 256 × 256 pixels. Except for four
classes (island, lake, mountain, and snowberg), which exhibit a smaller spatial resolution, the other classes
have spatial resolutions that vary in the range of 30 m–0.2 m. Figure 8 presents sample images of each class.
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(v) (w) (x) (y) (z) (aa) (ab)
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(aq) (ar) (as)

Figure 8. Image classes in the NWPU-RESISC45 dataset: (a) airplane; (b) airport; (c) baseball diamond;
(d) baseball court (e) beach; (f) bridge; (g) chaparral; (h) church; (i) circular farmland; (j) cloud;
(k) commercial area; (l) dense residential; (m) desert; (n) forest; (o) freeway; (p) golf course; (q) ground
track field; (r) harbour; (s) industrial area; (t) intersection; (u) island; (v) lake; (w) meadow; (x) medium
residential; (y) mobile home park; (z) mountain; (aa) overpass; (ab) palace; (ac) parking lot; (ad) railway;
(ae) railway station; (af) rectangular farmland; (ag) river; (ah) roundabout; (ai) runway; (aj) sea ice; (ak) ship;
(al) snowberg; (am) sparse residential; (an) stadium; (ao) storage tank; (ap) tennis court; (aq) terrace;
(ar) thermal power station; (as) wetland.
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2.6. Experimental Setup

Our proposed method utilizes fine-tuning as a form of transfer learning, performed with linear
decay learning rate schedule and cyclical learning rates, as well as label smoothing for aerial scene
classification. In the experiments, we used four CNNs that were pre-trained on the ImageNet dataset:
ResNet50, InceptionV3, Xception, and DenseNet121. Fine-tuning was performed through “network
surgery”, i.e., we removed the final layers of each of the pre-trained networks after the average pooling
layer. After this, we construct a new network head by adding a fully connected layer, dropout, and softmax
layer for classification.

As already mentioned, two large-scale remote sensing image datasets are analyzed in our study:
AID and NWPU-RESISC45. Images of the datasets were resized according to the requirements of CNN:
224 × 224 for ResNet50 and DenseNet121, and 299 × 299 for InceptionV3 and Xception. The experiments
were conducted under the following train/test data split ratios: 50%/50% and 20%/80% for the AID data
set and 20%/80% and 10%/90% for NWPU-RESISC45 dataset. The selected split ratios correspond to the
ones that were chosen in the related work that we compared our approaches to. The splits were selected
randomly and without data stratification.

In-place, data augmentation was used for images from training splits. Data augmentation [47] is a
regularization technique that increases the size of the data set, and it almost always results in boosted
classification accuracy. Moreover, the label smoothing regularization technique was included in all
experiments. Label smoothing was only utilized for the training data splits. It resulted in bigger train
loss values compared to the validation loss. On the contrary, label smoothing prevented overfitting and
helped our model to generalize better. Overfitting is a common problem when using CNNs with high
dimensionality that are pre-trained on datasets of millions of images to solve image classification tasks on
datasets that contain a few thousand images.

The first part of the fine-tuning process began with warming-up the new layers of CNN head. New
network head layers at the beginning have random initialization of their weights. However, the other
network layers after the network surgery have kept their pre-trained weights. Accordingly, it is necessary
for the layers of the new network head to start learning the target dataset. During the warming-up
process, the only trainable layers were the ones from the new network head; the other network layers were
frozen. Warming-up of the new network head was done with a constant learning rate. Fine-tuning of
network model continued with Stochastic Gradient Descent (SGD), and, this time, all network layers were
“defrosted” for training. Separate experiments were conducted with linear decay of learning rate and for
cyclical learning rates with triangular policy. The triangular policy was chosen, since it is the most widely
used in the literature, and it yields the highest classification performance compared to other CLR policies.
When the linear decay scheduler was applied, the learning rate was steadily decreasing to zero at the end
of the last training epoch. The biggest challenge here was to select the initial learning rate, which was
chosen to be 1– 2 orders of magnitude smaller than the learning rate the original network was trained with.
Regarding CLR, we oscillated the learning rate between the maximum and minimum value, assuming that
the optimal one is somewhere in the interval. The choice of the lower and upper limit of CLR is not that
sensitive as a selection of initial learning rate at a linear decay scheduler. Here, we used a value for step
size four or eight times the number of training iterations in the epoch. The number of training epochs was
determined in order to contain an integer number of cycles. This is done to keep the idea behind CLRs
satisfied: we start from one minimum value of the learning rate, then we go up to the maximum value and,
at the end, we return to the starting learning rate. With this action, we have ended one cycle and started
all over again.

The second part of our research was dedicated to the evaluation of the classification methods,
namely, a softmax classifier and a SVM classifier with linear and Radial Basis Function (RBF) kernel.
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After fine-tuning of each CNN, we calculated the classification accuracy by the softmax layer, which is a
part of the new network head, and it was trained together with all of the other network layers. We used
fine-tuned CNNs as feature extractors to compare the capability of the softmax classifier with both types
of SVM classifiers. We extracted image features of both remote sensing datasets from the fully-connected
layer of fine-tuned neural networks. Afterward, the extracted features were exploited to train the linear
as well as RBF SVM and classify the images in the datasets. SVM classification was performed for all
datasets splits, adopting both linear decay scheduler and CLRs, and label smoothing in every simulation
scenario. All of the simulations were performed on OS Ubuntu 18.04 with Keras v2.2.4. Google’s library
TensorFlow v1.12.0 [48], was backend to Keras. The hardware setup was: CPU i7-8700 3.2 GHz and 64 GB
RAM. The graphical processor unit was Nvidia GeForce GTX 1080 Ti, with 11 GB of memory and CUDA
v9.0 installed on it.

2.7. Evaluation Metrics

In this article, we use two evaluation metrics: Overall Accuracy (OA) and confusion matrix. These
evaluation metrics are commonly used for the analysis and comparison of results with other state-of-the-art
techniques in classification tasks. OA is calculated as the ratio between the number of correctly classified
test images and the entire number of test images. The value of OA is always less than or equal to 1.
The confusion matrix is a graphical presentation (table) of the classification accuracy of each class of the
dataset. This table shows partial accuracy in each of the image classes. Columns of the confusion matrix
depict the predicted classes and the rows show the actual image classes. The classification model should
lead to a diagonal confusion matrix (in the ideal case) or a matrix with high values on the diagonal and
very low values in other entries. In our experimental setup, the datasets were split into train and test sets.
The split was performed without stratification, randomly, and the train/test ratios were selected according
to the scales listed in the previous section.

3. Results

3.1. Classification of Aid Dataset

The experimental results of the proposed method for classification of the AID dataset with SVM
classifiers are shown in Tables 1 and 2, for 50%/50% and 20%/80% train/test split ratio, respectively.
The above mentioned ratios are common in the literature and they are used in our experiments in order to
compare the achieved accuracy with other authors’ research. As can be seen from Table 1, when we use
ResNet50 and DenseNet121, which architecture is based on shortcut connections, the linear SVM classifier
yields better classification accuracy when compared to a softmax classifier. However, when it comes to
the inception based pre-trained CNNs InceptionV3 and Xception, the situation is the opposite, and the
classification results are better with the softmax classifier when compared to classification with linear SVM
of the extracted features from fine-tuned networks. Analysis of Table 2, which depicts the experimental
results for 20%/80% train/test split ratio, shows slightly different outcomes: the softmax classifier works
better for InceptionV3, Xception, and DenseNet121, but classification with linear SVM classifier is a better
option for ResNet50. One possible explanation for this phenomenon is that SVM performs better with
vector data of lower dimensionality. On the contrary, higher dimensionality has less impact on softmax
classification. In fact, inspecting the neural network architectures mentioned above, we can notice that
the ResNet50 architecture presents a fully connected layer of size 512, whereas Inception-based and
DenseNet201 architectures present a fully connected layer of 1024 and 1920 units, respectively.

Comparing the softmax and the RBF SVM classification of the AID dataset shows that the RBF SVM
classifier outperforms the softmax classifier for 50%/50% train/test split ratio in all simulation scenarios,
except for the InceptionV3 and Xception neural network architectures with linear decay scheduler. For the
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20%/80% train/test split ratio of the AID dataset, RBF SVM achieves better classification accuracy than
softmax, except for ResNet50, InceptionV3, and DenseNet121 with linear decay scheduler.

Table 3 presents a comparison of the proposed method to other state-of-the-art techniques. We
achieved the best classification results on the AID dataset with a 50% training set for DenseNet121 with a
linear decay scheduler and a RBF SVM classifier, and with a 20% training set for Xception with a linear
decay scheduler and a RBF SVM classifier. To the best of our knowledge, our proposed method for 50%
training set of AID dataset outperforms all of the other methods in the literature. The standard deviation
of achieved classification accuracy of AID dataset is in interval ± (0.1–0.4).

Table 1. Overall accuracy (%) of the proposed method with a 50%/50% train/test ratio of the AID dataset.
The bold text highlights the best accuracy per classifier.

Method Softmax Classifier Linear SVM Classifier RBF SVM Classifier

ResNet50

Linear decay scheduler 95.62 95.88 96.12
Cyclical learning rate 95.52 95.83 96.08

InceptionV3

Linear decay scheduler 96.41 96.32 95.96
Cyclical learning rate 95.95 95.82 96.18

Xception

Linear decay scheduler 96.14 96.04 95.96
Cyclical learning rate 96.15 95.97 96.30

DenseNet121

Linear decay scheduler 96.03 96.10 98.03
Cyclical learning rate 96.21 96.3 96.60

Table 2. Overall accuracy (%) of the proposed method with a 20%/80% train/test ratio of the AID dataset.
The bold text highlights the best accuracy per classifier.

Method Softmax Classifier Linear SVM Classifier RBF SVM Classifier

ResNet50

Linear decay scheduler 93.06 93.09 92.98
Cyclical learning rate 92.91 93.47 93.44

InceptionV3

Linear decay scheduler 93.7 93.32 93.50
Cyclical learning rate 93.79 93.41 93.93

Xception

Linear decay scheduler 93.67 93.29 94.14
Cyclical learning rate 93.44 93.36 93.65

DenseNet121

Linear decay scheduler 93.74 93.26 93.56
Cyclical learning rate 93.54 93.35 93.58

Figures 9 and 10 show the confusion matrices for the AID dataset with a 50%/50% train/test split ratio
for ResNet50, linear learning rate decay, and softmax or linear SVM classifier, respectively. Because the
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classification accuracy achieved with softmax and linear SVM is close, both confusion matrices differ only
in the classification outcome for a small number of images.

Fine-tuning of Xception with 20% of the AID dataset as a training set for CLR or linear decay learning
rate scheduler and the softmax classifier is depicted in Figures 11 and 12, respectively. Two plots show
only the fine-tuning of all network layers with the SGD optimizer, but not the warming-up of network
head. From the plots, we can see that training with CLR is more stable with characteristic picks on training
and validation loss curves, causing some oscillations that are visible as a waved shape. Additionally, it is
noticeable that the training loss is more prominent than validation loss on both Figures, because we have
applied label smoothing on training labels only.

Table 3. Overall accuracy (%) of the proposed method compared to reference methods with 50% and 20%
of the AID data set as a training set. For our method, we selected the best results obtained for the two
training ratios, and report them in bold. Methods are ordered in ascending order by their performance on
the 50% training ratio.

Method 50% Training Ratio 20% Training Ratio

GoogleNet+SVM [45] 86.39 83.44

VGG-VD-16 [45] 89.64 86.59

CaffeNet [45] 89.53 86.86

salM3LBP-CLM [49] 89.76 86.92

MCNNs [50] 91.80 /

Fusion by addition [51] 91.87 /

X-Net-LF [52] 92.96 90.87

ARCNet-VGG16 [14] 93.10 88.75

VGG-16 (fine-tuning) [53] 93.60 89.49

VGG-16+MSCP [54] 94.42 91.5

Two-stream fusion [22] 94.58 92.32

Multilevel fusion [55] 95.36 /

GBNet + global Feature [53] 95.48 92.20

Xception with linear decay scheduler and RBF
SVM classifier (proposed)

95.96 94.14

InceptionV3-CapsNet [56] 96.32 93.79

EfficientNet-B3-aux [4] 96.56 94.19

GCFs + LOFs [57] 96.85 92.48

D-CNNs with VGGNet-16 [12] 96.89 90.82

Dense-based CNNs + 3D pooling [58] 97.19 95.37

DenseNet121 with linear decay scheduler and
RBF SVM classifier (proposed)

98.03 93.56
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Figure 9. Confusion matrix of the proposed method with a 50%/50% train/test ratio of AID data set for
ResNet50, linear learning rate decay, and softmax classifier.

Figure 10. Confusion matrix of the proposed method with a 50%/50% train/test ratio of AID data set for
ResNet50, linear learning rate decay, and a linear SVM classifier.
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Figure 11. Training plot of the proposed method with 20% of AID dataset as the training set for Xception,
cyclical learning rate, and softmax classifier.

Figure 12. Training plot of the proposed method with 20% of AID data set as the training set for Xception,
linear learning rate decay, and softmax classifier.
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3.2. Classification of the Nwpu-Resisc45 Data Set

The experimental results of our proposed method with linear and RBF SVM for the NWPU-RESISC45
dataset are displayed in Tables 4 and 5 and Figure 13. Table 4 shows the achieved classification accuracy
for a 20%/80% train/test split ratio of the data set. It can be noticed that for linear decay scheduler and as
well for CLRs, the linear SVM classifier gives better overall accuracy compared to softmax classifier for
all pre-trained CNN. Table 5 shows the obtained classification accuracy for a 10%/90% train/test split
ratio for the NWPU-RESISC45 data set. Both train/test split ratios for the analyzed datasets are chosen in
order to make experimental comparisons with other studies in the corresponding field of research, which
use the same proportions of train/test splits. Here the achieved experimental results are similar to the
ones from Table 4. The linear SVM classifier outperforms the softmax classifier in all cases except when we
fine-tune the InceptionV3 neural network and Xception with a linear decay scheduler.

Table 4. Overall accuracy (%) of the proposed method with 20%/80% train/test ratio of NWPU-RESISC45
data set. The bold text highlights the best accuracy per classifier.

Method Softmax Classifier Linear SVM Classifier RBF SVM Classifier

ResNet50

Linear decay scheduler 92.35 92.77 92.89

Cyclical learning rate 92.40 92.85 92.77

InceptionV3

Linear decay scheduler 93.07 93.18 93.35

Cyclical learning rate 93.04 93.13 92.82

Xception

Linear decay scheduler 92.63 92.78 92.72

Cyclical learning rate 92.63 92.80 92.87

DenseNet121

Linear decay scheduler 93.16 93.37 93.60

Cyclical learning rate 92.98 93.26 93.55

Analysing Tables 4 and 5, we notice that classification with RBF SVM classifier yields better
experimental results when compared to softmax classification with the NWPU-RESISC45 dataset. For the
20%/80% train/test split ratio RBF SVM outperforms softmax classification in all simulation scenarios,
except for InceptionV3 with cyclical learning rates. For the 10%/90% train/test split ratio, softmax yields
better classification results only for Xception with linear decay scheduler.

Table 6 compares the examined techniques with other state-of-the-art methods. Our proposed
technique obtained the best classification accuracy with DenseNet121 with a linear decay scheduler and
linear SVM classifier for the 10%/90% train/test split ratio of the NWPU-RESISC45 dataset. For the
20%/80% train/test split ratio of NWPU-RESISC45 dataset we achieved the best experimental results
with DenseNet121 with a linear decay scheduler and RBF SVM classifier. The standard deviation of
achieved classification accuracy of NWPU-RESISC45 dataset is in interval ± (0.1–0.3). From Table 6,
it can be concluded that there are methods that outperform our proposed method. One of them uses
fine-tuning of EfficientNet-B3 with auxiliary classifier [4]. EfficientNet-B3 yields better top-1 and top-5
classification accuracy on ImageNet data set compared to the pre-trained CNNs utilized in this article,
and this is probably the main reason for the better overall accuracy. The results reported in [58] are also
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better than ours. However, they use multiple fusion of features extracted from dataset images or their
parts with different dimensions (scale). Instead, we utilized fine-tuning with one image size according to
the pre-trained CNNs requirements.

Table 5. Overall accuracy (%) of the proposed method with a 10%/90% train/test ratio of NWPU-RESISC45
data set. The bold text highlights the best accuracy per classifier.

Method Softmax Classifier Linear SVM Classifier RBF SVM Classifier

ResNet50

Linear decay scheduler 89.42 89.74 90.03

Cyclical learning rate 89.20 89.70 89.99

InceptionV3

Linear decay scheduler 90.16 90.07 90.36

Cyclical learning rate 90.21 90.18 90.36

Xception

Linear decay scheduler 89.62 89.59 89.18

Cyclical learning rate 89.40 89.65 89.67

DenseNet121

Linear decay scheduler 90.25 90.46 90.42

Cyclical learning rate 89.73 89.99 90.11

Table 6. Overall accuracy (%) of the proposed method compared to reference methods with 20% and 10%
of NWPU-RESISC45 data set as a training set. For our method, we selected the best results obtained for the
two training ratios, and report them in bold. Methods are ordered in ascending order by their performance
on the 20% training ratio.

Method 20% Training Ratio 10% Training Ratio

GoogleNet [46] 78.48 76.19

VGG-16 [46] 79.79 76.47

AlexNet [46] 79.85 76.69

Two-stream fusion [15] 83.16 80.22

BoCF [46] 84.32 82.65

Fine-tuning AlexNet [46] 85.16 81.22

Fine-tuning GoogleNet [12] 86.02 82.57

SAL-TS-Net (Yu et Liu 2018a) 87.01 85.02

VGG-16+MSCP [51] 88.93 85.33

Fine-tuning VGG-16 [46] 90.36 87.15

D-CNNs with VGGNet-16 [12] 91.89 89.22

Triplet networks [59] 92.33 /

Inception-V3-CapsNet [58] 92.60 89.03

DenseNet121 with linear decay scheduler and linear SVM classifier
(proposed)

93.37 90.46

DenseNet121 with linear decay scheduler and RBF SVM classifier
(proposed)

93.60 90.42

EfficientNet-B3-aux [4] 93.81 91.08

Dense-based CNNs + 3D pooling [58] 94.95 92.9
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(a) (b)

(c) (d)

Figure 13. Overall Accuracy over five runs for NWPU-RESISC45 data set with linear SVM classifier and
(a) 20%/80% train/test split ratio, linear decay scheduler; (b) 20%0% train/test split ratio, cyclical learning
rates; (c) 10%/90% train/test split ratio, linear decay scheduler; (d) 10%/90% train/test split ratio, cyclical
learning rates.

4. Discussion

We can make several conclusions from our completed simulations and experimental results. All of
the presented points, except the last two, refer to research experiments with linear SVM classifier. The last
two points refer to cases that include SVM classification with RBF kernel. The main points of this research
paper are given, as follows:

• The pre-trained InceptionV3 network yields the highest classification accuracy in transfer learning
through fine-tuning for the AID dataset for 50%/50% train/test split ratio and linear SVM
classification (Table 1). For the NWPU-RESISC45 dataset, DenseNet121 achieves the best experimental
results, but InceptionV3 is the second-best pre-trained CNN. AID dataset images have an original
dimension of 600 × 600, and NWPU-RESISC45 dataset images have a dimension of 256 × 256.
Each of the pre-trained CNNs requires images with precise dimensions on its input: 299 × 299 for
InceptionV3, 224 × 224 for DenseNet121. The achieved sub-optimal results may depend on the
cropping of dataset images to the required input dimensions. Taking into consideration the achieved
top-one and top-five classification accuracy on the ImageNet dataset, it is somewhat expected that
Xception would be the best performing pre-trained CNN, but it is not the case. However, InceptionV3
is right behind Xception according to the achieved results on ImageNet, so it reflects on our research
as well.

• Linear learning rate decay scheduler gives better classification accuracy in all experimental scenarios
with 50%/50% train/test split for the AID dataset for linear SVM classification. Cyclical Learning
Rates (CLRs) are better in cases under 20% training set for the AID data set. Both train/test split
ratios of the NWPU-RESISC45 dataset (20%/80% and 10%/90%) have mixed results for linear SVM
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classification: half of them in favor of linear decay scheduler, half of them in favor of cyclical learning
rates. CLRs might be the right solution for experimental scenarios under a smaller ratio of the training
set. Neural network fine-tuning with cyclical learning rates resulted in more stable training and, thus,
less prone to overfitting compared to training with linear decay scheduler. In our experiments, we
used a triangular policy for the CLRs, but it might be an option to use the triangular2 policy. Whichever
policy is implemented, it should provide the right balance between stability and accuracy of training.

• In every simulation scenario, we implemented label smoothing with factor = 0.1 as a form of
regularization. We combined it with dropout regularization with factor = 0.5. The dropout layer
is part of the new network head, and it was placed just before the softmax layer. Regularization
techniques or a combination of them are useful to combat overfitting and to improve generalization of
the model. Our goal with the proposed method was to boost the classification accuracy of RS dataset
images, so we did not perform experimental scenarios without label smoothing.

• Classification accuracy achieved with linear SVM is higher in more cases than the classification
accuracy obtained with the softmax layer. Softmax classifier works better for the AID dataset: it yields
better experimental results for InceptionV3 and Xception with 50% of the data set as a training set,
and for all CNNs, except for ResNet50 with 20% training data set. Linear SVM classifier is a better
option for the NWPU-RESISC45 dataset: it outperforms the softmax layer in all cases, except for
fine-tuning InceptionV3 for both types of learning rates and Xception with linear decay scheduler and
10% training/test data ratio. We conclude that feature extraction of fine-tuned CNNs yields better
classification results than end-to-end training with the softmax layer for classification. It goes in line
with information in Tables 3 and 6, that the best performing method for AID and NWPU-RESISC45
data set classification is based on feature extraction (multiple) and three-dimmensional (3D) pooling
of extracted features.

• Performing experimental research into classification of remote sensing datasets with RBF SVM
classifiers, shows that it is a superior classification technique compared to softmax classification.
For the AID dataset RBF SVM classifier outperforms softmax classification in all cases, except in a
few of the simulation scenarios with linear decay scheduler. The situation with NWPU-RESISC45
dataset follows the previous example: from 16 simulation scenarios (for both 20%/80% and 10%/90%
train/test split ratios) softmax classifier is better than RBF SVM classifier in only two cases. From
Tables 1, 2, 4, and 5 it is noticeable that it yields better classification accuracy for each examined
dataset in most of the simulation cases.

• Comparing the linear decay scheduler and cyclical learning rate for RBF SVM classification, leads to
similar conclusions as for linear SVM classification. The linear decay scheduler shows better
experimental results for bigger training sets (50% training set for AID dataset and 20% training
set for NWPU-RESISC45 dataset). Cyclical learning rates appear more suitable for aerial scene
classification under smaller training sets.

5. Conclusions

In this paper, we presented a fine-tuning method for image classification of large-scale remote sensing
datasets. We showed that the adoption of a linear decay learning rate schedule or Cyclical Learning Rates,
combined with regularization techniques, like label smoothing, could produce state-of-the-art results in
terms of overall accuracy. Summarizing, SVM with linear or RBF kernel presented more accurate results
than softmax when using 10% and 20% training data splits. This behavior is expected, since SVM is
known to be more robust in the presence of of small training sets [60]. The above discussion is giving us
valuable information for researching more competitive methods to provide progress in remote sensing
image classification. After this, we suggest the following directions: (1) assess the method with different
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types of pre-trained CNNs with different types of neural network architectures, (2) include learning rate
finder [39] in order to determine optimal boundaries for cyclical learning rates or initial learning rate for
linear decay scheduler, and (3) improve the results by fine-tuning only some layers of pre-trained CNNs,
in contrast with unfreezing the whole network architecture for training.
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Abbreviations

The following abbreviations are used in this manuscript:

AID Aerial Image Dataset

CLR Cyclical Learning Rate

CNN Convolutional neural network

DenseNet CNN Dense Convolutional Network

LBP Local Binary Pattern

LRC Logistic Regression Classifier

NWPU Northwestern Polytechnical University

OA Overall Accuracy

PCA Principal Component Analysis

PCA Principal Component Analysis

RBF Radial Basis Function

RGB Red Green Blue

RNN Recurrent Neural Network

RS Remote Sensing

SGD Stochastic Gradient Descent

SVM Support Vector Machine
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Abstract: Depth information has been widely used to improve RGB-D salient object detection by
extracting attention maps to determine the position information of objects in an image. However,
non-salient objects may be close to the depth sensor and present high pixel intensities in the depth
maps. This situation in depth maps inevitably leads to erroneously emphasize non-salient areas and
may have a negative impact on the saliency results. To mitigate this problem, we propose a hybrid
attention neural network that fuses middle- and high-level RGB features with depth features to
generate a hybrid attention map to remove background information. The proposed network extracts
multilevel features from RGB images using the Res2Net architecture and then integrates high-level
features from depth maps using the Inception-v4-ResNet2 architecture. The mixed high-level RGB
features and depth features generate the hybrid attention map, which is then multiplied to the
low-level RGB features. After decoding by several convolutions and upsampling, we obtain the
final saliency prediction, achieving state-of-the-art performance on the NJUD and NLPR datasets.
Moreover, the proposed network has good generalization ability compared with other methods.
An ablation study demonstrates that the proposed network effectively performs saliency prediction
even when non-salient objects interfere detection. In fact, after removing the branch with high-level
RGB features, the RGB attention map that guides the network for saliency prediction is lost, and all
the performance measures decline. The resulting prediction map from the ablation study shows
the effect of non-salient objects close to the depth sensor. This effect is not present when using the
complete hybrid attention network. Therefore, RGB information can correct and supplement depth
information, and the corresponding hybrid attention map is more robust than using a conventional
attention map constructed only with depth information.

Keywords: neural networks; deep learning; salient object detection; RGB-D

1. Introduction

Saliency detection extracts relevant objects with pixel-level details from an image. It has been
widely used in many fields such as object segmentation [1], region proposal [2], object recognition [3],
image quality assessment [4], and video analysis [5]. It has been found that when the background has
similar colors to those of a salient object or it is highly complex and salient objects are very large or small,
saliency detection solely based on RGB images often fails to provide accurate results. Therefore, depth
information is being increasingly used as a supplement to RGB information for saliency detection [6–8].
RGB-D salient object detection based on handcrafted features generally uses depth maps to determine
edges, textures, and histogram statistics, and then bottom-up [9] or top-down [10] approaches are used
to predict whether a pixel belongs to a salient object. Various methods consider the rarity of pixels
in an image at local and global regions [11], while others use prior knowledge to support prediction
and obtain accurate detection [12]. However, these methods rely on handcrafted features, empirical
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parameter setting, and statistical prediction, which limit their performance. In fact, such methods
cannot fully extract representative features due to inadequate parameter setting, subjective factors,
and redundant or erroneous information. In addition, models of the human visual system may be
incomplete and misleading. Alternatively, deep learning methods have emerged in recent years,
improving the accuracy of salient object detection [13–16]. By combining the advantages of deep
learning and features in depth maps, several stereoscopic saliency detection methods based on neural
networks have achieved great leaps in accuracy. For instance, DF combines RGB images and depth maps
into a deep learning framework [17]. Then, encoder–decoder networks, such as PDNet [18], provide
high accuracy and robustness. Chen et al. further improved the results by proposing hidden structure
conversion [19], complementary fusion [20], a dilated convolutional model [21], and modification to loss
functions [22] for highly accurate salient object detection. On the other hand, methods based on attention
mechanisms can quickly identify the position of objects and then reconstruct the edges for improving
salient object detection. Wang et al. proposed a residual network with attention mechanism [23] and
then DANet [24] to achieve accurate results by using channel and spatial attention maps.

Current stereoscopic salient object detection based on deep learning usually adopts networks
such as VGG [25], ResNet [26], and Inception [27] as its backbone and the U-Net encoding–decoding
structure [28] as the framework. However, this is not an ideal solution for saliency detection. As the
depth map (disparity map) is an image reflecting the distances to objects, many networks use it to
generate an attention map to distinguish objects from the background. However, depth maps have
two major limitations. First, the depth map reflects the distance to all objects, and some non-salient
objects are the closest to camera and provide the lowest (highest) pixel intensities. Thus, the underlying
network may consider such objects as salient, in a phenomenon that we call the depth principle error.
Second, data acquisition limitations may degrade the accuracy of edge information in the depth map.

Overall, the neural networks that determine the location of objects using only depth information
to construct the attention map may be biased. Using the RGB image to discard the closest non-salient
objects in depth maps may improve the detection accuracy. Based on spatial attention maps, we propose
stereoscopic salient object detection using a hybrid attention network (HANet). Before processing
features for saliency detection, high-level features extracted from the RGB image are encoded into an
attention map, which is then mixed with the depth attention map for subsequent joint processing with
the saliency features. Experimental results show that this novel method prevents non-salient object
interference present in depth maps. In addition, unlike many symmetric neural networks, the proposed
asymmetric network has fewer parameters, because the depth map has less information and a large
network is unnecessary. Thus, we use a simplified Inception-v4-ResNet2 [29] architecture with fewer
parameters to extract the depth attention map and a Res2Net [30] architecture for feature extraction to
construct the RGB attention map containing more complex information. The proposed asymmetric
HANet can prevent the depth principle error by filtering features with cross-modal attention maps
separately obtained from RGB and depth data.

2. Proposed Method

The proposed HANet architecture achieves salient object detection and prevents the depth
principle error. The processing pipeline of HANet is shown in Figure 1. HANet can be divided into
two main parts. The first part extracts features through eight neural network blocks (shown in blue in
Figure 1) for the RGB attention map and through two blocks (shown in green) for the depth attention
map. The second part consists of six blocks (shown in orange in Figure 1) that fuse the two types of
features to generate a hybrid attention map, and one block (shown in pink) that generates the saliency
prediction map according to feature filtering based on the hybrid attention map.
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Figure 1. Framework of our HANet. The RGB-D imge is selected form Ref. [31].

2.1. Feature Extraction

We adopt two popular backbone networks for feature extraction. Specifically, Res2Net [30]
extracts RGB features, and a simplified Inception-v4-ResNet2 [29] extracts depth features. The latter
can handle the relatively less information from depth maps while preventing overfitting and reducing
the computation time by omitting unnecessary parameters. Therefore, we establish an asymmetric
architecture for this two-steam network.

For RGB images, the Res2Net backbone has been used to extract multilevel features for different
tasks, being widely used in semantic segmentation, key-point estimation, and salient object detection.
We have conducted comprehensive experiments on many datasets and benchmarks and verified
the excellent generalization ability of Res2Net. For salient object detection, we remove all the fully
connected layers of Res2Net to ensure that the output is an image. To preserve the feature information,
we delete the first max pooling layers of the network and set the stride of the convolution to 1
(instead of 2) to prevent excessive downsampling. This prevents severe information loss and failure to
reconstruct object details after saliency detection. As we obtain the features at each downsampling
process, Res2Net provides four outputs: low-level features extracted by Layer1, middle-level features
extracted by Layer2 and Layer3, and high-level features extracted by Layer4. In [27], 1 × 1 convolutions
have dual purpose: most critically, they are used mainly as dimension reduction modules to remove
computational bottlenecks, that would otherwise limit the size of our network. This allows for not just
increasing the depth, but also the width of our networks without significant performance penalty. Then,
inspired by [27], we use four 1 × 1 convolutions to reduce the number of channels to one-eighth of the
original number, which is high and requires long computation time during both training and inference.

For depth maps, we use a simplified Inception-v4-ResNet2. To reduce the computational complexity,
we only adopt its Stem part and five Inception-ResNet-A blocks. In addition, we follow the same
procedure for RGB images to ensure that the output is an image. Likewise, we delete the first max
pooling layers, set the stride of the convolution to 1, and use 3 × 3 convolutions to construct the depth
attention map.

2.2. Hybrid Attention Predictor

The depth principle error in non-salient objects described above makes the closest objects to the
depth sensor to have either the lowest or highest intensities in a disparity map. When a neural network
searches for salient objects in depth maps, it can be misled by such objects. Therefore, a single-modal
attention map containing only depth information is biased. By leveraging the complementarity
between RGB and depth information, we can eliminate the depth principle error by constructing a
hybrid attention map. This map combines the RGB and depth modes to obtain a weighted attention
map in which each pixels has information on its likelihood to belong to a specific object.
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To obtain the hybrid attention map, we devise a decoder network (orange blocks in Figure 1)
that consist of a 3 × 3 convolutions and binary interpolation upsampling. After each upsampling,
we concatenate the lower-level and current features. The decoder blocks can be represented by the
following formula:

Rn =
C∑

k=1

U(F(Rk
n−1 ⊕ rn

k ·W)), (1)

where F represents convolution, U represents upsampling, k is the feature channel, Rk
n − 1 is the

k-th channel of the (n − 1)-th RGB attention features extracted by the corresponding block in the
decoder network, rk

n − 1 is the k-th channel of the (n − 1)-th RGB features extracted by Res2Net, whose
number of channels is reduced by the convolutions,

⊕
denotes concatenation, and W is the parameter

for convolution.
When the RGB attention map is obtained after decoding, we aggregate the depth attention map to

generate the hybrid attention map. This cross-modal attention map provides accurate localization of
objects in the image. Then, we multiply the map with low-level RGB features, and several convolutions
and upsampling operations lead to the prediction map for salient object detection.

2.3. Loss Function

We use the binary cross-entropy as loss function for HANet:

L(Y, G) =
∑

h

∑
w
[Y(h, w) log[G(h, w)]] + [1−Y(h, w)] log[1−G(h, w)], (2)

where (h, w) represents the pixel values of the image at the corresponding position, Y is the prediction
map, and G is the ground truth. Thus, L(Y, G) provides the final loss function values of the prediction
and label map.

3. Evaluation Measures and Implementation Details

3.1. Evaluation Measures

To comprehensively evaluate the detection performance of various saliency methods, we adopt
five evaluation measures: precision–recall curve, maximum and mean F-measure, mean absolute error,
and area under the precision–recall curve [31,32].

The binary saliency map corresponding to a threshold is then compared to the ground truth,
and precision P and recall R are computed as

P =

∑
h
∑

w
∧

Yb(h, w) −Y(h, w)∑
h
∑

w
∧

Yb(h, w)

, (3)

R =

∑
h
∑

w
∧

Yb(h, w) −Y(h, w)∑
h
∑

w Y(h, w)
. (4)

The average precision and recall for images in each dataset are plotted in a precision–recall curve.
An adaptive threshold is applied to the grayscale saliency map to obtain the corresponding binary
saliency map. For each saliency map, the precision and recall are computed using (3) and (4). Then, Fβ

is defined as

Fβ =
(1 + β2)PR
β2P + R

(5)

where β is a positive parameter specifying the relative importance of precision and recall. For consistency
while comparing the performance of the proposed network with that of other methods, we set β = 0.3.
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The mean absolute error reflects the average absolute pixelwise difference between the predicted
saliency maps and corresponding ground truth. Thus, it is an important measure to evaluate the
proposed HANet, and it is given by

MAE =
1

HW

W∑
w=1

H∑
h=1

∣∣∣∣∣∧Y(h, w) −Y(h, w)

∣∣∣∣∣, (6)

where H and W are the numbers of rows and columns in the saliency map, respectively.

3.2. Implementation Details

We implement HANet using the popular PyTorch 1.2.0 library in Python. We apply Adam
optimization with learning rate of 0.001, which is reduced by a factor of 2 if no improvement is observed
in the validation performance over five consecutive epochs. The NJUD dataset [31] containing more
than 2000 images and the NLPR dataset [32] containing 1000 images corresponding pixel-level ground
truths are used to evaluate the proposed HANet. We follow the datasets splitting scheme proposed
in [18,21], 80% are used for training and the remaining 20% for test. All the images are resized to
224 × 224 pixels. The network is trained over 100 epochs with early stopping, and a minibatch of
2 images is used at every training iteration. In this study, HANet was trained on a computer equipped
with an Intel i7- 7750H CPU at 2.21 GHz and an NVIDIA GeForce GTX TITAN Xp GPU.

4. Results and Discussion

4.1. Comparison with State-of-Art Methods

We compared the proposed method with seven state-of-the-art methods: ACSD [31], CDCP [33],
DCMC [34], DF [17], MBP [21], PDNet [18], and SFP [35]. Table 1 and Figure 2 show that the proposed
HANet outperforms the other evaluated methods. Figure 3 shows various saliency maps obtained
from each method in typical scenarios. In the first and second rows, the closest objects are non-salient
and have the highest pixel intensities. For the comparison methods, the two images are misjudged due
to the depth principle error. In contrast, HANet can correctly detect the salient objects by using the
information in the hybrid attention map.

To further demonstrate the effectiveness of HANet, we conducted an ablation study by removing
the RGB attention map. The results are shown in the 12th column of Figure 3, where the miscalculation
due to the depth principle error appears. On the third and fourth rows, we show the saliency obtained
from HANet in scenes with multiple and large salient objects, confirming the effectiveness of the
proposed method.

Table 1. Saliency Detection Performance of Different Methods on the Testing set of the NJUD and
NLPR Datasets.

Datasets Criteria ACSD CDCP SFP DCMC DF MBP PDNet Ours

NJUD

AUC 0.923 0.822 0.871 0.926 0.928 0.703 0.952 0.964
MeanF 0.551 0.572 0.482 0.601 0.654 0.479 0.719 0.834
MaxF 0.733 0.594 0.655 0.740 0.782 0.557 0.796 0.866
MAE 0.190 0.204 0.202 0.154 0.154 0.207 0.129 0.065

NLPR

AUC 0.837 0.895 0.864 0.931 0.841 0.781 0.957 0.982
MeanF 0.461 0.600 0.426 0.590 0.660 0.547 0.610 0.827
MaxF 0.615 0.654 0.562 0.703 0.745 0.598 0.720 0.869
MAE 0.156 0.126 0.180 0.120 0.112 0.117 0.119 0.055
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Figure 2. Precision–recall curves of different methods on the testing set of the NJUD and NLPR datasets.

Figure 3. Examples of salient object detection from the testing set. (a) Original image, (b) depth map,
and (c) ground truth. Saliency maps obtained from (d) ACSD, (e) CDCP, (f) DCMC, (g) DF, (h) MBP,
(i) PDnet, (j) SFP, (k) proposed HANet, and (l) HANet without RGB attention map (ablation study).
The RGB-D imges are selected form Ref. [33].

4.2. Ablation Study

To analyze the effectiveness of both the proposed hybrid attention mechanism and RGB attention
map to correct mistakes caused by depth principle error, we removed Layer2, Layer3, and Layer4
and their corresponding 1 × 1 convolutions from HANet. In addition, we removed the upsampling
and convolution during fusion, and omitted the RGB attention map and thus its combination with
the depth attention map. Table 2 and Figure 4 show that the saliency results are substantially
deteriorated, as illustrated in the 12th column of Figure 3, where the depth principle error is evident.
Therefore, HANet accurately predicts salient objects and eliminates interference caused by the depth
principle error.

Table 2. Performance of HANet During Ablation Study on NJUD and NLPR Datasets.

Datasets Criteria Single-Attention Multi-Attention

NJUD

AUC 0.935 0.964
MeanF 0.670 0.834
MaxF 0.755 0.866
MAE 0.150 0.065

NLPR

AUC 0.959 0.982
MeanF 0.721 0.827
MaxF 0.783 0.869
MAE 0.091 0.055
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Figure 4. Precision–recall curves obtained from ablation study applied to images from NJUD (left) and
NLPR (right) datasets.

4.3. Computational Complexity

The computational complexity of the proposed HANet and the other methods was estimated from
tests on the NJUD dataset. It takes approximately 4 h to train HANet using an Intel i5-7500 CPU at
3.4 GHz and an NVIDIA GeForce GTX TITAN Xp GPU. HANet achieves saliency detection at 11.6 fps
for images of 224 × 224 pixels. Therefore, our model has low computational complexity and can be
applied to real-time image processing systems.

5. Conclusions

We propose HANet, a hybrid network based on an attention mechanism for stereoscopic salient
object detection. HANet uses a novel attention method that fuses RGB and depth attention maps to
filter the original saliency features. Combined with an encoder–decoder network, HANet provides
higher performance on the NJUD and NLPR datasets. Furthermore, an ablation study confirms that the
HANet performance decreases when removing the RGB attention map, indicating the effectiveness of
the proposed hybrid attention mechanism. The RGB attention map helps solving interference caused
by the depth principle error, which occurs when non-salient objects are close to the depth sensor.
Moreover, HANet provides high performance in scenes containing multiple objects, large objects,
and other complex information.
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Abstract: Detecting small objects and objects with large scale variants are always challenging for deep
learning based object detection approaches. Many efforts have been made to solve these problems
such as adopting more effective network structures, image features, loss functions, etc. However,
for both small objects detection and detecting objects with various scale in single image, the first
thing should be solve is the matching mechanism between anchor boxes and ground-truths. In this
paper, an approach based on multi-scale balanced sampling(MB-RPN) is proposed for the difficult
matching of small objects and detecting multi-scale objects. According to the scale of the anchor
boxes, different positive and negative sample IOU discriminate thresholds are adopted to improve the
probability of matching the small object area with the anchor boxes so that more small object samples
are included in the training process. Moreover, the balanced sampling method is proposed for the
collected samples, the samples are further divided and uniform sampling to ensure the diversity of
samples in training process. Several datasets are adopted to evaluate the MB-RPN, the experimental
results show that compare with the similar approach, MB-RPN improves detection performances
effectively.

Keywords: object detection; small object; multi-scale sampling; balanced sampling

1. Introduction

Object detection is a kind of approaches for objects localization and category classification in
digital images, which is one of the most challenging branches in the field of computer vision.

The early approaches are based on handcrafted image features. In [1], a pedestrian detection
system is proposed with histogram of oriented gradients(HOG) feature and support vector
machine(SVM). In [2], deformable part-based model(DPM) is proposed which enhanced detection
accuracy by utilizing HOG features of the whole and part of objects. As the peak of handcraft feature
based detection approach, the detection performances of DPM are still not ideal, due to the lack of
effective representation of features. Besides, since hand craft feature extractor are always designed for
specific object types, hence often result in low robustness in dealing with different category of objects.

In recent years, several object detection approaches based on convolutional neural networks
(CNN) are proposed [3–5]. Image features are supervise trained by measuring error between prediction
and annotated ground-truth in large-scale object detection datasets. Compare with handcraft features
the CNN features’ representation ability and robustness against various types of objects are both
significantly enhanced. Therefore the detection performances are highly improved. Although deep
learning object detection approaches have shown state of the art performance for general object
detection, they are still limited in detecting small objects and the performances in detection various
scale objects in single input image is also not ideal. The reasons for a low detection performances are
as the follow:
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1. The proportion of small objects in the image are always relative low, which means they might be
excluded from the training process due to improper network hyperparameter settings. However,
small objects often have low resolutions and less image information which means the difficulty of
training small objects are always higher than general objects, the lack of sampling will further
result in a low quality features extraction by the deep neural networks.

2. In natural scenes, the scale of objects are distributed stochastic, which means within a single
image there might be objects with large scale variants, it is easy to take the majority of samples
and ignore other objects in the process of training.

Overall, in order to further improve detection performances especially in detecting objects
mentioned above, the number of small objects and proportion of various scale object in training
samples are both important.In this paper an end-to-end object detection approach with multi-scale
balanced sampling is proposed to improve the matching mechanism and ensure scale diversity in
training samples. The key contribution of the approach is summarized as follow:

1. The samples’ matching conditions is adjusted according to the objects’ scale so that the the small
objects are easier to be matched, which enhance the training samples of small objects.

2. The sample set is divided into multiple intervals according to the samples’ scale and their
corresponding discrimination difficulty. In addition, each interval is sampled in a balanced
fashion to preserve the diversity of sample types during the classification and positioning network
training process and to further ensure that the algorithm does not tend to detect a specific type of
samples while ignoring the others.

3. Evaluation between proposed approach and others on several benchmarks is proposed, the
experiment results show that the detection performances are better than other similar approaches.

The remainder of this paper is organized as follows. In Section 2, background and related works
are introduced. In Section 3, framework and implement detail of proposed approach are introduced.
Section 4 presents the experiment results and comparisons with other similar approaches. Finally,
Section 5 conclude the proposed approach.

2. Related Works

In [6], a deep neural network based object detection approach called RCNN is first introduced.
It is composed with three parts: First, by adopting selective search algorithm, RCNN generate a series
of candidate region, each of them may responsible for detecting a specific object in the image. Second,
extract feature of candidate regions by CNN, the network will be train supervised by measuring the
error between prediction and ground-truths. Finally, SVM and bounding box regression is adopted to
finetune the predicted results. The framework of RCNN is similar to tradition approaches except CNN
is adopt to extract image features instead of handcraft features. In [7], an approach called Fast RCNN
is proposed, it take the whole image as inputs, then crop the corresponding features of each candidate
region and map them to a uniform size by region of interest(ROI) pooling, finally feed the mapped
features into classification and regression network to acquire its category and localization. The fast
RNN integrate coarse and finetune process in RCNN which improve both the detection performances
and efficiency. In [5], an end-to-end CNN based object detection framework called Faster RCNN is
introduced. Instead of generate candidate by selective search, this approach proposed region proposal
network(RPN), it first generate a series of anchor boxes with different scale and aspect ratio, each of
them is responsible for detecting object or not is depend on the inter section of union(IOU) between
its coordinate and annotated ground-truth. As the first end-to-end object detection approach, Faster
RCNN laid the foundation of subsequent deep neural network based object detection approaches.
In [3], an approach which integrate the function of RPN and classification/regression network in one
series convolution layers called SSD is introduced. At present, approaches whose framework are
similar to Faster RCNN are summarized as two-stage approaches, in contrast the approaches like SSD
are called one-stage approaches.
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Based on backbones such as Faster RCNN and SSD, variety of approaches were proposed to
enhance the detection performances. For example: Feature Pyramid Networks(FPN) proposed
an pyramid architecture image feature extractor, objects in different resolution are arranged to
corresponding layers, compare with the origin Faster RCNN, in dealing with a specific object FPN
will provide more proper feature [8]. Cascade RCNN proposed training process that discrimination
IOU threshold is gradually increased, which makes the classification and regression network training
in a easy-to-hard way [9]. RetinaNet proposed focal loss which could enlarge the weight of hard
samples, which makes the training process focuses on the hard samples [10]. Libra RCNN proposed a
balanced sampling method, feature extraction and loss function in training process [11]. SRetinaNet
propose an anchor optimization method which will help detecting small objects with specific parameter
setting [12]. GA-RPN propose an anchor optimization method by combining anchor box with semantic
features [13].

Regardless approaches being one or two stage, the fundament for object detection is the matching
mechanism of anchor and ground-truth, which determines how many samples can be included in the
network training. Therefore, it is important to propose a proper matching mechanism for enhancing
the detection performances. However, the stochastic of objects scale poses challenges to the matching
mechanism [12,13].

3. Proposed Method

3.1. Framework Overview

The overview of proposed approach is shown in Figure 1, where the green cubes denote
image feature extracting process, the pink cube denote MB-RPN module and purple cube denote
classification/regression networks for finetune. Table 1 shows the details of the network. The specific
steps are as follows:

1. Take an digital image as inputs, feed it into ResNet-101 pre-trained network so that the image
features are extracted from shallow to deep using Conv1∼Conv5 [14].

2. By adopting MB-RPN, samples are dynamically selected according to scale and proportion.
MB-RPN can be further decomposed into two parts: multi-scale and balanced sampling.

3. The MB-RPN calculation results are then transformed to the same size through ROI Pooling.
4. The candidate box is then sent to the classification and regression network to obtain the object

category and its location.

Figure 1. Architecture of Proposed Method.
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Table 1. Details of Network.

Input Shape Layer Output

Image 600 × 600 × 3 conv_1 ∗ 1, stride2, 64 Conv1
Conv1 300 × 300 × 64 conv_3 ∗ 3, maxpool, stride2, 64 Pool1

Pool1 150 × 150 × 64

⎡⎣ conv_1 ∗ 1, 64
conv_3 ∗ 3, 64

conv_1 ∗ 1, 256

⎤⎦× 3 Conv2

ResNet-101 Conv2 150 × 150 × 256

⎡⎣conv_1 ∗ 1, 128
conv_3 ∗ 3, 128
conv_1 ∗ 1, 512

⎤⎦× 4 Conv3

Conv3 75 × 75 × 512

⎡⎣ conv_1 ∗ 1, 256
conv_3 ∗ 3, 256
conv_1 ∗ 1, 1024

⎤⎦× 3 Conv4

Conv4 38 × 38 × 1024

⎡⎣ conv_1 ∗ 1, 512
conv_3 ∗ 3, 512
conv_1 ∗ 1, 2945

⎤⎦× 3 Conv5

Pool1 150 × 150 × 64 conv_3 ∗ 3, 256 MB − RPN1
Conv2 75 × 75 × 256 conv_3 ∗ 3, 256 MB − RPN2

MB-RPN Conv3 38 × 38 × 512 conv_3 ∗ 3, 256 MB − RPN3
Conv4 19 × 19 × 1024 conv_3 ∗ 3, 256 MB − RPN4
Conv5 10 × 10 × 2048 conv_3 ∗ 3, 256 MB − RPN5

Pool1 14 × 14 × 128 conv_3 ∗ 3, 256 FineTune1
Conv2 28 × 28 × 256 conv_3 ∗ 3, 256 FineTune2

FineTune Conv3 56 × 56 × 374 conv_3 ∗ 3, 256 FineTune3
Conv4 112 × 112 × 512 conv_3 ∗ 3, 256 FineTune4
Conv5 224 × 224 × 640 conv_3 ∗ 3, 256 FineTune5

3.2. Multi-Scale Sample Discrimination

The main factors affecting the sample matching in training process are the scale of the anchor box
and the labelling result IOU discrimination threshold. The large difference between the scale of the
small object and the anchor box makes match difficult under the existing discrimination conditions.

For the sampling process of the positive samples, Figure 2a shows the matching results when
default shape of FPN anchor boxes is adopted and the discrimination threshold of IOU> 0.7, where the
red rectangle indicates the manually marked area containing the object. As it is seen, none of the
anchor boxes can be successfully matched with the object area. Therefore, the image is unable to guide
the network parameter training because it does not contain any positive sample during the the training
process. Figure 2b shows the matching results for the case where the scale of the anchor box is reduced
by half. The green rectangle indicates the labeled samples in the training set, and the red rectangle
indicates the corresponding matching anchor box, the sample matching results are still far from ideal.

For small objects, the default IOU threshold of FPN is a stringent condition, resulting in a poor
matching even in the case where the anchor box scale is reduced. Also, the design of the anchor boxes
should fully consider the objects in the image data set with different sizes. Therefore, simple reduction
of the anchor box scale might, in return, result in matching failure for the object samples with a normal
size. Hence, it is hard to improve the object matching probability solely by reducing the scale of the
anchor box for detecting small objects.
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(a)default FPN anchor sizes

(b)half of the default FPN anchor sizes

Figure 2. Sampling Results Example on Small objects.

To address the above issue, multi-scale positive sampling approach with dynamic IOU
discrimination threshold is proposed. The FPN method has designed five scale-level anchor boxes,
namely, A1∼A5 according to different scale sizes. According to the scale of anchor boxes, the approach
divide three different positive sample intervals from smallest anchor size to the biggest, the criteria for
levels of are shown as the follow:⎧⎪⎨⎪⎩

small_positive : ai ∈ {A1}
medium_positive : ai ∈ {A2, A3}

big_positive : ai ∈ {A4, A5}
(1)

In Equation (1), ai represents the area of an anchor box, and A1∼A5 denote the present area of
the anchor boxes in 5 different levels. The IOU discrimination threshold of small and medium anchor
boxes are then decreased to 0.5 and 0.6 respectively, to ensure more small and medium boxes will be
matched. For large anchor boxes, the default discrimination threshold is kept. By lowering the positive
sample discrimination threshold, the anchor box is easier to match with the small object area, and the
number of positive samples with the small object area is therefore increased.

Theoretically, lowering the matching threshold for the large-size anchor boxes can also effectively
increase the number of matching anchor boxes. However, compared with the small object area,
the large object has the following two differences:

1. For the large object it is much easier to meet the discrimination condition of the IOU threshold.
As it is seen in Figure 3, the large object located of the image has larger number of matching
anchor boxes although for a threshold which has not been decreased. This suggests that further
reduction of the threshold has only a limited impact on the increase of the positive samples.

2. Since a large object area contains a rich image feature information, compared to small objects,
it is easier to obtain a set of valid discrimination and bounding box regression parameters during
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the network training process. Therefore, it is very limited to enhance the effect of detection
performances for large objects by reducing the IOU discrimination threshold.

Figure 3. Sampling Results Example on Big Objects.

From the network training perspective, the object detection approaches that are limited by
computing resources often need to set an upper limit of samples. Part of the sampling results will be
discarded randomly when too much samples are collected. Taking the FPN as an example, the upper
limit on the total number of samples is usually 256, and arrange for positive and negative samples
are 128 respectively, the redundant samples will be discarded. In this paper, we argue that the sample
priority of the small object area should be higher than that of the large objects. In cases where there are
a combination of small and large objects in the image, first and most important is to ensure a sufficient
number of the small object areas samples for section. Therefore, the same IOU threshold value as the
original FPN method is maintained for the large object areas, and the number of positive samples is
not increased.

For negative sample sampling, besides considering the match of the anchor box and the object
size, it is also necessary to consider the effect of different discrimination difficulty on the accuracy
of the algorithm. For the object detection algorithm, the proposed approach divide the negative
samples into easy and hard negative samples depending on the IOU threshold. In particular, the easy
negative samples help the network to converge quickly. The detection accuracy however is mainly
dependent on hard negative samples. Therefore, when collecting negative samples, the ratio of the
number of hard to the number of easy negative samples is balanced. Figure 4 shows the example result
of negative samples, where blue, green and red rectangles denote small, medium and big negative
samples, most of them belong are easy and small samples.

Figure 4. Negative Sample Results of Random Sampling.

To address problem above, the Libra RCNN propose a balance sampling method to ensure the
diversity of negative samples: First, according to IOU between anchor boxes and ground-truth the
divide negative samples into different intervals. Second, divide the number of negative samples equally
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according to the intervals and balance sampling in each interval. Within the FPN method, Negative
samples are defined as the anchors whose IOU with ground-truth are lower than 0.3, the Libra RCNN
further divided it into easy, medium and hard negative intervals which are defined as the follow:⎧⎪⎨⎪⎩

easy_negative : IOU ∈ [0, 0.1)
medium_negative : IOU ∈ [0.1, 0.2)

hard_negative : IOU ∈ [0.2, 0.3)
(2)

Based on Libra RCNN, a balance negative sampling method which combining samples’ scale
and difficulty is proposed. Negative samples were divided into 8 intervals as shown in the Equation3.
For medium and big negative samples this approach adopt the similar difficulty dividing approach
as Libra RCNN, for instance, the easy_negative_medium negative sample denote the samples whose
IOU ∈ [0, 0.1) and scale ai ∈ {A2, A3}. For small negative samples, since the IOU discrimination
threshold of positive samples are adjusted to 0.5, the dividing approach of Libra RCNN is easy to
cause confusing between positive and negative samples, therefore this approach correspond adjusted
the dividing approach that only divide them into two different intervals.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

easy_negative_small : IOU ∈ [0, 0.1) , ai ∈ {A1}
hard_negative_small : IOU ∈ [0.1, 0.2) , ai ∈ {A1}

easy_negative_medium : IOU ∈ [0, 0.1) , ai ∈ {A2, A3}
medium_negative_medium : IOU ∈ [0.1, 0.2) , ai ∈ {A2, A3}

hard_negative_medium : IOU ∈ [0.2, 0.3) , ai ∈ {A2, A3}
easy_negative_big : IOU ∈ [0, 0.1) , ai ∈ {A4, A5}

medium_negative_big : IOU ∈ [0.1, 0.2) , ai ∈ {A4, A5}
hard_negative_big : IOU ∈ [0.2, 0.3) , ai ∈ {A4, A5}

(3)

3.3. Balanced Sampling

According to the dividing method mentioned above, a balance sampling approach is proposed:
the positive samples are balanced according to the scale size to form a positive sample set. For the
negative samples determined by the anchor box, the negative sample set is formed by balanced
sampling with comprehensive consideration of the difficulty and scale size. For the sample set with an
upper limit of N, the sample collection method designed in this paper is demonstrated in Algorithm 1.

Algorithm 1 Balanced Sample Algorithm.

Inputs:
Positive/Negative Sample Sets;

2: Number of Select Samples N;
Outputs:

Sample Set U;
4: divide_num = N

set_num
U = []

6: sort(Sets)
for set in Sets:

8: if nset > divide_num:
U.append(sample(nset, divide_num))

10: else:
U.append(nset)

12: reshape(divide_num)
return U

Ideally, the total number of positive and negative samples should be equal, therefore this approach
initializes divide_num to the average of the total number of sample sets N

set_num , if number of samples
of all the intervals satisfies nset > divide_num, it is only needed to randomly sampling in each interval
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to generate set U. However, the ideal condition mentioned above is hardly appear in actual situation,
therefore balance sampling is a problem that should be considered. If the total number of samples is
less than the upper sampling limit N, it is necessary to include all samples in the sample set; Otherwise,
the number of uniformly sampled objects in each interval, divide_num, is calculated based on the
interval data, set_num. Sampling is then carried out from low to high according to the sample data in
each interval. If the number of samples in the current interval, nset > divide_num, then divide_num
samples are randomly selected to be included in the sample collection of the current interval; otherwise,
all n_set samples are included in the sample collection, and divide_num is adjusted for subsequent
sampling intervals using the reshape method.

The key point of the balanced sampling method is the reshape method for nset < divide_num.
All samples in these kind of interval should be retained since the demand number of samples if more
than the actual collected samples. Since the order of sampling approaching is depend on number of
samples in each interval, therefore all of the subsequent intervals are redundant, which means the
subsequent intervals are satisfy the following condition:

set_num

∑
i=j+1

> (set_num − j) ∗ divide_num + (divide_num − numset) (4)

In Equation (4), j represents the index of the current interval set in all sorted intervals. Since the
surplus samples can be collected in the subsequent sampling process, a sufficient number of samples
can be still collected. Therefore, as many as possible samples should be collected from the remaining
intervals while maintaining the balance. The reshape method for updating divide_num is designed as
the follow:

num_divide =
(N − ∑

j
i=1 ni)

set_numle f t
(5)

In Equation (5), set_numle f t represents the number of remaining intervals. Since samples of each
subsequent interval is updated. Take the collection process of the positive samples as an example
and suppose that the number of samples in small_positive intervals, nsmall, is the lowest and less
than divide_num. Then, divide_num is updated to (N − nsmall)/2 for the sampling process in the
subsequent intervals. If the number of samples in the medium_positive and big_positive intervals is
greater than the updated value of divide_num, then they are uniformly sampled.hrough the balanced
sampling method, factors such as scale and difficulty are fully considered in the process of generating
the sample set, which can effectively increase the number of small object samples and ensure sample
diversity.

3.4. Loss Function

Similar to other tow-stage methods, the loss function is defined as sum of classification and
regression loss:

Ltotal = LRPN
cls + LRPN

bbox + LCat
cls + LReg

bbox (6)

In Equation (6), Lcls and Lbbox denote classification and regression loss of MB-RPN and finetune loss
respectively. Cross entropy is adopted for measuring the classification loss:

Lcls(yi, y∗i ) = −[y∗i log(yi) + (1 − y∗i )log(1 − yi)] (7)

where yi and y∗i denote the predict and annotated category respectively where y∗i is 1 if the anchor
is positive in MB-RPN and y∗i is 1 at the dimension representing the object’s category in label vector.
Lreg denote the smooth L1 regression loss [7]:

L (ti, t∗i ) =
{

0.5
(
ti − t∗i

)2 , |x| < 1
|x| − 0.5, others

(8)
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where ti and t∗i denote predict and annotated coordinate and scale transform:⎧⎪⎪⎪⎨⎪⎪⎪⎩
tx = (x − xa)/wa ty = (y − ya)/ha

tw = log(w/wa) th = log(h/ha)

t∗x = (x∗ − xa)/wa ty = (y∗ − ya)/ha

t∗w = log(w∗/wa) t∗h = log(h∗/ha)

(9)

3.5. Discussion

In this section, both the framework and detail of proposed approach are introduced, the overall
architecture is similar to FPN except positive/negative candidate sampling method are adjutsted. First,
the framework is introduced, including network architecture, pre-trained backbone, object detection
pipeline and network detail. Second, this section represents the matching mechanism multi-scale
objects, the IOU threshold for small and medium anchors are reduced to ensure more small objects
will be matching successfully. Third, a sampling algorithm is introduced to ensure the diversity of
sampling results, all the samples are divided into different intervals, the algorithm tries to sample
balance amount of samples in each of the interval. Finally, loss function of the proposed approach is
introduced, including the cross entropy loss for classification and smooth L1 loss for localization.

4. Experiments

4.1. Benchmarks

The proposed approach are evaluated on two datasets: Object Detection in Aerial Images(DOTA)
and e Unmanned Aerial Vehicle Benchmark(UAVB) [15,16], the detail of them are as the follow:

1. DOTA contains over 2000 remote images. All of the images are large size about over 4000 ×
4000 pixels. Images are annotated by experts in aerial and remote image interpretation using
15 common object categories, such as plane, ship, harbor, etc. The objects’ distribution of each
category are shown in Figure 5a, the abbreviation of each category will be shown in Table 2.

2. UAVB contains a unmanned aerial vehicle dataset, each frame is of the size about 560× 1000 pixels
and contains high density small objects. Vehicle category include car, truck and bus. The objects’
distribution of each category are shown in Figure 5b.

Table 2. Quantitative performance(AP%) of our model on DOTA benchmark datasets compared with
comparison approaches. The best performance on each category is colored in red.

SSD RetinaNet SRetinaNet FPN GA-RPN Libra RCNN MB-RPN

plane (pl) 81.3 88.7 86.2 88.9 88.4 89.7 90.2
baseball-diamond (bd) 50.6 64.5 57.8 75.8 75.2 73.6 77.0

bridge (bg) 39.1 47.5 21.4 48.6 43.1 49.7 53.0
ground-track-field (gtf) 44.2 49.0 49.5 53.9 53.5 54.8 53.3

small-vechicle (sv) 56.0 58.1 61.1 63.8 67.7 70.3 70.4
large-vehicle (lv) 54.2 57.8 59.0 63.6 66.3 65.0 66.0

ship (sp) 61.1 69.2 74.4 76.7 77.0 77.1 76.8
tennis-court (tc) 84.3 88.2 70.3 90.7 90.1 90.8 90.8

basketball-court (bc) 68.6 73.5 58.1 78.2 78.4 75.0 78.9
storage-tank (st) 61.5 75.6 80.5 81.0 84.1 83.0 83.7

soccer-ball-field (sbf) 21.3 28.4 16.7 36.5 36.8 37.2 41.2
roundabout (ra) 43.6 49.1 55.2 56.8 58.9 60.0 59.4

harbor (hb) 51.6 56.7 35.9 67.3 66.7 67.6 68.3
swimming-pool (st) 47.4 61.1 64.3 71.1 72.0 72.6 70.9

helicopter (hl) 28.0 38.6 57.1 44.7 50.3 62.6 56.5
mAP 56.9 60.6 58.1 65.5 66.8 67.6 68.5
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Both the DOTA and UAVB dataset contain all kinds scale and small objects account a large
proportion. It means that both the ability of detecting small objects and all the scale of objects are
important.

(a)Object distribution of DOTA.

(b)Object distribution of UAVB

Figure 5. Objects distribution of DOTA and UAVB dataset.

4.2. Implementation Detail

The network is established on Tensorflow and trained end-to-end.MB-RPN loss and detection
loss are optimized simultaneous with Nvidia 1080Ti on Ubuntu operation system [17]. ResNet-101
pre-trained network is adopted to extract image features and other convolution layers were initialized
randomly [14]. To optimize network parameters, Adam optimizer with lr=10−6, β1 = 0.9 and
β2 = 0.999 is adopted [18].

The input images were set to 600 × 600. For DOTA dataset, since the shape of training and
testing images are much larger than input size, to reduce the loss of image resolution the images are
cropped into input size with stride of 300 for training and testing and merge test results to original
shape. For UAVB dataset, since the shape of training and testing images are similar to input size,
it is only needed to resize the images to input size. The size of anchor boxes for layer Conv1∼Conv5
are [32,64,128,256,512], which is consistent to the default value of FPN method. For DOTA dataset,
aspect ratios of anchor boxes is [ 1

7 , 1
5 , 1

3 , 1
2 ,1,2,3,5,7] to adapt categories with both normal and slender

shape such as bridge. For UAVB dataset, since the shape of all the categories are normal, therefore the
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aspect ratio is same to default FPN method. Mean average precision(mAP) is adopted to evaluate the
proposed approach[19].

4.3. Effectiveness of Multi-Scale Sampling on Positive Sample

To evaluate the effectiveness of Multi-scale sampling for positive samples, the comparison of
positive samples distribution on different scales between multi-scale and origin FPN sampling method
on DOTA dataset, the result are shown in Figure 6. Since the IOU discrimination thresholds of small
and medium objects are reduced, the amount positive samples are highly improved, which means
more small anchor boxes are matched. The matching results are also visualized, compare to Figure 7
the matching results has been effectively improved.

Figure 6. Distribution of multi-scale sampling and origin FPN sampling method.

Figure 7. Example of Multi-scale Sampling Results.

4.4. Effectiveness of Multi-Scale Balanced Sampling on Negative Samples

To evaluate the effectiveness of multi-scale balanced sampling, comparison of negative samples’
distribution on different scales and IOU between MB-RPN, FPN and Libra RCNN sampling method
on DOTA dataset, the result are shown in Figure 8, where b1 ∼ b8 denote total amount of hard_small
to easy_big negative samples. Most of the samples are Easy_small in FPN method, the Libra RCNN
alleviate this situation significantly but the majority is still easy samples(b1, b3 and b6), especially
the easy_small samples, the multi-scale sampling further improved samples distribution situation.
The matching results are also visualized in Figure 9, compare to FPN and Libra RCNN, the matching
results has been effectively improved.
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Figure 8. Distribution of multi-scale balanced,FPN and Libra RCNN sampling method.

Figure 9. Example of Multi-scale Balanced Sampling Results of FPN, Libra RCNN and Multi-scale
Balanced.

4.5. Performance Comparison with Other Method

Several one stage and two stage object detection methods is adopt to evaluate the effectiveness
of MB-RPN: SSD [3] RetinaNet [10], FPN [8], Libra RCNN [11], GA-RPN [13] and SRetinaNet [12].
All of these methods except SRetinaNet are implemented with the source code provided by authors.
For SRetinaNet method, it is implemented by adjusting hyperparameters of RetinaNet.

Table 2 shows the quantitative results on DOTA, the best performance for each category is colored
in red. The mAP of MB-RPN achieves 68.5%, which outperform other methods. Compare with the
one-stage approaches, since they are lack of positive/negative discrimination process, the detection
accuracy are lower than all of the two-stage approaches obviously. Compare with original FPN,
the mAP is 3% higher, moreover the AP of each category is also higher. Compare with GA-RPN and
Libra RCNN, the mAP is increased about 1.7and 0.9% respectively, the AP of the most of categories are
increased. The visualization comparison between MB-RPN and Libra RCNN is shown in Figure 10,
MB-RPN detects more accurate small objects in various challenging cases, e.g., small vehicle objects
at bottom left of Figure 10a and middle of Figure 10b. At the same time, the performances of other
medium and big objects are not decreased. The above phenomenon proves the effectiveness of MB-RPN
in enhancing the detection performances for images with small objects and large scale variants.

Considering the performances gap between one-stage and two-stage approaches, in this paper
the performance comparison of UAVB dataset is only carried out between FPN, GA-RPN, Libra RCNN
and MB-RPN. Table 3 shows the quantitative evaluation of these approaches, the best performance
for each category is colored in red. All of the mAP acquired from the approaches above are not ideal,
this may because the imbalance of samples. However, the MB-RPN still largely outperform other
approaches on both mAP and AP for each category. Figure 11 provides a visual comparison of our
approach and Libra RCNN, since both of the two approaches’ performance are not ideal, it only shows
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the localization results but without categories. It can be seen that MB-RPN detects more small objects
such as cars at upper of the input image which is corresponding to sampling results and distribution
shown above. The above phenomenon proves the effectiveness of MB-RPN in enhancing the detection
performances.

(a)

(b)

Figure 10. Selected visual comparison of DOTA benchmark dataset. Each subfigure include result of
Libra RCNN on the left and MB-RPN on the right. (a) small objects (b) middle objects.
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Table 3. Quantitative performance(AP%) of our model on UAVB benchmark datasets compared with
comparison approaches. The best performance on each category is colored in red.

FPN GA-RPN Libra RCNN MB-RPN

car 45.1 47.2 48.8 51.2
bus 5.3 8.6 7.2 21.7

truck 28.2 31.5 31.1 33.2
mAP 21.1 21.7 23.0 29.4

Figure 11. Selected visual comparison of DOTA benchmark dataset which includes Libra RCNN on
the top and MB-RPN on the bottom.

4.6. Disscusion

In this section, the experimental settings and results are introduced. First, the adopted DOTA
and UAVB dataset are introduced, including their amounts of training/testing images and the
distribution of each category samples. Second, implement details are represented, including the
input size, crop mechanism of large images, parameter initialization and optimization method and
hardware/software platform. Finally, both quantitative and visualized comparison are represented,
the results show that under the equal conditions MB-RPN outperform other similar methods.

5. Conclusions

In this paper, a multi-scale balanced sampling approach for detecting small objects in complex
scenes is proposed. With multi-scale positive sampling method, more small objects is able to be
included in the network training process. With the balanced negative sampling method, the diversity of
negative samples is ensured. Experimental results shows that compare with other similar methods, this
approach acquire better performances on the images with small objects and large scale variant objects.
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Featured Application: The algorithms described in the article can be used in any applications

of image processing for recognition/segmentation of phases/morphologies, particularly in

mineralogical image analysis. Their specific application field is ironmaking and corresponding

optical image analysis of iron ore, sinter, and coke.

Abstract: Optical image analysis is commonly used to characterize different feedstock material
for ironmaking, such as iron ore, iron ore sinter, coal and coke. Information is often needed
for phases which have the same reflectivity and chemical composition, but different morphology.
Such information is usually obtained by manual point counting, which is quite expensive and may not
provide consistent results between different petrologists. To perform accurate segmentation of such
phases using automated optical image analysis, the software must be able to identify specific textures.
CSIRO’s Carbon Steel Futures group has developed an optical image analysis software package
called Mineral4/Recognition4, which incorporates a dedicated textural identification module allowing
segmentation of such phases. The article discusses the problems associated with segmentation of
similar phases in different ironmaking feedstock material using automated optical image analysis and
demonstrates successful algorithms for textural identification. The examples cover segmentation of
three different coke phases: two types of Inert Maceral Derived Components (IMDC), non-reacted and
partially reacted, and Reacted Maceral Derived Components (RMDC); primary and secondary hematite
in iron ore sinter; and minerals difficult to distinguish with traditional thresholding in iron ore.

Keywords: image analysis; texture; structure; optical; coke; iron ore; sinter; image processing;
segmentation; identification

1. Introduction

More than 150 years ago Henry Clifton Sorby [1] used optical microscopy for the characterization
of rocks and minerals. He developed the basic techniques of petrography, using the polarizing
microscope to study the structure of rock thin sections. In the early twentieth century Murdoch [2]
started to use measurements of ore mineral reflectance combined with microchemical techniques for
mineral identification.

Presently, the mineralogy of commercial raw materials, such as iron ore, can be determined
from X-ray diffraction (XRD) analysis, but for subsequent processing purposes it is also important to
understand the actual abundance of each mineral, association/liberation characteristics, dimensional
characteristics of particles and mineral grains, surface roughness, porosity and density, the presence of
different textures, the reciprocal position of mineral grains, and other morphological and morphometric
characteristics. For these purposes, imaging techniques such as scanning electron microscopy [3–6],
Raman spectroscopy [7] and optical image analysis (OIA) [8–12] are used. Generally, these methods can
segment different minerals, but identification of different morphologies of the same mineral requires
the further application of textural/structural segmentation.
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The standard method for mineral segmentation in OIA is thresholding [13], where minerals are
segmented by their color and brightness. An example of hematite thresholding in crushed iron ore
sinter is given in Figure 1. Segmentation of hematite, which is the brightest mineral in the digital
image, is actually performed using three color channels, but for simplicity, only the red channel
reflectivity histogram used to determine the selected phase is shown. The reflectivity range of hematite
corresponds to the last peak in the histogram. Figure 1b shows a partially successful attempt to
automatically identify hematite. In this example, the hematite areas with relatively lower reflectance
are not identified, and from the reflectivity histogram it is evident that the hematite peak is only
partially covered by the range between the lower and the upper limits, or thresholds. Only the image
pixels with red channel reflectivity within those thresholds are identified as hematite in this example.
However when the whole of the last peak in the reflectivity histogram is thresholded, the hematite
becomes fully segmented (Figure 1c). The use of multispectral image acquisition systems based on
narrow bandwidth (e.g., 10 nm) interference filters show more efficient segmentation of minerals
compared to colour imaging using tristimulus (red, green, blue) filters [14–17].

For sinter characterization it is very important to segment the primary, or unreacted, hematite
remaining after the sintering process, from the secondary hematite which precipitated from the sinter
melt during cooling. The sinter particle at the left hand side of Figure 1a has only secondary hematite
present, whereas the particle to the right contains both phases. The large hematite grain indicated by an
arrow in the bottom-right corner of the image is a good example of primary hematite. Figure 1b clearly
shows that, after partial thresholding, the amounts of both types of hematite were underestimated,
which means that thresholding alone is unable to segment one type of hematite from another. The size
of hematite grains also cannot be reliably used for segmentation. While primary hematite grains are
generally large, it is clear that some of the secondary hematite grains in the particle to the left are larger
than some of the primary hematite grains in the particle to the right.

For coke characterization it is important to segment Inert Maceral Derived Components (IMDC)
and Reacted Maceral Derived components (RMDC) [18,19]. However, they also cannot be segmented
by simple thresholding as discussed in the section on coke characterization.

In order to quantify coke phases that are difficult to segment automatically, as well as certain sinter
phases such as primary and secondary hematite discussed above, the traditional approach employs
manual point counting by a trained petrographer. The problem with this approach, apart from it being
labor intensive and thus expensive, is that it can be very subjective. It is even possible for an individual
petrographer to report different results for the same sample if re-analyzed after a significant time.

Automated optical image analysis reduces the subjectivity and makes the characterization more
consistent. The approach adopted during OIA to segment phases with similar reflectivity would be analogous
to what petrographers employ during manual point counting—i.e., segmentation by structure/texture.

CSIRO’s Carbon Steel Futures group developed the optical image analysis software
Mineral4/Recognition4 for optical image analysis of major ironmaking feedstock materials such as ores
(iron ore in particular) including lump and fine ores, sinters, pellets and briquettes, coal, coke etc. [9,10].
It can comprehensively characterize phase abundances, porosity, liberation/association, texture,
and other sample characteristics. The first and the most important step during characterization is the
correct identification of phases (see [14]). Even if a multi-thresholding [20] approach is used, it will not
necessarily allow for the acceptable segmentation of phases when their reflectivities overlap. To achieve
this, a textural identification module was developed for the software, allowing the segmentation
of phases which have the same or significantly overlapping reflectivity, but different morphology.
To characterize a particular material, an “analysis profile” is developed, which records individual
parameter settings and adjustments made during different stages of image analysis. The textural
identification unit is a subset of the mineral/phase identification stage. It is engaged when necessary
and can perform differently for different materials/phases according to the profile settings.
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(a)

(b)

(c)

Figure 1. Thresholding of hematite in sinter during image analysis: (a) original image;
(b) partial identification of hematite (segmentation of the brightest part); and (c) full identification.
Reflectivity histograms show the different red channel low and high threshold values and represent
screenshots from Zeiss AxioVision software.
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This article demonstrates algorithms developed for textural segmentation of different ironmaking
feedstock materials performed by the textural identification module in Mineral4/Recognition4.
These algorithms are based on well-established image analysis procedures such as binary Erosion,
Dilation, size-based noise reduction (Scrapping) etc. [21]. Similar approaches can also be used for
image analysis of any other materials within a very wide range of possible OIA applications.

2. Textural Segmentation in OIA of Coke

Metallurgical coke is one of the major components of the blast furnace load, and its qualities, such as
strength, abrasion resistance and reactivity, which are strongly dependent on coke structure/texture,
are critical for stable blast furnace operation. OIA enables an improved understanding of the
relationships between coke quality, parent coal blend composition and coke structure/texture.
This allows for the improvement and optimization of the processes involved in coke production,
such as parent coal blending, sizing, coking, etc.

In this section we essentially discuss coke “structure”, defining it as the spatial distribution
of porosity and the coke matrix, which consists of different coked/reacted macerals. In many
disciplines within mineral processing, the term “texture” means approximately the same as “structure”.
However, when applied to coke characterization, “texture” is understood to mean the spatial distribution
of different isotropic and anisotropic carbon types within the coke, typically determined during optical
imaging by differences in bi-reflectance [18,19].

During coking of parent coal blends, some macerals, such as different types of vitrinite,
are significantly fluidized and thus subject to a stronger reaction. The parts of the coke matrix resulting
from such reactions are called Reacted Maceral Derived Components (RMDC). The non-reacted or
significantly less reacted types of macerals (inerts) form Inert Maceral Derived Components (IMDC).
One of the major tasks during the characterization of coke structure is to determine the relative amounts
of carbonaceous materials with different degrees of reaction. The relative abundance and corresponding
size distributions of these coke phases show strong significant correlations with different coke strength
indices and parent coal blend composition [18]. For example, a study by Donskoi et al. [18] confirmed
the earlier findings of Kubota et al. [22] that 1.5 mm is the critical size for IMDC affecting coke strength.

Mineral4 segments and comprehensively characterizes three different phases in coke matrix:
unreacted IMDC, partially reacted IMDC and RMDC. Figure 2a shows an image obtained using a narrow
bandwidth (±5 nm) green filter (λ = 546 nm) of coke made from medium rank coal. In the image, the
unreacted areas (unreacted IMDC), slightly reacted areas (partially reacted IMDC), and the very porous
network connecting them together (RMDC) are clearly evident. The results of automated segmentation
of these structural components are given in Figure 2b. It is clear that unreacted IMDC grains can
have different structures; some are quite dense, showing almost no porosity, whereas others are quite
porous. This complicates the task of properly identifying them by structure. Standard segmentation by
thresholding is also of limited use here. While the coke matrix as a whole can be reliably thresholded
to distinguish it from porosity, there is no critical difference in reflectivity between IMDC and RMDC.

Mineral4 Textural Identification uses three different methods to identify various areas of unreacted
IMDC and then combines the results into one unreacted IMDC map. These three methods are bulk
identification of IMDC, porous IMDC identification and identification of “washed out” IMDC. Similar
methodology is used for identification of the partially reacted IMDC. The remainder of the coke matrix
is then considered to be RMDC. It is important to highlight that the understanding of RMDC structure
as the one consisting of thin walls and large pores is applied in some IMDC identification methods to
exclude areas that are “not IMDC”. Generally, for successful structural segmentation, a knowledge of
the individual features of all phases is critical.
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(a) (b)

Figure 2. (a) Image of coke made from medium rank coal using a green filter (λ = 546 nm);
(b) the structural map corresponding to this image (magenta—unreacted IMDC, blue—partially
reacted IMDC, green—RMDC, yellow—porosity).

2.1. Bulk IMDC Textural Identification

“Bulk identification” of IMDC is based on the discrimination of a large nucleus of unreacted,
non-porous IMDC surrounded by RMDC or partially reacted IMDC. The algorithm is presented
in Figure 3. Initially a binary map of the coke matrix is obtained by thresholding (Figure 3a).
Next, this map is dilated to remove the finest porosity (up to 5–7 μm) within different parts of the coke
matrix (Figure 3b). In the next step, a strong erosion is applied with the purpose of removing all parts
of the coke matrix where porosity is still present (Figure 3c). The majority of the removed matrix is
supposed to be porous RMDC or partially reacted IMDC. However, IMDC areas with larger internal
pores, as well as IMDC boundaries, may also be affected. Some dilation is applied to re-connect pieces
of non-porous IMDC in the following step, in case they were broken apart by erosion because of
large internal pores or cracks (Figure 3d). Further down objects smaller than a certain size, which are
typically the remnants of coagulated RMDC, are scrapped, after which extra dilation is applied to fully
compensate for the previous erosion, thus reconstructing the IMDC grain areas (Figure 3e). When the
original coke matrix (Figure 3a) is masked with that map, the result is the full map of non-porous or
very finely porous IMDC (Figure 3f). Comparison of IMDC identified in Figure 3f with the unreacted
IMDC present in Figure 2b, however, shows that, for instance, the large piece of IMDC in the top-right
corner is almost lost. The reason is that this IMDC grain is noticeably more porous compared to
those identified by the “bulk identification” method. To identify such IMDC areas the porous IMDC
identification method must be used.
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(a) (b) (c)

(d) (e) (f)

Figure 3. The algorithm of “bulk identification” of unreacted IMDC: (a) coke matrix identified as
a binary map; (b) moderate dilation applied; (c) strong erosion applied; (d) intermediate dilation;
(e) scrapping of fine objects and final dilation; (f) map of non-porous and very finely porous IMDC.

2.2. Porous IMDC Textural Identification

Even though the method is called “porous IMDC identification”, the porosity of such IMDC is
still smaller in size than typical porosity present in the reacted or partially reacted part of the coke
matrix. To identify porous IMDC, a binary map of coke porosity, which is essentially the inverted
map of the coke matrix (Figure 3a), is created (Figure 4a). Further, all fine porosity (less than 10 μm
thickness) is scrapped (Figure 4b) and the resulting map is dilated (Figure 4c). In the next step, this map,
representing areas where large pores are predominant, is inverted (Figure 4d) and subtracted from
the original map of the whole porosity (Figure 4e). These operations allow clusters of fine porosity,
which typically represent IMDC areas, to be identified. Such areas can be solidified by strong dilation
(Figure 4f). However, this map also contains significant amounts of RMDC, which too can have fine
porosity. Strong erosion is then applied to remove possible RMDC areas still associated with large
pores (Figure 4g). After subsequent dilation, compensating for such erosion, filling holes and scrapping
of small objects with size less than identifiable porous IMDC (Figure 4h) the resulting map is then
used to mask the map of the coke matrix (Figure 3a) and obtain a map of porous IMDC (Figure 4i).
After a last scrapping of small objects this map is considered final. It is evident that some non-porous
IMDC areas are not included in this map, for example, parts of the IMDC grain in the lower central
part of the image. It is also clear that porous IMDC identification is capable of segmenting IMDC areas
much smaller in size than bulk IMDC identification, even when they are fully surrounded by RMDC
(see Figure 2). Small non-porous pieces of IMDC cannot be reliably distinguished from RMDC by
analyzing the coke matrix or simple thresholding, but for more precise studies, textural/bi-reflectance
characterization can be used [19].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. The algorithm of “Porous IMDC Identification” of not reacted IMDC: (a) the whole porosity
identified as binary map; (b) fine porosity removed; (c) dilation applied; (d) map inverted; (e) clusters
of fine porosity identified; (f) strong dilation (g) strong erosion; (h) compensating dilation; (i) map of
porous IMDC.

2.3. “Washed out” IMDC Textural Identification

In the majority of cases, the IMDC identification methods described above work quite well.
However, in certain cokes, some IMDC areas are quite dark in appearance, even darker than epoxy,
and cannot be thresholded as a part of the coke matrix. In these cases an extra identification method is
needed (Figure 5). Several explanations can be offered for such appearance of IMDC. One possibility
is that such IMDC may have very fine porosity which is not impregnated by epoxy during block
preparation. Alternatively, some of these areas may have a very weak structure and so are destroyed,
plucked out and/or “washed out” (the general term used to call these areas) during the polishing of the
block surface. The rest of the coke matrix is brighter than epoxy, so these dark areas are not included
when coke matrix is segmented.
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Figure 5. Photomicrograph of coke with the significant presence of dark/“washed out” IMDC.

For segmentation of “washed out” IMDC, thresholding of areas with reflectivity higher than that
of porosity but lower than epoxy is performed (Figure 6a,b). Next, moderate dilation is performed
(Figure 6c) to preserve the washed out IMDC areas during following strong erosion (Figure 6d).
After dilation, compensating for that strong erosion, filling holes and scrapping of undersized objects
(Figure 6e), the areas of washed out IMDC are determined. Masking those areas with the combination of
the map in Figure 6a and the coke matrix gives the actual map of washed out IMDC (see Figures 2b and 6f).

There exists a possibility that the described method may also identify dark minerals with reflectivity
between that of porosity and epoxy. If such minerals are known to be sufficiently present in the sample
as relatively large grains, they should be identified texturally prior to IMDC identification in the
workflow. If that cannot be achieved, a decision should be made about whether the “washed out”
identification method should be included in the whole IMDC identification procedure. For the coke
shown in Figure 5, it was in fact critically important to include such identification due to the significant
presence of “washed out” areas.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Segmentation of “washed out” IMDC: (a) thresholding of areas darker than epoxy but lighter
than porosity; (b) reflectivity histogram with thresholds corresponding to (a); (c) dilation of binary map
obtained from thresholding; (d) strong erosion leaving denser IMCD-like areas; (e) areas of washed out
IMDC; (f) final map of washed out IMDC.

2.4. Textural Segmentation of Partially Reacted IMDC

Partially reacted IMDC (PR IMDC) areas segmented by porous IMDC identification should have
porosity smaller in size than that of RMDC, but higher than unreacted IMDC. This is the main criterion
used to identify them. The algorithms used for segmentation are the same as for bulk and porous
IMDC identification, but the processing parameters are slightly adjusted to segment the correct areas.
The result of bulk IMDC identification with increased dilation, erosion and scrap parameters applied
for PR IMDC segmentation to the image from Figure 2 is given in Figure 7a. The result of porous
IMDC identification with similarly increased parameters is provided in Figure 7b. Figure 7c shows
the preliminary PR IMDC area identification obtained by combining the two identifications described
above and subsequent removal of areas already identified as non-reacted IMDC. Along with the correct
PR IMC identification, Figure 7c also includes some relatively thin and small RMDC areas attached
to non-reacted IMDC. These areas can be removed by scrapping, leaving only the valid PR IMDC
identified (see Figures 2 and 7d).
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(a) (b)

(c) (d)

Figure 7. Segmentation of partially reacted IMDC: (a) bulk IMDC identification of PR IMDC; (b) porous
IMDC identification of PR IMDC; (c) the combination of (a) and (b) with not reacted IMDC removed
(blue); (d) PR IMDC areas (blue).

3. Textural Segmentation in OIA of Iron Ore Sinter

Together with coke, iron ore sinter is the one of the major blast furnace loads. It can constitute up
to 70–85% of the total ferrous burden fed to the blast furnace and its quality is also very important for
stable blast furnace operation. The quality of sinter (e.g., its strength and reducibility) mainly depends
on its petrology and texture, which in turn are determined by the initial ore blend, the fluxes added to
the blend, and the sintering conditions. To optimize sinter quality and productivity the relationships
between the initial sinter mix, sintering conditions and sinter structure, petrology and porosity must
be understood [23–26].

One of the important characteristics of iron ore sinter is the quantity of primary and secondary
hematite, which can provide insights into the presence of large grains of hematite in the initial iron ore
blend, the degree of reaction and sintering conditions. The two types of hematite have very similar,
or the same, mineral chemistry and reflectivity, so they cannot be segmented by standard scanning
electron microscopy or optical image analysis methods. However, they have different morphology and
phase associations which can be discriminated by OIA. Primary hematite generally does not contain
inclusions of melt-precipitated phases and often preserves the morphology of the original ore particle.
Secondary hematite, which mostly precipitates during cooling from the sinter melt, has crystals fully
surrounded by, and/or including, other melt-precipitated sinter phases, such as Silico-Ferrites of
Calcium and Aluminium (SFCA), undifferentiated glass, and larnite (di-calcium silicate). The presence
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or absence of these spatially associated phases is the key feature used by Mineral4 for textural
segmentation of the two types of hematite.

As a starting point for OIA processing, a map of all hematite in the sinter image is obtained by
standard thresholding (Figure 1a,c and Figure 8a). A combined map of all phases which are typically
associated with secondary hematite, such as SFCA, glass and larnite, is also prepared (Figure 8b).
This second map is scrapped of its finest elements (to exclude the effect of imaging artefacts) and
then strongly dilated to create a map of areas associated with the melt-precipitated phases (Figure 8c).
Next, these areas are removed from the overall map of hematite. After additional scrap, removing
undersized regions, only the areas of primary hematite are left in the map (Figure 8d). More dilation
follows to compensate for loss during strong dilation of SFCA/glass areas (Figure 8e). Finally the map
is masked with the original hematite map (Figure 8f) and fine/undersized objects are removed from it.
The resulting identification of primary and, by exclusion, secondary hematite is shown in Figure 9.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Textural segmentation of primary hematite in iron ore sinter: (a) map of all hematite in the
image; (b) map of SFCA and all phases darker than SFCA; (c) map of areas associated with glass and
SFCA; (d) hematite map without areas associated with melt-precipitated phases; (e) map of possible
areas for primary hematite; (f) identified areas of primary hematite including smaller grains to be
removed later based on size.
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Figure 9. Mineral map for the image in Figure 1a produced by Mineral4 software during automated
image analysis: primary hematite—light blue, secondary hematite—dark blue, magnetite—magenta,
platy SFCA-I—light green, prismatic/dense SFCA—olive, glass—dark green, larnite—cyan, porosity
and epoxy within particles—yellow.

Figure 9 demonstrates the false color map of all sinter phases identified by Mineral4 software
during automated image analysis of the crushed sinter shown in Figure 1a. Note that the large grain of
primary hematite in the bottom right corner includes some remnant kenomagnetite. Magnetite may
still be present in stable ore nuclei remaining after sintering, not just as one of melt-precipitated sinter
phases. Therefore, it is not included as part of the melt-precipitated phases in the map (Figure 8b). It is
still clear that the majority of magnetite present in Figure 9 is melt-precipitated.

The other pertinent textural segmentation by OIA shown in Figure 9 is that of two types of SFCA:
microporous platy SFCA-I (light green) and prismatic/dense SFCA (olive). These two phases have the
same reflectivity but different morphology. SFCA-I has slightly higher iron contents which may be
determined by SEM methods [27,28]. However, in OIA sinter characterization, textural identification is
required for segmentation of different SFCA types. As SFCA-I often has fine porosity evident between
adjacent plates, this can be utilized for the textural segmentation. The actual algorithm is very similar
to that utilized for porous IMDC identification described above.

4. Textural Segmentation in OIA of Iron Ore

Many authors have demonstrated the importance of iron ore textural characterisation [29–36]
for the optimization of downstream processing performance. Donskoi et al. [23,24] showed that
the presence of textural information for parent iron ore blend allows a significant improvement in
modelling of iron ore sinter quality. It also provides better modelling and deeper understanding of
beneficiation processes [34,35,37].

Quantitative mineral characterization, sometimes including identification of different
morphologies of the same mineral, is required to correctly texturally classify iron ores. Figure 10a
shows an image of iron ore consisting of two hematite types: microplaty hematite (thin, long plates) and
martite. To better understand the reactivity of such an ore, its behavior during pelletising, granulation
and sintering, it is important to know the abundances of both types of hematite. Textural segmentation
in this particular example can be fairly simple, e.g., initial erosion removing the fine structure of
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microplaty hematite, followed by compensating dilation restoring the martite grains (similar to the
steps in bulk IMDC identification shown in Figure 3c,d.

(a) (b)

Figure 10. Identification of martite and microplaty hematite by Mineral4: (a) original reflected
light photomicrograph; (b) resulting mineral map (martite—magenta, microplaty hematite—blue;
porosity—yellow).

Textural identification may also be of significant help during mineral segmentation in complex
cases. Figure 11a shows part of a particle that mainly consists of siliceous goethite with some inclusions
of hematite (the brighter grains) and porosity. The area in the top-left corner of the image is epoxy.
Segmentation of this siliceous goethite with usual thresholding is problematic because it is rather
dark, such that the reflectivity of the epoxy is within the same range as the reflectivity of the goethite.
Figure 12a shows an attempted segmentation of the epoxy, which corresponds to the tall narrow peak on
the reflectivity histogram (Figure 12b). During this segmentation, significant areas inside the goethite
particle were also selected. The reason is that the part of the histogram corresponding to goethite is
the relatively wider but lower elevation on which the epoxy peak is based. Obviously, if goethite
thresholding is attempted, the whole epoxy area will be selected as well (Figure 12c). To properly
segment goethite from epoxy, Mineral4 used multi-thresholding [20] with textural identification.
Initially, the area of goethite with reflectivity less than that of epoxy is thresholded (Figure 12d,e).
The resulting map is subjected to dilation and erosion (Figure 12f) solidifying the map (this combined
image analysis operation is known as Closing), but still some goethite areas remain unselected.
Next, the area of goethite with reflectivity higher than epoxy is thresholded (Figure 12g,h) and the
same dilation and erosion combination is applied (Figure 12i). The two maps are then combined.
After previously identified maps of hematite (corresponding to the small elevation in the right part
of the reflectivity histogram), vitreous goethite and porosity are removed, the remaining map gives
the final siliceous goethite identification (Figure 11b) which would not be possible to obtain without
textural identification.
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(a) (b)

Figure 11. (a) Image of siliceous goethite particle with hematite inclusions; (b) mineral
map obtained in Mineral4: siliceous goethite—olive, hematite—blue, vitreous goethite
(very fine)—green, porosity—yellow.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12. Segmentation of siliceous goethite in Figure 11a: (a) thresholding of epoxy; (b) reflectivity
histogram with thresholds corresponding to (a); (c) thresholding of goethite; (d) thresholding of goethite
area with reflectivity less than epoxy; (e) reflectivity histogram with thresholds corresponding to (d);
(f) the result of thresholding shown in (d) after some dilation and erosion; (g) thresholding of goethite
area with reflectivity higher than epoxy; (h) reflectivity histogram with thresholds corresponding to (g);
(i) the result of thresholding shown in (g) after dilation and erosion.
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5. Conclusions

Optical image analysis characterization for all ironmaking feedstock materials needs to be of
the highest quality if it is to be used to better predict downstream processing performance. Mineral
and textural characterization of iron ore allows for the improved prediction of downstream processes
such as beneficiation and sintering. The complex petrology of iron ore sinter also needs to be
accurately characterized for sinter quality optimization. Finally, structural/textural characterization of
coke is needed to best understand the connection between coke structure/texture, parent coal blend
composition and final coke quality.

CSIRO optical image analysis package Mineral4/Recognition4 allows for the high-quality
segmentation of phases in different materials using multi-thresholding and textural identification.
In particular, it is capable of segmenting phases with the same reflectivity, but different morphology.

During coke characterization, Mineral4 successfully segments the two types of IMDC, unreacted
and partially reacted, and RMDC. Segmentation of unreacted IMDC uses three comprehensive textural
identification methods: bulk identification of IMDC, porous IMDC identification and identification
of “washed out” IMDC, and finally combines them in one map. A similar approach, based on two
methods, is used for partially reacted IMDC segmentation.

For sinter characterization, textural identification in Mineral4 allows for the segmentation of
primary and secondary hematite, based on association of secondary hematite with certain other
melt-precipitated phases. It also allows for the segmentation of SFCA-I from SFCA, by taking into
account the micro-porous structure of the former.

In iron ore characterization, textural identification enables the segmentation of different
morphologies of hematite, such as microplaty hematite and martite. Used in combination with
multi-thresholding it can reliably segment dark siliceous goethite with reflectivity overlapping with
that of epoxy.

This article provides detailed descriptions of textural identification algorithms utilized by Mineral4
for ironmaking-related characterization. These and similar algorithms can also be applied in other
image analysis tasks where morphological segmentation is required.

Author Contributions: Conceptualization, E.D.; methodology, E.D. and A.P.; software, A.P. and E.D.; validation,
E.D.; formal analysis, E.D. and A.P.; investigation, E.D.; data curation, E.D.; writing—original draft preparation,
E.D.; writing—review and editing, E.D. and A.P.; visualization, E.D.; supervision, E.D.; project administration,
E.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was fully funded by CSIRO.

Acknowledgments: The authors wish to thank CSIRO Carbon Steel Futures group staff for valuable suggestions
and help during this work. We would like to express our personal acknowledgment to Michael Peterson for his
useful corrections, comments and critical revision of this paper, and to Sarath Hapugoda for sharing some images.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sorby, H.C. On the microscopical structure of crystals indicating the origin of minerals and rocks. J. Geol. Soc.
1858, 14, 453–500. [CrossRef]

2. Murdoch, J. Microscopical Determination of the Opaque Minerals; John Wiley & Sons: New York, NY, USA, 1916.
3. Gottlieb, P.; Wilkie, G.; Sutherland, D.; Ho-Tun, E.; Suthers, S.; Perera, K.; Jenkins, B.; Spencer, S.; Butcher, A.;

Rayner, J. Using quantitative electron microscopy for process mineralogy applications. J. Min. 2000, 52, 24–25.
[CrossRef]

4. Maddren, J.; Ly, C.V.; Suthers, S.P.; Butcher, A.R.; Trudu, A.G.; Botha, P.W.S.K. A new approach to ore
characterisation using automated quantitative mineral analysis. In Proceedings of the Iron Ore 2007,
Perth, WA, Australia, 20–22 August 2007; pp. 131–132, ISBN 978-192080668-2.

5. Hrstka, T.; Gottlieb, P.; Skala, R.; Breiter, K.; Motl, D. Automated mineralogy and petrology—Applications of
TESCAN Integrated Mineral Analyzer (TIMA). J. Geosci. 2018, 63, 47–63. [CrossRef]

361



Appl. Sci. 2020, 10, 6242

6. Donskoi, E.; Manuel, J.; Austin, P.; Poliakov, A.; Peterson, M.; Hapugoda, S. Comparative study of iron
ore characterisation using a scanning electron microscope and optical image analysis. Appl. Earth Sci.
(Trans. Inst. Min. Met. B) 2014, 122, 217–229. [CrossRef]

7. Ramanaidou, E.; Wells, M.; Belton, D.; Verrall, M.; Ryan, C. Mineralogical and Microchemical Methods for the
Characterization of High-Grade Banded Iron Formation-Derived Iron Ore, Banded Iron Formation-Related
High-Grade Iron Ore. Rev. Econ. Geol. 2008, 15, 129–156.

8. Pirard, E.; Lebichot, S.; Krier, W. Particle texture analysis using polarized light imaging and grey level
intercepts. Int. J. Miner. Process. 2007, 84, 299–309. [CrossRef]

9. Donskoi, E.; Poliakov, A.; Manuel, J.; Peterson, M.; Hapugoda, S. Novel developments in optical image
analysis for iron ore, sinter and coke characterisation. Appl. Earth Sci. (Trans. Inst. Min. Met. B) 2015,
124, 227–244. [CrossRef]

10. Donskoi, E.; Manuel, J.R.; Hapugoda, S.; Poliakov, A.; Raynlyn, T.; Austin, P.; Peterson, M. Automated optical
image analysis of goethitic iron ores. Miner. Process. Extr. Metall. 2020, 1–11. [CrossRef]

11. Gomes, O.D.M.; Paciornik, S. Iron ore quantitative characterization through reflected light-scanning
electron co-site microscopy. In Proceedings of the Ninth International Congress on Applied Mineralogy,
Brisbane, Australia, 8–10 September 2008; pp. 699–702.

12. Gomes, O.D.M.; Paciornik, S. RLM-SEM co-site microscopy applied to iron ore characterization, Annals of
2nd International Symposium on Iron Ore. São Luís 2008, 2, 218–224.

13. Otsu, N. Threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 1979,
9, 62–66. [CrossRef]

14. Pirard, E. Multispectral imaging of ore minerals in optical microscopy. Mineral. Mag. 2004, 68, 323–333.
[CrossRef]

15. Berrezueta, E.; Ordóñez-Casado, B.; Bonilla, W.; Banda, R.; Castroviejo, R.; Carrión, P.; Puglia, S.
Ore Petrography Using Optical Image Analysis: Application to Zaruma-Portovelo Deposit (Ecuador).
Geosciences 2016, 6, 30. [CrossRef]

16. López-Benito, A.; Catalina, J.C.; Alarcón, D.; Grunwald, Ú.; Romero, P.; Castroviejo, R. Automated ore
microscopy based on multispectral measurements of specular reflectance. I—A comparative study of some
supervised classification techniques. Miner. Eng. 2020, 146, 106–136. [CrossRef]

17. Leroy, S.; Pirad, E. Mineral recognition of single particles in ore slurry samples by means of multispectral
image processing. Miner. Eng. 2020, 132, 228–237. [CrossRef]

18. Donskoi, E.; Poliakov, A.; Mahoney, M.R.; Scholes, O. Novel Optical Image Analysis Coke Characterisation
and its Application to Study of the Relationships between Coke Structure, Coke Strength and Parent Coal
Composition. Fuel 2017, 208, 281–295. [CrossRef]

19. Donskoi, E.; Poliakov, A.; Vining, K. Structural and Textural Characterization of Coke with Optical Image
Analysis Software. In Proceedings of the AISTech 2019 Iron and Steel Technology Conference and Exposition,
Pittsburgh, PA, USA, 6–9 June 2019; pp. 237–254.

20. Donskoi, E.; Poliakov, A.; Manuel, J.R. Automated Optical Image Analysis of Natural and Sintered Iron Ore.
In Iron Ore: Mineralogy, Processing and Environmental Sustainability; Lu, L., Ed.; Elsevier Inc.: Cambridge, UK,
2015; pp. 101–159.

21. Seul, M.; O’Gorman, L.; Sammon, M.J. Practical Algorithms for Image Analysis; Cambridge University Press:
Cambridge, UK, 2000.

22. Kubota, Y.; Nomura, S.; Arima, T.; Kato, K. Effects of coal inertinite size on coke strength. ISIJ Int. 2008,
48, 563–571. [CrossRef]

23. Donskoi, E.; Manuel, J.R.; Clout, J.M.F.; Zhang, Y. Mathematical modeling and optimization of iron ore sinter
properties. Isr. J. Chem. 2007, 47, 373–379. [CrossRef]

24. Donskoi, E.; Manuel, J.R.; Lu, L.; Holmes, R.J.; Poliakov, A.; Raynlyn, T.D. Importance of textural
information in mathematical modelling of iron ore fines sintering performance. Miner. Process. Extr. Metall.
(Trans. Inst. Min. Met. C) 2017, 127, 103–114. [CrossRef]

25. Hapugoda, S.; Lu, L.; Donskoi, E.; Manuel, J. Mineralogical quantification of iron ore sinter.
Miner. Process. Extr. Metall. (Trans. Inst. Min. Met. C) 2016, 125, 156–164. [CrossRef]

26. Sinha, M.; Nistala, S.H.; Chandra, S.; Mankhand, T.R.; Ghose, A.K. Correlating mechanical properties of
sinter phases with their chemistry and its effect on sinter quality. Ironmak. Steelmak. 2017, 44, 100–107.
[CrossRef]

362



Appl. Sci. 2020, 10, 6242

27. Honeyands, T.; Manuel, J.; Matthews, L.; O’Dea, D.; Pinson, D.; Leedham, J.; Zhang, G.; Li, H.; Monaghan, B.;
Liu, X.; et al. Comparison of the mineralogy of iron ore sinters using a range of techniques. Minerals 2019, 9, 333.
[CrossRef]

28. Honeyands, T.; Manuel, J.; Matthews, L.; O’Dea, D.; Pinson, D.; Leedham, J.; Monaghan, B.; Li, H.; Chen, J.;
Hayes, P.; et al. Characterising the mineralogy of iron ore sinters—State-of-the-art in Australia. In Proceedings
of the Iron Ore 2017, Perth, Australia, 24–26 July 2017; pp. 49–60.

29. Bonnici, N.; Hunt, J.; Walters, S.; Berry, R.; Collett, D. Relating textural attributes to mineral
processing—Developing a more effective approach for the Cadia east Cu–Au porphyry deposit.
In Proceedings of the Ninth International Congress for Applied Mineralogy, Brisbane, Australia,
8–10 September 2008; pp. 415–418.

30. Bonnici, N.; Hunt, J.; Berry, R.; Walters, S.; McMahon, C. Quantified mineralogy and texture: Informed sample
selection for communication and metallurgical testing. In Proceedings of the Tenth Biennial SGA Meeting,
Townsville, Australia, 17–20 August 2009; pp. 679–681.

31. Lamberg, P.; Lund, C. Taking liberation information into a geometallurgical model-case study,
Malmberget, Northern Sweden. In Proceedings of the Process Mineralogy’12, Cape Town, South Africa,
7–9 November 2012; pp. 1–13.

32. Lund, C.; Lamberg, P.; Lindberg, T. Practical way to quantify minerals from chemical assays at Malmberget
iron ore operations—An important tool for the geometallurgical program. Miner. Eng. 2013, 49, 7–16.
[CrossRef]

33. Lund, C.; Lamberg, P.; Lindberg, T. Development of a geometallurgical framework to quantify mineral
textures for process prediction. Min. Eng. 2015, 82, 61–77. [CrossRef]

34. Donskoi, E.; Holmes, R.J.; Manuel, J.R.; Campbell, J.J.; Poliakov, A.; Suthers, S.P.; Raynlyn, T. Utilization of
Iron Ore Texture Information for Prediction of Downstream Process Performance. In Proceedings of the 9th
International Congress for Applied Mineralogy, Brisbane, Australia, 8–10 September 2008; pp. 687–693.

35. Donskoi, E.; Poliakov, A.; Holmes, R.; Suthers, S.; Ware, N.; Manuel, J.; Clout, J. Iron ore textural information
is the key for prediction of downstream process performance. Miner. Eng. 2016, 86, 10–23. [CrossRef]

36. Donskoi, E.; Suthers, S.P.; Fradd, S.B.; Young, J.M.; Campbell, J.J.; Raynlyn, T.D.; Clout, J.M.F. Utilization of
optical image analysis and automatic texture classification for iron ore particle characterization. Miner. Eng.
2007, 20, 461–471. [CrossRef]

37. Donskoi, E.; Suthers, S.P.; Campbell, J.J.; Raynlyn, T.; Clout, J.M.F. Prediction of hydrocyclone performance
in iron ore beneficiation using texture classification. In Proceedings of the XXIII International Mineral
Processing Congress, Istanbul, Turkey, 3–8 September 2006; pp. 1897–1902.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

363





applied  
sciences

Article

The Analysis of Shape Features for the Purpose of
Exercise Types Classification Using
Silhouette Sequences
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Abstract: This paper presents the idea of using simple shape features for action recognition based
on binary silhouettes. Shape features are analysed as they change over time within an action
sequence. It is shown that basic shape characteristics can discriminate between short, primitive actions
performed by a single person. The proposed approach is tested on the Weizmann database using a
various number of classes. Binary foreground masks (silhouettes) are replaced with convex hulls,
which highlights some shape characteristics. Centroid locations are combined with some other
simple shape descriptors. Each action sequence is represented using a vector with shape features and
Discrete Fourier Transform. Classification is based on leave-one-sequence-out approach and employs
Euclidean distance, correlation coefficient or C1 correlation. A list of processing steps for action
recognition is explained and followed by some experiments that yielded accuracy exceeding 90%.
The idea behind the presented approach is to develop a solution for action recognition that could be
applied in a kind of human activity recognition system associated with the Ambient Assisted Living
concept, helping adults increasing their activity levels by monitoring them during exercises.

Keywords: action recognition; silhouette sequences; shape features; ambient assisted living; active ageing

1. Introduction

Human Activity Recognition (HAR) based on the video content analysis approaches is
gaining more and more interest thanks to the wide variety of possible applications, such as video
surveillance, human-computer interfaces or monitoring of patients and elderly people in their living
environments. An exemplary structure of the HAR system may consist of the following general
modules: motion segmentation, object classification, human tracking, action recognition and semantic
description [1]. If a focus is put to action recognition (exercise classification), it can be assumed
that input data type, localised objects and their positions are known. Based on the taxonomy
presented in [2] the techniques for action recognition are divided into holistic and local representations.
Holistic solutions use global representations of human shape and movement, accumulating several
features. The most popular solutions include Motion History Image and Motion Energy Image
templates proposed by Bobick and Davis [3] or Space-Time Volume representation introduced by
Yilmaz and Shah [4]. Local representations usually are based on interest points which are used to
extract a set of local descriptors, e.g., Space-Time Interest Points by Laptev [5]. Instead of aggregating
features from all frames, some researchers propose to extract only several foreground silhouettes,
so called key poses (e.g., [6,7]). If binary silhouettes are used as input data, various shape features can
be extracted and combined, such as shape and contour [8], orientation [9] or skeleton [10]. Apart from
traditional approaches, more challenging tasks can benefit from the application of deep learning
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techniques, such as Convolutional Neural Networks [11]. Ultimately, the choice of methods is
dependant, among others, on the application scenario and data complexity.

A task of exercise classification can be related to the Ambient Assisted Living (AAL), which refers
to concepts, products and services introducing new technologies for people in all phases of life,
allowing them to stay healthy, independent, safe and well-functioning at their living environment.
In the era of an ageing society and a significant proportion of older people living alone or unattended,
expanding the range of care support options is becoming more and more important. Another major
focus of AAL is prolonging the time people can live on their own, being in good health and
in good physical shape. This is related to the increasing life expectancy and successful ageing.
The World Health Organisation policy in Active Ageing applies to physical, mental and social
well-being, and is defined in [12] as “the process of optimizing opportunities for health, participation
and security in order to enhance quality of life as people age”. Among people aged 45 and over,
non-communicable diseases (NCDs) are the most frequent causes of mortality and disability all over
the world. The risk of NCDs morbidity is higher in this age group; however, risk factors may originate
in younger years. NCDs include, among others, cardiovascular diseases, hypertension, diabetes,
chronic obstructive pulmonary disease, musculoskeletal conditions and mental health conditions.
One of the risk factors is a sedentary lifestyle [12]. Low level of physical activity and lack of exercises
can directly lead to obesity which increases the risk of NCDs as well. The study presented in [13] shows
that greater physical fitness is associated with reduced risk of developing many NCDs. The authors
of [14] advise promoting positive health behaviour rather than reducing negative ones, such as
above-mentioned sedentary lifestyle. It is recommended to focus on the benefits of physical activity,
provide motivation and promote self-care. Models based on social-cognitive behavioural theory are
indicated as self-regulatory strategies that can contribute to increasing physical activity based on skills
such as goal setting and self-monitoring of progress.

This paper follows the idea of active ageing and the use of activity monitoring solutions.
However, the approach which is here proposed aims only at recognizing primitive actions that
resemble some recommended exercise types [15], such as resistance, aerobic, stretching, balance
and flexibility exercises. A specific scenario is assumed in which a person wants to do a workout
in front of a laptop where a video with exercises is displayed. The laptop camera captures people’s
activities and the algorithm analyses them. The classification is performed in order to determine the
amount, frequency and duration of a specific exercise. This, in some way, may encourage a person to
engage in more physical activity. Due to presented reasoning, Section 2. Related works is focused on
the methods and techniques used in action recognition approaches based on video content analysis.
In our approach, we use foreground masks extracted from video sequences, each representing single
person performing an action. Foreground masks carry information about an object’s pose, shape and
localisation. Therefore, various features can be retrieved and combined in order to create an action
representation—here it is proposed to combine trajectory, simple shape descriptors and Discrete
Fourier Transform (DFT).

The rest of the paper is organised as follows: Section 2 presents selected related works, that concern
the recognition and classification of similar actions. Section 3 explains consecutive steps of the proposed
approach together with applied methods and algorithms. Section 4 describes experimental conditions
and presents the results. Section 5 discusses the results and concludes the paper.

2. Related Works

An action can be defined as a single person short activity composed of multiple gestures
organised in time that lasts up to several seconds or minutes [1,16], e.g., running, walking or bending.
Many actions can be performed for a longer time than several minutes, however due to their periodic
characteristic only a short action span is used for recognition. The recognition process is here
understood as assigning action labels to sequences of images [17]. Then, action classification can
be based on various features, such as colour, grey levels, texture, shape or characteristic points like
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centroid or contour. Selected features are numerically represented using specific description algorithms
in a form of so-called representation or descriptor. According to [2], good representation for action
recognition has to be easy to calculate, provide a description for as many classes as possible and
reflect similarities between look-alike actions. There is a large body of literature on video-based action
recognition and related topics investigating wide variety of methods and algorithms using diverse
features. An interest is reflected in the still emerging surveys and reviews (e.g., [2,18–22]). Due to
many techniques on action classification reported in the literature, here we refer to several works that
correspond to our interests in terms of the methods and data used.

The authors of [23] propose a novel pose descriptor based on the human silhouette,
called Histogram of Oriented Rectangles. The human silhouette is represented by a set of
oriented rectangular patches, and the distribution of these patches is represented as oriented
histograms. Histograms are classified by different techniques, such as nearest neighbour classification,
Support Vector Machine (SVM) and Dynamic Time Warping (DTW), among which the last one
turned out to be the most accurate. Another silhouette based feature was proposed in [24] which
uses Trace transform for a set of silhouettes representing single period of action. The authors
introduce two feature extraction methods: History Trace Templates (a sequence representation with
spatio-temporal information) and History Triple Features (a set of invariant features calculated for
every frame). The classification is performed using Radial Basis Function Kernel SVM and Linear
Discriminant Analysis is applied for dimensionality reduction. Action recognition based on silhouettes
is presented in [25] as well. All silhouettes in a sequence are represented as time series (using a rotation
invariant distance function) and each of them is transformed into so-called Symbolic Aggregate
approXimation (SAX). An action is then represented by a set of SAX vectors. The model is trained
using the random forest method and various classification methods are tested. The authors of [26]
propose a novel feature for action recognition based on silhouette contours only. A contour is divided
into radial bins of the same angle using centroid coordinates and a summary value is obtained for each
bin. A summary value (variance, max value or range) depends on Euclidean distances from centroid
to contour points in every radial bin. The proposed feature is used together with a bag of key poses
approach and tested in single- and multi-view scenarios using DTW and leave-one-out procedure.

The authors of [8,9] use accumulated silhouettes (all binary masks of an action sequence are
compressed into one image) instead of every silhouette separately. In [8] various contour- and
region-based features are combined, such as Cartesian Coordinate Features and Histogram of
Oriented Gradients (HOG). SVM and K-nearest neighbour (KNN) classifiers are used (the latter
one in two scenarios). In total, seven different features and three classifiers are experimentally tested.
The highest accuracy is reported for a combination of HOG and KNN in leave-one-sequence-out
scenario. In [9] an average energy silhouette image is calculated for each sequence. Then region of
interest is detected and several features are calculated: edge distribution of gradients, directional pixels
and rotational information. These feature vectors are combined in action representations which are
then classified using SVM classifier. In [10], instead of accumulated silhouettes, the authors propose
the cumulative skeletonised image—all foreground objects’ skeletons of each action sequence are
aligned to the centroid and accumulated into one image. Action features are extracted from these
cumulative skeletonised images. In an off-line phase the most discriminant human body regions are
selected and classified in an online phase using SVM. The authors of [27] propose a motion descriptor
which describes patterns of neighbouring trajectories. Two-level occurrence analysis is performed to
discover motion patterns of trajectory points. Actions are classified using SVM with different kernels or
random forest algorithm. The approach proposed in [28] employs spectral domain features for action
classification, however silhouette features are not involved. Instead, the two-dimensional Discrete
Fourier Transform is applied to each video frame and a part of high amplitude coefficients is taken.
For a given sequence, selected coefficients of all frames are concatenated into action representation.
Larger representations can be reduced using Principal Component Analysis. Action classification is
performed using SVM or a simple classifier based on Euclidean distance.
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3. Materials and Methods

An action recognition procedure is proposed. It is based on simple features extracted from
the entire silhouette and its characteristic points, which are combined into action representation.
The proposed approach applies our previous findings and recent research, aiming at improving the
results presented in [29]. The dataset and the general processing steps are the same and will be
explained in the following subsections. Several changes at the data preprocessing step are introduced,
and a new parameter is added for the action representation method that previously yielded the
highest accuracy.

3.1. Data Preprocessing

Due to the use of the Weizmann database [30] it is assumed that for each video sequence there
is a set of binary images, and these images are foreground masks extracted from video frames.
One sequence represents one action type and one image contains one silhouette. Frames in which an
object is occluded or too close to the edge of the video frame are removed. The direction of the action
is checked and, if necessary, the video frames are flipped so that all objects in the sequence move from
left to right. Then, each silhouette is replaced with its convex hull, which reduces the impact of some
artefacts (e.g., additional pixels) introduced during background subtraction (see Figure 1 for examples).
It is indicated in [29] that the use of convex hulls improves classification accuracy.

Figure 1. Sample silhouettes from the Weizmann database [30] and the corresponding convex hulls.

Before the actual classification, the dataset is divided into two subsets based on the centroid
locations on the consecutive frames. This is related to action characteristics—some of actions are
performed by a person standing in place (short trajectory) and the rest contain a person who changes
location in every frame (long trajectory). Examples are given in Figure 2. This procedure can be called
a coarse classification. It influences subsequent steps of the approach which are performed separately
in each subgroup. Therefore, there is a possibility of selecting different features and parameters
better suited to the specific action types.
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Figure 2. Exemplary trajectories for ten different actions of one actor: actions performed in place are
in the top row (bending, jumping-jack, jumping in place, one-hand waving and two-hand waving)
and actions with changing location of a silhouette are depicted in the bottom row (jumping forward,
running, galloping sideways, skipping and walking). Centroid trajectory is displayed over sample
frame from a corresponding video sequence.

3.2. Shape Representation

In this step, each image from the dataset is represented as a single number using a selected shape
description algorithm—each number is a simple shape descriptor. The descriptors of all frames from a
sequence are combined into one vector and values are normalized to [0, 1] range. This makes it easy
to observe how the individual shape features change over time and how they differ between actions.
Figure 3 depicts example vectors as line graphs using very simple feature which is an area of a convex
hull. Each input action sequence can be denoted as a set of binary masks BMi = {bm1, bm2, ..., bmn},
which is represented by a set of normalized descriptors SDi = {sd1, sd2, ..., sdn}, and n is the number
of frames in a particular sequence.

Simple shape descriptors are basic shape measurements and shape ratios, often used to describe
general shape characteristics. A shape measurement is a relative value dependent on the scale of
the object. Shape ratio is an absolute value that can be calculated using some shape measurements.
Selected simple shape descriptors are listed below (based on [31–34]):

• Area and perimeter, as the number of pixels belonging to the shape’s region or contour
respectively.

• Feret measures (Feret diameters):

– X Feret and Y Feret, the distances between the minimal and maximal horizontal and vertical
coordinates of a contour respectively;

– X/Y Feret, the ratio of the X Feret to Y Feret;
– Max Feret, the maximum distance between any two points of a contour.

• Shape factors:

– Compactness, the ratio of the square of the shape’s perimeter to its area;
– Roundness, measures shape’s sharpness based on area and perimeter;
– Circularity ratio, defines how a shape is similar to a circle. It can be estimated as the ratio

of the shape’s area to the shape’s perimeter square. It is also called a circle variance and
calculated based on the mean and standard deviation obtained using distances from centroid
to the contour points;
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– Ellipse variance, defines how a shape is similar to an ellipse and can be estimated as a
mapping error of a shape fitting an ellipse where both have the same covariance matrix.
Similarly to circle variance, mean and standard deviation are used;

– Width/length ratio, the ratio of the maximal to the minimal distance based on distances
between centroid and contour points.

• Minimum bounding rectangle (MBR)—defines a smallest rectangular region that contains all
points of a shape. A MBR can be measured in different ways and some ratios can be calculated:

– MBR measurements, which include area, perimeter, length and width. Length and width
can be calculated based on specific pairs of MBR corner points, however in our experiments
we always consider the shorter MBR side as its width;

– Rectangularity, the ratio of the area of a shape to the area of its MBR;
– Eccentricity, the ratio of width to length of the MBR (length is the longer side of the MBR

and width is the shorter one);
– Elongation, a value of eccentricity subtracted from 1.

• Principal axes method (PAM), which defines two unique line segments that cross each other
orthogonally within a shape’s centroid. The lengths of the principal axes are used to calculate
eccentricity which is the measure of aspect ratio.

3.3. Action Representation

In the next step, all SD vectors are transformed into action representations (AR) using the Discrete
Fourier Transform. A SD, in its form, is similar to shape signature and the one-dimensional version
of the Discrete Fourier Transform can be applied. The number of elements in each SD is different
due to various number of frames in video sequences. Therefore, to prepare action representations
equal in size, the N-point Discrete Fourier Transform is calculated, where N is the predefined number
of resultant Fourier coefficients. If N is larger than n, then SD vectors are appended with zeros in
the time domain (zero-padding) which corresponds to the interpolation in the frequency domain.
Otherwise, SD vectors are truncated and then Fourier coefficients are calculated. As a result, each AR
contains N absolute values of Fourier coefficients. Usually, it was recommended that the vectors under
transformation should have a length equal to a power of 2, due to the computational complexity.
However, current implementations of the Discrete Fourier Transform can handle arbitrary size
transforms, e.g., Fast Fourier Transform algorithm available in the FFTW library [35].

3.4. Final Classification

For action classification a standard leave-one-out cross-validation procedure is adopted. In each
iteration, one sequence is left out and matched with the rest of sequences based on AR vectors. An AR
which resulted to be the most similar (or less dissimilar) to the one under processing indicates its
class. Indications from all iterations are verified with the original action labels and the percentage of
correctly classified objects is taken (classification accuracy). For matching, three different measures are
applied, namely Euclidean distance [36], correlation coefficient based on Pearson’s correlation [37] and
C1 correlation based on L1-norm [38].
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Figure 3. Line graphs showing normalized area values for actions presented in Figure 2. The X axis
corresponds to the consecutive frame numbers, while the Y axis corresponds to the normalized area
values of the foreground object in each frame. Line graphs in the left column correspond to the actions
performed in place (bending, jumping-jack, jumping in place, one-hand waving and two-hand waving),
and line graphs for actions with changing location of a silhouette are depicted in the right column
(jumping forward, running, galloping sideways, skipping and walking).
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4. Experimental Conditions and Results

The experiments were performed with the use of the Weizmann dataset [30], which consists
of short video sequences that last up to several seconds (144 × 180 px, 50 fps). Foreground binary
masks extracted from the database were made available by its authors and are here used as input
data. There are masks for 93 sequences, however three of them are removed—one actor doubled three
actions by moving with two different directions. In result, the database has 10 action classes and
each action type is performed by nine different actors. During the experiments we follow the data
processing steps presented in the previous section. Firstly, each frame is preprocessed individually
and then all sequences are divided into two subsets—actions performed in place and actions with
changing location of a silhouette. After preprocessing the number of images in a sequence varies from
28 to 146. The group of actions performed in place consists of five action classes: ‘bend’, ‘jump in place’,
‘jumping jack’, ‘wave one hand’ and ‘wave two hands’, whereas actions with changing location of a
silhouette are: ‘jump forward on two legs’, ‘run’, ‘skip’, ‘walk’ and ‘gallop sideways’. Figure 4 depicts
some selected masks after preprocessing step (for two different actions). The next steps, including
shape description, action representation and action classification, are performed separately in each
subgroup. Ultimately, the classification accuracy values of both subgroups are averaged, which gives
the final effectiveness of the approach.

Figure 4. Exemplary preprocessed masks for ‘walk’ (top row) and ‘jumping jack’ (bottom row) actions.

The main part of the experiments refers to the assumed application scenario, which is related
to the Ambient Assisted Living and the concept of active ageing. In this scenario, a human activity
analysis is performed to identify types of exercises. Physical activity is indicated as one of the methods
of preventing the risk of developing non-communicable diseases. Based on the social-cognitive
behavioural theory it is advised to promote self-care and incorporate self-monitoring of progress.
Nowadays, video content analysis techniques and the popularity of cameras (in laptops, smartphones)
facilitate the implementation of exercise monitoring solutions. In order to carry out the experiment
concerning the recognition of types of exercises, we composed a database using selected classes from
the Weizmann database. Action classes were compared with the recommended exercises presented
in [15]. In addition, it was taken into account that exercises are supposed to be performed in a home
environment. Due to that, the ‘run’ class is excluded. Moreover, there are two classes with waving
action, therefore the ‘wave with one hand’ class is excluded as well. The remaining action classes may
be associated with the following exercises (based on [15]):

• Aerobic/endurance exercise, in which the body’s large muscles move in a rhythmic manner
(e.g., walking, skipping, jumping jack);

• Balance training, which includes various activities that increase lower body strength (e.g., galloping
sideways, jumping in place, jumping forward on two legs);

• Flexibility exercise, which preserves or extends motion range around joints (e.g., waving, bending).

Several experiments were carried out to investigate the best combination of methods and
parameters for the approach. Twenty simple shape descriptors were tested in combination with
three matching measures and the use of up to 256 Fast Fourier Transform coefficients. In order to focus
only on the highest results and be able to appropriately present them, for each matching measure an
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experiment is performed with several tests, in which a selected simple shape descriptor and different
number of coefficients are used. The results of exercise recognition are provided in Table 1. The best
result is considered as the highest accuracy and the smallest action representation. The highest accuracy
for actions performed in place is 100% if MBR width is used and the action representation contains
54 elements. It means that each action sequence, regardless of the number of frames, is represented
using 54 Fast Fourier Transform coefficients and a representation has a form of a vector with 54 real
values. The matching process can be then performed using Euclidean distance or C1 correlation.
In total, 100% accuracy is also obtained for X/Y Feret, but more DFT coefficients are required. Actions
with changing location of a silhouette are most successfully classified if MBR area is used and action
representation contains 32 values—an accuracy of 94.44% is yielded. Again, either Euclidean distance
or C1 correlation can be employed. Ultimately, the averaged correct classification rate for exercise
types recognition is 97.2% (8 action classes).

Table 1. Experimental results for the recognition of exercise types using 8 classes of the Weizmann
dataset. The results are presented separately for actions performed in place and actions with changing
location of a silhouette. The highest accuracy values are listed with the indication of the applied simple
shape descriptor and the size of an action representation (given in brackets).

8 Classes Actions Performed in Place Actions with Changing Location of a Silhouette

Euclidean distance 100.00% 94.44%
MBR width MBR area

(54) (32)

Correlation Coefficient 97.22% 83.33%
circle variance MBR perimeter

(48) (35)

C1 Correlation 100.00% 94.44%
MBR width MBR area

(54) (32)

A second set of experiments concerned the use of the Weizmann database as a benchmark and the
comparison of the results for 10 classes with the previous version of our approach, presented in [29].
The results are presented in Table 2. For actions performed in place the highest accuracy is 86.67%
(MBR perimeter, 52 DFT coefficients, Euclidean distance) and for actions with changing location of a
silhouette the accuracy equals 95.56% (MBR area, 33 DFT coefficients, C1 correlation). If the use of
different methods and parameters for each subgroup is assumed, the averaged accuracy for the entire
database is 91.12%. This outperforms our previous approach based on simple shape descriptors, that
resulted in 83.3% accuracy for actions performed in place (MBR width) and 85.4% (PAM eccentricity)
for the other subgroup. The averaged accuracy equalled then 84.35%, which means that the current
approach improves the accuracy by nearly 7%.

Table 2. Experimental results for the Weizmann dataset used as a benchmark, presented separately for
actions performed in place and actions with changing location of a silhouette. The highest accuracy
values are listed with the indication of the applied simple shape descriptor and the size of an action
representation (given in brackets).

10 Classes Actions Performed in Place Actions with Changing Location of a Silhouette

Euclidean distance 86.67% 91.11%
MBR perimeter MBR area

(52) (32)

Correlation Coefficient 86.67% 84.44%
width/length ratio perimeter and ellipse variance

(53) (66)

C1 Correlation 82.22% 95.56%
MBR perimeter MBR area

(56) (33)
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5. Discussion and Conclusions

In the second section of the paper, a description of related works is given. The methods described
there, that is [8–10,23–28], were chosen for two main reasons—they concern action recognition and
use the Weizmann database. However, the approaches used to represent a frame or a silhouette are
diverse. In [23] a set of rectangular patches is used to represent a shape and in [26] only contour points
are applied. Some researchers use various transforms, e.g., the authors of [24] apply Trace transform to
binarized silhouettes, while in [28] the two-dimensional Fourier transform is applied to the original
frames. The opposite approach is the use of cumulative silhouettes [8,9] or cumulative skeletons [10].
Some other techniques are dense trajectories based on salient points [27] and time series [25].

The approach proposed in this paper combines simple shape descriptors with the one-dimensional
Fourier transform and standard leave-one-out classification procedure. Each action sequence is firstly
described by a set of simple features and represented using a predefined number of Fourier coefficients.
Classification is two-stage: firstly, actions are divided into two subgroups based on trajectory length,
and secondly, leave-one-sequence-out cross-validation is performed. The proposed approach yields
97.2% accuracy in the assumed application scenario and 91.12% accuracy on the entire Weizmann
database. The best results were obtained with the use of features based on a minimum bounding
rectangle—its area, width and perimeter. These features are simple; however, if observed over time,
they carry much more information about an action. Therefore, the input data can be limited to
rectangular objects of interest, representing regions where silhouettes are located. These areas can be
tracked over time to extract centroid locations. With these assumptions, the calculation of convex hulls
may be omitted.

A comparison of some recognition rates of the proposed approach to other methods tested on the
Weizmann dataset is presented in Table 3. Although our approach does not provide a perfect accuracy,
it can be compared with some other solutions. It should be mentioned that the presented methods may
assume other application scenarios and experimental conditions. Moreover, if we limit the number
of classes, it does not always improve the results, which is proven in our experiments. When the
classification of actions with changing location of a silhouette is performed for 10 classes, the highest
accuracy is 95.56%, while for the limited number of classes it decreases to 94.44%. According to that,
we especially refer to the results presented in [8,23,28] that outperformed our results obtained in the
experiment concerning the assumed application scenario. The authors of [28] also employ spectral
domain features, however these features are extracted from video frames using the two-dimensional
Fourier Transform. In our approach the frames are represented using simple shape descriptors,
which for each sequence are concatenated into a vector, and the one-dimensional Fourier Transform is
applied. Therefore, the initial data dimensionality is lower. The descriptor proposed in [23] requires
the extraction of rectangular regions from a human silhouette which may be problematic in case
of imperfect silhouettes. The approach proposed in [8] uses accumulated silhouette representation,
which requires all foreground masks from an action sequence. In our approach each foreground mask
is represented separately, therefore in the case of the real-time scenario the proposed approach can be
adjusted to utilise fewer frames.

The proposed approach has some advantages—it can be adapted to different action types by
selecting other shape features and matching measures. Action representations are small and easy to
calculate because simple algorithms are applied. Moreover, if another distinctive feature is found,
instead of centroid or in addition to it, the recognition space could be narrowed in a more efficient
manner and eliminate misclassifications. The use of different methods in each subgroup improves
overall results. The presented version of the approach is promising; however, an improvement is
needed. Our future works include experiments using other databases with larger number of classes
corresponding to different exercises. Moreover, recently popular solutions based on deep learning will
be tested as well.
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Table 3. Comparison of recognition rates obtained on the Weizmann database (cited methods are
explained in Section 2. Related works).

Reference Number of Actions Accuracy

[28] 10 100%
[23] 9 (without skip) 100%
[8] 10 (93 videos) 98.24%

Proposed 8 97.20%
[9] 10 96.64%
[24] 10 95.42%
[26] 10 93.50%

Proposed 10 91.12%
[25] 10 89.00%
[10] 10 87.52%
[27] 10 78.88%
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